
14th International Conference on
Interactive Theorem Proving

ITP 2023, July 31 to August 4, 2023, Białystok, Poland

Edited by

Adam Naumowicz
René Thiemann

LIPIcs – Vo l . 268 – ITP 2023 www.dagstuh l .de/ l i p i c s

Editors

Adam Naumowicz
University of Białystok, Poland
adamn@math.uwb.edu.pl

René Thiemann
University of Innsbruck, Austria
rene.thiemann@uibk.ac.at

ACM Classification 2012
Theory of computation → Interactive proof systems; Theory of computation → Higher order logic; Software
and its engineering → Formal methods; Theory of computation → Program reasoning; Computing
methodologies → Theorem proving algorithms

ISBN 978-3-95977-284-6

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-284-6.

Publication date
July, 2023

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.ITP.2023.0

ISBN 978-3-95977-284-6 ISSN 1868-8969 https://www.dagstuhl.de/lipics

https://orcid.org/0000-0003-4224-9798
mailto:adamn@math.uwb.edu.pl
https://orcid.org/0000-0002-0323-8829
mailto:rene.thiemann@uibk.ac.at
https://www.dagstuhl.de/dagpub/978-3-95977-284-6
https://www.dagstuhl.de/dagpub/978-3-95977-284-6
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.ITP.2023.0
https://www.dagstuhl.de/dagpub/978-3-95977-284-6
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Reykjavik University, IS and Gran Sasso Science Institute, IT)
Christel Baier (TU Dresden, DE)
Mikolaj Bojanczyk (University of Warsaw, PL)
Roberto Di Cosmo (Inria and Université de Paris, FR)
Faith Ellen (University of Toronto, CA)
Javier Esparza (TU München, DE)
Daniel Král’ (Masaryk University - Brno, CZ)
Meena Mahajan (Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)
Chih-Hao Luke Ong (University of Oxford, GB and Nanyang Technological University, SG)
Phillip Rogaway (University of California, Davis, US)
Eva Rotenberg (Technical University of Denmark, Lyngby, DK)
Raimund Seidel (Universität des Saarlandes, Saarbrücken, DE and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Wadern, DE)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

ITP 2023

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Adam Naumowicz and René Thiemann . 0:ix

Invited Talks

Formalisation of Additive Combinatorics in Isabelle/HOL
Angeliki Koutsoukou-Argyraki . 1:1–1:2

Interactive and Automated Proofs in Modal Separation Logic
Robbert Krebbers . 2:1–2:1

Regular Papers

A Formal Analysis of RANKING
Mohammad Abdulaziz and Christoph Madlener . 3:1–3:18

Fast, Verified Computation for Candle
Oskar Abrahamsson and Magnus O. Myreen . 4:1–4:17

Formalizing Functions as Processes
Beniamino Accattoli, Horace Blanc, and Claudio Sacerdoti Coen 5:1–5:21

An Elementary Formal Proof of the Group Law on Weierstrass Elliptic Curves in
Any Characteristic

David Kurniadi Angdinata and Junyan Xu . 6:1–6:19

A Proof-Producing Compiler for Blockchain Applications
Jeremy Avigad, Lior Goldberg, David Levit, Yoav Seginer, and Alon Titelman 7:1–7:19

No Unification Variable Left Behind: Fully Grounding Type Inference for the
HDM System

Roger Bosman, Georgios Karachalias, and Tom Schrijvers . 8:1–8:18

Automated Theorem Proving for Metamath
Mario Carneiro, Chad E. Brown, and Josef Urban . 9:1–9:19

Reimplementing Mizar in Rust
Mario Carneiro . 10:1–10:18

Now It Compiles!: Certified Automatic Repair of Uncompilable Protocols
Luís Cruz-Filipe and Fabrizio Montesi . 11:1–11:19

Lessons for Interactive Theorem Proving Researchers from a Survey of Coq Users
Ana de Almeida Borges, Annalí Casanueva Artís, Jean-Rémy Falleri,
Emilio Jesús Gallego Arias, Érik Martin-Dorel, Karl Palmskog,
Alexander Serebrenik, and Théo Zimmermann . 12:1–12:18

Formalizing Norm Extensions and Applications to Number Theory
María Inés de Frutos-Fernández . 13:1–13:18

14th International Conference on Interactive Theorem Proving (ITP 2023).
Editors: Adam Naumowicz and René Thiemann

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

Tealeaves: Structured Monads for Generic First-Order Abstract Syntax
Infrastructure

Lawrence Dunn, Val Tannen, and Steve Zdancewic . 14:1–14:20

Closure Properties of General Grammars – Formally Verified
Martin Dvorak and Jasmin Blanchette . 15:1–15:16

Formalising Yoneda Ext in Univalent Foundations
Jarl G. Taxerås Flaten . 16:1–16:17

LISA – A Modern Proof System
Simon Guilloud, Sankalp Gambhir, and Viktor Kunčak . 17:1–17:19

Semantic Foundations of Higher-Order Probabilistic Programs in Isabelle/HOL
Michikazu Hirata, Yasuhiko Minamide, and Tetsuya Sato . 18:1–18:18

MizAR 60 for Mizar 50
Jan Jakubův, Karel Chvalovský, Zarathustra Goertzel, Cezary Kaliszyk,
Mirek Olšák, Bartosz Piotrowski, Stephan Schulz, Martin Suda, and Josef Urban . 19:1–19:22

Constructive Final Semantics of Finite Bags
Philipp Joram and Niccolò Veltri . 20:1–20:19

Proof Pearl: Faithful Computation and Extraction of µ-Recursive Algorithms in
Coq

Dominique Larchey-Wendling and Jean-François Monin . 21:1–21:17

Group Cohomology in the Lean Community Library
Amelia Livingston . 22:1–22:17

A Formalisation of Gallagher’s Ergodic Theorem
Oliver Nash . 23:1–23:16

An Extensible User Interface for Lean 4
Wojciech Nawrocki, Edward W. Ayers, and Gabriel Ebner . 24:1–24:20

Bel-Games: A Formal Theory of Games of Incomplete Information Based on
Belief Functions in the Coq Proof Assistant

Pierre Pomeret-Coquot, Hélène Fargier, and Érik Martin-Dorel 25:1–25:19

Proof Repair Infrastructure for Supervised Models: Building a Large Proof
Repair Dataset

Tom Reichel, R. Wesley Henderson, Andrew Touchet, Andrew Gardner,
and Talia Ringer . 26:1–26:20

POSIX Lexing with Bitcoded Derivatives
Chengsong Tan and Christian Urban . 27:1–27:18

A Sound and Complete Projection for Global Types
Dawit Tirore, Jesper Bengtson, and Marco Carbone . 28:1–28:19

Real-Time Double-Ended Queue Verified (Proof Pearl)
Balazs Toth and Tobias Nipkow . 29:1–29:18

Certifying Higher-Order Polynomial Interpretations
Niels van der Weide, Deivid Vale, and Cynthia Kop . 30:1–30:20

Contents 0:vii

Slice Nondeterminism
Niels F. W. Voorneveld . 31:1–31:19

Foundational Verification of Stateful P4 Packet Processing
Qinshi Wang, Mengying Pan, Shengyi Wang, Ryan Doenges, Lennart Beringer,
and Andrew W. Appel . 32:1–32:20

Dependently Sorted Theorem Proving for Mathematical Foundations
Yiming Xu and Michael Norrish . 33:1–33:18

Formalizing Results on Directed Sets in Isabelle/HOL (Proof Pearl)
Akihisa Yamada and Jérémy Dubut . 34:1–34:13

Formalising the Proj Construction in Lean
Jujian Zhang . 35:1–35:17

Short Papers

Fermat’s Last Theorem for Regular Primes
Alex J. Best, Christopher Birkbeck, Riccardo Brasca, and Eric Rodriguez Boidi . . . 36:1–36:8

Implementing More Explicit Definitional Expansions in Mizar
Adam Grabowski and Artur Korniłowicz . 37:1–37:8

Formalizing Almost Development Closed Critical Pairs
Christina Kohl and Aart Middeldorp . 38:1–38:8

ITP 2023

Preface

The International Conference on Interactive Theorem Proving (ITP) is the main venue for the
presentation of research into interactive theorem proving frameworks and their applications.
It has evolved organically starting with a HOL workshop back in 1988, gradually widening
to include other higher-order systems and interactive theorem provers generally, as well as
their applications. This year’s conference takes place in Białystok in Poland. It is hosted
by the Mizar group of the University of Białystok. Previous ITP conferences took place
in Edinburgh 2010, Nijmegen 2011, Princeton 2012, Rennes 2013, Vienna 2014, Nanjing
2015, Nancy 2016, Brasilia 2017, Oxford 2018, Portland 2019, Paris 2020, Rome 2021 and
Haifa 2022; those in 2010, 2014, 2018 and 2022 were under the umbrella organization of the
Federated Logic Conference (FLoC).

This year’s conference attracted a total of 78 submissions (70 regular papers and 8 short
papers). Each paper was systematically reviewed by at least three program committee
members or appointed external reviewers, as a result of which the PC winnowed down the
selection to be presented at the conference: 36 papers (33 regular papers and 3 short papers).
We thank the authors of both accepted and rejected papers for their submissions, as well as
the PC members and external reviewers for their invaluable work.

As well as all the regular papers, we are very pleased to have invited talks by Angeliki
Koutsoukou-Argyraki (University of Cambridge) and Robbert Krebbers (Radboud University
Nijmegen). The present volume collects all the accepted papers contributed to the conference
as well as abstracts of the two invited talks. This is the fourth time that the ITP proceedings
are published in the LIPIcs series. We thank all those at Dagstuhl for their responsive
feedback on all matters associated with the production of the finished proceedings.

We are grateful to all of the local organizers and thankful to the ITP Steering Committee
for their guidance throughout.

Adam Naumowicz and René Thiemann

14th International Conference on Interactive Theorem Proving (ITP 2023).
Editors: Adam Naumowicz and René Thiemann

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:x Preface

Organisation

Programme Chairs

Adam Naumowicz University of Białystok, Poland
René Thiemann University of Innsbruck, Austria

Programme Committee

Andreas Abel Jesús Aransay Jeremy Avigad
Mauricio Ayala-Rincon Christoph Benzmüller Jasmin Blanchette
Sandrine Blazy Sylvie Boldo Cyril Cohen
Liron Cohen Luis Cruz-Filipe Ruben Gamboa
Jason Gross John Harrison Hugo Herbelin
Cezary Kaliszyk Chantal Keller Peter Lammich
Andreas Lochbihler Marco Maggesi Assia Mahboubi
Magnus O. Myreen Cláudia Nalon Tobias Nipkow
Michael Norrish John O’Leary Lawrence Paulson
Andrei Popescu Bas Spitters Josef Urban
Makarius Wenzel Freek Wiedijk Akihisa Yamada

Local Organisation

Czesław Byliński
Adam Grabowski
Artur Korniłowicz
Roman Matuszewski
Karol Pąk

External Reviewers
Rajashree Agrawal Johannes Åman Pohjola Thaynara Arielly de Lima
Alexander Best Timothy Bourke Mario Carneiro
Felix Cherubini Vikraman Choudhury Stefan Ciobaca
Evelyne Contejean Sander Dahmen Jérémy Dubut
Manuel Eberl Andres Erbsen Daniil Frumin
David Fuenmayor Lorenzo Gheri Daniel Gratzer
Ariel Grunfeld Roberto Guanciale Stepan Holub
Matthias Hutzler Jules Jacobs Jacques-Henri Jourdan
Ohad Kammar Dominik Kirst Bram Kohlen
Amélie Ledein Milan Lopuhaä-Zwakenberg Aart Middeldorp
Houda Mouhcine Julian Parsert Bartosz Piotrowski
Nicolas Pouillard Ivan Prokić Pierre-Marie Pédrot
Robert Rubbens Joshua Schneider Carlos Simpson
Matthieu Sozeau Christoph Sprenger Runzhou Tao
Dmitriy Traytel Daniel Ventura Yuting Wang

Formalisation of Additive Combinatorics in
Isabelle/HOL
Angeliki Koutsoukou-Argyraki # Ñ

University of Cambridge, UK

Abstract
In this talk, I will present an overview of recent formalisations, in the interactive theorem prover
Isabelle/HOL, of significant theorems in additive combinatorics, an area of combinatorial number
theory. The formalisations of these theorems were the first in any proof assistant to my knowledge.
For each of these theorems, I will discuss selected aspects of the formalisation process, focussing on
observations on our treatment of certain mathematical arguments when translated into Isabelle/HOL
and our overall formalisation experience with Isabelle/HOL for this area of mathematics.

2012 ACM Subject Classification Mathematics of computing → Combinatorics; Theory of compu-
tation → Logic and verification

Keywords and phrases Additive combinatorics, additive number theory, combinatorial number
theory, formalisation of mathematics, interactive theorem proving, proof assistants, Isabelle/HOL

Digital Object Identifier 10.4230/LIPIcs.ITP.2023.1

Category Invited Talk

Funding Angeliki Koutsoukou-Argyraki is funded by the ERC Advanced Grant ALEXANDRIA
(Project GA 742178, European Research Council) led by Lawrence C. Paulson (University of
Cambridge, Department of Computer Science and Technology). The Cambridge Mathematics
Placements (CMP) Programme has been supporting and (partially) funding summer internships
contributing to (ongoing) formalisations: Mantas Bakšys (2022); three more internships to contribute
to Isabelle/HOL formalisations of material in a related area to be supported in 2023.

1 Summary

Additive combinatorics studies the properties of sumsets of subsets of groups, often employing
proof techniques from other mathematical areas. In 2022 I initiated a line of formalisations
of results in this area of mathematics using Isabelle/HOL [11], one of my main goals being
the formalisation of advanced course material from the Cambridge Mathematical Tripos. My
collaborators and I achieved the formalisation of a number of profound theorems in this area.
A first project involved the formalisation of a proof of the Plünnecke–Ruzsa Inequality [9], an
inequality giving information on the size (cardinality) of sumsets (and difference sets) of finite
subsets of an abelian group. To this end, Lawrence Paulson and I, building on an algebra
library by Clemens Ballarin [2], introduced the basics of sumset theory in Isabelle/HOL
including basic results such as the Ruzsa Triangle Inequality [9]. Our source was the set
of the 2022 lecture notes by Timothy Gowers for Part III of the Cambridge Mathematical
Tripos [5]. Building on our formalisation of the basics [9] and again following [5], Lawrence
Paulson and I went on to formalise Khovanskii’s Theorem [8], which attests that for all
sufficiently large n, the cardinality of the n-iterated sumset of a finite subset of an abelian
group is polynomial in n. Continuing to follow [5], Mantas Bakšys, Chelsea Edmonds and I,
formalised the Balog–Szemerédi–Gowers Theorem [7, 6], a profound result which played a
central role in Gowers’s proof deriving the first effective bounds for Szemerédi’s Theorem.
The Balog–Szemerédi–Gowers Theorem attests that every finite subset (of given additive
energy) of an abelian group must contain a large subset whose sumset (difference set) is small,

© Angeliki Koutsoukou-Argyraki;
licensed under Creative Commons License CC-BY 4.0

14th International Conference on Interactive Theorem Proving (ITP 2023).
Editors: Adam Naumowicz and René Thiemann; Article No. 1; pp. 1:1–1:2

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ak2110@cam.ac.uk
https://www.cl.cam.ac.uk/~ak2110/
https://orcid.org/0000-0002-8886-5281
https://doi.org/10.4230/LIPIcs.ITP.2023.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 Additive Combinatorics in Isabelle/HOL

and gives bounds on these cardinalities depending on the given additive energy. The proof
is of great mathematical interest in itself given that it involves an interplay between graph
theory, probability theory and additive combinatorics. This interplay made the formalisation
process more rich and technically challenging, and was handled by an appropriate use of
locales, Isabelle’s module system. To treat the graph-theoretic aspects of the proof, we made
use of a new, more general undirected graph theory library by Chelsea Edmonds [4]. Another
subsequent formalisation project, this time involving proofs of purely combinatorial and
algebraic flavour, was the formalisation of Kneser’s Theorem (following a paper by Matt
DeVos [3]) and the Cauchy–Davenport Theorem as its corollary by Mantas Bakšys and myself
[1]. Both theorems give information on various estimates on the cardinality of sumsets of
finite subsets of abelian groups under certain conditions. Lastly, I will very briefly comment
on a new line of ongoing formalisation work that I initiated, currently in progress by my
students from the Computer Science Department and my interns from the Mathematics
Department at Cambridge: formalising material in additive number theory, a related research
area involving combinatorial tools. In particular, this line of work involves material related
to Waring’s problem and follows Nathanson’s book [10].

References
1 Mantas Bakšys and Angeliki Koutsoukou-Argyraki. Kneser’s Theorem and the Cauchy–

Davenport Theorem. Archive of Formal Proofs, November 2022. Formal proof development.
URL: https://isa-afp.org/entries/Kneser_Cauchy_Davenport.html.

2 Clemens Ballarin. A Case Study in Basic Algebra. Archive of Formal Proofs, August 2019.
Formal proof development. URL: https://isa-afp.org/entries/Jacobson_Basic_Algebra.
html.

3 Matt DeVos. A Short Proof of Kneser’s Addition Theorem for Abelian Groups. In Springer
Proceedings in Mathematics and Statistics, vol 101, pages 39–41, New York, NY, USA, 2014.
Springer New York. doi:10.1007/978-1-4939-1601-6_3.

4 Chelsea Edmonds. Undirected Graph Theory. Archive of Formal Proofs, September 2022.
Formal proof development. URL: https://isa-afp.org/entries/Undirected_Graph_Theory.
html.

5 Timothy Gowers. Introduction to Additive Combinatorics. Online course notes for Part III of
the Mathematical Tripos, University of Cambridge, 2022.

6 Angeliki Koutsoukou-Argyraki, Mantas Bakšys, and Chelsea Edmonds. The Balog–Szemerédi–
Gowers Theorem. Archive of Formal Proofs, November 2022. Formal proof development. URL:
https://isa-afp.org/entries/Balog_Szemeredi_Gowers.html.

7 Angeliki Koutsoukou-Argyraki, Mantas Bakšys, and Chelsea Edmonds. A Formalisation of
the Balog–Szemerédi–Gowers Theorem in Isabelle/HOL. In Proceedings of the 12th ACM
SIGPLAN International Conference on Certified Programs and Proofs, Boston, MA, USA,
pages 225–238, New York, NY, USA, 2023. Association for Computing Machinery. doi:
10.1145/3573105.3575680.

8 Angeliki Koutsoukou-Argyraki and Lawrence C. Paulson. Khovanskii’s Theorem. Archive of
Formal Proofs, September 2022. Formal proof development. URL: https://isa-afp.org/
entries/Khovanskii_Theorem.html.

9 Angeliki Koutsoukou-Argyraki and Lawrence C. Paulson. The Plünnecke–Ruzsa Inequality.
Archive of Formal Proofs, May 2022. Formal proof development. URL: https://isa-afp.
org/entries/Pluennecke_Ruzsa_Inequality.html.

10 Melvyn B. Nathanson. Additive Number Theory: The Classical Bases. Springer-Verlag New
York, 1996.

11 Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. Isabelle/HOL, A Proof Assistant
for Higher-Order Logic. Springer-Verlag Berlin Heidelberg, 2002. Updated online tutorial on
https://isabelle.in.tum.de/dist/Isabelle/doc/tutorial.pdf.

https://isa-afp.org/entries/Kneser_Cauchy_Davenport.html
https://isa-afp.org/entries/Jacobson_Basic_Algebra.html
https://isa-afp.org/entries/Jacobson_Basic_Algebra.html
https://doi.org/10.1007/978-1-4939-1601-6_3
https://isa-afp.org/entries/Undirected_Graph_Theory.html
https://isa-afp.org/entries/Undirected_Graph_Theory.html
https://isa-afp.org/entries/Balog_Szemeredi_Gowers.html
https://doi.org/10.1145/3573105.3575680
https://doi.org/10.1145/3573105.3575680
https://isa-afp.org/entries/Khovanskii_Theorem.html
https://isa-afp.org/entries/Khovanskii_Theorem.html
https://isa-afp.org/entries/Pluennecke_Ruzsa_Inequality.html
https://isa-afp.org/entries/Pluennecke_Ruzsa_Inequality.html
 https://isabelle.in.tum.de/dist/Isabelle/doc/tutorial.pdf

Interactive and Automated Proofs in Modal
Separation Logic
Robbert Krebbers # Ñ

Radboud University, Nijmegen, The Netherlands

Abstract
In program verification, it is common to embed a high-level object logic into the meta logic of a
proof assistant to hide low-level aspects of the verification. To verify imperative and concurrent
programs, separation logic hides explicit reasoning about heaps and pointer disjointness. To verify
programs with cyclic features such as modules or higher-order state, modal logic provides modalities
to hide explicit reasoning about step-indices that are used to stratify recursion.

The meta logic of proof assistants such as Coq is well suited to embed high-level object logics
and prove their soundness. However, proof assistants such as Coq do not have native infrastructure
to facilitate proofs in embedded logics – their proof contexts and built-in tactics for interactive and
automated proofs are tailored to the connectives of the meta logic, and do not extend to those of
the object logic. This results in proofs that are at a too low level of abstraction because they are
cluttered with bookkeeping code related to manipulating the object logic.

In this talk I will describe our work in the Iris project to address this problem – first for interactive
proofs, and then for semi-automated proofs. The Iris Proof Mode provides high-level tactics for
interactive proofs in higher-order concurrent separation logic with modalities. Recent work on
RefinedC and Diaframe have built on top of the Iris Proof Mode to obtain proof automation for
low-level C programs and fine-grained concurrent programs.

2012 ACM Subject Classification Theory of computation → Separation logic; Theory of computation
→ Automated reasoning; Theory of computation → Program verification

Keywords and phrases Program Verification, Separation Logic, Step-Indexing, Modal Logic, Inter-
active Theorem Proving, Proof Automation, Iris, Coq

Digital Object Identifier 10.4230/LIPIcs.ITP.2023.2

Category Invited Talk

Acknowledgements I thank my coauthors of the Iris Proof Mode (POPL’17, ICFP’18), RefinedC
(PLDI’21), and Diaframe (PLDI’22, PLDI’23, OOPSLA’23) papers: Lars Birkedal, Arthur Char-
guéraud, Łukasz Czajka, Derek Dreyer, Deepak Garg, Herman Geuvers, Jacques-Henri Jourdan,
Ralf Jung, Jan-Oliver Kaiser, Rodolphe Lepigre, Kayvan Memarian, Ike Mulder, Michael Sammler,
Joseph Tassarotti, and Amin Timany. I thank all contributors to the Iris project.

© Robbert Krebbers;
licensed under Creative Commons License CC-BY 4.0

14th International Conference on Interactive Theorem Proving (ITP 2023).
Editors: Adam Naumowicz and René Thiemann; Article No. 2; pp. 2:1–2:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mail@robbertkrebbers.nl
http://robbertkrebbers.nl
https://orcid.org/0000-0002-1185-5237
https://doi.org/10.4230/LIPIcs.ITP.2023.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

A Formal Analysis of RANKING
Mohammad Abdulaziz #

King’s College London, UK
Technische Universität München, Germany

Christoph Madlener #

Technische Universität München, Germany

Abstract
We describe a formal correctness proof of RANKING, an online algorithm for online bipartite
matching. An outcome of our formalisation is that it shows that there is a gap in all combinatorial
proofs of the algorithm. Filling that gap constituted the majority of the effort which went into
this work. This is despite the algorithm being one of the most studied algorithms and a central
result in theoretical computer science. This gap is an example of difficulties in formalising graphical
arguments which are ubiquitous in the theory of computing.

2012 ACM Subject Classification Theory of computation; Mathematics of computing

Keywords and phrases Matching Theory, Formalized Mathematics, Online Algorithms

Digital Object Identifier 10.4230/LIPIcs.ITP.2023.3

Related Version Full Version: https://arxiv.org/abs/2302.13747

Funding Mohammad Abdulaziz : Part of this work was funded by DFG Koselleck Grant NI 491/16-1.

Acknowledgements We thank the anonymous reviewers whose comments helped improve
the text and the formal proofs. We also thank Kurt Mehlhorn for his insightful com-
ments.

1 Introduction

Matching is a classical problem in computer science, operations research, graph theory, and
combinatorial optimisation. In short, in this problem, given an undirected graph, one tries to
compute a subset of the edges of this graph, s.t. no two edges are incident on the same vertex.
This subset is usually optimised w.r.t. a given objective, e.g. matching cardinality, sum of
weights of edges in the matching, etc. An important special case of matching problems is
maximum cardinality matching in bipartite graphs. It is one of the first problems to be
addressed in combinatorial optimistation, where, for instance, the Hungarian method was
invented in 1955 to solve it in the edge-weighted setting [14]. The online version of that
problem, i.e. the version in which one of the parties of the graphs arrive online, one vertex
at a time, along with its incident edges, has received special attention. This is because the
problem can model many economic situations, most-notably Google’s Adwords market [15].

The most basic version of online bipartite matching is the one where vertices and edges
have no weights. That problem was studied by Karp, Vazirani, and Vazirani (henceforth,
KVV) [13], where they devised the so-called RANKING algorithm. In that paper, KVV
showed that their algorithm can solve the online problem with a competitive ratio, i.e. the
average case ratio of the online algorithm’s solution quality compared to the best offline
algorithm, of 1−1/e. They also showed that this ratio is the best possible for any randomised
online bipartite matching algorithm. The analysis of the RANKING algorithm has been
continuously studied, where authors have mainly tried to simplify the algorithm’s original
correctness proof, i.e. the proof that it achieves a 1− 1/e competitive ratio [9, 3, 4, 6, 19, 16].

© Mohammad Abdulaziz and Christoph Madlener;
licensed under Creative Commons License CC-BY 4.0

14th International Conference on Interactive Theorem Proving (ITP 2023).
Editors: Adam Naumowicz and René Thiemann; Article No. 3; pp. 3:1–3:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mansour@in.tum.de
https://orcid.org/0000-0002-8244-518X
mailto:madlener@in.tum.de
https://orcid.org/0000-0002-9577-0061
https://doi.org/10.4230/LIPIcs.ITP.2023.3
https://arxiv.org/abs/2302.13747
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 A Formal Analysis of RANKING

This is because the algorithm’s analysis, which can be divided into a probabilistic and a
combinatorial part, is considered to be “extremely difficult” [18] by the algorithms community,
despite the algorithm itself being very simple.

In this paper we formalise an analysis of the algorithm by Birnbaum and Mathieu [3]
(henceforth, BM) in Isabelle/HOL [17]. BM claim to present the first simple proof of the
algorithm’s competitive ratio. Indeed, the paper’s title is “Online bipartite matching made
simple”, and it is the last attempt at a simple combinatorial proof for the algorithm, as later
works focused on primal-dual analyses of the algorithm.

Our most striking finding is that there is a “gap” in the proof, where there was one lemma
whose proof was “a simple structural observation” by the authors. Formalising the proof of
this lemma constitutes the majority of the effort that went into the work we describe here as
well as the majority of the volume of the formal proof scripts. There are also other interesting
aspects, from a formalisation perspective, of that proof. For instance, it combines graph
theoretic, probabilistic, and graphical arguments. It also requires modelling and reasoning
about online algorithms.

The rest of the paper is structured as follows. We first describe the algorithm and how
we model it in Isabelle/HOL. Then we discuss the probabilistic part of the proof and its
formalisation. We then discuss the combinatorial part of the proof, where we describe the
main findings of this work, namely,
1. the first complete proof that covers the gap in the proof by BM, as well as other

combinatorial proofs of the algorithm, and
2. a significantly simpler proof of a lemma needed by BM to facilitate the algorithm’s

probabilistic analysis.
Lastly, we discuss a part of the proof usually glossed over by other authors, which is lifting
the analysis to obtain an asymptotic statement on the competitive ratio.

Isabelle/HOL. Isabelle/HOL [17] is a theorem prover based on Higher-Order Logic. Roughly
speaking, Higher-Order Logic can be seen as a combination of functional programming with
logic. Isabelle’s syntax is a variation of Standard ML combined with (almost) standard
mathematical notation. Function application is written prefix, and functions are usually
curried (i.e., function f applied to arguments x1 . . . xn is written as f x1 . . . xn instead of
the standard notation f(x1, . . . , xn)). In Isabelle/HOL, SOME is the Hilbert choice, and
THE is the definite description operator.

Availability. Our formalisation is in the Archive of Formal Proofs (www.isa-afp.org).
Throughout the paper, and in the appendix, we added excerpts from the formalisation
representing important definitions and theorem statements to aid in linking the informal
description in the paper and the formal proof scripts.

2 Basic Definitions and Notation

We denote a list of elements as [x1, x2, . . . , xn]. In the rest of this paper, we only consider
lists with distinct elements. We say element xi has rank i1 in the list [x1, x2, . . . , xi, . . . , xn].
We overload the membership, subset, union and intersection set operations to lists. For a
list vs, of length n, and an element v ∈ vs, let, for 1 ≤ i ≤ n, vs[v 7→ i] denote the list which
results from inserting v into vs where v has been removed s.t. its rank is exactly i. Also, let

1 In the formalisation we use index, which is the same as the rank minus one.

M. Abdulaziz and C. Madlener 3:3

vs(v) denote the rank of v in vs and vs[i] the element of rank i in vs. For a list vs, v#vs
denotes the list vs but with the vertex v appended to its head. A permutation of a finite set
s is a list whose elements are exactly the elements of s.

An edge is a set of vertices with size 2. A graph G is a set of edges. The set of vertices of
a graph G, denoted by V(G), is

⋃
e∈G e. For a vertex v, NG(v) denotes {u | {v, u} ∈ G}. We

say a graph G is bipartite w.r.t. to two sets of vertices V and U (henceforth, the left and
right party) iff
1. V(G) ⊆ V ∪ U ,
2. for any {v, u} ∈ G, we have that {v, u} ̸⊆ V and {v, u} ̸⊆ U .
A set of edges M is a matching iff ∀e ̸= e′ ∈M. e ∩ e′ = ∅. For a matching M and a vertex
v, if there is u s.t. {v, u} ∈ M, we say u is the partner of v, denoted by M(v). We use
G −E to denote the edges in G that are not in E, and, for a set of vertices V , G \ V denotes
G ∩ {e | e ∩ V = ∅}, i.e. the graph with edges incident to vertices in V removed.

In many cases, a matching is a subset of a graph, in which case we call it a matching
w.r.t. the graph. For a graph G, a matching M w.r.t G is a maximum cardinality matching,
aka maximum matching, w.r.t. G iff for any matchingM′ w.r.t. G, we have that |M′| ≤ |M|.
A matching M w.r.t. G is a perfect matching w.r.t. G iff V(M) = V(G). A matching M
w.r.t. G is a maximal matching w.r.t. G iff ∀e ∈ G. e ∩ V(M) ̸= ∅.

A discrete probability space P is defined by a countable sample space ΩP and a probability
mass function (PMF) PP : ΩP → [0, 1] assigning a probability to each sample, where∑

ω∈ΩP
PP (ω) = 1. The PMF is lifted naturally to events (sets of samples) as PP (E) =∑

ω∈E PP (E) for E ⊆ ΩP . The expectation of a random variable X : ΩP → R is denoted
Eω∼P [X(ω)]. For a set B and a non-empty, finite subset A ⊆ B, UB(A) is the discrete
uniform distribution, i.e. ΩUB(A) = B and PUB(A)(a) = 1

|A| if a ∈ A and PU(A)(b) = 0 if
b /∈ A. If A = B we simply write U(A) for UA(A).

We model randomised algorithms as probability distributions over the results of the
algorithm. The Giry Monad [8] allows to compose random experiments in an elegant manner
and is used to express randomised algorithms. The return operator gives a distribution which
places probability 1 on a single sample ω, i.e. Preturn(ω)(x) is 1, if x = ω, and 0, otherwise.

Composition of experiments is achieved via the bind operator (written infix as >>=).
Intuitively, P >>= Q randomly chooses a sample ω according to P and then returns a value
chosen randomly according to the distribution Q(ω). For additional legibility, we use
Haskell-like do-notation for bind and return. This notation can be desugared recursively as
follows:

do{ x← P ; stmts } ≡ P >>= (λx. stmts).

In Isabelle/HOL, we base our work on a simple formalisation of undirected graphs by
Abdulaziz et al. [1], which was introduced in the context of the verification of Edmonds’
blossom matching algorithm. We use this formalisation because of its simplicity, and the
fact that it has a rich library on matchings and other related notions, as we will discuss later.
However, we will not further discuss the merits of this representation as it is outside of the
scope of this work. Interested readers should consult the original paper [1].

Probability theory in Isabelle/HOL is based on a general formalisation of measure theory
by Hölzl [10]. In the formalisation, U(A) is denoted pmf_of_set A, and return is denoted
return_pmf. The meanings of other Isabelle/HOL notations used in the rest of the paper
should be self-explanatory.

ITP 2023

3:4 A Formal Analysis of RANKING

v1v4

v2

v6

v1

v5

v3

(a)

v1v1

v2

v3

v4

v5

v6

(b)

v1v1

v2

v3

v4

v5

v6

u1

(c)

v1v1

v2

v3

v4

v5

v6

u1

u2

(d)

v1v1

v2

v3

v4

v5

v6

u1v1v1

v2

v3

v4

v5

v6

u1

u2

u3

(e)

v1v1

v2

v3

v4

v5

v6

u1v1v1

v2

v3

v4

v5

v6

u1

u2

u3

u4

(f)

v1v1

v2

v3

v4

v5

v6

u1v1v1

v2

v3

v4

v5

v6

u1

u2

u3

u4

u5

(g)

v1v1

v2

v3

v4

v5

v6

u1v1v1

v2

v3

v4

v5

v6

u1

u2

u3

u4

u5

u6

(h)

u1

u2

u3

u4

u5

u6

v1

v2

v3

v4

v5

v6

(i)

u1

u2

u3

u4

u5

u6

v1

v2

v3

v4

v5

v6

zig(u2)

zag(v2)

zig(u3)

zag(v4)

zig(u5)

zag(v5)

(j)

u1

u2

u3

u4

u5

u6

v1

v2

v3

v4

v5

v6

zig(v2)

zag(u3)

zig(v4)

zag(u5)

zig(v5)

(k)

Figure 1 The steps of computing a matching using online-match, and what happens when an
online vertex is removed from the input.

3 RANKING

Given a bipartite graph G, whose left and right parties are V and U , the ranking algorithm
takes as an offline input V , and a sequence π as an online input, where vertices, along with
their adjacent edges, arrive one-by-one. As an example, consider Fig. 1a, showing a graph
whose left party, i.e. the offline vertices, is {v4, v2, v6, v1, v5, v3}. The right party, i.e. the
online vertices, arrive in the order [u1, u2, u3, u4, u5]. The first step in the algorithm is that
it randomly permutes the offline input. In our example, this is shown in Fig. 1b. Then,
vertices from the right party of the graph arrive one-by-one. The most important thing to
note is that, for every arriving vertex u, the algorithm adds the edge connecting u and the
offline unmatched vertex with the minimum rank, if any such edge exists. In our example,
we have the ranking [v1, v2, v3, v4, v5, v6], of the offline vertices. Fig. 1c shows the state of
the matching after the arrival of u1: it has three edges connecting it to the offline vertices v1,
v3, and v5. The edge connecting it to v1 is added to the matching, as it is unmatched and
has the lowest rank among them. Then, the other vertices on the online side arrive based on
the order given earlier, and the matching is updated, as shown in Fig. 1d-1g, and the final
matching computed by the algorithm is the one represented by the green edges in Fig. 1h.

M. Abdulaziz and C. Madlener 3:5

Algorithm 1 Pseudo-code of RANKING.

function online-match(G, π, σ) begin
M← ∅
for every arriving vertex u in π do

if ∃v ∈ (NG(u)− V(M)) then M←M∪ {{argminv∈(NG(u)−V(M))σ(v), u}}
return M

end
function RANKING(G, π) begin

σ ← a random permutation of V

return online-match(G, π, σ)
end

Listing 1: Modelling RANKING in Isabelle/HOL.
fun s t e p :: " ' a graph ⇒ ' a ⇒ ' a l i s t ⇒ ' a graph ⇒ ' a graph " where

2 " s t e p − − [] M = M"
| " s t e p G u (v#vs) M = (

4 i f v /∈ Vs M ∧ u /∈ Vs M ∧ {u , v} ∈ G
then i n s e r t {u , v} M

6 e l s e s t e p G u vs M
) "

8

fun o n l i n e−match ' :: " ' a graph ⇒ ' a l i s t ⇒ ' a l i s t ⇒ ' a graph ⇒ ' a graph " where
10 " o n l i n e−match ' − [] − M = M"

| " o n l i n e−match ' G (u#us) σ M = o n l i n e−match ' G us σ (s t e p G u σ M) "
12

abbreviation " o n l i n e−match G π σ ≡ o n l i n e−match ' G π σ {} "
14

definition " r a n k i n g ≡
16 do {

σ ← pmf−o f−s e t (p e r m u t a t i o n s−o f−s e t V) ;
18 r e t u r n−pmf (o n l i n e−match G π σ)

}"

As should be clear by now, the algorithm’s description and, accordingly, modeling is a
simple task. The pseudo-code is in Algorithm 1. In Isabelle/HOL, we model the algorithm as
shown in Listing 1. The first two functions are recursive on lists. The first function, step, is
recursive on the list of the offline vertices, where, given a graph G, a vertex u from the online
side, the list of offline vertices, and the matching, it adds to the matching the first edge it
finds that connects u and an offline vertex v. The function does the recursion on the list,
assuming the list is ordered according to the ranking of the offline vertices, with the head
of the list being the vertex with the lowest rank. The second function, online_match’, is
recursive on the list of online vertices, where the list is ordered according to the arrival order
of those vertices, where the head of the list is the earliest arriving vertex. For each vertex
in the list, online_match’ tries to match it to an offline vertex using step. The other main
function, ranking, chooses a permutation of the offline vertices and passes it to online-match.

We note that we avoid devising an involved way to model and reason about online
computation, and only model it simply as a list of inputs and a step function that operates
on each online input. This is because the algorithm description itself is simple. The primary
focus of our work here is the formalisation of the correctness argument, the mathematical
part of which is the main challenge.

ITP 2023

3:6 A Formal Analysis of RANKING

3.1 Competitive Ratio of RANKING
The goal of this work is to formalise the analysis of RANKING’s competitiveness. In general,
for online algorithms solving optimisation problems, the analysis focuses on the quality of
their outputs in comparison with the quality of the output of the best offline algorithm,
i.e. an algorithm which has access to the entire input before it starts computing its output.
The outcome of such an analysis is referred to as the competitive ratio of the respective
online algorithm. In the case of bipartite matchings, the best offline algorithms, like the
Hopcroft-Karp algorithm [11], can compute maximum cardinality matching for bipartite
graphs. Thus, for RANKING, the natural way to analyse it is by showing that the size of
the matching it computes maintains a certain ratio if compared to the size of the maximum
matching of the input graph. Furthermore, since RANKING is a randomised algorithm, it is
natural that this relationship is in expectation. More precisely, for RANKING, we have the
following relation, which was first shown by KVV: for any given graph and arrival orders,
the ratio between the expected size of the matching computed by RANKING and the size of
the maximum matching is 1− 1/e. The expectation ranges over the different permutations
of the offline side.

4 Competitiveness for Bipartite Graphs with Perfect Matchings

In the following, let G be a bipartite graph w.r.t. V and U , s.t. M is a perfect matching
w.r.t. G, and |M| = n. Let π be an arrival order for U and let S(A) denote the set of all
permutations of a finite set A.2

The algorithm can be modelled as the following Giry monad

RANKING(G, π) ≡ do { σ ← U(S(V)); return online-match(G, π, σ) }.

In the following, we describe our formal proof of the analysis of the competitive ratio for
instances with perfect matching. This formal proof closely follows the one by BM. However,
we highlight the differences to the original one as they arise.

We need the following lemma ([3, Lemma 5]) before the main result can be shown.

▶ Lemma 1. Let xt denote the probability over the random permutations of V that the vertex
of rank t is matched by the algorithm, for 1 ≤ t ≤ n. Then 1− xt ≤ (1/n)

∑
1≤s≤t xs.

Let v ∈ V be the vertex of rank t for some fixed permutation σ of V . The intuition behind
this bound is that v only remains unmatched if its partner M(v) in the perfect matching
is matched to a vertex ranked lower in π. Since v is a random vertex (when drawing
a permutation), so is M(v). The right-hand-side is supposed to be the probability that
M(v) is matched to a vertex arriving before v (since the sum is the expected number of
vertices matched to vertices of rank at most t). This intuitive idea does not work due to
the dependence of M(v) and the set of vertices matched to vertices of rank at most t. The
correct argument avoids this dependence. However, this requires a stronger statement on
what happens with M(v) if v stays unmatched, captured in the following lemma ([3, Lemma
4]), whose proof we discuss in the next section.

▶ Lemma 2. Let v ∈ V , u denote M(v), and σ ∈ S(V). If v is not matched by
online-match(G, σ, π) to u, then, for all 1 ≤ i ≤ n, u is matched by online-match(G, σ[v 7→
i], π) to a vi ∈ V s.t. σ[v 7→ i](vi) ≤ σ(v).

2 In the formalisation S(A) is written permutations_of_set A.

M. Abdulaziz and C. Madlener 3:7

I′
t ≡ do {

σ ← U(S(V));
v ← U(V);
let R = online-match(G, π, σ[v 7→ t]);
return (v ∈ V(R))
}

(a) In addition to a random permutation σ ∈
S(V), a random vertex v ∈ V is drawn and
moved to rank t.

I′′
t ≡ do {

σ ← U(S(V));
v ← U(V);
let R = online-match(G, π, σ);
return (M(v) ∈ V(R) ∧ σ(R(M(v)) ≤ t))
}

(b) Distribution describing the probability that
the partnerM(v) ∈ U of a random vertex v ∈ V
is matched to a vertex of rank at most t.

Figure 2 Two Bernoulli distributions used in the proof of Lemma 1.

Before presenting the proof of Lemma 1, we need to consider how to formally define xt.
It cannot be stated as a probability in the distribution RANKING(G, π). There is no way to
refer to the “vertex of rank t in the permutation σ” since RANKING(G, π) is a distribution
over subgraphs of G and the random permutations used to obtain them are not accessible.
The solution is to explicitly define the Bernoulli distribution capturing the notion of the
vertex of rank t being matched.

It ≡ do { σ ← U(S(V)); let R = online-match(G, π, σ); return (σ[t] ∈ V(R)) }

Then, 1− xt corresponds to the probability PIt
(False).

A key step to achieve the independence of the involved events revolves around not only
drawing a random permutation, but also drawing a random vertex and moving it to rank
t. This is reflected in the distribution I′t, given in Fig. 2a. This deceptively simple change
ensures the independence of the drawn permutation, i.e. σ, and the actual partner in the
perfect matching of the vertex of rank t, i.e. M(σ[v 7→ t][t]) which is the same as M(v).
There is an aspect that is glossed over in the original proof and is intuitively clear: simply
drawing a random permutation uniformly at random and the modified way where a random
vertex is put at rank t are equivalent. This is shown explicitly in the formal proof.

The final distribution we present here, I′′t in Fig. 2b, captures the probability that the
partner M(v) of a random v ∈ V is matched to a vertex of rank at most t.

Proof of Lemma 1. The first step follows from the fact that the permutation σ, in both It

and I′t, and the vertex v are all drawn from uniform distributions.

PIt
(False) = PI′

t
(False)

By Lemma 2, if v ∈ V is unmatched in online-match(G, π, σ[v 7→ t]), then, M(v) is matched
to a vertex of rank at most t in online-match(G, π, σ) (by using σ[v 7→ t][v 7→ σ(v)] = σ).

≤ PI′′
t
(True)

Then, the process of drawing a random v ∈ V and considering M(v) in I′′t can be replaced
with drawing a random u ∈ U directly, using the bijection induced by M. This describes the
probability that a random u ∈ U is matched to a vertex of rank at most t. That probability,
in turn, is exactly the expected size of the set of online vertices matched to vertices of
rank at most t. Formally, these two steps are performed by defining two more Bernoulli
distributions capturing the involved concepts. Their definitions are omitted here. Let I∗t be
the distribution for the set of online vertices matched to vertices of rank at most t.

= 1
n
EO∼I∗

t
[|O|]

ITP 2023

3:8 A Formal Analysis of RANKING

The final step is to express the expected size of the set of online vertices matched to vertices
of rank at most t as a sum of the probabilities that the offline vertices of rank up to t are
matched. This completes the argument.

= 1
n

t∑
s=1

PIs
(True) ◀

Then, we proceed to the main result of this section.

▶ Theorem 1. The competitive ratio of RANKING for instances with a perfect matching of
size n is at least 1− (1− 1

n+1)n, i.e. 1− (1− 1
n+1)n ≤ ER∼RANKING(G,π)[|R|]

n .

Proof. The expected size of the matching produced by RANKING(G, π) can be rewritten as
a sum of the probabilities of the vertices of some rank getting matched.

ER∼RANKING(G,π) [|R|]
n

= 1
n

n∑
s=1

PIs
(True)

The bound obtained on PIs(False) for 1 ≤ s ≤ n in Lemma 1 can be used to bound the sum.
This requires a fact on sums provable by induction on n, followed by algebraic manipulation.

≥ 1
n

n∑
s=1

(
1− 1

n + 1

)s

More algebraic manipulation yields the final result.

= 1−
(

1− 1
n + 1

)n

◀

5 Lifting the Competitiveness to General Bipartite Graphs

Until now, we have shown that RANKING satisfies the desired competitive ratio for graphs
with a perfect matching. Also, until now, our formalisation closely follows BM’s proof.
However, in all previous graph-theoretic expositions of the correctness proof of this al-
gorithm [9, 3, 13], as opposed to linear programming-based expositions [4, 6, 19], the authors
would stop at the current point, stating, or implicitly assuming, that it is obvious to see how
the analysis of RANKING for bipartite graphs with perfect matchings extends to general
bipartite graphs. The central argument is as follows: it is easy to see that, for a fixed
permutation of the offline vertices, if we remove a vertex from a bipartite graph that does not
occur in a maximum matching of that graph, then online-match will compute a matching
that is either one edge smaller or of the same size as the matching online-match would
compute, given the original graph.

Indeed, BM, who are the authors who give the most detailed account of the graph-theoretic
correctness proof of this algorithm, state, as a proof for this fact [3, Lemma 2], that “it is
an easy structural observation”. In a sense they are correct: in our example, illustrated in
Fig. 1, if we remove u2, it is easy to see that online-match’s output size will be only one
less than on the original graph. This is because all the matching edges will “cascade” down.
This is illustrated in Fig. 1i, showing the blue edges being replaced with the red edges. In
this section we mainly formalise this argument. We also formalise another easier, but no
less crucial, graph-theoretic part of the proof by BM [3, Lemma 4]. This lemma is used in
the probabilistic part of the proof, as stated earlier. In our formalisation we significantly
simplified the proof. Before we do so, however, we introduce some necessary background and
notions related to paths.

M. Abdulaziz and C. Madlener 3:9

5.1 Alternating Paths, Augmenting Paths, and Berge’s Lemma
A list of vertices [v1, v2, . . . , vn] is a path w.r.t. a graph G iff {vi, vi+1} ∈ G for 1 ≤ i < n.
Note: a path [v1, v2, . . . vn] is always a simple path as we only consider distinct lists. A list
of vertices [v1, v2, . . . , vn] is an alternating path w.r.t. a set of edges E iff for some E′

1. E′ = E or E′ ∩ E = ∅,
2. {vi, vi+1} ∈ E′ holds for all even numbers i, where 1 ≤ i < n, and
3. {vi, vi+1} ̸∈ E′ holds for all odd numbers i, where 1 ≤ i ≤ n.
We call a list of vertices [v1, v2, . . . , vn] an augmenting path w.r.t. a matching M iff
[v1, v2, . . . , vn] is an alternating path w.r.t. M and v1, vn ̸∈ V(M). If M is a matching w.r.t.
a graph G, we call the path an augmenting path w.r.t. to the pair ⟨G,M⟩. Also, for two sets
s and t, s⊕ t denotes the symmetric difference of the two sets.

A central result in matching theory is Berge’s lemma, which gives an algorithmically
useful characterisation of a maximum cardinality matching.

▶ Theorem 2 (Berge’s Lemma). For a graph G, a matching M is maximum w.r.t. G iff there
is not an augmenting path γ w.r.t. ⟨G,M⟩.

We use a formalisation of the above concepts and Berge’s Lemma by Abdulaziz et al. [1].

5.2 online-match’s Behaviour after Removing a Vertex
Now that we have all the necessary machinery, we can discuss the formalisation of the
correctness of RANKING for general bipartite graphs. The central claim to show is stated
in the following lemma, which is a restatement of Lemma 2 in BM’s paper. It states what
happens to the result of online-match when a vertex is removed from the graph.

▶ Lemma 3. Let G be a bipartite graph w.r.t. the lists σ and π. Consider a vertex u ∈ π.
Let H be G \ {u}. We have that either online-match(G, π, σ) = online-match(H, π, σ) or
online-match(G, π, σ)⊕ online-match(H, π, σ) can be ordered into an alternating path w.r.t.
online-match(G, π, σ) and online-match(H, π, σ), and that path starts at u.

The above lemma was never proved by any of the previous expositions of the combinatorial
argument for the algorithm’s correctness. BM’s exposition is an exception, where there is at
least a graphical example, showing what happens when we remove a vertex before running
online-match. A version of that graphical argument can be seen in Fig. 1. Fig. 1h shows the
matching computed by the algorithm on the original graph, and Fig. 1i shows the difference
in the computed matching if a vertex from the online side of the graph is removed.3 As
shown, when the vertex is removed, the matched edges “cascade downwards”, where the
original matching edges, shown in blue, are replaced with the red edges. The lemma states
that the symmetric difference between the two computed matchings is always an alternating
path, w.r.t. both the old and the new matchings, if there is any difference. When looking at
the graphical illustration this is obvious. However, when formalising that argument, many
challenges manifest themselves.

The first challenge is the characterisation of the path that constitutes the difference
between the two matchings. This characterisation has to, among other things, make formal
proofs by induction manageable. To do so, we had to formulate this characterisation not

3 The lemma above is stated for an online vertex being removed, while in the formalisation an offline
vertex is removed. This highlights an important concept in many of the proofs: the interchangeability
of the offline and online vertices for fixed orders σ and π.

ITP 2023

3:10 A Formal Analysis of RANKING

Listing 2: Formalising shifts-to in Isabelle/HOL
definition " s h i f t s−to G M u v v ' π σ ≡

2 u ∈ s e t π ∧ v ' ∈ s e t σ ∧ i n d e x σ v < i n d e x σ v ' ∧ {u , v ' } ∈ G
∧ (∄u ' . i n d e x π u ' < i n d e x π u ∧ {u ' , v ' } ∈ M) ∧

4 (∀v ' ' . (i n d e x σ v < i n d e x σ v ' ' ∧ i n d e x σ v ' ' < i n d e x σ v ')
−→ ({ u , v ' ' } /∈ G ∨ (∃u ' . i n d e x π u ' < i n d e x π u ∧ {u ' , v ' ' } ∈ M)))

Listing 3: Formalising zig-zag in Isabelle/HOL.
function z i g :: " ' a graph ⇒ ' a graph ⇒ ' a ⇒ ' a l i s t ⇒ ' a l i s t ⇒ ' a l i s t "

2 and zag :: " ' a graph ⇒ ' a graph ⇒ ' a ⇒ ' a l i s t ⇒ ' a l i s t ⇒ ' a l i s t " where
p r o p e r−z i g : " z i g G M v π σ = v # (

4 i f ∃u . {u , v} ∈ M
then zag G M (THE u . {u , v} ∈ M) π σ

6 e l s e []) " i f " matching M"
| no−matching−z i g : " z i g − M v − − = [v] " i f "¬matching M"

8

| p r o p e r−zag : " zag G M u π σ = u # (i f ∃v . {u , v} ∈ M
10 then

(l e t v = THE v . {u , v} ∈ M i n (
12 i f ∃v ' . s h i f t s−to G M u v v ' π σ

then z i g G M (THE v ' . s h i f t s−to G M u v v ' π σ) π σ
14 e l s e [])

)
16 e l s e []

) " i f " matching M"
18 | no−matching−zag : " zag − M v − − = [v] " i f "¬matching M"

recursively on the given bipartite graph, i.e. the given bipartite graph should not change
across different recursive calls. Otherwise, proving anything about the path would involve a
complicated induction on the given bipartite graph.

To define that path, we first introduce a concept relating two vertices on the online side.
We state v shifts-to v′ iff
1. v occurs before v′ in the offline permutation σ,
2. v is matched to some u,
3. v′ is not matched to any vertex that occurs before u in π, and
4. any vertex v′′ ∈ NG(u) occurring between v and v′ in σ is matched by online-match to a

vertex occurring before u in the arrival order π.
Intuitively, this means that, if v is removed from the graph, then v′ would be matched to u

by online-match. Our formalisation of this definition can be found in Listing 2. Note: the
omitted arguments in the text, G, M, π, σ, and u are usually clear from the context.

Now that we are done with the definition of shifts-to, we are ready to describe our
characterisation of the path whose edges form the symmetric difference of the two matchings
computed by online-match. We characterise it using the following functions:

zig(G,M, v, π, σ) ≡

{
v#zag(G,M, u, π, σ) if {v, u} ∈ M
[v] otherwise

zag(G,M, u, π, σ) ≡

{
u#zig(G,M, v′, π, σ) if {v, u} ∈ M, for some v, and v shifts-to v′

[u] otherwise

As the names of the functions indicate, the path zig-zags between the online and the
offline sides of the graph, going down the online ordering. This is indicated in Fig. 1j. The
formalisation of zig-zag is given in Listing 3. Note that the formalisation has extra cases
for when the second argument is not a matching: this is to ensure termination, which is
not straightforward, as the definite descriptions are not well-defined in these cases. The

M. Abdulaziz and C. Madlener 3:11

Listing 4: Formalising the specification of online-match’s output in Isabelle/HOL.
definition r a n k i n g−matching :: " ' a graph ⇒ ' a graph ⇒ ' a l i s t ⇒ ' a l i s t ⇒ boo l " where

2 " r a n k i n g−matching G M π σ ≡ graph−matching G M ∧
b i p a r t i t e G (s e t π) (s e t σ) ∧ maximal−matching G M ∧

4 (∀u v v ' . ({u , v} ∈ M ∧ {u , v ' } ∈ G ∧ i n d e x σ v ' < i n d e x σ v) −→
(∃u ' . {u ' , v ' } ∈ M ∧ i n d e x π u ' < i n d e x π u)) ∧

6 (∀u v u ' . ({u , v} ∈ M ∧ {u ' , v} ∈ G ∧ i n d e x π u ' < i n d e x π u) −→
(∃v ' . {u ' , v ' } ∈ M ∧ i n d e x σ v ' < i n d e x σ v)) "

termination relation encodes the intuition that, while zig-zagging, the path also goes down
the ordering of online vertices. More formally, because this is a mutually recursive function,
we have to provide an order that relates the argument passed to recursive calls of zag
from zig and the other way around. For evaluating zig(G,M, v, π, σ), we need a call to
zag(G,M, u, π, σ), in which case the relation holds iff v and u satisfy
1. {v, u} ∈ online-match(G, π, σ) and
2. if there is v′, s.t. v shifts-to v′, then σ(v) < σ(v′).
For evaluating zag(G,M, u, π, σ), we need a call to zig(G,M, v′, π, σ), in which case the
relation holds iff u and v′ satisfy
1. there is v s.t. {v, u} ∈ online-match(G, π, σ) and
2. v shifts-to v′ and σ(v) < σ(v′).

Another challenge for formalising the proof of Lemma 3 is devising a non-recursive
characterisation of the properties of the matching computed by online-match, which would be
enough for proving the lemma, yet more abstract than the actual specification of the algorithm.
This characterisation can be intuitively described as follows: M is a ranking-matching w.r.t.
G, σ, and π iff
1. G is bipartite w.r.t. σ and π,
2. M is a maximal matching w.r.t. G,
3. every vertex from u ∈ π is matched to the unmatched vertex from σ at u’s arrival, to

which it is connected, with the lowest rank in σ, and
4. no vertex from σ “refuses” to be matched.
The formal specification is given in Listing 4. It should be clear that the following properties
hold for ranking-matching.

▶ Proposition 1. If G be a bipartite graph w.r.t. σ and π, then
1. online-match(G, π, σ) is a ranking-matching w.r.t. G, σ, and π,
2. if M is a ranking-matching w.r.t. G, σ, and π, then it is a ranking-matching w.r.t. G, π,

and σ, and
3. if M and M′ are both ranking-matchings w.r.t. G, σ, and π, then M =M′.

This specification of online-match makes our proofs about online-match much simpler, as
it allows us to gloss over many of the computational details of the algorithm. In particular,
it allows us to avoid nested inductions, especially when using the I.H. of Lemma 3.

Now that we have characterised the difference between the matchings computed by
online-match before and after removing a vertex, as well as the main properties satisfied by
matchings computed by online-match, we are ready to present the proof that the competit-
iveness for bipartite graphs with perfect matchings lifts to general bipartite graphs. There
are two main ideas to our proof. The first one is that we show that the output of zig, for
some online vertex u, which is matched to an offline vertex v, stays the same when offline
vertices are removed from the graph and the matching, if those offline vertices are all ranked

ITP 2023

3:12 A Formal Analysis of RANKING

lower than v. Graphically, this is clear. For instance, in Fig. 1j, if we remove the vertex
v1 from the graph and the matching, the result of zig applied to u2, w.r.t. to the modified
graph and matching, will be the same as its output w.r.t. the old graph and matching.

▶ Lemma 4. Let G be a bipartite graph w.r.t. σ and π. Consider a vertex u ∈ π, s.t.
there is v, where {v, u} ∈ M. Consider a set of vertices U ′ ⊆ π, s.t. for all u′ ∈ U ′

we have that π(u′) < π(u). Let M be a ranking-matching w.r.t. G, π, and σ. We have
that zig(G,M, u, σ, π) = zig(G \ U ′,M\ U ′, u, σ, π) and zag(G,M, v, σ, π) = zag(G \ U ′,M\
U ′, v, π, σ).

We do not prove this lemma here: the proof depends on an involved case analysis of the
behaviour of shifts-to, and we describe below similar case analyses, which convey the difficulty
of translating such obvious graphical arguments into proofs. Interested readers, however,
should refer to the accompanying formal proof.

The second idea is that we exploit the symmetry between the online and the offline
vertices. This is encoded in the following relationship between zig and zag.

▶ Lemma 5. Let G be a bipartite graph w.r.t. σ and π. Consider a vertex u ∈ π. Let H be
G \ {u}. Let M be a ranking-matching w.r.t. G, π, and σ, and M′ be a ranking-matching
w.r.t. H, σ, and π. Let v be a vertex s.t. {v, u} ∈ M. We have that zig(H,M′, v, π, σ) =
zag(G,M, v, σ, π).

Before we discuss the proof, we first show a graphical argument of why the lemma holds.
Fig. 1j and 1k show an example of how zig and zag would return the same list of vertices
if invoked on the same vertex once on the offline side, and another time on the online
side. In the first configuration, zag(G,M, v2, σ, π) chooses u3, because in M, we have that
v2 is matched to u2, and u2 shifts-to u3. Then the rest of the recursive calls proceed as
shown in the figure. When the online and offline sides are flipped, as shown in Fig. 1k,
zig(H,M′, v2, π, σ), where H denotes G \ {u2}, will also choose u3 because, this time, it will
be matched to v2 in M′, which is a ranking-matching for H. As we will see in the proof,
this graphical argument is much shorter than the corresponding textual proof, let alone the
formal proof.

Proof. Our proof is by strong induction on the index of v. Let all the variable names in the
I.H. be barred, e.g. the graph is G. Our proof is done by case analysis. We consider 3 cases:
1. we have vertices u′, v′, s.t. {v, u′} ∈ M′ and {u′, v′} ∈ M,
2. we have a vertex u′, s.t. {v, u′} ∈ M′ and there is no v′ s.t. {u′, v′} ∈ M, and
3. there is no vertex u′, s.t. {v, u′} ∈ M′.

We focus on the first case, as that is the one where we employ the I.H. To apply the
I.H., we use the following assignments of the quantified variables. G 7→ G \ {u, v}, π 7→ π,
σ 7→ σ, u 7→ u′, v 7→ v′, M 7→ M \ {u, v}, and M′ 7→ M′ \ {v, u′}. From the I.H., we get
zig(H,M′, v, π, σ) = zag(G,M, u, σ, π). This proof is then finished by Lemma 4. ◀

We are now ready to prove a lemma that immediately implies Lemma 3.

▶ Lemma 6. Let G be a bipartite graph w.r.t. σ and π. Consider a vertex u ∈ π. Let H be
G \ {u}. Let M be a ranking-matching w.r.t. G, σ, and π, and M′ be a ranking-matching
w.r.t. H, σ, and π. We have that M⊕M′ = zig(G,M, u, σ, π)4 or M =M′.

4 We abuse the notation: although zig(G,M, u, σ, π) is the list of vertices in the path, we use it here to
denote the edges in the path.

M. Abdulaziz and C. Madlener 3:13

Proof. Our proof is by strong induction on |G|. Again, let all the variable names in the I.H.
be barred. We consider two cases, either u /∈ V(M) or u ∈ V(M). In the former case, the
lemma follows immediately, since online-match will compute the same matching.

For the second case, we instantiate the I.H. as follows: G 7→ G \ {u}, M 7→ M′,
M′ 7→ M\ {v, u}, π 7→ σ, σ 7→ π, and u 7→ v, where v is some vertex s.t. {v, u} ∈ M, which
must exist since u ∈ V(M).5 To show that the I.H. is usable in this case, we need to show
that:
1. M is a ranking-matching w.r.t. G, π, and σ, and
2. M′ is a ranking-matching w.r.t. H, π, and σ

. The first requirement follows from the assumption that M′ is ranking-matching w.r.t. H,
σ, and π, and the fact that ranking-matching is commutative w.r.t. the left and right parties
of the given graph. The second requirement follows from a property of ranking-matching,
which we do not prove here, stating that for any M that is a ranking-matching w.r.t. G, σ,
and π, and for any e ∈M, M−{e} is a ranking-matching w.r.t. G \ e, σ, and π.

Then, from the I.H. and since we know that v ∈ V(M), we have that either
1. M =M′ or
2. M⊕M′ = zig(G,M, u, σ, π).
In the former case, we have that M′ =M\ {u, v}, so v was not matched to anything in the
graph, after removing u. This means that there is no u′ for v s.t. u shifts-to u′, which means
that zig(G,M, u, σ, π) = [u, v]. From that, we have the lemma proved for this case, since
M⊕M′ = {v, u}.

In the second case, we have that M⊕M′ = zig(G \ {u},M′, v, π, σ). From Lemma 5,
we have zig(G \ {v},M′, v, π, σ) = zag(G,M, v, σ, π). From the definition of zig and since
{u, v} ∈ M, the lemma follows for this case. ◀

Proof of Lemma 3. Lemma 3 follows immediately from Lemma 6 and from Proposition 1.
◀

5.3 Finishing the Proof
The next step in our proof is to generalise the previous analysis to address the case when the
removed vertex is from the offline side of the graph. Although this is not considered by any
of the previous expositions, this generalisation is crucial for proving the competitive ratio for
general bipartite graphs, i.e. graphs that do not have a perfect matching.

▶ Lemma 7. Let G be a bipartite graph w.r.t. σ and π. Consider a vertex v ∈ σ. Let H be
G \ {v}. Let M be a ranking-matching w.r.t. G, σ, and π, and M′ be a ranking-matching
w.r.t. H, σ, and π. We have that M⊕M′ = zig(G,M, v, π, σ) or M =M′.

The proof of this lemma is very similar to that of Lemma 3. However, we are able to reuse
all our lemmas that exploit the symmetry of the offline and online sides of the graphs, so
there is not much redundancy in our proofs.

Until now, we have primarily focused on the structural difference between matchings
computed by online-match before and after removing a vertex from the original graph. The
next step in the proof is to use that to reason about the competitiveness of online-match for
general bipartite graphs. The first step is proving the following lemma.

5 The instantiation of H follows implicitly from the other instantiations.

ITP 2023

3:14 A Formal Analysis of RANKING

Listing 5: Formalising the specification of make-perfect’s output in Isabelle/HOL.
function make−p e r f e c t−matching :: " ' a graph ⇒ ' a graph ⇒ ' a graph " where

2 "make−p e r f e c t−matching G M = (
i f (∃x . x ∈ Vs G ∧ x /∈ Vs M)

4 then make−p e r f e c t−matching (G \ {SOME x . x ∈ Vs G ∧ x /∈ Vs M}) M
e l s e G

6)
" i f " f i n i t e G"

8 | "make−p e r f e c t−matching G M = G" i f " i n f i n i t e G"

▶ Lemma 8. Let G be a bipartite graph w.r.t. σ and π. Consider a vertex x. Let H be
G \ {x}. Let M be a ranking-matching w.r.t. G, σ, and π, and M′ be a ranking-matching
w.r.t. H, σ, and π. We have that |M′| ≤ |M|.

Proof. Our proof is by case analysis. The first case is when x /∈ V(M). In this case we will
have that M =M′, which finishes our proof.

The second case is when x ∈ V(M). In this case, we have two sub-cases: either x ∈ π

or x ∈ σ. We only describe the first case here and the second is symmetric. Our proof
is by contradiction, i.e. assuming |M′| > |M|. From Lemma 6, we have that M⊕M′ =
zig(G,M, u, σ, π). Also note that, from Berge’s lemma, we will have that a subsequence of
zig(G,M, u, σ, π) is an augmenting path w.r.t. ⟨G,M⟩. We know from the definition of an
augmenting path that both its first and last vertices are not in the matching it augments.
Accordingly, we have that the first and last vertices of that subsequence of zig(G,M, u, σ, π)
are not in M. This is a contradiction, because all vertices in zig(G,M, u, σ, π), except
possibly the last one, are in V(M). ◀

Lastly, we show that, given a bipartite graph G and a maximum cardinality matching M
for that graph, we can recursively remove the vertices that do not occur in M. To do
that we define a recursive function, make-perfect, to remove these vertices and then prove
the following lemma by computation induction, using the computation induction principle
corresponding to make-perfect. Listing 5 shows the formalisation of that function.

▶ Lemma 9. Let G be a bipartite graph w.r.t. σ and π. Let M be a ranking-matching w.r.t.
G, σ, and π, and M′ be a ranking-matching w.r.t. make-perfect(G,M), σ, and π. We have
that |M′| ≤ |M|.

This last lemma leads to the final theorem below.

▶ Theorem 3. Let G be a bipartite graph w.r.t. σ and π. Let M be a maximum cardinality
matching for G. We have that 1− (1− 1

|M|+1)|M| ≤ ER∼RANKING(G,π)[|R|]/|M|.

Proof. This follows immediately from Lemma 9, Theorem 1, and the fact that the size of a
maximum cardinality matching for make-perfect(G,M) is the same as the size of M, if M is
a maximum cardinality matching for G. ◀

5.4 Proving Lemma 2
Until now we have not discussed how we formalised Lemma 2 – we believe it better fits
here as its proof is a combinatorial argument. Graphically, Fig. 3 shows some instances of
Lemma 2 for v = v3 and M(v3) = u1. No matter where v3 is put, u1 is always matched to a
vertex of rank at most 3. BM prove this Lemma by stating that the difference, if any, between
the matchings computed by online-match before and after moving the offline vertex is also

M. Abdulaziz and C. Madlener 3:15

v1

v1

v1

v2

v3

v4

u1

u2

u3

u4

(a)

v1v1

v2

v4

v3

u1

u2

u3

u4

(b)

v1

v1

v1

v3

v2

v4

u1

u2

u3

u4

(c)

v1

v1

v3

v1

v2

v4

u1

u2

u3

u4

(d)

Figure 3 Illustrating Lemma 2, where v = v3, and M(v3) = u1. Initially (3a), v3 is unmatched.
Moving it further down in the ranking (3b) does not change the partner of u1. Moving v3 up in the
ranking can either (3c) also leave u1 untouched, or (3d) change the partner of u1.

Listing 6: The formalisation of Theorem 4
abbreviation matching−i n s t a n c e−nat :: " nat ⇒ (nat × nat) graph " where

2 " matching−i n s t a n c e−nat n ≡ {{(0 , k) , (Suc 0 , k) } | k . k < n}"

4 definition r a n k i n g−i n s t a n c e s−nat :: " nat ⇒ (nat × nat) graph s e t " where
" r a n k i n g−i n s t a n c e s−nat n ≡ {G. max−ca rd−matching G (matching−i n s t a n c e−nat n) ∧

6 f i n i t e G ∧ G ⊆ {{(0 , k) , (Suc 0 , l) } | k l . k < 2∗n ∧ l < 2∗n}} "

8 definition a r r i v a l−o r d e r s :: " (nat × nat) graph ⇒ (nat × nat) l i s t s e t " where
" a r r i v a l−o r d e r s G ≡ p e r m u t a t i o n s−o f−s e t {(Suc 0 , l) | l . ∃k . {(0 , k) , (Suc 0 , l) } ∈ G}"

10

definition o f f l i n e−v e r t i c e s :: " (nat × nat) graph ⇒ (nat × nat) s e t " where
12 " o f f l i n e−v e r t i c e s G ≡ {(0 , k) | k . ∃ l . { (0 , k) , (Suc 0 , l) } ∈ G}"

14 definition comp−r a t i o−nat where
"comp−r a t i o−nat n ≡

16 Min {Min { measure−pmf . e x p e c t a t i o n
(wf−r a n k i n g . r a n k i n g−prob G π (o f f l i n e−v e r t i c e s G)) ca rd

18 / ca rd (matching−i n s t a n c e−nat n)
|π . π ∈ a r r i v a l−o r d e r s G}

20 | G . G ∈ r a n k i n g−i n s t a n c e s−nat n}"

22 theorem comp−r a t i o−l i m i t ' :
assumes " c o n v e r g e n t comp−r a t i o−nat "

24 shows "1 − exp (−1) ≤ (l im comp−r a t i o−nat) "

an alternating path, where the ranks of the offline vertices traversed by that path increase.
Again, like other combinatorial parts of the analysis, graphically this is clearly evident:
Fig. 3d shows the difference between online-match(G, π, σ) and online-match(G, π, σ[v3 7→ 1]).
The blue edge was removed from the original matching, and the two red edges are added
instead. The three edges form an alternating path w.r.t. to the original matching.

However, to formalise this argument would be as difficult as for Lemma 3. Indeed, we found
out that there is no reason to construct the entire difference between the two matchings just
to reason about the rank of the vertex vi to which u is matched in online-match(G, π, σ[v 7→
i]). With this approach, the lemma follows almost immediately from the specification
ranking-matching. Hence, the formal proof is much shorter than BM’s approach.

6 The Competitive Ratio in the Limit

BM claim that the competitive ratio tends to 1−1/e if the matching’s size tends to infinity.
The main complication of showing that is to show that the competitive ratio converges, which
they do not address at all. We formalised the following.

ITP 2023

3:16 A Formal Analysis of RANKING

▶ Theorem 4. Let Mn denote {{(0, k), (1, k)} | 1 ≤ k ≤ n}. Let Γn denote graphs in the
power set of {{(0, k), (1, l)} | 1 ≤ k, l ≤ 2n} and that have Mn as a maximum cardinality
matching. Let πn denote S({(1, k) | 1 ≤ k ≤ 2n}). If Qn converges, then Qn tends to 1− 1/e

as n tends to ∞, where Qn denotes min(G,π)∈Γn×πn
ER∼RANKING(G,π)[|R|]/|Mn|.

We only prove the limit for a specific set of bipartite graphs, namely, Γn. We conjecture
that Γn is isomorphic to the set of all bipartite graphs with maximum cardinality matchings
of size n. Despite it being trivial, it was impressive that the part of the proof of this lemma
which pertains to arithmetic manipulation was almost completely automated using Eberl’s
tool [5]. The other part of the proof was to show that Γn is finite, which was tedious.

The more interesting part would be to show that Qn converges. In BM, they do not prove
that, yet they do not have it as an assumption in their theorem statement. One way to show
that this assumption holds is to use the theorem by KVV showing that no online algorithm
for bipartite matching has a better competitive ratio that 1− 1/e. However, formalising that
theorem is beyond the scope of our project.

7 Discussion

KVV’s paper on online bipartite matching was a seminal result in the theory of online
algorithms and matching. Its interesting theoretical properties, together with the emergence
of online matching markets have inspired a lot of generalisations to other settings, e.g. for
weighted vertices [2], online bipartite b-matching [12], the AdWords market [15], which
models the multi-billion dollars industry online advertising industry, and general graphs [7],
which models applications like ride-sharing. All of this means an improved understanding of
the theory of online-matching, and especially RANKING, is of great interest.

Indeed, as stated earlier, multiple authors studied the analysis of RANKING. We mention
here the most relevant five approaches:
1. Goel and A. Mehta [9], tried to simplify the proof and fill in a “hole” in KVV’s original

proof, in particular in the proof of Lemma 6 in KVV’s original paper,
2. Birnbaum and C. Mathieu [3] also provided a simple, primarily combinatorial, proof for

RANKING,
3. Devanur, Jain, and Kleinberg [4] whose main contribution was to model the algorithm

as a primal-dual algorithm, in an attempt to unify the approaches for analysing the
unweighted, vertex-weighted, and the AdWords problem,

4. Eden, Feldman, Fiat, and Segal [6], who tried to simplify the proof by using approaches
from theory of economics, and finally

5. Vazirani [19], who tried to simplify the proof of RANKING, in an attempt to use
RANKING, or a generalisation of it, to solve AdWords.

However, despite all of these attempts, the proof of RANKING’s correctness is still considered
difficult to understand, e.g. Vazirani’s latest trial to generalize it had a critical non-obvious
flaw in the combinatorial part of the analysis [19], which took months of reviewing to find
out.

We believe this formalisation serves two purposes. First, it is yet another attempt to
improve the understanding of this algorithm’s analysis. From that perspective, our work
achieved two things.
1. It further clarified the complexity of the combinatorial argument underlying the analysis

of this algorithm by providing a detailed proof for how one could generalise the com-
petitiveness of the algorithm from bipartite graphs with perfect matchings to general
bipartite graphs. We note that this part of the analysis is analogous to the “no-surpassing

M. Abdulaziz and C. Madlener 3:17

property” in Vazirani’s work [19], which is where his attempt to generalise RANKING to
AdWords fell apart, further confirming our findings regarding the complexity of this part
of the analysis.

2. We significantly simplified the analysis of the consequences of changing the ranking of an
offline vertex.

Another outcome of this project is interesting from a formalisation perspective. It
further confirmed the previously reported observation that it is particularly hard to formalise
graphical or geometric arguments and concepts. E.g. verbally, let alone formally, encoding the
intuition behind shifts-to, which is a primarily graphical concept, is extremely cumbersome.
We hypothesise that this is an inherent complexity in graphical concepts and arguments
which manifests itself when the graphical argument is put into prose.

One point which we believe would particularly benefit from further study is that of
modelling online computation. In its full generality, online computation is computation where
the algorithm has access only to parts of the input, which arrive serially, but not the whole
input. The way we model our algorithm is ad-hoc and does not capture that essence of online
computation in its full generality. It remains an interesting question how one can model
online computation, more generally. In addition to the theoretical interest, a satisfactory
answer to that question is essential if one is to show that the competitive ratio of RANKING
is optimal for online algorithms, which is a main result of KVV.

References
1 Mohammad Abdulaziz, Kurt Mehlhorn, and Tobias Nipkow. Trustworthy graph algorithms

(invited paper). In The 44th International Symposium on Mathematical Foundations of
Computer Science (MFCS), 2019.

2 Gagan Aggarwal, Gagan Goel, Chinmay Karande, and Aranyak Mehta. Online Vertex-
Weighted Bipartite Matching and Single-bid Budgeted Allocations. In The 22nd Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), 2011.

3 Benjamin E. Birnbaum and Claire Mathieu. On-line bipartite matching made simple. SIGACT
News, 2008.

4 Nikhil R. Devanur, Kamal Jain, and Robert D. Kleinberg. Randomized Primal-Dual Analysis
of RANKING for Online Bipartite Matching. In The 24th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), January 2013.

5 Manuel Eberl. Verified Real Asymptotics in Isabelle/HOL. In The International Symposium
on Symbolic and Algebraic Computation (ISSAC), 2019.

6 Alon Eden, Michal Feldman, Amos Fiat, and Kineret Segal. An Economics-Based Analysis of
RANKING for Online Bipartite Matching. In Symposium on Simplicity in Algorithms (SOSA),
January 2021.

7 Buddhima Gamlath, Michael Kapralov, Andreas Maggiori, Ola Svensson, and David Wajc.
Online Matching with General Arrivals, April 2019. arXiv:1904.08255.

8 Michele Giry. A categorical approach to probability theory. In Categorical Aspects of Topology
and Analysis, 1982.

9 Gagan Goel and Aranyak Mehta. Online budgeted matching in random input models with
applications to Adwords. In The 19th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2008.

10 Johannes Hölzl. Construction and Stochastic Applications of Measure Spaces in Higher-Order
Logic. PhD thesis, Technical University Munich, 2013.

11 John E. Hopcroft and Richard M. Karp. An n5/2 Algorithm for Maximum Matchings in
Bipartite Graphs. SIAM J. Comput., 1973.

12 Bala Kalyanasundaram and Kirk Pruhs. An optimal deterministic algorithm for online
b-matching. Theor. Comput. Sci., 2000.

ITP 2023

https://arxiv.org/abs/1904.08255

3:18 A Formal Analysis of RANKING

13 R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An optimal algorithm for on-line bipartite
matching. In The 22nd ACM Symposium on Theory of Computing (STOC), 1990.

14 Harold W. Kuhn. The Hungarian method for the assignment problem. Naval Research Logistics
Quarterly, 1955.

15 Aranyak Mehta, Amin Saberi, Umesh V. Vazirani, and Vijay V. Vazirani. AdWords and
generalized online matching. J. ACM, 2007.

16 Milena Mihail and Thorben Tröbst. Online Matching with High Probability, December 2021.
arXiv:2112.07228.

17 Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A Proof Assistant
for Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science. Springer, 2002.
doi:10.1007/3-540-45949-9.

18 Vijay V. Vazirani. Online Bipartite Matching and Adwords, February 2022. arXiv:2107.10777.
19 Vijay V. Vazirani. Online Bipartite Matching and Adwords (Invited Talk). In The 47th

International Symposium on Mathematical Foundations of Computer Science (MFCS), 2022.

https://arxiv.org/abs/2112.07228
https://doi.org/10.1007/3-540-45949-9
https://arxiv.org/abs/2107.10777

Fast, Verified Computation for Candle
Oskar Abrahamsson #

Chalmers University of Technology, Gothenburg, Sweden

Magnus O. Myreen #

Chalmers University of Technology, Gothenburg, Sweden

Abstract
This paper describes how we have added an efficient function for computation to the kernel of the
Candle interactive theorem prover. Candle is a CakeML port of HOL Light which we have, in
prior work, proved sound w.r.t. the inference rules of the higher-order logic. This paper extends
the original implementation and soundness proof with a new kernel function for fast computation.
Experiments show that the new computation function is able to speed up certain evaluation proofs
by several orders of magnitude.

2012 ACM Subject Classification Software and its engineering → Software verification

Keywords and phrases Prover soundness, Higher-order logic, Interactive theorem proving

Digital Object Identifier 10.4230/LIPIcs.ITP.2023.4

Supplementary Material Software: https://cakeml.org/candle
Software (state at time of writing): github.com/CakeML/cakeml/tree/90e158ecb6

Funding Oskar Abrahamsson: Swedish Foundation for Strategic Research.
Magnus O. Myreen: Swedish Foundation for Strategic Research.

Acknowledgements We want to thank Jeremy Avigad, John Harrison, Tobias Nipkow and Freek
Wiedijk for feedback we received when the first author prepared this as a chapter for his PhD thesis [1].
We thank Thomas Sewell for showing us how to benchmark in-logic evaluation in Isabelle/HOL.

1 Introduction

Interactive theorem provers (ITPs) include facilities for computing within the hosted logic.
To illustrate what we mean by such a feature, consider the following function, sum, which
sums a list of natural numbers:

sum xs def= if xs = [] then 0 else hd xs + sum (tl xs)

A facility for computing within the logic can be used to automatically produce theorems
such as the following, where sum [5; 9; 1] was given as input, and the following equation is
the output, showing that the input reduces to 15:

⊢ sum [5; 9; 1] = 15 (1)

The ability to compute such equations in ITPs is essential for use of verified decision
procedures, for proving ground cases in proofs, and for running a parser, pretty printer or
even compiler inside the logic for a smaller trusted computing base (TCB).

Higher-order logic (HOL) does not have a primitive rule for (or notion of) computation.
Instead, HOL ITPs such as HOL Light [11], HOL4 [13], and Isabelle/HOL [12] implement
computation as a derived rule using rewriting, which in turn is a derived rule implemented
outside their trusted kernels. As a result, computation is slow in these systems.

To understand why computation is so sluggish in HOL ITPs, it is worth noting that the
primitive steps taken for the computation of Example (1) are numerous:

© Oskar Abrahamsson and Magnus O. Myreen;
licensed under Creative Commons License CC-BY 4.0

14th International Conference on Interactive Theorem Proving (ITP 2023).
Editors: Adam Naumowicz and René Thiemann; Article No. 4; pp. 4:1–4:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:aboskar@chalmers.se
https://orcid.org/0000-0002-4861-2650
mailto:myreen@chalmers.se
https://orcid.org/0000-0002-9504-4107
https://doi.org/10.4230/LIPIcs.ITP.2023.4
https://cakeml.org/candle
https://github.com/CakeML/cakeml/tree/90e158ecb61cc3974c249811f350943545a8b2c1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Fast, Verified Computation for Candle

At each step, rewriting has to match the subterm that is to be reduced next (according to
a call-by-value order) against each pattern it knows (the left-hand side of the definitions
of sum, hd, tl, if-then-else and more); when a match is found, it needs to instantiate the
equation whose left-hand-side matched, and then reconstruct the surrounding term.
Computation over natural numbers is far from constant-time, since 5, 9 and 1 are syntactic
sugar for numerals built using the constructor-like functions and constants: Bit0, Bit1
and 0. For example, 5 = Bit1 (Bit0 (Bit1 0)). Deriving equations describing the evaluation
of simple operations such as + requires rewriting with lemmas such as these:

Bit1 m + Bit0 n = Bit1 (m + n)
Bit1 m + Bit1 n = Bit0 (Suc (m + n))
Suc (Bit0 n) = Bit1 n
Suc (Bit1 n) = Bit0 (Suc n)
. . .

HOL ITPs employ such laborious methods for computation in order to keep their soundness
critical kernel as small as possible: the small size and simplicity of the kernel is key to the
soundness argument.

This paper is about how we have added a fast function for computation to the Candle
HOL ITP1. Candle has a different soundness argument that allows it to move away from
being simple in order to be trustworthy: Candle has been proved (in HOL4) to be sound
w.r.t. a formal semantics of higher-order logic [3].

With this new function for computation, proving equations via computation is cheap.
For the sum example:

The input term is traversed once, and is converted to a datatype better suited for fast
computation. In this representation, each occurrence of sum, hd, tl, etc. can be expanded
directly without pattern-matching.
The representation makes use of host-language integers, so 5 + (9 + (1 + 0)) can be
computed using three native addition operations.
Once the computation is complete, the result is converted back to a HOL term and an
equation similar to (1) is returned to the user.

Our function for computation works on a first-order, untyped, monomorphic subset of
higher-order logic. Our implementation interprets terms of this subset using a call-by-value
strategy and host-language (CakeML) features such as arbitrary precision integer arithmetic.

In our experiments, we observe speed gains of several orders of magnitude when comparing
Candle’s new compute function against established in-logic computation implementations
used by other HOL ITPs (Sec. 8).

Contributions
We make the following contributions:

We implement a fast interpreter for terms as a user-accessible primitive in the Candle
kernel. The implementation allows users to supply code equations dictating how user-
defined (recursive) functions are to be interpreted.
The new primitive has been proven correct with respect to the inference rules of higher-
order logic, and has been fully integrated into the existing end-to-end soundness proof of
the Candle ITP.
Our compute function is, in our experiments, significantly faster than the equivalent runs
of in-logic compute facilities provided by other HOL ITPs.

1 Kernel functions are analogous to inference rules in HOL implementations.

O. Abrahamsson and M. O. Myreen 4:3

sum [5; 9; 1] 15

App "sum" [N 5; N 9; N 1] N 15

rewriting

HOL term to IR

interpreter

IR to HOL term

Figure 1 Diagram illustrating the approach we take to embedding logical terms into compute
expressions and evaluating them using an interpreter.

Notation: = and =c, ⊢ and ⊢c, etc.
This paper contains syntax at multiple, potentially confusing levels. The Candle logic
is formalized inside the HOL4 logic. Symbols that exist in both logics are suffixed by a
subscript c in its Candle version; as an example, = denotes equality in the HOL4 logic, and
=c denotes equality in the embedded Candle logic. Likewise, a theorem in HOL4 is prefixed
by ⊢, while a Candle theorem is prefixed by ⊢c.

Source code and proofs
Our sources are at github.com/CakeML/cakeml/tree/master/candle/prover/compute, and
the Candle project is hosted at cakeml.org/candle.

2 Approach

This section explains, at a high level, the approach we have taken to add a new function for
computation to Candle.

First, we introduce a new computation friendly internal representation (IR) for expressions
that we want to do computation on. On entry to the new compute primitive, the given
input term is translated into this new IR. This step corresponds to the downwards arrow
in Figure 1. We use an IR that is separate from the syntax of HOL (theorems, terms and
types), since the datatypes used by HOL ITPs are badly suited for efficient computation.

We perform computation on the terms of our IR via interpretation. This step is the solid
right arrow in Figure 1. On termination, this interpretation arrives at a return value, which
is translated to a HOL term r . This step is the up arrow in Figure 1. The new compute
primitive returns, to the user, a theorem stating that the input term is equal to the result of
computation r . The theorem states that an equality between the points connected with a
dashed arrow in Figure 1.

The new compute primitive is a user-accessible function in the Candle kernel and must
therefore be proved to be sound, i.e., every theorem it returns must follow by the primitive
inference rules of higher-order logic (HOL).

We prove the soundness of our computation function by showing that there is some way
of using the inference rules of HOL to mimic the operations of the interpreter. Our use of the
inference rules amounts to showing that there is some proof by rewriting that establishes the
desired equation. Since Candle performs no proof recording of any kind, it suffices, for the
soundness proof, to prove (in HOL4) that there exists some derivation in the Candle logic.

The connection established by the existentially quantified proof is illustrated by the
dashed arrow in Figure 1. All reasoning about the interpreter (the lower horizontal arrow)
must be wrt. the view of the interpreter provided by the translations to and from the IR
(the vertical arrows). Nearly all of our theorems are stated in terms of the arrow upwards,
i.e. from IR to HOL.

ITP 2023

https://github.com/CakeML/cakeml/tree/90e158ecb61cc3974c249811f350943545a8b2c1/candle/prover/compute
https://cakeml.org/candle

4:4 Fast, Verified Computation for Candle

2.1 Overview
The development of our new compute primitive for Candle was staged into increasingly
complex versions.
1. Version 1 (Sec. 3) was a proof-of-concept Candle function for computing the result of

additions of concrete natural numbers. This function was implemented as a conversion2

in the Candle kernel that given a term m +c n computes the result of the addition r ,
and returns a theorem ⊢c m +c n =c r to the user. Internally, the implementation makes
use of the arbitrary precision integer arithmetic of the host language, i.e. CakeML. The
purpose of Version 1 was to establish the concepts needed for this work rather than
producing something that is actually useful from a user’s point of view.

2. Version 2 (Sec. 4) improved on Version 1 by replacing the type of natural numbers by a
datatype for binary trees with natural numbers at the leaves, and by supporting structured
control-flow (if-then-else), projections (fst, snd) and the usual arithmetic operations. This
version supports nesting of expressions.

3. Version 3 (Sec. 5) extended Version 2 with support for user-supplied code equations for
user-defined constants. The code equations are allowed to be recursive and thus the
interpreter had to support recursion. This extension also brought with it variables: from
Version 3 and on, all interpreters are able to interpret input terms containing variables.

4. Version 4 (Sec. 6) replaced the naive interpreter with one that is designed to evaluate
with less overhead. This version uses O(1) operations to look up to code equations and
uses environments rather than substitutions for variable bindings. This is the version we
perform benchmarks on (Sec. 8).

5. The final Version 5 (Sec. 7) is, at the time of writing, left as future work. In Version 5,
our intention is to split the compute function into stages so that users can initialize and
feed in code equations separately from calls to the main compute function. This should
make repeated calls to the compute facility faster.

At the time of writing, Version 4 (Sec. 6) is integrated into the existing Candle imple-
mentation and end-to-end soundness proof.

3 Addition of Natural Numbers (Version 1)

In this section, we describe how we implemented and verified a function for computing
addition on natural numbers in the Candle kernel. This is the first step towards a proven-
correct function for computation. The approach can be reused to produce computation
functions for other kinds of binary operations (multiplication, subtraction, division, etc.) on
natural numbers, and it can be used to build evaluators for arithmetic inside more general
expressions (Sec. 4).

3.1 Input and output
In Version 1, the user can input terms such as 3 +c 5 or 100 +c 0, i.e., terms consisting of
one addition applied to two concrete numbers. The numbers are shown here as 3, 5, 100, 0,
even though they are actually terms in a binary representation based on the constant 0c, and
the functions Bit0c and Bit1c in the Candle logic.

2 A conversion is a proof procedure that takes a term t as input and proves a theorem ⊢ t = t′ for some
interesting t′.

O. Abrahamsson and M. O. Myreen 4:5

The output is a theorem equating the input with a concrete natural number. For the
examples above, the function returns the following equations. The subscript c is used below
to highlight that these are theorems in the Candle logic.

⊢c 3 +c 5 =c 8 or ⊢c 100 +c 0 =c 100

The results 8 and 100 are computed using addition outside the logic. The challenge is to
show that the same computation can be derived from the equations defining +c (in Candle)
using the primitive inference rules of the Candle logic.

3.2 Key soundness lemma
In order to prove the soundness of Version 1 (required for its inclusion in the Candle kernel),
we need to prove the following theorem, which states: if the arithmetic operations are defined
as expected (num_thy_ok) in the current Candle theory Γ, then the addition (+c) of the
binary representations (mk_num) of two natural numbers m and n is equal (=c) to the binary
representation of (m + n), where + is HOL4 addition.

⊢ num_thy_ok Γ ⇒
Γ ⊢c mk_num m +c mk_num n =c

mk_num (m + n)
(2)

To understand the theorem statement above, let us look at the definitions of mk_num and
num_thy_ok. The function mk_num converts a HOL4 natural number into the corresponding
Candle natural number in binary representation:

mk_num n def=
if n = 0 then 0c

else if even n then Bit0c (mk_num (n div 2))
else Bit1c (mk_num (n div 2))

The definition of num_thy_ok asserts that various characterizing equations hold for the
Candle constants +c, Bit0c and Bit1c (the complete definition is not shown below). Here m
and n are natural number typed variables in Candle’s logic:

num_thy_ok Γ def=
Γ ⊢c 0c +c n =c n ∧
Γ ⊢c Succ m +c n =c Succ (m +c n) ∧
Γ ⊢c Bit0c n =c n +c n ∧
Γ ⊢c Bit1c n =c Succ (n +c n) ∧ . . .

We use num_thy_ok as an assumption in Theorem (2), since the computation function is
part of the Candle kernel, which does not include these definitions when the prover starts
from its initial state (and thus the user might define them differently).

A closer look at num_thy_ok reveals that +c is characterized by its simple Suc-based
equations and Bit1c is characterized in terms of Suc and +c. As a result, a direct proof of
Theorem (2) would be awkward at best.

To keep the proof of Theorem (2) as neat as possible, we defined the expansion of a HOL
number into a tower of Succ applications to 0c:

mk_suc n def=
if n = 0 then 0c

else Succ (mk_suc (n − 1))

ITP 2023

4:6 Fast, Verified Computation for Candle

and split the proof of Theorem (2) into two lemmas. The first lemma is a mk_suc variant of
Theorem (2):

⊢ num_thy_ok Γ ⇒
Γ ⊢c mk_suc m +c mk_suc n =c

mk_suc (m + n)
(3)

and the second lemma =c-equates mk_num with mk_suc:

⊢ num_thy_ok Γ ⇒
Γ ⊢c mk_num n =c mk_suc n (4)

The proof of Theorem (3) was done by induction on m, and involved manually constructing
the ⊢c-derivation that connects the two sides of =c in Theorem (3). The proof of Theorem (4)
is a complete induction on n and uses Theorem (3) when +c is encountered. Finally, the
proof of Theorem (2) is a manually constructed ⊢c-derivation that uses Theorems (4) and (3),
and symmetry of =c.

3.3 From Candle terms to natural numbers
The development described above is in terms of functions (mk_num, mk_suc) that map HOL4
natural numbers into Candle terms, but the implementation also converts in the opposite
direction: on initialization, the computation function converts the given input term into its
internal representation (see the leftmost arrow in Figure 1).

We use the following function, dest_num, to extract a natural number from a Candle term.
This function traverses terms, and recognizes the function symbols used in Candle’s binary
representation of natural numbers:

dest_num tm def=
case tm of
| 0c ⇒ Some 0
| Bit0c r ⇒ option_map (λ n. 2 × n) (dest_num r)
| Bit1c r ⇒ option_map (λ n. 2 × n + 1) (dest_num r)
| _ ⇒ None

One should read the application Bitb bs as a natural number in binary with least significant
bit b and other bits bs.

The correctness of dest_num is captured by the following theorem, which states that =c
is preserved when moving from Candle terms to natural numbers in HOL4, and back:

⊢ num_thy_ok Γ ∧
dest_num t = Some t′ ⇒
Γ ⊢c mk_num t′ =c t

(5)

Version 1 of the computation function also has a function for taking apart a Candle term
with a top-level addition +c:

dest_add tm def=
case tm of
| (x +c y) ⇒ Some (x ,y)
| _ ⇒ None

O. Abrahamsson and M. O. Myreen 4:7

Equipped with the functions dest_num and dest_add, and Theorems (2) and (5), it is easy
to prove the following soundness result. This theorem states: if a term t can be taken apart
using dest_add and dest_num, then the term constructed by mk_num and the HOL4 addition,
+, can be used as the right-hand side of an equation that is ⊢c-derivable.

⊢ num_thy_ok Γ ⇒
dest_add t = Some (x ,y) ∧
dest_num x = Some m ∧
dest_num y = Some n ⇒
Γ ⊢c t =c mk_num (m + n)

(6)

This theorem can be used as the blueprint for an implementation that uses dest_add, dest_num
and mk_num.

3.4 Checking num_thy_ok

Note that Theorem (6) assumes num_thy_ok, which requires certain equations to be true in
the current theory Γ. To be sound, an implementation of our computation function must
check that this assumption holds.

We deal with this issue in a pragmatic manner, by requiring that the user provides a
list of theorems corresponding to the equations of num_thy_ok on each invocation of our
computation function. This approach makes num_thy_ok easy to establish, but causes extra
overhead on each call to the computation function. Subsequent versions will remove this
overhead (Sec. 7).

3.5 Soundness of CakeML implementation

Throughout this section, we have treated functions in the logic of HOL4 as if they were the
implementation of the Candle kernel. We do this because the actual CakeML implementation
of the Candle kernel is automatically synthesized from these functions in the HOL4 logic,
using the tool described in prior work [2].

Updating the entire Candle soundness proof for the addition of Version 1 of the compute
function was straightforward, once Theorem (6) was proved and the code for checking
num_thy_ok was verified.

4 Compute Expressions (Version 2)

This section describes Version 2, which generalizes the very limited Version 1. While Version 1
only computed addition of natural numbers, Version 2 can compute the value of any term
that fits in a subset of Candle terms that we call compute expressions. Compute expressions
operate over a Lisp-inspired datatype which we call compute values; in Candle, this type is
called cval.

Even though this second version might at first seem significantly more complicated than
the first, it is merely a further development of Version 1. The approach is the same: the
soundness theorems we prove are very similar looking. Technically, the most significant
change is the introduction of a datatype, cexp, that is the internal representation of all valid
input terms, i.e., compute expressions.

ITP 2023

4:8 Fast, Verified Computation for Candle

4.1 Compute values
To the Candle user, the following cval datatype is important, since all terms supplied to the
new compute function must be of this type. The cval datatype is a Lisp-inspired binary tree
with natural numbers (num) at the leaves:

cval = Pairc cval cval
| Numc num

4.2 Compute expressions
The other important datatype is cexp, which is the internal representation that user input is
translated into:

cexp = Pair cexp cexp
| Num num
| If cexp cexp cexp
| Uop uop cexp
| Binop binop cexp cexp

uop = Fst | Snd | IsPair

binop = Add | Sub | Mul | Div | Mod | Less | Eq

The cexp datatype is extended with more constructors in Version 3, described in Section 5.

4.3 Input terms
On start up, the compute function maps the given term into the cexp type. For example,
given this term as input:

cifc (Numc 1) (Numc 2)
(fstc (Pairc (Numc 3) (Numc 4)))

the function will create this cexp expression:

If (Num 1) (Num 2) (Uop Fst (Pair (Num 3) (Num 4)))

This mapping assumes that certain functions in the Candle logic (e.g. fstc) correspond to
certain constructs in the cexp datatype (e.g. Uop Fst). Note that there is nothing strange
about this: in Version 1, we assumed that +c corresponds to addition. We formalize the
assumptions about fstc, etc., next.

4.4 Context assumption: cexp_thy_ok

Just as in Version 1, Version 2 also has an assumption on the current theory context. In
Version 1, the assumption num_thy_ok ensured that the Candle definition of +c satisfied
the relevant characterizing equations. For Version 2, this assumption was extended to cover
characterizing equations for all names that the conversion from user input to cexp recognizes:
cifc, fstc, etc. These characterizing equations fix a semantics for the Candle functions that
correspond to constructs of the cexp type. For simplicity, all of the Candle functions take
inputs of type cval and produce outputs of type cval.

Our implementation makes no attempt at ensuring that functions are applied to sensible
inputs. Consequently, it is perfectly possible to write strange terms in this syntax, such as
fstc (Numc 3), or addc (Numc 3) (Pairc p q). We resolve such cases in a systematic way:

O. Abrahamsson and M. O. Myreen 4:9

Operations that expect numbers as input treat Pairc values as Numc 0.
Operations that expect a pair as input return Numc 0 when applied to Numc values.

This treatment of the primitives can be seen in the assumption, called cexp_thy_ok, that
we make about the context for Version 2. Below, x and y are variables in the Candle logic
with type cval. The lines specifying addc are:

cexp_thy_ok Γ def=
. . . ∧
Γ ⊢c addc (Numc m) (Numc n) =c Numc (m +c n) ∧
Γ ⊢c addc (Pairc x y) (Numc n) =c Numc n ∧
Γ ⊢c addc (Numc m) (Pairc x y) =c Numc m ∧ . . .

The lines specifying fstc are:

Γ ⊢c fstc (Pairc x y) =c x ∧
Γ ⊢c fstc (Numc n) =c Numc 0c ∧ . . .

The following characteristic equations for cifc illustrate that we treat Numc 0c as false and
all other values as true:

Γ ⊢c cifc (Numc 0c) x y =c y ∧
Γ ⊢c cifc (Numc (Suc n)) x y =c x ∧
Γ ⊢c cifc (Pairc x’ y’) x y =c x ∧ . . .

Comparison primitives return Numc 1 for true.

4.5 Soundness
The following theorem summarizes the operations and soundness of Version 2. If a term t
can be successfully converted (using dest_term) into a compute expression cexp, then t is
equal to a Candle term created (using mk_term) from the result of evaluating cexp using a
straightforward evaluation function (cexp_eval):

⊢ cexp_thy_ok Γ ⇒
dest_term t = Some cexp ⇒
Γ ⊢c t =c mk_term (cexp_eval cexp)

(7)

Note the similarity between Theorems (6) and (7). Where Theorem (6) uses +, The-
orem (7) calls cexp_eval. The evaluation function cexp_eval is defined to traverse the cexp
bottom-up in the most obvious manner, respecting the evaluation rules set by the character-
izing equations of cexp_thy_ok.

4.6 CakeML code and integration
The functions dest_term, cexp_eval and mk_term are the main workhorses of the implementation
of Version 2. Corresponding CakeML implementations are synthesized from these functions.
The definition of the evaluator function cexp_eval uses arithmetic operations (+, −, ×, div,
mod, <, =) over the natural numbers. Such arithmetic operations translate into arbitrary
precision arithmetic operations in CakeML.

Updating the Candle proofs for Version 2 was a straightforward exercise, given the prior
integration of Version 1.

ITP 2023

4:10 Fast, Verified Computation for Candle

5 Recursion and user-supplied code equations (Version 3)

Version 3 of our compute function for Candle adds support for (mutually) recursive user-
defined functions. The user supplies function definitions in the form of code equations.

5.1 Code equations
In our setting, a code equation for a user-defined constant c is a Candle theorem of the form:

⊢c c v1 . . . vn = e

where each variable vi has type cval and the expression e has type cval. Furthermore, the
free variables of e must be a subset of {v1 , . . . , vn}. Note that any user-defined constants,
including c, are allowed to appear in e in fully applied form. Every user-defined constant
appearing in some right-hand side e must have a code equation describing that constant.

5.2 Updated compute expressions
We updated the cexp datatype to allow variables (Var), applications of user-supplied constants
(App), and, at the same time, we added let-expressions (Let):

cexp = Pair cexp cexp
| Num num
| Var string
| App string (cexp list)
| Let string cexp cexp
| If cexp cexp cexp
| Uop uop cexp
| Binop binop cexp cexp

Variables are present to capture the values bound by the left-hand sides of code equations
and by let-expressions.

The interpreter for Version 3 of our compute function uses a substitution-based semantics,
and keeps track of code equations as a simple list. This style of semantics maps well to the
Candle logic’s substitution primitive, thus simplifying verification, but at a price:

At each let-expression or function application, the entire body of the let-expression or
the code equation corresponding to the function may be traversed an additional time, to
substitute out variables.
At each function application, the code equation corresponding to the function name is
found using linear search, making the interpreter’s performance degrade as more code
equations are added.

We address these shortcomings in Version 4 of our compute function, in Section 6.

5.3 Soundness
The following theorem is the essential part of the soundness argument for Version 3. The
user supplies the Version 3 compute function with: a list of theorems that allows it to
establish cexp_thy_ok, a list eqs of code equations, and a term t to evaluate. Every theorem
in eqs must be a Candle theorem (⊢c). Definitions defs are extracted from the given code
equations eqs. A compute expression cexp is extracted from the given input term w.r.t. the
available definitions defs. An interpreter, interpret, is run on the cexp, and its execution

O. Abrahamsson and M. O. Myreen 4:11

is parameterized by defs and a clock which is initialized to a large number init_ck. If the
interpreter returns a result res, i.e. Some res, then an equation between the input term t and
mk_term res can be returned to the user.

⊢ cexp_thy_ok Γ ⇒
(∀eq. mem eq eqs ⇒ Γ ⊢c eq) ∧
dest_eqs eqs = Some defs ∧
dest_tm defs t = Some cexp ∧
interpret init_ck defs cexp = Some res ⇒
Γ ⊢c t =c mk_term res

(8)

There are a few subtleties hidden in this theorem that we will comment on next.
First, the statement of Theorem 8 includes an assumption that the user-provided code

equations eqs are theorems in the context Γ. The user is not in any way obliged to prove this:
the fact that they can supply the compute primitive with a list of theorems means that they
are valid in Candle’s context at that point. Candle’s soundness result allows us to discharge
this assumption where Theorem 8 is used.

Second, the functions dest_eqs and dest_term perform sanity checks on their inputs. For
example, dest_eqs checks that all right-hand sides in the equations eqs mention only constants
for which there are code equations in eqs.

Third, the interpret function, which is used for the actual computation, takes a clock
(sometimes called fuel parameter) in order to guarantee termination. This clock is not strictly
necessary, but made it easier to use the existing CakeML code synthesis tools. The clock is
decremented by interpret on each function application (i.e. App), and, due to the substitution
semantics, also on each Let. If the clock is exhausted, interpret returns None.

5.4 CakeML code
As with previous versions, the CakeML implementation of the computation function is
synthesized from the HOL4 functions. For efficiency purposes, the generated CakeML code
for interpret avoids returning an option and instead signals running out of clock using an ML
exception. We note that it is very unlikely that a user has the patience to wait for a timeout
since the value of init_ck is very large (maximum smallnum).

5.5 Integration
Updating the Candle proofs for Version 3 required more work than Versions 1 and 2, since
we had to verify the correctness of the sanity checks performed on the user-provided list of
code equations.

6 Efficient interpreter (Version 4)

For Version 4, we replaced the interpreter function, interpret, with compilation to a different
datatype for which we have a faster interpreter.

The new datatype for representing programs is called ce, shown below. It uses de Bruijn
indexing for local variables, and represents function names as indices into a vector of function
bodies, which means lookups happen in constant time during interpretation. Rather than
representing primitive functions by names, the ce datatype represents primitive functions
as (shallowly embedded) function values that can immediately be applied to the result of

ITP 2023

4:12 Fast, Verified Computation for Candle

evaluating the argument expressions.

ce = Const num
| Var num
| Let ce ce
| If ce ce ce
| Monop (cval→ cval) ce
| Binop (cval→ cval→ cval) ce ce
| App num (ce list)

The new faster interpreter exec, shown in Figure 2, for the ce datatype addresses the
two main shortcomings of Version 3. First, it drops the substitution semantics in favor of
de Bruijn variables and an explicit environment, so that variable substitution can be deferred
until (and if) the value bound to a variable is needed. Second, all function names are replaced
by an index into a vector which stores all user-provided code equations.

When updating Version 3 to Version 4, we simply replaced the following line in the
implementation:

interpret init_ck defs cexp

with the line below, which calls the compilers compile_all and compile (these translate cexp into
ce, turning variables and function names into indices) and then runs exec, which interprets
the program represented in terms of ce:

exec init_ck [] (compile_all defs) (compile defs [] cexp)

Updating the proofs for Version 4 was a routine exercise in proving the correctness of the
compilers compile_all and compile. In this proof, compiler correctness is an equality: the new
line computes exactly the same result as the line that it replaced (under some assumptions
that are easily established in the surrounding proof). The adjustments required in the
existing proofs were minimal.

7 Staged set up (Version 5)

At the time of writing, Version 5 is not yet implemented. However, the plan is to reduce the
overhead of calling the compute function.

In Versions 1–4, the characteristic equations need to be checked (i.e., establishing
cexp_thy_ok) and the user-supplied code equations must be compiled, on each call to the
compute primitive. In these versions, even a simple evaluation, such as 1 + 2, will make the
compute function check all of the characteristic equations, every time.

For Version 5, the plan is to curry the arguments of the compute primitive and arrange
the implementation to: perform the characteristic equations checks after the first argument
is given and then return a function that performs the rest of the computation given the
remaining arguments. Note that the returned function can only exist if all of the characteristic
equation checks have passed. The verification of the Candle prover has not yet dealt with
any such conditionally existing function values. We expect these values will need special
treatment in the Candle prover’s soundness theorem.

O. Abrahamsson and M. O. Myreen 4:13

exec funs env ck (Const n) def=
return (Num n)

exec funs env ck (Var n) def=
return (env_lookup n env)

exec funs env ck (Monop m x) def=
do
v ← exec funs env ck x ;
return (m v)

od
exec funs env ck (Binop b x y) def=
do
v ← exec funs env ck x ;
w ← exec funs env ck y;
return (b v w)

od
exec funs env ck (App f xs) def=
do

check_clock ck;
vs ← execl funs env ck xs [];
c ← get_code f funs;
exec funs vs (ck − 1) c

od
exec funs env ck (Let x y) def=
do

check_clock ck;
v ← exec funs env ck x ;
exec funs (v::env) (ck − 1) y

od
exec funs env ck (If x y z) def=
do
v ← exec funs env ck x ;
exec funs env ck
(if v = Num 0 then z else y)

od
execl funs env ck [] acc def=

return acc
execl funs env ck (x ::xs) acc def=
do
v ← exec funs env ck x ;
execl funs env ck xs (v::acc)

od

Figure 2 Definition of the fast interpreter as
functions in HOL.

fun exec funs env ck e =
case e of

Const n => Num n
| Var n => List.nth n env
| Monop m x =>

let
val v = exec funs env ck x

in
m v

end
| Binop b x y =>

let
val v = exec funs env ck x
val w = exec funs env ck y

in
b v w

end
| App f xs =>

let
val _ = check_clock ck
val vs = execl funs env ck xs []
val c = Vector.nth f funs

in
exec funs vs (ck - 1) c

end
| Let x y =>

let
val _ = check_clock ck
val v = exec funs env ck x

in
exec funs (v::env) (ck - 1) y

end
| If x y z =>

let
val v = exec funs env ck x

in
exec funs env ck

(if v = Num 0 then z else y)
end

and execl funs env ck l acc =
case l of

[] => acc
| (x::xs) =>

let
val v = exec funs ck x

in
execl funs env ck xs (v::acc)

end

Figure 3 CakeML code generated from defin-
ition of exec.

ITP 2023

4:14 Fast, Verified Computation for Candle

Table 1 Running times for Candle’s compute primitive, HOL4’s Eval, HOL Light’s Eval, and
Isabelle/HOL’s in-logic Code_Simp.dynamic_conv. Below dash, —, indicates not measured.

fact n for different values of n primes_upto n for different values of n

n Candle HOL4 H.Light Isabelle
256 <1 ms 2.3 s 0.6 s 14 s
512 <1 ms 4.1 s 3.5 s 202 s
1024 <1 ms 127 s 17.6 s 2451 s
2048 11 ms 684 s 86.1 s —
32768 0.9 s — — —

n Candle HOL4 H.Light Isabelle
256 <1 ms 0.5 s 1.3 s 2.6 s
512 <1 ms 1.6 s 5.2 s 9.8 s
1024 2 ms 6.3 s 20.7 s 35.6 s
2048 9 ms 24.2 s 83.4 s 132 s
32768 1.7 s — — —

rev_enum n for different values of n n steps of Conway’s Game of Life

n Candle HOL4 H.Light Isabelle
256 0.02 s 1.1 s 66.2 s 10.2 s
512 0.03 s 2.3 s 251 s 37.1 s
1024 0.07 s 4.7 s 1005 s 172 s
2048 0.1 s 9.5 s 4203 s 791 s
32768 2.5 s — — —

n Candle HOL4 H.Light Isabelle
1 0.03 s 0.6 s 14.9 s 1.5 s
10 0.08 s 5.3 s 147 s 15.0 s
100 0.8 s 54 s 1474 s 148 s
1000 8.0 s 568 s 14623 s 1466 s
10000 79 s — — —

8 Evaluation

In this section, we report on experiments comparing our new compute function to the in-logic
interpreters of HOL4, HOL Light, and Isabelle/HOL. We tested the performance of each on
the following four example programs written as function in the logic of HOL.

the factorial function,
enumeration of primes,
generating and reversing a list of numbers,
simulation of a 100-by-100 grid of cells in Conway’s Game of Life.

The tests were run on an Intel i7-7700K 4.2GHz with 64 GiB RAM running Ubuntu 20.04.
The code used for these experiments is available at cakeml.org/candle_benchmarks.html.

The results, in Figure 1, show that Candle’s new compute function runs orders of
magnitude faster than the derived rules of HOL4, HOL Light, and Isabelle/HOL, on all
four examples. In fact, it was difficult to choose input sizes large enough for us to gather
meaningful measurements from our computation function, while keeping the runtimes of its
derived counterparts within minutes. For this reason, we added one large data point to the
end of each experiment. In Figure 1, a dash, —, indicates that we did not test this.

The first two examples, factorial and primes, demonstrate the speed of computing basic
arithmetic, while the latter two examples, list reversal and Conway’s Game of Life, highlight
that Candle’s compute primitive is also well suited for structural computations, such as tree
traversals, that do not involve much arithmetic.

Factorial

The first example is a standard, non-tail-recursive factorial function, tested on inputs of
various sizes. The results of the tests are shown in the upper left corner of Table 1. This is
the only test where HOL Light out performs HOL4. We suspect HOL Light benefits from
the effort that has gone into making basic arithmetic evaluate fast in HOL Light.

https://cakeml.org/candle_benchmarks.html

O. Abrahamsson and M. O. Myreen 4:15

Prime enumeration

The second example, primes_upto, enumerates all primes up to n and returns them as a list.
We chose to implement the checks for primality using trial division, since it is challenging
to compute division and remainder efficiently inside the logic. The results of the tests are
shown in the upper right corner of Table 1.

List reversal

The third example performs repeated list reversals. The function rev_enum creates a list of
the natural numbers [1, 2, . . . , n] and then calls a tail-recursive list reverse function rev on this
list 1000 times. The results of the tests are shown in the lower left corner of Table 1. On this
and the next benchmark HOL Light performs much worse than HOL4 and Isabelle/HOL.

Conway’s Game of Life

The fourth example simulates a 100-by-100 grid of cells in Conway’s Game of Life. The
surface of this 100-by-100 square is set up to have a set up that consists of five Gosper glider
generators that interact. The set up is self contained, i.e., it never touches the boundaries of
the 100-by-100 grid. The simulation runs for n steps of Conway’s Game of Life. The results
of the tests are shown in the lower right corner of Table 1.

9 Related Work

This section discusses related work in the area of computation in interactive theorem provers.

9.1 HOL4
Barras implemented a fast interpreter for terms in HOL4 [5], usually referred to as Eval.
Eval implements an extended version of Crégut’s abstract machine KN [6], and performs
strong reduction of open terms, and supports user-defined datatypes and pattern-matching,
and rewriting using user-supplied conversions. It is this Eval function that was used when
benchmarking HOL4 in Section 8.

Unlike our work, Eval operates directly on HOL terms. The HOL4 kernel was modified
by Barras to make this as efficient as possible: the HOL4 kernel uses de Bruijn terms and
explicit substitutions to ensure that Eval runs fast. However, true to LCF tradition, all
interpreter steps are implemented using basic kernel inferences.

9.2 HOL Light
A HOL Light port of Eval exists [14] and was used in Section 8. However, unlike HOL4, the
HOL Light kernel has not been optimized for running Eval; HOL Light uses name-carrying
terms without explicit substitutions, making this port comparably slow.

9.3 Isabelle/HOL
Isabelle/HOL supports two mechanisms for efficient evaluation, both due to Haftmann and
Nipkow. A code generation feature [9, 10] can be used to synthesize ML, Haskell and Scala
programs from closed terms, which can then be compiled and executed efficiently. We borrow
the concept of code equations (Sec. 5) from their work, but note that Isabelle’s code equations
are more general than ours.

ITP 2023

4:16 Fast, Verified Computation for Candle

The second option is based on normalization-by-evaluation (NBE) mechanism [4] and
synthesizes ad-hoc ML interpreters over an untyped lambda calculus datatype from (possibly
open) HOL terms. The ML code is compiled and executed by an ML compiler, and the
resulting values are reinterpreted as HOL terms.

Both methods support a rich, higher-order, computable fragment of HOL. However, both
also escape the logic, make use of unverified functions for synthesizing functional programs,
and rely on unverified compilers and language runtimes for execution.

9.4 Dependent type theories
Computation is an integral part of ITPs based on higher-order type theories, such as Coq [15],
and Lean [7]. Their logics identify terms up to normal form and must reduce terms as part of
their proof checking (i.e., type checking). Consequently, their trusted kernels must implement
an interpreter or compiler of some sort.

Coq supports proof by computation using its interpreter (accessible via vm_compute), as
well as native code generation to OCaml (accessible via native_compute). Internally, Coq’s
interpreter implements an extended version of the ZAM machine used in the interactive
mode of the OCaml compiler [8], but with added support for open terms.

A formalization of the abstract machine used in the interpreter exists [8], but the actual
Coq implementation is completely unverified.

9.5 First-order logic
ACL2 is an ITP for a quantifier-free first-order logic with recursive, untyped functions. It
axiomatizes a purely functional fragment of Common Lisp, which doubles as term syntax and
host language for the system. As a consequence, some terms can be compiled and executed
at native speed. However, this execution speed comes at a cost: no verified Lisp compiler
exists that can host ACL2, its soundness critical code encompasses essentially the entire
theorem prover.

10 Conclusion

We have added a new verified function for computation to the Candle ITP. The new
computation function was developed in stages through different versions. For each version,
we proved that the new function only produces theorems that follow by the inference rules of
HOL. In our experiments, Candle’s new computation functionality produced performance
numbers that are several orders of magnitude faster than in-logic evaluation mechanisms
provided by mainstream HOL ITPs.

Our new compute function requires all functions that it uses to be first-order functions
that perform all computations using a Lisp-inspired datatype for compute values (cval). We
leave it to future work to relax this requirement.

At present, the performance numbers suggest that we do not need to go to the trouble
of replacing our interpreter-based solution with a solution that compiles the given input to
native machine code for extra performance. However, future case studies might lead us to
explore such options too.

We envision that future case studies might explore how facilities for fast in-logic compu-
tation might open the door to for verified decision procedures (for linear arithmetic, linear
algebra, or word problems) in HOL provers. Such proof procedures have typically been
programmed in the meta language (SML and OCaml) of HOL provers.

O. Abrahamsson and M. O. Myreen 4:17

References
1 Oskar Abrahamsson. A Verified Theorem Prover for Higher-Order Logic. PhD thesis, Chalmers

University of Technology, 2022.
2 Oskar Abrahamsson, Son Ho, Hrutvik Kanabar, Ramana Kumar, Magnus O. Myreen, Michael

Norrish, and Yong Kiam Tan. Proof-producing synthesis of CakeML from monadic HOL
functions. Journal of Automated Reasoning (JAR), 2020. URL: https://rdcu.be/b4FrU.

3 Oskar Abrahamsson, Magnus O. Myreen, Ramana Kumar, and Thomas Sewell. Candle:
A verified implementation of HOL Light. In June Andronick and Leonardo de Moura,
editors, Interactive Theorem Proving (ITP), volume 237 of LIPIcs, pages 3:1–3:17, 2022.
doi:10.4230/LIPIcs.ITP.2022.3.

4 Klaus Aehlig, Florian Haftmann, and Tobias Nipkow. A compiled implementation of normalisa-
tion by evaluation. J. Funct. Program., 22(1):9–30, 2012. doi:10.1017/S0956796812000019.

5 Bruno Barras. Programming and computing in HOL. In Mark Aagaard and John Harrison,
editors, Theorem Proving in Higher Order Logics (TPHOLs), volume 1869 of Lecture Notes in
Computer Science, pages 17–37. Springer, 2000. doi:10.1007/3-540-44659-1_2.

6 Pierre Crégut. An abstract machine for lambda-terms normalization. In Gilles Kahn, editor,
Conference on LISP and Functional Programming (LFP), pages 333–340. ACM, 1990. doi:
10.1145/91556.91681.

7 Leonardo de Moura and Sebastian Ullrich. The Lean 4 theorem prover and programming
language. In André Platzer and Geoff Sutcliffe, editors, International Conference on Automated
Deduction (CADE), volume 12699 of Lecture Notes in Computer Science, pages 625–635.
Springer, 2021. doi:10.1007/978-3-030-79876-5_37.

8 Benjamin Grégoire and Xavier Leroy. A compiled implementation of strong reduction. In
Mitchell Wand and Simon L. Peyton Jones, editors, International Conference on Functional
Programming (ICFP), pages 235–246. ACM, 2002. doi:10.1145/581478.581501.

9 Florian Haftmann. Code generation from specifications in higher-order logic. PhD thesis,
Technical University Munich, 2009.

10 Florian Haftmann and Tobias Nipkow. Code generation via higher-order rewrite systems.
In Matthias Blume, Naoki Kobayashi, and Germán Vidal, editors, Functional and Logic
Programming (FLOPS), volume 6009 of Lecture Notes in Computer Science, pages 103–117.
Springer, 2010. doi:10.1007/978-3-642-12251-4_9.

11 John Harrison. HOL Light: An overview. In Stefan Berghofer, Tobias Nipkow, Christian
Urban, and Makarius Wenzel, editors, Theorem Proving in Higher Order Logics (TPHOLs),
volume 5674 of Lecture Notes in Computer Science, pages 60–66. Springer, 2009. doi:
10.1007/978-3-642-03359-9_4.

12 Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A Proof Assistant
for Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science. Springer, 2002.
doi:10.1007/3-540-45949-9.

13 Konrad Slind and Michael Norrish. A brief overview of HOL4. In Otmane Aït Mohamed,
César A. Muñoz, and Sofiène Tahar, editors, Theorem Proving in Higher Order Logics
(TPHOLs), volume 5170 of LNCS. Springer, 2008. doi:10.1007/978-3-540-71067-7_6.

14 Alexey Solovyev. HOL Light’s computelib. Accessed 2022-06-11. https://github.com/jrh13/
hol-light/blob/master/compute.ml.

15 The Coq Development Team. The Coq reference manual. Accessed 2022-06-11. https:
//coq.inria.fr/distrib/current/refman/.

ITP 2023

https://rdcu.be/b4FrU
https://doi.org/10.4230/LIPIcs.ITP.2022.3
https://doi.org/10.1017/S0956796812000019
https://doi.org/10.1007/3-540-44659-1_2
https://doi.org/10.1145/91556.91681
https://doi.org/10.1145/91556.91681
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1145/581478.581501
https://doi.org/10.1007/978-3-642-12251-4_9
https://doi.org/10.1007/978-3-642-03359-9_4
https://doi.org/10.1007/978-3-642-03359-9_4
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-540-71067-7_6
https://github.com/jrh13/hol-light/blob/master/compute.ml
https://github.com/jrh13/hol-light/blob/master/compute.ml
https://coq.inria.fr/distrib/current/refman/
https://coq.inria.fr/distrib/current/refman/

Formalizing Functions as Processes
Beniamino Accattoli #

Inria & LIX, École Poytechnique, Palaiseau, France

Horace Blanc
Independent researcher, Paris, France

Claudio Sacerdoti Coen
Alma Mater Studiorum - University of Bologna, Italy

Abstract
We present the first formalization of Milner’s classic translation of the λ-calculus into the π-calculus.
It is a challenging result with respect to variables, names, and binders, as it requires one to relate
variables and binders of the λ-calculus with names and binders in the π-calculus. We formalize it
in Abella, merging the set of variables and the set of names, thus circumventing the challenge and
obtaining a neat formalization.

About the translation, we follow Accattoli’s factoring of Milner’s result via the linear substitution
calculus, which is a λ-calculus with explicit substitutions and contextual rewriting rules, mediating
between the λ-calculus and the π-calculus. Another aim of the formalization is to investigate to
which extent the use of contexts in Accattoli’s refinement can be formalized.

2012 ACM Subject Classification Theory of computation → Lambda calculus; Theory of computation
→ Process calculi; Theory of computation → Operational semantics; Theory of computation →
Automated reasoning

Keywords and phrases Lambda calculus, pi calculus, proof assistants, binders, Abella

Digital Object Identifier 10.4230/LIPIcs.ITP.2023.5

Supplementary Material Software (Abella sources): github.com/sacerdot/FunctionsAsProcesses
archived at swh:1:dir:3237e6680f66745d679f6976470e9a7bb465c931

Funding Sacerdoti Coen has been supported by the INdAM-GNCS project “Proprietà qualitative e
quantitative dei Sistemi Reversibili” and by the Cost Action CA20111 EuroProofNet.

1 Introduction

Milner’s translation of the λ-calculus in the π-calculus [32] is a classic result relating two
paradigmatic formalisms. It gave rise to many studies, most notably by Sangiorgi, both
alone and with co-authors [39, 40, 18, 42, 27, 20], but also e.g. by Boudol [15, 14], Niehren
[35], Kobayashi [28], Cai and Fu [16], Toninho et al. [44], and Biernacka et al. [13].

Properties of the π-calculus have been formalized a number of times, for instance by
Melham [29], Aït Mohamed [34], Hirschkoff [25], Despeyroux [19], Röckl et al. [38], Honsell
et al. [26], Gay [24], Bengston and Parrow [12], Gabbay [21], Chauduri et al. [17], Orchard
and Yoshida [36], Perera and Cheney [37], Veltri and Vezzosi [45], and Ambal et al. [10].
To our knowledge, however, the correctness of the translation of λ into π has never been
formalized. Miller and Nadathur implement the translation in [30] (p. 274), but not the
proof of correctness. In [25], Hirschkoff clearly states that his work is preliminary to the
formalization of the correctness of the translation. He also says that one of the main obstacles
is the correspondence between term variables and process names, and that "some work should
be done to reformulate some parts of the proof in a way that would be more tractable for the
task of mechanisation". This was in 1997. In the meantime, the theory of proof assistants
has developed a variety of tools for dealing with names and binders, and Milner’s translation
has indeed been refactored, as we discuss below.

© Beniamino Accattoli, Horace Blanc, and Claudio Sacerdoti Coen;
licensed under Creative Commons License CC-BY 4.0

14th International Conference on Interactive Theorem Proving (ITP 2023).
Editors: Adam Naumowicz and René Thiemann; Article No. 5; pp. 5:1–5:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:beniamino.accattoli@inria.fr
https://orcid.org/0000-0003-4944-9944
https://doi.org/10.4230/LIPIcs.ITP.2023.5
https://github.com/sacerdot/FunctionsAsProcesses
https://archive.softwareheritage.org/swh:1:dir:3237e6680f66745d679f6976470e9a7bb465c931;origin=https://github.com/sacerdot/FunctionsAsProcesses;visit=swh:1:snp:61ded61de13f5836ee817d24be1786dcf8026dc9;anchor=swh:1:rev:a4c8898054e9766db644b7b2608b163a1e34f45a
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Formalizing Functions as Processes

a)

t u

JtK JuK

wh

*
π

c)

t u

JtK

mwh

⇒

t u

JtK JuK

mwh

π

b)

t

JtK Q ∼ JuK

u
wh

*
π

d)

t

JtK Qπ

⇒ ∃u s.t.

t

JtK Q ≡ JuK

u
mwh

π

Figure 1 Diagrams describing the relationships between terms and processes.

Variable, Names, and Binders. The translation of λ into π poses additional difficulties
with respect to studying a single language with bindings:

1. Variables/names relation: one has to relate two languages with binders and establish a
relationship between variables and binders in a term t and the names and binders in
its representation JtK as a process, in order to prove that rewriting steps on both sides
preserve the translation;

2. Not a bijection, and issues with de Bruijn: the process JtK uses more binders than t.
Typically, applications (which have no binders) are represented in π via the addition of
various binders. Therefore, adopting de Bruijn representations of terms and processes, a
variable occurrence of index i ∈ N in t is not represented with the same index in JtK.

3. Structural equivalence: reduction on processes is defined only up to structural equivalence,
which re-organizes the structure of binders by moving restrictions operators around.

Small-Step vs Micro-Step. Names are not the only difficulty. The ways in which the
λ-calculus and the π-calculus compute are inherently different. A first aspect is that the
π-calculus does not compute under prefixes, which corresponds to weak evaluation on the
λ-calculus, that is, to not compute under abstractions. This is however not the key point.

The λ-calculus rests on a small-step operational semantics, based on meta-level substitu-
tion, which replaces all occurrences of a variable at the same time with a whole sub-term. The
π-calculus instead has a micro-step approach: it only substitutes names, not sub-processes,
and does the analogous of replacing only one occurrence at a time, keeping sort of explicit
substitutions for the names that have not been fully substituted yet. In the context of
λ-calculi, the relationship between small-step and micro-step evaluation is well studied,
and dealt with via the notion of unfolding of explicit substitutions, which turns explicit
substitutions into meta-level ones. The problem, in the case of the π-calculus, is that the
unfolding operation has no natural analogous on processes.

The small-vs-micro-step issue implies that the simulation of λ into π, which relates weak
head reduction →wh on the λ-calculus with reduction in π, is not as strong as one might
expect. The diagram in Fig. 1.a indeed does not hold. One only has the diagram in Fig. 1.b,
for which JtK reduces to a process Q which is strongly bisimilar to JuK, that is, that behaves
equivalently externally (i.e. with respect to the environment), but which is in general very
different from JuK both structurally and with respect to internal reductions.

B. Accattoli, H. Blanc, and C. Sacerdoti Coen 5:3

Refactoring of the Translation. In his seminal work, Milner shows that Q can be seen as
the representation of a term JrK plus a set of processes corresponding to explicit substitutions
[x1�Jw1K] . . . [xk�JwkK], and that JuK = JrK{x1�Jw1K} . . . {xk�JwkK}, that is, turning the
explicit substitutions into meta-level ones and applying them to JrK (which is the unfolding
of Q, if seen as a λ-term with explicit substitutions) gives JuK.

In 2013, Accattoli refines Milner’s argument factoring the translation of λ into π via
a simple λ-calculus with explicit substitutions [2], namely Accattoli and Kesner’s linear
substitution calculus (LSC). The LSC is itself a refinement of a calculus by Milner [33], and
can be considered as the canonical micro-step λ-calculus: Accattoli, Kesner, and co-authors
have shown that it is strongly related to abstract machines [4, 8], linear logic proof nets [3],
reasonable cost models [7], multi types [9], and rewriting theory [5]. Back to the translation,
in [2] it is shown that the π-calculus evaluates λ-terms exactly as the LSC version →mwh of the
weak head strategy →wh of the λ-calculus. Once one replaces →wh with →mwh, indeed, the
diagrams in Fig. 1.c and Fig. 1.d hold, that is, there is a bijection of steps between →mwh and
π, and the translation becomes a strong bisimulation between the internal reductions of the
two (up to structural equivalence ≡), considerably tightening Milner’s result. Intuitively, the
problem with the unfolding is avoided altogether, since both the LSC and π are micro-step.

The other half of the simulation, that is, the relationship between the LSC and the
λ-calculus was studied independently by Accattoli and Dal Lago [6], as part of a study of
time cost models for the λ-calculus. It amounts to relate small-step and micro-step notions of
substitutions. The factorization via the LSC recasts such a study within a single formalism,
since the LSC is an extension of the λ-calculus, and allows one to present it using the
unfolding, which is natural in this setting, and makes the study conceptually cleaner.

This Paper. Here we present a formalization of the translation of λ into π, the first one
in the literature. We develop it in the Abella proof assistant [22, 11], the first version of
which appeared in 2008. It is based on Miller and Nadathur’s λ-tree syntax [30], a variant of
higher-order abstract syntax providing primitive support for binders and capture-avoiding
substitution, and Miller and Tiu’s ∇ (nabla) quantifier [31, 23], providing primitive support
for free variables. The difficulties of the translation related to names are fully circumvented
by defining terms and processes on the same type, as to share the set of variables/names. And
we follow Accattoli and decompose Milner’s result in two parts: first, the relationship between
the LSC and π, and then the one between the LSC and λ. The resulting formalization is
neat and compact.

Contexts and Distance. The LSC is a framework that relies on contexts, that is, terms with
a hole, and contextual rewriting rules, also called at a distance. Beyond the formalization of
the translation, this work also explores how to formalize the kind of context-based reasoning
arising in the theory of the LSC.

In [2], Accattoli gives a novel contextual presentation of the π-calculus communication
rules, the key property of which is that structural equivalence can be postponed. He uses this
fact to simplify the proof of the LSC/π correspondence. We also formalize the equivalence of
the new presentation with respect to the ordinary one.

2 λ-Terms, Contexts, Rules, and Processes, with Pen and Paper

Here we give the pen-and-paper definitions of the languages involved in our formalization.

ITP 2023

5:4 Formalizing Functions as Processes

λ-Terms and Contexts. We start by defining λ-terms and contexts.

λ-terms t, u, r ::= x | λx.t | tu Contexts C, D ::= ⟨·⟩ | λx.C | Cu | tC

Contexts are terms with exactly one hole ⟨·⟩, which is a placeholder for a removed sub-term.
The basic operation about contexts is plugging C⟨t⟩ of a term t for the hole of C, which
amounts to simply replacing the hole with t. The tricky aspect of plugging is that it is not
a capture-avoiding operation, and that it can capture many variables at once, that is, for
instance (λx.λy.⟨·⟩)⟨xyz⟩ = λx.λy.xyz. Capture-avoiding plugging is instead denoted with
C⟨⟨t⟩⟩. While Abella offers primitive first-class support for both binders and free variables,
it does not provide support for general contexts. More precisely, it supports contexts with
capture-avoiding plugging (i.e. C⟨⟨t⟩⟩), since it is an instance of capture-avoiding substitution
(where the bound variable has only one occurrence). What is not available is the capture-
allowing operation of plugging (i.e. C⟨t⟩). In our development, luckily, in the only point
where we really need contexts, we can limit ourselves to a capture-avoiding notion of plugging.

Weak Head Reduction. We shall only use the simplest possible evaluation strategy on
λ-terms, weak head reduction →wh, also known as (weak) call-by-name reduction.

Weak Head Reduction (λx.t)u →wh t{x�u}
t →wh u

tr →wh ur

We call monolithic the given definition of →wh. It can equivalently be defined in a split way,
by separating the root rule 7→wh and the general rule →wh obtained by the inductive closure
of 7→wh; or contextually, by further compacting the inductive cases via a notion of context.

Split definition

(λx.t)u 7→wh t{x�u}
t 7→wh u
t →wh u

t →wh u
tr →wh ur

Contextual definition

Applicative contexts A ::= ⟨·⟩ | At

(λx.t)u 7→wh t{x�u}
t 7→wh u

A⟨t⟩ →wh A⟨u⟩

These three definitions lead to different formalizations in Abella. For →wh, for which we
do not need to prove many properties, we shall adopt the monolithic one. The only two
properties of →wh that we shall use are the following ones.

▶ Lemma 1. 1. Determinism of →wh: if t →wh u and t →wh r then u = r.
2. Stability under substitution of →wh: if t →wh u then t{x�r} →wh u{x�r}.

Micro Weak Head Reduction. We do not define the whole reduction of the linear substitu-
tion calculus, but only micro weak head reduction (also known as linear weak head reduction),
the micro-step variant of weak head reduction. To define it, beyond explicit substitution
(shortened to ES) constructor we need the following contexts with ESs.

λ-terms with ESs t, u, r ::= x | λx.t | tu | t[x�u]
Substitution contexts S, S′ ::= ⟨·⟩ | S[x�u]

(Micro) weak head contexts W, W ′ ::= ⟨·⟩ | Wu | W [x�u]

An explicit substitution t[x�u] is an annotation for a meta-level substitution t{x�u} which
has been delayed. As such, it binds x in t but not in u. As it is standard for pen-and-paper
reasoning, we work silently modulo α-equivalence, thus in a term such as (xy)[x�xy] the left
and right occurrences of x are not occurrences of the same variable, as the left one is bound
and thus its name is not really x, given that (xy)[x�xy] =α (zy)[z�xy].

B. Accattoli, H. Blanc, and C. Sacerdoti Coen 5:5

Substitution contexts are simply lists of ESs. Weak head contexts are the extension to
ESs of the applicative contexts given above.

Micro weak head reduction →mwh is the union of two rules, β at a distance →dB and
micro substitution →ms, which are usually defined contextually. A peculiar aspect of their
definition is that contexts are used also in the root case.

(Weak head)
Beta at a distance S⟨λx.t⟩u 7→dB S⟨t[x�u]⟩

t 7→dB u

W ⟨t⟩ →dB W ⟨u⟩

(Weak head)
Micro substitution W ⟨⟨x⟩⟩[x�u] 7→ms W ⟨⟨u⟩⟩[x�u]

t 7→ms u

W ⟨t⟩ →ms W ⟨u⟩

Examples for β at a distance: (λx.t)[y�u]r 7→dB t[x�r][y�u] and (λx.t)[y�u]r[z�w] →dB

t[x�r][y�u][z�w]. The word distance refers to the presence of ESs – in fact the substi-
tution context S – between the abstraction and the argument, which then interact at a
distance. Examples for micro substitution: ((xx)t)[y�u][x�r] 7→ms ((rx)t)[y�u][x�r] and
((xx)t)[y�u][x�r]w →ms ((rx)t)[y�u][x�r]w. The word micro refers to the fact that the
rule replaces one occurrence of x at a time. Note the other occurrence of x in the example,
which is left untouched. Note also that the root rule 7→ms uses the capture-avoiding form of
plugging, while the contextual closure defining →ms uses the capture-allowing variant.

We give alternative inductive definitions of 7→dB / 7→ms, and of their contextual closures,
that shall be used in the discussion on how to formalize →mwh in Abella, in the next section.

Inductive
def of 7→dB

(λx.t)u 7→dB t[x�u]
tu 7→dB r

t[x�w]u 7→dB r[x�w]

Inductive
def of 7→ms

x[x�u] 7→ms u[x�u]
t[x�u] 7→ms u[x�u]

(tr)[x�u] 7→ms (ur)[x�u]
t[x�u] 7→ms u[x�u]

t[y�r][x�u] 7→ms u[y�r][x�u]

Ctx closure
of a ∈ 7→dB , 7→ms

t 7→a u
t →a u

t →a u
tr →a ur

t →a u

t[y�r] →a u[y�r]

Reachable Terms. Since, in the context of this paper, micro weak head reduction is just a
way to refine weak head reduction, we shall consider only terms with ESs that are reachable
from a term without ESs by →mwh. It is easily seen that the following characterization holds.

▶ Definition 2 (Reachable terms). Reachable terms (possibly with ESs) are defined as follows

x is reachable
t is reachable u has no ESs

tu is reachable

λx.t has no ESs
λx.t is reachable

t is reachable u has no ESs
t[x�u] is reachable

▶ Lemma 3. If t has no ESs and t →∗
mwh u then u is reachable.

Processes. The dialect of the π-calculus that we adopt contains only the constructs needed
to represent the λ-calculus. Namely, we use the asynchronous π-calculus (thus outputs are
not prefixes) with both unary and binary inputs and outputs, and pairing up unary inputs
with replication. The grammar is:

ITP 2023

5:6 Formalizing Functions as Processes

Processes P, Q, R ::= 0
∣∣ x⟨y⟩

∣∣ x⟨y, z⟩
∣∣ νxP

∣∣ x(y, z).P
∣∣!x(y).P

∣∣ P | Q

For channels, we use the same notation that we use for the variables of λ-terms. We postpone
the definition of structural equivalence and of the rewriting rules for processes to Sect. 4.

3 Our Approach to Formalizing λ-Terms, Processes, and Contexts

Reasoning Level. Abella has two layers, the specification level and the reasoning level. They
are based on different logics, the reasoning level being more powerful, having in particular
the ∇ (nabla) quantifier, and provided with special tactics to reason about the specification
level. In many formalizations in Abella, definitions are given at the specification level while
statements and proofs are given at the reasoning level. We follow another approach, giving
the definitions at the reasoning level. One of the reasons is that in this way we can exploit ∇
to formalize terms with free variables, obtaining definitions, statements, and reasoning that
are closer to those with pen and paper. The same approach is used also (at least) by Tiu
and Miller [43], Accattoli [1], Chaudhuri et al. [17], and section 7.3 of the Abella tutorial by
Baelde et al. [11].

In this paper, we show Abella code to explain how crucial concepts are formalized, but,
for lack of space, we do not systematically pair every definition/statement with its code (for
the link to the code see the first page, after the abstract). We also assume basic familiarity
with the representation of binders in higher-order abstract formalisms (the one adopted by
Abella is Miller and Nadathur’s λ-tree syntax [30]).

Induction on Types in Abella. In Abella, it is standard to define untyped λ-terms by
introducing a type tm and two constructors for applications and abstractions, without
specifying variables, as follows:

Kind tm type.
Type app tm -> tm -> tm.
Type abs (tm -> tm) -> tm.

Note that abs takes an argument of type tm -> tm which is how Abella encodes binders.
More precisely, an object-level binding constructor such as λx.t is encoded via a pair: an
ordinary constructor abs applied to a meta-level abstraction of type tm -> tm. For example,
the term λx.xx that binds x in the scope xx is encoded as abs x\app x x (that is parsed
as abs (x\app x x)) where x\app x x is a meta-level abstraction of type tm -> tm in the
syntax of Abella. In the rest of the paper, with an abuse of terminology, we call binders such
terms of type tm -> tm.

Reasoning by induction on the structure of tm terms is not possible in Abella because of
the open world assumption, stating that new constructors can always be added later to any
type. Thus, one rather defines a is_tm predicate, as follows, and reasons by induction over
it:

Define is_tm : tm -> prop by
nabla x, is_tm x;
is_tm (abs T) := nabla x, is_tm (T x);
is_tm (app T U) := is_tm T /\ is_tm U.

The first clause uses nabla to say that the free variable x is a term. Variables with capitalized
names in the last two clauses are implicitly quantified by ∀ at the clause level. The second

B. Accattoli, H. Blanc, and C. Sacerdoti Coen 5:7

clause states that an abstraction abs T is a term if its body is a term. The body is obtained
applying the binder T (of type tm -> tm) to a fresh variable x to obtain a term of type T.
Such application corresponds in a pen-and-paper proof to the (usually implicit) logical step
that replaces the bound variable with a fresh one.

Predicates such as is_tm might seem an oddity. In our development, we exploit them
crucially, as we now explain.

One Type to Formalize Them All. We deal with three main syntactic categories, ordinary
λ-terms, λ-terms with ESs, and processes. In order to circumvent the issue of relating
term variables and process names, we formalize the three categories over the same type pt,
standing for processes and terms, and then distinguish them via dedicated predicates. The
constructors are defined as follows:

Kind pt type.

% terms
Type abs (pt -> pt) -> pt.
Type app pt -> pt -> pt.
Type esub (pt -> pt) -> pt -> pt.

% pi-calculus terms
Type zero pt.
Type nu (pt -> pt) -> pt.
Type par pt -> pt -> pt.
Type out pt -> pt -> pt.
Type out2 pt -> pt -> pt -> pt.
Type in pt -> (pt -> pt) -> pt.
Type in2 pt -> (pt -> pt -> pt) -> pt.

About terms, esub T U represents t[x�u]. For processes, nu is the restriction operator νxP ,
par is parallel composition P | Q, out and out2 are unary and binary output, and similarly
for inputs. Note the binders used by the input prefixes: in2 x P represents x(y, z).P ,
where y and z are implicit in the fact that P has type pt -> pt -> pt. They can be
made explicit using the equivalent representation in2 x (y\z\ P y z), where y\z\P y z
is an η-expansion of P: Abella identifies all meta-level abstractions up to α-renaming and
η-expansion.

We then use two predicates, one for isolating λ-terms with no ESs and one for reachable
λ-terms with ESs – processes shall not need one, as there shall be no inductions on processes.

Define tm_with_no_ES : pt -> prop by
nabla x, tm_with_no_ES x;
tm_with_no_ES (abs T) := nabla x, tm_with_no_ES (T x);
tm_with_no_ES (app T U) := tm_with_no_ES T /\ tm_with_no_ES U.

Define reachable_tm : pt -> prop by
nabla x, reachable_tm x;
reachable_tm (abs T) := tm_with_no_ES (abs T);
reachable_tm (app T U) := reachable_tm T /\ tm_with_no_ES U;
reachable_tm (esub T U) := (nabla x, reachable_tm (T x)) /\ tm_with_no_ES U.

Micro Weak Head Reduction. For the formal definitions of the two rules of →mwh we
explored various approaches. We started with the monolithic approach, but soon realized
that it was very difficult, if not impossible, to reason about the properties of the rules.
We then adopted a split approach. For both 7→dB and →dB (red_root_db and red_db
in the sources), we use the inductive definitions, because their use of context plugging is
capture-allowing. For both 7→ms and →ms, we initially used the inductive definitions, which
is enough to prove the relationship with the π-calculus. To prove the relationship between
→wh and →mwh, which requires a fine analysis of 7→ms / →ms steps, we were however led

ITP 2023

5:8 Formalizing Functions as Processes

to switch (in the whole development) to a mixed style: contextual definition of 7→ms, which
enables finer reasoning, and inductive definition of →ms. This is possible because – crucially
– the definition of 7→ms uses capture-avoiding plugging W ⟨⟨u⟩⟩. The idea is that weak head
contexts W can be formalized as follows (that is, as a function u 7→ W ⟨⟨u⟩⟩).

Define weak_head_ctx : (pt -> pt) -> prop by
weak_head_ctx (h\h);
weak_head_ctx (h\ app (W h) U) := weak_head_ctx W;
weak_head_ctx (h\ esub (x\ W x h) U) := nabla x, weak_head_ctx (W x).

We use h for hole. In the last clause, h\ esub (x\ W x h) U specifies that the explicit
substitution bounds a variable x which is not the one representing the hole.

We now describe the definition of 7→ms, based on two predicates, avoiding Abella code
for lack of space, but reflecting the Abella formalization faithfully.

Firstly, we need the predicate t has free head variable x, shortened fhv(t) = x, defined by:

fhv(x) = x
fhv(t) = x

fhv(tu) = x

fhv(t) = x

fhv(t[y�u]) = x

Secondly, the predicate t has free maximal weak head context W , shortened maxw(t) = W ,
defined by:

maxw(x) = ⟨·⟩ maxw(λx.t) = ⟨·⟩
maxw(t) = W

maxw(tu) = Wu

maxw(t) = W

maxw(t[x�u]) = W [x�u]

An immediate lemma guarantees that if fhv(t) = x then there exists a weak head context W

such that maxw(t) = W . Now, the micro substitution root rule 7→ms (red_root_ms in the
sources) is defined as follows:

fhv(t) = x and maxw(t) = W

t[x�u] 7→ms W ⟨⟨u⟩⟩[x�u]

Finally, the inductive contextual closure that defines →dB (red_db) and →ms (red_ms) is
obtained via a higher-order predicate ctx_cl_tm taking a relation and returning its contextual
closure defined as follows, where a ∈ {dB, ms}.

t 7→a u
t →a u

t →a u
tr →a ur

t →a u

t[x�r] →a u[x�r]

Note that it is not possible to use a contextual formalization of the contextual closure,
because the closure rests on capture-allowing plugging, which is not supported by Abella.

Finally, micro weak head reduction →mwh (red_mwh) is defined as →dB ∪ →ms.

4 The π-Calculus, at a Distance

Here we describe the formalization of the rewriting rules of the π-calculus. We start with
structural equivalence and give the standard presentation of the rules. Then, we redefine
them according to the at a distance approach developed by Accattoli [2].

Structural Equivalence. Processes are considered modulo structural congruence ≡, defined
in two steps. First, we define root structural equivalence P

.= Q (str_eq_root) via the
following clauses.

Neutrality of 0 with respect to parallel composition: P | 0 .= P , 0 | P
.= P , P

.= P | 0, and
P

.= 0 | P ;

B. Accattoli, H. Blanc, and C. Sacerdoti Coen 5:9

Irrelevance of vacuous name restrictions: νxP
.= P , and P

.= νxP if x /∈ fn(P)1;
Commutativity of parallel composition: P | Q

.= Q | P

Associativity of parallel composition: P | (Q | R) .= (P | Q) | R and (P | Q) | R
.= P | (Q | R);

Permutation of name restriction and parallel composition: νx(P | Q) .= P | νxQ and
P | νxQ

.= νx(P | Q) if x /∈ fv(P), νx(P | Q) .= νxP | Q and νxP | Q
.= νx(P | Q) if

x /∈ fv(Q);
Commutativity of name restrictions: νxνyP

.= νyνxP .
Note that all clauses but the commutativity ones have symmetric clauses. It is natural to
wonder whether is it possible to have only half of the clauses plus a rule for the symmetry of
.=. Such an alternative does not seem to work, as it shall be explained in the next section.

The second step is defining structural equivalence ≡ (str_eq) as the equivalence and
contextual closure of .=, what is sometimes called the congruence closure. The symmetric
definition of .= spares us a symmetry rule in the definition of ≡, as proved after the definition.

Defining structural equivalence on top of root structural equivalence
P

.= Q

P ≡ Q P ≡ P
P ≡ Q Q ≡ R

P ≡ R

P ≡ Q

νxP ≡ νxQ

P ≡ Q

P | R ≡ Q | R

P ≡ Q

R | P ≡ R | Q

▶ Lemma 4.
1. Symmetry of .=: if P

.= Q then Q
.= P .

2. Symmetry of ≡: if P ≡ Q then Q ≡ P .

Proof. Point 1 is by case analysis: every clause of .= is either symmetric or has a symmetric
clause. Point 2 is by induction on P ≡ Q, using Point 1 in the case for .=. ◀

The Ordinary Rewriting Rules. The π-calculus at work here has two rewriting rules, a linear
one for binary communication and a rule involving process replication for unary communica-
tion. The root binary and replication rules are defined as follows (ord_pi-red_root_bin P Q
and ord_pi-red_root_rep P Q in Abella).

x⟨y, z⟩ | x(y′, z′).Q 7→bin Q{y′�y}{z′�z} x⟨y⟩ | !x(z).Q 7→! Q{z�y} | !x(z).Q

The root rules are closed contextually under restrictions and parallel composition as follows.

Contextual closure of root rules on processes, a ∈ {bin, !}

P 7→a Q

νxP →a νxQ

P →a Q

νxP →a νxQ

P →a Q

P | R →a Q | R

P →a Q

R | P →a R | Q
(1)

In Abella, the closure is realised via a higher-order closure predicate ctx_cl_pr, similarly to
what is done for micro weak head reduction.

The rules at work in the π-calculus are actually →bin and →! modulo ≡, that is, one
rather considers the rules →bin/≡ and →!/≡ where P →bin/≡ Q if there exist P ′ and Q′

such that P ≡ P ′ →bin Q′ ≡ Q (one might also compactly write →bin/≡ := ≡→bin≡) and
similarly for →!/≡.

1 In [2], Accattoli uses νx0 .= 0, and 0 .= νx0, which is correct, but then requires one to prove the general
version as an easy lemma.

ITP 2023

5:10 Formalizing Functions as Processes

Towards Communication at a Distance. The use of structural equivalence in the definition
of the rewriting relation of the π-calculus induces some annoying complications when one
tries to reflect process reductions on terms. We are then going to reformulate the π-calculus
reduction rules at a distance, that is, in a way that allows us to prove a postponement
theorem with respect to structural equivalence, inspired by Accattoli [2] but in a slightly
different way. Let us recall the idea from [2].

The first step is to define non-blocking contexts, which are the contexts used in the
contextual closure in (1), as follows:

Non-blocking ctxs N, M ::= ⟨·⟩
∣∣ N | Q

∣∣ P | N
∣∣ νxN

The second step is to generalize the root case of, say, the binary rule, as follows:

N and M do not capture x

N⟨x⟨y, z⟩⟩ | M⟨x(y′, z′).Q⟩ 7→bin N⟨M⟨Q{y′�y}{z′�z}⟩⟩
(2)

and then one closes the root rule by contexts as in (1). To be precise, since the aim is to
avoid structural equivalence in rewriting steps, one also needs the symmetric case of (2). The
idea behind the postponement is that the role of structural equivalence ≡ in the ordinary
approach is to re-organize the term as to move the non-blocking contexts N and M out of
the way, that is, as to obtain:

N⟨x⟨y, z⟩⟩ | M⟨x(y′, z′).Q⟩ ≡ N⟨M⟨x⟨y, z⟩ | x(y′, z′).Q⟩⟩

to then allow one to apply the ordinary communication rule. The approach at a distance
avoids the re-organization altogether, by defining communication up to non-blocking contexts.

Here, we slightly refine the presented idea, in two respects. Firstly, the plugging at work
in (2) is capture-allowing (in contrast to the root case of 7→ms for terms), so that we replace
it with an inductive contextual closure. Secondly, the scheme in (2) is asymmetric: in the
reduct, the contexts are composed as N⟨M⟩, while the opposite composition would work as
well. By turning to an inductive contextual closure, we can restore the symmetry. In fact,
we obtain a strictly more permissive rule, as we permit the reduct to have any shuffling of
the constructors in N and M. The rule is then non-deterministic, but harmlessly so, as all
the reducts of a same redex are structurally equivalent.

Communication at a Distance. The rule at a distance for binary prefixes ⇛bin is obtained
by first defining its root variant ⇒bin (new_pi-red_root_bin P Q in Abella), as follows.

x⟨y, z⟩ | x(y′, z′).Q ⇒bin Q{y′�y}{z′�z} x(y′, z′).Q | x⟨y, z⟩ ⇒bin Q{y′�y}{z′�z}

P | Q ⇒bin R

(P | O) | Q ⇒bin R | O

P | Q ⇒bin R

P | (Q | O) ⇒bin R | O

P | Q ⇒bin R

νxP | Q ⇒bin νxR

P | Q ⇒bin R

(O | P) | Q ⇒bin O | R

P | Q ⇒bin R

P | (O | Q) ⇒bin O | R

P | Q ⇒bin R

P | νxQ ⇒bin νxR

Then, ⇛bin (new_pired_bin P Q in Abella) is obtained by applying the same context closure
as in (1) to ⇒bin.

The rule for unary prefixes ⇛! is obtained via the same construction by simply changing
the base case. The root case ⇒! (new_pi-red_root_rep P Q in Abella) follows.

B. Accattoli, H. Blanc, and C. Sacerdoti Coen 5:11

x⟨y⟩ | !x(z).Q 7→! Q{z�y} | !x(z).Q !x(z).Q | x⟨y⟩ 7→! !x(z).Q | Q{z�y}

P | Q ⇒! R

(P | O) | Q ⇒! R | O

P | Q ⇒! R

P | (Q | O) ⇒! R | O

P | Q ⇒! R

νxP | Q ⇒! νxR

P | Q ⇒! R

(O | P) | Q ⇒! O | R

P | Q ⇒! R

P | (O | Q) ⇒! O | R

P | Q ⇒! R

P | νxQ ⇒! νxR

The general rule (new_pi-red_rep P Q in Abella) is then obtained by a contextual closure,
as for ⇛bin. Finally, we set ⇛ :=⇛bin ∪ ⇛!. Some basic properties of reduction follow.

▶ Lemma 5. Let a ∈ {bin, !}.
1. No creation of free names: if P ⇛a Q then fv(Q) ⊆ fv(P).
2. Parallel symmetry: if P | Q ⇒a R then exists O such that Q | P ⇒a O and O ≡ R.

5 Postponement of ≡ and Equivalence of the Presentations

The main property of the presentation at a distance is that ≡ strongly postpones with respect
to ⇛bin and ⇛!, that is, it is not required for reduction. A noticeable point of the proof is
that the two cases of ⇛bin and ⇛! are handled in the exact same way: all the statements and
all the proofs are indeed parametric in the reduction rule (the Abella proofs are identically
structured but not proved parametrically). We need two auxiliary lemmas.

▶ Lemma 6 (Auxiliary properties for postponement of structural equivalence). Let a ∈ {bin, !}.
1. If (P | Q) | R ⇒a O then (exists O′ such that P | R ⇒a O′ and O ≡ O′ | Q) or (exists O′

such that Q | R ⇒a O′ and O ≡ P | O′).
2. If νxP | Q ⇒a R then there exists O such that P | Q ⇒a O and νxO ≡ R.

Proof. Every point is by induction on the ⇒a step in its hypothesis. In Point 1, for a = bin

one actually has O = R. ◀

The lemma allows us to prove the postponement in the root case of structural equivalence,
that we prefer to isolate to stress that it does not need an induction and because it does not
need the lemma that follows it.

▶ Proposition 7 (Root strong postponement of ≡ wrt ⇛). Let a ∈ {bin, !}. If P
.= P ′ and

P ⇛a Q then there exists Q′ such that P ′ ⇛a Q′ and Q′ ≡ Q.

Proof. By case analysis of P
.= P ′, using Lemma 5 and Lemma 6. ◀

To deal with the general case of structural equivalence, we need a further auxiliary lemma.

▶ Lemma 8. Let a ∈ {bin, !}. If P ≡ P ′ and P | Q ⇛a R then there exists R′ such that
P ′ | Q ⇛a R′ and R ≡ R′.

Proof. By case analysis of P
.= P ′, using Lemma 5 and Lemma 6. ◀

▶ Theorem 9 (Strong postponement of ≡ wrt ⇛). Let a ∈ {bin, !}. If P ≡ P ′ and P ⇛a Q

then there exists Q′ such that P ′ ⇛a Q′ and Q′ ≡ Q.

Proof. By induction on P ≡ P ′. The case for .= is exactly Prop. 7. The case of reflexivity
is immediate. The case of contextual closure with respect to parallel composition on the
right uses Lemma 8, and the case on the left uses Lemma 8 and Lemma 5.2. The other cases
(transitivity and name restriction closure) follow by the i.h. ◀

ITP 2023

5:12 Formalizing Functions as Processes

▶ Remark 10. We can now explain why adding a symmetry rule to the definition of ≡ (or .=),
and so dividing by 2 the number of cases defining .=, does not work. Consider the proof of
the strong postponement property for the symmetry case: the hypotheses of the theorem are
P ≡ P ′ and P ⇛a Q, and the inductive case we are facing is that P ≡ P ′ because P ′ ≡ P .
To be able to apply the i.h. one should have P ′ ⇛a R for some R, which is what we actually
have to prove. Note also that P ′ ⇛a R is not enough because the i.h. would then give a
process O which is not necessarily Q. Therefore, to prove the statement one should have
P ′ ⇛a Q, which is not even true.

Equivalence of Presentations. The strong postponement property is the key point in
showing that ⇛a≡ is equivalent to →a/≡ for a ∈ {bin, !}.

▶ Lemma 11. Let a ∈ {bin, !}. If P →a Q then P ⇛a Q.

▶ Theorem 12 (Ordinary and new presentations are equivalent). Let a ∈ {bin, !}.
1. If P →a/≡ Q then there exists R such that P ⇛a R ≡ Q.
2. If P ⇒a Q then P →a/≡ Q.
3. If P ⇛a Q then P →a/≡ Q.

Proof.
1. Explicitly, P ≡ P ′ →a Q′ ≡ Q. By Lemma 11, P ′ ⇛a Q′. By strong postponement

(Theorem 9), there exists R such that P ⇛a R ≡ Q′, and, by transitivity of structural
equivalence, P ⇛a R ≡ Q.

2. Immediate induction on P ⇒a Q.
3. Immediate induction on P ⇛a Q, using the previous point in the base case. ◀

6 Translation and Simulations

Milner’s Translation. Here we present Milner’s call-by-name translation JtK of the λ-calculus
to the π-calculus, extended to account also for ESs. Let a, b, c, . . . be special channel names.
Milner presented the translation as JtKa, that is, as parametrized by a special channel name
a, meant to be the channel on which t itself can be communicated. Sometimes, typically by
Sangiorgi, the translation is rather presented moving the parametrization on the π-calculus
side, stating that the representation of a λ-term (with ESs) is a function λλ a.P (where λλ a.

is a meta-level notation not part of the syntax of processes) which when applied to b gives
the process (λλ a.P)b = P{a�b}. While both approaches are viable (and we explored both),
we prefer Sangiorgi’s. Firstly, it can easily be represented in Abella, by seeing the functions
λλ a.P as process binders. Secondly, it reduces the amount of free names that have to be
managed (too many free names make Abella produce unreadable intermediate goals during
the formalization). The translation is then defined as follows.

Translation of terms with ESs to processes

JxK := λλ a.x⟨a⟩
Jλx.tK := λλ a.a(x, b).JtKb a /∈ fv(JtKb)
JtuK := λλ a.νbνx(JtKb | b⟨x, a⟩ | !x(c).JuKc) a, b /∈ fv(!x(c).JuKc)

a /∈ fv(JtKb), x /∈ fv(t) ∪ fv(u)
Jt[x�u]K := λλ a.νx(JtKa | !x(b).JuKb) a /∈ fv(JuKb)

Beyond the given side conditions, the translation rests on the assumption that the special
names do not occur as variables of terms. Note that the subjects of binary input/outputs
are always special names, while the subjects of unary input/outputs are variable names. We

B. Accattoli, H. Blanc, and C. Sacerdoti Coen 5:13

distinguish special names from variables for readability and because the distinction helps
us understand the translation. There is no formal need to distinguish them, however, and
indeed our Abella formalization, which follows, does not use a separate category for them.

Define translation : pt -> (pt -> pt) -> prop by
nabla x, translation x (out x);
translation (abs T) (a\in2 a P) := nabla x, translation (T x) (P x);
translation (app T U) (a\nu b\nu x\par (P b) (par (out2 b x a) (in x Q)))

:= translation T P /\ translation U Q;
translation (esub T U) (a\nu x\par (P x a) (in x Q))

:= (nabla x, translation (T x) (P x)) /\ translation U Q.

Note the use of out x in the translation of a variable x. The type of out x is pt -> pt -> pt,
so the unary output x⟨a⟩ is represented by out x a. But the translation uses out x instead:
this is done to map x to the function (or binding) λλ a.x⟨a⟩ rather than to x⟨a⟩. Similar
remarks apply to the other cases. Note also that the Abella definition states the side
conditions dually, by saying where variables can appear, rather than where they do not, e.g.
b can appear in P b but not in Q, in the application case.

π Simulates →mwh. A single step of the micro weak head reduction rules →dB and →ms

is simulated in the π-calculus by exactly one step of ⇛bin and ⇛!, respectively, followed by
structural equivalence. We detail the case of →ms, mimicking closely the proof in Abella.
One needs an auxiliary lemma essentially capturing the simulation of the root case 7→ms by
the root case ⇒!, and then the simulation extends smoothly to the contextual closures.

▶ Lemma 13 (Auxiliary lemma for 7→ms). Let fhv(t) = x, maxw(t) = W , Jt[x�u]K = λλ a.νxP ,
and JW ⟨u⟩[x�u]K = λλ a.νxQ. Then there exists R such that P ⇒! R and R ≡ Q.

Proof. By induction on fhv(t) = x. Note that Jt[x�u]K = λλ a.νx(JtKa | !x(b).JuKb) and
JW ⟨u⟩[x�u]K = λλ a.νx(JW ⟨u⟩Ka | !x(b).JuKb), thus we have to prove that there is R such that

P = JtKa | !x(b).JuKb ⇒! R ≡ JW ⟨u⟩Ka | !x(b).JuKb = Q.

Cases of fhv(t) = x:
1. Head variable, that is, t = x. Then W = ⟨·⟩ and W ⟨u⟩ = u. We have:

P = JxKa | !x(b).JuKb = x⟨a⟩ | !x(b).JuKb ⇒! JuKa | !x(b).JuKb = Q

2. Left of application, that is, t = rw with fhv(r) = x. Then W = W ′w and W ⟨u⟩ = W ′⟨u⟩w.
By i.h., there exists R′ such that

JrKa | !x(b).JuKb ⇒! R′ ≡ JW ′⟨u⟩Ka | !x(b).JuKb.
Then:

P = JrwKa | !x(b).JuKb =
νcνy(JrKc | c⟨y, a⟩ | !y(d).JwKd) | !x(b).JuKb ⇒! (i.h.)
νcνy(R′ | c⟨y, a⟩ | !y(d).JwKd) ≡ (i.h.)
νcνy(JW ′⟨u⟩Ka | !x(b).JuKb | c⟨y, a⟩ | !y(d).JwKd) ≡
νcνy(JW ′⟨u⟩Ka | c⟨y, a⟩ | !y(d).JwKd) | !x(b).JuKb =
JW ⟨u⟩wKa | !x(b).JuKb = Q

3. Left of substitution, that is, t = r[y�w] with fhv(r) = x. Then W = W ′[y�w] and
W ⟨u⟩ = W ′⟨u⟩[y�w]. By i.h., there exists R′ such that

JrKa | !x(b).JuKb ⇒! R′ ≡ JW ′⟨u⟩Ka | !x(b).JuKb.
Then:

ITP 2023

5:14 Formalizing Functions as Processes

P = Jr[y�w]Ka | !x(b).JuKb =
νy(JtKa | !y(c).JwKc) | !x(b).JuKb ⇒! (i.h.)
νy(R′ | !y(c).JwKc) ≡ (i.h.)
νy(JW ′⟨u⟩Ka | !x(b).JuKb | !y(c).JwKc) ≡
νcνy(JW ′⟨u⟩Ka | !y(c).JwKc) | !x(b).JuKb =
JW ⟨u⟩[y�w]Ka | !x(b).JuKb = Q

◀

▶ Proposition 14. Let t be reachable.
1. If t 7→ms u then JtK ⇛! JuK.
2. If t →ms u then JtK ⇛! JuK.

Proof. For Point 1, note that if t 7→ms u then t = r[x�w] with fhv(r) = x and maxw(r) = W ,
so that u = W ⟨w⟩[x�w]. Since the translation of ESs starts with λλ a.νx, we apply Lemma 13
and obtain JtK ⇒! JuK. Point 2 is an induction on t →ms u using Point 1 in the base case. ◀

→mwh Simulates π. The converse simulation follows exactly the same schema, the root
case needs an auxiliary lemma (proof omitted), and then the simulation smoothly lifts to the
contextual closures. The only difference, in Abella, is that the case analyses of π-calculus
reduction require a few simple lemmas (omitted here) to rule out some impossible cases.

▶ Lemma 15 (Auxiliary lemma for ⇒!). Let JtK = λλ a.P , JuK = λλ b.Q. If P | !x(b).Q ⇒! R

then fhv(t) = x and ∃ W and O s.t. maxw(t) = W , JW ⟨u⟩[x�u]K = λλ a.νxO, and O ≡ R.

▶ Proposition 16.
1. If JtK = λλ a.νxP and P ⇒! Q then ∃ u and R s.t. t 7→ms u, JuK = λλ a.νxR and Q ≡ R.
2. If JtK = λλ a.P and JtKa = P ⇛! Q then ∃ u and R s.t. t →ms u, JuK = λλ a.R and Q ≡ R.

Proof.
1. For P ⇒! Q to hold, t has to be an ES t = r[x�w] and r and w verify the hypotheses of

Lemma 15. Then the conclusions of the lemma are exactly that r = W ⟨x⟩, and so t 7→ls u

with u := W ⟨w⟩[x�w], and that there exist processes as in the statement.
2. By induction on JtK = λλ a.P . Cases:

a. Variable: t = x. Impossible because then P = x⟨a⟩ which is ⇛!-normal.
b. Abstraction: t = λx.r. Impossible, because P = a(x, b).JtKb is ⇛!-normal.
c. Application: t = rw. Then P = νbνx(JrKb | b⟨x, a⟩ | !x(c).JwKc). Cases of P ⇛! Q:

i. Root step of P ′ = JrKb | b⟨x, a⟩ | !x(c).JwKc ⇒! Q′. Since by definition of the transla-
tion x /∈ fv(JrKb), there cannot be any root step in P ′. In Abella proving this fact
requires a couple of straightforward auxiliary lemmas.

ii. Inductive, that is, P ⇛! Q because JrKb ⇛! Q′ for some Q′. By i.h., there exist u′

and R′ such that r →ls u′, Ju′K = λλ b.R′, and Q′ ≡ R′. Then t = rw →ls u′w = u.
By applying these equalities to the step P ⇛! Q we obtain:

P = νbνx(JrKb | b⟨x, a⟩ | !x(c).JwKc)
⇛! νbνx(Q′ | b⟨x, a⟩ | !x(c).JwKc)

(i.h.) ≡ νbνx(R′ | b⟨x, a⟩ | !x(c).JwKc)
(i.h.) ≡ νbνx(Ju′Kb | b⟨x, a⟩ | !x(c).JwKc) =: R

Note that JuK = Ju′wK = λλ a.R.
d. Substitution: t = r[y�w]. Then P = νx(JrKa | !x(b).JwKb). Cases of P ⇛! Q:

i. Root step of JrKa | !x(b).JwKb ⇒! Q′. Then it follows from Point 1.

B. Accattoli, H. Blanc, and C. Sacerdoti Coen 5:15

ii. Inductive, that is, P ⇛! Q because JrKa ⇛! Q′ for some Q′. By i.h., there exist
u′ and R′ such that r →ls u′, Ju′K = λλ a.R′, and Q′ ≡ R′. Then t = r[y�w] →ls
u′[y�w] = u. By applying these equalities to the step P ⇛! Q we obtain:

P = νx(JrKa | !x(b).JwKb)
⇛! νx(Q′ | !x(b).JwKb)

(i.h.) ≡ νx(R′ | !x(b).JwKb)
(i.h.) ≡ νx(Ju′Ka | !x(b).JwKb) =: R

Note that JuK = Ju′wK = λλ a.R. ◀

Summing Up. By iterating the simulation of single steps, and postponing structural
equivalence, we obtain our first main result (point 1 is redn_pi_simulates_redn_mwh and
point 2 is redn_lwh_simulates_redn_pi in the sources).

▶ Theorem 17.
1. π simulates LSC: if t is reachable and t →n

mwh u then for every a there exists Q such that
JtKa ⇛n Q and Q ≡ JuKa.

2. LSC simulates π: if JtKa ⇛n Q then there exists u such that t →n
mwh u and JuKa ≡ Q.

By composing Theorem 17 with the equivalence of presentations for the reduction of π

(Theorem 12), one can also relate the LSC to the ordinary reduction of π.

7 Relating Weak Head Reduction and Micro Weak Head Reduction

Here we study the relationship between →wh and →mwh via the unfolding of ESs. We present
the pen-and-paper analogous of the Abella formalization, omitting trivial lemmas.

Unfolding. Terms with ES can be unfolded into terms without ESs by turning ESs into
meta-level substitutions. As explained in Sect. 2, we restrict to reachable terms with ESs,
characterized by having no ESs in arguments, inside ESs, and under abstractions. Accordingly,
the following definition of unfolding t

→ assumes that it is applied to a reachable term t.

Unfolding
x

→ ::= x (tu) → ::= t

→

u

(λx.t) → ::= λx.t t[x�u] → ::= t

→

{x�u}

Projection Via Unfolding. The unfolding turns every weak head β at a distance step →dB

into exactly one weak head step →wh on the unfolded terms, and every micro substitution
step →ms into an equality. Here we detail only the proof for →ms steps, which is more
interesting and requires an auxiliary lemma.

▶ Proposition 18. Let t be a reachable term. If t →dB u then t

→

→wh u

→ .

▶ Lemma 19 (Auxiliary lemma for 7→ms). Let maxw(t) = W , t be reachable, u be a term with
no ES, and x /∈ fv(u). Then W ⟨x⟩

→

{x�u} = W ⟨u⟩

→

{x�u}.

The proof is an easy induction but Abella has trouble with it because the conclusion of the
statement is a non-pattern equality. Therefore, the inductive cases need help from the user.

Proof. By induction on maxw(t) = C. Cases:
maxw(y) = ⟨·⟩, maxw(x) = ⟨·⟩, and maxw(λx.r) = ⟨·⟩ are identical: W ⟨x⟩

→

{x�u} =
x{x�u} = u = u{x�u} =∗ u

→

{x�u} = W ⟨u⟩

→

{x�u}, where the =∗ steps holds because
unfolding terms with no ES does nothing (it is an easy omitted lemma).

ITP 2023

5:16 Formalizing Functions as Processes

maxw(rw) = W ′w because maxw(r) = W ′. Note that t reachable implies r reachable.
By i.h., W ′⟨x⟩

→

{x�u} = W ′⟨u⟩

→

{x�u}. Then W ⟨x⟩

→

{x�u} = W ⟨x⟩

→

{x�u}w{x�u} =
W ′⟨u⟩

→

{x�u}w{x�u} = W ⟨u⟩

→

{x�u}.
maxw(r[y�w]) = W ′[y�w] because maxw(r) = W ′. Similar to the previous point. ◀

▶ Proposition 20. Let t be a reachable term.
1. If t 7→ms u then t

→ = u

→ .
2. If t →ms u then t

→ = u

→ .

Proof.
1. Unfolding the hypothesis, we obtain t = W ⟨x⟩[x�r] 7→ms W ⟨r⟩[x�r] = u. Note that

t

→ = W ⟨x⟩

→

{x�r} and u

→ = W ⟨r⟩

→

{x�r}. By Lemma 19, they coincide.
2. By induction on t →ms u using point 1 in the base case. ◀

Converse Simulation. The converse simulation, that is, that every →wh step is simulated
by a sequence of →mwh steps, is less easy, and it is where the difficulty of relating small-step
and micro-step formalisms lies. While it is true that if t is a term with no ESs and t →wh u

then t →dB r and r

→ = u, such a property cannot be used for the simulation of rewriting
sequences, as it does not compose for consecutive steps: if then u →wh u′ we cannot apply the
property again because r ̸= u. One needs the following refined one-step reflection property:

If t

→

→wh u then there exists r and w such that t →∗
ms r →dB w and w

→ = u

To prove such a reflection, we need various properties, in particular that →ms terminates.

Micro Substitution Normal Terms. For proving the termination of →ms we use a predicate
characterizing →ms-normal terms. We need the concept of answer.

▶ Definition 21 (Answer). An answer is a term of the form a ::= λx.t | a[x�t].

The predicate characterizing →ms-normal terms is the disjunction of three predicates.

▶ Definition 22 (ms-normal). The predicate t is ms-normal is defined as follows.

a answer
a is ms-normal

fhv(t) = x

t is ms-normal
t →dB u

t is ms-normal

The characterization takes the following form in Abella. Curiously, our proof of termination
of →ms relies on the ms-normal predicate but never uses its characterization (which we have
nonetheless formalized).

▶ Proposition 23 (Characterization of being →ms-normal). The following two facts cannot
co-exist (that is, together they imply false):
1. t →ms u;
2. t is ms-normal.

Termination of Micro Substitutions. The proof of termination of →ms is neat, as we do
not need a termination measure, we simply prove it by induction on the structure of terms,
via two auxiliary lemmas.

▶ Lemma 24. If W is a weak head context, W ⟨t⟩ is ms-normal, and x /∈ fv(t) then W ⟨t⟩[x�u]
is ms-normal.

B. Accattoli, H. Blanc, and C. Sacerdoti Coen 5:17

Proof. By case analysis of W ⟨t⟩ is ms-normal. The answer and →dB-step case are immediate.
If fhv(W ⟨t⟩) = y ̸= x then fhv(W ⟨t⟩[x�u]) = y, and so W ⟨t⟩[x�u] is ms-normal. Finally,
fhv(W ⟨t⟩) = x is impossible, because by hypothesis x does not occur in t. ◀

▶ Lemma 25. If t has no ESs and W is a weak head context not capturing variables of t

then W ⟨t⟩ is ms-normal.

Proof. By induction on W . Cases:
Empty, that is, W = ⟨·⟩. Then W ⟨t⟩ = t. The statement is given by the fact that terms
with no ESs are ms-normal (easy omitted lemma).
Application, that is W = W ′u. The statement is given by the i.h. and the stability of
ms-normal by application (easy omitted lemma).
Substitution, that is W = W ′[x�u]. By i.h., W ′⟨t⟩ is ms-normal. By hypothesis, x /∈ fv(t).
Then by Lemma 24 W ′⟨t⟩[x�u] = W ⟨t⟩ is ms-normal. ◀

▶ Proposition 26 (→ms terminates). If t is reachable then t →∗
ms u with u ms-normal.

Proof. By induction on t is reachable. Cases:
Variable and abstraction: immediate since t cannot →ms-reduce and it is ms-normal.
Application, that is t = rw: by i.h., r →∗

ms u′ with u′ ms-normal. Then rw →∗
ms u′w and

u′w is ms-normal because being ms-normal is stable by application (omitted lemma).
Substitution, that is t = r[x�w]: by i.h., r →∗

ms u′ with u′ ms-normal. Then r[x�w] →∗
ms

u′[x�w]. Case analysis of u′ ms-normal:
If u′ is an answer, a →dB-step, or fhv(u′) = y ̸= x then so is for u′[x�w].
fhv(u′) = x. Then there is a weak head context W such that maxw(u′) = W . Then
u′[x�u] →ms W ⟨u⟩[x�u]. Since W does not capture variables of u, by Lemma 25 we
have that W ⟨u⟩ is ms-normal. Since x /∈ fv(u), by Lemma 24 W ⟨u⟩[x�u] is ms-normal.
The statement holds because r[x�w] →∗

ms u′[x�w] →ms W ⟨u⟩[x�u]. ◀

Reflection of →wh Steps. We can finally prove the one-step reflection property. It rests on
the auxiliary case of reflection on ms-normal terms, which is given here without proof.

▶ Proposition 27 (ms-normal terms reflect →wh steps as →dB steps). If t is reachable,
t

→

→wh u and t is ms-normal then exists r such that t →dB r.

▶ Proposition 28 (Reflection of →wh steps). If t is reachable, t

→

→wh u then exists r and w

such that t →∗
ms r →dB w and w

→ = u.

Proof. By termination of →ms (Prop. 26), there exists r such that t →∗
ms r and r is ms-

normal. By →ms-projection (Prop. 20.2), t

→ = r

→ . We can then apply Prop. 27, obtaining
that there exists w such that r →dB w. Since r is reachable, by →dB-projection (Prop. 18)
r

→

→wh w

→ . Since →wh is deterministic (Lemma 1), u = w

→ . ◀

Summing Up. We then conclude with our second main result. In the Abella sources, point
1 is micro_to_small_simulation and point 2 is small_to_micro_simulation_no_ES.

▶ Theorem 29. Let t be reachable.
1. Micro to small steps: if t →∗

mwh u then t

→

→∗
wh u

→ .
2. Small to micro steps: if t has no ES and t →∗

wh u then there exists r such that t →∗
mwh r

and r

→ = u.

ITP 2023

5:18 Formalizing Functions as Processes

Proof. Point 1 is an easy induction on the length of t →∗
mwh u, using the projection properties

(Prop. 18 and Prop. 20). For point 2, one proves that if t is reachable and t

→

→∗
wh u then

there exists r such that t →∗
wh r and r

→ = u, by induction on the length of t

→

→∗
wh u using

the reflection property (Prop. 28). The statement follows from the fact that terms without
ES are reachable and satisfy t

→ = t. ◀

Putting it All Together? At this point, it is natural to expect that our two main results –
namely the relationships LSC/π (Theorem 17) and λ/LSC (Theorem 29) – can be composed,
obtaining a final theorem relating λ and π. This is however not possible, because the key
concept for connecting λ and the LSC is the unfolding t

→ of ESs, which has no analogous on
processes. It is exactly such a difficulty that, in presentations without ESs, forces the use of
strong bisimulation on processes to close the simulation diagram between λ and π.

At first sight, turning an ES t[x�u] into a meta-level substitution t{x�u}, which is the
operation iterated by the unfolding, corresponds on processes to a broadcast, that is, to send
JuK to all sub-processes of Jt[x�u]Ka that can perform an input on channel x, but this is
misleading because occurrences of x actually correspond to outputs, not inputs, and the
sub-process encoding [x�u] is an input, not an output.

8 Conclusions

We provide the first formalization of Milner’s translation of λ to π, by actually formalizing
Accattoli’s factorization of the translation via the linear substitution calculus. The difficulties
with names and binding are circumvented thanks to the features of the Abella proof assistant,
and by defining terms and processes over the same variables.

About future work, it would be interesting to extend our formalization to Sangiorgi’s
result relating barbed congruence in the π-calculus with his normal form bisimulation in the
λ-calculus [41]. It would also be interesting to see how to exploit the new presentation of the
rewriting rules of the π-calculus for formalizing other results of its theory.

References
1 Beniamino Accattoli. Proof pearl: Abella formalization of λ-calculus cube property. In

Chris Hawblitzel and Dale Miller, editors, Certified Programs and Proofs - Second In-
ternational Conference, CPP 2012, Kyoto, Japan, December 13-15, 2012. Proceedings,
volume 7679 of Lecture Notes in Computer Science, pages 173–187. Springer, 2012. doi:
10.1007/978-3-642-35308-6_15.

2 Beniamino Accattoli. Evaluating functions as processes. In Rachid Echahed and Detlef Plump,
editors, Proceedings 7th International Workshop on Computing with Terms and Graphs,
TERMGRAPH 2013, Rome, Italy, 23th March 2013, volume 110 of EPTCS, pages 41–55, 2013.
doi:10.4204/EPTCS.110.6.

3 Beniamino Accattoli. Proof nets and the linear substitution calculus. In Bernd Fisc-
her and Tarmo Uustalu, editors, Theoretical Aspects of Computing - ICTAC 2018 - 15th
International Colloquium, Stellenbosch, South Africa, October 16-19, 2018, Proceedings,
volume 11187 of Lecture Notes in Computer Science, pages 37–61. Springer, 2018. doi:
10.1007/978-3-030-02508-3_3.

4 Beniamino Accattoli, Pablo Barenbaum, and Damiano Mazza. Distilling abstract machines. In
Johan Jeuring and Manuel M. T. Chakravarty, editors, Proceedings of the 19th ACM SIGPLAN
international conference on Functional programming, Gothenburg, Sweden, September 1-3,
2014, pages 363–376. ACM, 2014. doi:10.1145/2628136.2628154.

https://doi.org/10.1007/978-3-642-35308-6_15
https://doi.org/10.1007/978-3-642-35308-6_15
https://doi.org/10.4204/EPTCS.110.6
https://doi.org/10.1007/978-3-030-02508-3_3
https://doi.org/10.1007/978-3-030-02508-3_3
https://doi.org/10.1145/2628136.2628154

B. Accattoli, H. Blanc, and C. Sacerdoti Coen 5:19

5 Beniamino Accattoli, Eduardo Bonelli, Delia Kesner, and Carlos Lombardi. A nonstandard
standardization theorem. In The 41st Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’14, San Diego, CA, USA, January 20-21, 2014,
pages 659–670. ACM, 2014. doi:10.1145/2535838.2535886.

6 Beniamino Accattoli and Ugo Dal Lago. On the invariance of the unitary cost model for head
reduction. In Ashish Tiwari, editor, 23rd International Conference on Rewriting Techniques
and Applications (RTA’12) , RTA 2012, May 28 - June 2, 2012, Nagoya, Japan, volume 15
of LIPIcs, pages 22–37. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2012. doi:
10.4230/LIPIcs.RTA.2012.22.

7 Beniamino Accattoli and Ugo Dal Lago. (leftmost-outermost) beta reduction is invariant,
indeed. Log. Methods Comput. Sci., 12(1), 2016. doi:10.2168/LMCS-12(1:4)2016.

8 Beniamino Accattoli, Ugo Dal Lago, and Gabriele Vanoni. The machinery of interaction.
In PPDP ’20: 22nd International Symposium on Principles and Practice of Declarative
Programming, Bologna, Italy, 9-10 September, 2020, pages 4:1–4:15. ACM, 2020. doi:10.
1145/3414080.3414108.

9 Beniamino Accattoli, Stéphane Graham-Lengrand, and Delia Kesner. Tight typings and split
bounds, fully developed. J. Funct. Program., 30:e14, 2020. doi:10.1017/S095679682000012X.

10 Guillaume Ambal, Sergueï Lenglet, and Alan Schmitt. Hoπ in coq. J. Autom. Reason.,
65(1):75–124, 2021. doi:10.1007/s10817-020-09553-0.

11 David Baelde, Kaustuv Chaudhuri, Andrew Gacek, Dale Miller, Gopalan Nadathur, Alwen
Tiu, and Yuting Wang. Abella: A system for reasoning about relational specifications. Journal
of Formalized Reasoning, 7(2):1–89, 2014. doi:10.6092/issn.1972-5787/4650.

12 Jesper Bengtson and Joachim Parrow. Formalising the pi-calculus using nominal logic. Log.
Methods Comput. Sci., 5(2), 2009. URL: http://arxiv.org/abs/0809.3960.

13 Malgorzata Biernacka, Dariusz Biernacki, Sergueï Lenglet, Piotr Polesiuk, Damien Pous, and
Alan Schmitt. Fully abstract encodings of λ-calculus in hocore through abstract machines. In
32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik,
Iceland, June 20-23, 2017, pages 1–12. IEEE Computer Society, 2017. doi:10.1109/LICS.
2017.8005118.

14 Gérard Boudol. The p-calculus in direct style. High. Order Symb. Comput., 11(2):177–208,
1998. doi:10.1023/A:1010064516533.

15 Gérard Boudol and Cosimo Laneve. The discriminating power of multiplicities in the lambda-
calculus. Inf. Comput., 126(1):83–102, 1996. doi:10.1006/inco.1996.0037.

16 Xiaojuan Cai and Yuxi Fu. The λ-calculus in the π-calculus. Math. Struct. Comput. Sci.,
21(5):943–996, 2011. doi:10.1017/S0960129511000260.

17 Kaustuv Chaudhuri, Matteo Cimini, and Dale Miller. A lightweight formalization of the
metatheory of bisimulation-up-to. In Xavier Leroy and Alwen Tiu, editors, Proceedings of the
4th ACM-SIGPLAN Conference on Certified Programs and Proofs, pages 157–166, Mumbai,
India, January 2015. ACM. doi:10.1145/2676724.2693170.

18 Matteo Cimini, Claudio Sacerdoti Coen, and Davide Sangiorgi. Functions as processes: Ter-
mination and the λµµ̃-calculus. In Martin Wirsing, Martin Hofmann, and Axel Rauschmayer,
editors, Trustworthly Global Computing - 5th International Symposium, TGC 2010, Munich,
Germany, February 24-26, 2010, Revised Selected Papers, volume 6084 of Lecture Notes in
Computer Science, pages 73–86. Springer, 2010. doi:10.1007/978-3-642-15640-3_5.

19 Joëlle Despeyroux. A higher-order specification of the pi-calculus. In Theoretical Computer
Science, Exploring New Frontiers of Theoretical Informatics, International Conference IFIP
TCS 2000, Sendai, Japan, August 17-19, 2000, Proceedings, volume 1872 of Lecture Notes in
Computer Science, pages 425–439. Springer, 2000. doi:10.1007/3-540-44929-9_30.

20 Adrien Durier, Daniel Hirschkoff, and Davide Sangiorgi. Eager functions as processes. Theor.
Comput. Sci., 913:8–42, 2022. doi:10.1016/j.tcs.2022.01.043.

21 Murdoch J. Gabbay. The π-Calculus in FM, pages 247–269. Springer Netherlands, Dordrecht,
2003. doi:10.1007/978-94-017-0253-9_10.

ITP 2023

https://doi.org/10.1145/2535838.2535886
https://doi.org/10.4230/LIPIcs.RTA.2012.22
https://doi.org/10.4230/LIPIcs.RTA.2012.22
https://doi.org/10.2168/LMCS-12(1:4)2016
https://doi.org/10.1145/3414080.3414108
https://doi.org/10.1145/3414080.3414108
https://doi.org/10.1017/S095679682000012X
https://doi.org/10.1007/s10817-020-09553-0
https://doi.org/10.6092/issn.1972-5787/4650
http://arxiv.org/abs/0809.3960
https://doi.org/10.1109/LICS.2017.8005118
https://doi.org/10.1109/LICS.2017.8005118
https://doi.org/10.1023/A:1010064516533
https://doi.org/10.1006/inco.1996.0037
https://doi.org/10.1017/S0960129511000260
https://doi.org/10.1145/2676724.2693170
https://doi.org/10.1007/978-3-642-15640-3_5
https://doi.org/10.1007/3-540-44929-9_30
https://doi.org/10.1016/j.tcs.2022.01.043
https://doi.org/10.1007/978-94-017-0253-9_10

5:20 Formalizing Functions as Processes

22 Andrew Gacek. The abella interactive theorem prover (system description). In Alessandro
Armando, Peter Baumgartner, and Gilles Dowek, editors, Automated Reasoning, 4th Inter-
national Joint Conference, IJCAR 2008, Sydney, Australia, August 12-15, 2008, Proceed-
ings, volume 5195 of Lecture Notes in Computer Science, pages 154–161. Springer, 2008.
doi:10.1007/978-3-540-71070-7_13.

23 Andrew Gacek, Dale Miller, and Gopalan Nadathur. Nominal abstraction. Inf. Comput.,
209(1):48–73, 2011. doi:10.1016/j.ic.2010.09.004.

24 Simon J. Gay. A framework for the formalisation of pi calculus type systems in isabelle/hol.
In Theorem Proving in Higher Order Logics, 14th International Conference, TPHOLs 2001,
Edinburgh, Scotland, UK, September 3-6, 2001, Proceedings, volume 2152 of Lecture Notes in
Computer Science, pages 217–232. Springer, 2001. doi:10.1007/3-540-44755-5_16.

25 Daniel Hirschkoff. A full formalisation of pi-calculus theory in the calculus of constructions.
In Elsa L. Gunter and Amy P. Felty, editors, Theorem Proving in Higher Order Logics,
10th International Conference, TPHOLs’97, Murray Hill, NJ, USA, August 19-22, 1997,
Proceedings, volume 1275 of Lecture Notes in Computer Science, pages 153–169. Springer,
1997. doi:10.1007/BFb0028392.

26 Furio Honsell, Marino Miculan, and Ivan Scagnetto. π-calculus in (co)inductive type theories.
Theoretical Computer Science, 2(253):239–285, 2001. doi:10.1016/S0304-3975(00)00095-5.

27 Guilhem Jaber and Davide Sangiorgi. Games, mobile processes, and functions. In Florin
Manea and Alex Simpson, editors, 30th EACSL Annual Conference on Computer Science
Logic, CSL 2022, February 14-19, 2022, Göttingen, Germany (Virtual Conference), volume
216 of LIPIcs, pages 25:1–25:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/LIPIcs.CSL.2022.25.

28 Naoki Kobayashi. A partially deadlock-free typed process calculus. ACM Trans. Program.
Lang. Syst., 20(2):436–482, 1998. doi:10.1145/276393.278524.

29 Thomas F. Melham. A mechanized theory of the pi-calculus in HOL. Nord. J. Comput.,
1(1):50–76, 1994.

30 Dale Miller and Gopalan Nadathur. Programming with Higher-Order Lo-
gic. Cambridge University Press, 2012. URL: http://www.cambridge.org/de/
academic/subjects/computer-science/programming-languages-and-applied-logic/
programming-higher-order-logic?format=HB.

31 Dale Miller and Alwen Tiu. A proof theory for generic judgments. ACM Trans. Comput. Log.,
6(4):749–783, 2005. doi:10.1145/1094622.1094628.

32 Robin Milner. Functions as processes. Math. Struct. Comput. Sci., 2(2):119–141, 1992.
doi:10.1017/S0960129500001407.

33 Robin Milner. Local bigraphs and confluence: Two conjectures: (extended abstract). In
Roberto M. Amadio and Iain Phillips, editors, Proceedings of the 13th International Workshop
on Expressiveness in Concurrency, EXPRESS 2006, Bonn, Germany, August 26, 2006,
volume 175 of Electronic Notes in Theoretical Computer Science, pages 65–73. Elsevier, 2006.
doi:10.1016/j.entcs.2006.07.035.

34 Otmane Aït Mohamed. Mechanizing a pi-calculus equivalence in HOL. In Higher Order Logic
Theorem Proving and Its Applications, 8th International Workshop, Aspen Grove, UT, USA,
September 11-14, 1995, Proceedings, volume 971 of Lecture Notes in Computer Science, pages
1–16. Springer, 1995. doi:10.1007/3-540-60275-5_53.

35 Joachim Niehren. Functional computation as concurrent computation. In Hans-Juergen
Boehm and Guy L. Steele Jr., editors, Conference Record of POPL’96: The 23rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Papers Presented
at the Symposium, St. Petersburg Beach, Florida, USA, January 21-24, 1996, pages 333–343.
ACM Press, 1996. doi:10.1145/237721.237801.

36 Dominic A. Orchard and Nobuko Yoshida. Using session types as an effect system. In Proceed-
ings Eighth International Workshop on Programming Language Approaches to Concurrency-

https://doi.org/10.1007/978-3-540-71070-7_13
https://doi.org/10.1016/j.ic.2010.09.004
https://doi.org/10.1007/3-540-44755-5_16
https://doi.org/10.1007/BFb0028392
https://doi.org/10.1016/S0304-3975(00)00095-5
https://doi.org/10.4230/LIPIcs.CSL.2022.25
https://doi.org/10.1145/276393.278524
http://www.cambridge.org/de/academic/subjects/computer-science/programming-languages-and-applied-logic/programming-higher-order-logic?format=HB
http://www.cambridge.org/de/academic/subjects/computer-science/programming-languages-and-applied-logic/programming-higher-order-logic?format=HB
http://www.cambridge.org/de/academic/subjects/computer-science/programming-languages-and-applied-logic/programming-higher-order-logic?format=HB
https://doi.org/10.1145/1094622.1094628
https://doi.org/10.1017/S0960129500001407
https://doi.org/10.1016/j.entcs.2006.07.035
https://doi.org/10.1007/3-540-60275-5_53
https://doi.org/10.1145/237721.237801

B. Accattoli, H. Blanc, and C. Sacerdoti Coen 5:21

and Communication-cEntric Software, PLACES 2015, London, UK, 18th April 2015, volume
203 of EPTCS, pages 1–13, 2015. doi:10.4204/EPTCS.203.1.

37 Roly Perera and James Cheney. Proof-relevant π-calculus: a constructive account of
concurrency and causality. Math. Struct. Comput. Sci., 28(9):1541–1577, 2018. doi:
10.1017/S096012951700010X.

38 Christine Röckl, Daniel Hirschkoff, and Stefan Berghofer. Higher-order abstract syntax with
induction in isabelle/hol: Formalizing the pi-calculus and mechanizing the theory of contexts.
In Foundations of Software Science and Computation Structures, 4th International Conference,
FOSSACS 2001 Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2001 Genova, Italy, April 2-6, 2001, Proceedings, volume 2030 of Lecture
Notes in Computer Science, pages 364–378. Springer, 2001. doi:10.1007/3-540-45315-6_24.

39 Davide Sangiorgi. The lazy lambda calculus in a concurrency scenario. Inf. Comput., 111(1):120–
153, 1994. doi:10.1006/inco.1994.1042.

40 Davide Sangiorgi. From lambda to pi; or, rediscovering continuations. Math. Struct. Comput.
Sci., 9(4):367–401, 1999. URL: http://journals.cambridge.org/action/displayAbstract?
aid=44843.

41 Davide Sangiorgi and David Walker. The Pi-Calculus - a theory of mobile processes. Cambridge
University Press, 2001.

42 Davide Sangiorgi and Xian Xu. Trees from functions as processes. Log. Methods Comput. Sci.,
14(3), 2018. doi:10.23638/LMCS-14(3:11)2018.

43 Alwen Tiu and Dale Miller. Proof search specifications of bisimulation and modal logics for
the pi-calculus. ACM Trans. Comput. Log., 11(2):13:1–13:35, 2010. doi:10.1145/1656242.
1656248.

44 Bernardo Toninho, Luís Caires, and Frank Pfenning. Functions as session-typed processes. In
Lars Birkedal, editor, Foundations of Software Science and Computational Structures - 15th
International Conference, FOSSACS 2012, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012.
Proceedings, volume 7213 of Lecture Notes in Computer Science, pages 346–360. Springer,
2012. doi:10.1007/978-3-642-28729-9_23.

45 Niccolò Veltri and Andrea Vezzosi. Formalizing π-calculus in guarded cubical agda. In Jasmin
Blanchette and Catalin Hritcu, editors, Proceedings of the 9th ACM SIGPLAN International
Conference on Certified Programs and Proofs, CPP 2020, New Orleans, LA, USA, January
20-21, 2020, pages 270–283. ACM, 2020. doi:10.1145/3372885.3373814.

ITP 2023

https://doi.org/10.4204/EPTCS.203.1
https://doi.org/10.1017/S096012951700010X
https://doi.org/10.1017/S096012951700010X
https://doi.org/10.1007/3-540-45315-6_24
https://doi.org/10.1006/inco.1994.1042
http://journals.cambridge.org/action/displayAbstract?aid=44843
http://journals.cambridge.org/action/displayAbstract?aid=44843
https://doi.org/10.23638/LMCS-14(3:11)2018
https://doi.org/10.1145/1656242.1656248
https://doi.org/10.1145/1656242.1656248
https://doi.org/10.1007/978-3-642-28729-9_23
https://doi.org/10.1145/3372885.3373814

An Elementary Formal Proof of the Group Law on
Weierstrass Elliptic Curves in Any Characteristic
David Kurniadi Angdinata # Ñ

London School of Geometry and Number Theory, UK

Junyan Xu #

Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA

Abstract
Elliptic curves are fundamental objects in number theory and algebraic geometry, whose points over
a field form an abelian group under a geometric addition law. Any elliptic curve over a field admits a
Weierstrass model, but prior formal proofs that the addition law is associative in this model involve
either advanced algebraic geometry or tedious computation, especially in characteristic two. We
formalise in the Lean theorem prover, the type of nonsingular points of a Weierstrass curve over a
field of any characteristic and a purely algebraic proof that it forms an abelian group.

2012 ACM Subject Classification Theory of computation → Interactive proof systems; Security
and privacy → Logic and verification; Mathematics of computing → Mathematical software

Keywords and phrases formal math, algebraic geometry, elliptic curve, group law, Lean, mathlib

Digital Object Identifier 10.4230/LIPIcs.ITP.2023.6

Supplementary Material Software (Source Code): https://github.com/alreadydone/mathlib/
tree/associativity, archived at swh:1:dir:1bd75e80371560806d5f287177a4922b6282f7e2

Funding This work was supported by the Engineering and Physical Sciences Research Council
[EP/S021590/1], EPSRC Centre for Doctoral Training in Geometry and Number Theory (London
School of Geometry and Number Theory), University College London. This research was supported
in part by the Intramural Research Program of the Center for Cancer Research, National Cancer
Institute, NIH.

Acknowledgements We thank the Lean community for their continual support. We thank the
mathlib contributors, especially Anne Baanen, for developing libraries this work depends on. We
thank Marc Masdeu and Michael Stoll for proposing alternative proofs. DKA would like to thank
Kevin Buzzard for his guidance and Mel Levin for suggesting the formalisation in the first place.

1 Introduction

1.1 Elliptic curves
In its earliest form, algebraic geometry is the branch of mathematics studying the solutions
to systems of polynomial equations over a base field F , namely sets of the form

{(x1, . . . , xn) ∈ F n : f1(x1, . . . , xn) = 0, . . . , fk(x1, . . . , xn) = 0},

for some polynomials fi ∈ F [X1, . . . , Xn]. These are called affine varieties, and they can
be endowed with topologies and a notion of morphisms which makes them simultaneously
geometric objects. General varieties are locally modelled on affine ones, with morphisms
between them locally given by polynomials, and are often classified by their geometric
properties such as smoothness, or invariants such as the dimension or the genus.

Having dimension one and genus one, elliptic curves are amongst the simplest varieties
with respect to these geometric notions, and their set of points can be endowed with the
structure of an abelian group. When the base field is the rationals Q, a common definition

© David Kurniadi Angdinata and Junyan Xu;
licensed under Creative Commons License CC-BY 4.0

14th International Conference on Interactive Theorem Proving (ITP 2023).
Editors: Adam Naumowicz and René Thiemann; Article No. 6; pp. 6:1–6:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ucahdka@ucl.ac.uk
https://multramate.github.io
https://orcid.org/0000-0003-2096-1864
mailto:junyanxu.math@gmail.com
https://orcid.org/0000-0002-3789-2319
https://doi.org/10.4230/LIPIcs.ITP.2023.6
https://github.com/alreadydone/mathlib/tree/associativity
https://github.com/alreadydone/mathlib/tree/associativity
https://archive.softwareheritage.org/swh:1:dir:1bd75e80371560806d5f287177a4922b6282f7e2;origin=https://github.com/alreadydone/mathlib;visit=swh:1:snp:dc0be621c6c8208c581f5170a8216c5ba6721927;anchor=swh:1:rev:36e9a9681ab66c442183a5d5b8237186d8903b0d
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 The Group Law on Weierstrass Elliptic Curves

uses the short Weierstrass model, given by the equation y2 = x3 + ax + b for some fixed
a, b ∈ Q, and its group law can be defined explicitly by quotients of polynomial functions.

Elliptic curves are blessed with an extremely rich theory, spanning the fields of algebraic
geometry, complex analysis, number theory, representation theory, dynamical systems, and
even information security. The Birch and Swinnerton-Dyer conjecture [29] in number theory,
one of the seven Millennium Prize Problems, is an equality between an analytic quantity of
an elliptic curve over Q and an algebraic quantity defined in terms of its group structure.
Their close relation with modular forms is precisely the content of the Taniyama–Shimura
conjecture proven by Andrew Wiles [30], which implies Fermat’s last theorem and laid the
foundations of the Langlands programme, a web of influential conjectures linking number
theory and geometry described to be “kind of a grand unified theory of mathematics” [19].
Outside of mathematics, elliptic curves over finite fields see applications in primality proving
[2] and integer factorisation [22], as well as in public key cryptography [13].

1.2 Formalisation attempts
The group law on an elliptic curve in the short Weierstrass model over a field F has been
formalised in several theorem provers,1 but this model fails to be an elliptic curve when
char(F) = 2, and there has been no known successful attempts to formalise the group law
in a universal model that captures all elliptic curves in all char(F). The issue was that a
computational proof of associativity in any universal model is, as Russinoff described, “an
elementary but computationally intensive arithmetic exercise” involving massive polynomials
[27],2 while a typical conceptual proof is “a deep theorem of algebraic or projective geometry”
requiring prior formalisation of advanced geometric constructions, with “evidence that an
elementary hand proof of this result is a practical impossibility” [25]. On the other hand,
having the group law in char(F) = 2 is necessary for certain applications, such as the proof
of Fermat’s last theorem. It is less crucial from an information security viewpoint, as curves
over binary fields are prone to attacks and no longer recommended by NIST [9].

We give a conceptual yet computation-light proof of the group law in the full Weierstrass
model, which is universal in all char(F). The argument is purely algebraic and easily
surveyable, in the sense that all logical deductions and necessary computations can be
performed by hand in a matter of minutes. The proof is formalised in Lean 3 [12], an
interactive theorem prover based on the calculus of constructions with inductive types, and is
integrated as part of its monolithic mathematical library mathlib [11]. The implementation
extensively uses existing constructions in the linear algebra and ring theory libraries of
mathlib, particularly constructions and results surrounding algebra.norm and class_group
[10]. The relevant code is primarily split into two files weierstrass.lean and point.lean
under the folder algebraic_geometry/elliptic_curve in the associativity branch of
mathlib, both of which are currently undergoing reviews for their merge. With this paper,
we hope that our simple proof will be replicated and will open the way for the formalisation
of elliptic curve cryptography in many other theorem provers, which has been a major
motivation of recent formalisation attempts [25, 15, 18, 4].

The remainder of this paper will describe the relevant constructions (Section 2), detail the
mathematical argument of the proof (Section 3), and discuss implementation considerations
(Section 4). Throughout, definitions will be described in code snippets where relevant, but
proofs of lemmas will be outlined mathematically for the sake of clarity. The reader may
refer to the mathlib documentation [10] for definitions and lemmas involved.

1 see Section 4.1 for related work
2 see Section 4.2 for experimental results

D. K. Angdinata and J. Xu 6:3

2 Weierstrass equations

Let F be a field. In the sense of modern algebraic geometry, an elliptic curve E over F is a
smooth projective curve3 of genus one equipped with a base point OE ∈ E with coordinates
in F . More concretely, any elliptic curve over F admits a model in the projective plane P2

F

defined by an explicit polynomial equation in homogeneous coordinates [X : Y : Z].

▶ Proposition 1. If E is an elliptic curve over F , then there are rational functions x, y :
E → F such that the map ϕ : E → P2

F given by ϕ(P) = [x(P) : y(P) : 1] maps OE to
[0 : 1 : 0], and defines an isomorphism of varieties between E and the curve

Y 2Z + a1XY Z + a3Y Z2 = X3 + a2X2Z + a4XZ2 + a6Z3,

for some coefficients ai ∈ F . Conversely, any curve W in P2
F given by such an equation,

with coefficients ai ∈ F , is an elliptic curve over F with base point [0 : 1 : 0] if the quantity

∆W :=− (a2
1 + 4a2)2(a2

1a6 + 4a2a6 − a1a3a4 + a2a2
3 − a2

4)− 8(2a4 + a1a3)3

− 27(a2
3 + 4a6)2 + 9(a2

1 + 4a2)(2a4 + a1a3)(a2
3 + 4a6) ∈ F

is nonzero.

Proof. This is a consequence of the Riemann–Roch theorem [26, Proposition III.3.1]. ◀

This is the Weierstrass model of E, and such a curve is called a Weierstrass curve,
whose corresponding Weierstrass equation in the affine chart Z ̸= 0 is

Y 2 + a1XY + a3Y = X3 + a2X2 + a4X + a6.

In this model, the smoothness condition on E becomes equivalent to the discriminant
∆E ∈ F being nonzero, so an elliptic curve over F may instead be defined as a Weierstrass
curve with the discriminant condition, which is more amenable for computational purposes.

2.1 Weierstrass curves
Let F be a commutative ring, and let W be a Weierstrass curve over F . Explicitly, this is
merely the data of five coefficients a1, a2, a3, a4, a6 ∈ F , noting that the Weierstrass equation
is not visible at this stage. For the sake of generality, the structure weierstrass_curve
is defined more generally over an arbitrary type F , but all subsequent constructions will
assume that F is at least a commutative ring. The structure elliptic_curve then extends
weierstrass_curve by adding the data of an element ∆′ in the group of units F × of F and
a proof that ∆′ = ∆W , so most definitions for weierstrass_curve carry over automatically.

structure weierstrass_curve (F : Type) := (a1 a2 a3 a4 a6 : F)

structure elliptic_curve (F : Type) [comm_ring F] extends weierstrass_curve F :=
(∆’ : F×) (coe_∆’ : ↑∆’ = to_weierstrass_curve.∆)

Here, to_weierstrass_curve is a function generated automatically by the extends keyword,
which projects an elliptic_curve down to its underlying weierstrass_curve by forgetting
∆′ and the proof that ∆′ = ∆W . Note that elliptic_curve was originally defined in one
stretch by Buzzard, but is now refactored through the more general weierstrass_curve.

3 variety of dimension one

ITP 2023

6:4 The Group Law on Weierstrass Elliptic Curves

▶ Remark 2. This definition of an elliptic curve is universal over a large class of commutative
rings, namely those with trivial Picard group [21, Section 2.2], which includes fields, and also
local rings and unique factorisation domains. In general, an elliptic curve E may be defined
relative to an arbitrary scheme S as a smooth proper morphism E → S in the category of
schemes whose geometric fibres are all integral curves of genus one, equipped with a section
S → E that plays the role of the base point OE for all fibres simultaneously. When S is the
spectrum of such a commutative ring, the Riemann–Roch theorem can be generalised so that
E remains isomorphic to a Weierstrass curve, but over a general commutative ring, E only
has Weierstrass equations locally that may not patch together to form a global equation.

The discriminant ∆W ∈ F is expressed entirely in terms of the five coefficients, but it is
clearer to extract intermediate quantities [26, Section III.1] to simplify the large expression.

namespace weierstrass_curve

variables {F : Type} [comm_ring F] (W : weierstrass_curve F)

def b2 : F := W.a1^2 + 4*W.a2

def b4 : F := 2*W.a4 + W.a1*W.a3

def b6 : F := W.a3^2 + 4*W.a6

def b8 : F := W.a1^2*W.a6 + 4*W.a2*W.a6 - W.a1*W.a3*W.a4 + W.a2*W.a3^2 - W.a4^2

def ∆ : F := -W.b2^2*W.b8 - 8*W.b4^3 - 27*W.b6^2 + 9*W.b2*W.b4*W.b6

Here, dot notation allows for the fields corresponding to the five coefficients ai ∈ F to
be accessed as W.ai, and living inside the namespace weierstrass_curve means that the
quantities bi ∈ F and ∆ ∈ F may also be accessed as W.bi and W.∆ respectively.

These quantities are indexed as such as a result of their transformation upon applying
the linear change of variables (X, Y) 7→ (u2X + r, u3Y + u2sX + t), for some u ∈ F × and
some r, s, t ∈ F . In fact, these are all the possible isomorphisms of varieties between elliptic
curves in the Weierstrass model [26, Proposition III.3.1].

variables (u : F×) (r s t : F)

@[simps] def variable_change : weierstrass_curve F :=
{ a1 := ↑u−1*(W.a1 + 2*s),

a2 := ↑u−1^2*(W.a2 - s*W.a1 + 3*r - s^2),
a3 := ↑u−1^3*(W.a3 + r*W.a1 + 2*t),
a4 := ↑u−1^4*(W.a4 - s*W.a3 + 2*r*W.a2 - (t + r*s)*W.a1 + 3*r^2 - 2*s*t),
a6 := ↑u−1^6*(W.a6 + r*W.a4 + r^2*W.a2 + r^3 - t*W.a3 - t^2 - r*t*W.a1) }

@[simp] lemma variable_change_b2 : (W.variable_change u r s t).b2 = ↑u−1^2*(. . .)
@[simp] lemma variable_change_b4 : (W.variable_change u r s t).b4 = ↑u−1^4*(. . .)
@[simp] lemma variable_change_b6 : (W.variable_change u r s t).b6 = ↑u−1^6*(. . .)
@[simp] lemma variable_change_b8 : (W.variable_change u r s t).b8 = ↑u−1^8*(. . .)

@[simp] lemma variable_change_∆ : (W.variable_change u r s t).∆ = ↑u−1^12*W.∆

Here, variable_change defines a new weierstrass_curve under the change of variables by
explicitly stating how each of the five coefficients are transformed, and is tagged with simps
to automatically generate simp lemmas corresponding to each of the five projections. The
exact expressions for the transformed quantities are not too important, but note that their
indices precisely correspond to the exponent of u−1 ∈ F × in the transformation.

D. K. Angdinata and J. Xu 6:5

2.2 Equations and nonsingularity
Now consider the polynomial in F [X, Y] associated to W denoted by

W (X, Y) := Y 2 + (a1X + a3)Y − (X3 + a2X2 + a4X + a6),

so that the Weierstrass equation literally reads W (X, Y) = 0, and its partial derivatives

WX(X, Y) := a1Y − (3X2 + 2a2X + a4), WY (X, Y) := 2Y + a1X + a3.

When they do not simultaneously vanish when evaluated at an affine point (x, y) ∈W , the
affine point is said to be nonsingular. This is implemented slightly confusingly as follows.4

def polynomial : F[X][Y] :=
Y^2 + C (C W.a1*X + C W.a3)*Y - C (X^3 + C W.a2*X^2 + C W.a4*X + C W.a6)

def equation (x y : F) : Prop := (W.polynomial.eval (C y)).eval x = 0

def polynomial_X : F[X][Y] := C (C W.a1)*Y - C (C 3*X^2 + C (2*W.a2)*X + C W.a4)
def polynomial_Y : F[X][Y] := C (C 2)*Y + C (C W.a1*X + C W.a3)
def nonsingular (x y : F) : Prop :=

W.equation x y ∧ ((W.polynomial_X.eval (C y)).eval x ̸= 0
∨ (W.polynomial_Y.eval (C y)).eval x ̸= 0)

Here, F[X][Y] denotes the polynomial ring over the polynomial ring over F, to simulate the
bivariate polynomial ring F [X, Y] over F . The outer variable Y is denoted by the symbol
Y and the inner variable X is denoted by the constant function C applied to the symbol X,
while actual constants are enclosed in two layers of the constant function C.
▶ Remark 3. This definition of nonsingularity in terms of partial derivatives is valid and
convenient when the base ring is a field, but over a general commutative ring the same notion
should be characterised locally with a notion of smoothness relative to the base spectrum.

Many properties of Weierstrass curves remain invariant under the aforementioned changes
of variables, and it is often easier to prove results for Weierstrass equations with fewer
terms. For instance, if char(F) ̸= 2, then (X, Y) 7→ (X, Y − 1

2 a1X − 1
2 a3) completes the

square for W (X, Y) and eliminates the XY and Y terms, and if further char(F) ̸= 3, then
(X, Y) 7→ (X − 1

12 b2, Y) completes the cube for W (X, Y) and eliminates the X2 term as well.
Perhaps a more prominent application is the proof that, for any affine point (x, y) ∈W ,

the nonvanishing of ∆W implies that (x, y) is nonsingular. This statement is easy for
(x, y) = (0, 0), since (0, 0) ∈ W implies that a6 = 0, and (0, 0) being singular implies that
a3 = a4 = 0, so that ∆W = 0 by a simple substitution. On the other hand, for any (x, y) ∈ F 2,
the change of variables (X, Y) 7→ (X − x, Y − y) merely translates W so that (0, 0) gets
mapped to (x, y), so the same statement clearly also holds for (x, y).
lemma nonsingular_zero : W.nonsingular 0 0 ↔ W.a6 = 0 ∧ (W.a3 ̸= 0 ∨ W.a4 ̸= 0)
lemma nonsingular_zero_of_∆_ne_zero (h : W.equation 0 0) (h∆ : W.∆ ̸= 0) :

W.nonsingular 0 0
lemma nonsingular_iff_variable_change (x y : F) :

W.nonsingular x y ↔ (W.variable_change 1 x 0 y).nonsingular 0 0
lemma nonsingular_of_∆_ne_zero {x y : F} (h : W.equation x y) (h∆ : W.∆ ̸= 0) :

W.nonsingular x y

In fact, it is also true that ∆W ≠ 0 if every point over the algebraic closure is nonsingular
[26, Proposition III.1.4], but the proof is more difficult and has yet to be formalised.

4 this representation of bivariate polynomials will be explained in Section 4.3

ITP 2023

6:6 The Group Law on Weierstrass Elliptic Curves

2.3 Point addition
The set of points on an elliptic curve can be endowed with an addition law defined by
a geometric secant-and-tangent process enabled by Vieta’s formulae.5 This can be easily
described in the Weierstrass model, where a point on W is either of the form (x, y) in the
affine chart Z ̸= 0 and satisfies the Weierstrass equation, or is the unique point at infinity
OW := [0 : 1 : 0] when Z = 0. If S ∈W is a singular point, the same geometric process will
yield P + S = S = S + P for any other point P ∈ W , so it necessitates considering only
nonsingular points on W to obtain a group [26, Section III.2]. Note that if W is an elliptic
curve, then all points are nonsingular by nonsingular_of_∆_ne_zero.

inductive point
| zero
| some {x y : F} (h : W.nonsingular x y)

namespace point

Here, zero refers to OW and some refers to an affine point on W . Note that a proof that
an affine point (x, y) ∈ W is nonsingular already subsumes the data of the coordinates
(x, y) ∈ F 2 in its type, so such a point is constructed by giving only the proof.
▶ Remark 4. The set of points defined here will later be shown to form an abelian group
under this addition law, but the presence of division means that the base ring needs to be a
field. Over a general commutative ring R these should be replaced with scheme-theoretic
points Spec(R)→ E, and the elliptic curve acquires the structure of a group scheme.

In this model, the identity element in the group of points is defined to be OW ∈W .

instance : has_zero W.point := ⟨zero⟩

Here, the instance of has_zero allows the notation 0 instead of zero.
Given a nonsingular point P ∈ W , its negation −P is defined to be the unique third

point of intersection between W and the line through OW and P , which is vertical when
drawn on the affine plane. Explicitly, if P := (x, y), then −P := (x, σx(y)), where

σX(Y) := −Y − (a1X + a3)

is the negation polynomial, which gives a very useful involution of the affine plane.

def neg_polynomial : F[X][Y] := -Y - C (C W.a1*X + C W.a3)
def neg_Y (x y : F) : F := (W.neg_polynomial.eval (C y)).eval x

Here, neg_Y is defined in terms of neg_polynomial for clarity, but its actual definition
is written out as -y - C (C W.a1*x + C W.a3). This is merely to avoid requiring the
noncomputable tag, since polynomial operations are currently noncomputable in mathlib.

To define negation, it remains to prove that the negation of a nonsingular point on W is
again a nonsingular point on W , but this is straightforward.

▶ Lemma 5. If (x, y) ∈W is nonsingular, then (x, σx(y)) ∈W is nonsingular.

Proof. Since (x, y) ∈W , verifying that W (x, y) = W (x, σx(y)) gives (x, σx(y)) ∈W as well.
Now assume that WY (x, σx(y)) = 0. It can be checked that y = σx(y), so WY (x, y) = 0 as
well. Since (x, y) is nonsingular, WX(x, y) ̸= 0, so WX(x, σx(y)) ̸= 0 as well. ◀

5 if a cubic polynomial has two roots in a field, then its third root is also in the field

D. K. Angdinata and J. Xu 6:7

Lemma 5 is nonsingular_neg, which maps a proof that (x, y) ∈W is nonsingular to a
proof that −(x, y) ∈W is nonsingular. This leads to the definition of negation.
def neg : W.point → W.point

| 0 := 0
| (some h) := some (nonsingular_neg h)

instance : has_neg W.point := ⟨neg⟩

Here, the instance of has_neg allows the notation -P instead of neg P.
Given two nonsingular points P1, P2 ∈W , their sum P1 + P2 is defined to be the negation

of the unique third point of intersection between W and the line through P1 and P2, which
again exists by Bézout’s theorem. Explicitly, let P1 := (x1, y1) and P2 := (x2, y2).

If x1 = x2 and y1 = σx2(y2), then this line is vertical and P1 + P2 := OW .
If x1 = x2 and y1 ̸= σx2(y2), then this line is the tangent of W at P1 = P2, and has slope

ℓ := −WX(x1, y1)
WY (x1, y1) .

Otherwise x1 ̸= x2, then this line is the secant of W through P1 and P2, and has slope

ℓ := y1 − y2

x1 − x2
.

In the latter two cases, the line polynomial

λ(X) = λx1,y1,ℓ(X) := ℓ(X − x1) + y1.

can be shown to satisfy λ(x1) = y1 and λ(x2) = y2, so that x1 and x2 are two roots of
the addition polynomial W (X, λ(X)), obtained by evaluating W (X, Y) at λ(X), where
W (X, Y) is viewed as a polynomial over F [X]. In an attempt to reduce code duplication for
the different cases, these accept an additional parameter L for the slope ℓ.
def line_polynomial (x y L : F) : F[X] := C L * (X - C x) + C y
def add_polynomial (x y L : F) : F[X] := W.polynomial.eval (line_polynomial x y L)

The X-coordinate of P1 + P2 is then the third root of W (X, λ(X)), so that

W (X, λ(X)) = −(X − x1)(X − x2)(X − x3). (1)

By inspecting the X2 terms of W (X, λ(X)), this third root can be shown to be

x3 := ℓ2 + a1ℓ− a2 − x1 − x2,

so the Y -coordinate of −(P1 + P2) is

y′
3 := λ(x3),

and that of P1 + P2 is

y3 := σx3(y′
3).

These correspond to the coordinate functions add_X, add_Y’, and add_Y respectively.
def add_X (x1 x2 L : F) : F := L^2 + W.a1*L - W.a2 - x1 - x2

def add_Y’ (x1 x2 y1 L : F) : F := (line_polynomial x1 y1 L).eval (W.add_X x1 x2 L)
def add_Y (x1 x2 y1 L : F) : F := W.neg_Y (W.add_X x1 x2 L) (W.add_Y’ x1 x2 y1 L)

Here, add_Y’ is defined in terms of line_polynomial and add_X, but in actuality it is again
written out in the evaluated form C L*(X - C x1) + C y1 to avoid the noncomputable tag.

ITP 2023

6:8 The Group Law on Weierstrass Elliptic Curves

The slope itself is defined as a conditional over the three cases, and since two of them
involve division, this is the first occasion where W needs to be defined over a field F .
variables {F : Type} [field F] (W : weierstrass_curve F)

def slope (x1 x2 y1 y2 : F) : F :=
if hx : x1 = x2 then

if hy : y1 = W.neg_Y x2 y2 then 0
else (3*x1^2 + 2*W.a2*x1 + W.a4 - W.a1*y1)/(y1 - W.neg_Y x1 y1)

else (y1 - y2)/(x1 - x2)

Note that slope returns the junk value of 0 ∈ F when the slope is vertical. This practice of
assigning a junk value is common in mathlib to avoid excessive layers of option, and any
useful result proven using such a definition would include a condition so that this junk value
will never be reached. In the case of slope, this is the implication x1 = x2 → y1 ̸= σx2(y2),
which holds precisely either when x1 ̸= x2, or when x1 = x2 but (x1, y1) ̸= −(x2, y2).
variables {x1 x2 y1 y2 : F} (hxy : x1 = x2 → y1 ̸= W.neg_Y x2 y2)

example (hx : x1 ̸= x2) : x1 = x2 → y1 ̸= W.neg_Y x2 y2 := λ h, (hx h).elim
example (hy : y1 ̸= W.neg_Y x2 y2) : x1 = x2 → y1 ̸= W.neg_Y x2 y2 := λ _, hy

Here, the examples return proofs of hxy assuming x1 ̸= x2 and y1 ̸= σx2(y2) respectively.
They are illustrated here for clarity, but they do not exist in the actual Lean code since their
term mode proofs are short enough to be inserted directly whenever necessary.

To define addition, it remains to prove that the addition of two nonsingular points on W

is again a nonsingular point on W . This is slightly lengthy but purely conceptual.

▶ Lemma 6. If (x1, y1), (x2, y2) ∈W are nonsingular, then (x3, y3) ∈W is nonsingular.

Proof. By nonsingular_neg, it suffices to prove that (x3, λ(x3)) = (x3, y′
3) is nonsingular,

since (x3, λ(x3)) ∈W is clear. Taking derivatives of both sides in (1) yields

WX(X, λ(X))+ℓ·WY (X, λ(X)) = −((X−x1)(X−x2)+(X−x1)(X−x3)+(X−x2)(X−x3)),

which does not vanish at X = x3, so that W (X, λ(X)) has at least one nonvanishing
partial derivative, unless possibly when x3 ∈ {x1, x2}. The latter implies that (x3, λ(x3)) ∈
{±(x1, y1),±(x2, y2)}, but these are nonsingular by assumption or by nonsingular_neg. ◀

Lemma 6 is nonsingular_add, which accepts a proof that (x1, y1) ∈W is nonsingular,
a proof that (x2, y2) ∈ W is nonsingular, and a proof of hxy, and returns a proof that
(x1, y1) + (x2, y2) ∈W is nonsingular. This finally leads to the definition of addition.
def add : W.point → W.point → W.point

| 0 P := P
| P 0 := P
| (@some _ _ _ x1 y1 h1) (@some _ _ _ x2 y2 h2) :=

if hx : x1 = x2 then
if hy : y1 = W.neg_Y x2 y2 then 0
else some (nonsingular_add h1 h2 (λ _, hy))

else some (nonsingular_add h1 h2 (λ h, (hx h).elim))

instance : has_add W.point := ⟨add⟩

Here, the instance of has_add allows the notation P1 + P2 instead of add P1 P2. The
annotation @ for some simply gives access to all implicit variables in its definition, particularly
x1, x2, y1, y2 ∈ F that is necessary to even state the conditions hx and hy.

D. K. Angdinata and J. Xu 6:9

3 Group law

Let W be a Weierstrass curve over a field F , and denote its set of nonsingular points by
W (F). The addition law defined in the previous section is in fact a group law.

▶ Proposition 7. W (F) forms an abelian group under this addition law.

The axioms of this group law are mostly straightforward, typically just by examining
the definition for each of the five cases. For instance, the lemma add_left_neg that says
−P + P = OW is immediate, since −OW +OW = OW by definition, and −(x, y) + (x, y) =
(x, σx(y)) + (x, y) = OW for any (x, y) ∈W (F) by the first case of affine addition.

On the other hand, associativity is far from being straightforward. 6 A notable algebro-
geometric proof involves canonically identifying W (F) with its Picard group, a natural
geometric construction associated to W with a known group structure, and proving that
this identification respects the addition law on W [26, Proposition III.3.4]. This is generally
regarded as the most conceptual proof, as it explains the seemingly arbitrary secant-and-
tangent process, and more crucially because it works for any char(F).

The proof in this paper is an analogue of this proof, but the arguments involved are
purely algebraic without the need for any geometric machinery, in contrast to the typical
algebro-geometric proof. The main idea, originally inspired by Buzzard’s post on Zulip [6]
and Chapman’s answer on MathOverflow [8], is to construct an explicit function to_class
from W (F) to the ideal class group Cl(R) of an integral domain R associated to W , then
to prove that this function is injective and respects the addition law on W . This is a
construction in commutative algebra whose definition will now be briefly outlined, but for a
more comprehensive introduction to ideal class groups motivated by arithmetic examples,
and especially specific details of their formalisation in mathlib, the reader is strongly urged
to consult the original paper by Baanen, Dahmen, Narayanan, and Nuccio [3, Section 2].

3.1 Ideal class group of the coordinate ring
Given an integral domain R with a fraction field K, a fractional ideal of R is simply a
R-submodule I of K such that x · I ⊆ R for some nonzero x ∈ R. This generalises the
notion of an ideal of R, since any ideal is clearly a fractional ideal with x = 1, so ideals are
sometimes referred to as integral ideals to distinguish them from fractional ideals.

In mathlib, this is expressed as a transitive coercion from ideal to fractional_ideal.

instance : has_coe_t (ideal R) (fractional_ideal R0 (fraction_ring R))

Here, R0 is the submonoid of non-zero-divisors of R, and fraction_ring returns the canonical
choice of a fraction field of R obtained by adjoining inverses of elements of R0. Since R is an
integral domain in this case, all nonzero elements of R become invertible in its fraction field.

Analogously to integral ideals, the set of fractional ideals of R forms a commutative
semiring under the usual operations of addition and multiplication for submodules. A
fractional ideal I of R is invertible if I · J = R for some fractional ideal J of R, and the
subset of invertible fractional ideals of R forms an abelian group under multiplication. An
important class of invertible fractional ideals are those generated by a nonzero element of K,
called principal fractional ideals. The ideal class group Cl(R) of R is then defined to
be the quotient group of invertible fractional ideals by principal fractional ideals.

6 see Section 4.2 for alternative proofs

ITP 2023

6:10 The Group Law on Weierstrass Elliptic Curves

In mathlib, a class_group element is constructed from an invertible fractional_ideal
via class_group.mk, and this association is a monoid_hom that respects multiplication.

def class_group.mk : (fractional_ideal R0 K)× →* class_group R := . . .

Here, it is worth noting that Cl(R) is typically defined only when R is Dedekind, namely
when every nonzero fractional ideal is invertible, and in such domains, class_group.mk0
constructs a class_group element directly from a nonzero fractional_ideal.

The integral domain in consideration is the coordinate ring of W , that is

F [W] := F [X, Y]/⟨W (X, Y)⟩,

whose fraction field is the function field F (W) := Frac(F [W]) of W .

@[derive comm_ring] def coordinate_ring : Type := adjoin_root W.polynomial
abbreviation function_field : Type := fraction_ring W.coordinate_ring

namespace coordinate_ring

Here, W (X, Y) is viewed as a quadratic monic polynomial with coefficients in F [X], so
adjoin_root constructs the quotient ring F [W] by adjoining its root Y . The tag derive
comm_ring automatically generates a instance of comm_ring present in adjoin_root, 7

while abbreviation is just a def that inherits every instance from fraction_ring.
A priori, F [W] is only a commutative ring, but for Cl(F [W]) to make sense it needs to

be at least an integral domain, which is straightforward from the shape of W (X, Y).

▶ Lemma 8. F [W] is an integral domain.

Proof. It suffices to prove that W (X, Y) is prime, but F [X, Y] is a unique factorisation
domain since F is a field, so it suffices to prove that W (X, Y) is irreducible. Suppose for a
contradiction that it were reducible as a product of two factors. Since it is a monic polynomial
in Y , the leading coefficients of the two factors multiply to 1, so without loss of generality

W (X, Y) = (Y − p(X))(Y − q(X)),

for some polynomials p(X), q(X) ∈ F [X]. Comparing coefficients yields

a1X + a3 = −(p(X) + q(X)), −(X3 + a2X2 + a4X + a6) = p(X)q(X),

which cannot simultaneously hold by considering degX(p(X)) and degX(q(X)). ◀

Lemma 8 is formalised as an instance of is_domain for W.coordinate_ring. In fact,
F [W] is also Dedekind when ∆W ̸= 0, but this will not be necessary in the proof.

▶ Remark 9. This argument with ideal class groups is essentially an algebraic translation
of the algebro-geometric argument with Picard groups. An invertible fractional ideal on an
integral domain R is equivalent to an invertible sheaf on its spectrum Spec(R), so the Picard
group Pic(Spec(F [W])) of invertible sheaves is precisely the ideal class group Cl(F [W]) of
invertible fractional ideals [20, Example II.6.3.2]. Note that an invertible R-submodule of
Frac(R) is automatically a fractional ideal of R [14, Theorem 11.6], so the ideal class group
may also be defined purely in the language of invertible submodules.

7 this has a type unification performance issue that will be detailed in Section 4.3

D. K. Angdinata and J. Xu 6:11

3.2 Construction of to_class

The function to_class will map a nonsingular affine point (x, y) ∈W (F) to the class of the
invertible fractional ideal arising from the integral ideal ⟨X − x, Y − y⟩. Defining the integral
ideal explicitly is straightforward, and its associated fractional ideal is obtained by coercion.
def XY_ideal (x : F) (y : F[X]) : ideal W.coordinate_ring :=

ideal.span {adjoin_root.mk W.polynomial (C (X - C x)),
adjoin_root.mk W.polynomial (Y - C y)}

Here, ideal.span constructs an integral ideal generated by the elements of a specified set,
and adjoin_root.mk W.polynomial is the canonical quotient map F [X, Y]→ F [W]. Note
also that XY_ideal is defined slightly more generally than described, by allowing the second
argument to be a polynomial in F [X] rather than just a constant.

On the other hand, checking that XY_ideal is indeed invertible is slightly fiddly.

▶ Lemma 10. For any (x, y) ∈W (F),

⟨X − x, Y − σx(y)⟩ · ⟨X − x, Y − y⟩ = ⟨X − x⟩.

Proof. Since W (x, y) = 0, there is an identity in F [W] given by

(Y − y)(Y − σx(y)) ≡ (X − x)(X2 + (x + a2)X + (x2 + a2x + a4)− a1Y),

so the required equality may be reduced to ⟨X − x⟩ · I = ⟨X − x⟩ in F [X, Y], where

I := ⟨X − x, Y − y, Y − σx(y), X2 + (x + a2)X + (x2 + a2x + a4)− a1Y ⟩.

Since (x, y) is nonsingular, either WX(x, y) ̸= 0 or WY (x, y) ̸= 0, but

WX(x, y) = −(X +2x+a2)(X−x)+a1(Y −y)+(X2 +(x+a2)X +(x2 +a2x+a4)−a1Y),

and WY (x, y) = −(Y − y) + (Y − σx(y)), so I = F [X, Y] in both cases. ◀

▶ Remark 11. Geometrically, Lemma 10 says that the line X = x intersects W at OW and at
precisely two affine points (x, y) and (x, σx(y)), counted with multiplicity if they are equal.

Lemma 10 is XY_ideal_neg_mul, and it follows that the fractional ideal ⟨X−x, Y −y⟩ has
inverse ⟨X−x, Y −σx(y)⟩·⟨X−x⟩−1. This is formalised as XY_ideal’_mul_inv, which maps
a proof that (x, y) ∈W is nonsingular to a proof that the fractional ideal ⟨X − x, Y − y⟩ has
the specified right inverse. Passing this proof to units.mk_of_mul_eq_one then constructs
the invertible fractional ideal of F [W] associated to ⟨X − x, Y − y⟩.
def XY_ideal’ (h : W.nonsingular x y) :

(fractional_ideal W.coordinate_ring0 W.function_field)× :=
units.mk_of_mul_eq_one _ _ (XY_ideal’_mul_inv h)

Now to_class will be a add_monoid_hom, namely a function bundled with proofs that
it maps zero to zero and respects addition. Its underlying unbundled function W (F) →
Cl(F [W]), appropriately named to_class_fun, is defined separately to allow the equation
compiler to generate lemmas automatically used in the proof that to_class respects addition.
def to_class_fun : W.point → additive (class_group W.coordinate_ring)

| 0 := 0
| (some h) := additive.of_mul (class_group.mk (XY_ideal’ h))

Here, additive G creates a type synonym of a multiplicative group G, and the multiplicative
group instance on G is turned into an additive add_group instance on additive G. This
is necessary to bundle to_class as an add_monoid_hom, since mathlib does not have
homomorphisms between an additive group and a multiplicative group by design.

ITP 2023

6:12 The Group Law on Weierstrass Elliptic Curves

Now to_class_fun maps zero to zero by construction, but proving that it respects
addition requires checking the five cases for add separately. The first two cases are trivial
and the third case follows from XY_ideal_neg_mul, while the last two cases are handled
simultaneously by assuming hxy and checking an identity of integral ideals of F [W].

▶ Lemma 12. For any (x1, y1), (x2, y2) ∈W (F), if x1 = x2 implies y1 ̸= σx2(y2), then

⟨X − x1, Y − y1⟩ · ⟨X − x2, Y − y2⟩ · ⟨X − x3⟩ = ⟨X − x3, Y − y3⟩ · ⟨Y − λ(X)⟩,

where (x3, y3) := (x1, y1) + (x2, y2).

Proof. In both valid cases of hxy, the line Y = λ(X) contains (x1, y1) and (x2, y2), so

⟨X − x1, Y − y1⟩ = ⟨X − x1, Y − λ(X)⟩, ⟨X − x2, Y − y2⟩ = ⟨X − x2, Y − λ(X)⟩.

Furthermore, by (1) and the identity W (X, λ(X)) ≡ (Y − λ(X))(σX(Y)− λ(X)) in F [W],
the required equality is reduced to checking that I := ⟨X − x1, X − x2, Y − σX(Y)⟩ satisfies

I · ⟨X − x3⟩+ ⟨σX(Y)− λ(X)⟩ = ⟨X − x3, Y − y3⟩,

where Y − λ(X) has been replaced by Y − σX(Y) in I since σX(Y)− λ(X) is present as a
summand in the left hand side. By construction, the line Y = λ(X) contains (x3, λ(x3)), so
the negated line σX(Y) = λ(X) contains its negation (x3, σx3(λ(x3))) = (x3, y3). Then

⟨X − x3, Y − y3⟩ = ⟨X − x3, σX(Y)− λ(X)⟩,

so it suffices to check that I = F [W]. Now x1 − x2 = −(X − x1) + (X − x2), so I = F [W] if
x1 ≠ x2. Otherwise y1 ≠ σx1(y1), then there are no common solutions to Y = σx1(Y) and
W (x1, Y) = 0, so I = F [W] by the Nullstellensatz. Explicitly, this follows from the identity

(y1 − σx1(y1))2 ≡ −(4X2 + (4x1 + b2)X + (4x2
1 + b2x1 + 2b4))(X − x1) + (Y − σX(Y))2

in F [W], since W (x1, y1) = 0. ◀

▶ Remark 13. Geometrically, the line Y = λ(X) intersects W at precisely three affine points
(x1, y1), (x2, y2), and (x3, σx3(y3)), which translates to the identity of integral ideals

⟨X − x1, Y − y1⟩ · ⟨X − x2, Y − y2⟩ · ⟨X − x3, Y − σx3(y3)⟩ = ⟨Y − λ(X)⟩. (2)

The identity in Lemma 12 is then deduced by multiplying (2) with the identity in Lemma 10
and cancelling ⟨X − x3, Y − σx3(y3)⟩ from both sides. Note that Lemma 12 does not need
the affine points to be nonsingular, while directly proving (2) does.

Lemma 12 is XY_ideal_mul_XY_ideal, and under these hypotheses, it follows immedi-
ately that the invertible fractional ideals ⟨X−x1, Y −y1⟩ and ⟨X−x2, Y −y2⟩ multiply to ⟨X−
x3, Y − y3⟩ as classes in Cl(F [W]), which along with XY_ideal_neg_mul say that to_class
respects addition. The actual Lean proof is slightly technical, using the new library lemmas
class_group.mk_eq_one_of_coe_ideal and class_group.mk_eq_mk_of_coe_ideal to re-
duce the equality between ideal classes arising from integral ideals to an equality between
their underlying integral ideals up to multiplication by principal integral ideals, so the tactic
mode proof below will only be sketched as a comment for the sake of brevity.
@[simps] def to_class : W.point →+ additive (class_group W.coordinate_ring) :=

{ to_fun := to_class_fun,
map_zero’ := rfl,
map_add’ := /- Split the cases for P1 + P2. If P1 = 0 or P2 = 0, simplify.

Otherwise P1 = (x1, y1) and P2 = (x2, y2).
If x1 = x2 and y1 = W.neg_Y x2 y2, use XY_ideal_neg_mul.
Otherwise use XY_ideal_mul_XY_ideal. -/ }

D. K. Angdinata and J. Xu 6:13

3.3 Injectivity of to_class

Injectivity is the statement that P1 = P2 if to_class of P1 equals to_class of P2 for any
P1, P2 ∈ W (F), but a simple variant of add_left_neg shows that −P1 + P2 = 0 precisely
when P1 = P2. Since to_class is a add_monoid_hom, injectivity is equivalent to showing that
to_class of P is trivial implies P = 0 for any P ∈W (F). In other words, it suffices to show
that the integral ideal ⟨X − x, Y − y⟩ is never principal for any affine point (x, y) ∈W (F).

The approach taken circles around the fact that F [W] is a free F [X]-algebra of finite rank,
so it carries the notion of a norm Nm : F [W]→ F [X]. If f ∈ F [W], then Nm(f) ∈ F [X]
may be given by the determinant of left multiplication by f as an F [X]-linear map, which is
most easily computed by exhibiting an explicit basis {1, Y } of F [W] over F [X].
lemma monic_polynomial : W.polynomial.monic
lemma nat_degree_polynomial : W.polynomial.nat_degree = 2

def basis : basis (fin 2) F[X] W.coordinate_ring :=
(adjoin_root.power_basis’ W.monic_polynomial).basis.reindex

(fin_congr W.nat_degree_polynomial)

Here, adjoin_root.power_basis’ returns the canonical basis of powers {Y i : 0 ≤ i <

degY (W (X, Y))}, given the proof monic_polynomial that W (X, Y) is monic. This is a type
indexed by the finite type with degY (W (X, Y)) elements, which can be reindexed by the ca-
nonical finite type with two elements, since degY (W (X, Y)) = 2 by nat_degree_polynomial.

With this basis, any element f ∈ F [W] may be expressed uniquely as f = p(X) + q(X)Y
with p(X), q(X) ∈ F [X], and the degree 8 of its norm can be computed directly.

▶ Lemma 14. For any p(X), q(X) ∈ F [X],

degX(Nm(p(X) + q(X)Y)) = max(2 degX(p(X)), 2 degX(q(X)) + 3).

Proof. Let f := p(X) + q(X)Y . In F [W] with the basis {1, Y } over F [X],

Nm(f) ≡ det
(

p(X) q(X)
q(X)(X3 + a2X2 + a4X + a6) p(X)− q(X)(a1X + a3)

)
= p(X)2 − p(X)q(X)(a1X + a3)− q(X)2(X3 + a2X2 + a4X + a6).

Let p := degX(p(X)) and q := degX(q(X)). Then

degX(p(X)2) = 2p, degX(q(X)2(X3 + a2X2 + a4X + a6)) = 2q + 3,

degX(p(X)q(X)(a1X + a3)) ≤ p + q + 1.

If p ≤ q + 1, then both p + q + 1 < 2q + 3 and 2p < 2q + 3, so degX(Nm(f)) = 2q + 3.
Otherwise q + 1 < p, then both p + q + 1 < 2p and 2q + 3 < 2p, so degX(Nm(f)) = 2p. ◀

Lemma 14 is norm_smul_basis, and it follows by considering cases that degX Nm(f) ̸= 1
for any f ∈ F [W], which is formalised as nat_degree_norm_ne_one.
▶ Remark 15. Geometrically, Nm(f) is the order of the pole of the rational function f ∈ F (W)
at OW . Using the norm allows for a purely algebraic argument for injectivity, which was
inspired from an exercise in Hartshorne that assumes a short Weierstrass model where
char(F) ̸= 2 [20, Exercise I.6.2]. This was also the last missing step in the whole argument,
as JX only started computing degrees after he saw Borcherds’s solutions to the exercise [5].

On the other hand, this degree is also the dimension of an F -vector space.

8 polynomial.degree where degX(0) := −∞ rather than polynomial.nat_degree where degX(0) := 0

ITP 2023

6:14 The Group Law on Weierstrass Elliptic Curves

▶ Lemma 16. For any nonzero f ∈ F [W],

degX(Nm(f)) = dimF (F [W]/⟨f⟩).

Proof. In F [W] with the basis {1, Y } over F [X], multiplication by f as an F [X]-linear map
can be represented by a square matrix [f] over F [X], which has a Smith normal form M [f]N ,
a diagonal matrix with diagonal entries some nonzero p(X), q(X) ∈ F [X], for some invertible
matrices M and N over F [X]. Now the quotient by f decomposes as a direct sum

F [W]/⟨f⟩ ∼= F [X]/⟨p(X)⟩ ⊕ F [X]/⟨q(X)⟩,

whose dimension as F -vector spaces are precisely degX(p(X)) and degX(q(X)) respectively.
On the other hand, the determinant of M [f]N is det(M)Nm(f) det(N) = p(X)q(X), so

degX(Nm(f)) = degX(p(X)) + degX(q(X)),

since the units det(M), det(N) ∈ F [X] are nonzero constant polynomials. ◀

Lemma 16 is finrank_quotient_span_eq_nat_degree_norm, and crucially uses the
library lemma ideal.quotient_equiv_pi_span to decompose the quotient by ⟨f⟩ into a
direct sum of quotients by its Smith coefficients. It is worth noting that the same argument
clearly works more generally by replacing F [W] by any F [X]-algebra with a finite basis. The
proof of the injectivity of to_class then proceeds by contradiction.

▶ Lemma 17. The function W (F)→ Cl(F [W]) is injective.

Proof. Let (x, y) ∈W (F). It suffices to show that ⟨X−x, Y −y⟩ is not principal, so suppose
for a contradiction that it were generated by some f ∈ F [W]. By Lemma 16,

degX(Nm(f)) = dimF (F [W]/⟨f⟩) = dimF (F [W]/⟨X − x, Y − y⟩).

On the other hand, evaluating at (X, Y) = (x, y) is a surjective homomorphism F [X, Y]→ F

with kernel ⟨X − x, Y − y⟩, and this contains the element W (X, Y) since W (x, y) = 0.
Explicitly, this follows from the identity in F [X, Y] given by

W (X, Y) = (a1y − (X2 + (x + a2)X + (x2 + a2x + a4)))(X − x) + (y − σX(Y))(Y − y).

Thus by the first and third isomorphism theorems, there are F -algebra isomorphisms

F [W]/⟨X−x, Y −y⟩ ∼−→ F [X, Y]/⟨W (X, Y), X−x, Y −y⟩ = F [X, Y]/⟨X−x, Y −y⟩ ∼−→ F,

so degX(Nm(f)) = dimF (F) = 1, which contradicts nat_degree_norm_ne_one. ◀

▶ Remark 18. Lemma 17 can also be proven without the Smith normal form, by considering
the ideal generated by the norms of elements in ⟨X − x, Y − y⟩ for (x, y) ∈W (F), namely

I := ⟨(X − x)2, (X − x)((Y − y) + (σX(Y)− y)), (Y − y)(σX(Y)− y)⟩.

On one hand, as an integral ideal in F [W], it can be shown that I is generated by the linear
polynomial X − x. On the other hand, if ⟨X − x, Y − y⟩ were generated by some f ∈ F [W],
then its ideal norm I is generated by Nm(f), which cannot be linear by Lemma 14.

Lemma 17 is to_class_injective, and allows the proofs of commutativity and associ-
ativity in Cl(F [W]) to be pulled back to W (F), thus proving Proposition 7.
lemma add_comm (P1 P2 : W.point) : P1 + P2 = P2 + P1

lemma add_assoc (P1 P2 P3 : W.point) : (P1 + P2) + P3 = P1 + (P2 + P3)

instance : add_comm_group W.point :=
⟨zero, neg, add, zero_add, add_zero, add_left_neg, add_comm, add_assoc⟩

D. K. Angdinata and J. Xu 6:15

4 Discussion

4.1 Related work
As aforementioned, formalising the group law of an elliptic curve E over a field F is not novel,
and has been done in several theorem provers to varying extents. Friedl (1998) [16] gave a
computational proof in the short Weierstrass model, leaving some of the heavy computations
for associativity to CoCoA as a trusted oracle, and his argument was subsequently formalised
by Théry (2007) [28] in Coq. Fox, Gordon, and Hurd (2006) [15] formalised the addition law
in the full Weierstrass model in HOL, but did not prove associativity. Hales and Raya (2020)
[18] formalised a computational proof in Isabelle, but worked in the alternative Edwards
model, which also fails to be an elliptic curve when char(F) = 2.

The first known formalisation of an algebro-geometric proof was done by Bartzia and
Strub (2014) [4], who also worked in the short Weierstrass model. In 3,500 lines of Coq,
they formalised the geometric notion of a Weil divisor 9 of a rational function f ∈ F (E) to
define the degree-zero Weil divisor class group Pic0(E), which is isomorphic to the Picard
group Pic(Spec(F [E])) since E is nonsingular [20, Corollary II.6.16]. In another 6,500 lines
of Coq, they constructed an analogous bijection between Pic0(E) and the points of E over
the algebraic closure, but their argument is a simplification of the typical conceptual proof
via the Riemann–Roch theorem and does not generalise easily to char(F) = 2. In contrast,
the algebraic proof with the ideal class group Cl(F [E]) only spans 1,500 lines of Lean 3,
avoiding the geometric theory and reusing much of the well-maintained algebraic libraries.

4.2 Experimental attempts
The entire development process went through several iterations of trial and error, and various
definitions of elliptic curves were proposed in Buzzard’s topic on Zulip. The abstract definition
as in Remark 2 would be ideal, but algebraic geometry in mathlib is at its primitive stages,
where describing properties of scheme morphisms like smoothness or properness, or defining
the genus of a curve, would be a challenge. Since the Weierstrass model is universal over
fields, the general consensus was that proving its equivalence with the abstract definition
should proceed independently from proving theorems under the Weierstrass model.

Unfortunately, proving associativity became a huge issue in this model. The obvious first
course of action is to check the equalities in all possible combinations of cases of addition,
using the field_simp and ring tactics to normalise rational expressions. In doing this, the
number of cases quickly explode, and in the nontrivial cases of affine addition, the polynomial
expressions involved become gargantuan. There are optimisations that could be made to
reduce the number of cases, as coded by Masdeu [23] adapting Friedl’s original argument into
Lean, but a good way to manipulate the expressions remains elusive. In the generic case where
three nonsingular affine points P1, P2, P3 ∈W (F) are in general position, 10 experiments by
DKA with the aid of SageMath suggested that proving (P1 + P2) + P3 = P1 + (P2 + P3) by
bashing out the algebra would involve polynomials each with tens of thousands of monomials,
which is highly time-consuming in a formal system and definitely infeasible to work out by
hand, despite taking only half a second in SageMath. The ring tactic, which uses proof
generation by normalising to Horner form [17], seems to be an order of magnitude too slow
to work with such expressions, resulting in deterministic timeouts.

9 a formal Z-linear combination of points P ∈ E weighted by the order of vanishing of f at P
10 the affine points P1, P2, P3, P1 + P2, P1 + P3, and P2 + P3 have pairwise distinct X-coordinates

ITP 2023

6:16 The Group Law on Weierstrass Elliptic Curves

The main culprits for the huge polynomials are the XY and Y terms in the Weierstrass
equation, which do not allow even exponents of Y in the expressions to be substituted
with polynomials solely in X. When char(F) ̸= 2, these terms disappear with a change of
variables, reducing the expressions to the computationally feasible range of hundreds of terms,
hence enabling the work by Théry (2007), or a transformation to the Edwards model whose
group law was already formalised by Hales and Raya (2020). In principle, since 2 = 0 when
char(F) = 2, enough multiples of 2 may be cancelled from the expressions until a brute-force
attack becomes feasible, but mathlib currently has no good tactic to do these cancellations
except to manually extract these multiples of 2, such as by rewriting the expressions into the
form p + 2q using ring, which is too slow in the first place, and deleting 2q.

The mathematical literature typically deals with associativity by providing alternative
proofs, in addition to the aforementioned algebro-geometric proof via the Picard group.
One notable method goes via the uniformisation theorem in complex analysis [26, Corollary
VI.5.1.1], but mathlib also lacks much of the complex-analytic machinery to prove it, and
this approach is only valid for char(F) = 0 via the Lefschetz principle. Another approach
uses the Cayley–Bacharach theorem in projective geometry [7, Lemma 7.1], which proves
associativity generically by a dimension counting argument. By continuing on Masdeu’s
branch, this approach seemed viable, but required redefining Weierstrass curves in projective
coordinates and a convenient way to switch back to affine coordinates via dehomogenisation.
Furthermore, the argument fails in a less generic case with a repeated point, which could
be fixed by introducing an ad-hoc notion of intersection multiplicity between a line and a
cubic, as suggested by Stoll. DKA started refactoring the definitions in an attempt at this
approach, but ultimately switched to the current approach when proposed by JX. Note that
an explicit exposition of a version of this argument can also be found in Nuida (2021) [24].

4.3 Implementation issues
Bivariate polynomials. A bivariate polynomial in X and Y over a commutative ring R

is typically represented in mathlib by a finitely supported function ({0, 1} → N) → R,
associating a function f : {0, 1} → N to the coefficient of Xf(0)Y f(1). This representation is
very cumbersome when performing concrete manipulations, such as those in Lemma 10 and
Lemma 12, since explicit functions {0, 1} → N are needed to obtain coefficients.

In contrast, a polynomial in X over R is represented in mathlib by a finitely supported
function N→ R, associating a natural number n ∈ N to the coefficient of Xn. A polynomial
in Y with coefficients polynomials in X performs the same function as a bivariate polyno-
mial in X and Y , but the coefficient of XnY m is obtained by sequentially supplying two
natural numbers m, n ∈ N. This has the additional advantage of aligning with the API for
adjoin_root, which gives a power basis needed in the proof of injectivity.

This representation does have the slightly awkward problem that X is denoted by
C X while Y is denoted by X, but this is easily fixed by introducing notation Y := X
and notation R[X][Y] := polynomial (polynomial R). A more serious drawback is that
existing results about multivariate polynomials, such as the Nullstellensatz, do not carry over
to this representation, so explicit proofs with polynomial identities are sometimes necessary,
namely in the proofs of Lemma 10, Lemma 12, and Lemma 17. Another issue is that the
partial derivative with respect to X is obtained by applying the polynomial.derivative
linear map to each coefficient of the polynomial in Y , but the current polynomial.map only
accepts a ring homomorphism, which explains why the partial derivatives polynomial_X and
polynomial_Y were defined manually instead. In light of this, it has been suggested that
polynomial.map should be refactored to accept set-theoretic functions instead.

D. K. Angdinata and J. Xu 6:17

Performance issues. In the original definition of to_class, it was observed that the function
class_group.mk, when applied to an invertible fractional ideal of coordinate_ring, took a
while to compile. Baanen diagnosed this problem and proposed the following solution [1].

local attribute [irreducible] coordinate_ring.comm_ring

Although coordinate_ring is marked as irreducible, its derive comm_ring tag generates
a reducible instance of comm_ring. In certain circumstances this is extremely slow, because
the number of times an instance gets unified grows exponentially with its depth due to a
lack of caching, and Baanen’s solution was to force its comm_ring instance to be irreducible
locally whenever necessary. Note that this should have been fixed in Lean 4, and the port of
mathlib to Lean 4 is expected to finish in a few months’ time.

There are other performance issues that led to timeouts during development, but they
were fixed by generalising the statements so they involve less complicated types.

Proof automation. The proofs of many basic lemmas often reduce to checking an equality
of two polynomial expressions, such as in Lemma 5 and Lemma 6, but equality often holds
only under some local hypotheses. Rather than rewriting these into the goal and applying
the ring tactic, it is convenient to use linear_combination, a newly-developed tactic that
subtracts a linear combination of known equalities from the goal, before applying ring.

When several rewrite lemmas are often used together, it is also convenient to write
a custom tactic to chain them. For instance, the evaluation map eval on a polynomial
expression is often propagated inwards, so grouping the lemmas allows for a single tactic call.

meta def eval_simp : tactic unit :=
‘[simp only [eval_C, eval_X, eval_neg, eval_add, eval_sub, eval_mul, eval_pow]]

4.4 Future projects
Formalising the group law opens the doors to an expansive array of possible further work.
An immediate project would be to enrich the API for nonsingular points by adding basic
functorial properties with respect to a base change to a field extension K/F . For instance,
this could be defining the induced map E(F)→ E(K), or if K/F is Galois, computing the
subgroup of E(K) invariant under the action of Gal(K/F) to be precisely E(F).

It is worth noting the two ongoing projects by each of the two authors. DKA is formalising
an inductive definition of division polynomials to understand the structure of the n-torsion
subgroup E[n] to compute the structure of the ℓ-adic Tate module lim←−n

E[ℓn], while JX is
formalising a proof that the reduction map E(K)→ E(R/m) is a group homomorphism for
a discrete valuation ring R with fraction field K and maximal ideal m.

In the longer run, one could explore the rich arithmetic theory over specific fields. Once
the theory of local fields is sufficiently developed in mathlib, one could define the formal
group of an elliptic curve, classify its reduction types, or state Tate’s algorithm. These will
be useful for the global theory, where one could define the Selmer and Tate–Shafarevich
groups, give a Galois cohomological proof of the Mordell–Weil theorem, or state the full
Birch and Swinnerton-Dyer conjecture. Over a finite field, one could verify the correctness
of primality and factorisation algorithms as well as cryptographic protocols, or prove the
Hasse–Weil bound or the Weil conjectures for elliptic curves.

Ultimately, a long term goal would be to redefine elliptic curves in mathlib as in Remark 2
and prove Proposition 1, but this will require a version of the Riemann–Roch theorem, whose
proof will require a robust theory of sheaves of modules and their cohomology.

ITP 2023

6:18 The Group Law on Weierstrass Elliptic Curves

References
1 David Angdinata. class_group. URL: https://leanprover-community.github.io/archive/

stream/116395-maths/topic/Why.20is.20class_group.2Emk.20so.20slow.3F.html.
2 A. O. L. Atkin and François Morain. Elliptic curves and primality proving. Mathematics of

Computation, 61(203):29–68, 1993. doi:10.2307/2152935.
3 Anne Baanen, Sander Dahmen, Ashvni Narayanan, and Filippo Nuccio Mortarino Majno

di Capriglio. A formalization of Dedekind domains and class groups of global fields. Journal
of Automated Reasoning, 66:611–637, 2022. doi:10.1007/s10817-022-09644-0.

4 Evmorfia-Iro Bartzia and Pierre-Yves Strub. A formal library for elliptic curves in the Coq
proof assistant. ITP, pages 77–92, 2014. doi:10.1007/978-3-319-08970-6_6.

5 Richard Borcherds. Hartshorne, Chapter 1.6, Answers to Exercises. URL: https://math.
berkeley.edu/~reb/courses/256A/1.6.pdf.

6 Kevin Buzzard. Thoughts on elliptic curves. URL: https://leanprover-community.github.
io/archive/stream/116395-maths/topic/thoughts.20on.20elliptic.20curves.html.

7 J. W. S. Cassels. Lectures on Elliptic Curves. Cambridge University Press, 1991.
8 Robin Chapman. Why is an elliptic curve a group? URL: https://mathoverflow.net/q/

20623.
9 Lily Chen, Dustin Moody, Karen Randall, Andrew Regenscheid, and Angela Robinson.

Recommendations for discrete logarithm-based cryptography: elliptic curve domain parameters,
2023. doi:10.6028/NIST.SP.800-186.

10 The Mathlib Community. mathlib documentation. URL: https://leanprover-community.
github.io/mathlib_docs/.

11 The Mathlib Community. The Lean mathematical library. CPP, 2020. doi:10.1145/3372885.
3373824.

12 Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von
Raumer. The Lean theorem prover (system description). CADE, 2015. doi:10.1007/
978-3-319-21401-6_26.

13 Pierre Philip du Preez. Understanding EC Diffie-Hellman. URL: https://medium.com/swlh/
understanding-ec-diffie-hellman-9c07be338d4a.

14 David Eisenbud. Commutative algebra with a view toward algebraic geometry. Springer New
York, 1995.

15 Anthony Fox, Mike Gordon, and Joe Hurd. Formalized elliptic curve cryptography. High
Confidence Software and Systems, 2006.

16 Stefan Friedl. An elementary proof of the group law for elliptic curves. Groups Complexity
Cryptology, 9(2):117–123, 2017. doi:10.1515/gcc-2017-0010.

17 Benjamin Grégoire and Assia Mahboubi. Proving equalities in a commutative ring done right
in Coq. Lecture Notes in Computer Science, 3603:98–113, 2005. doi:10.1007/11541868_7.

18 Thomas Hales and Rodrigo Raya. Formal proof of the group law for Edwards elliptic curves.
Automated Reasoning, 12167:254–269, 2020. doi:10.1007/978-3-030-51054-1_15.

19 Kevin Hartnett. Math quartet joins forces on unified theory. URL: https://www.
quantamagazine.org/math-quartet-joins-forces-on-unified-theory-20151208/.

20 Robin Hartshorne. Algebraic Geometry. Springer New York, 1977.
21 Nicholas Katz and Barry Mazur. Arithmetic Moduli of Elliptic Curves. Princeton University

Press, 1985.
22 Hendrik Lenstra. Factoring integers with elliptic curves. Annals of Mathematics, 126(3):649–

673, 1987. doi:10.2307/1971363.
23 Marc Masdeu. ell_add_assoc. URL: https://github.com/leanprover-community/mathlib/

blob/ell_add_assoc/src/algebraic_geometry/EllipticCurveGroupLaw.lean.
24 Koji Nuida. An elementary linear-algebraic proof without computer-aided arguments for the

group law on elliptic curves. International Journal of Mathematics for Industry, 13(1), 2021.
doi:10.1142/S2661335221500015.

https://leanprover-community.github.io/archive/stream/116395-maths/topic/Why.20is.20class_group.2Emk.20so.20slow.3F.html
https://leanprover-community.github.io/archive/stream/116395-maths/topic/Why.20is.20class_group.2Emk.20so.20slow.3F.html
https://doi.org/10.2307/2152935
https://doi.org/10.1007/s10817-022-09644-0
https://doi.org/10.1007/978-3-319-08970-6_6
https://math.berkeley.edu/~reb/courses/256A/1.6.pdf
https://math.berkeley.edu/~reb/courses/256A/1.6.pdf
https://leanprover-community.github.io/archive/stream/116395-maths/topic/thoughts.20on.20elliptic.20curves.html
https://leanprover-community.github.io/archive/stream/116395-maths/topic/thoughts.20on.20elliptic.20curves.html
https://mathoverflow.net/q/20623
https://mathoverflow.net/q/20623
https://doi.org/10.6028/NIST.SP.800-186
https://leanprover-community.github.io/mathlib_docs/
https://leanprover-community.github.io/mathlib_docs/
https://doi.org/10.1145/3372885.3373824
https://doi.org/10.1145/3372885.3373824
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-319-21401-6_26
https://medium.com/swlh/understanding-ec-diffie-hellman-9c07be338d4a
https://medium.com/swlh/understanding-ec-diffie-hellman-9c07be338d4a
https://doi.org/10.1515/gcc-2017-0010
https://doi.org/10.1007/11541868_7
https://doi.org/10.1007/978-3-030-51054-1_15
https://www.quantamagazine.org/math-quartet-joins-forces-on-unified-theory-20151208/
https://www.quantamagazine.org/math-quartet-joins-forces-on-unified-theory-20151208/
https://doi.org/10.2307/1971363
https://github.com/leanprover-community/mathlib/blob/ell_add_assoc/src/algebraic_geometry/EllipticCurveGroupLaw.lean
https://github.com/leanprover-community/mathlib/blob/ell_add_assoc/src/algebraic_geometry/EllipticCurveGroupLaw.lean
https://doi.org/10.1142/S2661335221500015

D. K. Angdinata and J. Xu 6:19

25 David Russinoff. A computationally surveyable proof of the group properties of an elliptic
curve. In Proceedings ACL2Workshop, 2017. doi:10.4204/EPTCS.249.3.

26 Joseph Silverman. The Arithmetic of Elliptic Curves. Springer New York, 2009.
27 Andrew Sutherland. Algebraic proof of the associativity of the elliptic curve group law on

curves defined by a short Weierstrass equation, as presented in Lecture 2 of 18.783. URL:
https://cocalc.com/share/public_paths/a6a1c2b188bd61d94c3dd3bfd5aa73722e8bd38b.

28 Laurent Théry. Proving the group law for elliptic curves formally. INRIA, 2007.
29 Andrew Wiles. The Birch and Swinnerton-Dyer conjecture. URL: https://www.claymath.

org/sites/default/files/birchswin.pdf.
30 Andrew Wiles. Modular elliptic curves and Fermat’s last theorem. Annals of Mathematics,

141(3):443–551, 1995. doi:10.2307/2118559.

ITP 2023

https://doi.org/10.4204/EPTCS.249.3
https://cocalc.com/share/public_paths/a6a1c2b188bd61d94c3dd3bfd5aa73722e8bd38b
https://www.claymath.org/sites/default/files/birchswin.pdf
https://www.claymath.org/sites/default/files/birchswin.pdf
https://doi.org/10.2307/2118559

A Proof-Producing Compiler for Blockchain
Applications
Jeremy Avigad #

Carnegie Mellon University, Pittsburgh, PA, USA

Lior Goldberg #

StarkWare Industries Ltd., Netanya, Israel

David Levit #

StarkWare Industries Ltd., Netanya, Israel

Yoav Seginer #

Amsterdam, Netherlands

Alon Titelman #

StarkWare Industries Ltd., Netanya, Israel

Abstract
Cairo is a programming language for running decentralized applications (dapps) at scale. Programs
written in the Cairo language are compiled to machine code for the Cairo CPU architecture, and
cryptographic protocols are used to verify the results of the execution traces efficiently on blockchain.
We explain how we have extended the Cairo compiler with tooling that enables users to prove, in
the Lean 3 proof assistant, that compiled code satisfies high-level functional specifications. We
demonstrate the success of our approach by verifying primitives for computations with an elliptic
curve over a large finite field, as well as their use in the validation of cryptographic signatures.

2012 ACM Subject Classification General and reference → Verification; Theory of computation →
Logic and verification; Software and its engineering → Semantics

Keywords and phrases formal verification, smart contracts, interactive proof systems

Digital Object Identifier 10.4230/LIPIcs.ITP.2023.7

Supplementary Material Software: https://github.com/starkware-libs/formal-proofs
archived at swh:1:dir:6e3f3ad6721711a9e6dc1643d890edd6835e196e

Acknowledgements We are grateful to the Lean developers and the Lean community for providing
infrastructure for this project, and to three anonymous reviewers for numerous corrections and
improvements.

1 Introduction

Cairo [16] is a programming language for running decentralized applications (dapps) at
scale. Programs written in the Cairo language are compiled to machine code for the Cairo
CPU architecture [14], which is run off chain by an untrusted prover. Using the STARK
cryptographic proof system [6], the prover then publishes a succinct certificate for the result
of the off-chain computation, which is verified efficiently on blockchain.

Here we describe an augmentation of the Cairo compiler that enables users to produce
formal proofs that compiled machine code meets its high-level specifications. We retain
enough information during the compilation phase for our verification tool to extract a
description of the machine code as well as naive functional specifications of the source code.
We automatically construct formal proofs, in the Lean 3 proof assistant [9], that the machine
code meets these specifications. Users can then write their own specifications of the source
code in Lean and prove that they are implied by the automatically generated ones. In

© Jeremy Avigad, Lior Goldberg, David Levit, Yoav Seginer, and Alon Titelman;
licensed under Creative Commons License CC-BY 4.0

14th International Conference on Interactive Theorem Proving (ITP 2023).
Editors: Adam Naumowicz and René Thiemann; Article No. 7; pp. 7:1–7:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:avigad@cmu.edu
https://orcid.org/0000-0003-1275-315X
mailto:lior@starkware.co
mailto:david@starkware.co
mailto:yseginer@gmail.com
mailto:alon.titelman@starkware.co
https://doi.org/10.4230/LIPIcs.ITP.2023.7
https://github.com/starkware-libs/formal-proofs
https://archive.softwareheritage.org/swh:1:dir:6e3f3ad6721711a9e6dc1643d890edd6835e196e;origin=https://github.com/starkware-libs/formal-proofs;visit=swh:1:snp:6ab2e955ce4332c5311e8ce8fd98be6c739329b4;anchor=swh:1:rev:35613c65b6715601bbc0a550d52754f8e7d93e30
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 A Proof-Producing Compiler for Blockchain Applications

doing so, they can make use of their specifications of functions earlier in the dependency
chain. Using Lean to check both the user-written and autogenerated proofs yields end-to-end
verification of the user’s specifications, down to CPU semantics. In other work [4], we have
moreover verified the correctness of the algebraic encoding of the CPU semantics that is
used to generate the certificates used in the STARK protocol.

In Sections 2 to 4 we describe the Cairo CPU architecture, assembly code, and program-
ming language, and we explain how we generate high-level specifications and construct the
formal correctness proofs in Lean. Section 5 focuses on features of our work that are specific to
the domain of application and the STARK encoding, namely, memory management in Cairo
and mechanisms for computing with elements of a finite field. In Section 6, we demonstrate
the success of our approach by describing our verification of elliptic curve computations over
a large finite field and our verification of a procedure for validating digital signatures. In
Section 7, we explain why our approach has been effective in practice, enabling us to verify
production code without hindering the development of the compiler or the library. Our main
contributions are therefore as follows:

We provide means of obtaining end-to-end verification, in a foundational proof assistant,
of Cairo machine code with respect to high-level specifications.
We handle novel features of the execution model that are specific to its use in blockchain
applications.
We explain how we managed to carry out our work in an industrial setting, while the
language and compiler were under continuous development.
We explain why our approach, which involves automatically generating source-level proofs
that are elaborated and checked by Lean, has been surprisingly effective.
We demonstrate that our approach scales well by presenting a substantial case study, an
implementation of digital signature validation that is already being used in production.

Our Lean libraries, our verification tool, and the case study described here can be
found online at https://github.com/starkware-libs/formal-proofs. At the time of
writing, version 0.10 of the Cairo language has been released, and the verifier and libraries
accompanying this paper correspond to that release. StarkWare is currently developing the
next generation of the programming language, Cairo 1, which will be substantially different.
Cairo 1, however, will call libraries and primitives implemented in Cairo 0, and this project
is currently being used to verify those libraries and primitives. All references to the Cairo
language in this paper therefore refer to Cairo 0.

2 The Cairo Machine Model

The Cairo machine model is based on a simple CPU architecture with three registers: a
program counter (pc), which points to the current instruction in memory; a frame pointer
(fp), which generally points to the location of the local variables in a function call, and
an allocation pointer (ap), which generally points to the next free value in global working
memory. A machine instruction consists of three 16-bit words, which generally serve as
memory offsets for operations performed on memory, and 15 1-bit flags, which determine the
nature of the instruction. The architecture is described in detail in the Cairo whitepaper
[14], and a Lean formalization thereof is described in [4].

A notable feature of the machine model is that elements of memory, as well as the contents
of the registers, are elements of the field of integers modulo a certain prime number (by
default, 2251 + 17 · 2192 + 1). The CPU can add and multiply values, but it cannot ask

https://github.com/starkware-libs/formal-proofs

J. Avigad, L. Goldberg, D. Levit, Y. Seginer, and A. Titelman 7:3

whether one value is greater than another. Cryptographic primitives, described in Section 5,
can be used to assert that the contents of a memory location represent the cast of an integer
in a certain range. The core library uses values that are checked to lie in the interval [0, 2128).

Another notable feature of the machine model is that the memory is read-only. To
establish a computational claim on blockchain, a prover makes public a partial assignment
to memory that typically includes the program that is executed and the agreed-upon input.
The prover also makes public the initial and final state of the registers and the number of
steps in the computation. A certificate published on blockchain establishes, modulo common
cryptographic assumptions, that the prover is in possession of a full assignment to memory
extending the partial one such that the program runs to completion in the given number of
steps. The code is then carefully designed to ensure that this implies the claim that is of
interest to the verifier. For example, to establish that a calculation yields a claimed result,
the prover and verifier agree on a Cairo program that carries out the calculation, asserts
that it is equal to the claimed value, and fails otherwise. A certificate that the program
terminates successfully establishes the computational claim.

Reading Cairo programs takes some getting used to. An instruction like x = y + 5 is
often thought of as an assignment of the value y + 5 to the memory location allocated to x,
but it is really an assertion that the prover has assigned values to the memory so that the
equation holds. It is an interesting feature of the model that a Cairo program can depend on
values in memory that are assigned by the prover but not made public to the verifier. For
example, a program can establish that a value x is a perfect square by asserting that it is
equal to y * y for some y, without sharing the value of y with the verifier.

The Cairo CPU instruction set includes a call instruction, a return instruction, conditional
and unconditional jumps, an instruction to advance the allocation pointer, and instructions
that make arithmetic assertions about values stored in memory. The file cpu.lean consists
of less than 200 lines of Lean definitions that provide a formal specification of the CPU
and the next state relation. The next state depends on the contents of memory, mem, and
the values of the CPU registers, s, but since the memory never changes, the next state
relation next_state mem s t need only specify the successor state t of the registers. If the
program counter points to an assert instruction that fails, there is no successor state. If the
program counter points to an ill-formed instruction, the value of t is nondeterministic, so
verifying that a Cairo program has the intended semantics generally requires establishing
that a successful run of the program does not encounter such an instruction. By convention,
programs halt with a jump instruction to the to itself, that is, an implicit infinite loop. The
cryptographic proof published on blockchain establishes, with high probability, that the
program has reached such a state.

Our project is designed to enable users to prove that the successful execution of a program
guarantees that a property of interest holds. To that end, we define the following predicate:

def ensures (mem : F → F) (σ : register_state F)
(P : N → register_state F → Prop) : Prop :=

∀ n : N, ∀ exec : fin (n+1) → register_state F, is_halting_trace mem exec →
exec 0 = σ → ∃ i : fin (n + 1), ∃ κ ≤ i, P κ (exec i)

This says that any sequence exec of states that starts with σ, proceeds according to the
machine semantics with respect to the memory assignment mem, and ends with a halting
instruction eventually reaches a step i along the way such that the register state exec i
satisfies P. Note that the predicate P can also make reference to the contents of memory, so we
can express that at step i the memory location referenced by a certain register has a certain
value, or that the value of a fixed memory location has a certain property. More precisely,

ITP 2023

7:4 A Proof-Producing Compiler for Blockchain Applications

the predicate P κ τ takes a numeric value κ as well as a register state τ , and the ensures
predicate says that there is a value of κ less than or equal to i such that P κ (exec i) holds.
We will explain the use of κ in Section 5.

3 From Assembly Code to Machine Code

The Cairo compiler translates code written in the Cairo language to instructions in the
Cairo assembly language [14, Section 5], which are then translated to machine instructions.
Assembly instructions can also be inserted directly into Cairo programs. The first step
toward bridging the gap between the Cairo programming language and Cairo machine code is
therefore to model the Cairo assembly language in Lean. The file soundness/assembly.lean
in our project provides a description of Cairo machine instructions in terms of the offsets and
flags, and it defines a translation from that representation to 63-bit machine code instructions.
It also defines Lean notation that approximates Cairo assembly-language syntax. For example,
here are three elementary mathematical Cairo functions from the Cairo common library:

func assert_nn{range_check_ptr}(a) {
a = [range_check_ptr];
let range_check_ptr = range_check_ptr + 1;
return (); }

func assert_le{range_check_ptr}(a, b) {
assert_nn(b - a);
return (); }

func assert_nn_le{range_check_ptr}(a, b) {
assert_nn(a);
assert_le(a, b);
return (); }

The first confirms that the argument a is the cast of a nonnegative integer less than 2128, by
asserting that it is equal to the value of memory at the address range_check_ptr, which is
assumed to point to a block of elements that have been verified to have this property. The
second confirms that a is less than or equal to b by calling assert_nn(b − a), and the third
function combines the previous two properties. The curly brackets mean that the argument
range_check_ptr is passed to, updated by, and returned implicitly by these functions. We
explain range checking in more detail in Section 5.

The Cairo compiler compiles these functions to assembly code and then to machine
instructions. The assembly code corresponding to assert_nn_le looks as follows:

[ap] = [fp + (-5)]; ap++
[ap] = [fp + (-4)]; ap++
call rel -11
[ap] = [fp + (-4)]; ap++
[ap] = [fp + (-3)]; ap++
call rel -11
ret

The details are not important. The function calls are carried out by copying the arguments,
including the implicit range check pointer, to the end of the global memory used so far. The
arguments are referenced relative to the frame pointer, so [fp + (−5)] denotes the value in
memory at the address fp − 5. The call instructions update the program counter and frame
pointer so that execution continues in the subroutine, and the return at the end restores the
frame pointer and updates the program counter to the next instruction in the calling routine.

J. Avigad, L. Goldberg, D. Levit, Y. Seginer, and A. Titelman 7:5

Our tool generates a Lean description of this assembly code. The notation isn’t pretty;
we use tick marks and funny tokens to avoid conflicting with other tokens that may be in
use. For example, the Lean description of the assert_nn_le assembly code is as follows:

def starkware.cairo.common.math.code_assert_nn_le : list F := [
'assert_eq['dst[ap] === 'res['op1[fp+ -5]];ap++].to_nat,
'assert_eq['dst[ap] === 'res['op1[fp+ -4]];ap++].to_nat,
'call_rel['op1[imm]].to_nat, -11,
'assert_eq['dst[ap] === 'res['op1[fp+ -4]];ap++].to_nat,
'assert_eq['dst[ap] === 'res['op1[fp+ -3]];ap++].to_nat,
'call_rel['op1[imm]].to_nat, -11,
'ret[].to_nat]

As developers, we only had to read such code for debugging, and we found the notation
convenient. Our Lean representation is adequate in the sense that the assembly instructions
can be transformed to machine instructions, which can, in turn, be transformed to the
63-bit numeric representations which are then cast to the finite field F. Users can evaluate
definitions like the one above in Lean and check that the resulting numeric values are the
same ones produced by the Cairo compiler, and hence are the same ones used in the STARK
certificate generated by the Cairo runner. Our soundness proofs start with the assumption
that these values are stored in memory and that the program counter is set accordingly.

The file soundness/assembly.lean establishes a small-step semantics for reasoning about
instructions at the assembly level. For example, variants of the Cairo call instruction allow
specifying the address of the target in various ways, either as an absolute or relative address,
which can in turn be given as an immediate value or read from memory with an offset from
either the allocation pointer or frame pointer. The theorem describing the behavior of this
instruction is as follows:

theorem next_state_call {F : Type*} [field F] (mem : F → F)
(s t : register_state F) (op0 : op0_spec) (res : res_spec) (call_abs : bool) :

(call_instr call_abs res).next_state mem s t ↔
(t.pc = jump_pc s call_abs (compute_res mem s (op0_spec.ap_plus 1) res) ∧

t.ap = s.ap + 2 ∧
t.fp = s.ap + 2 ∧
mem (s.ap + 1) = bump_pc s res.to_op1.op1_imm ∧
mem s.ap = s.fp)

Read this as follows: given that the CPU registers are in state s and given the contents
of memory mem, the call instruction with boolean flag call_abs and operand specifications
op0 and res results in the new state t, where the program counter is updated as indicated,
the relevant return address and the current frame pointer are stored in memory at the
current allocation pointer, the allocation pointer is increased by two, and the frame pointer
is increased by two. The details of the computations jump_pc, compute_res, and bump_pc
are not important. What is important is that for concrete values of op0, res, and call_abs,
Lean’s tactics (a term rewriter, a numeric evaluator, etc.) are powerful enough to compute
specific values and prove that the functions have those values. For example, if a specific
call instruction decreases the program counter by 100, Lean can prove that the next_state
relation holds for a suitable state t with t.pc = s.pc - 100. This allows us to reason about
the behavior of a block of assembly code by stepping through each instruction in turn. The
proof of the next_state_call and others like it are fiddly but straightforward: it is just a
matter of unfolding the definitions of the assembly language instructions and then relating
the resulting machine instructions to the semantics defined in cpu.lean.

ITP 2023

7:6 A Proof-Producing Compiler for Blockchain Applications

4 From Cairo Code to Assembly Code

Consider the procedure assert_nn_le, which takes field elements a and b and asserts that
they are casts of integers in a certain range such that the one corresponding to a is less than
or equal to the one corresponding to b. More precisely, the desired specification is as follows:

def spec_assert_nn_le (mem : F → F) (κ : N)
(range_check_ptr a b ρ_range_check_ptr : F) : Prop :=

∃ m n : N, m < rc_bound F ∧ n < rc_bound F ∧ a = ↑m ∧ b = ↑(m + n)

The argument ρ_range_check_ptr denotes the return value of assert_nn_le, which is
implicit in the Cairo code. We often use unicode characters, which are allowed in Lean but
not Cairo, to ensure that identifiers that we introduce in specifications and proofs do not
clash with the identifiers that we take from Cairo. The up arrows denote casts to the field F.
Here the value of rc_bound F is assumed to be 2128, so m and n represent 128-bit unsigned
integers. The autogenerated specification of assert_nn_le merely says that the Cairo code
calls the two auxiliary functions assert_nn and assert_le:

def auto_spec_assert_nn_le (mem : F → F) (κ : N)
(range_check_ptr a b ρ_range_check_ptr : F) : Prop :=

∃ (κ1 : N) (range_check_ptr1 : F),
spec_assert_nn mem κ1 range_check_ptr a range_check_ptr1 ∧

∃ (κ2 : N) (range_check_ptr2 : F),
spec_assert_le mem κ2 range_check_ptr1 a b range_check_ptr2 ∧

κ1 + κ2 + 7 ≤ κ ∧
ρ_range_check_ptr = range_check_ptr2

The role of κ, κ1, and κ2 will be discussed in Section 5. Notice that the autogenerated
specification for assert_nn_le refers to the user specifications of assert_nn and assert_le
rather than the autogenerated ones. Interleaving the two types of specifications is crucial for
handling recursion, since our autogenerated specification of a recursive function invokes the
user specification to describe the effects of the recursive calls. We handle loops in a similar
way. More importantly, our approach means that when users have to reason about the
autogenerated specification, they can make use of their own specifications of the dependencies.
This enables them to verify complex programs in a modular way.

With the autogenerated specification in hand, the user’s task is to write their own
specification of spec_assert_nn_le and prove that it follows from the autogenerated one.
Our verification tool then uses that in the proof of the following theorem, which asserts that
the machine code meets the user specification:

theorem auto_sound_assert_nn_le
(range_check_ptr a b : F)
(h_mem : mem_at mem code_assert_nn_le σ.pc)
(h_mem_0 : mem_at mem code_assert_nn (σ.pc - 9))
(h_mem_1 : mem_at mem code_assert_le (σ.pc - 5))
(hin_range_check_ptr : range_check_ptr = mem (σ.fp - 5))
(hin_a : a = mem (σ.fp - 4))
(hin_b : b = mem (σ.fp - 3)) :

ensures mem σ (λ κ τ,
τ.pc = mem (σ.fp - 1) ∧ τ.fp = mem (σ.fp - 2) ∧ τ.ap = σ.ap + 14 ∧
∃ µ ≤ κ,

rc_ensures mem (rc_bound F) µ (mem (σ.fp - 5)) (mem (τ.ap - 1))
(spec_assert_nn_le mem κ range_check_ptr a b (mem (τ.ap - 1))))

J. Avigad, L. Goldberg, D. Levit, Y. Seginer, and A. Titelman 7:7

The theorem asserts that, given the contents of memory mem and the register state σ, if the
code for assert_nn_le is in memory at the program counter, the code for the dependencies
are in place as well, and the arguments to the function are stored in memory in the expected
locations indexed by the frame pointer, then any halting computation eventually returns to
the calling function (restoring the program counter and frame pointer according to the Cairo
language calling conventions) and ensures that the user specification holds, assuming that
certain auxiliary locations in memory have been range checked. Once again, we promise to
explain range checking in Section 5.

The proof of auto_sound_assert_nn_le establishes the correctness of the autogener-
ated specification and then applies the user-supplied theorem that this implies the user’s
specification. Generally speaking, the user doesn’t need to see the Lean description of the
assembly code, the theorem auto_sound_assert_nn_le, or the proof of correctness. The
autogenerated specifications, the user specifications, and the proof that the former imply
the latter are stored in the same directory as the Cairo code. The Lean descriptions of the
assembly code and the correctness proofs are kept in a separate folder, tucked out of sight.

Our verification tool has the task of extracting the autogenerated specifications and
constructing the correctness proofs. The Cairo compiler, which is written in Python, produces
a number of data structures that we are able to make use of once the compilation is complete.
These contain, for example, a dictionary of namespaced identifiers. Whenever we needed
additional information, we added hooks that, in verification mode, are called to log that
information. For example, a compound assertion like x = 3 * y + 4 * z translates to a list
of atomic assertions, and our verification tool has access to the original equation and the
code points that mark the beginning and end of the list of assertions.

As we will discuss in Section 5, the Cairo language uses two sorts of variables: local
variables are indexed with offset from the frame pointer, and global variables are indexed
offset from the allocation pointer. When a function takes values a b c : F as arguments, the
compiler places these values in memory just before the allocation pointer when the procedure
is called. For the most part, the verifier keeps the nitty-gritty memory allocation issues
hidden from the user, and mediates between variable names and the machine semantics
with with equations like a = mem (σ.ap − 3). The Cairo language also allows the definition
of compound structures, and we define the corresponding structures in Lean and interpret
references to memory accordingly.

Our verifier uses Dijkstra’s weakest preconditions [10] to read off a specification. The
process is straightforward, modulo the fact that the verifier also has to construct Lean proofs
that prove that these specifications are met. That requires unpacking the meaning of each
machine instruction, using the theorems described in the previous section. Unpacking the
mem_at predicate tells us which instruction is present at each memory location. We then
use special-purpose tactics (small-scale automation written in Lean) to unpack the effect
of each instruction. For example, suppose at a given point in the proof we need to show
that executing the code at program counter σ.pc + 5 ensures that a certain result holds, and
we know that the instruction at that location corresponds to a certain instruction with an
immediate value. Applying the relevant tactic leaves us the goal of showing that executing
the code at program counter σ.pc + 7 ensures the desired result, with the other registers and
the proof context updated to reflect the result of executing the instruction. This reduction is
justified by appealing to the meaning of the ensures predicate and the specification of the
machine semantics. In this way, our tactics carry out a kind of symbolic execution of the
assembly code, and register the effects in the proof context.

The verifier’s task is then to parse each high-level Cairo instruction, generate a specification
of its behavior, and construct the corresponding part of the correctness proof, which shows
that the corresponding assembly instructions implement the high-level ones.

ITP 2023

7:8 A Proof-Producing Compiler for Blockchain Applications

A variable declaration like tempvar b = a + 5 translates to an existential quantifier in
the specification, ∃ b, b = a + 5 ∧ The correctness proof instantiates the existential
quantifier to the corresponding memory location and maintains this correspondence.
An equality assertion in the program translates to an equality assertion in the specification.
Such an assertion generally translates to one or more assembly-level assertions, and the
correctness proof involves reconstructing the compound equality statement from the
components.
Cairo programs can have labels and both conditional and unconditional jumps. The
corresponding machine code has the expected effect of (conditionally) modifying the
program counter. In some settings, the correctness proof only needs to record this change
to the program counter and continue stepping through the instructions starting at the
new pc. But for handling jumps that coalesce control flow, and loops in particular, we
analyze the control flow into blocks and break the specification and correctness proof up
accordingly. We describe this process further below.
A conditional jump is implicit in a Cairo if . . . then . . . else construct. This translates
to a disjunction in the specification and the definition of a block where the branches flow
together.
A subroutine call to another procedure translates to an assertion, in the autogenerated
specification, that the user specification of the target procedure holds of the arguments
and the return value. The call instruction stores the current program pointer and frame
pointer in memory and jumps to the location of the target procedure. The return
instruction restores the frame pointer and jumps back to the calling procedure. The
correctness proof invokes the correctness theorem for the target procedure as well as the
assumption that the procedure is in memory at the expected location.
The description so far presupposes that the control flow has no cycles. To handle

recursive calls and loops, we do not have to prove termination; the STARK certificate
assures a skeptical verifier that the program has terminated, so we need only show that,
given that fact, the specification is met. (This is commonly characterized as the difference
between partial correctness and total correctness.) The claim ensures mem σ P is equivalent
to ∀ b, ensuresb b mem σ P, where ensuresb b mem σ P says that every halting execution
sequence from state σ with at most b steps eventually reaches a state that satisfies P. We can
prove the latter by induction on b, generalizing over states σ with program counter pointing
to the relevant code.

For functions that call themselves recursively, we modify the default user specification so
that it is trivially true, and place it before the autogenerated specification. The autogenerated
specification asserts the play-by-play description alluded to above, except that it uses the user
specification to characterize the recursive calls. The user is free to write any specification they
want, provided they show that the autogenerated specification implies the user specification.
In short, the user has to show that the play-by-play characterization implies their own
characterization, assuming their characterization holds at downstream calls. The correctness
proof uses this together with the inductive hypothesis at downstream calls.

A similar method handles loops. Our verification tool begins by analyzing the control-flow
graph [2], dividing the code into basic blocks, without any jumps or labels. A block starts
at the beginning of a function or at a label, and ends with a jump, a return, or a flow to a
label. Any block that can be entered from more than one other block receives a separate
specification in the specification file, and cycles that arise in a topological sort are handled
in a manner similar to recursive function calls. In practice, the user can specify that the
execution has an effect conditional on an invariant holding at the entry point. Verification of
the full user specification then requires showing that the invariant holds at the first entry
point and that it is maintained on re-entry.

J. Avigad, L. Goldberg, D. Levit, Y. Seginer, and A. Titelman 7:9

5 Memory Management and Range Checks

In this section, we discuss aspects of the Cairo programming language that stem specifically
from its intended use toward verifying computations on blockchain. Encoding execution traces
efficiently required keeping the machine model simple, which is why StarkWare’s engineers
settled on a CPU with only three registers and read-only memory. The cost of certification on
blockchain scales with the number of steps in the execution trace together with the number
of memory accesses. The fact that memory is read-only makes the verification task easier: we
do not need to worry about processes overwriting each other’s memory. The Cairo language
allows procedures to declare two types of temporary variables, namely, relative to the frame
pointer (fp) or allocation pointer (ap). It is a quirk of the Cairo language that references
to ap-based variables can be revoked when the compiler cannot reliably track the effects of
intermediate commands and function calls on the ap, for example, when different flows of
control may result in different changes to the ap. Our verification relies on the compiler’s
internal record of its ability to track these changes.

The STARK encoding is most efficient when memory is assigned in a continuous block.
The Cairo compiler is tightly coupled with a Cairo runner, whose task is to allocate memory
and assign values to ensure that the Cairo program runs to completion. The Cairo whitepaper
describes the methods that are used to simulate conventional memory models. The processor
uses the frame pointer to point to the base of a procedure’s local memory and the allocation
pointer to point to the next available position in global memory. Local variables are kept
in the same contiguous block. When one procedure calls another, the program counter and
frame pointer are stored in global memory, the allocation pointer is updated, and the frame
pointer is set equal to the allocation pointer. When the procedure returns, the program
counter and frame pointer are restored.

For efficiency, a local procedure sometimes has to access values that are stored in global
memory, which is to say, they are indexed relative to the allocation pointer. This is challenging
because the allocation pointer is constantly changing. For example, when one procedure
calls another, upon the return the allocation pointer may have changed. Moreover, the new
value of the allocation pointer cannot always be predicted at compile time; for example,
different flows of control through an if-then-else can result in different changes to its value.
The compiler uses a flow tracker that keeps track of these changes as best it can, allowing the
programmer to refer to the same global variables throughout. Our verification tool does not
have to know much about how the flow tracker works, but it needs to make use of the results.
For example, if the value of a variable x is mem (ap + 1) before a subroutine call and the
allocation pointer ap' on return is equal to ap + 3, our Lean proofs need to use the identity
ap' = ap + 3 to translate an assertion involving mem (ap' − 2) into an assertion about x.
Our verification tool claims and proves the relevant identities while stepping through the
code, and uses those identities as rewriting rules when verifying assertions.

A more striking difference between programming in Cairo and programming in an ordinary
programming language is that the most fundamental data type consists of values of a finite
field. One can add and multiply field elements, but there is no machine instruction that
compares the order of two elements. To meet high-level specifications that are stated in terms
of integers, the STARK encoding uses cryptographic primitives to verify that a specified
range of memory has been range checked, which is to say, the corresponding field elements are
casts of integers in the interval [0, 2128). Our previous verification of the STARK encoding
[4] shows that the STARK certificate guarantees (with high probability) that the specified

ITP 2023

7:10 A Proof-Producing Compiler for Blockchain Applications

memory locations have indeed been range checked. A Cairo program can make use of this
fact by taking, as input, a pointer to a location in the block of range-checked memory,
making assertions about a sequence of values at that location, and returning (in addition
to its ordinary return values) an updated pointer to the next unused element. Both the
user specification and the autogenerated specification are of the form “assuming the values
between . . . and . . . have been range-checked, the following holds:” These hypotheses
have to be used inside the correctness proofs, to justify the assertions that particular values
have been range checked. The hypotheses also have to be threaded through procedure
calls and combined appropriately, so the specification of a top-level function comes with
a range-check hypothesis that covers all the recursive calls. This top-level hypothesis is
justified by the STARK certificate.

Our verification tool handles all this plumbing. For example, recall the Cairo function
assert_nn, which asserts that the argument a is the cast of an integer in [0, 2128).

func assert_nn{range_check_ptr}(a) {
a = [range_check_ptr];
let range_check_ptr = range_check_ptr + 1;
return (); }

The curly brackets in {range_check_ptr} indicate that the value should implicitly be
returned among the other return values. (In this case, there aren’t any others.) The
user-written specification of this function is as follows:

def spec_assert_nn (mem : F → F) (κ : N)
(range_check_ptr a ρ_range_check_ptr : F) : Prop :=

∃ n : N, n < rc_bound F ∧ a = ↑n

Recall that the annotation ↑n casts the natural number n to the underlying field F. Our
verification tool generates the following specification:

def auto_spec_assert_nn (mem : F → F) (κ : N)
(range_check_ptr a ρ_range_check_ptr : F) : Prop :=

a = mem (range_check_ptr) ∧
is_range_checked (rc_bound F) a ∧
∃ range_check_ptr1 : F, range_check_ptr1 = range_check_ptr + 1 ∧
3 ≤ κ ∧
ρ_range_check_ptr = range_check_ptr1

Here, range_check_ptr1 is the updated version of range_check_ptr, and the last line
specifies that this is the function’s sole return value. Our tool detects the reference to
range_check_ptr in the Cairo code and adds is_range_checked (rc_bound F) a to the
autogenerated specification, generating an obligation in the correctness proof that the
user does not have to see. The user has to prove that spec_assert_nn follows from
auto_spec_assert_nn, but this follows immediately from the conjunct is_range_checked
(rc_bound F) a in the autogenerated specification.

J. Avigad, L. Goldberg, D. Levit, Y. Seginer, and A. Titelman 7:11

The ultimate correctness theorem is stated as follows:

theorem auto_sound_assert_nn
(range_check_ptr a : F)
(h_mem : mem_at mem code_assert_nn σ.pc)
(hin_range_check_ptr : range_check_ptr = mem (σ.fp - 4))
(hin_a : a = mem (σ.fp - 3)) :

ensures mem σ (λ κ τ,
τ.pc = mem (σ.fp - 1) ∧ τ.fp = mem (σ.fp - 2) ∧ τ.ap = σ.ap + 1 ∧
∃ µ ≤ κ, rc_ensures mem (rc_bound F) µ (mem (σ.fp - 4)) (mem (τ.ap - 1))

(spec_assert_nn mem κ range_check_ptr a (mem (τ.ap - 1))))

In this specification, the assertions τ .pc = mem (σ.fp − 1) and τ .fp = mem (σ.fp − 2) assert
that the program counter and frame pointer have been restored correctly when the function
returns. Our verification tool learns from the flow tracker that any path through this code
updates the allocation pointer by one, and so it also establishes that fact, i.e. τ .ap = σ.ap + 1,
to make that information accessible when reasoning about procedures that call it. The
rc_ensures clause in the conclusion says that if the block of memory between mem (σ.fp − 4)
and mem (τ .ap − 1) is range-checked then the user specification holds. (We will return to
the role of µ in a moment.) Here σ.fp is the value of the frame pointer when the function
is called, τ .ap refers to the value of the allocation pointer upon return, and mem (σ.fp − 4)
and mem (τ .ap − 1) are, respectively, the location of the argument range_check_ptr and
the return value, which is supposed to be the updated range check pointer.

We can now explain the role of κ and µ. Recall that mem (σ.fp − 4) and mem (τ .ap − 1)
are field elements. A first guess as to how to specify that the range of memory values
between those two locations is range checked is to say that there is a natural number µ

such that mem (τ .ap − 1) = mem (σ.fp − 4) + ↑µ and for every i < µ, the value in memory
at address mem (τ .ap − 1) + i is range checked. But this specification is problematic: if
the equation holds for some small value of µ, it also holds for µ plus the characteristic of
the underlying field. Our correctness proof needs to use the fact that the total number of
range-checked elements does not wrap around the finite field. We achieve this by asserting
that µ is, moreover, bounded by the number of steps κ in the execution trace, which is made
public in the STARK certification and is always smaller than the characteristic of the field.
In the case of range checks, the bounds are handled entirely by the verifier and the user need
not worry about them. But we have found that some Cairo specifications require similar
reasoning about bounds on the length of the execution, and for those rare occasions, we have
exposed the parameter κ in the user-facing specifications.

The virtue of our verification tool is that the user can be oblivious to most of the
implementation details we have just described, such as the handling of the range check pointers
and the way that variables, arguments, and return values are stored in memory. The user
writes the Cairo procedure assert_nn and is given the specification auto_spec_assert_nn.
The user then writes the specification spec_assert_nn and proves that spec_assert_nn
follows from auto_spec_assert_nn. The correctness proof can be checked behind the scenes.
From that moment on, spec_assert_nn is all that users need to know about the behavior
of assert_nn, from the point of view of proving properties of Cairo functions that use it. In
the next section, we will show that this scales to the verification of more complex programs.

ITP 2023

7:12 A Proof-Producing Compiler for Blockchain Applications

6 Validating Digital Signatures

Any elliptic curve over a field of characteristic not equal to 2 or 3 can be described as the
set of solutions to an equation y2 = x3 + ax + b, the so-called affine points, together with
one additional point at infinity. The set of such points has the structure of an abelian group
where the zero is defined to be the point at and addition between affine points defined as
follows:

To add (x, y) to itself, let s = (3x2 + a)/2y, let x′ = s2 − 2x, and let y′ = s(x − x′) − y.
Then (x, y) + (x, y) = (x′, y′). This is known as point doubling.
(x, y) + (x, −y) = 0, that is, the point at infinity. In other words, −(x, y) = (x, −y).
Otherwise, to add (x0, y0) and (x1, y1), let s = (y0 − y1)/(x0 − x1), let x′ = s2 − x0 − x1,
and let y′ = s(x0 − x′) − y0. Then (x0, y0) + (x1, y1) = (x′, y′).

It is not hard to prove that with addition, negation, and zero so defined, the structure
satisfies all the axioms for an abelian group other than associativity. Proving associativity is
trickier, though it can be done with brute-force algebraic computations in computer algebra
systems, and various approaches have been used in the interactive theorem proving literature
to establish the result formally [25, 5, 12, 15, 3].

The study of elliptic curves over the complex numbers originated in the nineteenth
century, where the addition law has a geometric interpretation. The topic is fundamental
to contemporary number theory. Elliptic curves over a finite field are widely used in
cryptography today, on the grounds that for any nonzero point x, the map n 7→ n · x (that
is, n-fold sum of x with itself) is easy to compute but, as far as we know, difficult to invert.
This forms the basis for the elliptic curve digital signature algorithm (ECDSA). ECDSA
provides a protocol by which a sender can generate a pair consisting of a public key and a
private key, publish the public key, and then send messages in such a way that a receiver can
verify that the message was sent by the holder of the private key and that the message has
not been changed.

The Cairo library contains functions that support ECDSA over the secp256k1 elliptic
curve, that is, the curve y2 = x3 + 7 over the finite field of integers modulo the prime
p = 2256 − 232 − 977. For reasons we will shortly explain, the calculations are subtle. We
have proved the correctness of the Cairo functions implementing the elliptic curve operations
efficiently, as well as a Cairo procedure for validating secp signatures. Figure 1 shows the
Cairo procedure for recovering the public key of the sender from a digitally signed message,
and Figure 2 shows the correctness proof that we have obtained in Lean. The rest of this
section is devoted to describing the formalization and the resulting theorem.

func recover_public_key{range_check_ptr}(msg_hash: BigInt3,
r: BigInt3, s: BigInt3, v: felt) -> (public_key_point: EcPoint) {

alloc_locals;
let (local r_point: EcPoint) = get_point_from_x(x=r, v=v);
let (generator_point: EcPoint) = get_generator_point();
let (u1: BigInt3) = div_mod_n(msg_hash, r);
let (u2: BigInt3) = div_mod_n(s, r);
let (point1) = ec_mul(generator_point, u1);
let (minus_point1) = ec_negate(point1);
let (point2) = ec_mul(r_point, u2);
let (public_key_point) = ec_add(minus_point1, point2);
return (public_key_point); }

Figure 1 Cairo procedure for recovering an secp public key.

J. Avigad, L. Goldberg, D. Levit, Y. Seginer, and A. Titelman 7:13

def spec_recover_public_key (mem : F → F) (κ : N)
(range_check_ptr : F) (msg_hash r s : BigInt3 F)
(v ρ_range_check_ptr : F) (ρ_public_key_point : EcPoint F) : Prop :=

∀ (secpF : Type) [secp_field secpF], by exactI
r ̸= ⟨0, 0, 0⟩ →
∀ ir : bigint3, ir.bounded (3 * BASE - 1) → r = ir.toBigInt3 →
∀ is : bigint3, is.bounded (3 * BASE - 1) → s = is.toBigInt3 →
∀ imsg : bigint3, imsg.bounded (3 * BASE - 1) → msg_hash = imsg.toBigInt3 →
∃ nv : N, nv < rc_bound F ∧ v = ↑nv ∧
∃ iu1 iu2 : Z,

iu1 * ir.val ≡ imsg.val [ZMOD secp_n] ∧
iu2 * ir.val ≡ is.val [ZMOD secp_n] ∧

∃ ny : N, ny < SECP_PRIME ∧ nv ≡ ny [MOD 2] ∧
∃ h_on_ec : @on_ec secpF _ (ir.val, ny),
∃ hpoint : BddECPointData secpF ρ_public_key_point,

hpoint.toECPoint =
-(iu1 · (gen_point_data F secpF).toECPoint) +

iu2 · ECPoint.AffinePoint ⟨ir.val, ny, h_on_ec⟩

Figure 2 Correctness of the digital signature validation.

To start with, in the file elliptic_curves.lean, we define the secp curve over an
arbitrary finite field of odd characteristic, define the group operations, and prove that they
form a group, modulo a proof that the group law is associative. Lean allows us to insert
a sorry placeholder for the missing proof of associativity; this is the only sorry in our
development. David Kurniadi Angdinata and Junyan Xu have recently verified, in Lean,
that the elliptic curve law forms a group, in impressive generality [3]. This will allow us to
eliminate the sorry.

The files constants.cairo, bigint.cairo, field.cairo, and ec.cairo implement the
operations over the secp curve, culminating in an efficient procedure to carry out scalar
multiplication. The main reason that the code is subtle is that it requires calculations in the
field Z/pZ, where p is the secp prime, which is even larger than (and different from!) the
characteristic of the field that underlies the Cairo machine model. The Cairo implementation
thus represents a value x in Z/pZ by three field elements, each of which is checked to be the
cast of an integer in a certain range. We impose additional bounds and hypotheses on these
representations, and ensure that they are maintained by the calculations.

In greater detail, the Cairo code defines a constant BASE equal to 286 and a structure
BigInt3 {d0: felt, d1: felt, d2: felt}, with the intention that the field elements d0,
d1, and d2 will always be casts of integers i0, i1, and i2, respectively, with absolute values
in [0, 3 · BASE). These are intended to represent the value i0 + i1 · BASE + i2 · BASE2. Note
that the values i0, i1, and i2, may be larger than BASE, so these representations are not
unique. Our specification files define a Lean structure bigint3 := (i0 i1 i2 : Z), as well
as a predicate bigint3.bounded i b that says that each of the three limbs of the bigint3
denoted by i is bounded in absolute value by b. Our Lean verification has to mediate between
at least three different representations:

Elements x of the secp field of integers modulo the secp prime number.
Triples (i0, i1, i2) of integers, suitably bounded, that represent such elements.
Triples of elements (d0, d1, d2) of the underlying field F of the Cairo machine model,
assumed or checked to be casts of such integers.

ITP 2023

7:14 A Proof-Producing Compiler for Blockchain Applications

Field operations like addition and multiplication on the secp field correspond to addition
and multiplication on the integer representations modulo the secp prime. These in turn are
carried out by Cairo code on the triples of field elements, with care to ensure that the results
track the corresponding operations on suitable integer representations.

An element of the secp curve consists of a pair (x, y) of elements of the secp field
satisfying y2 = x3 + 7 or the special point at infinity. These are represented in the Cairo code
by a structure EcPoint given by x: BigInt3, y: BigInt3, with the point at infinity
represented by any pair with x equal to the triple ⟨0, 0, 0⟩. (This works because 7 is not a
square modulo the secp prime.) We therefore use the following data structure to express
that pt : EcPoint represents a point on the curve.

structure BddECPointData (secpF : Type*) [field secpF] (pt : EcPoint F) :=
(ix iy : bigint3)
(ixbdd : ix.bounded (3 * BASE - 1))
(iybdd : iy.bounded (3 * BASE - 1))
(ptxeq : pt.x = ix.toBigInt3)
(ptyeq : pt.y = iy.toBigInt3)
(onEC : pt.x = ⟨0, 0, 0⟩ ∨ (iy.val : secpF)^2 = (ix.val : secpF)^3 + 7)

The specification of a procedure that takes an EcPoint as input generally also assumes that
the EcPoint is equipped with such data, and the specification of a procedure that ouputs an
EcPoint generally proves the existence of the corresponding data.

We can now explain the Cairo code in Figure 1 and the specification in Figure 2. The
digital signature method used by Cairo requires that the sender and receiver agree on the
elliptic curve they are using and on a message hash function. They also fix a point G on
the curve that generates the group, which has a known prime order n. The sender applies
a hash function to the message to obtain an integer m, and the method provides a recipe
for the sender to generate a triple (r, s, v) where r and s are integers and v is an additional
bit. The recipient of the message and the signature applies the hash function to obtain m

as well, checks to make sure r ̸= 0, then finds a point (r, y) on the elliptic curve by finding
the residues y satisfying y2 = r3 + 7 in the secp field and choosing the one that has the
same parity as v. The receiver then computes u1 = r−1 · m and u2 = r−1 · s, where these
operations take place in the group of residues modulo n. Using scalar multiplication, the
receiver calculates Q = −u1 · G + u2 · (r, y), a point on the elliptic curve. If the value Q

matches the sender’s public key, the receiver has the desired confirmation that the message
m has been sent by the sender.

The procedure recover_public_key carries out exactly the calculation of Q. It takes as
input elements msg_hash, r, s, and v in the Cairo field. In the specification, the first three
are assumed to be casts of suitably bounded integers imsg, ir, and is. In other words, these
assumptions should be guaranteed by the calling procedure. It then checks that v is the cast
of a suitably bounded natural number nv (this representation is necessarily unique), and
it confirms the existence of data hpoint representing the point −u1 · G + u2 · (r, y) in the
calculation above.

The implementation of the procedure requires subtle calculations and checks. The best
explanation of what the intermediate calculations are supposed to achieve are given by the
Lean specification files themselves. The formalization uses the library file math.cairo, which
runs about 450 lines of code; our Lean specifications of those functions, as well as our proofs
of our own specifications from the autogenerated ones, comprises about 1,150 lines of code.
The secp validation procedure runs about 800 lines of Cairo code and our specification files
run about 3,200 lines of Lean code, on top of about 150 lines in our definition of the elliptic

J. Avigad, L. Goldberg, D. Levit, Y. Seginer, and A. Titelman 7:15

curve group. The dependency chain of recover_public_key consists of 24 Cairo functions,
which compile to about 900 lines of assembly code, i.e. 900 field elements. Our autogenerated
correctness proofs run about 7,500 lines of Lean code.

Verifying an early version of the secp code turned up two errors that were independently
caught and fixed by the software engineers. The verification later turned up an error that
they missed, having to do with the use of the parameter v in recover_public_key. The
error, which does not allow the prover to fake a signature but does allow it to claim that a
valid signature is invalid, was fixed in the next Cairo release. Beyond that, the verification
provided the software engineers with welcome reassurance. Despite extensive code review,
they recognized that there were a number of places where small errors may have crept into
the code, and they were able to breathe a sigh of relief when the verification was complete.

7 Methodology

We have reported on the means we have developed to deal with quirks of the Cairo architecture
that stem from the need to encode Cairo computations efficiently in a STARK certificate.
Beyond that, many of the methods we have used are routine for software verification. But
some aspects of the way we have implemented these methods are notable, since they have
enabled us to put the methods to use in a production setting. In this section, we discuss
some of the pragmatic choices we have made and assess their effectiveness.

It is notable that our end-to-end correctness proofs are carried out within a single
foundational proof assistant. Systems such as Why3 [13], Dafny [18], and F ∗ [24] extract
verification conditions from imperative programs, but they do not generally verify those
conditions with respect to a mathematical specification of a machine model. These systems
also tend to rely on automation, like SMT solvers, that has to be trusted. In contrast, all
our theorems are stated in the context of a precise axiomatic foundation and the proofs are
checked by a small trusted kernel, for which independent reference checkers are available. This
provides a high degree of confidence that the machine code meets its high-level specifications.
Similar approaches to verifying code with respect to machine semantics include MM0 [7] and
[21].

Another advantage of embedding the verification in a foundational proof assistant is that
the availability of an ambient mathematical library [20] means that we can make use of
any mathematical concepts that are needed to make sense of the high-level specification.
Our verification of the digital signature recovery algorithm required reasoning about elliptic
curves, as well as dealing with bounds and casts of integers to a finite field. We were able
to carry out this reasoning in the same proof assistant that we used to carry out low-level
reasoning about the machine code.

It is notable that the development of our tooling did not hamper the development of the
Cairo compiler or its library. When we began our project, the compiler was already being used
in production, and it is still under continuous development. Requesting substantial changes
to the compiler code base would have slowed our efforts, requiring not only coordination
with the compiler team but also extensive code review. With our approach, we were able to
work under the radar, harvesting just enough data from the compiler for us to construct our
proofs. For example, we found that justifying equality assertions between compound terms
did not require a detailed understanding of the process by which the compiler carried out
the calculations; it was enough to simply keep track of the intermediate assertions and pass
those equations to Lean’s simplifier.

ITP 2023

7:16 A Proof-Producing Compiler for Blockchain Applications

An alternative approach to end-to-end verification is to verify a compiler with respect to
a deeply embedded semantics. This is the approach taken by CompCert [19], CakeML [17, 1],
and the Bedrock project (e.g. [8]). But the Cairo language is still evolving and there is
no formal specification of its semantics, even though the meaning of a Cairo program is
intuitively clear in general. Our approach gives us the freedom to generate specifications
with confidence that they are correct, since they are backed up by formal proof. Producing
proofs of correctness at compile time avoids having to model parts of the compiler that are
irrelevant to correctness, and it does not require us to find a clean separation between those
parts and the ones that are. It also avoids the need to verify behaviors that don’t arise in
practice. For example, Cairo allows for arbitrary labels and jumps, and programmers are
free to write whatever spaghetti code they want. Our verification tooling is designed to work
on regular control flow graphs, and will simply fail otherwise. This leaves the decision with
Cairo developers as to whether to revise their Cairo code to fit our verification model, to
verify their code by hand, or to leave it formally unverified. Thus our approach provides tools
that are effective in practice without dictating or constraining the language development.

Perhaps most striking is our decision to construct correctness proofs by generating Lean
source code that is then elaborated and checked by the same Lean process that elaborates
and checks hand-written proofs. This means that our tool automatically constructs long,
complex proofs in a system that has been carefully designed to support synergetic user
interaction. This may seem odd and counterproductive. But we found that the compilation
process is deterministic enough to make it possible to construct these proofs, and that we
could make use of similarly deterministic and predictable automation in Lean.

Moreover, we found that the approach supports an efficient workflow for the developers of
the verification tool as well as for users of the tool who wish to verify their Cairo specifications.
To verify a Cairo program, a user runs our verification tool on the main file, which can
import other Cairo program files. Our tool calls the compiler to compile the program and
then generates a Lean description of the compiled code, a Lean specification file for each
Cairo source file, and proofs that the compiled code meets the specifications. By convention,
the specification files, which are typically the only formal content the user needs to inspect
and modify, are kept with the source files. For example, a Cairo file foo.cairo gives rise to
a specification file foo_spec.lean in the same directory. The remaining files are kept in a
verification folder in the directory containing the main Cairo source file. Compiling the
files immediately after the tool is run confirms that the compiled code meets the autogenerated
default specifications. Compiling them again after the user adds their own specifications
to the spec files and proves that they follow from the autogenerated specifications ensures
that the code meets their specifications. The correctness proofs do nothing more than apply
the theorem that says that the autogenerated specification implies the user one, so if the
initial correctness proofs have already been checked and Lean accepts the proofs in the
user specification file, it is unlikely that the subsequent check of the correctness proofs will
fail. For the application described in Section 6, compiling and checking all the files in Lean
requires only a few minutes on an ordinary desktop. Compiling and checking the specification
files alone, with the user specifications and correctness proofs, takes less than two minutes
from scratch. In practice, the user files are checked incrementally in real time, as the user
types them into the editor.

This results in a congenial workflow. After first running the verification tool, a user can
compile the files in the verification folder to confirm that the specifications are well formed
and the correctness proofs are valid. The user can then focus on writing the specifications
and proving them correct. We have arranged it so that if the verification tool is run again

J. Avigad, L. Goldberg, D. Levit, Y. Seginer, and A. Titelman 7:17

in the presence of existing specification files, we do not overwrite any of the user-supplied
content. We only add or change the autogenerated specifications, as well as the arguments
to the specifications when the arguments to the corresponding Cairo functions change. (The
tool leaves comments in the file so that the user can see what has changed.) That way,
when the Cairo code changes, the user only needs to make corresponding changes to the
specifications. Moreover, when verifying another Cairo file with overlapping dependencies,
one can make use of the same specifications. This has made it possible for us to verify the
Cairo library one step at a time.

Our approach has also had important benefits for the development of the verification tool.
We started our project by compiling simple programs, extracting Lean descriptions of the
compiled code, and writing and proving specifications by hand. This helped us determine
what the autogenerated specifications should look like and taught us how to construct the
correctness proofs. We then simply had to write Python code that did the same thing
automatically. We were able to iteratively extend the tool to handle other aspects of the
Cairo language: if-then-else blocks, recursive calls, structures, loops, and so on. As we
worked through files in the Cairo library, whenever we came across a feature the verifier was
not equipped to handle, we could figure out how to handle the feature manually, and then
extend the tool to handle that and future instances. Debugging was similarly straightforward:
whenever one of our autogenerated proofs failed, we could open the file, go to the error,
and use Lean’s rich editor interface to inspect the proof state. Once we figured out how
to repair the error manually, it was generally not hard to modify the verification tool to
produce the desired behavior automatically. Our generated code is structured, commented,
and readable. It slightly more verbose and formulaic than proofs one would write by hand,
but it is otherwise similar.

In sum, formal verification requires a synergetic combination of automation and user
interaction. One of our most important findings is that using automation to generate formal
content that can be inspected and modified interactively is a remarkably powerful and
effective means to that end.

8 Conclusions and Related Work

We have presented a means of verifying functional correctness of programs written in the Cairo
language with respect to a low-level machine model, and we have demonstrated its practical
use with a case study, in which we have verified a Cairo library procedure for validating
cryptographic signatures. We have similarly verified other fundamental components of the
Cairo library, including a procedure that Cairo programmers can use to simulate the behavior
of read-write dictionaries in Cairo’s read-only memory model [14, Section 8.5.2].

In Section 7, we have already cited some other approaches toward verifying a functional
specification down to machine code, and in Section 6, we cited various formalizations of the
associativity of the group law for elliptic curves. In recent years, there has been extensive
work on verification of cryptographic primitives [11, 22, 23, 26], including the kind of digital
signature recovery described here. As we have explained, however, verification of Cairo
programs requires dealing with specific features of the language and machine model, and it
is notable that we have achieved end-to-end verification in a foundational proof assistant.
Because Cairo programs are used extensively to carry out financial transactions, and because
they are carefully optimized to reduce the cost of on-chain verification, having workable
means of verifying their correctness is essential.

ITP 2023

7:18 A Proof-Producing Compiler for Blockchain Applications

References
1 Oskar Abrahamsson, Son Ho, Hrutvik Kanabar, Ramana Kumar, Magnus O. Myreen, Michael

Norrish, and Yong Kiam Tan. Proof-producing synthesis of CakeML from monadic HOL
functions. J. Autom. Reason., 64(7):1287–1306, 2020. doi:10.1007/s10817-020-09559-8.

2 Frances E. Allen. Control flow analysis. SIGPLAN Notices., 5(7):1–19, July 1970. doi:
10.1145/390013.808479.

3 David Kurniadi Angdinata and Junyan Xu. An elementary formal proof of the group law on
weierstrass elliptic curves in any characteristic. In Adam Naumowicz and René Thiemann,
editors, Interactive Theorem Proving (ITP) 2023, 2023.

4 Jeremy Avigad, Lior Goldberg, David Levit, Yoav Seginer, and Alon Titelman. A verified
algebraic representation of Cairo program execution. In Andrei Popescu and Steve Zdancewic,
editors, Certified Programs and Proofs (CPP) 2022, pages 153–165. ACM, 2022. doi:10.1145/
3497775.3503675.

5 Evmorfia-Iro Bartzia and Pierre-Yves Strub. A formal library for elliptic curves in the Coq
proof assistant. In Gerwin Klein and Ruben Gamboa, editors, Interactive Theorem Proving
(ITP) 2014, pages 77–92. Springer, 2014. doi:10.1007/978-3-319-08970-6_6.

6 Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, transparent, and
post-quantum secure computational integrity. IACR Cryptol. ePrint Arch., 2018:46, 2018.
URL: http://eprint.iacr.org/2018/046.

7 Mario Carneiro. Metamath Zero: Designing a theorem prover prover. In Christoph Benzmüller
and Bruce R. Miller, editors, Intelligent Computer Mathematics (CICM) 2020, pages 71–88.
Springer, 2020. doi:10.1007/978-3-030-53518-6_5.

8 Adam Chlipala. The Bedrock structured programming system: combining generative metapro-
gramming and hoare logic in an extensible program verifier. In Greg Morrisett and Tarmo
Uustalu, editors, International Conference on Functional Programming (ICFP) 2013, pages
391–402. ACM, 2013. doi:10.1145/2500365.2500592.

9 Leonardo Mendonça de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von
Raumer. The Lean theorem prover (system description). In Amy P. Felty and Aart Middeldorp,
editors, Conference on Automated Deduction (CADE) 2015, pages 378–388. Springer, Berlin,
2015. doi:10.1007/978-3-319-21401-6_26.

10 Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of programs.
Commun. ACM, 18(8):453–457, 1975. doi:10.1145/360933.360975.

11 Andres Erbsen, Jade Philipoom, Jason Gross, Robert Sloan, and Adam Chlipala. Simple high-
level code for cryptographic arithmetic: With proofs, without compromises. ACM SIGOPS
Oper. Syst. Rev., 54(1):23–30, 2020. doi:10.1145/3421473.3421477.

12 Andrew Erbsen. Crafting Certified Elliptic Curve Cryptography Implementations in Coq. PhD
thesis, Massachusetts Institute of Technology, 2017.

13 Jean-Christophe Filliâtre and Andrei Paskevich. Why3 — Where programs meet provers.
In Matthias Felleisen and Philippa Gardner, editors, European Symposium on Programming
(ESOP) 2013: Programming Languages and Systems, pages 125–128. Springer, 2013. doi:
10.1007/978-3-642-37036-6_8.

14 Lior Goldberg, Shahar Papini, and Michael Riabzev. Cairo — a Turing-complete STARK-
friendly CPU architecture. Cryptology ePrint Archive, Report 2021/1063, 2021. URL:
https://ia.cr/2021/1063.

15 Thomas C. Hales and Rodrigo Raya. Formal proof of the group law for edwards elliptic
curves. In Nicolas Peltier and Viorica Sofronie-Stokkermans, editors, International Joint
Conference on Automated Reasoning (IJCAR) 2020, pages 254–269. Springer, 2020. doi:
10.1007/978-3-030-51054-1_15.

16 StarkWare Industries. Cairo. https://www.cairo-lang.org/.
17 Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. CakeML: a verified

implementation of ML. In Suresh Jagannathan and Peter Sewell, editors, Principles of

https://doi.org/10.1007/s10817-020-09559-8
https://doi.org/10.1145/390013.808479
https://doi.org/10.1145/390013.808479
https://doi.org/10.1145/3497775.3503675
https://doi.org/10.1145/3497775.3503675
https://doi.org/10.1007/978-3-319-08970-6_6
http://eprint.iacr.org/2018/046
https://doi.org/10.1007/978-3-030-53518-6_5
https://doi.org/10.1145/2500365.2500592
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1145/360933.360975
https://doi.org/10.1145/3421473.3421477
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-642-37036-6_8
https://ia.cr/2021/1063
https://doi.org/10.1007/978-3-030-51054-1_15
https://doi.org/10.1007/978-3-030-51054-1_15
https://www.cairo-lang.org/

J. Avigad, L. Goldberg, D. Levit, Y. Seginer, and A. Titelman 7:19

Programming Languages (POPL) 2014, pages 179–192. ACM, 2014. doi:10.1145/2535838.
2535841.

18 K. Rustan M. Leino. Dafny: An automatic program verifier for functional correctness.
In Edmund M. Clarke and Andrei Voronkov, editors, Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR) 2010- 16th, pages 348–370. Springer, 2010. doi:10.1007/
978-3-642-17511-4_20.

19 Xavier Leroy. Formal verification of a realistic compiler. Commun. ACM, 52(7):107–115, 2009.
doi:10.1145/1538788.1538814.

20 The mathlib community. The Lean mathematical library. In Jasmin Blanchette and Catalin
Hritcu, editors, Certified Programs and Proofs (CPP) 2020, pages 367–381. ACM, 2020.
doi:10.1145/3372885.3373824.

21 Magnus O. Myreen, Konrad Slind, and Michael J. C. Gordon. Extensible proof-producing
compilation. In Oege de Moor and Michael I. Schwartzbach, editors, Compiler Construction
(CC) 2009, pages 2–16. Springer, 2009. doi:10.1007/978-3-642-00722-4_2.

22 Jonathan Protzenko, Bryan Parno, Aymeric Fromherz, Chris Hawblitzel, Marina Polubelova,
Karthikeyan Bhargavan, Benjamin Beurdouche, Joonwon Choi, Antoine Delignat-Lavaud,
Cédric Fournet, Natalia Kulatova, Tahina Ramananandro, Aseem Rastogi, Nikhil Swamy,
Christoph M. Wintersteiger, and Santiago Zanella Béguelin. Evercrypt: A fast, verified,
cross-platform cryptographic provider. In IEEE Symposium on Security and Privacy (SP)
2020, pages 983–1002. IEEE, 2020. doi:10.1109/SP40000.2020.00114.

23 Peter Schwabe, Benoît Viguier, Timmy Weerwag, and Freek Wiedijk. A Coq proof of the
correctness of X25519 in TweetNaCl. In Computer Security Foundations Symposium (CSF)
2021, pages 1–16. IEEE, 2021. doi:10.1109/CSF51468.2021.00023.

24 Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub, Karthikeyan Bhargavan, and
Jean Yang. Secure distributed programming with value-dependent types. J. Funct. Program.,
23(4):402–451, 2013. doi:10.1017/S0956796813000142.

25 Laurent Théry. Proving the group law for elliptic curves formally. Technical Report RT-0330,
INRIA, 2007. URL: https://hal.inria.fr/inria-00129237.

26 Jean Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan Protzenko, and Benjamin Beur-
douche. HACL*: A verified modern cryptographic library. In Bhavani Thuraisingham, David
Evans, Tal Malkin, and Dongyan Xu, editors, Conference on Computer and Communications
Security (CCS) 2017, pages 1789–1806. ACM, 2017. doi:10.1145/3133956.3134043.

ITP 2023

https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/3372885.3373824
https://doi.org/10.1007/978-3-642-00722-4_2
https://doi.org/10.1109/SP40000.2020.00114
https://doi.org/10.1109/CSF51468.2021.00023
https://doi.org/10.1017/S0956796813000142
https://hal.inria.fr/inria-00129237
https://doi.org/10.1145/3133956.3134043

No Unification Variable Left Behind: Fully
Grounding Type Inference for the HDM System
Roger Bosman #

KU Leuven, Belgium

Georgios Karachalias #

Tweag, Paris, France

Tom Schrijvers #

KU Leuven, Belgium

Abstract
The Hindley-Damas-Milner (HDM) system provides polymorphism, a key feature of functional
programming languages such as Haskell and OCaml. It does so through a type inference algorithm,
whose soundness and completeness have been well-studied and proven both manually (on paper)
and mechanically (in a proof assistant). Earlier research has focused on the problem of inferring the
type of a top-level expression. Yet, in practice, we also may wish to infer the type of subexpressions,
either for the sake of elaboration into an explicitly-typed target language, or for reporting those
types back to the programmer. One key difference between these two problems is the treatment
of underconstrained types: in the former, unification variables that do not affect the overall type
need not be instantiated. However, in the latter, instantiating all unification variables is essential,
because unification variables are internal to the algorithm and should not leak into the output.

We present an algorithm for the HDM system that explicitly tracks the scope of all unification
variables. In addition to solving the subexpression type reconstruction problem described above, it
can be used as a basis for elaboration algorithms, including those that implement elaboration-based
features such as type classes. The algorithm implements input and output contexts, as well as the
novel concept of full contexts, which significantly simplifies the state-passing of traditional algorithms.
The algorithm has been formalised and proven sound and complete using the Coq proof assistant.

2012 ACM Subject Classification Software and its engineering → Formal software verification;
Software and its engineering → Correctness

Keywords and phrases type inference, mechanization, let-polymorphism

Digital Object Identifier 10.4230/LIPIcs.ITP.2023.8

Supplementary Material Software (Source Code): github.com/rogerbosman/hdm-fully-grounding
archived at swh:1:dir:32c6b22d2de66001bf4c0ab5e255481de6561daa

Funding This work was partly funded by KU Leuven project C14/20/079#55685055.

Acknowledgements We would like to thank Steven Keuchel for their help and insights about Coq,
and their comments about a draft of this paper.

1 Introduction

Classic unification-based type inference algorithms for the Hindley–Damas–Milner (HDM)
system such as algorithm W [7] solve the type inference problem. That is, they determine
whether programs that lack type signatures are well-typed or not, by assigning every subterm
the most general type possible (an unconstrained unification variable) and solving any type
constraints that arise. Programs are well-typed if and only if all constraints can be solved.

However, depending on the setting, we would like to not only verify that a program is
well-typed but also determine the type of every subterm. The canonical example of this
is elaboration to System F [13, 19], but the problem arises in other settings as well. For

© Roger Bosman, Georgios Karachalias, and Tom Schrijvers;
licensed under Creative Commons License CC-BY 4.0

14th International Conference on Interactive Theorem Proving (ITP 2023).
Editors: Adam Naumowicz and René Thiemann; Article No. 8; pp. 8:1–8:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:roger.bosman@kuleuven.be
https://orcid.org/0000-0002-6693-4653
mailto:georgios.karachalias@tweag.io
mailto:tom.schrijvers@kuleuven.be
https://orcid.org/0000-0001-8771-5559
https://doi.org/10.4230/LIPIcs.ITP.2023.8
https://github.com/rogerbosman/hdm-fully-grounding
https://archive.softwareheritage.org/swh:1:dir:32c6b22d2de66001bf4c0ab5e255481de6561daa;origin=https://github.com/rogerbosman/hdm-fully-grounding;visit=swh:1:snp:9aeecfa8b01158317ae4d277dc45f1d587b15094;anchor=swh:1:rev:e833cd5c2d22b6c73e44c755c0bb22a51f8f5e35
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Fully Grounding Type Inference for the HDM System

example, to aid development, real-world implementations of programming languages often
allow developers to query the types of subterms, either via a REPL1 like GHCi [22] or in a
GUI-based editor, for example by supporting [24, 17] the Language Server Protocol [4]. We
name this the subterm type reconstruction problem.

An important way the type inference and subterm type reconstruction problem differ is
in how they treat underconstrained types (i.e. types with unconstrained parts). Consider the
following program below.

let x = (λf. unit) (λy. y) in . . .

Observe that the type of y is not subject to any constraints: since λy.y is passed to a function
that discards its argument and instead returns unit, it is never applied an argument, nor is
its output used, either which would impose constraints. For type checking this unconstrained
type is not a problem: the program is well-typed regardless of y’s type. However, this
situation is problematic for subterm type reconstruction, because we need to provide types
for both f and y. We may only output fully ground types; unification variables are internal to
the algorithm and should not be returned. Thus, to ground these types, we must instantiate
all remaining unification variables. Generally, there are two options: (1) to generalise over
the remaining variables, or (2) to default them to an arbitrary type (e.g. Unit).

(1) let x = Λa. (λf : a → a. unit) (λy : a. y) in . . .

(2) let x = (λf : Unit → Unit. unit) (λy : Unit. y) in . . .

Crucially, the type of the overall expression may not determine the instantiation, as type vari-
ables may not occur in this type. Consider again the example above. Since (λf. unit) (λy. y)
beta-reduces to unit, x’s type is Unit. Hence, the type of y does not occur in x’s type.
Therefore, additional machinery is needed to keep track of unsolved unification variables and
apply whichever grounding strategy has been chosen. While solutions to this problem are
not necessarily complicated in practice, implementations are often ad hoc, making reasoning
about their correctness hard.

In this paper, we address this very issue. We present algorithm R, a fully grounding
type inference algorithm for the HDM system. The algorithm explicitly tracks the scope of
unification variables, which allows for fully grounding type inference, meaning we can infer
fully ground types for all subexpressions. Since type grounding is internal to algorithm R, its
correctness proof (which we have mechanised in the Coq proof assistant [23]) carries over to
the grounding strategy as well. As far as we know, we are the first to mechanically formalize
a type inference algorithm for the HDM system that includes type grounding.

The algorithm utilizes in- and output contexts in the style of Dunfield and Krishnaswami
[10] as well as a novel approach to unification, using a concept we dub full contexts. Here,
contexts always contain all existing unification variables. Traditionally, inference algorithm
thread through a substitution to reflect equalities found during unification in other branches
of the derivation. With our approach, we avoid this threading: when an equality α := τ is
found, α can immediately be substituted for τ in the current context. Since the context is
full, no further occurrences of α exist, and the equality can be discharged in one go.

In summary, the specific contributions of this paper are:
This paper presents a new, fully grounding type inference algorithm R for ML-style
polymorphism. The algorithm keeps track of all unification variables and their scope and
uses the novel concept of full contexts to discharge all unifications in one go.

1 Read–Eval–Print Loop

R. Bosman, G. Karachalias, and T. Schrijvers 8:3

Γ ⊢W e1 : τ, θ1

θ1Γ ⊢W e2 : τ2, θ2

a#θ2θ1Γ
θ3 = unify(θ2τ ∼ τ2 → a)
Γ ⊢W e1e2 : θ3a, θ3θ2θ1

W-App

Γ ⊢W e : τ, θ

a = fv(τ) \ fv(θΓ)
Γ ⊢W e : ∀a.τ, θ

W-Gen

Ψin ⊢ e1 : [A1]T ⊣ Ψ1

Ψ1; {[A1]T} ⊢ e2 : [A2]T1 ⊣ Ψ2; {[A′
1]T ′}

α̂#Ψ2; (A′
1, A2)

Ψ2; (A′
1, A2, α̂); {α̂} ⊢ T ′ ∼ T1 → α̂ ⊣ Ψout; Aout; {Tout}

Ψin ⊢ e1 e2 : [Aout]Tout ⊣ Ψout

App

Ψin ⊢ e : [A]T ⊣ Ψout

gen(T, A) = S

Ψin ⊢ e : S ⊣ Ψout

Gen

Figure 1 Application and generalisation of algorithm W (top) and algorithm R (bottom).

We have mechanised both algorithm R as well as its correctness proof in the Coq proof
assistant. Since algorithm R is fully grounding, we are – to our knowledge – the first to
mechanically prove the correctness of an inference algorithm that features grounding. We
admit an axiom about unification (see Section 5.3) and about the declarative specification
(see Section 6.3).

2 Overview

This section describes the difference between unification-based algorithms like algorithm W
and our algorithm R. We first describe how algorithm W loses track of unconstrained type
variables. We then propose our algorithm R, which explicitly tracks the scope of unification
variables, and show how this information yields fully grounding type inference.

Algorithm W

Unification-based algorithms like algorithm W derive equality constraints at application sites
e1 e2. Rule W-App of Figure 1 describes algorithm W in the case of applications.

Let us apply this to the example (λf. unit) (λy. y) (shown in Section 1) under an empty
context. First, we infer the type a1 → Unit for λf. unit. Then, we infer the type a2 → a2 for
(λy. y). Both steps result in empty unifiers θ1, θ2. Then, with a3 fresh, we unify a1 → Unit
with (a2 → a2) → a3, yielding θ = (a3 := Unit, a1 := a2 → a2). Finally, we return θ(a3),
which equates to Unit. Since algorithm W only returns the function’s result type Unit, it
loses track of free variables that only occur in the parameter’s type (i.e. a2). As a2 is no
longer reachable, it will not be further constrained and will remain unsolved.

Algorithm W’s generalisation logic, extracted as W-Gen2 in Figure 1, turns an expres-
sion’s monotype into a type scheme. In our running example, since the monotype Unit does
not contain any free variables, algorithm W generalises over the empty list, which simply
yields the Unit type scheme. Observe in particular that the unsolved unification variable a2
is not generalised over. Hence, the type for λy. y remains a2 → a2, but we do not know in
which context a2 is defined, and whether or where it can be generalised.

2 Normally, this logic would be incorporated as part of the rule for let expressions.

ITP 2023

8:4 Fully Grounding Type Inference for the HDM System

x Variables a Skolem type variables
Terms e ::= x | unit | λx.e | e1 e2 | let x = e1 in e2

Monotypes τ ::= a | Unit | τ1 → τ2
Type Schemes σ ::= τ | ∀a.σ

Scoping/Typing Context Γ ::= • | Γ; a | Γ; x : σ

Figure 2 Syntax of the Declarative Specification.

Algorithm R

Our algorithm solves this problem by not only inferring the type T of an expression but also
a list of unification variables that are in scope for T. By “in scope” we mean those variables
that are safe to generalise over. Note that this list need not be a superset or subset of the
free unification variables of T. We denote unification variables as α̂ with A denoting a list of
α̂. Furthermore, we use [A]T to denote the type T having A in scope.

Algorithm R utilises in- and output contexts [10] as well as the notion of full contexts
to avoid having to pass around unifiers θ. We postpone fully introducing algorithm R to
Section 4.2. For now, we present an informal preview of the application of algorithm R to
the same example as covered above, highlighting how algorithm R infers fully ground types,
and showing the benefit of full contexts.

For the application (λf. unit) (λy. y), in App, we first derive the type [α̂1](α̂1 → Unit)
for λf. unit. Then, we infer the type [α̂2](α̂2 → α̂2) for λy. y. Here our notion of full
contexts comes in: instead of deriving a unifier that needs to be applied to the type of
λf. unit, we instead append [α̂1](α̂1 → Unit) to the input context of the inference on λy. y,
and obtain a possibly further instantiated [A′

1]T ′ from the output context (as seen in rule
App in Figure 1). Here, [A′

1]T ′ = [α̂1](α̂1 → Unit).
With α̂3 fresh, we unify [α̂1](α̂1 → Unit) with [α̂3, α̂2]((α̂2 → α̂2) → α̂3). Again, we

apply our notion of full contexts, appending all variables in scope for our to-be-unified
types ([α̂3, α̂1, α̂2]) to the context, allowing us to retrieve a possibly further instantiated
Aout from the output context. Here, Aout = [α̂2]. Furthermore, we append α̂3 once more,
now occurring as a type instead of an in-scope unification variable. Since α̂3 enjoys any
substitution occurring during unification, we obtain the possibly further instantiated Tout

from the output context. Here, Tout = Unit. Finally, we return [α̂2]Unit. Observe that,
even though we are dropping the argument type, we are not dropping the variables in
scope of the argument type. Generalisation, as displayed in Gen, of type [α̂2]Unit is
(almost) trivial.

To conclude this section, we have shown that our algorithm R not only infers a type T,
but also a list of type variables A in scope for T. This way it can infer a fully ground type
for every subterm. The following sections formally introduce algorithm R.

3 Declarative System

Before we present our algorithm, we present the declarative system that serves as its
specification. The declarative system is essentially the syntax-directed system of Clement et
al. [6], with two changes. First, like System F [13, 19], we explicitly track type variables in
an ordered context. Consequently, we only generalise over variables that occur at the end of
the context (i.e., not occurring to the left of term variable bindings). The second change is a
purely syntactic one: we have extracted generalisation into a separate judgment.

R. Bosman, G. Karachalias, and T. Schrijvers 8:5

Γ ⊩mono e : τ Γ ⊩poly e : σ Term Typing

(x : σ) ∈ Γ Γ ⊩ σ ≥ τ

Γ ⊩mono x : τ
TmVar

Γ ⊩mono unit : Unit
TmUnit

Γ ⊩ty τ1

Γ; x : τ1 ⊩mono e : τ2

Γ ⊩mono λx.e : τ1 → τ2
TmAbs

Γ ⊩mono e1 : τ1 → τ2

Γ ⊩mono e2 : τ1

Γ ⊩mono e1 e2 : τ2
TmApp

Γ ⊩poly e1 : σ

Γ; x : σ ⊩mono e2 : τ

Γ ⊩mono (let x = e1 in e2) : τ
TmLet

a#Γ Γ; a ⊩mono e : τ

gen(τ, a) = σ

Γ ⊩poly e : σ
TmGen

Γ ⊩ty σ Type Well-formedness

a ∈ Γ
Γ ⊩ty a Γ ⊩ty Unit

Γ ⊩ty τ1 Γ ⊩ty τ2

Γ ⊩ty τ1 → τ2

Γ; a ⊩ty σ

Γ ⊩ty ∀a.σ

wf(Γ) Scoping/Typing Context Well-formedness

wf(Γ)
wf(Γ; •)

wf(Γ) a /∈ Γ
wf(Γ, a)

wf(Γ) Γ ⊩ty σ

wf(Γ; x : σ)

Γ ⊩ σ1 ≥ σ2 Type Subsumption

Γ ⊩ τ ≥ τ

a#Γ Γ; a ⊩ σ1 ≥ σ2

Γ ⊩ σ1 ≥ ∀a.σ2

Γ ⊩ty τ1 Γ ⊩ [τ1/a]σ ≥ τ2

Γ ⊩ ∀a.σ ≥ τ2

Figure 3 Typing of the Declarative Specification.

3.1 Syntax

Figure 2 displays the syntax of the declarative system. The terms and types are as given by
Damas and Milner [7]. Terms consist of term variables, unit values, lambda abstractions,
applications, and let-bindings. Type schemes are in Skolem normal form, consisting of a
number of quantifiers in front of a monotype. Finally, contexts Γ track the scope of type and
term variables that are in scope of an expression.

3.2 Typing

Figure 3 displays the typing rules of our declarative system. As stated, we have extracted
the generalisation logic in a separate judgment, giving rise to both a monomorphic typing
judgment Γ ⊩mono e : τ, and a polymorphic judgment Γ ⊩poly e : σ, the latter of which is
exclusively used in the typing rule for let-bindings TmLet. Rule TmGen uses the auxiliary
function gen(τ, a), which generalises the passed τ over the passed a in the usual way. The
type- and context well-formedness judgments Γ ⊢ty σ and wf(Γ) are standard. Finally, rule
TmVar uses type subsumption [7, 6] to instantiate a type scheme. Since subsumption is
only used in this manner, we could have given it the signature Γ ⊩ σ ≥ τ and omitted the
middle rule. Yet, the advantage of the subsumption rules in Figure 3 is that subsumption

ITP 2023

8:6 Fully Grounding Type Inference for the HDM System

x Variables a Skolem type variables α̂ Existential type variables
Terms e ::= x | unit | λx.e | e1 e2 | let x = e1 in e2

Monotypes T ::= a | α̂ | Unit | T1 → T2
Type Schemes S ::= T | ∀a.S

Local Existential Context A ::= • | A, α̂

Scoping/Typing Context Ψ ::= • | Ψ; a | Ψ; A | Ψ; x : S | Ψ; {[A]S}
Type Equalities E ::= • | T1 ∼ T2, E

{S} .= {[•]S}

Figure 4 Syntax of Algorithm R.

proofs can be done in multiple parts and combined using transitivity.

4 Algorithmic System

We now introduce algorithm R. We discuss its syntax, rules and unification algorithm.

4.1 Syntax
Figure 4 displays the syntax used by algorithm R. Observe that we now have two kinds
of type variables: like our declarative system we have (Skolem) type variables representing
types generalised over by a type scheme. We have added unification variables α̂, which we
refer to as existential type variables. Like Skolem type variables they are placeholders which
can be substituted for other types. Accordingly, monotypes T may now also take the form of
an existential type variable.

Contexts Ψ differ from their declarative counterparts in two significant ways. First,
besides Skolem type variables, contexts also track the scope of existential type variables,
similar to [10, 30]. However, unlike Skolem type variables, they are not simply appended as
individual variables, but instead come in a list-like structure A. As unification may both
split and solve existential type variables, reasoning about ranges of existential type variables
traditionally [10] requires adding markers to the context. By putting them in a list we obtain
the same reasoning power, without having to add explicit markers.

Secondly, types with their list of existential variables in scope may live in the context as
an invisible object {[A]S}. These invisible objects, when combined with input and output
contexts, are the essence behind full contexts, which we already introduced in Section 2.
These allow us to append As and Ss on the context in branches of the inference algorithm
that normally would not have them in scope. Invisible objects are invisible to membership ∈,
but visible to both substitution and fresh variable generation #.

4.2 Inference algorithm
Figure 5 shows the rules of algorithm R. Its main judgments feature in and output contexts,
where the output context consists of the input context subjected to all unifications made
in the derivation, which means sequences A may shrink or grow and substitutions may be
made, but their basic structure is the same.

Rule Var looks up a variable in the context, and instantiates polytype S to [A]T using
instantiation, discussed below. Rule Unit is trivial.

R. Bosman, G. Karachalias, and T. Schrijvers 8:7

Ψin ⊢ e : [A]T ⊣ Ψout Type Inference

(x : S) ∈ Ψ Ψ ⊢ S ≥ [A]T
Ψ ⊢ x : [A]T ⊣ Ψ

Var
Ψ ⊢ unit : [•]Unit ⊣ Ψ

Unit

α̂#Ψin

Ψin; α̂; x : α̂ ⊢ e : [A2]T2 ⊣ Ψout; A1; x : T1

Ψin ⊢ λx.e : [A1, A2](T1 → T2) ⊣ Ψout

Abs

Ψin ⊢ e1 : S ⊣ Ψ
Ψ; x : S ⊢ e2 : [A]T ⊣ Ψout; x : S′

Ψin ⊢ (let x = e1 in e2) : [A]T ⊣ Ψout

Let

Ψin ⊢ e1 : [A1]T ⊣ Ψ1 Ψ1; {[A1]T} ⊢ e2 : [A2]T1 ⊣ Ψ2; {[A′
1]T ′}

α̂#Ψ2; (A′
1, A2) Ψ2; (A′

1, A2, α̂); {α̂} ⊢ T ′ ∼ T1 → α̂ ⊣ Ψout; Aout; {Tout}
Ψin ⊢ e1 e2 : [Aout]Tout ⊣ Ψout

App

Ψin ⊢ e : S ⊣ Ψout Generalization

Ψin ⊢ e : [A]T ⊣ Ψout gen(T, A) = S

Ψin ⊢ e : S ⊣ Ψout

Gen

Ψ ⊢ty S Type Well-formedness

a ∈ Ψ
Ψ ⊢ty a

α̂ ∈ Ψ
Ψ ⊢ty α̂ Ψ ⊢ty Unit

Ψ ⊢ty T1 Ψ ⊢ty T2

Ψ ⊢ty T1 → T2

Ψ; a ⊢ty S

Ψ ⊢ty ∀a.S

wf(Ψ) Scoping/Typing Context Well-formedness

wf(Ψ)
wf(Ψ; •)

wf(Ψ) A#Ψ
wf(Ψ, A)

wf(Ψ) Ψ ⊢ty S

wf(Ψ; x : S)
wf(Ψ; A) Ψ; A ⊢ty T

wf(Ψ; {[A]T})

Ψ ⊢ S ≥ [A]T Polymorphic Type Instantiation

Ψ ⊢ T ≥ [•]T
InstMono

α̂#Ψ Ψ; (α̂) ⊢ [α̂/a]S ≥ [A]T
Ψ ⊢ ∀a.S ≥ [(α̂), A]T

InstPoly

Figure 5 Typing of Algorithm R.

While Abs may visually look different from conventional abstraction typing rules, it
follows the same approach, with added machinery to derive the list of existential type
variables in scope. Term variable x is assigned a fresh existential variable α̂; this assignment
is added to the context as well as (the singleton list) α̂. We utilize full contexts to let [α̂]α̂
enjoy any unifications made during the recursive inference by appending them to the input
context and obtaining the possibly further instantiated [A1]T1 from the output context.

Rule App, as already discussed in Section 2, first infers a type [A1]T for e1. Inference
proceeds on e2, with the input environment extended with [A1]T, by using an invisible object.
By usage of this invisible object we ensure that we can safely extend the context with [A1]T,
because it does not bring either A1 or T into scope. We now unify e1’s type with a function
consisting of e2’s type as argument, and fresh variable α̂ as result. We do so under an
environment extend with all existential variables in scope for both types being unified, as
well as α̂, occurring as a type, instead of an in-scope variable. For this second occurrence of
α̂ we again use an invisible object, which avoids us bringing α̂ into scope twice. We obtain

ITP 2023

8:8 Fully Grounding Type Inference for the HDM System

the results from the unification’s output.
Rule Gen, as already discussed in Section 2, is (almost) trivial: based on the recursive,

monomorphic inference, we generalise T over A. Note that we do not derive a list of variables
in scope of S: since we generalise over all existential variables in scope, this list would always
be empty. Finally, we have rule Let, which first infers a polytype using Gen. Inference
proceeds on e2, on which the output is based.

Type Instantiation

Type instantiation is of form Ψ ⊢ S ≥ [A]T, where context Ψ and polytype S are inputs, and
the monomorphic instance T and list in scope A are outputs. Essentially, type instantiation
takes a type of form ∀a

i
.T, removes all quantifiers, and generates a fresh existential type

variable α̂i for each Skolem type variable ai, and returns [α̂i]([α̂i
/ai]T). For example, the

fst projection of pairs instantiates to • ⊢ ∀a1.∀a2.(a1, a2) → a1 ≥ α̂1, α̂2 → α̂1.

Well-formedness

Type well-formedness for the algorithmic system is a moderate extension of the declarative
one, adding a single rule that checks if existential type variables α̂ are in the context Ψ.
Observe that, since objects are invisible to set membership ∈, {[α̂]Unit} ̸⊢ty α̂.

Contexts are well-formed iff all contained existential type variables are unique and all
contained types are well-formed w.r.t. the context to their left, with any A enclosed in an
invisible object temporarily added to the context. The notation A#Ψ ensures not only
that A is fresh w.r.t. Ψ, but also that all α̂ in A are fresh w.r.t. each other. Since objects
are visible to freshness #, context {[α̂]Unit}; α̂ is ill-formed. Another interesting detail is
that, while contexts Ψ may contain Skolem type variables a (and this is used to verify the
well-formedness of types), well-formed contexts may not contain any Skolem type variables.

4.3 Unification
Figure 6 displays our unification algorithm. The judgment Ψin ⊢ E ⊣ Ψout unifies a list of
constraints E of form T1 ∼ T2 under input context Ψin and produces an output context
Ψout. It can be viewed as the transitive closure of the single-step unification judgment
Ψ1 ⊢ E1 −→ Ψ2 ⊢ E2, restricted to those sequences that end in •.

Hole Notation

We use the syntax Ψ[α̂] to denote the context ΨL; (AL, α̂, AR); ΨR, where Ψ[] is the context
ΨL; (AL, AR); ΨR. A multi-hole notation splits the context into more parts. For example,
Ψ[α̂1][α̂2] means Ψ1; (A1, α̂1, A2, α̂2, A3); Ψ2 or Ψ1; (A1, α̂1, A2); Ψ2; (A3, α̂2, A4); Ψ3. Note
that hole notation does not split invisible objects.

Single-step Unification

The single-step unification algorithm essentially is a subset of Zhao et al.’s [30], taking only
the cases that apply. Rules 1 and 2 simply discharge already-solved constraints. Rule 3 splits
constraints on function types. Rules 7 and 8 deal with constraints on two existential type
variables. Since our contexts are ordered, we avoid existential type variables escaping their
scope by always substituting away the rightmost variable. Rules 9 and 10 solve constraints
with an existential variable on one side, and Unit on the other.

R. Bosman, G. Karachalias, and T. Schrijvers 8:9

Ψin ⊢ E ⊣ Ψout Unification Algorithm

Ψ ⊢ • ⊣ Ψ
SolNil

Ψin ⊢ T1 ∼ T2, E −→ Ψ ⊢ E Ψ ⊢ E ⊣ Ψout

Ψin ⊢ T1 ∼ T2, E ⊣ Ψout

SolCons

Ψ1 ⊢ E1 −→ Ψ2 ⊢ E2 Unification Algorithm (Single-step)

Ψ ⊢ Unit ∼ Unit, E −→1 Ψ ⊢ E
Ψ ⊢ α̂ ∼ α̂, E −→2 Ψ ⊢ E

Ψ ⊢ (T1 → T2) ∼ (T3 → T4), E −→3 Ψ ⊢ T1 ∼ T3, T2 ∼ T4, E

Ψ[α̂] ⊢ α̂ ∼ (T1 → T2), E −→4 [α̂1 → α̂2/α̂](Ψ[α̂1, α̂2] ⊢ (α̂1 → α̂2) ∼ (T1 → T2), E)
where α̂ /∈ fv(T1 → T2) and α̂1, α̂2#Ψ[α̂]

Ψ[α̂] ⊢ (T1 → T2) ∼ α̂, E −→5 [α̂1 → α̂2/α̂](Ψ[α̂1, α̂2] ⊢ (T1 → T2) ∼ (α̂1 → α̂2), E)
where α̂ /∈ fv(T1 → T2) and α̂1, α̂2#Ψ[α̂]

Ψ[α̂1][α̂2] ⊢ α̂1 ∼ α̂2, E −→7 [α̂1/α̂2](Ψ[α̂1][] ⊢ E)
Ψ[α̂1][α̂2] ⊢ α̂2 ∼ α̂1, E −→8 [α̂1/α̂2](Ψ[α̂1][] ⊢ E)

Ψ[α̂] ⊢ α̂ ∼ Unit, E −→9 [Unit/α̂](Ψ ⊢ E)
Ψ[α̂] ⊢ Unit ∼ α̂, E −→10 [Unit/α̂](Ψ ⊢ E)

Figure 6 Unification Algorithm.

Finally, rules 4 and 5 solve constraints with an existential variable α̂ on one side, and a
function type T1 → T2 on the other. Because our contexts are ordered, and both T1 and T2
may contain existential variables to the left of α̂, we do not directly unify α̂ := T1 → T2, but
instead split α̂ into a function type α̂1 → α̂2, where α̂1 and α̂2 are fresh w.r.t. the context.
This way, rules 7 and 8 may correctly determine which existential variable to eliminate.
Because of our notion of full contexts, after substitution we can discharge the fact that
α̂ := α̂1 → α̂2, since no other occurrences of α̂ exist. Finally, to ensure termination, we
require α̂ does not occur in T1 → T2.

5 Metatheory

To reason about how declarative and algorithmic derivations relate, we first need a way of
converting between them. We do so through context instantiation, which takes an algorithmic
context and converts it to a declarative one. However, this instantiation leaves us with
a problem: what to do about invisible objects? To make reasoning about the declarative
system easier, we extend declarative contexts Γ with a rule for objects Γ; {[a]σ}, and assert
we can rewrite these away.

▶ Definition 1. Γ1 ≡a,x Γ2 ≜ (∀a, a ∈ Γ1 ⇐⇒ a ∈ Γ2) ∧ (∀(x : σ), (x : σ) ∈ Γ1 ⇐⇒ (x :
σ) ∈ Γ2)

▶ Lemma 2. If Γ1 ⊩mono e : τ and Γ1 ≡a,x Γ2, then Γ2 ⊩mono e : τ.

5.1 Context instantiation
Figure 7 shows simplified context instantiation rules, which implicitly coerce Ψs to Γs and
allow for the appending of a and A. They are meant to convey the intuition; their actual
full definition can be found in the supplementary materials.

ITP 2023

8:10 Fully Grounding Type Inference for the HDM System

Ψ ⇝ Γ Context instantiation

Γ ⇝ Γ

Γ; a ⊢ty τ

Γ; a; [τ/α̂]A; Ψ ⇝ Γ′

Γ; (α̂; A); Ψ ⇝ Γ′

Γ; a1; a2 ⊢ty τ

Γ; {[a1; a2; A][τ/α̂]T}; Ψ ⇝ Γ′

Γ; {[a1; α̂; A]T}; Ψ ⇝ Γ′

Figure 7 Context instantiation.

For existential type variables outside invisible objects, we choose a sequence of Skolem
type variables a and a declarative type τ that is well-typed w.r.t. the already-instantiated
context Γ to its left as well as the chosen sequence a. We proceed by replacing α̂ by a,
and substituting τ for α̂ in the remaining, still-to-be instantiated Ψ to its right. For α̂’s in
invisible objects the logic is similar, but the generated sequences A and substitutions stay
local to the object itself.

5.2 Soundness
Using context instantiation, we can formulate the soundness of the algorithmic system. We
want to show that, for every closed algorithmic derivation, any instantiation leads to a valid
derivation in the declarative system.

▶ Theorem 3 (Soundness of the algorithmic system). If • ⊢ e : [A]T ⊣ • then for all
A; {T}⇝ {τ} we have that • ⊩mono e : τ.

This formulation is too weak to prove directly. Instead, we prove a more general variant,
from which soundness follows.

▶ Lemma 4. Given wf(Ψin):
1. If Ψin ⊢ e : [A]T ⊣ Ψout then for all Ψout; A; {T}⇝ Γ; {τ} we have that Γ ⊩mono e : τ.
2. If Ψin ⊢ e : S ⊣ Ψout then for all Ψout; {S}⇝ Γ; {σ} we have that Γ ⊩poly e : σ.
The proof proceeds by mutual induction on the monomorphic and polymorphic algorithmic
typing judgments. As the given instantiation instantiates the output context, we reason
backwards through the algorithm. As a consequence, for rules App and Gen that have
multiple recursive hypotheses, to invoke the induction hypotheses the second time we must
produce an instantiation of the intermediate context from the instantiation of the output
context. To allow for this, we have proven several lemmas about the backwards preservation
of instantiation.

▶ Lemma 5. Both typing judgments and unification preserve instantiation. That is:
1. If Ψin ⊢ e : [A]T ⊣ Ψout and Ψout ⇝ Γ, then Ψin ⇝ Γ.
2. If Ψin ⊢ e : S ⊣ Ψout and Ψout ⇝ Γ, then Ψin ⇝ Γ.
3. If Ψin ⊢ E ⊣ Ψout and Ψout ⇝ Γ, then Ψin ⇝ Γ.

5.3 Completeness
Completeness states that, for any declarative derivation, there exists an algorithmic derivation
that instantiates to it.

▶ Theorem 6 (Completeness of the algorithmic system). For each declarative derivation there
exists an algorithmic derivation that instantiates to it. That is,
1. If • ⊩mono e : τ then there exists A T such that A; {T}⇝ {τ} and • ⊢ e : [A]T ⊣ •.

R. Bosman, G. Karachalias, and T. Schrijvers 8:11

2. If • ⊩poly e : σ then there exists σ′ such that • ⊢ e : σ′ ⊣ • and ⊩ σ′ ≥ σ.

Observe that (2) from Theorem 6 asserts that a polytype σ′ not containing any existential
type variables is inferred. In other words, σ′ is fully ground. Again, we proceed by proving a
more general lemma.

▶ Lemma 7. Given wf(Ψin):
1. If Γ ⊩mono e : τ, Γ′ ≦a,x Γ, and Ψin; Ain ⇝ Γ′, then there exists T A Ψout Γ′′ a s.t.

Γ′ = Γ′′; a, Ψin ⊢ e : [A]T ⊣ Ψout and Ψout; A; {T}; Ain ⇝ Γ′′; {τ}; a.
2. If Γ ⊩poly e : σ, Γ′ ≦a,x Γ, and Ψin; Ain ⇝ Γ′, then there exists S σ′ Ψout Γ′′ a s.t.

Γ′ = Γ′′; a, Ψin ⊢ e : S ⊣ Ψout, Ψout; {S}; Ain ⇝ Γ′′; {σ′}; a, and Γ′ ⊩ σ′ ≥ σ.

Here, Γ1 ≦a,x Γ2 iff two conditions hold. First, the contexts must contain the same type
variables in the same order. Second, their term bindings (x : S) must (1) bind the same
names in the same order to (2) types that are related by subsumption under Γ1.

Finally, we admit the following property about unification:

▶ Axiom 8. If a unifier exists, unification succeeds. That is, if θT1 = θT2 and Ψin ⇝ Γ then
there exists Ψout such that Ψin ⊢ T1 ∼ T2 ⊣ Ψout and Ψout ⇝ Γ.

5.4 Decidability

In our algorithm there is only one part of which decidability is not obvious: unification.
Hence, we prove its decidability here.

▶ Theorem 9 (Decidability of unification). Given ∀T1T2. T1 ∼ T2 ∈ E =⇒ (Ψin ⊢ty T1
∧ Ψin ⊢ty T2), it is decidable whether there exists a Ψout such that Ψin ⊢ E ⊣ Ψout.

The proof proceeds by induction on the lexicographic measure ⟨|Ψin|
α̂

, |E | + 2 ∗ |E |→⟩,
representing the number of existential type variables in Ψin and the length and number of
function arrows in E , respectively. All rules directly reduce this measure, except for rules
4 and 5. For these, we need an additional lemma, from which these cases follow. Let us
categorize lists of constraints where one side is an existential type variable that does not
occur in the rest of the list as Ei, and assert that we can solve any head of pattern Ei without
increasing the length of the tail.

Ei ::= •
| α̂ ∼ T, Ei with α̂ ̸∈ Ei

| T ∼ α̂, Ei with α̂ ̸∈ Ei

▶ Lemma 10 (Solving Ei). For all Ψin Ei E there exist Ψout E ′ such that Ψin ⊢ Ei + E −→∗

Ψout ⊢ E ′ and |Ψout|α̂ = |Ψin|
α̂

− |Ei|.

Proof. By induction on ⟨|Ei| + 2 ∗ |Ei|→⟩. Rules 1, 9 and 10 do not apply. The rest
directly reduce the measure, except for (again) rules 4 and 5. We consider rule 4, where
Ei = α̂ ∼ (T1 → T2), E ′

i . It must be immediately followed by rule 3, which gives us
Ψin[α̂] ⊢ α̂ ∼ (T1 → T2), Ei, E −→∗ [α̂1 → α̂2]Ψin[α̂1, α̂2] ⊢ α̂1 ∼ T1, α̂2 ∼ T2, Ei, E . Be-
cause we know α̂ ̸∈ E ′

i , we know any substitution of α̂ on Ei does not increase |Ei|→. Even
though we have added an existential variable, we end up with a decreased measure because
we have eliminated an arrow, which counts for two. ◀

ITP 2023

8:12 Fully Grounding Type Inference for the HDM System

6 Mechanization

We have mechanised both the declarative specification presented in Section 3 as well as
the algorithmic system presented in Section 4 in the Coq proof assistant [23]. Furthermore,
we have proven the algorithmic system sound and correct w.r.t. the declarative speciation
following the approach described in Section 5. The mechanization is implemented by
generating definitions with Ott [20] and its backend [29] for the locally nameless representation
[2, 5, 15]. To reason about the locally nameless representation, we have generated many
useful lemmas with LNgen [1]. The mechanisation consists of ±700 handwritten lines of Ott
DSL, ±10 000 lines of handwritten Coq code, ±900 lines of Coq code generated by Ott, and
±6 800 lines of Coq code generated by LNgen.

We start this section with a discussion of these tools and the locally nameless representa-
tion. Then, we discuss the major points of difference between what is presented in the paper
and the formalization. The mechanisation as well as an exhaustive list of the delta between
the paper and the mechanization are available in the supplementary material, as well as at
https://github.com/rogerbosman/hdm-fully-grounding.

6.1 Ott
Our mechanization uses the Sewel et al.’s Ott [20] DSL to express both the syntax and
inference rules in this paper and generate corresponding (LATEX and) Coq definitions, as well
as boilerplate definitions such as substitutions and free variable functions. As Sewell et al.
already argue the general benefits of Ott, here we focus only on the aspects that we found
particularly useful.

Typically, manually written LATEX specifications make notational liberties that do not
translate well to Coq. For example, we have taken such a liberty in the environment
instantiation judgment as discussed in Section 5.1. Ott rejects such ill-typed definitions.
Hence, it forces well-typed formulations that can be translated to Coq, but are more verbose
in LATEX. As a compromise, we have stuck to the Ott-generated LATEX during the development
and have manually produced a cleaned-up version for this paper.3

A clear advantage of the Ott-generated outputs is that they both have the same single
source of truth. Thus, the LATEX output can be used to reason about the Coq output.
Another substantial advantage is that Ott takes care of generating boilerplate definitions
such as free variable functions and substitutions.

6.2 The locally nameless representation
Formalizations that contain abstraction must represent variables in some way. Typically,
variables are either referred to by explicit name – which suffers from the lack of built-in
α-equivalence, and have issues such as shadowing – or a nameless representation such as De
Bruijn indices [8], which are sensitive to the context in which they are defined, requiring
shifting operations whenever such changes occur.

The locally nameless representation combines the two approaches: it uses a named rep-
resentation for free variables, and a nameless representation for locally bound variables. As a
consequence, each alpha-equivalence class of closed lambda terms has a unique representation.
At the same time, terms are less sensitive to changes in their context. For example, the
lambda expression λx. x y is represented as λ. 0y, because x is locally bound, while y is

3 We describe the difference in Section 6.4.

https://github.com/rogerbosman/hdm-fully-grounding

R. Bosman, G. Karachalias, and T. Schrijvers 8:13

free. This implies a well-formedness condition, namely that every nameless variable has
a corresponding abstraction, in other words, that nameless variables are not free. This
condition is called locally closed.

A locally bound variable can be converted to a named, free variable through opening,
where any reference to the outermost abstraction is replaced by a named variable. We use ex

to denote opening term e with name x. It’s dual is closing. We use \xe to denote closing e

w.r.t. x. Our mechanization uses the locally nameless representation for both the declarative
and algorithmic term variables x and for the Skolem type variables a. Since existential type
variables α̂ do not have a matching abstraction, they are always free, and thus use the named
representation.

Cofinite Quantification
To preserve the locally closed property, whenever we go under a binder, we have to open the
term with some named variable quantified over in some way. There are several ways to go
about this. One way would be to use existential quantification, where we assert that there
exists some name not in the free variables of the term being opened. Consider rule ∀Wf-Ex
below, which applies this principle to the well-formedness of declarative type schemes.

∃a.(a ̸∈ fv(σ) ∪ fv(Γ) Γ; a ⊢ty σa)
Γ ⊢ty ∀.σ

∀Wf-Ex
∃L.∀a.a ̸∈ L. Γ; a ⊢ty σa

Γ ⊢ty ∀.σ
∀Wf-Cof

As described by Aydemir et al. [2], existential quantification is weak as an elimination form.
For example, since eliminating this rule only gives well-formedness for one particular name,
renaming lemmas are required for deriving well-formedness over any other name.

Universal quantification suffers from the opposite problem: it can be cumbersome to
prove the well-formedness of any variable satisfying the freshness constaints. In particular,
sometimes we want to exclude more variables than just those in fv(σ) ∪ fv(Γ).

Cofinite quantification, as displayed by rule ∀Wf-Cof above, offers exactly this. Here,
we quantify universally over any name not in some existentially quantified set L. This
elimination form is much stronger than with existential quantification, because we know
well-formedness to hold for any a ̸∈ L, instead of just one, avoiding, in general, the need for
renaming lemmas. Yet, as an introduction form, it is much easier to use than with universal
quantification, because it allows us to exclude finitely many names, instead of just the fixed
set of free variables. While cofinite quantification is not free of quirks (particularly the control
flow of quantification), which we describe below, in general, it strikes the best balance.

Ott’s Locally Nameless Backend & LNgen

One drawback of cofinite quantification is that implementation details of the variable
representation leak to the LATEX inference rules. Here, Ott’s locally nameless backend
[29] comes in handy: it automatically converts inference rules as specified in Sections 3 and 4
to those that use a (cofinitely quantified) locally nameless presentation for Coq only. The
LATEX definitions render as the original specification.

By default, Ott’s locally nameless backend generates definitions for opening terms, but
not for closing them. Weirich’s Ott fork [27] adds the generation of these closing definitions.

The opening and closing operations are subject to various laws. One of these, which will
become relevant later, is the following.

▶ Proposition 11 (Subsitution as Open and Close). Subsitution can be defined in terms of
open and close. That is, [T/a]S = (\aS)T .

ITP 2023

8:14 Fully Grounding Type Inference for the HDM System

Proposition 11 as well as many others are automatically generated and proven by LNgen [1],
which bases itself on the Ott specification. Our mechanization uses these laws extensively.

6.3 Quirks of the locally nameless representation
As with any variable representation, some quirks arise. We cover three here.

Generalisation

First is the gen function used in Gen in Figure 5, and its definition4 is displayed below.

gen(S, • , _) = S

gen(S,(A; α̂), L) = let S′ = gen(S, A, L), a#fv(S′) ∪ L

in ∀.\a([a/α̂] S′)

Since variable closing closes nameless Skolem type variables a only, we first substitute in a
freshly generated one, only to close it away immediately after. While it would be possible to
manually define a closing operation that replaces (named) existential type variables with
unnamed Skolem type variables, we would lose the ability to reason over them with the
laws generated by LNgen. While we cannot completely avoid having to manually replicate
some of these in some instances, here we can avoid doing so. Fortunately, because of these
same LN-generated laws, reasoning about this is straightforward. If we open the generalised
term with some T, we get (\a([a/α̂] S′))T . By Proposition 11, this can be rewritten into
[T/a][a/α̂] S′, which simplifies to [T/α̂] S′.

Lists of variables

Rule TmGen in Figure 2 quantifies over a list of variables a. Quantifying cofinitely over
and opening with a list of type variables instead of a singular variable requires additional
machinery and is not supported by Ott. Attempts at patching the generated definitions
manually were unsuccessful (we discuss this again in Section 8). As a consequence, the list
of variables a is quantified existentially, which is why we used an axiom in our proof of the
weakening lemma for declarative typing judgments.

Control Flow

When inducting over typing derivations, we have existentially quantified sets of variables
L, and universally quantified variables fresh w.r.t. L. Sets L flow downwards from the
induction hypothesis to the conclusion. Yet, variables flow upwards from the conclusion to
the induction hypothesis. Consider the abstraction case for completeness, which essentially
consists of proving the following implication.

(∃L.∀x.x /∈ L =⇒ ∃ Ψout A T2. Ψin; [α̂]; x : α̂ ⊢ ex : [A2]T2 ⊣ Ψout; A1; x : T1
∧ Ψout; A1; x : T1; A2; {T2}⇝ Γ; x : τ1; {τ2})

=⇒ Ψin ⊢ λ.e : [A1; A2]T1 → T2 ⊣ Ψout ∧ Ψout; A1; A2; {T1 → T2}⇝ Γ; {τ1 → τ2}

4 Observe that gen is parametrised with a third argument, unspecified in Gen, which is included in the
set w.r.t. fresh variables are generated, i.e. a#fv(S′) ∪ L. Since fresh variables are immediately closed
away, the generalised term is not affected by a choice for L. It is helpful proving the commutativity of
generalisation with for example substitution of existential type variables.

R. Bosman, G. Karachalias, and T. Schrijvers 8:15

There is a problem here. Since we only obtain the term variable to open e with after applying
the Abs constructor in the right branch of the conclusion, we do not have access to it in the
left branch of the conclusion. Since the IH existentially quantifies objects that occur in both
branches of the conclusion, we cannot simply apply the IH twice, once per branch. While
the IH can probably be strengthened to shift the ∀x to each of its two branches, we found it
easier to apply the IH to a sufficiently fresh variable before splitting the conclusion. This
leaves us with a typing derivation opened with a different term than required. However, this
can be remedied straightforwardly with the following renaming lemma.

▶ Lemma 12. Ψin ⊢ e : [A]T ⊣ Ψout =⇒ [y/x]Ψin ⊢ [y/x]e : [A]T ⊣ [y/x]Ψout

6.4 Delta between the paper and the mechanization
We cover the two most important differences between the system as presented in this paper
and the mechanization.

Unification

To facilitate easier reasoning over unification, the mechanisation’s single-step unification
judgment rules do not apply the substitution directly, but instead output the substitution
as a third output, giving unification the form Ψ1 ⊢ E1 −→ Ψ2 ⊢ E2, γ, where γ has form
[T/α̂]. Note that single steps return either the empty list, or a singleton list. The auxiliary
judgment Ψin ⊢ E ⊣ Ψout, γ takes the substitution generated by the single-step judgment,
applies it to the step’s result (yielding the same result as the paper’s single-step judgment),
and then combines it with the inductive result. Finally, Ψin ⊢ E ⊣ Ψout is defined in terms
of this auxiliary judgment by simply discarding the substitution.

Context Instantiation

The instantiation as presented in Section 5.1 contains notation that is not properly translatable
to an inductive type. We present instantiation in this manner to obtain a simpler overview
of the logic of context instantiation. The instantiation in the mechanization can be obtained
by applying the following three transformations.

First, instead of concatenating the already-processed Γ with the yet-to-be processed Ψ,
we define instantiation inductively on Ψ, where we pattern match on the different heads of
Ψ, process the tail, and then add the processed head. This means that when generating
a substitution for an existential type variable α̂ we do not have access to the yet-to-be
processed Ψ, since now α̂ is at the head. Therefore, we flip the control flow, instead deriving
a substitution θ of form [τ/α̂], and apply it to any bound type later. This yields a signature
of Γ ⇝ Ψ, θ.

Then we split out the instantiation of A’s in a dedicated judgment, A ⇝ a, θ. Finally, to
make it easier to reason about instantiation, we add a context Γin, θin such that the following
holds.

▶ Theorem 13 (Splitting and merging context instantiation). Context instantiation judgments
can be split and merged. That is:

Γin, θin ⊢ Ψ1; Ψ2 ⇝ Γ, θ =⇒ ∃ Γ1 Γ2 θ1 θ2, Γ = Γ1; Γ2 ∧ θ = θ2; θ1
∧ Γin, θin ⊢ Ψ1 ⇝ Γ1, θ1 ∧ Γin; Γ1, θ1; θin ⊢ Ψ2 ⇝ Γ2, θ2.
Γin, θin ⊢ Ψ1 ⇝ Γ1, θ1 ∧ Γin; Γ1, θ1; θin ⊢ Ψ2 ⇝ Γ2, θ2 =⇒
Γin, θin ⊢ Ψ1; Ψ2 ⇝ Γ1; Γ2, θ2; θ2.

ITP 2023

8:16 Fully Grounding Type Inference for the HDM System

7 Related Work

The algorithm presented in this paper extends a long line of work on the inference of the
HDM system [9, 16, 12, 14]. Yet, a surprisingly small amount of work addresses the issue of
underconstrained type variables.

Pottier [18] gives an (not formalised) elaboration algorithm which inspects the accumulated
constraints to determine the list of variables in scope of types. In the appendix, they
identify the problem of potentially unnecessary quantification. They address this with a
non-deterministic specification that “magically” chooses which variables to abstract over.

Vytiniotis et al. advocate [25] removing the generalisation of lets altogether, citing un-
wanted interactions and needless complexity in context of generalising types with constraints
arising from, for example, type classes or GADTs [28]. They observe that removing let
generalisation would not be a significant restriction, since most programs do not utilize
this functionality. Yet, removing let generalisation would not address the problem of un-
derconstrained types: they would still need to be dealt with, only now by defaulting, since
generalisation is no longer an option.

Zhao et al. mechanised [30] an algorithm for Dunfield and Krishnaswami’s [10] type
system featuring higher-rank polymorphism. However, since these systems are bidirectional,
it is left to the programmer to decide which type variable should be generalised over where,
if at all. Yet, we have taken a great deal of inspiration from both these works, adopting the
in- and output contexts from Dunfield and Krishnaswami, and manner of tracking existential
type variables and approach to unification from Zhao et al.

Zhao et al. rewrote Dunfield and Krishnaswami’s algorithmic system, citing the lack of
support by their proof assistant of choice (Abella [11]) as one of their reasons. Since we are
not using any built-in variable binding support (like what is supported by Abella), we did
not encounter such limitations. Thus, we were able to maintain the tree-like structure of
Dunfield and Krishnaswami instead of the flatter, list-based approach of Zhao et al.

8 Conclusion

In this paper we have presented algorithm R: the first mechanically verified, fully grounding
type inference algorithm for the HDM system. The contribution features the novel approach
to unification by using full contexts, in which the current context always represents the
entire context. The algorithm lays the foundation for formalizing algorithms that require
determining types for every subterm.

While any variable representation will have its quirks, the quirks of locally nameless as
discussed in Section 6.3 make us wonder if a fully nameless representation would be easier
to work with. Our design choice of a separate judgment for generalisation did not turn
out well. This approach requires mutual induction on the monomorphic and polymorphic
typing judgments, which is a nuisance. Furthermore, Coq not being able to generate this
mutual induction scheme is what left us unable to manually patch the inference rule for
generalisation to quantify the list of variables a cofinitely, as discussed in Section 6.3.

One particularly interesting future area of work is the extension of the algorithm with elab-
oration to an explicitly typed language like System F, potentially extended with elaboration-
based features such as Go’s structural subtyping system [21] or type classes [26], whose
coherence has been proven on paper in a bidirectional setting [3], but – as far as we know –
not yet in the HDM system. Since formalizing these algorithms requires reasoning about the
scope of existential variables, our work should serve as a solid starting point.

R. Bosman, G. Karachalias, and T. Schrijvers 8:17

References
1 Brian Aydemir and Stephanie Weirich. LNgen: Tool support for locally nameless represent-

ations. Technical report, Department of Computer and Information Science, University of
Pennsylvania, 2010.

2 Brian E. Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pollack, and Stephanie
Weirich. Engineering formal metatheory. In George C. Necula and Philip Wadler, editors,
Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2008, San Francisco, California, USA, January 7-12, 2008, pages 3–15.
ACM, 2008. doi:10.1145/1328438.1328443.

3 Gert-Jan Bottu, Ningning Xie, Koar Marntirosian, and Tom Schrijvers. Coherence of type class
resolution. Proc. ACM Program. Lang., 3(ICFP):91:1–91:28, 2019. doi:10.1145/3341695.

4 Hendrik Bünder. Decoupling language and editor - the impact of the language server protocol
on textual domain-specific languages. In Slimane Hammoudi, Luís Ferreira Pires, and Bran
Selic, editors, Proceedings of the 7th International Conference on Model-Driven Engineering
and Software Development, MODELSWARD 2019, Prague, Czech Republic, February 20-22,
2019, pages 129–140. SciTePress, 2019. doi:10.5220/0007556301310142.

5 Arthur Charguéraud. The locally nameless representation. J. Autom. Reason., 49(3):363–408,
2012. doi:10.1007/s10817-011-9225-2.

6 Dominique Clément, Joëlle Despeyroux, Th. Despeyroux, and Gilles Kahn. A simple applicative
language: Mini-ml. In William L. Scherlis, John H. Williams, and Richard P. Gabriel,
editors, Proceedings of the 1986 ACM Conference on LISP and Functional Programming,
LFP 1986, Cambridge, Massachusetts, USA, August 4-6, 1986, pages 13–27. ACM, 1986.
doi:10.1145/319838.319847.

7 Luís Damas and Robin Milner. Principal type-schemes for functional programs. In Richard A.
DeMillo, editor, Conference Record of the Ninth Annual ACM Symposium on Principles of
Programming Languages, Albuquerque, New Mexico, USA, January 1982, pages 207–212. ACM
Press, 1982. doi:10.1145/582153.582176.

8 N.G de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic formula
manipulation, with application to the church-rosser theorem. Indagationes Mathematicae
(Proceedings), 75(5):381–392, 1972. doi:10.1016/1385-7258(72)90034-0.

9 Catherine Dubois and Valérie Ménissier-Morain. Certification of a type inference tool for
ML: damas-milner within coq. J. Autom. Reason., 23(3-4):319–346, 1999. doi:10.1023/A:
1006285817788.

10 Jana Dunfield and Neelakantan R. Krishnaswami. Complete and easy bidirectional typechecking
for higher-rank polymorphism. In Greg Morrisett and Tarmo Uustalu, editors, ACM SIGPLAN
International Conference on Functional Programming, ICFP’13, Boston, MA, USA - September
25 - 27, 2013, pages 429–442. ACM, 2013. doi:10.1145/2500365.2500582.

11 Andrew Gacek. The abella interactive theorem prover (system description). In Alessandro
Armando, Peter Baumgartner, and Gilles Dowek, editors, Automated Reasoning, 4th Inter-
national Joint Conference, IJCAR 2008, Sydney, Australia, August 12-15, 2008, Proceed-
ings, volume 5195 of Lecture Notes in Computer Science, pages 154–161. Springer, 2008.
doi:10.1007/978-3-540-71070-7_13.

12 Jacques Garrigue. A certified implementation of ML with structural polymorphism and recurs-
ive types. Math. Struct. Comput. Sci., 25(4):867–891, 2015. doi:10.1017/S0960129513000066.

13 Jean-Yves Girard. Interprétation fonctionnelle et élimination des coupures de l’arithmétique
d’ordre supérieur. PhD thesis, Éditeur inconnu, 1972.

14 Adam Gundry, Conor McBride, and James McKinna. Type inference in context. In Venanzio
Capretta and James Chapman, editors, Proceedings of the 3rd ACM SIGPLAN Workshop
on Mathematically Structured Functional Programming, MSFP@ICFP 2010, Baltimore, MD,
USA, September 25, 2010, pages 43–54. ACM, 2010. doi:10.1145/1863597.1863608.

15 Conor McBride and James McKinna. Functional pearl: i am not a number-i am a free
variable. In Henrik Nilsson, editor, Proceedings of the ACM SIGPLAN Workshop on Haskell,

ITP 2023

https://doi.org/10.1145/1328438.1328443
https://doi.org/10.1145/3341695
https://doi.org/10.5220/0007556301310142
https://doi.org/10.1007/s10817-011-9225-2
https://doi.org/10.1145/319838.319847
https://doi.org/10.1145/582153.582176
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1023/A:1006285817788
https://doi.org/10.1023/A:1006285817788
https://doi.org/10.1145/2500365.2500582
https://doi.org/10.1007/978-3-540-71070-7_13
https://doi.org/10.1017/S0960129513000066
https://doi.org/10.1145/1863597.1863608

8:18 Fully Grounding Type Inference for the HDM System

Haskell 2004, Snowbird, UT, USA, September 22-22, 2004, pages 1–9. ACM, 2004. doi:
10.1145/1017472.1017477.

16 Wolfgang Naraschewski and Tobias Nipkow. Type inference verified: Algorithm W in isa-
belle/hol. J. Autom. Reason., 23(3-4):299–318, 1999. doi:10.1023/A:1006277616879.

17 Andrey Popp, Rusty Key, Louis Roché, Oleksiy Golovko, Rudi Grinberg, Sacha Ayoun,
cannorin, Ulugbek Abdullaev, Thibaut Mattio, and Max Lantas. ocaml-lsp-server 1.15.1-
5.0 – opam, January 2023. URL: https://opam.ocaml.org/packages/ocaml-lsp-server/
ocaml-lsp-server.1.15.1-5.0/.

18 François Pottier. Hindley-milner elaboration in applicative style: functional pearl. In Johan
Jeuring and Manuel M. T. Chakravarty, editors, Proceedings of the 19th ACM SIGPLAN
international conference on Functional programming, Gothenburg, Sweden, September 1-3,
2014, pages 203–212. ACM, 2014. doi:10.1145/2628136.2628145.

19 John C. Reynolds. Towards a theory of type structure. In Bernard J. Robinet, editor,
Programming Symposium, Proceedings Colloque sur la Programmation, Paris, France, April
9-11, 1974, volume 19 of Lecture Notes in Computer Science, pages 408–423. Springer, 1974.
doi:10.1007/3-540-06859-7_148.

20 Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Tom Ridge, Susmit
Sarkar, and Rok Strnisa. Ott: effective tool support for the working semanticist. In Ralf
Hinze and Norman Ramsey, editors, Proceedings of the 12th ACM SIGPLAN International
Conference on Functional Programming, ICFP 2007, Freiburg, Germany, October 1-3, 2007,
pages 1–12. ACM, 2007. doi:10.1145/1291151.1291155.

21 Martin Sulzmann and Stefan Wehr. A dictionary-passing translation of featherweight go. In
Hakjoo Oh, editor, Programming Languages and Systems - 19th Asian Symposium, APLAS
2021, Chicago, IL, USA, October 17-18, 2021, Proceedings, volume 13008 of Lecture Notes in
Computer Science, pages 102–120. Springer, 2021. doi:10.1007/978-3-030-89051-3_7.

22 GHC Team. Using GHCi - GHC User’s Guide 9.4.4. URL: https://downloads.haskell.org/
ghc/9.4.4/docs/users_guide/index.html.

23 The Coq Development Team. The coq proof assistant, September 2022. doi:10.5281/zenodo.
7313584.

24 The Haskell IDE Team. haskell-language-server documentation. URL: https://
haskell-language-server.readthedocs.io/en/latest/.

25 Dimitrios Vytiniotis, Simon Peyton Jones, and Tom Schrijvers. Let should not be generalized.
In Proceedings of the 5th ACM SIGPLAN Workshop on Types in Language Design and
Implementation, TLDI ’10, pages 39–50, New York, NY, USA, 2010. Association for Computing
Machinery. doi:10.1145/1708016.1708023.

26 Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad-hoc. In
Conference Record of the Sixteenth Annual ACM Symposium on Principles of Programming
Languages, Austin, Texas, USA, January 11-13, 1989, pages 60–76. ACM Press, 1989. doi:
10.1145/75277.75283.

27 Stephanie Weirich. Github repository: sweirich/ott, April 2022. URL: https://github.com/
sweirich/ott/tree/aa65f53ea0587223662aaad9c48cb0770549f018.

28 Hongwei Xi, Chiyan Chen, and Gang Chen. Guarded recursive datatype constructors. In Alex
Aiken and Greg Morrisett, editors, Conference Record of POPL 2003: The 30th SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, New Orleans, Louisisana,
USA, January 15-17, 2003, pages 224–235. ACM, 2003. doi:10.1145/604131.604150.

29 Francesco Zappa Nardelli. A locally-nameless backend for ott, March 2009. URL: https:
//fzn.fr/projects/ln_ott/.

30 Jinxu Zhao, Bruno C. d. S. Oliveira, and Tom Schrijvers. A mechanical formalization of
higher-ranked polymorphic type inference. Proc. ACM Program. Lang., 3(ICFP):112:1–112:29,
2019. doi:10.1145/3341716.

https://doi.org/10.1145/1017472.1017477
https://doi.org/10.1145/1017472.1017477
https://doi.org/10.1023/A:1006277616879
https://opam.ocaml.org/packages/ocaml-lsp-server/ocaml-lsp-server.1.15.1-5.0/
https://opam.ocaml.org/packages/ocaml-lsp-server/ocaml-lsp-server.1.15.1-5.0/
https://doi.org/10.1145/2628136.2628145
https://doi.org/10.1007/3-540-06859-7_148
https://doi.org/10.1145/1291151.1291155
https://doi.org/10.1007/978-3-030-89051-3_7
https://downloads.haskell.org/ghc/9.4.4/docs/users_guide/index.html
https://downloads.haskell.org/ghc/9.4.4/docs/users_guide/index.html
https://doi.org/10.5281/zenodo.7313584
https://doi.org/10.5281/zenodo.7313584
https://haskell-language-server.readthedocs.io/en/latest/
https://haskell-language-server.readthedocs.io/en/latest/
https://doi.org/10.1145/1708016.1708023
https://doi.org/10.1145/75277.75283
https://doi.org/10.1145/75277.75283
https://github.com/sweirich/ott/tree/aa65f53ea0587223662aaad9c48cb0770549f018
https://github.com/sweirich/ott/tree/aa65f53ea0587223662aaad9c48cb0770549f018
https://doi.org/10.1145/604131.604150
https://fzn.fr/projects/ln_ott/
https://fzn.fr/projects/ln_ott/
https://doi.org/10.1145/3341716

Automated Theorem Proving for Metamath
Mario Carneiro #

Carnegie Mellon University, Pittsburgh, PA, USA

Chad E. Brown
Czech Technical University in Prague, Czech Republic

Josef Urban #

Czech Technical University in Prague, Czech Republic

Abstract
Metamath is a proof assistant that keeps surprising outsiders by its combination of a very minimalist
design with a large library of advanced results, ranking high on the Freek Wiedijk’s 100 list. In
this work, we develop several translations of the Metamath logic and its large set-theoretical
library into higher-order and first-order TPTP formats for automated theorem provers (ATPs). We
show that state-of-the-art ATPs can prove 68% of the Metamath problems automatically when
using the premises that were used in the human-written Metamath proofs. Finally, we add proof
reconstruction and premise selection methods and combine the components into the first hammer
system for Metamath.

2012 ACM Subject Classification Theory of computation → Automated reasoning; Theory of
computation → Higher order logic; Theory of computation → Logic and verification

Keywords and phrases Metamath, Automated theorem proving, Interactive theorem proving, Formal
proof assistants, proof discovery

Digital Object Identifier 10.4230/LIPIcs.ITP.2023.9

Supplementary Material Software: https://github.com/ai4reason/mm-atp-benchmark
Software: https://github.com/digama0/mm-hammer

Funding This work was partially supported by the European Regional Development Fund under the
Czech project AI&Reasoning no. CZ.02.1.01/0.0/0.0/15_003/0000466 (CB, JU), Amazon Research
Awards (CB, JU), the Czech MEYS under the ERC CZ project POSTMAN no. LL1902 (CB), and
the EU ICT-48 2020 project TAILOR no. 952215 (JU).
Mario Carneiro: Supported by the Hoskinson Center for Formal Mathematics at CMU.

1 Introduction

Metamath [20] is a formal system developed by Norman Megill in 1990. Its largest database,
set.mm1, has 40338 theorems in ZFC set theory, including a diverse range of topics including
analysis, topology, graph theory, number theory, Hilbert spaces, and it continues to grow
steadily due to its small but active community. In the space of theorem prover languages, it
is one of the simplest, by design.

Metamath is one of the last formal proof systems with a large mathematical library
that have not yet been translated to today’s automated theorem provers (ATPs) [23]. Such
translations between ITPs and ATPs are one of the main parts of hammer systems [4], which
have become popular in the recent years, especially in the Isabelle community [21, 22, 3, 18, 8].
Hammer systems today exist also for the Coq [7, 9], HOL [10, 15], and Mizar [27, 16, 14]
proof assistants. The goal of this work is to provide the first such ATP translation for
Metamath, and to do the first evaluation of the potential of state-of-the-art ATP systems on

1 https://github.com/metamath/set.mm

© Mario Carneiro, Chad E. Brown, and Josef Urban;
licensed under Creative Commons License CC-BY 4.0

14th International Conference on Interactive Theorem Proving (ITP 2023).
Editors: Adam Naumowicz and René Thiemann; Article No. 9; pp. 9:1–9:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mcarneir@andrew.cmu.edu
https://orcid.org/0000-0002-0470-5249
mailto:josef.urban@gmail.com
https://doi.org/10.4230/LIPIcs.ITP.2023.9
https://github.com/ai4reason/mm-atp-benchmark
https://github.com/digama0/mm-hammer
https://github.com/metamath/set.mm
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Automated Theorem Proving for Metamath

the translated Metamath library. This also results in a new large mathematical benchmark
for ATP systems. We also build other components of the first full Metamath hammer here,
such as proof reconstruction and premise selection [1].

The rest of the paper is structured as follows. Section 2 provides a brief summary of
Metamath. In Section 3, we describe a translation of Metamath to HOL via the Metamath
Zero (MM0) system. This is then used as an input to several versions of translation to
the higher-order TPTP (TH0) format [11] in Section 4. We then describe an alternative
translation to first-order class theory in Section 5. Section 6 describes the resulting large
new benchmark of higher-order and first-order ATP problems obtained by the translation,
and Section 7 provides the first evaluation of higher-order and first-order ATPs on the
benchmark. We show that with higher time limits, the ATP systems can jointly prove 68%
of the problems when using the premises provided in the human written Metamath proofs.
This is a very encouraging result, both for the development of hammers for Metamath, and
for the developers of ATP systems. In section 8 we discuss how IVY proofs are reconstructed
to Metamath, and section 9 has some interesting examples of theorems the provers were able
to get.

2 Metamath

Development in Metamath is generally facilitated by a proof assistant, and unlike many
theorem provers there is no proof assistant that has a monopoly on the job; the most common
proof assistants in use are mmj2 by Mel O’Cat and MM-PA which is bundled with the
original metamath.exe verifier by Norman Megill. A .mm Metamath file does not contain
proof scripts, but rather it is a textual format for complete and fully explicit proof objects.
This makes it very attractive as a data source, because very little is required to parse and
validate the theorems from the file.

The name “Metamath” comes from “metavariable mathematics,” because the core concept
is the pervasive use of metavariables over an object logic. For example, theorem ax6e2 asserts
⊢ ∃x x = y, but x and y are metavariables ranging over variables in FOL. Depending on
whether x and y are taken to be the same or different FOL variables, we get two α-equivalence
classes of FOL theorems from this single Metamath theorem: ⊢ ∃u u = v asserts that there
exists an element equal to some fixed free variable v, and ⊢ ∃u u = u asserts that there
exists an element equal to itself. These are both true statements, and the original Metamath
theorem includes both of these as substitution instances.

This ability for a Metamath theorem to encode multiple α-equivalence classes of FOL
theorems is known in the Metamath community as “bundling,” and it poses a problem for
translation to plain FOL or HOL.

3 Translating Metamath to HOL via MM0

Metamath Zero [5] is a formal system developed by M. Carneiro with a logic somewhat
intermediate between Metamath and HOL. It positions itself as an interchange language
between other proof systems, and in particular the MM0 toolchain3 implements a translation
from Metamath to MM0 that addresses exactly this bundling issue. MM0 requires that all

2 https://us.metamath.org/mpeuni/ax6e.html
3 https://github.com/digama0/mm0

https://us.metamath.org/mpeuni/ax6e.html
https://github.com/digama0/mm0

M. Carneiro, C. E. Brown, and J. Urban 9:3

theorems are fully unbundled, meaning that a theorem like ax6e has to be split into two
theorems:

ax6e: ⊢ ∃x x = y

ax6e_b: ⊢ ∃x x = x

Each theorem now has a straightforward rendering as a theorem in FOL.
Another problem that the translator addresses is parsing of math expressions. In

metamath, the native representation of statements is as sequences of constant and variable
tokens, so a verifier does not truly need to know how to break the statement into formula
constructors – this is encoded as part of the proof itself. In MM0, the native representation
instead uses trees of expression constructors, which is a better fit for traditional ATPs.
So ax6e would actually be translated as (wex x (wceq (cv x) (cv y))) which now encodes
the parse tree of ∃x x = y (including the invisible cv coercion from set variables to class
expressions).

The MM0 toolchain also has a translator from MM0 to HOL, in a lisp-based format. The
main mismatch at this level is that MM0 variables represent open terms, and so they have
to be transformed into higher order variables to match HOL semantics. For example, the
Metamath theorem axi4:4 ⊢ (∀x φ → φ) is translated to the MM0 theorem:

axi4 {x : setvar} (φ : wff x): (wi (wal x φ) φ)

where the binders encode that x is a first order set variable and φ is a second order wff
variable that is allowed to depend on x.5 It is translated to the following HOL theorem:6

axi4 : ∀ (φ : setvar → wff) (x : setvar). (wi (wal (λx : setvar. φ x)) (φ x))

This is written in lisp concrete syntax as:

(theorem "axi4"
(for ("ph" ("setvar" "wff")))
(for)
(for ("x3" "setvar"))
("wi"

("wal" (fn ("x3" "setvar") ("ph" "x3")))
("ph" "x3"))

("sp" (fn ("x3" "setvar") ("ph" "x3")) "x3"))

The three (for) blocks are for introducing binders for the second order variables, then the
hypotheses (of which there are none in this example), and finally the first order variables,
and then the type of the theorem as above. The last expression, (sp (λx : setvar. φ x)x), is
the proof, encoded as a lambda calculus term. (The proof in this case is short because axi4
is just an alias of theorem sp, but usually this will include many theorem applications.)

By chaining all these translations on set.mm we obtain a set.lisp file containing
statements and complete proofs for every theorem in set.mm.

4 https://us.metamath.org/mpeuni/axi4.html
5 Note that “wff” is a common abbreviation for “well-formed formula.”
6 Names of costructors that return wffs begin with the letter w. For example, wi is the wff constructor for

implication and wal is the wff constructor for universal quantification (over sets).

ITP 2023

https://us.metamath.org/mpeuni/axi4.html

9:4 Automated Theorem Proving for Metamath

4 Translating Metamath in HOL to TH0

From the higher-order representation of set.mm we have several options for how to create TH0
problems for automated theorem provers. We consider specifically three versions (denoted as
v1, v2 and v3 below) of this last part of the translation. To describe the difference between
these three versions, we consider a few example theorems from set.mm.

4.1 Translation v1
Each set.mm theorem consists of a finite list of premises7 (wffs) and a conclusion (a wff).
The premises and conclusion may depend on certain variables ranging over wffs, classes
and sets. Wff variables and class variables may depend on sets and these dependencies are
made explicit in the higher-order translation of set.mm. Set variables may also be locally
bound (while variables representing wffs and classes are global to the theorem). In the source
higher-order logic (after translating set.mm as above and before translating to TH0) there
are three base types: wff, class and setvar. We also have function types α → β as usual.
There are a variety of constructors for wffs and classes. For the examples we only need these
few, given here with their source higher-order types:

wi : wff → wff → wff (implication)
wa : wff → wff → wff (conjunction)
wb : wff → wff → wff (equivalence)
w3a : wff → wff → wff → wff (tertiary conjunction)
wceq : class → class → wff (equality on classes)
wcel : class → class → wff (membership on classes)
wal : (setvar → wff) → wff (universal quantification)
wsb : (setvar → wff) → (setvar → wff) (substitution)
cab : (setvar → wff) → class (class abstraction)8

In set.mm a set variable can be used as a class. After translating to higher-order, we need
a corresponding way to coerce a set variable to be a class. This is given by sv of type
setvar → class.

When translating to TH0, we can use the builtin type o ($o in ASCII) for wff and the
builtin type ι ($i in ASCII) for setvar. Also, we can use the type ι → o for class. So the
translated types (for all versions of the translations) are as follows:

wi : o → o → o

wa : o → o → o

wb : o → o → o

w3a : o → o → o → o

wceq : (ι → o) → (ι → o) → o

wcel : (ι → o) → (ι → o) → o

wal : (ι → o) → o

wsb : (ι → o) → ι → o

cab : (ι → o) → ι → o

sv : ι → ι → o

7 Here the words premise and conclusion are used in the meaning of antecedent and succedent of a sequent.
In particular, premise does not mean here “another toplevel fact used in the proof” (premise selection
terminology).

8 This is a constructor that returns a class. Names of such constructors usually begin with c.

M. Carneiro, C. E. Brown, and J. Urban 9:5

There are over 1200 other constructors we will not explicitly mention here. There are no
constructors (even among the unmentioned ones) returning ι, so that when translating we
can always assume terms of type ι are variables.

Consider the theorem sylan9eq.9 The theorem depends on two wff variables φ and ψ

and three class variables A, B and C. The theorem has two premises: wi φ (wceq A B)
and wi ψ (wceq B C). The conclusion of the theorem is wi (wa φ ψ) (wceq A C). In the v1
translation this theorem is translated into the closed proposition

∀ (φ ψ : o) (A B C : ι → o). wi φ (wceq A B) → wi ψ (wceq B C) → wi (wa φ ψ) (wceq A C).

This closed proposition is, of course, not provable in isolation. When creating the TH0
problem we examine the set.mm proof to determine the axioms and previous theorems used
in the proof. In the case of sylan9eq two previous results are used: syl2an10 and eqtr.11 These
two previous results can be assumed to have been translated earlier to yield the following
two closed propositions:

syl2an : ∀ (φ ψ ξ θ τ : o). wi φ ψ → wi τ ξ → wi (wa ψ ξ) θ → wi (wa φ τ) θ
eqtr : ∀ (A B C : ι → o). wi (wa (wceq A B) (wceq B C)) (wceq A C)

The TH0 problem given by v1 translation of sylan9eq declares syl2an and eqtr (in the form
shown above) as axioms and declares the v1 translation of the theorem (as shown above)
as the conjecture. (The reader can easily check that the conjecture follows from the two
axioms.)

We next consider the theorem axi4. This example has no premises and one wff variable φ
and one set variable x. In this case, the wff φ has a dependence on a set variable and so
has type ι → o (as opposed to o in the previous example). The conclusion of the theorem
is wi (wal (λx.φ x)) (φ x). The v1 translation quantifies over φ and x to create the closed
proposition ∀φ : ι → o.∀x : ι.wi (wal (λx.φ x)) (φ x). The set.mm proof uses one previous
result, called sp,12 which the v1 translation of is precisely the same as the closed proposition
above, making the TH0 theorem proving problem trivial (the single axiom is the same as the
conjecture).

4.2 Translation v2

Since wi, wa and wceq are intended to correspond to implication, conjunction and equality
(on classes), we also created translations that make use of this intention. Translation v2
behaves as v1 except that for 10 constructors (corresponding to true, false, implication, con-
junction, equivalence, negation, disjunction, equality, universal quantification and existential
quantification) are translated using their intended meaning. In particular wi φ ψ translate
as φ′ → ψ′ (where φ′ is the v2 translation of φ and ψ′ is the v2 translation of ψ). Likewise,
wa φ ψ and wb φ ψ translate as φ′ ∧ ψ′ and φ′ ↔ ψ′. Similarly, wceq A B translates to
A′ = B′ where A′ and B′ are the v2 translation of A and B. For the universal quantifier,
wal (λx. φ) is translated to ∀x. φ′ where φ′ is the v2 translation of φ.13

9 https://us.metamath.org/mpeuni/sylan9eq.html
10 https://us.metamath.org/mpeuni/syl2an.html
11 https://us.metamath.org/mpeuni/eqtr.html
12 https://us.metamath.org/mpeuni/sp.html
13 We can assume the argument is of the form λx.φ by η-expansion.

ITP 2023

https://us.metamath.org/mpeuni/sylan9eq.html
https://us.metamath.org/mpeuni/syl2an.html
https://us.metamath.org/mpeuni/eqtr.html
https://us.metamath.org/mpeuni/sp.html

9:6 Automated Theorem Proving for Metamath

4.3 Translation v3
Translation v3 behaves as v2 except that 11 more constructors are translated using their
intended meaning, including w3a, wsb and cab. The v3 translation of w3a φ ψ ξ is φ′ ∧ψ′ ∧ ξ′

where φ′, ψ′ and ξ′ are the v3 translations of φ, ψ and ξ. The v3 translation of wsb (λx. φ) y
is (λx. φ′) y which β-reduces to φ′x

y .14 This corresponds to substituting y for x in the
(translation of the) formula φ. A term of the form cab (λx. φ) is meant to return the class
{x | φ}. Since classes are predicates of type ι → o and membership of a set in a class
corresponds to application of the predicate to the set, the v3 translation of cab (λx. φ) y is
simply taken to be φ′x

y , treating it essentially the same way as wsb. Using η-reduction, we
can also say wsb (λx. φ) and cab (λx. φ) v3 translate to λx. φ′.

The v2 and v3 translations of the conjecture for sylan9eq are both

∀ (φ ψ : o) (A B : ι → o). (φ → A = B) → (ψ → B = C) → φ ∧ ψ → A = C.

The two TH0 problems (for v2 and v3) also include the translation of the two dependencies
syl2an and eqtr as axioms, though these are no longer needed for the proof.

4.4 More Examples
The v2 and v3 translations of the conjecture for axi4 are both

∀ (φ : ι → o) (x : ι). (∀x. φ x) → φ x.

Again, the dependency is also translated and included in as an axiom in the TH0 problem,
though the axiom is no longer needed to prove the conjecture.

To see the distinction between the v2 and v3 translations, we briefly consider three more
small examples: rp_simp2,15 sbt16 and abbi2i.17 The three translations of the conjecture for
rp_simp2 are as follows:

v1: ∀ (φ ψ ξ : o). wi (w3a φ ψ ξ) ψ
v2: ∀ (φ ψ ξ : o). w3a φ ψ ξ → ψ

v3: ∀ (φ ψ ξ : o). φ ∧ ψ ∧ ξ → ψ

The three translations of the conjecture for sbt are as follows:
v1 and v2: ∀ (φ : ι → ι → o). (∀x y : ι. φ x y) → ∀ y : ι. wsb (λz.φ z y) y
v3: ∀ (φ : ι → ι → o). (∀x y : ι. φ x y) → ∀y : ι. φ y y

The three translations of the conjecture for abbi2i are as follows:
v1: ∀ (φ : ι → o) (A : ι → o). (∀x : ι. wb (wcel (cv x) A) (φ x)) → wceq A (cab (λx.φx))
v2: ∀ (φ : ι → o) (A : ι → o). (∀x : ι. (wcel (cv x) A) ↔ (φ x)) → A = cab (λx.φx)
v3: ∀ (φ : ι → o) (A : ι → o). (∀x : ι. (wcel (cv x) A) ↔ (φ x)) → A = (λx.φx)

4.5 Why three translations?
The translations v1-v3 represent increasingly “deep” interpretation of the Metamath formulas.
One might wonder why we are considering all of them, instead of just using the best one –
clearly giving the prover more information is a good idea. (And as 7 will show, this is largely
correct.) However, there are three complicating factors that make it not a completely one
sided tradeoff:

14 We can assume the second argument is a variable y since it has type ι.
15 https://us.metamath.org/mpeuni/rp-simp2.html
16 https://us.metamath.org/mpeuni/sbt.html
17 https://us.metamath.org/mpeuni/abbi2i.html

https://us.metamath.org/mpeuni/rp-simp2.html
https://us.metamath.org/mpeuni/sbt.html
https://us.metamath.org/mpeuni/abbi2i.html

M. Carneiro, C. E. Brown, and J. Urban 9:7

If the prover is given more information, it has more options, and this can cause it to run
away and prove the wrong things.
Also following from the previous point, the prover will be more “creative” with the more
deeply embedded proofs, performing more normalization and often resulting in longer
proofs than if it is forced to play by Metamath rules.
Most pertinently for our hammer system, the deeper translations require more of the
prover’s mechanisms to be translatable back to Metamath proofs, and since only the sim-
pler mechanisms have reconstruction implemented for them, using the deeper translations
can cause the reconstruction rate to decrease, even though the ATP has a higher success
rate, since it will come up with proofs outside the translatable fragment.

5 Translating Metamath in HOL to First-Order Class Theory

We additionally translated the higher-order representation of set.mm into first-order theorem
proving problems by interpreting propositions and terms as classes. This allows us to compare
the performance of first-order and higher-order ATPs on problems coming from a common
source. In addition we use the first-order prover Prover9 [19] to obtain IVY proof objects
which we use to reconstruct Metamath proofs.

Recall that the type of cab in the HOL representation is (setvar → wff) → class. In the
resulting TH0 for the v1 and v2 translations terms with cab at the head could always be
assumed to be of the form cab (λx. φ) (by η-expansion if necessary). We do not have such term
level binders in first-order terms, so we must find an alternative method to handle such binders.
Every occurrence of a wff or class will be under n setvar binders, binding x0, . . . , xn−1 ∈ V ,
where V is the class of all sets. Instead of making the binders explicit in the logic, we
translate a wff φ in context x0, . . . , xn−1 as the class {((x0, . . . , xn−1), ∅) | φ} (i.e., the class
of all n-tuples of sets for which φ holds, with an associated dummy value of ∅). Likewise
we translate a class A in context x0, . . . , xn−1 as the class {((x0, . . . , xn−1), y) | y ∈ A}. The
operator cab takes a wff in context x0, . . . , xn−1, xn to a class in context x0, . . . , xn−1, where
n need not be known in advance. In particular we take cab(B) to be the class

{((x0, . . . , xn−1), xn) | n ∈ ω, ((x0, . . . , xn−1, xn), ∅) ∈ B}.

For example, suppose we have a HOL version of a Metamath term of the form cab (λxn. φ) in
a context x0, . . . , xn−1. We can translate φ in context x0, . . . , xn−1, xn to obtain a first-order
term φ′ representing the class {((x0, . . . , xn−1, xn), ∅) | φ′}. We then translate cab (λxn. φ)
simply to be the first-order term cab(φ′), corresponding to the class

{((x0, . . . , xn−1), xn) | ((x0, . . . , xn−1, xn), ∅) ∈ φ′}.

The distinction between sets and proper classes is not useful as we will generally
be concerned with sets in a context of a certain length. For example, the proper class
{((x0, x1), y) | y ∈ x1} can be considered a set in a context of length 2 since if x0, x1 ∈ V

are fixed, then {y | y ∈ x1} is a set. We say a class A is a set in a context of length
n if {y | ((x0, . . . , xn−1), y) ∈ A} is a set for every x0, . . . , xn−1 ∈ V . Note that a class
can be a set in a context of different lengths. For example, the empty class is a set in a
context of length n for every n ∈ ω. Consider the Metamath wff wtru (corresponding to
the true wff). This will be translated to a first-order constant wtru intended to be the class
{((x0, . . . , xn−1), ∅) | x0, . . . , xn−1 ∈ V }. Note that this is both a proper class and a set in a
context of length n for every n ∈ ω.

ITP 2023

9:8 Automated Theorem Proving for Metamath

In general Metamath constructors with functional arguments may change the length of
the context, as cab does. However, most operations do not change the length of the context.
For example, wa(φ,ψ) in context x0, . . . , xn−1 is simply wa(φ′, ψ′) where φ and ψ are the
translations of φ and ψ in context x0, . . . , xn−1. The intended semantics of wa(B,C) is

{((x0, . . . , xn−1), ∅) | ((x0, . . . , xn−1), ∅) ∈ B ∧ ((x0, . . . , xn−1), ∅) ∈ C}.

Note that if φ′ is a class {((x0, . . . , xn−1), ∅) | φ}, ψ′ is a class {((x0, . . . , xn−1), ∅) | ψ} and
wa(φ′, ψ′) is the class {((x0, . . . , xn−1), ∅) | φ ∧ ψ}. As with cab, wa does not depend on the
length of the context n.

As a consequence of treating setvar binders in this way, we must decide how to translate
the (now implicitly) bound variables as first-order terms. We do this by simply having
a constant vari

n for each i < n, intended to correspond to the variable xi in the context
x0, . . . , xn−1. Semantically, vari

n is the class {((x0, . . . , xn−1), y) | y ∈ xi}.
Since many wff and class variables depend on a context of set variables, we also include

functions evalm
n of arity m+ 1. The intention is that the first argument of evalm

n is a class
(intended to be in context x0, . . . , xm−1) and the next m arguments are sets in a context of
length n (intended to be in context x0, . . . , xn−1). Since no Metamath constructor yields a
set, the only sets available in context x0, . . . , xn−1 are each xi (represented in first-order by
the constant vari

n and possibly some universal first-order variables intended to range over
sets. Each first-order variable Y intended to range over sets will occur as cv(Y) (the coercion
sending sets to classes). We consider a slightly different semantics of cv in the first-order
class theory translation than the higher-order case. For a set Y , we take cv(Y) to be the
class

{((x0, . . . , xn−1), y) | n ∈ ω, x0, . . . , xn−1 ∈ V, y ∈ Y }.

That is, cv lifts a set to a class in an arbitrary context (with no dependence on the set
variables in the context).

The result of applying evalm
n to m+ 1 arguments is a class (intended to be in context

x0, . . . , xn−1) obtained by composition. In particular, we define evalm
n as

evalm
n (B,A0, . . . , Am−1) =

{(x0, . . . , xn−1, z) | ∃y0, . . . , ym−1 ∈ V. (y0, . . . , ym−1, z) ∈ B

∧ (∀y. y ∈ y0 ⇔ (x0, . . . , xn−1, y) ∈ A0)
∧ · · ·
∧ (∀y. y ∈ ym−1 ⇔ (x0, . . . , xn−1, y) ∈ Am−1)}.

Note that if some Ai were not a set in a context of length n, then evalm
n (B,A0, . . . , Am−1) = ∅

since a corresponding yi ∈ V would not exist. This is never relevant in practice as the only
arguments to evalm

n after the first argument are of the form vari
n or cv(Y), as stated above.

In case we have a Metamath wff variable φ that depends on m set variables, then
occurrences of φ in the higher-order representation will be applied to m arguments. To make
this first-order we simply choose n to be the length of the context in which the wff occurs
and translate as evalm

n (φ′, A0, . . . , Am−1) where φ′ is a first-order variable corresponding to
φ and Ai is the first-order term obtained by translating the arguments of φ.

Some special identities are easy to verify given the semantics described above, e.g.,

evalm
n (vari

m, A0, . . . , Am−1) = Ai

and

evalm
n (wa(B,C), A0, . . . , Am−1) = wa(evalm

n (B,A0, . . . , Am−1), evalm
n (C,A0, . . . , Am−1))

M. Carneiro, C. E. Brown, and J. Urban 9:9

where we assume each Ai is a set in a context of length n. Some first order problems resulting
from the translation only become provable if such identities are included. However, for now
we have primarily focused on the problems solvable without such identities included.

As a final step to obtain a first-order atomic proposition, we apply a unary predicate p
to a first-order term φ′ (the translation of a Metamath wff φ in an empty context). The
intention is that p(A) should be true precisely if ((), ∅) ∈ A.

The hypotheses and conclusion of a Metamath axiom or theorem may have universally
bound set variables. To translate these to terms we use a unary function alln. The intended
semantics of alln(A) is

{((x0, . . . , xn−1), ∅) | ∀xn ∈ V. ((x0, . . . , xn−1, xn), ∅) ∈ A}.

Again for some translated problems to be theorems we would need to include certain properties
of alln, e.g.,

∀Y. p(Y) ⇔ ∀X. p(eval1
0(Y, cv(X))).

In practice we omit these extra properties for now.
We again consider the example theorem sylan9eq. In the first-order version the two

wff variables φ and ψ and the two class variables A and B all range over classes (and
hence are represented simply by first-order variables). The two premises translate to first-
order terms terms wi(φ,wceq(A,B)) and wi(ψ,wceq(B,C)). which can then be used as
arguments to p to obtain atomic propositions. The conclusion translates to the first order
term wi(wa(φ,ψ),wceq(A,C)). Combining the premises with the conclusion and quantifying
over the variables yields the first-order sentence

∀φ ψ A B C. p(wi(φ,wceq(A,B))) → p(wi(ψ,wceq(B,C))) → p(wi(wa(φ,ψ),wceq(A,C))).

As before the sentence is a consequence of syl2an and eqtr which translate to the first-order
sentences

∀ φ ψ ξ θ τ. p(wi(φ,ψ)) → p(wi(τ, ξ)) → p(wi(wa(ψ, ξ), θ)) → p(wi(wa(φ, τ), θ))

and

∀A B C. p(wi(wa(wceq(A,B),wceq(B,C)),wceq(A,C))).

We also reconsider the theorem axi4. This translates to the first-order statement

∀φ x. p(wi(wal(eval1
1(φ, var0

1)), eval1
0(φ, x))).

Again the proof uses sp which translates to the same first-order statement (making the
theorem proving problem trivial).

6 Benchmark

We use the translations to TPTP described in Sections 4 and 5 to create higher-order and
first-order ATP problems. This is implemented in Lisp, as a program that reads the HOL
Lisp representation of the MM0 (Section 3) version of set.mm as its input, and produces the
corresponding ATP problem for each Metamath theorem proved in set.mm .

ITP 2023

9:10 Automated Theorem Proving for Metamath

The version of set.mm we used corresponds to the git repo with a commit from June 24,
2022.18 There are 40338 theorems with proofs in this version of set.mm. The translation to
MM0 increases the number of theorems to 40556 (218 extra theorems) since some theorems
also have α-degenerate versions that are used in their degenerated form later in the library.
For example, the Metamath set.mm theorem ax7v is x = y → x = z → y = z where x and y
must be distinct variables. The MM0 version expands this into three versions:

ax7v: x = y → x = z → y = z

ax7v_b (an α-degenerate): x = y → x = x → y = x

ax7v_b1 (another α-degenerate): x = y → x = y → y = y

There are also three corresponding TH0 problems (in each of v1, v2 and v3).
The axioms of each TH0 problem are determined by the named facts (proof-external

facts, premises) used in the MM0 proof. Note that when generating the problem for a given
theorem we already have the TH0 formulas corresponding to the previous facts. Note also
that the translation from Metamath to MM0 already distinguished between α-degenerates.
While a Metamath proof may have depended on ax7v, its MM0 proof may depend on ax7v
and one of its α-degenerates, say ax7v_b. In that case the TH0 problem would include
axioms corresponding to ax7v and ax7v_b (but not ax7v_b1).

In the end we obtain 40556 TH0 problems for each of v1, v2 and v3.19 This corresponds
precisely to the 40556 MM0 theorems obtained by translating set.mm. To this we also add
the first-order version produced by the translation described in Section 5.

7 Initial ATP Evaluation

7.1 Higher-order Evaluation
We first evaluate three top-performing20 higher-order ATPs on the three higher-order versions
of the problems using several values for timeout. Only one full evaluation is done on v1 of
the problems, since we consider the encoding suboptimal. Indeed, E-HO 2.6 solves 77.65%
(20352 vs 11456) more problems on v2 with v1 adding only 0.23% (46) more solutions to
v2. All our experiments are performed on a server with 36 hyperthreading Intel(R) Xeon(R)
Gold 6140 CPU @ 2.30GHz cores and 256 GB of RAM. We use the following ATP systems:

E prover version 2.6 [25, 24], run both in its default portfolio (auto-schedule) mode
and with several strategies developed previously by strategy invention systems [26, 13]
targeting ITP libraries [16, 12].
Vampire version 5980 [17, 2], using mainly default (casc2020) higher-order portfolio. We
have also briefly tested some Vampire strategies in a standalone mode.
Zipperposition version CASC20 [6, 28], using its default CASC’20 portfolio. We have also
tried several other Zipperposition settings.

For most of the experiments we have used a time limit of 60s. We have also used initially
a lower 10s time limit, and later also higher time limits, especially to see the performance of
the portfolio-based systems. The highest time used for an evaluation on the full dataset was
280s, and we have increased it to 600s and 1200s in several cases to see the improvement on
unsolved problems by E, Vampire and Zipperposition. Of the 40556 problems the ATPs can
in total solve 27436, i.e., 67.65%. The detailed results of the complete runs of the systems
are shown in Table 1. Table 2 shows the top-5 greedy cover including incomplete runs done
with high time limits on unsolved problems only.

18 Specifically the commit d75c0dbe.
19 The benchmark is publicly available at https://github.com/ai4reason/mm-atp-benchmark .
20 https://www.tptp.org/CASC/J11/WWWFiles/DivisionSummary1.html

https://github.com/ai4reason/mm-atp-benchmark
https://www.tptp.org/CASC/J11/WWWFiles/DivisionSummary1.html

M. Carneiro, C. E. Brown, and J. Urban 9:11

The highest performance is achieved by Zipperposition which in 280s solves 62.68%
(25420) of the v3 problems, and 61.53% (24959) of the v2 problems. This (v2) drops to
57.99% (23518) when using half of the time only, i.e. 140s. Vampire solves 58.01% (23555)
of the v3 problems in 280s which is a surprisingly good performance given the 2022 CASC
results,21 where Vampire loses more than 25% on Zipperposition (367 vs 460 problems
solved in the CASC THF category). Note that none of the ATP developers have yet seen
our benchmark and thus could not develop targeted ATP strategies on the problems, as is
typically done for TPTP and CASC. Vampire also gains considerably by going from v2 to
v3 and by increasing the time limit (the latter likely thanks to its large portfolio mode). It
solves only 45.57% (18482) of the v2 problems in 60s, which increases to 52.08% (21123) of
the v3 problems in 60s, and to 56.65% (22976) v3 problems in 120s. Furthermore, Vampire
gains from running its strongest strategies with higher time limits: 7 of the strategies run
separately for 60s on v3 add together 443 problems, raising Vampire’s performance to 23998
problems (in general in 240s + 7*60s = 660s).

E prover outperforms Vampire on v2 in 60s (21001 solved by E vs 18482 by Vampire),
and even more so in 10s (20352 vs 17160). Surprisingly, E’s performance is lower on v3
compared to v2 (20799 vs 21001 in 60s). The performance however does not increase much
with higher time limits as in the case of Vampire, indicating that Vampire makes better
use of multiple strategies. We have however only evaluated the official E version 2.6, which
seems to have been improved a lot very recently by E version 3.0 in the latest 2022 CASC
results. We plan to evaluate E 3.0 when it is officially released.

Table 1 The complete runs of the systems on the benchmark, ordered by performance.

System mode version time (s) solved
Z portfolio v3 280 25420
Z portfolio v2 280 24959
V portfolio v3 280 23555
Z portfolio v2 140 23518
V portfolio v3 120 22976
V portfolio v3 60 21123
E portfolio v2 60 21001
E portfolio v3 60 20799
E portfolio v2 10 20352
E strat. f17 v3 120 19782
E strat. f17 v2 10 19624
V portfolio v2 60 18482
Z fo-complete-basic v2 10 17295
V portfolio v2 10 17160
Z ho-pragmatic v2 10 16115
E portfolio v1 10 11456

7.2 First-order runs
We also evaluate the first order translation, by running Vampire, E and Prover9 on these
problems. Vampire proves 15938 of them, while E and Prover9 solve 15136 and 14693
respectively. The Vampire performance can be compared to its 60s performance on the v2
higher-order problems (18482). This likely again demonstrates the efficiency of the v2 and
v3 higher-order translations, because practically none of the standard logical connectives are

21 See footnote 20.

ITP 2023

9:12 Automated Theorem Proving for Metamath

Table 2 The top 5 methods in the greedy sequence. Note that we use different (and also high)
time limits and that the high-time runs are only done on previously unsolved problems.

System mode version time (s) added sum
Z portfolio v3 280 25420 25420
V portfolio v3 600 960 26380
V portfolio v3 1200 415 26795
E portfolio v3 600 279 27074
Z portfolio v2 280 124 27198

mapped in a shallow way to their first-order logical counterparts in this first-order translation.
Because of that, all these problems are also Horn, and they are also quite small due to the
minimized premises. This is likely the reason why all the three ATPs perform similarly here,
with Vampire and E unable to benefit from their strategies for large problems with large
non-Horn clauses. The systems are also not very complementary, with E adding 148 and
Prover9 adding 110 problems to Vampire. Prover9 adds 505 problems to E.

7.3 Premise Selection Experiments

7.3.1 Higher-order runs
We evaluate Vampire also on the large (chainy) versions of the higher-order v3 problems,
using a 60s time limit. This emulates the hammer-style reasoning with the whole library that
exists before a particular theorem was stated. Using its LTB (large-theory batch division
of the CASC competition) portfolio, Vampire solves 8509 v3 problems, while its hol mode
solves only 4013 v3 problems. This is relatively few compared to the performance on the
benchmark with preselected premises.

Vampire uses SInE as its default premise selector. A number of learning-based premise
selection methods typically improve on SInE if enough data about previous proofs are
available to train on. For simplicity of use and comparison with other standard hammers we
have decided to use here a fast implementation of the distance weighted k-nearest neighbor
(k-NN), parameterized by several values of k (10, 20, 40, 80, 120, 160, 240) that typically
work well with current ATPs. The first evaluation is done chronologically, by training k-NN
incrementally on the human-written proofs as the library grows in time. This means that
we always allow k-NN to see all the facts and proofs that precede the fact for which it is
predicting the premises, but none of the facts and proofs that follow after that.

We use again the standard higher-order portfolio of Vampire and 60s time limit for each
of the values of k. The results are shown in Table 3. The performance peaks at around 12k
proved problems for the values of k = 120, 160, 80. This is more than 40% better than the
best SInE result above (8509). All seven k-NN predictions solve together 14787 problems (in
general in 7 minutes), with the top three most orthogonal slices (120, 240, and 20) solving
14113 (in general in 3 minutes).

Table 3 Vampire on k-NN premise selection slices.

Premises 10 20 40 80 120 160 240

V-thf v3 9112 10078 11060 11863 12043 11997 11582
V-fof v1 2600 4239 6294 8366 9416 9875 10352

M. Carneiro, C. E. Brown, and J. Urban 9:13

7.3.2 First-order runs
To get a version that can be reconstructed in Metamath, we also evaluate Vampire on the
premise selection slices of the large (chainy) first-order versions of the problems. The results
for the 7 standard slices are again shown in Table 3. Unlike in the thf-v3 version, Vampires
benefits here from increasingly large slices, so we add also slices with 480 and 960 premises
to the fof-v1 premise selection. These slices solve 10726 and 10593 problems respectively,
adding many new solutions. In total, the 9 first-order slices solve 12373 problems, with
the top 4 most complementary slices (480, 960, 80, and 240) solving 12089 problems. This
implies a 30% performance in the first-order v1 hammering setting, which we currently use
for the first version of the proof reconstruction.

8 Proof Reconstruction

While Vampire has impressive solving capabilities, we were not able to get it to produce a
proof object which was sufficiently detailed for our purposes, so we instead turned to the
IVY proof format used by Prover9. Prover9 is not as powerful, but we can still use Vampire
as a more precise relevance filter by using the lemmas from the proof it produces as input to
Prover9, and process the resulting IVY proof.

IVY is a resolution-style proof format for doing classical reasoning, so it is not a priori
obvious how to reconstruct these terms into a Metamath proof without a deep embedding.
However, our input clauses and the conjecture are all Horn clauses (that is, they have at
most one non-negated literal), and this makes all the difference.

IVY proofs consist of the following kind of proof steps:
input steps refer to one of the hypotheses, except that instead of using ∀x⃗.

−−−−−−→
Ai(x⃗) → B(x⃗),

the quantifiers are removed and the clauses are turned into disjunctions, as in B(v⃗) ∨∨
i ¬Ai(v⃗), with the literals possibly reordered.
Because these inputs appear in the same order as they were given to the checker, they
are easy to identify.
The conjecture is negated, so it turns into multiple inputs and the variables are
skolemized: ∀x⃗.

−−−−−−→
A′

i(x⃗) → B′ becomes A′
i(c⃗) for each i, plus ¬B′(c⃗).

instantiate steps refer to a previous step p :
∨

i Ci plus a substitution mapping {vi 7→ ti}
and results in a proof of

∨
i(Ci[vi 7→ ti]).

resolve steps specify p :
∨

i Ci ∨P and q :
∨

i Di ∨¬P (where P may appear in the middle
of the disjunction but is identified by a path), and results in a proof of

∨
i Ci ∨

∨
i Di.

propositional steps prove an arbitrary clause Q from previous step p : P where P → Q

is a propositional tautology.
IVY also supports new_symbol, flip, and paramod steps but these never appear in
reconstructed proofs.

The key observation is that IVY never leaves the realm of Horn clauses in the proof. This
is not syntactically a requirement – proofs can in principle involve arbitrary propositions –
but we can see why it might happen with this kind of input:

All the inputs are Horn clauses.
instantiate or resolve on Horn clauses yield more Horn clauses.
While propositional steps can yield non-Horn clauses in principle, this is mainly used
for clause simplification, and there is a unique best clause that the solver will want to
generate here, namely the input clause with duplicate hypotheses removed. That is, this
is used only for simplifying ¬A ∨ ¬A ∨B to ¬A ∨B.
The fact that the clauses have this restricted form is likely the reason why we do not
observe the more advanced kinds of steps.

ITP 2023

9:14 Automated Theorem Proving for Metamath

So our strategy for reconstruction is essentially to interpret these as proofs in minimal
logic or terms in the simply typed lambda calculus, where (

∨
i ¬Ai) ∨ B is interpreted as

(
∧

i Ai) → B and
∨

i ¬Ai is interpreted as (
∧

i Ai) → F. The proof steps all have associated
lambda terms:

Hypothesis inputs are Hi(v⃗) : (
∧

i Ai(v⃗)) → B(v⃗)
The conjecture is thm : B′(c⃗) → F
instantiate(p, {vi 7→ ti}) is just p[vi 7→ ti]
For resolve(p, q): if p :

∧
i Ci → P and q : (

∧
i Di) ∧ P → A or q : (

∧
i Di) ∧ P → F,

then resolve(p, q) := λ−→ci ,
−→
di . q(

−→
di , p(−→ci)).

For propositional steps we spot the duplicates and generate a term like λx y. p(x, x, y).
Because the final result is a proof of false, we get a closed term of type F after translation,
and we can normalize it to eliminate all the lambdas. Since the only constructor for F in
this grammar is thm, the result will be of the form thm(p), where p is a proof structured
out of applications of Hi to a substitution and a list of subproofs, which is exactly the form
expected by Metamath proofs. So we strip the thm node and the result is a well formed
proof.

8.1 Proof Objects

Table 4 shows the longest IVY and Metamath proof objects obtained in the experiments.
This is for IVY measured by the number of proof steps, while for Metamath these are lines
of the reconstructed proof.

Table 4 Length of the longest proof objects in IVY steps and Metamath lines.

Problem mercolem6 tgbtwnconn1lem1 hdmap14lem9 isoas lclkrlem2a
IVY 674 480 392 375 316
Problem mercolem6 mercolem2 merlem5 mercolem7 minimp_sylsimp
Metamath 5660830 849 77 50 45

An outlier here is mercolem6, which is one lemma in the proof that Meredith’s axiom

((φ → ψ) → (⊥ → χ) → θ) → (θ → φ) → τ → η → φ

is complete for propositional logic. Prover9 is able to return a proof with only 674 lines,
but it balloons to a massive 5 660 830 lines after Metamath reconstruction, over 7 times the
size of set.mm. The reason for this due to the normalization process described in section
8. Each Metamath proof step is exactly and only an application of a previous theorem,
with substitutions for the variables, and then proofs for the hypotheses. That is, in IVY
terminology we are structurally required to perform instantiate steps only on the leaves of
the proof.

What happened in this proof is that Prover9 found a useful lemma, which has a long
proof, and then applied it many times with different instantiations, and the Metamath proof
is forced to replicate the subproof many times in order to push the instantiations to the
leaves. This is essentially an artificial restriction caused by our implicit requirement that
the hammer should generate one proof, rather than a sequence of lemmas leading up to the
proof. In actual practice a user would split the proof at this useful lemma and refer to it. In
fact, the name mercolem6 indicates that this is lemma 6 of something, so this technique is
already being used here.

M. Carneiro, C. E. Brown, and J. Urban 9:15

Future versions of the hammer may include this kind of lemma generation, but we decided
not to pursue it since it is extremely rare. Most of the time the cost of extracting these
narrow lemmas is higher than the proof savings for applying them.

9 Examples

Three similar examples Zipperposition and E can prove in the v3 representations are the
set.mm theorems amgm2d22, amgm3d23 and amgm4d24 comparing arithmetic and geometric
means. The first theorem states that for positive reals A and B,

(A ·B) 1
2 ≤ A+B

2 .

The next two theorems state

(A ·B · C) 1
3 ≤ A+B + C

3
and

(A ·B · C ·D) 1
4 ≤ A+B + C +D

4
for positive reals A, B, C and (in the last case) D. All three theorems are proven by making
use of a lemma amgmlem25 giving the property

(ΣMF)
1

|A| ≤ ΣCF

|A|

where A is a finite set, F is a function from A to positive reals, and ΣQ is performs a binary
operation from a given monoid Q to the images of F . In this case C is the complex field
(thought of as its additive group here) and so ΣC is ordinary summation. However, M is
the multiplicative group of C and so ΣM in the usual Π operator performing finitely many
multiplications. In order for an ATP to prove the examples above, it must instantiate with
appropriate values of A and F in the assumption amgmlem, essentially giving the appropriate
n-tuple (for n ∈ {2, 3, 4}). In this case the n-tuples are represented as words and special
theorems gsumws226, gsumws327 and gsumws428 give equations between applying ΣQ to an
appropriate length word and the summation of the “characters.” Applying these theorems
when proving amgm2d, amgm3d and amgm4d leads to the generation of the appropriate
n-tuple (word) being constructed by the ATP via unification.

It is worth noting Zipperposition, E and Vampire could also prove the v3 problems
corresponding to gsumws2, gsumws3 and gsumws4. By contrast, none of the ATPs could
prove the vital lemma amgmlem. Also, none of the ATPs could prove amgmw2d29, a
generalized version of amgm2d stating

AP ·BQ ≤ A · P +B ·Q

for positive reals A, B, P and Q such that P +Q = 1.

22 https://us.metamath.org/mpeuni/amgm2d.html
23 https://us.metamath.org/mpeuni/amgm3d.html
24 https://us.metamath.org/mpeuni/amgm4d.html
25 https://us.metamath.org/mpeuni/amgmw2d.html
26 https://us.metamath.org/mpeuni/gsumws2.html
27 https://us.metamath.org/mpeuni/gsumws3.html
28 https://us.metamath.org/mpeuni/gsumws4.html
29 https://us.metamath.org/mpeuni/amgmw2d.html

ITP 2023

https://us.metamath.org/mpeuni/amgm2d.html
https://us.metamath.org/mpeuni/amgm3d.html
https://us.metamath.org/mpeuni/amgm4d.html
https://us.metamath.org/mpeuni/amgmw2d.html
https://us.metamath.org/mpeuni/gsumws2.html
https://us.metamath.org/mpeuni/gsumws3.html
https://us.metamath.org/mpeuni/gsumws4.html
https://us.metamath.org/mpeuni/amgmw2d.html

9:16 Automated Theorem Proving for Metamath

A different example Zipperposition and E can prove is zringunit30. This states A is a
unit of the ring of integers if and only if A is an integer with norm 1 (i.e., A is −1 or 1). A
previous result used in the proof is gzrngunit31 which states the units of the ring of Gaussian
integers is precisely those with norm 1. None of the ATPs were able to prove gzrngunit.

Several other interesting ATP proofs are available on our web page.32 This includes E’s
higher-order proof of theorem xmulneg133 which has 127 steps in Metamath and takes 18131
given clause loops in 30 seconds to E.34 It proves for extended reals that a product with a
negative is the negative of the product:

xmulneg1 $p |- ((A e. RR* /\ B e. RR*) -> (-e A *e B) = -e (A *e B))

E also proves the matinv theorem in 12 seconds and 13052 given clause loops, which takes a
73-step proof in Metamath.35 The theorem states that the inverse of a matrix is the adjunct
of the matrix multiplied with the inverse of the determinant of the matrix if the determinant
is a unit in the underlying ring:

matinv.a $e |- A = (N Mat R) $.
matinv.j $e |- J = (N maAdju R) $.
matinv.d $e |- D = (N maDet R) $.
matinv.b $e |- B = (Base ‘ A) $.
matinv.u $e |- U = (Unit ‘ A) $.
matinv.v $e |- V = (Unit ‘ R) $.
matinv.h $e |- H = (invr ‘ R) $.
matinv.i $e |- I = (invr ‘ A) $.
matinv.t $e |- .xb = (.s ‘ A) $.
matinv $p |- ((R e. CRing /\ M e. B /\ (D ‘ M) e. V) ->

(M e. U /\ (I ‘ M) = ((H ‘ (D ‘ M)) .xb (J ‘ M))))

Further impressive ATP proofs collected by us include theorems about integrals,36 triangle
inequality,37 measure,38 sums of vector spaces,39 etc. These proofs typically take over one
hundred steps in Metamath.

10 Hammer Tool

The mm-hammer tool is publicly available from our GitHub repository40. It packages the
theorem proving, proof reconstruction and premise selection methods described above for the
Metamath users. We provide there also an installer script that installs all the prerequisites
(including Prover9 and Vampire).

11 Conclusion

We have developed the first translations of the Metamath set.mm library to the formats used
by state-of-the-art higher-order and first-order automated theorem provers. Based on them,
we have constructed several versions of a large new benchmark of 40556 mathematical ATP

30 https://us.metamath.org/mpeuni/zringunit.html
31 https://us.metamath.org/mpeuni/gzrngunit.html
32 http://grid01.ciirc.cvut.cz/~mptp/mm_prf/
33 https://us.metamath.org/mpeuni/xmulneg1.html
34 http://grid01.ciirc.cvut.cz/~mptp/mm_prf/mmset12407_xmulneg1.p
35 https://us.metamath.org/mpeuni/matinv.html
36 https://us.metamath.org/mpeuni/ditgsplit.html
37 https://us.metamath.org/mpeuni/isxmet2d.html
38 https://us.metamath.org/mpeuni/sibfinima.html
39 https://us.metamath.org/mpeuni/mapdlsm.html
40 https://github.com/digama0/mm-hammer

https://us.metamath.org/mpeuni/zringunit.html
https://us.metamath.org/mpeuni/gzrngunit.html
http://grid01.ciirc.cvut.cz/~mptp/mm_prf/
https://us.metamath.org/mpeuni/xmulneg1.html
http://grid01.ciirc.cvut.cz/~mptp/mm_prf/mmset12407_xmulneg1.p
https://us.metamath.org/mpeuni/matinv.html
https://us.metamath.org/mpeuni/ditgsplit.html
https://us.metamath.org/mpeuni/isxmet2d.html
https://us.metamath.org/mpeuni/sibfinima.html
https://us.metamath.org/mpeuni/mapdlsm.html
https://github.com/digama0/mm-hammer

M. Carneiro, C. E. Brown, and J. Urban 9:17

problems based on set.mm . The initial evaluation of the ATPs is very encouraging. The
strongest higher-order system (Zipperposition) proves 62.68% of the problems in 280s, and
57.99% of the problems in 140s. Even when using low (hammer-friendly) time limits, the
higher-order ATPs are very useful, with E proving 50.18% of the problems in 10s. These are
very encouraging results for providing ATP-based automation for the Metamath authors.

We have also developed the first version of a full hammer tool for Metamath and made it
publicly available to the Metamath community. This includes mainly a proof reconstruction
tool that imports the Prover9/IVY proof objects into Metamath. The tool already replays all
15k proofs that Prover9 can find when using human-based premises extracted from Metamath.
Another component of the hammer is a real-time pipeline that translates Metamath user
problems into first-order formats, and runs premise selectors and a portfolio of large-theory
Vampires on the problems, followed by running Prover9/IVY on the Vampire-minimized
problems when successful. The first version of the tool proves 30% of the Metamath theorems
when running the ATPs on four premise selections in parallel for 60 seconds.

References

1 Jesse Alama, Tom Heskes, Daniel Kühlwein, Evgeni Tsivtsivadze, and Josef Urban. Premise
selection for mathematics by corpus analysis and kernel methods. J. Autom. Reasoning,
52(2):191–213, 2014. doi:10.1007/s10817-013-9286-5.

2 Ahmed Bhayat and Giles Reger. A combinator-based superposition calculus for higher-order
logic. In IJCAR (1), volume 12166 of Lecture Notes in Computer Science, pages 278–296.
Springer, 2020.

3 Jasmin Christian Blanchette, Sascha Böhme, and Lawrence C. Paulson. Extending Sledgeham-
mer with SMT solvers. In Nikolaj Bjørner and Viorica Sofronie-Stokkermans, editors, CADE,
volume 6803 of LNCS, pages 116–130. Springer, 2011. doi:10.1007/978-3-642-22438-6_11.

4 Jasmin Christian Blanchette, Cezary Kaliszyk, Lawrence C. Paulson, and Josef Urban. Ham-
mering towards QED. J. Formalized Reasoning, 9(1):101–148, 2016. doi:10.6092/issn.
1972-5787/4593.

5 Mario Carneiro. Metamath zero: Designing a theorem prover prover. In Intelligent Computer
Mathematics: 13th International Conference, CICM 2020, Bertinoro, Italy, July 26–31,
2020, Proceedings, pages 71–88, Berlin, Heidelberg, 2020. Springer-Verlag. doi:10.1007/
978-3-030-53518-6_5.

6 Simon Cruanes. Extending Superposition with Integer Arithmetic, Structural Induc-
tion, and Beyond. Theses, École polytechnique, September 2015. URL: https://hal.
archives-ouvertes.fr/tel-01223502.

7 Lukasz Czajka and Cezary Kaliszyk. Hammer for coq: Automation for dependent type theory.
J. Autom. Reason., 61(1-4):423–453, 2018.

8 Martin Desharnais, Petar Vukmirović, Jasmin Blanchette, and Makarius Wenzel. Seventeen
provers under the hammer, 2022. URL: https://matryoshka-project.github.io/pubs/
seventeen.pdf.

9 Burak Ekici, Alain Mebsout, Cesare Tinelli, Chantal Keller, Guy Katz, Andrew Reynolds,
and Clark W. Barrett. Smtcoq: A plug-in for integrating SMT solvers into coq. In Rupak
Majumdar and Viktor Kuncak, editors, Computer Aided Verification - 29th International
Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part II, volume
10427 of Lecture Notes in Computer Science, pages 126–133. Springer, 2017. doi:10.1007/
978-3-319-63390-9_7.

10 Thibault Gauthier and Cezary Kaliszyk. Premise selection and external provers for HOL4.
In Certified Programs and Proofs (CPP’15), LNCS. Springer, 2015. doi:10.1145/2676724.
2693173.

ITP 2023

https://doi.org/10.1007/s10817-013-9286-5
https://doi.org/10.1007/978-3-642-22438-6_11
https://doi.org/10.6092/issn.1972-5787/4593
https://doi.org/10.6092/issn.1972-5787/4593
https://doi.org/10.1007/978-3-030-53518-6_5
https://doi.org/10.1007/978-3-030-53518-6_5
https://hal.archives-ouvertes.fr/tel-01223502
https://hal.archives-ouvertes.fr/tel-01223502
https://matryoshka-project.github.io/pubs/seventeen.pdf
https://matryoshka-project.github.io/pubs/seventeen.pdf
https://doi.org/10.1007/978-3-319-63390-9_7
https://doi.org/10.1007/978-3-319-63390-9_7
https://doi.org/10.1145/2676724.2693173
https://doi.org/10.1145/2676724.2693173

9:18 Automated Theorem Proving for Metamath

11 Allen Van Gelder and Geoff Sutcliffe. Extending the TPTP language to higher-order logic
with automated parser generation. In Ulrich Furbach and Natarajan Shankar, editors, IJCAR,
volume 4130 of LNCS, pages 156–161. Springer, 2006. doi:10.1007/11814771_15.

12 Thomas C. Hales, John Harrison, Sean McLaughlin, Tobias Nipkow, Steven Obua, and Roland
Zumkeller. A revision of the proof of the Kepler conjecture. Discrete & Computational
Geometry, 44(1):1–34, 2010. doi:10.1007/s00454-009-9148-4.

13 Jan Jakubův and Josef Urban. BliStrTune: hierarchical invention of theorem proving strategies.
In Yves Bertot and Viktor Vafeiadis, editors, Proceedings of the 6th ACM SIGPLAN Conference
on Certified Programs and Proofs, CPP 2017, Paris, France, January 16-17, 2017, pages
43–52. ACM, 2017. doi:10.1145/3018610.3018619.

14 Jan Jakubuv, Karel Chvalovský, Zarathustra Amadeus Goertzel, Cezary Kaliszyk, Mirek
Olsák, Bartosz Piotrowski, Stephan Schulz, Martin Suda, and Josef Urban. Mizar 60 for mizar
50. CoRR, abs/2303.06686, 2023. doi:10.48550/arXiv.2303.06686.

15 Cezary Kaliszyk and Josef Urban. HOL(y)Hammer: Online ATP service for HOL Light.
Mathematics in Computer Science, 9(1):5–22, 2015.

16 Cezary Kaliszyk and Josef Urban. MizAR 40 for Mizar 40. Journal of Automated Reasoning,
55(3):245–256, 2015. doi:10.1007/s10817-015-9330-8.

17 Laura Kovács and Andrei Voronkov. First-order theorem proving and Vampire. In Natasha
Sharygina and Helmut Veith, editors, CAV, volume 8044 of LNCS, pages 1–35. Springer, 2013.
doi:10.1007/978-3-642-39799-8_1.

18 Daniel Kühlwein, Jasmin Christian Blanchette, Cezary Kaliszyk, and Josef Urban. MaSh:
Machine learning for Sledgehammer. In Sandrine Blazy, Christine Paulin-Mohring, and
David Pichardie, editors, ITP 2013, volume 7998 of LNCS, pages 35–50. Springer, 2013.
doi:10.1007/978-3-642-39634-2_6.

19 William McCune. Prover9 and Mace4, 2005–2010. URL: http://www.cs.unm.edu/~mccune/
prover9/.

20 Norman D. Megill and David A. Wheeler. Metamath: A Computer Lan-
guage for Mathematical Proofs. Lulu Press, Morrisville, North Carolina, 2019.
http://us.metamath.org/downloads/metamath.pdf.

21 Jia Meng and Lawrence C. Paulson. Translating higher-order clauses to first-order clauses. J.
Autom. Reasoning, 40(1):35–60, 2008. doi:10.1007/s10817-007-9085-y.

22 Lawrence C. Paulson and Jasmin C. Blanchette. Three years of experience with Sledgehammer,
a practical link between automated and interactive theorem provers. In Geoff Sutcliffe, Stephan
Schulz, and Eugenia Ternovska, editors, Workshop on the Implementation of Logics (IWIL),
volume 2 of EPiC, pages 1–11. EasyChair, 2010. Invited talk. URL: http://www.easychair.
org/publications/paper/62805.

23 John Alan Robinson and Andrei Voronkov, editors. Handbook of Automated Reasoning (in
2 volumes). Elsevier and MIT Press, 2001. URL: https://www.sciencedirect.com/book/
9780444508133/handbook-of-automated-reasoning.

24 Stephan Schulz. System description: E 1.8. In Kenneth L. McMillan, Aart Middeldorp, and
Andrei Voronkov, editors, LPAR, volume 8312 of Lecture Notes in Computer Science, pages
735–743. Springer, 2013. doi:10.1007/978-3-642-45221-5_49.

25 Stephan Schulz, Simon Cruanes, and Petar Vukmirovic. Faster, higher, stronger: E 2.3. In
Pascal Fontaine, editor, Automated Deduction - CADE 27 - 27th International Conference on
Automated Deduction, Natal, Brazil, August 27-30, 2019, Proceedings, volume 11716 of Lecture
Notes in Computer Science, pages 495–507. Springer, 2019. doi:10.1007/978-3-030-29436-6_
29.

26 Josef Urban. BliStr: The Blind Strategymaker. In Georg Gottlob, Geoff Sutcliffe, and
Andrei Voronkov, editors, Global Conference on Artificial Intelligence, GCAI 2015, Tbilisi,
Georgia, October 16-19, 2015, volume 36 of EPiC Series in Computing, pages 312–319. Easy-
Chair, 2015. URL: http://www.easychair.org/publications/paper/BliStr_The_Blind_
Strategymaker, doi:10.29007/8n7m.

https://doi.org/10.1007/11814771_15
https://doi.org/10.1007/s00454-009-9148-4
https://doi.org/10.1145/3018610.3018619
https://doi.org/10.48550/arXiv.2303.06686
https://doi.org/10.1007/s10817-015-9330-8
https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.1007/978-3-642-39634-2_6
http://www.cs.unm.edu/~mccune/prover9/
http://www.cs.unm.edu/~mccune/prover9/
https://doi.org/10.1007/s10817-007-9085-y
http://www.easychair.org/publications/paper/62805
http://www.easychair.org/publications/paper/62805
https://www.sciencedirect.com/book/9780444508133/handbook-of-automated-reasoning
https://www.sciencedirect.com/book/9780444508133/handbook-of-automated-reasoning
https://doi.org/10.1007/978-3-642-45221-5_49
https://doi.org/10.1007/978-3-030-29436-6_29
https://doi.org/10.1007/978-3-030-29436-6_29
http://www.easychair.org/publications/paper/BliStr_The_Blind_Strategymaker
http://www.easychair.org/publications/paper/BliStr_The_Blind_Strategymaker
https://doi.org/10.29007/8n7m

M. Carneiro, C. E. Brown, and J. Urban 9:19

27 Josef Urban, Piotr Rudnicki, and Geoff Sutcliffe. ATP and presentation service for Mizar
formalizations. J. Autom. Reasoning, 50:229–241, 2013. doi:10.1007/s10817-012-9269-y.

28 Petar Vukmirovic, Alexander Bentkamp, Jasmin Blanchette, Simon Cruanes, Visa Nummelin,
and Sophie Tourret. Making higher-order superposition work. In CADE, volume 12699 of
Lecture Notes in Computer Science, pages 415–432. Springer, 2021.

ITP 2023

https://doi.org/10.1007/s10817-012-9269-y

Reimplementing Mizar in Rust
Mario Carneiro #

Carnegie Mellon University, Pittsburgh, PA, USA

Abstract
This paper describes a new open-source proof processing tool, mizar-rs, a wholesale reimplementation
of core parts of the Mizar proof system, written in Rust. In particular, the “checker” and “analyzer”
of Mizar are implemented, which together form the trusted core of Mizar. This is to our knowledge
the first and only external implementation of these components. Thanks to the loose coupling of
Mizar’s passes, it is possible to use the checker as a drop-in replacement for the original, and we
have used this to verify the entire MML in 11.8 minutes on 8 cores, a 4.8× speedup over the original
Pascal implementation. Since Mizar is not designed to have a small trusted core, checking Mizar
proofs entails following Mizar closely, so our ability to detect bugs is limited. Nevertheless, we were
able to find multiple memory errors, four soundness bugs in the original (which were not being
exploited in MML), in addition to one non-critical bug which was being exploited in 46 different
MML articles. We hope to use this checker as a base for proof export tooling, as well as revitalizing
development of the language.

2012 ACM Subject Classification Mathematics of computing → Mathematical software performance;
Software and its engineering → Formal methods; Social and professional topics → Systems analysis
and design

Keywords and phrases Mizar, proof checker, software, Rust

Digital Object Identifier 10.4230/LIPIcs.ITP.2023.10

Related Version Previous Version: https://arxiv.org/abs/2304.08391

Supplementary Material Software (Source Code): https://github.com/digama0/mizar-rs/tree/
itp2023/itp2023, archived at swh:1:dir:2522beed4f5fce87ce3193ff0359def1dcff1d7c

Funding Work supported by the Hoskinson Center for Formal Mathematics at Carnegie Mellon.

Acknowledgements I would like to thank Josef Urban and Jeremy Avigad for their support and
encouragement, and Adam Naumowicz and SUM for taking the courage to finally open-source Mizar,
without which it would not have been possible to publish this paper and accompanying code.

1 Introduction

The Mizar language [3] is a proof language designed by Andrzej Trybulec in 1973 for writing
and checking proofs in a block structured natural deduction style. The Mizar project more
broadly has been devoted to the development of the language and tooling, in addition to
the Mizar Mathematical Library (MML) [2], a compendium of “articles” on a variety of
mathematical topics written in the Mizar language. The MML is one of the largest and
oldest formal mathematical libraries in existence, containing (at time of writing) 1434 articles
and over 65,000 theorems.

The “Mizar system” is a collection of tools for manipulating Mizar articles, used by
authors to develop and check articles for correctness, and maintained by the Association of
Mizar Users (SUM). Arguably the most important tool in the toolbox is verifier, which
reads a Mizar article and checks it for logical correctness. The starting point for this work is
the goal of extracting formal proofs from the verifier which can be checked by a tool not
directly connected to Mizar. This turned out to be quite challenging, and this paper will
explain how we achieved a slightly different goal – to build mizar-rs, a Rust program which
checks proofs in the same manner as the verifier, with an eye for proof generation.

© Mario Carneiro;
licensed under Creative Commons License CC-BY 4.0

14th International Conference on Interactive Theorem Proving (ITP 2023).
Editors: Adam Naumowicz and René Thiemann; Article No. 10; pp. 10:1–10:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mcarneir@andrew.cmu.edu
https://orcid.org/0000-0002-0470-5249
https://doi.org/10.4230/LIPIcs.ITP.2023.10
https://arxiv.org/abs/2304.08391
https://github.com/digama0/mizar-rs/tree/itp2023/itp2023
https://github.com/digama0/mizar-rs/tree/itp2023/itp2023
https://archive.softwareheritage.org/swh:1:dir:2522beed4f5fce87ce3193ff0359def1dcff1d7c;origin=https://github.com/digama0/mizar-rs;visit=swh:1:snp:977440b27d4c48e461765200c4a506a42269f532;anchor=swh:1:rev:f13f2ceaf401bda6f8aa1a2a8c8db3441c484181
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Reimplementing Mizar

Why hasn’t this been done before?

The first challenge is that there is no “spec” for the Mizar language: a Mizar proof is one
that verifier accepts. Some of it is “obvious” things which users can figure out by playing
with the language, and there are reference works at varying levels of detail [5, 10], but if we
want to check the entire MML then approximations aren’t going to cut it. There are some
writings online which give the general sense of the algorithm, but there is nowhere to look
for details except the source code.

This leads to the second challenge, which is that the source code for the Mizar system is
not publicly available, or at least was not while this project was under development.1 It was
only made available to members of the SUM. Luckily, it is possible to obtain a membership,
but the price of admission is that one has to write a Mizar article first. Thus, for this project
the author contributed an article regarding the divergence of the sum of prime reciprocals [4].

The third challenge is that Mizar does not have a “small trusted kernel” in any reasonable
sense. The main components that perform trusted activities are the “analyzer” and the
“checker”, and most of the code of the verifier is contained in these modules. Moreover, the
code is written in Pascal and Polish (two languages that the author is not very good at),
and is 50 years old, meaning that there is a huge amount of technical debt in the code.2 To
get a good sense of what everything is doing and why it is correct (or not), we estimated
the best option would simply be to rewrite it and closely follow what the original code is
doing. Rust was chosen as the implementation language because it is well suited to writing
console applications with a focus on correctness, performance, and refactoring, all of which
were important for something that could play the role of verifier.

We are not the first to present aspects of Mizar from an outsider’s perspective. J.
Harrison’s Mizar mode in HOL Light [6] is a simulation of large parts of the Mizar frontend,
with the MESON prover used in place of the Mizar checker. J. Urban’s MPTP [12] project
exports the statements of checker goals and sends them to ATPs. And most recently, Kaliszyk
and Pąk presented a model of Mizar as encoded in Isabelle [7], but stop short of a fully
automatic proof export mechanism.

One may reasonably ask why the MPTP export is not already everything you could wish
regarding proof export. There are two problems: (1) Because it is using external ATPs
rather than Mizar’s own code, it does not and cannot reasonably be expected to achieve
100% success on the MML, and even when it works the Mizar checker often outperforms the
external ATP, because the MML is significantly overfit to the Mizar checker. (2) Because it
instruments the “checker inference” level, we verify “by” steps but not the skeleton steps
that glue them together, and some significant type reasoning happens in the analyzer.

In this paper, we will try to give an implementer’s perspective of Mizar: how it works under
the hood, and some things we discovered while trying to replicate the functionality. The reader
should be aware that this paper is focused on internal details and implementation correctness
of the Mizar system, not the abstract theory of Mizar (that is, Tarski–Grothendieck set
theory and the soft type system). See [5, 7] for information on these aspects of the language.

1 A happy after-effect of this project is that the Mizar source code itself has been made public! It is now
available at https://github.com/MizarProject/system.

2 Technically the current incarnation of Mizar (“PC Mizar”) only dates to 1986. See [9] for the early
history of Mizar.

https://github.com/MizarProject/system

M. Carneiro 10:3

2 Mizar internals: A (determined) user’s perspective

When one runs the verifier on a Mizar file, say tarski.miz, one will see something like
this:

Verifier based on More Strict Mizar Processor, Mizar Ver. 8.1.11 (Linux/FPC)
Copyright (c) 1990-2022 Association of Mizar Users
Processing: mizshare/mml/tarski.miz

Parser [138] 0:00
MSM [132] 0:00
Analyzer [137] 0:00
Checker [137] 0:00
Time of mizaring: 0:00

This refers to modules named Parser, MSM, Analyzer, Checker, so one can reasonably guess
that the code is split up into multiple passes and these are the names of the modules.

Parser reads the text and converts it into an abstract syntax tree.
MSM stands for “More Strict Mizar”, which is a slightly more elaborated version of the
syntax tree. Notably, this pass does (some kinds of) name resolution, as well as resolving
and auto-binding reserved variables.
Analyzer is responsible for processing the large scale logical structure of a Mizar document.
It resolves symbol overloading and checks types, as well as tracking the “thesis” as it is
transformed by Mizar proof steps.
Checker is called by the analyzer whenever there are atomic proof obligations. It is
sometimes referred to as the “by” proof automation because it is called whenever there is
a step proved using the by keyword.

Both the analyzer and the checker are soundness-critical components. Clearly the checker
is important because it actually checks proofs – a bug here will mean that an incorrect proof
is accepted – but the analyzer is also important because it determines the proof obligations
that will be sent to the checker. If the analyzer sends the wrong assertion to the checker
or simply doesn’t call the checker at all, then it might assert a theorem that hasn’t been
properly checked.

Another visible effect of running verifier on a .miz file is that a huge number of other
files are generated with bespoke extensions, which reveals another implementation quirk of
the Mizar system, which is that the four components above are very loosely coupled and
communicate only via the file system. The parser reads the .miz file and produces a .wsx
file, which is read by MSM to produce .msx, which is read by the transfer2analyzer module
(not mentioned above) to produce .par, which is read by Analyzer to produce .xml, which
is read by Checker and verified.

The general data flow of a Mizar verification looks like this:
The first tool to process the article is the “accommodator,” accom. This is the only tool
which reads data from articles other than the current one; it is responsible for aggregating
data from imports and collecting them for the current article.

reads: mml.ini, mml.vct, mizar.dct, art.miz, and dep.{dco, dre, dcl, dno, did,
drd, dpr, def, the, sch}
writes: art.{vcl, sgl, cho, aco, atr, ere, ecl, eno, nol, ano, frm, prf, eid, erd,
epr, dfs, dfe, dfx, eth, esh, fil, err, log}

Here art is the article being processed and dep is an article which is imported by this one.
For example xboole_0.miz has a theorems TARSKI declaration in its environ section,
so the accommodator will load tarski.the to get the theorems from article tarski

ITP 2023

10:4 Reimplementing Mizar

and put them in xboole_0.eth. Similar things are done for constructors, notations,
definitions, etc., each of which is in a separate file, which is why so many files are read
and written in this step.
The next pass is the parser, which parses the body of the art.miz article and produces a
art.wsx file (Weakly Strict Mizar) containing the AST, along with art.frx containing
the formats declared in the article.
The MSM pass reads art.wsx and writes art.msx, performing name resolution and filling
in the types of reservation variables in statements.
The transfer2analyzer pass appears to be for backward compatibility reasons, as it
reads art.msx and translates it to art.par, which is the same thing but in a less extensible
format. It also resolves format references.
The analyzer pass reads art.{eno, epr, dfs, par} and writes art.xml, which is the article
AST again but using fully elaborated and typechecked terms, and with all the statements
of checker subgoals explicitly annotated.
The checker is the last pass. It reads art.{ref, ere, atr, ecl, dfe, dfx, epr, eid, erd,
eth, esh, xml} and verifies the theorems.

The underlined files are the ones which we needed to parse while implementing the
analyzer and checker passes.

Thanks to the efforts of J. Urban in 2004 [11], most of these internal files between the
components are in XML format. Those that are not XML are highlighted in red. The only
non-XML files we need to read are art.ref and art.ere, and both of these have rather
simplistic number-list formats.

If one opens one of these files, one is presented with the next major challenge, which is
that terms are pervasively indexed and hence reading the expressions can be quite difficult.
Moreover, there are many distinct index classes which are differentiated only by the context in
which they appear, so without knowing how the program processes the indices or what array
is being accessed it is hard as an outsider to follow the references. In the Rust implementation
this issue is addressed by using “newtypes” to wrap each integer to help distinguish different
indexing sets. There are currently 36 of these newtypes defined: for example there are
numbers for functors, selectors, predicates, attributes, formats, notations, functor symbols
(not the same!), left bracket symbols, reserved identifiers, etc.

After parsing these, one ends up with an expression such as
∀_ : M1, R4(K1(B1, K2(N2)), N1), which means something like “for all x of the first type,
fourth relation holds of the first function applied to x and the second function applied
to 2, and 1”. For many purposes, this is sufficient for debugging, but one tends to go
cross-eyed staring at these expressions for too long. Ideally we would be able to reverse this
indexification to obtain the much more readable expression ∀x : Nat, x · (−2) ≤ 1. However,
the code to do this does not exist anywhere in Mizar, because the Mizar checker never prints
expressions. The only output of the checker is a list of (line, col, err_code) triples, which
are conventionally postprocessed by the errflag tool to insert markers like the following in
the text:

for x being Nat holds x = x
proof

let x be Nat;
end;
:: >,70
:: >
:: > 70: Something remains to be proved

M. Carneiro 10:5

This error message is pointing at the end keyword, but notably it does not say what remains
to be proved, here x = x. A debug build of Mizar will actually print out expressions to the
art.inf file, but they are similar to the R4(K1(. . .)) style.

Luckily, this issue has been addressed outside the main Mizar codebase: J. Urban’s
HTMLizer is an XSLT stylesheet which can transform the XML intermediate files into fully
marked up reconstructed Mizar documents, and which we adapted to design the formatter.

With the present version of the formatter, and with appropriate debugging enabled, an
input like the following:

for x,y being Nat holds x = 1 & y = 2 implies x + y = 3;

yields this debugging trace:

input: ∃ b0: natural set, b1: natural set st
(b0 = 1) ∧ (b1 = 2) ∧ ¬((b0 + b1) = 3)

refuting 0 @ TEST:28:33:
∃ b0: natural set, b1: natural set st

(b0 = 1) ∧
(b0 c= 1) ∧
(1 c= b0) ∧
(b1 = 2) ∧
(b1 c= 2) ∧
(2 c= b1) ∧
¬((b0 + b1) = 3) ∧
(((b0 + b1) c= 3) → ¬(3 c= (b0 + b1)))

In addition to showing some of the formatting and indentation behavior of the reconstructed
expression, this also reveals some aspects of the checker, like how the goal theorem has been
negated and the definitional theorem x = y ↔ x ⊆ y ∧ y ⊆ x has been eagerly applied during
preprocessing.

One other feature that is demonstrated here is “negation desugaring”, which requires
some more explanation. Internally, Mizar represents all expressions using only ¬, ∀ and
n-ary ∧. So P → Q is mere syntax for ¬(P ∧ ¬Q) and ∃x, P (x) is actually ¬∀x, ¬P (x).
(Even P ↔ Q is desugared, to ¬(P ∧ ¬Q) ∧ ¬(Q ∧ ¬P), so too much recursive use of ↔
can cause a blowup in formula size.) This normalization ensures that different spellings
of the same formula are not distinguished, for example if the goal is P ∨ Q then one may
prove it by assume not P; thus Q;. Double negations are also cancelled eagerly. In the
formatter, we try to recover a natural-looking form for the expression by pushing negations
to the leaves of an expression, and also writing A ∧ B → C ∨ D if after pushing negations we
get a disjunction such that the first few disjuncts have an explicit negation. (Mizar actually
carries some annotations on formulas to help reconstruct whether the user wrote not A or B
or A implies B, but we chose not to use this information as it is often not available for
expressions deep in the checker so we wanted a heuristic that works well in the absence of
annotation.)

3 The checker

Mizar is broadly based on first order logic, with the non-logical axioms of Tarski–Grothendieck
set theory, with a type system layered on top. While types can depend on terms, so one may
call it a dependent type theory, this is not a type system in the sense of Martin-Löf type
theory: types are essentially just predicates over terms in an untyped base logic, and the
language allows typing assertions to be treated as predicates.

ITP 2023

10:6 Reimplementing Mizar

3.1 Core syntax
The core syntax of Mizar uses the following grammar:

a, b, c, d, e, F, G, H, K, U, V, P, R, S, TM , TG ::= ident

t ::= a, b, c, d, e variable
| n numeral
| {F, G, K, U}(−→ti) function application
| H(−→ti) := t′ local function app.
| the τ choice
| {t |

−−−→
bi : τi | φ} Fraenkel

τ ::= −→χi TM (−→ti) mode
| −→χi TG(−→ti) struct type

χ ::= ±V (−→ti) attribute

φ ::= ⊤ true
| ¬φ negation
|
∧ −→φi conjunction

|
∧t′

b=t φ flex conjunction
| ∀ b : τ. φ for all
| {P, R}(−→ti) predicate
| S(−→ti) := t′ local pred.
| t is χ attribute
| t : τ qualification

Broadly speaking, terms are first order, meaning applications of function symbols to
variables. The exception is the Fraenkel operator {t |

−−−→
bi : τi | φ}, which should be read

as “the set of t(
−→
bi) where the

−−−→
bi : τi are such that φ(

−→
bi)”, where the variables

−−−→
bi : τi are

quantified in both t and φ.
All terms t have a type τ , and there is a robust subtyping system – most terms have many

types simultaneously. All types are required to be nonempty, which is what justifies the the τ

constructor for indefinite description. Types are composed of a collection of attributes (a.k.a.
clusters) χ applied to a base type {TM , TG}(

−→
bi). Regular types are called “modes”; new

modes can be defined by carving out a subset of an existing mode, and modes need not define
a set (in particular, object is a primitive mode which is the supertype of everything, and
does not constitute a set per Russell’s paradox). Structure types are roughly modeled after
partial functions from some set of “tags”, but they are introduced axiomatically, similarly to
how structure types are treated in a dependent type theory such as Coq or Lean.
▶ Remark. Although one can define a mode for any ZFC set or class, modes and sets are
not interchangeable in Mizar because they lie in different syntactic classes. Modes are types,
which go in the type argument of quantifiers such as the Nat in ∀x : Nat. x ≥ 0, while sets
are objects, which can be passed to functions, like |NAT| = ℵ0. In the MML, NAT is the set
of natural numbers, while Nat and Element of NAT are modes which describe the type of
natural numbers (and in general Element of A can be used to treat a set as a type).

Attributes, also known as “adjectives” or “clusters”, are modifiers on types, which may
be described as intersection typing in modern terminology, although attributes do not
stand alone as types. For example, “x is non empty finite set” means ¬(x is empty) ∧
(x is finite) ∧ (x : set). The Mizar system treats the collection of attributes on a type as
an unordered list for equality comparisons.

Formulas are composed mainly from negation, conjunction and for-all, but there are some
extra formula constructors that deserve attention:

Not represented in the grammar is that ¬¬φ is identified with φ, and internally there is
an invariant that ¬¬ never appears.
Similarly, conjunctions are always flattened, so P ∧ (Q ∧ R) ∧ S becomes P ∧ Q ∧ R ∧ S.
Unlike most type theories, typing assertions are reified into an actual formula, so it is
possible to say 4/2 : N and ¬(−1 : N).
There is also a predicate for having an attribute, and (t : χ τ) ↔ (t is χ) ∧ (t : τ) is
provable.

M. Carneiro 10:7

Flex-conjunction is written with syntax such as P[1] & ... & P[n] (with literal “...”),
and Mizar knows that this expression is equivalent both to ∀x : N. 1 ≤ x ≤ n → P (x) as
well as to an explicit conjunction (when n is a numeral). For example P[1] & ... & P[3]
will be expanded to P[1] & P[2] & P[3] in the checker.

The different letters for functions, predicates, and variables correspond to the different
roles that these can play, although in most situations they are treated similarly.

“Locus variables” (a) are used in function declarations to represent the parameters
of a function, mode, cluster, etc. For example a local function might be declared as
K(−→ai) : τ := t where τ and t are allowed to depend on the −→ai , and then when typing it
we would have that K(−→ti) has type τ [−−−−→

ai 7→ ti].
“Bound variables” (b) are de Bruijn levels, used to represent variables in all binding
syntaxes. So for example, ∀x : N. ∀y : N. x ≤ x + y would be represented as
∀ : N. ∀ : N. b0 ≤ b0 + b1. NB: there are two conventions for locally nameless variables,
called “de Bruijn indices” (variables are numbered from the inside out) and “de Bruijn
levels” (variables are numbered from the outside in), and Mizar’s choice of convention is
the less common one.
“Constants” (c) are variables that have been introduced by a consider, given, or
take declaration, as well as Skolem constants introduced in the checker when there are
existentially quantified assumptions. Constants may or may not be defined to equal some
term (for example take x = t will introduce a variable x equal to t) and the checker will
use this in the equalizer if available.
“Inference constants” (d) are essentially checker-discovered abbreviations for terms. This
is used to allow for subterm sharing, as terms are otherwise completely unshared.
“Equivalence classes” (e) are used in the equalizer to represent equivalence classes of
terms up to provable equality. So for example if the equalizer sees a term x + y it will
introduce an equivalence class e1 for it and keep track of all the things known to be in
this class, say e1 = x + y = y + x = e1 + 0.
Functors (K) and predicates (R) are the simplest kind of definition, they correspond to
function and relation symbols in traditional FOL.
Scheme functors (F) and scheme predicates (P) are the higher-order analogue of constants.
They are only valid inside scheme definitions, which declare these at the start and then
use them in the statement and proof.
Local functors (H) and local predicates (S) are function declarations within a local scope,
declared with the deffunc or defpred keywords. Internally every predicate carries the
result of substituting its arguments, so if we declare deffunc H1(x, y) := x + y then an
expression like 2 · H1(x − 1, y) is really stored as 2 · (H1(x − 1, y) := x − 1 + y). Some
parts of the system treat such an expression like a function application, while others treat
it like an abbreviation for a term.
An aggregate functor (G) is Mizar terminology for a structure constructor {foo := x, bar :=
y} : MyStruct, and the converse operator is a selector (U), which is the projection t.foo
for a field. (The Mizar spelling for these operators is MyStruct(# x, y #) for the
constructor and the foo of t for the projection.)

3.2 Structure of the checker
The checker is called whenever there is a proof such as “2 + 2 = 4;” or
“x <= y by A1,Thm2;”: basically any time there is a by in the proof text, as well as when
propositions just end in a semicolon, this being the nullary case of by. It consists of three

ITP 2023

10:8 Reimplementing Mizar

major components, although there is another piece that is used even before the checker is
properly called on a theorem statement:
0. Attribute inference (“rounding-up”) is used on every type −→χ −τ to prove that it is

equivalent to −→χ +τ where −→χ + is a superset of −→χ −. Internally we actually keep both
versions of the attributes (the “lower cluster” −→χ − being the one provided by the user and
the “upper cluster” −→χ + being what we can infer by applying all inference rules), because
it is useful to be able to prove that two clusters are equal if −→χ −

1 ⊆ −→χ +
2 and −→χ −

2 ⊆ −→χ +
1 .

1. The pre-checker takes the list of assumptions, together with the negated conjecture,
and performs a number of normalizations on them, skolemizing existentials, removing
vacuous quantifiers, and expanding some definitions. Then it converts the whole formula
into disjunctive normal form (DNF) and tries to refute each clause.

2. The equalizer does most of the “theory reasoning”. It replaces each term in the clause
with an equivalence class, adding equalities for inference constants and defined constants,
as well as registered equalities and symmetry declarations, as well as any equalities in the
provided clause. It also evaluates the numeric value (for 2 + 2 = 4 proofs) and polynomial
value (for (x + 1)2 = x2 + 2x + 1 proofs) of equality classes and uses them to union classes
together. These classes also have many types since many terms are going into the classes,
and all of the attributes of these types are mixed together into a “supercluster” and
rounded-up some more, potentially leading to a contradiction. For example if we know
that x = y and x is positive and y is negative then the supercluster for {x, y} becomes
positive negative which is inconsistent.

3. The last step is the unifier, which handles instantiation of quantifiers. This is relatively
simplistic and non-recursive: for each assumption ∀⃗b. P (⃗b) it will instantiate P (v⃗) (where
v⃗ are metavariables) and then construct the possible assignments (as a DNF) to the
variables that would make P (v⃗) inconsistent with some other assumption. It tries this
for each forall individually, and if it fails, it tries taking forall assumptions in pairs and
unifying them. If that still fails then it gives up – it does not attempt a complete proof
method.

Finally, there is one more component which is largely separate from the “by” automation:
4. The schematizer is the automation that is called for justifications starting with “from”.

These are scheme instantiations. In this case it is very explicitly given the list of hypotheses
in the right order, so the only thing it needs to do is to determine an assignment of the
scheme variables (F, P) to regular functors and predicates (K, R) or local functors and
predicates (H, S). Users are often required to introduce local predicates in order to apply
a scheme. Nullary scheme functors (a.k.a constant symbols) can be unified with arbitrary
terms, however.

Although we cannot go into full detail on the algorithms here, in the following sections
we will go into some of the highlights, with an emphasis on what it takes to audit the code
for logical soundness, through the lens of root-causing some soundness bugs.

3.3 Requirements
One aspect of the Mizar system that is of particular interest is the concept of “requirements”,
which are definitions that the checker has direct knowledge of. For example, the grammar
given above does not make any special reference to equality: it is simply one of the possible
relation symbols Ri(x, y), and the relation number for equality can vary from one article
to the next depending on how the accommodator decides to order the imported relation
symbols. Nevertheless, the checker clearly needs to reason about equality to construct
equality equivalence classes.

M. Carneiro 10:9

To resolve this, there is a fixed list of “built-in” notions, and one of the files produced by
the accommodator (art.ere) specifies what the relation/functor/mode/etc. number of each
requirement is. Importantly, if a constructor is identified in this way as a requirement, this
not only allows the checker to recognize and produce expressions like x = y, it is also an
assertion that this relation behaves as expected. If a requirement is given a weird definition,
for example if we were to open xcmplx_0.miz and change the definition of x + y to mean
subtraction instead, we would be able to prove false in a downstream theorem which enables
the requirement for +, because we would still be able to prove 2 + 2 = 4 by evaluation.

At the surface syntax level, requirements are enabled in groups, using the requirements
directive in the import section. The requirements are, in rough dependency order:

HIDDEN (introduced after the HIDDEN article) is a requirement that is automatically
enabled for every Mizar file. It introduces the modes object and set, as well as x = y

and x ∈ y. (The article HIDDEN itself is somewhat magical, and cannot be processed
normally because every file takes an implicit dependency on HIDDEN.)
BOOLE (introduced after XBOOLE_0) introduces the adjective x is empty, as well as set
operators ∅, A∪B, A∩B, A\B, A⊕B, and A meets B (i.e. A∩B ̸= ∅). These operators
have a few extra properties such as A ∪ ∅ = A that are used in the equalizer.
SUBSET (introduced after SUBSET_1) introduces the mode Element of A, along with
P(A), A ⊆ B, and the mode Subset of A. The checker knows about how these notions
relate to each other, for example if x ∈ A then x : Element(A). (Because types have to
be nonempty, x : Element(A) is actually equivalent to x ∈ A ∨ (A = ∅ ∧ x = ∅). So the
reverse implication used by the checker is (x : Element(A)) ∧ ¬(A is empty) → x ∈ A.)
NUMERALS (introduced after ORDINAL1) introduces succ(x), x is natural, the set N
(spelled NAT or omega), 0, and x is zero. Note that 0 is not considered a numeral in the
sense of section 3.1, it is a functor symbol Ki(). Numbers other than 0 can be written
even before the ORDINAL1 article, but they are uninterpreted sets; after this requirement
is added the system will give numerals like 37 the type Element of NAT instead of set.
REAL (introduced after XXREAL_0) introduces x ≤ y, x is positive, x is negative,
along with some basic implications of these notions.

NUMERALS + REAL enables the use of flex-conjunctions
∧b

i=a φ(i), since these expand
to the expression ∀i : N. a ≤ i ≤ b → φ(i) which requires N and ≤ to write down.

ARITHM (introduced after XCMPLX_0) introduces algebraic operators on the complexes:
x + y, x · y, −x, x−1, x − y, x/y, i, and x is complex. This also enables the ability to
do complex rational arithmetic on numerals, as well as polynomial normalization.

3.3.1 Soundness considerations of the requirements
There is a slight mismatch between what the user has to provide in order to enable a
requirement and what the checker gets to assume when a requirement is enabled which causes
a challenge for proof export or other external soundness verification. As the list above might
indicate, generally checker modules corresponding to a requirement are enabled as soon as all
of the constructors involved in stating them are available; for example we can see this with
the NUMERALS + REAL prerequisite for flex-conjunctions. (More precisely, flex-conjunctions
are enabled exactly when N and ≤ become available.) However, the checker needs more than
that to justify the manipulations it does with them.

For example the checker exploits the fact that
∧3

i=1 φ(i) is equivalent both to ∀i :
N. 1 ≤ i ≤ 3 → φ(i) and to φ(1) ∧ φ(2) ∧ φ(3), and so this amounts to an assertion that
a ≤ i ≤ b ↔ i = a ∨ i = a + 1 ∨ · · · ∨ i = b is provable when a and b are numerals such
that a ≤ b. The reverse implication follows from numerical evaluation, and the forward
implication is a metatheorem that can be proven by induction, assuming the existence of
lemma L saying a ≤ i → i = a ∨ succ(a) ≤ i:

ITP 2023

10:10 Reimplementing Mizar

▶ Theorem 1. If a and n are numerals and i : N, then

i : N ⊢ a ≤ i ≤ succn(a) → i = a ∨ i = succ(a) ∨ · · · ∨ i = succn(a)

is provable.

Proof. By induction on n. Applying the induction hypothesis with succ(a) and n − 1, we get

i : N ⊢ succ(a) ≤ i ≤ succn(a) → i = succ(a) ∨ · · · ∨ i = succn(a)

so it suffices to show a ≤ i → i = a ∨ succ(a) ≤ i, and we appeal to lemma L. ◀

So ideally, when introducing ≤ or the REAL requirement, one would be required to supply
a proof of lemma L somehow to justify that the checker will be making use of this fact in
the following article. Unfortunately, there is no actual place to inject this theorem into the
system, because there is no concrete syntax for introducing requirements. That is, even
taking all the .miz files in the MML together there is nothing that would indicate that
XXREAL_0 is the article which allows the REAL requirement to be used.3

The way this actually works is that when the accommodator sees a requirements REAL;
directive, it reads the (hand-written) real.dre XML file, which explicitly names the con-
structor number for ≤ and the fact that it is in article XXREAL_0. We would like to propose
that this file also contains justifications for involved constants so that the theorems aren’t
smuggled in without proof. (Or even better, requirement declarations become a part of
the language proper, so that they can get correctness proof blocks like any other justified
property.)

The case of NUMERALS + REAL enabling flex-conjunctions is especially interesting because
neither of these requirements depends on the other, so neither numerals.dre nor real.dre
can state the compatibility theorem a ≤ i → i = a ∨ succ(a) ≤ i between them. (This
doesn’t require a major reorganization to fix, since of course the article that introduces REAL,
xxreal_0.miz, references the article which introduces NUMERALS, ordinal1.miz.)

4 The analyzer

The analyzer plays an interesting role in Mizar. This is an essentially completely separate
inference system from the checker, which has much stricter rules about equality of expressions,
and it is what forms the “glue” between different lines of proof. It is a large module only
because the language of Mizar is quite expansive, with 109 keywords, including:

Different kinds of definitions for modes, functors, predicates; redefinitions;
Definitions by case analysis;
“Notations” (synonym and antonym declarations);
“Properties” like commutativity, projectivity or involutiveness;
Cluster registrations (existential, functor, and conditional);

Existential clusters assert that −→χ τ is nonempty and hence a legal type
Functor clusters assert that t is −→χ for some term t

Conditional clusters assert that −→χ implies −→χ ′

3 Note that is also a Mizar article called real.miz, which contains some of the lemmas that are auto-proved
by the REAL requirement, but there is no formal relation between the article and the requirement, and it
is only an incomplete approximation to the lemmas required to justify the requirement, not formally
checked. This should be easy to fix, and will more or less fall out of any attempt at proof export.

M. Carneiro 10:11

“Reductions”, equalities the checker automatically uses for simplification;
“Identifications”, equalities the checker automatically uses for congruence closure;
Local declarations;
Schemes;
Reservations (variables with types declared in advance);
Propositions and theorems;

and this is not an exhaustive list.
This also only covers top-level items. Inside a proof block there is a different (overlapping

but largely disjoint) set of legal items, called skeleton steps, which correspond to natural
deduction rules. Inside a proof there is a variable that holds the current “thesis”, the goal to
prove, and the thesis keyword resolves to it, unless one is in a now block, where the thesis
is not available and is reconstructed from the skeleton steps.

let x be T; is the forall introduction rule: it transforms the thesis from ∀x : T. φ(x) to
φ(x) and introduces a constant x : T .
assume A; is the implication introduction rule: it transforms the thesis from A → B to
B and pushes a proposition A, which can be referred to using then.
thus A; is the conjunction introduction rule: it transforms the thesis from A ∧ B to B,
and gives A as a goal to the checker.
take t; is the existential introduction rule: it transforms the thesis from ∃x. φ(x) to
φ(t). There is also take x = t; which is the same but introduces x as an abbreviation
for t; this version can also be used in a now block.
consider x being T such that A; is existential elimination: it introduces x : T and a
proposition A(x) that can be labeled, and gives ∃x : T. A(x) as a goal to the checker.
given x being T such that A; is a combination of implication introduction and exis-
tential elimination: it transforms (∃x : T. A(x)) → B to B and introduces x : T and a
proposition A(x) that can be labeled.
reconsider x = t as T; introduces x : T as a new local constant known to be equal to
t, and gives (t : T) as a proof obligation to the checker. (This is mainly used when t : T

is not already obvious to the type system, and allows t : T to be proved by the user.)
per cases; is disjunction elimination, and it has two variations:

followed by a sequence of suppose A_i; ... end; blocks, it gives
∨

i Ai as a goal to
the checker and makes Ai available in each block, leaving the thesis unchanged;
followed by a sequence of case A_i; ... end; blocks, it gives

∨
i Ai as a goal to the

checker, and if the thesis is
∨

i(Ai ∧ Bi) then Bi becomes the thesis in each block.

Additionally, the formulas don’t have to exactly match what the skeleton steps say.
For example one can start a proof of ∀x : N. φ(x) using let x be set; because set is a
supertype of Nat. Definitional unfolding can also be forced by a skeleton step, for example
if the thesis is A ⊆ B then let x be set; is a legal step provided the right definitions
directive is supplied.

The other major role of the analyzer is to elaborate types, terms, and formulas from their
input form to the core grammar shown in section 3.1. There are two things that make this
challenging:

Mizar heavily uses overloading, where the same function symbol can have several def-
initions (and redefinitions, which are definitions which use the same base term but
can have different input and output types). These are resolved by declaration order (last
declaration wins) and typing. Types are propagated exclusively from the inside out, using
this type-based overload resolution, although you can use e qua A as a type ascription
to influence the selection.

ITP 2023

10:12 Reimplementing Mizar

Many declarations have “invisible arguments”, also known as “implicit arguments” in the
literature. These are filled in by a straightforward first-order unification process.4

5 Mizar soundness bugs

One of the fortuitous side effects of going over each line of code and rewriting it to something
morally equivalent in a different language is that one can find a lot of bugs. Bugs can happen
even when one takes great efforts to avoid them [1, 8], but external review can definitely help.
Mizar is a large project with a long history and a small team, whose source code was not
publicly accessible, with many soundness-critical parts, which is pretty much a worst case
scenario for finding soundness bugs. This mizar-rs project has been tremendously successful
in ferreting out these bugs, with no less than four proofs of false that will be given below.
These errors have been reported to the Mizar developers, and a patched version is available5.

While it is unfortunate that the software wasn’t perfect to start with, this is evidence for
the usefulness of external checkers, and it is a way for us to improve the original Mizar. We
hope that by telling the story of how these bugs work we can give some sense of some of the
issues that can arise when doing proof checking, as well as some more internal details whose
importance may not have been obvious.

5.1 Exhibit 1: polynomial arithmetic overflow
This is the largest of the contradiction proofs, and we will show only the main part of it.6

The only non-MML notion used is the adjective a is x-ordered defined as x < a.

theorem contradiction
proof

consider x being 1−ordered Nat such that not contradiction ;
1 i s 0−ordered ; then
A1 : x ∗ x i s 1−ordered ; then
consider x1 being 0−ordered Nat such that B1 : x1 = x ∗ x ;
A2 : 1 < x1 by A1 , B1 ; then
x1 ∗ x1 i s x1−ordered by XREAL_1: 1 5 5 ; then : : 0 < a ∧ 1 < b → a < a · b

consider x2 being x1−ordered Nat such that B2 : x2 = x1 ∗ x1 ;
. . .
consider x31 being x1−ordered Nat such that B31 : x31 = x30 ∗ x30 ;
consider x32 being x1−ordered Nat such that B32 : x32 = x31 ∗ x31 ;
C: x32 ∗ x1 = x1 by

B1 , B2 , B3 , B4 , B5 , B6 , B7 , B8 , B9 , B10 , B11 , B12 , B13 , B14 , B15 , B16 ,
B17 , B18 , B19 , B20 , B21 , B22 , B23 , B24 , B25 , B26 , B27 , B28 , B29 , B30 , B31 , B32 ;

x32 i s x1−ordered implies x1 < x32 ;
then 0 < x1 & 1 < x32 by A2 ,XXREAL_0: 2 ; : : a ≤ b ∧ b ≤ c → a ≤ c

hence contradiction by C,XREAL_1: 1 5 5 ; : : 0 < a ∧ 1 < b → a < a · b

end ;

4 Unfortunately, the unification process does not have completely unique solutions, because attributes are
unordered, and this can lead to overfitting in the MML to the Mizar attribute ordering. For example,
rng(f) ⊆ B returns the range of a function f : A → B as an element of Subset of B (and rng has
hidden arguments rngA,B(f) inferred from the types). But the function type is split into separate
attributes as A-defined B-valued Function, so if f is B-valued C-valued Function then it is up
to a variety of implementation details whether you get the type of rng f as Subset of B or Subset
of C. This happens in practice for the empty function, which is registered as NAT-valued, RAT-valued,
and a few others.

5 https://github.com/digama0/mizar-system
6 The full proof can be found at

https://github.com/digama0/mizar-rs/blob/itp2023/itp2023/false1/false1.miz.

https://github.com/digama0/mizar-system
https://github.com/digama0/mizar-rs/blob/itp2023/itp2023/false1/false1.miz

M. Carneiro 10:13

As mentioned earlier, there is a module in the equalizer for polynomial evaluation. This
means that each expression which is a complex number will also be expressed as a polynomial
in terms of basic variables, and two expressions which compute to equal polynomials will
be equated. This is how things like −(a + b) = −a + −b are proved automatically by the
checker.

These polynomials are of the form
∑

i ci

∏
j x

ni,j

i,j , and the starting point for this proof
was the discovery that the ni,j are represented as signed 32-bit integers and overflow is not
checked. Turning this into an exploit is surprisingly difficult however, because one cannot
simply write down x232 because the power function is not one of the requirements (see section
3.3). The best thing we have for creating larger polynomials is multiplication, but we can
get to x232 with 32 steps of repeated squaring, which is what the large block of consider
statements is doing.

So the strategy is to construct x1 = x2, x2 = x4, all the way up to x30 = x230 . After
this things start to get weird: x31 = x−231 because of signed overflow, and x32 = x0. The
system does not recognize x32 = 1 however, because it maintains an invariant of monomial
powers being nonzero, and single powers are also handled specially, so we have to go up to
x32 · x1 = x2. Since x1 is also x2, the system will equate x32 · x1 = x1 which is the key step
C. After this, we simply need to separately prove that since x32 · x1 is really x232+2, it is
strictly larger than x1 = x2 as long as we choose x > 1.

To prove this last fact we use the attribute inference mechanism to prove that all of the
intermediates are strictly greater than x1, since x1 < a implies x1 < a · a as long as x1 > 1.
Hence 1 < x1 < x32 so x1 < x32 · x1 = x1, which is a contradiction.

5.2 Exhibit 2: negation in the schematizer
This one requires absolutely no imports; we include the complete proof below including the
import section.

environ begin

scheme Foo{P[set ,set]}: P[1 ,1] implies P[1 ,1]
proof thus thesis ; end;

theorem contradiction
proof

1 = 1 implies 1 <> 1 from Foo;
hence thesis ;

end;

This defines a very trivial scheme which just says that P (1, 1) implies P (1, 1). The
interesting part is the instantiation of this scheme in the main proof. In the schematizer,
we do not negate the thesis and try to prove false, we just directly match the thesis against
the goal. It does not attempt any fancy higher-order unification: if it needs to unify
P (−→ti) ?= ±R(−→ti

′) it will just assign P := ±R and proceed with ti
?= t′

i for each i. Or at least
it should do that, but there is a bug wherein it instead assigns P := R and ignores the ± part,
so we can trick it into unifying P (x, y) := (x = y) and then think that P (x, y) ?= (x ̸= y) is
still true. So we use 1 = 1 to prove 1 ̸= 1 and then prove a contradiction.

5.3 Exhibit 3: flex-and unfolding

ITP 2023

10:14 Reimplementing Mizar

theorem contradiction
proof

(1 = 1 or 1 = 1) & ... & (2 = 1 or 1 = 1);
hence thesis ;

end;

This one is bewilderingly short. We start by asserting a (true) flex-and statement∧2
i=1(i = 1 ∨ 1 = 1). We prove this by using the forall expansion of the flex-and,

∀i : N. 1 ≤ i ≤ 2 → i = 1 ∨ 1 = 1, which is of course true because the 1 = 1 disjunct is
provable.

The second part is simply hence contradiction, so we are calling the checker to disprove
the same statement. So we assume

∧2
i=1(i = 1 ∨ 1 = 1) and one of the things the pre-

checker does here is to expand out the conjunction, and we would expect it to produce
(1 = 1 ∨ 1 = 1) ∧ (2 = 1 ∨ 1 = 1) from which no contradiction can be found. However, what
it actually produces is 1 = 1 ∧ 2 = 1, which can be disproved.

To see why this happens, we have to look more specifically at the forall-expansion without
the negation sugar employed thus far. What Mizar actually sees for the expansion of the
flex-and expression is ∀i : N. ¬(1 ≤ i ∧ i ≤ 2 ∧ (i ̸= 1 ∧ 1 ̸= 1)), except that as mentioned
previously conjunctions are always flattened into their parents. The code for expanding
flex-and expects the expansion body to be the third conjunct past the forall and negation,
but after flattening the third conjunct is actually i ̸= 1 and there is an unexpected fourth
conjunct 1 ̸= 1 that is forgotten.

5.4 Exhibit 4: flex-and substitution
This is the most worrisome of the bugs that have been presented, because it is not simply a
bad line of code but rather an issue with the algorithm itself. As a result, this one survived
the translation to Rust and was discovered to affect both versions, and moreover it has still
not been fixed in mizar-rs, because the fix could not be rolled out without breaking the
MML. (There is an “unsound flag” which controls whether to do the thing that is unsound
or the thing that is sound but fails to validate the MML.)

theorem contradiction
proof

A: now
let n be Nat;
assume n > 3 & (1 + 1 <> 3 & ... & n <> 3);
hence contradiction ;

end;
ex n being Nat st n > 3 & (1 + 1 <> 3 & ... & n <> 3)
proof

take 2 + 2;
thus 2 + 2 > 3 & (1 + 1 <> 3 & ... & 2 + 2 <> 3);

end;
hence thesis by A;

end;

To explain what is happening here, we have to talk about another aspect of flex-and
expressions which was not mentioned in section 3.1, which is that a flex-and expression∧b

i=a φ(i) is actually stored as five pieces of information: the bounds a and b, the expansion

M. Carneiro 10:15

∀i : N. a ≤ i ≤ b → φ(i), from which φ(i) can be reconstructed (if one is careful – see section
5.3), and the bounding expressions φ(a) and φ(b). As the reader may have noticed, the
syntax of Mizar very much prefers to only discuss the bounding expressions, since flex-and
expressions in the concrete syntax are written as φ(a) ∧ · · · ∧ φ(b) with literal dots, and no
place to supply a, b or φ(i).

When one writes an expression like P ∧ · · · ∧ Q, Mizar essentially diffs the two expressions
to determine what is changing and what the values are on each side. So if one writes
1 + 1 ̸= 3 ∧ · · · ∧ n ̸= 3 then Mizar infers that the desired expression is

∧n
i=1+1 i ̸= 3.

The problem is that this operation is not stable under substitution. If we take that
expression and substitute n := 2 + 2, then we end up with

∧2+2
i=1+1 i ̸= 3, but if we were to

write out 1 + 1 ̸= 3 ∧ · · · ∧ 2 + 2 ̸= 3 ourselves we would end up with
∧2

i=1 i + i ̸= 3 instead.
This is somewhat annoying, especially if one is trying to write an exploit example, but it’s
not obviously a soundness bug yet because internally we are still storing the expansion which
has all the details –

∧2+2
i=1+1 i ̸= 3 and

∧2
i=1 i + i ̸= 3 are different expressions.

However, the equality check between two flex-and expressions is simply φ(a) = φ′(a) and
φ(b) = φ′(b)! The example above is crafted to demonstrate that this is not sound in general,
since

∧2+2
i=1+1 i ̸= 3 is false but

∧2
i=1 i + i ̸= 3 is true.

In the first part of the proof we show that ∀n. ¬(n > 3 ∧
∧n

i=1+1 i ≠ 3), which is true.
The interesting part is the second half, where we take n := 2 + 2. At this point the thesis
is 2 + 2 > 3 ∧

∧2+2
i=1+1 i ≠ 3, but we cannot write this expression. What we write instead

is 2 + 2 > 3 ∧ (1 + 1 ̸= 3 ∧ · · · ∧ 2 + 2 ̸= 3), which as mentioned will be interpreted as
2 + 2 > 3 ∧

∧2
i=1 i + i ̸= 3. This should be rejected for not matching the thesis, but it has

the same endpoints so it is accepted, and the checker is able to prove it by case analysis. If
we were to write thus thesis to let Mizar insert the unmentionable proposition, then the
analyzer will accept it as being the right thesis but the checker will not be able to prove it.

The reason this is a hard bug to squash is because the MML actually relies on it; there
are several proofs in aofa_l00.miz that break when strict flex-and checking is enabled. All
of the examples found seem to be variations on (

∧b+c
i=a+c φ(i)) ↔ (

∧b
i=a φ(i + c)), which is

true, so there is some hope that a more subtle check can be used to fix the soundness issue
without making the prover much worse.

5.5 Honorable mention: attributes that don’t exist
This is not an exploitable bug to my knowledge, but it is notable for being widespread, and
it is difficult for mizar-rs to support without resulting in very weird behavior. Consider the
following Mizar article:

environ
vocabularies ZFMISC_1, SUBSET_1;
notations ZFMISC_1, SUBSET_1;
constructors TARSKI, SUBSET_1;
requirements SUBSET; : : , BOOLE;

begin
for x ,B being set , A being Element of bool B st x in A holds x in B;

This checks as one would expect, and it is in fact a true statement (and it is not at all
contrived). However, the reasoning that gets the checker to accept the proof is. . . somewhat
suspicious. It goes as follows:
1. Suppose A : Element(P(B)), x ∈ A and x /∈ B.
2. Because A : Element(P(B)) and x ∈ A, it follows that B is not empty and x : Element(B).
3. Because x /∈ B, B is not empty, and x : Element(B), contradiction.

ITP 2023

10:16 Reimplementing Mizar

Table 1 Comparison of the original (Pascal) implementation of Mizar with mizar-rs (Rust).
Tests were performed on an 8 core 11th Gen Intel Core i7-1165G7 @ 2.80GHz, with 8 threads.

PC Mizar mizar-rs ratio
lines, checker 30 458 14 474 2.10
lines, checker + analyzer 56 926 20 096 2.83
compiling MML, checker only, real time 57.37 min 11.33 min 5.06
compiling MML, checker only, CPU time 417.57 min 73.70 min 5.67
compiling MML, checker + analyzer, real time 71.38 min 11.71 min 6.10
compiling MML, checker + analyzer, CPU time 490.55 min 81.93 min 5.99

Because the example has been minimized, there is really not much going on in the proof
because these are all essentially primitive inferences. The problem here is “B is not empty”,
because the BOOLE requirement which supplies the B is not empty predicate is not available
(note the environment section). The constructor for empty is actually available in the
environment because it has been brought in indirectly via the constructors SUBSET_1
directive, but without the requirement the checker just sees it as a normal attribute.

So what, then, is the checker doing? This seems to be a case of multiple bugs cancelling
each others’ effects. Requirements are internally represented by an integer index, where
zero means that the requirement is not available. Normally any handling of a requirement
involves a check that the requirement is nonzero first, but we forget that in step 2, and as a
result we end up adding attribute 0 to B, which is meaningless. The second bug is in step
3, where we again forget to ask whether the requirement index is nonzero, and so we find
attribute 0 and interpret it (correctly) as meaning that B is not empty.

This would just be a curious bug, but for the fact that it is exploited all over the place
because when creating articles it is standard to minimize the environment section by removing
anything that keeps the proof valid, and this bug allows one to remove the BOOLE requirement
without breaking the proof. We had to patch 46 articles that all had this same issue. In all
cases we only need to add the BOOLE requirement to fix the issue.

6 Results

The whole project is 20 096 lines of code (see table 2), or 14 474 if we restrict attention to
those files used in the checker, which is 1/2 to 1/3 of the equivalent code in Pascal (see table
1). We credit this mainly to the language itself – Rust is able to express many complex
patterns that would be significantly more verbose to write in Pascal, and PC Mizar is also
written in a fairly OOP-heavy style that necessitates a lot of boilerplate. Furthermore, Pascal
is manually memory-managed while Rust uses “smart-pointer” style automatic memory
management, so all the destructors simply don’t need to be written which decreases verbosity
and eliminates many memory bugs.

The performance improvements are most striking: we measured a 5-6× reduction in
processing time to check the MML. This is most likely a combination of characteristics of the
LLVM compiler pipeline, along with many small algorithmic improvements and removing
redundant work. (The reduction is even larger when adding the other phases of the Mizar
system – accom, parser, MSM – so that we can skip the costly I/O and serialization steps of
section 2.)

M. Carneiro 10:17

Table 2 Line counts for the files in mizar-rs. Files in red are only required for the analyzer, not
the checker.

file lines
analyze.rs 3471
main.rs 2747
equate.rs 2617
types.rs 2114
parser/msm.rs 1489
unify.rs 1346
parser/mod.rs 1280
checker.rs 1083
reader.rs 890
parser/article.rs 759
ast.rs 662
equate/polynomial.rs 586
format.rs 581
bignum.rs 372
util.rs 99
total 20096

7 Conclusion & Future work

We have implemented a drop-in replacement for the verifier -c checker of the Mizar system
that is able to check the entire MML, which gets a significant performance improvement.
Furthermore, we have improved Mizar by uncovering and reporting some soundness bugs.

While this implementation is explicitly trying not to diverge from the Mizar language as
defined by the PC Mizar implementation and the MML, there are many possible areas where
improvements are possible to remove unintentional or undesirable restrictions. For example,
anyone who has played with Mizar will have undoubtedly noticed that all the article names
are 8 letters or less, for reasons baked deeply into PC Mizar. Should mizar-rs become
the official Mizar implementation, it would be possible to lift this restriction without much
difficulty.

This project was also originally started to get proof export from Mizar, and to that end
replacing one large trusted tool with another one does not seem like much of an improvement.
But (bugs notwithstanding) we saw nothing while auditing the checker that is not proof-
checkable or unjustified, and remain confident that proof export is possible.

References
1 Mark Miles Adams. Proof auditing formalised mathematics. Journal of Formalized Reasoning,

9(1):3–32, 2016.
2 Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Ma-

tuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for
interactive proof development in Mizar. Journal of Automated Reasoning, 61:9–32, 2018.

3 Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Ma-
tuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and
beyond. In Intelligent Computer Mathematics: International Conference, CICM 2015, Wash-
ington, DC, USA, July 13-17, 2015, Proceedings., pages 261–279. Springer, 2015.

ITP 2023

10:18 Reimplementing Mizar

4 Mario Carneiro. The Divergence of the Sum of Prime Reciprocals. Formalized Mathematics,
30(3):209–210, 2022. doi:doi:10.2478/forma-2022-0015.

5 Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Mizar in a nutshell. Journal of
Formalized Reasoning, 3(2):153–245, 2010.

6 John Harrison. A Mizar Mode for HOL. In Joakim von Wright, Jim Grundy, and John Harrison,
editors, Theorem Proving in Higher Order Logics: 9th International Conference, TPHOLs’96,
volume 1125 of Lecture Notes in Computer Science, pages 203–220, Turku, Finland, 1996.
Springer-Verlag.

7 Cezary Kaliszyk and Karol Pąk. Semantics of Mizar as an Isabelle object logic. Journal of
Automated Reasoning, 63:557–595, 2019.

8 Ondřej Kunčar and Andrei Popescu. A consistent foundation for Isabelle/HOL. In Interactive
Theorem Proving: 6th International Conference, ITP 2015, Nanjing, China, August 24-27,
2015, Proceedings 6, pages 234–252. Springer, 2015.

9 Roman Matuszewski and Piotr Rudnicki. Mizar: the first 30 years. Mechanized mathematics
and its applications, 4(1):3–24, 2005.

10 Michal Muzalewski. An outline of PC Mizar. Fondation Philippe le Hodey, 1993.
11 Josef Urban. XML-izing Mizar: Making Semantic Processing and Presentation of MML Easy. In

Michael Kohlhase, editor, Mathematical Knowledge Management, 4th International Conference,
MKM 2005, Bremen, Germany, July 15-17, 2005, Revised Selected Papers, volume 3863 of
Lecture Notes in Computer Science, pages 346–360. Springer, 2005. doi:10.1007/11618027_23.

12 Josef Urban. MPTP 0.2: Design, implementation, and initial experiments. Journal of
Automated Reasoning, 37:21–43, 2006.

https://doi.org/doi:10.2478/forma-2022-0015
https://doi.org/10.1007/11618027_23

Now It Compiles!
Certified Automatic Repair of Uncompilable Protocols

Luís Cruz-Filipe #

Department of Mathematics and Computer Science, University of Southern Denmark, Odense,
Denmark

Fabrizio Montesi #

Department of Mathematics and Computer Science, University of Southern Denmark, Odense,
Denmark

Abstract
Choreographic programming is a paradigm where developers write the global specification (called
choreography) of a communicating system, and then a correct-by-construction distributed imple-
mentation is compiled automatically. Unfortunately, it is possible to write choreographies that
cannot be compiled, because of issues related to an agreement property known as knowledge of
choice. This forces programmers to reason manually about implementation details that may be
orthogonal to the protocol that they are writing.

Amendment is an automatic procedure for repairing uncompilable choreographies. We present a
formalisation of amendment from the literature, built upon an existing formalisation of choreographic
programming. However, in the process of formalising the expected properties of this procedure,
we discovered a subtle counterexample that invalidates the original published and peer-reviewed
pen-and-paper theory. We discuss how using a theorem prover led us to both finding the issue, and
stating and proving a correct formulation of the properties of amendment.

2012 ACM Subject Classification Theory of computation → Concurrency; Theory of computation
→ Automated reasoning; Software and its engineering → Concurrent programming languages

Keywords and phrases choreographic programming, theorem proving, compilation, program repair

Digital Object Identifier 10.4230/LIPIcs.ITP.2023.11

Related Version Preprint: https://arxiv.org/abs/2302.14622

Funding This work was partially supported by Villum Fonden, grants no. 29518 and 50079, and the
Independent Research Fund Denmark, grant no. 0135-00219.

Acknowledgements We thank the anonymous reviewers for their useful comments, which helped us
improve the quality of this article.

1 Introduction

Programming correct implementations of protocols for communicating systems is challenging,
because it requires writing a correct program for each participant that performs the right send
and receive actions at the right times [23]. Choreographic programming [27] is an emerging
paradigm that offers a direct solution: protocols are written in a “choreographic” programming
language, and then automatically compiled to correct implementations by means of an
operation known as Endpoint Projection (EPP or projection for short) [5, 14, 16, 17, 20, 24, 25].

Choreographic languages are inspired by the Alice and Bob notation of security pro-
tocol [29], in the sense that they offer primitives for expressing communications between
different processes. Implementations are usually modelled in terms of a process calculus.
Besides being simple, choreographic programming is interesting because it typically includes
strong theoretical guarantees, most notably deadlock-freedom and an operational correspond-
ence between choreographies and the (models of the) generated distributed implementations.

© Luís Cruz-Filipe and Fabrizio Montesi;
licensed under Creative Commons License CC-BY 4.0

14th International Conference on Interactive Theorem Proving (ITP 2023).
Editors: Adam Naumowicz and René Thiemann; Article No. 11; pp. 11:1–11:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lcfilipe@gmail.com
https://orcid.org/0000-0002-7866-7484
mailto:fmontesi@imada.sdu.dk
https://orcid.org/0000-0003-4666-901X
https://doi.org/10.4230/LIPIcs.ITP.2023.11
https://arxiv.org/abs/2302.14622
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Now It Compiles!

Not all choreographies can be compiled (or projected) to a distributed implementation
due to a problem known as “knowledge of choice” [6]. Consider the following choreography
for a simple purchase scenario (this example also anticipates some of our syntax).

buyer.offer −→ seller.x;
If seller.acceptable(x) Then seller.product −→ buyer.y; End

Else End

Listing 1 An unprojectable choreography.

This choreography reads: a buyer communicates their offer for the purchase of a product to
a seller, who stores the offer in their local variable x; the seller then checks whether the
offer is acceptable, and in the affirmative case sends the product to buyer. This choreography
cannot be projected to a behaviourally-equivalent implementation, because buyer has to
behave differently in the two branches of the conditional. However, this conditional is
evaluated by seller, and buyer has no way of discerning which branch gets chosen.

Choreographies are typically made projectable by adding selections, i.e., communications
of constants called selection labels.1 A projectable version of Listing 1 looks as follows.

buyer.offer −→ seller.x;
If seller.acceptable(x) Then seller −→ buyer[left]; seller.product −→ buyer.y; End

Else seller −→ buyer[right]; End

Listing 2 A projectable choreography.

This choreography differs from the previous one by the presence of a selection in each branch
of the conditional. Specifically, if seller chooses the Then branch, they now communicate the
label left to buyer. Otherwise, if the Else branch is chosen, the label right is communicated
instead. The key idea is that now the implementation generated for buyer can read the label
received by seller and know which branch of the conditional should be executed. Since
labels are constants, compilation can statically verify that buyer receives different labels for
the different branches, and therefore has “knowledge of choice”.

Projection can be smart about knowledge of choice, allowing selections to be kept to a
minimum [3]. A process only needs to know which branch of a conditional has been chosen if
its behaviour depends on that choice; if the process has to perform the same actions in both
branches of a conditional, then this knowledge is irrelevant to it. Knowledge of choice can
also be propagated: if a process q knows of a choice performed by another process p, then
either process can forward this information to any other process that needs it.

Amendment. Previous work investigated how unprojectable choreographies can be automat-
ically transformed into projectable ones. Such a transformation is called amendment [10, 22]
or repair [1, 15]. For example, applying the amendment procedure from [10] to the cho-
reography in Listing 1 returns the choreography in Listing 2 (up to minor differences in
notation).

Amendment is interesting for (at least) two reasons. On a practical level, it can suggest
valid selection strategies to developers to make their choreographies executable – or even
do it automatically, so that they do not have to worry about knowledge of choice. On a
theoretical level, it allows porting completeness properties of the set of all choreographies to
the set of projectable choreographies.

1 Selections are essentially the choreographic version of branch selections in session types, or the additive
connectives in linear logic [4, 18].

L. Cruz-Filipe and F. Montesi 11:3

An example of the latter occurs in the study of Core Choreographies (CC), a minimalistic
theory of choreographic programming [10], where we showed that the set of projectable
choreographies in CC is Turing-complete in two steps. First, we showed that CC is Turing-
complete, ignoring the question of projectability (the choreographies constructed in the
proof are clearly not projectable); then, we defined an amendment procedure and prove an
operational correspondence between choreographies and their amendments. As a consequence,
the subset of projectable choreographies is also Turing-complete. A similar argument,
using the operational correspondence result between projectable choreographies and their
implementations, shows that the process calculus used (Stateful Processes, or SP) is Turing-
complete.

The problem. Our original objective was to formalise amendment and its properties from [10]
in the Coq theorem prover, building upon our previous formalisation of CC [12] and its
accompanying notion of projection [11]. That formalisation uses a variation of CC based on
the theory from [28], which we found more amenable to formalisation. Unfortunately, after
formalising the definition of amendment, our attempt to prove its operational correspondence
result failed. An inspection of the state of the failed proof quickly led us to a counterexample.

The incorrectness of the original statement jeopardises the subsequent developments
that rely on it, in particular Turing completeness of the set of projectable choreographies
and of SP. These results were instrumental in substantiating the claim that CC is a “good”
minimalistic model for choreographic programming. This finding pointed us towards a more
ambitious goal: reformulate the operational correspondence for amendment such that it is
correct, and still powerful enough to obtain the aforementioned consequences.

Our motivation to formalise our results in Coq is in line with the increasing awareness in
the community that these types of bugs are not uncommon in concurrency theory [26]. In
particular, the authors of [15] identified a number of incorrect results in previous work on
choreographies, which affect part of the work on choreography repair from [1].

Contribution. To the best of our knowledge, this is the first time that choreography
amendment has been formalised. We state and prove a relaxed version of the operational
correspondence between choreographies and their amendments in the Coq theorem prover,
thus increasing confidence in its correctness. We discuss how working with an interactive
theorem prover was instrumental to identifying counterexamples that guided us towards this
new, correct formulation that considers all corner cases. We then use our result to formalise
the proofs of Turing completeness of projectable choreographies and SP from [10], which
were not included in [12].

Structure of the paper. We present the relevant background on CC and its formalisation
in Section 2. Section 3 presents the definition of amendment, its formalisation, and discusses
and corrects the operational correspondence result from [10]. Section 4 shows that the revised
semantic property is still strong enough to derive the Turing completeness results in that
work. We discuss related work in Section 5 and conclude in Section 6.

Our exposition assumes some familiarity with interactive theorem proving. We include
some Coq code in the article, but the work is intended to be accessible to non-Coq experts.

2 Background

We summarise the latest version of the Coq formalisation of CC [13]. For simplicity, we omit
two ingredients that are immaterial for our work: the fact that the language is parameterised
on a signature, and the fact that communications have annotations (these are meant to

ITP 2023

11:4 Now It Compiles!

include information relevant for future implementations in actual programming languages).
This allows us to omit some subterms that play no role in the development of amendment.

In our presentation, we use Coq notation with some simplifications for enhanced readabil-
ity: choreography and process terms are written by overloading the dot symbol (this is not
allowed by the Coq notation mechanism), and inductive definitions and inference rules are
given with the usual mathematical notation.

2.1 Core Choreographies
We start by giving an overview of Core Choreographies (CC) together with its formalisation
in Coq [12].

Syntax. The syntax of CC is given by the following grammar.

C ::= η; C | If p.b Then C1 Else C2 | Call X | RT_Call X ps C | End
η ::= p.e −→ q.x | p −→ q[l]

A choreography C can be either: a communication η followed by a continuation (η; C); a
conditional If p.b Then C1 Else C2, where the process p evaluates the boolean expression b to
choose between the branches C1 and C2; a procedure call Call X, where X is the name of the
procedure being invoked; a runtime term RT_Call X ps C;2 or the terminated choreography End.
A communication η can be: a value communication p.e −→ q.x, read “process p evaluates
expression e locally and sends the result to process q, which stores it in its local variable x”;
or a selection p −→ q[l], where the label l can be either left or right, read “p sends label l
to q”.

Choreographies are formalised in Coq as an inductive type called Choreography. Table 1
summarises the Coq types used in this paper and our conventions for ranging over their
elements.

Executing a choreography requires knowing the definitions of the choreographies associated
to the procedures that can be invoked, as well as the processes involved in those procedures.
A set of procedure definitions is defined as a mapping from procedure names to pairs of
process names and choreographies.

Definition DefSet := RecVar → (list Pid)∗Choreography.

For simplicity, this is defined as a total function – any procedure that is not used in the
choreography can simply be mapped to ([p], End) for some process p. (For technical reasons,
the set of process names is not allowed to be empty.)

A choreographic program is then a pair consisting of a set of procedure definitions and a
choreography (which represents the “main” or “running” choreography).

Definition Program := DefSet ∗ Choreography.

We write Procedures P and Main P for the two components of P. The set of all processes used
by a program P is defined as CCP_pn P.

It is standard practice to assume some well-formedness conditions about choreographies,
e.g., that no process communicates with itself. Choreographic programs have additional
well-formedness conditions that must hold for all procedures that can be reached at runtime.

2 Runtime terms are needed for technical reasons in the definition of the semantics of choreographies [12].
These aspects are irrelevant for the present development.

L. Cruz-Filipe and F. Montesi 11:5

Table 1 Summary of types in the original Coq formalisation [12, 11].

Type Variable Description
Choreography C Choreographies
Pid p, q, r, s Process names (identifiers)
list Pid ps List of process names
Var x, y, z Variable names
Val v Values
Expr e Expressions (evaluate to values)
BExpr b Boolean expressions (evaluate to Booleans)
Label l Labels (left and right)
RecVar X Procedure names (or recursive variables)
DefSet D Sets of procedure definitions in CC
State s Maps from variables to values
Configuration c Choreographic programs equipped with states
TransitionLabel t Transition labels
list TransitionLabel tl Lists of transition labels
Behaviour B Behaviours
option Behaviour mB option monad for behaviours
Network N Networks
DefSetB D Sets of procedure definitions in SP
Program P Choreographies/networks with procedure definitions

This notion is not decidable in general, but it becomes so in the practical case of programs
that only use a finite number of procedures. We return to this aspect at the end of Section 3.2,
where it becomes relevant.

▶ Example 1. The choreographies in Listings 1 and 2 are well-formed.

Semantics. The intuitive system assumptions in CC are that: processes run independently
of each other (concurrently) and possess local stores (associating their variables to values);
communications are synchronous; and the network is reliable (messages are not lost nor
duplicated, and they are delivered in the right order between any two processes). These
assumptions are imported from process calculi, where they are quite standard.

▶ Example 2. Since processes run concurrently, it is possible to express choreographies with
concurrent behaviour. Consider the following simplification of the factory example in [28].
o.order −→ p.x; o'.order' −→ p'.y; End

Listing 3 Parallel orders.

In Listing 3, two processes o and o' place their respective orders to two different providers p
and p' . Since all processes are distinct and there is no causal dependency between the two
communications, the two communications can in principle be executed in any order. This
gives rise to a notion of out-of-order execution for choreographies.

The semantics of choreographies in [12] is given as a labelled transition system on
configurations, which consist of a program and a (memory) state. States associate to each
process a map from variable names to values, which defines the memory of that process.
Definition State := Pid → Var → Value

States come with some notation: s [==] s' says that s and s' are extensionally equal, and
s[[p,x ⇒ v]] is the state obtained from updating s with the mapping p,x 7→ v.

ITP 2023

11:6 Now It Compiles!

v := eval e s p s' [==] s[[q,x ⇒ v]]
(D,p.e −→ q.x; C,s) −−[TL_Com p v q]−→ (D,C,s')

CC_Com

s [==] s'
(D,p −→ q[l]; C,s) −−[TL_Sel p q l]−→ (D,C,s')

CC_Sel

beval b s p = true s [==] s'
(D,If p.b Then C1 Else C2,s) −−[TL_Tau p]−→ (D,C1,s')

CC_Then

disjoint_eta_rl η t (D,C,s) −−[t]−→ (D,C',s')
(D,η; C,s) −−[t]−→ (D,η; C',s')

CC_Delay_Eta

disjoint_p_rl p t (D,C1,s) −−[t]−→ (D,C1',s') (D,C2,s) −−[t]−→ (D,C2',s')
(D,If p.b Then C1 Else C2,s) −−[t]−→ (D,If p.b Then C1'Else C2',s')

CC_Delay_Cond

Figure 1 Semantics of choreographic configurations (selected rules).

With these concepts in place, we can show some representative transition rules for
choreographic configurations in Figure 1.3 Transitions have the form (D,C,s) −−[t]−→ (D,C',s'),
where t is a transition label that allows for observing what happened in the transition.

Rule CC_Com deals with the execution of a value communication from a process p to a
process q: if the expression e at p can be evaluated to a value v (first condition, which uses
the auxiliary function eval), then the communication term is consumed and the state of
the receiver is updated such that its receiving variable x is now mapped to value v. The
transition label TL_Com p v q denotes that p has communicated the value v to q, modelling
what would be visible on a network.

Rule CC_Sel is similar but does not alter the state of the receiver (the role of selections will
be clearer when we explain the language for modelling implementations of choreographies).
The transition label TL_Sel p q l registers the communication of label l from p to q.

Rule CC_Then deals with the case in which a process p can evaluate the guard b of a
conditional to true (using the auxiliary function beval), proceeding to the then-branch of the
conditional. The transition label TL_Tau p denotes that process p has executed an internal
action (τ is the standard symbol for such actions in process calculi).

Rule CC_Delay_Eta deals with out-of-order execution of communications, formalising the
reasoning anticipated in Example 2. Specifically, the continuation of an interaction η is
allowed to perform a transition (without affecting η) as long as the transition does not involve
any of the processes in η. The latter condition is checked by the first premise of the rule,
disjoint_eta_rl η t, which checks that the processes mentioned in η are distinct from those
mentioned by the transition label t. Rule CC_Delay_Cond applies the same reasoning to the
out-of-order execution of conditionals.

The reflexive and transitive closure of the transition relation is written −−[tl]−→∗ , where
tl is a list of transition labels.

▶ Example 3. For any D and s such that order evaluates to v at o and order' evaluates to v'
at o' , according to eval,

(D,o.order −→ p.x; o'.order'−→ p'.y; End,s) −−[TL_Com o v p;TL_Com o' v' p']−→∗ (D,End,s')

3 In the actual formalisation, the transition relation was defined in two layers for technical reasons. This
technicality is immaterial for our development, since our results follow from the rules shown here.

L. Cruz-Filipe and F. Montesi 11:7

and

(D,o.order −→ p.x; o'.order'−→ p'.y; End,s) −−[TL_Com o' v' p';TL_Com o v s]−→∗ (D,End,s')

where s' [==] s[[s1,x ⇒ v]][[s2,x ⇒ v']].

2.2 Processes
Implementations of choreographies are modelled in Stateful Processes (SP) [11], a formalised
process calculus following [28]. SP follows the standard way of representing systems of com-
municating processes, where the code of each process is given separately and communication
is achieved when processes perform compatible I/O actions.

Syntax. The code of a process is written as a behaviour (B), following the grammar below.

B ::= p!e; B | p?x; B | p+l; B | p & mB1 // mB2 | If b Then B1 Else B2 | Call X | End
mB ::= None | Some B

These terms are the local counterparts to the choreographic terms of CC. The first two
productions deal with value communication. Specifically, a send action p!e; B sends the
result of evaluating e to the process p and then continues as B. Dually, a receive action p?x; B
receives a value from p, stores it in x, and then continues as B.

Selections are implemented by the primitives p+l; B and p & mB1 // mB2. The former
sends the label l to the process p and continues as B. The latter is a branching term, where
mB1 and mB2 are the behaviours that the process will execute upon receiving left or right,
respectively. To cover the case where a process does not offer a behaviour for a specific label,
mB1 and mB2 have type option Behaviour.

Conditionals (If b Then B1 Else B2), procedure calls (Call X), and the terminated beha-
viour (End) are standard.

Processes are intended to run together in networks. These are formalised as maps from
processes to behaviours.

Definition Network := Pid → Behaviour.

Networks come with some convenient notation for their construction: p[B] is the network
that maps p to B and all other processes to End; and N | N' is the composition of N and N' . In
particular, (N | N') p returns N p if this is different from End, and N' p otherwise.4

▶ Example 4. The following network implements the choreography in Listing 2.

buyer[seller!offer; seller & Some (seller?y; End) // Some End] |
seller[buyer?x; If acceptable(x) Then buyer+left; buyer!product; End

Else buyer+right; End]

For the semantics of networks, we need two additional ingredients. The network N \ p is
obtained from N by redefining p’s behaviour as End (p is “removed” from N). The relation
N (==) N' holds if the networks N and N' are extensionally equal.

As in CC, processes in a network can invoke procedures defined in a separate set.

Definition DefSetB := RecVar → Behaviour.

4 This asymmetry does not matter for our results, since we never compose networks that define nonter-
minated behaviours for the same processes.

ITP 2023

11:8 Now It Compiles!

N p = q!e; B
N q = p?x; B'

v := eval e s p
N' (==) N \ p \ q | p[B] | q[B']

s' [==] s[[q,x ⇒ v]]
(D,N,s) −−[TL_Com p v q]−→ (D,N',s')

SP_Com

N p = q+left; B
N q = p & Some Bl // mBr

N' (==) N \ p \ q | p[B] | q[Bl] s [==] s'

(D,N,s) −−[TL_Sel p q left]−→ (D,N',s')
SP_LSel

N p = If b Then B1 Else B2 beval b s p = true
N' (==) N \ p | p[B1]

s [==] s'
(D,N,s) −−[TL_Tau p]−→ (D,N',s')

SP_Then

Figure 2 Semantics of network configurations (selected rules).

A Program in SP consists of a set of procedure definitions and a network. Assuming that this
set is globally accessible simplifies the definition of the semantics of SP; in implementations,
each process would have a local copy of this set, or of the subset of procedures it needs to
invoke.

Definition Program := DefSetB ∗ Network.

We use D to range over elements of DefSetB and P to range over elements of Program, as for
choreographies (the difference will be clear from the context).

Semantics. The semantics of SP is also given as a labelled transition system on configura-
tions that consist of a program and a memory state, as in CC. A selection of the transition
rules defining this semantics is displayed in Figure 2.

Rule SP_Com matches a send action at a process p with a compatible receive action at
another process q (conditions N p = q!e; B and N q = p?x; B'). The resulting network N' is
obtained from N by replacing the behaviours of these processes with their continuations
(N \ p \ q | p[B] | q[B']). The update to the state is handled as in CC.

Rules SP_LSel and its dual SP_RSel model, respectively, the selection of the left and right
branches offered by a branching term, by inspecting the label sent by the sender. Rule
SP_Then captures the case in which a conditional enters its then-branch.

2.3 Endpoint Projection (EPP)
Choreographies are compiled to networks by a procedure defined in two layers. We begin by
defining a behaviour projection, which compiles the desired behaviour from a choreography
for a given process. This procedure is a partial function, and since all functions in Coq are
total it was formalised as the following inductive relation.

bproj : DefSet → Choreography → Pid → Behaviour → Prop

Term bproj D C p B, written [[D,C | p]] == B, reads “the projection of C on p in the context of
the set of procedure definitions D is B”.5

5 The parameter D is used for projecting procedure calls, which is immaterial to the current work.

L. Cruz-Filipe and F. Montesi 11:9

[[D,C | p]] == B
[[D,p −→ q[l]; C | p]] == q+l; B

bproj_Pick
p̸= r q̸= r [[D,C | r]] == B

[[D,p −→ q[l]; C | r]] == B
bproj_Sel

p̸= q [[D,C | q]] == B
[[D,p −→ q[left]; C | q]]== p & Some B // None

bproj_Left

[[D,C1 | p]] == B1 [[D,C2 | p]] == B2
[[D,If p.b Then C1 Else C2 | p]] == If b Then B1 Else B2

bproj_Cond

p̸= r [[D,C1 | p]] == B1 [[D,C2 | p]] == B2 B1 [V] B2 == B
[[D,If p.b Then C1 Else C2 | p]] == B

bproj_Cond'

Figure 3 Selected rules for behaviour projection.

Intuitively, behaviour projection is computed by going through the choreography; for
each choreographic term, projection constructs the local action that the input process should
perform to implement it. The rules defining bproj that are relevant for this work are those
that deal with selections and conditionals. These are shown in Figure 3.

A label selection p −→ q[l] is projected as either: (i) the sending of label l to q for
process p (rule bproj_Pick); (ii) the appropriate branching term that receives l from p for
process q, where only the branch for l offers a behaviour (rules bproj_Left and the dual rule
bproj_Right); or (iii) no action for any other process (rule bproj_Sel).

Similarly, a conditional in a choreography is projected to a conditional for the process that
evaluates the guard (rule bproj_Cond). However, projecting conditionals becomes complex
when considering the other processes, because this requires dealing with the problem of
knowledge of choice discussed in Section 1. This case is handled by rule bproj_Cond', which
sets the result of projection to be the “merging” of the projections of the two branches,
written B1 [V] B2 == B, if this is defined.

Intuitively, merging attempts to build a behaviour B from two behaviours B1 and B2
that have similar structures, but may differ in the labels that they accept in branching
terms. For all terms but branchings, merging requires term equality and then proceeds
homomorphically in subterms. This is exemplified by the rules merge_End, merge_Sel, and
merge_Cond in Figure 4.

The interesting part regards the merging of branching terms, which has a rule for every
possible combination. Figure 4 shows two representative cases. If two branching terms have
branches for different labels, then we obtain a branching term where the two branches are com-
bined as exemplified by rule merge_Branching_SNNS. If two branching terms have overlapping
branches, then we try to merge them as exemplified by rule merge_Branching_SSSS.6

As we remarked, merging (seen as a partial function) can be undefined, for example End
and p+l; End cannot be merged. This gives rise to the notion of projectability anticipated in
Section 1: a choreography C is projectable on a process p in the context of a set of procedure
definitions D if bproj is defined for those parameters.

Definition projectable_B D C p := ∃ B, [[D,C | p]] == B.

6 Due to space constraints, the names of these rules have been abbreviated in Figure 4.

ITP 2023

11:10 Now It Compiles!

End [V] End == End
merge_End

B1 [V] B2 == B
p+l; B1 [V] p+l; B2 == p+l; B

merge_Sel

Bt1 [V] Bt2 == Bt Be1 [V] Be2 == Be
If p.e Then Bt1 Else Bt2 [V] If p.e Then Be1 Else Be2 == If p Then Bt Else Be

merge_Cond

p & Some bL // None [V] p & None // Some bR == p & Some bL // Some bR
SNNS

bL1 [V] bL2 == bL bR1 [V] bR2 == bR
p & Some bL1 // Some bR1 [V] p & Some bL2 // Some bR2 == p & Some bL // Some bR

SSSS

Figure 4 Definition of the merge relation (selected rules).

This is generalised by projectable_C D C ps, which states that C is projectable for all processes
in the list ps. For a choreographic program P to be projectable, written projectable_P P, we
require that Main P be projectable for all processes in CCP_pn P and that all procedures be
projectable for the processes that they use.

With projectability in place, Endpoint Projection (EPP) is defined as a function that
maps a projectable choreographic program to a process program in SP.

Definition epp P : projectable_P P → Program.

The second argument of epp is a proof of projectable_P P, but the formalisation includes a
lemma showing that the result does not depend on this term.

▶ Example 5. The behaviours of buyer and seller in Example 4 are the respective projections
for these two processes of the choreography in Listing 2.

The definition of epp allows us to apply program extraction and obtain a certified compiler
from choreographies to networks – see [8] for a discussion and examples.

2.4 Turing completeness
The authors of [12] formalise that CC is Turing-complete, in the sense that all of Kleene’s
partial recursive functions [21] can be implemented as a choreography for a suitable notion
of implementation. The proof is interesting because it considers CC instantiated with very
restricted computational capabilities at processes: values are natural numbers; expressions can
only be the constant zero, a variable, or the successor of a variable; and Boolean expressions
can only check if the two variables at a process contain the same value. Kleene’s partial
recursive functions are then implemented concurrently, by making processes communicate
according to appropriate patterns.

According to [12], a choreographic program P implements f:PRFunction m (representing a
partial recursive function f : Nm → N) with input processes ps1,. . . ,psm and output process
q iff: for any state s where ps1,. . . ,psm contain the values n1,. . . ,nm in their variable x, (i) if
f(n1, . . . , nm) = n, then all executions of P from s terminate, and do so in a state where q
stores n in its variable x; and (ii) if f(n1, . . . , nm) is undefined, then execution of P from s
never terminates.7 This is captured by the Coq term implements P m f ps q, where ps is the
vector ps1,. . . ,psm.

7 This is a straightforward adaption of the definition of function implementation by a Turing machine [31].

L. Cruz-Filipe and F. Montesi 11:11

The proof of Turing completeness encodes partial recursive functions to choreographies
that are not always projectable, since they contain no selections but some processes behave
differently in conditionals.

3 Amendment

Several works have studied how unprojectable choreographies can be automatically amended
to obtain projectable versions [1, 10, 22]. In particular, [10] developed an amendment
procedure based on merging. The informal idea that we explore below is that, whenever a
choreography contains a conditional, amendment adds selections, in both branches, from
the process evaluating the guard to any processes whose behaviour projection is undefined.
Intuitively, this makes the output choreography projectable.

▶ Example 6. Let C be the choreography:

p.e −→ q.x; If r.b Then (r.e' −→ p.y; End) Else End

Amending C as described yields the following choreography, A:

p.e −→ q.x; If r.b Then (r −→ p[l]; r.e' −→ p.y; End)
Else (r −→ p[r]; End)

Amendment is claimed to have the following properties.

▶ Lemma 7 (Amendment Lemma [10], rephrased). For every choreography C:
1. The amendment of C is well-formed.
2. The amendment of C is projectable.
3. If DA, A, and A' are obtained by amending all procedures in D as well as C and C' , then

(D,C,s) −−[tl]−→∗ (D,C',s') iff (DA,A,s) −−[tl']−→∗ (DA,A',s') for some tl'.
In point one, well-formedness refers to a set of syntactic conditions that exclude ill-written
choreographies, e.g., self-communications (interactions where a process communicates with
itself) [10]. Points one and two are simple to prove by induction on the structure of the
choreography. Point three, unfortunately, is wrong. When attempting to formalise this result,
we failed, and the state of the proof led us to the following counterexample.

▶ Example 8. Given a suitable state, the choreography C from Example 6 can make a
transition to C' defined as

p.e −→ q.x; r.e' −→ p.y; End

by rules CC_Delay_Eta and CC_Then. However, C’s amendment A can move to

p.e −→ q.x; r −→ p[l]; r.e' −→ p.y; End

by the same rules, but this is neither the amendment of C' , nor can it reach it since the
offending selection term is blocked by the initial communication.

In hindsight, this is not so surprising: amendment introduces causal dependencies that
were not present in the source choreography. However, this intuition was completely missed
by both authors and reviewers of the original publications discussing amendment [9, 10].
Therefore, amending a choreography can remove some execution paths.

In the rest of this section, we show how to define amendment formally in Coq, and
formulate a correct variation of Lemma 7.

ITP 2023

11:12 Now It Compiles!

3.1 Definition
We decompose the definition of amendment in three functions: one for identifying the processes
that need to be informed of the outcome of a specific conditional; one for prepending a list
of selections to a choreography; and one that recursively amends a whole choreography by
using the former two. This division simplifies not only the definition, but also the structure
of proofs about amendment since they can be modularised.

To identify the processes that require knowledge of choice, we define a function up_list (up
is short for “unprojectable processes”). This function recursively goes through a list ps of pro-
cesses and checks for each process in the list whether the choreography If p.b Then C1 Else C2
can be projected on that process (function projectable_B_dec does precisely this test). If
this is not the case, then the process is added to the result. (Since projectability is relative
to a set of procedure definitions, this also needs to be given as an argument, D.)

Fixpoint up_list D p b ps C1 C2 : list Pid := match ps with
| nil ⇒ nil
| r :: ps' ⇒ let ps'' := up_list D p b ps' C1 C2 in

if (r =? p) then ps''
else if projectable_B_dec D (If p.b Then C1 Else C2) r

then ps''
else (r :: ps'') end.

Note that p, as the evaluator of the conditional, does not need to be informed of the outcome.
This justifies the check r =? p, whose inclusion also avoids introducing self-communications
and simplifies subsequent proofs. (Function up_list is essentially a filter, but since it tests
two predicates we found the current definition to be easier to work with than either a
composition of two filters or a filter with a predicate defined as a conjunction.)

The second ingredient is straightforward: given a process p, a selection label l, and a
choreography C, it recursively adds selections of l from p to each element of a list ps.

Fixpoint add_sels p l ps C : Choreography := match ps with
| nil ⇒ C
| r :: ps' ⇒ p −→ r[l]; add_sels p l ps' C end.

We can now define amendment following the informal procedure described in [10]. Given
a list of processes ps, we go through a choreography C; whenever we meet a conditional
on a process p, we compute the list of processes from ps with an undefined projection and
prepend the branches of the conditional with appropriate selections. (We show only the most
interesting cases.)

Fixpoint amend D ps C := match C with
| eta; C' ⇒ eta; (amend D ps C')
| If p.b Then C1 Else C2 ⇒

let l := up_list D p b ps (amend D ps C1) (amend D ps C2) in
If p.b Then (add_sels p left l (amend D ps C1))

Else (add_sels p right l (amend D ps C2))
| ... end.

Amendment is generalised to sets of procedure definitions in the obvious way.

Definition amend_D D ps : DefSet := fun X ⇒ (fst (D X), amend D ps (snd (D X))).

To amend a program P, the parameter ps of the previous functions is instantiated with
the set of processes used in P.

L. Cruz-Filipe and F. Montesi 11:13

Definition amend_P P :=
(amend_D (Procedures P) (CCP_pn P), amend (Procedures P) (CCP_pn P) (Main P)).

This formal definition corresponds to the informal one given in [10]. In particular, all our
examples are formalised in Coq.

▶ Example 9. Consider the following choreography.

If p.b Then (p.e −→ q.x; q.e' −→ r.y; End)
Else (q.e' ' −→ r.y; End)

Here, p decides if (i) it will communicate a value to q that can be used in the computation of
a later message from q to r (so q acts as a sort of proxy) or (ii) q should just compute the
value that it will communicate to r by itself. Amendment is smart enough to notice that
while q requires a selection from p, r does not since it behaves in the same way (receive from
q on x). Therefore, amending the choreography returns the following.

If p.b Then (p −→ q[left]; p.e −→ q.x; q.e' −→ r.y; End)
Else (p −→ q[right]; q.e'' −→ r.y; End)

3.2 Syntactic Properties

We now discuss the key properties of amendment.
Amendment preserves well-formedness of choreographies (Choreography_WF) and cho-

reographic programs (Program_WF). This follows from the fact that add_sels preserves all
syntactic properties of well-formedness, using induction.

Lemma amend_Choreography_WF : Choreography_WF C → Choreography_WF (amend D ps C).

Lemma amend_Program_WF : Program_WF (D,C) → Program_WF (amend_D D ps,amend D ps C).

(For simplicity, we omit universal quantifiers at the beginning of lemmas.)
Likewise, it is straightforward to prove that amending for some processes guarantees that

the output choreography is projectable on all those processes.

Lemma amend_projectable_C : projectable_C (amend_D D ps) (amend D ps C) ps.

We do not generalise this result to choreographic programs: it is not straightforward to do
and our later development does not need it. The issue we encounter is related to a problem
discussed in [12, 11]: computing the set of processes and procedures that are used by a
choreography can require an infinite number of steps, and is therefore not definable as a
function in Coq. (A simple example is a program with an infinite set of procedure definitions
where each procedure Xi invokes the next procedure Xi+1.)

The function CCP_pn used in the definition of amend_P does return the set of processes
involved in a program P, but it does not check that P does not define unused procedures. If
this is the case, these procedures may use processes not in CCP_pn P, and therefore they may be
unprojectable for these processes. Rather than stating a result with complex side-conditions
as hypotheses, we prove projectability of particular programs applying amend_projectable_C
to Main P and to the bodies of all procedure definitions. The development in the next section
uses this strategy.

ITP 2023

11:14 Now It Compiles!

3.3 Semantic Properties
We now discuss how the formulation of the semantic relation between a choreography and its
amendment needs to be changed.

The counterexample shown earlier suggests allowing both choreographies to perform
additional transitions in order to unblock and remove lingering selections introduced by
amendment. (In our example, this would be the communication from p to q.) The cor-
respondence would then look as follows, where the dotted lines correspond to existentially
quantified terms:

C
t //

amend
��

C' tl ∗// C' '

amend
��

A
t // A0

tl' ∗// A' '

and the list of transition labels tl can be obtained from tl' by removing some selections.
Our attempt to prove this result showed that it holds for all cases but one: when the

transition t is obtained by applying rule CC_Delay_Cond.

▶ Example 10. We show a minimal counterexample. Consider the choreography
If p.b Then (q.e −→ r.x; q.e' −→ p.x; End)

Else (q.e −→ r.x; End)

and its amendment
If p.b Then (p −→ q[left]; q.e −→ r.x; q.e' −→ p.x; End)

Else (p −→ q[right]; q.e −→ r.x; End) .

The original choreography can execute the communication between q and r, reaching
If p.b Then (q.e' −→ p.x; End) Else End

but its amendment needs to run the conditional and a selection before it can execute the
same communication.

There are two ways to solve this problem: changing the definition of amendment, or refining
the correspondence result further. We opted for the second route, for two reasons: first, we
get to keep the original definition given on paper in [10]; second, making amendment clever
enough to recognise this kind of situations requires a non-local analysis of the choreography
(i.e., looking at the structure of the branches of conditionals instead of simply checking for
projectability of the term). In our example, such an analysis could detect that the additional
selections from p to q could be added only after the communication from q to r, solving the
issue.

Therefore, our final correspondence result requires that the amendment of a choreography
be allowed to perform additional transitions before it matches the transition performed by
the original choreography. Since a transition may invoke rule c_delay_Cond more than once,
this means that the orders of the transitions performed by the original choreography and its
amendment can be arbitrary permutations of each other that respect causal dependencies
between transitions (ignoring the extra selections).

The correspondence result we prove looks as follows:

C
t //

amend
��

C' tl ∗// C' '

amend
��

A
tl' ∗ // A' '

where t:: tl can be obtained from tl' by removing some selections and permuting labels.

L. Cruz-Filipe and F. Montesi 11:15

To formalise this in Coq, we introduce a relation sel_exp (“selection expansion”) between
lists of transition labels.

Inductive sel_exp :=
| se_base tl tl' : Permutation tl tl' → sel_exp tl tl'
| se_extra p q l tl tl' tl'' : sel_exp tl tl' →

Permutation (TL_Sel p q l::tl') tl'' → sel_exp tl tl''.

We can now prove a correct version of the correspondence between choreographies and their
amendments. There are four results in total: the one depicted above and its generalisation
to the case where t is replaced with a list of transition labels; and the two dual results where
the amendment of a choreography moves first. We show the two more general statements.

Lemma amend_complete_many : Program_WF (D,C) → (D,C,s) −−[tl]−→∗ (D,C',s') →
∃ tl' tl'' C' ' s' ' , sel_exp (tl++ tl') tl'' ∧ (D,C', s') −−[tl']−→∗ (D,C'',s'')

∧ (amend_D D ps,amend D ps C,s) −−[tl'']−→∗ (amend_D D ps,amend D ps C'',s'').

Lemma amend_sound_many : Program_WF (D,C) → let (D' := amend_D D ps) in
(D' , amend D ps C,s) −−[tl]−→∗ (D',C',s') →
∃ tl' tl'' C' ' s' ' , (D' , C' , s') −−[tl']−→∗ (D', amend D ps C'',s'')

∧ (D,C,s) −−[tl'']−→∗ (D,C'',s'') ∧ sel_exp tl'' (tl++ tl').

The challenging part of the work in this section was understanding what the correct
formulation of these results should be. Once we reached this formulation, proofs were
relatively straightforward inductions on the given transitions (10–15 lines of Coq code per
case).

The formalisation of the amendment lemma consists of 6 definitions, 50 lemmas, and 4
examples, with a total of roughly 1050 lines of Coq code.

4 Implications of Amendment

In the previous section, we had to weaken the original statement for the semantic corres-
pondence guaranteed by amendment that was given in [10]. Since the original statement was
used in the proofs of Turing completeness for projectable core choreographies and SP, it is
natural to investigate whether our new formulation still yields these results.

For uniformity, we start by reformulating the Turing completeness result for core choreo-
graphies from [12], where process names are identified with natural numbers.

Theorem CC_Turing_Complete : ∀ n (f:PRFunction n),
∃ P, Program_WF P ∧ implements P f (vec_1_to_n n) 0.

The theorem states that, for any partial recursive function f, there exists a well-formed
choreographic program P that implements f with input processes 1, . . . , n and output process
0. The proof is a straightforward combination of results already presented in [12].

Combining this result with our lemmas about amendment yields that the fragment of
projectable core choreographies is also Turing-complete.

Lemma projCC_Turing_Complete : ∀ n (f:PRFunction n),
∃ P, Program_WF P ∧ projectable_P P ∧ implements P f (vec_1_to_n n) 0.

The proof is split into several steps. The most interesting sublemma is the one establishing
that amending a choreography that implements a function yields a choreography that
implements the same function. This is formulated as a general result about amendment.

ITP 2023

11:16 Now It Compiles!

Lemma amend_implements : Program_WF P →
implements P f ps q → implements (amend_P P) f ps q.

The proof uses the fact that terminated choreographies cannot execute further to show that
the list of additional transitions added to the original choreography by the amendment lemma
(tl in the last diagram) must be empty.

The remaining lemmas for projCC_Turing_Complete deal with projectability of the amended
choreography, as discussed in the previous section, and are simple to prove.

Since amended choreographies are projectable, we can further apply the EPP theorem
from [11] to show that SP is also Turing-complete.

Theorem SP_Turing_Complete : ∀ n (f:PRFunction n),
∃ P, Network_WF (Net P) ∧ SP_implements P f (vec_1_to_n n) 0.

The definition of SP_implements is a straightforward adaptation of the definition of implements
for choreographies. The proof of SP_Turing_Complete follows a similar strategy to the one
for projCC_Turing_Complete: we prove a sublemma epp_implements stating that the EPP of
a choreography that implements a function f is a process program that implements f.

The formalisation of this section consists of 2 definitions and 11 lemmas, totaling about
250 lines of Coq code. The conciseness of this development substantiates our previous
comment on not providing a complex lemma for projectability of programs, at the end of
Section 3.2.

5 Related Work

To the best of our knowledge, our work is the first formalisation of amendment, its properties,
and its intended consequences.

The work nearest to ours is the original presentation of the amendment procedure that
inspired us [10]. As we discussed, the behavioural correspondence for amendment that the
authors state is wrong. We developed a correct statement and managed to update and
formalise the proofs of Turing completeness for CC and SP accordingly. Our formalisation
of the behavioural correspondence also clarifies what semantic property amendment actu-
ally guarantees, which might be important for future work and practical applications of
amendment.

Amendment or similar procedures have been investigated also for other choreographic
languages [1, 22]. In all these works, the general idea is to repair choreographies by identify-
ing the specific places where additional communications are required for implementability.
However, the differences between the underlying languages and the techniques used make
the resulting procedures very different from ours.

The pioneer work of [22] only deals with finite choreographies without out-of-order execu-
tion. This allows for an amendment procedure that analyses the syntax of the choreography:
it inspects the choreography and checks that the first communications in the two branches of
a conditional have the same sender.

Instead, the choreographies in [1] are automata. Their technique also follows the idea of
looking at the possible transitions the choreography can perform in order to repair it, and
it uses a notion of realisability inherited from previous work [2] to establish its correctness.
Unfortunately, later work [15] showed that Theorem 2 in [2] is incorrect, invalidating the
proof of the result that is used in [1].

L. Cruz-Filipe and F. Montesi 11:17

Differently, our definition of amendment uses merging, first introduced in [3], and projec-
tion. While the underlying idea remains the same, this formulation is more intuitive, as the
connection between unprojectability and amendment becomes direct. This also simplifies
our development and yields shorter proofs.

Our work is based on the most recent version of the formalisation of CC, SP, and EPP [13],
which was originally introduced in [11, 12]. We did not need to modify this formalisation in
order to use it for our development, which shows that it reached a sufficient level of maturity
for being used as a library to reason about choreographies.

Other formalisations of choreographies include: Kalas, a choreographic programming
language that targets CakeML [30]; the choreographic DSL Zooid, a Coq library for verifying
that message passing code respects a given multiparty session type (these are abstract
choreographies without computation) [7]; and multiparty GV, a formalised functional language
with a similar goal to Zooid [19].

6 Conclusion

We have presented the first formalisation of an amendment procedure for choreographies.
Our work is based on a previous formalisation of CC and its accompanying notion of EPP,
which we used as a library. We found this formalisation to be modular and complete enough
to support the separate development presented here. In the same spirit of generality and
reusability, our formalisation does not add any assumptions about CC that were not present
in the library.

Our development is an illustration of how theorem provers can assist in research: inter-
acting with Coq guided us to (i) discovering that the semantic property of amendment found
in the background literature for this work is wrong, and (ii) a correct formulation that is
still powerful enough for its intended use in previous work.

The formalisation of amendment is amenable to extraction, and therefore our work
potentially offers a basis for a certified transformer from arbitrary choreographies in CC to
projectable ones. In the future, we plan on studying how this transformer can be integrated
into existing frameworks for choreographic programming.

Our notion of amendment is intrinsically related to how EPP is defined for CC. In the
literature, there are choreographic languages with a more permissive notion of knowledge
of choice, e.g., where replicated processes intended to be used as services are allowed to be
involved in only one branch of a conditional [3, 5]. It would be interesting to study how
amendment can be adapted to these settings.

References
1 Samik Basu and Tevfik Bultan. Automated choreography repair. In Perdita Stevens and

Andrzej Wasowski, editors, Procs. FASE, volume 9633 of Lecture Notes in Computer Science,
pages 13–30. Springer, 2016. doi:10.1007/978-3-662-49665-7_2.

2 Samik Basu, Tevfik Bultan, and Meriem Ouederni. Deciding choreography realizability. In
John Field and Michael Hicks, editors, Procs. POPL, pages 191–202. ACM, 2012. doi:
10.1145/2103656.2103680.

3 Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured communication-centered
programming for web services. ACM Trans. Program. Lang. Syst., 34(2):8:1–8:78, 2012.
doi:10.1145/2220365.2220367.

4 Marco Carbone, Sam Lindley, Fabrizio Montesi, Carsten Schürmann, and Philip Wadler.
Coherence generalises duality: A logical explanation of multiparty session types. In Josée

ITP 2023

https://doi.org/10.1007/978-3-662-49665-7_2
https://doi.org/10.1145/2103656.2103680
https://doi.org/10.1145/2103656.2103680
https://doi.org/10.1145/2220365.2220367

11:18 Now It Compiles!

Desharnais and Radha Jagadeesan, editors, Procs. CONCUR, volume 59 of LIPIcs, pages
33:1–33:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

5 Marco Carbone and Fabrizio Montesi. Deadlock-freedom-by-design: multiparty asynchronous
global programming. In Roberto Giacobazzi and Radhia Cousot, editors, Procs. POPL, pages
263–274. ACM, 2013. doi:10.1145/2429069.2429101.

6 Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, and Luca Padovani. On global types
and multi-party sessions. In Roberto Bruni and Jürgen Dingel, editors, Procs. FORTE,
volume 6722 of Lecture Notes in Computer Science, pages 1–28. Springer, 2011. doi:10.1007/
978-3-642-21461-5_1.

7 David Castro-Perez, Francisco Ferreira, Lorenzo Gheri, and Nobuko Yoshida. Zooid: a DSL
for certified multiparty computation: from mechanised metatheory to certified multiparty
processes. In Stephen N. Freund and Eran Yahav, editors, Procs. PLDI, pages 237–251. ACM,
2021. doi:10.1145/3453483.3454041.

8 Luís Cruz-Filipe, Lovro Lugović, and Fabrizio Montesi. Certified compilation of choreographies
with hacc. In Formal Techniques for Distributed Objects, Components, and Systems - 43rd
IFIP WG 6.1 International Conference, FORTE 2023, Held as Part of the 18th International
Federated Conference on Distributed Computing Techniques, DisCoTec 2023, Lisbon, Portugal,
June 19-23, 2023, Proceedings, pages 29–36, 2023. doi:10.1007/978-3-031-35355-0_3.

9 Luís Cruz-Filipe and Fabrizio Montesi. A core model for choreographic programming. In Olga
Kouchnarenko and Ramtin Khosravi, editors, Procs. FACS, volume 10231 of Lecture Notes in
Computer Science, pages 17–35. Springer, 2017. doi:10.1007/978-3-319-57666-4_3.

10 Luís Cruz-Filipe and Fabrizio Montesi. A core model for choreographic programming. Theor.
Comput. Sci., 802:38–66, 2020. doi:10.1016/j.tcs.2019.07.005.

11 Luís Cruz-Filipe, Fabrizio Montesi, and Marco Peressotti. Certifying choreography compilation.
In Antonio Cerone and Peter Csaba Ölveczky, editors, Procs. ICTAC, volume 12819 of Lecture
Notes in Computer Science, pages 115–133. Springer, 2021. doi:10.1007/978-3-030-85315-0_
8.

12 Luís Cruz-Filipe, Fabrizio Montesi, and Marco Peressotti. Formalising a Turing-complete
choreographic language in Coq. In Liron Cohen and Cezary Kaliszyk, editors, Procs. ITP,
volume 193 of LIPIcs, pages 15:1–15:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPIcs.ITP.2021.15.

13 Luís Cruz-Filipe, Fabrizio Montesi, and Marco Peressotti. A formal theory of choreographic
programming. J. Autom. Reason., 67(2):21, 2023. doi:10.1007/s10817-023-09665-3.

14 Mila Dalla Preda, Maurizio Gabbrielli, Saverio Giallorenzo, Ivan Lanese, and Jacopo Mauro.
Dynamic choreographies: Theory and implementation. Log. Methods Comput. Sci., 13(2),
2017. doi:10.23638/LMCS-13(2:1)2017.

15 Alain Finkel and Étienne Lozes. Synchronizability of communicating finite state machines is not
decidable. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors,
Procs. ICALP, volume 80 of LIPIcs, pages 122:1–122:14. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2017. doi:10.4230/LIPIcs.ICALP.2017.122.

16 Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti. Choreographies as objects. CoRR,
abs/2005.09520, 2020. URL: https://arxiv.org/abs/2005.09520.

17 Andrew K. Hirsch and Deepak Garg. Pirouette: higher-order typed functional choreographies.
Proc. ACM Program. Lang., 6(POPL):1–27, 2022. doi:10.1145/3498684.

18 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
J. ACM, 63(1):9, 2016. Also: POPL, pages 273–284, 2008. doi:10.1145/2827695.

19 Jules Jacobs, Stephanie Balzer, and Robbert Krebbers. Multiparty GV: functional multiparty
session types with certified deadlock freedom. Proc. ACM Program. Lang., 6(ICFP):466–495,
2022. doi:10.1145/3547638.

20 Sung-Shik Jongmans and Petra van den Bos. A predicate transformer for choreographies
– computing preconditions in choreographic programming. In Ilya Sergey, editor, Procs.

https://doi.org/10.1145/2429069.2429101
https://doi.org/10.1007/978-3-642-21461-5_1
https://doi.org/10.1007/978-3-642-21461-5_1
https://doi.org/10.1145/3453483.3454041
https://doi.org/10.1007/978-3-031-35355-0_3
https://doi.org/10.1007/978-3-319-57666-4_3
https://doi.org/10.1016/j.tcs.2019.07.005
https://doi.org/10.1007/978-3-030-85315-0_8
https://doi.org/10.1007/978-3-030-85315-0_8
https://doi.org/10.4230/LIPIcs.ITP.2021.15
https://doi.org/10.1007/s10817-023-09665-3
https://doi.org/10.23638/LMCS-13(2:1)2017
https://doi.org/10.4230/LIPIcs.ICALP.2017.122
https://arxiv.org/abs/2005.09520
https://doi.org/10.1145/3498684
https://doi.org/10.1145/2827695
https://doi.org/10.1145/3547638

L. Cruz-Filipe and F. Montesi 11:19

ESOP, volume 13240 of Lecture Notes in Computer Science, pages 520–547. Springer, 2022.
doi:10.1007/978-3-030-99336-8_19.

21 Stephen Cole Kleene. Introduction to Metamathematics, volume 1. North-Holland Publishing
Co., 1952.

22 Ivan Lanese, Fabrizio Montesi, and Gianluigi Zavattaro. Amending choreographies. In António
Ravara and Josep Silva, editors, Procs. WWW, volume 123 of EPTCS, pages 34–48, 2013.
doi:10.4204/EPTCS.123.5.

23 Tanakorn Leesatapornwongsa, Jeffrey F. Lukman, Shan Lu, and Haryadi S. Gunawi. Taxdc:
A taxonomy of non-deterministic concurrency bugs in datacenter distributed systems. In
Tom Conte and Yuanyuan Zhou, editors, Procs. ASPLOS, pages 517–530. ACM, 2016. doi:
10.1145/2872362.2872374.

24 Alberto Lluch-Lafuente, Flemming Nielson, and Hanne Riis Nielson. Discretionary in-
formation flow control for interaction-oriented specifications. In Narciso Martí-Oliet,
Peter Csaba Ölveczky, and Carolyn L. Talcott, editors, Logic, Rewriting, and Concur-
rency, volume 9200 of Lecture Notes in Computer Science, pages 427–450. Springer, 2015.
doi:10.1007/978-3-319-23165-5_20.

25 Hugo A. López and Kai Heussen. Choreographing cyber-physical distributed control systems
for the energy sector. In Ahmed Seffah, Birgit Penzenstadler, Carina Alves, and Xin Peng,
editors, Procs. SAC, pages 437–443. ACM, 2017. doi:10.1145/3019612.3019656.

26 Petar Maksimovic and Alan Schmitt. HOCore in Coq. In Christian Urban and Xingyuan
Zhang, editors, Procs. ITP, volume 9236 of Lecture Notes in Computer Science, pages 278–293.
Springer, 2015. doi:10.1007/978-3-319-22102-1_19.

27 Fabrizio Montesi. Choreographic Programming. Ph.D. Thesis, IT University of Copenhagen,
2013. URL: https://www.fabriziomontesi.com/files/choreographic-programming.pdf.

28 Fabrizio Montesi. Introduction to Choreographies. Cambridge University Press, 2023.
29 Roger M. Needham and Michael D. Schroeder. Using encryption for authentication in large

networks of computers. Commun. ACM, 21(12):993–999, 1978. doi:10.1145/359657.359659.
30 Johannes Åman Pohjola, Alejandro Gómez-Londoño, James Shaker, and Michael Norrish.

Kalas: A verified, end-to-end compiler for a choreographic language. In June Andronick and
Leonardo de Moura, editors, Procs. ITP, volume 237 of LIPIcs, pages 27:1–27:18. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ITP.2022.27.

31 Alan M. Turing. Computability and λ-definability. J. Symb. Log., 2(4):153–163, 1937.
doi:10.2307/2268280.

ITP 2023

https://doi.org/10.1007/978-3-030-99336-8_19
https://doi.org/10.4204/EPTCS.123.5
https://doi.org/10.1145/2872362.2872374
https://doi.org/10.1145/2872362.2872374
https://doi.org/10.1007/978-3-319-23165-5_20
https://doi.org/10.1145/3019612.3019656
https://doi.org/10.1007/978-3-319-22102-1_19
https://www.fabriziomontesi.com/files/choreographic-programming.pdf
https://doi.org/10.1145/359657.359659
https://doi.org/10.4230/LIPIcs.ITP.2022.27
https://doi.org/10.2307/2268280

Lessons for Interactive Theorem Proving
Researchers from a Survey of Coq Users
Ana de Almeida Borges # Ñ

University of Barcelona, Spain

Annalí Casanueva Artís # Ñ

Ifo Institut, München, Germany

Jean-Rémy Falleri # Ñ

Univ. Bordeaux, Bordeaux INP, CNRS, UMR 5800 LaBRI, F-33400 Talence,
Institut Universitaire de France, France

Emilio Jesús Gallego Arias # Ñ

Université Paris Cité, CNRS, Inria, IRIF, F-75013, Paris, France

Érik Martin-Dorel # Ñ

IRIT, Université de Toulouse, CNRS, Toulouse INP, UT3, Toulouse, France

Karl Palmskog # Ñ

KTH Royal Institute of Technology, Stockholm, Sweden

Alexander Serebrenik # Ñ

TU Eindhoven, The Netherlands

Théo Zimmermann #

LTCI, Télécom Paris, Institut Polytechnique de Paris, France

Abstract
The Coq Community Survey 2022 was an online public survey of users of the Coq proof assistant
conducted during February 2022. Broadly, the survey asked about use of Coq features, user interfaces,
libraries, plugins, and tools, views on renaming Coq and Coq improvements, and also demographic
data such as education and experience with Coq and other proof assistants and programming
languages. The survey received 466 submitted responses, making it the largest survey of users of an
interactive theorem prover (ITP) so far. We present the design of the survey, a summary of key
results, and analysis of answers relevant to ITP technology development and usage. In particular,
we analyze user characteristics associated with adoption of tools and libraries and make comparisons
to adjacent software communities. Notably, we find that experience has significant impact on Coq
user behavior, including on usage of tools, libraries, and integrated development environments.

2012 ACM Subject Classification Software and its engineering → Formal methods; General and
reference → Empirical studies

Keywords and phrases Coq, Community, Survey, Statistical Analysis

Digital Object Identifier 10.4230/LIPIcs.ITP.2023.12

Supplementary Material Software (Source Code and Data): https://doi.org/10.5281/zenodo.7
930567 [12]

Acknowledgements The authors would like to thank the survey participants, the Coq Survey
Working Group members who are not simultaneously authors of this paper (Yves Bertot, Nathan
Cassee, Jim Fehrle, Jerome Hugues, Barry Jay, Matthieu Sozeau and Enrico Tassi), the survey beta
testers, and the translator team (Yishuai Li, Oling Cat and Weidu Kuang).

© Ana de Almeida Borges, Annalí Casanueva Artís, Jean-Rémy Falleri, Emilio Jesús Gallego Arias,
Érik Martin-Dorel, Karl Palmskog, Alexander Serebrenik, and Théo Zimmermann;
licensed under Creative Commons License CC-BY 4.0

14th International Conference on Interactive Theorem Proving (ITP 2023).
Editors: Adam Naumowicz and René Thiemann; Article No. 12; pp. 12:1–12:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ana.agvb@gmail.com
https://aborges.eu
https://orcid.org/0000-0001-5152-198X
mailto:annali.casanueva@gmail.com
https://annalicasanueva.com
mailto:falleri@labri.fr
https://www.labri.fr/perso/falleri/perso/
https://orcid.org/0000-0002-8284-7218
mailto:emilio-jesus.gallego-arias@inria.fr
https://www.irif.fr/~gallego/
https://orcid.org/0000-0002-9299-1192
mailto:erik.martin-dorel@irit.fr
https://www.irit.fr/~Erik.Martin-Dorel
https://orcid.org/0000-0001-9716-9491
mailto:palmskog@kth.se
https://setoid.com
https://orcid.org/0000-0003-0228-1240
mailto:a.serebrenik@tue.nl
https://www.win.tue.nl/~aserebre/
https://orcid.org/0000-0002-1418-0095
mailto:theo.zimmermann@telecom-paris.fr
https://orcid.org/0000-0002-3580-8806
https://doi.org/10.4230/LIPIcs.ITP.2023.12
https://doi.org/10.5281/zenodo.7930567
https://doi.org/10.5281/zenodo.7930567
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Lessons for Interactive Theorem Proving Researchers from a Survey of Coq Users

1 Introduction

Online surveys are employed by organizations [16, 28] and researchers [30] to obtain ag-
gregate data about software communities, e.g., with the aim of understanding community
demographics, programming practices, and desired improvements to a software ecosystem.

Some interactive theorem provers (ITPs) such as Coq, Isabelle/HOL, and Lean have many
active users across academia and industry, and have comparable popularity to programming
languages on developer platforms such as GitHub and Stack Overflow [22]. Yet, to our
knowledge, the only public summary for an ITP community survey is Braibant’s for the Coq
Community Survey 2014 [5]. However, due to the development of Coq itself and changes in
the Coq community since 2014, many of its results and conclusions are currently obsolete.

In this paper, we present the results of a new survey of Coq users, which we call the
Coq Community Survey 2022. The survey was conducted publicly online during February
2022, using Inria’s LimeSurvey platform. The main goal of the survey was to obtain an
updated picture of the Coq user community and inform future decisions taken by the Coq
development team (Coq Team for short) and other stakeholders in the Coq ecosystem. In
particular, the survey aimed to help the Coq Team to better prioritize issues and features
for the Coq system, and enable effective decision-making about matters pertaining to the
software ecosystem maintained by Coq users in academia and industry [3]. One specific Coq
Team impetus for the survey was a community-wide discussion on Coq’s name and logo in
April 2021 on the Coq mailing list [31], centering on the name’s pronunciation in English.1

The survey was designed and deployed by a working group (WG) that was formed
following a public call by the Coq Team. The survey had 109 questions, some of which were
conditionally visible, and was available in English and Chinese [8, 7]. Broadly, the survey
asked about 1) use of Coq features, integrated development environments (IDEs), libraries,
plugins, and tools, 2) views on renaming and improving Coq, and 3) demographic data, such
as age, gender, and experience with Coq. The survey received 466 submitted responses.

The initial analysis and presentation of the survey [9, 10, 11] was limited to descriptive
response summaries and basic inferred data, such as defining graduate students by combining
responses to highest completed academic degree and student status. Our response analysis
here goes beyond the initial presentation by performing statistical analyses – multiple variable
regression analyses that unveil characteristics of Coq users associated with different usage
habits. We also compare aggregate data of Coq survey respondents with data from similar
surveys in related software communities (Haskell [15] and Stack Overflow [28]), which we
believe can give some perspective on the contention that the Coq community is oriented
towards programming languages [4]. We make the following contributions:
1. We present the first Coq community survey since 2014, and to our knowledge the survey

of an ITP community with the largest number of respondents thus far.
2. We have communicated descriptive results to the Coq community early, by publishing

a series of articles on the Coq Discourse forum and GitHub issues to make specific
stakeholders (mostly IDE maintainers) aware of the results of highest interest to them.

3. We provide novel survey data analyses by performing multiple variable regression analyses
to answer one main research question: How do different categories of respondents
use Coq? In addition, we look at satisfaction and needs for improvements for the same
categories of respondents. Our code and results are part of our public dataset [12].

1 While the renaming issue is outside paper scope, aggregate renaming responses are available [12, 2].

A. de Almeida Borges et al. 12:3

The paper is structured as follows. Section 2 describes the survey design and deployment,
the data analysis process, and the methodology for our statistical analyses, including the
definition of our respondent categories of interest. Section 3 mentions the previous descriptive
analysis of the survey results, including some examples, and performs a comparison between
the Coq community and the Stack Overflow and Haskell communities, based on their
respective 2022 surveys. Section 4 compares Coq use across different categories of Coq users.
Section 5 compares differing satisfaction and user needs across the same categories of Coq
users. Section 6 discusses threats to validity of our results, and measures taken to mitigate
them. Finally, Section 7 discusses our results and concludes.

2 Methodology

The survey was designed, deployed, managed, and analyzed by members of a working group
(WG), which was formed after a public call for participation by the Coq core team. Members
of this WG met weekly during a year and a half, first to design the survey, then to advertise
it to the Coq community, and finally to analyze and share the results.

2.1 Survey Design and Deployment
Survey questions were collaboratively created by WG members. The WG took inspiration
from the previous Coq Community Survey in 2014 [5], and similar surveys for programming
languages [20]. The WG made efforts to adhere to survey best practices [19], e.g., on ordering
demographic questions late to avoid their answers affecting other questions.

The survey was available in English [8] and Chinese [7], having been first created in
English and then translated to Chinese by a team of volunteers. These volunteers also
translated the answers to the open questions back to English. Ideally, the survey would have
been translated to more languages, particularly the ones that have an existing community
of Coq users who are not necessarily proficient in English. For example, there are Coq
learning resources in Chinese [26] and Japanese [25], as well as dedicated categories for several
languages in the Coq Discourse forum. The WG contacted colleagues with the necessary
language knowledge to perform Chinese, Japanese, and Russian translations, but only secured
a commitment for the Chinese translation.

The survey had 109 questions, some of which were only visible depending on answers to
previous questions. Broadly, the survey asked about 1) use of Coq features, IDEs, libraries,
plugins, and tools, 2) views on renaming Coq, Coq improvements, and issues such as inclusion,
and 3) demographic data, such as age, gender, and length of experience with Coq and other
ITPs or functional programming languages. All the questions were optional.

After a preliminary version of the survey was finalized, it was sent to a small group of
beta testers, who were asked to fill out that preliminary version, time themselves, and send
feedback on their experience. Some changes were made due to this feedback, and the initial
prediction of the time it would take to fully complete the closed-question part of the survey
(30 minutes) was estimated based on this beta testing. We made this estimation available to
potential survey respondents on the first page of the survey and in our announcements.

Before survey deployment, we contacted the Inria Ethics Review Board (ERB), who
informed us that full ERB approval of our survey was not required and referred us to
Inria’s Data Protection Officer (DPO) for data protection compliance matters. Based on our
communication with the DPO, we developed a GDPR conformance statement and followed
best practices for data protection. In particular, we removed the raw data and only share
aggregated data, including open text answers which we manually sanitized to remove any
personally identifiable elements.

ITP 2023

12:4 Lessons for Interactive Theorem Proving Researchers from a Survey of Coq Users

The survey was deployed on Inria’s LimeSurvey platform and was open during the month
of February 2022. The deployed survey was advertised to Coq users primarily via the
following Coq community forums: Discourse, Zulip chat, Coq-club mailing list, Coq Twitter,
Coq Reddit, and the Coq website. The WG also advertised in more general venues and other
related communities, such as the Types-announce mailing list, Agda and Lean Zulip chats,
and on language-specific forums in Chinese and in French (mailing lists of GDR IM and
GPL). These announcements asked only previous or current Coq users to answer. Still, the
survey included the question “How long have you used Coq?” with the option to answer “I
have never used Coq.” Those who chose that option were still asked a number of questions,
but most of the survey was hidden, since most questions assumed previous Coq experience.

2.2 Analysis Process
After the survey closed, WG members collaboratively analyzed the response data. For GDPR
compliance, the WG decided to keep the raw survey data within the EU. Therefore, the
WG used Inria-hosted tools and restricted raw data access to members located in the EU.
The Chinese translators translated the Chinese answers back into English, and then two
authors wrote the analysis code in Python within a Jupyter notebook, using the pandas
and matplotlib libraries. Plots were created for each closed-answer survey question (often
multiple plots for each question) and automatically deployed to a static Inria-hosted website
for later inclusion in summary blog posts (see Section 3). In order to perform the statistical
analyses described in Section 4, we exported pre-processed data from the Jupyter notebook
for a third author to perform regressions using Stata.2 We provide the Jupyter notebook
and Stata code as supplementary material [12] to allow scrutiny of the source code, and also
provide all the generated plots for the survey questions. However, due to privacy concerns
(risk of re-identifying specific respondents), we do not provide the raw survey data, which is
required to reproduce the analyses using the Jupyter notebook.

2.3 Statistical Analyses
We do a multiple variable regression analysis to unveil the characteristics of Coq users
associated with different usage habits and expectations. This statistical method allows us
to establish the relationship between multiple regressors (or independent variables) and
one dependent variable (or outcome) [32]. Including several variables at the same time
is needed to disentangle the distinct effect of possibly correlated variables. If we did not
include such correlated variables simultaneously, part of the effect of the excluded variables
would be captured by the coefficient of the included correlated ones. One must however
keep in mind that: 1) these results cannot be interpreted causally and 2) there can still be
variables correlated with the dependent or independent variables that were not included in
the regression.

For each category of users, we test several hypotheses. This will lead to over-rejecting
null hypotheses (i.e., some associations between variables will be considered true when in
reality they are not present). To overcome this problem, it is necessary to explicitly consider
the multiplicity of the testing framework. Thus, for all our estimates, we report, in addition
to classic standard errors (in parentheses), the Romano-Wolf-corrected p-values for multiple
hypothesis testing (in brackets) [27, 6]. This correction has a higher ability to correctly reject

2 Stata is a software package for statistical analysis, see https://www.stata.com.

https://www.stata.com

A. de Almeida Borges et al. 12:5

false null hypotheses than previous techniques such as Bonferroni and Holm [17]. Following
common standards in fields with a long tradition of statistical analysis such as economics,
and considering that, by controlling the family-wise error rate, the Romano-Wolf correction
is more conservative than alternative approaches to multiple hypothesis testing (giving us
robust levels of significance), we interpret estimates as significant as soon as the p-values
are below the 0.1 threshold (instead of the 0.05 threshold which would be more common in
empirical software engineering).

2.3.1 Defining Categories of Interest

We studied four user characteristics that we considered could be relevant in explaining
differences in how respondents use Coq: their experience with Coq, their learning status,
their application-domain for Coq, and their location. More specifically:

Experience level We define two binary variables that illustrate various stages of experience
with Coq. The first variable represents whether the user has more than 2 years of
experience, and the second variable whether the user has more than 5 years of experience.
About 64% of our sample has more than 2 years of experience and about 40% more
than 5. The omitted category represents users with less than 2 years of experience. We
use these variables (corresponding to arbitrary thresholds) instead of a numeric variable
representing the number of years of experience because experience does not always have
a linear association with outcomes, such as the likelihood of using a particular feature.
In particular, we can expect that, beyond some level of experience, additional years of
experience are very unlikely to be associated with any additional changes in the outcome.

Learners We define a binary variable corresponding to learners. To define learner, we use the
answer to the question “For what purpose have you used Coq?”. A learner is a respondent
who answered any of “Learning Coq” or “Learning something other than Coq” to this
(multiple-choice) question, without also responding any of “Teaching Coq”, “Teaching
something other than Coq”, “Academic research”, or “Industrial research / application”.
About 17% of our sample are defined as learners. The way that learners use Coq may
be related to their learning context, and thus significantly differ from other Coq users.
Understanding these differences could inform researchers and engineers trying to make
proof assistants easier to learn.

Application domains for using Coq Coq can be used for various applications: verifying
software, hardware, or theoretical systems, formalizing existing or new mathematical
results, etc. The way of using Coq may differ depending on the application domain
(extraction comes to mind as being specifically relevant for software verification), but also
on the users’ background. This is why we decided to test whether software verification
specifically (the most common objective for Coq users) was related to differing practices.
About 67% of our sample use Coq for software verification.

Location Various world regions have different research traditions (such as putting more or
less focus on theory) and may also have different technical culture. This is why it seemed
important to evaluate whether this relates to different ways of using Coq. Our baseline
is Europe, where about half of our respondents live. We define two binary variables to
represent the respondents’ location: one for North America (which represents about 25%
of our respondents’ location) and one for the rest of the world (excluding both North
America and Europe). This is why Europe does not appear explicitly in our tables.

ITP 2023

12:6 Lessons for Interactive Theorem Proving Researchers from a Survey of Coq Users

2.3.2 Controls
In addition to the variables presented above, our regressions include additional variables as
controls. In particular, we include: the age of respondents, their gender (more precisely, a
binary variable for whether the respondent declared being a woman), their operating system
(two binary variables for Windows and macOS), their research area (a binary variable for
whether the respondent does research in math or logic), their employment (a binary variable
for whether the respondent is employed by a private organization), and whether they hold a
PhD. We do not analyze the results of the regressions for these variables; they are only there
to avoid capturing something that could be correlated both to the independent variables and
to the outcome. For example, if we include years of experience without including age, we
might be capturing the effect of being of a certain generation on using a specific feature that
was particularly popular during a specific period. Because years of experience is correlated
with age, part of the association between age and the outcome is captured by the coefficient
of years of experience. Yet, in this example, the experience would not be relevant.

2.3.3 Selecting Population to Analyze
Our survey received 466 submitted responses. However, for the statistical analyses, we
restrict ourselves to the 390 respondents who say that they have used Coq in the last year
(as what we want to assess is current Coq practices). Furthermore, we can only perform
regressions on data where our (dependent and independent) variables, including our controls,
are defined. We remove 18 respondents who did not provide their age. This results in looking
at a subsample of 372 responses. On one specific outcome (IDE satisfaction), we look at an
even smaller subsample of 367 responses, because respondents need to have answered at least
one IDE satisfaction question for this outcome to be defined.

3 Descriptive Observations and Comparison to Other Communities

3.1 Descriptive Analysis and Observations
After the survey closed, the WG performed a descriptive analysis of the data. The results
were continuously shared with the community through a series of articles posted to the Coq
Discourse forum. The topics were as follows: Who is using Coq and in what context? [9];
How are people using Coq? [10]; How is Coq used? (features, tools, libraries) [11]. They
include many plots deployed from a GitLab repository to a perennial URL,3 in SVG and
PNG format. Results from the articles and additional results on renaming Coq were also
presented at the Coq Workshop 2022 [1, 2]. Specific results were shared as repository issues:

Proof General https://github.com/ProofGeneral/PG/issues/671
Company-Coq https://github.com/cpitclaudel/company-coq/issues/258
CoqIDE https://github.com/coq/coq/issues/16580
VsCoq https://github.com/coq-community/vscoq/issues/308
Coqtail https://github.com/whonore/Coqtail/issues/277
jsCoq https://github.com/jscoq/jscoq/issues/261
coq_jupyter https://github.com/EugeneLoy/coq_jupyter/issues/46
Continuous integration https://github.com/coq-community/manifesto/issues/141

3 https://thzimmer.gitlabpages.inria.fr/coq-survey-2022-assets/asset-listing.html

https://github.com/ProofGeneral/PG/issues/671
https://github.com/cpitclaudel/company-coq/issues/258
https://github.com/coq/coq/issues/16580
https://github.com/coq-community/vscoq/issues/308
https://github.com/whonore/Coqtail/issues/277
https://github.com/jscoq/jscoq/issues/261
https://github.com/EugeneLoy/coq_jupyter/issues/46
https://github.com/coq-community/manifesto/issues/141
https://thzimmer.gitlabpages.inria.fr/coq-survey-2022-assets/asset-listing.html

A. de Almeida Borges et al. 12:7

In addition, the WG prepared detailed internal reports and presentations to the Coq core
team on the results to the renaming questions to help the team make a decision regarding a
possible renaming of Coq. At the time of writing, no decision has been made official yet.

Here, we present only a small fraction of these descriptive results: a selection of demo-
graphic markers in Figure 1 and IDE and operating system (OS) use in Figure 2. We comment
on these while comparing the Coq community to two other relevant communities, and refer
the reader to the Discourse forum articles for a more detailed presentation [9, 10, 11].

3.2 Comparison of the Coq Community to Other Communities
In this section, we compare the Coq community (CC) to two distinct baseline populations.
We use the 2022 Stack Overflow survey results [28] as a proxy for the “general” programming
community, since Stack Overflow is a popular website used by millions of software developers.
We will refer to this population as SO. We use the 2022 Haskell survey results [15] as a
proxy for the functional programming (FP) community, as Haskell is a mature but not
obsolete functional programming language. We believe this population is interesting due to
the proximity between the ITP and FP communities. We will refer to this population as HC.

Location. The United States is consistently one of the top-5 locations, as are Germany and
the United Kingdom, for all three populations. As can be seen in Figure 1a, CC has a large
ratio of French respondents, even outnumbering US respondents, likely for historical reasons
(Coq was originally developed in France). A notable difference is that Indian respondents,
numerous in the SO population, are rare in the FP and CC populations, indicating a missed
opportunity for FP and ITP.

Gender. There is no data for HC, but a comparison can be done between CC and SO. It
shows the same trend of an overwhelming ratio of respondents identifying as men (about
90%), while only about 6% identify as women, and the remaining 4% as non-binary or other.

Age. There is no data for the HC population, but SO and CC (Figure 1b) can be compared.
Although the bins are slightly different between SO and CC (shifted by five years), the overall
trend seems similar between the two populations. Very young programmers (less than 20
years old) are rare (about 5%), with the bulk of programmers being approximately between
20 and 40 years old. Older programmers (more than 50 years old) represent about 10% of
both populations.

Education. CC has fewer bins for education than either HC or SO (Figure 1c). We enable
direct comparisons between surveys by merging bins where possible and dropping bins and
corresponding answers otherwise, since bins are mutually exclusive. This analysis yields
responses for no diploma for SO 3%, HC 2%, CC 1%; high school diploma for SO 26%,
HC 17%, CC 5%; bachelor’s degree for SO 45%, HC 37%, CC 18%; master’s degree for SO
23%, HC 30%, CC 31%; PhD degree for SO 3%, HC 14%, CC 46%. These results place HC
between SO and CC in terms of educational achievement, but closer to SO given that CC
has such a high skew towards doctoral degrees.

Academic use. We now compare the “academic” bins of the three surveys, even if their
definitions are not exactly the same. In both the CC survey and the HC survey, respondents
are asked if they operate in an academic context and if they are students or not. In the

ITP 2023

12:8 Lessons for Interactive Theorem Proving Researchers from a Survey of Coq Users

(a) Top locations of residence of the respondents. (b) Age of the respondents.

(c) Highest education level completed by respon-
dents. (d) Employment situation of the respondents.

Figure 1 Plots depicting the location, age, education level and employment situation of the
respondents to the 2022 Coq Community Survey.

SO survey, academic researcher and student are exclusive categories. In CC, as can be seen
in Figure 1d, 54% of respondents are academically employed, and 32% are students. In
HC, 18% of the respondents use Haskell in an academic context and 15% are students. In
comparison, only 4.42% of Stack Overflow survey respondents are academic researchers and
9.13% are students. In conclusion, CC and HC respondents operate in an academic context
much more frequently than SO respondents. Even in comparison with the HC respondents,
CC is even more tied to academia, where it represents about half of the respondents.

IDEs. The bins are not the same across the surveys, but we can compare the following three
main IDEs: Vim, Emacs, and VS Code. See Figure 2a for IDE use in the CC population.
VS Code is used by about 70% of SO, 43% of HC and 34% of CC. Emacs is used by about
5% of SO, 30% of HC and 60% of CC. Vim is used by about 23% of SO, 40% of HC and
9% of CC. When considering only Emacs, Vi(m), and VS Code, the Coq survey answers
suggest that Coq users are significantly more likely to use Emacs than either Haskell users
or developers on Stack Overflow. This is partly driven by long-time Coq users preferring
Emacs (and its ProofGeneral package) and VS Code support for Coq being more recent.

A. de Almeida Borges et al. 12:9

(a) IDEs used by the respondents. (b) Operating systems used by the respondents.

Figure 2 Plots on IDE and OS use of the survey respondents.

OSes. The bins are not the same across the surveys, but we can compare the following three
main OSes: Linux, Windows and macOS. For the SO survey, the best data is professional
usage as it reflects the coding environment. See the data for CC in Figure 2b. Windows is
used by about 49% of SO, 15% of HC and 18% of CC. macOS is used by about 31% of SO,
33% of HC and 37% of CC. Linux is used by about 40% users of SO, 86% of HC and 74% of
CC.

These percentages suggest that Linux-based operating systems are dominant among both
Haskell and Coq users, with only a small minority of Windows users and a similarly-sized
minority using macOS in both communities. In contrast, among Stack Overflow users, a
near-majority use Windows. Windows use is slightly higher among Coq survey respondents
than Haskell respondents, which is partly driven by new Coq users.

4 Analysis of Coq Use for Different Population Groups

In this section, we analyze how different population groups we identified in the survey use
Coq differently, by looking at various outcomes.

4.1 Installation of Coq, Usage of Packages and Features, and CI
In this section, we analyze the results of Table 1, which contains the following outcomes:
opam A binary variable indicating whether respondents installed Coq with opam (a software

package manager for OCaml [23] and for Coq as well [29]), either directly, or relying on
wrapper scripts provided by the Coq Platform [24]. Because Coq has been around for so
long, there are many possible ways to install it. It is packaged in many Linux distributions
and generic package managers, and there are binary installers for the main operating
systems. The most flexible installation method is by using opam, because it gives access
to the whole ecosystem of Coq packages. This is the most common installation method
(used by 76% of respondents), but it is also more complex, so the expectation is that
users start relying on it only when they encounter the need.

External general libraries A binary variable for whether respondents are “casual” or “ad-
vanced” users of any of the external general libraries Coq-Extlib, Coq-std++, Math
Classes, Mathematical Components, or TLC. Coq is distributed with a standard library
and some embedded tools, but it also comes with a rich package ecosystem. Power users

ITP 2023

12:10 Lessons for Interactive Theorem Proving Researchers from a Survey of Coq Users

Table 1 Usage of opam, ecosystem libraries, tools, automation, SSReflect, Continuous Integration
(CI), and extraction.

(1) (2) (3) (4) (5) (6) (7)
VARIABLES opam External general Number of Automation SSReflect CI Extraction

libraries external tools
> 2 years of experience 0.183*** 0.107 -0.118 0.110 -0.0196 0.0512 0.231***

(0.0576) (0.0663) (0.233) (0.0620) (0.0644) (0.0600) (0.0653)
[0.008] [0.253] [0.818] [0.253] [0.818] [0.720] [0.005]

> 5 years of experience 0.00177 0.169** 0.945*** 0.186** 0.138* 0.320*** 0.169**
(0.0594) (0.0684) (0.241) (0.0639) (0.0664) (0.0619) (0.0673)
[0.967] [0.045] [0.001] [0.016] [0.059] [0.001] [0.045]

Learner -0.282*** -0.0882 0.193 -0.175 -0.0363 -0.197** -0.0513
(0.0619) (0.0712) (0.250) (0.0665) (0.0691) (0.0645) (0.0701)
[0.001] [0.685] [0.872] [0.116] [0.872] [0.042] [0.872]

Software verification 0.0470 0.165** 0.742*** 0.192*** 0.126* 0.0371 0.290***
(0.0473) (0.0544) (0.191) (0.0509) (0.0528) (0.0493) (0.0536)
[0.533] [0.013] [0.002] [0.002] [0.051] [0.533] [0.001]

North America 0.00277 0.00986 0.0795 -0.125 -0.0637 0.00597 0.00654
(0.0519) (0.0597) (0.210) (0.0558) (0.0580) (0.0541) (0.0588)
[1.000] [1.000] [0.999] [0.170] [0.860] [1.000] [1.000]

Other locations -0.00968 -0.124 -0.0873 -0.0269 -0.0673 -0.122 0.172*
(0.0617) (0.0710) (0.250) (0.0663) (0.0689) (0.0643) (0.0699)
[0.960] [0.358] [0.956] [0.956] [0.802] [0.290] [0.089]

Additional controls Yes Yes Yes Yes Yes Yes Yes
Mean of dependent variable 0.758 0.366 0.995 0.702 0.288 0.315 0.446
Observations 372 372 372 372 372 372 372

Note: Each column corresponds to a regression. Standard errors are in parentheses, Romano-Wolf adjusted
p-values in brackets. Stars represent different levels of significance (*** p<0.01, ** p<0.05, * p<0.1)
according to Romano-Wolf adjusted p-values. Independent variables are described in §2.3.1 and additional
controls in §2.3.2. Mean of dependent variable corresponds to the mean of the outcome of each column.

rely on this package ecosystem to be more productive. With this outcome and the next
one, we evaluate how different types of users take advantage (or not) of the package
ecosystem. Only 37% of respondents are users of a general external library.

Number of external tools A natural number variable counting how many external tools
respondents said they were using (“Casual user” or “Advanced user”) among a long list:
Mtac2, MetaCoq, and Coq-Elpi (from the “Tactic languages” question), as well as all 16
tools from the “Ecosystem plugins and tools” question. Respondents to the survey only
use 0.995 of the 19 listed external tools on average.

Automation A binary variable for whether respondents are “casual” or “advanced” users of
any of several core automation tools (Micromega, Nsatz, Ring, and the solvers for logic
and equality from the standard library, such as firstorder) or external automation tools
(AAC Tactics, CoqHammer, and SMTCoq). 70% of respondents are using such a tool.

SSReflect A binary variable for whether respondents are “casual” or “advanced” users of the
SSReflect proof language. SSReflect is a consistent set of tactics providing an alternative
to the standard tactics. It has been distributed as part of the main Coq package for more
than 5 years. 29% of our respondents use SSReflect.

CI A binary variable for whether respondents use Continuous Integration (CI) on any of
their projects. CI is the practice of automatically running tests at every change when
developing software. This is a very common practice today, which helps to produce better
quality software [13]. CI can also be used on mechanized proof projects, usually not to
run tests, but simply to verify that the proofs are still accepted. This is particularly
useful when developing Coq libraries, because CI can help ensure that a library remains
compatible with several consecutive versions of Coq, even though its maintainers only

A. de Almeida Borges et al. 12:11

test one version on their machines. Because of this main application, it is expected
that respondents who do not yet have big enough projects will not use CI. 31% of our
respondents declared they do.

Extraction A binary variable for whether respondents are “casual” or “advanced” users of
any of the officially supported extraction targets. Extraction is a Coq feature allowing the
automatic generation of executable code in OCaml, Haskell or Scheme from a program
written in Gallina, the functional programming language embedded inside Coq. Since
Coq can be used to prove a Gallina program correct with respect to its specification,
extraction is a useful mechanism to produce executable code for this program, and it is
expected to be strongly associated with using Coq for verifying software. 45% of our
respondents said they use extraction.

Experience level

We observe statistically significant results relating experience to each of our outcomes. For
most of our outcomes (external general libraries, number of external tools, automation,
SSReflect and CI), the threshold to see a statistically significant difference is to reach more
than 5 years of experience. The most important jump being in the use of CI, which is of the
same magnitude as the mean of the variable over our population.

Sometimes, 2 years of experience are enough to see significant differences: the use of
opam increases (18 percentage points (pp) more respondents using opam) at the 2 years of
experience threshold, and the use of extraction increases twice, at each of the two experience
thresholds (23 pp more respondents using extraction after 2 years, and 17 pp more respondents
using extraction after 5 years).

Learners

Learners use opam significantly less often (28 pp fewer respondents use opam when considering
learners compared to non-learners with every other independent variable fixed, including
experience). This may be explained by learners having a stronger need for an easy installation
method and a lesser need for the access to packages that installing with opam provides. The
only other statistically significant difference robust to multiple hypothesis testing is in the
use of CI. 20 pp fewer learners use CI for their projects compared to non-learners, which can
be explained by learners not having any project that really requires the use of CI. Other
coefficients are estimated to be negative as well, but are not statistically significant or not
robust to multiple hypothesis testing corrections.

Software verification

Besides experience level, the other category of users associated with many statistically
significant differences in their use of Coq are respondents applying Coq to do software
verification. These users are more likely to use external general libraries (16 additional pp),
they use more external tools (an average of 0.74 additional tools, which is close in magnitude
to the average number of external tools used by our respondents), they are more likely to
use automation, more likely to use SSReflect, and more likely to use extraction. In short,
we can say that these respondents (who represent about 67% of our respondents) are the
ones who make the most use of the Coq package ecosystem and features. This may not
come as a surprise for, e.g., the use of extraction, which is a feature particularly suited to
software verification, but may be more surprising when talking about the use of external
general libraries or SSReflect, given that MathComp (one of these general libraries) and
SSReflect were not created to verify software, but to formalize pure mathematics.

ITP 2023

12:12 Lessons for Interactive Theorem Proving Researchers from a Survey of Coq Users

Beyond the previously listed significant results, we can also note a significant, but difficult
to interpret difference on the use of extraction by respondents from other locations (excluding
Europe and North America).

4.2 User Interfaces

Table 2 Usage of Integrated Development Environment (IDE).

(1) (2) (3) (4)
VARIABLES Emacs CoqIDE VS Code jsCoq
> 2 years of experience 0.0164 0.220*** 0.00848 0.0135

(0.0651) (0.0679) (0.0679) (0.0418)
[0.991] [0.009] [0.991] [0.991]

> 5 years of experience 0.0778 -0.0318 -0.0134 -0.0146
(0.0672) (0.0700) (0.0700) (0.0431)
[0.688] [0.963] [0.963] [0.963]

Learner -0.109 0.124 -0.0897 0.0963
(0.0699) (0.0729) (0.0729) (0.0448)
[0.265] [0.265] [0.265] [0.147]

Software verification 0.120 0.0376 -0.110 0.0431
(0.0535) (0.0557) (0.0557) (0.0343)
[0.118] [0.515] [0.170] [0.398]

North America 0.132* -0.117 -0.00667 -0.0416
(0.0587) (0.0612) (0.0612) (0.0376)
[0.077] [0.145] [0.899] [0.458]

Other location -0.0743 -0.0147 -0.0140 -0.0759
(0.0697) (0.0727) (0.0726) (0.0447)
[0.629] [0.976] [0.976] [0.250]

Additional controls Yes Yes Yes Yes
Mean of dependent variable 0.608 0.516 0.360 0.091
Observations 372 372 372 372

Note: Each column corresponds to a regression. Standard errors are in parentheses, Romano-Wolf adjusted
p-values in brackets. Stars represent different levels of significance (*** p<0.01, ** p<0.05, * p<0.1)
according to Romano-Wolf adjusted p-values. Independent variables are described in §2.3.1 and additional
controls in §2.3.2. Mean of dependent variable corresponds to the mean of the outcome of each column.

We relate the probability to have used one of four IDEs for Coq (Emacs, CoqIDE, VS Code
and jsCoq) to our previously defined categories. The user interface, a.k.a. IDE (Integrated
Development Environment), is a fundamental part of proof assistants such as Coq, as it is
the interaction medium between users and the system.

Our survey included many IDE questions, meant to get a better idea of their user base,
their limitations, and to be able to inform stakeholders. As mentioned in Section 3.1, we
already shared these specific results with stakeholders by opening issues in relevant projects.

In Table 2, we look at the responses to the question “Which editors or IDEs have you
used for Coq?” and relate the results for four of the most used IDEs to our previously
defined categories of respondents. Among the four selected IDEs, the two with the most
users according to the survey results are Emacs and CoqIDE (used respectively by 61% and
52% of respondents). This is explained by observing that they were the only two available

A. de Almeida Borges et al. 12:13

options for many years. Recently, more focus has been put on developing more modern user
interfaces, e.g., based on the very popular Visual Studio Code (VS Code, used by 36% of
respondents), or directly in the browser, with jsCoq (used by 9% of respondents).

Unfortunately, most of the significant results obtained in this table were not robust to
Romano-Wolf corrections for multiple hypothesis testing. The only two robust results are:
1. Users with more than 2 years of experience are more likely to have used CoqIDE. This

can be interpreted by CoqIDE being the most standard user interface for Coq, since it is
distributed along the system, and the question being formulated as “Which editors or
IDEs have you used for Coq?” and not “Which editors or IDEs are you currently using
for Coq?”. Thus, users are very likely to have used CoqIDE at some point when they are
experienced enough.

2. Users in North America are 13 pp more likely to have used Emacs, compared to the
Europe baseline, which may be explained by cultural differences or IDE penetration.

We do not get any other statistically significant results, although some are not very
far from being significant. In particular, the learner category looks like it could be more
frequently using jsCoq, but it is very difficult to draw reliable conclusions given the small
number of jsCoq users among our respondents (40).

5 Satisfaction and Needs of Different Population Groups

In this section, we look at how our different population groups perceive Coq and what needs
they express. This should inform researchers willing to improve proof assistants for specific
use cases or target audiences.

We base our analysis on the responses to the satisfaction questions for the six IDEs that
we included additional questions about, as well as one question on the importance of various
improvements to be possibly made to Coq, one question asking what additional extraction
targets respondents would like to have, and one question asking what additional languages
to support in the documentation. Figure 3 presents the descriptive results to the question
about improvements to be possibly made to Coq.

Figure 3 Results to the question “In order to make you more productive in Coq and to encourage
others to learn and use Coq, how important are improvements in the following areas (relative to their
current state)?”. On the right hand-side, the percentages correspond, in order, to the proportion
of “Unwise”, “Unimportant”, “Worthwhile”, and “Essential” answers. Improvement categories are
ordered according to the majority judgment methodology [14].

ITP 2023

12:14 Lessons for Interactive Theorem Proving Researchers from a Survey of Coq Users

Table 3 Expressed satisfaction and needs.

(1) (2) (3) (4)
VARIABLES IDE Essential technical vs New extraction Other

satisfaction community improvements targets languages
> 2 years of experience 0.116 0.105 -0.0154 -0.0483

(0.105) (0.185) (0.0510) (0.0406)
[0.632] [0.826] [0.826] [0.632]

> 5 years of experience -0.236* 0.484** -0.00963 -0.00944
(0.108) (0.191) (0.0526) (0.0419)
[0.085] [0.047] [0.976] [0.976]

Learner -0.224 -0.0625 0.0519 -0.00920
(0.112) (0.199) (0.0548) (0.0436)
[0.159] [0.936] [0.704] [0.936]

Software verification 0.0429 0.187 0.163*** 0.0340
(0.0856) (0.152) (0.0419) (0.0333)
[0.624] [0.545] [0.002] [0.559]

North America 0.0721 -0.286 -0.00620 0.000884
(0.0942) (0.167) (0.0460) (0.0366)
[0.779] [0.265] [0.982] [0.982]

Other locations 0.00952 -0.219 0.0872 0.122**
(0.113) (0.198) (0.0546) (0.0434)
[0.923] [0.415] [0.304] [0.038]

Additional controls Yes Yes Yes Yes
Mean of dependent variable 3.049 0.325 0.153 0.089
Observations 367 372 372 372

Note: Each column corresponds to a regression. Standard errors are in parentheses, Romano-Wolf adjusted
p-values in brackets. Stars represent different levels of significance (*** p<0.01, ** p<0.05, * p<0.1)
according to Romano-Wolf adjusted p-values. Independent variables are described in §2.3.1 and additional
controls in §2.3.2. Mean of dependent variable corresponds to the mean of the outcome of each column.

Table 3 contains the following outcomes:
IDE satisfaction A natural number variable defined as the maximum IDE satisfaction level

(from 0 to 4) for each respondent. We say that the IDEs each respondent assigned a
maximum satisfaction level to are their favorites. To be defined, this outcome needs
respondents to have answered at least one IDE satisfaction question, which is why we
have 5 fewer observations for this outcome. The average satisfaction level given to the
favorite IDE is 3, which corresponds to “Satisfied”.

Essential technical vs community improvements An integer number variable defined as
the difference between the number of essential technical improvements and the number
of essential community improvements according to each respondent. We separate Coq
improvements (from the question of Figure 3) into two categories: technical improvements
(fixing bugs, refining features, IDEs, development tools, new features, performance)
and community improvements (documentation, libraries, community building, support
channels). We exclude the “Compatibility / migration support” improvement because it
could be perceived as belonging to any of the two categories depending on how “support”
is interpreted. We count for each of these categories the number of essential improvements,
and we take the difference. Thus, a respondent with a positive value for this variable
is listing more technical improvements as essential, and a respondent with a negative
value for this variable is listing more community improvements as essential. On average,

A. de Almeida Borges et al. 12:15

respondents listed 0.3 additional essential technical improvements compared to community
improvements, but note that the list of technical improvements contained two more items
than the list of community improvements.

New extraction targets A binary variable for whether respondents provided a non-empty
answer to the question on new extraction targets. 15% of the respondents asked for new
extraction targets using this open text question.

Other languages A binary variable for whether respondents provided a non-empty answer
to the question on languages to support in the documentation. 9% of our respondents
asked for documentation in languages other than English using this open text question.

Experience level

Respondents with more than 5 years of experience are significantly more likely to assign
a lower satisfaction score (0.24 lower on average) to their favorite IDE. They also list
more essential technical improvements than community improvements, compared to other
respondents (a 0.48 average difference).

We can explain experienced respondents being less satisfied with their IDE and more
adamant about technical improvements by them having learned limitations of their IDEs or
other technical limitations during their years of experience.

Other results

The other two statistically significant differences (robust to multiple hypothesis testing) are:
1. Respondents using Coq for software verification are more likely to request new extraction

targets (an additional 0.16 pp, which is of the same magnitude as the mean of the variable
over our population). Once again, this is not surprising as extraction is particularly
suited to software verification, but it is limited by the restricted number of programming
languages being currently officially supported as extraction targets.

2. Respondents in other locations (outside Europe and North America) are more likely to
request support for new languages in the documentation (an additional 0.12 pp, which is
largely superior to the mean of the variable over our population).

6 Threats to Validity

Several characteristics of our analysis represent a possible threat to validity. In terms of
external validity (i.e., the validity of applying the conclusions of our study outside the specific
context), there are two major concerns. First, it is possible that the Coq community behaves
differently from other ITP communities. This can be due both to technical reasons (e.g.,
different proof assistants may be best suited to different use cases) and to sociological reasons
(“birds of a feather flock together”), as could be observed, e.g., with the success of Lean
among mathematicians. Second, even within the Coq community, the people who responded
to the survey did not form a random sample of the community. It is likely that survey
respondents had characteristics different from the average Coq user. In particular, and given
the length of the survey, only people with enough time and motivation completed the survey
in full. The results then concern this subsample of users and may not be extrapolated to the
whole community. We took measures to avoid selection bias due to the use of the English
language, but by only making the survey available in a second language (Chinese), and not
many more, we are likely to have missed potential respondents in other linguistic communities.
We tried to reach Coq users broadly by advertising the survey on many forums and mailing

ITP 2023

12:16 Lessons for Interactive Theorem Proving Researchers from a Survey of Coq Users

lists, including language-specific ones, on social networks, and on the Coq website, but each
choice of platform necessarily introduced bias in the sample. There is no way to completely
avoid that beyond trying to reach even more broadly. For instance, we tried to reach learners
as well by asking teachers to advertise the survey to their students, but we do not know how
many did so. Our analyses of how different categories of respondents use Coq differently
or express different needs reduce the issues of having a biased sample by including many
controls, but we very likely missed some important ones.

Beyond external validity, there are other factors that can lead to misleading results.
For example, the relatively low number of respondents may reduce the precision of the
estimates, increase confidence intervals and reduce the power of the analysis (i.e., the ability
to find a statistically significant effect when it exists). The order in which questions were
asked may have affected the answers, which is a well-known phenomenon [18]. It was to
mitigate this kind of issue that we decided, for example, to place demographics questions
last. Respondents may have misunderstood some questions or questions options. We took
many measures to make questions as clear as possible (using simple English, collaboratively
writing and proofreading questions, using beta testers), but, despite that, we became aware
after launching the survey that a few questions were still ambiguous, or did not have the
originally intended meaning.

7 Discussion and Conclusions

We presented the design, deployment, and summaries and analyses of the responses to the
Coq Community Survey 2022. Besides providing up-to-date descriptive data on the Coq
community and decision support for the Coq Team, we hope our work can be useful for
constructing future surveys targeted at ITP communities. During analysis of tentative
future surveys, changes could be tracked for recurring questions and results of our regression
analyses, e.g., on users performing software verification, could be replicated.

As part of the supplementary material to our paper [12], we provide 1) the survey
definition in LimeSurvey and HTML format, 2) the Jupyter Notebook and Stata code we
used to analyze the response data, 3) plots of answers to all closed questions and plots of
some interactions between questions, 4) manual analysis of some open-text questions, and
5) answers to open-text questions. In particular, the code in our supplementary material
shows how we generated the plots in this paper. However, for GDPR conformance, we do
not include the raw response data that could fully replicate plots and other analyses.

Planning, running, and analyzing the survey was work intensive. The WG decided to
announce a retention period of one year for the raw survey response data up front. However,
this turned out to be a limiting decision in terms of the WG’s time and resources. Keeping raw
data is a delicate matter, since respondents and their answers may sometimes be identified
by correlating survey response data with data from other sources. Nevertheless, we believe
asking respondents for permission to store their data for more than one year is warranted,
due to the time required for rigorous response analysis.

An important problem with recurring surveys is responder retention, as highlighted by the
significant drop in the number of responses to the OCaml community survey between 2020
and 2022 [21]. Three years or more may be needed between surveys in an ITP community
to ensure there will be enough responses to repeat previous analyses in a reliable way. In a
small community, if filling in a survey becomes perceived as time-consuming routine work of
little value, many members may not volunteer for the task. Making most or all questions
optional does not address this issue.

A. de Almeida Borges et al. 12:17

The survey included some open-ended questions, whose responses we do not discuss
in this paper. Future surveys could code the answers to these questions and include new
multiple-choice questions. Since our analyses indicate that experience has a large impact on
Coq user behavior, future research could investigate in more detail how users gain experience,
and the effectiveness of their methods to improve. Another avenue is to look in detail at
methodological problems that users face when applying Coq in their domain, and how users
develop workarounds and solutions to these problems.

References

1 Ana de Almeida Borges, Jean-Rémy Falleri, Jim Fehrle, Emilio Jesús Gallego Arias, Érik Martin-
Dorel, Karl Palmskog, Alexander Serebrenik, and Théo Zimmermann. Coq Community Survey
2022: Summary of Results, abstract. The Coq Workshop 2022, August 2022. URL: https:
//coq-workshop.gitlab.io/2022/abstracts/Coq2022-04-01-community-survey.pdf.

2 Ana de Almeida Borges, Jean-Rémy Falleri, Jim Fehrle, Emilio Jesús Gallego Arias, Érik
Martin-Dorel, Karl Palmskog, Alexander Serebrenik, and Théo Zimmermann. Coq Community
Survey 2022: Summary of Results, slides. The Coq Workshop 2022, August 2022. URL:
https://coq-workshop.gitlab.io/2022/slides/Coq2022-04-01-community-survey.pdf.

3 Andrew W. Appel. Coq’s vibrant ecosystem for verification engineering (invited talk). In
Proceedings of the 11th ACM SIGPLAN International Conference on Certified Programs
and Proofs, CPP 2022, pages 2–11, New York, NY, USA, 2022. Association for Computing
Machinery. doi:10.1145/3497775.3503951.

4 Jasmin Christian Blanchette. Formalizing the metatheory of logical calculi and automatic
provers in Isabelle/HOL (invited talk). In International Conference on Certified Programs
and Proofs, CPP 2019, pages 1–13, New York, NY, USA, 2019. Association for Computing
Machinery. doi:10.1145/3293880.3294087.

5 Thomas Braibant. Coq survey, 2014. URL: https://github.com/braibant/coq-survey/bl
ob/master/popl-coq.pdf.

6 Damian Clarke, Joseph P. Romano, and Michael Wolf. The Romano–Wolf multiple-hypothesis
correction in Stata. The Stata Journal, 20(4):812–843, 2020. doi:10.1177/1536867X20976314.

7 The Coq Survey Working Group. Coq Community Survey 2022 in Chinese, 2022. URL:
https://thzimmer.gitlabpages.inria.fr/coq-survey-2022-assets/LimeSurvey/quest
ionnaire_chinese.html.

8 The Coq Survey Working Group. Coq Community Survey 2022 in English, 2022. URL:
https://thzimmer.gitlabpages.inria.fr/coq-survey-2022-assets/LimeSurvey/quest
ionnaire_356388_en.html.

9 The Coq Survey Working Group. Coq Community Survey 2022 Results: Part I (blog post),
2022. (Who is using Coq and in what context?). URL: https://coq.discourse.group/t/co
q-community-survey-2022-results-part-i/1730.

10 The Coq Survey Working Group. Coq Community Survey 2022 Results: Part II (blog post),
2022. (How people are using Coq? — OS, IDEs, CI/CD). URL: https://coq.discourse.gr
oup/t/coq-community-survey-2022-results-part-ii/1746.

11 The Coq Survey Working Group. Coq Community Survey 2022 Results: Part III (blog post),
2022. (How is Coq used? — features, tools, libraries). URL: https://coq.discourse.group/
t/coq-community-survey-2022-results-part-iii/1777.

12 Ana de Almeida Borges, Annalí Casanueva Artís, Jean-Rémy Falleri, Emilio Jesús Gal-
lego Arias, Érik Martin-Dorel, Karl Palmskog, Alexander Serebrenik, and Théo Zimmermann.
Supplementary material for the article “Lessons for Interactive Theorem Proving Researchers
from a Survey of Coq Users”, May 2023. doi:10.5281/zenodo.7930567.

13 Paul Duvall, Steve Matyas, and Andrew Glover. Continuous Integration: Improving Software
Quality and Reducing Risk. Addison-Wesley Professional, first edition, 2007.

ITP 2023

https://coq-workshop.gitlab.io/2022/abstracts/Coq2022-04-01-community-survey.pdf
https://coq-workshop.gitlab.io/2022/abstracts/Coq2022-04-01-community-survey.pdf
https://coq-workshop.gitlab.io/2022/slides/Coq2022-04-01-community-survey.pdf
https://doi.org/10.1145/3497775.3503951
https://doi.org/10.1145/3293880.3294087
https://github.com/braibant/coq-survey/blob/master/popl-coq.pdf
https://github.com/braibant/coq-survey/blob/master/popl-coq.pdf
https://doi.org/10.1177/1536867X20976314
https://thzimmer.gitlabpages.inria.fr/coq-survey-2022-assets/LimeSurvey/questionnaire_chinese.html
https://thzimmer.gitlabpages.inria.fr/coq-survey-2022-assets/LimeSurvey/questionnaire_chinese.html
https://thzimmer.gitlabpages.inria.fr/coq-survey-2022-assets/LimeSurvey/questionnaire_356388_en.html
https://thzimmer.gitlabpages.inria.fr/coq-survey-2022-assets/LimeSurvey/questionnaire_356388_en.html
https://coq.discourse.group/t/coq-community-survey-2022-results-part-i/1730
https://coq.discourse.group/t/coq-community-survey-2022-results-part-i/1730
https://coq.discourse.group/t/coq-community-survey-2022-results-part-ii/1746
https://coq.discourse.group/t/coq-community-survey-2022-results-part-ii/1746
https://coq.discourse.group/t/coq-community-survey-2022-results-part-iii/1777
https://coq.discourse.group/t/coq-community-survey-2022-results-part-iii/1777
https://doi.org/10.5281/zenodo.7930567

12:18 Lessons for Interactive Theorem Proving Researchers from a Survey of Coq Users

14 Adrien Fabre. Tie-breaking the highest median: alternatives to the majority judgment. Social
Choice and Welfare, 56(1):101–124, 2021.

15 Taylor Fausak. State of Haskell survey, 2022. URL: https://taylor.fausak.me/2022/11/1
8/haskell-survey-results/.

16 Sacha Greif and Eric Burel. State of JS, 2022. URL: https://2022.stateofjs.com/en-US/.
17 Sture Holm. A simple sequentially rejective multiple test procedure. Scandinavian Journal of

Statistics, 6(2):65–70, 1979. URL: http://www.jstor.org/stable/4615733.
18 Glenn D Israel and CL Taylor. Can response order bias evaluations? Evaluation and Program

Planning, 13(4):365–371, 1990.
19 Mark L. Mitchell and Janina M. Jolley. Resarch Design Explained. Wadsworth, Cengage

Learning, 7th edition, 2010.
20 OCaml Software Foundation. OCaml user survey, 2020. URL: https://discuss.ocaml.org/

t/suggestions-from-the-ocaml-survey-result/6791.
21 OCaml Software Foundation. OCaml users survey, 2022. URL: https://ocaml-sf.org/docs

/2022/ocaml-user-survey-2022.pdf.
22 Stephen O’Grady. The RedMonk programming language rankings: June 2022, October 2022.

URL: https://redmonk.com/sogrady/2022/10/20/language-rankings-6-22/.
23 opam development team. OCaml package manager, 2023. URL: https://opam.ocaml.org.
24 Karl Palmskog, Enrico Tassi, and Théo Zimmermann. Reliably reproducing machine-checked

proofs with the Coq Platform. In Workshop on Reproducibility and Replication of Research
Results, 2022. URL: https://arxiv.org/abs/2203.09835.

25 Benjamin C. Pierce, Chris Casinghino, Michael Greenberg, Vilhelm Sjöberg, and Brent
Yorgey. Software Foundations. Electronic textbook, 2011. Japanese translation. URL:
http://proofcafe.org/sf/.

26 Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casinghino, Marco Gaboardi, Michael
Greenberg, Cătălin Hriţcu, Vilhelm Sjöberg, and Brent Yorgey. Logical Foundations, volume 1
of Software Foundations. Electronic textbook, 2022. Chinese translation, version 5.7. URL:
https://coq-zh.github.io/SF-zh/lf-current/index.html.

27 Joseph P Romano and Michael Wolf. Stepwise multiple testing as formalized data snooping.
Econometrica, 73(4):1237–1282, 2005.

28 Stack Overflow. Stack Overflow developer survey, 2022. URL: https://survey.stackoverfl
ow.co/2022/.

29 The Coq Development Team. opam archive for Coq, 2023. URL: https://github.com/coq/o
pam-coq-archive.

30 Mairieli Wessel, Alexander Serebrenik, Igor Wiese, Igor Steinmacher, and Marco A. Gerosa.
What to expect from code review bots on GitHub? a survey with OSS maintainers. In
Proceedings of the XXXIV Brazilian Symposium on Software Engineering, SBES ’20, pages
457–462, New York, NY, USA, 2020. Association for Computing Machinery. doi:10.1145/34
22392.3422459.

31 James R. Wilcox. Why is the Coq logo made to look like a penis?, April 2021. URL:
https://sympa.inria.fr/sympa/arc/coq-club/2021-04/msg00006.html.

32 Jeffrey M Wooldridge. Introductory econometrics: A modern approach. Cengage learning, 6th
edition, 2015.

https://taylor.fausak.me/2022/11/18/haskell-survey-results/
https://taylor.fausak.me/2022/11/18/haskell-survey-results/
https://2022.stateofjs.com/en-US/
http://www.jstor.org/stable/4615733
https://discuss.ocaml.org/t/suggestions-from-the-ocaml-survey-result/6791
https://discuss.ocaml.org/t/suggestions-from-the-ocaml-survey-result/6791
https://ocaml-sf.org/docs/2022/ocaml-user-survey-2022.pdf
https://ocaml-sf.org/docs/2022/ocaml-user-survey-2022.pdf
https://redmonk.com/sogrady/2022/10/20/language-rankings-6-22/
https://opam.ocaml.org
https://arxiv.org/abs/2203.09835
http://proofcafe.org/sf/
https://coq-zh.github.io/SF-zh/lf-current/index.html
https://survey.stackoverflow.co/2022/
https://survey.stackoverflow.co/2022/
https://github.com/coq/opam-coq-archive
https://github.com/coq/opam-coq-archive
https://doi.org/10.1145/3422392.3422459
https://doi.org/10.1145/3422392.3422459
https://sympa.inria.fr/sympa/arc/coq-club/2021-04/msg00006.html

Formalizing Norm Extensions and Applications to
Number Theory
María Inés de Frutos-Fernández # Ñ

Imperial College London, UK
Universidad Autónoma de Madrid, Spain

Abstract
The field R of real numbers is obtained from the rational numbers Q by taking the completion
with respect to the usual absolute value. We then define the complex numbers C as an algebraic
closure of R. The p-adic analogue of the real numbers is the field Qp of p-adic numbers, obtained by
completing Q with respect to the p-adic norm. In this paper, we formalize in Lean 3 the definition
of the p-adic analogue of the complex numbers, which is the field Cp of p-adic complex numbers, a
field extension of Qp which is both algebraically closed and complete with respect to the extension
of the p-adic norm.

More generally, given a field K complete with respect to a nonarchimedean real-valued norm,
and an algebraic field extension L/K, we show that there is a unique norm on L extending the given
norm on K, with an explicit description.

Building on the definition of Cp, we formalize the definition of the Fontaine period ring BHT

and discuss some applications to the theory of Galois representations and to p-adic Hodge theory.
The results formalized in this paper are a prerequisite to formalize Local Class Field Theory,

which is a fundamental ingredient of the proof of Fermat’s Last Theorem.

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of
computation → Type theory

Keywords and phrases formal mathematics, Lean, mathlib, algebraic number theory, p-adic analysis,
Galois representations, p-adic Hodge theory

Digital Object Identifier 10.4230/LIPIcs.ITP.2023.13

Supplementary Material Software (Source code): github.com/mariainesdff/norm_extensions
_journal_submission, archived at swh:1:dir:01f6b345a06ece970e589d4bbc68ee8b9b2cf58a

Funding
1) EPSRC Grant EP/V048724/1: Digitising the Langlands Program (UK).
2) This work has been supported by the Madrid Government (Comunidad de Madrid – Spain) under

the multiannual Agreement with UAM in the line for the Excellence of the University Research
Staff in the context of the V PRICIT (Regional Programme of Research and Technological
Innovation)

Acknowledgements I would like to thank Kevin Buzzard for many helpful conversations during the
completion of this project, Thomas Browning for formalizing normal closures, and Yaël Dillies for
the discussions on how best to integrate seminorms in mathlib. I also thank the mathlib community
and maintainers for their support and insightful suggestions during the development of this work.

1 Introduction

Recall that the real numbers R are defined as the completion of the field Q of rational
numbers with respect to the usual absolute value, and the complex numbers C as an algebraic
closure of R. The field C is algebraically closed and complete with respect to the extension
of the usual absolute value.

However, there are other absolute values that we could consider on the rational numbers.
Namely, for any prime number p, there is an associated p-adic absolute value on Q and, if
we complete Q with respect to this absolute value, we obtain the field Qp of p-adic numbers.
Based on this definition, we can regard Qp as an analogue of the real numbers R.

© María Inés de Frutos-Fernández;
licensed under Creative Commons License CC-BY 4.0

14th International Conference on Interactive Theorem Proving (ITP 2023).
Editors: Adam Naumowicz and René Thiemann; Article No. 13; pp. 13:1–13:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:maria.defrutos@uam.es
https://mariainesdff.github.io/
https://orcid.org/0000-0002-5085-7446
https://doi.org/10.4230/LIPIcs.ITP.2023.13
https://github.com/mariainesdff/norm_extensions_journal_submission
https://github.com/mariainesdff/norm_extensions_journal_submission
https://archive.softwareheritage.org/swh:1:dir:01f6b345a06ece970e589d4bbc68ee8b9b2cf58a;origin=https://github.com/mariainesdff/norm_extensions_journal_submission;visit=swh:1:snp:6077acb98a7200de4553e653d81d54fb5d2314c8;anchor=swh:1:rev:d396130660935464fbc683f9aaf37fff8a890baa
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Formalizing Norm Extensions and Applications to Number Theory

The next natural question is which field would be the p-adic analogue of the complex
numbers C. Following the previous reasoning, a first candidate would be an algebraic closure
Qalg

p of Qp. This field is algebraically closed, and we will see in Section 3 that it carries a
well-defined extension of the p-adic absolute value. However, it turns out that Qalg

p is not
complete with respect to this absolute value.

Therefore, to get an analogue of C, we need the extra step of taking the completion
of Qalg

p with respect to its absolute value, obtaining a new field Cp, which is complete by
construction and can be shown to be algebraically closed. We call Cp the field of p-adic
complex numbers.

In general, given any field K with an absolute value (or more generally, a seminorm,
see Section 2) and a field extension L/K, we can ask whether the absolute value on K can
be extended to L and, if so, whether this extension is unique. The main results in this
article are the formalization of the proofs of two theorems, the Extension Theorem and the
Unique Extension Theorem, giving positive answers to these questions, under hypotheses
made precise in Section 3.

The construction of the field Cp of complex numbers is only one of the motivations for
this formalization project. A second one is that this more general theory of norm extensions
plays an important role in the proofs of the main theorems of local class field theory [2].

Class field theory is a branch of number theory whose goal is to describe the Galois
abelian extensions of a local or global field K, as well as their corresponding Galois groups,
in terms of the arithmetic of the field K. Class field theory is a key ingredient in the proof
of the Taniyama–Shimura–Weil conjecture, which is in turn required to prove Fermat’s Last
Theorem.

A third motivation is that having formalized the field Cp opens the door to formalizing
the definitions of Fontaine’s period rings [19, 12], a work that we initiate in this paper (see
Section 5.2). These rings have many applications to Representation Theory and p-adic Hodge
Theory. They can be used to detect interesting properties of Galois representations, and to
prove comparison theorems between different cohomology theories. They are studied within
the Langlands Program [21], one of the biggest research programs in modern mathematics,
consisting on a vast family of conjectures that seek to establish deep relations between algebra
and analysis.

The results formalized in this paper are necessary prerequisites for the formalization of
the proof of Fermat’s Last Theorem, as well as for formalizing statements from the Langlands
Program. They join a growing family of results from number theory and related areas
formalized in Lean, including the p-adic numbers [22], Dedekind domains and class groups
[6, 5], idèle class groups [15], Witt vectors [13], Galois theory [8], the Krull topology [25], the
Haar measure [31], and perfectoid spaces [9]. See also Section 6.2 for a discussion of related
work in other proof assistants.

A repository containing the formalization described in this article is publicly available
at the link https://github.com/mariainesdff/norm_extensions_journal_submission/.
In the article’s text, file.lean represents the file at https://github.com/mariainesdff/
norm_extensions_journal_submission/blob/master/src/file.lean. Parts of the form-
alization have already been integrated in Lean’s mathematical library, in which case we will
refer the reader to the corresponding files. Some of the code excerpts included in the paper
have been edited for clarity.

1.1 Lean and mathlib
This formalization was carried out in the Lean 3 interactive theorem prover [16], based
on dependent type theory, with proof irrelevance and non-cumulative universes [11]. An
introduction to the language can be found in [3].

https://github.com/mariainesdff/norm_extensions_journal_submission/

M. I. de Frutos-Fernández 13:3

Our project is built on top of Lean’s mathematical library mathlib [24], which currently
contains over one million lines of code formalized by almost 300 contributors. The key
property of this library is its unified approach to integrate different areas of mathematics,
including for example algebra, analysis and topology, all of which we needed for this project.
Both in Lean’s core library and in mathlib, type classes are used to represent mathematical
structures on types [4].

We remark that while Lean 4 is already available, the vast majority of the mathematical
prerequisites for this project have not been ported to Lean 4’s mathematical library yet, so
at the current time it is not feasible to use this version for our work. We expect to port the
project to Lean 4 once all of its prerequisites have been ported.

1.2 Paper outline
In Section 2 we recall some background on norms and field extensions. Section 3 contains an
overview of the proofs of the main results of this paper, concerning the unique extension
of a nonarchimedean norm. In Section 4 we discuss some implementation details of our
formalization, while in Section 5 we present some applications of our main theorem to the
field of Number Theory. Finally, we conclude in Section 6 with a discussion of future work
and a reflection on the work presented in this article.

2 Mathematical background

In this section, we define several kinds of seminorms and norms on additive groups and rings,
and we recall some definitions from field theory.

Seminorms and norms

Let G be an additive group. A seminorm on G is a function | · | : G→ R such that |0| = 0,
| − g| = |g| for all g in G, and | · | is subadditive, that is, |g + h| ≤ |g|+ |h| for all g, h in G.
A seminorm | · | such that |g| = 0 implies g = 0 is called a norm. An example of seminorm
that is not a norm is the constant zero function.

structure add_group_seminorm (G : Type*) [add_group G] :=
(to_fun : G → R)
(map_zero’ : self.to_fun 0 = 0)
(add_le’ : ∀ (g h : G), self.to_fun (g + h) ≤ self.to_fun g + self.to_fun h)
(neg’ : ∀ (g : G), self.to_fun (-g) = self.to_fun g)

structure add_group_norm (G : Type*) [add_group G] extends add_group_seminorm G :=
(eq_zero_of_map_eq_zero’ : ∀ g, to_fun g = 0 → g = 0)

We say that an additive group seminorm | · | is nonarchimedean if it satisfies the strong
triangle inequality: |g + h| ≤ max{|g|, |h|} for all g, h in G. Note that this is stronger than
the usual triangle inequality |g + h| ≤ |g|+ |h|. Otherwise, we say that | · | is archimedean.

def is_nonarchimedean {G : Type*} [add_group G] (f : G → R) : Prop :=
∀ g h, f (g + h) ≤ max (f g) (f h)

If R is a ring, then a seminorm on R is an additive group seminorm | · | on R that is also
submultiplicative, that is, such that |rs| ≤ |r| · |s| for all r, s in R. A seminorm | · | is said
to be power multiplicative if |rn| = |r|n ∀r ∈ R, n ∈ N≥1, and multiplicative if |1| = 1 and
|rs| = |r| · |s| for all r, s in R.

ITP 2023

13:4 Formalizing Norm Extensions and Applications to Number Theory

structure mul_ring_seminorm (R : Type*) [non_assoc_ring R] extends
add_group_seminorm R, monoid_with_zero_hom R R

As in the additive group case, a ring seminorm | · | is a norm if |r| = 0 implies r = 0.
A ring norm is said to be power-multiplicative or multiplicative if it has the corresponding
property when regarded as a seminorm.

In this article, all rings will be assumed to be commutative and to have a unit element.
We will only consider ring seminorms satisfying the extra hypothesis |1| ≤ 1. This implies
that either |1| = 1 or |1| = 0, in which case | · | is the zero seminorm.

An example of multiplicative ring norm on the rational numbers Q is given by the usual
absolute value. This norm is archimedean, and if we complete Q with respect to it, we get
the field R of real numbers.

However, there are other norms that we can consider on the rational numbers, which are
widely used in Number Theory. Namely, for every prime number p, we can define a p-adic
norm as follows. Define a function vp : Z → Z as vp(r) := max{n ∈ Z | pn divides r}. The
function vp can be extended to Q by vp(r

s) = vp(r)− vp(s). We can then define the p-adic
norm of x ∈ Q as |x|p := p−vp(x), and it is easy to check from its definition that | · |p is a
nonarchimedean multiplicative norm on Q. When we complete Q with respect to the p-adic
norm, we obtain the field Qp of p-adic numbers.

Most of the definitions listed in this section have already been integrated in mathlib by
the author, and can be found in the mathlib files analysis/normed/group/seminorm.lean
and analysis/normed/ring/seminorm.lean.

We will be mainly interested in nonarchimedean (semi)norms, and in particular, the proof
of the main theorem uses this property in a significant way. However, some intermediate
results are true for arbitrary seminorms, and we have formalized them in that greater
generality.

Algebra norms

Let R be a commutative ring with a (submultiplicative) norm | · | and let A be an R-
module. An R-module seminorm on A is an additive group seminorm ∥ · ∥ on A such that
∥r · a∥ = |r| · ∥a∥ for all r ∈ R, a ∈ A. This notion was already defined in mathlib, under the
name seminorm:

structure seminorm (R : Type*) (A : Type*) [semi_normed_ring R] [add_group A]
[has_smul R A] extends add_group_seminorm A :=

(smul’ : ∀ (r : R) (a : A), to_fun (r · a) = ∥r∥ * to_fun a)

If moreover A is an R-algebra, we can define an R-algebra norm on A as a ring norm
∥ · ∥ on A such that ∥r · a∥ = |r| · ∥a∥ for all r ∈ R, a ∈ A. This can be defined in Lean by
extending the existing seminorm as follows:

structure algebra_norm (R : Type*) [semi_normed_comm_ring R] (A : Type*) [ring A]
[algebra R A] extends seminorm R A, ring_norm A

Field extensions

We end this section by recalling that given two fields K and L, we say that L is an extension
of K, denoted L/K, if there is a homomorphism of rings K → L (which is necessarily
injective). The extension L/K is said to be algebraic if every element of L is a root of a

https://leanprover-community.github.io/mathlib_docs/analysis/normed/group/seminorm.html
https://leanprover-community.github.io/mathlib_docs/analysis/normed/ring/seminorm.html

M. I. de Frutos-Fernández 13:5

nonzero polynomial with coefficients in K. Given an extension L/K, L is a vector space over
the field K, and we say that the extension is finite-dimensional if the dimension of L as a
K-vector space is finite.

The following Lean code states that L/K is a finite-dimensional algebraic extension of
fields (the ring homomorphism from K to L is part of the data of the instance variable
[algebra K L]).

variables {K L : Type*} [field K] [field L] [algebra K L]
(h_fin : finite_dimensional K L) (h_alg : algebra.is_algebraic K L)

An algebraic field extension L/K is normal if every irreducible polynomial in K[X] that
has a root in L splits into linear factors as a polynomial in L[X]. Given any algebraic
extension L/K, there is always a minimal field extension N/L inside an algebraic closure of
L such that the extension N/K is normal. The field N is unique up to isomorphism, and we
call it the normal closure of the extension L/K. If the extension L/K is finite, then N/K is
finite as well.

3 Extensions of nonarchimedean norms

Let K be a field with a nonarchimedean submultiplicative norm | · |, and let L/K be an
algebraic extension. We would like to know whether it is possible to extend the norm | · | to
a norm | · |L on the larger field L and, if so, whether this extension is unique. We will show
in this section that both questions have a positive answer, under some conditions on the
fields K and L and the starting norm | · |. Moreover, we will provide an explicit description
of the norm | · |L, which we will call the spectral norm induced by K. The main results we
formalized are [7, Theorem 3.2.1/2 and Theorem 3.2.4/2].

3.1 The spectral norm
Let R be a ring with a nonarchimedean seminorm | · |, and let P := Xm + am−1Xm−1 +
· · ·+ a1X + a0 ∈ R[X] be a monic polynomial of degree m ≥ 1 with coefficients in R. The
spectral value σ(P) of P is defined as σ(P) := max0≤i<m |ai|1/(m−i). By convention, we say
that the monic polynomial P = 1 of degree 0 has spectral value 0.

A first approach to formalize this definition would be to use the function supr to take
the supremum of the values |ai|1/(m−i) for i running over the terms of fin P.nat_degree,
the subtype of natural numbers less than the degree of P . However, this would force us to
treat the case P = 1 differently in some of the proofs, since the type fin P.nat_degree is
empty in that case.

Instead, we use the following trick: given any polynomial P ∈ R[X], we define a map
spectral_value_terms : N→ R sending i ∈ N to |ai|1/(m−i) if i is less than the degree of
P , or to 0 otherwise. Since every term |ai|1/(m−i) is at least zero, taking the supremum of
spectral_value_terms over all natural numbers returns the spectral value of P . Note that
we do not ask that P is monic in our formalized definition, but if P is monic, both definitions
agree.

variables {R : Type*} [semi_normed_ring R]
def spectral_value_terms (P : R[X]) : N → R := λ (n : N),

if n < P.nat_degree then ∥ P.coeff n ∥^(1/(P.nat_degree - n : R)) else 0
def spectral_value (P : R[X]) : R := supr (spectral_value_terms P)

We prove some of the basic properties of the spectral value, including:

ITP 2023

13:6 Formalizing Norm Extensions and Applications to Number Theory

1. The spectral value of a polynomial is always nonnegative.
2. The spectral value of the linear polynomial X − r is equal to the seminorm |r| of r.
3. For any m ∈ N, the spectral value of Xm is equal to 0. Moreover, if the seminorm | · | is

a norm, then these are the only polynomials having spectral value 0.

Now, let K be a field with a nonarchimedean submultiplicative norm | · |, and let L/K

be an algebraic extension. Then any y ∈ L is a root of a monic polynomial with coefficients
in K, and the minimal polynomial of y over K is the monic polynomial of lowest degree in
K[X] having y as a root.

The spectral norm | · |sp on L is the function | · |sp : L→ R≥0 sending y ∈ L to the spectral
value of the minimal polynomial of y over K, which we will denote by |y|sp.

variables {K : Type*} [normed_field K] {L : Type*} [field L] [algebra K L]
(h_alg : algebra.is_algebraic K L)

def spectral_norm (y : L) : R := spectral_value (minpoly K y)

The terminology “spectral norm” is justified by the fact, shown in the next subsection,
that | · |sp is an algebra norm on L. However, note that this is not at all obvious from the
definition, and both proving that the spectral norm satisfies the triangle inequality and that
it is a multiplicative function require some serious work.

3.2 Norm extension theorems
In this section, we formalize in Lean 3 the proofs of the main results of the paper: two
theorems about existence and uniqueness of extensions of nonarchimedean norms to algebraic
field extensions.

First, we have the Extension Theorem, which states that given any field K with a power-
multiplicative nonarchimedean norm | · | and any algebraic field extension L/K, the spectral
norm on L is a power-multiplicative nonarchimedean K-algebra norm on L extending the
norm on K. The theorem also gives us information about how the spectral norm relates to
the K-algebra automorphisms of L, and to other extensions of the norm to L:

▶ Theorem 1 (Extension Theorem, [7, 3.2.1/2]). Let K be a field with a nonarchimedean
power-multiplicative norm | · |, L/K an algebraic extension, and G(L/K) the group of
K-algebra automorphisms of L.

The spectral norm | · |sp on L is a nonarchimedean power-multiplicative K-algebra norm
on L extending the norm | · | on K. All K-algebra isomorphisms of L are isometries with
respect to the spectral norm | · |sp. Any nonarchimedean power-multiplicative K-algebra
norm on L is bounded above by | · |sp.
If the field extension L/K is finite and normal, then | · |sp is the only nonarchimedean
power-multiplicative K-algebra norm on L extending | · | for which all g ∈ G(L/K)
are isometries. If | · |′ is a nonarchimedean power-multiplicative K-algebra norm on L

extending | · |, then |x|sp = maxg∈G(L/K) |g(x)|′ for all x ∈ L.

If moreover K is complete with respect to a nonarchimedean multiplicative ring norm
| · |, then the spectral norm on L is the unique nonarchimedean multiplicative ring norm on
L extending | · |. This is called the Unique Extension Theorem.

▶ Theorem 2 (Unique Extension Theorem, [7, 3.2.4/2]). Let K be a field that is complete with
respect to a nonarchimedean multiplicative norm | · | and let L/K be an algebraic extension.
Then the spectral norm on L is the unique multiplicative nonarchimedean norm on L extending
the norm | · | on K.

M. I. de Frutos-Fernández 13:7

We will now provide an overview of the proof of these theorems, referencing where to find
the full details both in the literature and in our formalization. The general proof strategy is
to perform a series of “smoothing steps” in which, starting from a given seminorm (or norm),
we construct a new seminorm or norm having better properties.

The proof of Theorem 1 relies on the following lemma:

▶ Lemma 3. Let K be a field with a nonarchimedean power-multiplicative norm | · |. Each
finite extension L/K has at least one nonarchimedean power-multiplicative K-algebra norm
extending the norm | · |.

The statement of this lemma is formalized as follows, and its proof can be found in the
file normed_space.lean.
lemma finite_extension_pow_mul_seminorm (hfd : finite_dimensional K L)

(hna : is_nonarchimedean (norm : K → R)) :
∃ (f : algebra_norm K L), is_pow_mul f ∧ function_extends (norm : K → R) f ∧
is_nonarchimedean f := . . .

Proof of Lemma 3. Fix a basis {e1 = 1, . . . , en} of L as a K-vector space and define a
function ∥ · ∥ : L → R by setting ∥

∑n
i=1 aiei∥ := maxi |ai|. We can check that ∥ · ∥ is a

nonarchimedean K-module norm on L extending the norm on K, and that there exists a
positive real number c such that ∥xy∥ ≤ c∥x∥∥y∥ for all x, y ∈ L.

In the file normed_space.lean, we let basis.norm be the norm associated to a basis of
a finite-dimensional K-vector space as above, and prove that it has the desired properties; in
particular, the existence of the bounding constant c.
def basis.norm {ι : Type*} [fintype ι] [nonempty ι] (B : basis ι K L) : L → R :=
λ x, ∥B.equiv_fun x (classical.some (finite.exists_max (λ i : ι, ∥B.equiv_fun x i∥)))∥
lemma basis.norm_is_bdd {ι : Type*} [fintype ι] [nonempty ι] {B : basis ι K L} {i : ι}

(hBi : B i = (1 : L)) (hna : is_nonarchimedean (norm : K → R)) :
∃ (c : R) (hc : 0 < c), ∀ (x y : L), B.norm (x * y) ≤ c * B.norm x * B.norm y := . . .

The first smoothing step is to use [7, Proposition 1.2.1/2] to conclude the existence of a
K-algebra norm on L extending the norm | · | on K. We prove this proposition in the file
seminorm_from_bounded.lean. That is, given a function f : R → R from a commutative
ring R to the real numbers, we define a function seminorm_from_bounded’: R → R by
sending x ∈ R to sup

{
f(x·y)
f(y) |y ∈ R, f(y) ̸= 0

}
, and then prove that this function is a

nonarchimedean ring seminorm whenever f satisfies the required hypotheses.
Note that we do not need to make the condition f(y) ̸= 0 explicit in the definition of

seminorm_from_bounded’, since by Lean’s convention f(x·y)
f(y) will be zero in that case, and

we are only interested in this function when f is a function taking nonnegative values.
def seminorm_from_bounded’ : R → R := λ x, supr (λ (y : R), f(x*y)/f(y))
def seminorm_from_bounded (f_zero : f 0 = 0) (f_nonneg : ∀ (x : R), 0 ≤ f x)

(f_mul : ∃ (c : R) (hc : 0 < c), ∀ (x y : R), f (x * y) ≤ c * f x * f y)
(f_add : ∀ a b, f (a + b) ≤ f a + f b) (f_neg : ∀ (x : R), f (−x) = f x) : ring_seminorm R :=

{ to_fun := seminorm_from_bounded’ f,
map_zero’ := seminorm_from_bounded_zero f_zero,
add_le’ := seminorm_from_bounded_add f_nonneg f_mul f_add,
mul_le’ := seminorm_from_bounded_mul f_nonneg f_mul,
neg’ := seminorm_from_bounded_neg f_neg }

lemma seminorm_from_bounded_is_nonarchimedean (f_nonneg : ∀ (x : R), 0 ≤ f x)
(f_mul : ∃ (c : R) (hc : 0 < c), ∀ (x y : R), f (x * y) ≤ c * f x * f y)
(hna : is_nonarchimedean f) : is_nonarchimedean (seminorm_from_bounded’ f) :=

ITP 2023

https://github.com/mariainesdff/norm_extensions_journal_submission/blob/master/src/normed_space.lean
https://github.com/mariainesdff/norm_extensions_journal_submission/blob/master/src/normed_space.lean
https://github.com/mariainesdff/norm_extensions_journal_submission/blob/master/src/seminorm_from_bounded.lean

13:8 Formalizing Norm Extensions and Applications to Number Theory

The proof concludes with a second smoothing step, following [7, Proposition 1.3.2/1], which
allows us to construct a power multiplicative K-algebra norm on L extending | · |. This
proposition is formalized in the file smoothing_seminorm.lean. Given a real-valued function
f : R→ R from a commutative ring R, we define a function smoothing_seminorm_def by
sending x ∈ R to the infimum infn≥1 |xn|1/n, which we show agrees with the limit of this
sequence.

def smoothing_seminorm_def (x : R) : R := infi (λ (n : pnat), (f(x^(n : N)))^(1/(n : R)))
lemma smoothing_seminorm_def_is_limit (hf1 : f 1 ≤ 1) (x : R) :

tendsto (smoothing_seminorm_seq f x) at_top (N (smoothing_seminorm_def f x)) :=

We then prove that, whenever f is any ring seminorm on R, the corresponding function
smoothing_seminorm_def is a power-multiplicative ring seminorm on R. We remark that
this smoothing step uses the nonarchimedean nature of the norm | · | in a significant way:
proving that smoothing_seminorm_def satisfies the strong triangle inequality requires a
careful approximation argument relying on f being nonarchimedean. We are not aware
of any alternative arguments to show that smoothing_def satisfies even the usual triangle
inequality. ◀

Having proven Lemma 3, we can present the proofs of the two main theorems, whose form-
alizations can be found in the files spectral_norm.lean and spectral_norm_unique.lean.

Proof of the Extension Theorem. We want to show that the function | · |sp : L → R is a
power-multiplicative K-algebra norm on L extending the norm on K. We first reduce to the
case where the field extension L/K is finite and normal. We can do this because, to check
that |xy|sp ≤ |x|sp|y|sp, we can work on the normal closure of K(x, y), and similarly for the
other properties in the definition of power-multiplicative algebra norm. This reduction step
just requires us to check that, whenever E is an intermediate field between K and L and x

is an element of E, the spectral norm of x is the same whether we regard it as an element of
the normal closure of E, or as an element of L:

lemma spectral_value.eq_normal (E : intermediate_field K L)
(h_alg_L : algebra.is_algebraic K L) (x : E) :
spectral_norm K (normal_closure K E (algebraic_closure E))

(algebra_map E (normal_closure K E (algebraic_closure E)) x) =
spectral_norm K L (algebra_map E L x) := . . .

Since L/K is finite, by Lemma 3 there exists a power-multiplicative K-algebra norm ∥ · ∥
on L extending the norm | · | on K.

The next “smoothing step” is to define a function | · |G : L → R that sends y ∈ L to
|y|G := |y|G(L/K) := maxg∈G(L/K) ∥g(y)∥. We prove in the file alg_norm_of_galois.lean
that | · |G (denoted alg_norm_of_galois) is a power-multiplicative K-algebra norm on L

extending the norm on K, and that every automorphism g ∈ G(L/K) is an isometry with
respect to | · |G.

def alg_norm_of_galois (hna : is_nonarchimedean (norm : K → R)) :
algebra_norm K L :=

{ to_fun := λ x, (supr (λ (σ : L ≃a[K] L), alg_norm_of_auto h_fin hna σ x)),
. . . }

lemma alg_norm_of_galois_is_pow_mul (hna : is_nonarchimedean (norm : K → R)) :
is_pow_mul (alg_norm_of_galois h_fin hna) :=..

https://github.com/mariainesdff/norm_extensions_journal_submission/blob/master/src/smoothing_seminorm.lean
https://github.com/mariainesdff/norm_extensions_journal_submission/blob/master/src/spectral_norm.lean
https://github.com/mariainesdff/norm_extensions_journal_submission/blob/master/src/spectral_norm_unique.lean
https://github.com/mariainesdff/norm_extensions_journal_submission/blob/master/src/alg_norm_of_galois.lean

M. I. de Frutos-Fernández 13:9

Since the extension L/K is normal, the minimal polynomial qy of y ∈ L is of the form
qy =

∏
(X − g(y))pe , where the exponent e is a positive natural number depending on y. We

can therefore use [7, Proposition 3.1.2/1(2)] to conclude that |y|sp = |y|G.
lemma spectral_norm_eq_alg_norm_of_galois (h_alg : algebra.is_algebraic K L)

(h_fin : finite_dimensional K L) (hn : normal K L)
(hna : is_nonarchimedean (norm : K → R)) :
spectral_norm K L = alg_norm_of_galois h_fin hna := . . .

Hence, we have shown that the spectral norm on L is a power-multiplicative K-algebra
norm on L extending the norm on K, and that for any other such norm ∥ · ∥, we have
|y|sp = maxg∈G(L/K) ∥g(y)∥ for all y ∈ L. ◀

Proof of the Unique Extension Theorem. We first show that the spectral norm | · |sp is the
only power-multiplicative K-algebra norm on L extending | · |. Suppose that ∥ · ∥ is another
such norm. By [7, Prop. 3.1.5/1] , it suffices to check ∥ · ∥ and | · |sp are equivalent on each
field extension of the form K(y), for y ∈ L. This follows from the facts that K is complete
and K(y) is finite dimensional over K, and hence any two K-algebra norms on K(y) will be
equivalent.
theorem spectral_norm_unique’ [complete_space K] {f : algebra_norm K L}

(hf_pm : is_pow_mul f) (hna : is_nonarchimedean (norm : K → R)) :
f = spectral_alg_norm h_alg hna := . . .

We point out an implementation detail of the proof of spectral_norm.unique’. In
order to apply two existing mathlib lemmas about linear maps in this proof, respect-
ively called linear_map.continuous_of_finite_dimensional, and continuous_linear_
map.is_bounded_linear_map , we need to consider two different normed space structures
on K(y). However, we should not have two different [normed_space K K(y)] instances,
since this would cause inference problems. To avoid this issue, we work with two copies of
K(y), each with their own normed space structure. We do this by defining a copy of K(y)
as E := id K(y).
set E : Type* := id K(y) with hEdef

We use the identity map in this definition so that Lean is not able to infer a normed space
structure on K(y) from that on E. This allows us to put a different normed space structure
on each of the copies.
letI N1 : normed_space K E := . . .,
letI N2 : normed_space K K(y) :=. . .

To conclude the proof, we need to check that the spectral norm | · |sp on L is multiplicative,
which requires a last “smoothing step”. By [7, Proposition 1.3.2/2], for any y ∈ L, there
exists a power-multiplicative K-algebra norm | · |y on L such that y is multiplicative for | · |y,
meaning that |xy|y = |x|y|y|y for all x ∈ L. This seminorm is defined by sending x ∈ L to
the limit of f(xyn)

(f(y))n as n tends to infinity, and can be found at seminorm_from_const.lean

def seminorm_from_const_seq (x : L) : N → R := λ n, (f (x * y^n))/((f y)^n)
def seminorm_from_const (x : L) : R := classical.some

(real.tendsto_of_is_bounded_antitone (seminorm_from_const_is_bounded c f x)
(seminorm_from_const_seq_antitone hf1 hc hpm x))

Since we have just shown that the spectral norm is the unique power-multiplicative K-
algebra norm on L that extends | · |, we can conclude that | · |sp = | · |y. Therefore every y is
multiplicative for | · |sp, that is, the spectral norm is multiplicative.

ITP 2023

https://github.com/mariainesdff/norm_extensions_journal_submission/blob/master/src/seminorm_from_const.lean

13:10 Formalizing Norm Extensions and Applications to Number Theory

lemma spectral_norm_is_mul [complete_space K]
(hna : is_nonarchimedean (norm : K → R)) (x y : L) :
spectral_alg_norm h_alg hna (x * y) =

spectral_alg_norm h_alg hna x * spectral_alg_norm h_alg hna y := . . .

◀

The main reference we followed in our formalization, [7], is a book on nonarchimedean
analysis, in which all results are stated exclusively for nonarchimedean (semi)norms. However,
we would like to remark that the second smoothing step in the proof of Lemma 3 is the only
part in the proofs of Theorems 1 and 2 in which the nonarchimedean property is necessary.
By contrast, all of the remaining smoothing steps remain true for possibly nonarchimedean
seminorms (noting that the extension of the norm will only be nonarchimedean if the starting
norm has this property), and have been formalized in that generality.

We conclude this section with a concrete example: the extension of the p-adic norm on
Qp to its algebraic closure Qalg

p .

variables (p : N) [fact (nat.prime p)]
@[reducible] def Q_p_alg : Type* := algebraic_closure Q_[p]
lemma Q_p_alg.is_algebraic : algebra.is_algebraic Q_[p] (Q_p_alg p) :=
algebraic_closure.is_algebraic _

By Theorems 1 and 2, the spectral norm is the unique (nonarchimedean) norm on the field
Qalg

p extending the p-adic norm.

instance normed_field : normed_field (Q_p_alg p) :=
@spectral_norm_to_normed_field Q_[p] _ _ _ _ padic.complete_space

(Q_p_alg.is_algebraic p) padic_norm_e.nonarchimedean
lemma Q_p_alg.is_nonarchimedean : is_nonarchimedean (norm : (Q_p_alg p) → R) :=
spectral_norm_is_nonarchimedean (Q_p_alg.is_algebraic p)

padic_norm_e.nonarchimedean
lemma Q_p_alg.norm_extends (x : Q_[p]) : ∥ (x : Q_p_alg p) ∥ = ∥ x ∥ :=
spectral_alg_norm_extends (Q_p_alg.is_algebraic p) _ padic_norm_e.nonarchimedean

4 Implementation of norms and valuations

4.1 Unbundling seminorms
In mathlib, there are several classes to represent algebraic objects with a preferred norm
that makes the object into a metric space. For example, a normed_ring R is a ring endowed
with a submultiplicative norm, which is used to define a metric space structure on R:

class normed_ring (R : Type u) : Type u :=
(to_has_norm : has_norm R)
(to_ring : ring R)
(to_metric_space : metric_space R)
(dist_eq : ∀ (x y : R), has_dist.dist x y = ∥x - y∥)
(norm_mul : ∀ (a b : R), ∥a * b∥ ≤ ∥a∥ * ∥b∥)

Other related classes are semi_normed_ring, normed_field, normed_add_group, etc. These
classes are very useful to prove analytic results, provided that one only needs to consider one
fixed norm in the algebraic object (group, ring, etc) being studied.

M. I. de Frutos-Fernández 13:11

However, there are situations in which one needs to consider several seminorms on the
same object. For example, the proof strategy for Theorems 1 and 2 consisted on, starting
from a given seminorm on the field L, constructing a few other seminorms on L having
increasingly better properties.

The existing classes are not well-suited for working with several seminorms on the same
object. The problem is that they bundle together the algebraic and topological structures
of the object. For example, the above definition “normed_ring” includes a field “to_ring”
that encodes the ring structure on R. If we were to put two normed_ring instances on R,
this would in particular yield two distinct ring instances on R, which is not what we want -
we want to consider two different norms on R, without varying the ring structure.

One could work around this problem by making multiple copies of the ring, as we did
in the proof of Theorem 2. In that particular case, we decided on this approach because it
allowed us to reuse some existing topological lemmas in mathlib.

However, we consider that a better general approach for simultaneously working with
several norms on a ring R, which we follow in the rest of the paper, is to use unbundled
versions of seminorms and norms. That is, instead of using a normed_ring class that bundles
together the ring structure on R, its norm, and the resulting metric space structure, we
work over a ring R and we define the ring_norm as a function from R to the real numbers
satisfying the required hypotheses.
structure ring_norm (R : Type u) [ring R] : Type u :=
(to_fun : R → R)
(map_zero’ : to_fun 0 = 0)
(add_le’ : ∀ (r s : R), to_fun (r + s) ≤ to_fun r + to_fun s)
(neg’ : ∀ (r : R), to_fun (-r) = to_fun r)
(mul_le’ : ∀ (x y : R), to_fun (x * y) ≤ to_fun x * to_fun y)
(eq_zero_of_map_eq_zero’ : ∀ (x : R), to_fun x = 0 → x = 0)

4.2 Relating norms and valuations
A valuation v on a ring R is a multiplicative map v : R→ Γ0 to a linearly ordered commutative
monoid with zero Γ0 that preserves zero and one and satisfies the strong triangle inequality
v(x + y) ≤ max v(x), v(y) for all x, y ∈ R.
structure valuation (R : Type u) (Γ0 : Type v)

[linear_ordered_comm_monoid_with_zero Γ0] [ring R] : Type (max u v) :=
(to_fun : R → Γ0)
(map_zero’ : to_fun 0 = 0)
(map_one’ : to_fun 1 = 1)
(map_mul’ : ∀ (x y : R), to_fun (x * y) = to_fun x * to_fun y)
(map_add_le_max’ : ∀ (x y : R), to_fun (x + y) ≤ max (to_fun x) (to_fun y))

We say that a valuation v has rank one if it is nontrivial and there exists an injective
morphism of linear ordered groups with zero Γ0 → R≥0.
variables {R : Type*} [ring R] {Γ0 : Type*} [linear_ordered_comm_group_with_zero Γ0]
class is_rank_one (v : valuation R Γ0) :=
(hom : Γ0 →*0 R≥0)
(strict_mono : strict_mono hom)
(nontrivial : ∃ r : R, v r ̸= 0 ∧ v r ̸= 1)

It is easy to see from these definitions that nontrivial nonarchimedean norms correspond
to rank one valuations and, in practice, these terms are often used interchangeably in the
mathematical literature. However, the formalization of these two notions in the library
mathlib does not provide a way to relate them.

ITP 2023

13:12 Formalizing Norm Extensions and Applications to Number Theory

In the file normed_valued.lean, we formalize a dictionary between nonarchimedean
norms and rank one valuations on a field L. This is a powerful tool, since it allows us to
obtain full access to all of the theorems about these notions available in mathlib. Note that
there are plenty of formalized results about normed fields and normed spaces, developed by
analysts, as well as a very complete theory of valuations, mainly formalized as part of the
perfectoid space project [9]. Without a way to convert between norms and valuations, we
would be forced to make a choice about which of these results were available to us.

We relate the two definitions as follows. First, given a normed field K for which the norm
is nonarchimedean, this norm is automatically a valuation on K (note that we need to use
nnnorm, the version of the norm taking values on the type R≥0 of nonnegative reals).

We then define a function normed_field.to_valued that endows K with a valued field
structure. To do this, we need to provide a proof that the uniform space structure on K

induced by this valuation agrees with the one induced by the normed field structure.

variables {K : Type*} [hK : normed_field K]
include hK
def valuation_from_norm (h : is_nonarchimedean (norm : K → R)) : valuation K R≥0 :=
{ to_fun := nnnorm,

. . . }
def normed_field.to_valued (h : is_nonarchimedean (norm : K → R)) : valued K R≥0 :=
{ v := valuation_from_norm h,

is_topological_valuation := . . .,
..hK.to_uniform_space,
..non_unital_normed_ring.to_normed_add_comm_group }

Conversely, if we start with a field L with a valuation v and a proof hv that v is of
rank one, then we can show that the function L→ R sending x to the image of v(x) under
the homomorphism hv.hom is a nonarchimedean norm on L, and we can endow L with the
corresponding normed field structure.

Note that the default constructor of the class normed_field does not asks us to provide
a uniform space structure on L; instead, it defines this uniform space structure as the one
induced by the norm. However, doing this would lead Lean to think that we have two
different uniform space structures on L, since we already had the uniform space structure
induced by the valuation. We therefore indicate explicitly that the uniform space structure
we are considering is the one coming from the valuation, and once again prove that this
agrees with the one induced by the norm.

variables {L : Type*} [hL : field L] {Γ0 : Type*} [linear_ordered_comm_group_with_zero Γ0]
[val : valued L Γ0] [hv : is_rank_one val.v]

include hL val hv
def norm_def : L → R := λ x : L, hv.hom (valued.v x)
def valued_field.to_normed_field : normed_field L :=
{ norm := norm_def,

dist := λ x y, norm_def (x − y),
to_uniform_space := valued.to_uniform_space,
uniformity_dist := sorry,
. . ., }

https://github.com/mariainesdff/norm_extensions_journal_submission/blob/master/src/normed_valued.lean

M. I. de Frutos-Fernández 13:13

5 Applications to number theory

5.1 The p-adic complex numbers
As we recalled in Section 2, the real numbers R are constructed as the completion of the
rational numbers Q with respect to the usual absolute value. We can then define the complex
numbers C as an algebraic closure of R. The field C is algebraically closed and complete
with respect to the extension of the usual absolute value.

If we take the completion of Q with respect to the p-adic norm associated to a prime
number p, we obtain the field Qp of p-adic numbers, which we can regard as an analogue of
the real numbers R.

We would also like to find a p-adic analogue of the complex numbers C. Our first guess
would be to consider an algebraic closure Qalg

p of Qp. However, although Qalg
p is algebraically

closed and, as shown in Section 3, the p-adic norm extends uniquely to Qalg
p , it turns out

that Qalg
p is not complete with respect to the p-adic norm.

By completing Qalg
p with respect to this norm, we obtain a new field Cp, which is by

construction complete with respect to the p-adic norm, and can be shown to be algebraically
closed. Hence Cp can be regarded as a p-adic analogue of the complex numbers.

To formalize the definition of Cp, we start from the definition of Qalg
p . At the end of

Section 3.2, we saw that Q_p_alg p is a normed field, whose norm is the spectral norm
extending the p-adic norm on Qp. We take advantage of our norm-valuation dictionary
from Section 4.2 to show that Q_p_alg p is a valued field, and define C_p p as the uniform
space completion of Q_p_alg p. We then introduce the notation C_[p] for C_p p, which is
consistent with the notation Q_[p] used in mathlib for the p-adic numbers.

instance Q_p_alg.valued_field : valued (Q_p_alg p) R≥0 :=
normed_field.to_valued (Q_p_alg.is_nonarchimedean p)
def C_p := uniform_space.completion (Q_p_alg p)
notation ‘C_[‘p‘]‘ := C_p p

An alternative, mathematically equivalent approach would have been to define C_[p]
as the Cauchy completion of Q_p_alg p, which would not require to introduce the instance
Q_p_alg.valued_field. However, then we would have had to prove that C_[p] is a normed
field whose norm extends that of Q_p_alg p.

On the other hand, by defining C_[p] as the uniform space completion of the valued
field Q_p_alg p, we get access to existing results in mathlib that allow us to immediately
conclude that C_[p] is a valued field, whose valuation extends the valuation on Q_p_alg p.
Therefore, this is a concrete example in which our norm-valuation dictionary has allowed us
to gain access to lemmas that would otherwise not have been available.

instance : field C_[p] := uniform_space.completion.field
instance C_p.valued_field : valued (C_[p]) R≥0 := valued.valued_completion
instance : has_coe_t (Q_p_alg p) C_[p] := uniform_space.completion.has_coe_t _
lemma C_p.valuation_extends (x : Q_p_alg p) : valued.v (x : C_[p]) = valued.v x :=
valued.extension_extends _

Now that we have a valued_field instance on C_[p], we just need to show that its
valuation has rank one (which is easy, since for example the element p has valuation 1/p,
different from 0 and 1) to gain access to the associated normed_field instance on C_[p].

instance : is_rank_one (C_p.valued_field p).v := . . .

instance : normed_field C_[p] := valued_field.to_normed_field

ITP 2023

13:14 Formalizing Norm Extensions and Applications to Number Theory

Having the above results, it is now easy to conclude that the norm on C_[p] extends the
norm on Q_p_alg p, and that it is nonarchimedean. All of the results in this section can be
found in the file Cp_def.lean.

lemma C_p.norm_extends (x : Q_p_alg p) : ∥ (x : C_[p]) ∥ = ∥ x ∥ := . . .

lemma C_p.is_nonarchimedean : is_nonarchimedean (norm : C_[p] → R) := . . .

5.2 Fontaine’s period rings
Let K be a p-adic field (a finite extension of Qp) and let GK := Gal(Kalg/K) be the absolute
Galois group of K, that is, the group of K-algebra automorphisms of an algebraic closure Kalg

of K. A p-adic Galois representation is a continuous group homomorphism ρ : GK → GL(V),
where V is a finite dimensional Qp-vector space.

Galois representations are a fundamental object of study in number theory. A precise
understanding of how they relate to other mathematical objects (such as elliptic curves and
modular forms) was a key ingredient in the proof of Fermat’s Last Theory, and remains an
active area of research within the Langlands Program, an ambitious collection of conjectures
that seek to establish deep relations between seemingly distant areas of mathematics.

Of special interest are those Galois representation that “come from geometry’, meaning
that the vector space V is a subquotient of the étale cohomology group of an algebraic variety.
A famous conjecture by Fontaine and Mazur predicts sufficient conditions for when a Galois
representation comes from geometry in this sense.

Fontaine”s strategy was to construct period rings, which are rings that can detect
interesting properties of Galois representations. More precisely, a Fontaine period ring is
a topological Qp-algebra B with a continuous linear action of GK , with some compatible
additional structures (such as a Frobenius map or a filtration), such that the subring
BGK is a field of points of B invariant under the Galois action is a field, and such that
the BGK -vector space DB(V) = (B ⊗Qp

V)GK is an interesting invariant of the Galois
representation V . Given a period ring B, a Galois representation V is called B-admissible if
dimBGK DB(V) = dimQp V .

For different choices of B, being B-admissible is equivalent to the representation having
a certain arithmetic property. We have formalized in Fontaine_period_rings.lean the
definitions of the following period rings:
1. B = Kalg. A Galois representation V is Kalg-admissible if the action of GK on V factors

through a finite quotient.

def K_alg {K : Type*} [field K] [algebra Q_[p] K]
(h_fin : finite_dimensional Q_[p] K) := algebraic_closure K

2. B = Cp. A Galois representation V is Cp-admissible if the action of the inertia subgroup
IK of GK on V factors through a finite quotient. See Section 5.1 for the formalization.

3. B = BHT := Cp[X, X−1]. A Galois representation V is said to be BHT-admissible, or
Hodge-Tate, if the vector space Cp ⊗Qp

V can be decomposed as a product of the form
Cp(χn1

cycl)⊕ · · · ⊕Cp(χnd

cycl) for some ni ∈ Z, where χcycl denotes the cyclotomic character.

def B_HT := laurent_polynomial C_[p]

Besides being used to detect interesting properties of Galois representations, Fontaine’s
period rings are also prominently used in comparison theorems between different cohomo-
logy theories.

https://github.com/mariainesdff/norm_extensions_journal_submission/blob/master/src/Cp_def.lean
https://github.com/mariainesdff/norm_extensions_journal_submission/blob/master/src/Fontaine_period_rings.lean

M. I. de Frutos-Fernández 13:15

6 Discussion

6.1 Future Work
The first future goals related to this project would consist on formalizing some well-known
properties of the fields Qalg

p and Cp. For example, we could show that Cp is algebraically
closed and that Qalg

p is not complete with respect to its norm. Certain generalizations of
these facts are proven in [7, Proposition 3.4.1/3] and [7, Lemma 3.4.3/1], respectively.

Similarly, it is possible to build on our formalization to prove Hensel’s Lemma [7,
Proposition 3.3.4/3] and Krasner’s Lemma [7, Corollary 3.4.2/2], two fundamental results
in p-adic analysis. We remark that there is an existing formalization of Hensel’s lemma in
mathlib, but only for the p-adic numbers; the version we propose would generalize it.

A slightly more ambitious goal is to formalize the definition of the Fontaine period ring
BdR. We propose the following strategy to formalize this definition. First, let E be the
pre-tilt of Cp, that is, the limit E := lim←−

x 7→xp

OCp/(p), where OCp is the ring of integers of Cp.

Let Ainf := W (E) be the ring of Witt vectors of E, and let B+
inf := Ainf[1

p] be the localization
of Ainf away from p.

def E := pre_tilt C_[p] (C_p.valued_field p).v O_C_[p] (valuation.integer.integers _) p
def A_inf := witt_vector p (E p)
def B_inf_plus := localization.away (p : A_inf p)

The missing part of the formalization consists on constructing a canonical surjective ring
homomorphism θ : B+

inf → Cp (the noncomputable! tag is required to avoid a timeout, but
we expect to be able to remove it when we provide the definition of theta):

noncomputable! def theta : ring_hom (B_inf_plus p) C_[p] := sorry
lemma theta.surjective : function.surjective (theta p) := sorry

By general properties of Witt vectors, to construct this function θ : B+
inf → Cp, it is enough

to define the “sharp” map ·# : E → OCp
sending ξ := (ξ0, ξ1, · · ·) ∈ E to ξ# := limn→∞ ξ̂pn

n ,
where each ξ̂n is an arbitrary lifting of ξn to OCp

, and to study some properties of this map.
Once the definition of theta is formalized, we will be able to define the ring B+

dR as the
completion of B+

inf with respect to the ideal ker(θ), and the field BdR as the field of fractions
of B+

dR.

def B_dR_plus := uniform_space.completion (B_inf_plus p)
def B_dR := fraction_ring (B_dR_plus p)

Our final future goal is to formalize some basic properties of the Fontaine period rings
BHT and BdR, as well as some of their applications to representation theory.

6.2 Related Work
This project requires to combine results from several mathematical areas, including analysis,
field theory, number theory, and topology, and we found Lean’s mathematical library mathlib
to be the most complete library in terms of the required prerequisites. However, some of the
background results we needed are also available in other proof assistants.

The p-adic numbers were first formalized by Pelayo, Voevodsky, and Warren [27], in the
Coq UniMath library. They were formalized in Isabelle/HOL in 2022 [14].

ITP 2023

13:16 Formalizing Norm Extensions and Applications to Number Theory

Coq’s Mathematical Components library [23] contains a formalization of Galois theory,
developed as part of the odd order theorem project [20]. The proof that every field admits
an algebraically closed extension was first formalized in the proof assistant Isabelle/HOL
[17]. Field theory constructions such as algebraic extensions [30], algebraic closures [29], and
minimal polynomials [28] have recently been added to the Mizar Mathematical Library.

The Isabelle/HOL standard library includes the theory of real normed spaces, much of
which has been translated to the complex setting in an Isabelle Archive of Formal Proofs
entry by Caballero and Unruh [10]. However, to the author’s knowledge, the generalization
to normed spaces over arbitrary fields is still missing. Similarly, real and complex normed
spaces have been formalized in Mizar (see for instance [26] and [18]). In Coq, the MathComp-
Analysis [1] extends the Mathematical Components library with topics in analysis, including
in particular results about normed spaces.

6.3 Conclusion
We develop the theory of extensions of nonarchimedean norms to algebraic field extensions,
and we build on this work to formalize the field Cp of p-adic complex numbers and some
of Fontaine’s period rings. This project fits in within the long-term goal of formalizing a
complete proof of Fermat’s Last Theorem in the general case. It is also a starting point for
formalizing Galois representation theory and p-adic Hodge theory.

The formalization required about 5000 lines of code, of which about 1000 lines have been
integrated in the mathlib library at the time of writing this article.

References
1 Reynald Affeldt, Cyril Cohen, Marie Kerjean, Assia Mahboubi, Damien Rouhling, and

Kazuhiko Sakaguchi. Competing Inheritance Paths in Dependent Type Theory: A Case
Study in Functional Analysis. In Nicolas Peltier and Viorica Sofronie-Stokkermans, editors,
Automated Reasoning, pages 3–20, Cham, 2020. Springer International Publishing.

2 Emil Artin and John Tate. Class Field Theory. W. A. Benjamin, New York, 1967.
3 Jeremy Avigad, Leonardo de Moura, and Soonho Kong. Theorem Proving in Lean. Carnegie

Mellon University, 2021. Release 3.23.0. URL: https://leanprover.github.io/theorem_
proving_in_lean/.

4 Anne Baanen. Use and Abuse of Instance Parameters in the Lean Mathematical Library. In
June Andronick and Leonardo de Moura, editors, 13th International Conference on Interactive
Theorem Proving (ITP 2022), volume 237 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 4:1–4:20, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.ITP.2022.4.

5 Anne Baanen, Alex J. Best, Nirvana Coppola, and Sander R. Dahmen. Formalized class
group computations and integral points on mordell elliptic curves. In Brigitte Pientka and
Steve Zdancewic, editors, Proceedings of the 12th ACM SIGPLAN International Conference on
Certified Programs and Proofs, CPP 2023, pages 47–62, New York, NY, USA, 2023. Association
for Computing Machinery. doi:10.1145/3573105.3575682.

6 Anne Baanen, Sander R. Dahmen, Ashvni Narayanan, and Filippo A. E. Nuccio Mortarino
Majno di Capriglio. A Formalization of Dedekind Domains and Class Groups of Global Fields.
In Liron Cohen and Cezary Kaliszyk, editors, 12th International Conference on Interactive
Theorem Proving (ITP 2021), volume 193 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 5:1–5:19, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.ITP.2021.5.

7 Siegfried Bosch, Ulrich Güntzer, and Reinhold Remmert. Non-archimedean analysis : a
systematic approach to rigid analytic geometry. Springer-Verlag Berlin Heidelberg, 1984.

https://leanprover.github.io/theorem_proving_in_lean/
https://leanprover.github.io/theorem_proving_in_lean/
https://doi.org/10.4230/LIPIcs.ITP.2022.4
https://doi.org/10.1145/3573105.3575682
https://doi.org/10.4230/LIPIcs.ITP.2021.5

M. I. de Frutos-Fernández 13:17

8 Thomas Browning and Patrick Lutz. Formalizing Galois Theory. Experimental Mathematics,
31(2):413–424, 2022. doi:10.1080/10586458.2021.1986176.

9 Kevin Buzzard, Johan Commelin, and Patrick Massot. Formalising Perfectoid Spaces. In Jasmin
Blanchette and Cătălin Hriţcu, editors, Proceedings of the 9th ACM SIGPLAN International
Conference on Certified Programs and Proofs, CPP 2020, New Orleans, LA, USA, January
20-21, 2020, pages 299–312. ACM, 2020. doi:10.1145/3372885.3373830.

10 José Manuel Rodríguez Caballero and Dominique Unruh. Complex bounded operators.
Archive of Formal Proofs, September 2021. Formal proof development. https://isa-afp.org/
entries/Complex_Bounded_Operators.html.

11 Mario Carneiro. The Type Theory of Lean, 2019. Master thesis. https://github.com/
digama0/lean-type-theory/releases/download/v1.0/main.pdf.

12 Xavier Caruso. An introduction to p-adic period rings, volume 54 of Panoramas et Synthèses,
pages 19–92. Société Mathématique de France, 2019.

13 Johan Commelin and Robert Y. Lewis. Formalizing the Ring of Witt Vectors. In Cătălin
Hriţcu and Andrei Popescu, editors, Proceedings of the 10th ACM SIGPLAN International
Conference on Certified Programs and Proofs, CPP 2021, pages 264–277, New York, NY, USA,
2021. Association for Computing Machinery. doi:10.1145/3437992.3439919.

14 Aaron Crighton. p-adic fields and p-adic semialgebraic sets. Archive of Formal Proofs,
September 2022. Formal proof development. https://isa-afp.org/entries/Padic_Field.
html.

15 María Inés de Frutos-Fernández. Formalizing the Ring of Adèles of a Global Field. In June
Andronick and Leonardo de Moura, editors, 13th International Conference on Interactive
Theorem Proving (ITP 2022), volume 237 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 14:1–14:18, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.ITP.2022.14.

16 Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von Raumer.
The Lean Theorem Prover (System Description). In Amy P. Felty and Aart Middeldorp, editors,
Automated Deduction - CADE-25, volume 9195 of Lecture Notes in Computer Science, pages
378–388, Cham, 2015. Springer International Publishing. doi:10.1007/978-3-319-21401-6_
26.

17 Paulo Emílio de Vilhena and Lawrence C. Paulson. Algebraically Closed Fields in Isabelle/HOL.
In Nicolas Peltier and Viorica Sofronie-Stokkermans, editors, Automated Reasoning, pages
204–220, Cham, 2020. Springer International Publishing.

18 Noboru Endou. Complex Linear Space and Complex Normed Space. Formalized Mathematics,
12(2):93–102, 2004.

19 Jean-Marc Fontaine, editor. Périodes p-adiques - Séminaire de Bures, 1988, number 223 in
Astérisque. Société mathématique de France, 1994.

20 Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril Cohen, François Garillot,
Stéphane Le Roux, Assia Mahboubi, Russell O’Connor, Sidi Ould Biha, Ioana Pasca, Laurence
Rideau, Alexey Solovyev, Enrico Tassi, and Laurent Théry. A Machine-Checked Proof of the
Odd Order Theorem. In Sandrine Blazy, Christine Paulin-Mohring, and David Pichardie,
editors, Interactive Theorem Proving, pages 163–179, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg.

21 Robert P. Langlands. Problems in the Theory of Automorphic Forms, volume 170 of Lecture
Notes in Mathematics, pages 18–61. Springer, Berlin, Heidelberg, 1970. doi:10.1007/
BFb0079065.

22 Robert Y. Lewis. A Formal Proof of Hensel’s Lemma over the p-Adic Integers. In Assia
Mahboubi and Magnus O. Myreen, editors, Proceedings of the 8th ACM SIGPLAN International
Conference on Certified Programs and Proofs, CPP 2019, pages 15–26, New York, NY, USA,
2019. Association for Computing Machinery. doi:10.1145/3293880.3294089.

23 Assia Mahboub and Enrico Tassi. The Mathematical Components Libraries, 2017. URL:
https://math-comp.github.io/mcb/.

ITP 2023

https://doi.org/10.1080/10586458.2021.1986176
https://doi.org/10.1145/3372885.3373830
https://isa-afp.org/entries/Complex_Bounded_Operators.html
https://isa-afp.org/entries/Complex_Bounded_Operators.html
https://github.com/digama0/lean-type-theory/releases/download/v1.0/main.pdf
https://github.com/digama0/lean-type-theory/releases/download/v1.0/main.pdf
https://doi.org/10.1145/3437992.3439919
https://isa-afp.org/entries/Padic_Field.html
https://isa-afp.org/entries/Padic_Field.html
https://doi.org/10.4230/LIPIcs.ITP.2022.14
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/BFb0079065
https://doi.org/10.1007/BFb0079065
https://doi.org/10.1145/3293880.3294089
https://math-comp.github.io/mcb/

13:18 Formalizing Norm Extensions and Applications to Number Theory

24 The mathlib Community. The Lean Mathematical Library. In Jasmin Blanchette and Cătălin
Hriţcu, editors, Proceedings of the 9th ACM SIGPLAN International Conference on Certified
Programs and Proofs, CPP 2020, pages 367–381, New York, NY, USA, 2020. Association for
Computing Machinery. doi:10.1145/3372885.3373824.

25 Sebastian Monnet. Formalising the Krull Topology in Lean, 2022. URL: https://arxiv.org/
abs/2207.09486.

26 Kazuhisa Nakasho, Yuichi Futa, and Yasunari Shidama. Topological Properties of Real Normed
Space. Formalized Mathematics, 22(3):209–223, 2014. doi:10.2478/forma-2014-0024.

27 Álvaro Pelayo, Vladimir Voevodsky, and Michael A. Warren. A univalent formalization of
the p-adic numbers. Mathematical Structures in Computer Science, 25(5):1147–1171, 2015.
doi:10.1017/S0960129514000541.

28 Christoph Schwarzweller. Ring and Field Adjunctions, Algebraic Elements and Minimal
Polynomials. Formalized Mathematics, 28(3):251–261, 2020. doi:10.2478/forma-2020-0022.

29 Christoph Schwarzweller. Existence and Uniqueness of Algebraic Closures. Formalized
Mathematics, 30(4):281–294, 2022. doi:10.2478/forma-2022-0022.

30 Christoph Schwarzweller and Agnieszka Rowińska-Schwarzweller. Algebraic Extensions. Form-
alized Mathematics, 29(1):39–47, 2021. doi:10.2478/forma-2021-0004.

31 Floris van Doorn. Formalized Haar Measure. In Liron Cohen and Cezary Kaliszyk, editors, 12th
International Conference on Interactive Theorem Proving (ITP 2021), volume 193 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 18:1–18:17, Dagstuhl, Germany, 2021.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ITP.2021.18.

https://doi.org/10.1145/3372885.3373824
https://arxiv.org/abs/2207.09486
https://arxiv.org/abs/2207.09486
https://doi.org/10.2478/forma-2014-0024
https://doi.org/10.1017/S0960129514000541
https://doi.org/10.2478/forma-2020-0022
https://doi.org/10.2478/forma-2022-0022
https://doi.org/10.2478/forma-2021-0004
https://doi.org/10.4230/LIPIcs.ITP.2021.18

Tealeaves: Structured Monads for Generic
First-Order Abstract Syntax Infrastructure
Lawrence Dunn # Ñ

University of Pennsylvania, Philadelphia, PA, USA

Val Tannen # Ñ

University of Pennsylvania, Philadelphia, PA, USA

Steve Zdancewic # Ñ

University of Pennsylvania, Philadelphia, PA, USA

Abstract
Verifying the metatheory of a formal system in Coq involves a lot of tedious “infrastructural” reasoning
about variable binders. We present Tealeaves, a generic framework for first-order representations of
variable binding that can be used to develop this sort of infrastructure once and for all. Given a
particular strategy for representing binders concretely, such as locally nameless or de Bruijn indices,
Tealeaves allows developers to implement modules of generic infrastructure called backends that end
users can simply instantiate to their own syntax. Our framework rests on a novel abstraction of
first-order abstract syntax called a decorated traversable monad (DTM) whose equational theory
provides reasoning principles that replace tedious induction on terms. To evaluate Tealeaves, we
have implemented a multisorted locally nameless backend providing generic versions of the lemmas
generated by LNgen. We discuss case studies where we instantiate this generic infrastructure to
simply-typed and polymorphic lambda calculi, comparing our approach to other utilities.

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of
computation → Type theory

Keywords and phrases Coq, category theory, formal metatheory, raw syntax, locally nameless

Digital Object Identifier 10.4230/LIPIcs.ITP.2023.14

Supplementary Material Software (Source Code): https://github.com/dunnl/tealeaves
archived at swh:1:dir:213050814e9a7233b944f92c191df8eb360bb84b

Acknowledgements We wish to thank the anonymous reviewers for their helpful comments and
suggestions, and the authors of LNgen for describing their work and experience using LNgen.

1 Introduction

Computer-verified metatheory is increasingly critical for establishing trust in the design and
implementation of formal systems [6], which we take to include formal logics, programming
languages, query languages, lambda calculi, specification languages, and basically any system
with a precise syntax. Formalizing metatheory in a general-purpose proof assistant like Coq
requires a lot of tedious reasoning about variable binding. When performed manually, this
typically involves the user proving a suite of “infrastructure” lemmas concerned with the
properties of capture-avoiding substitution. In practice, if not in principle, this infrastructure
is tightly coupled to the exact signature used to generate the syntax, owing to the prolific use
of structural recursion and induction on terms. This dependency makes metatheory brittle,
prevents reusability, hampers collaboration by users working on different systems, and can
make syntax infrastructure more challenging to automate. This paper presents Tealeaves, a
Coq framework for building extensible libraries of generic syntax infrastructure that users
can instantiate to their own syntax, thus facilitating collaboration and reuse. Our framework
rests on top of a principled category-theoretic abstraction of raw first-order abstract syntax,
that of a decorated traversable monad, which we introduce in Section 3.

© Lawrence Dunn, Val Tannen, and Steve Zdancewic;
licensed under Creative Commons License CC-BY 4.0

14th International Conference on Interactive Theorem Proving (ITP 2023).
Editors: Adam Naumowicz and René Thiemann; Article No. 14; pp. 14:1–14:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dunnla@seas.upenn.edu
https://comono.id
https://orcid.org/0000-0001-6808-9441
mailto:val@cis.upenn.edu
https://www.cis.upenn.edu/~val/
https://orcid.org/0009-0008-6847-7274
mailto:stevez@cis.upenn.edu
https://www.cis.upenn.edu/~stevez/
https://orcid.org/0000-0002-3516-1512
https://doi.org/10.4230/LIPIcs.ITP.2023.14
https://github.com/dunnl/tealeaves
https://archive.softwareheritage.org/swh:1:dir:213050814e9a7233b944f92c191df8eb360bb84b;origin=https://github.com/dunnl/tealeaves;visit=swh:1:snp:c0a1e9ddc799796c3347b4892f1e59b235e51f47;anchor=swh:1:rev:8dd6ba8acdd097f6e474ae2a1a9b10f5cc9ca65b
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Tealeaves

A wide variety of syntax formalization strategies have been proposed in the literature, and
a commensurate number of utilities have been designed to automate syntax infrastructure.
Why, then, should we introduce yet another syntax metatheory framework? Generally,
frameworks will differ in what sorts of syntax can be handled, what support is required
from the proof assistant, and especially the cost of entry to the user. The main novelty of
Tealeaves lies in the intersection of three features:
1. Raw syntax Tealeaves considers “raw” syntax that is extrinsically typed and scoped, in

contrast to work on intrinsically well-scoped, well-typed syntax.
2. Modular representations Tealeaves’ extensible design is agnostic about how binding

is represented, admitting multiple backend modules that formalize syntax infrastructure
for a particular first-order strategy, such as de Bruijn indices or locally nameless.

3. Signature-generic Tealeaves is based on the theory of decorated traversable monads,
a set of equations independent of the signature of a particular language. Substitution
lemmas proved in the form of reusable Tealeaves backends are proved once and for all,
and do not rely on external code generators, which can be slow and fallible.

We briefly summarize some of the more salient points of these features. Sections 4 and 5
offer more detailed comparison to related work.

Extrinsically typed first-order abstract syntax is defined inductively. Notions such as well-
scopedness and well-typedness, as well as lemmas about substitution and other operations,
are defined post factum by structural recursion [10] on terms. This contrasts with intrinsically
well-scoped, well-typed syntax [4], which uses the type system of the metatheory (in our case,
Coq) to enforce constraints on the embedded syntax, blurring the line between operations’
types and their correctness properties. The practical difficulties encountered by the two
approaches differ, especially because the intrinsically typed workflow makes heavier use of
dependently-typed programming that can be inconvenient to formalize in Coq. The raw
approach contrasts with recent work [17] which is formalized in Agda and considers a different
category-theoretic abstraction of intrinsically-typed syntax. Both of these styles also contrast
with higher-order abstract syntax [26] and representations based on nominal sets [28], which
are well-known to require adaptation for use in a general-purpose proof assistant like Coq
(see Section 5).

Within the family of first-order approaches, a variety of binding representation strategies
are available, with typical examples being de Bruijn indices [13] and locally nameless [11].
At its core, Tealeaves aims to be agnostic about how binding is represented concretely,
accommodating multiple representations. Existing utilities for formalizing syntax in Coq,
such as Autosubst [32, 36] and LNgen [5], target a specific representation (de Bruijn indices
and locally nameless, respectively), and they prove signature-specific lemmas using synthesis
or external code generators whereas our lemmas are signature-generic and formalized statically
in Coq. Unlike those tools, our design supports variadic binders (i.e. those introducing a
variable number of new entities) without modifying the core abstraction.

To achieve the modularity of Tealeaves, it is necessary to have an abstraction of (i.e.
interface to) abstract syntax. For us this comes in the form of decorated traversable monads
(DTMs). Definition 3.1 presents DTMs in terms of a highly expressive combinator binddt that
we use to define a wide range of syntax-related operations. A previous proof-of-concept Coq
framework, GMeta [23], also offers multiple representation strategies formalized generically
over syntax, but it lacks a principled abstraction of syntax like DTMs, resorting to proofs by
induction on a universe of representable types. One benefit of using DTMs is that the DTM
composition law (Equation (3)) yields a fusion law for the composition of any two operations
defined with Tealeaves.

L. Dunn, V. Tannen, and S. Zdancewic 14:3

To evaluate our framework, we have implemented a locally nameless backend module
providing essentially the same infrastructure that a user would generate with LNgen, but
whose lemmas are statically verified, generic, and proved using a principled equational theory
rather than unverifiable, dynamically-generated proof scripts. We have used this backend
to prove type soundness for the simply-typed and polymorphic lambda calculi. The latter
especially demonstrates that our framework neatly handles heterogeneous substitution (e.g.
substitution of types in terms). We discuss evaluation of Tealeaves in Section 4.

In sum, the contributions of this paper are threefold. (1) We introduce a principled
abstraction of raw, first-order abstract syntax, decorated traversable monads, which provides
an expressive equational framework for generic reasoning about substitution and related op-
erations. (2) We implement the Coq library Tealeaves, an extensible and modular framework
for generic reasoning about syntax, including syntax with many different kinds of variables.
(3) We implement a locally nameless Tealeaves backend and use it to formalize progress and
preservation lemmas for the two lambda calculi above, evaluating the practicality of our
approach.

The rest of this document is laid out as follows. Section 2 explains how a Coq user
incorporates Tealeaves into their formal metatheory workflow. Section 3 introduces DTMs
and describes how they facilitate generic reasoning. Section 4 evaluates Tealeaves, including
a description of our case studies and a feature-wise comparison to the utilities LNgen and
Autosubst 1 and 2. Section 5 discusses other related work. Section 6 concludes with our
future plans for Tealeaves, especially investigating extensions to the DTM concept.

2 Using Tealeaves

In this section, we examine how Tealeaves fits into the workflow of a formal semanticist
working in Coq. As a running example, we consider a formalization of the untyped lambda
calculus where variables are represented in the locally nameless style, though Tealeaves
accommodates more sophisticated kinds of syntax (see Section 3.4) and can be extended to
other representations of variables. It is up to the user what sorts of metatheory they want to
develop about the calculus – Tealeaves only provides the syntax infrastructure. The details
are unchanged if the user is interested in a typed system because substitution is defined on
raw (untyped) terms.

The first-order1 (or initial algebraic) representation of abstract syntax defines terms
inductively in the form of term algebras. In the simplest case of a single sort of variables,
one starts from a base set V of variables and constructs a set T (V) of terms by closing the
set under well-sorted applications of constructors. This construction justifies definitions by
structural recursion on terms. Figure 1 shows a first-order definition of the syntax of the
untyped lambda calculus, called Lam, as it would be defined by a user of Tealeaves. To keep
the example simple, since we will consider locally nameless variables, the Abs case only needs
to take the abstraction body as an argument and not a variable name.

Locally nameless is a hybrid strategy mixing Bruijn indices with named variables. A bound
variable n ∈ N is a natural number that always refers to the nth most recently introduced
abstraction, indexing innermost to outermost from 0. A free variable is represented as an
atom, an abstract type about which we assume only a decidable equality. Figure 2 shows a
type LN of locally nameless variables as the sum of nat and atom; this definition is provided
by our locally nameless backend. The type of raw lambda terms with locally nameless
variables is then Lam LN.

1 “First-order” here refers to the fact that the term constructors do not take Coq-level functions as

ITP 2023

14:4 Tealeaves

Inductive Lam (V : Type) : Type :=
| Var : V -> Lam V
| Ap : Lam V -> Lam V -> Lam V
| Abs : Lam V -> Lam V.

Figure 1 Syntax of the untyped lambda calculus.

Inductive LN : Type :=
| Fr : atom -> LN (* free variables *)
| Bd : nat -> LN. (* bound variables *)

Figure 2 The type of locally nameless variables.

As argued by Pollack [29, 30], the main advantage of locally nameless is that there is
no possibility of variable capture during substitution and that α-equivalence of expressions
coincides with syntactical equality, making this representation more practical in Coq formal-
izations than a fully named approach as with pen-and-paper. This convenience comes at
a mild cost: some terms in Lam LN do not correspond to ordinary lambda terms modulo
α-equivalence, owing to the possibility of a de Bruijn index n appearing under fewer than
n + 1 abstractions. Such an occurrence is neither free (because it is not an atom) nor bound,
so locally nameless substitution lemmas tend to mention a local closure predicate ruling out
these ill-formed occurrences. Only locally closed terms represent (α-equivalence classes of)
ordinary lambda terms.

Without using Tealeaves, most users would not benefit from separating Lam and LN as
shown; they would likely inline LN into the definition of Lam. We take this approach in
Tealeaves mainly so we can exploit the fact that Lam is a decorated traversable monad later.
Incidentally, this modularity could prove useful to the user who desires to consider more
than one representation of variables in the same development, say because one is amenable
to formalization in Coq and another is more convenient to program with. As future work,
we hope to use Tealeaves to formalize a translation between named and locally nameless
variables (see Section 6).

Workflow without Tealeaves
The inductive nature of Lam admits a notion of structural recursion on terms, which is
used to define operations like capture-avoiding substitution. Our formalization of locally
nameless employs five operations: opening one term by another, closing a term by an atom,
substitution of a term for a free variable, a free-variable enumeration operation FV, and the
local closure predicate.2 The types of these operations are shown in Figure 3. Figure 4 shows
an example of how one conventionally defines FV.

Users working without tool support must prove a suite of lemmas about these operations,
some prototypical examples of which are included in Figure 3. For instance, subst_fresh
posits that replacing occurrences of an atom x with expression u in a term t leaves t
unchanged if x does not occur in t. Such lemmas are needed while developing metatheory
about the lambda calculus. They are almost invariably proved by induction on terms.

arguments, even if the formal system is higher-order in some other sense.
2 Local closure can also be given its own Inductive definition. In our unified treatment, we prefer to

think of the predicate as another operation on terms which happens to return a proposition.

L. Dunn, V. Tannen, and S. Zdancewic 14:5

open : Lam LN → Lam LN → Lam LN
subst : atom → Lam LN → Lam LN → Lam LN
close : atom → Lam LN → Lam LN

FV : Lam LN → list atom
LC : Lam LN → Prop

subst_fresh : ∀(x : atom)(u t : Lam LN), x /∈ FV t =⇒ subst x u t = t

subst_spec : ∀(x : atom)(u t : Lam LN), subst x u t = open u (close x t)
fv_subst_upper : ∀(x : atom)(u t : Lam LN), FV (subst x u t) ⊆ (FV t \ {x}) ∪ FV u

open_inj : ∀(x : atom)(u t : Lam LN), x /∈ (FV t ∪ FV u) =⇒
open (Var (Fr x)) t = open (Var (Fr x)) u =⇒ t = u

Figure 3 Locally nameless operations and some typical infrastructure lemmas.

Fixpoint FV (t : Lam LN) : list atom := match t with
| Var (Fr x) => [x]
| Var (Bd _) => []
| Ap t1 t2 => FV t1 ++ FV t2
| Abs body => FV body
end.

Figure 4 Example definition in Coq of a recursively-defined function FV.

This workflow is inherently linearly-ordered as shown in Figure 5: syntax is defined,
syntax infrastructure is implemented, then system-specific metatheory is formalized. “System-
specific metatheory” can include properties like confluence of the lambda calculus, which
is undoubtedly more interesting to the metatheorist than proving dozens of substitution
lemmas.

One way a user could save labor is to use a tool like LNgen [5] to generate the infrastructure.
LNgen accepts a grammar from the user in the form expected by Ott [33] and generates Coq
modules containing lemmas and operations like those in Figure 3. The high-level workflow is
unchanged, however: the infrastructure comes after the syntax is defined.

Whether it be implemented by hand or generated automatically, the syntax infrastructure
for Lam represents a bottleneck in the user’s workflow. It is a prerequisite for developing
interesting metatheory, but it depends on the definition of Lam, so it cannot be formalized
as a general-purpose library. The reason for the dependency is that functions defined by
recursion (as well as proofs by induction) essentially follow the shape of Lam. For instance,
adding a new constructor to Lam will break FV and subst_fresh until the user updates them
to account for the new constructor or re-executes LNgen.

Figure 5 Basic workflow without Tealeaves.

ITP 2023

14:6 Tealeaves

Besides making the infrastructure brittle, this phenomenon implies a user who is formal-
izing a different syntax cannot reuse the infrastructure for Lam. This situation is all the more
unfortunate when one realizes that most of the interesting reasoning of locally nameless does
not really depend on Lam at all. The only interesting case in the proof of subst_fresh, for
example, is Var – the Ap and Abs cases hold just by induction. Can we do better than this
linear workflow?

2.1 The Tealeaves workflow
In a workflow incorporating Tealeaves, the user does not develop the locally nameless syntax
infrastructure – we the Tealeaves developers have already implemented it in the form of
a reusable Tealeaves backend module. Operations and lemmas like those in Figure 3 are
provided by this backend, with a caveat: the formalization is generic in the sense that all
references to Lam are replaced with references to a parameter T : Type → Type. The user’s
obligation is to instantiate the backend to the choice T = Lam, which achieves essentially
the same effect for the user as if they had constructed the infrastructure themselves. The
user benefits as long as it is easier to perform this instantiation than to implement the
infrastructure from scratch.

The cost of instantiating the backend is modest: the user must prove that Lam forms a
decorated traversable monad (DTM), a principled category-theoretic concept which Tealeaves
defines in the form of a typeclass [34]. All constructs implemented by the backend module
are polymorphic over an instance of this typeclass; therefore they can automatically be
specialized to any choice of T, such as Lam, for which a corresponding DTM instance has
been registered with Coq’s typeclass instance database.

The DTM instantiation process we describe below is for the simplest case when there
is one grammatical category (Lam) and one sort of variable (arguments to Var). Section
3.4 indicates how we generalize this to more complex situations, such as a set of mutually-
inductive grammatical categories involving multiple sorts of variables.

Supplying the DTM typeclass instance for Lam requires the user to define two operations.
The first, which following standard Haskell terminology we call return (abbreviated ret),
represents a coercion from variables to (atomic) terms of the user’s syntax. For Lam, ret is
exactly the Var constructor.

The more interesting operation is a higher-order function we call binddt (bind for a
decorated traversable monad). Conceptually, binddt acts like a template for defining (some)
structurally recursive functions on Lam, including context-sensitive substitutions like open
and “aggregation” operations like FV. The type of binddt, written in pseudo-Coq notation
and specialized to Lam, is as follows:

binddt ‘ (Applicative F) (A B : Type) : (nat × A → F (Lam B)) → Lam A → F (Lam B)

We show the definition of binddt for Lam in Section 3.
Programmers with experience using monads may recognize the previous type as that of

the usual bind operation extended with two features. First, just like the traverse operation
of McBride and Paterson [25], the first argument to binddt is a choice of applicative functor
F : Type → Type. Second, observe that nat appears as an input of the function supplied
to binddt – strictly speaking, one says that Lam is a traversable monad decorated by the
natural numbers under addition. We discuss both of these features in Section 3. To recover
the usual bind operation, one can instantiate binddt at the identity (applicative) functor
and apply the projection nat × A → A.

L. Dunn, V. Tannen, and S. Zdancewic 14:7

Once the user defines binddt, they must supply a proof that it satisfies the axioms of
decorated traversable monads, a set of four equations. These too shall be shown in Section 3.

Altogether, instantiating Tealeaves to Lam looks as follows. Note that ret and binddt are
registered as instances of two operational typeclasses [35] called Return and Binddt. This
is just a convenience allowing us to use the notation ret and binddt throughout Tealeaves
and let Coq deduce which DTM instance is being referred to.

From Tealeaves Require Import Classes . Kleisli .DTM.
Fixpoint binddt_Lam ‘{ Applicative F} (A B : Type)

(f : nat * A -> F (Lam B)) (t : Lam A) : F (Lam B) := ...
Instance : Return Lam := Var.
Instance : Binddt nat Lam := binddt_Lam .
Instance : DecoratedTraversableMonad nat Lam.
(* Proofs of the equational axioms of DTMs ... *)
Qed.

Having bundled all this up into a DTM typeclass instance, the user imports our locally
nameless backend, Tealeaves.Backends.LN. This module defines all of the operations of
locally nameless polymorphically over a choice T of DTM (specifically, T must be decorated
by nat). It also supplies polymorphic lemmas. Using Coq’s typeclass mechanism, the user
can specialize these constructs to their own syntax. We show examples of this specialization
below by explicitly passing (T := Lam) to each function, but in practice Coq can usually
infer the choice of T implicitly. These commands will fail with an error message if Coq cannot
locate an instance of the DTM typeclass for Lam.

From Tealeaves Require Import Backends .LN.
Check LN.open (T := Lam) : Lam LN -> Lam LN -> Lam LN.
Check LN.subst (T := Lam) : atom -> Lam LN -> Lam LN -> Lam LN.
Check LN. locally_closed (T := Lam) : Lam LN -> Prop.
Check LN. subst_fresh (T := Lam) : forall (t u : Lam LN) (x : atom),

not (List.In x (FV t)) -> subst x u t = t.
Check LN. subst_spec (T := Lam) : forall (x : atom) (t u : Lam LN),

subst x u t = open u (close x t).

Now that syntax infrastructure for Lam is available, the user can proceed with their
ordinary workflow, which might consist of defining a type system and developing more
interesting metatheory that is specific to the lambda calculus. When the properties of
operations like substitution and opening are needed during a proof, the user invokes the
corresponding lemma from the backend. The is akin to how one uses the modules that would
be generated by LNgen, except no code generation has taken place.

Figure 6 shows a simplified architectural diagram of Tealeaves, which is broadly divided
into three parts: the core formalization of DTMs and their properties, the locally nameless
backend, and the effort required of the end user. We see again that the user’s work logically
divides into 3 steps as in Figure 5, but now the second step consists of proving the DTM
instance for the user’s syntax, while the locally nameless infrastructure is supplied by
Tealeaves. We shall explain the rest of the architecture in Section 4.

An inherent limitation of implementing syntax infrastructure as a Coq library is that the
backend can only prove a finite number of lemmas about substitution. For locally nameless,
it is not entirely clear what constitutes a “complete” set of properties.3 Suppose a user comes

3 See Section 4 of [5] for a discussion of this issue in the context of LNgen, along with an informal
argument for completeness of their generated lemmas, which our backend also proves.

ITP 2023

14:8 Tealeaves

Figure 6 Simplified Tealeaves architecture and user workflow.

across a property of substitution that the backend does not prove. In this case, the user
could state their lemma and prove it by induction on Lam like usual – Tealeaves does not
impede the user’s ordinary workflow.4

Alternatively, a Tealeaves power user could extend the locally nameless backend with
their lemma. Of course, the backend module does not know about Lam, so a generic version
of their lemma could not be proved by induction on lambda terms. Instead, the proof
would have to be developed so as to apply to any DTM. Examples of such generic proofs
are shown in Section 3.3. The advantage of extending the backend is that the user’s effort
would be reusable, even to users formalizing other kinds of syntax. This is how Tealeaves
facilitates collaboration by users implementing different formal systems. Note that extending
the backend with new lemmas requires no programming with Coq’s tactic language Ltac [14]
or any language outside of Coq itself, unlike the other utilities discussed in Section 4.

3 Decorated Traversable Monads

We now give a high-level intuition for DTMs and their equational theory, starting with
the definition of binddt for Lam. While DTMs can be understood in terms of principled
abstractions from monoidal category theory, users of Tealeaves are mostly shielded from
this. In this section, we only assume some familiarity with functors and the use of monads
to structural functional programs [38]. Like Haskell, we indicate the action of a functor F
on morphisms as fmap (A B : Type) : (A → B) → F A → F B. When it improves clarity, we
use subscripts to indicate the implicit values of parametric arguments, and superscripts to
disambiguate methods of typeclass instances, e.g. fmap f vs. fmapF

A,B f.

4 The only possible issue is that unfolding the operations exported by the backend will reveal generic
constructs that may be challenging to understand, a problem inherent to any generic framework. Future
work on Tealeaves could supply custom simplification tactics to hide some of this complexity.

L. Dunn, V. Tannen, and S. Zdancewic 14:9

3.1 Proving the DTM instance for Lam

The first step required to instantiate Tealeaves to Lam is to define binddt, which can be
thought of as a template for structurally recursive functions. We have seen that the first
argument to binddt is a choice of applicative functor, an abstraction introduced by McBride
and Paterson [25] and used often by functional programmers. For present purposes it suffices
to know that an applicative functor F : Type → Type is characterized by two operations,
pure and ap, whose types are as follows:

pure (A : Type) : A → F A
ap (A B : Type) : F (A → B) → F A → F B

Like monads, applicative functors provide a notion of computational effect, but they are
a more general abstraction. Intuitively, pure lifts a value into the functor by wrapping
it in a trivial effect. ap applys effectful functions to effectful values, yielding an effectful
value. These operations are subject to unsurprising laws given in [25], but they are not
important here. The identity functor, written I, is applicative; applicatives are also closed
under composition. An applicative homomorphism ϕ : F =⇒ G is a natural transformation
between applicative functors that commutes with ap and pure in the obvious way.

A prototypical applicative functor is the datatype list of finite lists, interpreted as
the effect of non-determinism. pure a is the deterministic singleton [a]. ap applys lists
of functions to lists of arguments to get a list of outputs by applying each function to
each argument, representing a non-deterministic choice of both. A typical applicative
homomorphism would be the transformation that maps a list to the set of its elements.
Another important class of examples is given by a constant functor over any monoid, with
pure and ap identified with the unit and multiplication, respectively.

The definition the user should give for binddt for Lam is as follows. Here, <*> is infix
notation for ap. The helper function preincr will be explained below.

Fixpoint binddt ‘{ Applicative F} {A B : Type}
(f : nat * A -> F (Lam B)) : Lam A -> F (Lam B) := match t with
| Var v => f (0, v)
| Ap t1 t2 => pure Ap <*> binddt f t1 <*> binddt f t2
| Abs body => pure Abs <*> binddt (preincr f 1) body
end.

The first non-implicit argument f is a substitution rule that specifies what should happen
at each variable. The role of binddt is to apply this substitution rule to each variable in a
term. f itself takes two arguments. The first, here of type nat, represents the number of
binders in scope at some variable occurrence, while the second represents the occurrence
itself. When binddt is specialized to locally nameless case where A = B = LN (recall Figure
2), the second argument to f will be either a de Bruijn index or an atom.

The output of f has type F (Lam B), representing an expression to replace the occurrence
with, with the added flexibility that it may be wrapped in an applicative effect F. To account
for this effect, the Ap and Abs cases of binddt lift the constructor into F with pure and
replace ordinary function application with effectful application <*>. This pattern for working
with applicative effects is common enough that there is an established notation of “idiom
brackets” [25] (not shown here) to reduce the syntactic clutter.

We draw the reader’s attention to the Var case: binddt f (Var v) = f (0, v). This
definition is in fact an axiom of DTMs (Equation (1)) and corresponds to the fact that there
are no binders in scope in an atomic expression. This may appear to suggest that f will only

ITP 2023

14:10 Tealeaves

ever see 0 binders in scope. Actually, f is informed about binders using a helper function
preincr (“precompose increment”), whose definition is (preincr f n) (n’, v) = f(n + n’, v).
That Abs is a binder is reflected in the recursive call to binddt, which modifies f with
preincr. The idea is that when preincr f 1 is eventually applied to a binding context and
a variable, it will increment its binding context before calling f. The reader should convince
themselves that when the recursion of binddt f t bottoms out on a Var, the invocation of
f will be of the form

preincr
(
preincr

(
. . .

(
preincr f 1

)
. . .

)
1
)

1︸ ︷︷ ︸
n times

(0, v) = f (n, v)

where n ∈ N is the number of Lam constructors gone under during recursion.
This scheme is quite general. For example, to extend the lambda calculus with a variadic

Let construct accepting a list l of bound definitions, we can use preincr f (length l)
to introduce several new entities at once. We can also use monoids other than nat. For
example, a fully-named representation could use the monoid of finite lists of names under
concatenation. The principle limiting what kinds of information one can pass to f using
preincr is that binddt must satisfy Equation (3), below, a constraint we discuss further in
Section 4.

The final step of instantiating the backend is to prove that binddt satisfies a set of four
equations. The axioms are given by the following

▶ Definition 3.1 (DTM, Kleisli-style presentation). A traversable monad decorated by a
monoid ⟨W, ·, 1W⟩ is a type constructor T : Type → Type equipped with operations:

ret (A : Type) : A → T A
binddt (Applicative F) (A B : Type) : (W × A → F (T B)) → T A → F (T B)

subject to the following four equations:

binddtF f ◦ ret = f ◦ retW× (1)
binddtI

(
ret ◦ extractW×)

= idTA (2)
fmapF (binddtG g) ◦ (binddtF f) =

binddt(F◦G)
(
λ(w, a).fmapF (binddtG (preincr g w)) (f (w, a))

)
(3)

ϕ ◦ binddtF f = binddtG (ϕ ◦ f) (for all ϕ : F =⇒ G applicative hom.) (4)

In Equation (1), retW× is defined retW×a = (1W, a) where 1W is the monoid unit. In (2),
extractW× is the projection extractW× (w, a) = a. These functions come from the Cartesian-
product-with-monoid class of monads (such as used in 2.6 in [38]), known often as the
“logging” or “writer” monad. Note that (2) instantiates binddt to the identity applicative,
while (3) mentions the composition of two applicatives and (4) mentions homomorphisms
between two applicatives.

The operations of the locally nameless backend are defined in terms of binddt and ret,
while its lemmas are proved from these four equations only. Notably, this includes properties
like subst_fresh (recall Figure 3), which is a conditional equality, unlike the axioms above.
The next two sections show how the axioms of DTMs give rise to high-level properties like
subst_fresh.

Category theory

Category theorists may wonder if we can give a more “theoretical” definition of DTMs.
Law-abiding traversable functors were defined in [21]. Our library extends these to what we
call decorated-traversable functors and proves the following characterization.

L. Dunn, V. Tannen, and S. Zdancewic 14:11

▶ Theorem 3.2. Definition 3.1 is equivalent to a monoid in the category of decorated-
traversable functors.

This theorem is formalized for single-sorted DTMs (Definition 3.1) and a body of general-
purpose category theory as shown in Figure 6. This part of Tealeaves is largely separate
from the multisorted formalization described in the rest of this paper. A more thorough
explanation of this useful perspective shall be forthcoming.

3.2 DTMs as containers
One often has occasion to consider the notion of variable occurrence, especially occurrence
in a binding context. For example, FV lists occurrences of free variables, while local closure
stipulates that no de Bruijn index n ∈ N occurs under fewer than n + 1 abstractions. Both
operations are more like “aggregations” than “substitutions.” FV aggregates free variables
into a list, while LC quantifies over all occurrences, aggregating a set of propositions (one
for each occurrence) into a conjunction. It is not so obvious how an equational theory like
that of DTMs can incorporate these collection-themed concepts. Tealeaves achieves this by
building on a body of work on traversable [25, 18, 21, 8] and shapely [22] functors.

The way to define aggregations is to instantiate the applicative functor F to a (constant
functor over some) monoid. The most general such choice is the free monoid, i.e. list. In
particular, we can enumerate occurrences, including their context, as such:5

tolistd : T LN → list (N × LN) tolistd
def
≡ binddtlist (N×LN) (λ(n, v).[(n, v)])

We also define a context-sensitive notion of variable occurrence (∈d) as a special case of
binddt. For a term t of Lam LN, (n, v) ∈d t means a variable v:LN occurs somewhere in t
underneath n:nat abstractions.

(n, v) ∈d t
def
≡ binddt∨ (λ(n′, v′).(n, v) = (n′, v′)) t

Here, ∨ indicates we instantiate to the monoid of propositions under disjunction. We also
provide a version v ∈ t that checks for occurrences of v in any binding context.

Because variable occurrence is defined a special case of binddt, we immediately obtain a
characterization of how ret and binddt interact with the occurrence relation.

▶ Lemma 3.3. Equations (1) and (3) imply the following, respectively.

(n, v2) ∈d ret v1 ⇐⇒ v1 = v2 ∧ n = 0 (5)
(n, v2) ∈d binddtI f t ⇐⇒

∃ n1 n2 v1, (n1, v1) ∈d t ∧ (n2, v2) ∈d f (n1, v1) ∧ n = n1+ n2 (6)

(5) states that the only variable in an atomic expression occurs with 0 binders in scope.
(6) characterizes the set of occurrences in t after performing a substitution codified by f. If
v1 occurs in t under n1 binders and v1 is replaced by f (n1, v1), the occurrences introduced
by the subterm have n1 added to their context, in addition to their context as occurrences in
f (n1, v1) – binding context accumulates with tree depth.

5 Tealeaves generally names context-aware versions of operations with a trailing d for decoration.

ITP 2023

14:12 Tealeaves

subst x u = bind (substloc x u) substloc x u v =
{

u if v = Fr x

ret v else

open u = bindd (openloc u) openloc u (n, v) =

Bd (m-1) if v = Bd m, m > n

u if v = Bd n

ret v else

close x = fmapd (closeloc x) closeloc x (n, v) =

Bd (m+1) if v = Bd m, m ≥ n

Bd n if v = Fr x

v else

FV = foldMaplist FVloc FVloc v =
{

[x] if v = Fr x

[] else

LC = foldMapd∧ lcloc LCloc (n, v) =
{

n > m if v = Bd m

True else

Figure 7 Locally nameless operations defined as special cases of binddt.

Reasoning about syntax often involves conditions on the variable occurrences – for
example, subst_fresh requires knowledge about the freshness of a given variable. The
next theorem gives a pointwise reasoning principle that is used to exploit information about
occurrences. This theorem is proved using the coalgebraic presentation of traversability
developed in [20].

▶ Theorem 3.4 (Pointwise reasoning). Let T be a DTM. For all t : T A and f, g : W × A → F (T B)
where F is any applicative functor, the following reasoning principle holds.

(∀ (w : W) (a : A) , (w, a) ∈d t =⇒ f (w, a) = g (w, a)) =⇒ binddtF f t = binddtF g t.

3.3 Locally nameless backend
Let T be a DTM decorated by nat. We now define the operations of Figure 3 and prove
some exemplary lemmas. Our locally backend actually uses multisorted DTMs (defined in
the next section), but the basic principles are the same.

The five main operations are defined in Figure 7. On the right, each operation is defined
“locally” in terms of its action on individual variable occurrences; three such operations
require the number n of binders in scope. On the left, each operation is extended to operate
on terms using a combinator, all of which are special cases of binddt. E.g. bindd is
binddt specialized to the identity applicative, while fmapd is like bindd for maps rather
than substitutions. The foldMap* operations instantiate the applicative functor argument
of binddt to a monoid: list uses concentation, while ∧ is shorthand for the monoid of
propositions under conjunction. The following properties are proven for all atoms x:atom
and abstract terms t, u:T LN.

▶ Lemma 3.5 (subst_fresh). x /∈ FV t =⇒ subst x u t = t.

Proof. Combining Theorem 3.4 with (2) reduces the problem to

∀(v : LN), v ∈ t =⇒ substloc x u v = ret v,

which follows by case analysis on v and a lemma y ∈ FV t ⇐⇒ Fr y ∈ t proved by (4). ◀

L. Dunn, V. Tannen, and S. Zdancewic 14:13

▶ Lemma 3.6 (subst_spec). subst x u t = open u (close x t).

Proof. By (3) and (1), open u (close x t) can be fused together to obtain

bindd (λ(n, v).openloc u (n, closeloc x (n, v))) t.

One then shows the middle expression is equal to λ(n, v).substloc x u v by case analysis. ◀

▶ Lemma 3.7 (fv_subst_upper). FV (subst x u t) ⊆ (FV t \ {x}) ∪ FV u.

Proof. By x ∈ FV t ⇐⇒ Fr x ∈ t, the problem reduces to

Fr y ∈ subst x u t =⇒ (Fr y ∈ t ∧ y ̸= x) ∨ (Fr y ∈ u) .

This follows by rewriting the left hand side with (6), and case analysis. ◀

The vast majority of proofs in our locally nameless backend proceed along similar
lines: fusing sequential operations with (1) and (3), using (5) and (6) to reason about how
operations affect the set of occurrences, applying pointwise reasoning to prove equalities, and
case analysis on concrete variables.

3.4 Multisorted DTMs
In practice, few formal systems involve just one sort of variable. For example, polymorphic
lambda calculi like System F include both type and term variables. Fixed-point extensions
of first-order logic [19], which provide a theoretical foundation for languages like Datalog [2],
involve both term and relation variables, as do second-order logics. For such systems it is
necessary to consider a generalization of Definition 3.1 that supports parallel substitution of
more than one sort of variable at the same time. This is because our approach rests on the
assumption that all substitution and related operations are special cases of a single operation,
so they can always be fused together with an appropriate generalization of (3). This is our
motivation for introducing Definition 3.8.

▶ Definition 3.8 (Multisorted DTM). Let K be a set of sorts. Let T : K → Type → Type be a
K-indexed set of type constructors and let U be a type constructor. A traversable T -module
decorated by a monoid ⟨W, ·, 1W⟩ is defined from the following data:

ret (A : Type) : ∀ (k : K) , A → T k A
binddt (Applicative F) (A B : Type) : (∀(k : K), W × A → F (T k B)) → U A → F (U B)

subject to conditions generalizing those of Definition 3.1.

For short, we call an instance of Definition 3.8 a K-sorted DTM (where “M” technically
stands for “right Module.”) When K is the unit type and T tt = U (tt being Coq’s name
for the constructor of unit type), this definition reduces to Definition 3.1. In general, such
structures represent a grammatical category U inside which one can substitute any of |K|-many
different kinds of variables in parallel. Reasoning with multisorted DTMs works as before,
but now incorporating case analysis on K as well.

4 Evaluating Tealeaves

Next we discuss how we evaluate Tealeaves. First we describe the size and scope of Tealeaves’
core and backend before discussing case studies instantiating Tealeaves with different kinds
of syntax. Then we offer a feature-wise comparison to two popular syntax frameworks for
Coq, Autosubst versions 1 and 2 [32, 36] and LNgen [5].

ITP 2023

14:14 Tealeaves

Implementation

We recall Figure 6, which shows the division of Tealeaves into two major components:
Core Tealeaves, which formalizes DTMs and the properties discussed in Section 3.2.
The locally nameless backend, which develops generic locally nameless syntax infrastruc-
ture like that shown in Section 3.3.

The core is a formalization of multisorted DTMs (Definition 3.8). On top of the axioms
we implement an additional layer of high-level derived theory like that presented in Section
3.2, the chief export of which is a proof of Theorem 3.4. Additionally, the core includes a
general formalization of numerous category-theoretic concepts used to prove Theorem 3.2 for
single-sorted DTMs, but this is primarily of theoretical interest; it does not affect end-users
and would not be required to port Tealeaves to another proof assistant like Agda. Altogether,
as measured by coqwc, the core includes about 10,000 lines of specification (including imports,
notations, etc.) and 9,000 lines of proof. Of these, the essential parts formalizing multisorted
DTMs account for about 2,000 lines of specification of 1,000 of proof.

The locally nameless backend includes a core part independent of DTMs that formalizes
basic notions like atoms, sets, and environments. This part consists of about 2000 lines
derived from the Metalib library, a component of LNgen, lightly adapted to fit into our more
category-theoretic framework. The locally nameless infrastructure, which is parameterized by
a DTM instance, consists of about 1000 lines of specification and 650 of proof. The backend
export several dozen high-level infrastructural lemmas like the ones generated by LNgen,
as well as many other lower-level lemmas. Examples of lemmas include the ones proved in
Section 3.3, as well as generalizations that describe the interaction between operations that
act on different sorts of variables.

The locally nameless backend supports the claim that the DTM abstraction is adequate
for reasoning about raw syntax generically. Next we ask whether this concept is actually
useful, i.e. does it save labor, and for which kinds of syntax does it work?

Case studies

So far we have implemented a few different case studies with Tealeaves.
STLC Our first study is a proof of type soundness for the simply-typed lambda calculus

(STLC). We use Alectryon [27] to present this file in the form of browser-based tutorial
on Equations (1)–(4), demonstrating the general strategy for proving each one. We also
provide an alternate version of this tutorial that uses the category-theoretic description
of DTMs indicated in Theorem 3.2.

System F In the second study, we instantiate Tealeaves with the syntax of System F before
proving type soundness for this system. This makes essential use of multisorted DTMs and
the ability of our backend to reason about non-trivial interactions between substitution
operations that act on different sorts of variables.

Variadic binding We are developing tutorials demonstrating how to instantiate Tealeaves
with languages featuring mutually-inductively defined grammatical categories and variadic
binders, such as a letrec construct.

The cost to instantiate Tealeaves is to define binddt and prove multisorted versions of
Equations (1)–(4). These proofs proceed by induction on terms, where each case proceeds
by rewriting with laws like those of applicative functors. In the future, we expect to provide
automated support for the instantiation process. Happily, three of the DTM axioms are
straightforward to prove in most cases, regardless of the user’s syntax. Equation (1) defines
the behavior of binddt on variables and is proved with the reflexivity tactic, while (2)

L. Dunn, V. Tannen, and S. Zdancewic 14:15

and (4) are straightforward inductive proofs. Equation (3), however, presents a challenge
when binding information (i.e. data passed with preincr) is computed from an argument
which itself is subject to substitution. A key example of this phenomenon is a variadic let
(or letrec) construct that accepts a list of definitions, in which case binddt f is defined
to pass the length of the list to f in the let body. The bound definitions are themselves
subject to substitution with binddt, and it is not immediately clear how to prove that this
does not change the length of the list, a key requirement of Equation (3) manifest in the
two occurrences of w. This requires applying the representation theorem for traversals [18],
which states that shape is invariant under traversals.

Comparison to other utilities

Three commonly used utilities for automating syntax infrastructure in Coq are Autosubst [32],
Autosubst 2 [36], and LNgen [5], all of which involve dynamically generating infrastructure
after being provided with a user’s syntax. The Autosubst family represent variables as
de Bruijn indices, while LNgen generates locally nameless infrastructure. In some ways
Tealeaves is more general than these utilities, as the operations they reason about are special
cases of binddt. Table 1 summarizes the features offered by the utilities.

Autosubst provides tool support for working with de Bruijn indices based on the σ-
calculus [1], a version of untyped λ-calculus extended with explicit substitution. Given an
Inductive definition of a user’s syntax, the user calls upon Ltac to synthesize a parallel
substitution operation and a small number of equational axioms for this operation. Users
invoke a complete decision procedure, autosubst, which proves all true equalities between a
delineated class of substitution expressions from these axioms. Semanticists generate these
goals while developing metatheory and call on Autosubst to solve them.

Autosubst provides only ad-hoc support for substitution involving multiple sorts of
variables. The limitations of Ltac also prevent their automation from working with mutually-
inductively defined grammatical categories. The authors note that the fragile semantics of
Ltac mean it is sometimes necessary to manually inspect generated definitions for errors.

Autosubst 2 is an external code generator written in Haskell which accepts a second-order
specification of a syntax and generates Coq modules containing proofs of the equations to
instantiate an extended calculus that handles multisorted substitution much the same way
we do. Compared to the first version, Autosubst 2 handles potentially mutually inductive
grammatical categories with multiple kinds of variables. The authors conjecture, but do
not prove, that their modified calculus is confluent. Users who modify their syntax must
re-execute the external program to reinstantiate the Autosubst library.

The Autosubst family does not provide support for conditional equalities or operations
that compute the set of free variables, perhaps because these are not as essential when using
de Bruijn indices as when using a locally nameless representation.

LNgen is a code generator that, given an annotated grammar in an Ott-compatible [33]
format, generates Coq files containing the operations of locally nameless and proof scripts
than synthesize infrastructural lemmas. The scripts proceed by induction and are based on
the authors’ “knowledge of how such proofs usually go.” As with Autosubst 2, modifying the
syntax involves re-executing the utility. In private correspondence, the authors of LNgen have
reported to us cases of long compile times (about 30 minutes in some cases) and the potential
for some proofs to fail, requiring manual intervention from the user. As with Autosubst, this
problem is exacerbated by the opaque semantics of Ltac.

ITP 2023

14:16 Tealeaves

Table 1 Features supported by Coq syntax frameworks.

Utility Representation Underlying theory Multisorted Variadic Binders
Autosubst de Bruijn σ-calculus Ad-hoc No
Autosubst 2 de Bruijn σ-calculus Yes No
LNgen Locally nameless Structural recursion Yes No
Tealeaves Generic DTMs Yes Yes

5 Related work

Besides Autosubst and LNgen, there are syntax metatheory frameworks for Coq that share
some of Tealeaves’ features but lack the principled theory and flexibility of DTMs.

GMeta [23] is prior art implementing a generic Coq framework for first-order syntax
metatheory. Like Tealeaves, it features an extensible architecture supporting multi-sorted
syntax and multiple representations of variable binding. However, the implementations differ
substantially because GMeta lacks a principled abstraction of syntax like DTMs, considering
instead a universe of representable types. In effect, one has a set of type expressions and
a denotation mapping these into Coq’s types; generic proofs proceed by induction on an
expression denoting a type. By contrast, we showed in Section 3.3 how infrastructural lemmas
with Tealeaves proceed by the equational theory of DTMs. The user’s cost of entry for
GMeta is to prove the type of their syntax is representable up to isomorphism, which is
supported with automation.

DBlib [31] is a community-maintained Coq library that supports reasoning about de
Bruijn indices. Like Tealeaves, it is based on a structured recursion combinator subject to
axioms, but these axioms are ad-hoc and not pure equations, whereas (1)–(4) are equations
derived from a principled theory of structured monads as manifest in Theorem 3.2. Using
results from Section 3.2, it is easy to see that DBlib’s axioms are immediate corollaries of
DTMs. For instance, their axiom TraverseVarIsIdentity can be derived by specializing
Theorem 3.4 to g = ret ◦ extractW× and simplifying with (2).

The application of monads to formal syntax metatheory was proposed by Bellegarde and
Hook [7], who considered a combinator Ewp (“extension with policy”) that is reminiscent of
binddt but less expressive and lacking an axiomatization. Work building on the monadic
approach, typically using a de Bruijn representation, has emphasized well-scoped [9, 4] and
well-scoped, well-typed [3] syntax. Fiore and Szamozvancev have recently introduced an
Agda framework for well-typed syntax that is inspired by work on presheaf-theoretic models
of syntax [16, 15]. The heavy use of dependent types in this work leads to a workflow in
which the types of operations are very nearly their own correctness properties, whereas our
“raw” approach separates the definition of operations from their metatheory. Investigating
the theoretical relation between the two approaches may be an interesting direction for future
work.

Two fundamentally different formalization strategies for abstract syntax are higher-order
abstract syntax (HOAS) [26] and techniques using nominal sets [28], both of which are closely
associated with dedicated-purpose proof assistants. Implementing HOAS in Coq requires
using a variation like parametric higher-order abstract syntax (PHOAS) [12]. Nominal sets
are generally used with first-class support from the proof assistant, such as in Nominal
Isabelle [37].

L. Dunn, V. Tannen, and S. Zdancewic 14:17

6 Conclusion and future work

We have presented Tealeaves, a generic Coq framework for reusable syntax metatheory. We
showed how a user instantiates Tealeaves by proving their syntax forms a DTM, allowing
them to specialize a body of generic infrastructure lemmas to their syntax. We evaluated
Tealeaves with case studies instantiating locally nameless infrastructure to languages with
multiple sorts of variables, mutually-inductive grammatical categories, and variadic binders.

Tealeaves offers a number of interesting directions for future investigation. Currently we
are investigating precisely which kinds of syntax and reasoning work well with Tealeaves. More
precisely, we are exploring how the core theory of DTMs can be modified to accommodate
more sophisticated situations than raw terms with locally nameless variables or de Bruijn
indices.

Well-scoped syntax

We initially sought an abstraction for raw syntax, largely because this representation is
simple and commonly used. However, there are convincing theoretical and practical reasons
to consider intrinisically well-scoped syntax. We are investigating how to extend DTMs to
the well-scoped setting. As a first step, let LN be parameterized by a context ctx of free
variables and by a maximum value n for de Bruijn indices using Coq’s type Fin.t of finite
sets, as follows.

Inductive LN (ctx : list atom) (n : nat) : Type :=
| Fr : forall (a : atom), In a ctx -> LN ctx n
| Bd : Fin.t n -> LN ctx n.

The type of lambda terms is generalized to allow the set of variables to be parameterized
by the number of entities in scope (here, preincr V n maps m to the set V (n + m)).

Inductive Lam (V : nat -> Type) :=
| Var : V 0 -> Lam V
| Abs : Lam (preincr V 1) -> Lam V
| App : Lam V -> Lam V -> Lam V.

The type of locally closed terms with free variables in ctx is then Lam (LN ctx). For example,
the term Var (Fr x) can be given this type if x ∈ ctx. On the other hand, the open term
Var (Bd 0) cannot be given this type, while it can be given type Lam (preincr (LN ctx) 1).

A generalization of Definition 3.1 can be formulated for this situation on paper. An unfor-
tunate limitation of Coq’s type theory is that types like LN ((n + m) + p) and LN (n + (m + p))
are not defintionally equal, hence their terms cannot even be compared for equality, obstruct-
ing a naïve attempt to formalize this definition in Coq. Further parameterizing V by types
would also move closer towards the type-preserving approach of McBride [24].

Fully named variables

The Tealeaves repository includes a generalization of Definition 3.1 that additionally takes
a binder-renaming operation, with which we intend to implement a fully named Tealeaves
backend. With such an extension, our aim is to give a certified change in representation
between locally nameless and fully named variables. One use case would be to implement a
verified programming language in Coq using locally nameless while allowing programmers to
write code with named variables, assured that the change in representation introduces no
bugs.

ITP 2023

14:18 Tealeaves

References
1 M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions. Journal of

Functional Programming, 1(4):375–416, 1991. doi:10.1017/S0956796800000186.
2 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases: The Logical

Level. Addison-Wesley Longman Publishing Co., Inc., USA, 1st edition, 1995.
3 Guillaume Allais, Robert Atkey, James Chapman, Conor McBride, and James McKinna. A

type- and scope-safe universe of syntaxes with binding: their semantics and proofs. Journal of
Functional Programming, 31:e22, 2021. doi:10.1017/S0956796820000076.

4 Thorsten Altenkirch and Bernhard Reus. Monadic presentations of lambda terms using
generalized inductive types. In Jörg Flum and Mario Rodríguez-Artalejo, editors, Computer
Science Logic, 13th International Workshop, CSL ’99, 8th Annual Conference of the EACSL,
Madrid, Spain, September 20-25, 1999, Proceedings, volume 1683 of Lecture Notes in Computer
Science, pages 453–468. Springer, 1999. doi:10.1007/3-540-48168-0_32.

5 Brian Aydemir and Stephanie Weirich. LNgen: Tool Support for Locally Nameless Representa-
tions. Technical report, University of Pennsylvania, Department of Computer and Information
Science, June 2010. URL: https://repository.upenn.edu/cis_reports/933/.

6 Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan Foster, Benjamin C.
Pierce, Peter Sewell, Dimitrios Vytiniotis, Geoffrey Washburn, Stephanie Weirich, and Steve
Zdancewic. Mechanized metatheory for the masses: The poplmark challenge. In Proceedings
of the 18th International Conference on Theorem Proving in Higher Order Logics, TPHOLs’05,
pages 50–65, Berlin, Heidelberg, 2005. Springer-Verlag. doi:10.1007/11541868_4.

7 Françoise Bellegarde and James Hook. Substitution: A formal methods case study using
monads and transformations. Sci. Comput. Program., 23(2–3):287–311, December 1994.
doi:10.1016/0167-6423(94)00022-0.

8 Richard Bird, Jeremy Gibbons, Stefan Mehner, Janis Voigtländer, and Tom Schrijvers. Un-
derstanding idiomatic traversals backwards and forwards. SIGPLAN Not., 48(12):25–36,
September 2013. doi:10.1145/2578854.2503781.

9 Richard S. Bird and Ross Paterson. De bruijn notation as a nested datatype. J. Funct.
Program., 9(1):77–91, 1999. doi:10.1017/s0956796899003366.

10 Rod M. Burstall. Proving properties of programs by structural induction. Comput. J.,
12(1):41–48, 1969. doi:10.1093/comjnl/12.1.41.

11 Arthur Charguéraud. The locally nameless representation. J. Autom. Reason., 49(3):363–408,
2012. doi:10.1007/s10817-011-9225-2.

12 Adam Chlipala. Parametric higher-order abstract syntax for mechanized semantics. In
Proceedings of the 13th ACM SIGPLAN International Conference on Functional Programming,
ICFP ’08, pages 143–156, New York, NY, USA, 2008. Association for Computing Machinery.
doi:10.1145/1411204.1411226.

13 N.G de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic formula
manipulation, with application to the church-rosser theorem. Indagationes Mathematicae
(Proceedings), 75(5):381–392, 1972. doi:10.1016/1385-7258(72)90034-0.

14 David Delahaye. A tactic language for the system coq. In Michel Parigot and Andrei Voronkov,
editors, Logic for Programming and Automated Reasoning, 7th International Conference, LPAR
2000, Reunion Island, France, November 11-12, 2000, Proceedings, volume 1955 of Lecture
Notes in Computer Science, pages 85–95. Springer, 2000. doi:10.1007/3-540-44404-1_7.

15 Marcelo Fiore. Second-order and dependently-sorted abstract syntax. In Proceedings of the
2008 23rd Annual IEEE Symposium on Logic in Computer Science, LICS ’08, pages 57–68,
USA, 2008. IEEE Computer Society. doi:10.1109/LICS.2008.38.

16 Marcelo Fiore, Gordon Plotkin, and Daniele Turi. Abstract syntax and variable binding. In
14th Annual IEEE Symposium on Logic in Computer Science, Trento, Italy, July 2-5, 1999,
pages 193–202. IEEE Computer Society, 1999. doi:10.1109/LICS.1999.782615.

17 Marcelo Fiore and Dmitrij Szamozvancev. Formal metatheory of second-order abstract syntax.
Proc. ACM Program. Lang., 6(POPL), January 2022. doi:10.1145/3498715.

https://doi.org/10.1017/S0956796800000186
https://doi.org/10.1017/S0956796820000076
https://doi.org/10.1007/3-540-48168-0_32
https://repository.upenn.edu/cis_reports/933/
https://doi.org/10.1007/11541868_4
https://doi.org/10.1016/0167-6423(94)00022-0
https://doi.org/10.1145/2578854.2503781
https://doi.org/10.1017/s0956796899003366
https://doi.org/10.1093/comjnl/12.1.41
https://doi.org/10.1007/s10817-011-9225-2
https://doi.org/10.1145/1411204.1411226
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1007/3-540-44404-1_7
https://doi.org/10.1109/LICS.2008.38
https://doi.org/10.1109/LICS.1999.782615
https://doi.org/10.1145/3498715

L. Dunn, V. Tannen, and S. Zdancewic 14:19

18 Jeremy Gibbons and Bruno Oliveira. The essence of the iterator pattern. J. Funct. Program.,
19:377–402, July 2009. doi:10.1017/S0956796809007291.

19 Yuri Gurevich and Saharon Shelah. Fixed-point extensions of first-order logic. Annals of Pure
and Applied Logic, 32(nil):265–280, 1986. doi:10.1016/0168-0072(86)90055-2.

20 Mauro Jaskelioff and Russell O’Connor. A representation theorem for second-order functionals.
Journal of Functional Programming, 25, February 2014. doi:10.1017/S0956796815000088.

21 Mauro Jaskelioff and Ondrej Rypacek. An investigation of the laws of traversals. Electronic
Proceedings in Theoretical Computer Science, 76, February 2012. doi:10.4204/EPTCS.76.5.

22 C. Barry Jay and J. Robin B. Cockett. Shapely types and shape polymorphism. In Donald
Sannella, editor, Programming Languages and Systems - ESOP’94, 5th European Symposium
on Programming, Edinburgh, UK, April 11-13, 1994, Proceedings, volume 788 of Lecture Notes
in Computer Science, pages 302–316. Springer, 1994. doi:10.1007/3-540-57880-3_20.

23 Gyesik Lee, Bruno C. D. S. Oliveira, Sungkeun Cho, and Kwangkeun Yi. GMeta: A generic
formal metatheory framework for first-order representations. In Helmut Seidl, editor, Pro-
gramming Languages and Systems - 21st European Symposium on Programming, ESOP 2012,
Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2012, Tallinn, Estonia, March 24 - April 1, 2012. Proceedings, volume 7211 of Lecture Notes
in Computer Science, pages 436–455. Springer, 2012. doi:10.1007/978-3-642-28869-2_22.

24 Conor McBride. Type-preserving renaming and substitution. Unpublished note, 2005. URL:
http://strictlypositive.org/ren-sub.pdf.

25 Conor McBride and Ross Paterson. Applicative programming with effects. J. Funct. Program.,
18(1):1–13, January 2008. doi:10.1017/S0956796807006326.

26 Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Richard L. Wexelblat,
editor, Proceedings of the ACM SIGPLAN’88 Conference on Programming Language Design
and Implementation (PLDI), Atlanta, Georgia, USA, June 22-24, 1988, pages 199–208. ACM,
1988. doi:10.1145/53990.54010.

27 Clément Pit-Claudel. Untangling mechanized proofs. In Proceedings of the 13th ACM SIGPLAN
International Conference on Software Language Engineering, SLE 2020, pages 155–174, New
York, NY, USA, 2020. Association for Computing Machinery. doi:10.1145/3426425.3426940.

28 Andrew M. Pitts. Nominal logic, a first order theory of names and binding. Information and
Computation, 186(2):165–193, 2003. Theoretical Aspects of Computer Software (TACS 2001).
doi:10.1016/S0890-5401(03)00138-X.

29 Randy Pollack. Closure under alpha-conversion. In Henk Barendregt and Tobias Nipkow,
editors, Types for Proofs and Programs, pages 313–332, Berlin, Heidelberg, 1994. Springer
Berlin Heidelberg.

30 Randy Pollack. Reasoning about languages with binding: Can we do it yet?, February
2006. URL: https://web.archive.org/web/20101122040606/http://homepages.inf.ed.ac.
uk/rpollack/export/bindingChallenge_slides.pdf.

31 François Pottier and Coq maintainers. DBlib. https://github.com/coq-community/dblib,
2019.

32 Steven Schäfer, Tobias Tebbi, and Gert Smolka. Autosubst: Reasoning with de bruijn terms
and parallel substitutions. In Xingyuan Zhang and Christian Urban, editors, Interactive
Theorem Proving - 6th International Conference, ITP 2015, Nanjing, China, August 24-27,
2015, LNAI. Springer-Verlag, August 2015. doi:10.1007/978-3-319-22102-1_24.

33 Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Thomas Ridge, Susmit
Sarkar, and Rok Strniša. Ott: Effective tool support for the working semanticist. In
Proceedings of the 12th ACM SIGPLAN International Conference on Functional Programming,
ICFP ’07, pages 1–12, New York, NY, USA, 2007. Association for Computing Machinery.
doi:10.1145/1291151.1291155.

34 Matthieu Sozeau and Nicolas Oury. First-class type classes. In Proceedings of the 21st
International Conference on Theorem Proving in Higher Order Logics, TPHOLs ’08, pages
278–293, Berlin, Heidelberg, 2008. Springer-Verlag. doi:10.1007/978-3-540-71067-7_23.

ITP 2023

https://doi.org/10.1017/S0956796809007291
https://doi.org/10.1016/0168-0072(86)90055-2
https://doi.org/10.1017/S0956796815000088
https://doi.org/10.4204/EPTCS.76.5
https://doi.org/10.1007/3-540-57880-3_20
https://doi.org/10.1007/978-3-642-28869-2_22
http://strictlypositive.org/ren-sub.pdf
https://doi.org/10.1017/S0956796807006326
https://doi.org/10.1145/53990.54010
https://doi.org/10.1145/3426425.3426940
https://doi.org/10.1016/S0890-5401(03)00138-X
https://web.archive.org/web/20101122040606/http://homepages.inf.ed.ac.uk/rpollack/export/bindingChallenge_slides.pdf
https://web.archive.org/web/20101122040606/http://homepages.inf.ed.ac.uk/rpollack/export/bindingChallenge_slides.pdf
https://github.com/coq-community/dblib
https://doi.org/10.1007/978-3-319-22102-1_24
https://doi.org/10.1145/1291151.1291155
https://doi.org/10.1007/978-3-540-71067-7_23

14:20 Tealeaves

35 Bas Spitters and Eelis Weegen. Type classes for mathematics in type theory. Mathematical
Structures in Computer Science, 21, February 2011. doi:10.1017/S0960129511000119.

36 Kathrin Stark, Steven Schäfer, and Jonas Kaiser. Autosubst 2: Reasoning with multi-sorted de
bruijn terms and vector substitutions. In Proceedings of the 8th ACM SIGPLAN International
Conference on Certified Programs and Proofs, CPP 2019, pages 166–180, New York, NY, USA,
2019. Association for Computing Machinery. doi:10.1145/3293880.3294101.

37 Christian Urban and Christine Tasson. Nominal techniques in isabelle/hol. In Robert
Nieuwenhuis, editor, Automated Deduction – CADE-20, pages 38–53, Berlin, Heidelberg, 2005.
Springer Berlin Heidelberg. doi:10.1007/11532231_4.

38 Philip Wadler. The essence of functional programming. In Proceedings of the 19th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’92, pages
1–14, New York, NY, USA, 1992. Association for Computing Machinery. doi:10.1145/143165.
143169.

https://doi.org/10.1017/S0960129511000119
https://doi.org/10.1145/3293880.3294101
https://doi.org/10.1007/11532231_4
https://doi.org/10.1145/143165.143169
https://doi.org/10.1145/143165.143169

Closure Properties of General Grammars –
Formally Verified
Martin Dvorak #

Institute of Science and Technology Austria, Klosterneuburg, Austria

Jasmin Blanchette #

Ludwig-Maximilians-Universität München, Germany

Abstract
We formalized general (i.e., type-0) grammars using the Lean 3 proof assistant. We defined basic
notions of rewrite rules and of words derived by a grammar, and used grammars to show closure of
the class of type-0 languages under four operations: union, reversal, concatenation, and the Kleene
star. The literature mostly focuses on Turing machine arguments, which are possibly more difficult
to formalize. For the Kleene star, we could not follow the literature and came up with our own
grammar-based construction.

2012 ACM Subject Classification Theory of computation → Rewrite systems

Keywords and phrases Lean, type-0 grammars, recursively enumerable languages, Kleene star

Digital Object Identifier 10.4230/LIPIcs.ITP.2023.15

Related Version Previous Version: https://arxiv.org/abs/2302.06420

Supplementary Material Software (Source code): https://github.com/madvorak/grammars/tree/
publish, archived at swh:1:dir:232a6421be2d20d29e54fea05cebdc865bd9c489

Funding Jasmin Blanchette: This research has received funding from the Netherlands Organization
for Scientific Research (NWO) under the Vidi program (project No. 016.Vidi.189.037, Lean Forward).

Acknowledgements We thank Vladimir Kolmogorov for making this collaboration possible. We
thank Václav Končický for discussing ideas about the Kleene star construction. We thank Patrick
Johnson, Floris van Doorn, and Damiano Testa for their small yet very valuable contributions to
our code. We thank Eric Wieser for simplifying one of our proofs. We thank Mark Summerfield for
suggesting textual improvements. We thank the anonymous reviewers for very helpful comments.
Finally, we thank the Lean community for helping us with various technical issues and answering
many questions.

1 Introduction

The notion of formal languages lies at the heart of computer science. There are several
formalisms that recognize formal languages, including Turing machines and formal grammars.
In particular, both Turing machines and general grammars (also called type-0 grammars or
unrestricted grammars) characterize the same class of languages, namely, the recursively
enumerable or type-0 languages.

There has been work on formalizing Turing machines in proof assistants [7, 2, 26, 6, 15, 3].
General grammars are an interesting alternative because they are easier to define than Turing
machines, and some proofs about general grammars are much easier than the proofs of similar
properties of Turing machines.

We therefore chose general grammars as the basis for our Lean 3 [9] library of results
about recursively enumerable or type-0 languages. The definition of grammars consists of
several layers of concepts (Section 2):

the type of symbols is the disjoint union of terminals and nonterminals;
© Martin Dvorak and Jasmin Blanchette;
licensed under Creative Commons License CC-BY 4.0

14th International Conference on Interactive Theorem Proving (ITP 2023).
Editors: Adam Naumowicz and René Thiemann; Article No. 15; pp. 15:1–15:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:martin.dvorak@ista.ac.at
https://orcid.org/0000-0001-5293-214X
mailto:jasmin.blanchette@ifi.lmu.de
https://orcid.org/0000-0002-8367-0936
https://doi.org/10.4230/LIPIcs.ITP.2023.15
https://arxiv.org/abs/2302.06420
https://github.com/madvorak/grammars/tree/publish
https://github.com/madvorak/grammars/tree/publish
https://archive.softwareheritage.org/swh:1:dir:232a6421be2d20d29e54fea05cebdc865bd9c489;origin=https://github.com/madvorak/grammars;visit=swh:1:snp:c8963c480e0458bd8d7304562119f60068d27c94;anchor=swh:1:rev:99d9f3e6e2fca51b4ab146cd332ff881ff937a29
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Closure Properties of General Grammars – Formally Verified

rewrite rules are pairs of the form u → v, where u and v are strings over symbols and
u contains at least one nonterminal [1];
a grammar is a tuple consisting of a type of terminals, a type of nonterminals, an initial
symbol S, and a set of rewrite rules;
application of a rewrite rule u → v to a string αuβ is written αuβ ⇒ αvβ;
the derivation relation ⇒∗ is the reflexive transitive closure of the ⇒ relation;
a grammar derives a word w if S ⇒∗ w;
the language generated by a grammar is the set of words derived by it;
a language is type 0 if there exists a grammar that generates it.

We formalized four closure properties of type-0 languages.
The first such property we present is closure of type-0 languages under union (Section 3).

We followed the standard construction for context-free grammars, which incidentally works
for general grammars as well.

The second closure property we formalized is closure under reversal (Section 4). This
was straightforward.

The third closure property we formalized is closure under concatenation (Section 5). The
main difficulty was to avoid matching strings on the boundary of the concatenation. This
issue does not arise with context-free grammars because only single symbols are matched
and these are tidily located on either side of the boundary.

The fourth and last closure property we formalized is closure under the Kleene star
(Section 6). This was the most difficult part of our work. Because the literature mostly
focuses on Turing machine arguments, we needed to invent our own construction. We first
developed a detailed proof sketch and then formalized it. The sketch is included in this
paper.

One closure property we did not formalize is closure under intersection. The reason is
that we are not aware of any elegant construction based on grammars only. Recall that
type-0 languages are not closed under complement, as witnessed by the halting problem [18].

Our development is freely available online.1 It consists of about 12 500 lines of spaciously
formatted Lean code. It uses the Lean 3 mathematical library mathlib [22].2 We also
benefited from the metaprogramming framework [10], which allowed us to easily develop
small-scale automation that helped make some proofs less verbose.

Although Lean is based on dependent type theory [21], our code uses only nondependent
types for data. We still found dependent type theory useful for bound-checked indexing of
lists using the function list.nth_le (which takes a list, an index, and a proof that the index
is within bounds as arguments). We did not attempt to make our development constructive.

2 Definitions

2.1 Grammars
As outlined in the introduction, the definition of grammars consists of several layers of
declarations.

Symbols are essentially defined as a sum type of terminals T and nonterminals N. However,
we want to refer to terminals and nonterminals by name (using symbol.terminal and
symbol.nonterminal instead of sum.inl and sum.inr), so we define symbols as an inductive
type:

1 https://github.com/madvorak/grammars/tree/publish
2 https://github.com/leanprover-community/mathlib/tree/7ed4f2cec2

https://github.com/leanprover-community/lean/blob/154ac72f4ff674bc4486ac611f926a3d6b999f9f/library/init/data/list/basic.lean#L90
https://github.com/madvorak/grammars/blob/99d9f3e6e2fca51b4ab146cd332ff881ff937a29/src/classes/general/basics/definition.lean#L10
https://github.com/madvorak/grammars/blob/99d9f3e6e2fca51b4ab146cd332ff881ff937a29/src/classes/general/basics/definition.lean#L11
https://github.com/leanprover-community/lean/blob/154ac72f4ff674bc4486ac611f926a3d6b999f9f/library/init/core.lean#L205
https://github.com/leanprover-community/lean/blob/154ac72f4ff674bc4486ac611f926a3d6b999f9f/library/init/core.lean#L206
https://github.com/madvorak/grammars/tree/publish
https://github.com/leanprover-community/mathlib/tree/7ed4f2cec2

M. Dvorak and J. Blanchette 15:3

inductive symbol (T : Type) (N : Type)
| terminal : T → symbol
| nonterminal : N → symbol

We do not require T and N to be finite. As a result, we do not need to copy the typeclass
instances [fintype T] and [fintype N] alongside our type parameters (which would appear
in almost every lemma statement). Instead, later we work in terms of a list of rewrite rules,
which is finite by definition and from which we could infer that only a finite set of terminals
and a finite set of nonterminals can occur.

The left-hand side u of a rewrite rule u → v consists of three parts (an arbitrary string α,
a nonterminal A, and another arbitrary string β, such that u = αAβ):

structure grule (T : Type) (N : Type) :=
(input_L : list (symbol T N))
(input_N : N)
(input_R : list (symbol T N))
(output_string : list (symbol T N))

An advantage of this representation is that we do not need to carry the proposition “the
left-hand side contains a nonterminal” around. A disadvantage is that we subsequently need
to concatenate more terms.

A definition of a general grammar follows. Notice that only the type argument T is part
of its type:

structure grammar (T : Type) :=
(nt : Type)
(initial : nt)
(rules : list (grule T nt))

Later we can use the dot notation to access individual fields. For example, if g is a term of
the type grammar T, we can write g.nt to access the type of its nonterminals. By writing
(g.rules.nth_le 0 _).output_string we obtain the right-hand side of the first rewrite
rule in g. The underscore, when not inferred automatically, must be replaced by a term of
the type 0 < g.rules.length, which is a proof that the list g.rules is not empty.

The next line adds an implicit type argument T to all declarations that come after:

variables {T : Type}

The following definition captures the application ⇒ of a rewrite rule:

def grammar_transforms (g : grammar T)
(w1 w2 : list (symbol T g.nt)) :

Prop :=
∃ r : grule T g.nt ,

r ∈ g.rules ∧
∃ u v : list (symbol T g.nt),

w1 = u ++ r. input_L ++ [symbol . nonterminal r. input_N]
++ r. input_R ++ v ∧

w2 = u ++ r. output_string ++ v

The operator ++ concatenates two lists. We can view grammar_transforms as a function
that takes a grammar g over the terminal type T and outputs a binary relation over strings
of the type that g works internally with.

ITP 2023

https://github.com/leanprover-community/lean/blob/154ac72f4ff674bc4486ac611f926a3d6b999f9f/library/init/data/list/basic.lean#L36
https://github.com/madvorak/grammars/blob/99d9f3e6e2fca51b4ab146cd332ff881ff937a29/src/classes/general/basics/definition.lean#L30

15:4 Closure Properties of General Grammars – Formally Verified

The part r.input_L ++ [symbol.nonterminal r.input_N] ++ r.input_R represents
the left-hand side of the rewrite rule r. Note that the terms r.input_L and r.input_N cannot
be concatenated directly, since they have different types. The term r.input_N must first be
wrapped in symbol.nonterminal to go from the type g.nt to the type symbol T g.nt and
then surrounded by [] to become a (singleton) list.

The derivation relation ⇒∗ is defined from grammar_transforms using the reflexive
transitive closure:

def grammar_derives (g : grammar T) :
list (symbol T g.nt) → list (symbol T g.nt) → Prop :=

relation . refl_trans_gen (grammar_transforms g)

Consequently, proofs about derivations will use structural induction.
The predicate “to be a word generated by the grammar g” is defined as the special case

of the relation grammar_derives g where the left-hand side is fixed to be the singleton list
made of the initial symbol of g and the right-hand side is required to consist of terminal
symbols only:

def grammar_generates (g : grammar T) (w : list T) : Prop :=
grammar_derives g [symbol . nonterminal g. initial]

(list.map symbol . terminal w)

2.2 Languages
In our entire project, we work with the following definition of languages provided by mathlib
in the computability package:

def language (α : Type *) := set (list α)

The type argument α is instantiated by our terminal type T in all places where we work with
languages. We do not mind restricting T to be Type since we are not interested in languages
over types from Type 1 and higher universes.

The language of the grammar g is defined as the set of all w that satisfy the predicate
grammar_generates g w declared above:

def grammar_language (g : grammar T) : language T :=
set_of (grammar_generates g)

Note that the type parameter T is preserved, but g.nt does not matter in the description of
what words are generated. It corresponds to our intuition that the type of terminals is a
part of the interface, but the type of nonterminals is an implementation matter.

This is the first time that our custom types meet the standard mathlib type language,
which is already connected to many useful types, such as the type of regular expressions.

Finally, we define the class of type-0 languages:

def is_T0 (L : language T) : Prop :=
∃ g : grammar T, grammar_language g = L

All top-level theorems about type-0 languages are expressed in terms of the is_T0 predicate.
Note that the type system distinguishes between a list of terminals and a list of symbols

that happen to be terminals. Languages are defined as sets of the former, whereas derivations
in the grammar work with the latter.

https://github.com/madvorak/grammars/blob/99d9f3e6e2fca51b4ab146cd332ff881ff937a29/src/classes/general/basics/definition.lean#L11
https://github.com/madvorak/grammars/blob/99d9f3e6e2fca51b4ab146cd332ff881ff937a29/src/classes/general/basics/definition.lean#L30
https://github.com/leanprover-community/mathlib/blob/7ed4f2cec258c1a1f86cd9a45adf7dc335f42ee1/src/computability/language.lean#L24
https://github.com/leanprover-community/mathlib/blob/7ed4f2cec258c1a1f86cd9a45adf7dc335f42ee1/src/computability/language.lean#L24
https://github.com/madvorak/grammars/blob/99d9f3e6e2fca51b4ab146cd332ff881ff937a29/src/classes/general/basics/definition.lean#L50

M. Dvorak and J. Blanchette 15:5

In a similar way, we define CF_grammar, CF_transforms, CF_derives, CF_generates,
CF_language, and the is_CF predicate for the formal definition of context-free languages.

The theorem CF_subclass_T0 connects the context-free languages to the type-0 languages.
Type-0 languages remain the main focus of our work.

2.3 Operations
The operations under which we prove closure are defined below.

Union is defined in mathlib as follows:

protected def set.union (s1 s2 : set α) : set α :=
{a | a ∈ s1 ∨ a ∈ s2}

The following declaration in mathlib states that the union of languages is denoted by writing
the + operator between two terms of the language type:

instance : language . has_add (language α) := ⟨set.union⟩

We define the reversal of a language as follows:

def reverse_lang (L : language T) : language T :=
λ w : list T, w. reverse ∈ L

We do not declare any syntactic sugar for reversal.
Concatenation is defined using the following general mathlib definition:

def set. image2 (f : α → β → γ) (s : set α) (t : set β) : set γ :=
{c | ∃ a b, a ∈ s ∧ b ∈ t ∧ f a b = c}

The next mathlib declaration states that concatenation of languages is denoted by writing
the * operator between two terms of the language type:

instance : language . has_mul (language α) := ⟨set. image2 (++)⟩

The Kleene star of a language is defined in mathlib as follows:

def language .star (l : language α) : language α :=
{x | ∃ S : list (list α), x = S.join ∧ ∀ y ∈ S, y ∈ l}

We do not declare any syntactic sugar for the Kleene star.

3 Closure under Union

In this section, we prove the following theorem:

theorem T0_of_T0_u_T0 (L1 : language T) (L2 : language T) :
is_T0 L1 ∧ is_T0 L2 → is_T0 (L1 + L2)

The proof of closure of type-0 languages under union consists of three main ingredients:
(1) a construction of a new grammar g from any two given grammars g1 and g2;
(2) a proof that any word generated by g1 or g2 can also be generated by g;
(3) a proof that any word generated by g can be equally generated by g1 or g2.
Proofs of the other closure properties are organized analogously. We describe the proof of
closure under union in more detail; it allows us to outline the main ideas of proving closure
properties formally in a simple setting. Since (3) is usually much more difficult than (2), we
refer to (2) as the “easy direction” and to (3) as the “hard direction”.

ITP 2023

https://github.com/madvorak/grammars/blob/99d9f3e6e2fca51b4ab146cd332ff881ff937a29/src/classes/context_free/basics/definition.lean#L6
https://github.com/madvorak/grammars/blob/99d9f3e6e2fca51b4ab146cd332ff881ff937a29/src/classes/context_free/basics/definition.lean#L15
https://github.com/madvorak/grammars/blob/99d9f3e6e2fca51b4ab146cd332ff881ff937a29/src/classes/context_free/basics/definition.lean#L21
https://github.com/madvorak/grammars/blob/99d9f3e6e2fca51b4ab146cd332ff881ff937a29/src/classes/context_free/basics/definition.lean#L25
https://github.com/madvorak/grammars/blob/99d9f3e6e2fca51b4ab146cd332ff881ff937a29/src/classes/context_free/basics/definition.lean#L29
https://github.com/madvorak/grammars/blob/99d9f3e6e2fca51b4ab146cd332ff881ff937a29/src/classes/context_free/basics/definition.lean#L33
https://github.com/madvorak/grammars/blob/99d9f3e6e2fca51b4ab146cd332ff881ff937a29/src/classes/context_free/basics/inclusion.lean#L74
https://github.com/leanprover-community/mathlib/blob/7ed4f2cec258c1a1f86cd9a45adf7dc335f42ee1/src/computability/language.lean#L24
https://github.com/leanprover-community/mathlib/blob/7ed4f2cec258c1a1f86cd9a45adf7dc335f42ee1/src/computability/language.lean#L24

15:6 Closure Properties of General Grammars – Formally Verified

The proof of the closure of type-0 languages under union follows the standard construction,
which usually states only (1) explicitly, and leaves (2) and (3) to the reader. We begin (1) by
defining a new type of nonterminals. The nonterminals of g consist of

the nonterminals of g1 including a mark indicating their origin;
the nonterminals of g2 including a mark indicating their origin;
one new distinguished nonterminal.

The Lean type option (g1.nt ⊕ g2.nt) encodes this disjoint union. If m is a nonterminal
of type g1.nt, its corresponding nonterminal of type g.nt is some (sum.inl m). If n is a
nonterminal of type g2.nt, its corresponding nonterminal of type g.nt is some (sum.inr n).
The new distinguished nonterminal is called none and becomes the initial symbol of g. The
rewrite rules of g consist of

the rewrite rules of g1 with all nonterminals mapped to the larger nonterminal type;
the rewrite rules of g2 with all nonterminals mapped to the larger nonterminal type;
two additional rules that rewrite the initial symbol of g to the initial symbol of g1 or g2.

To reduce the amount of repeated code in the proof, we developed lemmas that allow us
to “lift” a grammar with a certain type of nonterminals to a grammar with a larger type of
nonterminals while preserving what the grammar derives. Under certain conditions, we can
also “sink” the larger grammar to the original grammar and preserve its derivations.

These lemmas operate on a structure called lifted_grammar that consists of the following
fields:

a smaller grammar g0 that represents either g1 or g2 in case of the proof for union;
a larger grammar g with the same type of terminals;
a function lift_nt from g0.nt to g.nt;
a partial function sink_nt from g.nt to g0.nt;
a proposition lift_inj that guarantees that lift_nt is injective;
a proposition sink_inj that guarantees that sink_nt is injective on inputs for which g0
has a corresponding nonterminal;
a proposition lift_nt_sink that guarantees that sink_nt is essentially an inverse of
lift_nt;
a proposition corresponding_rules that guarantees that g has a rewrite rule for each
rewrite rule g0 has (with different type but the same behavior);
a proposition preimage_of_rules that guarantees that g0 has a rewrite rule for each
rewrite rule of g whose nonterminal has a preimage on the g0 side.

Thanks to this structure, we can abstract from the specifics of how the larger grammar is
constructed in concrete proofs and care only about the properties that are required to follow
analogous derivations.

To illustrate how we work with this abstraction, we review the proof of the following
lemma:

private lemma lift_tran {lg : lifted_grammar T}
{w1 w2 : list (symbol T lg.g0.nt)}
(hyp : grammar_transforms lg.g0 w1 w2) :

grammar_transforms lg.g
(lift_string lg. lift_nt w1)
(lift_string lg. lift_nt w2)

We need to show that if g0 has a rewrite rule that transforms w1 to w2, then g has a rewrite
rule that transforms lift_string lg.lift_nt w1 to lift_string lg.lift_nt w2.

https://github.com/madvorak/grammars/blob/99d9f3e6e2fca51b4ab146cd332ff881ff937a29/src/classes/general/basics/lifting.lean#L35

M. Dvorak and J. Blanchette 15:7

We start by deconstructing hyp according to the grammar_transforms definition. To go
from g0 to g, we first “lift” the rewrite rule (i.e., translate its nonterminals in all fields) that
g0 used. We call corresponding_rules to show that g has such a rule. Then we use the
function lift_string to lift u and v, which are the parts of the string w1 that were not
matched by the rule. We are then left with the proof obligation

lift_string lg. lift_nt w1 =
lift_string lg. lift_nt u ++ (lift_rule lg. lift_nt r). input_L

++ [symbol . nonterminal (lift_rule lg. lift_nt r). input_N]
++ (lift_rule lg. lift_nt r). input_R ++ lift_string lg. lift_nt v

where

w1 =
u ++ r. input_L ++ [symbol . nonterminal r. input_N] ++ r. input_R ++ v

and with the proof obligation

lift_string lg. lift_nt w2 =
lift_string lg. lift_nt u ++ (lift_rule lg. lift_nt r). output_string

++ lift_string lg. lift_nt v

where

w2 = u ++ r. output_string ++ v

These two obligations originate from the two identities in the definition grammar_transforms
from Section 2. Essentially, we discharge them using the distributivity of lift_string over
the ++ operation.

The abstraction provided by lifted_grammar takes care of the vast majority of our proof
of the closure of type-0 languages under union. It remains to separately analyze what was
the first step of the derivation that g did in the hard direction. We need to exclude all rules
that are inherited from g1 and g2 and perform a case analysis on the two special rules.

The two additional rules of g are context-free. Therefore, if g1 and g2 have context-free
rules only, then all rules of g are context-free as well. As a consequence, our result about
type-0 languages can easily be reused to prove the closure of context-free languages under
union:

theorem CF_of_CF_u_CF (L1 : language T) (L2 : language T) :
is_CF L1 ∧ is_CF L2 → is_CF (L1 + L2)

Not much Lean code needs to be duplicated to obtain the result about context-free grammars.
We need to write the construction of g again and the main result again. The remaining parts
are achieved by reusing lemmas from the proof for general grammars. The main overhead is
proving

private lemma union_grammar_eq_union_CF_grammar
{g1 g2 : CF_grammar T} :

union_grammar (grammar_of_cfg g1) (grammar_of_cfg g2) =
grammar_of_cfg (union_CF_grammar g1 g2)

Even though the statement might look complicated, the proof has only five lines, making it
one of the shortest tactic-based proofs in our project.

ITP 2023

https://github.com/madvorak/grammars/blob/99d9f3e6e2fca51b4ab146cd332ff881ff937a29/src/classes/general/basics/definition.lean#L30
https://github.com/madvorak/grammars/blob/99d9f3e6e2fca51b4ab146cd332ff881ff937a29/src/classes/general/basics/lifting.lean#L44
https://github.com/madvorak/grammars/blob/99d9f3e6e2fca51b4ab146cd332ff881ff937a29/src/classes/general/basics/lifting.lean#L17
https://github.com/madvorak/grammars/blob/99d9f3e6e2fca51b4ab146cd332ff881ff937a29/src/classes/general/basics/definition.lean#L30
https://github.com/madvorak/grammars/blob/99d9f3e6e2fca51b4ab146cd332ff881ff937a29/src/classes/general/basics/lifting.lean#L17
https://github.com/madvorak/grammars/blob/99d9f3e6e2fca51b4ab146cd332ff881ff937a29/src/classes/general/basics/lifting.lean#L35

15:8 Closure Properties of General Grammars – Formally Verified

4 Closure under Reversal

In this section, we prove the following theorem:

theorem T0_of_reverse_T0 (L : language T) :
is_T0 L → is_T0 (reverse_lang L)

The proof is very easy. Simply speaking, everything gets reversed. We start with the
rewrite rules:

private def reversal_grule {N : Type} (r : grule T N) : grule T N :=
grule.mk r. input_R . reverse r. input_N r. input_L . reverse

r. output_string . reverse

The constructor grule.mk takes arguments in the same order as they are written in the
definition:

its input_L is instantiated by r.input_R.reverse;
its input_N is instantiated by r.input_N;
its input_R is instantiated by r.input_L.reverse;
its output_string is instantiated by r.output_string.reverse.

The new grammar is constructed as follows:

private def reversal_grammar (g : grammar T) : grammar T :=
grammar .mk g.nt g. initial (list.map reversal_grule g.rules)

The rest is essentially a repeated application of lemma list.reverse_append_append,
which is just a repeated application of lemma list.reverse_append, which states that
reversing two concatenated lists is equivalent to reversing both parts and concatenating them
in the opposite order, and lemma list.reverse_reverse, which states that list.reverse
is a dual operation.

5 Closure under Concatenation

In this section, we prove the following theorem:

theorem T0_of_T0_c_T0 (L1 : language T) (L2 : language T) :
is_T0 L1 ∧ is_T0 L2 → is_T0 (L1 * L2)

Because the proof is highly technical, we only outline the main idea here.
We first review the classical construction for context-free grammars. Let L1 ⊆ T ∗ be

a language generated by a grammar G1 = (N1, T, P1, S1). Let L2 ⊆ T ∗ be a language
generated by a grammar G2 = (N2, T, P2, S2). Without loss of generality, the sets N1 and
N2 are disjoint. We create a new initial symbol S that appears only in the rule S → S1S2.
The new grammar is (N1 ∪ N2 ∪ {S}, T, P1 ∪ P2 ∪ {S → S1S2}, S). This construction works
for context-free grammars because S1 gives rise to a word from L1 and, independently, S2
gives rise to a word from L2.

For general grammars, the construction above does not work, as the following counter-
example over T = {a, b} illustrates. Let the rule sets be P1 = {S1 → S1a, S1 → ϵ} and
P2 = {S2 → S2a, S2 → ϵ, aS2 → b}. We obtain L1 = L2 = {an | n ∈ N0} and so L1L2 is
{an | n ∈ N0} as well. We can now derive S ⇒ S1S2 ⇒ S1aS2 ⇒ S1b ⇒ b /∈ L1L2 and obtain
a contradiction.

https://github.com/madvorak/grammars/blob/99d9f3e6e2fca51b4ab146cd332ff881ff937a29/src/classes/general/basics/definition.lean#L14
https://github.com/madvorak/grammars/blob/99d9f3e6e2fca51b4ab146cd332ff881ff937a29/src/utilities/list_utils.lean#L40
https://github.com/leanprover-community/mathlib/blob/7ed4f2cec258c1a1f86cd9a45adf7dc335f42ee1/src/data/list/basic.lean#L610
https://github.com/leanprover-community/mathlib/blob/7ed4f2cec258c1a1f86cd9a45adf7dc335f42ee1/src/data/list/basic.lean#L617
https://github.com/leanprover-community/lean/blob/154ac72f4ff674bc4486ac611f926a3d6b999f9f/library/init/data/list/basic.lean#L107

M. Dvorak and J. Blanchette 15:9

We need to avoid matching strings that span across the boundary of the concatenation.
Since the nonterminal sets are disjoint, the issue arises only with terminals in the left-hand
side of rules, which are not present in context-free grammars. We provide a solution below.

Let g1 and g2 generate L1 and L2 respectively. The nonterminals of our new grammar g
consist of

the nonterminals of g1 including a mark indicating their origin;
the nonterminals of g2 including a mark indicating their origin;
a proxy nonterminal for every terminal from T marked for use by g1 only;
a proxy nonterminal for every terminal from T marked for use by g2 only;
one new distinguished nonterminal.

The new nonterminal type is encoded by the Lean type option (g1.nt ⊕ g2.nt) ⊕ (T ⊕ T).
The new distinguished nonterminal becomes the initial symbol of g.

In this way, we ensure that the nonterminals used by g to simulate g1 are disjoint from the
nonterminals used by g to simulate g2. There are still real terminals used by both grammars,
but g never has these terminals on the left-hand side of a rule, since the rewrite rules of g
consist of

the rewrite rules of g1 with all nonterminals mapped to the new nonterminal type and
all terminals replaced by proxy nonterminals of the first kind;
the rewrite rules of g2 with all nonterminals mapped to the new nonterminal type and
all terminals replaced by proxy nonterminals of the second kind;
for every terminal from T, a rule that rewrites the proxy nonterminal of the first kind to
the corresponding terminal and a rule that rewrites the proxy nonterminal of the second
kind to the corresponding terminal;
a special rule that rewrites g.initial to a two-symbol string [g1.initial, g2.initial]
wrapped to use the new nonterminal type.

Using this construction, we ensure that all rules of g avoid matching strings on the boundary
of the concatenation.

Proving that g generates a superset of L1 * L2 is easy because we can apply the rewrite
rules in the following order, regardless of the languages:
(1) use the special rule to obtain [g1.initial, g2.initial] with the necessary wrapping;
(2) generate the string of proxy nonterminals corresponding to the word from L1 while

g2.initial remains unchanged;
(3) replace all proxy nonterminals of the first kind by the corresponding terminals, which

results in deriving a word from L1 followed by g2.initial as the last symbol;
(4) generate the string of proxy nonterminals corresponding to the word from L2 while

the first part of the string remains unchanged;
(5) replace all proxy nonterminals of the second kind by the corresponding terminals, which

results in deriving a word from L2 that follows the word from L1 obtained before.
Step (1) is trivial. Steps (2) and (4) are done by following the derivations by g1 and g2,
respectively. Steps (3) and (5) are straightforward proofs by induction.

Proving that g generates a subset of L1 * L2 is much harder because we do not know in
which order the rules of g are applied. We had to come up with an invariant that relates
intermediate strings derived by g to strings that can be derived by g1 and g2 from their
respective initial symbols.

Very roughly speaking, we prove that there are strings x and y for every string w that g
can derive, such that the grammar g1 can derive x, the grammar g2 can derive y, and x ++ y
corresponds to w. As usual, we employ structural induction. Looking at the last rule g used,

ITP 2023

15:10 Closure Properties of General Grammars – Formally Verified

we update x or y or neither. In particular, we want to point out the following declarations in
the formalization:

function nst provides the new symbol type which g operates with;
functions wrap_symbol1 and wrap_symbol2 convert symbols for use by g;
relation corresponding_strings built on top of relation corresponding_symbols is
used to define how the strings x and y are precisely related to w after each step by g;
lemma induction_step_for_lifted_rule_from_g1 characterizes the x update;
lemma induction_step_for_lifted_rule_from_g2 characterizes the y update;
lemma big_induction states the invariant for proving the hard direction;
lemma in_concatenated_of_in_big puts the proof of the hard direction together.

Note that the added rules have only one symbol on the left-hand side. Therefore, if the
two original grammars are context-free, our constructed grammar is also context-free. We
thereby obtain, as a bonus, a proof that context-free languages are closed under concatenation.
It is implemented in a similar fashion to the proof that context-free languages are closed
under union.

6 Closure under Kleene Star

In this section, we prove the following theorem:
theorem T0_of_star_T0 (L : language T) :

is_T0 L → is_T0 L.star

This is usually demonstrated by a hand-waving argument about a two-tape nondetermin-
istic Turing machine. The language to be iterated is given by a single-tape (nondeterministic)
Turing machine. The new machine scans the input on the first tape, copying it onto the
second tape as it progresses, and nondeterministically chooses where the first word ends.
Next, the original machine is simulated on the second tape. If the simulated machine accepts
the word on the second tape, the process is repeated with the current position of the first
head instead of returning to the beginning of the input. Finally, when the first head reaches
the end of the input, the second tape contains a suffix of the first tape. The original machine
is simulated once more on the second tape. If it accepts, the new machine accepts.

Unfortunately, we did not find any proof based on grammars in the literature. Therefore,
we had to invent our own construction. In Section 6.1, we present the construction and the
idea underlying its correctness using traditional mathematical notation. In Section 6.2, we
comment on its formalization.

6.1 Proof Sketch
Let L ⊆ T ∗ be a language generated by the grammar G = (N, T, P, S). We construct a
grammar G∗ = (N∗, T, P∗, Z) to generate the language L∗. The new nonterminal set

N∗ = N ∪ {Z, #, R}

expands N with three additional nonterminals: a new starting symbol (Z), a delimiter (#),
and a marker for final rewriting (R). The new set of rules is

P∗ = P ∪ {Z → ZS#, Z → R#, R# → R, R# → ϵ} ∪ {Rt → tR | t ∈ T}

Intuitively, # builds compartments that isolate the words from the language L, and then R

acts as a cleaner that traverses the string from beginning to end and removes the compartment
delimiters #, thereby ensuring that only terminals are present to the left of R.

https://github.com/madvorak/grammars/blob/99d9f3e6e2fca51b4ab146cd332ff881ff937a29/src/classes/general/closure_properties/concatenation.lean#L98
https://github.com/madvorak/grammars/blob/99d9f3e6e2fca51b4ab146cd332ff881ff937a29/src/classes/general/closure_properties/concatenation.lean#L106
https://github.com/madvorak/grammars/blob/99d9f3e6e2fca51b4ab146cd332ff881ff937a29/src/classes/general/closure_properties/concatenation.lean#L110
https://github.com/madvorak/grammars/blob/99d9f3e6e2fca51b4ab146cd332ff881ff937a29/src/classes/general/closure_properties/concatenation.lean#L595
https://github.com/madvorak/grammars/blob/99d9f3e6e2fca51b4ab146cd332ff881ff937a29/src/classes/general/closure_properties/concatenation.lean#L545
https://github.com/madvorak/grammars/blob/99d9f3e6e2fca51b4ab146cd332ff881ff937a29/src/classes/general/closure_properties/concatenation.lean#L1107
https://github.com/madvorak/grammars/blob/99d9f3e6e2fca51b4ab146cd332ff881ff937a29/src/classes/general/closure_properties/concatenation.lean#L1911
https://github.com/madvorak/grammars/blob/99d9f3e6e2fca51b4ab146cd332ff881ff937a29/src/classes/general/closure_properties/concatenation.lean#L2236
https://github.com/madvorak/grammars/blob/99d9f3e6e2fca51b4ab146cd332ff881ff937a29/src/classes/general/closure_properties/concatenation.lean#L2651

M. Dvorak and J. Blanchette 15:11

To see how G∗ works, consider the following grammar over T = {a, b}. Let N = {S} and
P = {S → aSb, S → ϵ}. The set of rules becomes

P∗ = {S → aSb, S → ϵ, Z → ZS#, Z → R#, R# → R, R# → ϵ, Ra → aR, Rb → bR}

The following is an example of G∗ derivation:

Z ⇒ ZS# ⇒ ZS#S# ⇒ ZaSb#S# ⇒ ZaaSbb#S# ⇒ ZS#aaSbb#S# ⇒
ZaSb#aaSbb#S# ⇒ ZaSb#aaaSbbb#S# ⇒ ZaSb#aaabbb#S# ⇒
R#aSb#aaabbb#S# ⇒ RaSb#aaabbb#S# ⇒ aRSb#aaabbb#S# ⇒
aRb#aaabbb#S# ⇒ abR#aaabbb#S# ⇒ abRaaabbb#S# ⇒
abaRaabbb#S# ⇒ abaaRabbb#S# ⇒ abaaaRbbb#S# ⇒
abaaabRbb#S# ⇒ abaaabRbb#aSb# ⇒ abaaabbRb#aSb# ⇒
abaaabbRb#ab# ⇒ abaaabbbR#ab# ⇒ abaaabbbRab# ⇒
abaaabbbaRb# ⇒ abaaabbbabR# ⇒ abaaabbbab

▶ Lemma 1. Let w1, w2, . . . , wn ∈ L. Then G∗ can derive Zw1#w2# . . . wn#.

Proof. By induction on n. The base case Z ⇒∗ Z is trivial.
Now assume Z ⇒∗ Zw1#w2# . . . wn# and S ⇒∗ wn+1 . We start with the rule

Z → ZS#. We observe ZS# ⇒∗ Zw1#w2# . . . wn#S# ⇒∗ Zw1#w2# . . . wn#wn+1#.
By transitivity, we obtain Z ⇒∗ Zw1#w2# . . . wn#wn+1#. ◀

From now on, let [m] denote the set of m natural numbers {1, 2, . . . , m}.

▶ Lemma 2. If α ∈ (T ∪ N)∗ can be derived by G∗, then one of these conditions holds:
1. ∃x1, x2, . . . , xm ∈ (T ∪ N)∗ (∀i ∈ [m] (S ⇒∗ xi) ∧ α = Zx1#x2# . . . xm#);
2. ∃x1, x2, . . . , xm ∈ (T ∪ N)∗ (∀i ∈ [m] (S ⇒∗ xi) ∧ α = R#x1#x2# . . . xm#);
3. ∃w1, w2, . . . , wn ∈ L (∃β ∈ T ∗ (∃γ, x1, x2, . . . , xm ∈ (T ∪ N)∗

(S ⇒∗ βγ ∧ ∀i ∈ [m] (S ⇒∗ xi) ∧ α = w1w2 . . . wn βRγ#x1#x2# . . . xm#)));
4. α ∈ L∗;
5. ∃σ ∈ (T ∪ N)∗ (α = σR);
6. ∃ω ∈ (T ∪ N ∪ {#})∗ (α = ω#).

In the example above, case 1 arises when α = ZaaSbb#S#. We can check that m = 2,
x1 = aaSbb, x2 = S, and condition 1 holds.

In the example above, case 2 arises when α = R#aSb#aaabbb#S#. We can check that
m = 3, x1 = aSb, x2 = aaabbb, x3 = S, and condition 2 holds.

In the example above, case 3 arises when α = abaaabRbb#aSb#. We can check that
n = 1, m = 1, w1 = ab, β = aaab, γ = bb, x1 = aSb, and condition 3 holds.

Case 4 arises only at the end of a successful computation, which is α = abaaabbbab in the
example above.

The remaining two cases do not arise in the example above because they describe an
unsuccessful computation (like taking a one-way street ending in a blind alley).

Case 5 arises if the rule R# → R is used in the final position (where R# → ϵ should
be used instead). The nonterminal R in the final position prevents the derivation from
terminating.

Case 6 arises if the rule R# → ϵ is used too early (that is, anywhere but the final #
position). The nonterminal # in the final position during the absence of R and Z in α

prevents the derivation from terminating.

ITP 2023

15:12 Closure Properties of General Grammars – Formally Verified

Proof. By induction on G∗ derivation steps. The base case α = Z satisfies condition 1 by
setting m = 0.

Now assume Z ⇒∗ α ⇒ α′ and proceed by case analysis on the conditions.
1. ∃x1, x2, . . . , xm ∈ (T ∪ N)∗ (∀i ∈ [m] (S ⇒∗ xi) ∧ α = Zx1#x2# . . . xm#):

If α ⇒ α′ used a rule from P , it could be applied only in some xi. Hence S ⇒∗ xi ⇒ x′
i,

so the same condition holds after replacing xi by x′
i.

If α ⇒ α′ used the rule Z → ZS#, it was applied at the beginning of α. Therefore,
we set m′ := m + 1, we set x′

1 := S, and we increase all indices by one, that is,
x′

2 := x1, x′
3 := x2, . . . , x′

m′ := xm. The same condition holds.
If α ⇒ α′ used the rule Z → R#, we keep all variables the same and condition 2 holds.
The rules R# → R, R# → ϵ, and Rt → tR are not applicable (since α does not
contain R).

2. ∃x1, x2, . . . , xm ∈ (T ∪ N)∗ (∀i ∈ [m] (S ⇒∗ xi) ∧ α = R#x1#x2# . . . xm#):
If α ⇒ α′ used a rule from P , it could be applied only in some xi. Hence S ⇒∗ xi ⇒ x′

i,
so the same condition holds after replacing xi by x′

i.
The rules Z → ZS# and Z → R# are not applicable (since α does not contain Z).
If α ⇒ α′ used the rule R# → R, it was applied at the beginning of α. If m = 0,
condition 5 holds (a dead end). Otherwise, we set m′ := m − 1 ≥ 0 and γ := x1, and
we decrease all indices by one, that is, x′

1 := x2, x′
2 := x3, . . . , x′

m′ := xm. Since there
is nothing before the nonterminal R, we set n := 0 and β := ϵ. Now, condition 3 holds.
If α ⇒ α′ used the rule R# → ϵ then: if m = 0, we obtain the empty word (which
belongs to L∗, satisfying condition 4); if m > 0, condition 6 holds (because # remained
at the end of α′; at the same time R disappeared, and Z did not appear).
The rule Rt → tR is not applicable (the only R in α is immediately followed by #).

3. ∃w1, w2, . . . , wn ∈ L (∃β ∈ T ∗ (∃γ, x1, x2, . . . , xm ∈ (T ∪ N)∗

(S ⇒∗ βγ ∧ ∀i ∈ [m] (S ⇒∗ xi) ∧ α = w1w2 . . . wn βRγ#x1#x2# . . . xm#))):
If α ⇒ α′ used a rule from P , it could be applied in γ or in some xi. In the first case,
γ ⇒ γ′ implies βγ ⇒ βγ′, hence S ⇒∗ βγ ⇒ β′γ′. In the remaining cases, we observe
S ⇒∗ xi ⇒ x′

i as we did at the beginning of our case analysis. As a result, the same
condition still holds.
The rules Z → ZS# and Z → R# are not applicable (α does not contain Z).
If α ⇒ α′ used the rule R# → R, then γ must have been empty. If m = 0,
condition 5 holds (a dead end). Otherwise, we set n′ := n + 1, wn′ := β, β′ := ϵ,
γ′ := x1, and m′ := m − 1, and we decrease the indices of xi by one, that is,
x′

1 := x2, x′
2 := x3, . . . , x′

m′ := xm. Since wn′ = β = βγ ∈ T ∗ and S ⇒∗ βγ, we have
wn′ ∈ L. The same condition holds.
If α ⇒ α′ used the rule R# → ϵ, then γ must have been empty. If m = 0, we get
α = w1w2 . . . wnβ and β ∈ L; hence condition 4, α′ ∈ L∗, is satisfied. If m > 0,
condition 6 now holds (because # remained at the end of α′; at the same time R

disappeared, and Z did not appear).
If α ⇒ α′ used a rule of the form Rt → tR (t ∈ T), we have δ ∈ (T ∪ N)∗ such that
γ = tδ. We put β′ := βt and γ′ := δ. Since βγ = βtδ = β′γ′, the same condition holds.

4. α ∈ L∗:
No rule is applicable (since α contains only terminals). The step α ⇒ α′ cannot have
happened.

5. ∃σ ∈ (T ∪ N)∗ (α = σR):
No matter which rule was applied, it happened within σ. No rule could match the
final R. The same condition holds for α′ = σ′R.

M. Dvorak and J. Blanchette 15:13

6. ∃ω ∈ (T ∪ N ∪ {#})∗ (α = ω#):
If α ⇒ α′ used a rule from P , the same condition still holds because # is not on the
left-hand side of any rule from P and neither Z nor R is on the right-hand side of any
rule from P .
The rules Z → ZS#, Z → R#, R# → R, R# → ϵ, and Rt → tR are not applicable
(since α contains neither Z nor R). ◀

▶ Theorem 3. The class of type-0 languages is closed under the Kleene star.

Proof. We need to show that the language of G∗ equals L∗. We prove two inclusions.
For “⊇ L∗”, we use Lemma 1. If w ∈ L∗, there exist words w1, w2, . . . , wn ∈ L such that

w1w2 . . . wn = w. We see Zw1#w2# . . . wn# ⇒ R#w1#w2# . . . wn#. Since all words wi

are made of terminals only, by repeated application of R# → R and Rt → tR (for all t ∈ T)
we get R#w1#w2# . . . wn# ⇒∗ w1w2 . . . wnR#. Finally, w1w2 . . . wnR# ⇒ w1w2 . . . wn is
obtained by the rule R# → ϵ. We conclude that G∗ generates w.

For “⊆ L∗”, we use Lemma 2 and observe that if G∗ generates α ∈ T ∗, then α ∈ L∗

because all the remaining cases require α to contain a nonterminal. ◀

6.2 Formalization
The formalization closely follows the proof sketch. The main difference between the two is
that where the proof sketch states that an expression belongs to a set, the formalization
specifies a type for a term and sometimes a condition that further restricts the term’s values.

Lemma 1 is implemented by lemma short_induction, which takes w in reverse order for
technical reasons. Its proof uses the lifted_grammar approach outlined in Section 3. The part
R#w1#w2# . . . wn# ⇒∗ w1w2 . . . wnR# is implemented by lemma terminal_scan_ind,
which employs a nested induction to pass R to the right. The final step of the easy direction
is performed inside the theorem T0_of_star_T0 itself.

Lemma 2 is implemented by lemma star_induction, whose formal proof spans over
3000 lines. The base case is discharged immediately. For the induction step, we developed
six lemmas star_case_1 to star_case_6 distinguished by which of the six conditions α

satisfies. In each of them, except for star_case_4, which took only four lines to prove, we
perform a case analysis on which rule was used for the α ⇒ α′ transition.

For each case, unless a short ex-falso-quodlibet proof suffices, we need to narrow down
where in α the rule could be applied. This analysis is challenging for the rules that were
inherited from the original grammar. Consider case_1_match_rule, where the informal
argument literally says: “If α ⇒ α′ used a rule from P , it could be applied only in some xi.”

It turns out that this deduction is so complicated that it was worth creating an auxiliary
lemma cases_1_and_2_and_3a_match_aux to detach the head Z from α and perform the
analysis on x1#x2# . . . xm# in order to make the proof easier. As a useful side effect, the
auxiliary lemma becomes applicable to similar situations in star_case_2 and star_case_3,
as shown in case_2_match_rule and case_3_match_rule, where more adaptations are
needed but the same core argument is used.

From a formal point of view, we abused the symbol “. . .” in the proof sketch. Replacing
it by a formal statement usually leads to list.join of list.map of something. For example,
compare case 1 in the proof sketch

∃x1, x2, . . . , xm ∈ (T ∪ N)∗ (∀i ∈ [m] (S ⇒∗ xi) ∧ α = Zx1#x2# . . . xm#)

to its formal counterpart:

ITP 2023

https://github.com/madvorak/grammars/blob/99d9f3e6e2fca51b4ab146cd332ff881ff937a29/src/classes/general/closure_properties/star.lean#L84
https://github.com/madvorak/grammars/blob/99d9f3e6e2fca51b4ab146cd332ff881ff937a29/src/classes/general/basics/lifting.lean#L35
https://github.com/madvorak/grammars/blob/99d9f3e6e2fca51b4ab146cd332ff881ff937a29/src/classes/general/closure_properties/star.lean#L306
https://github.com/madvorak/grammars/blob/99d9f3e6e2fca51b4ab146cd332ff881ff937a29/src/classes/general/closure_properties/star.lean#L3938
https://github.com/madvorak/grammars/blob/99d9f3e6e2fca51b4ab146cd332ff881ff937a29/src/classes/general/closure_properties/star.lean#L3870
https://github.com/madvorak/grammars/blob/99d9f3e6e2fca51b4ab146cd332ff881ff937a29/src/classes/general/closure_properties/star.lean#L1171
https://github.com/madvorak/grammars/blob/99d9f3e6e2fca51b4ab146cd332ff881ff937a29/src/classes/general/closure_properties/star.lean#L3647
https://github.com/madvorak/grammars/blob/99d9f3e6e2fca51b4ab146cd332ff881ff937a29/src/classes/general/closure_properties/star.lean#L3359
https://github.com/madvorak/grammars/blob/99d9f3e6e2fca51b4ab146cd332ff881ff937a29/src/classes/general/closure_properties/star.lean#L1067
https://github.com/madvorak/grammars/blob/99d9f3e6e2fca51b4ab146cd332ff881ff937a29/src/classes/general/closure_properties/star.lean#L728
https://github.com/madvorak/grammars/blob/99d9f3e6e2fca51b4ab146cd332ff881ff937a29/src/classes/general/closure_properties/star.lean#L1638
https://github.com/madvorak/grammars/blob/99d9f3e6e2fca51b4ab146cd332ff881ff937a29/src/classes/general/closure_properties/star.lean#L2925
https://github.com/madvorak/grammars/blob/99d9f3e6e2fca51b4ab146cd332ff881ff937a29/src/classes/general/closure_properties/star.lean#L1510
https://github.com/madvorak/grammars/blob/99d9f3e6e2fca51b4ab146cd332ff881ff937a29/src/classes/general/closure_properties/star.lean#L2267
https://github.com/leanprover-community/lean/blob/154ac72f4ff674bc4486ac611f926a3d6b999f9f/library/init/data/list/basic.lean#L128
https://github.com/leanprover-community/lean/blob/154ac72f4ff674bc4486ac611f926a3d6b999f9f/library/init/data/list/basic.lean#L110

15:14 Closure Properties of General Grammars – Formally Verified

∃ x : list (list (symbol T g.nt)),
(∀ xi ∈ x, grammar_derives g [symbol . nonterminal g. initial] xi) ∧
(α = [Z] ++ list.join

(list.map (++ [H]) (list.map (list.map wrap_sym) x)))

The nonterminal # is represented by the letter H in the code. Notice how easy it is to write
the quantification ∃x1, x2, . . . , xm ∈ (T ∪ N)∗ in Lean. The part ∀i ∈ [m] (S ⇒∗ xi) is also
elegant. However, the expression Zx1#x2# . . . xm# leads to a fairly complicated Lean term.

Because many lemmas need to work with expressions like the above, it is important to
master how to manipulate terms that combine list.join with other functions. For example,
the following lemma is useful:

lemma append_join_append {s : list α} (L : list (list α)) :
s ++ (list.map (λ l, l ++ s) L). join =

(list.map (λ l, s ++ l) L). join ++ s

This lemma allows us to move the parentheses in s(l1s)(l2s) . . . (lns) to get (sl1)(sl2) . . . (sln)s

and vice versa.
Working with expressions such as Zx1#x2# . . . xm# is tedious in Lean. We see this,

however, not as a weakness of Lean but rather as an indication that the “. . .” notation is
highly informal. Mathematical expressions with “. . .” tend to be ambiguous and require the
reader’s cooperation to make sense of them. In the absence of support for “. . .” in the proof
assistant [19], it is natural that formalizing such expressions leads to verbose code.

In contrast to concatenation, the above proof cannot be reused to establish the closure of
context-free languages under the Kleene star because our construction adds rules with two
symbols on their left-hand side. However, there exists an easier construction for context-free
languages that could be formalized separately if desired.

7 Related Work

To our knowledge, no one has formalized general grammars before. Context-free grammars
were formalized by Carlson et al. [5] using Mizar, by Minamide [23] using Isabelle/HOL, by
Barthwal and Norrish [4] using HOL4, by Firsov and Uustalu [11] using Agda, and by Ramos
[25] using Coq.

Finite automata have often been subjected to verification. In particular, Thompson
and Dillies [22] formalized finite automata, which recognize regular languages, using Lean.
Thomson [22] also formalized regular expressions, which recognize regular languages as well.

There is ample verification work also for other models of computation:
Turing machines were formalized using Mizar [7], Matita [2], Isabelle/HOL [26], Lean [6],
Coq [15], and recently again Isabelle/HOL [3]. Of these, the most impressive development
is probably the last one, by Balbach. It uses multi-tape Turing machines and culminates
with a proof of the Cook–Levin theorem, which states that SAT is NP-complete.
The λ-calculus was formalized by Norrish [24] using HOL4 and later by Forster, Kunze,
and their colleagues [16, 20, 12, 13, 14, 17] using Coq. The latter group of authors
proposed an untyped call-by-value λ-calculus as a convenient basis for computability and
complexity theory because it naturally supports compositionality.
The partial recursive functions were formalized by Norrish [24] using HOL4 and by
Carneiro [6] using Lean.
Random access machines were formalized by Coen [8] using Coq.

https://github.com/leanprover-community/lean/blob/154ac72f4ff674bc4486ac611f926a3d6b999f9f/library/init/data/list/basic.lean#L128

M. Dvorak and J. Blanchette 15:15

8 Conclusion

We defined general grammars in Lean and used them to establish closure properties of
recursively enumerable or type-0 languages. We found that closure under union and reversal
were straightforward to formally prove, but had to invest considerable effort to prove closure
under concatenation and the Kleene star. Despite the tedium of some of the proofs, we
believe that grammars are probably a more convenient formalism than Turing machines
for showing closure properties. On the other hand, since grammars do not define any of
the important complexity classes (such as P), formalization of Turing machines and other
computational models is needed to further develop the formal theory of computer science.

As future work, results about context-sensitive, context-free, and regular grammars could
be incorporated into our library. A comprehensive Lean library encompassing the entire
Chomsky hierarchy would be valuable. We already have some results about context-free
grammars, and the mathlib results about regular languages could be connected to our
library. As a more ambitious goal, we might attempt to prove the equivalence between
general grammars and Turing machines.

References
1 Alfred V. Aho and Jeffrey D. Ullman. The Theory of Parsing, Translation, and Compiling.

Prentice Hall, 1st edition, 1972.
2 Andrea Asperti and Wilmer Ricciotti. Formalizing Turing Machines. In Logic, Language,

Information and Computation, volume 7456 of Lecture Notes in Computer Science, pages 1–25.
Springer, 2012. doi:10.1007/978-3-642-32621-9_1.

3 Frank J. Balbach. The Cook-Levin theorem. Archive of Formal Proofs, 2023. , Formal proof
development. URL: https://isa-afp.org/entries/Cook_Levin.html.

4 Aditi Barthwal and Michael Norrish. Mechanisation of PDA and Grammar Equivalence
for Context-Free Languages. In Anuj Dawar and Ruy de Queiroz, editors, WoLLIC 2010,
volume 6188 of Lecture Notes in Computer Science, pages 125–135. Springer, 2010. doi:
10.1007/978-3-642-13824-9_11.

5 Patricia L. Carlson, Grzegorz Bancerek, and Im Pan. Context-Free Grammar — Part 1. J.
Formaliz. Math., 1992. URL: http://mizar.org/JFM/pdf/lang1.pdf.

6 Mario Carneiro. Formalizing Computability Theory via Partial Recursive Functions. In
John Harrison, John O’Leary, and Andrew Tolmach, editors, ITP 2019, volume 141 of
LIPIcs, pages 12:1–12:17. Schloss Dagstuhl — Leibniz-Zentrum für Informatik, 2019. doi:
10.4230/LIPIcs.ITP.2019.12.

7 Jing-Chao Chen and Yatsuka Nakamura. Introduction to Turing Machines. J. Formaliz.
Math., 9(4), 2001. URL: https://fm.mizar.org/2001-9/pdf9-4/turing_1.pdf.

8 Claudio Sacerdoti Coen. A Constructive Proof of the Soundness of the Encoding of Random
Access Machines in a Linda Calculus with Ordered Semantics. In Carlo Blundo and Cosimo
Laneve, editors, ICTCS 2003, volume 6188 of Lecture Notes in Computer Science, pages 37–57.
Springer, 2003. doi:10.1007/978-3-540-45208-9_5.

9 Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von Raumer.
The Lean Theorem Prover (System Description). In Amy P. Felty and Aart Middeldorp,
editors, CADE-25, volume 9195 of Lecture Notes in Computer Science, pages 378–388. Springer,
2015. doi:10.1007/978-3-319-21401-6_26.

10 Gabriel Ebner, Sebastian Ullrich, Jared Roesch, Jeremy Avigad, and Leonardo de Moura. A
Metaprogramming Framework for Formal Verification. Proc. ACM Program. Lang., 1(ICFP):1–
29, 2017. doi:10.1145/3110278.

11 Denis Firsov and Tarmo Uustalu. Certified Normalization of Context-Free Grammars. In
CPP 2015, pages 167–174. ACM, 2015. doi:10.1145/2676724.2693177.

ITP 2023

https://doi.org/10.1007/978-3-642-32621-9_1
https://isa-afp.org/entries/Cook_Levin.html
https://doi.org/10.1007/978-3-642-13824-9_11
https://doi.org/10.1007/978-3-642-13824-9_11
http://mizar.org/JFM/pdf/lang1.pdf
https://doi.org/10.4230/LIPIcs.ITP.2019.12
https://doi.org/10.4230/LIPIcs.ITP.2019.12
https://fm.mizar.org/2001-9/pdf9-4/turing_1.pdf
https://doi.org/10.1007/978-3-540-45208-9_5
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1145/3110278
https://doi.org/10.1145/2676724.2693177

15:16 Closure Properties of General Grammars – Formally Verified

12 Yannick Forster and Fabian Kunze. A Certifying Extraction with Time Bounds from Coq
to Call-By-Value Lambda Calculus. In John Harrison, John O’Leary, and Andrew Tolmach,
editors, ITP 2019, volume 141 of LIPIcs, pages 17:1–17:19. Schloss Dagstuhl — Leibniz-Zentrum
für Informatik, 2019. doi:10.4230/LIPIcs.ITP.2019.17.

13 Yannick Forster, Fabian Kunze, and Marc Roth. The Weak Call-by-Value Lambda-Calculus is
Reasonable for Both Time and Space. Proc. ACM Program. Lang., 4(POPL):27:1–27:23, 2019.
doi:10.1145/3371095.

14 Yannick Forster, Fabian Kunze, Gert Smolka, and Maximilian Wuttke. A Mechanised Proof
of the Time Invariance Thesis for the Weak Call-By-Value λ-Calculus. In Liron Cohen
and Cezary Kaliszyk, editors, ITP 2021, volume 193 of LIPIcs, pages 19:1–19:20. Schloss
Dagstuhl — Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.ITP.2021.19.

15 Yannick Forster, Fabian Kunze, and Maximilian Wuttke. Verified Programming of Turing
Machines in Coq. In CPP 2020, pages 114–128. ACM, 2020. doi:10.1145/3372885.3373816.

16 Yannick Forster and Gert Smolka. Weak Call-by-Value Lambda Calculus as a Model of
Computation in Coq. In Mauricio Ayala-Rincón and César A. Muñoz, editors, ITP 2017,
volume 10499 of Lecture Notes in Computer Science, pages 189–206. Springer, 2017. doi:
10.1007/978-3-319-66107-0_13.

17 Lennard Gäher and Fabian Kunze. Mechanising Complexity Theory: The Cook-Levin
Theorem in Coq. In Liron Cohen and Cezary Kaliszyk, editors, ITP 2021, volume 193
of LIPIcs, pages 20:1–20:18. Schloss Dagstuhl — Leibniz-Zentrum für Informatik, 2021. doi:
10.4230/LIPIcs.ITP.2021.20.

18 John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Pearson/Addison Wesley, 3rd edition, 2007.

19 Fulya Horozal, Florian Rabe, and Michael Kohlhase. Flexary Operators for Formalized
Mathematics. In Stephen M. Watt, James H. Davenport, Alan P. Sexton, Petr Sojka, and
Josef Urban, editors, Intelligent Computer Mathematics, Lecture Notes in Computer Science,
pages 312–327. Springer, 2014. doi:10.1007/978-3-319-08434-3_23.

20 Fabian Kunze, Gert Smolka, and Yannick Forster. Formal Small-Step Verification of a
Call-by-Value Lambda Calculus Machine. In Sukyoung Ryu, editor, APLAS 2018, volume
11275 of Lecture Notes in Computer Science, pages 264–283. Springer, 2018. doi:10.1007/
978-3-030-02768-1_15.

21 Zhaohui Luo. An Extended Calculus of Constructions. PhD thesis, University of Edinburgh,
1990. URL: https://era.ed.ac.uk/bitstream/handle/1842/12487/Luo1990.Pdf.

22 The mathlib Community. The Lean Mathematical Library. In Jasmin Blanchette and Cătălin
Hrit,cu, editors, CPP 2020, pages 367–381. ACM, 2020. doi:10.1145/3372885.3373824.

23 Yasuhiko Minamide. Verified Decision Procedures on Context-Free Grammars. In Klaus
Schneider and Jens Brandt, editors, TPHOLs 2007, volume 4732 of Lecture Notes in Computer
Science, pages 173–188. Springer, 2007. doi:10.1007/978-3-540-74591-4_14.

24 Michael Norrish. Mechanised Computability Theory. In Marko C. J. D. van Eekelen, Herman
Geuvers, Julien Schmaltz, and Freek Wiedijk, editors, ITP 2011, volume 6898 of Lecture Notes
in Computer Science, pages 297–311. Springer, 2011. doi:10.1007/978-3-642-22863-6_22.

25 Marcus Vinícius Midena Ramos. Formalization of Context-Free Language Theory. Bull.
Symbol. Log., 25(2):214–214, 2019. doi:10.1017/bsl.2019.3.

26 Jian Xu, Xingyuan Zhang, and Christian Urban. Mechanising Turing Machines and
Computability Theory in Isabelle/HOL. In Interactive Theorem Proving, volume 7998,
pages 147–162. Springer Berlin Heidelberg, 2013. Lecture Notes in Computer Science.
doi:10.1007/978-3-642-39634-2_13.

https://doi.org/10.4230/LIPIcs.ITP.2019.17
https://doi.org/10.1145/3371095
https://doi.org/10.4230/LIPIcs.ITP.2021.19
https://doi.org/10.1145/3372885.3373816
https://doi.org/10.1007/978-3-319-66107-0_13
https://doi.org/10.1007/978-3-319-66107-0_13
https://doi.org/10.4230/LIPIcs.ITP.2021.20
https://doi.org/10.4230/LIPIcs.ITP.2021.20
https://doi.org/10.1007/978-3-319-08434-3_23
https://doi.org/10.1007/978-3-030-02768-1_15
https://doi.org/10.1007/978-3-030-02768-1_15
https://era.ed.ac.uk/bitstream/handle/1842/12487/Luo1990.Pdf
https://doi.org/10.1145/3372885.3373824
https://doi.org/10.1007/978-3-540-74591-4_14
https://doi.org/10.1007/978-3-642-22863-6_22
https://doi.org/10.1017/bsl.2019.3
https://doi.org/10.1007/978-3-642-39634-2_13

Formalising Yoneda Ext in Univalent Foundations
Jarl G. Taxerås Flaten #

University of Western Ontario, London, Ontario, Canada

Abstract
Ext groups are fundamental objects from homological algebra which underlie important computations
in homotopy theory. We formalise the theory of Yoneda Ext groups [12] in homotopy type theory
(HoTT) using the Coq-HoTT library [3]. This is an approach to Ext which does not require projective
or injective resolutions, though it produces large abelian groups. Using univalence, we show how
these Ext groups can be naturally represented in HoTT. We give a novel proof and formalisation
of the usual six-term exact sequence via a fibre sequence of 1-types (or groupoids), along with an
application. In addition, we discuss our formalisation of the contravariant long exact sequence of
Ext, an important computational tool. Along the way we implement and explain the Baer sum of
extensions and how Ext is a bifunctor.

2012 ACM Subject Classification Mathematics of computing → Algebraic topology; Theory of
computation → Logic and verification; Theory of computation → Type theory

Keywords and phrases homotopy type theory, homological algebra, Yoneda Ext, formalisation, Coq

Digital Object Identifier 10.4230/LIPIcs.ITP.2023.16

Related Version Full Version: https://arxiv.org/abs/2302.12678

Supplementary Material Software (Source Code): https://github.com/HoTT/HoTT/tree/master/
theories/Algebra/AbSES
Software (Source Code): https://github.com/jarlg/Yoneda-Ext

archived at swh:1:dir:636630073a835e6cd355b5cee34fa839986ff73d

Funding We acknowledge the support of the Natural Sciences and Engineering Research Council of
Canada (NSERC), RGPIN-2022-04739.

Acknowledgements The theory of Yoneda Ext in HoTT is joint work with Dan Christensen, to
whom I am also grateful for discussions and contributions related to the formalisation. I thank Jacob
Ender for contributions to the formalisation of the Baer sum, and the collaborators of the Coq-HoTT
library – and Ali Caglayan in particular – for their review of, and contributions to, the various pull
requests related to this project. I also thank the anonymous reviewers for valuable feedback.

1 Introduction

The field of homotopy type theory (HoTT) lies at the intersection of type theory and algebraic
topology, and serves as a bridge to transfer tools and insights from one domain to the other.
In one direction, the formalism of type theory has proven to be a powerful language for
reasoning about some of the highly coherent structures occurring in branches of modern
algebraic topology. Several of these structures are “natively supported” by HoTT, and we
can reason about them much more directly than in classical set-based approaches. This
makes HoTT an ideal language in which to formalise results and structures from algebraic
topology. Moreover, theorems in HoTT are valid in any ∞-topos, not just for ordinary spaces.
In a joint paper with Dan Christensen [2], we interpret our constructions into an ∞-topos,
and explain the relation between our Ext groups and sheaf Ext.

We present a formalisation of Ext groups in HoTT following the approach of Yoneda [12,
13]. Ext groups are fundamental objects in homological algebra, and they permeate com-
putations in homotopy theory. For example, the universal coefficient theorem relates Ext

© Jarl G. Taxerås Flaten;
licensed under Creative Commons License CC-BY 4.0

14th International Conference on Interactive Theorem Proving (ITP 2023).
Editors: Adam Naumowicz and René Thiemann; Article No. 16; pp. 16:1–16:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jtaxers@uwo.ca
https://orcid.org/0000-0001-6670-6928
https://doi.org/10.4230/LIPIcs.ITP.2023.16
https://arxiv.org/abs/2302.12678
https://github.com/HoTT/HoTT/tree/master/theories/Algebra/AbSES
https://github.com/HoTT/HoTT/tree/master/theories/Algebra/AbSES
https://github.com/jarlg/Yoneda-Ext
https://archive.softwareheritage.org/swh:1:dir:636630073a835e6cd355b5cee34fa839986ff73d;origin=https://github.com/jarlg/Yoneda-Ext;visit=swh:1:snp:892166cbbe3e9f893042aa14246c4fa04b6a800d;anchor=swh:1:rev:0d8bfe8e168bbdf325e805d7268e826e889189f0
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Formalising Yoneda Ext in Univalent Foundations

groups and cohomology, and features in the classical proof that π5(S3) ≃ Z /2. Much of our
formalisation has already been accepted into the Coq-HoTT library under the Algebra.AbSES
namespace, though we have also contributed to other parts of the library throughout this
project. The long exact sequence, along with a few other results we need, are currently in a
separate repository named Yoneda-Ext. We supply links to formalised statements using a
trailing ♢-sign throughout.

In ordinary mathematics, Ext groups of modules over a ring are usually defined using
projective (or injective) resolutions. This is possible because the axiom of choice implies the
existence of such projective resolutions, and Ext groups are independent of any particular
choice of resolution. (Similarly, categories of sheaves of modules always admit injective
resolutions.) In our setting, however, even abelian groups fail to admit projective resolutions.
This stems from the fact that some sets fail to be projective, which may be familiar to
those working constructively or internally to a topos. Accordingly, to define Ext groups in
homotopy type theory we cannot rely on resolutions. Fortunately, Yoneda [12, 13] gave such
a general approach, whose theory is detailed in [6], our main reference. A drawback of this
approach is that it produces large abelian groups, as we explain in Section 3.1.

We build upon the Coq-HoTT library [3], which contains sophisticated homotopy-theoretic
results, but which is presently lacking in terms of “basic” algebra. For this reason, we have
opted to simply develop Ext groups of abelian groups, instead of for modules over a ring
or in a more general setup. Nevertheless, it is clear that everything we do could have been
done over an arbitrary ring, given a well-developed library of module theory. Moreover, we
emphasise that higher Ext groups in HoTT are interesting even for abelian groups. While
in classical mathematics such Ext groups of abelian groups are trivial in dimension 2 and
up, in HoTT they may be nontrivial in all dimensions! This is because there are models of
HoTT in which these Ext groups are nontrivial [2].

In Section 3 we explain how univalence lets us naturally represent Yoneda’s approach
to Ext in HoTT. We construct the type AbSES(B, A) of short exact sequences between
two abelian groups A and B, and define Ext1(B, A) to be the set of path-components of
AbSES(B, A). This definition is justified by characterising the paths in AbSES(B, A), which
crucially uses univalence. We also show that the loop space of AbSES(B, A) is isomorphic to
the group Hom(B, A) of group homomorphisms, and that Ext1(P, A) vanishes whenever P is
projective, in a sense we define. These results all play a role in the subsequent sections.

The main content of Section 4 is a proof and formalisation of the following:

▶ Theorem 13. Let A
i−→ E

p−→ B be a short exact sequence of abelian groups. For any abelian
group G, pullback yields a fibre sequence: AbSES(B, G) p∗

−→ AbSES(E, G) i∗

−→ AbSES(A, G).♢

We give a novel, direct proof of this result which requires managing considerable amounts
of coherence. The formalisation is done for abelian groups, but the proof applies to modules
over a general ring. Its formalisation benefited from the WildCat library of Coq-HoTT (see
Section 2.2), which makes it convenient to work with types equipped with an imposed notion
of paths. This allows us to work with path data in AbSES(B, A) with better computational
properties than actual paths, but which correspond to paths via the aforementioned char-
acterisation. From the fibre sequence of the theorem we deduce the usual six-term exact
sequence (Proposition 19), which we then use to compute Ext groups of cyclic groups:

Ext1(Z /n, A) ∼= A/n

for any nonzero n : N and abelian group A (Corollary 21).♢ The six-term exact sequence,
along with this corollary, have already been applied in [1]. We also discuss how Ext1 becomes
a bifunctor into abelian groups using the Baer sum.

https://github.com/HoTT/Coq-HoTT/tree/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES
https://github.com/jarlg/Yoneda-Ext
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/PullbackFiberSequence.v#L390
https://github.com/HoTT/Coq-HoTT/blob/832aef3e6fff0f5b953ed170522e1a3d6288a4bb/theories/Algebra/AbSES/SixTerm.v#L222

J. G. T. Flaten 16:3

Finally, in Section 5 we define Extn for any n : N and discuss our formalisation of the
long exact sequence, in which the connecting maps are given by splicing:♢

▶ Theorem 26. Let A
i−→ E

p−→ B be a short exact sequence of abelian groups. For any
abelian group G, there is a long exact sequence by pulling back:♢♢♢

· · · i∗

−→ Extn(A, G) − ⊚ E−−−−→ Extn+1(B, G) p∗

−→ Extn+1(E, G) i∗

−→ · · · .

At present, we have only formalised this long exact sequence of pointed sets. It remains
to construct the Baer sum making Extn into an abelian group for n > 1, however once this
is done then we automatically get a long exact sequence of abelian groups. Our proof follows
that of Theorem 5.1 in [6], which is originally due to Stephen Schanuel.

Notation and conventions. We use typewriter font for concepts which are defined in the
code, such as AbSES and Ext. In contrast, when we use normal mathematical font, such
as Extn(B, A), we mean the classical notion. For mathematical statements we prefer to
stay close to mathematical notation by writing for example Extn(B, A) for what means
Ext n B A in Coq. The symbol ♢ is used to refer to relevant parts of the code.

Our terminology mirrors that of [10]; in particular we say “path types” for what are also
called “identity types” or “equality types”. We write pType for the universe of pointed types,
and pt for the base point of a pointed type. The ≡-symbol is for definitional equality.

2 Preliminaries

2.1 Homotopy Type Theory
We briefly explain the formal setup of homotopy type theory along with some basic notions
that we need. For a thorough introduction to HoTT, the reader may consult [10, 9].

Homotopy type theory (HoTT) extends Martin–Löf type theory (MLTT) with the
univalence axiom and often various higher inductive types (HITs). Of the latter, we simply
need propositional truncation and set truncation, which we explain in more detail below.

The univalence axiom characterises the identity types of universes. In ordinary MLTT,
there is always a function

idtoequiv :
∏

X,Y :Type
(X = Y) → (X ≃ Y)

defined by sending the reflexivity path on a type X to the identity self-equivalence on X,
using the induction principle of path types. The univalence axiom asserts that idtoequiv is
an equivalence for all X and Y . In HoTT, the first thing we often do after defining a new
type is to characterise its path types. The univalence axiom does this for the universe.

From univalence, a general structure identity principle [10, Chapter 9.8] follows which
characterises paths between structured types, such as groups and other algebraic structures.
In the case of groups, univalence implies that paths between groups correspond to group
isomorphisms. Similarly, paths between modules correspond to module isomorphisms.

Propositions, sets, and groupoids

In HoTT there is a hierarchy of n-truncated types (or n-types, for short) for any integer
n ≥ −2. In general, a type X is an (n + 1)-type when all the path types x0 =X x1 are
n-types. The recursion starts at −2, when the condition is just that the map X → 1 is an
equivalence, and in this case X is contractible.

ITP 2023

httphttps://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/LES.v#L10
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/LES.v#L15
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/LES.v#L47
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/LES.v#L94

16:4 Formalising Yoneda Ext in Univalent Foundations

We only deal with the bottom four levels of this hierarchy: contractible types, pro-
positions ((−1)-types), sets (0-types) and 1-types. A type X is a proposition when any
two points in X are equal (but there may not be any points). A type X is a set when
the path types x0 =X x1 are all propositions – this amounts to there being “at most” one
path between x0 and x1. Lastly, a type X is a 1-type when its path types are sets – in
particular, for any x : X, the loop space ΩX :≡ (x =X x) is a set which is a group under
path composition. (We leave base points implicit when taking loop spaces.)

There are truncation operations which create a proposition or a set from a given type X.
We denote by ∥X∥ the propositional truncation, and by π0X the set truncation (or set of
path-components) of X. In Coq-HoTT, the corresponding notation is merely X and Tr 0 X.
The map tr : X → π0X sends a point to its connected component. When we say that a type
X merely holds, then we mean that its propositional truncation ∥X∥ holds.

2.2 The Coq-HoTT Library
The Coq-HoTT library [3] is an open-source repository of formalised mathematics in homotopy
type theory using Coq. It is particularly aimed at developing synthetic homotopy theory, and
includes theory about spheres, loop spaces, classifying spaces, modalities, “wild ∞-categories,”
and basic results about abelian groups, to mention a few things. The library is part of the
Coq Platform and is available through the standard opam package repositories.

Below we explain some of the main features of this library, and of Coq itself, which are
important for the present work.

Universes and cumulativity

We assume basic familiarity with universes and universe levels in Coq, and in particular
that they are cumulative: a type X : Type@{u} can be resized to live in Type@{v} under the
constraint u ≤ v. (Here u and v are universe levels.) Resizing is done implicitly by Coq.

In the Coq-HoTT library, we additionally make most of our structures cumulative. This
essentially means that resizing commutes with the formation of a data structure – i.e., it
does not matter whether you resize the inputs to the data structure or whether you resize
the resulting data structure. As an example, consider the data structure prod which forms
the product of two types in a common (for simplicity) universe level. Suppose we have two
universe levels u and v with the constraint u < v. Given X Y : Type@{u}, we can form the
product at level u and then resize, or first resize and then form the product. By making
prod a cumulative data structure, the two results agree (with implicit resizing):

prod@{u} X Y ≡ prod@{v} X Y.

Cumulativity of data structures is an essential Coq feature which facilitates the kind of
formalisation we do in this paper. For example, it lets us resize groups and homomorphisms.
It also lets us reduce the number of universes in some of our definitions via the following
trick: instead of having separate universes for different inputs, we can often use a single
universe (which represents the maximum) and leverage cumulativity.

We also make use of universe constraints since our constructions move between various
universe levels. The constraints both document and verify the mathematical intent.

The WildCat library

The WildCat namespace contains the development of “wild ∞-categories,” functors between
such, and related things. This library was spearheaded by Ali Caglayan, tslil clingman, Floris
van Doorn, Morgan Opie, Mike Shulman, and Emily Riehl. The concepts generalise those

https://github.com/HoTT/Coq-HoTT/tree/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/WildCat

J. G. T. Flaten 16:5

appearing in [11, Section 4.3.1], and are not currently present in the literature. We explain
the basics of this library which are especially relevant for our formalisation.

Starting from the notion of graph♢ – a type A with a binary operation (or correspondence)
Hom into Type – the notion of a 0-functor♢ is that of a homomorphism of graphs:

Class IsGraph (A : Type) := { Hom : A -> A -> Type }.
Class Is0Functor {A B : Type} ‘{ IsGraph A} ‘{ IsGraph B} (F : A -> B)

:= { fmap : forall {a b : A} (f : Hom a b), Hom (F a) (F b) }.

We will often use the notation Hom in this text, leaving the graph structure implicit.
From here one could go ahead and define categories by defining a composition operation

and using the identity types of the type Hom(a, b) to express the various laws a category
needs to satisfy, such as associativity of composition. A more flexible approach is to instead
allow Hom(a, b) to itself be a graph, making A into a 2-graph.♢ This is the approach taken
by WildCat, and this flexibility is important for our formalisation.

Class Is2Graph (A : Type) ‘{ IsGraph A}
:= { isgraph_hom : forall (a b : A), IsGraph (Hom a b) }.

For a 2-graph A, a category structure can then be defined in a straightforward manner
using isgraph_hom to express the various laws that need to hold. This structure is bundled
into a class called Is1Cat.♢ For example, associativity is expressed as follows, using the
notation $== as a shorthand for the 2-graph structure and $o for composition:

cat_assoc : forall (a b c d : A)
(f : Hom a b) (g : Hom b c) (h : Hom c d),

(h $o g) $o f $== h $o (g $o f);

If all the morphisms in A are invertible, then A is a groupoid.♢ Finally, for the notion
of a 1-functor between categories we also express the laws using the 2-graph structure.♢

Class Is1Functor {A B : Type} ‘{ Is1Cat A} ‘{ Is1Cat B}
(F : A -> B) ‘{! Is0Functor F} := {

fmap_id : forall a, fmap F (Id a) $== Id (F a);
fmap_comp : forall a b c (f : Hom a b) (g : Hom b c),

fmap F (g $o f) $== fmap F g $o fmap F f;
fmap2 : forall a b (f g : Hom a b),

(f $== g) -> (fmap F f $== fmap F g) }.

The terms fmap_id and fmap_comp express that the functor F respects identities and
composition, as usual. If we had used identity types instead of a 2-graph structure, so
that f $== g simply meant f = g, then F would automatically respect equality between
morphisms, making fmap2 redundant. However, in the more general 2-graph setup, this
needs to be included as a law.

The adjective “wild” is used for the sort of categories just defined to indicate that they
do not capture all the coherence needed to represent ∞-categories, only the 1-categorical
structure. However, in our usage we will only encounter genuine 1-categories and groupoids.
In particular, any type X defines a groupoid via its identity types♢, and if X is a 1-type
then this groupoid structure captures everything about X. This enables us to impose our
own notion of paths, which we call path data below, for certain types of interest.

ITP 2023

https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/WildCat/Core.v#L9
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/WildCat/Core.v#L84
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/WildCat/Core.v#L89
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/WildCat/Core.v#L95
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/WildCat/Core.v#L367
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/WildCat/Core.v#L252
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/WildCat/Paths.v#L7

16:6 Formalising Yoneda Ext in Univalent Foundations

3 Yoneda Ext

As mentioned in the introduction, we will follow Yoneda’s approach to Ext groups [12, 13],
which does not require projective (or injective) resolutions, though it produces large groups.
This approach and related theory is explained in [6], which is our main reference. At present,
the Coq-HoTT library – with which this work has been formalised – does not contain much
theory related to modules over a general ring (nor the theory of abelian categories, or anything
of the sort). We therefore only formalise and state our results for abelian groups. It is clear,
however, that everything we say could be done for modules over a general ring.

For the classically-minded reader, let us also emphasise that in homotopy type theory the
category of abelian groups does not have global dimension 1, so that the higher Ext groups
we define in Section 5 do not necessarily vanish.

3.1 The Type of Short Exact Sequences
Given two abelian groups A and B, Yoneda defines a group Ext1(B, A) by considering the
large set (or class) of all short exact sequences A

i−→ E
p−→ B and taking a quotient by a certain

equivalence relation. The sequence being exact means that i is injective, p is surjective, that
p ◦ i = 0, and that the image of i is equal to the kernel of p. We usually simply write E

for the short exact sequence A → E → B when no confusion can arise. The equivalence
relation which Yoneda quotients out by is defined as “E ∼ F if and only if there exists an
isomorphism E ∼= F which respects the maps from A and to B.” Equivalently, but more
topologically, one can consider the groupoid of short exact sequences A → E → B and define
Ext1(B, A) to be the set of path-components of this groupoid – see, e.g., [6, Chapter III] for
details about both of these descriptions.

In homotopy type theory, given two abelian groups A and B we form the type of short
exact sequences from A to B as the Σ-type over all abelian groups E equipped with an
injection inclusionE : A → E, a surjection projectionE : E → B, and a witness that
these two maps form an exact complex. We represent this data as the following record-type:♢

Record AbSES@ {u v | u < v} (B A : AbGroup@ {u}) : Type@{v} := {
middle : AbGroup@ {u};
inclusion : Hom A middle ;
projection : Hom middle B;
isembedding_inclusion : IsEmbedding inclusion ;
issurjection_projection : IsSurjection projection ;
isexact_inclusion_projection

: IsExact (Tr (-1)) inclusion projection ;
}.

Note that AbSES(B, A) denotes short exact sequences from A to B. The abelian group
middle plays the role of E in the prose above. Here, the condition that projectionE ◦
inclusionE = 0 is baked into the IsExact field, which also expresses exactness.1 We have
included universe annotations which express that E lives in the same universe u as the
abelian groups A and B. Accordingly, the resulting type AbSES(B, A) lives in a universe v
which is strictly greater than u, as in Yoneda’s construction above. The type AbSES(B, A) is
pointed by the trivial short exact sequence♢ A → A ⊕ B → B.

1 The term Tr (-1) can safely be ignored; it expresses that the induced map from A to the kernel of
projectionE is (−1)-connected, which here just means it is a surjection.

https://github.com/HoTT/Coq-HoTT/blob/3062f0a152dca5b58323bffb9fceab4188d96bb1/theories/Algebra/AbSES/Core.v#L19
https://github.com/HoTT/Coq-HoTT/blob/3062f0a152dca5b58323bffb9fceab4188d96bb1/theories/Algebra/AbSES/Core.v#L60

J. G. T. Flaten 16:7

We now define Ext1(B, A) as the set-truncation of the type of short exact sequences.♢

Definition Ext (B A : AbGroup) := Tr 0 (AbSES B A).

In Section 3.3 we make the set Ext1(B, A) into an abelian group via the Baer sum. These
abelian groups, and their higher variants defined in Section 5, are our main objects of study.

Whenever we define a new type in homotopy type theory, the first thing we often do
is to characterise its path types. Theorem 7.3.12 of [10] characterises paths in truncations,
yielding(

|E|0=Ext1 |F |0
)

≃ ∥E = F∥

for any E, F : AbSES(B, A). As such, it suffices to understand paths in AbSES(B, A). These
are in turn characterised by Theorem 2.7.2 of loc. cit., which characterises paths in general
Σ-types, combined with the fact that paths in AbGroup are isomorphisms. In our case, the
result is that paths between short exact sequences correspond to isomorphisms between the
middles making the appropriate triangles commute. We refer to this data as path data, and
bundle it into a separate type (where * denotes products of types):♢

Definition abses_path_data_iso {B A : AbGroup } (E F : AbSES B A)
:= {phi : Iso E F & (phi $o inclusion E == inclusion F)

* (projection E == projection F $o phi)}.

Here Iso forms the type of isomorphisms between two groups. From our discussion above,
for any E, F : AbSES(B, A), we get an equivalence of types♢

(E =AbSES(B,A) F) ≃ abses_path_data_iso(E, F).

However, a bit more can be said: the short five lemma♢ implies that if we replace Iso by
Hom above, then it still follows that phi is an isomorphism. We define abses_path_data♢

as abses_path_data_iso above, but with Hom in place of Iso. It is convenient to have both
types around: it is easier to construct an element of abses_path_data; however we will see
situations later on where it is convenient to keep track of a specific inverse to the underlying
map, which abses_path_data_iso lets us do.

▶ Definition 1. The type AbSES(B, A) is a groupoid whose graph structure is given by
abses_path_data_iso and a corresponding category structure. For the 2-graph structure,
we assert that two path data are equal just when their underlying maps are homotopic.♢

This definition is justified by the preceding discussion, which yields:

▶ Lemma 2. For any E, F : AbSES(B, A), there are equivalences of types♢

(E = F) ≃ abses_path_data_iso(E, F) ≃ abses_path_data(E, F).

Though elementary, this lemma has an interesting consequence. This statement appears
as the n, i = 1 case of [8, Theorem 1].

▶ Proposition 3. The loop space of AbSES(B, A) is naturally isomorphic to Hom(B, A).♢

Proof. It suffices, by the previous lemma, to give an isomorphism between Hom(B, A) and
abses_path_data(A ⊕ B, A ⊕ B). One can easily check that a map ϕ : A ⊕ B → A ⊕ B

subject to the constraints of path data, is uniquely determined by the composite♢

B → A ⊕ B
ϕ−→ A ⊕ B → A.

Moreover, this association defines a group isomorphism – details are in the formalisation.♢ ◀

ITP 2023

https://github.com/HoTT/Coq-HoTT/blob/3062f0a152dca5b58323bffb9fceab4188d96bb1/theories/Algebra/AbSES/Ext.v#L21
https://github.com/HoTT/Coq-HoTT/blob/3062f0a152dca5b58323bffb9fceab4188d96bb1/theories/Algebra/AbSES/Core.v#L80
https://github.com/HoTT/Coq-HoTT/blob/3062f0a152dca5b58323bffb9fceab4188d96bb1/theories/Algebra/AbSES/Core.v#L104
https://github.com/HoTT/Coq-HoTT/blob/3062f0a152dca5b58323bffb9fceab4188d96bb1/theories/Algebra/AbSES/Core.v#L146
https://github.com/HoTT/Coq-HoTT/blob/3062f0a152dca5b58323bffb9fceab4188d96bb1/theories/Algebra/AbSES/Core.v#L184
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/Core.v#L286
https://github.com/HoTT/Coq-HoTT/blob/3062f0a152dca5b58323bffb9fceab4188d96bb1/theories/Algebra/AbSES/Core.v#L209
https://github.com/HoTT/Coq-HoTT/blob/3062f0a152dca5b58323bffb9fceab4188d96bb1/theories/Algebra/AbSES/Core.v#L481
https://github.com/HoTT/Coq-HoTT/blob/3062f0a152dca5b58323bffb9fceab4188d96bb1/theories/Algebra/AbSES/Core.v#L446
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/Lemmas.v#L28

16:8 Formalising Yoneda Ext in Univalent Foundations

To formalise the previous proposition, we first developed basic theory about biproducts
of abelian groups which now live in Algebra.AbGroups.Biproduct.

In ordinary homological algebra, an abelian group P is projective if for any homomorphism
f : P → B and epimorphism p : A → B, there exists a lift l : P → A such that f = e ◦ l. It
is well-known that Ext1(P, A) always vanishes when P is projective, and that this property
characterises projectivity. In our setting, we define an abelian group P to be projective if
for any homomorphism f and epimorphism p as above, there merely exists a lift l such that
f = l ◦ l. The propositional truncation makes this into a property of an abelian group, and
not a structure. In Coq, we express this as a type-class:♢

Class IsAbProjective (P : AbGroup) : Type :=
isabprojective : forall (A B : AbGroup),

forall (f : Hom P B), forall (e : Hom A B),
IsSurjection e -> merely (exists l : P $-> A, f == e $o l).

As in the classical case, projectives are characterised by the vanishing of Ext:

▶ Proposition 4. An abelian group P is projective if and only if Ext1(P, A) = 0 for all A.♢

From the induction principle of Z it follows that Z is projective♢ in the sense we defined
above. Consequently Ext1(Z, A) = 0 for any abelian group A, and we will use this later on.

▶ Remark 5. There is a subtle point related to projectivity that merits discussion. Our
definition of projectivity only requires the lift l to merely exist (a property), but one could
have asked for actual existence (a structure). There is no concept of “mere existence” in
ordinary mathematics, and when translating concepts into HoTT we have to carefully choose
to make something a structure or a property. In this case, our definition of projectivity is
justified by Proposition 4. If we had made projectivity a structure, then not even Z would
be projective, which we need it to be.

3.2 Ext as a Bifunctor
Some of the important structure of Ext1 is captured by the fact that it defines a bifunctor
Ext1(−, −) : Abop × Ab → Ab . This means that Ext1(−, −) is a functor in each variable
and that the following “bifunctor law” holds:

Ext1(f, −) ◦ Ext1(−, g) = Ext1(−, g) ◦ Ext1(f, −). (1)

We added a basic implementation of bifunctors to the WildCat library for our purposes,
asserting the bifunctor law using the 2-graph structure:♢

Class IsBifunctor {A B C : Type} ‘{ IsGraph A, IsGraph B, Is1Cat C}
(F : A -> B -> C) := {

bifunctor_isfunctor_10 : forall a, Is0Functor (F a);
bifunctor_isfunctor_01 : forall b, Is0Functor (fun a => F a b);
bifunctor_isbifunctor :

forall a0 a1 (f : Hom a0 a1), forall b0 b1 (g : Hom b0 b1),
fmap (F _) g $o fmap (flip F _) f

$== fmap (flip F _) f $o fmap (F _) g }.

Here flip is the map which reverses the order of arguments of a binary function. We note
that in order to state the bifunctor law, we only require F to be a 0-functor in each variable.
As such we only include those instances in this class.

https://github.com/HoTT/Coq-HoTT/blob/3062f0a152dca5b58323bffb9fceab4188d96bb1/theories/Algebra/AbGroups/AbProjective.v#L19
https://github.com/HoTT/Coq-HoTT/blob/3062f0a152dca5b58323bffb9fceab4188d96bb1/theories/Algebra/AbSES/Ext.v#L118
https://github.com/HoTT/Coq-HoTT/blob/3062f0a152dca5b58323bffb9fceab4188d96bb1/theories/Algebra/AbGroups/Cyclic.v#L56
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/WildCat/Bifunctor.v#L7

J. G. T. Flaten 16:9

The bifunctor instance of Ext1 will come from a bifunctor instance of AbSES, so we work
with the latter. First of all, AbSES : AbGroupop → AbGroup → Type becomes a 0-functor in
each variable by pulling back and pushing out, respectively.

▶ Lemma 6. Let g : B′ → B be a homomorphism of abelian groups. For any short exact
sequence A → E → B, we have a short exact sequence A → g∗(E) → B′.♢ Moreover, if E is
trivial, then so is the short exact sequence g∗(E).♢

Dually, one can push out a short exact sequence A → E → B along a map f : A → A′ to
get a short exact sequence A′ → f∗(A) → B.♢

We supply careful proofs that pushout and pullback respect composition of pointed
maps♢ and homotopies between maps,♢ and that pushing out along the identity map gives
the pointed identity map.♢ These identities could be shown with shorter proofs, however in
Section 4 we will have to prove coherences involving the paths constructed here, and these
coherences are simpler to solve when phrased in terms of path data. In any case, these proofs
make AbSES into a 1-functor in each variable.♢♢

For the bifunctor law we make use of the following proposition, which is remarkably
useful for showing that a given extension is a pullback of another one.

▶ Proposition 7. Suppose given the following diagram with short exact rows:

A E′ B′

A E B .

α g

If α = id then the top row is equal to the pullback of the bottom row along g.♢

Proof. Since the right square commutes, we get a map E′ → g∗(E) by the universal property
of the pullback. This map respects the inclusions and projections, and therefore defines a
path by Lemma 2. ◀

There is a dual statement for pushouts in which the rightmost map must be the identity.♢

▶ Corollary 8. Any diagram with short exact rows as follows yields a path f∗(E) = g∗(F).♢

A E B′

A′ F B .

f g

The corollary lets us swiftly show bifunctoriality:

▶ Proposition 9. The binary map AbSES : AbGroupop → AbGroup → Type is a bifunctor.♢

Proof. Consider a short exact sequence A → E → B along with two homomorphisms
f : A → A′ and g : B′ → B. There is an obvious diagram with short exact rows:

A g∗(E) B′

A′ f∗(E) B .

f g

which by the previous corollary yields a path f∗(g∗(E)) = g∗(f∗(E)), as required. ◀

▶ Remark 10. The results from Section 3.3 will show that AbSES is an H-space.♢ Combining
this with [1, Lemma 2.6]♢, we deduce that AbSES is a bifunctor into pointed types. This
does not play a role in the rest of this paper, however.

ITP 2023

https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/Pullback.v#L12
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/Pullback.v#L208
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/Pushout.v#L12
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/Pullback.v#L280
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/Pullback.v#L387
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/Pullback.v#L237
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/Pullback.v#L493
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/Pushout.v#L443
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/Pullback.v#L91
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/Pushout.v#L124
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/BaerSum.v#L28
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/BaerSum.v#L223
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/BaerSum.v#L214
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Homotopy/HSpace/Core.v#L138

16:10 Formalising Yoneda Ext in Univalent Foundations

3.3 The Baer Sum
The Baer sum is a binary operation on Ext1(B, A) which makes it into an abelian group.
Given two extensions E, F : Ext1(B, A) their Baer sum is defined as

E + F :≡ ∆∗∇∗(E ⊕ F)

where E ⊕ F is the point-wise direct sum, ∇(a, b) :≡ a0 + a1 : A ⊕ A → A is the codiagonal
map, and ∆(b) :≡ (b, b) : B → B ⊕ B is the diagonal map.

Together with Dan Christensen and Jacob Ender, we have implemented the Baer sum
in Algebra.AbSES.BaerSum. We define this operation on the level of short exact sequences
and then descend the operation to the set Ext1 by truncation-recursion.♢

Definition abses_baer_sum ‘{ Univalence } {B A : AbGroup }
: AbSES B A -> ABSES B A AbSES B A := fun E F =>

abses_pullback ab_diagonal
(abses_pushout ab_codiagonal (abses_direct_sum E F)).

Definition baer_sum ‘{ Univalence } {B A : AbGroup }
: Ext B A -> Ext B A -> Ext B A.

Proof.
intros E F; strip_truncations .
exact (tr (abses_baer_sum E F)).

Defined .

Above, the strip_truncations tactic is a helper for doing truncation-recursion; it lets
us assume that both E and F are elements of AbSES(B, A) in order to map into the set
Ext1(B, A). We then simply form the Baer sum of E and F on the level of short exact
sequences before applying tr to the result.

The formalisation that the Baer sum makes Ext1(B, A) into an abelian group closely
follows the “second proof” of [6, Theorem III.2.1].

▶ Theorem 11. The set Ext1(B, A) is an abelian group under the Baer sum operation.♢

The proof can be done entirely by chaining together equations once the bifunctoriality of
Ext1 has been established along with its interaction with direct sums. To illustrate this, we
prove that pushouts respect the Baer sum:

▶ Proposition 12. Let α : A → A′ be a homomorphism of abelian groups. For any abelian
group B, pushout defines a group homomorphism α∗ : Ext1(B, A) → Ext1(B, A′).♢

Proof. Using bifunctoriality of Ext1 and naturality of ⊕, we have:

α∗(E + F) = ∆∗(α∗∇∗(E ⊕ F)) = ∆∗(∇∗(α∗ ⊕ α∗)∗(E ⊕ F))
= ∆∗(∇∗(α∗E ⊕ α∗F)) ≡ α∗E + α∗F. ◀

Similarly, pullback defines a group homomorphism as well.♢ These results make Ext1 into a
bifunctor valued in abelian groups.♢

4 The Pullback Fibre Sequence

The main goal of this section is to explain and prove the following mathematical result, and
to discuss its formalisation♢ along with some applications.

https://github.com/HoTT/Coq-HoTT/blob/3062f0a152dca5b58323bffb9fceab4188d96bb1/theories/Algebra/AbSES/BaerSum.v
https://github.com/HoTT/Coq-HoTT/blob/3062f0a152dca5b58323bffb9fceab4188d96bb1/theories/Algebra/AbSES/BaerSum.v#L11
https://github.com/HoTT/Coq-HoTT/blob/3062f0a152dca5b58323bffb9fceab4188d96bb1/theories/Algebra/AbSES/Ext.v#L50
https://github.com/HoTT/Coq-HoTT/blob/3062f0a152dca5b58323bffb9fceab4188d96bb1/theories/Algebra/AbSES/BaerSum.v#L236
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/BaerSum.v#L251
https://github.com/HoTT/Coq-HoTT/blob/56427d24c185e19deae6cf8af0ad80924276ae3f/theories/Algebra/AbSES/Ext.v#L83
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/PullbackFiberSequence.v

J. G. T. Flaten 16:11

▶ Theorem 13. Let A
i−→ E

p−→ B be a short exact sequence of abelian groups. For any abelian
group G, pullback yields a fibre sequence: AbSES(B, G) p∗

−→ AbSES(E, G) i∗

−→ AbSES(A, G).♢

In [2], we give a different proof of this result via an equivalence between AbSES(B, A) and
pointed maps between Eilenberg–Mac Lane spaces. However, this different proof seems to
only work over Z whereas our proof below works for a general ring (though it has only been
formalised for Z).

A sequence of pointed maps F
i−→ E

p−→ B is a fibre sequence if p◦i is pointed-homotopic
to the constant map, and the induced map F → fibp is an equivalence. Any fibre sequence
induces a long exact sequence of homotopy groups [10, Theorem 8.4.6]:

· · · → πn(F) → πn(E) → πn(B) → · · · → π0(F) → π0(E) → π0(B).

In the situation of our theorem, it is immediate from functoriality and exactness of E that
i∗◦p∗ is constant. Therefore our goal is to show that the induced map c : AbSES(B, G) → fibi∗

is an equivalence.2 We will do this by first constructing a section of c, and then a contraction
of the fibres of c to the values of this section. A key part of the formalisation is to work with
path data instead of actual paths, since the former has better computational properties. We
will simply use E = F to denote path data, and refer to it as such, in this section.

▶ Lemma 14. Let G → F → E be a short exact sequence. Given path data p : i∗(F) = pt,
we construct a short exact sequence G → F/A → B.♢

Proof. The path data p means that the sequence i∗(F) splits. Thus we can form the cokernel
F/A as in the diagram:

i∗(F) A

G F E

F/A B .

⌟
i

j

p

The two maps G → F/A → B are given by composition and the universal property of the
cokernel, respectively. It is clear that this forms a complex and that the second map is an
epimorphism, since it factors one. To see that the map G → F/A is an injection, suppose
g : G is sent to 0 : F/A. Then j(g) is in the image of some a : A by A → F . But the map
i∗(F) → F is an injection, being the pullback of one, and so using the path data we get an
equality (g, 0) = (0, a) in G ⊕ A. Of course, this implies that g = 0, as required.

Exactness of G → F/A → B follows from a straightforward diagram chase. ◀

The diagram above exhibits F as the pullback of F/A along p∗, yielding:

▶ Lemma 15. We have path data q : p∗(F/A) = F .♢

Thus we have given a preimage F/A of F under p∗. To show that the fibre of c is inhabited
we will show that c(F/A) = (F, p), which is a path in fibi∗ . We express all of this in terms
of path data, and such a path in fibi∗ then corresponds to path data q : p∗(F/A) = F which

2 The map c is called cxfib in the code.

ITP 2023

https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/PullbackFiberSequence.v#L390
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/PullbackFiberSequence.v#L62
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/PullbackFiberSequence.v#L135

16:12 Formalising Yoneda Ext in Univalent Foundations

makes the following triangle commute:♢

i∗p∗(F/A) i∗(F)

G ⊕ A

i∗(q)

p
(2)

where the rightmost map comes from i∗p∗ being trivial. The key reason we have formulated
things in terms of path data is so that the maps in the triangle above simply compute,
because they have all been concretely constructed.

In the following, c refers to the map which lands in fibi∗ expressed in terms of path
data.♢

▶ Lemma 16. We have q : c(F/A) = (F, p) in fibi∗ .♢

Proof. The previous lemma already yields path data q : p∗(F/A) = F , thus it remains to
show that the triangle in Equation (2) commutes. The way the maps have been constructed,
it’s easiest to show this after flipping the triangle so that it starts at G ⊕ A and ends at
i∗p∗(F/A). (This is fine since all the maps are isomorphisms.) Thus we are comparing two
maps out of a biproduct into a pullback. To check whether they are equal, we can check
it on each inclusion of the biproduct and after projecting out of the pullback. In each of
these cases one obtains diagrams which commute, but checking this is somewhat involved.
Fortunately, by our having carefully crafted the path data involved, the maps simply compute
and Coq is able to reduce the goal to a simple computation. ◀

Combining the three previous lemmas, we get a section of c : AbSES(B, G) → fibi∗ . To
conclude that c is an equivalence, we contract each fibre over some (F, p) to (F/A, q).

▶ Lemma 17. Suppose G → Y → B is a short exact sequence, and let q′ : c(Y) = (F, p) in
fibi∗ . Then (F/A, q) = (Y, q′) in the fibre of c over (F, p).♢

Proof. Under our assumptions, we have the composite map ϕ : G ⊕ A → i∗p∗(Y) → p∗(Y)♢

which by a diagram chase can be seen to be the inclusion G → p∗(Y) on one component,
and (0, p) : A → p∗(Y) on the other.♢. Consequently, the composite pr1 ◦ ϕ ◦ inA : A → Y

is trivial. By the universal property of the cokernel, we get an induced map F/A → Y . Once
again, by our careful construction of all the maps involved, it is straightforward to simply
compute that this map defines path data F/A = Y and moreover that this path lifts to a
path in the fibre of c. There is a coherence between three paths in AbSES(A, G) which is
trivially satisfied, since AbSES(A, G) is a 1-type. ◀

The final lemma implies that the fibres of c are contractible, which means that c is an
equivalence and concludes the proof of Theorem 13. We now turn our attention to two
applications of this theorem. The first application requires a lemma.

▶ Lemma 18. Let g : B′ → B be a homomorphism of abelian groups. For any A, the following
diagram commutes, where the vertical isomorphisms are all given by Proposition 3:♢

Ω AbSES(B, A) Ω AbSES(B′, A)

Hom(B, A) Hom(B′, A) .

∼

Ω(g∗)

∼

ϕ 7→ϕ◦g

(3)

https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/PullbackFiberSequence.v#L233
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/PullbackFiberSequence.v#L150
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/PullbackFiberSequence.v#L255
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/PullbackFiberSequence.v#L362
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/PullbackFiberSequence.v#L285
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/PullbackFiberSequence.v#L325
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/Lemmas.v#L104

J. G. T. Flaten 16:13

Proof. Let p : A ⊕ B = A ⊕ B be an element of the upper left corner, seen as path data. By
path induction, one can easily show that the action of Ω(g∗) on paths is given by pulling
back the path data. (Formally, one first proves this for paths with free endpoints, then you
can specialise to loops.) This means that the following diagram commutes

B′ A ⊕ B′ A ⊕ B′ A

B′ A ⊕ B A ⊕ B A

Ω(g∗)(p)

id ⊕g id ⊕g

(0,g) p

where we have used the functions underlying the path data p and Ω(g∗)(p), and the unlabeled
arrows are the natural ones into or out of a biproduct. The composites of the top and
bottom rows above are the results of sending p around the top-right and bottom-left corners
of Diagram 3, respectively. Since this latter diagram commutes, so does Diagram 3. ◀

▶ Proposition 19 ([6, Theorem III.3.4]). We have an exact sequence of abelian groups:♢

0 Hom(B, G) Hom(E, G) Hom(A, G)

Ext1(B, G) Ext1(E, G) Ext1(A, G) .

p∗
i∗

p∗
i∗

Proof. This sequence comes from the long exact sequence of homotopy groups [10, The-
orem 8.4.6] associated to the fibre sequence of Theorem 13, using Proposition 3 and the
previous lemma to identify Ω AbSES(−, G) with Hom(−, G). ◀

▶ Remark 20. The connecting map Hom(A, G) → Ext1(B, G) in the sequence above is given
by ϕ 7→ ϕ∗E. Showing this from the fibre sequence is somewhat tedious; we have a proof on
paper, but not yet a formalisation. Instead, we have formalised a direct proof that the map
just stated yields exactness of the sequence.♢♢

We apply the six-term exact sequence to compute Ext groups of cyclic groups:

▶ Corollary 21 ([6, Proposition III.1.1]). For any n > 0 and abelian group A, we have♢

Ext1(Z /n, A) ∼= A/n.

Proof. The short exact sequence Z n−→ Z → Z /n yields a six-term exact sequence

· · · → Hom(Z, A) n∗

−→ Hom(Z, A) → Ext1(Z /n, A) → Ext1(Z, A) → · · ·

in which the term Ext1(Z, A) vanishes since Z is projective.♢♢ This means that the map
Hom(Z, A) → Ext1(Z /n, A) is the cokernel of the preceding map. By identifying Hom(Z, A)
with A, the claim follows. ◀

5 The Long Exact Sequence

We describe our formalisation of the higher Ext groups Extn(B, A) and their contravariant
long exact sequence, which largely follows [6, Chapter III.5]. The covariant version can be
constructed from the arguments in [7, Chapter VII.5], but we have not formalised this. The
Baer sum is not yet formalised for Extn (n > 1), so we only have a long exact sequence of
pointed sets. Nevertheless, exactness for pointed sets and abelian groups coincide, so we
automatically get a long exact sequence of the latter once we have the higher Baer sum.

The formalisation of this section is in the separate repository Yoneda-Ext, whose README
file explains how to set up and build the code related to this chapter. There are also comments
in the code which explain details beyond what we cover here.

ITP 2023

https://github.com/HoTT/Coq-HoTT/blob/832aef3e6fff0f5b953ed170522e1a3d6288a4bb/theories/Algebra/AbSES/SixTerm.v
https://github.com/HoTT/Coq-HoTT/blob/832aef3e6fff0f5b953ed170522e1a3d6288a4bb/theories/Algebra/AbSES/SixTerm.v#L77
https://github.com/HoTT/Coq-HoTT/blob/832aef3e6fff0f5b953ed170522e1a3d6288a4bb/theories/Algebra/AbSES/SixTerm.v#L134
https://github.com/HoTT/Coq-HoTT/blob/832aef3e6fff0f5b953ed170522e1a3d6288a4bb/theories/Algebra/AbSES/SixTerm.v#L222
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/Ext.v#L118
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbGroups/Cyclic.v#L56
https://github.com/jarlg/Yoneda-Ext

16:14 Formalising Yoneda Ext in Univalent Foundations

5.1 The Type of Length-n Exact Sequences
We start by defining a type ESn which we will equip with an equivalence relation by which
Extn will be the quotient. These constructions will yield functors, which we explain.

The type ESn(B, A) of length-n exact sequences is recursively defined as:♢

Fixpoint ES (n : nat) : AbGroup ^op -> AbGroup -> Type
:= match n with

| 0% nat => fun B A => Hom B A
| 1% nat => fun B A => AbSES B A
| S n => fun B A => exists M, (ES n M A) * (AbSES B M)
end.

Thus ES0(B, A) is definitionally Hom(B, A), and ES1(B, A) is definitionally AbSES(B, A). One
could also have started the induction at n ≡ 1 instead of n ≡ 2, but it is convenient to have
this definitional equality at level n ≡ 1. The functoriality of ESn is inherited from AbSES
and defined in the obvious way by pulling back and pushing out. For n > 0, an element
of ESn+1(B, A) is denoted by (F, E)M , with the obvious meaning. The type ESn(B, A)♢ is
pointed by recursion, using the trivial abelian group in the place of M in the inductive step.

▶ Definition 22. The splice operation is defined as♢

F ⊚E :≡ (F, E)B : ESn(B, A) → AbSES(C, B) → ESn+1(C, A).

By induction one can define a general splicing operation in which the second parameter
can have arbitrary length♢, but we only need the restricted version above.

Now we equip ESn(B, A) with a relation.

▶ Definition 23. We define a relation es_zig : ESn(B, A) → ESn(B, A) → Type recursively
as follows. For n = 0, 1, es_zig is the identity type. For n ≥ 2, a relation between two
elements (F, E)M and (Y, X)N consists of a homomorphism f : Hom(M, N) along with a path
f∗(E) = X and a relation es_zig(F, f∗(Y)) (using functoriality of ESn).♢

The relation es_zig generates an equivalence relation es_eqrel♢ (denoted ~ in the
code) whose propositional truncation is es_meqrel♢. The functoriality of ESn respects these
relations.♢♢ Basic results on equivalence relations are contained in EquivalenceRelation.v.

We emphasise that equivalence relation es_eqrel is not equivalent to the identity type of
ESn. Rather, it is an approximation of the identity type of the classifying space of the category
ESn (which we do not know if one can construct in HoTT). See, e.g., [6, Chapter III.5] for
related discussion.

▶ Definition 24. The pointed set Extn(B, A) is the quotient of ESn(B, A) by the equivalence
relation es_meqrel.♢

The splice operation descends to this quotient.♢ By pushing out♢ and pulling back♢

extensions, Extn becomes a functor in each variable as well. Moreover, we have equalities
f∗(F)⊚E = F ⊚ f∗(E) whenever this expression makes sense, by the definition of es_zig.♢

▶ Remark 25. The definition of Extn+1(B, A) is, more conceptually, the (n + 1)-fold tensor
product of functors Extn+1(B, A) = Extn(−, A) ⊗ Ext1(B, −) (see, e.g., [5, Theorem 9.20]
or [13, Eq. 4.3.4]). In our setup, this is a tensor product of Set-valued functors, which can
be made into an abelian group by a construction similar to the Baer sum of Section 3.3
(though we have not yet formalised this). Alternatively, one could define Extn+1(B, A) as
the (n + 1)-fold tensor product of functors into abelian groups. [4, Lemma 2.1] implies that
these two definitions coincide. We have chosen the present approach because we do not know
of a direct construction of the long exact sequence for the latter approach.

https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/ES.v#L16
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/ES.v#L32
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/ES.v#L144
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/ES.v#L166
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/ES.v#L186
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/ES.v#L224
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/ES.v#L253
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/ES.v#L264
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/ES.v#L289
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/EquivalenceRelation.v
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/HigherExt.v#L15
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/HigherExt.v#L96
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/HigherExt.v#L80
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/HigherExt.v#L65
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/HigherExt.v#L140

J. G. T. Flaten 16:15

5.2 The Long Exact Sequence
We now begin working towards the long exact sequence, following the proof of [6, The-
orem XII.5.1]. As explained at the beginning of this section, we have only formalised the
long exact sequence of pointed sets – however, exactness for pointed sets is the same as for
abelian groups. Let us first recall the statement:

▶ Theorem 26. Let A
i−→ E

p−→ B be a short exact sequence of abelian groups. For any
abelian group G, there is a long exact sequence by pulling back:♢♢♢

· · · i∗

−→ Extn(A, G) − ⊚ E−−−−→ Extn+1(B, G) p∗

−→ Extn+1(E, G) i∗

−→ · · · .

The proof in [6] first discusses the six-term exact sequence, which we proved as Propos-
ition 19. It then reduces the question to exactness at the domain of the connecting map
(Lemma XII.5.2, loc. cit.), and proves exactness at that spot using Lemmas XII.5.3, XII.5.4,
and XII.5.5. We will show the three latter lemmas, then directly prove exactness at the other
spots, essentially “in-lining” Lemma XII.5.2.

The various constructions we need to do are simpler to carry out on the level of ESn as
opposed to Extn. For this reason we work and formulate things in terms of the former, and
then deduce the desired statement for the latter.

Before attacking Lemma XII.5.3, we show the following:

▶ Lemma 27. Consider two pairs of short exact sequences which can be spliced:

(A l−→ Y
s−→ B′, B′ k−→ X

r−→ C), (A j−→ F
q−→ B, B

i−→ E
p−→ C).

For any element of es_zig(Y ⊚X, F ⊚E), we have induced maps fibs∗(X) → fibq∗(E)♢

and fibi∗(F) → fibk∗(Y)♢.

Proof. We only describe the first map since the second is analogous. The zig from Y ⊚X to
F ⊚E gives a homomorphism f : B′ → B along with two paths f∗(F) = Y and f∗(X) = E.
Let G : fibs∗(X); by path induction we may assume q∗(G) ≡ X. The path f∗(F) = Y

means we have a commuting diagram:

A Y B′

A F B .

l s

ϕ f

j q

Thus ϕ∗(G) defines an element of fibq∗(E) by q∗(ϕ∗(G)) = f∗(s∗(G)) ≡ f∗(X) = E. ◀

▶ Lemma 28 ([6, Lemma XII.5.3]). Given two short exact sequences A
j−→ F

q−→ B and
B

i−→ E
p−→ C, the following types are logically equivalent:♢

1. fibi∗(F);
2. fibq∗(E);
3. es_eqrel(pt, F ⊚E).

Proof. The logical equivalence of between (1) and (2) is as described in [6].♢ Moreover, the
implication (2) to (3) is clear by the definition of es_zig. We need to show that (3) implies
(1), and we proceed by induction on the length of the zig-zag.

In the base case we have an actual equality pt = F ⊚E, in which case (1) clearly holds.
For the inductive step, suppose we have two short exact sequences A

l−→ Y
s−→ B′ and

B′ k−→ X
r−→ C such that Y ⊚X is related to pt by a length n zig-zag, and we have either zig

ITP 2023

https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/LES.v#L15
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/LES.v#L47
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/LES.v#L94
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/XII_5.v#L45
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/XII_5.v#L82
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/XII_5.v#L173
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/XII_5.v#L131

16:16 Formalising Yoneda Ext in Univalent Foundations

or a zag relating Y ⊚X to F ⊚E. If we have a zig, then we use the induction hypothesis
to get an element of fibs∗(X) to which we apply the map fibs∗(X) → fibq∗(E) from the
previous lemma. This suffices since (1) and (2) are logically equivalent.

If we have a zag, then the previous lemma gives a map fibk∗(Y) → fibi∗(F), so we are
done by the induction hypothesis. ◀

We reformulate condition (2) in a manner that generalises to ESn.♢

Definition es_ii_family ‘{ Univalence } {n : nat} {C B A : AbGroup }
: ES n.+1 B A -> ES 1 C B -> Type
:= fun E F => { alpha : { B’ : AbGroup & B’ $-> B }

& (es_eqrel pt (es_pullback alpha .2 E))
* (hfiber (abses_pushout alpha .2) F) }.

▶ Lemma 29 ([6, Lemma XII.5.4]). In the situation of the previous lemma, the types fibq∗(E)
and es_ii_family(F, E) are logically equivalent.♢

Mac Lane appeals to the six-term exact sequence to prove this lemma, but we give a direct
construction. In order to show Lemma XII.5.3, we prove a higher analogue of Lemma 27.
This analogue is phrased in terms of the “relation fibre” rfiber, which takes the fibre of a
point with respect to a relation.

▶ Lemma 30. Let n > 0 and consider Y : ESn(B′, A), F : ESn(B, A), and two short exact
sequences B′ k−→ X → C and B

i−→ E → C. Given es_zig(Y ⊚X, F ⊚E), we have maps
rfiberi∗(F) → rfiberk∗(Y)♢ and es_ii_family(Y, X) → es_ii_family(F, E)♢.

▶ Lemma 31 ([6, Lemma XII.5.5]). Let n > 0, F : ESn(B, A), and E : ES1(C, B). The
following types are equivalent:♢
1. fibi∗(E);
2. es_ii_family(F, E);
3. es_eqrel(pt, F ⊚E).

Proof. We first prove an auxiliary lemma which shows that if the three statements are
equivalent for a given n, then (1) and (2) are equivalent for n + 1. The base case for this
lemma is simply Lemma 28. For the inductive step, our auxiliary lemma gives us that (1)
and (2) are equivalent. It is easy to show that (2) always implies (3), so it remains to show
that (3) implies either (1) or (2). For this we induct on the length of a zig-zag, and use the
equivalence of (1) and (2) along with the previous lemma, similarly (at least in structure) to
the proof of Lemma 28. ◀

Afterwards, we reformulate this lemma in terms of Extn.♢ With this lemma at hand, and
using similar methods to the ones presented here, we follow the proof of [6, Lemma 5.2] to
deduce exactness of the long sequence of Theorem 26.

6 Conclusion

We have presented a formalisation of the theory of Yoneda Ext in the novel setting of
homotopy type theory, starting from the basic definition of a short exact sequence and
arriving at the (contravariant) long exact sequence, with various related results along the
way. At present, the long exact sequence is one of pointed sets, and we leave it to future
work to formalise the Baer sum on Extn for n > 1, which would promote this into a long
exact sequence of abelian groups. (The notion of exact sequence coincides for abelian groups
and pointed sets.)

https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/XII_5.v#L214
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/XII_5.v#L221
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/XII_5.v#L285
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/XII_5.v#L266
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/XII_5.v#L375
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/XII_5.v#L505

J. G. T. Flaten 16:17

For pragmatic reasons we have worked with abelian groups, though it is clear that
everything we have done could be applied to general modules. Even so, the higher Ext groups
of abelian groups do not necessarily vanish in HoTT [2], so these are already interesting.
There are various more general approaches that we would like to consider in the future,
such as working with pure exact sequences (in which the classes of monomorphisms and
epimorphisms are appropriately replaced) in an abelian category.

Many of our results have been contributed to the Coq-HoTT library [3] under the
namespace Algebra.AbSES, which currently weighs in at about 2900 lines of code (whitespace
and comments included). This excludes the various contributions made to other parts of
the library; the precise contributions may be seen through the pull requests #1534, #1646,
#1663, #1712, #1718, and #1738. In addition, the code for the long exact sequence currently
weighs in at about 1350 lines in the separate Yoneda-Ext repository.

The formalisation covers a substantial part of chapters III.1-3, III.5, and XII.5 of [6],
but also extends beyond the classical theory. In particular, our proof of Theorem 13 is new
even for classical Yoneda Ext (though the theorem is known). This theorem presented the
most challenging part of this formalisation, as it required managing considerable amounts of
coherence. The other challenging part was the long exact sequence, whose proof involves an
intricate induction and numerous constructions. By formalising these theorems we have not
only established their correctness but also contributed evidence of the feasibility of dealing
with sophisticated mathematical structures in a proof assistant like Coq.

References
1 Ulrik Buchholtz, J. Daniel Christensen, Jarl G. Taxerås Flaten, and Egbert Rijke. Central

H-spaces and banded types, 2023. doi:10.48550/ARXIV.2301.02636.
2 J. Daniel Christensen and Jarl G. Taxerås Flaten. Ext groups in homotopy type theory, 2023.

arXiv:2305.09639.
3 Coq-HoTT. The Coq-HoTT library. URL: https://github.com/HoTT/Coq-HoTT.
4 René Guitart and Luc Van den Bril. Calcul des satellites et présentations des bimodules

à l’aide des carrés exacts. Cahiers de Topologie et Géométrie Différentielle Catégoriques,
24(3):299–330, 1983. URL: http://archive.numdam.org/item/CTGDC_1983__24_3_299_0/.

5 René Guitart and Luc Van den Bril. Calcul des satellites et présentations des bimodules à l’aide
des carrés exacts (2e partie). Cahiers de Topologie et Géométrie Différentielle Catégoriques,
24(4):333–369, 1983. URL: http://archive.numdam.org/item/CTGDC_1983__24_4_333_0/.

6 Saunders Mac Lane. Homology. Springer, 1963.
7 Barry Mitchell. Theory of categories. Academic Press, 1965.
8 Vladimir S. Retakh. Homotopic properties of categories of extensions. Russian Mathematical

Surveys, 41(6):217–218, December 1986. doi:10.1070/rm1986v041n06abeh004237.
9 Egbert Rijke. Introduction to Homotopy Type Theory. Cambridge University Press, 2023. To

appear.
10 The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of

Mathematics. https://homotopytypetheory.org/book, Institute for Advanced Study, 2013.
11 Floris van Doorn. On the Formalization of Higher Inductive Types and Synthetic Homotopy

Theory. PhD thesis, Carnegie Mellon University, 2018. doi:10.48550/arXiv.1808.10690.
12 Nobuo Yoneda. On the homology theory of modules. Journal of the Faculty of Science, the

University of Tokyo Section I, 7:193–227, 1954.
13 Nobuo Yoneda. On Ext and exact sequences. Journal of the Faculty of Science, the University

of Tokyo Section I, 8:507–576, 1960.

ITP 2023

https://github.com/HoTT/Coq-HoTT/pull/1534
https://github.com/HoTT/Coq-HoTT/pull/1646
https://github.com/HoTT/Coq-HoTT/pull/1663
https://github.com/HoTT/Coq-HoTT/pull/1712
https://github.com/HoTT/Coq-HoTT/pull/1718
https://github.com/HoTT/Coq-HoTT/pull/1738
https://github.com/jarlg/Yoneda-Ext
https://doi.org/10.48550/ARXIV.2301.02636
https://arxiv.org/abs/2305.09639
https://github.com/HoTT/Coq-HoTT
http://archive.numdam.org/item/CTGDC_1983__24_3_299_0/
http://archive.numdam.org/item/CTGDC_1983__24_4_333_0/
https://doi.org/10.1070/rm1986v041n06abeh004237
https://homotopytypetheory.org/book
https://doi.org/10.48550/arXiv.1808.10690

LISA – A Modern Proof System
Simon Guilloud Ñ

Laboratory for Automated Reasoning and Analysis, EPFL, Lausanne, Switzerland

Sankalp Gambhir Ñ

Laboratory for Automated Reasoning and Analysis, EPFL, Lausanne, Switzerland

Viktor Kunčak Ñ

Laboratory for Automated Reasoning and Analysis, EPFL, Lausanne, Switzerland

Abstract
We present LISA, a proof system and proof assistant for constructing proofs in schematic first-order
logic and axiomatic set theory. The logical kernel of the system is a proof checker for first-order
logic with equality and schematic predicate and function symbols. It implements polynomial-time
proof checking and uses the axioms of ortholattices (which implies the irrelevance of the order
of conjuncts and disjuncts and additional propositional laws). The kernel supports the notion of
theorems (whose proofs are not expanded), as well as definitions of predicate symbols and objects
whose unique existence is proven. A domain-specific language enables construction of proofs and
development of proof tactics with user-friendly tools and presentation, while remaining within the
general-purpose language, Scala. We describe the LISA proof system and illustrate the flavour
and the level of abstraction of proofs written in LISA. This includes a proof-generating tactic for
propositional tautologies, leveraging the ortholattice properties to reduce the size of proofs. We also
present early formalization of set theory in LISA, including Cantor’s theorem.

2012 ACM Subject Classification Theory of computation → Logic and verification

Keywords and phrases Proof assistant, First Order Logic, Set Theory

Digital Object Identifier 10.4230/LIPIcs.ITP.2023.17

Supplementary Material Software (Source Code): https://github.com/epfl-lara/lisa
archived at swh:1:dir:614ac272bee1c2bf21308ad532c3ca3dd3ec3832

1 Introduction

We present the design and initial implementation of a new proof assistant, named LISA.
Much like Mizar [31], LISA aims to use classical mainstream foundations of mathematics with
first order logic and set theory. LISA uses (single-sorted) first-order logic (with schematic
variables) as the syntactic framework, sequent calculus as the deduction framework and set
theory as the semantic framework. On top of this foundation, we can construct mathematical
theories without introducing additional axioms. As the target use of LISA we envision a
library of theorems, but also correctness proofs of computer systems.

LISA’s source code and a reference manual, as well as all the examples in the present
paper, are available from

https://github.com/epfl-lara/lisa

1.1 Design Goals
Our design is inspired by the LCF line of proof assistants, including HOL Light, HOL4, and
Isabelle. The envisioned path for axiomatic foundations is closer to Mizar. LISA’s logical
kernel is a hybrid between LCF-style encoding of theorems as a sealed Theorem type (similar
to HOL Light [22]) and explicit requirement of proofs. Namely, proofs are self-contained

© Simon Guilloud, Sankalp Gambhir, and Viktor Kunčak;
licensed under Creative Commons License CC-BY 4.0

14th International Conference on Interactive Theorem Proving (ITP 2023).
Editors: Adam Naumowicz and René Thiemann; Article No. 17; pp. 17:1–17:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://people.epfl.ch/simon.guilloud
https://orcid.org/0000-0001-8179-7549
https://people.epfl.ch/sankalp.gambhir
https://orcid.org/0000-0001-5994-1081
https://lara.epfl.ch/~kuncak/
https://orcid.org/0000-0001-7044-9522
https://doi.org/10.4230/LIPIcs.ITP.2023.17
https://github.com/epfl-lara/lisa
https://archive.softwareheritage.org/swh:1:dir:614ac272bee1c2bf21308ad532c3ca3dd3ec3832;origin=https://github.com/epfl-lara/lisa;visit=swh:1:snp:f6d10d15950077f6a49676d078c25896757eab16;anchor=swh:1:rev:93bbf673deb2ebcc1ff5f6612a452f637b9254ed
https://github.com/epfl-lara/lisa
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 LISA – A Modern Proof System

sequences of proof steps that derive a conclusion from assumptions (they are not explicitly
in the form of lambda terms). LISA’s kernel checks the validity of steps and assumptions,
and then creates an instance of a theorem.

As the unified implementation, proof writing and tactic language, we use Scala instead of
the ML family of languages that are common to many proof assistants. Scala is a high-level
functional and object-oriented language. We hope to avoid a sharp boundary between user
proofs and tactic developments by using a single language with good support for domain-
specific constructs. To provide a flavour of LISA, consider several ways of constructing
proofs that are available to LISA users. Figure 2 shows a proof of Pierce’s law as an explicit
sequence of sequent calculus proof steps. Figure 5 and Figure 6 show proofs built using a
higher-level domain-specific language (DSL). This DSL detects high-level errors in incorrect
proofs, but always generates the underlying lower-level proof and forwards it to the kernel
to obtain a kernel-certified theorem. Finally, Figure 9 shows a solver for propositional
tautologies that uses the same mechanisms as the proofs to implement a proof tactic. It
was not our immediate goal to create an interactive experience, so our interaction model is
more HOL4-like than Isabelle/HOL-like. For us, this means using Scala IDEs, rerunning
projects, relying on incremental compilation. As the sizes of theories grow, we plan to develop
serializations for proofs and theories to reduce re-execution. We discuss both the kernel and
the DSL in the rest of the paper.

The design philosophy of LISA focuses on what one might call the Six Virtues of Modern
Proof Systems. Efficiency say a proof system components should have polynomial complexity
(as close as possible to linear). Trust means high confidence in the system, through a
combination of well understood mathematical foundations, explicit proofs and a concise
logical kernel. Usability is making it simple, both for human users and automated methods,
to formalize mathematics and to develop tools. Predictability is the property of systems
whose behaviour and output have clear characterizations. Interoperability, whose importance
has become clear over the years, consists in making it as easy as possible for the system
to be used by other systems and to export and import proofs to and from other systems.
Finally, Programmability implies that as a computer system, a proof assistant should provide
all the expressiveness allowed by a programming language. When designing and developing
the LISA proof system, we aim to respect the six virtues as much as possible, and, when
they oppose each other, to strike for the best balance between them.

1.2 Contributions

The contribution of this paper is to present the design of LISA, a new proof construction
system embedded in Scala, based on schematic first-order logic with set theory axioms. We
focus on the following aspects.

We describe how the logical kernel is constructed and how it can be used or interacted
with by other tools.
As the most unusual design aspect, we describe ortholattice-based algorithms implemented
in the kernel to make proofs shorter.
We present a domain-specific language embedded in Scala that makes the writing of
proofs easier and generates and checks kernel proofs to obtain kernel-certified theorems.
We show that the same domain-specific language can scale from writing proofs of specific
theorems to writing general tactics. As an example of a tactic, we present a (proof
generating) solver for propositional formulas leveraging the ortholattice algorithm.
We report on the initial steps of developing elementary axiomatic set theory in the system.

S. Guilloud, S. Gambhir, and V. Kunčak 17:3

2 Logical Kernel

LISA’s deductive system is a variant of Gentzen’s Sequent Calculus for first-order logic (FOL)
[15]. Formally, a sequent in LISA is a pair of sets of formulas Γ and ∆, represented Γ ⊢ ∆
and its interpretation is

∧
Γ →

∨
∆. LISA extends the prototypical Sequent Calculus with

schematic symbols, substitution rules, and a normalization of formulas.

2.1 Schematic Symbols
Formulas in LISA’s kernel are built with the usual variables, constant function and predicate
symbols, logical connectors and binders, but also admit the use of schematic function,
predicate and connector symbols. These symbols behave like uninterpreted constant symbols
which can be substituted by any well-typed term or formula across a whole sequent, or like
variables which cannot be bound. We refer to them as second-order schematic symbols, as
opposed to regular variables, which are first-order schematic symbols. This gives the system a
flavour of second order logic and allows writing axiom and theorem schemas, as the following
example illustrates:

▶ Example 1. The following sequent (whose proof we show in Figure 5) is provable without
additional assumptions on the function symbol f and the predicate symbol P :

∀x.P (x) → P (f(x)) ⊢ ∀x.P (x) → P (f(f(x)))

This means that this sequent with f replaced by a specific term (with a distinguished free
variable) remains provable by an analogous proof, and similarly for P replaced by a formula.

In traditional first-order logic, this concept is formalized as a meta-theorem stating that
for every f and P , a corresponding proof can be built. However, in a formal setting, this
requires duplicating the whole proof for every specific f and P . Instantiation of schematic
symbols avoids this issue of proof duplication. This is similar to the schematic variables found
in Isabelle [33], and in particular Isabelle/FOL [35], where variables from the meta-logic can
be used to represent arbitrary functions, predicates, and connectors in FOL. Crucially, it does
not increase the expressive power of the system, because it can, in principle, be simulated.

2.2 Ortholattice Algorithm Applied to First-Order Logic
We find that using a proof system that is sensitive to the order of conjuncts and similar
semantically irrelevant syntactic differences can be frustrating and increases proof size
unnecessarily. To address this issue, LISA’s kernel strengthens sequent calculus with a
built-in algorithm to compute normal form and equivalence of formulas with respect to a
subset of equational rules of propositional logic. These rules, shown in Table 1, characterize
the algebraic theory of ortholattices (abbreviated OL) [3, Chapter II.1], [7].

Ortholattices are a generalization of Boolean algebra where instead of the law of dis-
tributivity, the weaker absorption law (L9, Table 1) holds. In particular, every identity in
the theory of ortholattices is also a theorem of propositional logic.

This algebraic structure has been shown to possess a quadratic-time normalization
algorithm [18] and has been suggested as the basis for normalization of formulas in the
context of verification and mechanized proofs. Notably, it subsumes negation normal form.

As a special kind of lattices, ortholattices can be viewed as partially ordered sets, with the
ordering relation on two elements a and b of an ortholattice defined as a ≤ b ⇐⇒ a ∧ b = a,
which, by absorption (L9), is also equivalent to a ∨ b = b. If s and t are terms over the

ITP 2023

17:4 LISA – A Modern Proof System

Table 1 Laws of ortholattices, an algebraic theory with signature (S,∧,∨, 0, 1,¬). [18]

L1: x ∨ y = y ∨ x L1’: x ∧ y = y ∧ x

L2: x ∨ (y ∨ z) = (x ∨ y) ∨ z L2’: x ∧ (y ∧ z) = (x ∧ y) ∧ z

L3: x ∨ x = x L3’: x ∧ x = x

L4: x ∨ 1 = 1 L4’: x ∧ 0 = 0
L5: x ∨ 0 = x L5’: x ∧ 1 = x

L6: ¬¬x = x L6’: same as L6
L7: x ∨ ¬x = 1 L7’: x ∧ ¬x = 0
L8: ¬(x ∨ y) = ¬x ∧ ¬y L8’: ¬(x ∧ y) = ¬x ∨ ¬y
L9: x ∨ (x ∧ y) = x L9’: x ∧ (x ∨ y) = x

signature (S,∧,∨, 0, 1,¬), we denote s ≤OL t if and only if OL ⊨ s ≤ t, i.e., it holds in
all ortholattices. We write s ∼OL t if both s ≤OL t and s ≥OL t hold (or equivalently, if
OL ⊨ s = t). Theorem 1 is the main result we rely on.

▶ Theorem 1 ([18]). There exists an algorithm running in worst case quadratic time
producing, for any terms s over the signature (∧,∨,¬), a normal form NFOL(s) such that for
any t, s ∼OL t if and only if NFOL(s) = NFOL(t). The algorithm is also capable of deciding
if s ≤OL t holds in quadratic time.

Moreover, the algorithm works with structure sharing with the same complexity, which is
very relevant for example when x ↔ y is expanded to (x ∧ y) ∨ (¬x ∧ ¬y). It can produce a
normal form in this case as well.

These properties, along with completeness characterization, make the OL algorithm a
good candidate to include in a proof system. LISA’s kernel further extends OL inequality
algorithm to first order logic formulas as follows. It first expresses the formula using de
Bruijn indices [11], then desugars ∃.ϕ into ¬∀.¬ϕ. It then extends the OL algorithm with
the rules in Table 2.

Table 2 Extension of OL algorithm to first-order logic. We call it the F(OL)2 algorithm. =
denotes the equality predicate in FOL, while == denotes syntactic equality of terms.

To decide... Reduce to...
1 {∧,∨,→,↔,¬}(ϕ⃗) ≤ ψ Base algorithm
2 ϕ ≤ {∧,∨,→,↔,¬}(ψ⃗) Base algorithm
3 s1 = s2 ≤ t1 = t2 {s1, s2} == {t1, t2}
4 ϕ ≤ t1 = t2 t1 == t2

5 ∀.ϕ ≤ ∀.ψ ϕ ≤ ψ

6 ′C(ϕ1, ..., ϕn) ≤ ′C(ψ1, ..., ψn) ϕi ∼OL ψi, for every 1 ≤ i ≤ n

7 Anything else false

When either of the two formulas being compared have a top-level propositional operator
(cases 1 and 2), the recursion is done according to the algorithm described in [18], considering
any non-propositional expressions (predicates, quantified formulas, and schematic connectors)
as propositional variables. The third and fourth rules take into account reflexivity and
symmetry of equality. The fifth relies on monotonicity of ∀, and the sixth rule applies
when ′C is a schematic connector, i.e., a logical connector about which we know nothing.
These rules extend to the normal-form-producing algorithm, and it is easy to see that if
≤ is interpreted as logical implication, they are sound. We decided not to include a rule

S. Guilloud, S. Gambhir, and V. Kunčak 17:5

such as ∀.ϕ ≤ ϕ(t). The reason is that incorporating such a rule systematically runs risk
of introducing higher complexity [27] in the kernel. We instead decided that such steps
should be implemented using tactics, outside the kernel in the future (possibly making use of
type-like hints encoded in first-order logic [14]).

Using the First Order Logic OrthoLattices algorithm, noted F(OL)2, the proof checker in
LISA’s kernel performs every correctness check up to F(OL)2 equivalence. This does not
prevent sequents and formulas from having arbitrary constructions and being inspected in a
stable, predictable way by tactics, as formulas are not normalized in-place. The set of LISA
deduction rules is shown in Figure 1.

Moreover, the proof checker contains a special Restate proof step, which permits F(OL)2-
transformations on the entire sequent, leveraging the interpretation of a sequent as a formula
(an implication). We also leverage specifically the partial order computed by F(OL)2 to
expand the usual Weakening rule so that the premise sequent only has to be ≤F(OL)2 stronger
than the conclusion, with both interpreted as formulas. Weakening clearly subsumes Restate,
but the latter ensures that the transformation is actually an equivalence and hence could be
reversed, which can be a useful safeguard in practice. These rules subsume most propositional
rules in Figure 1.

2.3 Substitution Rules
The substitution rules substitute equal terms or equivalent formulas inside a formula. They
are deduced steps whose simulation from simpler steps can take a number of steps linear in
the size of the sequent, yet are very frequent both in human-written proofs and automated
reasoning (as done by SAT solvers or in systems with rewrite rules, for example), justifying
their inclusion as base steps. A special case of substitution that is particularly important is
the following:

ϕ ⊢ ψ
SubstIff

ϕ ⊢ ψ[ϕ := ⊤]
This holds in a single step because ϕ ↔ ⊤ ∼F(OL)2 ϕ. In fact, Restate and SubstIff form
a complete basis for propositional logic that we will leverage in Subsection 4.1 to write a
complete proof-producing tactic for propositional logic.

The inclusion of F(OL)2 and the substitution and instantiation deduced rules in the
logical kernel is a slight bend to the trust principle, but as the algorithm is only 300 lines
of code, this is largely overshadowed by the increased usability and shorter proofs. In fact,
the whole kernel adds up to a grand total of only 1607 lines of code. This comprises the
implementation of first-order logic, the F(OL)2 algorithm, first and second-order substitution,
the sequent calculus steps, the proof checker, and a manager for definitions and theorems
(detailed in Subsection 2.5). Moreover, LISA’s kernel is efficient: except for the quadratic
F(OL)2 algorithm, every procedure in the kernel is linear (up to logarithmic coefficients) in
the size of the formulas or proofs being considered.

2.4 Proof Objects
In LISA, a proof is an explicit list of proof steps, where each step can refer to previous steps
via their respective position in the list and be referred by multiple subsequent steps. In
other words, a proof is represented as a topological linearization of the proof tree, or, more
generally, a directed acyclic graph (permitting reuse of intermediate steps). A proof step
also contains the arguments that allow the proof checker to efficiently verify it. In particular,
LISA’s kernel does not rely on a unification algorithm to check correctness of proof steps
related to quantifiers.

ITP 2023

17:6 LISA – A Modern Proof System

Hypothesis
Γ, ϕ ⊢ ϕ,∆

Γ ⊢ ϕ,∆ Σ, ϕ ⊢ Π
CutΓ,Σ ⊢ ∆,Π

Γ, ϕ, ψ ⊢ ∆
LeftAndΓ, ϕ ∧ ψ ⊢ ∆

Γ ⊢ ϕ,∆ Σ ⊢ ψ,Π RightAnd
Γ,Σ ⊢ ϕ ∧ ψ,∆,Π

Γ, ϕ ⊢ ∆ Σ, ψ ⊢ Π
LeftOrΓ,Σ, ϕ ∨ ψ ⊢ ∆,Π

Γ ⊢ ϕ, ψ∆ RightOr
Γ ⊢ ϕ ∨ ψ,∆

Γ ⊢ ϕ,∆ Σ, ψ ⊢ Π LeftImplies
Γ,Σ, ϕ → ψ ⊢ ∆,Π

Γ, ϕ ⊢ ψ,∆ RightImplies
Γ ⊢ ϕ → ψ,∆

Γ, ϕ → ψ ⊢ ∆
LeftIffΓ, ϕ ↔ ψ ⊢ ∆

Γ ⊢ ϕ → ψ,∆ Σ ⊢ ψ → ϕ,Π RightIff
Γ,Σ ⊢ ϕ ↔ ψ,∆,Π

Γ ⊢ ϕ,∆
LeftNotΓ,¬ϕ ⊢ ∆

Γ, ϕ ⊢ ∆ RightNot
Γ ⊢ ¬ϕ,∆

Γ, ϕ[t := ′x] ⊢ ∆
LeftForall

Γ, ∀′x.ϕ ⊢ ∆
Γ ⊢ ϕ,∆ RightForall

Γ ⊢ ∀′x.ϕ,∆

Γ, ϕ ⊢ ∆
LeftExists

Γ, ∃′x.ϕ ⊢ ∆
Γ ⊢ ϕ[t := ′x],∆

RightExists
Γ ⊢ ∃′x.ϕ,∆

Γ ⊢ ∆ InstSchema
Γ[ψ(v⃗) := ′p(v⃗)] ⊢ ∆[ψ(v⃗) := ′p(v⃗)]

Γ, ϕ[s := ′f] ⊢ ∆
LeftSubstEq

Γ, s = t, ϕ[t := ′f] ⊢ ∆
Γ ⊢ ϕ[s := ′f],∆

RightSubstEq
Γ, s = t ⊢ ϕ[t := ′f],∆

Γ, ϕ[a := ′p] ⊢ ∆
LeftSubstIff

Γ, a ↔ b, ϕ[b := ′p] ⊢ ∆
Γ ⊢ ϕ[a := ′p],∆

RightSubstIff
Γ, a ↔ b ⊢ ϕ[b := ′p],∆

Γ, t = t ⊢ ∆
LeftReflΓ ⊢ ∆

RightRefl
⊢ t = t

Γ1 ⊢ ∆1 Restate if (
∧

Γ1 →
∨

∆1) ∼F(OL)2 (
∧

Γ2 →
∨

∆2)
Γ2 ⊢ ∆2

Γ1 ⊢ ∆1 Weakening if (
∧

Γ1 →
∨

∆1) ≤F(OL)2 (
∧

Γ2 →
∨

∆2)
Γ2 ⊢ ∆2

Figure 1 Deduction rules allowed by LISA’s kernel. Different occurrences of the same symbols
need not represent equal elements, but only elements with the same F(OL)2 normal form.

S. Guilloud, S. Gambhir, and V. Kunčak 17:7

Moreover, proofs are standalone objects checkable and exportable without the need for
any kind of context. Figure 2 shows an example of sequent calculus proof as a sequence
of steps. Each step lists a sequent with a rule from Figure 1 and a list of (the position of)
previous steps from which the sequent follows. Figure 3 shows executable Scala code that
denotes the same proof, which can be given directly to the LISA kernel. The kernel can
efficiently check its correctness and create a theorem whose statement corresponds to the
last sequent, corresponding to the root of the proof tree. Note that, in this particular case,
the same conclusion could be reached in a single step using the Restate rule.

If the proof relies on external theorems, axioms or definitions, those are stated after the
list of proof steps and referred to with negative positions. We call those imported sequents
(imports, for short). We adopt an analogous mechanism to support subproofs. A subproof
simulates deduced steps by encapsulating an inner proof and appears as a single step in the
outer proof. In that case, the premises of the subproof become imports of the inner proof.

0 Hypothesis ϕ ⊢ ϕ

1 Weakening(0) ϕ ⊢ ϕ, ψ

2 RightImplies(1) ⊢ ϕ, (ϕ → ψ)
3 LeftImplies(2, 0) (ϕ → ψ) → ϕ ⊢ ϕ

4 RightImplies(3) ⊢ ((ϕ → ψ) → ϕ) → ϕ

Figure 2 The proof of Pierce’s Law as a sequence of steps using classical Sequent Calculus rules.

1 val PierceLawProof = SCProof(IndexedSeq(
2 Hypothesis(ϕ ⊢ ϕ, ϕ),
3 Weakening(ϕ ⊢ (ϕ, ψ), 0),
4 RightImplies(() ⊢ (ϕ, ϕ =⇒ ψ), 1, ϕ, ψ),
5 LeftImplies((ϕ =⇒ ψ) =⇒ ϕ ⊢ ϕ, 2, 0, (ϕ =⇒ ψ), ϕ),
6 RightImplies(() ⊢ ((ϕ =⇒ ψ) =⇒ ϕ) =⇒ ϕ,
7 3, (ϕ =⇒ ψ) =⇒ ϕ, ϕ)
8), Seq.empty /* no imports */)

Figure 3 The proof from Figure 2 written for LISA’s kernel. ⊢ and =⇒ are alternative, nicer
constructors for sequents and formulas and are not part of the kernel. The second argument (here
empty) is the sequence of proof imports.

2.5 Theories
LISA’s proof checker can be used as a tool to produce and check proofs, independent of any
context, but is not a sufficient tool to develop mathematical theories, as it lacks in particular
the ability to make definitions. For this task, the kernel also offers a minimal utility to allow
development of mathematical theories with the ability to introduce axioms, theorems, and
definitions with guaranteed soundness.

Theorems

This part of the kernel, called the Theory, is inspired from the LCF style [16]. It allows
checking a proof once, producing a value of a sealed type Theorem, which can then be reused
many times. The proof can then be forgotten. The Theory will also verify that the given

ITP 2023

17:8 LISA – A Modern Proof System

proof’s imports are properly justified by existing axioms, theorems or definitions, so that the
proven Theorem can be considered unconditionally true, unlike its standalone proof. Figure 4
shows how to use the Theory to obtain a theorem.

1 val theory = new Theory
2 val pierceThm: theory.Theorem = theory.makeTheorem(
3 "Pierce’s Law",
4 () ⊢ ((ϕ =⇒ ψ) =⇒ ϕ) =⇒ ϕ,
5 PierceLawProof,
6 Seq.empty
7)

Figure 4 The proof from Figure 3 can be transformed into a Theorem by a Theory. The arguments
are, in order, the name of the theorem, its statement, a proof of the statement and the list of
previous theorems, axioms or definitions used to justify the proof’s imports, if any.

The Theory naturally corresponds to the concept of a “mathematical theory” in first-order
logic, containing the language and axioms of said theory. To allow coexistence of multiple
different theories with different valid theorems, LISA makes the Theory a class that can be
instantiated multiple times. The Theorem type is dependent on a specific instance of Theory,
so that two different theories will reject the theorem of the other. In a language without
dependent types, this could be replaced by a simple runtime check. Note that in proof
development, it is expected that the user will never need to use more than one theory at
once, so this aspect is abstracted by the DSL.

Definitions

The theory also allows introducing new definitions for predicate and function symbols.
A predicate symbol P definition is of the form P (x1, . . . , xn) := ϕx1,...,xn , where the

x1, . . . , xn are the free variables of a given formula ϕ. To define a function symbol f , the
definition requires a proof of unique existence of the form:

∃!y. ϕy,x1,...,xn
(1)

and introduces a definitional axiom ϕf(x1,...,xn),x1,...,xn
, where again x1, . . . , xn are the free

variables of the formula ϕ. To make such a definition, the Theory checks that the symbol has
not already been defined and requires a proof of (1), i.e., of existence and uniqueness.

Remark on unique existence. One may hope that only the existence (but not uniqueness)
was needed to obtain conservative extensions in first-order logic. Unfortunately, this is not
true in the presence of axiom schemas. In particular, with such a definition principle, it
becomes possible to prove the Axiom of Choice in ZF set theory, while they are well known
to be independent [8]. Indeed, in ZF it is possible to prove

∀x.∃y. (x ̸= ∅ =⇒ y ∈ x)

from which we would obtain a function pick with the property

∀x. (x ̸= ∅ =⇒ pick(x) ∈ x)

If then the symbol pick is allowed in axiom schemas, as would be the case in LISA, it is then
easy to use pick and the replacement schema to construct a choice function on any set (see
also LISA’s Reference Manual [17]).

S. Guilloud, S. Gambhir, and V. Kunčak 17:9

Abstraction via underspecified definitions. We have seen that we need uniqueness to
ensure conservative extensions. On the other hand, such requirement often forces the defining
formula to be overly specific and representation-dependant. For example, one may want to
define the set of real numbers, R, as a structure that satisfies the axioms of real closed fields.
Since there are many isomorphic structures satisfying these, a uniqueness proof cannot be
obtained. It is then necessary to use a specific construction, such as Cauchy sequences, as
the definition of the set of real numbers. This, however, means that it becomes possible to
prove properties of real numbers which are specific to the chosen representation, which is
undesirable and especially so when transferring proofs to other proof systems, which may
have different representations of reals. Our solution is to allow underspecified definitions.
An underspecified definition still requires existence and uniqueness (ensuring a conservative
extension), but the theorem that the kernel provides is only the desired, weaker, one. This
mechanism makes use of the ≤ relation of F(OL)2. Section 3 shows an example of the use of
underspecified definitions in set theory.

This issue is addressed in Metamath [29] by assuming a specific construction of the
structure to conditionally prove a desired defining property (for example, the axioms of the
real field) and then introducing said property independently as an axiom. This mechanism
however is not enforced by Metamath itself but only an informal practice. LISA’s kernel
support for underspecified definitions ensures that the same goal is achieved with guaranteed
soundness. Underspecification was also discussed in the context of HOL by Rob Arthan [1].
Our approach is similar but the challenges are different. The use of Hilbert’s description
operator leads to undesired properties being provable, similarly as definition via unique
existence, but for the reason explained above, Lisa can’t relax the condition to existence only
due to the presence of axiom schemas. Forgetting a part of the definition after it was made
was tried in HOL Light, but this made reasoning about the system harder, as it has to take
into account not only the state of the system but also the sequence of operation leading to
this state. LISA avoid this issue by making underspecified definitions an integral part of the
foundation.

3 DSL for LISA in Scala

While the minimality of the kernel makes it tedious to use directly, the tools offered by
Scala (and especially Scala 3) allow us to design a more intuitive DSL, similar to other
proof assistants, directly within the host language. Moreover, essentially all the verification
related to the syntactic construction and writing of the proof are checked at compilation
time, leaving only the wrong use of proof steps and tactics (such as when trying to prove an
invalid statement) as possible failure at runtime. LISA’s interface encapsulates the kernel
and provides convenient tools and syntax to make mathematical development easier to write
and read. Figure 5 shows a minimal example of how to use the DSL to write a proof. This
approach makes LISA programmable. It offers the user the full range of tools of the host
language when writing proofs, allowing them to express proofs in novel ways or adapted to
different areas of mathematics, similar to writing on paper.

LISA’s environment is activated simply by creating an object extending lisa.Main. This
will make available all the essential features to develop mathematics in LISA. Declarations in
lines 2, 3 and 4 define a variable, a schematic predicate of arity one, and a schematic function
of arity one, such that their symbols are the same as their Scala name, i.e., respectively "x",
"P" and "f". This is made possible by implicit arguments and reflection. Line 6 starts the
declaration of a theorem. (Note that the kernel itself does not rely on such specific features;
we expect the kernel to be straightforward to implement in most languages.)

ITP 2023

17:10 LISA – A Modern Proof System

1 object Exercise extends lisa.Main {
2 val x = variable
3 val P = predicate(1)
4 val f = function(1)
5
6 val fixedPointDoubleApplication = Theorem(
7 ∀(x, P(x) =⇒ P(f(x))) ⊢ P(x) =⇒ P(f(f(x)))
8) {
9 assume(∀(x, P(x) =⇒ P(f(x))))

10 val step1 = have(P(x) =⇒ P(f(x))) by InstantiateForall
11 val step2 = have(P(f(x)) =⇒ P(f(f(x)))) by InstantiateForall
12 have(thesis) by Tautology.from(step1, step2)
13 }
14 }

Figure 5 A small proof written with LISA’s DSL. Unicode characters are obtained in practice
through ligatures or Scala’s direct support for unicode.

3.1 Higher-Level Proofs
LISA’s interface defines a proof constructing class. This class uses proof tactics to generate
pieces of the final pure sequent calculus proof, which are encapsulated into kernel subproofs.
The result from the point of view of the user is the ability to define arbitrarily computed
deduced proof steps (here Tautology and InstantiateForall) from the base steps of sequent
calculus. Thanks to Scala 3’s implicit functions types [32], the proof constructor is automat-
ically created in the code block following the Theorem declaration (line 6 of Figure 5) without
the need for the user to even realize it exists. The existence of an implicit proof constructor
in scope is necessary for the other keywords (have, assume, ...) to be well-defined, meaning
that using those outside of a theorem environment will fail to compile.

The assume keyword (line 9) allows stating a formula that will be assumed true for the
rest of the proof. Technically, it will be considered as part of the left-hand-side of any further
written sequent in the proof. have states a proposition that can be reached using a proof
tactic (or a subproof, see next example). If a step requires some premises, they can be given
as parameters to the tactic, as in line 12. have produces a Fact that can be used by later
steps.

The example in Figure 6 illustrates a more advanced proof structure, using axioms from
set theory. As the proof independently proves both directions of the double implication, it
makes use of the subproof construction. Similarly to the Theorem keyword, this construction
implicitly creates a new proof constructor environment, internal to the outer proof and
with its own goal. In a proof, a Fact is a type that contains external theorems, axioms and
definitions, as well as previously proven steps from the current or outer proof, but not from
any proof that is not a direct ancestor of the current proof. This is made possible by using
recursively defined path-dependent types (see Figure 7) and can be checked at compile-time.

Moreover, a fact can also be one of the above, accompanied by information about a
specific instantiation of schematic symbols. The actual instantiation step is then carried
automatically. This is done in practice with the of keyword, as in line 11.

When a tactic requires a single premise, and this premise is the most recently proven fact,
thenHave passes said premise directly to the tactic without the step having to be named. For
some tactics, such as the Substitution step at line 21, the resulting sequent will be inferred
by the tactic and isn’t required to be given by the user. In this case, have and thenHave

S. Guilloud, S. Gambhir, and V. Kunčak 17:11

1 val unionOfSingleton = Theorem((union(singleton(x)) ≡ x)) {
2 val X = singleton(x)
3 val forward = have((in(z, x) =⇒ in(z, union(X)))) subproof {
4 ...
5 }
6 val backward = have(in(z, union(X)) =⇒ in(z, x)) subproof {
7 have(in(z, y) ⊢ in(z, y)) by Restate
8 val step2 = thenHave((y≡x, in(z, y)) ⊢ in(z, x))
9 by Substitution

10 have(in(z, y) ∧ in(y, X) ⊢ in(z, x))
11 by Tautology.from(pairAxiom of (y→x, z→y), step2)
12 val step4 = thenHave(∃(y, in(z, y) ∧ in(y, X)) ⊢ in(z, x))
13 by LeftExists
14 have(in(z, union(X)) =⇒ in(z, x))
15 by Tautology.from(unionAxiom of (x → X), step4)
16 }
17 have(in(z, union(X)) ⇐⇒ in(z, x))
18 by RightIff(forward, backward)
19 thenHave(forall(z, in(z, union(X)) ⇐⇒ in(z, x)))
20 by RightForall
21 andThen(Substitution(extensionalityAxiom of (x → union(X), y → x)))
22 }

Figure 6 A LISA proof with more advanced construction.

takes the tactic as argument. The Tautology step proves statements using propositional laws
and the Substitution makes substitution of equals for equals, either everywhere or using
unification to find the specific occurrences to replace.

1 class Proof {
2 class ProofStep {...}
3 class InnerProof extends Proof {
4 val parent:Proof.this.type = Proof.this // The encapsulating proof
5 type Fact = parent.Fact | this.ProofStep
6 }
7 }
8 class BaseProof extends Proof {
9 type Fact = Theorem | Axiom | Definition | this.ProofStep

10 }

Figure 7 Simplified outline of the type structure for proof constructors and their facts.

Definitions. Transparent definitions come for free with the Scala host language (see line 2 of
Figure 6), these are not visible to the kernel. The DSL offers syntax for the non-transparent
definitions. Predicate symbol and function symbol (of which constant symbols are a special
type) definitions can be direct, as illustrated by the two first examples in Figure 8. Function
symbols can also be defined by unique existence, as shown in the last example. Note that
this is an example of an underspecified definition, as mentioned in the previous Section. It
defines a constant symbol nonEmpty with only the property ¬(nonEmpty≡∅), but the given
proof shows the existence of a specific non-empty set.

ITP 2023

17:12 LISA – A Modern Proof System

1 val succ = DEF(x) → union(uPair(x, singleton(x)))
2 val inductive = DEF(x) → in(∅, x) ∧ ∀(y, in(y, x) =⇒ in(succ(y), x))
3 val nonEmptySetExists = Lemma(∃!(x, ¬(x ≡ ∅) ∧ (x ≡ uPair(∅, ∅)))){...}
4 val nonEmpty = DEF() → The(x, ¬(x ≡ ∅))(nonEmptySetExists)

Figure 8 Definitions in LISA.

4 Tactics in LISA and Comparison

Developing proof tactics in proof assistants where the proof-writing language is different
from the host language (and sometimes when both are different from the tactic-writing
language) tends to exhibit high entry barriers for newcomers. They require learning multiple
new languages and how they interact with each other. This difficulty can be observed for
example with the length of the tactic-writing tutorial for Isabelle [40], or in the Coq Reference
Manual, where the Ltac tactic language [13] is described as having unclear semantics, being
slow, non-uniform, error-prone and even lacking essential programming features such as data
structures. Ltac2 [24], yet another tactic language, aims to solve some of these problems.
Newly developed systems, such as Lean [12], have the advantage of being designed from
scratch and addressing these problems. We have similar aims with LISA, but rely on an
existing programming language which has already solved those issues, has an active user base
that draws on more than the development of theorems and has well-developed and actively
maintained IDEs and libraries. In particular, for a LISA user, seeing how a proof tactic
works is ever only a ctrl-click away from their proof and when a new tactic is written, using
it is as simple as writing import MyTactic.

Not unlike in HOL Light, where a proof tactic is essentially any function returning a
value of type Theorem, a tactic in LISA is simply a function returning a proof or an error
message. The tactic can take arbitrary arguments, such as a target sequent and known
facts (which will be imports of the resulting proof) and can access the current state of the
proof constructor (if needed). To write a low level or highly optimized proof tactic, the user
can directly construct a sequent calculus proof and give it to the kernel, but they can also
use LISA’s DSL directly inside the body of the function and use pre-existing proof tactics.
Writing a tactic then consists in writing a generic LISA proof computationally.

LISA defines tactics that correspond to each basic proof step within the kernel, but with
all the parameters automatically inferred. These tactics are intended for didactic purpose.
Compared to directly using kernel proof steps, these simple tactics are more convenient
to write, but also slightly less efficient to check because the system needs to compute the
parameters of the proof step. Moreover, most of these simple tactics are subsumed by more
general tactics.

4.1 A Proof-Producing SAT Solver Using F(OL)2

The Tautology tactic is able to prove any valid sequent that requires only propositional
reasoning. It is based on a simple proof-producing DPLL-like [10] procedure complete for
propositional logic. The procedure makes decisions on atoms, so the worst case complexity is
exponential in the number of unique atoms in the formula. It is a non-clausal solver (like,
e.g., [25]) whose unique aspect is that, between each decision, it simplifies the propositional
formula using the algorithm presented in Subsection 2.2). In the context of proving validity
as in LISA as well as when trying to find a satisfying assignment in a SAT solver, this allows

S. Guilloud, S. Gambhir, and V. Kunčak 17:13

to close branches early in the exploration of the decision tree, or simply to eliminate atoms
before they even need to get decided. Moreover, this procedure does not need to compute
Tseytin’s normal form, avoiding creating more atoms, and conveniently allows producing a
proof of the statement. Figure 9 sketches the proof search procedure as it is implemented
in LISA. Our current implementation uses a simple decision heuristics that picks the atom
that occurs most frequently. Further work may also include extension of the algorithm with
quantifier reasoning, to obtain a complete procedure for FOL.

1 def solveFormula(f: Formula,
2 decisionsPos:List[Formula],
3 decisionsNeg:List[Formula]): ProofTacticJudgement = {
4 val redF = reduceWithFol2(f)
5 if (redF == ⊤) {
6 Restate(decisionsPos ⊢ f :: decisionsNeg)
7 } else if (redF == ⊥) {
8 InvalidProofTactic("Sequent is not a propositional tautology")
9 } else {

10 val atom = findBestAtom(redF)
11 val substInRedF: Formula => Formula = (f => RedF[atom:=f])
12 TacticSubproof {
13 have(solveFormula(substInRedF(⊤), atom::decisionsPos, decisionsNeg))
14 val step2 = thenHave(atom :: decisionsPos ⊢ redF :: decisionsNeg)
15 by Substitution(⊤ <=> atom)
16 have(solveFormula(substInRedF(⊥), decisionsPos, atom::decisionsNeg))
17 val step4 = thenHave(decisionsPos ⊢ redF :: atom :: decisionsNeg)
18 by Substitution(⊥ <=> atom)
19 thenHave(decisionsPos ⊢ redF :: decisionsNeg)
20 by Cut(step2, step4)
21 thenHave(decisionsPos ⊢ f :: decisionsNeg)
22 by Restate
23 }
24 }
25 }

Figure 9 Outline of the F(OL)2-based solver. Note that the actual implementation produces
directly kernel proofs for optimization. Each recursive call to solveFormula adds at most 4 kernel
steps to the final proof.

Thanks to properties of ortholattices, the solver is already capable of resolving proposi-
tional problems that are too difficult for some proof assistants. As an example, we found
that Isabelle’s Blast tactic (a general tableau prover, [34]) was in general not able to prove
the equivalence of two reasonably large formulas made only of variables, disjunctions and
conjunctions which only differed in the ordering of their arguments. On the other hand, this
is instantaneous (one step) with our described OL-based approach.

4.2 Error Reporting

LISA’s DSL also contains a printer for proof (both kernel and high level) and defines
specialized error reporting. Tactics are allowed to fail if they are used incorrectly and return
an error. Figure 10 shows LISA’s output for an incorrect proof, with the current state of the
proof, the faulty step, its line number and the error message from the tactic.

ITP 2023

17:14 LISA – A Modern Proof System

∀x. P(x) =⇒ P(f(x)) ⊢ P(x) =⇒ P(f(f(x)))
0 Hypothesis ∀x. P(x) =⇒ P(f(x)) ⊢ ∀x. P(x) =⇒ P(f(x))
1 Hypothesis P(x); ∀x. P(x) =⇒ P(f(x)) ⊢ P(x)
2 InstantiateForall P(x); ∀x. P(x) =⇒ P(f(x)) ⊢ P(x) =⇒ P(f(x))
3 InstantiateForall P(x); ∀x. P(x) =⇒ P(f(x)) ⊢ P(f(x)) =⇒ P(f(f(x)))
have(thesis) by Tautology.from(step1)

Proof tactic Tautology used in (Example.scala:47) did not succeed:
The statement is not provable within propositional logic.
The proof search needs the truth of the following sequent:
P(f(x)); P(x); ∀x. ¬(P(x) ∧ ¬P(f(x))) ⊢ P(f(f(x)))

Figure 10 LISA’s output when the step in line 12 of proof in Figure 5 is incorrectly modified to
not use step2. The indicated sequent in fact corresponds to step2.

5 Beginning Set Theory Development and Cantor’s theorem

In this section, we present a brief overview of the current mathematical development in LISA
and outline an example of a short proof in set theory.

Inspired by Mizar[31] and Isabelle/HOTG[6] we make the choice of Tarski-Grothendieck
set theory (TG) as the axiomatic foundation for LISA’s associated mathematical library. As
the main reference for the ZFC aspect of the set theory development, we follow Thomas
Jech’s book Set Theory [26]. In the future, we plan to use the axiom on Grothendieck
universes (corresponding to the existence of certain large cardinals) to support the embedding
of category theory and of systems such as Coq [44].

5.1 Current Theory Development
The mathematical library in LISA begins with the ZFC (and TG) axioms, defining the
basic constructs and operations on sets, the subset relation, the empty set, power sets, and
unordered pairs. On top of thes axioms, we define structures such as ordered pairs, relations,
and functions. Relations are sets of ordered pairs drawing elements from a set, and functions
are relations which contain the graph of the function. Function symbols have as a domain
the whole set space and must not be mixed with function objects, which are special sets and
considered as constants in the light of first order logic. During exploratory development,
proofs involving case analysis on these basic structures required significant manual effort,
but the Tautology and Substitution tactics as well as the quick instantiation of axioms
and theorems offered by the of keyword tend to automate most tedious manipulations.
Formalization of partial orders, well-ordered sets, ordinals and induction [26, Chapters 2, 3]
is ongoing.

Technically, we define for sets A and B the set of relations from A to B as the power set
of their Cartesian product P (A×B), and its restriction to functional relations, A → B, the
set of all functions with domain equal to A and their codomain included in B.

A function symbol can always apply to any term, meaning we cannot rely on well-
definedness of terms to define symbols with partial function semantics. Considering the
unique existence requirement for definitions, the standard approach consists in extending the
limited domain of the partial function by assigning a default value, for example the empty
set, to all inputs where it should be undefined, constructing a unique object. This specific
construction and default value can then be forgotten using an underspecified definition. In

S. Guilloud, S. Gambhir, and V. Kunčak 17:15

particular, interpretations of the function with all combinations of values outside the fixed
domain will be valid models for the symbol, and no non-trivial property can be proved about
those values.

For example, consider the definition for function application, app(f, x). When f is not a
functional relation, or x is not in its domain, we fix ∅ as the default value in order to obtain
a proof of existence and uniqueness.

1 val appDefinition = Theorem(∀(f, (∀ x, (∃!(z,
2 functional(f) ∧ in(x, dom(f)) =⇒ in(pair(x, z), f)))))
3 ∧ ¬functional(f) ∨ ¬in(x, dom(f)) =⇒ z ≡ ∅)

We can then obtain the function symbol app with only the desired property using an
underspecified definition:

1 val app = DEF (f, x) → The(z,
2 functional(f) ∧ in(x, dom(f)) =⇒ in(pair(x, z), f))
3 (appDefinition)

Cantor’s Theorem

Finally, several of these definitions and lemmas build up to the formalization of Cantor’s
theorem, stating that there is no surjection from any set to its power set:

1 val cantorTheorem = Theorem(¬surjective(f, x, powerSet(x)))

where f and x are schematic set variables, making the sequent implicitly universally quantified.
The proof of Cantor’s theorem is about 25 lines of code 1. Internally, the proof expands to
130 sequent calculus steps.

Cantor’s theorem is the first theorem formalized in LISA from the list Formalizing 100
Theorems [45]. While not a difficult theorem, it requires some ground development and
definitions related to set-theoretic functions and relations. The proof itself requires handling
the quantifiers for a contradiction construction and combining lemmas about surjective
functions. Much of the latter is achieved using Tautology. It shows that LISA is capable of
non-trivial mathematical development. We expect future developments to become easier and
faster with gradual development of reasoning tools and proofs.

6 Related Work

A polynomial algorithm for free ortholattices was presented in [18]. A weaker structure with
log linear complexity was first presented in [19]. In LISA we use the ortholattice normal form
for first-order logic formulas. Our F(OL)2 implementation does not aim to be complete for
structures such as quantum monadic algebras that treat extensions of OL (and orthomodular
lattices) to monadic first-order logic [21].

Much of what we described is concerned with the schematic first-order logic kernel. We
chose to include schematic variables to be able to state explicitly the axiom schemas of
Zermelo-Fraenkel set theory and its extensions, as well as theorem schemas. Another way to
generalize schematic second-order variables would be to use higher-order logic. This is the
approach pursued by Isabelle as a framework, and instantiated in Isabelle/ZF.

1 https://github.com/epfl-lara/lisa/blob/fc37f2a6e879d5f43679a4476c1d6e4685bb14a2/src/main/scala/lisa/
mathematics/SetTheory.scala#L1700

ITP 2023

https://github.com/epfl-lara/lisa/blob/fc37f2a6e879d5f43679a4476c1d6e4685bb14a2/src/main/scala/lisa/mathematics/SetTheory.scala#L1700
https://github.com/epfl-lara/lisa/blob/fc37f2a6e879d5f43679a4476c1d6e4685bb14a2/src/main/scala/lisa/mathematics/SetTheory.scala#L1700

17:16 LISA – A Modern Proof System

The choice of set theory may be considered unusual by some, as Coq [4], Lean [12],
the HOL-family [22] and Isabelle/HOL [43] are based either on type theory or on higher-
order logic. We consider HOL to be one of the most elegant formulations for formal proof
developments. However, set theory is arguably the most widely recognized foundation of
mathematics in the mathematical community, and, despite type-theory based tools having
the advantage of being easier to express formalisms in from the get-go, we believe that
through the development and use of abstracting tactics, a soft-type system and adequate
tools, more familiarity and flexibility in writing proofs can be achieved with a set-theory
based mathematical library. We also hope to provide a test bed to explore direct first-order
foundations as an alternative to the many current systems based on higher-order logic.
Concrete results in Mizar [31], Isabelle/ZF [20], ZF in Isabelle/HOL [6, 36], and TLA+

[9, 37] suggest substantial relevance of set-theoretic foundations. Arguments in favour of set
theoretic foundations have also been discussed by John Harrison [23] and Bohua Zhan [46].

Even one more level of indirection than in Isabelle/ZF is present in Isabelle/HOL/TG [6],
which develops the Tarski-Grothendieck extension of ZF inside Isabelle/HOL. Whereas our
system is less flexible and does not currently connect to such a well-developed ecosystem as
Isabelle/HOL has, our hope is that it is conceptually simpler thanks to fewer layers and a
kernel that does not rely on unification.

Another modern approach to theorem proving is Lean [12], a proof assistant based on
dependent type theory and inspired in part by Coq. We believe Lean makes significant
improvements over older proof assistant regarding the Six Virtues. In particular, it has a
strong focus on programmability, with the new version of Lean [30] even having a compiler
written in its own proof language. While LISA and Lean’s design objectives share similarities,
their strategies and specific choice (foundations, language, interface) are different.

To automate proofs that do not instantiate schematic formulas we hope to make use of
proof generating theorem provers, such as Vampire [28], SPASS [42], E [38], as well as SMT
solvers [2]. Higher-order provers such as Zipperposition [41], Leo-III [39], and Satallax [5]
would further increase automation even in the case of axiom schema instantiation.

7 Conclusion

LISA is both a proof system for automated tools and a proof assistant based on first order
logic and set theory. It uses Scala as both a host language and a proof writing language,
relying on the advanced features it offers to make the system as programmable as the
user desires. LISA is strongly committed to interoperability. In particular, it has a small
logical kernel which has guaranteed complexity and completeness characterizations, simple
foundations and explicit proofs checkable without context. Moreover, it can be compiled
into a Scala and Java library. All these properties should favour transfer of proofs from
and to other proof systems and uses of LISA as a tool for program verification. To improve
usability and reduce the size of proofs, LISA makes use of an efficient normal form algorithm
for propositional logic extended to first order logic. This algorithm is also the basis for a
complete propositional proof-producing procedure implemented in LISA as a tactic.

LISA is still under active development, but already proposes an advanced proof writing
DSL not entirely dissimilar to already existing interpreted languages in other assistants.
LISA also allows defining arbitrary tactics in a simple way and has specialized error reporting.
The current embryo of set-theoretic development encompasses properties of relations and
functions, and in particular Cantor’s theorem has been successfully proven.

S. Guilloud, S. Gambhir, and V. Kunčak 17:17

References
1 Rob Arthan. HOL Constant Definition Done Right. In Gerwin Klein and Ruben Gamboa,

editors, Interactive Theorem Proving, Lecture Notes in Computer Science, pages 531–536,
Cham, 2014. Springer International Publishing. doi:10.1007/978-3-319-08970-6_34.

2 Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann,
Abdalrhman Mohamed, Mudathir Mohamed, Aina Niemetz, Andres Nötzli, Alex Ozdemir,
Mathias Preiner, Andrew Reynolds, Ying Sheng, Cesare Tinelli, and Yoni Zohar. cvc5: A
Versatile and Industrial-Strength SMT Solver. In Dana Fisman and Grigore Rosu, editors, Tools
and Algorithms for the Construction and Analysis of Systems, volume 13243, pages 415–442.
Springer International Publishing, Cham, 2022. doi:10.1007/978-3-030-99524-9_24.

3 Ladislav Beran. Orthomodular Lattices (An Algebraic Approach). Springer Dordrecht, 1985.
doi:10.1007/978-94-009-5215-7.

4 Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development:
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. An
EATCS Series. Springer-Verlag, Berlin Heidelberg, 2004. doi:10.1007/978-3-662-07964-5.

5 Chad E. Brown. Satallax: An automatic higher-order prover. In Bernhard Gramlich, Dale
Miller, and Uli Sattler, editors, Automated Reasoning, pages 111–117, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.

6 Chad E. Brown, C. Kaliszyk, and Karol Pak. Higher-Order Tarski Grothendieck as a Foundation
for Formal Proof. In ITP, 2019. doi:10.4230/LIPIcs.ITP.2019.9.

7 Gunter Bruns and John Harding. Algebraic aspects of orthomodular lattices. In Bob Coecke,
David Moore, and Alexander Wilce, editors, Current Research in Operational Quantum
Logic: Algebras, Categories, Languages, pages 37–65. Springer Netherlands, Dordrecht, 2000.
doi:10.1007/978-94-017-1201-9_2.

8 Paul J. Cohen. The independence of the continuum hypothesis. Proceedings of the National
Academy of Sciences of the United States of America, 50(6):1143–1148, 1963. URL: http:
//www.jstor.org/stable/71858.

9 Denis Cousineau, Damien Doligez, Leslie Lamport, Stephan Merz, Daniel Ricketts, and Hernán
Vanzetto. TLA+ proofs. In Dimitra Giannakopoulou and Dominique Méry, editors, FM 2012:
Formal Methods, pages 147–154, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

10 Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem-
proving. Communications of the ACM, 5(7):394–397, July 1962. doi:10.1145/368273.368557.

11 Nicolaas Govert De Bruijn. Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the church-rosser theorem. In Indagationes
Mathematicae (Proceedings), volume 75, pages 381–392. Elsevier, 1972.

12 Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von Raumer.
The Lean Theorem Prover (System Description). In Amy P. Felty and Aart Middeldorp,
editors, Automated Deduction - CADE-25, volume 9195, pages 378–388. Springer International
Publishing, Cham, 2015. doi:10.1007/978-3-319-21401-6_26.

13 David Delahaye. A tactic language for the system coq. In LPAR, volume 1955, pages 85–95.
Springer, 2000.

14 Harald Ganzinger, Christoph Meyer, and Christoph Weidenbach. Soft typing for ordered
resolution. In William McCune, editor, Automated Deduction - CADE-14, 14th International
Conference on Automated Deduction, Townsville, North Queensland, Australia, July 13-17,
1997, Proceedings, volume 1249 of Lecture Notes in Computer Science, pages 321–335. Springer,
1997. doi:10.1007/3-540-63104-6_32.

15 G. Gentzen. Untersuchungen über das logische schließen i. Mathematische Zeitschrift, 39:176–
210, 1935. URL: http://eudml.org/doc/168546.

16 Michael J. C. Gordon, Robin Milner, Christopher P. Wadsworth, and P. Ted Christopher.
Edinburgh LCF: a mechanized logic of computation. Lecture Notes in Computer Science, 1978.

17 Simon Guilloud. LISA Reference Manual. EPFL-LARA, February 2023.

ITP 2023

https://doi.org/10.1007/978-3-319-08970-6_34
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-94-009-5215-7
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.4230/LIPIcs.ITP.2019.9
https://doi.org/10.1007/978-94-017-1201-9_2
http://www.jstor.org/stable/71858
http://www.jstor.org/stable/71858
https://doi.org/10.1145/368273.368557
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/3-540-63104-6_32
http://eudml.org/doc/168546

17:18 LISA – A Modern Proof System

18 Simon Guilloud, Mario Bucev, Dragana Milovancevic, and Viktor Kunčak. Formula normal-
izations in verification. Technical Report 297701, EPFL, 2023. URL: http://infoscience.
epfl.ch/record/297701.

19 Simon Guilloud and Viktor Kunčak, editors. Equivalence Checking for Orthocomplemented
Bisemilattices in Log-Linear Time. Springer, 2022. doi:10.48550/arXiv.2110.03315.

20 Emmanuel Gunther, Miguel Pagano, Pedro Sánchez Terraf, and Matías Steinberg. The
independence of the continuum hypothesis in isabelle/zf. Archive of Formal Proofs, March 2022.
, Formal proof development. URL: https://isa-afp.org/entries/Independence_CH.html.

21 J Harding. Quantum monadic algebras. Journal of Physics A: Mathematical and Theoretical,
55(39):394001, September 2022. doi:10.1088/1751-8121/ac845b.

22 John Harrison. HOL Light: An Overview. In Stefan Berghofer, Tobias Nipkow, Christian Urban,
and Makarius Wenzel, editors, Theorem Proving in Higher Order Logics, volume 5674, pages 60–
66. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009. doi:10.1007/978-3-642-03359-9_4.

23 John Harrison. Let’s make set theory great again! In Axiomatic Set Theory, page 46, Aussois,
2018.

24 CNRS Inria and contributors. Ltac2 — Coq 8.16.1 documentation. URL: https://coq.inria.
fr/refman/proof-engine/ltac2.html.

25 Himanshu Jain, Constantinos Bartzis, and Edmund Clarke. Satisfiability checking of non-
clausal formulas using general matings. In Armin Biere and Carla P. Gomes, editors, Theory
and Applications of Satisfiability Testing - SAT 2006, pages 75–89, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg. doi:10.1007/11814948_10.

26 Thomas Jech. Set theory: The third millennium edition, revised and expanded. Springer, 2003.
27 Deepak Kapur and Paliath Narendran. Complexity of unification problems with associative-

commutative operators. J. Autom. Reason., 9(2):261–288, 1992. doi:10.1007/BF00245463.
28 Laura Kovács and Andrei Voronkov. First-Order Theorem Proving and Vampire. In Natasha

Sharygina and Helmut Veith, editors, Computer Aided Verification, Lecture Notes in Computer
Science, pages 1–35, Berlin, Heidelberg, 2013. Springer. doi:10.1007/978-3-642-39799-8_1.

29 Norman Megill. Metamath. The Seventeen Provers of the World: Foreword by Dana S. Scott,
pages 88–95, 2006.

30 Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming
language. In André Platzer and Geoff Sutcliffe, editors, Automated Deduction – CADE 28,
pages 625–635, Cham, 2021. Springer International Publishing.

31 Adam Naumowicz and Artur Kornilowicz. A Brief Overview of Mizar. In Proceedings of the
22nd International Conference on Theorem Proving in Higher Order Logics, volume 5674,
pages 67–72, August 2009. doi:10.1007/978-3-642-03359-9_5.

32 Martin Odersky, Aggelos Biboudis, Fengyun Liu, and Olivier Blanvillain. Foundations of
implicit function types. Technical report, EPFL, 2017. URL: http://infoscience.epfl.ch/
record/229203.

33 Lawrence C. Paulson. Isabelle: The next 700 theorem provers. CoRR, cs.LO/9301106, 1993.
URL: https://arxiv.org/abs/cs/9301106.

34 Lawrence C. Paulson. A generic tableau prover and its integration with Isabelle. JUCS -
Journal of Universal Computer Science, 5(3):73–87, 1999. doi:10.3217/jucs-005-03-0073.

35 Lawrence C Paulson. Isabelle’s logics: FOL and ZF, 2013.
36 Lawrence C. Paulson. Zermelo Fraenkel set theory in higher-order logic. Archive of Formal

Proofs, October 2019. , Formal proof development. URL: https://isa-afp.org/entries/
ZFC_in_HOL.html.

37 TLA Proof System Project. TLA+ proof system. URL: https://tla.msr-inria.inria.fr/
tlaps/content/Home.html.

38 Stephan Schulz. System Description: E 1.8. In Ken McMillan, Aart Middeldorp, and
Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence, and Reasoning,
Lecture Notes in Computer Science, pages 735–743, Berlin, Heidelberg, 2013. Springer. doi:
10.1007/978-3-642-45221-5_49.

http://infoscience.epfl.ch/record/297701
http://infoscience.epfl.ch/record/297701
https://doi.org/10.48550/arXiv.2110.03315
https://isa-afp.org/entries/Independence_CH.html
https://doi.org/10.1088/1751-8121/ac845b
https://doi.org/10.1007/978-3-642-03359-9_4
https://coq.inria.fr/refman/proof-engine/ltac2.html
https://coq.inria.fr/refman/proof-engine/ltac2.html
https://doi.org/10.1007/11814948_10
https://doi.org/10.1007/BF00245463
https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.1007/978-3-642-03359-9_5
http://infoscience.epfl.ch/record/229203
http://infoscience.epfl.ch/record/229203
https://arxiv.org/abs/cs/9301106
https://doi.org/10.3217/jucs-005-03-0073
https://isa-afp.org/entries/ZFC_in_HOL.html
https://isa-afp.org/entries/ZFC_in_HOL.html
https://tla.msr-inria.inria.fr/tlaps/content/Home.html
https://tla.msr-inria.inria.fr/tlaps/content/Home.html
https://doi.org/10.1007/978-3-642-45221-5_49
https://doi.org/10.1007/978-3-642-45221-5_49

S. Guilloud, S. Gambhir, and V. Kunčak 17:19

39 Alexander Steen. Leo-iii 1.7, July 2022. doi:10.5281/zenodo.7650205.
40 Christian Urban. The Isabelle Cookbook. URL: https://web.cs.wpi.edu/~dd/resources_

isabelle/isabelle_programming.urban.pdf.
41 Petar Vukmirović, Alexander Bentkamp, Jasmin Blanchette, Simon Cruanes, Visa Nummelin,

and Sophie Tourret. Making Higher-Order Superposition Work. In André Platzer and Geoff
Sutcliffe, editors, Automated Deduction – CADE 28, Lecture Notes in Computer Science, pages
415–432, Cham, 2021. Springer International Publishing. doi:10.1007/978-3-030-79876-5_
24.

42 Christoph Weidenbach, Dilyana Dimova, Arnaud Fietzke, Rohit Kumar, Martin Suda, and
Patrick Wischnewski. SPASS Version 3.5. In Renate A. Schmidt, editor, Automated Deduction
– CADE-22, Lecture Notes in Computer Science, pages 140–145, Berlin, Heidelberg, 2009.
Springer. doi:10.1007/978-3-642-02959-2_10.

43 Makarius Wenzel, Lawrence C. Paulson, and Tobias Nipkow. The Isabelle Framework. In
Otmane Ait Mohamed, César Muñoz, and Sofiène Tahar, editors, Theorem Proving in Higher
Order Logics, Lecture Notes in Computer Science, pages 33–38, Berlin, Heidelberg, 2008.
Springer. doi:10.1007/978-3-540-71067-7_7.

44 Benjamin Werner. Sets in types, types in sets. In Gerhard Goos, Juris Hartmanis, Jan
van Leeuwen, Martín Abadi, and Takayasu Ito, editors, Theoretical Aspects of Computer
Software, volume 1281, pages 530–546. Springer Berlin Heidelberg, Berlin, Heidelberg, 1997.
doi:10.1007/BFb0014566.

45 Freek Wiedijk. Formalizing 100 theorems. https://www.cs.ru.nl/~freek/100/.
46 Bohua Zhan. Formalization of the Fundamental Group in Untyped Set Theory Using Auto2.

In Mauricio Ayala-Rincón and César A. Muñoz, editors, Interactive Theorem Proving, Lecture
Notes in Computer Science, pages 514–530, Cham, 2017. Springer International Publishing.
doi:10.1007/978-3-319-66107-0_32.

ITP 2023

https://doi.org/10.5281/zenodo.7650205
https://web.cs.wpi.edu/~dd/resources_isabelle/isabelle_programming.urban.pdf
https://web.cs.wpi.edu/~dd/resources_isabelle/isabelle_programming.urban.pdf
https://doi.org/10.1007/978-3-030-79876-5_24
https://doi.org/10.1007/978-3-030-79876-5_24
https://doi.org/10.1007/978-3-642-02959-2_10
https://doi.org/10.1007/978-3-540-71067-7_7
https://doi.org/10.1007/BFb0014566
https://www.cs.ru.nl/~freek/100/
https://doi.org/10.1007/978-3-319-66107-0_32

Semantic Foundations of Higher-Order
Probabilistic Programs in Isabelle/HOL
Michikazu Hirata #

School of Computing, Tokyo Institute of Technology, Japan

Yasuhiko Minamide #

School of Computing, Tokyo Institute of Technology, Japan

Tetsuya Sato #

School of Computing, Tokyo Institute of Technology, Japan

Abstract
Higher-order probabilistic programs are used to describe statistical models and machine-learning
mechanisms. The programming languages for them are equipped with three features: higher-order
functions, sampling, and conditioning. In this paper, we propose an Isabelle/HOL library for
probabilistic programs supporting all of those three features. We extend our previous quasi-Borel
theory library in Isabelle/HOL. As a basis of the theory, we formalize s-finite kernels, which is
considered as a theoretical foundation of first-order probabilistic programs and a key to support
conditioning of probabilistic programs. We also formalize the Borel isomorphism theorem which plays
an important role in the quasi-Borel theory. Using them, we develop the s-finite measure monad on
quasi-Borel spaces. Our extension enables us to describe higher-order probabilistic programs with
conditioning directly as an Isabelle/HOL term whose type is that of morphisms between quasi-Borel
spaces. We also implement the qbs prover for checking well-typedness of an Isabelle/HOL term as a
morphism between quasi-Borel spaces. We demonstrate several verification examples of higher-order
probabilistic programs with conditioning.

2012 ACM Subject Classification Theory of computation → Denotational semantics; Mathematics
of computing → Probabilistic algorithms

Keywords and phrases Higher-order probabilistic program, s-finite kernel, Quasi-Borel spaces,
Isabelle/HOL

Digital Object Identifier 10.4230/LIPIcs.ITP.2023.18

Funding Michikazu Hirata: supported by JSPS Research Fellowships for Young Scientists and JSPS
KAKENHI Grant Number 23KJ0905
Yasuhiko Minamide: supported by JSPS KAKENHI Grant Number 19K11899 and 20H04162
Tetsuya Sato: supported by JSPS KAKENHI Grant Number 20K19775

1 Introduction

Probabilistic programs are used to describe statistical models and machine-learning mechan-
isms. Programmers can conduct statistical inference just by writing statistical models as
programs, without implementing complex inference algorithms by themselves. Higher-order
probablistic programming languages, e.g. Anglican [29] and Church [9], integrate fundamental
features of probabilistic programming languages such as sampling and conditioning into
expressive higher-order funcaional languages and have been an active research topic recently.

Let us see a concrete example by Staton [25, Section 2.2]. The following probabilistic
program uses two language features: higher-order functions and conditioning.

© Michikazu Hirata, Yasuhiko Minamide, and Tetsuya Sato;
licensed under Creative Commons License CC-BY 4.0

14th International Conference on Interactive Theorem Proving (ITP 2023).
Editors: Adam Naumowicz and René Thiemann; Article No. 18; pp. 18:1–18:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hirata.m.ac@m.titech.ac.jp
mailto:minamide@is.titech.ac.jp
mailto:tsato@c.titech.ac.jp
https://doi.org/10.4230/LIPIcs.ITP.2023.18
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Semantic Foundations of Higher-Order Probabilistic Programs in Isabelle/HOL

1. λf. do {
2. let T = uniform (0 ,24) in
3. query T (λt. let r = f t in
4. exponential_pdf r 0.0167)
5. }

This program is higher-order since f is given as a parameter. The query command at line 3
receives a prior distribution and a likelihood, and then returns the posterior distribution.
We will explain details of this program in Section 4.2.

Basically, probabilistic programs are interpreted as measurable functions between meas-
urable spaces. Various measure-theoretic structures such as the Giry monad [8] and s-finite
kernels [24] are used for such semantic models. However, there is a difficulty to interpret
higher-order functions. The result by Aumann [2] implies that there is no suitable measurable
space corresponding to the function type real ⇒ real. In order to overcome this difficulty,
Heunen et al. have introduced quasi-Borel spaces and the probability monad on it [10]. The
theory provides a suitable denotational semantics for higher-order probabilistic programs.
Ścibior et al. have developed the s-finite measure monad1 on quasi-Borel spaces [22], which
enable us to treat infinite measures and to denote higher-order probabilistic programs with
conditioning.

In previous work, we have formalized the quasi-Borel spaces and the probability monad in
Isabelle/HOL [11]. Using them, we have verified the Monte Carlo approximation algorithm.
Our previous work can treat probabilistic programs supporting higher-order functions and
sampling but not conditioning. Affeldt et al. have formalized s-finite kernels in Coq [1].
They have embedded a probabilistic program using s-finite kernels. Their work can treat
probabilistic programs supporting sampling and conditioning but not higher-order functions.

In this paper, we propose an Isabelle/HOL library for probabilistic programs supporting
all of higher-order functions, sampling, and conditioning by extending our previous work.
Our contributions are the following.
1. We formalize s-finite kernels and the Borel isomorphism theorem. They are a theoretical

basis of quasi-Borel theory, especially a basis of the s-finite measure monad.
2. We develop proof automation for checking well-typedness of probabilistic programs and

construct the s-finite measure monad.
3. We implement several program examples from previous works and prove their properties.
Our library enables us to interpret an Isabelle/HOL term as a probabilistic program and
that makes it easier to write probabilistic programs and reason about them in Isabelle/HOL.
Our qbs prover for automated type checking is also helpful to reason about probabilistic
programs. Both of previous formalizations by us [11] and Affeldt et al. [1] use de Bruijn
index to describe programs, which makes it harder to read and write programs. Our previous
work spent around 450 lines to prove integrability and the weak law of large numbers of the
Monte Carlo approximation algorithm, while we have spent around 140 lines to prove them
in our new formalization.

In Section 2, we review the standard library for measure theory in Isabelle/HOL. Then
we formalize s-finite kernels and the Borel isomorphism theorem. In Section 3, we review
our previous formalization of quasi-Borel spaces. Then we discuss our proof automation
and formalization of the s-finite measure monad. In Section 4, we show three verification
examples of probabilistic programs. In Section 5, we conclude our work.

1 Details of definition vary among prior studies. In their original paper, they have introduced the σ-finite
measure monad. Later Vákár et al. reformulate it as s-finite measure monad [27, 28](see also Section 3.3).

M. Hirata, Y. Minamide, and T. Sato 18:3

2 Measure Theory

Measure theory is a theoretical basis of probability theory and quasi-Borel theory. We first
review the standard definitions of measure theory library in Isabelle/HOL. Then we formalize
s-finite kernels which are used to construct the s-finite measure monad in Section 3.3. We
also formalize the Borel isomorphism theorem, which plays an important role in quasi-Borel
theory.

2.1 Measure Theory in Isabelle/HOL
We use the Isabelle/HOL’s libraries: HOL-Analysis and HOL-Probability [3, 7, 12, 13, 16, 18].
The type ′a measure denotes the type of measures on the type ′a. A measure M :: ′a measure
consists of three components:

space M :: ′a set, sets M :: ′a set set, emeasure M :: ′a set ⇒ ennreal,

where the type ennreal denotes the type of extended non-negative real numbers. They
correspond to the space, the measurable sets, and the measure, respectively. We often
write M for emeasure M using a coercion. The triple (space M, sets M, emeasure M) forms
a measure space, that is, sets M is a σ-algebra on space M and emeasure M is a countably
additive function on sets M such that emeasure M ∅ = 0. We use a measure M as a
measurable space when we are not interested in its measure. The library defines the constant
borel :: (′a :: topological-space) measure on topological space type class. The borel denotes
the Borel space, that is, sets borel = σ[{U . open U}] is the least measurable sets including
all open sets. We denote the borel space on real numbers by IR, the borel space on extended
non-negative real numbers by IR≥0, the discrete space on natural numbers by IN, and the
discrete space on boolean by IB.

A function f from space M to space N is called measurable if f −1 A ∩ space M ∈ sets M
for all A ∈ sets N. The set of measurable functions from M to N is denoted by M →M N.
For a measurable function f ∈ M →M IR, the Lebesgue integral of f w.r.t. M is denoted by2∫

x. f x ∂M. The Lebesgue integral on a restricted set A is denoted by
∫

x∈A. f x ∂M.
For a measure M, the predicate subprob-space M means that M is a sub-probability

space, that is, M (space M) ≤ 1. The predicate finite-measure M means that M is a finite
measure, that is, M (space M) < ∞. The predicate sigma-finite-measure M means that M
is a σ-finite measure, that is, there exists a countable disjoint measurable sets ∀ i::nat. A i ∈
sets M such that (

⋃
i. A i) = space M and ∀ i. M (A i) < ∞.

Throughout this paper, we use the following constructions.

The Lebesgue Measure3 sets lborel = σ[{U . open U}]
emeasure lborel (a, b] = b - a

Product Measure sets (M ⊗M N) = σ[{A × B. A ∈ sets M ∧ B ∈ sets N}]
emeasure (M ⊗M N) (A × B) = emeasure M A ∗ emeasure N B
where sigma-finite-measure N, A ∈ sets M, and B ∈ sets N.

Image Measure sets (distr M N f) = sets N
emeasure (distr M N f) A = emeasure (f −1 A ∩ space M)
where f ∈ M →M N and A ∈ sets N.

2 In the library, the real-valued integral and the extended non-negative real-valued integral are defined
separately. Although we do not distinguish them for simplicity in this paper.

3 Strictly speaking, completion lborel is the Lebesgue measure.

ITP 2023

18:4 Semantic Foundations of Higher-Order Probabilistic Programs in Isabelle/HOL

2.2 S-Finite Kernel
Staton introduced a semantic model of first-order probabilistic programs with conditioning
using s-finite kernels [24]. S-finite kernels are suitable for program semantics: they support
a bind-like operation satisfying desired equations, which are a basis of the s-finite measure
monad on quasi-Borel spaces. We formalize s-finite kernels and related notions. For the
terminology of s-finite measures/kernels, we refer to the work by Staton [24].

S-finite Measures. A measure M is called a s-finite measure if M is represented as a
countable sum of finite measures. All σ-finite measures, such as the Lebesgue measure,
are also s-finite measures. We formalize s-finite measures with the locale command which
introduces a context.

locale s-finite-measure =
fixes M :: ′a measure
assumes ∃Mi :: nat ⇒ ′a measure.

(∀ i. sets (Mi i) = sets M) ∧ (∀ i. finite-measure (Mi i))
∧ (∀A∈sets M . M A = (

∑
i. Mi i A))

sublocale sigma-finite-measure ⊆ s-finite-measure

The symbol
∑

i. sums over all natural numbers (i.e.
∑∞

i=0 in usual mathematics). We
remark that s-finite measures may not be σ-finite in general. For instance, the measure
M {0} = ∞ on the singleton space {0} is not σ-finite but s-finite, because it is equal to the
countable infinite sum of the Dirac measure δ0.

We have formalized basic lemmas related to s-finite measures. One of the important
lemma is a restricted Fubini-Tonelli theorem for reordering iterated integrations. The general
Fubini-Tonelli theorem does not hold for s-finite measures because product measures are not
determined uniquely. However, the (binary) product measures in Isabelle/HOL work well
with the Fubini-Tonelli theorem. In mathematics, the product measure is usually defined
as the unique measure satisfying (M ⊗M N) (A × B) = M A ∗ N B, while Isabelle/HOL’s
library defines the product measure as (M

⊗
M N) A = (

∫
x. (

∫
y. indicator A (x,y) ∂N)

∂M). Using Isabelle/HOL’s definition, we can prove Fubini-Tonelli theorem by almost similar
ways as the proofs for σ-finite measures.

S-finite Kernels. Roughly speaking, s-finite kernels are generalization of probabilistic
processes that return s-finite measures. They are defined as countable sums of finite kernels.
In general, classes of kernels are not closed under compositions, but it is convenient that
s-finite kernels are so. We first formalize measure kernels with the locale command.

locale measure-kernel =
fixes M :: ′a measure
and N :: ′b measure
and κ :: ′a ⇒ ′b measure

assumes
∧

x. x ∈ space M =⇒ sets (κ x) = sets N
and

∧
B. B ∈ sets N=⇒(λx. κ x B) ∈ M →M IR≥0

and space M ̸= ∅ =⇒ space N ̸= ∅

The third assumption space M ̸= ∅ =⇒ space N ̸= ∅ in measure-kernel is required in
order to define the operator >>=k in a convenient way, later. We formalize finite kernels,
sub-probability kernels, and s-finite kernels as sublocales of measure kernels.

locale finite-kernel = measure-kernel +
assumes ∃ r<∞. ∀ x∈ space M . κ x (space N) < r

M. Hirata, Y. Minamide, and T. Sato 18:5

locale subprob-kernel = measure-kernel +
assumes

∧
x. x ∈ space M =⇒ subprob-space (κ x)

locale s-finite-kernel = measure-kernel +
assumes ∃ ki. (∀ i. finite-kernel M N (ki i) ∧ (∀ x∈space M . ∀A∈sets N . κ x A = (

∑
i. ki i x A)))

We define the operation M >>=k κ for an s-finite measure M and measure-kernel M N κ,
which satisfies the following properties when M is not an empty space.

sets (M >>=k κ) = sets N, (M >>=k κ) B = (
∫

x. (κ x B) ∂M)

If M is an empty space, we cannot obtain the measurable structure of N from M and κ (recall
the definition of measure-kernel). Hence, M >>=k κ is set to return the discrete empty space
as a default value. Due to this definition, we need the assumption space M ̸= ∅ =⇒ space N
̸= ∅ in measure-kernel. Without this assumption, we will get stuck to prove compositionality
of s-finite kernels later.

The operation bind, which has been already defined in the Isabelle/HOL’s library,
satisfies the same equations as the above equation for >>=k when κ is a sub-probability kernel.
Unfortunately, bind is defined through the join operator of the Giry monad and thus we do
not have the above equations for general measure kernels. Hence we need to introduce the
operator >>=k and prove lemmas similar to ones of bind.

The following are important properties for constructing the s-finite measure monad in
Section 3.3 (called compositionality, associativity, and commutativity, respectively).

lemma
assumes s-finite-kernel M N κ and s-finite-kernel (M ⊗M N) L (λ(x, y). κ ′ x y)
shows s-finite-kernel M L (λx. κ x >>=k κ ′ x)

lemma
assumes sets µ = sets M

and s-finite-kernel M N κ and s-finite-kernel N L κ ′

shows µ >>=k (λx. κ x >>=k κ ′) = µ >>=k κ >>=k κ ′

lemma
assumes sets µ = sets M and sets ν = sets N

and s-finite-measure µ and s-finite-measure ν and s-finite-kernel (M
⊗

M N) L (λ(x,y). f x y)
shows µ >>=k (λx. ν >>=k (λy. f x y)) = ν >>=k (λy. µ >>=k (λx. f x y))

The Dirac measure on M is denoted by return M in Isabelle/HOL. It forms a unit of >>=k.
lemma

assumes sets M = sets N
shows M >>=k return N = M

lemma
assumes measure-kernel M N κ

and x ∈ space M
shows return M x >>=k κ = κ x

2.3 The Borel Isomorphism Theorem
We prove the Borel isomorphism theorem. The theorem is a key to construct the s-finite
measure monad and represent s-finite measures as measures on quasi-Borel spaces in Section 3.

A separable complete metrizable topological space is called a Polish space. A measurable
space generated from a Polish space is called a standard Borel space. For example, IN and IR
are standard Borel spaces. We have the following theorems related to standard Borel spaces.

ITP 2023

18:6 Semantic Foundations of Higher-Order Probabilistic Programs in Isabelle/HOL

▶ Theorem 1 (The Borel isomorphism theorem). A standard Borel space is either countable
discrete space or isomorphic to IR.

▶ Corollary 2. For a non-empty standard Borel space M, the following statement holds.
(⋆) There exist measurable functions to-realM and from-realM such that

to-realM ∈ M →M IR , from-realM ∈ IR →M M ,

∀ x∈space M . from-realM (to-realM x) = x .

We have proved the Borel isomorphism (Theorem 1) mainly referring to the textbook by
Srivastava [23] and the lecture note by Biskup [6], which was available online. Corollary 2
follows immediately from the Borel isomorphism theorem4. We will use measurable functions
in (⋆) in two situations. One is when we construct the s-finite measure monad on quasi-Borel
spaces. The other is when we represent s-finite measures as measures on quasi-Borel spaces.
In our previous work [11], we defined the standard Borel spaces as measurable spaces which
satisfy the condition (⋆). An advantage of our new formalization is that we can obtain many
instances easily with the type classes using the following lemma.
lemma standard-borel (borel :: (′a :: polish-space) measure)

Here, standard-borel M means that M is a standard Borel space. A binary or countable
product space of standard Borel spaces is again a standard Borel space.
lemma

assumes standard-borel M and standard-borel N
shows standard-borel (M ⊗M N)

lemma
assumes countable I and

∧
i. i ∈ I =⇒ standard-borel (M i)

shows standard-borel (ΠM i∈I . M i)

In the proof of the Borel isomorphism theorem we use metric spaces and topological spaces.
The Isabelle/HOL’s libraries include formalization of metric spaces by type classes, and
topological spaces by type classes and abstract data types. Type class based formalization is
not suitable in our situation because we want to change their metrics or topologies during
the proof and work with sub-spaces. Thus we have formalized set-based metric spaces
and used the existing library of abstract topology with some extensions. Recent work on
types-to-sets [15, 17, 19] might be used to simplify our formalization.

3 Quasi-Borel Spaces

The theory of quasi-Borel spaces is introduced by Heunen et al. [10] to give a semantic
model of programming language supporting both continuous random samplings and higher-
order functions. The theory provides a suitable semantics of higher-order probabilistic
programs because quasi-Borel spaces always have function spaces with desired properties
while measurable spaces do not in general. Furthermore, s-finite measures on standard Borel
spaces are represented as measures on quasi-Borel spaces and integration is also performed
in quasi-Borel theory.

We formalized the quasi-Borel spaces and the probability monad in our previous work [11].
In this section, we first review our previous formalization, then discuss our extensions: proof
automation for quasi-Borel spaces and formalization of the s-finite measure monad.

4 In fact, the converse also holds: a measurable space satisfying (⋆) is a standard Borel space. Hence the
condition (⋆) is another characterization of standard Borel spaces. This fact is called as Kuratowski’s
theorem by Heunen et al. [10]. We have not proved it yet.

M. Hirata, Y. Minamide, and T. Sato 18:7

3.1 Quasi-Borel Spaces in Isabelle/HOL

The type ′a quasi-borel denotes quasi-Borel spaces on the type ′a. A quasi-Borel space X ::
′a quasi-borel has two components:

qbs-space X :: ′a set, qbs-Mx X :: (real ⇒ ′a) set.

They satisfy the following four conditions.
If α ∈ qbs-Mx X and r is a real number, then α r ∈ qbs-space X.
If α ∈ qbs-Mx X and f ∈ IR →M IR, then α ◦ f ∈ qbs-Mx X.
If x ∈ qbs-space X, then (λr. x) ∈ qbs-Mx X.
If (∀ i. α i ∈ qbs-Mx X) and P ∈ IR →M IN, then (λr. α (P r) r) ∈ qbs-Mx X.

Intuitively, an element of qbs-Mx X is a random variable whose sample space is the set of
real numbers. We sometimes write x ∈ X instead of x ∈ qbs-space X by declaring a coercion.

The set of morphisms (structure-preserving functions) from X :: ′a quasi-borel to Y :: ′b
quasi-borel is defined as follows.

X →Q Y :: (′a ⇒ ′b) set
X →Q Y = {f . ∀α ∈ qbs-Mx X. f ◦ α ∈ qbs-Mx Y}

Quasi-Borel spaces and morphisms form a Cartesian closed category with countable cop-
roducts. Hence, there always exist product spaces X ⊗Q Y, list spaces list-qbs X5, and
function spaces X ⇒Q Y such that qbs-space (X ⇒Q Y) = X →Q Y. Throughout this
paper, we assume that all functions are morphisms. In our extension of quasi-Borel theory
library, we define the set of morphisms X →Q Y as an abbreviation of qbs-space (X ⇒Q Y)
for the proof automation presented in Section 3.2.

Connection between Measurable Spaces and Quasi-Borel Spaces

There are conversions between measurable spaces and quasi-Borel spaces. Using the conver-
sions, we can easily derive from theorems in the measure theory library that basic functions,
such as + and −, are morphisms. The conversions L and R return the following structures.

L :: ′a quasi-borel ⇒ ′a measure
space (L X) = qbs-space X

sets (L X) = {U ∩ qbs-space X |U .

∀α∈qbs-Mx X. α −‘ U ∈ sets IR}

R :: ′a measure ⇒ ′a quasi-borel
qbs-space (R M) = space M

qbs-Mx (R M) = IR →M M

We use a measurable space M as a quasi-Borel space R M. For instance, the quasi-Borel
space IR has the following structure: qbs-space IR = UNIV (the universal set of real numbers)
and qbs-Mx IR = IR →M IR.

The conversions have the following properties.

▶ Theorem 3 (cf. [10, Propositions 15]). (i) X →Q R M = L X →M M.
(ii) If M is a standard borel space, then sets (L (R M)) = sets M

Theorem 3 (i) implies that R and L forms an adjunction between the category of measurable
spaces and the category of quasi-Borel spaces, and (ii) implies that the adjunction can be
restricted to an adjoint equivalence on standard Borel spaces.

5 The space of lists on X is defined using the isomorphism List[X] ∼=
∐

n∈N

∏
0≤i<n

X.

ITP 2023

18:8 Semantic Foundations of Higher-Order Probabilistic Programs in Isabelle/HOL

3.2 Proof Automation
The Isabelle/HOL’s measure theory library provides the automated measurability prover.
In the context of measure theory, one often needs to show measurability: A ∈ sets M or f
∈ M →M N. In pen and paper mathematics, measurability proofs are often omitted since
they are trivial, while one needs to show measurability each time in the formal proof. The
measurability prover automates such proofs of measurability and greatly reduces the cost of
proofs. Similar to measure theory, we often need to prove that some function is a morphism,
f ∈ X →Q Y, in the context of quasi-Borel theory. We have implemented automated qbs
prover. Unlike measurable spaces, quasi-Borel spaces have function spaces, hence our qbs
prover is similar to type checking of a simply-typed functional programming language.

We construct the qbs prover which tries to prove x ∈ qbs-space X automatically. The
qbs prover can also be used to solve morphism statements f ∈ X →Q Y and α ∈ qbs-Mx X
because we have X →Q Y = qbs-space (X ⇒Q Y) and qbs-Mx X = IR →Q X.

We regard (λx. e) ∈ X ⇒Q Y as the typing judgment x : X ⊢ e : Y, and e ∈ qbs-space X
as ⊢ e : X. Then solving x ∈ qbs-space X is equivalent to solving the corresponding typing
judgment. The qbs prover tries to solve typing judgments with the following method:

Algorithm. We prepare two sets of introduction rules: Rule1 and Rule2. Then repeat the
following steps.

Try to apply a rule in Rule1.
If none of the rules in Rule1 is applied, then try to apply a rule in Rule2.

Rule1 and Rule2 consist of (at least) the following inference rules.
Rule1

x : X ⊢ x : X
ID

⊢ e : Y
x : X ⊢ e : Y

CONST (x does not occur free in e)

After e ∈ qbs-space X is proved, it may be added as an axiom of Rule1.

⊢ e : X
AXIOMS

Rule2
⊢ f : X ⇒Q Y ⊢ x : X

⊢ f x : Y
APP1

x : X ⊢ e1 : Y ⇒Q Z x : X ⊢ e2 : Y
x : X ⊢ e1 e2 : Z

APP2

z : X ⊗Q Y ⊢ f [fst z/x, snd z/y] : Z
x : X ⊢ (λy. f) : Y ⇒Q Z

CURRY

For CURRY, we need to have fst ∈ X ⊗Q Y ⇒Q X and snd ∈ X ⊗Q Y ⇒Q Y as axioms
of Rule1. There are mainly two reasons why we divide the rules. First, the rule CONST
might overlap with APP2 or CURRY. Because the rule CONST should be applied first, we
add CONST to Rule1. The other reason is that to prevent terms from being split in certain
situation. We sometimes add rules for composition of terms, for example emeasure M A ∈
IR≥0, to Rule1. If we apply a rule in Rule2 first, then the composed term will be split by the
rule APP1 or APP2, that is not what we want the prover to do.

The following code is an example usage of the qbs prover.

M. Hirata, Y. Minamide, and T. Sato 18:9

lemma
assumes [qbs]: f ∈ IR ⇒Q IR
shows (λx. 1 + f x) ∈ IR ⇒Q IR
by qbs

In the above code, we add f ∈ IR ⇒Q IR to the axioms of Rule1 using the attribute [qbs].
Rule1 is configured by our library so that the axioms contain r ∈ IR and (+) ∈ IR ⇒Q IR
⇒Q IR . Then we call the qbs prover by the tactic qbs which immediately solves the goal.

However, it cannot handle assumptions on typing of lambda abstraction well. It fails for
the following example.
lemma

assumes [qbs]: (λx. f x c) ∈ X ⇒Q Y
shows (λx z. f x c) ∈ X ⇒Q Z ⇒Q Y

Implementation Note. We have implemented the qbs prover using raw ML code. There
are some points to be noted.

The following theorem corresponds to the rule APP2 in Isabelle/HOL.
lemma

assumes f ∈ X ⇒Q Y ⇒Q Z and g ∈ X ⇒Q Y
shows (λx. f x (g x)) ∈ X ⇒Q Z

When applying the rule APP2, we need to instantiate f and g in the lemma so that
higher-order unification achieves an intended unification.
When applying the rule CURRY, we should check by pattern matching that the goal
is a lambda abstraction. Otherwise, it may overlap with APP2 by eta-expanding e1 e2
when the term has a function type.

We expect that this typing algorithm works in a similar situation where we want to restrict
function spaces and constants in Isabelle/HOL. In our situation, function spaces are restricted
to the set of morphisms.

3.3 The s-Finite Measure Monad
The s-finite measure monad on quasi-Borel spaces was introduced by Ścibior et al. [22] as the
σ-finite measure monad. Then, it was reformulated as a submonad of the continuation monad
[0, ∞][0,∞](−) by Vákár et al. [27, 28]. The details of the definition vary among these previous
studies6, and we could not find detailed proofs of monad laws and commutativity in any of
them. We thus recover the detailed proofs first, and then we formalize them. We choose
the definition given in Yang’s lecture slide [30], because it is suitable for formalization in
Isabelle/HOL. Its definition is quite similar to the probability monad introduced by Heunen
et al. [10]. The probability monad is derived from the monad laws and the commutativity of
the Giry monad, while the s-finite measure monad is derived from the properties of s-finite
kernels and >>=k.

First, we define measures on quasi-Borel spaces to treat infinite measures such as the
Lebesgue measure. Intuitively, a measure is a pair consisting of an s-finite measure µ on
IR and a random variable α ∈ qbs-Mx X. We also introduce the equivalence relation ∼ of
measures on quasi-Borel spaces defined by relating pairs with equal image measures. In
our implementation, we use a triple (X,α,µ) rather than a pair (α,µ) because X cannot be
inferred from α in simple type system.

6 Thanks to the Borel-isomorphism theorem and the fact that s-finite measures can be rewritten as
pushforward of σ-finite measures, those definitions are essentially equivalent.

ITP 2023

18:10 Semantic Foundations of Higher-Order Probabilistic Programs in Isabelle/HOL

▶ Definition 4. A measure on a quasi-Borel space X is an equivalence class [[X, α, µ]]sfin
where α ∈ qbs-Mx X, µ is a s-finite measure, and sets µ = sets IR. The equivalence relation
is defined by (X, α, µ) ∼ (Y , β, ν) ⇐⇒ X = Y ∧ distr (L X) µ α = distr (L Y) ν β.

We call a measure on a quasi-Borel space a qbs-measure in order to distinguish it from
measures in measure theory. Using quotient-type command [14], we define the type ′a
qbs-measure which denotes the type of qbs-measures.

Any qbs-measure can be converted to an s-finite measure by the following function.

qbs-l :: ′a qbs-measure ⇒ ′a measure
qbs-l [[X, α, µ]]sfin = distr (L X) µ α

The function qbs-l is injective by its definition (recall the definition of qbs-measures).
Next, we construct the s-finite measure monad.

▶ Lemma 5. The quasi-Borel space of qbs-measures on X has the following structure.

monadM-qbs :: ′a quasi-borel ⇒ ′a qbs-measure quasi-borel
qbs-space (monadM-qbs X) = {s. s is a qbs-measure on X}

qbs-Mx (monadM-qbs X) = {λr. [[X, α, k r]]sfin |α k. α ∈ qbs-Mx X ∧ s-finite-kernel IR IR k}

Notice that we use the s-finite kernel in the equation of qbs-Mx (monadM-qbs X). The proof
of being quasi-Borel spaces is almost the same as the one of the probability monad. In the
proof, we use that IN ⊗M IR is standard Borel. It is shown by the facts that IN and IR are
standard Borel spaces, and the product measurable space of standard Borel spaces is again a
standard Borel space.

The return (unit) operator and bind operator are defined as follows.

returnQ :: ′a quasi-borel ⇒ ′a ⇒ ′a qbs-measure
returnQ X x = [[X, λr. x, ν]]sfin

>>= :: ′a qbs-measure ⇒ (′a ⇒ ′b qbs-measure)⇒ ′b qbs-measure
[[X, α, µ]]sfin >>= f = [[Y , β, µ >>=k k]]sfin

In the above definition,
ν is an arbitrary probability measure on IR,
β ∈ qbs-Mx Y and s-finite-kernel IR IR k,
f ◦ α = (λr. [[X, β, k r]]sfin).

Such β and k always exist since f ◦ α ∈ qbs-Mx (monadM-qbs X).
The return operator and bind operator are defined in Isabelle/HOL as follows.

definition returnQ :: ′a quasi-borel ⇒ ′a ⇒ ′a qbs-measure where
returnQ X x ≡ [[X, λr. x, SOME µ. real-distribution µ]]sfin

definition bind-qbs :: [′a qbs-measure, ′a ⇒ ′b qbs-measure] ⇒ ′b qbs-measure where
bind-qbs s f ≡ (let
(X, α, µ) = rep-qbs-measure s;
Y = qbs-space-of (f (α undefined));
(β, k) = (SOME (β, k). f ◦ α = (λr. [[Y , β, k r]]sf in) ∧ β ∈ qbs-Mx Y ∧ s-finite-kernel IR IR k)
in [[Y , β, µ >>=k k]]sfin)

Here, SOME x. P x denotes some x satisfying P (Hilbert’s ε), real-distribution µ means
that µ is a probability measure on IR, rep-qbs-measure s returns a representative of the
qbs-measure s, and qbs-space-of s returns the underlying space of s.

M. Hirata, Y. Minamide, and T. Sato 18:11

▶ Theorem 6. The triple (monadM-qbs, returnQ, >>=) forms a commutative strong monad.

The monad inherits properties of s-finite kernels and >>=k which we have shown in Section 2.2.
Proof of the laws for commutative strong monad is similar to the one of the probability
monad. In the proof, we use that IR ⊗M IR is standard Borel.

The Probability Monad

We obtain the probability monad on quasi-Borel spaces by restricting monadM-qbs X as
follows.

definition monadP-qbs X ≡ sub-qbs (monadM-qbs X) {s. prob-space (qbs-l s)}

The sub-qbs X A returns the sub space of a quasi-Borel space.

qbs-space (sub-qbs X A) = qbs-space X ∩ A
qbs-Mx (sub-qbs X A) = {α. α ∈ qbs-Mx X ∧ (∀ r. α r ∈ A)}

The triple (monadP-qbs, returnQ, >>=) also forms a commutative strong monad. This monad
has the exactly same structure with the probability monad in our previous work.

Integration

Integration with qbs-measure is defined through the Lebesgue integration. For f ∈ X →Q IR
and s ∈ qbs-space (monadM-qbs X), the integration (

∫
Q x. f x ∂s) is defined by (

∫
Q x. f x

∂s) = (
∫

x. f x ∂(qbs-l s)). The notions of integrable and almost everywhere are defined in a
similar way.

For an s-finite measure M on a standard Borel space, integration w.r.t. M in measure
theory is represented as integration in quasi-Borel theory. We define the inverse function of
qbs-l, by qbs-l−1 M = [[M , from-realM , distr IR M to-realM]]sfin. Using these conversions
qbs-l and qbs-l−1, we obtain (

∫
x. f x ∂M) = (

∫
Q x. f x ∂(qbs-l−1 M)). We thus may

regard an s-finite measure M on a standard Borel space as a qbs-measure qbs-l−1 M on R
M, and regard a qbs-measure s as an s-finite measure qbs-l s.

For instance, we can represent the Lebesgue measure as a qbs measure. Recall that the
Lebesgue measure is σ-finite, hence it is s-finite.

definition lborelQ ≡ qbs-l−1 lborel
lemma qbs-l lborelQ = lborel
corollary (

∫
Q x. f x ∂lborelQ) = (

∫
x. f x ∂lborel)

4 Probabilistic Programs

Let us implement a probabilistic programming language supporting higher-order functions,
sampling, and conditioning with quasi-Borel spaces and the s-finite measure monad. We
discuss three examples in this section.

4.1 The Language
We use Isabelle/HOL terms as probabilistic programs. The language design is inspired by
HPProg introduced by Sato et al. [21]. We first briefly review the type system and semantics
of HPProg. The language HPProg is a higher-order functional probabilistic programming

ITP 2023

18:12 Semantic Foundations of Higher-Order Probabilistic Programs in Isabelle/HOL

language based on simply-typed lambda calculus along with the monadic type for distributions.
Types are defined inductively as follows.

T ::= nat | bool | real | preal | list[T] | T × T | T ⇒ T | M [T].

The type preal denotes the type of [0, ∞] and M [T] denotes the type of distributions (measures)
on T . In the semantics, types are interpreted as quasi-Borel spaces.

JnatK = IN, JboolK = IB, JrealK = IR, JprealK = IR≥0, Jlist[T]K = list-qbs JT K

JT1 × T2K = JT1K ⊗Q JT2K, JT1 ⇒ T2K = JT1K ⇒Q JT2K, JM [T]K = monadM-qbs JT K.

A typing judgment Γ ⊢ t : T is interpreted as “JtK is a morphism from JΓK to JT K”. A typing
judgment ⊢ t : T is interpreted as “JtK ∈ JT K”.

According to this semantics, an Isabelle/HOL term is interpreted as a probabilistic
program. We say that an Isabelle/HOL term t is a program of type T if t ∈ qbs-space T.
Many standard constants in Isabelle/HOL are programs.

(+) ∈ IR ⇒Q IR ⇒Q IR , (−) ∈ IR ⇒Q IR ⇒Q IR , (∗) ∈ IR ⇒Q IR ⇒Q IR

[] ∈ list-qbs X , Cons ∈ X ⇒Q list-qbs X ⇒Q list-qbs X

rec-list ∈ Y ⇒Q (X ⇒Q list-qbs X ⇒Q Y ⇒Q Y) ⇒Q list-qbs X ⇒Q Y

Operators for distributions are also programs.

returnQ X ∈ X ⇒Q monadM-qbs X

(>>=) ∈ monadM-qbs X ⇒Q (X ⇒Q monadM-qbs Y) ⇒Q monadM-qbs Y

(⊗Qmes) ∈ monadM-qbs X ⇒Q monadM-qbs Y ⇒Q monadM-qbs (X ⊗Q Y)

Uniform ∈ IR ⇒Q IR ⇒Q monadM-qbs IR , Gauss ∈ IR ⇒Q IR ⇒Q monadM-qbs IR

The program (⊗Qmes) is defined for p ∈ monadM-qbs X and q ∈ monadM-qbs Y by

p ⊗Qmes q = p >>= (λx. q >>= (λy. returnQ (X ⊗Q Y) (x,y)))

which denotes their product distribution7. The program Uniform a b denotes the continuous
uniform distribution between a and b. The program Gauss µ σ denotes the Gaussian
distribution with the average µ and the standard deviation σ.

Let us compare the language implementation with our previous work [11]. Our previous
language implementation lift Isabelle/HOL constants to constant functions in order to
accommodate contexts. For instance, a real number r is described as (λenv. r) ∈ Γ ⇒Q

IR. The variables are projections from contexts and thus programs are written in de Bruijn
index, that is, variables are identified by natural numbers. Although using de Bruijn index
makes it almost straightforward to write type checking proofs, it causes low readability and
cumbersome renaming of variables during proofs. By contrast, our new implementation uses
Isabelle/HOL terms directly. This approach is similar to CryptHOL by Basin et al. [5, 16],

7 Because the s-finite measure monad is commutative, we have

p ⊗Qmes q = q >>= (λy. p >>= (λx. returnQ (X ⊗Q Y) (x,y))).

M. Hirata, Y. Minamide, and T. Sato 18:13

where they have embedded a functional probabilistic programming language for discrete
distributions in order to verify cryptographic algorithms. The benefit is that it is much
more readable and easier to work with terms when writing programs and reasoning about
programs. Our qbs prover presented in Section 3.2 almost automates type checking even
though programs are written as Isabelle/HOL terms. As we will demonstrate in later sections,
program verification can be done directly in Isabelle/HOL.

The query Command

We define the query command which enables one to write conditional distributions. The
query has the following type:

query ∈ monadM-qbs X ⇒Q (X ⇒Q IR≥0) ⇒Q monadM-qbs X .

For a prior distribution s and a likelihood f, query s f returns the posterior distribution.
The query command is defined through two operators: densityQ (scale in HPProg) and
normalizeQ.

definition query ≡ (λs f . normalize-qbs (density-qbs s f))

The operator densityQ takes a qbs-measure s and a non-negative function f and rescales s
with the density function f. The densityQ satisfies following properties.

densityQ ∈ monadM-qbs X ⇒Q (X ⇒Q IR≥0) ⇒Q monadM-qbs X

(
∫

Q x. g x ∂(densityQ s f)) = (
∫

Q x. f x ∗ g x ∂s)

The operator normalizeQ normalizes a qbs-measure s on X. If qbs-l s X = 0 or ∞, then
normalizeQ s returns the null-measure on X.

normalizeQ ∈ monadM-qbs X ⇒Q monadM-qbs X

The condition Command

We introduce the condition command, which produces a conditional distribution with a
predicate. The condition command has the following type and defined using the query
command and the indicator function as follows.

condition ∈ monadM-qbs X ⇒Q (X ⇒Q IB) ⇒Q monadM-qbs X

definition condition s P ≡ query s (λx. if P x then 1 else 0)

4.2 Example: What time is it?
We formalize the example from Staton [25, Section 2.2], which we have shown in introduction.
This example uses two language features: higher-order function and conditioning. Let us
consider the following situation.

We want to know what time it is.
We know the rate of bikes per hour, which depends on time.
We observed a 1 minute gap between two bikes.
What time is it?

We define the program whattime as follows.

ITP 2023

18:14 Semantic Foundations of Higher-Order Probabilistic Programs in Isabelle/HOL

definition whattime :: (real ⇒ real) ⇒ real qbs-measure where
whattime ≡ (λf . do {

let T = Uniform 0 24 in
query T (λt. let r = f t in

exponential-density r (1 / 60))
})

The program whattime receives a function f which determines the rate of bikes per hour.
Then the program returns the posterior after observing a 1 minute gap between two bikes.
The return value f t denotes the rate of bikes per hour at the time t, and the time gap
between two bikes follows the exponential distribution Exp(f t). Thus, the likelihood is
calculated using the density function exponential-density of the exponential distribution. We
can prove whattime is a program just by unfolding the definition thanks to our qbs prover
presented in Section 3.2.

lemma whattime ∈ (IR ⇒Q IR) ⇒Q monadM-qbs IR
by(simp add: whattime-def)

As explained by Staton, the posterior is computed as follows.

lemma
assumes f ∈ IR ⇒Q IR and U ∈ sets IR and

∧
t. f t ≥ 0

defines N ≡ (
∫

t∈{0<..<24}. (f t ∗ exp (− 1/ 60 ∗ f t)) ∂lborel)
assumes N ̸= 0 and N ̸= ∞
shows P(t in whattime f . t ∈ U) = (

∫
t∈{0<..<24}∩U . (f t ∗ exp (− 1/ 60 ∗ f t)) ∂lborel) / N

4.3 Example: Two Dice
As a second example, we formalize the example from Sampson [20, Section 2.3]. This example
uses two language features: sampling and conditioning. We consider the following problem.

We role two dice.
We observe at least one die is 4.
What is the sum of the two dice?

We describe the distribution of the sum of the two dice as follows.

definition two-dice :: nat qbs-measure where
two-dice ≡ do {

let die1 = die;
let die2 = die;
let twodice = die1 ⊗Qmes die2;
(x,y) ← condition twodice (λ(x,y). x = 4 ∨ y = 4);
returnQ IN (x + y)
}

Here, die ∈ monadM-qbs IN denotes the distribution of rolling a fair die. The program picks
a sample from the conditional distribution, then returns the sum of dice. The program
two-dice has the following type.

lemma two-dice ∈ monadM-qbs IN
by(simp add: two-dice-def)

We show the probabilities where the program takes each possible value.

lemma
P(x in two-dice. x = 5) = 2 / 11 P(x in two-dice. x = 6) = 2 / 11
P(x in two-dice. x = 7) = 2 / 11 P(x in two-dice. x = 8) = 1 / 11
P(x in two-dice. x = 9) = 2 / 11 P(x in two-dice. x = 10) = 2 / 11

M. Hirata, Y. Minamide, and T. Sato 18:15

4.4 Example: Gaussian Mean Learning
As a final example, let us formalize the example from Sato et. al. [21, Section 8.2]. We
implement the Gaussian Mean Learning algorithm and prove two properties: convergence and
stability under change of priors. In a common situation in statistical modeling or machine
learning, we try to infer unknown parameters from a sample list. For instance, let us consider
the following situation.

We want to know the mean of a Gaussian distribution with a known standard deviation.
We have a sample sequence from the Gaussian distribution.
What is the posterior of the mean?

The following algorithm does Bayesian learning of the mean of a Gaussian distribution with
a known standard deviation σ from a sample list.

primrec GaussLearn ′ :: [real, real qbs-measure, real list] ⇒ real qbs-measure where
GaussLearn ′ - p [] = p
| GaussLearn ′ σ p (y#ls) = query (GaussLearn ′ σ p ls) (normal-density y σ)

Here, normal-density y σ is the density function of the Gaussian distribution Gauss y σ with
mean y.

The program GaussLearn ′ receives a standard deviation σ, a prior p and a sample list
L. In each iteration, the program picks a sample from L, then updates the prior. Our qbs
prover can show that GaussLearn ′ is a program because GaussLearn ′ is a primitive recursive
function8.

lemma GaussLearn ′ ∈ IR ⇒Q monadM-qbs IR ⇒Q list-qbs IR ⇒Q monadM-qbs IR
by (simp add: GaussLearn ′-def)

From now on, we fix σ > 0 and abbreviate GaussLearn ′ σ as GaussLearn.
The first property, convergence, is described as follows.

lemma
assumes ξ > 0 and n = length L
shows GaussLearn (Gauss δ ξ) L =

Gauss ((Total L ∗ ξ2 + δ ∗ σ2) / (n ∗ ξ2 + σ2)) (sqrt ((ξ2 ∗ σ2) / (n ∗ ξ2 + σ2)))

Here, the program Total ∈ list-qbs IR ⇒Q IR sums up all elements of a list. The above
statement says that if the prior of the mean is Gauss δ ξ, then the posterior is also a Gaussian
distribution. Furthermore, its mean and standard deviation are close to the average of the
samples and 0, respectively, when n is sufficiently large.

Next, let us see the second property, stability under change of priors. We show that if
we run GaussLearn from two different priors and give a large sample list whose average is
bounded, then the resulting posteriors will be close. We measure the difference between
distributions by the Kullback-Leiber (KL) divergence. The KL divergence is provided as
KL-divergence in the standard Isabelle/HOL library. If p and q are probability distributions
on IR which have positive density functions f and g, respectively, then we have the following
well-known form of KL divergence:

KL-divergence (exp 1) p q = (
∫

x. g x ∗ ln (g x / f x) ∂lborel)

The second property is stated as follows.

8 Internally, the primrec command defines a primitive recursive function using recursors such as rec-nat
and rec-list.

ITP 2023

18:16 Semantic Foundations of Higher-Order Probabilistic Programs in Isabelle/HOL

lemma GaussLearn-KL-divergence:
fixes a b c d ε K :: real
assumes ε > 0 and b > 0 and d > 0
shows ∃N . ∀L. length L > N −→ |Total L / length L| < K −→

KL-divergence (exp 1) (GaussLearn (Gauss a b) L) (GaussLearn (Gauss c d) L) < ε

Intuitively, the above property says that if we run GaussLearn with two different Gauss
distributions, then we can make the distance of posteriors as close as we want with a large
sample list whose average is bounded.

5 Conclusion

We have implemented s-finite kernels, the Borel isomorphism theorem, proof automation for
quasi-Borel spaces, and the s-finite measure monad. Using our formalization, we can directly
treat probabilistic programs presented in previous works and prove their properties. Our
work enables us to denote probabilistic programs supporting all of higher-order functions,
samplings, and conditioning, while our previous work [11] does not support conditioning and
the work by Affeldt et al. [1] does not support higher-order functions.

There are several researches related to probabilistic programs with proof assistants.
Eberl et al. have constructed an executable first-order functional probabilistic programming
language which computes density functions in Isabelle, and proved its correctness [7]. Basin
et al. have implemented CryptHOL for rigorous game-based proofs in Isabelle/HOL [5, 16].
They shallowly embedded a functional programming language, and verified cryptographic
algorithms. For machine learning verification, Bagnall and Stewart have embedded MLCERT
in Coq [4], and Tristan et al. have implemented a simplified measure-theoretic semantics of
probabilistic programs based on the reparameterizations to the uniform distibution on the
unit interval and partially automated verification in Lean [26]. Zhang and Amin formalized
a formal semantics for a core probabilistic programming language and proved that logical
relatedness implies contextual equivalence using axiomatized measure theory in Coq [31].

There are future extensions of our work. In our formalization, we have manually con-
structed quasi-Borel spaces on basic data types defined inductively, such as lists and options.
Then we show that constructors and recursors (primitive recursive function operator) are
morphisms. We expect that we can automate this process. Furthermore, we think that
it is also possible to show that general wellfounded recursive functions, which may not be
primitive recursive, are morphisms.

References
1 Reynald Affeldt, Cyril Cohen, and Ayumu Saito. Semantics of probabilistic programs using

s-finite kernels in Coq. In Proceedings of the 12th ACM SIGPLAN International Conference on
Certified Programs and Proofs, CPP 2023, pages 3–16, New York, NY, USA, 2023. Association
for Computing Machinery. doi:10.1145/3573105.3575691.

2 Robert J. Aumann. Borel structures for function spaces. Illinois Journal of Mathematics,
5(4):614–630, 1961. doi:10.1215/ijm/1255631584.

3 Jeremy Avigad, Johannes Hölzl, and Luke Serafin. A formally verified proof of the cent-
ral limit theorem. Journal of Automated Reasoning, 59(4):389–423, 2017. doi:10.1007/
s10817-017-9404-x.

4 Alexander Bagnall and Gordon Stewart. Certifying the true error: Machine learning in Coq
with verified generalization guarantees. Proceedings of the AAAI Conference on Artificial
Intelligence, 33:2662–2669, 2019. doi:10.1609/aaai.v33i01.33012662.

https://doi.org/10.1145/3573105.3575691
https://doi.org/10.1215/ijm/1255631584
https://doi.org/10.1007/s10817-017-9404-x
https://doi.org/10.1007/s10817-017-9404-x
https://doi.org/10.1609/aaai.v33i01.33012662

M. Hirata, Y. Minamide, and T. Sato 18:17

5 David A. Basin, Andreas Lochbihler, and S. Reza Sefidgar, Sefidgar. CryptHOL: Game-based
proofs in higher-order logic. Journal of Cryptology, 33:494–566, 2020.

6 Marek Biskup. Lecture note of math245b in UCLA. https://web.archive.org/web/
20210506130459/https://www.math.ucla.edu/~biskup/245b.1.20w/, 2020. Accessed: Janu-
ary 17. 2023.

7 Manuel Eberl, Johannes Hölzl, and Tobias Nipkow. A verified compiler for probability density
functions. In European Symposium on Programming (ESOP 2015), volume 9032 of LNCS,
pages 80–104. Springer, 2015. doi:10.1007/978-3-662-46669-8_4.

8 Michèle Giry. A categorical approach to probability theory. In Categorical Aspects of
Topology and Analysis, pages 68–85, Berlin, Heidelberg, 1982. Springer Berlin Heidelberg.
doi:10.1007/BFb0092872.

9 Noah D. Goodman et al. Church: a language for generative models. In UAI 2008, Proceedings
of the 24th Conference in Uncertainty in Artificial Intelligence, pages 220–229. AUAI Press,
2008.

10 Chris Heunen, Ohad Kammar, Sam Staton, and Hongseok Yang. A convenient category for
higher-order probability theory. In Proceedings of the 32nd Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2017. IEEE Press, 2017. doi:10.1109/lics.2017.8005137.

11 Michikazu Hirata, Yasuhiko Minamide, and Tetsuya Sato. Program logic for higher-order prob-
abilistic programs in Isabelle/HOL. In Michael Hanus and Atsushi Igarashi, editors, Functional
and Logic Programming, pages 57–74, Cham, 2022. Springer International Publishing.

12 Johannes Hölzl. Markov processes in Isabelle/HOL. In Proceedings of the 6th ACM SIGPLAN
Conference on Certified Programs and Proofs, CPP 2017, pages 100–111. Association for
Computing Machinery, 2017. doi:10.1145/3018610.3018628.

13 Johannes Hölzl, Armin Heller, Herman Geuvers, Julien Schmaltz, and Freek Wiedijk. Three
chapters of measure theory in Isabelle/HOL. In Interactive Theorem Proving, ITP 2011, pages
135–151. Springer Berlin Heidelberg, 2011.

14 Cezary Kaliszyk and Christian Urban. Quotients revisited for Isabelle/HOL. In Proceedings
of the 2011 ACM Symposium on Applied Computing, SAC, pages 1639–1644, New York, NY,
USA, 2011. Association for Computing Machinery. doi:10.1145/1982185.1982529.

15 Ondřej Kunčar and Andrei Popescu. From types to sets by local type definitions in higher-order
logic. In Jasmin Christian Blanchette and Stephan Merz, editors, Interactive Theorem Proving,
pages 200–218, Cham, 2016. Springer International Publishing.

16 Andreas Lochbihler. Probabilistic functions and cryptographic oracles in higher order logic.
In Programming Languages and Systems, pages 503–531, Berlin, Heidelberg, 2016. Springer
Berlin Heidelberg. doi:10.1007/978-3-662-49498-1_20.

17 Mihails Milehins. An extension of the framework types-to-sets for Isabelle/HOL. In Proceedings
of the 11th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP
2022, pages 180–196, New York, NY, USA, 2022. Association for Computing Machinery.
doi:10.1145/3497775.3503674.

18 Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. Isabelle/HOL: A Proof Assistant
for Higher-Order Logic. Springer-Verlag, Berlin, Heidelberg, 2002.

19 Andrei Popescu and Dmitriy Traytel. Admissible types-to-pers relativization in higher-order
logic. Proc. ACM Program. Lang., 7(POPL), January 2023. doi:10.1145/3571235.

20 Adrian Sampson. Probabilistic programming. http://adriansampson.net/doc/ppl.html.
Accessed: January 25. 2023.

21 Tetsuya Sato, Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Justin Hsu.
Formal verification of higher-order probabilistic programs: reasoning about approximation,
convergence, bayesian inference, and optimization. Proceedings of the ACM on Programming
Languages, 3(POPL):1–30, 2019. doi:10.1145/3290351.

22 Adam Ścibior, Ohad Kammar, Matthijs Vákár, Sam Staton, Hongseok Yang, Yufei Cai,
Klaus Ostermann, Sean K. Moss, Chris Heunen, and Zoubin Ghahramani. Denotational

ITP 2023

https://web.archive.org/web/20210506130459/https://www.math.ucla.edu/~biskup/245b.1.20w/
https://web.archive.org/web/20210506130459/https://www.math.ucla.edu/~biskup/245b.1.20w/
https://doi.org/10.1007/978-3-662-46669-8_4
https://doi.org/10.1007/BFb0092872
https://doi.org/10.1109/lics.2017.8005137
https://doi.org/10.1145/3018610.3018628
https://doi.org/10.1145/1982185.1982529
https://doi.org/10.1007/978-3-662-49498-1_20
https://doi.org/10.1145/3497775.3503674
https://doi.org/10.1145/3571235
http://adriansampson.net/doc/ppl.html
https://doi.org/10.1145/3290351

18:18 Semantic Foundations of Higher-Order Probabilistic Programs in Isabelle/HOL

validation of higher-order bayesian inference. Proc. ACM Program. Lang., 2(POPL), 2017.
doi:10.1145/3158148.

23 Shashi Mohan Srivastava. A Course on Borel Sets. Springer, 1998. doi:10.1007/b98956.
24 Sam Staton. Commutative semantics for probabilistic programming. In Hongseok Yang, editor,

Programming Languages and Systems, pages 855–879, Berlin, Heidelberg, 2017. Springer Berlin
Heidelberg.

25 Sam Staton. Probabilistic Programs as Measures, pages 43–74. Cambridge University Press,
2020. doi:10.1017/9781108770750.003.

26 Jean-Baptiste Tristan, Joseph Tassarotti, Koundinya Vajjha, Michael L. Wick, and Anindya
Banerjee. Verification of ML systems via reparameterization, 2020. arXiv:2007.06776.

27 Matthijs Vákár, Ohad Kammar, and Sam Staton. A domain theory for statistical probabilistic
programming. Proc. ACM Program. Lang., 3(POPL), January 2019. doi:10.1145/3290349.

28 Matthijs Vákár and Luke Ong. On s-finite measures and kernels, 2018. doi:10.48550/ARXIV.
1810.01837.

29 Frank Wood, Jan Willem van de Meent, and Vikash Mansinghka. A new approach to
probabilistic programming inference. In Proceedings of the 17th International conference on
Artificial Intelligence and Statistics, pages 1024–1032, 2014.

30 Hongseok Yang. Semantics of higher-order probabilistic programs with continuous distri-
butions. https://alfa.di.uminho.pt/~nevrenato/probprogschool_slides/Hongseok.pdf.
Accessed: February 8. 2023.

31 Yizhou Zhang and Nada Amin. Reasoning about “reasoning about reasoning”: Semantics and
contextual equivalence for probabilistic programs with nested queries and recursion. Proc.
ACM Program. Lang., 6(POPL), January 2022. doi:10.1145/3498677.

https://doi.org/10.1145/3158148
https://doi.org/10.1007/b98956
https://doi.org/10.1017/9781108770750.003
https://arxiv.org/abs/2007.06776
https://doi.org/10.1145/3290349
https://doi.org/10.48550/ARXIV.1810.01837
https://doi.org/10.48550/ARXIV.1810.01837
https://alfa.di.uminho.pt/~nevrenato/probprogschool_slides/Hongseok.pdf
https://doi.org/10.1145/3498677

MizAR 60 for Mizar 50
Jan Jakubův #

Czech Technical University in Prague,
Czech Republic

Karel Chvalovský #

Czech Technical University in Prague,
Czech Republic

Zarathustra Goertzel
Czech Technical University in Prague,
Czech Republic

Cezary Kaliszyk #

Universität Innsbruck, Austria
INDRC, Prague, Czech Republic

Mirek Olšák
Institut des Hautes Études Scientifiques,
Paris, France

Bartosz Piotrowski #

Czech Technical University in Prague,
Czech Republic

Stephan Schulz
DHBW Stuttgart, Germany

Martin Suda #

Czech Technical University in Prague,
Czech Republic

Josef Urban
Czech Technical University in Prague,
Czech Republic

Abstract
As a present to Mizar on its 50th anniversary, we develop an AI/TP system that automatically
proves about 60 % of the Mizar theorems in the hammer setting. We also automatically prove 75 %
of the Mizar theorems when the automated provers are helped by using only the premises used in the
human-written Mizar proofs. We describe the methods and large-scale experiments leading to these
results. This includes in particular the E and Vampire provers, their ENIGMA and Deepire learning
modifications, a number of learning-based premise selection methods, and the incremental loop that
interleaves growing a corpus of millions of ATP proofs with training increasingly strong AI/TP
systems on them. We also present a selection of Mizar problems that were proved automatically.

2012 ACM Subject Classification Theory of computation Ñ Automated reasoning

Keywords and phrases Mizar, ENIGMA, Automated Reasoning, Machine Learning

Digital Object Identifier 10.4230/LIPIcs.ITP.2023.19

Related Version Extended Version: https://doi.org/10.48550/arXiv.2303.06686

Supplementary Material Software: https://github.com/ai4reason/ATP_Proofs

Funding The funding for the multi-year development of the methods and for the experiments was
partially provided by the ERC Consolidator grant AI4REASON no. 649043 (KC, ZG, JJ, BP,
MS and JU), the European Regional Development Fund under the Czech project AI&Reasoning
no. CZ.02.1.01/0.0/0.0/15_003/0000466 (KC, ZG, JJ, MO, JU), the ERC Starting Grant SMART
no. 714034 (JJ, CK, MO), the Czech Science Foundation project 20-06390Y and project RICAIP
no. 857306 under the EU-H2020 programme (MS), ERC-CZ project POSTMAN no. LL1902 (KC,
JJ, BP), Amazon Research Awards (JU), the EU ICT-48 2020 project TAILOR no. 952215 (JU),
and the grant 2018/29/N/ST6/02903 of National Science Center, Poland (BP).

Acknowledgements The development of ENIGMA, premise selection and other methods used here,
as well as the large-scale experiments, benefited from many informal discussions which involved
(at least) Lasse Blaauwbroek, Chad Brown, Thibault Gauthier, Mikoláš Janota, Jelle Piepenbrock,
Stanisław Purgał, Bob Veroff, and Jiří Vyskočil.

© Jan Jakubův, Karel Chvalovský, Zarathustra Goertzel, Cezary Kaliszyk, Mirek Olšák, Bartosz
Piotrowski, Stephan Schulz, Martin Suda, and Josef Urban;
licensed under Creative Commons License CC-BY 4.0

14th International Conference on Interactive Theorem Proving (ITP 2023).
Editors: Adam Naumowicz and René Thiemann; Article No. 19; pp. 19:1–19:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jakubuv@gmail.com
https://orcid.org/0000-0002-8848-5537
mailto:karel@chvalovsky.cz
https://orcid.org/0000-0002-0541-3889
https://orcid.org/0000-0002-8458-2786
mailto:cezary.kaliszyk@uibk.ac.at
https://orcid.org/0000-0002-8273-6059
https://orcid.org/0000-0002-9361-1921
mailto:bartoszpiotrowski@post.pl
https://orcid.org/0000-0002-1699-018X
https://orcid.org/0000-0001-6262-8555
mailto:martin.suda@cvut.cz
https://orcid.org/0000-0003-0989-5800
https://orcid.org/0000-0002-1384-1613
https://doi.org/10.4230/LIPIcs.ITP.2023.19
https://doi.org/10.48550/arXiv.2303.06686
https://github.com/ai4reason/ATP_Proofs
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 MizAR 60 for Mizar 50

1 Introduction: Mizar, MML, Hammers and AITP

In recent years, methods that combine machine learning (ML), artificial intelligence (AI)
and automated theorem proving (ATP) [44] have been considerably developed, primarily
targeting large libraries of formal mathematics developed by the ITP community. This ranges
from premise selection methods [2] and hammer [7] systems to developing and training
learning-based internal guidance of ATP systems such as E [47, 49] and Vampire [37] on the
thousands to millions of problems extracted from the ITP libraries. Such large ITP corpora
have further enabled research topics such as automated strategy invention [57] and tactical
guidance [15], learning-based conjecturing [58], autoformalization [34, 61], and development
of metasystems that combine learning and reasoning in various feedback loops [59].

Starting with the March 2003 release1 of the MPTP system [54] and the first ML/TP
and hammer experiments over it [55], the Mizar Mathematical Library [3, 4, 22] (MML) and
its subsets have as of 2023 been used for twenty years for this research, making it perhaps
the oldest and most researched AI/TP resource in the last two decades.

1.1 Contributions

The last large Mizar40 evaluation [32] of the AI/TP methods over MML was done almost
ten years ago, on the occasion of 40 years of Mizar. Since then, a number of strong methods
have been developed in areas such as premise selection and internal guidance of ATPs. In
this work, we therefore evaluate these methods in a way that can be compared to the Mizar40
evaluation, providing an overall picture of how far the field has moved. Our main results are:
1. Over 75 % of the Mizar toplevel lemmas can today be proved by AI/TP systems when the

premises for the proof can be selected from the library either by a human or a machine.
This should be compared to 56 % in Mizar40 achieved on the same version of the MML.
Over 200 examples of the automatically obtained proofs are analyzed on our web page.2

2. 58.4 % of the Mizar toplevel lemmas can be proved today without any help from the
users, i.e., in the large-theory (hammering) mode. This should be compared to about
40.6 % achieved on the same version of the MML in Mizar40. In both cases, this is done
by a large portfolio of AI/TP methods which is limited to 420 s of CPU time.

3. Our strongest single AI/TP method alone now proves in 30 s 40 % of the lemmas in the
hammering mode, i.e., reaching the same strength as the full 420 s portfolio in Mizar40.

4. Our strongest single AI/TP method now proves in 120 s 60 % of the toplevel lemmas
in the human-premises (bushy) mode (Section 6.6), i.e., outperforming the union of all
methods developed in Mizar40 (56 %).

5. We show that our strongest method transfers to a significantly newer version of the
MML which contains a lot of new terminology and lemmas. In particular, on the new
13 370 theorems coming from the new 242 articles in MML version 1382, our strongest
method outperforms standard E prover by 58.2 %, while this is only 56.1 % on the Mizar40
version of the library where we do the training and experiments. This is thanks to our
development and use of anonymous [25] logic-aware ML methods that learn only from
the structure of mathematical problems. This is unusual in today’s machine learning
which is dominated by large language models that typically struggle on new terminology.

1 http://mizar.uwb.edu.pl/forum/archive/0303/msg00004.html
2 https://github.com/ai4reason/ATP_Proofs

http://mizar.uwb.edu.pl/forum/archive/0303/msg00004.html
https://github.com/ai4reason/ATP_Proofs

J. Jakubův et al. 19:3

1.2 Overview of the Methods and Experiments
The central methods in this evaluation are internal guidance provided by the ENIGMA
(and later also Deepire) system, and premise selection methods. We have also used several
additional approaches such as many previously invented strategies and new methods for
constructing their portfolios, efficient methods for large-scale training on millions of ATP
proofs, methods that interleave multiple runs of ATPs with restarts on ML-based selection of
the best inferred clauses (leapfrogging), and methods for minimizing the premises needed for
the problems by decomposition into many ATP subproblems. These methods are described
in Sections 3, 4, and 5, after introducing the MML in Section 2. Section 6 describes the
large-scale evaluation and its final results, and Section 7 showcases the obtained proofs.

2 The Mizar Mathematical Library and the Mizar40 Corpus

Proof assistant systems are usually developed together with their respective proof libraries.
This allows evaluating and showcasing the available functionality. In the case of Mizar [4],
the developers have very early decided to focus on its library, the MML (Mizar Mathematical
Library) [3]. This was done by establishing a dedicated library committee responsible for the
evaluation of potential Mizar articles to be included, as well as for maintaining the library.
As a result, the MML became one of the largest libraries of formalized mathematics today.
It includes many results absent from those derived in other systems, such as lattices [5] and
random-access Turing machines [36].

All the data gathered and evaluations performed in the paper (with the exception of
version-transfer in Section 6.6) use the same Mizar library version as the previous large
evaluation [32] and all subsequent evaluation papers. This allows us to rigorously compare
the methods and evaluate the improvement. That version of the library, MML 1147, when
exported to first-order logic using the MPTP export [56] corresponds to 57 897 theorems
including the unnamed toplevel lemmas. For a rigorous evaluation in the hammering scenario,
we will further split this dataset into several training and testing parts in Section 6.2.

3 ENIGMA: ATP Guidance and Related Technologies

ENIGMA [11, 18–21, 25, 27–29] stands for “Efficient Learning Based Inference Guiding
Machine”. It is the first learning-guided ATP that in 2019 achieved large improvements over
state-of-the-art saturation ATPs [29], and the main ingredient of the work reported here.
This section summarizes previously published research on ENIGMA and also the related
methods that were used to undertake the large-scale experiments done here (Section 6).

3.1 Saturation Theorem Proving Meets Machine Learning
Saturation Provers. State-of-the-art automated theorem provers, like E Prover [45] and
Vampire [37], perform the search for a contradiction, first translating the input first-order
logic problem into a refutationally equivalent set of clauses. Then the prover operates the
proof search using the given clause algorithm. In this algorithm, the proof state is split into
two subsets, the set P of processed clauses, and the set U of unprocessed clauses. Clauses
in U are ordered by a heuristic evaluation function. In each iteration of the main loop, the
(heuristically) best clause in U is picked. This given clause g is then simplified with respect
to all clauses in P . If it is not redundant, it is used in turn to simplify all clauses in P . After
that, all generating inferences between g and the remaining clauses in P are performed. Both

ITP 2023

19:4 MizAR 60 for Mizar 50

Figure 1 Schema of E Prover with ENIGMA (left), of a two-phase selection model (middle), and
of the prove-learn feedback loop (right).

the newly generated clauses and the simplified clauses from P are then completely simplified
with respect to P , heuristically evaluated, and added to U . This process continues until the
empty clause emerges (or until the system runs out of resources).

Training Data. As of E 1.8 [48], E maintains an internal proof object [50] which allows it
to inspect all proof clauses and designate all clauses that have been selected for processing
and are part of the proof, as positive training examples. All clauses that have been selected
for processing, but not contributed to the proof, are designated as negative training examples.
Clauses that have not been processed at all are neither positive nor negative, reducing the
total number of training examples to typically thousands of processed clauses, as opposed
to millions of clauses generated. E allows the user to request the actual proof object, or to
provide any combination of positive and negative training examples. Examples are provided
in separate batches and are also annotated as positive or negative for easy processing.

ML-Based Selection. Selection of the right given clause is critical in E, and an obvious
point for the use of machine learning (ML). The positive and negative examples are extracted
from previous successful proof searches, and a machine learning model is trained to score the
generated clauses or to classify them as useful (‘) or useless (a). E Prover selects the given
clause from a priority queue, where the unprocessed clauses are sorted by various heuristics.
ENIGMA extends E Prover with an additional queue where clauses positively classified by
the ML model are prioritized. The ENIGMA queue is used together with the standard E
selection mechanisms, typically in a cooperative way where roughly half of the clauses are
selected by ENIGMA. This approach proved to be the most efficient in practice.

Parental Guidance. Later ENIGMA [20] introduced learning-based parental guidance, which
addresses the quadratic factor when doing all possible inferences among the processed clauses
in classical saturation-based provers. Instead, an ML model is trained to prevent inferences
between the parent clauses that are unlikely to meaningfully interact. When such an inference
is recognized by the model as useless with a high degree of confidence, the child clause is not
inserted into the set of unprocessed clauses U but its processing is postponed. To maintain
completeness, the clause can not be directly discarded since the ML model might be mistaken.
Instead, the clause is put into a “freezer” from which it can be retrieved in the case the

J. Jakubův et al. 19:5

prover runs out of unprocessed clauses. As opposed to the above clause selection models,
this method affects the standard E selection mechanism because the clause is not inserted
into any queue. ENIGMA clause selection models and parental (generation) models can be
successfully combined. This is schematically illustrated in Figure 1 (left).

Multi-Phase ENIGMA. ML-based multi-phase clause selection was introduced in [20] to
deal with computationally expensive (slow) ML models, like graph neural networks (GNNs).
In a two-phase selection model, a faster model is used for preliminary clause filtering, and
only the clauses that pass are evaluated by the slower model. The fast model is expected to
over-approximate on positive classes so that only clauses classified with high confidence as
negatives are rejected. When parental guidance is added to the mix, this leads to a three-
phase ENIGMA. This is schematically illustrated in Figure 1 (middle). Aggressive forward
subsumption is an additional logic-complete pruning method based on efficient subsumption
indexing in E [46]. We use it to eliminate many redundant generated clauses before calling
more expensive ML methods (GNN) for clause evaluation. For the effect of such methods,
see some of the 3-phase ENIGMA examples in Section 7.

Training. Strong ENIGMAs are typically developed in many prove-learn feedback loops [59]
that proceed as follows. (1) The training data T are curated from (previous) successful proof
searches. (2) A model M is trained on data T to distinguish positive from negative clauses.
(3) The model M is run with the ATP (E), usually in cooperation with the strategy used to
obtain the training data. Then we go to step (1) with the new data obtained in step (3).
The loop, illustrated in Figure 1 (right), can be repeated as long as new problems are proved.
We run this loop for several months in this work.

3.2 Gradient Boosted Decision Tree Classifiers and Features
ENIGMA supports classifiers based on Gradient Boosted Decision Trees (GBDTs). In
particular, we experiment with XGBoost [8] and LightGBM [35]. Both frameworks are
efficient and can handle large data well both in training and evaluation. For learning, we
represent first-order clauses by numeric feature vectors. A decision tree is a binary tree with
nodes labeled by conditions on the values of the feature vectors. Given a clause, the tree
is navigated to the leaf where the clause evaluation is stored. Both frameworks work with
a sequence (ensemble) of several trees, constructed in a progressive way (boosting). The
frameworks differ in the underlying algorithm for the construction of decision trees. XGBoost
constructs trees level-wise, while LightGBM leaf-wise. This implies that XGBoost trees are
well-balanced. On the other hand, LightGBM can produce much deeper trees, and the tree
depth limit is indeed an important learning meta-parameter that can be optimized.

ENIGMA extracts various syntactic information from a first-order clause and stores them
in the feature vector of the clause. Given a finite set of features, each feature is assigned
an index in the feature vector, and the corresponding feature value is stored at this index.
For example, a typical clause feature is the clause length. ENIGMA supports the following.
Vertical Features are constructed by traversing the clause syntax tree and collecting all
top-down oriented symbol paths of length 3. Additionally, to abstract from variable names
and to deal with possible collisions of Skolem symbols, all variables are replaced by a special
name d and all Skolem symbols by g. Horizontal Features introduce for every term
fpt1, . . . , tnq, a new feature fps1, . . . , snq, where si is the top-level symbol of ti. Count
Features include the clause length, literal counts, and similar statistics. Conjecture
Features embed the conjecture to be proved in the feature vector. Thusly, ENIGMA is
able to provide goal specific predictions. Parent Features represent a clause by features

ITP 2023

19:6 MizAR 60 for Mizar 50

(concatenated or summed) of its parents. Feature Hashing is an important step towards
large data in ENIGMA [11]. It significantly reduces the feature vector size and thusly allows
handling of larger data. Each feature is represented by a unique string identifier. This string
is passed through the hashing function and the hash modulo the selected hash base is used
as the feature index. Symbol Anonymization allows to abstract from specific symbol
names [25]. During the extraction of clause features, all symbol names are replaced by symbol
arities, keeping only the information whether the symbol is a function or a predicate. In
this way, a decision tree classifier does not depend on symbol names, at the price of symbol
collisions, which are however empirically mitigated by collecting longer paths as features.

3.3 Graph Neural Network (GNN) Classifiers
Anonymizing graph neural networks provide an alternative approach for abstracting from
specific terminology. ENIGMA uses [25] a symbol-independent GNN architecture initially
developed for guiding tableaux search [39] implemented in TensorFlow [1]. A set of clauses is
directly represented by a hypergraph with three kinds of nodes for clauses, subterms/literals,
and symbols. Relationships among the objects are represented by various graph edges, which
allow the network to distinguish different symbols while abstracting from their names.

The GNN layers perform message passing across the edges, so the information at every
node can get to its neighbors. This allows the network to see how the symbols are used
without knowing their names. We always classify the new clauses together with the initial
clauses which provide the context for the meaning of the anonymized symbols. During the
ATP evaluation, predictions of hundreds of generated clauses are computed at once in larger
batches, with the context given both by the initial and the processed clauses. The context
can be either fixed, containing an initial segment of the initial and processed clauses, or it
can be a shifting context using a window of clauses with the best GNN evaluation.

3.4 Additional Related Techniques
GPU Server Mode allows using GPUs for real-time evaluation [20]. To reduce the GPU
overhead of model loading, we developed a Python GPU server, with preloaded models that
can distribute the evaluation over several GPUs. E Prover clients communicate with the
server via a network socket. We fully utilize our physical server3 when we run 160 instances
of E prover in parallel. Running both the server and clients on the same machine reduces
the network communication overhead.

Leapfrogging addresses the problem of evolving context when new given clauses are
selected [10]. We run ENIGMA with a given abstract limit and generate a larger set of clauses.
Then we run a premise selection on these generated clauses (e.g., only processed clauses),
take the good clauses, and use them as input for a new ENIGMA run. A related split/merge
method involves repeatedly splitting the generated clauses into components that are run
separately and then merged with premise selection. This is inspired by the idea that harder
problems consist of components that benefit from such divide-and-conquer approaches.

Deepire is an extension [51, 52] of Vampire [37] by machine-learned clause selection
guidance, generally following the ENIGMA-style methodology. It is distinguished by its
use of recursive neural networks for classifying the generated clauses based solely on their
derivation history. Thus Deepire does not attempt to read “what a clause says”, but only

3 36 hyperthreading Intel(R) Xeon(R) Gold 6140 CPU @ 2.30 GHz cores, 755 GB of memory, and 4
NVIDIA GeForce GTX 1080 Ti GPUs.

J. Jakubův et al. 19:7

bases its decisions on “where a clause is coming from”. This allows the clause evaluation to
be particularly fast, while still being able to recognize and promote useful clauses, especially
in domains with distinguished axioms which reappear in many problems.

4 Learning Premise Selection From the MML

When an ATP is used over a large ITP library, typically only a small fraction of the facts are
relevant for proving a new conjecture. Since giving too many redundant premises to the ATP
significantly decreases the chances of proving the conjecture, premise selection is a critical
task. The most efficient premise selection methods use data-driven or machine-learning
approaches. If T is a set of theorems with their proofs and C is a set of conjectures without
proofs, the task is to learn a (statistical) model from T , which for each conjecture c P C will
rank (or select a subset of) its available premises according to their relevance for producing
an ATP proof of c. Two main machine learning settings can be used. In Multilabel
classification, premises used in the proofs are treated as opaque labels and a machine
learning model is trained to label conjectures based on their features. Binary classification
aims to recognize pairwise-relevance of the (conjecture, premise) pairs, i.e. to estimate the
chance of a premise being relevant for proving the conjecture based on the features of both
the conjecture and the premise.

The first setting is suitable for simpler, fast ML methods, like k-NN or Naive Bayes – these
are described in Section 4.1. The second setting (Section 4.2) allows using more powerful
ML architectures, like GBDTs and GNNs (Sections 3.3 and 3.2). However, this setting also
requires selecting negative examples for training [41], which increases its complexity.

4.1 Multilabel Premise Selection (K, N , R)
Naive Bayes and k-nearest neighbors were the strongest selection methods in the Mizar40
evaluation [32]. In this work, we improve them and apply them together with newer methods.

k-NN (K). The k-nearest neighbours algorithm, when applied to premise selection, chooses
k facts closest to the conjecture in the feature space and selects their dependencies. Already
known modifications of the standard k-NN include considering the number of dependencies
(proofs with more dependencies are longer and thus less important) and TF-IDF (rare features
are more important) [30]. Additionally, we realize that we do not need to fix the k. Instead,
we consider a small k and if the number of scored dependencies is too low, we increase the k

and update the dependencies. This is repeated until the requested number of predictions
is obtained. The k-NN-based predictions with fixed k will be denoted, e.g., by K512, while
with variable k this will be Kfea

var, where fea specifies the features used.

Naive Bayes (N). The sparse Naive Bayes algorithm estimates the relevance of a fact F

by the conditional probability of F being useful (estimated from past proof statistics) under
the condition of the features being present in the conjecture (again estimated from statistics).
We also consider extended features of F , i.e., features of F and features of facts proved using
F . Together with premise selection-specific weights this improves on the basic Naive Bayes
and has already been used in HolyHammer and Sledgehammer. A complete derivation of the
algorithm is given in [6]. The Naive Bayes predictions will be denoted Nfea.

These algorithms can be parametrized by more complex features. We considered: cp for
constants and paths (Section 3.2) in the term graph, sub for subterms, au for anti-unification
features [33], eni for online ENIGMA features discussed in Section 3.2 and uni for the union

ITP 2023

19:8 MizAR 60 for Mizar 50

of all above. Finally, these algorithms also support the chronological mode, which in the
learning phase discards proofs that use facts introduced after the current conjecture in the
Mizar canonical order (MML.LAR). This slightly weakens the algorithms, but is compatible
with the previous Mizar40 premise selection evaluation [32]. These will be marked by chrono.

Dependent Selection with RNNs (R). Premise selection methods were originally mainly
based on ranking the facts independently with respect to the conjecture. The highest ranked
facts are then used as axioms and given to the ATP systems together with the conjecture.
Such approaches (used also with GBDTs), although useful and successful, do not take into
account that the premises are not independent of each other. Some premises complement each
other better when proving a particular conjecture, while some highly-ranked premises might
be just minor variants of one another. Recurrent neural network (RNN) encoder-decoder
models [9] and transformers [60] (language models) turn out to be suitable ML architectures
for modeling such implicit dependencies. Such models have been traditionally developed for
natural language processing, however, recently they are also increasingly used in symbolic
reasoning tasks [12,16,38,43,61], including premise selection [42].

4.2 Premise Selection as Binary Classification (L, G)
Gradient Boosted Decision Trees (L). We use GBDTs (LightGBM) also for premise
selection in the binary mode. They are faster to train than the deep learning methods,
perform well with unbalanced training sets, and handle well sparse features. We fix the
LightGBM hyperparameters here based on our previous experiments with applying GBDTs
to premise selection [41]. In the binary setting, the GBDT scores the pairwise relevance
of the conjecture and a candidate premise. Because the number of possible candidates
is large (all preceding facts in the large ITP library), we first use the cheaper k-nearest
neighbors algorithm to pre-filter the available premises. The predictions from LightGBM
will be denoted as L below.

Dependent Selection with GNNs (G). The message-passing GNN architecture described
in Section 3.3 can also be applied to premise selection. Like RNNs, it can also take into
account the dependencies between premises. As the GNN is relatively slow, we will use it
in combination with a simpler premise selection method, such as k-NN, preselecting 512
facts. We will denote GNN predictions by G below. Both L and G , can be indexed with the
threshold on the score (like L0.1 or G´1), used to differentiate useful and useless clauses.

4.3 Ensemble Methods for Premise Selection (E)
There are several ways how we can combine the premise selection methods discussed in
previous subsections. Naturally, using different methods for different strategies works well,
however, we also found that combining the predictions obtained from several methods and
using them for a single prover run gives good and complementary results. Since prediction
scores resulting from different algorithms are often incomparable [40], we only use the rankings
produced by the various methods and based on this we create a combined ranking. We have
compared several ways to combine rankings in previous work [30] and found that several
averages work well: arithmetic mean, minimum, and geometric mean, with the harmonic
mean giving experimentally the best results. Additionally, we add weights to the different
combined methods. The weights give more priority to a stronger prediction method, but
allow it to benefit from the simpler ones overall (by picking up some lost facts). Given

J. Jakubův et al. 19:9

predictions from n different methods and method weights w1, . . . , wn, assume that a fact has
been ranked as r1-th by the first method until and rn-th by the last one. Then, the ensemble
method would give that fact a score of 1{

řn
i“1

wi

ri
. The scores of the facts obtained in this

way are sorted, to get a ranking of all facts. The ensemble predictions will be denoted by E ,
with methods and their weights in the super and subscript, for example EK,N ,G

0.25,0.25,0.5.

4.4 Subproblem Based Premise Minimization (M)
The proof dependencies obtained by successful ATP runs typically perform better as data for
premise selection than the dependencies from the human-written ITP proofs [7,31]. However,
some Mizar proofs are hundreds of lines long and it is so far unrealistic to raise the 75 % ATP
performance obtained here in the bushy setting to a number close to 100 %. This means that
if we used only ATP-based premise data, we would currently miss in the premise selection
training 25 % of the proof dependency information available in the MML.

To remedy that, we newly use here subproblem based premises. The idea behind this is
that a theorem with a longer Mizar proof consists of a series of natural deduction steps that
typically have to be justified. Once ATP proofs of all such steps (we call them subproblems)
for a given toplevel theorem are available, they can be used to prune the (overapproximated)
set of human-written premises of the theorem. Such minimization also increases the chance
of proving the theorem directly. In more detail, we consider the following approaches: (1)
Use the premises from only ATP-proved subproblems, ignoring unproved subproblems. (2)
Add to (1) all explicit Mizar premises of the theorem (possibly ignoring some background
facts). (3) Add to (2) also the (semi-explicit) definitional expansions detected by the natural
deduction module. (4) Add to (3) also some of the background premises, typically those
ranked high by the trained premise selectors. When using (1) and (3), we were able to prove
more than 1000 hard theorems (see Table 1 in Section 6.1). We also use (3) as additional
proof dependencies for ATP-unproved theorems when training premise selectors (Section 6.2).

5 Strategies and Portfolios

Strategies. E, ENIGMA, Vampire and Deepire are parameterized by ATP strategies and
their combinations. While ENIGMA-style guidance typically involves the application of a
larger (neural, tree-based, etc.) and possibly slower statistical model to the clauses, standard
ATP strategies typically consist of much faster clause evaluation functions and programs
written in a DSL provided by the prover. Such programs can again be invented and learned
in various ways for particular classes of problems. For the experiments here we have used
many ATP strategies invented automatically by the BliStr/Tune systems [26,27,57]. They
implement feedback loops that interleave targeted parameter search on problem clusters using
engines like ParamILS [23], with a large-scale evaluation of the invented strategies used for
evolving the problem clustering. Starting from few strategies, BliStr/Tune typically evolve
each strategy on the problems where the strategy performs best. During our experiments
with the systems we have developed several thousand E Prover strategies, many of them
targeted to Mizar problems. Some of these are mentioned in the experiments in Section 6.

Robust Portfolios. Larger AI/TP systems and metasystems rely on portfolios [53] of
complementary strategies that attack the problems serially or in parallel using a global time
limit. In the presence of premise selection and multiple ATPs, such portfolios may consist of
tens to hundreds of different methods. The larger the space of methods, the larger is the
risk of overfitting the portfolio during its construction on a particular set of problems. For

ITP 2023

19:10 MizAR 60 for Mizar 50

example, naive construction of “optimal” portfolios by using SAT solvers for the set-cover
problem (where each strategy covers some part of the solution space) often leads to portfolios
that are highly specialized to the particular set of problems. This is mitigated in more robust
methods such as the greedy cover, however, the overfitting there can still be significant. E.g.,
a 14-strategy greedy cover built in the Mizar40 experiments [32] solved 44.1 % of the random
subset used for its construction, while it solved only 40.6 % of the whole MML, i.e., 8 % less.

To improve on this, we propose a more robust way of portfolio construction here, based
again on the machine-learning ideas of controlling overfitting. Instead of simply constructing
one greedy cover C (with a certain time budget) on the whole development set D and
evaluating it in the holdout set H, we first split D randomly into two equal size halves D1
and D2. Then we construct a greedy cover C1 only on D1, and evaluate its performance
also on D2 and the full set D. This is repeated n times (we use n “ 1000), which for large
enough n typically guarantees that the greedy cover Ci

1 will for some of the random splits
Di

1, Di
2 overfit very little (or even underfit). This can be further improved by evaluating the

best (strongest and least overfitting) covers on many other random splits and selecting the
most robust ones. We use this in Section 6 to build a portfolio that performs only 3.5 %
worse on the (unseen) holdout set than on the development set used for its construction.

6 Experiments and Results

6.1 Bushy Experiments and Timeline
The final list of all 43 717 Mizar problems proved by ATPs in our evaluation is available on
our web page.4 The approximate timeline of the methods and the added solutions is shown
in Table 1. This was continuously recorded on our web page,5 which also gives an idea of
how the experiments progressed and how increasingly hard problems were proved.

The large evaluation started in April 2020, as a follow-up to our work on ENIGMA
Anonymous [25]. By combining the methods developed there and running with higher time
limits, the number of problems proved by ENIGMA in the bushy setting reached 65.65 % in
June 2020. This was continued by iterating the learning and proving in a large Malarea-style
feedback loop. The growing body of proofs was continuously used for training the graph
neural networks and gradient boosted guidance, which were used for further proof attempts,
combined with different search parameters and later used also for training premise selection.

This included many grid searches on a small random subset of the problems over the
thousands of differently trained GNNs and GBDTs corresponding to the training epochs,
and then evaluating the strongest and most complementary ENIGMAs using the differently
trained GNNs and GBDTs on all, or just hard (the so far ATP-unproved), problems. The
total number of the saved snapshots of the GNNs corresponding to the training epochs and
usable for the grid searches and full evaluations reached 15 920 by the end of the experiments
in September 2021.6 The longest GNN training we did involved 964 epochs and 12 days on a
high-end NVIDIA V100 GPU card.7 The GNN training occasionally (but rarely) diverged
after hundreds of epochs, which we handled by restarts.

4 http://grid01.ciirc.cvut.cz/~mptp/00proved_20210902
5 https://github.com/ai4reason/ATP_Proofs
6 For the grid searches, this was compounded by further parameters of the ENIGMA and E strategies.
7 We generally use the same GNN hyper-parameters as in [25,39] with the exception of the number of

layers that varied here between 5 and 12, providing tradeoffs between the GNN’s speed and precision.

http://grid01.ciirc.cvut.cz/~mptp/00proved_20210902
https://github.com/ai4reason/ATP_Proofs

J. Jakubův et al. 19:11

Table 1 Timeline of the experiments. B are standard bushy premises, M are subproblem-
minimized premises, G, L, and K are GNN/LightGDB/kNN-based premises, and E their ensembles.

solved [%] date premises methods/notes

38k 65.65 Jun 2020 B ENIGMA, reported on July 2nd at IJCAR’208

40 268 69.57 Oct 2020 B ENIGMA
40 994 70.83 Nov 12 M ENIGMA, heuristic premise minimization
41 169 71.13 Nov 12 M Vampire with 300 s limit adds 175
41 792 72.20 Nov 27 M E/ENIGMA/Vampire with more premise minimization
42 206 72.92 Dec 7 M E/ENIGMA/Vampire with more premise minimization
42 471 73.38 Jan 6 G, E E with BliStr/Tune strategies on G, E premises
42 519 73.46 Jan 10 many ENIGMA runs on all training predictions
42 826 73.99 May 14 G,L,K Vampire/Deepire runs – FroCoS’21 [52]
43 414 75.01 Jul 26 M,B 2,3-phase ENIGMA, leapfrogging
43 524 75.20 Aug 21 M 3-phase ENIGMA, shifting context, leapfrog., fwd subsump.
43 599 75.33 Aug 26 L 3-phase ENIGMA, leapfrogging, fwd. subsumption
43 717 75.53 Sep 2 M mainly Vampire/Deepire

The total number of proofs that we trained the ENIGMA guidance on eventually reached
more than three million, which in a pickled and compressed form take over 200 GB. Since
the full data do not fit into the main memory of even large servers equipped for efficient
GPU-based neural training, we have programmed custom pipelines that continuously load,
mix and unload smaller chunks of data used for the ENIGMA training. For many problems,
we obtained hundreds of different proofs, while for some problems we may have only a single
proof. This motivated further experiments on how and with what frequency the different
proofs should be represented in the training data. This was a part of the larger task of
training data normalization, which included, e.g., removing or pruning very large proof
searches in the training data that would cause memory-based GPU crashes.

The 75 % milestone was reached on July 26 20219 by using the freshly developed 2 and
3-phase ENIGMAs, together with differently parameterized leapfrogging (Section 3.4) runs.
The strongest single 3-phase ENIGMA strategy has reached 56.4 % performance in 30 s on
the bushy problems when trained and evaluated in a rigorous train/dev/holdout setting [20].
This best ENIGMA uses a parental threshold of 0.01, 2-phase threshold of 0.1, and context
and query sizes of 768 and 256. Its (server-based) GNN has 10 layers trained on at most
three proofs for each problem in the training set. See also Section 6.6 for its evaluation on a
set of completely new 13 370 problems in 242 new articles of a later version of MML.

6.2 Training Data for Premise Selection
After several months of running the learning/proving loop in various ways on the problems,
we used the collected data for training premise selection methods. In particular, at that
point, there were 41 504 ATP-proved problems for which we typically had many alternative
proofs and sets of premises, yielding 621 642 unique ATP proof dependencies. Since in the
hammering scenarios we can also analyze the human-written proofs and learn from them, we
have added for each ATP-unproved problem P its premises obtained by taking the union of

8 https://youtu.be/XojOEpZfH4Y?t=673
9 https://github.com/ai4reason/ATP_Proofs/blob/master/75percent_announce.md

ITP 2023

https://youtu.be/XojOEpZfH4Y?t=673
https://github.com/ai4reason/ATP_Proofs/blob/master/75percent_announce.md

19:12 MizAR 60 for Mizar 50

the ATP dependencies of all subproblems of P . In other words, we use subproblem-based
premise minimization (Section 4.4) for the remaining hard problems. This adds 16 651
examples to the premise selection dataset. This dataset of 638 293 unique proof dependencies
is then used in various ways for training and evaluating the premise selection methods on
MML. In comparison with the Mizar40 experiments this is about six times more proof data.
As usual in machine learning experiments, we also split the whole set of Mizar problems into
the training, development, and holdout subsets, using a 90 : 5 : 5 ratio. This yields 52 125
problems in the training set, 2896 in devel, and 2896 in the holdout set.

6.3 Training the Premise Selectors
We first train kNN and naive Bayes in multiple ways on the training subset using the different
features (Section 4.1) and their combinations. For training the GNN and LightGBM, we first
use kNN-based pre-selection to choose 512 most relevant premises for each problem. When
training, we add for each example its positives (the real dependencies) and subtract them
from the 512 premises pre-selected by kNN, thus forming the set of the negatives for the
example. The GNN and LightGBM are thus trained to correct the mistakes done by kNN
(a form of boosting). When predicting, this is done in the same way, i.e., first we use the
trained kNN to preselect 512 premises which are then ranked by the GNN/LightGBM. We
use both score thresholds (e.g., including all premises with score better than 0, ´1 or ´3),
and fixed-sized slices as in other premise selection methods. With the same best version of
ENIGMA, the strongest GNN-based predictor (G´1) solves 1089 problems compared to 870
solved when using the baseline kNN, which is a large (25.2 %) improvement. The GNN also
outperforms LightGBM, which overfits more easily on the training data. Table 2 shows the
performance on the devel and holdout sets of the main methods used in the evaluation.

6.4 ENIGMA Experiments on the Premise Selection Data
First, to train ENIGMA on the premise selection problems, we perform several prove/learn
iterations with ENIGMA/GBDT on our premise slices. In loop (1), we start with three
selected slices G´1, L0.1, and K64, which were found experimentally to be complementary. We
evaluate strategy S1 (bls0f17) on the three slices obtaining 20 604 proved training problems.
We train several decision tree (GBDT) models with various learning hyperparameters (tree
leaves count, tree depth, ENIGMA features used). We use all the training proofs available.
In loop (2), we evaluate several ENIGMA models trained on B (bushy problems) to obtain
additional training data. After few training/evaluation iterations, the training data might
start accumulating many proofs for some (easier) problems solved by many strategies. From
loop (2) on, we, therefore, use only a limited number of proofs per problem. We either select
randomly up to 6 proofs for each problem, or we select only specific proofs (e.g., the shortest,
longest, and one medium-length proof). In loop (3), additional training data are added by
ENIGMA/GNN runs on the premise slices, with GNN trained on the GBDT runs. In loop
(4), we consider training data from 7 additional slices (variants of G, L, K), obtained by
running ENIGMA models trained of bushy problems. In loop (5), we extend the training data
with bushy proofs of unsolved training problems obtained by our various previous efforts.

Starting from 1215 solved development problems, we ended up with 1735 problems solved
after the fifth iteration. While we train GBDT models only on few selected slices, we evaluate
the models on many more, up to 56, development slices covering all families G, L, K, E , and
N . We report the increasing number of training problems (trains) and the total of number
of solved development problems by all the evaluated strategy/slice pairs (devel union). Since
every strategy/slice pair is evaluated in 10 seconds, we construct the greedy cover of best 42

J. Jakubův et al. 19:13

Table 2 Machine learning evaluation of the premise selection models on the Development and
Holdout datasets. Note that the evaluation of GNN is presented here only for completeness, in
practice we use it with a score-based threshold and fewer premises.

Model 100-Cover 100-Prec Recall AUC Avg. Rank
D H D H D H D H D H

Kcp
var 83.3 82.3 8.837 8.713 386.8 401.9 92.03 91.27 90.17 97.98

Kau
var 83.5 82.7 8.855 8.754 383.32 401.54 92.13 91.36 89.21 97.19

Kmi
var 82.6 81.8 8.700 8.596 401.89 418.40 91.32 90.59 97.30 104.88

Ks0
var 83.6 82.9 8.851 8.785 382.31 399.10 92.19 91.39 88.53 96.84

Ncp 87.8 87.0 9.739 9.665 300.49 310.72 94.77 94.32 62.64 67.51
Nau 88.0 87.5 9.748 9.714 298.66 307.82 94.84 94.44 61.99 66.31
Nmi 83.3 83.5 9.358 9.367 382.87 379.24 92.53 92.41 85.39 86.88
Ns0 88.3 87.5 9.776 9.720 299.10 308.67 94.85 94.41 61.85 66.60
Nmi,chrono 83.9 82.7 9.151 9.010 384.68 393.37 92.33 91.75 87.23 93.27
L 82.9 83.1 9.077 9.090 410.06 408.06 91.53 91.26 95.11 97.74
G 87.4 86.3 9.408 9.282 241.22 249.32 88.45 87.42 66.69 71.87

EN ,K
.5,.5,&avg 87.8 87.1 9.606 9.522 291.27 304.43 95.06 94.53 59.81 65.47

EN ,K
.5,.5,&geo 89.4 88.7 9.806 9.733 277.75 288.53 95.53 95.04 55.13 60.27

EN ,K
.5,.5,&har 89.4 88.9 9.822 9.780 276.34 286.23 95.53 95.08 55.06 59.94

EN ,K
.5,.5,&min 89.0 88.4 9.753 9.707 279.88 289.41 95.37 94.95 56.70 61.19

EN ,G,K
.5,.25,.25 92.1 91.1 10.237 10.160 228.79 248.16 96.64 96.20 44.06 48.76

EN ,K,L,G
.5,.2,.2,.1 92.5 91.5 10.297 10.219 210.31 227.74 96.93 96.56 41.20 45.17

EN ,G,K
.33,.33,.33 91.3 90.4 10.091 10.014 261.10 272.85 96.20 95.71 48.51 53.64

strategy/slice pairs, to approximate the best possible result obtainable in 420 s (see columns
devel cover). Since the development set has not been used in any way to train the GBDT
models, we can see this as an approximation of the best possible result on the holdout set.

We reach 55.59 % of problems solvable in 420 s, only with ENIGMA/GBDT models. To
compare this result to other methods, we construct compatible greedy covers for E Prover in
auto-schedule mode, and for Vampire in CASC mode, that is, in their respective strongest
default settings. We evaluate both provers on all 56 development slices, with 30 s limit per
problem. For each prover, we construct a greedy cover of best 14 slices, again approximating
the best possible result obtainable in 420 s. BliStr/Tune is our previously invented portfolio
of 15 E strategies for Mizar bushy problems. We evaluate all 15 strategies on all 56 slices
with 2 seconds per problem. Similarly, the greedy cover of length 210 is constructed. The
column pairs specifies the greedy cover length considered in each case. The time limit for
each strategy/slice pair is 420{pairs.

The training data obtained in five loops were finally used to train new ENIGMA/GNN
models for premise selection slices. Various GNN models were trained (various numbers
of layers, networks from various epochs) and evaluated with the limit of 5 s. As before,
we construct the greedy cover of length 84 to simulate the best possible run in 420 s.
ENIGMA/GNN performs even better then ENIGMA/GBDT, solving 57.66 % problems. The
two ENIGMA/* portfolios cover together 1701 development problems (in 840 s), suggesting
a decent complementarity of the methods. Note that only the ENIGMA/GBDT strategies
can cover up to 1735 (see column devel on the left), which is 59.9 % of the development set.

ITP 2023

19:14 MizAR 60 for Mizar 50

Table 3 Training of ENIGMA/GBDT models (left), and best covers of development set (right).

loop trains devel devel cover
(union) (in 420 s) [%]

init 20 604 1215 - -
(1) 25 240 1601 1516 52.33
(2) 25 725 1669 1555 53.69
(3) 25 887 1679 1560 53.88
(4) 29 266 1716 1591 54.94
(5) 37 053 1735 1610 55.59

prover (420 s) cover pairs [%]

E 2.6 (auto-schedule) 1430 14 49.38
Vampire 4.0 (CASC) 1536 14 53.03
BliStr/Tune 1582 210 54.62
ENIGMA/GBDT 1610 42 55.59
ENIGMA/GNN 1670 84 57.66

Most of our ENIGMA models are combined with the baseline strategy bls0f17. This
together with bls05fc are two strategies invented by BliStr/Tune [24] which perform well on
premise selection data. We additionally use another two older BliStr [57] strategies mzr02
and mzr03 which perform well on bushy problems. We usually combine training data only
from strategies with compatible term ordering and literal selection setting. However, data
from strategies with incompatible orderings, were found useful when used in a reasonably
small amounts. Few other BliStr and Vampire strategies, together with E in the auto mode,
are used to gather additional solved development problems. With all our methods (ENIGMA
& BliStr/Tune) and with additional Vampire runs of selected strategies, we have solved more
than 62.7 % development problems. These results provide training data for the construction
of the final holdout portfolio, as described in the next section.

6.5 Final Hammer Portfolio
With the large database of the development results of the systems run on the premise slices,
we finally construct our ultimate hammering portfolio. For that, we use the robust portfolio
construction method described in Section 5. In particular, we randomly split the development
set into two equal-sized parts, and compute the 420 s greedy cover using our whole database of
results on the first part. This greedy cover is evaluated on the second part, thus measuring the
overfitting. This randomized procedure is repeated one thousand times. Then we (manually)
select the 20 strongest and least overfitting portfolios and evaluate each of them on 80 more
random splits, thus measuring how balanced they are on average. Typically, they reach up
to 60.5 % performance on the whole devel set, so we choose a threshold of 59.5 % on the 160
random halves to measure the imbalance. The most balanced portfolio wins with 135 of the
160 random halves passing the threshold.

This final 420-second portfolio has 95 slices that solve 1749 (60.4 %) of the devel problems
and 1690 (58.36 %) of the holdout problems. Table 4 shows the initial segment of 13 slices of
this portfolio with the numbers of problems solved. The full portfolio is presented in Table 5.
The first number t is the number of seconds to run the slice. The base column specifies the
ATP strategy used, and ENIGMA describes what kinds of ENIGMA models are used (if any).
We can see that GNN models dominate the schedule with fast runs. The schedule is closed by
longer runs, notably also GBDT models, which while evaluated in a single-CPU setting, need
several seconds to load the model. This means that we are favoring the GNN ENIGMAs
thanks to the use of the preloaded GNN server, and a further improvement is likely if we
also preload the GBDT models. Our single strongest GNN-based strategy solves 1178 of the
holdout problems in 30 s using the G´1 predictions. This is 39.5 %, which is only 1.1 % less
than the 40.6 % solved by the full 420 s portfolio constructed in the Mizar40 experiments.

J. Jakubův et al. 19:15

Table 4 The 13-slice prefix of the final portfolio of the 95 slices. Each column presents the premise
selection method, the ATP method, and the number of problems solved up this slice cumulatively
on the development and holdout sets. “V” stands for Vampire and “GNN” is ENIGMA/GNN model
based on bls0f17. Moreover, E5221 “ EN ,K,L,G

.5,.2,.2,.1 and E55 “ EN ,K
.5,.5,avg and E533 “ EN ,G,K

.5,.25,.25.

G E5221 L E5221 Nuni E5221 Neni Neni E5221 G E55 E533 E533

GNN GNN GNN GNN V V GNN GNN GNN GNN V V GNN
984 1142 1215 1263 1297 1325 1346 1370 1381 1393 1405 1419 1444
1013 1157 1240 1275 1305 1321 1346 1364 1378 1386 1398 1407 1436

6.6 Transfer to MML 1382
In the final experiment, we run for 120 s the best trained ENIGMA (3-phase, see Section 6.1)
on the bushy problems from a new version of Mizar (1382) that has 242 new articles and
13 370 theorems in them. ENIGMA not only never trained on any of these articles, but also
never saw the new terminology introduced there. We also run the standard E auto-schedule
for 120 s on the new version. ENIGMA proves 37 094 (52.7 %) of the 70 396 problems in
the new library, while the E auto-schedule proves 24 158 (34.32 %) of them. ENIGMA thus
improves over E by 53.55 % on the new library. We compare this with the old MML, where
the trained ENIGMA solves 34 528 (59.65 %) of the 57 880 problems, and E solves 22 119
(38.22 %), i.e., the relative improvement there is 56.10 %.

Surprisingly, just on the new 13 370 theorems – more than half of which contain new
terminology – the ratio of ENIGMA-proved to E-proved problems is 5934 to 3751, i.e.,
ENIGMA is here better than E by 58.20 %. These numbers show that the performance
of our anonymous [25] logic-aware ML methods, which learn only from the structure of
mathematical problems, is practically untouched by the transfer to the new setting with
many new concepts and lemmas. This is quite unusual in today’s machine learning which
seems dominated by large language models that typically struggle on new terminology.

7 Proofs

As the main experiments progressed from spring 2020 to summer 2021, we have collected
interesting examples of automatically found proofs and published their summary descriptions
on our web page.10 As of September 2021 there were over 200 of such example proofs,
initially with ATP length in tens of clause steps, and gradually reaching hundreds of clause
steps. Initially these were proofs found in the bushy setting, with proofs done in the chainy
(premise-selection) setting added later, typically to show the effect of alternative premises.

One of the earliest proofs that we put on the web page is NEWTON:72 proving that
for every natural number there exists a larger prime:

for l being Nat ex p being Prime st p is prime & p > l

The ENIGMA proof starts from 328 preselected Mizar facts which translate to 549 initial
clauses. The search is guided by a particular version of the GNN running at that time
(April 2020) on the CPU. Since this is relatively costly, the proof search generated only
2856 nontrivial clauses in 6 s, doing 734 nontrivial given clause loops. The final proof takes
83 clausal steps, and uses 38 of the 328 initially provided steps. Many of them replay the

10 https://github.com/ai4reason/ATP_Proofs

ITP 2023

https://bit.ly/3Spmf26
https://bit.ly/3ILEkEp
https://bit.ly/3Z2iXo3
https://github.com/ai4reason/ATP_Proofs

19:16 MizAR 60 for Mizar 50

Table 5 The final Mizar hammer portfolio for 420 s.

t base ENIGMA slice
2 bls0f17 GNN G´1
2 bls0f17 GNN EN ,K,L,G

.5,.2,.2,.1
2 bls0f17 GNN L0.1
2 bls0f17 GNN EN ,K,L,G

.5,.2,.2,.1
2 vampire - Nuni
2 vampire - EN ,K,L,G

.5,.2,.2,.1
2 bls0f17 GNN Neni
2 bls0f17 GNN Neni
2 bls0f17 GNN EN ,K,L,G

.5,.2,.2,.1
2 bls0f17 GNN G´3
2 vampire - EN ,K

.5,.5
2 vampire - EN ,G,K

.5,.25,.25
5 bls0f17 GNN EN ,G,K

.5,.25,.25
2 vampire - EN ,K

.5,.5
2 vampire - Kau

var
2 mzr02 - Kcp

var
2 bls0f17 GNN G0
2 vampire-16 - G´5
2 vampire - Nuni
2 bls0f17 GNN Neni
5 bls0f17 GNN Nau
2 vampire - EN ,K

.5,.5
2 vampire - EN ,K

.5,.5
5 bls0f17 GNN EN ,K

.5,.5
2 bls0f17 GNN EN ,G,K

.5,.25,.25
2 vampire-16 - EN ,K,L,G

.5,.2,.2,.1
5 bls0f17 GNN L0.05
2 vampire-18 - G
2 mzr22 - EN ,K,L

.5,.2,.3
2 vampire - EN ,K

.5,.5,geo

2 vampire - EN ,K
.5,.5

2 vampire - Kcp
var

2 BliStr-edc9 - EN ,K,L
.5,.2,.3

2 vampire - EN ,K
.5,.5,chrono

2 vampire - Nuni
5 bls0f17 GNN EN ,G,K

.5,.25,.25
10 mzr02 GNN L0
5 bls0f17 GNN EN ,K,L,G

.5,.2,.2,.1
5 bls0f17 GNN Nau
2 bls0f17 GNN Neni
2 vampire-2 - G16
2 vampire-16 - Nau
2 vampire - Nau
2 E-auto - L96
10 bls05fc GBDT L0.25
2 vampire - EN ,K

.5,.5,min
2 vampire-16 - Nsub
2 vampire-16 - EN ,G,K

.5,.25,.25

t base ENIGMA slice
2 vampire - EN ,G,K

.5,.25,.25
2 Blistr-5fce - EN ,K,L

.5,.2,.3
2 vampire - EN ,K

.5,.5
2 E-auto - G´2
2 vampire - Kuni

var
2 vampire-16 - EN ,K

.5,.5
2 vampire - EN ,K

.5,.5,geo

2 vampire - Kuni
var

2 vampire-21 - G
2 vampire - Nsub
2 vampire - Nuni
2 E-auto - EN ,G,K

.5,.25,.25
2 vampire - EN ,K

.5,.5,min
2 vampire - Ncp
2 bls0f17 GNN Keni

var
5 bls0f17 GNN L0.01
10 bls05fc GBDT EN ,G,K

.33,.33,.33
5 bls0f17 GNN EN ,K

.5,.5
5 bls0f17 GNN Neni
5 bls0f17 GNN EN ,G,K

.5,.25,.25
10 bls0f17 GNN EN ,K,L,G

.5,.2,.2,.1
10 mzr03 GBDT G64
10 bls05fc GBDT EN ,G,K

.33,.33,.33
10 mzr02 GBDT Kshort
10 bls0f17 GNN EN ,G,K

.5,.25,.25
10 bls0f17 GNN EN ,K,L,G

.5,.2,.2,.1
10 bls0f17 GBDT L0.01
5 bls0f17 GNN Nau
5 bls0f17 GNN L0.005
10 bls0f17 GNN EN ,K,L,G

.5,.2,.2,.1
5 bls0f17 GNN L0.01
5 bls0f17 GNN Nau
5 bls0f17 GNN EN ,K

.5,.5
5 mzr03 - EN ,K,L,G

.25,.25,.25,.25
10 bls0f17 GNN G´1
5 bls0f17 GNN G0
10 bls05fc GBDT Kshort
5 bls0f17 GNN Nau
5 bls0f17 GNN EN ,K

.5,.5
10 bls0f17 GNN G0.5
10 bls0f17 GNN Neni
10 bls0f17 GBDT L0.01
10 bls0f17 GBDT EN ,K

.5,.5,&min
10 bls0f17 GNN Nau
10 bls0f17 GNN EN ,K

.5,.5
10 bls0f17 GNN Nau
10 mzr03 GBDT EN ,G,K

.33,.33,.33

arithmetical arguments done in Mizar. An interesting point is that the guided prover is here
capable of synthesizing a nontrivial witness (n! ` 1) by using the supplied facts, after which
the proof likely becomes reasonably straightforward given the knowledge in the library (see
the Appendix for a more detailed discussion of this example). In general, using the supplied
facts together with the trained learner for guided synthesis of nontrivial witnesses seems to
be one of the main improvements brought by the ENIGMA guidance that contributed to
the new proofs in comparison with the Mizar40 evaluation. This led us to start research of
neural synthesis of witnesses and conjectures for AI/TP settings [13,16,17,58].

J. Jakubův et al. 19:17

Arithmetical reasoning, and other kinds of “routine computation” in general, have turned
out to be areas where ENIGMA often gradually improved by solving increasingly hard Mizar
problems and learning from them. Such problems include reasoning about trigonometric
functions, integrals, derivatives, matrix manipulation, etc. From the more advanced results
done by 3-phase ENIGMA, this is, e.g., a 619-long proof of SINCOS10:86 found in 60 s,
doing a lot of computation about the domain and range of arcsec , and a 326-long proof of
FDIFF_8:14 , found in 31 s, about the derivative of tanpln xq .
for x being set st x in [.(- (sqrt 2)),(- 1).] holds arcsec2 . x in [.((3 / 4) * PI),PI.]

for Z being open Subset of REAL st Z c= dom (tan * ln) holds tan * ln
is_differentiable_on Z
& for x being Real st x in Z holds ((tan * ln) ‘| Z) . x = 1 / (x * (cos . (ln . x))^2)

The first proof uses 83 Mizar facts, starting with 1025 preselected ones. Its proof search took
5344 nontrivial given clauses and generated over 100k nontrivial clauses in total, making the
3-phase filtering and the use of the GPU server essential for finding the proof efficiently. The
second proof uses 55 Mizar facts, 3136 given clause loops and it generated 26.6k nontrivial
clauses. The reader can see on our web page that there are many solved problems of such
“mostly computational” kind, suggesting that such learning approaches may be suitable
for automatically gaining competence in routine computational tasks, without the need to
manually program them as done, e.g., in SMT solvers. This has motivated our research
in learning reasoning components [10]. Two less “computational” but still very long ATP
proofs found by 3-phase ENIGMA are BORSUK_5:31 saying that the closure of rationals
on (a,b) is [a,b] , and IDEAL_1:22 saying that commutative rings are fields iff ideals are
trivial :
for A being Subset of R^1 for a, b being real number
st a < b & A = RAT (a,b) holds Cl A = [.a,b.]

for R being non degenerated comRing holds R is Field iff
for I being Ideal of R holds I = {(0. R)} or I = the carrier of R

The Mizar proof of BORSUK_5:31 takes 80 lines. ENIGMA finds a proof from 38 Mizar facts
that uses 359 clausal steps in 4883 given clause loops. On the 400k generated clauses, the
multi-phase ENIGMA mechanisms work as follows. 133 869 clauses are frozen by parental
guidance, 83 871 are then filtered by aggressive subsumption, and 64 364 by the first-stage
LightGBM model. 125 489 remaining “good” clauses are gradually evaluated (in 176 batched
calls) by the GNN server, using a context of 1536 processed clauses. The ENIGMA proof of
IDEAL_1:22 uses 48 Mizar facts and takes 493 clausal steps in 4481 given clause loops.

One example of an ATP proof made possible thanks to the premise selector noticing
alternative lemmas in the library is FIB_NUM2:69 . This theorem, called in the MML
“Carmichael’s Theorem on Prime Divisors”, states that if m divides the n-th Fibonacci
number (Fib n), then m does not divide any smaller Fibonacci number, provided m, n are
prime numbers . The Mizar proof has 122 lines, uses induction and we cannot so far replay
it with ATPs. The premise selector, however, finds a prior library lemma FIB_NUM:5
saying that (Fib m) gcd (Fib n) = Fib (m gcd n), from which the proof follows, using
159 clausal steps, 4214 given clause loops and 32 Mizar facts. Finally, an example of a long
Deepire proof using a high time limit is ORDINAL5:36 , i.e., the ϵ0 “ ωωω...

formula for
the zeroth epsilon ordinal :
first_epsilon_greater_than 0 = omega |^|^ omega

The search took 38 065 given clause loops and 504 s. The proof has 1193 clausal steps, using
49 Mizar facts. Deepire’s very efficient neural guidance took only 18 s of the total time here.

ITP 2023

https://bit.ly/3StOHzV
https://bit.ly/2YZ0OgX
https://bit.ly/3IuYHV0
https://bit.ly/3SdZjTq
https://bit.ly/3KzuPJY
https://bit.ly/3C0Lwa8
https://bit.ly/3Z7UPQC
https://bit.ly/3BWqR6K
https://bit.ly/3YWIfE6
https://bit.ly/3oGBdRz
https://bit.ly/3ExtvmS
https://bit.ly/3klDrJr
https://bit.ly/3SrPyRN
https://bit.ly/3SozGPM

19:18 MizAR 60 for Mizar 50

8 Conclusion: AI/TP Bet Completed

In 2014, after the 40 % numbers were obtained by Kaliszyk and Urban both on the Flyspeck
and Mizar corpora, the last author publicly announced three AI/TP bets11 in a talk at
Institut Henri Poincare and offered to bet up to 10 000 EUR on them. Part of the second
bet said that by 2024, 60 % of the MML and Flyspeck toplevel theorems will be provable
automatically when using the same setting as in 2014. In the HOL setting, this was done as
early as 2017/18 by the TacticToe system, which achieved 66.4 % on the HOL library in 60 s
and 69 % in 120 s [14,15]. One could however argue that TacticToe introduced a new kind of
ML-guided tactical prover that considerably benefits from targeted, expert-written procedures
tailored to the corpora. This in particular showed in the large boost on HOL problems that
required induction, on which standard higher-order ATPs traditionally struggled.

In this work, we largely completed this part of the second AI/TP bet also for the Mizar
library. The main caveat is our use of more modern hardware, in particular many ENIGMAs
using the GPU server for clause evaluation. It is however clear (both from the LightGBM
experiments and from the very efficient and CPU-based Deepire experiments) that this is
not a major issue. While it is today typically easier to use dedicated hardware in ML-based
experiments, there is also growing research in the extraction of faster predictors from those
trained on GPUs that can run more efficiently on standard hardware.

References

1 Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfel-
low, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol
Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software available
from tensorflow.org. URL: https://www.tensorflow.org/.

2 Jesse Alama, Tom Heskes, Daniel Kühlwein, Evgeni Tsivtsivadze, and Josef Urban. Premise
selection for mathematics by corpus analysis and kernel methods. J. Autom. Reasoning,
52(2):191–213, 2014. doi:10.1007/s10817-013-9286-5.

3 Grzegorz Bancerek, Czeslaw Bylinski, Adam Grabowski, Artur Kornilowicz, Roman
Matuszewski, Adam Naumowicz, and Karol Pak. The role of the Mizar Mathematical
Library for interactive proof development in Mizar. J. Autom. Reason., 61(1-4):9–32, 2018.
doi:10.1007/s10817-017-9440-6.

4 Grzegorz Bancerek, Czeslaw Bylinski, Adam Grabowski, Artur Kornilowicz, Roman
Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art
and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and
Volker Sorge, editors, Intelligent Computer Mathematics - International Conference, CICM
2015, Washington, DC, USA, July 13-17, 2015, Proceedings, volume 9150 of Lecture Notes in
Computer Science, pages 261–279. Springer, 2015. doi:10.1007/978-3-319-20615-8_17.

5 Grzegorz Bancerek and Piotr Rudnicki. A Compendium of Continuous Lattices in MIZAR. J.
Autom. Reasoning, 29(3-4):189–224, 2002. doi:10.1023/A:1021966832558.

11 http://ai4reason.org/aichallenges.html

https://www.tensorflow.org/
https://doi.org/10.1007/s10817-013-9286-5
https://doi.org/10.1007/s10817-017-9440-6
https://doi.org/10.1007/978-3-319-20615-8_17
https://doi.org/10.1023/A:1021966832558
http://ai4reason.org/aichallenges.html

J. Jakubův et al. 19:19

6 Jasmin Christian Blanchette, David Greenaway, Cezary Kaliszyk, Daniel Kühlwein, and Josef
Urban. A learning-based fact selector for Isabelle/HOL. J. Autom. Reasoning, 57(3):219–244,
2016. doi:10.1007/s10817-016-9362-8.

7 Jasmin Christian Blanchette, Cezary Kaliszyk, Lawrence C. Paulson, and Josef Urban. Ham-
mering towards QED. J. Formalized Reasoning, 9(1):101–148, 2016. doi:10.6092/issn.
1972-5787/4593.

8 Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’16, pages 785–794, New York, NY, USA, 2016. ACM. doi:10.1145/2939672.2939785.

9 Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder-
decoder for statistical machine translation. In Alessandro Moschitti, Bo Pang, and Walter
Daelemans, editors, Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT,
a Special Interest Group of the ACL, pages 1724–1734. ACL, 2014. doi:10.3115/v1/d14-1179.

10 Karel Chvalovský, Jan Jakubuv, Miroslav Olsák, and Josef Urban. Learning theorem proving
components. In Anupam Das and Sara Negri, editors, Automated Reasoning with Analytic
Tableaux and Related Methods - 30th International Conference, TABLEAUX 2021, Birmingham,
UK, September 6-9, 2021, Proceedings, volume 12842 of Lecture Notes in Computer Science,
pages 266–278. Springer, 2021. doi:10.1007/978-3-030-86059-2_16.

11 Karel Chvalovský, Jan Jakubuv, Martin Suda, and Josef Urban. ENIGMA-NG: Efficient
neural and gradient-boosted inference guidance for E. In Pascal Fontaine, editor, Automated
Deduction - CADE 27 - 27th International Conference on Automated Deduction, Natal, Brazil,
August 27-30, 2019, Proceedings, volume 11716 of Lecture Notes in Computer Science, pages
197–215. Springer, 2019. doi:10.1007/978-3-030-29436-6_12.

12 Richard Evans, David Saxton, David Amos, Pushmeet Kohli, and Edward Grefenstette. Can
neural networks understand logical entailment? In International Conference on Learning
Representations, 2018. URL: https://openreview.net/forum?id=SkZxCk-0Z.

13 Thibault Gauthier. Deep reinforcement learning for synthesizing functions in higher-order
logic. In LPAR, volume 73 of EPiC Series in Computing, pages 230–248. EasyChair, 2020.

14 Thibault Gauthier, Cezary Kaliszyk, and Josef Urban. TacticToe: Learning to reason with
HOL4 tactics. In Thomas Eiter and David Sands, editors, LPAR-21, 21st International
Conference on Logic for Programming, Artificial Intelligence and Reasoning, Maun, Botswana,
May 7-12, 2017, volume 46 of EPiC, pages 125–143. EasyChair, 2017. doi:10.29007/ntlb.

15 Thibault Gauthier, Cezary Kaliszyk, Josef Urban, Ramana Kumar, and Michael Norrish.
Tactictoe: Learning to prove with tactics. J. Autom. Reason., 65(2):257–286, 2021. doi:
10.1007/s10817-020-09580-x.

16 Thibault Gauthier, Miroslav Olsák, and Josef Urban. Alien coding. CoRR, abs/2301.11479,
2023.

17 Thibault Gauthier and Josef Urban. Learning program synthesis for integer sequences from
scratch. CoRR, abs/2202.11908, 2022.

18 Zarathustra Goertzel, Jan Jakubův, and Josef Urban. ENIGMAWatch: ProofWatch meets
ENIGMA. In Serenella Cerrito and Andrei Popescu, editors, Automated Reasoning with
Analytic Tableaux and Related Methods, pages 374–388, Cham, 2019. Springer International
Publishing.

19 Zarathustra Amadeus Goertzel. Make E smart again (short paper). In IJCAR (2), volume
12167 of Lecture Notes in Computer Science, pages 408–415. Springer, 2020.

20 Zarathustra Amadeus Goertzel, Karel Chvalovský, Jan Jakubuv, Miroslav Olsák, and Josef
Urban. Fast and slow Enigmas and parental guidance. In FroCoS, volume 12941 of Lecture
Notes in Computer Science, pages 173–191. Springer, 2021.

ITP 2023

https://doi.org/10.1007/s10817-016-9362-8
https://doi.org/10.6092/issn.1972-5787/4593
https://doi.org/10.6092/issn.1972-5787/4593
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.1007/978-3-030-86059-2_16
https://doi.org/10.1007/978-3-030-29436-6_12
https://openreview.net/forum?id=SkZxCk-0Z
https://doi.org/10.29007/ntlb
https://doi.org/10.1007/s10817-020-09580-x
https://doi.org/10.1007/s10817-020-09580-x

19:20 MizAR 60 for Mizar 50

21 Zarathustra Amadeus Goertzel, Jan Jakubuv, Cezary Kaliszyk, Miroslav Olsák, Jelle Piepen-
brock, and Josef Urban. The Isabelle ENIGMA. In ITP, volume 237 of LIPIcs, pages
16:1–16:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

22 Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Mizar in a nutshell. J. Formalized
Reasoning, 3(2):153–245, 2010.

23 Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, and Thomas Stützle. ParamILS: an
automatic algorithm configuration framework. J. Artificial Intelligence Research, 36:267–306,
October 2009.

24 Jan Jakubův and Josef Urban. Hierarchical invention of theorem proving strategies. AI
Commun., 31(3):237–250, 2018. doi:10.3233/AIC-180761.

25 Jan Jakubuv, Karel Chvalovský, Miroslav Olsák, Bartosz Piotrowski, Martin Suda, and
Josef Urban. ENIGMA anonymous: Symbol-independent inference guiding machine (system
description). In IJCAR (2), volume 12167 of Lecture Notes in Computer Science, pages
448–463. Springer, 2020.

26 Jan Jakubuv, Martin Suda, and Josef Urban. Automated invention of strategies and term
orderings for vampire. In GCAI, volume 50 of EPiC Series in Computing, pages 121–133.
EasyChair, 2017.

27 Jan Jakubuv and Josef Urban. BliStrTune: hierarchical invention of theorem proving strategies.
In Yves Bertot and Viktor Vafeiadis, editors, Proceedings of the 6th ACM SIGPLAN Conference
on Certified Programs and Proofs, CPP 2017, Paris, France, January 16-17, 2017, pages
43–52. ACM, 2017. doi:10.1145/3018610.3018619.

28 Jan Jakubuv and Josef Urban. Enhancing ENIGMA given clause guidance. In Florian Rabe,
William M. Farmer, Grant O. Passmore, and Abdou Youssef, editors, Intelligent Computer
Mathematics - 11th International Conference, CICM 2018, Hagenberg, Austria, August 13-
17, 2018, Proceedings, volume 11006 of Lecture Notes in Computer Science, pages 118–124.
Springer, 2018. doi:10.1007/978-3-319-96812-4_11.

29 Jan Jakubuv and Josef Urban. Hammering Mizar by learning clause guidance. In John
Harrison, John O’Leary, and Andrew Tolmach, editors, 10th International Conference on
Interactive Theorem Proving, ITP 2019, September 9-12, 2019, Portland, OR, USA, volume
141 of LIPIcs, pages 34:1–34:8. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.
doi:10.4230/LIPIcs.ITP.2019.34.

30 Cezary Kaliszyk and Josef Urban. Stronger automation for Flyspeck by feature weighting
and strategy evolution. In Jasmin Christian Blanchette and Josef Urban, editors, PxTP 2013,
volume 14 of EPiC Series, pages 87–95. EasyChair, 2013.

31 Cezary Kaliszyk and Josef Urban. Learning-assisted automated reasoning with Flyspeck. J.
Autom. Reasoning, 53(2):173–213, 2014. doi:10.1007/s10817-014-9303-3.

32 Cezary Kaliszyk and Josef Urban. MizAR 40 for Mizar 40. J. Autom. Reasoning, 55(3):245–256,
2015. doi:10.1007/s10817-015-9330-8.

33 Cezary Kaliszyk, Josef Urban, and Jirí Vyskocil. Efficient semantic features for automated
reasoning over large theories. In IJCAI, pages 3084–3090. AAAI Press, 2015.

34 Cezary Kaliszyk, Josef Urban, and Jirí Vyskocil. Automating formalization by statistical and
semantic parsing of mathematics. In ITP, volume 10499 of Lecture Notes in Computer Science,
pages 12–27. Springer, 2017.

35 Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and
Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. In NIPS, pages
3146–3154, 2017.

36 Artur Korniłowicz and Christoph Schwarzweller. Computers and algorithms in Mizar. Mech-
anized Mathematics and Its Applications, 4(1):43–50, 2005.

37 Laura Kovács and Andrei Voronkov. First-order theorem proving and Vampire. In Natasha
Sharygina and Helmut Veith, editors, CAV, volume 8044 of LNCS, pages 1–35. Springer, 2013.
doi:10.1007/978-3-642-39799-8_1.

https://doi.org/10.3233/AIC-180761
https://doi.org/10.1145/3018610.3018619
https://doi.org/10.1007/978-3-319-96812-4_11
https://doi.org/10.4230/LIPIcs.ITP.2019.34
https://doi.org/10.1007/s10817-014-9303-3
https://doi.org/10.1007/s10817-015-9330-8
https://doi.org/10.1007/978-3-642-39799-8_1

J. Jakubův et al. 19:21

38 Guillaume Lample and François Charton. Deep learning for symbolic mathematics. In 8th In-
ternational Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net, 2020. URL: https://openreview.net/forum?id=S1eZYeHFDS.

39 Miroslav Olsák, Cezary Kaliszyk, and Josef Urban. Property invariant embedding for automated
reasoning. In Giuseppe De Giacomo, Alejandro Catalá, Bistra Dilkina, Michela Milano, Senén
Barro, Alberto Bugarín, and Jérôme Lang, editors, ECAI 2020 - 24th European Conference
on Artificial Intelligence, volume 325 of Frontiers in Artificial Intelligence and Applications,
pages 1395–1402. IOS Press, 2020. doi:10.3233/FAIA200244.

40 David W. Opitz and Richard Maclin. Popular ensemble methods: An empirical study. J. Artif.
Intell. Res., 11:169–198, 1999. doi:10.1613/jair.614.

41 Bartosz Piotrowski and Josef Urban. ATPboost: Learning premise selection in binary setting
with ATP feedback. In Didier Galmiche, Stephan Schulz, and Roberto Sebastiani, editors,
Automated Reasoning - 9th International Joint Conference, IJCAR 2018, Held as Part of
the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings,
volume 10900 of Lecture Notes in Computer Science, pages 566–574. Springer, 2018. doi:
10.1007/978-3-319-94205-6_37.

42 Bartosz Piotrowski and Josef Urban. Stateful premise selection by recurrent neural networks.
In LPAR, volume 73 of EPiC Series in Computing, pages 409–422. EasyChair, 2020.

43 Bartosz Piotrowski, Josef Urban, Chad E. Brown, and Cezary Kaliszyk. Can neural networks
learn symbolic rewriting? CoRR, abs/1911.04873, 2019.

44 John Alan Robinson and Andrei Voronkov, editors. Handbook of Automated Reasoning (in
2 volumes). Elsevier and MIT Press, 2001. URL: https://www.sciencedirect.com/book/
9780444508133/handbook-of-automated-reasoning.

45 Stephan Schulz. E – A Brainiac Theorem Prover. AI Commun., 15(2-3):111–126, 2002. URL:
http://iospress.metapress.com/content/n908n94nmvk59v3c/.

46 Stephan Schulz. Simple and efficient clause subsumption with feature vector indexing. In
Automated Reasoning and Mathematics, volume 7788 of Lecture Notes in Computer Science,
pages 45–67. Springer, 2013.

47 Stephan Schulz. System description: E 1.8. In Kenneth L. McMillan, Aart Middeldorp,
and Andrei Voronkov, editors, LPAR, volume 8312 of LNCS, pages 735–743. Springer, 2013.
doi:10.1007/978-3-642-45221-5_49.

48 Stephan Schulz. System Description: E 1.8. In Ken McMillan, Aart Middeldorp, and Andrei
Voronkov, editors, Proc. of the 19th LPAR, Stellenbosch, volume 8312 of LNCS, pages 735–743.
Springer, 2013.

49 Stephan Schulz, Simon Cruanes, and Petar Vukmirović. Faster, higher, stronger: E 2.3. In
Pascal Fontaine, editor, Proc. of the 27th CADE, Natal, Brasil, number 11716 in LNAI, pages
495–507. Springer, 2019.

50 Stephan Schulz and Geoff Sutcliffe. Proof generation for saturating first-order theorem provers.
In David Delahaye and Bruno Woltzenlogel Paleo, editors, All about Proofs, Proofs for All,
volume 55 of Mathematical Logic and Foundations, pages 45–61. College Publications, London,
UK, January 2015.

51 Martin Suda. Improving ENIGMA-style clause selection while learning from history. In André
Platzer and Geoff Sutcliffe, editors, Automated Deduction - CADE 28 - 28th International
Conference on Automated Deduction, Virtual Event, July 12-15, 2021, Proceedings, volume
12699 of Lecture Notes in Computer Science, pages 543–561. Springer, 2021. doi:10.1007/
978-3-030-79876-5_31.

52 Martin Suda. Vampire with a brain is a good ITP hammer. In Boris Konev and Giles
Reger, editors, Frontiers of Combining Systems - 13th International Symposium, FroCoS
2021, Birmingham, UK, September 8-10, 2021, Proceedings, volume 12941 of Lecture Notes in
Computer Science, pages 192–209. Springer, 2021. doi:10.1007/978-3-030-86205-3_11.

53 Tanel Tammet. Towards efficient subsumption. In CADE, volume 1421 of Lecture Notes in
Computer Science, pages 427–441. Springer, 1998.

ITP 2023

https://openreview.net/forum?id=S1eZYeHFDS
https://doi.org/10.3233/FAIA200244
https://doi.org/10.1613/jair.614
https://doi.org/10.1007/978-3-319-94205-6_37
https://doi.org/10.1007/978-3-319-94205-6_37
https://www.sciencedirect.com/book/9780444508133/handbook-of-automated-reasoning
https://www.sciencedirect.com/book/9780444508133/handbook-of-automated-reasoning
http://iospress.metapress.com/content/n908n94nmvk59v3c/
https://doi.org/10.1007/978-3-642-45221-5_49
https://doi.org/10.1007/978-3-030-79876-5_31
https://doi.org/10.1007/978-3-030-79876-5_31
https://doi.org/10.1007/978-3-030-86205-3_11

19:22 MizAR 60 for Mizar 50

54 J. Urban. Translating Mizar for First Order Theorem Provers. In A. Asperti, B. Buchberger,
and J.H. Davenport, editors, Proceedings of the 2nd International Conference on Mathematical
Knowledge Management, number 2594 in LNCS, pages 203–215. Springer, 2003.

55 Josef Urban. MPTP – Motivation, Implementation, First Experiments. J. Autom. Reasoning,
33(3-4):319–339, 2004. doi:10.1007/s10817-004-6245-1.

56 Josef Urban. MPTP 0.2: Design, implementation, and initial experiments. J. Autom. Reasoning,
37(1-2):21–43, 2006. doi:10.1007/s10817-006-9032-3.

57 Josef Urban. BliStr: The Blind Strategymaker. In Georg Gottlob, Geoff Sutcliffe, and
Andrei Voronkov, editors, Global Conference on Artificial Intelligence, GCAI 2015, Tbilisi,
Georgia, October 16-19, 2015, volume 36 of EPiC Series in Computing, pages 312–319. Easy-
Chair, 2015. URL: http://www.easychair.org/publications/paper/BliStr_The_Blind_
Strategymaker, doi:10.29007/8n7m.

58 Josef Urban and Jan Jakubuv. First neural conjecturing datasets and experiments. In
Christoph Benzmüller and Bruce R. Miller, editors, Intelligent Computer Mathematics -
13th International Conference, CICM 2020, Bertinoro, Italy, July 26-31, 2020, Proceedings,
volume 12236 of Lecture Notes in Computer Science, pages 315–323. Springer, 2020. doi:
10.1007/978-3-030-53518-6_24.

59 Josef Urban, Geoff Sutcliffe, Petr Pudlák, and Jiří Vyskočil. MaLARea SG1 – Machine
Learner for Automated Reasoning with Semantic Guidance. In IJCAR, pages 441–456, 2008.
doi:10.1007/978-3-540-71070-7_37.

60 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017.
arXiv:1706.03762.

61 Qingxiang Wang, Cezary Kaliszyk, and Josef Urban. First experiments with neural trans-
lation of informal to formal mathematics. In Florian Rabe, William M. Farmer, Grant O.
Passmore, and Abdou Youssef, editors, 11th International Conference on Intelligent Com-
puter Mathematics (CICM 2018), volume 11006 of LNCS, pages 255–270. Springer, 2018.
doi:10.1007/978-3-319-96812-4_22.

https://doi.org/10.1007/s10817-004-6245-1
https://doi.org/10.1007/s10817-006-9032-3
http://www.easychair.org/publications/paper/BliStr_The_Blind_Strategymaker
http://www.easychair.org/publications/paper/BliStr_The_Blind_Strategymaker
https://doi.org/10.29007/8n7m
https://doi.org/10.1007/978-3-030-53518-6_24
https://doi.org/10.1007/978-3-030-53518-6_24
https://doi.org/10.1007/978-3-540-71070-7_37
https://arxiv.org/abs/1706.03762
https://doi.org/10.1007/978-3-319-96812-4_22

Constructive Final Semantics of Finite Bags
Philipp Joram #

Department of Software Science, Tallinn University of Technology, Estonia

Niccolò Veltri #

Department of Software Science, Tallinn University of Technology, Estonia

Abstract
Finitely-branching and unlabelled dynamical systems are typically modelled as coalgebras for the
finite powerset functor. If states are reachable in multiple ways, coalgebras for the finite bag
functor provide a more faithful representation. The final coalgebra of this functor is employed
as a denotational domain for the evaluation of such systems. Elements of the final coalgebra are
non-wellfounded trees with finite unordered branching, representing the evolution of systems starting
from a given initial state.

This paper is dedicated to the construction of the final coalgebra of the finite bag functor
in homotopy type theory (HoTT). We first compare various equivalent definitions of finite bags
employing higher inductive types, both as sets and as groupoids (in the sense of HoTT). We then
analyze a few well-known, classical set-theoretic constructions of final coalgebras in our constructive
setting. We show that, in the case of set-based definitions of finite bags, some constructions are
intrinsically classical, in the sense that they are equivalent to some weak form of excluded middle.
Nevertheless, a type satisfying the universal property of the final coalgebra can be constructed
in HoTT employing the groupoid-based definition of finite bags. We conclude by discussing
generalizations of our constructions to the wider class of analytic functors.

2012 ACM Subject Classification Theory of computation → Type theory; Theory of computation
→ Constructive mathematics

Keywords and phrases finite bags, final coalgebra, homotopy type theory, Cubical Agda

Digital Object Identifier 10.4230/LIPIcs.ITP.2023.20

Supplementary Material Software (Agda Code): github.com/phijor/agda-cubical-multiset
archived at swh:1:snp:3c33a341583333a888a148d4a91c08b94e404482

Funding This work was supported by the Estonian Research Council grant PSG749 and the ESF
funded Estonian IT Academy research measure (project 2014-2020.4.05.19-0001).

1 Introduction

Coalgebras are functions of the form c : S → FS, where S is a set of states and F is a functor
specifying a certain class of collections of states [23, 14]. For example, FS could be lists
over S, bags (i.e. multisubsets) or subsets of S (possibly with some cardinality restrictions),
wellfounded trees with leaves or nodes in S, or probability distributions over S. The coalgebra
c describes the dynamics of a transition system or an automaton: to each state s : S, the
function c associates the collection of states c s : FS that are reachable from s in one step.
The choice of collection functor F is dictated by the specific flavor of non-determinism that is
specified by the transition relation. Does the order or multiplicity of reachable states matter?
Is the choice of a new state probabilistic? Does the transition relation additionally depend
on a set of labels, weights or actions?

The denotational semantics of a transition system c : S → FS is typically given in terms
of the final coalgebra LF of the functor F , which consists of non-wellfounded trees with
branching specified by F . When F is the list functor, each tree has a finite and ordered
collection of subtrees. If F is the finite bag functor, the order of subtrees does not matter,

© Philipp Joram and Niccolò Veltri;
licensed under Creative Commons License CC-BY 4.0

14th International Conference on Interactive Theorem Proving (ITP 2023).
Editors: Adam Naumowicz and René Thiemann; Article No. 20; pp. 20:1–20:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:philipp@cs.ioc.ee
https://orcid.org/0000-0002-0448-7907
mailto:niccolo@cs.ioc.ee
https://orcid.org/0000-0002-7230-3436
https://doi.org/10.4230/LIPIcs.ITP.2023.20
https://github.com/phijor/agda-cubical-multiset
https://archive.softwareheritage.org/swh:1:snp:3c33a341583333a888a148d4a91c08b94e404482;origin=https://github.com/phijor/agda-cubical-multiset
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Constructive Final Semantics of Finite Bags

and if F is the finite powerset functor, multiplicity of subtrees does not matter either. The
interpretation of a state s : S in LF is the possibly-infinite tree obtained by “running” the
coalgebra c with s as initial state. As such, it gives a complete description of the evolution
of the system c starting from state s.

The theory of dynamical systems as coalgebras [23, 14], and in particular the formal
description of final coalgebras [4, 2, 32], with the associated notion of bisimilarity and
behavioural equivalence of states, is traditionally developed in a set-theoretic framework
with reasoning based on classical logic. In this work, we propose to study the theory of
coalgebras in a framework based on constructive logic, more specifically in homotopy type
theory (HoTT) [26]. The use of a constructive metatheory is beneficial for the development
of formal denotational semantics of dynamical systems and programming languages, often
centered on the notions of final coalgebra and bisimilarity [27], in proof assistants based on
variants of Martin-Löf type theory, such as Agda, Coq, Idris and Lean. The specific choice
of HoTT is motivated by its expressiveness and innovative features, higher inductive types
(HITs) and the univalence principle, which are crucial ingredients for faithfully representing
a variety of collection functors F and reasoning up to equivalent presentations of F .

Specific constructions of final coalgebras for a selection of functors, performed internally
in HoTT, already exist in the literature. Ahrens et al. [3] presented a construction of M-types,
i.e. final coalgebras of polynomial functors. They show that, for a polynomial functor F , the
traditional set-theoretic construction of its M-type as the ω-limit of the chain

1 !←− F1 F (!)←−− F 21 F 2(!)←−−− F 31 F 3(!)←−−− · · · (1)

(with 1 being the unit type and ! the unique map into 1) can be ported without major
complications to the setting of HoTT. Veltri [29] examined various constructions of the final
coalgebra of the finite powerset functor, which is known to not be definable as an ω-limit [2].
Worrell proposed a set-theoretic construction as a (ω + ω)-limit [32], but Veltri showed that
this cannot be ported to the constructive setting of HoTT: Worrell’s construction defines
the final coalgebra of the finite powerset functor if and only if the lesser limited principle of
omniscience (LLPO) holds, which is a constructive taboo [6].

We extend this line of work by studying the final coalgebra of the finite bag functor. This
is an intermediate situation between finitary polynomial functors, such as the one delivering
lists, and general finitary functors, such as the one delivering finite subsets. It also serves as
a representative starting point for a constructive analysis of Joyal’s analytic functors [15]
and their final semantics. In type theory, analytic functors arise from quotient containers [1]
and encompass many datatypes with symmetries, such as finite bags, unordered pairs and
cyclic lists [34, 33].

Following the recent work of Choudhury and Fiore [8], we define and compare various
implementations of the type of finite bags in HoTT. Choudhury and Fiore give two equivalent
presentations of finite bags as HITs: as free commutative monoids and as lists modulo
swapping of adjacent entries. We add an equivalent presentation of finite bags as an analytic
functor FMSet: an element of FMSet X is a pair of a natural number n (its size) and an
equivalence class of functions typed Fin n→ X picking an element of X for each k < n. Two
functions v, w : Fin n → X belong to the same equivalence class if there merely exists an
equivalence σ : Fin n→ Fin n such that v = w ◦ σ. The type FMSet X is always a set (in the
sense of HoTT, i.e. a type with at most one identification between any two terms), since it
employs set-quotienting. Similarly, the HITs of Choudhury and Fiore are sets. Following [16],
finite bags can alternatively be defined as a polynomial functor Bag returning a groupoid (in
the sense of HoTT, i.e. a type whose equality types are sets) instead of a set. In this case,

P. Joram and N. Veltri 20:3

an element of Bag X is a pair consisting of a (Bishop-)finite type Y and a function from Y

to X. The set-based and the groupoid-based definitions of bags are appropriately related by
the set-truncation construction: ∥Bag X∥2 ≃ FMSet X.

We investigate 3 constructions of the final coalgebra of the finite bag functor:
1. Working with the set-based functor FMSet, we try to replicate the classical set-theoretic

construction as an ω-limit of (1) in our constructive setting. We show that this cannot
be directly performed in HoTT without introducing some form of classical logic, an issue
already spotted in the case of the finite powerset functor [29]. Formally, we show that
FMSet weakly preserves the ω-limit of (1), but strong preservation of this limit implies
LLPO.

2. The list functor admits a final coalgebra LList in HoTT [3] and classically an appropriate
quotient of the latter, by a relation Bisim identifying non-wellfounded trees which differ
in the order of their subtrees, delivers the final coalgebra of the finite bag functor. This
construction is also inherently classical: attempting to define a FMSet-coalgebra structure
on LList /2 Bisim, i.e. a function of type LList /2 Bisim→ FMSet(LList /2 Bisim), by directly
lifting the List-coalgebra structure of LList, implies LLPO. We point out that this issue
already appears in the category of setoids [5], before effectively forming the set-quotient
LList /2 Bisim. We were able to prove that LList /2 Bisim is the final FMSet-coalgebra only
under the assumption of the axiom of choice.

3. The groupoid-based polynomial functor Bag admits a final coalgebra LBag as the ω-limit
of (1), a result arising directly from the work of Ahrens et al. [3]. LBag is a groupoid, not
a set. One might wonder if the set-truncation ∥LBag∥2 is a good candidate for the final
FMSet-coalgebra. We show that it is a fixpoint of FMSet, but we were able to prove that
it is the final coalgebra only under the assumption of two variants of the axiom of choice.

We do not yet know whether the uses of choice in the last two constructions are also necessary.
Nevertheless, the set-truncation ∥LBag∥2 can be practically employed as denotational domain
for transition systems with a (Bishop-)finite set of states: given a coalgebra c : S → FMSet S

where S is finite, there exists a unique coalgebra morphism from S to ∥LBag∥2, and no
additional choice principle needs to be assumed in this case.

We conclude by discussing generalizations of our constructions to other analytic functors.
The material presented in the paper (apart from Section 7) has been formalized in the

Cubical Agda proof assistant, building on top of the agda/cubical library [25]. The code is
freely available at https://github.com/phijor/agda-cubical-multiset. For any result
in the paper decorated with an Identifier, the repository contains instructions on how to
find the corresponding formalization.

2 Type Theory and Cubical Agda

We work in homotopy type theory [26] and practically our formalization takes place in
Cubical Agda [30]. We recall some basic notions that are employed in our development.

Given a type A and a type family B on A, the associated dependent function type
is (x : A) → B x, written also ∀x. B x when the type A is clear from context. Implicit
arguments of dependent functions are enclosed in curly brackets. Basic inductive types
include: unit 1, empty ⊥, naturals N, finite prefixes of naturals Fin n, lists List A, dependent
pair

∑
(x : A). B x, binary sum A + B. We use standard names for their constructors. The

unique function from a type A into the unit type is ! : A → 1. Given an inductive type
T , we write elimT and recT for its dependent and non-dependent elimination principles,
respectively (we employ the same notation also for higher inductive types). The action on

ITP 2023

https://github.com/phijor/agda-cubical-multiset
README.html#Identifier

20:4 Constructive Final Semantics of Finite Bags

maps of a functor F : Type→ Type is mapF ; to avoid ambiguities, we write mapF f over the
conventional F (f). Most of our constructions are universe-polymorphic, but for the sake of
readability in the paper we use only the two lowest universe of types, Type and Type1.

Given x, y : A, their definitional equality is denoted x =df y while propositional equality
is x = y. Following “cubical terminology”, the latter is called the path type between x and y.
In Cubical Agda, the path type x = y behaves similarly to a function type I → A, where
I is a primitive interval type with endpoints i0 and i1. An element p : x = y is eliminated
by application to an interval name r : I, returning p r : A. But unlike function types, this
application can compute even when p is unknown by using the endpoints x and y: p i0
reduces to x and p i1 reduces to y. Path introduction is lambda abstraction (λi : I. t) : x = y,
but it causes the extra requirement to match the endpoints: t[i0/i] is judgementally equal to
x and t[i1/i] is judgementally equal to y. We write refl x for the constant path (i.e. proof of
reflexivity) in x = x and (•) for sequential composition of paths.

A function f : A→ B is an equivalence if it has contractible fibers, i.e. if the preimage of
any element in B under f is a singleton type. Any function underlying a type isomorphism
defines an equivalence. Writing A ≃ B for the type of equivalences between A and B,
Voevodsky’s univalence principle states that the canonical function of type A = B → A ≃ B

is an equivalence. This is a theorem in Cubical Agda. In particular, there is a function
ua : A ≃ B → A = B turning equivalences into path equalities. Univalence implies function
extensionality: pointwise equal functions are equal. We recall the first instances of the
hierarchy of homotopy levels,1 and say that a type A is:

(n = 1) a proposition, if isProp A =df (a b : A)→ a = b is inhabited,
(n = 2) a set, if isSet A =df (a b : A)→ isProp (a = b) is inhabited,
(n = 3) a groupoid, if isGroupoid A =df (a b : A)→ isSet (a = b) is inhabited.

When mentioning “sets” or “groupoids”, we always refer to the definitions above.
A higher inductive type (HIT) is like an inductive type, but its constructors can build

both its elements and its (higher) paths. HITs are primitively supported in Cubical Agda.
We recall the definition of three basic HITs: propositional truncation, set-truncation and
set-quotient.

The propositional truncation ∥A∥1 is the proposition associated to the type A, i.e. it
identifies all the elements and (higher) paths of A. It is the HIT with constructors

a : A
|a|1 : ∥A∥1

x, y : ∥A∥1
squash1 x y : x = y

We define the existential quantifier ∃(x : A). B x =df ∥
∑

(x : A). B x∥1, which records the
mere existence of an element x satisfying B.

The set-truncation ∥A∥2 is the set associated to the type A, i.e. it identifies all (higher)
paths of A. It is the HIT with constructors

a : A
|a|2 : ∥A∥2

x, y : ∥A∥2 p, q : x = y

squash2 p q : p = q

The set-quotient A /2 R of a type A by a (possibly proof-relevant) relation R : A→ A→
Type is the HIT with constructors

a : A
[a]2 : A /2 R

a, b : A r : R a b

eq/2 r : [a]2 = [b]2
x, y : A /2 R p, q : x = y

squash/2 p q : p = q

1 To stay close to the formalization, we follow Voevodsky’s [31] 0-based numbering of h-levels.

P. Joram and N. Veltri 20:5

The term [a]2 is the R-equivalence class of a, while the path constructor eq/2 states that
R-related elements have path equal equivalence classes. The higher path constructor squash/2
forces A /2 R to be a set.

Other HITs are presented in the next section, where we also take a closer look at their
elimination principles.

3 The Finite Bag Functor in Sets

The action of the finite bag functor on a type X can be encoded as a higher inductive type in
various ways, three of which are presented here. The first is the algebraic presentation of the
free commutative monoid, the second as lists modulo permutations, the third as an analytic
functor. These are all set-based definitions, in the sense that the type of finite bags is a set.
In Section 3.4 we prove these are naturally equivalent as types, therefore being equivalent as
functors. Groupoid-based definitions are discussed in Section 5.

3.1 As the Free Commutative Monoid

Given a type X, the free commutative monoid on X [8] is the HIT induced by the following
rules:

ε : FCM X
x : X

η x : FCM X
xs, ys : FCM X

xs ⊕ ys : FCM X

xs : FCM X
unit : ε⊕ xs = xs

xs, ys, zs : FCM X

assoc : xs ⊕ (ys ⊕ zs) = (xs ⊕ ys)⊕ zs
xs, ys : FCM X

comm : xs ⊕ ys = ys ⊕ xs
xs, ys : FCM X p, q : xs = ys

squashFCM p q : p = q

The constructor η embeds X into FCM X, while ε and ⊕ are the unit and multiplication
of the monoid. The path constructors express unitality of ε with respect to ⊕, associativity
and commutativity of ⊕, and the final higher path constructor forces FCM X to be a set.

In Cubical Agda, functions out of HITs like FCM X can be defined directly by pattern
matching. But it is often useful to have elimination principles at hand that give more control
on the shape of the proof obligations. For example, the non-dependent elimination principle
of FCM X states that a function of type FCM X → A is definable, provided that A is a
commutative monoid and there exists a function η∗ : X → A.

recFCM X : {A : Type} → isSet A

→ (ε∗ : A) (η∗ : X → A) ((+) : A→ A→ A)
→ (∀a. ε∗ + a = a)
→ (∀a b c. a + (b + c) = (a + b) + c)
→ (∀a b. a + b = b + a)
→ FCM X → A

FCM is a functor, with action on maps given by

mapFCM : (f : X → Y)→ FCM X → FCM Y

mapFCM f =df recFCM X squashFCM ε (η ◦ f) (⊕) unit assoc comm

ITP 2023

20:6 Constructive Final Semantics of Finite Bags

3.2 As a Quotient of Lists
Another standard definition of the type of finite bags is as lists modulo permutations. The
relation specifying the existence of a permutation between two lists can be given in multiple
ways, here we mention two possibilities.

Given xs, ys : List X, the relation Perm xs ys is generated by the rules:

Perm xs xs
Perm (xs ++ x :: y :: ys) zs
Perm (xs ++ y :: x :: ys) zs

In other words, Perm is the reflexive-transitive closure of the relation generated by pairs of
lists of the form xs ++ x :: y :: ys and xs ++ y :: x :: ys. This is a very “intensional” way of
representing permutations of lists: a proof of Perm xs ys not only records where each entry
in xs is moved to in ys, but also how it is moved there. As such, Perm xs ys is generally not
a proposition.

Another way of specifying permutations is via a relation lifting, often called a relator [19].
Given a relation R on a type X, we inductively define a relation DRelator R on List X, which
intuitively states that each occurrence of an element x in the first list is R-related to the
occurrence of an element y in the second list. The type of occurrences x ∈ xs is generated by

x : X xs : List X
x ∈ x :: xs

x y : X xs : List X m : x ∈ xs
x ∈ y :: xs

Removal xs \m : List X of an occurrence m : x ∈ xs is defined by induction on m. The
directed relation lifting of R is the relation generated by rules

DRelator R [] ys
∃(y : Y).

∑
(m : y ∈ ys). R x y × DRelator R xs (ys \m)

DRelator R (x :: xs) ys

and we take the relation lifting of R to be the symmetrization of the relation DRelator R,
i.e. Relator R xs ys =df DRelator R xs ys × DRelator R ys xs. Because of the presence of a
propositional truncation in the premise of the 2nd rule, both DRelator R and Relator R are
propositionally-valued. If R is reflexive and transitive, then Relator R is an equivalence
relation.

When R is path equality on X, the type Relator (=) xs ys expresses the mere existence
of a permutation connecting xs and ys. In fact, ∥Perm xs ys∥1 and Relator (=) xs ys are
equivalent types.

3.3 As an Analytic Functor
We additionally introduce the type of finite bags over X as an analytic functor (in the
formulation of Hasegawa [12]). For any type X, we define a type of finite multisets [20, 8]

FMSet X =df
∑

(n : N). (Fin n → X) /2 SymAct n

where SymAct n is the propositionally-valued relation

SymAct n v w =df ∃(σ : Fin n≃ Fin n). v = w ◦ σ

In other words, an element of FMSet X is a pair of a natural number n (the size of the
set) and an equivalence class of functions v : Fin n → X picking an element in X for each
index k < n. The relation SymAct n is the action of the symmetric group Fin n ≃ Fin n

on n-tuples of elements of X. We write SymAct∞ n for the non-propositionally-truncated
variant of SymAct n. We write v ∼ w instead of SymAct n v w when n is clear from context,
and analogously (Fin n→ X) /2 ∼ in place of (Fin n → X) /2 SymAct n.

P. Joram and N. Veltri 20:7

The proof of Theorem 23 employs the fact that FMSet is invariant under set-truncation.
The latter fact factors through the following lemma, stating that set-truncation distributes
over finite families of types.

▶ Lemma 1 (finChoiceEquiv). For any n : N and type family Y : Fin n→ Type, there is
an equivalence box : ((k : Fin n)→ ∥Y k∥2)≃ ∥(k : Fin n)→ Y k∥2.

Proof. We sketch a proof for a constant type family Y = (λ_. X). The dependent case
is analogous. The function underlying the equivalence is defined by induction on n. For
n = 0 we have Fin 0 ≃ ⊥, so box =df(λ_. |elim⊥|2). In the inductive step, we lift the
derivable “cons” operation (::) : X → (Fin n → X) → (Fin (1 + n) → X) to the set-
truncation. A two-sided inverse unbox : ∥Fin n→ X∥2 → Fin n → ∥X∥2 of box is given by
unbox v̄ k =df map∥_∥2

(λv. v k) v̄. ◀

The equivalence of Lemma 1 allows to define a variant of the elimination principle elim∥X∥2

taking Fin n → ∥X∥2 as input instead of ∥X∥2 (a sort of “finite choice” principle for set-
truncation):

elim∥X∥2fin : {n : N} {B : (Fin n→ ∥X∥2)→ Type}{sB : ∀v. isSet(B v)}
→ (c : (w : Fin n→ X)→ B (|_|2 ◦ w))
→ (v : Fin n→ ∥X∥2)→ B v

(2)

This comes with a (propositional) computation rule elimβ
∥X∥2fin : elim∥X∥2fin c (|_|2 ◦ v) = c v.

▶ Theorem 2 (FMSetTruncInvariance). FMSet is invariant under set-truncation: for any
type X, there is an equivalence FMSet ∥X∥2 ≃ FMSet X.

Proof. The equivalence is obtained from an isomorphism. The right-to-left function is
mapFMSet |_|2. For the left-to-right direction, we use elim∥X∥2fin in (2) to define a function
typed (Fin n → ∥X∥2) → (Fin n → X) /2 ∼ that turns set-truncation into a set-quotient,
which is enough to obtain a function typed FMSet ∥X∥2 → FMSet X. That these maps are
mutual inverses follows from elimβ

∥X∥2fin. ◀

3.4 Equivalence of Presentations
All encodings of finite multisets used in the preceding section induce equivalent functors:

▶ Proposition 3 (FMSetEquivs). For any type X, there is a sequence of equivalences

FCM X
α≃ List X /2 Perm

β
≃ List X /2 Relator (=)

γ
≃ FMSet X,

which are natural in X: for any f : X → Y , α ◦mapFCM f = mapList X /2 Relator (=) f ◦ α, and
similarly for β and γ.

Proof. Equivalence α is obtained by observing that both types form a free commutative
monoid on X, with addition (⊕) and (++) respectively. For β, note that Relator (=) is a
propositionally-valued relation, while Perm is generally not. Yet it is enough to provide
a bi-implication between the relations to conclude that the set-quotients they define are
equivalent, as mentioned in Section 3.2. Equivalence γ is obtained similarly, this time proving
that the encodings of permutations (“intensionally” via the relator and “extensional” in
terms of equivalence of types) are logically equivalent. Naturality is established directly. ◀

In the formalization, we make use of slight variations of the above types where convenient.
These mostly concern presentation of lists (e.g. bundling lengths via List A≃

∑
n:N Vec A n),

and are easily seen to be naturally equivalent.

ITP 2023

README.html#FiniteChoice.finChoiceEquiv
README.html#FMSetTruncInvariance
README.html#FMSetEquivs

20:8 Constructive Final Semantics of Finite Bags

3.5 Definable Quotients and Sorting
In the absence of the axiom of choice, it is not generally possible to define a section of the
equivalence class constructor [_]2 : A → A /2 R. A set-quotient A /2 R for which such a
section exists is called definable [20]. Spelled out, there is a representative-picking function
rep : A /2 R → A such that [rep x]2 = x for all x : A /2 R.

In the proof of Theorem 11 we employ the fact that the type of finite bags FMSet X, for
some specific choice of X, is linearly-ordered and (Fin n→ X) /2 ∼ is a definable set-quotient.
A relation (<) is a linear order when it is asymmetric, transitive, propositionally-valued
and total, in the sense that the trichotomy (x < y) + (x = y) + (y < x) holds for all
x, y : X. If X is a set with linear order (<), then lists over X can be sorted with respect
to (<) via a function sort : List X → List X essentially implementing the insertion-sort
algorithm, which allows the construction of a permutation typed Perm xs (sort xs). Sorting is
independent of the positions of each entry in the input list, therefore via recList X /2 Perm we
obtain a function sortPerm : List X /2 Perm→ List X. It is not hard to show that sortPerm is
a section of the equivalence class constructor, so List X /2 Perm is a definable quotient. Since
List X /2 Perm ≃ FMSet X, we obtain the following result.

▶ Proposition 4 (SymActDefinable). If X is a linearly-ordered set, then (Fin n→ X) /2 ∼
is a definable quotient for all n : N.

In the presence of a linear order (<) on X, we can extract from any proof that two lists
are merely related by a permutation an actual permutation witnessing this:

▶ Proposition 5 (SymActUntruncate). If X is a linearly-ordered set, then for all n : N and
v, w : Fin n → X there exists a function typed SymAct n v w → SymAct∞ n v w, i.e. the
propositional truncation in SymAct n v w can be removed.

Proof. Since FMSet X ≃ List X /2 Perm, it is enough to define for all xs ys : List X a func-
tion ∥Perm xs ys∥1 → Perm xs ys. To escape the truncation, we first implement a function
canonPerm : Perm xs ys → Perm xs ys returning a “canonical” way of permuting xs into ys.
Given σ : Perm xs ys, sorting yields a path pσ : sort xs = sort ys. Composing (along pσ) the
permutations obtained from sorting xs and (un-)sorting ys gives the desired term canonPerm σ.
Since X is a set, pσ lands in a proposition. Thus, canonPerm is weakly constant and lifts to
a function from the truncation [7, Corollary 2]. ◀

To illustrate the computational behavior of canonPerm, see BraidExample in the code.
The order (<) can be extended to a linear order on List X via the lexicographic order

Lex (<) [] (y :: ys)
x < y

Lex (<) (x :: xs) (y :: ys)
x = y Lex (<) xs ys
Lex (<) (x :: xs) (y :: ys)

and further to List X /2 Perm by defining LexPerm (<) x y=dfLex (<) (sortPerm x) (sortPerm y).

▶ Proposition 6 (linLexFMSet). If X is a linearly-ordered set, then (Fin n → X) /2 ∼ is
linearly-ordered for all n : N.

4 The Final Coalgebra in Sets

We now turn to constructing the final coalgebra of the finite bag functor, given by one of the
equivalent definitions in Section 3.

README.html#LexFMSet.SymActDefinable
README.html#LexFMSet.SymActUntruncate
README.html#LexFMSet.canonPerm
README.html#LexFMSet.BraidExample
README.html#LexFMSet.linLexFMSet

P. Joram and N. Veltri 20:9

Given a functor F : Type → Type, the types of coalgebras and coalgebra morphisms
between two coalgebras (A, a) and (B, b) are

Coalg F =df
∑

(A : Type). A→ FA

CoalgMor F (A, a) (B, b) =df
∑

(f : A→ B). b ◦ f = (mapF f) ◦ a

Coalgebras can be used to represent transition systems. For example, the coalgebra on the
right encodes the small transition system on the left:

0 **44 1

��

dd

2

c : Fin 3→ FCM(Fin 3)
c 0 =df η 1⊕ η 1
c 1 =df η 1⊕ η 2
c 2 =df ε

A coalgebra is final if there exists a unique coalgebra morphism from any other coalgebra.
This can be formalized by saying that there is a coalgebra C : Coalg F such that the type
CoalgMor F D C is contractible for any other coalgebra D. These definitions are the same of
Ahrens et al. [3], which they only consider in the case of F being a polynomial functor.

We analyze two constructions of the final coalgebra for the finite bag functor: as an
ω-limit and as a set-quotient of the final coalgebra of the List functor.

4.1 As an ω-Limit
Consider the chain in (1), for some F : Type→ Type. We formally define F n1 by recursion
on n: F 01 =df 1 and F 1+n1 =df F (F n1). Similarly we can define the iteration mapn

F !, which
we denote !nF . In HoTT, the (homotopy) limit of the chain is definable as

lim
n

(F n1) =df
∑

(x : (n : N)→ F n1). ∀n. !nF (x (1 + n)) = x n

Write LF =df limn(F n1). An element of the limit consists of an element x n : F n1, for all n : N,
and a proof that restricting x (1 + n) to F n1 via !nF is equal to x n. Writing ℓn : LF → F n1
for the n-th projection from the limit, we obtain the usual diagram:

LF

1 F1 F 21 F 31 . . .

ℓ0 ℓ1 ℓ2 ℓ3 . . .

!0
F !1

F !2
F

(3)

The limit is invariant with respect to shifting the chain by one position, i.e. there is an
equivalence shift : LF ≃ Lsh

F , where Lsh
F =df limn(F 1+n1). We use ℓn : Lsh

F → F 1+n1 also for
the n-th projection from the shifted limit. If F is set-valued, the limit LF is also a set. Notice
that for naturally equivalent and set-valued F and G, we have LF ≃ LG, since naturally
equivalent chains have equivalent limits; see chainEquivToLimitEquiv in the formalization
for details. This implies that, when proving properties of this limit for finite bags, we can
use any of the equivalent presentations in Proposition 3 as convenient.

In classical set theory, LFMSet can be proved to be the final coalgebra of FMSet. The proof
proceeds by first constructing a function presFMSet : FMSet LFMSet → Lsh

FMSet via the universal
property of the limit: take ℓn (presFMSet s) as mapFMSet ℓn s. The function presFMSet is then
proved to be an equivalence, showing that FMSet preserves the ω-limit. The composition of
shift with the inverse pres−1

FMSet provides a coalgebra structure for LFMSet. This can be proved
to be final, again using the universal property of the limit.

ITP 2023

README.html#IterLimit.chainEquivToLimitEquiv

20:10 Constructive Final Semantics of Finite Bags

Constructively, there are issues in proving that presFMSet is an equivalence. Its injectivity
is equivalent to the lesser limited principle of omniscience (LLPO) [6, Ch. 1]. The latter is
a weak version of the law of the excluded middle, and it is not provable from intuitionistic
axioms alone. It states that, given an infinite stream of Boolean values that yields true in
at most one position, one can decide whether all even or all odd positions are false. Both
injectivity of presFMSet and LLPO are propositions, so to establish an equivalence, it is
sufficient to find a bi-implication between them.

▶ Theorem 7 (InjectiveFMSetPresToLLPO). If presFMSet is injective, then LLPO holds.

Proof. In this proof we use FCM instead of FMSet. The statement of the theorem holds
since FCM X is naturally equivalent to FMSet X. It is sufficient to show that the injectivity
of presFCM implies that the following type is inhabited:

(x, y1, y2 : LFCM)→ (ys : N→ LFCM)
→ (split : ∀n. ys n = y1 + ys n = y2) (diag : ∀n. ℓn x = ℓn (ys n))
→ ∥x = y1 + x = y2∥1

(4)

This is a form of completeness of two-element subsets of the ω-limit: every converging
sequence ys consisting of elements from the subset {y1, y2} has its limit x also belonging to
the subset {y1, y2}. Mandelkern [21] has proved the equivalence of LLPO with completeness
of two-element subsets of real numbers. We adapt their proof, for details refer to either [29,
Theorem 7] or the formalization (CompleteToLLPO).

To prove completeness, assume x, y1, y2, ys, split and diag as in (4). Using split, define the
complement of ys as ys n =df y2 if ys n = y1 and ys n =df y1 if ys n = y2. The diagonal of ys
also has the limit-property, i.e.

∀n. !nFCM(ℓ1+n (ys (1 + n))) = ℓn (ys n) (5)

For this, fix n and check the four cases generated by inspecting split n and split (1+n). In one
case, (5) reduces to the limit-property of y1, in another to that of y2 and in the remaining
cases to Lemma 8 below. Call x : LFCM the element of the limit such that ℓn x =df ℓn (ys n).

Write {x, y}=df η x⊕ η y for the two-element bag comprising of x and y. For all n, we
know that {ys n, ys n} = {y1, y2} either by refl or ⊕comm, depending on split n. Using the
latter equality, the definition of presFCM and the assumption diag, we can form the following
sequence of equalities:

ℓn (presFCM{x, x}) = {ℓn x, ℓn x} = {ℓn (ys n), ℓn (ys n)}
= ℓn (presFCM{ys n, ys n}) = ℓn (presFCM{y1, y2})

which implies presFCM{x, x} = presFCM{y1, y2}. From the injectivity of presFCM it follows that
{x, x} = {y1, y2}, which also implies that (merely) x = y1 or x = y2. ◀

The above depends on a property of sequences in LF that are “approximated” by some x : LF :

▶ Lemma 8 (LimitAlternationLemma). For any functor F where x : LF and ys : N→ LF

such that P : ∀n. ℓn x = ℓn ysn, we have ∀n. !nF (ℓn+1 ysn) = ℓn ysn+1.

Proof. By alternating application of the limit property and assumption P , we obtain

!nF (ℓn+1 ysn) = ℓn ysn
Pn= ℓn x = !nF (ℓn+1 x) Pn+1= !nF (ℓn+1 ysn+1) = ℓn ysn+1 ◀

README.html#InjectiveFMSetPresToLLPO
README.html#CompleteToLLPO
README.html#LimitAlternationLemma

P. Joram and N. Veltri 20:11

▶ Theorem 9 (LLPOToInjectiveFMSetPres). LLPO implies the injectivity of presFMSet.

For the proof of Theorem 9, which employs the functor List(−) /2 Relator (=) instead of
FMSet, we refer the reader to our Agda formalization. The proof is similar to the one of a
related result [29, Theorem 9]: the injectivity of presPfin : Pfin LPfin → Lsh

Pfin, where Pfin is the
finite powerset functor, is derivable from LLPO and the axiom of countable choice. It turns
out that countable choice is not needed, neither in Theorem 9 nor in Theorem 9 of [29].

Nevertheless, we are able to salvage the fact that presFMSet has a section/right-inverse
which targets the shifted limit. This implies that FMSet weakly preserves the ω-limit LFMSet,
but strong limit-preservation is equivalent to LLPO.

▶ Lemma 10 (linLexIterFMSet). For all n, FMSetn 1 is linearly-ordered.

Proof. Define (<n) : FMSetn 1 → FMSetn 1 → Type by induction on n: (<0) is the empty
relation and x <1+n y =df LexPerm (<n) x y. Since the empty relation is linear, Proposition 6
implies that the order (<n) is linear for all n : N. ◀

▶ Theorem 11 (FMSetPresSection). The function presFMSet has a section.

Proof. Let s : Lsh
FMSet, we build an element t : FMSet LFMSet in the fiber of presFMSet over s.

The size (i.e. the 1st projection) of the bags ℓn s is the same for all n, call it n∗. We set the
size of t to be n∗. Given an index k : Fin n∗, we now search for an element u k : LFMSet for
defining t =df (n∗, u).

For each d : N, we know that ℓd+1 s is path equal to a pair of the form (n∗, vd). In order
to construct u we need access to a representative of the equivalence class vd : (Fin n∗ →
FMSetd 1) /2 ∼ for each d. We know that this can be done using Lemma 10 and Proposition 4.
Let wd : Fin n∗ → FMSetd 1 be the canonical representative of vd. The limit-property of
s can be translated to the mere existence of a permutation σd : Fin n∗ ≃ Fin n∗ such that
p : !dFMSet(w1+d k) = wd (σd k), for all d : N and k : Fin n∗. The construction of u also requires
access to each permutation σd, which sits inside a propositional truncation for each d. We
can access all these permutations by invoking Lemma 10 and Proposition 5.

We now have all the ingredients for building u. Define a permutation σ∗
d : Fin n∗ ≃ Fin n∗

by induction on d: σ∗
0 =df id, σ∗

1+d=df σ
−1
d ◦σ∗

d. Then take u such that ℓd (u k)=df wd (σ∗
d k). One

can show that u k : LFMSet for all k : Fin n∗ since !dFMSet(wd+1(σ∗
d+1 k)) p= wd(σd(σ∗

d+1 k)) =
wd(σd(σ−1

d (σ∗
d k))) = wd(σ∗

d k), and that t is indeed in the fiber of presFMSet over s. ◀

By Lambek’s theorem, every final coalgebra is necessarily an equivalence. Assuming LLPO
we have FMSet LFMSet ≃ LFMSet, and proving that the coalgebra underlying this equivalence
is final in the category of sets is straightforward using the universal property of the limit.

4.2 As a Quotient of the Final List-Coalgebra

Instead of considering a type of unordered trees quotiented at each step of the construction,
we investigate whether it is possible to define a final FMSet-coalgebra by quotienting the type
of ordered trees by some suitable relation. It is known that the limit LList =df limn(Listn 1) is
the final coalgebra of the list functor in HoTT [3]. The limit LList is a type of non-wellfounded
ordered trees, and we denote by coalgList its coalgebra structure. By choosing a suitable
relation R, one can hope to obtain a type of unordered trees LList /2 R endowed with a FMSet-
coalgebra structure. We choose R to be a notion of bisimilarity Bisim, obtained iteratively

ITP 2023

README.html#LLPOToInjectiveFMSetPres
README.html#linLexIterFMSet
README.html#FMSetPresSection

20:12 Constructive Final Semantics of Finite Bags

from the relation lifting Relator applied to finite approximations of trees in LList [13]:

Approxn : Listn 1→ Listn 1→ Type
Approx0 x y =df 1
Approx1+n x y =df Relator (Approxn) x y.

From the fact that (∀x, y. R x y → S x y) implies ∀xs, ys. Relator R xs ys → Relator S xs ys,
we obtain, for s, t : LList, a chain of propositions

Approx0(ℓ0 s) (ℓ0 t)←− Approx1(ℓ1 s) (ℓ1 t)←− Approx2(ℓ2 s) (ℓ2 t)←− · · · (6)

The desired relation Bisim s t is the limit of the chain in (6).
To find a coalgebra structure on LList /2 Bisim, we investigate whether coalgList lifts to a

coalgebra of setoids (LList, Bisim)→ (List LList, Relator Bisim) and if so, whether this induces a
(final) coalgebra on the quotient. For this, one needs to show that it is a setoid-morphism,
i.e. for s, t : LList, if Bisim s t then Relator Bisim (coalgList s) (coalgList t). Once again, the same
issue we found when trying to prove the injectivity of presFMSet in Section 4.1 arises:

▶ Theorem 12 (isSetoidMorphismCoalgListToLLPO). If coalgList is a setoid-morphism,
then LLPO holds.

The proof is similar to that of Theorem 7. Similarly to Theorem 9, the converse is also
true. Nevertheless, the inverse of coalgList is always a setoid-morphism. Therefore coalgList
is an equivalence of setoids whenever it is a setoid-morphism, i.e. LLPO holds. Under this
assumption alone it is the final coalgebra of an endofunctor in the category of setoids:

▶ Theorem 13 (finalFMSetoidCoalgebra). Assuming coalgList is a setoid-morphism, the
setoid (LList, Bisim) has a coalgebra structure for the functor (X, R) 7→ (List X, Relator R),
which is final in the category of setoids.

Promisingly, we can show that the resulting quotient is a fixpoint for FMSet, and in
particular a coalgebra (of sets):

▶ Theorem 14 (FMSetFixpointTree/Bisim). If coalgList is a setoid-morphism, it lifts to an
equivalence coalgFMSet : LList /2 Bisim ≃−→ FMSet(LList /2 Bisim).

Proof. For the proof, we employ the equivalent functor List(−) /2 Relator (=) instead of FMSet.
The assumption implies that coalgList lifts to a function LList /2 Bisim→ FMSet(LList /2 Bisim),
definable by recursion on the set-quotient. An inverse FMSet(LList /2 Bisim)→ LList /2 Bisim
is definable since coalg−1

List is always a setoid-morphism and List X /2 Relator R is an effective
quotient for any setoid (X, R). ◀

However, like in case of the finite powerset, this fixpoint is not obviously the final
FMSet-coalgebra. We were able to prove this assuming the axiom of choice:

▶ Theorem 15 (FinalFMSetCoalgebra). Assuming the axiom of choice, the fixpoint of
Theorem 14 is the final FMSet-coalgebra in the category of sets.

Proof. Define abbreviations U =df LList /2 Bisim and R=df Relator (=), and use the presentation
of FMSet used in the proof of Theorem 14. To build a coalgebra morphism uc : C → U from
a given coalgebra c : C → FMSet C to coalgFMSet : U → FMSet U , one defines a function
u′ : (C → List C) /2 R∗ → (C → U). Here, R∗ is the pointwise lifting of R, and u′ is obtained
by recursion from the unique List-coalgebra morphism typed C → LList. The axiom of choice
implies that the canonical map (C → List /2 R) → (C → List C) /2 R∗ has a section θ for
arbitrary C. This is sufficient to prove that uc =df u′(θ(c)) is the unique FMSet-coalgebra
morphism from (C, c) to (LList /2 Bisim, coalgFMSet). ◀

README.html#Setoid.isSetoidMorphismCoalgListToLLPO
README.html#Setoid.finalFMSetoidCoalgebra
README.html#Setoid.FMSetFixpointTree/Bisim
README.html#Setoid.FinalFMSetCoalgebra

P. Joram and N. Veltri 20:13

5 The Finite Bag Functor in Groupoids

The results of Section 4 are evidence that the set-based definitions of finite bags from Section 3
are not fit for a fully constructive construction of the final coalgebra. In this section we study
a groupoid-based definition and, following the ideas of Kock [16] and Finster et al. [10], argue
that the correct perspective on finite bags in HoTT is to define them as groupoids instead
of sets, particularly for the goal of final semantics. The rationale is that identifications of
bags are permutations, and these should inherently be treated as data. Instead of viewing
bags as quotients of lists, thereby “forgetting” about the permutations, we define a type
of lists with “more identifications”. Since all constructions based on this type have to be
homotopy coherent, they will automatically respect the extra data, making them invariant
under permutation for free. We define two equivalent type families Tote and Bag of finite bags
valued in groupoids, and substantiate the previous claims by showing that the set-truncation
of the former is equivalent to FMSet (Theorem 17), and constructing the final coalgebra of
the latter in a straightforward way (Theorem 21 and Corollary 22).

First, recall one way of defining finite sets in HoTT [11]. A type B is called (Bishop-)finite
if isFinSet B =df

∑
(n : N). ∥B ≃ Fin n∥1 holds, and we denote the collection of such types by

FinSet =df
∑

(B : Type). isFinSet B. The underlying type of a FinSet is accessed via the first
projection ⟨−⟩ : FinSet→ Type.

The type isFinSet B is a proposition and any type B satisfying the predicate is a set. It
follows that FinSet forms a groupoid. Note that FinSet is a large type, i.e. FinSet : Type1.
From this, we can define a “tote” (in the sense of a “large bag”) Tote : Type→ Type1 as

Tote X =df
∑

(B : FinSet). ⟨B⟩ → X,

Elements of Tote X are pairs consisting of a finite set B and a function from (the type
underlying) B to X which picks the elements in the tote. Univalence implies that the path
type (B, v) = (C, w) in Tote X is equivalent to the type of dependent pairs consisting of an
equivalence σ : ⟨B⟩ ≃ ⟨C⟩ and a path v = w ◦ σ. This indicates that Tote X is not a set, in
general it is at least a groupoid.

▶ Proposition 16 (isGroupoidTote). If X is a groupoid, then Tote X is a groupoid.

Proof. Since X is a groupoid, the function type ⟨B⟩ → X is a groupoid for any B : FinSet.
The type FinSet is also a groupoid, so the entire Σ-type is a groupoid. ◀

Similar to how FMSet X is the free commutative monoid on X, Tote X can be proved
equivalent to the free symmetric monoidal groupoid on X [22, Corollary 5.103], which serves
as an alternative proof of MacLane’s coherence for symmetric monoidal categories. It differs
from FMSet X in that path equality in the former records the permutations between the
(finite sets representing) sizes of the bags, while the second only cares about the mere
existence of a permutation. Nonetheless, the two definitions become equivalent when we
set-truncate the type of totes.

▶ Theorem 17 (FMSetToteTruncEquiv, isNatural-FMSetToteTruncEquiv). For any type
X, ∥Tote X∥2 ≃ FMSet X. The equivalence is natural in X.

Proof. The proof proceeds by constructing an isomorphism FMSet X ∼= ∥Tote X∥2.
A function toTote : FMSet X → ∥Tote X∥2 is defined by first giving a function f :

∀{n}. (Fin n → X) → ∥Tote X∥2 and then showing that it respects (∼). Take f(v) =df
|(Fin n, v)|2, since Fin n is a finite set. To prove that v ∼ w implies f(v) = f(w), note that

ITP 2023

README.html#isGroupoidTote
README.html#FMSetToteTruncEquiv
README.html#isNatural-FMSetToteTruncEquiv

20:14 Constructive Final Semantics of Finite Bags

the conclusion is a proposition, thus by invoking the recursion principle of propositional
truncation we can assume given a permutation σ such that r : v = w ◦ σ. By univalence,
ua σ : Fin n = Fin n, and transporting r along this path yields p : (Fin n, v) = (Fin n, w). Then
cong |_|2 p : f(v) = f(w) as desired.

A function toFMSet : ∥Tote X∥2 → FMSet X is defined via rec∥Tote X∥2
, so it is enough to

provide g : Tote X → FMSet X. Assume given a finite set B of size n with e : ∥B ≃ Fin n∥1
and v : B → X. We would like to return something in (Fin n → X) /2∼ by recursion
on e, but this cannot work since the return type is a set. We can however employ a
different recursion principle of propositional truncation [7, Corollary 2], which allows to
define a function into a set provided that it is (weakly) constant (in the sense of [17]).
Define g′ : (B ≃ Fin n) → (Fin n → X) /2∼ as g′ α =df [v ◦ α]2, which can be proved to be
constant and therefore well-defined. We can then take g ((B, n, e), v) =df (n, g′ e). Proving
toFMSet ◦ toTote = id is straightforward. Proving toTote ◦ toFMSet = id reduces to showing
that v ◦ α ∼ v for any v : B → X and α : Fin n≃B, which is also direct. ◀

Before studying LTote, notice that the iteration Toten 1 is not well-typed as Tote targets a
large universe. We could in principle define Tote′ : Type1 → Type1 which does not raise the
universe level by first lifting the unit type 1 to the universe Type1. The resulting limit would
be a large groupoid in LTote′ : Type1. Instead, we define an equivalent small variant of Tote
with the help of HITs.

Following [10], we first introduce an equivalent but small definition Bij of the type of
finite sets FinSet. This is equivalent to the groupoid-quotient [24, 28] of the (categorical)
groupoid with objects given by natural numbers and morphisms between n and m given by
equivalences in Fin m≃ Fin n. It is possible to prove that hom also preserves identities and
inverses.

n : N
obj n : Bij

m, n : N α : Fin m≃ Fin n

hom α : obj m = obj n

m, n, o : N α : Fin m≃ Fin n β : Fin n≃ Fin o

hom (β ◦ α) = hom α • hom β isGroupoid Bij

▶ Proposition 18 (BinFinSetEquiv). There is an equivalence Bij ≃ FinSet. In particular,
one can extract a type ⟨x⟩ : Type from each x : Bij.

A small type of finite bags is defined by replacing FinSet with Bij.

Bag X =df
∑

(x : Bij). ⟨x⟩ → X

▶ Proposition 19 (BagToteEquiv). For any type X, the equivalence of Proposition 18 extends
to an equivalence Bag X ≃ Tote X natural in X.

Combining the above with Theorem 17 yields the follows convenient characterization:

▶ Corollary 20 (TruncBagFMSetEquiv). For any X, ∥Bag X∥2 ≃ FMSet X naturally in X.

6 The Final Coalgebra in Groupoids

When defined this way, it is immediate that Bag is the polynomial functor associated to
the container (Bij, ⟨_⟩) in the sense of [3, Definition 2]. Crucially, [3, Theorem 7] proves
that for such functors, the ω-limit is the carrier of the final coalgebra; independently of the
homotopy level of the container it is associated to. Therefore LBag carries the structure of a
final Bag-coalgebra, even though Bij is not a set:

README.html#BinFinSetEquiv
README.html#BagToteEquiv
README.html#TruncBagFMSetEquiv

P. Joram and N. Veltri 20:15

▶ Theorem 21 (isLimitPreservingBag). The map presBag : Bag LBag → Lsh
Bag is an equiva-

lence of groupoids.

▶ Corollary 22 ([3, Theorem 7]). pres−1
Bag ◦ shift : LBag → Bag LBag is the final Bag-coalgebra.

We refer to the formalization of [3] for a proof of Corollary 22.
Iterated application of Corollary 20 and Theorem 2 shows that ∥Bagn 1∥2 is equivalent

to FMSetn 1 for all n (IterTruncBagFMSetEquiv). One might wonder whether similarly the
set-truncation of LBag delivers the final coalgebra of FMSet. We are able to show that ∥LBag∥2
is a fixpoint of FMSet. But to prove finality, we require the additional assumption of the
axiom of choice and a “higher” version AC3,2 of the axiom of choice [26, Exercise 7.8],2 which
states that for a set X and a groupoid-valued type family Y on X, the following type is
inhabited: ((x : X)→ ∥Y x∥2)→ ∥(x : X)→ Y x∥2.

▶ Theorem 23 (FMSetFixpointTruncBagLim). The set-truncation of LBag is a fixpoint of
FMSet, i.e. there is an equivalence FMSet ∥LBag∥2 ≃ ∥LBag∥2.

Proof. The equivalence is obtained from the composition

FMSet ∥LBag∥2
α≃ FMSet LBag

β
≃ ∥Bag LBag∥2

γ
≃ ∥LBag∥2

where α is invariance of FMSet under set-truncation (Theorem 2), β follows from Corollary 20,
and γ follows from Theorem 21. ◀

Let coalgFMSet be the coalgebra underlying the equivalence of Theorem 23.

▶ Theorem 24 (FMSetFinalCoalgebra). Assuming axiom of choice and AC3,2, ∥LBag∥2 is
the final coalgebra of FMSet in the category of sets.

Proof. Let c : X → FMSet X be a coalgebra, which by Corollary 20 is equivalent to
having a function c′ : X → ∥Bag X∥2. Applying AC3,2 on c′ gives c′′ : ∥X → Bag X∥2.
Invoking rec∥X→Bag X∥2

on c′′, we receive g : X → Bag X. From the finality of LBag in
Corollary 22, there exists a unique Bag-coalgebra morphism f∗ : X → LBag and we define
f x =df |f∗ x|2. The function f is the desired unique FMSet-coalgebra morphism between
(X, c) and (∥LBag∥2, coalgFMSet). The proof of uniqueness uses an application of the axiom of
choice. We refer to the formalization for details. ◀

In the absence of the axiom of choice and AC3,2, the type ∥LBag∥2 can still be used to give
semantics to transition systems with finite set of states.

▶ Proposition 25 (uniqueCoalgMorphismFinCarrier). Given any n : N and a coalge-
bra c : Fin n→ FMSet(Fin n), there exists a unique coalgebra morphism from (Fin n, c) to
(∥LBag∥2, coalgFMSet).

This is true since AC3,2 holds when X is equivalent to Fin n, it follows from the “finite choice”
principle in Lemma 1. The particular instance of the axiom of choice used in the proof of
Theorem 24 also holds when X ≃ Fin n.

2 We use 0-based indexing of h-levels, while [26] uses −2-based indexing, so our AC3,2 is their AC1,0.

ITP 2023

README.html#isLimitPreservingBag
README.html#IterTruncBagFMSetEquiv
README.html#FMSetFixpointTruncBagLim
README.html#FMSetFinalCoalgebra
README.html#uniqueCoalgMorphismFinCarrier

20:16 Constructive Final Semantics of Finite Bags

7 Other Analytic Functors

The formulation FMSet of the finite bag functor exposes this as an analytic functor [15, 12],
which differs from a polynomial functor in that the type of tuples Fin n→ X is quotiented by
the relation induced by the action of the symmetric group on Fin n. Other analytic functors
arise by choosing a different subgroup of the symmetric group. For example, picking the
subgroup of cyclic permutations delivers the functor of cyclic lists, while taking the trivial
subgroup allows us to recover the list functor.

In type theory analytic functors can be seen as instances of the functors associated to the
quotient containers of Abbott et al. [1]. A quotient container is a triple consisting of a type
A, a family B : A→ Type and a propositionally-valued family P : ∀{a}. B a ≃ B a→ Type
closed under identity, inverses and composition of equivalences. The associated functor is:

FA,B,P X =df
∑

(a : A). (B a→ X) /2 Act P a

where the relation Act P a is

Act P a v w =df ∃(σ : B a≃B a). P σ × (v = w ◦ σ)

The type FA,B,P X is a set whenever the type of shapes A is a set. The functor FMSet
corresponds to the instance where A =df N, B =df Fin and P σ =df 1.

We know that the construction of the final coalgebra as an ω-limit in the category of
sets for a general analytic functor FA,B,P is constructively problematic, since it is already
problematic for FMSet. Nevertheless, one can ask if a result like Theorem 11 is valid for
any FA,B,P . We do not know how to generally define a section for the function presF :
FA,B,P (limn(Fn

A,B,P 1)) → limn(F1+n
A,B,P 1). But we believe the surjectivity of presF to be

provable under the assumption of the axiom of countable choice. The proof of Theorem 11
relies on Propositions 4 and 5, which are very specific properties of the finite bag functor.
The employment of these propositions can be seen as the invocation of two specific instances
of the axiom of countable choice, which happen to hold in the case of FMSet.

Each quotient container (A, B, P) also specifies a polynomial functor GA,B,P valued in
groupoids, akin to the functor Bag. First, the small HIT construction of the groupoid of
finite types Bij can be generalized:

a : A
obj a : UA,B,P

a : A α : Ba≃Ba p : P α

hom α p : obj a = obj a

a : N α, β : B a≃B a p : P α q : P β

hom (β ◦ α) (Pcomp p q) = hom α p • hom β q isGroupoid UA,B,P

Above Pcomp is the closure of P with respect to composition of equivalences. It is possible
to prove that hom also preserves identities and inverses. When B is valued in sets, there is a
function ⟨−⟩ : UA,B,P → Type extracting a set, so that ⟨obj a⟩=df B a. The functor GA,B,P is

GA,B,P X =df
∑

(x : UA,B,P). ⟨x⟩ → X

Since GA,B,P is a polynomial functor, its final coalgebra can be constructed as an ω-limit,
as in Theorem 21 and Corollary 22. We conjecture that the latter can be related to
FA,B,P similarly to how Bag and FMSet are related via Corollary 20: if B is injective, then
∥GA,B,P X∥2 ≃ FA,B,P X. Notice that Fin is an injective type family, which the proof of
Bij ≃ FinSet (Proposition 18) crucially depends on.

P. Joram and N. Veltri 20:17

8 Conclusions

We looked at various definitions of the finite bag functor, valued in sets and in groupoids,
and constructions of their final coalgebras. When working with set-based definitions, the
set-theoretic constructions as ω-limit of the terminal chain in (3) and as quotient of the final
List-coalgebra are not directly replicable in HoTT, since they imply the validity of classical
principles like LLPO. We are at least able to salvage the weak preservation of the ω-limit.
The situation is brighter when working with the groupoid-based definition. The latter is a
polynomial functor, thus has the final coalgebra given by the ω-limit of the terminal chain.

Our conclusion is in line with the one of Kock [16] and Finster et al. [10]: the bag functor
is better behaved when valued in groupoids instead of sets, especially from the perspective of
final semantics. This seems to indicate that the denotational semantics of “resource-sensitive”
computations is better performed using groupoids instead of sets (switching from categorical
to bicategorical semantics). In particular, the syntax of process calculi such as CCS, or term
calculi for linear logic, could be defined directly as a groupoid, i.e. structural congruences
could be treated as data instead of property. We plan to properly investigate this connection
to programming language semantics in future work, along the lines of [9]. For this endeavor,
it will also be necessary to study the final coalgebra of combinations of the bag functor with
other functors e.g. formalizing the presence of labels or actions in the transition relation.

Cubical Agda allows the definition of coinductive types with HITs appearing in the
codomain of destructors. For example, it is possible to define the following coinductive
record:

record cLim -FCM : Type where
coinductive
field

unfold : FCM cLim -FCM

It is moreover possible to prove that this type is the final coalgebra of the set-based finite bag
functor. The proof is similar to the one given for the finite powerset functor [29, Theorem
2]. Definitions such as cLim-FCM are an experimental feature of Cubical Agda, since the
interaction of coinductive types and HITs has not yet been investigated (only for some M-
types [30], which are definable internally in HoTT anyway). We believe that such definitions
could be motivated by looking at recent work by Kristensen et al. [18], which seems to
indicate that the final coalgebra of functors with action on objects given as a HIT, such as
FCM, should be definable as the strict ω-limit of the chain in (3) in the cubical set model.
Strictness means that the limit-property holds on the nose, not only up-to path equality.

References

1 Michael Abbott, Thorsten Altenkirch, Neil Ghani, and Conor McBride. Constructing poly-
morphic programs with quotient types. In Dexter Kozen and Carron Shankland, editors, Proc.
of 7th Int. Conf. on Mathematics of Program Construction, MPC’04, volume 3125 of LNCS,
pages 2–15. Springer, 2004. doi:10.1007/978-3-540-27764-4_2.

2 Jirí Adámek and Václav Koubek. On the greatest fixed point of a set functor. Theoretical
Computer Science, 150(1):57–75, 1995. doi:10.1016/0304-3975(95)00011-K.

3 Benedikt Ahrens, Paolo Capriotti, and Régis Spadotti. Non-wellfounded trees in Homotopy
Type Theory. In Thorsten Altenkirch, editor, Proc. of 13th Int. Conf. on Typed Lambda
Calculi and Applications, TLCA’15, volume 38 of LIPIcs, pages 17–30. Schloss Dagstuhl, 2015.
doi:10.4230/LIPICS.TLCA.2015.17.

ITP 2023

https://doi.org/10.1007/978-3-540-27764-4_2
https://doi.org/10.1016/0304-3975(95)00011-K
https://doi.org/10.4230/LIPICS.TLCA.2015.17

20:18 Constructive Final Semantics of Finite Bags

4 Michael Barr. Terminal coalgebras in well-founded set theory. Theoretical Computer Science,
114(2):299–315, 1993. doi:10.1016/0304-3975(93)90076-6.

5 Gilles Barthe, Venanzio Capretta, and Olivier Pons. Setoids in type theory. Journal of
Functional Programming, 13(2):261–293, 2003. doi:10.1017/S0956796802004501.

6 Douglas Bridges and Fred Richman. Varieties of Constructive Mathematics. Cambridge
University Press, 1987. doi:10.1017/cbo9780511565663.

7 Paolo Capriotti, Nicolai Kraus, and Andrea Vezzosi. Functions out of higher truncations.
In Stephan Kreutzer, editor, Proc. of 24th EACSL Ann. Conf. on Computer Science Logic,
CSL’15, volume 41 of Leibniz International Proceedings in Informatics, pages 359–373. Schloss
Dagstuhl, 2015. doi:10.4230/LIPICS.CSL.2015.359.

8 Vikraman Choudhury and Marcelo Fiore. Free commutative monoids in homotopy type
theory. In Proc. of 38th Conf. on Mathematical Foundations of Programming Semantics
(MFPS XXXVIII), volume 1. Centre pour la Communication Scientifique Directe (CCSD),
2023. doi:10.46298/entics.10492.

9 Vikraman Choudhury, Jacek Karwowski, and Amr Sabry. Symmetries in reversible program-
ming: from symmetric rig groupoids to reversible programming languages. Proc. of the ACM
on Programming Languages, 6(POPL):1–32, 2022. doi:10.1145/3498667.

10 Eric Finster, Samuel Mimram, Maxime Lucas, and Thomas Seiller. A cartesian bicategory of
polynomial functors in homotopy type theory. In Ana Sokolova, editor, Proc. of 37th Conf.
on Mathematical Foundations of Programming Semantics, MFPS’21, volume 351 of EPTCS,
pages 67–83, 2021. doi:10.4204/EPTCS.351.5.

11 Dan Frumin, Herman Geuvers, Léon Gondelman, and Niels van der Weide. Finite sets in
homotopy type theory. In June Andronick and Amy P. Felty, editors, Proc. of 7th ACM
SIGPLAN Int. Conf. on Certified Programs and Proofs, CPP’18, pages 201–214. ACM, 2018.
doi:10.1145/3167085.

12 Ryu Hasegawa. Two applications of analytic functors. Theoretical Computer Science, 272(1-
2):113–175, 2002. doi:10.1016/S0304-3975(00)00349-2.

13 Ichiro Hasuo, Kenta Cho, Toshiki Kataoka, and Bart Jacobs. Coinductive predicates and final
sequences in a fibration. In Dexter Kozen and Michael W. Mislove, editors, Proc. of the 29th
Conf. on the Mathematical Foundations of Programming Semantics, MFPS’13, volume 298 of
ENTCS, pages 197–214. Elsevier, 2013. doi:10.1016/j.entcs.2013.09.014.

14 Bart Jacobs. Introduction to Coalgebra: Towards Mathematics of States and Observation,
volume 59 of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,
2016. doi:10.1017/CBO9781316823187.

15 André Joyal. Foncteurs analytiques et espèces de structures. In Combinatoire énumérative,
pages 126–159. Springer Berlin Heidelberg, 1986. doi:10.1007/bfb0072514.

16 Joachim Kock. Data Types with Symmetries and Polynomial Functors over Groupoids. In
Ulrich Berger and Michael Mislove, editors, Proc. of 28th Conf. on Mathematical Foundations
of Programming Semantics, MFPS’12, volume 286 of ENTCS, pages 351–365. Elsevier, 2012.
doi:10.1016/j.entcs.2013.01.001.

17 Nicolai Kraus, Martín Escardó, Thierry Coquand, and Thorsten Altenkirch. Notions of
Anonymous Existence in Martin-Löf Type Theory. Logical Methods in Computer Science,
13(1), 2017. doi:10.23638/LMCS-13(1:15)2017.

18 Magnus Baunsgaard Kristensen, Rasmus Ejlers Møgelberg, and Andrea Vezzosi. Greatest
HITs: Higher inductive types in coinductive definitions via induction under clocks. In Christel
Baier and Dana Fisman, editors, Proc. of 37th Ann. ACM/IEEE Symp. on Logic in Computer
Science, LICS’22, pages 42:1–42:13. ACM, 2022. doi:10.1145/3531130.3533359.

19 Paul Blain Levy. Similarity quotients as final coalgebras. In Martin Hofmann, editor, Proc. of
14th Int. Conf on Foundations of Software Science and Computational Structures, FoSSaCS’11,
volume 6604 of LNCS, pages 27–41. Springer, 2011. doi:10.1007/978-3-642-19805-2_3.

20 Nuo Li. Quotient types in type theory. PhD thesis, University of Nottingham, UK, 2015. URL:
http://eprints.nottingham.ac.uk/28941/.

https://doi.org/10.1016/0304-3975(93)90076-6
https://doi.org/10.1017/S0956796802004501
https://doi.org/10.1017/cbo9780511565663
https://doi.org/10.4230/LIPICS.CSL.2015.359
https://doi.org/10.46298/entics.10492
https://doi.org/10.1145/3498667
https://doi.org/10.4204/EPTCS.351.5
https://doi.org/10.1145/3167085
https://doi.org/10.1016/S0304-3975(00)00349-2
https://doi.org/10.1016/j.entcs.2013.09.014
https://doi.org/10.1017/CBO9781316823187
https://doi.org/10.1007/bfb0072514
https://doi.org/10.1016/j.entcs.2013.01.001
https://doi.org/10.23638/LMCS-13(1:15)2017
https://doi.org/10.1145/3531130.3533359
https://doi.org/10.1007/978-3-642-19805-2_3
http://eprints.nottingham.ac.uk/28941/

P. Joram and N. Veltri 20:19

21 Mark Mandelkern. Constructively complete finite sets. Zeitschrift für Mathematische Logik
und Grundlagen der Mathematik, 34(2):97–103, 1988. doi:10.1002/malq.19880340202.

22 Stefano Piceghello. Coherence for Monoidal and Symmetric Monoidal Groupoids in Homotopy
Type Theory. PhD thesis, University of Bergen, Norway, 2021. URL: https://hdl.handle.
net/11250/2830640.

23 Jan J. M. M. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer Science,
249(1):3–80, 2000. doi:10.1016/S0304-3975(00)00056-6.

24 Kristina Sojakova. Higher Inductive Types as Homotopy-Initial Algebras. PhD thesis, Carnegie
Mellon University, USA, 2016. URL: http://reports-archive.adm.cs.cmu.edu/anon/anon/
usr0/ftp/home/ftp/2016/CMU-CS-16-125.pdf.

25 The agda/cubical development team. The agda/cubical library, 2018. URL: https://
github.com/agda/cubical/.

26 The Univalent Foundations Program. Homotopy type theory: Univalent foundations of
mathematics. https://homotopytypetheory.org/book, Institute for Advanced Study, 2013.

27 Daniele Turi and Gordon D. Plotkin. Towards a mathematical operational semantics. In
Proc. of 12th Ann. IEEE Symp. on Logic in Computer Science, LICS’97, pages 280–291. IEEE
Computer Society, 1997. doi:10.1109/LICS.1997.614955.

28 Niccolò Veltri and Niels van der Weide. Constructing higher inductive types as groupoid
quotients. Logical Methods in Computer Science, 17(2), 2021. doi:10.23638/LMCS-17(2:
8)2021.

29 Niccolò Veltri. Type-theoretic constructions of the final coalgebra of the finite powerset functor.
In Naoki Kobayashi, editor, Proc. of 6th Int. Conf. on Formal Structures for Computation
and Deduction, FSCD’21, volume 195 of LIPIcs, pages 22:1–22:18. Schloss Dagstuhl, 2021.
doi:10.4230/LIPICS.FSCD.2021.22.

30 Andrea Vezzosi, Anders Mörtberg, and Andreas Abel. Cubical Agda: A dependently typed
programming language with univalence and higher inductive types. Proc. of the ACM on
Programming Languages, 3(ICFP):1–29, 2019. doi:10.1145/3341691.

31 Vladimir Voevodsky. An experimental library of formalized mathematics based on the
univalent foundations. Mathematical Structures in Computer Science, 25(5):1278–1294, 2015.
doi:10.1017/s0960129514000577.

32 James Worrell. On the final sequence of a finitary set functor. Theoretical Computer Science,
338(1-3):184–199, 2005. doi:10.1016/j.tcs.2004.12.009.

33 Brent Yorgey. Combinatorial Species and Labelled Structures. PhD thesis, University of
Pennsylvania, 2014. URL: http://ozark.hendrix.edu/~yorgey/pub/thesis.pdf.

34 Brent A. Yorgey. Species and functors and types, oh my! In Jeremy Gibbons, editor, Proc. of
3rd ACM Symp. on Haskell, Haskell’10, pages 147–158. ACM, 2010. doi:10.1145/1863523.
1863542.

ITP 2023

https://doi.org/10.1002/malq.19880340202
https://hdl.handle.net/11250/2830640
https://hdl.handle.net/11250/2830640
https://doi.org/10.1016/S0304-3975(00)00056-6
http://reports-archive.adm.cs.cmu.edu/anon/anon/usr0/ftp/home/ftp/2016/CMU-CS-16-125.pdf
http://reports-archive.adm.cs.cmu.edu/anon/anon/usr0/ftp/home/ftp/2016/CMU-CS-16-125.pdf
https://github.com/agda/cubical/
https://github.com/agda/cubical/
https://homotopytypetheory.org/book
https://doi.org/10.1109/LICS.1997.614955
https://doi.org/10.23638/LMCS-17(2:8)2021
https://doi.org/10.23638/LMCS-17(2:8)2021
https://doi.org/10.4230/LIPICS.FSCD.2021.22
https://doi.org/10.1145/3341691
https://doi.org/10.1017/s0960129514000577
https://doi.org/10.1016/j.tcs.2004.12.009
http://ozark.hendrix.edu/~yorgey/pub/thesis.pdf
https://doi.org/10.1145/1863523.1863542
https://doi.org/10.1145/1863523.1863542

Proof Pearl: Faithful Computation and Extraction
of µ-Recursive Algorithms in Coq
Dominique Larchey-Wendling #

Université de Lorraine, CNRS, LORIA, Vandœuvre-lès-Nancy, France

Jean-François Monin #

Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, France

Abstract
Basing on an original Coq implementation of unbounded linear search for partially decidable predicates,
we study the computational contents of µ-recursive functions via their syntactic representation, and
a correct by construction Coq interpreter for this abstract syntax. When this interpreter is extracted,
we claim the resulting OCaml code to be the natural combination of the implementation of the
µ-recursive schemes of composition, primitive recursion and unbounded minimization of partial
(i.e., possibly non-terminating) functions. At the level of the fully specified Coq terms, this implies
the representation of higher-order functions of which some of the arguments are themselves partial
functions. We handle this issue using some techniques coming from the Braga method. Hence we
get a faithful embedding of µ-recursive algorithms into Coq preserving not only their extensional
meaning but also their intended computational behavior. We put a strong focus on the quality of
the Coq artifact which is both self contained and with a line of code count of less than 1k in total.

2012 ACM Subject Classification Theory of computation → Models of computation; Theory of
computation → Type theory; Theory of computation → Functional constructs; Software and its
engineering → Formal methods; Software and its engineering → Functional languages; Theory of
computation → Higher order logic

Keywords and phrases Unbounded linear search, µ-recursive functions, computational contents,
Coq, extraction, OCaml

Digital Object Identifier 10.4230/LIPIcs.ITP.2023.21

Supplementary Material Software: https://github.com/DmxLarchey/Murec_Extraction
archived at swh:1:dir:4d128568b56a17277c4f69ee1805e3910665f34f

Funding Dominique Larchey-Wendling: partially supported by NARCO (ANR-21-CE48-0011).

1 Introduction

The theory of µ-recursive functions is a well established and widely used model for representing
(partial) recursive functions of type Nk⇀N where Nk is the type of tuples of natural numbers
of arity k. It originates from primitive recursive functions, invented in the 1920s in the Hilbert
school (the modern denomination was coined by Rózsa Péter), which is the smallest class
of functions containing constant functions, the successor function, projections (of the i-th
argument), and closed under the schemes of composition and primitive recursion. Primitive
recursive schemes define provably total functional relations but do not cover all the spectrum
of computability, the Ackermann function giving the most popular counter-example.

Gödel defined the larger class of “general” recursive functions, developing ideas of
Herbrand, and Kleene [7] later proposed to augment the allowed primitive recursive schemes
with that of unbounded minimization of partial functions, giving the class of µ-recursive
functions, equivalent (extensionally) to that of general recursive functions, and of which
primitive recursive functions form a natural, strict sub-class.

© Dominique Larchey-Wendling and Jean-François Monin;
licensed under Creative Commons License CC-BY 4.0

14th International Conference on Interactive Theorem Proving (ITP 2023).
Editors: Adam Naumowicz and René Thiemann; Article No. 21; pp. 21:1–21:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dominique.larchey-wendling@loria.fr
mailto:jean-francois.monin@univ-grenoble-alpes.fr
https://doi.org/10.4230/LIPIcs.ITP.2023.21
https://github.com/DmxLarchey/Murec_Extraction
https://archive.softwareheritage.org/swh:1:dir:4d128568b56a17277c4f69ee1805e3910665f34f;origin=https://github.com/DmxLarchey/Murec_Extraction;visit=swh:1:snp:ee2784b24e4616102a786668752538f64ad26aaf;anchor=swh:1:rev:52b860574c6d9787f80acd5b3d39095064b20140
https://anr.fr/Project-ANR-21-CE48-0011
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Faithful Computation and Extraction of µ-Recursive Algorithms

(∗∗ val ra_compute : recalg → nat list → nat ∗∗)
let rec ra_compute s v =

match s with
| Ra_zero → O
| Ra_succ → match v with y :: _ → S y

| Ra_proj i → vec_prj v i

| Ra_comp (s, svec) → ra_compute s
(
vec_map_compute (fun t → ra_compute t v) svec

)
| Ra_prec (s, s′′) → match v with y :: u →

prim_rec_compute
(
ra_compute s

) (
fun w n x → ra_compute s′′ (n :: x :: w)

)
u y

| Ra_umin s′ → umin_compute
(
fun n → ra_compute s′ (n :: v)

)
O

Figure 1 An OCaml interpreter for µ-algorithms.

In the context of mechanization, µ-recursive functions have been implemented and/or used
in several projects [13, 9, 2, 10]. Most of these developments are concerned with computability
theory (the S-n-m theorem, Rice’s theorem, Kleene’s normal form theorem, Hilbert’s tenth
problem) so they mainly focus on their extensional properties. On the contrary, in this proof
pearl, we mostly focus on the intentional contents of µ-recursive schemes. We call these
µ-algorithms and reserve the term “function” for the extensional notion.

Of course, µ-algorithms do not provide all the algorithmic means to compute values:
for instance, they lack course-of-values recursion, nested recursion, higher-order primitive
recursion, higher-order functions, and they are grounded on the very rudimentary datatype
natural numbers, hence, when e.g. computing with lists or trees, one must pass through
encoders and decoders. However, µ-recursive functions are universal in that they capture all
computable functions and, in comparison with other models with the same power, they have
the usual “referential transparency” advantage of functional languages over imperative ones,
which naturally makes them better suited to equational and compositional reasoning than,
say, Turing or Minsky (counter) machines.

In a contemporary approach, µ-algorithms can be described by an abstract syntax and
a simple interpreter providing the computation rules to be followed by each construct.
This abstract syntax can be implemented by the following type, where Ra_comp encodes
composition, Ra_prec encodes primitive recursion, Ra_umin encodes minimization, and
Ra_zero, Ra_succ and Ra_proj are obvious.

type nat = O | S of nat
type recalg = Ra_zero | Ra_succ | Ra_proj of nat | Ra_comp of recalg ∗ recalg list |

Ra_prec of recalg ∗ recalg | Ra_umin of recalg

A natural OCaml program for interpreting pieces of code written in the above language is
displayed in Figure 1. The arguments (s, svec) of Ra_comp stand respectively for (the source
code of) a n-ary function and a n-tuple of functions, whose output is expected to be fed as
inputs for (the interpreter of) s. The arguments (s, s′′) of Ra_prec stand respectively for
the result to be returned in the base case (the last argument is zero) and the function to
be applied in the step case (the last argument is a successor). For convenience, the tuple
⟨x1, . . . , xk⟩ of natural numbers representing the inputs of a µ-recursive algorithm is encoded
by a list in the reverse order [xk ; . . . ; x1], so that the driving argument n for primitive
recursion is the head of the list.

The functional implementations of µ-recursive schemes are straightforward: vec_prj for
projections, vec_map_compute for compositions, prim_rec_compute for primitive recursion
and umin_compute for µ-minimization.

D. Larchey-Wendling and J.-F. Monin 21:3

(∗∗ val vec_prj : α list → nat → α ∗∗)
let rec vec_prj u i = match u with

| x :: v → match i with O → x | S j → vec_prj v j

(∗∗ val vec_map_compute : (α → β) → α list → β list ∗∗)
let rec vec_map_compute f = function
| [] → []
| x :: v → f x :: vec_map_compute f v

(∗∗ val prim_rec_compute : (α → β) → (α → nat → β → β) → α → nat → β ∗∗)
let rec prim_rec_compute f g x = function
| O → f x

| S n → g x n (prim_rec_compute f g x n)

(∗∗ val umin_compute : (nat → nat) → nat → nat ∗∗)
let rec umin_compute f n = match f n with
| O → n

| S _ → umin_compute f (S n)

Though the above code is not very complicated, there are some subtle points making it a
not-so-trivial case study if we want to prove its correctness w.r.t. a formal specification. In
particular, as a purely functional piece of code, it seems reasonable to get it by extraction of
a Coq proof. However, unbounded minimization or µ-minimization of a (partial) function
f : N × N⇀N consists in the (partial) function µf : N⇀N such that µf(x) is the number n
for which f(n, x) is 0 and f(i, x) is defined and not equal to 0 for every number i less than n.
Although uniquely defined, it may not exist. For instance, µ-minimization of a constant
(non-zero) function (e.g. f(·, ·) = 1) is the nowhere defined function of type N⇀ N. Indeed,
as soon as µ-minimization is available, all the other constructs are contaminated and encode
possibly non-terminating functions. Altogether, not only ra_compute is clearly undefined on
some inputs (where computation does not terminate), but it relies on higher-order programs
such as vec_map_compute and prim_rec_compute which have to be themselves considered
as non-terminating since they are applied to possibly non-terminating arguments, all in a
nested recursive manner.

In a previous work [9], the first author showed that it is possible to derive a Coq term which
computes the same result as a given µ-recursive function. The latter was first transformed,
by bounding it using the folklore “fuel” technique, thus giving a primitive recursive (hence
terminating) algorithm, and then applying Constructive Epsilon, i.e. unbounded minimization
of inhabited and decidable predicates over N. Kleene used a comparable trick in order to
establish that every µ-recursive function can be obtained from the µ-minimization of some
primitive recursive function, i.e. the normal form theorem [8]. In his section “resource
bounded evaluation,” Carneiro [2] uses the same fuel trick in Lean to approximate partial
computable functions with primitive recursive ones, combined with a variant of Constructive
Epsilon he calls find.

Though this approach is sufficient for theoretical purposes such as studying the expressive
power of computational models,1 it is unsatisfactory from an algorithmic point of view: the
underlying calculation boils down to a systematic and heavy trial-and-error process that

1 Most of the textbook presentations of µ-recursive functions like e.g. [12, 1] focus on their extensional
meaning as set-theoretic partial functions, i.e., the relation between inputs and outputs, or so called
graph, but not on the calculations performed.

ITP 2023

21:4 Faithful Computation and Extraction of µ-Recursive Algorithms

is unfaithful to the intended behavior, unlike the intuitive OCaml code above. Directly
reasoning on the latter with extraction in mind is actually more demanding: we need to
express the computational counterpart of the desired specific program in a type-theoretic
framework where only total functions are allowed. In other words, we need to provide “generic”
partial termination certificates for (the Coq counterpart of) the above OCaml functions.

We show here how the Braga method [11], our trick to manage termination issues in
recursive programs, can be adapted in the present case study in order to satisfy the above
requirements. In a nutshell, the Braga method allows us to define functions of x whose
termination is provided by an additional domain argument d : Dx, of sort Prop, where D is
inductively defined and systematically derived from the shape of the desired program Pgm to
be extracted. In this way we can express a functional program

Fixpoint g x (d : Dx) {struct d} := . . . g x′ d′ . . .

where d′ : Dx′ is structurally smaller than d – the guard condition which ensures termination.
Then we can reason on the partial correctness properties of g before (and without) bothering
about termination (e.g., without defining a measure which, anyway, could not exist in all
cases). The domain D is typically the domain of an inductive input-output graph G, which is
nothing but a relational presentation of Pgm and can be seen as a complete characterization
of Pgm. In [11], G is also used in the Σ-type of g : ∀x, D x→ {y | Gxy} so that, after erasure,
the extracted OCaml program automatically satisfies this characterization as well as the
partial correctness properties which are derived from it.

In the case of µ-algorithms we need to go further than [11]. First, partial functions are
essential here whereas almost all examples considered in [11] turn out to be total functions.
Second, we already have a natural input-output graph: a relational semantics for the abstract
syntax of µ-algorithms. However, this semantics is naturally expressed as a combination
of partial functions, one for each construct of µ-algorithms. In order to mimic the original
formulation, we encode partial functions from Nk to N by total functions from Nk to N→Prop,
yielding a compact and crystal-clear specification. This semantics is detailed in section 4.2
and noted J.K. Looking back at the intended program above, we need to extend the Braga
method to get Coq programs that: first, combine in a similar and hopefully modular way
an implementation of µ-minimization with “ordinary looking” structural recursion on data
structures such as nat or the syntax of µ-algorithms; and second, are driven by the domain
of an input-output graph G, such as J.K, that is not necessarily expressed inductively. A
suitable general type scheme for such programs is simply ∀x, (∃y,Gx y) → {y | Gxy}, which
can be implemented either by ordinary structural recursion on the first input x, or by using
the Braga method on a termination certificate derived from the second input (∃y,Gx y).

Additionally, µ-minimization provides another opportunity to change the Braga ma-
chinery a little bit: for umin_compute, which is basically a tail-recursive presentation of an
(unbounded) loop for linear search, the propagation of assertions is not encoded backwards
by a Σ-type embedding of the expected input-output relation, but forwards by a parameter
containing an inductive invariant. This makes the enriched Coq program already tail-recursive
and, more importantly, proofs of propagation become simpler.

Remarks about the Coq code. The artifact we publicly deliver only requires a minimal
amount of Coq machinery to implement linear search and the interpreter for µ-recursive
algorithms. To illustrate this and also produce self-contained code, we do not use the Coq
standard library, except for the modules Utf8 to allow for better human readable Coq code,
and Extraction to witness our claims about the faithfulness of the extracted code to the

https://github.com/DmxLarchey/Murec_Extraction

D. Larchey-Wendling and J.-F. Monin 21:5

“natural” OCaml interpreter. The code is intended to be read as an essential part of this
pearl, and we invite the reader to consult the associated artifact, starting with the README.md
file. We tried to make the artifact readable by a human, without the help of the type-checker.
This means that proofs written with scripts (Ltac) are both very short, and with only light
automation not beyond trivial or easy. When the contents of terms is critical, e.g. when
it contributes to extraction, or in order to visualize structural decrease, we write these as
λ-terms.

Contributions. We hope our contributions to be somewhat valuable for people using Coq or
a similar Type Theory as a programming language, but nothing original is claimed about com-
putability theory. First of all, we provide a short, clean, readable and (hopefully) informative,
Coq implementation of the partial linear search algorithm, extending Constructive Epsilon
to partially decidable predicates, using a variant of the Braga method that also fully takes
into account the tail recursivity of the underlying program. Second, we contribute a Coq
interpreter for µ-recursive algorithms, which follows their intended (functional) operational
semantics, taking [1] as reference, as witnessed by a neat extraction to OCaml. Third, this
interpreter relies on linear search in a way that illustrates a general approach to integrating
programs written with the Braga method (or variants of it) and structural recursive programs
that depend on each other in a nested or mutual recursive way. With this reasonably sized and
documented code, we also hope to popularize further some dependent inversion techniques
that sometimes hinder the usage of Coq structural fixpoints. For instance, see our small
library for dependent vectors that features improvements on the standard library and is of
independent interest.

This proof pearl is constructed as follows. Section 2 provides the prerequisites needed to
understand the paper and the associated Coq artifact. Section 3 explains how to generalize
the specification of the linear search algorithm to be able to search with partially decidable
predicates. This generalization of Constructive Epsilon is the essential ingredient to implement
the scheme of µ-minimization. Section 4 presents the Coq implementation of µ-algorithms
with their extensional semantics, following [1], and then their intentional contents as a Coq
term, an interpreter computing the output, if provided with a proof of termination on the
given input. Section 5 presents the result of the extraction of the above mentioned interpreter
as an OCaml program. We list the various tweaks that help at completely rendering a
readable (and herein presentable) program. We also explain how to get rid of some possibly
unwanted OCaml tricks used by the extraction plugin to circumvent the limitations of the
OCaml type-system, as compared to that of Coq, the source type theory.

2 Type-theoretic basics and notations

We present this pearl in the language of the type theory of Coq containing the sort Prop, the
impredicative type of propositions, and the sort Set, the predicative type at the ground-level
of sorts in Type, the predicative type hierarchy above both Prop and Set.

The basic inductive structures we use are the propositions (True : Prop := I) and
(False : Prop := .), the data types unit : Set := tt, first-order logic connectives and Peano
natural numbers nat : Set := O | S (_ : nat), endowed with natural (≤) and strict (<) orders.
Only a minimal amount of basic arithmetic results are needed, for which we give tiny proofs
in arith_mini.v. We won’t use lists but vectors instead, see Section 4.4.

We will use tuples (n-ary products) and dependent pairs (Σ-types) that come under
various forms in Coq, see files sigma.v, relations.v and vec.v. We will write e.g. ⟨a, b, c⟩
for a triple of three values that may be proofs of propositions, hence giving of a proof of say
A ∧ B ∧ C, or else terms giving a value in the product type A×B × C.

ITP 2023

https://github.com/DmxLarchey/Murec_Extraction
https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/README.md
https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/arith_mini.v
https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/sigma.v
https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/relations.v
https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/vec.v

21:6 Faithful Computation and Extraction of µ-Recursive Algorithms

Given a predicate P : X → Prop, we write dependent pairs as ⟨⟨x, p⟩⟩ where p is a proof
of P x (hence dependent on x). In this paper, depending on the context (Prop vs. Type),
⟨⟨x, p⟩⟩ denotes either a proof of the proposition ∃x, P x : Prop, also written exP , or an
inhabitant of the type {x | P x} : Type, also written sigP . Likewise, given d := ⟨⟨x, p⟩⟩, we
write π1 d := x and π2 d := p for the projections of the dependent pair d.

In the file relations.v, we also give basic tools to manipulate 0-ary, unary and binary
relations (i.e. predicates), like notations for composition, inclusion, conjunction. A unary
relation P : X → Prop is functional (or deterministic) if there is at most one x s.t. P x.

3 Unbounded linear search in Coq

The linear search algorithm on an unbounded interval of N (LS for short) is the main engine
of µ-minimization. As one of the simplest examples of a program which computes a partial
(recursive) function, it is particularly interesting. It can be specified as follows. Given a
decidable predicate P on N and a starting number s : N, find an n : N greater or equal to s
such that P (n). Among its many other applications, we can cite Constructive Epsilon, which
corresponds to the special case where s = 0. More precisely, it realizes the specification
ex P → sig P , a short hand for (∃x, P x) → {n | P n}. As we reuse some ideas coming from
ConstructiveEpsilon.v of the Coq standard library, the name “Constructive Epsilon” will
below refer to this implementation.

Assuming a suitable program test, here is an obvious OCaml program for unbounded
linear search:

let rec loop s = if test s then s else loop (s+ 1)

Let us informally write Gr_thanP (s) for the set of natural numbers x such that x ≥ s and
P x holds. If Gr_thanP (s) is inhabited, the returned value is actually the least value m in
Gr_thanP (s); but otherwise, the algorithm loops forever. The underlying function is then
clearly partial. In the following we discuss the contents of file linear_search.v.

3.1 Specification of linear search
Aiming first at a general Coq specification of the unbounded linear search algorithm, we
actually don’t need to assume that P is decidable on nat, but only between s and a large
enough number. For additional generality and convenience we also consider two predicates
Dtest (the domain of test) and Q such that, whenever Dtest holds, P or Q can be decided
and P and Q cannot hold together.

test : ∀n, Dtest n→ {P n} + {Q n} PQ_abs : ∀n, Dtest n→ P n→Q n→ False

We then only assume that Dtest holds between s and a large enough number. On the side of
the post-condition, we see that not only Dtest and P hold at the returned value m, if any,
but also that s ≤ m and that Dtest and Q hold at all k such that s ≤ k < m. Defining

Definition btwn (A : nat → Prop) n m := n ≤ m ∧ (∀k, n ≤ k < m→A k) (1)

and with the notation A ∧1 B := λn, An ∧ B n, the strongest post-condition characterizing
the output of LS is then:

Definition Postls s x := (Dtest x ∧ P x) ∧ btwn (Dtest ∧1 Q) s x.

https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/relations.v
https://coq.inria.fr/library/Coq.Logic.ConstructiveEpsilon.html
https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/linear_search.v

D. Larchey-Wendling and J.-F. Monin 21:7

On the side of the pre-condition of LS, we assume the existence of some x in Gr_thanP (s)
and the ability to perform test from s to x. It can be stated using the following predicate.

Definition Prels s x := (Dtest x ∧ P x) ∧ btwn Dtest s x.

The expected type for linear search (starting at s) is then (∃x, Prels s x)→{m | Postls s m}.

3.2 Termination of linear search

Observe that the witness x mentioned in the pre-condition is not used in the search loop –
it is not available at the informative level. Moreover, btwn Q s x is not assumed, that is,
x is not necessarily minimal in Gr_thanP (s). But x can be used to compute a termination
certificate since its very existence guarantees that the search loop eventually halts. The usual
argument, in an imperative setting, consists in proving that x− s is a loop variant. However,
as mentioned in the introduction, we can take advantage of an essential feature of type theory
of Coq to provide a direct inductive characterization of termination of sort Prop called Dls,
to be used as follows: Fixpoint loop n (d : Dls n) { struct d } := . . . Only n can be used
in the informative part of the computation; on the other hand, a strict sub-term of d has to
be provided in any recursive call. Consistently, d is erased at extraction time. The design
of Dls follows the pattern of recursive calls of the target program and keeps track of the
information resulting from the tests carried out. Here is our definition of Dls : nat → Prop:

c : Dtest n ∧ P n

Dls_stop c : Dls n

t : Dtest n dS : Dls (S n)
Dls_next t dS : Dls n

Defining Dls_π1 d as the immediate Dtest n component of d : Dlsn using an easy pattern-
matching, and Dls_π2 d q as the immediate Dls (S n) component of d when q : Q n, using
a more subtle pattern-matching, a version of loop returning a simple natural number is

Fixpoint loop n (d : Dls n) { struct d } : nat :=
match test n (Dls_π1 d) with
| left p ⇒ n

| right q ⇒ loop (S n) (Dls_π2 d q)
end.

The second projection Dls_π2 d returns a λ-term of type Qn → Dls (S n) for each
constructor. In the easy (and “intended”) case where d is Dls_next t dS, it just returns
λ_, dS. And when d is Dls_stop ⟨t, p⟩, then t, p and q conspire with PQ_abs to construct a
proof of the empty type False, on which an additional pattern matching provides a strict
sub-term of any proof (of any inductive predicate).

Definition Dls_π2 {n} (d : Dls n) : Q n → Dls (S n) :=
match d with
| Dls_stop ⟨t, p⟩ ⇒ λ q, match PQ_abs t p q with end
| Dls_next _ dS ⇒ λ _, dS

end.

The braces around the first parameter {n} mark an implicit parameter, and the Coq code of
Dls_π2 witnesses structural decrease in a way suitable for a human to check at first glance.

ITP 2023

21:8 Faithful Computation and Extraction of µ-Recursive Algorithms

3.3 Building an initial termination certificate
A termination certificate d for s can be computed (in the hidden realm of propositions and
proofs) from the existence of x such that Prels s x. It is easy to perform from a suitable
inductive characterization of btwn but, in order to stick to its arithmetical definition (1), we
simulate the two constructors and a special induction principle for btwn by proving:

btwnrefl {A n} : btwn A n n

btwnnext {A n m} : btwn A n m→A m→ btwn A n (S m)
btwnind A a b : btwn

(
λn, A (S n) →A n

)
a b→A b→A a.

See the file between.v for the code of btwn and its tools that we use here to get

Lemma Prels_Dls {s} : (∃x, Prels s x) → Dls s

by applying btwnind to Dls and conclude with the monotonicity of btwn.

3.4 A tail-recursive program for the full loop
In order to prove that the output of the previous version of loop satisfies the desired post-
condition, we could promote its type from nat to {m : nat | Postls s m}. This would lead to
a decomposition of the result of the recursive call into a pair ⟨⟨m, po⟩⟩, where m is the found
value and po the associated proof of post-condition, followed by the construction of a similar
pair ⟨⟨m, po′⟩⟩, only different on its proof component, to be returned. A more elegant way is
to proceed with proofs as with data in functional programming, when mimicking while loops
using recursivity and accumulators. A remarkable point is that in the proofs-as-programs
paradigm, proof accumulators turn out to be (proofs of) loop invariants, as illustrated below
by b becoming btwnnext b ⟨t, q⟩ in the recursive call.

In more detail, we first fix a starting value s and take as invariant btwn (Dtest ∧1
Q) s n. The linear search algorithm then calls loop with s as the initial input value for n,
(Prels_Dls e) as the initial termination certificate, where e is a proof of (∃n, Prels s n),
and btwnrefl as the initial (proof of the) invariant. In the course of the loop, we assume a
proof of the invariant for n named b; the proof of Dtest n derived from d is first bound to t;
in the recursive call, the (proof of the) invariant for S n is derived from b, t and q : Q n using
btwnnext; and finally, when the test provides a proof p : P n, the desired proof of Postls s n

is just ⟨t, p⟩ paired with the invariant b. Altogether, the extended code of LS is rather short.

Fixpoint loop n (d : Dls n)
(
b : btwn (Dtest ∧1 Q) s n

)
: {m | Postls s m} :=

let t := Dls_π1 d in
match test n t with
| left p ⇒ ⟨⟨n, ⟨t, p, b⟩⟩⟩
| right q ⇒ loop (S n) (Dls_π2 d q)

(
btwnnext b ⟨t, q⟩

)
end.

Definition linear_search : (∃x, Prels s x) → {m | Postls s m} :=
λ e, loop s (Prels_Dls e) btwnrefl.

3.5 From linear search to µ-minimization
To use the above linear search program, we only have to instantiate P , Q, Dtest and the
test function, to provide a corresponding proof of PQ_abs, and possibly to add stubs to
adapt the pre- and post-conditions. For instance in the case of Constructive Epsilon, we are

https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/between.v

D. Larchey-Wendling and J.-F. Monin 21:9

given an arbitrary predicate P on nat, with the hypothesis P_dec : ∀n, {P n} + {¬P n}.
Then we keep P and take ¬P for Q, (λ_, True) for Dtest and λn_, P_dec n for test; the
proof of PQ_abs is trivial.

The case of µ-minimization is more interesting, in particular, we have a non-trivial
instantiation for Dtest. We are given a functional relation F : nat → nat → Prop such
that, if n is in the domain of F , then the y such that F ny can be computed by a program
f : ∀n, ex (F n) → sig (F n). We want to transfer this to the minimization of F , that is,
assuming the existence of a minimal m such that F is defined and strictly positive for all
x < m, and F m O, we want to provide a computation returning this (unique) m. Formally,
we define:

def_at F := λn, ∃y, F n y ze_at F := λn, F n O pos_at F := λn, ∃k, F n (S k)
umin0 F y := ze_at F y ∧ ∀n, n < y → pos_at F n

The formal specification of µ-minimization is then ex (umin0 F)→sig (umin0 F). As a natural
and cheap generalization, we also define umin F s y := ze_at F y ∧ btwn (pos_atF) s y.
Then µ-minimization is the special case, with s := 0, of

∀s, ex (umin F s) → sig (umin F s) (2)

This is very close to the specification of linear search, with Dtest instantiated as def_atF ,
P as ze_atF and Q as pos_atF respectively. In order to use its implementation given in
Section 3.4, we just have to feed it with a proof of PQ_abs (simple, using functionality of F
and discrimination between O and S _) and a suitable test program:

Let test n (t : Dtest n) : {P n} + {Q n} :=
let (k, ek) := f n t in
match k return F _ k → _ with O ⇒ λ e, left e | S r ⇒ λ e, right ⟨⟨r, e⟩⟩ end ek

where the term ek : F nk is analyzed as either e : F n O (when k matches O) or e : F n (S r)
(when k matches S r).

However, the code obtained is this way is somewhat unsatisfactory, because each call to
loop first constructs a dependent Boolean from the input and next immediately performs
a pattern matching on the latter, and this intermediate Boolean would be reflected at
extraction stage. A simple way to improve this state of affairs consists in performing a
program transformation on the Coq loop, taking advantage, in passing, of P ⊆ Dtest and
Q ⊆ Dtest. Those transformations have only an impact on the loop (6 lines of code):

Fixpoint loop n (d : Dls Dtest P n)
(
b : btwn Q s n

)
: sig (umin F s) :=

let (k, ek) := f n (Dls_π1 Dtest P d) in
match k return F _ k → _ with
| O ⇒ λ e, ⟨⟨n, ⟨e, b⟩⟩⟩
| S _ ⇒ λ e, loop (S n)

(
Dls_π2 Dtest . . . d ⟨⟨_, e⟩⟩

) (
btwnnext b ⟨⟨_, e⟩⟩

)
end ek.

and the code of linear_search can be reproduced as is.
In conclusion to the file umin_compute.v, the program umin0_compute, which is needed in

our full development of µ-recursive algorithms, is defined in two lines by functional composition
of linear_search and simple monotonicity lemmas relating the various statements of umin.
The reader can consult the file umin_compute_details.v to get a gradual derivation of
the above loop from the one used in the original linear_search. As a side remark, it is

ITP 2023

https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/umin_compute.v
https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/umin_compute_details.v

21:10 Faithful Computation and Extraction of µ-Recursive Algorithms

possible to present µ-minimization as just an instance of a parametric version of linear search,
allowing us to share not only the Dls predicate but also the code of the loop whatever
the type of the result of the test function and the resulting extracted program. But, as
symptomatic to many generic code constructions, it is unfortunately not yet as short and
reasonably explainable as the above compromise between code sharing and code readability,
where we transform a small part of the generic code to get µ-minimization.

4 Representing µ-algorithms in Coq

Basing on our implementation of µ-minimization, we now switch to the intentional encoding
of all µ-recursive algorithms in Coq. We follow the idea already developed in [9, 10] of
capturing the syntax of µ-algorithms in a type dependent on the arity (number of parameters
of the corresponding function), and nested with a parametric type of dependent vectors.
However, in this pearl, we insist on giving a minimized and as clean as possible account of
these types.

We do not use lists at all. Instead, for a given base type X, we use vectors of type
denoted vecX n, which are lists but augmented with a further dependency on their length,
herein denoted using n : nat. Components of vectors are accessed through indices in the
finite type idxn : Set also dependent on n. In the sequel, ⟨ ⟩ denotes the empty vector, a :: v
denotes the vector made of a followed by v, and v.[i] denotes the ith element of v. We also
might write ⟨a; b; c⟩ for the vector a :: b :: c :: ⟨ ⟩. Our files index.v and vec.v reproduce the
types Fin.t and Vector.t of the Coq standard library but are better tailored towards clean
extraction. Technical details on our library are postponed to 4.4.

4.1 µ-algorithms as a nested dependent type
Usually leaving arities (denoted using the letters a, b) as implicit arguments of Coq construct-
ors or terms, we define the type of µ-algorithm of arity a as recalg a or simply Aa : Set
herein, with the following constructors (inductive rules):

ra_zero : A0 ra_succ : A1

i : idx a
ra_proj i : Aa

f : Ab g : vec Aa b

ra_comp f g : Aa

f : Aa g : A2+a

ra_prec f g : A1+a

f : A1+a

ra_umin f : Aa

This inductive data-structure that we define in recalg.v mimics that in [9] but we use
slightly different schemes to better match those of [1] that serve as our textbook reference
here. For instance, we do not have constants (of arity 0) except for the zero constant itself
which appears both at arity 0 and at arity 1 in [9].

The constructor ra_comp _ _ for composition nests the type A_ with the type of vectors
vec _ _, hence Coq fails to automatically derive a powerful enough eliminator for that nested
inductive type. For completeness or further extensions, we provide a hand written general
eliminator recalg_rect for Aa in the file recalg.v (as a suitable fixpoint), but we will
not need it in this pearl since we will always reason or compute inductively on Aa using
hand-written fixpoints, i.e. by inlining recalg_rect.

4.2 The semantics of µ-algorithms
We characterize the semantics JSaK va o of the µ-algorithm of Sa : Aa by interpreting it as a
binary relation between an input vector va : vec nat a and an output value in o : nat, hence for
IOa := vec nat a→ nat → Prop, we seek to define JSaK : IOa. The denotation Sa is intended

https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/index.v
https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/vec.v
https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/recalg.v
https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/recalg.v

D. Larchey-Wendling and J.-F. Monin 21:11

to recall that this is S(ource code) for arity a. Notice that this provides an extensional
meaning to Sa that restricts the possible algorithmic interpretations (or intentional meaning)
of Sa which must realize that specification. To do so, we define ra_sem : ∀{a},Aa → IOa as
a fixpoint where we denote JSaK := ra_semSa:

Fixpoint ra_sem {a} (Sa : Aa) : IOa :=
match Sa with
| ra_zero ⇒ Zr | ra_comp Sb Sab ⇒ Cn JSbK (vec_map J·K Sab)
| ra_succ ⇒ Sc | ra_prec Sa Sa′′ ⇒ Pr JSaK JSa′′K
| ra_proj i ⇒ Id i | ra_umin Sa′ ⇒ Mn JSa′K
end where JSaK := (ra_sem Sa).

Notice the nesting of vec_map which applies ra_sem, to every component of the vector
Sab : vec Aa b, and the references to Zr, Sc, Id, Cn, Pr, Mn which correspond to the Coq
encoding of µ-recursive schemes as defined in [1]. The fixpoint proceeds by structural
induction on Sa but the guard-checker inspects the code of the nested instance of vec_map
to ensure J·K is called only on sub-terms of the vector Sab. Notice that since the inductive
type Aa nests the type of vectors vec Aa b in the constructor ra_comp _ _, the only way to
traverse such structures is via nested fixpoints which, if properly written, can fortunately be
accepted by the guard condition of the type-checker.

As a side note, instead of a direct fixpoint, we could use the general recursor recalg_rect
(see file recalg.v), but this would have unfortunate consequences: it would hinder a unified
presentation of ra_sem and ra_compute. Indeed, the induction hypothesis for the ra_comp
constructor does not expect a vector but a (dependent) map, and would thus be incompatible
with the output type of vec_map, hence involving some glue code. That glue code would
also be necessary in the upcoming fixpoint ra_compute in section 4.3, and would there
unfortunately reflect in the extracted OCaml code. To get a unified presentation of ra_sem
and ra_compute, we choose to inline recalg_rect in both cases.

We follow precisely our reference textbook [1, p. 63] using reversely ordered vectors to
represent tuples. See file recalg_semantics.v where we define

Definition Zr : IO0 := λ_ y, y = 0.
Definition Sc : IO1 := λ v1 y, y = 1 + vec_head v1.

Definition Id {a} (i : idx a) : IOa := λ va y, y = va.[i].

We follow up with composition of a b-ary µ-algorithm with a vector of a-ary µ-algorithms:

Definition Cn {a b} (φb : IOb) (ψab : vec IOa b) : IOa :=
λ va y, ∃vb, φb vb y ∧ ∀i, ψab.[i] va vb.[i]

to be found in [1, p. 64]. Primitive recursion is mechanically best described using a higher-
order primitive recursive scheme (like that of e.g. Gödel system T). We define

Definition Pr {a} (φa : IOa) (ψa′′ : IO2+a) : IO1+a :=
vec_S_inv

(
λn va, prim_rec φa

(
λwa my, ψa′′ (m :: y :: wa)

)
va n

)
where prim_rec is defined in schemes.v as the following instance nat_rect, the dependent
eliminator/recursor for the nat type and ⋄ denotes the right-associative composition of a
binary relation with a unary one:

Context {X Y : Type} (F : X → Y → Prop) (G : X → nat → Y → Y → Prop).
Definition prim_rec (x0 : X) := nat_rect (λ _, Y → Prop) (F x0)

(
λ n p, (G x0 n) ⋄ p

)
.

ITP 2023

https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/recalg.v
https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/recalg_semantics.v
https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/schemes.v

21:12 Faithful Computation and Extraction of µ-Recursive Algorithms

Informally, this would read as prim_rec x0 n :=
(
Gx0 (n− 1)

)
⋄ · · · ⋄ (Gx0 0) ⋄ (F x0). We

check that Pr satisfies the following two definitional equations, which correspond to the
characterization of primitive recursive scheme in [1, p. 67].

1. Pr φa ψa′′ (O :: va) y = φa va y;
2. Pr φa ψa′′ (Sn :: va) y = ∃o, Pr φa ψa′′ (n :: va) o ∧ ψa′′ (n :: o :: va) y.

We finish with the scheme of unbounded minimization (starting at O), defined via a more
general scheme of minimization starting at a value given as extra parameter:

Definition Mn {a} (φa′ : IO1+a) : IOa := λ va, umin0
(
λ y, φa′(y :: va)

)
.

The definitions of umin and umin0 occur in the file schemes.v and are also discussed in
Section 3.5. We check that Mn satisfies the following definitional equation:

Mn φa′ va y = φa′ (y :: va) O ∧ ∀n, n < y → ∃k, φa′ (n :: va) (S k)

which mimics the definition of the minimization scheme in [1, p. 70].
Having defined the semantic (extensional) interpretation of µ-algorithms, we verify that

JSaK is a functional relation. We proceed by structural induction on Sa,

Theorem ra_sem_fun {a} (Sa : Aa) : functional JSaK

directly with a fixpoint, by compositionally exploiting the fact that µ-recursive schemes
preserve functional relations.

4.3 The interpreter for µ-algorithms
Following the approach hinted in the introduction, given a specification predicate P : X→Prop
over a type X, we characterize a specified partial value by a term t : (∃x, P x) → {x | P x} in
which the specified value {x | P x}, that is, an x paired with a proof of P x, is guarded by
its existence (∃x, P x):

The unary predicate P : X → Prop gives the specification of the value. In our case, we
instantiate e.g. P := JSaK va : nat → Prop, hence, thanks to ra_sem_fun, P will hold for
at most one x;
the Coq term t computes a value x such that P x, provided it is given a certificate for its
algorithm to terminate the computation, stated as the non-informative existence of an
(output) value satisfying P .

In the file compute_def.v, we define the predicate capturing specified partial values as
compute {X} (P : X → Prop) := (∃x, P x) → {x | P x}.2 This encoding of partiality allows
a direct generalization of the code of the semantic ra_sem (noted J·K) into an interpreter
ra_compute (noted J·Ko) as described below, with relatively short proof terms for pre/post
conditions.

As a side note, our approach contrasts with the “partiality monad” of [2] where a partial
value is of type {Q : Prop | Q→X}, i.e. though guarded by a predicate Q, it refers to an
output type X only, and is not further specified in that type. In our case, a compute value is
always specified w.r.t. a predicate over a type (i.e. P) which in practice characterizes that
value uniquely. It comes with a proof that the value satisfies its specification (i.e. P x). Hence
that guard and the specification are linked together. Also, having an output specification
allows us to compositionally derive a correct-by-construction interpreter.

2 Notice that this definition is not intended to hint at the traditional notion of computability.

https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/schemes.v
https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/compute_def.v

D. Larchey-Wendling and J.-F. Monin 21:13

We can now present the Coq term for µ-algorithms that is going to be extracted into
OCaml as a natural interpreter for µ-algorithms in that programming language. For Sa : Aa,
the term ra_compute Sa : ∀va : vec nat a, compute

(
JSaK va

)
will realize the extensional

interpretation J·K, by directly computing the output from the input along the lines of the given
µ-algorithm. In the file interpreter.v, we write the following Fixpoint ra_compute {a} Sa

also denoted JSaKo (for a more compact notation) reusing the same scheme as that of the
code of ra_sem {a} Sa = JSaK. The suffix in the new notation J·Ko is intended to recall that
we do not simply define a proposition but instead, an o(utput) value is now computed:

Fixpoint ra_compute {a} (Sa : Aa) {struct Sa} : ∀va : vec nat a, compute
(
JSaK va

)
:=

match Sa with
| ra_zero ⇒ Zr_compute
| ra_succ ⇒ Sc_compute | ra_prec Sa Sa′′ ⇒ Pr_compute JSaKo JSa′′Ko

| ra_proj i ⇒ Id_compute i | ra_umin Sa′ ⇒ Mn_compute JSa′Ko

| ra_comp Sb Sab ⇒ Cn_compute JSbKo
(
λ va dva, vec_map_compute (J·Ko va) Sab dva

)
end where JSaKo := (ra_compute Sa).

The sub-term J·Ko va has type ∀Sa, compute
(
JSaK va

)
which states that J·K va is a partial

function, which can be computed in Coq if fed with a certificate that its output exists (ter-
mination), and it is passed to vec_map_compute which generalize vec_map to the application
of partial functions on every component of a vector, but still by structural recursion on the
vector. Then the computation follows a natural interpretation of µ-algorithms as functional
programs via extraction.

We further comment on the code of the ra_compute fixpoint, focusing on how Coq
establishes termination. First, it proceeds by structural recursion on Sa. Hence the guard-
checker verifies that ra_compute is only applied to sub-terms of Sa. And for this, it
has to inspect the code of vec_map_compute which inevitably nests a call to ra_compute
(noted J·Ko) because Sab : vec Aa b is a (nested) vector of sub µ-algorithms in Aa. Because
vec_map_compute proceeds by recursion on Sab, the guard checker accepts this nesting.

In the case of ra_uminSa′ , we see that Mn_compute receives JSa′Ko, the fixpoint itself
applied to Sa′ , as first parameter, which obviously passes the guard-checker. The code of
Mn_compute can be found in the compute.v and is based on that of umin0_compute; see the
file umin_compute.v and explanations in Section 3.5.

Variables (a : nat) (Sa′ : A1+a)
(
cSa′ : ∀va′ , compute (JSa′K va′)

)
.

Definition Mn_compute va : compute (Mn JSa′K va) :=
umin0_compute (λ _, ra_sem_fun _ _) (λ n dn, cSa′ (n :: va) dn).

The case of ra_precSa Sa′′ is similar to that of ra_uminSa′ . The case of ra_compSb Sab

is however more complicated because of the nesting with vec_map_compute that is mandated
to recursively iterate J·Ko va over the components of the vector of sub µ-algorithms Sab.

Variables (a b : nat) (Sb : Ab)
(
cSb : ∀vb, compute (JSbK vb)

)
(Sab : vec Aa b)

(
cSab : ∀va, compute

(
λ vb, ∀i, JSab.[i]K va vb.[i])

)
.

Definition Cn_compute : ∀va, compute
(
Cn JSbK (vec_map J·K Sab) va

)
:=

λ va dva, let (vb, vavb) := cSab va _ in let (y, vby) := cSb vb _ in ⟨⟨y, _⟩⟩.

We leave out as holes _ the three (small) proof obligations that can be studied further in code
file compute.v. The term vec_map_compute is used to fill the argument cSab of Cn_compute
and its code is described in the file map_compute.v. It generalizes the code of vec_map to
deal with specifications (i.e. pre/post conditions), but extracts the same.

ITP 2023

https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/interpreter.v
https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/compute.v
https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/umin_compute.v
https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/compute.v
https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/map_compute.v

21:14 Faithful Computation and Extraction of µ-Recursive Algorithms

4.4 Remarks on a carefully crafted library of indices and vectors
The types for indices and vectors are defined inductively with the following rules/constructors:

idx : nat → Type := O : ∀{n}, idx (Sn) | S : ∀{n}, idxn→ idx (Sn)
vecX : nat → Type := ⟨ ⟩ : vecX O | _ :: _ : ∀{n}, X → vecX n→ vecX (Sn)

We can analyze the content of vectors by standard pattern matching, or, on nonempty vectors,
using the standard vec_head : vecX (Sn) → X and vec_tail : vecX (Sn) → vecX n

functions. But to access the components in a more versatile way, as sometimes required by
the definition of µ-algorithms, we define the projection vec_prj {X n} : vecX n→idxn→X.
The Coq fixpoint defining vec_prj is carefully written by structural recursion on the vector,3
and the use of idx_inv {0} : idx 0 → False allows to dispose of the impossible case in a
guard-checker friendly way.

Fixpoint vec_prj {n} (u : vec X n) : idx n → X :=
match u in vec _ m return idx m → X with
| ⟨ ⟩ ⇒ λ i, match idx_inv i with end
| x :: v ⇒ λ i, match i in idx m return vec _ (pred m) → X with

| O ⇒ λ _, x

| S j ⇒ λ v, vec_prj v j

end v

end

The type of idx_inv {n : nat} is a bit more general (by dependent pattern matching on n),
to also allow inversions of indices in idx (Sn) but the idea is the same. Actually, besides the
definition of idxn, the statement of the lemma idx_inv together with its short proof is the
only tool defined in our library for indices (in file index.v). Notice that we avoid idx_inv
by inlining it in the second match case x :: v because using it would introduce an additional
level of constructors/matches in the extracted code.

Then v.[i] is just a convenient notation for vec_prj v i. As a consequence of our definition,
the identities (x :: v).[O] = x and (x :: v).[S i] = v.[i] hold by definitional equality. But more
importantly, any component v.[i] is recognized as a sub-term of v by the guard-checker
when type-checking a fixpoint nesting a call to vec_prj. Additionally, vec_prj extracts to
desirable OCaml code:

let rec vec_prj u i = match u with
| ⟨ ⟩ → assert false
| x :: v → match i with O → x | S j → vec_prj v j

The projection vec_prj allows to view the inductive type vecX n as an extensional repres-
entation of the type idxn → X: two vectors are equal iff their components are equal, i.e.(
∀i, v.[i] = w.[i]

)
→ v = w, which is not the case for “functional vectors” in idxn→X.

Complementary to vec_head and vec_tail, we also provide versatile inversion lemmas
for vectors in either vecX O or vecX (Sn) of types (see vec.v for detailed explanations):

Definition vec_O_inv {X} {P : vec X O → Type} : P ⟨ ⟩ → ∀u, P u.

Definition vec_S_inv {X n} {P : vec X (S n) → Type} :
(
∀x v, P (x :: v)

)
→ ∀u, P u.

3 The Coq standard library version 8.16.1 of Vector.nth proceeds by recursion on the index, not on the
vector, which would conflict with our guard conditions, but a version of nth computationally similar to
vec_prj has been accepted into future revisions of the standard library as PR #16731.

https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/index.v
https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/vec.v
https://github.com/coq/coq/pull/16731

D. Larchey-Wendling and J.-F. Monin 21:15

For instance, the term vec_S_inv (λx v, f x v)u can then be seen as a correct (hence
type-checkable) way to write something like match u with x :: v ⇒ f x v end for a vector
u : vec _ (S _), that moreover extracts into a pattern-matching on u, i.e. of the form

match u with ⟨ ⟩ → assert false | x :: v → f x v.

The alternate code f (vec_headu) (vec_tailu) would extract less gracefully in two successive
pattern-matchings on u performed inside vec_head and vec_tail.

5 Extraction to OCaml

To shorten a bit the extracted code and make it easier to read, in the file interpreter.v we
feed the extraction plugin of Coq with several kinds of directives:

we generally forget about arities because they do not participate in the computation.
They exist at proof-level to ensure that e.g. composition (resp. projection) occurs only
between vectors (resp. and indices) of proper arities;
we extract indices in idxn as natural numbers directly to avoid duplication of code
between idx _ and nat;
having forgotten their arity, we can extract vectors as native OCaml lists to present the
reader with a familiar notation for tuples;
we inline some Coq terms to avoid duplicating OCaml names for the same functions and
avoid steps that need no factorization because they are only used once.

With those directives, in a first iteration of extraction, we get the OCaml interpreter for
µ-algorithms as presented in the introduction, with two minor differences that we describe
and discuss how they can be addressed below.

The first difference is that Coq does not generate partial match filters and thus, we get
extra assert false statements instead of missing match cases. Computationally the only
difference this makes is in the name of the generated exception. However, they should not
be triggered unless the OCaml interpreter is called on a context which could not be typed
within Coq, e.g. the input vector has a shorter length that the arity of the µ-algorithm.4

The second difference is the occurrence of __ = Obj.t OCaml type and object that the
extraction plugin uses to circumvent the type system of OCaml on Coq types which are too
general for it.5 This difference is more important to tackle in our opinion.

Let us start with an explanation of why these __ appear in the extracted code in the first
place. They come from e.g. the second (non implicit) argument of umin0_compute, which is
a partial value of type f : ∀n, compute (F n) or, by expanding the definition of compute, of
type f : ∀n, (∃y, F n y) → {y | F ny}. The extraction plugin is not able to recognize that it
can safely erase (∃y, F n y) because f is itself an argument of umin0_compute. No directive
of our knowledge is able to inform the extraction plugin with non-informative data in the
types of the arguments of extracted terms.

We present two ways of getting rid of __. Both consist in hiding the proposition (∃y, F n y)
in the propositional part of a Σ-type. We think it is better to describe these tricks as a diff
on the Coq code rather than directly exposing a more convoluted variant of the interpreter;
see files unit.diff and hide.diff.

4 We do not know if it is possible to instruct the extraction plugin to dismiss impossible match cases.
5 Additional issues could be raised by the call-by-value evaluation strategy of OCaml; anyway, extracting

to Haskell produces similar extra arguments of type any, showing that the discussion below still makes
sense even with a lazy strategy, especially the second improvement.

ITP 2023

https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/interpreter.v
https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/unit.diff
https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/hide.diff

21:16 Faithful Computation and Extraction of µ-Recursive Algorithms

The first approach consists in adding a new parameter of type unit and packing it with
the proposition (∃y, F n y), hence we get the following definition of computeu:

Definition computeu {X} (P : X → Prop) := {_ : unit | ∃x, P x} → {x | P x}

the type of the parameter f in umin0_compute becoming f : ∀n, computeu (F n). We do not
need to upgrade compute into computeu everywhere though, only when a parameter is a
partial function, e.g. in the definitions of prim_rec_compute, or vec_map_compute or that
of umin_compute and umin0_compute.

This solution has the advantage of symmetry (see below) and conceptual simplicity. The
simplest way to visualize small amount of needed updates in the code is through the diff
file unit.diff. The resulting extracted code is the same as in the first iteration except that
Obj.t (resp. __) gets substituted with unit (resp. ()). So there is no trick to circumvent
the OCaml type system anymore but still, an extra dummy/unit argument remains.

The second approach gives us an extraction where the __ parts are completely removed
from the code. This is quite satisfying and not much more complicated than the unit trick
but we lose symmetry in the treatment of the arguments of Coq terms. The trick consists
in hiding (∃y, F n y) directly under the last argument it depends on, hence n in the case of
umin0_compute. So we get the following type for its second argument:

f : ∀p : {n | ∃y, F n y}, {y | F (π1 p) y}.

Again, we only need to make that change on the type of the arguments that represent partial
functions, e.g. f , not on the terms implementing partial functions, e.g. umin0_compute. We
recall that the simplest way to visualize the small amount of required modifications in the
Coq code is via the diff file hide.diff.

6 Conclusion

Program extraction was advocated as an interesting approach to the study of the correctness
(by construction) of functional programs for a long time, and the issue of partial functions,
especially possibly non-terminating programs, was raised very early, both in untyped settings
such as PX [6] and in strongly typed logical settings where only terminating (functional)
programs can be expressed such as Nuprl [3]. Parametric ways to deal with partial values in
Coq include [2, 4], allowing for the development of synthetic computability theory [5].

In addition to theoretical considerations, the issue of partiality is not that easy from a
practical point of view, notably when partial functions are mixed with higher-order functional
programs: when the latter are basically structurally recursive, it is desirable to keep their
conceptual simplicity as much as possible.

We think that the example of µ-recursive functions contains a significant summary of the
issues raised, so the work presented here may help to understand how they can be dealt with
in CIC as implemented in the Coq proof assistant. We could have just tried to follow the
Braga method [11], i.e., to provide an inductive definition of the domain of the full desired
interpreter (ra_compute) either directly, or from an inductive presentation of its input-output
graph. Clearly, the resulting development would have been much more convoluted. Instead,
we have limited the use of the machinery of [11] – actually a tail-recursive variant of it – at
the single place where it is relevant (unbounded minimization), using ordinary structural
recursion on the input data at all other places. Beyond careful explanations on why and how
guard condition for termination are satisfied, the resulting development is made conceptually

https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/unit.diff
https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/hide.diff

D. Larchey-Wendling and J.-F. Monin 21:17

simple and concise. To this effect, a very simple, hence easy to overlook idea turned out to
be surprisingly effective: use ∀x, (∃y,Gx y) → {y | Gxy} as a general shape for specifying
ra_compute and its auxiliary functions.

Note that, as a bonus, the results previously presented in [9] can then be obtained with
much shorter and elegant proofs.

References
1 George S. Boolos, John P. Burgess, and Richard C. Jeffrey. Computability and Logic. Cambridge

University Press, 4 edition, 2002. doi:10.1017/CBO9781139164931.
2 Mario Carneiro. Formalizing Computability Theory via Partial Recursive Functions. In ITP

2019, volume 141, pages 12:1–12:17. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019.
doi:10.4230/LIPIcs.ITP.2019.12.

3 Robert L. Constable et al. Implementing Mathematics with the Nuprl Development System.
Prentice-Hall, NJ, 1986.

4 Yannick Forster. Church’s Thesis and Related Axioms in Coq’s Type Theory. In CSL
2021, volume 183, pages 21:1–21:19. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPIcs.CSL.2021.21.

5 Yannick Forster. Parametric church’s thesis: Synthetic computability without choice. In Sergei
Artemov and Anil Nerode, editors, Logical Foundations of Computer Science, pages 70–89,
Cham, 2022. Springer International Publishing.

6 Susumu Hayashi. Extracting Lisp Programs from Constructive Proofs: A Formal Theory
of Constructive Mathematic Based on Lisp, volume 19, pages 169–191. Publications of the
Research Institute for Mathematical Sciences, 1983.

7 Stephen C. Kleene. λ-definability and recursiveness. Duke Mathematical Journal, 2(2):340–353,
1936. doi:10.1215/S0012-7094-36-00227-2.

8 Stephen C. Kleene. Recursive predicates and quantifiers. Trans. Amer. Math. Soc., 53:43–73,
1943. doi:10.1090/S0002-9947-1943-0007371-8.

9 Dominique Larchey-Wendling. Typing Total Recursive Functions in Coq. In ITP 2017, pages
371–388. Springer, 2017. doi:10.1007/978-3-319-66107-0_24.

10 Dominique Larchey-Wendling and Yannick Forster. Hilbert’s Tenth Problem in Coq (Extended
Version). Logical Methods in Computer Science, Volume 18, Issue 1:35:1–35:41, March 2022.
doi:10.46298/lmcs-18(1:35)2022.

11 Dominique Larchey-Wendling and Jean-François Monin. The Braga Method: Extracting
Certified Algorithms from Complex Recursive Schemes in Coq, chapter 8, pages 305–386. World
Scientific, 2021. doi:10.1142/9789811236488_0008.

12 Joseph R. Shoenfield. Mathematical Logic. Addison-Wesley series in logic. Addison-Wesley,
1967.

13 Vincent Zammit. A Proof of the S-m-n theorem in Coq. Technical report, The Computing
Laboratory, The University of Kent, Canterbury, Kent, UK, March 1997. URL: http://kar.
kent.ac.uk/21524/.

ITP 2023

https://doi.org/10.1017/CBO9781139164931
https://doi.org/10.4230/LIPIcs.ITP.2019.12
https://doi.org/10.4230/LIPIcs.CSL.2021.21
https://doi.org/10.1215/S0012-7094-36-00227-2
https://doi.org/10.1090/S0002-9947-1943-0007371-8
https://doi.org/10.1007/978-3-319-66107-0_24
https://doi.org/10.46298/lmcs-18(1:35)2022
https://doi.org/10.1142/9789811236488_0008
http://kar.kent.ac.uk/21524/
http://kar.kent.ac.uk/21524/

Group Cohomology in the Lean Community Library
Amelia Livingston #

King’s College London, UK

Abstract
Group cohomology is a tool which has become indispensable in a wide range of modern mathematics,
like algebraic geometry and algebraic number theory, as well as group theory itself. For example,
it allows us to reformulate classical class field theory in cohomological terms; this formulation is
essential to landmarks of modern number theory, like Wiles’s proof of Fermat’s Last Theorem. We
explore the challenges of formalising group cohomology in the Lean theorem prover in a generality
suitable for inclusion in the community library mathlib.

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of
computation → Type theory

Keywords and phrases formal math, Lean, mathlib, group cohomology, homological algebra

Digital Object Identifier 10.4230/LIPIcs.ITP.2023.22

Supplementary Material Software: https://github.com/101damnations/ITP2023SupplementaryM
aterial, archived at swh:1:dir:d647ad13fc6cc27a6fe9f3b49691d0e1716a532c

Funding This work was supported by the Engineering and Physical Sciences Research Council
[EP/S021590/1]. The EPSRC Centre for Doctoral Training in Geometry and Number Theory (The
London School of Geometry and Number Theory), University College London

Acknowledgements I am very grateful to Kevin Buzzard for his ongoing mathematical and Lean-
related support and guidance. I am also indebted to Joël Riou for his explanation of the simplicial
interpretation of group cohomology and his thorough reviewing of and advice regarding my work,
and for his formalisation of some of the results I used. I also depended heavily on Scott Morrison’s
development of Lean’s representation theory library and the category theory library more generally.
Finally, thanks to anyone who answered my questions on the Xena Project Discord server and the
Lean Zulip.

1 Introduction

1.1 Motivating group cohomology
There are many cohomology theories in mathematics. They associate simpler, “linear”
invariants (vector spaces, or more generally modules, and linear maps between them) to
more complicated objects, and analysing these invariants can answer questions about the
complicated objects.

We want a cohomology theory for groups. They are ubiquitous in maths. Groups
themselves often appear as invariants of more complex objects: we can study a topological
space by studying its fundamental group, or field extensions by their Galois groups, or rings
by their K-groups in algebraic K-theory. But they are still more complicated than “linear”
invariants, and abstract group theory itself is not easy. The simpler invariants we obtain in
group cohomology come from asking how a group acts on other objects, rather than analysing
it internally.

This is the spirit of group cohomology – but there are multiple ways to actually define it.
This is often the case in maths, and different definitions lend themselves to different exploits.
There might be a particularly abstract formulation, expressing a concept as a special case of
some more general category-theoretic notion. This perspective tends to give us access to

© Amelia Livingston;
licensed under Creative Commons License CC-BY 4.0

14th International Conference on Interactive Theorem Proving (ITP 2023).
Editors: Adam Naumowicz and René Thiemann; Article No. 22; pp. 22:1–22:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ucahali@ucl.ac.uk
https://doi.org/10.4230/LIPIcs.ITP.2023.22
https://github.com/101damnations/ITP2023SupplementaryMaterial
https://github.com/101damnations/ITP2023SupplementaryMaterial
https://archive.softwareheritage.org/swh:1:dir:d647ad13fc6cc27a6fe9f3b49691d0e1716a532c;origin=https://github.com/101damnations/ITP2023SupplementaryMaterial;visit=swh:1:snp:d67f5e53e37ef06282c3c3f2d2aa2493eb9845ac;anchor=swh:1:rev:8bd396d88bc3e82f94243e1d9de2834887a5bdc7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Group Cohomology in the Lean Community Library

powerful techniques for developing theory. But because the tools come from a more general
setting, they are not specialised for the computation of examples, or for proving theorems
that depend on the specificities of our situation. For these, we need a different, more down
to earth approach, which will necessarily vary from setting to setting.

Because cohomology theories typically have a similar abstract foundation, there are many
cohomological examples of this abstraction versus practicality dichotomy. For example,
in algebraic topology, we find a variety of ways to compute singular cohomology, e.g. via
simplicial, cellular or de Rham cohomology. More generally, we can calculate sheaf cohomology
using Čech cohomology.

The situation is no different for group cohomology. Given a group G acting on an abelian
group M, group cohomology is a family of groups Hn(G, M) for n ∈ N. Mathematicians
have analysed the groups of low degree, i.e. for n ≤ 2, via explicit calculation since before
“group cohomology” was a term [14, p. 10]. For example, H1 appears in Hilbert’s Theorem
90, originally proved by Kummer in 1855 [8, p. 213]; among many other applications, this
result parametrises the solutions to certain Diophantine equations [7, p. 3]. Meanwhile, H2

classifies group extensions, as explained by Baer and others in the early 20th century [14, p.
10]. Given an abelian group A and another group G, this means classifying the groups E

having A as a normal subgroup and such that E/A ∼= G, revealing the ways in which bigger
groups can be built from smaller ones.

On the other hand, the abstract story, which was developed in the mid-20th century [14,
p. 11–12], gave us more tools to analyse Hn(G, M) for arbitrary n, and explore relationships
between these groups as n, G and M vary, via homological techniques. It also connects group
cohomology to topological cohomology. Thus we wish to formalise both the abstract and
concrete approaches, and prove their equivalence. This equivalence is the focus of the paper.

1.2 Lean and mathlib

Lean is an interactive theorem prover that uses dependent type theory; every “object” in
Lean is a term of a unique type. A Lean file mainly consists of definitions, lemmas and
theorems, which the user must prove with the assistance of tactics that provide some degree
of automation. We will meet some tactics and structural features of Lean during the paper,
but try to explain these with as little code as possible. When this is unreasonable, we provide
links to Lean files, indicated with the symbol �, which illustrate details in more depth. An
archive containing saved versions of the non-permanent links in the paper can be found at �.

Like maths, formalisation is a collaborative process. In order to make progress, we must
make use of work that has been done before; some of this work is collected in a library called
mathlib �. The library comprises folders for each mathematical subfield, and each file
consists of a collection of definitions and facts, which we call an API, relating to a particular
mathematical concept. But there are typically many ways to formalise the same object, and
it is not always obvious which ways are “right”: which implementation can feasibly be used
in the formalisation of further material. Lean cannot work this out for us; many factors
influence the extensibility of Lean code, and typically we must make an educated guess at
the correct formalisation and potentially refactor when a future user runs into difficulties.
This makes the task of writing mathlib-suitable code significantly harder than code which
just compiles, and the mathlib library has a rigorous community review process to try and
avoid having to refactor new work down the line. There is no algorithm for making sure the
growth of mathlib is sustainable; it seems to require human insight.

Often this is because the library needs to meet the needs of humans. On the one hand, it
should be organised coherently, so the user has some idea of where to find what they need.
On the other hand, APIs should be fleshed out enough that a user does not need to know

https://github.com/101damnations/ITP2023SupplementaryMaterial/tree/c5d659ff3425705c404a87687d4e8294d2941e44
https://github.com/leanprover-community/mathlib/tree/master/src

A. Livingston 22:3

the specific implementation the author chose – to an extent, there should be support for
any other user imagining a different implementation. It seems to the author that these aims
can conflict.

But not all challenges in mathlib design are due to the limitations of humans. One
reason for this is the complexity of the algebraic hierarchy (a portion of which can be seen
in [10, p. 4]). Everything in mathlib should be stated in the maximum possible generality
within this hierarchy, so that it can be used in any setting in which it applies. In simple
examples this is easy to ensure – it is not hard to check if a lemma about groups actually
applies to monoids too.

In more complicated settings, however, the pursuit of generality is less straightforward.
Firstly, it often means needing to create more new API than previously anticipated: it took a
surprisingly long time for real manifolds to enter mathlib, as contributors needed to develop
a wide variety of more general material, like the Bochner integral. But this is not the only
difficulty. In principle, abstraction should simplify code – but of course we will need to apply
the general material to more specific situations, and this is where complexity arises. For
instance, in our simple example, a lemma about groups becomes a lemma about monoids
which we are applying to a group, so we have to use something extra: the fact that a group
is a monoid. Obviously, this is fine. But the many iterations of this principle in complicated
settings has been a factor in most of the challenges in this project, as it can slow Lean down
and make errors more difficult to troubleshoot.

The project has taken a long time to develop considering its mathematical simplicity.
The author has now contributed two definitions of group cohomology to mathlib, as well as
proof of their equivalence. This required 10 sizeable pull requests, and often the material
had been rewritten to increasing degrees of abstraction. The paper will illustrate in detail
the development of this code.

Section 2 explains the essentials of the maths we wish to formalise, and explores some
fundamental design decisions and Lean principles. Section 3 describes our formal version of
a key object called the standard resolution, and Section 4 discusses how we use this object
to define group cohomology in Lean. In Section 5 we conclude and detail the future of the
project: the author is currently using the definitions explained to create further API and
prove various group cohomological results, although the code is not yet prepared enough for
presentation.

2 Preliminaries

2.1 Mathematical background
▶ Definition 1. Given an abelian category C (for example, the category of abelian groups, or
the category of modules over a ring) a cochain complex X in C indexed by N is a sequence

0 → X0
d0−→ X1

d1−→ . . .
dn−1−−−→ Xn

dn−→ . . .

of objects Xn ∈ C and morphisms dn : Xn → Xn+1, n ∈ N, satisfying dn+1 ◦ dn = 0 for all n.

We call the morphisms differentials. The condition dn+1 ◦ dn = 0 means the image of dn is
contained in the kernel of dn+1, allowing us to define

▶ Definition 2. The nth cohomology of X, Hn(X), is Ker(dn)/Im(dn−1).

A chain complex is the same, but with the morphisms in the other direction: dn is a
morphism Xn+1 → Xn, and the analogous invariant is called homology, denoted Hn(X).

ITP 2023

22:4 Group Cohomology in the Lean Community Library

With this, we can explain the abstract and concrete perspectives on group cohomology,
starting with the latter. The material can be found here [2, Chapter 4].

Given a group G, we call an additive commutative group M a G-module if it has a
map · : G × M → M satisfying gh · m = g · h · m for g, h ∈ G, m ∈ M and which also
distributes over addition, i.e. g · (m + n) = g · m + g · n for g ∈ G, m, n ∈ M.

▶ Definition 3. The nth group cohomology of G and M, denoted Hn(G, M), is the nth
cohomology of the cochain complex

0 → M → Fun(G, M) → Fun(G2, M) → Fun(G3, M) → . . . (1)

where Fun(Gn, M) is the set of functions from Gn to M, and the differential dn maps
f : Gn → M to the function sending (g0, . . . , gn) to

g0 · f(g1, . . . , gn) +
n−1∑
i=0

(−1)i+1f(g0, . . . , gigi+1, . . . , gn) + (−1)n+1f(g0, . . . , gn−1)

(and d0(m) = (g 7→ g · m − m)).

The differential is slightly messy, but this is the formulation that in some sense “shows up in
nature”; for example, it makes clearer the correspondence between H2(G, M) and certain
equivalence classes of group extensions. We call the Fun(Gn, M) inhomogeneous cochains.

The abstract perspective, meanwhile, is often introduced in a category of modules over a
ring, rather than in the category of G-modules (where morphisms are group homomorphisms
satisfying f(g · x) = g · f(x) for all g ∈ G). Like mathlib , the average undergraduate student
contains a far larger API for modules than for other concrete abelian categories, so when
explaining group cohomology it is natural to exploit the equivalence between the category of
G-modules and the category of modules over the following ring:

▶ Definition 4. The group ring Z[G] is the free abelian group on G (functions G → Z
which are nonzero at finitely many elements of G), with multiplication induced by that of G.

We denote its elements as sums
∑

nigi for ni ∈ Z, gi ∈ G. We can inject G into Z[G] by
sending g to the function which is 1 at g and 0 everywhere else; we will often abuse notation
and just denote this function by g.

Given this category equivalence G-Mod ∼= Z[G]-Mod, we can express group cohomology
as objects called Ext groups. Ext is an example of a derived functor; these are abstract
objects equipped with high-powered theory and are useful in many algebraic fields of maths.
We summarise their definition; the material can be found in [13, Chapters 1, 2].

▶ Definition 5. A morphism of chain complexes f : X → Y is a family of morphisms
fn : Xn → Yn making the resulting diagram commute – that is, dY

n ◦ fn+1 = fn ◦ dX
n for each

n.

A chain complex morphism induces maps on each homology group H(fn) : Hn(X) → Hn(Y);
we call f a quasi-isomorphism if each H(fn) is an isomorphism. Analogous definitions can
be made for morphisms of cochain complexes and cohomology.

To analyse an object X in an appropriate category C, we can sometimes associate to it a
chain complex of simpler objects, called a “resolution” of X, and study that instead. More
precisely:

▶ Definition 6. A projective resolution of X is a chain complex P and a
quasi-isomorphism of chain complexes f : P → X[0] such that each Pn is projective (a
certain “nice” property).

A. Livingston 22:5

By X[0] we mean the complex whose 0th object is X, with every other object 0. All the fn

for n > 0 are necessarily 0. The requirement that f is a quasi-isomorphism means Hn(P)
must be trivial for all n > 0; we say P is exact except at the right.

When we analyse what certain “nice” functors F do to X, we can learn more by applying
them to all of P, and then taking the (co)homology of the resulting complex, which in general
will no longer be trivial. However, due to the conditions in the definition of a projective
resolution, H0(F (P)) will always be isomorphic to F (X), so we do not lose information.
The Hn(F (P)) are independent of the projective resolution chosen, and can be extended to
functors; we call them the derived functors of F.

Given an object Y, one such F is Hom(−, Y). This functor is contravariant, meaning it flips
the directions of maps: a map ϕ : X1 → X2 is sent to the map Hom(X2, Y) → Hom(X1, Y)
given by precomposition with ϕ. Because of this contravariance, the functor sends a chain
complex to a cochain complex, giving us

0 → Hom(P0, Y) − ◦ d0−−−−→ Hom(P1, Y) − ◦ d1−−−−→ Hom(P2, Y) → . . .

▶ Definition 7. For P a projective resolution of X, the nth cohomology of the above complex
is called Extn(X, Y). It is independent of the resolution chosen.

Now, returning to group cohomology, we can appeal to the undergraduate’s module API to
observe that

Fun(Gn, M) ∼= HomZ(Z[Gn], M)
∼= HomZ[G](Z[G], HomZ(Z[Gn], M)) ∼= HomZ[G](Z[G] ⊗Z Z[Gn], M) (2)

Here HomR denotes morphisms in the category of R-modules, and the Z[G]-module structure
on Z[G] ⊗Z Z[Gn] is given by x · (y ⊗ z) = xy ⊗ z.

This isomorphism suggests that our concrete group cohomology groups are actually Ext
groups of some sort. Indeed, the modules Z[G] ⊗Z Z[Gn] are not just projective, but free, a
stronger property. A free module is a module with a basis; for example, a vector space is a
module over a field, and since all vector spaces have a basis, every module over a field is free.
Since the Z[Gn] are free Z-modules, the Z[G] ⊗Z Z[Gn] are free Z[G]-modules, and hence
projective. We will also apply an isomorphism Z[G] ⊗Z Z[Gn] ∼= Z[Gn+1]; for our concrete
group cohomology to agree with certain Ext groups, we then seek a projective resolution
whose nth object is Z[Gn+1]. Indeed:

▶ Definition 8. The standard resolution is the chain complex

. . .
d2−→ Z[G3] d1−→ Z[G2] d0−→ Z[G] → 0 (3)

with differential sending g = (g0, . . . , gn) ∈ Gn+1 to

n+1∑
j=0

(−1)j(g0, . . . , gj−1, gj+1, . . . , gn).

The cokernel of d0, i.e. Z[G]/Im(d0), is Z. Indeed, this is a projective resolution of Z
considered as a trivial Z[G]-module – that is, g · m = m for each g ∈ Z[G], m ∈ Z. We will
use this resolution to show that the nth group cohomology of M is in fact Extn

Z[G](Z, M),
and thus connect the concrete and abstract interpretations of group cohomology.

ITP 2023

22:6 Group Cohomology in the Lean Community Library

2.2 Initial formalisation considerations
There are many respects in which our formalisation is not a direct translation of the maths
just outlined. To start explaining the code, we must address the more fundamental of these,
which appear at every point in the project.

2.2.1 Complexes in Lean
We first explain the mathlib definition of complexes, which is a little counterintuitive, and
which illustrates one of the Lean community’s adaptations to the quirks of dependent type
theory.

We first note that complexes in Lean have always permitted a more general indexing
type than N, and although the issues we will detail can also arise for N, the most natural
examples are for Z.

If we followed our nose, our definition of a cochain complex in Lean would involve a
function X: Z → C and a function d sending n ∈ Z to a morphism X(n) → X(n + 1). This
is essentially how complexes were originally formalised, and is fine in set theory, but not
when we translate to dependent type theory. For example, when C is the category of abelian
groups, we might want to know whether a term x : X(n) is in the image of the differential.
But the type of this differential, according to our setup, is d: X(n - 1) → X(n - 1 + 1).
Of course, n − 1 + 1 is equal to n, but the problem is that type theory has multiple notions
of equality.

The simplest one is syntactic equality: two objects are syntactically equal if they are “the
same characters in the same order”. A = A is a syntactic equality. Next we have definitional
equality – when, after unfolding definitions, two objects reduce to being syntactically equal:

def X : N := 5
def Y : N := 5
example : X = Y := rfl

where rfl proves the statement by unfolding the definitions of X and Y and applying
reflexivity of equality. We note that not all tactics unfold terms like rfl. Given an equality
or an iff statement whose lefthand side is syntactically equal to something in the goal, the
rewrite and simp tactics can replace that expression in the goal with the righthand side of
the equality/iff statement. The “simplifier” tactic simp is an example of Lean’s automation:
it searches through all lemmas tagged @[simp], looking for statements whose lefthand side
is syntactically equal to something in the goal, and then rewrites those lemmas. If it were to
unfold terms as well as search its library, it would perhaps be rendered uselessly slow.

Finally, we have propositional equality: when two objects can be proved to be equal. For
example:

example (a : N) : a + 0 = a := rfl -- succeeds
example (a : N) : 0 + a = a := rfl -- fails

since N is an inductive type, and addition is defined by induction on the second variable,
not the first; we can prove the second statement by inducting on a, at which point we can
appeal to definitional equalities. Hence the first statement is a definitional equality, and the
second only a propositional equality.

Thus our issue is that n − 1 + 1 is not definitionally equal to n; its proof is the lemma
int.sub_add_cancel. And in dependent type theory, everything is a term of a unique type;
d(y) cannot have type X(n - 1 + 1) and type X(n) simultaneously. If n − 1 + 1 had been

A. Livingston 22:7

definitionally equal to n, Lean could unify X(n - 1 + 1) and X(n) by unfolding definitions,
but since these expressions are only propositionally equal, the statement d(y) = x will not
typecheck.

We can, of course, compose with an isomorphism X(n - 1 + 1) ∼= X(n); this is the
approach taken in Domínguez and Rubio’s formalisation of chain complexes in Coq [4, p.
6]. The UniMath library also uses the intuitive definition of chain complexes �, since the
univalence axiom means that such an isomorphism is equivalent to an equality. We note that
in simple type theory, meanwhile, one must take a different approach: Isabelle/HOL defines
exact sequences inductively as a certain kind of set of pairs of objects and functions �.

However, carrying around these extra isomorphisms is unwieldy (in Lean, at least), and
to deduce things about the resulting maps the user must prove heterogeneous equalities:
equalities between terms of different types, denoted == .

Discussion here � concerns similar issues raised by commutative differential graded
algebras. Over a commutative ring R, these are families of R-modules An indexed by N
with, among other things, a family of R-bilinear “multiplication” maps Ai × Aj → Ai+j for
i, j ∈ N satisfying certain axioms. But the natural statement of associativity, for example,
does not typecheck.

Ultimately, for complexes, the Lean community settled on a different implementation:
define cochain complexes (and chain complexes) to have a differential between every pair of
indices i, j, and require a proof that these are equal to 0 unless i + 1 = j, as well as a proof
that any two differentials compose to give zero. This was first suggested by Johan Commelin
here � on March 9th, 2021. Whilst this definition seems strange, it means we only have
to identify non-definitionally equal types or check i + 1 = j during proofs, and not when
defining data. This is much easier to work with, as demonstrated here �: we can use the
cases tactic on hypotheses like i + 1 = j and replace the lefthand side with the right in the
types involved in the goal. The definition of complexes was refactored to use this approach
in 2021, by Scott Morrison, in this pull request �.

2.2.2 The right generality
Secondly, when we apply the mathlib tenet of maximum generality, we notice something:
our exposition of group cohomology all works if we replace Z by an arbitrary commutative
ring k, and ask that M is a k[G]-module, where k[G] is defined analogously to Z[G]; the rest
of this paper will always use general k. We made a choice here – the alternative would be to
continue developing the theory over Z, and then just tensor with k when we want a more
general result [12, Tag 0DVD]. Likewise, we could define additive commutative groups as
the special case of k-modules when k = Z. The “hierarchy of generality” seems to contain
cycles. In this latter case it is easier to define additive commutative groups on their own,
as the definition of module naturally extends the definition of additive commutative group.
However, in our case the other approach is preferable, as it is simpler to replace Z with k

than to have to involve tensor products.

2.2.3 Exploiting typeclass inference
Thus we are now concerned with the group k-algebra k[G] and k[G]-modules; this raises
further choices. In maths we denote any “scalar-like” action by ·. We can emulate this in Lean
using typeclasses – a strategy also used in other theorem provers, like Agda, Coq and Isabelle
[1, p. 1]. Maths is built from complex hierarchies of structures; typeclasses make it easier to
formalise these hierarchies in an efficient and usable way. They enable us to reuse API for

ITP 2023

https://github.com/UniMath/UniMath/blob/a463f7e0f6ce5fe4422e2a530d73540e5c8baad4/UniMath/HomologicalAlgebra/Complexes.v#L88-L90
https://isabelle.in.tum.de/library/HOL/HOL-Algebra/Exact_Sequence.html
https://leanprover-community.github.io/archive/stream/116395-maths/topic/CDGAs.html
https://leanprover-community.github.io/archive/stream/267928-condensed-mathematics/topic/complexes.2C.20d.2C.20dtt.html
https://github.com/leanprover-community/mathlib/blob/2683beaf0bfcafeeafc1a18548ae21884dcaed51/src/representation_theory/MWEs/cochain_complexes.lean
https://github.com/leanprover-community/mathlib/pull/7473

22:8 Group Cohomology in the Lean Community Library

simple structures when reasoning about more complicated superstructures; for example, we
can use the notation + when dealing with any structure inheriting a has_add instance. Often,
a structure can inherit an instance via multiple different paths, called diamond inheritance.
This is fine when the inherited instances are definitionally equal. For instance, the semiring
instance on a commutative ring coming from the inherited ring instance is definitionally equal
to the one coming from the inherited commutative semiring instance, so it does not matter
which path typeclass inference uses. But in practice, different inheritance paths will not
always lead to definitionally equal instances, and this is problematic. Moreover, whilst concise
notation is an advantage of typeclasses, it can make it harder to see when Lean’s behaviour
is not what we want. In practice we often want to consider multiple different k[G]-actions
on the same object. Here � is an example of two different instances clashing; the action of
k[k×] on itself naturally extending the action of k× on coefficients is not the same as the
action of k[k×] on itself by multiplication. But even two equal instances can conflict. Lean
cannot unify instances that are only propositionally equal: the point of typeclass inference
is to reduce the need to supply arguments explicitly, so we cannot provide a proof to the
inference system of such an equality.

If we have a non-definitionally equal diamond and still wish to exploit typeclass inference,
a possible solution is type aliases: a nickname for a type.

variables (R : Type*) [ring R]
def copy := R -- ‘copy’ is a nickname for ‘R’

If we declare an instance on the type alias, it will not pollute the underlying type. For
example, we can try defining 0 in copy R to be the 1 of the underlying ring:

instance : has_zero (copy R) := ⟨(1 : R)⟩
example : (0 : copy R) = 1 := rfl -- succeeds
example : (0 : R) = 1 := rfl -- fails

Conversely, Lean will not apply instances on the underlying type to the type alias, unless
asked to:

instance : ring (copy R) := infer_instance -- fails
instance : ring (copy R) := by unfold copy; apply_instance -- succeeds

We can also use type aliases to organise API. For any type X and any type k with a 0,
finsupp X k is the type of finitely supported functions X → k. When G is a monoid and k is
a commutative ring, finsupp G k is the k-algebra k[G], with multiplication induced by that
of G – but instead of creating this instance, mathlib defines a type alias monoid_algebra k
G for finsupp G k, on which the k-algebra instance is defined. Hence results and instances
relying on multiplication in G can be organised into the monoid_algebra k G API.

Thus, if we have a k[G]-action on a type M which could create diamonds if we declared it
as an instance, we can instead make a type alias for M, and limit the scope of the instance.

In mathlib’s category theory library, we do something essentially equivalent to using
type aliases constantly, but working in Lean’s category Module (monoid_algebra k G) (i.e.
k[G]-Mod) for our purposes is still tricky. Outside this library, an R-module is 3 different
variables: a term M of type Type*, an additive commutative group instance
[add_comm_group M], and an R-module instance [module R M]. But when we work category-
theoretically, an R-module is one variable: a term M of type Module R, which is a structure
with 3 fields:

https://github.com/leanprover-community/mathlib/blob/2683beaf0bfcafeeafc1a18548ae21884dcaed51/src/representation_theory/MWEs/smul.lean

A. Livingston 22:9

structure Module :=
(carrier : Type v)
[is_add_comm_group : add_comm_group carrier]
[is_module : module R carrier]

meaning the R-module structure on a term M : Module R is built into its type and is
unambiguous. This achieves the same thing as declaring an alias for M, and then only
defining the specific R-module structure we want on the alias.

But for us, even this will not suffice. If we package a G-module M with a compatible
k-module structure as an object in k[G]-Mod, we still want to be able to talk about the
underlying k-module structure, and the natural k-module structure on terms of type
Module (monoid_algebra k G) is not definitionally equal to the k-module structure we
started with, as proved here �.

Instead, we use a further alternative. We bundle our actions of k and G as k-linear
representations of G: a k-module M equipped with a monoid homomorphism M.ρ of
type G → Endk(M), where Endk(M) is the ring of k-linear maps from M to itself. When
developing representation theory, mathlib contributors were unsure whether to define repres-
entations this way, or as objects with a separate k-action and G-action, or as k[G]-modules,
and Antoine Labelle and Eric Wieser vouch for the first definition here � on April 19th,
2022. It is similar to the definition chosen in Coq’s Mathematical Components library �.
This way we only deal with one k-module instance, and the G-action on M is unambiguous.
However, since the action has become an explicit homomorphism M.ρ we cannot use typeclass
inference or the notation ·. This does not even increase the number of arguments we need
to give Lean, though; functions that would otherwise require the arguments k, G, M now
only require M, since M.ρ contains the information of k, G and M in its type. We call the
category Rep k G:

structure Rep (k G : Type u) [comm_ring k] [group G] :=
(V : Module k)
(ρ : G →* End (Module k))

which we will subsequently denote G-Repk. Since this category is equivalent to k[G]-Mod,
it has “enough” projective objects for us to talk about the derived functor Ext. We state
everything in terms of representations.

3 Formalising the standard resolution

Now we are ready to discuss the content of the project. We started by constructing the
standard projective resolution of the trivial k-module k, which we will denote P from now on.
For each n, its nth object is the k-module k[Gn+1] equipped with the representation induced
by the diagonal action of G on Gn+1. The differentials, meanwhile, are easy to define, but
we have to prove that dn ◦ dn+1 = 0 for all n. There is a sense in which this was already in
mathlib; if we can build our resolution abstractly enough to use the mathlib proof, we will
avoid some code duplication. We summarise what this entails.

3.1 Simplicial objects

Our resolution will come from something called a simplicial object, which we now define.

ITP 2023

https://github.com/leanprover-community/mathlib/blob/2683beaf0bfcafeeafc1a18548ae21884dcaed51/src/representation_theory/MWEs/Module.lean
https://leanprover-community.github.io/archive/stream/116395-maths/topic/Representation.20Theory.html
https://math-comp.github.io/htmldoc/mathcomp.character.mxrepresentation.html

22:10 Group Cohomology in the Lean Community Library

▶ Definition 9. The simplex category is the category whose objects are the totally ordered
sets [n] := {0, 1, . . . , n} for n ∈ N, and whose morphisms are the order-preserving functions.

In mathlib we just represent the objects as individual natural numbers; simplex_category
is a type alias for N. The category is generated by the maps δn(i), σn(i), where δn(i) is the
unique order preserving injection [n] → [n + 1] which misses i, and σn(i) is the unique order
preserving surjection [n + 1] → [n] which hits i twice.

▶ Definition 10. A simplicial object in C is a contravariant functor from the simplex
category ∆ to C.

If we apply a simplicial object X to δn(i), we get a map X([n + 1]) → X([n]), which we
call the face maps of X. When C is abelian we can then define the alternating face map
complex associated to X [11, Def 2.6]: a chain complex whose nth object is X([n]) and
whose differential is given by the alternating sum of the face maps

n+1∑
i=0

(−1)i · X(δn(i))

which looks like the differential in our resolution, and also like the boundary maps of a
topological simplicial complex. We then have the proof that this squares to zero � formalised
by Joël Riou, which uses the fact that δn+1(i) ◦ δn(j + 1) = δn+1(j) ◦ δn(i). But why are we
using the term “face”?

This is because any simplicial set X (i.e. simplicial object in Set; we can also view
any of the simplicial objects we will be concerned with as simplicial sets) has a “geometric
realisation” |X| : there is a functor from simplicial sets to the category of compactly-
generated Hausdorff topological spaces. Essentially, we replace the elements of each X([n])
with standard topological n-simplices ∆n, and how they glue together depends on how X

acts on morphisms [5, Section I.2]. This is where the topological interpretation of group
cohomology comes from. We have

Hn(BG,Z) ∼= Hn(G,Z),

[13, Thm 6.10.5], where the lefthand side is the topological cohomology of BG, which is the
classifying space of G: the fundamental group of BG is G and its higher homotopy groups
are trivial. The classifying space BG is the quotient of a contractible space EG by an action
of G, and EG is determined by the structure of G; it is the universal cover of BG.

3.2 Constructing the resolution using EG

Using the comparisons described above between certain topological spaces, simplicial objects
and chain complexes, we can ultimately derive our projective resolution (3) from EG, as
suggested by Joël Riou here �, June 3rd 2022. The author formalised his suggestion; this
approach to the standard resolution ultimately involved more lines of code, but the resulting
formalisation was more suited to mathlib in its abstraction, motivated the creation of more
API for objects like the Čech nerve, and taught the author material. We sketch the maths
involved. Most of the code is here �; anything else is here � or here �. We also provide
links to any key result formalised by someone else (i.e. Joël Riou).

As an overview of the strategy, we will define a simplicial object EG in the category
G-Set (types with an action of G which respects multiplication in G). As a simplicial set, its
geometric realization is the universal cover of BG. We can later “linearise”: compose EG

https://github.com/leanprover-community/mathlib/blob/bd9851ca476957ea4549eb19b40e7b5ade9428cc/src/algebraic_topology/alternating_face_map_complex.lean#L67-L121
https://leanprover-community.github.io/archive/stream/116395-maths/topic/Group.20cohomology.html
https://github.com/leanprover-community/mathlib/blob/fac369018417f980cec5fcdafc766a69f88d8cfe/src/representation_theory/group_cohomology_resolution.lean#L238-L467
https://github.com/leanprover-community/mathlib/pull/16258/files
https://github.com/leanprover-community/mathlib/pull/17005/files

A. Livingston 22:11

with the free k-module functor from G-Set to G-Repk. Then, since G-Repk is an abelian
category, we can take the alternating face map complex associated to the resulting simplicial
k-linear G-representation, which will be the standard resolution we seek. As hoped, defining
the resolution using this EG gives us a proof that composition of the differentials equals zero
for free. Moreover, we will show that our resolution is homotopy equivalent to k[0] (the chain
complex with k at 0 and 0 everywhere else) – this will define a quasi-isomorphism – and
again, the simplicial approach gives us a more general proof of this than if we were to prove
it directly. The homotopy equivalence’s topological analogue is the contractibility of |EG|.

With this overview in mind, we explain the process in more detail. Given an appropriate
morphism f in a category, we can define a certain simplicial object C(f) called a Čech nerve.
We first show that for a G-Set X, the Čech nerve of the unique morphism X → ⊤ to the
terminal object (in G-Set, this is the type with 1 term) sends [n] to Xn+1. Now, considering
G as a G-set, acting on itself by left multiplication, EG is the Čech nerve of G → ⊤.

Now, recall that we are not only eventually defining a complex P, but also a morphism
to k[0] which we want to show is a homotopy equivalence. Note that since k[0] is only
nontrivial in degree 0, such a morphism is determined by a map f0 : P0 → k and a proof
that f0 ◦ d0 = 0, where d0 is the last differential in P. Call the data of a chain complex and a
morphism to a complex concentrated in degree 0 an “augmented chain complex”; analogously,
an augmented simplicial object is a simplicial object X plus a morphism from X([0]) to
some object Y satisfying a similar property. In a “nice” enough category, there is a natural
augmentation of any simplicial object through which all other augmentations factor, which
in the case of EG is given by the map G → ⊤.

We have said that P being homotopy equivalent to k[0] corresponds to |EG| being
contractible in the topological world; the analogue of contractibility for a simplicial object
is that its natural augmentation has an extra degeneracy. Given a simplicial object X

augmented by f0 : X([0]) → Y, an extra degeneracy is a family of maps s : Y → X([0]) and
sn : X([n]) → X([n + 1]) for n ≥ 0 satisfying certain properties, listed in [5, p. 200].

Now, it is a fact that the natural augmentation of the Čech nerve of a split epimorphism
has an extra degeneracy �, as formalised by Joël Riou. For our map of interest, G → ⊤,

to be a split epimorphism, there must be a morphism τ : ⊤ → G such that τ ◦ ϵ = id. But
no such map of G-sets exists; unless G is trivial, any function ⊤ → G does not respect the
action of G. So we will have to compose EG with the forgetful functor to Set (it simply
forgets the G-action), thus giving us an extra degeneracy for EG as an augmented simplicial
set. But this is still sufficient for our purposes.

Indeed, when we forget the G-action, the resulting simplicial set is still a Čech nerve,
so has an extra degeneracy. Then, when we compose with the free k-module functor, the
resulting simplicial k-module is no longer a Čech nerve. Thus discarding the k-action initially
was necessary for the proof strategy, and not just for the sake of generality. But it still has
an extra degeneracy, as these are preserved by any functor.

Now that we are in an abelian category, we can take the alternating face map complex.
The result is our standard resolution P as a complex of k-modules – we have forgotten the
representation structure. Given an augmented simplicial object with an extra degeneracy, the
natural augmentation of the resulting alternating face map complex is a homotopy equivalence,
as formalised here �, by Joël Riou. Applying this gives us a homotopy equivalence, and
hence a quasi-isomorphism, of complexes of k-modules between P and k[0]. We need to
upgrade this to a quasi-isomorphism of complexes of representations. But this amounts
to showing our map of k-modules P0 → k comes from a map of representations, and then
checking properties determined on the level of sets – hence since they hold on the level of
k-modules, due to our quasi-isomorphism, they also hold in G-Repk, and we are fine.

ITP 2023

https://github.com/leanprover-community/mathlib/blob/fac369018417f980cec5fcdafc766a69f88d8cfe/src/algebraic_topology/extra_degeneracy.lean#L272
https://github.com/leanprover-community/mathlib/blob/fac369018417f980cec5fcdafc766a69f88d8cfe/src/algebraic_topology/extra_degeneracy.lean#L353

22:12 Group Cohomology in the Lean Community Library

With all this in place, we can define the chain complex group_cohomology.resolution
and its quasi-isomorphism. We define the complex to be the alternating face map complex of
EG composed with the “linearisation functor” from G-Set to G-Repk, which is induced by
the free k-module functor on Set.

def group_cohomology.resolution :=
(algebraic_topology.alternating_face_map_complex (Rep k G)).obj

(classifying_space_universal_cover G ≫ (Rep.linearization k G).1.1)

Given this definition, the objects in the complex are definitionally isomorphic to k[Gn+1],
and simp proves that the differential agrees with (3).

We note that up to here we have only required G to be a monoid.

3.3 Freeness of k[Gn+1]
The main remaining task is to show the objects in the resolution are projective, and for this
we shall need G to be a group. Since they are not only projective, but in fact free, we show
this instead. This is the only place we will use the category of k[G]-modules, for its free
object API. We do this by first constructing the isomorphism

k[G] ⊗k k[Gn] ∼= k[Gn+1] (4)

as representations, where the representations on k[Gn+1] and k[G] are induced by left
multiplication of G, whilst k[Gn] has the trivial representation. Then, passing to the k[G]-
module category, we can send the natural k-basis of k[Gn] to a k[G]-basis of k[G] ⊗k k[Gn],
and transport this across the isomorphism. The author constructed (4) twice; first at the very
start of the project, and secondly whilst writing this paper. We will review each formalisation,
and compare them. The crux of the original formalisation is here �, with the rest here �

and here �. The new formalisation is here �.
Originally, we defined a map Gn → Gn+1 which sends

(g1, . . . , gn) 7→ (1, g1, g1g2, . . . , g1 . . . gn),

and extended this to a k-linear map k[G] ⊗k k[Gn] → k[Gn+1] that sends g ⊗ (g1, . . . , gn) to
g · (1, g1, g1g2, . . . , g1 . . . gn), in of_tensor_aux.

The type of a morphism in G-Repk is a structure with two fields: a k-module morphism,
and a proof it is compatible with the representations. If we put of_tensor_aux in the first
field and then try to prove the statement in the second field, we get timeouts when using
common tactics like dsimp (performs some definitional reduction, typically making the goal
easier to read) and simp. Thus we prove the required compatibility result in a separate
lemma. This difficulty surprised the author, as the objects involved seemed relatively low
level. However, we are marrying some category-theoretic material (the definition of G-Repk

morphisms) and some non-category-theoretic material (everything else) – a task which has
seemed to cause basic tactics to time out at other points in the project too. Meanwhile, we
can state the separate lemma without category-theoretic terms, so we can prove it with our
usual tactics.

Similarly, we define the inverse map to_tensor, which sends

(g0, g1, . . . , gn) 7→ g0 ⊗ (g−1
0 g1, . . . , g−1

0 gn),

and again factor out the proof of compatibility. We must also prove the two maps are left
and right inverse to one another, facts we cannot leave to automation but which are not too
troublesome to prove. The only other awkwardness in this formalisation was organisation:

https://github.com/leanprover-community/mathlib/blob/fac369018417f980cec5fcdafc766a69f88d8cfe/src/representation_theory/group_cohomology_resolution.lean#L81-L232
https://github.com/leanprover-community/mathlib/pull/14308/files
https://github.com/leanprover-community/mathlib/pull/15501/files
https://github.com/leanprover-community/mathlib/pull/18271/files

A. Livingston 22:13

having to name the underlying k-linear maps separately (suffixed with aux) and deciding
when to add API for the auxiliary k-linear maps or for the G-Repk morphisms of_tensor,
to_tensor.

In the refactor, we instead define an isomorphism of G-sets G×Gn ∼= Gn+1, with G acting
by left multiplication on Gn+1 and G but trivially on Gn. We then apply the linearisation
functor G-Set → G-Repk. But G-Set and G-Repk are monoidal categories – they have
a binary operation ⊗ on objects satisfying certain properties. In G-Set, ⊗ is induced by
× on the underlying sets, and in G-Repk, ⊗ is induced by the usual tensor product ⊗k.

The linearisation functor is monoidal, meaning it commutes with ⊗, so we end up with
k[G] ⊗k k[Gn] ∼= k[Gn+1] as before. This approach uses more abstract tools already in
mathlib than the first, and means we no longer have to prove that the resulting maps
define morphisms in G-Repk. Moreover, the construction itself is more general: we define it
in the simpler category G-Set, and instead of using the somewhat messy functions of the
previous formalisation, we assemble it inductively from some more general building blocks.
For example, for a G-set X, we define G × X ∼= G × X where G acts on the first X by the
G-action X.ρ but on the second X trivially: the map sends (g, x) 7→ (g, ρ(g−1)(x)).

However, the work left for us to do has changed: now we need to prove that the resulting
isomorphism agrees with those messy maps from before. The proofs are not painless: we are
proving something non-category-theoretic about objects constructed with heavy dependence
on the category theory library, and as in the first version, this means avoiding dsimp. However,
simp was useful when used appropriately. Additionally, these lemmas are not being factored
out of some structure field or proved about some auxiliary function, so we avoid the ugly
duplication of the first approach. Finally, the refactor improves performance. In the original
formalisation, the representation morphism k[Gn+1] → k[G] ⊗k k[Gn] takes 27 seconds to
compile on the author’s machine. Similarly, Lean is slow to elaborate the lemmas describing
how the isormorphism acts on simple elements, despite the proofs being one line (simply
using the corresponding lemmas about the underlying k-linear maps). Naïvely applying said
corresponding lemmas takes about a minute to compile (on the author’s machine). However,
we can speed up the lemmas (though not the morphism’s definition) by prefixing their proofs
with by apply. Writing by apply foo achieves the same thing as writing (foo : _); it
makes Lean elaborate foo without an expected type. Otherwise, when compiling the old
lemmas, it seems Lean spends too much time struggling with unification.

In the new formalisation, meanwhile, the isomorphism compiles in 5 seconds, and the
lemmas describing its action on simple elements take less than 5 seconds, despite the proofs
being more involved.

Regardless of its construction, given this isomorphism, we can now pass to the category of
k[G]-modules, to transport a k[G]-basis of k[G]⊗k k[Gn] across to k[Gn+1]. This requires some
care, though; the category equivalence sends a G-Repk M to a type alias M.ρ.as_module,
equipped with the k[G]-module instance defined

∑
nigi · v :=

∑
ni · ρ(gi)(v). But taking

as_module of the lefthand side of the isomorphism gives a k[G]-module structure which is
only propositionally equal to the one we want in order to use the relevant k[G]-module API.
Instead, since there is a k-module isomorphism underlying (4), we use this to define the
functions in our k[G]-module isomorphism, and then prove that this commutes with the
k[G]-action we actually want. This allows us to define the k[G]-basis as desired.

We have a few loose ends (a collection � of various category-theoretic details) to tie up
before we can assemble our results into a term of type ProjectiveResolution k. These
concern how certain functors interact with projectiveness and quasi-isomorphisms, and were
not much trouble to formalise. Bringing together everything we have done so far allows us to
define group_cohomology.ProjectiveResolution as hoped.

ITP 2023

https://github.com/leanprover-community/mathlib/pull/17443/files

22:14 Group Cohomology in the Lean Community Library

def group_cohomology.ProjectiveResolution :
ProjectiveResolution (Rep.trivial k G k) :=

(ε_to_single0 k G).to_single0_ProjectiveResolution (X_projective k G)

4 Defining group cohomology

We can immediately give one definition of group cohomology. The isomorphism
functor.left_derived_obj_iso shows that applying Hom(−, M) to our resolution and
taking cohomology calculates ExtG-Repk

(k, M). However, before we can finish the definition,
Lean times out:

def group_cohomology.Ext_iso (M : Rep k G) (n : N) :
((Ext k (Rep k G) n).obj ...).obj M ∼= ... := sorry

(where we omit opaque code, and the tactic sorry allows us to leave a declaration unfinished
without (typically) giving an error). This is strange; when we replace the sorry with the
correct isomorphism, Lean no longer times out. Meanwhile, replacing def with lemma also
stops the timeout. This is what is known as the def/lemma issue: Lean will try and work
out whether a definition is computable, even if we mark it as noncomputable, as we have
done here. It is this computability check which is timing out. On the other hand, since Lean
is proof irrelevant, it does not check lemmas are computable, so temporarily making the
definition a lemma fixes the issue. There is now a less ad-hoc solution to this problem, due to
Gabriel Ebner: prefixing a definition with noncomputable! will force it to be noncomputable
before we have filled in the sorry; see [3, p. 16] for details.

But the isomorphism we really want is between cohomology of the complex in (1) and
the Ext groups. First, we need an isomorphism of the objects in each complex; recall
that this will come from (2). We have already defined the other isomorphism needed,
k[G] ⊗k k[Gn] ∼= k[Gn+1], when constructing a basis. Meanwhile, (2) relies on an adjunction
of functors. There is some module API which would be useful for defining the adjunction,
but (despite the author’s, at this point, misguided efforts), this is still an inappropriate place
to be working in k[G]-Mod, for the reasons discussed earlier �. We should instead generalise,
and work with the notion of a monoidal closed category.

We omit the mathematical details involved; the code can be found here �. Concisely,
by defining a monoidal closed instance on G-Repk, we get the desired adjunction – but
then we must prove it behaves as it should. This means showing that when we evaluate on
elements, the abstract, category-theoretic maps in our adjunction agree with the maps in
the tensor-hom adjunction for k-modules, which are simpler and not defined with category
theory. As in the refactor of the isomorphism k[G] ⊗k k[Gn] ∼= k[Gn+1], we are relating a
structure many layers deep in the category theory library with much simpler objects. In
similar situations prior, the author had accepted slow compilation times as an inevitable part
of life, without learning the “art” of using the category theory library. By this point such
an approach no longer worked: dsimp and simp would often time out, or were otherwise
unusably slow, and the lemmas could not be stated without use of category theory, unlike
when originally defining the morphisms in (4). Moreover, the goals were too complicated to
sanely close without any automation. As far as the author could tell, the user must restrict
their range of proof techniques and appeal only to syntactic equalities: this means adding
rfl-lemmas (lemmas which are true by definition, i.e. whose proof is rfl) to the library and
rewriting these, outsourcing the work of dsimp to simp and to the user themselves. On the

https://github.com/leanprover-community/mathlib/blob/itp_mwes/src/representation_theory/MWEs/Module.lean
https://github.com/leanprover-community/mathlib/pull/18148/files

A. Livingston 22:15

occasions dsimp does work, it would help to be able to ask which definitional equalities it
applied, so the user can replace its use (since it was slowing down proofs so badly) with the
corresponding rfl-lemmas. The tactic squeeze_simp tells us this regarding simp, and is
very useful; the corresponding tactic squeeze_dsimp almost never works. Nonetheless, the
desired results were provable and didactic for developing an instinct on how to work with
category theory in Lean.

Given this, we define the complex of inhomogeneous cochains in the simplest way – by
essentially translating (1) directly into Lean (with k instead of Z). However, we also prove
that each differential Fun(Gn, M) → Fun(Gn+1, M) agrees with

Fun(Gn, M) ∼−→ HomG-Repk
(k[Gn+1], M) −◦dn−−−→ HomG-Repk

(k[Gn+2], M) ∼−→ Fun(Gn+1, M)

where dn is the differential in the standard resolution. This gives us for free the proof that
the composition of two differentials is zero, which to do directly is somewhat onerous, as
seen in work of Shenyang Wu �.

With this done, there is one more obstacle to defining the isomorphism between “concrete
group cohomology” and the Ext groups. On one side we have cohomology of a complex with
objects in k-Mod, and on the other we have homology of a chain complex with objects in
the opposite category k-Modop – an instance of something we do not think about in real
life but which takes a non-trivial amount of code � to formalise. However, the process was
straightforward, and allows us to define group cohomology, here �.

def group_cohomology [group G] (A : Rep k G) (n : N) :=
(inhomogeneous_cochains A).homology n

5 Conclusion and future work

In real life, keeping exposition of a mathematical concept self-contained is a good thing, and
group cohomology is quite amenable to this. But the trajectory of our project demonstrates
just how irrelevant this quality is as an aim when contributing to mathlib. Indeed, the need
to prioritise generality, to keep the growth of a library sustainable, means recognising and
exploiting as many connections between different mathematical objects as possible, in search
of concepts’ common principles and structural “ancestors”.

But the quest for abstraction has to stop somewhere. All of this material has been merged
with mathlib : we conclude it is possible to honour the maxims of mathlib design to a
considerable extent, and still connect the resulting convoluted, abstract definition of group
cohomology with the down to earth definition used for computation. The power afforded by
results in the category theory library can, in practice, interact with mathlib’s lower-level
objects.

However, we have illustrated this statement’s caveats. Currently, it seems to the author
that there is an “art” to using the category theory library, meaning it can be frustrating to
work with for the naïve user. Of course, exactly the same could be said of Lean in general; a
learning curve is unavoidable. But as more people apply category theory to simpler structures
in the library, documentation of this “art” will increase.

Alternatively, the new version of Lean, Lean 4, promises many advances in performance,
and this could make it easier to use automation with category theory. This project was done
in Lean 3, which has been the most current version for most of Lean’s history. But this is
changing – mathlib is currently being ported from Lean 3 to Lean 4: a huge undertaking.
When our project eventually transitions to Lean 4, we suspect it may look very different,
with the obstacles outlined in this paper perhaps diminished.

ITP 2023

https://github.com/Shenyang1995/M4R/blob/1b29c546315fbdf03301f99e09cf66ae59ba66c5/src/cochain.lean
https://github.com/leanprover-community/mathlib/pull/18144/files
https://github.com/leanprover-community/mathlib/blob/98803db53e37073ecb3aefc1b13407c05db56905/src/representation_theory/group_cohomology/basic.lean#L158

22:16 Group Cohomology in the Lean Community Library

In the meantime, there is considerably more to be added before mathlib has the facts
about group cohomology taught in a typical introductory course. Most of these are proved
using the concrete formulation, and the author has a repository containing work in this
direction. Because there is not much structure involved, the high-powered tools of category
theory are irrelevant, making the results simple to formalise. Thus, although this code has
not been tidied up with mathlib in mind, the author is fairly confident it will not go through
as many reformulations as the rest of the material so far.

We have written an API for cohomology in degree n ≤ 2, and will open a pull request
for this soon. We have also shown that given a group homomorphism f : G → H, a
G-representation A, an H-representation B and a k-linear map ϕ : B → A such that
ϕ(ρB(f(g))(x)) = ρA(g)(ϕ(x)) for all g ∈ G, x ∈ B, then we get an induced k-linear map of
cohomology groups Hn(H, B) → Hn(G, A) for all n. We used this to formalise the “inflation-
restriction” exact sequence, and have also formalised Hilbert’s theorem 90, along with the
fact that H1(G, A) ∼= Hom(G, A) when the G-action on A is trivial, and about half of the
work in using H2 to classify group extensions. The code is fast enough and readable; the only
disappointment is that in real life we can view a group’s operation as either multiplicative
or additive when convenient, and this is messier in Lean. A representation A is an additive
group with an action of a multiplicative group, so to describe the set of group morphisms
Hom(G, A) we must write G →* multiplicative A, for example.

Similarly, we have done some non-mathlib-style work on Galois cohomology. Many nice
group cohomology facts assume G is finite; Galois groups are profinite, meaning they are
limits of families of finite groups. Proving that the group cohomology of a profinite group is
a limit of the cohomology of the constituent finite groups lets us extend results to Galois
groups, and this is used everywhere in algebraic number theory. To formalise this, the
author has proved some of the requisite topological group facts; similar to the concrete group
cohomology API, the code was enjoyable to write. Instead of complicated definitions, it
involves complicated proofs, which can be preferable in Lean.

A different story is the remaining abstract material, like universal delta functors and
spectral sequences. Spectral sequences [9, Chapter 20, Section 9] will require considerable
work to define at all, let alone in a mathlib-compatible way. These are necessary to compare
cohomology as we vary the group G via the Lyndon-Hochschild-Serre spectral sequence [6,
p. 8] – an extension of the “inflation-restriction” exact sequence. We need delta functors,
meanwhile, to finish setting up Galois cohomology [12, Tag 0DVG]. They are also needed to
show that group cohomology agrees with Ext as functors, and not just in their action on
objects [9, Chapter 20, Section 8]. Happily, though, the requisite delta functor material is
done, in the Liquid Tensor Experiment �; it has just not been readied for mathlib, and
given its abstract nature this process may be non-trivial.

All of the abstract material, and essentially any group cohomological results concerning
Hn(G, M) for general n, rely on long exact sequences. These, too, are defined in the Liquid
Tensor Experiment, and should be usable in our work after proving a couple of easy, concrete
lemmas. But even preparing these for mathlib raises challenges – when using them in real
life we rely on drawing diagrams, and the clarity this affords is lost when translated into
Lean. This file � gives some demonstration of what “diagram chasing” can look like in
Lean 3. However, Wojciech Nawrocki is working on a widget � for Lean 4 which displays
commutative diagrams in the goal state; maybe this will help us chase diagrams in the future.

https://github.com/leanprover-community/lean-liquid/blob/95fada774903d2d6759eac5af8b749e14e04fe80/src/for_mathlib/universal_delta_functor/basic.lean
https://github.com/leanprover-community/lean-liquid/blob/d795aadc76d8037e488b0d8a004d41805a5b71fa/src/for_mathlib/snake_lemma.lean
https://github.com/leanprover-community/mathlib4/pull/3583

A. Livingston 22:17

References
1 Anne Baanen. Use and Abuse of Instance Parameters in the Lean Mathematical Library. In

June Andronick and Leonardo de Moura, editors, 13th International Conference on Interactive
Theorem Proving (ITP 2022), volume 237 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 4:1–4:20, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.ITP.2022.4.

2 John W. S. Cassels and Albrecht Fröhlich. Algebraic Number Theory. London Mathematical
Society, London, 2010.

3 María Inés de Frutos-Fernández. Formalizing the Ring of Adèles of a Global Field. In 13th
International Conference on Interactive Theorem Proving (ITP 2022), volume 237, pages
14:1–14:18, 2022. URL: https://drops.dagstuhl.de/opus/volltexte/2022/16723/pdf/LI
PIcs-ITP-2022-14.pdf.

4 César Domínguez and Julio Rubio. Computing in coq with infinite algebraic data structures.
In Proceedings of the 10th ASIC and 9th MKM International Conference, and 17th Calculemus
Conference on Intelligent Computer Mathematics, volume 6167, April 2010. doi:10.1007/97
8-3-642-14128-7_18.

5 Paul G. Goerss and John F. Jardine. Simplicial Homotopy Theory. Springer Science & Business
Media, 2009. doi:10.1007/978-3-0346-0189-4.

6 Gerhard Hochschild and Jean-Pierre Serre. Cohomology of group extensions. Transactions of
the American Mathematical Society, 74(1):110–134, 1953. doi:10.1090/S0002-9947-1953-0
052438-8.

7 Shin-ichi Katayama. Diophantine Equations and Hilbert’s Theorem 90. Journal of mathematics,
the University of Tokushima, 48:35–40, 2014. URL: https://cir.nii.ac.jp/crid/1574231
877578024320.

8 Ernst E. Kummer. Über eine besondere Art, aus complexen Einheiten gebildeter Ausdrücke.
Journal für die reine und angewandte Mathematik, 1855(50):212–232, 1855. doi:10.1515/cr
ll.1855.50.212.

9 Serge Lang. Algebra, volume 211. Springer Science & Business Media, 2012. doi:10.1007/97
8-1-4613-0041-0.

10 The mathlib Community. The Lean Mathematical Library. In Proceedings of the 9th ACM
SIGPLAN International Conference on Certified Programs and Proofs, CPP 2020, pages
367–381, New York, NY, USA, 2020. Association for Computing Machinery. doi:10.1145/33
72885.3373824.

11 nLab authors. Moore complex. https://ncatlab.org/nlab/show/Moore+complex, February
2023. Revision 59.

12 The Stacks project authors. The stacks project. https://stacks.math.columbia.edu, 2023.
13 Charles A. Weibel. An Introduction to Homological Algebra. Cambridge Studies in Advanced

Mathematics. Cambridge University Press, 1994. doi:10.1017/CBO9781139644136.
14 Charles A. Weibel. History of Homological Algebra. In Ioan M. James, editor, History of

Topology, chapter 28, pages 797–836. North Holland, 1999.

ITP 2023

https://doi.org/10.4230/LIPIcs.ITP.2022.4
https://drops.dagstuhl.de/opus/volltexte/2022/16723/pdf/LIPIcs-ITP-2022-14.pdf
https://drops.dagstuhl.de/opus/volltexte/2022/16723/pdf/LIPIcs-ITP-2022-14.pdf
https://doi.org/10.1007/978-3-642-14128-7_18
https://doi.org/10.1007/978-3-642-14128-7_18
https://doi.org/10.1007/978-3-0346-0189-4
https://doi.org/10.1090/S0002-9947-1953-0052438-8
https://doi.org/10.1090/S0002-9947-1953-0052438-8
https://cir.nii.ac.jp/crid/1574231877578024320
https://cir.nii.ac.jp/crid/1574231877578024320
https://doi.org/10.1515/crll.1855.50.212
https://doi.org/10.1515/crll.1855.50.212
https://doi.org/10.1007/978-1-4613-0041-0
https://doi.org/10.1007/978-1-4613-0041-0
https://doi.org/10.1145/3372885.3373824
https://doi.org/10.1145/3372885.3373824
https://ncatlab.org/nlab/show/Moore+complex
https://ncatlab.org/nlab/revision/Moore+complex/59
https://stacks.math.columbia.edu
https://doi.org/10.1017/CBO9781139644136

A Formalisation of Gallagher’s Ergodic Theorem
Oliver Nash # Ñ

Imperial College London, UK

Abstract
Gallagher’s ergodic theorem is a result in metric number theory. It states that the approximation
of real numbers by rational numbers obeys a striking “all or nothing” behaviour. We discuss a
formalisation of this result in the Lean theorem prover. As well as being notable in its own right,
the result is a key preliminary, required for Koukoulopoulos and Maynard’s stunning recent proof of
the Duffin-Schaeffer conjecture.

2012 ACM Subject Classification Mathematics of computing → Probability and statistics

Keywords and phrases Lean proof assistant, measure theory, metric number theory, ergodicity,
Gallagher’s theorem, Duffin-Schaeffer conjecture

Digital Object Identifier 10.4230/LIPIcs.ITP.2023.23

Supplementary Material Software (Source Code): https://github.com/leanprover-community/
mathlib, archived at swh:1:dir:a022d44847c12ca961b4bd0c8bca4f9df70cf7df

Acknowledgements It is a pleasure to thank Andrew Pollington who suggested this project during
the conference Lean for the Curious Mathematician, held at Brown University (ICERM) in 2022.
I also wish to thank Anatole Dedecker, Heather Macbeth, Patrick Massot, and Junyan Xu, all of
whom were of direct assistance. Lastly I especially wish to thank Sébastien Gouëzel for many helpful
suggestions and Kevin Buzzard for many useful conversations.

1 Introduction

In addition to recognising extraordinary achievements of young mathematicians, the Fields
Medal provides a valuable service to the wider mathematical community: it draws attention to
important recent results. In recent years, such attention has had a significant positive impact
in the formalisation community. Buzzard, Commelin, and Massot’s formalisation of the
definition of a perfectoid space [4] and Commelin, Topaz et al.’s spectacular success with the
Liquid Tensor Experiment [6] were both the results of projects which formalised work of 2018
Fields Medalist Peter Scholze. Amongst other things, these projects demonstrate that today’s
proof assistants are capable of handling the complicated constructions of contemporary
mathematics.

In 2022, James Maynard was awarded a Fields Medal with a citation that highlighted his
work on the structure of prime numbers as well as on Diophantine approximation. In the
long form of the citation we read that:

Maynard has also produced fundamental work in Diophantine approximation, having
solved the Duffin-Schaeffer conjecture with Koukoulopoulos.

Shortly after the announcement of Maynard’s award, Andrew Pollington suggested to the
author that a formalisation of Koukoulopoulos and Maynard’s proof of the Duffin-Schaeffer
conjecture would be a worthy target for formalisation. Recognising that this would be an
enormous undertaking, he suggested focusing on various necessary preliminaries. Perhaps
the most important of these is Gallagher’s ergodic theorem [8] (see also Koukoulopoulos and
Maynard [12] lemma 5.1). The statement is as follows:

© Oliver Nash;
licensed under Creative Commons License CC-BY 4.0

14th International Conference on Interactive Theorem Proving (ITP 2023).
Editors: Adam Naumowicz and René Thiemann; Article No. 23; pp. 23:1–23:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:o.nash@imperial.ac.uk
http://olivernash.org
https://orcid.org/0000-0001-7208-6307
https://doi.org/10.4230/LIPIcs.ITP.2023.23
https://github.com/leanprover-community/mathlib
https://github.com/leanprover-community/mathlib
https://archive.softwareheritage.org/swh:1:dir:a022d44847c12ca961b4bd0c8bca4f9df70cf7df;origin=https://github.com/leanprover-community/mathlib;visit=swh:1:snp:4de5beeec58b90aeb6b7940175824e7750d784ad;anchor=swh:1:rev:b602702a58f74f5317862a24893693e80bee6d41
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 A Formalisation of Gallagher’s Ergodic Theorem

▶ Theorem 1 (Gallagher’s theorem). Let δ1, δ2, . . . be a sequence of real numbers and let:

W = {x ∈ R | ∃ q ∈ Q, |x − q| < δdenom(q) i.o.}.

Then W is almost equal to either ∅ or R.

This deserves a few remarks:
The notation denom(q) denotes the denominator of q (in lowest terms). It is a strictly
positive natural number.
Special attention should be paid to the letters “i.o.” appearing in the definition of
W : these abbreviate the phrase “infinitely often”. The notation means that x ∈ W iff
there exists an infinite sequence of rationals q0, q1, . . . (which may depend on x) with
denom(q0) < denom(q1) < · · · satisfying |x − qi| < δdenom(qi) for all i.
The phrase “almost equal” characterises this as a theorem of metric number theory: it
means that the sets are equal up to a set of Lebesgue measure zero.
It is striking and not at all obvious that W should exhibit such dichotomous behaviour.

It is the purpose of this article to discuss the author’s formalisation of Gallagher’s theorem.
It was carried out using the Lean proof assistant together with its mathlib library [14]. More
precisely we formalised the following:

Listing 1 Gallagher’s theorem 2

theorem add_well_approximable_ae_empty_or_univ
(δ : N → R) (hδ : tendsto δ at_top (N 0)) :
(∀m x, ¬ add_well_approximable S δ x) ∨ ∀m x, add_well_approximable S δ x :=

The notation will be explained in the pages to come. With further work, one could drop
the hypothesis hδ, which says that δn → 0 as n → ∞. In fact this highlights a curious
feature of the proof: one makes two totally separate arguments, a measure-theoretic argument
which assumes the hypothesis hδ and a number-theoretic argument assuming its negation.
One then invokes the law of excluded middle to deduce the result unconditionally. The
measure-theoretic argument assuming hδ is much harder and is what we have formalised.

The paper is intended for non-experts and the structure is as follows. In section 2 we
outline relevant basic concepts so that we can reinterpret Gallagher’s theorem as a result
about the lim sup of thickenings of finite-order points in the circle. We also make some
general remarks about metric number theory. In section 3 we introduce the most important
foundational result required. Lebesgue’s density theorem is the workhorse of Gallagher’s
proof. In section 4 we discuss a key measure-theoretic lemma due to Cassels which is of
some independent interest in its own right. In section 5 we discuss the results about ergodic
maps which we needed, emphasising the ergodicity of certain maps of the circle. In section 6
we introduce points of approximately finite order and use this language to give a proof of
Gallagher’s theorem. We finish with section 7 where, amongst other things, we discuss further
directions this work could be taken. For the most part we do not enter into the details of
proofs. The main exception to this is the proof of Gallagher’s theorem itself since we hope
our presentation of Gallagher’s ideas may make them more accessible than other accounts
intended for specialists (such as [8] Theorem 1 or [11] Theorem 2.7(B)).

In keeping with mathlib’s stress on mathematical unity, all work was added directly to
mathlib’s master branch in a series of 27 pull requests, collectively adding just over 3,500
net new lines of code. This work is thus automatically available to all future mathlib users.
Throughout this text we also provide permalinks to relevant locations in mathlib; each one
is indicated with the symbol 2. We also provide a judiciously chosen set of code listings
(such as listing 1 above) containing Lean code. Often our intention is to assist the reader
who wishes to compare a key informal statement with its formal equivalent.

https://github.com/leanprover-community/mathlib/blob/9956c3806d0f9553e5c6e6af68970563a1619cd1/src/number_theory/well_approximable.lean#L191

O. Nash 23:3

2 Basic concepts

We outline some basic concepts to fix notation and to assist non-experts.

2.1 Almost equal sets
Given a measurable space with measure µ, when there is no possibility of ambiguity about
the measure, we shall use the notation:

s =a.e. t, (1)

to say two subsets s, t are almost equal with respect to µ. We recall that this is equivalent
to the following pair of measure-zero conditions 2:

µ(s \ t) = 0 and µ(t \ s) = 0. (2)

2.2 Obeying a condition infinitely often
Gallagher’s theorem concerns a set of points obeying a condition “infinitely often”. In general,
given a sequence of subsets s0, s1, . . . of some background type X the expression ∃ · · · i.o. is
used to define1:

{x : X | ∃ n ∈ N, x ∈ sn i.o.} = {x : X | the set {n ∈ N | x ∈ sn} is infinite}. (3)

In fact there is another expression for this set; it is easy to see that 2:

{x : X | ∃ n ∈ N, x ∈ sn i.o.} = lim sup s, (4)

where:

lim sup s =
⋂

n≥0

⋃
i≥n

si.

When formalising a result about the set of points belonging to some family of subsets infinitely
often, one can thus phrase it in language of (3) or in the language of lim sup. We opted for
the latter. This was preferable because lim sup makes sense for any complete lattice whereas
(3) is specific to the lattice of subsets of a type. All API developed was thus more widely
applicable.

In the course of the proof it is useful to work with the lim sup bounded by a predicate
p : N → Prop. This can be defined:

lim sup
p

s =
⋂

n≥0

⋃
p(i),i≥n

si. (5)

The actual definition which we added filter.blimsup 2 is slightly different so that it also
applies in a conditionally complete lattice (such as R) but we provided a lemma showing
the equivalence to (5) for complete lattices (such as set R) 2. Using blimsup, we can work
with the lim sup of the subfamily defined by the predicate p without having to pass to the
subtype of the indexing type. For example given two predicates p, q, we can express the
useful identity:

lim sup
p∨q

s = lim sup
p

s ∪ lim sup
q

s, (6)

formally as:

1 This is standard notation appearing throughout the informal literature.

ITP 2023

https://github.com/leanprover-community/mathlib/blob/9956c3806d0f9553e5c6e6af68970563a1619cd1/src/measure_theory/measure/measure_space_def.lean#L385
https://github.com/leanprover-community/mathlib/blob/9956c3806d0f9553e5c6e6af68970563a1619cd1/src/order/liminf_limsup.lean#L860
https://github.com/leanprover-community/mathlib/blob/9956c3806d0f9553e5c6e6af68970563a1619cd1/src/order/liminf_limsup.lean#L285
https://github.com/leanprover-community/mathlib/blob/9956c3806d0f9553e5c6e6af68970563a1619cd1/src/order/liminf_limsup.lean#L578

23:4 A Formalisation of Gallagher’s Ergodic Theorem

Listing 2 lim sup bounded by the logical or of two predicates 2

@[simp] lemma blimsup_or_eq_sup :
blimsup u f (λ x, p x ∨ q x) = blimsup u f p ⊔ blimsup u f q :=

without involving any subtypes. This is a standard design pattern used throughout mathlib.

2.3 Thickenings
Using the language introduced above, the set W appearing in the statement of theorem 1
may be defined as:

W = lim sup
n>0

s,

where:

sn = {x ∈ R | ∃ q ∈ Q, denom(q) = n, |x − q| < δn}.

These subsets sn have a special form: they are thickenings. In general, given a metric space
X, if s ⊆ X and δ ∈ R, the (open) δ-thickening of s is:

Th(δ, s) = {x ∈ X | ∃ y ∈ s, d(x, y) < δ}.

This generalises the concept of an open ball. Fortunately thickenings already existed 2 in
mathlib thanks to the work of Gouezel on the Gromov-Hausdorff metric [9]. We can thus
express W as:

W = lim sup
n>0

Th(δn, {q ∈ Q | denom(q) = n}).

Using the language of thickenings turned out to be very convenient formally, not just for
Gallagher’s theorem but also for example in lemma 5 (discussed below).

2.4 The circle as a normed group
The subset W appearing in theorem 1 trivially satisfies the periodicity condition2:

1 + W = W,

and thus descends to a subset of the circle S = R/Z. This quotient is actually a normed
group. We recall that a normed (additive) group G is a group carrying a real-valued function:

G → R
g 7→ ∥g∥

such that the distance function d(g, h) = ∥g − h∥ satisfies the metric space axioms 2.
In our case, given x ∈ R representing the coset x̂ ∈ S, the norm obeys:

∥x̂∥ = |x − round(x)| (7)

where round(x) is the nearest integer to x. Since the norm gives us a metric, we may speak
of thickenings of subsets of S.

2 If q approximates x then 1 + q approximates 1 + x with the same error and denom(1 + q) = denom(q).

https://github.com/leanprover-community/mathlib/blob/9956c3806d0f9553e5c6e6af68970563a1619cd1/src/order/liminf_limsup.lean#L755
https://github.com/leanprover-community/mathlib/blob/9956c3806d0f9553e5c6e6af68970563a1619cd1/src/topology/metric_space/hausdorff_distance.lean#L850
https://github.com/leanprover-community/mathlib/blob/9956c3806d0f9553e5c6e6af68970563a1619cd1/src/analysis/normed/group/basic.lean#L77

O. Nash 23:5

Furthermore, Q/Z ⊆ S is exactly the set of points of finite order in S. Gallagher’s theorem
may thus be regarded as establishing a special property enjoyed by the circle S in the category
of normed groups. As we shall see this is a useful point of view since the proof of Gallagher’s
theorem depends on the fact that certain transformations are ergodic when regarded as maps
S → S.

When this work began, mathlib already contained a model of the circle as complex
numbers of unit length, called circle 2. Although this model is naturally equivalent to
R/Z, the equivalence uses the exponential and logarithm maps which are irrelevant for our
work. We thus introduced a second model called add_circle defined to be R/Z:

Listing 3 The additive circle 2

def add_circle {K : Type∗} [linear_ordered_add_comm_group K]
[topological_space K] [order_topology K] (p : K) :=

K / zmultiples p

When p = 1 this is exactly R/Z but we allow a general value of p to support other applications3.
As the names suggest, circle carries an instance of mathlib’s group class and

add_circle carries an instance of add_group. It is interesting that mathlib’s additive-
multiplicative design pattern so conveniently allows both models to coexist.

Substantial API for add_circle was then developed, notably an instance of the class
normed_add_comm_group 2 satisfying the identity (7) 2 and a characterisation of the finite-
order points using rational numbers 2:

{y ∈ S | o(y) = n} = {[q] ∈ S | q ∈ Q, denom(q) = n}, (8)

where the notation o(y) = n means that y has order n.
Using all of our new language, the statement of Gallagher’s theorem becomes:

▶ Theorem 2 (Gallagher’s theorem). Let δ1, δ2, . . . be a sequence of real numbers and let:

W = lim sup
n>0

Th(δn, {y ∈ S | o(y) = n}).

Then W =a.e. ∅ or W =a.e. S.

Using (7) and (8), theorem 2 is trivially equivalent to theorem 1.

2.5 Metric number theory
Metric number theory is the study of arithmetic properties of the real numbers (and related
spaces) which hold “almost everywhere” with respect to the Lebesgue measure. The arithmetic
property in the case of Gallagher’s theorem is approximation by rational numbers.

To illustrate, consider the set I of real numbers which have infinitely-many quadratically-
close rational approximations:

I = {x ∈ R | ∃ q ∈ Q, |x − q| < 1/ denom(q)2 i.o.}
= lim sup

n>0
Th(1/n2, {q ∈ Q | denom(q) = n}).

3 For example mathlib uses p = 2π to define angles 2.

ITP 2023

https://github.com/leanprover-community/mathlib/blob/9956c3806d0f9553e5c6e6af68970563a1619cd1/src/analysis/complex/circle.lean#L40
https://github.com/leanprover-community/mathlib/blob/9956c3806d0f9553e5c6e6af68970563a1619cd1/src/topology/instances/add_circle.lean#L109
https://github.com/leanprover-community/mathlib/blob/9956c3806d0f9553e5c6e6af68970563a1619cd1/src/analysis/normed/group/add_circle.lean#L33
https://github.com/leanprover-community/mathlib/blob/9956c3806d0f9553e5c6e6af68970563a1619cd1/src/analysis/normed/group/add_circle.lean#L262
https://github.com/leanprover-community/mathlib/blob/9956c3806d0f9553e5c6e6af68970563a1619cd1/src/topology/instances/add_circle.lean#L344
https://github.com/leanprover-community/mathlib/blob/9956c3806d0f9553e5c6e6af68970563a1619cd1/src/analysis/special_functions/trigonometric/angle.lean#L27

23:6 A Formalisation of Gallagher’s Ergodic Theorem

It has been known at least since the early 19th Century, that I is just the set of irrational
numbers4:

I = R \ Q. (9)

Considering this result from the point of view of metric number theory, we notice that
since Q has Lebesgue measure zero, I is almost equal to R. Thus the metric number theorist
would be content to summarise (9) by saying that

I =a.e. R,

without worrying about exactly which numbers I contains.
The benefit of metric number theorist’s point of view is that a great many questions

have answers of this shape. Gallagher’s theorem is an especially-beautiful example of this
phenomenon.

3 Doubling measures and Lebesgue’s density theorem

Lebesgue’s density theorem is a foundational result in measure theory, required for the
proof of Gallagher’s theorem. Although we only needed to apply it to the circle, the density
theorem holds quite generally and so we took some trouble to formalise it subject to quite
weak assumptions5.

3.1 Doubling measures
A convenient class of measures for which the density theorem holds is the class of doubling
measures (more precisely uniformly locally doubling measures).

▶ Definition 3. Let X be a measurable metric space carrying a measure µ. We say µ is a
doubling measure if there exists C ≥ 0 and δ > 0 such that for all 0 < ϵ ≤ δ and x ∈ X:

µ(B(x, 2ϵ)) ≤ Cµ(B(x, ϵ)).

where B(x, r) denotes the closed ball of radius r about x.

The corresponding formal definition, which the author added to mathlib for the purposes of
formalising the density theorem, is:

Listing 4 Definition of doubling measures 2

class is_doubling_measure
{α : Type∗} [metric_space α] [measurable_space α] (µ : measure α) :=
(exists_measure_closed_ball_le_mul [] : ∃ (C : R≥0), ∀f ε in N [>] 0, ∀ x,

µ (closed_ball x (2 ∗ ε)) ≤ C ∗ µ (closed_ball x ε))

The parameter δ is not explicitly mentioned in the code above because we use mathlib’s
standard notation for the concept of a predicate holding eventually along a filter 2.

4 Thanks to Michael Geißer and Michael Stoll, mathlib knows this fact 2.
5 We were lucky that Sébastien Gouëzel had recently added an extremely general theory of Vitali families

which made this possible.

https://github.com/leanprover-community/mathlib/blob/9956c3806d0f9553e5c6e6af68970563a1619cd1/src/measure_theory/measure/doubling.lean#L39
https://github.com/leanprover-community/mathlib/blob/9956c3806d0f9553e5c6e6af68970563a1619cd1/src/order/filter/basic.lean#L953
https://github.com/leanprover-community/mathlib/blob/9956c3806d0f9553e5c6e6af68970563a1619cd1/src/number_theory/diophantine_approximation.lean#L258

O. Nash 23:7

For our application, we needed to apply the density theorem to the Haar measure [15]
2 on the circle. Of course this turns out to be the familiar arc-length measure and so the
volume of a closed ball of radius ϵ is given by 2:

µ(B(x, ϵ)) = min(1, 2ϵ).

Taking C = 2 we thus see that the Haar measure on the circle is doubling. We registered
this fact using a typeclass instance as follows:

Listing 5 The circle’s doubling measure 2

instance : is_doubling_measure (volume : measure (add_circle T)) :=

The unit circle corresponds to taking T = 1, but the code allows any T > 0. Thanks to this
instance, Lean knows that any results proved for doubling measures automatically holds for
the Haar measure on the circle.

3.2 The density theorem
The version of the density theorem which we formalised is:

▶ Theorem 4. Let X be a measurable metric space carrying a measure µ. Suppose that
X has second-countable topology and that µ is doubling and locally finite. Let S ⊆ X and
K ∈ R, then for almost all x ∈ S, given any sequence of points w0, w1, . . . and distances
δ0, δ1, . . ., if:

δj → 0 as j → ∞ and,
x ∈ B(wj , Kδj) for large enough j,

then:

µ(S ∩ B(wj , δj))
µ(B(wj , δj)) → 1,

as j → ∞.

Even in the special case K = 1 and w0 = w1 = · · · = x, the result is quite powerful6. A point
x satisfying the property appearing in the theorem statement is known as a point of density
1. Using this language, Lebesgue’s density theorem asserts that almost all points of a set
have density 1. In particular if µ(S) > 0 then there must exist a point of density 1 2. As
an example, if X = R and S is the closed interval [0, 1], the set of points of density 1 is the
open interval (0, 1).

In fact the formal version which we added to mathlib is very slightly more general since
it allows w and δ to be maps from any space carrying a filter. After a preparatory variables
statement:

Listing 6 Variables for the density theorem
variables {α : Type∗} [metric_space α] [measurable_space α] (µ : measure α)

[is_doubling_measure µ] [second_countable_topology α] [borel_space α]
[is_locally_finite_measure µ]

it looks like this:

6 Indeed this is probably the most common version one finds in the literature.

ITP 2023

https://github.com/leanprover-community/mathlib/blob/9956c3806d0f9553e5c6e6af68970563a1619cd1/src/measure_theory/integral/periodic.lean#L58
https://github.com/leanprover-community/mathlib/blob/9956c3806d0f9553e5c6e6af68970563a1619cd1/src/measure_theory/integral/periodic.lean#L88
https://github.com/leanprover-community/mathlib/blob/9956c3806d0f9553e5c6e6af68970563a1619cd1/src/measure_theory/integral/periodic.lean#L110
https://github.com/leanprover-community/mathlib/blob/9956c3806d0f9553e5c6e6af68970563a1619cd1/src/measure_theory/measure/measure_space.lean#L1618

23:8 A Formalisation of Gallagher’s Ergodic Theorem

Listing 7 Lebesgue’s density theorem for doubling measures 2

lemma is_doubling_measure.ae_tendsto_measure_inter_div (S : set α) (K : R) :
∀m x ∂µ.restrict S, ∀ {ι : Type∗} {l : filter ι} (w : ι → α) (δ : ι → R)

(δlim : tendsto δ l (N [>] 0))
(xmem : ∀f j in l, x ∈ closed_ball (w j) (K ∗ δ j)), tendsto (λ j,
µ (S ∩ closed_ball (w j) (δ j)) / µ (closed_ball (w j) (δ j))) l (N 1) :=

The method of proof is essentially to develop sufficient API for is_doubling_measure to
show that such measure spaces carry certain natural families of subsets called Vitali families
and then to invoke the lemma vitali_family.ae_tendsto_measure_inter_div 2 added
by Gouëzel as part of an independent project [10].

4 Cassels’s lemma

A key ingredient in the proof of Gallagher’s theorem is the following result due to Cassels.

▶ Lemma 5. Let X be a measurable metric space carrying a measure µ. Suppose that X

has second-countable topology and that µ is doubling and locally finite. Let s0, s1, . . . be a
sequence of subsets of X and r0, r1, . . . be a sequence of real numbers such that rn → 0 as
n → ∞. For any M > 0 let:

WM = lim sup Th(Mrn, sn),

then:

WM =a.e. W1,

i.e., up to sets of measure zero, WM does not depend on M .

This essentially appears as lemma 9 in [5] in the special case that:
(a) X is the open interval (0, 1),
(b) µ is the Lebesgue measure,
(c) sn is a sequence of points rather than a sequence of subsets.

Reusing the variables from listing 6, the formal version of lemma 5 which we added to
mathlib looks like this:

Listing 8 Cassels’s lemma 2

theorem blimsup_thickening_mul_ae_eq
(p : N → Prop) (s : N → set α) {M : R} (hM : 0 < M)
(r : N → R) (hr : tendsto r at_top (N 0)) :
(blimsup (λ i, thickening (M ∗ r i) (s i)) at_top p : set α) =m[µ]
(blimsup (λ i, thickening (r i) (s i)) at_top p : set α) :=

Several remarks are in order:
The syntax s =m[µ] t is mathlib’s notation for sets (or functions) s, t being almost
equal with respect to a measure µ. It is the formal equivalent of the popular informal
notation (1).
The type ascriptions : set α appear because of an unresolved typeclass diamond in
mathlib’s library of lattice theory. The issue is that the type set α is definitionally equal
to α → Prop. Since Prop is a complete boolean algebra 2 it follows 2 that α → Prop
is a complete boolean algebra. Unfortunately the definition 2 of the complete boolean
algebra structure on set α, though mathematically equal, is not definitionally equal

https://github.com/leanprover-community/mathlib/blob/9956c3806d0f9553e5c6e6af68970563a1619cd1/src/measure_theory/covering/density_theorem.lean#L143
https://github.com/leanprover-community/mathlib/blob/9956c3806d0f9553e5c6e6af68970563a1619cd1/src/measure_theory/covering/differentiation.lean#L750
https://github.com/leanprover-community/mathlib/blob/9956c3806d0f9553e5c6e6af68970563a1619cd1/src/measure_theory/covering/liminf_limsup.lean#L268
https://github.com/leanprover-community/mathlib/blob/9956c3806d0f9553e5c6e6af68970563a1619cd1/src/order/complete_boolean_algebra.lean#L226
https://github.com/leanprover-community/mathlib/blob/9956c3806d0f9553e5c6e6af68970563a1619cd1/src/order/complete_boolean_algebra.lean#L222
https://github.com/leanprover-community/mathlib/blob/9956c3806d0f9553e5c6e6af68970563a1619cd1/src/data/set/lattice.lean#L121

O. Nash 23:9

to that on α → Prop. Strictly speaking, because set α is a type synonym, this is a
permissible diamond. The point is that ideally all lemmas and statements about set
α (including results about its lattice structure) should depend only on its API and not
in its definition. However in practice such “definitional abuse” does occur and can be
convenient so it would be useful to resolve the diamond.7

Listing 8 is stated in terms of blimsup, i.e., a lim sup bounded by a predicate p. As
discussed in section (2.2), this allows us to avoid having to deal with subtypes. We will
see that this is convenient when applying this lemma in the proof of Gallagher’s theorem.
The key ingredient in the proof of Cassels’s lemma is Lebesgue’s density theorem 4. In
view of (2), Cassels’s lemma requires us to establish a pair of measure-zero conditions.
According to whether M < 1 or M > 1, exactly one of these two conditions is trivial for
the two sets appearing in the statement of Cassels’s lemmma 5. To prove the non-trivial
measure-zero condition, one argues by contradiction by assuming the measure is strictly
positive, applying the density theorem to obtain a point of density 1, and showing that
this is impossible for a doubling measure. The only non-trivial dependency is Lebesgue’s
density theorem.
Although the modifications required for the generalisation of this lemma from its original
form in [5] are straightforward, the generalisation (c) from points to subsets (equivalently
from balls to thickenings) is extremely useful formally. In the application of this lemma
required for Gallagher’s theorem, sn is the set of points of order n in the circle. In the
informal literature, the version of lemma 5 for sequences of points can be applied because
the circle has only finitely-many points of each finite order and so one can enumerate all
points of finite order as a single sequence of points. This would be messy formally (for
example it requires choosing arbitary orderings) and in any case is not necessary given
the more general result.

5 Ergodic theory

Ergodic theory is the study of measure-preserving maps. Given measure spaces (X, µX) and
(Y, µY), a measurable map f : X → Y is measure-preserving if:

µX(f−1(s)) = µY (s),

for any measurable set s ⊆ Y . For example, given any c ∈ R, taking Lebesgue measure on
both domain and codomain, the translation x 7→ c + x is always measure-preserving whereas
the dilation x 7→ cx is measure-preserving only if c = ±1. Fortunately mathlib already
contained an excellent theory of measure-preserving maps.

5.1 Ergodic maps, general theory
Within ergodic theory, special attention is paid to ergodic maps.

▶ Definition 6. Let (X, µ) be a measure space and f : X → X be measure-preserving. We
say f is ergodic if for any measurable set s ⊆ X:

f−1(s) = s =⇒ s is almost equal to ∅ or X.

7 The diamond is recorded in mathlib issue 16932 2. In fact it is only the Inf and Sup fields in the
complete boolean algebra structures that differ definitionally so this should be fairly easy to resolve.

ITP 2023

https://github.com/leanprover-community/mathlib/issues/16932

23:10 A Formalisation of Gallagher’s Ergodic Theorem

Ergodicity is key concept in the proof of Gallagher’s theorem and so we added the following
definitions to mathlib:

Listing 9 Definition of pre-ergodic 2 and ergodic maps 2:
structure pre_ergodic (µ : measure α . volume_tac) : Prop :=

(ae_empty_or_univ : ∀ {|s|}, measurable_set s →
f−1′ s = s → s =m[µ] (∅ : set α) ∨ s =m[µ] univ)

structure ergodic (µ : measure α . volume_tac) extends
measure_preserving f µ µ, pre_ergodic f µ : Prop

The reason for the intermediate definition pre_ergodic is to support the definition of
quasi-ergodic maps which we also defined, but which do not concern us here.

We then developed some basic API for ergodic maps including the key result:

▶ Lemma 7. Let X be a measurable space with measure µ such that µ(X) < ∞. Suppose
that f : X → X is ergodic, s ⊆ X is measurable, and the image f(s) is almost contained in
s, then s is almost equal to ∅ or X.

This result is elementary but not quite trivial and appears formally as follows:

Listing 10 Sets that are almost invariant by an ergodic map 2:
lemma ae_empty_or_univ_of_image_ae_le [is_finite_measure µ]

(hf : ergodic f µ) (hs : measurable_set s) (hs′ : f ′′ s ≤m[µ] s) :
s =m[µ] (∅ : set X) ∨ s =m[µ] univ :=

This is not the first time that ergodic maps have been formalised in a theorem prover and
so we have kept the above account very brief. Indeed the Archive of Formal Proofs for
Isabelle/HOL contains an impressive body of results about ergodic theory due to Sébastien
Gouëzel with contributions from Manuel Eberl, available at the Ergodic Theory entry 2.
This entry contains many results about general ergodic theory that have not yet been added
to mathlib. On the other hand, we needed to know that certain specific maps on the circle
are ergodic and our formalisations of these results do appear to be the first of their kind. We
discuss these next.

5.2 Ergodic maps on the circle
In order to prove Gallagher’s theorem, we needed the following result:

▶ Theorem 8. Given n ∈ N, the map:

S → S
y 7→ ny

is measure-preserving if n ≥ 1 and is ergodic if n ≥ 2.

The fact that y 7→ ny is measure-preserving follows from general uniqueness results for Haar
measures. In fact the result holds for any compact, Abelian, divisible topological group.
Thanks to mathlib’s extensive theory of Haar measure [15], it was easy to add a proof of
this 2. We encourage readers who are encountering this fact for the first time to examine
figure 1 and appreciate why this result holds for S despite failing for R.

The proof that y 7→ ny is ergodic is harder. We proved it as corollary of the following
lemma. We sketch a proof to give a sense of what is involved; it is not essential that the
reader follow the details: the main point is that we needed to use Lebesgue’s density theorem.

https://github.com/leanprover-community/mathlib/blob/9956c3806d0f9553e5c6e6af68970563a1619cd1/src/dynamics/ergodic/ergodic.lean#L39
https://github.com/leanprover-community/mathlib/blob/9956c3806d0f9553e5c6e6af68970563a1619cd1/src/dynamics/ergodic/ergodic.lean#L44
https://github.com/leanprover-community/mathlib/blob/9956c3806d0f9553e5c6e6af68970563a1619cd1/src/dynamics/ergodic/ergodic.lean#L179
https://www.isa-afp.org/entries/Ergodic_Theory.html
https://github.com/leanprover-community/mathlib/blob/9956c3806d0f9553e5c6e6af68970563a1619cd1/src/measure_theory/measure/haar.lean#L741

O. Nash 23:11

A subset s ⊆ S Its preimage f−1(s)

Figure 1 The map f : y 7→ 2y is measure-preserving.

▶ Lemma 9. Let s ⊆ S be measurable and u0, u1, . . . be a sequence of finite-order points in S
such that:

ui + s is almost equal to s for all i,
the order o(ui) → ∞ as i → ∞.

Then s is almost equal to ∅ or X.

Proof. The result is fairly intuitive: s is almost equal to ui +s iff it is composed of a collection
of o(ui) components, evenly-spaced throughout the circle, up to a set of measure zero. Since
this holds for all i and o(ui) → ∞, such components must either fill out the circle or be
entirely absent, up to a set of measure zero.

The way to turn the above intuitive argument into rigorous proof is to use Lebesgue’s
density theorem 4. We must show that if s is not almost empty then µ(s) = 1. Lebesgue
tells us that if s is not almost empty it must contain some point d of density 1. Using d, we
construct the sequence of closed balls Bi centred on d such that µ(Bi) = 1/o(ui). Because
ui + s is almost s,

µ(s ∩ Bi) = µ(s)/o(ui) = µ(Bi)µ(s).

However since d has density 1, we know that:

µ(s ∩ Bi)/µ(Bi) → 1.

These two results force us to conclude that µ(s) = 1. ◀

The formal version is very slightly more general and appears in mathlib as follows:

Listing 11 Formal statement of lemma 9 2

lemma add_circle.ae_empty_or_univ_of_forall_vadd_ae_eq_self
{s : set $ add_circle T} (hs : null_measurable_set s volume)
{ι : Type∗} {l : filter ι} [l.ne_bot] {u : ι → add_circle T}
(hu1 : ∀ i, ((u i) +v s : set _) =m[volume] s)
(hu2 : tendsto (add_order_of ◦ u) l at_top) :
s =m[volume] (∅ : set $ add_circle T) ∨ s =m[volume] univ :=

Theorem 8 follows from lemma 9 because any set s satisfying f−1(s) = s for f : y 7→ ny

satisfies ui + s = s for the sequence:

ui = [1/ni] ∈ S.

Note that we need n ≥ 2 in order to have o(ui) = ni → ∞. The formal statement appears in
mathlib as follows:

ITP 2023

https://github.com/leanprover-community/mathlib/blob/9956c3806d0f9553e5c6e6af68970563a1619cd1/src/dynamics/ergodic/add_circle.lean#L40

23:12 A Formalisation of Gallagher’s Ergodic Theorem

Listing 12 Formal statement of theorem 8 2

lemma add_circle.ergodic_nsmul {n : N} (hn : 1 < n) :
ergodic (λ (y : add_circle T), n · y) :=

In fact we needed the following mild generalisation of theorem 8:

▶ Theorem 10. Given n ∈ N and x ∈ S, the map:

S → S
y 7→ ny + x

is measure-preserving if n ≥ 1 and is ergodic if n ≥ 2.

This follows easily from theorem 8 because if we define the measure-preserving equivalence:

e : S → S

y 7→ x

n − 1 + y

then a quick calculation reveals:

e ◦ g ◦ e−1 = f,

where f : y 7→ ny and g : y 7→ ny + x. As a result, theorem 10 follows from theorem 8 via:

Listing 13 The reduction of theorem 10 to theorem 8 2

lemma ergodic_conjugate_iff {e : α ≃m β} (h : measure_preserving e µ µ′) :
ergodic (e ◦ f ◦ e.symm) µ′ ↔ ergodic f µ :=

6 Gallagher’s theorem

6.1 Points of approximate order
Recall the definition of the set W ⊆ S appearing in the statement of theorem 2:

W = lim sup
n>0

Th(δn, {y ∈ S | o(y) = n}).

Key to the proof of theorem 2 is the way in which the sets Th(δn, {y ∈ S | o(y) = n}) interact
with the group structure of S. We thus made the following definition:

▶ Definition 11. Let A be a seminormed group, n ∈ N (non-zero), and δ ∈ R. We shall use
the notation:

AO(A, n, δ) = Th(δ, {y ∈ A | o(y) = n}),

for the set of points that have approximate order n, up to a distance δ.

For example, as shown in figure 2, AO(S, n, δ) is a union of φ(n) arcs of diameter 2δ, centred
on the points [m/n] with 0 ≤ m < n and m coprime to n (where φ is Euler’s totient function).

The formal counterpart of definition 11 is:

https://github.com/leanprover-community/mathlib/blob/9956c3806d0f9553e5c6e6af68970563a1619cd1/src/dynamics/ergodic/add_circle.lean#L133
https://github.com/leanprover-community/mathlib/blob/9956c3806d0f9553e5c6e6af68970563a1619cd1/src/dynamics/ergodic/ergodic.lean#L99

O. Nash 23:13

Figure 2 The set of points of approximate order 5 in S, up to a distance δ ≈ 0.01.

Listing 14 Points of approximate order in a normed group 2

@[to_additive] def approx_order_of
(A : Type∗) [seminormed_group A] (n : N) (δ : R) : set A :=

thickening δ {y | order_of y = n}

Using this language, the only properties of AO(A, n, δ) that we needed are as follows:

▶ Lemma 12. Let A be a seminormed commutative group, δ ∈ R, a ∈ A, and m, n ∈ N (both
non-zero). Then8:

(i) m · AO(A, n, δ) ⊆ AO(A, n, mδ) if m, n are coprime 2,
(ii) m · AO(A, nm, δ) ⊆ AO(A, n, mδ) 2,
(iii) a + AO(A, n, δ) ⊆ AO(A, o(a)n, δ) if o(a) and n are coprime 2,
(iv) a + AO(A, n, δ) = AO(A, n, δ) if o(a)2 divides n 2.

In fact property (iv) holds under the weaker assumption that r(o(a))o(a) divides n where
r(l) denotes the radical of a natural number l, but we needed only the version stated in the
lemma.

We made one last definition in support of theorem 2:

▶ Definition 13. Let A be a seminormed group and δ1, δ2, . . . a sequence of real numbers.
We shall use the notation:

WA(A, δ) = lim sup
n>0

AO(A, n, δn),

for the set of elements of A that are well-approximable by points of finite order, relative to δ.

Note that W = WA(S, δ) where W is the set appearing in the statement of theorem 2. The
formal counterpart of definition 13 is:

Listing 15 The set of well-approximable elements of a normed group 2

@[to_additive] def well_approximable
(A : Type∗) [seminormed_group A] (δ : N → R) : set A :=

blimsup (λ n, approx_order_of A n (δ n)) at_top (λ n, 0 < n)

The additive version of this definition is add_well_approximable.

6.2 The main theorem
We are finally in a position to assemble everything and provide a proof of our main result.
For the reader’s convenience we reproduce the formal statement which appeared above in
listing 1:

8 If s ⊆ A the notation m · s means {my | y ∈ s}.

ITP 2023

https://github.com/leanprover-community/mathlib/blob/9956c3806d0f9553e5c6e6af68970563a1619cd1/src/number_theory/well_approximable.lean#L62
https://github.com/leanprover-community/mathlib/blob/9956c3806d0f9553e5c6e6af68970563a1619cd1/src/number_theory/well_approximable.lean#L90
https://github.com/leanprover-community/mathlib/blob/9956c3806d0f9553e5c6e6af68970563a1619cd1/src/number_theory/well_approximable.lean#L102
https://github.com/leanprover-community/mathlib/blob/9956c3806d0f9553e5c6e6af68970563a1619cd1/src/number_theory/well_approximable.lean#L115
https://github.com/leanprover-community/mathlib/blob/9956c3806d0f9553e5c6e6af68970563a1619cd1/src/number_theory/well_approximable.lean#L128
https://github.com/leanprover-community/mathlib/blob/9956c3806d0f9553e5c6e6af68970563a1619cd1/src/number_theory/well_approximable.lean#L77

23:14 A Formalisation of Gallagher’s Ergodic Theorem

Listing 16 Gallagher’s theorem 2

theorem add_well_approximable_ae_empty_or_univ
(δ : N → R) (hδ : tendsto δ at_top (N 0)) :
(∀m x, ¬ add_well_approximable S δ x) ∨ ∀m x, add_well_approximable S δ x :=

The notation ∀mx, · · · should be read “for almost all x · · · ” and is standard mathlib notation
2. Using the lemmas filter.eventually_eq_empty 2 and filter.eventually_eq_univ
2 the statement in listing 16 is equivalent to:

▶ Theorem 14 (Gallagher’s theorem with δ → 0). Let δ1, δ2, . . . be a sequence of real numbers
such that δn → 0 as n → ∞. Then WA(S, δ) is almost equal to either ∅ or S.

Proof. For each prime p ∈ N we define three sets9:

Ap = lim sup
n>0,p∤n

AO(S, n, δn),

Bp = lim sup
n>0,p∥n

AO(S, n, δn),

Cp = lim sup
n>0,p2|n

AO(S, n, δn).

Let W = WA(S, δ); bearing in mind (6) it is clear that for any p:

W = Ap ∪ Bp ∪ Cp. (10)

We claim that these sets have the following properties:
(a) Ap is almost invariant under the ergodic map: y 7→ py,
(b) Bp is almost invariant under the ergodic map: y 7→ py + [1/p],
(c) Cp is invariant under the map y 7→ y + [1/p].

To see why (a) holds, consider:

p · Ap = p · lim sup
n>0,p∤n

AO(S, n, δn)

⊆ lim sup
n>0,p∤n

p · AO(S, n, δn)

⊆ lim sup
n>0,p∤n

AO(S, n, pδn) by lemma 12 part (i)

=a.e. Ap by lemma 5.

A very similar argument shows why (b) holds except using parts (ii), (iii) of lemma 12
instead of part (i).

Claim (c) is actually the most straightforward and holds by direct application of lemma
12 part (iv).

Now if Ap is not almost empty for any prime p, then because it is almost invariant under
an ergodic map, lemma 7 tells us that it must be almost equal to S. Since Ap ⊆ W , W must
also almost equal S and we have nothing left to prove.

We may thus assume Ap is almost empty for all primes p. By an identical argument, we
may also assume Bp is almost empty for all primes p. In view of (10), this means that:

W =a.e. Cp for all p.

Thus, by (c), W is almost invariant under the map y 7→ y + [1/p] for all primes p. The result
then follows by applying lemma 9. ◀

9 The notation p∥n means that p divides n exactly once.

https://github.com/leanprover-community/mathlib/blob/9956c3806d0f9553e5c6e6af68970563a1619cd1/src/number_theory/well_approximable.lean#L191
https://github.com/leanprover-community/mathlib/blob/9956c3806d0f9553e5c6e6af68970563a1619cd1/src/measure_theory/measure/measure_space_def.lean#L512
https://github.com/leanprover-community/mathlib/blob/9956c3806d0f9553e5c6e6af68970563a1619cd1/src/order/filter/basic.lean#L1375
https://github.com/leanprover-community/mathlib/blob/9956c3806d0f9553e5c6e6af68970563a1619cd1/src/order/filter/basic.lean#L1272

O. Nash 23:15

Omitting code comments, the formal version of this ∼ 30 line informal proof in mathlib
requires 101 lines 2.

7 Final words

7.1 Removing the δn → 0 hypothesis
As mentioned in the introduction, the hypothesis that δn → 0 in theorem 14 may be removed.
A nice follow-up project would be to supply the proof in this case. By replacing δn with
max(δn, 0), we may assume 0 ≤ δn for all n. Given this, if δn ̸→ 0, then in fact:

WA(S, δ) = S.

Note that this is a true equality of sets; it is not a measure-theoretic result. The main effort
would be to establish some classical bounds on the growth of the divisor-count and totient
functions.

In fact Bloom and Mehta have already formalised some of the required bounds as part of
their impressive Unit Fractions Project 2 formalising Bloom’s breakthrough [2, 3]. Once the
relevant results are migrated to mathlib, removing the δn → 0 hypothesis will become even
easier.

7.2 The Duffin-Schaeffer conjecture
Given some sequence of real numbers δ1, δ2, . . ., Gallagher’s theorem tells us that WA(S, δ)
is almost equal to either ∅ or to S. The obvious question is how to tell which of these two
possibilities actually occurs for the sequence in hand. The Duffin-Schaeffer conjecture, now a
theorem thanks to Koukoulopoulos and Maynard, provides a very satisfying answer:

WA(S, δ) =a.e.

∅ if

∑
φ(n)δn < ∞,

S if
∑

φ(n)δn = ∞.

where φ is Euler’s totient function.
That WA(S, δ) =a.e. ∅ if

∑
φ(n)δn < ∞ is very easy (it follows from the “easy” direction

of the Borel-Cantelli theorem). The converse is extremely hard. It was first stated in 1941
[7] and was one of the most important open problems in metric number theory for almost 80
years.

A formal proof of the converse would be especially satisfying given how elementary the
statement of the result is. After Gallagher’s theorem, perhaps the next best target is lemma
5.2 in [12], i.e., theorem 2 in Pollington and Vaughan [13].

7.3 Aistleitner, Borda, and Hauke’s quantitative results
The author is grateful to Christoph Aistleitner who contacted him after reading a preprint of
this article. Aistleitner highlighted that Gallagher’s theorem is required for Koukoulopoulos
and Maynard’s proof because the combination of Gallagher’s theorem with the results of
Pollington and Vaughan in [13] turns the Duffin-Schaeffer conjecture into a purely arithmetic
problem. He also highlighted that he, Borda, and Hauke have been able to take Koukoulo-
poulos and Maynard’s techniques further and obtain quantitative results even without using
Gallagher’s theorem, see [1].

ITP 2023

https://github.com/leanprover-community/mathlib/blob/9956c3806d0f9553e5c6e6af68970563a1619cd1/src/number_theory/well_approximable.lean#L191
https://github.com/b-mehta/unit-fractions/blob/b60c39a3ebd40a84104a4064840b10fc2af15fb8/src/for_mathlib/basic_estimates.lean#L824

23:16 A Formalisation of Gallagher’s Ergodic Theorem

7.4 Developing against master

It would have been impossible to complete the work discussed here without the extensive
theories of algebra, measure theory, topology etc. contained within mathlib. As we have
said, all of our code was added directly to the master branch of mathlib; most of it is
“library code”, not specific to Gallagher’s theorem.

Although it is harder to develop this way, we believe it is essential in order to permit
formalisation of contemporary mathematics. We therefore wish to exhibit this project as
further evidence that this workflow can succeed, and we hope to encourage even more people
to follow suit.

References
1 Christoph Aistleitner, Bence Borda, and Manuel Hauke. On the metric theory of approximations

by reduced fractions: a quantitative Koukoulopoulos-Maynard theorem. Compos. Math.,
159(2):207–231, 2023. doi:10.1112/S0010437X22007837.

2 Thomas F. Bloom. On a density conjecture about unit fractions. (to appear), 2021. arXiv:
2112.03726.

3 Thomas F. Bloom and Bhavik Mehta. The Unit Fractions Project. (to appear), 2022. URL:
https://b-mehta.github.io/unit-fractions/.

4 Kevin Buzzard, Johan Commelin, and Patrick Massot. Formalising perfectoid spaces. In
Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs and
Proofs, CPP 2020, New Orleans, LA, USA, January 20-21, 2020, pages 299–312, 2020.
doi:10.1145/3372885.3373830.

5 J. W. S. Cassels. Some metrical theorems in Diophantine approximation. I. Proc. Cambridge
Philos. Soc., 46:209–218, 1950. doi:10.1017/s0305004100025676.

6 Johan Commelin, Adam Topaz, et al. The Liquid Tensor Experiment. (to appear), 2022.
see also https://www.nature.com/articles/d41586-021-01627-2. URL: https://github.
com/leanprover-community/lean-liquid.

7 R. J. Duffin and A. C. Schaeffer. Khintchine’s problem in metric Diophantine approximation.
Duke Math. J., 8:243–255, 1941. URL: http://projecteuclid.org/euclid.dmj/1077492641.

8 Patrick Gallagher. Approximation by reduced fractions. J. Math. Soc. Japan, 13:342–345,
1961. doi:10.2969/jmsj/01340342.

9 Sébastien Gouëzel. Formalizing the Gromov-Hausdorff space. CoRR, abs/2108.13660, 2021.
arXiv:2108.13660.

10 Sébastien Gouëzel. A formalization of the change of variables formula for integrals in mathlib.
In Kevin Buzzard and Temur Kutsia, editors, Intelligent Computer Mathematics - 15th
International Conference, CICM 2022, Tbilisi, Georgia, September 19-23, 2022, Proceedings,
volume 13467 of Lecture Notes in Computer Science, pages 3–18. Springer, 2022. doi:
10.1007/978-3-031-16681-5_1.

11 Glyn Harman. Metric number theory, volume 18 of London Mathematical Society Monographs.
New Series. The Clarendon Press, Oxford University Press, New York, 1998.

12 Dimitris Koukoulopoulos and James Maynard. On the Duffin-Schaeffer conjecture. Ann. of
Math. (2), 192(1):251–307, 2020. doi:10.4007/annals.2020.192.1.5.

13 A. D. Pollington and R. C. Vaughan. The k-dimensional Duffin and Schaeffer conjecture.
Mathematika, 37(2):190–200, 1990. doi:10.1112/S0025579300012900.

14 The mathlib community. The Lean mathematical library. In Proceedings of the 9th ACM
SIGPLAN International Conference on Certified Programs and Proofs, CPP 2020, New Orleans,
LA, USA, January 20-21, 2020, pages 367–381, 2020. doi:10.1145/3372885.3373824.

15 Floris van Doorn. Formalized Haar Measure. In Liron Cohen and Cezary Kaliszyk, editors, 12th
International Conference on Interactive Theorem Proving (ITP 2021), volume 193 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 18:1–18:17, Dagstuhl, Germany, 2021.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ITP.2021.18.

https://doi.org/10.1112/S0010437X22007837
https://arxiv.org/abs/2112.03726
https://arxiv.org/abs/2112.03726
https://b-mehta.github.io/unit-fractions/
https://doi.org/10.1145/3372885.3373830
https://doi.org/10.1017/s0305004100025676
https://www.nature.com/articles/d41586-021-01627-2
https://github.com/leanprover-community/lean-liquid
https://github.com/leanprover-community/lean-liquid
http://projecteuclid.org/euclid.dmj/1077492641
https://doi.org/10.2969/jmsj/01340342
https://arxiv.org/abs/2108.13660
https://doi.org/10.1007/978-3-031-16681-5_1
https://doi.org/10.1007/978-3-031-16681-5_1
https://doi.org/10.4007/annals.2020.192.1.5
https://doi.org/10.1112/S0025579300012900
https://doi.org/10.1145/3372885.3373824
https://doi.org/10.4230/LIPIcs.ITP.2021.18

An Extensible User Interface for Lean 4
Wojciech Nawrocki #

Carnegie Mellon University, Pittsburgh, PA, USA

Edward W. Ayers #

Carnegie Mellon University, Pittsburgh, PA, USA

Gabriel Ebner #

Microsoft Research, Redmond, WA, USA

Abstract

Contemporary proof assistants rely on complex automation and process libraries with millions of
lines of code. At these scales, understanding the emergent interactions between components can be a
serious challenge. One way of managing complexity, long established in informal practice, is through
varying external representations. For instance, algebraic notation facilitates term-based reasoning
whereas geometric diagrams invoke spatial intuition. Objects viewed one way become much simpler
than when viewed differently. In contrast, modern general-purpose ITP systems usually only support
limited, textual representations. Treating this as a problem of human-computer interaction, we
aim to demonstrate that presentations – UI elements that store references to the objects they are
displaying – are a fruitful way of thinking about ITP interface design. They allow us to make
headway on two fronts – introspection of prover internals and support for diagrammatic reasoning.
To this end we have built an extensible user interface for the Lean 4 prover with an associated
ProofWidgets 4 library of presentation-based UI components. We demonstrate the system with
several examples including type information popups, structured traces, contextual suggestions, a
display for algebraic reasoning, and visualizations of red-black trees. Our interface is already part of
the core Lean distribution.

2012 ACM Subject Classification Human-centered computing → Visualization systems and tools;
Software and its engineering → Functional languages

Keywords and phrases user interfaces, human-computer interaction, Lean

Digital Object Identifier 10.4230/LIPIcs.ITP.2023.24

Supplementary Material Software (User interface): https://github.com/leanprover/vscode-
lean4/tree/v0.0.102, archived at swh:1:rev:232b31446d71a697ef66cc3f9cdd671e52631317
Software (ProofWidgets 4): https://github.com/EdAyers/ProofWidgets4/tree/itp23

archived at swh:1:dir:2c87d19df4c75dccfab1949cf370d3ca92a37be0

Funding Wojciech Nawrocki: Hoskinson Center for Formal Mathematics.
Edward W. Ayers: Hoskinson Center for Formal Mathematics.

Acknowledgements The Lean team at MSR and KIT: Leonardo de Moura and Sebastian Ullrich for
extensive discussions, code review, and improvements to the system, Daniel Selsam for suggesting
traces, and Daniel Fabian for input on RPC design. The Penrose team: Wode Ni and Sam Estep for
considerable help and implementing several features which made our use possible. Jeremy Avigad
and Patrick Massot for suggestions, advice, and feedback on a draft of the paper. Tomáš Skřivan,
Joachim Breitner, and Sina Hazratpour for trying our systems and suggesting improvements. Chris
Lovett and Mariana Alanis for working on vscode-lean4. The Lean Zulip community for technical
help and ideas.

© Wojciech Nawrocki, Edward W. Ayers, and Gabriel Ebner;
licensed under Creative Commons License CC-BY 4.0

14th International Conference on Interactive Theorem Proving (ITP 2023).
Editors: Adam Naumowicz and René Thiemann; Article No. 24; pp. 24:1–24:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:wjnawrocki@cmu.edu
https://orcid.org/0000-0002-8839-0618
mailto:contact@edayers.com
https://orcid.org/0000-0003-1846-1473
mailto:gebner@gebner.org
https://orcid.org/0000-0003-4057-9574
https://doi.org/10.4230/LIPIcs.ITP.2023.24
https://github.com/leanprover/vscode-lean4/tree/v0.0.102
https://github.com/leanprover/vscode-lean4/tree/v0.0.102
https://archive.softwareheritage.org/swh:1:rev:232b31446d71a697ef66cc3f9cdd671e52631317;origin=https://github.com/leanprover/vscode-lean4;visit=swh:1:snp:015dfc80f88f9b3dbd25fe6c0dea2ff503a58977
https://github.com/EdAyers/ProofWidgets4/tree/itp23
https://archive.softwareheritage.org/swh:1:dir:2c87d19df4c75dccfab1949cf370d3ca92a37be0;origin=https://github.com/EdAyers/ProofWidgets4;visit=swh:1:snp:1ac3e2931ffc5e4e83809f5b8c177eba41c229dd;anchor=swh:1:rev:5339cebdca87d132e1ebc1dcc72bf588c2f71ae1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 An Extensible User Interface for Lean 4

1 Introduction

Interactive theorem proving (ITP) distinguishes itself from other approaches to formal
methods by structuring proof construction as a feedback loop between a human and a
machine. Whether by filling typed holes in a partial term (Agda, Idris) or by issuing
meta-level instructions in a tactic-based framework (HOL, Isabelle, Coq), users tend to
develop proofs incrementally. At each step, the system displays the goals which remain to
be proven and the user responds with a further refinement of their proof until there are no
more goals left. This loop can be viewed as a dialogue between the user and the ITP system.
Yet compared to human-to-human communication, modes of human-computer interaction
available in today’s general-purpose theorem provers are limited in form and in referentiality.

They are limited in form by being exclusively text-based. Text serves its purpose
well: it is simple to process, supported in every system configuration, and universally
understandable. Nevertheless, textual representations are only one way of displaying formal
processes, statements, and their proofs. Cognitive science researchers have long suspected
that external representations of concepts and objects outside the mind (for example a drawing
on a piece of paper, or the physical disks in a Tower of Hanoi puzzle), complementing internal
representations within the mind, are not merely an aid but rather an integral component
of cognition [49]. Restricting the external representations available in ITP systems to
only be text is thus a restriction on the way we think [45]. For instance, diagrammatic
representations group related information together in ways that sequences of words simply
cannot [29]. Since mathematicians and computer scientists rely on graphical calculi and
processes such as diagram chases [20], computer mathematics should naturally support
graphical representations.

Interactions are furthermore limited in referentiality in that we cannot refer to the
objects that a displayed representation signifies by interacting with it directly. This is
because the representations do not “remember” what they are representations of. Suppose
for example that Alice and Bob are collaborating on a proof, using natural language and a
blackboard. Suppose Bob attempts to commute x past y in the ring R but Alice notes that
this cannot be done because R is not known to be commutative and one may not assume
that x · y = y · x. At this point, Bob may respond by referring directly to R or to the term
x · y and asking Alice for further facts about these objects in order to understand the issue
and make progress on the proof. This illustrates that in dialogue, it is natural to request
actions on an object under consideration by referring to it; dialogue is referential.

But replace Alice with an ITP system and suppose the corresponding message from
Alice to Bob is that an instance of the CommRing typeclass couldn’t be synthesized for the
type R. To obtain detail on why this failed, the best Bob can generally do is copy-paste the
offending type into a separate command, either to re-run the failing operation with more
verbose output settings, or to print some extra information about it. Such interruptions are
a source of friction which obstructs reasoning about the mathematical objects in question.
Copy-pasting is only necessary because the displayed typeclass synthesis error is inert text
which has “forgotten” details of the failure. The ITP feedback loop is thus not so much a
dialogue as it is a sequence of disjoint request-response pairs. Had the system stored an
association between the displayed error and input data involved in the failure instead, Bob
would be able to inspect this data by interacting with the error message directly.

Failure of referentiality extends beyond the proof refinement loop, generally limiting the
amount of information carried by messages originating in all components including parsing,
type inference, proof search, decision procedures, and so on. Since in contemporary proof

W. Nawrocki, E. W. Ayers, and G. Ebner 24:3

assistants these components assemble into deep and interconnected stacks, understanding
the behaviour of any single component (not to mention emergent phenomena arising from
multiple components in combination) can be a serious challenge.

We will show that simply keeping better track of references can improve the state of
things. Following Ciccarelli [17, 16], we call reference-preserving UI elements presentations.
A presentation is a visual or textual display D of an object X with a link back from D to X.
Thanks to the link, the presented object X can be acted upon in various ways by interacting
with D. In our example, Bob could interact with a presentation of the typeclass inference
error (by clicking on it or using another input device) in order to obtain more information
about R or CommRing, to jump to their definitions, or to carry out other operations on them.
Failure of referentiality can be restated as noting that some UI element is not a presentation.

1.1 Contributions
We report on the design and implementation of a user interface (UI) for the Lean 4 theorem
prover [19], of an associated ProofWidgets 4 library of UI components1, as well as of
supporting features in the metaprogramming framework and in the prover itself. Our system
aims to enable more natural and efficient interactions with the prover by combining the
following features:

Displays of arbitrary form. We build on HTML5 and the web platform as the
underlying technology to make visualization easier. Packages from the rich JavaScript
ecosystem may be imported and used in the UI. For instance, in Section 3.1 the Penrose
[47] library is used to visualize mathematical objects.
Referential presentations. UI components keep track of, and may act on, the objects
they signify. For example, expressions displayed in the UI can be hovered over to see
their types and explicit forms (Section 2.1); and goal states can be interacted with in
order to make progress on proofs (Section 3.3).
User-extensibility with reusable components. The interface can be modified and
extended by users, in Lean itself and in JavaScript. Builtin and user-defined components
may be composed in arbitrary ways.
Live, interactive displays. UI components can be used immediately, in the same Lean
file they are defined in, with changes reflected in the UI in real-time.
On-demand computation. Our presentations are reactive in that they compute lazily,
in reaction to requests from the user. We can explore large objects such as computation
traces (Section 2.1) by displaying only the relevant parts without processing the rest.
General-purpose design. Like Lean itself, the UI and ProofWidgets are not tailored
for any specific domain. They enable a variety of applications besides logical reasoning
such as plotting, 3D visualisation, and interactive simulations.

While interfaces supporting subsets of the above have been developed, our system appears
to be the first to support all of them in a cohesive way. We give a detailed comparison
to other systems in Section 5. The UI is part of the core Lean distribution and has been
deployed widely to hundreds of active users, whereas the ProofWidgets package can be
imported for additional functionality. The UI has been integrated in the VS Code extension
vscode-lean42 as well as in the Lean 4 Web3 online editor.

1 https://github.com/EdAyers/ProofWidgets4/tree/itp23
2 https://github.com/leanprover/vscode-lean4/
3 https://lean.math.hhu.de/

ITP 2023

https://github.com/EdAyers/ProofWidgets4/tree/itp23
https://github.com/leanprover/vscode-lean4/
https://lean.math.hhu.de/

24:4 An Extensible User Interface for Lean 4

Outline. In Section 2, we introduce the user interface and its interactive features. In
Section 3, we demonstrate how to extend the interface by means of several examples. In
Section 4, internals of the system and aspects of implementation are discussed. We cover
related work in Section 5 and conclude in Section 6.

2 The user interface

The layout of the Lean 4 user interface does not diverge from the two-pane view of the world
popularized by ProofGeneral [4]. In this layout, the first pane in the prover UI is a text editor
with the proof script, whereas the second infoview pane displays additional information.
This includes the current goal state, errors, and messages for the open buffer. All the UI
components and extensions which we will discuss are displayed within the infoview. An
example infoview state is shown in Figure 1.

Figure 1 The Lean infoview embedded in vscode-lean4. Two tactic-mode goals (Tactic state)
at the text cursor are shown (1). Differences in the goals’ types and local contexts with respect to
the previous state are highlighted (2). A second location containing a term goal (Expected type) is
pinned (3).

While the layout is as in ProofGeneral, we do not follow its waterfall style of proof
script management. In the waterfall style, there is a checkpoint to separate the part of the
document which had been checked by the prover from that which had not. The checkpoint
is advanced manually as an intentional action by the user. It recedes when changes are
made to the checked part. Instead, similarly to Isabelle/PIDE [46], Lean adopts a “stateless”
approach that checks the entire buffer in real-time. Under the hood, the system keeps track
of immutable snapshots of past and present versions of the document, with new snapshots
generated whenever the user edits the script. Contents of the infoview are determined by the
latest snapshot and the current text cursor position.

When the cursor is inside a tactic-mode proof, the goal state at that position is displayed.
In tactic proofs, differences between subsequent goal states are highlighted in green or red
depending on whether a subexpression was just added or is about to be removed, respectively.
This can be useful to see at a glance how a step has impacted, or will impact, the proof state.
For instance when proving ∀ (n : Nat), 0 + n = n by induction on n, in the base case n
becomes Nat.zero and this change is highlighted as in Figure 1. The diff is computed using a
heuristic algorithm operating on kernel-level expression trees. Furthermore when the cursor
is over a typed hole (or a finished term), the term goal is also displayed. The term goal is
the expected (or actual) type and local context of the typed hole (or term).

W. Nawrocki, E. W. Ayers, and G. Ebner 24:5

One advantage of the waterfall approach is that the checkpoint can be used as an
additional cursor which displays the goal state in one part of the file while we go on to work
on another part. We generalize this by allowing one or more text locations to be pinned in
the infoview. Information about pinned locations is displayed alongside information about
the text cursor location. Pinned displays update in real-time which is especially useful to see
how changes at one point in the file affect a proof state or evaluation further down.

2.1 Expression and trace presentations
The infoview’s design aims to support pervasive interactivity by displaying most objects
as presentations. For instance, every displayed expression, and each of its subexpressions,
stores a reference to the type-theoretic term it corresponds to. This can be used to learn
additional facts about an expression appearing anywhere in the infoview (in a goal state or
an error message or a custom component) by clicking on it or hovering over it as in Figure 2.
Users can learn expressions’ types, see the values inferred at implicit arguments, and jump to
symbols’ definitions. In this way presentations increase information locality by making
it retrievable alongside a display of the relevant object. No extra data is computed eagerly;
pretty-printing the type of every subexpression, for example, would not be cheap in any
sizable goal state. Instead, the link from presentation to underlying object is a memory
reference which enables the UI to fetch information from the language server lazily when the
user requests it (see Section 4).

One way to frame the addition of presentations is as a kind of refinement process. We
imagine starting from a non-referential user interface appearing in a particular scenario. We
then ask:

Which objects are signified by which parts of the UI?
Given that UI D signifies object X, which actions applicable to X could we carry out
using D?

Figure 2 The numeral notation 0 : Nat is resolved via typeclass search. A structured trace
(1) of the search is explored. A presentation of a pretty-printed typeclass instance is clicked on to
display its type (2). Subexpressions within an expression can be selected following its tree structure.

Guided by the answers, we can enrich interfaces for programming and proving with new
interaction points. Consider messages produced by the prover: in Lean, structured traces are
a feature of the metaprogramming API which collates messages produced during program
execution into a tree-shaped record, with edges corresponding to user-defined execution

ITP 2023

24:6 An Extensible User Interface for Lean 4

boundaries. For example, the backtracking Prolog-like typeclass search procedure [43] of
Lean 4 can be traced, with branches representing attempted and abandoned instances. Many
search-based tactics produce traces. Traces of expensive procedures can have thousands of
nodes, making them unreadable and slow to pretty-print if displayed in full. Similarly to
inferring expression types in the UI, we solve this problem by expanding and pretty-printing
subtraces lazily, in reaction to user requests. This means we can explore branches through
large trace trees limited only by the memory needed to store the trace data rather than the
CPU time needed to pretty-print it all. In Figure 2, an example trace of typeclass instance
search is shown. Presentations compose so that the structured trace may contain interactive
expressions and other interactive components. In the future we hope to also provide a method
of filtering and searching through the trace tree.

Presentations interact well with other language features including syntax extensions. In
Figure 3, an embedded domain-specific language (EDSL) is used to write down an HTML
tree. The tree has an underlying expression of type Html which is presented in the infoview
using the same EDSL.

Figure 3 A JSX-like syntax for writing HTML trees inline is used to write down a term of type
Html in the editor. The #check command is used to inspect it in the infoview (1). The type Html
has an associated pretty-printer which emits the same custom syntax. The pretty-printer sub-output
Lean! is a presentation of the subterm Html.element "b" #[] #["Lean!"] which can be
inspected by hovering over it with the mouse (2).

Since presentations are the default, producing them requires no extra effort from the
tactic writer. For example, the following snippet defines and then uses a custom command
with interactive output. It does this by first using elab, a meta-level command that defines
new commands with a given syntax, in this case #check_nat t where t can be any term. The
new command is immediately available for use and is invoked with 37 as input.
import Lean.Elab.Command
open Lean Elab Command

elab cmd:"#check_nat " t:term : command => liftTermElabM do
let e : Expr ← Term.elabTerm t (mkConst ‘‘Nat)
-- The string-like literal m!".." directly embeds expressions {..}.
logInfoAt cmd m!"{e} has type {mkConst ‘‘Nat}"

#check_nat 37

The implementation of #check_nat parses and typechecks the term, expecting its type to be
Nat, and then emits a message. It does this using logInfoAt which associates a message with
a syntactic span, in this case the span of the #check_nat keyword. Just like standard errors
and warnings associated with a syntactic range, the message is displayed in the infoview
whenever the text cursor is on this span. Since the message directly stores kernel-level
expressions (of type Expr), they are automatically displayed as interactive presentations.

W. Nawrocki, E. W. Ayers, and G. Ebner 24:7

3 ProofWidgets 4: programmable, referential interfaces

While the builtin presentations of expressions, goals and messages provide a common interface
for all uses, the design’s main strength is its extensibility and composability. Users can build
domain-specific interfaces dubbed user widgets. A user widget is a ReactJS UI component
capable of invoking Lean metaprograms and editing the proof script. User widgets can
implement new presentations and new ways of interacting with the prover. User widgets
are usually displayed by related tactics or commands – for example the HTML display in
Figure 5 is stored by the #html command. Storing a widget is analogous to how messages
are emitted with logInfoAt: informally, instead of stating “there is an error or warning at
this syntactic span”, we state “there is a user widget at this syntactic span”. Both the user
interface and the associated tactic code can be developed in tandem alongside each other,
allowing for quick development cycles.

In this section we will consider user widgets that extend the goal display in various ways.
Here referentiality – the idea that displays should store references to objects they signify – is
also core to our approach. Recall that the object displayed by an expression presentation
(Section 2.1) is an expression together with its local context (approximately corresponding
to a judgment Γ ⊢ t : T of the type theory). Executing with access to that allows us to,
for example, infer its type and display it to the user. Similarly, widgets extending the goal
display can reference the current goal state.

3.1 Diagrams for algebra
In Figure 4 the goal is an implication between statements in the language of category theory.
We choose to display it as commutative diagrams connected by implication arrows. Here our
support for importing JavaScript libraries shines – while it may seem like a trivial engineering
choice, the ability to build on the immense NPM software ecosystem dramatically cuts
down development time. One such library, Penrose [47], expresses general mathematical
diagramming as an optimization problem. The user writes a specification describing which
shapes the diagram should include (in dsl and sub files) as well as which constraints on their
layout will make the diagram sound and beautiful (in a sty file). An energy minimization
solver then runs and an SVG image is generated. The ProofWidgets component wrapping
Penrose is composable in that it may include further components (in Figure 4 labels on
objects and morphisms are interactive expression components) and dually may become part
of a larger display. We hope it will prove useful to working algebraists. While the display
demonstrated here does not act on the goal, proof methods such as diagram chases could
also be implemented with ProofWidgets. We expand on this in Section 3.3.

From the user’s perspective, implementing a display such as this one proceeds in two
steps. First, we wrap Penrose into a reusable ProofWidgets component. The Lean definition
of the PenroseDiagram component is as follows4:
structure PenroseDiagramProps where

embeds : Array (String × EncodableHtml)
dsl : String
sty : String
sub : String
deriving RpcEncoding

4 Details are highly likely to change as the library evolves.

ITP 2023

24:8 An Extensible User Interface for Lean 4

Figure 4 A target type in the language of category theory is selected. The statement is displayed
as a sequence of commutative diagrams connected by implication arrows.

@[widget_module]
def PenroseDiagram : Component PenroseDiagramProps where

javascript := . . . -- Details omitted

Values of type Component Props serve to encapsulate JavaScript user widget implemen-
tations as Lean definitions. The index type Props specifies a Lean encoding of the type of
data expected by the component. In this case Props = PenroseDiagramProps contains fields
describing a specific diagram (dsl/sty/sub) as well as other widgets to nest within it (embeds).
To give another example, one variant of the interactive expression component has type
Component ExprWithCtx where ExprWithCtx is an expression together with its local context.

The field javascript contains a JavaScript implementation of the component. To a first
approximation, it could be viewed as having dynamic type Props → HTML. It may be written
inline but it is preferrable to point at a file on disk. In the latter case one may use tooling
we have developed to integrate building TypeScript files into the build of a Lean package
using the Lake (Lean Make) build system. Communication with the infoview is set up using
the @[widget_module] attribute and the deriving RpcEncoding annotation. @[widget_module]
saves the JavaScript code in a global storage from which it can be retrieved for execution
in the infoview, whereas deriving RpcEncoding generates code to serialize and deserialize
values of a type, in this case PenroseDiagramProps. This is necessary to support distributed
computation (see Section 4).

More complex visualizations are enabled by building on further JavaScript libraries as in
Figure 5. For example, a component integrating a plotting library could be a starting point
for plotting functions in a formally verified way [34]. Finally, we note that this first step
of wrapping JavaScript functionality in a Component can be skipped when the necessary UI
component already exists. Thus it is desirable to write reusable components. For instance,
PenroseDiagram is not specific to algebra but supports general constraint-based diagramming;
we use it again in Figure 7.

In the second step, we write a Lean metaprogram to display the user widget. There are
many ways to do this in general. Since Figure 4 uses an Expr presenter, we will describe
this approach. Like most provers, Lean features an elaborator which translates surface-level
(vernacular) syntax into fully explicit terms of the underlying type theory by filling in

W. Nawrocki, E. W. Ayers, and G. Ebner 24:9

Figure 5 The Rubiks component loads the three.js library in order to create a 3D visualization
of a Rubik’s cube. An HTML tree <Rubiks seq={eg} /> containing an instance of this component
is passed to the #html command. This command can be used to render HTML trees in the infoview
with a user widget (HTML Display). The sequence of rotations eg is determined by the Lean script.

implicit arguments, finding typeclass instances, resolving ambiguous notation, inserting
coercions, and so on. Lean 4 also contains a delaborator which essentially does the inverse –
it attempts to make an explicit term human-readable by heuristically removing detail while
ensuring that the elaborator can still process the resulting vernacular. Eliding detail, the
delaborator has type Expr → MetaM Term where Expr is the type of kernel terms, Term the
type of abstract syntax trees corresponding to vernacular terms, and MetaM an appropriate
monad. By composing with a pretty-printer for syntax trees we get the full pretty-printer of
type Expr → MetaM String.

An Expr presenter is a ProofWidgets metaprogram which can be viewed as one general-
ization of the above process. Rather than producing strings, we output HTML trees which
may include user widgets. As the name suggests, it is aimed at producing presentations
of mathematical objects. The set of Expr presenters is user-extensible. We dispatch to the
appropriate one based on characteristics of the given Expr such as using a known constant at
the top level. This echoes the general design philosophy of Lean 4 as a tower of abstractions:
some uses of ProofWidgets are expressed mostly simply by writing an Expr presenter, and
for those that are not it is possible to drop to a lower level of abstraction.

To use this framework in our example, we wrote a Penrose specification for general
commutative diagrams, as well as an Expr presenter that translates equalities of morphisms
in a category into diagram descriptions which use that specification. A representative code
fragment follows.

/-- Expressions to display as labels in a diagram. -/
abbrev ExprEmbeds := Array (String × Expr)

open scoped Jsx in
def mkCommDiag (sub : String) (embeds : ExprEmbeds) : MetaM EncodableHtml := do

-- Pretty-print kernel terms into interactive labels for the diagram.
let embeds ← embeds.mapM fun (s, h) =>

return (s, EncodableHtml.ofHtml
<InteractiveCode fmt={← Widget.ppExprTagged h} />)

return EncodableHtml.ofHtml

ITP 2023

24:10 An Extensible User Interface for Lean 4

-- Instantiate a PenroseDiagram using a JSX-like EDSL.
<PenroseDiagram

embeds={embeds}
-- Penrose specification of general commutative diagrams.
dsl={include_str "commutative.dsl"}
sty={include_str "commutativeOpt.sty"}
-- The particular diagram we are given.
sub={sub} />

. . . -- Definitions of commSquareM? and commTriangleM? elided

/-- Present an expression as a commutative diagram. -/
@[expr_presenter]
def commutativeDiagramPresenter : ExprPresenter where

userName := "Commutative diagram"
present type := do

-- Attempt to deconstruct ‘type‘ into a commutative square or triangle
-- and use ‘mkCommDiag‘ if successful.
if let some d ← commSquareM? type then

return some d
if let some d ← commTriangleM? type then

return some d
return none

3.2 Selection contexts
On a blackboard, we can underline and point to expressions and objects in order to highlight
the relevant parts of a formula or depiction when explaining an argument. Analogously, a
selection context is a subset of (subexpressions of) goals, hypotheses, and (subexpressions
of) hypothesis types appearing in a goal state. The user specifies it by shift-clicking on
the respective elements in the infoview. The current selection context is passed as input to
user widgets that pertain to the goal. In Figure 4 just the target type was selected. The
withSelectionDisplay combinator, which we use there and in Figure 6, is a tactic combinator
that associates a general-purpose widget with the range of the entire nested tactic script,
and then runs the script unchanged. The widget displays each selected expression using
registered Expr presenters (if multiple presenters apply, a choice can be made in the UI).

Selecting more than one subexpression can be helpful in comparing differences between
these subexpressions, to figure out what remains to be proven. In Figure 6, we copied a
balancing function for red-black trees verbatim from Okasaki [37]. As it turns out, due to
overlapping patterns in the definition of balance, the reduction law one might expect does
not hold in all cases. It does hold when balance is called after inserting one node into a
well-formed red-black tree because in that case, the invariants ensure that no more than one
red-red edge exists. In Figure 6, we can see at a glance from their visual representations
that the two selected trees cannot be equal, so an invariant must have been violated. In
this way diagrams appearing live during proof development serve as cognitive aids. The
visualization of general red-black trees uses the react-d3-tree5 library to do most of the
heavy lifting and took less than an hour to prototype. Afterwards, figures from Okasaki’s
paper are reproduced by the system with no further effort.

5 https://github.com/bkrem/react-d3-tree

https://github.com/bkrem/react-d3-tree

W. Nawrocki, E. W. Ayers, and G. Ebner 24:11

Figure 6 A balancing function for red-black trees is implemented in balance. Two terms appearing
in the course of a proof about it are selected in the goal and illustrated as trees.

Finally, rather than using withSelectionDisplay which treats elements of the selection
context as independent, users may choose to visualize the selection context as one entity.
This is useful when the global information contained therein can be coherently diagrammed.
In Figure 7, two subset relations are relevant to the proof whereas a third one is not. We
use PenroseDiagram together with Penrose’s builtin support for Venn diagrams to display the
two relations which imply the conclusion. The combinator withVennDisplay used here works
similarly to withSelectionDisplay except in that, rather than emitting the general-purpose
selection display widget, it produces an instance of a Venn diagram specifically.

3.3 Contextual suggestions and graphical calculi
Beyond providing static displays of goal states guided by the selection context, user widgets
may invoke Lean metaprograms, access proof states, and edit the proof script. Since
metaprograms can also display user widgets, the link between widgets and metaprogramming
is bidirectional. It is possible to make progress on proofs through the UI.

One application of this functionality could be proof by pointing [10, 11] which, to a first
approximation, demands that the UI should allow guiding proof synthesis by pointing (with
a mouse, for example) at the term to use, decompose, or otherwise manipulate in the next
proof step. Since the selection context already contains terms which the user pointed out,
a proof by pointing widget would only need to respond to clicks by inserting appropriate
tactics into the proof script. On the other hand Paulson argues [38] that certain specific
variations of this idea, such as guiding term rewriting by hand, are better served by powerful
automation. Ultimately some combination of both appears most likely to be useful. For
example, a piece of Sledgehammer-like automation [12], or a system based on recent advances
in deep learning [28], could suggest proof steps that make progress on the proof in a manner
related to the current selection context. ProofWidgets avoids committing to any single
approach by remaining agnostic about which actions or graphical proof methods are available,
instead leaving the choice to users and their particular applications. What we hope to achieve
is to make the implementation of any such method as frictionless as possible by providing
a library of basic components. We envision it being used for contextual suggestions and
graphical calculi.

ITP 2023

24:12 An Extensible User Interface for Lean 4

Figure 7 A subset of hypotheses relevant to the proof is selected. The set relationships are
visualized in one Venn diagram.

Contextual suggestions are provided by suggestion providers. These are metaprograms
which, given a goal state and selection context, return a list of relevant or potentially useful
tactics that the user may then pick from. For example, proof by pointing implementations
could be viewed as suggestion providers which suggest tactics to carry out the desired goal
transformation. Like the set of Expr presenters, the set of suggestion providers is user-
extensible rather than fixed. In Figure 8 we demonstrate how a user widget presenting a
suggestion can operate. In Lean, the conv tactic mode allows “zooming in” on a subexpression
of the target or a hypothesis type in order to apply local transformations. In the figure, a
suggestion provider returns a conv tactic which would put the selected subexpression in focus.
The tactic is then displayed in the infoview and may be inserted by clicking the button.

As we observed in Section 1, diagrams serve as cognitive aids in a variety of mathematical
pursuits. Graphical calculi are distinguished from general depictions by being active,
meaning that manipulations of the depiction correspond to steps in a proof; sound, meaning
that valid manipulations are valid proof steps; and ideally complete, meaning that every
proof in a chosen class can be expressed graphically. Examples include the Reidemeister
moves on knot diagrams [40], manipulations of string diagrams [26], or more specific variants
in category theory such as ZX-diagrams [18], Globular proofs [6], and homotopy.io [41]
proofs. A formalization of any of these graphical languages could be accompanied by a
ProofWidgets component which translates manipulations of a graphical proof state in the
infoview into tactic steps in the Lean proof script.

W. Nawrocki, E. W. Ayers, and G. Ebner 24:13

Figure 8 A subterm -a + a + -a of the goal in a proof about groups [21] is selected. The conv
user widget by Robin Böhne and Jakob von Raumer displays a button suggesting a tactic which
would zoom in on the selected subterm. Clicking the button inserts the tactic into the proof script.

4 Implementation

A complete setup consists of three components. Figure 9 outlines an example interaction
between them.

The language server is written in Lean. It communicates with the editor and with the
infoview via the Language Server Protocol (LSP6). Through the LSP it provides standard
code intelligence facilities – go-to-definition, type hovers, autocompletion, etc. Proof
states and related objects such as terms of the type theory are stored in the server.

The infoview is written in TypeScript. It is a self-contained web application displayed by
the editor. Client-side JavaScript code from user widgets executes here.

The text editor is chosen by the user. Besides storing the proof script, the editor connects
to the server, manages the infoview, and mediates between them. To support both,
the editor must be capable of communicating via LSP and displaying web content. For
example, the Visual Studio Code extension vscode-lean4 embeds the infoview in a
webview pane which it has control over.

Remote procedure calls. The infoview and the server are independent programs which may
not even execute on the same computer. Indeed, this happens when Lean is used over SSH
or in a cloud-based service such as Gitpod. In these cases, the editor and infoview execute on
the user’s local machine whereas the server is remote. Certain objects stored in the server’s
memory should not be serialized and sent to the infoview over the network due to their size –
for instance, the environment (which stores known theorems, definitions, metadata, etc) can
weigh several gigabytes in sufficiently large proof developments. Consequently, metaprograms
which operate on heavy objects must execute in the server.

Nevertheless, user widgets need to run such metaprograms, for example to try a tactic
or infer an expression’s type: both of these need access to the environment. Therefore
widgets must be able to invoke methods on the server. To enable this, we designed a foreign

6 https://microsoft.github.io/language-server-protocol/

ITP 2023

https://microsoft.github.io/language-server-protocol/

24:14 An Extensible User Interface for Lean 4

Language
server

Text
editor Infoview

1. Cursor
moved to 4:5.

2. Widgets at
4:5?

3. Widgets at
4:5 are [. . .].

Figure 9 In order to determine which user widgets to show in the infoview, a sequence of messages
is exchanged every time the text cursor moves. First, the editor informs the infoview about the new
cursor position (here line 4, column 5). Then, the infoview queries the language server for the user
widgets that should be shown at that position. Finally, the server replies with a list of user widgets.
Its contents are then displayed in the infoview. The editor acts as a proxy for infoview–server
communication, indicated by dashed lines.

function interface for Lean with support for remote calls from JavaScript. The interface is
effectively an extension to LSP. The LSP is based on JSON-RPC7, a simple protocol for
remote procedure calls which encodes argument and output data as JSON. For example, to
request a symbol’s definition, the editor invokes the textDocument/definition method by
sending a JSON record of the file, line, and column where an instance of the symbol occurs.
The return value sent back by the server is the definition’s location. To support arbitrary
other functionality, we made the registry of procedures that can be invoked on the server via
JSON-RPC user-extensible. To mark a Lean procedure as remotely callable, one annotates
it with @[server_rpc_method]. A procedure so marked must be of the type A → RequestM
B where RequestM is a monad with access to server state and A,B are JSON-serializable
types. (De)serialization routines are autogenerated by annotating a type definition with
deriving ToJson, FromJson or deriving RpcEncoding.

Remote references. When making multiple remote calls, widgets need to pass data between
the metaprograms they invoke, for example to compute an expression’s explicit form and
then infer the type of a subexpression of that (as do the two popups in Figure 2). Since the
relevant data is not serialized, client-side code needs a way of referencing objects stored in
the server’s memory. This is achieved by allowing JSON-RPC payloads to contain opaque
references to server-side objects. A value of any type may be referenced opaquely by being
marked with the WithRpcRef type-level function. To ensure type correctness, runtime type
information is stored and checked on any remote reference access.

Remote references are the backbone of our implementation of presentations. One use is
found in expression presentations. Recall from Section 3.1 that Lean features a delaborator, a
system for converting kernel-level expressions back into syntax trees. To implement expression
presentations, the delaborator has been extended with the ability to tag syntax subtrees
with references to subexpressions of the original expression. These references are encoded
using WithRpcRef. The exact tagging strategy has been described by Ayers and coauthors [5].

Allowing the client to refer to server-side objects presents us with a classic memory
management problem – when is it safe for the server to delete objects for which remote
references have been created? Conveniently, both Lean and JavaScript are garbage-collected

7 https://www.jsonrpc.org/

https://www.jsonrpc.org/

W. Nawrocki, E. W. Ayers, and G. Ebner 24:15

languages. Using a FinalizationRegistry8 we can instruct the JavaScript garbage collector
to send a memory release instruction to the server when it collects the corresponding client-
side reference. This is cooperative and may fail in case of client-side errors: a client which does
not release server-side memory could cause it to leak. While we can’t prevent this in general
using only server-side mechanisms, we require the client to regularly send keepalive messages
inspired by the Transmission Control Protocol [13]. Upon not seeing any keepalives for
sufficiently long, the server frees all remote references. This eliminates a class of disconnection-
and hang-related memory leaks.

Dynamic code delivery. User widgets are required to be self-contained JavaScript modules9.
This is considered a low-level target – users may employ any libraries and toolchains they
need (for example TypeScript), as long as the eventual compilation or transpilation output
matches the required format. Modules are registered in Lean using the @[widget_module]
annotation. Upon being so annotated, modules are stored in a content-addressed cache
accessible to the server. In order to display a particular user widget, the infoview fetches its
source module from the cache using a remote procedure call, and then dynamically loads this
source. User widgets execute in a runtime environment including the @leanprover/infoview
library which they may import. This library exposes builtin functionality of the infoview (it
can be used to display expression, structured trace, or goal presentations) as well as methods
of communicating with the editor (these can be used for instance to edit the proof script or
place another Lean file in focus) and services for making remote procedure calls from user
widgets.

5 Related work

Our work descends directly from graphical tooling for Lean 3 (the previous version of Lean),
notably ProofWidgets 3 [5] and the previous infoview. ProofWidgets 4 is a complete
redesign and reengineering. Compared to ProofWidgets 4, the previous version was not
able to incorporate JavaScript libraries which we make heavy use of; used purely server-
side rendering which resulted in disruptive latency approaching seconds [35] in distributed
settings where code editor and prover reside on different machines (e.g. cloud-based services
such as Gitpod); and could not handle asynchronous events which are necessary to invoke
long-running computations from the UI. Compared to the previous version we have lost (and
hope to regain) the ability to program UI event handlers directly in Lean rather than in
JavaScript. We expect this to become feasible when a JavaScript or WebAssembly backend
is developed for Lean. The previous infoview did not support goal diffs, structured traces,
interactive messages, or selection contexts.

The work of Mehnert, Christiansen, Korkut, and coauthors on idris-mode [33, 16, 27]
encouraged us to dream of richer programming environments, and suggested presentations
as a useful concept. idris-mode is primarily limited by the practical difficulty of embedding
web-based and non-textual interfaces in Emacs with which it is tightly integrated.

User interfaces for theorem provers can be broadly categorized along two axes. Along one,
they can either be built for a specific domain and use case only, or they can be tool-making
tools designed for extensibility. Along another axis, they can either be integrated with a

8 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/
FinalizationRegistry

9 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules

ITP 2023

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/FinalizationRegistry
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/FinalizationRegistry
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules

24:16 An Extensible User Interface for Lean 4

special-purpose formal system such as a synthetic axiomatization of geometry, or they can
support a general foundation. Our interface is designed from the ground up to fall on the right
of both axes, that is to support general interface extensions in a general-purpose theorem
prover. Existing work tends to place towards the left of at least one of the axes, with many
tools excelling at providing fixed sets of UI functionality.

CtCoq [8] and its successor Pcoq [2] were early systems which focused on displaying
formulas and proofs in natural language with mathematical notation, on structured editing
of proofs, and on proof by pointing. Some extensions to Pcoq have been developed by its
authors, notably GeoView [9], a display for statements in plane geometry. Nevertheless
Pcoq does not appear to support general user-extensibility. The GeoProof [36] project
improved on GeoView by supporting proof construction, rather than just viewing, in the
geometric display. However, GeoProof was developed as a standalone application that did
not use Pcoq. Robert’s PeaCoq [42] focuses on visualizing proof trees and steps, but not the
mathematical objects appearing therein such as the diagrams of Figure 4. The recent Actema
project [22] aims to extend the interactions available in proof by pointing to drag-and-drop
interfaces. KeY [1] and KeYmaera X [24] provide interfaces specific to software verification
and purpose-built logics. The Incredible Proof Machine [14] is a browser-based diagrammatic
prover. We hope that our framework enables the creation of similar purpose-specific tooling
for the Lean proof assistant.

A recent interface which does aim at general-purpose proving and domain-specific exten-
sions is that of HolPy [48]. Compared to ProofWidgets 4, at this moment HolPy stresses
proof by pointing and LATEX display but not general visualization of objects or computations.

Another class of interfaces and tools are web-based ones including jsCoq [3] and Clide
[32]. The comparison here is subtler – while jsCoq in particular allows building websites
intermixing Coq snippets and UI components, it doesn’t seem to provide a way for these
components to invoke the metaprogramming API and directly manipulate proof state. It
may be that the potential for powerful extensions is there, but was simply never realized
in practice. The recent Alectryon [39] supports proof archival in Coq and in Lean (via
LeanInk [15]) by storing recorded proof states alongside beautified proof scripts. In contrast,
our system serves proof development by providing a live display with a variety of graphical
representations. We would, however, like to store a static form of these representations in
LeanInk outputs in the future.

Other systems intersect with our featureset in various ways. ProofGeneral [4] used to
support expression presentations, but only for the LEGO prover [31]. Feasibility of real-time
asynchronous processing was demonstrated in Isabelle/PIDE [46]. Both PeaCoq and Coq
itself contain similar goal diffing capabilities to ours. Multi-representation GUIs for proof
assistants were pioneered in the 1990s by the LΩUI [44], HyperProof [7] and XBarnacle [30]
projects.

Finally, we are generally inspired by Engelbart’s (to-date not realized!) vision of human
intelligence augmented through computer interfaces [23], and the systems of yore which
followed it including Smalltalk [25].

6 Conclusion

We designed and implemented an extensible user interface for the Lean 4 theorem prover
together with ProofWidgets 4, a supporting library of metaprograms and UI components.
The interface is based on presentations: UI elements that store references to the objects they
are displaying. Presentations enable detailed introspection of tactics and systems comprising

W. Nawrocki, E. W. Ayers, and G. Ebner 24:17

the prover. Extending the interface with ProofWidgets 4 empowers users to work with
a variety of interactive, graphical representations. Building on the JavaScript ecosystem
enables quick prototyping. The framework’s domain of applicability includes exploring
computation traces, symbolic visualization and exploration of mathematical objects and
data structures, custom interfaces for tactics and tactic modes, data visualization, function
plotting, and interactive simulations. Supporting not only expert users, it could be used
in education to build interactive textbooks and tutorials. We demonstrated example user
widgets diagramming mathematical data and suggesting possible proof steps from within
the UI.

In tune with the overall design philosophy of Lean 4, every layer of the visual stack can
be extended. We provide a tool-making tool which enables the creation of rich environments
for program and proof in science and mathematics.

References
1 Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, Peter H. Schmitt, and

Mattias Ulbrich. Deductive Software Verification - The KeY Book. Lecture Notes in Computer
Science. Springer, 2016. doi:10.1007/978-3-319-49812-6.

2 Ahmed Amerkad, Yves Bertot, Loïc Pottier, and Laurence Rideau. Mathematics and Proof
Presentation in Pcoq. Technical Report RR-4313, INRIA, November 2001. URL: https:
//hal.inria.fr/inria-00072274.

3 Emilio Jesús Gallego Arias, Benoît Pin, and Pierre Jouvelot. jscoq: Towards hybrid theorem
proving interfaces. In Serge Autexier and Pedro Quaresma, editors, Proceedings of the 12th
Workshop on User Interfaces for Theorem Provers, UITP 2016, Coimbra, Portugal, 2nd July
2016, volume 239 of EPTCS, pages 15–27, 2016. doi:10.4204/EPTCS.239.2.

4 David Aspinall. Proof general: A generic tool for proof development. In Susanne Graf and
Michael I. Schwartzbach, editors, International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, volume 1785 of Lecture Notes in Computer Science,
pages 38–43. Springer, Springer, 2000. doi:10.1007/3-540-46419-0_3.

5 Edward W. Ayers, Mateja Jamnik, and William T. Gowers. A graphical user interface frame-
work for formal verification. In Liron Cohen and Cezary Kaliszyk, editors, 12th International
Conference on Interactive Theorem Proving, ITP 2021, June 29 to July 1, 2021, Rome, Italy
(Virtual Conference), volume 193 of LIPIcs, pages 4:1–4:16. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2021. doi:10.4230/LIPIcs.ITP.2021.4.

6 Krzysztof Bar, Aleks Kissinger, and Jamie Vicary. Globular: an online proof assistant for
higher-dimensional rewriting. In Leibniz International Proceedings in Informatics, volume 52,
pages 34:1–34:11, 2016. ncatlab.org/nlab/show/Globular.

7 Jon Barwise and John Etchemendy. Hyperproof: Logical reasoning with diagrams. In Working
Notes of the AAAI Spring Symposium on Reasoning with Diagrammatic Representations, 1992.
URL: https://www.aaai.org/Papers/Symposia/Spring/1992/SS-92-02/SS92-02-016.pdf.

8 Yves Bertot. The ctcoq system: Design and architecture. Formal Aspects Comput., 11(3):225–
243, 1999. doi:10.1007/s001650050049.

9 Yves Bertot, Frédérique Guilhot, and Loic Pottier. Visualizing geometrical statements with
geoview. In David Aspinall and Christoph Lüth, editors, Proceedings of the User Interfaces
for Theorem Provers Workshop, UITP@TPHOLs 2003, Rome, Italy, September 8, 2003,
volume 103 of Electronic Notes in Theoretical Computer Science, pages 49–65. Elsevier, 2003.
doi:10.1016/j.entcs.2004.09.013.

10 Yves Bertot, Gilles Kahn, and Laurent Théry. Proof by pointing. In Masami Hagiya and
John C. Mitchell, editors, Theoretical Aspects of Computer Software, International Conference
TACS ’94, Sendai, Japan, April 19-22, 1994, Proceedings, volume 789 of Lecture Notes in
Computer Science, pages 141–160. Springer, 1994. doi:10.1007/3-540-57887-0_94.

ITP 2023

https://doi.org/10.1007/978-3-319-49812-6
https://hal.inria.fr/inria-00072274
https://hal.inria.fr/inria-00072274
https://doi.org/10.4204/EPTCS.239.2
https://doi.org/10.1007/3-540-46419-0_3
https://doi.org/10.4230/LIPIcs.ITP.2021.4
http://ncatlab.org/nlab/show/Globular
https://www.aaai.org/Papers/Symposia/Spring/1992/SS-92-02/SS92-02-016.pdf
https://doi.org/10.1007/s001650050049
https://doi.org/10.1016/j.entcs.2004.09.013
https://doi.org/10.1007/3-540-57887-0_94

24:18 An Extensible User Interface for Lean 4

11 Yves Bertot and Laurent Théry. A generic approach to building user interfaces for theorem
provers. J. Symb. Comput., 25(2):161–194, 1998. doi:10.1006/jsco.1997.0171.

12 Jasmin Christian Blanchette, Sascha Böhme, and Lawrence C. Paulson. Extending sledge-
hammer with SMT solvers. J. Autom. Reason., 51(1):109–128, 2013. doi:10.1007/
s10817-013-9278-5.

13 R. Braden. Requirements for internet hosts - communication layers. RFC 1122, RFC Editor,
October 1989. URL: https://www.rfc-editor.org/rfc/rfc1122.txt.

14 Joachim Breitner. Visual theorem proving with the incredible proof machine. In Jasmin Chris-
tian Blanchette and Stephan Merz, editors, International Conference on Interactive Theorem
Proving, pages 123–139. Springer, 2016. doi:10.1007/978-3-319-43144-4_8.

15 Niklas Bülow. Proof visualization for the lean 4 theorem prover, April 2022.
16 David Christiansen, David Darais, and Weixi Ma. The final pretty printer,

2016. URL: https://web.archive.org/web/20230219222209/https://davidchristiansen.
dk/drafts/final-pretty-printer-draft.pdf.

17 Eugene Charles Ciccarelli. Presentation based user interfaces. PhD thesis, Massachusetts
Institute of Technology, Cambridge, MA, USA, 1984. URL: https://hdl.handle.net/1721.
1/15346.

18 Bob Coecke and Ross Duncan. Interacting quantum observables. In Luca Aceto, Ivan Damgård,
Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz,
editors, Automata, Languages and Programming, 35th International Colloquium, ICALP
2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II - Track B: Logic, Semantics,
and Theory of Programming & Track C: Security and Cryptography Foundations, volume
5126 of Lecture Notes in Computer Science, pages 298–310. Springer, 2008. doi:10.1007/
978-3-540-70583-3_25.

19 Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming
language. In André Platzer and Geoff Sutcliffe, editors, Automated Deduction - CADE 28
- 28th International Conference on Automated Deduction, Virtual Event, July 12-15, 2021,
Proceedings, volume 12699 of Lecture Notes in Computer Science, pages 625–635. Springer,
2021. doi:10.1007/978-3-030-79876-5_37.

20 Silvia de Toffoli. Chasing the diagram–the use of visualizations in algebraic reasoning. Review
of Symbolic Logic, 10(1):158–186, 2017. doi:10.1017/s1755020316000277.

21 R.A. Dean. Elements of Abstract Algebra. Wiley international edition. Wiley, 1966. URL:
https://books.google.com/books?id=kmulxmBgkxoC.

22 Pablo Donato, Pierre-Yves Strub, and Benjamin Werner. A drag-and-drop proof tactic. In
Andrei Popescu and Steve Zdancewic, editors, CPP ’22: 11th ACM SIGPLAN International
Conference on Certified Programs and Proofs, Philadelphia, PA, USA, January 17 - 18, 2022,
pages 197–209. ACM, 2022. doi:10.1145/3497775.3503692.

23 Douglas C. Engelbart. Augmenting human intellect: A conceptual framework. Technical
report, Stanford Research Institute, October 1962. URL: https://web.archive.org/web/
20230220110343/https://dougengelbart.org/pubs/augment-3906.html.

24 Nathan Fulton, Stefan Mitsch, Jan-David Quesel, Marcus Völp, and André Platzer. KeYmaera
X: An axiomatic tactical theorem prover for hybrid systems. In Amy P. Felty and Aart
Middeldorp, editors, CADE, volume 9195 of LNCS, pages 527–538. Springer, 2015. doi:
10.1007/978-3-319-21401-6_36.

25 Adele Goldberg. Smalltalk-80 - the interactive programming environment. Addison-Wesley,
1984.

26 André Joyal and Ross Street. The geometry of tensor calculus, i. Advances in mathematics,
88(1):55–112, 1991.

27 Joomy Korkut and David Thrane Christiansen. Extensible type-directed editing. In Richard A.
Eisenberg and Niki Vazou, editors, Proceedings of the 3rd ACM SIGPLAN International
Workshop on Type-Driven Development, TyDe@ICFP 2018, St. Louis, MO, USA, September
27, 2018, pages 38–50. ACM, 2018. doi:10.1145/3240719.3241791.

https://doi.org/10.1006/jsco.1997.0171
https://doi.org/10.1007/s10817-013-9278-5
https://doi.org/10.1007/s10817-013-9278-5
https://www.rfc-editor.org/rfc/rfc1122.txt
https://doi.org/10.1007/978-3-319-43144-4_8
https://web.archive.org/web/20230219222209/https://davidchristiansen.dk/drafts/final-pretty-printer-draft.pdf
https://web.archive.org/web/20230219222209/https://davidchristiansen.dk/drafts/final-pretty-printer-draft.pdf
https://hdl.handle.net/1721.1/15346
https://hdl.handle.net/1721.1/15346
https://doi.org/10.1007/978-3-540-70583-3_25
https://doi.org/10.1007/978-3-540-70583-3_25
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1017/s1755020316000277
https://books.google.com/books?id=kmulxmBgkxoC
https://doi.org/10.1145/3497775.3503692
https://web.archive.org/web/20230220110343/https://dougengelbart.org/pubs/augment-3906.html
https://web.archive.org/web/20230220110343/https://dougengelbart.org/pubs/augment-3906.html
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1145/3240719.3241791

W. Nawrocki, E. W. Ayers, and G. Ebner 24:19

28 Guillaume Lample, Marie-Anne Lachaux, Thibaut Lavril, Xavier Martinet, Amaury Hayat,
Gabriel Ebner, Aurélien Rodriguez, and Timothée Lacroix. Hypertree proof search for neural
theorem proving. CoRR, abs/2205.11491, 2022. doi:10.48550/arXiv.2205.11491.

29 Jill H. Larkin and Herbert A. Simon. Why a diagram is (sometimes) worth ten thousand
words. Cognitive Science, 11(1):65–100, 1987. doi:10.1111/j.1551-6708.1987.tb00863.x.

30 Helen Lowe and David Duncan. Xbarnacle: Making theorem provers more accessible. In
William McCune, editor, Automated Deduction - CADE-14, 14th International Conference on
Automated Deduction, Townsville, North Queensland, Australia, July 13-17, 1997, Proceedings,
volume 1249 of Lecture Notes in Computer Science, pages 404–407. Springer, 1997. doi:
10.1007/3-540-63104-6_39.

31 Zhaohui Luo and Robert Pollack. Lego proof development system: User’s manual. Technical
report, LFCS, Edinburgh University, 1992. URL: https://www.lfcs.inf.ed.ac.uk/reports/
92/ECS-LFCS-92-211/.

32 Christoph Lüth and Martin Ring. A web interface for isabelle: The next generation. In
Jacques Carette, David Aspinall, Christoph Lange, Petr Sojka, and Wolfgang Windsteiger,
editors, Intelligent Computer Mathematics - MKM, Calculemus, DML, and Systems and
Projects 2013, Held as Part of CICM 2013, Bath, UK, July 8-12, 2013. Proceedings, volume
7961 of Lecture Notes in Computer Science, pages 326–329. Springer, 2013. doi:10.1007/
978-3-642-39320-4_22.

33 Hannes Mehnert and David Christiansen. Tool demonstration: An ide for programming and
proving in idris, 2014. URL: https://davidchristiansen.dk/pubs/dtp2014-idris-mode.
pdf.

34 Guillaume Melquiond. Plotting in a formally verified way. In José Proença and Andrei Paske-
vich, editors, Proceedings of the 6th Workshop on Formal Integrated Development Environment,
F-IDE@NFM 2021, Held online, 24-25th May 2021, volume 338 of EPTCS, pages 39–45, 2021.
doi:10.4204/EPTCS.338.6.

35 Robert B Miller. Response time in man-computer conversational transactions. In Proceedings
of the December 9-11, 1968, fall joint computer conference, part I, pages 267–277, 1968.

36 Julien Narboux. A graphical user interface for formal proofs in geometry. J. Autom. Reason.,
39(2):161–180, 2007. doi:10.1007/s10817-007-9071-4.

37 Chris Okasaki. Red-black trees in a functional setting. J. Funct. Program., 9(4):471–477, 1999.
doi:10.1017/s0956796899003494.

38 Lawrence C. Paulson. Thoughts on user interfaces for theorem provers, December
2022. URL: https://web.archive.org/web/20230219221749/https://lawrencecpaulson.
github.io/2022/12/14/User_interfaces.html.

39 Clément Pit-Claudel. Untangling mechanized proofs. In Ralf Lämmel, Laurence Tratt, and
Juan de Lara, editors, Proceedings of the 13th ACM SIGPLAN International Conference on
Software Language Engineering, SLE 2020, Virtual Event, USA, November 16-17, 2020, pages
155–174. ACM, 2020. doi:10.1145/3426425.3426940.

40 Kurt Reidemeister. Knot theory. BCS Associates, 1983.
41 David Reutter and Jamie Vicary. High-level methods for homotopy construction in associative

n-categories. In Proceedings of the 34th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS ’19. IEEE Press, 2021.

42 Valentin Robert. Front-end tooling for building and maintaining dependently-typed functional
programs. PhD thesis, University of California, San Diego, USA, 2018. URL: http://www.
escholarship.org/uc/item/9q3490fh.

43 Daniel Selsam, Sebastian Ullrich, and Leonardo de Moura. Tabled Typeclass Resolution.
CoRR, 2020. arXiv:2001.04301v2.

44 Jörg Siekmann, Stephan Hess, Christoph Benzmüller, Lassaad Cheikhrouhou, Armin Fiedler,
Helmut Horacek, Michael Kohlhase, Karsten Konrad, Andreas Meier, Erica Melis, Martin
Pollet, and Volker Sorge. Loui: Lovely omega user interface. Formal Aspects of Computing,
11(3):326–342, 1999. doi:10.1007/s001650050053.

ITP 2023

https://doi.org/10.48550/arXiv.2205.11491
https://doi.org/10.1111/j.1551-6708.1987.tb00863.x
https://doi.org/10.1007/3-540-63104-6_39
https://doi.org/10.1007/3-540-63104-6_39
https://www.lfcs.inf.ed.ac.uk/reports/92/ECS-LFCS-92-211/
https://www.lfcs.inf.ed.ac.uk/reports/92/ECS-LFCS-92-211/
https://doi.org/10.1007/978-3-642-39320-4_22
https://doi.org/10.1007/978-3-642-39320-4_22
https://davidchristiansen.dk/pubs/dtp2014-idris-mode.pdf
https://davidchristiansen.dk/pubs/dtp2014-idris-mode.pdf
https://doi.org/10.4204/EPTCS.338.6
https://doi.org/10.1007/s10817-007-9071-4
https://doi.org/10.1017/s0956796899003494
https://web.archive.org/web/20230219221749/https://lawrencecpaulson.github.io/2022/12/14/User_interfaces.html
https://web.archive.org/web/20230219221749/https://lawrencecpaulson.github.io/2022/12/14/User_interfaces.html
https://doi.org/10.1145/3426425.3426940
http://www.escholarship.org/uc/item/9q3490fh
http://www.escholarship.org/uc/item/9q3490fh
https://arxiv.org/abs/2001.04301v2
https://doi.org/10.1007/s001650050053

24:20 An Extensible User Interface for Lean 4

45 Aaron Stockdill, Daniel Raggi, Mateja Jamnik, Grecia Garcia Garcia, and Peter C.-H. Cheng.
Considerations in representation selection for problem solving: A review. In Amrita Basu,
Gem Stapleton, Sven Linker, Catherine Legg, Emmanuel Manalo, and Petrucio Viana, editors,
Diagrammatic Representation and Inference, pages 35–51, Cham, 2021. Springer International
Publishing.

46 Makarius Wenzel. Asynchronous user interaction and tool integration in isabelle/pide. In
Gerwin Klein and Ruben Gamboa, editors, Interactive Theorem Proving - 5th International
Conference, ITP 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna,
Austria, July 14-17, 2014. Proceedings, volume 8558 of Lecture Notes in Computer Science,
pages 515–530. Springer, 2014. doi:10.1007/978-3-319-08970-6_33.

47 Katherine Ye, Wode Ni, Max Krieger, Dor Ma’ayan, Jenna Wise, Jonathan Aldrich, Joshua
Sunshine, and Keenan Crane. Penrose: from mathematical notation to beautiful diagrams.
ACM Trans. Graph., 39(4):144, 2020. doi:10.1145/3386569.3392375.

48 Bohua Zhan, Zhenyan Ji, Wenfan Zhou, Chaozhu Xiang, Jie Hou, and Wenhui Sun. Design of
point-and-click user interfaces for proof assistants. In Yamine Aït Ameur and Shengchao Qin,
editors, Formal Methods and Software Engineering - 21st International Conference on Formal
Engineering Methods, ICFEM 2019, Shenzhen, China, November 5-9, 2019, Proceedings,
volume 11852 of Lecture Notes in Computer Science, pages 86–103. Springer, 2019. doi:
10.1007/978-3-030-32409-4_6.

49 Jiaje Zhang and Donald A. Norman. Representations in distributed cognitive tasks. Cognitive
Science, 18(1):87–122, 1994. doi:10.1016/0364-0213(94)90021-3.

https://doi.org/10.1007/978-3-319-08970-6_33
https://doi.org/10.1145/3386569.3392375
https://doi.org/10.1007/978-3-030-32409-4_6
https://doi.org/10.1007/978-3-030-32409-4_6
https://doi.org/10.1016/0364-0213(94)90021-3

Bel-Games: A Formal Theory of Games of
Incomplete Information Based on Belief Functions
in the Coq Proof Assistant
Pierre Pomeret-Coquot #

IRIT, Université de Toulouse, CNRS, Toulouse INP, UT3, Toulouse, France

Hélène Fargier #

IRIT, CNRS, Toulouse, France

Érik Martin-Dorel #

IRIT, Université de Toulouse, CNRS, Toulouse INP, UT3, Toulouse, France

Abstract
Decision theory and game theory are both interdisciplinary domains that focus on modelling
and analyzing decision-making processes. On the one hand, decision theory aims to account
for the possible behaviors of an agent with respect to an uncertain situation. It thus provides
several frameworks to describe the decision-making processes in this context, including that of
belief functions. On the other hand, game theory focuses on multi-agent decisions, typically with
probabilistic uncertainty (if any), hence the so-called class of Bayesian games. In this paper, we
use the Coq/SSReflect proof assistant to formally prove the results we obtained in [35]. First, we
formalize a general theory of belief functions with finite support, and structures and solutions
concepts from game theory. On top of that, we extend Bayesian games to the theory of belief
functions, so that we obtain a more expressive class of games we refer to as Bel games; it makes it
possible to better capture human behaviors with respect to lack of information. Next, we provide
three different proofs of an extended version of the so-called Howson–Rosenthal’s theorem, showing
that Bel games can be casted into games of complete information, i.e., without any uncertainty. We
thus embed this class of games into classical game theory, enabling the use of existing algorithms.

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of
computation → Type theory; Theory of computation → Higher order logic; Theory of computation
→ Algorithmic game theory; Theory of computation → Solution concepts in game theory; Theory
of computation → Representations of games and their complexity

Keywords and phrases Game of Incomplete Information, Belief Function Theory, Coq Proof Assistant,
SSReflect Proof Language, MathComp Library

Digital Object Identifier 10.4230/LIPIcs.ITP.2023.25

Related Version Paper-and-pencil proof article: doi:10.1016/j.ijar.2022.09.010 [35]

Supplementary Material Software (Formal proofs repo): https://github.com/pPomCo/belgames
archived at swh:1:dir:5566e90ea5b3121a0b4f989a7584a251995c297a

Funding Pierre Pomeret-Coquot: ANITI, funded by the French ”Investing for the Future – PIA3”
program under the Grant agreement n°ANR-19-PI3A-0004.

1 Introduction

From a mathematical perspective, measure theory is a fundamental domain to learn and use,
notably given its direct application to integration and probability theory. Several works thus
focused on formalizing measure theory in type theory, e.g., relying on reference textbooks [16].
Next, probability play a key role in the context of game theory, gathering several multi-agent
frameworks that can model situations in many application areas such as economics, politics,

© Pierre Pomeret-Coquot, Hélène Fargier, and Érik Martin-Dorel;
licensed under Creative Commons License CC-BY 4.0

14th International Conference on Interactive Theorem Proving (ITP 2023).
Editors: Adam Naumowicz and René Thiemann; Article No. 25; pp. 25:1–25:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pierre.pomeret@irit.fr
https://orcid.org/0000-0003-2243-5913
mailto:fargier@irit.fr
https://orcid.org/0000-0003-1616-5961
mailto:erik.martin-dorel@irit.fr
https://orcid.org/0000-0001-9716-9491
https://doi.org/10.4230/LIPIcs.ITP.2023.25
https://doi.org/10.1016/j.ijar.2022.09.010
https://github.com/pPomCo/belgames
https://archive.softwareheritage.org/swh:1:dir:5566e90ea5b3121a0b4f989a7584a251995c297a
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 Bel-Games: A Formal Theory of Games of Incomplete Information

logics, artificial intelligence, biology, and so on. In particular, the framework of Bayesian
games (a class of games of incomplete information), has been well-studied by the decision
theory community [15, 30]. However, using probability and additive measures appears to be
unsatisfactory to model subtle decision-making situations with uncertainty.

In this work, we aim to show that the belief function theory also is amenable to formal
proof, and makes it possible to formally verify the correctness of three state-of-the-art
algorithms. In [13, 35], we introduced the notion of Bel games, which faithfully models
games of incomplete information where the uncertainty is expressed within the Dempster-
Shafer theory of belief functions. This framework naturally encompass Bayesian games, as
belief functions generalize probability measures. Also, we generalized the Howson-Rosenthal
theorem to the framework of Bel games and proposed three transforms which make it
possible to cast any Bel game into an equivalent game of complete information (without any
uncertainty). Furthermore, these transforms preserve the space complexity of the original
Bel game (they produce a game with a succinct representation, corresponding to the class of
so-called hypergraphical games).

Contributions. In the present paper, we consolidate the mathematical results previously
published in [35], presenting a formal verification of our algorithms using the Coq proof
assistant [6]. First, we formalize a general theory of belief functions. Then, we formalize
structures and solution concepts for “standard” games, Bayesian games, and Bel games, and
we formally prove the correctness of the three transform algorithms, in order to provide
strong confidence on these results. The software artifact obtained was released under the
MIT license and is available within the official Coq projects OPAM archive. Our formalization
effort also resulted in more background lemmas, integrated in the MathComp library. To
the best of our knowledge, it is the first time the theory of belief functions is mechanized in
a formal proof assistant, and applied to the domain of (formal) game theory of incomplete
information.

Related works. Several formalization efforts have been carried out in game theory since
2006, each focusing on a somewhat different fragment: Kaliszyk et al. [33], formalizing
foundations of decision making, using Isabelle/HOL; Vestergaard [40] then Le Roux [36],
formalizing Kuhn’s existence of a Nash equilibrium in finite games in extensive form, using
Coq; Lescanne et al. [25], studying rationality of infinite games in extensive form, using Coq;
Martin-Dorel et al. [27], studying the probability of existence of winning strategies in Boolean
finite games, using Coq; Bagnall et al. [4], formalizing well-known results of algorithmic
game theory, using Coq; Dittmann [8], proving the positional determinacy of parity games,
using Isabelle/HOL; Le Roux et al. [23], proving that a determinacy assumption implies the
existence of Nash equilibrium in 2-player games, using Coq and Isabelle/HOL; this result
being combined with that of Dittmann, using Isabelle/HOL [24]. Furthermore, game theory is
an important topic in economics: Lange et al. [21], proposing guidelines for formal reasoning;
Kaliszyk et al. [20], formalizing microeconomic foundations, using Isabelle/HOL, and Echenim
et al. [12], formalizing the Binomial Pricing Model, using Isabelle/HOL. Game theory aside,
numerous works have been carried out in proof assistants to formalize probability and/or
measure theory. Regarding the Coq proof assistant, we can mention the recent works by
Affeldt et al. (on information theory based on discrete probability theory [2]; and measure
theory based on MathComp [1]) and Boldo et al. [5], focusing on Lebesgue’s integral theory.

P. Pomeret-Coquot, H. Fargier, and É. Martin-Dorel 25:3

Paper outline. We start by introducing a motivating example, for which the Bayesian
approach fails but the Dempster-Shafer approach succeeds. Section 3 presents the Dempster-
Shafer theory of belief functions, then Section 4 focuses on complete-information games
(including hypergraphical games) while Section 5 deals with Bel games; then Section 6 is
devoted to our formalization of Howson-Rosenthal’s generalized theorem in the scope of
n-player Bel games. Finally, Section 7 gives concluding remarks and perspectives. Throughout
the paper, we interleave mathematical and formal statements as needed to ensure our formally
verified results are well-surveyable: the definitions and results are given first in mathematical
syntax, then in Coq syntax when required (i.e., we include the Coq statements of the main
theorems and the definitions they depend on, but not those of intermediate lemmas).

2 Motivating Example: the Murder of Mr. Jones

▶ Example 1 (Inspired by the Murder of Mr. Jones [39]). Player 1 and Player 2 have to choose
a partner which can be either Peter (P), Quentin (Q), or Rose (R). The point is that a
crime has been committed, for which these three people only are suspected. Furthermore, a
poor-quality surveillance video allows to estimate that there is a 50% chance that the culprit
is a man (P or Q), and a 50% chance that it is a woman (R). As to their interest, choosing
an innocent people leads to a payoff of $6k, to be shared between the people making the deal
(that is, $2k or $3k depending on if the players choose the same partner or not); choosing the
culprit yields no payoff ($0k). Moreover, Player 1 is investigating P and will know whether
he is guilty before making the decision. Similarly, Player 2 will know whether R is guilty.

The Bayesian approach claims that any knowledge shall be described by a single subjective
probability; it is not well-suited here. Indeed, assume Player 1 learns that Peter is innocent.
It should not impact the evidence of 50% chance per sex, so the probability of guilt should
become 1/2 for Quentin and 1/2 for Rose. However, in a purely Bayesian view, a prior
probability must be made explicit, e.g., by equiprobability assumption: 1/4 for Peter, 1/4 for
Quentin, and 1/2 for Rose. After conditioning, the posterior probability would not give 50%
chance per sex anymore: equiprobability and conditioning “given Peter is innocent” yields
1/3 for Quentin and 2/3 for Rose. Learning that Peter is innocent would increase the odds
against Rose! In the sequel, we will reuse this example to highlight how the framework of
belief functions better captures uncertain knowledge.

3 Formalization of Belief Functions for Mono-Agent Decision Making

Modelling mono-agent decision making under uncertainty involves three main tasks. First,
knowledge has to be expressed in a well-suited representation, encoding what is known
without making extra assumptions. Then, if the agent may learn or observe some event
before the decision, one shall identify the relevant conditioning rule. Finally, the agent’s
preferences must be captured by a compatible decision rule. In this work, we focus on
real-valued utility-based decision rules, which evaluate uncertain outcomes so that the agent
prefers outcomes with a bigger score. For example, modelling well-known variable phenomena
can perfectly be captured in a probabilistic setting: a probability represents the variability;
conditional probability updates knowledge; and preferences over uncertain outcomes may be
captured by expected utility. Still, this approach may be unsuccessful to model other kinds
of uncertainty.

In the sequel, we rely on belief function theory, which generalizes probability theory
and enables capturing both variability and ignorance. In this section, we focus on a single
decision maker, while the material from Section 4 will deal with multi-agent decision making.

ITP 2023

25:4 Bel-Games: A Formal Theory of Games of Incomplete Information

3.1 Belief functions
The theory of belief functions is a powerful toolset from decision theory and statistics. It
encompasses two distinct approaches for reasoning under uncertainty: the Dempster-Shafer
theory of evidence (DS) [7, 37] and the upper-lower probability theory (ULP) [7, 41]. Both
approaches consider a finite set of possible “states of the world” Ω = {ω1, . . . , ωn}, one
of which being the actual state of the world ω∗, and three functions m : 2Ω → [0, 1],
Bel : 2Ω → [0, 1], and Pl : 2Ω → [0, 1], which all map subsets of Ω to real numbers. Those
functions are deducible one from another. In the DS theory, the mass function m is the basic
knowledge about the world: m(A) is the part of belief supporting the evidence ω∗ ∈ A, but
that does not support smaller claims such as ω∗ ∈ B ⊂ A. The non-additive continuous
measures Bel and Pl indicate how much a proposition is implied by (resp. is compatible with)
the knowledge. By contrast, the ULP theory suppose that there is an unknown probability
Pr∗ which is bounded by Bel and Pl: ∀A, Bel(A) ≤ Pr∗(A) ≤ Pl(A); then m is just a concise
representation of the family of compatible probabilities.

Example 1 can be understood in both theories. In the DS theory, m({P, Q}) = m({R}) =
1/2 directly encodes the given evidences. In the ULP theory, one rather considers the family
of probabilities (Prx)x which satisfy Pr x({P, Q}) = Pr x({R}) = 1/2 (see Table 1).

Table 1 Prior knowledge from Example 1 – in the DS theory, m directly describes the knowledge,
in the ULP theory, m describes a family of probability measures (Prx)x∈[0, 0.5].

A ⊆ Ω ∅ {P } {Q} {R} {P, Q} {P, R} {Q, R} {P, Q, R}
m(A) 0 0 0 0.5 0.5 0 0 0
Bel(A) 0 0 0 0.5 0.5 0.5 0.5 1
Pl(A) 0 0.5 0.5 0.5 0.5 1 1 1
Prx(A) 0 x 0.5 − x 0.5 0.5 0.5 + x 1 − x 1

In this work, we follow the DS approach and formalize notions in terms of the function m.
We chose to use the Coq proof assistant, along with the SSReflect tactic langage and the
MathComp library [26]. This combination offers several features that contribute to facilitate
the formalization: dependent types (making it possible to easily grasp usual definitions
in game theory, and account for the variability of actions spaces w.r.t. individual agents),
reflection prodicates (to easily go back and forth between decidable Boolean predicates and
their propositional counterpart), packed classes and structure inference (making it possible
to get formal statements as concise and legible as “LaTeX” ones) as well as the availability of
comprehensive theories of finite sets or functions with finite support, endowed with decidable
equality, and big operators such as

∑
or

∏
.1 Regarding automation (which is sometimes

a criterium to choose a particular theorem prover over another): the formal verification
of our results especially involves proofs by rewriting, very often under the binder of a big
operator: the under tactic was instrumental to this aim [28]. Besides using this tactic, the
formalization did not highlight a particular need to automate specific fragments or recurring
proof goals.

▶ Definition 2 (Frame of discernment). A frame of discernment is a finite set Ω, representing
the possible states of the world. One of them is the actual state of the world ω∗.

1 MathComp notations: {set X} denotes finite sets over (X : finType), A:&:B = A ∩ B, A:|:B = A ∪ B,
~:A = Ac, set0 = ∅; {ffun X -> Y} denotes the type of finite support functions from (X : finType)
to (Y : Type); and for any (T : X -> Type), {ffun forall x : X, T x} denotes the type of finite
support functions with a dependently-typed codomain, mapping any (x : X) to an element of (T x).

P. Pomeret-Coquot, H. Fargier, and É. Martin-Dorel 25:5

▶ Definition 3 (Events). A set A ⊆ Ω is an event which represents the proposition “ω∗ ∈ A”.
All set functions we consider (m, Bel, Pl) map events to real numbers within [0, 1].

The set Ω is endowed with MathComp’s finite type structure, that is, (W : finType). It
makes it possible to use set operations and big operators. The carrier of the functions m,
Bel, and Pl is (R : realFieldType): only field operations are needed for this work.

▶ Definition 4 (Basic probability assignment). A basic probability assignment (bpa), a.k.a.
mass function, is a set-function m : 2Ω → [0, 1] such that:

m(∅) = 0 and
∑

A⊆Ω
m(A) = 1 and ∀A ⊆ Ω, m(A) ≥ 0. Formally: (1)

Definition bpa_axiom m := [&& m set0 == 0, \sum_A m A == 1 & [∀ A, m A >= 0]].
Structure bpa := { bpa_val :> {ffun {set W} -> R} ; bpa_ax : bpa_axiom bpa_val }.

▶ Definition 5 (Belief function, plausibility measure). Given a bpa m over Ω, the associated
belief function Bel : 2Ω → [0, 1] and plausibility measure Pl : 2Ω → [0, 1] are defined by:

Bel(A) =
∑

B⊆A
m(B) and Pl(A) =

∑
B∩A̸=∅

m(B).

▶ Proposition 6 (Duality). For any A ⊆ Ω, Pl(A) = 1 − Bel(Ac) and Bel(A) = 1 − Pl(AC).

▶ Proposition 7 (Super- and sub-additivity). Bel is super-additive while Pl is sub-additive:
for disjoint sets A, B ⊆ Ω, Bel(A ∪ B) ≥ Bel(A) + Bel(B) and Pl(A ∪ B) ≤ Pl(A) + Pl(B).

▶ Proposition 8 (Bounds). For any A ⊆ Ω, 0 = Bel(∅) = Pl(∅) ≤ Bel(A) ≤ Pl(A) ≤
Bel(Ω) = Pl(Ω) = 1.

▶ Definition 9 (Focal elements, focal set). Given a bpa m over Ω, any subset A ⊆ Ω with a
non-zero mass m(A) is called focal element, and the set of focal elements of m is called the
focal set of m and denoted by Sm. In other words, A ∈ Sm iff m(A) > 0.

▶ Proposition 10 (Focal elements, focal set). Given a bpa m over Ω, Definition 5 can
straightforwardly be rephrased by rewriting the sums over the focal set:

Bel(A) =
∑

B∈Sm
B⊆A

m(B) and Pl(A) =
∑

B∈Sm

B∩A̸=∅
m(B).

Next, we recall a standard “complexity definition” about belief functions, that will prove
useful to characterize probability measures:

▶ Definition 11 (k-additivity). For any bpa m, let k = maxB∈Sm |B| be the maximal cardin-
ality of its focal elements. Then, m is said to be k-additive.

▶ Definition 12 (Probability measure). Given a bpa m over Ω, if m is 1-additive, i.e. if all
focal elements are singletons, then Bel = Pl is a discrete probability measure, associated with
the distribution dist m : Ω → [0, 1] defined by x 7→ m({ω}).

Structure proba := {proba_val:> bpa; proba_ax: \max_(B in focalset proba_val) #|B| == 1}.
Definition dist (m : proba) := fun w => m [set w]. (*[set w] corresponds to {w} *)

ITP 2023

25:6 Bel-Games: A Formal Theory of Games of Incomplete Information

3.2 Conditioning in the Belief Function Theory
Conditioning is the operation that captures knowledge revision (fact learning) as well as
focusing (hypothesis) [11, 9, 14]. By turning a prior bpa into a posterior “given an event
C”, one updates the knowledge so it now asserts that C is certain. Several conditioning
rules for belief functions have been proposed, depending on the DS or ULP interpretation
(cf. Section 3.1) and on the kind of update it involves. Starting from the same prior bpa,
they yield distinct posteriors – they indeed capture distinct operations.

Before dealing with conditional events (· | C) – read “given C” – a precondition happens
to be necessary: on the technical side, it avoids division-by-zero, and on the semantics
side, it means one cannot learn that an impossible event holds. Since the definition of
this precondition is specific to each conditioning rule, we abstract it away in the form of a
revisable predicate, which indicates whether an event can be assumed.

▶ Definition 13 (Conditioning). Given a bpa m, a predicate revisablem : Ω → {1, 0},
and an event C ⊆ Ω such that revisablem(C) holds, a conditioning turns m into a bpa
m(· |cond C) such that the complement Cc of C is impossible, i.e., Bel(Cc | C) = 0. Formally:

Definition conditioning_axiom (revisable : bpa -> pred {set W})
(cond : ∀ m C, revisable m C -> bpa) :=

∀ m C (Hrev : revisable m C), Bel (cond m C Hrev) (~:C) = 0.

In other words, assuming m is revisable by the event C implies that if one learns that
C holds, then one also learns that no evidence for the complement Cc can hold. Next,
we formalize a conditioning structure that encapsulates the revisable predicate, the
conditioning algorithm itself – which turns a revisable prior in its posterior “given C” –
and a proof of the conditioning_axiom:

Structure conditioning := { revisable : bpa -> pred {set W} ;
cond_val :> ∀ m C, revisable m C -> bpa ;
cond_ax : conditioning_axiom cond_val }.

The most common conditioning is the so-called Dempster’s conditioning [7], which captures
knowledge revision (i.e., fact learning). In the DS framework, it is understood as a transfer
of parts of beliefs: learning that C holds, m(B) is transferred to B ∩ C if it is not empty, or
discarded otherwise (then the posterior has to be renormalized due to Equation (1)). That is,
the evidence now concerns B ∩ C, the only possible states of the world “given that C holds”.
In the ULP framework, it is understood as a max-likelihood conditioning: the posterior
probability family delimited by Bel(· | C) and Pl(· | C) is the conditioning of those prior
probabilities which assign the maximal probability to event C, that we now know for sure.

▶ Definition 14 (Dempster’s conditioning). For any bpa m and any event C such that
Pl(C) ̸= 0, Dempster’s conditioning defines the bpa: m(A |D C) =

∑
B∩C=A̸=∅ m(B)/ Pl(C).

Formally:

Definition Dempster_revisable m C := Pl m C != 0.
Definition Dempster_fun (m : bpa) (C : {set W}) := [ffun A : {set W} =>

if A == set0 then 0
else \sum_(B : {set W} | (B \in focalset m) && (B :&: C == A)) m B / Pl m C].

Program Definition Dempster_cond m C (Hrev : Dempster_revisable m C) : bpa :=
{| bpa_val := Dempster_fun m C ; bpa_ax := _ |}.

Program Definition Dempster_conditioning : conditioning :=
{| cond_val := Dempster_cond ; cond_ax := _ |}.

P. Pomeret-Coquot, H. Fargier, and É. Martin-Dorel 25:7

▶ Example 15 (Knowledge revision, follow-up of Example 1/Table 1). Dempster’s conditioning
is the conditioning approach fitting our example (see [9] for details). Suppose e.g. the
murderer is Q; Player 1 learns ω∗ /∈ {P}, i.e., ω∗ ∈ {Q, R}. From this viewpoint, the evidence
concerning men now only concerns Q: the knowledge becomes m({Q}) = m({R}) = 0.5
(Fig. 1, center). Player 2 learns ω∗ /∈ {R}, i.e., ω∗ ∈ {P, Q}. From this viewpoint, the
evidence about women is discarded: the knowledge becomes m({P, Q}) = 1 (Fig. 1, right).

R

Q

P

m = 0.5

m = 0.5

R

Q

P

m = 0.5

m = 0.5

R

Q

Pm = 1

Figure 1 Prior (left) and posteriors given {Q, R} (center) and given {P, Q} (right). White and
gray areas denote possible and impossible events – circles denote focal elements.

▶ Proposition 16 (Dempster’s conditioning, Pl). For any bpa m and any event C such that
Pl(C) ̸= 0, it holds that Pl(A |D C) = Pl(A ∩ C)/ Pl(C).

Two other rules have been proposed and called strong (resp. weak) conditioning [34]; the
former, also known as geometrical conditioning [38], is another rule capturing knowledge
revision; the latter is seldom used since it yields non-intuitive results (e.g., it may happen
that Bel(C | C) < 1). We also formalize these two rules below.

▶ Definition 17 (Strong conditioning). For any bpa m and any event C s.t. Bel(C) ̸= 0, the
strong conditioning is defined by the bpa m(A |S C) = m(A)/ Bel(C) if A ⊆ C, 0 otherwise.

Definition Strong_revisable m C := Bel m C != 0.
Definition Strong_fun (m : bpa) (C : {set W}) := [ffun A : {set W} =>

if (A != set0) && (A \subset C) then m A / Bel m C else 0].
Program Definition Strong_cond m C (Hrev : Strong_revisable m C) : bpa :=

{| bpa_val := Strong_fun m C ; bpa_ax := _ |}.
Program Definition Strong_conditioning : conditioning :=

{| cond_val := Strong_cond ; cond_ax := _ |}.

▶ Proposition 18 (Strong conditioning, Bel). For any bpa m and any event C such that
Bel(C) ̸= 0, it holds that Bel(A |S C) = Bel(A ∩ C)/ Bel(C).

▶ Definition 19 (Weak conditioning). For any bpa m and any event C such that Pl(C) ̸= 0,
the weak conditioning is defined by the bpa: m(A |W C) = m(A)/P l(B) if A ∩ B ̸= ∅,
0 otherwise. Formally:

Definition Weak_revisable m C := Pl m C != 0.
Definition Weak_fun (m : bpa) (C : {set W}) := [ffun A : {set W} =>

if A :&: C != set0 then m A / Pl m C else 0].
Program Definition Weak_cond m C (Hrev : Weak_revisable m C) : bpa :=

{| bpa_val := Weak_fun m C ; bpa_ax := _ |}.
Program Definition Weak_conditioning : conditioning :=

{| cond_val := Weak_cond ; cond_ax := _ |}.

▶ Proposition 20 (Weak conditioning, Bel). For any bpa m and any event C such that
Pl(C) ̸= 0, it holds that Bel(A |W C) = (Bel(A) − Bel(A \ C))/ Pl(C).

ITP 2023

25:8 Bel-Games: A Formal Theory of Games of Incomplete Information

3.3 Decision Making with Belief Functions
Consider a single agent decision involving several actions; let A denote the set of all these
actions. Also, assume that the outcome of choosing any a ∈ A is not certain: it may lead
to several oucomes depending on the actual state of the world ω∗. The agent’s preferences
on outcomes (which are left implicit here) are expressed by a real-valued utility function
u : A×Ω → R: u(a, ω) > u(a′, ω′) would mean the agent prefers the outcome of a when
ω∗ = ω to the outcome of a′ when ω∗ = ω′. For any action a, let ua : Ω → R denote the
partial application of u: ua provides the utility of a depending on the state of the world ω.

Preferences under uncertainty are then defined on ua’s: a relation ua ≻ ua′ would
encode the fact the agent prefers a to a′. In a probabilistic setting, it is meaningful to
consider ua’s expectation w.r.t. the probability (hence the name expected utility). Using bpa’s,
several approaches were defined, each modelling various preferences when facing ignorance.
In [35], we analyzed three standard functions that generalize expected utility. They provide
real values, and thus lead to completely ordered preferences over actions (since every two
actions are directly comparable from their score). We denoted them CEU, JEU, and TBEU,
respectively, for Choquet–, Jaffray–, and Transferable Belief–Expected Utility. We have
shown they are all expressible as the integration of a particular φXEU

ua
function (resp. φCEU

ua
,

φJEU
ua

, and φTBEU
ua

) over the powerset 2Ω. Those φXEU
ua

functions are themselves parameterized
by ua = ω 7→ u(a, ω), that is, by the utility function when a is chosen. As a result, these
three scoring functions can be captured by instances of a single higher-order function, which
we named XEU.

▶ Definition 21 (Generalized expected utility). For any bpa m, any utility function u :
A × Ω → R, and any a ∈ A, let us pose ua = ω 7→ u(a, ω). Let φ : (Ω → R) →

(
2Ω → R

)
be

a parameter function. We then consider the following generalized expected utility of a:

XEU(m)(φ(ua)) =
∑

B∈Sm

m(B) × φ(ua)(B). Formally:

Definition XEU (m : bpa) (phi_u_a : {ffun {set W} -> R}) : R :=
\sum_(B in focalset m) m B * phi_u_a B.

Let us review these φXEU functions, their underlying intuition and formal definition in Coq.
A very common scoring function for belief functions is the Choquet discrete integral

(CEU). It models a somehow pessimistic agent. In the ULP interpretation, Bel and Pl
delimit a family of probabilities; the CEU computes the minimal expected utility that the
family allows. In the DS interpretation, each mass is an evidence supporting an event, for
which the CEU only consider its worst-case utility if the considered choice is made.

▶ Definition 22 (Choquet expected utility). For any bpa m, any utility function u : A×Ω → R
and any action a ∈ A, the Choquet expected utility of ua : Ω → R is:

CEU(m)(ua) =
∑

B∈Sm

m(B) × minω∈B ua(ω) = XEU(m)(φCEU(ua)),

with φCEU(ua)(B) = minω∈B ua(ω).

This expression is a weighted sum indexed by the set of focal elements, which is nonempty:
using the min operator is legit. Formally, the functions φCEU and CEU are defined as follows:

Definition fCEU (u_a : W -> R) : {set W} -> R :=
fun B => match minS u_a B with Some r => r | None => 0 end.

Definition CEU (m : bpa) (u_a : W -> R) := XEU m (fCEU u_a).

P. Pomeret-Coquot, H. Fargier, and É. Martin-Dorel 25:9

Another rule, axiomatized by Jaffray [18, 19], is a kind of Hurwicz criterion (i.e., a linear
combination over the min. and max. utility reached for each focal element). The parameter
coefficients make it possible to locally modulate the pessimism of the modelled agent.

▶ Definition 23 (Jaffray expected utility). For any bpa m, any utility function u : A × Ω → R
and any action a ∈ A, the Jaffray expected utility of ua : Ω → R is parameterized by a family
of coefficients α(x∗,x∗) ∈ [0, 1] for each possible utility values x∗ ≤ x∗. For any B ̸= ∅, let us
pose B∗ = minω∈B ua(ω) and B∗ = maxω∈B ua(ω). The Jaffray expected utility of ua is:

JEUα(m)(ua) =
∑

B∈Sm

m(B)×
(
α(B∗,B∗) × B∗ + (1 − α(B∗,B∗)) × B∗)

= XEU(m)(φJEUα

(ua)),

with φJEUα(ua)(B) = α(B∗,B∗) × B∗ + (1 − α(B∗,B∗)) × B∗. Formally:
Definition fJEU (α : R -> R -> R) (u_a : W -> R) : {set W} -> R :=

fun B => match minS u_a B, maxS u_a B with
| Some rmin, Some rmax => let alp := α rmin rmax in alp * rmin + (1-alp) * rmax
| _, _ => 0 end.

Definition JEU α (m : bpa) (u_a : W -> R) := XEU m (fJEU α u_a).

Finally, in the Transferable Belief Model [39], the decision rule is made by recovering
a “pignistic” probability distribution2 BetP that serves only for the choice, at the very
moment where the decision is made. So, the equiprobability assumption is made, but after
conditionings, if any. The score of an action is then the expected utility w.r.t. BetP : ω 7→∑

B∈Sm
ω∈B

m(B)/|B|, that we show to be equivalent to the following definition.

▶ Definition 24 (Transferable Belief Model expected utility). For any bpa m, any utility
function u : A × Ω → R and any action a ∈ A, the TBEU of ua : Ω → R is defined by:

TBEU(m)(ua) =
∑

B∈Sm

m(B) ×
∑

ω∈B
ua(ω)

/
|B| = XEU(m)(φTBEU(ua))

with φTBEU(ua)(B) =
∑

ω∈B ua(ω)
/

|B|. Formally:
Definition fTBEU (u_a : W -> R) := fun B => \sum_(w in B) u_a w / #|B|%:R.
Definition TBEU (m : bpa) (u_a : W -> R) := XEU m (fTBEU u_a).

▶ Proposition 25. CEU, JEU, and TBEU all generalize the expected utility criterion. For
any probability distribution p, any utility function u : A × Ω → R and any action a ∈ A,
CEU(p)(ua) = JEUα(p)(ua) = TBEU(p)(ua) =

∑
ω∈Ω p(ω) × ua(ω).

In these formal proofs, the key ingredient is the fact that the criteria satisfy the natural
property that ∀ua, ∀ω ∈ Ω, φ(ua)({ω}) = ua(ω).

4 Formalization of Several Classes of Games of Complete Information

Game theory is a subdomain of multi-agent decision making [29, 30]. In this paper, we focus
on simultaneous games, in which players make their choice (called action or pure strategy)
without knowing others’ choices in advance; the outcome of an action depends on the choices
of other agents. A typical problem amounts to identifying which actions are relevant from
the viewpoint of a player, assuming others don’t cooperate but strive to increase their own
utility. In this section, we consider situations where there is no uncertainty.

2 The names “pignistic” and BetP are references to classical Bayesian justification in decision theory,
where both utilities and beliefs are elicited by considering limits of agent’s agreement to a panel of bets.

ITP 2023

25:10 Bel-Games: A Formal Theory of Games of Incomplete Information

4.1 Games of Complete Information
▶ Definition 26 (Game of complete information). A CGame is a tuple G =

(
I, (Ai, ui)i∈I

)
where I is a finite set of players; for each Player i, Ai is the set of their actions; ui : A → R
is an utility function, assigning an utility value to each “action profile”, i.e., a vector of
actions, also called “pure strategy profile” a = (a1, . . . , an) ∈ A = A1 × · · · × An. Player i

prefers the outcome of profile a to that of a′ iff ui(a) > ui(a′).

We formalize such “profiles-for-CGames” (a ∈
∏

i∈I Ai) using MathComp’s dependently-typed
finite support functions, hence:

Definition cprofile (I : finType) (A : I -> eqType) := {ffun ∀ i : I, A i}.
Definition cgame (I : finType) (A : I -> eqType) := cprofile A -> I -> R.

One of the most prominent solution concept in game theory is that of Nash equilibrium [31]:

▶ Definition 27 (Nash equilibrium). A pure Nash equilibrium is a profile such that no player
has any incentive to “deviate”. For any pure strategy profile a and any Player i, let a−i be the
restriction of a to the actions of Players j ̸= i, a′

i an action of Player i, then a′
i.a−i denotes

the profile a where the strategy of Player i has been switched to a′
i (called change_strategy

a a’_i in Coq). A profile a is a pure Nash equilibrium iff ∀i, ∀a′
i, ui(a) ≮ ui(ai.a−i):

Definition change_strategy (p : cprofile A) (i : I) (a'_i : A i) : cprofile A
Definition Nash_equilibrium (G : cgame) (a : cprofile A) : bool :=

[∀ i : I, [∀ a'_i : A i, ~~ (G a i < G (change_strategy a a'_i) i)]].

▶ Example 28. Consider Example 1 anew; suppose one knows P is the murderer. The
situation is captured by the CGame G = (I, (Ai, ui)i∈I) where I = {1, 2} is the set of players,
Ai = {Pi, Qi, Ri} the set of actions of Player i (choosing P , Q or R) and the ui’s of Table 2.
Here, both (Q1, R2) and (R1, Q2) are Nash equilibria.

Table 2 Utility functions of Example 28 (it is known that P is the murderer). The pair
(u1(a1.a2), u2(a1.a2)) is read at the intersection of line a1 and column a2.

P2 Q2 R2

P1 (0, 0) (0, 3) (0, 3)
Q1 (3, 0) (2, 2) (3, 3)

R1 (3, 0) (3, 3) (2, 2)

When there is some variability regarding action choices (e.g., for repeated games), it is
meaningful to look for mixed strategies. A mixed strategy ρi of Player i is a probability over
Ai, and a mixed strategy profile ρ = (ρ1, . . . , ρn) is a vector of mixed strategies:

Definition mixed_cprofile := cprofile (fun i => [eqType of proba R (A i)]).

A mixed strategy profile ρ defines a probability over the set of pure strategy profiles, namely
pρ(a) =

∏
i∈I ρi(ai). We package this data in a proba structure (Definition 12):

Definition mk_prod_proba (p : ∀ i : X, proba R (A i)) : {ffun cprofile A -> R} :=
[ffun a : cprofile A => \prod_i dist (p i) (a i)].

Definition prod_proba (p : ∀ i : I, proba R (A i)) (i0 : I) : proba R (cprofile A).

Last, the utility of a mixed strategy profile is the expected utility w.r.t. the probability over
pure strategy profiles, and the notion of Nash equilibrium extends straightforwardly:

P. Pomeret-Coquot, H. Fargier, and É. Martin-Dorel 25:11

Definition ms_util (G : cgame R A) (mp : mixed_cprofile) (i : I) : R :=
\sum_(p : cprofile A) (dist (prod_proba mp witnessI mp) p) * (G p i).

Definition ms_Nash_equilibrium (G : cgame R A) (mp : mixed_cprofile) : Prop :=
∀ i (si : proba R (A i)), ~ ms_util G mp i < ms_util G (change_strategy mp si) i.

A standard reduction [22, Def. 4.6.1] amounts to viewing a mixed equilibrium of a game
(N, (Ai, ui)i∈N) as a pure equilibrium in the mixed extension (N, (Ai, ui)i∈N), where Ai is
the set of mixed strategies over Ai. Formally:

Definition mixed_cgame (G:cgame R A) : cgame R (fun i => [eqType of proba R (A i)])
:= fun mp i => ms_util G mp i.

Theorem mixed_cgameE G mp i : ms_utility G mp i = (mixed_cgame G) mp i.
Theorem ms_NashE (G : cgame R A) (mp : mixed_cprofile) :

ms_Nash_equilibrium G mp <-> Nash_equilibrium (mixed_cgame G) mp.

4.2 Hypergraphical Games
Some games of complete information can be expressed succinctly as hypergraphical games
[32, 42], where the utility is not defined globally but locally (namely, split in several “local
games”). This yields a hypergraph, where vertices denotes players and hyperedges denote local
games. Formally, a hypergraphical game is a tuple G =

(
I, E, (Ai)i∈I , (ue

i)e∈E,i∈e

)
, where I

is the set of players, E ⊆ 2I is the set of local games (in any local game e = {a, b, c, . . . },
Players a, b, c . . . are playing), Ai is the set of actions of Player i and ue

i : Ae → R is the
utility function of Player i in the local game e (Ae =

∏
i∈e Ai is the set of local profiles related

to e’s players). A hypergraphical game with 2-player local games is called a polymatrix.
In our formalization, local games are indexed by the finite type (localgame : finType);

players playing a local game (lg : localgame) are those who verify the Boolean predicate
(plays_in lg); plays_in thus formalizes E as a family of sets of players:

Variables (localgame : finType) (plays_in : localgame -> pred I).

For any local game lg, local profiles are profiles that involve only players which plays_in
lg:

Definition localprof (lg : localgame) :=
{ffun ∀ s : {i : I | plays_in lg i}, A (val s)}.

In hypergraphical games, every player chooses one action, and plays it in every local game
they are involved in. The global utility of a player is the sum of the locally obtained
utilities: ui(a) =

∑
e∈E
i∈e

ue
i (ae), where ae ∈ Ae is the restriction of a to indices of e. Thus, an

hypergraphical game is a CGame that is specified by its local utility functions:

Definition hg_game (u : ∀ lg, localprof lg -> {i : I & plays_in lg i} -> R) : cgame
:= fun a i => \sum_(s : {lg : localgame | plays_in lg i})

u (tag s) [ffun i => a (val i)] (exist _ i (tagged s)).

5 Bel Games

Harsanyi has proposed [15] a model for decision-making situations where players may have
some uncertainty about other players, their actions, their utility functions, or more generally
about any parameter of the game. To model such situations, the partially known parameters

ITP 2023

25:12 Bel-Games: A Formal Theory of Games of Incomplete Information

are expressed by so-called types:3 each Player i has a set of possible types Θi. Each type
θi ∈ Θi represents a possible parameter describing Player i’s characteristics and knowledge.
Every Player i knows (or learns) their own type θi ∈ Θi at the time of choosing an action. It
may or may not be correlated with other players’ types, so it is possible to model players
that are not aware of other players’ type as well as players with some knowledge about them.

Harsanyi defined the model of games of incomplete information where players’ knowledge
is given by a subjective probability and preferences agree with the expected utility: the
so-called class of Bayesian games. In this setting, a probability measure expresses the
knowledge on type configurations (the frame of discernment being the cartesian product
of all players’ types, that is, Ω =

∏
i∈N Θi = Θ). Games of incomplete information were

already defined in a possibilistic setting by Ben Amor et al. [3], which makes it possible to
represent uncertainty using possibility theory [10]. We further extend this framework to
Belief functions (encompassing both Bayesian games and possibilistic games) [13, 35].

▶ Definition 29 (Bel game). A Bel game [35] is defined by a tuple G =
(
I, (Ai, Θi, ui)i∈I , m

)
:

I is the finite set of players;
Ai is the set of actions of Player i; Θi is the finite set of types of Player i;
ui : A × Θ → R is the utility function of Player i; it depends on the joint action
(a1, . . . , an) ∈ A :=

∏
i∈I Ai and on the type configuration (θ1, . . . , θn) ∈ Θ :=

∏
i∈I Θi;

m : 2Θ → [0, 1] is a bpa which describes the prior knowledge.
Formally speaking, a Bel game is fully defined by two elements: the bpa (prior knowledge)
and the utility functions (the players’ preferences). This pair is parameterized by three types
I, the players; A, the family of actions (Ai)i; and T, the family of types (Θi)i:

Definition belgame (I : finType) (A : I -> eqType) (T : I -> finType) :=
(bpa R (cprofile T) * (cprofile A -> cprofile T -> player -> R)).

▶ Example 30 (Bel game). We now are able to express Example 1 with a Bel game G =
(I, (Ai, Θi, ui)i∈I , m). The set of players is I = {1, 2}, their action sets are Ai = {Pi, Qi, Ri}.
Player 1 will learn either that P is the murderer (ω∗ ∈ {P}) or that he is not (ω∗ ∈ {Q, R}):
Player 1’s type set is Θ1 = {P, P̄}. Similarly, Player 2 will learn either that R is the murderer
(ω∗ ∈ {R}) or that she is not (ω∗ ∈ {P, Q}), so Θ2 = {R, R̄}. The knowledge is expressed over
Θ = Θ1 × Θ2: since (P, R̄) ≡ P , (P̄, R̄) ≡ Q, (P̄, R) ≡ R and (P, R) is impossible, the knowledge
is m

(
{(P, R̄), (P̄, R̄)}

)
= m

(
{(P̄, R)}

)
= 0.5. Finally, utility functions are given in Table 3.

Table 3 Utility functions of Example 30 for θ = (P, R̄) (left, P is the murderer), θ = (P̄, R̄) (center,
Q is the murderer) and θ = (P̄, R) (right, R is the murderer). Configuration θ = (P, R) can’t occur.

P2 Q2 R2 P2 Q2 R2 P2 Q2 R2

P1 (0, 0) (0, 3) (0, 3) P1 (2, 2) (3, 0) (3, 3) P1 (2, 2) (3, 3) (3, 0)
Q1 (3, 0) (2, 2) (3, 3) Q1 (0, 3) (0, 0) (2, 2) Q1 (3, 3) (2, 2) (3, 0)
R1 (3, 0) (3, 3) (2, 2) R1 (3, 3) (3, 0) (2, 2) R1 (0, 3) (0, 3) (0, 0)

Since players know their own type before choosing their action, a pure strategy of Player i

becomes a function σi : Θi → Ai: having the type θi, Player i will play σi(θi) ∈ Ai. Next, a
strategy profile σ = (σ1, . . . , σn) is a vector of such functions:

3 Thus, type can refer to a type-theory concept or a game-theory one. Context will allow to disambiguate.

P. Pomeret-Coquot, H. Fargier, and É. Martin-Dorel 25:13

Definition iprofile I A T := cprofile (fun i => [eqType of {ffun T i -> A i}]).

If the actual type configuration is θ = (θ1, . . . , θn), then for any strategy profile σ we denote
by σθ =

(
σ1(θ1), . . . , σn(θn)

)
∈ A the action profile that will actually be played:

Definition proj_iprofile I A T (p : iprofile A T) : cprofile A :=
fun theta => [ffun i => p i (theta i)].

In the following, we denote by ui,σ : Θ → R the function mapping states of the world ω to
the corresponding utility of σ for Player i. It is defined by ui,σ(θ) = ui(σθ, θ).

In Bayesian games, the global utility of a strategy profile σ for Player i with type θi is the
expected utility w.r.t. the conditioned probability distribution “given θi”. In Bel games, both
expectation and conditioning have to be made explicit, to properly model agents’ preferences
and knowledge updates. For example, studying a Bel game with Dempster’s conditioning and
CEU expectation implies that the utility of a given strategy profile σ for Agent i with type
θi is

∑
B⊆Ω m(B |D θi) × minθ′∈B ui(σθ′

, θ′). Doing so, we need to ensure that conditioning
is meaningful and technically possible, i.e., that the bpa is revisable given any type of any
player. For the sake of readability, we now introduce two shorthands: Tn, representing the
set Θ gathering all type configurations; and event_ti := θi 7→ {θ′∈ Θ | θ′

i = θi}:

Notation Tn := [finType of {dffun ∀ i : I, T i}].
Definition event_ti i (ti : T i) := [set t : Tn | t i == ti].

A proper Bel games, in which conditioning is safe, shall satisfy the predicate:

Definition proper_belgame A T (G : belgame A T) (cond : conditioning R Tn) : bool
:= [∀ i : player, [∀ ti : T i, revisable cond G.1 (event_ti ti)]].

▶ Definition 31 (Utility in a Bel game). For any Bel game G =
(
I, (Ai, Θi, ui)i∈I , m

)
, any

conditioning cond for which G is proper and any XEU parameter φXEU : (Θ → R) → 2Θ → R,
the utility of the pure strategy profile σ for Player i having type θi ∈ Θi, is the integration of
ui,σ = θ 7→ ui(σθ, θ), i.e., XEU

(
m(· |cond θi)

)(
φXEU(ui,σ)

)
.

Definition belgame_utility A T (G : belgame A T) (cond: conditioning R Tn)
fXEU (HG : proper_belgame G cond) (p : iprofile A T) (i : player) (ti : T i) : R
:= let kn := cond G.1 (event_ti ti) (is_revisable HG ti) in

XEU kn (fXEU (fun t => G.2 (proj_iprofile p t) t i)).

Also, for Bel games, the definition of Nash equilibrium applies: an iprofile is a Nash
equilibrium iff no player, whatever is this player’s type, has any incentive to deviate:

Definition BelG_Nash_equilibrium A T (G : belgame A T) (cond : conditioning R Tn)
fXEU (H : proper_belgame G cond) (p : iprofile A T) :=

∀ i : I, ∀ ti : T i, ∀ ai : A i,
~ (belgame_utility u H p ti < belgame_utility u H (change_istrategy p ti ai) ti).

▶ Example 32 (Utility of a strategy). Let σ = (σ1, σ2) be defined by σ1(P) = Q1, σ1(P̄) = P1,
σ2(R) = Q2, σ1(R̄) = R2. σ is a pure strategy asserting that Player 1 will choose Q when
learning that P is the murderer, and choose P otherwise, and that Player 2 will choose Q

when learning that R is the murderer, and choose R otherwise.
Considering Dempster’s conditioning, the Choquet expected utility of σ for Player 1 with
type P̄ is the integration of φCEU(ui,σ) w.r.t. the posterior bpa m(· | P̄). Recall Example 15,

ITP 2023

25:14 Bel-Games: A Formal Theory of Games of Incomplete Information

the posterior bpa “given P̄” has two focal elements: {Q} and {R}, both with mass 1/2.
Considering type configurations, those focal elements are {(P̄, R̄)} and {(P̄, R)}.

XEU
(
m(· |D P̄)

)
(φCEU(u1,σ)

)
=

∑
B∈Sm(·|D P̄)

m(B |D P̄) × min
θ∈B

u1(σθ, θ)

= 0.5 × u1((P1, Q2), (P̄, R)) + 0.5 × u1((P1, R2), (P̄, R̄)) = 3.

One may check that for every player and type, σ’s CEU equals 3, the best possible score.
Since no player, whatever is their type, has incentive to deviate, σ is a Nash equilibrium.

6 Howson-Rosenthal-like transforms

Howson–Rosenthal’s theorem asserts the correctness of a transform which casts a 2-player
Bayesian game into an equivalent polymatrix game (of complete information) [17]. Bayesian
games thus benefit from both theoretical and algorithmic results of classical game theory. In
the following, we formally define and prove correct three Howson-Rosenthal-like transforms
that we have devised in previous work [13, 35]. We also extend the TBM transform to any
conditioning (in the general case, a slight change is necessary, but for Dempster’s and Strong
conditioning the original statement holds, and so does the complexity of the transform).
All these transforms cast n-player Bel games into hypergraphical games; the games so
obtained all have the same utility values, though different hypergraphs. These transforms
can be applied safely, depending on the conditioning and on the decision rule (cf. Table 4):
Dempster’s conditioning is hard-coded into the Direct transform while the TBM transform’s
low complexity comes from properties of the distribution BetP considered by the TBEU.

Table 4 Transforms, conditioning and XEU they are suited for, and their worst-case complexity
w.r.t. the k-additivity of the bpa and the size of the input Bel game (taken from [35]).

Transform Conditioning XEU Space Time
Direct transform Dempster’s c. any O

(
k × Size(G)k

)
O

(
k × Size(G)k

)
Conditioned transform any any O

(
k × Size(G)k

)
O

(
k × Size(G)k

)
TBM transform Dempster’s c. TBEU O

(
k × Size(G)

)
O

(
Size(G)

)
The three transforms all follow the same approach: starting from a Bel game G, they

build the equivalent hypergraphical game G̃, with pairs (i, θi) as “abstract” players (i.e.,
G̃’s vertices), denoting every type of every player of G. The local games correspond to
focal elements, so Player (i, θi) plays in a local game lg iff the type θi is possible in the
corresponding focal element. Doing so, we benefit from the hypergraphical game structure
to compute an XEU (recall that global utility is the sum of local utilities and that the XEU
value is the weighted sum of utilities w.r.t. focal elements). For all those transforms, let
(G : belgame A T) be the input Bel game that has to be turned into a hypergraphical game
named G̃. G̃’s players are pairs (i, θi), their action sets still are Ai:
Definition HR_player : finType := [finType of {i : I & T i}].
Definition HR_action (i_ti : HR_player) : eqType := A (projT1 i_ti).

Strategy profiles of G and of G̃ are in one-to-one correspondance. Every strategy profile
(σ : iprofile A T) in G, that is, σ :

∏
i∈I(Θi → Ai), is flattened to σ̃ : cprofile (fun

i_ti : {i : I & T i} => A (val i)) in G̃, that is, σ̃ :
∏

(i,θi)∈I×Θi
Ai. E.g. in a 2-player

game with 2 types per player, σ = (σ1, σ2) is flattened to (σ1(θ1), σ1(θ′
1), σ2(θ2), σ2(θ′

2)).
This “dependent uncurrying” is performed by the following function:
Definition flatten I (T : I -> finType) A (sigma : iprofile A T) :=

[ffun i_ti => sigma (projT1 i_ti) (projT2 i_ti)].

P. Pomeret-Coquot, H. Fargier, and É. Martin-Dorel 25:15

6.1 The Direct Transform
The direct transform applies Dempster’s conditioning on-the-fly (so this is the only possible
conditioning). It is suitable for any XEU. Starting from a Bel game G, we construct a local
game eB for each prior focal element B. Vertex (i, θi) plays in B iff θi is possible in B, that
is, if ∃θ′ ∈ B, θi = θ′

i. Its local utility in eB is the “part of XEU” computed over B′, the
subset of B on which the mass shall be transferred during Dempster’s conditioning.

▶ Definition 33 (Direct transform of a Bel game). The direct transform of
a Bel game G =

(
I, (Ai, Θi, ui)i∈I , m

)
is the hypergraphical game G̃ =(

Ĩ , Ẽ, (Ã(i,θi))(i,θi)∈Ĩ , (ũe
(i,θi))e∈Ẽ,(i,θi)∈e

)
:

Ĩ = {(i, θi) | i ∈ I, θi ∈ Θi}, Ẽ = (eB)B⊆Sm
, eB = {(i, θi) | θ ∈ B, i ∈ I}, Ã(i,θi) = Ai,

for each eB ∈ Ẽ, (i, θi) ∈ eB and σ̃ ∈ Ã, let us pose ṽσ̃
i (θ) = ui(σ̃θ, θ) in:

ũeB

(i,θi)(σ̃eB
) = m(B) ×

(
φXEU(ṽσ̃

i)(B ∩ {θ′ | θ′
i = θi})

)
/Pl({θ′ | θ′

i = θi}).
Formally, let G be a proper Bel game w.r.t. Dempster’s conditioning and fXEU a φ function:

Variable (proper_G : proper_belgame G (Dempster_conditioning R Tn))
(fXEU : {ffun Tn -> R} -> {ffun {set Tn} -> R}).

Then, let G̃’s local games be indexed by focal elements, i.e., sets of type configurations:

Definition HRdirect_localgame := [finType of {set Tn}].

A vertex (i, θi) plays in the local game eB iff θi is possible in B:

Definition HRdirect_plays_in (lg : HRdirect_localgame) (i_ti : HR_player) : bool
:= [∃ t : Tn, [&& t \in lg & t (projT1 i_ti) == projT2 i_ti]].

Then, local utility functions are given by a function which constructs from a local profile p

and a type configuration θ, the cprofile (p(1,θ1), . . . , p(n,θn)). This function has type:

Definition HRdirect_mkprofile lg i_ti (Hi_ti : HRdirect_plays_in lg i_ti)
(p : HRdirect_localprof lg) (t : Tn) : profile.

Local utility in a local game eB is the part of the XEU computed from the prior focal element
B. Note that Dempster’s conditioning transfers masses from B to B ∩ {θ′∈ Θ | θ′

i = θi}
= B∩(event_ti θi) so the local utility amounts to an on-the-fly Dempster’s conditioning.
The resulting HG game is finally built from local utility functions:

Definition HRdirect_u : ∀ lg, HRdirect_localprof lg -> HRdirect_localplayer lg -> R
:= fun lg p x => let (i_ti, Hi_ti) := x in let (i, ti) := i_ti in

G.1 lg * fXEU [ffun t => G.2 (HRdirect_mkprofile Hi_ti p t) t i]
(lg :&: (event_ti ti)) / Pl G.1 (event_ti ti).

Definition HRdirect : cgame R HR_action := hg_game HRdirect_u.

▶ Theorem 34 (Correctness of the direct transform). For any proper Bel game G, Player i

with type θi, XEU function φXEU, and profile σ, we have XEU
(
m(· |D θi)

)(
φXEU(ui,σ)

)
=

ũ(i,θi)(flatten(σ)). Thence, Nash equilibria of G and G̃ are in one-to-one correspondence:

Theorem HRdirect_correct (i : I) (ti : T i) (p : iprofile A T) :
belgame_utility fXEU properG p ti = HRdirect (flatten p) (existT _ i ti).

Theorem HRdirect_eqNash (p : iprofile A T) :
BelG_Nash_equilibrium fXEU proper_G p <-> Nash_equilibrium HRdirect (flatten p).

ITP 2023

25:16 Bel-Games: A Formal Theory of Games of Incomplete Information

6.2 The Conditioned Transform
The conditioned transform holds for any conditioning and XEU. Starting from a Bel game
G, all the conditioning “given θi” are pre-computed, let S∗ be the union of all posterior focal
sets (i.e., the set of all possible focal elements given any θi). Each B ∈ S∗ leads to a local
game. As in the direct transform, a vertex (i, θi) plays in eB if θi is possible in B. Its utility
in eB is the part of XEU computed over the posterior focal element B. Note that (i, θi)’s
local utility in B may be 0, if B is not focal in the posterior “given θi”. Formally speaking:

▶ Definition 35 (Conditioned transform). The conditioned transform of
a Bel game G =

(
I, (Ai, Θi, ui)i∈I , m

)
is the hypergraphical game G̃ =(

Ĩ , Ẽ, (Ã(i,θi))(i,θi)∈Ĩ , (ũe
(i,θi))e∈Ẽ,(i,θi)∈e

)
:

Ĩ = {(i, θi) | i ∈ I, θi ∈ Θi}, Ẽ = (eB)B∈S∗ , eB = {(i, θi) | θ ∈ B, i ∈ I}, Ã(i,θi) = Ai,
∀eB ∈ Ẽ, (i, θi) ∈ eB, σ̃ ∈ Ã, let ṽσ̃

i (θ) = ui(σ̃θ, θ) in ũeB

(i,θi)(σ̃eB
) = m(B | θi)×fXEU

ṽσ̃
i

(B).
Formally, let fXEU be any φXEU, cond be any conditioning, and G be proper w.r.t. cond:

Variables (fXEU: (Tn -> R) -> {set Tn} -> R)
(cond : conditioning R Tn) (proper_G : proper_belgame G cond).

After similar definitions for HRcond_localgame and HRcond_plays_in, we define:

Definition HRcond_u : ∀ lg, HRcond_localprof lg -> HRcond_localplayer lg -> R
:= fun lg p x => let (i_ti, Hi_ti) := x in let (i, ti) := i_ti in

let kn := cond G.1 (event_ti ti) (is_revisable proper_G ti) in
kn lg * fXEU [ffun t => G.2 (HRcond_mkprofile Hi_ti p t) t i] lg.

Definition HRcond : cgame R HR_action := hg_game HRcond_u.

▶ Theorem 36 (Correctness of the conditioned transform). For any proper Bel game G, Player i

with type θi, conditioning c, XEU function φXEU, profile σ: XEU
(
m(· |c θi)

)(
φXEU(ui,σ)

)
=

ũ(i,θi)(flatten(σ)). Thence, Nash equilibria of G and G̃ are in one-to-one correspondence:

Theorem HRcond_correct (i : I) (ti : T i) (p : iprofile A T):
belgame_utility fXEU proper_G p ti = HRcond (flatten p) (existT _ i ti).

Theorem HRcond_eqNash (p : iprofile A T),
BelG_Nash_equilibrium fXEU proper_G p <-> Nash_equilibrium (HRcond) (flatten p).

6.3 The TBM Transform
The TBM transform is designed for the Transferable Belief Model [39], in which knowledge
is first revised using Dempster’s conditioning, then decision is eventually made w.r.t. a
probability distribution BetP which is deduced from the bpa m (Definition 24). Here,
we benefit from BetP’s 1-additivity to produce a low-complexity hypergraph: local games
correspond to single states of the world θ ∈ Θ. In this work, we generalize the TBM transform
to any conditioning, refining the statement defining local games; we show that for Dempster’s
and the strong conditioning, the original statement suffices, unlike for the weak conditioning.

▶ Definition 37 (TBM transform). Let G =
(
I, (Ai, Θi, ui)i∈I , m

)
be a Bel game; it is TBM-

transformed into the hypergraphical game G̃ =
(
Ĩ , Ẽ, (Ã(i,θi))(i,θi)∈Ĩ , (ũe

(i,θi))e∈Ẽ,(i,θi)∈e

)
s.t.:

Ĩ =
{

(i, θi) | i ∈ I, θi ∈ Θi

}
, Ã(i,θi) = Ai, Ẽ = (eθ)θ∈Θ,

eθ = {(i, θ′
i) | θ′

i = θi ∨ (∃B ∈ Sm(·|θ′
i
), θ ∈ B ∧ ∃θ′′ ∈ B, θ′

i = θ′′
i)},

ũeθ

(i,θi)(σ̃e) = BetP(i,θi)(θ) × ui(σθ, θ).

P. Pomeret-Coquot, H. Fargier, and É. Martin-Dorel 25:17

Formally, let cond be a conditioning and G be a proper Bel game w.r.t. cond; G̃’s local
games are indexed by type configurations, and (i, θi) plays in eθ′ if θi = θ′

i (the original
statement, sufficient for Dempster’s and the strong conditioning) or if there is a focal element
B which contains both θ′ and any θ′′ such that θi = θ′′

i (necessary for the weak conditioning):
Variables (cond : conditioning R Tn) (proper_G : proper_belgame cond).
Definition HRTBM_localgame : finType := Tn.
Definition HRTBM_plays_in : HRTBM_localgame -> pred HR_player := fun lg i_ti =>

[|| lg (projT1 i_ti) == projT2 i_ti | [∃ B, [&& B \in focalset (m_ti i_ti),
lg \in B & [∃ t, (t \in B) && (t (projT1 i_ti) == projT2 i_ti)]]]].

Local utilities are computed w.r.t. the “pignistic” distribution BetP:
Definition HRTBM_u : ∀ lg, HRTBM_localprof lg -> HRTBM_localplayer lg -> R :=

fun lg p x => let (i_ti, _) := x in let (i, ti) := i_ti in
let betp := BetP (cond G.1 (event_ti ti) (is_revisable proper_G ti)) in
dist betp lg * G.2 (HRTBM_mkprofile p) lg i.

Definition HRTBM : cgame R HR_action := hg_game HRTBM_u.

▶ Theorem 38 (Correctness of the TBM transform). For any proper Bel game G, Player i with
type θi, conditioning c, and profile σ, TBEU

(
m(· |c θi)

)(
φTBEU(ui,σ)

)
= ũ(i,θi)(flatten(σ)).

Thence, Nash equilibria of G and G̃ are in one-to-one correspondence:

Theorem HRTBM_correct (i : I) (ti : T i) (p : iprofile A T) :
belgame_utility fTBEU proper_G p ti = HRTBM (flatten p) (existT _ i ti).

Theorem HRTBM_eqNash (p : iprofile A T),
BelG_Nash_equilibrium fTBEU proper_G p <-> Nash_equilibrium HRTBM (flatten p).

7 Concluding remarks

In this paper, a 2.5 k loc Coq/SSReflect formalization of Bel games has been presented. It
gathers a theory for Dempster-Shafer belief functions (∼1 k loc) as well as a generic class of
games of incomplete information, built upon the former. This framework makes it possible to
capture (lack of) knowledge better than usual game models based on probability. Following
Howson’s and Rosenthal’s approach, three different transforms casting such incomplete games
into standard complete-information games [35] have been formalized, one of them being
further generalized. We have formally verified that these transforms preserve equilibria.
Thus, Bel games are solvable using state-of-the-art, effective algorithms for complete games.

This work provides strong guaranties on the correctness of the transforms, so that
game theorists may rely on them without any concern about correctness. Furthermore,
the formalization allowed us to identify subtleties that were left implicit in the definitions
(e.g., the conditioning pre- and post-conditions), as well as to help improving the proofs,
both in their flow and in their prose. Last, generic lemmas that proved useful during our
formalization effort have been proposed for integration in the MathComp library.

This work opens several research directions, both on the theoretical side and on the
formal verification side. On the one hand, we aim at extending this result with other
decision-theoretic approaches, e.g., partially-ordered utility aggregations for belief function
and other non-additive-measure approaches (Choquet capacities of order 2, RDU). On the
other hand, we would like to focus on complexity proofs which, albeit not safety-critical,
play a key role when choosing one transform over the other. Eventually, we would like to
encompass this work into a larger library of decision under uncertainty, fostering further
developments on related models and proofs.

ITP 2023

25:18 Bel-Games: A Formal Theory of Games of Incomplete Information

References
1 Reynald Affeldt and Cyril Cohen. Measure construction by extension in dependent type theory

with application to integration, 2022. URL: https://arxiv.org/abs/2209.02345.
2 Reynald Affeldt, Jacques Garrigue, and Takafumi Saikawa. A library for formalization

of linear error-correcting codes. Journal of Automated Reasoning, 64(6):1123–1164, 2020.
doi:10.1007/s10817-019-09538-8.

3 Nahla Ben Amor, Hélène Fargier, Régis Sabbadin, and Meriem Trabelsi. Possibilistic Games
with Incomplete Information. In Proceedings of the Twenty-Eighth International Joint Confer-
ence on Artificial Intelligence, pages 1544–1550. ijcai.org, 2019.

4 Alexander Bagnall, Samuel Merten, and Gordon Stewart. A Library for Algorithmic Game
Theory in SSReflect/Coq. Journal of Formalized Reasoning, 10(1):67–95, 2017.

5 Sylvie Boldo, François Clément, Florian Faissole, Vincent Martin, and Micaela Mayero. A
Coq formalization of Lebesgue integration of nonnegative functions. Journal of Automated
Reasoning, 66(2):175–213, 2022. doi:10.1007/s10817-021-09612-0.

6 The Coq Development Team. The Coq Proof Assistant, 2022. URL: https://doi.org/10.
5281/zenodo.1003420.

7 Arthur P. Dempster. Upper and Lower Probabilities Induced by a Multivalued Mapping. The
Annals of Mathematical Statistics, 38:325–339, 1967.

8 Christoph Dittmann. Positional determinacy of parity games. Available at https://www.
isa-afp.org/browser_info/devel/AFP/Parity_Game/outline.pdf, 2016.

9 Didier Dubois and Thierry Denoeux. Conditioning in Dempster-Shafer Theory: Prediction vs.
Revision. In Belief Functions: Theory and Applications - Proceedings of the 2nd International
Conference on Belief Functions, pages 385–392. Springer, 2012.

10 Didier Dubois and Henri Prade. Possibility Theory: An Approach to Computerized Processing
of Uncertainty. Plenum Press, 1988.

11 Didier Dubois and Henri Prade. Focusing vs. belief revision: A fundamental distinction when
dealing with generic knowledge. In Qualitative and quantitative practical reasoning, pages
96–107. Springer, 1997.

12 Mnacho Echenim and Nicolas Peltier. The binomial pricing model in finance: A formalization
in Isabelle. In CADE, volume 10395 of LNCS, pages 546–562. Springer, 2017.

13 Hélène Fargier, Érik Martin-Dorel, and Pierre Pomeret-Coquot. Games of incomplete in-
formation: A framework based on belief functions. In Symbolic and Quantitative Approaches
to Reasoning with Uncertainty - 16th European Conference, volume 12897 of LNCS, pages
328–341. Springer, 2021. doi:10.1007/978-3-030-86772-0_24.

14 Ruobin Gong and Xiao-Li Meng. Judicious judgment meets unsettling updating: Dilation,
sure loss and simpson’s paradox. Statistical Science, 36(2):169–190, 2021.

15 John C Harsanyi. Games with Incomplete Information Played by “Bayesian” Players, I–III.
Part I. The Basic Model. Management Science, 14(3):159–182, 1967.

16 Johannes Hölzl and Armin Heller. Three chapters of measure theory in Isabelle/HOL. In
Interactive Theorem Proving, pages 135–151, Berlin, Heidelberg, 2011. Springer Berlin Heidel-
berg.

17 Joseph T Howson Jr and Robert W Rosenthal. Bayesian Equilibria of Finite Two-Person
Games with Incomplete Information. Management Science, 21(3):313–315, 1974.

18 Jean-Yves Jaffray. Linear Utility Theory for Belief Functions. Operations Research Letters,
8(2):107–112, 1989.

19 Jean-Yves Jaffray. Linear Utility Theory and Belief Functions: a Discussion. In Progress in
decision, utility and risk theory, pages 221–229. Springer, 1991.

20 Cezary Kaliszyk and Julian Parsert. Formal microeconomic foundations and the first welfare
theorem. In Proceedings of the 7th ACM SIGPLAN International Conference on Certified
Programs and Proofs, CPP 2018, pages 91–101. ACM, 2018.

https://arxiv.org/abs/2209.02345
https://doi.org/10.1007/s10817-019-09538-8
https://doi.org/10.1007/s10817-021-09612-0
https://doi.org/10.5281/zenodo.1003420
https://doi.org/10.5281/zenodo.1003420
https://www.isa-afp.org/ browser_info/devel/AFP/Parity_Game/outline.pdf
https://www.isa-afp.org/ browser_info/devel/AFP/Parity_Game/outline.pdf
https://doi.org/10.1007/978-3-030-86772-0_24

P. Pomeret-Coquot, H. Fargier, and É. Martin-Dorel 25:19

21 Christoph Lange, Colin Rowat, and Manfred Kerber. The formare project - formal math-
ematical reasoning in economics. In MKM/Calculemus/DML, volume 7961 of LNCS, pages
330–334. Springer, 2013.

22 Rida Laraki, Jérôme Renault, and Sylvain Sorin. Mathematical foundations of game theory.
Springer, 2019.

23 Stéphane Le Roux, Érik Martin-Dorel, and Jan-Georg Smaus. An Existence Theorem of Nash
Equilibrium in Coq and Isabelle. In Proceedings Eighth International Symposium on Games,
Automata, Logics and Formal Verification, volume 256 of Electronic Proceedings in Theoretical
Computer Science, pages 46–60, 2017. doi:10.4204/EPTCS.256.4.

24 Stéphane Le Roux, Érik Martin-Dorel, and Jan-Georg Smaus. Existence of Nash equilibria
in preference priority games proven in Isabelle. In Kurt Gödel Day and Czech Gathering of
Logicians, 2021.

25 Pierre Lescanne and Matthieu Perrinel. “backward” coinduction, Nash equilibrium and the
rationality of escalation. Acta Informatica, 49(3):117–137, 2012.

26 Assia Mahboubi and Enrico Tassi. Mathematical Components, 2022. URL: https://doi.org/
10.5281/zenodo.7118596.

27 Érik Martin-Dorel and Sergei Soloviev. A Formal Study of Boolean Games with Random
Formulas as Payoff Functions. In 22nd International Conference on Types for Proofs and
Programs, TYPES 2016, volume 97 of Leibniz International Proceedings in Informatics, pages
14:1–14:22, 2016.

28 Érik Martin-Dorel and Enrico Tassi. SSReflect in Coq 8.10. In The Coq Workshop 2019, Port-
land State University, OR, USA, 2019. URL: https://staff.aist.go.jp/reynald.affeldt/
coq2019/coqws2019-martindorel-tassi.pdf.

29 Oskar Morgenstern and John Von Neumann. Theory of Games and Economic Behavior.
Princeton University Press, 1953.

30 Roger B Myerson. Game Theory. Harvard university press, 2013.
31 John Nash. Non-Cooperative Games. Annals of Mathematics, pages 286–295, 1951.
32 Christos H. Papadimitriou and Tim Roughgarden. Computing Correlated Equilibria in

Multi-Player Games. Journal of the Association for Computing Machinery, 55(3):1–29, 2008.
33 Julian Parsert and Cezary Kaliszyk. Towards formal foundations for game theory. In Interactive

Theorem Proving - 9th International Conference ITP 2018, volume 10895 of LNCS, pages
495–503. Springer, 2018.

34 Bernard Planchet. Credibility and Conditioning. Journal of Theoretical Probability, 2(3):289–
299, 1989.

35 Pierre Pomeret-Coquot, Hélène Fargier, and Érik Martin-Dorel. Games of incomplete informa-
tion: A framework based on belief functions. International Journal of Approximate Reasoning,
151:182–204, 2022. doi:10.1016/j.ijar.2022.09.010.

36 Stéphane Le Roux. Acyclic preferences and existence of sequential Nash equilibria: A
formal and constructive equivalence. In Proc. Theorem Proving in Higher Order Logics,
22nd International Conference, volume 5674 of LNCS, pages 293–309. Springer, 2009. doi:
10.1007/978-3-642-03359-9_21.

37 Glenn Shafer. A Mathematical Theory of Evidence. Princeton University Press, 1976.
38 Philippe Smets. Jeffrey’s Rule of Conditioning Generalized to Belief Functions. In Uncertainty

in artificial intelligence, pages 500–505. Elsevier, 1993.
39 Philippe Smets and Robert Kennes. The Transferable Belief Model. Artificial Intelligence,

66(2):191–234, 1994.
40 René Vestergaard. A constructive approach to sequential Nash equilibria. Inormation.

Processing Letters, 97(2):46–51, 2006. doi:10.1016/j.ipl.2005.09.010.
41 Peter Walley. Statistical Reasoning with Imprecise Probabilities. Chapman & Hall, 1991.
42 Elena Yanovskaya. Equilibrium Points in Polymatrix Games. Lithuanian Mathematical

Journal, 8:381–384, 1968.

ITP 2023

https://doi.org/10.4204/EPTCS.256.4
https://doi.org/10.5281/zenodo.7118596
https://doi.org/10.5281/zenodo.7118596
https://staff.aist.go.jp/reynald.affeldt/coq2019/coqws2019-martindorel-tassi.pdf
https://staff.aist.go.jp/reynald.affeldt/coq2019/coqws2019-martindorel-tassi.pdf
https://doi.org/10.1016/j.ijar.2022.09.010
https://doi.org/10.1007/978-3-642-03359-9_21
https://doi.org/10.1007/978-3-642-03359-9_21
https://doi.org/10.1016/j.ipl.2005.09.010

Proof Repair Infrastructure for Supervised Models:
Building a Large Proof Repair Dataset
Tom Reichel #

University of Illinois Urbana-Champaign, IL, USA

R. Wesley Henderson #

Radiance Technologies, Inc., Ruston, LA, USA

Andrew Touchet #

Radiance Technologies, Inc., Ruston, LA, USA

Andrew Gardner1 #

Radiance Technologies, Inc., Ruston, LA, USA

Talia Ringer1 #

University of Illinois Urbana-Champaign, IL, USA

Abstract
We report on our efforts building a new, large proof-repair dataset and benchmark suite for the
Coq proof assistant. The dataset is made up of Git commits from open-source projects with old
and new versions of definitions and proofs aligned across commits. Building this dataset has been
a significant undertaking, highlighting a number of challenges and gaps in existing infrastructure.
We discuss these challenges and gaps, and we provide recommendations for how the proof assistant
community can address them. Our hope is to make it easier to build datasets and benchmark suites
so that machine-learning tools for proofs will move to target the tasks that matter most and do so
equitably across proof assistants.

2012 ACM Subject Classification Computing methodologies → Machine learning; Software and its
engineering → Software maintenance tools; Security and privacy → Logic and verification

Keywords and phrases proof repair, datasets, benchmarks, machine learning, formal proof

Digital Object Identifier 10.4230/LIPIcs.ITP.2023.26

Supplementary Material
Text (Appendix): https://dependenttyp.es/pdf/repairdataappendix.pdf
Dataset (Sample): https://doi.org/10.5281/zenodo.7935207

Funding This research was developed with funding from the Defense Advanced Research Projects
Agency. The views, opinions, and/or findings expressed are those of the author(s) and should not be
interpreted as representing the official views or policies of the Department of Defense or the U.S.
Government.

1 Introduction

Machine learning (ML) is coming for proofs. Recent years have seen a surge in interest in ML
for proofs – one reflected by the many recent research venues [7, 4, 12], papers [26, 45, 37],
tools [2, 13, 35], industrial research groups [47, 5], and funding opportunities [3, 6] centering
on or prominently featuring ML for proofs. The surge in interest blurs the line between
proofs and data so that any proof development, once released, may itself become data to
improve proof automation for future proof developments.

1 Co-senior authors

Distribution Statement A (Approved for Public Release, Distribution Unlimited).

© Tom Reichel, R. Wesley Henderson, Andrew Touchet, Andrew Gardner, and Talia Ringer;
licensed under Creative Commons License CC-BY 4.0

14th International Conference on Interactive Theorem Proving (ITP 2023).
Editors: Adam Naumowicz and René Thiemann; Article No. 26; pp. 26:1–26:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:reichel3@illinois.edu
mailto:Robert.Henderson@radiancetech.com
mailto:Andrew.Touchet@radiancetech.com
mailto:Andrew.Gardner@radiancetech.com
mailto:tringer@illinois.edu
https://doi.org/10.4230/LIPIcs.ITP.2023.26
https://dependenttyp.es/pdf/repairdataappendix.pdf
https://doi.org/10.5281/zenodo.7935207
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 Proof Repair Infrastructure for Supervised Models

Figure 1 Changes made to a lemma by a participant in a recent user study of proof engineers,
from the REPLica user study paper [52].

We in the proof engineering community have agency in how this surge of interest plays out.
We can develop datasets and benchmark suites that steer the ML community toward the tasks
that matter most. We can build infrastructure that makes it easy to develop those datasets
and benchmark suites, or to work on those tasks. And we can build evaluation methodologies
that measure success on those tasks in ways that truly matter, so that state-of-the-art results
on benchmarks will transfer smoothly to real-world improvements in proof automation.

This paper takes a step in that direction. In particular, it presents the initial release
of Proof Repair Infrastructure for Supervised Models (PRISM) – a dataset and benchmark
suite for an important proof automation task in Coq: proof repair [49], which comprises
the automatic correction of proofs in response to breaking changes in programs or specifi-
cations. Proof repair is crucially important for reducing costs in large proof developments
and for enabling the application of formal methods to broader and more diverse contexts.
Unfortunately, data for proof repair is scarce and challenging to collect [52]. This paper
highlights the challenges involved in collecting repair data with an emphasis on how the proof
engineering community can adapt to those challenges as ML becomes increasingly relevant.
Its contributions are the following:
1. an initial release of a Coq proof repair dataset and benchmark suite accessible to ML

experts (Section 3),
2. reusable tools for building and extracting information from Coq projects (Section 4), and
3. a discussion of the challenges we encountered and how to overcome them (Section 5).
Our overarching goal is to build the infrastructure and proof assistant community support
we need to steer the ML community toward the tasks that matter most (Section 2).

2 Overview

The necessity and difficulty of proof maintenance has been borne out empirically. A recent
user study of eight intermediate through expert proof engineers showed that maintenance
happened constantly for participating proof engineers during proof development [52] and
that even experts sometimes gave up in the face of change [49].

T. Reichel, R. W. Henderson, A. Touchet, A. Gardner, and T. Ringer 26:3

Consider, for example, the change in Figure 1, in which a user study participant updated a
lemma statement in response to a change in a dependency. As noted in the user study paper,
this was part of a larger change, with 10 other definitions or lemma statements changing in
analogous ways. Furthermore, this change broke at least five proofs, four of which the user
study participant – an expert proof engineer – admitted or aborted rather than repair.

The ubiquity of maintenance and the challenges of repair have been largely neglected
in ML tools for proofs. ML tools for proofs have instead historically fixated on tasks like
predicting tactics or automatically formalizing natural language [13, 37, 45]. The lack of a
good dataset and benchmark suite obstructs progress; what currently exists is not sufficient
for training and evaluating proof repair models (see Section 6). If the datasets and benchmark
suites are not fit for maintenance tasks, the ML community may neglect those tasks entirely,
instead chasing state-of-the-art results on tasks for which existing benchmark suites suffice.

Our experiences interacting with ML experts and building datasets ourselves suggest that
the choice of datasets and benchmark suites for a domain is not driven solely by what is
likely to be useful – it is also driven by barriers imposed by infrastructure, lack of domain
expertise, or social factors. Things we may take for granted, like parsing and checking proofs,
can become prohibitive infrastructure challenges for ML experts.

In this paper, we describe our efforts to overcome these challenges and build a large proof
repair dataset for Coq. We also discuss the barriers we do encounter, and we describe both
how we overcome those barriers, and what kind of work the proof assistant community would
need to put in to make it so that they cease to be barriers at all.

We find this work especially prudent given that the danger of chasing benchmarks that
may not transfer to real life workflows has been realized quite dramatically in other domains,
from incorrect patches to programs [46] to incorrect clinical interpretation of x-ray results [67].
Furthermore, these challenges can influence not just the tasks that the ML community chooses
to tackle but even the very proof assistants for which the ML community chooses to build
supporting tools. It is in the community’s best interest to drive strong, practical results for
useful tasks in a way that is equitable across proof assistants.

Our hopes are twofold. First, we hope that our dataset will be immediately useful for
proof repair. Second, and perhaps more prudently, we hope our discussion of the challenges
involved in building it will serve as a call for action to improve infrastructure. The proof
engineering community can then ensure that ML experts focus on the automation tasks that
matter most to the community, that they measure success on those tasks in ways that transfer
smoothly to real-world usefulness, and that they do so equitably across proof assistants.

3 A Proof Repair Dataset

An initial release of the PRISM dataset and benchmark suite that we have assembled is
publicly available (see Supplementary Material); we will continue to update the release
with later versions as we mine more data. The task that PRISM focuses on is proof repair
(Section 3.1). The data comprise aligned Git commits that correspond to existing changes in
proof developments found on GitHub (Section 3.2). Success on the resulting benchmark is
evaluated in terms of successful proof checking for repaired proofs (Section 3.3).

3.1 The Task: Proof Repair
In ML, a task refers to a high-level input/output specification of what is being learned.
A dataset and benchmark suite typically organizes itself around a particular task while
remaining agnostic to the details of the model implementation.

ITP 2023

26:4 Proof Repair Infrastructure for Supervised Models

We define proof repair as an ML task with inputs comprising an old theorem statement,
proof of the old theorem, and a new theorem statement; and outputs comprising a proof
of the new theorem. Note that this particular task assumes that we already know how to
repair the theorem statement and its dependencies. We could also consider a second task
that allows the model to repair the specification itself. This second repair task would be
harder to evaluate, so we do not focus our benchmark suite on it at this time, even though
PRISM supports it.

Inputs. We aim to provide sufficient context in the data to support a wide range of ML
approaches. At a high level, the input to the ML repair model is the entire state of a project
where the approach dictates how much of this state (and in what form) actually reaches the
model. More precisely, the input comprises the statement of the theorem whose proof should
be repaired, any contextual definitions on which it depends, the step-by-step (and subgoals)
goals and hypotheses for each sentence in the old proof, and known changes to the project
up to and including changes in the theorem statement and its dependencies. For each of
these components, we supply raw text representations, abstract syntax trees (ASTs), and
identifiers. In the case of goals and hypotheses, serialized Coq kernel representations supply
detailed internal proof states. Environmental dependencies such as Coq compiler versions are
captured for errors induced by external application programming interface (API) changes.

Outputs. The ultimate output is the repaired proof, which takes the form of text that
may be generated one sentence at a time, all at once, or through targeted modifications of
existing sentences. In the case of supervised repair learning, we supply ground truth targets
in the same form as the inputs: raw text, ASTs, etc. for the entire repaired project’s state
(compactly represented as a “diff” relative to the input). Sufficient context is provided in the
data to programmatically execute up to the error in an interactive REPL such as coqtop or
sertop, where one may apply reinforcement learning akin to CoqGym [65].

3.2 The Data: Aligned Git Commits
The training and testing data comprise aligned Git commits for a selection of realistic Coq
projects. The initial release of PRISM spans just a few Coq projects and consists of roughly
200 unique changes. We are working to continue to grow PRISM in the short term to span
the 60 Coq projects listed in the appendix, and in the long term to reach even more projects
in the long term. An initial versions of the dataset and a summary of the projects we are
considering for the next version can be found in supplementary material.

Projects were originally selected by querying GitHub’s API for projects that contained
Coq source code, had a file called “Makefile” in the project’s root directory, and had at least
100 commits from which to mine repair data. Eventually, we also included projects from
CoqGym [65] and filtered to projects that were listed in OCaml Package Manager (opam)
repositories (opam acts as the primary distributor of Coq projects). We excluded projects
that did not contain any proofs, or that had ulterior motives in their builds (e.g., projects
that intended to test the performance of the Coq compiler coqc). We hope in the future to
include additional projects, though this will require us to support more build environments
and expand upon the work detailed in Section 4.2.

Repair Examples. Within each Coq project, the data comprises a number of repair examples
– that is, changes to definitions or proofs. A repair example is constructed by comparing
a definition or proof before and after a change. Since sentences and files may be moved,

T. Reichel, R. W. Henderson, A. Touchet, A. Gardner, and T. Ringer 26:5

renamed, added, deleted, or otherwise altered between commits, they must first be aligned
to ensure the right changes are compared. This means that Vernacular commands in one
commit are assigned one-by-one to commands in another commit, where these assignments
may cross file boundaries. Note that each command may not get a partner, indicating that
it was either added or deleted. We describe this in more detail in Section 4.5.

After alignment, proof repair examples are constructed by partially applying changes,
e.g., by omitting the changes to a proof that accompanied a change to the proposition.
Thus, one pair of commits may give rise to multiple examples. The examples are compactly
represented by commit hashes and diffs that indicate the state before and after a repair.
This compact representation enables dissemination of the dataset without the accompanying
projects, although we note supplementary tools for efficiently extracting project data will
still be vitally important for eliminating redundant computations and effort in practice.

Data Split. ML datasets and benchmark suites often include a data split between training,
validation, and testing data. We do not commit to a split ahead of time, but we consider two
different ways of splitting data: across projects and chronologically within projects. These
two splits test two different kinds of generalization beyond the training data. We plan to
include defaults for both splits in the final release of PRISM.

The first split – across projects – chooses distinct sets of projects to use for training,
validation, and test data. This approach measures generalization of the learned model to new
projects not seen at training time. The second split – chronologically within projects – uses
the same set of projects for training and test data, but splits them by time of commit, so
that training data includes earlier commits, and testing data includes later commits for the
same projects. This approach measures generalization of the learned model to new changes
within a given project, when the model was trained on older data for that project.

3.3 The Metrics: Proof Checking
Changes in proof developments that break proofs can be fixed in two ways: by repairing the
proofs themselves or by repairing some other definition such as a program or specification [49].
PRISM includes both kinds of changes. We focus our benchmark suite on the former
(repairing proofs), as the metric for success is immediately clear. We hope our benchmark
suite will also be useful for the latter (repairing definitions), but we believe the problem of
choosing a good metric for success for repairing definitions to be an open research problem.

Repairing Proofs. We focus our benchmarks on the problem of repairing a proof script
assuming that the statement of the repaired theorem is already known. In this case, checking
the correctness of the repaired proof amounts to using Coq’s kernel to proof check the type of
the repaired proof against the type that represents the desired repaired theorem statement.

The proof checking metric is the same as that used for the standard CoqGym [65] proof
generation benchmark suite for Coq. This metric is sound and complete (up to the correctness
of Coq’s kernel with nonterminating proof scripts designated as incorrect): any proof that
checks with the desired type is a proof of the theorem the type encodes (soundness), and
all proofs that prove that theorem will check with the desired type (completeness).

For this flavor of proof repair, we are able to take advantage of the fact that proof checking
is a perfect oracle when the theorem statement is known. Perfect oracles have been hugely
beneficial for existing ML work for proof generation [26] and for early symbolic work on proof
repair when specifications do not change [53]. They continue to benefit ML for proof repair.

ITP 2023

26:6 Proof Repair Infrastructure for Supervised Models

Coq Project

Metadata

commit 1
commit 2

...
commit n

Switch

opam
install

Built Projectmake

Physical Dependency
Locations (IQR)

strace

Proof
Context

serapi

Switch
Manager

Aligned Repair
Instance

alignment
(pairs)

Figure 2 Process of extraction for a Coq project commit.

Repairing Definitions. Helping users fix the definitions that the specification depends
on – or the theorem statement itself – is also desirable. The REPLica user study, for
example, found that 75% of the time proof engineers fixed a broken proof, they did so by
fixing something else, like a program or specification [52]. Supporting this use case may
actually be more helpful to proof engineers than supporting the original flavor of proof repair.
Unfortunately, existing metrics are insufficient for measuring success on this task:

The proof checking metric is insufficient when the repaired specification is unknown;
showing that a proof type checks is not meaningful unless we know its intended type.
The metric of exact equality with an expected repaired definition is too conservative, as
there are many equivalent ways to state the same theorems or write the same definitions.
Common notions of definitional or propositional equality in Coq are less conservative,
but are still too far from complete.
Pumpkin Pi [51] repairs definitions to be equivalent up to univalent transport, but
checking this automatically is undecidable.
Common natural language distance metrics like BLEU [42] are poor measures of success
in code tasks [24], so we expect them to be inadequate for proofs.

If you choose to evaluate a model for repairing definitions, we recommend a conservative
metric like exact or definitional equality to avoid the danger of chasing misleading benchmarks.
We hope to eventually develop a suitable less conservative metric, particularly one that
captures what makes a change “close to correct” for some suitable notion of correctness.

4 Building the Proof Repair Dataset

We now take a step back and describe the processes behind our data collection efforts.
As stated, the foundation of the dataset comprises open-source Coq projects. Mining the
commits of these projects eventually yields examples of refactors or repairs. Each project is
accompanied by per-commit metadata containing project dependencies, source URL, and
build commands that is in parts manually curated and programmatically inferred. The
process of generating repair data from a project comprises the following steps (see Figure 2):

We obtain a switch (opam virtual environment) that satisfies as many of the project’s
dependencies as possible using the Switch Manager (SwiM) (Section 4.1).
Once we have a switch, we run the build command in the generated switch to produce a
Built Project (Section 4.2).
We strace the build process to scrape the Physical Dependency Locations (IQR
flags) of each document in the project (Section 4.3).

T. Reichel, R. W. Henderson, A. Touchet, A. Gardner, and T. Ringer 26:7

Using the IQR flags for each document in a built project along with the Coq serializer
SerAPI [8], we extract a Proof Context corresponding to each intermediate proof state
for the project by querying Coq’s state during the execution of proofs (Section 4.4).
Finally, we align changed proofs across commits and save those along with their interme-
diate proof contexts to arrive at an Aligned Repair Instance (Section 4.5).

Building this infrastructure was a significant undertaking with many challenges encountered
along the way; we discuss these challenges in Section 5. Our hope is that the infrastructure
we have built will make it easier to collect similar datasets in the future.

4.1 The Switch Manager
To extract information about projects like intermediate proof states, we must build them.
This requirement is nontrivial because different projects can depend on different versions of
Coq, the Ocaml compiler, or other dependencies.

To resolve dependencies and make it possible to build many different commits of one or
more projects, we introduce a novel SwiM capability that works in tandem with opam to
model the build environment for a given commit of a given project as a Python object. In
particular, the object models an opam switch, which is opam’s representation of an isolated
collection of installed packages.

This capability subverts the typical manual opam workflow to create and activate a
switch. This manual workflow would be intractable at the scale of hundreds of commits for
each of dozens of projects. With the SwiM, we can automate this functionality and extract a
dataset at scale.

Several benefits arise from the SwiM’s design. The SwiM enables build sandboxing by
providing switch clones that last for just the duration of the commit’s extraction, and it also
minimizes the time needed to obtain a clone by maintaining a pool of switches across all
threads with pre-installed packages, and choosing the one upon request that is closest to
satisfying a commit’s requirements. Implementation of this capability required reflection of
opam’s dependency formula parsing and evaluation logic from OCaml to Python.

As new commits are built, switches containing their dependencies are added to the
managed pool of switches. Since switches range in size from hundreds of megabytes to a few
gigabytes, a least-recently-used cache maintains the total disk consumption below an implicit
limit by deleting stale, infrequently used switches.

4.2 Built Projects
Using the switch provided by the SwiM and a build command from the metadata, we may
be able to build the project. Confounding issues that may prevent building include undefined
opam variables within dependency formulas. In practice, we have so far seen a build failure
rate of about 68%. We attempt to build each commit with seven different major versions of
Coq ranging from 8.9 to 8.15 corresponding to versions of SerAPI that support capabilities
we deemed necessary. Since Coq releases are rarely backwards compatible, many of the build
failures can be explained by the fact that each commit can only be expected to build for the
single Coq version for which it was written. Furthermore, since we pin one of the seven Coq
versions in the switch supplied by the SwiM, conflicting version requirements may yield an
opam command that has no solution. Consequently, some build errors are inevitable.

However, other errors are due to mistakes or missing information in the human-sourced
metadata. We plan to address this latter class of build errors over time by fixing problems
in the metadata through automated inference mechanisms. If the project build fails, we

ITP 2023

26:8 Proof Repair Infrastructure for Supervised Models

hope in the future to be able to recover proofs from the documents that built before the
failure as well as subsequent independent proofs. We are also exploring ways to automatically
recover from simple build errors such as dependency mismatches between the switch and the
project’s requirements by using the date the commit was made as a version hint.

4.3 Physical Dependency Locations (IQR Flags)
In order to run any of the Coq or SerAPI tools (e.g., coqc, coqtop, sertop) on a given Coq
source file, one or more flags regularly need to be passed to these commands to specify the
physical location of dependencies. These flags are described below:

The -I flag allows a directory to be added to the OCaml loadpath.
The -Q flag adds a physical directory to the loadpath and binds it to a given logical path.
The -R flag acts like the -Q flag, but also makes subdirectories available recursively.

In publicly available Coq projects, these flags (referred to as “IQR” flags from here on) are
specified in one or more build or configuration files. No single standardized approach for
specifying IQR flags exists, making it difficult to automatically infer them from configuration
and build files alone. While projects will be able to build successfully without our knowledge
of these flags, we must infer them to use SerAPI tools in other stages of our framework.

Our solution to this problem builds off an approach developed in IBM’s PyCoq [20].
Following PyCoq, we use strace to inspect the actual commands run during the build
process for a Coq project. Each build command is captured and any present IQR flags are
extracted using regular expressions. In some projects, build files may be nested, and IQR
flags may specify physical paths that are relative to the nested directories. We need to ensure
that the inferred IQR flags are relative to the project root directory, so before we store the
inferred IQR flags, their paths are resolved to the project root directory.

4.4 Proof Contexts
Once the project has been built, the individual Coq source files are parsed into sentences
and then interactively executed with sertop to capture intermediate proof states.

A parser (sercomp) is available through SerAPI, but it only works on Coq source files
whose dependencies are already compiled, which prohibits its use in recoveries from partial
builds. Furthermore, sercomp introduces significant redundant computation with respect
to sertop. As a more efficient alternative, we developed a simple regular-expression-based
“heuristic parser” to perform sentence extraction and approximate proof identification.

From sertop, we can collect thorough context from the document, like whitespace-
normalized text, ASTs, command types, and intermediate proof steps with goals and
hypotheses. Each command is accompanied by inferred identifiers of the command itself (e.g.,
an inductive type’s name and constructors) and a list of fully-qualified identifiers referenced
within the command, which enables models to more easily incorporate local context or apply
graph-based approaches. Accompanying source code locations allow for accurate provenance
of data and application of proposed repairs to appropriate destinations for testing.

4.5 Aligned Repair Instances
The last step in our data collection process is extracting proof repair examples from different
versions of projects, accounting for the fact that definitions and proofs may be changed,
moved, renamed, or deleted between commits. We must establish a robust mapping between
Vernacular commands in a pair of commits that preserves some notion of command identity.

T. Reichel, R. W. Henderson, A. Touchet, A. Gardner, and T. Ringer 26:9

Our objective is similar to that of the “diff” utility, which describes changes made between
files. Where our objective differs is that we seek to match Vernacular commands rather than
lines, and we seek to do so within the entire project directory structure rather than a file.

A traditional order-preserving alignment between two sequences, e.g., the Smith-Waterman
algorithm [58], is not quite an appropriate approach to resolve this issue as it cannot correctly
align two independent definitions whose order has been reversed during a refactor (perhaps
due to an introduced dependency). Therefore, we approach the problem as a bipartite
matching or assignment between the unordered elements of two sets such that the overall
similarity of matched elements is maximized. We can formally specify the desired assignment
between two commits X and Y considered as respective sets of commands across one or
more files as the solution to the following optimization problem:

minimize:
U, W

∑
u∈U

C(u, f(u))

subject to: f : U ↔ W ∧ U ⊆ X ∧ W ⊆ Y ∧ ∥U∥ = min(∥X∥, ∥Y ∥) (1)

Here, C(x, y) is a non-negative cost function that measures the distance between the
commands x and y, and f is a bijection between subsets of X and Y – a partial alignment
between commands of X and Y . To align as many commands as possible, the domain of f

must have at least as many members of the smaller of X and Y , which is our final constraint
above. This optimization is an instance of the well-known assignment problem, which one
can solve exactly in polynomial time, e.g., with the Hungarian algorithm [41].

The optimization is parameterized by the choice of C, for which we choose a normalized
variant of the Levenshtein edit distance E:

C(x, y) = 2E(x, y)
∥x∥ + ∥y∥ + E(x, y) , (2)

where ∥x∥ and ∥y∥ give the character lengths of x and y considered as text (not including proof
bodies). This normalization is an instance of the biotope transform [22], which preserves the
metric properties (such as the triangle inequality) of the edit distance. We further threshold
the distance by a constant t such that Ct(x, t) = min{C(x, y), t}, which also preserves metric
properties [43]. After solving for f , commands x and y assigned to one another (f(x) = y)
with a cost of t are considered to be unassigned (i.e., we determine that x was dropped
between commits and y was added). We choose t = 0.4, which roughly corresponds to 50%
of a command’s text being changed before it is considered to have been dropped.

Solving this assignment problem for two entire commits can be costly: solving exactly is
cubic complexity, and calculating the edit distance between all pairs of commands from both
commits is necessarily quadratic complexity. Furthermore, the assignments produced may
be somewhat spurious, especially in the event of multiple global optima. We mitigate these
issues by applying the assignment problem only to those commands known to have changed
in some manner between the commits according to their intersection with a (Git) “diff”. The
final resolution of the problem is thus somewhere in between alignment and assignment.

Once we determine an alignment, we create examples of proof errors by leaving out
changes to individual proofs one at a time, thus providing the context for each change to a
proof that required repair but not the repair itself. The left-out change to the proof then
accompanies the error as a ground truth target for supervised learning.

ITP 2023

26:10 Proof Repair Infrastructure for Supervised Models

5 Challenges

Collecting and building datasets and benchmark suites for many tasks is still extremely
challenging, and it is challenging in a way that is not at all equitable across proof assistants.
Here, we discuss our experiences dealing with challenges encountered during the creation
of PRISM (Section 5.1), what we believe the Coq community can learn from other proof
assistant communities (Section 5.2), and how the proof assistant community at large could
address them more sustainably going forward (Section 5.3).

5.1 Our Experiences
The major challenges we faced in building this dataset and benchmark suite chiefly fall into two
categories: Project Management (Section 5.1.1) and Parsing & Serialization (Section 5.1.2).
For each of these categories, we discuss our experiences dealing with each stated challenge.

5.1.1 Project Management
One of the greatest barriers to building this dataset was the lack of a centralized archive for
Coq proof data. In the absence of this centralized archive, we resorted to looser collections
of projects organized by package management. The package manager opam gives us a
programmatic interface to build compatible environments for the dataset’s constituent
projects. However, it was designed to service individual developers using a few switches,
whereas we must spin up dozens of switches efficiently. We thus had to reimplement and
expand upon some of opam’s capabilities. We faced three challenges in so doing:
1. Significant build system variation across different proof developments;
2. Expressive dependencies in opam packages that complicate efficient installs;
3. Insufficient caching of opam build artifacts that necessitated copying switches to avoid

rebuilding the same packages.

Build System Variation. Over the years, the recommended build system for Coq proof
developments has been in flux. In 2019, for example, the Coq development team urged proof
engineers to move their proof developments to Dune [19]. This effort did not fully succeed,
and the documentation for the latest Coq version includes instructions for both Dune and the
native Coq build system [19]. The native build system itself has also changed over time, losing
compatibility with its previous versions. Because of this fragmented build infrastructure, we
had to employ extremely abstract methods to extract arguments for SerAPI tools, namely
by using strace to grab IQR flags passed to Coq’s compiler coqc (described in Section 4.3)
while making almost no assumptions about the process invoking coqc.

Expressive Dependencies. The opam package manager provides a powerful and expressive
syntax (package formulae) for packages to specify dependencies. Package formulae allow
developers to restrict the versions of dependencies that can be installed, to conjunct and
disjunct formulae into more complicated expressions, and to refer to variables declared
elsewhere in the environment. This feature benefits the library developer that can precisely
specify the environment for running code, but for our purposes it poses a challenge: packages
can be picky about their environments and force opam to rebuild existing libraries. Since we
need to install many versions of many packages, we need efficient ways to create or select
compatible switches, which means interpreting these formulae. As a result, we reimplemented
a majority of opam’s package formula features, including parsing the custom grammar for
package formulae and implementing package version comparison, to reason about which
existing switches would require the least time to install a given package with opam.

T. Reichel, R. W. Henderson, A. Touchet, A. Gardner, and T. Ringer 26:11

Listing 1 A notation that breaks CoqIDE’s parser. This example was found in the Coq Dis-
course [17].
Notation "(a . b)" := (a, b).
Check (1 . 2).

Copying Switches. To work with conflicting packages or different versions of the same
packages, we must use different environments. The opam “switch” abstraction allows us to
sandbox environments, but creating many switches incurs exorbitant overhead as each new
switch rebuilds packages from source. Building a package once and deploying it in multiple
switches is preferable, but many executables built by opam contain their absolute path as a
hardcoded variable, which means they stop working if the name or location of the containing
switch changes. That is, a built opam package only necessarily works in one switch. Our
workaround is to copy switches and use the bwrap utility (which is also used internally in
opam) to bind-mount the copied switch over the original such that the clone is in the original
hardcoded location from the perspective of the running process. This solution allows copies of
switches to act as if they are the original. Of course, handling these cloned switches requires
extra bookkeeping and infrastructure, which the SwiM (Section 4.1) ultimately handles.

5.1.2 Parsing & Serialization
No matter how sophisticated the build system, we cannot get detailed data about individual
proofs without parsing Coq files and serializing proof state to text. SerAPI [8] is the de facto
standard for serializing Coq, providing a query protocol for exposing internal Coq data like
definitions in the global environment, syntax trees, goals, types, and more. We used the
CoqGym [65] Python wrapper as a starting point for our implementation, taking care to
decouple it from CoqGym’s custom versions of Coq and SerAPI since we need to support
multiple versions of each coinciding with chosen projects’ Git histories. This need to support
multiple versions of Coq exacerbated challenges arising from gaps in SerAPI’s query protocol,
requiring us to implement workarounds using the most public and arguably stable interface
Coq possesses: its Vernacular query commands. We faced four challenges related to parsing
& serialization:
1. Executing a file one Coq sentence at a time requires accurately parsing sentence

boundaries, but parsing requires execution: a catch-22.
2. Identifying dependencies between commands (e.g., which lemmas a theorem uses)

is critical to providing locally relevant repairs but is not a capability provided by SerAPI.
3. Determining the scope of a conjecture is complicated by the potential presence of

nested proofs/definitions and arbitrary grammar extensions.
4. SerAPI is experimental software, which leads to breaking changes between versions.

Parsing Sentence Boundaries. A Coq statement or “sentence” ends with a period (.), but
Coq also uses the symbol for import paths and module members so that one cannot identify
sentences in a file merely by splitting on periods. To further complicate matters, Coq boasts
an extensible syntax that enables users to define syntax that allows periods to show up in
even more situations. For example, Listing 1 defines syntax using a period that complicates
sentence splitting to the point where the latest version of CoqIDE – the official editor for Coq
– cannot correctly parse and run this code even though Coq can. We did not discover any
public or officially supported mechanism to extract the sentences of a Coq document, which
led us to develop the Python-based heuristic parser mentioned in Section 4.3 for simplicity
and maximal portability between build environments.

ITP 2023

26:12 Proof Repair Infrastructure for Supervised Models

Listing 2 A simple example showing that proofs may be interleaved and that multiple proofs
(obligations) may be associated with one term.
Require Coq.Program.Tactics.
Set Nested Proofs Allowed.
Program Definition foo := let x := _ : unit in _ : x = tt.
Next Obligation. (* Start first obligation of foo *)

Definition foobar : unit. (* Interject with new conjecture. *)
exact tt.
Next Obligation. (* Switch back to first obligation of foo *)

exact tt.
Qed. (* Finish proof of foo’s first obligation *)

Defined. (* Finish proof of foobar *)
Next Obligation. (* Start next obligation of foo *)

simpl; match goal with ⊢ ?a = _ ⇒ now destruct a end.
Qed. (* foo is defined *)

Identifying Command Dependencies. Identifying dependencies decomposes into two sub-
problems: detecting the definitions (if any) introduced by a given command and resolving
referenced names unambiguously.

No SerAPI query resolves the first subproblem, nor is there any reliable syntactic clue
in the text that generalizes across unforeseen grammar extensions. Instead, we rely upon
parsing user-level feedback that notes the introduction of new identifiers (e.g., “X is defined”)
and Vernacular queries. Since feedback is not guaranteed for all definition types (particularly
propositions, depending on the Coq version), we also monitor for changes in the set of all
locally defined names yielded from Vernacular Print All command. One can thus reliably
identify a command with names introduced immediately after its execution.

The second subproblem arises from the fact that identifiers within ASTs yielded from
SerAPI are not necessarily fully qualified. Correcting this deficiency requires locating the
identifiers within the AST and issuing a Vernacular Locate query for each one. Care must
be taken to ensure that variables within local binders, patterns, or other sub-expressions
do not get mistaken as any top-level definition that they may shadow. Given the lack of
insight available into Coq’s internal name resolution, the accuracy is ultimately limited by
handcrafted scope rules. We also note one restriction on resolving globally bound identifiers:
if a definition shadows an existing one, then it cannot also use the shadowed one. Violation
of this assumption is possible (consider a recursive function nat that expects arguments of
type nat) but not expected to pose a significant risk as it is unlikely in the first place and
would generally be considered poor practice. If the restriction is violated, then the shadowed
definition will simply be mistaken for its shadower within the shadower’s definition.

Determining Conjecture Scope. Determining conjecture scope decomposes into two sub-
problems: attribution of proof steps to the correct conjecture and detection of proof (conjec-
ture) completion. Each is complicated by potentially intermingled or nested proof steps as
shown in Listing 2 and by the lack of a SerAPI query of the active conjecture’s identity.

A Vernacular command – Show Conjectures – again provides the solution. This com-
mand lists the names of currently stated but unproved conjectures and by all observations is
guaranteed to list the conjecture actively being proved first. We rely upon this presumed order
to identify the current conjecture, accumulating proof steps in stacks per open conjecture.
The method’s accuracy depends upon the assumption that each conjecture enters proof
mode once its first sentence is executed. The only known exceptions to this rule comprise
Programs, which do not enter proof mode until their first Obligation’s proof is begun.

T. Reichel, R. W. Henderson, A. Touchet, A. Gardner, and T. Ringer 26:13

Special handling is required to associate each Obligation with the correct Program since
Show Conjectures reveals a unique name for each Obligation. However, the special handling
means any grammar extension that defines its own Obligation or Program equivalents (e.g.,
multi-block proofs) cannot be serialized to the same level of accuracy. If any extension does
so, then each Obligation-equivalent is expected to be serialized as an unrelated theorem.

We rely upon detection of definitions to determine when and if a conjecture was proved,
assuming that no conjecture emits an identifier before it is defined (i.e., before it is proved).
Only subproofs (generally delimited by bullets and braces) are allowed to violate this rule.
However, one cannot assume that the first detected definition in the midst of a proof
corresponds to the conjecture, nor can one assume that the name of the conjecture once
defined will actually match its name as returned by Show Conjectures.

We ultimately detect the completion of a proof by requiring two conditions: a change in
the currently detected conjecture and the detection of a new definition. This rule necessarily
invokes an additional assumption: a change in the current conjecture implies that either a
new proof has begun or the current proof has ended (but not both). Since we assume that
conjectures cannot emit identifiers before they are done, we deduce that the emission of an
identifier upon the change of the current conjecture implies the completion of the prior one.

Finally, if the conjecture is aborted, then it will never be detected as a definition at all
even though its proof has ended. We detect aborted proofs simply by checking the type of
the command, assuming that no grammar extension defines Abort or Abort All equivalents.

Serialization and Version Changes. SerAPI was in theory supposed to help with proof
assistant versioning problems. In practice, though, SerAPI itself depends on the version of
Coq, and we found we had to break the SerAPI abstraction barrier often as the Coq version
changed. In other words, while SerAPI provides a convenient interface to expose certain Coq
internals, those internals are not necessarily stable. For example, SerAPI had “can’t-fix” bugs
involving nested proofs because the serialization errors occur in the Coq codebase itself [28].
SerAPI itself has as of a few days ago been deprecated in favor of a new serializer [29, 18].

5.2 Other Proof Assistants
Here, we discuss features in other proof assistants in the context of our experiences above.

Project Management. In summary, we are not aware of an elegant and effective solution to
package management for other proof assistants, but we believe Isabelle’s rich archival culture
sets a good example to follow. In Isabelle, the Archive of Formal Proofs (AFP) provides a
highly centralized, standard host for proof developments and eases their association with
metadata that may be useful for ML. The AFP also neatly versions proof developments for
every official release of Isabelle and semantically groups them in different folders. At the
time of writing, the AFP includes 725 proof developments [1], and it already forms the basis
of a static dataset for Isabelle [32]. We suspect the AFP would also make a very strong basis
for a proof repair dataset due to its neat versioning.

Agda possesses its own library management system, which it uses in combination with
Hackage, the Haskell package repository. Anecdotally, researchers we have spoken to cite
installation difficulties as a barrier to learning Agda. Lean also has its own package manager
but lacks advanced features to address the problems we faced. Isabelle in general takes
an IDE-centric approach to builds and other tooling [50, 60], but does include a notion of
sessions that can inherit from other sessions. The underlying functionality the IDE is based
on is also accessible in Scala and by command line. However, one of the authors has found
that students learning Isabelle/HOL in a proof automation course struggle to understand
how to build dependencies.

ITP 2023

26:14 Proof Repair Infrastructure for Supervised Models

Parsing & Serialization. A particularly successful example of an interoperable proof system
is MetaMath [39], whose syntax and semantics are so simple that its verifier has been
reimplemented in under 1000 lines of Python [61]. This and its centralized proof database
has made it a popular choice for ML experts as a benchmark for ML applications in theorem
proving [37, 45] as all barriers to serialization can be avoided by modifying a very small
parser/verifier. As a trade off, MetaMath does not have a comparable feature set to ITPs
like Coq, Lean or Isabelle.

More complicated and featureful ITPs have more varied methods: PISA [33] is a bleeding
edge Isabelle interaction and proof serialization tool written to support an ML experiment [32].
This complements scala-isabelle [57], an earlier, less ML-oriented tool which is also actively
maintained. As for Lean, PACT [31] presented a dataset (LeanStep) aimed at ML applications
that uses Lean’s meta-programming facilities to serialize Lean. LeanStep’s tools weigh under
1500 lines of code, which is light compared to line-counts for other serialization efforts.

5.3 Recommendations
Project Management. A strong archival effort is the best way forward, though even the
best archival infrastructures for proof assistants fall short in multiple ways. For example,
while Isabelle’s AFP makes a natural data source for ML tools for proofs, it does not include
any processes for informed consent – the datasets that build on it assume that all publicly
available data is fair game. While this assumption is standard in ML for programs and
proofs, it is not ideal; archival is a natural place to consider it.

In addition, though archival makes it possible to associate metadata with proof develop-
ments, little consideration is given to metadata that associates definitions and proofs across
versions of a proof development. Presently, we rely on package management tools such as
opam, which also posed challenges. Though a legitimate argument can be made that package
management targets a very different use case from ours and that existing tools are sufficient
for that use case, shared high-level libraries and tools on top of existing package managers
and in support of bulk efforts like our own would be especially advantageous since such
efforts are common when building ML datasets and tools. Nonetheless, package managers
themselves warrant some improvement. For example, the problem we encountered of copying
switches was due to poor caching of build dependencies, which itself was due to some degree
to hard-coding of paths.

Parsing & Serialization. The great flexibility afforded Coq by its extensible grammar allows
documents to be more human-friendly and readable, but the lack of syntactic assurances
introduces major headaches for automated systems. Ideally, future languages will be struc-
tured to be machine-readable human/compiler-out-of-the-loop or to at least provide a public
parsing API. For Coq, exposing the classification of a Vernacular command1 in SerAPI
would help substantially and obviate the need for many of the workarounds detailed above.

We also recommend a greater emphasis on backwards compatibility and backporting as
several useful and even critical features that exist in newer versions of Coq or SerAPI were
not suitable for our use. To this end, SerAPI is “still a research, experimental project, and
it is expected to evolve considerably” [27] For instance, future plans rebase SerAPI on the
language server protocol standard [29], which exposes features like document overviews that
appear to list all the definitions in the file and the ability to fold proofs, implying that it has
the capability to list theorems and gather the associated lines – one of our current challenges.

1 See the vernac_classification type.

https://github.com/coq/coq/blob/master/vernac/vernacextend.mli

T. Reichel, R. W. Henderson, A. Touchet, A. Gardner, and T. Ringer 26:15

Overall. Based on our observations, we make the following broad recommendations for the
proof assistant community going forward:
1. Work with the Isabelle community to learn how to build centralized archives as

successful as the AFP for other proof assistants.
2. Include an informed consent form in any centralized archive that allows proof engineers

to opt in or out of their developments being used for ML tools.
3. Determine what kinds of metadata within and across proof developments would ease

the creation of ML tools for the tasks that matter most, make it easy to track that
metadata inside of any centralized archive, and create standard ways of associating
that metadata with proof developments even outside of centralized archives.

4. Establish or adopt open standards for managing proof developments and interfacing
with external tools like modern IDEs.

5. Develop tools based on these standards to enable extraction of metadata relevant to
ML tools from non-archival proof developments.

6. Help proof engineers port legacy proof developments to meet those standards, and
continue to work on tools for proof repair and reuse that ease this burden.

7. Consider building shared libraries and tools optimized for the problems of bulk builds.
8. Consider limiting the scope of possible dependency complexity.
9. Improve build caching across multiple or bulk builds, for example by avoiding hard-coded

paths seen in opam.
10. Consider opening conversations with language developers and companies inside and

outside of verification about their solutions for package management, distribution, and
release management, as these problems are pervasive across all software.

6 Related Work

Datasets & Benchmark Suites. The REPLica [52] user study collected incremental edit
data from eight proof engineers over the course of a month. Due to difficulties recruiting
participants, the dataset is too small for data-hungry ML tools. PRISM is less incremental,
but we expect the final version of the dataset to be much larger. The REPLica data may
make a useful supplement to PRISM.

A number of datasets and benchmark suites target autoformalization: the automatic
translation of natural language mathematics to formal mathematics. Autoformalization
datasets consisting of aligned natural and formal language include ProofNet [9] and the
Isabelle Parallel Corpus [15]. MiniF2F [68] includes math Olympiad problems formalized in
different proof assistants and is used as a benchmark for autoformalization and synthesis.

A few datasets and benchmark suites exist for proof synthesis, including CoqGym [65] for
Coq and HOList [11] for HOL Light. These datasets include static data from fixed project
versions. The distinguishing feature of PRISM is that it describes the project’s history, which
is necessary to produce repair examples.

We expect there is much that we can learn from ML for code, given the similarities
between code and proofs. A summary of recent work in this space can be found in a survey
paper on neurosymbolic programming [16]. Of particular interest for our work is the question
of whether code distance metrics like CodeBLEU [48] will work well for formal proof.

In the field of software engineering, accessible datasets facilitate new research. For
example, Defects4 [34] is a collection of bugs and patches in Java that is frequently used as a
benchmark for program repair [23, 59, 38]. We hope that PRISM will spur new research in
proof repair. We also hope that, by focusing on good benchmarks and metrics for success
early on, we can avoid some of the methodology challenges faced in program repair [46].

ITP 2023

26:16 Proof Repair Infrastructure for Supervised Models

Proof Repair. The ML task that our dataset focuses on is proof repair, which is summarized
in the namesake thesis [49]. There is not yet published work we are aware of for ML for
proof repair, though we are aware of ongoing work by other teams in proof assistants other
than Coq. We plan to train and evaluate at least two distinct proof repair models in Coq
using PRISM, and we hope that PRISM makes it easy for others to do the same.

Proof repair is closely related to work in proof reuse [25, 54, 14], proof refactoring [63, 62,
55], and proof transformation [44]. These and other related topics in proof engineering have
a long history, described in detail in the proof engineering survey paper QED at Large [50],
as well as in the proof repair namesake thesis [49].

Proof repair can be viewed as program repair [40, 30] for proofs. There is a large amount
of work on learning to repair programs, both symbolically (for example, in Getafix [10]) and
neurally (for example, in Break-It-Fix-It [66]). This work may provide useful insights when
building ML datasets, benchmark suites, and models for proof repair, though care must be
taken to consider the differences between typical programs and formal proof developments [49].

Machine Learning for Proofs. Advances in ML have had a transformative effect on many
fields, and theorem provers are not excluded. Examples of recent work on ML for synthesizing
formal proofs include GPT-f [45] and HTPS [36] for Metamath and Lean; Proverbot9001 [56],
ASTactic [65], Tactician [13], and DIVA [26] for Coq; and DeepHOL [11] for HOL Light.
Also of note is recent work on autoformalization in Isabelle/HOL [64], Lean [9], and Coq [21].
More ML work for proofs can be found in QED at Large [50]. Our main goal is to expand the
scope of tasks covered in ML for proofs, reaching important tasks not previously explored.

7 Conclusions & Future Work

We have described the initial version of a novel dataset and benchmark suite for the ML
task of proof repair centered around the Coq Proof Assistant. We expect later versions
of the data to be significantly larger than any existing alternative, spanning years-long
developments collected from a corpus of open-source Github repositories. We discussed
challenges that we encountered during the creation of the dataset and ramifications for
the proof engineering community going forward. The tools developed to overcome these
challenges enable subsequent expansion of the dataset with supplementary Coq projects and
are likely to be useful for creating and interfacing with datasets for other proof-related ML
tasks including, for example, proof synthesis.

Moving forward, our immediate plans are to continue to grow the dataset, and to release
the infrastructure we built for more general use. We also plan to use the dataset to build ML
models for proof repair in Coq. We would also like to develop better metrics for measuring
success at repairing definitions. Finally, we hope to work with the rest of the proof assistant
community to address the many challenges we have highlighted, so that we may steer ML
for proofs in the right direction.

References
1 Statistics - archive of formal proofs. URL: https://www.isa-afp.org/statistics/.
2 Arpan Agrawal, Emily First, Zhanna Kaufman, Tom Reichel, Shizhuo Zhang, Timothy Zhou,

Alex Sanchez-Stern, and Talia Ringer. Proofster. URL: https://www.alexsanchezstern.
com/papers/proofster.pdf.

3 Europroofnet. URL: https://europroofnet.github.io/.
4 2nd MATH-AI Workshop at NeurIPS’22, 2021-2022. URL: https://mathai2022.github.io/.

https://www.isa-afp.org/statistics/
https://www.alexsanchezstern.com/papers/proofster.pdf
https://www.alexsanchezstern.com/papers/proofster.pdf
https://europroofnet.github.io/
https://mathai2022.github.io/

T. Reichel, R. W. Henderson, A. Touchet, A. Gardner, and T. Ringer 26:17

5 Openai. URL: https://openai.com/.
6 Proof engineering, adaptation, repair, and learning for software (pearls). URL: https://sam.

gov/opp/da84366306554cc981f37f703a78c698/view.
7 AI for Theorem Proving, 2016-2022. URL: http://aitp-conference.org/.
8 Emilio Jesús Gallego Arias. SerAPI: Machine-Friendly, Data-Centric Serialization for

COQ. Technical Report hal-01384408, HAL, 2016. URL: http://dml.mathdoc.fr/item/
hal-01384408/.

9 Zhangir Azerbayev, Bartosz Piotrowski, and Jeremy Avigad. ProofNet: A benchmark for
autoformalizing and formally proving undergraduate-level mathematics problems. In Second
MATH-AI Workshop, 2022. URL: https://mathai2022.github.io/.

10 Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra. Getafix: Learning
to fix bugs automatically. Proc. ACM Program. Lang., 3(OOPSLA), October 2019. doi:
10.1145/3360585.

11 Kshitij Bansal, Sarah M Loos, Markus N Rabe, Christian Szegedy, and Stewart Wilcox. Holist:
An environment for machine learning of higher order logic theorem proving. In ICML, 2019.

12 Beyond Bayes: Paths Towards Universal Reasoning Systems, 2022. URL: https://
beyond-bayes.github.io/.

13 Lasse Blaauwbroek, Josef Urban, and Herman Geuvers. The tactician: A seamless, interactive
tactic learner and prover for coq. In Intelligent Computer Mathematics: 13th International
Conference, CICM 2020, Bertinoro, Italy, July 26–31, 2020, Proceedings, pages 271–277,
Berlin, Heidelberg, 2020. Springer-Verlag. doi:10.1007/978-3-030-53518-6_17.

14 Olivier Boite. Proof reuse with extended inductive types. In Theorem Proving in Higher Order
Logics: 17th International Conference, TPHOLs 2004, Park City, Utah, USA, September
14-17, 2004. Proceedings, pages 50–65, Berlin, Heidelberg, 2004. Springer. doi:10.1007/
978-3-540-30142-4_4.

15 Anthony Bordg, Yiannos A Stathopoulos, and Lawrence C Paulson. A parallel corpus of
natural language and isabelle artefacts. In 7th Conference on Artificial Intelligence and
Theorem Proving (AITP), 2022. URL: http://aitp-conference.org/2022/abstract/AITP_
2022_paper_8.pdf.

16 Swarat Chaudhuri, Kevin Ellis, Oleksandr Polozov, Rishabh Singh, Armando Solar-Lezama,
Yisong Yue, et al. Neurosymbolic programming. Foundations and Trends® in Programming
Languages, 7(3):158–243, 2021.

17 Is there a full documentation of coq’s grammar? URL: https://coq.discourse.group/t/
is-there-a-full-documentation-of-coqs-grammar/647/10.

18 coq_lsp. URL: https://github.com/ejgallego/coq-lsp.
19 Proposal: a custom build tool for coq projects. URL: https://coq.discourse.group/t/

proposal-a-custom-build-tool-for-coq-projects/239/2.
20 pycoq. URL: https://github.com/IBM/pycoq.
21 Garett Cunningham, Razvan C. Bunescu, and David Juedes. Towards autoformalization

of mathematics and code correctness: Experiments with elementary proofs, 2023. doi:
10.48550/ARXIV.2301.02195.

22 Michel Marie Deza and Elena Deza. Encyclopedia of Distances. Springer Berlin Heidel-
berg, Berlin, 3 edition, October 2014. URL: https://link.springer.com/book/10.1007/
978-3-642-30958-8.

23 Thomas Durieux, Matias Martinez, Martin Monperrus, Romain Sommerard, and Jifeng
Xuan. Automatic repair of real bugs: An experience report on the defects4j dataset. CoRR,
abs/1505.07002, 2015. arXiv:1505.07002.

24 Mikhail Evtikhiev, Egor Bogomolov, Yaroslav Sokolov, and Timofey Bryksin. Out of the bleu:
how should we assess quality of the code generation models? arXiv preprint arXiv:2208.03133,
2022.

ITP 2023

https://openai.com/
https://sam.gov/opp/da84366306554cc981f37f703a78c698/view
https://sam.gov/opp/da84366306554cc981f37f703a78c698/view
http://aitp-conference.org/
http://dml.mathdoc.fr/item/hal-01384408/
http://dml.mathdoc.fr/item/hal-01384408/
https://mathai2022.github.io/
https://doi.org/10.1145/3360585
https://doi.org/10.1145/3360585
https://beyond-bayes.github.io/
https://beyond-bayes.github.io/
https://doi.org/10.1007/978-3-030-53518-6_17
https://doi.org/10.1007/978-3-540-30142-4_4
https://doi.org/10.1007/978-3-540-30142-4_4
http://aitp-conference.org/2022/abstract/AITP_2022_paper_8.pdf
http://aitp-conference.org/2022/abstract/AITP_2022_paper_8.pdf
https://coq.discourse.group/t/is-there-a-full-documentation-of-coqs-grammar/647/10
https://coq.discourse.group/t/is-there-a-full-documentation-of-coqs-grammar/647/10
https://github.com/ejgallego/coq-lsp
https://coq.discourse.group/t/proposal-a-custom-build-tool-for-coq-projects/239/2
https://coq.discourse.group/t/proposal-a-custom-build-tool-for-coq-projects/239/2
https://github.com/IBM/pycoq
https://doi.org/10.48550/ARXIV.2301.02195
https://doi.org/10.48550/ARXIV.2301.02195
https://link.springer.com/book/10.1007/978-3-642-30958-8
https://link.springer.com/book/10.1007/978-3-642-30958-8
https://arxiv.org/abs/1505.07002

26:18 Proof Repair Infrastructure for Supervised Models

25 Amy Felty and Douglas Howe. Generalization and reuse of tactic proofs. In Logic Programming
and Automated Reasoning: 5th International Conference, LPAR ’94, pages 1–15, Berlin,
Heidelberg, 1994. Springer. doi:10.1007/3-540-58216-9_25.

26 Emily First and Yuriy Brun. Diversity-driven automated formal verification. In Proceedings
of the 44th International Conference on Software Engineering (ICSE)(22–27). Pittsburgh, PA,
USA. https://doi. org/10.1145/3510003.3510138, 2022.

27 General roadmap. URL: https://github.com/ejgallego/coq-serapi/issues/252.
28 Query ast returns empty result. URL: https://github.com/ejgallego/coq-serapi/issues/

117.
29 Serapi ’classic mode’ final release notice. URL: https://github.com/ejgallego/coq-serapi/

issues/252#issuecomment-1365510329.
30 Luca Gazzola, Daniela Micucci, and Leonardo Mariani. Automatic software repair: A survey. In

Proceedings of the 40th International Conference on Software Engineering, ICSE ’18, page 1219,
New York, NY, USA, 2018. Association for Computing Machinery. doi:10.1145/3180155.
3182526.

31 Jesse Michael Han, Jason Rute, Yuhuai Wu, Edward W. Ayers, and Stanislas Polu. Proof
artifact co-training for theorem proving with language models. CoRR, abs/2102.06203, 2021.
arXiv:2102.06203.

32 Albert Jiang, Wenda Li, Jesse Han, and Wu Yuhuai. Lisa: Language models of isabelle proofs.
In 6th Conference on Artificial Intelligence and Theorem Proving (AITP), 2021.

33 Portal-to-isabelle. URL: https://github.com/albertqjiang/Portal-to-ISAbelle.
34 René Just, Darioush Jalali, and Michael D. Ernst. Defects4J: A Database of existing faults to

enable controlled testing studies for Java programs. In ISSTA 2014, Proceedings of the 2014
International Symposium on Software Testing and Analysis, pages 437–440, San Jose, CA,
USA, July 2014. Tool demo.

35 Daniel Kühlwein, Jasmin Christian Blanchette, Cezary Kaliszyk, and Josef Urban. Mash:
Machine learning for sledgehammer. In Sandrine Blazy, Christine Paulin-Mohring, and David
Pichardie, editors, Interactive Theorem Proving, pages 35–50, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg.

36 Guillaume Lample, Marie-Anne Lachaux, Thibaut Lavril, Xavier Martinet, Amaury Hayat,
Gabriel Ebner, Aurélien Rodriguez, and Timothée Lacroix. Hypertree proof search for neural
theorem proving. arXiv preprint arXiv:2205.11491, 2022.

37 Guillaume Lample, Marie-Anne Lachaux, Thibaut Lavril, Xavier Martinet, Amaury Hayat,
Gabriel Ebner, Aurélien Rodriguez, and Timothée Lacroix. Hypertree proof search for neural
theorem proving, 2022. doi:10.48550/ARXIV.2205.11491.

38 Thibaud Lutellier, Hung Viet Pham, Lawrence Pang, Yitong Li, Moshi Wei, and Lin Tan.
Coconut: Combining context-aware neural translation models using ensemble for program
repair. In Proceedings of the 29th ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2020, pages 101–114, New York, NY, USA, 2020. Association for
Computing Machinery. doi:10.1145/3395363.3397369.

39 Norman D. Megill and David A. Wheeler. Metamath: A Computer Lan-
guage for Mathematical Proofs. Lulu Press, Morrisville, North Carolina, 2019.
http://us.metamath.org/downloads/metamath.pdf.

40 Martin Monperrus. Automatic software repair: A bibliography. ACM Comput. Surv., 51(1),
January 2018. doi:10.1145/3105906.

41 James Munkres. Algorithms for the Assignment and Transportation Problems. Journal of
the Society for Industrial and Applied Mathematics, 5(1):32–38, 1957. Publisher: Society for
Industrial and Applied Mathematics. URL: https://www.jstor.org/stable/2098689.

42 Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: A method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting on Association for
Computational Linguistics, ACL ’02, pages 311–318, USA, 2002. Association for Computational
Linguistics. doi:10.3115/1073083.1073135.

https://doi.org/10.1007/3-540-58216-9_25
https://github.com/ejgallego/coq-serapi/issues/252
https://github.com/ejgallego/coq-serapi/issues/117
https://github.com/ejgallego/coq-serapi/issues/117
https://github.com/ejgallego/coq-serapi/issues/252#issuecomment-1365510329
https://github.com/ejgallego/coq-serapi/issues/252#issuecomment-1365510329
https://doi.org/10.1145/3180155.3182526
https://doi.org/10.1145/3180155.3182526
https://arxiv.org/abs/2102.06203
https://github.com/albertqjiang/Portal-to-ISAbelle
https://doi.org/10.48550/ARXIV.2205.11491
https://doi.org/10.1145/3395363.3397369
https://doi.org/10.1145/3105906
https://www.jstor.org/stable/2098689
https://doi.org/10.3115/1073083.1073135

T. Reichel, R. W. Henderson, A. Touchet, A. Gardner, and T. Ringer 26:19

43 Ofir Pele and Michael Werman. Fast and robust earth mover’s distances. In 2009 IEEE 12th
International Conference on Computer Vision, pages 460–467, 2009. doi:10.1109/ICCV.2009.
5459199.

44 Frank Pfenning. Proof Transformations in Higher-Order Logic. PhD thesis, Carnegie Mellon
University Pittsburgh, 1987.

45 Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem
proving. CoRR, abs/2009.03393, 2020. arXiv:2009.03393.

46 Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. An analysis of patch plausibility and
correctness for generate-and-validate patch generation systems. In Proceedings of the 2015
International Symposium on Software Testing and Analysis, ISSTA 2015, pages 24–36, New
York, NY, USA, 2015. Association for Computing Machinery. doi:10.1145/2771783.2771791.

47 Markus N. Rabe and Christian Szegedy. Towards the automatic mathematician. In André
Platzer and Geoff Sutcliffe, editors, Automated Deduction – CADE 28, pages 25–37, Cham,
2021. Springer International Publishing.

48 Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel Sundaresan, Ming
Zhou, Ambrosio Blanco, and Shuai Ma. Codebleu: a method for automatic evaluation of code
synthesis. CoRR, abs/2009.10297, 2020. arXiv:2009.10297.

49 Talia Ringer. Proof Repair. PhD thesis, University of Washington, 2021.
50 Talia Ringer, Karl Palmskog, Ilya Sergey, Milos Gligoric, and Zachary Tatlock. QED at

large: A survey of engineering of formally verified software. CoRR, abs/2003.06458, 2020.
arXiv:2003.06458.

51 Talia Ringer, RanDair Porter, Nathaniel Yazdani, John Leo, and Dan Grossman. Proof repair
across type equivalences. In Proceedings of the 42nd ACM SIGPLAN International Conference
on Programming Language Design and Implementation, PLDI 2021, pages 112–127, New York,
NY, USA, 2021. Association for Computing Machinery. doi:10.1145/3453483.3454033.

52 Talia Ringer, Alex Sanchez-Stern, Dan Grossman, and Sorin Lerner. REPLica: REPL
instrumentation for Coq analysis. In Proceedings of the 9th ACM SIGPLAN International
Conference on Certified Programs and Proofs, CPP 2020, pages 99–113, New York, NY, USA,
2020. Association for Computing Machinery. doi:10.1145/3372885.3373823.

53 Talia Ringer, Nathaniel Yazdani, John Leo, and Dan Grossman. Adapting proof automation to
adapt proofs. In Proceedings of the 7th ACM SIGPLAN International Conference on Certified
Programs and Proofs, CPP 2018, pages 115–129, New York, NY, USA, 2018. Association for
Computing Machinery. doi:10.1145/3167094.

54 Talia Ringer, Nathaniel Yazdani, John Leo, and Dan Grossman. Ornaments for proof reuse in
coq. In Interactive Theorem Proving, 2019.

55 Valentin Robert. Front-end tooling for building and maintaining dependently-typed functional
programs. PhD thesis, UC San Diego, 2018.

56 Alex Sanchez-Stern, Yousef Alhessi, Lawrence Saul, and Sorin Lerner. Generating correctness
proofs with neural networks, 2019. doi:10.48550/ARXIV.1907.07794.

57 scala-isabelle. URL: https://dominique-unruh.github.io/scala-isabelle/.
58 T.F. Smith and M.S. Waterman. Identification of common molecular subsequences. Journal

of Molecular Biology, 147(1):195–197, 1981. doi:10.1016/0022-2836(81)90087-5.
59 Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung. Context-aware patch

generation for better automated program repair. In Proceedings of the 40th International
Conference on Software Engineering, ICSE ’18, pages 1–11, New York, NY, USA, 2018.
Association for Computing Machinery. doi:10.1145/3180155.3180233.

60 Makarius Wenzel. Isabelle/jedit — a prover IDE within the PIDE framework. CoRR,
abs/1207.3441, 2012. arXiv:1207.3441.

61 mmverify.py. URL: https://github.com/david-a-wheeler/mmverify.py.
62 Iain Johnston Whiteside. Refactoring proofs. PhD thesis, University of Edinburgh, November

2013. URL: http://hdl.handle.net/1842/7970.

ITP 2023

https://doi.org/10.1109/ICCV.2009.5459199
https://doi.org/10.1109/ICCV.2009.5459199
https://arxiv.org/abs/2009.03393
https://doi.org/10.1145/2771783.2771791
https://arxiv.org/abs/2009.10297
https://arxiv.org/abs/2003.06458
https://doi.org/10.1145/3453483.3454033
https://doi.org/10.1145/3372885.3373823
https://doi.org/10.1145/3167094
https://doi.org/10.48550/ARXIV.1907.07794
https://dominique-unruh.github.io/scala-isabelle/
https://doi.org/10.1016/0022-2836(81)90087-5
https://doi.org/10.1145/3180155.3180233
https://arxiv.org/abs/1207.3441
https://github.com/david-a-wheeler/mmverify.py
http://hdl.handle.net/1842/7970

26:20 Proof Repair Infrastructure for Supervised Models

63 Karin Wibergh. Automatic refactoring for agda. Master’s thesis, Chalmers University of
Technology and University of Gothenburg, 2019.

64 Yuhuai Wu, Albert Q Jiang, Wenda Li, Markus N Rabe, Charles Staats, Mateja Jamnik,
and Christian Szegedy. Autoformalization with large language models. arXiv preprint
arXiv:2205.12615, 2022.

65 Kaiyu Yang and Jia Deng. Learning to prove theorems via interacting with proof assistants.
In International Conference on Machine Learning (ICML), Long Beach, CA, USA, 2019. URL:
http://proceedings.mlr.press/v97/yang19a/yang19a.pdf.

66 Michihiro Yasunaga and Percy Liang. Break-it-fix-it: Unsupervised learning for program
repair. In International Conference on Machine Learning, pages 11941–11952. PMLR, 2021.

67 John R. Zech, Marcus A. Badgeley, Manway Liu, Anthony B. Costa, Joseph J. Titano, and
Eric Karl Oermann. Variable generalization performance of a deep learning model to detect
pneumonia in chest radiographs: A cross-sectional study. PLOS Medicine, 15(11):e1002683,
November 2018. doi:10.1371/journal.pmed.1002683.

68 Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. minif2f: a cross-system benchmark for
formal olympiad-level mathematics. In International Conference on Learning Representations,
2022. URL: https://openreview.net/forum?id=9ZPegFuFTFv.

http://proceedings.mlr.press/v97/yang19a/yang19a.pdf
https://doi.org/10.1371/journal.pmed.1002683
https://openreview.net/forum?id=9ZPegFuFTFv

POSIX Lexing with Bitcoded Derivatives
Chengsong Tan #

Imperial College London, UK

Christian Urban #

King’s College London, UK

Abstract
Sulzmann and Lu describe a lexing algorithm that calculates Brzozowski derivatives using bitcodes
annotated to regular expressions. Their algorithm generates POSIX values which encode the
information of how a regular expression matches a string – that is, which part of the string is
matched by which part of the regular expression. This information is needed in the context of
lexing in order to extract and to classify tokens. The purpose of the bitcodes is to generate POSIX
values incrementally while derivatives are calculated. They also help with designing an “aggressive”
simplification function that keeps the size of derivatives finitely bounded. Without simplification
the size of some derivatives can grow arbitrarily big, resulting in an extremely slow lexing algorithm.
In this paper we describe a variant of Sulzmann and Lu’s algorithm: Our variant is a recursive
functional program, whereas Sulzmann and Lu’s version involves a fixpoint construction. We (i)
prove in Isabelle/HOL that our variant is correct and generates unique POSIX values (no such proof
has been given for the original algorithm by Sulzmann and Lu); we also (ii) establish finite bounds
for the size of our derivatives.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Formal languages and automata theory

Keywords and phrases POSIX matching and lexing, derivatives of regular expressions, Isabelle/HOL

Digital Object Identifier 10.4230/LIPIcs.ITP.2023.27

Supplementary Material Software (Source Code): https://github.com/urbanchr/posix

1 Introduction

In the last fifteen or so years, Brzozowski’s derivatives of regular expressions have sparked
quite a bit of interest in the functional programming and theorem prover communities.
Derivatives of a regular expressions, written r\c, give a simple solution to the problem of
matching a string s with a regular expression r : if the derivative of r w.r.t. (in succession) all
the characters of the string matches the empty string, then r matches s (and vice versa). The
beauty of Brzozowski’s derivatives [4] is that they are neatly expressible in any functional
language, and easily definable and reasoned about in theorem provers – the definitions just
consist of inductive datatypes and simple recursive functions. Another attractive feature of
derivatives is that they can be easily extended to bounded regular expressions, such as r{n}

or r{..n}, where numbers or intervals of numbers specify how many times a regular expression
should be used during matching.

However, there are two difficulties with derivative-based matchers: First, Brzozowski’s
original matcher only generates a yes/no answer for whether a regular expression matches a
string or not. This is too little information in the context of lexing where separate tokens
must be identified and also classified (for example as keywords or identifiers). Sulzmann and
Lu [15] overcome this difficulty by cleverly extending Brzozowski’s matching algorithm. Their
extended version generates additional information on how a regular expression matches a
string following the POSIX rules for regular expression matching. They achieve this by adding
a second “phase” to Brzozowski’s algorithm involving an injection function. In our own
earlier work we provided the formal specification of what POSIX matching means and proved
in Isabelle/HOL the correctness of Sulzmann and Lu’s extended algorithm accordingly [2].

© Chengsong Tan and Christian Urban;
licensed under Creative Commons License CC-BY 4.0

14th International Conference on Interactive Theorem Proving (ITP 2023).
Editors: Adam Naumowicz and René Thiemann; Article No. 27; pp. 27:1–27:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ctan1@ic.ac.uk
mailto:christian.urban@kcl.ac.uk
https://doi.org/10.4230/LIPIcs.ITP.2023.27
https://github.com/urbanchr/posix
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 POSIX Lexing with Bitcoded Derivatives

The second difficulty is that Brzozowski’s derivatives can grow to arbitrarily big sizes.
For example if we start with the regular expression (a + aa)∗ and take successive derivatives
according to the character a, we end up with a sequence of ever-growing derivatives like

(a + aa)∗ _\a−→ (1 + 1a) · (a + aa)∗

_\a−→ (0 + 0a + 1) · (a + aa)∗ + (1 + 1a) · (a + aa)∗

_\a−→ (0 + 0a + 0) · (a + aa)∗ + (1 + 1a) · (a + aa)∗ +
(0 + 0a + 1) · (a + aa)∗ + (1 + 1a) · (a + aa)∗

_\a−→ . . . (regular expressions of sizes 98, 169, 283, 468, 767, . . .)

where after around 35 steps we run out of memory on a typical computer (we shall define
shortly the precise details of our regular expressions and the derivative operation). Clearly,
the notation involving 0s and 1s already suggests simplification rules that can be applied to
regular regular expressions, for example 0 r ⇒ 0, 1 r ⇒ r, 0 + r ⇒ r and r + r ⇒ r. While
such simple-minded simplifications have been proved in our earlier work to preserve the
correctness of Sulzmann and Lu’s algorithm [2], they unfortunately do not help with limiting
the growth of the derivatives shown above: the growth is slowed, but some derivatives can
still grow rather quickly beyond any finite bound.

Sulzmann and Lu address this “growth problem” in a second algorithm [15] where they
introduce bitcoded regular expressions. In this version, POSIX values are represented as
bitsequences and such sequences are incrementally generated when derivatives are calculated.
The compact representation of bitsequences and regular expressions allows them to define
a more “aggressive” simplification method that keeps the size of the derivatives finitely
bounded no matter what the length of the string is. They make some informal claims about
the correctness and linear behaviour of this version, but do not provide any supporting
proof arguments, not even “pencil-and-paper” arguments. They write about their bitcoded
incremental parsing method (that is the algorithm to be fixed and formalised in this paper):

“Correctness Claim: We further claim that the incremental parsing method [..] in
combination with the simplification steps [..] yields POSIX parse trees. We have tested
this claim extensively [..] but yet have to work out all proof details.” [15, Page 14]

Contributions. We fill this gap by implementing in Isabelle/HOL our version of the
derivative-based lexing algorithm of Sulzmann and Lu [15] where regular expressions are
annotated with bitsequences. We define the crucial simplification function as a recursive
function, without the need of a fixpoint operation. One objective of the simplification
function is to remove duplicates of regular expressions. For this Sulzmann and Lu use in
their paper the standard nub function from Haskell’s list library, but this function does not
achieve the intended objective with bitcoded regular expressions. The reason is that in the
bitcoded setting, each copy generally has a different bitcode annotation – so nub would never
“fire”. Inspired by Scala’s library for lists, we shall instead use a distinctWith function that
finds duplicates under an “erasing” function that deletes bitcodes before comparing regular
expressions. We shall also introduce our own arguments and definitions for establishing the
correctness of the bitcoded algorithm when simplifications are included. Finally we establish
that the size of derivatives can be finitely bounded.

In this paper, we shall first briefly introduce the basic notions of regular expressions and
describe the definition of POSIX lexing from our earlier work [2]. This serves as a reference
point for what correctness means in our Isabelle/HOL proofs. We shall then prove the
correctness for the bitcoded algorithm without simplification, and after that extend the proof
to include simplification. Our Isabelle code including the results from Sec. 5 is available from
https://github.com/urbanchr/posix.

https://github.com/urbanchr/posix

C. Tan and C. Urban 27:3

2 Background

In our Isabelle/HOL formalisation strings are lists of characters with the empty string
being represented by the empty list, written [], and list-cons being written as _ ::_ ; string
concatenation is _ @ _ . We often use the usual bracket notation for lists also for strings; for
example a string consisting of just a single character c is written [c]. Our regular expressions
are defined as the following inductive datatype:

r ::= 0 | 1 | c | r1 + r2 | r1 · r2 | r∗ | r{n}

where 0 stands for the regular expression that does not match any string, 1 for the regular
expression that matches only the empty string and c for matching a character literal. The
constructors + and · represent alternatives and sequences, respectively. We sometimes omit
the · in a sequence regular expression for brevity. The language of a regular expression,
written L(r), is defined as usual and we omit giving the definition here (see for example [2]).

In our work here we also add to the usual “basic” regular expressions the bounded regular
expression r{n} where the n specifies that r should match exactly n-times (it is not included in
Sulzmann and Lu’s original work). For brevity we omit the other bounded regular expressions
r{..n}, r{n..} and r{n..m} which specify intervals for how many times r should match. The
results presented in this paper extend straightforwardly to them, too. The importance of
the bounded regular expressions is that they are often used in practical applications, such
as Snort (a system for detecting network intrusions) and also in XML Schema definitions.
According to Björklund et al [3], bounded regular expressions occur frequently in the latter
and can have counters of up to ten million. The problem is that tools based on the classic
notion of automata need to expand r{n} into n connected copies of the automaton for r.
This leads to very inefficient matching algorithms or algorithms that consume large amounts
of memory. A classic example is the regular expression (a + b)∗ · a · (a + b){n} where the
minimal DFA requires at least 2n+1 states (see [16]). Therefore regular expression matching
libraries that rely on the classic notion of DFAs often impose adhoc limits for bounded regular
expressions: For example in the regular expression matching library in the Go language and
also in Google’s RE2 library the regular expression a{1001} is not permitted, because no
counter can be above 1000; and in the regular expression library in Rust expressions such as
a{1000}{100}{5} give an error message for being too big. Up until recently,1 Rust however
happily generated automata for regular expressions such as a{0}{4294967295 }. This was
due to a bug in the algorithm that decides when a regular expression is acceptable or too
big according to Rust’s classification (it did not account for the fact that a{0} and similar
examples can match the empty string). We shall come back to this example later in the paper.
These problems can of course be solved in matching algorithms where automata go beyond
the classic notion and for instance include explicit counters (e.g. [16]). The point here is that
Brzozowski derivatives and the algorithms by Sulzmann and Lu can be straightforwardly
extended to deal with bounded regular expressions and moreover the resulting code still
consists of only simple recursive functions and inductive datatypes. Finally, bounded regular
expressions do not destroy our finite boundedness property, which we shall prove later on.

Central to Brzozowski’s regular expression matcher are two functions called nullable and
derivative. The latter is written r\c for the derivative of the regular expression r w.r.t. the
character c. Both functions are defined by recursion over regular expressions.

1 up until version 1.5.4 of the regex library in Rust; see also CVE-2022-24713.

ITP 2023

27:4 POSIX Lexing with Bitcoded Derivatives

0\c def= 0
1\c def= 0
d\c def= if c = d then 1 else 0

(r1 + r2)\c def= r1\c + r2\c
(r1 · r2)\c def= if nullable r1

then (r1\c) · r2 + r2\c
else (r1\c) · r2

(r∗)\c def= (r\c) · r∗

(r{n})\c def= if n = 0 then 0 else (r\c) · r{n − 1}

nullable (0) def= False
nullable (1) def= True
nullable (c) def= False
nullable (r1 + r2) def= nullable r1 ∨ nullable r2

nullable (r1 · r2) def= nullable r1 ∧ nullable r2

nullable (r∗) def= True
nullable (r{n}) def= if n = 0

then True
else nullable r

We can extend this definition to give derivatives w.r.t. strings, namely as r\[] def= r and
r\(c :: s) def= (r\c)\s. Using nullable and the derivative operation, we can define a simple regular
expression matcher, namely match s r def= nullable(r\s). This is essentially Brzozowski’s
algorithm from 1964. Its main virtue is that the algorithm can be easily implemented as a
functional program (either in a functional programming language or in a theorem prover).
The correctness of match amounts to establishing the property:

▶ Proposition 1. match s r if and only if s ∈ L(r)

It is a fun exercise to formally prove this property in a theorem prover. We are aware of a
mechanised correctness proof of Brzozowski’s derivative-based matcher in HOL4 by Owens
and Slind [12]. Another one in Isabelle/HOL is part of the work by Krauss and Nipkow [8].
And another one in Coq is given by Coquand and Siles [5]. Also Ribeiro and Du Bois give
one in Agda [14].

The novel idea of Sulzmann and Lu is to extend this algorithm for lexing, where it is
important to find out which part of the string is matched by which part of the regular
expression. For this Sulzmann and Lu presented two lexing algorithms in their paper [15].
The first algorithm consists of two phases: first a matching phase (which is Brzozowski’s
algorithm) and then a value construction phase. The values encode how a regular expression
matches a string. Values are defined as the inductive datatype

v ::= Empty | Char c | Left v | Right v | Seq v1 v2 | Stars vs

where we use vs to stand for a list of values. The string underlying a value can be calculated
by a flat function, written | |. It traverses a value and collects the characters contained in it
(see [2]).

Sulzmann and Lu also define inductively an inhabitation relation that associates values
to regular expressions. Our version of this relation is defined by the following six rules:

⊢ Empty : 1
⊢ v1 : r1

⊢ Left v1 : r1 + r2

⊢ v2 : r2

⊢ Right v2 : r1 + r2

⊢ v1 : r1 ⊢ v2 : r2

⊢ Seq v1 v2 : r1 · r2

⊢ Char c : c
∀ v ∈ vs. ⊢ v : r ∧ |v| ̸= []

⊢ Stars vs : r∗

∀ v ∈ vs1. ⊢ v : r ∧ |v| ̸= []
∀ v ∈ vs2. ⊢ v : r ∧ |v| = [] len (vs1 @ vs2) = n

⊢ Stars (vs1 @ vs2) : r{n}

Note that no values are associated with the regular expression 0, since it cannot match any
string. Interesting is our version of the rule for r∗ where we require that each value in vs
flattens to a non-empty string. This means if r∗ matches the empty string, the related value
must be of the form Stars []. But if r∗ “fires” one or more times, then each copy in Stars
vs needs to match a non-empty string. Similarly, in the rule for r{n} we require that the

C. Tan and C. Urban 27:5

([], 1) → Empty
P1

([c], c) → Char c
Pc

(s, r1) → v
(s, r1 + r2) → Left v

P+L
(s, r2) → v s /∈ L r1

(s, r1 + r2) → Right v
P+R

(s1, r1) → v1 (s2, r2) → v2 ∄ s3 s4. s3 ̸= [] ∧ s3 @ s4 = s2 ∧ s1 @ s3 ∈ L r1 ∧ s4 ∈ L r2

(s1 @ s2, r1 · r2) → Seq v1 v2
PS

([], r∗) → Stars []
P[]

(s1, r) → v (s2, r∗) → Stars vs |v| ̸= []
∄ s3 s4. s3 ̸= [] ∧ s3 @ s4 = s2 ∧ s1 @ s3 ∈ L r ∧ s4 ∈ L (r∗)

(s1 @ s2, r∗) → Stars (v :: vs)
P⋆

∀ v ∈ vs. ([], r) → v len vs = n
([], r{n}) → Stars vs

Pn[]

(s1, r) → v (s2, r{n}) → Stars vs |v| ̸= []
∄ s3 s4. s3 ̸= [] ∧ s3 @ s4 = s2 ∧ s1 @ s3 ∈ L r ∧ s4 ∈ L (r{n})

(s1 @ s2, r{n + 1}) → Stars (v :: vs)
Pn+

Figure 1 The inductive definition of POSIX values taken from our earlier paper [2]. The ternary
relation, written (s, r) → v, formalises the notion of given a string s and a regular expression r what
is the unique value v that satisfies the informal POSIX constraints for regular expression matching.

length of the list vs1 @ vs2 equals n (meaning the regular expression r matches n-times) and
that the first segment of this list contains values that flatten to non-empty strings followed
by a segment that only contains values that flatten to the empty string. It is routine to
establish how values “inhabiting” a regular expression correspond to the language of a regular
expression, namely L r = {|v| | ⊢ v : r}.

In general there is more than one value inhabiting a regular expression (meaning regular
expressions can typically match more than one string). But even when fixing a string from
the language of the regular expression, there are generally more than one way of how the
regular expression can match this string. POSIX lexing is about identifying the unique
value for a given regular expression and a string that satisfies the informal POSIX rules (see
[13, 9, 11, 15, 17]). Sometimes these informal rules are called maximal munch rule and rule
priority. One contribution of our earlier paper is to give a convenient specification for what
POSIX values are (the inductive rules are shown in Figure 1).

The clever idea by Sulzmann and Lu [15] in their first algorithm is to define an injection
function on values that mirrors (but inverts) the construction of the derivative on regular
expressions. Essentially it injects back a character into a value. For this they define two
functions called mkeps and inj:

mkeps 1 def= Empty
mkeps (r1 · r2) def= Seq (mkeps r1) (mkeps r2)
mkeps (r1 + r2) def= if nullable r1 then Left (mkeps r1) else Right (mkeps r2)
mkeps (r∗) def= Stars []
mkeps (r{n}) def= Stars (replicate n (mkeps r))

inj d c (Empty) def= Char c
inj (r1 + r2) c (Left v1) def= Left (inj r1 c v1)
inj (r1 + r2) c (Right v2) def= Right (inj r2 c v2)
inj (r1 · r2) c (Seq v1 v2) def= Seq (inj r1 c v1) v2

inj (r1 · r2) c (Left (Seq v1 v2)) def= Seq (inj r1 c v1) v2

inj (r1 · r2) c (Right v2) def= Seq (mkeps r1) (inj r2 c v2)
inj (r∗) c (Seq v (Stars vs)) def= Stars (inj r c v :: vs)
inj (r{n}) c (Seq v (Stars vs)) def= Stars (inj r c v :: vs)

ITP 2023

27:6 POSIX Lexing with Bitcoded Derivatives

The function mkeps is run when the last derivative is nullable, that is the string to be
matched is in the language of the regular expression. It generates a value for how the last
derivative can match the empty string. In case of r{n} we use the function replicate in
order to generate a list of exactly n copies, which is the length of the list we expect in this
case. The injection function then calculates the corresponding value for each intermediate
derivative until a value for the original regular expression is generated. Graphically the
algorithm by Sulzmann and Lu can be illustrated by the following picture where the path
from the left to the right involving derivatives/nullable is the first phase of the algorithm
(calculating successive Brzozowski’s derivatives) and mkeps/inj, the path from right to left,
the second phase.

r1 r2
\a

r3
\b

r4
\c nullable

v4v3
inj r3 c

v2
inj r2 b

v1
inj r1 a

mkeps

The picture shows the steps required when a regular expression, say r1, matches the string
[a, b, c]. The first lexing algorithm by Sulzmann and Lu can be defined as:

lexer r [] def= if nullable r then Some (mkeps r) else None
lexer r (c :: s) def= case lexer (r\c) s of None ⇒ None | Some v ⇒ Some (inj r c v)

We have shown in our earlier paper [2] that this algorithm is correct, that is it generates
POSIX values. The central property we established relates the derivative operation to the
injection function.

▶ Proposition 2. If (s, r\c) → v then (c :: s, r) → inj r c v.

With this in place we were able to prove:

▶ Proposition 3. (1) s /∈ L r if and only if lexer r s = None.
(2) s ∈ L r if and only if ∃ v. lexer r s = Some v ∧ (s, r) → v.

In fact we have shown that, in the success case, the generated POSIX value v is unique
and in the failure case that there is no POSIX value v that satisfies (s, r) → v. While the
algorithm is correct, it is excruciatingly slow in cases where the derivatives grow arbitrarily
(recall the example from the Introduction). However it can be used as a convenient reference
point for the correctness proof of the second algorithm by Sulzmann and Lu, which we shall
describe next.

3 Bitcoded Regular Expressions and Derivatives

In the second part of their paper [15], Sulzmann and Lu describe another algorithm that also
generates POSIX values but dispenses with the second phase where characters are injected
“back” into values. For this they annotate bitcodes to regular expressions, which we define in
Isabelle/HOL as the datatype

breg ::= ZERO | ONE bs | CHAR bs c | ALTs bs rs | SEQ bs r1 r2 | STAR bs r | NT bs r n

C. Tan and C. Urban 27:7

decode′ bs (1) def= (Empty, bs)
decode′ bs (c) def= (Char c, bs)
decode′ (Z ::bs) (r1 + r2) def= let (v, bs1) = decode′ bs r1 in (Left v, bs1)
decode′ (S ::bs) (r1 + r2) def= let (v, bs1) = decode′ bs r2 in (Right v, bs1)
decode′ bs (r1 · r2) def= let (v1, bs1) = decode′ bs r1 in

let (v2, bs2) = decode′ bs1 r2 in (Seq v1 v2, bs2)
decode′ (S ::bs) (r∗) def= (Stars [], bs)
decode′ (Z ::bs) (r∗) def= let (v, bs1) = decode′ bs r in

let (Stars vs, bs2) = decode′ bs1 (r∗) in (Stars v ::vs, bs2)
decode′ bs (r{n}) def= decode′ bs (r∗)

decode bs r
def= let (v, bs′) = decode′ bs r in if bs′ = [] then Some v else None

Figure 2 Two functions, called decode′ and decode, for decoding a value from a bitsequence with
the help of a regular expression. The first function terminates because in each call the size of the
regular expression decreases or stays the same (the size of r{n} is assumed to be bigger than the
size of r∗). In the star-case where the size stays the same in the second recursive call, the length
of the decoded bitsequence is shorter. Therefore a lexicographic measure of the size of the regular
expression and the length of the bitsequence decreases in every recursive call.

where bs stands for bitsequences; r, r1 and r2 for bitcoded regular expressions; and rs
for lists of bitcoded regular expressions. The binary alternative ALT bs r1 r2 is just an
abbreviation for ALTs bs [r1, r2]. The NT -regular expression, called N-Times, contains an
integer n, which corresponds to how many times r{n} should fire. For bitsequences we use
lists made up of the constants Z and S. The idea with bitcoded regular expressions is to
incrementally generate the value information (for example Left and Right) as bitsequences.
For this Sulzmann and Lu follow Nielsen and Henglein [10] and define a coding function for
how values can be coded into bitsequences.

code (Empty) def= []
code (Char c) def= []
code (Left v) def= Z :: code v
code (Right v) def= S :: code v

code (Seq v1 v2) def= code v1 @ code v2

code (Stars []) def= [S]
code (Stars (v :: vs)) def= Z :: code v @ code (Stars vs)

As can be seen, this coding is “lossy” in the sense that it does not record explicitly character
values and also not sequence values (for them it just appends two bitsequences). However,
the different alternatives for Left, respectively Right, are recorded as Z and S followed by
some bitsequence. Similarly, we use Z to indicate if there is still a value coming in the
list of Stars, whereas S indicates the end of the list. The lossiness makes the process of
decoding a bit more involved, but the point is that if we have a regular expression and a
bitsequence of a corresponding value, then we can always decode the value accurately (see
Fig. 2). The function decode checks whether all of the bitsequence is consumed and returns
the corresponding value as Some v; otherwise it fails with None. We can establish that for
a value v inhabiting a regular expression r, the decoding of its bitsequence never fails (see
also [10]).

▶ Lemma 4. If ⊢ v : r then decode (code v) r = Some v.

Proof. This follows from the property that decode′ ((code v) @ bs) r = (v, bs) holds for any
bit-sequence bs and ⊢ v : r. This property can be easily proved by induction on ⊢ v : r. ◀

ITP 2023

27:8 POSIX Lexing with Bitcoded Derivatives

Sulzmann and Lu define the function internalise in order to transform (standard) regular
expressions into annotated regular expressions. We write this operation as r↑. This internal-
isation uses the following fuse function.

fuse bs (ZERO) def= ZERO
fuse bs (ONE bs′) def= ONE (bs @ bs′)
fuse bs (CHAR bs′ c) def= CHAR (bs @ bs′) c

fuse bs (ALTs bs′ rs) def= ALTs (bs @ bs′) rs

fuse bs (SEQ bs′ r1 r2) def= SEQ (bs @ bs′) r1 r2

fuse bs (STAR bs′ r) def= STAR (bs @ bs′) r

fuse bs (NT bs′ r n) def= NT (bs @ bs′) r n

This function “fuses” a bitsequence to the topmost constructor of a bitcoded regular expres-
sions. A regular expression can then be internalised into a bitcoded regular expression as
follows:

(0)↑ def= ZERO
(1)↑ def= ONE []
(c)↑ def= CHAR [] c

(r∗)↑ def= STAR [] r↑

(r1 + r2)↑ def= ALT [] (fuse [Z] r↑
1) (fuse [S] r↑

2)
(r1 · r2)↑ def= SEQ [] r↑

1 r↑
2

(r{n})↑ def= NT [] r↑ n

There is also an erase-function, written r↓, which transforms a bitcoded regular expression
into a (standard) regular expression by just erasing the annotated bitsequences. We omit the
straightforward definition. For defining the algorithm, we also need the functions bnullable
and bmkeps(s), which are the “lifted” versions of nullable and mkeps acting on bitcoded
regular expressions.

bnullable (ZERO) def= False
bnullable (ONE bs) def= True
bnullable (CHAR bs c) def= False
bnullable (ALTs bs rs) def=

∃ r ∈ rs. bnullable r

bnullable (SEQ bs r1 r2) def=
bnullable r1 ∧ bnullable r2

bnullable (STAR bs r) def= True
bnullable (NT bs r n) def=

if n = 0 then True else bnullable r

bmkeps (ONE bs) def= bs

bmkeps (ALTs bs rs) def= bs @ bmkepss rs
bmkeps (SEQ bs r1 r2) def=

bs @ bmkeps r1 @ bmkeps r2

bmkeps (STAR bs r) def= bs @ [S]
bmkeps (NT bs r n) def=

if n = 0 then bs @ [S]
else bs @ [Z] @ bmkeps r @ bmkeps (NT [] r (n − 1))

bmkepss (r ::rs) def=
if bnullable r then bmkeps r else bmkepss rs

The key function in the bitcoded algorithm is the derivative of a bitcoded regular expression.
This derivative function calculates the derivative but at the same time also the incremental
part of the bitsequences that contribute to constructing a POSIX value.

(ZERO)\c
def= ZERO

(ONE bs)\c
def= ZERO

(CHAR bs d)\c
def= if c = d then ONE bs else ZERO

(ALTs bs rs)\c
def= ALTs bs (map (_\c) rs)

(SEQ bs r1 r2)\c
def= if bnullable r1

then ALT bs (SEQ [] (r1\c) r2) (fuse (bmkeps r1) (r2\c))
else SEQ bs (r1\c) r2

(STAR bs r)\c
def= SEQ (bs @ [Z]) (r\c) (STAR [] r)

(NT bs r n)\c
def= if n = 0 then ZERO else SEQ (bs @ [Z]) (r\c) (NT [] r (n − 1))

This function can also be extended to strings, written r\s, just like the standard derivative.
We omit the details. Finally we can define Sulzmann and Lu’s bitcoded lexer, which we call
blexer :

C. Tan and C. Urban 27:9

blexer r s
def= let rder = (r↑)\s in if bnullable(rder) then decode (bmkeps rder) r else None

This bitcoded lexer first internalises the regular expression r and then builds the bitcoded
derivative according to s. If the derivative is (b)nullable the string is in the language of r

and it extracts the bitsequence using the bmkeps function. Finally it decodes the bitsequence
into a value. If the derivative is not nullable, then None is returned. We can show that this
way of calculating a value generates the same result as lexer.

Before we can proceed we need to define a helper function, called retrieve, which Sulzmann
and Lu introduced for the correctness proof.

retrieve (ONE bs) (Empty) def= bs
retrieve (CHAR bs c) (Char d) def= bs
retrieve (ALTs bs [r]) v def= bs @ retrieve r v
retrieve (ALTs bs (r :: rs)) (Left v) def= bs @ retrieve r v
retrieve (ALTs bs (r :: rs)) (Right v) def= bs @ retrieve (ALTs [] rs) v
retrieve (SEQ bs r1 r2) (Seq v1 v2) def= bs @ retrieve r1 v1 @ retrieve r2 v2

retrieve (STAR bs r) (Stars []) def= bs @ [S]
retrieve (STAR bs r) (Stars (v :: vs)) def=

bs @ [Z] @ retrieve r v @ retrieve (STAR [] r) (Stars vs)
retrieve (NT bs r 0) (Stars []) def= bs @ [S]
retrieve (NT bs r (n + 1)) (Stars (v :: vs)) def=

bs @ [Z] @ retrieve r v @ retrieve (NT [] r n) (Stars vs)

The idea behind this function is to retrieve a possibly partial bitsequence from a bitcoded
regular expression, where the retrieval is guided by a value. For example if the value is Left
then we descend into the left-hand side of an alternative in order to assemble the bitcode.
Similarly for Right. The property we can show is that for a given v and r with ⊢ v : r, the
retrieved bitsequence from the internalised regular expression is equal to the bitcoded version
of v.

▶ Lemma 5. If ⊢ v : r then code v = retrieve (r↑) v.

We also need some auxiliary facts about how the bitcoded operations relate to the “standard”
operations on regular expressions. For example if we build a bitcoded derivative and erase
the result, this is the same as if we first erase the bitcoded regular expression and then
perform the “standard” derivative operation.

▶ Lemma 6. (1) (r\s)↓ = (r↓)\s

(2) bnullable(r) iff nullable(r↓)
(3) bmkeps(r) = retrieve r (mkeps (r↓)) provided nullable(r↓)

Proof. All properties are by induction on annotated regular expressions. ◀

The only difficulty left for the correctness proof is that the bitcoded algorithm has only
a “forward phase” where POSIX values are generated incrementally. We can achieve the
same effect with lexer (which has two phases) by stacking up injection functions during the
forward phase. An auxiliary function, called flex, allows us to recast the rules of lexer in
terms of a single phase and stacked up injection functions.

flex r f [] def= f flex r f (c ::s) def= flex (r\c) (λv. f (inj r c v)) s

ITP 2023

27:10 POSIX Lexing with Bitcoded Derivatives

The point of this function is that when reaching the end of the string, we just need to apply
the stacked up injection functions to the value generated by mkeps. Using this function we
can recast the success case in lexer as follows:

▶ Lemma 7. If lexer r s = Some v then v = flex r id s (mkeps (r\s)).

Note we did not redefine lexer, we just established that the value generated by lexer can also
be obtained by a different method. While this different method is not efficient (we essentially
need to traverse the string s twice, once for building the derivative r\s and another time
for stacking up injection functions), it helps us with proving that incrementally building up
values in blexer generates the same result.

This brings us to our main lemma in this section: if we calculate a derivative, say r\s,
and have a value, say v, inhabiting this derivative, then we can produce the result lexer
generates by applying this value to the stacked-up injection functions that flex assembles.
The lemma establishes that this is the same value as if we build the annotated derivative
r↑\s and then retrieve the bitcoded version of v, followed by a decoding step.

▶ Lemma 8 (Main Lemma). If ⊢ v : r\s then Some (flex r id s v) = decode(retrieve (r↑\s) v) r

Proof. This can be proved by induction on s and generalising over v. The interesting point
is that we need to prove this in the reverse direction for s. This means instead of cases []
and c ::s, we have cases [] and s @ [c] where we unravel the string from the back.2 ◀

We can then prove the correctness of blexer – it indeed produces the same result as lexer.

▶ Theorem 9. blexer r s = lexer r s

This establishes that the bitcoded algorithm without simplification produces correct results.
This was only conjectured by Sulzmann and Lu in their paper [15]. The next step is to add
simplifications.

4 Simplification

Derivatives as calculated by Brzozowski’s method are usually more complex regular expres-
sions than the initial one; the result is that derivative-based matching and lexing algorithms
are often abysmally slow if the “growth problem” is not addressed. As Sulzmann and Lu wrote,
various optimisations are possible, such as the simplifications 0 r ⇒ 0, 1 r ⇒ r, 0 + r ⇒ r

and r + r ⇒ r. While these simplifications can considerably speed up the two algorithms
in many cases, they do not solve fundamentally the growth problem with derivatives. To
see this let us return to the example from the Introduction that shows the derivatives for
(a + aa)∗. If we delete in the 3rd step all 0s and 1s according to the simplification rules
shown above we obtain

(a + aa)∗ _\[a,a,a]−−−−−−→ (1 + a) · (a + aa)∗︸ ︷︷ ︸
r

+ ((a + aa)∗ + (1 + a) · (a + aa)∗︸ ︷︷ ︸
r

) (1)

This is a simpler derivative, but unfortunately we cannot make any further simplifications.
This is a problem because the outermost alternatives contains two copies of the same regular
expression (underlined with r). These copies will spawn new copies in later derivative

2 Isabelle/HOL provides an induction principle for this way of performing the induction.

C. Tan and C. Urban 27:11

steps and they in turn even more copies. This destroys any hope of taming the size of
the derivatives. But the second copy of r in (1) will never contribute to a value, because
POSIX lexing will always prefer matching a string with the first copy. So it could be safely
removed without affecting the correctness of the algorithm. The issue with the simple-minded
simplification rules above is that the rule r + r ⇒ r will never be applicable because as can
be seen in this example the regular expressions are not next to each other but separated by
another regular expression.

But here is where Sulzmann and Lu’s representation of generalised alternatives in the
bitcoded algorithm shines: in ALTs bs rs we can define a more aggressive simplification
by recursively simplifying all regular expressions in rs and then analyse the resulting list
and remove any duplicates. Another advantage with the bitsequences in bitcoded regular
expressions is that they can be easily modified such that simplification does not interfere
with the value constructions. For example we can “flatten”, or de-nest, or spill out, ALTs as
follows

ALTs bs1 ((ALTs bs2 rs2) :: rs1) bsimp−−−−→ ALTs bs1 ((map (fuse bs2) rs2) @ rs1)

where we just need to fuse the bitsequence that has accumulated in bs2 to the alternatives
in rs2. As we shall show below this will ensure that the correct value corresponding to the
original (unsimplified) regular expression can still be extracted.

However there is one problem with the definition for the more aggressive simplification
rules described by Sulzmann and Lu. Recasting their definition with our syntax they define
the step of removing duplicates as

bsimp (ALTs bs rs) def= ALTs bs (nub (map bsimp rs))

where they first recursively simplify the regular expressions in rs (using map) and then use
Haskell’s nub-function to remove potential duplicates in lists. Nub decides if an element is a
duplicate by checking whether it is an exact copy of an earlier element in the list. While this
makes sense when considering the example shown in (1), nub is the inappropriate function in
the case of bitcoded regular expressions. The reason is that in general the elements in rs will
have a different annotated bitsequence and in this way nub will never find a duplicate to be
removed. One correct way to handle this situation is to first erase the regular expressions
when comparing potential duplicates. This is inspired by Scala’s list functions of the form
distinctWith rs eq acc where eq is an user-defined equivalence relation that compares two
elements in rs. We define this function in Isabelle/HOL as

distinctWith [] eq acc def= []
distinctWith (x :: xs) eq acc def= if (∃ y ∈ acc. eq x y) then distinctWith xs eq acc

else x :: distinctWith xs eq ({x} ∪ acc)

where we scan the list from left to right (because we have to remove later copies). In
distinctWith, eq is intended to be an equivalence relation for bitcoded regular expressions
and acc is an accumulator for bitcoded regular expressions – essentially a set of regular
expressions that we have already seen while scanning the list. Therefore we delete an element,
say x, from the list provided a y with y being equivalent to x is already in the accumulator;
otherwise we keep x and scan the rest of the list but add x as another “seen” element to
acc. We will use distinctWith where eq is an equivalence that deletes bitsequences from
bitcoded regular expressions before comparing the components. One way to define this in
Isabelle/HOL is by the following recursive function from bitcoded regular expressions to bool:

ITP 2023

27:12 POSIX Lexing with Bitcoded Derivatives

ZERO ≈ ZERO def= True
ONE ≈ ONE def= True
STAR r1 ≈ STAR r2

def= r1 ≈ r2

ALTs [] ≈ ALTs [] def= True

CHAR c ≈ CHAR d def= c = d
SEQ r11 r12 ≈ SEQ r21 r22

def=
r11 ≈ r21 ∧ r12 ≈ r22

NT r1 n1 ≈ NT r2 n2
def= r1 ≈ r2 ∧ n1 = n2

ALTs (r1 :: rs1) ≈ ALTs (r2 :: rs2) def= r1 ≈ r2 ∧ ALTs rs1 ≈ ALTs rs2

where all other cases are set to False. This equivalence is clearly a computationally more
expensive operation than nub, but is needed in order to make the removal of unnecessary
copies to work properly.

Our simplification function depends on three more helper functions, one is called flts and
analyses lists of regular expressions coming from alternatives. It is defined by four clauses as
follows:

flts [] def= [] flts ((ALTs bs ′ rs ′) :: rs def= map (fuse bs ′) rs ′ @ flts rs

flts (ZERO :: rs) def= flts rs flts (r :: rs) def= r :: flts rs (otherwise)

The second clause of flts removes all instances of ZERO in alternatives and the third “de-nests”
alternatives (but retains the bitsequence bs ′ accumulated in the inner alternative). There are
some corner cases to be considered when the resulting list inside an alternative is empty or a
singleton list. We take care of those cases in the bsimpALTs function; similarly we define
a helper function that simplifies sequences according to the usual rules about ZEROs and
ONEs:

bsimpALTs bs [] def= ZERO
bsimpALTs bs [r] def= fuse bs r
bsimpALTs bs rs def= ALTs bs rs

bsimpSEQ bs ZERO def= ZERO
bsimpSEQ bs ZERO def= ZERO
bsimpSEQ bs1 (ONE bs2) r2

def= fuse (bs1 @ bs2) r2

bsimpSEQ bs r1 r2
def= SEQ bs r1 r2

With this in place we can define our simplification function as

bsimp (SEQ bs r1 r2) def= bsimpSEQ bs (bsimp r1) (bsimp r2)
bsimp (ALTs bs rs) def= bsimpALTs bs (distinctWith (flts (map bsimp rs)) ≈ ∅)
bsimp r def= r

We believe our recursive function bsimp simplifies bitcoded regular expressions as intended
by Sulzmann and Lu with the small addition of removing “useless” ONEs in sequence
regular expressions. There is no point in applying the bsimp function repeatedly (like the
simplification in their paper which needs to be applied until a fixpoint is reached) because
we can show that bsimp is idempotent, that is

▶ Proposition 10. bsimp (bsimp r) = bsimp r

This can be proved by induction on r but requires a detailed analysis that the de-nesting of
alternatives always results in a flat list of regular expressions. We omit the details since it
does not concern the correctness proof.

Next we can include simplification after each derivative step leading to the following
notion of bitcoded derivatives:

r\bsimp [] def= r r\bsimp (c :: s) def= bsimp (r\c)\bsimp s

and use it in the improved lexing algorithm defined as

C. Tan and C. Urban 27:13

blexer+ r s
def= let rder = (r↑)\bsimp s in if bnullable(rder) then decode (bmkeps rder) r else None

Note that in blexer+ the derivative rder is calculated using the simplifying derivative
_ \bsimp _. The remaining task is to show that blexer and blexer+ generate the same
answers.

When we first attempted this proof we encountered a problem with the idea in Sulzmann
and Lu’s paper where the argument seems to be to appeal again to the retrieve-function
defined for the unsimplified version of the algorithm. But this does not work, because
desirable properties such as

retrieve r v = retrieve (bsimp r) v

do not hold under simplification – this property essentially purports that we can retrieve the
same value from a simplified version of the regular expression. To start with retrieve depends
on the fact that the value v corresponds to the structure of the regular expression r – but the
whole point of simplification is to “destroy” this structure by making the regular expression
simpler. To see this consider the regular expression r = r ′ + 0 and a corresponding value v
= Left v ′. If we annotate bitcodes to r, then we can use retrieve with r and v in order to
extract a corresponding bitsequence. The reason that this works is that r is an alternative
regular expression and v a corresponding Left-value. However, if we simplify r, then v does
not correspond to the shape of the regular expression anymore. So unless one can somehow
synchronise the change in the simplified regular expressions with the original POSIX value,
there is no hope of appealing to retrieve in the correctness argument for blexer+.

For our proof we found it more helpful to introduce the rewriting systems shown in Fig 3.
The idea is to generate simplified regular expressions in small steps (unlike the bsimp-function
which does the same in a big step), and show that each of the small steps preserves the
bitcodes that lead to the POSIX value. The rewrite system is organised such that ⇝ is for
bitcoded regular expressions and s

⇝ for lists of bitcoded regular expressions. The former
essentially implements the simplifications of bsimpSEQ and flts; while the latter implements
the simplifications in bsimpALTs. We can show that any bitcoded regular expression reduces
in zero or more steps to the simplified regular expression generated by bsimp:

▶ Lemma 11. r ⇝∗ bsimp r

Proof. By induction on r. To establish the property we can use the properties rs s
⇝

∗
flts rs

and rs s
⇝

∗
distinctWith rs ≈ ∅. ◀

We can also show that this rewrite system preserves bnullable, that is simplification does not
affect nullability:

▶ Lemma 12. If r1 ⇝ r2 then bnullable r1 = bnullable r2.

Proof. Straightforward mutual induction on the definition of ⇝ and s
⇝. The only interesting

case is the rule LD where the property holds since by the side-conditions of that rule the empty
string will be in both L (rsa @ [r1] @ rsb @ [r2] @ rsc) and L (rsa @ [r1] @ rsb @ rsc). ◀

From this, we can show that bmkeps will produce the same bitsequence as long as one of the
bitcoded regular expressions in ⇝ is nullable (this lemma establishes the missing fact we
were not able to establish using retrieve, as suggested in the paper by Sulzmannn and Lu).

▶ Lemma 13. If r1 ⇝ r2 and bnullable r1 ∧ bnullable r2 then bmkeps r1 = bmkeps r2.

ITP 2023

27:14 POSIX Lexing with Bitcoded Derivatives

(SEQ bs ZERO r2) ⇝ (ZERO)
S0l (SEQ bs r1 ZERO) ⇝ (ZERO)

S0r

r1 ⇝ r2

(SEQ bs r1 r3) ⇝ (SEQ bs r2 r3)
SL

(SEQ bs1 (ONE bs2) r) ⇝ fuse (bs1 @ bs2) r
S1

r3 ⇝ r4

(SEQ bs r1 r3) ⇝ (SEQ bs r1 r4)
SR

(ALTs bs []) ⇝ (ZERO)
A0

(ALTs bs [r]) ⇝ fuse bs r
A1

rs1
s
⇝ rs2

(ALTs bs rs1) ⇝ (ALTs bs rs2)
AL

rs1
s
⇝ rs2

r :: rs1
s
⇝ r :: rs2

LT
r1 ⇝ r2

r1 :: rs s
⇝ r2 :: rs

LH
ALTs bs rs1 :: rs2

s
⇝ (map (fuse bs) rs1 @ rs2)

LS

ZERO :: rs s
⇝ rs

L0
L (r2

↓) ⊆ L (r1
↓)

(rs1 @ [r1] @ rs2 @ [r2] @ rs3) s
⇝ (rs1 @ [r1] @ rs2 @ rs3)

LD

Figure 3 The rewrite rules that generate simplified regular expressions in small steps: r1 ⇝ r2 is
for bitcoded regular expressions and rs1

s
⇝ rs2 for lists of bitcoded expressions. Interesting is the

LD rule that allows copies of regular expressions to be removed provided a regular expression earlier
in the list can match the same strings.

Proof. By straightforward mutual induction on the definition of ⇝ and s
⇝. Again the only

interesting case is the rule LD where we need to ensure that bmkeps (rsa @ [r1] @ rsb @ [r2]
@ rsc) = bmkeps (rsa @ [r1] @ rsb @ rsc) holds. This is indeed the case because according
to the POSIX rules the generated bitsequence is determined by the first alternative that can
match the string (in this case being nullable). ◀

Crucial is also the fact that derivative steps and simplification steps can be interleaved, which
is shown by the fact that ⇝ is preserved under derivatives.

▶ Lemma 14. If r1 ⇝ r2 then r1\c ⇝∗ r2\c.

Proof. By straightforward mutual induction on the definition of ⇝ and s
⇝. The case for

LD holds because L ((r2\c)↓) ⊆ L ((r1\c)↓) if and only if L (r2
↓) ⊆ L (r1

↓). ◀

Using this fact together with Lemma 11 allows us to prove the central lemma that the
unsimplified derivative (with a string s) reduces to the simplified derivative (with the same
string).

▶ Lemma 15. r\s ⇝∗ r\bsimp s

Proof. By reverse induction on s generalising over r. ◀

With these lemmas in place we can finally establish that blexer+ and blexer generate the
same value, and using Theorem 9 from the previous section that this value is indeed the
POSIX value as generated by lexer.

▶ Theorem 16. blexer+ r s = blexer r s (= lexer r s by Thm. 9)

Proof. By unfolding the definitions and using Lemmas 15 and 13. ◀

This means that if the algorithm is called with a regular expression r and a string s with
s ∈ L(r), it will return Some v for the unique v we defined by the POSIX relation (s, r) → v;
otherwise the algorithm returns None when s ̸∈ L(r) and no such v exists. This completes
the correctness proof for the second POSIX lexing algorithm by Sulzmann and Lu. The
interesting point of this algorithm is that the sizes of derivatives do not grow arbitrarily big
but can be finitely bounded, which we shall show next.

C. Tan and C. Urban 27:15

5 Finite Bound for the Size of Derivatives

In this section let us sketch our argument for why the size of the simplified derivatives
with the aggressive simplification function can be finitely bounded. Suppose we have a size
function for bitcoded regular expressions, written JrK, which counts the number of nodes if
we regard r as a tree (we omit the precise definition; ditto for lists JrsK). For this we show
that for every r there exists a bound N such that

∀s. Jr\bsimp sK ≤ N

Note that the bound N is a bound for all strings, no matter how long they are. We establish
this bound by induction on r. The base cases for ZERO, ONE bs and CHAR bs c are
straightforward. The interesting case is for sequences of the form SEQ bs r1 r2. In this case
our induction hypotheses state ∃N1.∀s. Jr1\bsimp sK ≤ N1 and ∃N2.∀s. Jr2\bsimp sK ≤ N2.
We can reason as follows

J(SEQ bs r1 r2)\bsimp sK
= Jbsimp (ALTs bs ((SEQ [] (r1\bsimp s) r2) :: [r2\bsimp s ′ | s′ ∈ Suf(r1, s)]))K (1)
≤ JdistinctWith ((SEQ [] (r1\bsimp s) r2) :: [r2\bsimp s ′ | s′ ∈ Suf(r1, s)]) ≈ ∅K + 1 (2)
≤ JSEQ [] (r1\bsimp s) r2K + JdistinctWith [r2\bsimp s ′ | s′ ∈ Suf(r1, s)] ≈ ∅K + 1 (3)
≤ N1 + Jr2K + 2 + JdistinctWith [r2\bsimp s ′ | s′ ∈ Suf(r1, s)] ≈ ∅K (4)
≤ N1 + Jr2K + 2 + lN2 ∗ N2 (5)

where in (1) the set Suf(r1, s) are all the suffixes of s where r1\bsimp s ′ is nullable (s′ being
a suffix of s). In (3) we know that JSEQ [] (r1\bsimp s) r2K is bounded by N1 + Jr2K + 1. In
(5) we know the list comprehension contains only regular expressions of size smaller than N2.
The list length after distinctWith is bounded by a number, which we call lN2 . It stands for
the number of distinct regular expressions smaller than N2 (there can only be finitely many
of them). We reason similarly for STAR and NT.

Clearly we give in this finiteness argument (Step (5)) a very loose bound that is far from
the actual bound we can expect. We can do better than this, but this does not improve the
finiteness property we are proving. If we are interested in a polynomial bound, one would
hope to obtain a similar tight bound as for partial derivatives introduced by Antimirov [1].
After all the idea with distinctWith is to maintain a “set” of alternatives (like the sets in
partial derivatives). Unfortunately to obtain the exact same bound would mean we need to
introduce simplifications, such as (r1 + r2) · r3 −→ (r1 · r3) + (r2 · r3), which exist for partial
derivatives. However, if we introduce them in our setting we would lose the POSIX property
of our calculated values. For example given the regular expressions (a + ab) · (b + 1) and
the string [a, b], then our algorithm generates the following correct POSIX value

Seq (Right (Seq (Char a) (Char b))) (Right Empty)

Essentially it matches the string with the longer Right-alternative in the first sequence (and
then the “rest” with the empty regular expression 1 from the second sequence). If we add the
simplification above, then we obtain the following value Seq (Left (Char a)) (Left (Char b))
where the Left-alternatives get priority. However, this violates the POSIX rules and we have
not been able to reconcile this problem. Therefore we leave better bounds for future work.

Note also that while Antimirov was able to give a bound on the size of his partial
derivatives [1], Brzozowski gave a bound on the number of derivatives, provided they are
quotient via ACI rules [4]. Brzozowski’s result is crucial when one uses his derivatives for
obtaining a DFA (it essentially bounds the number of states). However, this result does not

ITP 2023

27:16 POSIX Lexing with Bitcoded Derivatives

transfer to our setting where we are interested in the size of the derivatives. For example it is
not true that the set of our derivatives r\s for a given r and all strings s is finite (even when
simplified). This is because for our annotated regular expressions the bitcode annotation is
dependent on the number of iterations that are needed for STAR-regular expressions. This
is not a problem for us: Since we intend to do lexing by calculating (as fast as possible)
derivatives, the bound on the size of the derivatives is important, not their number.

6 Conclusion

We set out in this work to prove in Isabelle/HOL the correctness of the second POSIX lexing
algorithm by Sulzmann and Lu [15]. This follows earlier work where we established the
correctness of the first algorithm [2]. In the earlier work we needed to introduce our own
specification for POSIX values, because the informal definition given by Sulzmann and Lu
did not stand up to formal proof. Also for the second algorithm we needed to introduce our
own definitions and proof ideas in order to establish the correctness. Our interest in the
second algorithm lies in the fact that by using bitcoded regular expressions and an aggressive
simplification method there is a chance that the derivatives can be kept universally small (we
established in this paper that for a given r they can be kept finitely bounded for all strings).
Our formalisation is approximately 7500 lines of Isabelle code. A little more than half of
this code concerns the finiteness bound obtained in Section 5. This slight “bloat” in the
latter part is because we had to introduce an intermediate datatype for annotated regular
expressions and repeat many definitions for this intermediate datatype. But overall we think
this made our formalisation work smoother.

Having proved the correctness of the POSIX lexing algorithm, which lessons have we
learned? Well, we feel this is a very good example where formal proofs give further insight into
the matter at hand. For example it is very hard to see a problem with nub vs distinctWith
with only experimental data – one would still see the correct result but find that simplification
does not simplify in well-chosen, but not obscure, examples.

With the results reported here, we can of course only make a claim about the correctness
of the algorithm and the sizes of the derivatives, not about the efficiency or runtime of
our version of Sulzmann and Lu’s algorithm. But we found the size is an important first
indicator about efficiency: clearly if the derivatives can grow to arbitrarily big sizes and the
algorithm needs to traverse the derivatives possibly several times, then the algorithm will be
slow – excruciatingly slow that is. Other works seem to make stronger claims, but during our
formalisation work we have developed a healthy suspicion when for example experimental
data is used to back up efficiency claims. For instance Sulzmann and Lu write about their
equivalent of blexer+ “...we can incrementally compute bitcoded parse trees in linear time
in the size of the input” [15, Page 14]. Given the growth of the derivatives in some cases
even after aggressive simplification, this is a hard to believe claim. A similar claim about
a theoretical runtime of O(n2) for one specific list of regular expressions is made for the
Verbatim lexer, which calculates tokens according to POSIX rules [6]. For this, Verbatim
uses Brzozowski’s derivatives like in our work. About their empirical data, the authors write:
“The results of our empirical tests [..] confirm that Verbatim has O(n2) time complexity.”
[6, Section VII]. While their correctness proof for Verbatim is formalised in Coq, the claim
about the runtime complexity is only supported by some empirical evidence obtained by
using the code extraction facilities of Coq. Given our observation with the “growth problem”
of derivatives, this runtime bound is unlikely to hold universally: indeed we tried out their
extracted OCaml code with the example (a + aa)∗ as a single lexing rule, and it took for

C. Tan and C. Urban 27:17

us around 5 minutes to tokenise a string of 40 a’s and that increased to approximately 19
minutes when the string is 50 a’s long. Taking into account that derivatives are not simplified
in the Verbatim lexer, such numbers are not surprising. Clearly our result of having finite
derivatives might sound rather weak in this context but we think such efficiency claims really
require further scrutiny. The contribution of this paper is to make sure derivatives do not
grow arbitrarily big (universally). In the example (a + aa)∗, all derivatives have a size of
17 or less. The result is that lexing a string of, say, 50 000 a’s with the regular expression
(a + aa)∗ takes approximately 10 seconds with our Scala implementation of the presented
algorithm.3

Finally, let us come back to the point about bounded regular expressions. We have in
this paper only shown that r{n} can be included, but all our results extend straightforwardly
also to the other bounded regular expressions. We find bounded regular expressions fit
naturally into the setting of Brzozowski derivatives and the bitcoded regular expressions
by Sulzmann and Lu. In contrast bounded regular expressions are often the Achilles’ heel
in regular expression matchers that use the traditional automata-based approach to lexing,
primarily because they need to expand the counters of bounded regular expressions into
n-connected copies of an automaton. This is not needed in Sulzmann and Lu’s algorithm.
To see the difference consider for example the regular expression a{1001} · a∗, which is
not permitted in the Go language because the counter is too big. In contrast we have no
problem with matching this regular expression with, say 50 000 a’s, because the counters can
be kept compact. In fact, the overall size of the derivatives is never greater than 5 in this
example. Even in the example from Section 2, where Rust raises an error message, namely
a{1000}{100}{5}, the maximum size for our derivatives is a moderate 14.

Let us also return to the example a{0}{4294967295 } which until recently Rust deemed
acceptable. But this was due to a bug. It turns out that it took Rust more than 11 minutes to
generate an automaton for this regular expression and then to determine that a string of just
one(!) a does not match this regular expression. Therefore it is probably a wise choice that
in newer versions of Rust’s regular expression library such regular expressions are declared
as “too big” and raise an error message. While this is clearly a contrived example, the safety
guaranties Rust wants to provide necessitate this conservative approach. However, with the
derivatives and simplifications we have shown in this paper, the example can be solved with
ease: it essentially only involves operations on integers and our Scala implementation takes
only a few seconds to find out that this string, or even much larger strings, do not match.

Let us also compare our work to the verified Verbatim++ lexer where the authors of
the Verbatim lexer introduced a number of improvements and optimisations, for example
memoisation [7]. However, unlike Verbatim, which works with derivatives like in our work,
Verbatim++ compiles first a regular expression into a DFA. While this makes lexing fast
in many cases, with examples of bounded regular expressions like a{100}{5} one needs to
represent them as sequences of a · a · . . . · a (500 a’s in sequence). We have run their extracted
code with such a regular expression as a single lexing rule and a string of 50 000 a’s – lexing
in this case takes approximately 5 minutes. We are not aware of any better translation using
the traditional notion of DFAs so that we can improve on this. Therefore we prefer to stick
with calculating derivatives, but attempt to make this calculation (in the future) as fast as
possible. What we can guarantee with the presented work is that the maximum size of the
derivatives for a{100}{5} · a∗ is never bigger than 9. This means our Scala implementation
again only needs a few seconds for this example and matching 50 000 a’s, say.

3 Our Scala implementation is “hand-crafted” and not generated via Isabelle’s code extraction mechanism.

ITP 2023

27:18 POSIX Lexing with Bitcoded Derivatives

References
1 V. Antimirov. Partial Derivatives of Regular Expressions and Finite Automata Constructions.

Theoretical Computer Science, 155:291–319, 1995.
2 F. Ausaf, R. Dyckhoff, and C. Urban. POSIX Lexing with Derivatives of Regular Expressions

(Proof Pearl). In Proc. of the 7th International Conference on Interactive Theorem Proving
(ITP), volume 9807 of LNCS, pages 69–86, 2016.

3 H. Björklund, W. Martens, and T. Timm. Efficient Incremental Evaluation of Succinct Regular
Expressions. In Proc. of the 24th ACM Conf. on Information and Knowledge Management
(CIKM), pages 1541–1550, 2015.

4 J. A. Brzozowski. Derivatives of Regular Expressions. Journal of the ACM, 11(4):481–494,
1964.

5 T. Coquand and V. Siles. A Decision Procedure for Regular Expression Equivalence in Type
Theory. In Proc. of the 1st International Conference on Certified Programs and Proofs (CPP),
volume 7086 of LNCS, pages 119–134, 2011.

6 D. Egolf, S. Lasser, and K. Fisher. Verbatim: A Verified Lexer Generator. In 2021 IEEE
Security and Privacy Workshops (SPW), pages 92–100, 2021.

7 D. Egolf, S. Lasser, and K. Fisher. Verbatim++: Verified, Optimized, and Semantically
Rich Lexing with Dderivatives. In Proc. of the 11th ACM SIGPLAN Conference on Certified
Programs and Proofs (CPP), pages 27–39. ACM, 2022.

8 A. Krauss and T. Nipkow. Proof Pearl: Regular Expression Equivalence and Relation Algebra.
Journal of Automated Reasoning, 49:95–106, 2012.

9 C. Kuklewicz. Regex Posix. https://wiki.haskell.org/Regex_Posix.
10 L. Nielsen and F. Henglein. Bit-Coded Regular Expression Parsing. In Proc. of the 5th

International Conference on Language and Automata Theory and Applications (LATA), volume
6638 of LNCS, pages 402–413, 2011.

11 S. Okui and T. Suzuki. Disambiguation in Regular Expression Matching via Position Automata
with Augmented Transitions. In Proc. of the 15th International Conference on Implementation
and Application of Automata (CIAA), volume 6482 of LNCS, pages 231–240, 2010.

12 S. Owens and K. Slind. Adapting Functional Programs to Higher Order Logic. Higher-Order
and Symbolic Computation, 21(4):377–409, 2008.

13 The Open Group Base Specification Issue 6 IEEE Std 1003.1 2004 Edition, 2004. URL:
http://pubs.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap09.html.

14 R. Ribeiro and A. Du Bois. Certified Bit-Coded Regular Expression Parsing. In Proc. of the
21st Brazilian Symposium on Programming Languages, pages 4:1–4:8, 2017.

15 M. Sulzmann and K. Lu. POSIX Regular Expression Parsing with Derivatives. In Proc. of
the 12th International Conference on Functional and Logic Programming (FLOPS), volume
8475 of LNCS, pages 203–220, 2014.

16 L. Turoňová, L. Holík, O. Lengál, O. Saarikivi, M. Veanes, and T. Vojnar. Regex Matching
with Counting-Set Automata. Proceedings of the ACM on Programming Languages (PACMPL),
4:218:1–218:30, 2020.

17 S. Vansummeren. Type Inference for Unique Pattern Matching. ACM Transactions on
Programming Languages and Systems, 28(3):389–428, 2006.

https://wiki.haskell.org/Regex_Posix
http://pubs.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap09.html

A Sound and Complete Projection for Global Types
Dawit Tirore
IT University of Copenhagen, Denmark

Jesper Bengtson
IT University of Copenhagen, Denmark

Marco Carbone
IT University of Copenhagen, Denmark

Abstract
Multiparty session types is a typing discipline used to write specifications, known as global types,
for branching and recursive message-passing systems. A necessary operation on global types is
projection to abstractions of local behaviour, called local types. Typically, this is a computable
partial function that given a global type and a role erases all details irrelevant to this role.

Computable projection functions in the literature are either unsound or too restrictive when
dealing with recursion and branching. Recent work has taken a more general approach to projection
defining it as a coinductive, but not computable, relation. Our work defines a new computable
projection function that is sound and complete with respect to its coinductive counterpart and,
hence, equally expressive. All results have been mechanised in the Coq proof assistant.

2012 ACM Subject Classification Theory of computation → Type theory; Computing methodologies
→ Distributed programming languages; Theory of computation → Program verification

Keywords and phrases Session types, Mechanisation, Projection, Coq

Digital Object Identifier 10.4230/LIPIcs.ITP.2023.28

Supplementary Material Software (Coq Source Code): https://github.com/Tirore96/projection
archived at swh:1:dir:c4f38245d064fc65ed000d62ebd15826ef8da337

Funding This work was supported by DFF-Research Project 1 Grant no. 1026-00385A, from The
Danish Council for Independent Research for the Natural Sciences (FNU).

1 Introduction

Session types are types for abstracting the behaviour of communicating processes. First
proposed by Honda et al. [15] for binary protocols, they specify the sequence of possible
actions processes need to follow when sending and receiving messages over a channel. Session
types provide a clear language for describing protocols that are guaranteed to not deadlock
or contain communication errors, e.g., never receive an integer when expecting a boolean. A
decade after their conception, Honda et al. [16] proposed a generalisation, called multiparty
session types, that specifies how an arbitrary but fixed number of processes should interact
with each other. Multiparty session types are based on the concept of global types which
provide a global description of the multiparty protocol being abstracted. Recently, multiparty
session types have gained interest from several communities, resulting in their integration
into several mainstream programming languages [2].

Multiparty session types follow a precise approach to designing and implementing com-
municating processes: from global types that specify the protocols, we can automatically
generate local types, the local specifications of the behaviour of each role in the protocol; then,
each local type specification is (type) checked against the local code being written by the
programmer. The automatic generation of local types from global types, called projection, is
key for relating global types to implementations. Given a role, projection is an operation
that erases the parts of the global type irrelevant for the role. When projection is defined the

© Dawit Tirore, Jesper Bengtson, and Marco Carbone;
licensed under Creative Commons License CC-BY 4.0

14th International Conference on Interactive Theorem Proving (ITP 2023).
Editors: Adam Naumowicz and René Thiemann; Article No. 28; pp. 28:1–28:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ITP.2023.28
https://github.com/Tirore96/projection
https://archive.softwareheritage.org/swh:1:dir:c4f38245d064fc65ed000d62ebd15826ef8da337;origin=https://github.com/Tirore96/projection;visit=swh:1:snp:f25a4c40af4e32feaf7451319ecfdb11d0d72dc4;anchor=swh:1:rev:000a351760c844eb963ad6e5823fc88fc57b6270
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 A Sound and Complete Projection for Global Types

output is a local type specifying the behaviour of this role. As an example, let us consider a
global type where Carl can ask Dave to either go Left or Right over some channel k:

Carl −→ Dave : k

{
Left : Carl −→ Dave : k′⟨Int⟩.Alice −→ Bob : k′′⟨Int⟩.end
Right : Carl −→ Dave : k′⟨String⟩.Alice −→ Bob : k′′⟨Int⟩.end

}
Above, if Carl chooses Left, he will also send an integer (Int) over some other channel k′;
otherwise, he will send a string (String). No matter what branch Carl chooses, all roles
must collectively follow the description of that branch.

Nested in both branches, there is a communication over k′′ of an integer Int between
Alice and Bob. The projections of Carl and Alice are:

Carl : k ⊕
{

Left : !k′⟨Int⟩.end
Right : !k′⟨String⟩.end

}
Alice : !k′′⟨Int⟩. end

Above, Carl makes a choice (denoted by ⊕), and then outputs on channel k′ either something
of type Int or something of type String. Alice is instead sending over channel k′′. An
important observation is that, since neither Alice nor Bob are informed of the choice made
by Carl, their behaviour should be independent from Carl’s choice. In fact, a restriction
that projection usually imposes is that all those roles not participating to a branching
communication behave the same on all branches.

In order to be able to express repetitive behaviour, global types (and local types) are
usually equipped with recursion, expressed as µ-types [22]. For example, consider

µt. Alice −→ Bob : k⟨String⟩. µt′. Carl −→ Dave : k′
{

Left : t
Right : Alice −→ Bob : k⟨String⟩.t′

}
(1)

The example above poses some questions on how projection should work. For Alice, should it
be undefined since we cannot syntactically see her behaviour on the first branch? Or, can the
projection first unfold on t and then generate a local type? We observe that the following
global type is equivalent to (1) but does not violate our constraint on branches:

µt. Alice −→ Bob : k⟨String⟩. Carl −→ Dave : k′ {Left : t, Right : t} (2)

Since both recursive global types (1) and (2) seem to specify the same behaviour, we would
assume that Alice is projected to µt. !k⟨String⟩. t, i.e., she repeatedly sends something of
type String. The bad news is that the projection algorithms available in the literature do
not allow global types like (1) to be projected while the equivalent type (2) can be projected.

The most common way of defining projection is as a structurally recursive partial function
on global types, which we call standard projection. Recent work [13] defines projection as a
coinductive relation on coinductive types, which intuitively are a complete (possibly infinite)
unfolding of recursive protocols. Both approaches come with trade-offs. Standard projection is
a computable procedure, which is necessary for multiparty session types to support decidable
type checking, but it has limits as pointed out above. The coinductive approach is more
general but, to the best of our knowledge, there are no equivalent computable algorithms
available in the literature. The discrepancy between standard and coinductive projection
was initially pointed out by Ghilezan et al. [13]. They correctly show that the canonical way
partial projection treats the binders of µ-types causes standard projection to be undefined
for some µ-types that have a coinductive projection, such as global type (1). In this paper,
we define a procedure on µ-types that implements the projection on coinductive types.

D. Tirore, J. Bengtson, and M. Carbone 28:3

Contributions and Structure. The main contribution of this paper is the definition of a
computable projection function that is sound and complete with respect to a coinductive
projection relation. All our proofs have been mechanised in the Coq [21] proof assistant1.

We structure the paper as follows. Section 2 walks through existing variants of standard
projection and their pitfalls. Section 3 introduces global and local coinductive types as well
as a coinductive projection relation from the former to the latter. Section 4 introduces a
projection function from global to local µ-types, proves that it is sound and complete with
respect to its coinductive counterpart, and Section 5 proves that it is decidable. Section 6
describes key insights from our Coq mechanisation, Section 7 covers related and future work,
and Section 8 concludes.

2 Global Types, Local Types, and Standard Projection

The purpose of this section is two-fold: introducing the syntax of global and local types and
a walk through computable definitions of projection found in the literature.

Syntax. Let P be a set of roles (ranged over by p, q, r, s, t), L a totally ordered set of labels
(ranged over by l), and X a set of recursion variables ranged over by t.

▶ Definition 1 (Inductive Types [17]). Global types Gµ and local types T µ are µ-types generated
inductively by the following grammars, where U represents primitive types:

Gµ ::= p1
µ−→ p2 : k⟨U⟩.Gµ | p1

µ−→ p2 : k{lj : Gµ
j }j∈J | µt.Gµ | t | endµ

T µ ::= !µk⟨U⟩.T µ | ?µk⟨U⟩.T µ | k ⊕µ {lj : T µ
j }j∈J | k &µ {lj : T µ

j }j∈J | µt.T µ | t | endµ

The type p1
µ−→ p2 : k⟨U⟩.Gµ denotes a communication between roles p1 and p2 via channel k of

a message of type U , which then proceeds as Gµ. Similarly, the type p1
µ−→ p2 : k{lj : Gµ

j }j∈J

denotes a communication between two roles where, given the set of indices J , role p1 selects a
branch with label li, and then proceeds as Gµ

i . Types µt.Gµ and t model recursive protocols.
Finally, endµ denotes the successful termination of a protocol. A message type U is just a
basic value type: extensions of this are irrelevant for the focus of this paper.

For local types, the type !µk⟨U⟩.T µ outputs a message of type U over channel k, while
its dual, ?µk⟨U⟩.T µ receives a message of type U over k. Types k ⊕µ {lj : T µ

j }j∈J and
k &µ {lj : T µ

j }j∈J implement branching where the former is the type of a process that
internally selects a branch li and communicates it over channel k, while the latter is the type
of a process that offers choices l1, . . . , ln (for J = {1, . . . , n} with n ≥ 1) over channel k. We
overload the type endµ and use it also for local types.

We deal with recursive variables in a standard way and write capture-avoiding substitution
as Gµ

1 [Gµ
2 /t]. Moreover, types can be contractive: a µ-type Gµ (or T µ) is contractive if, for

any of its subexpressions with shape µt0.µt1...µtn.t, the body t is not t0 [22]. We allow
non-contractive µ-types and will in the next section show how to enforce contractiveness by
requiring that a µ-type is related to a coinductive type.

Overview of projections. For each role, we use projection to relate global and local types.
We start our overview with the projection proposed by Castro-Perez et al. [7] which can
be found in Figure 1. The projection p1

µ−→ p2 : k⟨U⟩. Gµ ⇂µ
p produces either a sending or a

1 https://github.com/Tirore96/projection

ITP 2023

https://github.com/Tirore96/projection

28:4 A Sound and Complete Projection for Global Types

(p1
µ−→ p2 : k⟨U⟩.Gµ)⇂µ

p =

!µk⟨U⟩.(Gµ ⇂µ

p) if p = p1 and p1 ̸= p2

?µk⟨U⟩.(Gµ ⇂µ
p) if p = p2 and p1 ̸= p2

Gµ ⇂µ
p if p ̸∈ {p1, p2}

(p1
µ−→ p2 : k{lj : Gµ

j }j∈J)⇂µ
p =

k ⊕µ {lj : (Gµ

j ⇂
µ
p)}j∈J if p = p1 and p1 ̸= p2

k &µ {lj : (Gµ
j ⇂

µ
p)}j∈J if p = p2 and p1 ̸= p2

(Gµ
1 ⇂

µ
p) if p ̸∈ {p1, p2} and

∀i, j ∈ J. Gµ
i ⇂

µ
p = Gµ

j ⇂
µ
p

⊥ otherwise

(µt.Gµ)⇂µ
p =

{
µt.(Gµ ⇂µ

p) if guardedVar(t, Gµ ⇂µ
p)

endµ otherwise
t⇂µ

p = t endµ ⇂µ
p = endµ.

guardedVar(t, Gµ) =

guardedVar(t, Gµ

1) if Gµ = µt′.Gµ
1

t ̸= t′ if Gµ = t′

true otherwise

Figure 1 The standard projection of G onto p, written G⇂µ
p [7].

receiving action if the role p is equal to p1 or p2 respectively, otherwise the action is deleted.
The projection of branching p1

µ−→ p2 : k{lj : Gµ
j }j∈J ⇂µ

p works similarly but, when role p is
not involved, all branches must project to exactly the same type. This requirement is known
as plain merge. Full merge, used for example by Ghilezan et al. [13], is a more permissive
operation which merges local types with distinct external choices. We discuss an extension of
our work to full merge in Section 7. For recursion µt.Gµ, Gµ is projected only if the result is
a contractive local type (checked by the guardedVar predicate). Finally, variable t and the
type endµ project directly to their local counterparts.

The use of guardedVar formally fixes a problem with the original projection [17] that
could generate non-contractive types, which is unsound (informally fixed by forbidding
non-contractive types). Alternatively, Demangeon and Yoshida [11] fix this issue by replacing
the side condition with Gµ ⇂µ

p ̸= t. However, all these projections invite the counterexample:

p µ−→ q : k⟨U⟩. µt. r µ−→ s : k′{l1 : endµ, l2 : t} ⇂µ
p (3)

which is undefined because the branch condition fails. Since p is not a role in the branch,
the desired result of this projection should be !µk⟨U⟩. endµ. Bejleri and Yoshida [5] solve
this with a recursion condition testing participation in the body

(µt.Gµ)⇂µ
p =

{
µt.(Gµ ⇂µ

p) if p ∈ Gµ

endµ
(4)

This function always generates contractive types, but the projection of

µt. p µ−→ q : k⟨U⟩. µt′. r µ−→ s : k′⟨U ′⟩. t⇂µ
p (5)

incorrectly results in the local type µt.!µk⟨U⟩.endµ rather than the desired µt.!µk⟨U⟩. t.
Glabbeek et al. [27] fix it by adding a variable constraint to the recursion condition:

(µt.Gµ)⇂µ
p =

{
µt.(Gµ ⇂µ

p)
endµ if p ̸∈ Gµ and µt.Gµ is closed

(6)

D. Tirore, J. Bengtson, and M. Carbone 28:5

This way, the projection in (5) correctly results in the type µt.!µk⟨U⟩.t. To the best of our
knowledge, this is the most general and sound version of projection, but it still does not
capture certain global types whose infinite unfolding is intuitively projectable. One such
example is equivalent to (1), modulo renaming, from the introduction:

µt. p µ−→ q : k⟨U⟩. µt′. r µ−→ s : k′{l1 : t, l2 : p µ−→ q : k⟨U⟩. t′}⇂µ
p (7)

Here, the branching condition fails because t is syntactically not the same type as !µk⟨U⟩.t′.
But how can we recognise that t and !µk⟨U⟩.t′ are equivalent in this case? Our main insight
is that standard projection can be performed in two steps: first, a boolean predicate tests
projectability by unfolding µ-operators; and, when the check is passed, a translation function
generates the local type by instead structurally recursing under the µ-operators. Checking
projectability by unfolding µ-operators makes termination non-trivial and we explore this in
Section 5. This approach lets us recognise (7) as projectable.

3 Projection on Coinductive Types

In this section, we define what an ideal projection is. The inductive definition of global
types uses µ-types in order to represent infinite behaviour which, as shown by our examples,
can create issues with projection. A possible solution to this issue is to get rid of µ-types
and work with fully unfolded types (infinite trees). Originally, Honda et al. [17] suggested
this approach informally. Later, Ghilezan et al. [13] turned this intuition into a version of
global types which, instead of using an inductive definition, uses coinductive types. This
had the drawback of projection not being computable. The goal of this section is to define
coinductive types, a way to relate them to inductive types, and then a definition of projection
without µ-types. Although we do not compute projections of coinductive types, we use them
as a specification of how a correct projection should behave.

Syntax. We start by giving the coinductive definition of both global and local types.

▶ Definition 2 (Coinductive Types). The syntax of coinductive global and local types, denoted
as Gν and T ν respectively, is coinductively defined as:

Gν ::= p1
ν−→ p2 : k⟨U⟩.Gν | p1

ν−→ p2 : k{lj : Gν
j }j∈J | endν

T ν ::= !νk⟨U⟩.T ν | ?νk⟨U⟩.T ν | k ⊕ν {lj : T ν
j }j∈J | k &ν {lj : T ν

j }j∈J | endν

Coinductive types can be infinite but regular coinductive types can be finitely represented.
A regular coinductive type has a finite set of distinct subterms [20] meaning that it must be
circularly defined and have repeating structure if it is infinitely large. This makes it possible
to store a regular coinductive type in, e.g., computer memory, or represent it as a µ-type.

In order to reason effectively about µ-types and their coinductive counterparts we need a
means to relate the two. We follow the style of Castro-Perez et al. [7], using an unravelling
relation R, formally defined as:

ITP 2023

28:6 A Sound and Complete Projection for Global Types

▶ Definition 3 (Unravelling). Unravelling, for both global and local types, and denoted by
Gµ R Gν and T µ R T ν respectively, is defined by the following rules:

endµ R endν

Gµ[µt.Gµ/t] R Gν

µt.Gµ R Gν

Gµ R Gν

p1
µ−→ p2 : k⟨U⟩.Gµ R p1

ν−→ p2 : k⟨U⟩.Gν

∀j ∈ J. Gµ
j R Gν

j

p1
µ−→ p2 : k{lj : Gµ

j }j∈J R p1
ν−→ p2 : k{lj : Gν

j }j∈J

∀j ∈ J. T µ
j R T ν

j

k ⊕µ {lj : T µ
j }j∈J R k ⊕ν {lj : T ν

j }j∈J

T µ R T ν

!µk⟨U⟩.T µ R !νk⟨U⟩.T ν

T µ R T ν

?µk⟨U⟩.T µ R ?νk⟨U⟩.T ν

∀j ∈ J. (T µ
j R T ν

j)

k &µ {lj : T µ
j }j∈J R k &ν {lj : T ν

j }j∈J

The unravelling relation is defined using both inductive and coinductive inference rules, where
we use single lines for inductive rules and double lines for coinductive ones. A coinductive
derivation may be circular and discharged by referring to a previous identical part of the
inference tree whereas inductive leaves are discharged using an inductive base-case rule in
the standard manner, which in our case are the rules relating endµ and endν . The reason for
this split is that if the µ-operator could be unravelled using a coinductive rule [unfoldν] then
we could relate any non-contractive µ-type to any coinductive type Gν .

Incorrect rule:
G[µt.G] R Gν

µt.G R Gν [unfoldν] Unwanted derivation:
µt.t R Gν

µt.t R Gν [unfoldν] (8)

Castro-Perez et al. have a rule like [unfoldν] and they solve this problem by requiring that
all µ-types are contractive. We make this side condition redundant by making [unfoldν]
inductive and we have found that this simplifies our proofs. This is because the usual two
conditions on µ-types, namely closedness and contractiveness, are captured by unravelling.

▶ Proposition 4. Gµ is closed and contractive iff there exists Gν such that Gµ R Gν

Proof. The direction (⇐=) is harder than the other. We prove it by contradiction, assuming
both an inductive definition of non-contractiveness and Gµ R Gν . ◀

The mixing of inductive and coinductive inference rules is non-standard and in Section 6
we show concretely how to formally define such inference systems. For now, we show an
example of how to relate an inductive and coinductive global type by R .

▶ Example 5. Consider the unravelling of

µt. r µ−→ s : k{l1 : t, l2 : endµ}

One branch is a recursion variable and the other is end indicating we will need both inductive
and coinductive rules to close the derivation. We show this inductive global type unravels to

Gν := r ν−→ s : k{l1 : Gν , l2 : endν}

This is shown by the derivation below

µt. r µ−→ s : k{l1 : t, l2 : endµ} R Gν endµ R endν

r µ−→ s : k{l1 : µt. r µ−→ s : k{l1 : t, l2 : endµ}, l2 : endµ} R Gν

µt. r µ−→ s : k{l1 : t, l2 : endµ} R Gν (9)

where the arrow marks the cycle that solves the coinductive part of the proof. Visually, the
arrow must pass a double line for the proof to be valid.

D. Tirore, J. Bengtson, and M. Carbone 28:7

p ∈ {p1, p2} ∨ guardedν
p(Gν)

guardedν
p(p1

ν−→ p2 : k⟨U⟩.Gν)

p ∈ {p1, p2} ∨ ∀j. guardedν
p(Gν

j)

guardedν
p(p1

ν−→ p2 : k{lj : Gν
j }j∈J)

guardedµ
p (G[µt.G/t])

guardedµ
p (µt.G)

p ∈ {p1, p2} ∨ partOfν
p(Gν)

partOfν
p(p1

ν−→ p2 : k⟨U⟩.Gν)

p ∈ {p1, p2} ∨ ∃j ∈ J. partOfν
p(Gν

j)

partOfν
p(p1

ν−→ p2 : k{lj : Gν
j }j∈J)

partOfµ
p (G[µt.G/t])

partOfµ
p (µt.G)

Figure 2 Definitions of predicates guardedν , guardedµ, partOfν , and partOfµ. The guardedµ and
partOfµ predicates additionally have identical rules to their guardedν and partOfν counterparts,
except for being defined for Gµ and not Gν – these rules have been elided.

Gν ⇃ν
p T ν

p ν−→ p2 : k⟨U⟩.Gν ⇃ν
p

!νk⟨U⟩.T ν

[M1⇃ν]
p ̸= p1 Gν ⇃ν

p T ν

p1
ν−→ p : k⟨u⟩.Gν ⇃ν

p
?νk⟨U⟩.T ν

[M2⇃ν] ¬partOfν
p (Gν)

Gν ⇃ν
p endν [End⇃ν]

p /∈ {p1, p2} guardedν
p (Gν) Gν ⇃ν

p T ν

p1
ν−→ p2 : k⟨U⟩.Gν ⇃ν

p T ν
[M⇃ν]

∀j. Gν
j ⇃ν

p T ν
j

p ν−→ p2 : k{lj : Gν
j }j∈J ⇃ν

p
k ⊕ν {lj : T ν

j }j∈J

[B1⇃ν]

J ̸= {} p /∈ {p1, p2} ∀j. Gν
j ⇃ν

p T ν ∧
guardedν

p (Gν
j)

p1
ν−→ p2 : k{lj : Gν

j }j∈J ⇃ν
p T ν

[B⇃ν]
p ̸= p1 ∀j, Gν

j ⇃ν
p T ν

j

p1
ν−→ p : k{lj : Gν

j }j∈J ⇃ν
p

k &ν {lj : T ν
j }j∈J

[B2⇃ν]

Figure 3 The projection on coinductive types, denoted Gν ⇃ν
p T ν , is defined by coinductive rules.

In order to define projection from coinductive global types to coinductive local types, we
require the two auxiliary predicates guardedν

p(Gν) and partOfν
p(Gν). The former asserts that

p appears in all branches of Gν at finite depth, and the latter asserts that p occurs somewhere
in Gν at finite depth. To reason about finite depth these predicates are inductively defined.
We also define similar predicates guardedµ

p (Gµ) and partOfµ
p (Gµ) for inductive global types

Gµ. All four predicates are defined in Fig. 2.
The rules for projection are presented in Figure 3. Rules [M1⇃ν], [M2⇃ν], [B1⇃ν], and

[B2⇃ν] handle the cases where a projected role p takes part in communication or branching.
Note that our projection allows sender and receiver in a communication to be equal. This
case is a special case of rule [M1⇃ν]. The rules [M⇃ν], [B⇃ν], and [End⇃ν] handle the cases
where p does not take part. In these cases, in order for projection to continue, p must occur
in all possible future branches, otherwise the projection maps to end. These rules are similar
to those given by Castro-Perez et al. [7] as well as Jacobs et al. [19].

Guardedness, enforced by the predicate guardedν
p in the [M⇃ν] and [B⇃ν] rules, is necessary

in order to avoid unwanted derivations similar to that for unravelling in (8).

▶ Example 6. We can now use unravelling and coinductive projection to relate the global type
µt. p µ−→ q : k⟨U⟩. µt′. r µ−→ s : k′{l1 : t, l2 : p µ−→ q : k⟨U⟩. t′} seen in (7) with µt.!µk⟨U⟩.t.
They respectively unravel to

Gν := p ν−→ q : k⟨U⟩.r ν−→ s : k′{l1 : Gν , l2 : Gν}
Eν :=!νk⟨U⟩. Eν

ITP 2023

28:8 A Sound and Complete Projection for Global Types

We can now derive Gν ⇃ν
p Eν by [M1⇃ν], [B⇃ν] followed by [M1⇃ν] and mark a cycle to the

conclusion Gν ⇃ν
p Eν . This precisely justifies why we wish to project the inductive global

type in (7) over role p to the local type µt.!µk⟨U⟩.t.

4 Projection on Inductive Types: Soundness and Completeness

The coinductive projection predicate ⇃ν represents the specification of an ideal projection
from coinductive global types to coinductive local types. In this section, we present a
projection function proj on µ-types that is sound and complete with respect to the ⇃ν

projection predicate. We extend on previous work by Castro-Perez et al. [7] whose projection
function is shown to be sound but not complete.

▶ Definition 7 (proj). The function proj : P → Gµ ⇀ T µ, written projp(Gµ), is the projection
of the global µ-type Gµ with respect to the role p and is defined as:

projp(Gµ) =
{

transp(Gµ) if projectablep(Gµ)
undefined otherwise

Our projection function features two auxiliary entities, namely the translation function trans
and the predicate projectable which precisely separate the generation of the local type and
the check for projectability respectively.

▶ Definition 8 (trans). The function trans : P → Gµ → T µ is identical to the function ⇂µ

(see Figure 1) except for the branching case, defined as:

transp(p1
µ−→ p2 : k{lj : Gµ

j }j∈J) =

k ⊕µ {lj : transp(Gµ

j)}j∈J if p = p1 and p1 ̸= p2

k &µ {lj : transp(Gµ
j)}j∈J if p = p2 and p1 ̸= p2

transp(Gµ
1) if p ̸∈ {p1, p2}

The only difference from Definition 2 is that the removal of the branching condition has made
trans total. These conditions are checked by the projectable predicate and the challenging
part of implementing proj is proving decidability of this predicate.

▶ Definition 9 (projectable). The predicate projectablep(Gµ) states that the global µ-type Gµ

is projectable with respect to the role p and is defined as:

projectablep(Gµ) = ∃Gν T ν . Gµ R Gν ∧ transp(Gµ) R T ν ∧ Gν ⇃ν
p T ν

The predicate states that the µ-types Gµ and transp(Gµ) are related by unravelling to some
coinductive types Gν and T ν respectively, and that T ν is the coinductive projection of Gν

with respect to p. This predicate is decidable and we detail why in Section 5.

Soundness. Proving that proj is sound with respect to ⇃ν is relatively straightforward.

▶ Theorem 10. If projp(Gµ) is defined then there exist coinductive types Gν and T ν such
that Gµ R Gν , projp(Gµ) R T ν and Gν ⇃p T ν .

Proof. Follows directly from the definition of proj and projectable by setting Gν and T ν to
their corresponding types obtained from projectable. ◀

Gν T ν

Gµ T µ

⇃ν

proj
R R

D. Tirore, J. Bengtson, and M. Carbone 28:9

Completeness. For completeness, we require an auxiliary operation unfold(·) on global and
local µ-types that unfolds all binders until an interaction prefix or end are exposed.

unfold(Gµ) = unfold_once|Gµ|(Gµ) unfold_once(Gµ) =
{

Gµ
1 [µt.Gµ

1 /t], if Gµ = µt.Gµ
1

Gµ otherwise

Above, |Gµ| is the µ-height of Gµ, i.e., the number of initial consecutive binders found
in Gµ. Here, fn denotes repeated function composition. For example, |µt.end| = 1 and
|p µ−→ p′ : k⟨U⟩.µt. end| = 0. We overload unfolding with unfold(T µ) and |T µ|, for having the
corresponding meaning on local types.

Gν T ν

Gµ T µ

⇃ν

proj
R R

In order to show completeness of proj with respect to ⇃ν , we need to show that if Gν ⇃ν
p T ν

and Gµ R Gν then projp(Gµ) is defined and projp(Gµ) R T ν . We prove this by showing
that transp(Gµ) unravels to tocoind(transp(Gµ)); then, we show transp(Gµ) = projp(Gµ) and
tocoind(transp(Gµ)) = T ν . The function tocoind is defined as

▶ Definition 11 (tocoind). The corecursive function tocoind : T µ → T ν is defined as

tocoind(T µ) =

!νk⟨U⟩.tocoind(T µ) if unfold(T µ) =!µk⟨U⟩.T µ

?νk⟨U⟩.tocoind(T µ) if unfold(T µ) =?µk⟨U⟩.T µ

k ⊕ν {lj : tocoind(T µ
j)}j∈J if unfold(T µ) = k ⊕µ {lj : T µ

j }j∈J

k &ν {lj : tocoind(T µ
j)}j∈J if unfold(T µ) = k &µ {lj : T µ

j }j∈J

endν otherwise

Note that, T µ R tocoind(T µ) does not always hold, as R is only defined for closed and
contractive T µ. However, for closed global types, trans does unravel to a coinductive type.

▶ Lemma 12 (Unraveling of trans). If Gµ is closed then transp(Gµ) R tocoind(transp(Gµ)).

Proof. Since Gµ is closed, we know that transp(Gµ) is closed. Moreover, the image of
transp is always contractive. For any closed and contractive local type T µ, we know that
T µ R tocoind(T µ), by coinduction on R . In particular this holds for transp(Gµ). ◀

▶ Lemma 13 (trans as projection). If Gµ R Gν and Gν ⇃ν
p T ν then tocoind(transp(Gµ)) = T ν .

Proof. By coinduction using the candidate relation {(tocoind(transp(Gµ)), T ν) | Gν ⇃ν
p

T ν ∧ Gµ R Gν}. From Gν ⇃ν
p T ν , derive guardedν

p(Gν) ∨ T ν = endν . The first case is proven
by induction on guardedν

p(Gν); for the second we know from Gν ⇃ν
p endν and Gµ R Gν that

¬partOfν
p(Gµ) and hence tocoind(transp(Gµ)) = endν . ◀

From these Lemmas, completeness follows immediately.

▶ Theorem 14. If Gν ⇃co
p T ν and Gµ R Gν then projp(Gµ) is defined and projp(Gµ) R T ν .

Proof. From Gµ R Gν , we know using Proposition 4 that Gµ is closed. Applying
Lemma 12, we have that transp(Gµ) R tocoind(transp(Gµ)). Finally, from Lemma 13,
we have that transp(Gµ) R T ν . It thus holds that projectablep(Gµ), so projp(Gµ) is defined
and transp(Gµ) = projp(Gµ) letting us conclude projp(Gµ) R T ν . ◀

ITP 2023

28:10 A Sound and Complete Projection for Global Types

unfold(Gµ) ⇃⇃µ
p unfold(T µ)

Gµ ⇃µ
p T µ [Unf⇃µ]

p /∈ {p1, p2} guardedµ
p (Gµ) Gµ ⇃µ

p T µ

p1
µ−→ p2 : k⟨U⟩.Gµ ⇃⇃µ

p T µ
[M⇃µ]

Gµ ⇃µ
p T µ

p µ−→ p1 : k⟨U⟩.Gµ ⇃⇃µ
p !µk⟨U⟩.T µ

[M1⇃µ]
∀j. Gµ

j ⇃µ
p T µ

j

p µ−→ p1 : k{lj : Gµ
j }j∈J ⇃⇃µ

p k ⊕µ {lj : T µ
j }j∈J

[B1⇃µ]

p ̸= p1 Gµ ⇃µ
p T µ

p1
µ−→ p : k⟨U⟩.Gµ ⇃⇃µ

p ?µk⟨U⟩.T µ
[M2⇃µ]

p ̸= p1 ∀j. Gµ
j ⇃µ

p T µ
j

p1
µ−→ p : k{lj : Gµ

j }j∈J ⇃⇃µ
p k &µ {lj : T µ

j }j∈J

[B2⇃µ]

¬partOfµ
p (Gµ) Unravels(Gµ)

Gµ ⇃⇃µ
p endc

[End⇃µ]
J ̸= {} p /∈ {p1, p2} ∀j. Gµ

j ⇃µ
p T µ ∧ guardedµ

p (Gµ
j)

p1
µ−→ p2 : k{lj : Gµ

j }j∈J ⇃⇃µ
p T µ

[B⇃µ]

Figure 4 Intermediate projection on inductive types, written as Gµ ⇃µ
p T µ.

5 Deciding Projectability

In this section, we show that projectable is decidable. We do this in two steps: first, we define
the intermediate projection Gµ ⇃µ

p T µ and show that it is sound and complete with respect
to our coinductive projection; second, given a pair (Gµ, T µ), we construct a graph and show
that deciding Gµ ⇃µ

p T µ can be reduced to checking properties of that graph.

An Intermediate Projection. The rules defining Gµ ⇃µ
p T µ, presented in Figure 4, are

similar to those for coinductive projection, but also enforce the unfolding operation unfold
on both µ-types. Initially, the only applicable rule is [Unf⇃µ], which unfolds µ-types. Then,
the rules inspired by coinductive projection are used. In order to enforce unfolding every
time we apply any other rule, we use the auxiliary relation ⇃⇃µ

p .
We now show that there is a correspondence between intermediate projection ⇃µ

p and
coinductive projection ⇃ν

p . In order to do so, we need to define how to construct a coinductive
type from an inductive one. We have shown how to do this for inductive local types with
tocoind(T µ) and we overload this tocoind function to similarly work with inductive global
types Gµ. We use the abbreviations Unravels(Gµ) and Unravels(T µ) for Gµ R tocoind(Gµ)
and T µ R tocoind(T µ) respectively.

▶ Lemma 15 (Unraveling of Projection).
Gµ ⇃µ

p T µ iff Unravels(Gµ) and Unravels(T µ) and tocoind(Gµ) ⇃ν
p tocoind(T µ).

Proof. (=⇒) Derive both Unravels(Gµ) and Unravels(T µ) by coinduction on R and
inversion on Gµ ⇃µ

p T µ. Prove tocoind(Gµ) ⇃ν
p tocoind(T µ) by coinduction on ⇃ν

p and derive
from Gµ ⇃µ

p T µ that guardedµ
p (Gµ) ∨ unfold(T µ) = endµ and proceed as in Lemma 13.

(⇐=) Proof by coinduction on ⇃µ
p and derive from tocoind(Gµ) ⇃ν

p tocoind(T µ) that
guardedν

p(tocoind(Gµ)) ∨ tocoind(T µ) = endν , case analysis on the disjunction as in Lemma
13, inverting Unravels(Gµ) and Unravels(T µ) to derive the shape of Gµ ⇃µ

p T µ. ◀

▶ Corollary 16. projectablep(Gµ) iff Gµ ⇃µ
p transp(Gµ).

Proof. For (=⇒) we first show for any Gµ and Gν , if Gµ R Gν then Gν = tocoind(Gµ)
(and similarly for local types). Then both directions follow from Lemma 15. ◀

Deciding Gµ ⇃µ
p T µ is similar to deciding recursive type equivalence. Treatment of

recursive types as graphs for equivalence testing is a well known approach [26] and solves the

D. Tirore, J. Bengtson, and M. Carbone 28:11

problem by testing properties of reachable nodes in a directed graph. In this section, we do
the same for deciding Gµ ⇃µ

p T µ. First, we show how to transform global and local types into
graphs. Then, we obtain a graph of the pair (Gµ, T µ) by joining the graphs of Gµ and T µ.
Deciding Gµ ⇃µ

p T µ corresponds to testing a property on all reachable nodes of that graph.

Graphs. We first give the formal definition of graph, following that of Eikelder [26].

▶ Definition 17 (Graph). A directed graph is a triple (Q, d, δ) where:
Q is a finite set of nodes
d: Q → N is a function returning the number of outgoing edges from a node
δ : (Q × N) ⇀ Q is the partial successor function such that δ(q, i) is the ith successor of
q, for 0 < i ≤ d(q) nodes, and is undefined for all other i.

Given a graph (Q, d, δ), we define the procedure satP which computes if all reachable
nodes from an initial node q satisfy a given property P .

▶ Definition 18 (satP). The function satP : 2Q → Q → {0, 1}, parameterised by a boolean
predicate P : Q → {0, 1}, is defined as:

satP (V, q) =
{

1 if q ∈ V

P (q) ∧
∧

i<d(q) satP

(
{q} ∪ V, δ(q, i)

)
otherwise

Given a set of visited nodes V , a current state q, and the predicate P , the function returns 1
if the node has already been visited; otherwise, it will recursively check the successors.

Global and Local Types as Graphs. We now give a procedure for constructing a graph
from a global type. The graph construction for local types is similar and therefore omitted.

▶ Definition 19 (Global type graph). The graph of a global type Gµ is (enumg(Gµ), dg, δg)
where enumg, dg and δg are defined as:

enumg(p1
µ−→ p2 : k⟨U⟩.Gµ) = {p1

µ−→ p2 : k⟨U⟩.Gµ} ∪ enumg(Gµ) enumg(end) = {end}
enumg(p1

µ−→ p2 : k{lj : Gµ
j }j∈J) = {p1

µ−→ p2 : k{lj : Gµ
j }j∈J } ∪

⋃
j∈J

enumg(Gµ
j)

enumg(t) = {t} enumg(µt.Gµ) = {µt.Gµ} ∪ {Gµ
1 [µt.Gµ/ t] | Gµ

1 ∈ enumg(Gµ)}

dg(Gµ) =

 1 if unfold(Gµ) = p1
µ−→ p2 : k⟨u⟩.Gµ

|J | if unfold(Gµ) = p1
µ−→ p2 : k{lj : Gµ

j }j∈J

0 otherwise

δg(Gµ, i) =

 Gµ
1 if unfold(Gµ) = p1

µ−→ p2 : k⟨u⟩.Gµ
1 ∧ i = 1

Gµ
i if unfold(Gµ) = p1

µ−→ p2 : k{lj : Gµ
j }j∈J ∧ 0 < i ≤ |J |

undefined otherwise

The enumeration function enumg collects all subterms of a global type. In the case of µt.Gµ,
it enumerates all subterms of the body Gµ that can contain free occurrences of t, and
substitute them all for µt.Gµ. These subterms are all nodes of the global type graph Gµ.

▶ Example 20. We show the global type graph of our main example from (7).

µt.Gµ µt′.(Gµ
1 [µt.Gµ/t]) p −→ q : k⟨U⟩.µt′.(Gµ

1 [µt.Gµ/t])1
1

2
1

ITP 2023

28:12 A Sound and Complete Projection for Global Types

where Gµ := p −→ q : k⟨U⟩. µt′.Gµ
1 and Gµ

1 := r −→ s : k′{l1 : t, l2 : p −→ q : k⟨U⟩. t′}.

Given a global type Gµ, we wish to use satP ({}, Gµ) to assert whether P holds for all
nodes reachable by δg. To ensure termination of this procedure, we show that the set of
reachable nodes is finite, a consequence of Q being closed under δg.

▶ Lemma 21. If Gµ
1 ∈ enumg(Gµ) and 0 ≤ i < dg(Gµ

1), then δg(Gµ
1 , i) ∈ enumg(Gµ).

Proof. Let δaux be δg without the use of unfold in the first two case distinctions, i.e.,
δg = δaux ◦ unfold. Showing enumg(Gµ) is closed under δ reduces to showing enumg(Gµ) is
closed under δaux and unfold. By definition, enumg(Gµ) is closed under δaux. For enumg(Gµ)
to be closed under unfold, it suffices to show that it is closed under unfold_once, which follows
by induction on the µ-height. ◀

We are now ready to show how to use our graph construction for proving a property of a
global type using satP . We do that by proving that Unravels(Gµ) is decidable. In this case,
we instantiate P in satP with a predicate that disallows global types to unfold to a top level
µ-operator or a recursion variable.

▶ Definition 22 (UnravelPred). The predicate UnravelPred : Gµ → {0, 1} is defined as:

UnravelPred(Gµ) =
{

0 if unfold(Gµ) = µt.Gµ
1 ∨ unfold(Gµ) = t

1 otherwise

▶ Lemma 23. Unravels(Gµ) iff satUnravelPred({}, Gµ) = 1

The instantiation satUnravelPred tests that Gµ and all successors of Gµ unfold to a message
communication, a branching or endµ. The procedure will for example fail for µt.t. More
details on this procedure are given in Section 6.

We conclude this part by defining the partial functions LG, LT and PLp. Given an
inductive global type, function LG returns its unfolded prefix, i.e., information about its first
occurring interaction.

▶ Definition 24 (LG). The function LG ∈ G ⇀ (P × P × C × ({⊥} ∪ U)) is defined as:

LG(Gµ) =

(p1, p2, k, U) if unfold(Gµ) = p1 −→ p2 : k⟨U⟩.Gµ

1
(p1, p2, k, ⊥) if unfold(Gµ) = p1

µ−→ p2 : k{lj : Gµ
j }j∈J

undefined otherwise

Similar to how LG returns the unfolded prefix in a global type, we define the corresponding
operation on local types as LT . We use the set {!, ?} to indicate whether the communication
is a send (!) or a receive (?).

▶ Definition 25 (LT). The function LT : T ⇀ ({!, ?} × C × ({⊥} ∪ U)) is defined as:

LT (T µ) =

(!, k, U) if unfold(T µ) =!µk⟨U⟩.T µ

1
(?, k, U) if unfold(T µ) =?µk⟨U⟩.T µ

1
(!, k, ⊥) if unfold(T µ) = k ⊕µ {lj : T µ

j }j∈J

(?, k, ⊥) if unfold(T µ) = k &µ {lj : T µ
j }j∈J

undefined otherwise

Finally, we can define a projection function on prefixes, i.e., a function that given a role
and an unfolded prefix of a global type, returns an unfolded prefix of a local type.

▶ Definition 26. The function PLp ∈ (P × P × C × ({⊥} ∪ U)) ⇀ ({!, ?} × C × ({⊥} ∪ U))
is defined as:

PLp(p1, p2, k, U) =

 (!, k, U), if p1 = p
(?, k, U), if p2 = p and p ̸= p1

undefined otherwise

D. Tirore, J. Bengtson, and M. Carbone 28:13

Combining global and local type graphs. The next step towards deciding membership in
⇃µ

p is to combine the graphs of Gµ and T µ into a single graph with respect to a role p.

▶ Definition 27 (Joint Global and Local Type Graph). The graph of (Gµ, T µ) with respect to
p is the graph (enum(Gµ, T µ), d, δp), where enum, d and δp defined as:

enum(Gµ, T µ) = enum(Gµ) × enum(T µ) d(Gµ, T µ) = min(dg(Gµ), dl(T µ))

δp((Gµ, T µ), i) =

 (δg(Gµ, i), δl(T µ, i)) if p ∈ LG(Gµ) ∧ 0 < i ≤ d(Gµ, T µ)
(δg(Gµ, i), T µ) if p /∈ LG(Gµ) ∧ 0 < i ≤ dg(Gµ)
undefined otherwise

The set of nodes is the Cartesian product of the nodes in the global type graph and the local
type graph. The successor function δp takes a step with respect to a role p and the case
distinction depends on this role. If p is in LG(Gµ), the ith successor of the graph is the ith

successor of the global and local type graph respectively. If p is not in the unfolded prefix,
the global type moves to its successor while the local type stays fixed.

▶ Example 28. We show the joint graph of p µ−→ q : k⟨U⟩.r µ−→ s : k′⟨U ′⟩.endµ and
!µk⟨U ′⟩.endµ with respect to role c marking the edges black when the local type stays
fixed.

p µ−→ q : k⟨U⟩.
r µ−→ s : k′⟨U ′⟩.endµ

!µk′⟨U ′⟩.endµ

r µ−→ s : k′⟨U ′⟩.endµ

!µk′⟨U ′⟩.endµ

endµ

endµ1 1

Deciding membership in ⇃µ
p . We define the predicate ProjPredp to decide membership

in ⇃µ
p . Intuitively, this predicate partitions the rules of ⇃µ

p into three sets such that the
projected role p
1. is in the unfolded prefix ([M1⇃µ], [M2⇃µ], [B1⇃µ], [B2⇃µ])
2. is not in the unfolded prefix, but the role is guarded in the global type ([B⇃µ],[M⇃µ])
3. is not part of the global type ([End⇃µ]).
We call rules in the first set prefix rules and rules in the second set guarded rules. The
only rule that is not yet mentioned is unfolding, [Unf⇃µ], which is implicitly applied by the
definition of δ.

▶ Definition 29 (ProjPredp). The boolean predicate ProjPredp ∈ Gµ × T µ → {0, 1} is defined
as:

ProjPredp(Gµ, T µ) =

(1) P Lp(LG(Gµ)) = LT (T µ) ∧
dg(Gµ) = dl(T µ) if P Lp(LG(Gµ)) is defined

(2) 0 < dg(Gµ) if partOfµ
p (Gµ) and guardedµ

p (Gµ)
(3) satUnravelPred({}, Gµ) ∧

¬partOfµ
p (Gµ) ∧

unfold(T µ) = end otherwise

We explain the three cases of the predicate.
1. Attempt to apply a prefix rule: This requires p to be in the unfolded prefix of the global

type. This is checked by requiring that PLp is defined. We then apply PLp to the
unfolded prefix, and assert it equal to the unfolded prefix of the local type. All prefix
rules require the global and local type to have equally many outgoing edges, which we
check by dg(Gµ) = dl(T µ).

ITP 2023

28:14 A Sound and Complete Projection for Global Types

2. Attempt to apply a guarded rule: We rely on decidability of partOfµ and guardedµ which
is straightforward so we do not detail how2. All guarded-rules require the set of outgoing
edges of the global type to be greater than zero, which we assert. Concretely this test
corresponds to the first premise of rule [B⇃µ], asserting its label set is non-empty.

3. Attempt to apply [End⇃µ].

▶ Theorem 30. Gµ ⇃µ
p T µ iff satProjPredp({}, (Gµ, T µ)) = 1

Proof. For (=⇒), we show the property for any visited list v, that is, Gµ ⇃µ
p T µ implies

satProjPredp(v, (Gµ, T µ)) = 1. Proceed by functional induction on satProjPredp(v, (Gµ, T µ)). For
(⇐=), for any v, it suffices to show satProjPredp(v, (Gµ, T µ)) = 1 implies (Gµ, T µ) ∈ v ∨ Gµ ⇃µ

p
T µ. Proceed by functional induction on satProjPredp(v, (Gµ, T µ)). In the second case where v

is non-empty, pick the right disjunct Gµ ⇃µ
p T µ and proceed by coinduction. ◀

▶ Corollary 31. projectablep(Gµ) is decidable.

Proof. Follows from Theorem 30 and Corollary 16. ◀

6 Mechanisation

All of our results are mechanised in Coq [6] using SSReflect [14] for writing proofs, the
Paco library [18] for defining coinductive predicates, the Equations package [24] for defining
functions by well-founded recursion (such as satP), and Autosubst2 [25] to generate syntax
of inductive global and local types with binders represented by De Bruijn indices [10].

The mechanisation uses coinductive extensional equivalence relations to equate coinductive
terms. For presentation purposes, e.g. in the conclusion of Lemma 12, we use propositional
equality to equate coinductive types. These two types of equality are consistent [1].

In this section, we cover how to create predicates and relations that are defined using both
inductive and coinductive inference rules, like our unravelling relation from Definition 3. We
discuss how to create an inversion principle that allows us to do case analysis on predicates
of the form Unravels(Gµ) which, as discussed in Section 5, is defined as Gµ R tocoind(Gµ).
Finally, we show how we prove decidability of Unravels using satP .

Mixed inductive and coinductive definitions. The unravelling relation presented in Defini-
tion 3 uses a combination of inductive and coinductive rules, which is non-standard. We do
this because it greatly simplifies our proofs and disallows unwanted derivations like the one
presented in Section 3 (8) by construction. We mix inductive and coinductive rules by taking
the greatest fixed point of a generating function defined as a least fixed point, a technique
that Zakowski et al. [29] also have used to define weak bisimilarity of streams.

Definition grel := gType -> gcType -> Prop
Inductive UnravelF (R : grel) : grel := (* Generating function UnravelF *)
| UnrF1 g gc a u : R g gc -> UnravelF R (GMsg a u g) (GCMsg a u gc)
(* The branching rule is elided *)
| UnrF_unf1 g gc : UnravelF R (unf1 (GRec g)) gc -> UnravelF R (GRec g) gc
| UnrF_end : UnravelF R GEnd GCEnd.

Definition Unravelling : grel := paco2 UnravelF bot2 (* gfp UnravelF *)

2 We need to assert both partOfµ
p (Gµ) and guardedµ

p (Gµ) for completeness as we from Gν ⇃ν
p endν and

Gµ R Gν then can conclude the third case of ProjPredp.

D. Tirore, J. Bengtson, and M. Carbone 28:15

We represent p1
µ−→ p2 : k⟨U⟩.Gµ and p1

ν−→ p2 : k⟨U⟩.Gν as GMsg a u g of type gType and
GCMsg a u gc of type gcType respectively, where a contains roles p1, p2 and channel k, u is
U , g is Gµ, and gc is Gν . The terms GEnd and GCEnd represent endµ and endν respectively
and the function unf1 is the unfold_once function from Section 4.

UnravelF is an inductively defined relation relating global inductive types to global
coinductive types. It is parameterised by a relation R of the same type where (g, gc) ∈
UnravelF R if, after unfolding a finite number of binders from g resulting in type g’, either
g′ = GEnd and gc = GCEnd, or g′ = GMsg a u g′′, gc = GCMsg a u gc′′, and (g′′, gc′′) ∈ R, or
similarly for the elided branch case.

Intuitively, UnravelF is a generating function defined as a least fixed point and by taking
the greatest fixed point of this function we obtain a hybrid inductive/coinductive relation
where any occurrence of R in a premise of UnfoldF require us to take coinductive steps in
our proofs and any recursive occurrence of UnfoldF requires us to take inductive steps. This
allows us to do proofs like (9) where proofs are finished by circling back to previous equivalent
nodes in the tree in the coinductive cases or by reaching a base case in the inductive cases.
Moreover this approach forbids us from unfolding binders indefinitely since UnrF_unf1 is
inductive and not coinductive.

We use paco2 from the Paco library to define Unravelling as the greatest fixed point of
UnravelF. Paco stands for parameterised coinduction and paco2 F R defines the greatest fixed
point of F parameterised by a binary relation R, which is equivalent to gfp(λX. F(X ∪ R)).
When R is the empty set this coincides with the standard greatest fixed point.

Custom inversion principles. Many proofs on inductive global types work up to unfolding.
Unravelling, for instance, unravels a finite number of µ-binders at every step and our
intermediate projection function ⇃µ

p and sat procedure both work in a similar way. To
abstract away from finite unfoldings we use the following InvPred predicate.

Variant InvPredF (P : gType -> Prop) : gType -> Prop :=
| HTM g a u : P g -> InvPredF P (GMsg a u g)
| HTB gs d : Forall P es -> InvPredF P (GBranch d gs)
| HTE : InvPredF P GEnd
Definition unf g := (iter (mu_height g) unf1 g).
Variant UnfoldF (P : gType -> Prop) : gType -> Prop :=
| UnfF1 g : P (unf g) -> UnfoldF g.

Definition InvPred : (gType -> Prop) := paco1 (UnfoldF \o InvPredF) bot.
(*function composition*)

We define two generating functions InvPredF and UnfoldF and generate InvPred as the greatest
fixed point of their composition. The function unf corresponds to unfold from Section 4.
InvPredF contains cases for all constructors of inductive global types except for µt and t.
UnfoldF unfolds the top-level µ-binders from a global type. The key insight is that InvPred(Gµ)
is equivalent to asserting closedness and contractiveness of Gµ.

The inversion principle of InvPred is convenient for proving predicates P that are closed
under unfolding of inductive global types, i.e. ∀G. P µt.G ⇐⇒ P G[µt.G], as any unfolding
applied by inverting UnfoldF can similarly be applied in the goal. In particular the predicate
Unravels(Gµ) is closed under unfolding and provable by inversion of UnfoldF.

Well-foundedness of satP . Lemma 23 proves decidability of Unravels. This proof is mech-
anised by proving decidability of InvPred(Gµ), which as we show above implies Unravels(Gµ).
The invP predicate corresponds to Definition 22.

ITP 2023

28:16 A Sound and Complete Projection for Global Types

Definition invP g :=
match unf g with | GRec _ | GVar _ => false | _ => true end.

Definition invpred g := sat nil invP g.
Theorem InvPred_dec : forall g, InvPred g <-> invpred g = true

We use the Equations package to define satP by well-founded recursion on the decreasing
measure gmeasure g V which is defined as the number of unique nodes in the graph created
from g minus the cardinality of the visited set V. The successor function δg is implemented
by nextg : gType -> seq gType.

1 Definition gmeasure (g : gType) (V : seq gType) :=
2 size (rep_rem V (undup (enumg g))).
3 Lemma closed_enum : forall g0 g1 g2, g1 \in nextg (unf g) ->
4 g2 \in enumg g1 -> g2 \in enumg g.
5 Equations sat (V : seq gType) (P : gType -> bool)
6 (g : gType) : bool by wf (gmeasure g V) :=
7 sat V P g with (dec (g \in V)) => {
8 sat _ _ _ in_left := true;
9 sat V P g in_right := (P g) &&

10 (foldInMap (nextg (unf g))
11 (fun g' _ => sat (g::V) P g')) }.

Defining sat generates one obligation that must be proved to show termination. If we write
gmeasure g V as M(g, V), then we must show it is decreasing for arguments to the recursive
call, i.e. that M(g′, {g} ∪ V) < M(g, V)

Using a variant of the familiar map on inductive lists called foldInMap our obligation is
enriched with the assumption that g′ = δ(g, i) for some 0 < i ≤ dg(g). The boolean wrapper
dec further enriches the obligation with the case of the if-statement, g /∈ V .

What must be proven in this obligation is slightly different from the termination argument
in Section 5 which relied on the finiteness of a graph’s nodes. The obligation instead relies
on a lemma closed_enum (l. 3). The lemma states that the enumerations of a global types
continuations, will all be part of the initial global types enumeration. The proof of this
lemma is short, less than 100 lines.

The full termination proof for sat is short (about 250 lines) and the approach is general.
The mechanisation also proves termination of the decision procedure for membership in ⇃ind.
This task only requires adapting the algorithm to pairs of terms. This termination proof is
also short. The conciseness is due to the space of continuations being computed by structural
recursion by enum. This makes it straightforward to prove substitution properties about it
by induction on syntax.

7 Related Work and Discussion

Related Work. Ghilezan et al. [13] are the first to introduce coinductive projection on
coinductive global and local types. They use it to show soundness and completeness of
synchronous multiparty session subtyping. A key difference is that whereas we represent the
infinite unfolding of a µ-type as a coinductive type, they represent it as a partial function.
Projection on µ-types is then defined indirectly in terms of the coinductive projection of
their corresponding partial functions. Because of this indirect definition, their projection is
not computable. Our intermediate projection ⇃µ is similar to their projection on µ-types.

D. Tirore, J. Bengtson, and M. Carbone 28:17

However, ours is defined with inference rules stated directly on the µ-types which is why we
can decide membership and thus compute projection. Castro-Perez et al. [7] use coinductive
projection to express their meta theory about multiparty session types. Their main result is
trace equivalence between processes, coinductive local types and coinductive global types,
which they mechanise in Coq. Like us, they show soundness of their projection on µ-types.
Their projection is however not complete, which is what inspired us to investigate approaches
to sound and complete projection. A consequence of their projection on µ-types not being
complete, is that there are many inductive global types that have the trace equivalence
property, but must be excluded since their projection is undefined. Jacob et al. [19] show
deadlock and leak freedom of multiparty GV, an extension of the functional language
GV [12, 28]. They use coinductive projection to define when local types are compatible and
do not define a projection on µ-types. Other work has formalised the notion of projection in
Coq. Cruz-Filipe et al. [9, 8] formalise syntax and semantics of tail-recursive choreographies
and a projection that includes full merge. However, this work does not approach coinductive
syntax and therefore does not show any soundness and completeness results.

Our graph algorithm from Section 5 implements a procedure proposed by Eikelder [26].
This work provides several algorithms for deciding recursive type equivalence that, like ours,
use predicates on reachable nodes of a graph. Also, our proof of termination is quite similar
to theirs. However, they define the set of reachable states as set comprehension, whereas we
constructively produce a list of nodes. Similarly, showing their set comprehension is finite,
boils down to substitution lemmas. Unlike ours, their work has not been mechanised in a
proof assistant/theorem prover. The idea of defining the space of continuations for global
and local type as an explicit enumeration is inspired by Asperti [3] who mechanise a concise
proof of regular expression equivalence in the Matita theorem prover [4]. They do this by
a new construction called pointed regular expressions. Essentially, this adds marks to a
regular expression, such that one can encode state transitions by moving marks. This makes
computing reachable configurations as trivial as computing all markings.

We define unravelling using a mix of inductive and coinductive rules. In Section 6, we
make this precise by defining unravelling as the greatest fixed point of a generating function
itself defined as a least fixed point. Zakowski et al. [29] use the same technique to define a
weak bisimilarity on streams.

The primary focus of this work is on global types. Scalas and Yoshida [23] propose a more
general approach that shows that properties such as deadlock freedom can be derived directly
on local types without the need for global types and the corresponding projection. However,
their approach misses the main advantage provided by global types which is providing a
specification (blueprint) of the used protocols.

Discussion and Future work. This work is part of the MECHANIST project that aims at
mechanising the full theory of multiparty asynchronous session types [17]. Our next step is to
mechanise a proof of semantic equivalence between global types and their projections to local
types through projp. Semantic equivalence is a property similar to trace equivalence which
Castro-Perez et al. [7] mechanised. However, there are some key differences in our objectives.
Their main result is Zooid, a tool that extracts certified message-passing programs, which
is why their process syntax differs significantly from the original syntax by Honda et al
(e.g., no parallel composition). Instead, we aim at mechanising the exact process calculus
presented by Honda et al.. As the meta theory in Castro-Perez et al. [7] is independent of
their projection function, it would also be interesting future work to adapt projp to their
setting. Finally, projp implements the restrictive plain merge but related work also uses full
merge [13, 8]. It would be interesting to define a binder-agnostic projection using full merge.

ITP 2023

28:18 A Sound and Complete Projection for Global Types

8 Conclusions

Projection is a function that maps global types to local types. The projections found in
the literature impose syntactic restrictions that make them incomplete with respect to
coinductive projection. This work shows the existence of a decidable projection that is
sound and complete. Our procedure works in two phases: first a decision procedure tests
a soundness property and, if successful, a second procedure translates the global type to a
local type. The latter is very similar to the existing projections in the literature. The novelty
of our work is in the decision procedure. All results have been mechanised in Coq.

References
1 Coinductive types and corecursive functions. https://coq.inria.fr/refman/language/core/

coinductive.html. Accessed: May 2023.
2 Session types in programming languages: A collection of implementations. http://www.

simonjf.com/2016/05/28/session-type-implementations.html. Accessed: May 2023.
3 Andrea Asperti. A compact proof of decidability for regular expression equivalence. In

proceedings of ITP, volume 7406 of LNCS, pages 283–298. Springer, 2012. doi:10.1007/
978-3-642-32347-8_19.

4 Andrea Asperti, Wilmer Ricciotti, Claudio Sacerdoti Coen, and Enrico Tassi. The Matita
interactive theorem prover. In Proceedings of CADE, volume 6803 of LNCS, pages 64–69.
Springer, 2011. doi:10.1007/978-3-642-22438-6_7.

5 Andi Bejleri and Nobuko Yoshida. Synchronous multiparty session types. In Proceedings of
PLACES, volume 241 of ENTCS, pages 3–33. Elsevier, 2008. doi:10.1016/j.entcs.2009.06.
002.

6 Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development -
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science.
An EATCS Series. Springer, 2004. doi:10.1007/978-3-662-07964-5.

7 David Castro-Perez, Francisco Ferreira, Lorenzo Gheri, and Nobuko Yoshida. Zooid: a DSL for
certified multiparty computation: from mechanised metatheory to certified multiparty processes.
In Proceedings of PLDI, pages 237–251. ACM, 2021. doi:10.1145/3453483.3454041.

8 Luís Cruz-Filipe, Fabrizio Montesi, and Marco Peressotti. Certifying choreography compilation.
In Antonio Cerone and Peter Csaba Ölveczky, editors, Proceedings of ICTAC 2021, volume
12819 of Lecture Notes in Computer Science, pages 115–133. Springer, 2021. doi:10.1007/
978-3-030-85315-0_8.

9 Luís Cruz-Filipe, Fabrizio Montesi, and Marco Peressotti. Formalising a turing-complete
choreographic language in coq. In Liron Cohen and Cezary Kaliszyk, editors, Proceedings of
ITP 2021, volume 193 of LIPIcs, pages 15:1–15:18. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021. doi:10.4230/LIPIcs.ITP.2021.15.

10 Nicolaas Govert de Bruijn. Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the Church-Rosser theorem. Indagationes
Mathematicae (Proceedings), 75(5):381–392, 1972. doi:10.1016/1385-7258(72)90034-0.

11 Romain Demangeon and Nobuko Yoshida. On the expressiveness of multiparty sessions. In
Proceedings of FSTTCS, volume 45 of LIPIcs, pages 560–574, 2015. doi:10.4230/LIPIcs.
FSTTCS.2015.560.

12 Simon Gay and Vasco Vasconcelos. Linear type theory for asynchronous session types. Journal
of Functional Programming, 20(1):19–50, 2010. doi:10.1017/S0956796809990268.

13 Silvia Ghilezan, Svetlana Jaksic, Jovanka Pantovic, Alceste Scalas, and Nobuko Yoshida.
Precise subtyping for synchronous multiparty sessions. Journal of Logical and Albegraic
Methods in Programming, 104:127–173, 2019. doi:10.1016/j.jlamp.2018.12.002.

14 Georges Gonthier, Assia Mahboubi, and Enrico Tassi. A small scale reflection extension for
the coq system, 2016. URL: https://inria.hal.science/inria-00258384.

https://coq.inria.fr/refman/language/core/coinductive.html
https://coq.inria.fr/refman/language/core/coinductive.html
http://www.simonjf.com/2016/05/28/session-type-implementations.html
http://www.simonjf.com/2016/05/28/session-type-implementations.html
https://doi.org/10.1007/978-3-642-32347-8_19
https://doi.org/10.1007/978-3-642-32347-8_19
https://doi.org/10.1007/978-3-642-22438-6_7
https://doi.org/10.1016/j.entcs.2009.06.002
https://doi.org/10.1016/j.entcs.2009.06.002
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1145/3453483.3454041
https://doi.org/10.1007/978-3-030-85315-0_8
https://doi.org/10.1007/978-3-030-85315-0_8
https://doi.org/10.4230/LIPIcs.ITP.2021.15
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.4230/LIPIcs.FSTTCS.2015.560
https://doi.org/10.4230/LIPIcs.FSTTCS.2015.560
https://doi.org/10.1017/S0956796809990268
https://doi.org/10.1016/j.jlamp.2018.12.002
https://inria.hal.science/inria-00258384

D. Tirore, J. Bengtson, and M. Carbone 28:19

15 Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language primitives and
type discipline for structured communication-based programming. In Proceedings of ESOP,
volume 1381 of LNCS, pages 122–138. Springer, 1998. doi:10.1007/BFb0053567.

16 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
In Proceedings of POPL, pages 273–284. ACM, 2008. doi:10.1145/1328438.1328472.

17 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
Journal of the ACM, 63(1):9:1–9:67, 2016. doi:10.1145/2827695.

18 Chung-Kil Hur, Georg Neis, Derek Dreyer, and Viktor Vafeiadis. The power of parameterization
in coinductive proof. In Proceedings of POPL, pages 193–206. ACM, 2013. doi:10.1145/
2429069.2429093.

19 Jules Jacobs, Stephanie Balzer, and Robbert Krebbers. Multiparty GV: functional multiparty
session types with certified deadlock freedom. Proceedings of the ACM on Programming
Languages, 6(ICFP):466–495, 2022. doi:10.1145/3547638.

20 Jean-Baptiste Jeannin, Dexter Kozen, and Alexandra Silva. Cocaml: Functional programming
with regular coinductive types. Fundamenta Informaticae, 150:347–377, 2017. doi:10.3233/
FI-2017-1473.

21 The Coq development team. The Coq Proof Assistant. https://coq.inria.fr. Accessed:
May 2023.

22 Benjamin C. Pierce. Types and programming languages. MIT Press, 2002.
23 Alceste Scalas and Nobuko Yoshida. Less is more: multiparty session types revisited. Proc.

ACM Program. Lang., 3(POPL):30:1–30:29, 2019. doi:10.1145/3290343.
24 Matthieu Sozeau and Cyprien Mangin. Equations reloaded: High-level dependently-typed

functional programming and proving in coq. Proceedings of the ACM on Programming
Languages, 3(ICFP):86:1–86:29, 2019. doi:10.1145/3341690.

25 Kathrin Stark, Steven Schäfer, and Jonas Kaiser. Autosubst 2: reasoning with multi-sorted de
bruijn terms and vector substitutions. In Proceedings of CPP, pages 166–180. ACM, 2019.
doi:10.1145/3293880.3294101.

26 Huub ten Eikelder. Some algorithms to decide the equivalence of recursive types. https:
//pure.tue.nl/ws/files/2150345/9211264.pdf, 1991. Accessed: May 2023.

27 Rob van Glabbeek, Peter Höfner, and Ross Horne. Assuming just enough fairness to make
session types complete for lock-freedom. In Proceedings of LICS, pages 1–13. IEEE, 2021.
doi:10.1109/LICS52264.2021.9470531.

28 Philip Wadler. Propositions as sessions. In Proceedings of ICFP, pages 273–286. ACM, 2012.
doi:10.1145/2364527.2364568.

29 Yannick Zakowski, Paul He, Chung-Kil Hur, and Steve Zdancewic. An equational theory for
weak bisimulation via generalized parameterized coinduction. In Proceedings of CPP, pages
71–84. ACM, 2020. doi:10.1145/3372885.3373813.

ITP 2023

https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/2827695
https://doi.org/10.1145/2429069.2429093
https://doi.org/10.1145/2429069.2429093
https://doi.org/10.1145/3547638
https://doi.org/10.3233/FI-2017-1473
https://doi.org/10.3233/FI-2017-1473
https://coq.inria.fr
https://doi.org/10.1145/3290343
https://doi.org/10.1145/3341690
https://doi.org/10.1145/3293880.3294101
https://pure.tue.nl/ws/files/2150345/9211264.pdf
https://pure.tue.nl/ws/files/2150345/9211264.pdf
https://doi.org/10.1109/LICS52264.2021.9470531
https://doi.org/10.1145/2364527.2364568
https://doi.org/10.1145/3372885.3373813

Real-Time Double-Ended Queue Verified
(Proof Pearl)
Balazs Toth
Department of Computer Science, Technische Univerität München, Germany

Tobias Nipkow Ñ

Department of Computer Science, Technische Univerität München, Germany

Abstract
We present the first verification of the real-time doubled-ended queue by Chuang and Goldberg
where all operations take constant time. The main contributions are the full system invariant, the
precise definition of all abstraction functions, the structure of the proof and the main lemmas.

2012 ACM Subject Classification Software and its engineering → Formal software verification;
Theory of computation → Data structures design and analysis; Software and its engineering →
Functional languages

Keywords and phrases Double-ended queue, data structures, verification, Isabelle

Digital Object Identifier 10.4230/LIPIcs.ITP.2023.29

Funding Tobias Nipkow: Research partially supported by DFG Koselleck grant NI 491/16-1.

1 Introduction

Based on the work of Chuang and Goldberg [2] we implement and formally verify a double-
ended queue (deque) in a purely functional language such that each enqueue and dequeue
operation on either end takes O(1) time in the worst case. This is what real-time means.
Operations on previous versions of a deque are in constant time since purely functional data
structures are persistent by default.

The deque implementation by Chuang and Goldberg consists of two stacks, with each
stack corresponding to one of the two ends of the deque. These two stacks are balanced
at all time, meaning that the bigger stack is never more than three times bigger than the
smaller stack. The enqueue and dequeue operations use the respective stacks (by pushing
and popping). The deque maintains its size invariant by rebalancing the two ends. Since
such a rebalancing takes time O(n), it distributes a constant fraction of the rebalancing steps
on the enqueue and dequeue operations before the invariant can be violated again. This
achieves worst-case and not just amortized constant time for each operation. We show the
detailed implementation in Section 5.

Chuang and Goldberg [2, p.292] describe the main size invariant of a real-time deque and
explain how this invariant is re-established via rebalancing of the two ends. But to formally
verify the implementation, we need much more detailed invariants, which also capture the
state during rebalancing. For example, an explicit measure of the remaining rebalancing
steps is needed. We verify the implementation w.r.t. a formal specification of deques. The
verification uses the interactive theorem prover Isabelle/HOL [12, 11]. The Isabelle theories
are available online [14] and comprise 4400 lines of definitions and proofs. Some of the names
in this paper have been modified (mostly shortened) for presentation reasons.

© Balazs Toth and Tobias Nipkow;
licensed under Creative Commons License CC-BY 4.0

14th International Conference on Interactive Theorem Proving (ITP 2023).
Editors: Adam Naumowicz and René Thiemann; Article No. 29; pp. 29:1–29:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.proof.cit.tum.de/~nipkow/
https://orcid.org/0000-0003-0730-515X
https://doi.org/10.4230/LIPIcs.ITP.2023.29
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 Real-Time Double-Ended Queue Verified (Proof Pearl)

1.1 Related Work
The quest for efficient functional queues started with the two-stack implementation by
Burton [1] where all operations take amortized constant time. Hood and Melville [7] show
how to obtain a real-time implementation by distributing the work of moving elements
from one of the two stacks to the other one over a whole sequence of enqueue and dequeue
operations. A verification of Hood and Melville’s queue can be found elsewhere [4, 10]. The
principles of the real-time deque were already described by Hood [6], apparently unbeknownst
to Chuang and Goldberg. Madhavan and Kuncak [9] automatically verified the amortized
constant-time complexity of a simpler deque (see start of Section 4).

Okasaki [13] shows how to obtain simpler implementations of real-time queues and
deques by relying on lazy evaluation. The resource requirements of his code were analyzed
semi-automatically by Madhavan et al. [8].

2 Preliminaries

Isabelle types are built from type variables, e.g. ′a, and (postfix) type constructors, e.g.
′a list; the function type arrow is ⇒. The notation t :: τ means that term t has type τ . The
notation f n, where f :: τ ⇒ τ , is the n-fold composition of f with itself.

Type ′a list are lists of elements of type ′a. They come with the following vocabulary:
(#) (list constructor), (@) (append), |xs| (length of list xs), rev xs (reverse of xs), hd (head),
tl (tail, where tl [] = []), take n xs (take the first n elements of list xs), drop n xs (drop the
first n elements of list xs), take_last n xs (take the last n elements of list xs), and other
self-explanatory notation. Type nat are the natural numbers. Pairs come with the projection
functions fst and snd. Logical equivalence is written = instead of ←→. A yellow background
marks the code of the actual implementation of the data structure, while code without a
background is just used for the verification.

3 Specification

The interface is comprised of the functions

empty :: ′q is_empty :: ′q ⇒ bool
enqL :: ′a ⇒ ′q ⇒ ′q enqR :: ′a ⇒ ′q ⇒ ′q
deqL :: ′q ⇒ ′q deqR :: ′q ⇒ ′q
firstL :: ′q ⇒ ′a firstR :: ′q ⇒ ′a

where ′q is the type of deques and ′a the type of elements. They allow enqueuing and
dequeuing elements on both ends (as indicated by the L/R suffixes). We express the
specification using an abstraction function listL :: ′q ⇒ ′a list

listL empty = [] is_empty q = (listL q = [])
listL (enqL x q) = x # listL q listR (enqR x q) = x # listR q
listL q ̸= [] −→ listL (deqL q) = tl (listL q) listR q ̸= [] −→ listR (deqR q) = tl (listR q)
listL q ̸= [] −→ firstL q = hd (listL q) listR q ̸= [] −→ firstR q = hd (listR q)

where listR q = rev (listL q). The above properties express that listL and listR are
homomorphisms from deques to lists. There is also an invariant invar :: ′q ⇒ bool and
invar q is an additional precondition of the above equations, except for listL empty = []. All
operations are required to preserve invar – we do not show the corresponding propositions.

B. Toth and T. Nipkow 29:3

4 Abstract Description of Implementation

A deque is represented by two stacks, one for each end of the deque. Things work well as
long as both stacks remain non-empty. As soon as one becomes empty and a deq (= pop)
operation is to be performed, we need to move part of the other stack over to the empty
side first. It can be shown that if the (bottom) half of the non-empty stack is moved (and
reversed), this leads to an implementation with amortized constant-time operations.

To achieve worst-case constant-time complexity the invariant n ≥ m ≥ 1 ∧ 3 ∗ m ≥ n
is maintained where m and n are the sizes of the smaller and the bigger stacks S and
B. If the length of the deque is ≤ 3, it is represented by a single list, all operations are
trivially constant-time and the above invariant does not apply. We focus on the two-stack
situation. The invariant can be violated by dequeuing on the smaller stack or enqueuing on
the larger stack. Let S and B be the stacks after the violating operation and let m = |S |
and n = |B|. Then 3 ∗ m < n and either 3 ∗ (m + 1) ≥ n (pop) or 3 ∗ m ≥ n − 1 (push),
i.e. n = 3 ∗ m + k where 1 ≤ k ≤ 3. Thus there are P and Q such that B = P @ Q and
|Q| = m + 1. Now we transform S into S @ rev Q and B into P in 5 phases. In each phase,
we pop the elements off one stack and push them onto another stack, thus reversing the order.

Big1 Pop the top 2 ∗ m + k − 1 elements off B onto a new stack rP: B = Q and rP = rev P
Small1 Reverse S onto a new stack rS : rS = rev S
Big2 Reverse rP onto a new stack B ′: B ′ = P
Small2 Reverse B onto a new stack S ′: S ′ = rev Q
Small3 Reverse rS onto S ′: S ′ = S @ rev Q

Now S ′ and B ′ are the new stacks. Phases Big1 and Small1 can be performed in parallel
thus taking at most 2 ∗ m + 2 + 1 steps – the 1 is an administrative step between phases.
Similarly, phase Big2 can be performed in parallel with phases Small2 followed by Small3,
thus taking at most 2 ∗ m + 2 + 1 steps again. The 4 ∗ m + 6 steps are spread out as
follows: 6 steps are performed in the violating operation and 4 steps in each subsequent enq
and deq. The invariant cannot be violated again during those m operations: we start with
stacks S ′ and B ′ of size 2 ∗ m + 1 and 2 ∗ m + k − 1; in the worst case k = 1 and all m
operations are deqs on B ′; in the end we still have 3 ∗ (2 ∗ m + k − 1 − m) ≥ 2 ∗ m + 1.
In fact, it takes about 4/3 ∗ m deqs or 4 ∗ m pops before the invariant can be violated
again. Because rebalancing happens in parallel with enqueuing and dequeuing, the stacks
are augmented with further data structures. A counter keeps track of how many elements of
the original stacks are still valid – every deq decrements the counter. An additional list ext
is maintained that enqs push to. At the end of the 5 phases, we cannot just append S ′ to
ext – this would not be constant-time. Thus stacks are actually implemented as pairs of lists
(which complicates push and pop a little) and phase Small3 returns (ext, T) where T is S ′

or B ′ above, which are real lists, not stacks.

5 Verified Implementation

A deque can be in one of the following states:

datatype ′a deque = Empty | One ′a | Two ′a ′a | Three ′a ′a ′a
| Idles (′a idle) (′a idle) | Rebal (′a states)

A deque contains less than four elements (first four constructors), or
it consists of two stacks representing the ends of the deque (Idles constructor), or
it is in the middle of rebalancing (Rebal constructor).

ITP 2023

29:4 Real-Time Double-Ended Queue Verified (Proof Pearl)

The emptyness check is trivial:

is_empty Empty = True
is_empty _ = False

Note that all code is shown on coloured background to distinguish it easily from all verification-
related material.

In the following, we will show the implementation bottom-up, except for the rebalancing
process, where we follow the order of the phases. There are a number of overloaded functions
that are defined on multiple types:

Functions push and pop that implement enq and deq.
Function step implements the rebalancing steps.
An invariant invar.
Two abstraction functions to lists: list returns the list abstraction after rebalancing,
list_current returns the list in the current, non-rebalanced state.
Function remaining_steps calculates the remaining steps of a rebalancing process.

The invariant, list abstractions and remaining_steps are not code but key components of
the verification and important contributions of our paper. Some other functions are also
overloaded. For types that only have a function list its size is defined as:

size d = |list d|

If it has list and list_current then there are size and size_new:

size d = min |list_current d| |list d|
size_new d = |list d|

We verified the following properties for every type that have the respective functions:

list (push x d) = x # list d
invar d −→ size (push x d) = size d + 1
invar d −→ invar (push x d)
invar d −→ remaining_steps (push x d) = remaining_steps d

invar d ∧ 0 < size d ∧ pop d = (x , d ′) −→ x # list d ′ = list d
invar d ∧ 0 < size d ∧ pop d = (x , d ′) −→ size d ′ = size d − 1
invar d ∧ pop d = (x , d ′) −→ invar d ′

invar d ∧ pop d = (x , d ′) −→ remaining_steps d ′ ≤ remaining_steps d

invar d −→ list (step d) = list d
invar d −→ size d = size (step d)
invar d −→ invar (step d)
invar d −→ remaining_steps (step d) = remaining_steps d − 1

For list_current and size_new the same properties hold as for list and size.
Our collection of datatypes is considerably more refined than those by Chuang and

Goldberg because we express a number of the implicit invariants in their code explicitly on
the level of types. For example, Chuang and Goldberg’s type Deque has a constructor LIST
:: ′a list ⇒ Deque that is applied only to lists of size ≤ 4. The latter is an important implicit
invariant that guarantees that operations rev and (@), which are applied to arguments of
LIST, execute in constant time. Our type deque expresses the invariant clearly via the first
four constructors. As a result, our implementation is more explicit but requires more small
building blocks.

B. Toth and T. Nipkow 29:5

5.1 Stack
The basic building block for our implementation is the type ′a stack that serves as the ends
of the deque. It actually consists of two stacks represented by lists:

datatype ′a stack = Stack (′a list) (′a list)

The stack operations below use the left of the two stacks first, and resort to the right list if the
left one is empty. As explained towards the end of Section 4 the right list contains elements
resulting from a rebalancing, and the left list holds elements that were newly enqueued
during rebalancing.

push x (Stack left right) = Stack (x # left) right

pop (Stack [] []) = Stack [] []
pop (Stack (x # left) right) = Stack left right
pop (Stack [] (x # right)) = Stack [] right

first (Stack (x # left) right) = x
first (Stack [] (x # right)) = x

is_empty (Stack [] []) = True
is_empty (Stack _ _) = False

There is no invariant but a list abstraction function:

list (Stack left right) = left @ right

5.2 Idle
Datatype idle represents an end of the deque that is not in a rebalancing process.

datatype ′a idle = Idle (′a stack) nat

It contains a stack to which it delegates its push and pop operations. Furthermore, we will
need to check the size of the end frequently, to know whether rebalancing is required. To
achieve this in constant time, we keep track of the size of the stack and update it with every
operation accordingly.

push x (Idle stk n) = Idle (push x stk) (n + 1)

ITP 2023

29:6 Real-Time Double-Ended Queue Verified (Proof Pearl)

pop (Idle stk n) = (first stk, Idle (pop stk) (n − 1))

The invariant invar (Idle stk n) = (size stk = n) is obvious. The list function delegates to
the corresponding list function on the stack; we omit showing such trivial definitions.

5.3 Current
Now we start to look into the rebalancing procedure. Type ′a current stores information
about operations that happen during rebalancing but which have not become part of the old
state that is being rebalanced.

datatype ′a current = Current (′a list) nat (′a stack) nat

Both ends of the deque contain a current state which contains a list of newly enqueued
elements and their number. The push operation on a current state adds to the list and
increases its size counter:

push x (Current ext extn old tar) = Current (x # ext) (extn + 1) old tar

Additionally, current has a stack keeping track of the end’s state before rebalancing.
The natural number after it is the target size (usually denoted by tar) of the end after
rebalancing, but without taking the ext component into account. The pop operation on
current enables dequeuing of elements during the rebalancing: If there are newly enqueued
elements, pop dequeues an element from the corresponding list and adjusts its size counter.
Otherwise, it dequeues an element from the old state of the end and reduces the target size
by one.

pop (Current (x # ext) extn old tar) = (x , Current ext (extn − 1) old tar)
pop (Current [] extn old tar) = (first old, Current [] extn (pop old) (tar − 1))

The operations preserve the obvious invariant for the counter of newly enqueued elements:

invar (Current ext extn _ _) = (|ext| = extn)

The abstraction list yields the list of the state before rebalancing, but modified by the
intervening push’s and pop’s. current has next to its size function based on list, an additional
function size_new calculating the target size at the end of rebalancing.

list (Current ext _ old _) = ext @ list old

size_new (Current _ extn _ tar) = extn + tar

5.4 Rebalancing
Rebalancing transfers elements from the bigger end to the smaller one. Datatype states
stores both ends (types big_state and small_state are explained below) together with a
direction indicating if the transfer happens from left to right or right to left. Therefore it
also indicates which end is on which side.

datatype ′a states = States direction (′a big_state) (′a small_state)
datatype direction = L | R

B. Toth and T. Nipkow 29:7

Table 1 Rebalancing phases.

Big Small
Big1 _ (P @ Q) [] |P|
↓
Big1 _ Q (rev P) 0

Small1 _ S []
↓
Small1 _ [] (rev S)

Copy _ (rev P) [] 0

↓(Big2)

Copy _ [] P |P|

Small2 _ (rev S) Q [] 0
↓
Small2 _ (rev S) [] (rev Q) |Q|
Copy _ (rev S) (rev Q) |Q|
↓ (Small3)
Copy _ [] (S @ rev Q) (|S | + |Q|)

The phases described in Section 4 are represented by the following constructors for the
big and small end of the deque, with their corresponding behaviour w.r.t. rebalancing steps.
Big2 and Small3 perform the same work and are both represented by the constructor Copy.

Big1 :: ′a current ⇒ ′a stack ⇒ ′a list ⇒ nat ⇒ ′a big_state
Big1 _ S xs n pops the top n elements off S and puts them on xs.
Small1 :: ′a current ⇒ ′a stack ⇒ ′a list ⇒ ′a small_state
Small1 _ S xs pops all elements off S and puts them on xs.
Small2 :: ′a current ⇒ ′a list ⇒ ′a stack ⇒ ′a list ⇒ nat ⇒ ′a small_state
Small2 _ xs S ys n pops all elements off S, puts them on ys, counts them in n and leaves
xs unchanged.
Copy :: ′a current ⇒ ′a list ⇒ ′a list ⇒ nat ⇒ ′a common_state
Copy cur xs ys n pops elements off xs, puts them on ys, and counts them, until n reaches
the tar component of cur. Stopping before all of xs has been moved has the effect of
performing the deq operations that have accumulated in cur during rebalancing.

Every phase contains a current state that deals with enq and deq operations (see Section 5.3).
Table 1 shows how each phase leads to the next at both ends of the deque. The variables

are named as in Section 4. For readability we have equated stacks with lists. For simplicity
the Copy phases assume that the copying is not cut short by a reduced tar. We will implement
overloaded step functions that advance and transition the phases step-by-step.

5.4.1 Big
The bigger end of the deque goes through two phases during rebalancing, modeled with
datatype big_state with two constructors:

datatype ′a big_state = Big1 (′a current) (′a stack) (′a list) nat
| Big2 (′a common_state)

Both constructors were explained at the beginning of Section 5.4. At that point we pretended
that both ends of the deque have a common constructor Copy. Instead, constructor Big2 is a
wrapper around a common state common_state (see Section 5.4.3) that both ends delegate
their push/pop/step operations to in phases Big2 and Small3. Operations push and pop on
Big1 are delegated to current. Function step uses norm for the transition from phase Big1 to
Big2 which is defined in Section 5.4.3.

ITP 2023

29:8 Real-Time Double-Ended Queue Verified (Proof Pearl)

push x (Big1 cur big aux n) = Big1 (push x cur) big aux n
push x (Big2 state) = Big2 (push x state)

pop (Big1 cur big aux n) = (let (x , cur) = pop cur in (x , Big1 cur big aux n))
pop (Big2 state) = (let (x , state) = pop state in (x , Big2 state))

step (Big1 cur big aux 0) = Big2 (norm (Copy cur aux [] 0))
step (Big1 cur big aux n) = Big1 cur (pop big) (first big # aux) (n − 1)
step (Big2 state) = Big2 (step state)

The remaining functions on big_state again delegate to common_state in phase Big2.
We do not show those equations.

The following invariant is preserved by push, pop and step:

invar (Big1 cur big aux n) = let Current _ _ old tar = cur in
invar cur

∧ tar ≤ |aux| + n (1)
∧ n ≤ size big (2)
∧ take_last (size old) (rev aux @ list big) = list old (3)
∧ take tar (rev (take n (list big)) @ aux) = rev (take tar (list old)) (4)

(1) The target size of the end after the rebalancing (tar) is ≤ to the total number of elements
that the phase reverses (|aux | + n). This needs to hold because phase Big1 moves to aux
the elements that remain on this end. Only ≤ but not = holds because of potentially
dequeued elements that reduce the target size (see Section 5.3: pop).

(2) There must be at least as many elements as the phase wants to reverse.
(3) Undoing the progress of the phase by reversing aux back and appending it back to big

reproduces the old state of the end. We account for potentially dequeued elements by
dropping those from the front of the restored end.

(4) Finishing the phase by reversing and appending n more elements to aux gives us the
elements that remain on this end in a reversed order.

In phase Big1, list finishes rebalancing and returns the final list of the end. In contrast,
list_current returns the original list of the end.

list (Big1 (Current ext _ _ tar) big aux n) =
let a = rev (take n (list big)) @ aux in ext @ rev (take tar a)

list_current (Big1 cur _ _ _) = list cur

The verification also requires the number of remaining steps of rebalancing:

remaining_steps (Big1 (Current _ _ _ tar) _ _ n) = n + tar + 1

In phase Big1, n more elements need to be moved before 1 additional step transitions to
phase Big2 which requires tar steps.

B. Toth and T. Nipkow 29:9

5.4.2 Small
As depicted in Table 1, the smaller end of the deque goes through three different phases
during rebalancing. They are represented by datatype small_state:

datatype ′a small_state = Small1 (′a current) (′a stack) (′a list)
| Small2 (′a current) (′a list) (′a stack) (′a list) nat
| Small3 (′a common_state)

Just as in big_state, constructor Small3 contains the common data structure to which the
phases Big2 and Small3 delegate their operations (see Section 5.4.3). This time we do not
show any of the trivial delegating equations.

Operations push and pop are defined analogously to their big_state relatives:

push x (Small1 cur small aux) = Small1 (push x cur) small aux
push x (Small2 cur aux big new n) = Small2 (push x cur) aux big new n

pop (Small1 cur small aux) = (let (x , cur) = pop cur in (x , Small1 cur small aux))
pop (Small2 cur aux big new n)
= (let (x , cur) = pop cur in (x , Small2 cur aux big new n))

In phase Small1, step idles once it has emptied its stack because it needs to wait for the big
end to finish phase Big1 before both ends can transition to their next phases simultaneously
(see Section 5.4.4). In phase Small2 the stack is popped until it is empty and phase Small3
starts:

step (Small1 cur small aux)
= (if is_empty small then Small1 cur small aux

else Small1 cur (pop small) (first small # aux))
step (Small2 cur aux big new n)
= (if is_empty big then Small3 (norm (Copy cur aux new n))

else Small2 cur aux (pop big) (first big # new) (n + 1))

The following invariant, presented phase by phase, is preserved by push, pop and step:

invar (Small1 cur small aux) = let Current _ _ old tar = cur in
invar cur

∧ size old ≤ tar (1)
∧ size old ≤ size small + |aux| (2)
∧ take_last (size old) (rev aux @ list small) = list old (3)

(1) The target size is not smaller than the original size of the end. Otherwise, rebalancing
would not be successful because the smaller end would shrink further.

(2) The stack holding the original elements of the smaller end (old) cannot grow but
potentially shrink through pop operations. Moreover, since phase Small1 is reversing a
copy of the original elements of the smaller size, the total number of elements it works on
is ≥ to the size of the stack old.

(3) Undoing the progress of the phase by reversing aux back and appending it back to small
reproduces the old state of the end. We account for potentially dequeued elements by
dropping those from the front of the restored end.

ITP 2023

29:10 Real-Time Double-Ended Queue Verified (Proof Pearl)

invar (Small2 cur aux big new n) = let Current _ _ old tar = cur in
invar cur

∧ n = |new| (1)
∧ tar = n + size big + size old (2)
∧ size old ≤ |aux| (3)
∧ rev (take (size old) aux) = list old (4)

(1) The phase counts its reversed elements correctly.
(2) The elements transferred from the bigger end and the original elements from the smaller

end will build the new smaller end. Consequently, the sum of their elements is equal to
the target size. Hereby, the number of transferred elements is split into already reversed
and not yet reversed ones.

(3, 4) Next to the reversal, phase Small2 also holds the already reversed original state of
the smaller end. Accordingly, it is equal to old when reversed back and accounted for the
potentially dequeued elements.

Of the abstraction functions list and list_current we merely show list because list_current
simply delegates to its counterpart on current.

list (Small2 (Current ext _ _ tar) aux big new n)
= ext @ rev (take (tar − n − size big) aux) @ rev (list big) @ new

Function list is partial. It is lacking a case for phase Small1 because phase Small1 lacks the
elements coming from the bigger end, so it is impossible to simulate all further steps of the
rebalancing. The lacking case will be added one level higher for States where we also have
the bigger end available (see Section 5.4.4).

For phase Small2, list finishes the reversal of the transferred elements, prepends the
reversed result of phase Small1 while accounting for potentially dequeued elements, and
prepends the potentially enqueued elements.

The smaller end does not have its own remaining steps measurement because they depend
on the state of the bigger end.

5.4.3 Common
The datatype ′a common_state is a joint representation of phases Big2 and Small3:

datatype ′a common_state = Copy (′a current) (′a list) (′a list) nat
| Idle (′a current) (′a idle)

Copy represents rebalancing; Idle signals termination of rebalancing and keeps the rebalanced
state of an end in an idle state (see Section 5.2).

step (Copy cur aux new n)
= (let Current ext extn old tar = cur

in norm
(if n < tar then Copy cur (tl aux) (hd aux # new) (n + 1)
else Copy cur aux new n))

step (Idle cur idle) = Idle cur idle

Function norm performs the transition back to an idle end. If tar has been reached, norm
creates a new stack and puts the elements that arrived during rebalancing in the front and
the result of rebalancing in the back and sets the size accordingly:

B. Toth and T. Nipkow 29:11

norm (Copy cur aux new n)
= (let Current ext extn old tar = cur

in if tar ≤ n then Idle cur (Idle (Stack ext new) (extn + n))
else Copy cur aux new n)

Both constructors also contain a current state on which the push and pop operations work:

push x (Copy cur aux new n) = Copy (push x cur) aux new n
push x (Idle cur (Idle stk n)) = Idle (push x cur) (Idle (push x stk) (n + 1))

pop (Copy cur aux new n)
= (let (x , cur) = pop cur in (x , norm (Copy cur aux new n)))
pop (Idle cur idle) = (let (x , idle) = pop idle in (x , (Idle (fst (pop cur)) idle))

Both operations also update the idle component when the respective phase terminated.
Additionally, the pop operation checks if it dequeued the last element of the reversal and
transitions, using norm, to the idle phase if so.

For the phases Big2 and Small3 the invariant is the following:

invar (Copy cur aux new n) = let Current _ _ old tar = cur in
invar cur

∧ n < tar (1)
∧ n = |new| (2)
∧ tar ≤ |aux| + n (3)
∧ take tar (list old) = take (size old) (rev (take (tar − n) aux) @ new) (4)

(1) The number of elements for which the rebalancing is finished did not yet reach the target
number.

(2) n correctly holds the number of finished elements.
(3) There are enough elements left to reach the target number.
(4) When simulating the termination by reversing the missing elements, the front of the new

and old end are the same.

The invariant for the idle state requires that the subcomponents satisfy their invariants and
that the fronts of the old and the rebalanced ends are the same:

invar (Idle cur idle)
= invar cur ∧ invar idle ∧ take (size idle) (list cur) = take (size cur) (list idle)

Function list finishes the phases Big2/Small3 and prepends the elements that arrived
during rebalancing. In the Idle state it delegates to list on idle.

list (Copy (Current ext _ _ tar) aux new n) = ext @ rev (take (tar − n) aux) @ new
list (Idle _ idle) = list idle

The abstraction function list_current simply delegates to its counterpart on current.
Counting of the remaining steps is similarly straightforward. In phases Big2/Small3 the

difference between the processed elements and the target remains; the idle state does not
need any more steps.

remaining_steps (Copy (Current _ _ _ tar) _ _ n) = tar − n
remaining_steps (Idle _ _) = 0

ITP 2023

29:12 Real-Time Double-Ended Queue Verified (Proof Pearl)

5.4.4 States
Putting the two ends together into states completes the implementation of the rebalancing
procedure. Remember that in Section 5.4.2 phase Small1 could not transition to Small2
by itself because it needs to synchronize with the end of Big1. The step function on states
covers this case by moving from Small1 to Small2 once Big1 has reached 0. The other cases
were already covered by the step functions on big_state and small_state.

step (States dir (Big1 currentB big auxB 0) (Small1 currentS _ auxS))
= States dir (step (Big1 currentB big auxB 0)) (Small2 currentS auxS big [] 0)
step (States dir big small) = States dir (step big) (step small)

The joint list abstraction lists returns the pair containing the lists for the two ends. It
also compensates for the partiality of list on the smaller end: lists simulates the remaining
steps of phase Small1 and performs the transition to phase Small2, for which list is already
defined, to create the missing list abstraction for phase Small1. For the other phases it calls
the respective list abstractions.

lists (States _ (Big1 curB big auxB n) (Small1 curS small auxS))
= (list (Big1 curB big auxB n),

list (Small2 curS (rev (take n (list small)) @ auxS) (popn big) [] 0))
lists (States _ big small) = (list big, list small)

Function lists_current simply delegates to the big and small end:

lists_current (States _ big small) = (list_current big, list_current small)

For convenience, we define

list_small_first states = (let (big, small) = lists states in small @ rev big)

list_current_small_first states
= (let (big, small) = lists_current states in small @ rev big)

and analogously list_big_first and list_current_big_first.
The invariant is defined as follows:
invar (States dir big small) =

invar big ∧ invar small
∧ list_small_first (States dir big small)

= list_current_small_first (States dir big small) (1)
∧ case (big, small) of

(Big1 _ big _ n, Small1 (Current _ _ old tar) small _) ⇒
size big − n = tar − size old ∧ size small ≤ n (2,3)

| (Big1 _ _ _ _, _) ⇒ False (4)
| (Big2 _ , Small1 _ _ _) ⇒ False (5)
| (_ , _) ⇒ True

(1) Rebalancing preserves the abstract queue (as a list): the list abstraction after the end of
rebalancing must be the same as the list abstraction that uses the state before rebalancing.

(2) After phase Big1, the bigger end transfers exactly the number of elements missing on
the smaller end to reach the target size.

(3) Phase Big1 does not finish before Small1. This needs to hold because the smaller end
transitions from phase Small1 to Small2 at the end of stage Big1.

B. Toth and T. Nipkow 29:13

(4) Phase Big1 can only occur together with phase Small1.
(5) Phase Big2 cannot occur together with phase Small1.

The case analysis in the invariant ensures that phase Big1 runs in parallel with phase Small1,
and phase Big2 with the phases Small2 and Small3.

The overall remaining steps are the maximum of the remaining steps of both ends:

remaining_steps (States _ big small) =
max

(remaining_steps big)
(case small of

Small1 (Current _ _ _ tar) _ _ ⇒ let Big1 _ _ _ nB = big in nB + tar + 2
| Small2 (Current _ _ _ tar) _ _ _ nS ⇒ tar − nS + 1
| Small3 state ⇒ remaining_steps state)

We focus on the smaller end because we covered the bigger end already in Section 5.4.1. The
remaining steps for the small end in phase Small1 cannot be calculated in isolation because
they depend on the big end: Phase Small1 needs to wait for phase Big1 to finish, which are
nB steps. Then it moves via Small2 and Small3 to Idle, counting up until the target size
tar is reached. Consequently, the smaller end needs nB + tar steps from phase Small1 to
finish and 2 more steps for the transitions. In phase Small2, the counter is at nS already
and hence tar − nS steps remain, plus 1 for the last transition. The remaining steps for
phase Small3 are already covered in Section 5.4.3.

Finally, we must ensure that the deque re-establishes the size constraints after rebalancing.
therefore size_ok calculates, relative to the remaining steps, if the size constraints can
be met: it is not allowed that one end is more than 3 times larger than the other after
rebalancing. Additionally, none of the ends is allowed to be empty at the end. Herefore, it is
also important that both ends have enough elements to facilitate all the dequeue operations
that can potentially happen. Therefore, size_ok uses the size measurements implemented
for both ends.

size_ok states = size_ok ′ states (remaining_steps states)

size_ok ′ (States _ big small) steps =
size_new small + steps + 2 ≤ 3 ∗ size_new big
∧ size_new big + steps + 2 ≤ 3 ∗ size_new small
∧ steps + 1 ≤ 4 ∗ size small
∧ steps + 1 ≤ 4 ∗ size big

Note that (m ≤ k ∗ n ∧ n ≤ k ∗ m) = (max m n ≤ k ∗ min m n), i.e. we have merely
rewritten the size invariant from Section 4.

5.5 Deque
Finally, we can put together all the parts for the overall invariant:

invar (Idles l r) =
invar l ∧ invar r ∧ ¬ is_empty l ∧ ¬ is_empty r

∧ size l ≤ 3 ∗ size r ∧ size r ≤ 3 ∗ size l
invar (Rebal states) = (invar states ∧ size_ok states ∧ 0 < remaining_steps states)
invar _ = True

In the idle state, the deque must satisfy the invariants of both ends and the size constraints
between them. During rebalancing, the deque must satisfy the invariant of the rebalancing
process, must ensure that it meets the size constraints after rebalancing, and remaining_steps

ITP 2023

29:14 Real-Time Double-Ended Queue Verified (Proof Pearl)

must correctly predict that there are further steps needed. The other states of the deque
fulfill the invariant trivially.

The overall list abstraction function listL (Section 3) is composed trivially from the
separate states’ list abstractions:

listL Empty = []
listL (One x) = [x]
listL (Two x y) = [x , y]
listL (Three x y z) = [x , y, z]
listL (Idles left right) = list left @ rev (list right)
listL (Rebal states) = listL states

listL (States L big small) = list_small_first (States L big small)
listL (States R big small) = list_big_first (States R big small)

5.5.1 Enqueuing
Function enqL enqueues one element on the left end of the deque and returns the resulting
deque.

enqL x Empty = One x
enqL x (One y) = Two x y
enqL x (Two y z) = Three x y z
enqL x (Three a b c) = Idles (Idle (Stack [x , a] []) 2) (Idle (Stack [c, b] []) 2)
enqL x (Idles l (Idle r nR)) =

let Idle l nL = push x l in
if nL ≤ 3 ∗ nR then Idles (Idle l nL) (Idle r nR)
else let nl = nl − nR − 1;

nR = 2 ∗ nL + 1;
big = Big1 (Current [] 0 l nL) l [] nL;
small = Small1 (Current [] 0 r nR) r [];
states = States R big small ;
states = step6 states;

in Rebal states
enqL x (Rebal (States L big small) =

let small = push x small ;
states = step4 (States L big small);

in case states of
States L (Big2 (Idle _ big)) (Small3 (Idle _ small)) ⇒ Idle small big
| _ ⇒ Rebal states

enqL x (Rebal (States R big small) =
let big = push x big;

states = step4 (States R big small);
in case states of

States R (Big2 (Idle _ big)) (Small3 (Idle _ small)) ⇒ Idle big small
| _ ⇒ Rebal states

B. Toth and T. Nipkow 29:15

Function enqL advances the constructors Empty, One and Two to the next larger one. For
Three, it transitions the deque into the idle state by placing two elements at each end.

In the idle state, it enqueues one element on the left end and checks if the size invariant
between the two ends still holds. If so, it keeps the deque in the idle state. Otherwise, it
initiates rebalancing in the same way as deqL ′, but in the other direction.

If the deque is already in the rebalancing process, enqL enqueues the new element and
advances rebalancing by 4 steps. If that finishes rebalancing, it moves back into the idle
state.

Function enqR, the counterpart of enqL, swaps the two ends of the deque, calls enqL and
swaps the ends back.

enqR x d = swap (enqL x (swap d))

5.5.2 Dequeuing
The function deqL ′ dequeues one element from the left end of the deque and returns the
dequeued element and the remaining deque. Accordingly, it implements deqL and firstL
simultaneously.

deqL ′ (One x) = (x , Empty)
deqL ′ (Two x y) = (x , One y)
deqL ′ (Three x y z) = (x , Two y z)
deqL ′ (Idles l (Idle r nR)) =

let (x , Idle l nL) = pop l in
if nR ≤ 3 ∗ nL then (x , Idles (Idle l nL) (Idle r nR))
else if 1 ≤ nL then

let nL ′ = 2 ∗ nL + 1;
nR ′ = nR − nL − 1;
small = Small1 (Current [] 0 l nL ′) l [];
big = Big1 (Current [] 0 r nR ′) r [] nR ′;
states = States L big small ;
states = step6 states;

in (x , Rebal states)
else case r of Stack r1 r2 ⇒ (x , small_deque r1 r2)

deqL ′ (Rebal (States L big small) =
let (x , small) = pop small;

states = step4 (States L big small);
in case states of

States R (Big2 (Idle _ big)) (Small3 (Idle _ small)) ⇒ (x , Idle big small)
| _ ⇒ (x , Rebal states)

deqL ′ (Rebal (States R big small) =
let (x , big) = pop big;

states = step4 (States R big small);
in case states of

States R (Big2 (Idle _ big)) (Small3 (Idle _ small)) ⇒ (x , Idle big small)
| _ ⇒ (x , Rebal states)

ITP 2023

29:16 Real-Time Double-Ended Queue Verified (Proof Pearl)

If the deque has less than four elements, deqL ′ dequeues the leftmost element and transitions
to the next smaller constructor (not shown).

In the idle state, deqL ′ dequeues an element from the left end and checks if the size
invariant between the two ends still holds. If so, the deque stays in the idle states. Otherwise,
it checks if the left end became empty and transitions to one of the small states using
small_deque (below) in that case. In the last case, when the left end is not empty and the
size constraints are violated, it starts rebalancing. Therefore, it divides the total number of
elements into two almost equal halves – the right is one larger because the total number is
odd. Then, the phases Big1 (for the bigger, right side) and Small1 (for the smaller, left side)
are initialized with these numbers as target sizes and the state of the respective end. Finally,
deqL ′ starts rebalancing by executing 6 steps.

When the deque is already in the rebalancing state, deqL ′ dequeues one element from the
respective end and advances the rebalancing with 4 more steps. If that finishes rebalancing,
it transitions the deque back into the idle state.

small_deque [] [] = Empty small_deque [] [x, y] = Two y x
small_deque [x] [] = One x small_deque [] [x, y, z] = Three z y x
small_deque [] [x] = One x small_deque [x, y, z] [] = Three z y x
small_deque [x] [y] = Two y x small_deque [x, y] [z] = Three z y x
small_deque [x, y] [] = Two y x small_deque [x] [y, z] = Three z y x

Function deqR ′, analogously to enqR, is reduced to deqL ′ by swapping the ends twice.
deqR and firstR are specializations of deqR ′.

deqR ′ deque = (let (x , deque) = deqL ′ (swap deque) in (x , swap deque))

5.6 Proof
In this section we explain how the top-level properties of the specification in Section 3 are
proved. This is what we proved for enqL and deqL ′:

invar d −→ listL (enqL x d) = x # listL d (∗)
invar d −→ invar (enqL x d)

invar d ∧ listL d ̸= [] ∧ deqL ′ d = (x , d ′) −→ x # listL d ′ = listL d
invar d ∧ ¬ is_empty d −→ invar (deqL d)

The proofs are case analyses over all the defining equations of the non-recursive functions
enqL and deqL ′. In each case, the proof is largely by application of the verified properties for
the underlying data structures (see Section 5). As an example of these top-level proofs we
present one crucial case of (∗):

listL (enqL x (Rebal (States L big small))) = x # listL (Rebal (States L big small))

assuming that the deque stays in the rebalancing state. We start by defining states =
States L big small, small ′ = push x small and states ′ = States L big small ′ as shorthands.
Then we can unfold the definition of enqL:

listL (enqL x (Rebal (States L big small))) = listL (step4 states ′)

Using the property of the step functions preserving list abstractions (see Section 5), we can
simply ignore the four rebalancing steps:

B. Toth and T. Nipkow 29:17

... = listL states ′

This enables us to unfold the definition of listL:

... = list_small_first states ′

= let (bs, ss ′) = lists states ′ in ss ′ @ rev bs

Now, we can utilize that push operations prepend the new element to the list abstractions:

... = let (bs, x # ss) = lists states ′ in (x # ss) @ rev bs
= x # (let (bs, ss) = lists states in ss @ rev bs)

Concluding the proof, we fold the definition of listL again:

... = x # list_small_first states
= x # listL (Rebal states)

The required properties of firstL and deqL are simple corollaries of the above properties
for deqL ′. The dual properties of enqR and deqR ′ are again corollaries via these additional
properties:

invar d −→ listR (swap d) = listL d
invar d −→ invar (swap d)

5.7 Complexity
All operations of our implementation take constant time because they only employ constant-
time functions (arithmetic, (#), hd, tl) and are not recursive. Some of the auxiliary functions
used in the verification are not constant-time but this is irrelevant. Our colour schema helps
to distinguish the two worlds.

6 Conclusion

We have presented an implementation of a real-time double-ended queue and in particular the
key ingredients of its verification: the abstraction functions, the invariants (incl. all auxiliary
functions to define them), and the key theorems about the implementation. It would be
interesting to investigate if our invariants could be simplified and if semi-automatic theorem
provers like Why3 [3] could automate the proof significantly beyond the current level.

Finally note that our deque implementation is fully executable and that Isabelle can
generate code in many functional languages (including Haskell and Scala) from it [5].

References
1 F. Warren Burton. An efficient functional implementation of FIFO queues. Inf. Process. Lett.,

14(5):205–206, 1982. doi:10.1016/0020-0190(82)90015-1.
2 Tyng-Ruey Chuang and Benjamin Goldberg. Real-time deques, multihead turing machines,

and purely functional programming. In Functional programming languages and computer
architecture - FPCA '93. ACM Press, 1993. doi:10.1145/165180.165225.

3 Jean-Christophe Filliâtre and Andrei Paskevich. Why3 — where programs meet provers.
In Matthias Felleisen and Philippa Gardner, editors, European Symposium on Programming
(ESOP 2013), volume 7792 of LNCS, pages 125–128. Springer, 2013.

4 Alejandro Gómez-Londoño. Hood-Melville queue. Archive of Formal Proofs, January 2021.
URL: https://isa-afp.org/entries/Hood_Melville_Queue.html.

ITP 2023

https://doi.org/10.1016/0020-0190(82)90015-1
https://doi.org/10.1145/165180.165225
https://isa-afp.org/entries/Hood_Melville_Queue.html

29:18 Real-Time Double-Ended Queue Verified (Proof Pearl)

5 Florian Haftmann and Tobias Nipkow. Code generation via higher-order rewrite systems. In
M. Blume, N. Kobayashi, and G. Vidal, editors, Functional and Logic Programming (FLOPS
2010), volume 6009 of LNCS, pages 103–117. Springer, 2010.

6 Robert Hood. The Efficient Implementation of Very-High-Level Programming Language
Constructs. PhD thesis, Cornell University, 1982. TR 82-503.

7 Robert Hood and Robert Melville. Real-time queue operation in pure LISP. Inf. Process.
Lett., 13(2):50–54, 1981. doi:10.1016/0020-0190(81)90030-2.

8 Ravichandhran Madhavan, Sumith Kulal, and Viktor Kuncak. Contract-based resource
verification for higher-order functions with memoization. In Giuseppe Castagna and Andrew D.
Gordon, editors, Symposium on Principles of Programming Languages, POPL 2017, pages
330–343. ACM, 2017. doi:10.1145/3009837.3009874.

9 Ravichandhran Madhavan and Viktor Kuncak. Symbolic resource bound inference for func-
tional programs. In Armin Biere and Roderick Bloem, editors, Computer Aided Verific-
ation, CAV 2014, volume 8559 of LNCS, pages 762–778. Springer, 2014. doi:10.1007/
978-3-319-08867-9_51.

10 Tobias Nipkow, editor. Functional Data Structures and Algorithms. A Proof Assistant Approach.
ACM Books, Forthcoming. URL: https://functional-algorithms-verified.org/.

11 Tobias Nipkow and Gerwin Klein. Concrete Semantics with Isabelle/HOL. Springer, 2014.
URL: http://concrete-semantics.org.

12 Tobias Nipkow, Lawrence Paulson, and Markus Wenzel. Isabelle/HOL — A Proof Assistant
for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

13 Chris Okasaki. Simple and efficient purely functional queues and deques. J. Funct. Program.,
5(4):583–592, 1995. doi:10.1017/S0956796800001489.

14 Balazs Toth and Tobias Nipkow. Real-time double-ended queue. Archive of Formal Proofs,
June 2022. , Formal proof development. URL: https://www.isa-afp.org/entries/Real_
Time_Deque.html.

https://doi.org/10.1016/0020-0190(81)90030-2
https://doi.org/10.1145/3009837.3009874
https://doi.org/10.1007/978-3-319-08867-9_51
https://doi.org/10.1007/978-3-319-08867-9_51
https://functional-algorithms-verified.org/
http://concrete-semantics.org
https://doi.org/10.1017/S0956796800001489
https://www.isa-afp.org/entries/Real_Time_Deque.html
https://www.isa-afp.org/entries/Real_Time_Deque.html

Certifying Higher-Order Polynomial Interpretations
Niels van der Weide # Ñ

Institute for Computing and Information Sciences, Radboud University, Nijmegen, The Netherlands

Deivid Vale # Ñ

Institute for Computing and Information Sciences, Radboud University, Nijmegen, The Netherlands

Cynthia Kop # Ñ

Institute for Computing and Information Sciences, Radboud University, Nijmegen, The Netherlands

Abstract
Higher-order rewriting is a framework in which one can write higher-order programs and study their
properties. One such property is termination: the situation that for all inputs, the program eventually
halts its execution and produces an output. Several tools have been developed to check whether
higher-order rewriting systems are terminating. However, developing such tools is difficult and can
be error-prone. In this paper, we present a way of certifying termination proofs of higher-order
term rewriting systems. We formalize a specific method that is used to prove termination, namely
the polynomial interpretation method. In addition, we give a program that processes proof traces
containing a high-level description of a termination proof into a formal Coq proof script that can be
checked by Coq. We demonstrate the usability of this approach by certifying higher-order polynomial
interpretation proofs produced by Wanda, a termination analysis tool for higher-order rewriting.

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of
computation → Equational logic and rewriting

Keywords and phrases higher-order rewriting, Coq, termination, formalization

Digital Object Identifier 10.4230/LIPIcs.ITP.2023.30

Related Version Preprint version: https://arxiv.org/abs/2302.11892 [32]

Supplementary Material Software (Coq Formalization): github.com/nmvdw/Nijn [31]
Software (Proof script generator): github.com/deividrvale/nijn-coq-script-generation [30]

Funding Niels van der Weide: This research was supported by the NWO project “The Power of
Equality” OCENW.M20.380, which is financed by the Dutch Research Council (NWO).
Deivid Vale: Author supported by NWO Top project “Implicit Complexity through Higher-Order
Rewriting”, NWO 612.001.803/7571.
Cynthia Kop: Author supported by NWO Top project “Implicit Complexity through Higher-
Order Rewriting”, NWO 612.001.803/7571 and the NWO VIDI project “Constrained Higher-Order
Rewriting and Program Equivalence”, NWO VI.Vidi.193.075.

Acknowledgements The authors thank Dan Frumin for his help with understanding and using Ltac.

1 Introduction

Automatically proving termination is an important problem in term rewriting, and numerous
tools have been developed for this purpose, such as AProVE [10], NaTT [35], MatchBox [33],
Mu-Term [12], SOL [13], TTT2 [21] and Wanda [16], which compete against each other in
an annual termination competition [11]. Aside from basic (first-order) term rewriting, this
includes tools analyzing for instance string, conditional, and higher-order rewriting.

Developing termination tools is a difficult and error-prone endeavor. On the one hand,
the termination techniques that are implemented may contain errors. This is particularly
relevant in higher-order term rewriting, where the proofs are often very intricate due to

© Niels van der Weide, Deivid Vale, and Cynthia Kop;
licensed under Creative Commons License CC-BY 4.0

14th International Conference on Interactive Theorem Proving (ITP 2023).
Editors: Adam Naumowicz and René Thiemann; Article No. 30; pp. 30:1–30:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nweide@cs.ru.nl
https://nmvdw.github.io
https://orcid.org/0000-0003-1146-4161
mailto:D.Vale@cs.ru.nl
https://deividrvale.github.io
https://orcid.org/0000-0003-1350-3478
mailto:C.Kop@cs.ru.nl
https://www.cs.ru.nl/~cynthiakop/index_en.html
https://orcid.org/0000-0002-6337-2544
https://doi.org/10.4230/LIPIcs.ITP.2023.30
https://arxiv.org/abs/2302.11892
https://github.com/nmvdw/Nijn
https://github.com/deividrvale/nijn-coq-script-generation
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 Certifying Higher-Order Polynomial Interpretations

partial application, type structure, beta-reduction, and techniques often not transferring
perfectly between different formalisms of higher-order rewriting. Hence, it should come as no
surprise that errors have been found even in published papers on higher-order rewriting. On
the other hand, it is very easy for a tool developer to accidentally omit a test whether some
conditions to apply specific termination techniques are satisfied, or to incorrectly translate a
method between higher-order formalisms.

To exacerbate this issue, termination proofs are usually complex and technical in nature,
which makes it hard to assess the correctness of a prover’s output by hand. Not only do many
benchmarks contain hundreds of rules, modern termination tools make use of various proof
methods that have been developed for decades. Indeed, a single termination proof might, for
instance, make use of a combination of dependency pairs [9, 19, 3], recursive path orders [20, 5],
rule removal, and multiple kinds of interpretations [8, 23, 34, 18]. This makes bugs very
difficult to find.

Hence, there is a need to formally certify the output of termination provers, ideally
automatically. There are two common engineering strategies to provide such certification. In
the first, one builds the certifier as a library in a proof assistant along with tools to read the
prover’s output and construct a formal proof, which we call proof script. The proof script
is then verified by a proof assistant. Examples of this system design are the combinations
Cochinelle/CiME3 [7] and CoLoR/Rainbow [6]. In the second, the formalization includes
certified algorithms for checking the correctness of the prover’s output. This allows for the
whole certifier to be extracted, using code extraction, and be used as a standalone program.
Hence, the generation of proof scripts by a standalone tool is not needed in this approach,
but it comes with a higher formalization cost. IsaFoR/CeTA [28] utilizes this approach.

When it comes to higher-order rewriting, however, the options are limited. Both
Cochinelle [7] and IsaFoR/CeTA [28] only consider first-order rewriting. CoLoR/Rainbow [6]
does include a formalization of an early definition of HORPO [20]. Since here we use a
different term formalism compared to that of [20], our results are not directly compatible.
See for instance [2, 25] for more formalization results in rewriting.

In this paper, we introduce a new combination Nijn/ONijn for the certification of higher-
order rewriting termination proofs. We follow the first aforementioned system design: Nijn is
a Coq library providing a formalization of the underlying higher-order rewriting theory and
ONijn is a proof script generator that given a minimal description of a termination proof
(which we call proof trace), outputs a Coq proof script. The proof script then utilizes results
from Nijn for checking the correctness of the traced proof. The schematic below depicts the
basic steps to produce proof certificates using Nijn/ONijn.

Figure 1 Nijn/ONijn schematics.

N. van der Weide, D. Vale, and C. Kop 30:3

While Nijn is the certified core part of our tool since it is checked by Coq, the proof script
generation implemented in OCaml (ONijn) is not currently certified and must be trusted. For
this reason, we deliberately keep ONijn as simple as possible and no checking or computation
is done by it. The only task delegated to ONijn is that of parsing the proof trace given
by the termination prover to a Coq proof script. Additionally, checking the correctness of
polynomial termination proofs in Coq is an inherently incomplete task, since it would require
a method to solve inequalities over arbitrary polynomials, which is undecidable in general.

Contributions. The main contribution of this paper can be summarized as follows:
we provide a formalization of higher-order algebraic functional systems (Definition 2.6);
a formal proof of the interpretation method using weakly monotonic algebras (Theo-
rem 3.11);
a formalization of the higher-order polynomial method (Theorem 4.7);
a tactic that automatically solves the constraints that arise when using the higher-order
polynomial method (Section 4.3);
an OCaml program that transforms the output of a termination prover into a Coq script
that represents the termination proof (Section 5).

Technical Overview. This paper orbits Nijn, a Coq library formalizing higher-order rewrit-
ing [31]. The formalization is based on intensional dependent type theory extended with two
axioms: function extensionality and uniqueness of identity proofs [14]. Currently, the termi-
nation criterion formalized in the library is the higher-order polynomial method, introduced
in [8]. The tool coqwc counts the following amount of lines of code:

spec proof comments
5497 1985 272 total

The higher-order interpretation method roughly works as follows. First, types are
interpreted as well-ordered structures (Definition 3.3), compositionally. For instance, we
interpret base types as natural numbers (with the usual ordering). Then we interpret a
functional type A ⇒ B as the set of weakly monotonic functions from LAM to LBM where LAM,
LBM denote the interpretations of A, B respectively. The second step is to map inhabitants
of a type A to elements of LAM, which is expressed here by Definition 3.9.

This interpretation, called extended monotonic algebras in [8], alone does not suffice for
termination. To guarantee termination, we interpret both term application (Definition 4.6)
and function symbols as strongly monotonic functionals. In addition, terms must be inter-
preted in such a way that the rules of the system are strictly oriented, i.e., JℓK > JrK, for all
rules ℓ → r. This means that whenever a rewriting is fired in a term, the interpretation of
that term strictly decreases. As such, termination is guaranteed. Here we use termination
models (Definition 3.10) to collect these necessary conditions.

The main result establishing the correctness of this technique in the higher-order case
is expressed by Theorem 3.11. To the reader familiar with the interpretation method in
first-order rewriting, Theorem 4.7 would be no surprise. It is essentially the combination of
the Manna–Ness criterion with higher-order polynomials and the additional technicalities
that are needed for the higher-order case.

ITP 2023

30:4 Certifying Higher-Order Polynomial Interpretations

2 The Basics of Higher-Order Rewriting in Coq

In this section, we introduce the basic constructs needed to formalize algebraic functional
systems (AFSs) like types, contexts, variables, terms, and rewriting rules. We end the section
with an exposition on how to express termination constructively in Coq.

2.1 Terms and Rewrite Rules
Let us start by defining simple types.

▶ Definition 2.1 (ty). Simple types over a type B are defined as follows:

Inductive ty (B : Type) : Type :=
| Base : B → ty B
| Fun : ty B → ty B → ty B.

Elements of B are called base types. Every inhabitant b : B gives rise to a simple type
Base b and if A1, A2 are simple types then so is Fun A1 A2. We write A1 −→ A2 for Fun A1 A2.

We need (variable) contexts in order to type terms that may contain free variables.
Conceptually, a context is a list of variables with their respective types. For instance,
[x0 : A0; . . . ; xn : An] is the context with variables x0 of type A0, . . . , xn of type An. However,
we use nameless variables in our development, so we do not keep track of their names.
Consequently, a context is represented by a list of types. Then we only consider the list
[A0, . . . , An]. However, we still need to refer to the free variables in terms. In order to do so,
we represent them through indexing positions in the context. For instance, in the context
[A0; . . . ; An] we have n + 1 position indexes 0, 1, . . . , n, which we use as variables.

▶ Definition 2.2 (con). The type of variable contexts over a type B is defined as follows.

Inductive con (B : Type) : Type :=
| Empty : con B
| Extend : ty B → con B → con B.

We write • for Empty and A ,, C for Extend A C.

▶ Definition 2.3 (var). We define the type var C A of variables of type A in context C as

Inductive var {B : Type} : con B → ty B → Type :=
| Vz : forall {C : con B} {A : ty B}, var (A ,, C) A
| Vs : forall {C : con B} {A1 A2 : ty B}, var C A2 → var (A1 ,, C) A2.

Let us consider an example of a context and some variables. Suppose that we have a
base type denoted by b. Then we can form the context Base b ,, Base b −→ Base b ,, Empty.
In this context, we have two variables. The first one, which is Vz, has type Base b, and the
second variable, which is Vs Vz, has type Base b −→ Base b, The context that we discussed
corresponds to [x0 : b; x1 : b −→ b]. The variable Vz represents x0, while Vs Vz represents x1.

In Definition 2.4 below we define the notion of well-typed terms-in-context which consists
of those expressions such that there is a typing derivation. We use dependent types to ensure
well-typedness of such expressions. The type of terms depends on a simple type A : ty B
(which represents the object-level type of the expression) and context C : con B that carries
the types of all free variables in the term. We also need to type function symbols. Hence, we
require a type F : Type of function symbols and ar : F → ty B, which maps f : F to a simple
type ar f.

https://nmvdw.github.io/Nijn/html/Nijn.Syntax.Signature.Types.html#ty
https://nmvdw.github.io/Nijn/html/Nijn.Syntax.Signature.Contexts.html#con
https://nmvdw.github.io/Nijn/html/Nijn.Syntax.Signature.Contexts.html#var

N. van der Weide, D. Vale, and C. Kop 30:5

▶ Definition 2.4 (tm). We define the type of well-typed terms as follows

Inductive tm {B : Type} {F : Type} (ar : F → ty B) (C : con B) : ty B → Type :=
| BaseTm : forall (f : F), tm ar C (ar f)
| TmVar : forall {A : ty B}, var C A → tm ar C A
| Lam : forall {A1 A2 : ty B}, tm ar (A1 ,, C) A2 → tm ar C (A1 −→ A2)
| App : forall {A1 A2 : ty B}, tm ar C (A1 −→ A2) → tm ar C A1 → tm ar C A2.

For every function f : F we have a term BaseTm f of type ar f. Every variable v gives
rise to a term TmVar v. For λ-abstractions, given a term s : tm ar (A1 ,, C) A2, there is a
term λ s : tm ar C (A1 −→ A2), namely Lam s. The last constructor represents term appli-
cation. If we have a term s : tm ar C (A1 −→ A2) and a term t : tm ar C A1, we get a term
s · t : tm ar C A2, which is defined to be App s t.

While it may be more cumbersome to write down terms using de Bruijn indices, it does
have several advantages. Most importantly, it eliminates the need for α-equivalence, so that
determining equality between terms is reduced to a simple syntactic check.

Our notion of rewriting rules deviates slightly from the presentation in [8]. Mainly, we do
not impose the pattern restriction on the left-hand side of rules nor that free variables on
the right-hand side occur on the left-hand side. This choice simplifies the formalization effort
because when defining a concrete TRS, one does not need to check this particular condition.
Note that in IsaFoR [28] the same simplification is used

▶ Definition 2.5 (rewriteRule). The type of rewrite rules is defined as follows:

Record rewriteRule {B : Type} {F : Type} (ar : F → ty B) :=
make_rewrite {

vars_of : con B ;
tar_of : ty B ;
lhs_of : tm ar vars_of tar_of ;
rhs_of : tm ar vars_of tar_of }.

The context vars_of carries the variables used in the rule, and the type tar_of is used to
guarantee that both the lhs_of and rhs_of are terms of the same type.

▶ Definition 2.6 (afs). The type of algebraic functional systems is defined as follows

Record afs (B : Type) (F : Type) :=
make_afs { arity : F → ty B ; list_of_rewriteRules : list (rewriteRule arity) }.

As usual, every AFS induces a rewrite relation on the set of terms, which we denote by ∼>.
The formal definition is found in RewritingSystem.v. The rewrite relation ∼> is defined to
be the closure of the one-step relation under transitivity and compatibility with the term
constructors. In Coq, we use an inductive type to define this relation. Each rewrite step
is represented by a constructor. More specifically, we have a constructor for rewriting the
left-hand and the right-hand side of an application, we have a constructor for β-reduction,
and we have a constructor for the rewrite rules of the AFS.

▶ Example 2.7 (map_afs). Let us encode Rmap in Coq. It is composed of two rules:
map F nil → nil and map F (cons x xs) → cons (F x) (map F xs). We start with base types.

Inductive base_types := TBtype | TList.
Definition Btype : ty base_types := Base TBtype.
Definition List : ty base_types := Base TList.

ITP 2023

https://nmvdw.github.io/Nijn/html/Nijn.Syntax.Signature.Terms.html#tm
https://nmvdw.github.io/Nijn/html/Nijn.Syntax.Signature.html#rewriteRule
https://nmvdw.github.io/Nijn/html/Nijn.Syntax.Signature.html#afs
https://nmvdw.github.io/Nijn/html/Nijn.Syntax.Signature.RewritingSystem.html
https://nmvdw.github.io/Nijn/html/Nijn.Examples.Map.html#map_afs

30:6 Certifying Higher-Order Polynomial Interpretations

The abbreviations Btype and List is to smoothen the usage of the base types. There are
three function symbols in this system:

Inductive fun_symbols := TNil | TCons | TMap.

The arity function map_ar maps each function symbol in fun_symbols to its type.

Definition map_ar f : ty base_types
:= match f with

| TNil ⇒ List
| TCons ⇒ Btype −→ List −→ List
| TMap ⇒ (Btype −→ Btype) −→ List −→ List
end.

So, TNil is a list and given an inhabitant of Btype and List, the function symbol TCons gives
a List. Again we introduce some abbreviations to simplify the usage of the function symbols.

Definition Nil {C} : tm map_ar C _ := BaseTm TNil.
Definition Cons {C} x xs : tm map_ar C _ := BaseTm TCons · x · xs.
Definition Map {C} f xs : tm map_ar C _ := BaseTm TMap · f · xs.

The first rule, map F nil → nil, is encoded as the following Coq construct:

Program Definition map_nil :=
make_rewrite

(_ ,, •) _
(let f := TmVar Vz in Map · f · Nil)
Nil.

Notice that we only defined the pattern of the first two arguments of make_rewrite, leaving
the types in the context (_ ,, •) and the type of the rule unspecified. Coq can fill in these
holes automatically, as long as we provide a context pattern of the correct length. In this
particular rewrite rule, there is only one free variable. As such, the variable TmVar Vz refers
to the only variable in the context. In addition, we use iterated let-statements to imitate
variable names. For every position in the context, we introduce a variable in Coq, which we
use in the left- and right-hand sides of the rule. This makes the rules more human-readable.
Indeed, the lhs map F nil of this rule is represented as Map · f · Nil in code. The second rule
for map is encoded following the same ideas.

Program Definition map_cons :=
make_rewrite

(_ ,, _ ,, _ ,, •) _
(let f := TmVar Vz in let x := TmVar (Vs Vz) in let xs := TmVar (Vs (Vs Vz)) in
Map · f · (Cons · x · xs))
(let f := TmVar Vz in let x := TmVar (Vs Vz) in let xs := TmVar (Vs (Vs Vz)) in
Cons · (f · x) · (Map · f · xs)).

Putting this all together, we obtain an AFS, which we call map_afs.

Definition map_afs := make_afs map_ar (map_nil :: map_cons :: nil).

2.2 Termination
Strong normalization is usually defined as the absence of infinite rewrite sequences. Such a
definition is sufficient in a classical setting where the law of excluded middle holds. However,
we work in a constructive setting, and thus we are interested in a stronger definition.

N. van der Weide, D. Vale, and C. Kop 30:7

Therefore, we need a constructive predicate, formulated positively, which implies there are
no infinite rewrite sequences. This idea is captured by the following definition

▶ Definition 2.8 (WellfoundedRelation.v). The well-foundedness predicate for a
relation R is defined as follows

Inductive isWf {X : Type} (R : X → X → Type) (x : X) : Prop :=
| acc : (forall (y : X), R x y → isWf R y) → isWf R x.

A relation is well-founded if the well-foundedness predicate holds for every element.

Definition Wf {X : Type} (R : X → X → Type) :=
forall (x : X), isWf R x.

Note that this definition has been considered numerous times before, for example in [4]
and in CoLoR [6]. An element x is well-founded if all y such that R x y are well-founded. Note
that if there is no y such that R x y, then x is vacuously well-founded. From the rewriting
perspective, this definition properly captures the notion of strong normalization. Indeed, a
term s is strongly normalizing iff every s′ such that s rewrites to s′ is strongly normalizing.

Well-foundedness contradicts the existence of infinite rewrite sequences, even in a con-
structive setting. As such, it indeed gives a stronger condition.

▶ Proposition 2.9 (no_infinite_chain). If R is well-founded, then there is no infinite
sequence s0, s1, . . . such that R(sn, sn+1), for all n.

Next, we define strong normalization using well-founded predicates.

▶ Definition 2.10 (is_SN). An algebraic functional system is strongly normalizing if
for every context C and every type A the rewrite relation for terms of type A in context C is
well-founded. We formalize that as follows:

Definition isSN {B F : Type} (X : afs B F) : Prop :=
forall (C : con B) (A : ty B), Wf (fun (t1 t2 : tm X C A) ⇒ t1 ∼> t2).

3 Higher-Order Interpretation Method

In this section, we formalize the method of weakly monotonic algebras for algebraic functional
systems. We proceed by providing type-theoretic semantics for the syntactic constructions
introduced in the last section and a sufficient condition for which such semantics can be used
to establish strong normalization.

3.1 Interpreting types and terms
In weakly monotonic algebras, types are interpreted as sets along with a well-founded
ordering and a quasi-ordering [24, 8]. For that reason, we start by defining compatible
relations. Intuitively, these are the domain for our semantics.

▶ Definition 3.1 (CompatibleRelation.v). Compatible relations are defined as follows

Record CompatRel := {
carrier :> Type ;
gt : carrier → carrier → Prop ;
ge : carrier → carrier → Prop }.

We write x > y and x >= y for gt x y and ge x y respectively.

ITP 2023

https://nmvdw.github.io/Nijn/html/Nijn.Prelude.Relations.WellfoundedRelation.html
https://nmvdw.github.io/Nijn/html/Nijn.Prelude.Relations.WellfoundedRelation.html#no_infinite_chain
https://nmvdw.github.io/Nijn/html/Nijn.Syntax.StrongNormalization.SN.html#is_SN
https://nmvdw.github.io/Nijn/html/Nijn.Prelude.Orders.CompatibleRelation.html

30:8 Certifying Higher-Order Polynomial Interpretations

The record CompatRel consists of the data needed to express compatibility between > and >=.
The conditions it needs to satisfy, are in the type class isCompatRel, defined below.

Class isCompatRel (X : CompatRel) := {
gt_trans : forall {x y z : X}, x > y → y > z → x > z ;
ge_trans : forall {x y z : X}, x >= y → y >= z → x >= z ;
ge_refl : forall (x : X), x >= x ;
compat : forall {x y : X}, x > y → x >= y ;
ge_gt : forall {x y z : X}, x >= y → y > z → x > z ;
gt_ge : forall {x y z : X}, x > y → y >= z → x > z }.

Note that the field gt_trans in isCompatRel follows from compat and ge_gt. The type nat
of natural numbers with the usual orders is a first example of data that satisfies isCompatRel.
We denote this one by nat_CompatRel. This type class essentially models the notion of
extended well-founded set introduced in [18]. An extended well-founded set is a set
together with compatible orders >, ≥ such that > is well-founded and ≥ is a quasi-ordering.
This compatibility requirement corresponds to the axiom compat in the type class isCompatRel.
However, since we do not require > to be well-founded in this definition, we instead call it a
compatible relation. More specifically, X is a compatible relation if it is of type CompatRel
and satisfies the constraints in the type class isCompatRel.

In order to interpret simple types (Definition 2.1), we start by fixing a type B : Type of
base types and an interpretation semB : B → CompatRel such that each semB b is a compatible
relation. Whenever semB satisfies such property we call it an interpretation key for B. We
interpret arrow types as functional compatible relations, i.e., compatible relations such that
the inhabitants of their carrier are functional. The class of functionals we are interested in is
that of weakly-monotone maps.

▶ Definition 3.2 (MonotonicMaps.v). Weakly monotone maps are defined as follows

Class weakMonotone {X Y : CompatRel} (f : X → Y) :=
map_ge : forall (x y : X), x >= y → f x >= f y.

Record weakMonotoneMap (X Y : CompatRel) :=
make_monotone {

fun_carrier :> X → Y ;
is_weak_monotone : weakMonotone fun_carrier }.

The class weakMonotone says when a function is weakly monotonic, and an inhabitant of the
record weakMonotoneMap consists of a function together with proof of its weak monotonicity.
Then we define fun_CompatRel which is of type CompatRel and represents the functional
compatible relations from X to Y. It is defined as follows:

Definition fun_CompatRel (X Y : CompatRel) : CompatRel :={|
carrier := weakMonotoneMap X Y ;
gt f g := forall (x : X), f x > g x ;
ge f g := forall (x : X), f x >= g x |}.

https://nmvdw.github.io/Nijn/html/Nijn.Prelude.Orders.MonotonicMaps.html

N. van der Weide, D. Vale, and C. Kop 30:9

In what follows, we write X →wm Y for fun_CompatRel X Y. The semantics for a type is
parametrized by an interpretation key semB. It is defined as follows:

▶ Definition 3.3 (sem_Ty). Assume A : ty B and semB is an interpretation key for B. Then

Fixpoint sem_Ty (A : ty B) : CompatRel :=
match A with
| Base b ⇒ semB b
| A1 → A2 ⇒ sem_Ty A1 →wm sem_Ty A2
end.

We also show how to interpret contexts, and to do so, we need to interpret the empty context
and context extension. For those, we define the unit and product of compatible relations.

▶ Definition 3.4 (Examples.v). The unit and product compatible relations:
Definition unit_CompatRel :
CompatRel := {|

carrier := unit ;
gt _ _ := False ;
ge _ _ := True |}.

Definition prod_CompatRel (X Y : CompatRel) :
CompatRel := {|

carrier := X ∗ Y ;
gt x y := fst x > fst y ∧ snd x > snd y ;
ge x y := fst x >= fst y ∧ snd x >= snd y |}.

Note that unit_CompatRel is the compatible relation on the type with only one ele-
ment, for which the ordering is trivial. In addition, prod_CompatRel is the compatible
relation on the product, for which we compare elements coordinate-wise. We write X ∗ Y for
prod_CompatRel X Y.

▶ Definition 3.5 (sem_Con). Contexts are interpreted as follows

Fixpoint sem_Con (C : con B) : CompatRel :=
match C with
| • ⇒ unit_CompatRel
| A ,, C ⇒ sem_Ty A ∗ sem_Con C
end.

Next, we give semantics to variables and terms. The approach we use here is slightly
different from what is usually done in higher-order rewriting. In [8, 18, 24], for instance,
context information is lifted to the meta-level and variables are interpreted using the notion
of valuations. In contrast, in our setting, the typing context lives at the syntactic level
and variables are interpreted as weakly monotonic functions. Consequently, to every term
t : tm C A, we assign a map from sem_Con C to sem_Ty A. In the remainder, we need the
following weakly monotonic functions.

▶ Definition 3.6 (Examples.v). We define the following weakly monotonic functions.
Given y : Y, we write const_wm y : X →wm y for the constant function.
Given f : X →wm Y and g : Y →wm Z, we define g ◦wm f : X →wm Z to be their composition.
We have the first projection fst_wm : X ∗ Y →wm X, which sends a pair (x , y) to x, and
the second projection snd_wm : X ∗ Y →wm Y, which sends (x , y) to y.
Given f : X →wm Y and g : X →wm Z, we have a function 〈 f , g 〉 : X →wm (Y ∗ Z). For
x : X, we define 〈 f , g 〉 x to be (f x , g x).
Given f : Y ∗ X →wm Z, we get λwm f : X →wm (Y →wm Z). For every x : X and y : Y, we
define λwm f y x to be f (y , x).
Given f : X →wm (Y →wm Z) and x : X →wm Y, we obtain f ·wm x : X →wm Z, which sends
every a : X to f a (x a).
Given x : X, we have a weakly monotonic function apply_el_wm x : (X →wm Y) →wm Y which
sends f : X →wm Y to f x.

ITP 2023

https://nmvdw.github.io/Nijn/html/Nijn.Interpretation.OrderInterpretation.html#sem_Ty
https://nmvdw.github.io/Nijn/html/Nijn.Prelude.Orders.Examples.html
https://nmvdw.github.io/Nijn/html/Nijn.Interpretation.OrderInterpretation.html#sem_Con
https://nmvdw.github.io/Nijn/html/Nijn.Prelude.Orders.Examples.html

30:10 Certifying Higher-Order Polynomial Interpretations

Recall that variables are represented by positions in a context which in turn is interpreted
as a weakly monotonic product (Definition 3.5). This allows us to interpret the variable at a
position in a context as the corresponding interpretation of the type in that position.

▶ Definition 3.7 (sem_Var). We interpret variables with the following function

Fixpoint sem_Var {C : con B} {A : ty B} (v : var C A) : sem_Con C →wm sem_Ty A
:= match v with

| Vz ⇒ fst_wm
| Vs v ⇒ sem_Var v ◦wm snd_wm
end.

We need the following data in order to provide semantics to terms. An arity function
ar : F → ty B, together with its interpretation semF : forall (f : F), sem_Ty (ar f), and an
application operator given by

semApp : forall (A1 A2 : ty B), (sem_Ty A1 →wm sem_Ty A2) ∗ sem_Ty A1 →wm sem_Ty A2

to interpret term application.

▶ Remark 3.8. A first, but incorrect, guess to interpret application would have been by
interpreting the application of f : sem_Ty A1 →wm sem_Ty A2 to x : sem_Ty A1 by f x. However,
there is a significant disadvantage of this interpretation. Ultimately, we want to deduce
strong normalization from the interpretation, and the main idea is that if we have a rewrite
x ∼> x’, then we have semTm x > semTm x’. This requirement would not be satisfied if we
interpret application of our terms as actual applications as functions. Indeed, if we have
x < x’, then one is not guaranteed that we also have f x < f x’, because f is only weakly
monotone.

There are two ways to deal with this. One way is by interpreting function types as strictly
monotonic maps [18]. In this approach, this interpretation of application is valid. However,
it comes at a price, because the interpretation of lambda abstraction becomes more difficult.

Another approach, which we use here, is also used in [8]. We add a parameter to our
interpretation method, namely semApp, which abstractly represents the interpretation of
application. To deduce strong normalization in this setting, we add requirements about
semApp in Section 3.2. As a result, in concrete instantiations of this method, we need to
provide an actual definition for semApp. We see this in Section 4.2.

▶ Definition 3.9 (sem_Tm). Given a function semF : forall (f : F), sem_Ty (ar f), the seman-
tics of terms is given by

Fixpoint sem_Tm {C : con B} {A : ty B} (t : tm ar C A) : sem_Con C →wm sem_Ty A :=
match t with
| BaseTm f ⇒ const_wm (semF f)
| TmVar v ⇒ sem_Var v
| λ f ⇒ λwm (sem_Tm f)
| f · t ⇒ semApp _ _ ◦wm 〈sem_Tm f , sem_Tm t 〉
end.

Notice that we could have chosen a fixed way of interpreting application. We follow the
same approach used by Fuhs and Kop [8] in our formalization and leave semApp abstract.
This choice is essential if we want to use the interpretation method for both rule removal
and the dependency pair approach. See [15, Chapters 4 and 6] for more detail.

https://nmvdw.github.io/Nijn/html/Nijn.Interpretation.OrderInterpretation.html#sem_Var
https://nmvdw.github.io/Nijn/html/Nijn.Interpretation.OrderInterpretation.html#sem_Tm

N. van der Weide, D. Vale, and C. Kop 30:11

3.2 Termination Models for AFSs

Now we have set up everything that is necessary to define the main notion of this section:
termination models. From a termination model of an algebraic functional system, one obtains
an interpretation of the types and terms. In addition, every rewrite rule is “satisfied” in this
interpretation.

▶ Definition 3.10 (Interpretation). Let R be an algebraic functional system with base
type B and function symbols F. A termination model of R consists of

an interpretation key semB;

a function semF : forall (f : F), sem_Ty (ar f);

a function

semApp : forall (A1 A2 : ty B), (sem_Ty A1 →wm sem_Ty A2) ∗ sem_Ty A1 →wm sem_Ty A2

such that the following axioms are satisfied

each semB b is well-founded and inhabited;

if f > f’, then semApp _ _ (f , x) > semApp _ _ (f’ , x);

if x > x’, then semApp _ _ (f , x) > semApp _ _ (f , x’) ;

we have semApp _ _ (f , x) >= f x for all f and x;

for every rewrite rule r, substitution s, and element x, we have

semTm (lhs r [s]) x > semTm (rhs r [s]) x.

Whereas the left-hand side of every rewrite rule is greater than its right-hand side, this
does not hold for β-reduction in our interpretations. Since rewrite sequences can contain
both rewrite rules and β-reduction, such sequences are not guaranteed to strictly decrease.
As such, we need more to actually conclude strong normalization, and we follow the method
used by Kop [15]. More specifically, Kop uses rule removal to show that strong normalization
follows from the strong normalization of β-reduction, which is a famous theorem proven by
Tait [27]. The strong normalization of β-reduction has been formalized numerous times and
an overview can be found in [1]. Now we deduce the main theorem of this section.

▶ Theorem 3.11 (afs_is_SN_from_Interpretation). Let R be an algebraic functional
system. If we have a termination model of X, then X is strongly normalizing.

4 The Higher-Order Polynomial Method

4.1 Polynomials

In this section, we instantiate the material of Section 3 to a concrete instance, namely the
polynomial method [8]. For that reason, we define the notation of higher-order polynomial.

▶ Definition 4.1 (Polynomial.v). We define the type base_poly of base polynomials and
poly of higher-order polynomials by mutual induction as follows:

ITP 2023

https://nmvdw.github.io/Nijn/html/Nijn.Interpretation.OrderInterpretation.html#Interpretation
https://nmvdw.github.io/Nijn/html/Nijn.Interpretation.OrderInterpretation.html#afs_is_SN_from_Interpretation
https://nmvdw.github.io/Nijn/html/Nijn.TerminationTechniques.PolynomialMethod.Polynomial.html

30:12 Certifying Higher-Order Polynomial Interpretations

Inductive base_poly {B : Type}
: con B → Type :=

| P_const : forall {C : con B},
nat → base_poly C

| P_plus : forall {C : con B},
(P1 P2 : base_poly C) → base_poly C

| P_mult : forall {C : con B},
(P1 P2 : base_poly C)→ base_poly C

| from_poly : forall {C : con B} {b : B},
poly C (Base b) → base_poly C

with poly {B : Type} : con B → ty B → Type :=
| P_base : forall {C : con B} {b : B},

base_poly C →poly C (Base b)
| P_var : forall {C : con B} {A : ty B},

var C A → poly C A
| P_app : forall {C : con B} {1A 2A : ty B},

poly C (1A −→2 A)→
poly C 1A→
poly C 2A

| P_lam : forall {C : con B} {1A 2A : ty B},
poly (1A ,, C) 2A → poly C (1A −→2 A).

We can make expressions of base polynomials using P_const (constants), P_plus (addition),
and P_mult (multiplication). In addition, from_poly takes an inhabitant of poly C (Base b)
and returns a base polynomial in context C. Using P_base, we can turn a base polynomial into
a polynomial of any base type. The constructors, P_var, P_app, and P_lam, are remniscent of
the simply typed lambda calculus. We get variables from P_var, λ-abstraction from P_lam,
and application from P_app. Note that combining from_poly and P_var, we can use variables
in base polynomials.

Let us make some remarks about the design choices we made and how they affected the
definition of polynomials. One of our requirements is that we are able to add and multiply
polynomials on different base types. This is frequently used in actual examples, such as
Example 4.2. Function symbols might use arguments from different base types, and we would
like to use both of them in polynomial expressions.

One possibility would have been to only work with the type poly and to add a constructor

P_plus : forall {C : con B} (b1 b2 : B),
poly C (Base b1) → poly C (Base b2) → poly C (Base b1)

However, we refrained from doing so: if we were to use P_const, then the elaborator would
be unable to determine the actual type if we do not tell the base type explicitly. Instead, we
used a type of base polynomials that does not depend on the actual base type. This is the
role of base_poly, which only depends on the variables being used. We can freely add and
multiply inhabitants of base_poly, and if we were to use a constant, then we do not explicitly
need to mention the base type. In addition, we are able to transfer between base_poly and
poly C (Base b), and that is what P_base and from_poly enable us to do.

Note that our definition of higher-order polynomials is rather similar to the one given by
Fuhs and Kop [8, Definition 4.1]. They define a set Pol(X), which consists of polynomial
expressions, and for every type A a set PolA(X). The set PolA(X) is defined by recursion: for
base type, it is the set of polynomials over X and for function types A1 −→ A2, it consists of
expressions Λ(y : A1).P where P is a polynomial of type A2 using an extra variable y : A1.
Our base_poly C and poly C A correspond to Pol(X) and PolA(X) respectively. However,
there are some differences. First of all, Fuhs and Kop require variables to be fully applied,
whereas we permit partially applied variables. Secondly, Fuhs and Kop define polynomials in
such a way that for every two base types b1, b2 the types Polb1(X) and Polb2(X) are equal.
This is not the case in our definition: instead we use constructors from_poly and P_base to
relate base_poly C and poly C (Base b).

In the polynomial method, the interpretation key sends every base type to nat_CompatRel,
and in what follows, we write J C Kcon and J A Kty for the interpretation of contexts and
types respectively. Note that every polynomial P : poly C A gives rise to a weakly monotonic

N. van der Weide, D. Vale, and C. Kop 30:13

function sem_poly P : J C Kcon →wm J A Kty and that every base polynomial P : base_poly C
gives rise to sem_base_poly P : JC Kcon →wm nat_CompatRel. These two functions are defined
using mutual recursion and every constructor is interpreted in the expected way: sem_poly.

In order to actually use base_poly C and poly C A, we provide convenient notations for
operations on polynomials. More concretely, we define notations +, ∗, and ·P that represent
addition, multiplication, and application respectively. These operations must be overloaded
since we need to be able to add polynomials of different types. To do so, we similarly use
type classes to MathClasses [26]. For details, we refer the reader to the formalization.

▶ Example 4.2 (map_fun_poly). We continue with Example 2.7 and provide a polynomial
interpretation to the system map_afs as follows:

Definition map_fun_poly fn_symbols : poly •(arity trs fn_symbols) :=
match fn_symbols with
| Tnil ⇒ to_Poly (P_const 3)
| Tcons ⇒ λP λP let y1 := P_var Vz in

to_Poly (P_const 3 + P_const 2 ∗ y1)
| Tmap ⇒ λP let y0 := P_var (Vs Vz) in λP let G1 := P_var Vz in

to_Poly (P_const 3 ∗ y0 + P_const 3 ∗ y0 ∗ (G1 ·P (y0)))
end.

Informally, the interpretation of nil is the constant 3. The interpretation of cons is the
function that sends y1 : N to 3 + 2y1, and map is interpreted as the function that sends y0 : N
and G1 : N →wm N to 3y0 + 3y0G1(y0).

4.2 Polynomial Interpretation
Using polynomials, we deduce strong normalization under certain circumstances using Theo-
rem 3.11. Suppose that for all function symbols f we have a polynomial J : poly • (arity X f),
and now we need to provide the interpretation for application. Following Fuhs and Kop [8],
we use a general method to interpret application. We start by constructing a minimal element
in the interpretation of every type.

▶ Definition 4.3 (min_el_ty). For every simple type A we define a minimal element of
J A Kty as follows

Fixpoint min_el_ty (A : ty B) : minimal_element JA Kty
:= match A with

| Base _ ⇒ nat_minimal_element
| A1 −→ A2 ⇒ min_el_fun_space (min_el_ty A2)
end.

Here nat_minimal_element is defined to be 0, and min_el_fun_space (min_el_ty A2) is the
constant function on (min_el_ty A2).

In order to define the semantics of application, we need several operations involving
J A Kty. First, we consider lower value functions.

▶ Definition 4.4 (lvf). We define the lower value function as follows

Fixpoint lvf {A : ty B} : J A Kty →wm nat_CompatRel :=
match A with

| Base _ ⇒ id_wm
| A1 −→ A2 ⇒ lvf ◦wm apply_el_wm (min_el_ty A1)

end.

ITP 2023

https://nmvdw.github.io/Nijn/html/Nijn.TerminationTechniques.PolynomialMethod.Polynomial.html#sem_poly
https://nmvdw.github.io/Nijn/html/Nijn.Examples.Map.html#map_fun_poly
https://nmvdw.github.io/Nijn/html/Nijn.TerminationTechniques.PolynomialMethod.Polynomial.html#min_el_ty
https://nmvdw.github.io/Nijn/html/Nijn.TerminationTechniques.PolynomialMethod.Polynomial.html#lvf

30:14 Certifying Higher-Order Polynomial Interpretations

Note that we construct lvf directly as a weakly monotonic function. In addition, we reuse
the combinators defined in Definition 3.6. As such, we do not need to prove separately that
this function is monotonic.

In Kop and Fuhs [8], this definition is written down in a different, but equivalent, way.
Instead of defining lvfA recursively, they look at full applications, which would be more
complicated in our setting. More specifically, since we are working with simple types, we must
have that A = A1 −→ . . . −→ An −→ B. Then they define lvfA(f) := f(⊥A1 , . . . , ⊥An

),
where ⊥A is the minimum element of the interpretation of A. Next, we define two addition
operations on J A Kty.

▶ Definition 4.5 (plus_ty_nat). Addition of natural numbers and elements on J A Kty is
defined as follows

Fixpoint plus_ty_nat {A : ty B} : JA Kty ∗ nat_CompatRel →wm JA Kty
:= match A with

| Base _ ⇒ plus_wm
| A1 −→ A2 ⇒

let f := fst_wm ◦wm snd_wm in
let x := fst_wm in
let n := snd_wm ◦wm snd_wm in
λwm (plus_ty_nat ◦wm 〈f ·wm x , n 〉)

end.

The function plus_ty_nat allows us to add arbitrary natural numbers to elements of the
interpretation of types. Note that there are two cases in Definition 4.5. First of all, the type A
could be a base type. In that case, we are adding two natural numbers, and we use the usual
addition operation. In the second case, we are working with a functional type A1 −→ A2.
The resulting function is defined using pointwise addition with the relevant natural number.
Now we have everything in place to define the interpretation of application.

▶ Definition 4.6 (p_app). Application is interpreted as the following function

Definition p_app {A1 A2 : ty B}
: J A1 −→ A2 Kty ∗ J A1 Kty →wm J A2 Kty
:= let f := fst_wm in

let x := snd_wm in
plus_ty_nat ◦wm 〈f ·wm x , lvf ◦wm x 〉.

If both A1 and A2 are base types, then p_app (f , x) reduces to f x + x. Note that p_app
satisfies the requirements from Theorem 3.11. Hence, we obtain the following.

▶ Theorem 4.7 (poly_Interpretation). Let R be an AFS. Suppose that for every function
symbol f we have a polynomial p_fun_sym f such that for all rewrite rules l ∼> r in R we
have semTm l x > semTm r x for all x. Then R has a termination model.

4.3 Constraint Solving Tactic
Notice that in order to formally verify a proof of termination of a system using Theorem 4.7,
we need to provide a polynomial interpretation and show that JℓK > JrK holds for all rules
ℓ → r. This will introduce inequality proof goals into the Coq context that must be solved.

https://nmvdw.github.io/Nijn/html/Nijn.TerminationTechniques.PolynomialMethod.Polynomial.html#plus_ty_nat
https://nmvdw.github.io/Nijn/html/Nijn.TerminationTechniques.PolynomialMethod.Polynomial.html#p_app
https://nmvdw.github.io/Nijn/html/Nijn.TerminationTechniques.PolynomialMethod.Polynomial.html#poly_Interpretation

N. van der Weide, D. Vale, and C. Kop 30:15

▶ Example 4.8. Let us consider a concrete example. We use the polynomials given in
Example 4.2 to show strong normalization of Example 2.7. This example introduces two
inequalities, one for each rule. Let G0 : N →wm N be weakly monotonic. For rule map_nil, we
need to prove that for all G0, the constraint 12 + G0(0) + 9G0(3) > 3 holds. For the second
rule, map_cons, the constraint is: 12 + 4y0 + 12y1 + G0(0) + (3y0 + 9y1 + 9)G0(3 + y0 + 3y1) >

3 + y0 + 12y1 + 3G0(0) + G0(y0) + 9y1G0(y1), for all y0, y1 ∈ N and G0.

Finding witnesses for such inequalities is tedious, and we would like to automate this
task. For that reason, we developed a tactic (solve_poly) that automatically solves the
inequalities coming from Theorem 4.7. Essentially, this tactic tries to mimic how one would
solve those goals in a pen-and-paper proof, and the same method is used by Wanda.

▶ Example 4.9. We show how to solve the constraint arising from map_cons mentioned
in Example 4.8. The first step is to find matching terms on both sides of the inequality
and subtract them. In our example, 3 + y0 + 12y1 + G0(0) occurs on both sides, and after
subtraction, we obtain the following constraint:

9 + 3y0 + 9y1 + (3y0 + 9y1 + 9)G0(3 + y0 + 3y1) > 2G0(0) + G0(y0) + 9y1G0(y1).

The second step is combining the arguments for the higher-order variable G0 use its mono-
tonicity. Note that each of 0, y0, and y1 is lesser than or equal to 3 + y0 + 3y1, because they
are natural numbers. Since G0 is weakly monotonic, we get

2G0(0) + G0(y0) + 9y1G0(y1) ≤ (9y1 + 3)G0(3 + y0 + 3y1).

Now we can simplify our original constraint to

9 + 3y0 + 9y1 + (3y0 + 9y1 + 9)G0(3 + y0 + 3y1) > (9y1 + 3)G0(3 + y0 + 3y1).

Since 3y0 + 9y1 + 9 ≥ 9y1 + 3, we have

(3y0 + 9y1 + 9)G0(3 + y0 + 3y1) ≥ (9y1 + 3)G0(3 + y0 + 3y1).

This is sufficient to conclude that the constraints for map_cons are satisfied.

The tactic solve_poly (solve_poly) follows the steps described above. Note that we use the
tactic nia, which is a tactic in Coq that can solve inequalities and equations in nonlinear
integer arithmetic. More specifically, solve_poly works as follows:

First, we generate a goal for every rewrite rule, and we destruct the assumptions so that
each variable in the context is either a natural number or a function.
For every variable f that has a function type, we look for pair (x, y) such that f(x) on
the left hand side and f(y) occurs on the right-hand side. We try using nia whether we
can prove x < y from our assumptions. If so, we add x < y to the assumptions, and
otherwise, we continue.
The resulting goals with the extra assumptions are solved using nia.

Note that solve_poly is not complete, because nia is incomplete. As such, if a proof
using this tactic is accepted by Coq, then that proof is correct. However, if the proof is not
accepted, then it does not have to be the case that the proof is false. With the material
discussed in this section, we can write down the polynomials given in Example 4.2, and the
tactic is able to verify strong normalization.

ITP 2023

https://nmvdw.github.io/Nijn/html/Nijn.TerminationTechniques.PolynomialMethod.Polynomial.html#solve_poly
https://nmvdw.github.io/Nijn/html/Nijn.TerminationTechniques.PolynomialMethod.PolynomialTactics.html#solve_poly

30:16 Certifying Higher-Order Polynomial Interpretations

5 Generating Proof Scripts

In this section, we discuss the practical aspects of our verification framework. In principle
one can manually encode rewrite systems as Coq files and use the formalization we provide
to verify their own termination proofs. However, this is cumbersome to do. Indeed, in
Example 2.7 we used abbreviations to make the formal description of Rmap more readable.
A rewrite system with many more rules would be difficult to encode manually. Additionally,
to formally establish termination we also need to encode proofs. We did this in Example 4.2.
The full formal encoding of Rmap and its termination proof is found in the file Map.v.

5.1 Proof traces for polynomial interpretation
This difficulty of manual encoding motivates the usage of proof traces. A proof trace is a
human-friendly encoding of a TRS and the essential information needed to reconstruct the
termination proof as a Coq script. Let us again consider Rmap as an example. The proof
trace for this system starts with YES to signal that we have a termination proof for it. Then
we have a list encoding the signature and the rules of the system.

YES
Signature: [

cons : a -> list -> list ;
map : list -> (a -> a) -> list ;
nil : list

]
Rules: [

map nil F => nil ;
map (cons X Y) G => cons (G X) (map Y G)

]

Notice that the free variables in the rules do not need to be declared nor their typing
information provided. Coq can infer this information automatically. The last section of the
proof trace describes the interpretation of each function symbol in the signature.

Interpretation: [
J(cons) = Lam[y0;y1].3 + 2*y1;
J(map) = Lam[y0;G1].3*y0 + 3*y0 * G1(y0);
J(nil) = 3

]

We can fully reconstruct a formal proof of termination for Rmap, which uses Theorem 4.7,
with the information provided in the proof trace above. The full description of proof traces
can be found in [29], the API for ONijn. Proof traces are not Coq files. So we need to
further compile them into a proper Coq script. The schematics in Figure 1 describe the steps
necessary for it. We use ONijn to compile proof traces to Coq script. It is invoked as follows:

onijn path/to/proof/trace.onijn -o path/to/proof/script.v

Here, the first argument is the file path to a proof trace file and the -o option requires the file
path to the resulting Coq script. The resulting Coq script can be verified by Nijn as follows:

coqc path/to/proof/script.v

Instructions on how to locally install ONijn/Nijn can be found at [29].

https://nmvdw.github.io/Nijn/html/Nijn.Examples.Map.html

N. van der Weide, D. Vale, and C. Kop 30:17

5.2 Verifying Wanda’s Polynomial Interpretations

It is worth noticing that the termination prover is abstract in our certification framework.
This means that we are not bound to a specific termination tool. So we can verify any
termination tool that implements the interpretation method described here and can output
proof traces in ONijn format.

Since Wanda [16] is a termination tool that implements the interpretation method in [8],
it is our first candidate for verification. We added to Wanda the runtime argument --formal
so it can output proof traces in ONijn format. In [16] one can find details on how to invoke
Wanda. For instance, we illustrate below how to run Wanda on the map AFS.

./wanda.exe -d rem --formal Mixed_HO_10_map.afs

The setting -d rem sets Wanda to disable rule removal. The option --formal sets Wanda to
only use polynomial interpretations and output proofs to ONijn proof traces. Running Wanda
with these options gives us the proof trace we used for Rmap above. The latest version of
Wanda, which includes this parameter, is found at [17].

The table below describes our experimental evaluation on verifying Wanda’s output with
the settings above. The benchmark set consists of those 46 TRSs that Wanda outputs
YES while using only polynomial interpretations and no rule removal. The time limit for
certification of each system is set to 60 seconds.

The experiment was run in a machine with M1 Pro 2021 processor with 16GB of RAM.
Memory usage of Nijn during certification ranges from 400MB to 750MB. We provide the
experimental benchmarks at https://github.com/deividrvale/nijn-coq-script-generation.

Table 1 Experimental Results.

Wanda Nijn/ONijn
Technique # YES Pct. Avg. Time # Certified Perc. Avg. Time
Poly, no rule removal 46 23% 0.07s 46 100% 4.06s

Hence, we can certify all TRSs proven SN by Wanda using only polynomial interpretations.

6 Conclusions and Future Work

We presented a formalization of the polynomial method in higher-order rewriting. This
not only included the basic notions, such as algebraic functional systems, but also the
interpretation method and the instantiation of this method to polynomials. In addition, we
showed how to generate Coq scripts from the output of termination provers. This allowed us
to certify their output and construct a formal proof of strong normalization. We also applied
our tools to a concrete instance, namely to check the output of Wanda.

There are numerous ways to extend this work. First, one could formalize more techniques
from higher-order rewriting, such as tuple interpretations [18] and dependency pairs [19,
22]. One could also integrate HORPO into our framework [20]. Second, in the current
formalization, the interpretation of application is fixed for every instance of the polynomial
method. One could also provide the user with the option to select their own interpretation.
Third, currently, only Wanda is integrated with our work. This could be extended so that
there is direct integration for other tools as well.

ITP 2023

https://github.com/deividrvale/nijn-coq-script-generation

30:18 Certifying Higher-Order Polynomial Interpretations

References
1 Andreas Abel, Guillaume Allais, Aliya Hameer, Brigitte Pientka, Alberto Momigliano, Steven

Schäfer, and Kathrin Stark. POPLMark reloaded: Mechanizing proofs by logical relations. J.
Funct. Program., 29:e19, 2019. doi:10.1017/S0956796819000170.

2 Ariane Alves Almeida and Mauricio Ayala-Rincón. Formalizing the dependency pair criterion
for innermost termination. Sci. Comput. Program., 195:102474, 2020. doi:10.1016/j.scico.
2020.102474.

3 Thomas Arts and Jürgen Giesl. Termination of term rewriting using dependency pairs. Theor.
Comput. Sci., 236(1-2):133–178, 2000. doi:10.1016/S0304-3975(99)00207-8.

4 Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development -
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science.
An EATCS Series. Springer, 2004. doi:10.1007/978-3-662-07964-5.

5 Frédéric Blanqui, Jean-Pierre Jouannaud, and Albert Rubio. The computability path ordering.
Log. Methods Comput. Sci., 11(4), 2015. doi:10.2168/LMCS-11(4:3)2015.

6 Frédéric Blanqui and Adam Koprowski. CoLoR: a Coq library on well-founded rewrite relations
and its application to the automated verification of termination certificates. Math. Struct.
Comput. Sci., 21(4):827–859, 2011. doi:10.1017/S0960129511000120.

7 Evelyne Contejean, Pierre Courtieu, Julien Forest, Olivier Pons, and Xavier Urbain. Automated
certified proofs with cime3. In Manfred Schmidt-Schauß, editor, Proceedings of the 22nd
International Conference on Rewriting Techniques and Applications, RTA 2011, May 30
- June 1, 2011, Novi Sad, Serbia, volume 10 of LIPIcs, pages 21–30. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2011. doi:10.4230/LIPIcs.RTA.2011.21.

8 Carsten Fuhs and Cynthia Kop. Polynomial Interpretations for Higher-Order Rewriting. In
Ashish Tiwari, editor, 23rd International Conference on Rewriting Techniques and Applications
(RTA’12) , RTA 2012, May 28 - June 2, 2012, Nagoya, Japan, volume 15 of LIPIcs, pages
176–192. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2012. doi:10.4230/LIPIcs.RTA.
2012.176.

9 Carsten Fuhs and Cynthia Kop. A Static Higher-Order Dependency Pair Framework. In
Luís Caires, editor, Programming Languages and Systems - 28th European Symposium on
Programming, ESOP 2019, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceedings,
volume 11423 of Lecture Notes in Computer Science, pages 752–782. Springer, 2019. doi:
10.1007/978-3-030-17184-1_27.

10 Jürgen Giesl, Cornelius Aschermann, Marc Brockschmidt, Fabian Emmes, Florian Frohn,
Carsten Fuhs, Jera Hensel, Carsten Otto, Martin Plücker, Peter Schneider-Kamp, Thomas
Ströder, Stephanie Swiderski, and René Thiemann. Analyzing program termination and
complexity automatically with aprove. J. Autom. Reason., 58(1):3–31, 2017. doi:10.1007/
s10817-016-9388-y.

11 Jürgen Giesl, Albert Rubio, Christian Sternagel, Johannes Waldmann, and Akihisa Yamada.
The termination and complexity competition. In Dirk Beyer, Marieke Huisman, Fabrice
Kordon, and Bernhard Steffen, editors, Tools and Algorithms for the Construction and
Analysis of Systems, pages 156–166, Cham, 2019. Springer International Publishing. doi:
10.1007/978-3-030-17502-3_10.

12 Raúl Gutiérrez and Salvador Lucas. mu-term: Verify termination properties automatically
(system description). In Nicolas Peltier and Viorica Sofronie-Stokkermans, editors, Automated
Reasoning - 10th International Joint Conference, IJCAR 2020, Paris, France, July 1-4, 2020,
Proceedings, Part II, volume 12167 of Lecture Notes in Computer Science, pages 436–447.
Springer, 2020. doi:10.1007/978-3-030-51054-1_28.

13 Makoto Hamana. Theory and practice of second-order rewriting: Foundation, evolution,
and SOL. In Keisuke Nakano and Konstantinos Sagonas, editors, Functional and Logic
Programming - 15th International Symposium, FLOPS 2020, Akita, Japan, September 14-16,

https://doi.org/10.1017/S0956796819000170
https://doi.org/10.1016/j.scico.2020.102474
https://doi.org/10.1016/j.scico.2020.102474
https://doi.org/10.1016/S0304-3975(99)00207-8
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.2168/LMCS-11(4:3)2015
https://doi.org/10.1017/S0960129511000120
https://doi.org/10.4230/LIPIcs.RTA.2011.21
https://doi.org/10.4230/LIPIcs.RTA.2012.176
https://doi.org/10.4230/LIPIcs.RTA.2012.176
https://doi.org/10.1007/978-3-030-17184-1_27
https://doi.org/10.1007/978-3-030-17184-1_27
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1007/978-3-030-17502-3_10
https://doi.org/10.1007/978-3-030-17502-3_10
https://doi.org/10.1007/978-3-030-51054-1_28

N. van der Weide, D. Vale, and C. Kop 30:19

2020, Proceedings, volume 12073 of Lecture Notes in Computer Science, pages 3–9. Springer,
2020. doi:10.1007/978-3-030-59025-3_1.

14 Martin Hofmann and Thomas Streicher. The groupoid model refutes uniqueness of identity
proofs. In Proceedings of the Ninth Annual Symposium on Logic in Computer Science (LICS
’94), Paris, France, July 4-7, 1994, pages 208–212. IEEE Computer Society, 1994. doi:
10.1109/LICS.1994.316071.

15 Cynthia Kop. Higher Order Termination: Automatable Techniques for Proving Termination
of Higher-Order Term Rewriting Systems. PhD thesis, Vrije Universiteit Amsterdam, 2012.

16 Cynthia Kop. WANDA - a higher order termination tool (system description). In Zena M.
Ariola, editor, 5th International Conference on Formal Structures for Computation and
Deduction, FSCD 2020, June 29-July 6, 2020, Paris, France (Virtual Conference), volume
167 of LIPIcs, pages 36:1–36:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.FSCD.2020.36.

17 Cynthia Kop. Wanda’s source code repository, 2023. URL: https://github.com/hezzel/
wanda.

18 Cynthia Kop and Deivid Vale. Tuple Interpretations for Higher-Order Complexity. In Naoki
Kobayashi, editor, 6th International Conference on Formal Structures for Computation and
Deduction, FSCD 2021, July 17-24, 2021, Buenos Aires, Argentina (Virtual Conference),
volume 195 of LIPIcs, pages 31:1–31:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPIcs.FSCD.2021.31.

19 Cynthia Kop and Femke van Raamsdonk. Dynamic Dependency Pairs for Algebraic Functional
Systems. Log. Methods Comput. Sci., 8(2), 2012. doi:10.2168/LMCS-8(2:10)2012.

20 Adam Koprowski. Coq formalization of the higher-order recursive path ordering. Appl. Algebra
Eng. Commun. Comput., 20(5-6):379–425, 2009. doi:10.1007/s00200-009-0105-5.

21 Martin Korp, Christian Sternagel, Harald Zankl, and Aart Middeldorp. Tyrolean Ter-
mination Tool 2. In Ralf Treinen, editor, Rewriting Techniques and Applications, 20th
International Conference, RTA 2009, Brasília, Brazil, June 29 - July 1, 2009, Proceed-
ings, volume 5595 of Lecture Notes in Computer Science, pages 295–304. Springer, 2009.
doi:10.1007/978-3-642-02348-4_21.

22 Keiichirou Kusakari, Yasuo Isogai, Masahiko Sakai, and Frédéric Blanqui. Static dependency
pair method based on strong computability for higher-order rewrite systems. IEICE Trans.
Inf. Syst., 92-D(10):2007–2015, 2009. doi:10.1587/transinf.E92.D.2007.

23 Friedrich Neurauter and Aart Middeldorp. Revisiting matrix interpretations for proving
termination of term rewriting. In Manfred Schmidt-Schauß, editor, Proceedings of the 22nd
International Conference on Rewriting Techniques and Applications, RTA 2011, May 30 -
June 1, 2011, Novi Sad, Serbia, volume 10 of LIPIcs, pages 251–266. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2011. doi:10.4230/LIPIcs.RTA.2011.251.

24 J.C. van de Pol. Termination of Higher-order Rewrite Systems. PhD thesis, University of
Utrecht, 1996. URL: https://www.cs.au.dk/~jaco/papers/thesis.pdf.

25 José-Luis Ruiz-Reina, José-Antonio Alonso, María-José Hidalgo, and Francisco-Jesús Martín-
Mateos. Formalizing Rewriting in the ACL2 Theorem Prover. In John A. Campbell and Eugenio
Roanes-Lozano, editors, Artificial Intelligence and Symbolic Computation, International Con-
ference AISC 2000 Madrid, Spain, July 17-19, 2000, Revised Papers, volume 1930 of Lecture
Notes in Computer Science, pages 92–106. Springer, 2000. doi:10.1007/3-540-44990-6_7.

26 Bas Spitters and Eelis van der Weegen. Type classes for mathematics in type theory. Math.
Struct. Comput. Sci., 21(4):795–825, 2011. doi:10.1017/S0960129511000119.

27 William W. Tait. Intensional Interpretations of Functionals of Finite Type I. J. Symb. Log.,
32(2):198–212, 1967. doi:10.2307/2271658.

28 René Thiemann and Christian Sternagel. Certification of Termination Proofs Using CeTA. In
Stefan Berghofer, Tobias Nipkow, Christian Urban, and Makarius Wenzel, editors, Theorem
Proving in Higher Order Logics, 22nd International Conference, TPHOLs 2009, Munich,

ITP 2023

https://doi.org/10.1007/978-3-030-59025-3_1
https://doi.org/10.1109/LICS.1994.316071
https://doi.org/10.1109/LICS.1994.316071
https://doi.org/10.4230/LIPIcs.FSCD.2020.36
https://github.com/hezzel/wanda
https://github.com/hezzel/wanda
https://doi.org/10.4230/LIPIcs.FSCD.2021.31
https://doi.org/10.2168/LMCS-8(2:10)2012
https://doi.org/10.1007/s00200-009-0105-5
https://doi.org/10.1007/978-3-642-02348-4_21
https://doi.org/10.1587/transinf.E92.D.2007
https://doi.org/10.4230/LIPIcs.RTA.2011.251
https://www.cs.au.dk/~jaco/papers/thesis.pdf
https://doi.org/10.1007/3-540-44990-6_7
https://doi.org/10.1017/S0960129511000119
https://doi.org/10.2307/2271658

30:20 Certifying Higher-Order Polynomial Interpretations

Germany, August 17-20, 2009. Proceedings, volume 5674 of Lecture Notes in Computer Science,
pages 452–468. Springer, 2009. doi:10.1007/978-3-642-03359-9_31.

29 Deivid Vale and Niels van der Weide. Onijn documentation, 2022. URL: https://deividrvale.
github.io/nijn-coq-script-generation/onijn/index.html.

30 Deivid Vale and Niels van der Weide. deividrvale/nijn-coq-script-generation: First Release of
public API, May 2023. doi:10.5281/zenodo.7915736.

31 Niels van der Weide and Deivid Vale. nmvdw/nijn: 1.0.0, May 2023. doi:10.5281/zenodo.
7913023.

32 Niels van der Weide, Deivid Vale, and Cynthia Kop. Certifying higher-order polynomial
interpretations. CoRR, abs/2302.11892, 2023. doi:10.48550/arXiv.2302.11892.

33 Johannes Waldmann. Matchbox: A tool for match-bounded string rewriting. In Vincent
van Oostrom, editor, Rewriting Techniques and Applications, 15th International Conference,
RTA 2004, Aachen, Germany, June 3-5, 2004, Proceedings, volume 3091 of Lecture Notes in
Computer Science, pages 85–94. Springer, 2004. doi:10.1007/978-3-540-25979-4_6.

34 Akihisa Yamada. Multi-dimensional interpretations for termination of term rewriting. In André
Platzer and Geoff Sutcliffe, editors, Automated Deduction - CADE 28 - 28th International
Conference on Automated Deduction, Virtual Event, July 12-15, 2021, Proceedings, volume
12699 of Lecture Notes in Computer Science, pages 273–290. Springer, 2021. doi:10.1007/
978-3-030-79876-5_16.

35 Akihisa Yamada, Keiichirou Kusakari, and Toshiki Sakabe. Nagoya Termination Tool. In
Gilles Dowek, editor, Rewriting and Typed Lambda Calculi - Joint International Conference,
RTA-TLCA 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria,
July 14-17, 2014. Proceedings, volume 8560 of Lecture Notes in Computer Science, pages
466–475. Springer, 2014. doi:10.1007/978-3-319-08918-8_32.

https://doi.org/10.1007/978-3-642-03359-9_31
https://deividrvale.github.io/nijn-coq-script-generation/onijn/index.html
https://deividrvale.github.io/nijn-coq-script-generation/onijn/index.html
https://doi.org/10.5281/zenodo.7915736
https://doi.org/10.5281/zenodo.7913023
https://doi.org/10.5281/zenodo.7913023
https://doi.org/10.48550/arXiv.2302.11892
https://doi.org/10.1007/978-3-540-25979-4_6
https://doi.org/10.1007/978-3-030-79876-5_16
https://doi.org/10.1007/978-3-030-79876-5_16
https://doi.org/10.1007/978-3-319-08918-8_32

Slice Nondeterminism
Niels F. W. Voorneveld #

Tallinn University of Technology, Estonia

Abstract
This paper studies a technique for describing and formalising nondeterministic functions, using slice
categories. Results of a nondeterministic function are modelled by an object of the slice category
over the codomain of the function, which is an indexed family over the codomain. Two such families
denote the same set of results if slice morphisms exist between them in both directions. We formulate
the category of nondeterministic functions by expressing a set of possible results as an equivalence
class of objects. If we allow families to use any indexing set, this category will be equivalent to
the category of relations. When we limit ourselves to a smaller universe of indexing sets, we get a
subcategory which more closely resembles nondeterministic programs. We compare this category
with other representations of the category of relations, and see how many properties can be carried
over, such as its product, coproduct and other monoidal structures. We can describe inductive
nondeterministic structures by lifting free monads from the category of sets. Moreover, due to the
intensional nature of the slice representation, nondeterministic processes are easily represented, such
as interleaving concurrency and labelled transition systems. This paper has been formalised in Agda.

2012 ACM Subject Classification Theory of computation → Categorical semantics; Theory of
computation → Type theory

Keywords and phrases Category theory, Agda, Slice category, Nondeterministic functions, Powerset

Digital Object Identifier 10.4230/LIPIcs.ITP.2023.31

Supplementary Material Software: https://github.com/Voorn/Slice-Nondeterminism
archived at swh:1:dir:540737f2bdc27c9a2bad796cd6713d39de325e94

Funding Niels F. W. Voorneveld: Supported by the ESF funded Estonian IT Academy research
measure (project 2014-2020.4.05.19-0001)

1 Introduction

Nondeterminism slips into many facets of computation, be it a run-time optimiser making
decisions based on unknown facts, a machine learning algorithm which outputs preferences
from beyond a black box, or dependencies of a program on an ever-changing and chaotic
environment. If you want to verify correctness of programs, you may not be able to precisely
model every aspect, and will have to embrace the fact that to an extent, a program may
behave unpredictably.

In essence, nondeterminism is the potential for a program to produce different results in
different runs, even in situations when all known external conditions in both runs appear to
be the exact same. These multiple possible results are often gathered in a set, a subset of
all plausible results allowed by the program’s type. This can be seen as an element of the
powerset over plausible results.

{a ∈ A | P (a)} with P a predicate on A (1)

A subset of a set A is commonly described using a predicate on the set. Given a predicate
P on A, we can define the subset of all elements of A satisfying P . This is a fundamental
construction in set theory. However, it is not directly suited as a tool for gathering possible
results of a program from a constructive perspective. Given a program it is often difficult to
find a computable way to test for the fact that a certain result is produced. On the other

© Niels F. W. Voorneveld;
licensed under Creative Commons License CC-BY 4.0

14th International Conference on Interactive Theorem Proving (ITP 2023).
Editors: Adam Naumowicz and René Thiemann; Article No. 31; pp. 31:1–31:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:niels.voorneveld@taltech.ee
https://orcid.org/0000-0001-6650-3493
https://doi.org/10.4230/LIPIcs.ITP.2023.31
https://github.com/Voorn/Slice-Nondeterminism
https://archive.softwareheritage.org/swh:1:dir:540737f2bdc27c9a2bad796cd6713d39de325e94;origin=https://github.com/Voorn/Slice-Nondeterminism;visit=swh:1:snp:7aa47646b9cf13ec04b1abfbd8552d857ee58d8b;anchor=swh:1:rev:6da7ea4dc10ded728d2c9ce9800baef500ceddfa
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 Slice Nondeterminism

hand, given a predicate, it is difficult to find a program which nondeterministically produces
the exact collection of results satisfying the predicate. The two concepts seem misaligned
computationally.

Instead, a program tends to behave nondeterministically based on some unknown cause,
unspecified state, or unpredictable decision procedure. It makes sense to describe this
unknown with some indexing set I which captures a set of circumstances, for instance
potential states, decisions, or transitions, and a function f : I → A which associates to each
circumstance the result a program will produce.

{f(i) | i ∈ I} with f a function I → A (2)

In other words, we define a family over A, which is an object in the slice category over A.
These families should be endowed with a notion of equivalence, as different objects in the
slice category could represent the same subset of A. The natural solution here lies in the
morphisms of the slice category over A; an object is a subset of another object if there is a
morphism between them, and they give the same subset if there are morphisms both ways.
The subset property can be shown by any morphism, not just the injective ones, since we do
not want to differentiate between families with different multiplicities of elements.

A nondeterministic function f : A → B is given by a map which associates to each
argument an indexing set and a function from the indexing set to the set of results. This
representation lands it firmly between two other representations of relations: extensional
relations and spans.

A → B → Set A → ΣI:Set (I → B) ΣI:Set (I → A × B) (3)

In case of A → B → Set, we see Set as a space of propositions, in which we will only
care about whether the set is inhabited or not. In the other two statements, we use Set as a
universe of indexing sets.

Each instance forms a bicategory [7], where a 2-morphism from one to another tells us
that the relation modelled by one is a subrelation of the relation modelled by the other.
We turn this into a setoid-enriched category [12], sometimes called a E-category [3, 13],
which is a category whose morphisms are endowed with an equivalence relation, and whose
categorical equations hold up to that equivalence relation. In each instance, the equivalence
on morphisms is given by the symmetrisation of the relation induced by the 2-morphisms;
they are equivalent if there is a 2-morphism in both directions. E.g., two relations modelled
by R, S : A → B → Set are equivalent if for each a ∈ A, and b ∈ B, R a b is inhabited if
and only if S a b is inhabited. Similarly, two spans are deemed equivalent1 if they point
out the same set of pairs of A and B. Taking the quotient over the equivalence relation
of morphisms in an E-category, we get a category. Each of the three categories gives an
equivalent representation of the category of relations Rel.

In this paper, we focus on the approach of the second category. Instead of using Set, we
specify a smaller inductive universe of indexing sets U, which is sufficient for modelling many
nondeterministic processes. The collection of families over A will form a set if we restrict
indexing sets to this universe U, and as such we get an endofunctor on Set. Relative to the
aforementioned equivalence relation on families, the endofunctor forms a monad, which acts
like the powerset monad. The Kleisli category over this monad is what we call the category
of slice nondeterministic functions SNFU, and can be put in the form of E-category.

1 Not equivalent in the category of spans, but in the sense that they model the same relation.

N. F. W. Voorneveld 31:3

The category SNFU forms a wide subcategory of Rel, since it is a substructure of the second
representation of relations given in (3). This category still retains many of the properties of
Rel, while deviating from it in ways more in-line with nondeterministic processes. In this
paper, we shall explore the properties of SNFU, see how it models a variety of nondeterministic
processes, and we shall briefly compare this approach with the other two approaches from
(3). In particular, the category SNFU is better at dealing with composition and iteration.

In programming theory, a prevalent way of representing nondeterministic computations is
in the form of algebraic effect [19]. There we consider nondeterministic choices as operations
in the programming language. These choices can be enumerated in the indexing set of the
family, encoding how the choices should be resolved. Each index gives us a way of handling
the algebraic operations in the sense of effect handlers [20].

The resulting denotation using slices is similar to historical models of nondeterminism in
domain theory [9, 2]. Domains are sets with an additional preorder which captures a notion
of computational approximation, and powerdomains [18] consider different nondeterministic
extensions to the domain. These form more usual models for nondeterministic processes, as
for instance done in guarded powerdomains [17]. Slice nondeterminism offers an alternative
light-weight formalisation approach, allowing us to model a lot of nondeterministic processes.

We use category theory in this work, in particular focussing on emulating properties of
the category of relations in our framework (see e.g. [16]). The contributions of this paper
can be split into three parts; the presentation of a novel model for nondeterministic functions
in terms of slices, an exploration of the properties of the associated category, and examples
of concepts and processes which it can capture with relative ease.

This paper is formalised in Agda: https://github.com/Voorn/Slice-Nondeterminism.
See in particular the ITP-paper.agda file for links to terms corresponding to the definitions
and results of this paper. Most of the code uses only the Agda standard library, though
there are some optional files linking the results to the Agda categories library.

2 Powerset via the Slice Category

The main idea is to use a family over A to represent a subset of A. Such a family consists of
an indexing set I together with a function h : I → A, and is used to represent the subset
{a ∈ A | ∃i ∈ I. h(i) = a}. It is useful to put a limit on what kind of set I can be. To this
end, we specify a universe of sets U.

2.1 A Universe for Indexing Sets
We could simply take U to be the universe of sets itself. There are some drawbacks to
this. The first being that the collection of families using any indexing set does not form a
set itself, and hence cannot be used as a basis for an endofunctor in the category of sets.
Secondly, the more indexing sets we allow the more cases we need to check when formalising
general properties about them. Thirdly, nondeterministic programs do not tend to have the
abilities that models using arbitrary sets have. For instance, a program cannot in general
nondeterministically produce any result from its codomain, nor can it decide to produce
results based on incomputable tests (like equality checking) on its argument.

Instead, we construct an inductive universe of sets which is a set itself, and is closed with
respect to a few chosen constructions we would like to use.

▶ Definition 1. The universe of sets U are defined inductively as:

⊥ : U ⊤ : U N : U
A, B : U

A → B : U
A, B : U

A ⊎ B : U
A, B : U

A × B : U
A : U f : A → U

Σa:A f(a) : U
A : U f : A → U

Πa:A f(a) : U

ITP 2023

https://github.com/Voorn/Slice-Nondeterminism
https://github.com/Voorn/Slice-Nondeterminism/blob/main/ITP-paper.agda

31:4 Slice Nondeterminism

Here ⊥ is the empty set, ⊤ the single element set, and N the natural numbers. A → B is
the function space, as specified by the ambient logic (e.g. Agda functions), A ⊎ B is disjoint
union, and A × B the Cartesian product on sets. Lastly, Σa:Af(a) is a sigma type whose
elements consists of pairs (a : A, b : f(a)), and Πa:Af a pi type whose elements are dependent
functions (a : A) → f(a). It should be noted that a large portion of the development up
to Section 5 works without function spaces. Hence the universe could be limited further,
effectively only using enumerable sets. For elements of product sets and sigma sets, we write
proj1 and proj2 for the projections into the first and second components respectively, and for
elements of sum sets, we write inj1 and inj2 for the first and second injections respectively.

Note that with the inclusion of Sigma types and Pi types in U, the property of whether a
set of U is inhabited is not decidable, since Sigma and Pi types function as existential and
universal quantifiers. So in the representation of nondeterministic function, it may not be
decidable whether the function outputs a result.

In formalisation, U is simply a collection of names which each is given a denotation
according to the above definitions. For simplicity, we shall write results in this paper directly
in terms of the indexing sets, using the closure properties of U specified above.

▶ Definition 2. The set of U-families over A, denoted SLU A is given by: ΣI:U (I → A).

Hence, a family S = (I, m) ∈ SLU A is given by an indexing set I : U together with a function
m : I → A. In other words, it specifies a domain which we may use for indexing elements of
A, and a function which associates to each index a result. For a family S, we denote SI and
Sm for the associated indexing set and map respectively.

In the conclusion we will also consider other universes of indexing sets C, and consider
families SLC using those. However, the main development focusses on using U. With this
universe, we know that SLU A is in fact also a set. Hence, the construction is entirely
contained within the universe of sets, and SLU can be made into an endofunctor on Set. As
a functor, it sends a function f : A → B to a function on families SLU(f) : SLU A → SLU B

sending (SI , Sm) to (SI , f ◦ Sm). In the next subsection, we shall define an equivalence
relation on SLU A telling us whether two families represent the same set.

2.2 Relations on Families
Though we work towards an alternative construction of relations for describing nondetermin-
istic functions, we still require the use of relations as they are more traditionally represented
for reasoning purposes. An endorelation R on X is a predicate R : X → X → P, where P is
a suitable space of propositions, e.g. Set as used in Agda. We write a R b to say R relates
a and b. For two relations R and S on X, we write R ⊂ S if a R b implies a S b. Given an
endorelation R on X, we write R for the symmetrisation of R, which relates a and b if both
a R b and b R a.

We use the theory of relators [15, 21] to guide us in building relations on families. We
limit ourselves to relators on endorelations, which is a common adaptation.

▶ Definition 3. Given a relation R on X, we define a relation ΓU(R) on SLU X by relating
(I, a) and (J, b) if there is a function h : I → J such that ∀i ∈ I. a(i) R b(h(i)).

This construction has the following properties:
If R is reflexive, then ΓU(R) is reflexive.
If R is transitive, then ΓU(R) is transitive.
If R ⊂ S, then ΓU(R) ⊂ ΓU(S).
If ∀x, y.(x R y) =⇒ (f(x) S g(y)), then a ΓU(R) b =⇒ SLU(f)(a) ΓU(S) SLU(g)(b).

N. F. W. Voorneveld 31:5

As a consequence, if R is an equivalence relation, then ΓU(R) is an equivalence relation.
Our notion of equality on families SLU X shall be given by taking the appropriate notion
of equality = on X and lifting it to an equivalence relation on SLU X given by ΓU(=). In
formalisation, the = will be instantiated by propositional equality ≡. We will first observe
some more general properties.

2.3 A Monad on Setoids
We can see SLU as an endofunctor on setoids, as well as an endofunctor on sets. A setoid is a
pair (X, R) consisting of a set X and an equivalence relation R on X. A morphism between
setoids (X, R) and (Y, S) is a relation preserving function between X and Y . We have the
slice function F on setoids sending (X, R) to (SLU X, ΓU(R)).

Given a set X, we define a set function ⟨−⟩X : X → SLU X as given by sending
x to (⊤, λ ∗ . x). This forms a natural transformation in Set; given f : X → Y , then
⟨−⟩Y ◦ f = λx.(⊤, λ ∗ . f(x)) = SLU(f) ◦ ⟨−⟩X . Moreover, given a relation R on X, then
a R b implies ⟨a⟩ ΓU ⟨b⟩, hence this forms a natural transformation on setoids as well.

We have a set function
⊔

X : SLU(SLU(X)) → SLU(X) which does the following. Given
a family (I, a) ∈ SLU(SLU(X)), then for each i ∈ I we write (Ji, bi) = a(i) ∈ SLU(X).

⊔
X

sends (I, a) to (K, c) where: K = Σi:I Ji, meaning a pair (i, j) such that i ∈ I and j ∈ Ji,
and c(i, j) = bi(j). Similar to ⟨−⟩, this forms a natural transformation in both set and setoid:

Given f : X → Y ,
⊔

Y ◦SLU(SLU(f)) = SLU(f) ◦
⊔

X .
Given a relation R on X, u ΓU(ΓU(R)) v implies

⊔
X(u) ΓU(R)

⊔
Y (v).

Importantly, we get the following result.

▶ Proposition 4. (SLU, ⟨−⟩,
⊔

) forms a monad in the category of setoids.

Together with the results of Subsection 2.5, we see that the monad actually satisfies the
axioms of a powertheory on setoids [18], and as such is a candidate for powersetoid.

It is difficult to formalise things in the category of setoids, since one needs to prove many
coherences and use higher-order rewrite techniques. As such, the previous proposition is as
far as we go in this direction. We can however use the result to make similar claims about
the category of sets in the next subsection.

2.4 A Kleisli Triple on Sets
As discussed before, we can define an equivalence relation ≡U

X on SLU(X) as ΓU(=). Consider
the endofunctor SL≡

U which sends a set X to the quotient SLU(X)/ ≡U
X .

Proposition 4 implies that SLU(−)/ ≡U forms a monad in Set. The associated multi-
plication operation for X is defined on domain SLU(SLU(X)/ ≡U)/ ≡U. A morphism whose
domain is given by a quotient is defined as a morphism invariant under the equivalence
relation of the quotient. In formalisation, this means the morphism would need to be
equipped with a proof that they are well defined. In the spirit of getting flexibility in defining
nondeterministic function, we bypass this necessity by avoiding the use of quotients in the
domain of morphisms. Instead, we look at the Kleisli triple corresponding to the monad
structure, which is as follows:

The unit ⟨−⟩X : X → SLU(X) is as given before.
The Kleisli lifting (−)∗ : (X → SLU(Y)) → (SLU(X) → SLU(Y)) sends f to

⊔
Y ◦SLU(f).

We see that this satisfies the appropriate properties:
For f, f ′ : X → SLU(Y), such that ∀x. f(x) ≡U

X f ′(x), then ∀a, a′ ∈ SLU(X). a ≡U
X a′ =⇒

f∗(a) ≡U
Y f ′∗(a′).

ITP 2023

31:6 Slice Nondeterminism

For all a ∈ SLU(X), a ≡U
X ⟨−⟩∗(a).

For f : X → SLU(Y) and x ∈ X, f∗(⟨x⟩) ≡U
Y f(x).

For f : X → SLU(Y), g : Y → SLU(Z) and a ∈ SLU(X), g∗(f∗(a)) ≡U
Z (g∗ ◦ f)∗(a).

2.5 Semilattice Structure
Before we continue to defining nondeterministic functions, we look at one last useful structure.
We have an order ⊑U on families over X given by applying ΓU to the equality relation on
X. This is a preorder which implements the subset relation discussed before, and whose
symmetrisation gives the equivalence relation ≡U on families telling us that the two families
model the same subset. Specifically, (I, u) ⊑U (J, v) if for any i ∈ I there is a j ∈ J such
that u(i) = v(j). In other words, the images are subsets, u(I) ⊆ v(J).

Alternatively, we may define a relation ∈U between X and SLU(X), which models
inhabitance by relating x to S if there is an i ∈ SI such that Sm(i) = x. This gives rise
to an external subset endorelation ⊆U on SLU(X) which relates S and Z if for any x ∈ X,
x ∈U S =⇒ x ∈U Z. It turns out that the relations ⊆U and ⊑U are equivalent.

Like for powersets, ⊑U comes equipped with a join semi-lattice structure [9]. As such, we
can see it as a model of angelic nondeterminism, or lower powertheory [10].

▶ Proposition 5. For sets A and I, where I is from U, and f : I → SLU(A), there is an
element

∨
f ∈ SLU(A) giving the supremum of f(I) under the order ⊑U. In other words,

∀i ∈ I. f(i) ⊑U ∨
f , and for S ∈ SLU(A), if ∀i ∈ I. f(i) ⊑U S then

∨
f ⊑U S.

Proof. We define
∨

f as (
∨

f)I = Σi:If(i)I and (
∨

f)m(i, j) = f(i)m(j).
Then for any i ∈ I, f(i) ⊑U ∨

f since for any j ∈ f(i)I , there is an index k = (i, j) ∈
(
∨

f)I such that f(i)m(j) = (
∨

f)I(k).
Let (K, u) ∈ SLU(A) such that ∀i ∈ I. f(i) ⊑U (K, u). Then for any (i, j) ∈ (

∨
f)I ,

since i ∈ I there is a k ∈ J such that f(i)m(j) = u(k), hence there is a k ∈ J such that
(
∨

f)m((i, j)) = f(i)m(j) = u(k). So
∨

f ⊑U S. ◀

We distinguish three special kinds of joins.

Let !A = λ() : ∅ → A be the unique function from the empty set to A. We define the
empty join ⊘A ∈ SLU(A) as ⊘A = (∅, !A). This is the smallest element of SLU(A), and it
holds that ⊘A ≡A

∨
!SLU(A).

For U, V ∈ SLU(A), we define the binary join U ∨ V as
(UI ⊎ VI , λ{inj1(i) 7→ Um(i), inj2(j) 7→ Vm(i)}). This is equivalent to

∨
f where f :

{0, 1} → SLU(A) with f(0) = U and f(1) = V .
For f : N → SLU(A) we can take the countable join

∨
f .

Lastly, note that for f : I → J → SLU(A),
∨

(λi.
∨

f(i)) ≡
∨

(λ(i, j). f(i)(j)). Due to the
limitations of our universe of indexing sets, we do not have a complementing meet semilattice
structure, which would require us to check for equality of results within indexing sets.

3 Nondeterministic Functions

To model nondeterministic functions, we use the Kleisli category associated to the Kleisli
triple defined in Subsection 2.4. Since this is a Kleisli triple relative to an equivalence relation,
what we end up constructing is a Setoid-enriched category, sometimes called an E-category.

N. F. W. Voorneveld 31:7

3.1 E-categories
In an E-category, we use setoids to describe collections of morphisms. A common interpreta-
tion of this is to see the setoid relation as a 2-morphism between these morphisms, creating
a bicategory whose spaces of 2-morphisms have at most one element. We lay out precisely
the conditions of such a structure.

▶ Definition 6. An E-category C is given by:
A set of objects O.
For any two objects X, Y ∈ O, a set of morphisms M(X, Y) equipped with an equivalence
relation ≡.
For each X ∈ O an identity morphism idX ∈ M(X, X).
For X, Y, Z ∈ O, f ∈ M(X, Y), g ∈ M(Y, Z) a morphism f g ∈ M(X, Z).

such that:
For any X, Y ∈ O, f ∈ M(X, Y), idX f ≡ f ≡ f idY .
∀X, Y, Z, W ∈ O, f ∈ M(X, Y), g ∈ M(Y, Z), h ∈ M(Z, W), (f g) h ≡ f (g h).
∀X, Y, Z ∈ O, f, f ′ ∈ M(X, Y), g, g′ ∈ M(Y, Z), if f ≡ f ′ and g ≡ g′ then f g ≡ f ′ g′.

The E-category method matches the approach of the Agda categories library. There,
categories are formalised using equivalence relations on morphisms. By taking the quotient
over the equivalence relations on the homsets, we get a category. Hence, we may see any
E-category as a category as well, and properties on the E-category directly translate to
properties on the resulting category. For instance, a functor between E-categories forms a
functor between their corresponding categories.

The focus of this paper is the following setoid-enriched category.

▶ Definition 7. The E-category of slice nondeterministic functions, denoted ESNFU, is the
category consisting of:

Objects are sets.
The set of morphisms between set A and B, denoted A ⊸ B, are functions A → SLU(B).
Two morphisms f, g : A ⊸ B are equivalent, denoted as f ∼ g, if ∀a ∈ A. f(a) ≡U

B g(a).
For a set A, the identity morphism is given by ⟨−⟩A : A ⊸ A.
For two morphisms f : A ⊸ B and g : B ⊸ C, the composition is given by f ; g := f g∗.

We write SNFU for the associated quotient category to the E-category ESNFU.
The appropriate properties are satisfied as observed in the previous chapter. For f : A ⊸

B, remember we may write f(a)I for the indexing set associated to f(a), and for i ∈ f(a)I ,
f(a)m(i) the element of B associated to i via f(a).

3.2 Functors and Variations
Let us look at some variations on models of nondeterministic functions. First we revisit the
category of relations Rel, which can be cast into the form of an E-category as well.

▶ Definition 8. The E-category of relations, denoted ERel is given by:
Objects are sets.
Morphisms between A and B are predicates R : A → B → P,
with equivalence relation: R ≡ S if ∀a ∈ A, b ∈ B. a R b ⇐⇒ a S b.
The identity relation is the equality predicate.
Composition is given by: a RS c if ∃b. a R b ∧ b S c.

ITP 2023

31:8 Slice Nondeterminism

Note that the type of propositions P needs to be flexible enough to contain both equality
on sets and existential quantification. In Agda, this is instantiated by Set, with the double
implication ⇐⇒ describing the existence of a function in both directions.

There exists a functor J−K from ESNFU to ERel, which preserves objects and sends a
morphism f : A ⊸ B to JfK with the following property:

For a ∈ A, b ∈ B, a JfK b holds if and only if there is an i ∈ f(a)I such that f(a)m(i) = b.

There is no functor going from Rel to SNFU, since our universe of indexing sets U is not
large enough to capture the two things that are necessary to formulate such a thing; it would
need Sigma types over any set, and equality types on arbitrary sets. If however our universe
U of indexing sets was taken to be Set itself, then Rel and SNFSet are equivalent.

In Subsection 3.3 we shall do a qualitative comparison between the two approaches of
formalising nondeterministic functions. There we will see that when composing nondetermin-
istic functions, it is easier to verify that the composite gives a certain result when it is
formalised in SNFU than when it is formalised in Rel or the category of spans.

We look at four properties a slice nondeterministic function f : A ⊸ B could satisfy.
f is total if for any a ∈ A the indexing set f(a)I is inhabited.
This is synonymous to saying that ∀a ∈ A. ∃b ∈ B. a JfK b.
f is deterministic (single-valued) if for any a ∈ A and i, j ∈ f(a)I , f(a)m(i) = f(a)m(j).
This is synonymous to saying that ∀a ∈ A, b, b′ ∈ B, a JfK b ∧ a JfK b′ =⇒ b = b′.
f is surjective if for any b ∈ B, there are a ∈ A and i ∈ f(a)I such that f(a)m(i) = b.
This is synonymous to saying that ∀b ∈ B. ∃a ∈ A. a JfK b.
f is injective (sometimes called modest) if ∀a, a′ ∈ A. i ∈ f(a)I , and j ∈ f(a′)I , if
f(a)m(i) = f(a′)m(j) then a = a′.
This is synonymous to saying that ∀a, a′ ∈ A, b ∈ B, a JfK b ∧ a′ JfK b =⇒ a = a′.

All four properties are satisfied by the identity morphism of SNFU, are preserved by
composition and invariant under equivalence of morphisms. Hence, any subset of properties
specifies a wide subcategory of SNFU.

If a morphism is surjective and deterministic, it is an epimorphism. If a morphism is total
and injective, it is a monomorphism. Lastly, the wide subcategory of total and deterministic
morphisms is equivalent to the category Set of sets.

3.3 Method Comparison
We can compare the method of formalising nondeterministic processes using SNFU with
other representations of the category of relations. We do this with code from the Agda proof
assistant. Let us consider a particular example. Suppose we toss five coins, and want to
prove that it is possible to get three heads. So, starting with zero, if we nondeterministically
add zero heads or one head a total of five times, it should be possible to get three heads.
We compare extensional relations, spans and slice nondeterminism, and we first define a
nondeterministic function on N representing a coin toss.

Erel-N-toss : N → N → Set
Erel-N-toss n m = (n ≡ m) ⊎ (suc n ≡ m)

Span-N-toss : Σ Set λ I → I → N × N
Span-N-toss = (N × Bool) , λ {(n , false) → n , n ;

(n , true) → n , (suc n)}

Slic-N-toss : N → Σ Set λ I → (I → N)
Slic-N-toss n = Bool , (λ { false → n ; true → suc n})

N. F. W. Voorneveld 31:9

Note that though we use Set in the slice example, the indexing set is from U. In each
case, we construct a multi-toss operation inductively, by composing the identity relation with
a number of toss operations specified by the argument. We look at the examples, and prove
that 5 tosses may get 3 heads, using a sequence of two tails and three heads.

Erel-N-example : Erel-N-test (Erel-N-multi-toss 5) 0 3
Erel-N-example = 0 , (inj1 refl , 0 , (inj1 refl) , 1 , (inj2 refl) ,
2 , (inj2 refl) , 3 , (inj2 refl) , refl)

Span-N-example : Span-N-test (Span-N-multi-toss 5) 0 3
Span-N-example = (((0 , false) , ((0 , false) , ((0 , true) , ((1 , true) ,
((2 , true) , 3) , refl) , refl) , refl) , refl) , refl) , refl

Slic-N-example : Slic-N-test (Slic-N-multi-toss 5) 0 3
Slic-N-example = (false , false , true , true , true , tt) , refl

In the first method, since composition is defined using existential quantification on the
intermediate argument, we need to specify all the intermediate results in the sequence. So,
after one toss we can keep 0, given that we choose a tail signified by the inj1. Then still
0 after another tail, followed by 1, 2 and 3, each with a heads result signified by inj2. For
spans, a similar proof is necessary, though we specify transitions using both the input state
and a truth value denoting the result of the coin toss. Though in a slightly different way,
both endorelations and spans need the same information in their proof.

Only in the slice nondeterministic proof do we neither need to specify intermediate states,
nor have to check for equality at each step. The proof there is simply a sequence of choices
with a single final verification that it gives the right result. This example illustrates the
relative ease of using slice nondeterminism in these situations.

Many nondeterministic processes are results of compositions of many subprocesses.
Therefore, slice nondeterministic functions are particularly well suited to capture such
processes. In the rest of the paper, we will see that it moreover still retains a lot of the useful
structures and properties that the category of relations exhibits.

4 Categorical Structures

We look at some of the structures that can be found in SNFU. Most of these reflect similar
structures from the category of relations, though not all can be replicated. In most cases
though, this inability to express some structures is more faithful to the limitations of
nondeterministic programs compared to relations.

Some of the structures we look at are lifted from the category of sets using the unit ⟨−⟩
of SLU. Explicitly, we have a functor | − | : Set → SNFU which keeps objects as is, and sends
morphisms f : A → B to |f | = λx.⟨f(x)⟩B : A ⊸ B.

4.1 Morphisms with Daggers

Given a relation R between A and B, there is a relation R† between B and A, called the
dagger of R, such that a R b ⇐⇒ b R†a. Such a reversing of morphisms does not exist
for SNFU. Though unfortunate, it is arguably not an unreasonable problem to have when
thinking of nondeterministic functions as programs.

ITP 2023

31:10 Slice Nondeterminism

For a nondeterministic program P of type σ → τ , there is in general not another program
of type τ → σ which for input V : τ can nondeterministically give any term W of σ such
that P (W) may produce V . This is due to two general concerns:

Equality in τ may not be checkable by a program, hence there may not be a way of
verifying whether P (W) can produce V .
Programs may not have access to enumerations over terms of σ.

Both these restrictions align closely to the limitations of our universe U.
We can however distinguish those slice nondeterministic functions that have a dagger.

▶ Definition 9. f : A⊸B and g : B⊸A are each others dagger, denoted f † g, if JfK† = JgK.

If a morphism has a dagger, we call it daggerable. This property of having a dagger is
preserved under composition and the equivalence relation on morphisms. Moreover, the
identity morphism is a dagger of itself. We conclude that the daggerable morphisms form a
wide subcategory of SNFU.

Note that being daggerable does not mean that the daggered program is an inverse. We
can say the following; let f g be eachother’s dagger, then:

f is total if and only if g is surjective.
f is deterministic if and only if g is injective.
If f is total and injective, then f g is the identity morphism. In other words, g is a post
inverse of f .
If f is deterministic and surjective, then g f is the identity morphism. In other words, g

is a pre-inverse of f .

There is a slight difference between the notion of daggerability and the notion of revers-
ibility. A nondeterministic function is normally called reversible if it is injective (see e.g.
[11]). If we were to match this definition, the appropriate category to consider for reversible
nondeterministic functions is the category of daggerable injective (maybe total) morphisms.

4.2 Products and Coproducts
Similar to the category of relations, the category of slice nondeterministic functions is
both Cartesian and Cocartesian, with both structures mirroring each other exactly as in a
semi-additive category.

Firstly, the initial and terminal object of the category is given by the empty set.

▶ Lemma 10. For a set A, any two morphisms ∅ ⊸ A are similar, and any two morphisms
A ⊸ ∅ are similar.

Consider the bifunctor for disjoint union ⊎ on sets, with injections inj1 : A → A ⊎ B and
inj2 : B → A ⊎ B. We can lift ⊎ to the category of nondeterministic functions, where for
f : A ⊸ B and g : C ⊸ D, f ⊎ g : A ⊎ B ⊸ C ⊎ D sends inj1(a) to (f(a)I , λi.inj1(f(a)m(i)))
and inj2(b) to (g(b)I , λi.inj2(g(b)m(i))). Consider the following natural transformations.

π
1 := |inj1| : A ⊸ A ⊎ B and π

2 := |inj2| : B ⊸ A ⊎ B.
Given f : A ⊸ C and g : B ⊸ C, we define (fπg) : A ⊎ B ⊸ C as given by
(fπg)(inj1(a)) = f(a) and (fπg)(inj2(b)) = g(b).

The following proposition establishes that (⊎, π
1, π

2) forms a coproduct in SNFU.

▶ Proposition 11. Let f : A ⊸ C, g : B ⊸ C, and h : A ⊎ B ⊸ C such that π
1; h ∼ f and

π
2; h ∼ g, then h ∼ (fπg).

N. F. W. Voorneveld 31:11

Proof. Let a ∈ A, then (fπg)(inj1(a)) = f(a) and h(inj1(a)) = h∗(⟨inj1(a)⟩) = h∗(π1(a)) =
(π1; h)(a). Since π

1; h ∼ f , f(a) ≡U h(inj1(a)). Similarly, for b ∈ B, (fπg)(inj2(b)) = g(b) ≡U

(π2; h)(b) = h(inj2(b)), so h ∼ (fπg). ◀

We define mergeA = (idA
πidA) : A ⊎ A → A, so it holds that (f ⊎ g); mergeC = (fπg).

Remember that for each set A, we have a special kind of family called the empty family
⊘A ∈ SLU(A) given by: ⊘ = (∅, λ()).

π
1 has a dagger π1 : A ⊎ B ⊸ A defined as: π1(inj1(a)) = ⟨a⟩ and π1(inj2(b)) = ⊘A.

Dually, π
2 has a dagger π2 : A⊎B ⊸ B defined as: π2(inj1(a)) = ⊘B and π2(inj2(b)) = ⟨b⟩.

Given f : A ⊸ B and g : A ⊸ C, there is a function (fπg) : A ⊸ B ⊎ C given by:
(fπg)(a) = (f(a)I ⊎ g(b)I , λ{inj1(i) 7→ inj1(f(a)m(i)), inj2(j) 7→ inj2(g(b)m(j))}).

Note that π
1; π1 ∼ idA and π

2; π2 ∼ idB . Moreover, if f† and g† are daggers of f and g

respectively, then (f†πg†) is a dagger of (fπg). Now, (⊎, π1, π2) forms a product in SNFU:

▶ Proposition 12. Let f : A ⊸ B, g : A ⊸ C, and h : A ⊸ B ⊎ C such that h; π1 ∼ f and
h; π2 ∼ g, then h ∼ (fπg).

We can define shareA : A ⊸ A ⊎ A as (idAπidA), so shareA; (f ⊎ g) = (fπg).

4.3 Semilattice Enriched
As explored in Subsection 2.5, each family SLU(A) comes equipped with a join semilattice
structure. This can be used to define a join semilattice structure on the spaces of morphisms
as well, creating a semilattice enriched category [12].

Firstly, we define an order ≺ on morphisms A ⊸ B, given by f ≺ g ⇐⇒ ∀a ∈ A. f(a) ⊑U

g(a). This is a preorder, and by definition f ≺ g ∧ g ≺ f implies f ∼ g. Hence, in SNFU
as a category (the quotient over the E-category), ≺ is antisymmetric. Similar to how ∼ is
preserved over composition and products, ≺ is preserved over the same constructions in the
E-category ESNFU and the associated category SNFU.

We can recover the join operation from Subsection 2.5.

▶ Corollary 13. For A, B and I sets, with I from U, and F : I → (A ⊸ B), there is a
supremum

∨
F : A ⊸ B of F (I).

This can be simply proven by taking (
∨

F)(a) = (Σi:IF (i, a)I , λ(i, j). F (i, a)m(j)).
Given F : I → (A ⊸ B) and G : J → (B ⊸ C), where I and J from U, then

(
∨

F); (
∨

G) ∼ (
∨

(λ(i, j) : I × J. F (i); G(j))). Note that for I = J , (
∨

F); (
∨

G) is not
necessarily similar to

∨
(λi. F (i); G(i)). To get such a property, we look at ω-chains.

▶ Definition 14. An ω-chain of morphisms is an enumeration of morphisms F : N → (A ⊸
B) such that for any n ∈ N, F (n) ≺ F (n + 1).

Omega chains are helpful as they allow us to more uniformly use preservation of join over
constructions like composition and products. Consider the following results, for example.

For F : N → (A ⊸ B) and G : N → (B ⊸ C) two ω-chains, then H = λn.F (n); G(n) :
N → (A ⊸ C) is an ω-chain and

∨
H = (

∨
F); (

∨
G).

For F : N → (A ⊸ B) and G : N → (C ⊸ D) two ω-chains, then H = λn.F (n) ⊎ G(n) :
N → (A ⊎ C ⊸ B ⊎ D) is an ω-chain and

∨
H = (

∨
F) ⊎ (

∨
G).

As before, we can have a specific binary join operation which takes f, g : A ⊸ B and
produces f ∨ g : A ⊸ B. It holds that (f ∨ g) ∼ (shareA; (f ⊎ g); mergeB).

ITP 2023

31:12 Slice Nondeterminism

4.4 Monoidal
The Cartesian structure on Rel and SNFU is different from the Cartesian structure on Set.
Set uses the bifunctor × which collects pairs of elements, with projections proj1 : A × B → A

and proj2 : A × B → B. We can lift this to the monoidal structure (×, |proj1|, |proj2|) on
SNFU using the functor | − | : Set → SNFU. Similarly, we can lift the comonoid structure on
× in Set as well:

The unique map uA : A → {∗} is lifted to |uA| : A ⊸ {∗}.
The map ca : A → A × A which duplicates the argument is lifted to |cA| : A ⊸ A × A.

For any morphism f : A ⊸ B, f ; |uB | ≺ |uA| and f ; |cb| ≺ |ca|; (f × f). If f is total, then
f ; |uB | ∼ |uA|, and if f is deterministic, then f ; |cb| ∼ |ca|; (f × f).

We cannot equip × with a monoidal closed structure. The best approximation would be to
take (A ⇒ B) = (A ⊸ B), in which case we can do the following: For F : A ⊸ (B ⇒ C), let
F ′ : (A×B) ⊸ C be the map F ′(a, b) = (Σi:F (a)I

F (a)m(i, b)I , λ(i, j). F (a)m(i, b)m(j)). Only
in this direction is the similarity relation preserved. We cannot go into the other direction,
since in (B ⇒ C) we distinguish between similar but syntactically different families.

5 Inductive Nondeterministic Structures

One of the main applications of the formalisation via slice functions is the relative ease
in which it can be used to give a specification for a variety of inductive nondeterministic
structures. Suppose in particular we have some inductive structure generated over some
signature, for instance generated by algebraic effect operations [19] or a container [1]. Such a
signature forms a free monad in the category of sets, which we can lift to SNFU.

A U-container C is an element of the sigma type ΣO:Set(O → U). It consists of a set of
operations O, and a function ar : O → U which associates to every operation and arity.

▶ Definition 15. Given a U-container C = (O, ar), the free monad over C in Set, is a
monad which sends each set A to the set FSA defined inductively:

For each a ∈ A, there is an element leaf(a) ∈ FSA.
For each σ ∈ O and c : ar(σ) → FSA, there is an element nodeσ(c) ∈ FSA.

It sends a function f : X → Y to a function FS(f) : FS(X) → FS(Y) replacing the values at
the leaves. The monad unit is given by ηC

A : A → FCA sending a to leaf(a), and the monad
multiplication µC

A : FSFSA → FSA is defined inductively as:
µC

A(leaf(t)) = t.
µC

A(nodeσ(c)) = nodeσ(λi.µC
A(c(i))).

We will show that this monad can be lifted to SNFU in the next subsection.

5.1 Distributivity
In Set, the free monad distributes over the powerset monad, in the sense that there is a
distributivity law between monads [6]. This can be adapted to show that the free monad
distributes over the monad SLU using a natural transformation FS(SLUA) → SLU(FSA). We
construct this by specifying a set of leaf-positions for each element of FSA, following ideas
from the theory of containers [1, 4]. An element t ∈ FS(SLUA) has at each of its positions a
leaf which contains a set of values (a family). If we make a choice of element for each of the
leaves of t, we can construct an element of FS(A). Such a combination of choices is given by
associating to each position a choice, which we can do with a dependent map.

N. F. W. Voorneveld 31:13

We use this idea to lift the Set-endofunctor FS to an SNFU-endofunctor. We need a way
to transform a morphism f : A → SLUB to FSA → SLU(FSB), which accepts a term t as
input and replaces each leaf leaf(a) with some choice value from f(a). We specify a set of
indices which collects all possible combinations of choices that can be made.

▶ Definition 16. Given a set A and a function f : A → Set assigning a set of choices to
each element a ∈ A, we inductively define a function Pos(f) : FSA → Set assigning to an
element t ∈ FSA a set of combinations of choices:

Pos(f)(leaf(a)) = f(a).
Pos(f)(nodeσ(c)) = (Πi:ar(σ) Pos(f)(c(i))).

With this function, we can specify our endofunctor on SNFU, which we call TC . On
objects, TCA is given by FCA.

▶ Definition 17. Given a function f : A ⊸ B, we define TCf : TCA ⊸ TCB, with indexing
set TCf(t)I = Pos(λa.f(a)I)(t) and indexing map where:

TCf(leaf(a))m = λi : f(a)I . leaf(f(a)m(i)).
TCf(nodeσ(c))m = λh : ((i : ar(σ)) → TCf(c(i))I). nodeσ(λi. TCf(c(i))m(h(i))).

With this definition, TC forms an endofunctor in SNFU.
Let us consider whether the above recipe gives us what we want. We independently

specify a relation which tells us whether a term is a result of making nondeterministic choices
at the leaves. This is akin to how one would lift the free monad to the category of relations.
Then, we can check soundness and completeness; meaning the result of our endofunctor
contains precisely the choices specified by the relation.

Given f : A → SLUB, the f -choice relation is a relation between TCA and TCB inductively
defined as follows:

It relates leaf(a) to leaf(b) if b is a result of f(a).
It relates nodeσ(c) to nodeσ(d) if for every i ∈ ar(σ), it relates c(i) to d(i).

We can show that our endofunctor TC is complete over the choice relation.

▶ Theorem 18. Given f : A → SLUB, t ∈ TCA and r ∈ TCB, then:
∃i ∈ TCf(t)I . TCf(t)m = r if and only if t is related to r by the f -choice relation.

5.2 Monad and Comonad Structure
The free functor forms a monad in the category of relations. The appropriate natural
transformations are constructed by lifting the unit and multiplication map of the free monad
from Set to SNFU by composing it with the unit transformation ⟨−⟩ for families. Unit and
multiplication are given by T η

C = |ηC
A | : A ⊸ TCA and T µ

C = |µC
A| : TC(TCA) ⊸ TCA.

▶ Proposition 19. For each U-container C, (TC , T η
C , T µ

C) is a monad in SNFU.

It is possible to reverse the structure of this monad, and construct a comonad.

Let T ε
C : TCA ⊸ A be the morphism sending leaf(a) to ⟨a⟩, and nodeσ(c) to ⊘A, then

T η
C † T ε

C .
Let T δ

C : TCA ⊸ TC(TCA) be the morphism sending leaf(a) to ⟨leaf(leaf(a))⟩, and nodeσ(c)
to ⟨leaf(nodeσ(c))⟩ ∨ N , where N = (NI , Nm) is given by NI = Πi:ar(σ) T δ

C(c(i))I and
Nm = λ(i, j). nodeσ(T δ

C(c(i))m(j)). Then T µ
C † T δ

C .

ITP 2023

31:14 Slice Nondeterminism

Hence (TC , T ε, T δ) is a comonad. Suppose for instance TCA describes a set of computa-
tional processes, with η creating a process that immediately terminates and gives a result,
and µ merges a two-staged process into a single process. Then ε extracts from a process any
result that is immediately produced, and δ nondeterministically splits a process into two
stages. The monad and comonad structure interacts in interesting ways.

T η
C ; T ε

C ∼ id; we can extract a result from a process that immediately terminates.
T δ

C ; T µ
C ∼ id; when we split a process into two stages, and merge the stages, we get the

original process back.
T µ

C ; T ε
C ∼ T ε

C ; T ε
C ; extracting results from a process is like extracting from its stages.

T η
C ; T δ

C ∼ T η
C ; T η

C ; splitting a terminating process gives two terminating stages.

6 Example Processes

We look at some examples of nondeterministic processes we can represent with slice non-
deterministic functions.

6.1 Interleaving Concurrency
Let us first look at interleaving concurrency, which can be modelled by the interleaving
operation on actions. Consider lists X∗ over X inductively defined as [] ∈ A∗ and for x ∈ X

and l ∈ X∗, x :: l ∈ X∗.

▶ Definition 20. The interleaving operations on lists ∥, ∥l, ∥r: X∗ ×X∗ ⊸ X∗ are inductively
defined as:

(a ∥ b) = (a ∥l b) ∨ (a ∥r b).
([] ∥l a) = ⟨a⟩ = (a ∥r []).
(x :: a ∥l b) = SLU(λc.x :: c)(a ∥ b) = (a ∥r x :: a).

The definition of parallel operation is split into three clauses in order to satisfy Agda’s
termination checker. In the axioms of process algebra (see e.g. [8]), the parallel operation
was already split into two clauses corresponding to our ∥ and ∥l, in order for the induction
principle to apply. Here, we separately define ∥r, since without it, a non-trivial order on
arguments need to be established in order to prove termination of the function.

The parallel operation satisfies some interesting properties, which can be summarised in
the following proposition.

▶ Proposition 21. (∥: X∗ × X∗ ⊸ X∗, e : ⊤ ⊸ X∗) where e(∗) = ⟨[]⟩ forms a commutative
monoid in SNFU

▶ Remark. The approach of using slices for modelling nondeterminism was used at first
in order to prove properties like associativity of the parallel operation. Earlier efforts to
model interleaving concurrency used the representation of the finite powerset monad as
a free idempotent commutative monoid. Proving equations of the interleaving operation
required precise rewriting of terms using associativity and commutativity of the monoid.
Nondeterminism via slices on the other hand uses a case analysis on the elements of the
indexing set, which in this case represents the exact nondeterministic choices made by the
parallel operation. Though the proof of associativity is still not simple, the technique of
using slice nondeterminism greatly reduces the level of bureaucracy necessary.

N. F. W. Voorneveld 31:15

It can be verified that this model satisfies the equations of process algebra as for instance
specified in [8]. The development in Agda also contains a formalisation of previous work
from the author [24] which considers a categorical model for interleaving algebraic effects
using SNFSet.

6.2 Iterated Processes

As our second example, we study a simple state automata which is given by a state space,
and a nondeterministic transition function into the set of states and outputs. We can iterate
over chains of transitions using a natural number, and then take the supremum over this
natural number to get a single collection of all possible outputs.

We define the iteration function IterA,B : (A ⊸ B ⊎ A) → N → (A ⊸ B), which takes a
morphism H : A ⊸ B ⊎ A and a natural number n ∈ N, and iterates H n-times, gathering
all results from B it produces. Defined inductively on n ∈ N, it does the following:

IterA,B(H, 0) = λa.⊘B .
IterA,B(H, n + 1) = H; (idB

π IterA,B(H, n)).
IterA,B(H, n + 1)(a) looks at H(a), which is a collection of elements of B ⊎ A. It keeps all
results from B and joins them with elements of IterA,B(H, n)(a′) for any result a′ from A.
The function IterA,B(H, −) forms an ω-chain.

We define IterωA,B : (A ⊸ B ⊎ A) → (A ⊸ B) by taking the countable join of IterA,B.
We have the following results:

Both IterA,B and IterωA,B preserve the similarity relation ∼ on morphisms, and hence
are well defined as functions on morphisms in SNFU.
For f : A ⊸ B, H : B ⊸ C ⊎ A, and n ∈ N, IterA,B(f ; H, n) ∼ f ; (IterA,B(H; (idC ⊎
f), n)), hence IterωA,B(f ; H) ∼ f ; (IterωA,B(H; (idC ⊎ f))).
For f : B ⊸ C, H : A ⊸ B ⊎ A, and n ∈ N, IterA,B(H; (f ⊎ idA), n) ∼ IterA,B(H, n); f ,
and hence IterωA,B(H; (f ⊎ idA), n) ∼ IterωA,B(H, n); f .
For H : A ⊸ B ⊎ A, IterωA,B(H) ∼ H; (idB

π IterωA,B(H, n)).
For H : A ⊸ B ⊎ A and K : B ⊸ C ⊎ B, IterωA,B(H); IterωB,C(K) =∨

(λn. IterA,B(H, n); IterB,C(K, n)).
IterωA,A(inj1) ∼ ⟨−⟩A.

The Iterω operation can be used as a basis for a traced monoidal [5] operation for SNFU,
and can moreover be used to model recursive processes using ω-chains. As such, it could
form a basis for domain theoretic denotations using streams as in previous work from the
author [23]. There, such streams were used to define denotational equivalence of recursive
effectful programs.

6.3 Labelled transition systems

We consider a common nondeterministic process called the labelled transition system. Here
each possible transition is given a corresponding label designating some input, and a decidable
predicate on states specifying final states. We leave the choice of initial state as a parameter.

▶ Definition 22. A labelled transition system (lts) over a set of labels A : U is specified by a
triple (S, t, e) consisting of a set of states S, a transition map t : S × A ⊸ S and a function
checking for ending states e : S → B.

ITP 2023

31:16 Slice Nondeterminism

We denote the set of labelled transition systems over A as LTS(A). We are often interested
in checking which series of labels would lead to a final state. A list of labels l is accepted by an
lts (S, t, e) on some initial state s ∈ S if there is a path of labelled transitions corresponding
to the labels of l, from s to some final state from e−1(true). There are two ways to specify
which lists of labels are accepted. We can either directly enumerate them using accepted
paths, or we can inductively check whether a list is accepted.

We can generate a collection of paths which will lead to termination inductively as a
dependent function LTSCol(A) : ((S, t, r) : LTS(A)) → N → (S ⊸ SLU(A∗)), which for a
natural number n ∈ N collects all accepted lists of length n.

LTSCol(A)(S, t, e)(0)(s) =
{

⟨[]⟩ if (e(s) = true)
⊘A∗ if (e(s) = false)

LTSCol(A)(S, t, e)(n + 1)(s) = (I, h) where I is a set of triples consisting of a ∈ A,
i ∈ t(a, s)I and j ∈ LTSCol(A)(S, t, e)(n)(t(s, a)m(i))I , and
h(a, i, j) = a :: LTSCol(A)(S, t, e)(n)(t(s, a)m(i))m(j).

We then define LTSColω as the supremum over N of LTSCol.
Alternatively, we can define a predicate which checks whether a certain list is accepted.

LTSaccept(A) : ((S, t, e) : LTS(A)) → S → A∗ → Set where:
[] is accepted on initial state s if e(s) = true.
a :: l is accepted on initial state s if there is a state z in the collection t(s, a) such that l

is accepted on initial state z.

▶ Proposition 23. The collection of lists generated by LTSColω consists exactly of the lists
accepted according to LTSaccept.

7 Conclusions

We have looked at a formalism for constructively representing denotations of nondeterministic
processes. These models are inherently intensional as they send inputs to outputs dependent
on concrete nondeterministic choices, as opposed to giving an external predicate for checking
whether an output is possible. The model is moreover directional, as only a subset of
well-behaved morphisms have daggers. As such, the model stays closer to natural occurrences
of computational nondeterministic processes. Nondeterminism is often guided by a source
of unpredictability, like sampling spaces in probability theory. In terms of this model, the
nondeterministic sampling space takes the form of an indexing set of a family. Potential
extensions to probabilistic models could be considered in the future.

We focused mainly on a specific universe of indexing sets U. Earlier versions of the work
used the collection of sets as a universe. Other possible universes may be explored in the
future too. Varying the universe allows us to model different categories, for instance:

Taking the universe {⊤}, we effectively retrieve the category of sets Set.
Taking the universe {⊥, ⊤}, we model the category of partial functions Par.
Taking finite sets as a universe, we get finite nondeterministic functions.
Excluding functions and Π constructions from U, we get countably nondeterministic
functions, e.g. programs which can sample natural numbers nondeterministically.

If there is an inclusion of universes, there is a functor between their respective categories.
There are more variations to consider, since we can restrict our sets of morphisms to those
satisfying a chosen subset of properties; total, deterministic, surjective, injective, daggerable.

N. F. W. Voorneveld 31:17

Note that in the above formulation of partial functions, it is decidable whether a function
gives a result or not. If you want to capture undecidability, you should instead use the sub-
category of deterministic slice functions, where inhabitance of an indexing set is undecidable.
This does however require you to show that all possible results are equal.

The slice nondeterminism framework is in some aspects much easier to work with then
algebraic representations of nondeterminism. For instance, equations like idempotency, asso-
ciativity and commutativity of nondeterministic choice (implemented by the join operation)
are easily proven using case distinctions on the indexing set. Moreover, proofs that normally
need such equations can be easily shown without needing to explicitly call these equations,
avoiding the need to specify a concrete sequence of rewrites. In particular, the formalisation
of properties for interleaving concurrency was hampered by the need of intensive equational
reasoning when working with a monoidal representation of the finite powerset monad. But
switching over to slices, many of these former difficulties were easily avoided.

7.1 Agda Categories Library
The formalisation of this paper is grounded in the framework of setoid enriched categories (E-
categories), like the development of the Agda Categories library. The core of the formalisation
only uses Agda’s standard library, for ease of adaptability. In separate files, some of the
results are linked up with the Agda Categories library, and concrete properties are shown.
These properties are as follows.

We have shown the following things concerning SNFU.
SNFU is a category.
SNFU is symmetric monoidal with respect to the product and disjoint union bifunctor.
SNFU is Cartesian and Cocartesian

Secondly, we have shown that the endofunctor SLU can be used to form a monad in the
category of setoids. This is the perfect candidate for a powerset monad over setoids, which
could be called the powersetoid monad, since it is a model of the powertheory. Formalisation
in terms of setoids specifically may be a future avenue for research.

Lastly, consider the slice category with indexing sets ranging over Set instead of U, then:

▶ Theorem 24. The category SNFSet is equivalent to the category of relations.

7.2 Denotational Semantics
Some examples were considered in Section 6, regarding finite automata and process algebra.
An example for the future is to formalise functional nondeterministic languages as studied by
Lassen [14]. Given the fact that families are closed under taking limits (see iterated processes
in Section 6), it should be possible to create a denotational model for nondeterministic
functional languages, like the one employed in previous work using streams [23]. A simple
example has been worked out, providing a denotational semantics for an untyped call-by-value
lambda calculus with added nondeterminism.

More generally, using a specification by nondeterministic runner [22, 24], we can model
a variety of stateful and nondeterministic effects. When described in this framework, we
use an indexing set to enumerate all possible handlers [20] for the effect, which can then be
used to extract a set of possible results of the computation. Part of the theory surrounding
this is formalised in the current development, and studying such algebraic models using the
formalisation presented in this paper is subject to future research.

ITP 2023

31:18 Slice Nondeterminism

References
1 Michael Gordon Abbott, Thorsten Altenkirch, and Neil Ghani. Containers: Constructing

strictly positive types. Theoretical Computer Science, 342(1):3–27, 2005. doi:10.1016/j.tcs.
2005.06.002.

2 Samson Abramsky. Domain theory in logical form. Ann. Pure Appl. Log., 51(1–2):1–77, 1991.
doi:10.1016/0168-0072(91)90065-T.

3 Peter Aczel. Galois: a theory development project, 1993. In: A report on work in progress for
the Turin meeting on the Representation of Logical Frameworks.

4 Thorsten Altenkirch, Neil Ghani, Peter Hancock, Conor Mcbride, and Peter Morris.
Indexed containers. Journal of Functional Programming, 25:e5, 2015. doi:10.1017/
S095679681500009X.

5 Joyal Andre, Ross Street, and Dominic Verity. Traced monoidal categories. Mathematical
Proceedings of the Cambridge Philosophical Society, 119:447–468, April 1996. doi:10.1017/
S0305004100074338.

6 Jon Beck. Distributive laws. In B. Eckmann, editor, Seminar on Triples and Categorical
Homology Theory, pages 119–140, Berlin, Heidelberg, 1969. Springer Berlin Heidelberg. doi:
10.1007/BFb0083084.

7 Jean Bénabou. Introduction to bicategories. In Reports of the Midwest Category Seminar,
pages 1–77, Berlin, Heidelberg, 1967. Springer Berlin Heidelberg.

8 J. A. Bergstra and J. W. Klop. Algebra of communicating processes with abstraction.
Theoretical Computer Science, 37:77–121, 1985. doi:10.1016/0304-3975(85)90088-X.

9 Gerhard Gierz, Karl Heinrich Hofmann, Klaus Keimel, Jimmie Lawson, Michael Mislove, and
Dana S. Scott. Continuous Lattices and Domains. Cambridge University Press, Cambridge,
2003.

10 C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666–677, August
1978. doi:10.1145/359576.359585.

11 Markus Holzer and Martin Kutrib. Reversible nondeterministic finite automata. In In-
ternational Workshop on Reversible Computation, pages 35–51, May 2017. doi:10.1007/
978-3-319-59936-6_3.

12 G. Kelly. The basic concepts of enriched category theory. Reprints in Theory and Applications
of Categories [electronic only], 2005, January 2005.

13 Yoshiki Kinoshita. A bicategorical analysis of E-categories. Mathematica Japonica, 47:157–170,
1998.

14 Søren B. Lassen. Relational Reasoning about Functions and Nondeterminism. PhD thesis,
University of Aarhus, 1998.

15 Paul Blain Levy. Similarity quotients as final coalgebras. In Martin Hofmann, editor, FoSSaCS
2011, volume 6604 of LNCS, pages 27–41. Springer, 2011. doi:10.1007/978-3-642-19805-2_
3.

16 Saunders MacLane. Categories for the Working Mathematician. Springer-Verlag, New York,
1971. Graduate Texts in Mathematics, Vol. 5.

17 Rasmus Ejlers Møgelberg and Andrea Vezzosi. Two guarded recursive powerdomains for ap-
plicative simulation. In Ana Sokolova, editor, Proceedings of 37th Conference on Mathematical
Foundations of Programming Semantics, MFPS 2021, volume 351 of Electron. Proc. in Theor.
Comput. Sci., pages 200–217, 2021. doi:10.4204/EPTCS.351.13.

18 Gordon D. Plotkin. A powerdomain construction. Siam J. Comput., 5(3):452–487, 1976.
doi:10.1137/0205035.

19 Gordon D. Plotkin and John Power. Adequacy for algebraic effects. In Furio Honsell
and Marino Miculan, editors, FoSSaCS 2001, volume 2030 of LNCS, pages 1–24, 2001.
doi:10.1007/3-540-45315-6_1.

20 Gordon D. Plotkin and Matija Pretnar. Handling algebraic effects. Log. Methods Comput.
Sci., 9(4, article 23):1–36, 2013. doi:10.2168/lmcs-9(4:23)2013.

https://doi.org/10.1016/j.tcs.2005.06.002
https://doi.org/10.1016/j.tcs.2005.06.002
https://doi.org/10.1016/0168-0072(91)90065-T
https://doi.org/10.1017/S095679681500009X
https://doi.org/10.1017/S095679681500009X
https://doi.org/10.1017/S0305004100074338
https://doi.org/10.1017/S0305004100074338
https://doi.org/10.1007/BFb0083084
https://doi.org/10.1007/BFb0083084
https://doi.org/10.1016/0304-3975(85)90088-X
https://doi.org/10.1145/359576.359585
https://doi.org/10.1007/978-3-319-59936-6_3
https://doi.org/10.1007/978-3-319-59936-6_3
https://doi.org/10.1007/978-3-642-19805-2_3
https://doi.org/10.1007/978-3-642-19805-2_3
https://doi.org/10.4204/EPTCS.351.13
https://doi.org/10.1137/0205035
https://doi.org/10.1007/3-540-45315-6_1
https://doi.org/10.2168/lmcs-9(4:23)2013

N. F. W. Voorneveld 31:19

21 Albert Marchienus Thijs. Simulation and Fixpoint Semantics. PhD thesis,
University of Groningen, 1996. URL: https://research.rug.nl/en/publications/
simulation-and-fixpoint-semantics.

22 Tarmo Uustalu. Stateful runners of effectful computations. Electron. Notes Theor. Comput.
Sci., 319:403–421, 2015. doi:10.1016/j.entcs.2015.12.024.

23 Niccolò Veltri and Niels F. W. Voorneveld. Streams of approximations, equivalence of
recursive effectful programs. In Ekaterina Komendantskaya, editor, Mathematics of Program
Construction - 14th International Conference, MPC 2022, Tbilisi, Georgia, September 26-
28, 2022, Proceedings, volume 13544 of Lecture Notes in Computer Science, pages 198–221.
Springer, 2022. doi:10.1007/978-3-031-16912-0_8.

24 Niels F. W. Voorneveld. Runners for interleaving algebraic effects. In Helmut Seidl, Zhiming
Liu, and Corina S. Pasareanu, editors, Theoretical Aspects of Computing – ICTAC 2022, pages
407–424, Cham, 2022. Springer International Publishing.

ITP 2023

https://research.rug.nl/en/publications/simulation-and-fixpoint-semantics
https://research.rug.nl/en/publications/simulation-and-fixpoint-semantics
https://doi.org/10.1016/j.entcs.2015.12.024
https://doi.org/10.1007/978-3-031-16912-0_8

Foundational Verification of Stateful P4 Packet
Processing
Qinshi Wang #

Princeton University, NJ, USA

Mengying Pan #

Princeton University, NJ, USA

Shengyi Wang # Ñ

Princeton University, NJ, USA

Ryan Doenges # Ñ

Cornell University, Ithaca, NY, USA

Lennart Beringer # Ñ

Princeton University, NJ, USA

Andrew W. Appel # Ñ

Princeton University, NJ, USA

Abstract
P4 is a standardized programming language for the network data plane. But P4 is not just for
routing anymore. As programmable switches support stateful objects, P4 programs move beyond just
stateless forwarders into new stateful applications: network telemetry (heavy hitters, DDoS detection,
performance monitoring), middleboxes (firewalls, NAT, load balancers, intrusion detection), and
distributed services (in-network caching, lock management, conflict detection). The complexity of
stateful programs and their richer specifications are beyond what existing P4 program verifiers can
handle.

Verifiable P4 is a new interactive verification framework for P4 that (1) allows reasoning about
multi-packet properties by specifying the per-packet relation between initial and final states; (2)
performs modular verification, especially providing a modular description for stateful objects; (3)
is foundational, i.e., with a machine-checked soundness proof with respect to a formal operational
semantics of P416 (the current specification of P4) in Coq. In addition, our framework includes a
proved-correct reference interpreter.

We demonstrate the framework with the specification and verification of a stateful firewall that
uses a sliding-window Bloom filter on a Tofino switch to block (most) unsolicited traffic.

2012 ACM Subject Classification Security and privacy → Logic and verification

Keywords and phrases Software Defined Networking, Verifiable P4, Stateful data plane programming

Digital Object Identifier 10.4230/LIPIcs.ITP.2023.32

Supplementary Material Software: github.com/verified-network-toolchain/VerifiableP4
archived at swh:1:dir:fc1600d9109a91d9b355358af11dd9aaebd311d6

Funding This material is based upon work supported by DARPA Contracts HR001120C0160 and
HR001120C0107, and by NSF grant FMiTF-1918396.

1 Introduction

The data plane for software-defined network switches is increasingly programmed in P4 [3].
But P4 is a quirky language, and programs are often contorted to fit within the constraints of
a particular target architecture, so the correctness of these programs has become a concern.
To address that concern, there are several verification tools for P4 programs (see §7).

© Qinshi Wang, Mengying Pan, Shengyi Wang, Ryan Doenges, Lennart Beringer, and Andrew W.
Appel;
licensed under Creative Commons License CC-BY 4.0

14th International Conference on Interactive Theorem Proving (ITP 2023).
Editors: Adam Naumowicz and René Thiemann; Article No. 32; pp. 32:1–32:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:qinshiw@cs.princeton.edu
https://orcid.org/0000-0002-6486-3409
mailto:mengying@cs.princeton.edu
https://orcid.org/0000-0001-8970-9697
mailto:shengyiw@cs.princeton.edu
https://www.cs.princeton.edu/~shengyiw/
https://orcid.org/0000-0002-2286-8703
mailto:rhd89@cornell.edu
https://ryandoeng.es/
https://orcid.org/0000-0002-6899-4529
mailto:eberinge@cs.princeton.edu
https://www.cs.princeton.edu/~eberinge/
https://orcid.org/0000-0002-1570-3492
mailto:appel@princeton.edu
https://www.cs.princeton.edu/~appel/
https://orcid.org/0000-0001-6009-0325
https://doi.org/10.4230/LIPIcs.ITP.2023.32
https://github.com/verified-network-toolchain/VerifiableP4
https://archive.softwareheritage.org/swh:1:dir:fc1600d9109a91d9b355358af11dd9aaebd311d6;origin=https://github.com/verified-network-toolchain/VerifiableP4;visit=swh:1:snp:b46413be01a2e367fadfdc2ece395f6d33738117;anchor=swh:1:rev:d3ae4a407e3151cce93aa83b148f851665dea7f3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 Foundational Verification of Stateful P4 Packet Processing

In many classic P4 applications, processing a packet does not change the state of
the switch. However, recent applications are stateful and go far beyond making routing
decisions: the processing of a packet may alter the state of registers or result in the
installation of new forwarding rules, and thus affect the processing of following packets.
Stateful applications include network telemetry systems (SketchLib [17], BeauCoup [2],
FlowRadar [14]), network functions (SilkRoad [16]), and distributed services (NetCache [12],
NetLock [26]). Unfortunately, existing tools have limited reasoning capabilities for registers
or multi-packet policies.

To begin addressing these shortcomings, we present a foundational framework for specify-
ing and reasoning about data-plane packet processing on a stateful P4 switch. Implemented
in the Coq proof assistant, our system facilitates semi-interactive verification of stateful P4
programs and is justified w.r.t. a precise operational semantics of P416.

As an example for a multi-packet policy, consider a stateful firewall that protects the
internal network from unsolicited traffic. External packets may pass through the firewall only
if they are responses to recent outgoing requests to the same IP address, modulo a small
tolerable rate of false positives. But no valid incoming responses may be blocked.

To specify the latter property more precisely, let T be the valid response time window, h

be the history of packets processed, p be the current packet, and r the action on p (forward
or drop). We want that for every integer i, we have

p.dir = in ∧ h[i].dir = out ∧ h[i].dst = p.src
∧ h[i].src = p.dst ∧ p.t − h[i].t ≤ T

=⇒ r ̸= drop (1)

To maintain the window of length T , a P4 implementation necessarily maintains state; but
existing verifiers either do not handle state at all, have specification languages that are too
weak to relate the pre-state to the post-state after processing a packet (see §7), or do not
permit reasoning about multi-packet properties.

Property 1 holds even for a firewall admits every packet, but we prove the P4 program
correct with respect to a functional model, for which properties such as 1 can be derived.

Our verifier connects P4 verification with reasoning about multi-packet policies using
assertions that are syntactically constrained but permit reference to arbitrary Coq construc-
tions. The user must equip each P4 function with a specification that asserts adherence to a
model-level counterpart, i.e. a Coq function (or proposition) describing its effect in terms of
a semantic model of packet processing. We justify the program logic in Coq by a soundness
proof w.r.t. the operational semantics.

Our operational semantics builds on Petr4 [5] but is defined as an inductive relation in
Coq rather than Petr4’s executable Ocaml program. Indeed, part of our effort consisted in
understanding aspects related to nondeterminism and partly uninitialized data structures,
that are not modeled in Petr4 and are specified partially at best in the P4 manual [3]. We
report numerous inaccuracies etc. in said manual later in the paper. We also provide our
own interpreter and prove (in Coq) that it exhibits behavior consistent with our semantics,
e.g. by resolving determinism in an appropriate manner.

Contributions

1. We present Verifiable P4, a system for verifying stateful specifications of P4 data-plane
packet processing. Our logic does not cover packet parsing and deparsing, which we leave
for future work. We provide automation support for proving that P4 code correctly im-
plements a functional model; users prove interactively that a functional model establishes
a high-level property, such as “no valid responses are blocked”.

Q. Wang, M. Pan, S. Wang, R. Doenges, L. Beringer, and A. W. Appel 32:3

2. We propose a hierarchical representation of states used in semantics, specification, and
verification that improves modularity; unlike some previous P4 semantics, we enforce
a phase distinction between instantiation (that populates this hierarchy) and run-time
packet processing.

3. We formalize the operational semantics of P4 (incl. parsing and deparsing) in Coq, and
prove soundness of our verifier and of a reference interpreter. Our operational semantics
is the first formal specification to include abstract methods (a P4 feature that encodes a
P4 program in an extern object), and Verifiable P4 is the first verifier to support them.
The development of our semantics uncovered several inaccuracies, bugs, and ambiguities
in the P416 reference manual that had also escaped the Petr4 semantics and tools. We
contributed bug-fixes as pull requests to the manual and discussed them with the P416
committee.

4. We develop a model-level axiomatization of temporal windows that can serve as a
blueprint for other finite-horizon data structures over streams implemented in P4 or other
languages. We give a concise specification of a sliding window Bloom filter (SBF) and a
high-performance implementation in P4, with an application to a stateful firewall. We
show how to connect model-level firewall verification to P4 verification in Coq, and briefly
discuss other examples.

The source files associated with this paper are available at
https://github.com/verified-network-toolchain/VerifiableP4/tree/Feb2023

2 Example: A stateful firewall

The data-plane of a software-defined network (SDN) switch processes about 109 packets per
second (or 3200 Gb per second) in each “pipeline” [13]. To accomplish that, each packet
is allowed only one trip through a highly pipelined “match-action unit”. To program this
unconventional model of computation, the P4 language was designed with some inspiration
from Verilog. It combines logical with architectural aspects but is reasonably modular – one
can divide programs into reusable libraries and the client programs that make use of them.

P4 is a horrible but useful programming language

P4 was designed to support packet routing, so all of its control structures are designed around
match-action tables. One generally cannot access the same (persistent) data more than once
per packet, so things must be accomplished in a read-modify-write with user-specifiable
“modify.” Except for the parser component, P4 code does not contain loops, hence every
packet must process in n pipeline stages (so at least we can mostly use a big-step semantics!).
But P4 is useful because it gives a reasonably portable way to program high-performance
network switches from different manufacturers.

The main elements of a typical P4 program are as follows.
Parsers extract packet headers and the payload from a packet. Headers – and typical

auxiliary data structures throughout the code – are represented as structs that can be
accessed as in the C language.

Control blocks describe how headers are processed. A control block contains a list of
declarations, plus the control flow. Declarations include
extern objects, which are architecture-specific constructs such as registers, cryptographic

operations, or other domain-specific functions,

ITP 2023

https://github.com/verified-network-toolchain/VerifiableP4/tree/Feb2023

32:4 Foundational Verification of Stateful P4 Packet Processing

actions, which assign flags (e.g. DROP) or other values (e.g. a specific output port) to
suitable header fields,

match-action tables, which match header fields against predefined keys and trigger
actions or extern objects accordingly.

The control flow is specified by an imperative program (“apply function”) that governs
under which conditions or order (“pipeline”) the match-action tables are invoked on a
header.

Deparsers reasssemble the processed packet headers with the payload and emit the packet
to the network.

Modularity of P4 arises from the ability to instantiate registers, other extern objects, and
control blocks multiple times, and to define them in a style reminiscent of classes in e.g. Java,
with instantiatable parameters.

The low-level complexities of P4 make programs difficult to read and write, so code
(including our running example) is increasingly not written directly in P4 but in one of the
various front-end languages that target P4 (to synthesize our SBF/firewall we used CatQL,
a functional-style language under development by the second author). These experimental
languages don’t yet have what we would call a formal semantics or even a real reference
manual, so we verify the P4 code rather than verify the ultimate source programs.

The difficulty of writing and reading P4 programs is a strong motivation to formally verify
P4 with respect to model-level or higher-level specifications, which (even though in Coq)
will be more accessible to engineers than the source code. Our tool can verify both reusable
libraries – like the Bloom filter control block – and their clients – like the firewall, which
is a control block separate from the Bloom filter. Where the library implements nontrivial
algorithms, users may need more expertise, but verifying simple clients (even those using
sophisticated libraries) is easier.

The Sliding Window Boom Filter and its Firewall Client

We continue with our running example. The stateful firewall must remember recent IP
addresses in a data structure that can fit in the switch’s persistent registers and can be
accessed in constant time within the switch’s pipeline constraints. To implement this in a
P4 switch running entirely in the data plane, we use a succinct constant-time-access data
structure: a sliding-window Bloom filter (SBF).

A Bloom filter is a hash table, without collision detection, in which value i is hashed with
r different functions and a bit is set to 1 at those indexes f1(i), f2(i), . . . fr(i). Lookup(i)
returns 1 if all of the fj(i) are 1; the probability of a false negative is 0, and the probability
of a false positive is small (the product of the individual false-positive probabilities). On the
Tofino switch [10], one cannot make r different accesses to the same array, so we implement
the Bloom filter with r separate arrays.

A firewall that runs for a long time does not want its hash tables to fill up with stale data,
but standard Bloom filters do not (soundly) support deletion; so we use a sliding window
Bloom filter [30], as we will now explain.

A SBF has k “panes”. Each pane is a Bloom filter containing r rows with S slots each.
At any given time, k − 1 panes store the “recent outgoing packets;” we add new IP addresses
only to the most recent pane, and the extra pane is in the process of being incrementally
cleared to prepare for reuse. We use T = 60 seconds as our window, i.e. the period for which
we guarantee absence of false negatives. We rotate panes every T/(k − 2) seconds. That
is because, in the worst case of querying, the most recent pane has just started but the

Q. Wang, M. Pan, S. Wang, R. Doenges, L. Beringer, and A. W. Appel 32:5

SBF spec
(Fig. 4)

FW
spec

FW
AST
SBF
AST

FW
proof

SBF
proof

SBF model
(Fig. 2)

SBF axioms (Fig. 3)

FW model Assumption:
dense flow

Flow-level property: packets from recently
known senders are not dropped

Proof: flow-
level property

P4
source
code

Verification of P4 code

Fr
on

t
 e

nd

Formalized in Coq

Proof: packet-
level property

Packet-level
property:
”process”
relation

Proof: model satisfies axioms

Figure 1 Overview of Stateful Firewall Verification.

remaining k − 2 panes can still guarantee that keys inserted within T seconds are present.
The client must incrementally clear the slots in the timed-out pane at least once every
T/C ≈ 100 µs, where C = (k − 2)S, so that the oldest pane will be fully cleared before reuse.

Our SBF has k = 4 and r = 3, and is lightly modular: the pane control contains r row
instances – a row being a register of width S = 218 –, the SBF control contains k pane
instances, and the SBF itself is a control that is instantiated once by the firewall client
to make decisions about which packets to drop. Our verification reflects this structure,
exploiting the phase distinction between control-instantiation and packet-processing. The
length of our program is largely independent of the number of panes in each window and the
number of rows in each pane.

In total, our example is a 600-line P4 program that you really don’t want to see, and we
will accommodate you for the most part.

2.1 Proof organization and functional model
Fig. 1 shows the specifications and proofs, concluding with the main theorem: on any “dense
flow”, the firewall satisfies the property shown as equation (1)1

The packet-level correctness property is a relation, process(s, p, s′, r), where s, s′ are the
switch’s state before and after processing the packet p and r is the result: forward or drop.
To reason about multi-packet policies, we define (purely in Coq, independent of P4) a notion

1 We model time in correspondence with the timestamp in metadata from the switch, which we assume
the switch inserts correctly. The time p.t in our flow-level specification is an unbounded mathematical
integer; the timestamp in the packet header is a 48-bit unsigned integer measured in nanoseconds,
p.t mod 248. Our proof that the program is correct does allow the timestamp to cross the 248 boundary.
A dense flow is one in which the mathematical timestamps are monotonically increasing – this is
guaranteed by the switch ingress hardware – and in which there is never a gap greater than 100µs
(that is, T/C) between packets. We need this assumption to ensure that the P4 program keeps up with
its incremental clearing obligation. We can guarantee a dense flow using the Tofino switch’s packet
generator, a component just before the P4 pipeline that can be configured to insert extra packets at the
desired (100µs) intervals.

ITP 2023

32:6 Foundational Verification of Stateful P4 Packet Processing

Listing 1 Functional model of an SBF, written in Coq’s functional language (excerpt).
Definition row := list bool.
Definition row_insert (r : row) (i : Z) : row := upd_Znth i r true.

Definition pane := list row.
Definition pane_insert (a:pane) (is:list Z):pane:= map2 row_insert a is.

Record SBF := mk_SBF
{ SBF_panes : list pane; SBF_clear_index : Z; SBF_timer : Z * bool; }.

Definition get_clear_pane (t : Z * bool) : Z := fst t / pane_tick_tocks.

Definition SBFinsert (f : SBF)(tick : bool)(is : list Z):SBF :=
let ’(mk_SBF panes clear_index timer) := f in
let new_clear_index := update_clear_index clear_index in
let timer := update_timer timer tick in
let c := get_clear_pane timer in
let i := get_insert_pane c in
let panes := panes[c := pane_clear panes[c] clear_index] in
let panes := panes[i := pane_insert panes[i] is] in
mk_SBF panes new_clear_index timer.

of transitive closure of process that maintains the histories of incoming and outgoing packets,
the latter list in fact operating over optional packets to model drop. Thus, all that remains
is to prove that the P4 program, on a single packet, satisfies the process relation.

Our tool’s front end generates separate abstract syntax trees (ASTs) for separate control
blocks, as indicated in Fig. 1. We use Verifiable P4 to prove semi-automatically that the SBF
code implements the SBF model and that the firewall (FW) code implements the FW model.
We prove directly in Coq that the SBF model obeys certain abstract SBF axioms (discussed
below) which in turn feeds into the proof that the FW model satisfies the process relation.

Listing 1 shows the data structures of the SBF functional model, and the function
modeling the insertion operation. The model mirrors the hierarchy of control blocks in the
P4 code: a row is a list of Booleans (modeling the contents of a hash table), a pane is a list
of rows, and an SBF is a list of panes, together with fields for the timer and the clearing
maintenance. The full model contains additional functions SBFquery, SBFclear, and the initial
state SBFempty.

The functional model will be referred to in specifications in the following section, but the
proof of the packet-level policy only relies on certain axioms that specify these operations
and express the “no recent false negatives” property; see Listing 2. For example, QueryIn-
sertSame has the premise t ≤ t′ ≤ t + T , saying that an element inserted into the table at
time t will be retrievable up to T seconds later. The three final laws express that the client
must perform an incremental-clear (or an insert) at least every T/C seconds.

▶ Theorem 1 (Coq). The functional model of the SBF (Listing 1) satisfies the axioms given
in Listing 2.

2.2 Function specifications
Our logic equips each P4 function with a function specification, as illustrated in Listing 3 for
the SBF insertion operation. The specification components may be understood as follows:

Q. Wang, M. Pan, S. Wang, R. Doenges, L. Beringer, and A. W. Appel 32:7

Listing 2 Axioms of an SBF, written in Coq.
“ok_until f t” means that the client has performed its
incremental clearing obligation at least through time t.

If state f is OK until (at least) deadline t, you insert IP address h at time t

and then look up h at time t′ no more than T seconds later, it will be present.
QueryInsertSame : ∀ f t t’ h, ok_until f t → t ≤ t’ ≤ t+T →

SBFquery (SBFinsert f (t, h)) (t’, h) = Some true.

If you could find IP address h′ in the state, and you insert (perhaps different)
IP address h, then h′ is still in there.
QueryInsertOther : ∀ f t t’ h h’, SBFquery f (t’, h’) = Some true →

ok_until f t → t ≤ t’ → SBFquery (SBFinsert f (t, h)) (t’, h’) = Some true.

Doing a clear-step won’t affect any query results.
QueryClear : ∀ f t t’ h, ok_until f t → t ≤ t’ →

SBFquery f (t’, h) = SBFquery (SBFclear f t) (t’, h).

If state f is OK until deadline t, you can extend its
deadline by up to 100 microseconds (T/C) by [insert].
OkInsert : ∀ f t t’ h, ok_until f t → t ≤ t’ ≤ t+T/C →

ok_until (SBFinsert f (t,h)) t’.

If state f is OK until deadline t, you can extend its
deadline by up to 100 microseconds (T/C) by [clear].
OkClear : ∀ f t t’, ok_until f t → t ≤ t’ ≤ t+T/C → ok_until (SBFclear f t) t’.

The initial state is OK until its preset deadline.
OkEmpty : ∀ t, ok_until (SBFempty t) t.

mod: the insertion code modifies stack variables with no restriction and modifies (only)
within the external object rooted at path p (but not other objects).

with: the universally quantified abstract (logical) variables bound here (k, tstamp, f) have
scope that extends to the end of the postcondition.

pre: The precondition describes the state before executing the insertion, in three clauses –
arg: function parameter values, mem: program stack variables (e.g. headers and structs,
empty in our example), and ext: external object contents (persistent registers).

post: The postcondition describes the state after function execution, also divided into three
parts (with return-value together with out-parameter-value).

In this case, the precondition says, “The arguments are the key, an operation code with
constant value insert (this argument selects which SBF operation is performed), a time-
stamp tstamp, and an 8-bit value 0; there is no header or struct to take note of; and the
external registers rooted at p represent a SBF with contents f.” Similarly, the postcondition
says, “The out parameter is 8-bit value 0, and the external registers rooted at p represent an
updated SBF as described by the SBFinsert function from the functional model.”

Similar to representation predicates in separation logic [21], SBF_repr is a user-defined
predicate that relates the abstract view of an SBF to the corresponding P4 control, as laid
out in Tofino registers. The predicate’s definition again mirrors the nesting structure of
controls and is detailed in §2.3 below.

ITP 2023

32:8 Foundational Verification of Stateful P4 Packet Processing

Listing 3 Specification of SBF insertion.
Definition INSERT_spec : func_spec :=

MOD None [p]
WITH (k : key) (tstamp : Z) (f : filter),

PRE (ARG [key_to_sval k; P4Bit 8 INSERT; P4Bit 48 tstamp; P4Bit 8 0]
(MEM []
(EXT [SBF_repr p f])))

POST (ARG_RET [P4Bit 8 0] ValBaseNull
(MEM []
(EXT [SBF_repr p (SBFinsert f (tstamp, k))]))).

To prove that the insertion operation of the SBF control satisfies INSERT_spec, our
tool creates a symbolic state in Coq as described by the precondition. The user then steps
through the P4 code, applying forward-mode Hoare rules from our program logic; when
reaching the end of the control block one proves that the resulting symbolic state implies the
postcondition. The proof proceeds mostly automatically, but in some places the user will
have to direct it what to do.

▶ Theorem 2 (Coq). The SBF control block of our P4 program correctly implements the
functional model (Listing 1).

This is more than a safety proof : it proves not just “this implementation won’t crash,” it
guarantees that the program really behaves like a lookup table with no false negatives.

2.3 Hierarchical State Assertions

According to the P4 language specification, each control or parser declaration is a class
definition with local variable, object, and function members. The local variables are temporary
for each call to the class, so they are considered as stack variables. Objects include tables,
external objects, and control/parser instances. Stateful external objects (e.g., registers) have
a persistent state that is preserved between packets.

In P416, controls and parsers are instantiated recursively. Each object has a global fully
qualified name, generated by appending its local name to the global name of the parent
object. Thus, instantiation forms a tree.

We exploit this hierarchy during specification and proof to make it easy to associate
abstract data types to P4 state. We encapsulate all objects instantiated inside a root object in
a single representation predicate, so that a change in the root object’s implementation does
not affect client verification. For this purpose, we define predicates along the structure of the
hierarchical state, associating each predicate with a path-prefix containing an abstraction of
the path names of all sub-objects.

The simplest assertion is of the form p 7→ r, which means the register whose global name
is p has value r. The path prefix of this assertion is {p}. A control block may have multiple
registers. For assertions P1, . . . , Pn with path prefixes S1, . . . , Sn, the path prefix of the
assertion P1 ∧ · · · ∧ Pn is

⋃
i Si. To encapsulate the state of an object rooted at p, we want to

say an assertion has path prefix at most {p}, without mentioning its contents. So we define
a “wrap” operator that wraps an assertion with a more abstract path prefix. Formally, for
assertion P whose path prefix is S1, wrap(S2, P) is a valid assertion if S1 ⊑ S2, that is, every
mapping in S1 is also in S2. A path p “covers” all of its subtrees, for example {p.x} ⊑ {p}.

Q. Wang, M. Pan, S. Wang, R. Doenges, L. Beringer, and A. W. Appel 32:9

The assertions for an SBF containing k panes with r rows each are defined as:

row_repr(p, row) := wrap([p], p.reg 7→ row),
pane_repr(p, pane) := wrap([p], row_repr(p.row1, pane.rows[0]) ∧ . . . ∧

row_repr(p.rowR, pane.rows[r − 1])
SBF_repr(p, filter) := wrap([p], timer_repr(p.timer, filter .t)∧

pane_repr(p.pane1, p.panes[0]) ∧ . . . ∧
pane_repr(p.paneK, p.panes[k − 1])).

This concludes the description of our example.

3 How the verifier works

Our verifier contains a verification-oriented P4 representation with a parser, an operational
semantics, a program logic, and automation tactics.

3.1 P4light abstract syntax, front end
When designing our intermediate language, P4light, our desiderata were to
1. include a type-annotation at every expression node;
2. fully disambiguate names, i.e. distinguish local versus global variables;
3. avoid side-effect expressions inside subexpressions;2
4. and yet, stay sufficiently close to source-level P4 so that every P4light program can be

pretty-printed as a legal and compilable P4 program.

Front end. We adapted Petr4’s front end [5] (including its type-checker) to produce P4light
ASTs from P4 source programs.

Hierarchical name space. To distinguish names in different scopes, we decorate names with
locator annotations. A name has locator glob p if it is defined in the global scope, or
locator inst p if it is defined inside a parser/control declaration. In either case, p is a
qualified name (path) such as myIngress.x, so objects are uniquely named. Qualified
names can further expand into fully qualified names in the instantiation phase (§4).

Unnesting expressions. To simplify reasoning about programs in P4light, we hoist expres-
sions out of function calls, adding extra local variables in the process.

Representation. Our ASTs are expressed using Coq’s inductive data types, with one type
for each syntax class of the AST grammar (expression, statement, function, etc.).

3.2 Operational semantics
We define P4 execution as a big-step operational semantics that operates over states, defined
as pairs of a stack frame and an external state. A stack frame (resp. external state) is a
partial mapping from paths (i.e. fully qualified names) to values (resp. external object values).

StackFrame := Path ⇀ Value

ExternState := Path ⇀ ExternObject

State := StackFrame × ExternState

2 This point simplifies the development of operational semantics and program logic, and improves the
interaction experience of our verifier. But P4 always evaluates expressions from left to right, not like C,
whose evaluation order is unspecified. So this transformation does not add restrictions to the semantics.

ITP 2023

32:10 Foundational Verification of Stateful P4 Packet Processing

Only the external state persists from one packet to another. Because P4 does not have
explicit pointers, we don’t need to mention memory addresses, only paths.

Let Γ be the global static environment produced in §4 below. As P4 program statements
are mostly inside controls and parsers, we need to know where a statement is in order to
execute it. We use a path p to indicate the path of the object that the program is currently
in (p is an empty path if not in any object). Let s be a state. We write our big-step semantic
judgments as

Γ, p, s ⊢ e ⇓ v (expression, 18 rules)
Γ, p, s ⊢ e ⇓ lv (l-expression, 5 rules)
Γ, p, s ⊢ stmt ⇓ (s′, sig) (statement, 16 rules)
Γ, p, s ⊢ e ⇓ (s′, sig) (call-expression, 2 rules)
Γ, p, s ⊢ f, ain ⇓ (s′, aout, sig) (function, 3 rules)

For example, the judgment Γ, p, s ⊢ e ⇓ v reads as “in global environment Γ, with object path
p, in state s, the P4light expression e evaluates to value v.” Judgment Γ, p, s ⊢ stmt ⇓ (s′, sig)
reads as “for Γ and p, from state s, the execution of the P4 statement stmt results in state
s′ and signal sig.” Signal is used to mark control flow, like return and exit statements.

As usual in operational semantics, each of these judgments is an inductive relation. If
no rule applies, the operational semantics is stuck, a technical representation of undefined
behavior. P4 is designed so that programs that type-check cannot have undefined behavior –
a formal proof that this is indeed the case is under current development.

The operational semantics of a control block is given by that of its variable initialization,
followed by that of its apply function. More details on the operational semantics presented
in the forthcoming PhD thesis of the first author [25].

We briefly discuss two differences between P4 and more traditional languages, to illustrate
the challenges we faced.

Undefined Values. According to the P4 specification, reading an uninitialized field or an
invalid header yields an undefined value. As of 2021 the official description in the P416
reference manual was ambiguous, but the P4 committee clarified that each bit of such a
field can be either 0, 1, or uninitialized. To characterize this in assertions and our tool’s
symbolic execution, we use an abstract interpretation over bits. The abstract domain for
an n-bit field is {0, 1, ⊥}n, where 0 and 1 characterize the two fully determined values
and ⊥ means the bit’s value can be arbitrary, including undefined.
P4 data structures (headers, structs, bitfields) may be partially uninitialized, but P4
expressions and subexpressions are fully defined. That means, when reading from a data
structure the semantics must choose arbitrary 0s and 1s for the undefined bits, so we use
a havoc construct at the appropriate places.3 Exactly when and how this happens was
unclear in the P416 document, but in discussions with the committee we clarified the
document and formalized these clarifications in our semantics.
Our treatment of partially defined values in our operational semantics carries over to the
logic and verification tool. Other verification tools for P4 do not treat this exactly; they
either assume that all uninitialized bits are 0 (which is unsound) or cannot reason about
uninitialized fields at all (which is incomplete).

3 “Havoc” is a standard term in operational-semantic reasoning to indicate arbitrary behavior where it is
not necessary to know which choice a program will make.

Q. Wang, M. Pan, S. Wang, R. Doenges, L. Beringer, and A. W. Appel 32:11

Compiler-rejected programs. In many languages, if a program is legal then you can expect
that the compiler will compile it. In P4 that’s explicitly not the case: a legal P4 program
may violate architecture-specific pipeline and resource constraints, and be rejected by
the compiler. For this reason, our operational semantics (and verifier) does not model
architecture-specific constraints, so one should really read our soundness theorem as, “If
your compiler agrees to compile the program and you prove some correctness property in
Verifiable P4, then your program will indeed respect that property.”4

Validating the operational semantics, and debugging P4

We validated that the operational semantics accurately captures the behavior of real compilers
and hardware (e.g., Tofino, V1model) using three approaches: correspondence to the P416
reference document; correctness of a P4 reference interpreter w.r.t. our semantics; and testing
against Tofino. We comment on the former two activities. A fourth approach, validating our
reference interpreter against existing P4 test suites, is ongoing work.

Comparing to the P416 reference manual. We claim that our formalization specifies the
same as what the official P4 standard means and what the commercial compilers do. Our
process has been to rigorously formalize what is written down informally in the specification;
when we find ambiguities, errors, or disagreements between P416 and commercial compilers,
we discuss those with the P4 committee – so the official English-language standard gets
refined, or bugs get fixed in the commercial compilers. See Table 1. By the time our process
has finished, there is real evidence that the formal semantics has meaningful utility, and
agrees with the P416 specification.

3.3 Reference Interpreter

In order to execute P4 programs and test our semantics, we wrote a reference interpreter in
Coq’s embedded functional language. We proved correctness of the interpreter with respect
to our operational semantics and used extraction to obtain an executable OCaml program.

The main task in programming the interpreter was translating inductive relations (from
the big-step semantics) to Coq functions. Many of the inductive relations are nondeterministic,
so the interpreter determinizes them uniformly. Wherever an undefined value is involved in
a computation, the interpreter initializes it using zero bits. This is sound, but means that
some behaviors exhibited by the big-step semantics cannot be observed in the interpreter.

The interpreter shares some code with the operational semantics, which uses functions
for many important (but deterministic) subroutines. For instance, instantiation (see §4) is
handled by a functional program in the operational semantics. The interpreter reuses this
program, preserving the phase distinction between instantiation and evaluation.

P4 allows “architectural extensions” such as V1model registers or Tofino’s registers (which
are different from each other). Our semantics handles those extensions as a kind of plug-in.
Our verification tool and the reference interpreter treat the extensions by directly using this
plug-in, so the reference interpreter can serve for core P4, for V1model P4, or for Tofino P4.
Our example (the stateful firewall) happens to be a Tofino P4 program.

4 And if your compiler is correct, then your program as compiled will respect the property too; our
formalization of the operational semantics should also support the development of compiler proofs.

ITP 2023

32:12 Foundational Verification of Stateful P4 Packet Processing

Table 1 Specification issues clarified during our operational-semantic formalization.

Section refers to section numbers in the P416 manual [3]. Git refers to our issue reports in the repo
for that manual, https://github.com/p4lang/p4-spec. Status “pending” means under discussion
with the steering committee; “released” means that a published version of the manual incorporates
our merged pull-request. As indicated, some of these issues also reflect bugs in the p4c compiler,
some of which have now been corrected.

Section Issue Git Status p4c Bug

Expr-
ession

8.5, 8.6 Types of the bit slicing index are vague. 955 Released No
8.5 Concatenation is missing from the operations on the

bit type.
956 Released No

8.5, 8.6 Concatenation is not excluded from the binary opera-
tions that require same-type operands.

956 Released No

8.9.2 Concatenation and shift are not excluded from the
binary operations that allow implicit casts.

957 Released No

8.9.2 Unclear where implicit casts of serializable enum are
allowed.

958 Released Yes

8.7 Right operand types of integer shifts are vague. 959 Released No
8.10-12
8.14-15

Allowed comparisons between lists, tuples, structs,
and headers are unexplained.

960 Pending Yes

8.11,
8.12

Implicit casts between lists, tuples, structs, and head-
ers are unexplained.

953 Pending No

8.10 Explicit casts between non-base types are unexplained. 961 Released No
8.7 Slicing integers is not allowed. 1015 Pending No
8.22 Reading uninitialized values is confusing and vaguely

defined during argument passing.
988 Pending Maybe

8.13 Types of set operations are vague. 969 Pending Maybe

Function
10.3.1 Abstract extern methods open multiple back doors,

e.g., allowing recursion and invoking parsers in con-
trols.

973,
976,
979

Pending Maybe

App. F Parameter restrictions for extern functions are missing. 972 Released No
6.7.2 Optional parameters are not allowed in parser and

control types.
977 Released Maybe

Instan-
tiation

11.3,A.H Instantiation should not be a statement. 975 Released Yes
17.2 The concept of instantiation-time known constants is

missing.
932 Pending Maybe

12.10,
13.4

The difference between stateful and stateless instanti-
ations in parsers and controls is poorly explained.

926 Pending No

Table 13.2 Default action is not set as NoAction when undefined. 933 Released No
13.1 The possible sources of action data are defined in a

misleading way.
914 Released No

Name
17.3 Value sets are not included in control plane objects. 962 Released No
6.8 Name duplication and name shadowing is undefined. 974 Pending Maybe
6.4 Inconsistent name style for built-in methods & fields. 1004 Pending Yes

https://github.com/p4lang/p4-spec

Q. Wang, M. Pan, S. Wang, R. Doenges, L. Beringer, and A. W. Appel 32:13

3.4 Program Logic and Proof Automation
We have designed a program logic for P4 (except for packet parsing5), as a set of proof rules
that have been proven sound in Coq with respect to our operational semantics. As all P4
programs are terminating, the distinction between partial and total correctness vanishes, but
P4’s hardware-orientation, and the goal to not be overly specific to a concrete architectural
model make the logic challenging to design. Concrete challenges arose in the treatment of
headers, from the fact that the category of values includes structs, and from the combination
of hierarchical path names and instantiation. We do not show the proof rules in this paper,
and also omit a detailed discussion of automation support that uses Coq’s tactic language
Ltac. As explained in the previous section for the firewall example, the typical user must
provide data representation predicates (how the abstract values of interest are represented in
the data structures of P4 programs), function specification (preconditions, postconditions),
specifications of control blocks (i.e., pre/postconditions of apply functions), and specifications
of registers or other architecture-specific externals.

Our logic is modular in the sense that for any control block definition in the code we can
write a single proof script that can be adapted to multiple instantiations. Thus, a library
module such as our SBF can be proven to satisfy its specification (set-membership check
with no false negatives) quite independently of the correctness proof of its client.

▶ Theorem 3 (Coq). (Soundness) The proof rules of our program logics are sound w.r.t. the
operational judgments in §3.2.

Soundness of our verifier then follows, as the verifier’s tactics build a machine-checked
proof using the logic’s inference rules.

4 Instantiation

In accordance with Sec. 18 of the P4 specification [3], we divide evaluation into two phases:
instantiation and execution. In the instantiation phase, constructor calls are evaluated to
produce a static environment of objects (instances of control blocks, tables, parsers, packages,
and external objects). This instantiation phase determines all relationships between objects
and thus avoids any kind of dynamic allocation or closure passing. Indeed, instantiation
more closely resembles creation of statically allocated objects/structs in C-like languages
and instantiation of Verilog modules than dynamic object allocation.

The instantiation phase assigns a distinct fully qualified name to each object. For tables
and external objects, it is convenient that this name is the same as the control plane name
described in the P416 reference manual, which can be used by the control plane to access the
objects, e.g. updating table entries and reading registers. Then for each object, its name is
bound to its record of code and references to generate the static environment. The static
environment is passed later into the execution phase, where it is read from but never modified.
This is only possible because P4 is designed to avoid dynamic allocation.

In contrast, Petr4 [5] combines the two phases, using closures and dynamic allocation in
the evaluation semantics. As a consequence, Petr4 requires a more complex state model with
stores (mapping locations to values) and environments (mapping names to locations).

The (simplified) pseudocode of the instantiation phase is in Listing 4. Function
instantiate_prog iterates over all declarations in the program. For control and parser
declarations, it puts them in decl_env to look them up when encountering their instances.

5 Verification of P4 parsing is the subject of a separate project [6], with which we expect to connect.

ITP 2023

32:14 Foundational Verification of Stateful P4 Packet Processing

Listing 4 Pseudocode of instantiation.
global ge := . . .

global decl_env := . . .

procedure instantiate(p, decl) :=
inst_name := instance name of decl
class_name := class name of decl
body := decl_env[class_name]
ge := ge[p.inst_name 7→ record of the instance]
for each decl in body

if decl is an instantiation then instantiate(p.inst_name, decl)

procedure instantiate_prog(prog) :=
for each decl in prog

if decl is an instantiable declaration then
decl_env := decl_env[(name of decl) 7→ decl]

else if decl is an instantiation then instantiate(ϵ, decl)

For instantiation declarations, it calls instantiate with the empty path ϵ, which indicates to
instantiate at the top level. instantiate takes a path p and an instance declaration decl to
instantiate decl that appears in p. Let inst_name be the local name of the instance of decl.
Then its fully qualified name is p.inst_name. instantiate allocates the object at p.inst_name,
and then allocates its inner declarations recursively.

This procedure allocates the fully qualified names and constructs the global static
environment at the same time. Inner declarations are allocated under the path p and they
have distinct local names, so their global fully qualified names are distinct and different from
names from other parts of the program. It also provides a local view under path p.

We have implemented the instantiation phase as a function in Coq. Users can just use
Coq’s computation mechanism to evaluate P4 programs.

4.1 Abstract Methods

Suppose you want to increment a (persistent) register on a Tofino P4 switch. You might read
the register into a local variable, add one, and write back to the register. But that violates a
Tofino pipeline constraint: accessing the same register in two different pipeline stages.

The P416 spec permits architectural extensions including stateful objects on which the P4
program may invoke so-called abstract methods. Tofino’s registers are such extern objects, and
provide a read-modify-write abstract method: the user specifies what modify to perform (like
incrementing a value, as in our SBF insertion), but not the surrounding register read/write
operations – these are implicitly performed by Tofino’s invocation mechanism. Without
abstract methods, Tofino registers are not much use, but their “almost-object-oriented”
realization is arguably even more complex than function pointers in C or virtual or abstract
methods in C++ or Java.

Our operational semantics is the first formal specification of P4 to include abstract
methods, and Verifiable P4 is the first verifier to support them.

Q. Wang, M. Pan, S. Wang, R. Doenges, L. Beringer, and A. W. Appel 32:15

5 Proof statistics

Our verification of the sliding-window Bloom filter (SBF) is summarized in Table 2. The
P4 proof of “Filter” is so large in part because the P4 program has many branches about
which we need to reason. The high-level “Filter” proof is large for a different reason: in part
because the correctness argument for sliding-window Bloom filters is not trivial; and because
we use two intermediate models to facilitate reasoning, which may not have been the best
way to organize that proof.

Table 2 Lines of P4 code, specifications, Coq proofs. For each module of the P4 program we have
(in the order shown), a functional model, Verifiable P4 function-specifications with preconditions
and postconditions, a Coq proof script showing that the P4 code implements the model, and a proof
that the model satisfies the high-level specification.

P4 code Func. Model Funcspecs P4 proof High-level proof
Row 53 85 165 140 106
Pane 22 62 235 140 87
Filter 341 333 858 1579 1068
Total 416 480 1258 1859 1261

6 Count-min-sketch

We also verify count-min-sketch (CMS) [4] to illustrate that the existing proof script can be
easily adapted to verify similar data structures. A CMS is essentially the same as a counting
Bloom filter, which counts the frequency of the different types of events in the stream.

Most parameters of a simple CMS data structure are the same as a simple Bloom filter,
such as r rows and S slots. The difference is that each slot now indicates how many times an
event occurred rather than whether it occurred at all. The insert operation thus increments
the relevant slots, saturating at Int<k>.max if each slot is k bits wide. The query operation
returns the minimum value of the matching slots in all rows.

Our CMS implementation employs the same sliding window mechanism as the SBF, and
similarly for the functional model. The axiomatization employs the same predicate ok_until
and reuses most axioms, except for the two axioms shown in Listing 5. From these axioms
one can derive the analogue of the Bloom filter’s “no false negatives”, that CMSquery returns
a number not less than the true count. In the function specification (not shown here but
analagous to Listing 3) one can see that the value returned is the minimum of this count
and the saturation value Int<k>.max.

Listing 5 Axioms of Count-Min-Sketch (excerpt).
QueryInsertSame : ∀ f t t’ h k, ok_until f t → t ≤ t’ ≤ t+T →

CMSquery f (t’, h) = Some k →
CMSquery (CMSinsert f (t, h)) (t’, h) = Some (k + 1).

QueryInsertOther : ∀ f t t’ h h’ k, ok_until f t → t ≤ t’ →
CMSquery f (t’, h’) = Some k →
CMSquery (CMSinsert f (t, h)) (t’, h’) = Some k ∨
CMSquery (CMSinsert f (t, h)) (t’, h’) = Some (k + 1).

ITP 2023

32:16 Foundational Verification of Stateful P4 Packet Processing

7 Discussion

Related work. Vera [23], p4v [15], and ASSERT-P4 [18] are automatic P4 verifiers for
simple properties – including safety properties, architectural constraints, and simple stateless
application properties. They translate the P4 program into a guarded command language
(p4v), into a network verification language called SEFL (Vera), or into C (ASSERT-P4).
ASSERT-P4 does not claim to support stateful objects. Vera [23] uses an extremely expensive
encoding that is proportional to the size of registers (impractical when the register contains
an entire hash table). Although p4v supports stateful objects, we cannot find any evidence
that p4v can relate initial and final states.

Aquila [24] supports a more convenient assertion language, multi-pipeline control, more
time-efficient verification, and bug localization when the verification claims a bug. But Aquila
oversimplifies registers into fields without indexes, so it could not verify programs such as the
stateful firewall. Aquila also reduces the risk of bugs in the verifier by translation validation –
checking whether its intermediate representation is equivalent to the counterpart generated
by Gauntlet [22] (which is a tool for finding bugs in P4 compilers). But that does not address
other software bugs, e.g. the bugs in manipulating assertions, especially when we need a rich
and modular assertion language.

Π4 [8] is a dependent refinement type system for a language similar to a subset of P4.
Although described as a type system, it includes assertions in types and requires an SMT
solver to check the types, so it is very similar to a verifier with assertions in middle of
programs. Of all these verifiers, it is the only one that supports modular specification and
verification function-by-function – its dependent function type is equivalent to a function
contract. But Π4 expands the instantiation hierarchy before verifying, but does not exploit
the similarity of the resulting instances. Π4 does not support stateful objects.

There are some other tools that focus on particular properties. bf4 [7] is a tool that
automatically infers constraints of tables to make a P4 program safe. Leapfrog [6] is a parser
equivalence checker for P4.

Petr4 [5] is a study of P4’s formal semantics, which gives us an important reference. But
Petr4’s semantics does not have a machine-checkable formalization, and mixes instantiation
and execution, which means it “instantiates at runtime” and has to define each control
instance as a closure. This makes the semantics less straightforward and makes it much more
challenging to prove the program logic and the type system sound. We improve this with a
phase distinction between instantiation and execution (§4). We also identify and fix some
bugs in Petr4 during the formalization in Coq.

The approach taken by Vigor [28, 20, 27] is conceptually similar to our envisioned
separation into verification of reusable data structures and more abstract packet- or flow-level
network functionality. Vigor is a verifier for C programs on top of DPDK; it employs
Verifast [11] for the reusable data structures and the Klee symbolic execution engine [1] for
the C code that is a client of these data structures. Vigor has been applied to a number of
data structures and network functions, with more automation than our framework currently
supports. We expect that as top-level policies get more complex, the expressivity of a general-
purpose proof assistant (that we use) will prove beneficial. The use of ADT operations as
the interface between the two parts of a Vigor proof is conceptually similar to our use of
functional or axiomatic models, but – unlike in our approach – there is no machine-checkable
proof that connects these layers together. Continuing this line of work, KLINT [19] applies
to binary code, with a focus on the code that implements network functions on top of a small
fixed set of map-like data structures whose implementations are assumed correct.

Q. Wang, M. Pan, S. Wang, R. Doenges, L. Beringer, and A. W. Appel 32:17

Gravel [29] verifies C++ implementations of Click-style middlebox functions against
functional specifications (represented as Python programs), using symbolic execution on
LLVM and an SMT solver backend. Like Vigor and KLINT, Gravel achieves a higher degree
of automation than our work but has a larger trusted code base, does not support expressive
reasoning about specifications, and does not apply to line-rate processing on a P4 switch.

Gopinathan and Sergey [9] show how to prove in Coq that a Bloom filter (functional
model) has not only a zero false-negative rate but also a small false-positive rate. Our system
could accommodate that style of proof: use Verifiable P4 to prove (as we do) that the Bloom
filter exactly implements its functional model; then prove (as we did not) that this functional
model has a small false-positive rate, using the method that they demonstrate.

Future work. We currently achieve modular verification by writing a proof script for one
instance of a control block (such as pane or row) that can be re-used unchanged for all the
other instances. In future work, we expect to make this more formal, to guarantee that each
control needs only one proof of correctness.

To support switches with multiple pipelines (each with its own persistent register state),
we may either modify the program logic, or treat the independent pipelines as separate
switches and account for concurrency at the model level, when proving the relation between
the single-packet correctness property and the flow-level property.

Some stateful applications mentioned in Section 1 involve packet recirculation, but we
have not explored this in detail, especially the issue of buffering synthesized packets.

Finally, a long-term goal may be to augment tools that synthesize P4 code with mechanisms
to generate Verifiable P4 specifications, or even proofs. For example, we use CatQL to
synthesize our bloom filter programs but have no tools to derive specifications or proofs for
the synthesized P4 code from CatQL directly.

Our formalization assumes that each P4 packet is handled atomically, which is a justifi-
able assumption for single Tofino-like pipelines.6 But Tofino (and other P4-programmable
switches) may have multiple parallel pipelines with independent register sets, and multiple
sequential pipelines (i.e., ingress and egress pipelines) with nontrivial scheduling between
them. Reasoning about packet management outside of P4 is future work – though it may
not require any changes to our P4 semantics itself.

Conclusion. P4-programmable switches enable a new generation of applications that use
sophisticated data structures, modular software engineering, and persistent state. The
constraints of P4-capable hardware often mean that those programs are written in a somewhat
contorted way that makes them difficult to reason about. Therefore, verification tools are
even more useful for P4 than they are for conventional languages.

We have built a verifier for P4 and demonstrated it on a sophisticated application. Our
verifier is the first one that can handle rich specifications or nontrivial uses of persistent state.
It is the first to be proved sound with respect to a formal semantics of P4. And our formal
semantics is the first one that attempts to be complete with respect to the English-language
P416 reference manual.

6 But not a trivial assumption: a multistage pipeline may have stateful registers at different pipeline
stages, and we can treat the whole pipeline atomically only because (1) each register is accessed only at
a given pipeline stage by all packets that access it and (2) packets cannot overtake each other within
the pipeline.

ITP 2023

32:18 Foundational Verification of Stateful P4 Packet Processing

References

1 Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: unassisted and automatic
generation of high-coverage tests for complex systems programs. In Richard Draves and
Robbert van Renesse, editors, 8th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2008, December 8-10, 2008, San Diego, California, USA, Proceedings,
pages 209–224. USENIX Association, 2008. URL: http://www.usenix.org/events/osdi08/
tech/full_papers/cadar/cadar.pdf.

2 Xiaoqi Chen, Shir Landau-Feibish, Mark Braverman, and Jennifer Rexford. Beaucoup:
Answering many network traffic queries, one memory update at a time. In Proceedings
of the Annual Conference of the ACM Special Interest Group on Data Communication on
the Applications, Technologies, Architectures, and Protocols for Computer Communication,
SIGCOMM ’20, pages 226–239, New York, NY, USA, 2020. Association for Computing
Machinery. doi:10.1145/3387514.3405865.

3 The P4 Language Consortium. P416 language specification, version 1.2.3, July 2022. URL:
https://p4.org/p4-spec/docs/P4-16-v1.2.3.pdf.

4 Graham Cormode and S. Muthukrishnan. An improved data stream summary: the count-min
sketch and its applications. Journal of Algorithms, 55(1):58–75, 2005. doi:10.1016/j.jalgor.
2003.12.001.

5 Ryan Doenges, Mina Tahmasbi Arashloo, Santiago Bautista, Alexander Chang, Newton Ni,
Samwise Parkinson, Rudy Peterson, Alaia Solko-Breslin, Amanda Xu, and Nate Foster. Petr4:
Formal foundations for P4 data planes. Proc. ACM Program. Lang., 5(POPL):1–32, 2021.
doi:10.1145/3434322.

6 Ryan Doenges, Tobias Kappé, John Sarracino, Nate Foster, and Greg Morrisett. Leapfrog:
certified equivalence for protocol parsers. In Proceedings of the 43rd ACM SIGPLAN Inter-
national Conference on Programming Language Design and Implementation, pages 950–965.
ACM, 2022.

7 Dragos Dumitrescu, Radu Stoenescu, Lorina Negreanu, and Costin Raiciu. bf4: towards
bug-free P4 programs. In Henning Schulzrinne and Vishal Misra, editors, SIGCOMM ’20:
Proceedings of the 2020 Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and protocols for computer
communication, pages 571–585. ACM, 2020. doi:10.1145/3387514.3405888.

8 Matthias Eichholz, Eric Hayden Campbell, Matthias Krebs, Nate Foster, and Mira Mezini.
Dependently-typed data plane programming. Proc. ACM Program. Lang., 6(POPL):40:1–40:28,
2022. doi:10.1145/3498701.

9 Kiran Gopinathan and Ilya Sergey. Certifying certainty and uncertainty in approximate
membership query structures. In Shuvendu K. Lahiri and Chao Wang, editors, Computer
Aided Verification - 32nd International Conference, CAV 2020, Proceedings, Part II, volume
12225 of LNCS, pages 279–303. Springer, 2020. doi:10.1007/978-3-030-53291-8_16.

10 Intel. Intel® Tofino™ programmable ethernet switch ASIC. https://www.intel.com/content/
www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html.
Accessed: 2023-01-18.

11 Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and Frank
Piessens. Verifast: A powerful, sound, predictable, fast verifier for C and java. In Mihaela Gheo-
rghiu Bobaru, Klaus Havelund, Gerard J. Holzmann, and Rajeev Joshi, editors, NASA Formal
Methods - Third International Symposium, NFM 2011, Proceedings, volume 6617 of LNCS,
pages 41–55. Springer, 2011. doi:10.1007/978-3-642-20398-5_4.

12 Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster, Changhoon
Kim, and Ion Stoica. Netcache: Balancing key-value stores with fast in-network caching. In
Proceedings of the 26th Symposium on Operating Systems Principles, SOSP ’17, pages 121–136.
ACM, 2017. doi:10.1145/3132747.3132764.

http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
https://doi.org/10.1145/3387514.3405865
https://p4.org/p4-spec/docs/P4-16-v1.2.3.pdf
https://doi.org/10.1016/j.jalgor.2003.12.001
https://doi.org/10.1016/j.jalgor.2003.12.001
https://doi.org/10.1145/3434322
https://doi.org/10.1145/3387514.3405888
https://doi.org/10.1145/3498701
https://doi.org/10.1007/978-3-030-53291-8_16
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1145/3132747.3132764

Q. Wang, M. Pan, S. Wang, R. Doenges, L. Beringer, and A. W. Appel 32:19

13 Patrick Kennedy. Intel Tofino2 next-gen programmable switch detailed. https://
www.servethehome.com/intel-tofino2-next-gen-programmable-switch-detailed/, Au-
gust 2020.

14 Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. Flowradar: A better netflow for
data centers. In Proceedings of the 13th Usenix Conference on Networked Systems Design and
Implementation, NSDI’16, pages 311–324. USENIX Association, 2016.

15 Jed Liu, William T. Hallahan, Cole Schlesinger, Milad Sharif, Jeongkeun Lee, Robert Soulé,
Han Wang, Calin Cascaval, Nick McKeown, and Nate Foster. p4v: Practical verification for
programmable data planes. In Sergey Gorinsky and János Tapolcai, editors, Proceedings of
the 2018 Conference of the ACM Special Interest Group on Data Communication (SIGCOMM
2018), pages 490–503. ACM, 2018. doi:10.1145/3230543.3230582.

16 Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan Yu. Silkroad: Making
stateful layer-4 load balancing fast and cheap using switching asics. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication, SIGCOMM ’17, pages
15–28. ACM, 2017. doi:10.1145/3098822.3098824.

17 Hun Namkung, Zaoxing Liu, Daehyeok Kim, Vyas Sekar, and Peter Steenkiste. SketchLib:
Enabling efficient sketch-based monitoring on programmable switches. In 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 22), pages 743–759,
Renton, WA, April 2022. USENIX Association. URL: https://www.usenix.org/conference/
nsdi22/presentation/namkung.

18 Miguel Neves, Lucas Freire, Alberto Schaeffer-Filho, and Marinho Barcellos. Verification of P4
programs in feasible time using assertions. In Proceedings of the 14th International Conference
on Emerging Networking EXperiments and Technologies, pages 73–85. ACM, 2018.

19 Solal Pirelli, Akvile Valentukonyte, Katerina J. Argyraki, and George Candea. Automated
verification of network function binaries. In Amar Phanishayee and Vyas Sekar, editors,
19th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2022,
Renton, WA, USA, April 4-6, 2022, pages 585–600. USENIX Association, 2022. URL:
https://www.usenix.org/conference/nsdi22/presentation/pirelli.

20 Solal Pirelli, Arseniy Zaostrovnykh, and George Candea. A formally verified NAT stack.
Comput. Commun. Rev., 48(5):77–83, 2018. doi:10.1145/3310165.3310176.

21 John Reynolds. Separation logic: A logic for shared mutable data structures. In LICS 2002:
IEEE Symposium on Logic in Computer Science, pages 55–74, July 2002.

22 Fabian Ruffy, Tao Wang, and Anirudh Sivaraman. Gauntlet: Finding bugs in compilers for
programmable packet processing. In 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20), pages 683–699, 2020.

23 Radu Stoenescu, Dragos Dumitrescu, Matei Popovici, Lorina Negreanu, and Costin Raiciu.
Debugging P4 programs with Vera. In Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication, pages 518–532, 2018.

24 Bingchuan Tian, Jiaqi Gao, Mengqi Liu, Ennan Zhai, Yanqing Chen, Yu Zhou, Li Dai, Feng
Yan, Mengjing Ma, Ming Tang, et al. Aquila: a practically usable verification system for
production-scale programmable data planes. In Proceedings of the 2021 ACM SIGCOMM
2021 Conference, pages 17–32, 2021.

25 Qinshi Wang. Foundationally Verified Data Plane Programming. PhD thesis, Princeton
University, 2023. In preparation.

26 Zhuolong Yu, Yiwen Zhang, Vladimir Braverman, Mosharaf Chowdhury, and Xin Jin. Netlock:
Fast, centralized lock management using programmable switches. In Proceedings of the Annual
Conference of the ACM Special Interest Group on Data Communication on the Applications,
Technologies, Architectures, and Protocols for Computer Communication, SIGCOMM ’20,
pages 126–138, New York, NY, USA, 2020. Association for Computing Machinery. doi:
10.1145/3387514.3405857.

27 Arseniy Zaostrovnykh, Solal Pirelli, Rishabh R. Iyer, Matteo Rizzo, Luis Pedrosa, Katerina J.
Argyraki, and George Candea. Verifying software network functions with no verification

ITP 2023

https://www.servethehome.com/intel-tofino2-next-gen-programmable-switch-detailed/
https://www.servethehome.com/intel-tofino2-next-gen-programmable-switch-detailed/
https://doi.org/10.1145/3230543.3230582
https://doi.org/10.1145/3098822.3098824
https://www.usenix.org/conference/nsdi22/presentation/namkung
https://www.usenix.org/conference/nsdi22/presentation/namkung
https://www.usenix.org/conference/nsdi22/presentation/pirelli
https://doi.org/10.1145/3310165.3310176
https://doi.org/10.1145/3387514.3405857
https://doi.org/10.1145/3387514.3405857

32:20 Foundational Verification of Stateful P4 Packet Processing

expertise. In Tim Brecht and Carey Williamson, editors, Proceedings of the 27th ACM
Symposium on Operating Systems Principles, SOSP 2019, Huntsville, ON, Canada, October
27-30, 2019, pages 275–290. ACM, 2019. doi:10.1145/3341301.3359647.

28 Arseniy Zaostrovnykh, Solal Pirelli, Luis Pedrosa, Katerina J. Argyraki, and George Candea.
A formally verified NAT. In Proceedings of the Conference of the ACM Special Interest Group
on Data Communication, SIGCOMM 2017, Los Angeles, CA, USA, August 21-25, 2017, pages
141–154. ACM, 2017. doi:10.1145/3098822.3098833.

29 Kaiyuan Zhang, Danyang Zhuo, Aditya Akella, Arvind Krishnamurthy, and Xi Wang. Au-
tomated verification of customizable middlebox properties with gravel. In Ranjita Bhag-
wan and George Porter, editors, 17th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2020, Santa Clara, CA, USA, February 25-27, 2020, pages
221–239. USENIX Association, 2020. URL: https://www.usenix.org/conference/nsdi20/
presentation/zhang-kaiyuan.

30 Linfeng Zhang and Yong Guan. Detecting click fraud in pay-per-click streams of online
advertising networks. 2008 The 28th International Conference on Distributed Computing
Systems, pages 77–84, 2008.

https://doi.org/10.1145/3341301.3359647
https://doi.org/10.1145/3098822.3098833
https://www.usenix.org/conference/nsdi20/presentation/zhang-kaiyuan
https://www.usenix.org/conference/nsdi20/presentation/zhang-kaiyuan

Dependently Sorted Theorem Proving for
Mathematical Foundations
Yiming Xu #

Australian National University, Canberra, Australia

Michael Norrish #

Australian National University, Canberra, Australia

Abstract
We describe a new meta-logical system for mechanising foundations of mathematics. Using dependent
sorts and first order logic, our system (implemented as an LCF-style theorem-prover) improves on the
state-of-the-art by providing efficient type-checking, convenient automatic rewriting and interactive
proof support. We assess our implementation by axiomatising Lawvere’s Elementary Theory of
the Category of Sets (ETCS) [5], and Shulman’s Sets, Elements and Relations (SEAR) [17]. We
then demonstrate our system’s ability to perform some basic mathematical constructions such as
quotienting, induction and coinduction by constructing integers, lists and colists. We also compare
with some existing work on modal model theory done in HOL4 [20]. Using the analogue of type-
quantification, we are able to prove a theorem that this earlier work could not. Finally, we show
that SEAR can construct sets that are larger than any finite iteration of the power set operation.
This shows that SEAR, unlike HOL, can construct sets beyond Vω+ω.

2012 ACM Subject Classification Theory of computation → Logic and verification

Keywords and phrases first order logic, sorts, structural set theory, mechanised mathematics,
foundation of mathematics, category theory

Digital Object Identifier 10.4230/LIPIcs.ITP.2023.33

Supplementary Material Other (Source Code): https://github.com/u5943321/DiaToM
archived at swh:1:dir:4358f11ed6de22aabb16cfe4b51c769fb9fd6e1d

Acknowledgements We appreciate all the anonymous reviewers for their time and effort in pointing
out typos and suggesting improvements to this paper. We would also like to thank James Borger for
the name “DiaToM”, which we feel beautifully encapsulates the aims and nature of our project.

1 Introduction

Mathematicians claim to work with set theory all the time, but many do so without really
having to, or trying to, grapple with set theory’s axioms. Moreover, this attitude is not
unreasonable: it is not clear that standard ZF set theory should be mathematicians’ foundation
of choice. Few people are particularly happy with a foundation insisting that, for example,
1 ∈ 2. It is not surprising then that a number of different foundations have been proposed
in the literature. Considering variants of set theory, some famous examples are Lawvere’s
ETCS [5], Shulman’s SEAR [17], Quine’s New Foundation [14], Tarski-Grothendieck set
theory [18] and von Neumann–Bernays–Gödel set theory (see, for example, Mendelson’s
presentation [11]) . Category theory has also been proposed as a mathematical foundation,
in McLarty’s CCAF [8] and Lawvere’s ETCC [6], with the former having been shown capable
of capturing many non-trivial results. And, though ETCC is known to be flawed, people
have never lost interest in fixing it, and are continuing to work on similar systems.

Axiomatising a foundation for all of mathematics is a project that must be approached
with the utmost care. Our belief is that this care should include mechanical support. That
is, we should develop a theorem-proving system to serve as a tool for checking proofs in these
foundations.

© Yiming Xu and Michael Norrish;
licensed under Creative Commons License CC-BY 4.0

14th International Conference on Interactive Theorem Proving (ITP 2023).
Editors: Adam Naumowicz and René Thiemann; Article No. 33; pp. 33:1–33:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Yiming.Xu1@anu.edu.au
https://orcid.org/0009-0002-4006-0983
mailto:michael.norrish@anu.edu.au
https://orcid.org/0000-0003-1163-8467
https://doi.org/10.4230/LIPIcs.ITP.2023.33
https://github.com/u5943321/DiaToM
https://archive.softwareheritage.org/swh:1:dir:4358f11ed6de22aabb16cfe4b51c769fb9fd6e1d;origin=https://github.com/u5943321/DiaToM;visit=swh:1:snp:114936802d81667ea7ad089afb1c9650a625d697;anchor=swh:1:rev:e2406d9c56253374bff0af5331f04668df1b0472
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 Dependently Sorted Theorem Proving for Mathematical Foundations

Our second goal is expressiveness: we want our system to be flexible enough to capture
a variety of systems. At the same time, it is readily apparent that a significant amount of
work on mathematical foundations concentrates on first-order logic. Certainly, in all of the
examples above, first-order logic is enough. We’re quite happy to live with this constraint:
a richer logic can conceal foundational decisions that we’d prefer to make apparent in our
axioms. In the following, we present a first-order system that gains its expressiveness through
a simple notion of dependent sort. Despite its simplicity, our system captures three of the
foundational systems mentioned above, and is capable of fairly involved constructions in
them all.

Contributions

We develop a logical system that is able to express various first order axiomatic systems,
where sorts can depend on terms. We specialise this ambient logical system so as to
capture the foundational systems ETCS and SEAR.
Building on these foundations, we demonstrate that our system can handle common
mathematical constructions such as the development of the algebraic and co-algebraic
lists.
In one example, we also demonstrate SEAR’s set-theoretic power by extending an existing
example in model theory (done in HOL), and prove a theorem impossible to capture in
HOL.
We provide a proof-of-concept implementation that makes logical developments practical
through the development of a number of important, though basic tools. For example,
in ETCS, where proofs greatly rely on internal logic, we build a tool to automatically
construct the internal logic predicates corresponding to “external” predicates. In both
ETCS and SEAR, we automate inductive definitions, and provide tools to help with the
construction of quotients.

The paper is structured as follows: we first introduce our fundamental logic, which is
used for all three foundations. Then we briefly introduce the two structural set theories,
ETCS and SEAR. After discussing the automation of comprehension in ETCS, for reasons
of space, we present the remaining proofs in SEAR only. We note that with the exception of
the modal model theory result (where the bounded comprehension schema is not sufficient)
and the construction of the large set, all these formalised SEAR results can be formalised in
ETCS as well. The proofs of a SEAR statement and its ETCS counterpart are often identical,
in the sense that a proof in one system can be cut and pasted into the other. At the end of
the paper, we compare our work with some existing logics developed for related purposes.

2 Logical System

We begin with the syntax of our logical system, which is “three-layered”, consisting of sorts,
terms, and formulas.

2.1 Sorts and Terms
Every sort depends on a (possibly empty) list of terms. The sorts are all of the form
s(t0, · · · , tn), where t0, · · · , tn are terms of some pre-existing sorts and s is the name of the
sort. A term is either a variable or a function application:

t := Var(n, s) | Fun(f, s, t⃗)

Y. Xu and M. Norrish 33:3

That is, a variable consists of a name and a sort, and a function term consists of the name
of the function symbol, the sort, and the arguments, which is a list of terms. A constant
is a nullary function. Each term has a unique sort, carried as a piece of information as an
intrinsic property. A sort which does not depend on any term is called a ground sort. A term
with a ground sort is called a ground term.

2.2 Formulas
We are working with a classical logic, and can afford to be minimal with our syntax: a
formula Φ is either falsity, a predicate, an implication, a universally quantified formula, or a
formula variable.

Φ ::= ⊥ | Pred(P, t⃗) | ϕ1 =⇒ ϕ2 | ∀n : s. ϕ | fVar(F , s⃗, t⃗)

In the above, P is a predicate name, and F is the name of a formula variable. Boolean
operators ∧,∨,¬ can hence be built from the implication. We write ⊤ as an abbreviation
⊥ =⇒ ⊥. In the ∀ case, the n and s carry the name and sort of the quantified variable.
A formula Pred(P, t⃗) is a concrete predicate symbol applied to the argument list t⃗. Such a
predicate symbol is either primitive, which comes together with the axiomatic setting or is
defined by the user. A formula variable fVar(F , s⃗, t⃗) is analogous to a higher-order lambda
expression taking an argument list t⃗ with sorts s⃗. We provide an inference rule to instantiate
them below in Section 2.3.1. In the following, we will write a predicate formula as P (⃗t). For
a formula variable with name F on arguments of sorts s⃗ applied on t⃗, we write F [s⃗](⃗t).

The only primitive predicate embedded in the system is equality between terms of the
same sort. However, we need not allow equalities between terms just because they have the
same sort. We cannot, for example, write equality between objects in ETCS, or equality
between sets in SEAR. Thus, each foundation must record (along with function symbols,
predicates symbols and axioms), the list of sorts supporting equality.

2.3 Theorems
A theorem consists of a set of variables Γ, called the context, a finite set A of formulas
(the assumptions), and a formula ϕ as the conclusion. A theorem Γ, A ⊢ ϕ reads “for all
assignments σ of variables in Γ to terms respecting their sorts, if all the formulas in σ(A)
hold, then we can conclude σ(ϕ)”.

The context is the set of variables we require for the conclusion to be true given the
assumptions: it contains at least all the free variables appearing in the assumptions or the
conclusion. It can be regarded as a special form of assumption, asserting the existence of
terms of certain sorts. We need the context to make sure we cannot use terms before either
constructing them or assuming their existence. For instance, there is no arrow from the
terminal object 1 to the initial object 0 in either ETCS or SEAR. Using a context, it can be
proved that: {f : 1 → 0} ⊢ ∃f : 1 → 0. ⊤, but ⊢ ∃f : 1 → 0. ⊤ is easily proved to be false.

2.3.1 Proof System
We now introduce the primitive rules. Rules for the propositional connectives are standard,
as in Figure 1. The quantifier rules take some extra care of the sort information. When
specialising a universal by a term, we need to put all the free variables of such a term into
the context. Let Vars(t) denote the set of variables occurring in the term t, then:

Γ, A ⊢ ∀x : s.ϕ(x)
∀-E, t is of sort s

Γ ∪ Vars(t), A ⊢ ϕ(t)

ITP 2023

33:4 Dependently Sorted Theorem Proving for Mathematical Foundations

Assume Vars(ϕ), {ϕ} ⊢ ϕ
Ax ϕ is an axiom

Vars(ϕ) ⊢ ϕ

Γ, A ∪ {¬ϕ} ⊢ ⊥
CContr Γ, A ⊢ ϕ

ExF Vars(A ∪ {ϕ}), A ∪ {⊥} ⊢ ϕ

Γ, A ⊢ ϕ
Disch Γ ∪ Vars(ψ), A \ {ψ} ⊢ ψ =⇒ ϕ

Γ1, A1 ⊢ ϕ =⇒ ψ Γ2, A2 ⊢ ϕ
MP Γ1 ∪ Γ2, A1 ∪A2 ⊢ ψ

Refl Vars(a) ⊢ a = a
Γ, A ⊢ a = bSym
Γ, A ⊢ b = a

Γ1, A1 ⊢ a = b Γ2, A2 ⊢ b = c
Trans Γ1 ∪ Γ2, A1 ∪A2 ⊢ a = c

Γ, A ⊢ ϕ
InstTM σ is a well-formed map

σ(Γ), σ(A) ⊢ σ(ϕ)

Γ1, A1 ⊢ t1 = t′1, · · · , Γn, An ⊢ tn = t′nFVCong ⋃n

i=1 Γi,
⋃n

i=1 Ai ⊢ F [s⃗](⃗t) ⇔ F [s⃗](t⃗′)

Figure 1 Natural Deduction style presentation of our sorted FOL.

To apply generalisation (∀-I) with a variable a : s(t1, · · · , tn), we require that (i) a does not
occur in the assumption set; (ii) there is no term in the context depending on a; (iii) all the
variables of sort s must also be in Γ \ {x}, and (iv) a does not appear in the sort list of any
formula variable appearing in the conclusion. Once all these conditions are satisfied, we have

Γ, A ⊢ ϕ(x)
∀-I Γ \ {x : s}, A ⊢ ∀x : s. ϕ(x)

We define (∃x.ϕ) = ¬(∀x.¬ϕ). The instantiation rule for formula variables is given as:

Γ, A(F [s⃗]) ⊢ ϕ(F [s⃗])
Form-Inst Γ ∪ Vars(ψ), A[F [s⃗] 7→ ψ] ⊢ ϕ[F [s⃗] 7→ ψ]

Instantiating a formula variable F [s⃗] is to replace each occurrence of F [s⃗] into a concrete
formula on an argument list with sorts s⃗, and apply this predicate on t⃗. This is done by
providing a map sending each such formula variable to a formula. This formula may or may
not contain more formula variables, and is encoded by a pair consisting of a variable list
v1, · · · , vn of sort s⃗ and a formula ϕ, such that ∀v1, · · · , vn.ϕ is a well-formed formula. We
rely on the term instantiation rule to make changes to the sort list, and then instantiate the
formula variable when required.

When defining a new foundation we assume the existence of a signature recording that
foundation’s sorts, function symbols and predicate symbols. We extend the signature with
new predicate symbols using the predicate specification rule.

Pred-spec P does not occur in ϕ
Vars(⃗t) ⊢ P (⃗t) ⇔ ϕ(⃗t)

Applying such a rule will define a new predicate with the name P. The defined predicate
will be polymorphic, where each tuple whose sort is matchable with the list t⃗ can be taken
as the arguments. Here the argument of the new predicate symbol is not required to be all
of Vars(ϕ), we only require the whole set of free variables involved can be recovered from the
arguments. For instance, if {a1 : s1, a2 : s2(a1)} exhausts the free variables involved, then
the predicate can just take the single argument a2 instead of both a1 and a2.

Y. Xu and M. Norrish 33:5

2.3.1.1 Function specification rule

The specification rule for new function symbols is the most complicated. Given a theorem
Γ, A ⊢ ∃a1 : s1, · · · an : sn.Q(a1, · · · , an), if the existence of the tuple (a1, · · · , an) is unique
up to any sense which is accepted as suitable by the foundation, we define function symbols
f1, · · · , fn such that their output tuple satisfies Q. To define a new function symbol, we
provide a theorem stating the unique existence of some terms up to some relation, a theorem
stating the relation is an equivalence relation, and a theorem guaranteeing non-emptiness of
the relevant sorts.

In general, an equivalence must be captured by a predicate on two lists of variables,
representing the two entities being related. As the built-in logic does not have a notion of
tuples, we cannot define an equivalence relation to be a subset of the set consisting pairs of
tuples of a certain form. Instead, we require theorems of the form:

⊢ R(⟨a1 : s1, ..., an : sn⟩, ⟨a1 : s1, ..., an : sn⟩)

⊢ R(⟨a1 : s1, ..., an : sn⟩, ⟨a′
1 : s′

1, ..., a
′
n : s′

n⟩)
=⇒ R(⟨a′

1 : s′
1, ..., a

′
n : s′

n⟩, ⟨a1 : s1, ..., an : sn⟩)

⊢ R(⟨a1
1 : s1

1, ..., a
1
n : s1

n⟩, ⟨a2
1 : s2

1, ..., a
2
n : s2

n⟩) ∧R(⟨a2
1 : s2

1, ..., a
2
n : s2

n⟩, ⟨a3
1 : s3

1, ..., a
3
n : s3

n⟩)
=⇒ R(⟨a1

1 : s1
1, ..., a

1
n : s1

n⟩, ⟨a3
1 : s3

1, ..., a
3
n : s3

n⟩)

If the three theorems all hold for a concrete property R, then R is an equivalence relation
(abbreviated as eqth(R) in the rest of the discussion). If R is used as the equivalence relation
above, the unique existential theorem is required to be of the form:

∃ai : si. Q(⟨a1 : s1, ..., an : sn⟩) ∧
∀a′

i : s′
i. Q(⟨a′

1 : s′
1, ..., a

′
n : s′

n⟩) =⇒ R(⟨a1 : s1, ..., an : sn⟩, ⟨a′
1 : s′

1, ..., a
′
n : s′

n⟩)

We abbreviate the formula above as ∃!Rai : si. Q(⟨a1 : s1, ..., an : sn⟩). The sorts of the
two argument lists are not required to be equal, and they are generally not equal because
the sorts of the latter variables often depend on the previous ones. The rule is expressed as:

Γ0, ∅ ⊢ ∃ai : si.⊤ Γ′, A′ ⊢ eqth(R) Γ, A ⊢ ∃!Rai : si.Q(⟨a1 : s1, ..., an : sn⟩)
Γ, A ⊢ Q(⟨f1(Γ′), ..., fn(Γ′)⟩)

where
Q and R do not contain any formula variables; and
Γ0 ⊆ Γ, Γ′ ⊆ Γ, and A′ ⊆ A.

Our rule’s leftmost premise requires the existence of terms of the required (output) sorts,
given the existence of variables in the context corresponding to the sorts of the arguments.
In this way, the rule guarantees that terms built using the new function symbol will always
denote values in the output sort. For the equivalence relation, we can take R to be equality,
meaning we are specifying new function symbols according to unique existence. If we take R
to be the everywhere-true relation we have imported the Axiom of Choice into our system.
The choice of which R’s to allow is up to the designer of the object logic.

2.3.2 Semantics via Translation to Sorted FOL
In work that is not further described here, we have mechanised the proof that formula
variables and their proof rules represent a conservative extension and can be eliminated.
Subsequently, the term-instantiation rule (InstTM in Figure 1) can be derived from ∀-I and
∀-E and can also be removed from the list of primitive rules. As a result, our semantics

ITP 2023

33:6 Dependently Sorted Theorem Proving for Mathematical Foundations

below ignores them (meaning that our formulas come in just four forms: ⊥, implications, the
universal quantifier and predicate symbols). Our logic can be translated into non-dependent
sorted FOL, which is equivalent to FOL. Given a list of sorts s1, · · · , sn, such that sk only
depends on terms with sorts occurring earlier in the list for each 1 ≤ k ≤ n, we create
non-dependent sorts s1, · · · , sn. These sorts are thought of as the non-dependent versions of
s1, · · · sn. We can think of the set of terms of sort si as the union of all terms of sort si(⃗t)
for all possible tuples t⃗ of terms.

{a | a : si} =
⋃
t⃗k

{a | a : si(t⃗k)}

For example, the ETCS terms f : A → B and g : C → D are of different arrow sorts,
but their translation both have sort ar. For a function symbol f taking a list of terms
[t1 : s1, · · · , tn : sn], we create a non-dependent sorted function symbol f , such that its
argument term list has the corresponding sort list s1, · · · , sn. We do the same for predicate
symbols. Translation from terms of sk into those of FOL sort sk is done by forgetting sort
dependency:

JVar(x, sk(t1, · · · tm))Kt = Var(x, sk)
JFun(f, sk(t1, · · · , tm), (a1, · · · , an))Kt = Fun(f, sk, (Ja1Kt, · · · , JanK))

For sorts s depending on terms t1 : s1, · · · , tm : sm, we create function constants ds,1, · · · ,
ds,m. For 1 ≤ i ≤ m, ds,i takes an argument of sort s and outputs a term of sort si. If a
function symbol f takes arguments (t1 : s1, · · · , tn : sn), and outputs a non-ground sort s,
where s depends on terms r1, · · · , rn, and each sk depends on terms qk,i, then we add an axiom
to regulate the dependency information of its sort when translated into non-dependent-sort
FOL:∧

k

∧
i

dsk,i(JvkKt) = Jqk,iKt =⇒
∧
j

ds,j(Jf(v1, · · · , vn)Kt) = JrjKt

As an example, the composition function symbol in ETCS takes g : B → C and f : A → B,
and outputs g ◦ f : A → C. The corresponding axiom is:

∀(A : ob) (B : ob) (C : ob) (f : ar) (g : ar).
dar,1(f) = A ∧ dar,2(f) = B ∧ dar,1(g) = B ∧ dar,2(g) = C =⇒
dar,1(g ◦ f) = A ∧ dar,2(g ◦ f) = C

For an arbitrary function symbol f , although its arguments can include ground terms, the
axiom only needs to state information about the dependently sorted argument, where the
functions dk, as shown above, exist. If the output of a function symbol is a ground sort, we
do not need such an axiom for it.

Translation of formulas only makes sense under the translation of some context that
contains at least all of its free variables. Defining the translation of a context amounts to
translating sort judgments of variables. We translate the sort judgment of any ground sort
into ⊤. As for a variable a : sk(t1, · · · , tn), we write

Ja : sk(t1, · · · , tn)Kts =
∧

i

dk,i(JaKt) = JtnKt

to denote the translation of a context element (J· · ·Kts calculates the denotation of a term’s
sorting assertion). An entire context Γ is translated into the conjunction of the translation
of its elements.

Y. Xu and M. Norrish 33:7

As we do for function symbols, we create for each dependent sorted predicate symbol
P a corresponding non-dependent sorted one, written as P. We define the translation of
formulas by induction as:

JP(t1 : s1, · · · , tn : sn)Kf = P(Jt1Kt, · · · , JtnKt)
Jϕ =⇒ ψKf = JϕKf =⇒ JψKf

J∀x : s. ψKf = ∀x : s. JxKts =⇒ JψKf

Finally, a theorem Γ, A ⊢ ψ translates into

∀v1 . . . vn.
∧

(vi:si)∈Γ

Jvi : siKts ∧ JAKf =⇒ JψKf

It is routine to check that the rules are valid under the translation and hence have the
intended sense. As an example, consider ∀-I. Assume Γ, {a : s(t1, · · · , tn)}, A ⊢ ϕ(a) and the
variable a appears in neither Γ nor A. The theorem translates into

JΓKts, Ja : s(t1, · · · , tn)Kts,
∧

JAKf ⊢ Jϕ(a)Kf

(where we overload J· · ·Kts and J· · ·Kf to include the versions mapping sets to conjunctions
of translations). The fact that a does not appear in Γ translates into the corresponding
variable a : s not appearing in JAKf , and the requirement that no variable depends on a

translates to the requirement that Ja : s(. . .)Kts does not appear in JΓKts either. Therefore,
we can discharge JaKts from the assumption and deduce from the FOL universal elimination
rule that JΓKts, JAKf ⊢ ∀a : JsKs. Ja : sKts =⇒ Jϕ(a)Kf . This is the translation of Γ, A ⊢ ∀a :
s(t1, · · · , tn).ϕ(a), as required.

Implementation

Our implementation is a proof-of-concept written in SML. It provides a simple REPL similar
to those provided by HOL4 and HOL Light. The kernel (core syntax and proof rules) is
implemented in 2443 lines of code; user-level parsing (including a simple type inference
algorithm) and printing is a further 1633 lines of code. Additional core libraries (goal stack
package, common tactics including the rewriting tactic) take 4386 lines.

The source code for this implementation is available from https://github.com/u5943321/
DiaToM

3 ETCS and SEAR

ETCS [5] and SEAR [17] are both structural set theories. With each, we work within a
well-pointed boolean topos. In particular, they both have products, coproducts, exponentials,
an initial object 0 and a terminal object 1. Whereas the existence of all of these are given as
primitive axioms in ETCS, we can construct them in SEAR.

ETCS has two sorts: objects (A, B, . . . ; a ground sort) and arrows (e.g., A → B), where
an arrow sort depends on two object terms. Equality can only hold between arrows. An object
is to be considered as a set in the usual sense: an arrow 1 → X is regarded as an element of
the set X. As per Shulman’s original construction, SEAR has three sorts: sets (A, B, . . . ; a
ground sort); members (_ ∈ A, depending on a set term); and relations (A↬ B, depending
on two set terms). SEAR also adds a primitive predicate Holds(R : A ↬ B, a ∈ A, b ∈ B),
declaring that the relation R relates a and b.Equality can hold between relations with the
same domain and codomain, and elements of the same set.

ITP 2023

https://github.com/u5943321/DiaToM
https://github.com/u5943321/DiaToM

33:8 Dependently Sorted Theorem Proving for Mathematical Foundations

In SEAR, a relation R is called a function if ∀a.∃!b. Holds(R, a, b). In practice, we want to
be able to write f(a) as the result of applying a function to an argument, but we cannot do
this if we are restricted to just the relation sort. A first thought might be to create a function
symbol Eval, that takes a relation and a member of A, so the term Eval(R : A↬ B, a ∈ A)
is a member of B. However, such a function symbol breaks soundness, as the term Eval(R, a)
can be expressed for every a of the correct sort before checking the function condition on R.
In particular, we can write a term Eval(R : 1 ↬ 0, ∗), nominally producing an element of 0.

Rather, we introduce a function sort which is a “proper subsort” of the relation sort.1 A
function f from A to B is written f : A → B, and we add the following axiom describing
terms of function sorts:

isFunction(R) =⇒
∃!f : A → B. ∀(a ∈ A) (b ∈ B).Eval(f, a) = b ⇔ Holds(R, a, b)

The isFunction predicate embodies the definition above, and we also have a new Eval function
symbol that takes a function term from A to B and an element term of A, and outputs an
element term of B.

We will write Eval(f, a) simply as f(a) in the rest of paper. The Eval symbol is typed so
that only functions terms can be its first argument. It is clear that this is a conservative
extension, as any theorems involving Eval can be expressed using just Holds and uses of the
isFunction hypothesis if desired.

Subsets are handled differently in ETCS and SEAR. Using the SEAR axioms, it is
straightforward to show that for each formula ϕ on members x ∈ X, we can form the subset
{x | ϕ(x)}. In what follows, F is an arbitrary formula variable, and we are defining a
comprehension schema. Our subset is constructed via a member of the power set Pow(X),2
and ultimately as a term of set sort with an injection to X. This construction is described
by the following two theorems (following Shulman [17]). First, we prove the existence of
the member of the power-set. Given that A is a set, then IN requires two arguments of sort
_ ∈ A and _ ∈ Pow(A). Then:

∃!s ∈ Pow(A). ∀a. IN(a, s) ⇔ F [mem(A)](a)

We also have the existence of a set B, and an injection from it into A:

∃B (i : B → A). Inj(i) ∧ ∀(a ∈ A). F [mem(A)](a) ⇔ ∃b ∈ B. a = i(b) (1)

The combination of i and B can be seen as identifying the subset of A satisfying predicate P .
The following isset predicate, connecting a member (s) to a set (B, given implicitly in i’s

sort) is also occasionally useful:

isset(i : B → A, s ∈ Pow(A)) def⇔ Inj(i) ∧ image(i, B) = s

The “subset story” in ETCS is more restrictive. There we can only form subsets from
predicates on elements of X which can be captured by an arrow p : X → 2, where 2 is defined
to be the coproduct 1 + 1. Such arrows are turned into elements of the power object 2X by
taking transposes. We regard 2 as the set of truth values, where ⊤I ,⊥I : 1 → 2 denote truth

1 Shulman (personal communication) agrees that the resulting system is still effectively SEAR as he
conceives it.

2 The existence of the powerset function is easy to establish from the function specification rule: power
set of each set is unique up to isomorphism that respects the membership relation.

Y. Xu and M. Norrish 33:9

and falsity respectively. Our arrow p gives rise to a separate object as characterised by the
theorem:

∀A (p : A → 2). ∃B (i : B → A). Inj(i) ∧ ∀a : 1 → A. p ◦ a = ⊤I ⇔ ∃b. a = i ◦ b

The existence of i is witnessed by the pullback of the map ⊤I along p. Note that this method
only shows the existence of subsets for arrows p : X → 2. We do not achieve the generality
of SEAR, where the construction starts with an arbitrary formula variable. ETCS does
allow for the construction of subsets using something resembling set comprehension, but this
requires a detour via its internal logic (see Section 4 below).

Another notable difference between the two logics is that ETCS comes with the axiom of
choice in the form of the statement that any epimorphism has a section, whereas this is not
given in SEAR. In fact, if we change SEAR by adding the axiom of choice, and also requiring
that the input formula of our comprehension schema be bounded, then the resulting system
has the same strength as ETCS.

For both ETCS and SEAR, the injection we construct from each predicate is unique up to
respectful isomorphism. This allows us to use the specification rule to obtain new constants
without the full form of choice. In SEAR, for example, we can prove if there are i : B → A and
i′ : B′ → A, which are both injections, and moreover, we have ∀a. P (a) ⇔ ∃b ∈ B. a = i(b)
and ∀a. P (a) ⇔ ∃b ∈ B′. a = i′(b), then the relation between pairs (B, i : B → A) and
(B′, i′ : B′ → A) defined by

∃(f : B → B′) (g : B′ → B).
f ◦ g = Id(B) ∧ g ◦ f = Id(B′) ∧ i′ ◦ f = i ∧ i ◦ g = i′

holds. This is clearly an equivalence relation. Moreover, for all sets A, the existence of a
set B and a map B → A is witnessed by the identity isomorphism. Therefore, once we
instantiate the P above into a concrete predicate without any formula variables, we have
met all of the specification rule’s antecedents, and we can use it to define two constants:
the subset and its inclusion into the ambient set. In SEAR, the sets of natural numbers,
integers, lists and co-lists are all constructed in this way. More generally, given any member
s ∈ Pow(A), we use the specification rule to turn it into a “real set” via the constant m2s(s)
of set sort. This set is injected into A by the map minc(s) : m2s(s) → A.

4 Internal logic in ETCS

As discussed in the last section, an arrow p : X → 2 corresponds to a predicate on X in
the sense that if x : 1 → X, then p ◦ x = ⊤I means p is true for x. An ETCS formula is
bounded precisely when all quantified variables are elements (i.e., arrows with domain 1). Let
us call the formulas of our logic (all formulas seen so far) external formulas. If an external
formula is bounded with all free variables also elements, we can automatically construct
a corresponding internal formula as a term of the logic. When the external formula is on
variables with sorts (1 → X1), (1 → X2), . . . , then the internal formula will be an arrow of
sort ΠXi → 2. For an external formula Φ[x1 : 1 → X1, . . .], then let p : ΠXi → 2 be the
corresponding formula. We require

∀a : 1 → ΠXi. p ◦ a = ⊤I ⇔ Φ[(πi ◦ a)/xi]

where Φ[t/x] is the substitution of term t for variable x. This could be regarded as an axiom,
one rather like Separation in ZF. However, we can instead prove all results of this form
automatically. This is simply by rewriting with all the theorems with relevant definitions
and properties of the internal logic operators as explained below.

ITP 2023

33:10 Dependently Sorted Theorem Proving for Mathematical Foundations

We have implemented an automatic translation (a “derived rule”) that generates an
internal logic formula given a list of variables, considered as the arguments, and the formula.
The translation produces an internal logic predicate and proves that it gives the value ⊤I if
and only if the formula is true when applied to the arguments. We illustrate our algorithm
with an example over N, the natural number object, the arrow SUC : N → N, and the function
symbol _+, such that n+ def= SUC ◦ n. Then, the pair ([n],m+ − n+ = m − n) encodes a
simple unary predicate on n. In this case, the output of our derived rule is an arrow term
p : N → 2 satisfying:

∀n : 1 → N. p ◦ n = ⊤ ⇔ m+ − n+ = m− n

If the list of arguments is [m,n] instead, the produced arrow p : N × N → 2 will satisfy:

∀m,n : 1 → N. p ◦ ⟨m,n⟩ = ⊤ ⇔ m+ − n+ = m− n

Table 1 Operators of the Internal Logic.

Operator Sort Defining Property
∧I 2 × 2 → 2 ∧I ◦ ⟨p1, p2⟩ ⇔ p1 = ⊤I ∧ p2 = ⊤I

∨I 2 × 2 → 2 ∨I ◦ ⟨p1, p2⟩ ⇔ p1 = ⊤I ∨ p2 = ⊤I

⇒I 2 × 2 → 2 ⇒I ◦⟨p1, p2⟩ ⇔ p1 = ⊤I =⇒ p2 = ⊤I

¬I 2 → 2 ¬I ◦ p = ⊤I ⇔ p = ⊥I

∀X 2X → 2 ∀X ◦ p ◦ y = ⊤I ⇔ ∀x.p ◦ ⟨x, y⟩ = ⊤I

∃X 2X → 2 ∃X ◦ p ◦ y = ⊤I ⇔ ∃x : 1 → X.p ◦ ⟨x, y⟩ = ⊤I

To convert formulas into internal formulas, we need to first convert terms into “internal
terms”. In particular, function symbols will map into arrows of an appropriate sort. For
example, if our “external formula” is on variables [x : 1 → N, y : 1 → N], then any “internal
term” built as part of this translation will be from N × N. In our N-example, the arrow
corresponding to y+ will be SUC ◦ π2(N,N). In most circumstances, the connection between
the function symbol and the arrow will simply be that symbol’s definition. For generality’s
sake, our implementation stores the external-internal correspondence of function and predicate
symbols in a simple dictionary data structure.

Our formula-converting function is recursive on the structure of formula, using the
semantics of the various connectives and quantifiers given in Table 1. The only built-in
predicate, equality, corresponds to the characteristic map of the diagonal monomorphism. For
user-defined predicates, such as < over natural numbers, users can store the correspondences
manually. The induction steps for the connectives are straightforward. For quantifiers, for
example, consider the formula ∀a : 1 → A. a = a0. Begin by converting the body a = a0
into a predicate on [a, a0]; and then transpose the output and post-compose with the internal
logic operator ∀A. The existential case is similar.

5 Quotients in ETCS and SEAR

In both ETCS and SEAR, we can make a number of definitions, and prove theorems about
quotienting by equivalence relations. Here we present our approach in the terminology of
SEAR. We only consider full equivalence relations, since partial equivalences become full by
restricting their domains. Our approach does not require any form of the Axiom of Choice.
Given a binary relation R on a set A, we say a map i : Q → Pow(A) is a quotient with respect

Y. Xu and M. Norrish 33:11

to R if it injects Q into the set of relational images of R (which is the set of equivalence
classes if R is an equivalence relation). That is,

Quot(R : A↬ A, i : Q → Pow(A)) ⇔
Inj(i) ∧ ∀s ∈ Pow(A). (∃q ∈ Q. s = i(q)) ⇔ ∃a ∈ A. s = {b | Holds(R, a, b)}

In contrast to HOL, where any injection has an inverse, constructing an inverse of an injection
requires an element witnessing that the domain is non-empty. For an injection i from X to
Y , and given an element x ∈ X, we define LINV(i, x)(y) to map y ∈ Y to x0 if i(x0) = y, or
to x otherwise. This is then a left inverse of i. If i : Q → Pow(A) is a quotient of R, then
given any q0 ∈ Q, the composition of the map a 7→ {b | Holds(R, a, b)} and LINV(i, q0) is the
quotient map A → Q. We denote the output of this map applied to an element a ∈ A as
abs(R, i, q0, a). We write resp1(f,R) if f agrees on elements related by R and ER(R) for R
an equivalence relation. Then we prove:

ER(R) ∧ resp1(f,R) ∧ Quot(R, i) =⇒
∀q0 ∈ Q. ∃!f : Q → B. ∀a ∈ A. f(abs(R, i, q0, a)) = f(a)

This does not only allow us to lift functions at the level of elements related by R, but also
supports lifting predicates, which can be regarded as maps to 2. For instance, lifting the
definition of evenness of a natural number to that of an integer amounts to lifting a map
N → 2 into Z → 2.

A function into a quotient can be defined by composing with the inverse of the inclusion
map and hence is easy to define. The interesting case is when we want to define a function
from a product of quotients. In such cases, we realise the product of quotients as a quotient
as well in the following way: Given two relations R1 on A and R2 on B, we define their
product relation as:

Holds(prrel(R1, R2), (a1, b1), (a2, b2)) ⇔ Holds(R1, a1, a2) ∧ Holds(R2, b1, b2)

And given quotients i1 : Q1 → Pow(A), i2 : Q2 → Pow(B) of R1 and R2, we define a map
ipow2(i1, i2) : Q1 ×Q2 → Pow(A×B) such that for every pair (a, b) ∈ Q1 ×Q2, we have:

IN((a, b), ipow2(i1, i2)(q1, q2)) ⇔ IN(a, i1(q1)) ∧ IN(b, i2(q2))

If R1 and R2 are both equivalence relations, we have Quot(prrel(R1, R2), ipow2(i1, i2)) Ap-
plication of this result allows us to define maps such as integer addition and multiplication,
and more generally, the group operation in a quotient group.

6 Group Theory

Many mathematical results look neater in theorem-provers based on dependent type theory
(DTT), since instead of assuming complicated predicates, we can internalise those predicates
as types, thereby shortening the statement. By formalising some group theory, we demonstrate
that we can prove similarly neat versions of statements in our simple logic.

We encode a group with underlying set G as an element of Grp(G). Such a set is constructed
from the comprehension schema which injects to the subset of the product GG×G ×GG ×G

satisfying the usual group axioms. For a group g ∈ Grp(G), also by comprehension, we
construct the set of its subgroups sgrp(g) as injected into Pow(G), and set of its normal
subgroups nsgrp(g) that injects to sgrp(g). As groups are encoded by members of sets, it is
possible to compare if two groups are equal, e.g., g1 = g2, with g1, g2 ∈ Grp(G). However,

ITP 2023

33:12 Dependently Sorted Theorem Proving for Mathematical Foundations

if h1 ∈ sgrp(g1) and h2 ∈ sgrp(g2), we cannot write h1 = h2 because such an equality will
not type check. We hold this to be appropriate because equality is not the correct way to
compare abstract structures such as groups. Even if we wanted to work with equality on
groups g1, g2, we should compare their representatives or define transferring functions like
the ones of sort sgrp(g1) → sgrp(g2), which map a subgroup of g1 to a subgroup of g2.

For a normal subgroup N ∈ nsgrp(g), the underlying set of the quotient group qgrp(N)
has as its underlying set the set of all right cosets of N . The function symbol qgrp only needs
to take the group N as argument, since the group being quotiented is contained in the sort
information of N . The quotient homomorphism qhom(N) is a member of ghom(g, qgrp(g))
of all homomorphisms between the original group and the quotient. Its underlying function
homfun(qhom(N)) sends a group element to its coset.

By construction, each underlying function of a homomorphism respects the relation
induced by its kernel. Then the first isomorphism theorem can be obtained by instantiating
the quotient mapping theorem as in the last section, giving

∀G1 G2 g1 ∈ Grp(G1) g2 ∈ Grp(G2) f ∈ ghom(g1, g2).
∃! f ∈ ghom(qgrp(ker(f)), g2).

Inj(homfun(f)) ∧ homfun(f) ◦ qmap(ker(f)) = homfun(f)
(2)

This is a nice illustration of the strengths of the “DTT style”.

6.1 Discussion

Our approach to group theory is very different from its counterpart in HOL. Firstly, the HOL
type α group is inhabited by values that must record their underlying carrier set. Secondly,
the HOL quotient group function takes two α groups and outputs a term of (α → bool)
group, which is proved to satisfy the group axioms if the first term satisfies the group axioms
and the second term is a normal subgroup. Further, as HOL types cannot depend on terms,
we certainly cannot construct the type of all homomorphisms between two groups.

There is actually a trade-off between choosing the HOL style and the DTT style of stating
theorems. Whereas the first isomorphism theorem is clearly better in DTT style (2), the
second and third isomorphism theorems in DTT style can look complicated, with a great
deal of coercions happening under the covers.3 Since the HOL quotient group only takes
two groups of the same type, we can use exactly the same term for the ambient group
and its subgroup, and do not need to construct different terms to regard the same group
as subgroups of an ambient group. In this case, the convenience of the HOL style (using
assumptions) is evident. We can choose each style in our system, so users can try both
approaches and compare them. To find the best form of a statement, we may try combining
the two approaches: we do not always have to create a subset once we come up with a new
property, but we may use them as assumptions as well.

7 Inductive and Coinductive definitions

We experiment with inductive definitions by mechanising induction on natural numbers,
finite sets and lists, and with coinductive definitions by constructing co-lists.

3 Of course, DTT systems offer the ability to write statements in HOL’s predicate-heavy style as well.

Y. Xu and M. Norrish 33:13

7.1 Natural numbers, Finite sets and Lists
Our system implements a version of Harrison’s [3] inductive relation definition package. To
define an inductive subset, we just need to provide the inductive clauses.

For example, there is no primitive natural number object in SEAR. We are given only a
set N0 with an element z0 and an injection s0 : N0 → N0, where z0 is not in the range of s0.
To apply our induction tool to cut down N0 into a natural number object, we firstly define a
subset, i.e., a member of the power set Pow(N0), of N0, by giving two clauses saying that z0
is in N and if n0 is in N , then s0(n0) is in N . Using theorem 1 in Section 3 together with the
specification rule, we extract the subset of N0, which consists of elements in N , as a constant
term N of set sort. We call the lifted zero element and successor map 0 and SUC respectively,
with SUC obtained by specialising the following lemma with the inclusion from N0:

∀A A0 (i : A → A0) (f0 : A0 → A0).
Inj(i) ∧ (∀a1.∃a2. f0(i(a1)) = i(a2)) =⇒

∃!f : A → A. ∀a ∈ A. i(f(a)) = f0(i(a))

The constructed N then can be shown to satisfy the standard induction principle.

F [mem(N)](0) ∧ (∀n ∈ N. F [mem(N)](n) =⇒ F [mem(N)](SUC(n))) =⇒
∀n ∈ N. F [mem(N)](n)

By instantiating the formula variable F with concrete properties, we apply the above to
perform inductive proofs for ordering and natural number arithmetic. We later use such
theorems together with quotient lemmas to construct the set of integers.

Also inductively, we define the predicate isFinite on members of some set X’s power set.
The empty subset Empty(X) is finite, and if s ∈ Pow(X) is finite, then the set Ins(x, s), which
inserts x into s, is finite for any x ∈ X. Similar to the counterpart of natural numbers, the
principle of induction on the finiteness of a set is proved as:

F [mem(Pow(X))](Empty(X)) ∧
(∀x (xs0 ∈ Pow(X)). F [mem(Pow(X))](xs0) =⇒ F [mem(Pow(X))](Ins(x, xs0))) =⇒

∀xs ∈ Pow(X). isFinite(xs) =⇒ F [mem(Pow(X))](xs)

We define a relation Pow(X) ↬ N relating a subset of X to its cardinality. By induction
on finiteness, we prove each subset is related to a unique natural number, which gives us
a function Pow(X) → N that sends a finite subset to its cardinality and sends any infinite
subset to 0. The output of the function applied on s ∈ Pow(X) is denoted as Card(s). To
build lists over a set X as an “inductive type”, we firstly define the subset of Pow(N ×X)
which encodes a list, such sets are finite sets of the form {(0, x1), · · · , (n, xn)}. The base
case of the induction is the empty subset of Pow(N ×X), and the step case inserts the set s
started with by the pair (Card(s), x). Using the same approach we constructed N, we form
List(X). It is then straightforward to prove the list induction principle and define the usual
list operations like taking the head, tail, n-th element of the list, and map, etc.

7.2 Co-lists
Following the HOL approach, we construct co-lists over sets X, by using maps N → X + 1
as representatives. The codomain is regarded as X option, whose members either have the
form SOME(x) for x ∈ X, or NONE(X). First, by dualising the argument we used to define
inductive predicates, we define a coinductive predicate on members (f ∈ (X+1)N) expressing
that such a member captures a co-list, and collect the subset where this predicate holds,

ITP 2023

33:14 Dependently Sorted Theorem Proving for Mathematical Foundations

defining listc(X), just as we did for constructing inductive types. Every term of listc(X) has
a representative: it is either the constant function mapping to NONE(X), corresponding to
the empty co-list Nilc(X), or it is the function obtained by attaching an element x ∈ X to an
existing function encoding a co-list. Almost all the HOL4 definitions can be readily translated
into SEAR. The only exception is we cannot write expressions such as THE(Hdc(l)). Here
Hdc is the function that returns SOME(x) when l is a co-list with element x at its front. If l is
the empty co-list, then Hdc(l) = NONE. In HOL4, THE is the left-inverse of SOME; in SEAR,
our (set) parameter X may be empty, and so there is no general value (even if unspecified)
for the head of the co-list. So far, this has not been an obstacle in any of our proofs. The
HOL proof of the key co-list principle, which states that two co-lists l1, l2 ∈ listc(X) are
equal if and only if they are connected by a bisimulation relation R, translates into SEAR,
yielding:

l1 = l2 ⇔
∃R : listc(X) ↬ listc(X).

Holds(R, l1, l2) ∧
∀l3 l4 ∈ listc(X). Holds(R, l3, l4) =⇒

(l3 = Nilc(X) ∧ l4 = Nilc(X)) ∨
∃(h ∈ X) t1 t2. Holds(R, t1, t2) ∧ l3 = Consc(h, t1) ∧ l4 = Consc(h, t2)

where Nilc(X) is the empty co-list over X, and Consc(h, t) is the co-list built by putting
element h ∈ X in front of co-list t. We can perform coinductive proofs on co-lists by the
theorem above. For instance, the above helps to prove that Mapc function, with the usual
definition, is functorial.

8 Modal Model Theory

In recent work, we developed a mechanisation of some basic modal logic theory [20]. While
defining the notion of being preserved under simulation, we observed that if a property of a
modal formula is defined in terms of the behaviour of the formula on all models, then such a
property cannot be faithfully captured by HOL. Such an issue can be resolved by choosing a
dependent sorted foundation and doing the proof in our logic. We demonstrate this here by
mechanising the proof that characterises formulas preserved under simulation as those are
equivalent to a positive existential formula in SEAR.

Using roughly the general method introduced at the end of Harrison [3], we first construct
the “type” (actually a set in SEAR) of modal formulas over variables drawn from the set
V . We then denote the set of modal formulas over V as form(V). A Kripke model on a set
W of such formulas is an element of Pow(W ×W) × Pow(V)W (written as model(W,V) in
the following paragraphs). The first component encodes the model’s reachability relation,
while the second encodes the variable valuation. Satisfaction of modal formulas can then be
defined in the standard way, and if ϕ is satisfied at w in the model M , we write M,w ⊩ ϕ.

The two key definitions of this proof are that of simulation, and of being preserved under
simulation (written as PUS below). The former is identical to its counterpart in HOL, and
we write Sim(R,M1,M2) to indicate that R is a simulation from M1 to M2. The latter is
more interesting. Unlike in HOL, where we can only express a formula being preserved under
simulation between models of certain HOL types, forcing the definition to take an extra type

Y. Xu and M. Norrish 33:15

parameter, the definition in SEAR is purely a predicate on formulas:

∀V (ϕ ∈ form(V)).
PUS(ϕ) ⇔
∀W1 W2 (R : W1 ↬W2) (w1 ∈ W1) (w2 ∈ W2)
(M1 ∈ model(W1, A)) (M2 ∈ model(W2, A)).
Sim(R,M1,M2) ∧ Holds(R,w1, w2) ∧ M1, w1 ⊩ ϕ =⇒ M2, w2 ⊩ ϕ

This convenience is brought about by the fact that our logic allows for quantification over sets,
whereas HOL does not allow for quantification over types. Thus, the notion of equivalence of
modal formulas only takes two modal formulas as arguments and requires no extra “type
parameter”. Under these definitions, the proofs of both directions of theorem 2.78 in [1] can
be faithfully translated, yielding the two formal statements:

∀V (ϕ ∈ form(V)) (ϕ0 ∈ form(V)). PE(ϕ0) ∧ ϕ ∼ ϕ0 =⇒ PUS(ϕ)

∀V (ϕ ∈ form(V)). PUS(ϕ) =⇒ ∃ϕ0 ∈ form(V). PE(ϕ0) ∧ ϕ ∼ ϕ0

Clearly, the two directions can be put together into an if-and-only-if, hence giving the full
form of the characterisation theorem, which cannot even be stated in HOL.

∀V (ϕ ∈ form(V)). PUS(ϕ) ⇔ ∃f0 ∈ form(V). PE(ϕ0) ∧ ϕ ∼ ϕ0)

9 Existence of Large Sets

Whereas iterating the procedure of taking the power set by infinite times is impossible in
HOL due to foundational issues, the collection axiom schema in SEAR makes it possible.
The statement of the SEAR collection axiom is formalised as:

∃B Y (p : B → A) (M : B ↬ Y).
(∀S (i : S → Y) (b ∈ B).

isset(i, {y | Holds(M, b, y)}) =⇒ F [mem(A), set](p(b), S))∧
(∀(a ∈ A) X. F [mem(A), set](a,X) =⇒ ∃b. p(b) = a)

with F [mem(A), set] a formula variable, to be instantiated to be a predicate on an element
of A and a set.

Using this axiom, we will prove:

∀A. ∃P. ∀n ∈ N. ∃i : Pown(A) → P. Inj(i)

Here the Pown(A) is “the” n-th power set of A. Note that the induction principle on natural
numbers does not allow us to take a set as an argument, and does not allow the output to be
a set as well. To create this function symbol, we start by defining a predicate nPow(n,A,B),
which means B is an n-th power set of A. We then prove such B is unique up to bijection,
hence the specification rule applies. In the following, we write P(s) ∈ Pow(Pow(A)) for the
set of subsets of s ∈ Pow(A). For s1 ∈ Pow(A) and s2 ∈ Pow(B), we write |s1| = |s2| for s1
and s2 have the same cardinality. We write Whole(A) ∈ Pow(A) as the subset of A consisting
of all members of A.

We define nPow(n,A,B) if there exists a set X and a function f : X → N
such that |f−1(0)| = |Whole(A)|, |f−1(n)| = |Whole(B)|, and for each n0 < n,
|f−1(n+

0)| = |P(f−1(n0))|. Such a function f records a sequence of power set relation,
in this case, we write nPowf(n,A,B, f). By induction on n0, nPow(n,A,B, f), implies
nPow(n0, A,m2s(f−1(n0)), f) for each n0 ≤ n.

ITP 2023

33:16 Dependently Sorted Theorem Proving for Mathematical Foundations

If nPow(n,A,B1) and nPow(n,A,B2), we can infer B1 and B2 have the same cardinality
by induction on n. The base case is trivial. Assume f1 : X1 → N witnesses nPow(n+, A,C1)
and f2 : X2 → N witnesses nPow(n+, A,C2), as n < n+, we have f1, f2 witness that their
preimage at n is an n-th powerset of A, and hence by inductive hypothesis has the same
cardinality. Therefore, the cardinality of C1 and C2 are equal as power sets of sets with the
same cardinality.

Now we prove the existence of these iterated power sets. Suppose we have
nPowf(n,A,B, f0 : X → N), we construct f ′ : Pow(X + 1) → N such that
nPowf(n+, A,Pow(B), f ′). Define f : X → N such that as if f0(x) ≤ n then f(x) = f0(x),
else f(x) = n++, then we have nPowf(n,A,B, f : X → N), and n+ is not in the range of f .
According to the definition of nPow, there exists an injection B → X, and thus an injection
i : Pow(B) → Pow(X). We define the function f ′ : Pow(X + 1) → N as:

f ′(s) =

f(x) if s = {SOME(x)}
n+ if ∃xs ∈ Pow(X). i(xs) = s0 ∧ s = {NONE(X)} ∪ s0

n++ else

It follows that |f ′−1(n0)| = |f−1(n0)| for n0 ≤ n, and the preimage of n+ is a copy of Pow(B),
so f ′ witnesses Pow(B) is the n+-th power set of A.

To prove the existence of the large set. By specialising the axiom of collection, we obtain
a set B, a function p : B → N, a set Y and a relation M : B ↬ Y satisfying:

(∀S (i : S → Y) (b ∈ B). isset(i, {y | Holds(M, b, y)}) =⇒ nPow(p(b), A, S)) ∧
(∀n ∈ N X. nPow(n,A,X)) =⇒ ∃b ∈ B. p(b) = n)

The set Y is the large set we want to construct. For any n ∈ N, we have nPow(n,A,Pown(A)),
and thus there exists a b ∈ B with p(b) = n. For this b, Let H(b) denotes the set of
elements y such that Holds(M, b, y), then minc(H(b)) gives an injection m2s(H(b)) → Y . As
nPow(n,A,m2s(H(b))) and also nPow(n,A,Pown(A)), by uniqueness proved above, there
exists a bijection j : Pown(A) → m2s(H(b)). The composition minc(H(b)) ◦ j is the desired
injection.

10 Conclusion

Our work aims to enable the direct encoding of first-order mathematical foundations based
on axioms, while keeping the underlying logic as simple as possible.

We have already seen that it is useful to explore various mathematical foundations:
by experimenting with SEAR, we overcome two well-known shortcomings of HOL. Firstly,
because it allows us to quantify over types, SEAR enables us to prove the full version of our
previous theorem in modal model theory. Secondly, using the collection axiom of SEAR, we
overcome the cardinality shortcoming of types in HOL. We are unaware of any other work
addressing this issue.

10.1 Related Work
Quantification of types in HOL has been addressed in work by Melham [10] and Homeier [4].
Both pieces of work propose to extend the HOL logic, but neither goes so far as to introduce
dependencies linking terms to types or sorts.

There is much existing work on logical systems with dependent sorts. All of them are
designed with an aim different from ours. For instance, FOLDS (Makkai [7]) is designed to
only be able to capture mathematical theories where truth is invariant under a certain notion

Y. Xu and M. Norrish 33:17

of isomorphism, and hence its expressive power is meant to be more restrictive. In particular,
in its standard presentation, FOLDS works only with predicate symbols but not function
symbols. DFOL (Rabe [15]) does not support expressing axiom schemata at the object level,
and is constructed within LF’s dependently typed environment. Compared with both, our
work is customized for directly embedding axiomatic systems. Our system is simple, and can
be easily implemented, not relying on an ambient implementation of dependent types.

When investigating a particular mathematical foundation, one approach is to implement
the logic in a domain-specific manner. For instance, Cáccamo and Winskel [2], and New
and Licata [12], both present logics addressing formalisation of proofs in category theory
by designing particular type theories. In contrast, our system is a generic theorem-prover,
making it easier to compare multiple systems, and to reuse proofs.

Isabelle (Paulson [13]) was famously designed as a generic theorem-proving system,
and one of the sample object logics distributed with it is MLTT (Martin-Löf Type Theory).
Nonetheless, as the ambient types of the Isabelle meta-level are those of simple type theory,
working with dependent types in Isabelle requires the interesting type structures and typing
judgements to appear at the level of terms. Once this compromise has been made, handling
equalities, for example, becomes quite tedious; our system’s restrictive handling of equality
gains us a great deal of pragmatic power: simple rewriting, and a straightforward notion of
matching.

10.2 Future Work

In future work, we will publish our formalisation of McLarty’s CCAF [8] and our mechanisation
of the proof theory of the system.

The existence of large sets is a consequence of the SEAR collection axiom, and is already
stronger than what is possible in HOL, but there is still more that is possible in SEAR. In
particular, from its collection axiom, we can follow Shulman [16] to derive the replacement
schema, and get a minimal set from amongst these large sets. This would enable more
transfinite constructions, such as that of Beth cardinals, which we plan to work on next.
Moreover, we are interested in implementing a uniform approach of applying an axiomatic
foundation as a metatheory, and hence developing the “two-layered” workspace discussed by
McLarty and Rodin [9]. We are also looking forward to mechanising some of the theorems
in the list “Formalising 100 Theorems” [19] in either SEAR or ETCS. Finally, it would be
interesting to support the usage of different ambient logics, so people might, in particular,
choose to do intuitionistic proofs as well.

References

1 Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic. Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 2001. doi:10.1017/
CBO9781107050884.

2 Mario Cáccamo and Glynn Winskel. A higher-order calculus for categories. In Richard J.
Boulton and Paul B. Jackson, editors, Theorem Proving in Higher Order Logics, pages 136–153,
Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

3 John Harrison. Inductive definitions: automation and application. In Phillip J. Windley,
Thomas Schubert, and Jim Alves-Foss, editors, Higher Order Logic Theorem Proving and Its
Applications: Proceedings of the 8th International Workshop, volume 971 of Lecture Notes in
Computer Science, pages 200–213, Aspen Grove, Utah, 1995. Springer-Verlag.

ITP 2023

https://doi.org/10.1017/CBO9781107050884
https://doi.org/10.1017/CBO9781107050884

33:18 Dependently Sorted Theorem Proving for Mathematical Foundations

4 Peter V. Homeier. The HOL-Omega logic. In Stefan Berghofer, Tobias Nipkow, Christian
Urban, and Makarius Wenzel, editors, Theorem Proving in Higher Order Logics, pages 244–259,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

5 F. William Lawvere. An elementary theory of the category of sets. Proceedings of the National
Academy of Sciences, 52(6):1506–1511, 1964. doi:10.1073/pnas.52.6.1506.

6 F. William Lawvere. The category of categories as a foundation for mathematics. In S. Eilenberg,
D. K. Harrison, S. MacLane, and H. Röhrl, editors, Proceedings of the Conference on Categorical
Algebra, pages 1–20, Berlin, Heidelberg, 1966. Springer Berlin Heidelberg.

7 Michael Makkai. First order logic with dependent sorts, with applications to category theory.
Available from https://www.math.mcgill.ca/makkai/folds/foldsinpdf/FOLDS.pdf, 1995.

8 Colin McLarty. Axiomatizing a category of categories. The Journal of Symbolic Logic,
56(4):1243–1260, 1991. URL: http://www.jstor.org/stable/2275472.

9 Colin McLarty and Andrei Rodin. A discussion between Colin McLarty and Andrei Rodin about
structuralism and categorical foundations of mathematics, 2013. URL: http://philomatica.
org/wp-content/uploads/2013/02/colin.pdf.

10 Thomas F. Melham. The HOL logic extended with quantification over type variables. In
Luc J. M. Claesen and Michael J. C. Gordon, editors, Higher Order Logic Theorem Proving
and its Applications, IFIP Transactions A: Computer Science and Technology, pages 3–17.
North-Holland, Amsterdam, 1993. doi:10.1016/B978-0-444-89880-7.50007-3.

11 Elliott Mendelson. Introduction to Mathematical Logic. Princeton: Van Nostrand, 1964.
12 Max S. New and Daniel R. Licata. A formal logic for formal category theory, 2022. doi:

10.48550/ARXIV.2210.08663.
13 Lawrence Charles Paulson. Isabelle: The next 700 theorem provers. ArXiv, cs.LO/9301106,

2000.
14 W. V. Quine. New foundations for mathematical logic. The American Mathematical Monthly,

44(2):70–80, 1937. URL: http://www.jstor.org/stable/2300564.
15 Florian Rabe. First-order logic with dependent types. In Ulrich Furbach and Natarajan

Shankar, editors, Automated Reasoning, pages 377–391, Berlin, Heidelberg, 2006. Springer
Berlin Heidelberg.

16 Michael Shulman. Comparing material and structural set theories. Annals of Pure and Applied
Logic, 170(4):465–504, 2019. doi:10.1016/j.apal.2018.11.002.

17 Michael Shulman. SEAR, 2022. URL: https://ncatlab.org/nlab/show/SEAR.
18 Andrzej Trybulec. Tarski-Grothendieck set theory, 1990. URL: http://mizar.uwb.edu.pl/

JFM/Axiomatics/tarski.html.
19 Freek Wiedijk. Formalizing 100 theorems, 2013. URL: https://www.cs.ru.nl/~freek/100/.
20 Yiming Xu and Michael Norrish. Mechanised modal model theory. In Nicolas Peltier and

Viorica Sofronie-Stokkermans, editors, International Joint Conference on Automated Reas-
oning (IJCAR), Paris, France, volume 12166 of Lecture Notes in Computer Science, pages
518–533. Springer, 2020. doi:10.1007/978-3-030-51074-9_30.

https://doi.org/10.1073/pnas.52.6.1506
https://www.math.mcgill.ca/makkai/folds/foldsinpdf/FOLDS.pdf
http://www.jstor.org/stable/2275472
http://philomatica.org/wp-content/uploads/2013/02/colin.pdf
http://philomatica.org/wp-content/uploads/2013/02/colin.pdf
https://doi.org/10.1016/B978-0-444-89880-7.50007-3
https://doi.org/10.48550/ARXIV.2210.08663
https://doi.org/10.48550/ARXIV.2210.08663
http://www.jstor.org/stable/2300564
https://doi.org/10.1016/j.apal.2018.11.002
https://ncatlab.org/nlab/show/SEAR
http://mizar.uwb.edu.pl/JFM/Axiomatics/tarski.html
http://mizar.uwb.edu.pl/JFM/Axiomatics/tarski.html
https://www.cs.ru.nl/~freek/100/
https://doi.org/10.1007/978-3-030-51074-9_30

Formalizing Results on Directed Sets in
Isabelle/HOL (Proof Pearl)
Akihisa Yamada #

National Institute of Advanced Industrial Science and Technology, Tokyo, Japan

Jérémy Dubut #

National Institute of Advanced Industrial Science and Technology, Tokyo, Japan

Abstract
Directed sets are of fundamental interest in domain theory and topology. In this paper, we formalize
some results on directed sets in Isabelle/HOL, most notably: under the axiom of choice, a poset has
a supremum for every directed set if and only if it does so for every chain; and a function between
such posets preserves suprema of directed sets if and only if it preserves suprema of chains. The
known pen-and-paper proofs of these results crucially use uncountable transfinite sequences, which
are not directly implementable in Isabelle/HOL. We show how to emulate such proofs by utilizing
Isabelle/HOL’s ordinal and cardinal library. Thanks to the formalization, we relax some conditions
for the above results.

2012 ACM Subject Classification Theory of computation → Automated reasoning; Theory of compu-
tation → Denotational semantics

Keywords and phrases Directed Sets, Completeness, Scott Continuous Functions, Ordinals, Isa-
belle/HOL

Digital Object Identifier 10.4230/LIPIcs.ITP.2023.34

Funding This work was supported by JST, CREST Grant Number JPMJCR22M1, Japan.

1 Introduction

A directed set is a set D equipped with a binary relation ⊑ such that any finite subset X ⊆ D

has an upper bound in D with respect to ⊑. The property is often equivalently stated that
D is non-empty and any two elements x, y ∈ D have a bound in D, assuming that ⊑ is
transitive (as in posets).

Directed sets find uses in various fields of mathematics and computer science. In topology
(see for example the textbook [8]), directed sets are used to generalize the set of natural
numbers: sequences N→ A are generalized to nets D → A, where D is an arbitrary directed
set. For example, the usual result on metric spaces that continuous functions are precisely
functions that preserve limits of sequences can be generalized in general topological spaces
as: the continuous functions are precisely functions that preserve limits of nets. In domain
theory [1], key ingredients are directed-complete posets, where every directed subset has a
supremum in the poset, and Scott-continuous functions between posets, that is, functions
that preserve suprema of directed sets. Thanks to their fixed-point properties (which we
have formalized in Isabelle/HOL in a previous work [6]), directed-complete posets naturally
appear in denotational semantics of languages with loops or fixed-point operators (see for
example Scott domains [13, 15]). Directed sets also appear in reachability and coverability
analyses of transition systems through the notion of ideals, that is, downward-closed directed
sets. They allow effective representations of objects, making forward and backward analysis
of well-structured transition systems – such as Petri nets – possible (see e.g., [7]).

Apparently milder generalizations of natural numbers are chains (totally ordered sets)
or even well-ordered sets. In the mathematics literature, the following results are known
(assuming the axiom of choice):

© Akihisa Yamada and Jérémy Dubut;
licensed under Creative Commons License CC-BY 4.0

14th International Conference on Interactive Theorem Proving (ITP 2023).
Editors: Adam Naumowicz and René Thiemann; Article No. 34; pp. 34:1–34:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:akihisa.yamada@aist.go.jp
https://orcid.org/0000-0001-8872-2240
mailto:jeremy.dubut@aist.go.jp
https://orcid.org/0000-0002-2640-3065
https://doi.org/10.4230/LIPIcs.ITP.2023.34
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2 Formalizing Results on Directed Sets in Isabelle/HOL (Proof Pearl)

▶ Theorem 1 ([5]). A poset is directed-complete if (and only if) it has a supremum for every
non-empty well-ordered subset.

▶ Theorem 2 ([10]). Let f be a function between posets, each of which has a supremum
for every non-empty chain. If f preserves suprema of non-empty chains, then it is Scott-
continuous.

The pen-and-paper proofs of these results use induction on cardinality, where the finite
case is merely the base case. The core of the proof is a technical result called Iwamura’s
Lemma [9], where the countable case is merely an easy case, and the main part heavily uses
transfinite sequences indexed by uncountable ordinals.

In this paper, we formalize these results in the proof assistant Isabelle/HOL [11]. We
extensively use the existing library for ordinals and cardinals in Isabelle/HOL [4], but we
needed some delicate work in emulating the pen-and-paper proofs. In Isabelle/HOL, or any
proof assistant based on higher-order logic (HOL), it is not possible to have a datatype for
arbitrarily large ordinals; hence, it is not possible to directly formalize transfinite sequences.
We show how to emulate transfinite sequences using the ordinal and cardinal library [4]. As
far as the authors know, our work is the first to mechanize the proof of Theorems 1 and 2,
as well as Iwamura’s Lemma. We prove the two theorems for quasi-ordered sets, relaxing
antisymmetry, and strengthen Theorem 2 so that chains are replaced by well-ordered sets
and conditions on the codomain are completely dropped.

Related Work

Systems based on Zermelo-Fraenkel set theory, such as Mizar [2, 3] and Isabelle/ZF [12], have
more direct support for ordinals and cardinals and should pose less challenge in mechanizing
the above results. Nevertheless, a part of our contribution is in demonstrating that the power
of (Isabelle/)HOL is strong enough to deal with uncountable transfinite sequences.

Except for the extra care for transfinite sequences, our proof of Iwamura’s Lemma is
largely based on the original proof from [9]. Markowsky presented a proof of Theorem 1 using
Iwamura’s Lemma [10, Corollary 1]. While he took a minimal-counterexample approach, we
take a more constructive approach to build a well-ordered set of suprema. This construction
was crucial to be reused in the proof of Theorem 2, which Markowsky claimed without a
proof [10]. Another proof of Theorem 1 can be found in [5], without using Iwamura’s Lemma,
but still crucially using transfinite sequences.

Outline

The paper is organized as follows. In Section 2, we recall some basic concepts of order theory,
ordinals, and cardinals, as well as their prior formalizations [4, 6]. In Section 3, we tackle the
main formalization work of Iwamura’s Lemma. The axiom of choice plays two crucial roles
in the proof: first to obtain a well-ordering of a given set, and then to pick an upper bound
for every finite subset. Finally, we use induction on directed sets – enabled by Iwamura’s
Lemma – to prove the equivalence between directed-completeness and well-completeness
(Section 4), and the equivalence between Scott-continuity and preservation of suprema of
chains (Section 5).

A. Yamada and J. Dubut 34:3

The formalization is available in the development version of the Archive of Formal Proofs
as entry Directed_Sets, consisting of 726 lines of Isabelle code in total. The work also
involves refactoring of our previous AFP entry Complete_Non_Orders1 for reformulating
continuity, completeness, well-foundedness and directed sets. The most changes are found in
the new files Continuity.thy and Directedness.thy (427 lines).

2 Preliminaries

We assume some familiarity with Isabelle/HOL and use its notations also in mathematical
formulas in the paper. We refer interested readers to the textbook [11] for more detail. Logical
implication is denoted by =⇒ or −→. We use meta-equality ≡ to introduce definitions and
abbreviations. By X :: ’a set we denote a set X whose elements are of type ’a, and
R :: ’a ⇒ ’a ⇒ bool is a binary predicate defined over ’a. Type annotations “:: _” are omitted
unless necessary. The application of a function f to an element x is written f x, and the
image of a set X under f is f ‘ X . The power set of X is denoted by Pow X .

2.1 Binary Relations

In our previous Isabelle/HOL formalization on binary relations [6], some notations and
properties of relations are defined as locales. Another approach is to use Isabelle’s type class
mechanism, which fixes a relation ≤ for each type so that one do not have to specify the
relation of concern as a parameter. The drawback of the class-based approach is that one
must use this relation ≤, which is too restrictive in the current development where we want
to use some well-ordering of a given set.

To illustrate the use of locales, we revisit some definitions we need for the current paper.
By related set we mean a set A with a binary relation (predicate) less_eq defined on A,
denoted by infix symbol ⊑. In Isabelle:

locale related_set =
fixes A :: ’a set and less_eq :: ’a ⇒ ’a ⇒ bool (infix ⊑ 50)

Then reflexivity and transitivity are defined as locales by making corresponding assumptions
as follows:

locale reflexive = related_set + assumes x ∈ A =⇒ x ⊑ x

locale transitive = related_set +
assumes x ⊑ y =⇒ y ⊑ z =⇒ x ∈ A =⇒ y ∈ A =⇒ z ∈ A =⇒ x ⊑ z

Then quasi-ordered sets are defined as the combination of reflexivity and transitivity:

locale quasi_ordered_set = reflexive + transitive

In this paper, we may use terminologies assuming that the right side of ⊑ is “greater”,
and use ⊒ to denote the dual of ⊑, though the notation is not always available in the actual
Isabelle code. An (upper) bound of a set X is formalized by

definition bound X (⊑) b ≡ ∀x ∈ X . x ⊑ b for r (infix ⊑ 50)

1 https://www.isa-afp.org/entries/Complete_Non_Orders.html

ITP 2023

https://www.isa-afp.org/entries/Complete_Non_Orders.html

34:4 Formalizing Results on Directed Sets in Isabelle/HOL (Proof Pearl)

Dually, bound X (⊒) b specifies a lower bound. A greatest (extreme) element in X is a bound
which is also in X:

definition extreme X (⊑) e ≡ e ∈ X ∧ (∀x ∈ X . x ⊑ e) for r (infix ⊑ 50)

Dually, extreme X (⊒) e specifies a least element. The following generalization of well-ordered
sets frequently appears in this paper:

locale well_related_set = related_set +
assumes X ⊆ A =⇒ X ̸= {} =⇒ ∃e. extreme X (⊒) e

that is, a set A together with a relation ⊑ such that every non-empty subset of A has a least
element for ⊑. It can be also rephrased as the well-foundedness of the negation of ⊑. A
well-related set is necessarily reflexive, which can be formalized by a sublocale statement:

sublocale well_related_set ⊆ reflexive...

A well-ordered set is a well-related set where ⊑ is also antisymmetric (or equivalently a total
order). A pre-well-ordered set is a well-related set which is also a quasi-order.

2.2 Ordinals and Cardinality Library

Here we briefly recap the ordinal and cardinality library [4] of Isabelle/HOL.
The library chooses the set-oriented formulation of relations: type ’a rel is a shorthand

for (’a × ’a) set, and proposition (x ,y) ∈ R denotes that x and y are in relation R :: ’a rel.
An order embedding of a relation (A,⊑) into (B,⊴) is a function f : A→ B such that

x ⊑ y ⇐⇒ f x ⊴ f y. The polymorphic relation ≤o :: ’a rel ⇒ ’b rel ⇒ bool over binary
relations is defined by R ≤o S if and only if there is an order embedding from R to S . Two
relations R :: ’a rel and S :: ’b rel are order isomorphic, R =o S , if R ≤o S and S ≤o R.

One of the important results from the ordinal library is that <o, the asymmetric part
of ≤o (defined by x <o y ≡ x ≤o y ∧ ¬ y ≤o x), seen as a relation over the same type, is
well-founded. In fact, ≤o forms a pre-well-order.

Conceptually, an ordinal can be seen as the equivalence class of well-orderings which are
order isomorphic to each other. In Isabelle/HOL, or in any other HOL-based systems, it is
not possible to have a set collecting well-orderings of different types. It is hence not possible
to have a type for general ordinals in Isabelle/HOL. Instead, any well-ordering of any type is
used to represent an ordinal in [4].

The cardinality of a set X is the least ordinal that is bijective with X . In Isabelle/HOL,
|X | :: ’a rel is defined as one of the well-orderings on X :: ’a set which are least with respect
to ≤o; there are well-orderings on X thanks to the well-order theorem (which is in turn due
to the axiom of choice), and there are least ones since ≤o is a pre-well-order.

3 Iwamura’s Lemma

The main idea for proving Theorem 1 is, given a directed set D, to construct a well-ordered
set whose supremum (which exists by assumption) is also a supremum for D. The difficulty is
that the usual methods to construct a well-ordered set, such as Zorn’s lemma, fail to achieve
this goal. The crucial idea brought by Markowsky [10, Corollary 1] is that this well-ordered
set can be obtained by a transfinite induction on the cardinality of the directed set, using
Iwamura’s Lemma [9]. Concretely, Iwamura’s Lemma states the following:

A. Yamada and J. Dubut 34:5

▶ Theorem 3. Let (A,⊑) be a reflexive directed set. If A is infinite, then there exists a
transfinite sequence {Iα}α<|A| of subsets of A that satisfies the following four conditions:

directedness: Iα is directed for all α < |A|,
cardinality: |Iα| < |A| for all α < |A|,
monotonicity: Iα ⊆ Iβ whenever α ≤ β < |A|, and
range:

⋃
α<|A| Iα = A.

Note that, if we drop directedness, then the statement is equivalent to the well-ordering
theorem. The main point of Iwamura’s Lemma is that one can extend any subset of a directed
set into a directed one without changing the cardinality.

As in the original statement, ⊑ need not be transitive. Hence, directedness is formalized
as follows:

definition directed_set A (⊑) ≡ ∀X ⊆ A. finite X −→ (∃b ∈ A. bound X (⊑) b)
for less_eq (infix ⊑ 50)

As the proof involves a number of (inductive) definitions, we build a locale for collecting
those definitions and lemmas.

locale Iwamura_proof = related_set +
assumes dir : directed_set A (⊑)

begin

Inside this locale, a related set (A,⊑) is fixed and assumed to be directed. The proof starts
with declaring, using the axiom of choice, a function f that chooses a bound f X ∈ A for
every finite subset X ⊆ A. This function can be formalized using the SOME construction:

definition f where f X ≡ SOME x . x ∈ A ∧ bound X (⊑) x

In Isabelle, SOME x . ϕ x takes some value x that satisfies the condition ϕ x , if such a value
exists; otherwise it takes an unspecified value. As we assume that any finite subset X ⊆ A

has an upper bound in A, we can prove that f satisfies the following specification:

lemma assumes X ⊆ A and finite X
shows f X ∈ A and bound X (⊑) (f X) ...

After obtaining this f , the proof constructs {Iα}α<|A| depending crucially on whether A

is countably or uncountably infinite.

3.1 Uncountable Case

We start with the core case, where A is uncountable. The original proof goes as follows:
Thanks to the well-order theorem, one can have a sequence {Aα}α<|A| of subsets of A that
satisfies the following three conditions:

cardinality: |Aα| < |A| for every α < |A|,
monotonicity: Aα ⊆ Aβ whenever α ≤ β < |A|, and
range: A =

⋃
α<|A| Aα.

Then it is shown that any subset of A, in particular Aα, can be monotonically extended to
a directed one Iα, such that |Iα| ≤ |Aα| · ℵ0. Since |Aα| < |A| and |A| is uncountable, it
follows that |Iα| < |A|.

In order to formalize the above argument in Isabelle/HOL, one of the challenges is that
we do not have a datatype for ordinals (that works for arbitrary types of A), and thus one
cannot formalize transfinite sequences as functions from ordinals.

ITP 2023

34:6 Formalizing Results on Directed Sets in Isabelle/HOL (Proof Pearl)

3.1.1 Formalizing Transfinite Sequences

As we cannot formalize transfinite sequences directly, we take the following approach: We
just use A as the index set, and instead of the ordering on ordinals, we take the well-order
(⪯A) that is chosen by the cardinality library to denote |A|, as follows:

definition ... where (⪯A) x y ≡ (x ,y) ∈ |A|

Recall that |A| is defined as one of the well-orders on A which are least with respect to ≤o,
in a set-oriented formulation of relations. We also introduce infix notations for ⪯A and its
asymmetric part ≺A as follows:

abbreviation ... where x ⪯A y ≡ (⪯A) x y
abbreviation ... where x ≺A y ≡ asympartp (⪯A) x y

Now we show that A≺ : A → Pow A serves the purpose of {Aα}α<|A| above, where

definition ... where A≺ a ≡ {x ∈ A. x ≺A a}

First, we prove the counterpart of the cardinality condition |Aα| < |A|.

lemma Pre_card: assumes a ∈ A shows |A≺ a| <o |A|

Proof. On pen and paper, one would first well-order A as {aα}α<|A| and chose Aα = {aβ}β<α;
then |Aα| < |A| would look obvious. Note that there is an implicit use of the fact that |A| is
least; otherwise α < |A| and |{aβ}β<α| = |A| is possible.

In the formalization, we derive this fact by connecting to the cardinality library. In
fact, A≺ a corresponds precisely to underS |A| a in terms of the library. Then lemma
card_of_underS from the library easily concludes the lemma. ◀

Second, the monotonicity condition, Aα ⊆ Aβ whenever α ≤ β, is easy:

lemma Pre_mono: monotone_on A (⪯A) (⊆) (A≺) ...

The final property we need is
⋃

α<|A| Aα = A. This is not as easy as the previous two
properties; note that it cannot hold for finite A. We first prove that if the well-ordering
(A,⪯A) has a greatest element, then A must be finite:

lemma extreme_imp_finite: assumes extreme A (⪯A) e shows finite A

Proof. Since e is greatest in A, we have A≺ e = A − {e}. On the other hand, |A − {e}| =o |A|
if A is infinite. This cannot happen due to Lemma Pre_card. ◀

This allows us to prove the desired property:

lemma infinite_imp_Un_Pre: assumes infinite A shows
⋃

(A≺ ‘ A) = A

Proof. The inclusion A≺ ‘ A ⊆ A is obvious. For the other direction, consider a ∈ A. Due
to Lemma extreme_imp_finite, a cannot be the greatest in A with respect to ⪯A. So there
exists some b ∈ A such that a ≺A b. Hence a ∈ A≺ b ⊆

⋃
(A≺ ‘ A). ◀

A. Yamada and J. Dubut 34:7

3.1.2 Expanding Infinite Sets into Directed Sets

Actually, the main part of the proof of Iwamura’s Lemma is about monotonically expanding
an infinite subset (in particular Aα) of A into a directed one, without changing the cardinality.
To this end, Iwamura’s original proof introduces a function F : Pow A → Pow A that expands
a set with upper bounds of all finite subsets. This approach is different from Markowsky’s
reproof (based on [14]) which uses nested transfinite induction to extend a set one element
after another.

definition F where F X ≡ X ∪ f ‘ Fpow X

Here, Fpow X is an Isabelle/HOL notation for the set of finite subsets of X . Hence, for any
finite subset Y of X , there is an upper bound f Y in F X . We take the ω-iteration of the
monotone function F , namely:

definition Flim (Fω) where Fω X ≡
⋃

i. F i X

We prove that {Fω (A≺ a)}a∈A serves the purpose of {Iα}α<|A| when A is uncountable.
Directedness condition is satisfied regardless of uncountability. More generally, Fω X is

directed for every X ⊆ A.

lemma Flim_directed: assumes X ⊆ A shows directed_set (Fω X) (⊑)

Proof. Take an arbitrary finite subset Y ⊆ Fω X. Since Y is finite, we inductively obtain
i ∈ N such that Y ⊆ F i X, i.e., Y ∈ Fpow (F i X). Hence we find an upper bound f Y ∈
F i+1 X ⊆ Fω X . ◀

The cardinality condition holds when |A| is uncountable. Using the cardinality library,
(un)countability is stated using the term natLeq, which denotes the well-order (N,≤), i.e.,
the ordinal ω or cardinality ℵ0.

lemma card_uncountable:
assumes a ∈ A and natLeq <o |A| shows |Fω (A≺ a)| <o |A|

Proof. Let X = A≺ a. The proof proceeds by case distinction on whether X is finite or not.
If X is finite, then every F i X is finite and thus Fω X is at most countable. Note that Fω X

is not necessarily finite. Nevertheless, since A is assumed to be uncountable, we conclude
|Fω X | <o |A|.

Now we show that if X is infinite, then |Fω X | =o |X |. This will conclude the claim as
|X | <o |A| due to Lemma Pre_card. First, we have |F X | =o |X |. This is easy using the
library fact card_of_Fpow_infinite: infinite X =⇒ |Fpow X | =o |X |. Then this property is
carried over to |F i X | =o |X | for every i ∈ N, proved by an easy induction.

Now, the following fact (card_of_UNION_ordLeq_infinite) is available in the library:

infinite B =⇒ |I | ≤o |B| =⇒ ∀i∈I . |A i| ≤o |B| =⇒ |
⋃

(A ‘ I)| ≤o |B|

Since X is infinite, we know |N| ≤o |X |, and we have proved that |F i X | ≤o |X | for all i ∈ N.
Thus, by taking I = N, A i = F i X , and B = X , we conclude |Fω X | ≤o |X | <o |A|. Since
X ⊆ Fω X , we also have |Fω X | =o |X |. ◀

Monotonicity is due to that of the building components:

lemma mono_uncountable: monotone_on D (⪯A) (⊆) (Fω ◦ A≺)

ITP 2023

34:8 Formalizing Results on Directed Sets in Isabelle/HOL (Proof Pearl)

Proof. As A≺ is monotone (Lemma Pre_mono) and monotonicity is preserved by composition,
it suffices to show that Fω is monotone. It is easy to see that F is monotone. Then so is F i

for every i ∈ N, as i-th fold of a monotone function is still monotone. Finally, we conclude
the monotonicity of Fω by the following more general statement:

lemma Sup_funpow_mono:
fixes f :: ’a :: complete_lattice ⇒ ’a
assumes mono f shows mono (

⊔
i. f i) ...

which is proved easily. ◀

Finally, for the range condition, the infiniteness of A is sufficient.

lemma range_uncountable: assumes infinite A shows
⋃

((Fω ◦ A≺) ‘ A) = A

Proof. The (⊆)-direction is obvious. For the (⊇)-direction, take a ∈ A. As A is infinite, by
lemma extreme_imp_finite, we obtain b ∈ A such that a ∈ A≺ b. By definition, X ⊆ F X .
By induction, X ⊆ Fω X . We conclude a ∈ A≺ b ⊆ Fω (A≺ b) ⊆

⋃
((Fω ◦ A≺) ‘ A. ◀

3.2 Countable Case

Next we consider the case where A is countably infinite. We make the assumption by making
a subcontext within the locale Iwamura_proof :

context
assumes countable: |A| =o natLeq

begin

The assumption above means that there exists an order-isomorphism between (N,≤) and
(A,⪯A). In Isabelle/HOL, we can obtain the isomorphism as follows:

definition seq :: nat ⇒ ’a where seq ≡ SOME g. iso natLeq |A| g

lemma seq_iso: iso natLeq |A| seq ...

The definition of the predicate iso is given in the ordinal library. For our use, it suffices to
know a few consequences of seq_iso. Most importantly, seq is bijective between N and A:

lemma seq_bij_betw: bij_betw seq UNIV A

This means that A has been indexed by N: A = {seq 0 , seq 1 , seq 2 , . . . }. We turn the
sequence into a sequence of directed subsets of A: Seq 0 ⊆ Seq 1 ⊆ Seq 2 ⊆ . . . ⊆ A.

fun Seq :: nat ⇒ ’a set where
Seq 0 = {f {}}

| Seq (Suc n) = Seq n ∪ {seq n, f (Seq n ∪ {seq n})}

As Seq is a plain inductive function, it is an easy exercise to formally prove that {Seq n}n∈N
satisfies the four requirements of Iwamura’s Lemma. A more interesting formalization work
is in combining with the uncountable case. In Section 3.1, we took Fω ◦ A≺ as the candidate
of I, which is of type ’a ⇒ ’a set. On the other hand, Seq is of type nat ⇒ ’a set. To match
the types, we use the inverse seq−1 :: ’a ⇒ nat (inv seq in the standard Isabelle notation) of
the isomorphism seq. We define the final I as follows:

A. Yamada and J. Dubut 34:9

definition I where I ≡ if |A| =o natLeq then Seq ◦ seq−1 else Fω ◦ A≺

Now we close the locale Iwamura_proof and state the final result in the global scope.

theorem (in reflexive) Iwamura:
assumes directed_set A (⊑) and infinite A
shows ∃I . (∀a ∈ A. directed_set (I a) (⊑) ∧ |I a| <o |A|) ∧

monotone_on A (⪯A) (⊆) I ∧
⋃

(I‘A) = A

Proof. Inside the proof we reopen the proof locale:

interpret Iwamura_proof ...

By this we obtain I defined above. We conclude by proving that I satisfies the requirements.

directed_set (I a) (⊑): The uncountable case is by Flim_directed. For the countable case,
we show that Seq n is directed for every n ∈ N. Note that Seq n can be written X ∪ {f X}
for appropriate X . Then since f X is an upper bound of X and ⊑ is reflexive, f X serves
as an upper bound of any (finite) subset of X ∪ {f X}.
|I a| <o |A|: The uncountable case is by card_uncountable. For countable case, we just
prove that Seq n is finite for any n ∈ N, by easy induction.
monotone_on A (⪯A) (⊆) I : The uncountable case is by mono_uncountable. For the
countable case, we need another consequence of lemma seq_iso:

lemma inv_seq_mono: monotone_on A (⪯A) (≤) (seq−1) ...

We then combine with the monotonicity of Seq, which is easily proved by induction.⋃
(I ‘ A) = A: The uncountable case is by range_uncountable. For the countable case,

we need to prove
⋃

((Seq ◦ seq−1) ‘ A) = A. The (⊆)-direction is obvious. For the
other direction, take an arbitrary a ∈ A. We know a = seq (seq−1 a) ∈ Seq n with
n = Suc (seq−1 a). On the other hand, seq n ∈ A. Hence a ∈ Seq n = Seq (seq−1 (seq
n)) ⊆

⋃
(Seq ◦ seq−1) ‘ A. ◀

4 Directed Completeness

Now we formalize Theorem 1: A quasi-ordered set has a supremum for every directed subset,
if and only if it does so for every non-empty well-related subset. The statement is slightly
generalized, so that the underlying order need not be antisymmetric.

The property that certain class of subsets have suprema is called completeness. We
formalize completeness as follows:

definition ... where
C-complete A (⊑) ≡ ∀X ⊆ A. C X (⊑) −→ (∃s. extreme_bound A (⊑) X s)
for less_eq (infix ⊑ 50)

Using this notation, we can formalize Theorem 1 concisely as follows:

theorem (in quasi_ordered_set) well_complete_iff_directed_complete:
(nonempty ⊓ well_related_set)-complete A (⊑) ←→ directed_set-complete A (⊑)

ITP 2023

34:10 Formalizing Results on Directed Sets in Isabelle/HOL (Proof Pearl)

where nonempty A ≡ if A = {} then ⊥ else ⊤. For the (←−)-direction we must prove
that non-empty well-related sets are actually directed. Well-related sets clearly are connex,
i.e., every two elements are comparable. Under transitivity this is sufficient for directedness,
but we can actually prove a stronger statement without transitivity: every non-empty finite
subset X of a well-related set A has a greatest element.

lemma (in well_related_set) finite_sets_extremed:
assumes finite X and X ̸= {} and X ⊆ A
shows extremed X (⊑)

Proof. By induction on the number2 of elements in the finite set X . As X is nonempty,
by well-relatedness, it has a least element l. If X − {l} is empty, then l is the greatest in
X = {l} by reflexivity. Otherwise, by induction hypothesis, X − {l} has a greatest element
e. As l is least in X and in particular l ⊑ e, e is also greatest in X . ◀

For the (−→)-direction, we prove the following elaborated statement:

lemma (in quasi_ordered_set) directed_completeness_lemma:
assumes (nonempty ⊓ well_related_set)-complete A (⊑)

and directed_set D (⊑) and D ⊆ A
shows ∃x . extreme_bound A (⊑) D x

Proof. We apply induction on the cardinality |D| with respect to <o. To be more precise,
we are given fresh D for which we must prove ϕ D, where ϕ X denotes

directed_set X (⊑) =⇒ X ⊆ A =⇒ ∃x . extreme_bound A (⊑) X x

assuming ϕ D’ for any D’ with |D’ | <o |D|.
If D is finite, then D has an upper bound of itself, i.e., a greatest element, which serves

also as a supremum. So suppose that D is infinite. For this D, we apply Iwamura’s Lemma
and obtain I as follows.

obtain I where monotone_on D (⪯D) (⊆) I
and ∀a ∈ D. |I a| <o |D|
and ∀a ∈ D. directed_set (I a) (⊑)
and

⋃
(I ‘ D) = D ...

For every d ∈ D, since |I d| <o |D|, induction hypothesis ensures that I d has a supremum
in A. Thus, using the axiom of choice, we obtain a function s that picks a supremum for
I d. Note that as we do not assume that ⊑ is antisymmetric, suprema are not unique so the
axiom of unique choice cannot be used.

obtain s where d ∈ D =⇒ extreme_bound A (⊑) (I d) (s d) for d ...

Next we show that (s ‘ D,⊑) is well-related. To this end, we formalized the following
fact: monotone image of a well-related set is well-related.

lemma (in well_related_set) monotone_image_well_related:
fixes leB (infix ⊴ 50)
assumes monotone_on A (⊑) (⊴) f shows well_related_set (f ‘ A) (⊴) ...

2 In Isabelle, card X is used to denote the number of elements in X , assuming that X is finite. In contrast,
|X| is the cardinality in more general sense.

A. Yamada and J. Dubut 34:11

So now we need that s is monotone from (D,⪯D) to (A,⊑). This follows as I is monotone
from (D,⪯D) to (Pow D,⊆), and taking suprema is monotone from (Pow D,⊆) to (A,⊑).
This concludes that (s ‘ D,⊑) is well-related. Since D is infinite and thus non-empty, thanks
to the completeness assumption we obtain a supremum x of s ‘ D. We conclude by showing
that x is also a supremum of D.

To show that x is a bound of D, consider an arbitrary d ∈ D. Since D =
⋃

(I ‘ D), we
obtain d’ ∈ D such that d ∈ I d’ . As s d’ is a supremum of I d’ , we know d ⊑ s d’ . Since
s d’ ∈ s ‘ D and x is a supremum of s ‘ D, we have s d’ ⊑ x. By transitivity we conclude
d ⊑ x .

Finally, let b be another bound of D. For any d ∈ D, since I d ⊆ D, b is a bound of I d.
Since s d is least among the bounds of I d, we have s d ⊑ b. This shows that b is a bound of
s ‘ D. Since x is least among the bounds of s ‘ D, we conclude x ⊑ b. ◀

5 Scott-Continuity

The previous inductive proof can be strengthened to prove and generalize Theorem 2: A
function that preserves suprema of well-related subsets also preserves suprema of directed
subsets, if the domain has a supremum for every nonempty well-related sets. Markowsky
claimed Theorem 2 [10, Corollary 3], saying briefly that it follows from Iwamura’s Lemma
and transfinite induction. We did not find it that obvious (at least for mechanization), and
by completing the proof, we could slightly generalize Markowsky’s claim. Now it works
for quasi-ordered domain, relaxing antisymmetry; the codomain need not be complete in
any class, or even transitivity or reflexivity are not necessary; and chains are refined to
well-related sets.

Functions that preserve a particular class of suprema are called continuous. We formalize
the notion in Isabelle as follows:

definition ... where
C-continuous A (⊑) B (⊴) f ≡ f ‘ A ⊆ B ∧
(∀X s. C X (⊑) −→ X ̸= {} −→ X ⊆ A −→

extreme_bound A (⊑) X s −→ extreme_bound B (⊴) (f ‘ X) (f s))
for leA (infix ⊑ 50) and leB (infix ⊴ 50)

A useful fact about continuous functions, is that, under a mild condition on the class C
– namely, all pairs of related elements are in the class – every C-continuous function is
monotone:

lemma (in reflexive) continuous_imp_monotone_on:
assumes C-continuous A (⊑) B (⊴) f and ∀i ∈ A. ∀ j ∈ A. i ⊑ j −→ C {i,j} (⊑)
shows monotone_on A (⊑) (⊴) f ...

This is the case for well_related_set-continuous functions.
The Isabelle statement of Theorem 2 then becomes:

theorem (in quasi_ordered_set)
assumes (nonempty ⊓ well_related_set)-complete A (⊑)
shows well_related_set-continuous A (⊑) B (⊴) f ←→ directed_set-continuous A (⊑) B

(⊴) f

As before, the (←−)-direction is obvious. For the (−→)-direction, our strategy is to prove
that f preserves the suprema of every directed set, at the same time we construct the suprema

ITP 2023

34:12 Formalizing Results on Directed Sets in Isabelle/HOL (Proof Pearl)

in the previous section. Precisely, into the statement of lemma directed_completeness_lemma
we add the following claim:

and well_related_set-continuous A (⊑) B (⊴) f =⇒
D ̸= {} =⇒ extreme_bound A (⊑) D x =⇒ extreme_bound B (⊴) (f ‘ D) (f x)

Proof. The claim is proved simultaneously with the previous statement by induction on |D|.
Our new goal is to show, given a supremum x of D in (A,⊑), that f x is a supremum of f ‘ D
in (B,⊴).

By monotonicity, f x is a bound of f ‘ D, so we show that it is least of such. Recall that,
in the previous section, a supremum of D is obtained as a supremum of a well-related set C ,
where C is a singleton set in the finite case, and is s ‘ D in the infinite case. Note that, as
we do not assume antisymmetry, this supremum is not necessarily the supremum x we are
given. Nevertheless, we know that x is also a supremum of C , thanks to the transitivity of
(A,⊑). As f preserves suprema of well-related sets, we also know that f x is a supremum of
f ‘ C in (B,⊴). Hence, by showing that any bound b of f ‘ D is also a bound of f ‘ C , we
can show f x ⊴ b and conclude the proof.

The finite case is obvious as C ⊆ D. Consider the infinite case: C = s ‘ D. We know that
b is a bound of f ‘ I d for every d ∈ D, as D =

⋃
(I ‘ D). Recall that, in the previous section,

s d is an inductively obtained supremum of I d. With |I d| <o |D|, by induction hypothesis
we know that f (s d) is a supremum of f ‘ I d. In particular f (s d) ⊴ b, concluding that b is
a bound of f ‘ s ‘ D = f ‘ C . ◀

6 Conclusion

In this paper, we formalized some results for directed sets: Iwamura’s Lemma to enable
induction arguments on them; Cohn’s theorem stating the equivalence between directed-
completeness and well-completeness; and Markowski’s corollary on Scott-continuity being
equivalent to the preservation of suprema of well-related chains. The proofs involved some
non-trivial formalization work on transfinite sequences that has been enabled by a careful
management of locales and contexts, and Isabelle/HOL’s libraries on cardinals and ordinals.

References

1 Samson Abramsky and Achim Jung. Domain Theory. Number III in Handbook of Logic in
Computer Science. Oxford University Press, 1994.

2 Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989.
3 Grzegorz Bancerek and Piotr Rudnicki. A compendium of continuous lattices in MIZAR. J.

Autom. Reason., 29(3-4):189–224, 2002. doi:10.1023/A:1021966832558.
4 Jasmin Christian Blanchette, Andrei Popescu, and Dmitriy Traytel. Cardinals in Isabelle/HOL.

In Gerwin Klein and Ruben Gamboa, editors, Interactive Theorem Proving - 5th International
Conference, ITP 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna,
Austria, July 14-17, 2014. Proceedings, volume 8558 of Lecture Notes in Computer Science,
pages 111–127. Springer, 2014. doi:10.1007/978-3-319-08970-6_8.

5 Paul M. Cohn. Universal Algebra. Harper & Row, 1965.
6 Jérémy Dubut and Akihisa Yamada. Fixed point theorems for non-transitive relations. Log.

Methods Comput. Sci., 18(1), 2022. doi:10.46298/lmcs-18(1:30)2022.
7 Alain Finkel and Jean Goubault-Larrecq. Forward Analysis for WSTS, Part I: Completions. In

Susanne Albers and Jean-Yves Marion, editors, 26th International Symposium on Theoretical
Aspects of Computer Science, volume 3 of Leibniz International Proceedings in Informatics

https://doi.org/10.1023/A:1021966832558
https://doi.org/10.1007/978-3-319-08970-6_8
https://doi.org/10.46298/lmcs-18(1:30)2022

A. Yamada and J. Dubut 34:13

(LIPIcs), pages 433–444, Dagstuhl, Germany, 2009. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. doi:10.4230/LIPIcs.STACS.2009.1844.

8 Jean Goubault-Larrecq. Non-Hausdorff Topology and Domain Theory: Selected Topics in
Point-Set Topology, volume 22 of New Mathematical Monographs. Cambridge University Press,
2013. doi:10.1017/CBO9781139524438.

9 Tsurane Iwamura. A lemma on directed sets. Zenkoku Shijo Sugaku Danwakai, 262:107–111,
1944. in Japanese.

10 George Markowsky. Chain-complete posets and directed sets with applications. Algebra
Universalis, 6:53–68, 1976.

11 Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. Isabelle/HOL – A Proof Assistant
for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002. doi:10.1007/3-540-45949-9.

12 Lawrence C. Paulson and Krzysztof Grabczewski. Mechanizing set theory. J. Autom. Reason.,
17(3):291–323, 1996. doi:10.1007/BF00283132.

13 Dana Scott. Outline of a Mathematical Theory of Computation. Technical Report PRG02,
OUCL, 1970.

14 Lev Anatol’evich Skornyakov. Complemented modular lattices and regular rings. Oliver &
Boyd, 1964.

15 Glynn Winskel. The Formal Semantics of Programming Languages: An Introduction. Founda-
tions of Computing. The MIT Press, 1993.

ITP 2023

https://doi.org/10.4230/LIPIcs.STACS.2009.1844
https://doi.org/10.1017/CBO9781139524438
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/BF00283132

Formalising the Proj Construction in Lean
Jujian Zhang # Ñ

Department of Mathematics, Imperial College London, UK

Abstract
Many objects of interest in mathematics can be studied both analytically and algebraically, while at
the same time, it is known that analytic geometry and algebraic geometry generally do not behave
the same. However, the famous GAGA theorem asserts that for projective varieties, analytic and
algebraic geometries are closely related; the proof of Fermat’s last theorem, for example, uses this
technique to transport between the two worlds [13]. A crucial step of proving GAGA is to calculate
cohomology of projective space [12, 8], thus I formalise the Proj construction in the Lean theorem
prover for any N-graded R-algebra A and construct projective n-space as ProjA[X0, . . . , Xn]. This
is the first family of non-affine schemes formalised in any theorem prover.

2012 ACM Subject Classification Theory of computation → Logic and verification; Mathematics of
computing → Topology

Keywords and phrases Lean, formalisation, algebraic geometry, scheme, Proj construction, projective
geometry

Digital Object Identifier 10.4230/LIPIcs.ITP.2023.35

Supplementary Material Software (Source Code): https://github.com/leanprover-community/
mathlib/pull/18138/commits/00c4b0918a2c7a8b62291581b0e1eddf2357b5be

archived at swh:1:dir:0876b1af377d6c78a3d76073c0bbd7fe0176d9c6

Funding Jujian Zhang: Schrödinger Scholarship Scheme.

Acknowledgements I want to thank Eric Wieser for his contribution and suggestion in formalising
homogeneous ideals and homogeneous localisation; Andrew Yang and Junyan Xu for their review
and comments on my code; Kevin Buzzard for suggesting this project and all the contributors to
mathlib for otherwise this project would not have been possible.

1 Introduction

Algebraic geometry concerns polynomials and analytic geometry concerns holomorphic
functions. Though all polynomials are holomorphic, the converse is not true; thus many
analytic objects are not algebraic, for example, {x ∈ C | sin(x) = 0} can not be defined
as the zero locus of a polynomial in one variable, for polynomials always have only finite
number of zeros. However, for projective varieties over C, the categories of algebraic and
analytic coherent sheaves are equivalent; a consequence of this statement is that all closed
analytic subspace of projective n-space Pn is also algebraic [13, 4]. A crucial step in proving
the above statement is to consider the cohomology of projective n-space Pn [12].

While one can define Pn over C without consideration of other projective varieties, it
would be more fruitful to formalise the Proj construction as a scheme and recover Pn as
ProjC[X0, . . . , Xn], since, among other reasons, by considering different base rings, one may
obtain different projective varieties, for example, for any homogeneous polynomials f1, . . . , fk,
Proj

(
C[X0,...,Xn]

(f1,...,fk)

)
defines a projective variety over C.

In this paper I describe a formal construction of ProjA in the Lean3 theorem prover [7]
by closely following [9, Chapter II]. The formal construction uses various results from the
Lean mathematical library mathlib, most notably the graded algebra and Spec construction;
this project has been partly accepted into mathlib already while the remaining part is still

© Jujian Zhang;
licensed under Creative Commons License CC-BY 4.0

14th International Conference on Interactive Theorem Proving (ITP 2023).
Editors: Adam Naumowicz and René Thiemann; Article No. 35; pp. 35:1–35:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jujian.zhang19@imperial.ac.uk
https://www.imperial.ac.uk/
https://orcid.org/0000-0001-7340-2703
https://doi.org/10.4230/LIPIcs.ITP.2023.35
https://github.com/leanprover-community/mathlib/pull/18138/commits/00c4b0918a2c7a8b62291581b0e1eddf2357b5be
https://github.com/leanprover-community/mathlib/pull/18138/commits/00c4b0918a2c7a8b62291581b0e1eddf2357b5be
https://archive.softwareheritage.org/swh:1:dir:0876b1af377d6c78a3d76073c0bbd7fe0176d9c6;origin=https://github.com/leanprover-community/mathlib;visit=swh:1:snp:dac155b468cd76c6be55b88e50dc3389a037aa9b;anchor=swh:1:rev:00c4b0918a2c7a8b62291581b0e1eddf2357b5be
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 Formalising the Proj Construction in Lean

undergoing a review process. The code discussed in this paper can be found on GitHub1.
I have freely used the axiom of choice and the law of excluded middle throughout this
project since the rest of mathlib freely uses classical reasoning as well; consequently, the
final construction is not computable. This will not matter for the applications in mind, for
example calculating sheaf cohomology and the GAGA theorem.

As previously mentioned, Proj construction heavily depends on graded algebras and the
Spec construction. A detailed description of graded algebra in Lean and mathlib, as well as
a comparison of graded algebras with that in other theorem provers, can be found in [17];
for my purpose, I have chosen to use an internal grading for any graded ring A ∼=

⊕
Ai

so that the result of the construction is about homogeneous prime ideals of A directly
instead of

⊕
i Ai. The earliest complete Spec construction in Lean can be found in [2]

where the construction followed a “sheaf-on-a-basis” approach from [14, Section 01HR],
however, it differs significantly from the Spec construction currently found in mathlib where
the construction follows [9, Chapter II]; for this reason, I have also chosen to follow the
definition in [9, Chapter II]. Some other theorem provers also have or partially have the Spec
construction: in Isabelle/HOL, Spec is formalised by using locales and rewriting topology
and ring theory part of the existing library in [1], however, the category of schemes is yet to
be formalized; an early formalisation of Spec in Coq can be found in [3] and a definition of
schemes in general can be found in its UniMath library [16]; due to homotopy type theory of
Agda, only a partial formalisation of Spec construction can be found in [11]. Though some
theorem provers have defined a general scheme, I could not find any concrete construction of
a scheme other than Spec of a ring2. Thus this paper exhibits the first concrete formalised
example of non-affine scheme.

After explaining the mathematical details involved in the Proj construction in Section 2,
Lean code will be provided and explained in Section 3. For typographical reasons, some code
of formalisation will be omitted and marked as omitted or _ and some code presented in this
paper is presented with shortened notations for presentability and readability.

2 Mathematical details

In this section, certain familiarity with basic ring theory, topology and category theory will
be assumed. In Sections 2.1 and 2.2, definition of a scheme is explained in detail; Spec
construction will also be briefly explained to fix the mathematical approach used in mathlib.
Then by following the definition of a scheme step by step, the Proj construction will be
explained in Section 2.3.

2.1 Sheaves and Locally Ringed Spaces
Let X be a topological space and Opens(X) be the category of open subsets of X.

▶ Definition 1 (Presheaves [10]). Let C be a category. A C-valued presheaf F on X is
a functor Opens(X)op =⇒ C. Morphisms between C-valued presheaves F ,G are natural
transformations. The category thus formed is denoted as PSh(X,C).

In this paper, the category of interest is the category of presheaves of rings Psh(X,Ring).
More explicitly, a presheaf of rings F assigns to each open subset U ⊆ X a ring F(U)
whose elements are called sections on U and for any open subsets U ⊆ V ⊆ X, F assigns

1 url: https://github.com/leanprover-community/mathlib/pull/18138/
2 In this paper, all rings are assumed to be unital and commutative.

https://stacks.math.columbia.edu/tag/01HR
https://github.com/leanprover-community/mathlib/pull/18138/

J. Zhang 35:3

a ring homomorphism F(V) → F(U) often denoted as resVU or simply with a vertical bar
s |U (a section s on V restricted to U). Examples of presheaves of rings are abundant:
considering open subsets of C, U 7→ {(continuous, holomorphic) functions on U} with the
natural restriction map defines a presheaf of rings. In these examples, compatible sections
on different open subsets can be glued together to form bigger sections on the union of the
said open subsets; this property can be generalized to arbitrary categories:

▶ Definition 2 (Sheaves [10, 14]). A presheaf F ∈ Psh(X,C) is said to be a sheaf if for any
open covering of an open set U =

⋃
i Ui ⊆ X, the following diagram is an equalizer

F(U)
∏
i F(Ui)

∏
i,j F (Ui ∩ Uj).

(resU
Ui

)
(

resUi
Ui∩Uj

)
(

res
Uj
Ui∩Uj

)
The category of sheaves Sh(X,C) is the full subcategory of the category of presheaves
satisfying the sheaf condition.

▶ Definition 3 (Locally Ringed Space [14, 9]). If OX is a sheaf of rings on X, then the
pair (X,OX) is called a ringed space; a morphism between two ringed space (X,OX) and
(Y,OY) is a pair (f, ϕ) such that f : X → Y is continuous and ϕ : OY → f∗OX is a
morphism of sheaves where f∗OX ∈ Sh(Y) assigns V ⊆ Y to OX(f−1(V)). A locally ringed
space (X,OX) is a ringed space such that for any x ∈ X, its stalk OX,x is a local ring where
OX,x = colimx∈U∈OpensX OX(U); a morphism between two locally ringed spaces (X,OX) and
(Y,OY) is a morphism (f, ϕ) of ringed space such that for any x ∈ X the ring homomorphism
induced on stalk ϕx : OY,f(x) → OX,x is local.

From the previous definitions, if OX is a presheaf and U ⊆ X is an open subset, then
there is a presheaf OX |U on U by assigning every open subset V of U to OX(V). This is
called restricting a presheaf; sheaves, ringed spaces and locally ringed spaces can also be
similarly restricted.

2.2 Definition of Affine Scheme and Scheme
The Spec construction

Let R be a ring and let SpecR denote the set of prime ideals of R. Then for any subset
s ⊆ R, its zero locus is defined as {p | s ⊆ p}. These zero loci can be considered as closed
subsets of SpecR; the topology thus formed is called the Zariski topology. Then a sheaf of
rings on SpecR can be defined by assigning U ⊆ SpecR to the ring{

s :
∏
x∈U

Rx | s is locally a fraction
}
,

where s is locally a fraction if and only if for any prime ideal x ∈ U , there is always an open
subset x ∈ V ⊆ U and a, b ∈ R such that for any prime ideal y ∈ V , b ̸∈ y and s(y) = a

b .
This sheaf O is called the structure sheaf of SpecR. (SpecR,O) is a locally ringed space
because for any prime ideal x ⊆ R, Ox

∼= Ax [9, Chapter 2, Proposition 2.2].

Scheme

▶ Definition 4 (Scheme). A locally ringed space (X,OX) is said to be a scheme if for
any x ∈ X, there is always some ring R and some open subset x ∈ U ⊆ X such that
(U,OX |U) ∼= (SpecR,OSpecR) as locally ringed spaces. The category of schemes is the full
subcategory of locally ringed spaces where objects are schemes.

ITP 2023

35:4 Formalising the Proj Construction in Lean

Thus to construct a scheme, one needs the following:
a topological space X;
a presheaf O;
a proof that O satisfies the sheaf condition;
a proof that all stalks are local;
an open covering {Ui} of X;
a collection of rings {Ri} and isomorphism (Ui,OX |Ui) ∼= (SpecRi,OSpecR).

In Section 2.3, the Proj construction will be described following the steps above. Hence, the
Proj construction though appears to be a definition, is in fact a mixture of defining a ringed
space and a proof that the constructed ringed space is locally affine.

2.3 The Proj Construction
Throughout this section, R will denote a ring and A an N-graded R-algebra, in order to keep
notations the same as Section 3, the grading of A will be written as A, i.e. A ∼=

⊕
i∈N Ai as

R-algebras.

Topology

▶ Definition 5 (Proj A as a set). Proj A is defined to be
{p ∈ SpecA | p is homogeneous and relevant}, where

an ideal p ⊆ A is said to be homogeneous if for any a ∈ p and i ∈ N, ai is in p as well
where ai ∈ Ai is the i-th projection of a with respect to grading A;
an ideal p ⊆ A is said to be relevant if

⊕∞
i=1 Ai ̸⊆ p.

Similar to Spec construction in Section 2.2, there is a topology on Proj A whose close
sets are exactly the zero loci where for any s ⊆ A, zero locus of s is {p ∈ Proj A | s ⊆ p};
this topology is also called the Zariski topology. For any a ∈ A, D(a) denotes the set
{x ∈ Proj A | a ̸∈ x}.

▶ Theorem 6. For any a ∈ A, D(a) is open in Zariski topology and {D(a) | a ∈ A} forms a
basis of the Zariski topology.

Proof. Proofs can be found in [14, 00JM] and [9, Chapter 2, proposition 2.5] ◀

Structure sheaf

Let U ⊆ Proj A be an open subset. The sections on U are defined to be

O(U) =
{
s ∈

∏
x∈U

A0
x | s is locally a homogeneous fraction

}
,

where A0
p denotes the homogeneous localization of A at a homogeneous prime ideal p, i.e. the

subring of Ap of elements of degree zero, and s is said to be locally a homogeneous fraction if
for any x ∈ U , there is some open subset x ∈ V ⊆ U , i ∈ N and a, b ∈ Ai such that for all
y ∈ V , s(y) = a

b . Equipped with the natural restriction maps, O defined in this way forms a
presheaf; the sheaf condition of O is checked in the category of sets where it follows from
the definition of locally homogeneous fractions. This sheaf is called the structure sheaf of
Proj A, also written as OProjA

J. Zhang 35:5

Locally ringed spaces

▶ Theorem 7. The stalk of (Proj A,O) at a homogeneous prime relevant ideal p is isomorphic
to A0

p.

Proof. It can be checked that the function A0
p → OProj A,p defined by a

b 7→ ⟨D(b), x 7→ a
b ⟩ is

a ring isomorphism. Details can be found in [14, 01M4] ◀

Since A0
p is a local ring for any homogeneous prime ideal p, it can be concluded that

(Proj A,OProj A) is a locally ringed space.

Affine cover

▶ Lemma 8. For any x ∈ Proj A, there is some 0 < m ∈ N and f ∈ Am, such that x ∈ D(f),
i.e. f ̸∈ x.

Proof. Let x ∈ Proj A, by construction,
⊕∞

i=1 Ai ̸⊆ x. Thus there is some f = f1 +f2 + · · · ̸∈
x, then at least one fi ̸∈ x for otherwise f ∈ x. ◀

Thus, to construct an affine cover, it is sufficient to prove that for all 0 < m ∈ N and
homogeneous element f ∈ Am, (D(f),OProj A |D(f)) is isomorphic to (SpecA0

f ,OSpecA0
f
)

where A0
f is the subring of the localised ring Af consisting of elements of degree zero. By

fixing the previous notations, an isomorphism between locally ringed space is a pair (ϕ, α)
where ϕ is a homeomorphism between the topological spaces D(f) and SpecA0

f and α an
isomorphism between ϕ∗(OProj A |D(f)) and OSpecA0

f
.

▶ Theorem 9. D(f) ∼= SpecA0
f are homeomorphic as topological spaces.

The following proofs are an expansion of [9, II.2.5] while drawing ideas from [15, II.4.5].

Proof. Define ϕ : D(f) → SpecA0
f by p 7→ span

{
g
1 | g ∈ p

}
∩A0

f ; by clearing denominators,
one can show that ϕ(p) = span

{
g
fi |g ∈ p ∩Ami

}
. One can check that ϕ(p) is indeed a prime

ideal. ϕ is continuous by checking on the topological basis consisting of basic open sets of
SpecA0

f . The fact that basic open sets form a basis is already recorded in mathlib. Take
a
fn ∈ A0

f , then ϕ−1 (D (a/fn)) = D(f) ∩D(a).
D(f) ∩D(a) is a subset of ϕ−1 (D (a/fn)) because if y ∈ D(f) ∩D(a) and a/fn ∈ ϕ(y), i.e.
a/fn =

∑
i(ci/fni)(gi/1), then by multiplying suitable powers of f , afN

/1 = (
∑

i
cigif

mi)/1

for some N , so by definition of localisation, afNfM =
∑
i cigif

mi for some M implying
that a ∈ y. Contradiction.
On the other hand, if ϕ(y) ∈ D (a/fn) and a ∈ y, then a/1 ∈ h(y), contradiction because
a/fn = a/11/fn ∈ ϕ(y).

For the other direction, define ψ : SpecA0
f → D(f) to be x 7→

{
a | for all i ∈ N, am

i

fi ∈ x
}

.
For ψ to be well-defined, one needs to check that ψ(x) is a homogeneous prime ideal that is
relevant. Continuity of ψ depends on that ϕ and ψ are inverse to each other. D(f) with the
subspace topology has a basis of the form D(f) ∩ D(a), thus it is sufficient to prove that
preimages of these sets are open. By considering ϕ(D(f) ∩ D(a)) =

⋃
i ϕ(D(f) ∩ D(ai)),

each ϕ(D(f) ∩ D(ai)) is open because ϕ(D(f) ∩ D(ai)) = D (am
i /fi) in SpecA0

f . To prove
ϕ(D(f) ∩D(ai)) = D (am

i /fi), it is sufficient to prove ϕ−1(D (am
i /fi)) = D(f) ∩D(a) and this

is true by continuity of ϕ. Since ϕ and ψ are inverses to each other, preimage of D(f) ∩D(a)
is indeed ϕ(D(f) ∩D(a)). ◀

ITP 2023

35:6 Formalising the Proj Construction in Lean

Let ϕ and ψ be the continuous functions defined in the previous proof, U be an open
subset of SpecA0

f , s be a section on ϕ−1(U) and x ∈ U , then ψ(x) ∈ ϕ−1(U), hence s(ψ(x)) =
n
d ∈ A0

ψ(x) for some i ∈ N and n, d ∈ Ai. Keeping the same notation, a ring homomorphism

αU : ϕ∗(OProj |D(f))(U) → OSpecA0
f
(U) can be defined as s 7→

(
x 7→ ndm−1/fi

dm/fi

)
where

n, d ∈ Ai. Assuming αU is well-defined, it is easy to check that U 7→ αU is natural in U ,
hence α defines a morphism of sheaves.

▶ Lemma 10. For any open subset U ⊆ SpecA0
f , αU is well-defined; hence α defines a

morphism of sheaves.

Proof. It is clear that both the numerator and denominator have degree zero. Now dm
/fi ̸∈ x

follows from d ̸∈ ψ(x). Next αU (s) is locally a fraction: since s is locally a quotient, for any
x ∈ U , there is some open set V ⊆ ProjA such that ψ(x) ∈ V ⊆ ϕ−1(U) such that s(y) = a

b

for all y ∈ V where a, b ∈ An and b ̸∈ y, then to check αU (s) is locally quotient, use the open
subset ϕ(V) and check that for all z ∈ ϕ(V), αU (s)(z) = abm−1

bm . The proof of αU being a
ring homomorphism involves manipulations of fractions in localised rings, for more details,
see Section 3. ◀

In the other direction, if s ∈ OSpecA0
f
(U) and y ∈ ϕ−1(U), then ϕ(y) ∈ U , so s(ϕ(y)) can

be written as a
b where a, b ∈ A0

f ; then a can be written as na

fia for some na ∈ Amia and b as nb

fib

for some nb ∈ Amib . Hence, a ring homomorphism βU : OSpecA0
f
(U) → OProj |D(f) (ϕ−1(U))

can be defined as s 7→
(
y 7→ naf

i
b

nbfia

)
. Assuming β is well defined, it is easy to check that the

assignment U 7→ βU is natural so that β is a natural transformation.

▶ Lemma 11. For any open subset U ⊆ SpecA0
f , βU is well-defined; hence β defines a

morphism of sheaves.

Proof. naf ibb and nbf
ia have the same degree. nbf

ia ̸∈ y follows from b ̸∈ ϕ(y). Since s
locally is a fraction, there are open sets ϕ(y) ∈ V ⊆ U , such that for all z ∈ V , s(z) is
a/fl1
b/fl2 . Then on ϕ−1(V) ⊆ ϕ−1(U), ψU (s)(y) is always af l2

bf l1 . Checking that βU is a ring
homomorphism involves manipulating fractions of fractions. ◀

▶ Theorem 12. ϕ∗(OProj A |D(f)) and OSpecA0
f

are isomorphic as sheaves.

Proof. By combining Lemma 10 and Lemma 11, it is sufficient to check α ◦ β and β ◦ α are
both identities.

β ◦ α = 1: let s ∈ OProj |D(f) (ϕ−1(U)), then for x ∈ ϕ−1(U)

αU (s) = x 7→
ndm−1

/fi

dm
/fi

,

where s(x) = n
d . Thus, by definition

βU (αU (s))(x) = ndm−1f i

dmf i
= n

d
= s(x).

α ◦ β = 1: let s ∈ OSpecA0
f
(U), then for x ∈ U

βU (s) = x 7→ naf
ib

nbf ia

where s(x) = na/fia

nb/fib
. Thus

ϕU (ψU (s))(x) =
naf

ib(nbf
ia)m−1

/fj

(nbf
ia)m

/fj
=

na/fia

nb/fib
= s(x). ◀

▶ Corollary 13. (Proj A,OProj A) is a scheme.

J. Zhang 35:7

3 Formalisation details

3.1 Homogeneous Ideal
Let A be an R-algebra and an ι-grading A : ι → R-submodules of A, ideal.is_homogeneous
is the proposition of an ideal being homogeneous and homogeneous_ideal is the type of all
homogeneous ideals of A [17]. Note that, by this implementation, homogeneous ideals are
not literally ideals, for this reason, Proj A cannot be implemented as a subset of SpecA.

1 def ideal.is_homogeneous : Prop :=
2 ∀ (i : ι) {|r : A|}, r ∈ I → (direct_sum.decompose A r i : A) ∈ I
3
4 structure homogeneous_ideal extends submodule A A :=
5 (is_homogeneous' : ideal.is_homogeneous A to_submodule)
6
7 def homogeneous_ideal.to_ideal (I : homogeneous_ideal A) : ideal A :=

I.to_submodule
8
9 lemma homogeneous_ideal.is_homogeneous (I : homogeneous_ideal A) :

10 I.to_ideal.is_homogeneous A := I.is_homogeneous'
11
12 def homogeneous_ideal.irrelevant : homogeneous_ideal A :=
13 ⟨(graded_ring.proj_zero_ring_hom A).ker, omitted⟩

3.2 Homogeneous Localisation
If x is a multiplicatively closed subset of ring A, then the homogeneous localisation of A
at x is defined to be the subring of localised ring Ax consisting of elements of degree zero.
This ring is implemented as triples {(i, a, b) : ι × Ai × Ai | b ̸∈ x} under the equivalence
relation that (i1, a1, b1) ≈ (i2, a2, b2) def⇐⇒ a1

b1
= a2

b2
in Ax. The quotient approach gives

an induction principle via quotients, though the construction still uses classical reasoning,
many lemmas will be automatic because of the rich API in mathlib about quotient spaces
already; compared to the subring approach, one would need to write corresponding lemmas
manually by excessively invoking classical.some and classical.some_spec which are APIs
in Lean to extract the data and the corresponding proof from an existentially quantified
proposition. One potential benefit of the subring approach is that different propositions can
be specified for different multiplicative subsets to customize what properties and attributes
are to be made explicit; for example for localisation away from a single element, it is useful
to make powers of denominators explicit. But this would sacrifice a universal approach to
homogeneous localisation for different multiplicative subsets so that auxiliary lemmas would
have to be duplicated. To maintain consistency and prevent duplication, this paper will
adopt the approach via quotient space. Before writing this paper, the subring approach has
also been tested. Comparing the two approaches proves that there is no significant difference
in the smoothness of two formalisations but the quotient approach has a smaller code size.

1 variables {ι R A: Type*} [add_comm_monoid ι] [decidable_eq ι]
2 variables [comm_ring R] [comm_ring A] [algebra R A]
3 variables (A : ι → submodule R A) [graded_algebra A]
4 variables (x : submonoid A)
5
6 structure num_denom_same_deg :=
7 (deg : ι) (num denom : A deg) (denom_mem : (denom : A) ∈ x)

ITP 2023

35:8 Formalising the Proj Construction in Lean

8
9 def embedding (p : num_denom_same_deg A x) : localization x :=

10 localization.mk p.num ⟨p.denom, p.denom_mem⟩
11
12 def homogeneous_localization : Type* := quotient (setoid.ker $ embedding A x)

Then if (y : homogeneous_localization A x), its value, degree, numerator and denomin-
ator can all be defined by using induction/recursion principles for quotient spaces:

1 variable (y : homogeneous_localization A x)
2
3 def val : localization x :=
4 quotient.lift_on' y (num_denom_same_deg.embedding A x) $ λ _ _, id
5
6 def num : A := (quotient.out' y).num
7 def denom : A := (quotient.out' y).denom
8 def deg : ι := (quotient.out' y).deg
9

10 lemma denom_mem : y.denom ∈ x := (quotient.out' y).denom_mem
11 lemma num_mem_deg : y.num ∈ A f.deg := (quotient.out' y).num.2
12 lemma denom_mem_deg : y.denom ∈ A y.deg := (quotient.out' y).denom.2
13 lemma eq_num_div_denom : y.val = localization.mk y.num ⟨y.denom, y.denom_mem⟩ :=
14 omitted

3.3 The Zariski Topology
In this section A will be graded by N and the grading denoted by A. Proj A is formalised a
structure:

1 structure projective_spectrum :=
2 (as_homogeneous_ideal : homogeneous_ideal A)
3 (is_prime : as_homogeneous_ideal.to_ideal.is_prime)
4 (not_irrelevant_le : ¬(homogeneous_ideal.irrelevant A ≤ as_homogeneous_ideal))

After building more API around projective_spectrum, the Zariski topology with a basis
of basic open sets can be formalised as:

1 def zero_locus (s : set A) : set (projective_spectrum A) :=
2 {x | s ⊆ x.as_homogeneous_ideal}
3
4 instance zariski_topology : topological_space (projective_spectrum A) :=
5 topological_space.of_closed (set.range (zero_locus A)) omitted omitted omitted
6
7 def basic_open (r : A) : topological_space.opens (projective_spectrum A) :=
8 { val := { x | r /∈ x.as_homogeneous_ideal },
9 property := ⟨{r}, set.ext $ λ x, set.singleton_subset_iff.trans $ not_not.symm⟩ }

10
11 lemma is_topological_basis_basic_opens : topological_space.is_topological_basis
12 (set.range (λ (r : A), (basic_open A r : set (projective_spectrum A)))) :=
13 omitted

3.4 Locally Ringed Spaces
mathlib provides Top.presheaf.is_sheaf_iff_is_sheaf_comp to check the sheaf condition by
composing a forgetful functor and Top.subsheaf_to_Types to construct subsheaf of types

J. Zhang 35:9

satisfying a local predicate [6]; OSpec in mathlib adopted this approach [5], and structure
sheaf of Proj will also be constructed in this way. is_locally_fraction is a local predicate
expressing “being locally a homogeneous fraction” in Section 2.3:

1 def is_fraction {U : opens (Proj A)} (f : Π x : U, A0
x) : Prop :=

2 ∃ (i : N) (r s : A i), ∀ x : U, ∃ (s_nin : s.1 /∈ x.1.as_homogeneous_ideal),
3 f x = quotient.mk' ⟨i, r, s, s_nin⟩
4
5 def is_fraction_prelocal : prelocal_predicate (λ (x : Proj A), A0

x) :=
6 { pred := λ U f, is_fraction f,
7 res := by rintros V U i f ⟨j, r, s, w⟩; exact ⟨j, r, s, λ y, w (i y)⟩ }
8
9 def is_locally_fraction : local_predicate (λ (x : Proj A), A0

x) :=
10 (is_fraction_prelocal A).sheafify
11
12 def structure_sheaf_in_Type : sheaf Type* (Proj A):=
13 subsheaf_to_Types (is_locally_fraction A)

The presheaf of rings is also defined as structure_presheaf_in_CommRing and it is checked
that composition with the forgetful functor is naturally isomorphic to the underlying presheaf
of structure_sheaf_in_Type which implies that structure_presheaf_in_CommRing satisfies the
sheaf condition as well by using Top.presheaf.is_sheaf_iff_is_sheaf_comp.

1 def structure_presheaf_in_CommRing : presheaf CommRing (Proj A) :=
2 { obj := λ U, CommRing.of ((structure_sheaf_in_Type A).1.obj U), ..omitted }
3
4 def structure_presheaf_comp_forget :
5 structure_presheaf_in_CommRing A >>> (forget CommRing) ∼=
6 (structure_sheaf_in_Type A).1 :=
7 omitted
8
9 def Proj.structure_sheaf : sheaf CommRing (Proj A) :=

10 ⟨structure_presheaf_in_CommRing A, (is_sheaf_iff_is_sheaf_comp _ _).mpr
11 (is_sheaf_of_iso (structure_presheaf_comp_forget A).symm

(structure_sheaf_in_Type A).cond)⟩

Then following Theorem 7, stalk_to_fiber_ring_hom is a family of ring homomorphism∏
x OProj A,x → A0

x obtained by universal property of colimit with its right inverse as a family
of function homogeneous_localization_to_stalk:

1 def stalk_to_fiber_ring_hom (x : Proj A) :
2 (Proj.structure_sheaf A).presheaf.stalk x −→ CommRing.of A0

x :=
3 limits.colimit.desc (((open_nhds.inclusion x).op) >>> (Proj.structure_sheaf A).1)
4 omitted
5
6 def section_in_basic_open (x : Proj A) :
7 Π (f : A0

x), (Proj.structure_sheaf A).1.obj (op (Proj.basic_open A f.denom)) :=
8 λ f, ⟨λ y, quotient.mk' ⟨_, ⟨f.num, _⟩, ⟨f.denom,_⟩, _⟩, _⟩
9

10 def homogeneous_localization_to_stalk (x : Proj A) :
11 A0

x → (Proj.structure_sheaf A).presheaf.stalk x :=
12 λ f, (Proj.structure_sheaf A).presheaf.germ
13 (⟨x, homogeneous_localization.mem_basic_open _ x f⟩ : Proj.basic_open _ f.denom)
14 (section_in_basic_open _ x f)
15

ITP 2023

35:10 Formalising the Proj Construction in Lean

16 def Proj.stalk_iso' (x : Proj A) :
17 (Proj.structure_sheaf A).presheaf.stalk x ≃+* CommRing.of A0

x :=
18 ring_equiv.of_bijective (stalk_to_fiber_ring_hom _ x)
19 ⟨omitted, function.surjective_iff_has_right_inverse.mpr
20 ⟨homogeneous_localization_to_stalk A x, omitted⟩⟩

Hence establishing that Proj A is a locally ringed space:

1 def Proj.to_LocallyRingedSpace : LocallyRingedSpace :=
2 { local_ring := λ x, @@ring_equiv.local_ring _
3 (show local_ring A0

x , from infer_instance) _
4 (Proj.stalk_iso' A x).symm,
5 ..(Proj.to_SheafedSpace A) }

3.5 Affine cover

1 variables {f : A} {m : N} (f_deg : f ∈ A m) (x : Proj| D(f))

Spec.T and Proj.T denote the topological space associated with each locally ringed space. Let
0 < m ∈ N and f ∈ Am and x ∈ D(f), by following Theorem 9, the continuous function ϕ

is formalised as Proj_iso_Spec_Top_component.to_Spec where continuity is checked on basic
open sets:

1 namespace Proj_iso_Spec_Top_component
2 namespace to_Spec
3
4 def carrier : ideal A0

f :=
5 ideal.comap (algebra_map A0

f Af)
6 (ideal.span $ algebra_map A (away f) '' x.val.as_homogeneous_ideal)
7
8 def to_fun : Proj.T| D(f) → Spec.T A0

f :=
9 λ x, ⟨carrier A x, omitted /-a proof for primeness-/⟩

10
11 end to_Spec
12
13 def to_Spec (f : A) : Proj.T| D(f) −→ Spec.T Af :=
14 { to_fun := to_Spec.to_fun A f,
15 continuous_to_fun := omitted }

Similarly, ψ is defined as a function first, then the fact that ϕ and ψ are inverses to each other
is formalised next as to_Spec_from_Spec and from_Spec_to_Spec respectively. The continuity
of ψ hence follows.

1 namespace from_Spec
2
3 def carrier (q : Spec.T A0

f) : set A :=
4 {a | ∀ i, (quotient.mk' ⟨_, ⟨proj A i a ^ m, _⟩, ⟨f^i, _⟩, _⟩ : A0

f) ∈ q.1}
5
6 def carrier.as_ideal : ideal A := { carrier := carrier f_deg q, ..omitted }
7 def carrier.as_homogeneous_ideal : homogeneous_ideal A :=
8 ⟨carrier.as_ideal f_deg hm q, omitted⟩
9

10 def to_fun : Spec.T A0
f → Proj.T| D(f) :=

11 λ q, ⟨⟨carrier.as_homogeneous_ideal f_deg hm q, omitted, omitted⟩, omitted⟩

J. Zhang 35:11

12
13 end from_Spec
14
15 lemma to_Spec_from_Spec : to_Spec.to_fun A f (from_Spec.to_fun f_deg hm x) = x :=
16 omitted
17 lemma from_Spec_to_Spec : from_Spec.to_fun f_deg hm (to_Spec.to_fun A f x) = x :=
18 omitted
19
20 def from_Spec : Spec.T A0

f −→ Proj.T| D(f) :=
21 { to_fun := from_Spec.to_fun f_deg hm,
22 continuous_to_fun := omitted }
23
24 end Proj_iso_Spec_Top_component

The homeomorphism between D(f) and SpecA0
f is achieved by combining ϕ and ψ together.

1 def Proj_iso_Spec_Top_component:
2 Proj.T| D(f) ∼= Spec.T (A0

f) :=
3 { hom := Proj_iso_Spec_Top_component.to_Spec A f,
4 inv := Proj_iso_Spec_Top_component.from_Spec hm f_deg,
5 ..omitted /-composition being identity-/ }

Then by following Lemma 11, β is formalised as
Proj_iso_Spec_Sheaf_component.from_Spec.

1 namespace Proj_iso_Spec_Sheaf_component
2 namespace from_Spec

Let V be an open set in SpecA0
f and s be a section on V, then let y be an element of ϕ−1(V),

1 variables (V : (opens (Spec A0
f))op) (s : (Spec A0

f).presheaf.obj V)
2 variables (y : ((@opens.open_embedding Proj.T D(f)).is_open_map.functor.op.obj
3 ((opens.map (Proj_iso_Spec_Top_component hm f_deg).hom).op.obj V)).unop)
4 -- This is but a verbose way of spelling y is in ϕ−1(V) for type checking reasons.

one can evaluate s(ϕ(y)) and represent the result as a fraction a
b where a = na

fia and b = nb

fib
.

1 -- Corresponding to evaluating a section in Lemma 11.s(ϕ(y))
2 def data : structure_sheaf.localizations A0

f

3 ((Proj_iso_Spec_Top_component hm f_deg).hom ⟨y.1, _⟩) :=
4 s.1 ⟨_, _⟩
5
6 -- s(ϕ(y)) = a

b
, this is a, see Lemma 11.

7 def data.num : A0
f := omitted

8
9 -- s(ϕ(y)) = a

b
, this is b, see Lemma 11

10 def data.denom : A0
f := omitted

Then naf
ib

nbfia is a homogeneous fraction in A0
y. The function thus defined is indeed a ring

homomorphism and locally a fraction. This sheaf morphism is recorded as from_Spec where
its naturality is checked automatically by Lean’s simplifier.

1 -- s 7→
(
y 7→ nafib/nbfia

)
, this is naf

ib , see Lemma 11.
2 def num : A :=
3 (data.num _ hm f_deg s y).num * (data.denom _ hm f_deg s y).denom
4
5 -- s 7→

(
y 7→ nafib/nbfia

)
, this is nbf

ia , see Lemma 11.

ITP 2023

35:12 Formalising the Proj Construction in Lean

6 def denom : A :=
7 (data.denom _ hm f_deg s y).num * (data.num _ hm f_deg s y).denom
8
9 def bmk : A0

y :=
10 quotient.mk'
11 { deg := (data.num _ hm f_deg s y).deg + (data.denom _ hm f_deg s y).deg,
12 num := ⟨num hm f_deg s y, _⟩,
13 denom := ⟨denom hm f_deg s y, _⟩,
14 denom_mem := omitted }
15
16 def to_fun.aux : ((Proj_iso_Spec_Top_component hm f_deg).hom _* (Proj|

D(f)).presheaf).obj V :=
17 ⟨bmk hm f_deg V s, omitted /-being locally a homogeneous fraction-/⟩
18
19 def to_fun : (Spec A0

f).presheaf.obj V −→
20 ((Proj_iso_Spec_Top_component hm f_deg).hom _* (Proj| D(f)).presheaf).obj V :=
21 { to_fun := λ s, to_fun.aux A hm f_deg V s, ..omitted /-ring homomorphism

proofs-/ }
22
23 end from_Spec
24
25 def from_Spec : (Spec A0

f).presheaf −→
26 (Proj_iso_Spec_Top_component hm f_deg).hom _* (Proj| D(f)).presheaf :=
27 { app := λ V, from_Spec.to_fun A hm f_deg V,
28 naturality' := λ _ _ _, by { ext1, simp } }
29
30 end Proj_iso_Spec_Sheaf_component

By following Lemma 10, α is formalised as Proj_iso_Spec_Sheaf_component.to_Spec: let
U be an open set in SpecA0

f and s a section in ϕ∗(OProj |D(f))(U), then let y be any point
in U ,

1 namespace Proj_iso_Spec_Sheaf_component
2 namespace to_Spec
3 variable (U : (opens (Spec.T A0

f))op)
4 variable (s : ((Proj_iso_Spec_Top_component hm f_deg).hom _*
5 (Proj| D(f))).presheaf.obj U) -- (ϕ∗(OProj |D(f)))(U)

After evaluating s(ψ(y)), the result can be represented as n
d where n, d both have degree

i. Then ndm−1

fi and dm

fi are both homogeneous fractions of the same degree and hence
(ndm−1/fi)/(dm/fi) is an element of the twice localised ring

(
A0
f

)
y
. The function thus defined

is a ring homomorphism and locally a fraction. This sheaf morphism is recorded as to_Spec
where its naturality is checked automatically by Lean’s simplifier.

1 -- evaluating a section, this is s(ψ(y))
2 def hl (y : unop U) : homogeneous_localization A _ :=
3 s.1 ⟨((Proj_iso_Spec_Top_component hm f_deg).inv y.1).1, _⟩
4
5 -- s 7→

(
x 7→ ndm−1/fi/dm/fi

)
where n, d ∈ Ai, this is ndm−1

/fi, see Lemma 10.
6 def num (y : unop U) : A0

f :=
7 quotient.mk'
8 { deg := m * (hl hm f_deg s y).deg,
9 num := ⟨(hl hm f_deg s y).num * (hl hm f_deg s y).denom ^ m.pred, _⟩,

10 denom := ⟨f^(hl hm f_deg s y).deg, _⟩,

J. Zhang 35:13

11 denom_mem := _ }
12
13 def denom (y : unop U) : A0

f :=
14 quotient.mk'
15 { deg := m * (hl hm f_deg s y).deg,
16 num := ⟨(hl hm f_deg s y).denom ^ m, _⟩,
17 denom := ⟨f ^ (hl hm f_deg s y).deg,_⟩,
18 denom_mem := _ }
19
20 def fmk (y : unop U) : (A0

f)y :=
21 mk (num hm f_deg s y) ⟨denom hm f_deg s y, _⟩
22
23 def to_fun :
24 ((Proj_iso_Spec_Top_component hm f_deg).hom _* (Proj| D(f))).obj U −→
25 (Spec A0

f).presheaf.obj U :=
26 { to_fun := λ s, ⟨λ y, fmk hm f_deg s y, omitted /-proof of being locally a

fraction-/⟩, ..omitted /-proof of being a ring homomorphism-/},
27 end to_Spec
28
29 def to_Spec :
30 (Proj_iso_Spec_Top_component hm f_deg).hom _* (Proj| D(f)).presheaf −→
31 (Spec A0

f).presheaf :=
32 { app := λ U, to_Spec.to_fun hm f_deg U,
33 naturality' := λ U V subset1, by { ext1, simp } }
34 end Proj_iso_Spec_Sheaf_component

After checking from_Spec (β) and to_Spec (α) compose to identity, one establishes that
(D(f),OProj A) is isomorphic (SpecA0

f ,OSpecA0
f
) as locally ringed spaces. Hence Proj A with

structure sheaf ,OProj A is a scheme.

1 def Sheaf_component:
2 (Proj_iso_Spec_Top_component hm f_deg).hom _* (Proj| D(f)).presheaf ∼=
3 (Spec A0

f).presheaf :=
4 { hom := Proj_iso_Spec_Sheaf_component.to_Spec A hm f_deg,
5 inv := Proj_iso_Spec_Sheaf_component.from_Spec A hm f_deg,
6 ..omitted /-composition is identity-/ }
7
8 def iso:
9 (Proj| D(f)) ∼= Spec A0

f :=
10 let H : (Proj| D(f)).to_PresheafedSpace ∼= (Spec A0

f).to_PresheafedSpace :=
11 PresheafedSpace.iso_of_components
12 (Proj_iso_Spec_Top_component hm f_deg) (Sheaf_component A f_deg hm) in
13 LocallyRingedSpace.iso_of_SheafedSpace_iso
14 { hom := H.1, inv := H.2, hom_inv_id' := H.3, inv_hom_id' := H.4 }
15
16 def Proj.to_Scheme : Scheme :=
17 { local_affine := omitted,..Proj }

This concludes the formalisation of the Proj construction for any N-graded rings. In [17],
R[X0, . . . , Xn] is endowed with a grading by its R-submodule of homogeneous polynomials
of fixed degrees so that projective n-space over R can be formalised as Proj.to_Scheme (λ
i, mv_polynomial.homogeneous_submodule (fin (n + 1)) R i); similarly, once the fact that
quotient operation induces a grading on the quotiented object is formalised, projective
varieties can also be defined using Proj.to_Scheme.

ITP 2023

35:14 Formalising the Proj Construction in Lean

3.6 Reflections on the formalisation
An example of a calculation

Most calculations in proofs of Theorem 9 and Lemmas 10 and 11 are omitted. I present
the details of verifying βU preserves multiplication to showcase the flavour of calculations
involved. Verifying that βU preserving zero and one is similar but slightly simpler while
preservation of addition is more cumbersome. Since α only involves one layer of fractions,
calculations are not as long.

Let x, y be two sections, the aim is to show βU (xy) = βU (x)βU (y), i.e. for all z ∈ ϕ−1(U),
βU (xy)(z) = βU (x)(z)βU (y)(z).

1 lemma bmk_mul (x y : (Spec A0
f).presheaf.obj V) :

2 bmk hm f_deg V (x * y) = bmk hm f_deg V x * bmk hm f_deg V y :=
3 begin
4 ext1 z,

by writing x(ϕ(z)) as ax/fix

bx/fjx , y(ϕ(z)) as ay/f
iy

by/f
jy and (xy)(ϕ(z)) = axy/f

ixy

bxy/f
jxy , one deduces that

axay/f
ix+iy

bxby/f
jx+jy = axy/f

ixy

bxy/f
jxy , by definition of equality in localised ring, it implies that, there is some

c
f l such that

axaybxyc

f ix+iy+jxy+l = axybxbyc

f ixy+jx+jy+l .

1 have mul_eq := data.eq_num_div_denom hm f_deg (x * y) z,
2 . . . -- simplification
3 erw is_localization.eq at mul_eq,
4 obtain ⟨⟨C, hC⟩, mul_eq⟩ := mul_eq, -- C is the c/fl above.
5 . . .

6
7 -- c ̸∈ z

8 have C_not_mem : C.num /∈ z.1.as_homogeneous_ideal := omitted,
9

10 -- setting up notations.
11 set a_xy := _, set i_xy := _, set b_xy := _, set j_xy := _,
12 set a_x := _, set i_x := _, set b_x := _, set j_x := _,
13 set a_y := _, set i_y := _, set b_y := _, set j_y := _,
14 set l := _,
15 . . .

By definition of equality in localisation again, there exists some n1 ∈ N such that

axaybxycf
ixy+jx+jy+l+n1 = axybxbycf

ix+iy+jxy+l+n1 (1)

1 obtain ⟨⟨_, ⟨n1, rfl⟩⟩, mul_eq⟩ := mul_eq,

The aim is to show

axyf
jxy

bxyf ix
= axf

jx

bxf ix
ayf

jy

byf iy
,

by Equation (1) and definition of equality in localised ring, cf l+n1 verifies this equality.

J. Zhang 35:15

1 suffices : (mk (a_xy * f ^ j_xy) ⟨b_xy * f ^ i_xy, _⟩ : localization.at_prime _)
2 = mk (a_x * f ^ j_x) ⟨b_x * f ^ i_x, _⟩ * mk (a_y * f ^ j_y) ⟨b_y * f ^ i_y, _⟩

:= omitted,
3 . . .

4 refine ⟨⟨C.num * f^(l + n1), _⟩, _⟩,
5 . . .

6 end

In totality, this is about ~100 lines of code by following essentially three lines of calculation
when done with pen-and-paper. Admittedly, the above code is not the most optimal, but the
magnitude is not greatly exaggerated. Strictly speaking, setting 13 variable names takes a
lot of code and is not necessary, but with readable variable names, rewriting is made much
simpler in the latter stage of this calculation. I think the following factors contribute to the
differences between formalisation and a pen-and-paper-proof:

Every element of a localised ring can be written as a fraction of a numerator and a
denominator is a corollary of the construction but does not follow straightly from its
definition. When written on a paper, it is often read “let a

b ∈ Ap” while in Lean it is
becomes intro x, set x_denom := . . ., set x_num := . . ., have eq1 : x.val = x_num /
x_denom := This problem is more noticeable when rewrite [eq1] is unsound. Thus,
many extra steps are required to set up the proof.

Elements of a (homogeneously) localised ring contain not only data, but proofs as well.
For example, the denominator of an element is a term ⟨d, some_proof⟩ of a subtype. This
makes rewrite less smooth to use, for equalities are often of the form h : d = d', thus
rewrite [h] is type theoretically unsound.

Terms of localization x or homogeneous_localization A x have to contain proofs to
make the definitions correct, thus constructing any term of these types requires many
proofs or disproofs of membership. Thus, a formalised calculation cannot be as liberal as
a pen-and-paper-proof when come to whether the terms are well-defined. The situation
can be partially mitigated by writing a simple tactic to try lemmas involving degrees of
an element in a graded object, for example automatically splitting a * b ∈ A (m + n) to
a ∈ A (m + n) to a ∈ A m and b ∈ A n and try recursively try to solve both. However,
if non-definitional equalities is involved, tactics would be less helpful, when the subterms
are in the wrong order, one needs to manually re-organise the subterms into its correct
order to use the customary tactic.

Not many high powered tactics are available for localised ring, for example ring will be
able to solve x * y = y * x and much more complicated goal in a commutative ring, but
ring cannot (and should not be able to) solve (a / b * c / d : localization _) = c /
b * a / d.

The first three bullet points are essentially all because formalisation requires more rigour
than that of pen-and-paper proofs; whether the requirement of extra rigour is beneficial
is another question and not in the scope of this paper. For the fourth bullet point, it is
definitely helpful to have a tactic automating many proofs, the catch is that equality in
localised ring is existentially quantified – a

b = a′

b′ if and only if ab′c = a′bc for some c in
a multiplicative subset, while proving ab′c = a′bc is easily mechanized by the ring tactic,
providing c to Lean is certainly hard to be made trivial by any tactic soon. Thus, a tactic
can only do so much without human input for now.

ITP 2023

35:16 Formalising the Proj Construction in Lean

On propositional equality

Originally, I expected propositional equalities that are not equal by definition such as
ϕ(ψ(y)) = y in Theorem 9 would pose a challenge, but the difficulty is less severe: indeed,
I only need to prove some redundant lemma like ϕ(ψ(y)) is in some open sets that clearly
contains y; the reason is that in this project I did not compare algebraic structures depending
on propositional equality, i.e. Oy and Oϕ(ψ(y)); but foreseeably, this difficulty will come back
when one starts to develop the theory of projective variety furtherer.

4 Conclusion

Since a large part of modern algebraic geometry depends on the Proj construction, much
potential future research is possible: calculating cohomology of projective spaces; defining
projective morphisms; Serre’s twisting sheaves to name a few. Other approaches to the
Proj construction also exist, for example, by gluing a family of schemes together; however,
since there is no other formalisation of the Proj construction, I could not compare different
approaches or compare capabilities of formalising modern algebraic geometry of different
theorem provers. Thus I would like to conclude this paper with an invitation/challenge –
state and formalise something involving more than affine schemes in your preferred theorem
prover; for the only way to know which, if any, theorem provers handle modern mathematics
satisfactorily is to actually formalise more modern mathematics.

References
1 Anthony Bordg, Lawrence Paulson, and Wenda Li. Simple type theory is not too simple:

Grothendieck’s schemes without dependent types. Experimental Mathematics, 31(2):364–382,
2022. doi:10.1080/10586458.2022.2062073.

2 Kevin Buzzard, Chris Hughes, Kenny Lau, Amelia Livingston, Ramon Fernández Mir, and
Scott Morrison. Schemes in Lean. Experimental Mathematics, 31(2):355–363, 2022.

3 Laurent Chicli. Une formalisation des faisceaux et des schémas affines en théorie des types
avec Coq. PhD thesis, INRIA, 2001.

4 Wei-Liang Chow. On compact complex analytic varieties. American Journal of Mathematics,
71(4):893–914, 1949. URL: http://www.jstor.org/stable/2372375.

5 Mathlib Contributors. Lean mathlib. https://github.com/leanprover-community/mathlib,
2022.

6 Mathlib Contributors. Mathlib documentation. https://leanprover-community.github.io/
mathlib_docs, 2023.

7 Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and Jakob von Raumer.
The Lean theorem prover (system description). In International Conference on Automated
Deduction, pages 378–388. Springer, 2015.

8 Roger Godement. Topologie algébrique et théorie des faisceaux. Publications de, 1, 1958.
9 Robin Hartshorne. Graduate texts in mathematics. Algebraic Geometry, 52, 1977.

10 Saunders MacLane and Ieke Moerdijk. Sheaves in geometry and logic: A first introduction to
topos theory. Springer Science & Business Media, 2012.

11 Anders Mörtberg and Max Zeuner. Towards a formalization of affine schemes in cubical agda.
12 Amnon Neeman. Algebraic and analytic geometry. Cambridge University Press, 2007.
13 Jean-Pierre Serre. Géométrie analytique et géométrie algébrique. Ann. Inst. Fourier, VI

(1955–56), pages 1–42, 1955.
14 The Stacks Project Authors. Stacks Project. https://stacks.math.columbia.edu, 2018.
15 Ravi Vakil. The rising sea: Foundations of algebraic geometry. 2017. URL http://virtualmath1.

stanford. edu/˜ vakil/216blog, 24:29, 2017.

https://doi.org/10.1080/10586458.2022.2062073
http://www.jstor.org/stable/2372375
https://github.com/leanprover-community/mathlib
https://leanprover-community.github.io/mathlib_docs
https://leanprover-community.github.io/mathlib_docs
https://stacks.math.columbia.edu

J. Zhang 35:17

16 Vladimir Voevodsky, Benedikt Ahrens, Daniel Grayson, et al. UniMath — a computer-
checked library of univalent mathematics. available at http://unimath.org. URL: https:
//github.com/UniMath/UniMath.

17 Eric Wieser and Jujian Zhang. Graded rings in Lean’s dependent type theory. In International
Conference on Intelligent Computer Mathematics, pages 122–137. Springer, 2022.

ITP 2023

http://unimath.org
https://github.com/UniMath/UniMath
https://github.com/UniMath/UniMath

Fermat’s Last Theorem for Regular Primes
Alex J. Best # Ñ

King’s College London, UK

Christopher Birkbeck # Ñ

University of East Anglia, Norwich, UK

Riccardo Brasca # Ñ

Université Paris Cité, France

Eric Rodriguez Boidi #

King’s College London, UK

Abstract
We formalise the proof of the first case of Fermat’s Last Theorem for regular primes using the Lean
theorem prover and its mathematical library mathlib. This is an important 19th century result that
motivated the development of modern algebraic number theory. Besides explaining the mathematics
behind this result, we analyze in this paper the difficulties we faced in the formalisation process and
how we solved them. For example, we had to deal with a diamond about characteristic zero fields
and problems arising from multiple nested coercions related to number fields. We also explain how
we integrated our work to mathlib.

2012 ACM Subject Classification General and reference → Verification; Computing methodologies
→ Representation of mathematical objects; Mathematics of computing → Mathematical software

Keywords and phrases Fermat’s Last Theorem, Cyclotomic fields, Interactive theorem proving, Lean

Digital Object Identifier 10.4230/LIPIcs.ITP.2023.36

Category Short Paper

Supplementary Material Software: https://github.com/leanprover-community/flt-regular
archived at swh:1:dir:c19341f16f36abca8203dcb2b5a8dbbbc1864b06

Funding Alex J. Best: AB. was supported by NWO Vidi grant 639.032.613.

Acknowledgements We thank the mathlib community for a lot of useful discussions around our
project. We especially thank Ruben Van de Velde for having formalised in Lean a proof of Fermat’s
Last Theorem in the case n = 3.

1 Introduction

Fermat’s Last Theorem states that for n ≥ 3, the equation xn +yn = zn has no solutions with
x, y, z ∈ Z and xyz ̸= 0. This question remained unsolved for 300 years until the eventual
proof of this was completed by Andrew Wiles and Richard Taylor [12, 10] in 1994. This proof
requires a great deal of mathematical machinery in order to study deep connections between
number theory, algebra, geometry and analysis and its formalisation is currently out of reach.
However, certain special cases of this theorem were already known long before Wiles’ work.
First of all, it’s easy to prove that we can restrict to the case where the exponent n is an
odd prime p. Moreover, Kummer proved in 1847 that

▶ Theorem 1 (Kummer). Let p be a regular (odd) prime. Then xp + yp = zp has no solutions
with x, y, z ∈ Z and xyz ̸= 0.

Here regular means that p does not divide the class number of the cyclotomic field Q(ζp),
where ζp is a primitive p-th root of unity (i.e. ζp

p = 1 and ζk
p ̸= 1 for any 0 < k < p). For

© Alex J. Best, Christopher Birkbeck, Riccardo Brasca, and Eric Rodriguez Boidi;
licensed under Creative Commons License CC-BY 4.0

14th International Conference on Interactive Theorem Proving (ITP 2023).
Editors: Adam Naumowicz and René Thiemann; Article No. 36; pp. 36:1–36:8

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:alex.j.best@gmail.com
https://alexjbest.github.io/
https://orcid.org/0000-0002-5741-674X
mailto:c.birkbeck@uea.ac.uk
https://cdbirkbeck.wixsite.com/website
https://orcid.org/0000-0002-7546-9028
mailto:riccardo.brasca@gmail.com
https://webusers.imj-prg.fr/~riccardo.brasca/
https://orcid.org/0000-0002-0491-7241
mailto:eric.rodriguez-boidi@kcl.ac.uk
https://orcid.org/0000-0002-0507-627X
https://doi.org/10.4230/LIPIcs.ITP.2023.36
https://github.com/leanprover-community/flt-regular
https://archive.softwareheritage.org/swh:1:dir:c19341f16f36abca8203dcb2b5a8dbbbc1864b06;origin=https://github.com/leanprover-community/flt-regular;visit=swh:1:snp:da8ed9a4408419d0ac42e6439661db3eca6b80eb;anchor=swh:1:rev:9b939fa7d985da6d84450e9013e5e811b2bd172f
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

36:2 Fermat’s Last Theorem for Regular Primes

example, the only irregular primes less that 100 are 37, 59 and 67. It is worth noting that
currently there is no proof that there are infinitely many regular primes, but it is expected
that roughly 60% of primes are regular.

In this short paper we report on ongoing work, the flt_regular project, to formalise
Kummer’s proof using the Lean theorem prover [6]. We build upon the mathlib library [7] is
a large library of formalized mathematics for Lean. This library contains, for example, the
definition of a number field and that of its ring of integers. More specifically for this work,
the definitions and basic lemmas about class groups and class numbers have already been
formalised [3], including that the class number of a number field is finite, a nontrivial fact
that is required to even define regular primes properly.

Kummer’s proof can be split into two cases, depending on if p is allowed to divide xyz in
the theorem, or not. These are known in the field as the first case and the second case:

▶ Theorem 2 (Case I). Let p be a regular (odd) prime. Then xp + yp = zp has no solutions
with x, y, z ∈ Z and gcd(xyz, p) = 1.

Case II then changes gcd(xyz, p) = 1 to gcd(xyz, p) = p, and together the two cases
imply Kummer’s theorem. While the proofs of the first and second case are broadly similar,
and use many of the same techniques, results, and ideas, the proof of the second case uses
more delicate results about units in cyclotomic fields (including one known as Kummer’s
lemma), and is therefore more difficult to formalise, even though many underlying results
are the same. The formalisation of the second case is work in progress, so we will focus on
the first case from now on.

These results are by now viewed as classical results in algebraic number theory and are
covered in a number of works, we have followed the standard reference [11] for the most part.
We also made use of a blueprint, an informal document included with the project covering
the formalization targets in sufficient detail that the formalization progress could be tracked
against it.

For large parts of this project the formalisation process and the process of adding the
results to mathlib were done almost in parallel, see Section 4 below for more details.

2 Cyclotomic fields

The formalisation begins with the definition of cyclotomic fields and of more general of
cyclotomic extensions. This is necessary to even define regular primes, and also appear in
the first step of the high level overview of Kummer’s proof. The basic mathematical idea is
to work in the field Q(ζp), that is the field obtained by adding to Q a primitive p-th root of
unity (in C say). In such a field the left-hand-side of Fermat’s equation can be written as

xp + yp = (x + y)(x + ζpy) · · · (x + yζp−1
p).

Using this, one can deduce information about the rational, and integral, solutions of Fermat’s
equation. The arithmetic properties of Q(ζp) (such as how integral elements decompose as
products of prime elements) are much more complicated than those of Q. Studying such
questions is the main subject of algebraic number theory. Fortunately for us, mathlib already
contains many of the basic definitions the we will need, such as algebras, number fields, rings
of integers and class groups. Unfortunately, mathlib did not contain examples of non-trivial
number fields, so these definitions also served as a good test of the existing API.

Let A and B be commutative rings. For an A-algebra B and a set S of positive natural
numbers, we say that B is a S-cyclotomic extension, if for every n ∈ S there exists a primitive
n-th root of unity in B and moreover that B is generated over A by the n-th roots of unity
(for n ∈ S). We hence define a class is_cyclotomic_extension, now part of mathlib.

A. J. Best, C. Birkbeck, R. Brasca, and E. R. Boidi 36:3

@[mk_iff] class is_cyclotomic_extension : Prop :=
(exists_prim_root {n : N+} (ha : n ∈ S) : ∃ r : B, is_primitive_root r n)
(adjoin_roots : ∀ (x : B), x ∈ adjoin A { b : B | ∃ n : N+, n ∈ S ∧

b ^ (n : N) = 1 })

The choice of working with n in N+ rather than in N is motivated by the fact that, even
if it requires us to insert certain coercions (for example to say that n is prime), the 0-th
cyclotomic extension is not well behaved and theorems have a neater statement when that
possibility is excluded.

We then define cyclotomic_field n K, where n is as above and K a field, and we
prove that the corresponding field extension is an instance of the is_cyclotomic_extension
class. To be precise, we define cyclotomic_field n K as the splitting field over K of the
n-cyclotomic polynomial.

@[derive [field, algebra K, inhabited]]
def cyclotomic_field : Type w := (cyclotomic n K).splitting_field

Here, the derive attribute makes the field, algebra K and inhabited instances from
splitting_field apply to cyclotomic_field. The is_cyclotomic_extension instance
must then be proved manually.

Mathematically, using a predicate in the way we use the class is_cyclotomic_extension
is uncommon, as one usually only works with the specific example cyclotomic_field n K
(and indeed all n-th cyclotomic extensions of a field K are isomorphic if n ̸= 0 in K), but
having a characteristic predicate is essential in the formalisation process, for example to
state that subextensions of a given cyclotomic extension generated by roots of unity are
still cyclotomic, and to be able to apply lemmas to them. We prove several results about
cyclotomic extensions and importantly, we prove that if S is finite and K is a number field,
then any S-cyclotomic extension of K is again a number field. This allows us to define the
usual cyclotomic number fields, such as Q(ζn).

After the setup defining such fields is done, the main task is then to prove that the ring
of integers of Q(ζn) is Z[ζn]. In general, for a field K, its ring of integers OK is the set of
elements of K that are roots of a monic polynomial with coefficients in Z. In particular,
the inclusion Z[ζn] ⊆ OQ[ζn] is clear, but equality is a nontrivial result that is specific to
cyclotomic extensions, and we proved it only when n = pk is a power of a prime. Proving
only this case is sufficient for us, indeed to prove Kummer’s theorem only the case n = p is
needed, and in addition the general case makes use of this result for the prime-power case.
This lemma is therefore a natural candidate for inclusion in a library that aims to include
results in as much generality as possible, i.e. mathlib in the case of Lean code. To prove
that OQ(ζ

pk) = Z[ζpk] we had to add a considerable amount of mathematics to mathlib, and
this was the first significant milestone of the project. This required expanding the existing
API for the norm and trace of elements of a number field, defining the discriminant of a
number field and proving results relating discriminants to bases of rings of integers, etc.,
all material that would appear in a first course on algebraic number theory. Amongst the
required results, we proved that, for k > 0 and p > 2 a prime, the discriminant of Q(ζpk)
is (−1)φ(pk)/2ppk−1((p−1)k−1), with φ the Euler’s totient function. Moreover, for p = 2 and
k > 1 the same formula holds. In mathlib we can use the fact that as natural numbers, we
have by convention, that 1/2 = 0 and 0 − 1 = 0. This allows us to give a simple formula for
the discriminant that applies in all cases:

ITP 2023

36:4 Fermat’s Last Theorem for Regular Primes

lemma discr_prime_pow {p : N+} {k : N} {K L : Type*} {ζ : L} [field K]
[field L] [algebra K L] [hcycl : is_cyclotomic_extension {p ^ k} K L]
[hp : fact (p : N).prime] (hζ : is_primitive_root ζ ↑(p ^ k))
(hirr : irreducible (cyclotomic (↑(p ^ k) : N) K)) :
discr K (hζ.power_basis K).basis = (-1) ^ (((p ^ k : N).totient) / 2) *

p ^ ((p : N) ^ (k - 1) * ((p - 1) * k - 1))

Note that here K and L are only assumed to be fields (so, for example, they could have
characteristic p), which is why we need the additional assumptions, that hold if K = Q and
L = Q(ζpk).

3 About the proof of case I

One issue that we often encountered came from a typeclass diamond resulting from multiple
inheritance paths when working with a field of characteristic zero (see [1] for more on
how this sort of issue arises and is resolved). Our issue arises as cyclotomic_field n K
is endowed with the instance algebra K (cyclotomic_field n K), but if K = Q, then
there is another instance algebra Q (cyclotomic_field n Q), coming from the fact that
cyclotomic_field n Q is a characteristic zero field, and hence a Q-algebra. These two
Q-algebra structures were propositionally, but not definitionally, equal. This caused some
friction when using results stated via the more general instance but Lean finds the one
resulting from characteristic zero. However, we were able to resolve this issue by changing
the way that splitting_field is defined.

Previously, these instances were lifted from a base field to the splitting field by direct
induction, and this gave us no definitional control of the field of this structure (specifically, the
qsmul and rat_cast fields in field (splitting_field f)). The fix for this was to lift every
field individually and put them together later, so that we can control these crucial definitional
equalities. As we are lifting to a quotient, we need to take care that these operations are well
defined, and this led to the introduction of distrib_smul: a typeclass carrying the action
of one type on another weak enough that the “obvious” map Q × K → K satisfies it, but
strong enough to guarantee that lifting this to the map Q × K[X]/(p(X)) → K[X]/(p(X))
is well defined.

Having developed the cyclotomic field framework we then moved to proving the technical
number theoretic lemmas which are required in the proof of case I. These involve the careful
study of units in the rings of integers of cyclotomic fields as well as certain ideals in these
rings. Before describing the necessary lemmas, let us highlight a recurring issue when dealing
with units.

Consider the following situation. Let R be an integral domain and K its field of fractions.
Given a unit r ∈ R×, we may want to think of r as an element of R×, R or K. In mathlib
these are all different types so we need coercions maps between them. Now for r as an
element of R× and K, we can easily work with its inverse, i.e, we can consider r−1, but
this is not possible when considered as an element R, since R is only a ring, so in general
elements don’t have a multiplicative inverse, but when coerced one step further to elements
of the field K we are once again able to define a well defined inverse function. These issues
arise often when working with ideals, which are submodules of R but when the proofs require
one to use units in several places. Note that it is not clear how to set up simp lemmas that
normalise elements, since sometimes we want to move from R to K and sometimes from R

to R×. The solution to this is to have simple lemmas relating the images of r−1 in R and K.

A. J. Best, C. Birkbeck, R. Brasca, and E. R. Boidi 36:5

lemma coe_coe_inv (u : R×) : ((u : R) : K)−1 = ((u−1 : R×) : R)

As an example of where this is used we have the following lemma, where K will denote
Q(ζp) and R = Z[ζp]. We will also denote ζp by ζ; note that hζ.unit’ is the same as ζ, but
considered in the units R×.

▶ Lemma 3. Let p ̸= 2 be a prime. Then every unit u ∈ Z[ζp]× can be written as u = xζn
p

for some n ∈ Z and x ∈ Z[ζp]× such that x ∈ R.

lemma unit_lemma_gal_conj (h : p ̸= 2) (hp : (p : N).prime) (u : R×)
(hζ : is_primitive_root ζ p) :
∃ (x : R×) (n : Z), is_gal_conj_real p (x : K) ∧

(u : R) = x * (hζ.unit’ ^ n : R×)

Here the integer n cannot be supposed to be in N, so x must be an element of a group
(namely R×), to allow integer-valued powers. On the other hand, the existence of x ∈ K is
not enough, so we both need R and R×. Finally, the Galois group acts on K, so we really
need the three different types to state the lemma cleanly. Note also that we state the informal
condition that x ∈ R to is_gal_conj_real p x, which says that x is fixed under complex
conjugation, where complex conjugation is thought of as an element of Gal(Q(ζp)/Q). In
particular, we can avoid the non-canonical coercion into the real numbers used implicitly in
standard proofs by reformulating what it means to be “real” in this setting.

This situation is perhaps not yet fully satisfactory, as manually rewriting to convert
between the same element coerced into different types forces us to work at a lower level than
we would when discussing the material informally. Another solution such as more automation
may be better in the long term.

For brevity, we will not list all of the lemmas required to prove case I, but full details
can be found on our project blueprint here: https://leanprover-community.github.io/
flt-regular/. The final result we prove is

theorem caseI {a b c : Z} {p : N} [fact p.prime] (h : is_regular_prime p)
(caseI : ¬ ↑p | a * b * c) :
a ^ p + b ^ p ̸= c ^ p

and a full sorry-free proof can be found in https://github.com/leanprover-community/
flt-regular/. We note that the case of p = 3 can be done without the tools we have
formalised here. In fact, in this case, the result was formalised by Ruben van de Velde at
https://github.com/Ruben-VandeVelde/flt using elementary methods.

We end this section with the definition of is_regular_prime. Here is_regular_number
says that a positive integer n is regular if n is coprime to the size of the class group of
Q(ζn) from which we define is_regular_prime as the condition that a prime number is
regular. We currently have a proof that p = 2 is a regular prime, but in general proving that
a certain prime is regular (with our current definition) requires us to compute the relevant
class number, which in general is difficult to do in mathlib, this is something that will be
addressed in the proof of case II, which will relate being regular to a more easily checkable
condition (factorizations of certain Bernoulli numbers). Explicit calculations of class numbers
of quadratic fields have been formalized [2], and while the cyclotomic fields we use here are
in general not quadratic, some of the same techniques may be of use when calculating class
numbers of cyclotomic fields directly.

ITP 2023

https://leanprover-community.github.io/flt-regular/
https://leanprover-community.github.io/flt-regular/
https://github.com/leanprover-community/flt-regular/
https://github.com/leanprover-community/flt-regular/
https://github.com/Ruben-VandeVelde/flt

36:6 Fermat’s Last Theorem for Regular Primes

def is_regular_number [hn : fact (0 < n)] : Prop :=
n.coprime

(card (class_group (ring_of_integers (cyclotomic_field ⟨n, hn.out⟩ Q))))

4 Integration to mathlib

While working on a mathematical formalization such as this one, newly introduced material
is often not stable. For instance, new definitions are often changed as working with them
reveals deficiencies, and proof strategies are factored out into common lemmas or abstractions
when they are recognized after being seen several times. This means that when working on
such a project new material is initially not ready for use outside of the project as it may
change radically to suit the needs of the project. Nevertheless contributing material to a
large library is a way to ensure continued maintenance of the code, especially when the
upstream library changes. Thus contribution to a library may be desirable when the code
is sufficiently mature, despite the fact that adding such material to a large library requires
external review and may take time.

One slightly unusual aspect of our work is that we tried to include our results in mathlib
almost in real time, keeping the two projects closely in sync. This is in contrast to many
other similar projects where first the main theorem is formalised in its entirety and then
one begins the process of adding the results to mathlib, which usually results in a great
deal of modifications to the original code. For example the Perfectoid Project [4] and the
Liquid Tensor Experiment [5] both have huge for_mathlib folders with a lot of formalised
mathematics that in principle is supposed to be integrated into mathlib, but the code does
not yet have the required standards of quality and generality. This state is often reached as
authors do not have the time required to polish the code to the standard required and open
PRs to contribute it. Developing against a library with little to no backwards compatibility
maintained such as mathlib then means that maintaining the code of a large project can be a
painful job. For example, the Perfectoid Project is essentially stuck to a very old version of
mathlib, and updating it to the latest version is a nearly impossible task.

Our approach is to have a folder ready_for_mathlib where we put as much as results
as possible, opening PRs immediately. Even if this means sometimes proving certain results
in unneeded generality, we think this is the best strategy for a medium-sized project as this
one. Moreover, this also implies that our code is up to the standard of mathlib, that are
usually very high. This kept the size of the flt_regular project relatively small, but for
example the whole folder number_theory/cyclotomic (that is around 2000 lines of code)
in mathlib was written as a byproduct of our work. One other side effect is that updating
mathlib is a rather easy process: we are indeed using the latest version and we plan to keep
doing so. In practice we opened (and had accepted) more than 110 PRs, in various areas of
mathematics, ranging from linear algebra to number theory. A partial history of the PRs
opened can be seen at https://github.com/leanprover-community/flt-regular/wiki.

In order for large ecosystems of formal proofs, such as Lean’s mathlib and surrounding
libraries, to continue to scale and cover a significant portion of graduate level mathematics it
seems more automation will be necessary to ease the contribution and organisational burden.
The fields of program repair and automated refactoring (and more specifically the burgeoning
field of proof repair [9], with more emphasis on mathematical proofs) provide a model for
what should be possible and useful. For instance when a large library that a project such as
flt_regular depends on is updated, an automated summarisation of changes and required

https://github.com/leanprover-community/flt-regular/wiki

A. J. Best, C. Birkbeck, R. Brasca, and E. R. Boidi 36:7

modifications (or even automated patch creation and application) would reduce the manual
effort keeping up to date with a rapidly changing upstream. Automated style fixers and
code improvers (to simplify the process of golfing and generalizing working proofs or to
avoid anti-patterns) would reduce the effort required to contribute functional but less mature
proofs to a standard library. Automation to help more specifically with moving code between
libraries, by situating it correctly and updating local import paths would also improve the
workflow.

5 Future work

The next step in our work will be to give a full proof of Fermat’s Last Theorem in the regular
case. The main obstacle here is to prove Kummer’s lemma:

▶ Theorem 4. Let p be a regular prime and let u ∈ Z[ζp]×. If u ≡ a mod p for some a ∈ Z,
then there exists v ∈ Z[ζp]× such that u = vp.

There are several ways to prove this lemma, with modern approaches using class field
theory. For our purposes this approach would take is too far afield from our final goal. The
first step will be to use an alternative definition of regular prime, which instead of asking
that p does not divide the class number of Q(ζp) asks that p does not divide the numerator of
certain Bernoulli numbers. This definition also has the added benefit that it is easy to check
that a prime is regular, since Bernoulli numbers are easy to compute (and this is already in
mathlib). This then leaves the task of checking that these definitions are equivalent, which
can be done without using class field theory, but will still require significant work. Following
classical proofs the main obstacle in proving this equivalence of definitions (and Kummer’s
lemma) will be the need to understand the image in the p-adic completion of K the logarithm
of certain units. Amongst other things the final proof of case II will require the formalisation
of p-adic completions of number fields and their extensions. Furthermore we will require
analytic results for p-adic logarithms and their links to Bernoulli numbers.

Several results relating Bernoulli numbers to values of p-adic L-functions have been
formalized by Narayanan [8], these results may form a nontrivial part of the formalization of
case II, depending on the approach taken.

References
1 Reynald Affeldt, Cyril Cohen, Marie Kerjean, Assia Mahboubi, Damien Rouhling, and

Kazuhiko Sakaguchi. Competing inheritance paths in dependent type theory: A case study in
functional analysis. In Automated Reasoning: 10th International Joint Conference, IJCAR
2020, Paris, France, July 1–4, 2020, Proceedings, Part II, pages 3–20, Berlin, Heidelberg, 2020.
Springer-Verlag. doi:10.1007/978-3-030-51054-1_1.

2 Anne Baanen, Alex J. Best, Nirvana Coppola, and Sander R. Dahmen. Formalized class group
computations and integral points on mordell elliptic curves. In Proceedings of the 12th ACM
SIGPLAN International Conference on Certified Programs and Proofs, CPP 2023, pages 47–62,
New York, NY, USA, 2023. Association for Computing Machinery. doi:10.1145/3573105.
3575682.

3 Anne Baanen, Sander R. Dahmen, Ashvni Narayanan, and Filippo A. E. Nuccio Mortarino Ma-
jno di Capriglio. A Formalization of Dedekind Domains and Class Groups of Global Fields. J.
Autom. Reason., 66(4):611–637, 2022. doi:10.1007/s10817-022-09644-0.

4 Kevin Buzzard, Johan Commelin, and Patrick Massot. Formalising Perfectoid Spaces. In
Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs and

ITP 2023

https://doi.org/10.1007/978-3-030-51054-1_1
https://doi.org/10.1145/3573105.3575682
https://doi.org/10.1145/3573105.3575682
https://doi.org/10.1007/s10817-022-09644-0

36:8 Fermat’s Last Theorem for Regular Primes

Proofs, CPP 2020, pages 299–312, New York, NY, USA, 2020. Association for Computing
Machinery. doi:10.1145/3372885.3373830.

5 Johan Commelin, Adam Topaz, et al. The Liquid Tensor Experiment. Github, 2022. URL:
https://github.com/leanprover-community/lean-liquid.

6 Gabriel Ebner, Sebastian Ullrich, Jared Roesch, Jeremy Avigad, and Leonardo de Moura. A
Metaprogramming Framework for Formal Verification. Proc. ACM Program. Lang., 1(ICFP),
August 2017. doi:10.1145/3110278.

7 The mathlib Community. The Lean Mathematical Library. In Proceedings of the 9th ACM
SIGPLAN International Conference on Certified Programs and Proofs, CPP 2020, pages
367–381, New York, NY, USA, 2020. Association for Computing Machinery. doi:10.1145/
3372885.3373824.

8 Ashvni Narayanan. Formalization of p-adic L-functions in Lean 3, 2023. arXiv:2302.14491.
9 Talia Ringer. Proof Repair. PhD thesis, U. Washington, 2021. URL: https://www.proquest.

com/dissertations-theses/proof-repair/docview/2568297410/se-2.
10 Richard Taylor and Andrew Wiles. Ring-theoretic properties of certain Hecke algebras. Ann.

of Math. (2), 141(3):553–572, 1995. doi:10.2307/2118560.
11 Lawrence C. Washington. Introduction to cyclotomic fields, volume 83 of Graduate Texts in

Mathematics. Springer-Verlag, New York, second edition, 1997.
12 Andrew Wiles. Modular elliptic curves and Fermat’s last theorem. Ann. of Math. (2),

141(3):443–551, 1995. doi:10.2307/2118559.

https://doi.org/10.1145/3372885.3373830
https://github.com/leanprover-community/lean-liquid
https://doi.org/10.1145/3110278
https://doi.org/10.1145/3372885.3373824
https://doi.org/10.1145/3372885.3373824
https://arxiv.org/abs/2302.14491
https://www.proquest.com/dissertations-theses/proof-repair/docview/2568297410/se-2
https://www.proquest.com/dissertations-theses/proof-repair/docview/2568297410/se-2
https://doi.org/10.2307/2118560
https://doi.org/10.2307/2118559

Implementing More Explicit
Definitional Expansions in Mizar
Adam Grabowski # Ñ

Institute of Computer Science, University of Białystok, Poland

Artur Korniłowicz # Ñ

Institute of Computer Science, University of Białystok, Poland

Abstract
The Mizar language and its corresponding proof-checker offers the tactic of definitional expansions
in proof skeletons. This apparatus is rather fragile in the case of intensive overloading of notions
(which is widely observed e.g. in the field of algebra, but it is also present in the more fundamental
set-theory contexts). We propose the extension of this mechanism: the change should offer users
the more precise control over expansions via choosing the right definitional variant for the proof
under consideration, still letting the authors to retain the more conservative approach. As a rule,
the change will affect new Mizar texts, but obviously, it allows also for solving some context conflicts
caused by the original approach in the Mizar repository. The usefulness of our approach is shown by
a number of experiments carried out within MML, which is also affected by the change.

2012 ACM Subject Classification Theory of computation → Interactive proof systems

Keywords and phrases Mizar, definitions, proof assistants, mechanization of proof

Digital Object Identifier 10.4230/LIPIcs.ITP.2023.37

Category Short Paper

Supplementary Material Dataset (test files): https://github.com/arturkornilowicz/unfolding
archived at swh:1:dir:9d907e2d89509cc0fd1c73dd0d9adb9ced9af11b

Acknowledgements The authors are grateful to the reviewers for their constructive comments. The
Mizar processing has been performed using the infrastructure of the University of Białystok High
Performance Computing Center.

1 Introduction

For almost fifty years the Mizar proof checking system together with its repository of
mathematical texts – the Mizar Mathematical Library (MML) was developed to follow
ordinary mathematicians’ writing style. This included a formalization style mimicking
human papers, the rigour in formal proofs acceptable by computer, and in the same time
relative flexibility, allowing to choose author’s favourite way of encoding. As systems evolved,
computerized proof assistants are closer to real-life use, with growing popularity of many
hammering techniques, but together with the more efficient proof automation we can loose
human verbosity of the proof. This could affect an interactive proof assistant input script to
be seen more like the collection of proof obligations for a theorem prover.

In mathematics, many notions can be defined in different ways, e.g., lattices can be
understood as abstract algebras with two binary operations over the same carrier, or as
posets with binary suprema and binary infima. The correspondence between such alternative
definitions is usually expressed in the form of theorems or corollaries. Moreover, the same
relations between certain types of mathematical objects can be expressed using various
symbolisms specific for the types of these objects. If we take for example the notion of the
equality for sets, relations, functions, finite sequences, etc., it can be expressed using either

© Adam Grabowski and Artur Korniłowicz;
licensed under Creative Commons License CC-BY 4.0

14th International Conference on Interactive Theorem Proving (ITP 2023).
Editors: Adam Naumowicz and René Thiemann; Article No. 37; pp. 37:1–37:8

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:adam@math.uwb.edu.pl
http://math.uwb.edu.pl/~adam
https://orcid.org/0000-0001-5026-3990
mailto:arturk@math.uwb.edu.pl
http://math.uwb.edu.pl/~arturk
https://orcid.org/0000-0002-4565-9082
https://doi.org/10.4230/LIPIcs.ITP.2023.37
https://github.com/arturkornilowicz/unfolding
https://archive.softwareheritage.org/swh:1:dir:9d907e2d89509cc0fd1c73dd0d9adb9ced9af11b;origin=https://github.com/arturkornilowicz/unfolding;visit=swh:1:snp:82d9f4b21de64ed3279fae85e16e66e3203d07ec;anchor=swh:1:rev:a016ec78e0202759f0840ac0f40bb1412d2cc0b9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

37:2 Implementing More Explicit Definitional Expansions in Mizar

Table 1 Definitional variants of the equality predicate.

∀A,B : (∀x : x ∈ A ⇔ x ∈ B) ⇔ A = B (1)
∀R1,R2 : (∀x,y : (x, y) ∈ R1 ⇔ (x, y) ∈ R2) ⇔ R1 = R2 (2)

∀f1,f2 : (dom(f1) = dom(f2) ∧ ∀x : x ∈ dom(f1) ⇒ f1(x) = f2(x)) ⇔ f1 = f2 (3)
∀f1:A→B,f2:A→B : (∀a : a ∈ A ⇒ f1(a) = f2(a)) ⇔ f1 = f2 (4)

∀f1:A×B→C,f2:A×B→C : (∀a,b : a ∈ A ∧ b ∈ B ⇒ f1(a, b) = f2(a, b)) ⇔ f1 = f2 (5)
∀F1,F2 : (len(F1) = len(F2) ∧ ∀n∈N : 1 ≤ n ≤ len(F1) ⇒ F1(n) = F2(n)) ⇔ F1 = F2 (6)

arbitrary sets, or ordered pairs, or domains and function applications, or lengths of sequences,
respectively. The corresponding statements could be represented in Table 1, where A, B, C

are sets, R1, R2 are binary relations, f1, f2 are functions, and F1, F2 are finite sequences. Due
to the Mizar subtyping, the choice of the variant strictly depends on the type arguments. For
mathematicians, such differences are negligible and so equivalent domains and symbolisms
can be used interchangeably and mixed fluently. In the case of the above listed variants of the
equality predicate [5], it is usually not needed to express directly which form of the statement
should be used to justify a certain goal. The situation is different, however, when one does
computer-aided mathematics under the control of proof-assistants. No matter which system
is being used, authors are always supposed to indicate, in a more or less precise way, which
version of the equality the program should apply to prove a statement in a given context.

In the Mizar system [1, 4], there are two methods to indicate which statements should
be used in the proof of a given inference: either explicit references to theorems or schemes
(theorems with free second-order variables, e.g., the scheme of separation), or using so-
called definitional expansions, when the verifier automatically tries to find out and utilize
appropriate definitions among all accessible definition statements. The latter are used in two
different contexts: to control the logical structure of proofs and to enhance the computational
power of the verifier [8]. In this paper we describe an extension of the language and the Mizar
proof checker that allows authors to explicitly declare which definitions (of the predicate,
with a keyword pred) should be expanded and according to which definitions proofs must be
verified. This new feature will give authors more control over the structures of proofs which
they send for verification.

The implementation of this extension requires changes in almost all basic modules of the
Mizar verifier: Parser controlling the lexical structure of a given article and generating the
parse tree of the text; MSM Processor – which identifies labels, variables, and constants;
Analyzer – performing type checking, resolving ambiguities and identifying objects and
operations; and Reasoner, controlling structures of proofs. The communication between
these modules is realized by several XML files; from our viewpoint, the most important
files are those created by Parser and MSM Processor: Parser generates .wsx files
which represent parse trees of processed articles. Then, MSM Processor generates .msx
files enriching .wsx files by the information about used labels, variables, and constants.
MSM, WSM, ESM, which stand for Weakly Strict, More Strict, and Even more Strict Mizar
respectively, are various XML data representation formats of the Mizar article, where ESM
combines both syntactic and semantic data and can be used independently by the dedicated
Mizar proof checking software [3]. Because our work extends the syntax of the Mizar language
and semantics of the system, we modified the grammar of these files adding XML elements to
store information about explicit references to expanded definitions.

Related work. In Coq, the unfold tactic replaces a defined term in the goal with its definition
using syntax unfold <term>. Unfolding of definitions (transparent, not opaque, constants)
is realized as δ-reductions (automatically), which replace variables defined in local contexts

A. Grabowski and A. Korniłowicz 37:3

or constants defined in the global environment with their values. Unfolding on a hypothesis
in the context can be done with the syntax unfold <term> in <hypothesis>. In Isabelle,
unfold expands the given definitions throughout all goals; any chained facts provided are
inserted into the goal and subject to further rewriting. First, the given equations are used
directly for rewriting; then, the equations are passed through the attribute abs_def – to
ensure that definitions are fully expanded, regardless of the actual parameters that are
provided. Exactly the rules specified as arguments are considered in order to optional
fine-tuned decomposition of a proof problem [13]. In Lean, there are several ways to utilize
unfolding definitions and none of them is affected by imports (unlike in the case of Mizar).
Definitions can be unfolded explicitly on demand of users or can also be unfolded implicitly,
using the definitional equality relation that is built in to dependent type theory. Users
can use e.g., unfold dname or simp [dname], replacing all occurrences of dname with its
definition according to the definitional equations – theorems proven automatically by Lean
with each definition.1 Implicit unfolding of definitions can be used through an intro rule,
which is valid if the goal is made to become a general quantified formula.

2 Definitional expansions in proof skeletons

A well-known idea standing behind the process of creating proof interactively is a proof
sketch, finding all building blocks (hints) needed to follow the solution. This should facilitate
creating the proper structure of the proof (in Mizar we call this structure of proofs a proof
skeleton, in some other declarative proof languages this is referred to as a proof outline).
As the next step, authors should decide which available lemmas could be used to justify
intermediate proof steps (some of them can be reconstructed automatically). The choice of
these auxiliary facts has a big influence on the length and complexity of proofs. For example,
to prove the equality of two functions with the same domain, it is better to use the theorem
(4) from Table 1 than (3), because the reasoning about domains can be omitted. It is also
much better than (2), as the representation of those functions as sets of pairs can be avoided.
Moreover, proofs based on (3) and (4) require implications while a proof based on (2) requires
a bi-implication. In practice, mathematical papers often do not mention explicitly a theorem
used in a proof, relying on the context knowledge of the readers. The Mizar system tries
to mimic mathematicians’ style and in some contexts (when current goals to be proven are
atomic formulae) allows users not to refer explicitly to theorems which are needed to be used
in order to justify given statements; instead, it tries to find out, use and accept appropriate
definitions among all accessible definitions.

Definitional expansions allow to construct proofs (proof skeletons) according to the
formula which defines the notion or property being proven in a given goal. It can be seen as
an implicit reference to so-called definitional theorems – automatically generated for any new
definitions. As an example we can compare two proofs of the monotonicity of the (relation)
restriction, using two versions of the inclusion: first, using the general form valid for arbitrary
sets – see Listing 1 [11] and its variant for binary relations (Listing 2) [14]. Listing 3 presents
alternative, rather clumsy unfolding available: although valid and potentially useful, seems
not to be widely used in the MML (only six explicit references overall). The MML item
RELSET_1 itself is frequently imported, because its second definition – the predicate of the
equality for relations on sets – is quite handy, but then there is no mechanism preventing
unneeded implicit expansions. In total, this file is imported in *.def definientia files by 331
files; it is one fourth of 1275 in the case of RELAT_1 (but the ratio of definitions is 2 vs. 17).

1 As one of the reviewers pointed out, from our perspective the related mechanism is the same as in the
case of Coq, relying on δ-reduction.

ITP 2023

37:4 Implementing More Explicit Definitional Expansions in Mizar

Listing 1 Definition of inclusion of sets
definition let A,B be set;

pred A c= B means :: TARSKI :def 3
for x being object st

x in A holds x in B;
end;

Listing 2 Definition of inclusion of relations
definition let P,R be Relation ;

redefine pred P c= R means :: RELAT_1 :def 3
for a,b being object st

[a,b] in P holds [a,b] in R;
end;

Listing 3 Definition of inclusion of typed relation
definition let X,Y be set; let R for Relation of X,Y; let Z be set;

redefine pred R c= Z means :: RELSET_1 :def 1
for x being Element of X, y being Element of Y holds

[x,y] in R implies [x,y] in Z;
end;

Listing 4 contains some skeletal statements: let x be object; and assume x in R|X;
which start the expansion of the inclusion according to the version related to arbitrary
sets. Listing 5 via let a,b be object; utilizes the version specific for binary relations.
An advantage of the latter approach is that we start the expansion with introducing two
constants a and b, which are necessary to reason about the restriction at once. In the former
proof, the related constants a and b had to be introduced by decomposing the constant x.
The latter proof is evidently more compact.

Listing 4 The proof with TARSKI expansion
for R being Relation

for X,Y being set st X c= Y holds
R | X c= R | Y

proof
let R be Relation ;
let X,Y be set such that

A1: X c= Y;
let x be object ;

:: expansion of inclusion predicate starts
assume

A2: x in R | X; then
consider a,b being object such that

A3: x = [a,b] by RELAT_1 :def 1;
A4: [a,b] in R by A2 ,A3 , RELAT_1 :def 11;

a in X by A2 ,A3 , RELAT_1 :def 11;
then a in Y by A1 , TARSKI :def 3;
hence x in R|Y by A3 ,A4 , RELAT_1 :def 11;

end;

Listing 5 The proof with RELAT_1 expansion
for R being Relation

for X,Y being set st X c= Y holds
R | X c= R | Y

proof
let R be Relation ;
let X,Y be set such that

A1: X c= Y;
let a,b be object ;

:: expansion of inclusion predicate starts
assume

A2: [a,b] in R | X;

A3: [a,b] in R by A2 , RELAT_1 :def 11;
a in X by A2 , RELAT_1 :def 11;
then a in Y by A1 , TARSKI :def 3;
hence [a,b] in R|Y by A3 , RELAT_1 :def 11;

end;

Each Mizar article is a plain text file consisting of two parts: environment (import
section), and text-proper, with definitions, theorems, lemmas and other items supported
by the Mizar language [4]. We focus on the definitions directive – a comma separated
list of MML identifiers determining proof skeletons. The order of entities in this directive
matters: when the statement written by the user does not match the current goal resulting
from the logical structure of the statement being proved, the verifier goes through the list
of file names listed in this directive, reads definitions from these articles, and tries to find
those matching the current goal with the definiens. If such a definition is found, the current
goal is replaced and the proof can be continued. In the example about the inclusion of
restrictions of a relation to sets presented above, the first proof (related to the inclusion
of sets) is allowed when the definition of the inclusion of sets labeled as TARSKI:def 3 is
matched before the definition of the inclusion of relations labeled as RELAT_1:def 3, that is,
when TARSKI appears after RELAT_1 on the definitions list; the second proof is correct in
the opposite case.

A. Grabowski and A. Korniłowicz 37:5

3 Unfolding wrt chosen definitions

In this section we propose an extension of the Mizar language and the Mizar checker which
allows authors to explicitly declare which definitions should be expanded and according to
which definitions proofs must be verified. This new feature will give authors more control over
the structures of proofs to be accepted by the verifier. Mizar texts are internally represented
using a recursive Blocks and Items structure, where blocks are supposed to store lists of items,
and items contain essential information and, if necessary, may contain one block. Among the
items which may be tracked in the syntax of the language, the most important group are
those representing proof skeletal elements, that is, Generalization (let for fixing variables),
Assumption (with self-explanatory assume), ExistentialAssumption (similar, with given),
Exemplification (presenting examples – take), and Conclusion (keywords thus or hence).
All these items change the state of thesis and can be used adequately to the logical structure
of proven statements.

As our goal is developing a way to explicitly indicate which definition should be auto-
matically expanded, we propose to extend the Mizar language with the keyword unfolding
and to extend the set of items related to proof skeletons with a new item Unfolding, which
will be generated when Mizar keyword unfolding occurs within proofs. Then, we propose
to extend the Mizar syntax with new grammar rules correspondingly (see Supplementary
material for full version):
Skeleton -Item = Generalization | Assumption | Conclusion |

Exemplification | Unfolding .
Unfolding = ‘‘unfolding ’’ References ‘‘;’’ .

Following these rules, a pseudo code of an exemplary proof text could look like some
reasoning; unfolding references; some reasoning; where references used after the
unfolding construction may contain references to either local or global definitions (imported
from MML). When global definitions are referred to, filenames of articles where the definitions
were introduced must be listed in both theorems and definitions declarations, where the
earlier describes just the name space for file identifiers, and the latter forces the system to
load the definitions and make them accessible and expandable within proofs. In the case
when the list of used references has more than one reference to a definition, the references
are processed one by one from left to right, and corresponding definitions are expanded.

As we mentioned before, the Mizar verifier generates a couple of XML files. Naturally, we
proposed also corresponding extensions to the grammar of .wsx and .msx files. In .wsx file,
each occurrence of the unfolding construction generates the <Unfolding> element within
which we put the description of the list of used references.
<Item kind =" Unfolding " position ="20\11" endposition ="20\33" >

<Unfolding >
<Definition - Reference position ="20\28" nr ="2" spelling =" RELAT_1 "

number ="3"/ >
<Local - Reference position ="20\33" idnr ="5" spelling =" Lm1 "/>

</Unfolding >
</Item >

The attribute position stores the position of the unfolding keyword; the attribute
endposition stores the position of the last reference used. The element Unfolding contains
the list of all references used in the unfolding item. The elements Definition-Reference
and Local-Reference keep information about a reference to a definition and a local state-
ment, respectively. This information is later passed to .msx files, where references to local

ITP 2023

37:6 Implementing More Explicit Definitional Expansions in Mizar

Table 2 Top 17 of used expansions of definitions (only over 100 hits each).

Rk. Definition Symbol Usage Rk. Definition Symbol Usage
1. TARSKI:def 3 c= 13293 10. RELAT_1:def 3 c= 139
2. XBOOLE_0:def 10 = 2792 11. LATTICE3:def 8 >=_than 132
3. FUNCT_2:def 8 = 361 12. ALGSTR_0:def 16 r-compl 129
4. FUNCT_1:def 4 one-to-one 332 13. STRUCT_0:def 1 empty 127
5. XBOOLE_0:def 7 misses 209 14. BVFUNC_1:def 12 ’<’ 125
6. PBOOLE:def 2 c= 183 15. RELAT_1:def 2 = 119
7. LATTICE3:def 9 <=_than 183 16. MEMBERED:def 14 = 115
8. FUNCT_1:def 11 = 179 17. MEMBERED:def 8 c= 106
9. ALGSTR_0:def 11 r-compl 150 Total 33475

statements are disambiguated and then propagated to files representing deeper layers of
information processed by the verifier. These changes do not directly interfere with the work of
ordinary Mizar users as they can just avoid unfolding; however, for those using intermediate
representation files [2, 6, 7, 10, 12], they are critical.

4 Experiments

The usefulness of our extension of the Mizar system was tested on the whole MML. To
facilitate experiments we implemented generated reports on all definitional expansions
performed during the verification of processed articles; the results are printed out into an XML
file filename.den, where filename is the name of a given article. Each entry (within the
root element Positions) in .den files is of the form: <Position name="" nr="" line=""
col=""/> matching name and number of unfolded definition together with the starting
position. This convinced us how often definitional expansions were effectively used and how
many times each definition was expanded while processing each article. The total number of
expansions is 33475 and the top 17 expanded definitions are presented in Table 2. The most
often expanded definition is TARSKI:def 3, which is the definition of the inclusion of sets,
with XBOOLE_0:def 10 (the definition of the equality of sets expressed as the conjunction of
two appropriate inclusions) as the second. These 17 primary positions sum up to total 18674,
which shows that over half of all the expansions is represented in the table, i.e. the rest of
dependencies make rather flat hierarchy. It should be compared with aditional 1997 explicit
references for TARSKI:def 3 and 1707 – for TARSKI:2 (which is just extensionality of sets).
Similarly, XBOOLE_0:def 10 was called 1516 times. Most of them can be also changed to
unfolding in this new implementation, making roughly ca. 5200 new uses of expansions.

As mentioned in Section 2, the Mizar verifier tries to expand definitions according to the
order of filenames in the environment directive definitions, on last-come-first-serve basis
(still, randomness could be accepted if notions overloading is only exceptional), so as our
first experiment we sorted items in this environment directive according to the list mml.lar
reflecting processing order of MML [9]. As a result we got 65 errors within 30 articles: even
this most obvious, genetic ordering, causes serious problems: such clashes should be resolved
in order to obtain a kind of canonical precedence. Further tests show that this is much too
fragile – but as the frequent technique of obtaining your own environment declaration is just
to copy it from some similar ones, the randomization is not the question of pure accident.
To test the aforementioned system fragility, as another experiment we shuffled filenames in
the definitions environment directive and put them in a random order. The experiment

A. Grabowski and A. Korniłowicz 37:7

was repeated: after each shuffling, all articles were verified2. Based on these results, we can
observe that the order in which files are listed in the definitions environment directive
definitely plays an important role. Previously, authors had to quite carefully construct the
list of imports of definitions; with this new extension, they are allowed to indicate which
definition should be expanded at given stages of proofs without paying special attention to
the order in which definitions were imported.

5 Conclusions

The current version of the Mizar system (8.1.12) naturally supports building proofs according
to logical structures of statements being proven. It also gives opportunity to modify them a
bit using so-called definitional expansions using appropriate definitions among all accessible
ones. However, there is a limitation caused by the order in which the definitions need to
be imported. Our experiments show that the ordering of environment directives essentially
matters; e.g. there are two substantial clashes well-known for authors: interchanging RELAT_1
and FUNCT_1 or placing STRUCT_0 before fundamental classical (i.e., those based on pure set
theory) part of the MML. Decades ago, the Mizar accomodator allowed to specify which
single theorems should be imported (this made accomodator files just smaller and memory
efficient), similar solution could be also feasible in the case of definitional expansions. In
this work we developed a more practical workaround of that limitation: an extension of the
Mizar checker which allow authors to precisely indicate according to which definitions proofs
are being constructed. It seems to work well particularly in the case of notions with several
redefined definienses. In some sense, the proposed implementation enriches the paradigm
of declarative proof language, offering procedural elements. This is rather unusual for the
system, but as the Mizar project turns fifty in 2023, maybe this justifies the need for some
further experiments in this new direction.

References
1 Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman

Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and
beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge,
editors, Intelligent Computer Mathematics – International Conference, CICM 2015 Proceedings,
volume 9150 of LNCS, pages 261–279. Springer, 2015. doi:10.1007/978-3-319-20615-8_17.

2 Grzegorz Bancerek, Adam Naumowicz, and Josef Urban. System description: XSL-based
translator of Mizar to LaTeX. In Florian Rabe, William M. Farmer, Grant O. Passmore, and
Abdou Youssef, editors, Intelligent Computer Mathematics – 11th International Conference,
CICM 2018, Hagenberg, Austria, August 13–17, 2018, Proceedings, volume 11006 of Lecture
Notes in Computer Science, pages 1–6. Springer, 2018. doi:10.1007/978-3-319-96812-4_1.

3 Czesław Byliński, Artur Korniłowicz, and Adam Naumowicz. Syntactic-semantic form of
Mizar articles. In Liron Cohen and Cezary Kaliszyk, editors, 12th International Conference
on Interactive Theorem Proving (ITP 2021), volume 193 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 11:1–11:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPIcs.ITP.2021.11.

4 Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Mizar in a nutshell. Journal of
Formalized Reasoning, Special Issue: User Tutorials I, 3(2):153–245, 2010. doi:10.6092/issn.
1972-5787/1980.

2 Numbers of errors and files with errors obtained in each turn of the test are presented in suplementary
materials; the number of errors varies between 516 and 672 in ca. 120 articles.

ITP 2023

https://doi.org/10.1007/978-3-319-20615-8_17
https://doi.org/10.1007/978-3-319-96812-4_1
https://doi.org/10.4230/LIPIcs.ITP.2021.11
https://doi.org/10.6092/issn.1972-5787/1980
https://doi.org/10.6092/issn.1972-5787/1980

37:8 Implementing More Explicit Definitional Expansions in Mizar

5 Adam Grabowski, Artur Korniłowicz, and Christoph Schwarzweller. Equality in computer
proof-assistants. In Maria Ganzha, Leszek A. Maciaszek, and Marcin Paprzycki, editors,
Proceedings of the 2015 Federated Conference on Computer Science and Information Systems,
volume 5 of Annals of Computer Science and Information Systems, pages 45–54. IEEE, 2015.
doi:10.15439/2015F229.

6 Cezary Kaliszyk and Karol Pąk. Isabelle import infrastructure for the Mizar Mathematical
Library. In Florian Rabe, William M. Farmer, Grant O. Passmore, and Abdou Youssef, editors,
Intelligent Computer Mathematics – 11th International Conference, CICM 2018 Proceedings,
volume 11006 of LNCS, pages 131–146. Springer, 2018. doi:10.1007/978-3-319-96812-4_13.

7 Cezary Kaliszyk and Karol Pąk. Declarative proof translation (short paper). In John
Harrison, John O’Leary, and Andrew Tolmach, editors, 10th International Conference on
Interactive Theorem Proving, ITP 2019, September 9–12, 2019, Portland, OR, USA, volume
141 of LIPIcs, pages 35:1–35:7. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019.
doi:10.4230/LIPIcs.ITP.2019.35.

8 Artur Korniłowicz. Definitional expansions in Mizar. Journal of Automated Reasoning,
55(3):257–268, October 2015. doi:10.1007/s10817-015-9331-7.

9 Adam Naumowicz. Tools for MML environment analysis. In Manfred Kerber, Jacques Carette,
Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics
– International Conference, CICM 2015 Proceedings, volume 9150 of LNCS, pages 348–352.
Springer, 2015. doi:10.1007/978-3-319-20615-8_26.

10 Karol Pąk. Combining the syntactic and semantic representations of Mizar proofs. In
Maria Ganzha, Leszek A. Maciaszek, and Marcin Paprzycki, editors, Proceedings of the
2018 Federated Conference on Computer Science and Information Systems, FedCSIS 2018,
volume 15 of Annals of Computer Science and Information Systems, pages 145–153. IEEE,
2018. doi:10.15439/2018F248.

11 Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
URL: http://fm.mizar.org/1990-1/pdf1-1/tarski.pdf.

12 Qingxiang Wang, Chad E. Brown, Cezary Kaliszyk, and Josef Urban. Exploration of neural
machine translation in autoformalization of mathematics in Mizar. In Jasmin Blanchette and
Catalin Hritcu, editors, Proceedings of the 9th ACM SIGPLAN International Conference on
Certified Programs and Proofs, CPP 2020, pages 85–98, 2020. doi:10.1145/3372885.3373827.

13 Makarius Wenzel. The Isabelle/Isar Reference Manual, 2021. URL: https://isabelle.in.
tum.de/doc/isar-ref.pdf.

14 Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–
83, 1990. URL: http://fm.mizar.org/1990-1/pdf1-1/relat_1.pdf.

https://doi.org/10.15439/2015F229
https://doi.org/10.1007/978-3-319-96812-4_13
https://doi.org/10.4230/LIPIcs.ITP.2019.35
https://doi.org/10.1007/s10817-015-9331-7
https://doi.org/10.1007/978-3-319-20615-8_26
https://doi.org/10.15439/2018F248
http://fm.mizar.org/1990-1/pdf1-1/tarski.pdf
https://doi.org/10.1145/3372885.3373827
https://isabelle.in.tum.de/doc/isar-ref.pdf
https://isabelle.in.tum.de/doc/isar-ref.pdf
http://fm.mizar.org/1990-1/pdf1-1/relat_1.pdf

Formalizing Almost Development Closed Critical
Pairs
Christina Kohl #

Universität Innsbruck, Austria

Aart Middeldorp #

Universität Innsbruck, Austria

Abstract
We report on the first formalization of the almost-development closedness criterion for confluence of
left-linear term rewrite systems and illustrate a problem we encountered while trying to formalize
the original paper proof by van Oostrom.

2012 ACM Subject Classification Theory of computation → Rewrite systems; Theory of computation
→ Logic and verification

Keywords and phrases Term rewriting, confluence, certification

Digital Object Identifier 10.4230/LIPIcs.ITP.2023.38

Category Short Paper

Supplementary Material InteractiveResource (Isabelle Code): http://informatik-protem.uibk.
ac.at/ITP2023/

Funding Aart Middeldorp: Austrian Science Fund (FWF) project I5943.

1 Introduction

Recently we formalized the well-known confluence criterion by van Oostrom based on
development closed critical pairs of left-linear term rewrite systems in the proof assistant
Isabelle/HOL [6]. Here we present an extension of this result which goes back to an observation
by Toyama, namely that the condition on critical pairs can be weakened in case of overlays.
This so-called almost development-closed criterion and its commutation version have now
been integrated into the library IsaFoR1 which enables the tool CeTA [5] to certify confluence
and commutation proofs based on this criterion.

In Section 2 we recap some important definitions and basic results about term rewriting
and proof terms. The latter are used to represent multi-steps as first-order terms in the
formalized proof. In Section 3 we present a slightly adapted version of our recent formalization
of the development-closed criterion presented in [3]. In Section 4 we first illustrate why we
could not simply follow van Oostrom’s paper proof for almost development-closedness in
[9, 10]. Then we show how the proof in Section 3 can easily be extended to the more general
version. Finally, we briefly describe the adaptations necessary for the commutation version
of almost development-closed critical pairs.

HTML versions of the relevant Isabelle theory files can be found at

http://informatik-protem.uibk.ac.at/ITP2023/

and the main results in this paper are annotated by a § -symbol which directly links to the
HTML presentation.

1 http://cl-informatik.uibk.ac.at/isafor

© Christina Kohl and Aart Middeldorp;
licensed under Creative Commons License CC-BY 4.0

14th International Conference on Interactive Theorem Proving (ITP 2023).
Editors: Adam Naumowicz and René Thiemann; Article No. 38; pp. 38:1–38:8

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:christina.kohl@uibk.ac.at
https://orcid.org/0000-0002-8470-2485
mailto:aart.middeldorp@uibk.ac.at
https://orcid.org/0000-0001-7366-8464
https://doi.org/10.4230/LIPIcs.ITP.2023.38
http://informatik-protem.uibk.ac.at/ITP2023/
http://informatik-protem.uibk.ac.at/ITP2023/
http://informatik-protem.uibk.ac.at/ITP2023/
http://cl-informatik.uibk.ac.at/isafor
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

38:2 Formalizing Almost Development Closed Critical Pairs

2 Preliminaries

We assume familiarity with the basics of term rewriting, as can be found in [1], and only
recap some important definitions here. The multi-step relation ◦−→R is inductively defined
on terms as follows:

x ◦−→R x for all variables x,
f(s1, . . . , sn) ◦−→R f(t1, . . . , tn) if si ◦−→R ti for all 1 ⩽ i ⩽ n, and
ℓσ ◦−→R rτ if ℓ→ r ∈ R and σ(x) ◦−→R τ(x) for all x ∈ Var(ℓ).

A critical overlap (ℓ1 → r1, p, ℓ2 → r2)σ of two TRSs R1 and R2 consists of variants ℓ1 → r1
and ℓ2 → r2 of rewrite rules in R1 andR2 without common variables, a position p ∈ PosF (ℓ2),
and a most general unifier σ of ℓ1 and ℓ2|p. From a critical overlap (ℓ1 → r1, p, ℓ2 → r2)σ

we obtain a critical peak ℓ2σ[r1σ]p R1← ℓ2σ[ℓ1σ]p = ℓ2σ →R2 r2σ and the corresponding
critical pair ℓ2σ[r1σ]p R1← ⋊ →R2 r2σ. Whenever p = ϵ we say r1σ R1← ⋊ →R2 r2σ is
an overlay. A relation → is confluent if ∗← · →∗ ⊆ →∗ · ∗←. Two relations →1 and →2
commute if →∗

1 · →∗
2 ⊆ →∗

2 · →∗
1 . A relation → has the diamond property if ← · → ⊆ → · ←

and it is strongly confluent if ← · → ⊆ →= · ∗←. We say that →1 and →2 strongly commute
if 1← · →2 ⊆ →=

2 · →∗
1 . The following well-known results [1, Chapter 2] connect the diamond

property and strong confluence (strong commutation) with confluence (commutation).

▶ Lemma 1. Let →, →1 and →2 be binary relations.
1. If → has the diamond property then → is confluent.
2. If → is strongly confluent then → is confluent.
3. If →1 ⊆ →2 ⊆ →∗

1 and →2 is confluent then →1 is confluent.
4. Two strongly commuting relations commute.
5. Suppose →1 ⊆ →1′ ⊆ →∗

1 and →2 ⊆ →2′ ⊆ →∗
2. If →1′ and →2′ commute then →1 and

→2 commute. ◀

When applying this lemma to prove that (almost) development closed critical pairs imply
confluence for left-linear TRSs, we instantiate → in the first (second) item with ◦−→ to obtain
confluence of ◦−→. Then we can use the third item with the property → ⊆ ◦−→ ⊆ →∗ to
establish confluence of →. The fourth and fifth items are used for the commutation version.

We used proof terms ([7, Chapter 8]) to represent multi-steps for both the formalization
in [3] and the extension presented here. We only recap some concepts here. For a more
basic introduction including examples see [2, 3]. Proof terms are built from function symbols,
variables, and rule symbols. We use Greek letters for rule symbols. If α is a rule symbol
then lhs(α) (rhs(α)) denotes the left-hand (right-hand) side of the rewrite rule denoted by α.
Furthermore var(α) denotes the list (x1, . . . , xn) of variables appearing in α in some fixed
order. The length of this list is the arity of α. The list vpos(α) = (p1, . . . , pn) denotes the
corresponding variable positions in lhs(α) such that lhs(α)|pi = xi. Given a rule symbol α

with var(α) = (x1, . . . , xn) and terms t1, . . . , tn, we write ⟨t1, . . . , tn⟩α for the substitution
{xi 7→ ti | 1 ⩽ i ⩽ n}. Given a proof term A, its source src(A) and target tgt(A) are
computed by the following equations for st ∈ {src, tgt}:

st(x) = x st(f(A1, . . . , An)) = f(st(A1), . . . , st(An))
src(α(A1, . . . , An)) = lhs(α)⟨src(A1), . . . , src(An)⟩α
tgt(α(A1, . . . , An)) = rhs(α)⟨tgt(A1), . . . , tgt(An)⟩α

Proof terms A and B are said to be co-initial if they have the same source. A proof term A

over a TRS R is a witness of the multi-step src(A) ◦−→R tgt(A). Every multi-step is witnessed
by a proof term.

C. Kohl and A. Middeldorp 38:3

▶ Lemma 2. For any substitution σ, proof term context C, and proof term A we have

src(Aσ) = src(src(A)σ) tgt(Aσ) = tgt(tgt(A)σ)
src(C[A]) = src(C[src(A)]) = src(C)[src(A)] tgt(C[A]) = tgt(C[tgt(A)]) ◀

The following lemma will be used to complete the proof of strong confluence of almost
development closed TRSs.

▶ Lemma 3. If s →∗ t then tgt(C[sσ]) →∗ tgt(C[tσ]) for arbitrary proof term contexts C

and arbitrary substitutions over proof terms σ. §

Proof. Straightforward induction on proof term contexts and using the fact that the rewrite
relation is closed under contexts and substitutions. ◀

The following labeling is used to measure the amount of overlap between co-initial proof
terms:

src♯(A) =

A if A ∈ V
f(src♯(A1), . . . , src♯(An)) if A = f(A1, . . . , An)
lhs♯(α)⟨src♯(A1), . . . , src♯(An)⟩α if A = α(A1, . . . , An)

where lhs♯(α) = φ(lhs(α), α, 0) with φ(t, α, i) = t if t ∈ V and φ(t, α, i) = fαi(φ(t1, α, i +
1), . . . , φ(tn, α, i + 1)) if t = f(t1, . . . , tn). The (partial) function ℓ extracts labels from
function symbols: ℓ(fαn) = αn. The amount of overlap ▲(A, B) between co-initial proof
terms A and B is defined as ▲(A, B) = |PosL(A) ∩ PosL(B)| where PosL(A) = {p ∈
Pos(src♯(A)) | ℓ(src♯(A)(p)) is defined}. This corresponds exactly to the measure used in
[9, 10]. The set overlaps(A, B) consists of all pairs (p, q) of function symbol positions in the
common source s of A and B such that
(a) ℓ(src♯(A)(p)) = α0, ℓ(src♯(B)(q)) = β0, and
(b) either p ⩽ q and ℓ(src♯(A)(q)) = α|q\p| or q < p and ℓ(src♯(B)(p)) = β|p\q|

for some rule symbols α and β. We define the following order on overlaps: (p1, q1) ⩽ (p2, q2)
iff p1 ⩽ p2 and q1 ⩽ q2. An innermost overlap of co-initial proof terms A and B is a maximal
element in overlaps(A, B) with respect to ⩽.

3 Development Closed Critical Pairs

In this section we briefly recap the already formalized confluence criterion based on develop-
ment closed critical pairs. Compared to the presentation in [3] we were able to remove some
unnecessary results about deletion and joins of proof terms from the formalization. The price
for this shortening is a greater focus on possibly less intuitive results involving substitutions
and contexts with proof terms. The big advantage however is that the extension to almost
development closed critical pairs later on is straightforward. The following definition and
theorem are due to van Oostrom [9, 10].

▶ Definition 4. A TRS R is development closed if for every critical pair s ⋊ t of R we have
s ◦−→R t.

▶ Theorem 5. If a TRS R is left-linear and development closed then ◦−→R has the diamond
property.

Formalized proof. Assume t ◦←− s ◦−→ u and let A be a proof term representing s ◦−→ t and
let B be a proof term representing s ◦−→ u. We show t ◦−→ v ◦←− u for some term v by
well-founded induction on the amount of overlap between A and B.

ITP 2023

http://informatik-protem.uibk.ac.at/ITP2023/Proof_Terms/Proof_Terms.html#Proof_Terms.rewrite_tgt%7Cthm

38:4 Formalizing Almost Development Closed Critical Pairs

Base case: If ▲(A, B) = 0 then A / B and B / A are well-defined and represent the
multi-steps t ◦−→ tgt(A/B) and u ◦−→ tgt(B /A) respectively. Since tgt(A/B) = tgt(B /A)
this proves the base case of the induction.
Step case: Assume ▲(A, B) > 0. The induction hypothesis states that if A′ and B′ are
two co-initial proof terms such that ▲(A′, B′) < ▲(A, B) then there exists a term v and
and multi-steps tgt(A′) ◦−→ v ◦←− tgt(B′). We show that t ◦−→ v ◦←− u:

1. First we select an innermost overlap (p, q) and assume without loss of generality that
q ⩽ p. Let q′ = p\q and α and β be the rule symbols at positions p and q in src(A) and
src(B) such that ℓ(src♯(A)(p)) = α0 and ℓ(src♯(B)(q)) = β0. Furthermore let vpos(α) =
(p1, . . . , pn), var(α) = (x1, . . . , xn), vpos(β) = (q1, . . . , qm), and var(β) = (y1, . . . , ym)
where we assume {x1, . . . , xn} ∩ {y1, . . . , ym} = ∅ without loss of generality.

2. Then we split the proof term A into two proof terms: First the single step s → t′

represented by ∆1 = s[α(s|pp1 , . . . , s|ppn)]p and second the residual A / ∆1 witnessing
t′ ◦−→ t for some term t′. We do the same for B obtaining ∆2 = s[β(s|qq1 , . . . , s|qqm

)]q
witnessing s→ u′ and the residual B / ∆2 witnessing u′ ◦−→ u for some term u′.

3. We define the substitution

τ = {xi 7→ lhs(β)|q′pi
| 1 ⩽ i ⩽ n and q′pi ∈ Pos(lhs(β))}

∪ {yj 7→ lhs(α)|qj\q | 1 ⩽ j ⩽ m and qj\q ∈ PosF (lhs(α))}

which yields the critical peak lhs(β)[rhs(α)τ]q′ ← lhs(β)[lhs(α)τ]q′ = lhs(β)τ → rhs(β)τ
[3, Lemma 7.2] and the position qβ ∈ Pos(B) such that B = B[β(B1, . . . , Bm)]qβ

and src(B)[]q = src(B[]qβ
). I.e, qβ is the unique position of the rule symbol β in B

corresponding to the critical peak.
4. By the development closedness assumption we know that there exists a multi-step

lhs(β)[rhs(α)τ]q′ ◦−→ rhs(β)τ . Let D′ be a proof term representing this multi-step.
5. Next we define the substitution

ρ = {yj 7→ Bj | 1 ⩽ j ⩽ m} ∪ {xi 7→ lhs(β)⟨B1, . . . , Bm⟩β |q′pi
| 1 ⩽ i ⩽ n}

and show that the proof term B[D′ρ]qβ
witnesses a multi-step t′ ◦−→ u [3, Lemma 7.7].

6. We show ▲(A / ∆1, B[D′ρ]qβ
) < ▲(A, B) [3, Lemma 7.8].

7. The previous items allow us to apply the induction hypothesis to obtain multi-steps
t ◦−→ v and u ◦−→ v for some common term v. ◀

4 Almost Development Closed Critical Pairs

Van Oostrom [9, 10] realized that the previous result could be strengthened analogously to
Toyama’s extension [8] for almost parallel closed term rewrite systems. The main observation
is that by proving confluence of R via strong confluence of ◦−→R instead of the diamond
property of ◦−→R, the condition on overlays can be weakened to ◦−→ · ∗← instead of ◦−→.

▶ Definition 6. A TRS R is almost development closed if for every critical pair s ⋊ t of R
1. s ◦−→ t if s ⋊ t is not an overlay,
2. s ◦−→ · ∗← t if s ⋊ t is an overlay.

Since s ◦−→ t implies s ◦−→ · ∗← t one can also simply drop the requirement that s ⋊ t is
an overlay in the second item.

▶ Theorem 7. If a TRS R is left-linear and almost development closed then ◦−→ is strongly
confluent. §

http://informatik-protem.uibk.ac.at/ITP2023/CR/Development_Closed.html#Development_Closed.mstep_strongly_confluent%7Cthm

C. Kohl and A. Middeldorp 38:5

Strong confluence of ◦−→R immediately yields confluence of the TRS R by Lemma 1.

▶ Corollary 8. Left-linear, almost development closed TRSs are confluent. ◀

4.1 Original Proof
In [9, 10] van Oostrom indicates that the induction part of the proof of Theorem 5 can be
easily adapted for proving Theorem 7, only the base case becomes more difficult since the
possibility of overlays needs to be taken into account here. To be precise, in [9] it is stated
that the second part of the proof of Theorem 5 “can be essentially followed, proving strong
confluence instead of the diamond property . . . and changing the measure defined above by
not counting the function symbols in critical intersections for overlays.” And according to
[10] “The idea is not to take symbols taking part in overlays between the development steps
into account, for the amount of interference. This changes nothing in the second (induction)
part of the proof.” Hence a natural first step to formalizing Theorem 7 seems to be defining
the new measure – let us call it ▲′ – as follows:

▶ Definition 9. ▲′(A, B) = {p | ℓ(src♯(A)(p)) = αm, ℓ(src♯(A)(p)) = βn and m ̸= n for
some α, β, m and n}

As indicated in [9, 10] proving strong confluence of ◦−→ should now proceed as in the proof
of Theorem 5, where the inductive case should be easy using the new measure. However, as
the following example shows, things are not that easy. The problem is that function positions,
that were previously not counted because they were involved in overlays, might be counted
after constructing B[D′ρ]qβ

.

▶ Example 10. The TRS consisting of the five rewrite rules

α : f(g(x), a)→ f(x, a) γ : g(a)→ b ϵ : f(b, a)→ f(a, a)
β : f(g(g(y1)), y2)→ f(g(y1), y2) δ : g(b)→ g(a)

is left-linear and development closed2 and hence also almost development closed.
Consider the proof terms A = α(γ) and B = β(a, a). We have

src♯(A) = fα0(gα1(gγ0(aγ1)), aβ1) and src♯(B) = fβ0(gβ1(gβ2(a)), a)

and hence ▲(A, B) = 3. The function symbols at positions ϵ and 1 do not count in the
new measure since they correspond to the overlay between rules α and β. So ▲′(A, B) = 1.
Now we pick the innermost overlap between γ in A and β in B. So ∆1 = f(g(γ), a) and
∆2 = β(a, a). The critical peak is f(g(b), y2) ← f(g(g(a)), y2) → f(g(a), y2). It can be
closed by simply applying rule δ at position 1 – as a proof term take D′ = f(δ, y2). Since
ρ = {y1 7→ a, y2 7→ a, x 7→ g(a)} and qβ = ϵ we have B[D′ρ]qβ

= D′ρ = f(δ, a) and
A / ∆1 = α(b), and hence

src♯(B[D′ρ]qβ
) = f(gδ0(bδ1), a) src♯(A / ∆1) = fα0(gα1(b), aα1)

▲′(A / ∆1, B[D′ρ]qβ
) = ▲(A / ∆1, B[D′ρ]qβ

) = 1

Note that the measure ▲′ did not decrease, showing that proving Theorem 7 in this way is
impossible.

2 This is easily verified using CSI [4] together with CeTA.

ITP 2023

38:6 Formalizing Almost Development Closed Critical Pairs

4.2 Formalized Proof
We found that keeping the measure ▲ and doing a simple case distinction in the inductive
step suffices to show strong confluence of ◦−→.

Proof of Theorem 7 (Adaptations). The proof requires only minimal changes to the proof
of Theorem 5. We only highlight the differences here. Assume t ◦←− s ◦−→ u and let A be
a proof term representing s ◦−→ t and let B be a proof term representing s ◦−→ u. We show
t ◦−→ v ∗← u for some term v by well-founded induction on the amount of overlap between A

and B.
Base case: Just like in the proof of Theorem 5 we obtain the residuals A / B and
B / A. Since tgt(A / B) = tgt(B / A) and ◦−→ ⊆ →∗ this implies t ◦−→ v ∗← u for
v = tgt(A / B) = tgt(B / A).
Step case: Items 1–3 of the proof of Theorem 5 remain almost exactly the same. Since
strong confluence is an asymmetric condition, we cannot simply assume without loss
of generality that q ⩽ p. However, the two cases q < p and p < q still work as in
the proof of Theorem 5 by constructing a proof term for tgt(∆1) ◦−→ tgt(B / ∆2) and
tgt(∆2) ◦−→ tgt(A / ∆1) respectively and showing that the measure decreases for the new
steps. In both cases this allows us to apply the induction hypothesis and obtain steps
t ◦−→ v ∗← u. If p = q then we have an overlay and the remainder of the proof changes as
follows. A graphical representation of this case is displayed in Figure 1.

4. By the almost development closedness assumption there exists a term v′, a proof term
D′ witnessing rhs(α)τ ◦−→ v′, and a rewrite sequence rhs(β)τ →∗ v′.

5. We define the substitution ρ as in item 5 of the previous proof and show that B[D′ρ]qβ

witnesses a multi-step t′ ◦−→ w for some term w.
6. Again ▲(A / ∆1, B[D′ρ]qβ

) < ▲(A, B) just like in the previous proof.
7. We apply the induction hypothesis to obtain a term v, multi-step t ◦−→ v, and rewrite

sequence w →∗ v.
8. It remains to show that there exists a rewrite sequence u→∗ w. Since u = tgt(B) =

tgt(B / ∆1) we know u = tgt(B[rhs(β)τρ]qβ
) using properties of τ and ρ. Moreover

since w = tgt(B[D′ρ]qβ
) and tgt(D′) = v′ we know w = tgt(B[v′ρ]qβ

) by an application
of Lemma 2. From item 4 we know that there exists a rewrite sequence rhs(β)τ →∗ v′

so together with Lemma 3 we obtain the desired rewrite sequence u→∗ w. ◀

In the formalized proof we combined the cases q = p and q < p since in both cases steps
4–8 from the proof above can be applied, and dropping the additional case distinction saves
a few lines of code.

4.3 Commutation
Theorem 7 can easily be extended to commutation. For proving commutation it is important
to keep track of the underlying TRS for each proof term involved in the proof. In the
formalization this is done via the predicate wf_pterm R. The predicate checks whether all
rule symbols belong to a certain TRS R (and whether the correct number of arguments is
provided for each rule symbol). It is easy to see that whenever A ∈ wf_pterm R1 and B ∈
wf_pterm R2 and A / B is defined then A / B ∈ wf_pterm R1 §. Similar results hold for
contexts and subsitutions of proof terms, e.g. if A ∈ wf_pterm R1 and σ a substitution from
variables to proof terms over R1 then Aσ ∈ wf_pterm R1.

▶ Theorem 11. Let R1 and R2 be left-linear TRSs. If
1. s ◦−→R2 · →∗

R1
t for all critical pairs s R1← ⋊→R2 t, and

2. s ◦−→R1 t for all critical pairs s R2← ⋊→R1 t which are not overlays
then →R1 and →R2 commute. §

http://informatik-protem.uibk.ac.at/ITP2023/Proof_Terms/Residual_Join_Deletion.html#Residual_Join_Deletion.residual_well_defined%7Cthm
http://informatik-protem.uibk.ac.at/ITP2023/CR/Development_Closed.html#Development_Closed.mstep_closed_imp_commute%7Cthm

C. Kohl and A. Middeldorp 38:7

s

t′

t

u′

w

u

v

∆1

A / ∆1

∆2 B / ∆2

B[D′ρ]qβ

∗

∗

lhs(α)τ = lhs(β)τ rhs(β)τ

rhs(α)τ v′

α

β

D′

∗assumption

IH

Figure 1 Overlay case in the proof of Theorem 7.

Proof (Adaptations). According to Lemma 1 it suffices to show strong commutation of
◦−→R1 and ◦−→R2 . Assume t ◦←−R1 s ◦−→R2 u and let A ∈ wf_pterm R1 be a proof term

representing s ◦−→R1 t and let B ∈ wf_pterm R2 be a proof term representing s ◦−→R2 u.
We show t ◦−→R2 v →∗

R1
u for some term v by induction on ▲(A, B). The base case now

additionally requires that A / B ∈ wf_pterm R1 and B / A ∈ wf_pterm R2, which is easy
to show as mentioned above. For the step case similar observations hold. In particular
B[D′ρ]qβ

∈ wf_pterm R2 since by assumption D′ ∈ wf_pterm R2 and the substitution ρ maps
to subterms of B which are also in wf_pterm R2. Hence all arrows pointing to the right
in Figure 1 can be labeled with R2 and all arrows pointing down can be labeled with R1.
Consequently, the proof of Theorem 7 can be followed again. ◀

5 Conclusion

We described extensions of our recent formalization of the development-closedness criterion to
almost development closed critical pairs and commutation. During the process of formalizing
these extensions we were able to simplify the formalization in [3] to the one presented here in
Section 3. This version allowed for a straightforward adaptation to almost development closed
critical pairs. The amount of Isabelle code before and after implementing the extension stayed
roughly the same, since some previous results could be dropped while only one really new
lemma (Lemma 3) had to be added in addition to the case distinction described in Section 4.
Some more work was required to provide an executable “check”-function to integrate the
result into CeTA.3 Extending Theorem 7 to the commutation version (Theorem 11) was even
more straightforward and required only minimal adaptations by providing more information
about which proof term belongs to which of the two involved TRSs.

References
1 Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University Press,

1998. doi:10.1017/CBO9781139172752.

3 ∼ 150 lines of Isabelle code for the check-function together with a proof that it corresponds to
Theorem 7 §.

ITP 2023

https://doi.org/10.1017/CBO9781139172752
http://informatik-protem.uibk.ac.at/ITP2023/CR/Critical_Pair_Closure_Impl.html#Critical_Pair_Closure_Impl.check_development_closed%7Cthm

38:8 Formalizing Almost Development Closed Critical Pairs

2 Christina Kohl and Aart Middeldorp. ProTeM: A proof term manipulator (system description).
In Hélène Kirchner, editor, Proc. 3rd International Conference on Formal Structures for
Computation and Deduction, volume 108 of Leibniz International Proceedings in Informatics,
pages 31:1–31:8, 2018. doi:10.4230/LIPIcs.FSCD.2018.31.

3 Christina Kohl and Aart Middeldorp. A formalization of the development closedness criterion
for left-linear term rewrite systems. In Robbert Krebbers, Dmitriy Traytel, Brigitte Pientka,
and Steve Zdancewic, editors, Proc. 12th International Conference on Certified Programs and
Proofs, pages 197–210, 2023. doi:10.1145/3573105.3575667.

4 Julian Nagele, Bertram Felgenhauer, and Aart Middeldorp. CSI: New evidence — a progress
report. In Leonardo de Moura, editor, Proc. 26th International Conference on Automated
Deduction, volume 10395 of Lecture Notes in Artificial Intelligence, pages 385–397, 2017.
doi:10.1007/978-3-319-63046-5_24.

5 Julian Nagele and René Thiemann. Certification of confluence proofs using CeTA. In Takahito
Aoto and Delia Kesner, editors, Proc. 3rd International Workshop on Confluence, pages 19–23,
2014. Available from http://cl-informatik.uibk.ac.at/iwc/iwc2014.pdf.

6 Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL – A Proof Assistant
for Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science. Springer, 2002.
doi:10.1007/3-540-45949-9.

7 TeReSe, editor. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 2003.

8 Yoshihito Toyama. Commutativity of term rewriting systems. In Kazuhiro Fuchi and Laurent
Kott, editors, Programming of Future Generation Computers II, pages 393–407. North-Holland,
1988.

9 Vincent van Oostrom. Development closed critical pairs. In Gilles Dowek, Jan Heering, Karl
Meinke, and Bernhard Möller, editors, Proc. 2nd International Workshop on Higher-Order
Algebra, Logic, and Term Rewriting, volume 1074 of Lecture Notes in Computer Science, pages
185–200, 1995. doi:10.1007/3-540-61254-8_26.

10 Vincent van Oostrom. Developing developments. Theoretical Computer Science, 175(1):159–
181, 1997. doi:10.1016/S0304-3975(96)00173-9.

https://doi.org/10.4230/LIPIcs.FSCD.2018.31
https://doi.org/10.1145/3573105.3575667
https://doi.org/10.1007/978-3-319-63046-5_24
http://cl-informatik.uibk.ac.at/iwc/iwc2014.pdf
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-61254-8_26
https://doi.org/10.1016/S0304-3975(96)00173-9

	p000-Frontmatter
	Preface

	p001-Koutsoukou-Argyraki
	1 Summary

	p002-Krebbers
	p003-Abdulaziz
	1 Introduction
	2 Basic Definitions and Notation
	3 RANKING
	3.1 Competitive Ratio of RANKING

	4 Competitiveness for Bipartite Graphs with Perfect Matchings
	5 Lifting the Competitiveness to General Bipartite Graphs
	5.1 Alternating Paths, Augmenting Paths, and Berge's Lemma
	5.2 online-match's Behaviour after Removing a Vertex
	5.3 Finishing the Proof
	5.4 Proving Lemma 2

	6 The Competitive Ratio in the Limit
	7 Discussion

	p004-Abrahamsson
	1 Introduction
	2 Approach
	2.1 Overview

	3 Addition of Natural Numbers (Version 1)
	3.1 Input and output
	3.2 Key soundness lemma
	3.3 From Candle terms to natural numbers
	3.4 Checking num_thy_ok
	3.5 Soundness of CakeML implementation

	4 Compute Expressions (Version 2)
	4.1 Compute values
	4.2 Compute expressions
	4.3 Input terms
	4.4 Context assumption: cexp_thy_ok
	4.5 Soundness
	4.6 CakeML code and integration

	5 Recursion and user-supplied code equations (Version 3)
	5.1 Code equations
	5.2 Updated compute expressions
	5.3 Soundness
	5.4 CakeML code
	5.5 Integration

	6 Efficient interpreter (Version 4)
	7 Staged set up (Version 5)
	8 Evaluation
	9 Related Work
	9.1 HOL4
	9.2 HOL Light
	9.3 Isabelle/HOL
	9.4 Dependent type theories
	9.5 First-order logic

	10 Conclusion

	p005-Accattoli
	1 Introduction
	2 lambda-Terms, Contexts, Rules, and Processes, with Pen and Paper
	3 Our Approach to Formalizing lambda-Terms, Processes, and Contexts
	4 The pi-Calculus, at a Distance
	5 Postponement of equiv and Equivalence of the Presentations
	6 Translation and Simulations
	7 Relating Weak Head Reduction and Micro Weak Head Reduction
	8 Conclusions

	p006-Angdinata
	1 Introduction
	1.1 Elliptic curves
	1.2 Formalisation attempts

	2 Weierstrass equations
	2.1 Weierstrass curves
	2.2 Equations and nonsingularity
	2.3 Point addition

	3 Group law
	3.1 Ideal class group of the coordinate ring
	3.2 Construction of to_class
	3.3 Injectivity of to_class

	4 Discussion
	4.1 Related work
	4.2 Experimental attempts
	4.3 Implementation issues
	4.4 Future projects

	p007-Avigad
	1 Introduction
	2 The Cairo Machine Model
	3 From Assembly Code to Machine Code
	4 From Cairo Code to Assembly Code
	5 Memory Management and Range Checks
	6 Validating Digital Signatures
	7 Methodology
	8 Conclusions and Related Work

	p008-Bosman
	1 Introduction
	2 Overview
	3 Declarative System
	3.1 Syntax
	3.2 Typing

	4 Algorithmic System
	4.1 Syntax
	4.2 Inference algorithm
	4.3 Unification

	5 Metatheory
	5.1 Context instantiation
	5.2 Soundness
	5.3 Completeness
	5.4 Decidability

	6 Mechanization
	6.1 Ott
	6.2 The locally nameless representation
	6.3 Quirks of the locally nameless representation
	6.4 Delta between the paper and the mechanization

	7 Related Work
	8 Conclusion

	p009-Carneiro
	1 Introduction
	2 Metamath
	3 Translating Metamath to HOL via MM0
	4 Translating Metamath in HOL to TH0
	4.1 Translation v1
	4.2 Translation v2
	4.3 Translation v3
	4.4 More Examples
	4.5 Why three translations?

	5 Translating Metamath in HOL to First-Order Class Theory
	6 Benchmark
	7 Initial ATP Evaluation
	7.1 Higher-order Evaluation
	7.2 First-order runs
	7.3 Premise Selection Experiments
	7.3.1 Higher-order runs
	7.3.2 First-order runs

	8 Proof Reconstruction
	8.1 Proof Objects

	9 Examples
	10 Hammer Tool
	11 Conclusion

	p010-Carneiro
	1 Introduction
	2 Mizar internals: A (determined) user's perspective
	3 The checker
	3.1 Core syntax
	3.2 Structure of the checker
	3.3 Requirements
	3.3.1 Soundness considerations of the requirements

	4 The analyzer
	5 Mizar soundness bugs
	5.1 Exhibit 1: polynomial arithmetic overflow
	5.2 Exhibit 2: negation in the schematizer
	5.3 Exhibit 3: flex-and unfolding
	5.4 Exhibit 4: flex-and substitution
	5.5 Honorable mention: attributes that don't exist

	6 Results
	7 Conclusion & Future work

	p011-Cruz-Filipe
	1 Introduction
	2 Background
	2.1 Core Choreographies
	2.2 Processes
	2.3 Endpoint Projection (EPP)
	2.4 Turing completeness

	3 Amendment
	3.1 Definition
	3.2 Syntactic Properties
	3.3 Semantic Properties

	4 Implications of Amendment
	5 Related Work
	6 Conclusion

	p012-DeAlmeidaBorges
	1 Introduction
	2 Methodology
	2.1 Survey Design and Deployment
	2.2 Analysis Process
	2.3 Statistical Analyses
	2.3.1 Defining Categories of Interest
	2.3.2 Controls
	2.3.3 Selecting Population to Analyze

	3 Descriptive Observations and Comparison to Other Communities
	3.1 Descriptive Analysis and Observations
	3.2 Comparison of the Coq Community to Other Communities

	4 Analysis of Coq Use for Different Population Groups
	4.1 Installation of Coq, Usage of Packages and Features, and CI
	4.2 User Interfaces

	5 Satisfaction and Needs of Different Population Groups
	6 Threats to Validity
	7 Discussion and Conclusions

	p013-DeFrutos-Fernandez
	1 Introduction
	1.1 Lean and mathlib
	1.2 Paper outline

	2 Mathematical background
	3 Extensions of nonarchimedean norms
	3.1 The spectral norm
	3.2 Norm extension theorems

	4 Implementation of norms and valuations
	4.1 Unbundling seminorms
	4.2 Relating norms and valuations

	5 Applications to number theory
	5.1 The p-adic complex numbers
	5.2 Fontaine's period rings

	6 Discussion
	6.1 Future Work
	6.2 Related Work
	6.3 Conclusion

	p014-Dunn
	1 Introduction
	2 Using Tealeaves
	2.1 The Tealeaves workflow

	3 Decorated Traversable Monads
	3.1 Proving the DTM instance for Lam
	3.2 DTMs as containers
	3.3 Locally nameless backend
	3.4 Multisorted DTMs

	4 Evaluating Tealeaves
	5 Related work
	6 Conclusion and future work

	p015-Dvorak
	1 Introduction
	2 Definitions
	2.1 Grammars
	2.2 Languages
	2.3 Operations

	3 Closure under Union
	4 Closure under Reversal
	5 Closure under Concatenation
	6 Closure under Kleene Star
	6.1 Proof Sketch
	6.2 Formalization

	7 Related Work
	8 Conclusion

	p016-Flaten
	1 Introduction
	2 Preliminaries
	2.1 Homotopy Type Theory
	2.2 The Coq-HoTT Library

	3 Yoneda Ext
	3.1 The Type of Short Exact Sequences
	3.2 Ext as a Bifunctor
	3.3 The Baer Sum

	4 The Pullback Fibre Sequence
	5 The Long Exact Sequence
	5.1 The Type of Length-n Exact Sequences
	5.2 The Long Exact Sequence

	6 Conclusion

	p017-Guilloud
	1 Introduction
	1.1 Design Goals
	1.2 Contributions

	2 Logical Kernel
	2.1 Schematic Symbols
	2.2 Ortholattice Algorithm Applied to First-Order Logic
	2.3 Substitution Rules
	2.4 Proof Objects
	2.5 Theories

	3 DSL for LISA in Scala
	3.1 Higher-Level Proofs

	4 Tactics in LISA and Comparison
	4.1 A Proof-Producing SAT Solver Using FOL2
	4.2 Error Reporting

	5 Beginning Set Theory Development and Cantor's theorem
	5.1 Current Theory Development

	6 Related Work
	7 Conclusion

	p018-Hirata
	1 Introduction
	2 Measure Theory
	2.1 Measure Theory in Isabelle/HOL
	2.2 S-Finite Kernel
	2.3 The Borel Isomorphism Theorem

	3 Quasi-Borel Spaces
	3.1 Quasi-Borel Spaces in Isabelle/HOL
	3.2 Proof Automation
	3.3 The s-Finite Measure Monad

	4 Probabilistic Programs
	4.1 The Language
	4.2 Example: What time is it?
	4.3 Example: Two Dice
	4.4 Example: Gaussian Mean Learning

	5 Conclusion

	p019-Jakubuv
	1 Introduction: Mizar, MML, Hammers and AITP
	1.1 Contributions
	1.2 Overview of the Methods and Experiments

	2 The Mizar Mathematical Library and the Mizar40 Corpus
	3 ENIGMA: ATP Guidance and Related Technologies
	3.1 Saturation Theorem Proving Meets Machine Learning
	3.2 Gradient Boosted Decision Tree Classifiers and Features
	3.3 Graph Neural Network (GNN) Classifiers
	3.4 Additional Related Techniques

	4 Learning Premise Selection From the MML
	4.1 Multilabel Premise Selection (K, N, R)
	4.2 Premise Selection as Binary Classification (L, G)
	4.3 Ensemble Methods for Premise Selection (E)
	4.4 Subproblem Based Premise Minimization (M)

	5 Strategies and Portfolios
	6 Experiments and Results
	6.1 Bushy Experiments and Timeline
	6.2 Training Data for Premise Selection
	6.3 Training the Premise Selectors
	6.4 ENIGMA Experiments on the Premise Selection Data
	6.5 Final Hammer Portfolio
	6.6 Transfer to MML 1382

	7 Proofs
	8 Conclusion: AI/TP Bet Completed

	p020-Joram
	1 Introduction
	2 Type Theory and Cubical Agda
	3 The Finite Bag Functor in Sets
	3.1 As the Free Commutative Monoid
	3.2 As a Quotient of Lists
	3.3 As an Analytic Functor
	3.4 Equivalence of Presentations
	3.5 Definable Quotients and Sorting

	4 The Final Coalgebra in Sets
	4.1 As an ω-Limit
	4.2 As a Quotient of the Final List-Coalgebra

	5 The Finite Bag Functor in Groupoids
	6 The Final Coalgebra in Groupoids
	7 Other Analytic Functors
	8 Conclusions

	p021-Larchey-Wendling
	1 Introduction
	2 Type-theoretic basics and notations
	3 Unbounded linear search in Coq
	3.1 Specification of linear search
	3.2 Termination of linear search
	3.3 Building an initial termination certificate
	3.4 A tail-recursive program for the full loop
	3.5 From linear search to μ-minimization

	4 Representing μ-algorithms in Coq
	4.1 μ-algorithms as a nested dependent type
	4.2 The semantics of μ-algorithms
	4.3 The interpreter for μ-algorithms
	4.4 Remarks on a carefully crafted library of indices and vectors

	5 Extraction to OCaml
	6 Conclusion

	p022-Livingston
	1 Introduction
	1.1 Motivating group cohomology
	1.2 Lean and mathlib

	2 Preliminaries
	2.1 Mathematical background
	2.2 Initial formalisation considerations
	2.2.1 Complexes in Lean
	2.2.2 The right generality
	2.2.3 Exploiting typeclass inference

	3 Formalising the standard resolution
	3.1 Simplicial objects
	3.2 Constructing the resolution using EG
	3.3 Freeness of k[G^{n + 1}]

	4 Defining group cohomology
	5 Conclusion and future work

	p023-Nash
	1 Introduction
	2 Basic concepts
	2.1 Almost equal sets
	2.2 Obeying a condition infinitely often
	2.3 Thickenings
	2.4 The circle as a normed group
	2.5 Metric number theory

	3 Doubling measures and Lebesgue's density theorem
	3.1 Doubling measures
	3.2 The density theorem

	4 Cassels's lemma
	5 Ergodic theory
	5.1 Ergodic maps, general theory
	5.2 Ergodic maps on the circle

	6 Gallagher's theorem
	6.1 Points of approximate order
	6.2 The main theorem

	7 Final words
	7.1 Removing the delta_n - > 0 hypothesis
	7.2 The Duffin-Schaeffer conjecture
	7.3 Aistleitner, Borda, and Hauke's quantitative results
	7.4 Developing against master

	p024-Nawrocki
	1 Introduction
	1.1 Contributions

	2 The user interface
	2.1 Expression and trace presentations

	3 ProofWidgets 4: programmable, referential interfaces
	3.1 Diagrams for algebra
	3.2 Selection contexts
	3.3 Contextual suggestions and graphical calculi

	4 Implementation
	5 Related work
	6 Conclusion

	p025-Pomeret-Coquot
	1 Introduction
	2 Motivating Example: the Murder of Mr. Jones
	3 Formalization of Belief Functions for Mono-Agent Decision Making
	3.1 Belief functions
	3.2 Conditioning in the Belief Function Theory
	3.3 Decision Making with Belief Functions

	4 Formalization of Several Classes of Games of Complete Information
	4.1 Games of Complete Information
	4.2 Hypergraphical Games

	5 Bel Games
	6 Howson-Rosenthal-like transforms
	6.1 The Direct Transform
	6.2 The Conditioned Transform
	6.3 The TBM Transform

	7 Concluding remarks

	p026-Reichel
	1 Introduction
	2 Overview
	3 A Proof Repair Dataset
	3.1 The Task: Proof Repair
	3.2 The Data: Aligned Git Commits
	3.3 The Metrics: Proof Checking

	4 Building the Proof Repair Dataset
	4.1 The Switch Manager
	4.2 Built Projects
	4.3 Physical Dependency Locations (IQR Flags)
	4.4 Proof Contexts
	4.5 Aligned Repair Instances

	5 Challenges
	5.1 Our Experiences
	5.1.1 Project Management
	5.1.2 Parsing & Serialization

	5.2 Other Proof Assistants
	5.3 Recommendations

	6 Related Work
	7 Conclusions & Future Work

	p027-Tan
	1 Introduction
	2 Background
	3 Bitcoded Regular Expressions and Derivatives
	4 Simplification
	5 Finite Bound for the Size of Derivatives
	6 Conclusion

	p028-Tirore
	1 Introduction
	2 Global Types, Local Types, and Standard Projection
	3 Projection on Coinductive Types
	4 Projection on Inductive Types: Soundness and Completeness
	5 Deciding Projectability
	6 Mechanisation
	7 Related Work and Discussion
	8 Conclusions

	p029-Toth
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	3 Specification
	4 Abstract Description of Implementation
	5 Verified Implementation
	5.1 Stack
	5.2 Idle
	5.3 Current
	5.4 Rebalancing
	5.4.1 Big
	5.4.2 Small
	5.4.3 Common
	5.4.4 States

	5.5 Deque
	5.5.1 Enqueuing
	5.5.2 Dequeuing

	5.6 Proof
	5.7 Complexity

	6 Conclusion

	p030-VanderWeide
	1 Introduction
	2 The Basics of Higher-Order Rewriting in Coq
	2.1 Terms and Rewrite Rules
	2.2 Termination

	3 Higher-Order Interpretation Method
	3.1 Interpreting types and terms
	3.2 Termination Models for AFSs

	4 The Higher-Order Polynomial Method
	4.1 Polynomials
	4.2 Polynomial Interpretation
	4.3 Constraint Solving Tactic

	5 Generating Proof Scripts
	5.1 Proof traces for polynomial interpretation
	5.2 Verifying Wanda's Polynomial Interpretations

	6 Conclusions and Future Work

	p031-Voorneveld
	1 Introduction
	2 Powerset via the Slice Category
	2.1 A Universe for Indexing Sets
	2.2 Relations on Families
	2.3 A Monad on Setoids
	2.4 A Kleisli Triple on Sets
	2.5 Semilattice Structure

	3 Nondeterministic Functions
	3.1 E-categories
	3.2 Functors and Variations
	3.3 Method Comparison

	4 Categorical Structures
	4.1 Morphisms with Daggers
	4.2 Products and Coproducts
	4.3 Semilattice Enriched
	4.4 Monoidal

	5 Inductive Nondeterministic Structures
	5.1 Distributivity
	5.2 Monad and Comonad Structure

	6 Example Processes
	6.1 Interleaving Concurrency
	6.2 Iterated Processes
	6.3 Labelled transition systems

	7 Conclusions
	7.1 Agda Categories Library
	7.2 Denotational Semantics

	p032-Wang
	1 Introduction
	2 Example: A stateful firewall
	2.1 Proof organization and functional model
	2.2 Function specifications
	2.3 Hierarchical State Assertions

	3 How the verifier works
	3.1 P4light abstract syntax, front end
	3.2 Operational semantics
	3.3 Reference Interpreter
	3.4 Program Logic and Proof Automation

	4 Instantiation
	4.1 Abstract Methods

	5 Proof statistics
	6 Count-min-sketch
	7 Discussion

	p033-Xu
	1 Introduction
	2 Logical System
	2.1 Sorts and Terms
	2.2 Formulas
	2.3 Theorems
	2.3.1 Proof System
	2.3.2 Semantics via Translation to Sorted FOL

	3 ETCS and SEAR
	4 Internal logic in ETCS
	5 Quotients in ETCS and SEAR
	6 Group Theory
	6.1 Discussion

	7 Inductive and Coinductive definitions
	7.1 Natural numbers, Finite sets and Lists
	7.2 Co-lists

	8 Modal Model Theory
	9 Existence of Large Sets
	10 Conclusion
	10.1 Related Work
	10.2 Future Work

	p034-Yamada
	1 Introduction
	2 Preliminaries
	2.1 Binary Relations
	2.2 Ordinals and Cardinality Library

	3 Iwamura's Lemma
	3.1 Uncountable Case
	3.1.1 Formalizing Transfinite Sequences
	3.1.2 Expanding Infinite Sets into Directed Sets

	3.2 Countable Case

	4 Directed Completeness
	5 Scott-Continuity
	6 Conclusion

	p035-Zhang
	1 Introduction
	2 Mathematical details
	2.1 Sheaves and Locally Ringed Spaces
	2.2 Definition of Affine Scheme and Scheme
	2.3 The Proj Construction

	3 Formalisation details
	3.1 Homogeneous Ideal
	3.2 Homogeneous Localisation
	3.3 The Zariski Topology
	3.4 Locally Ringed Spaces
	3.5 Affine cover
	3.6 Reflections on the formalisation

	4 Conclusion

	p036-Best
	1 Introduction
	2 Cyclotomic fields
	3 About the proof of case I
	4 Integration to mathlib
	5 Future work

	p037-Grabowski
	1 Introduction
	2 Definitional expansions in proof skeletons
	3 Unfolding wrt chosen definitions
	4 Experiments
	5 Conclusions

	p038-Kohl
	1 Introduction
	2 Preliminaries
	3 Development Closed Critical Pairs
	4 Almost Development Closed Critical Pairs
	4.1 Original Proof
	4.2 Formalized Proof
	4.3 Commutation

	5 Conclusion

