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Abstract
Decision theory and game theory are both interdisciplinary domains that focus on modelling
and analyzing decision-making processes. On the one hand, decision theory aims to account
for the possible behaviors of an agent with respect to an uncertain situation. It thus provides
several frameworks to describe the decision-making processes in this context, including that of
belief functions. On the other hand, game theory focuses on multi-agent decisions, typically with
probabilistic uncertainty (if any), hence the so-called class of Bayesian games. In this paper, we
use the Coq/SSReflect proof assistant to formally prove the results we obtained in [35]. First, we
formalize a general theory of belief functions with finite support, and structures and solutions
concepts from game theory. On top of that, we extend Bayesian games to the theory of belief
functions, so that we obtain a more expressive class of games we refer to as Bel games; it makes it
possible to better capture human behaviors with respect to lack of information. Next, we provide
three different proofs of an extended version of the so-called Howson–Rosenthal’s theorem, showing
that Bel games can be casted into games of complete information, i.e., without any uncertainty. We
thus embed this class of games into classical game theory, enabling the use of existing algorithms.
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1 Introduction

From a mathematical perspective, measure theory is a fundamental domain to learn and use,
notably given its direct application to integration and probability theory. Several works thus
focused on formalizing measure theory in type theory, e.g., relying on reference textbooks [16].
Next, probability play a key role in the context of game theory, gathering several multi-agent
frameworks that can model situations in many application areas such as economics, politics,
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logics, artificial intelligence, biology, and so on. In particular, the framework of Bayesian
games (a class of games of incomplete information), has been well-studied by the decision
theory community [15, 30]. However, using probability and additive measures appears to be
unsatisfactory to model subtle decision-making situations with uncertainty.

In this work, we aim to show that the belief function theory also is amenable to formal
proof, and makes it possible to formally verify the correctness of three state-of-the-art
algorithms. In [13, 35], we introduced the notion of Bel games, which faithfully models
games of incomplete information where the uncertainty is expressed within the Dempster-
Shafer theory of belief functions. This framework naturally encompass Bayesian games, as
belief functions generalize probability measures. Also, we generalized the Howson-Rosenthal
theorem to the framework of Bel games and proposed three transforms which make it
possible to cast any Bel game into an equivalent game of complete information (without any
uncertainty). Furthermore, these transforms preserve the space complexity of the original
Bel game (they produce a game with a succinct representation, corresponding to the class of
so-called hypergraphical games).

Contributions. In the present paper, we consolidate the mathematical results previously
published in [35], presenting a formal verification of our algorithms using the Coq proof
assistant [6]. First, we formalize a general theory of belief functions. Then, we formalize
structures and solution concepts for “standard” games, Bayesian games, and Bel games, and
we formally prove the correctness of the three transform algorithms, in order to provide
strong confidence on these results. The software artifact obtained was released under the
MIT license and is available within the official Coq projects OPAM archive. Our formalization
effort also resulted in more background lemmas, integrated in the MathComp library. To
the best of our knowledge, it is the first time the theory of belief functions is mechanized in
a formal proof assistant, and applied to the domain of (formal) game theory of incomplete
information.

Related works. Several formalization efforts have been carried out in game theory since
2006, each focusing on a somewhat different fragment: Kaliszyk et al. [33], formalizing
foundations of decision making, using Isabelle/HOL; Vestergaard [40] then Le Roux [36],
formalizing Kuhn’s existence of a Nash equilibrium in finite games in extensive form, using
Coq; Lescanne et al. [25], studying rationality of infinite games in extensive form, using Coq;
Martin-Dorel et al. [27], studying the probability of existence of winning strategies in Boolean
finite games, using Coq; Bagnall et al. [4], formalizing well-known results of algorithmic
game theory, using Coq; Dittmann [8], proving the positional determinacy of parity games,
using Isabelle/HOL; Le Roux et al. [23], proving that a determinacy assumption implies the
existence of Nash equilibrium in 2-player games, using Coq and Isabelle/HOL; this result
being combined with that of Dittmann, using Isabelle/HOL [24]. Furthermore, game theory is
an important topic in economics: Lange et al. [21], proposing guidelines for formal reasoning;
Kaliszyk et al. [20], formalizing microeconomic foundations, using Isabelle/HOL, and Echenim
et al. [12], formalizing the Binomial Pricing Model, using Isabelle/HOL. Game theory aside,
numerous works have been carried out in proof assistants to formalize probability and/or
measure theory. Regarding the Coq proof assistant, we can mention the recent works by
Affeldt et al. (on information theory based on discrete probability theory [2]; and measure
theory based on MathComp [1]) and Boldo et al. [5], focusing on Lebesgue’s integral theory.
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Paper outline. We start by introducing a motivating example, for which the Bayesian
approach fails but the Dempster-Shafer approach succeeds. Section 3 presents the Dempster-
Shafer theory of belief functions, then Section 4 focuses on complete-information games
(including hypergraphical games) while Section 5 deals with Bel games; then Section 6 is
devoted to our formalization of Howson-Rosenthal’s generalized theorem in the scope of
n-player Bel games. Finally, Section 7 gives concluding remarks and perspectives. Throughout
the paper, we interleave mathematical and formal statements as needed to ensure our formally
verified results are well-surveyable: the definitions and results are given first in mathematical
syntax, then in Coq syntax when required (i.e., we include the Coq statements of the main
theorems and the definitions they depend on, but not those of intermediate lemmas).

2 Motivating Example: the Murder of Mr. Jones

▶ Example 1 (Inspired by the Murder of Mr. Jones [39]). Player 1 and Player 2 have to choose
a partner which can be either Peter (P ), Quentin (Q), or Rose (R). The point is that a
crime has been committed, for which these three people only are suspected. Furthermore, a
poor-quality surveillance video allows to estimate that there is a 50% chance that the culprit
is a man (P or Q), and a 50% chance that it is a woman (R). As to their interest, choosing
an innocent people leads to a payoff of $6k, to be shared between the people making the deal
(that is, $2k or $3k depending on if the players choose the same partner or not); choosing the
culprit yields no payoff ($0k). Moreover, Player 1 is investigating P and will know whether
he is guilty before making the decision. Similarly, Player 2 will know whether R is guilty.

The Bayesian approach claims that any knowledge shall be described by a single subjective
probability; it is not well-suited here. Indeed, assume Player 1 learns that Peter is innocent.
It should not impact the evidence of 50% chance per sex, so the probability of guilt should
become 1/2 for Quentin and 1/2 for Rose. However, in a purely Bayesian view, a prior
probability must be made explicit, e.g., by equiprobability assumption: 1/4 for Peter, 1/4 for
Quentin, and 1/2 for Rose. After conditioning, the posterior probability would not give 50%
chance per sex anymore: equiprobability and conditioning “given Peter is innocent” yields
1/3 for Quentin and 2/3 for Rose. Learning that Peter is innocent would increase the odds
against Rose! In the sequel, we will reuse this example to highlight how the framework of
belief functions better captures uncertain knowledge.

3 Formalization of Belief Functions for Mono-Agent Decision Making

Modelling mono-agent decision making under uncertainty involves three main tasks. First,
knowledge has to be expressed in a well-suited representation, encoding what is known
without making extra assumptions. Then, if the agent may learn or observe some event
before the decision, one shall identify the relevant conditioning rule. Finally, the agent’s
preferences must be captured by a compatible decision rule. In this work, we focus on
real-valued utility-based decision rules, which evaluate uncertain outcomes so that the agent
prefers outcomes with a bigger score. For example, modelling well-known variable phenomena
can perfectly be captured in a probabilistic setting: a probability represents the variability;
conditional probability updates knowledge; and preferences over uncertain outcomes may be
captured by expected utility. Still, this approach may be unsuccessful to model other kinds
of uncertainty.

In the sequel, we rely on belief function theory, which generalizes probability theory
and enables capturing both variability and ignorance. In this section, we focus on a single
decision maker, while the material from Section 4 will deal with multi-agent decision making.

ITP 2023
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3.1 Belief functions
The theory of belief functions is a powerful toolset from decision theory and statistics. It
encompasses two distinct approaches for reasoning under uncertainty: the Dempster-Shafer
theory of evidence (DS) [7, 37] and the upper-lower probability theory (ULP) [7, 41]. Both
approaches consider a finite set of possible “states of the world” Ω = {ω1, . . . , ωn}, one
of which being the actual state of the world ω∗, and three functions m : 2Ω → [0, 1],
Bel : 2Ω → [0, 1], and Pl : 2Ω → [0, 1], which all map subsets of Ω to real numbers. Those
functions are deducible one from another. In the DS theory, the mass function m is the basic
knowledge about the world: m(A) is the part of belief supporting the evidence ω∗ ∈ A, but
that does not support smaller claims such as ω∗ ∈ B ⊂ A. The non-additive continuous
measures Bel and Pl indicate how much a proposition is implied by (resp. is compatible with)
the knowledge. By contrast, the ULP theory suppose that there is an unknown probability
Pr∗ which is bounded by Bel and Pl: ∀A, Bel(A) ≤ Pr∗(A) ≤ Pl(A); then m is just a concise
representation of the family of compatible probabilities.

Example 1 can be understood in both theories. In the DS theory, m({P, Q}) = m({R}) =
1/2 directly encodes the given evidences. In the ULP theory, one rather considers the family
of probabilities (Prx)x which satisfy Pr x({P, Q}) = Pr x({R}) = 1/2 (see Table 1).

Table 1 Prior knowledge from Example 1 – in the DS theory, m directly describes the knowledge,
in the ULP theory, m describes a family of probability measures (Prx)x∈[0, 0.5].

A ⊆ Ω ∅ {P } {Q} {R} {P, Q} {P, R} {Q, R} {P, Q, R}
m(A) 0 0 0 0.5 0.5 0 0 0
Bel(A) 0 0 0 0.5 0.5 0.5 0.5 1
Pl(A) 0 0.5 0.5 0.5 0.5 1 1 1
Prx(A) 0 x 0.5 − x 0.5 0.5 0.5 + x 1 − x 1

In this work, we follow the DS approach and formalize notions in terms of the function m.
We chose to use the Coq proof assistant, along with the SSReflect tactic langage and the
MathComp library [26]. This combination offers several features that contribute to facilitate
the formalization: dependent types (making it possible to easily grasp usual definitions
in game theory, and account for the variability of actions spaces w.r.t. individual agents),
reflection prodicates (to easily go back and forth between decidable Boolean predicates and
their propositional counterpart), packed classes and structure inference (making it possible
to get formal statements as concise and legible as “LaTeX” ones) as well as the availability of
comprehensive theories of finite sets or functions with finite support, endowed with decidable
equality, and big operators such as

∑
or

∏
.1 Regarding automation (which is sometimes

a criterium to choose a particular theorem prover over another): the formal verification
of our results especially involves proofs by rewriting, very often under the binder of a big
operator: the under tactic was instrumental to this aim [28]. Besides using this tactic, the
formalization did not highlight a particular need to automate specific fragments or recurring
proof goals.

▶ Definition 2 (Frame of discernment). A frame of discernment is a finite set Ω, representing
the possible states of the world. One of them is the actual state of the world ω∗.

1 MathComp notations: {set X} denotes finite sets over (X : finType), A:&:B = A ∩ B, A:|:B = A ∪ B,
~:A = Ac, set0 = ∅; {ffun X -> Y} denotes the type of finite support functions from (X : finType)
to (Y : Type); and for any (T : X -> Type), {ffun forall x : X, T x} denotes the type of finite
support functions with a dependently-typed codomain, mapping any (x : X) to an element of (T x).
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▶ Definition 3 (Events). A set A ⊆ Ω is an event which represents the proposition “ω∗ ∈ A”.
All set functions we consider (m, Bel, Pl) map events to real numbers within [0, 1].

The set Ω is endowed with MathComp’s finite type structure, that is, (W : finType). It
makes it possible to use set operations and big operators. The carrier of the functions m,
Bel, and Pl is (R : realFieldType): only field operations are needed for this work.

▶ Definition 4 (Basic probability assignment). A basic probability assignment (bpa), a.k.a.
mass function, is a set-function m : 2Ω → [0, 1] such that:

m(∅) = 0 and
∑

A⊆Ω
m(A) = 1 and ∀A ⊆ Ω, m(A) ≥ 0. Formally: (1)

Definition bpa_axiom m := [&& m set0 == 0, \sum_A m A == 1 & [∀ A, m A >= 0]].
Structure bpa := { bpa_val :> {ffun {set W} -> R} ; bpa_ax : bpa_axiom bpa_val }.

▶ Definition 5 (Belief function, plausibility measure). Given a bpa m over Ω, the associated
belief function Bel : 2Ω → [0, 1] and plausibility measure Pl : 2Ω → [0, 1] are defined by:

Bel(A) =
∑

B⊆A
m(B) and Pl(A) =

∑
B∩A̸=∅

m(B).

▶ Proposition 6 (Duality). For any A ⊆ Ω, Pl(A) = 1 − Bel(Ac) and Bel(A) = 1 − Pl(AC).

▶ Proposition 7 (Super- and sub-additivity). Bel is super-additive while Pl is sub-additive:
for disjoint sets A, B ⊆ Ω, Bel(A ∪ B) ≥ Bel(A) + Bel(B) and Pl(A ∪ B) ≤ Pl(A) + Pl(B).

▶ Proposition 8 (Bounds). For any A ⊆ Ω, 0 = Bel(∅) = Pl(∅) ≤ Bel(A) ≤ Pl(A) ≤
Bel(Ω) = Pl(Ω) = 1.

▶ Definition 9 (Focal elements, focal set). Given a bpa m over Ω, any subset A ⊆ Ω with a
non-zero mass m(A) is called focal element, and the set of focal elements of m is called the
focal set of m and denoted by Sm. In other words, A ∈ Sm iff m(A) > 0.

▶ Proposition 10 (Focal elements, focal set). Given a bpa m over Ω, Definition 5 can
straightforwardly be rephrased by rewriting the sums over the focal set:

Bel(A) =
∑

B∈Sm
B⊆A

m(B) and Pl(A) =
∑

B∈Sm

B∩A̸=∅
m(B).

Next, we recall a standard “complexity definition” about belief functions, that will prove
useful to characterize probability measures:

▶ Definition 11 (k-additivity). For any bpa m, let k = maxB∈Sm |B| be the maximal cardin-
ality of its focal elements. Then, m is said to be k-additive.

▶ Definition 12 (Probability measure). Given a bpa m over Ω, if m is 1-additive, i.e. if all
focal elements are singletons, then Bel = Pl is a discrete probability measure, associated with
the distribution dist m : Ω → [0, 1] defined by x 7→ m({ω}).

Structure proba := {proba_val:> bpa; proba_ax: \max_(B in focalset proba_val) #|B| == 1}.
Definition dist (m : proba) := fun w => m [set w]. (*[set w] corresponds to {w} *)

ITP 2023
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3.2 Conditioning in the Belief Function Theory
Conditioning is the operation that captures knowledge revision (fact learning) as well as
focusing (hypothesis) [11, 9, 14]. By turning a prior bpa into a posterior “given an event
C”, one updates the knowledge so it now asserts that C is certain. Several conditioning
rules for belief functions have been proposed, depending on the DS or ULP interpretation
(cf. Section 3.1) and on the kind of update it involves. Starting from the same prior bpa,
they yield distinct posteriors – they indeed capture distinct operations.

Before dealing with conditional events (· | C) – read “given C” – a precondition happens
to be necessary: on the technical side, it avoids division-by-zero, and on the semantics
side, it means one cannot learn that an impossible event holds. Since the definition of
this precondition is specific to each conditioning rule, we abstract it away in the form of a
revisable predicate, which indicates whether an event can be assumed.

▶ Definition 13 (Conditioning). Given a bpa m, a predicate revisablem : Ω → {1, 0},
and an event C ⊆ Ω such that revisablem(C) holds, a conditioning turns m into a bpa
m(· |cond C) such that the complement Cc of C is impossible, i.e., Bel(Cc | C) = 0. Formally:

Definition conditioning_axiom (revisable : bpa -> pred {set W})
(cond : ∀ m C, revisable m C -> bpa) :=

∀ m C (Hrev : revisable m C), Bel (cond m C Hrev) (~:C) = 0.

In other words, assuming m is revisable by the event C implies that if one learns that
C holds, then one also learns that no evidence for the complement Cc can hold. Next,
we formalize a conditioning structure that encapsulates the revisable predicate, the
conditioning algorithm itself – which turns a revisable prior in its posterior “given C” –
and a proof of the conditioning_axiom:

Structure conditioning := { revisable : bpa -> pred {set W} ;
cond_val :> ∀ m C, revisable m C -> bpa ;
cond_ax : conditioning_axiom cond_val }.

The most common conditioning is the so-called Dempster’s conditioning [7], which captures
knowledge revision (i.e., fact learning). In the DS framework, it is understood as a transfer
of parts of beliefs: learning that C holds, m(B) is transferred to B ∩ C if it is not empty, or
discarded otherwise (then the posterior has to be renormalized due to Equation (1)). That is,
the evidence now concerns B ∩ C, the only possible states of the world “given that C holds”.
In the ULP framework, it is understood as a max-likelihood conditioning: the posterior
probability family delimited by Bel(· | C) and Pl(· | C) is the conditioning of those prior
probabilities which assign the maximal probability to event C, that we now know for sure.

▶ Definition 14 (Dempster’s conditioning). For any bpa m and any event C such that
Pl(C) ̸= 0, Dempster’s conditioning defines the bpa: m(A |D C) =

∑
B∩C=A ̸=∅ m(B)/ Pl(C).

Formally:

Definition Dempster_revisable m C := Pl m C != 0.
Definition Dempster_fun (m : bpa) (C : {set W}) := [ffun A : {set W} =>

if A == set0 then 0
else \sum_(B : {set W} | (B \in focalset m) && (B :&: C == A)) m B / Pl m C].

Program Definition Dempster_cond m C (Hrev : Dempster_revisable m C) : bpa :=
{| bpa_val := Dempster_fun m C ; bpa_ax := _ |}.

Program Definition Dempster_conditioning : conditioning :=
{| cond_val := Dempster_cond ; cond_ax := _ |}.
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▶ Example 15 (Knowledge revision, follow-up of Example 1/Table 1). Dempster’s conditioning
is the conditioning approach fitting our example (see [9] for details). Suppose e.g. the
murderer is Q; Player 1 learns ω∗ /∈ {P}, i.e., ω∗ ∈ {Q, R}. From this viewpoint, the evidence
concerning men now only concerns Q: the knowledge becomes m({Q}) = m({R}) = 0.5
(Fig. 1, center). Player 2 learns ω∗ /∈ {R}, i.e., ω∗ ∈ {P, Q}. From this viewpoint, the
evidence about women is discarded: the knowledge becomes m({P, Q}) = 1 (Fig. 1, right).

R

Q

P

m = 0.5

m = 0.5

R

Q

P

m = 0.5

m = 0.5

R

Q

Pm = 1

Figure 1 Prior (left) and posteriors given {Q, R} (center) and given {P, Q} (right). White and
gray areas denote possible and impossible events – circles denote focal elements.

▶ Proposition 16 (Dempster’s conditioning, Pl). For any bpa m and any event C such that
Pl(C) ̸= 0, it holds that Pl(A |D C) = Pl(A ∩ C)/ Pl(C).

Two other rules have been proposed and called strong (resp. weak) conditioning [34]; the
former, also known as geometrical conditioning [38], is another rule capturing knowledge
revision; the latter is seldom used since it yields non-intuitive results (e.g., it may happen
that Bel(C | C) < 1). We also formalize these two rules below.

▶ Definition 17 (Strong conditioning). For any bpa m and any event C s.t. Bel(C) ̸= 0, the
strong conditioning is defined by the bpa m(A |S C) = m(A)/ Bel(C) if A ⊆ C, 0 otherwise.

Definition Strong_revisable m C := Bel m C != 0.
Definition Strong_fun (m : bpa) (C : {set W}) := [ffun A : {set W} =>

if (A != set0) && (A \subset C) then m A / Bel m C else 0].
Program Definition Strong_cond m C (Hrev : Strong_revisable m C) : bpa :=

{| bpa_val := Strong_fun m C ; bpa_ax := _ |}.
Program Definition Strong_conditioning : conditioning :=

{| cond_val := Strong_cond ; cond_ax := _ |}.

▶ Proposition 18 (Strong conditioning, Bel). For any bpa m and any event C such that
Bel(C) ̸= 0, it holds that Bel(A |S C) = Bel(A ∩ C)/ Bel(C).

▶ Definition 19 (Weak conditioning). For any bpa m and any event C such that Pl(C) ̸= 0,
the weak conditioning is defined by the bpa: m(A |W C) = m(A)/P l(B) if A ∩ B ̸= ∅,
0 otherwise. Formally:

Definition Weak_revisable m C := Pl m C != 0.
Definition Weak_fun (m : bpa) (C : {set W}) := [ffun A : {set W} =>

if A :&: C != set0 then m A / Pl m C else 0].
Program Definition Weak_cond m C (Hrev : Weak_revisable m C) : bpa :=

{| bpa_val := Weak_fun m C ; bpa_ax := _ |}.
Program Definition Weak_conditioning : conditioning :=

{| cond_val := Weak_cond ; cond_ax := _ |}.

▶ Proposition 20 (Weak conditioning, Bel). For any bpa m and any event C such that
Pl(C) ̸= 0, it holds that Bel(A |W C) = (Bel(A) − Bel(A \ C))/ Pl(C).

ITP 2023
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3.3 Decision Making with Belief Functions
Consider a single agent decision involving several actions; let A denote the set of all these
actions. Also, assume that the outcome of choosing any a ∈ A is not certain: it may lead
to several oucomes depending on the actual state of the world ω∗. The agent’s preferences
on outcomes (which are left implicit here) are expressed by a real-valued utility function
u : A×Ω → R: u(a, ω) > u(a′, ω′) would mean the agent prefers the outcome of a when
ω∗ = ω to the outcome of a′ when ω∗ = ω′. For any action a, let ua : Ω → R denote the
partial application of u: ua provides the utility of a depending on the state of the world ω.

Preferences under uncertainty are then defined on ua’s: a relation ua ≻ ua′ would
encode the fact the agent prefers a to a′. In a probabilistic setting, it is meaningful to
consider ua’s expectation w.r.t. the probability (hence the name expected utility). Using bpa’s,
several approaches were defined, each modelling various preferences when facing ignorance.
In [35], we analyzed three standard functions that generalize expected utility. They provide
real values, and thus lead to completely ordered preferences over actions (since every two
actions are directly comparable from their score). We denoted them CEU, JEU, and TBEU,
respectively, for Choquet–, Jaffray–, and Transferable Belief–Expected Utility. We have
shown they are all expressible as the integration of a particular φXEU

ua
function (resp. φCEU

ua
,

φJEU
ua

, and φTBEU
ua

) over the powerset 2Ω. Those φXEU
ua

functions are themselves parameterized
by ua = ω 7→ u(a, ω), that is, by the utility function when a is chosen. As a result, these
three scoring functions can be captured by instances of a single higher-order function, which
we named XEU.

▶ Definition 21 (Generalized expected utility). For any bpa m, any utility function u :
A × Ω → R, and any a ∈ A, let us pose ua = ω 7→ u(a, ω). Let φ : (Ω → R) →

(
2Ω → R

)
be

a parameter function. We then consider the following generalized expected utility of a:

XEU(m)(φ(ua)) =
∑

B∈Sm

m(B) × φ(ua)(B). Formally:

Definition XEU (m : bpa) (phi_u_a : {ffun {set W} -> R}) : R :=
\sum_(B in focalset m) m B * phi_u_a B.

Let us review these φXEU functions, their underlying intuition and formal definition in Coq.
A very common scoring function for belief functions is the Choquet discrete integral

(CEU). It models a somehow pessimistic agent. In the ULP interpretation, Bel and Pl
delimit a family of probabilities; the CEU computes the minimal expected utility that the
family allows. In the DS interpretation, each mass is an evidence supporting an event, for
which the CEU only consider its worst-case utility if the considered choice is made.

▶ Definition 22 (Choquet expected utility). For any bpa m, any utility function u : A×Ω → R
and any action a ∈ A, the Choquet expected utility of ua : Ω → R is:

CEU(m)(ua) =
∑

B∈Sm

m(B) × minω∈B ua(ω) = XEU(m)(φCEU(ua)),

with φCEU(ua)(B) = minω∈B ua(ω).

This expression is a weighted sum indexed by the set of focal elements, which is nonempty:
using the min operator is legit. Formally, the functions φCEU and CEU are defined as follows:

Definition fCEU (u_a : W -> R) : {set W} -> R :=
fun B => match minS u_a B with Some r => r | None => 0 end.

Definition CEU (m : bpa) (u_a : W -> R) := XEU m (fCEU u_a).
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Another rule, axiomatized by Jaffray [18, 19], is a kind of Hurwicz criterion (i.e., a linear
combination over the min. and max. utility reached for each focal element). The parameter
coefficients make it possible to locally modulate the pessimism of the modelled agent.

▶ Definition 23 (Jaffray expected utility). For any bpa m, any utility function u : A × Ω → R
and any action a ∈ A, the Jaffray expected utility of ua : Ω → R is parameterized by a family
of coefficients α(x∗,x∗) ∈ [0, 1] for each possible utility values x∗ ≤ x∗. For any B ̸= ∅, let us
pose B∗ = minω∈B ua(ω) and B∗ = maxω∈B ua(ω). The Jaffray expected utility of ua is:

JEUα(m)(ua) =
∑

B∈Sm

m(B)×
(
α(B∗,B∗) × B∗ + (1 − α(B∗,B∗)) × B∗)

= XEU(m)(φJEUα

(ua)),

with φJEUα(ua)(B) = α(B∗,B∗) × B∗ + (1 − α(B∗,B∗)) × B∗. Formally:
Definition fJEU (α : R -> R -> R) (u_a : W -> R) : {set W} -> R :=

fun B => match minS u_a B, maxS u_a B with
| Some rmin, Some rmax => let alp := α rmin rmax in alp * rmin + (1-alp) * rmax
| _, _ => 0 end.

Definition JEU α (m : bpa) (u_a : W -> R) := XEU m (fJEU α u_a).

Finally, in the Transferable Belief Model [39], the decision rule is made by recovering
a “pignistic” probability distribution2 BetP that serves only for the choice, at the very
moment where the decision is made. So, the equiprobability assumption is made, but after
conditionings, if any. The score of an action is then the expected utility w.r.t. BetP : ω 7→∑

B∈Sm
ω∈B

m(B)/|B|, that we show to be equivalent to the following definition.

▶ Definition 24 (Transferable Belief Model expected utility). For any bpa m, any utility
function u : A × Ω → R and any action a ∈ A, the TBEU of ua : Ω → R is defined by:

TBEU(m)(ua) =
∑

B∈Sm

m(B) ×
∑

ω∈B
ua(ω)

/
|B| = XEU(m)(φTBEU(ua))

with φTBEU(ua)(B) =
∑

ω∈B ua(ω)
/

|B|. Formally:
Definition fTBEU (u_a : W -> R) := fun B => \sum_(w in B) u_a w / #|B|%:R.
Definition TBEU (m : bpa) (u_a : W -> R) := XEU m (fTBEU u_a).

▶ Proposition 25. CEU, JEU, and TBEU all generalize the expected utility criterion. For
any probability distribution p, any utility function u : A × Ω → R and any action a ∈ A,
CEU(p)(ua) = JEUα(p)(ua) = TBEU(p)(ua) =

∑
ω∈Ω p(ω) × ua(ω).

In these formal proofs, the key ingredient is the fact that the criteria satisfy the natural
property that ∀ua, ∀ω ∈ Ω, φ(ua)({ω}) = ua(ω).

4 Formalization of Several Classes of Games of Complete Information

Game theory is a subdomain of multi-agent decision making [29, 30]. In this paper, we focus
on simultaneous games, in which players make their choice (called action or pure strategy)
without knowing others’ choices in advance; the outcome of an action depends on the choices
of other agents. A typical problem amounts to identifying which actions are relevant from
the viewpoint of a player, assuming others don’t cooperate but strive to increase their own
utility. In this section, we consider situations where there is no uncertainty.

2 The names “pignistic” and BetP are references to classical Bayesian justification in decision theory,
where both utilities and beliefs are elicited by considering limits of agent’s agreement to a panel of bets.
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4.1 Games of Complete Information
▶ Definition 26 (Game of complete information). A CGame is a tuple G =

(
I, (Ai, ui)i∈I

)
where I is a finite set of players; for each Player i, Ai is the set of their actions; ui : A → R
is an utility function, assigning an utility value to each “action profile”, i.e., a vector of
actions, also called “pure strategy profile” a = (a1, . . . , an) ∈ A = A1 × · · · × An. Player i

prefers the outcome of profile a to that of a′ iff ui(a) > ui(a′).

We formalize such “profiles-for-CGames” (a ∈
∏

i∈I Ai) using MathComp’s dependently-typed
finite support functions, hence:

Definition cprofile (I : finType) (A : I -> eqType) := {ffun ∀ i : I, A i}.
Definition cgame (I : finType) (A : I -> eqType) := cprofile A -> I -> R.

One of the most prominent solution concept in game theory is that of Nash equilibrium [31]:

▶ Definition 27 (Nash equilibrium). A pure Nash equilibrium is a profile such that no player
has any incentive to “deviate”. For any pure strategy profile a and any Player i, let a−i be the
restriction of a to the actions of Players j ̸= i, a′

i an action of Player i, then a′
i.a−i denotes

the profile a where the strategy of Player i has been switched to a′
i (called change_strategy

a a’_i in Coq). A profile a is a pure Nash equilibrium iff ∀i, ∀a′
i, ui(a) ≮ ui(ai.a−i):

Definition change_strategy (p : cprofile A) (i : I) (a'_i : A i) : cprofile A
Definition Nash_equilibrium (G : cgame) (a : cprofile A) : bool :=

[∀ i : I, [∀ a'_i : A i, ~~ (G a i < G (change_strategy a a'_i) i)]].

▶ Example 28. Consider Example 1 anew; suppose one knows P is the murderer. The
situation is captured by the CGame G = (I, (Ai, ui)i∈I) where I = {1, 2} is the set of players,
Ai = {Pi, Qi, Ri} the set of actions of Player i (choosing P , Q or R) and the ui’s of Table 2.
Here, both (Q1, R2) and (R1, Q2) are Nash equilibria.

Table 2 Utility functions of Example 28 (it is known that P is the murderer). The pair
(u1(a1.a2), u2(a1.a2)) is read at the intersection of line a1 and column a2.

P2 Q2 R2

P1 (0, 0) (0, 3) (0, 3)
Q1 (3, 0) (2, 2) (3, 3)

R1 (3, 0) (3, 3) (2, 2)

When there is some variability regarding action choices (e.g., for repeated games), it is
meaningful to look for mixed strategies. A mixed strategy ρi of Player i is a probability over
Ai, and a mixed strategy profile ρ = (ρ1, . . . , ρn) is a vector of mixed strategies:

Definition mixed_cprofile := cprofile (fun i => [eqType of proba R (A i)]).

A mixed strategy profile ρ defines a probability over the set of pure strategy profiles, namely
pρ(a) =

∏
i∈I ρi(ai). We package this data in a proba structure (Definition 12):

Definition mk_prod_proba (p : ∀ i : X, proba R (A i)) : {ffun cprofile A -> R} :=
[ffun a : cprofile A => \prod_i dist (p i) (a i)].

Definition prod_proba (p : ∀ i : I, proba R (A i)) (i0 : I) : proba R (cprofile A).

Last, the utility of a mixed strategy profile is the expected utility w.r.t. the probability over
pure strategy profiles, and the notion of Nash equilibrium extends straightforwardly:
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Definition ms_util (G : cgame R A) (mp : mixed_cprofile) (i : I) : R :=
\sum_(p : cprofile A) (dist (prod_proba mp witnessI mp) p) * (G p i).

Definition ms_Nash_equilibrium (G : cgame R A) (mp : mixed_cprofile) : Prop :=
∀ i (si : proba R (A i)), ~ ms_util G mp i < ms_util G (change_strategy mp si) i.

A standard reduction [22, Def. 4.6.1] amounts to viewing a mixed equilibrium of a game
(N, (Ai, ui)i∈N ) as a pure equilibrium in the mixed extension (N, (Ai, ui)i∈N ), where Ai is
the set of mixed strategies over Ai. Formally:

Definition mixed_cgame (G:cgame R A) : cgame R (fun i => [eqType of proba R (A i)])
:= fun mp i => ms_util G mp i.

Theorem mixed_cgameE G mp i : ms_utility G mp i = (mixed_cgame G) mp i.
Theorem ms_NashE (G : cgame R A) (mp : mixed_cprofile) :

ms_Nash_equilibrium G mp <-> Nash_equilibrium (mixed_cgame G) mp.

4.2 Hypergraphical Games
Some games of complete information can be expressed succinctly as hypergraphical games
[32, 42], where the utility is not defined globally but locally (namely, split in several “local
games”). This yields a hypergraph, where vertices denotes players and hyperedges denote local
games. Formally, a hypergraphical game is a tuple G =

(
I, E, (Ai)i∈I , (ue

i )e∈E,i∈e

)
, where I

is the set of players, E ⊆ 2I is the set of local games (in any local game e = {a, b, c, . . . },
Players a, b, c . . . are playing), Ai is the set of actions of Player i and ue

i : Ae → R is the
utility function of Player i in the local game e (Ae =

∏
i∈e Ai is the set of local profiles related

to e’s players). A hypergraphical game with 2-player local games is called a polymatrix.
In our formalization, local games are indexed by the finite type (localgame : finType);

players playing a local game (lg : localgame) are those who verify the Boolean predicate
(plays_in lg); plays_in thus formalizes E as a family of sets of players:

Variables (localgame : finType) (plays_in : localgame -> pred I).

For any local game lg, local profiles are profiles that involve only players which plays\_in
lg:

Definition localprof (lg : localgame) :=
{ffun ∀ s : {i : I | plays_in lg i}, A (val s)}.

In hypergraphical games, every player chooses one action, and plays it in every local game
they are involved in. The global utility of a player is the sum of the locally obtained
utilities: ui(a) =

∑
e∈E
i∈e

ue
i (ae), where ae ∈ Ae is the restriction of a to indices of e. Thus, an

hypergraphical game is a CGame that is specified by its local utility functions:

Definition hg_game (u : ∀ lg, localprof lg -> {i : I & plays_in lg i} -> R) : cgame
:= fun a i => \sum_(s : {lg : localgame | plays_in lg i})

u (tag s) [ffun i => a (val i)] (exist _ i (tagged s)).

5 Bel Games

Harsanyi has proposed [15] a model for decision-making situations where players may have
some uncertainty about other players, their actions, their utility functions, or more generally
about any parameter of the game. To model such situations, the partially known parameters
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are expressed by so-called types:3 each Player i has a set of possible types Θi. Each type
θi ∈ Θi represents a possible parameter describing Player i’s characteristics and knowledge.
Every Player i knows (or learns) their own type θi ∈ Θi at the time of choosing an action. It
may or may not be correlated with other players’ types, so it is possible to model players
that are not aware of other players’ type as well as players with some knowledge about them.

Harsanyi defined the model of games of incomplete information where players’ knowledge
is given by a subjective probability and preferences agree with the expected utility: the
so-called class of Bayesian games. In this setting, a probability measure expresses the
knowledge on type configurations (the frame of discernment being the cartesian product
of all players’ types, that is, Ω =

∏
i∈N Θi = Θ). Games of incomplete information were

already defined in a possibilistic setting by Ben Amor et al. [3], which makes it possible to
represent uncertainty using possibility theory [10]. We further extend this framework to
Belief functions (encompassing both Bayesian games and possibilistic games) [13, 35].

▶ Definition 29 (Bel game). A Bel game [35] is defined by a tuple G =
(
I, (Ai, Θi, ui)i∈I , m

)
:

I is the finite set of players;
Ai is the set of actions of Player i; Θi is the finite set of types of Player i;
ui : A × Θ → R is the utility function of Player i; it depends on the joint action
(a1, . . . , an) ∈ A :=

∏
i∈I Ai and on the type configuration (θ1, . . . , θn) ∈ Θ :=

∏
i∈I Θi;

m : 2Θ → [0, 1] is a bpa which describes the prior knowledge.
Formally speaking, a Bel game is fully defined by two elements: the bpa (prior knowledge)
and the utility functions (the players’ preferences). This pair is parameterized by three types
I, the players; A, the family of actions (Ai)i; and T, the family of types (Θi)i:

Definition belgame (I : finType) (A : I -> eqType) (T : I -> finType) :=
(bpa R (cprofile T) * (cprofile A -> cprofile T -> player -> R)).

▶ Example 30 (Bel game). We now are able to express Example 1 with a Bel game G =
(I, (Ai, Θi, ui)i∈I , m). The set of players is I = {1, 2}, their action sets are Ai = {Pi, Qi, Ri}.
Player 1 will learn either that P is the murderer (ω∗ ∈ {P}) or that he is not (ω∗ ∈ {Q, R}):
Player 1’s type set is Θ1 = {P, P̄}. Similarly, Player 2 will learn either that R is the murderer
(ω∗ ∈ {R}) or that she is not (ω∗ ∈ {P, Q}), so Θ2 = {R, R̄}. The knowledge is expressed over
Θ = Θ1 × Θ2: since (P, R̄) ≡ P , (P̄, R̄) ≡ Q, (P̄, R) ≡ R and (P, R) is impossible, the knowledge
is m

(
{(P, R̄), (P̄, R̄)}

)
= m

(
{(P̄, R)}

)
= 0.5. Finally, utility functions are given in Table 3.

Table 3 Utility functions of Example 30 for θ = (P, R̄) (left, P is the murderer), θ = (P̄, R̄) (center,
Q is the murderer) and θ = (P̄, R) (right, R is the murderer). Configuration θ = (P, R) can’t occur.

P2 Q2 R2 P2 Q2 R2 P2 Q2 R2

P1 (0, 0) (0, 3) (0, 3) P1 (2, 2) (3, 0) (3, 3) P1 (2, 2) (3, 3) (3, 0)
Q1 (3, 0) (2, 2) (3, 3) Q1 (0, 3) (0, 0) (2, 2) Q1 (3, 3) (2, 2) (3, 0)
R1 (3, 0) (3, 3) (2, 2) R1 (3, 3) (3, 0) (2, 2) R1 (0, 3) (0, 3) (0, 0)

Since players know their own type before choosing their action, a pure strategy of Player i

becomes a function σi : Θi → Ai: having the type θi, Player i will play σi(θi) ∈ Ai. Next, a
strategy profile σ = (σ1, . . . , σn) is a vector of such functions:

3 Thus, type can refer to a type-theory concept or a game-theory one. Context will allow to disambiguate.
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Definition iprofile I A T := cprofile (fun i => [eqType of {ffun T i -> A i}]).

If the actual type configuration is θ = (θ1, . . . , θn), then for any strategy profile σ we denote
by σθ =

(
σ1(θ1), . . . , σn(θn)

)
∈ A the action profile that will actually be played:

Definition proj_iprofile I A T (p : iprofile A T) : cprofile A :=
fun theta => [ffun i => p i (theta i)].

In the following, we denote by ui,σ : Θ → R the function mapping states of the world ω to
the corresponding utility of σ for Player i. It is defined by ui,σ(θ) = ui(σθ, θ).

In Bayesian games, the global utility of a strategy profile σ for Player i with type θi is the
expected utility w.r.t. the conditioned probability distribution “given θi”. In Bel games, both
expectation and conditioning have to be made explicit, to properly model agents’ preferences
and knowledge updates. For example, studying a Bel game with Dempster’s conditioning and
CEU expectation implies that the utility of a given strategy profile σ for Agent i with type
θi is

∑
B⊆Ω m(B |D θi) × minθ′∈B ui(σθ′

, θ′). Doing so, we need to ensure that conditioning
is meaningful and technically possible, i.e., that the bpa is revisable given any type of any
player. For the sake of readability, we now introduce two shorthands: Tn, representing the
set Θ gathering all type configurations; and event_ti := θi 7→ {θ′∈ Θ | θ′

i = θi}:

Notation Tn := [finType of {dffun ∀ i : I, T i}].
Definition event_ti i (ti : T i) := [set t : Tn | t i == ti].

A proper Bel games, in which conditioning is safe, shall satisfy the predicate:

Definition proper_belgame A T (G : belgame A T) (cond : conditioning R Tn) : bool
:= [∀ i : player, [∀ ti : T i, revisable cond G.1 (event_ti ti)]].

▶ Definition 31 (Utility in a Bel game). For any Bel game G =
(
I, (Ai, Θi, ui)i∈I , m

)
, any

conditioning cond for which G is proper and any XEU parameter φXEU : (Θ → R) → 2Θ → R,
the utility of the pure strategy profile σ for Player i having type θi ∈ Θi, is the integration of
ui,σ = θ 7→ ui(σθ, θ), i.e., XEU

(
m(· |cond θi)

)(
φXEU(ui,σ)

)
.

Definition belgame_utility A T (G : belgame A T) (cond: conditioning R Tn)
fXEU (HG : proper_belgame G cond) (p : iprofile A T) (i : player) (ti : T i) : R
:= let kn := cond G.1 (event_ti ti) (is_revisable HG ti) in

XEU kn (fXEU (fun t => G.2 (proj_iprofile p t) t i)).

Also, for Bel games, the definition of Nash equilibrium applies: an iprofile is a Nash
equilibrium iff no player, whatever is this player’s type, has any incentive to deviate:

Definition BelG_Nash_equilibrium A T (G : belgame A T) (cond : conditioning R Tn)
fXEU (H : proper_belgame G cond) (p : iprofile A T) :=

∀ i : I, ∀ ti : T i, ∀ ai : A i,
~ (belgame_utility u H p ti < belgame_utility u H (change_istrategy p ti ai) ti).

▶ Example 32 (Utility of a strategy). Let σ = (σ1, σ2) be defined by σ1(P) = Q1, σ1(P̄) = P1,
σ2(R) = Q2, σ1(R̄) = R2. σ is a pure strategy asserting that Player 1 will choose Q when
learning that P is the murderer, and choose P otherwise, and that Player 2 will choose Q

when learning that R is the murderer, and choose R otherwise.
Considering Dempster’s conditioning, the Choquet expected utility of σ for Player 1 with
type P̄ is the integration of φCEU(ui,σ) w.r.t. the posterior bpa m(· | P̄). Recall Example 15,
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the posterior bpa “given P̄” has two focal elements: {Q} and {R}, both with mass 1/2.
Considering type configurations, those focal elements are {(P̄, R̄)} and {(P̄, R)}.

XEU
(
m(· |D P̄)

)
(φCEU(u1,σ)

)
=

∑
B∈Sm(·|D P̄)

m(B |D P̄) × min
θ∈B

u1(σθ, θ)

= 0.5 × u1((P1, Q2), (P̄, R)) + 0.5 × u1((P1, R2), (P̄, R̄)) = 3.

One may check that for every player and type, σ’s CEU equals 3, the best possible score.
Since no player, whatever is their type, has incentive to deviate, σ is a Nash equilibrium.

6 Howson-Rosenthal-like transforms

Howson–Rosenthal’s theorem asserts the correctness of a transform which casts a 2-player
Bayesian game into an equivalent polymatrix game (of complete information) [17]. Bayesian
games thus benefit from both theoretical and algorithmic results of classical game theory. In
the following, we formally define and prove correct three Howson-Rosenthal-like transforms
that we have devised in previous work [13, 35]. We also extend the TBM transform to any
conditioning (in the general case, a slight change is necessary, but for Dempster’s and Strong
conditioning the original statement holds, and so does the complexity of the transform).
All these transforms cast n-player Bel games into hypergraphical games; the games so
obtained all have the same utility values, though different hypergraphs. These transforms
can be applied safely, depending on the conditioning and on the decision rule (cf. Table 4):
Dempster’s conditioning is hard-coded into the Direct transform while the TBM transform’s
low complexity comes from properties of the distribution BetP considered by the TBEU.

Table 4 Transforms, conditioning and XEU they are suited for, and their worst-case complexity
w.r.t. the k-additivity of the bpa and the size of the input Bel game (taken from [35]).

Transform Conditioning XEU Space Time
Direct transform Dempster’s c. any O

(
k × Size(G)k

)
O

(
k × Size(G)k

)
Conditioned transform any any O

(
k × Size(G)k

)
O

(
k × Size(G)k

)
TBM transform Dempster’s c. TBEU O

(
k × Size(G)

)
O

(
Size(G)

)
The three transforms all follow the same approach: starting from a Bel game G, they

build the equivalent hypergraphical game G̃, with pairs (i, θi) as “abstract” players (i.e.,
G̃’s vertices), denoting every type of every player of G. The local games correspond to
focal elements, so Player (i, θi) plays in a local game lg iff the type θi is possible in the
corresponding focal element. Doing so, we benefit from the hypergraphical game structure
to compute an XEU (recall that global utility is the sum of local utilities and that the XEU
value is the weighted sum of utilities w.r.t. focal elements). For all those transforms, let
(G : belgame A T) be the input Bel game that has to be turned into a hypergraphical game
named G̃. G̃’s players are pairs (i, θi), their action sets still are Ai:
Definition HR_player : finType := [finType of {i : I & T i}].
Definition HR_action (i_ti : HR_player) : eqType := A (projT1 i_ti).

Strategy profiles of G and of G̃ are in one-to-one correspondance. Every strategy profile
(σ : iprofile A T) in G, that is, σ :

∏
i∈I(Θi → Ai), is flattened to σ̃ : cprofile (fun

i_ti : {i : I & T i} => A (val i)) in G̃, that is, σ̃ :
∏

(i,θi)∈I×Θi
Ai. E.g. in a 2-player

game with 2 types per player, σ = (σ1, σ2) is flattened to (σ1(θ1), σ1(θ′
1), σ2(θ2), σ2(θ′

2)).
This “dependent uncurrying” is performed by the following function:
Definition flatten I (T : I -> finType) A (sigma : iprofile A T) :=

[ffun i_ti => sigma (projT1 i_ti) (projT2 i_ti)].
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6.1 The Direct Transform
The direct transform applies Dempster’s conditioning on-the-fly (so this is the only possible
conditioning). It is suitable for any XEU. Starting from a Bel game G, we construct a local
game eB for each prior focal element B. Vertex (i, θi) plays in B iff θi is possible in B, that
is, if ∃θ′ ∈ B, θi = θ′

i. Its local utility in eB is the “part of XEU” computed over B′, the
subset of B on which the mass shall be transferred during Dempster’s conditioning.

▶ Definition 33 (Direct transform of a Bel game). The direct transform of
a Bel game G =

(
I, (Ai, Θi, ui)i∈I , m

)
is the hypergraphical game G̃ =(

Ĩ , Ẽ, (Ã(i,θi))(i,θi)∈Ĩ , (ũe
(i,θi))e∈Ẽ,(i,θi)∈e

)
:

Ĩ = {(i, θi) | i ∈ I, θi ∈ Θi}, Ẽ = (eB)B⊆Sm
, eB = {(i, θi) | θ ∈ B, i ∈ I}, Ã(i,θi) = Ai,

for each eB ∈ Ẽ, (i, θi) ∈ eB and σ̃ ∈ Ã, let us pose ṽσ̃
i (θ) = ui(σ̃θ, θ) in:

ũeB

(i,θi)(σ̃eB
) = m(B) ×

(
φXEU(ṽσ̃

i )(B ∩ {θ′ | θ′
i = θi})

)
/Pl({θ′ | θ′

i = θi}).
Formally, let G be a proper Bel game w.r.t. Dempster’s conditioning and fXEU a φ function:

Variable (proper_G : proper_belgame G (Dempster_conditioning R Tn))
(fXEU : {ffun Tn -> R} -> {ffun {set Tn} -> R}).

Then, let G̃’s local games be indexed by focal elements, i.e., sets of type configurations:

Definition HRdirect_localgame := [finType of {set Tn}].

A vertex (i, θi) plays in the local game eB iff θi is possible in B:

Definition HRdirect_plays_in (lg : HRdirect_localgame) (i_ti : HR_player) : bool
:= [∃ t : Tn, [&& t \in lg & t (projT1 i_ti) == projT2 i_ti]].

Then, local utility functions are given by a function which constructs from a local profile p

and a type configuration θ, the cprofile (p(1,θ1), . . . , p(n,θn)). This function has type:

Definition HRdirect_mkprofile lg i_ti (Hi_ti : HRdirect_plays_in lg i_ti)
(p : HRdirect_localprof lg) (t : Tn) : profile.

Local utility in a local game eB is the part of the XEU computed from the prior focal element
B. Note that Dempster’s conditioning transfers masses from B to B ∩ {θ′∈ Θ | θ′

i = θi}
= B∩(event_ti θi) so the local utility amounts to an on-the-fly Dempster’s conditioning.
The resulting HG game is finally built from local utility functions:

Definition HRdirect_u : ∀ lg, HRdirect_localprof lg -> HRdirect_localplayer lg -> R
:= fun lg p x => let (i_ti, Hi_ti) := x in let (i, ti) := i_ti in

G.1 lg * fXEU [ffun t => G.2 (HRdirect_mkprofile Hi_ti p t) t i]
(lg :&: (event_ti ti)) / Pl G.1 (event_ti ti).

Definition HRdirect : cgame R HR_action := hg_game HRdirect_u.

▶ Theorem 34 (Correctness of the direct transform). For any proper Bel game G, Player i

with type θi, XEU function φXEU, and profile σ, we have XEU
(
m(· |D θi)

)(
φXEU(ui,σ)

)
=

ũ(i,θi)(flatten(σ)). Thence, Nash equilibria of G and G̃ are in one-to-one correspondence:

Theorem HRdirect_correct (i : I) (ti : T i) (p : iprofile A T) :
belgame_utility fXEU properG p ti = HRdirect (flatten p) (existT _ i ti).

Theorem HRdirect_eqNash (p : iprofile A T) :
BelG_Nash_equilibrium fXEU proper_G p <-> Nash_equilibrium HRdirect (flatten p).
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6.2 The Conditioned Transform
The conditioned transform holds for any conditioning and XEU. Starting from a Bel game
G, all the conditioning “given θi” are pre-computed, let S∗ be the union of all posterior focal
sets (i.e., the set of all possible focal elements given any θi). Each B ∈ S∗ leads to a local
game. As in the direct transform, a vertex (i, θi) plays in eB if θi is possible in B. Its utility
in eB is the part of XEU computed over the posterior focal element B. Note that (i, θi)’s
local utility in B may be 0, if B is not focal in the posterior “given θi”. Formally speaking:

▶ Definition 35 (Conditioned transform). The conditioned transform of
a Bel game G =

(
I, (Ai, Θi, ui)i∈I , m

)
is the hypergraphical game G̃ =(

Ĩ , Ẽ, (Ã(i,θi))(i,θi)∈Ĩ , (ũe
(i,θi))e∈Ẽ,(i,θi)∈e

)
:

Ĩ = {(i, θi) | i ∈ I, θi ∈ Θi}, Ẽ = (eB)B∈S∗ , eB = {(i, θi) | θ ∈ B, i ∈ I}, Ã(i,θi) = Ai,
∀eB ∈ Ẽ, (i, θi) ∈ eB, σ̃ ∈ Ã, let ṽσ̃

i (θ) = ui(σ̃θ, θ) in ũeB

(i,θi)(σ̃eB
) = m(B | θi)×fXEU

ṽσ̃
i

(B).
Formally, let fXEU be any φXEU, cond be any conditioning, and G be proper w.r.t. cond:

Variables (fXEU: (Tn -> R) -> {set Tn} -> R)
(cond : conditioning R Tn) (proper_G : proper_belgame G cond).

After similar definitions for HRcond_localgame and HRcond_plays_in, we define:

Definition HRcond_u : ∀ lg, HRcond_localprof lg -> HRcond_localplayer lg -> R
:= fun lg p x => let (i_ti, Hi_ti) := x in let (i, ti) := i_ti in

let kn := cond G.1 (event_ti ti) (is_revisable proper_G ti) in
kn lg * fXEU [ffun t => G.2 (HRcond_mkprofile Hi_ti p t) t i] lg.

Definition HRcond : cgame R HR_action := hg_game HRcond_u.

▶ Theorem 36 (Correctness of the conditioned transform). For any proper Bel game G, Player i

with type θi, conditioning c, XEU function φXEU, profile σ: XEU
(
m(· |c θi)

)(
φXEU(ui,σ)

)
=

ũ(i,θi)(flatten(σ)). Thence, Nash equilibria of G and G̃ are in one-to-one correspondence:

Theorem HRcond_correct (i : I) (ti : T i) (p : iprofile A T):
belgame_utility fXEU proper_G p ti = HRcond (flatten p) (existT _ i ti).

Theorem HRcond_eqNash (p : iprofile A T),
BelG_Nash_equilibrium fXEU proper_G p <-> Nash_equilibrium (HRcond) (flatten p).

6.3 The TBM Transform
The TBM transform is designed for the Transferable Belief Model [39], in which knowledge
is first revised using Dempster’s conditioning, then decision is eventually made w.r.t. a
probability distribution BetP which is deduced from the bpa m (Definition 24). Here,
we benefit from BetP’s 1-additivity to produce a low-complexity hypergraph: local games
correspond to single states of the world θ ∈ Θ. In this work, we generalize the TBM transform
to any conditioning, refining the statement defining local games; we show that for Dempster’s
and the strong conditioning, the original statement suffices, unlike for the weak conditioning.

▶ Definition 37 (TBM transform). Let G =
(
I, (Ai, Θi, ui)i∈I , m

)
be a Bel game; it is TBM-

transformed into the hypergraphical game G̃ =
(
Ĩ , Ẽ, (Ã(i,θi))(i,θi)∈Ĩ , (ũe

(i,θi))e∈Ẽ,(i,θi)∈e

)
s.t.:

Ĩ =
{

(i, θi) | i ∈ I, θi ∈ Θi

}
, Ã(i,θi) = Ai, Ẽ = (eθ)θ∈Θ,

eθ = {(i, θ′
i) | θ′

i = θi ∨ (∃B ∈ Sm(·|θ′
i
), θ ∈ B ∧ ∃θ′′ ∈ B, θ′

i = θ′′
i )},

ũeθ

(i,θi)(σ̃e) = BetP(i,θi)(θ) × ui(σθ, θ).
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Formally, let cond be a conditioning and G be a proper Bel game w.r.t. cond; G̃’s local
games are indexed by type configurations, and (i, θi) plays in eθ′ if θi = θ′

i (the original
statement, sufficient for Dempster’s and the strong conditioning) or if there is a focal element
B which contains both θ′ and any θ′′ such that θi = θ′′

i (necessary for the weak conditioning):
Variables (cond : conditioning R Tn) (proper_G : proper_belgame cond).
Definition HRTBM_localgame : finType := Tn.
Definition HRTBM_plays_in : HRTBM_localgame -> pred HR_player := fun lg i_ti =>

[|| lg (projT1 i_ti) == projT2 i_ti | [∃ B, [&& B \in focalset (m_ti i_ti),
lg \in B & [∃ t, (t \in B) && (t (projT1 i_ti) == projT2 i_ti)]]]].

Local utilities are computed w.r.t. the “pignistic” distribution BetP:
Definition HRTBM_u : ∀ lg, HRTBM_localprof lg -> HRTBM_localplayer lg -> R :=

fun lg p x => let (i_ti, _) := x in let (i, ti) := i_ti in
let betp := BetP (cond G.1 (event_ti ti) (is_revisable proper_G ti)) in
dist betp lg * G.2 (HRTBM_mkprofile p) lg i.

Definition HRTBM : cgame R HR_action := hg_game HRTBM_u.

▶ Theorem 38 (Correctness of the TBM transform). For any proper Bel game G, Player i with
type θi, conditioning c, and profile σ, TBEU

(
m(· |c θi)

)(
φTBEU(ui,σ)

)
= ũ(i,θi)(flatten(σ)).

Thence, Nash equilibria of G and G̃ are in one-to-one correspondence:

Theorem HRTBM_correct (i : I) (ti : T i) (p : iprofile A T) :
belgame_utility fTBEU proper_G p ti = HRTBM (flatten p) (existT _ i ti).

Theorem HRTBM_eqNash (p : iprofile A T),
BelG_Nash_equilibrium fTBEU proper_G p <-> Nash_equilibrium HRTBM (flatten p).

7 Concluding remarks

In this paper, a 2.5 k loc Coq/SSReflect formalization of Bel games has been presented. It
gathers a theory for Dempster-Shafer belief functions (∼1 k loc) as well as a generic class of
games of incomplete information, built upon the former. This framework makes it possible to
capture (lack of) knowledge better than usual game models based on probability. Following
Howson’s and Rosenthal’s approach, three different transforms casting such incomplete games
into standard complete-information games [35] have been formalized, one of them being
further generalized. We have formally verified that these transforms preserve equilibria.
Thus, Bel games are solvable using state-of-the-art, effective algorithms for complete games.

This work provides strong guaranties on the correctness of the transforms, so that
game theorists may rely on them without any concern about correctness. Furthermore,
the formalization allowed us to identify subtleties that were left implicit in the definitions
(e.g., the conditioning pre- and post-conditions), as well as to help improving the proofs,
both in their flow and in their prose. Last, generic lemmas that proved useful during our
formalization effort have been proposed for integration in the MathComp library.

This work opens several research directions, both on the theoretical side and on the
formal verification side. On the one hand, we aim at extending this result with other
decision-theoretic approaches, e.g., partially-ordered utility aggregations for belief function
and other non-additive-measure approaches (Choquet capacities of order 2, RDU). On the
other hand, we would like to focus on complexity proofs which, albeit not safety-critical,
play a key role when choosing one transform over the other. Eventually, we would like to
encompass this work into a larger library of decision under uncertainty, fostering further
developments on related models and proofs.
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