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Abstract
Multiparty session types is a typing discipline used to write specifications, known as global types,
for branching and recursive message-passing systems. A necessary operation on global types is
projection to abstractions of local behaviour, called local types. Typically, this is a computable
partial function that given a global type and a role erases all details irrelevant to this role.

Computable projection functions in the literature are either unsound or too restrictive when
dealing with recursion and branching. Recent work has taken a more general approach to projection
defining it as a coinductive, but not computable, relation. Our work defines a new computable
projection function that is sound and complete with respect to its coinductive counterpart and,
hence, equally expressive. All results have been mechanised in the Coq proof assistant.
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1 Introduction

Session types are types for abstracting the behaviour of communicating processes. First
proposed by Honda et al. [15] for binary protocols, they specify the sequence of possible
actions processes need to follow when sending and receiving messages over a channel. Session
types provide a clear language for describing protocols that are guaranteed to not deadlock
or contain communication errors, e.g., never receive an integer when expecting a boolean. A
decade after their conception, Honda et al. [16] proposed a generalisation, called multiparty
session types, that specifies how an arbitrary but fixed number of processes should interact
with each other. Multiparty session types are based on the concept of global types which
provide a global description of the multiparty protocol being abstracted. Recently, multiparty
session types have gained interest from several communities, resulting in their integration
into several mainstream programming languages [2].

Multiparty session types follow a precise approach to designing and implementing com-
municating processes: from global types that specify the protocols, we can automatically
generate local types, the local specifications of the behaviour of each role in the protocol; then,
each local type specification is (type) checked against the local code being written by the
programmer. The automatic generation of local types from global types, called projection, is
key for relating global types to implementations. Given a role, projection is an operation
that erases the parts of the global type irrelevant for the role. When projection is defined the
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output is a local type specifying the behaviour of this role. As an example, let us consider a
global type where Carl can ask Dave to either go Left or Right over some channel k:

Carl −→ Dave : k

{
Left : Carl −→ Dave : k′⟨Int⟩.Alice −→ Bob : k′′⟨Int⟩.end
Right : Carl −→ Dave : k′⟨String⟩.Alice −→ Bob : k′′⟨Int⟩.end

}
Above, if Carl chooses Left, he will also send an integer (Int) over some other channel k′;
otherwise, he will send a string (String). No matter what branch Carl chooses, all roles
must collectively follow the description of that branch.

Nested in both branches, there is a communication over k′′ of an integer Int between
Alice and Bob. The projections of Carl and Alice are:

Carl : k ⊕
{

Left : !k′⟨Int⟩.end
Right : !k′⟨String⟩.end

}
Alice : !k′′⟨Int⟩. end

Above, Carl makes a choice (denoted by ⊕), and then outputs on channel k′ either something
of type Int or something of type String. Alice is instead sending over channel k′′. An
important observation is that, since neither Alice nor Bob are informed of the choice made
by Carl, their behaviour should be independent from Carl’s choice. In fact, a restriction
that projection usually imposes is that all those roles not participating to a branching
communication behave the same on all branches.

In order to be able to express repetitive behaviour, global types (and local types) are
usually equipped with recursion, expressed as µ-types [22]. For example, consider

µt. Alice −→ Bob : k⟨String⟩. µt′. Carl −→ Dave : k′
{

Left : t
Right : Alice −→ Bob : k⟨String⟩.t′

}
(1)

The example above poses some questions on how projection should work. For Alice, should it
be undefined since we cannot syntactically see her behaviour on the first branch? Or, can the
projection first unfold on t and then generate a local type? We observe that the following
global type is equivalent to (1) but does not violate our constraint on branches:

µt. Alice −→ Bob : k⟨String⟩. Carl −→ Dave : k′ {Left : t, Right : t} (2)

Since both recursive global types (1) and (2) seem to specify the same behaviour, we would
assume that Alice is projected to µt. !k⟨String⟩. t, i.e., she repeatedly sends something of
type String. The bad news is that the projection algorithms available in the literature do
not allow global types like (1) to be projected while the equivalent type (2) can be projected.

The most common way of defining projection is as a structurally recursive partial function
on global types, which we call standard projection. Recent work [13] defines projection as a
coinductive relation on coinductive types, which intuitively are a complete (possibly infinite)
unfolding of recursive protocols. Both approaches come with trade-offs. Standard projection is
a computable procedure, which is necessary for multiparty session types to support decidable
type checking, but it has limits as pointed out above. The coinductive approach is more
general but, to the best of our knowledge, there are no equivalent computable algorithms
available in the literature. The discrepancy between standard and coinductive projection
was initially pointed out by Ghilezan et al. [13]. They correctly show that the canonical way
partial projection treats the binders of µ-types causes standard projection to be undefined
for some µ-types that have a coinductive projection, such as global type (1). In this paper,
we define a procedure on µ-types that implements the projection on coinductive types.
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Contributions and Structure. The main contribution of this paper is the definition of a
computable projection function that is sound and complete with respect to a coinductive
projection relation. All our proofs have been mechanised in the Coq [21] proof assistant1.

We structure the paper as follows. Section 2 walks through existing variants of standard
projection and their pitfalls. Section 3 introduces global and local coinductive types as well
as a coinductive projection relation from the former to the latter. Section 4 introduces a
projection function from global to local µ-types, proves that it is sound and complete with
respect to its coinductive counterpart, and Section 5 proves that it is decidable. Section 6
describes key insights from our Coq mechanisation, Section 7 covers related and future work,
and Section 8 concludes.

2 Global Types, Local Types, and Standard Projection

The purpose of this section is two-fold: introducing the syntax of global and local types and
a walk through computable definitions of projection found in the literature.

Syntax. Let P be a set of roles (ranged over by p, q, r, s, t), L a totally ordered set of labels
(ranged over by l), and X a set of recursion variables ranged over by t.

▶ Definition 1 (Inductive Types [17]). Global types Gµ and local types T µ are µ-types generated
inductively by the following grammars, where U represents primitive types:

Gµ ::= p1
µ−→ p2 : k⟨U⟩.Gµ | p1

µ−→ p2 : k{lj : Gµ
j }j∈J | µt.Gµ | t | endµ

T µ ::= !µk⟨U⟩.T µ | ?µk⟨U⟩.T µ | k ⊕µ {lj : T µ
j }j∈J | k &µ {lj : T µ

j }j∈J | µt.T µ | t | endµ

The type p1
µ−→ p2 : k⟨U⟩.Gµ denotes a communication between roles p1 and p2 via channel k of

a message of type U , which then proceeds as Gµ. Similarly, the type p1
µ−→ p2 : k{lj : Gµ

j }j∈J

denotes a communication between two roles where, given the set of indices J , role p1 selects a
branch with label li, and then proceeds as Gµ

i . Types µt.Gµ and t model recursive protocols.
Finally, endµ denotes the successful termination of a protocol. A message type U is just a
basic value type: extensions of this are irrelevant for the focus of this paper.

For local types, the type !µk⟨U⟩.T µ outputs a message of type U over channel k, while
its dual, ?µk⟨U⟩.T µ receives a message of type U over k. Types k ⊕µ {lj : T µ

j }j∈J and
k &µ {lj : T µ

j }j∈J implement branching where the former is the type of a process that
internally selects a branch li and communicates it over channel k, while the latter is the type
of a process that offers choices l1, . . . , ln (for J = {1, . . . , n} with n ≥ 1) over channel k. We
overload the type endµ and use it also for local types.

We deal with recursive variables in a standard way and write capture-avoiding substitution
as Gµ

1 [Gµ
2 /t]. Moreover, types can be contractive: a µ-type Gµ (or T µ) is contractive if, for

any of its subexpressions with shape µt0.µt1...µtn.t, the body t is not t0 [22]. We allow
non-contractive µ-types and will in the next section show how to enforce contractiveness by
requiring that a µ-type is related to a coinductive type.

Overview of projections. For each role, we use projection to relate global and local types.
We start our overview with the projection proposed by Castro-Perez et al. [7] which can
be found in Figure 1. The projection p1

µ−→ p2 : k⟨U⟩. Gµ ⇂µ
p produces either a sending or a

1 https://github.com/Tirore96/projection
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(p1
µ−→ p2 : k⟨U⟩.Gµ)⇂µ

p =


!µk⟨U⟩.(Gµ ⇂µ

p ) if p = p1 and p1 ̸= p2

?µk⟨U⟩.(Gµ ⇂µ
p ) if p = p2 and p1 ̸= p2

Gµ ⇂µ
p if p ̸∈ {p1, p2}

(p1
µ−→ p2 : k{lj : Gµ

j }j∈J )⇂µ
p =


k ⊕µ {lj : (Gµ

j ⇂
µ
p )}j∈J if p = p1 and p1 ̸= p2

k &µ {lj : (Gµ
j ⇂

µ
p )}j∈J if p = p2 and p1 ̸= p2

(Gµ
1 ⇂

µ
p ) if p ̸∈ {p1, p2} and

∀i, j ∈ J. Gµ
i ⇂

µ
p = Gµ

j ⇂
µ
p

⊥ otherwise

(µt.Gµ)⇂µ
p =

{
µt.(Gµ ⇂µ

p ) if guardedVar(t, Gµ ⇂µ
p )

endµ otherwise
t⇂µ

p = t endµ ⇂µ
p = endµ.

guardedVar(t, Gµ) =


guardedVar(t, Gµ

1 ) if Gµ = µt′.Gµ
1

t ̸= t′ if Gµ = t′

true otherwise

Figure 1 The standard projection of G onto p, written G⇂µ
p [7].

receiving action if the role p is equal to p1 or p2 respectively, otherwise the action is deleted.
The projection of branching p1

µ−→ p2 : k{lj : Gµ
j }j∈J ⇂µ

p works similarly but, when role p is
not involved, all branches must project to exactly the same type. This requirement is known
as plain merge. Full merge, used for example by Ghilezan et al. [13], is a more permissive
operation which merges local types with distinct external choices. We discuss an extension of
our work to full merge in Section 7. For recursion µt.Gµ, Gµ is projected only if the result is
a contractive local type (checked by the guardedVar predicate). Finally, variable t and the
type endµ project directly to their local counterparts.

The use of guardedVar formally fixes a problem with the original projection [17] that
could generate non-contractive types, which is unsound (informally fixed by forbidding
non-contractive types). Alternatively, Demangeon and Yoshida [11] fix this issue by replacing
the side condition with Gµ ⇂µ

p ̸= t. However, all these projections invite the counterexample:

p µ−→ q : k⟨U⟩. µt. r µ−→ s : k′{l1 : endµ, l2 : t} ⇂µ
p (3)

which is undefined because the branch condition fails. Since p is not a role in the branch,
the desired result of this projection should be !µk⟨U⟩. endµ. Bejleri and Yoshida [5] solve
this with a recursion condition testing participation in the body

(µt.Gµ)⇂µ
p =

{
µt.(Gµ ⇂µ

p ) if p ∈ Gµ

endµ
(4)

This function always generates contractive types, but the projection of

µt. p µ−→ q : k⟨U⟩. µt′. r µ−→ s : k′⟨U ′⟩. t⇂µ
p (5)

incorrectly results in the local type µt.!µk⟨U⟩.endµ rather than the desired µt.!µk⟨U⟩. t.
Glabbeek et al. [27] fix it by adding a variable constraint to the recursion condition:

(µt.Gµ)⇂µ
p =

{
µt.(Gµ ⇂µ

p )
endµ if p ̸∈ Gµ and µt.Gµ is closed

(6)
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This way, the projection in (5) correctly results in the type µt.!µk⟨U⟩.t. To the best of our
knowledge, this is the most general and sound version of projection, but it still does not
capture certain global types whose infinite unfolding is intuitively projectable. One such
example is equivalent to (1), modulo renaming, from the introduction:

µt. p µ−→ q : k⟨U⟩. µt′. r µ−→ s : k′{l1 : t, l2 : p µ−→ q : k⟨U⟩. t′}⇂µ
p (7)

Here, the branching condition fails because t is syntactically not the same type as !µk⟨U⟩.t′.
But how can we recognise that t and !µk⟨U⟩.t′ are equivalent in this case? Our main insight
is that standard projection can be performed in two steps: first, a boolean predicate tests
projectability by unfolding µ-operators; and, when the check is passed, a translation function
generates the local type by instead structurally recursing under the µ-operators. Checking
projectability by unfolding µ-operators makes termination non-trivial and we explore this in
Section 5. This approach lets us recognise (7) as projectable.

3 Projection on Coinductive Types

In this section, we define what an ideal projection is. The inductive definition of global
types uses µ-types in order to represent infinite behaviour which, as shown by our examples,
can create issues with projection. A possible solution to this issue is to get rid of µ-types
and work with fully unfolded types (infinite trees). Originally, Honda et al. [17] suggested
this approach informally. Later, Ghilezan et al. [13] turned this intuition into a version of
global types which, instead of using an inductive definition, uses coinductive types. This
had the drawback of projection not being computable. The goal of this section is to define
coinductive types, a way to relate them to inductive types, and then a definition of projection
without µ-types. Although we do not compute projections of coinductive types, we use them
as a specification of how a correct projection should behave.

Syntax. We start by giving the coinductive definition of both global and local types.

▶ Definition 2 (Coinductive Types). The syntax of coinductive global and local types, denoted
as Gν and T ν respectively, is coinductively defined as:

Gν ::= p1
ν−→ p2 : k⟨U⟩.Gν | p1

ν−→ p2 : k{lj : Gν
j }j∈J | endν

T ν ::= !νk⟨U⟩.T ν | ?νk⟨U⟩.T ν | k ⊕ν {lj : T ν
j }j∈J | k &ν {lj : T ν

j }j∈J | endν

Coinductive types can be infinite but regular coinductive types can be finitely represented.
A regular coinductive type has a finite set of distinct subterms [20] meaning that it must be
circularly defined and have repeating structure if it is infinitely large. This makes it possible
to store a regular coinductive type in, e.g., computer memory, or represent it as a µ-type.

In order to reason effectively about µ-types and their coinductive counterparts we need a
means to relate the two. We follow the style of Castro-Perez et al. [7], using an unravelling
relation R, formally defined as:

ITP 2023



28:6 A Sound and Complete Projection for Global Types

▶ Definition 3 (Unravelling). Unravelling, for both global and local types, and denoted by
Gµ R Gν and T µ R T ν respectively, is defined by the following rules:

endµ R endν

Gµ[µt.Gµ/t] R Gν

µt.Gµ R Gν

Gµ R Gν

p1
µ−→ p2 : k⟨U⟩.Gµ R p1

ν−→ p2 : k⟨U⟩.Gν

∀j ∈ J. Gµ
j R Gν

j

p1
µ−→ p2 : k{lj : Gµ

j }j∈J R p1
ν−→ p2 : k{lj : Gν

j }j∈J

∀j ∈ J. T µ
j R T ν

j

k ⊕µ {lj : T µ
j }j∈J R k ⊕ν {lj : T ν

j }j∈J

T µ R T ν

!µk⟨U⟩.T µ R !νk⟨U⟩.T ν

T µ R T ν

?µk⟨U⟩.T µ R ?νk⟨U⟩.T ν

∀j ∈ J. (T µ
j R T ν

j )

k &µ {lj : T µ
j }j∈J R k &ν {lj : T ν

j }j∈J

The unravelling relation is defined using both inductive and coinductive inference rules, where
we use single lines for inductive rules and double lines for coinductive ones. A coinductive
derivation may be circular and discharged by referring to a previous identical part of the
inference tree whereas inductive leaves are discharged using an inductive base-case rule in
the standard manner, which in our case are the rules relating endµ and endν . The reason for
this split is that if the µ-operator could be unravelled using a coinductive rule [unfoldν ] then
we could relate any non-contractive µ-type to any coinductive type Gν .

Incorrect rule:
G[µt.G] R Gν

µt.G R Gν [unfoldν ] Unwanted derivation:
µt.t R Gν

µt.t R Gν [unfoldν ] (8)

Castro-Perez et al. have a rule like [unfoldν ] and they solve this problem by requiring that
all µ-types are contractive. We make this side condition redundant by making [unfoldν ]
inductive and we have found that this simplifies our proofs. This is because the usual two
conditions on µ-types, namely closedness and contractiveness, are captured by unravelling.

▶ Proposition 4. Gµ is closed and contractive iff there exists Gν such that Gµ R Gν

Proof. The direction (⇐=) is harder than the other. We prove it by contradiction, assuming
both an inductive definition of non-contractiveness and Gµ R Gν . ◀

The mixing of inductive and coinductive inference rules is non-standard and in Section 6
we show concretely how to formally define such inference systems. For now, we show an
example of how to relate an inductive and coinductive global type by R .

▶ Example 5. Consider the unravelling of

µt. r µ−→ s : k{l1 : t, l2 : endµ}

One branch is a recursion variable and the other is end indicating we will need both inductive
and coinductive rules to close the derivation. We show this inductive global type unravels to

Gν := r ν−→ s : k{l1 : Gν , l2 : endν}

This is shown by the derivation below

µt. r µ−→ s : k{l1 : t, l2 : endµ} R Gν endµ R endν

r µ−→ s : k{l1 : µt. r µ−→ s : k{l1 : t, l2 : endµ}, l2 : endµ} R Gν

µt. r µ−→ s : k{l1 : t, l2 : endµ} R Gν (9)

where the arrow marks the cycle that solves the coinductive part of the proof. Visually, the
arrow must pass a double line for the proof to be valid.
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p ∈ {p1, p2} ∨ guardedν
p(Gν)

guardedν
p(p1

ν−→ p2 : k⟨U⟩.Gν)

p ∈ {p1, p2} ∨ ∀j. guardedν
p(Gν

j )

guardedν
p(p1

ν−→ p2 : k{lj : Gν
j }j∈J)

guardedµ
p (G[µt.G/t])

guardedµ
p (µt.G)

p ∈ {p1, p2} ∨ partOfν
p(Gν)

partOfν
p(p1

ν−→ p2 : k⟨U⟩.Gν)

p ∈ {p1, p2} ∨ ∃j ∈ J. partOfν
p(Gν

j )

partOfν
p(p1

ν−→ p2 : k{lj : Gν
j }j∈J)

partOfµ
p (G[µt.G/t])

partOfµ
p (µt.G)

Figure 2 Definitions of predicates guardedν , guardedµ, partOfν , and partOfµ. The guardedµ and
partOfµ predicates additionally have identical rules to their guardedν and partOfν counterparts,
except for being defined for Gµ and not Gν – these rules have been elided.

Gν ⇃ν
p T ν

p ν−→ p2 : k⟨U⟩.Gν ⇃ν
p

!νk⟨U⟩.T ν

[M1⇃ν ]
p ̸= p1 Gν ⇃ν

p T ν

p1
ν−→ p : k⟨u⟩.Gν ⇃ν

p
?νk⟨U⟩.T ν

[M2⇃ν ] ¬partOfν
p (Gν)

Gν ⇃ν
p endν [End⇃ν ]

p /∈ {p1, p2} guardedν
p (Gν) Gν ⇃ν

p T ν

p1
ν−→ p2 : k⟨U⟩.Gν ⇃ν

p T ν
[M⇃ν ]

∀j. Gν
j ⇃ν

p T ν
j

p ν−→ p2 : k{lj : Gν
j }j∈J ⇃ν

p
k ⊕ν {lj : T ν

j }j∈J

[B1⇃ν ]

J ̸= {} p /∈ {p1, p2} ∀j. Gν
j ⇃ν

p T ν ∧
guardedν

p (Gν
j )

p1
ν−→ p2 : k{lj : Gν

j }j∈J ⇃ν
p T ν

[B⇃ν ]
p ̸= p1 ∀j, Gν

j ⇃ν
p T ν

j

p1
ν−→ p : k{lj : Gν

j }j∈J ⇃ν
p

k &ν {lj : T ν
j }j∈J

[B2⇃ν ]

Figure 3 The projection on coinductive types, denoted Gν ⇃ν
p T ν , is defined by coinductive rules.

In order to define projection from coinductive global types to coinductive local types, we
require the two auxiliary predicates guardedν

p(Gν) and partOfν
p(Gν). The former asserts that

p appears in all branches of Gν at finite depth, and the latter asserts that p occurs somewhere
in Gν at finite depth. To reason about finite depth these predicates are inductively defined.
We also define similar predicates guardedµ

p (Gµ) and partOfµ
p (Gµ) for inductive global types

Gµ. All four predicates are defined in Fig. 2.
The rules for projection are presented in Figure 3. Rules [M1⇃ν ], [M2⇃ν ], [B1⇃ν ], and

[B2⇃ν ] handle the cases where a projected role p takes part in communication or branching.
Note that our projection allows sender and receiver in a communication to be equal. This
case is a special case of rule [M1⇃ν ]. The rules [M⇃ν ], [B⇃ν ], and [End⇃ν ] handle the cases
where p does not take part. In these cases, in order for projection to continue, p must occur
in all possible future branches, otherwise the projection maps to end. These rules are similar
to those given by Castro-Perez et al. [7] as well as Jacobs et al. [19].

Guardedness, enforced by the predicate guardedν
p in the [M⇃ν ] and [B⇃ν ] rules, is necessary

in order to avoid unwanted derivations similar to that for unravelling in (8).

▶ Example 6. We can now use unravelling and coinductive projection to relate the global type
µt. p µ−→ q : k⟨U⟩. µt′. r µ−→ s : k′{l1 : t, l2 : p µ−→ q : k⟨U⟩. t′} seen in (7) with µt.!µk⟨U⟩.t.
They respectively unravel to

Gν := p ν−→ q : k⟨U⟩.r ν−→ s : k′{l1 : Gν , l2 : Gν}
Eν :=!νk⟨U⟩. Eν

ITP 2023
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We can now derive Gν ⇃ν
p Eν by [M1⇃ν ], [B⇃ν ] followed by [M1⇃ν ] and mark a cycle to the

conclusion Gν ⇃ν
p Eν . This precisely justifies why we wish to project the inductive global

type in (7) over role p to the local type µt.!µk⟨U⟩.t.

4 Projection on Inductive Types: Soundness and Completeness

The coinductive projection predicate ⇃ν represents the specification of an ideal projection
from coinductive global types to coinductive local types. In this section, we present a
projection function proj on µ-types that is sound and complete with respect to the ⇃ν

projection predicate. We extend on previous work by Castro-Perez et al. [7] whose projection
function is shown to be sound but not complete.

▶ Definition 7 (proj). The function proj : P → Gµ ⇀ T µ, written projp(Gµ), is the projection
of the global µ-type Gµ with respect to the role p and is defined as:

projp(Gµ) =
{

transp(Gµ) if projectablep(Gµ)
undefined otherwise

Our projection function features two auxiliary entities, namely the translation function trans
and the predicate projectable which precisely separate the generation of the local type and
the check for projectability respectively.

▶ Definition 8 (trans). The function trans : P → Gµ → T µ is identical to the function ⇂µ

(see Figure 1) except for the branching case, defined as:

transp(p1
µ−→ p2 : k{lj : Gµ

j }j∈J ) =


k ⊕µ {lj : transp(Gµ

j )}j∈J if p = p1 and p1 ̸= p2

k &µ {lj : transp(Gµ
j )}j∈J if p = p2 and p1 ̸= p2

transp(Gµ
1 ) if p ̸∈ {p1, p2}

The only difference from Definition 2 is that the removal of the branching condition has made
trans total. These conditions are checked by the projectable predicate and the challenging
part of implementing proj is proving decidability of this predicate.

▶ Definition 9 (projectable). The predicate projectablep(Gµ) states that the global µ-type Gµ

is projectable with respect to the role p and is defined as:

projectablep(Gµ) = ∃Gν T ν . Gµ R Gν ∧ transp(Gµ) R T ν ∧ Gν ⇃ν
p T ν

The predicate states that the µ-types Gµ and transp(Gµ) are related by unravelling to some
coinductive types Gν and T ν respectively, and that T ν is the coinductive projection of Gν

with respect to p. This predicate is decidable and we detail why in Section 5.

Soundness. Proving that proj is sound with respect to ⇃ν is relatively straightforward.

▶ Theorem 10. If projp(Gµ) is defined then there exist coinductive types Gν and T ν such
that Gµ R Gν , projp(Gµ) R T ν and Gν ⇃p T ν .

Proof. Follows directly from the definition of proj and projectable by setting Gν and T ν to
their corresponding types obtained from projectable. ◀

Gν T ν

Gµ T µ

⇃ν

proj
R R
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Completeness. For completeness, we require an auxiliary operation unfold(·) on global and
local µ-types that unfolds all binders until an interaction prefix or end are exposed.

unfold(Gµ) = unfold_once|Gµ|(Gµ) unfold_once(Gµ) =
{

Gµ
1 [µt.Gµ

1 /t], if Gµ = µt.Gµ
1

Gµ otherwise

Above, |Gµ| is the µ-height of Gµ, i.e., the number of initial consecutive binders found
in Gµ. Here, fn denotes repeated function composition. For example, |µt.end| = 1 and
|p µ−→ p′ : k⟨U⟩.µt. end| = 0. We overload unfolding with unfold(T µ) and |T µ|, for having the
corresponding meaning on local types.

Gν T ν

Gµ T µ

⇃ν

proj
R R

In order to show completeness of proj with respect to ⇃ν , we need to show that if Gν ⇃ν
p T ν

and Gµ R Gν then projp(Gµ) is defined and projp(Gµ) R T ν . We prove this by showing
that transp(Gµ) unravels to tocoind(transp(Gµ)); then, we show transp(Gµ) = projp(Gµ) and
tocoind(transp(Gµ)) = T ν . The function tocoind is defined as

▶ Definition 11 (tocoind). The corecursive function tocoind : T µ → T ν is defined as

tocoind(T µ) =


!νk⟨U⟩.tocoind(T µ) if unfold(T µ) =!µk⟨U⟩.T µ

?νk⟨U⟩.tocoind(T µ) if unfold(T µ) =?µk⟨U⟩.T µ

k ⊕ν {lj : tocoind(T µ
j )}j∈J if unfold(T µ) = k ⊕µ {lj : T µ

j }j∈J

k &ν {lj : tocoind(T µ
j )}j∈J if unfold(T µ) = k &µ {lj : T µ

j }j∈J

endν otherwise

Note that, T µ R tocoind(T µ) does not always hold, as R is only defined for closed and
contractive T µ. However, for closed global types, trans does unravel to a coinductive type.

▶ Lemma 12 (Unraveling of trans). If Gµ is closed then transp(Gµ) R tocoind(transp(Gµ)).

Proof. Since Gµ is closed, we know that transp(Gµ) is closed. Moreover, the image of
transp is always contractive. For any closed and contractive local type T µ, we know that
T µ R tocoind(T µ), by coinduction on R . In particular this holds for transp(Gµ). ◀

▶ Lemma 13 (trans as projection). If Gµ R Gν and Gν ⇃ν
p T ν then tocoind(transp(Gµ)) = T ν .

Proof. By coinduction using the candidate relation {(tocoind(transp(Gµ)), T ν) | Gν ⇃ν
p

T ν ∧ Gµ R Gν}. From Gν ⇃ν
p T ν , derive guardedν

p(Gν) ∨ T ν = endν . The first case is proven
by induction on guardedν

p(Gν); for the second we know from Gν ⇃ν
p endν and Gµ R Gν that

¬partOfν
p(Gµ) and hence tocoind(transp(Gµ)) = endν . ◀

From these Lemmas, completeness follows immediately.

▶ Theorem 14. If Gν ⇃co
p T ν and Gµ R Gν then projp(Gµ) is defined and projp(Gµ) R T ν .

Proof. From Gµ R Gν , we know using Proposition 4 that Gµ is closed. Applying
Lemma 12, we have that transp(Gµ) R tocoind(transp(Gµ)). Finally, from Lemma 13,
we have that transp(Gµ) R T ν . It thus holds that projectablep(Gµ), so projp(Gµ) is defined
and transp(Gµ) = projp(Gµ) letting us conclude projp(Gµ) R T ν . ◀

ITP 2023
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unfold(Gµ) ⇃⇃µ
p unfold(T µ)

Gµ ⇃µ
p T µ [Unf⇃µ]

p /∈ {p1, p2} guardedµ
p (Gµ) Gµ ⇃µ

p T µ

p1
µ−→ p2 : k⟨U⟩.Gµ ⇃⇃µ

p T µ
[M⇃µ]

Gµ ⇃µ
p T µ

p µ−→ p1 : k⟨U⟩.Gµ ⇃⇃µ
p !µk⟨U⟩.T µ

[M1⇃µ]
∀j. Gµ

j ⇃µ
p T µ

j

p µ−→ p1 : k{lj : Gµ
j }j∈J ⇃⇃µ

p k ⊕µ {lj : T µ
j }j∈J

[B1⇃µ]

p ̸= p1 Gµ ⇃µ
p T µ

p1
µ−→ p : k⟨U⟩.Gµ ⇃⇃µ

p ?µk⟨U⟩.T µ
[M2⇃µ]

p ̸= p1 ∀j. Gµ
j ⇃µ

p T µ
j

p1
µ−→ p : k{lj : Gµ

j }j∈J ⇃⇃µ
p k &µ {lj : T µ

j }j∈J

[B2⇃µ]

¬partOfµ
p (Gµ) Unravels(Gµ)

Gµ ⇃⇃µ
p endc

[End⇃µ]
J ̸= {} p /∈ {p1, p2} ∀j. Gµ

j ⇃µ
p T µ ∧ guardedµ

p (Gµ
j )

p1
µ−→ p2 : k{lj : Gµ

j }j∈J ⇃⇃µ
p T µ

[B⇃µ]

Figure 4 Intermediate projection on inductive types, written as Gµ ⇃µ
p T µ.

5 Deciding Projectability

In this section, we show that projectable is decidable. We do this in two steps: first, we define
the intermediate projection Gµ ⇃µ

p T µ and show that it is sound and complete with respect
to our coinductive projection; second, given a pair (Gµ, T µ), we construct a graph and show
that deciding Gµ ⇃µ

p T µ can be reduced to checking properties of that graph.

An Intermediate Projection. The rules defining Gµ ⇃µ
p T µ, presented in Figure 4, are

similar to those for coinductive projection, but also enforce the unfolding operation unfold
on both µ-types. Initially, the only applicable rule is [Unf⇃µ], which unfolds µ-types. Then,
the rules inspired by coinductive projection are used. In order to enforce unfolding every
time we apply any other rule, we use the auxiliary relation ⇃⇃µ

p .
We now show that there is a correspondence between intermediate projection ⇃µ

p and
coinductive projection ⇃ν

p . In order to do so, we need to define how to construct a coinductive
type from an inductive one. We have shown how to do this for inductive local types with
tocoind(T µ) and we overload this tocoind function to similarly work with inductive global
types Gµ. We use the abbreviations Unravels(Gµ) and Unravels(T µ) for Gµ R tocoind(Gµ)
and T µ R tocoind(T µ) respectively.

▶ Lemma 15 (Unraveling of Projection).
Gµ ⇃µ

p T µ iff Unravels(Gµ) and Unravels(T µ) and tocoind(Gµ) ⇃ν
p tocoind(T µ).

Proof. ( =⇒ ) Derive both Unravels(Gµ) and Unravels(T µ) by coinduction on R and
inversion on Gµ ⇃µ

p T µ. Prove tocoind(Gµ) ⇃ν
p tocoind(T µ) by coinduction on ⇃ν

p and derive
from Gµ ⇃µ

p T µ that guardedµ
p (Gµ) ∨ unfold(T µ) = endµ and proceed as in Lemma 13.

( ⇐= ) Proof by coinduction on ⇃µ
p and derive from tocoind(Gµ) ⇃ν

p tocoind(T µ) that
guardedν

p(tocoind(Gµ)) ∨ tocoind(T µ) = endν , case analysis on the disjunction as in Lemma
13, inverting Unravels(Gµ) and Unravels(T µ) to derive the shape of Gµ ⇃µ

p T µ. ◀

▶ Corollary 16. projectablep(Gµ) iff Gµ ⇃µ
p transp(Gµ).

Proof. For ( =⇒ ) we first show for any Gµ and Gν , if Gµ R Gν then Gν = tocoind(Gµ)
(and similarly for local types). Then both directions follow from Lemma 15. ◀

Deciding Gµ ⇃µ
p T µ is similar to deciding recursive type equivalence. Treatment of

recursive types as graphs for equivalence testing is a well known approach [26] and solves the
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problem by testing properties of reachable nodes in a directed graph. In this section, we do
the same for deciding Gµ ⇃µ

p T µ. First, we show how to transform global and local types into
graphs. Then, we obtain a graph of the pair (Gµ, T µ) by joining the graphs of Gµ and T µ.
Deciding Gµ ⇃µ

p T µ corresponds to testing a property on all reachable nodes of that graph.

Graphs. We first give the formal definition of graph, following that of Eikelder [26].

▶ Definition 17 (Graph). A directed graph is a triple (Q, d, δ) where:
Q is a finite set of nodes
d: Q → N is a function returning the number of outgoing edges from a node
δ : (Q × N) ⇀ Q is the partial successor function such that δ(q, i) is the ith successor of
q, for 0 < i ≤ d(q) nodes, and is undefined for all other i.

Given a graph (Q, d, δ), we define the procedure satP which computes if all reachable
nodes from an initial node q satisfy a given property P .

▶ Definition 18 (satP ). The function satP : 2Q → Q → {0, 1}, parameterised by a boolean
predicate P : Q → {0, 1}, is defined as:

satP (V, q) =
{

1 if q ∈ V

P (q) ∧
∧

i<d(q) satP

(
{q} ∪ V, δ(q, i)

)
otherwise

Given a set of visited nodes V , a current state q, and the predicate P , the function returns 1
if the node has already been visited; otherwise, it will recursively check the successors.

Global and Local Types as Graphs. We now give a procedure for constructing a graph
from a global type. The graph construction for local types is similar and therefore omitted.

▶ Definition 19 (Global type graph). The graph of a global type Gµ is (enumg(Gµ), dg, δg)
where enumg, dg and δg are defined as:

enumg(p1
µ−→ p2 : k⟨U⟩.Gµ) = {p1

µ−→ p2 : k⟨U⟩.Gµ} ∪ enumg(Gµ) enumg(end) = {end}
enumg(p1

µ−→ p2 : k{lj : Gµ
j }j∈J ) = {p1

µ−→ p2 : k{lj : Gµ
j }j∈J } ∪

⋃
j∈J

enumg(Gµ
j )

enumg(t) = {t} enumg(µt.Gµ) = {µt.Gµ} ∪ {Gµ
1 [µt.Gµ/ t] | Gµ

1 ∈ enumg(Gµ)}

dg(Gµ) =

 1 if unfold(Gµ) = p1
µ−→ p2 : k⟨u⟩.Gµ

|J | if unfold(Gµ) = p1
µ−→ p2 : k{lj : Gµ

j }j∈J

0 otherwise

δg(Gµ, i) =

 Gµ
1 if unfold(Gµ) = p1

µ−→ p2 : k⟨u⟩.Gµ
1 ∧ i = 1

Gµ
i if unfold(Gµ) = p1

µ−→ p2 : k{lj : Gµ
j }j∈J ∧ 0 < i ≤ |J |

undefined otherwise

The enumeration function enumg collects all subterms of a global type. In the case of µt.Gµ,
it enumerates all subterms of the body Gµ that can contain free occurrences of t, and
substitute them all for µt.Gµ. These subterms are all nodes of the global type graph Gµ.

▶ Example 20. We show the global type graph of our main example from (7).

µt.Gµ µt′.(Gµ
1 [µt.Gµ/t]) p −→ q : k⟨U⟩.µt′.(Gµ

1 [µt.Gµ/t])1
1

2
1
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where Gµ := p −→ q : k⟨U⟩. µt′.Gµ
1 and Gµ

1 := r −→ s : k′{l1 : t, l2 : p −→ q : k⟨U⟩. t′}.

Given a global type Gµ, we wish to use satP ({}, Gµ) to assert whether P holds for all
nodes reachable by δg. To ensure termination of this procedure, we show that the set of
reachable nodes is finite, a consequence of Q being closed under δg.

▶ Lemma 21. If Gµ
1 ∈ enumg(Gµ) and 0 ≤ i < dg(Gµ

1 ), then δg(Gµ
1 , i) ∈ enumg(Gµ).

Proof. Let δaux be δg without the use of unfold in the first two case distinctions, i.e.,
δg = δaux ◦ unfold. Showing enumg(Gµ) is closed under δ reduces to showing enumg(Gµ) is
closed under δaux and unfold. By definition, enumg(Gµ) is closed under δaux. For enumg(Gµ)
to be closed under unfold, it suffices to show that it is closed under unfold_once, which follows
by induction on the µ-height. ◀

We are now ready to show how to use our graph construction for proving a property of a
global type using satP . We do that by proving that Unravels(Gµ) is decidable. In this case,
we instantiate P in satP with a predicate that disallows global types to unfold to a top level
µ-operator or a recursion variable.

▶ Definition 22 (UnravelPred). The predicate UnravelPred : Gµ → {0, 1} is defined as:

UnravelPred(Gµ) =
{

0 if unfold(Gµ) = µt.Gµ
1 ∨ unfold(Gµ) = t

1 otherwise

▶ Lemma 23. Unravels(Gµ) iff satUnravelPred({}, Gµ) = 1

The instantiation satUnravelPred tests that Gµ and all successors of Gµ unfold to a message
communication, a branching or endµ. The procedure will for example fail for µt.t. More
details on this procedure are given in Section 6.

We conclude this part by defining the partial functions LG, LT and PLp. Given an
inductive global type, function LG returns its unfolded prefix, i.e., information about its first
occurring interaction.

▶ Definition 24 (LG). The function LG ∈ G ⇀ (P × P × C × ({⊥} ∪ U)) is defined as:

LG(Gµ) =


(p1, p2, k, U) if unfold(Gµ) = p1 −→ p2 : k⟨U⟩.Gµ

1
(p1, p2, k, ⊥) if unfold(Gµ) = p1

µ−→ p2 : k{lj : Gµ
j }j∈J

undefined otherwise

Similar to how LG returns the unfolded prefix in a global type, we define the corresponding
operation on local types as LT . We use the set {!, ?} to indicate whether the communication
is a send (!) or a receive (?).

▶ Definition 25 (LT ). The function LT : T ⇀ ({!, ?} × C × ({⊥} ∪ U)) is defined as:

LT (T µ) =


(!, k, U) if unfold(T µ) =!µk⟨U⟩.T µ

1
(?, k, U) if unfold(T µ) =?µk⟨U⟩.T µ

1
(!, k, ⊥) if unfold(T µ) = k ⊕µ {lj : T µ

j }j∈J

(?, k, ⊥) if unfold(T µ) = k &µ {lj : T µ
j }j∈J

undefined otherwise

Finally, we can define a projection function on prefixes, i.e., a function that given a role
and an unfolded prefix of a global type, returns an unfolded prefix of a local type.

▶ Definition 26. The function PLp ∈ (P × P × C × ({⊥} ∪ U)) ⇀ ({!, ?} × C × ({⊥} ∪ U))
is defined as:

PLp(p1, p2, k, U) =

 (!, k, U), if p1 = p
(?, k, U), if p2 = p and p ̸= p1

undefined otherwise
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Combining global and local type graphs. The next step towards deciding membership in
⇃µ

p is to combine the graphs of Gµ and T µ into a single graph with respect to a role p.

▶ Definition 27 (Joint Global and Local Type Graph). The graph of (Gµ, T µ) with respect to
p is the graph (enum(Gµ, T µ), d, δp), where enum, d and δp defined as:

enum(Gµ, T µ) = enum(Gµ) × enum(T µ) d(Gµ, T µ) = min(dg(Gµ), dl(T µ))

δp((Gµ, T µ), i) =

 (δg(Gµ, i), δl(T µ, i)) if p ∈ LG(Gµ) ∧ 0 < i ≤ d(Gµ, T µ)
(δg(Gµ, i), T µ) if p /∈ LG(Gµ) ∧ 0 < i ≤ dg(Gµ)
undefined otherwise

The set of nodes is the Cartesian product of the nodes in the global type graph and the local
type graph. The successor function δp takes a step with respect to a role p and the case
distinction depends on this role. If p is in LG(Gµ), the ith successor of the graph is the ith

successor of the global and local type graph respectively. If p is not in the unfolded prefix,
the global type moves to its successor while the local type stays fixed.

▶ Example 28. We show the joint graph of p µ−→ q : k⟨U⟩.r µ−→ s : k′⟨U ′⟩.endµ and
!µk⟨U ′⟩.endµ with respect to role c marking the edges black when the local type stays
fixed.

p µ−→ q : k⟨U⟩.
r µ−→ s : k′⟨U ′⟩.endµ

!µk′⟨U ′⟩.endµ

r µ−→ s : k′⟨U ′⟩.endµ

!µk′⟨U ′⟩.endµ

endµ

endµ1 1

Deciding membership in ⇃µ
p . We define the predicate ProjPredp to decide membership

in ⇃µ
p . Intuitively, this predicate partitions the rules of ⇃µ

p into three sets such that the
projected role p
1. is in the unfolded prefix ([M1⇃µ], [M2⇃µ], [B1⇃µ], [B2⇃µ])
2. is not in the unfolded prefix, but the role is guarded in the global type ([B⇃µ],[M⇃µ])
3. is not part of the global type ([End⇃µ]).
We call rules in the first set prefix rules and rules in the second set guarded rules. The
only rule that is not yet mentioned is unfolding, [Unf⇃µ], which is implicitly applied by the
definition of δ.

▶ Definition 29 (ProjPredp). The boolean predicate ProjPredp ∈ Gµ × T µ → {0, 1} is defined
as:

ProjPredp(Gµ, T µ) =



(1) P Lp(LG(Gµ)) = LT (T µ) ∧
dg(Gµ) = dl(T µ) if P Lp(LG(Gµ)) is defined

(2) 0 < dg(Gµ) if partOfµ
p (Gµ) and guardedµ

p (Gµ)
(3) satUnravelPred({}, Gµ) ∧

¬partOfµ
p (Gµ) ∧

unfold(T µ) = end otherwise

We explain the three cases of the predicate.
1. Attempt to apply a prefix rule: This requires p to be in the unfolded prefix of the global

type. This is checked by requiring that PLp is defined. We then apply PLp to the
unfolded prefix, and assert it equal to the unfolded prefix of the local type. All prefix
rules require the global and local type to have equally many outgoing edges, which we
check by dg(Gµ) = dl(T µ).
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2. Attempt to apply a guarded rule: We rely on decidability of partOfµ and guardedµ which
is straightforward so we do not detail how2. All guarded-rules require the set of outgoing
edges of the global type to be greater than zero, which we assert. Concretely this test
corresponds to the first premise of rule [B⇃µ], asserting its label set is non-empty.

3. Attempt to apply [End⇃µ].

▶ Theorem 30. Gµ ⇃µ
p T µ iff satProjPredp({}, (Gµ, T µ)) = 1

Proof. For (=⇒), we show the property for any visited list v, that is, Gµ ⇃µ
p T µ implies

satProjPredp(v, (Gµ, T µ)) = 1. Proceed by functional induction on satProjPredp(v, (Gµ, T µ)). For
(⇐=), for any v, it suffices to show satProjPredp(v, (Gµ, T µ)) = 1 implies (Gµ, T µ) ∈ v ∨ Gµ ⇃µ

p
T µ. Proceed by functional induction on satProjPredp(v, (Gµ, T µ)). In the second case where v

is non-empty, pick the right disjunct Gµ ⇃µ
p T µ and proceed by coinduction. ◀

▶ Corollary 31. projectablep(Gµ) is decidable.

Proof. Follows from Theorem 30 and Corollary 16. ◀

6 Mechanisation

All of our results are mechanised in Coq [6] using SSReflect [14] for writing proofs, the
Paco library [18] for defining coinductive predicates, the Equations package [24] for defining
functions by well-founded recursion (such as satP ), and Autosubst2 [25] to generate syntax
of inductive global and local types with binders represented by De Bruijn indices [10].

The mechanisation uses coinductive extensional equivalence relations to equate coinductive
terms. For presentation purposes, e.g. in the conclusion of Lemma 12, we use propositional
equality to equate coinductive types. These two types of equality are consistent [1].

In this section, we cover how to create predicates and relations that are defined using both
inductive and coinductive inference rules, like our unravelling relation from Definition 3. We
discuss how to create an inversion principle that allows us to do case analysis on predicates
of the form Unravels(Gµ) which, as discussed in Section 5, is defined as Gµ R tocoind(Gµ).
Finally, we show how we prove decidability of Unravels using satP .

Mixed inductive and coinductive definitions. The unravelling relation presented in Defini-
tion 3 uses a combination of inductive and coinductive rules, which is non-standard. We do
this because it greatly simplifies our proofs and disallows unwanted derivations like the one
presented in Section 3 (8) by construction. We mix inductive and coinductive rules by taking
the greatest fixed point of a generating function defined as a least fixed point, a technique
that Zakowski et al. [29] also have used to define weak bisimilarity of streams.

Definition grel := gType -> gcType -> Prop
Inductive UnravelF (R : grel) : grel := (* Generating function UnravelF *)
| UnrF1 g gc a u : R g gc -> UnravelF R (GMsg a u g) (GCMsg a u gc)
(* The branching rule is elided *)
| UnrF_unf1 g gc : UnravelF R (unf1 (GRec g)) gc -> UnravelF R (GRec g) gc
| UnrF_end : UnravelF R GEnd GCEnd.

Definition Unravelling : grel := paco2 UnravelF bot2 (* gfp UnravelF *)

2 We need to assert both partOfµ
p (Gµ) and guardedµ

p (Gµ) for completeness as we from Gν ⇃ν
p endν and

Gµ R Gν then can conclude the third case of ProjPredp.
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We represent p1
µ−→ p2 : k⟨U⟩.Gµ and p1

ν−→ p2 : k⟨U⟩.Gν as GMsg a u g of type gType and
GCMsg a u gc of type gcType respectively, where a contains roles p1, p2 and channel k, u is
U , g is Gµ, and gc is Gν . The terms GEnd and GCEnd represent endµ and endν respectively
and the function unf1 is the unfold_once function from Section 4.

UnravelF is an inductively defined relation relating global inductive types to global
coinductive types. It is parameterised by a relation R of the same type where (g, gc) ∈
UnravelF R if, after unfolding a finite number of binders from g resulting in type g’, either
g′ = GEnd and gc = GCEnd, or g′ = GMsg a u g′′, gc = GCMsg a u gc′′, and (g′′, gc′′) ∈ R, or
similarly for the elided branch case.

Intuitively, UnravelF is a generating function defined as a least fixed point and by taking
the greatest fixed point of this function we obtain a hybrid inductive/coinductive relation
where any occurrence of R in a premise of UnfoldF require us to take coinductive steps in
our proofs and any recursive occurrence of UnfoldF requires us to take inductive steps. This
allows us to do proofs like (9) where proofs are finished by circling back to previous equivalent
nodes in the tree in the coinductive cases or by reaching a base case in the inductive cases.
Moreover this approach forbids us from unfolding binders indefinitely since UnrF_unf1 is
inductive and not coinductive.

We use paco2 from the Paco library to define Unravelling as the greatest fixed point of
UnravelF. Paco stands for parameterised coinduction and paco2 F R defines the greatest fixed
point of F parameterised by a binary relation R, which is equivalent to gfp(λX. F(X ∪ R)).
When R is the empty set this coincides with the standard greatest fixed point.

Custom inversion principles. Many proofs on inductive global types work up to unfolding.
Unravelling, for instance, unravels a finite number of µ-binders at every step and our
intermediate projection function ⇃µ

p and sat procedure both work in a similar way. To
abstract away from finite unfoldings we use the following InvPred predicate.

Variant InvPredF (P : gType -> Prop) : gType -> Prop :=
| HTM g a u : P g -> InvPredF P (GMsg a u g)
| HTB gs d : Forall P es -> InvPredF P (GBranch d gs)
| HTE : InvPredF P GEnd
Definition unf g := (iter (mu_height g) unf1 g).
Variant UnfoldF (P : gType -> Prop) : gType -> Prop :=
| UnfF1 g : P (unf g) -> UnfoldF g.

Definition InvPred : (gType -> Prop) := paco1 (UnfoldF \o InvPredF) bot.
(*function composition*)

We define two generating functions InvPredF and UnfoldF and generate InvPred as the greatest
fixed point of their composition. The function unf corresponds to unfold from Section 4.
InvPredF contains cases for all constructors of inductive global types except for µt and t.
UnfoldF unfolds the top-level µ-binders from a global type. The key insight is that InvPred(Gµ)
is equivalent to asserting closedness and contractiveness of Gµ.

The inversion principle of InvPred is convenient for proving predicates P that are closed
under unfolding of inductive global types, i.e. ∀G. P µt.G ⇐⇒ P G[µt.G], as any unfolding
applied by inverting UnfoldF can similarly be applied in the goal. In particular the predicate
Unravels(Gµ) is closed under unfolding and provable by inversion of UnfoldF.

Well-foundedness of satP . Lemma 23 proves decidability of Unravels. This proof is mech-
anised by proving decidability of InvPred(Gµ), which as we show above implies Unravels(Gµ).
The invP predicate corresponds to Definition 22.
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Definition invP g :=
match unf g with | GRec _ | GVar _ => false | _ => true end.

Definition invpred g := sat nil invP g.
Theorem InvPred_dec : forall g, InvPred g <-> invpred g = true

We use the Equations package to define satP by well-founded recursion on the decreasing
measure gmeasure g V which is defined as the number of unique nodes in the graph created
from g minus the cardinality of the visited set V. The successor function δg is implemented
by nextg : gType -> seq gType.

1 Definition gmeasure (g : gType) (V : seq gType) :=
2 size (rep_rem V (undup (enumg g))).
3 Lemma closed_enum : forall g0 g1 g2, g1 \in nextg (unf g) ->
4 g2 \in enumg g1 -> g2 \in enumg g.
5 Equations sat (V : seq gType) (P : gType -> bool)
6 (g : gType) : bool by wf (gmeasure g V) :=
7 sat V P g with (dec (g \in V)) => {
8 sat _ _ _ in_left := true;
9 sat V P g in_right := (P g) &&

10 (foldInMap (nextg (unf g))
11 (fun g' _ => sat (g::V) P g')) }.

Defining sat generates one obligation that must be proved to show termination. If we write
gmeasure g V as M(g, V ), then we must show it is decreasing for arguments to the recursive
call, i.e. that M(g′, {g} ∪ V ) < M(g, V )

Using a variant of the familiar map on inductive lists called foldInMap our obligation is
enriched with the assumption that g′ = δ(g, i) for some 0 < i ≤ dg(g). The boolean wrapper
dec further enriches the obligation with the case of the if-statement, g /∈ V .

What must be proven in this obligation is slightly different from the termination argument
in Section 5 which relied on the finiteness of a graph’s nodes. The obligation instead relies
on a lemma closed_enum (l. 3). The lemma states that the enumerations of a global types
continuations, will all be part of the initial global types enumeration. The proof of this
lemma is short, less than 100 lines.

The full termination proof for sat is short (about 250 lines) and the approach is general.
The mechanisation also proves termination of the decision procedure for membership in ⇃ind.
This task only requires adapting the algorithm to pairs of terms. This termination proof is
also short. The conciseness is due to the space of continuations being computed by structural
recursion by enum. This makes it straightforward to prove substitution properties about it
by induction on syntax.

7 Related Work and Discussion

Related Work. Ghilezan et al. [13] are the first to introduce coinductive projection on
coinductive global and local types. They use it to show soundness and completeness of
synchronous multiparty session subtyping. A key difference is that whereas we represent the
infinite unfolding of a µ-type as a coinductive type, they represent it as a partial function.
Projection on µ-types is then defined indirectly in terms of the coinductive projection of
their corresponding partial functions. Because of this indirect definition, their projection is
not computable. Our intermediate projection ⇃µ is similar to their projection on µ-types.
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However, ours is defined with inference rules stated directly on the µ-types which is why we
can decide membership and thus compute projection. Castro-Perez et al. [7] use coinductive
projection to express their meta theory about multiparty session types. Their main result is
trace equivalence between processes, coinductive local types and coinductive global types,
which they mechanise in Coq. Like us, they show soundness of their projection on µ-types.
Their projection is however not complete, which is what inspired us to investigate approaches
to sound and complete projection. A consequence of their projection on µ-types not being
complete, is that there are many inductive global types that have the trace equivalence
property, but must be excluded since their projection is undefined. Jacob et al. [19] show
deadlock and leak freedom of multiparty GV, an extension of the functional language
GV [12, 28]. They use coinductive projection to define when local types are compatible and
do not define a projection on µ-types. Other work has formalised the notion of projection in
Coq. Cruz-Filipe et al. [9, 8] formalise syntax and semantics of tail-recursive choreographies
and a projection that includes full merge. However, this work does not approach coinductive
syntax and therefore does not show any soundness and completeness results.

Our graph algorithm from Section 5 implements a procedure proposed by Eikelder [26].
This work provides several algorithms for deciding recursive type equivalence that, like ours,
use predicates on reachable nodes of a graph. Also, our proof of termination is quite similar
to theirs. However, they define the set of reachable states as set comprehension, whereas we
constructively produce a list of nodes. Similarly, showing their set comprehension is finite,
boils down to substitution lemmas. Unlike ours, their work has not been mechanised in a
proof assistant/theorem prover. The idea of defining the space of continuations for global
and local type as an explicit enumeration is inspired by Asperti [3] who mechanise a concise
proof of regular expression equivalence in the Matita theorem prover [4]. They do this by
a new construction called pointed regular expressions. Essentially, this adds marks to a
regular expression, such that one can encode state transitions by moving marks. This makes
computing reachable configurations as trivial as computing all markings.

We define unravelling using a mix of inductive and coinductive rules. In Section 6, we
make this precise by defining unravelling as the greatest fixed point of a generating function
itself defined as a least fixed point. Zakowski et al. [29] use the same technique to define a
weak bisimilarity on streams.

The primary focus of this work is on global types. Scalas and Yoshida [23] propose a more
general approach that shows that properties such as deadlock freedom can be derived directly
on local types without the need for global types and the corresponding projection. However,
their approach misses the main advantage provided by global types which is providing a
specification (blueprint) of the used protocols.

Discussion and Future work. This work is part of the MECHANIST project that aims at
mechanising the full theory of multiparty asynchronous session types [17]. Our next step is to
mechanise a proof of semantic equivalence between global types and their projections to local
types through projp. Semantic equivalence is a property similar to trace equivalence which
Castro-Perez et al. [7] mechanised. However, there are some key differences in our objectives.
Their main result is Zooid, a tool that extracts certified message-passing programs, which
is why their process syntax differs significantly from the original syntax by Honda et al
(e.g., no parallel composition). Instead, we aim at mechanising the exact process calculus
presented by Honda et al.. As the meta theory in Castro-Perez et al. [7] is independent of
their projection function, it would also be interesting future work to adapt projp to their
setting. Finally, projp implements the restrictive plain merge but related work also uses full
merge [13, 8]. It would be interesting to define a binder-agnostic projection using full merge.
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8 Conclusions

Projection is a function that maps global types to local types. The projections found in
the literature impose syntactic restrictions that make them incomplete with respect to
coinductive projection. This work shows the existence of a decidable projection that is
sound and complete. Our procedure works in two phases: first a decision procedure tests
a soundness property and, if successful, a second procedure translates the global type to a
local type. The latter is very similar to the existing projections in the literature. The novelty
of our work is in the decision procedure. All results have been mechanised in Coq.
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