
28th International Conference on
Types for Proofs and Programs

TYPES 2022, June 20–25, 2022, LS2N, University of Nantes,
France

Edited by

Delia Kesner
Pierre-Marie Pédrot

LIPIcs – Vo l . 269 – TYPES 2022 www.dagstuh l .de/ l ip i c s

Editors

Delia Kesner
Université Paris Cité, France
kesner@irif.fr

Pierre-Marie Pédrot
INRIA and LS2N, Nantes, France
pierre-marie.pedrot@inria.fr

ACM Classification 2012
Theory of computation → Type theory; Theory of computation → Type structures; Computing methodo-
logies → Representation of mathematical objects; Theory of computation → Interactive proof systems;
Theory of computation → Logic; Theory of computation → Logic and verification; Theory of computa-
tion → Proof theory; Theory of computation → Constructive mathematics; Theory of computation →
Linear logic; Theory of computation → Process calculi; Software and its engineering → Formal software
verification; Security and privacy → Systems security

ISBN 978-3-95977-285-3

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-285-3.

Publication date
August, 2023

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.TYPES.2022.0

ISBN 978-3-95977-285-3 ISSN 1868-8969 https://www.dagstuhl.de/lipics

https://orcid.org/0000-0003-4254-3129
mailto:kesner@irif.fr
mailto:pierre-marie.pedrot@inria.fr
https://www.dagstuhl.de/dagpub/978-3-95977-285-3
https://www.dagstuhl.de/dagpub/978-3-95977-285-3
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.TYPES.2022.0
https://www.dagstuhl.de/dagpub/978-3-95977-285-3
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Reykjavik University, IS and Gran Sasso Science Institute, IT)
Christel Baier (TU Dresden, DE)
Roberto Di Cosmo (Inria and Université de Paris, FR)
Faith Ellen (University of Toronto, CA)
Javier Esparza (TU München, DE)
Daniel Král’ (Masaryk University, Brno, CZ)
Meena Mahajan (Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)
Chih-Hao Luke Ong (University of Oxford, GB)
Phillip Rogaway (University of California, Davis, US)
Eva Rotenberg (Technical University of Denmark, Lyngby, DK)
Raimund Seidel (Universität des Saarlandes, Saarbrücken, DE and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Wadern, DE)
Pierre Senellart (ENS, Université PSL, Paris, FR)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

TYPES 2022

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Delia Kesner and Pierre-Marie Pédrot . 0:vii

Papers

All Watched Over by Machines of Loving Grace
Dominic P. Mulligan . 1:1–1:23

Classical Natural Deduction from Truth Tables
Herman Geuvers and Tonny Hurkens . 2:1–2:27

On Dynamic Lifting and Effect Typing in Circuit Description Languages
Andrea Colledan and Ugo Dal Lago . 3:1–3:21

Expressing Ecumenical Systems in the λΠ-Calculus Modulo Theory
Emilie Grienenberger . 4:1–4:23

On the Fair Termination of Client-Server Sessions
Luca Padovani . 5:1–5:21

mitten: A Flexible Multimodal Proof Assistant
Philipp Stassen, Daniel Gratzer, and Lars Birkedal . 6:1–6:23

An Irrelevancy-Eliminating Translation of Pure Type Systems
Nathan Mull . 7:1–7:21

Linear Rank Intersection Types
Fábio Reis, Sandra Alves, and Mário Florido . 8:1–8:21

A Metatheoretic Analysis of Subtype Universes
Felix Bradley and Zhaohui Luo . 9:1–9:21

The Münchhausen Method in Type Theory
Thorsten Altenkirch, Ambrus Kaposi, Artjoms Šinkarovs, and Tamás Végh 10:1–10:20

Pragmatic Isomorphism Proofs Between Coq Representations: Application to
Lambda-Term Families

Catherine Dubois, Nicolas Magaud, and Alain Giorgetti . 11:1–11:19

A Semantics of K into Dedukti
Amélie Ledein, Valentin Blot, and Catherine Dubois . 12:1–12:22

Type Theory with Explicit Universe Polymorphism
Marc Bezem, Thierry Coquand, Peter Dybjer, and Martín Escardó 13:1–13:16

A Univalent Formalization of Constructive Affine Schemes
Max Zeuner and Anders Mörtberg . 14:1–14:24

Univalent Monoidal Categories
Kobe Wullaert, Ralph Matthes, and Benedikt Ahrens . 15:1–15:21

28th International Conference on Types for Proofs and Programs (TYPES 2022).
Editors: Delia Kesner and Pierre-Marie Pédrot

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Preface

The TYPES meetings are a forum to present new and ongoing work in all aspects of
type theory and its applications, especially in formalised and computer assisted reasoning
and computer programming. This volume constitutes the post-proceedings of the 28th
International Conference on Types for Proofs and Programs, TYPES 2022, that was held in
LS2N, University of Nantes, from 20 to 25 June 2022.

The meetings from 1990 to 2008 were annual workshops corresponding to five consecutive
EU-funded networking projects. Since 2009, TYPES has been run as an independent
conference series. Previous TYPES meetings were organised by Antibes (1990), Edinburgh
(1991), Båstad (1992), Nijmegen (1993), Båstad (1994), Torino (1995), Aussois (1996), Kloster
Irsee (1998), Lökeberg (1999), Durham (2000), Berg en Dal near Nijmegen (2002), Torino
(2003), Jouy-en-Josas near Paris (2004), Nottingham (2006), Cividale del Friuli (2007), Torino
(2008), Aussois (2009), Warsaw (2010), Bergen (2011), Toulouse (2013), Paris (2014), Tallinn
(2015), Novi Sad (2016), Budapest (2017), Braga (2018), Oslo (2019), Turin (2020), Leiden
(2021). The two last meetings were virtual, because of the SARSCoV-2 pandemics.

The TYPES areas of interest include, but are not limited to: Foundations of type
theory and constructive mathematics; Homotopy type theory; Applications of type theory;
Dependently typed programming; Industrial uses of type theory technology; Meta-theoretic
studies of type systems; Proof assistants and proof technology; Automation in computer-
assisted reasoning; Links between type theory and functional programming; Formalizing
mathematics using type theory; Type theory in linguistics.

The TYPES conferences are all based on contributed talks based on short abstracts;
reporting work in progress and work presented or published elsewhere. A post-proceedings
volume is prepared after the conference, whose papers must represent unpublished work.
Submitted papers to the post-proceedings are subject to a full peer-review process.

The conference programme of TYPES 22 consisted of 14 long contributed talks (20
minutes), 57 short contributed talks (10 min), and four invited talks (one hour) by Youyou
Cong (Tokyo Institute of Technology), Ekaterina Komendantskaya (Heriot-Watt University),
Sam Lindley (University of Edinburgh) and Leonardo de Moura (Microsoft Research). The
conference was a successful event with 138 registered participants. All the details of the
conference can be found at https://types22.inria.fr.

Concerning the post-proceedings, 18 papers were initially submitted, out of which 15
were accepted. We thank all the authors and reviewers for their hard work to make this
possible! Finally, we would like to thank CNRS, Inria, and the COST Action CA20111 for
sponsoring the conference, and Nantes Université and LS2N for kindly covering the costs of
the post-proceedings.

Delia Kesner and Pierre-Marie Pédrot, June 2023.

28th International Conference on Types for Proofs and Programs (TYPES 2022).
Editors: Delia Kesner and Pierre-Marie Pédrot

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://types22.inria.fr
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

All Watched Over by Machines of Loving Grace
Dominic P. Mulligan # Ñ

Automated Reasoning Group, Amazon Web Services, Cambridge, UK1

Abstract
Modern operating systems are typically built around a trusted system component called the kernel
which amongst other things is charged with enforcing system-wide security policies. Crucially,
this component must be kept isolated from untrusted software at all times, which is facilitated by
exploiting machine-oriented notions of separation: private memories, privilege levels, and similar.

Modern proof-assistants are typically built around a trusted system component called the kernel
which is charged with enforcing system-wide soundness. Crucially, this component must be kept
isolated from untrusted automation at all times, which is facilitated by exploiting programming-
language notions of separation: module-private data structures, type-abstraction, and similar.

Whilst markedly different in purpose, in some essential ways operating system and proof-assistant
kernels are tasked with the same job, namely enforcing system-wide invariants in the face of unbridled
interaction with untrusted code. Yet the mechanisms through which the two types of kernel protect
themselves are significantly different.

In this paper, we introduce Supervisionary, the kernel of a programmable proof-checking system
for Gordon’s HOL, organised in a manner more reminiscent of an operating system than a typical
LCF-style proof-checker. Supervisionary’s kernel executes at a relative level of privilege compared
to untrusted automation, with trusted and untrusted system components communicating across a
limited system call boundary. Kernel objects, managed on behalf of user-space by Supervisionary,
are referenced by handles and are passed back-and-forth by system calls. Unusually, Supervisionary
has no “metalanguage” in the LCF sense, as the language used to implement the kernel, and the
language used to implement automation, need not be the same. Any programming language can be
used to implement automation for Supervisionary, providing the resulting binary respects the kernel
calling convention and binary interface, with no risk to system soundness. Lastly, Supervisionary
allows arbitrary programming languages to be endowed with facilities for proof-checking. Indeed,
the handles that Supervisionary uses to denote kernel objects may be thought of as an extremely
expressive form of capability – in the computer security sense of that word – and can potentially be
used to enforce fine-grained correctness and security properties of programs at runtime.

2012 ACM Subject Classification Theory of computation → Higher order logic; Theory of computa-
tion → Automated reasoning; Theory of computation → Logic and verification; Software and its
engineering → Operating systems

Keywords and phrases Proof assistant design, operating systems, HOL, LCF, Supervisionary, system
description, capabilities

Digital Object Identifier 10.4230/LIPIcs.TYPES.2022.1

Supplementary Material Software (Source Code): https://github.com/DominicPM/supervisionary
archived at swh:1:dir:7478757cd08c06735cf3a1a056246d0200100c45

Acknowledgements We would like to thank Nick Spinale for many insightful conversations regarding
Supervisionary, and Nathan Chong and two anonymous referees for their helpful feedback on earlier
drafts of this paper.

1 All work done whilst employed within the Systems Research Group, Arm Research, Cambridge.

© Dominic P. Mulligan;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Types for Proofs and Programs (TYPES 2022).
Editors: Delia Kesner and Pierre-Marie Pédrot; Article No. 1; pp. 1:1–1:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dominic.p.mulligan@gmail.com
https://dominicpm.github.io
https://orcid.org/0000-0003-4643-3541
https://doi.org/10.4230/LIPIcs.TYPES.2022.1
https://github.com/DominicPM/supervisionary
https://archive.softwareheritage.org/swh:1:dir:7478757cd08c06735cf3a1a056246d0200100c45;origin=https://github.com/DominicPM/supervisionary;visit=swh:1:snp:9ee859626b9cd6b6c433d400286973fdac8f5d1b;anchor=swh:1:rev:e6e250d156871352da671f95c3d4d49b41c2f5d9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 All Watched Over by Machines of Loving Grace

(Trusted) kernel

...

libc libc libc

Process 1 Process 2 Process N

EL1

EL0

Figure 1 A schematic of the typical system organization of a commodity operating system and
its associated user-space. The kernel (in green) executes at a relative level of privilege, enforced by
hardware, compared to processes executing in user-space (red) – we follow the Arm convention and
show the kernel executing at EL1 and user-space at EL0. The two communicate across a system call
boundary (dashed line) using system calls (black arrows). User-space programs are typically written
making use of an abstraction library, such as libc (blue), to abstract over this kernel interface.

1 Introduction

This paper studies the intersection of operating system design and implementations of the
foundations of mathematics. Research into the confluence of these two topics is, admittedly,
a rather moribund affair at the moment. Nevertheless, with this paper we hope to convince
the reader that probing the intersection of these two areas is potentially very interesting
by introducing Supervisionary, a programmable proof-checking system for Gordon’s HOL.
This system has a novel system design, with some interesting properties, and moreover some
interesting consequences. We first, however, begin with a scene-setting overview of common
principles in operating system design and implementation.

1.1 On operating systems
Most commodity operating systems – that is, Microsoft Windows and Unix-derivatives2 – fit
a common pattern and are architected around a relatively self-contained, trusted component
typically called the system kernel [35].

The kernel is the sole component that can interface unfettered with all system resources,
including devices and other system hardware. Untrusted user-space applications make use of
kernel interfaces in order to make use of a device or any other system resource managed by
the kernel. As a result, the kernel is essentially a “pinch point” for gating access to system
resources. The kernel also introduces a process abstraction in user-space and is responsible
for ensuring the confidentiality and integrity of concurrently-executing processes, each of
which are mutually mistrusting. The kernel is therefore the key component responsible for
enforcing system-wide security policies, and essentially forms the “root of all trust” within
a computing system. It is therefore imperative that the kernel is itself isolated sufficiently
from user-space software at all times, lest this role be undermined by a malefactor.

The kernel self-isolates by co-operating with its host hardware. In support of this,
mainstream microprocessors have, over the years, accreted a variety of now-familiar security
features that an operating system kernel can use to defend itself from prying or interference.
These include exception levels or privilege rings, as they are variously called, depending on
the instruction set architecture, and which introduce a notion of privilege into the system.

2 Commodity here is used to guard against pedantic quibbling over research operating system designs –
like exokernels [9] and other oddities – which arguably do not fit this pattern.

D. P. Mulligan 1:3

Here, software executing at higher-privilege – in our case, an operating system kernel3 – gains
permission to program sensitive system registers, adjust hardware operating frequencies and
voltages, and generally control how the system operates. Moreover, software executing at a
higher-level of privilege can “peer in” and potentially modify the runtime state of software
executing at a relatively lower-level of privilege, for example reading data from, or writing
data to, a buffer within the memory space of an untrusted user-space process.

Modern microprocessors also provide a form of memory management built around page
tables (see e.g. [3]). These data structures have a dual role: primarily, they are used for
the virtualisation of system memory via address translation, granting user-space software
the illusion that it owns the entire physical address space of the machine, presenting a
virtual address space to user-space programs. This translation process induces a notion of
ownership of pages of physical memory within the system, with a page of physical memory
“owned” by a principal – either the operating system, a user-space process, or both – if it is
mapped in to that principal’s address space. Moreover, page tables are also used for storing
the metadata attributes of pages of memory, including read-write-execute permissions. By
correctly initialising and managing these tables the kernel can keep its own code and data
structures isolated – in a kernel-private memory area – that only it can access, safe from
prying or interference by untrusted user-space. As a result, for systems software on modern
computers, isolation is enforced by a mix of low-level machine mechanisms: separate address
spaces, private memory regions, and machine-enforced privilege checks on executing software.

To make itself useful, the kernel exposes a limited interface, used by user-space to request
intercession by the kernel on its behalf – for example by granting user-space access to some
device, the filesystem, a socket, or some other system resource under kernel management.
Dealing in generalities, to do this, the kernel exposes a suite of largely synchronous system
calls which can be invoked by user-space programs with dedicated machine instructions
provided by the microprocessor – see Figure 1 for a diagrammatic schematic, for example. On
Arm platforms, with which the author is most familiar, these instructions induce a processor
exception, forcing a context switch which flips the flow of control into the kernel’s system
call handler, before eventually returning the flow of control back to the calling user-space
program. From user-space’s point-of-view, system calls therefore have the appearance and
effect of very CISC-like machine instructions, with the operating system kernel essentially
presenting itself to user-space as silicon by other means, extending the user-space fragment
of the instruction set architecture of the microprocessor with new macro instructions.

Note that for this two-way dance to work, user-space and the kernel must work together
by adopting a series of joint conventions. These include a calling convention describing
how arguments and results are passed back-and-forth across the system call interface, and
a binary interface detailing how system calls are identified, how errors are reported back
to user-space, and other miscellanea.4 To help programmers adhere to these conventions,
the operating system typically provides an abstraction layer to user-space, which on Unix
variants typically takes the form of the system’s C library, libc. Generally, this is just a
convenience, and user-space software may invoke system calls directly if wanted by invoking
the correct machine instruction and adhering to the appropriate calling convention.5

3 Note that Cloud hosting as a viable business proposition essentially rests on this trick being repeated
again, with a hypervisor sat in a position of privilege compared to an operating system kernel – executing
out of an even higher exception level – and enforcing separation betwixt operating system instances.

4 For more detail on the role of the system ABI, its other aspects, and its very real effects on the semantics
of executing programs, see this [18] outrageously well-written yet criminally under-cited overview.

5 This is the case on Linux, though does not hold universally on all Unix derivatives. For example Apple’s
MacOS and some BSD Unix variants generally consider the programming interface of the system C
library as the interface of the kernel, proper, in some cases preventing any user-space code other than
the system’s libc library from invoking system calls directly, as a security mechanism.

TYPES 2022

1:4 All Watched Over by Machines of Loving Grace

Metalanguage process

(Trusted) kernel Automation External tool

Figure 2 A schematic of the system organisation of a typical LCF-style proof assistant. The trusted
kernel (green) is linked against untrusted automation (red) existing within the same metalanguage
process (dotted line) and communicate with each other using the kernel’s API (leftmost black arrow).
External tools existing as separate processes (blue), must communicate with a shim layer written in
the proof assistant’s metalanguage to access the kernel (rightmost black arrow).

However, crucially, it is generally not the case that the operating system kernel and
untrusted user-space applications must be written in the same programming language for
this all to work. Whilst most operating system kernels are written in C, or a C-language
derivative, user-space programs can be written in a variety of languages, and are also
commonly composed of multiple libraries, written in different programming languages, linked
together. Despite this, all are able to make use of system resources exposed by the kernel’s
system call interface by ensuring that they adhere to the calling convention and binary
interface expected by the kernel. In this respect, for commodity operating systems, the
C-language may have prominence as a favoured language of system implementation, but
by-and-large it is not special or given an unduly prominent status by the kernel itself.

1.2 On programmable proof-checkers
Most modern proof-assistants – for example, systems in the wider HOL family [27, 14, 33],
Coq [15], Matita [4], NuPRL [2], and similar – fit a common pattern and are architected
around a relatively self-contained, trusted component typically called the system kernel.

The system kernel is the sole component that can authenticate claims as legitimate
theorems of the implemented logic. Untrusted automation, residing outside of the kernel,
must “drive” the kernel to derive a theorem on its behalf. The kernel is therefore the
component responsible for ensuring system-wide soundness, and represents the “root of
all trust” within the system. It is therefore imperative that the kernel is able to isolate
itself sufficiently from untrusted automation at all times. This kernel-centric method of
system organisation is known as the LCF approach after Milner’s eponymous system [11].
See Figure 2 for a diagrammatic representation.

Most modern proof-assistants tend to be written in a metalanguage which serves as the
implementation language for both the kernel and the majority of the untrusted automation
that modern proof-assistants provide to users. This metalanguage is typically a strongly-typed
functional programming language, for example an ML derivative such as OCaml or SML [22],
and which offers strong modularity and abstraction features. The kernel exploits these
programming language features to hide its own data structures from untrusted automation
and expose a carefully limited API for proof-construction and manipulation. Notably, in an
LCF-style system, the only mechanism automation has for constructing an authenticated
theorem is by using this API, with the inference rules of the logic exposed as a suite of smart
constructors manipulating an abstract type of theorems. The kernel is therefore a “pinch
point” for any proof-construction activity within the system.

D. P. Mulligan 1:5

Untrusted automation and the system kernel are linked together, and reside side-by-side
in the same process when the proof-assistant is executed. As a result, system soundness
ultimately rests on the soundness of the implementation metalanguage’s type-system –
specifically its ability to correctly isolate module-private data structures and enforce type
abstraction. Moreover, for systems that use ephemeral proof construction, and lack an
explicit notion of serialised proof-representation such as a proof-term or similar, the system
metalanguage is unique amongst all programming languages in that it is the only language
capable of interfacing directly with the kernel which is, after all, “just” a module written
written in that language like any other. Whilst an external tool, or automation written
in another programming language, can interface with the kernel, it must do so indirectly,
making use of a shim layer written in the system metalanguage.

1.3 Introducing the Supervisionary system
As the text above intimates, the role of the kernel in both an operating system and in
a proof-assistant is – at least in an abstract sense – the same: both components must
enforce system-wide invariants in the face of unbridled interaction with untrusted code; both
components also act as the “root of all trust” for their respective systems; both components
act as “pinch points” that untrusted code cannot help interact with if it wishes to engage
in some kernel-gated activity. Consequently, both types of kernel need to correctly isolate
their data structures and runtime state from interference by untrusted code. However, the
two mechanisms through which this self-isolation is enforced are different: for operating
system kernels6 self-isolation is enforced using machine-oriented mechanisms; for LCF-style
proof-assistants, self-isolation is enforced using programming language-oriented mechanisms.

In this paper we introduce Supervisionary, the kernel of a novel programmable proof-
assistant for Gordon’s HOL.7 Supervisionary’s design has more in common with a typical
operating system than comparable implementations of HOL. Specifically, the Supervisionary
kernel executes at a relative level of privilege compared to untrusted automation, which can
be thought of as executing as a process in something akin to Supervisionary’s version of
“user-space”. The trusted kernel, and untrusted user-space, communicate across a system call
boundary which is carefully designed in order to maintain system soundness.

One consequence of this design is that the Supervisionary kernel immediately takes on a
different character to an LCF kernel. All of the paraphernalia of a typical HOL implementation
– type-formers, types, constants, terms, and theorems – are managed as kernel objects kept
safely under the management of the kernel itself, in kernel-private memory areas. These
kernel objects are never exposed directly to user-space, rather, they are manipulated by the
Supervisionary kernel on user-space’s behalf. Handles – which can be thought of as pointers,
indexing Supervisionary’s private memories – are used by a user-space process to identify
kernel objects that the kernel should manipulate or query.

Notably, Supervisionary is also not implemented in a typed functional programming
language, as is typical of most programmable proof-assistants, but is rather implemented in the
decidedly unsafe systems programming language, Rust [17]. Note that this decision introduces
no risk to system soundness, as Supervisionary’s soundness ultimately rests on the continued
separation of kernel-private data from Supervisionary’s analogue of user-space – using privilege

6 Barring unikernels, or library operating systems, like Mirage [20, 21]. If we are really pushing this analogy
note that unikernels are in some respects quite similar to LCF-style proof-assistants in this regard,
having their kernel linked with untrusted “user-space” and separated using programming language
features like modules, rather than privilege and memory isolation.

7 Many of the ideas presented henceforth are logic-independent. Though we have chosen to use HOL the
ideas presented herein can be applied to a wide variety of other logics and type theories with relatively
straightforward changes.

TYPES 2022

1:6 All Watched Over by Machines of Loving Grace

and private memories – and not on the type system of the implementation programming
language. Moreover, as user-space and kernel communicate across a defined system call
interface, untrusted user-space may also be written in any programming language capable of
producing code that is binary-compatible with the Supervisionary kernel. Supervisionary
therefore has no “metalanguage” in the LCF sense, but rather an implementation language,
with automation potentially written in multiple languages – maybe even a mix.

For ease of implementation and use Supervisionary is implemented as a WebAssembly [12]
(Wasm henceforth) host. We extend a Wasm virtual machine with new system calls that
perform a context switch into Supervisionary, which has its own memory isolated from
the memory of the executing user-space Wasm process running under its supervision, and
inaccessible to it. This separation is only one way: the kernel can “peer in” to the runtime
state of a running Wasm process and read from, or write to, its private memories. This
decision means we may experiment with the fundamental ideas behind Supervisionary –
namely isolating the kernel using private memory areas, the split between kernel- and user-
space, a kernel system call interface – without becoming bogged down in extraneous detail
associated with the booting ceremony of a real machine, for example. Moreover, we harness
work on porting compiler and linker toolchains, allowing our user-space to be written in any
programming language with a toolchain capable of targeting Wasm. Supervisionary’s design
will be fully described in Section 3.

Lastly, and more speculatively, Supervisionary’s handles can be passed around a program,
between different programs executing concurrently or sequentially under Supervisionary’s
management, or between the user-space program and the kernel. Whilst this property is not
unique to Supervisionary – values of the abstract type of theorems may also be passed around
within any LCF-style system, for example – the objects which these handles denote need not
be necessary truths of pure mathematics, but can be contingent truths, themselves functions
of the runtime state of the program itself, or of the Supervisionary kernel. Handles to these
theorems act as a form of capability, in the computer security sense of that word. This
property is unique to Supervisionary, as it rests on Supervisionary’s dual status as a proof-
assistant kernel, capable of generating and checking theorems, and an extension of a general
purpose virtual machine, capable of executing arbitrary programs. Here, Supervisionary
exploits its status as a “pinch point” that user-space cannot help pass through in order to
have any sort of computational effect, to force user-space to pass a handle denoting a theorem
that proves that it is acting correctly, per some system-wide policy. Some ideas of how this
idea could develop are discussed later, in Section 4.

2 Implemented logic

Supervisionary implements a variant of Gordon’s HOL [10], a classical higher-order logic.
This can be intuitively understood as Church’s Simple Theory of Types [7] extended with
ML-style top-level polymorphism. We introduce the basics of this logic here, introducing
just enough material that the unfamiliar reader can follow the rest of the paper.

We fix a denumerable set of type variables and use α, β, γ, and so on, to range arbitrarily
over them. We work with simple types generated by the following recursive grammar:

τ, τ ′, τ ′′ ::= α | f(τ, . . . , τ ′)

Here f is a type-former which has an associated arity – a natural number indicating the
number of type arguments that it expects. If all type-formers within a type are applied to a
number of types matching their arity we call the type well-formed – that is, arities introduce
a trivial or degenerate form of kinding for types. We will only ever work with well-formed

D. P. Mulligan 1:7

r : τ
Γ ⊢ r = r

Γ ⊢ r = s

Γ ⊢ s = r

Γ ⊢ r = s Γ′ ⊢ s = t

Γ ∪ Γ′ ⊢ r = t

ϕ ∈ Γ
Γ ⊢ ϕ

Γ ⊢ ⊥ ϕ : bool
Γ ⊢ ϕ

Γ ⊢ r = s Γ′ ⊢ t = u

Γ ∪ Γ′ ⊢ r t = s u

Γ ⊢ r = s xτ /∈ fv(Γ)
Γ ⊢ λxτ .r = λxτ .s Γ ⊢ ⊤

Γ ⊢ ϕ Γ′ ⊢ ψ

Γ ∪ Γ′ ⊢ ϕ ∧ ψ

Γ ⊢ ϕ ∧ ψ

Γ ⊢ ϕ

Γ ⊢ ϕ ∧ ψ

Γ ⊢ ψ

Γ ∪ {ϕ} ⊢ ψ ϕ : bool
Γ ⊢ ϕ −→ ψ

Γ ⊢ ϕ −→ ψ Γ′ ⊢ ϕ

Γ ∪ Γ′ ⊢ ψ

Γ ⊢ ϕ ψ : bool
Γ ⊢ ϕ ∨ ψ

Γ ⊢ ψ ϕ : bool
Γ ⊢ ϕ ∨ ψ

Γ ⊢ ϕ = ψ Γ′ ⊢ ϕ

Γ ∪ Γ′ ⊢ ψ

Γ ⊢ ϕ ∨ ψ Γ′ ∪ {ϕ} ⊢ ξ Γ′′ ∪ {ψ} ⊢ ξ

Γ ∪ Γ′ ∪ Γ′′ ⊢ ξ

Γ ⊢ ϕ −→ ψ Γ′ ⊢ ψ −→ ϕ

Γ ∪ Γ′ ⊢ ϕ = ψ

Γ ⊢ ∃xτ .ϕ Γ ∪ {ϕ[xτ := yτ]} ⊢ ψ yτ /∈ fv(ψ) ∪ fv(Γ) ∪ {xτ }

Γ ⊢ ψ

Γ ⊢ ϕ = ψ Γ′ ⊢ ψ

Γ ∪ Γ′ ⊢ ϕ

Γ ∪ {ϕ} ⊢ ⊥ ϕ : bool
Γ ⊢ ¬ϕ

Γ ⊢ ¬ϕ Γ′ ⊢ ϕ

Γ ∪ Γ′ ⊢ ⊥

Γ ⊢ ∀xτ .ϕ r : τ
Γ ⊢ ϕ[xτ := r]

Γ ⊢ ϕ[xτ := r]
Γ ⊢ ∃xτ .ϕ

Γ ⊢ ϕ xτ /∈ fv(Γ)
Γ ⊢ ∀xτ .ϕ

s : τ ′ r : τ
Γ ⊢ (λxτ .s)r = s[xτ := r]

Γ ⊢ ∃xτ .ϕ

Γ ⊢ ϕ(ϵxτ .ϕ)

f : τ ⇒ τ ′ xτ /∈ fv(f)
Γ ⊢ λxτ .(f x) = f

Γ ⊢ ϕ r : τ
Γ[xτ := r] ⊢ ϕ[xτ := r]

Γ ⊢ ϕ

Γ[α := τ] ⊢ ϕ[α := τ]

Figure 3 The Natural Deduction relation for Gordon’s HOL.

types in Supervisionary. We write tv(τ) for the set of type-variables appearing within a type,
and write τ [α := τ ′] for the type substitution replacing all occurrences of α with τ ′ in the
type τ . From the outset we assume two primitive type-formers built-in to the logic itself and
necessary to bootstrap the rest of the material: bool, the type-former of the Boolean type
and also the type of propositions, with arity 0, and − ⇒ −, the type-former of the HOL
function space, with arity 2. Note we will abuse syntax and also write bool for the type of
Booleans and propositions, and also write τ ⇒ τ ′ for the function space type.

For each well-formed type τ we assume a countably infinite set of variables and constant
symbols. We use xτ , yτ , zτ , and so on, to range over the variables associated with type τ ,
and similarly use Cτ , Dτ , Eτ , and so on, to also range over the constants associated with
type τ . With these, we recursively define terms of the explicitly-typed λ-calculus, as follows:

r, s, t ::= xτ | Cτ | rs | λx:τ .r

Note that there is an “obvious” simple-typing relation on terms, which is presented in Figure 4.
We write r : τ to assert that a derivation tree rooted at r : τ and constructed according to
the rules in Figure 4 exists, or more intuitively, that r has type τ . We call any term with a
type well-typed; we will only ever work with well-typed terms in Supervisionary. Also, we
call a term with type bool a formula and use ϕ, ψ, ξ, and so on, to suggestively range over
terms that should be understood as being formulae in the rest of the paper. We work with

TYPES 2022

1:8 All Watched Over by Machines of Loving Grace

xτ : τ Cτ : τ
r : τ ⇒ τ ′ s : τ

rs : τ ′

r : τ ′

λxτ .r : τ ⇒ τ ′

Figure 4 The typing relation on terms.

terms identified up-to α-equivalence, write fv(r) for the set of free variables of the term r,
write r[xτ := t] for the usual capture-avoiding substitution on terms, and write r[α := τ] for
the recursive extension of the type substitution action to terms.

As with type-formers, from the outset we assume a collection of typed constants needed
to boostrap the rest of the logic, summarised in the table below:

= α ⇒ α ⇒ bool
⊤, ⊥ bool

¬ bool ⇒ bool
∧, ∨, −→ with type bool ⇒ bool ⇒ bool

∀, ∃ (α ⇒ bool) ⇒ bool
ϵ (α ⇒ bool) ⇒ α

Most of the constants above are the familiar logical constants and connectives of first-order
logic, lifted into our higher-order setting, and are introduced without further explanation.
Only the ϵ constant – Hilbert’s description operator [23], a form of choice – may be unfamiliar.
In HOL, this can be used to “select”, or “choose” an element of a type according to some
predicate, and is otherwise undefined if no such element exists. Note therefore that all
HOL types are inhabited by at least one element, with the term ϵxτ .⊥ inhabiting every
type. We adopt conventional associativity, fixity, and precedence levels when rendering terms
using these constants, writing ϕ −→ ψ instead of (−→ ϕ)ψ, for example, and also suppress
explicit type substitutions required to make terms involving polymorphic types well-typed,
for example writing ∀xτ .ϕ instead of ∀[α := τ](λxτ .ϕ).

We call a finite set of formulae a context, ranged arbitrarily over by Γ, Γ′, Γ′′, and so on.
We write Γ[xτ := r] and Γ[α := τ] for the pointwise-lifting of the capture-avoiding substitution
and type substitution on terms to contexts, and write fv(Γ) for the set

⋃
{fv(r) | r ∈ Γ}. We

introduce a dyadic Natural Deduction relation betwixt contexts and formulae using the rules
in Figure 3, and write Γ ⊢ ϕ to assert that a derivation tree rooted at Γ ⊢ ϕ and constructed
according to the rules presented in this figure exists.

Note that our Natural Deduction relation can be simplified following the equational treat-
ment of the quantifiers and connectives discovered by Quine and Henkin, and implemented in
the HOL Light proof assistant [14], a point we touch on later in Section 5. We prefer a more
explicit treatment here, closer to a standard textbook presentation of Natural Deduction.

3 The Supervisionary kernel state

Supervisionary’s kernel manages a series of heaps, or private memories, in addition to other
bits of book-keeping data. These heaps contain kernel objects, of various kinds: type-formers,
types, constants, terms, and theorems. These follow the progression of the different kinds of
HOL objects and their interdependencies, as introduced in Section 2.

D. P. Mulligan 1:9

0x0

0x1

0x2

Type-former heap

0x3

0x4

0x5

0x6

0x7

0x8

...

Arity: 0

Arity: 2

Arity: 1

Arity: 0

0x0

0x1

0x2

0x3

0x4

0x5

0x6

0x7

0x8

...

Type heap

T: V, N: 0

T: V, N: 1

T: F, A: [0x0,0x0]

Figure 5 Entries within the Supervisionary kernel’s type heap referencing entries within the
type-former heap. Cross-hatched heap cells are as-yet unallocated by the kernel. The cell allocated
at address 0x2 in the type heap is tagged with the F tag, indicating it is a type-former applied to a
list of argument types, and points-to the cell at address 0x1 in the type-former heap, with arity 2.
Two copies of the type stored in the cell with address 0x0, containing a type-variable with name 0,
are used as the argument of the type-former to produce a complete, well-formed type. Adopting
the convention that type-variable α is at 0x0 in the type heap, and the function-space type-former
− ⇒ − is at 0x1 in the type-former heap, then this represents an encoding of the type α ⇒ α.

3.1 The type-former heap
The most foundational of all of the heaps is the heap of type-formers, which is manipulated and
queried using a series of dedicated system calls. Each cell within the heap is either unallocated
or allocated and, in the latter case, contains a natural number arity for a type-former, encoded
as an unsigned 64-bit machine word. New type-formers are registered within the heap by
invoking a dedicated system call from user-space – TypeFormer.Register – which takes as
input the arity of the type-former and in response allocates a fresh cell, returning the address
of the cell back to user-space as the output of the system call. This address is the handle to
the new type-former kernel object, now under management by the Supervisionary kernel,
and must be used by user-space to refer to this object henceforth. For example, a handle
can be passed to the system call TypeFormer.IsRegistered system call to test whether a
handle denotes a registered type-former. Alternatively, the TypeFormer.Resolve system
call can be used to dereference a handle, in order to obtain an arity, providing that it does
indeed denote a registered type-former, otherwise returning a defined error code.

Note that type-formers are essentially “named” by their handle: there may be many
type-formers with the same arity registered with the kernel, and the particular meaning of
any type-former is largely a convention of user-space, outside the purview of Supervisionary.
Two primitive type-formers, pre-registered in the type-former heap on system boot, are
however exceptions to this rule and hold special significance for the kernel. These are the
bool type-former, registered at address 0x0 with arity 0, and the function-space type-former

TYPES 2022

1:10 All Watched Over by Machines of Loving Grace

⇒, registered at address 0x1, with arity 2. The existence of these type-formers must be
understood by user-space, as they form part of the Supervisionary system interface, similar to
how the distinguished file handles stdout and stdin are part of the POSIX system interface
and must be understood by user-space and kernel alike to support file I/O.

3.2 The type heap
Building atop the heap of type-formers is the heap of types, queried and manipulated using
another series of system calls, with the interface for working with types much more complex
than that for type-formers. As a result, it is only summarised here.

Recalling Section 2, types are either a type-variable or a combination of a type-former
applied to a list of types. All entries within the type heap are therefore tagged indicating
whether they are a type-variable or a combination. Type-variable entries contain one datum:
the name of the type-variable, an unsigned 64-bit machine word. Combination entries also
contain a pointer into the type-former heap, indicating which type-former is being applied,
and contain a list of pointers back into the type heap itself, identifying the type arguments of
the combination. Figure 5 shows a schematic diagram of dependencies between cells within
the two heaps, wherein we use V to tag type-variables and F to tag combinations.

Supervisionary also boots with some entries in the type heap pre-registered, corresponding
to common or useful types used to boostrap the rest of the logic. These include the Boolean
type, bool, common type variables – α and β, for example – as well as larger, more complex
types such as the type of the polymorphic equality, α ⇒ α ⇒ bool. The handles for all of
these pre-registered entities must likewise be understood by user-space.

Further derived types, built from primitive objects or otherwise, may be built using
Type.Register.Variable and Type.Register.Combination system calls for constructing
basic types. The first takes as input only a 64-bit machine word – the name of the variable –
and immediately registers a new type in the type heap, returning the newly-allocated handle.
On the other hand, Type.Register.Combination takes as input a handle pointing-to a
registered type-former in the type-former heap and a list of handles pointing back into the
type heap. The system call fails if any of these handles dangle, or denote an object of the
wrong kind, or if a list of type handles is presented with a length differing from the registered
arity of the type-former. Lists of handles are passed to system calls by passing a base pointer,
denoting the beginning of the list (or rather, array) with an explicit length. Substitutions,
for the Type.Substitution system call, which performs a type-substitution, are passed as
two lists: one for the domain of the substitution, another for the range.

It is sometimes convenient to test the structure of a type pointed-to by a handle. This
can be done using system calls like Type.Test.Combination which takes a handle and
returns a Boolean value indicating whether the corresponding type is a combination. A
family of “splitting” system calls – Type.Split.Variable, for example – can also be used to
deconstruct a type. This takes a handle and returns the name of the variable pointed-to by
the handle, if it is indeed a type-variable. Similar functions also exist for type combinations,
and allow user-space to “pattern match” on types.

A system call, Type.Variables, also exists for computing the type-variables appearing
within a term. Implementing this as a system call is a challenge as the number of variables
to be returned – and hence the size of buffer that user-space needs to set aside to hold
them, and which Supervisionary will write into – is unpredictable. To resolve this, the kernel
exposes another system call, Type.Size, which computes the size of a type which bounds the
number of variables appearing within a type. By querying this, user-space can first allocate
sufficient memory within its own address space to hold the set of type-variables before calling
Type.Variables with a pointer to the base of the allocated buffer.

D. P. Mulligan 1:11

Obviously, the Supervisionary kernel must be careful in its management of its heaps, and
this topic becomes pressing now we have introduced two heaps with dependencies between
them. In particular, Supervisionary maintains a series of kernel invariants which hold
immediately out of boot and must be preserved by all system calls. One key invariant is the
idea that heaps only ever grow monotonically, and allocated entries are immutable. Once
an object is allocated into the heap it cannot be removed or modified in any way, lest we
introduce an unsoundness, for example by modifying the bool type, or the truth constant, ⊤,
or something similarly catastrophic. Moreover, heaps should always remain inductive, in the
sense that their cells do not contain any dangling pointers that do not point-to allocated
cells in the same or other heaps. Essentially, this latter property forces the various objects
under Supervisionary’s management to correctly follow the grammar of types and terms
introduced in Section 2, with larger objects being gradually “built up” out of smaller ones.

3.3 The constant and term heap
Building on the heap of types is the heap of constants, keeping track of registered term
constants. Again, this is pre-provisioned with a series of primitive constants, corresponding to
the logical constants and connectives, at boot-time. The system call interface for constants is
similar to that for type-formers, exposing just three system calls for registering new constants,
dereferencing handles, and testing whether a handle denotes a registered constant.

Another, further heap – the heap of terms – is also used to construct and manipulate
terms, with heap cells tagged with whether they represent a variable, constant, application, or
lambda-abstraction, in a similar style to the tagging used for cells in the type heap. System
calls for constructing, testing, and pattern matching on terms are provided, similar to those
previously discussed within the context of other heaps. Further, new special-purposes system
calls, for example Term.Type.Infer allow user-space to infer the type of a registered term,
if any, whilst Term.Substitute performs a capture-avoiding substitution on a term. Note
that handles for terms actually denote α-equivalence classes of terms – at present, we use a
name-carrying syntax, but could implement this using De Bruijn indices or levels [8], leading
to a more efficient implementation.

3.4 The theorem heap
The final, and most important heap maintained by the Supervisionary kernel is the heap of
theorems. Every other Supervisionary heap exists to support this heap, and Supervisionary
considers a theorem proved only if it appears in this heap. Cells within the theorem heap
contain a sequent, a tuple consisting of an (ordered) set of handles of formulae, representing
the assumptions of the theorem, combined with a single handle for the theorem’s conclusion.

A theorem kernel object can be deconstructed using the Theorem.Split.Assumptions
and Theorem.Split.Conclusion system calls, to obtain the list of assumption and conclusion
of the theorem object, respectively. However, the only way that a new entry in the heap
of theorems can be constructed is by using one of a series of system calls corresponding to
an inference rule of the logic’s Natural Deduction relation, presented in Section 2, or of the
definitional principles of HOL. Taking the negation introduction system call, for example:

Γ ∪ {ϕ} ⊢ ⊥ ϕ : bool
Γ ⊢ ¬ϕ

We have a corresponding system call Theorem.Register.Negation.Introduction which
takes a handle pointing-to a sequent, Γ ∪ {ϕ} ⊢ ⊥, in the kernel’s theorem heap, and a handle
pointing-to a term, ϕ, in the kernel’s term heap, and returns a handle pointing-to a theorem,
Γ ⊢ ¬ϕ, also residing in the kernel’s theorem heap if all error checks pass for the inputs.

TYPES 2022

1:12 All Watched Over by Machines of Loving Grace

Like terms, theorem handles point-to α-equivalence classes of theorem objects, wherein
two sequents are considered the same if their respective constituent handles point-to the same
α-equivalence classes of terms. Moreover, the Supervisionary kernel also enforces maximal
sharing in all of its kernel heaps, and an attempt to register an object that has already been
registered, up-to α-equivalence, does not allocate a new slot in the respective kernel heap, but
merely returns the existing handle to the object. These two decisions make some operations
within the Supervisionary kernel easier to implement, at the expense of slowing down the
registering of new objects. For example, we know that objects are α-equivalent when their
handles are identical. Moreover, in Theorem.Register.Negation.Introduction above, we
know that the formula ϕ is not in the context Γ ∪ {ϕ} if the second input handle, mentioned
above, does not appear in the list of handles representing the assumptions of the sequent.
Note that this would not be the case if we did not enforce maximal sharing: another handle
pointing-to the term ϕ may be present in the list of assumptions of the theorem, different
from the handle passed in from user-space, and this would force Supervisionary to have to
perform a “deep scan” of its heaps in trying to work out whether the two handles supposedly
pointed-to the same HOL formula. As a result of this sharing, Supervisionary’s heaps remain
inductive in the sense previously discussed, but recursively-defined objects represented within
them are not necessarily encoded as trees, but rather directed acyclic graphs.

Moreover, we previously mentioned that heaps must continue to grow monotonically at all
times, lest we inadvertently introduce an unsoundness into the system by allowing the HOL
bool type, or similar, to be redefined. However, note that this invariant could be weakened,
somewhat, by “working backwards” from the kernel’s theorem heap and removing objects
in other kernel heaps that are not referenced via a transitive points-to relation. Essentially
this would represent a form of mark-and-sweep garbage collection [31] wherein objects in
the kernel’s theorem heaps are root objects, with other objects deallocated if they are not
reachable from these roots. Care must be taken to ensure that the primitive kernel objects,
pre-provisioned into the heaps at system boot, can never be deallocated, even if currently
unreachable. Whilst possible, this garbage collection process is not at present implemented
in Supervisionary, as sharing compresses the heaps with no pressing need to remove objects
from them. Moreover, within the context of garbage collection, user-space cannot be sure
that a handle generated by the kernel, and previously denoting a registered kernel object, is
stable and now does not dangle, complicating the Supervisionary programming model.

3.5 Specifying kernel functions

Implementing and using the Supervisionary kernel is an extended exercise in heap and pointer
manipulation, and until now the kernel’s system calls were explained in an intuitive, informal
sense. To specify the behaviour of some of our kernel system calls, we therefore reach for an
existing tool used to specify pointer-manipulating programs: Separation Logic [30, 16].

Working abstractly, we represent handles as elements of the set N of natural numbers,
and use h, h′, h′′, and so on, to range over handles. For a fixed set A, we say that a
partial-function f : N⇀ A is finitely-supported when the set dom(f) = {x | f x defined} is
finite. We call such a finitely-supported partial map into a set A an A-heap. We write 0 for
an empty A-heap, and for two A-heaps f and g we write f ♯ g to assert that their domains
are disjoint, so dom(f) ∩ dom(g) = {}. This relation is symmetric and 0 ♯ g always, for any
g. Moreover, for two A-heaps f and g we can “glue them together”, using the function f ⊕ g,
to form a larger A-heap. This function is defined piecewise as:

D. P. Mulligan 1:13

(f ⊕ g) x = f x if x ∈ dom(f)
(f ⊕ g) x = g x if x ∈ dom(g)
(f ⊕ g) x is undefined otherwise

Note that f ⊕ g is well-defined whenever f ♯ g. Finally, for a ∈ A, we write h 7→ a for the
singleton A-heap mapping h to a and remaining undefined at all other points.

We define types, constants, terms, and theorems by the following non-recursive grammars,
where m ranges over arbitrary natural numbers:

t, t′, t′′ ::= TyVar m | TyFm h (h1, . . . , hn)
C,C ′, C ′′ ::= TConst h h′

r, r′, r′′ ::= Var m h | Const h h′ | App h h′ | Lam m h h′

s, s′, s′′ ::= Seq (h1, . . . , hn) h

We call heaps over types a type-heap; similarly for constants, terms, and theorems. We also
call heaps over natural number arities a type-former heap.

Fix a set of kernel states K. We use k, k′, k′′, and so on, to range over kernel states,
each of which is a 5-tuple ⟨F, Ty, C, Tm, Th⟩ consisting of a type-former heap, a type heap,
a constant heap, a term heap, and a theorem heap respectively. We extend our notion of
disjointness to kernel states, and write k ♯ k′ to assert that all of the respective heaps in
kernel states k and k′ are disjoint. We further abuse notation and write 0 for the empty
kernel state consisting of five empty heaps, and k ⊕ k′ for the “gluing” of two kernel states
together, wherein each of the respective heaps in k and k′ are joined pointwise using ⊕. Note
that, again, k ⊕ k′ is well-defined whenever k ♯ k′.

We define assertions as sets of kernel states, use A, B, C, and so on, to range over them,
and write k ⊨ A to assert that k ∈ A. We pay especial attention to some particular assertions
of note that will be useful in specifying some of our system calls:

• ≡ {⟨0, 0, 0, 0, 0⟩}
A ⋆ B ≡ {k′′ | ∃k k′.k′′ = k ⊕ k′ and k ♯ k′ and k ⊨ A and k′ ⊨ B}

h 7→Aty a ≡ {⟨h 7→ a, 0, 0, 0, 0⟩}
h 7→Typ t ≡ {⟨0, h 7→ t, 0, 0, 0⟩}

We further define the standard logical constants and connectives as abbreviations for setwise
operations, writing ⊥ for {}, C ∧D for C ∩D, and ∃x.C x for

⋂
x . C x, for example.

Fix a set of values, V , consisting at least of handles and numeric error codes. System
calls e, f , g, and so on, are modelled as total functions from kernel states to kernel states
which also produce a value as a side-effect, that is e : K → V × K. Note that though a
kernel system call may fail – for example, if its inputs are in an unexpected form, or similar –
it should never crash, but rather return a specific error code back to the user-space program
and maintain the state of the kernel as it was before the system call was invoked. Crashes,
or kernel panics, are reserved for unrecoverable errors, for example the failure of an internal
invariant, or similar – the Supervisionary equivalent of a “blue screen of death”.

With this in mind, we define a Separation Logic triple as a three-place relation between
an assertion, a system-call, and a function from values to assertions by:

A ⊢ e ⊣ λr.B iff for any C if k ⊨ A ⋆ C and e k = ⟨v, k′⟩ then k′ ⊨ (λr.B)v ⋆ C

TYPES 2022

1:14 All Watched Over by Machines of Loving Grace

With this, we specify the behaviour of the TypeFormer.Register system call as follows:

• ⊢ TypeFormer.Register(a) ⊣ λh.h 7→Aty a

Note that this specification correctly captures the fact that the call can never fail: it will
always return a handle pointing-to a new cell in the type-former heap, containing the required
arity, with no other effects on the kernel heaps.

Specifying system calls which manipulate types, constants, terms, or theorems is more
complex as we must assume that any handles contained within these structures point-to
allocated cells in an appropriate kernel heap. To do this, we use of a family of shape predicates
relating encodings of objects within the kernel’s heaps to the recursively-defined structures
of Section 2. Assuming a bijection V between natural numbers and type-variables, and a
bijection F between handles and type-formers, we inductively define the relation TYPE h τ :

h 7→T yp TVar m (V m α)
TYPE h α

h 7→T yp TyFm h′ (h1, . . . , hn) ⋆ h′ 7→Aty n ⋆ TYPE hi τi (1 ≤ i ≤ n, F h′ f)
TYPE h f(τ1, . . . , τn)

We omit comparable shape predicates for constants, terms, and theorems, as the pattern
should be clear. Note that the basic allocation functions for types, upon success, generate
kernel states wherein the TYPE relation holds. For example, assuming a correspondence,
V n α, between the natural number n and type-variable α:

• ⊢ Type.Register.Variable(n) ⊣ λh.TYPE h α

Similarly, we have:

h 7→Aty n ⋆ TYPE h1 τ1 ⋆ . . . ⋆ TYPE hn τn

⊢ Type.Register.TypeFormer(h, h1, . . . , hn) ⊣
λr.h 7→Aty n ⋆ TYPE h1 τ1 ⋆ . . . ⋆ TYPE hn τn ⋆ TYPE r f(τ1, . . . , τn)

Which also captures the fact that existing well-formed kernel heaps remain well-formed after
invocation of a system call, with shape predicate invariants formally capturing the kernel
invariants previously informally introduced.

3.6 Programming in user-space
The system call interface presents a very low-level, austere interface to user-space code. To
make programming Supervisionary less tedious, a utility library, similar in function to libc,
is provided to user-space in order to raise the level of abstraction above the raw system
call interface. This is provided as libsupervisionary, currently implemented only for
the Rust programming language, but could in theory be ported to the C-language, or any
other language that can be compiled to Wasm. Note that further layers, built on top of
libsupervisionary, can provide pretty-printing and parsing routines for types and terms,
automation, proof-state management, and other functions typical of a proof-assistant.

4 Future work

We now take a more speculative turn, discussing future work. The ideas presented in this
section are perhaps the most interesting consequence of Supervisionary’s design, and we
therefore dedicate a section solely to them.

D. P. Mulligan 1:15

4.1 Capabilities on steroids
As described, Supervisionary is a proof-checking system implemented in an unusual way, but
also a virtual machine, capable of executing arbitrarily complex programs compiled to the
Wasm instruction set, from a variety of source programming languages.

However, at present, these Wasm programs are limited in the effects that they can make
on the system – specifically, the only effect that they can actually make, other than heating
the CPU, is to construct types, terms, and theorems, in Supervisionary’s various heaps, using
the series of system calls progressively introduced in Section 3. Programs executing under
Supervisionary are so-far incapable of opening files on the user’s machine, communicating
over sockets, or querying the system time, because Supervisionary does not provide any
system calls to allow a program to perform any of those activities. However, it could.

Specifically, Supervisionary could implement a system interface that provided all of the
system calls needed by “real” programs wishing to make some effect on a user’s machine. By
doing this, Supervisionary is transformed into a general-purpose virtual machine, akin to the
Java Virtual Machine, capable of executing arbitrary programs – calculators, simulations,
file search utilities, and so on – albeit with a bizarre set of extra system calls dedicated to
theorem proving. In short, by extending Supervisionary with system calls for querying and
manipulating the system state, Supervisionary is both a proof-assistant and a general-purpose
virtual machine – though these two facets of the system are kept separate.

These two families of system call need not be kept separated, however. Prior to allowing
a user-space program to open or read a file, Supervisionary could first demand that a (handle
to a) theorem is supplied to it as an extra argument to the file-open system call, fopen, for
example. Interestingly, because Supervisionary executes at a relative level of privilege, and
can “peer in” to the runtime state of a user-space program, the statement of this desired
theorem can be a function of the runtime state of the user-space program itself, of the runtime
state of the Supervisionary kernel, and also of the various arguments and other details of the
system call being invoked. This statement – which we will call the challenge – can be any
arbitrary formula written in HOL, and can be generated dynamically by the kernel, perhaps
in accordance with a global policy enforced by Supervisionary. A failure to produce a handle
to address a particular challenge causes the system call to fail, with a runtime failure.

For concreteness, suppose we fix HOL types wstate, kstate, and cstate, which you may
imagine as being record types capturing details of the runtime state of the executing Wasm
process, the runtime state of the Supervisionary kernel, and the details of the system
call being invoked. Supervisionary can dynamically reflect the actual runtime states of
the user-space program and kernel, and the invoked system call, into inhabitants of these
HOL types. Then, supposing our prevailing security policy, p, is a HOL function of type
wstate ⇒ kstate ⇒ cstate ⇒ bool, a challenge is obtained by dynamically applying p to the
reflected records, described above. Two particularly special security policies exist:

λwwstate.λkkstate.λccstate.⊥ and λwwstate.λkkstate.λccstate.⊤

When applied to a reflected runtime state, these two policies generate the challenges ⊥ and
⊤, respectively. The first policy is therefore the deny all policy, which essentially prevents a
user-space program from invoking any system call, and making any effect on the system state,
whilst the second is the allow all policy which can always be trivially satisfied by passing
the handle to HOL’s truth introduction theorem.8 Between these two extremal points are

8 Note that, if we allow arbitrary axioms to be introduced into the Supervisionary global theory, as many

TYPES 2022

1:16 All Watched Over by Machines of Loving Grace

a variety of other interesting policies, however. For example, if we assume that our cstate
record contains a field cname of type cstate ⇒ string capturing the name of the system call
being invoked, then we may selectively prevent particular system calls from being executed
by a program. The following policy prevents any invocation of the fopen and fclose system
calls from succeeding, for example:

λwwstate.λkkstate.λccstate.cname c /∈ {fopen, fclose}

This policy is expressible using existing security mechanisms on mainstream operating systems:
modern Linux distributions use small eBPF programs to block programs from invoking
particular system calls at runtime, according to a security policy, for example. However,
the mechanism sketched above goes far beyond the expressivity of these existing systems as
correctness properties can also be captured by a policy, for example. Assume, for example,
that the cstate record also exposes a field cargs of type cstate ⇒ nat ⇒ option list word 8,
which returns the byte-representation of the nth argument passed to the invoked system
call. With this, and assuming HOL functions strbytes and intbytes for converting string and
machine word datatypes into byte lists, respectively, we can then express

λwwstate.λkkstate.λccstate.cname c = fwrite −→
cargs c 0 = Some (strbytes "foo.txt") −→

cargs c 1 = Some (intbytes (ϵiword 64.3i2 − 2i− 1 = 0))

preventing any write to a file unless the 64-bit machine word being written is some zero of
a particular polynomial. In particular, the policy above demonstrates an important point:
Supervisionary’s policies can use any aspect of HOL, quantifiers, choice, and all.

Until now, all examples have focussed on the cstate record which captures information
about the invoked system call. Other interesting policies can also be written in terms of the
runtime state of the Supervisionary kernel itself. This idea becomes especially interesting if
we extend the kernel with new structures recording aspects of a program’s execution. By
extending Supervisionary to keep a log of all system calls invoked thus far by a user-space
program – for example, exposing this log as a field wlog in the wstate record with type
wstate ⇒ nat ⇒ option event – we can capture trace properties of the executing program.
For instance, one may assert that system call invocations must be balanced in some way –
exactly one file may be opened at a time, and opening a second file first requires the program
close the other, for example – and also deeper properties, including adherence to a protocol.

One common security pattern deployed by software is gradual jailing, or shedding of
capabilities – for example, OpenBSD’s pledge system call allows a program to dynamically
shed the ability to further invoke particular classes of system call, gradually dropping
capabilities during a self-jailing phase. To offer a similar facility for Supervisionary, we
need to allow a program to dynamically strengthen the prevailing policy being enforced by
Supervisionary. Given the prevailing policy p we can allow the user-space program to self-jail
by switching to a new policy q if the program can prove to Supervisionary that the new
policy is more restrictive than the previous one, in the sense that:

∀wwstate.∀kkstate.∀ccstate.q w k c −→ p w k c

proof-assistants allow, then we need some form of taint tracking to ensure that challenges may only be
answered by theorems deduced without axioms.

D. P. Mulligan 1:17

If we view Supervisionary’s policies as identifying sets of possible system behaviours, then the
user-space program must prove to Supervisionary’s satisfaction that the set of permissible
behaviours that may occur from now on are a subset of the behaviours that Supervisionary
was previously happy to accept. Note here that quantification is used in an essential way.

The material in this section has some similarity with an existing idea: proof-carrying
code [24]. In one model of proof-carrying code the operating system or virtual machine loader
is modified to check proof certificates bundled with binaries for adherence to some security
or correctness property, for example memory safety, before the binary is executed. Note,
however, that these certificates are constructed up front, in a separate step, and merely
checked by the operating system loader. In contrast, the ideas presented above are more akin
to proof-generating code, wherein the user-space program and Supervisionary work together
to dynamically come to an understanding that the runtime behaviour of the program adheres
to a prevailing policy. In effect, HOL is used as a lingua franca used to communicate demands
by, and intent of, the Supervisionary kernel and user-space program, respectively.

The ideas above also blur the lines between static and dynamic, or runtime, verification.
Supervisionary can be used like any other proof assistant, to statically establish properties of
models of software or hardware systems, or reason about necessary truths within the rarefied
domain of pure mathematics. However, it may also be used to dynamically check the runtime
behaviour of programs executing under its supervision, interestingly also using theorem
proving. Moreover, Supervisionary allows any program written in any programming language
to be endowed with support for theorem-proving, and reasoning about its own behaviour.
Indeed, a program executing on the Supervisionary virtual machine must be prepared to
explain its adherence to the system security or correctness policy in order to have any hope
of performing a side-effect. With Supervisionary, proof is no longer the exclusive domain of
dedicated programming languages like Agda [26] or Idris [6, 5], but can be extended to any
language merely by porting libsupervisionary.

4.2 Hardware-accelerated proof-checking
As noted earlier, from the perspective of user-space software a system call presents as a suite
of particularly CISC-like machine instructions with a rather unorthodox method of invocation.
Indeed, the combination of the Supervisionary system calls and the host Wasm instruction set
can be, itself, thought of as a new, derived instruction set extending Wasm, with strange new
domain-specific instructions for proof construction and management. Moreover, it should
be quite clear that there is nothing Wasm-specific about Supervisionary, and indeed Wasm
was chosen merely as a relatively pain-free way of experimenting with the core ideas behind
Supervisionary. Indeed, Supervisionary could have been implemented as real, privileged
systems software for an existing instruction set in a relatively straightforward manner.

As a result, the Supervisionary system call interface is already quite well-suited to
an implementation in hardware, perhaps as an extension of an existing instruction set
architecture like Arm AArch64 or RISC-V. The mechanism through which the Supervisionary
kernel isolates itself, via private memories, is rather “hardware like”, and maps nicely onto
existing hardware features, and whilst the present Supervisionary system call interface
makes extensive use of “pointer-like” handles to refer to kernel objects, on a real hardware
implementation these handles could literally be pointers into private memories, or similar.
Moreover, the system call interface itself is also further carefully designed to avoid arbitrarily
large recursive structures, difficult for an instruction set architecture to handle, from being
passed across the kernel system call boundary. We could therefore “push Supervisionary
down one layer” again, into the underlying instruction set implemented by hardware. With
this, the ideas presented in Subsection 4.1 take on a new light, as the system hardware is now
capable of expressing, and enforcing, arbitrarily complex security and correctness properties.

TYPES 2022

1:18 All Watched Over by Machines of Loving Grace

5 Conclusions

5.1 Related work

The closest related work to Supervisionary is VeriML, an ML-like language extended with
limited dependent-types ranging over HOL terms and theorems [34]. Essentially, VeriML
“internalises” a typical HOL kernel implementation within a higher-order programming
language, promoting the abstract type of theorems – typically defined within the system
metalanguage – into a native type of the language that can be queried and modified with
new, dedicated, domain-specific expressions for theorem construction and manipulation.

Compared to a typical HOL kernel, VeriML essentially “pushes the kernel down one layer”
in the hierarchy of abstractions, moving the kernel from a library within the language to
a first-class programming language feature. However, Supervisionary “pushes” the kernel
even further, moving support for theorem proving out of the programming language and
into the underlying operating system – or, in our case, virtual machine. (And, as discussed
above, this “pushing” of the kernel down through the different layers of abstractions can
be taken to its logical conclusion, by pushing the kernel all the way into hardware.) Note,
however, that despite the general idea behind the two projects being essentially the same, the
two differ markedly in a myriad of design details which have some important consequences:
for example, automation in Supervisionary is inherently programming-language agnostic,
whereas VeriML is inherently tied to one particular language – VeriML itself.

Interestingly, some of the ideas used in Supervisionary can also be “pushed up one layer”
in the hierarchy of abstractions. Specifically, the Separation Logic specifications presented
in Subsection 3.5 can be re-interpreted as a series of local axioms describing the behaviour
of statements or expressions in a programming language for registering, manipulating and
querying type-formers, types, and other objects, in a series of heaps secreted from the user,
managed by the language’s runtime. Interestingly, the natural programming language that
one obtains from this exercise is imperative, in contrast to the functional VeriML. (To make
a more ergonomic programming language it would make sense for these expressions to be
modified so that they manipulate built-in recursive types of the programming language –
corresponding to HOL type-formers, types, constants, terms, and theorems – in a similar
fashion to VeriML, rather than make use of Supervisionary’s handles and its incremental
construction of recursive structures.)

In Subsection 4.1 we observed that Supervisionary’s handles can be reinterpreted as
capabilities, in the information security sense of that word. Note that capability machines are,
at the present time, having a minor renaissance, driven by the success of the CHERI capability
extensions for MIPS, Arm AArch64, and RISC-V [25]. Capabilities in hardware have a long
and storied history – dating at least to the Cambridge CAP machine developed in the 1970s –
and capability-based security has also previously been applied to programming languages and
software, including systems software like operating systems. Whilst contemporary operating
systems like seL4 [19] and other L4 derivatives have a security model built around capabilities,
perhaps the best well-known historical example of a capability-based operating system was
KeyKOS [29, 13] and its many derivatives, including EROS, the Extremely Reliable Operating
System [32]. However, despite this long history, the Supervisionary conception of capabilities
differs from other implementations as hardware-based capability systems like CHERI, are
relatively inexpressive, merely extending traditional pointer types with information on valid
memory regions within which they may point, and memory access permissions. This is
because existing hardware-based capability systems are optimised to prevent spatial and
temporal memory safety issues, inherent in the use of unsafe systems programming languages

D. P. Mulligan 1:19

like the C-language, and derivatives, and must provide an easy “on ramp” allowing existing
software to adopt them. Supervisionary’s conception of capabilities differs, here, in being
more expressive, allowing complex security and correctness properties to be expressed, but
also much more intrusive, and much harder to make use of: software must be aware of the
prevailing security or correctness policy in force at the time, when trying to open a file for
example, in order to be able to correctly answer the “challenge”. Using a Supervisionary
capability to open a file may also require unbounded amounts of reasoning first, in order to
address the “challenge” posed by Supervisionary, which is not the case with other forms of
capability, which act as passive tokens of authority.

Lastly, Supervisionary, as an implementation of HOL, is closely related to several extant
systems in the wider HOL family: Isabelle/HOL, HOL4, HOL Light, Candle [1], and so
on. The kernels of all of these systems implement very similar logics, albeit with minor
modification. However, unlike the aforementioned systems, Supervisionary does not follow
the typical LCF-style of system organisation, nor is it written in an ML-derivative.

5.2 On trust
The current Supervisionary proof-checking kernel consists of approximately 6,600 lines of
Rust code, compared to approximately 3,100 lines of Standard ML in recent distributions
of the Isabelle framework. Whilst comparing linecounts between languages is an imperfect
science, the Supervisionary kernel is still clearly larger than one of the most complex extant
LCF-style implementations. Largely, this is because Supervisionary implements the HOL
Natural Deduction relation in full, providing introduction and elimination rules for all logical
constants, as observed in Section 2. Using a bare-bones implementation of HOL, based upon
equality, and then deriving introduction and elimination rules for all other logical constants
outside of the kernel, would be one way to shrink the kernel line count.

From the point-of-view of a Supervisionary user-space program the kernel is not the
only body of code that must be trusted. The implementation of libsupervisionary
– a mediation layer between kernel and user-space – must also be trusted in much the
same way that libc must also be implicitly trusted by user-space on Unix-derivatives. A
malicious libsupervisionary could present as interfacing with the kernel whilst maintaining
shadow copies of kernel state, never requesting that the kernel actually check a proof, for
example! This threat is not unique to Supervisionary – despite oft-repeated claims that the
kernel represents the entire system TCB, users of all interactive theorem proving systems
implicitly trust the system’s pretty-printer, for example, not to lie about what the system
has proved [28], despite this code typically residing outside of the kernel – though the
fact that there is a nuanced threat model here is perhaps more obvious, and pressing, as a
consequence of Supervisionary’s dual status as proof-checker and general-purpose virtual
machine. Minimising the system kernel size potentially comes at the cost of bloating other
code – for example, libsupervisionary – that must also be trusted by users wishing to
use the system for theorem proving tasks. However, the Supervisionary kernel may also
contain functionality – filesystems, timers, network sockets, and similar – related to the
Supervisionary general-purpose virtual machine and there is a danger that this code can be
used by a malefactor to exploit the kernel, perhaps undermining the Supervisionary capability
system by somehow deriving a contradiction in an empty context, or similar. On balance –
and focussing on security and consistency, rather than efficiency – the kernel size should be
minimised if possible, as this prevents security exploits and simply moves code that must
be trusted for theorem-proving purposes around, neither helping nor hindering the system’s
trust story in that respect.

TYPES 2022

1:20 All Watched Over by Machines of Loving Grace

Lastly, the kernel can also be modularised – and is, in the Supervisionary implementation –
with all theorem-proving related material isolated inside its own module, all filesystem-related
material within its own module, and the two only interacting when strictly needed. Ironically,
this re-introduces the idea of protecting key system invariants using programming-language
modules and type-abstraction albeit this is never directly exposed to the user.

5.3 Closing remarks
We have presented Supervisionary, a kernel for an implementation of Gordon’s HOL. In con-
trast to most implementations of HOL, Supervisionary is not based on the LCF architectural
pattern, but is instead implemented in a style more reminiscent of a typical operating system,
making essential use of machine-oriented notions of separation to protect the system kernel
from untrusted automation.

The Supervisionary kernel – which is open-source, and developed in the open9 – is
implemented as a host for the Wasmi interpreter10 for Wasm. Interpretation means that
software executing under Supervisionary executes orders of magnitude slower than natively-
compiled code. However, the kernel is architected in a layered manner, with all important
kernel functionality implemented in a library that is independent of the execution engine
used and bound to the execution engine in a thin shim layer sitting between it and the core
kernel library. As a result, Supervisionary can be ported to more efficient Wasm execution
engines – the Wasmtime just-in-time compiler11, for example – relatively easily. This porting
has already started and will provide a significant increase in system performance, albeit at
the cost of bringing a state-of-the-art just-in-time compiler into the kernel.

The design of Supervisionary is interesting in its own right: it completely dispenses with
the typical metalanguage associated with an LCF-style proof-assistant, allowing automation
to be written in any programming language capable of respecting the Supervisionary kernel
binary interface and calling conventions. However, in our view the most interesting aspects
of Supervisionary are the consequences of its design, and the possibilities for future work.
These include adopting the Supervisionary kernel interface as the foundation of a hardware
implementation of HOL – wherein HOL’s inference rules are implemented as machine
instructions that modify private memories – and the use of Supervisionary as a general-purpose
virtual machine that uses its proof-checking abilities to “challenge” user-space programs
to explain their adherence to some system-wide security or correctness policy. Notably,
by moving this proof-checking capability into the operating system, or other privileged
system software, or even hardware, this capability becomes shared by all user-space software
executing within the system, not just software written in dedicated “verification aware”
programming languages. In a sense, mathematical truth becomes just another resource
protected by the operating system and system hardware.

References
1 Oskar Abrahamsson, Magnus O. Myreen, Ramana Kumar, and Thomas Sewell. Candle: A

verified implementation of HOL light. In June Andronick and Leonardo de Moura, editors,
13th International Conference on Interactive Theorem Proving, ITP 2022, August 7-10, 2022,
Haifa, Israel, volume 237 of LIPIcs, pages 3:1–3:17. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2022. doi:10.4230/LIPIcs.ITP.2022.3.

9 https://www.github.com/DominicPM/supervisionary
10 https://github.com/paritytech/wasmi
11 https://www.wasmtime.dev

https://doi.org/10.4230/LIPIcs.ITP.2022.3
https://www.github.com/DominicPM/supervisionary
https://github.com/paritytech/wasmi
https://www.wasmtime.dev

D. P. Mulligan 1:21

2 Stuart F. Allen, Robert L. Constable, Richard Eaton, Christoph Kreitz, and Lori Lorigo.
The Nuprl open logical environment. In David A. McAllester, editor, Automated Deduction
– CADE-17, 17th International Conference on Automated Deduction, Pittsburgh, PA, USA,
June 17-20, 2000, Proceedings, volume 1831 of Lecture Notes in Computer Science, pages
170–176. Springer, 2000. doi:10.1007/10721959_12.

3 Arm Holdings, Ltd. AArch64 virtual memory system architecture. URL:
https://developer.arm.com/documentation/ddi0406/b/System-Level-Architecture/
Virtual-Memory-System-Architecture--VMSA-, 2023. Accessed 1st May 2023.

4 Andrea Asperti, Wilmer Ricciotti, Claudio Sacerdoti Coen, and Enrico Tassi. The Matita
interactive theorem prover. In Nikolaj S. Bjørner and Viorica Sofronie-Stokkermans, editors,
Automated Deduction – CADE-23 – 23rd International Conference on Automated Deduction,
Wroclaw, Poland, July 31 – August 5, 2011. Proceedings, volume 6803 of Lecture Notes in
Computer Science, pages 64–69. Springer, 2011. doi:10.1007/978-3-642-22438-6_7.

5 Edwin C. Brady. Idris, a general-purpose dependently typed programming language:
Design and implementation. J. Funct. Program., 23(5):552–593, 2013. doi:10.1017/
S095679681300018X.

6 Edwin C. Brady. Idris 2: Quantitative Type Theory in practice. In Anders Møller and Manu
Sridharan, editors, 35th European Conference on Object-Oriented Programming, ECOOP
2021, July 11-17, 2021, Aarhus, Denmark (Virtual Conference), volume 194 of LIPIcs, pages
9:1–9:26. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.
ECOOP.2021.9.

7 Alonzo Church. A formulation of the Simple Theory of Types. J. Symb. Log., 5(2):56–68,
1940. doi:10.2307/2266170.

8 de Ng Dick Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic
formula manipulation, with application to the Church-Rosser theorem. Studies in logic and
the foundations of mathematics, 133:375–388, 1972.

9 D. R. Engler, M. F. Kaashoek, and J. O’Toole. Exokernel: an operating system architecture
for application-level resource management. In SOSP ’95: Proceedings of the fifteenth ACM
symposium on Operating systems principles, pages 251–266, New York, NY, USA, 1995. ACM.
doi:10.1145/224056.224076.

10 Michael J. C. Gordon. Introduction to the HOL system. In Myla Archer, Jeffrey J. Joyce,
Karl N. Levitt, and Phillip J. Windley, editors, Proceedings of the 1991 International Workshop
on the HOL Theorem Proving System and its Applications, August 1991, Davis, California,
USA, pages 2–3. IEEE Computer Society, 1991.

11 Michael J. C. Gordon, Robin Milner, and Christopher P. Wadsworth. Edinburgh LCF, volume 78
of Lecture Notes in Computer Science. Springer, 1979. doi:10.1007/3-540-09724-4.

12 Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman, Dan
Gohman, Luke Wagner, Alon Zakai, and J. F. Bastien. Bringing the web up to speed with
WebAssembly. In Albert Cohen and Martin T. Vechev, editors, Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
2017, Barcelona, Spain, June 18-23, 2017, pages 185–200. ACM, 2017. doi:10.1145/3062341.
3062363.

13 Norman Hardy. KeyKOS architecture. ACM SIGOPS Oper. Syst. Rev., 19(4):8–25, 1985.
doi:10.1145/858336.858337.

14 John Harrison. HOL light: An overview. In Stefan Berghofer, Tobias Nipkow, Christian Urban,
and Makarius Wenzel, editors, Theorem Proving in Higher Order Logics, 22nd International
Conference, TPHOLs 2009, Munich, Germany, August 17-20, 2009. Proceedings, volume
5674 of Lecture Notes in Computer Science, pages 60–66. Springer, 2009. doi:10.1007/
978-3-642-03359-9_4.

15 Gérard P. Huet and Hugo Herbelin. 30 years of research and development around Coq. In
Suresh Jagannathan and Peter Sewell, editors, The 41st Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’14, San Diego, CA, USA,
January 20-21, 2014, pages 249–250. ACM, 2014. doi:10.1145/2535838.2537848.

TYPES 2022

https://doi.org/10.1007/10721959_12
https://developer.arm.com/documentation/ddi0406/b/System-Level-Architecture/Virtual-Memory-System-Architecture--VMSA-
https://developer.arm.com/documentation/ddi0406/b/System-Level-Architecture/Virtual-Memory-System-Architecture--VMSA-
https://doi.org/10.1007/978-3-642-22438-6_7
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.4230/LIPIcs.ECOOP.2021.9
https://doi.org/10.4230/LIPIcs.ECOOP.2021.9
https://doi.org/10.2307/2266170
https://doi.org/10.1145/224056.224076
https://doi.org/10.1007/3-540-09724-4
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/858336.858337
https://doi.org/10.1007/978-3-642-03359-9_4
https://doi.org/10.1007/978-3-642-03359-9_4
https://doi.org/10.1145/2535838.2537848

1:22 All Watched Over by Machines of Loving Grace

16 Samin S. Ishtiaq and Peter W. O’Hearn. BI as an assertion language for mutable data
structures. In Chris Hankin and Dave Schmidt, editors, Conference Record of POPL 2001:
The 28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
London, UK, January 17-19, 2001, pages 14–26. ACM, 2001. doi:10.1145/360204.375719.

17 Ralf Jung. Understanding and evolving the Rust programming language. PhD thesis, Saarland
University, Saarbrücken, Germany, 2020. URL: https://publikationen.sulb.uni-saarland.
de/handle/20.500.11880/29647.

18 Stephen Kell, Dominic P. Mulligan, and Peter Sewell. The missing link: explaining ELF
static linking, semantically. In Eelco Visser and Yannis Smaragdakis, editors, Proceedings
of the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2016, part of SPLASH 2016, Amsterdam,
The Netherlands, October 30 – November 4, 2016, pages 607–623. ACM, 2016. doi:10.1145/
2983990.2983996.

19 Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin,
Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell,
Harvey Tuch, and Simon Winwood. seL4: formal verification of an OS kernel. In Jeanna Neefe
Matthews and Thomas E. Anderson, editors, Proceedings of the 22nd ACM Symposium on
Operating Systems Principles 2009, SOSP 2009, Big Sky, Montana, USA, October 11-14, 2009,
pages 207–220. ACM, 2009. doi:10.1145/1629575.1629596.

20 Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott, Balraj Singh,
Thomas Gazagnaire, Steven Smith, Steven Hand, and Jon Crowcroft. Unikernels: Library
operating systems for the cloud. SIGARCH Comput. Archit. News, 41(1):461–472, March
2013. doi:10.1145/2490301.2451167.

21 Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott, Balraj Singh,
Thomas Gazagnaire, Steven Smith, Steven Hand, and Jon Crowcroft. Unikernels: Library
operating systems for the cloud. In Proceedings of the Eighteenth International Conference
on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’13,
pages 461–472, New York, NY, USA, 2013. Association for Computing Machinery. doi:
10.1145/2451116.2451167.

22 Robin Milner, Mads Tofte, and Robert Harper. Definition of Standard ML. MIT Press, 1990.
23 Georg Moser and Richard Zach. The epsilon calculus (tutorial). In Matthias Baaz and

Johann A. Makowsky, editors, Computer Science Logic, 17th International Workshop, CSL
2003, 12th Annual Conference of the EACSL, and 8th Kurt Gödel Colloquium, KGC 2003,
Vienna, Austria, August 25-30, 2003, Proceedings, volume 2803 of Lecture Notes in Computer
Science, page 455. Springer, 2003. doi:10.1007/978-3-540-45220-1_36.

24 George C. Necula. Proof-carrying code. In Henk C. A. van Tilborg and Sushil Jajodia,
editors, Encyclopedia of Cryptography and Security, 2nd Ed, pages 984–986. Springer, 2011.
doi:10.1007/978-1-4419-5906-5_864.

25 Kyndylan Nienhuis, Alexandre Joannou, Thomas Bauereiss, Anthony C. J. Fox, Michael Roe,
Brian Campbell, Matthew Naylor, Robert M. Norton, Simon W. Moore, Peter G. Neumann,
Ian Stark, Robert N. M. Watson, and Peter Sewell. Rigorous engineering for hardware security:
Formal modelling and proof in the CHERI design and implementation process. In 2020 IEEE
Symposium on Security and Privacy, SP 2020, San Francisco, CA, USA, May 18-21, 2020,
pages 1003–1020. IEEE, 2020. doi:10.1109/SP40000.2020.00055.

26 Ulf Norell. Interactive programming with dependent types. In Greg Morrisett and Tarmo
Uustalu, editors, ACM SIGPLAN International Conference on Functional Programming,
ICFP’13, Boston, MA, USA – September 25 – 27, 2013, pages 1–2. ACM, 2013. doi:
10.1145/2500365.2500610.

27 Lawrence C. Paulson, Tobias Nipkow, and Makarius Wenzel. From LCF to Isabelle/HOL.
Form. Asp. Comput., 31(6):675–698, December 2019. doi:10.1007/s00165-019-00492-1.

28 Robert Pollack. How to believe a machine-checked proof. In Twenty Five Years of Constructive
Type Theory. Oxford University Press, October 1998.

https://doi.org/10.1145/360204.375719
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/29647
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/29647
https://doi.org/10.1145/2983990.2983996
https://doi.org/10.1145/2983990.2983996
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/2490301.2451167
https://doi.org/10.1145/2451116.2451167
https://doi.org/10.1145/2451116.2451167
https://doi.org/10.1007/978-3-540-45220-1_36
https://doi.org/10.1007/978-1-4419-5906-5_864
https://doi.org/10.1109/SP40000.2020.00055
https://doi.org/10.1145/2500365.2500610
https://doi.org/10.1145/2500365.2500610
https://doi.org/10.1007/s00165-019-00492-1

D. P. Mulligan 1:23

29 S. A. Rajunas, Norman Hardy, Allen C. Bomberger, William S. Frantz, and Charles R.
Landau. Security in KeyKOS™. In Proceedings of the 1986 IEEE Symposium on Security and
Privacy, Oakland, California, USA, April 7-9, 1986, pages 78–85. IEEE Computer Society,
1986. doi:10.1109/SP.1986.10000.

30 John C. Reynolds. Separation Logic: A logic for shared mutable data structures. In 17th
IEEE Symposium on Logic in Computer Science (LICS 2002), 22-25 July 2002, Copenhagen,
Denmark, Proceedings, pages 55–74. IEEE Computer Society, 2002. doi:10.1109/LICS.2002.
1029817.

31 Amitabha Sanyal and Uday P. Khedker. Garbage collection techniques. In Y. N. Srikant and
Priti Shankar, editors, The Compiler Design Handbook: Optimizations and Machine Code
Generation, Second Edition, page 6. CRC Press, 2007.

32 Jonathan S. Shapiro and Norman Hardy. EROS: A principle-driven operating system from
the ground up. IEEE Softw., 19(1):26–33, 2002. doi:10.1109/52.976938.

33 Konrad Slind and Michael Norrish. A brief overview of HOL4. In Otmane Aït Mohamed,
César A. Muñoz, and Sofiène Tahar, editors, Theorem Proving in Higher Order Logics, 21st
International Conference, TPHOLs 2008, Montreal, Canada, August 18-21, 2008. Proceedings,
volume 5170 of Lecture Notes in Computer Science, pages 28–32. Springer, 2008. doi:
10.1007/978-3-540-71067-7_6.

34 Antonis Stampoulis and Zhong Shao. VeriML: typed computation of logical terms inside a
language with effects. In Paul Hudak and Stephanie Weirich, editors, Proceeding of the 15th
ACM SIGPLAN international conference on Functional programming, ICFP 2010, Baltimore,
Maryland, USA, September 27-29, 2010, pages 333–344. ACM, 2010. doi:10.1145/1863543.
1863591.

35 Andrew S. Tanenbaum and Albert S. Woodhull. Operating systems—design and implementa-
tion, 3rd Edition. Pearson Education, 2006.

TYPES 2022

https://doi.org/10.1109/SP.1986.10000
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1109/52.976938
https://doi.org/10.1007/978-3-540-71067-7_6
https://doi.org/10.1007/978-3-540-71067-7_6
https://doi.org/10.1145/1863543.1863591
https://doi.org/10.1145/1863543.1863591

Classical Natural Deduction from Truth Tables
Herman Geuvers # Ñ

Radboud University, Nijmegen, The Netherlands
Technical University Eindhoven, The Netherlands

Tonny Hurkens #

Unaffiliated Researcher, Haps, The Netherlands

Abstract
In earlier articles we have introduced truth table natural deduction which allows one to extract
natural deduction rules for a propositional logic connective from its truth table definition. This
works for both intuitionistic logic and classical logic. We have studied the proof theory of the
intuitionistic rules in detail, giving rise to a general Kripke semantics and general proof term calculus
with reduction rules that are strongly normalizing. In the present paper we study the classical rules
and give a term interpretation to classical deductions with reduction rules. As a variation we define
a multi-conclusion variant of the natural deduction rules as it simplifies the study of proof term
reduction. We show that the reduction is normalizing and gives rise to the sub-formula property.
We also compare the logical strength of the classical rules with the intuitionistic ones and we show
that if one non-monotone connective is classical, then all connectives become classical.

2012 ACM Subject Classification Theory of computation → Proof theory; Theory of computation
→ Type theory; Theory of computation → Constructive mathematics; Theory of computation →
Functional constructs

Keywords and phrases Natural deduction, classical proposition logic, multiple conclusion natural
deduction, proof terms, formulas-as-types, proof normalization, subformula property, Curry-Howard
isomorphism

Digital Object Identifier 10.4230/LIPIcs.TYPES.2022.2

Acknowledgements We want to thank the reviewers for their valuable comments.

1 Introduction

Classically, the meaning of a propositional connective is fixed by its truth table. This
immediately implies consistency, a decision procedure, completeness (with respect to Boolean
algebras) for classical logic. Constructively, following the Brouwer-Heyting-Kolmogorov
interpretation [17], the meaning of a connective is fixed by explaining what a proof is that
involves the connective. Basically, this explains the introduction rule(s) for each connective,
from which the elimination rules follow. This was first phrased like this by Prawitz in [14],
who studied natural deduction in detail, including the reduction of proofs (deductions).
By analyzing constructive proofs we then also get consistency (from proof normalization),
a decision procedure (from the sub-formula property) and completeness (with respect to
Heyting algebras and Kripke models).

In previous papers [6, 7], we have defined a general method to derive natural deduction
rules for a connective from its truth table definition, which we have coined TT-ND, Truth
Table Natural Deduction. This also works for constructive logic, which we have shown in
detail by relating the method to Kripke semantics and by studying proof normalization. For
classical logic, a similar method has been described by Milne [10]. The advantage is that
the derived rules give natural deduction rules for a connective “in isolation”, so without the
need to explain a connective in terms of another (e.g. explaining the classical properties of
implication using the double negation law). Also, this gives constructive rules for connectives
that haven’t been studied so far, like if-then-else and nand. These constructive connectives

© Herman Geuvers and Tonny Hurkens;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Types for Proofs and Programs (TYPES 2022).
Editors: Delia Kesner and Pierre-Marie Pédrot; Article No. 2; pp. 2:1–2:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:herman@cs.ru.nl
http://www.cs.ru.nl/~herman
https://orcid.org/0000-0003-2522-2980
mailto:hurkens@science.ru.nl
https://doi.org/10.4230/LIPIcs.TYPES.2022.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Classical Natural Deduction from Truth Tables

are described and studied in detail in [7]. Finally, it allows to study various properties
for a whole set of connectives all at once, like proof normalization and a generic (sound
and complete) Kripke semantics. Proof normalization has been defined and studied in [7],
where a weak normalization result is proven. Strong normalization has been proven in [8]
and [1]. These proofs proceed by defining a proof-term calculus for TT-ND, following the
Curry-Howard proofs-as-terms (and formulas-as-types) interpretation, and by defining a
reduction relation on these proof terms.

These results all apply to the constructive case. In the present paper we study the
classical case. We first prove some results only in terms of the logic. We show that for
monotonic connectives (like ∨, ∧), the classical and constructive rules are equivalent. This
has also been shown in [18, 9], but we give a new (arguably simpler) proof. This shows that
non-monotonic connectives “make classical logic classical”. In our systems, the difference
between constructive logic and classical logic for a connective c lies only in the introduction
rules for c. To substantiate that non-monotonicity is crucial, we prove that if we allow one
classic introduction rule for one non-monotonic connective, all connectives become classical.
This implies, for example, that the classical rules for → imply the (seemingly stronger)
classical rules for ¬ in presence of the constructive rules for ¬.

We also study proof reduction for classical logic derived from truth tables. To do this,
we define a proof term calculus which now also has conclusion variables, similar in style
with λµ of Parigot [13] or variants of that studied by Ariola and Herbelin [2] and Curien
and Herbelin [4]. We define various variants of this, depending on whether one has a single
conclusion or multiple conclusions. We also define these as logics and we show – as was to be
expected – that multiple conclusion intuitionistic TT-ND is logically equivalent to classical
TT-ND. On the proof terms (that include conclusion variables and binding of them), we
define a reduction relation that conforms with the reduction of deductions arising from detour
elimination and with the goal to obtain a deduction that satisfies the sub-formula property.
We describe this in detail for classical multi-conclusion logic, classical single-conclusion logic
and intuitionistic single-conclusion logic. We define the reduction on proof-terms, show that
it satisfies the subject reduction property and show that proof-terms in normal form satisfy
the sub-formula property.

For the study of normalization, we introduce the unified framework of Truth Table Logic
that arises quite naturally as a system unifying classical/intuitionistic multi-conclusion logic
and classical/intuitionistic single conclusion logic. It works with elimination patterns and
introduction patterns which can be combined to form proof terms. For this system we prove
strong normalization, and from that, strong normalization for the original intuitionistic logic
follows immediately. For the original versions of classical logic, the reduction is actually too
“fine-grained” to derive strong normalization directly. But we can conclude that, if there is a
proof term in classical logic (multi-conclusion or single conclusion), there is a proof-term
in normal form of that same formula. From this we conclude that all logics satisfy the
subformula property.

2 Natural Deduction from Truth Tables

We recap our earlier work on Truth Table Natural Deduction. To be able to reason generically
about natural deduction rules, all our rules have a “standard form” that looks like this

Γ ⊢ A1 . . . Γ ⊢ An Γ, B1 ⊢ D . . . Γ, Bm ⊢ D

Γ ⊢ D

The idea is that, if the conclusion of a rule is Γ ⊢ D, then the hypotheses of the rule can be
of one of two forms:

H. Geuvers and T. Hurkens 2:3

1. Γ ⊢ A: instead of proving D from Γ, we now need to prove A from Γ. We call A a Lemma.
2. Γ, B ⊢ D: we are given extra data B to prove D from Γ. We call B a Casus.
Given this standard form of the rules, we don’t have to give the Γ explicitly, as it can be
retrieved, so we write

⊢ A1 . . . ⊢ An B1 ⊢ D . . . Bm ⊢ D

⊢ D

Various well-known deduction rules follow this format:
⊢ A ∨B A ⊢ D B ⊢ D

∨-el
⊢ D

⊢ B
∨-in2

⊢ A ∨B

⊢ A ⊢ B
∧-in

⊢ A ∧B

But there are others that do not follow this format, for example implication introduction:

A ⊢ B
→ -in

⊢ A → B

In our set-up, implication introduction will break down in two rules, one introducing the
implication, and one discharging the hypothesis. these together are equivalent to standard
implication introduction.

A ⊢ B
→ -in1

A ⊢ A → B

A ⊢ A → B
→ -in2

⊢ A → B

▶ Definition 1 (Natural Deduction rules from truth tables). Let c be an n-ary connective c
with truth table tc.

Each row of tc gives rise to an elimination rule or an introduction rule for c. (We write
Φ = c(A1, . . . , An).)

A1 . . . An Φ
p1 . . . pn 0 7→

⊢ Φ . . . ⊢ Ai (if pi = 1) . . . Aj ⊢ D (if pj = 0) . . .
el

⊢ D

constructive intro
A1 . . . An Φ
q1 . . . qn 1 7→

. . . ⊢ Ai (if qi = 1) . . . Aj ⊢ Φ (if qj = 0) . . .
ini

⊢ Φ

classical intro
A1 . . . An Φ
r1 . . . rn 1 7→

Φ ⊢ D . . . ⊢ Ai (if ri = 1) . . . Aj ⊢ D (if rj = 0) . . .
inc

⊢ D

We call ⊢ Φ (resp. Φ ⊢ D) the major premise and the other hypotheses of the rule we
call the minor premises. The minor premises are either a Lemma, Ai (if pi = 1 or qi = 1 or
ri = 1 in tc), or a Casus, Aj (if pj = 0 or qj = 0 rj = 0) in tc.

▶ Definition 2 (Definition of the logics). Given a set of connectives C := {c1, . . . , cn}, we
define the intuitionistic and classical natural deduction systems for C, IPCC and CPCC as
follows.

Both IPCC and CPCC have an axiom rule

axiom(if A ∈ Γ)
Γ ⊢ A

Both IPCC and CPCC have the elimination rules for the connectives in C.

TYPES 2022

2:4 Classical Natural Deduction from Truth Tables

IPCC has the intuitionistic introduction rules for the connectives in C.
CPCC has the classical introduction rules for the connectives in C.

In [6], we have given a sound and complete a Kripke semantics for IPCC . Briefly, a Kripke
model is defined as usual and for w a world in the Kripke model, we define [[φ]]w ∈ {0, 1} with
the meaning that [[φ]]w = 1 if and only if formula φ is true in world w. For φ = c(φ1, . . . , φn),
we define [[φ]]w := 1 if tc([[φ1]]w′ , . . . , [[φn]]w′) = 1 for each w′ ≥ w, where tc is the truth table
of c, and otherwise [[φ]]w := 0. Similarly, a sound and complete valuation semantics can be
given for CPCC , where a valuation is a map from the proposition letters to {0, 1} and the
interpretation of composite formulas follows the truth table.

▶ Example 3. Constructive rules for ∧ (3 elimination rules and one intro rule):

A B A ∧B

0 0 0
0 1 0
1 0 0
1 1 1

⊢ A ∧B A ⊢ D B ⊢ D
∧-el00

⊢ D

⊢ A ∧B A ⊢ D ⊢ B
∧-el01

⊢ D

⊢ A ∧B ⊢ A B ⊢ D
∧-el10

⊢ D

⊢ A ⊢ B
∧-in11

⊢ A ∧B

These rules can be shown to be equivalent to the well-known constructive rules. These
rules can be optimized to the three rules we are familiar with.

▶ Example 4. Rules for ¬: 1 elimination rule and 1 introduction rule.

A ¬A
0 1
1 0

Constructive:
⊢ ¬A ⊢ A

¬-el
⊢ D

A ⊢ ¬A
¬-ini

⊢ ¬A
Classical:
⊢ ¬A ⊢ A

¬-el
⊢ D

¬A ⊢ D A ⊢ D
¬-inc

⊢ D

Using the classical rules for ¬, we show that ¬¬A ⊢ A is derivable:

¬¬A,¬A ⊢ ¬¬A ¬¬A,¬A ⊢ ¬A
¬-el

¬¬A,¬A ⊢ A ¬¬A,A ⊢ A
¬-inc

¬¬A ⊢ A

Simplifying the set of rules

There are various ways to optimize the rules, for example by taking two rules together in one
that is equivalent. These have already been described and proven in [6], so we only recap the
Lemmas here. To describe these, a first important operation is substituting one derivation
on top of another, a kind of “cut operation”.

H. Geuvers and T. Hurkens 2:5

▶ Lemma 5 (Substituting a deduction in another [6]). If Γ ⊢ A and ∆, A ⊢ B, then Γ,∆ ⊢ B.

Proof. If Σ is a deduction of Γ ⊢ A and Π is a deduction of ∆, A ⊢ B, then we have the
following deduction of Γ,∆ ⊢ B.

····
Σ

Γ ⊢ A . . .

····
Σ

Γ ⊢ A····
Π

Γ,∆ ⊢ B

The idea here is that in Π, the leaves that derive ∆′ ⊢ A (for some ∆′) as an (axiom) is
replaced by a copy of the deduction Σ, which is also a deduction of ∆′,Γ ⊢ A (due to
weakening). As contexts only grow if one goes upwards in the tree, we have ∆′ ⊇ ∆, so this
new derivation is well-formed. ◀

▶ Lemma 6 ([6]). A system with two deduction rules of the following form

⊢ A1 . . . ⊢ An B1 ⊢ D . . . Bm ⊢ D C ⊢ D

⊢ D

⊢ A1 . . . ⊢ An ⊢ C B1 ⊢ D . . . Bm ⊢ D

⊢ D

is equivalent to the system with these two rules replaced by

⊢ A1 . . . ⊢ An B1 ⊢ D . . . Bm ⊢ D

⊢ D

We don’t repeat the proof, which is in [6], but we give an example.

▶ Example 7. The two rules for ∧ from Example 3, (∧-el00) and (∧-el10) can be replaced by
one rule:

⊢ A ∧B B ⊢ D
∧-el_0

⊢ D

The intuition is that, as A can occur as a Lemma or as a Casus in an elimination rule where
everything else is the same, we can just omit it.

As we can also leave rule (∧-el00) in (as it is derivable), we can do the replacement again,
and replace rules (∧-el00) and (∧-el01) by

⊢ A ∧B A ⊢ D
∧-el0_

⊢ D

▶ Lemma 8. [6] A system with a deduction rule of the form to the left is equivalent to the
system with this rule replaced by the rule on the right.

⊢ A1 . . . ⊢ An B ⊢ D

⊢ D

⊢ A1 . . . ⊢ An

⊢ B

Again, we don’t repeat the proof, as it is in [6], but we give an example.

▶ Example 9. Having the optimized rules for ∧ from Example 7, (∧-el_0) and (∧-el0_), we
can replaced them by the following rules, which are the well-known elimination rules for ∧.

⊢ A ∧B
∧-el′_0⊢ B

⊢ A ∧B
∧-el′0_⊢ A

TYPES 2022

2:6 Classical Natural Deduction from Truth Tables

The constructive connectives

We have already seen the ∧,¬ rules. The optimized rules for ∨,→,⊤ and ⊥ we obtain are:

⊢ A ∨B A ⊢ D B ⊢ D
∨-el

⊢ D

⊢ A
∨-in1

⊢ A ∨B

⊢ B
∨-in2

⊢ A ∨B

⊢ A → B ⊢ A
→ -el

⊢ B

⊢ B
→ -in1

⊢ A → B

A ⊢ A → B
→ -in2

⊢ A → B

⊤-in
⊢ ⊤

⊢ ⊥
⊥-el

⊢ D

The rules for the classical → connective

The classical rules for implication are as follows. The elimination is rule is the same as the
constructive one and we also have the first introduction rule → -in1. In addition we have the
rule on the right. It is classical in the sense that one can derive Peirce’s law from it (without
using negation).

⊢ A → B ⊢ A
→ -el

⊢ B

⊢ B
→ -in1

⊢ A → B

A → B ⊢ D A ⊢ D
→ -inc

2⊢ D

▶ Example 10. We give a classical derivation of Peirce’s law, using only the classical rules
for →.

A ⊢ A

A ⊢ ((A → B) → A) → A

(A → B) → A ⊢ (A → B) → A A → B ⊢ A → B

A → B, (A → B) → A ⊢ A

A → B, (A → B) → A ⊢ ((A → B) → A) → A

A → B ⊢ ((A → B) → A) → A
→ -inc

2⊢ ((A → B) → A) → A

3 Monotone and non-monotone connectives

▶ Definition 11. A connective c is monotone if its truth table tc is a monotone function
from {0, 1}n to {0, 1} with respect to the ordering 0 ≤ 1.

Of the standard connectives, ∨ and ∧ are monotone, while ¬, → and ↔ are non-monotone.
For monotone connectives, the constructive and classical rules are equivalent. (So this holds
for ∧, ∨.) For the non-monotone connectives like → and ¬, this is not the case, which is
well-known, as Example 10 shows. There is an even stronger result: the classical intro rule
for the one (→ or ¬) implies the classical intro rule for the other (¬ or →). This hold in
general: if we add one classical introduction rule for one non-monotone connective, then all
non-monotone connectives are classical.

▶ Proposition 12. For c monotone, the classical and constructive derivation rules are
equivalent.

H. Geuvers and T. Hurkens 2:7

Proof. Let c be a monotone connective, say with an introduction rule derived from the
truth table row r = (r1, . . . , ri, . . . , rn|1). If ri = 0, then we also have the truth table row
r′ = (r1, . . . , 1, . . . , rn|1). That is, we have rows (r1, . . . , 0, . . . , rn|1) and (r1, . . . , 1, . . . , rn|1).
Now, the first lemma for simplifying the rules (Lemma 6) says that the i-th minor premise
is immaterial for the rule. This reasoning applies to every 0-entry in row r, so we can
eliminate all 0-s from r and we obtain an equivalent introduction rule without any Casus,
which therefore looks like this:

Φ ⊢ D ⊢ A1 . . . ⊢ Am

⊢ D

Now, by the second lemma for simplifying rules, Lemma 8, this rule is equivalent to

⊢ A1 . . . ⊢ Am

⊢ Φ
which is the constructive introduction rule for c. So for c monotone, a classical introduction
rule is equivalent to a constructive one. ◀

3.1 For non-monotone connectives, one classical introduction suffices
We now show that, if we have a set of connectives C and c ∈ C is non-monotone, then adding
one classical introduction rule for c makes the whole logic classical. So, if we add this one
classical introduction rule, we can derive the other classical introduction rules for c and also
the classical introduction rules for all other connectives d. In case d is monotone, this doesn’t
add anything, because of Proposition 12. But, for example in the case of ¬ and →, which are
both non-monotone, this shows that the classical rule for → can be derived from the classical
rule for ¬, and vice versa, the classical rule for ¬ can be derived from the classical rule for →.
The first might be expected, but the second maybe not, as one might have the impression
that the “double negation law” is really stronger then the classical rules for →. Theorem
13 below is even more general, as it says that all non-monotonic classical connectives are
equally strong.

It should be noted that, when we talk about a non-monotonic connective c, say of arity n,
we should actually speak about a “non-monotonic pattern in tc”, which is an index i (1 ≤ i ≤
n) and a sequence a1, . . . , ai−1, 1, ai+1, . . . , an such that tc(a1, . . . , ai−1, 0, ai+1, . . . , an) = 1
and tc(a1, . . . , ai−1, 1, ai+1, . . . , an) = 0. When we say we “add a classical introduction
rule for this non-monotone c”, we mean to add a classical introduction rule for a line
(a1, . . . , ai−1, 0, ai+1, . . . , an) that is part of such a pattern. (There may be other lines

−→
b

in the truth table of c, with tc(
−→
b) = 0, that are not part of such a pattern; making the

introduction rule for such a
−→
b classical leaves the whole system intuitionistic.) We will not

use the terminology of “non-monotonic pattern in tc”, to keep the text simple, and for ¬, →
etcetera it isn’t relevant. But in the proof we will start from such a situation.

▶ Theorem 13. Let C be a set of connectives and let c ∈ C be non-monotone. If we add one
classical introduction rule for c, we can derive the classical rules for all connectives.

Proof. To simplify the presentation we do not consider the situation where we have optimized
rules, but the proof goes through basically unaltered. Let c be an n-ary connective which is
not monotone. Then there are rows r = (r1 . . . rn|1) and s = (s1 . . . sn|0) which only differ
at position f and such that rf = 0 and sf = 1. So the corresponding classical introduction
and elimination rules for c have the same minor premises, except for position f where the
introduction rule (based on r) has a Casus while the elimination rule (based on s) has a
Lemma.

TYPES 2022

2:8 Classical Natural Deduction from Truth Tables

We want to show that any other classical introduction rule, say the one for m-ary connective
d based on a row t = (t1 . . . tm|1), can be derived from this particular classical introduction
rule for c based on row r = (r1 . . . rn|1), by just using the constructive introduction rules
and the elimination rules of the connectives c and d. Note that c and d need not be different
connectives and the language need not contain any other connective.

The problem can be stated more precisely as follows. We have the following rows in the
truth tables.

r = (r1 . . . rn|1) for n-ary c rk ranges over the 1-entries, rℓ ranges over the 0-entries,
s = (s1 . . . sn|0) for n-ary c sg ranges over the 1-entries, sh ranges over the 0-entries,
t = (t1 . . . tm|1) for m-ary d ti ranges over the 1-entries, tj ranges over the 0-entries.

Based on these rows, we have the following rules, where D and the As are arbitrary.

c(A1, . . . , An) ⊢ D ⊢ Ak (for rk = 1) Aℓ ⊢ D (for rℓ = 0)
c-intro based on r

⊢ D

⊢ c(A1, . . . , An) ⊢ Ag (for sg = 1) Ah ⊢ D (for sh = 0)
c-elim based on s

⊢ D

⊢ Ai (for ti = 1) Aj ⊢ d(A1, . . . , Am) (for tj = 0)
d-intro based on t, intuitionistic

⊢ d(A1, . . . , Am)

Fix the formulas Φ = d(C1, . . . , Cm) and D (where C1, . . . , Cm, D are arbitrary). We
need to show that the following is derivable (without using classical introduction for d):

Φ ⊢1 D ⊢2 Ci (for ti = 1) Cj ⊢3 D (for tj = 0)
⊢ D

We have marked, using ⊢1, ⊢2 and ⊢3, the hypotheses that we will need to derive ⊢ D so we
can easily refer to them.
Solution from any extra assumption
We first show that we can derive our result D from an arbitrary additional assumption.

▷ Claim 14. For any formula X, we can derive X ⊢ D (under the assumptions laid out so
far).

Proof of the Claim. Let X be any formula. Define Ψ = c(B1, . . . , Bn) where:
Bu = X if ru = su = 1,
Bu = D if ru = 0 and su = 1 (so this is the case where u = f , the only place where rows
r and s differ),
Bu = Φ if ru = su = 0.

We now have the following derivation of X ⊢ D (where we still have to create a derivation
of the major premise, X,Ψ ⊢∗ D).

X,Ψ ⊢∗ D X ⊢ Bk (rk = 1) Bf ⊢ D Bℓ ⊢ D (rℓ = 0)
c-intro based on r

X ⊢ D

Note that the minor premises of this rule are all derivable:
For rk = 1, we have Bk = X and we have X ⊢ X,
For rℓ = 0 with ℓ = f , we have Bf = D and we have D ⊢ D,
For rℓ = 0 with ℓ ̸= f , we have Bℓ = Φ and we have Φ ⊢1 D, one of our hypotheses.

H. Geuvers and T. Hurkens 2:9

We now show the derivability of the major premise, X,Ψ ⊢∗ D, by giving a derivation of
X,Ψ ⊢ Φ, which, combined with Φ ⊢1 D, gives X,Ψ ⊢ D. Here is the derivation:

⊢2 Ci (for ti = 1)
Ψ ⊢ Ψ X,Ψ ⊢ Bg (for sg = 1) Cj ⊢ Bf Bh ⊢ Φ (for sh = 0)

c-el
X,Ψ, Cj ⊢ Φ (for tj = 0)

d-in
X,Ψ ⊢ Φ

by Φ ⊢1 D
X,Ψ ⊢ D

Note that the minor premises of this rule are all derivable:
For sg = 1 and rg = 1, we have Bg = X and we have X ⊢ X,
For sg = 1 with g = f , we have Bf = D and we have Cj ⊢3 D, one of our hypotheses,
For sh = 0, we have Bh = Φ and we have Φ ⊢ Φ.

So we have shown that, given Φ ⊢1 D, ⊢2 Ci (for ti = 1) and Cj ⊢3 D for tj = 0, we can
derive X ⊢ D for any formula X. This proves our Claim 14. ◁

Full Solution. If we can find a formula X such that ⊢ X then in combination with Claim
14, X ⊢ D we get ⊢ D so we are done. If we have some standard connectives in our language,
then we can take any theorem for X, like ⊤, ¬⊥ or A → A. If we happen to be inside a
non-empty Γ, we can take X to be any formula in Γ. But in general, we don’t have a Γ and
we cannot assume any other connectives than c and d (where c and d may even be the same).

If the introduction rule for d that is based on row t has at least one Lemma (Ci), then we
can take for X any such Ci. So if in t = (t1 . . . tm|1) we have ti = 1 somewhere, we are done.

Now suppose that t = (0 . . . 0|1), so each minor premise is a Casus in the introduction
rule for d based on t that we are considering. Let, for A a formula, δ(A) denote the formula
d(A, . . . , A). Then constructive d-intro gives

A ⊢ δ(A)
d-intro based on t, intuitionistic

⊢ δ(A)
Let’s denote by v the row in the truth table for d with just 1s as arguments: either

v = (1 . . . 1|1) or v = (1 . . . 1|0).
case v = (1 . . . 1|1).
Then the constructive introduction rule derived from v directly gives A ⊢ δ(A) so we are
done: take X := δ(A) (for arbitrary A), then ⊢ X is shown by:

A ⊢ A
d-intro based on v, intuitionistic

A ⊢ d(A, . . . , A)
d-intro based on t, intuitionistic

⊢ d(A, . . . , A)
case v = (1 . . . 1|0).
Now take X := δ(δ(D)), where D is the formula that we want to prove ⊢ D for.

From row v we have an elimination rule for d, in particular we have, for any E:
⊢ δ(D) ⊢ D

d-elim based on v
⊢ E

We take δ(δ(D)) for E and we have the following derivation of δ(δ(D)) (and we are done).
Note that δ(D) ⊢ D holds by our earlier Claim 14, because X ⊢ D for any X.

δ(D) ⊢ δ(D) δ(D) ⊢ D
d-elim based on v

δ(D) ⊢ δ(δ(D))
d-intro based on t, intuitionistic

⊢ δ(δ(D))
This completes the proof of Theorem 13. ◀

TYPES 2022

2:10 Classical Natural Deduction from Truth Tables

4 Variants of Classical Natural Deduction

There are various ways to move from constructive logic to classical logic. In sequent calculus,
this is done by considering multi-conclusion judgments of the form Γ ⊢ ∆, where ∆ is a
sequence (or finite set) of formulas, with the intuitive meaning that the conjunction of the
formulas in Γ implies the disjunction of the formulas in ∆. We can also make our truth
table natural deduction “multi-conclusion”, which helps to clarify the connection between
the various systems, but more importantly, it is helpful in describing the proof reduction of
classical logic. We first introduce these logics and prove their connection.

▶ Definition 15. Let C be a set of connectives with their associated truth tables and let Γ and
∆ be finite sets of formulas over C. We define intuitionistic and classical multi-conclusion
logic by considering the following derivation rules.

(axiom)
Γ, A ⊢ A,∆

Γ ⊢ Φ,∆0 . . .Γ ⊢ Ak,∆kΓ, Aℓ ⊢ ∆ℓ
(el) if ∆ ⊇ ∆0,∆k,∆ℓ

Γ ⊢ ∆

. . .Γ ⊢ Ai,∆iΓ, Aj ⊢ Φ,∆j . . .
(in-int) if ∆ ⊇ ∆i,∆j

Γ ⊢ Φ,∆

Γ,Φ ⊢ ∆0 . . .Γ ⊢ Ai,∆iΓ, Aj ⊢ ∆j . . .
(in-class) if ∆ ⊇ ∆0,∆i,∆j

Γ ⊢ ∆

In each rule, Φ = c(A1, . . . , An) for some connective c. The Ai and Aj range over the entries
with ri = 1 and rj = 0 of some 1-row r for c. The Ak and Aℓ range over the entries with
r′

k = 1 and r′
ℓ = 0 of some 0-row r′ for c.

We define the following logics by having the rules (axiom) and (el) and one introduction
rule:
1. Int-mc, intuitionistic multi-conclusion logic, has introduction rule (in-int).
2. Class-mc, classical multi-conclusion logic, has introduction rule (in-class).
For the multi-conclusion logics, we can also let the ∆ be a constant in the rules (just like
the Γ), as the (axiom) rule gives weakening anyway. We get the original truth table natural
deduction rules by restricting these derivation rules to judgments with a single conclusion:

(axiom-sc) is rule (axiom) with ∆ empty
(el-sc) is rule (el) with ∆ a singleton, ∆0 and the ∆k empty, and the ∆ℓ equal to ∆
(in-int-sc) is rule (in-int) with ∆ empty
(in-class-sc) is rule (in-class) with ∆ a singleton, ∆0 and the ∆j equal to ∆, and the ∆i

empty
We define the original truth table natural deduction logics in this format by having the rules
(axiom-sc) and (el-sc) and one introduction rule:
1. Int, intuitionistic single-conclusion logic, has introduction rule (in-int-sc).
2. Class, classical single-conclusion logic, has introduction rule (in-class-sc).

▶ Proposition 16.
1. Int-mc, Class and Class-mc are equivalent in the sense that

Γ ⊢ Φ in Class ⇔ Γ ⊢ Φ in Class-mc
Γ ⊢ ∆ in Int-mc ⇔ Γ ⊢ ∆ in Class-mc

2. Int is really weaker than the other 3 systems if C contains a non-monotone connective.

H. Geuvers and T. Hurkens 2:11

Proof.
1. The proof of Γ ⊢ Φ in Class ⇔ Γ ⊢ Φ in Class-mc is by showing completeness for both

Class and Class-mc in the standard way (using maximally consistent extensions of sets
of formulas) with respect to a valuation semantics. For Class-mc, one proves Γ ⊢ ∆ ⇔
Γ ⊨ ∆, where Γ ⊨ ∆ is defined as: for all v : At → {0, 1}, if ∀φ ∈ Γ(v(φ) = 1), then
∃ψ ∈ ∆(v(ψ) = 1). One proves the same result for Class, from which the first equivalence
in the Proposition follows.
For the proof of Γ ⊢ ∆ in Int-mc ⇔ Γ ⊢ ∆ in Class-mc, the ⇒ is immediate, while for the
⇐ we show that the classical introduction rule (in-class) is derivable in Int-mc: suppose
we have Γ,Φ ⊢ ∆0, Γ ⊢ Ai,∆i (for all appropriate i, according to row r in truth table tc)
and Γ, Aj ⊢ ∆j (for all appropriate j) in Int-mc. We also have Γ, Aj ⊢ Φ,∆j , so we can
apply the intuitionistic introduction rule (in-int) to conclude Γ ⊢ Φ,∆ for ∆ ⊇ ∆i,∆j .
We also have Γ,Φ ⊢ ∆0, so by Substitution Lemma (Lemma 5 extends directly to the
case for Int-mc and Class-mc), we conclude Γ ⊢ ∆,∆0 (for ∆ ⊇ ∆i,∆j) and we are done.

2. For well-known non-monotone connectives like ¬ and →, it is known that Int is really
weaker than Class, e.g. one can prove Peirce’s law and ¬¬A ⊢ A in Class, which cannot
be proven in Int, as one can show by constructing a Kripke counter-model. This also
implies that for other non-monotone connective, say c of arity n, the classical rules are
really stronger: with the classical rules for c and the intuitionistic rules for ¬ one can
prove ¬¬A ⊢ A. (This follows directly from Theorem 13.) With the intuitionistic rules
for c and ¬ one cannot prove ¬¬A ⊢ A, as the Kripke semantics for intuitionistic truth
table natural deduction shows, see [6]. ◀

5 Proof terms for natural deduction

In earlier articles, we gave proof terms for natural deductions. This simplified the study of
proof normalization. We followed the Curry-Howard formulas-as-types (and proofs-as-terms)
paradigm. We defined systems with judgments Γ ⊢ t : B, where B is a formula, Γ is a set of
declarations {x1 : A1, . . . , xn : An}, where the Ai are formulas and the xi are term variables
such that every xi occurs at most once in Γ, and t is a proof term. In these systems, the
type of a proof term t is the conclusion B of the proof and the types of the free variables xi

of t are the assumptions Ai of the proof. A Lemma D (a sub-proof of formula D as part of
the proof of B) is represented by a sub-term of t of type D. A Casus C (a part of the proof
that uses C as extra assumption) is represented by a λ-abstraction over a variable of type C.

In this section, we first define proof term calculi for the logics we have already discussed,
and also for some logics we have studied in earlier work, but now with both variables for
assumptions (hypotheses) and for conclusions (goals).

By using (abstractions over) conclusion variables, we can distinguish between terms like
x (representing an assumption A), γ · x (representing a proof of A ⊢ A) and µγ : A.γ · x
(representing a Lemma A). It is also very useful to represent multi-conclusion deductions.

5.1 Proof terms for truth table natural deduction with conclusion
variables

We define proof term calculi for TT-ND with conclusion variables for various logics:
1. Int, intuitionistic logic,
2. Class, classical logic,
3. Int-mc, intuitionistic multi-conclusion logic,
4. Class-mc, classical multi-conclusion logic,

TYPES 2022

2:12 Classical Natural Deduction from Truth Tables

The judgments of these calculi will be of the form

t : (Γ ⊢ ∆)

where t denotes the proof term, Γ contains the labelled assumptions, typically Γ = x1, :
A1, . . . , xn : An, and ∆ contains the labelled conclusions, typically ∆ = α1 : B1, . . . , αm : Bm.

Such a judgment expresses that the sequent A1, . . . , An ⊢ B1, . . . , Bm is derivable in the
corresponding logic. As in sequent calculus, this can informally be read as “t is a proof of the
disjunction of the Bj from the conjunction of the Ai”. In case we have single conclusion logic
∆ is a singleton, but still with a labelled conclusion, so ∆ = α : B. We use λ to abstract
over assumption variables and µ to abstract over conclusion variables. Each free variable of t
is declared in Γ or ∆. Each proof term consists of two parts (separated by ·). Conclusion
variables only occur as left part of a (nested) proof term and assumption variables only as
right part.

▶ Definition 17. Let C be a set of connectives with their associated truth tables and let Γ
be an assumption context and ∆ a conclusion context for formulas over C. We consider the
following derivation rules for terms, where the syntactic class of terms is as follows.

t ::= α · x | (µα : A.t) · [µβ : B.t′ ; λz : C.t′′]r
| (λx : A.t) · {µβ : B.t′;λz : C.t′′}r | γ · {µβ : B.t′;λz : C.t′′}r

(axiom)
α · x : (Γ, x : A ⊢ α : A,∆)

t : (Γ ⊢ β : Φ,∆0) . . . pk : (Γ ⊢ αk : Ak,∆k) qℓ : (Γ, yℓ : Aℓ ⊢ ∆ℓ)
(el)∗

(µβ : Φ.t) · [µαk : Ak.pk ; λyℓ : Aℓ.qℓ]r′ : (Γ ⊢ ∆)

. . . pi : (Γ ⊢ αi : Ai,∆i) qj : (Γ, yj : Aj ⊢ γ : Φ,∆j) . . .
(in-int)∗∗

γ · {µαi : Ai.pi;λyj : Aj .qj}r : (Γ ⊢ γ : Φ,∆)

t : (Γ, x : Φ ⊢ ∆0) . . . pi : (Γ ⊢ αi : Ai,∆i) qj : (Γ, yj : Aj ⊢ ∆j) . . .
(in-class)∗∗∗

(λx : Φ.t) · {µαi : Ai.pi;λyj : Aj .qj}r : (Γ ⊢ ∆)

In each rule, Φ = c(A1, . . . , An) for some connective c. Each r is a 1-row for connective c,
where Ai ranges over the entries of r with ri = 1 and Aj ranges over the entries with rj = 0.
Each r′ is a 0-row for c and Ak ranges over the entries of r′ with r′

i = 1 and Aℓ ranges over
the entries with r′

ℓ = 0.
Just as in the definition of the logics (Definition 15), each term rule has the same side

condition on the ∆ in the conclusion: it should be a superset of the ∆’s in the hypotheses. In
particular, this means that ∗ represents ∆ ⊇ ∆0,∆k,∆ℓ where k and ℓ range over a number
of ∆’s, ∗∗ represents ∆ ⊇ ∆i,∆j where i and j range over a number of ∆’s, ∗∗∗ represents
∆ ⊇ ∆0,∆i,∆j where i and j range over a number of ∆’s. We define the multi-conclusion
term calculi by having the rules (axiom) and (el) and one introduction rule:
1. Int-mc, intuitionistic multi-conclusion calculus, has introduction rule (in-int).
2. Class-mc, classical multi-conclusion calculus, has introduction rule (in-class).

Each rule for terms can be restricted to judgments t : (Γ ⊢ ∆) in which ∆ is a singleton,
just like the corresponding derivation rule for sequents in Definition 15. We define the
single-conclusion term calculi by having the rules (axiom-sc) and (el-sc) and one introduction
rule:
1. Int, intuitionistic single-conclusion calculus, has introduction rule (in-int-sc).
2. Class, classical single-conclusion calculus, has introduction rule (in-class-sc).

H. Geuvers and T. Hurkens 2:13

We want to single out specific sub-term patterns that occur in the elimination rule and
the introduction rule.

▶ Definition 18. An intro pattern is a sub-term of the form {µαi : Ai.pi;λyj : Aj .qj}r. An
elim pattern is a sub-term of the form [µαk : Ak.pk ; λyℓ : Aℓ.qℓ]r′ .

We say that the intro pattern {µαi : Ai.pi;λyj : Aj .qj}r is well-typed in Γ ⊢ ∆, if for
all i, pi : (Γ ⊢ αi : Ai,∆i) for some ∆i and for all j, qj : (Γ, yj : Aj ⊢ γ : Φ,∆j) for some
∆j and all ∆i,∆j ⊆ ∆. (And all this is relative to line r in the truth table for c, where
Φ = c(A1, . . . , An).)

We say that the elim pattern [µαk : Ak.pk ; λyℓ : Aℓ.qℓ]r′ is well-typed in Γ ⊢ ∆, if for
all k, pk : (Γ ⊢ αk : Ak,∆k) for some ∆k and for all ℓ, qℓ : (Γ, yℓ : Aℓ ⊢ ∆ℓ) for some ∆k

and all ∆k,∆ℓ ⊆ ∆. (And all this is relative to line r′ in the truth table for some c.)

▶ Example 19. The derivation rules for negation are as follows in the classical multi-conclusion
logic. We omit the Γ and ∆.

t : (x : ¬B ⊢ α : D) q : (y : B ⊢ α : D)
in¬

(λx : ¬B.t) · {;λy : B.q}r : (⊢ α : D)
t : (⊢ α : ¬B) q : (⊢ β : B)

el¬
(µα : ¬B.t) · [µβ : B.q ;]r′ : (⊢)

As logics, the relation between these calculi has been given in Proposition 16. We can
also give the relation between the term calculi.

▶ Lemma 20. The calculus Int is a subsystem of Int-mc and the calculi Class and Int-mc are
subsystems of Class-mc:

Int ⊆ Int-mc ⊆ Class-mc
Class ⊆ Class-mc

where Int ⊆ Int-mc and Class ⊆ Class-mc are by the identity on terms and Int-mc ⊆ Class-mc
is by interpreting

[[γ · {µαi : Ai.pi;λyj : Aj .qj}r]] := (λx : Φ.γ · x) · {µαi : Ai.[[pi]];λyj : Aj .[[qj]]}r

Proof. The proof is by a straightforward induction on the derivation, using the fact that all
systems have weakening: if t : (Γ ⊢ ∆) and Γ ⊆ Γ′, ∆ ⊆ ∆′, then t : (Γ′ ⊢ ∆′). ◀

▶ Example 21. We consider a proof of the double negation law in classical multi-conclusion
calculus, given by the proof term t : (z : ¬¬A ⊢ α : A), where

t := (µγ : ¬¬A.γ · z) · [µβ : ¬A.(λy : ¬A.β · y) · {;λx : A.α · x}r ;]r′

Observe that t contains a sub-term (λy : ¬A.β · y) · {;λx : A.α ·x}r, of type (⊢ β : ¬A,α : A),
with two different free conclusion variables. Such proof terms, having multiple free conclusion
variables, can only occur in multiple-conclusion calculus.

We give the derivation of t, using the rules given in Example 19. Except for the last line,
we omit the declarations z : ¬¬A and α : A from the context.

γ · z : (⊢ γ : ¬¬A)
β · y : (y : ¬A ⊢ β : ¬A) α · x : (x : A ⊢ β : ¬A)

in¬
(λy : ¬A.β · y) · {;λx : A.α · x}r : (⊢ β : ¬A)

el¬
(µγ : ¬¬A.γ · z) · [µβ : ¬A.(λy : ¬A.β · y) · {;λx : A.α · x}r ;]r′ : (z : ¬¬A ⊢ α : A)

In the right branch of this derivation, we have as conclusion context α : A, β : ¬A.

TYPES 2022

2:14 Classical Natural Deduction from Truth Tables

.
intro-Φ

⊢ Φ . . .
elim-Φ

⊢ D

⊢ Ψ
.

intro-Φ
⊢ Φ . . .

elim-Ψ
⊢ Φ . . .

elim-Φ
⊢ D

Figure 1 Detour and Permutation.

5.2 Proof terms and reductions: the intuitionistic case
We now describe the term reduction rules. For Int these should correspond to what we
have defined and studied in [7] and [8]. There we have defined a proof term calculus for
intuitionistic TT-ND (but without conclusion variables), and we have detour elimination and
permutation rules to normalize proofs and to obtain a proof in normal form that satisfies the
sub-formula property.

A detour in intuitionistic logic is a pattern of an introduction of a formula Φ immediately
followed by an elimination of Φ. Such a step can be eliminated by not using Φ at all. This is
depicted on the left in Figure 1. A permutation is necessary when a detour for Φ is blocked
by the elimination of another formula Ψ. Then we first have to permute the two elimination
rules, for Φ and Ψ, to make the detour of Φ explicit. See Figure 1 on the right.

It turns out that in our new setting, the conclusion variables nicely take care of the
permutation rules. We use the following shorthand notation to improve readability:

p represents µαk : Ak.pk,
q represents λyℓ : Aℓ.qℓ.
r represents µαi : Ai.ri,
s represents λyj : Aj .sj .

▶ Definition 22. The reduction rule for Int is as follows, for t ̸= β · x.

(µβ : Φ.t) · [p ; q]r′ −→ t[β := [p ; q]r′]

Here the substitution t[β := [p ; q]r′] is defined by, inside t,

replacing β · x by (µα : Φ.α · x) · [p ; q]r′ for a fresh α
replacing β · {r; s}r by qℓ[yℓ := µαi : Ai.ri] if i = ℓ

or by sj [yj := µαk : Ak.pk] if j = k.

Here qℓ[yℓ := µαi : Ai.ri] is defined by replacing γ · yℓ by ri[αi := γ].

Note that all free occurrences of β in t should be replaced, including those in sj . We will see
an example in Example 27. Since Int is a single-conclusion calculus, the (only) conclusion
variable β of t does not occur in µαi : Ai.ri.

▶ Lemma 23 (Subject Reduction). If t : (Γ ⊢ γ : D) and t −→ t′, then t′ : (Γ ⊢ γ : D).

Proof. By induction on the derivation of t : (Γ ⊢ γ : D), which treats the cases where the
reduction takes place deeper inside t. The only interesting case is when t is itself a redex.
For that we have to prove an auxiliary Substitution Lemma 24, which we give below and
from which the case of t itself being a redex follows immediately. ◀

▶ Lemma 24 (Substitution Property). Let Φ = c(A1, . . . , An) and t : (Γ ⊢ β : Φ). If the elim
pattern [µαk : Ak.pk ; λyℓ : Aℓ.qℓ]r′ is well-typed in Γ ⊢ γ : D, where r′ is a line in the truth
table for c that gives an elimination rule, then t[β := [p ; q]r′] : (Γ ⊢ γ : D).

H. Geuvers and T. Hurkens 2:15

Proof. The proof is by induction on t, using the definition of the substitution given in
Definition 22. ◀

The role of the side condition t ̸= β · x in Definition 22 should be clear: without it
we create an infinite reduction sequence right away. As a matter of fact, (µβ : Φ.β · x) ·
[µαk : Ak.pk ; λyℓ : Aℓ.qℓ]r′ is not a redex as it is an elimination of an assumption, which is
exactly what we want from a proof in normal form in Int: that all occurrences of elimination
rules eliminate a hypothesis. It is convenient to syntactically characterize the normal forms
of Int, NFInt.

▶ Definition 25. We define NFInt, the normal forms of Int, as follows.

NFInt ::= α ·x | (µβ : Φ.β ·x) · [µαk : Ak.pk ; λyℓ : Aℓ.qℓ]r′ | γ · {µαk : Ak.pk;λyℓ : Aℓ.qℓ}r′

where all sub-terms are again in NFInt.

We give the main properties of normal forms and reduction.

▶ Lemma 26. NFInt captures precisely the normal forms of Int.
The normal forms of Int satisfy the Sub-formula Property: If t : (Γ ⊢ γ : D), t ∈ NFInt,
then for each bound variable, α : A or x : A, occurring in t, A is a sub-type of a type in Γ
or D.
The reduction is strongly normalizing.

Proof. The proof of the first is immediate: terms in NFInt cannot reduce and all terms
that cannot reduce are in NFInt. The second follows by induction on the derivation of
t : (Γ ⊢ γ : D), where we analyze t based on the cases that arise from t ∈ NFInt. The strong
normalization property follows from the strong normalization proofs for intuitionistic TT-ND
that have been given in [8] and [1]. It also follows from strong normalization of Truth Table
Logic (using (2) of Lemma 41) which we prove in Theorem 46. ◀

The term reduction rules of Definition 22 indeed correspond to the ones of [7] and [8].
The interpretation is straightforward, but we do not give it here, because we would have to
introduce the definitions of [7] first. To be more precise: every reduction step of the Definition
corresponds to a combination of multiple detour elimination/permutation steps from[7]. So
the reduction of Definition 22 covers both the detour elimination and the permutation rules.
We illustrate this in an example.

▶ Example 27. The following deduction has a hidden detour which can be made explicit
using a permutation elimination step. (The · · · are auxiliary parts of the deduction.) The
→ -el and → -in are separated by an ∨-el, so the detour arising from an → -in followed by an
→ -el is blocked. The detour can be made explicit using a permutation step. (Note that in
TT-ND, the “normal” →-introduction proceeds in two steps, first introducing the →-formula
C → D, then abstracting over the hypothesis C.)

· · ·

⊢ A ∨B

· · ·

A,C ⊢ D
→ -in

A,C ⊢ C → D
→ -in

C → D

· · ·

B ⊢ C → D
∨-el

C → D

· · ·

⊢ C D ⊢ D
→ -el

D

TYPES 2022

2:16 Classical Natural Deduction from Truth Tables

Using the proof terms of [6], this derivation looks like this.

⊢ t:A ∨ B

x:A, z:C ⊢ q:D
→ -in

x:A, z:C ⊢ {q ; −}:C → D
→ -in

x:A ⊢ {− ; λz:C.{q ; −}}:C → D y:B ⊢ r:C → D
∨-el

⊢ t · [− ; λx:A.{− ; λz:C.{q ; −}}, λy:B.r]:C → D ⊢ p:C u:D ⊢ u:D
→ -el

⊢ t · [− ; λx:A.{− ; λz:C.{q ; −}}, λy:B.r] · [p ; λu:D.u]:D

The permutation step for this proof term

t · [− ; λx:A.{− ; λz:C.{q ; −}}, λy:B.r] · [p ; λu:D.u]

allows one elimination to move into another, in this case to permute the → -el into the ∨-el,
leading to

t · [− ; λx:A.{− ; λz:C.{q ; −}} · [p ; λu:D.u], λy:B.r · [p ; λu:D.u]]

Here is the same proof in Int of Definition 17.

t:(⊢ α:A ∨B)

q:(x:A, z:C ⊢ β:D)
γ · {µβ:D.q ; −}:(x:A, z:C ⊢ γ:C → D)

γ · {− ; λz:C.γ · {µβ:D.q ; −}}:(x:A ⊢ γ:C → D) r:(y:B ⊢ γ:C → D)
(µα:A ∨B.t) · [− ; λx:A.γ · {− ; λz:C.γ · {µβ:D.q ; −}}, λy:B.r]:(⊢ γ:C → D)

Abbreviating M := (µα:A ∨B.t) · [− ; λx:A.γ · {− ; λz:C.γ · {µβ:D.q ; −}}, λy:B.r] we
then have

M :(⊢ γ:C → D) p:(⊢ η:C) δ · u:(u:D ⊢ δ:D)
(µγ:C → D.M) · [µη:C.p ; λu:D.δ · u]:(⊢ δ : D)

So the final proof-term is

(µγ:C → D.(µα:A ∨ B.t) · [− ; λx:A.γ · {− ; λz:C.γ · {µβ:D.q ; −}}, λy:B.r]) · [µη:C.p ; λu:D.δ · u]

and the “hidden detour” is directly accessible via the conclusion variable γ. We have
underlined the places where a substitution for γ can take place (following Definition 22). It
is noteworthy that also the first → -in is contracted with the → -el. If we reduce the term
according to Definition 22, we obtain, writing N := [µη:C.p ; λu:D.δ · u]

(µα:A ∨B.t) · [− ; λx:A.q[β := δ, z := µη:C.p], λy:B.r[γ := N]]

5.3 Proof terms and reductions: the classical multi-conclusion case

We now define reduction for Class-mc. We again use the following shorthand notation to
improve readability:

p represents µαk : Ak.pk,
q represents λyℓ : Aℓ.qℓ.
r represents µαi : Ai.ri,
s represents λyj : Aj .sj .

H. Geuvers and T. Hurkens 2:17

▶ Definition 28. The reduction rules for Class-mc are as follows.

(λx : Φ.t) · {r; s}r −→ t if x /∈ t

(µβ : Φ.t) · [p ; q]r′ −→ t if β /∈ t

(λx : Φ. . . . (µβ : Φ. . . . β · x . . .) · [p ; q]r′ . . .) · {r; s}r −→
(λx : Φ. . . . (µβ : Φ. . . .M . . .) · [p ; q]r′ . . .) · {r; s}r

(µβ : Φ. . . . (λx : Φ. . . . β · x . . .) · {r; s}r . . .) · [p ; q]r′ −→
(µβ : Φ. . . . (λx : Φ. . . .M . . .) · {r; s}r . . .) · [p ; q]r′

where for M we can choose

M = qℓ[yℓ := µαi : Ai.ri] if i = ℓ

= sj [yj := µαk : Ak.pk] if j = k.

Here qℓ[yℓ := µαi : Ai.ri] is defined by replacing γ · yℓ by ri[αi := γ].

Similar to the intuitionistic case (Lemma 23), we have Subject Reduction, which is (again)
based on the type soundness of the substitution that is involved.

▶ Lemma 29 (Subject Reduction). If t : (Γ ⊢ ∆) and t −→ t′, then t′ : (Γ ⊢ ∆).

Proof. By induction on the derivation of t : (Γ ⊢ ∆), which treats the cases where the
reduction takes place deeper inside t. The only interesting case is when t is itself a redex.
For that we have to verify that the substitution, of M for β · x (and the substitutions that
are part of the definition of M) are type correct. That is the case, as we always apply goal
variables to assumption variables of the right type, and we substitute expressions under a
binder, which avoids the risk of variables being no longer in scope. (And the usual variable
hygiene, with renaming of bound variables, avoids capture of free variables by a binder.) ◀

Just as for the single conclusion intuitionistic case, we give an explicit syntax for the
normal forms, and give the basic properties for reduction and normal forms, as in Definitions
25 and Lemma 26 for the intuitionistic case.

▶ Definition 30. We define NFClass-mc, the normal forms of Class-mc, as follows.

NFClass-mc ::= α · x | (µβ : Φ.t) · [p ; q]r′ | (λx : Φ.q) · {p; q}r′

where all sub-terms are again in NFClass-mc and
x occurs in q only as α · x with α free in q, and x occurs at least once.
β occurs in t only as β · z with z free in t, and β occurs at least once.

We give the main properties of normal forms and reduction.

▶ Lemma 31. NFClass-mc captures precisely the normal forms of Class-mc.
The normal forms of Class-mc satisfy the Sub-formula Property: If t : (Γ ⊢ ∆), t ∈
NFClass-mc, then for each bound variable, α : A or x : A, occurring in t, A is a sub-type
of a type in Γ or ∆.
The calculus is normalizing, in the sense that, if t : (Γ ⊢ ∆), then there is a term in
normal form q, such that q : (Γ ⊢ ∆).

TYPES 2022

2:18 Classical Natural Deduction from Truth Tables

Proof. The proof of the first is immediate: terms in NFClass-mc cannot reduce and all terms
that cannot reduce are in NFClass-mc. The second follows by induction on the derivation
of t : (Γ ⊢ ∆), where we analyze t based on the cases that arise from t ∈ NFClass-mc. The
normalization property follows from the strong normalization proof for Truth Table Logic
(Theorem 46), which is a generalization of all these systems, and the fact that normal
forms in Truth Table Logic can be reflected back to normal forms in Class-mc (Lemma 41
part (3)). ◀

5.4 Proof terms and reductions: the classical single-conclusion case
The reductions for proof-terms in the classical single-conclusion case are a bit less well-
behaved than the ones for the multi-conclusion case, because in the classical single conclusion
case, there should always be at most one free conclusion variable in a proof term. This means
that if t is a proof-term in classical single conclusion logic, then

a sub-expression λy : A.q of t should have at most one free conclusion variable,
in a sub-expression µα : A.q of t, q should have only α as free conclusion variable.

If one starts from a proof-term t having these properties, and one performs the reductions
of Definition 28, one easily ends up in a proof term t′ that violates them. Then t′ is still
valid in multi-conclusion logic, but not in the single conclusion system. The way to prevent
this is to first reduce a term to a lemma-normal form, which is a term where all Lemmas
are assumptions (variables). Those can then be reduced safely in the “standard” way of
Definition 28.

This means that reduction for proof terms in single conclusion classical logic proceeds as
follows.

First perform permutation reductions to obtain a lemma-normal form.
Then perform detour reductions, where a detour is an elimination of Φ followed by an
introduction of Φ.

This is similar to the constructive case, except for now a term is in “permutation normal
form” if all lemmas are axioms.

▶ Definition 32. This is the abstract syntax NFlemma for lemma-normal forms:

α · x | (λx:A.t) · {µαk:Ak.αk · zk;λyℓ:Aℓ.qℓ} | (µβ:A.β · y) · [µαk:Ak.αk · zk ; λyℓ:Aℓ.qℓ],

where x, y, z range over variables and t and the q are again in NFlemma.

We can obtain a proof term in lemma-normal form by moving applications of an elimination
or introduction rule that have a non-trivial Lemma upwards, until all Lemmas become trivial:
the proof terms are variables. (Note that µβ:A.β · y is basically the assumption y : A.)
This only works in classical logic. If one tries this for intuitionistic proofs, which –from
the point of view of classical logic– are proofs with a trivial main premise in the classical
introduction rule, one immediately ends up with a proof that has a non-trivial main premise
in the classical introduction rule.

We can now specialize Definition 28 to the single-conclusion case by considering only
terms in lemma-normal form. We use a similar abbreviation style as before:

z represents µαk : Ak.αk · zk,
q represents λyℓ : Aℓ.qℓ.
v represents µαi : Ai.αi · vi,
s represents λyj : Aj .sj .

H. Geuvers and T. Hurkens 2:19

▶ Definition 33. In Class, the notion of detour and the reduction rules are modified as
follows.
1. A detour is a pattern of the following shape.

(λx : Φ. . . . (µβ : Φ.β · x) · [z ; q] . . .) · {v; s}

2. The reduction rules are
(λx : Φ.t) · {r; s}r −→ t if x /∈ t

(λx : Φ. . . . (µβ : Φ.β · x) · [z ; q] . . .) · {v; s} −→ (λx : Φ. . . .M . . .) · {v; s}
where for M we can choose

M = qℓ[yℓ := vi] if i = ℓ

= sj [yj := zk] if j = k.

Again we have Subject Reduction, which basically follows from the classical multi-
conclusion case (Lemma 29). The only thing to verify is that we don’t go “out of” the single
conclusion fragment.

▶ Lemma 34 (Subject Reduction). If t : (Γ ⊢ γ : D) in Class, t ∈ NFlemma and t −→ t′,
then t′ : (Γ ⊢ γ : D) in Class and t′ ∈ NFlemma.

Proof. We don’t have to verify the type of t, as its correctness follows from Lemma 29. To
verify that t′ is a single-conclusion proof term and t′ ∈ NFlemma follows from the fact that
we never substitute a term under a µ-binder and for assumption variables, we just substitute
other assumption variables. ◀

Again, we give an explicit syntax for the normal forms, and the basic properties for
reduction and normal forms, as in Definitions 30 and Lemma 31 for the multi-conclusion
classical case.

▶ Definition 35. We define NFClass-sc, the normal forms of Class, as follows.

α · x | (λx:A.t) · {µαk:Ak.αk · zk;λyℓ:Aℓ.qℓ} | (µβ:A.β · y) · [µαk:Ak.αk · zk ; λyℓ:Aℓ.qℓ],

where t and the qℓ are again in NFClass-sc and
x occurs in t only as α · x with α free in t, and x occurs at least once.

We give the main properties of normal forms and reduction.

▶ Lemma 36.
NFClass-sc captures precisely the normal forms of Class-sc.
The normal forms of Class-sc satisfy the Sub-formula Property: If t : (Γ ⊢ γ : D),
t ∈ NFClass-sc, then for each bound variable, α : A or x : A, occurring in t, A is a sub-type
of a type in Γ or D.
The calculus is normalizing, in the sense that, if t : (Γ ⊢ D), then there is a term in
normal form q, such that q : (Γ ⊢ D).

Proof. The proof is the same as for Lemma 31. For the second second we analyze t based
on the cases that arise from t ∈ NFClass-sc. The normalization property follows from the
normalization of Class-mc and the fact that, from a normal form in Class-mc we can construct
a normal form in Class-sc by taking the lemma-normal form. ◀

TYPES 2022

2:20 Classical Natural Deduction from Truth Tables

6 Truth Table Logic

We now define Truth Table Logic as a unifying logic and proof term calculus for the various
logics we have seen before. The idea of Truth Table Logic is that, for Φ = c(A1, . . . , An), we
decompose an elimination rule for Φ in two parts:
1. the part to be eliminated, µβ : Φ.t, which is the proof of Φ,
2. the elim pattern, [µαk : Ak.tk ; λyℓ : Aℓ.tℓ]r′ , consisting of the Lemmas and Casuses that

we eliminate Φ with, which are the proofs of Ak (in case Ak is a Lemma) or the proofs
from assumption Aℓ (in case Aℓ is a Casus).

These elim patterns have already been introduced in Definition 18, but in Truth Table Logic
they will get a “first class status”, as expressions that have their own type. Similarly we
decompose a classical introduction rule in two parts (and give intro patterns a first class
status):
1. the part to be introduced, λy : Φ.t, which is the proof from assumption Φ,
2. the intro pattern, {µαi : Ai.ti;λyj : Aj .tj}r, consisting of the Lemmas and Casuses that

we intro Φ with, which are the proofs of Ai (in case Ai is a Lemma) or the proofs from
assumption Aj (in case Aj is a Casus).

For conciseness, we again adopt the earlier abbreviations, where we let p and r represent
series of µ-abstractions, while q and s represent series of λ-abstractions:

a and b typically represent µαk : Ak.tk,
f and g typicallty represent λyℓ : Aℓ.tℓ.

We will be able to combine intro patterns and elim patterns directly into a proof, without
explicit “interference” of an elimination or introduction rule, so we will e.g. have the following
as a proof term:

{b; g} · [a ; f].

To make this work, we introduce a new type o, that can informally be read as the type of
proofs. It is the only type in Truth Table Logic that is not related to a specific formula. In
Truth Table Logic, each proof term t will be of the form f · a, where the parts f and a have
one of the following syntactical forms:

a variable x or α
an abstraction λx.t or µα.t
an elim pattern [a ; f] or an intro pattern {b; g}.

These parts will be treated as typed terms on their own and proof terms are just applications
f · a that result in type o. Which applications are allowed depends on the variant of Truth
Table Logic: we have three variants, where one can choose for intuitionistic or classical logic
and for classical logic the single-conclusion or multiple-conclusion variant.

When we consider the “application” f · a, we treat f as function and a as argument, not
the other way around. If a is of type T , then f should be of type T → o. We abbreviate the
function type T → o to ∼T . The type T can be a formula Φ, but it can also be ∼Φ, and
then we would have a : ∼Φ and f : ∼∼Φ to make f · a : o. So every type T is related to
some formula: it can be Φ itself, or ∼Φ, or ∼∼Φ or ∼∼∼Φ.

The typing of the µ-abstractions and λ-abstractions is determined by the typing of the
variables: if t : o and v is an assumption or conclusion variable of type T , then µv:T.t : ∼T
and λv:T.t : ∼T .

There are three variants of Truth Table Logic, but we first give the generic definition.

H. Geuvers and T. Hurkens 2:21

▶ Definition 37 (Truth Table Logic). Given a set of connectives C with their truth tables
and the propositional formulas generated from C, we define the following classes of types and
pre-terms:

T ::= Φ | ∼T
t ::= f · a | a · f
f ::= α | λx : T.t | [a ; f]r
a ::= x | µα : T.t | {a; f}r

where Φ ranges over formulas, α ranges over conclusion variables, x ranges over assumption
variables, and r ranges over the rules of the connectives.

Contexts are of the form Γ; ∆, where Γ consists of declarations of assumption variables,
typically Γ = x1 : T1, . . . , xn : Tn, and ∆ consists of declarations of conclusion variables,
typically ∆ = α1 : T1, . . . , αm : Tm.

A typing judgment is of the respective forms Γ; ∆ ⊢ t : o, Γ; ∆ ⊢ f : T , Γ; ∆ ⊢ a : T , for
some type T . We have the derivation rules below for deriving a typing judgment.

The allowed form of the type T in each of the rules depends on the variant of Truth Table
Logic, and will be specified in Definition 38. In the rules (in-pat) and (el-pat), each Ti and Tk

is the type of µ-abstractions and each Tj and Tℓ is the type of λ-abstractions in the specific
variant of Truth Table Logic.

(hyp), if x : T ∈ Γ
Γ; ∆ ⊢ x : T

(conc), if α : T ∈ ∆
Γ; ∆ ⊢ α : T

Γ, x : T ; ∆ ⊢ t : o
(λ)

Γ; ∆ ⊢ λx : T.t : ∼T

Γ; ∆, α : T ⊢ t : o
(µ)

Γ; ∆ ⊢ µα : T.t : ∼T

Γ; ∆ ⊢ f : ∼T Γ; ∆ ⊢ a : T
(app1)

Γ; ∆ ⊢ f · a : o
Γ; ∆ ⊢ a : ∼T Γ; ∆ ⊢ f : T

(app2)
Γ; ∆ ⊢ a · f : o

. . .Γ; ∆ ⊢ ai : TiΓ; ∆ ⊢ fj : Tj . . .
(in-pat)

Γ; ∆ ⊢ {ai; fj}r : T

. . .Γ; ∆ ⊢ ak : TkΓ; ∆ ⊢ fℓ : Tℓ . . .
(el-pat)

Γ; ∆ ⊢ [ak ; fℓ]r : T

Here, Φ = c(A1, . . . , An) and if r is a 1-row for connective c we have the rule (in-pat),
where the Ti are related to the Ai for which ri = 1 and the Tj are related to the Aj for which
rj = 0. If r is a 0-row for c we have the rule (el-pat), where the Tk are related to the Ak for
which rk = 1 and the Tℓ are related to the Aℓ for which rℓ = 0.

We now define how the various logics arise from the definition by specifying what is
allowed for T in the various derivation rules. In each variant of Truth Table Logic, conclusion
variables α for Φ and elim patterns [a ; f]r for Φ are of type ∼Φ. This implies that µ-
abstractions for Φ, µα : ∼Φ.t, are of type ∼∼Φ and substituting an elim pattern for a
conclusion variable in a proof term is well-typed.

TYPES 2022

2:22 Classical Natural Deduction from Truth Tables

▶ Definition 38. Classical multi-conclusion calculus Class-mc is specified by

∼∼Φ ∼Φ Φ
µα.t λx.t

α x

[f ; g]r {f ; g}r

Intuitionistic single-conclusion calculus Int is specified by

∼∼∼Φ ∼∼Φ ∼Φ Φ
λx.t µα.t

x α

[f ; g]r {f ; g}r

Classical single-conclusion calculus, Class-sc is specified by

∼∼Φ ∼Φ Φ
µα.t λx.t

α x

{f ; g}r [f ; g]r

In the Class-mc variant of Truth Table Logic, all proof-terms of the forms (µα.t) · [f ; g]r
and (λx.t) · {f ; g}r are permitted. Note that we have reversed some of the applications, and
some proof terms can be reduced further than in the original Class-mc.

▶ Example 39. We revisit Example 21, where we saw a classical multi-conclusion proof term
of type z : ¬¬A ⊢ α : A. We can recast that term in Class-mc in Truth Table Logic, and
then we have the following term t of type o in the context z : ¬¬A;α : ∼A.

t := (µγ : ∼¬¬A.γ · z) · [µβ : ∼¬A.(λy : ¬A.β · y) · {;λx : A.α · x}r ;]r′

But there is a simpler term, because we can normalize t further. (See below for the reduction
rules.) Then we get z : ¬¬A;α : ∼A ⊢ t′ : o with

t′ := [µβ : ∼¬A.β · {;λx : A.α · x}r ;]r′ · z.

The derivation in Truth Table Logicis as follows, where we omit z : ¬¬A and α : ∼A
from the context, except for the conclusion.

β : ∼¬A ⊢ β : ∼¬A

x : A. ⊢ α · x : o
⊢ λx : A.α · x : ∼A

⊢ {;λx : A.α · x}r : ¬A

β : ∼¬A ⊢ β · {;λx : A.α · x}r : o
⊢ [µβ : ∼¬A.β · {;λx : A.α · x}r ;]r′ : ∼¬¬A ⊢ z : ¬¬A

z : ¬¬A;α : ∼A ⊢ [µβ : ∼¬A.β · {;λx : A.α · x}r ;]r′ · z : o

In Int, we have reversed the application α ·x, but that is merely a syntactic reformulation.
The main point of Int is that we do not have (λx.t) ·{f ; g}r, to avoid the classical introduction
rule. In Int we only have γ · {f ; g}r, which is exactly the term we had for the intuitionistic
introduction rule in Definition17.

The system Class-sc is a subsystem of Class-mc, but we avoid the redex (λx.t) · {f ; g}r,
by reversing the order of application to {f ; g}r · (λx.t). See below for the reduction rules,
where we will enforce that only an abstraction on the left of an application gives a redex.
This avoids the possibility of having multiple free conclusion variables in a proof term.

H. Geuvers and T. Hurkens 2:23

▶ Definition 40 (Reduction of proof terms in Truth Table Logic). In the (intuitionistic)
variant in which patterns are applied in the order [. . .] · {. . .} and abstractions in the order
(λx.s) · (µα.t), proof terms are reduced to proof terms as follows:

(λx : T.t) · a −→ t[x := a]
(µα : T.t) · f −→ t[α := f]

[bk ; gℓ]r · {ai; fj}r′ −→ gℓ · ai

if i = ℓ as indexes in 1, . . . , n, where Φ = c(A1, . . . , An)
and r, r′ are rules for Φ

[bk ; gℓ]r · {ai; fj}r′ −→ fj · bk

if j = k as indexes in 1, . . . , n, where Φ = c(A1, . . . , An)
and r, r′ are rules for Φ

In the classical variants, the order of the patterns in the redex and/or the order of the parts
in the reduct is reversed.

That Truth Table Logic is a unification of the logics (actually the calculi) that we have
seen in the previous section can be stated and proven precisely.

▶ Lemma 41. For each of the calculi of the previous section, Int, Class and Class-mc, the
obvious interpretation [[−]] of proof terms of the logic as proof terms of Truth Table Logic has
the following properties.
1. If t : (Γ ⊢ ∆) in Int, Class or Class-mc, then Γ; ∆ ⊢ [[t]] : o in Truth Table Logic.
2. If t −→ q in Int, then [[t]] −→+ [[q]], where −→+ is the transitive closure of −→.
3. If Γ; ∆ ⊢ q : o in the classical multi-conclusion variant of Truth Table Logic, and q is

in normal form, we can reconstruct a proof term t in Class-mc such that [[t]] = q and
t : (Γ ⊢ ∆) in Class-mc

Proof. The interpretation is the obvious one, and the proof is a direct check of all the
cases. ◀

A proof term f · a is a redex if f is an abstraction or both f and a are patterns. In most
variants, for each proof term f · a in normal form, at least one of the parts is a variable. In
such a calculus, each normal proof has the sub-formula property: except for the assumptions,
conclusions and sub-formulas, no other formulas are used.

The normal forms of type o of the intuitionistic variant of our term calculus are of the
following shape:

x · α | α · {f ; g}r | x · [f ; g]r

In the other variants, the order of the parts of some of these normal forms are reversed.
There are no variants with proof terms f · a in which f is a variable and a an abstraction.
But the single-conclusion classical variant has proof terms of the form {. . .} · (λx.t). In this
calculus, more proof term reductions are needed to get the sub-formula property.

We now prove Strong normalization of reduction for each variant of Truth Table Logic,
showing that every reduction sequence leads to a proof term in normal form. We will define,
with induction on the type T of terms t the property “t is hereditarily strong normalizing”.
Then we prove, by induction on the structure of a term t, that each substitution of hereditarily
strong normalizing terms for the free variables of t results in a (hereditarily) strongly
normalizing term.

TYPES 2022

2:24 Classical Natural Deduction from Truth Tables

For the rest of this section, the variant of Truth Table Logic is fixed. So the types of the
conclusion and assumption variables, λ- and µ-abstractions, elim and intro patterns for a
formula Φ are specific choices from ∼∼∼Φ, ∼∼Φ, ∼Φ, and Φ.

To prove strong normalization we need the notion of “hereditarily strongly normalizing”.

▶ Definition 42. We say that a term t is HSN (hereditarily strongly normalizing) if
1. t is SN,
2. if t is an abstraction λx : T.e or µα : T.e, then t · a is SN for each HSN a : T ,
3. if t is a pattern {a; f}r or [a ; f]r, then all a, f are HSN.
Note that this definition is by induction on the type of term t.

Also note that if t is HSN and t −→ t′, then t′ is HSN. This follows from the fact that
each redex and each reduct is a proof term:

if t′ is an abstraction λx.e′ or µα.e′, then t must be of the form λx.e or µα.e where
e −→ e′,
if t′ is a pattern {a′; f ′}r or [a′ ; f ′]r, then t must be a pattern {a; f}r or [a ; f]r that is
the same as t′ except that for a single i or j, ai −→ a′

i or fj −→ f ′
j .

▶ Definition 43. We consider substitutions σ that assign terms to variables in a well-typed
way:

for each assumption variable x of type T , σ(x) : T ,
for each conclusion variable α of type T , σ(α) : T .

Substitution for variables extends in a straightforward way to all terms, so we write σ(t) for
the result of substituting σ(v) for each free occurrence of v in a term t (after having renamed
bound variables in t if needed to avoid capturing of free variables of σ(v)). Note that t and
σ(t) are terms of the same type.

A substitution σ is HSN if term σ(v) is HSN for each variable v.
A term t is strongly HSN if term σ(t) is HSN for each HSN substitution σ.

Since each variable x or α is HSN, the identity substitution is HSN and so each strongly HSN
term is HSN.

As usual, reduction rules are closed under substitution: if t −→ t′ then σ(t) −→ σ(t′).
By definition, t −→ t′ if and only if t has a subterm s (possibly s = t itself) that is a redex
with reduct s′ and t′ is the result of replacing s in t by s′. Since, as usual, each free variable
of s′ is a free variable of s, there is no danger of unintended capturing of a free variable of s′

by a surrounding abstraction inside t. Let σ′ be the substitution that is like σ, except that
σ′(v) = v for each variable v that is bound by an abstraction surrounding the subterm s of t.
Then for the corresponding reduction σ(t) −→ σ(t′), the subterm σ′(s) of σ(t) is replaced by
σ′(s).

The usually β-reduction (λx.t) · a −→ t[x := a] has the special property that for each
substitution σ, σ((λx.t) · a) −→ σ′(t), where the substitution σ′ is like σ except that
σ′(x) = σ(a).

▶ Lemma 44. If proof term e is strongly HSN, then the abstractions λx.e and µα.e are
strongly HSN.

Proof. Let e be a strongly HSN proof term and σ an HSN substitution. We do the case
for λx : T.e. We have to show that σ(λx.e) is HSN. Note that σ(λx.e) = λx.σ′(e) where
substitution σ′ is like σ, except that σ′(x) = x. For (1), we need that λx.σ′(e) is SN, which
follows from the fact that substitution σ′ is HSN and term e is strongly HSN. For (2), let
a : T be HSN. We have to show that (λx.σ′(e)) · a is SN. Since λx.σ′(e) and a are SN, an
infinite path from (λx.σ′(e)) · a must contract a redex (λx.e′) · a′ where σ′(e) −→∗ e′ and
a −→∗ a′.

H. Geuvers and T. Hurkens 2:25

In Truth Table Logic, this reduct is e′[x := a′]. Note that σ′(e)[x := a′] −→∗ e′[x := a′].
Let σ′′ be the substitution that is like σ and σ′ except that σ′′(x) = a′. Substitution σ′′ is
HSN since term a′ : T is HSN. So proof term σ′′(e) is SN. Now σ′′(e) = σ′(e)[x := a′] −→∗

e′[x := a′], so the reduct e′[x := a′] is SN and cannot create an infinite path either. ◀

Note that the situation is different if we add reduction rules like those for Class-mc in
which redex (λx.e′) · a′ can have reducts of the form (λx.e′′) · a′ where e′ ̸−→∗ e′′ but
e′[x := a′] −→+ e′′[x := a′]. Then σ′′(e) −→+ e′′[x := a′], so e′′[x := a′] is SN. This implies
that e′′ is SN, so an infinite path from (λx.e′′) · a must contract a redex again. This cannot
happen infinitely often: an infinite path (λx.e′) · a −→ (λx.e′′) · a −→ (λx.e′′′) · a −→ . . .

would result in an infinite path e′[x := a′] −→+ e′′[x := a′] −→+ e′′′[x := a′] −→

▶ Lemma 45. Each term t is strongly HSN.

Proof. We prove this by induction on t.
If t is a variable α or x, then for each HSN substitution σ, σ(t) is HSN by definition.
If t is an abstraction λx.e or µα.e, then the proof term e is strongly HSN by induction,
so t is strongly HSN by Lemma 44.
If t is a pattern {a; f}r or [a ; f]r, then all terms a, f are strongly HSN by induction. Let
σ be an HSN substitution. We have to show that σ(t) is an HSN term. For (1), we need
that σ(t) is SN, which follows from the fact that all terms σ(ai) and σ(fj) are SN. For
(3), we need that all all terms σ(ai) and σ(fj) are HSN, which holds by induction.
If t is a proof term f · a, then the terms f and a are strongly HSN by induction. Let σ be
an HSN substitution. We have to show that σ(t) is an HSN term. Since σ(t) = σ(f) ·σ(a),
we only need to show (1): proof term σ(f) · σ(a) is SN. Both σ(f) and σ(a) are HSN and
thus SN. An infinite path from σ(f) ·σ(a) must contract a redex f ′ ·a′ where σ(f) −→∗ f ′

and σ(a) −→∗ a′. Now both f ′ and a′ are HSN terms. Since f ′ · a′ is a redex in Truth
Table Logic, either f ′ is an abstraction or both f ′ and a′ are patterns. If f ′ is an HSN
abstraction, then by (1), since a′ is HSN, f ′ · a′ is SN. If both f ′ and a′ are HSN patterns
for some formula Φ = c(A1, . . . , An) and the reduct is f ′′ · a′′, then f ′′ and a′′ are HSN
terms for some subformulas Ai, so f ′′ and a′′ are SN. So an infinite path from f ′′ · a′′

must contract a redex f ′′′ · a′′′ again, where f ′′ −→∗ f ′′′ and a′′ −→∗ a′′′. Since f ′′′ has
the same type as f ′′ (and a′′′ has the same type as a′′), related to formula Ai, this cannot
happen infinitely often. ◀

▶ Theorem 46. All proof terms in Truth Table Logic are SN.

Proof. By Lemma 45, each (proof) term is strongly HSN, so HSN, so SN. ◀

7 Conclusion

We have shown a couple of basic results for general classical logic derived from truth tables.
Most surprisingly maybe is that one classical connective makes the whole logic classical: it
is not possible to combine e.g. a classical implication with a constructive negation, as the
negation becomes classical due to the fact that implication is classical. Truth Table Natural
Deduction, TT-ND, provides the good setting for studying these properties as it gives generic
deduction rules for connectives “in isolation”, i.e. without explaining one connective in terms
of the other.

Then we have studied the proof theory of classical TT-ND, and we have introduced
proof terms for classical deductions that use both assumption variables (hypotheses) and
conclusion variables. This has enabled us to study proof normalization, with the aim that

TYPES 2022

2:26 Classical Natural Deduction from Truth Tables

proofs in normal form satisfy the sub-formula property. The use of conclusion variables turns
out to be useful in general, also for the intuitionistic case, where it enables a reduction rule
that unifies detour steps and permutation steps. Conclusion variables also naturally enable
multi-conclusion natural deduction. Classical multi-conclusion TT-ND is the most general of
these systems, where other systems can be embedded into. For this system we prove strong
normalization. Classical multi-conclusion TT-ND also emphasizes that there are basically
four term-formers: λ-abstraction, µ-abstraction, intro patterns and elim patterns, where the
latter two are derived from the truth table. Based on this we define Truth Table Logic as a
unifying system.

8 Future and Related Research

For future work, we see the further study of Truth Table Logic as unifying framework for
TT-ND. Truth Table Logic also emphasizes the interpretation of proofs of a negated formula
as a continuation, where ∼Φ denotes the type of continuations over Φ. This relates to the
general question of the computational interpretation of classical proofs, which has been
studied in various research works, like [13, 2, 4], and it is to be studied how our generic
computation rules relate to the concrete ones studied in these papers for implication.

Also, the system TT-ND derives rules from a truth table, but that doesn’t cover all
possible connectives. E.g. if one defines a constructive connective in terms of other, the truth
table one obtains generates constructive rules that are sometimes stronger and sometimes
weaker than the constructive formula. For example, if we consider the truth table for
c(A,B) := ¬A → B, the constructive rules we derive for c are exactly the ones for A ∨ B,
which is stronger than ¬A → B. On the other hand, if we consider the truth table for
d(A,B) := ¬A ∨ B, the constructive rules we derive for c are exactly the ones for A → B,
which is weaker than ¬A ∨B.

Olkhovikov and Schroeder-Heister [12] also show examples of this, e.g. for A ∨ (B → C)
one can write down the truth table and derive constructive rules, but they are weaker than
the constructive formula A ∨ (B → C) (because one basically obtains B → (A ∨ C)). The
TT-ND derived rules give so called “flat elimination” rules [15], and it is likely that it defines
exactly the connectives with flat elimination rules. We conjecture that if c(A1, . . . , An) is a
formula defined in terms of the standard connectives, and we derive constructive rules form
the truth table for c, then we get a formula equivalent to c(A1, . . . , An) if in every subformula
(of c(A1, . . . , An)) of the shape P ∨Q, Q ∨ P , P → Q or ¬P , P does not contain negation
or implication. Or put differently: in P we only have monotone connectives.

This is related to the general study of elimination rules [11, 19], the notion of higher
level rules [16] and “harmony” in logic [15, 5]. It would be interesting to see which class of
connectives can be defined using TT-ND, and whether the generic approach can be extended
to more connectives, e.g. with higher level elimination rules.

Also, based on generalizing λµ of Parigot [13], and with a semantic view on dualizing
implication Crolard [3] has defined the − connective, which has a constructive interpretation
that is different from what we would get from a truth table. The interpretation in Kripke
models “looks downward”, which our interpretation doesn’t do. It would be interesting
whether the ideas of Crolard can be generalized to other connectives. The relation between
Crolard’s work and the work on generalized elimination rules and harmony in logic is also
unclear.

Finally, there is the obvious question of how these results extend to predicate logic. We
are working on extending the TT-ND ideas to predicate logic and define general rules, both
classical and constructive for quantifiers, “in isolation”, that is without explaining them in
terms of other quantifiers.

H. Geuvers and T. Hurkens 2:27

References
1 Andreas Abel. On model-theoretic strong normalization for truth-table natural deduction.

In Ugo de’Liguoro, Stefano Berardi, and Thorsten Altenkirch, editors, 26th International
Conference on Types for Proofs and Programs, TYPES 2020, March 2-5, 2020, University of
Turin, Italy, volume 188 of LIPIcs, pages 1:1–1:21. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2020. doi:10.4230/LIPIcs.TYPES.2020.1.

2 Z. Ariola and H. Herbelin. Minimal classical logic and control operators. In ICALP, volume
2719 of LNCS, pages 871–885. Springer, 2003.

3 T. Crolard. A formulae-as-types interpretation of subtractive logic. J. Log. Comput., 14(4):529–
570, 2004.

4 P.-L. Curien and H. Herbelin. The duality of computation. In ICFP, pages 233–243, 2000.
5 N Francez and R Dyckhoff. A note on harmony. Journal of Philosophical Logic, 41(3):613–628,

June 2012. doi:10.1007/s10992-011-9208-0.
6 H Geuvers and T Hurkens. Deriving natural deduction rules from truth tables. In Logic

and Its Applications – 7th Indian Conference, ICLA 2017, Kanpur, India, January 5-7,
2017, Proceedings, volume 10119 of Lecture Notes in Computer Science, pages 123–138, 2017.
doi:10.1007/978-3-662-54069-5_10.

7 H Geuvers and T Hurkens. Proof terms for generalized natural deduction. In Andreas Abel,
Fredrik Nordvall Forsberg, and Ambrus Kaposi, editors, 23rd International Conference on
Types for Proofs and Programs, TYPES 2017, May 29-June 1, 2017, Budapest, Hungary,
volume 104 of LIPIcs, pages 3:1–3:39. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik,
2018. doi:10.4230/LIPIcs.TYPES.2017.3.

8 H. Geuvers, I. van der Giessen, and T. Hurkens. Strong normalization for truth table natural
deduction. Fundam. Inform., 170(1-3):139–176, 2019.

9 Tomoaki Kawano, Naosuke Matsuda, and Kento Takagi. Effect of the choice of connectives on
the relation between classical logic and intuitionistic logic. Notre Dame Journal of Formal
Logic, 63(2), 2022. doi:10.1215/00294527-2022-0016.

10 Peter Milne. Inversion principles and introduction rules. In Heinrich Wansing, editor, Dag
Prawitz on Proofs and Meaning, pages 189–224. Springer International Publishing, Cham,
2015. doi:10.1007/978-3-319-11041-7_8.

11 S. Negri and J. von Plato. Structural Proof Theory. Cambridge University Press, 2001.
12 Grigory K. Olkhovikov and Peter Schroeder-Heister. On flattening elimination rules. Rev.

Symb. Log., 7(1):60–72, 2014. doi:10.1017/S1755020313000385.
13 M. Parigot. λµ-calculus: An algorithmic interpretation of classical natural deduction. In

LPAR, volume 624 of LNCS, pages 190–201. Springer, 1992.
14 D. Prawitz. Natural deduction: a proof-theoretical study. Almqvist & Wiksell, 1965.
15 S Read. Harmony and autonomy in classical logic. Journal of Philosophical Logic, 29(2):123–154,

2000. doi:10.1023/A:1004787622057.
16 Peter Schroeder-Heister. The calculus of higher-level rules, propositional quantification, and

the foundational approach to proof-theoretic harmony. Stud Logica, 102(6):1185–1216, 2014.
doi:10.1007/s11225-014-9562-3.

17 A.S. Troelstra and D. van Dalen. Constructivism in Mathematics, volume I. Number volume
121 in Studies in Logic and the Foundations of Mathematics. Elsevier Science, 1988.

18 I. van der Giessen. Natural deduction derived from truth tables, Master Thesis Mathemat-
ics, Radboud University Nijmegen, July 2018. URL: http://www.cs.ru.nl/~herman/PUBS/
Masterscriptie_IrisvanderGiessen.pdf.

19 J. von Plato. Natural deduction with general elimination rules. Arch. Math. Log., 40(7):541–567,
2001.

TYPES 2022

https://doi.org/10.4230/LIPIcs.TYPES.2020.1
https://doi.org/10.1007/s10992-011-9208-0
https://doi.org/10.1007/978-3-662-54069-5_10
https://doi.org/10.4230/LIPIcs.TYPES.2017.3
https://doi.org/10.1215/00294527-2022-0016
https://doi.org/10.1007/978-3-319-11041-7_8
https://doi.org/10.1017/S1755020313000385
https://doi.org/10.1023/A:1004787622057
https://doi.org/10.1007/s11225-014-9562-3
http://www.cs.ru.nl/~herman/PUBS/Masterscriptie_IrisvanderGiessen.pdf
http://www.cs.ru.nl/~herman/PUBS/Masterscriptie_IrisvanderGiessen.pdf

On Dynamic Lifting and Effect Typing in Circuit
Description Languages
Andrea Colledan #

University of Bologna, Italy
INRIA Sophia Antipolis, France

Ugo Dal Lago #

University of Bologna, Italy
INRIA Sophia Antipolis, France

Abstract
In the realm of quantum computing, circuit description languages represent a valid alternative to
traditional QRAM-style languages. They indeed allow for finer control over the output circuit,
without sacrificing flexibility nor modularity. We introduce a generalization of the paradigmatic
lambda-calculus Proto-Quipper-M, which models the core features of the quantum circuit description
language Quipper. The extension, called Proto-Quipper-K, is meant to capture a very general form
of dynamic lifting. This is made possible by the introduction of a rich type and effect system in
which not only computations, but also the very types are effectful. The main results we give for the
introduced language are the classic type soundness results, namely subject reduction and progress.

2012 ACM Subject Classification Theory of computation → Operational semantics; Theory of
computation → Type theory; Hardware → Quantum computation

Keywords and phrases Circuit-Description Languages, λ-calculus, Dynamic lifting, Type and effect
systems

Digital Object Identifier 10.4230/LIPIcs.TYPES.2022.3

Related Version Extended Version: https://arxiv.org/abs/2202.07636 [2]

Funding The research leading to these results has received funding from the European Union -
NextGenerationEU through the Italian Ministry of University and Research under PNRR - M4C2 -
I1.4 Project CN00000013 “National Centre for HPC, Big Data and Quantum Computing”.

1 Introduction

Despite the undeniable fact that large-scale, error-free quantum hardware has yet to be
built [19], research into programming languages specifically designed to be compiled towards
architectures including quantum hardware has taken hold in recent years [17]. Most of the
proposals in this sense (see [9, 22, 24] for some surveys) concern languages that either express
or can be compiled into some form of quantum circuit [15], which can then be executed
by quantum hardware. This reflects the need to have tighter control over the kind and
amount of quantum resources that programs employ. In this scenario, the idea of considering
high-level languages that are specifically designed to describe circuits and in which the latter
are treated as first-class citizens is particularly appealing.

A typical example of this class of languages is Quipper [10, 11], whose underlying design
principle is precisely that of enriching a very expressive and powerful functional language like
Haskell with the possibility of manipulating quantum circuits. In other words, programs do
not just build circuits, but also treat them like data, as can be seen in the example from
Figure 1. Quipper’s meta-theory has been studied in recent years through the introduction of
a family of research languages that correspond to suitable Quipper fragments and extensions,

© Andrea Colledan and Ugo Dal Lago;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Types for Proofs and Programs (TYPES 2022).
Editors: Delia Kesner and Pierre-Marie Pédrot; Article No. 3; pp. 3:1–3:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:andrea.colledan@unibo.it
https://orcid.org/0000-0002-0049-0391
mailto:ugo.dallago@unibo.it
https://orcid.org/0000-0001-9200-070X
https://doi.org/10.4230/LIPIcs.TYPES.2022.3
https://arxiv.org/abs/2202.07636
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 On Dynamic Lifting and Effect Typing in Circuit Description Languages

alice :: Qubit -> Qubit -> Circ (Bit,Bit)
alice q a = do
a <- qnot a ‘controlled‘ q
q <- hadamard q
(x,y) <- measure (q,a)
return (x,y)

q H x

a y

Figure 1 Alice’s part of the quantum teleportation circuit. The Quipper program on the left
builds the circuit on the right, but while doing so it also manipulates the smaller circuit qnot a,
enriching it with control.

teleport :: Qubit -> Qubit -> Qubit -> Circ Qubit
teleport b q a = do
a <- qnot a ‘controlled‘ q
q <- hadamard q
(x,y) <- measure (q,a)
(u,s) <- dynamic_lift (x,y)
b <- if s then gate_X b else return b
b <- if u then gate_Z b else return b
return b

x

y

b

b

q H X

a Z

X Z

00

⇑ u 01

⇑ s 10

11

Figure 2 Quantum teleportation circuit with dynamic lifting. The gray box is not a gate, but
rather represents the dynamic lifting of bit wires x and y into variables u and s and the extension
of the circuit with one of four possible continuations for the remaining wire b, depending on the
outcome of the intermediate measurements.

which usually take the form of linear λ-calculi. We are talking about a family of languages
whose members include Proto-Quipper-S [21], Proto-Quipper-M [20], Proto-Quipper-D [5, 7],
Proto-Quipper-L [13] and Proto-Quipper-Dyn [6].

An aspect that until very recently has only marginally been considered by the research
community is the study of the meta-theory of so-called dynamic lifting, i.e. the possibility of
allowing the (classical) value flowing in one of the wires of the underlying circuit, naturally
unknown at circuit building time, to be visible in the host program for control flow. As an
example, one could append a unitary to some of the wires only if a previously performed
measurement has yielded a certain outcome. This is commonly achieved in many quantum
algorithms via classical control, but Quipper also offers a higher-level solution precisely in
the form of dynamic lifting, as can be seen in the example program in Figure 2. Notably,
such a program cannot be captured by any of the calculi in the Proto-Quipper family, with
the exception of Proto-Quipper-L [13] and Proto-Quipper-Dyn [6], arguably the most recent
additions to the family.

Looking at the Quipper program in Figure 2, one immediately realizes that the two
branches of both occurrences of the if operator change the underlying circuit in a uniform
way, i.e. the number and type of the wires are the same in either branch. What if, for
instance, we wanted to condition the execution of a measurement on a lifted value, like in
Figure 3? Unfortunately, Quipper does not allow the program in Figure 3 to be typed, on
account of the two branches of the if operators having different types. A program such as
this could come from the so-called measurement calculus [4], where it would be referred to as
a pattern, i.e. a sequence of simple operations that act on qubits in a way not so different
from what happens in quantum circuits, but with the crucial difference that the basis of a

A. Colledan and U. Dal Lago 3:3

oneWay :: Qubit -> Qubit -> Bit
oneWay q a = do
q <- hadamard q
x <- measure q
u <- dynamic_lift x
a <- if u then meas_alpha a else return a
a <- if not u then meas_beta a else return a
return a

xq H measβ
a

a measα

⇑ u 0

1

Figure 3 An example of conditional measurement, where measα and measβ measure a qubit in
two distinct bases. This program is ill-typed in Quipper.

xq H
a

a measα

⇑ u 0

1

Figure 4 The circuit produced by the program in Figure 3 without the last conditional.

measurement can depend on the outcome of previous measurements. Globally, the program
builds a uniformly typed circuit (which always outputs a bit), but locally there are some
intermediate steps where the output type is heterogeneous. Of course, in this case, the two
if operators could be collapsed into one, avoiding local heterogeneity, but there are cases in
which keeping two conditionals would be preferable. For example, we might be interested in
doing away with the second if and reusing the resulting heterogeneous sub-circuit (shown in
Figure 4) multiple times when building a more complex circuit, changing only the basis of
the second measurement from time to time.

Giving a proper status to the programs that build this kind of heterogeneous circuits
would thus endow the programming language with greater flexibility and modularity, so it
is natural to wonder whether that of Quipper is an intrinsic limitation or if a richer type
system can deal with a more general form of circuits.

In this paper, we introduce a generalization of Proto-Quipper-M, called Proto-Quipper-K,
in which dynamic lifting is available in a very general form, even more so than in the original
Quipper language. This newly introduced language is capable of producing not only circuits
like the one in Figure 2, but rather a more general class of circuits whose structure and
type essentially depend on the values flowing through the lifted channels, like the one in
Figure 4. We show throughout the paper that this asks for a non-trivial generalization
of Proto-Quipper-M’s type system, in which types reflect the different behaviors a circuit
can have. This is achieved through a type and effect system [16] which assigns any Proto-
Quipper-K computation (possibly) distinct types depending on the state of the lifted variables.
The main results, beside the introduction of the language itself, its type system, and its
operational semantics, are the type soundness results of subject reduction and progress,
which together let us conclude that well-typed Proto-Quipper-K programs do not go wrong.
An extended version of this paper with more detailed definitions and proofs is available [2].

2 Circuits and Dynamic Lifting: a Bird’s-Eye View

This section is meant to provide an informal introduction to the peculiarities of the Proto-
Quipper family of paradigmatic programming languages, for the non-specialists. The host
language, namely Haskell, is modeled as a linearly typed λ-calculus. Terms, in addition

TYPES 2022

3:4 On Dynamic Lifting and Effect Typing in Circuit Description Languages

λqQubit.λaQubit.let (q, a) = apply(CNOT , (q, a)) in
let q = apply(H , q) in apply(Meas2 , (q, a))

Figure 5 A Proto-Quipper-M program describing the circuit shown in Figure 1. We assume that
we have a constant boxed circuit CNOT , H , Meas2 , etc. for every available primitive operation.

to manipulating ordinary data structures and computing (possibly) higher-order functions,
are allowed to act on an underlying circuit, which we usually refer to as C. During program
evaluation, C can be modified with the addition of wires, gates or entire sub-circuits. This
is made possible through a dedicated operator called apply. But how can the programmer
specify where in C these modifications have to be carried out? This is possible thanks to
the presence of labels, that is, names that identify distinct output wires of C. These labels
are ordinary terms which can be passed around, but have to be treated linearly. Among
other things, they can be passed to apply, together with the specification of which gate or
sub-circuit is to be appended to the underlying circuit C.

But is apply the only way of manipulating circuits? The answer is negative. Circuits,
once built by means of a term, can be “boxed”, potentially copied, and passed to other parts
of the program, where they can be used, usually by appending them to multiple parts of the
underlying circuit. From a linguistic point of view, this is possible thanks to an additional
operator, called box, which is responsible for turning a circuit-building term M of type
!(T ⊸ U) – the type of duplicable functions from label tuples to label tuples – into a term
of type Circ(T, U) – the type of circuits. The term boxM does not touch the underlying
circuit, but rather evaluates M “behind the scenes”, in a sandboxed environment, to obtain
a standalone circuit which is then returned as a boxed circuit.

Measure as a Label-Lifting Operation

The above considerations are agnostic to the kind of circuits being built. In fact, any
type of circuit-like structure can be produced in output by programs of the Proto-Quipper
family of languages, provided that it can be interpreted as a morphism in an underlying
symmetric monoidal category [20]. If we imagine that the produced structure is an actual
quantum circuit, however, it is only natural to wonder whether all the examples of circuits
that we talked about informally in the introduction can be captured by some instance of
Proto-Quipper. Unsurprisingly, the program in Figure 1 is not at all problematic, and can be
handled easily by all languages in the Proto-Quipper family (see Figure 5).

The program in Figure 2, on the other hand, can only be handled by Proto-Quipper-L (see
Figure 6) and Proto-Quipper-Dyn. In Proto-Quipper-L, a measurement can return the Boolean
value corresponding to the outcome of the measurement. When this happens, the ongoing
computation is split into two branches: one in which the Boolean output is true and one in
which it is false. This way, further circuit-altering operations down the line can depend on
the classical information produced by the intermediate measurement. In Proto-Quipper-Dyn
on the other hand, a bespoke operator dynlift allows to turn a term of type Bit into a term
of type Bool, whose result can be used to a similar effect.

How about the program in Figure 3? Unfortunately, this case exceeds the expressiveness
of both Proto-Quipper-L and Proto-Quipper-Dyn, in that it requires the distinct execution
branches to yield values of different types, although only temporarily. The two languages,
on the other hand, require all branches of a computation to share the same type, like in
Quipper. This is where our contribution starts.

A. Colledan and U. Dal Lago 3:5

λbQubit.λqQubit.λaQubit.let (q, a) = (unbox CNOT) (q, a) in
let q = (unbox H) q in
let (u, s) = (unbox MeasLift2) (q, a) in
let b = if s then (unbox X) b else b in
let b = if u then (unbox Z) b else b in b

Figure 6 A Proto-Quipper-L program describing the circuit shown in Figure 2. Informally, terms
of the form (unbox H) q correspond to terms of the form apply(H , q) in Proto-Quipper-M.

u
s

ϵ

ϵ
ϵ

0
0

1
1

Figure 7 An example of a lifting tree. The empty tree is denoted by ϵ.

The Basic Ideas Underlying Proto-Quipper-K

The approach to dynamic lifting that we follow in this paper is radical. The evaluation
of a term M involving the apply operator can give rise to the lifting of a bit value into
a variable u and consequently produce in output not a single result in the set VAL of
values, but possibly one distinct result for each possible value of u. Therefore, it is natural
to think of M as a computation that results in an object in the set K{u}(VAL), where
K{u} = X 7→ ({u} → {0, 1}) → X is a functor such that, for each possible assignment of a
Boolean value to u, K{u}(X) returns an element of X.

What if more than one variable is lifted? For example, a program could lift s after having
lifted u, but only if the latter has value 0. This shows that one cannot just take K{u,s} =
X 7→ ({u, s} → {0, 1}) → X, simply because not all assignments in {u, s} → {0, 1} are
relevant. Instead, one should just focus on the three assignments (u = 0, s = 0), (u = 0, s = 1)
and (u = 1), namely those assignments which are consistent with the tree in Figure 7, which
we call a lifting tree. This is a key concept in this work, which we will discuss in detail in
Section 3. Our type system captures the lifting pattern of an underlying well-typed program
through a lifting tree t and the result of the corresponding computation is an element of
Kt(VAL) where Kt = X 7→ (Pt → X) and Pt is the set of all assignments of variables
which describe a root-to-leaf path in t. Since by design we want to handle situations in which
a circuit, and by necessity the term building it, can produce results which have distinct
types – and not only distinct values – depending on the values of the lifted variables, we also
employ (in the spirit of the type and effects paradigm [16]) an effectful notion of type, in
which computations are typed according to an element of Kt(TYPE), where TYPE is the
set of Proto-Quipper-K types.

3 Generalized Quantum Circuits

A quantum circuit describes a quantum computation by means of the application of quantum
gates, which represent basic unitary operations, to a number of typed input wires, to obtain
a number of typed output wires. In this section, we introduce a general form of circuits in
which the application of any gate to one or more wires can be carried out conditionally on
the classical value flowing in a lifted channel. This is possible even when the gate inputs are
not the same number and type of the gate outputs. This implies that the number and type
of the outputs of a circuit can depend on the values flowing in its wires.

TYPES 2022

3:6 On Dynamic Lifting and Effect Typing in Circuit Description Languages

M-types MTYPE T, U ::= 1 | w | T ⊗ U.

M-values MVAL ℓ⃗, k⃗ ::= ∗ | ℓ | (ℓ⃗, k⃗).

unit
∅ ⊢m ∗ : 1

label
ℓ : w ⊢m ℓ : w tuple

Q ⊢m ℓ⃗ : T L ⊢m k⃗ : U
Q,L ⊢m (ℓ⃗, k⃗) : T ⊗ U

Figure 8 Syntax and rule system for M-types and M-values.

A Syntax for Circuits

We represent the inputs and outputs of a circuit as label contexts, that is, partial mappings
from the set L of label names to the set W = {Bit,Qubit} of wire types. The set L contains
precisely the kind of labels that we mentioned in Section 2, therefore a label context is a way
to attach type information to labeled wires. We write the set of all label contexts as Q.

Whereas the order of wires in a circuit as a whole is irrelevant, the order of wires in a gate
application is crucial. For this reason, we perform gate applications not on label contexts,
but rather on label tuples, which imbue label contexts with a specific ordering via a simple
form of typing judgment. The grammar and typing rules for label tuples, which we call
M-values and whose types we call M-types, following [20], are given in Figure 8. Note that
ℓ ∈ L , w ∈ W , and Q and L are label contexts whose disjoint union is denoted by Q,L.

▶ Definition 1 (Gate Set). Let G be a set of gates, equipped with two functions inType : G →
MTYPE and outType : G → MTYPE . We denote by G (T, U) the set of gates with input
type T and output type U .

As an example, G (Qubit,Qubit) includes the so-called Hadamard gate, which is used to put a
single qubit into a perfect superposition. Besides the set of labels L , there is also another set
of names, called V , which is disjoint from it and contains the lifted variables. An assignment
of lifted variables is then simply a finite sequence of equalities (u1 = p1, . . . , un = pn) which
assign the values p1, . . . , pn ∈ {0, 1} to the distinct variables u1, . . . , un ∈ V , respectively.
We usually indicate assignments with metavariables such as a, b and c.

We now introduce a low-level language to describe quantum circuits at the gate level, which
will serve as a target for circuit building in Proto-Quipper-K. We call it circuit representation
language (CRL) and define it via the following grammar:

C,D ::= input(Q) | C; a ? g(ℓ⃗) → k⃗ | C; a ? lift(ℓ) ⇒ u. (1)

The base case input(Q) corresponds to the trivial identity circuit that takes as input the
wires represented by Q and does nothing to them. The notation a ? g(ℓ⃗) → k⃗ denotes the
application of a gate g to the wires identified by ℓ⃗ to obtain the wires in k⃗, provided that
the condition expressed by a is met. We simply write g(ℓ⃗) → k⃗ when a gate is applied
unconditionally (i.e. when a = ∅). Figure 9a shows a simple example of a CRL circuit
consisting exclusively of gate applications.

On the other hand, a ? lift(ℓ) ⇒ u represents the dynamic lifting of the bit wire ℓ if the
condition expressed by a is met. When we perform dynamic lifting on a bit, we promote its
contents to a Boolean value that is bound to the lifted variable u. This variable can then be
mentioned in subsequent assignments to control whether further operations in the circuit
are executed or not. The introduction of u thus naturally leads to two distinct execution
branches: one in which u = 0 and one in which u = 1. As we do for gate applications, we
write lift(ℓ) ⇒ u when a lifting operation is unconditional. A CRL circuit that performs
dynamic lifting is shown in Figure 9b.

A. Colledan and U. Dal Lago 3:7

input(q0 : Qubit, a0 : Qubit);
CNOT(q0, a0) → (q1, a1);
H(q1) → q2;
Meas2(q2, a1) → (x, y);

(a) Circuit from Figure 1.

input(b0 : Qubit, q0 : Qubit, a0 : Qubit);
CNOT(q0, a0) → (q1, a1);
H(q1) → q2;
Meas2(q2, a1) → (x, y);
lift(x) ⇒ u;
lift(y) ⇒ s;
(s = 1) ? X(b0) → b1;
(u = 1; s = 0) ? Z(b0) → b2;
(u = 1; s = 1) ? Z(b1) → b3;

(b) Circuit from Figure 2.

Figure 9 Two examples of CRL descriptions of a quantum circuit.

Lifting Trees

Naturally, not all CRL expressions denote reasonable circuits. For example, conditioning
the application of a gate on the value of a lifted variable which has not yet been introduced
should be avoided, for obvious reasons. Capturing this idea at the type level is nontrivial,
since the presence of a variable can itself depend on previous liftings. This is where the
concept of lifting tree, which we introduced informally in Section 2, really comes into play.

▶ Definition 2 (Lifting Tree). We define the set T of lifting trees, along with their variable
set on assignment a, seen as a function vara : T → P(V), as the smallest set of expressions
and functions such that

ϵ ∈ T with vara(ϵ) = ∅.
If t0 ∈ T and t1 ∈ T , then for every u that is neither in var∅(t0) nor in var∅(t1) we have
u {t0}{t1} ∈ T and

vara(u {t0}{t1}) = {u} ∪

vara (t0) if a(u) = 0,
vara (t1) if a(u) = 1,
vara(t0) ∪ vara(t1) if a(u) is undefined.

(2)

We often write var(t) as shorthand for var∅(t) to denote all the variables mentioned
in t. By way of lifting trees, we can keep track of whether an assignment, representing
a condition, is consistent with the current state of the lifted variables. Given a lifting
tree t, we call At the set of such assignments (which is easily defined by induction on
t, see [2]). Among these consistent assignments, there are some which are maximal, i.e.
that cannot be further extended: they describe root-to-leaf paths in t and correspond
exactly to the elements of the set Pt which we introduced in Section 2. Unsurprisingly,
for all t we have Pt ⊆ At. As an example, let t be the tree from Figure 7. We have
var(t) = {u, s},At = {∅, (u = 0), (u = 1), (s = 0), (s = 1), (u = 0, s = 0), (u = 0, s = 1)} and
Pt = {(u = 1), (u = 0, s = 0), (u = 0, s = 1)}.

Finally, we can formally define one of the key notions of this paper, not only for circuits,
but also for programs: given a generic set X, Kt(X) indicates the set Pt → X, which we
call the lifting of X, and whose elements we refer to as lifted objects. Despite the fact that

TYPES 2022

3:8 On Dynamic Lifting and Effect Typing in Circuit Description Languages

u
s

q0 : Qubit

c1 : Bit
c2 : Bit

0
0

1
1

(a) Before composition.

u

s
c0 : Bit

c1 : Bit

c2 : Bit

0
0

1

1

(b) After composition.

Figure 10 An example of composition with overwriting.

lifted objects are formally mappings, seeing them as decorated lifting trees whose leaves
are labeled with objects from X is perhaps more intuitive. Following this interpretation,
given x ∈ X, we indicate by {x} the trivial lifted object in Kϵ(X) defined as the mapping
∅ 7→ x, and by u {ξ0}{ξ1} the object in Ku {t0}{t1}(X) defined as a 7→ ξa(u)(a′), where
ξ0 ∈ Kt0(X), ξ1 ∈ Kt1(X) and a′ ∈ Pta(u) is obtained from a by excluding u from its domain.
A graphical representation of this intuition can be found in the form of the trees shown in
figures 10 and 11.

▶ Example 3. Consider Figure 9. The CRL circuit on the left does not perform lifting and
therefore has a trivial output {x : Bit, y : Bit}, while the CRL circuit on the right does and
has output u {s {b0 : Qubit}{b1 : Qubit}}{s {b2 : Qubit}{b3 : Qubit}}.

The same intuition informs the various operations that we define homogeneously on lifting
trees and lifted objects. The first is a very natural one: if t is a lifting tree and {xa}a∈I is
a family of elements in X indexed on a subset I ⊆ Pt of the root-to-leaf paths of t, then
the expression t[xa]Ia stands for the lifted object obtained by sticking each xa to the leaf
of t identified by a ∈ I. Note that this operation, which we call composition, is generally
loosely typed and can give rise to heterogeneous lifted objects. However, in the case I = Pt,
the resulting lifted object belongs to Kt(X). In this case we also write t[xa]a as shorthand
for t[xa]Pt

a , whereas when I is a singleton {b} we usually omit the subscript a and write
t[x]{b} for t[xa]{b}

a . We also allow already specified lifted objects to appear on the left of a
composition, in which case we overwrite the interested leaves. For instance, if ∆ is a lifted
label context, we often write the expression ∆[Q]{a} to denote the lifted label context that
associates Q to a and is otherwise equal to ∆ on all the other branches.

▶ Definition 4 (Composition). Given ξ ∈ Kt(X), an index set I ⊆ Pt and a family {xa}a∈I

of elements in X, we define the composition of ξ and {xa}a∈I , written ξ[xa]Ia, as

{y}[xa]∅a = {y},

{y}[xa]{∅}
a = {xa},

u {ξ0}{ξ1}[xa]Ia = u {ξ0[xa]I0
a }{ξ1[xa]I1

a },
(3)

where Ib = {a|var(t)\{u} | a ∈ I ∧ a(u) = b} and a|var(t)\{u} denotes the exclusion of u from
the domain of a.

▶ Example 5. Let t = u {s {ϵ}{ϵ}}{ϵ} and let ∆ = u {s {q0 : Qubit}{c1 : Bit}}{c2 : Bit} ∈
Kt(Q) be a lifted label context, which graphically corresponds to the tree shown in Figure
10a. We have ∆[c0 : Bit]{u=0,s=0} = u {s {c0 : Bit}{c1 : Bit}}{c2 : Bit} ∈ Kt(Q), which
corresponds to the tree shown in Figure 10b.

The second operation is a flattening operation, which we indicate with ⌊·⌋. Intuitively, if
we have a lifted object whose leaves are themselves trees, the flattening operation “unwraps”
the trees in the leaves so that they become sub-trees of said lifted object. Given a family of

A. Colledan and U. Dal Lago 3:9

u

s
c0 : Bit

c1 : Bit

s
c2 : Bit

c3 : Bit

0

0

1

1 0

1

(a) Before flattening.

u

s
c0 : Bit

c1 : Bit

s
c2 : Bit

c3 : Bit

0

0

1

1 0

1

(b) After flattening.

Figure 11 An example of flattening.

trees {ra}a∈Pt
the difference between t[ra]a and ⌊t[ra]a⌋ is therefore that the former is an

element of Kt(T), whereas the latter is a proper element of T . This operation is well-defined
when vara(t) ∩ var(ra) = ∅ for every a ∈ Pt. We can also flatten when we have have lifted
objects on the right side of a composition: if we have t[ξa]a, where ξa ∈ Kra

(X) for every
a ∈ Pt, then ⌊t[ξa]a⌋ ∈ K⌊t[ra]a⌋(X).

A formal definition of flattening requires us to consider a slightly more general operation
⌊·⌋V, where V is a finite set of lifted variables which are accumulated as a lifted object is
traversed. At the leaf level, ⌊{x}⌋V = x only if x is a lifted object in which none of the lifted
variables in V occur (a condition expressed in the first line of Equation 4). In case of name
clashes, the whole operation is undefined and a renaming of lifted variables is required prior
to composition and flattening.

▶ Definition 6 (Flattening). Given ξ ∈ Kt(X), we define the flattening of ξ under V, written
⌊ξ⌋V, as

⌊{y}⌋V =
{
y if ∃r, Y s.t. y ∈ Kr(Y) and V ∩ var(r) = ∅,
{y} if ∄r, Y s.t. y ∈ Kr(Y),

⌊u {ξ0}{ξ1}⌋V = u {⌊ξ0⌋V∪{u}}{⌊ξ1⌋V∪{u}}.

(4)

The actual flattening operation that we employ in the rest of the paper can then be
defined as ⌊·⌋ = ⌊·⌋∅.

▶ Example 7. Reconsider t and u {s {c0 : Bit}{c1 : Bit}}{c2 : Bit} = ∆′ from Example 5.
Let ξ = ∆′[s {c2 : Bit}{c3 : Bit}]{u=1} = u {s {c0 : Bit}{c1 : Bit}}{{s {c2 : Bit}{c3 : Bit}}} ∈
Kt(Q ∪ Ks {ϵ}{ϵ}(Q)). Note that this object, corresponding to Figure 11a, is not properly
a lifted label context, as one of its leaves is itself a lifted label context. Because s does
not occur in varu=1(t) = {u}, we can write ⌊ξ⌋ = u {s {c0 : Bit}{c1 : Bit}}{s {c2 : Bit}{c3 :
Bit}} ∈ Kt′(Q), for t′ = u {s {ϵ}{ϵ}}{s {ϵ}{ϵ}}. This is an actual lifted label context, which
corresponds to Figure 11b.

In conjunction, these two operations greatly simplify our treatment of dynamic lifting, as
they allow us to describe in detail the desired shape of a lifted object. For example, in later
sections we often write ∆ = ⌊∆′[∆′′,Λ]{a}⌋ to say that the lifted label context ∆ is such that
if we start from its root and follow the path described by a, we find a sub-tree ∆′′,Λ (the
disjoint union is lifted in a natural way, as the disjoint union of the corresponding leaves of
∆′′ and Λ when these have the same underlying lifted tree), and that we are interested in
only some elements of the corresponding lifted label context, for instance those that occur
in Λ.

TYPES 2022

3:10 On Dynamic Lifting and Effect Typing in Circuit Description Languages

id
input(Q) ⊢ϵ Q ▷ {Q}

lift
C ⊢t Q ▷∆ a, ℓ : Bit a ∈ At u /∈ vara(t)

C; a ? lift(ℓ) ⇒ u ⊢t�au {ϵ}{ϵ} Q ▷∆ �a u {ϵ}{ϵ}

gate
C ⊢t Q ▷∆ a, Q′ a ∈ At g ∈ G (T, U) Q′ ⊢m ℓ⃗ : T L ⊢m k⃗ : U fresh(k⃗, C)

C; a ? g(ℓ⃗) → k⃗ ⊢t Q ▷∆ a, L

Figure 12 The rules for CRL circuit signatures.

A Formal System for Circuit Signatures

Now that we have introduced lifting trees and lifted objects as a means to reason about
dynamic lifting, we are ready to introduce the notion of signature of a circuit.

▶ Definition 8 (Circuit Signature). Given a circuit C, a lifting tree t, a label context Q and a
lifted label context ∆, a circuit signature is an expression of the form C ⊢t Q ▷∆.

Informally, C ⊢t Q ▷ ∆ means that C takes as input the labels in Q, performs lifting
according to tree t and outputs any of the leaves in ∆, which is a lifted label context backed
by t. More formally, a valid circuit signature is derived by the rules in Figure 12. Note
that ∆ a, Q′ represents the extension of ∆ with Q′ on all leaves reachable by an assignment
consistent with a. Formally, ∆ a, Q′ is shorthand for ∆′[Q′, Qb]

Pa
t

b if ∆ = ∆′[Qb]
Pa

t

b , where
Pa

t contains the paths in Pt which extend a ∈ At. On the other hand, for any ξ ∈ Kt(X)
and r ∈ T such that vara(t) ∩ var(r) = ∅, we write ξ �a r to denote ξ in which every leaf x
reachable by an assignment consistent with a is expanded to a sub-tree r whose leaves are all
x. More formally, ξ �a r is shorthand for ⌊ξ′[r[xb]c]P

a
t

b ⌋, if ξ = ξ′[xb]P
a
t

b .

4 Proto-Quipper-K

We are finally ready to introduce Proto-Quipper-K, a programming language designed exactly
to manipulate the kind of circuits that we presented in the previous section and guarantee
the degree of flexibility that we mentioned in Section 2.

4.1 Types and Terms
The types and syntax of Proto-Quipper-K are given in Figure 13, where x and y range over
the set of variable names, u1, . . . , un over the set V of lifted variable names, t over the
set T of lifting trees and Greek letters generally indicate lifted objects. More precisely,
α, β ∈ Kt(TYPE), υ ∈ Kt(MTYPE), µ ∈ Kt(TERM) and λ ∈ Kt(MVAL), each for some t.
Note that parameter types are the types given to non-linear resources, i.e. duplicable values.
Note also that the M-values and M-types that we introduced in Section 3 are now a proper
subset of Proto-Quipper-K’s values and types, respectively.

A value of the form (ℓ⃗, C, λ)t is what we called a boxed circuit in Section 2, that is, a
datum representation of a circuit C that takes as input the labels in the tuple ℓ⃗, performs
lifting according to t and outputs one of the possible label tuples of λ depending on the lifted
variables in t. Correspondingly, parameter types of the form Circt(T, υ) are called circuit types
and represent boxed circuits. Both boxed circuits and circuit types abstract over the lifted
variables in var(t) and thus enjoy a notion of α-equivalence. The box and apply constructs
are those described in Section 2 and they respectively introduce and consume boxed circuits.
Specifically, the programmer is never expected to write values of the form (ℓ⃗, C, λ)t by hand.

A. Colledan and U. Dal Lago 3:11

Types TYPE A, B ::= 1 | w | A ⊸t β | !α | Circt(T, υ) | A ⊗ B.

Parameter Types PTYPE P, R ::= 1 | !α | Circt(T, υ) | P ⊗ R.

M-types MTYPE T, U ::= 1 | w | T ⊗ U.

Terms TERM M, N ::= V W | let x = M in µ | let (x, y) = V in M

| force V | boxT V | applyu1,...,un
(V, W) | return V.

Values VAL V, W ::= ∗ | x | ℓ | λxA.M | lift M | (ℓ⃗, C, λ)t | (V, W).
M-values MVAL ℓ⃗, k⃗ ::= ∗ | ℓ | (ℓ⃗, k⃗).

Figure 13 Types and terms of Proto-Quipper-K.

Rather, they are expected to introduce the desired circuit by supplying an appropriate
circuit-building term M to the box operator, obtaining a term of the form boxT (liftM). The
use of lift guarantees that M does not make use of any linear resources from the current
environment, i.e. that it can be safely evaluated in an isolated environment to produce C.
After a boxed circuit (ℓ⃗, C, λ)t is introduced, the programmer can potentially copy it and
apply it to the underlying circuit D via a term of the form applyu1,...,un

((ℓ⃗, C, λ)t, k⃗). Such a
term “unboxes” C, finds the wires identified by k⃗ among the outputs of D and appends C
to them. In this process, any lifted variables in var(t), which were abstracted in (ℓ⃗, C, λ)t,
have to be instantiated with concrete names. To this end, the programmer supplies the
n = | var(t)| lifted variables u1, . . . , un, which are expected to be fresh.

Notice that there exists a strong distinction between values and terms, the latter rep-
resenting effectful computations that can introduce new lifted variables as a consequence of
dynamic lifting. This choice does not detract from the expressiveness of the language, since
first and foremost a value V can always be turned into an effectless computation returnV .
Furthermore, we have that terms such as MN can still be recovered in Proto-Quipper-K
as let x = M in {let y = N in {xy}}. The let construct is in fact a central construct in
Proto-Quipper-K: on top of serving as a sequencing operator it also doubles as a conditional
statement. When we evaluate the term let x = M in µ, we first carry out the computation
described by M , which performs dynamic lifting according to some lifting tree t and con-
sequently results in a lifted value ϕ ∈ Kt(VAL). At this point, we are not limited to passing
each and every possible value of ϕ to the same continuation. Rather, we can define a different
continuation for every possible outcome of the liftings in t. To this effect, the programmer
supplies a lifted term µ ∈ Kt(TERM), which matches ϕ’s lifting tree and thus effectively
provides such a roster of continuations. The following example is meant to help convey the
role of let as a control flow operator.

▶ Example 9. Imagine we wanted to measure qubit ℓ, dynamically lift its value into a
variable u and then apply the Hadamard gate to a second qubit k only if u = 1. Suppose
we had CRL definitions ML = input(ℓ : Qubit); Meas(ℓ) → ℓ′; lift(ℓ′) ⇒ u and H = input(ℓ :
Qubit); H(ℓ) → ℓ′, corresponding to the circuit that measures and then lifts a qubit and the
circuit that just applies the Hadamard gate to its input, respectively. We would write the
following Proto-Quipper-K program:

let _ = applyu((ℓ,ML, u {∗}{∗})u {ϵ}{ϵ}, ℓ) in
u {return k}{apply((ℓ,H, {ℓ′})ϵ, k)},

(5)

which may appear more familiar under the following Haskell-like syntactic sugar:

applyu((ℓ,ML, u {∗}{∗})u {ϵ}{ϵ}, ℓ)
when (u = 1) apply((ℓ,H, {ℓ′})ϵ, k).

(6)

⌟

TYPES 2022

3:12 On Dynamic Lifting and Effect Typing in Circuit Description Languages

λqQubit. returnλaQubit.let q = apply((ℓ,H, {ℓ′}), q) in {
let _ = applyu((ℓ,ML, u {∗}{∗})u {ϵ}{ϵ}, q) in
u {return a}{apply((ℓ,Measα, {ℓ′}), a)}}

Figure 14 A Proto-Quipper-K program describing the circuit shown in Figure 4.

In light of this example, we can see how the circuit shown in Figure 4 can be described in
Proto-Quipper-K through a program such as the one in Figure 14. To conclude this section,
recall that we mentioned earlier that whenever we apply a boxed circuit we need to instantiate
its lifted variables with concrete names. This process is formalized through the lifted variable
analog of substitution, which we call renaming.

▶ Definition 10 (Renaming of Lifted Variables). Given a lifted variable-bearing object x and a
permutation π of V , we call π a renaming of lifted variables and we define x⟨π⟩ as x in which
every occurrence of a lifted variable u is replaced by π(u). We denote by s1/u1, . . . , sn/un a
permutation that exchanges s1 for u1, . . . sn for un.

4.2 Proto-Quipper-K’s Typing Rules
At its core, Proto-Quipper-K’s type system is a linear type system which distinguishes between
computations (i.e. terms), which can be effectful, and values. We therefore introduce two
kinds of typing judgments. One for terms, which are given lifted types, and one for values,
which have regular types.

▶ Definition 11 (Typing Judgments). Given a typing context Γ, a label context Q, a term M

and a lifted type α, a computational typing judgment is an expression of the form

Γ;Q ⊢t
c M : α. (7)

Given Γ, Q, a value V and a type A, a value typing judgment is an expression of the form

Γ;Q ⊢v V : A. (8)

When a typing context contains exclusively variables with parameter types, we write it as
Φ, but in general a typing context Γ can contain both linear and parameter variables. Typing
judgments are derived via the rules in Figure 15, where s1, . . . , sn range over V . Note that
we assume that V is totally ordered, so that when we write var(t) = {u1, . . . , un}, e.g. in
the apply rule, we have u1 ≤ u2 ≤ · · · ≤ un. The relational symbols ⊩c and ⊩v denote the
lifting of the computation and value typing judgments to some tree t.

▶ Definition 12 (Lifted Typing Judgments). Given a lifting tree t, if for all a ∈ Pt we have
Γa;Qa ⊢ra

c Ma : αa, then we write

t[Γa]a; t[Qa]a ⊩t[ra]a
c t[Ma]a : t[αa]a. (9)

If for all a ∈ Pt we have Γa;Qa ⊢v Va : Aa, then we write

t[Γa]a; t[Qa]a ⊩t
v t[Va]a : t[Aa]a. (10)

For convenience, within such judgments, every lifted object (e.g. ∆ in ∅; ∆ ⊩t
v λ : υ in

the circ rule) is assumed to be backed by t, whereas every component which is not a lifted
object (e.g. Φ or x in Φ,Γ2, x : α;Q2 ⊩t[ra]a

c µ : θ in the let rule) is assumed to be constant
across the branches of t.

A. Colledan and U. Dal Lago 3:13

unit
Φ; ∅ ⊢v ∗ : 1

var
Φ, x : A; ∅ ⊢v x : A

labelΦ; ℓ : w ⊢v ℓ : w

abs
Γ, x : A;Q ⊢t

c M : β
Γ;Q ⊢v λxA.M : A⊸t β

app
Φ,Γ1;Q1 ⊢v V : A⊸t β Φ,Γ2;Q2 ⊢v W : A

Φ,Γ1,Γ2;Q1, Q2 ⊢t
c VW : β

let
Φ,Γ1;Q1 ⊢t

c M : α µ ∈ Kt(TERM) Φ,Γ2, x : α;Q2 ⊩t[ra]a
c µ : θ

Φ,Γ1,Γ2;Q1, Q2 ⊢⌊t[ra]a⌋
c let x = M in µ : ⌊θ⌋

tuple
Φ,Γ1;Q1 ⊢v V : A Φ,Γ2;Q2 ⊢v W : B

Φ,Γ1,Γ2;Q1, Q2 ⊢v (V,W) : A⊗B

dest
Φ,Γ1;Q1 ⊢v V : A⊗B Φ,Γ2, x : A, y : B;Q2 ⊢t

c M : α
Φ,Γ1,Γ2;Q1, Q2 ⊢t

c let (x, y) = V in M : α
lift

Φ; ∅ ⊢ϵ
c M : α

Φ; ∅ ⊢v liftM : !α

force
Γ;Q ⊢v V : !α

Γ;Q ⊢ϵ
c forceV : α box

Γ;Q ⊢v V : !{T ⊸t υ}
Γ;Q ⊢ϵ

c boxT V : {Circt(T, υ)}

apply

Φ,Γ1;Q1 ⊢v V : Circt(T, υ) Φ,Γ2;Q2 ⊢v W : T
var(t) = {u1, . . . , un} π = s1/u1, . . . , sn/un

Φ,Γ1,Γ2;Q1, Q2 ⊢t⟨π⟩
c applys1,...,sn

(V,W) : υ⟨π⟩

circ
C ⊢t Q ▷∆ ∅;Q ⊢v ℓ⃗ : T ∅; ∆ ⊩t

v λ : υ
Φ; ∅ ⊢v (ℓ⃗, C, λ)t : Circt(T, υ)

return
Γ;Q ⊢v V : A

Γ;Q ⊢ϵ
c returnV : {A}

Figure 15 The typing rules of Proto-Quipper-K.

The let rule is unsurprisingly the most interesting rule of the system: if M is a term of lifted
type α ∈ Kt(TYPE), µ is a lifted term with the same underlying tree structure t and for every
root-to-leaf path a in t we have Φ,Γ2, x : α;Q2 ⊢ra

c µ(a) : θ(a) (note that this last condition
is captured by the lifted typing judgment), then the lifted type of let x = M in µ is obtained
by simply flattening the generic lifted object θ to ⌊θ⌋ ∈ K⌊t[ra]a⌋(TYPE). The apply rule also
plays a pivotal role, as it actually introduces lifting into the type of a term. If V is a value of
type Circt(T, υ), and thus corresponds to a boxed circuit which performs lifting according
to t, then applying V to some appropriate wires W of the underlying circuit introduces the
same lifting pattern into the computation, which has type υ⟨π⟩ ∈ Kt⟨π⟩(MTYPE). The
renaming of lifted variables π is required to avoid name clashes.

An example of a type derivation that leverages the full expressiveness of Proto-Quipper-K’s
type system is the one for the program shown in Figure 14 (describing the circuit in Figure 4),
which can be found in Appendix A. To conclude this section, notice how just like M-values
and M-types are a subset of the values and types of Proto-Quipper-K, the type system for
M-values is in a one-to-one correspondence with a subset of Proto-Quipper-K’s type system.

4.3 A Big-Step Operational Semantics

The big-step operational semantics of the language is based on an evaluation relation
(C, a,M) ⇓ (D,ϕ), where ϕ is a lifted value. This means that the term M evaluates to one
of the possible values in ϕ, depending on the outcome of intermediate measurements, and
updates the underlying circuit C upon branch a as a side effect, obtaining an updated circuit
D. We call (C, a,M) a left configuration and (D,ϕ) a right configuration. Before we give the
actual rules of the semantics, we must first give some definitions.

TYPES 2022

3:14 On Dynamic Lifting and Effect Typing in Circuit Description Languages

First and foremost, note that we are not as interested in the actual names of labels within
a boxed circuit as much as we are in the structure that they convey. In fact, when we apply
circuits to one another, it might be necessary to rename some of the labels occurring in the
applicand in order to avoid naming conflicts, all the while preserving its structure. For this
reason, whenever two circuits share the same structure and only differ by their respective
labels, we consider them to be equivalent.

▶ Definition 13 (Equivalent Boxed Circuits). We say that two boxed circuits (ℓ⃗, C, λ)t and
(ℓ⃗′, C ′, λ′)t are equivalent, and we write (ℓ⃗, C, λ)t ∼= (ℓ⃗′, C ′, λ′)t, when they only differ by a
renaming of labels.

Next, we define the two operations that actually implement the semantics of apply. The
circuit insertion function ::a is just a simple concatenation function defined on CRL circuits
and all the heavy lifting is actually performed by the append function. This function is
responsible for the actual unboxing of a boxed circuit, the renaming of its labels (to match
the outputs of the underlying circuit and avoid labeling conflicts), the instantiation of the
abstracted lifted variable names within it and its insertion in the underlying circuit.

▶ Definition 14 (Insertion of Circuits). Suppose C and D are two circuits. We define the
insertion of D in C on branch a, written C ::a D as:

C ::a input(Q) = C,

C ::a (D′; b ? g(ℓ⃗) → k⃗) = (C ::a D′); a ∪ b ? g(ℓ⃗) → k⃗,

C ::a (D′; b ? lift(ℓ) ⇒ u) = (C ::a D′); a ∪ b ? lift(ℓ) ⇒ u,

(11)

where a ∪ b denotes the union of two assignments with disjoint domains.

▶ Definition 15 (append). Suppose C ⊢t Q ▷∆ is a circuit and (ℓ⃗, D, λ)r is a boxed circuit
with var(r) = {u1, . . . , un}. Suppose a ∈ Pt and let k⃗ be a label tuple whose labels all occur
in ∆(a). Finally, let s1, . . . , sn be a sequence of distinct lifted variable names which do not
occur in vara(t). We define append(C, a, k⃗, (ℓ⃗, D, λ)r, s1, . . . , sn) as the function that
1. Finds (k⃗, D′, λ′)t ∼= (ℓ⃗, D, λ)t such that all the labels occurring in D′, but not in k⃗, are

fresh in C,
2. Computes D′′ = D′⟨s1/u1, . . . , sn/un⟩ and λ′′ = λ′⟨s1/u1, . . . , sn/un⟩,
3. Returns (C ::a D′′, λ′′).

The rules of the operational semantics can be found in Figure 16, where freshlabels(T)
produces a pair (Q, ℓ⃗) such that Q ⊢m ℓ⃗ : T . Note that, for each t, we assume to have
a total order over the elements of Pt, so that when we write Pt = {a1, . . . , an} we have
a1 ≤ a2 ≤ · · · ≤ an and the semantics is deterministic. In order to prove progress in Section
5, we also consider a notion of divergence for configurations. Intuitively, a configuration
(C, a,M) diverges, and we write (C, a,M) ⇑, when its evaluation does not terminate. More
formally, divergence is defined coinductively by means of the rules in Figure 17.

5 Type Soundness

In general, the well-typedness of a Proto-Quipper-K configuration strongly depends on the
underlying circuit. Specifically, a term M is well-typed when all the free labels occurring in it
can be found with the appropriate type in the outputs of the underlying circuit, on the branch
that M is manipulating. For this reason, we give the following notions of well-typedness.

A. Colledan and U. Dal Lago 3:15

app
(C, a,M [V/x]) ⇓ (D,ϕ)

(C, a, (λxA.M)V) ⇓ (D,ϕ)
dest

(C, a,M [V/x,W/y]) ⇓ (D,ϕ)
(C, a, let (x, y) = (V,W) in M) ⇓ (D,ϕ)

let

(C, a,M) ⇓ (C1, ϕ) ϕ ∈ Kt(VAL) µ ∈ Kt(TERM)
Pt = {a1, . . . , an} (Ci, a ∪ ai, µ(ai)[ϕ(ai)/x]) ⇓ (Ci+1, ψai

) for i = 1, . . . , n
(C, a, let x = M in µ) ⇓ (Cn+1, ⌊t[ψa]a⌋)

force
(C, a,M) ⇓ (D,ϕ)

(C, a, force(liftM)) ⇓ (D,ϕ)
apply

(C ′, λ′) = append(C, a, k⃗, (ℓ⃗, D, λ)t, s1, . . . , sn)
(C, a, applys1,...,sn

((ℓ⃗, D, λ)t, k⃗)) ⇓ (C ′, λ′)

box
(Q, ℓ⃗) = freshlabels(T) (input(Q), ∅, let x = M in {xℓ⃗}) ⇓ (D,λ) λ ∈ Kt(MVAL)

(C, a, boxT (liftM)) ⇓ (C, {(ℓ⃗, D, λ)t})

return
(C, a, returnV) ⇓ (C, {V })

Figure 16 The big-step operational semantics of Proto-Quipper-K.

app
(C, a,M [V/x]) ⇑

(C, a, (λxA.M)V) ⇑
dest

(C, a,M [V/x,W/y]) ⇑
(C, a, let (x, y) = (V,W) in M) ⇑

force
(C, a,M) ⇑

(C, a, force(liftM)) ⇑
let-now

(C, a,M) ⇑
(C, a, let x = M in µ) ⇑

let-then

(C, a,M) ⇓ (C1, ϕ) ϕ ∈ Kt(VAL) µ ∈ Kt(TERM)
Pt = {a1, . . . , an} (Ci, a ∪ ai, µ(ai)[ϕ(ai)/x]) ⇓ (Ci+1, ψai) for i = 1, . . . , j − 1

(Cj , a ∪ aj , µ(aj)[ϕ(aj)/x]) ⇑
(C, a, let x = M in µ) ⇑

box
(Q, ℓ⃗) = freshlabels(T) (input(Q), ∅, let x = M in {xℓ⃗}) ⇑

(C, a, boxT (liftM)) ⇑

Figure 17 The big-step divergence rules of Proto-Quipper-K.

▶ Definition 16 (Well-Typed Configuration). We say that
a left configuration (C, a,M) is well-typed with input Q, past lifting tree t, future
lifting tree r, lifted type α and outputs ∆, and we write Q ⊢r

t (C, a,M) : α; ∆, when
a ∈ Pt, vara(t) ∩ var(r) = ∅, C ⊢t Q ▷∆ a, Q′ and ∅;Q′ ⊢r

c M : α,
a right configuration (C, ϕ) is well-typed in the a branch with input Q, overall lifting tree
t, lifted type α and outputs ∆, and we write Q ⊢a

t (C, ϕ) : α; ∆, when t = ⌊t′[r]{a}⌋,∆ =
⌊∆′[∆′′]{a}⌋, C ⊢t Q ▷ ⌊∆′[∆′′,Λ]{a}⌋ and ∅; Λ ⊩r

v ϕ : α.

That being said, we are mainly interested in closed computations, in which the evaluation
of a term builds the underlying circuit entirely from scratch. That is, we are interested
in computations that start from configurations of the form (input(∅), ∅,M), for some M .
Whenever (input(∅), ∅,M) ⇓ (C, ϕ) for some C, ϕ, we simply write M ⇓ (C, ϕ) and whenever
(input(∅), ∅,M) ⇑ we write M ⇑. In the same guise, we say that M is a well-typed term with
lifted type α depending on t, and we write ⊢t M : α, whenever ∅ ⊢t

ϵ (input(∅), ∅,M) : α; {∅},
while we say that (C, ϕ) is a well-typed closed configuration with lifted type α depending on
t, and we write ⊢t (C, ϕ) : α, whenever ∅ ⊢∅

t (C, ϕ) : α; t[∅]b. We are now ready to give the
relevant type safety results for Proto-Quipper-K.

TYPES 2022

3:16 On Dynamic Lifting and Effect Typing in Circuit Description Languages

▶ Theorem 17 (Subject Reduction). If ⊢t M : α and ∃C, ϕ s.t. M ⇓ (C, ϕ), then ⊢t (C, ϕ) : α.

Proof sketch. We prove the more general claim that whenever Q ⊢t
r (D, a,M) : α; ∆ and

∃C, ϕ s.t. (D, a,M) ⇓ (C, ϕ), then Q ⊢a
⌊r[t]{a}⌋ (C, ϕ) : α; ∆ �a t, from which we obtain the

subject reduction claim by choosing D = input(∅), a = ∅, Q = ∅, r = ϵ and ∆ = {∅}. We
proceed by induction on (D, a,M) ⇓ (C, ϕ) and case analysis on the last rule used in its
derivation. A number of cases require additional lemmata, more specifically:
1. A substitution lemma is naturally required for the app, dest, let cases. In our scenario,

this amounts to proving that whenever Φ,Γ′;Q′ ⊢v V : A and Π is a type derivation, then
a. If the conclusion of Π is Φ,Γ, x : A;Q ⊢t

c M : α, then Φ,Γ,Γ′;Q,Q′ ⊢t
c M [V/x] : α,

b. If the conclusion of Π is Φ,Γ, x : A;Q ⊢v W : B, then Φ,Γ,Γ′;Q,Q′ ⊢v W [V/x] : B,
We prove the claim separately for the cases in which V has parameter type and linear
type. In both cases, we proceed by induction on the size of Π and case analysis on its
last rule.

2. The apply case is particularly delicate and requires us to prove that all the operations
performed by the append function on the applicand and the underlying circuit alter their
respective circuit signatures in a predictable way. More specifically:
a. For the first step of append, we show that equivalent circuits have the same type,

that is, that whenever ∅; ∅ ⊢v (ℓ⃗, C, λ)t : Circt(T, υ) and (ℓ⃗, C, λ)t ∼= (ℓ⃗′, C ′, λ′)t, then
∅; ∅ ⊢v (ℓ⃗′, C ′, λ′)t : Circt(T, υ). This reflects the idea that the type of a circuit depends
on its structure, and not on the specific labels used to convey said structure.

b. Similarly, for the second step, we show that lifted variable renaming preserves circuit
signatures and lifted typing judgments, that is, that for every renaming of lifted
variables π, C ⊢t Q ▷ ∆ implies C⟨π⟩ ⊢t⟨π⟩ Q ▷ ∆⟨π⟩ and γ; ∆ ⊩t

v ϕ : α implies
γ⟨π⟩; ∆⟨π⟩ ⊩t⟨π⟩

v ϕ⟨π⟩ : α⟨π⟩, where γ is a lifted context in Kt(CONTEXT). Similarly
to the previous point, this reflects the idea that the structure of a lifted object is more
important than the specific lifted variable names used to convey said structure.

c. For the third step, we show that whenever we have an underlying circuit C and an
applicand D whose labels and lifted variables have already been renamed appropriately,
the concatenated circuit C ::a D is such that its output on branch a contains both the
outputs of D and the outputs of C that D was not applied on. That is, we prove that
whenever C ⊢t Q ▷ ∆[Q′, Q′′]{a} for some a ∈ Pt and D ⊢r Q′ ▷ Λ for some D such
that the labels that occur in D, but not in Q′, are fresh in C and vara(t) ∩ var(r) = ∅,
then C ::a D ⊢⌊t[r]{a}⌋ Q ▷ ⌊∆[Λ, Q′′]{a}⌋. We prove this by induction on D ⊢r Q′ ▷ Λ.
This result clearly allows us to conclude the subject reduction claim for the apply case.

3. The let case is also particularly delicate, although more technical than the apply case:
it requires us to apply the inductive hypothesis once for the evaluation of the left side
of the let and n times for the evaluation of each of the possible branches on the right
side, which happens in sequence. This means that the conclusion of each application of
the inductive hypothesis must become the premise of the following application. More
specifically, for every well-typed right configuration (Ci+1, ψai

) we must be able to
prove that (Ci+1, a ∪ ai+1, µ(ai+1)[ϕ(ai+1)/x]) is a well-typed left configuration. A key
lemma in this process tells us that for any two generic lifted objects ξ ∈ Kt(X) and
θ ∈ Kr(X) and any two assignments a ∈ Pt and b ∈ Ar, we have ⌊ξ[θ[xc]P

b
r

c]{a}⌋ =

⌊ξ[θ]{a}⌋[xc]
Pa∪b

⌊t[r]{a}⌋
c . ◀

▶ Theorem 18 (Progress). If ⊢t M : α, then either ∃C, ϕ s.t. M ⇓ (C, ϕ) or M ⇑.

A. Colledan and U. Dal Lago 3:17

Proof sketch. We consider the equivalent claim that if ⊢t M : α and ∄C, ϕ.M ⇓ (C, ϕ),
then M ⇑. We then prove the more general result that if Q ⊢t

r (D, a,M) : α; ∆ and
∄C, ϕ.(D, a,M) ⇓ (C, ϕ), then (D, a,M) ⇑, from which we obtain the progress claim by
choosing D = input(∅), a = ∅, Q = ∅, r = ϵ and ∆ = {∅}. We proceed by coinduction and case
analysis on M . The proof is fairly straightforward and makes extensive use of the general
subject reduction theorem and of some of its lemmata. The one interesting case is apply,
which is proven vacuously by showing that append is always defined under the hypothesis:
1. The first step of append must find a circuit (k⃗, D′, λ′)t ∼= (ℓ⃗, D, λ)t such that the labels

in k⃗ are given and correspond to the target labels in the underlying circuit C and all
the other labels in D′ are fresh in C. A key lemma tells us that since ℓ⃗ and k⃗ have
the same M-type T , then it is possible to rename the former to the latter. It is then
straightforward to extend this renaming to all the labels occurring in D in a way that
fulfills the aforementioned requirements.

2. The second step must compute D′⟨π⟩ and λ′⟨π⟩. This is always possible since π is a valid
renaming of lifted variables and thus a permutation.

3. The last step must compute C ::a D′⟨π⟩. We show that for every assignment b occurring
in D′⟨π⟩ it holds that dom(a) ∩ dom(b) = ∅. Therefore, the concatenation operation is
defined and append returns (C ::a D′⟨π⟩, λ′⟨π⟩). ◀

Detailed proofs of subject reduction (Theorem 17) and progress (Theorem 18) can be
found in the extended version of the paper [2].

6 Conclusion

Our Contributions

This paper introduces a new paradigmatic language for dynamic lifting belonging to the
Proto-Quipper family of languages. The language, called Proto-Quipper-K, can be seen as
an extension of Proto-Quipper-M which allows for the Boolean information flowing within
bit wires to be lifted from the circuit level to the program level. In order to make the
circuit construction process as flexible and as general as possible, a powerful type and effect
system based on lifting trees has been introduced. This allows for the typing of programs
which produce highly non-uniform circuits, making Proto-Quipper-K strictly more expressive
than Quipper and potentially useful in scenarios such as one-way quantum computing [4].
Although the use of the syntax introduced in this paper is not essential to implement the
measurement patterns encountered in one-way quantum computing (which, after all, can be
simulated by regular quantum circuits), the non-uniform approach to dynamic lifting that we
adopt in our work would allow for a higher degree of flexibility in building and manipulating
patterns. In other words, even when the circuit produced at the end of the computation is a
uniform circuit, we can build it incrementally, going through non-uniform circuits. The main
technical results we obtained for Proto-Quipper-K are type soundness, in the sense of subject
reduction and progress theorems.

Future Work

In this paper we focused on the operational aspects, leaving an investigation about a possible
denotational account of Proto-Quipper-K as future work. A related problem is that of
understanding the precise nature of the lifting operation that we use pervasively in the paper.
In particular, while it would be tempting to interpret Kt as a graded monad [8, 12] with
unit η : X → Kϵ(X) defined as η x = {x} and multiplication ⌊·⌋ : Kt(Kr(X)) → Kt[r]a

(X),

TYPES 2022

3:18 On Dynamic Lifting and Effect Typing in Circuit Description Languages

we generally work with objects that do not belong to Kt(Kr(X)) for some fixed t, r, so we
find that this interpretation is not entirely appropriate, at least if we assume grades to be
elements of one fixed monoid.

Another aspect that we left open is the consolidation of homogeneous branches in a
computation. In many contexts, it is extremely natural to ask that the type of a term be
uniform with respect to a certain lifted variable u, i.e. that it be of the form u {α}{α}. If a
term M were typed this way, it would be natural to construct a new term νu.M in which u

is no longer lifted and which could thus be given the type α. We claim that such a local
name binder can be added to the language without substantially altering its metatheory.

The last problem that we deliberately leave open concerns the notion of generalized circuits
used in this paper. On the one hand, it can certainly be said that it can model quantum
circuits in their full generality, including those measurement patterns found in measurement-
based quantum computing [4]. On the other hand, while it is clear that such circuits make
computational sense (after all, any such computation can be simulated by a classically
controlled quantum Turing machine [18]), it is not clear what kind of correspondence exists
between them and quantum circuits in their usual form [15], which is the one most often
considered in the literature.

Related Work

As already mentioned in the introduction, various paradigmatic λ-calculi modeling the
Quipper programming language have been introduced in the literature [6, 7, 13, 20, 21]. In
this work, we took inspiration from Proto-Quipper-M [20], which however cannot handle
dynamic lifting. The only members of the Proto-Quipper family that can handle dynamic
lifting, in a uniform and more restricted form than ours, are Proto-Quipper-L [13] and Proto-
Quipper-Dyn [6], which have been introduced very recently and independently of this work.
Interestingly, the class of circuits targeted by Proto-Quipper-L– which the authors have named
quantum channels – indeed includes non-uniform circuits like the one in Figure 4, which
leads us to believe that they actually match our generalized quantum circuits in terms of
expressiveness. However, Proto-Quipper-L’s type system rejects the programs that build
such circuits. On the other hand, Proto-Quipper-Dyn follows a different approach, with two
interleaved operational semantics: one for circuit building, which only happens inside a boxing
operator and does not support dynamic lifting, and one for circuit execution, where dynamic
lifting is allowed. Therefore, as a circuit description language, Proto-Quipper-Dyn targets
traditional circuits. At the type level, this distinction is reflected in a modal type system
which keeps track of whether dynamic lifting is used, and therefore whether a circuit-building
function can be boxed or not. That being said, most of the aforementioned contributions
differ from ours in that they focus mainly on the denotational semantics of the language
rather than its operational semantics.

The type and effect system paradigm is well known from the literature [3, 12, 14, 16] and
has been used in various contexts as a way to reflect information on the effects produced by
a program in its type. In our case, the relevant effect is a choice effect, which is mirrored
both in the operational semantics and in the type system. As already stated, the problem of
giving a proper monadic status to the considered choice effect remains open, although this
work shows that operationally speaking everything works smoothly.

Finally, it is worth mentioning that the circuit description paradigm is not the only
approach to designing quantum programming languages and calculi. For instance, QCL [25],
QML [1] and Selinger and Valiron’s quantum λ-calculus [23] are some examples of quantum
programming languages whose instructions are designed to be executed immediately on
quantum hardware, without any direct reference to quantum circuits.

A. Colledan and U. Dal Lago 3:19

References
1 Thorsten Altenkirch and Jonathan Grattage. A functional quantum programming language.

In Proc. of LICS, 2005. doi:10.1109/lics.2005.1.
2 Andrea Colledan and Ugo Dal Lago. On dynamic lifting and effect typing in circuit description

languages (extended version), 2022. arXiv:2202.07636.
3 Ugo Dal Lago and Charles Grellois. Probabilistic termination by monadic affine sized typing.

ACM Trans. Program. Lang. Syst., 41(2), March 2019. doi:10.1145/3293605.
4 Vincent Danos, Elham Kashefi, and Prakash Panangaden. The measurement calculus. J.

ACM, 54(2), April 2007. doi:10.1145/1219092.1219096.
5 Peng Fu, Kohei Kishida, Neil J. Ross, and Peter Selinger. A tutorial introduction to quantum

circuit programming in dependently typed proto-quipper. In Proc. of RC, Berlin, Heidelberg,
2020. Springer-Verlag. doi:10.1007/978-3-030-52482-1_9.

6 Peng Fu, Kohei Kishida, Neil J. Ross, and Peter Selinger. Proto-quipper with dynamic lifting.
Proc. ACM Program. Lang., 7(POPL), January 2023. doi:10.1145/3571204.

7 Peng Fu, Kohei Kishida, and Peter Selinger. Linear dependent type theory for quantum
programming languages: Extended abstract. In Proc. of LICS, 2020. doi:10.1145/3373718.
3394765.

8 Soichiro Fujii, Shin-ya Katsumata, and Paul-André Melliès. Towards a formal theory of graded
monads. In Proc. of FoSSaCS, Berlin, Heidelberg, 2016. doi:10.1007/978-3-662-49630-5_30.

9 Simon J. Gay. Quantum programming languages: Survey and bibliography. Math. Struct.
Comput. Sci., 16(4):581–600, August 2006. doi:10.1017/S0960129506005378.

10 Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and Benoît Valiron.
An introduction to quantum programming in quipper. In Proc. of RC, pages 110–124, 2013.
doi:10.1007/978-3-642-38986-3_10.

11 Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and Benoît Valiron.
Quipper. In Proc. of PLDI, pages 333–342, June 2013. doi:10.1145/2499370.2462177.

12 Shin-ya Katsumata. Parametric effect monads and semantics of effect systems. In Proc. of
POPL, pages 633–645, January 2014. doi:10.1145/2578855.2535846.

13 Dongho Lee, Valentin Perrelle, Benoît Valiron, and Zhaowei Xu. Concrete Categorical Model
of a Quantum Circuit Description Language with Measurement. In Proc. of FSTTCS, volume
213 of LIPIcs, pages 51:1–51:20, 2021. doi:10.4230/LIPIcs.FSTTCS.2021.51.

14 Alan Mycroft, Dominic Orchard, and Tomas Petricek. Effect systems revisited—control-flow
algebra and semantics. In Christian W. Probst, Chris Hankin, and René Rydhof Hansen,
editors, Semantics, Logics, and Calculi: Essays Dedicated to Hanne Riis Nielson and Flemming
Nielson on the Occasion of Their 60th Birthdays, pages 1–32. Springer International Publishing,
Cham, 2016. doi:10.1007/978-3-319-27810-0_1.

15 Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information:
10th Anniversary Edition. Cambridge University Press, 2010. doi:10.1017/CBO9780511976667.

16 Flemming Nielson and Hanne Riis Nielson. Type and effect systems. In Ernst-Rüdiger Olderog
and Bernhard Steffen, editors, Correct System Design: Recent Insights and Advances, pages
114–136. Springer Berlin Heidelberg, 1999. doi:10.1007/3-540-48092-7_6.

17 Jens Palsberg. Toward a universal quantum programming language. XRDS: Crossroads,
26(1):14–17, September 2019. doi:10.1145/3355759.

18 Simon Perdrix and Philippe Jorrand. Classically controlled quantum computation. Math.
Struct. Comput. Sci., 16(04):601, July 2006. doi:10.1017/s096012950600538x.

19 John Preskill. Quantum Computing in the NISQ era and beyond. Quantum, 2:79, August
2018. doi:10.22331/q-2018-08-06-79.

20 Francisco Rios and Peter Selinger. A categorical model for a quantum circuit description
language. In Proc. of QPL, volume 266, June 2017. doi:10.4204/EPTCS.266.11.

21 Neil Ross. Algebraic and Logical Methods in Quantum Computation. PhD thesis, Dalhousie
University, 2015.

TYPES 2022

https://doi.org/10.1109/lics.2005.1
https://arxiv.org/abs/2202.07636
https://doi.org/10.1145/3293605
https://doi.org/10.1145/1219092.1219096
https://doi.org/10.1007/978-3-030-52482-1_9
https://doi.org/10.1145/3571204
https://doi.org/10.1145/3373718.3394765
https://doi.org/10.1145/3373718.3394765
https://doi.org/10.1007/978-3-662-49630-5_30
https://doi.org/10.1017/S0960129506005378
https://doi.org/10.1007/978-3-642-38986-3_10
https://doi.org/10.1145/2499370.2462177
https://doi.org/10.1145/2578855.2535846
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.51
https://doi.org/10.1007/978-3-319-27810-0_1
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1007/3-540-48092-7_6
https://doi.org/10.1145/3355759
https://doi.org/10.1017/s096012950600538x
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.4204/EPTCS.266.11

3:20 On Dynamic Lifting and Effect Typing in Circuit Description Languages

22 Peter Selinger. A brief survey of quantum programming languages. In Proc. of FLOPS, pages
1–6, 2004. doi:10.1007/978-3-540-24754-8_1.

23 Peter Selinger and Benoît Valiron. A lambda calculus for quantum computation with classical
control. In Proc. of TLCA, pages 354–368, 2005. doi:10.1007/11417170_26.

24 Mingsheng Ying. Foundations of Quantum Programming. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1st edition, 2016. doi:10.1016/C2014-0-02660-3.

25 Bernhard Ömer. Classical concepts in quantum programming. Int. J. Theor. Phys., 44(7):943–
955, July 2005. doi:10.1007/s10773-005-7071-x.

A Type Derivations

return
var

_ : 1, a : Qubit; ∅ ⊢v a : Qubit
_ : 1, a : Qubit; ∅ ⊢ϵ

c return a : {Qubit}

Figure 18 Sub-derivation Π′, corresponding to the u = 0 branch of the lifted computational
judgment _ : u {1}{1}, a : Qubit; ∅ ⊩u {{ϵ}}{{ϵ}}

c u {return a}{apply(Measα, a)} : u {{Qubit}}{{Bit}}
required by sub-derivation Π of Figure 20.

apply
_ : 1; ∅ ⊢v Measα : Circϵ(Qubit, {Bit})

var
_ : 1, a : Qubit; ∅ ⊢v a : Qubit

_ : 1, a : Qubit; ∅ ⊢ϵ
c apply(Measα, a) : {Bit}

Figure 19 Sub-derivation Π′′, corresponding to the u = 1 branch of the lifted computational
judgment _ : u {1}{1}, a : Qubit; ∅ ⊩u {{ϵ}}{{ϵ}}

c u {return a}{apply(Measα, a)} : u {{Qubit}}{{Bit}}
required by sub-derivation Π of Figure 20.

let

apply
∅; ∅ ⊢v ML : Circu {ϵ}{ϵ}(Qubit, u {1}{1})

var
q : Qubit; ∅ ⊢v q : Qubit

q : Qubit; ∅ ⊢u {ϵ}{ϵ}
c applyu(ML, q) : u {1}{1} Π′ Π′′

u {return a}{apply(Measα, a)} ∈ Ku {ϵ}{ϵ}(TERM)

q : Qubit, a : Qubit; ∅ ⊢u {ϵ}{ϵ}
c let _ = applyu(ML, q) in

u {return a}{apply(Measα, a)} : u {Qubit}{Bit}

Figure 20 Sub-derivation Π, where the conclusion is the expansion of the (trivial) lifted compu-
tational judgment required by the let rule in Figure 21.

https://doi.org/10.1007/978-3-540-24754-8_1
https://doi.org/10.1007/11417170_26
https://doi.org/10.1016/C2014-0-02660-3
https://doi.org/10.1007/s10773-005-7071-x

A. Colledan and U. Dal Lago 3:21

abs

return

abs

let

apply
∅; ∅ ⊢v H : Circϵ(Qubit, {Qubit})

var
q : Qubit; ∅ ⊢v q : Qubit

q : Qubit; ∅ ⊢ϵ
c apply(H, q) : {Qubit} Π

{let _ = applyu(ML, q) in u {return a}{apply(Measα, a)}} ∈ Kϵ(TERM)

a : Qubit, q : Qubit; ∅ ⊢u {ϵ}{ϵ}
c let q = apply(H, q) in {

let _ = applyu(ML, q) in
u {return a}{apply(Measα, a)}} : u {Qubit}{Bit}

q : Qubit; ∅ ⊢v λaQubit.let q = apply(H, q) in {

let _ = applyu(ML, q) in
u {return a}{apply(Measα, a)}} : Qubit ⊸ u {Qubit}{Bit}

q : Qubit; ∅ ⊢ϵ
c return λaQubit.let q = apply(H, q) in {

let _ = applyu(ML, q) in
u {return a}{apply(Measα, a)}}

: {Qubit ⊸ u {Qubit}{Bit}}

∅; ∅ ⊢v λqQubit. return λaQubit.let q = apply(H, q) in {

let _ = applyu(ML, q) in
u {return a}{apply(Measα, a)}}

: Qubit ⊸ {Qubit ⊸ u {Qubit}{Bit}}

Figure 21 Type derivation for the Proto-Quipper-K program in Figure 14. For brevity, H, Measα

and ML stand for the corresponding boxed circuits employed in Figure 14 and arrow annotations
are omitted. Sub-derivation Π is given in Figure 20.

TYPES 2022

Expressing Ecumenical Systems in the λΠ-Calculus
Modulo Theory
Emilie Grienenberger # Ñ

Université Paris-Saclay, ENS Paris-Saclay, Inria, CNRS, Laboratoire Méthodes Formelles, France

Abstract
Systems in which classical and intuitionistic logics coexist are called ecumenical. Such a system
allows for interoperability and hybridization between classical and constructive propositions and
proofs. We study Ecumenical STT, a theory expressed in the logical framework of the λΠ-calculus
modulo theory. We prove soudness and conservativity of four subtheories of Ecumenical STT with
respect to constructive and classical predicate logic and simple type theory. We also prove the weak
normalization of well-typed terms and thus the consistency of Ecumenical STT.

2012 ACM Subject Classification Theory of computation → Type theory; Theory of computation →
Proof theory; Theory of computation → Higher order logic; Theory of computation → Constructive
mathematics

Keywords and phrases dependent types, predicate logic, higher order logic, constructivism, interop-
erability, ecumenical logics

Digital Object Identifier 10.4230/LIPIcs.TYPES.2022.4

Acknowledgements The author thanks Gilles Dowek for his scientific advice and guidance, and the
reviewers for their constructive and detailed returns.

1 Introduction

The λΠ-calculus modulo theory (λΠ / ≡) [3] is a logical framework in which diverse systems
– predicate logic, pure type systems [10], cumulative type systems [44], the ς-calculus [39],
Matching Logic and more – can be expressed as theories. Using a common language to
describe the logical foundations of various proof assistants allows more interoperability
between the currently impermeable libraries of formal proofs. Indeed, it is a valuable tool in
the design of translations [8, 43, 19, 24], the constitution of a common database of proofs
[12], or even the hybridization of their proofs [9].

In the zoology of proof assistants, there are many examples of classical systems (the HOL
family, PVS, etc) and constructive systems (Coq, Agda, Matita, etc). They rely on different
sets of axioms: for instance, the axiom of the excluded-middle ¬P ∨ P is used in classical
logic but not in intuitionistic logic [11]. These axioms define the meaning of logical symbols,
thus constructive and classical disjunctions have different meanings. This observation does
not only hold for disjunction and negation, but also for connectives that do not appear
in the excluded-middle axiom. For example Peirce’s formula ((P ⇒ Q) ⇒ Q) ⇒ P , the
equivalence (¬P ∨ Q) ⇔ (P ⇒ Q) and the de Morgan laws hold classically but not
intuitionistically. Using a unique symbol for two connectives with different significations
is unsatisfactory, thus we can attempt to design logical systems where intuitionistic and
classical symbols are written differently. Such logical systems are called ecumenical [38, 36].

An ecumenical expression of logic and of mathematics has many advantages. First, it
allows to use the expressivity of classical logic while explicitely keeping constructive properties.
For example, a program can be extracted from a proof of ∀x. ∃y. S(x, y) – where ∀ and ∃
are intuitionistic – even if the specification S(x, y) is classical, reflecting the fact that an
algorithm can both be effective and have a classical correctness proof. Second, intuitionistic

© Emilie Grienenberger;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Types for Proofs and Programs (TYPES 2022).
Editors: Delia Kesner and Pierre-Marie Pédrot; Article No. 4; pp. 4:1–4:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:emilie.grienenberger@ens-cachan.fr
http://www.lsv.fr/~grienenberger/
https://doi.org/10.4230/LIPIcs.TYPES.2022.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Expressing Ecumenical Systems in the λΠ-Calculus Modulo Theory

and classical proofs coexisting in the same logical system can be stored in a common database
of formal proofs, while using two separate logical systems entails two separate databases – or
the loss of readily available constructive information.

In [6] is introduced theory U, which is a λΠ / ≡ theory in which all proofs of minimal,
constructive, classical, and ecumenical predicate logic, minimal, constructive, classical,
and ecumenical simple type theory with or without prenex polymorphism or predicate
subtyping, and the calculus of constructions be can expressed. More precisely, [6] includes a
presentation of the axioms of theory U and a proof of well-typedness and modularity of the
constructed theory. Many axioms and fragments of theory U have been studied in isolation
[26, 43, 13, 3], however some of these studies lack proofs of normalization, consistency,
soundness or conservativity with respect to appropriate reference systems. Some axioms of
theory U have not been studied together; notably, there is currently no proof of normalization
or consistency for the whole theory. In this paper, we study the ecumenical subtheory of
theory U, called Ecumenical STT, by reviewing existing results and establishing its soundness,
conservativity, normalization, and consistency.

Related work

Examples of first order ecumenical systems are found in sequent calculi [34, 22, 14, 33, 37] and
natural deduction [38, 36]. Some rely on double negation translations to define their classical
connectives and rules, as in [14] and to a lesser extent [38]. Another point of difference is
the way predicates and atoms are handled. In [38], there is a classical and an intuitionistic
copy of each predicate symbol. The system described in [14] avoids this split by relying
on total provability – the equivalence of provability in its classical fragment and in LK is
valid for sequents with empty contexts only. Ecumenical STT does not rely on copies of
predicates nor on total provability, as these features seem unsuitable for the specific purpose
of interoperability between proof systems. To our knowledge, none of the aforementioned
ecumenical systems are extended to the higher order.

The termination of rewriting systems being an important problem in logic and software
verification, there is a multitude of dedicated theoretical results and automatized tools.
Many are specific to first order rewriting [21, 32], or simply-typed theories [31, 5]. A few
are designed for higher order and/or dependently typed systems [30, 28, 7], which is the
framework of this paper. The existing tools using dependency pairs are currently unable to
conclude to the normalization of Ecumenical STT, thus we base our normalization proof on
models of λΠ / ≡ theories in variants of pre-Heyting algebras developed in [15].

Normalization is also a valuable, if not crucial tool to establish the conservativity of
λΠ / ≡ theories as shown in [10, 2]. The conservativity proofs lead in this paper use the
framework these aforementioned studies provide.

Outline

In Section 2 is presented the logical framework λΠ-calculus modulo theory (λΠ / ≡) and the
λΠ / ≡ theory of Ecumenical STT [6]. Some meta-theoretical properties of Ecumenical STT
are discussed in Section 3; notably we establish its weak normalization and the decidability
of type-checking in Section 3.2. Finally, the soundness and conservativity with respect to
appropriate reference systems – constructive and classical predicate logic and simple-type
theory – of four subtheories of Ecumenical STT are proven in Section 4 and Section 5. We
conclude as to the consistency of Ecumenical STT in Section 5.3.

E. Grienenberger 4:3

2 Expressing ecumenism in λΠ-calculus modulo theory

2.1 The λΠ-calculus modulo theory
The logical framework λΠ-calculus modulo theory (λΠ / ≡) [3], based on the Edinburgh
Logical Framework (LF) [25], is an extension of simply-typed lambda calculus with dependent
types and a primitive notion of computation via the definition of rewrite rules [42]. Formally,
λΠ / ≡ terms are defined inductively by

t, u, . . . = TYPE | KIND | x | c | λx : t. u | t u | (x : t) → u

where x belongs to an infinite set of variables V and c belongs to a finite or infinite set of
constants C. The terms TYPE and KIND are respectively the type of λΠ / ≡ types, and the
type of kinds, that is of λΠ / ≡ type families; both terms are called sorts and often denoted
by s. Dependent products, i.e. terms of the form (x : t) → u, allow the definition of indexed
type families. For example, the family of vectors indexed by their length n ∈ N can be
defined by declaring Vector : (n : N) → TYPE; in this context a vector of length 3 can be
declared by v : Vector 3. In the pathological case where the variable x does not appear free
in term u, we write (x : t) → u as a simple product t → u. We denote by fv(t) the set of
free variables of a term t, and (u/x)t the substitution of variable x by a term u in a term t.

A λΠ / ≡ theory is defined conjointly by a finite set of declarations Σ and a finite set of
rewrite rules R. A declaration is the assignment of a type T to a constant c ∈ C, denoted by
c : T . We denote respectively by const(Σ) and Λ(Σ) the set of constants assigned in signature
Σ and the set of terms written with the set const(Σ) of constants. A rewrite rule is a pair of
terms ℓ ↪→ r such that ℓ = c t1 . . . tn where c is a constant and t1, . . . , tn are terms. For
example, the rewrite rule Vector (n + 1) ↪→ NonEmptyVector assimilates all vector types of
strictly positive length to a constant type NonEmptyVector.

We denote by ↪→β the β-reduction. Given a set of rewrite rules R, the relation ↪→R

denotes the smallest relation closed by term constructors (λ-abstraction, application and
dependent product) and substitution containing R. Finally, we write ↪→βR for the union
↪→β ∪ ↪→R and ≡βR for the smallest equivalence relation containing ↪→βR .

Proofs in λΠ / ≡ are similar to LF proofs. However, the conversion rule allows to
assimilate types modulo ≡βR and not only modulo ≡β . Formally, typing contexts are finite
sets of variable assignments of the form x : T and are denoted in the following by Γ or ∆; the
empty context is written []. Typing judgments are written “ ⊢Σ,R Γ wf” and “Γ ⊢Σ,R t : T”,
where Γ is a typing context, t and T are terms of Λ(Σ), and “wf” stands for well-formed.
The typing rules of λΠ / ≡ in a theory Σ, R are represented in Figure 1.

2.2 Ecumenical STT and its subtheories
The following section describes the expression of first and higher order ecumenism in theory
U [6]. All associated declarations and rewrite rules are represented in Figure 2.

On Figure 2a is represented the base of the encoding. The type Set is the type of the
object-types of the encoded theories (for example the sorts of predicate logic and simple
types of STT). The symbol El embeds object-types into λΠ / ≡ types: an object-type T
and any one of its elements t can be manipulated as λΠ / ≡ objects while still being linked
by the typing relation t : El T . The type of propositions Prop and the embedding Prf of
propositions into the type of their proofs are similarly defined.

On Figure 2c are defined the constructive connectives and quantifiers of theory U; more
precisely they are declared and then defined by rewriting. As an example, the definition
of the implication is based on the Curry-De-Bruijn-Howard correspondance: the proofs of

TYPES 2022

4:4 Expressing Ecumenical Systems in the λΠ-Calculus Modulo Theory

(empty)
⊢Σ,R [] wf

Γ ⊢Σ,R A : s
(decl)

⊢Σ,R Γ, x : A wf
⊢Σ,R Γ wf

(sort)
Γ ⊢Σ,R TYPE : KIND

⊢Σ,R Γ wf x : A ∈ Γ
(var)

Γ ⊢Σ,R x : A
⊢Σ,R Γ wf ⊢Σ,R A : s c : A ∈ Σ

(const)
Γ ⊢Σ,R c : A

Γ ⊢Σ,R A : TYPE Γ, x : A ⊢Σ,R B : s
(prod)

Γ ⊢Σ,R (x :A) → B : s

Γ ⊢Σ,R A : TYPE Γ, x : A ⊢Σ,R B : s Γ, x : A ⊢Σ,R t : B
(abs)

Γ ⊢Σ,R λx :A. t : (x :A) → B

Γ ⊢Σ,R t : (x :A) → B Γ ⊢Σ,R u : A
(app)

Γ ⊢Σ,R t u : (u/x)B

Γ ⊢Σ,R t : A Γ ⊢Σ,R B : s A ≡βR B
(conv)

Γ ⊢Σ,R t : B

Figure 1 Typing rules of λΠ / ≡ in theory Σ,R.

A⇒B are functions from proofs of A to proofs of B. We use a rewrite rule to identify the
corresponding types Prf(A⇒B) and Prf(A) → Prf(B). All other connectives and quantifiers
are defined à la Russel, mimicking the elimination rules of natural deduction; once again the
relevant types are identified by rewriting. Note that the quantifiers ∀ and ∃ bind a variable
from a sort in Set: we define them as taking as arguments an object-type a : Set and a
function from elements of a to propositions. We call Constructive Predicate Logic the λΠ / ≡
theory formed by

ΣcFO = { (C-decl) : C ∈ { Set,El, ι,Prop,⊤,⊥,¬,∧,∨, ∀, ∃ } }
and Rc

FO = { (C-red) : C ∈ { ⊤,⊥,¬,∧,∨, ∀, ∃ } }.
In Figure 2d are defined the classical connectives and quantifiers, using their constructive
counterpart and double negations, which is a frequent strategy to build ecumenical logics. We
begin by introducing a classical version of Prf, enabling us to add prenex double negations
whenever necessary. This definition has many advantages: we are able to add double negations
to isolated atomic formulas, which is a recurrent problem in the design of ecumenical systems,
without adding too much heaviness to our system. The classical connectives and quantifiers
are now defined using their constructive counterpart and internal double negations.

We call Ecumenical Predicate Logic the λΠ / ≡ theory formed by ΣeFO = ΣcFO∪{ (C-decl) :
C ∈ { Prfc,∧c,∨c, ∀c, ∃c } } and Re

FO = Rc
FO ∪ { (C-red) : C ∈ { Prfc,∧c,∨c, ∀c, ∃c } }.

Simple type theory (STT) can be expressed either as a first order theory or as an extension
of predicate logic. To avoid nestling multiple encodings, we choose the latter option, as
shown in Figure 2b. Predicate Logic is extended with the object type of propositions o and
the function type arrow ⇝. These definitions allow to construct simple types and assimilate
propositions to objects.

We respectively call Constructive STT and Ecumenical STT the λΠ / ≡ theories ΣcHO =
Σc
FO ∪ { (C-decl) : C ∈ { o,⇝ } },Rc

HO = Rc
FO ∪ { (C-red) : C ∈ { o,⇝ } } and Σe

HO =
Σe
FO ∪ Σc

HO,R
e
HO = Re

FO ∪ Rc
HO. For readability purposes, we respectively denote by

⊢cHO and ⊢eHO the provability relations ⊢Σc
HO

,Rc
HO

of Constructive STT and ⊢Σe
HO

,Re
HO

of
Ecumenical STT.

E. Grienenberger 4:5

(Set-decl) Set : TYPE

(ι-decl) ι : Set
(El-decl) El : Set → TYPE

(Prop-decl) Prop : TYPE

(Prf-decl) Prf : Prop → TYPE

(a) Base of the encoding.

(o-decl) o : Set
(o-red) El o ↪→ Prop

(⇝-decl) ⇝ : Set → Set → Set
(⇝-red) El (x⇝ y) ↪→ El x → El y

(b) Higher order.

(⊤-decl) ⊤ : Prop
(⊤-red) Prf ⊤ ↪→ (z : Prop) → Prf z → Prf z

(⊥-decl) ⊥ : Prop
(⊥-red) Prf ⊥ ↪→ (z : Prop) → Prf z

(⇒-decl) ⇒ : Prop → Prop → Prop
(⇒-red) Prf x⇒ y ↪→ Prf x → Prf y
(¬-decl) ¬ : Prop → Prop
(¬-red) Prf (¬x) ↪→ Prf x → (z : Prop) → Prf z

(∧-decl) ∧ : Prop → Prop → Prop
(∧-red) Prf (x ∧ y) ↪→ (z : Prop) → (Prf x → Prf y → Prf z) → Prf z

(∨-decl) ∨ : Prop → Prop → Prop
(∨-red) Prf (x ∨ y) ↪→ (z : Prop) → (Prf x → Prf z) → (Prf y → Prf z) → Prf z
(∀-decl) ∀ : (a : Set) → (El a → Prop) → Prop
(∀-red) Prf (∀ a p) ↪→ (z : El a) → Prf (p z)

(∃-decl) ∃ : (a : Set) → (El a → Prop) → Prop
(∃-red) Prf (∃ a p) ↪→ (z : Prop) → ((x : El a) → Prf (p x) → Prf z) → Prf z

(c) Constructive connectives and quantifiers.

(Prfc-decl) Prfc : Prop → TYPE

(Prfc-red) Prfc ↪→ λx : Prop.Prf (¬ ¬x)
(⇒c-decl) ⇒c : Prop → Prop → Prop
(⇒c-red) ⇒c ↪→ λx : Prop. [λy : Prop. (¬ ¬x) ⇒c (¬ ¬ y)]
(∧c-decl) ∧c : Prop → Prop → Prop
(∧c-red) ∧c ↪→ λx : Prop. [λy : Prop. (¬ ¬x) ∧ (¬ ¬ y)]

(∨c-decl) ∨c : Prop → Prop → Prop
(∨c-red) ∨c ↪→ λx : Prop. [λy : Prop. (¬ ¬x) ∨ (¬ ¬ y)]
(∀c-decl) ∀c : (a : Set) → (El a → Prop) → Prop
(∀c-red) ∀c ↪→ λa : Set. [λp : El a → Prop. ∀ a (λx : El a.¬ ¬(p x))]

(∃c-decl) ∃c : (a : Set) → (El a → Prop) → Prop
(∃c-red) ∃c ↪→ λa : Set. [λp : El a → Prop. ∃ a (λx : El a.¬ ¬(p x))]

(d) Classical connectives and quantifiers.

Figure 2 Definition of Ecumenical STT in λΠ / ≡.

TYPES 2022

4:6 Expressing Ecumenical Systems in the λΠ-Calculus Modulo Theory

⊤,⊥,¬,
∧,∨,⇒,

∃,∀

∧c,∨c,⇒c

∃c,∀c
o,⇝

Figure 3 Logical fragments of theory U.

We call the set of these four theories, represented in Figure 3, the “logical fragments of
theory U”.

In Ecumenical Predicate Logic and Ecumenical STT, hybrid propositions and proofs can
be expressed, for example in context P : Prop, Q : Prop, one can prove that Prf((P ∧Q)⇒cP)
is inhabited and that Prf((P ∧c Q) ⇒ P) is not.

3 Properties of the logical fragments of theory U

The system λΠ / ≡ is very permissive due to the minimal restrictions on the user-defined
rewriting system R. In general, there is no guarantee of properties such as subject reduction,
type uniqueness, or the decidability of type-checking [40, 2]. To ensure that the theories
defined in the previous section are well-behaved, further properties need to be established
such as the confluence, well-typedness, and normalization of the associated rewriting system.

3.1 Well-typedness
A λΠ / ≡ theory Σ,R is said to be well-typed if
1. the rewriting system ↪→βR is confluent [42, 40, Definition 1.1.5.],
2. for every declaration c : T in signature Σ, term T is typed by a sort s in theory Σ,R,
3. for every rule ℓ ↪→ r in R, typing context Γ, type T , and substitution σ such that

Γ ⊢Σ,R σℓ : T , then Γ ⊢Σ,R σr : T .
Item 3 ensures that ↪→R enjoys subject reduction [40, Definition 2.4.4], i.e. Γ ⊢Σ,R t : T and
t ↪→R u implies Γ ⊢Σ,R u : T for any Γ, t, u, T . Item 1 ensures that the product is injective
in theory Σ,R [4], i.e. (x : t1) → u1 ≡βR (x : t2) → u2 implies t1 ≡βR t2 and u1 ≡βR u2 for
any x, t1, t2, u1, u2. These properties guarantee in turn that ↪→β preserves typing. Note that
the injectivity of the product is also called product compatibility in the literature [40, 44].

The well-typedness of all fragments of theory U, including the four logical fragments
studied in this paper, is established in [6]. Alternatively, the framework of strongly well-
formed λΠ / ≡ theories [40] could also be used in the specific case of the logical fragments
to ensure well-typedness. This framework is not sufficient for the entirety of theory U, as
fragments of theory U that include the definition of predicate subtyping [26] are not strongly
well-formed.

▶ Lemma 1 (Well-typedness [6, Theorem 9]). All logical fragments of theory U are well-typed.

E. Grienenberger 4:7

▶ Corollary 2 (Subject reduction). Let Σ,R be one of the four logical fragments of theory
U. Let t, u, T be terms of Λ(Σ) and Γ a typing context such that Γ ⊢Σ,R t : T and t ↪→βR u,
then Γ ⊢Σ,R u : T .

▶ Corollary 3 (Fragment theorem [6, Theorem 7]). Let Σ1,R1 and Σ2,R2 be two of the four
logical fragments of theory U such that Σ1 ⊆ Σ2. Let t, T be terms of Λ(Σ1) and Γ a typing
context such that codom(Γ) ⊂ Λ(Σ1). If Γ ⊢Σ2,R2 t : T , then Γ ⊢Σ1,R1 t : T .

3.2 Normalization
A sufficient condition for the decidability of type-checking in a well-typed theory Σ,R is the
normalization [42] of the rewriting system ↪→βR . Indeed, using a normalization strategy and
the confluence of ↪→βR , the convertibility modulo ≡βR of two terms A,B ∈ Λ(Σ) is decidable
by computing the normal forms of A and B and testing if they are equal (up to α-renaming).
In this case, the applicability of the conversion rule (conv) is decidable, ensuring in turn the
decidability of type-checking modulo Σ,R. Normalization is also a first step towards a proof
of consistency for a given theory.

The strong normalization of β-reduction is established for the λΠ-calculus [25], and the
additional rewriting systems defined by the four logical fragments of theory U are obviously
normalizing. However, weak and strong normalization are not modular in higher-order
rewriting settings [1]; as a consequence, the normalization of ↪→βR cannot be deduced from
the fact that ↪→β and ↪→R are both normalizing.

Some theoretical results and tools have been developed in order to prove normalization of
term rewriting systems in dependent type theories [20, 35, 7]. However, these results cannot
be directly used to prove the normalization of the logical fragments of U, and more generally
of theory U. The rule (⇝-red) is one of the many problematic rules: the right-hand side is a
product, thus the rule is not arity-preserving [18], and is pinpointed by SizeChangeTool
[7] as being self-looping. As a consequence, the consistency and type-checking decidability of
theory U and many of its fragments is still an open question.

In the following sections, we begin to answer this question by proving the weak normal-
ization of Ecumenical STT, from which the decidability of type-checking and consistency
will ensue. The following normalization proof relies on a notion of models of λΠ / ≡ theories
valued in structures named Π-algebras, which are similar to pre-Heyting algebras [27, 17].
Any λΠ / ≡ theory which admits a model in every full ordered and complete Π-algebra
is called super-consistent. In [15], the author establishes the strong normalization of ↪→β

over well-typed terms for any super-consistent theory using reducibility candidates [41, 23].
Moreover, the super-consistency of an expression of minimal STT with parametric quantifiers
is proven. Sections 3.2.1 and 3.2.2 extend the models of minimal STT with parametric
quantifiers described in [15] to Constructive STT, thus proving that Constructive STT is
super-consistent. Finally, the strong normalization of ↪→β over λΠ / ≡ terms well-typed in
Constructive STT is used to prove weak normalization for all logical fragments of theory U.

3.2.1 Super-consistency
In the following section, we define all the notions necessary to state and prove the super-
consistency of Constructive STT.

▶ Definition 4. A full, complete, and ordered Π-algebra is formed with
a preordered set (B,≤) with a maximal element ⊤̃ of B,
a function ∧̃ : B × B → B such that a ∧̃ b is a greatest lower bound of { a, b } for ≤,

TYPES 2022

4:8 Expressing Ecumenical Systems in the λΠ-Calculus Modulo Theory

a function Π̃ : B × (P(B) \ ∅) → B such that a ≤ Π̃(b, S) if for all c ∈ S, a ∧̃ b ≤ c,
and an order relation ⊑ over B with respect to which Π̃ is left anti-monotonic and right
monotonic, and for which every subset of B has a least upper bound.

Note that relations ≤ and ⊑ need not be in any way related.

▶ Definition 5. A model valued in a full, ordered, and complete Π-algebra is a triplet of
interpretation functions (J·Ki)1≤i≤3 and a set V. The ith interpretation J·Ki takes as arguments
a term t and i − 1 variable assignments (ϕj)1≤j<i such that fv(t) ⊆

⋂
1≤j<i dom(ϕj) and

returns a value JtKiϕ1,...,ϕi−1
∈ V such that

JKINDK2
ϕ1

= JTYPEK2
ϕ1

= B and JKINDK3
ϕ1,ϕ2

= JTYPEK3
ϕ1,ϕ2

= ⊤̃,
J(x : t) → uK3

ϕ1,ϕ2
= Π̃(JtK3

ϕ1,ϕ2
, { JuK3

(ϕ1,x=c1),(ϕ2,x=c2) : c1 ∈ JtK1, c2 ∈ JtK2
ϕ1

})
This definition is a simplification of its counterpart in [15], which allows models with an
arbitrary number of interpretation functions. However, only three levels of interpretation are
required to show the super-consistency of Constructive STT.

▶ Definition 6 (Compatibility). Let (J·Ki)1≤i≤3 be a model valued in a full, ordered, and
complete Π-algebra B and i ∈ { 1, 2, 3 }. The variable assignments ϕ1, . . . , ϕi−1 are compatible
with a typing context ∆ if for all 1 ≤ j < i and (x : A) ∈ ∆ we have ϕj(x) ∈ JAKjϕ1,...,ϕj−1

.

▶ Definition 7 (Model of a theory). A model valued in a full, ordered, and complete Π-algebra
B is a model of a theory Σ,R if and only if the following conditions are met for every
i ∈ { 1, 2, 3 }, typing context ∆, terms t, u,A,B,C ∈ Λ(Σ), variables x, y ∈ V, and compatible
variable assignments ϕ1, . . . , ϕi−1:
Variable assignment: if i ≥ 2, then for every (x : A) ∈ ∆, we have JxKiϕ1,...,ϕi−1

= ϕi−1(x).
Well-typedness: if i ≥ 2 and ∆ ⊢Σ,R t : A, then JtKiϕ1,...,ϕi−1

∈ JAKi−1
ϕ1,...,ϕi−2

.
Weakening: if ∆ ⊢Σ,R t : A and y /∈ dom(∆), then JtKiϕ1,...,ϕi−1

= JtKi(ϕ1,y=a1),...,(ϕi−1,y=an−1).
Substitution: if ∆(y : C) ⊢Σ,R t : B, ∆ ⊢Σ,R u : C, then

J(u/y)tKiϕ1,...,ϕi−1
= JtKi(ϕ1,y=JuK2

ϕ1
),...,(ϕi−1,y=JuKi

ϕ1,...,ϕi−1
).

Validity of the congruence: if ∆ ⊢Σ,R A : C, ∆ ⊢Σ,R B : C, and A ≡βR B, then
JAKiϕ1,...,ϕi−1

= JBKiϕ1,...,ϕi−1

Validity of the axioms: if (c : A) ∈ Γ, then JAK3 ≥ ⊤̃.

▶ Definition 8 (Super-consistency). A λΠ / ≡ theory Σ,R admitting a model valued in every
full, ordered, and complete Π-algebra is called super-consistent.

▶ Theorem 9 ([15, Theorem 5.1]). →β is strongly normalizing over well-typed terms in
super-consistent λΠ / ≡ theories.
Note that this result does not yield normalization for the whole rewriting system ↪→βR . This
theorem is more generally applicable to non-terminating user-defined rewriting systems ↪→R ,
which is useful when ≡βR is a decidable congruence but ↪→R is non-terminating. A trivial
example would be R = {x ↪→ x }.

▶ Theorem 10 ([15, Theorem 4.3]). Minimal STT is super-consistent.

3.2.2 Models of Constructive STT
In this section, we extend the model of Minimal STT valued in a given arbitrary full, ordered,
and complete Π-algebra B defined in [15] to a model of Ecumenical STT.

E. Grienenberger 4:9

3.2.2.1 Model of Minimal STT

Let { e } be an arbitrary one-element set and A the smallest set containing B and { e },
and closed by cartesian product (denoted ×) and exponentiation (denoted F). Let V be
the smallest set containing A, B, and { e } and closed by cartesian product and dependent
function space, i.e. if S is an element of V and T a family of elements of V indexed by S,
then the set Fd(S, T) of functions mapping each element s of S to an element of Ts is in V.
We define the interpretation functions (J·Ki)1≤i≤3 as described in Figure 4.

▶ Lemma 11 ([15, Theorem 4.2]). The model (J·Ki)1≤i≤3 is a model of Minimal STT in B.

3.2.2.2 Extension of the model to Constructive STT

The three interpretation functions of the model defined in Figure 4 are extended to define a
model of Constructive STT valued in the given Π-algebra B with the following method:
1. we extend the model to interpret the constructive connectives ⊤, ⊥, ¬, ∃, ∧, and ∨;
2. we prove that the typing of these connectives is preserved by these interpretations;
3. we prove that the axioms declaring these connectives, i.e. (⊤-decl), (⊥-decl), (¬-decl),

(∃-decl), (∧-decl), and (∨-decl), are valid in this extension.
4. we prove that reduction by the rewrite rules defining these connectives, i.e. (⊤-red),

(⊥-red), (¬-red), (∃-red), (∧-red), and (∨-red), leaves the interpretations invariant.
These verifications ensure that our extension is a model of Constructive STT. The most
problematic step of this method is Item 4. As an example, constructive conjunction is not
directly defined by a rewrite rule of the form ∧ ↪→ t or a ∧ b ↪→ t, but by a rule of the form
Prf (a ∧ b) ↪→ t which needs to preserve interpretation. As a consequence, the interpretation
of Prf and of the application need to be taken into account while accomplishing Item 1.

For example, as Prf ⊤ ↪→ (z : Prop) → Prf z → Prf z, we need to define J⊤K3
ϕ,ψ such

that JPrf ⊤K3
ϕ,ψ = J(z : Prop) → Prf z → Prf zK3

ϕ,ψ = Π̃(⊤̃, { Π̃(c, { c }) : c ∈ B }); here we
conclude using JPrf ⊤K3

ϕ,ψ = J⊤K3
ϕ,ψ. The interpretations of all constructive connectives and

quantifiers are described in Figure 5.

▶ Lemma 12 (Well-typedness). For any i ∈ { 1, 2 } and declaration c : T in (⊤-decl), (⊥-decl),
(¬-decl), (∃-decl), (∧-decl), and (∨-decl), we have JcKi+1

ϕ1,...,ϕi
∈ JT Kiϕ1,...,ϕi−1

.

Proof. We check every case.
If i = 1: JcK2

ϕ = e and JT K1 = { e }
If i = 2: J⊤K3

ϕ,ψ and J⊥K3
ϕ,ψ are elements of B, which is equal to JPropK2

ϕ,
J¬K3

ϕ,ψ is an element of F({ e } × B,B), which is equal to JProp → PropK2
ϕ,

J∧K3
ϕ,ψ and J∨K3

ϕ,ψ are elements of F({ e } × B,F({ e } × B,B)), which is equal to
JProp → Prop → PropK2

ϕ,
and J∃K3

ϕ,ψ is an element of F(A × B,F({ e } × F({ e } × S,B),B)), which is equal to
J(x : Set) → (El x → Prop) → PropK2

ϕ. ◀

▶ Lemma 13 (Validity of the axioms). For all declarations c : T in (⊤-decl), (⊥-decl),
(¬-decl), (∃-decl), (∧-decl), and (∨-decl), then JT K3

ϕ,ψ ≥ ⊤̃.

Proof. There are four possibilities.
For (⊤-decl) and (⊥-decl), we have T = Prop and by definition JT K3

ϕ,ψ = ⊤̃ ≥ ⊤̃.
For (¬-decl), we have T = Prop → Prop, and as a consequence JT K3

ϕ,ψ = Π̃(⊤̃, { ⊤̃ }) ≥ ⊤̃.
For (∧-decl) and (∨-decl), we have T = Prop → Prop → Prop and by definition
JT K3

ϕ,ψ = Π̃(⊤̃, { Π̃(⊤̃, { ⊤̃ }) }) ≥ ⊤̃.
For (∃-decl), we have T = (x : Set) → (El x → Prop) → Prop, and as a consequence
JT K3

ϕ,ψ = Π̃(⊤̃, { Π̃(Π̃(c, { ⊤̃ }), { ⊤̃ }) : c ∈ B }) ≥ ⊤̃. ◀

TYPES 2022

4:10 Expressing Ecumenical Systems in the λΠ-Calculus Modulo Theory

JTYPEK1 = JKINDK1 = V

JSetK1 = A

J(x :C) → DK1 =
{

{ e } if JDK1 = { e }
F(JCK1, JDK1) else

Jλx :C. tK1 = Jt uK1 = JtK1

JtK1 = { e } in every other case

(a) First level of interpretation.

JTYPEK2
ϕ = JKINDK2

ϕ = JSetK2
ϕ = JoK2

ϕ = B

JElK2
ϕ = S 7→ S ∈ F(A,V)

JPrfK2
ϕ = e 7→ { e } ∈ F({ e },V)

JιK2
ϕ = { e }

J(x :C) → DK2
ϕ =

{
{ e } if for all c′ ∈ JCK1, JDK2

ϕ,x=c′ = { e }
Fd(JCK1 × JCK2

ϕ, (JDK2
ϕ,x=c′)⟨c,c′⟩) else

J⇝K2
ϕ =

{
{ e } if T = { e }
⟨S, T ⟩ ∈ A × A 7→ F({ e } × S, T) else

JxK2
ϕ = ϕ(x)

Jλx :C. tK2
ϕ =

{
e if for all c ∈ JCK1, JtK2

ϕ,x=c = e

c ∈ JCK1 7→ JtK2
ϕ,x=c else

Jt uK2
ϕ =

{
e if JtK2

ϕ = e

JtK2
ϕ JuK2

ϕ else

JtK2
ϕ = e in every other case

(b) Second level of interpretation.

JTYPEK3
ϕ,ψ = JKINDK3

ϕ,ψ = ⊤̃
JSetK3

ϕ,ψ = JιK3
ϕ,ψ = JoK3

ϕ,ψ = ⊤̃
J⇝K3

ϕ,ψ = ⟨⟨S, a⟩, ⟨T, b⟩⟩ ∈ (A × B)2 7→ Π̃(a, { b }) ∈ B

JElK3
ϕ,ψ = ⟨S, a⟩ ∈ A × B 7→ a ∈ B

JPrfK3
ϕ,ψ = ⟨e, a⟩ ∈ { e } × B 7→ a ∈ B

J⇒K3
ϕ,ψ = ⟨e, a⟩ ∈ { e } × B 7→ ⟨e, b⟩ ∈ { e } × B 7→ Π̃(a, { b })

J∀K3
ϕ,ψ = ⟨S, a⟩ ∈ A × B 7→ ⟨e, g⟩ ∈ { e } × F({ e } × S,B) 7→

Π̃(a, { g ⟨e, s⟩ : s ∈ S })
JxK3

ϕ,ψ = ψ(x)

J(x :C) → DK3
ϕ,ψ = Π̃

(
JCK3

ϕ,ψ, { JDK3
ϕ(x=c′),ψ(x=c) : c′ ∈ JCK1, c ∈ JCK2

ϕ }
)

Jλx :C. tK3
ϕ,ψ =

{
e if for all ⟨c′, c⟩ ∈ JCK1 × JCK2

ϕ, JtK3
ϕ(x=c′),ψ(x=c) = e

⟨c′, c⟩ ∈ JCK1 × JCK2
ϕ 7→ JtK3

ϕ(x=c′),ψ(x=c) else

Jt uK3
ϕ,ψ =

{
e if JtK3

ϕ,ψ = e

JtK3
ϕ,ψ⟨JuK2

ϕ, JuK
3
ϕ,ψ⟩ else

(c) Third level of interpretation.

Figure 4 Model of minimal STT.

E. Grienenberger 4:11

JtK1 = { e } if t ∈ { ⊤,⊥,¬, ∃,∧,∨,Prop }

(a) First level.

JPropK2
ϕ = B

JtK2
ϕ = e if t ∈ { ⊤,⊥,¬, ∃,∧,∨ }

(b) Second level.

JPropK3
ϕ,ψ = ⊤̃

J⊤K3
ϕ,ψ = Π̃(⊤̃, { Π̃(c, { c }) : c ∈ B })

J⊥K3
ϕ,ψ = Π̃(⊤̃,B)

J∧K3
ϕ,ψ = ⟨e, a⟩ 7→ ⟨e, b⟩ 7→ Π̃(⊤̃, { Π̃(Π̃(a, { Π̃(b, { c }) }), { c }) : c ∈ B })

J∨K3
ϕ,ψ = ⟨e, a⟩ 7→ ⟨e, b⟩ 7→ Π̃(⊤̃, { Π̃(Π̃(a, { c }), { Π̃(Π̃(b, { c }), { c }) }) : c ∈ B })

J¬K3
ϕ,ψ = ⟨e, a⟩ 7→ Π̃(a, { Π̃(⊤̃,B) })

J∃K3
ϕ,ψ = ⟨S, a⟩ ∈ A × B 7→ ⟨e, g⟩ ∈ { e } × F({ e } × S,B) 7→

Π̃(⊤̃, { Π̃(a, { Π̃(g ⟨e, s⟩, { c }) : s ∈ S }), { c }) : c ∈ B })
(c) Third level.

Figure 5 Interpretations of Constructive STT connectives.

▶ Lemma 14 (Validity of the congruence). For all rewrite rules ℓ ↪→ r in (⊤-red), (⊥-red),
(¬-red), (∃-red), (∧-red), and (∨-red), then for all i ∈ { 1, 2, 3 }, JℓKiϕ1,...,ϕi−1

= JrKiϕ1,...,ϕi−1
.

Proof. We check every case.
If i = 1: in all cases JℓK1 = JrK1 = { e }.
If i = 2: in all cases JℓK2

ϕ = JrK2
ϕ = e.

If i = 3: we check the equality for every rule.
(⊤-red): JPrf ⊤K3

ϕ,ψ = Π̃(⊤̃, { Π̃(c, { c }) : c ∈ B }) = J(z : Prop) → Prf z → Prf zK3
ϕ,ψ

(⊥-red): JPrf ⊥K3
ϕ,ψ = Π̃(⊤̃,B) = J(z : Prop) → Prf zK3

ϕ,ψ

(¬-red): JPrf ¬AK3
ϕ,ψ = Π̃(JAK3

ϕ,ψ, { Π̃(⊤̃,B) }) = JPrf A → (z : Prop) → Prf zK3
ϕ,ψ

(∧-red): JPrf A ∧ BK3
ϕ,ψ = Π̃(⊤̃, { Π̃(Π̃(JAK3

ϕ,ψ, { Π̃(JBK3
ϕ,ψ, { c }) }), { c }) : c ∈ B }) =

J(z : Prop) → (Prf A → Prf B → Prf z) → Prf zK3
ϕ,ψ

(∨-red): JPrf A ∨ BK3
ϕ,ψ = Π̃(⊤̃, { Π̃(Π̃(JAK3

ϕ,ψ, { c }), { Π̃(Π̃(JBK3
ϕ,ψ, { c }), { c }) }) : c ∈

B }) = J(z : Prop) → (Prf A → Prf z) → (Prf B → Prf z) → Prf zK3
ϕ,ψ

(∃-red): JPrf (∃ T P)K3
ϕ,ψ = Π̃(⊤̃, { Π̃(JT K3

ϕ,ψ, { Π̃(JP K3
ϕ,ψ ⟨e, s⟩, {c}) : s ∈ JT K2

ϕ }), {c}) :
c ∈ B }) = J(z : Prop) → ((y : El T) → Prf P y → Prf z) → Prf zK3

ϕ,ψ

In all cases, reduction preserves interpretation. ◀

▶ Proposition 15. ↪→β strongly terminates on well-typed terms of Constructive STT.

Proof. Constructive STT has models valued in all full, ordered, and complete Π-algebras.
Thus, the theory is super-consistent and we conclude by Theorem 9. ◀

▶ Corollary 16. Ecumenical STT is weakly normalizing.

Proof. We exhibit a normalizing strategy for a given well-typed term t of Ecumenical STT.
1. First, normalize t with respect to every rule defining classical connectives and quantifiers,

i.e. (⇒c-red), (∧c-red), (∨c-red), (∀c-red), and (∃c-red). This procedure terminates as
the number of classical connectives and quantifiers stricly decreases with every reduction.
Note that the result t′ of this procedure is well-typed in Constructive STT.

2. Second, β-normalize t′. This procedure terminates by Proposition 15, yielding a term t′′.

TYPES 2022

4:12 Expressing Ecumenical Systems in the λΠ-Calculus Modulo Theory

3. Finally, normalize t′′ with respect to (⊤-red), (⊥-red), (⇒-red), (∧-red), (∨-red), (∀-red),
and (∃-red). The number of connectives and quantifiers strictly decreases with each
reduction. Each of these reduction step using rules (∀-red) and (∃-red) might create one
β-redex; however it is of the form (λx : t. u) y, which can be immediately reduced without
increasing the number of connectives and quantifiers.

The term resulting from this procedure is ↪→βRe
HO

-normal. ◀

We can conclude that type-checking in the logical fragments of theory U is decidable.

▶ Corollary 17. Type-checking in Ecumenical STT is decidable.

In practice, this normalization strategy is not implemented to type-check modulo Ecumeni-
cal STT. However, a considerable number of proofs, notably the standard HOL Light library,
have been type-checked in this theory [12]. The diversity and size of these developments
provide no counter-example to the strong normalization of Ecumenical STT.

▶ Conjecture 18. Ecumenical STT is strongly normalizing.

4 First order ecumenism

Some fragments of theory U have been previously studied separately in [3, 26, 43]. Soundness
and conservativity of these expressions with respect to a reference system, and consistency
have not all been established for all fragments; the consistency of theory U is still an open
question.

In the following sections, we study the soundness and conservativity of all logical fragments
of U with respect to appropriate reference systems (first order constructive and classical
logics, and higher-order constructive and classical logics). We also establish the consistency
of the logical fragments of theory U, which is a first step towards the consistency of the
whole theory. In the current section, we focus on the first order fragments, ie Constructive
Predicate Logic and Ecumenical Predicate Logic.

4.1 Reference systems: constructive and classical predicate logic
As reference systems for Constructive Predicate Logic and Ecumenical Predicate Logic, we
choose the systems NJ and NK [11].

In these systems, terms are defined over a first order language L containing function
and predicate symbols with their arity. Terms are of the form t, u, · · · = x | f(t1, . . . , tn)
where x is a variable and f ∈ L is a function symbol of arity n. Formulas are defined by
A,B, · · · = P (t1, . . . , tn) | ⊤ | ⊥ | A ∧ B | A ∨ B | A ⇒ B | ¬A | ∀x. A | ∃x. A, where
x is a variable and P ∈ L is an n-ary predicate symbol. Typing contexts are defined by
Γ,∆, · · · = [] | Γ, A. The rules of the NJ proof system are described in Figure 6. System NK
is the extension of NJ with the excluded-middle rule (EM) of conclusion A∨ ¬A and without
premises. We respectively write Γ ⊢NJ A and Γ ⊢NK A if the judgment Γ ⊢ A is derivable in
NJ and NK.

4.2 Soundness and conservativity of Constructive Predicate Logic
Soundness and conservativity of Constructive Predicate Logic were first proved in [13], and
restated and reproven in [40]. The proof if soundness is tedious and error prone: in both
aforementioned proofs, the free variables occuring in the constructive natural deduction
proof are not accurately taken into account. In the following, we reprove soundness and
conservativity of Constructive and highlight the errors made in previous proofs.

E. Grienenberger 4:13

A ∈ Γ axiom
Γ ⊢ A

⊤-intro
Γ ⊢ ⊤

Γ ⊢ ⊥ ⊥-elim
Γ ⊢ A

Γ ⊢ A ∧B ∧-elim
Γ ⊢ A

Γ ⊢ A ∧B ∧-elim
Γ ⊢ B

Γ ⊢ A Γ ⊢ B ∧-intro
Γ ⊢ A ∧B

Γ, A ⊢ ⊥
¬-intro

Γ ⊢ ¬A
Γ ⊢ ¬A Γ ⊢ A ¬-elim

Γ ⊢ ⊥
Γ, A ⊢ B

⇒-intro
Γ ⊢ A ⇒ B

Γ ⊢ A ⇒ B Γ ⊢ A ⇒-elim
Γ ⊢ B

Γ ⊢ A ∨-intro
Γ ⊢ A ∨B

Γ ⊢ B ∨-intro
Γ ⊢ A ∨B

Γ ⊢ A ∨B Γ, A ⊢ C Γ, B ⊢ C
∨-elim

Γ ⊢ C

Γ ⊢ ∀x. A ∀-elim
Γ ⊢ A

Γ ⊢ A ∃-intro
Γ ⊢ ∃x. A

Γ ⊢ A x /∈ fv(Γ)
∀-intro

Γ ⊢ ∀x. A
Γ ⊢ ∃x. A Γ, A ⊢ B x /∈ fv(Γ, B)

∃-elim
Γ ⊢ B

Figure 6 Rules of constructive predicate logic NJ.

|x|c ≜ x

|f(t1, . . . , tn)|c ≜ ḟ |t1|c . . . |tn|c
|P (t1, . . . , tn)|c ≜ Ṗ |t1|c . . . |tn|c

|⊤|c ≜ ⊤
|⊥|c ≜ ⊥

|¬A|c ≜ ¬ |A|c

|A ∧ B|c ≜ |A|c ∧ |B|c
|A ∨ B|c ≜ |A|c ∨ |B|c

|A ⇒ B|c ≜ |A|c ⇒ |B|c
|∀x. A|c ≜ ∀ ι (λx : El ι. |A|c)
|∃x. A|c ≜ ∃ ι (λx : El ι. |A|c)

Figure 7 Translation | · |c of NJ to its expression in λΠ / ≡.

As in [40], a first order language L is encoded in λΠ / ≡ by a context ∆L declaring
an n-ary function ḟ : El ι → . . . → El ι → El ι for every n-ary function symbol f ∈ L,
and an n-ary function Ṗ : El ι → . . . → El ι → Prop for every n-ary predicate symbol
P ∈ L. For example, the first order language L containing a nullary predicate P and
a unary predicate Q is expressed in λΠ / ≡ by the context ∆L represented in Figure 8.
Terms and formulas of the intuitionistic first order system NJ are naturally embedded into
Constructive Predicate Logic using transformation |.|c defined in Figure 7. Finally, for any
context Γ = A1, . . . , An and proposition A, denoting by y1, . . . , yk the free variables of Γ, A,
we define |Γ|Ac = y1 : El ι, . . . , yk : El ι, x1 : Prf |A1|c, . . . , xn : Prf |An|c. Again, Figure 8
provides an example: the NJ context ∀x. [Q(x) ∧ P] is translated into the λΠ / ≡ context Γ.

In [40], the NJ proof represented in Figure 8 is expressed by the term π in Constructive
Predicate Logic. Note that the variable y is not free in the final judgment ∀x. [Q(x) ∧P] ⊢ P ,
thus is not declared in the typing context ∆L,Γ. However, y is free in the NJ proof, thus
appears free in term π. As a consequence, π is not well-typed in ∆L,Γ and the soundness
result of [40] does not hold. To handle such free variables, we suggest the following slight
alteration: we add a witness w : El ι to context ∆L and substitute whenever necessary. As
an example, we express the NJ proof of Figure 8 with the term π(y/w), well-typed in ∆L,Γ.
Note that this presentation can be easily extended to many sorted natural deduction by
adding a constant s : El and a witness ws : El s for every additional sort.

▶ Lemma 19 (Soundness). If A is an NJ formula over a first-order language L such that
Γ ⊢NJ A, then there is a term t ∈ Λ(ΣcFO) such that ∆L; |Γ|Ac ⊢cFO t : Prf |A|c.

TYPES 2022

4:14 Expressing Ecumenical Systems in the λΠ-Calculus Modulo Theory

∀x. [Q(x) ∧ P] ⊢ ∀x. [Q(x) ∧ P]
∀-elim

∀x. [Q(x) ∧ P] ⊢ Q(y) ∧ P
∧-elim

∀x. [Q(x) ∧ P] ⊢ P

∆L = (P : Prop), (Q : El ι → Prop)
Γ = (H : Prf (∀ ι (λx : El ι. [(Q x) ∧ P])))
π = (H y) P (λx1 : Prf (Q y). λx2 : Prf P . x2)

Figure 8 Counter-example to soundness proofs of constructive predicate logic from [13, 40].

Proof. By induction on the derivation of Γ ⊢ A. We develop the case of the left elimination
of the conjunction ∧-elim to illustrate the use of the witness w : El ι. By induction hypothesis
on the proof πB of Γ ⊢ A∧B, there is a term tB such that ∆L; |Γ|A∧B

c ⊢cFO tB : Prf |A∧B|c.
Term t = tB |A|c (λz1 : Prf |A|c. λz2 : Prf |B|c. z1) is of type Prf |A|c in context ∆L, |Γ|A∧B

c .
Let y1, . . . , yk = fv(B)\fv(Γ, A). As |Γ|A∧B

c = |Γ|Ac , y1 : El ι, . . . , yk : El ι, and using the
substitution lemma [40, Lemma 2.6.9.], ∆L; |Γ|Ac ⊢ (w/y1, . . . , w/yk)t : Prf |A|c. ◀

The conservativity of Constructive Predicate Logic with respect to NJ, which is the
converse statement to Lemma 19, has been established in [13, 40] and can be seen as
a specific case of the proof of conservativity of Constructive STT, further developed in
Section 5.2.2.

▶ Lemma 20 (Conservativity). Let L be a first-order language and A a NK formula over L.
If there is a term t ∈ Λ(ΣcFO) such that ∆L; |Γ|Ac ⊢cFO t : Prf |A|c, then Γ ⊢NJ A.

4.3 Soundness and conservativity of Ecumenical Predicate Logic
In the following section, the soudness and conservativity of Ecumenical Predicate Logic with
respect to NK are established using the analogous results already established for Constructive
Predicate Logic, i.e. Lemmas 19 and 20, and the properties of double-negation translations.

Figure 9a defines the embedding |.|e of NK formulas into Ecumenical terms, which maps
every NK connective to the corresponding classical connective. Considering the construction
of the classical connectives, this transformation mimicks the Kolmogorov double negation
translation A 7→ ¬¬(A⊥) [29] represented in Figure 9b. In the following, the Kolmogorov
translation ¬¬(·⊥) is naturally extended to contexts.

|x|e = x

|f(t1, . . . , tn)|e = ḟ |t1|e . . . |tn|e
|P (t1, . . . , tn)|e = Ṗ |t1|e . . . |tn|e

|□|e = □

|¬A|e = ¬ |A|e
|A ⋊⋉ B|e = |A|e⋊⋉c |B|e
|Qx. A|e = Qc ι (λx : El ι. |A|e)

(a) Expressing NK into Ecumenical Predicate Logic.

P (t1, . . . , tn)⊥ = P (t1, . . . , tn)
□⊥ = □

(¬A)⊥ = ¬A
(A ⋊⋉ B)⊥ = (¬¬A) ⋊⋉ (¬¬B)
(Qx. A)⊥ = Qx. (¬¬A)

(b) The ·⊥ translation from NK to NJ.

Figure 9 Translations of NK propositions, where □ ∈ { ⊤, ⊥ }, ⋊⋉∈ { ∧, ∨, ⇒ }, and Q ∈ { ∀, ∃ }.

▶ Lemma 21. For every NK proposition A, Prfc |A|e ≡βRe
F O

|¬¬A⊥|c.

Proof. By a straightforward induction on the structure of formula A. ◀

E. Grienenberger 4:15

▶ Lemma 22 ([29]). For every NK proposition A, if Γ ⊢NK A then ¬¬Γ⊥ ⊢NJ ¬¬A⊥.

The soundness of Ecumenical Predicate Logic with respect to NK is immediate using
Lemmas 21 and 22. Formally, for any context Γ = A1, . . . , An and proposition A, denoting
by y1, . . . , yk the free variables of Γ, A, we define |Γ|Ae = y1 : El ι, . . . , yk : El ι, x1 :
Prfc |A1|e, . . . , xn : Prfc |An|e.

▶ Lemma 23 (Soundness). If A is NK formula over language L such that Γ ⊢NK A is provable
in NK, then there exists a term t ∈ Λ(ΣeFO) such that ∆L; |Γ|A,c ⊢eFO t : Prfc |A|e.

Proof. By Lemma 22, ¬¬Γ⊥ ⊢NJ ¬¬A⊥ is provable in NJ. By the soundness of Constructive
Predicate Logic, ∆L; |¬¬Γ⊥|¬¬A

c ⊢cFO t : Prf |¬¬A⊥|c. By Lemma 21 and the fact that
fv(¬¬A) = fv(A), we conclude that ∆L; |Γ|Ae ⊢eFO t : Prfc |A|e. ◀

▶ Lemma 24 (Conservativity). Let L be a first-order language and A a NK formula over L.
If there is a term t ∈ Λ(ΣeFO) such that ∆L, |Γ|Ae ⊢eFO t : Prfc |A|e, then Γ ⊢NK A.

Proof. By the conversion rule and Lemma 21, ∆L, |¬¬Γ⊥|Ac ⊢eFO t : Prf (|¬¬A⊥|c). By
Corollary 3, there is a reduct of Prf (|¬¬A⊥|c), which we will denote by T , such that
∆L, |¬¬Γ⊥|Ac ⊢cFO t : T . By conversion, ∆L, |¬¬Γ⊥|Ac ⊢cFO t : Prf (|¬¬A⊥|c). By Lemma 20,
¬¬Γ⊥ ⊢NJ ¬¬A⊥ is derivable in NJ, and we conclude by Lemma 22 that Γ ⊢NK A. ◀

5 Higher order ecumenism

In the following section, we study the soundness and conservativity of the higher order logical
fragments of U with respect to higher-order constructive and classical logics. We will then
conclude that Ecumenical STT is consistent.

5.1 Reference systems: constructive and classical HOL-λ
As reference systems for Constructive and Ecumenical STT, we consider the intentional
version of HOL-λ [16], that is the system obtained by removing the η-expansion rule.

The types of the system HOL-λ are the simple types defined by T, U, · · · = ι | o | T → U .
Terms of HOL-λ are λ-terms with additional constants, among which figure the logical
connectives. Formally, terms and their associated types are inductively defined by:

a set of typed variables X, such that every variable x ∈ X of type T is a term of type T ;
a set of typed constants L, such that every constant c ∈ L of type T is a term of type T ;
for every term t of type U and variable x ∈ X of type T , λx. t is a term of type T → U ;
for every pair of terms t and u of respective types T → U and T , t u is a term of type U ;
⇒̇, ∧̇, and ∨̇ are terms of type o → o → o, ⊥̇ and ⊤̇ of type o, and ¬̇ of type o → o;
∀̇T and ∃̇T are terms of type (T → o) → o for every simple type T .

We assume that there is an infinite number of variables associated to each simple type.
Terms of type o are called propositions. Note that we will use the infix notation for the binary
connectives ⇒, ∧̇, and ∨̇ for readability purposes. We write the substitution of variable x by
a similarly typed term u in a term t by (u/x)t.

The β-reduction is defined by the rewrite rule (λx. t) u ↪→ (u/x)t. The rewriting system
↪→β , i.e. the smallest relation containing β-reduction and closed by term constructors and
substitution, is confluent and strongly normalizing [23]. In the following, the β−normal form
of a term t will be denoted by t↓. The proof system of HOL-λ is shown on Figure 10; all
propositions appearing in a proof are normal. The constructive subsystem HOL-λI of HOL-λ
is the system obtained by removing the excluded-middle rule (EM) from its proof system.

TYPES 2022

4:16 Expressing Ecumenical Systems in the λΠ-Calculus Modulo Theory

axiom
Γ ⊢ A

EM
Γ ⊢ A ∨̇ ¬̇A

⊤̇-intro
Γ ⊢ ⊤̇

Γ ⊢ ⊥̇ ⊥̇-elim
Γ ⊢ A

Γ ⊢ A ∧̇B ∧̇-elim
Γ ⊢ A

Γ ⊢ A ∧̇B ∧̇-elim
Γ ⊢ B

Γ ⊢ B Γ ⊢ A ∧̇-intro
Γ ⊢ A ∧̇B

Γ ⊢ A ∨̇-intro
Γ ⊢ A ∨̇B

Γ ⊢ B ∨̇-intro
Γ ⊢ A ∨̇B

Γ, A ⊢ B
⇒̇-intro

Γ ⊢ A ⇒̇B

Γ ⊢ A ⇒̇B Γ ⊢ A ⇒̇-elim
Γ ⊢ B

Γ ⊢ (A t)↓
∃̇-intro

Γ ⊢ ∃̇TA
Γ ⊢ ∀̇TA ∀̇-elim

Γ ⊢ (A t)↓

Γ ⊢ A ∨̇B Γ, A ⊢ C Γ, B ⊢ C
∨̇-elim

Γ ⊢ C

Γ, A ⊢ ⊥̇
¬̇-intro

Γ ⊢ ¬̇A
Γ ⊢ ¬̇A Γ ⊢ A ¬̇-elim

Γ ⊢ ⊥̇

Γ ⊢ (A x)↓ x /∈ fv(Γ)
∀̇-intro

Γ ⊢ ∀̇TA
Γ ⊢ ∃̇TA Γ, (A x) ↓ ⊢ B x /∈ fv(Γ, B)

∃̇-elim
Γ ⊢ B

Figure 10 Rules of the HOL-λ proof system.

|ι| = ι

|o| = o

|T → U | = |T |⇝ |U |

|x|c = x

|t u|c = |t|c |u|c
|λx. t|c = λx : T̃ . |t|c

|Ċ|c = C

|c|c = ċ

|Q̇T |c = Q

Figure 11 Shallow embedding of HOL-λI types and terms in the expression of constructive STT,
where C ∈ { ⇒, ∧, ∨, ⊤, ⊥, ¬ }, c ∈ L, Q ∈ { ∀, ∃ }, and x is a HOL-λ variable of type T .

5.2 Soundness and conservativity of Constructive STT
Let us establish the direct correspondance between Constructive STT and HOL-λI.

5.2.1 Soundness of Constructive STT
We choose a shallow expression of HOL-λI in Constructive STT via a translation |.|c repre-
sented on Figure 11. This translation preserves λ-abstractions, applications, and β-conversion.
We express simple types in λΠ / ≡ using the translation | · | shown in Figure 11. We denote by
T̃ the normal form of El |T |, where T is a simple type. This notation allows to use normalized
type anotations in order to map normal HOL-λI terms to normal terms of Constructive STT.
Finally, we define a context ∆L declaring a symbol ċ : T̃ for every constant c ∈ L of type T
and a witness w : El ι.

▶ Lemma 25 (Preservation of ↪→β). If t ↪→β t
′ in HOL-λI, then |t|c ↪→β |t′|c in λΠ / ≡.

Proof. By the shallowness of translation | · |c. ◀

▶ Corollary 26 (Preservation of β-conversion). If t and t′ are two convertible HOL-λI terms,
then |t|c ≡βRc

HO
|t′|c.

▶ Lemma 27 (Preservation of normality). If t is a HOL-λI term, then t is β-normal if and
only if |t|c is normal in Constructive STT.

Proof. The direct implication is immediate by using Lemma 25. The converse statement is
established by a straightforward induction on t. ◀

E. Grienenberger 4:17

▶ Lemma 28 (Preservation of types). Let t be a HOL-λI term of type T , and x1, . . . , xn its
free variables of respective types T1, . . . , Tn. We can type |t|c with: ∆L, x1 : El |T1|, . . . , xn :
El |Tn| ⊢cHO |t|c : El |T |.

Proof. By induction over the proof of typability of term t. ◀

Lemma 28 notably entails that for any HOL-λI proposition A, the λΠ / ≡ term Prf |A|c is
well-typed in any context declaring the free variables of A. Note that using the witness w : El ι,
every type |T |, where T is a HOL-λI simple type, has an element w(T) in Constructive STT:

if T = ι, then w has type El ι.
if T = o, then ⊤ has type El o ≡βRc

HO
Prop.

if T = T1 → T2, then λx : El |T1|. w(T2) has type El |T | ≡βRc
HO

El |T1| → El |T2|.
We define a transformation from HOL-λI contexts into λΠ / ≡ contexts: if Γ = A1, . . . , An is
a HOL-λI context and A is a HOL-λI proposition, denoting by y1, . . . , yk the free variables
of Γ and A, of respective types T1, . . . , Tk, then |Γ|Ac = y1 : El |T1|, . . . , yk : El |Tk|, x1 :
Prf |An|c, . . . , xn : Prf |An|c. Observe that contrary to the case of predicate logic, some of
the free variables may be of type El o ≡βRc

HO
Prop.

▶ Lemma 29 (Soundness). If Γ ⊢ A is provable in HOL-λI, then there is a term t ∈ Λ(ΣcHO)
such that ∆L, |Γ|Ac ⊢cHO t : Prf |A|c.

Proof. By induction on the derivation of Γ ⊢ A. We develop the cases of the introduction
and elimination of the universal quantifier.
Rule ∀̇-elim: By induction hypothesis, there is tA such that ∆L, |Γ|Ac ⊢cHO tA : Prf |∀̇TA|c.

By weakening and the application rule, ∆L, |Γ|(A t)
c ⊢cHO (tA t) : Prf |A t|c. By Corol-

lary 26 and the conversion rule, ∆L, |Γ|(A t)
c ⊢cHO tA : Prf |(A t)↓ |c. By the substitution

lemma [40, Lemma 2.6.9.] applied to every variable of fv(A t)\fv(Γ, (A t)↓) and witnesses
of the associated simples types, ∆L, |Γ|(A t)↓

c ⊢cHO (tA t) : Prf |(A t)↓ |c.
Rule ∀̇-intro: By induction hypothesis, there is a term tA such that ∆L, |Γ|(A x)↓

c ⊢cHO tA :
Prf |(A x) ↓ |c. By weakening and the conversion rule, ∆L, |Γ|(A x)

c ⊢cHO tA : Prf |A x|c.
As x /∈ fv(Γ), the variable x is not declared in the context |Γ|Ac and we can apply the
abstraction rule to the typing judgment ∆L, |Γ|A x

c ⊢cHO tA : Prf |A x|c to obtain a
derivation of ∆L, |Γ|Ac ⊢cHO λx : El |T |. tA : Prf (∀ |T | |A|c). ◀

.

5.2.2 Conservativity of Constructive STT
The conservativity proof developed in this section is similar to other proofs of conservativity of
higher order logics expressed in λΠ / ≡ [10, 2]. Notably, we heavily rely on the normalization
of Ecumenical STT; we consider normal forms to constrain the form of λΠ / ≡ terms to
establish the preliminary Lemmas 30–35.

▶ Lemma 30 (Normal proof types). If A is a HOL-λI proposition, then (Prf |A|c)↓ has the
form (x1 : M1) → . . . → (xn : Mn) → Prf M for some terms M,M1, . . . ,Mn.

▶ Lemma 31 (Normal simple types). If T is a simple type, the normal form of the term T̃ is
in the set inductively defined by Prop | El s | T̃1 → T̃2, where s : Set and s ̸≡βRc

HO
o.

▶ Lemma 32 (Conserving hypotheses). Let A and B be HOL-λI propositions and x a variable
or constant. If ∆L, |Γ|Ac ⊢cHO x : (x1 : T1) → . . . → (xn : Tn) → Prf |B|c, then there is C ∈ Γ
such that ∆L, |Γ|Ac ⊢cHO x : Prf |C|c.

▶ Lemma 33 (Conserving simple types). Let A be a HOL-λI proposition and u ∈ Λ(ΣcHO) a
normal term. If ∆L, |Γ|Ac ⊢cHO u : Set, then there is a simple type T such that u = |T |.

TYPES 2022

4:18 Expressing Ecumenical Systems in the λΠ-Calculus Modulo Theory

▶ Lemma 34 (Conserving objects). Let A be a HOL-λI proposition, T simple type, and u

a normal term in Constructive STT. If ∆L, |Γ|Ac ⊢cHO u : El |T |, then there is a normal
HOL-λI term v of type T such that u ≡βRc

HO
|v|c.

▶ Lemma 35 (Weak conservativity). Let A be a normal HOL-λI proposition. If there is a
normal term t such that |Γ|Ac ⊢cHO t : Prf |A|c, then Γ ⊢ A is provable in HOL-λI.

Proof. By induction on term t. As t is normal, there are only two cases to consider.
If u = x u1 . . . un, we prove by induction on k that for any k ∈ {0, . . . , n}, there is a

normal HOL-λI proposition Ak such that |Γ|Ac ⊢cHO x u1 . . . uk : Prf |Ak|c and Γ ⊢ Ak in
HOL-λI.
If k = 0, then there are terms M1, . . . ,Mn such that ∆L, |Γ|Ac ⊢cHO x : (x1 : M1) →
. . . → (x1 : Mn) → Prf |A|c. By Lemma 32, there is C ∈ Γ such that x : Prf |C|c, and
as a consequence ∆L, |Γ|Ac ⊢cHO x : Prf |C|c and Γ ⊢ C in HOL-λI by the axiom rule.

If 0 < k ≤ n, by induction hypothesis there is a HOL-λI proposition Ak−1 such that
x u1 . . . uk−1 has type Prf |Ak−1|c in context ∆L, |Γ|Ac and Γ ⊢ Ak−1 in HOL-λI.
By inversion, there are Mk and Nk such that Prf |Ak−1|c ≡βRc

HO
(y : Mk) → Nk and

uk has type Mk in context ∆L, |Γ|Ac .
Let Ãk−1 be the βRc

HO-normal form of |Ak−1|c. Given the form of Prf Ãk−1, we know
that Ãk−1 has a head connective; as | · |c is shallow, Ak−1 also has a head connective.
We proceed by case disjunction on the head connective of Ak−1. Here, we develop
the case of the universal quantifier, i.e. Ak−1 = ∀̇TBk and Prf |Ak−1|c ≡βRc

HO
(y :

El |T |) → Prf (|Bk|c y). By product compatibility [40, Definition 2.4.5], Mk ≡βRc
HO

El |T | and Nk ≡βRc
HO

Prf (|Bk|c y). By Lemma 34, there is a HOL-λI term vk of type
T such that uk ≡βRc

HO
|vk|c. Using Corollary 26 and conversion, x u1 . . . uk has type

Prf (|(Bk vk)↓ |c) in context ∆L, |Γ|Ac . Finally, (Bk vk)↓ is provable in context Γ by
an application of ∀̇-elim.

By induction, there is a normal HOL-λI proposition An such that ∆L, |Γ|Ac ⊢cHO t :
Prf |An|c and Γ ⊢ A. By the uniqueness of types [40, Theorem 2.6.25.], |An|c ≡βRc

HO
|A|c.

However, by Lemma 27, |A|c and |An|c are normal. By confluence, |An|c = |A|c. The
embedding |.|c is injective, so An = A and we can conclude that Γ ⊢ A in HOL-λI.

If u = λx : M. u0, then Prf |A|c is convertible to a product (x : M1) → M2. Using
the same reasoning as in the previous case, we deduce that proposition A has a head
connective and once again develop the case of the universal quantification, i.e. A =
∀̇TB and Prf |A|c ≡βRc

HO
(x : El |T |) → Prf (|B|c y). By product compatibility

[40, Definition 2.4.5], M1 ≡βRc
HO

El |T | and M2 ≡βRc
HO

Prf (|B|c x). By inversion,
∆L, |Γ|Ac , x : El |T | ⊢cHO u0 : Prf (|B|c x) with x /∈ fv(Γ, A). By Corollary 26, conversion,
and substitution, ∆L, |Γ|(B x)↓

c ⊢cHO u0 : Prf (|(B x) ↓ |c. By induction hypothesis,
Γ ⊢ (B x)↓. Finally, A is provable in context Γ using ∀̇-intro. ◀

Using the weak normalization of Constructive STT we finally establish conservativity.

▶ Corollary 36 (Conservativity). Let A be a normal HOL-λI proposition. If there is a term t

such that ∆L, |Γ|Ac ⊢cHO t : Prf |A|c, then Γ ⊢ A is provable in HOL-λI.

5.3 Soundness and conservativity of Ecumenical STT
Here, we show that the Ecumenical STT has a similar expressivity to the HOL-λ system.
Similarly to the first order case, we use the soundness and conservativity of Constructive
STT with respect to HOL-λI and the properties of the translations by double negation.

E. Grienenberger 4:19

|⋊̇⋉|e = ⋊⋉c
|Q̇|e = Qc |T |c
|t|e = |t|c else

(a) Defining | · |e.

x⊥ = x

(t u)⊥ = t⊥ u⊥

(λx. t)⊥ = λx. t⊥

⋊̇⋉⊥ = λx1. λx2. (¬̇¬̇x1)⋊̇⋉(¬̇¬̇x2)
Q̇⊥ = λf. Q̇(λy. ¬̇¬̇(f y))
t⊥ = t in all other cases

(b) Higher order ⊥-translation.

Figure 12 Translations of HOL-λ terms where ⋊⋉∈ { ∧, ∨, ⇒ }, Q ∈ { ∀, ∃ }, and x1, x2, f , and y

are HOL-λ variables of respective types o, o, T → o, and T .

Formally, we define the embedding |.|e inductively over HOL-λ terms as shown in Figure 12a.
Similarly to the constructive case, transformation |.|e preserves convertibility and types, and
is extended to HOL-λ contexts. However, this transformation does not map normal terms to
normal terms: for example (z∧̇z)⊥ = [λx1. λx2. (¬̇¬̇x1)∧̇(¬̇¬̇x2)] z z which is a β-redex. The
proof requires a straightforward extension of the double negation translation .⊥, represented
on Figure 12b and established by Lemma 38.

▶ Lemma 37. If A is convertible to B in HOL-λ, then A⊥ is convertible to B⊥ in HOL-λ.

Proof. The only rule in HOL-λ is β-reduction and transformation .⊥ acts as a morphism
over abstractions and applications. ◀

▶ Lemma 38. Γ ⊢ A in HOL-λ if and only if ¬̇¬̇Γ⊥↓ ⊢ ¬̇¬̇A⊥↓ in HOL-λI.

Proof. The forward implication is proven by induction on the derivation of Γ ⊢ A. The
backwards implication holds immediately, as every normal proposition A is provably equivalent
to ¬̇¬̇A in HOL-λ, and HOL-λ is an extension of HOL-λI. ◀

▶ Lemma 39 (Soundness). If Γ ⊢ A is provable in HOL-λI, then there is a term t such that
|Γ|Ae ⊢eHO t : Prfc |A|e is derivable.

Proof. By Lemmas 29 and 38, ¬̇¬̇Γ⊥ ↓ ⊢ ¬̇¬̇A⊥ ↓ in HOL-λI and there is t such that
∆L, |¬̇¬̇Γ⊥↓|¬̇¬̇A⊥↓

c ⊢eHO t : Prf |¬̇¬̇A⊥↓|c. By conversion, ∆L, |Γ|Ae ⊢eHO t : Prfc |A|e. ◀

▶ Lemma 40 (Conservativity). If there is a term t such that ∆L, |Γ|Ae ⊢eHO t : Prfc |A|e, then
Γ ⊢ A is provable in HOL-λ.

Proof. If there is a term t such that |Γ|Ae ⊢eHO t : Prfc |A|e where A is a normal HOL-λ
formula, then by conversion and weakening, |¬̇¬̇Γ⊥↓ |¬̇¬̇A⊥↓

c ⊢eHO t : Prf |¬̇¬̇A⊥↓ |c. As t
and |¬̇¬̇Γ⊥↓ |¬̇¬̇A⊥↓

c are respectively a term and a typing context of Constructive STT, we
conclude by Corollary 3 that |¬̇¬̇Γ⊥↓ |¬̇¬̇A⊥↓

c ⊢eHO t : Prf |¬̇¬̇A⊥↓ |c. By conservativity of
Constructive STT, ¬̇¬̇Γ⊥↓⊢ ¬̇¬̇A⊥↓ in HOL-λI. By Lemma 38, Γ ⊢ A in HOL-λ. ◀

▶ Corollary 41 (Consistency). There is no derivation of ⊢eHO Prf ⊥ in Ecumenical STT.

6 Conclusion

In this paper, we have studied the logical fragments of theory U and established their
normalization, consistency, decidability of type-checking, soundness and conservativity. These
results comfort the enterprise of using theory U to store, recheck, translate, and hybridize
proofs from various proof assistants. The extension of these results, notably normalization
and consistency, to the entirety of theory U is still an open question.

TYPES 2022

4:20 Expressing Ecumenical Systems in the λΠ-Calculus Modulo Theory

Another open question is the behaviour of hybrid propositions and proofs in Ecumenical
STT, i.e. propositions and proofs mixing constructive and classical connectives. Given the
distinct design choices made in Ecumenical STT and preexisting ecumenical systems, hybrid
objects may not behave similarly. Some results over hybrid objects can however already be
deduced by normalization and properties of Constructive STT, as the normal forms of hybrid
objects are in this fragment.

Finally, the implementation of constructivization algorithms in theory U could further
improve the interoperability between classical and constructive proofs. A first candidate
would be the standard library of HOL Light, already translated in theory U [12], which
could be partially exported to constructive proof assistants such as Coq, Agda, or Matita.

References
1 Claus Appel, Vincent van Oostrom, and Jakob Grue Simonsen. Higher-order (non-)modularity.

In Christopher Lynch, editor, Proceedings of the 21st International Conference on Rewriting
Techniques and Applications, RTA 2010, July 11-13, 2010, Edinburgh, Scottland, UK, volume 6
of LIPIcs, pages 17–32. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2010. doi:
10.4230/LIPIcs.RTA.2010.17.

2 Ali Assaf. A framework for defining computational higher-order logics. (Un cadre de définition
de logiques calculatoires d’ordre supérieur). PhD thesis, École Polytechnique, Palaiseau, France,
2015. URL: https://tel.archives-ouvertes.fr/tel-01235303.

3 Ali Assaf, Guillaume Burel, Raphaël Cauderlier, David Delahaye, Gilles Dowek, Catherine
Dubois, Frédéric Gilbert, Pierre Halmagrand, Olivier Hermant, and Ronan Saillard. Dedukti :
a Logical Framework based on the λΠ-Calculus Modulo Theory. Manuscript, 2016.

4 Frédéric Blanqui. Théorie des types et réécriture. (Type theory and rewriting). PhD thesis,
University of Paris-Sud, Orsay, France, 2001. URL: https://tel.archives-ouvertes.fr/
tel-00105522.

5 Frédéric Blanqui. Size-based termination of higher-order rewriting. Journal of Functional
Programming, 28:e11, 2018. doi:10.1017/S0956796818000072.

6 Frédéric Blanqui, Gilles Dowek, Émilie Grienenberger, Gabriel Hondet, and François Thiré.
Some axioms for mathematics. In Naoki Kobayashi, editor, 6th International Conference on
Formal Structures for Computation and Deduction, FSCD 2021, July 17-24, 2021, Buenos
Aires, Argentina (Virtual Conference), volume 195 of LIPIcs, pages 20:1–20:19. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.FSCD.2021.20.

7 Frédéric Blanqui, Guillaume Genestier, and Olivier Hermant. Dependency pairs termination
in dependent type theory modulo rewriting. In Herman Geuvers, editor, 4th International
Conference on Formal Structures for Computation and Deduction, FSCD 2019, June 24-
30, 2019, Dortmund, Germany, volume 131 of LIPIcs, pages 9:1–9:21. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.FSCD.2019.9.

8 Raphaël Cauderlier and Catherine Dubois. ML pattern-matching, recursion, and rewriting:
From focalize to dedukti. In Augusto Sampaio and Farn Wang, editors, Theoretical Aspects of
Computing – ICTAC 2016 – 13th International Colloquium, Taipei, Taiwan, ROC, October
24-31, 2016, Proceedings, volume 9965 of Lecture Notes in Computer Science, pages 459–468,
2016. doi:10.1007/978-3-319-46750-4_26.

9 Raphaël Cauderlier and Catherine Dubois. Focalize and dedukti to the rescue for proof
interoperability. In Mauricio Ayala-Rincón and César A. Muñoz, editors, Interactive Theorem
Proving – 8th International Conference, ITP 2017, Brasília, Brazil, September 26-29, 2017,
Proceedings, volume 10499 of Lecture Notes in Computer Science, pages 131–147. Springer,
2017. doi:10.1007/978-3-319-66107-0_9.

10 Denis Cousineau and Gilles Dowek. Embedding pure type systems in the lambda-pi-calculus
modulo. In Simona Ronchi Della Rocca, editor, Typed Lambda Calculi and Applications,
8th International Conference, TLCA 2007, Paris, France, June 26-28, 2007, Proceedings,
volume 4583 of Lecture Notes in Computer Science, pages 102–117. Springer, 2007. doi:
10.1007/978-3-540-73228-0_9.

https://doi.org/10.4230/LIPIcs.RTA.2010.17
https://doi.org/10.4230/LIPIcs.RTA.2010.17
https://tel.archives-ouvertes.fr/tel-01235303
https://tel.archives-ouvertes.fr/tel-00105522
https://tel.archives-ouvertes.fr/tel-00105522
https://doi.org/10.1017/S0956796818000072
https://doi.org/10.4230/LIPIcs.FSCD.2021.20
https://doi.org/10.4230/LIPIcs.FSCD.2019.9
https://doi.org/10.1007/978-3-319-46750-4_26
https://doi.org/10.1007/978-3-319-66107-0_9
https://doi.org/10.1007/978-3-540-73228-0_9
https://doi.org/10.1007/978-3-540-73228-0_9

E. Grienenberger 4:21

11 Dag Prawitz. Natural deduction, a proof-theoretical study. PhD thesis, Stockolm: Almqvist &
Wicksell, 1965.

12 Deducteam. Nubo, repository of interoperable formal proofs. https://deducteam.
gitlabpages.inria.fr/nubo/index.html, 2020. Accessed: 2022-29-11.

13 Alexis Dorra. Équivalence de Curry-Howard entre le lambda-Pi-calcul et la logique intuition-
niste. Bachelor internship report, LIX École Polytechnique, 2011.

14 Gilles Dowek. On the definition of the classical connectives and quantifiers. CoRR, 2015.
arXiv:1601.01782.

15 Gilles Dowek. Models and termination of proof reduction in the lambda pi-calculus modulo
theory. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors,
44th International Colloquium on Automata, Languages, and Programming, ICALP 2017, July
10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages 109:1–109:14. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.ICALP.2017.109.

16 Gilles Dowek, Thérèse Hardin, and Claude Kirchner. HOL-λσ an intentional first-order
expression of higher-order logic. Mathematical Structures in Computer Science, 11(1):1–25,
2001.

17 Gilles Dowek and Benjamin Werner. Proof normalization modulo. J. Symb. Log., 68(4):1289–
1316, 2003. doi:10.2178/jsl/1067620188.

18 Thiago Felicissimo. Adequate and computational encodings in the logical framework dedukti.
In Amy P. Felty, editor, 7th International Conference on Formal Structures for Computation
and Deduction, FSCD 2022, August 2-5, 2022, Haifa, Israel, volume 228 of LIPIcs, pages
25:1–25:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.
FSCD.2022.25.

19 Guillaume Genestier. Encoding Agda Programs Using Rewriting. In Zena M. Ariola, editor,
5th International Conference on Formal Structures for Computation and Deduction (FSCD
2020), volume 167 of Leibniz International Proceedings in Informatics (LIPIcs), pages 31:1–
31:17, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:
10.4230/LIPIcs.FSCD.2020.31.

20 Herman Geuvers. A short and flexible proof of strong normalization for the calculus of
constructions. In Peter Dybjer, Bengt Nordström, and Jan M. Smith, editors, Types for
Proofs and Programs, International Workshop TYPES’94, Båstad, Sweden, June 6-10, 1994,
Selected Papers, volume 996 of Lecture Notes in Computer Science, pages 14–38. Springer,
1994. doi:10.1007/3-540-60579-7_2.

21 Jürgen Giesl, René Thiemann, and Peter Schneider-Kamp. The dependency pair framework:
Combining techniques for automated termination proofs. In Franz Baader and Andrei Voronkov,
editors, Logic for Programming, Artificial Intelligence, and Reasoning, 11th International
Conference, LPAR 2004, Montevideo, Uruguay, March 14-18, 2005, Proceedings, volume
3452 of Lecture Notes in Computer Science, pages 301–331. Springer, 2004. doi:10.1007/
978-3-540-32275-7_21.

22 Jean-Yves Girard. On the unity of logic. Ann. Pure Appl. Logic, 59(3):201–217, 1993.
doi:10.1016/0168-0072(93)90093-S.

23 Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and types. Cambridge Tracts in
Theoretical Computer Science, 7, 1989.

24 Mohamed Yacine El Haddad, Guillaume Burel, and Frédéric Blanqui. EKSTRAKTO A
tool to reconstruct dedukti proofs from TSTP files (extended abstract). In Giselle Reis
and Haniel Barbosa, editors, Proceedings Sixth Workshop on Proof eXchange for Theorem
Proving, PxTP 2019, Natal, Brazil, August 26, 2019, volume 301 of EPTCS, pages 27–35,
2019. doi:10.4204/EPTCS.301.5.

25 Robert Harper, Furio Honsell, and Gordon D. Plotkin. A framework for defining logics. In
Proceedings of the Symposium on Logic in Computer Science (LICS ’87), Ithaca, New York,
USA, June 22-25, 1987, pages 194–204. IEEE Computer Society, 1987.

TYPES 2022

https://deducteam.gitlabpages.inria.fr/nubo/index.html
https://deducteam.gitlabpages.inria.fr/nubo/index.html
https://arxiv.org/abs/1601.01782
https://doi.org/10.4230/LIPIcs.ICALP.2017.109
https://doi.org/10.2178/jsl/1067620188
https://doi.org/10.4230/LIPIcs.FSCD.2022.25
https://doi.org/10.4230/LIPIcs.FSCD.2022.25
https://doi.org/10.4230/LIPIcs.FSCD.2020.31
https://doi.org/10.4230/LIPIcs.FSCD.2020.31
https://doi.org/10.1007/3-540-60579-7_2
https://doi.org/10.1007/978-3-540-32275-7_21
https://doi.org/10.1007/978-3-540-32275-7_21
https://doi.org/10.1016/0168-0072(93)90093-S
https://doi.org/10.4204/EPTCS.301.5

4:22 Expressing Ecumenical Systems in the λΠ-Calculus Modulo Theory

26 Gabriel Hondet and Frédéric Blanqui. Encoding of predicate subtyping with proof irrelevance in
the λΠ-calculus modulo theory. In Ugo de’Liguoro, Stefano Berardi, and Thorsten Altenkirch,
editors, 26th International Conference on Types for Proofs and Programs, TYPES 2020, March
2-5, 2020, University of Turin, Italy, volume 188 of LIPIcs, pages 6:1–6:18. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.TYPES.2020.6.

27 Alfred Horn. Logic with truth values in a linearly ordered heyting algebra. J. Symb. Log.,
34(3):395–408, 1969. doi:10.2307/2270905.

28 Jean-Pierre Jouannaud and Jianqi Li. Termination of Dependently Typed Rewrite Rules.
In Thorsten Altenkirch, editor, 13th International Conference on Typed Lambda Calculi and
Applications (TLCA 2015), volume 38 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 257–272, Dagstuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. doi:10.4230/LIPIcs.TLCA.2015.257.

29 Andrei Nikolaevich Kolmogorov. On the principle of the excluded middle. In Matematicheskij
Sbornik, volume 32, pages 646–667, 1925.

30 C.L.M. Kop. Higher Order Termination: Automatable Techniques for Proving Termination of
Higher-Order Term Rewriting Systems. PhD thesis, Vrije Universiteit Amsterdam, 2012. Naam
instelling promotie: VU Vrije Universiteit Naam instelling onderzoek: VU Vrije Universiteit.

31 Keiichirou Kusakari and Masahiko Sakai. Enhancing dependency pair method using strong
computability in simply-typed term rewriting. Appl. Algebra Eng., Commun. Comput.,
18(5):407–431, October 2007.

32 Chin Lee, Neil Jones, and Amir Ben-Amram. The size-change principle for program termination.
ACM SIGPLAN Notices, 36, January 2001. doi:10.1145/360204.360210.

33 Chuck Liang and Dale Miller. Unifying classical and intuitionistic logics for computational
control. In 28th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2013,
New Orleans, LA, USA, June 25-28, 2013, pages 283–292. IEEE Computer Society, 2013.
doi:10.1109/LICS.2013.34.

34 Paqui Lucio. Structured sequent calculi for combining intuitionistic and classical first-order
logic. In Hélène Kirchner and Christophe Ringeissen, editors, Frontiers of Combining Systems,
Third International Workshop, FroCoS 2000, Nancy, France, March 22-24, 2000, Proceedings,
volume 1794 of Lecture Notes in Computer Science, pages 88–104. Springer, 2000. doi:
10.1007/10720084_7.

35 Paul-André Melliès and Benjamin Werner. A generic normalisation proof for pure type
systems. In Eduardo Giménez and Christine Paulin-Mohring, editors, Types for Proofs and
Programs, International Workshop TYPES’96, Aussois, France, December 15-19, 1996, Selected
Papers, volume 1512 of Lecture Notes in Computer Science, pages 254–276. Springer, 1996.
doi:10.1007/BFb0097796.

36 Luiz Carlos Pereira and Ricardo Oscar Rodriguez. Normalization, soundness and completeness
for the propositional fragment of prawitz’ ecumenical system. In Revista Portuguesa De
Filosofia 73, no. 3/4, pages 1153–1168, 2017.

37 Elaine Pimentel, Luiz Carlos Pereira, and Valeria de Paiva. An ecumenical notion of entailment.
Synthese, pages 1–23, 2019. doi:10.1007/s11229-019-02226-5.

38 Dag Prawitz. Classical versus intuitionnistic logic. In Edward Hermann Haeusler, Wagner
de Campos Sanz, Bruno Lopes, and College Publications, editors, Why is this a proof ?
Festschrift for Luiz Carlos Pereira, pages 15–32, 2015.

39 Raphaël Cauderlier. Sigmaid. https://gitlab.math.univ-paris-diderot.fr/cauderlier/
sigmaid, 2014. Accessed: 2022-29-11.

40 Ronan Saillard. Typechecking in the lambda-Pi-Calculus Modulo : Theory and Practice.
(Vérification de typage pour le lambda-Pi-Calcul Modulo : théorie et pratique). PhD thesis,
Mines ParisTech, France, 2015. URL: https://tel.archives-ouvertes.fr/tel-01299180.

41 William W. Tait. Intensional interpretations of functionals of finite type I. J. Symb. Log.,
32(2):198–212, 1967. doi:10.2307/2271658.

https://doi.org/10.4230/LIPIcs.TYPES.2020.6
https://doi.org/10.2307/2270905
https://doi.org/10.4230/LIPIcs.TLCA.2015.257
https://doi.org/10.1145/360204.360210
https://doi.org/10.1109/LICS.2013.34
https://doi.org/10.1007/10720084_7
https://doi.org/10.1007/10720084_7
https://doi.org/10.1007/BFb0097796
https://doi.org/10.1007/s11229-019-02226-5
https://gitlab.math.univ-paris-diderot.fr/cauderlier/sigmaid
https://gitlab.math.univ-paris-diderot.fr/cauderlier/sigmaid
https://tel.archives-ouvertes.fr/tel-01299180
https://doi.org/10.2307/2271658

E. Grienenberger 4:23

42 Terese. Term rewriting systems, volume 55 of Cambridge tracts in theoretical computer science.
Cambridge University Press, 2003.

43 François Thiré. Sharing a Library between Proof Assistants: Reaching out to the HOL
Family. Electronic Proceedings in Theoretical Computer Science, 274:57–71, July 2018. doi:
10.4204/EPTCS.274.5.

44 François Thiré. Interoperability between proof systems using the logical framework De-
dukti. (Interopérabilité entre systèmes de preuve en utilisant le cadre logique Dedukti).
PhD thesis, École normale supérieure Paris-Saclay, Cachan, France, 2020. URL: https:
//tel.archives-ouvertes.fr/tel-03224039.

TYPES 2022

https://doi.org/10.4204/EPTCS.274.5
https://doi.org/10.4204/EPTCS.274.5
https://tel.archives-ouvertes.fr/tel-03224039
https://tel.archives-ouvertes.fr/tel-03224039

On the Fair Termination of Client-Server Sessions
Luca Padovani #

University of Camerino, Italy

Abstract
Client-server sessions are based on a variation of the traditional interpretation of linear logic
propositions as session types in which non-linear channels (those regulating the interaction between
a pool of clients and a single server) are typed by coexponentials instead of the usual exponentials.
Coexponentials enable the modeling of racing interactions, whereby clients compete to interact with
a single server whose internal state (and thus the offered service) may change as the server processes
requests sequentially. In this work we present a fair termination result for CSLL∞, a core calculus
of client-server sessions. We design a type system such that every well-typed term corresponds to
a valid derivation in µMALL∞, the infinitary proof theory of linear logic with least and greatest
fixed points. We then establish a correspondence between reductions in the calculus and principal
reductions in µMALL∞. Fair termination in CSLL∞ follows from cut elimination in µMALL∞.

2012 ACM Subject Classification Theory of computation → Linear logic; Theory of computation
→ Process calculi; Theory of computation → Program analysis

Keywords and phrases client-server sessions, linear logic, fixed points, fair termination, cut elimina-
tion

Digital Object Identifier 10.4230/LIPIcs.TYPES.2022.5

Acknowledgements The author is grateful to the anonymous reviewers of the TYPES’22 post-
proceedings for their helpful comments, observations and suggestions of related work.

1 Introduction

Session types [14, 15, 16] are descriptions of communication protocols enabling the static
enforcement of a variety of safety and liveness properties, including the fact that communica-
tion channels are used according to their protocol (fidelity), that processes do not get stuck
(deadlock freedom), that pending communications are eventually completed (livelock freedom),
that sessions eventually end (termination). It is possible to trace a close correspondence
between session types and propositions of linear logic, and between the typing rules of a
session type system and the proof rules of linear logic [21, 6, 19]. This correspondence
provides session type theories with a solid logical foundation and enables the application of
known results concerning linear logic proofs into the domain of communicating protocols.
One notable example is cut elimination: the fact that every linear logic proof can be reduced
to a form that does not make use of the cut rule means that the process described by the
proof can be reduced to a form in which no pending communication is present, provided that
there is a good correspondence between cut reductions in proofs and reductions in processes.

The development of session type systems based on linear logic also poses some challenges
with respect to their ability to cope with “real-world” scenarios. An example, which is the
focus of this work, is the modeling of the interactions between a pool of clients and a single
server. By definition, a server is a process that can handle an unbounded number of requests
made by clients. In a session type system based on linear logic, it is natural to associate the
channel from which a server accepts client requests with a type of the form !T , indicating
the unlimited availability of a service with type T . In fact, it was observed early on [11] that
the meaning of the “of course” modality !T could be informally expressed by the equation

!T ∼= 1 N T N (!T⊗!T)
© Luca Padovani;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Types for Proofs and Programs (TYPES 2022).
Editors: Delia Kesner and Pierre-Marie Pédrot; Article No. 5; pp. 5:1–5:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:luca.padovani@unicam.it
https://orcid.org/0000-0001-9097-1297
https://doi.org/10.4230/LIPIcs.TYPES.2022.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 On the Fair Termination of Client-Server Sessions

which could be read “as many copies of T as the clients require”. While appealing from a
theoretical point of view, the association between the concept of server and the “of course”
modality is both unrealistic and imprecise. First of all, it models the “unlimited” availability
of the server by means of unlimited parallel copies of the server, each copy dealing with
a single request, rather than by a single process that is capable of handling an unlimited
number of requests sequentially. Second, it fails to capture the fact that each connection
between a client and the server may alter the server’s internal state, in such a way that
different connections may potentially affect each other.

These considerations have led Qian et al. [20] to develop CSLL (for “Client-Server Linear
Logic”), a session type system based on linear logic which includes the coexponential modalities
¿T and ¡T whose meaning can be (informally) expressed by the equations

¿T ∼= 1 ⊕ T ⊕ (¿T ⊗ ¿T) and ¡T ∼= ⊥ N T N (¡T O ¡T) (1)

according to which a server that behaves as ¡T offers T as many times as necessary to satisfy
all client requests, but it does so sequentially and in some (unspecified) order. Qian et al. [20]
show that well-typed CSLL processes are deadlock free, but they leave a proof of termination
to future work conjecturing that it could be quite involved. A proof of this property is
valuable since termination (combined with deadlock freedom) implies livelock freedom.

In this paper we attack the problem of establishing a termination result for CSLL. Instead
of providing an ad hoc proof, we attempt to reduce the termination problem for CSLL to the
cut elimination property of a known logical system. To this aim, we propose a variation of
CSLL called CSLL∞ that is in close relationship with µMALL∞ [3, 8, 2], the infinitary proof
theory of multiplicative-additive linear logic with least and greatest fixed points. The basic
idea is to encode the coexponentials in CSLL∞’s type system as fixed points in µMALL∞

following their expected meaning (Equation (1)). At this point, the cut elimination property
of µMALL∞ should allow us to deduce that well-typed CSLL∞ processes do not admit infinite
reduction sequences. As it turns out, we are unable to follow this plan of action in full.
The problem is that some reductions in CSLL∞ do not correspond to cut reduction steps in
µMALL∞. More specifically, even though clients are queued into client pools, they should be
able to reduce in any order, independently of their position in the queue. This independent
reduction of the clients in the same pool is not matched by the sequence of cut reduction
steps that are performed in the cut elimination proof of µMALL∞. Still, the cut elimination
property of µMALL∞ allows us to prove a useful result, namely that every well-typed CSLL∞

process is fairly terminating. Fair termination [13, 10] is weaker than termination since it
does not rule out the existence of infinite reduction sequences. However, it guarantees that
every fair and maximal reduction sequence of a well-typed CSLL∞ process is finite, under a
suitable fairness assumption. In particular, fair termination is strong enough (when combined
with deadlock freedom) to guarantee livelock freedom.

The adoption of µMALL∞ as logical foundation for CSLL∞ has another advantage. In the
original presentation of CSLL [20] the process calculus is equipped with an unconventional
operational semantics whereby reductions can occur underneath prefixes and prefixes may
be moved around crossing restrictions, parallel compositions and other (unrelated) prefixes.
This semantics is justified to keep the process reduction rules and the cut reduction rules
sufficiently aligned, so that the cut elimination property in the logic can be reflected to some
valuable property in the calculus, such as deadlock freedom. In contrast, CSLL∞ features
an entirely conventional reduction semantics. We can afford to do so because µMALL∞

is an infinitary proof system in which the cut elimination property is proved bottom-up
by reducing outermost cuts first. This reduction strategy matches the ordinary reduction

L. Padovani 5:3

Table 1 Syntax of CSLL∞.

P,Q ::= A⟨x⟩ invocation
| failx failure
| waitx.P wait
| x(y).P input
| casex{P,Q} branch
| ¡x(y){P,Q} server

| (x)(P |Q) parallel composition
| ¿x[] empty pool
| closex close
| x[y](P |Q) output
| ini x.P select i ∈ {1, 2}
| ¿x[y].P :: Q client pool

semantics of any process calculus in which reductions happen at the outermost levels of
processes. In the end, since the reduction semantics of CSLL∞ is stricter than that of CSLL,
the deadlock freedom and the fair termination results we prove for CSLL∞ are somewhat
stronger than their counterparts in the context of CSLL.

Structure of the paper. Section 2 describes syntax and semantics of CSLL∞ and defines
the notion of fairly terminating process. We develop the type system for CSLL∞ in Section 3.
In Section 4 we recall the key elements of µMALL∞, before addressing the proof that well-
typed CSLL∞ processes fairly terminate in Section 5. Section 6 revisits an example of
non-deterministic server given by Qian et al. [20] in our setting. We summarize our results
and further compare CSLL∞ with CSLL [20] and other related work in Section 7. Some proofs
and definitions have been moved into Appendix A.

2 Syntax and Semantics of CSLL∞

In this section we define syntax and semantics of CSLL∞, a calculus of sessions in which
servers handle client requests sequentially. The syntax of CSLL∞ makes use of an infinite
set V of channels ranged over by x, y and z and a set P of process names ranged over by
A, B, and so on. In CSLL∞ channels are of two kinds (which will be distinguished by their
type): session channels connect two communicating processes; shared channels connect an
unbounded number of clients with a single server. The structure of terms is given by the
grammar in Table 1 and their meaning is informally described below. The term (x)(P |Q)
represents the parallel composition of P and Q connected by the restricted channel x, which
can be either a session channel or a shared channel. The term failx represents a process
that signals a failure on channel x. The term closex models the closing of a session, whereas
waitx.P models a process that waits for x to be closed and then continues as P . The term
x[y](P |Q) models a process that creates a new channel y, sends y over x, uses y as specified
by P and x as specified by Q. The term x(y).P models a process that receives a channel y
from x and then behaves as P . The term ini x.P models a process that sends the label ini

over x and then behaves as P . In this work we only consider two labels in1 and in2, although
it is common to allow for an arbitrary set of atomic labels. Dually, the term casex{P1, P2}
models a process that waits for a label ini from x and then behaves according to Pi. The
term ¿x[] models the empty pool of clients connecting with a server on the shared channel
x, whereas the term ¿x[y].P :: Q models a client pool consisting of a client that connects
with a server on channel x and behaves as P and another client pool Q. Occasionally we
write ¿x[y].P instead of ¿x[y].P :: ¿x[]. The term ¡x(y){P,Q} models a server that waits
for connections on the shared channel x. If a new connection y is established, the server
continues as P . If no clients are left connecting on x, the service on x is terminated and the
process continues as Q. Finally, a term A⟨x⟩ represents the invocation of the process named

TYPES 2022

5:4 On the Fair Termination of Client-Server Sessions

Table 2 Structrual pre-congruence and reduction semantics of CSLL∞.

[s-par-comm] (x)(P |Q) ≼ (x)(Q | P)
[s-pool-comm] ¿x[y].P :: ¿u[v].Q :: R ≼ ¿u[v].Q :: ¿x[y].P :: R

[s-par-assoc] (x)(P | (y)(Q |R)) ≼ (y)((x)(P |Q) |R) x ∈ fn(Q) \ fn(R), y ̸∈ fn(P)
[s-pool-par] ¿x[y].P :: (z)(Q |R) ≼ (z)(¿x[y].P :: Q |R) x ∈ fn(Q), z ̸∈ fn(¿x[y].P)
[s-par-pool] (z)(¿x[y].P :: Q |R) ≼ ¿x[y].P :: (z)(Q |R) z ̸∈ fn(¿x[y].P)

[s-call] A⟨x⟩ ≼ P A(x) ≜ P

[r-close] (x)(closex | waitx.P) → P

[r-comm] (x)(x[y](P |Q) | x(y).R) → (y)(P | (x)(Q |R))
[r-case] (x)(ini x.P | casex{Q1, Q2}) → (x)(P |Qi)
[r-done] (x)(¿x[] | ¡x(y){P,Q}) → Q

[r-connect] (x)(¿x[y].P :: Q | ¡x(y){R1, R2}) → (y)(P | (x)(Q |R1))
[r-par] (x)(P |R) → (x)(Q |R) P → Q

[r-pool] ¿x[y].R :: P → ¿x[y].R :: Q P → Q

[r-struct] P → Q P ≼ P ′ → Q′ ≼ Q

A with arguments x. We assume that each process name is associated with a unique global
definition of the form A(x) ≜ P . The notation e is used throughout the paper to represent
possibly empty sequences e1, . . . , en of various entities.

The notions of free and bound names are defined in the expected way. Note that the
output operations x[y](P | Q) and ¿x[y].P :: Q bind y in P but not in Q. We write fn(P)
and bn(P) for the sets of free and bound names in P , we identify processes up to renaming
of bound channel names and we require fn(P) = {x} for each global definition A(x) ≜ P .

The operational semantics of CSLL∞ is given by a structural precongruence relation ≼
and a reduction relation →, both defined in Table 2 and described below. Rules [s-par-comm]
and [s-pool-comm] state the expected commutativity of parallel and pool compositions. In
particular, [s-pool-comm] allows clients in the same queue to swap positions, modeling the
fact that the order in which they connect to the server is not deterministic. Rule [s-par-assoc]
models the associativity of parallel composition. The side conditions make sure that no
channel is captured (y ̸∈ fn(P)) or left dangling (x ̸∈ fn(R)) and that parallel processes
remain connected (x ∈ fn(Q)). The rules [s-pool-par] and [s-par-pool] deal with the mixed
associativity between parallel and pool compositions. The side conditions ensure that no
bound name leaves its scope and that parallel processes remain connected. Finally, [s-call]
unfolds a process invocation to its definition.

Concerning the reduction relation, rule [r-close] models the closing of a session, rule [r-
comm] models the exchange of a channel and [r-case] that of a label. Rule [r-connect] models
the connection of a client with a server, whereas [r-done] deals with the case in which there
are no clients left. Finally, [r-par] and [r-pool] close reductions under parallel compositions
and client pools whereas [r-struct] allows reductions up to structural pre-congruence.

Hereafter we write ⇒ for the reflexive, transitive closure of →, we write P → if P → Q

for some Q and P X→ if not P →. Later on we will also use a restriction of CSLL∞ dubbed
CSLL∞

det whose reduction relation, denoted by →det, is obtained by removing the rules [s-
pool-comm], [s-pool-par], [s-par-pool] and [r-pool] (all those with “pool” in their name)
from →. In essence, CSLL∞

det is a more deterministic version of CSLL∞ in which clients are
forced to connect and reduce in the order in which they appear in client pools. Also, clients
are no longer allowed to cross restricted channels.

L. Padovani 5:5

▶ Example 1. We illustrate the features of CSLL∞ by modeling a pool of clients that compete
to access a shared resource, represented as a simple lock. When one client manages to acquire
the lock, meaning that it has gained access to the resource, it prevents other clients from
accessing the resource until the resource is released. We model the lock with this definition:

Lock(x, z) ≜ ¡x(y){wait y.Lock⟨x, z⟩, close z}

The lock is a server waiting for connections on the shared channel x, whereas each user
is a client of the lock connecting on x. When a connection is established, the server waits
until the resource is released, which is signalled by the termination of the session y, and then
makes itself available again to handle further requests.

The following process models the concurrent access to the lock by two clients:

(x)(¿x[u].closeu :: ¿x[v].close v :: ¿x[] | Lock⟨x, z⟩)

The order in which requests are handled by Lock is non-deterministic because of [s-pool-
comm]. In this oversimplified example the users are indistinguishable and so non-determinism
does not prevent the system to be confluent. In Section 6 we will see a more interesting
example in which confluence is lost. This kind of interaction is typeable in CSLL∞ thanks to
coexponentials, which enable the concurrent access to a shared resource. ⌟

We conclude this section by defining various termination properties of interest. A run of
P is a (finite or infinite) sequence (P0, P1, . . .) of processes such that P = P0 and Pi → Pi+1
whenever Pi+1 is a term in the sequence. A run is maximal if it is infinite or if it is finite and
its last term (say Q) cannot reduce any further (that is, Q X→). We say that P is terminating
if every maximal run of P is finite. We say that P is weakly terminating if P has a maximal
finite run. A run of P is fair if it contains finitely many weakly terminating processes. We
say that P is fairly terminating if every fair run of P is finite. Note that a fairly terminating
process may admit infinite runs, but these go through infinitely many weakly terminating
states. In other words, these runs represent executions of the process in which termination is
always within reach but also always avoided, as if the system or the process itself is conspiring
against termination. For this reason, these runs are considered “uninteresting” as far as
termination is concerned and the process is considered to be practically terminating.

A fundamental property of any fairness notion is the fact that every finite run of a process
should be extendable to a maximal fair one. This property, called feasibility [1] or machine
closure [18], holds for our fairness notion and follows immediately from the next proposition.

▶ Proposition 2. Every process has at least one maximal fair run.

Proof. For an arbitrary process P there are two possibilities. If P is weakly terminating,
then there exists Q such that P ⇒ Q X→. From this sequence of reductions we obtain a
maximal run of P that is fair since it is finite. If P is not weakly terminating, then P → and
P ⇒ Q implies that Q is not weakly terminating. In this case we can build an infinite run of
P which is fair since it does not go through any weakly terminating process. ◀

The given notion of fair termination admits an alternative characterization that does not
refer to fair runs. This characterization provides us with the key proof principle to show that
well-typed CSLL∞ processes fairly terminate (Section 5).

▶ Theorem 3. P is fairly terminating iff P ⇒ Q implies that Q is weakly terminating.

TYPES 2022

5:6 On the Fair Termination of Client-Server Sessions

Table 3 Typing rules for CSLL∞.

[call]
P ⊢ x : T

A⟨x⟩ ⊢ x : T
A(x) ≜ P

[cut]
P ⊢ Γ , x : T Q ⊢ ∆, x : T⊥

(x)(P |Q) ⊢ Γ ,∆

[⊤]

failx ⊢ Γ , x : ⊤

no rule for 0

[⊥]
P ⊢ Γ

waitx.P ⊢ Γ , x : ⊥

[1]

closex ⊢ x : 1

[O]
P ⊢ Γ , y : T, x : S

x(y).P ⊢ Γ , x : T O S

[⊗]
P ⊢ Γ , y : T Q ⊢ ∆, x : S
x[y](P |Q) ⊢ Γ ,∆, x : T ⊗ S

[N]
P ⊢ Γ , x : T Q ⊢ Γ , x : S
casex{P,Q} ⊢ Γ , x : T N S

[⊕]
P ⊢ Γ , x : Ti

ini x.P ⊢ Γ , x : T1 ⊕ T2

[server]
P ⊢ Γ , x : ¡T, y : T Q ⊢ Γ

¡x(y){P,Q} ⊢ Γ , x : ¡T

[client]
P ⊢ Γ , y : T Q ⊢ ∆, x : ¿T

¿x[y].P :: Q ⊢ Γ ,∆, x : ¿T

[done]

¿x[] ⊢ x : ¿T

Proof. (⇐) Suppose by contradiction that (P0, P1, . . .) is an infinite fair run of P and note
that P ⇒ Pi for every i. From the hypothesis we deduce that every Pi is weakly terminating.
Then the run contains infinitely many weakly terminating processes, which is absurd by
definition of fair run. (⇒) Suppose that P ⇒ Q. Then there is a finite run of P that ends in
Q. By Proposition 2 there is a maximal fair run of Q. By concatenating these two runs we
obtain a maximal fair run of P that contains Q. From the hypothesis we deduce that this
run is finite. Since Q occurs in this run, we conclude that Q is weakly terminating. ◀

3 Type System

In this section we develop the type system of CSLL∞. Types are defined thus:

Type T, S ::= ⊥ | 1 | ⊤ | 0 | T O S | T ⊗ S | T N S | T ⊕ S | ¡T | ¿T

Types extend the usual constants and connectives of multiplicative-additive linear logic
with the coexponentials ¡T and ¿T and, in the context of CSLL∞, they describe how
channels are used by processes. Positive types indicate output operations whereas negative
types indicate input operations. In particular: 1/⊥ describe a session channel used for
sending/receiving a session termination signal; 0/⊤ describe a session channel used for
sending/receiving an impossible (empty) message; T ⊗ S/T O S describe a session channel
used for sending/receiving a channel of type T and then according to S; T1 ⊕ T2/T1 N T2
describe a session channel used for sending/receiving a label ini and then according to Ti;
finally, ¿T/¡T describe a shared channel used for sending/receiving a connection message
establishing a session of type T . Each type T has a dual T⊥ obtained in the expected way.
For example, we have (1 ⊕ T)⊥ = ⊥ N T⊥ and (¡T)⊥ = ¿T⊥.

The typing rules for CSLL∞ are shown in Table 3. Typing judgments have the form P ⊢ Γ

and relate a process P with a context Γ . Contexts are finite maps from channel names to
types written as x : T . We let Γ and ∆ range over contexts, we write ∅ for the empty context,
we write dom(Γ) for the domain of Γ , namely for the set of channel names for which there is
an association in Γ , and we write Γ ,∆ for the union of Γ and ∆ when dom(Γ) ∩ dom(∆) = ∅.

L. Padovani 5:7

For the most part, the typing rules coincide with those of a standard session type system
based on linear logic [21, 19]. In particular, [cut], [⊤], [⊥], [1], [O], [⊗], [N] and [⊕] relate the
standard proof rules of multiplicative-additive classical linear logic with the corresponding
forms of CSLL∞. The rule [call] deals with process invocations A⟨x⟩ by unfolding the
global definition of A, noted as side condition to the rule. Rule [server] deals with servers
¡x(y){P,Q}. The continuation P , which is the actual handler of incoming connections, must
be well typed in a context enriched with the channel y resulting from the connection. Note
that x is still present in the context and with the same type, meaning that P must also be
able to handle any further connection on the shared channel x. The continuation Q, which
models the behavior of the server once no more clients are connecting on x, is not supposed
to use x any longer. Rule [client] deals with non-empty client pools ¿x[y].P :: Q. The client
P is connecting with a server through a shared channel x and establishes a session y. The
rest of the pool Q is using x in the same way. Rule [done] deals with the empty pool of
clients connecting on x.1

The typing rules are interpreted coinductively. Therefore, a judgment P ⊢ Γ is derivable
if there is a possibly infinite typing derivation for it. The need for infinite typing derivations
stems from the fact that we type process invocations by “unfolding” them to the process
they represent, so this unfolding may go on forever in the case of recursive processes.

▶ Example 4. Let us consider once again the process definitions in Example 1. We derive...
[call]

Lock⟨x, z⟩ ⊢ x : ¡⊥, z : 1
[⊥]

wait y.Lock⟨x, z⟩ ⊢ x : ¡⊥, y : ⊥, z : 1
[1]

close z ⊢ z : 1
[server]

¡x(y){wait y.Lock⟨x, z⟩, close z} ⊢ x : ¡⊥, z : 1
[call]

Lock⟨x, z⟩ ⊢ x : ¡⊥, z : 1

showing that Lock is well typed. Note that the typing derivation is infinite since Lock is a
recursive process. We can now obtain the following typing derivation

[1]
closeu ⊢ u : 1

[1]
close v ⊢ v : 1

[done]
¿x[] ⊢ x : ¿1

[client]
¿x[v].close v :: ¿x[] ⊢ x : ¿1

[client]
¿x[u].closeu :: ¿x[v].close v :: ¿x[] ⊢ x : ¿1

...
Lock⟨x, z⟩ ⊢ x : ¡⊥, z : 1

[cut]
(x)(¿x[u].closeu :: ¿x[v].close v :: ¿x[] | Lock⟨x, z⟩) ⊢ z : 1

showing that the system as a whole is well typed. ⌟

Adopting an infinitary type system will make it easy to relate CSLL∞ with µMALL∞

(Section 5). However, we must be careful in that some infinite typing derivations allow us to
type processes that are not weakly terminating, as illustrated in the next example.

▶ Example 5 (non-terminating process). Consider the process Ω ≜ (x)(closex | waitx.Ω)
which creates a session x, immediately closes it and then repeats the same behavior. Clearly,
this process is not weakly terminating because it can only reduce thus:

Ω ≼ (x)(closex | waitx.Ω) → Ω ≼ (x)(closex | waitx.Ω) → · · ·

1 There are some analogies between the typing rules for client pools and coweakening, codereliction
and cocontraction in Differential Linear Logic (DiLL) [9], although the exact relationship between
coexponentials and DiLL remains to be established. Quian et al. [20] provide a few more details.

TYPES 2022

5:8 On the Fair Termination of Client-Server Sessions

Nonetheless, we are able to find the following (infinite) typing derivation for Ω.

[1]
closex ⊢ x : 1

...
[call]

Ω ⊢ ∅
[⊥]

waitx.Ω ⊢ x : ⊥
[cut]

(x)(closex | waitx.Ω) ⊢ ∅
[call]

Ω ⊢ ∅

Since we aim at ensuring fair termination for well-typed processes, we must consider this
derivation as invalid. ⌟

In order to rule out processes like Ω in Example 5, we identify a class of valid typing
derivations as follows.

▶ Definition 6 (valid typing derivation). A typing derivation is valid if every infinite branch in
it goes through infinitely many applications of the rule [server] concerning the same channel.

This validity condition requires that every infinite branch of a typing derivation describes
the behavior of a server willing to accept an unbounded number of connection requests. If
we look back at the infinite typing derivation for the Lock process in Example 4, we see that
it is valid according to Definition 6 since the only infinite branch in it goes through infinitely
many applications of the rule [server] concerning the very same shared channel x. On the
contrary, the typing derivation in Example 5 is invalid since the infinite branch in it does not
go through any application of [server].

The fact that every infinite branch must go through infinitely many applications of
[server] concerning the very same shared channel is a subtle point. Without the specification
that it is the same shared channel to be found infinitely often, it would be possible to obtain
invalid typing derivations as illustrated by the next example.

▶ Example 7. Consider the definition

Ω-Server(x) ≜ ¡x(y){wait y.Ω-Server⟨x⟩, (z)(¿z[] | Ω-Server⟨z⟩)}

describing a server that waits for connections on the shared channel x. After each request,
the server makes itself available again for handling more requests by the recursive invocation
Ω-Server⟨x⟩. Once all requests have been processed, the server creates a new shared channel
on which an analogous server operates. Using the typing rules in Table 3 we are able to find
the following typing derivation:

...
[call]

Ω-Server⟨x⟩ ⊢ x : ¡⊥
[⊥]

wait y.Ω-Server⟨x⟩ ⊢ x : ¡⊥, y : ⊥

[done]
¿z[] ⊢ z : ¿1

...
[call]

Ω-Server⟨z⟩ ⊢ z : ¡⊥
[cut]

(z)(¿z[] | Ω-Server⟨z⟩) ⊢ ∅
[server]

¡x(y){wait y.Ω-Server⟨x⟩, (z)(¿z[] | Ω-Server⟨z⟩)} ⊢ x : ¡⊥
[call]

Ω-Server⟨x⟩ ⊢ x : ¡⊥

Notice that the derivation bifurcates in correspondence of the application of [server] and
also that each sub-tree is infinite, since it contains an unfolding of the Ω-Server process. For
this reason, the derivation contains (infinitely) many infinite branches, which are obtained by
either “going left” or “going right” each time [server] is encountered. Each of these infinite
branches goes through an application of [server] infinitely many times, as requested by

L. Padovani 5:9

Definition 6. Also, any such branch that “goes right” finitely many times eventually ends up
going through infinitely many applications of [server] that concern the same channel. In
contrast, any branch that “goes right” infinitely many times keeps going through applications
of [server] concerning new shared channels created in correspondence of the application of
[cut]. In conclusion, this typing derivation is invalid and rightly so, or else the diverging
process (x)(¿x[] | Ω-Server⟨x⟩) would be well typed in the empty context. ⌟

We conclude this section by stating two key properties of the type system, starting from
the fact that typing is preserved by structural pre-congruence and reductions.

▶ Theorem 8. Let P R Q where R ∈ {≼,→}. Then P ⊢ Γ implies Q ⊢ Γ .

Also, processes that are well typed in a context of the form x : 1 are deadlock free.

▶ Theorem 9 (deadlock freedom). If P ⊢ x : 1 then either P ≼ closex or P →det.

Note that Theorem 9 uses →det instead of → in order to state that P is able to reduce
if it is not (structurally pre-congruent to) closex. Recalling that →det ⊆ →, the deadlock
freedom property ensured by Theorem 9 is slightly stronger than one would normally expect.
This formulation will be necessary in Section 5 when proving the soundness of the type
system. The proofs of Theorems 8 and 9 can be found in Appendix A.

▶ Example 10 (forwarder). Most session calculi based on linear logic include a form x ↔ y

whose typing rule x ↔ y ⊢ x : T, y : T⊥ corresponds to the axiom ⊢ T, T⊥ of linear logic.
The form x ↔ y is usually interpreted as a forwarder between the channels x and y and it is
useful for example to model the output of a free channel x⟨y⟩.P as the term x[z](y ↔ z | P).
In this example we show that there is no need to equip CSLL∞ with a native form x ↔ y

since its behavior can be encoded as a well-typed CSLL∞ process. To this aim, we define a
family LinkT of process definitions by induction on T as follows

Link⊥(x, y) ≜ waitx.close y
Link⊤(x, y) ≜ failx

LinkT OS(x, y) ≜ x(u).y[v](LinkT ⟨u, v⟩ | LinkS⟨x, y⟩)
LinkT NS(x, y) ≜ casex{in1 y.LinkT ⟨x, y⟩, in2 y.LinkS⟨x, y⟩}

Link¡T (x, y) ≜ ¡x(u){¿y[v].LinkT ⟨u, v⟩ :: Link¡T ⟨x, y⟩, ¿y[]}

with the addition of the definitions LinkT (x, y) ≜ LinkT ⊥⟨y, x⟩ for the positive type construc-
tors. It is easy to build a typing derivation for the judgment LinkT ⟨x, y⟩ ⊢ x : T, y : T⊥. Also,
every infinite branch in such derivation eventually loops through an invocation of the form
Link¡S⟨u, v⟩, which goes through an application of [server] concerning the channel u. So, the
derivation of LinkT ⟨x, y⟩ ⊢ x : T, y : T⊥ is valid and the process LinkT ⟨x, y⟩ is well typed. ⌟

4 A quick recollection of µMALL∞

In this section we recall the main elements of µMALL∞ [8, 3, 2], the infinitary proof system
of the multiplicative additive fragment of linear logic extended with least and greatest fixed
points. The syntax of µMALL∞ pre-formulas makes use of an infinite set of propositional
variables ranged over by X and Y and is given by the grammar below:

Pre-formula φ,ψ ::= X | ⊥ | ⊤ | 0 | 1 | φO ψ | φ⊗ ψ | φN ψ | φ⊕ ψ | νX.φ | µX.φ

TYPES 2022

5:10 On the Fair Termination of Client-Server Sessions

Table 4 Proof rules of µMALL∞ [3, 8, 2].

[cut]
⊢ Σ, F ⊢ Θ, F⊥

⊢ Σ,Θ

[⊤]

⊢ Σ,⊤

[⊥]
⊢ Σ

⊢ Σ,⊥

[1]

⊢ 1

[O]
⊢ Σ, F,G

⊢ Σ, F OG

[⊗]
⊢ Σ, F ⊢ Θ, G

⊢ Σ,Θ, F ⊗G

[N]
⊢ Σ, F ⊢ Σ, G

⊢ Σ, F NG

[⊕]
⊢ Σ, Fi

⊢ Σ, F1 ⊕ F2

[ν]
⊢ Σ, F{νX.F/X}

⊢ Σ, νX.F

[µ]
⊢ Σ, F{µX.F/X}

⊢ Σ, µX.F

The fixed point operators µ and ν are the binders of propositional variables and the
notions of free and bound variables are defined accordingly. A µMALL∞ formula is a closed
pre-formula. We write {φ/X} for the capture-avoiding substitution of all free occurrences of
X with φ and φ⊥ for the dual of φ, which is the involution such that

X⊥ = X (µX.φ)⊥ = νX.φ⊥ (νX.φ)⊥ = µX.φ⊥

among the other expected equations. Postulating that X⊥ = X is not a problem since we
will always dualize formulas, which do not contain free propositional variables.

We write ⪯ for the subformula ordering, that is the least partial order such that φ ⪯ ψ if
φ is a subformula of ψ. For example, if φ def= µX.νY.(X ⊕ Y) and ψ

def= νY.(φ⊕ Y) we have
φ ⪯ ψ and ψ ̸⪯ φ. When Φ is a set of formulas, we write min Φ for its ⪯-minimum formula
if it is defined. Occasionally we let ⋆ stand for an arbitrary binary connective (one of ⊕, ⊗,
N, or O) and σ stand for an arbitrary fixed point operator (either µ or ν).

In µMALL∞ it is important to distinguish among different occurrences of the same formula
in a proof derivation. To this aim, formulas are annotated with addresses. We assume an
infinite set A of atomic addresses, A⊥ being the set of their duals such that A ∩ A⊥ = ∅
and A⊥⊥ = A. We use a and b to range over elements of A ∪ A⊥. An address is a string aw
where w ∈ {i, l, r}∗. The dual of an address is defined as (aw)⊥ = a⊥w. We use α and β to
range over addresses, we write ⊑ for the prefix relation on addresses and we say that α and
β are disjoint if α ̸⊑ β and β ̸⊑ α.

A formula occurrence (or simply occurrence) is a pair φα made of a formula φ and
an address α. We use F and G to range over occurrences and we extend to occurrences
several operations defined on formulas. In particular: we use logical connectives to compose
occurrences so that φαl ⋆ ψαr

def= (φ ⋆ ψ)α and σX.φαi
def= (σX.φ)α; the dual of an occurrence

is obtained by dualizing both its formula and its address, that is (φα)⊥ def= φ⊥
α⊥ ; occurrence

substitution preserves the address in the type within which the substitution occurs, but
forgets the address of the occurrence being substituted, that is φα{ψβ/X} def= φ{ψ/X}α.

We write F for the formula obtained by forgetting the address of F . Finally, we write ⇝
for the least reflexive relation on types such that F1 ⋆ F2 ⇝ Fi and σX.F ⇝ F{σX.F/X}.

The proof rules of µMALL∞ are shown in Table 4, where Σ and Θ range over sets of
occurrences written as F1, . . . , Fn. The rules allow us to derive sequents of the form ⊢ Σ and
are standard except for [ν], which unfolds a greatest fixed point just like [µ] does. Being
an infinitary proof system, µMALL∞ rules are meant to be interpreted coinductively. That
is, a sequent ⊢ Σ is derivable if there exists an arbitrary (finite or infinite) proof derivation
whose conclusion is ⊢ Σ. Without a validity condition on derivations, such proof system
is notoriously unsound. µMALL∞’s validity condition requires every infinite branch of a
derivation to be supported by the continuous unfolding of a greatest fixed point. In order to
formalize this condition, we start by defining threads, which are sequences of occurrences.

L. Padovani 5:11

▶ Definition 11 (thread). A thread of F is a (finite or infinite) sequence of occurrences
(F0, F1, . . .) such that F0 = F and Fi ⇝ Fi+1 whenever i+ 1 is a valid index of the sequence.

Hereafter we use t to range over threads. For example, if we consider φ def= µX.(X ⊕ 1),
we have that t def= (φa, (φ⊕ 1)ai, φail, . . .) is an infinite thread of φa.

Among all threads, we are interested in finding those in which a ν-formula is unfolded
infinitely often. These threads, called ν-threads, are precisely defined thus:

▶ Definition 12 (ν-thread). Let t = (F0, F1, . . .) be an infinite thread, let t be the correspond-
ing sequence (F0, F1, . . .) of formulas and let inf(t) be the set of elements of t that occur
infinitely often in t. We say that t is a ν-thread if min inf(t) is defined and is a ν-formula.

If we consider the infinite thread t above, we have inf(t) = {φ,φ⊕ 1} and min inf(t) = φ,
so t is not a ν-thread because φ is not a ν-formula. Consider instead φ

def= νX.µY.(X ⊕ Y)
and ψ

def= µY.(φ ⊕ Y) and observe that ψ is the “unfolding” of φ. Now t1
def= (φa, ψai, (φ ⊕

ψ)aii, φaiil, . . .) is a thread of φa such that inf(t1) = {φ,ψ, φ⊕ψ} and we have min inf(t1) =
φ because φ ⪯ ψ, so t1 is a ν-thread. If, on the other hand, we consider the thread
t2

def= (φa, ψai, (φ ⊕ ψ)aii, ψaiir, (φ ⊕ ψ)aiiri, . . .) such that inf(t2) = {ψ,φ ⊕ ψ} we have
min inf(t2) = ψ because ψ ⪯ φ ⊕ ψ, so t2 is not a ν-thread. Intuitively, the ⪯-minimum
formula among those that occur infinitely often in a thread is the outermost fixed point
operator that is being unfolded infinitely often. It is possible to show that this minimum
formula is always well defined [8]. If such minimum formula is a greatest fixed point operator,
then the thread is a ν-thread. Note that a ν-thread is necessarily infinite.

Now we proceed by identifying threads along branches of proof derivations. To this aim,
we provide a precise definition of branch.

▶ Definition 13 (branch). A branch of a proof derivation is a sequence (⊢ Σ0,⊢ Σ1, . . .) of
sequents such that ⊢ Σ0 occurs somewhere in the derivation and ⊢ Σi+1 is a premise of the
rule application that derives ⊢ Σi whenever i+ 1 is a valid index of the sequence.

An infinite branch is valid if supported by a ν-thread that originates somewhere therein.

▶ Definition 14. Let γ = (⊢ Σ0,⊢ Σ1, . . .) be an infinite branch in a derivation. We say that
γ is valid if there exists I ⊆ N such that (Fi)i∈I is a ν-thread and Fi ∈ Σi for every i ∈ I.

▶ Definition 15. A µMALL∞ derivation is valid if so are its infinite branches.

5 Fair Termination of CSLL∞

In this section we prove that well-typed CSLL∞ processes fairly terminate. We do so by
appealing to the alternative characterization of fair termination given by Theorem 3. Using
that characterization and using the fact that typing is preserved by reductions (Theorem 8),
it suffices to show that well-typed CSLL∞ processes weakly terminate. To do that, we encode
a well-typed CSLL∞ process P into a (valid) µMALL∞ proof and we use the cut elimination
property of µMALL∞ to argue that P has a finite maximal run.

Encoding of types

The encoding of CSLL∞ types into µMALL∞ formulas is the map J·K defined by

J¿T K = µX.(1 ⊕ (JT K ⊗X)) J¡T K = νX.(⊥ N (JT K OX)) (2)

TYPES 2022

5:12 On the Fair Termination of Client-Server Sessions

and extended homomorphically to all the other type constructors, which are in one-to-one
correspondence with the connectives and constants of µMALL∞. Notice that the image of
the encoding is a relatively small subset of µMALL∞ formulas in which different fixed point
operators are never intertwined. Also notice that the encoding of the coexponentials does
not follow exactly their expansion in Equation (1). Basically, we choose to interpret ¿T as a
list of clients rather than as a tree of clients, following to the intuition that clients are queued
when connecting to a server. The interpretation of ¡ follows as a consequence, as we want it
to be the dual of the interpretation of ¿. Note that this interpretation of the coexponential
modalities is the same used by Qian et al. [20].

Encoding of typing contexts

The next step is the encoding of CSLL∞ contexts into µMALL∞ sequents. Recall that a
µMALL∞ sequent is a set of occurrences and that an occurrence is a pair φα made of a
formula φ and an address α. In order to associate addresses with formulas, we parametrize
the encoding of CSLL∞ contexts with an injective map σ from CSLL∞ channels to addresses,
since channels in (the domain of a) CSLL∞ context uniquely identify the occurrence of a
type (and thus of a formula). We write x 7→ α for the singleton map that associates x with
the address α and σ1, σ2 for the union of σ1 and σ2 when they have disjoint domains and
codomains. Now, the encoding of a CSLL∞ context is set of formulas defined by

Jx1 : T1, . . . , xn : TnKσ,x1 7→α1,...,xn 7→αn

def= JT1Kα1 , . . . , JTnKαn

Encoding of typing derivations

Just like for the encoding of CSLL∞ contexts, also the encoding of typing derivations is
parametrized by a map σ from CSLL∞ channels to addresses. In addition, we also have to
take into account the possibility that restricted channels are introduced in a CSLL∞ context,
which happens in the rule [cut] of Table 3. The formula occurrence corresponding to the
type of this newly introduced channel must have an address that is disjoint from that of any
other occurrence. To guarantee this disjointness, we parametrize the encoding of CSLL∞

derivations by an infinite stream ρ of pairwise distinct atomic addresses. Formally, ρ is an
injective function N → A. We write aρ, even(ρ) and odd(ρ) for the streams defined by

(aρ)(0) def= a (aρ)(n+ 1) def= ρ(n) even(ρ)(n) def= ρ(2n) odd(ρ)(n) def= ρ(2n+ 1)

respectively. In words, aρ is the stream of atomic addresses that starts with a and continues
as ρ whereas even(ρ) and odd(ρ) are the sub-streams of ρ consisting of addresses with an
even (respectively, odd) index.

The encoding of a CSLL∞ typing derivation is coinductively defined by a map J·Kρ
σ which

we describe using the following notation. For every typing rule in Table 3

[rule]
J1 · · · Jn

J
we write

t
J1 · · · Jn

J

|ρ

σ

= π

meaning that π is the µMALL∞ derivation resulting from the encoding of the CSLL∞

derivation for the judgment J in which the last rule is an application of [rule]. Within π

there will be instances of the JJiK
ρi

σi
for suitable σi and ρi standing for the encodings of the

CSLL∞ sub-derivations for the judgments Ji that we find as premises of [rule].

L. Padovani 5:13

There is a close correspondence between many CSLL∞ typing rules and µMALL∞ proof
rules so we only detail a few interesting cases of the encoding, starting from the typing
rules [⊗] and [O]. A µMALL∞ typing derivation ending with an application of these rules is
encoded as follows:

t
P ⊢ Γ , y : T Q ⊢ ∆, x : S
x[y](P |Q) ⊢ Γ ,∆, x : T ⊗ S

|ρ

σ,x 7→α

=
JP ⊢ Γ , y : T Keven(ρ)

σ,y 7→αl JQ ⊢ ∆, x : SKodd(ρ)
σ,x 7→αr

⊢ JΓ ,∆Kσ, JT ⊗ SKα

[⊗]
t

P ⊢ Γ , y : T, x : S
x(y).P ⊢ Γ , x : T O S

|ρ

σ,x 7→α

=
JP ⊢ Γ , y : T, x : SKρ

σ,y 7→αl,x 7→αr

⊢ JΓKσ, JT O SKα

[O]

Notice that the types T ⊗ S and T O S associated with x in the conclusion of the rules
are encoded into the occurrences JT ⊗ SKα and JT O SKα where α is the address associated
with x in σ, x 7→ α. This address is suitably updated in the encoding of the premises of the
rules. In the case of [⊗], the original stream ρ of atomic addresses is split into two disjoint
streams in the encoding of the premises to ensure that no atomic address is used twice.

Every application of [call] is simply erased in the encoding:

t
P ⊢ x : T

A⟨x⟩ ⊢ x : T

|ρ

σ

=
q
P ⊢ x : T

yρ

σ

The validity of the CSLL∞ typing derivation guarantees that there cannot be an infinite
chain of process invocations in a well-typed process. A proof of this fact is given by Lemma 21
in Appendix A. For this reason, the encoding of CSLL∞ derivations is well defined despite
the fact that applications of [call] are erased.

Another case worth discussing is that of the rule [cut], which is handled as follows:

t
P ⊢ Γ , x : T Q ⊢ ∆, x : T⊥

(x)(P |Q) ⊢ Γ ,∆

|aρ

σ

=
JP ⊢ Γ , x : T Keven(ρ)

σ,x 7→a

q
Q ⊢ ∆, x : T⊥yodd(ρ)

σ,x 7→a⊥

⊢ JΓ ,∆Kσ

[cut]

The first address from the infinite stream aρ, which is guaranteed to be distinct from any
other address used so far and that will be used in the rest of the encoding, is associated with
the newly introduced variable x. Similarly to the case of [⊗], the tail of the stream is split in
the encoding of the two premises of [cut] so as to preserve this guarantee.

We now consider the applications of [done], [client] and [server] which account for the
most relevant part of the encoding. These rule applications are encoded by considering the
interpretation of the co-exponentials in terms of least and greatest fixed points (Equation (2))
and then by applying the suitable µMALL∞ proof rules ([µ] and [ν] in particular). We have

t

¿x[] ⊢ x : ¿T

|ρ

σ,x 7→α

=

⊢ 1αil

[1]

⊢ J1 ⊕ (T ⊗ ¿T)Kαi

[⊕]

⊢ J¿T Kα

[µ]

for the applications of [done] and

TYPES 2022

5:14 On the Fair Termination of Client-Server Sessions

t
P ⊢ Γ , y : T Q ⊢ ∆, x : ¿T

¿x[y].P :: Q ⊢ Γ ,∆, x : ¿T

|ρ

σ,x 7→α

=

JP ⊢ Γ , y : T Keven(ρ)
σ,y 7→αirl JQ ⊢ ∆, x : ¿T Kodd(ρ)

σ,x 7→αirr [⊗]
⊢ JΓ ,∆Kσ, JT ⊗ ¿T Kαir

[⊕]
⊢ JΓ ,∆Kσ, J1 ⊕ (T ⊗ ¿T)Kαi

[µ]
⊢ JΓ ,∆Kσ, J¿T Kα

for the applications of [client]. Finally, the applications of [server] are encoded thus:
t
P ⊢ Γ , x : ¡T, y : T Q ⊢ Γ

¡x(y){P,Q} ⊢ Γ , x : ¡T

|ρ

σ,x 7→α

=

JQ ⊢ ΓKρ
σ [⊥]

⊢ JΓKσ,⊥αil

JP ⊢ Γ , x : ¡T, y : T Kρ
σ,x 7→αirr,y 7→αirl [O]

⊢ JΓKσ, JT O ¡T Kαir
[N]

⊢ JΓKσ, J⊥ N (T O ¡T)Kαi
[ν]

⊢ JΓKσ, J¡T Kα

Note that in this last case it is not necessary to split the stream ρ since the P and Q

branches of the server are mutually exclusive (the reduction rules [r-connect] and [r-done]
pick one or the other branch, but not both). A similar thing happens in the encoding of the
applications of [N], not shown here.

Validity of encoded typing derivations

Now that we have shown how every CSLL∞ typing derivation is encoded into a µMALL∞

derivation, we argue that the encoding preserves validity. More specifically, a valid CSLL∞

typing derivation (Definition 6) is encoded into a valid µMALL∞ derivation (Definition 15).
To see that this is the case, first observe that there is a one-to-one correspondence between
the infinite branches in the two derivations. From Definition 6 we know that every infinite
branch in a CSLL∞ derivation contains infinitely many applications of [server] concerning
the same shared channel x having type ¡T for some T . In the encoded derivation, this
translates to the existence of a formula J¡T K that occurs infinitely often in the sequents
making up this infinite branch. Now, suppose that the first occurrence of this formula is
associated with some address α. From the encoding of [server] we can then build the thread

t
def= (J¡T Kα, J⊥ N (T O ¡T)Kαi, JT O ¡T Kαir, J¡T Kαirr, . . .)

which is infinite. Also note that inf(t) = {J¡T K, J⊥N(TO¡T)K, JTO¡T K}, that min inf(t) = J¡T K,
and that J¡T K is a ν-formula by Equation (2). In conclusion, t is a ν-thread (Definition 12)
as required by the validity condition for µMALL∞ pre-proofs (Definition 15).

Soundness of the type system

Now that we know how to obtain a µMALL∞ proof from a well-typed CSLL∞ process we
observe that each reduction rule of CSLL∞

det corresponds to one or more principal reductions
in a µMALL∞ proof [8, Figure 3.2]. In particular, the reductions [r-close], [r-comm] and
[r-case] correspond to exactly one principal reduction in µMALL∞ (for 1/⊥, ⊗/O and ⊕/N

L. Padovani 5:15

respectively), whereas [r-done] and [t-client] correspond to three subsequent principal
reductions in µMALL∞. For example, [r-connect] corresponds to the principal reduction
µ/ν followed by ⊕/N followed by ⊗/O. Using this correspondence between CSLL∞

det and
µMALL∞, we can prove that every CSLL∞ process that is well typed in a context of the
form x : 1 is weakly terminating. Note that this correspondence holds for →det but not for
→ in general. However, since →det ⊆ →, this is enough to establish the weak termination of
well-typed CSLL∞ processes in the general case.

▶ Theorem 16. If P ⊢ x : 1 then P is weakly terminating.

Proof. Let aρ be an infinite stream of pairwise distinct atomic addresses. Every deterministic
reduction of P (that is, according to →det) can be mimicked by one or more principal reduc-
tions in the µMALL∞ proof JP ⊢ x : 1Kρ

x 7→a. We know that µMALL∞ enjoys cut elimination
[8]. In particular, there cannot be an infinite sequence of principal reductions in a µMALL∞

proof [8, Proposition 3.5]. It follows that there is no infinite sequence of deterministic
reductions starting from P (using the CSLL∞

det semantics), that is P ⇒det Q X→det for some
Q. From Theorem 8 we deduce Q ⊢ x : 1 and from Theorem 9 we deduce Q ≼ closex. We
conclude P ⇒≼ closex X→. In other words, P is weakly terminating. ◀

▶ Corollary 17. If P ⊢ x : 1 then P is fairly terminating.

Proof. Straightforward consequence of Theorems 3 and 16. ◀

6 Example: a Compare-and-Swap register

In this section we illustrate a more complex scenario of client-server interaction that hightlights
not only the fact that the server handles connections sequentially in an unspecified order
but also the fact that each connection may change the server’s internal state and affect
other connections. More specifically, we show a modeling of the Compare-and-Swap (CAS)
register of Qian et al. [20] in CSLL∞. A CAS register holds a boolean value true or false
and is represented as a server that accepts connections from clients. Each client sends two
boolean values to the server, an expected value and a desired value. If the expected value
matches the content of the register, then the register is overwritten with the desired value.
Otherwise, the register remains unchanged. We model boolean values as choices made in
some session y. For instance, we can model the sending of true on y by the selection in1 y

and the sending of false on y by the selection in2 y. In fact, in this section we write true and
false as aliases for the labels in1 and in2, respectively.

Below are two definitions for clients that differ for the expected and desired values they
send to the CAS register:

Clienttrue,false(y) ≜ true y.false y.close y Clientfalse,true(y) ≜ false y.true y.close y

It is easy to see that both definitions are well typed. In particular, we can derive
Clientb,c⟨y⟩ ⊢ y : (1⊕1)⊕ (1⊕1) for every b, c ∈ {true, false} with two applications of [⊕] and
one application of [1]. We combine two clients in a single pool as by the following definition

Clients(x) ≜ ¿x[y].Clienttrue,false⟨y⟩ :: ¿x[y].Clientfalse,true⟨y⟩ :: ¿x[]

for which we derive Clients⟨x⟩ ⊢ x : ¿((1 ⊕ 1) ⊕ (1 ⊕ 1)) using [client] and [done].

TYPES 2022

5:16 On the Fair Termination of Client-Server Sessions

For the CAS server we provide two definitions CAStrue and CASfalse corresponding to the
states in which the register holds the value true and false, respectively.

CAStrue(x, z) ≜ ¡x(y){case y{case y{wait y.CAStrue⟨x, z⟩,wait y.CASfalse⟨x, z⟩},
case y{wait y.CAStrue⟨x, z⟩,wait y.CAStrue⟨x, z⟩}},

true z.close z}
CASfalse(x, z) ≜ ¡x(y){case y{case y{wait y.CASfalse⟨x, z⟩,wait y.CASfalse⟨x, z⟩},

case y{wait y.CAStrue⟨x, z⟩,wait y.CASfalse⟨x, z⟩}},
false z.close z}

The server in state b ∈ {true, false} waits for connections on the shared channel x. If there
is no client, the server sends b on z and terminates. If a client connects, then a session y is
established. At this stage the server performs two input operations to receive the expected
and desired values from the client. If the expected value does not match b, then the desired
value is ignored and the server recursively invokes itself in the same state b. If the expected
value matches b, then the server recursively invokes itself in a state that matches the client’s
desired value.

It is not difficult to obtain derivations for the judgments CASb⟨x, z⟩ ⊢ x : ¡((⊥N⊥)N (⊥N
⊥)), z : 1⊕1 for every b ∈ {true, false}. These derivations are valid since every infinite branch
in them goes through an application of [server] concerning the channel x. In conclusion, the
CAS server is well typed and so is the composition (x)(Clients⟨x⟩ | CAStrue⟨x, z⟩).

Note that the process (x)(Clients⟨x⟩ | CAStrue⟨x, z⟩) is not deterministic since it may
reduce to either true z.close z or false z.close z depending on the order in which clients connect.
Indeed, if Clienttrue,false connects first, then the state of the register changes from true to false
and then the connection with the second client changes it back from false to true. If, on
the other hand, Clientfalse,true connects first (because [s-pool-comm] is used), then the initial
state of the register does not change and then it is changed from true to false when the client
Clienttrue,false finally connects.

7 Concluding Remarks

CSLL [20] is a non-deterministic session calculus based on linear logic in which servers handle
multiple client requests sequentially. In this work we have targeted the problem of proving the
termination of well-typed CSLL processes. To this aim, we have introduced CSLL∞, a variant
of CSLL closely related to µMALL∞ [3, 8, 2], the infinitary proof system for multiplicative
additive linear logic with fixed points. We have shown that well-typed CSLL∞ processes are
fairly terminating by encoding CSLL∞ typing derivations into µMALL∞ proofs and using the
cut elimination property of µMALL∞. Although fair termination is weaker than termination,
it is strong enough to imply livelock freedom, which was one of the motivations for proving
termination in the original CSLL work [20]. In our work, fair termination is termination
under the fairness assumption that termination is not avoided forever (Theorem 3). However,
inspection of our proof (Section 5) reveals that the fairness assumption can be substantially
weakened: the fair termination in CSLL∞ is reduced to the termination in CSLL∞

det, meaning
that fair termination in CSLL∞ is guaranteed if client requests are handled in order.

CSLL∞ differs from the original CSLL in a few ways. In the interest of simplicity, we have
chosen to omit constructs for modeling (pools of) sequential clients and replicated servers
which are meant to be typed using the traditional exponential modalities. These features are
orthogonal to the ones we are interested in and we think that they can be accommodated
without substantial challenges following the same technical development illustrated in the

L. Padovani 5:17

present paper. In fact, the general support to fixed points in µMALL∞ allows for this and
other extensions, such as (co)recursive session types [19, 7]. Another difference is that CSLL∞

adopts a reduction semantics that is completely ordinary for a process calculus. In particular,
reductions are not allowed under prefixes, restrictions cannot be moved beyond prefixes and
(unrelated) prefixes cannot be swapped. Nonetheless, we are able to relate the reduction
semantics of CSLL∞ with the cut reduction strategy of µMALL∞ since µMALL∞ proofs,
which can be infinite, are reduced bottom-up. For this reason, we find that µMALL∞ provides
a natural logical foundation for session calculi based on linear logic.

Just like CSLL, also CSLL∞ is related to SILLS [4, 5] and HCPND [17], two session calculi
based on linear logic that allow for races and non-determinism. In SILLS, sessions can be
shared among more than two communicating processes. Access to a shared session is regulated
by means of explicit acquire/release actions that manifest themselves as special modalities in
session types. The flexibility gained by session sharing may compromise deadlock freedom,
which can be recovered by means of additional type structure [5]. HCPND uses bounded
exponentials [12] to implement client/server interactions in which the amount of channel
sharing is known (and bounded) in advance. Neither CSLL nor CSLL∞ require such bounds.
For example, the forwarder process Link¡T ⟨x, y⟩ in Example 10 would be ill typed in HCPND
since the number of clients that may be willing to connect on x is not known a priori.

References
1 Krzysztof R. Apt, Nissim Francez, and Shmuel Katz. Appraising fairness in languages for

distributed programming. In Conference Record of the Fourteenth Annual ACM Symposium
on Principles of Programming Languages, Munich, Germany, January 21-23, 1987, pages
189–198. ACM Press, 1987. doi:10.1145/41625.41642.

2 David Baelde, Amina Doumane, Denis Kuperberg, and Alexis Saurin. Bouncing threads for
circular and non-wellfounded proofs. In Proceedings of the 37th Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS, 2022, 2022. arXiv:2005.08257.

3 David Baelde, Amina Doumane, and Alexis Saurin. Infinitary proof theory: the multiplicative
additive case. In Jean-Marc Talbot and Laurent Regnier, editors, 25th EACSL Annual
Conference on Computer Science Logic, CSL 2016, August 29 – September 1, 2016, Marseille,
France, volume 62 of LIPIcs, pages 42:1–42:17. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2016. doi:10.4230/LIPIcs.CSL.2016.42.

4 Stephanie Balzer and Frank Pfenning. Manifest sharing with session types. Proc. ACM
Program. Lang., 1(ICFP):37:1–37:29, 2017. doi:10.1145/3110281.

5 Stephanie Balzer, Bernardo Toninho, and Frank Pfenning. Manifest deadlock-freedom for
shared session types. In Luís Caires, editor, Programming Languages and Systems - 28th
European Symposium on Programming, ESOP 2019, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic, April
6-11, 2019, Proceedings, volume 11423 of Lecture Notes in Computer Science, pages 611–639.
Springer, 2019. doi:10.1007/978-3-030-17184-1_22.

6 Luís Caires, Frank Pfenning, and Bernardo Toninho. Linear logic propositions as session types.
Math. Struct. Comput. Sci., 26(3):367–423, 2016. doi:10.1017/S0960129514000218.

7 Luca Ciccone and Luca Padovani. An infinitary proof theory of linear logic ensuring fair
termination in the linear π-calculus. In Bartek Klin, Slawomir Lasota, and Anca Muscholl,
editors, 33rd International Conference on Concurrency Theory, CONCUR 2022, September
12-16, 2022, Warsaw, Poland, volume 243 of LIPIcs, pages 36:1–36:18. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.CONCUR.2022.36.

8 Amina Doumane. On the infinitary proof theory of logics with fixed points. (Théorie de la
démonstration infinitaire pour les logiques à points fixes). PhD thesis, Paris Diderot University,
France, 2017. URL: https://tel.archives-ouvertes.fr/tel-01676953.

TYPES 2022

https://doi.org/10.1145/41625.41642
https://arxiv.org/abs/2005.08257
https://doi.org/10.4230/LIPIcs.CSL.2016.42
https://doi.org/10.1145/3110281
https://doi.org/10.1007/978-3-030-17184-1_22
https://doi.org/10.1017/S0960129514000218
https://doi.org/10.4230/LIPIcs.CONCUR.2022.36
https://tel.archives-ouvertes.fr/tel-01676953

5:18 On the Fair Termination of Client-Server Sessions

9 Thomas Ehrhard. An introduction to differential linear logic: proof-nets, models and antideriva-
tives. Math. Struct. Comput. Sci., 28(7):995–1060, 2018. doi:10.1017/S0960129516000372.

10 Nissim Francez. Fairness. Texts and Monographs in Computer Science. Springer, 1986.
doi:10.1007/978-1-4612-4886-6.

11 Jean-Yves Girard and Yves Lafont. Linear logic and lazy computation. In Hartmut Ehrig,
Robert A. Kowalski, Giorgio Levi, and Ugo Montanari, editors, TAPSOFT’87: Proceedings of
the International Joint Conference on Theory and Practice of Software Development, Pisa,
Italy, March 23-27, 1987, Volume 2: Advanced Seminar on Foundations of Innovative Software
Development II and Colloquium on Functional and Logic Programming and Specifications
(CFLP), volume 250 of Lecture Notes in Computer Science, pages 52–66. Springer, 1987.
doi:10.1007/BFb0014972.

12 Jean-Yves Girard, Andre Scedrov, and Philip J. Scott. Bounded linear logic: A modular
approach to polynomial-time computability. Theor. Comput. Sci., 97(1):1–66, 1992. doi:
10.1016/0304-3975(92)90386-T.

13 Orna Grumberg, Nissim Francez, and Shmuel Katz. Fair termination of communicating
processes. In Proceedings of the Third Annual ACM Symposium on Principles of Distributed
Computing, PODC ’84, pages 254–265, New York, NY, USA, 1984. Association for Computing
Machinery. doi:10.1145/800222.806752.

14 Kohei Honda. Types for dyadic interaction. In Eike Best, editor, CONCUR ’93, 4th In-
ternational Conference on Concurrency Theory, Hildesheim, Germany, August 23-26, 1993,
Proceedings, volume 715 of Lecture Notes in Computer Science, pages 509–523. Springer, 1993.
doi:10.1007/3-540-57208-2_35.

15 Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language primitives and
type discipline for structured communication-based programming. In Chris Hankin, editor,
Programming Languages and Systems - ESOP’98, 7th European Symposium on Programming,
Held as Part of the European Joint Conferences on the Theory and Practice of Software,
ETAPS’98, Lisbon, Portugal, March 28 - April 4, 1998, Proceedings, volume 1381 of Lecture
Notes in Computer Science, pages 122–138. Springer, 1998. doi:10.1007/BFb0053567.

16 Hans Hüttel, Ivan Lanese, Vasco T. Vasconcelos, Luís Caires, Marco Carbone, Pierre-Malo
Deniélou, Dimitris Mostrous, Luca Padovani, António Ravara, Emilio Tuosto, Hugo Torres
Vieira, and Gianluigi Zavattaro. Foundations of session types and behavioural contracts. ACM
Comput. Surv., 49(1):3:1–3:36, 2016. doi:10.1145/2873052.

17 Wen Kokke, J. Garrett Morris, and Philip Wadler. Towards races in linear logic. Log. Methods
Comput. Sci., 16(4), 2020. URL: https://lmcs.episciences.org/6979.

18 Leslie Lamport. Fairness and hyperfairness. Distributed Comput., 13(4):239–245, 2000.
doi:10.1007/PL00008921.

19 Sam Lindley and J. Garrett Morris. Talking bananas: structural recursion for session types.
In Jacques Garrigue, Gabriele Keller, and Eijiro Sumii, editors, Proceedings of the 21st ACM
SIGPLAN International Conference on Functional Programming, ICFP 2016, Nara, Japan,
September 18-22, 2016, pages 434–447. ACM, 2016. doi:10.1145/2951913.2951921.

20 Zesen Qian, G. A. Kavvos, and Lars Birkedal. Client-server sessions in linear logic. Proc.
ACM Program. Lang., 5(ICFP):1–31, 2021. doi:10.1145/3473567.

21 Philip Wadler. Propositions as sessions. J. Funct. Program., 24(2-3):384–418, 2014. doi:
10.1017/S095679681400001X.

A Supplement to Section 3

In the proofs of Lemmas 18 and 19 below we only focus on the derivability of the typing
judgment a structural pre-congruence or a reduction, without worrying about the validity of
the derivation. It is easy to see that validity is preserved since both structural pre-congruence
and reductions either change a finite region of the typing derivation or remove an entire
sub-tree of the derivation (as in the case of [r-case]). Either way, the fact that every infinite
branch in the residual derivation satisfies the validity conditions (Definition 6) follows from
the hypothesis that the initial typing derivation is valid.

https://doi.org/10.1017/S0960129516000372
https://doi.org/10.1007/978-1-4612-4886-6
https://doi.org/10.1007/BFb0014972
https://doi.org/10.1016/0304-3975(92)90386-T
https://doi.org/10.1016/0304-3975(92)90386-T
https://doi.org/10.1145/800222.806752
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/2873052
https://lmcs.episciences.org/6979
https://doi.org/10.1007/PL00008921
https://doi.org/10.1145/2951913.2951921
https://doi.org/10.1145/3473567
https://doi.org/10.1017/S095679681400001X
https://doi.org/10.1017/S095679681400001X

L. Padovani 5:19

▶ Lemma 18. If P ⊢ Γ and P ≼ Q then Q ⊢ Γ .

Proof. By induction on the derivation of P ≼ Q and by cases on the last rule applied.
The proof is standard, we only discuss [s-par-pool] for illustration purposes. In this case
P = (z)(¿x[y].P1 :: P2 |P3) ≼ ¿x[y].P1 :: (z)(P2 | P3) = Q where z ̸∈ fn(¿x[y].P1). From [cut]
we deduce ¿x[y].P1 :: P2 ⊢ Γ12, z : T and P3 ⊢ Γ3, z : T⊥ where Γ = Γ12, Γ3. From [client] and
z ̸∈ fn(¿x[y].P1) we deduce P1 ⊢ Γ1, y : S and P2 ⊢ Γ2, x : ¿S, z : T where Γ12 = Γ1, Γ2, x : ¿S.
We derive (z)(P2 | P3) ⊢ Γ2, Γ3, x : ¿S with one application of [cut]. We conclude Q ⊢ Γ with
one application of [client]. ◀

▶ Lemma 19. If P ⊢ Γ and P → Q then Q ⊢ Γ .

Proof. By induction on the derivation of P → Q and by cases on the last rule applied.

[r-close] Then P = (x)(closex | waitx.Q) → Q. From [cut], [1] and [⊥] we deduce
closex ⊢ x : 1 and waitx.Q ⊢ Γ , x : ⊥. From [⊥] we conclude Q ⊢ Γ .
[r-comm] Then P = (x)(x[y](P1 | P2) | x(y).P3) → (y)(P1 | (x)(P2 | P3)) = Q. From [cut]
we deduce x[y](P1 | P2) ⊢ Γ12, x : T ⊗ S and x(y).P3 ⊢ Γ3, x : T⊥ O S⊥ where Γ = Γ12, Γ3.
From [⊗] we deduce P1 ⊢ Γ1, y : T and P2 ⊢ Γ2, x : S where Γ12 = Γ1, Γ2. From [O] we
deduce P3 ⊢ Γ3, y : T⊥, x : S⊥. We derive (x)(P2 |P3) ⊢ Γ2, Γ3, y : T⊥ with one application
of [cut]. We conclude (y)(P1 | (x)(P2 | P3)) ⊢ Γ with one application of [cut].
[r-case] Then P = (x)(ini x.R | casex{Q1, Q2}) → (x)(R | Qi) = Q. From [cut], [⊕]
and [N] we deduce ini x.R ⊢ Γ1, x : T1 ⊕ T2 and casex{Q1, Q2} ⊢ Γ2, x : T⊥

1 N T⊥
2 where

Γ = Γ1, Γ2. From [⊕] we deduce R ⊢ Γ1, x : Ti. From [N] we deduce Qi ⊢ Γ2, x : T⊥
i for

i = 1, 2. We conclude (x)(R |Qi) ⊢ Γ with one application of [cut].
[r-connect] Then P = (x)(¿x[y].P1 :: P2 | ¡x(y){Q1, Q2}) → (y)(P1 | (x)(P2 | Q1)) =
Q. From [cut], [client] and [server] we deduce ¿x[y].P1 :: P2 ⊢ Γ12, x : ¿T and
¡x(y){Q1, Q2} ⊢ ∆, x : ¡T⊥ where Γ = Γ12,∆. From [client] we deduce P1 ⊢ Γ1, y : T
and P2 ⊢ Γ2, x : ¿T where Γ12 = Γ1, Γ2. From [server] we deduce Q1 ⊢ ∆, x : ¡T⊥, y : T⊥.
We derive (x)(P2 | Q1) ⊢ Γ2,∆, y : T⊥ with one application of [cut]. We conclude
(y)(P1 | (x)(P2 |Q1)) ⊢ Γ with another application of [cut].
[r-done] Then P = (x)(¿x[] | ¡x(y){R,Q}) → Q. From [cut], [done] and [server] we
deduce ¿x[] ⊢ x : ¿T and ¡x(y){R,Q} ⊢ Γ , x : ¡T⊥. From [server] we conclude Q ⊢ Γ .
[r-par] Then P = (x)(P1 |P2) → (x)(Q1 |P2) = Q where P1 → Q1. From [cut] we deduce
P1 ⊢ Γ1, x : T and P2 ⊢ Γ2, x : T⊥ where Γ = Γ1, Γ2. Using the induction hypothesis we
derive Q1 ⊢ Γ1, x : T . We conclude (x)(Q1 | P2) ⊢ Γ with an application of [cut].
[r-pool] Then P = ¿x[y].P1 :: P2 → ¿x[y].P1 :: Q2 = Q where P1 → Q2. From [client]
we deduce P1 ⊢ Γ1, y : T and P2 ⊢ Γ2, x : ¿T where Γ = Γ1, Γ2, x : ¿T . Using the induction
hypothesis we derive Q2 ⊢ Γ2, x : ¿T . We conclude ¿x[y].P1 :: Q2 ⊢ Γ with an application
of [client].
[r-struct] Using the induction hypothesis with two applications of Lemma 18. ◀

In order to prove deadlock freedom it is convenient to introduce reduction contexts to
make it easy to refer to unguarded sub-terms of a process. A reduction context is basically a
process with a single hole denoted by [].

Reduction context C,D ::= [] | (x)(C | P) | (x)(P | C)

Note that holes cannot occur in the tail of client pools, that is ¿x[y].P :: C is not a
reduction context even though the tail of a client pool may reduce by means of [r-pool]. The
point is that, in order to prove deadlock freedom, it is never necessary to reduce the tail of a
client pool. Hereafter we write C[P] for the process obtained by replacing the hole in C with
P . Note that this notion of replacement may capture some channels occurring free in P .

TYPES 2022

5:20 On the Fair Termination of Client-Server Sessions

Before addressing deadlock freedom, we prove the following proximity lemma, showing
that it is always possible to move a restriction close to a process in which the restricted
channel occurs free.

▶ Lemma 20. If x ∈ fn(P) \ (fn(C) ∪ bn(C)) then (x)(C[P] |Q) ≼ D[(x)(P |Q)] for some D.

Proof. By induction on C and by cases on its shape. We do not detail symmetric cases and
we assume, without loss of generality, that fn(Q) ∩ bn(C) = ∅.

C = []. We conclude by taking D def= [] and by reflexivity of ≼.
C = (y)(C′ |R). Then x ∈ fn(P) \ (fn(C′) ∪ bn(C′) ∪ fn(R) ∪ {y}). We derive

(x)(C[P] |Q) = (x)((y)(C′[P] |R) |Q) by definition of C
≼ (x)(Q | (y)(C′[P] |R)) by [s-par-comm]
≼ (y)((x)(Q | C′[P]) |R) by [s-par-assoc] since x ̸∈ fn(R), y ̸∈ fn(Q)
≼ (y)((x)(C′[P] |Q) |R) by [s-par-comm]
≼ (y)(D′[(x)(P |Q)] |R) by ind. hyp. for some D′

= D[(x)(P |Q)] by taking D def= (y)(D′ |R) ◀

The next auxiliary result proves that, in a well-typed process, a finite number of applica-
tions of [s-call] is always sufficient to unfold all of the process invocations occurring in it.
To this aim, we introduce some more terminology on processes. We say that P is a guard if
it is not a parallel composition or a process invocation. Note that every guard specifies a
topmost action on some channel x. In this case, we say that P is an x-guard. We say that P
is unguarded in Q if Q = C[P] for some C. We say that P is unfolded if P = C[Q] implies
that Q is not an invocation.

▶ Lemma 21. If P ⊢ Γ then there exists an unfolded Q such that P ≼ Q.

Proof. Let the call depth of P be the natural number cd(P) inductively defined as follows:

cd(P) =

1 + cd(Q) if P = A⟨x⟩ and A(x) ≜ Q
1 + max{cd(P1), cd(P2)} if P = (x)(P1 | P2)
0 otherwise

Roughly, cd(P) is the maximum depth in the typing derivation of P where an unguarded
guard is encountered. To see that cd(P) is well defined, recall that in every infinite branch
of a valid typing derivation there are infinitely many applications of [server] and that a
process of the form ¡x(y){Q,R} is a guard. Therefore, the value of cd(P) is only determined
by the portion of P ’s derivation tree that stops at each occurrence of a guard. This portion
is finite. The proof proceeds by induction on cd(P) and by cases on the shape of P . The
desired Q is obtained by applying [s-call] each time an unguarded invocation is encountered
and the induction guarantees that this rewriting is finite. ◀

▶ Theorem 9 (deadlock freedom). If P ⊢ x : 1 then either P ≼ closex or P →det.

Proof. By Lemma 21 we may assume, without loss of generality, that P is unfolded. We want
to show that there are two x-guards in P that can synchronize. To this aim, let guards(P)
be inductively defined as

guards(P) =
{

guards(P1) + guards(P2) if P = (x)(P1 | P2)
1 otherwise

L. Padovani 5:21

and let channels(P) be inductively defined as

channels(P) =
{

1 + channels(P1) + channels(P2) if P = (x)(P1 | P2)
0 otherwise

In words, guards(P) counts the number of unguarded guards in P whereas channels(P)
counts the number of unguarded restrictions in P . It is easy to prove that guards(P) >
channels(P). So, there must be at least one channel name x such that P contains two
unguarded x-guards. That is, P = C[(x)(C1[P1] | C2[P2])] and both P1 and P2 are x-guards
and x ̸∈ fn(Ci) ∪ bn(Ci) for i = 1, 2. Then we derive

P = C[(x)(C1[P1] | C2[P2])] by definition of P , P1 and P2
≼ C[D1[(x)(P1 | C2[P2])]] by Lemma 20 for some D1
≼ C[D1[(x)(C2[P2] | P1)]] by [s-par-comm]
≼ C[D1[D2[(x)(P2 | P1)]]] by Lemma 20 for some D2

Now we reason by cases on the shape of P1 and P2, knowing that they are x-guards
and that they are well typed in contexts that contain the associations x : T and x : T⊥ for
some T . If P2 = ¿x[y].Q then P1 = ¡x(y){Q1, Q2} and P may reduce using [r-connect].
The case in which P1 = ¿x[y].Q is symmetric and can be handled in a similar way with an
additional application of [s-par-comm]. The cases in which one of P1 and P2 is ¿x[] can be
handled analogously, deducing that P may reduce using [r-done]. The only cases left are
when neither P1 nor P2 is a client or ¿x[]. Then, P1 and P2 must be x-guards beginning with
dual actions which can synchronize using one of the rules [r-close], [r-comm] or [r-case],
possibly with the help of an application of [s-par-comm]. ◀

TYPES 2022

mitten: A Flexible Multimodal Proof Assistant
Philipp Stassen #

Aarhus University, Denmark

Daniel Gratzer #

Aarhus University, Denmark

Lars Birkedal #

Aarhus University, Denmark

Abstract
Recently, there has been a growing interest in type theories which include modalities, unary type
constructors which need not commute with substitution. Here we focus on MTT [15], a general
modal type theory which can internalize arbitrary collections of (dependent) right adjoints [7]. These
modalities are specified by mode theories [20], 2-categories whose objects corresponds to modes,
morphisms to modalities, and 2-cells to natural transformations between modalities. We contribute
a defunctionalized NbE algorithm which reduces the type-checking problem for MTT to deciding
the word problem for the mode theory. The algorithm is restricted to the class of preordered mode
theories – mode theories with at most one 2-cell between any pair of modalities. Crucially, the
normalization algorithm does not depend on the particulars of the mode theory and can be applied
without change to any preordered collection of modalities. Furthermore, we specify a bidirectional
syntax for MTT together with a type-checking algorithm. We further contribute mitten, a flexible
experimental proof assistant implementing these algorithms which supports all decidable preordered
mode theories without alteration.

2012 ACM Subject Classification Theory of computation → Type theory; Theory of computation
→ Modal and temporal logics

Keywords and phrases Dependent type theory, guarded recursion, modal type theory, proof assistants

Digital Object Identifier 10.4230/LIPIcs.TYPES.2022.6

Funding This work was supported in part by a Villum Investigator grant (no. 25804), Center for
Basic Research in Program Verification (CPV), from the VILLUM Foundation.

1 Introduction

A fundamental benefit of using type theory is the possibility of working within a proof assistant,
which can check and even aid in the construction of complex theorems. Implementing a proof
assistant, however, is a highly nontrivial task. In addition to a solid theoretical foundation
for the particular type theory, numerous practical implementation issues must be addressed.

Recently, interest has gathered around type theories with modalities, unary type con-
structors which need not commute with substitution. Unfortunately, the situation for modal
type theories is even more fraught; the theory for modalities is poorly understood in general,
and it is unknown whether standard implementation techniques extend to support them.

Despite these challenges, mainstream proof assistants have begun to experiment with
modalities [27], but these implementations are costly and only apply to a particular modal
type theory. In practice, a type theorist may use a particular collection of modalities for only
one proof or construction and it is impractical to invest in a specialized modal proof assistant
each time. This churn has pushed type theorists to define general modal type theories which
can be instantiated to a variety of modal situations [21, 16].

We choose to focus on MTT [15], a general modal type theory which can internalize
an arbitrary collection of modalities so long as they behave like right adjoints [7]. Despite
limiting consideration to right adjoints, MTT can be used to model a variety of existing

© Philipp Stassen, Daniel Gratzer, and Lars Birkedal;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Types for Proofs and Programs (TYPES 2022).
Editors: Delia Kesner and Pierre-Marie Pédrot; Article No. 6; pp. 6:1–6:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:stassen@cs.au.dk
https://orcid.org/0000-0003-4600-777X
mailto:gratzer@cs.au.dk
https://orcid.org/0000-0003-1944-0789
mailto:birkedal@cs.au.dk
https://orcid.org/0000-0003-1320-0098
https://doi.org/10.4230/LIPIcs.TYPES.2022.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 mitten: A Flexible Multimodal Proof Assistant

modal type theories including calculi for guarded recursion, internalized parametricity, and
axiomatic cohesion. Better still, MTT has a robustly developed metatheory [15, 13] which
applies irrespective of the chosen modalities. An implementation of MTT could therefore
conceivably be designed to allow the user to freely change the collection of modalities without
re-implementing the entire proof assistant each time. This, in turn, enables the kind of
specialized modal proof assistants previously impractical for one-off modal type theories.

1.1 MTT: a general modal type theory
As mentioned, MTT can be instantiated with a collection of modalities. More precisely, MTT
is parameterized by a mode theory, a strict 2-category which describes a modal situation.
Intuitively, objects (m,n, o) of this mode theory represent distinct type theories which are
then connected by 1-cells (µ, ν, ξ) which describe the modalities. The categorical structure
ensures that modalities compose and that there is an identity modality. In order to describe
more intricate connections and structure, the mode theory also contains 2-cells (α, β). A
2-cell induces a “natural transformation” between modalities. By carefully choosing 2-cells
we can force a modality to e.g. become a comonad, a monad, or an adjoint.

To give a paradigmatic example, consider the mode theory M with a single object m, a
single non-identity morphism µ : m m and a 2-cell ϵ : µ idm subject to the equations
µ ◦ µ = µ and ϵ ⋆ µ = µ ⋆ ϵ. This description defines M as a 2-category with a strictly
idempotent comonad µ. Instantiating MTT with this mode theory yields a modality ⟨µ | −⟩
together with definable operations shaping ⟨µ | −⟩ into an idempotent comonad:

extractA : ⟨µ | A⟩ → A dupA : ⟨µ | A⟩ ≃ ⟨µ | ⟨µ | A⟩⟩

Even this simple modal type theory is quite useful; it can serve as a replacement for the
experimental version of Agda [27] used to formalize a construction of univalent universes [19].

Given the generality, it is natural to wonder whether instantiating MTT yields a calculus
which is feasible to work with in practice. Fortunately, prior Fitch-style type theories have
been highly workable [4, 5, 26] and this trend has continued with MTT [15, 13, 14].

1.2 From theory to practice
Unfortunately, converting the theoretical guarantee of normalization into an executable
program is not a small step. A first obstacle is the syntax of MTT itself: prior work has
exclusively considered an algebraic presentation of the syntax as a generalized algebraic
theory. While mathematically elegant, a proof assistant requires a more streamlined and
ergonomic syntax. Once a more convenient syntax has been designed, one must adapt the
normalization proof to a normalization algorithm. Normalization is proven by a sophisticated
gluing argument, and while the proof is reminiscent of normalization-by-evaluation [2] it
remains to extract such an algorithm. Finally, the normalization algorithm does not give any
insight into representing common mode theories or solving their word problems.

Restriction to preordered mode theories

Many difficulties flow not from the modalities per se, but from the 2-cells of our mode
theory, which induce a new primitive type of substitutions. During normalization these
key substitutions accumulate at variables. Unfortunately, they disrupt a crucial property of
modern NbE algorithms: variables can no longer be presented in a way that is invariant
under weakening. Therefore, we restrict our attention to mode theories that are preordered,
with at most one 2-cell between any pair of modalities.

P. Stassen, D. Gratzer, and L. Birkedal 6:3

This allows us to present a syntax that never talks about 2-cells and relies entirely on the
elaboration procedure to insert and check 2-cells. In addition to avoiding annotations, this
simplifies the normalization algorithm since the troublesome key substitutions trivialize.

Although such a restriction does preclude some examples, preordered mode theories are
still expressive enough to model guarded recursion together with an everything now modality
similar to the one introduced by Clousten et al. [10].

A surface syntax for MTT

As a generalized algebraic theory, MTT is presented with explicit substitutions and fully
annotated connectives [15]. In order to avoid this bureaucracy, we introduce a bidirectional
version of MTT which allows a user of mitten to omit almost all type annotations [11].

Normalization-by-evaluation

The normalization proof for MTT follows the structure of a normalization-by-evaluation
proof. Rather than fixing a rewriting system, a term is evaluated into a carefully chosen
semantics equipped with a quotation function reifying an element of the semantic domain
to a normal form. The entire normalization function is then a round-trip from syntax to
semantics and then back to normal forms. While the proof of normalization uses a traditional
denotational model for a semantic domain, this approach is unsuitable for implementation.

Instead mitten follows the literature on normalization-by-evaluation and uses a defunc-
tionalized and syntactic semantic domain [2]. This approach has previously been adapted to
work with particular a modal type theories [17, 18].

Mode theories

As mentioned previously, normalization for MTT does not immediately imply the decidability
of type equality. Terms (and therefore types) mention both 1- and 2-cells from the mode
theory, and deciding the mode theory is a necessary precondition for deciding type equality.
Moreover, deciding the equality of 1- and 2-cells, even in a finitely presented 2-category, is
well-known to be undecidable.1 For us, this situation is slightly improved since for preordered
mode theories at least 2-cell equality is trivial. Unfortunately, the undecidability of 1-cell
equality remains. Special attention is therefore necessary for each mode theory to ensure
that the normalization algorithm for MTT is sufficient to yield a type-checker.

While this rules out a truly generic proof assistant for MTT which works regardless of the
choice of mode theory, mitten shows that the best theoretically possible result is obtainable.
We implement mitten to be parameterized by a module describing the mode theory so that
the type-checker relies only on the existence of such a decision procedure. In particular, there
is no need to alter the entire proof assistant when changing the mode theory; only a new
mode theory module is necessary. Crucially, while the user must write a small amount of
code, no specialized knowledge of proof assistants is required.

We have implemented several mode theories commonly used with MTT in this way,
showing that in practice decidability is no real obstacle. For instance, we have configured
mitten to support guarded recursion with a combination of two modalities 2 and �. This is
the first proof assistant to support this combination of modalities.

1 The word problem is well-known to be undecidable for finitely presented groups which can be realized
as finitely-presented categories and therefore locally discrete finitely-presentable 2-categories.

TYPES 2022

6:4 mitten: A Flexible Multimodal Proof Assistant

1.3 Contributions
We contribute a bidirectional syntax for MTT (restricted to preordered mode theories)
together with a defunctionalized normalization-by-evaluation algorithm which reduces the
type-checking problem to deciding the word problem for the mode theory. We have put
these results into practice with mitten, a prototype implementation of MTT based on this
algorithm. mitten also supports the replacement of the underlying mode theory with minimal
alterations, allowing a user to construct specialized proof assistants for modal type theories
by merely supplying a single module specifying the mode theory together with equality
functions for 0-, 1-, and 2-cells.

In Section 2 we provide a guided tour of MTT. This section also introduces the bidirec-
tional syntax for MTT and shows how even in this general setting the modalities introduce
minimal overhead. Section 3 introduces the defunctionalized normalization algorithm for
non-specialists and Sections 4 and 5 completes the description of the core components of
mitten by describing the type-checking algorithm. In so doing, we also describe the novel
interface mitten uses to represent modalities and show how this interface is implemented.

In Section 6 we discuss the realization of mode theories with a representative example:
guarded recursion. As previously mentioned, this is the first proof assistant able to support
this pair of modalities simultaneously.

2 A surface syntax for MTT

Prior to specifying a type-checking algorithm for MTT, we must specify the surface syntax
for the language. This question is not satisfactorily addressed in the prior work on MTT;
the generalized algebraic version of syntax is too verbose to be workable, but the informal
pen-and-paper syntax which omits all type annotations cannot be type-checked. Our surface
syntax is formulated with an eye towards the type-checking algorithm we will eventually
use: a version of Coquand’s semantic type-checker [11]. In particular, we will employ a
bidirectional surface syntax which minimizes the number of mandatory annotations while
still ensuring the decidability of type-checking.

To a first approximation, the surface syntax is divided into two components: checkable
and synthesizable terms. Checkable terms include introduction forms while synthesizable
terms include elimination forms and variables. By carefully controlling where checkable and
synthesizable terms are used, we thereby avoid unnecessary type annotations.

We present the grammar for surface syntax in Section 2.1. While we will defer presenting
the actual type-checking algorithm until Section 5, in order to make this account as self-
contained as possible we provide an example-based introduction to MTT in Section 2.2.

2.1 Bidirectional Syntax
As previously mentioned, MTT is parameterized by a mode theory [20] which specifies the
modes and modalities of the type theory. We begin by more precisely defining a mode theory
in our situation.

▶ Definition 1. A mode theory is a category whose objects m,n, o we refer to as modes and
whose morphisms µ, ν we refer to as modalities. We further require that each hom-set be
equipped with a pre-order ≤ compatible with composition. Explicitly, given µ, ν ∈ Hom(m,n)
and ρ, σ ∈ Hom(n, o) with µ ≤ ν and ρ ≤ σ we require ρ ◦ µ ≤ σ ◦ ν.

Equivalently, a mode theory is a preorder-enriched category.

P. Stassen, D. Gratzer, and L. Birkedal 6:5

For the remainder of this subsection, we fix a mode theory M. The grammar of the
surface syntax is presented below:
(Checkable) A, M, N, C ::= R | (µ | A)→ B | A×B | Nat | IdA(M, N) | U | ⟨µ | A⟩

| (M, N) | zero | succ(M) | λ(M) | modµ(M) | reflM

(Synthesizable) R, S ::= M : A | qk | R(M)µ | pr1(R) | pr2(R)
| letµ modν()← R in M over C | rec(C, Mzero, Msuc, N)
| J(C, crefl, M)

As mentioned previously, checkable terms consist essentially of introduction forms while
synthesizable terms are elimination principles. For instance, the presentation of dependent
sums above includes A×B and (M,N) as checkable terms while pri(R) is synthesizable.

By stratifying terms in this way we ensure that annotations are required exactly where
ambiguity would arise during type-checking. For instance, this stratification prevents un-
annotated β-redexes from occurring. Consider again the case of dependent sums. In order
to apply a projection to an element (M,N) of dependent sum type, the element must be
synthesizable. However, since (M,N) is checkable, the only way to represent pr1((M,N)) in
this discipline is to promote (M,N) to a synthesizable term by annotating it: (M,N) : A×B.

▶ Remark 2. In particular, terms in β-normal and η-long form fit into this surface syntax
with no additional annotations. Consequently, the normalization theorem for MTT [13]
ensures that any term is convertible to one expressible in the surface syntax.

▶ Remark 3. We have made a concession to simplicity and used de Bruijn indices for variables
rather than names. This makes the normalization and type-checking algorithms far easier to
specify and it is well-known how to pass between syntax with named variables and de Bruijn
indices. We will use named variables in examples e.g., letµ modν(y)← R in M over x.C
or (µ | x : A)→ B for modal elimination and dependent products respectively.

2.2 The surface syntax by example
We will crystallize when a term in the surface syntax is well-formed in Section 5 when
presenting the type-checking algorithm. In order to cultivate intuition for the theory before
this, we will now work through several examples in the language.

▶ Remark 4. We refer the reader to Gratzer et al. [15] for a long form explanation of MTT.

MTT with one mode and one generating modality
Consider MTT instantiated with the mode theory with one mode m and one modality ϕ with
no non-trivial equations or inequalities. Then each modality µ is uniquely expressible as ϕn,
the composition of n copies of ϕ. Just as in ordinary type theory, MTT then has dependent
sums, natural numbers, identity types, and their behavior is unchanged.

Unlike in ordinary type theory, each variable is annotated with a modality x : (µ | A)
(pronounced x : A annotated by µ). Variables annotated with the identity modality behave
like ‘ordinary’ variables; they can be used freely when working with e.g. natural numbers.
Conversely, variables annotated with ϕn+1 cannot be used except in the construction of an
element the modal type ⟨ϕ | A⟩.

An element of ⟨ϕ | A⟩ is introduced by modϕ(M), where M is an element of A, subject to
the restriction that M may only use variables with annotation ϕn+1. More concretely, when
we construct M we (1) lose access to all id-annotated variables and (2) replace a variable
x : (ϕn+1 | A) with x : (ϕn | A). As only variables with identity annotation can be used with
the variable rule, this means that within modϕ(−) we may use ϕ-annotated variables freely.

TYPES 2022

6:6 mitten: A Flexible Multimodal Proof Assistant

For instance, in the context with variables x0 : (id | Nat), x1 : (ϕ | Nat), and x2 :
(ϕ ◦ ϕ | Nat) the following programs are well-typed:

x0 : Nat modϕ(x1) : ⟨ϕ | Nat⟩ modϕ(modϕ(x2)) : ⟨ϕ | ⟨ϕ | Nat⟩⟩

On the other hand, both x1 : Nat and modϕ(x0) : ⟨ϕ | Nat⟩ are ill-typed as the annotations
on variables do not match their usage.

This idea generalizes: to construct an element of ⟨ϕk | A⟩ we use modϕk (M) where M : A
in a context where we have (1) lost access to variables with annotations ϕl where l < k (2)
replaced each variable x : (ϕn+k | A) with x : (ϕn | A). In the same context as the example
above therefore, modϕ◦ϕ(x2) : ⟨ϕ ◦ ϕ | Nat⟩. We refer to the modification to the context given
by (1) and (2) as ϕk-restricting the context.

Let us now consider the modal function type (µ | A)→ B. An element of (µ | A)→ B

is precisely a function which binds a variable of type A with annotation µ. Application for
these function types R(M)µ takes µ into account in the following way: R(M)µ : B if (1) R
has type (µ | A)→ B and (2) after µ-restricting the context, M has type A.

One feature remains to be discussed, the elimination principle for modal types:

letν modµ(y)← R in M over x.C

To a first approximation, this principle allows us to replace a variable x : (ν | ⟨µ | A⟩) with
y : (ν ◦ µ | A). More precisely, letν modµ(y)← R in M over x.C : C[M/x] if (1) after
binding x : (ν | ⟨µ | A⟩), C is a type (2) after ν-restricting the context M has type ⟨µ | A⟩
and (3) after binding y : (ν ◦ µ | A), R has type C[modµ(y)/x].

Multiple modalities
The above approach for ϕ-restriction based on decrementing modal annotations provides
a simple mental model for MTT. To extend these ideas to more complex mode theories,
however, a more refined approach is necessary. We begin by discussing a small adjustment
to the concepts introduced previously.

Rather than eagerly decrementing the annotation on a variable when we restrict a context,
we instead lazily perform this update. Accordingly, we annotate each variable with a pair of
modalities and write x :µ/ν A for a µ-annotated variable with a ν-restriction lazily performed
upon it. The rule for applying a restriction to a variable now becomes more uniform: to
restrict x :µ/ν A by ξ we replace it with x :µ/ν◦ξ A. The variable rule applies only when the
fraction “cancels” i.e., x :µ/µ A ⊢ x : A.

For the mode theory under consideration, this is merely a change in notation as the
behavior of the annotations of x :ϕl/ϕk A ⊢ x : A is entirely determined by the difference
l − k. We therefore introduce the following mode theory to illustrate the need for the “lazy”
approach:

▶ Definition 5. Denote byMex
1 the mode theory with one mode and two generating modalities

ψ and ϕ. The preorder is generated by the inequality ψ ◦ ψ ≤ ϕ.

This mode theory introduces two new concepts simultaneously: multiple modalities and
non-trivial inequalities between those modalities. Fortunately, to refine the idea explained
above of µ-restricting a context, only one rule must be altered: To account for the preorder
on modalities, we relax the variable rule slightly: x :µ/ν A ⊢ x : A if µ ≤ ν. With this
modified rule, we can construct a coercion ⟨ψ ◦ ψ | A⟩ → ⟨ϕ | A⟩:

coerce = λx. letid modψ◦ψ(y)← x in modϕ(y) over _. ⟨ϕ | A⟩

P. Stassen, D. Gratzer, and L. Birkedal 6:7

Multiple modes and multiple modalities
Only one generalization is required at this point to provide a complete description of MTT:
multiple modes. While thus far we have confined ourselves to discussing multiple modalities
on one mode, we are allowed to have multiple modes in MTT as well. Consider the following
mode theory:

▶ Definition 6. Mex
2 is the mode theory equipped with two modes k and l whose modalities

are generated by ϕ : k → k and ψ, ξ : k → l. The preorder on hom-sets are generated by the
inequalities idk ≤ ϕ and ξ ≤ ψ:

k lϕ

ψ

ξ

We note that now Mex
2 now has two different modes k and l. Each mode in MTT gives

rise to a separate type theory so that we must check not only that some term has a type,
but also that the term, type, and all variables in scope live at the correct mode.

All of the standard constructions do not change the mode; thus, e.g., succ(n) will be
well-typed at type Nat at mode m just when the same is true of n. We will notate “M has
type A at mode m” by M : A@m. Prior to discussing the two type constructors involving
modalities, we must explain what it means for a context to be well-formed at mode m.

▶ Definition 7. A variable declaration x :µ/ν A is well-formed at mode m if the following
hold:
1. µ : n o and ν : m o for some o.
2. A is a type at mode n.

The context is well-formed at mode m if all variables in scope are well-formed at mode m.

▶ Example 8. Restricting a well-formed context at m by µ : n m yields a well-formed
context in mode n.

It is worth emphasizing the contravariant nature of the restriction ν in x :µ/ν A. This
is crucial for the rules governing ⟨µ | A⟩. The type ⟨µ | A⟩ is well-formed at mode m if (1)
µ : n m for some n and (2) after µ-restricting the context, A is well-formed at mode n.
In particular, ⟨µ | −⟩ sends types at mode n to types at mode m so restriction must move
contexts contravariantly from mode n to mode m. We remark, however, that aside from
the additional checks to ensure that types are well-moded, this is the same rule as given
previously. Likewise, the rules for introduction and elimination along with all of those for
modal dependent products are merely instrumented with additional checks to ensure that
types and terms live at the correct mode.

We conclude with a few examples.

▶ Example 9. λx.x : (ξ | A)→ ⟨ψ | A⟩ @ l is well typed. In particular, since ξ ≤ ψ we
conclude x :ξ/ψ A ⊢ x : A@ k.

▶ Example 10. We will define a function of the following type:

f : ⟨ψ | ⟨ϕ | Nat⟩⟩ → ⟨ψ ◦ ϕ | Nat⟩@ l

We begin by binding a variable x :id/id ⟨ψ | ⟨ϕ | Nat⟩⟩ so it now suffices to construct a
term ⟨ψ ◦ ϕ | Nat⟩@ l. To this end, we use the modal elimination principle on x to obtain a
new variable y :ψ/id ⟨ϕ | Nat⟩. Applying modal elimination to y, we obtain z :ψ◦ϕ/id Nat.

TYPES 2022

6:8 mitten: A Flexible Multimodal Proof Assistant

We still wish to construct a term ⟨ψ ◦ ϕ | Nat⟩. Applying the modal introduction rule, we
ψ ◦ ϕ restrict the context (so y becomes y :ψ◦ϕ/ψ◦ϕ Nat). Our goal is then Nat, so y suffices.

All told, the term final term is as follows:

λx.

letidk
modψ(y) = x in

letψ modϕ(z) = y in

modψ◦ϕ(z)
over ⟨ψ ◦ ϕ | Nat⟩

over ⟨ψ ◦ ϕ | Nat⟩

3 Normalization by Evaluation

A crucial ingredient of any type checker is a procedure for determining when two types are
equal. In mitten, we have implemented this decision procedure through a normalization
algorithm: a function which sends a term to a corresponding normal form. The precise
definition of normal form is then less important than the fact that definitional equality for
normal forms is straightforward to decide. Writing NfTerms for the collection of normal
forms, we view our normalization algorithm as a function:

normΓ : Syntax→ NfTerms

Merely having a function from syntax to normal forms, however, is insufficient to decide
definitional equality. Accordingly, we are interested in normalization functions which satisfy
the following properties:

▶ Definition 11. A normalization function is called complete if Γ ⊢ A = B@m implies
normΓ(A) = normΓ(B)

▶ Definition 12. A normalization function is sound if Γ ⊢ A@m implies Γ ⊢ normΓ(A) =
A@m.

Completeness states that normalization lifts to a function on syntax quotiented by
definitional equality while soundness states that this induced function has a section. Taken
together, therefore, we have the following:

▶ Corollary 13. Let normΓ be sound and complete then Γ ⊢ A = B@m if and only if
normΓ(A) = normΓ(B).

The traditional approach to constructing a normalization function is to specify an untyped
rewriting system which directs and presents the equational theory. Equality of terms is
then convertibility within this rewriting system so that strong normalization ensures both
soundness and completeness. This approach, however, turns out to be unworkable for more
elaborate dependent type theories with type-directed rules. One possible approach is to
can refine a rewriting system to be type-directed system which – in conjunction with other
mechanisms – can decide conversion directly [3], we adopt an entirely different approach to
associating terms to normal forms: normalization by evaluation (NbE).

Normalization by evaluation breaks the process of normalizing a term into two distinct
phases: evaluation and quotation. The first evaluates a term into a semantic domain. For our
purposes, the semantic domain is simply a more restrictive form of syntax which disallows

P. Stassen, D. Gratzer, and L. Birkedal 6:9

β-reducible terms. The process of evaluation boils down to placing a term in β-normal form
while crucially retaining various pieces of type information for the next phase. The second
phase, quotation, takes an element of the semantic domain and quotes it back to syntax. In
the process it η expands terms wherever possible. As a result, the full loop of evaluation and
quotation sends a term to its β-normal η-long form as required. Figure 1 gives a graphical
overview of the process.

We describe the semantic domain in detail in Section 3.1. The actual algorithm is
described over the following three sections (Sections 3.2–3.4). Our algorithm is inspired by
Gratzer’s gluing-based argument for normalization [13] and we conjecture that this link can
be made sufficiently precise to establish the soundness and completeness of our code.
▶ Remark 14. The version of normalization-by-evaluation we use is robust enough to require
only local modifications in order to accommodate modal types. Accordingly, we focus
primarily on connectives like dependent products and modal types whose behavior is impacted
and refer the reader to, e.g., Abel [2] for a description how the algorithm works on the
remaining connectives.

Val

NfVal Neutrals Level

Syntax NfTerms NeTm Index

↓A

quo(−)n

↑A

quo(−)n

qn−k

J−Kρ

|−| ⊆ qk

Figure 1 Overview of the algorithm inspired by [17] and [2].

3.1 The Domain
We start by a brief overview of the semantic domains described in Figure 1:

(values) A, u ::= ↑A e | λ(f) | (µ | A)→ B | zero | suc(v) | Nat | (v1, v2)
| A×B | ⟨µ | A⟩ | modµ(v)

(neutrals) e ::= qk | app[µ](e, d) | pr1(e) | pr2(e) | letmod(µ, ν, C, c, A, e)
| rec(C, u, v, e)

(environments) ρ ::= · | ρ.v

(closures) C, f ::= clo(M, ρ)
(normals) d ::= ↓A v

Informally, neutral forms are generated by variables and elimination forms stuck on other
neutrals. To a first approximation, a neutral is a chain of eliminations which are stuck
on a variable. On the other hand, values – the codomain of the evaluation function – are
primarily generated by introduction forms. In particular, there are no elimination forms
directly available on values and there is no uniform way to turn a value into a neutral form.
Consequently, β-reducible terms cannot be expressed in this grammar. One can, however,
lift a neutral into a value after annotating the neutral form with its type. Tersely, values are
β-short but not necessarily η-long.

A defining aspect of our approach to NbE is the handling of open terms. Rather than
directly evaluating under a binder, when we reach, e.g., a lambda, we suspend the computation
and store the intermediate result in a closure. The evaluation is resumed as soon as further

TYPES 2022

6:10 mitten: A Flexible Multimodal Proof Assistant

information is gathered. In the case of a function, for instance, the evaluation of the body
is resumed only after the function is applied. A closure is a combination of the term being
evaluated and “the state of the evaluation algorithm.” The latter amounts to the environment
of variables which is reified and stored in the closure alongside the term.

Normal forms have only one constructor, reification. Values are lifted to normals by
annotating them with a type. This type annotation is used during the quotation process in
Section 3.3 in order to deal with the η-laws.

We emphasize that while terms use De Bruijn indices, neutral forms use De Bruijn levels
to represent variables. This small maneuver ensures that values, neutral forms, and normal
forms are silently weakened and we will capitalize on this fact throughout our algorithm [2].

3.2 Evaluation

Evaluation is the procedure of interpreting syntax into the semantic domains, specifically
values. At a high-level, this amounts to β-reducing all terms (recall β-reducible terms cannot
be represented as values). The presence of variables, however, causes some elimination forms
to become stuck. These stuck terms are evaluated into neutrals and annotated with a type.

We single out a few interesting cases of the evaluation algorithm shown in Figure 2.

J_K_ : Syntax → Env→ Val

eval/var
ρ(i) = v

JqiKρ = v

eval/pi
JAKρ = A0

J(µ | A)→ BKρ = (µ | A0)→ clo(B, ρ)

eval/modify
JAKρ = A0

J⟨µ | A⟩Kρ = ⟨µ | A0⟩

eval/mod
JMKρ = v

Jmodµ(M)Kρ = modµ(v)

eval/app
JMKρ = u JNKρ = v

JM(N)µKρ = app(u, v)

eval/letmod
JMKρ = v

Jletν modµ()←M in N : AKρ = letmodν;µ(clo(A, ρ), clo(N, ρ), v)

(ρ.v)(0) = v (ρ.v)(i+ 1) = ρ(i)

Figure 2 Evaluation function, selected cases.

The work of evaluation is done around eliminators. Therefore, we single these cases out
and define ‘helper’ functions for this portion of the algorithm. The interesting new cases are
letmod and app, but generally for every syntax elimination form we define a suggestively
named function that automatically beta-reduces eliminators applied to an introduction form,
or returns a neutral and annotates it with its type.

app(u, v) : Val proji(v) : Val letmodν;µ(C, c, v) : Val J(C, crefl, p) : Val

inst(clo(M,ρ), v) = JMKρ.v

C = λ(C)
app(u, v) = inst(C, v)

P. Stassen, D. Gratzer, and L. Birkedal 6:11

u = ↑A0 e A0 = (µ | A)→ C inst(C, v) = B

app(u, v) = ↑B app[µ](e, ↓A v)
v = modµ(v′) inst(c, v′) = u

letmodν;µ(C, c, v) = u

v = ↑A0 e A0 = ⟨µ | A⟩ inst(C, ↑⟨µ|A⟩ e) = B

letmodν;µ(C, c, v) = ↑B letmod(ν, µ, C, c, A, e)

As mentioned previously, we use closures to represent syntax that cannot be evaluated in
the present environment. Once we have found the value to complete the environment, we
instantiate the closure with it and continue the evaluation in the extended environment.

3.3 Quotation
Quotation is the process of turning normals into terms. We will ensure that the results of
quotation are always normal form terms, that is, β-short and η-long terms.

To account for the fact that normal forms mention values and neutral forms, quotation is
split into three mutually recursive functions. Quotation must perform η-expansion and is
therefore type-directed. Accordingly, while we have a quotation procedure which applies to
values, this portion of the algorithm can only be used for quoting types where there is no
associated η-expansions. All three of these functions take a natural number in addition to
the actual term being quoted. This number represents the next available De Bruijn level for
a free variable; it is used to quote terms with binders.

We present the novel cases of quotation of normal forms – those with modalities – below:

A0 = (µ | A)→ B inst(B, ↑Aqk) = B quo(↓B app(v, ↑Aqk))k+1 = M

quo(↓A0 v)k = λ(M)

A0 = ⟨µ | A⟩ v = modµ(w)
quo(↓A0 v)k = modµ(quo(↓Aw)k)

A0 = ⟨µ | A⟩ v = ↑B e
quo(↓A0 v)k = quo(e)k

A0 = ↑A e v = ↑A
′
e

quo(↓A0 v)k = quo(e)k

We draw attention to one aspect of the first rule. This rule quotes a function, so consider
the case where v = λ(clo(M,ρ)). We create a fresh variable ↑Aqk and make the semantic
application app(λ(clo(M,ρ)), ↑Aqk). This last step is only sensible because values are closed
under silent weakening; otherwise ρ would need to be weakened over qk.

Finally, we record the novel cases of quotation for neutral forms:

quo(app[µ](e, d))k = quo(e)k(quo(d)k)µ

inst(C,modµ(↑Aqk)) = B inst(c, ↑Aqk) = v

quo(letmod(ν, µ, C, c, A, e))k = letν modµ()← quo(e)k in quo(↓B v)k+1

3.4 The NbE function
Having defined both evaluation and quotation, we are almost in a position to define the
complete normalization algorithm. The only missing step is the construction of the initial
environment from a context. This portion of the algorithm takes a context Γ and produces

TYPES 2022

6:12 mitten: A Flexible Multimodal Proof Assistant

type mode
val eq_mode : mode→ mode→ bool

type m
val idm : m
val compm : m→ m→ m
val dom_mod : m→ mode→ mode
val cod_mod : m→ mode→ mode
val (=) : m→ m→ bool
val (≤) : m→ m→ bool

Figure 3 A fragment of the signature for mode theories used in mitten.

an environment consisting of the variables bound in Γ. We then use this environment to kick
off the evaluation of terms in context Γ:

reflect(1) = · reflect(Γ.(µ | A)) = reflect(Γ).↑JAKreflect(Γ) q|Γ|

Finally, the complete normalization algorithm evaluates a term Γ ⊢ M : A@m in the
initial environment specified by Γ and quotes it back:

normΓ,A(M) = quo(↓JAKreflect(Γ) JMKreflect(Γ))|Γ|

4 Implementing a Mode Theory

Thus far we have been somewhat vague about which mode theory we were instantiating
MTT with. The normalization algorithm given in Section 3, for instance, did not need to
manipulate or compare modalities and so this point was easy to gloss over. The type-checker,
on the other hand, must manipulate and scrutinize modalities and its definition requires a
precise specification of a mode theory. Accordingly, we now present a representation of mode
theories and operations upon them suitable for implementing a type-checker.

Concretely, our presentation follows the actual representation of mode theories used in
mitten, our implementation of MTT. In mitten, all information specific to a mode theory
is confined to a single OCaml module on which the type-checker depends. In particular,
to configure mitten with a new mode theory, it is only necessary to implement that single
module. There are three parts to our signature for mode theories (summarized in Figure 3):
1. Two abstract types; one for modes and one for modalities.
2. Various operations to compose modalities, extract the domain or codomain mode from a

modality, or construct the identity modality.
3. Three operations to compare modes for equality and modalities for (in)equality.

It is these last two operations which are particularly crucial. Recall that not all mode
theories admit decidable (in)equality and without it, type-checking MTT is undecidable.
Accordingly, any implementation of MTT will require the user to supply a decision procedure
for the mode theory. Our implementation shows that this information is both necessary and
essentially sufficient. We note that the decision procedures for mode theories are completely
separate from the terms and types of MTT and no knowledge of e.g., normalization-by-
evaluation is required for their implementation.2

2 See the following for examples: https://github.com/logsem/mitten_preorder/blob/main/src/lib/

https://github.com/logsem/mitten_preorder/blob/main/src/lib/

P. Stassen, D. Gratzer, and L. Birkedal 6:13

▶ Remark 15. The reader might wonder why idm is not parametrized over mode. This is
because idm internally is a placeholder for some identity modality, whose mode is elaborated.
This alleviates practitioners of some tedious bookkeeping obligations in their proofs. This
approach necessitates that the boundary projections dom_mod and cod_mod take an additional
argument of type mode, which is returned on input idm. Essentially, we assume that always
one part of the boundary is known so dom_mod gets a modality and its codomain as argument
whereas cod_mod gets a modality and its domain as argument.

5 Semantic Type-Checking Algorithm

Having defined the normalization algorithm, we now define the type-checking algorithm for
MTT. As mentioned in Sections 1 and 2, the algorithm is a variant of Coquand’s semantic
type checking algorithm for dependent type theory [11]. Accordingly, the algorithm breaks
into two distinct phases: checking and synthesis. The checking portion of the algorithm
accepts a context Γ, a term M , and a type A and checks that M has type A in context Γ.
The synthesis phase accepts only the context and term, and synthesizes the type of the term
in this context.

This simple picture is slightly complicated in the case of MTT, where various side
conditions must be managed. For instance, we must ensure that the modalities a user writes
in modal types are well-formed and that the term and type exist at the same mode as the
context. These same considerations also require us to form a more intricate notion of a
semantic context specifically for the type-checking algorithm.

We discuss the definition of semantic contexts in Section 5.1 and present a representative
fragment of the type-checking algorithm itself in Section 5.2.

5.1 Semantic Contexts

In Section 2.2, we explained the intuitions behind MTT while working informally with the
collection of variables in scope. Prior to discussing the type checker, we must describe the
precise notion of context to organize these variables. Two factors complicate this otherwise
standard structures: the modal annotations and restrictions and the need to evaluate terms
during type-checking.

To a first approximation, contexts are still lists of variables with types but with additional
bells and whistles added in order to support these two requirements. In order to record
the necessary modal information, each variable is annotated by a modality. Deviating from
Section 2.2, we add a new context operation Ξ.{µ} to “lazily” restrict all entries in a context
Ξ by µ rather than storing this information on each variable separately.

For the second requirement, recall that type-checking must repeatedly test when two types
are equal for the conversion rule. Accordingly, the context must store enough information to
support this conversion test. We follow Coquand [11] and represent each type in the context by
the corresponding value (in the sense of Section 3) and pair each variable with a corresponding
value. This value may just be ↑Aqi, but it may also store the term associated definition.
By storing information in this form, we can easily project out a semantic environment of a
context and use that to evaluate a term and check for convertibility during type checking.

The grammar of semantic contexts is presented below:

(semantic contexts) Ξ ::= · | Ξ . (v :µ A @ m) | Ξ.{µ}

TYPES 2022

6:14 mitten: A Flexible Multimodal Proof Assistant

We now define two functions: The partial lookup function, which displays the type with
its annotation and restriction as well as the mode it lives at, and the stripping function,
which returns an environment by projecting out only the value components of the semantic
context. The lookup function is undefined whenever a De Bruijn index is larger than the
length of the context.

(Ξ . (v :µ A @ m))(0) = (µ|A)m, {id}
(Ξ . (w :ξ B @ o))(i+ 1) = (µ|A)m, {ν} where (µ|A)m, ν = Ξ(i)
(Ξ.{ν′})(i) = (µ|A)m, {ν ◦ ν′} where (µ|A)m, ν = Ξ(i)

|·| = ·
|Ξ . (v :µ A @ m)| = |Ξ|.v
|Ξ.{µ}| = |Ξ|

▶ Notation 16. If we extend a semantic context with a type where the value is a fresh
variable, we hide it to make the expression more readable.

Ξ.(µ|A) ≜ Ξ . (↑Aqk :µ A @ m) where k = length(Ξ)

If the modality µ is furthermore the identity modality, we omit it and write

Ξ.A ≜ Ξ . (↑Aqk :id A @ m) where k = length(Ξ)

5.2 Checking and Synthesis

We now come to the type-checking algorithm which is split into a pair of judgments:
Ξ ⊢M⇐A@m and Ξ ⊢ R⇒A@m. The first, Ξ ⊢M⇐A@m, handles type checking
which tests if M has type A in Ξ. The second, Ξ ⊢M⇒A@m, implements type synthesis
and accordingly takes only the semantic context Ξ and term M and returns type A of M in
context Ξ if one can be inferred.

We present a few representative rules for these judgments (and explain them below).
To ensure that terms and types are well-formed, we utilize the functions exposed by the
signature presented in Section 4. In particular, n ?= m checks whether two modes are
equal and µ ≤ ν is the modality ordering relation. Furthermore, with µ.dom and µ.cod we
denote the respective domain and codomain of a modality – denoted dom_mod and cod_mod
respectively in Section 4. For readability, we leave the second argument of µ.dom and µ.cod
implicit.

pi
Ξ.{µ} ⊢ A⇐U @µ.dom Ξ.(µ|A) ⊢ B⇐U @m µ.cod ?= m

Ξ ⊢ (µ | A)→ B⇐U @m

mod-form
Ξ.{µ} ⊢ A⇐U @µ.dom µ.cod ?= m

Ξ ⊢ ⟨µ | A⟩⇐U @m

mod-intro
Ξ.{µ} ⊢M⇐A@µ.dom µ.cod ?= m

Ξ ⊢ modµ(M)⇐⟨µ | A⟩@m

conv
Ξ ⊢ R⇒B@m A ≡|Ξ| B

Ξ ⊢ R⇐A@m

var
Ξ(k) = (µ|A)m, ν µ ≤ ν m

?= n

Ξ ⊢ qk⇒A@n

P. Stassen, D. Gratzer, and L. Birkedal 6:15

mod-elim
ν.cod ?= m Ξ.{ν} ⊢ R⇒⟨µ | A⟩@ ν.dom Ξ.(ν, ⟨µ | A⟩) ⊢ C⇐U @m

k = length(Ξ) Ξ.(ν ◦ µ,A) ⊢ N⇐ JCK|Ξ|.modµ(↑Aqk) @m

Ξ ⊢ letν modµ()← R in N over C⇒ JCK|Ξ|.JRK|Ξ| @m

We first consider the formation rule for dependent products. First we verify that indeed
µ.cod ?= m to ensure that the modality µ can be used at this mode. Recall that Π-types in
MTT go from a µ-restricted type A to a non restricted type B. Accordingly, we check that A
is a type in the µ-restricted semantic context Ξ.{µ} and that B is well-formed in the context
Ξ.(µ|A). Note that when checking A we change the mode to µ.dom.

Since the modal formation and introduction rules follow a similar pattern we will only
look at the modal introduction rule. To validate that modµ(M) has type ⟨µ | A⟩ at mode
m we first verify that µ.cod ?= m. Then we check that M has type A in the µ-restricted
environment Ξ.{µ} at mode µ.dom.

Next, we discuss the conversion rule. When considering a synthesizable term R, the
type-checking algorithm proceeds somewhat differently. We first synthesize the type of R and
then compare the result to the type we were given to check R against. It is this comparison
which uses the normalization algorithm of Section 3 to compute the normal forms of A and
B and decides afterwards the equality of the normalized expressions.

To synthesize a variable qk in a semantic context Ξ at mode m we first compute the type
of the variable together with its annotation and restriction (µ|A)m, {ν}, using the lookup
function defined in Section 5.1. Before we return A as the type of qk, we must also perform
an additional check to ensure that µ ≤ ν so that this occurrence of the variable is valid.

Finally, we consider the modal elimination case. Recall from Section 2.2 that the modal
elimination principle allows us to ‘pattern-match’ on a term R : ⟨µ | A⟩ in a ν-restricted con-
text and replace it with a variable x :ν◦µ A. To synthesize letν modµ()← R in N over C,
we take advantage of the fact that the user provides the motive C already; if this term is
well-typed, its type must be JCK|Ξ|.JRK|Ξ| .

There are, however, several checks to perform to ensure that the term is actually well-
typed. First, we check that ν.cod ?= m. Next, we synthesize the type of R in the ν-restricted
context and check that the result is of the form ⟨µ | A⟩. Having computed ⟨µ | A⟩, we then
check that both C and N are well-formed. The motive C must be a type in the extended
context Ξ.(ν, ⟨µ | A⟩) while N must have type JCK|Ξ|.JRK|Ξ| in context Ξ.(ν, ⟨µ | A⟩).

A complete implementation of the algorithm can be found at https://github.com/
logsem/mitten_preorder/blob/main/src/lib/check.ml.

6 Case study: guarded recursion in mitten

We now discuss an extended example using mitten with a particular choice of mode theory.
By instantiating mitten appropriately, we convert it into a proof assistant for guarded
recursion and use it to reason about classical examples from the theory.

6.1 Guarded recursion
Guarded recursion provides a discipline for managing recursive definitions within type theory
without compromising soundness. In particular, guarded type theory extends type theory
with a handful of modalities (�, Γ and ∆) along with a modified version of the fixed-point
combinator:

loeb : (�A→ A)→ A

TYPES 2022

https://github.com/logsem/mitten_preorder/blob/main/src/lib/check.ml
https://github.com/logsem/mitten_preorder/blob/main/src/lib/check.ml

6:16 mitten: A Flexible Multimodal Proof Assistant

By placing the recursive call under a �, this weakened fixed-point combinator does not
result in inconsistencies. Together with the other modalities, moreover, it can be used to
define and reason about coinductive types and gives rise to a synthetic form of domain theory.

Following [8], we are interested in using mitten as a tool to reason about a particular
model of guarded recursion: PSh(ω). In fact, using MTT’s capacity to reason about multiple
categories at once, we will work with a slightly richer model which includes both PSh(ω)
and Set. In this model, the aforementioned modalities are all interpreted by right adjoints:

Γ : PSh(ω)→ Set
Γ(X) = [1, X]

∆ : Set→ PSh(ω)
∆(S) = λ_. S

� : PSh(ω)→ PSh(ω)
� (X)(0) = {⋆} � (X)(n+ 1) = X(n)

In particular, the composite of Γ and ∆ is the global sections comonad 2. The fixed-point
operator loeb in PSh(ω) is definable using induction over ω.

Gratzer et. al [15] have shown that MTT with a mode theory axiomatizing these three
modalities is modeled by these two categories and therefore provides a suitable basis for
guarded recursion. We recall their mode theory in Figure 4.

t sℓ

γ

δ

δ ◦ γ ≤ 1 1 = γ ◦ δ
1 ≤ ℓ γ = γ ◦ ℓ

µ ≤ ν ∧ ν ≤ µ =⇒ µ = ν

Figure 4 G: a mode theory for guarded recursion.

The equalities represented in Figure 4 together with the equational theory of MTT ensure
that 2 = δ ◦ γ is an idempotent comonad and that the following equivalence is definable:

⟨2 | ⟨ℓ | A⟩⟩ ≃ ⟨2 | A⟩.

In order to actually reason about guarded definitions, however, we still must add Löb
induction to the system. Adding Löb induction primitively raises substantial issues [14],
so we opt to axiomitize it along with a (propositional) equation specifying its unfolding
principle:

loeb : ((ℓ | A)→ A)→ A@ t unfold : (f : (ℓ | A)→ A)→ IdA(loeb f, f(loeb f)) @ t

As to be expected, these new constants disrupt canonicity but crucially cause no issues for
type checking. We now discuss how to instantiate mitten with this particular mode theory.

6.2 Implementation
In order to use mitten to reason about guarded MTT, we must construct an implementation
of the mode theory module corresponding to Figure 4 and extend mitten with constants for
Löb induction. The latter point is routine; mitten supports adding axioms to a development.
We therefore focus on the first step: the implementation of the mode theory.

The main challenge when implementing Figure 4 is to show that the relation ≤ is decidable.
We have done so by using a (simple) form of normalization-by-evaluation to reduce modalities
in this mode theory to normal forms which can be directly compared.

P. Stassen, D. Gratzer, and L. Birkedal 6:17

▶ Remark 17. We leave the modes during the evaluation implicit and assume, without loss
of generality, that we are only considering well-formed modalities.3

By studying the category generated by Figure 4, it becomes clear that G is far from a
free mode theory. In fact, many possible compositions trivialize; in a chain of composable
modalities we can freely remove any γ ◦ δ as well as any ℓ to the right of a γ. Accordingly,
there are only four kinds of expressions remaining which thus constitute normal modalities:

(Normal modalities) µ, ν ::= ℓk | ℓk ◦ δ | ℓk ◦ δ ◦ γ | γ | ids

Note that k = 0 is allowed and thus in particular δ ◦ γ = ℓ0 ◦ δ ◦ γ as well as id = ℓ0.
There is an evident map i sending a normal form µ to a modality in G. We now construct
an inverse to this map:

eval(idt) = ℓ0

eval(ids) = ids
eval(ℓ ◦ ν) = comp(ℓ, eval(ν))
eval(γ ◦ ν) = comp(γ, eval(ν))
eval(δ ◦ ν) = comp(δ, eval(ν))

comp(ℓ, ℓk) = ℓk+1

comp(ℓ, ℓk ◦ δ) = ℓk+1 ◦ δ
comp(ℓ, ℓk ◦ δ ◦ γ) = ℓk+1 ◦ δ ◦ γ
comp(γ, ℓk) = γ

comp(γ, ℓk ◦ δ ◦ γ) = γ

comp(γ, ℓk ◦ δ) = ids
comp(δ, ids) = ℓ0 ◦ δ
comp(δ, γ) = ℓ0 ◦ δ ◦ γ

▶ Theorem 18. For any modality µ we have that µ = i(eval(µ)).

Next, we define a (decidable)partial ordering on normal modalities:

m ≤ n
ℓm ⊑ ℓn γ ⊑ γ

m ≤ n
ℓm ◦ δ ◦ γ ⊑ ℓn ◦ δ ◦ γ

m ≤ n
ℓm ◦ δ ◦ γ ⊑ ℓn

m ≤ n
ℓm ◦ δ ⊑ ℓn ◦ δ

ids ⊑ ids

▶ Theorem 19. For any normal modalities µ and ν we have µ ⊑ ν if and only if i(µ) ≤ i(ν).

▶ Corollary 20. Equality of modes and inequality of modalities are both decidable.

6.3 Streams in guarded mitten

We now illustrate the use of this instantiation of mitten by defining the types of guarded
and coinductive streams and constructing various examples.
▶ Remark 21. In the following we deviate from our surface syntax to enhance readibility of
the derivations. Thus, we leave many arguments implicit and alter certain notations. In
particular, propositional identites are denoted by a ≡ b instead of IdA(a, b) and implicit
arguments are omitted. We furthermore hide the type family C of the modal elimination
rule in the following constructions.

We begin with the type of guarded streams.

gstream_fun : U→ (ℓ | U)→ U @ t

gstream_funAX = A× ⟨ℓ | X⟩
gstream : U→ U @ t

gstreamA = loeb(gstream_funA)

3 This assumption is justified since mitten checks all modalities prior to normalization and type-checking.

TYPES 2022

6:18 mitten: A Flexible Multimodal Proof Assistant

▶ Notation 22. We will make use of several standard functions for intensional identity types
such as the functions transport : A ≡ B → A→ B and −−1 : a ≡ b→ b ≡ a.

Recall that we have added Löb induction only with a propositional unfolding rule.
Accordingly, we must use transport along this equality to obtain the folding and unfolding
operations for gstream:

gfold : (A : U)→ A× ⟨ℓ | gstreamA⟩ → gstreamA@ t

gfoldA = transport (unfold(gstream_funA))−1

gunfold : (A : U)→ gstream A→ A× ⟨ℓ | gstreamA⟩@ t

gunfoldA = transport (unfold (gstream_fun A))

We are able to deduce the following equalities by using the fact that transport p is inverse
to transport p−1:

fold_unfold : (s : gstreamA)→ gfoldA (gunfoldAs) ≡ s@ t

unfold_fold : (s : A× ⟨ℓ | gstreamA⟩)→ gunfoldA (gfoldAs) ≡ s@ t

Using this we can define the familiar operations on guarded streams and prove their
expected equations.

ghead : gstreamA→ A

_ : gtail(gcons a s) ≡ s
_ : ghead(gcons a s) ≡ a

gtail : gstreamA→ ⟨ℓ | gstream A⟩
gcons : A→ ⟨ℓ | gstreamA⟩ → gstreamA

_ : gcons (gheads) (gtails) ≡ s

With Löb induction, these definitions and equalities allow us to construct and work
with guarded streams, which differ from coinductive streams in several important ways. For
instance, the tail operation on guarded streams produces a guarded stream under a later
which prevents us from writing an operation dropping every element of a guarded stream.

By making use of the other modalities of Figure 4, we are able to define the type of
coinductive streams. To do so, we will use the following operations:

compγ,δ : ⟨γ | ⟨δ | A⟩⟩ → A compγ,ℓ : ⟨γ | ⟨ℓ | A⟩⟩ → ⟨γ | A⟩

Both of these are instances of the general composition principle for modalities available
in MTT. We now define streams as follows:

stream : U→ U @ s

streamA = ⟨γ | gstream ⟨δ | A⟩⟩

head : streamA→ A

head s =
letid modγ(g) = s in
compγ,δ(modγ(ghead g))

tail : streamA→ streamA

tail s =
letid modγ(g) = s in
compγ,ℓ(modγ(gtail g))

We emphasize that the type of coinductive streams lives at mode s, the mode modeled
by sets. Intuitively, by taking the global sections of a guarded stream we obtain the normal
coinductive stream [10]. Indeed, using guarded recursion in mode t, we are able to equip this
type with a coiteration principle:

go : (δ | A : U)(δ | S : U)(δ | S → A× S)→ (δ | S)→ gstream ⟨δ | A⟩@ t

goAS f = loebλg s. gcons(modδ(π1 (f s)),modℓ(g (π2 (f s))))

P. Stassen, D. Gratzer, and L. Birkedal 6:19

coiter : (A : U)(S : U)→ (S → A× S)→ S → streamA@ s

coiterAS f s = modγ(goAS f s)

Informally, this coiteration scheme induces a map from any (A×−)-coalgebra to streamA.
It is natural to wonder whether streamA is the final coalgebra for (A×−). In the presence

of equality reflection, this was established by Gratzer et al. [15]. To replay this proof in
mitten, we would require two ingredients not presently available: function extensionality
and modal extensionality. The first is unsurprising, so we focus on the second. Modalities do
not necessarily preserve identity types and therefore in general we cannot have a function:

(ℓ | IdA(a, b))→ Id⟨ℓ|A⟩(modℓ(a), modℓ(b))

Such a map is crucial to establish arguments of equality by Löb induction like the finality
of streamA. Having said this, we emphasize that without disrupting normalization we can
extend MTT with a crisp induction principle which enables us to construct such a map and
prove it to be an equivalence [13]. In the presence of this additional structure – or a postulate
to the same effect – we conjecture that streamA is the final coalgebra.

We conclude with a simple example of the coiteration: the stream of all natural numbers.

nats : stream Nat
nats = coiter (λn. (n, succ(n))) 0

7 Related Work

Modal proof assistants have seen a great deal of attention in the last several years. We
compare our work on mitten to several of the most closely related lines of research.

Normalization for MTT

In [13], Gratzer proves that MTT enjoys a normalization algorithm. While his proof avoids a
number of technicalities by adopting a synthetic approach to normalization, this obstructs
extracting an actual algorithm for use in implementation. We have taken this next step
and, inspired by the synthetic proof of normalization, obtained an actual algorithm suitable
for implementation in the particular case of preordered mode theories. Furthermore, while
Gratzer works relative to the assumption that the ambient mode theory is decidable, we
have isolated the precise requirements necessary on the mode theory and shown that they
are sufficiently flexible to accommodate common mode theories.

Alternative modal type theories

As already discussed, mitten implements a version of MTT [15] but many other modal
type theories exist in the literature. For instance, de Paiva and Ritter, Shulman, Zwanziger
and others [12, 24, 28] have studied dependent versions of dual-context modal type theories.
We have chosen to focus on MTT over a dual-context system in order to capitalize on the
normalization theorem proven for MTT as well as the greater degree of generality offered
by the system. In particular, while dual-context type theories offer a convenient syntax
for one modality or a pair of adjoint modalities, they do not easily adapt to incorporating
multiple distinct modalities as we required in Section 6. Independently, Bahr et al., Birkedal
et al, and others [4, 7, 17, 18] have experimented with modal type theories based upon
dependent right adjoints. While these offer a potentially convenient syntax and normalization

TYPES 2022

6:20 mitten: A Flexible Multimodal Proof Assistant

results for some theories have been established [17, 18], they are equally difficult to adapt to
multiple modalities. Thus, while a wide variety of modal dependent type theories have been
proposed in the literature, we feel that MTT offers a unique position in the space because of
its generality and metatheory.

Proof assistants for a single modality

There have been multiple attempts to extend proof assistants with a single specific modality.
Notably Vezzosi [27] extends Agda with an idempotent comonad and Gratzer et al. [17]
created a proof assistant based around a similar modality. Agda builds on the aforementioned
dual-context type theories while Gratzer et al. use a system based on dependent right
adjoints. Both of these proof assistants are closely related to mitten. Concretely, the former
may be encoded within mitten and mitten builds on the same core algorithms [11, 1] as the
latter. Importantly, however, unlike these implementations mitten is not tied to a particular
modal situation and can be easily adapted to accommodate other modalities.

Guarded recursion in Agda

In Section 6 we discussed an instantiation of mitten for guarded recursion. For this specific
case, an experimental Agda extension is available [25]. This extension implements a version
of clocked cubical type theory [6]. This variant of guarded type theory offers finer-grained
guarded programming by exposing multiple independent later modalities; these can be used to
interleave guarded types without issue. Furthermore, clocked cubical type theory capitalizes
on certain primitives of cubical type theory to expose some definitional equalities around
Löb induction. Guarded cubical Agda builds upon Agda’s existing facilities for interactive
proof developments and the system has been used for non-trivial developments [22, 26].

As a consequence of this more intricate theory, however, the metatheory of guarded
cubical Agda is far less developed than the theory of mitten. Moreover, the infrastructure of
guarded cubical Agda is (necessarily) specialized to just one modal situation. While mitten
is a more primitive system than guarded cubical Agda, it is therefore far more flexible and
offers a theoretical framework for many modal systems rather than being specialized to one.

Sikkel

Recently, Ceulemans et al. [9] have explored an alternative strategy for implementing MTT
in Sikkel. Rather than constructing a custom proof assistant like mitten, they have provided
a DSL for a simply-typed version of MTT within Agda. Within this DSL, one may construct
terms in MTT which then compile to elements of an appropriate denotational semantics
expressed within Agda. A major advantage of such an approach is the low startup cost:
the full resources of the Agda proof assistant are available when working within Sikkel. By
embedding within Agda, however, Sikkel’s interface is less convenient and it is currently
restricted only to simple types. Accordingly, we believe that a proof assistant designed for
MTT from its inception offers a more promising route for serious modal programming.

Menkar

Menkar [23] is an earlier attempt at a proof assistant for multimodal programming developed
by Nuyts. It predates – and in fact partially inspires – MTT, but contains both theoretical and
practical deficiencies which led to its development being suspended in 2019. Inspired by the
advances in proof theory for multimodal type theory obtained since Menkar’s development,

P. Stassen, D. Gratzer, and L. Birkedal 6:21

both mitten and Sikkel are early attempts to develop a theoretically sound replacement
for Menkar. While not as fully-featured as Menkar, mitten in particular is an attempt to
develop a principled modal proof assistant.

8 Conclusions and future work

We contribute mitten, a flexible proof assistant which can be specialized to a wide range
of modal type theories. We have designed normalization and type-checking algorithms for
mitten based on recent advances in the metatheory of MTT [13]. Finally, we have argued
for mitten’s utility by instantiating it to a mode theory suitable for guarded recursion and
constructing various classical examples of guarded programs.

Thus far, mitten is restricted to working with preordered mode theories. While this
constitutes a large and important class of examples, it would be desirable to implement full
MTT and allow for arbitrary 2-categories as mode theories. Such an extension, however,
would require a more refined normalization algorithm.

In particular, in our algorithm we have taken advantage of the absence of distinct 2-cells to
avoid annotating variables with modal coercions. This, in turn, preserves a crucial invariant
of NbE: it is never necessary to explicitly substitute within a value. Indeed, in our style
of NbE such substitutions are not even possible; our representation of closures essentially
precludes them. We hope to generalize our approach to cover full MTT by incorporating some
techniques recently used by Hu and Pientka [18] in a normalization algorithm for a particular
modal type theory. Essentially, they enable a small amount of substitution to occur during
the normalization algorithm; by carefully structuring the necessary modal substitutions they
are able to adapt the standard normalization-by-evaluation to their setting. We hope to do
the same in mitten by generalizing their approach to support multiple interacting modalities.

References
1 Andreas Abel. Polarised subtyping for sized types. Mathematical Structures in Computer

Science, 18(5):797–822, 2008. doi:10.1017/S0960129508006853.
2 Andreas Abel. Normalization by Evaluation: Dependent Types and Impredicativity. Habilitation,

Ludwig-Maximilians-Universität München, 2013.
3 Andreas Abel, Joakim Öhman, and Andrea Vezzosi. Decidability of conversion for type theory

in type theory. Proc. ACM Program. Lang., 2(POPL), December 2017. doi:10.1145/3158111.
4 Patrick Bahr, Hans Bugge Grathwohl, and Rasmus Ejlers Møgelberg. The clocks are ticking:

No more delays! In 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS). IEEE, 2017. doi:10.1109/LICS.2017.8005097.

5 Patrick Bahr, Christian Uldal Graulund, and Rasmus Ejlers Møgelberg. Simply ratt: A
fitch-style modal calculus for reactive programming without space leaks. Proc. ACM Program.
Lang., 3:109:1–109:27, 2019. doi:10.1145/3341713.

6 Magnus Baunsgaard Kristensen, Rasmus Ejlers Mogelberg, and Andrea Vezzosi. Greatest hits:
Higher inductive types in coinductive definitions via induction under clocks. In Proceedings of
the 37th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’22, New York,
NY, USA, 2022. Association for Computing Machinery. doi:10.1145/3531130.3533359.

7 Lars Birkedal, Ranald Clouston, Bassel Mannaa, Rasmus Ejlers Møgelberg, Andrew M. Pitts,
and Bas Spitters. Modal dependent type theory and dependent right adjoints. Mathematical
Structures in Computer Science, 30(2):118–138, 2020. doi:10.1017/S0960129519000197.

8 Lars Birkedal, Rasmus Møgelberg, Jan Schwinghammer, and Kristian Støvring. First steps
in synthetic guarded domain theory: step-indexing in the topos of trees. Logical Methods in
Computer Science, 8(4), 2012. doi:10.2168/LMCS-8(4:1)2012.

TYPES 2022

https://doi.org/10.1017/S0960129508006853
https://doi.org/10.1145/3158111
https://doi.org/10.1109/LICS.2017.8005097
https://doi.org/10.1145/3341713
https://doi.org/10.1145/3531130.3533359
https://doi.org/10.1017/S0960129519000197
https://doi.org/10.2168/LMCS-8(4:1)2012

6:22 mitten: A Flexible Multimodal Proof Assistant

9 Joris Ceulemans, Andreas Nuyts, and Dominique Devriese. Sikkel: Multimode simple type
theory as an agda library. In Electronic Proceedings in Theoretical Computer Science, volume
360, pages 93–112. Munich, Germany, Open Publishing Association, June 2022. doi:10.4204/
EPTCS.360.5.

10 Ranald Clouston, Aleš Bizjak, Hans Bugge Grathwohl, and Lars Birkedal. Programming and
reasoning with guarded recursion for coinductive types. In Andrew Pitts, editor, Foundations
of Software Science and Computation Structures, pages 407–421. Springer Berlin Heidelberg,
2015.

11 Thierry Coquand. An algorithm for type-checking dependent types. Science of Computer
Programming, 26(1):167–177, 1996. doi:10.1016/0167-6423(95)00021-6.

12 Valeria de Paiva and Eike Ritter. Fibrational modal type theory. In Proceedings of the
Tenth Workshop on Logical and Semantic Frameworks, with Applications (LSFA 2015), 2015.
doi:10.1016/j.entcs.2016.06.010.

13 Daniel Gratzer. Normalization for multimodal type theory. In Proceedings of the 37th Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS ’22, New York, NY, USA, 2022.
Association for Computing Machinery. doi:10.1145/3531130.3532398.

14 Daniel Gratzer and Lars Birkedal. A Stratified Approach to Löb Induction. In Amy P. Felty,
editor, 7th International Conference on Formal Structures for Computation and Deduction
(FSCD 2022), volume 228 of Leibniz International Proceedings in Informatics (LIPIcs), pages
23:1–23:22, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.FSCD.2022.23.

15 Daniel Gratzer, G. A. Kavvos, Andreas Nuyts, and Lars Birkedal. Multimodal Dependent
Type Theory. Logical Methods in Computer Science, Volume 17, Issue 3, July 2021. doi:
10.46298/lmcs-17(3:11)2021.

16 Daniel Gratzer, G.A. Kavvos, Andreas Nuyts, and Lars Birkedal. Multimodal dependent type
theory. In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS ’20. ACM, 2020. doi:10.1145/3373718.3394736.

17 Daniel Gratzer, Jonathan Sterling, and Lars Birkedal. Implementing a Modal Dependent Type
Theory. Proc. ACM Program. Lang., 3, 2019. doi:10.1145/3341711.

18 Jason Z. S. Hu and Brigitte Pientka. An investigation of kripke-style modal type theories,
2022. doi:10.48550/arXiv.2206.07823.

19 Daniel R. Licata, Ian Orton, Andrew M. Pitts, and Bas Spitters. Internal Universes in Models
of Homotopy Type Theory. In H. Kirchner, editor, 3rd International Conference on Formal
Structures for Computation and Deduction (FSCD 2018), Leibniz International Proceedings in
Informatics (LIPIcs), pages 22:1–22:17. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik,
2018. doi:10.4230/LIPIcs.FSCD.2018.22.

20 Daniel R. Licata and Michael Shulman. Adjoint Logic with a 2-Category of Modes. In Sergei
Artemov and Anil Nerode, editors, Logical Foundations of Computer Science, pages 219–235.
Springer International Publishing, 2016. doi:10.1007/978-3-319-27683-0_16.

21 Daniel R. Licata, Michael Shulman, and Mitchell Riley. A Fibrational Framework for Sub-
structural and Modal Logics. In Dale Miller, editor, 2nd International Conference on Formal
Structures for Computation and Deduction (FSCD 2017), volume 84 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 25:1–25:22. Schloss Dagstuhl – Leibniz-Zentrum
fuer Informatik, 2017. doi:10.4230/LIPIcs.FSCD.2017.25.

22 Rasmus Ejlers Møgelberg and Niccolò Veltri. Bisimulation as path type for guarded recursive
types. Proc. ACM Program. Lang., 3(POPL), January 2019. doi:10.1145/3290317.

23 Andreas Nuyts. Menkar. https://github.com/anuyts/menkar, 2019.
24 Michael Shulman. Brouwer’s fixed-point theorem in real-cohesive homotopy type the-

ory. Mathematical Structures in Computer Science, 28(6):856–941, 2018. doi:10.1017/
S0960129517000147.

25 The Agda Team. Agda, 2022. URL: https://agda.readthedocs.io/en/latest/language/
guarded-cubical.html.

https://doi.org/10.4204/EPTCS.360.5
https://doi.org/10.4204/EPTCS.360.5
https://doi.org/10.1016/0167-6423(95)00021-6
https://doi.org/10.1016/j.entcs.2016.06.010
https://doi.org/10.1145/3531130.3532398
https://doi.org/10.4230/LIPIcs.FSCD.2022.23
https://doi.org/10.46298/lmcs-17(3:11)2021
https://doi.org/10.46298/lmcs-17(3:11)2021
https://doi.org/10.1145/3373718.3394736
https://doi.org/10.1145/3341711
https://doi.org/10.48550/arXiv.2206.07823
https://doi.org/10.4230/LIPIcs.FSCD.2018.22
https://doi.org/10.1007/978-3-319-27683-0_16
https://doi.org/10.4230/LIPIcs.FSCD.2017.25
https://doi.org/10.1145/3290317
https://github.com/anuyts/menkar
https://doi.org/10.1017/S0960129517000147
https://doi.org/10.1017/S0960129517000147
https://agda.readthedocs.io/en/latest/language/guarded-cubical.html
https://agda.readthedocs.io/en/latest/language/guarded-cubical.html

P. Stassen, D. Gratzer, and L. Birkedal 6:23

26 Niccolò Veltri and Andrea Vezzosi. Formalizing π-calculus in guarded cubical agda. In
Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs and
Proofs, pages 270–283, 2020.

27 Vezzosi, Andrea. agda-flat, 2018. URL: https://github.com/agda/agda/tree/flat.
28 Colin Zwanziger. Natural model semantics for comonadic and adjoint type theory: Extended

abstract. In Preproceedings of Applied Category Theory Conference 2019, 2019.

TYPES 2022

https://github.com/agda/agda/tree/flat

An Irrelevancy-Eliminating Translation of Pure
Type Systems
Nathan Mull # Ñ

University of Chicago, IL, USA

Abstract
I present an infinite-reduction-path-preserving typability-preserving translation of pure type systems
which eliminates rules and sorts that are in some sense irrelevant with respect to normalization. This
translation can be bootstrapped with existing results for the Barendregt-Geuvers-Klop conjecture,
extending the conjecture to a larger class of systems. Performing this bootstrapping with the results
of Barthe et al. [4] yields a new class of systems with dependent rules and non-negatable sorts for
which the conjecture holds. To my knowledge, this is the first improvement in the state of the
conjecture since the results of Roux and van Doorn [16] (which can be used for the same sort of
bootstrapping argument) albeit a somewhat modest one; in essence, the translation eliminates clutter
in the system that does not affect normalization. This work is done in the framework of tiered pure
type systems, a simple class of persistent systems which is sufficient to study when concerned with
questions about normalization.

2012 ACM Subject Classification Theory of computation → Type theory

Keywords and phrases pure type systems, normalization, reduction-path-preserving translations,
Barendregt-Geuvers-Klop conjecture

Digital Object Identifier 10.4230/LIPIcs.TYPES.2022.7

Acknowledgements I’d like to thank Stuart Kurtz for many useful discussions as well as the reviewers
for their incredibly helpful comments.

1 Introduction

The class of pure type systems [2, 3, 5, 8, 9, 18] was introduced as a natural generalization
of the lambda cube which includes systems with more complex sort structure and product
type formation rules. The study of pure type systems is primarily concerned with how this
sort structure affects meta-theoretic properties (especially given the minimal collection of
type formers). One such property is normalization: a type system is weakly normalizing if
every typable term has a normal form and strongly normalizing if no typable term appears
in an infinite reduction sequence.

Despite the fact that weak normalization is, of course, the weaker of the two properties,
it is often sufficient for proving other important meta-theoretic properties, e.g., consistency
and decidability of type checking in the presence of dependent types. Observations to this
effect were made by Geuvers in his PhD thesis [9], where he also conjectured that weak
normalization implies strong normalization for all pure type systems (Conjecture 8.1.12).
This conjecture has come to be known as the Barendregt-Geuvers-Klop conjecture.1

Little progress has been made on this conjecture, in part because pure type systems in
general are not always amenable to standard techniques. Though natural, the generalization
to pure type systems from the lambda cube is in some sense the most obvious one, a

1 Sørensen submitted the conjecture by this name to the TLCA List of Open Problems [1]. He has also
referred to it as the Barendregt-Geuvers conjecture [17]. Barendregt is noted by Barthe et al. [4] to
have presented the conjecture at the Second International Conference on Typed Lambda Calculi and
Applications (1995), and Klop is the co-author of a preprint which refers to the Barendregt-Geuvers-Klop
conjecture by name ([13], Conjecture 1.1).

© Nathan Mull;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Types for Proofs and Programs (TYPES 2022).
Editors: Delia Kesner and Pierre-Marie Pédrot; Article No. 7; pp. 7:1–7:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nmull@uchicago.edu
http://people.cs.uchicago.edu/~nmull
https://doi.org/10.4230/LIPIcs.TYPES.2022.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 An Irrelevancy-Eliminating Translation of Pure Type Systems

basic syntactic ambiguation of the inference rules which allows for maximal freedom in sort
structure. The resulting systems may fail to have the meta-theoretic properties one might
expect (e.g., type unicity) so it is common to consider classes of systems which do maintain
these properties. The state of the art of the conjecture is the result of Barthe et al. [4], which
proves strong normalization from weak normalization for a class of non-dependent pure type
systems (see Definition 11) by generalizing Xi’s [19] and Sørensen’s [17] CPS translation.

I propose revisiting the Barendregt-Geuvers-Klop conjecture in a slightly simpler frame-
work. I begin by presenting a class of basic, concrete pure type systems I call tiered pure type
systems. Despite their simplicity, they can be used to characterize a general class of pure
type systems; so called bounded separable persistent pure type systems (and, in particular,
bounded non-dependent systems) are disjoint unions of tiered systems.

Being concrete, the conjecture restricted to this setting is that weak normalization implies
strong normalization for all tiered pure type systems. This re-framing of the problem is a
minor though I believe important step towards making further progress on the full version
of the conjecture. But even in this setting, there are many systems to consider, some of
which contain what amounts to “junk” structure. The primary contribution of this paper is
a translation of pure type systems which preserves typability and infinite reduction paths
(I will simply write “path-preserving” from this point forward) and removes some of this
irrelevant structure. By “removing structure” here, I mean that the target system of the
translation is the same as the source system but with some sorts and rules removed.

Consider, for example, the system λHOL, which may be thought of as the system λω

with an additional superkind sort △ which allows for the introduction of kind variables that
can appear in expressions but cannot be abstracted over. In λHOL, it is possible to derive

A : □ ⊢λHOL λAA. λxA. x : ΠAA. A → A.

A judgment of this form cannot derived in λω because the variable A cannot be introduced
without the axiom ⊢λHOL □ : △. Thus, the introduction of △ is meaningful with respect
to what expressions can be derived. But both λHOL and λω are strongly normalizing. One
basic observation is that there is a single expression inhabiting △, namely □. This sparsity
of inhabitation can be leveraged to define a path-preserving translation from λHOL to λω

and, in fact, from any pure type system with an isolated top-sort to the same system but
without the top-sort. In the case of the judgment above, the variable A can be instantiated
at ∗ yielding the judgment

⊢λω λA∗. λxA. x : ΠA∗. A → A

derived which can be derived in λω.
I generalize this observation in two ways. First, I define a path-preserving translation

that eliminates not just top-sorts but also any sort which is top-sort-like. Second, I extend
this translation to eliminate not just isolated sorts, but also sorts which may appear in some
rules. This translation can be iteratively applied to λS until a fixed point λS↓ is reached.
Thus, it can be used to prove the strong normalization of systems λS for which λS↓ is
known to be strongly normalizing. It can also be bootstrapped with existing results for the
Barendregt-Geuvers-Klop conjecture. The argument is simple: if λS is weakly normalizing,
then so is λS↓ since it can be embedded in λS. By assumption, λS↓ is strongly normalizing,
and so λS is strongly normalizing by the path-preserving translation. Bootstrapping with
the result of Barthe et al. yields a proof of the Barendregt-Geuvers-Klop conjecture for a
larger class of systems. In particular, on a technical note, λS may have dependent rules and
non-negatable sorts (see ([4], Definition 2.23, Definition 3.1) and Definition 11 for details).

N. Mull 7:3

This technique bears a resemblance to the one used by Roux and van Doorn [16] in their
structural theory of pure type systems, which in turn resembles the techniques of Geuvers
and Nederhof [8] and Harper et al. [10]. In all these works, a translation is defined from
one pure type system into another which has fewer rules. And though it is not explicitly
stated, the translation of Roux and van Doorn can be bootstrapped in the same way as
described above. In fact, their translation can be used to eliminate some rules between tiered
systems in a disjoint union whereas the translation presented here eliminates some rules
within the individual summands in a disjoint union of tiered systems (all while preserving
strong normalization).

It is important to emphasize that this result depends on the fact that the additional
structure that can be handled is irrelevant and, in particular, irrelevant with respect to
normalization, not derivability or expressibility. But if we do want to prove the full conjecture,
we also have to prove it for “junk” systems, ones which may not be interesting in their own
right and may have rules which don’t add much to the system. This result is perhaps more
meaningfully interpreted in the reverse direction: the systems λS↓ for which the conjecture
is not known to hold are targets for the developments of better techniques. Ideally, some
technique could handle all these systems uniformly, but as of now it may be useful to further
develop the theory regarding what barriers exist, and what systems beyond the lambda cube
– natural or not – may be important to study.

In what follows I present some preliminary material, which includes some exposition on
tiered systems. I then define the irrelevancy-eliminating translation in two parts: one part
for eliminating rules and one for eliminating sorts. The final translation will be taken as the
composition of these two translations. Finally, I present its application to the Barendregt-
Geuvers-Klop conjecture and conclude with a short section on what it implies about the
systems which remain to be studied.

2 Preliminaries

The class of pure type systems is the basis of a very general framework for describing type
systems and their meta-theory. These systems vary in their sort structure and their product
type formation rules, and include the entire lambda cube. Barendregt cites Berardi [5]
and Terlouw [18] for their conception, though Geuvers and Nederhof [8] are cited as having
given the first explicit definition, based on the previous two works. The presentations of
Barendregt [2, 3] are perhaps the best known sources.2

A pure type system is specified by a triple of sets (S, A, R) satisfying A ⊂ S × S and
R ⊂ S × S × S. The elements of S, A, and R are called sorts, axioms and rules, respectively.
I use s and t as meta-variables for sorts.3

For each sort s, fix a Z+-indexed set of expression variables Vs. Let svi denote the ith
expression variable in Vs and let V denote

⋃
s∈S Vs. I use x, y, and z as meta-variables for

expression variables. The choice to annotate variables with sorts is one of convenience. The
annotations can be dropped for the systems I consider, and are selectively included in the
exposition. This observation regarding variable annotations was first made by Geuvers ([9],
Definition 4.2.9).

2 I am of the opinion that, after the development of the lambda cube, the notion of pure type systems
was soon to follow, and that all aforementioned should be cited as originators.

3 For any subsequent meta-variables, I use positive integer subscripts and tick marks, e.g., s1, s2, and s′.
Note, however, that in later sections, si will refer to a particular sort in tiered systems. I will try to be
as clear as possible when distinguishing between these two cases of notation.

TYPES 2022

7:4 An Irrelevancy-Eliminating Translation of Pure Type Systems

The set of expressions of a pure type system with sorts S is described by the grammar

T ::= S | V | ΠVT. T | λVT. T | TT

I use capital modern English letters like M , N , P , Q, A, B, and C as meta-variables
for expressions. Free variables, bound variables, α-congruence, β-reduction, substitution,
sub-expressions, etc. are defined as usual (see, for example, Barendregt’s presentation [3]).
Substitution of x with N in M is denoted M [N/x], and I write N ⊂ M for “N is a
sub-expression of M .”

A statement is a pair of expressions, denoted M : A. The first expression is called the
subject and the second is called the predicate. A proto-context is a sequence of statements
whose subjects are expression variables. The statements appearing in proto-contexts are
called declarations. I use capital Greek letters like Γ, ∆, Φ, and Υ as meta-variables for
contexts. Often the sequence braces of contexts are dropped and concatenation of contexts is
denoted by comma-separation. The β-equality relation and substitution extend to contexts
element-wise. For a context Γ and declaration (x : A) I write (x : A) ∈ Γ if that declaration
appears in Γ, and Γ ⊂ ∆ if (x : A) ∈ Γ implies (x : A) ∈ ∆. A proto-judgment is a
proto-context together with statement, denoted Γ ⊢ M : N . The designation “judgment”
is reserved for proto-judgments that are derivable according to the rules below. Likewise,
the designation “context” is reserved for proto-contexts that appear in some (derivable)
judgment.

The pure type system λS specified by (S, A, R) has the following rules for deriving
judgments. In what follows, the meta-variables s and s′ range over all sorts in S when
unspecified. A variable sx is fresh with respect to a context Γ if it does not appear anywhere
in Γ.

Axioms. ⊢λS s : s′ for any axiom (s, s′).
Variable Introduction. For a variable sx which is fresh with respect to Γ

Γ ⊢λS A : s

Γ, sx : A ⊢λS
sx : A

Weakening. For a variable sx which is fresh with respect to Γ

Γ ⊢λS M : A Γ ⊢λS B : s

Γ, sx : B ⊢λS M : A

Product Type Formation/Generalization. For any rule (s, s′, s′′)

Γ ⊢λS A : s Γ, sx : A ⊢λS B : s′

Γ ⊢λS ΠsxA. B : s′′

Abstraction.

Γ, sx : A ⊢λS M : B Γ ⊢λS ΠsxA. B : s′

Γ ⊢λS λsxA. M : ΠsxA. B

Application.

Γ ⊢λS M : ΠsxA. B Γ ⊢λS N : A

Γ ⊢λS MN : B[N/sx]

Conversion. For any terms A and B such that A =β B

Γ ⊢λS M : A Γ ⊢λS B : s

Γ ⊢λS M : B

N. Mull 7:5

The subscript on the turnstile is dropped when there is no fear of ambiguity. The
annotations on bound variables in Π-expressions and λ-expressions are non-standard, and
will in most cases be dropped, but they are occasionally useful to maintain (e.g., see Lemma 1).
It is also standard to write A → B for ΠxA. B in the case that x does not appear free in B.

An expression M is said to be derivable in λS if there is some context Γ and expression
A such that Γ ⊢λS M : A. Although there is no distinction between terms and types, it is
useful to call a judgment a type judgment if it is of the form Γ ⊢ A : s where s ∈ S, and a
term judgment if it is of the form Γ ⊢ M : A where Γ ⊢ A : s for some sort s. I also write
that M is a term and A is a type in this case. By type correctness (Lemma 2), a judgment
that is not a type judgment is a term judgment, though some judgments are both type and
term judgments.

2.1 Meta-Theory
I collect here the meta-theoretic lemmas necessary for the subsequent results. Much of the
meta-theory of pure type systems was worked out by Geuvers and Nederhof [8], and can be
found in several of the great available resources on pure type systems ([3, 4, 9, 12], among
others) so proofs are omitted. For the remainder of the section, fix a pure type system λS.

▶ Lemma 1 (Generation). For any context Γ and expression A, the following hold.
Sort. For any sort s, if Γ ⊢ s : A, then there is a sort s′ such that A =β s′ and (s, s′) ∈ A.
Variable. For any sort s and variable sx, if Γ ⊢ sx : A, then there is an type B such that
Γ ⊢ B : s and (sx : B) appears in Γ and A =β B.
Π-expression. For any sort s and expressions B and C, if Γ ⊢ ΠsxB . C : A then there
are sorts s′, and s′′ such that Γ ⊢ B : s and Γ, sx : B ⊢ C : s′ and (s, s′, s′′) ∈ R and
A =β s′′.
λ-expression. For any sort s and expressions B and M , if Γ ⊢ λsxB . M : A then there
is a type C and sort s′ such that such that Γ ⊢ ΠsxB . C : s′ and Γ, sx : B ⊢ M : C and
A =β ΠsxB . C.
Application. For expressions M and N , if Γ ⊢ MN : A, then there is a sort s and types
B and C such that Γ ⊢ M : ΠsxB . C and Γ ⊢ N : B and A =β C[N/sx].

▶ Lemma 2 (Type Correctness). For any context Γ and expressions M and A, if Γ ⊢ M : A

then A ∈ S or there is a sort s such that Γ ⊢ A : s.

▶ Definition 3. A pure type system is functional if the following hold.
If (s, t) ∈ A and (s, t′) ∈ A then t = t′.
If (s, t, u) ∈ R and (s, t, u′) ∈ R, then u = u′.

▶ Lemma 4 (Type Unicity). If λS is functional then for any context Γ and expressions M ,
A, and B, if Γ ⊢ M : A and Γ ⊢ M : B, then A =β B.

▶ Definition 5. A sort s is a top-sort if there is no sort s′ such that (s, s′) ∈ A. It is a
bottom-sort if there is no sort s′ such that (s′, s) ∈ A.

▶ Lemma 6 (Top-Sort Lemma). For any context Γ, variable x, expressions A and B, and
top-sort s the following hold.
1. Γ ̸⊢ s : A

2. Γ ̸⊢ x : s

3. Γ ̸⊢ AB : s

TYPES 2022

7:6 An Irrelevancy-Eliminating Translation of Pure Type Systems

s1 s2 s3

Figure 1 A visual representation of the system λU .

2.2 Tiered Pure Type Systems
General pure type systems are notoriously difficult to work with so it is typical to consider
classes of pure type systems satisfying certain properties, e.g., persistence as subsequently
defined.

▶ Definition 7. A pure type system λS is persistent if it is functional (Definition 3) and
if (s, t) ∈ A and (s′, t) ∈ A then s = s′;
RλS ⊂ {(s, s′, s′) | (s, s′) ∈ S × S}.

From this point forward, I freely use the notation (s, s′) for the rule (s, s′, s′). One minor
issue with properties like this is that it is often difficult to envisage the systems which satisfy
them. In particular, the results tailored to a class of systems defined as such may use more
meta-theoretic machinery than necessary. I choose, instead, to work with a simple class of
systems I call tiered pure type systems, which have a very concrete description.

▶ Definition 8. Let n be a non-negative integer. A pure type system is n-tiered if its has
the form

S = {si | i ∈ [n]}
A = {(si, si+1) | i ∈ [n − 1]}
R ⊂ {(s, s′, s′) | (s, s′) ∈ S × S}

where [n] ≜ {1, . . . , n}.

A couple remarks about these systems:
these systems can be envisaged as graphs as in Figure 1, which is a visual representation
of the 3-tiered system λU . In such representations, an arrow (si, sj) indicates the presence
of the rule (si, sj). Axioms are not represented in the graph except in the ordered the
nodes are presented;
the only 0-tiered system is the empty pure type system; there are two 1-tiered systems,
specified by either ({s1}, ∅, ∅) or ({s1}, ∅, {(s1, s1)}), neither of which have derivable
expressions; the 2-tiered systems which contain the rule (s1, s1) are exactly the lambda
cube;
the n-tiered systems are considered in passing by Barthe et al. ([4], Remark 2.39). They
include natural subsystems of ECCn (as defined in [15]) with only the two-sorted rules;

A large class of natural pure type systems can be classified as disjoint unions of tiered
systems. In order to state this equivalence, I work in the structural theory of pure type
systems presented by Roux and van Doorn [16].

▶ Definition 9. For pure type systems λS and λS ′, the disjoint union λS ⊔ λS ′ is specified
by

SλS⊔λS′ ≜ SλS ⊔ SλS′

AλS⊔λS′ ≜ AλS ∪ AλS′

RλS⊔λS′ ≜ RλS ∪ RλS′

N. Mull 7:7

A class of systems which can be characterized by disjoint unions must be partitionable into
atoms which can be analyzed individually. Let ‘<A’, ‘≤A’, and ‘≈A’ denote the transitive,
reflexive-transitive, and equivalence closure of A, respectively.

▶ Definition 10. A pure type system λS is separable if (s, s′) ∈ RλS implies s ≈A s′. It is
atomic if s ≈A s′ for all sorts s and s′.

There are, of course, many examples of important non-separable persistent pure type
systems, e.g., systems from the logic cube [2, 3, 6, 9, 7] like Berardi’s formulation of λPREDω

which is specified by

S ≜ {∗s,□s, ∗p,□p}
A ≜ {(∗s,□s), (∗p,□p)}
R ≜ {(∗p, ∗p), (□p, ∗p), (□p,□p), (∗s, ∗p), (∗s,□p)}

The rules (∗s, ∗p) and (∗s,□p) “cross” between two tiered systems.4 Despite this, there are
also useful classes of systems which are separable, e.g., generalized non-dependent systems
are separable by fiat.

▶ Definition 11. Let λS be a pure type system.
λS satisfies the ascending chain condition if ‘<A’ does, i.e., there is no infinite
sequence of sorts s, s′, s′′, . . . such that s < s′ < s′′ . . . ; it satisfies the descending chain
condition if there is no infinite sequence of sorts s, s′, s′′, . . . such that s > s′ > s′′ . . . ;
it is bounded if it satisfies both the ascending and descending chain conditions.
λS is weakly non-dependent if (s, s′, s′′) ∈ R implies s ≥ s′ ≥ s′′.
λS is stratified if it satisfies the ascending chain condition and is non-dependent.
λS is generalized non-dependent if it is stratified and persistent. If λS is also bounded,
I will write that it is bounded non-dependent, and if it is tiered, I will just write that
it is non-dependent.

We can now characterize disjoint unions of tiered systems in terms of the above properties.
The proof of Lemma 12 is omitted, but it follows roughly by showing that ‘≤A’ is a total
order.

▶ Lemma 12. A pure type system is tiered if and only if it is persistent, bounded, and
atomic.

▶ Lemma 13. A pure type system is persistent, bounded, and separable if and only if is the
disjoint union of tiered pure type systems.

Proof. It is straightforward to verify that tiered systems are persistent, bounded, and atomic,
and so their disjoint unions are persistent, bounded, and separable. In the other direction,
let λS be a pure type system that is persistent, bounded, and separable and consider the
partition P of S into ≈A-equivalence classes. Let Sp be such an equivalence class and let
λSp denote the pure system specified by

SλSp
≜ Sp

AλSp
≜ AλS ∩ (Sp × Sp)

RλSp
≜ RλS ∩ (Sp × Sp × Sp)

4 I’d like to specifically thank the reviewer who reminded me of this example.

TYPES 2022

7:8 An Irrelevancy-Eliminating Translation of Pure Type Systems

The system λSp is persistent and bounded because λS is, and it is atomic by definition, so
by Lemma 12 it is tiered. We can then view λS as the system

⊔
Sp∈P λSp.5 Note that all

axioms are accounted for by fiat and all rules are accounted for by separability. ◀

▶ Corollary 14. A pure type system is bounded non-dependent if and only if it is the disjoint
union of non-dependent tiered pure types systems.

Roux and van Doorn [16] show that the (strong) normalization of a disjoint union of pure
type systems is equivalent to the (strong) normalization of each of its individual summands.
So on questions of normalization regarding persistent, bounded, separable systems it suffices
to consider tiered systems.

▶ Proposition 15. If weak normalization implies strong normalization for all tiered pure
type systems, then the same is true for all persistent, bounded, separable pure type systems.
In particular, if weak normalization implies strong normalization for all non-dependent pure
type systems, then the same is true for all bounded non-dependent pure type systems.6

I close this section with some useful features of tiered systems. One of the primary
benefits of working in persistent systems in general (and tiered systems in particular) is
that derivable expressions can be classified by the level in the system at which they are
derivable. This property is shown by defining a degree measure on expressions and classifying
expressions according to their degree. This result is due to Berardi [6] and Geuvers and
Nederhof [8], and the presentation here roughly follows the same course.

▶ Definition 16. The degree of an expression is given by the following function deg : T → N.

deg(si) ≜ i + 1
deg(six) ≜ i − 1

deg(ΠxA. B) ≜ deg(B)
deg(λxA. M) ≜ deg(M)

deg(MN) ≜ deg(M)

Let Tj denote {M ∈ T | deg(M) = j} and let T≥j denote {M ∈ T | deg(M) ≥ j}.

▶ Lemma 17 (Classification). Let λS be an n-tiered pure type system. For any expression A,
the following hold.

deg(A) = n + 1 if and only if A = sn.
deg(A) = n if and only if Γ ⊢λS A : sn for some context Γ.
For i ∈ [n − 1], we have deg(A) = i if and only if Γ ⊢λS A : B and Γ ⊢λS B : si+1 for
some context Γ and expression B.

In particular, for context Γ and expressions M and A, if Γ ⊢λS M : A then deg(A) =
deg(M) + 1.

5 Formally, they are isomorphic pure type systems. The definition of a pure type system homomorphism
is as one might expect, see the definition of Geuvers ([9], Definition 4.2.5) – which is also used by Roux
and van Doorn [16] – for more details.

6 This all sits in a more general theory. A natural extension of tiered systems includes infinite tiered
systems and even cyclic systems, which can help better characterize classes of systems, like generalized
non-dependent systems and persistent separable systems.

N. Mull 7:9

Finally, some useful facts about degree. See the presentation by Barendregt [3] for proofs
in the 2-tiered case.

▶ Lemma 18. Let λS be an n-tiered pure type system and let A and B be expressions
derivable in λS.

If deg(B) = j − 1 then deg(A[B/sj x]) = deg(A).
If A ↠β B, then deg(A) = deg(B).

3 Irrelevancy-Eliminating Translation

Fix an n-tiered pure type system λS. I first describe the sorts which are top-sort-like. Recall
that s is a top-sort if there is no sort s′ such that (s, s′) ∈ A, so sn is the only top-sort of λS.
Top-sorts are interesting in part because they tend to be sparsely inhabited. A top-sort-like
sort si which is not a top-sort has the sort si+1 above it, but to ensure si is sparsely inhabited,
si+1 should not appear in any rules. We will also be interested in top-sort-like sorts which
themselves do not appear in any rules.

▶ Definition 19.
A sort si is rule-isolated if for all j, neither (sj , si) nor (si, sj) appear in RλS .
A sort si is top-sort-like if i < n implies si+1 is rule-isolated (i.e., si is a top-sort or
its succeeding sort is rule-isolated).
A sort si is completely isolated if it is top-sort-like and rule-isolated.

Next, I describe the structure that will be considered irrelevant with respect to normal-
ization. Roughly speaking, this includes rules on top-sort-like sorts which allow for the
derivation of redexes on expressions from sparsely inhabited types. It will be possible to
essentially pre-reduce these redexes in the translation, eliminating the need for the rules in
the target system of the translation. In what follows, it will be convenient to consider sets
of top-sort-like sorts. I call a subset I of [n] an index set for λS, and denote by SI the set
{si | i ∈ I}.

▶ Definition 20.
For any index set J , a sort si is J -irrelevant if there is no sort sj such that j ∈ J and
(sj , si) ∈ RλS . A sort si is irrelevant if it is [n]-irrelevant.
An index set I is completely irrelevant in λS, if for each i in I,

si is top-sort-like and irrelevant;
si−1 is ([n] \ I)-irrelevant.

In the case of complete irrelevance, if I is a singleton set {i}, then the only rule with si−1
appearing second is (si, si−1). By considering sets of indices simultaneously, we can make
weaker assumptions on these preceding sorts. The condition of ([n] \ I)-irrelevance ensures
that si−1 becomes irrelevant after removing the rules associated with sorts in SI . Note also
that if (si, si) ∈ RλS , then any completely irrelevant index set cannot contain i − 1, i or
i + 1. Finally, it is important that there is a unique maximum completely irrelevant index set.
In particular, the union of any two completely irrelevant index sets is completely irrelevant.

3.1 Eliminating Completely Irrelevant Rules
This section contains the translation which removes the rules associated with sorts whose
indices appear in a completely irrelevant index set. For the remainder of the section, fix such
a set I. We begin by showing that sorts in SI are sparsely inhabited.

TYPES 2022

7:10 An Irrelevancy-Eliminating Translation of Pure Type Systems

▶ Lemma 21. Let si be an irrelevant sort such that si is a top-sort or si+1 is irrelevant.
For every derivable expression A, if deg(A) = i then A = si−1 or A ∈ Vsi+1 .

Proof. If i = n, then this follows directly from the top-sort lemma (Lemma 6) and the fact
that sn is irrelevant. In fact, in this case sn is inhabited solely by sn−1. If i ̸= n, this follows
in a similar way, i.e., by induction on the structure of derivations. The cases in which the last
inference is an axiom, variable introduction, weakening, or conversion are straightforward.
The last inference cannot be a product type formation because si is irrelevant. The last
inference cannot be an abstraction or application because si+1 is irrelevant. ◀

This does not hold if si+1 is not irrelevant. If (si+1, si+1) ∈ RλS , for example, then
∅ ⊢ (λxsi . x)si−1 : si is derivable. This is why we require both si and si+1 to be irrelevant.

The primary challenge moving forward is dealing with the fact that variables may appear
as types of sort si. These variables are what will necessitate si+1 being not just irrelevant,
but also isolated. Regardless, the sparsity of types of sort si induces sparsity of expressions
of degree i − 1.

▶ Lemma 22. For index i in I, context Γ and expression M , if Γ ⊢ M : si−1, then M is of
the form Πx1

A1 Πxk
Ak . B where deg(Aj) ∈ I for all j and either B = si−2 or B ∈ Vsi .

Proof. By induction on the structure of derivations. The cases in which the last inference is
an axiom, variable introduction, or weakening are straightforward. The last inference clearly
cannot be an abstraction, and it cannot be an application since si is irrelevant. What follows
are the remaining two cases.
Product Type Formation. Suppose the last inference is of the form

Γ ⊢ A : sj Γ, x : A ⊢ B : si−1

Γ ⊢ ΠxA. B : si−1

Since si−1 is (SλS \ I)-irrelevant, it must be that j ∈ I. The desired result holds after
applying the inductive hypothesis to the right antecedent judgment.

Conversion. Suppose the last inference is of the form

Γ ⊢ M : A Γ ⊢ si−1 : si

Γ ⊢ M : si−1

where A =β si−1. Note that deg(A) = i so Γ ⊢ A : si by type correctness. Thus, A = si−1
by Lemma 21, which means the inductive hypothesis can be applied directly to the left
antecedent judgment. ◀

▶ Lemma 23. For index i in I, context Γ, expression A and variable si+1x, if Γ ⊢ A : si+1x,
then A ∈ Vsi .

Proof. By induction on the structure of derivations. The cases in which the last inference
is an axiom, variable introduction, or weakening are straightforward. The last inference
clearly cannot be a product type formation or an abstraction. The last inference cannot
be an application because si is irrelevant. Finally, all conversions are trivial by the same
argument as in the previous lemma. ◀

▶ Corollary 24. For index i in I, every derivable expression M of degree i − 1 is of the form
Πx1

A1 Πxk
Ak . B where deg(Aj) ∈ I for all j and B = si−2 or B ∈ Vsi (and k may

be 0).

N. Mull 7:11

The Translation
The following translation is defined such that it essentially pre-reduces all redexes whose
source types have degree in I. Naturally, this means it does not strictly preserve β-reductions,
but because these sources types are so sparsely inhabited, we can define a complexity measure
on expressions which is monotonically decreasing in the β-reductions that are pre-performed
by the translation. This is similar to the technique used by Sørensen for simulating π-
reductions [17].

The other wrinkle in defining this translation is that it is difficult to pre-reduce expressions
of variable type because even though such types are sparsely inhabited, it is unclear a priori
what the value of the expression will be after a series of reductions. By Lemma 23, we
know it reduces to a variable, but we don’t know which variable, and it may be one that is
generalized or abstracted over. We ensure this doesn’t happen by requiring si+1 is isolated,
not just irrelevant. We also introduce a distinguished variable •z of type z for each variable
z of sort si+1 in the context. This gives us a canonical term that the translation can assign
to expressions of this type.

▶ Definition 25. Define the context-indexed function τΓ : Ctx × T → T by induction on both
arguments as follows.

τΓ(si) ≜ si

τΓ(six) ≜

si−2 if i ∈ I and (six : si−1) ∈ Γ
•z if i ∈ I and (six : si+1z) ∈ Γ
six otherwise

τΓ(ΠxA. B) ≜
{

τΓ,x:A(B) deg(A) ∈ I
ΠxτΓ(A). τΓ,x:A(B) otherwise

τΓ(λxA. M) ≜
{

τΓ,x:A(M) deg(A) ∈ I
λxτΓ(A). τΓ,x:A(M) otherwise

τΓ(MN) ≜
{

τΓ(M) deg(N) + 1 ∈ I
τΓ(M)τΓ(N) otherwise

where •z is a distinguished variable. This function is used to define a function on contexts as

τ(∅) ≜ ∅

τ(Γ, sj x : A) ≜

τ(Γ) j ∈ I
τ(Γ), sj x : sj−1, •x : sj x if j − 1 ∈ I and A = sj−1

τ(Γ), sj x : τΓ(A) otherwise.

As for proving the desired features of this translation, first note if i ∈ I, then the
translation maps expressions of degree i − 1 (where i ∈ I) to a sort or a •-variable.

▶ Proposition 26. For any index i in I, context Γ, and term A, if Γ ⊢ A : si−1, then
τΓ(A) = si−2, and if Γ ⊢ A : si+1x for some variable si+1x, then τΓ(A) = •x.

It suffices to consider the expressions of the form specified by Corollary 24, for which the
above fact clearly holds. This turns out to be a key feature of the translation. Because the
translation is able to drop so much information about these expressions, we can pre-reduce
redexes in which they appear on the right.

TYPES 2022

7:12 An Irrelevancy-Eliminating Translation of Pure Type Systems

We also use the fact that the context argument of the translation can be weakened when
the last variable does not appear in the expression argument.

▶ Proposition 27. For any context Γ, expressions M , A, and B, and variable x, if Γ ⊢ M : A

and Γ ⊢ B : si then τΓ,x:B(M) = τΓ(M).

We now prove the standard substitution-commutation and β-preservation lemmas for
this translation.

▶ Lemma 28. For any index i, context Γ, expressions M , N , A and B, and variable six, if
Γ, six : A ⊢ M : B and Γ ⊢ N : A then

τΓ(M [N/six]) =
{

τΓ,si x:A(M) i ∈ I
τΓ,si x:A(M)[τΓ(N)/six] otherwise.

Proof. By induction on the structure of M . First suppose that i ∈ I.
Sort. If M is of the form sj , then τΓ(sj [N/six]) = τΓ(sj).
Variable. First suppose M is of the form six. In particular, A =β B, and since deg(A) =

deg(B) = i, we have A = B by Lemma 21. If A = si−1, then by Proposition 26 we have
τΓ(N) = si−2 and

τΓ(six[N/six]) = τΓ(N) = si−2 = τΓ,x:si−1(six).

Similarly, if A is of the form si+1y, then τΓ(N) = •y and

τΓ(six[N/six]) = τΓ(N) = •y = τΓ,x:y(six).

If M is of the form sj y where sj y ̸= six, then τ(sj y[N/six]) = τ(sj y).
Π-Expression. If M is of the form ΠyA. B, then

τΓ((ΠyA. B)[N/x]) = τΓ(ΠyA[N/x]. B[N/x])

=
{

τΓ,y:A(B) deg(A) ∈ I
ΠyτΓ(A). τΓ,y:A(B) otherwise

where the last equality follows from the definition of τ and the inductive hypothesis. This
also depends on Proposition 27 to show that τΓ,y:A(A) = τΓ(A). The cases in which
M is a λ-expression or application are similar. Furthermore, when i ̸∈ I, all cases are
analogous. ◀

Before proving the β-preservation lemma, it is convenient to partition the β-reduction
relation into two parts, one part which is directly preserved by the translation (β1) and one
part which is pre-reduced by the translation (β2).

▶ Definition 29. Let β2 denote the notion of reduction given by

(λxA. M)N →β2 M [N/x]

where deg(A) ∈ I, extended to a congruence relation in the usual way. Let β1 denote the
same notion of reduction but with deg(A) ̸∈ I, so that β1 ∩ β2 = ∅ and β1 ∪ β2 = β.

▶ Lemma 30. For expressions M and N derivable in the context Γ, the following hold.
If M →β1 N , then τΓ(M) →β τΓ(N);
if M →β2 N , then τΓ(M) = τΓ(N);
in particular, if M =β N , then τΓ(M) =β τΓ(N).

N. Mull 7:13

Proof. The last item follows directly from the first two. We prove the first two items
by induction on the structure of the one-step β-reduction relation. In the case a redex
(λxA. M)N , if deg(A) ̸∈ I, then we have

τΓ((λxA. M)N) = τΓ(λxA. M)τΓ(N)

= (λxτΓ(A). τΓ,x:A(M))τΓ(N)
→β τΓ,x:A(M)[τΓ(N)/x]
= τΓ(M [N/x])

and otherwise,

τΓ((λxA. M)N) = τΓ(λxA. M)
= τΓ,x:A(M)
= τΓ(M [N/x])

where the last equality in each sequence of equalities follows from the substitution-commut-
ation lemma (Lemma 28). To show the desired result holds up to congruences, it must follow
that expressions dropped by the translation are already in normal form.
Π-Expression. Suppose M is of the form ΠxA. B and N is of the form ΠxA′

. B′ where

ΠxA. B →β ΠxA′
. B′

If deg(A) ̸∈ I, then either A →β A′ and B = B′ or B →β B′ and A = A′ and the
inductive hypothesis can be safely applied. If deg(A) ∈ I, then Lemma 21 implies that A

is in normal form, so A = A′ and B →β B′, and the inductive hypothesis can be safely
applied. The case in which M is a λ-expression is similar.

Application. Suppose M is of the form PQ and N is of the form P ′Q′ where

PQ →β1 P ′Q′

If deg(Q) + 1 ̸∈ I, then either P →β P ′ and Q = Q′ or Q →β Q′ and P = P ′ and the
inductive hypothesis can be safely applied. If deg(Q) + 1 ∈ I, Corollary 24 implies that
Q is in normal form, so Q = Q′ and P →β P ′ and the inductive hypothesis can be safely
applied. ◀

With these two lemmas, we can now prove that the translation preserves typability. The
system we translate to is defined simply as the one in which the rules associated with sorts
in SI are dropped.

▶ Definition 31. The irrelevance reduction of λS, denoted here by λS−, is the n-tiered
system specified by the rules RλS \ {(si, sj) | i ∈ I and j ∈ [n]}.

▶ Lemma 32. For context Γ and expressions M and A, if

Γ ⊢λS M : A then τ(Γ) ⊢λS− τΓ(M) : τΓ(A).

Proof. By induction on the structure of derivations.
Axiom. If the derivation is a single axiom ⊢ si : si+1 then the translated derivation is the

same axiom.

TYPES 2022

7:14 An Irrelevancy-Eliminating Translation of Pure Type Systems

Variable Introduction. Suppose the last inference is of the form

Γ ⊢ A : si

Γ, six : A ⊢ six : A

First suppose i ∈ I. If A = si−1, then τΓ,x:si−1(x) = si−2 and

τ(Γ) ⊢ si−2 : si−1

where τ(Γ) is well-formed by the inductive hypothesis; that is,

τ(Γ) ⊢ τΓ(A) : si

implies τ(Γ) is well-formed. If A is of the form si+1y, then (si+1y : si−1) ∈ Γ, which
implies (•y : si+1y) ∈ τ(Γ) and τ(Γ) ⊢ •y : si+1y where τ(Γ) is again well-formed by the
inductive hypothesis.
Next suppose i − 1 ∈ I and A = si−1. By the inductive hypothesis, we can derive

τ(Γ) ⊢ si−1 : si

τ(Γ), six : si−1 ⊢ six : si−1

and so by weakening,

τ(Γ), six : si−1 ⊢ six : si−1 τ(Γ), six : si−1 ⊢ six : si−1

τ(Γ), six : si−1, •x : six ⊢ six : si−1

The remaining cases are straightforward.
Weakening. Suppose the last inference is of the form

Γ ⊢ M : A Γ ⊢ B : si

Γ, six : B ⊢ M : A

By Proposition 26, we have τΓ,x:B(M) = τΓ(M). By type correctness, Γ ⊢ A : sj for
some index j, so τΓ,x:B(A) = τΓ(A). So the inductive hypothesis implies

τ(Γ) ⊢ τΓ,x:B(M) : τΓ,x:B(A)

We can then use an argument similar to the one in the previous case to extend the context
to τ(Γ, x : B).

Product Type Formation. Suppose the last inference is of the form

Γ ⊢ A : si Γ, x : A ⊢ B : sj

Γ ⊢ ΠxA. B : sj

if i ∈ I, then τ(Γ) = τ(Γ, x : A) and τΓ(ΠxA. B) = τΓ,x:A(B) and so τ(Γ) ⊢ τΓ,x:A(B) : sj

by the inductive hypothesis applied to the right antecedent judgment. It cannot be the
case that i − 1 ∈ I and A = si−1 since si is rule-isolated in this case. The remaining case
is straightforward.

Abstraction. Suppose the last inference is of the form

Γ, six : A ⊢ M : B Γ ⊢ ΠxA. B : sj

Γ ⊢ λxA. M : ΠxA. B

If i ∈ I, then

τ(Γ) = τ(Γ, six : A)
τΓ(λxA. M) = τΓ,x:A(M)
τΓ(ΠxA. B) = τΓ,x:A(B)

N. Mull 7:15

so the desired judgment follows directly from the inductive hypothesis applied to the left
antecedent judgment. Again, it cannot be the case that i − 1 ∈ I and A = si−1 since si

is rule-isolated in this case. The remaining case is straightforward.
Application. Suppose the last inference is of the form

Γ ⊢ M : ΠxA. B Γ ⊢ N : A

Γ ⊢ MN : B[N/six]

By type correctness, Γ ⊢ ΠxA. B : sj for some sort sj , and by generation, we have

Γ, six : A ⊢ B : sj

so by Lemma 28, if i ∈ I (i.e., deg(N) + 1 ∈ I), then τΓ(MN) = τΓ(M) and

τΓ(B[N/six]) = τΓ,x:A(B) = τΓ(ΠxA. B).

The desired result then follows directly from the inductive hypothesis applied to the left
antecedent judgment. And if i ̸∈ I, then τΓ(B[N/x]) = τΓ,x:A(B)[τΓ(N)/x] and we have

τ(Γ) ⊢ τΓ(M) : ΠxτΓ(A). τΓ,x:A(B) τ(Γ) ⊢ τΓ(N) : τΓ(A)
τ(Γ) ⊢ τΓ(M)τΓ(N) : τΓ,x:A(B)[τΓ(N)/x]

Conversion. Suppose the last inference is of the form

Γ ⊢ M : A Γ ⊢ B : si

Γ ⊢ M : B

where A =β B. Then we have

τ(Γ) ⊢ τΓ(M) : τΓ(A) τ(Γ) ⊢ τΓ(B) : si

τ(Γ) ⊢ τΓ(M) : τΓ(B)

where τΓ(A) =β τΓ(B) by Lemma 30. ◀

It remains to show that this translation is path-preserving. The guiding observation is
that β2-reductions cannot make more “complex” redexes. We define a complexity measure
which captures this observation by its being monotonically decreasing in β2-reductions.

▶ Definition 33. The shallow λ-depth of an expression M is the number of top-level λ’s
appearing in it, i.e., the function δ : T → N is given by δ(λxA. N) ≜ 1 + δ(N) and δ(M) ≜ 0
otherwise. The shallow λ-depth of a redex (λxA. M)N is the shallow λ-depth of its left
term λxA. M . I will simply write “depth” from this point forward.

▶ Definition 34. Define µ : T → N to be the function which maps an expression to the sum
of the depths of its β2-redexes, i.e.,

µ(si) = µ(x) ≜ 0
µ(ΠxA. B) = µ(λxA. B) ≜ µ(A) + µ(B)

µ(MN) ≜
{

µ(M) + µ(N) + δ(MN) MN is a β2-redex
µ(M) + µ(N) otherwise.

Finally, we prove the monotonicity lemma. It depends on the domain-full version of a
result by Lévy for the untyped lambda calculus about the creation of new redexes [14]. I give
the statement of the result here without proof (See [11, 20] among others for the standard
definition of a residual).

TYPES 2022

7:16 An Irrelevancy-Eliminating Translation of Pure Type Systems

▶ Lemma 35. For expressions M and N such that M →β N , if (λxA. P)Q is a redex of N

which is not a residual of a redex in M , then it is created in one of the following ways.
1. (λyB . y)(λxA. P)Q →β (λxA. P)Q;
2. (λyC . λxD. R)SQ →β (λxD[S/y]. R[S/y])Q where A = D[S/y] and P = R[S/y];
3. (λyB . R)(λxA. P) →β R[λxA. P/y] where yQ is a sub-expression of R.

▶ Lemma 36. For derivable expressions M and N , if M →β2 N , then µ(M) > µ(N).

Proof. Suppose M reduces to N by reducing the β2-redex (λxC . P)Q. By Corollary 24,
the expression Q is of the form Πx1

A1 Πxk
Ak . B where deg(Aj) ∈ I for all j and either

B = si−2 or B ∈ Vsi
. This means reducing a β2-redex cannot duplicate existing redexes in

M , so every redex has at most one residual in N . Furthermore, if N has a new β2-redex, it
is by item 2 of Lemma 35, i.e., there are expressions C, D, R, and S, and variable z such
that P = λzD. R and

(λxC . λzD. R)QS →β (λzD[Q/x]. R[Q/x])S.

It is easy to verify that, because of the form of Q, only one new β-redex is created and,
furthermore, δ(R[Q/x]) ≤ δ(R). This implies the new redex has smaller depth than the
redex that was reduced, so even if it is a β2-redex, the complexity of M decreases. ◀

The proof of the main theorem of this section is standard.

▶ Theorem 37. If λS− is strongly normalizing, then λS is strongly normalizing.

Proof. Suppose there is an infinite reduction sequence in λS

M1 →β M2 →β . . .

where M1 is derivable in λS from the context Γ. Since µ is monotonically decreasing in
β2-reductions (Lemma 36), there cannot be an infinite sequence of solely β2-reductions
contained in this sequence. This means there are infinitely many β1 reductions in this
sequence, which by Lemma 30 implies there infinitely many β-reductions in the reduction
path

τΓ(M1) ↠β τΓ(M2) ↠β . . .

where τΓ(M1) is derivable in λS− by Lemma 32. ◀

3.2 Eliminating Completely Isolated Sorts
We now handle completely isolated sorts. Recall that a sort si is completely isolated
if si is top-sort-like and rule-isolated. This translation is slightly simpler than the first.
It is a generalization of the observation made in the introduction that one can define a
path-preserving translation from λHOL to λω, i.e., one that eliminates the rule-isolated
top-sort.

Fix an n-tiered pure type system λS with n > 2, and a completely isolated sort si.7 In
essence, the following translation removes the completely isolated sort and shifts down all
the sorts that might be above it. Because isolated sorts can only really be used to introduce
variables into the context, the translation pre-substitutes those variables with dummy values
that won’t affect the normalization behavior of the expression after translation.

7 The restriction on n is a technicality that ensures the target system is nontrivial. See, for example, the
variable case of Definition 38.

N. Mull 7:17

One notable feature of this translation is that it does not preserve the number of sorts in
the system and, furthermore, does not preserve degree. It will be useful to be more careful
about variable annotations in the following definitions and lemmas.

▶ Definition 38. Define the context-indexed function θΓ : Ctx × T → T inductively on both
arguments as follows.

θΓ(sj) ≜
{

sj j < i

sj−1 otherwise

θΓ(sj x) ≜

si−2 if j = i and (six : si−1) ∈ Γ
sj x j < i
sj−1x otherwise

θΓ(Πsj xA. B) ≜ ΠθΓ(sj)x
θΓ(A)

. θΓ,x:A(B)

θΓ(λsj xA. M) ≜ λθΓ(sj)x
θΓ(A)

. θΓ,x:A(M)
θΓ(MN) ≜ θΓ(M)θΓ(N)

This function is used to define a function on contexts as

θ(∅) ≜ ∅

θ(Γ, sj x : A) ≜
{

θ(Γ) if j = i and A = si−1

θ(Γ), θΓ(sj)x : θΓ(A) otherwise.

As with the previous translation, contexts can be weakened without changing the value
of the function (in analogy with Proposition 27 for τΓ). We go on to prove substitution-
commutation, β-reduction preservation, and typability preservation. The proofs are similar
to those in the previous sub-section and, consequently, are slightly abbreviated.

▶ Lemma 39. For context Γ, expressions M , N , A and B, and variable sj x, if j ̸= i and
Γ, sj x : A ⊢ M : B and Γ ⊢ N : A then θΓ(M [N/sj x]) = θΓ,sj x:A(M)[θΓ(N)/θΓ(sj)x].

Proof. By induction on the structure of M . All cases are straightforward except the case
in which M is a variable, but then the assumption that j ̸= i ensures the desired equality
holds. ◀

▶ Lemma 40. For expressions M and N derivable from Γ, if M →β N , then θΓ(M) →β

θΓ(N). Furthermore, if M =β N , then θΓ(M) =β θΓ(N).

Proof. The second part follows directly from the first, which follows by induction on the
structure of the one-step β-reduction relation. In the case of a redex (λxA. M)N , we have

θΓ((λxA. M)N) = (λxθΓ(A). θΓ,x:A(M))θΓ(N)

→β θΓ,x:A(M)[θΓ(N)/θΓ(sj)x]

= θΓ(M [N/θΓ(sj)x])

where the last equality follows from Lemma 39, keeping in mind that j ≠ i since i is isolated,
so the lemma can be safely applied. ◀

Finally, typability preservation. The target system is as expected, the completely isolated
sort si is removed and potential sorts above it are shifted down.

TYPES 2022

7:18 An Irrelevancy-Eliminating Translation of Pure Type Systems

▶ Definition 41. The i-collapse of λS, denote here by λS∗, is the (n − 1)-tiered systems
specified by the rules {(θ∅(sj), θ∅(sk)) | (sj , sk) ∈ RλS}.

▶ Lemma 42. For context Γ and expressions M and A where M ̸= si−1, if

Γ ⊢ M : A then θ(Γ) ⊢ θΓ(M) : θΓ(A).

Proof. By induction on the structure of derivations. The proof differs slightly depending on
whether or not si is a top-sort. I make clear below which cases differ.
Axiom. Since M ̸= si−1, the judgment ∅ ⊢ θ∅(sj) : θ∅(sj+1) is still an axiom.
Variable Introduction. Suppose the last inference is of the form

Γ ⊢ A : sj

Γ, sj x : A ⊢ sj x : A

If j = i and A = si−1, then θ(Γ) ⊢ si−2 : si−1 is still derivable. Note that θ(Γ) can be
proved to be well-formed by the inductive hypothesis. If j < i, then we have

θ(Γ) ⊢ θΓ(A) : sj

θ(Γ), sj x : θΓ(A) ⊢ sj x : θΓ(A)

If j > i, then in particular si is not a top-sort. This case is then similar to the previous
one, keeping in mind that this might use the axiom (si−1, si) for the translated derivation
in the system λS∗, but not in the case that si is a top-sort.

Weakening. This case follows directly from the fact that θΓ,x:B(M) = θΓ(M) whenever M

and B are derivable from Γ. It is also similar to the analogous case in the previous
sub-section.

Product Type Formation. Suppose the last inference is of the form

Γ ⊢ A : sj Γ, sj x : A ⊢ B : sk

Γ ⊢ ΠxA. B : sk

Note that j ̸= i and k ̸= i since si is rule-isolated. In particular, neither A nor B are si−1.
Therefore, we can apply the inductive hypothesis directly to each antecedent judgment
and derive the desired consequent judgment.

Abstraction. Suppose the last inference is of the form

Γ, sj x : A ⊢ M : B Γ ⊢ ΠxA. B : sk

Γ ⊢ λxA. M : ΠxA. B

Note that j ̸= i since si is rule-isolated, and so ΠxA. B would not be derivable. Further-
more, B ̸= si (so M ̸= si−1) since si is irrelevant. Therefore, we can apply the inductive
hypothesis directly to each antecedent judgment and derive the desired consequent
judgment.

Application. Suppose the last inference is of the form

Γ ⊢ M : ΠxA. B Γ ⊢ N : A

Γ ⊢ MN : B[N/x]

Note that deg(A) ̸= i + 1 (and in particular N ̸= si−1), since si+1 is rule-isolated.
Furthermore, deg(A) ̸= i (and deg(N) ̸= i − 1) since si is rule-isolated. Therefore, we
can apply the inductive hypothesis directly to each antecedent judgment to derive

θ(Γ) ⊢ θΓ(M)θΓ(N) : θΓ,x:A(B)[θΓ(N)/x]

where θΓ,x:A(B)[θΓ(N)/x] = θΓ(B[N/x]) by Lemma 39.

N. Mull 7:19

s1 s2 s3 s4 s5 s6 s7 s8 s9

Figure 2 A system with a non-trivial sequence of irrelevance reductions.

Conversion. Suppose the last inference is of the form

Γ ⊢ M : A Γ ⊢ B : sj

Γ ⊢ M : B

If M = si−1, then A =β si =β B. Then by Lemma 21, in fact A = B. If B = si−1, then
by Corollary 24 we again have A = B. Otherwise, by Lemma 40, θΓ(A) =β θΓ(B) and
we can derive θ(Γ) ⊢ θΓ(M) : θΓ(B) by the inductive hypothesis and conversion. ◀

Since β-reductions are simulated directly, the argument for the final theorem is straight-
forward.

▶ Theorem 43. If λS∗ is strongly normalizing then λS is strongly normalizing.

3.3 The Final Translation
We can now consider the fixed-points of the above translations.

▶ Definition 44. Let τ(λS) denote the fixed-point of taking the irrelevance reduction of
λS with respect to maximum completely irrelevant index sets. That is, repeat λS := λS−

taken with respect to the maximum completely irrelevant index set of λS, until its maximum
completely irrelevant index set is empty.

▶ Definition 45. Let θ(λS) denote the fixed-point of taking the i-collapse of λS, where i is
the maximum index of a complete isolated sort in λS, if one exists. That is, repeat λS := λS∗

taken with respect to the maximum index of a completely isolated sort of λS until it has no
completely isolated sort or is 2-tiered.

Note that a sort which does not appear in the maximum completely irrelevant index set
of λS may appear in the maximum completely irrelevant set of λS−. See Figure 2 for a
tiered system with a non-trivial sequence of irrelevance reductions. The maximum completely
irrelevant index set of this system is {9}, but after eliminating the rules associated with s9,
both s9 and s5 become rule-isolated, and so the next maximum completely irrelevant index
set is {4, 8}. One can then imagine how this effect can be scaled up to larger systems.

I will write λS↓ for τ(λS) and λS⇓ for θ(τ(λS)). Since no rules are removed by an
i-collapse (only shifted), no sort can become completely isolated and no new completely
irrelevant index set can be created, so in fact λS⇓ is the fixed-point of θ ◦ τ .

The main two theorems are as follows.

▶ Theorem 46. For any tiered pure type system λS, if λS⇓ is strongly normalizing, then
λS is strongly normalizing.

TYPES 2022

7:20 An Irrelevancy-Eliminating Translation of Pure Type Systems

▶ Theorem 47. For any tiered pure type system λS, if weak normalization implies strong
normalization for λS↓, then weak normalization implies strong normalization for λS.

In particular, if λS↓ satisfies the conditions of Barthe et al. ([4], Theorem 5.21), then
weak normalization implies strong normalization in λS. This does not immediately apply
to λS⇓ since it is not immediate that weak normalization is preserved from λS to λS∗; the
sorts are not preserved. Note that it is immediate in the case that the completely isolated
sort is a top-sort. Given the scope of this work, I leave this to be verified, it is a natural step
in extending these results.

4 Conclusions

I have presented a path-preserving translation which eliminates some irrelevant structure.
Again, this structure is irrelevant with respect to normalization, not derivability. When
combined with results for the Barendregt-Geuvers-Klop conjecture, it widens the class of
systems for which the conjecture applies. This is a step towards proving the conjecture for
all tiered systems, in particular because it highlights those systems which require further
analysis. For example, it appears that dealing with circular rules is one of the clear barriers
in strengthening these results. For 3-tiered systems, we extend the conjecture to (and can
prove strong normalization of) the system8

s1 s2 s3

but not to the same system with the additional rule (s3, s3). Circular rules break irrelevancy
and, consequently, induce much more complicated structure in the system.

Additionally, it is worth noting that the conditions on completely irrelevant index sets
cannot be trivially weakened. If, for example the irrelevance condition on preceding sorts
was removed, this technique would apply to λU (i.e., the same system presented above but
with the additional rule (s2, s2)), leading to a contradiction since λU is non-normalizing.
Circular rules again seem to be at the core of this issue. More carefully considering λU and
related non-normalizing systems through the lens of these results – particularly why the
techniques don’t apply to these systems – may yield a more structural understanding of the
non-normalization of λU . Regardless, I hope to have demonstrated with this translation that,
despite the full Barendregt-Geuvers-Klop conjecture seeming quite far from being resolved,
there are still a number of approachable questions and avenues for further development.

References
1 TLCA List of Open Problems, 2014. http://tlca.di.unito.it/opltlca/.
2 Henk Barendregt. Introduction to generalized type systems. Journal of Functional Program-

ming, 1(2):125–154, 1991.
3 Henk Barendregt. Lambda Calculi with Types. In Handbook of Logic in Computer Science,

Volume II, pages 117–309. Oxford University Press, 1993.
4 Gilles Barthe, John Hatcliff, and Morten Heine Sørensen. Weak normalization implies strong

normalization in a class of non-dependent pure type systems. Theoretical Computer Science,
269(1-2):317–361, 2001.

8 This system is not covered by the Barthe et al. result because s2 is not negatable.

N. Mull 7:21

5 Stefano Berardi. Towards a mathematical analysis of the Coquand-Huet calculus of con-
structions and the other systems in Barendregt’s cube. Technical report, Carnegie Mellon
University, Universita di Torino, 1988.

6 Stefano Berardi. Type Dependence and Constructive Mathematics. PhD thesis, Dipartimento
di Informatica, Torino, Italy, 1990.

7 Herman Geuvers. The Calculus of Constructions and Higher Order Logic. In The Curry-
Howard Isomorphism, volume 8 of Cahiers du Centre de Logique (Universit’e catholique de
Louvain), Academia, Louvain-la-Neuve (Belgium), pages 131–191, 1995.

8 Herman Geuvers and Mark-Jan Nederhof. Modular proof of strong normalization for the
calculus of constructions. Journal of Functional Programming, 1(2):155–189, 1991.

9 Jan Herman Geuvers. Logic and Type Systems. PhD thesis, University of Nijmegen, 1993.
10 Robert Harper, Furio Honsell, and Gordon Plotkin. A Framework for Defining Logics. Journal

of the ACM, 40(1):143–184, 1993.
11 Gérard Huet. Residual Theory in λ-Calculus: A Formal Development. Journal of Functional

Programming, 4(3):371–394, 1994.
12 Fairouz Kamareddine, Twan Laan, and Rob Nederpelt. A Modern Perspective on Type Theory:

From its Origins until Today, volume 29 of Applied Logic Series. Springer, 2004.
13 Jeroen Ketema, Jan Willem Klop, and V van Oostrom. Vicious Circles in Rewriting Systems.

Artificial Intelligence Preprint Series, 52, 2004.
14 Jean-Jacques Lévy. Réductions Correctes et Optimales dans le Lambda-Calcul. PhD thesis,

L’Université Paris VII, 1978.
15 Zhaohui Luo. An extended calculus of constructions. PhD thesis, University of Edinburgh,

1990.
16 Cody Roux and Floris van Doorn. The Structural Theory of Pure Type Systems. In Rewriting

and Typed Lambda Calculi, pages 364–378. Springer, 2014.
17 Morten Heine Sørensen. Strong Normalization from Weak Normalization in Typedλ-Calculi.

Information and Computation, 133(1):35–71, 1997.
18 Jan Terlouw. Een nadere bewijstheoretische analyse van GSTT’s. Technical report, Department

of Computer Science, University of Nijmege, 1989.
19 Hongwei Xi. On Weak and Strong Normalisations. Technical report, Carnegie Mellon University,

Department of Mathematics, 1996.
20 Hongwei Xi. Development Separation in Lambda-Calculus. Electronic Notes in Theoretical

Computer Science, 143:207–221, 2006.

TYPES 2022

Linear Rank Intersection Types
Fábio Reis #

DCC-FCUP, University of Porto, Portugal
LIACC – Artificial Intelligence and Computer Science Laboratory, University of Porto, Portugal

Sandra Alves # Ñ

DCC-FCUP, University of Porto, Portugal
LIACC – Artificial Intelligence and Computer Science Laboratory, University of Porto, Portugal
CRACS, INESC-TEC – Centre for Research in Advanced Computing Systems, Porto, Portugal

Mário Florido #

DCC-FCUP, University of Porto, Portugal
LIACC – Artificial Intelligence and Computer Science Laboratory, University of Porto, Portugal

Abstract
Non-idempotent intersection types provide quantitative information about typed programs, and have
been used to obtain time and space complexity measures. Intersection type systems characterize
termination, so restrictions need to be made in order to make typability decidable. One such
restriction consists in using a notion of finite rank for the idempotent intersection types. In this
work, we define a new notion of rank for the non-idempotent intersection types. We then define a
novel type system and a type inference algorithm for the λ-calculus, using the new notion of rank 2.
In the second part of this work, we extend the type system and the type inference algorithm to use
the quantitative properties of the non-idempotent intersection types to infer quantitative information
related to resource usage.

2012 ACM Subject Classification Theory of computation → Type theory

Keywords and phrases Lambda-Calculus, Intersection Types, Quantitative Types, Tight Typings

Digital Object Identifier 10.4230/LIPIcs.TYPES.2022.8

Related Version Full Version: https://arxiv.org/abs/2211.17186

Funding Fábio Reis: This work was partially financially supported by Base Funding –
UIDB/00027/2020 of the Artificial Intelligence and Computer Science Laboratory – LIACC –
funded by national funds through the FCT/MCTES (PIDDAC).
Sandra Alves: Partially supported by National Funds through the Portuguese funding agency, FCT –
Fundação para a Ciência e a Tecnologia, within project LA/P/0063/2020.
Mário Florido: This work was partially financially supported by Base Funding – UIDB/00027/2020
of the Artificial Intelligence and Computer Science Laboratory – LIACC – funded by national funds
through the FCT/MCTES (PIDDAC).

1 Introduction

The ability to determine upper bounds for the number of execution steps of a program in
compilation time is a relevant problem, since it allows us to know in advance the computational
resources needed to run the program.

Type systems are a powerful and successful tool of static program analysis that are used,
for example, to detect errors in programs before running them. Quantitative type systems,
besides helping on the detection of errors, can also provide quantitative information related
to computational properties.

Intersection types, defined by the grammar σ ::= α | σ1 ∩ · · · ∩ σn → σ (where α is a type
variable and n ≥ 1), are used in several type systems for the λ-calculus [6, 7, 18, 27] and allow
λ-terms to have more than one type. Non-idempotent intersection types [16, 20, 12, 4], also
known as quantitative types, are a flavour of intersection types in which the type constructor

© Fábio Reis, Sandra Alves, and Mário Florido;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Types for Proofs and Programs (TYPES 2022).
Editors: Delia Kesner and Pierre-Marie Pédrot; Article No. 8; pp. 8:1–8:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fabio.d.reis@protonmail.ch
https://orcid.org/0000-0003-1714-8303
mailto:sandra@fc.up.pt
http://www.dcc.fc.up.pt/~sandra
https://orcid.org/0000-0001-8840-5587
mailto:amflorid@fc.up.pt
https://orcid.org/0000-0002-0574-7555
https://doi.org/10.4230/LIPIcs.TYPES.2022.8
https://arxiv.org/abs/2211.17186
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Linear Rank Intersection Types

∩ is non-idempotent, and provide more than just qualitative information about programs.
They are particularly useful in contexts where we are interested in measuring the use of
resources, as they are related to the consumption of time and space in programs. Type
systems based on non-idempotent intersection types, use non-idempotence to count the
number of evaluation steps and the size of the result. For instance in [1], the authors define
several quantitative type systems, corresponding to different evaluation strategies, for which
they are able to measure the number of steps taken by that strategy to reduce a term to
its normal form, and the size of the term’s normal form. Typability is undecidable for
intersection type systems, as it corresponds to termination. One way to get around this
is to restrict intersection types to finite ranks, a notion defined by Daniel Leivant in [21]
that makes typability decidable - Kfoury and Wells [19] define an intersection type system
that, when restricted to any finite-rank, has principal typings and decidable type inference.
Type systems that use finite-rank intersection types are still very powerful and useful. For
instance, rank 2 intersection type systems [18, 26, 11] are more powerful, in the sense that
they can type strictly more terms, than popular systems like the ML type system [10]. Still
related to decidability of typability for finite ranks, Dudenhefner and Rehof [14] studied the
problem for a notion of bounded-dimensional intersection types. This notion was previously
defined in the context of type inhabitation [13], where it was used to prove decidability of
type inhabitation for a non-idempotent intersection type system (the problem is known to
be undecidable above rank 2, for idempotent intersection types [25]).

In this paper we present a new definition of rank for the quantitative types, which we call
linear rank and differs from the classical one in the base case – instead of simple types, linear
rank 0 intersection types are the linear types. In a non-idempotent intersection type system,
every linear term is typable with a simple type (in fact, in many of those systems, only the
linear terms are), which is the motivation to use linear types for the base case. The relation
between non-idempotent intersection types and linearity has already been studied by Kfoury
[20], de Carvalho [12], Gardner [16] and Florido and Damas [15]. Our motivation to redefine
rank in the first place, has to do with our interest in using non-idempotent intersection types
to estimate the number of evaluation steps of a λ-term to normal form while inferring its
type, and the realization that there is a way to define rank that is more suitable for the
quantitative types. We define a new intersection type system for the λ-calculus, restricted to
linear rank 2 non-idempotent intersection types, and a new type inference algorithm that we
prove to be sound and complete with respect to the type system.

Finally we extend our type system and inference algorithm to use the quantitative
properties of the linear rank 2 non-idempotent intersection types to infer not only the type
of a λ-term, but also the number of evaluation steps of the term to its normal form. The new
type system is the result of a merge between our Linear Rank 2 Intersection Type System
and the system for the leftmost-outermost evaluation strategy presented in [1]. The type
system in [1] is a quantitative typing system extended with the notion of tight types (which
provide an effective characterisation of minimal typings) that is crucial to extract exact
bounds for reduction. We prove that the system gives the correct number of evaluation steps
for a kind of derivation. As for the new type inference algorithm, we show that it is sound
and complete with respect to the type system for the inferred types, and conjecture that the
inferred measures correspond to the ones given by the type system (i.e., correspond to the
number of evaluation steps of the term to its normal form, when using the leftmost-outermost
evaluation strategy).

Thus, the main contributions of this paper are the following:
A new definition of rank for non-idempotent intersection types, which we call linear rank
(Section 3);
A Linear Rank 2 Intersection Type System for the λ-calculus (Section 3);

F. Reis, S. Alves, and M. Florido 8:3

A type inference algorithm that is sound and complete with respect to the Linear Rank 2
Intersection Type System (Section 3);
A Linear Rank 2 Quantitative Type System for the λ-calculus that derives a measure
related to the number of evaluation steps for the leftmost-outermost strategy (Section 4);
A type inference algorithm that is sound and complete with respect to the Linear
Rank 2 Quantitative Type System, for the inferred types, and gives a measure that we
conjecture to correspond to the number of evaluation steps of the typed term for the
leftmost-outermost strategy (Section 4).

In this paper we assume that the reader is familiar with the λ-calculus [3]. From now on,
in the rest of the paper, terms of the λ-calculus are considered modulo α-equivalence and we
use Barendregt’s variable convention [2].

2 Intersection Types

The simply typed λ-calculus is a typed version of the λ-calculus, introduced by Alonzo Church
in [5] and by Haskell Curry and Robert Feys in [9]. One system that uses simple types is
the Curry Type System, which was first introduced in [8] for the theory of combinators, and
then modified for the λ-calculus in [9]. Typability in this system is decidable and there is
an algorithm that given a term, returns its principal pair. However, the system presents
some disadvantages when comparing to others, one of them being the large number of terms
that cannot be typed. For example, in the Curry Type System we cannot assign a type
to the λ-term λx.xx. This term, on the other hand, can be typed in systems that use
intersection types, which allow terms to have more than one type. Such a system is the
Coppo-Dezani Type System [6], which was one of the first to use intersection types, and a
basis for subsequent systems.

▶ Definition 1 (Intersection types). Intersection types σ, σ1, σ2, . . . ∈ T are defined by the
following grammar:

σ ::= α | σ1 ∩ · · · ∩ σn → σ

where n ≥ 1 and σ1 ∩ · · · ∩ σn is called a sequence of types.
Note that intersections arise in different systems in different scopes. Here we follow

several previous presentations where intersections are only allowed directly on the left-hand
side of arrow types and sequences are non-empty [6, 7, 18, 27].

▶ Notation. The intersection type constructor ∩ binds stronger than →: α1 ∩ α2 → α3
stands for (α1 ∩ α2) → α3.

▶ Example 2. Some examples of intersection types are:

α;
α1 → α2;
α1 ∩ α2 → α3;
(α1 ∩ α2 → α3) → α4;
α1 ∩ (α1 → α2) → α3.

▶ Definition 3 (Coppo-Dezani Type System). In the Coppo-Dezani Type System, we say that
M has type σ given the environment Γ (where the predicates of declarations are sequences),
and write Γ ⊢CD M : σ, if Γ ⊢CD M : σ can be obtained from the derivation rules in Figure 1,
where 1 ≤ i ≤ n:

TYPES 2022

8:4 Linear Rank Intersection Types

Γ ∪ {x : σ1 ∩ · · · ∩ σn} ⊢CD x : σi (Axiom)

Γ ∪ {x : σ1 ∩ · · · ∩ σn} ⊢CD M : σ

Γ ⊢CD λx.M : σ1 ∩ · · · ∩ σn → σ
(→ Intro)

Γ ⊢CD M1 : σ1 ∩ · · · ∩ σn → σ Γ ⊢CD M2 : σ1 · · · Γ ⊢CD M2 : σn

Γ ⊢CD M1M2 : σ
(→ Elim)

Figure 1 Coppo-Dezani Type System.

▶ Example 4. For the λ-term λx.xx the following derivation is obtained:

{x : σ1 ∩ (σ1 → σ2)} ⊢CD x : σ1 → σ2 {x : σ1 ∩ (σ1 → σ2)} ⊢CD x : σ1

{x : σ1 ∩ (σ1 → σ2)} ⊢CD xx : σ2

⊢CD λx.xx : σ1 ∩ (σ1 → σ2) → σ2

This system is a true extension of the Curry Type System, allowing term variables to
have more than one type in the (→ Intro) derivation rule and the right-hand term to also
have more than one type in the (→ Elim) derivation rule.

2.1 Finite Rank
Intersection type systems, like the Coppo-Dezani Type System, characterize termination, in
the sense that a λ-term is strongly normalizable if and only if it is typable in an intersection
type system. Thus, typability is undecidable for these systems.

To get around this, some current intersection type systems are restricted to types of
finite rank [18, 26, 19, 11] using a notion of rank first defined by Daniel Leivant in [21]. This
restriction makes typability decidable [19]. Despite using finite-rank intersection types, these
systems are still very powerful and useful. For instance, rank 2 intersection type systems
[18, 26, 11] are more powerful, in the sense that they can type strictly more terms, than
popular systems like the ML type system [10].

The rank of an intersection type is related to the depth of the nested intersections and it
can be easily determined by examining the type in tree form: a type is of rank k if no path
from the root of the type to an intersection type constructor ∩ passes to the left of k arrows.

▶ Example 5. The intersection type α1 ∩ (α1 → α2) → α2 (tree on the left) is a rank 2 type
and (α1 ∩ α2 → α3) → α4 (tree on the right) is a rank 3 type:

→

∩

α1 →

α1 α2

α2

→

→

∩

α1 α2

α3

α4

F. Reis, S. Alves, and M. Florido 8:5

▶ Definition 6 (Rank of intersection types). Let T0 be the set of simple types and T1 =
{τ1 ∩ · · · ∩ τm | τ1, . . . , τm ∈ T0, m ≥ 1} the set of sequences of simple types (written as τ⃗).
The set Tk, of rank k intersection types (for k ≥ 2), can be defined recursively in the following
way (n ≥ 3, m ≥ 1):

T2 = T0 ∪ {τ⃗ → σ | τ⃗ ∈ T1, σ ∈ T2}
Tn = Tn−1 ∪ {ρ1 ∩ · · · ∩ ρm → σ | ρ1, . . . , ρm ∈ Tn−1, σ ∈ Tn}

▶ Notation. We consider the intersection type constructor ∩ to be associative, commutative
and non-idempotent (meaning that α ∩ α is not equivalent to α).

We are particularly interested in non-idempotent intersection types, also known as
quantitative types, because they provide more quantitative information than the idempotent
ones.

3 Linear Rank Intersection Types

In the previous chapter, we mentioned several intersection type systems in which intersection
is idempotent and types are rank-restricted. There are also many quantitative type systems
[16, 20, 12, 4] that, on the other hand, make use of non-idempotent intersection types, for
which there is no specific definition of rank.

The generalization of ranking for non-idempotent intersection types is not trivial and
raises interesting questions that we will address in this chapter, along with a definition of a
new non-idempotent intersection type system and a type inference algorithm.

This and the following sections cover original work that we presented at the TYPES 2022
conference [23].

3.1 Linear Rank
The set of terms typed using idempotent rank 2 intersection types and non-idempotent rank 2
intersection types is not the same. For instance, the term (λx.xx)(λfx.f(fx)) is typable with
a simple type when using idempotent intersection types, but not when using non-idempotent
intersection types. This comes from the two different occurrences of f in λfx.f(fx), which
even if typed with the same type, are not contractible because intersection is non-idempotent.
Note that this is strongly related to the linearity features of terms. A λ-term M is called
a linear term if and only if, for each subterm of the form λx.N in M , x occurs free in N

exactly once, and if each free variable of M has just one occurrence free in M . So the term
(λx.xx)(λfx.f(fx)) is not typable with a non-idempotent rank 2 intersection type precisely
because the term λfx.f(fx) is not linear.

Note that in a non-idempotent intersection type system, every linear term is typable with
a simple type (in fact, in many of those systems, only the linear terms are). This motivated
us to come up with a new notion of rank for non-idempotent intersection types, based on
linear types (the ones derived in a linear type system – a substructural type system in which
each assumption must be used exactly once, corresponding to the implicational fragment of
linear logic [17]). The relation between non-idempotent intersection types and linearity was
first introduced by Kfoury [20] and further explored by de Carvalho [12], who established its
relation with linear logic.

Here we propose a new definition of rank for intersection types, which we call linear
rank and differs from the classical one in the base case – instead of simple types, linear
rank 0 intersection types are the linear types – and in the introduction of the functional type
constructor “linear arrow” ⊸.

TYPES 2022

8:6 Linear Rank Intersection Types

▶ Definition 7 (Linear rank of intersection types). Let TL0 = V ∪ {τ1 ⊸ τ2 | τ1, τ2 ∈ TL0}
be the set of linear types and TL1 = {τ1 ∩ · · · ∩ τm | τ1, . . . , τm ∈ TL0, m ≥ 1} the set of
sequences of linear types. The set TLk, of linear rank k intersection types (for k ≥ 2), can
be defined recursively in the following way (n ≥ 3, m ≥ 2):

TL2 = TL0 ∪ {τ ⊸ σ | τ ∈ TL0, σ ∈ TL2}
∪ {τ1 ∩ · · · ∩ τm → σ | τ1, . . . , τm ∈ TL0, σ ∈ TL2}

TLn = TLn−1 ∪ {ρ ⊸ σ | ρ ∈ TLn−1, σ ∈ TLn}
∪ {ρ1 ∩ · · · ∩ ρm → σ | ρ1, . . . , ρm ∈ TLn−1, σ ∈ TLn}

Initially, the idea for the change arose from our interest in using rank-restricted intersection
types to estimate the number of evaluation steps of a λ-term while inferring its type. While
defining the intersection type system to obtain quantitative information, we realized that
the ranks could be potentially more useful for that purpose if the base case was changed to
types that give more quantitative information in comparison to simple types, which is the
case for linear types – for instance, if a term is typed with a linear rank 2 intersection type,
one knows that each occurrence of its arguments is linear, meaning that they will be used
exactly once.

The relation between the standard definition of rank and our definition of linear rank
is not clear, and most likely non-trivial. Note that the set of terms typed using standard
rank 2 intersection types [18, 26] and linear rank 2 intersection types is not the same. For
instance, again, the term (λx.xx)(λfx.f(fx)), typable with a simple type in the standard
Rank 2 Intersection Type System, is not typable in the Linear Rank 2 Intersection Type
System, because, as the term (λfx.f(fx)) is not linear and intersection is not idempotent, by
Definition 7, the type of (λx.xx)(λfx.f(fx)) is now (linear) rank 3. This relation between
rank and linear rank is an interesting question that will not be covered here, but one that we
would like to explore in the future.

3.2 Type System
We now define a new type system for the λ-calculus with linear rank 2 non-idempotent
intersection types.

▶ Definition 8 (Substitution). Let S = [N/x] denote a substitution. Then the result of
substituting the term N for each free occurrence of x in the term M , denoted by M [N/x] (or
S(M)), is inductively defined as follows:

x[N/x] = N ;
x1[N/x2] = x1, if x1 ̸= x2;

(M1M2)[N/x] = (M1[N/x])(M2[N/x]);
(λx.M)[N/x] = λx.M ;

(λx1.M)[N/x2] = λx1.(M [N/x2]), if x1 ̸= x2.

▶ Notation. We write M [M1/x1, M2/x2, . . . , Mn/xn] for
(. . . ((M [M1/x1])[M2/x2]) . . .)[Mn/xn].

Composing two substitutions S1 and S2 results in a substitution S2 ◦S1 that when applied,
has the same effect as applying S1 followed by S2.

F. Reis, S. Alves, and M. Florido 8:7

▶ Definition 9 (Substitution composition). The composition of two substitutions S1 = [N1/x1]
and S2 = [N2/x2], denoted by S2 ◦ S1, is defined as:

S2 ◦ S1(M) = M [N1/x1, N2/x2].

Also, we consider that the operation is right-associative:

S1 ◦ S2 ◦ · · · ◦ Sn−1 ◦ Sn = S1 ◦ (S2 ◦ · · · ◦ (Sn−1 ◦ Sn) . . .).

▶ Notation. From now on, we will use α to range over a countable infinite set V of type
variables, τ to range over the set TL0 of linear types, τ⃗ to range over the set TL1 of linear
type sequences and σ to range over the set TL2 of linear rank 2 intersection types. In all
cases, we may use or not single quotes and/or number subscripts.

▶ Definition 10.
A statement is an expression of the form M : τ⃗ , where τ⃗ is called the predicate, and the
term M is called the subject of the statement.
A declaration is a statement where the subject is a term variable.
The comma operator (,) appends a declaration to the end of a list (of declarations). The
list (Γ1, Γ2) is the list that results from appending the list Γ2 to the end of the list Γ1.
A finite list of declarations is consistent if and only if the term variables are all distinct.
An environment is a consistent finite list of declarations which predicates are sequences
of linear types (i.e., elements of TL1) and we use Γ (possibly with single quotes and/or
number subscripts) to range over environments.
An environment Γ = [x1 : τ⃗1, . . . , xn : τ⃗n] induces a partial function Γ with domain
dom(Γ) = {x1, . . . , xn}, and Γ(xi) = τ⃗i.
We write Γx for the resulting environment of eliminating the declaration of x from Γ (if
there is no declaration of x in Γ, then Γx = Γ).
We extend the notion of substitution to environments in the following way:

S(Γ) = [S(x1) : τ⃗1, . . . , S(xn) : τ⃗n] if Γ = [x1 : τ⃗1, . . . , xn : τ⃗n]

We write Γ1 ≡ Γ2 if the environments Γ1 and Γ2 are equal up to the order of the
declarations.
If Γ1 and Γ2 are environments, the environment Γ1 + Γ2 is defined as follows:
for each x ∈ dom(Γ1) ∪ dom(Γ2),

(Γ1 + Γ2)(x) =

Γ1(x) if x /∈ dom(Γ2)
Γ2(x) if x /∈ dom(Γ1)
Γ1(x) ∩ Γ2(x) otherwise

with the declarations of the variables in dom(Γ1) in the beginning of the list, by the same
order they appear in Γ1, followed by the declarations of the variables in dom(Γ2)\dom(Γ1),
by the order they appear in Γ2.

▶ Definition 11 (Linear Rank 2 Intersection Type System). In the Linear Rank 2 Intersection
Type System, we say that M has type σ given the environment Γ, and write Γ ⊢2 M : σ, if it
can be obtained from the derivation rules in Figure 2.

▶ Example 12. Let us write ⊸α for the type (α ⊸ α). For the λ-term (λx.xx)(λy.y), the
following derivation is obtained:

[x1 : ⊸α⊸⊸α] ⊢2 x1 : ⊸α⊸⊸α [x2 : ⊸α] ⊢2 x2 : ⊸α

[x1 : ⊸α⊸⊸α, x2 : ⊸α] ⊢2 x1x2 : ⊸α

[x : (⊸α⊸⊸α) ∩ ⊸α] ⊢2 xx : ⊸α

[] ⊢2 λx.xx : (⊸α⊸⊸α) ∩ ⊸α→⊸α

[y : ⊸α] ⊢2 y : ⊸α

[] ⊢2 λy.y : ⊸α⊸⊸α

[y : α] ⊢2 y : α

[] ⊢2 λy.y : ⊸α

[] ⊢2 (λx.xx)(λy.y) : ⊸α

TYPES 2022

8:8 Linear Rank Intersection Types

[x : τ] ⊢2 x : τ (Axiom)

Γ1, x : τ⃗1, y : τ⃗2, Γ2 ⊢2 M : σ

Γ1, y : τ⃗2, x : τ⃗1, Γ2 ⊢2 M : σ
(Exchange)

Γ1, x1 : τ⃗1, x2 : τ⃗2, Γ2 ⊢2 M : σ

Γ1, x : τ⃗1 ∩ τ⃗2, Γ2 ⊢2 M [x/x1, x/x2] : σ
(Contraction)

Γ, x : τ1 ∩ · · · ∩ τn ⊢2 M : σ n ≥ 2
Γ ⊢2 λx.M : τ1 ∩ · · · ∩ τn → σ

(→ Intro)

Γ ⊢2 M1 : τ1 ∩ · · · ∩ τn → σ Γ1 ⊢2 M2 : τ1 · · · Γn ⊢2 M2 : τn n ≥ 2
Γ,

∑n
i=1 Γi ⊢2 M1M2 : σ

(→ Elim)

Γ, x : τ ⊢2 M : σ

Γ ⊢2 λx.M : τ ⊸ σ
(⊸ Intro)

Γ1 ⊢2 M1 : τ ⊸ σ Γ2 ⊢2 M2 : τ

Γ1, Γ2 ⊢2 M1M2 : σ
(⊸ Elim)

Figure 2 Linear Rank 2 Intersection Type System.

3.3 Type Inference Algorithm
In this section we define a new type inference algorithm for the λ-calculus (Definition 23),
which is sound (Theorem 32) and complete (Theorem 35) with respect to the Linear Rank 2
Intersection Type System.

Our algorithm is based on Trevor Jim’s type inference algorithm [18] for a Rank 2
Intersection Type System that was introduced by Daniel Leivant in [21], where the algorithm
was briefly covered. Different versions of the algorithm were later defined by Steffen van
Bakel in [26] and by Trevor Jim in [18].

Part of the definitions, properties and proofs here presented are also adapted from [18].

▶ Definition 13 (Type substitution). Let S = [τ1/α1, . . . , τn/αn] denote a type substitution,
where α1, . . . , αn are distinct type variables in V and τ1, . . . , τn are types in TL0.

For any τ in TL0, S(τ) = τ [τ1/α1, . . . , τn/αn] is the type obtained by simultaneously
substituting αi by τi in τ , with 1 ≤ i ≤ n.

The type S(τ) is called an instance of the type τ .
The notion of type substitution can be extended to environments in the following way:

S(Γ) = [x1 : S(τ⃗1), . . . , xn : S(τ⃗n)] if Γ = [x1 : τ⃗1, . . . , xn : τ⃗n]

The environment S(Γ) is called an instance of the environment Γ.

F. Reis, S. Alves, and M. Florido 8:9

If S1 = [τ1/α1, . . . , τn/αn] and S2 = [τ ′
1/α′

1, . . . , τ ′
n/α′

n] are type substitutions such that
the variables α1, . . . , αn, α′

1, . . . , α′
n are all distinct, then the type substitution S1 ∪ S2 is

defined as S1 ∪ S2 = [τ1/α1, . . . , τn/αn, τ ′
1/α′

1, . . . , τ ′
n/α′

n].

Composing two type substitutions S1 and S2 results in a type substitution S2 ◦ S1 that
when applied, has the same effect as applying S1 followed by S2.

▶ Definition 14 (Type substitution composition). The composition of two type substitutions
S1 = [τ1/α1, . . . , τn/αn] and S2 = [τ ′

1/α′
1, . . . , τ ′

m/α′
m], denoted by S2 ◦ S1, is defined as:

S2 ◦ S1 = [τ ′
i1

/α′
i1

, . . . , τ ′
ik

/α′
ik

, S2(τ1)/α1, . . . , S2(τn)/αn],

where {α′
i1

, . . . , α′
ik

} = {α′
1, . . . , α′

m} \ {α1, . . . , αn}.
Also, we consider that the operation is right-associative:

S1 ◦ S2 ◦ · · · ◦ Sn−1 ◦ Sn = S1 ◦ (S2 ◦ · · · ◦ (Sn−1 ◦ Sn) . . .).

3.3.1 Unification
We now recall Robinson’s unification [24], for the special case of equations involving simple
types. For the unification algorithm we follow a latter (more efficient) presentation by
Martelli and Montanari [22].

▶ Definition 15 (Unification problem). A unification problem is a finite set of equations P =
{τ1 = τ ′

1, . . . , τn = τ ′
n}. A unifier (or solution) is a substitution S, such that S(τi) = S(τ ′

i),
for 1 ≤ i ≤ n. We call S(τi) (or S(τ ′

i)) a common instance of τi and τ ′
i . P is unifiable if it

has at least one unifier. U(P) is the set of unifiers of P .

▶ Example 16. The types α1 ⊸ α2 ⊸ α1 and (α3 ⊸ α3) ⊸ α4 are unifiable. For the
type substitution S = [(α3 ⊸ α3)/α1, (α2 ⊸ (α3 ⊸ α3))/α4], the common instance is
(α3 ⊸ α3) ⊸ α2 ⊸ (α3 ⊸ α3).

▶ Definition 17 (Most general unifier). A substitution S is a most general unifier (MGU) of
P if S is the least element of U(P). That is,

S ∈ U(P) and ∀S1 ∈ U(P). ∃S2. S1 = S2 ◦ S.

▶ Example 18. Consider the types τ1 = (α1 ⊸ α1) and τ2 = (α2 ⊸ α3).
The type substitution S′ = [(α4 ⊸ α5)/α1, (α4 ⊸ α5)/α2, (α4 ⊸ α5)/α3] is a unifier of

τ1 and τ2, but it is not the MGU.
The MGU of τ1 and τ2 is S = [α3/α1, α3/α2]. The common instance of τ1 and τ2 by S′,

(α4 ⊸ α5) ⊸ (α4 ⊸ α5), is an instance of (α3 ⊸ α3), the common instance by S.

▶ Definition 19 (Solved form). A unification problem P = {α1 = τ1, . . . , αn = τn} is in
solved form if α1, . . . , αn are all pairwise distinct variables that do not occur in any of the
τi. In this case, we define SP = [τ1/α1, . . . , τn/αn].

▶ Definition 20 (Type unification). We define the following relation ⇒ on type unification
problems (for types in TL0):

{τ = τ} ∪ P ⇒ P

{τ1 ⊸ τ2 = τ3 ⊸ τ4} ∪ P ⇒ {τ1 = τ3, τ2 = τ4} ∪ P

{τ1 ⊸ τ2 = α} ∪ P ⇒ {α = τ1 ⊸ τ2} ∪ P

{α = τ} ∪ P ⇒ {α = τ} ∪ P [τ/α] if α ∈ fv(P) \ fv(τ)
{α = τ} ∪ P ⇒ FAIL if α ∈ fv(τ) and α ̸= τ

TYPES 2022

8:10 Linear Rank Intersection Types

where P [τ/α] corresponds to the notion of type substitution extended to type unification
problems. If P = {τ1 = τ ′

1, . . . , τn = τ ′
n}, then P [τ/α] = {τ1[τ/α] = τ ′

1[τ/α], . . . , τn[τ/α] =
τ ′

n[τ/α]}. And fv(P) and fv(τ) are the sets of free type variables in P and τ , respectively.
Since in our system all occurrences of type variables are free, fv(P) and fv(τ) are the sets of
type variables in P and τ , respectively.

▶ Definition 21 (Unification algorithm). Let P be a unification problem (with types in TL0).
The unification function UNIFY(P) that decides whether P has a solution and, if so, returns
the MGU of P (see [24]), is defined as:

function UNIFY(P)
while P ⇒ P ′ do

P := P ′;
if P is in solved form then

return SP ;
else

FAIL;

▶ Example 22. Consider again the types α1 ⊸ α1 and α2 ⊸ α3 in Example 18. For
the unification problem P = {α1 ⊸ α1 = α2 ⊸ α3}, UNIFY(P) performs the following
transformations over P :

{α1 ⊸ α1 = α2 ⊸ α3} ⇒ {α1 = α2, α1 = α3} ∪ { } = {α1 = α2, α1 = α3}
⇒ {α1 = α2} ∪ {α1 = α3}[α2/α1] = {α1 = α2, α2 = α3}
⇒ {α2 = α3} ∪ {α1 = α2}[α3/α2] = {α1 = α3, α2 = α3}

and, since {α1 = α3, α2 = α3} is in solved form, it returns the type substitution
[α3/α1, α3/α2].

3.3.2 Type Inference
▶ Definition 23 (Type inference algorithm). Let Γ be an environment, M a λ-term, σ a linear
rank 2 intersection type and UNIFY the function in Definition 21. The function T(M) = (Γ, σ)
defines a type inference algorithm for the λ-calculus in the Linear Rank 2 Intersection Type
System, in the following way:
1. If M = x, then Γ = [x : α] and σ = α, where α is a new variable;
2. If M = λx.M1 and T(M1) = (Γ1, σ1) then:

a. if x /∈ dom(Γ1), then FAIL;
b. if (x : τ) ∈ Γ1, then T(M) = (Γ1x, τ ⊸ σ1);
c. if (x : τ1 ∩ · · · ∩ τn) ∈ Γ1 (with n ≥ 2), then T(M) = (Γ1x, τ1 ∩ · · · ∩ τn → σ1).

3. If M = M1M2, then:
a. if T(M1) = (Γ1, α1) and T(M2) = (Γ2, τ2),

then T(M) = (S(Γ1 + Γ2), S(α3)),
where S = UNIFY({α1 = α2 ⊸ α3, τ2 = α2}) and α2, α3 are new variables;

b. if T(M1) = (Γ′
1, τ ′

1 ∩ · · · ∩ τ ′
n → σ′

1) (with n ≥ 2) and, for each 1 ≤ i ≤ n,
T(M2) = (Γi, τi)A,
then T(M) = (S(Γ′

1 +
∑n

i=1 Γi), S(σ′
1)),

where S = UNIFY({τi = τ ′
i | 1 ≤ i ≤ n});

A Note that Γi, τi can all be different up to renaming of variables.

F. Reis, S. Alves, and M. Florido 8:11

c. if T(M1) = (Γ1, τ ⊸ σ1) and T(M2) = (Γ2, τ2),
then T(M) = (S(Γ1 + Γ2), S(σ1)),
where S = UNIFY({τ2 = τ});

d. otherwise FAIL.

▶ Example 24. Let us show the type inference process for the λ-term λx.xx.

By rule 1., T(x) = ([x : α1], α1).
By rule 1., again, T(x) = ([x : α2], α2).
Then by rule 3.(a), T(xx) = (S([x : α1] + [x : α2]), S(α4)) = (S([x : α1 ∩ α2]), S(α4)),
where S = UNIFY({α1 = α3 ⊸ α4, α2 = α3}) = [α3 ⊸ α4/α1, α3/α2].
So T(xx) = ([x : (α3 ⊸ α4) ∩ α3], α4).
Finally, by rule 2.(c), T(λx.xx) = ([], (α3 ⊸ α4) ∩ α3 → α4).

▶ Example 25. Let us now show the type inference process for the λ-term (λx.xx)(λy.y).

From the previous example, we have T(λx.xx) = ([], (α3 ⊸ α4) ∩ α3 → α4).
By rules 1. and 2.(b), for the identity, the algorithm gives T(λy.y) = ([], α1 ⊸ α1).
By rules 1. and 2.(b), again, for the identity, T(λy.y) = ([], α2 ⊸ α2).
Then by rule 3.(b), T((λx.xx)(λy.y)) = (S([] + [] + []), S(α4)) = ([], S(α4)),
where S = UNIFY({α1 ⊸ α1 = α3 ⊸ α4, α2 ⊸ α2 = α3}), calculated by performing the
following transformations:

{α1 ⊸ α1 = α3 ⊸ α4, α2 ⊸ α2 = α3} ⇒ {α1 = α3, α1 = α4, α2 ⊸ α2 = α3}
⇒ {α1 = α3, α3 = α4, α2 ⊸ α2 = α3}
⇒ {α1 = α4, α3 = α4, α2 ⊸ α2 = α4}
⇒ {α1 = α4, α3 = α4, α4 = α2 ⊸ α2}
⇒ {α1 = α2 ⊸ α2, α3 = α2 ⊸ α2, α4 = α2 ⊸ α2}

So S = [(α2 ⊸ α2)/α1, (α2 ⊸ α2)/α3, (α2 ⊸ α2)/α4]
and T((λx.xx)(λy.y)) = ([], α2 ⊸ α2).

Now we show several properties of our type system and type inference algorithm, in order
to prove the soundness and completeness of the algorithm with respect to the system.

▶ Notation. We write Φ ▷ Γ ⊢2 M : σ to denote that Φ is a derivation tree ending with
Γ ⊢2 M : σ. In this case, |Φ| is the depth of the derivation tree Φ.

▶ Lemma 26 (Substitution). If Φ▷Γ ⊢2 M : σ, then S(Γ) ⊢2 M : S(σ) for any substitution S.

▶ Lemma 27 (Relevance). If Φ ▷ Γ ⊢2 M : σ, then x ∈ dom(Γ) if and only if x ∈ FV(M).

▶ Lemma 28. If T(M) = (Γ, σ), then x ∈ dom(Γ) if and only if x ∈ FV(M).

▶ Corollary 29. From Lemma 27 and Lemma 28, it follows that if T(M) = (Γ, σ) and
Γ′ ⊢2 M : σ′, then dom(Γ) = dom(Γ′).

▶ Lemma 30. If Φ1 ▷ Γ ⊢2 M : σ, x ∈ FV(M) and y does not occur in M , then there exists
Φ2 ▷ Γ[y/x] ⊢2 M [y/x] : σ, with |Φ1| = |Φ2|.

▶ Corollary 31. From Lemma 30, it follows that if Γ ⊢2 M : σ, {x1, . . . , xn} ⊆ FV(M)
and y1, . . . , yn are all different variables not occurring in M , then Γ[y1/x1, . . . , yn/xn] ⊢2
M [y1/x1, . . . , yn/xn] : σ.

TYPES 2022

8:12 Linear Rank Intersection Types

▶ Theorem 32 (Soundness). If T(M) = (Γ, σ), then Γ ⊢2 M : σ.

▶ Lemma 33. If T(M) = (Γ, σ), x ∈ FV(M) and y does not occur in M , then T(M [y/x]) =
(Γ[y/x], σ).

▶ Lemma 34. If T(M) = (Γ, σ), with Γ ≡ (Γ′, y1 : τ⃗1, y2 : τ⃗2), and y does not occur in M ,
then T(M [y/y1, y/y2]) = (Γ′′, σ), with Γ′′ ≡ (Γ′, y : τ⃗1 ∩ τ⃗2).

▶ Theorem 35 (Completeness). If Φ ▷ Γ ⊢2 M : σ, then T(M) = (Γ′, σ′) (for some
environment Γ′ and type σ′) and there is a substitution S such that S(σ′) = σ and S(Γ′) ≡ Γ.

Hence, we end up with a sound and complete type inference algorithm for the Linear
Rank 2 Intersection Type System.

3.4 Remarks
A λ-term M is called a λI-term if and only if, for each subterm of the form λx.N in M , x

occurs free in N at least once. Note that our type system and type inference algorithm only
type λI-terms, but we could have extended them for the affine terms – a λ-term M is affine
if and only if, for each subterm of the form λx.N in M , x occurs free in N at most once,
and if each free variable of M has just one occurrence free in M .

There is no unique and final way of typing affine terms. For instance, in the systems
in [1], arguments that do not occur in the body of the function get the empty type []. Since
we do not allow the empty sequence in our definition and adding it would make the system
more complex, we decided to only work with λI-terms.

Regarding our choice of defining environments as lists and having the rules (Exchange)
and (Contraction) in the type system, instead of defining environments as sets and using the
(+) operation for concatenation, that decision had to do with the fact that, this way, the
system is closer to a linear type system. In the Linear Rank 2 Intersection Type System, a
term is linear until we need to contract variables, so using these definitions makes us have
more control over linearity and non-linearity. Also, it makes the system more easily extensible
for other algebraic properties of intersection. We could also have rewritten the rule (→ Elim)
in order not to use the (+) operation, which is something we might do in the future.

The downside of choosing these definitions is that it makes the proofs (in Section 3 and
Section 4) more complex, as they are not syntax directed because of the rules (Exchange)
and (Contraction).

4 Resource Inference

Given the quantitative properties of the Linear Rank 2 Intersection Types, we now aim
to redefine the type system and the type inference algorithm, in order to infer not only
the type of a λ-term, but also parameters related to resource usage. In this case, we are
interested in obtaining the number of evaluation steps of the λ-term to its normal form, for
the leftmost-outermost strategy.

4.1 Type System
The new type system defined in this chapter results from an adaptation and merge between
our Linear Rank 2 Intersection Type System (Definition 11) and the system for the leftmost-
outermost evaluation strategy presented in [1], as that system is able to derive a measure
related to the number of evaluation steps for the leftmost-outermost strategy. We then begin
by adapting some definitions from [1] and others that were already introduced in Section 3.

F. Reis, S. Alves, and M. Florido 8:13

The predicates normal and neutral defining, respectively, the leftmost-outermost normal
terms and neutral terms, are in Definition 36. The predicate abs(M) is true if and only if M

is an abstraction; normal(M) means that M is in normal form; and neutral(M) means that
M is in normal form and can never behave as an abstraction, i.e., it does not create a redex
when applied to an argument.

▶ Definition 36 (Leftmost-outermost normal forms).

neutral(x)
neutral(M) normal(N)

neutral(MN)
neutral(M)
normal(M)

normal(M)
normal(λx.M)

▶ Definition 37 (Leftmost-outermost evaluation strategy).

(λx.M)N −→ M [N/x]
M −→ M ′

λx.M −→ λx.M ′
M −→ M ′ ¬abs(M)

MN −→ M ′N

neutral(N) M −→ M ′

NM −→ NM ′

▶ Definition 38 (Finite rank multi-types). We define the finite rank multi-types by the following
grammar:

tight ::= Neutral | Abs (Tight constants)
t ::= tight | α | t ⊸ t (Rank 0 multi-types)
t⃗ ::= t | t⃗ ∩ t⃗ (Rank 1 multi-types)
s ::= t | t⃗ → s (Rank 2 multi-types)

▶ Definition 39.
Here, a statement is an expression of the form M : (τ⃗ , t⃗), where the pair (τ⃗ , t⃗) is called
the predicate, and the term M is called the subject of the statement.
A declaration is a statement where the subject is a term variable.
The comma operator (,) appends a declaration to the end of a list (of declarations). The
list (Γ1, Γ2) is the list that results from appending the list Γ2 to the end of the list Γ1.
A finite list of declarations is consistent if and only if the term variables are all distinct.
An environment is a consistent finite list of declarations which predicates are pairs with
a sequence from TL1 as the first element and a rank 1 multi-type as the second element
of the pair (i.e., the declarations are of the form x : (τ⃗ , t⃗)), and we use Γ (possibly with
single quotes and/or number subscripts) to range over environments.
An environment Γ = [x1 : (τ⃗1, t⃗1), . . . , xn : (τ⃗n, t⃗n)] induces a partial function Γ with
domain dom(Γ) = {x1, . . . , xn}, and Γ(xi) = (τ⃗i, t⃗i).
We write Γx for the resulting environment of eliminating the declaration of x from Γ (if
there is no declaration of x in Γ, then Γx = Γ).
We write Γ1 ≡ Γ2 if the environments Γ1 and Γ2 are equal up to the order of the
declarations.
If Γ1 and Γ2 are environments, the environment Γ1 + Γ2 is defined as follows:
for each x ∈ dom(Γ1) ∪ dom(Γ2),

(Γ1 + Γ2)(x) =

Γ1(x) if x /∈ dom(Γ2)
Γ2(x) if x /∈ dom(Γ1)
(τ⃗1 ∩ τ⃗2, t⃗1 ∩ t⃗2) if Γ1(x) = (τ⃗1, t⃗1) and Γ2(x) = (τ⃗2, t⃗2)

with the declarations of the variables in dom(Γ1) in the beginning of the list, by the same
order they appear in Γ1, followed by the declarations of the variables in dom(Γ2)\dom(Γ1),
by the order they appear in Γ2.

TYPES 2022

8:14 Linear Rank Intersection Types

We write tight(s) if s is of the form tight and tight(t1 ∩· · ·∩tn) if tight(ti) for all 1 ≤ i ≤ n.
For Γ = [x1 : (τ⃗1, t⃗1), . . . , xn : (τ⃗n, t⃗n)], we write tight(Γ) if tight(⃗ti) for all 1 ≤ i ≤ n, in
which case we also say that Γ is tight.

▶ Definition 40 (Linear Rank 2 Quantitative Type System). In the Linear Rank 2 Quantitative
Type System, we say that M has type σ and multi-type s given the environment Γ, with
index b, and write Γ ⊢b M : (σ, s), if it can be obtained from the derivation rules in Figure 3.

The tight rules (the t-indexed ones) are used to introduce the tight constants Neutral and
Abs, and they are related to minimal typings. Note that the index is only incremented in
rules (⊸ Intro) and (→ Intro), as these are used to type abstractions that will be applied,
contrary to the abstractions typed with the constant Abs.

▶ Notation. We write Φ▷Γ ⊢b M : (σ, s) if Φ is a derivation tree ending with Γ ⊢b M : (σ, s).
In this case, |Φ| is the depth of the derivation tree Φ.

▶ Definition 41 (Tight derivations). A derivation Φ ▷ Γ ⊢b M : (σ, s) is tight if tight(s) and
tight(Γ).

Similarly to what has been done in [1], in this section we prove that, in the Linear Rank 2
Quantitative Type System, whenever a term is tightly typable with index b, then b is exactly
the number of evaluations steps to leftmost-outermost normal form.

▶ Example 42. Let M = (λx1.(λx2.x2x1)x1)I, where I is the identity function λy.y.
Let us first consider the leftmost-outermost evaluation of M to normal form:

(λx1.(λx2.x2x1)x1)I −→ (λx2.x2I)I −→ II −→ I

So the evaluation sequence has length 3.
Let us write ⊸α for the type (α ⊸ α) and

−−◦
Abs for the type Abs ⊸ Abs.

To make the derivation tree easier to read, let us first get the following derivation Φ for
the term λx1.(λx2.x2x1)x1:

[x2 : (⊸α⊸⊸α,
−−◦
Abs)] ⊢0 x2 : (⊸α⊸⊸α,

−−◦
Abs) [x3 : (⊸α, Abs)] ⊢0 x3 : (⊸α, Abs)

[x2 : (⊸α⊸⊸α,
−−◦
Abs), x3 : (⊸α, Abs)] ⊢0 x2x3 : (⊸α, Abs)

[x3 : (⊸α, Abs)] ⊢1 λx2.x2x3 : ((⊸α⊸⊸α) ⊸ ⊸α,
−−◦
Abs⊸ Abs) [x4 : (⊸α⊸⊸α,

−−◦
Abs)] ⊢0 x4 : (⊸α⊸⊸α,

−−◦
Abs))

[x3 : (⊸α, Abs), x4 : (⊸α⊸⊸α,
−−◦
Abs)] ⊢1 (λx2.x2x3)x4 : (⊸α, Abs)

[x1 : (⊸α ∩ (⊸α⊸⊸α), Abs ∩
−−◦
Abs)] ⊢1 (λx2.x2x1)x1 : (⊸α, Abs)

[] ⊢2 λx1.(λx2.x2x1)x1 : ((⊸α ∩ (⊸α⊸⊸α)) → ⊸α, (Abs ∩
−−◦
Abs) → Abs)

Then for the λ-term M , the following tight derivation is obtained:

Φ
[y : (α, Neutral)] ⊢0 y : (α, Neutral)

[] ⊢0 I : (⊸α, Abs)

[y : (⊸α, Abs)] ⊢0 y : (⊸α, Abs)

[] ⊢1 I : (⊸α⊸⊸α,
−−◦
Abs)

[] ⊢3 (λx1.(λx2.x2x1)x1)I : (⊸α, Abs)

So indeed, the index 3 represents the number of evaluation steps to leftmost-outermost
normal form.

We now show several properties of the type system, adapted from [1], in order to prove
the tight correctness (Theorem 49).

▶ Lemma 43 (Tight spreading on neutral terms). If M is a term such that neutral(M) and
Φ ▷ Γ ⊢b M : (σ, s) is a typing derivation such that tight(Γ), then tight(s).

F. Reis, S. Alves, and M. Florido 8:15

[x : (τ, t)] ⊢0 x : (τ, t) (Axiom)

Γ1, x : (τ⃗1, t⃗1), y : (τ⃗2, t⃗2), Γ2 ⊢b M : (σ, s)
Γ1, y : (τ⃗2, t⃗2), x : (τ⃗1, t⃗1), Γ2 ⊢b M : (σ, s)

(Exchange)

Γ1, x1 : (τ⃗1, t⃗1), x2 : (τ⃗2, t⃗2), Γ2 ⊢b M : (σ, s)
Γ1, x : (τ⃗1 ∩ τ⃗2, t⃗1 ∩ t⃗2), Γ2 ⊢b M [x/x1, x/x2] : (σ, s)

(Contraction)

Γ, x : (τ, t) ⊢b M : (σ, s)
Γ ⊢b+1 λx.M : (τ ⊸ σ, t ⊸ s)

(⊸ Intro)

Γ, x : (τ, tight) ⊢b M : (σ, tight)
Γ ⊢b λx.M : (τ ⊸ σ, Abs)

(⊸ Introt)

Γ, x : (τ1 ∩ · · · ∩ τn, t1 ∩ · · · ∩ tn) ⊢b M : (σ, s) n ≥ 2
Γ ⊢b+1 λx.M : (τ1 ∩ · · · ∩ τn → σ, t1 ∩ · · · ∩ tn → s)

(→ Intro)

Γ, x : (τ1 ∩ · · · ∩ τn, t⃗) ⊢b M : (σ, tight) tight(⃗t) n ≥ 2
Γ ⊢b λx.M : (τ1 ∩ · · · ∩ τn → σ, Abs)

(→ Introt)

Γ1 ⊢b1 M1 : (τ ⊸ σ, t ⊸ s) Γ2 ⊢b2 M2 : (τ, t)
Γ1, Γ2 ⊢b1+b2 M1M2 : (σ, s)

(⊸ Elim)

Γ1 ⊢b1 M1 : (τ ⊸ σ, Neutral) Γ2 ⊢b2 M2 : (τ, tight)
Γ1, Γ2 ⊢b1+b2 M1M2 : (σ, Neutral)

(⊸ Elimt)

Γ ⊢b M1 : (τ1 ∩ · · · ∩ τn → σ, t1 ∩ · · · ∩ tn → s)
Γ1 ⊢b1 M2 : (τ1, t1) · · · Γn ⊢bn M2 : (τn, tn) n ≥ 2

Γ,
∑n

i=1 Γi ⊢b+b1+···+bn M1M2 : (σ, s)
(→ Elim)

Γ ⊢b M1 : (τ1 ∩ · · · ∩ τn → σ, Neutral)
Γ1 ⊢b1 M2 : (τ1, tight) · · · Γn ⊢bn M2 : (τn, tight) n ≥ 2

Γ,
∑n

i=1 Γi ⊢b+b1+···+bn M1M2 : (σ, Neutral)
(→ Elimt)

Figure 3 Linear Rank 2 Quantitative Type System.

TYPES 2022

8:16 Linear Rank Intersection Types

▶ Lemma 44 (Properties of tight typings for normal forms). Let M be such that normal(M)
and Φ ▷ Γ ⊢b M : (σ, s) be a typing derivation.

(i) Tightness: if Φ is tight, then b = 0.
(ii) Neutrality: if s = Neutral then neutral(M).

▶ Lemma 45 (Relevance). If Φ▷Γ ⊢b M : (σ, s), then x ∈ dom(Γ) if and only if x ∈ FV(M).

▶ Lemma 46 (Substitution and typings). Let Φ ▷ Γ ⊢b M1 : (σ, s) be a derivation with
x ∈ dom(Γ) and Γ(x) = (τ1 ∩ · · · ∩ τn, t1 ∩ · · · ∩ tn), for n ≥ 1. And, for each 1 ≤ i ≤ n, let
Φi ▷ Γi ⊢bi M2 : (τi, ti).

Then there exists a derivation Φ′ ▷Γx,
∑n

i=1 Γi ⊢b+b1+···+bn M1[M2/x] : (σ, s). Moreover,
if the derivations Φ, Φ1, . . . , Φn are tight, then so is the derivation Φ′.

Proof (Sketch). The proof is by induction on |Φ|. In fact, without loss of generality, we
assume that FV(M1) ∩ FV(M2) = ∅, so that Γx,

∑n
i=1 Γi is consistent. Otherwise, we

could simply rename the free variables in M1 to get M ′
1 (and the same derivation Φ, with

the variables renamed) such that FV(M ′
1) ∩ FV(M2) = ∅. Then, our proof of the lemma

considers M1, M2 such that FV(M1) ∩ FV(M2) = ∅, obtaining a derivation Φ′ (with the
renamed variables) and finally we could apply the rule (Contraction) (and (Exchange), when
necessary) to the variables that were renamed in M1, in order to end up with the more
general form of the derivation. ◀

We now show an important property that relates contracted terms with their linear
counterpart. Basically, it says that the following diagram commutes (under the described
conditions):

M N

M ′ N ′

β

S(M ′)

β

S(N ′)

▶ Lemma 47. Let M −→ N and M = S(M ′) for some substitution S = [x/x1, x/x2] where
x1, x2 occur free in M ′ and x does not occur in M ′. Then there exists a term N ′ such that
N = S(N ′) and M ′ −→ N ′.

▶ Convention 4.1. Without loss of generality, we assume that, in a derivation tree, all
contracted variables (i.e., variables that, at some point in the derivation tree, disappear from
the term and environment by an application of the (Contraction) rule) are different from any
other variable in the derivation tree.
We also assume that when applying (Contraction), the new variables that substitute the
contracted ones are also different from any other variable in the derivation tree.

▶ Lemma 48 (Quantitative subject reduction). If Φ ▷ Γ ⊢b M : (σ, s) is tight and M −→ N ,
then b ≥ 1 and there exists a tight derivation Φ′ such that Φ′ ▷ Γ ⊢b−1 N : (σ, s).

Proof (Sketch). We prove the following stronger statement:
If M −→ N , Φ ▷ Γ ⊢b M : (σ, s), tight(Γ), and either tight(s) or ¬abs(M), then there

exists a derivation Φ′ ▷ Γ ⊢b−1 N : (σ, s).

F. Reis, S. Alves, and M. Florido 8:17

The proof of this statement follows by induction on M −→ N . The complexity of
this proof is related to the (Exchange) and (Contraction) rules. Since these rules are not
syntax-directed, we cannot use M do decide which rule was last applied in the derivation,
since (Exchange) and (Contraction) rules can always be the last rule applied. The proof is
therefore more complex and requires the use of Convention 4.1. ◀

▶ Theorem 49 (Tight correctness). If Φ ▷ Γ ⊢b M : (σ, s) is a tight derivation, then there
exists N such that M −→b N and normal(N). Moreover, if s = Neutral then neutral(N).

4.2 Type Inference Algorithm
We now extend the type inference algorithm defined in Section 3 (Definition 23) to also
infer the number of reduction steps of the typed term to its normal form, when using the
leftmost-outermost evaluation strategy.

This is done by slightly modifying the unification algorithm in Definition 21 and the
algorithm in Definition 23, which will now carry and update a measure b that relates to the
number of reduction steps. First, recall Definition 20, presented in Section 3.

▶ Definition 50 (Quantitative Unification Algorithm). Let P be a unification problem (with
types in TL0). The new unification function UNIFYQ(P), which decides whether P has a
solution and, if so, returns the MGU of P and an integer b used for counting purposes in the
inference algorithm, is defined as:

function UNIFYQ(P)
b := 0;
while P ⇒ P ′ do

if P = {τ1 ⊸ τ2 = τ3 ⊸ τ4} ∪ P1 and P ′ = {τ1 = τ3, τ2 = τ4} ∪ P1 then
b := b + 1;

P := P ′;
if P is in solved form then

return (SP , b);
else

FAIL;

Let TL1-environment be an environment as defined in Section 3, i.e., just like the definition
we use in the current chapter, but the predicates are only the first element of the pair (i.e., a
sequence from TL1).

▶ Definition 51 (Quantitative Type Inference Algorithm). Let Γ be a TL1-environment, M a
λ-term, σ a linear rank 2 intersection type, b a quantitative measure and UNIFYQ the function
in Definition 50. The function TQ(M) = (Γ, σ, b) defines a new type inference algorithm
that gives a quantitative measure for the λ-calculus in the Linear Rank 2 Quantitative Type
System, in the following way:
1. If M = x, then Γ = [x : α], σ = α and b = 0, where α is a new variable;
2. If M = λx.M1 and TQ(M1) = (Γ1, σ1, b1) then:

a. if x /∈ dom(Γ1), then FAIL;
b. if (x : τ) ∈ Γ1, then TQ(M) = (Γ1x, τ ⊸ σ1, b1);
c. if (x : τ1 ∩ · · · ∩ τn) ∈ Γ1 (with n ≥ 2), then TQ(M) = (Γ1x, τ1 ∩ · · · ∩ τn → σ1, b1).

3. If M = M1M2, then:

TYPES 2022

8:18 Linear Rank Intersection Types

a. if TQ(M1) = (Γ1, α1, b1) and TQ(M2) = (Γ2, τ2, b2),
then TQ(M) = (S(Γ1 + Γ2), S(α3), b1 + b2),
where (S, _) = UNIFYQ({α1 = α2 ⊸ α3, τ2 = α2}) and α2, α3 are new variables;

b. if TQ(M1) = (Γ′
1, τ ′

1 ∩ · · · ∩ τ ′
n → σ′

1, b1) (with n ≥ 2) and, for each 1 ≤ i ≤ n,
TQ(M2) = (Γi, τi, bi),
then TQ(M) = (S(Γ′

1 +
∑n

i=1 Γi), S(σ′
1), b1 +

∑n
i=1 bi + b3 + 1),

where (S, b3) = UNIFYQ({τi = τ ′
i | 1 ≤ i ≤ n});

c. if TQ(M1) = (Γ1, τ ⊸ σ1, b1) and TQ(M2) = (Γ2, τ2, b2),
then TQ(M) = (S(Γ1 + Γ2), S(σ1), b1 + b2 + b3 + 1),
where (S, b3) = UNIFYQ({τ2 = τ});

d. otherwise FAIL.

Note that b is only increased by 1 and added the quantity given by UNIFYQ in rules 3.(b)
and 3.(c), since these are the only cases in which the term M is a redex.

▶ Example 52. Let us show the type inference process for the λ-term λx.xx.

By rule 1., TQ(x) = ([x : α1], α1, 0).
By rule 1., again, TQ(x) = ([x : α2], α2, 0).
Then by rule 3.(a), TQ(xx) = (S([x : α1] + [x : α2]), S(α4), 0 + 0) = (S([x : α1 ∩
α2]), S(α4), 0),
where (S, _) = UNIFYQ({α1 = α3 ⊸ α4, α2 = α3}) = ([α3 ⊸ α4/α1, α3/α2], 0).
So TQ(xx) = ([x : (α3 ⊸ α4) ∩ α3], α4, 0).
Finally, by rule 2.(c), TQ(λx.xx) = ([], (α3 ⊸ α4) ∩ α3 → α4, 0).

▶ Example 53. Let us now show the type inference process for the λ-term (λx.xx)(λy.y).

From the previous example, we have TQ(λx.xx) = ([], (α3 ⊸ α4) ∩ α3 → α4, 0).
By rules 1. and 2.(b), for the identity, the algorithm gives TQ(λy.y) = ([], α1 ⊸ α1, 0).
By rules 1. and 2.(b), again, for the identity, TQ(λy.y) = ([], α2 ⊸ α2, 0).
Then by rule 3.(b), TQ((λx.xx)(λy.y)) = (S([] + [] + []), S(α4), 0 + 0 + 0 + b3 + 1) =
([], S(α4), b3 + 1), where (S, b3) = UNIFYQ({α1 ⊸ α1 = α3 ⊸ α4, α2 ⊸ α2 = α3}),
calculated by performing the following transformations:

{α1 ⊸ α1 = α3 ⊸ α4, α2 ⊸ α2 = α3} ⇒ {α1 = α3, α1 = α4, α2 ⊸ α2 = α3}
⇒ {α1 = α3, α3 = α4, α2 ⊸ α2 = α3}
⇒ {α1 = α4, α3 = α4, α2 ⊸ α2 = α4}
⇒ {α1 = α4, α3 = α4, α4 = α2 ⊸ α2}
⇒ {α1 = α2 ⊸ α2, α3 = α2 ⊸ α2, α4 = α2 ⊸ α2}

So S = [(α2 ⊸ α2)/α1, (α2 ⊸ α2)/α3, (α2 ⊸ α2)/α4]
and b3 = 1 because there was performed one transformation (the first) of the form
{τ1 ⊸ τ2 = τ3 ⊸ τ4} ∪ P ⇒ {τ1 = τ3, τ2 = τ4} ∪ P .
And then, TQ((λx.xx)(λy.y)) = ([], α2 ⊸ α2, 1 + 1) = ([], α2 ⊸ α2, 2).

Since the Quantitative Type Inference Algorithm only differs from the algorithm in
Section 3 on the addition of the quantitative measure, and only infers a linear rank 2
intersection type and not a multi-type, the typing soundness (Theorem 54) and completeness
(Theorem 55) are formalized in a similar way.

▶ Theorem 54 (Typing soundness). If TQ(M) = ([x1 : τ⃗1, . . . , xn : τ⃗n], σ, b), then [x1 :
(τ⃗1, t⃗1), . . . , xn : (τ⃗n, t⃗n)] ⊢b′

M : (σ, s) (for some measure b′ and multi-types s, t⃗1, . . . , t⃗n).

F. Reis, S. Alves, and M. Florido 8:19

▶ Theorem 55 (Typing completeness). If Φ ▷ [x1 : (τ⃗1, t⃗1), . . . , xn : (τ⃗n, t⃗n)] ⊢b M : (σ, s),
then TQ(M) = (Γ′, σ′, b′) (for some TL1-environment Γ′, type σ′ and measure b′) and there
is a substitution S such that S(σ′) = σ and S(Γ′) ≡ [x1 : τ⃗1, . . . , xn : τ⃗n].

As for the quantitative measure given by the algorithm, we conjecture that it corresponds
to the number of evaluation steps of the typed term to normal form, when using the
leftmost-outermost evaluation strategy. We strongly believe the conjecture holds, based on
the attempted proofs so far and because it holds for every experimental results obtained by
our implementation. We have not yet proven this property, which we formalize, in part, in
the second point of the strong soundness:

▶ Conjecture 56 (Strong soundness). If TQ(M) = ([x1 : τ⃗1, . . . , xn : τ⃗n], σ, b), then:
1. There is a derivation Φ▷ [x1 : (τ⃗1, t⃗1), . . . , xn : (τ⃗n, t⃗n)] ⊢b′

M : (σ, s) (for some measure b′

and multi-types s, t⃗1, . . . , t⃗n);
2. If Φ is a tight derivation, then b = b′.

Note that the second point implies, by Theorem 49, that there exists N such that
M −→b N and normal(N), which is what we conjecture.

We believe that proving this conjecture is not a trivial task. A first approach could be to
try to use induction on the definition of TQ(M). However, this does not work because the
subderivations within a tight derivation are not necessarily tight. For that same reason, it is
also not trivial to construct a tight derivation from the result given by the algorithm or from
a non-tight derivation. Thus, in order to prove this conjecture, we believe that it will be
necessary to establish a stronger relation between the algorithm and tight derivations.

5 Conclusions and Future Work

When developing a non-idempotent intersection type system capable of obtaining quantitative
information about a λ-term while inferring its type, we realized that the classical notion of
rank was not a proper fit for non-idempotent intersection types, and that the ranks could be
quantitatively more useful if the base case was changed to types that give more quantitative
information in comparison to simple types, which is the case for linear types. We then came
up with a new definition of rank for intersection types based on linear types, which we call
linear rank [23]. Based on the notion of linear rank, we defined a new intersection type
system for the λ-calculus, restricted to linear rank 2 non-idempotent intersection types, and
a new type inference algorithm which we proved to be sound and complete with respect to
the type system.

We then merged that intersection type system with the system for the leftmost-outermost
evaluation strategy presented in [1] in order to use the linear rank 2 non-idempotent intersec-
tion types to obtain quantitative information about the typed terms, and we proved that the
resulting type system gives the correct number of evaluation steps for a kind of derivations.
We also extended the type inference algorithm we had defined, in order to also give that
measure, and showed that it is sound and complete with respect to the type system for the
inferred types, and conjectured that the inferred measures correspond to the ones given by
the type system.

TYPES 2022

8:20 Linear Rank Intersection Types

In the future, we would like to:
prove Conjecture 56;
further explore the relation between our definition of linear rank and the classical definition
of rank;
extend the type systems and the type inference algorithms for the affine terms;
adapt the Linear Rank 2 Quantitative Type System and the Quantitative Type Inference
Algorithm for other evaluation strategies.

References
1 Beniamino Accattoli, Stéphane Graham-Lengrand, and Delia Kesner. Tight typings and split

bounds. Proc. ACM Program. Lang., 2(ICFP), July 2018. doi:10.1145/3236789.
2 H. P. Barendregt. Lambda calculi with types. In Handbook of Logic in Computer Science

(Vol. 2): Background: Computational Structures, pages 117–309. Oxford University Press, Inc.,
1993.

3 Hendrik Pieter Barendregt. The Lambda Calculus - Its Syntax and Semantics, volume 103 of
Studies in Logic and the Foundations of Mathematics. North-Holland, 1985.

4 Antonio Bucciarelli, Delia Kesner, and Daniel Ventura. Non-idempotent intersection types for
the lambda-calculus. Log. J. IGPL, 25(4):431–464, 2017.

5 Alonzo Church. A formulation of the simple theory of types. The Journal of Symbolic Logic,
5(2):56–68, 1940. URL: http://www.jstor.org/stable/2266170.

6 M. Coppo and M. Dezani-Ciancaglini. An extension of the basic functionality theory for
the λ-calculus. Notre Dame Journal of Formal Logic, 21(4):685–693, October 1980. doi:
10.1305/ndjfl/1093883253.

7 Mario Coppo. An extended polymorphic type system for applicative languages. In Piotr Dem-
binski, editor, Mathematical Foundations of Computer Science 1980 (MFCS’80), Proceedings
of the 9th Symposium, Rydzyna, Poland, September 1-5, 1980, volume 88 of Lecture Notes in
Computer Science, pages 194–204. Springer, 1980.

8 H. B. Curry. Functionality in combinatory logic. Proceedings of the National Academy of
Sciences, 20(11):584–590, 1934. doi:10.1073/pnas.20.11.584.

9 Haskell Brooks Curry, Robert Feys, William Craig, J Roger Hindley, and Jonathan P Seldin.
Combinatory Logic, volume 1. North-Holland Amsterdam, 1958.

10 Luis Damas and Robin Milner. Principal type-schemes for functional programs. In Proceedings
of the 9th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’82, pages 207–212, New York, NY, USA, 1982. Association for Computing Machinery.
doi:10.1145/582153.582176.

11 Ferruccio Damiani. Rank 2 intersection for recursive definitions. Fundamenta Informaticae,
77(4):451–488, 2007.

12 Daniel de Carvalho. Sémantiques de la logique linéaire et temps de calcul. Phd thesis, Université
Aix-Marseille II, 2007.

13 Andrej Dudenhefner and Jakob Rehof. Intersection type calculi of bounded dimension. In
Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL ’17, pages 653–665, New York, NY, USA, 2017. Association for Computing Machinery.
doi:10.1145/3009837.3009862.

14 Andrej Dudenhefner and Jakob Rehof. Typability in bounded dimension. In 2017 32nd
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–12, 2017.
doi:10.1109/LICS.2017.8005127.

15 Mário Florido and Luís Damas. Linearization of the lambda-calculus and its relation
with intersection type systems. J. Funct. Program., 14(5):519–546, 2004. doi:10.1017/
S0956796803004970.

16 Philippa Gardner. Discovering needed reductions using type theory. In TACS, volume 789 of
LNCS, pages 555–574. Springer, 1994.

https://doi.org/10.1145/3236789
http://www.jstor.org/stable/2266170
https://doi.org/10.1305/ndjfl/1093883253
https://doi.org/10.1305/ndjfl/1093883253
https://doi.org/10.1073/pnas.20.11.584
https://doi.org/10.1145/582153.582176
https://doi.org/10.1145/3009837.3009862
https://doi.org/10.1109/LICS.2017.8005127
https://doi.org/10.1017/S0956796803004970
https://doi.org/10.1017/S0956796803004970

F. Reis, S. Alves, and M. Florido 8:21

17 Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987. doi:10.1016/
0304-3975(87)90045-4.

18 Trevor Jim. Rank 2 type systems and recursive definitions. Massachusetts Institute of
Technology, Cambridge, MA, 1995.

19 A. J. Kfoury and J. B. Wells. Principality and decidable type inference for finite-rank
intersection types. In POPL ’99, Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 161–174. ACM, 1999.

20 Assaf Kfoury. A linearization of the lambda-calculus and consequences. Journal of Logic and
Computation, 10(3):411–436, 2000.

21 Daniel Leivant. Polymorphic type inference. In Proceedings of the 10th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages (POPL), pages 88–98, 1983.

22 Alberto Martelli and Ugo Montanari. An efficient unification algorithm. ACM Trans. Program.
Lang. Syst., 4:258–282, 1982.

23 Fábio Reis, Sandra Alves, and Mário Florido. Linear rank intersection types. In 28th
International Conference on Types for Proofs and Programs (TYPES 2022), 2022. URL:
https://types22.inria.fr/files/2022/06/TYPES_2022_paper_33.pdf.

24 J. A. Robinson. A machine-oriented logic based on the resolution principle. J. ACM, 12(1):23–
41, January 1965. doi:10.1145/321250.321253.

25 Pawel Urzyczyn. The emptiness problem for intersection types. The Journal of Symbolic Logic,
64(3):1195–1215, 1999.

26 Steffen van Bakel. Intersection type disciplines in lambda calculus and applicative term rewriting
systems. Phd thesis, Mathematisch Centrum, Katholieke Universiteit Nijmegen, 1993.

27 Steffen van Bakel. Rank 2 intersection type assignment in term rewriting systems. Fundam.
Informaticae, 26(2):141–166, 1996.

TYPES 2022

https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://types22.inria.fr/files/2022/06/TYPES_2022_paper_33.pdf
https://doi.org/10.1145/321250.321253

A Metatheoretic Analysis of Subtype Universes
Felix Bradley # Ñ

Royal Holloway, University of London, UK

Zhaohui Luo # Ñ

Royal Holloway, University of London, UK

Abstract
Subtype universes were initially introduced as an expressive mechanisation of bounded quantification
extending a modern type theory. In this paper, we consider a dependent type theory equipped
with coercive subtyping and a generalisation of subtype universes. We prove results regarding
the metatheoretic properties of subtype universes, such as consistency and strong normalisation.
We analyse the causes of undecidability in bounded quantification, and discuss how coherency
impacts the metatheoretic properties of theories implementing bounded quantification. We describe
the effects of certain choices of subtyping inference rules on the expressiveness of a type theory,
and examine various applications in natural language semantics, programming languages, and
mathematics formalisation.

2012 ACM Subject Classification Theory of computation → Type theory

Keywords and phrases Type theory, coercive subtyping, subtype universes

Digital Object Identifier 10.4230/LIPIcs.TYPES.2022.9

1 Introduction

Power types were initially introduced by Cardelli as a way of integrating subtyping into a type
theory to model bounded quantification [2]. Power(A) represents the collection of subtypes
of A, and a given subtyping relation A ≤ B can be considered as shorthand for A : Power(B).
Cardelli’s system was designed with language design in mind, focusing on behavioural
subtyping defined by shared properties of objects. In particular, Cardelli’s power types could
be used to model a notion of parametric polymorphism called bounded quantification, where
one can quantify over the subtypes of a given type. By writing λ(X ≤ A).M as shorthand
for λ(X : Power(A)).M .

Cardelli’s initial system for power types prioritised expressivity over well-behaved meta-
theory and included a Type : Type judgement, which was chosen to express non-terminating
computations. Power types have since been revisited by other authors such as Aspinall, who
reformulated power types into a predicative system [1]. However, these system have often
had issues within the metatheory closely linked to subtyping and bounded quantification.
The particular choice of subtyping rules is a common issue, where certain combinations of
rules can cause undecidability in the subtyping relation [17, 4].

Maclean and Luo later introduced subtype universes, [16] an analogue of power types
designed specifically for extending UTT equipped with coercive subtyping [15, 13]. They
showed that this extension preserved metatheoretic properties such as logical consistency and
strong normalisation. As subtype universes were initially formulated as an extension of UTT,
they are built to work in conjunction with the particular structure of UTT’s type universes
in mind, which makes for complex proofs. UTT is also restricted in the kind of subtyping
rules the system can use, in that subtypes must be present in the same type universe as
supertypes, which prevents the use of otherwise useful subtyping rules.

© Felix Bradley and Zhaohui Luo;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Types for Proofs and Programs (TYPES 2022).
Editors: Delia Kesner and Pierre-Marie Pédrot; Article No. 9; pp. 9:1–9:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Felix.Bradley@rhul.ac.uk
https://felixjhb.com/
https://orcid.org/0000-0001-7227-9272
mailto:Zhaohui.Luo@hotmail.co.uk
https://www.cs.rhul.ac.uk/home/zhaohui/
https://doi.org/10.4230/LIPIcs.TYPES.2022.9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 A Metatheoretic Analysis of Subtype Universes

In this paper, we generalise Maclean and Luo’s results by formulating rules for a more
expressive notion of subtype universes, designed to extend a more basic dependent type theory.
We continue to use coercive subtyping, a method of subtyping best suited for preserving
canonicity of terms. Our subtype universes are described by the pseudo-rules

Γ ⊢ A type
Γ ⊢ U(A) type

Γ ⊢ A ≤c B

Γ ⊢(A, c) : U(B)

combined with operators which allow us to retrieve the first object and the second object
of the pair. The addition of being able to retrieve the coercion from a subtyping relation
allows for subtyping relations using subtypes or bounded quantification. In particular, if the
type theory being extended lacks traditional type universes, being able to retrieve coercions
allows the type theory to express more complex subtyping relations.

Section 2 describes the implementation of coercive subtyping, outlines the rules used to
formulate our generalised notion of subtype universes, discusses what it means for a type
theory to lack type universes and why this matters. Section 3 discusses the metatheoretic
properties of subtype universes, dependent on the choice of subtyping judgements and rules
the underlying type theory is equipped with. In particular, this section analyses an important
property of a subset of subtyping judgements: wherein the choice of subtyping relations
allows one to “reflect” subtype universes on to the more traditional type universes; and the
other case where this is not possible. Section 4 looks at particular choices of subtyping rules
and the implications that this work has for the use and application of them. In particular, it
focuses on the use of subtyping rules regarding dependent function, universal supertypes, and
subtype universes. Finally, section 5 discusses various applications of subtype universes, and
showcases several examples of how subtype universes may be used in programming, natural
language semantics, and the formalisation of mathematics.

2 Expressive Subtype Universes

In order to be able to introduce subtype universes, we first need to discuss the notion of
subtyping and analyse the particular design choice to use coercive subtyping over subsumptive
subtyping. From there, we briefly cover Cardelli’s power types – designed with programming
languages in mind – and Maclean and Luo’s prior work on subtype universes – designed for
dependent type theories with logic and proofs in mind – and some of the advantages and
restrictions of these approaches, before moving on to introducing subtype universes.

2.1 Coercive Subtyping
Introducing subtyping is a very natural extension of any type system, especially when working
from a set-theoretic notion or understanding. Subtyping intuitively corresponds to the subset
relation, and many properties of subtyping extend from this intuition; for example, we should
be able to process any natural number as a rational number, or be able to say that the
rational numbers include the natural numbers.

When it comes to attempts to implement subtyping, most approaches introduce some
form of a new judgement Γ ⊢ A ≤ B, read as “the type A is a subtype of the type B”, from
which we can derive that any term of type A is also a term of type B. This notion as-is
without alteration is subsumptive subtyping – any supertype subsumes its subtypes.

This approach runs into issues quickly, however. Subsumptive subtyping as presented
breaks the canonicity of a type system: we expect that any object of an inductive type to be
computationally equivalent to some canonical object described by the type’s rules. With

F. Bradley and Z. Luo 9:3

subsumptive subtyping, one can no longer comprehend objects given the computation and
elimination rules for the object’s type, as that object may actually be of a subtype. As all
natural numbers are also rational number, but we can no longer use the rules of rational
numbers to process the rational numbers.

One proposed solution to this issue is coercive subtyping [13]. The core concept behind
coercive subtyping is that subtyping describes implied coercions that allow us to interpret
objects of a subtype as a given canonical form in the supertype. These coercions are functions
described by the underlying type theory, allowing us to preserve a lot of the underlying
metatheory of the type system. Using the same example as discussed for subsumptive
subtyping, we can interpret a natural number as a ration number through the explicit
coercion which sends n 7→ n/1.

We can reduce our system with subtyping to a system without subtyping simply by
inserting coercions where necessary, and so adding coercive subtyping to a theory tends to
be a conservative extension. Of particular use to us is UTT, a modern type theory written
in Martin-Löf’s Logical Framework, where extending the system with coercive subtyping has
been proven to be conservative [15].
▶ Remark 1. We use τ [C] to denote both a type theory τ implementing coercive subtyping
extended by some set of subtyping judgements (arbitrary or dependent on some other
choice), as well as the type theory τ implementing coercive subtyping extended by the
specific collection of subtyping judgements C. For example, we later describe a syntactic
transformation from τ to UTT[C]: as these systems can’t use the same set of subtyping
judgements, it can be inferred that the C in UTT[C] is dependent on the choice of C in τ .

The key rules for coercive subtyping are as follows:

Γ ⊢ f : Π(x : B).C
Γ ⊢ A <c B Γ ⊢ a : A

Γ ⊢ f(a) : [c(a)/x]C

Γ ⊢ f : Π(x : A).C
Γ ⊢ A <c B Γ ⊢ a : A

Γ ⊢ f(a) = f(c(a)) : [c(a)/x]C

These rules (Sub-Intro and Sub-Comp respectively) are used in conjunction with other
rules, such as those for congruence, transitivity, and others1.

Of particular note is the computation rule – in Luo, Soloviev and Xue’s own analysis of
the metatheory and implementation of coercive subtyping, this is not formally a reduction
rule added to the system [15]. Instead, the type theory they describe has a two-step reduction
process: the first step is c-reduction, or the insertion of coercions. The second step is the
more typical reduction process involving the application of β-reduction. This process is a
necessary step due to the need to correctly mark the places in terms where coercions need to
be inserted in order for a term to be well-typed before standard reduction can occur.

In this work, we opt to use the same notion of reduction for the type theory we describe –
this allows us to treat c-reduction as part of the normal reduction process. In particular, to
avoid the complicated metatheory that Luo et al. worked through, we first show that our
type theory can be transformed into UTT[C] for particular choices of subtyping judgements.
As UTT[C] handles the actual two-step reduction process, this allows us to informally treat
c-reduction as on the same level as β-reduction.

When one implements subtyping, one also needs to decide which types are subtypes
of which types. This could be both single cases, or families of subtypes (for example, one
may wish to say that all finite types are subtypes of N). We consider the most general case
possible where the type theory τ is extended by a set of subtyping rules C.

1 The full set of rules for the implementation of coercive subtyping can be found in [15]. Whilst we do
not use the same judgements in this work, the rules are fundamentally the same.

TYPES 2022

9:4 A Metatheoretic Analysis of Subtype Universes

To ensure that τ is sound for a given choice of C, we need a notion of coherence – “that
every possible derivation of a statement Γ ⊢ a : A has the same meaning” [17].We use a
similar definition of coherence as Luo et al. as follows:

▶ Definition 2 (Coherence). A set of subtyping judgements and inference rules C is coherent
if the following hold:

If Γ ⊢ A <c B, then Γ ⊢ A type, Γ ⊢ B type, and Γ ⊢ c : A → B

Γ ̸ ⊢ A <c A for every Γ, A, and c

If Γ ⊢ A <c B and Γ ⊢ A <c′ B, then Γ ⊢ c = c′

The coherency of the subtyping judgements and rules used coercive subtyping is critical –
without the guarantee of coherency, τ loses any hope of consistency. In practice, reasoning
about coherency can be tedious at best. However, other authors have found difficulty within
the metatheory of bounded quantification when using subsumptive subtyping [1, 11]. Even
for simpler systems, prior authors have provided proofs which were later found to contain
errors [17]. Only as recently as 2004 did Compagnoni provide the first proof of the decidability
of subtyping for a higher order lambda calculus [6].

2.2 Subtype Universes
Cardelli initially introduced power types as a means of explicitly mechanising bounded
quantification – the type Power(A) as the type of subtypes of A [2]. In his original formulation,
the judgement A ≤ B was in shorthand for A : Power(B), thus typing had completely
subsumed subtyping in his system.

Cardelli describes a very expressive type system made possible by these power types, but
made compromises in the underlying metatheory of the system in favour of expressiveness.
For example, Cardelli’s system had a type of all types – while quantification over types is
useful, this simple statement can be used to express non-terminating computations, but is
also the source of Girard’s paradox, which causes logical inconsistency [9, 7, 10]

Maclean and Luo later introduced subtype universes as an extension of UTT[C], UTT
equipped with coercive subtyping and a set of subtyping judgements C [16]. In this im-
plementation, subtyping wasn’t completely subsumed by subtype universes; the notions of
subtyping and typing were kept disjoint, and subtype universes presented a way for typing
to interface with subtyping.

There were some restrictions with Maclean and Luo’s presentation, however; they asso-
ciated subtype universes with the underlying predicative type universes that allowed one
to internally quantify over types. This required annotating subtype universes to ensure
that types had names in the correct universes, and it also restricted the choice of subtyping
relations that could be introduced into the system. In particular, their proof required that
for every A ≤c B, A inhabited the same type universe as B.

One of the ways we sought to improve on this design was to expand upon it and remove
these restrictions. We use the following rules2:

U -Form
Γ ⊢ B type

Γ ⊢ U(B) type

2 The rules described here only cover types, and do not touch on kinds or subkinding – for the purposes
of this work, the rules covering types are sufficient. Whenever we use describe a relation A ≤c B, it is
always the case that A and B are types.

F. Bradley and Z. Luo 9:5

U -Intro
Γ ⊢ A ≤c B

Γ ⊢⟨A, c⟩ : U(B)

U -σ1-Elim
Γ ⊢ B type Γ ⊢ t : U(B)

Γ ⊢ σ1(t) type

U -σ2-Elim
Γ ⊢ B type Γ ⊢ t : U(B)

Γ ⊢ σ2(t) : σ1(t) → B

U -σ1-Comp
Γ ⊢ B type Γ ⊢⟨A, c⟩ : U(B)

Γ ⊢ σ1(⟨A, c⟩) = B

U -σ2-Comp
Γ ⊢ B type Γ ⊢⟨A, c⟩ : U(B)
Γ ⊢ σ2(⟨A, c⟩) = c : A → B

For a given type A, U(A) is the type of subtypes of A (intuitively, this corresponds to the
power set operator). Terms of a subtype universe behave in a similar fashion to pairs, from
which we can obtain both the subtype (via the operator σ1) and the coercion through which
we may obtain the corresponding object of the supertype (via the operator σ2). This design
more closely resembles Cardelli’s original intent where subtyping is subsumed by typing, as
we can now describe any subtyping relation by declaring an object of a subtype universe.

▶ Remark 3. For coherent C, the type of a given ⟨A, c⟩ can be calculated by type-checking the
term σ2(⟨A, c⟩) = c. One could extend the subtype universes we use here to also explicitly
carry information about the supertype, either as part of their data or via annotations.
However, assuming that C is coherent, one is also able to derive the type of any given ⟨A, c⟩
by examining the codomain of c. For simplicity, this work does not include these annotations
as the metatheory does not fundamentally change.

2.3 Flat Type Theories
This notion that subtyping implies a partial ordering on types in a system is a property we
call monotonicity. Under any set-theoretic notion, this seems obvious; the partial ordering
would be inclusion. However, if the system has multiple type universes, then monotonicity
presents quite a restriction on the choice of subtyping relations one can introduce; there’s
some natural subtyping relations we may want to use in a system. Consider the example of
the type of pointed subtypes:

Σ(x : U(B)).σ1(x)

Intuitively, a pointed subtype of B should also a subtype of B, and so we may want to use
the subtyping relation

Σ(x : U(B)).σ1(x) ≤q B

where q
def= λ(y : Σ(x : U(B)).σ1(x)).(σ2(π1(y)))(π2(y)). However, if we were to follow

Maclean and Luo’s method for translating U(A) into an object of UTT[C], we would quickly
find that cannot; their method for mapping subtype universes on to type universes simply
does not work here. There is a sense in which the left-hand-side of the subtyping relation
is more complicated or of a higher order than the right-hand-side – that the LHS should
inhabit a higher type universe than the RHS – due to the presence of U(B).

TYPES 2022

9:6 A Metatheoretic Analysis of Subtype Universes

This leads to one of the key motivations for this work: when can subtype universes be
mapped onto type universes? Are there particular choices of subtyping judgements and rules
such that the resultant system can’t be described by a system with the standard hierarchy of
type universes Type1, Type2, ...? Does the choice of subtyping relations affect the metatheory
of the system, and if it does, when and how?

In order to better understand how a choice of subtyping relations affects the system, we
need to look at a system with coercive subtyping and subtype universes but with minimal
structure on its type universes. As we also want to look at the logical consistency of type
theories implementing subtype universes, we allow for an impredicative type of propositions
Prop.

Whilst the proofs we describe in this work theoretically apply to any “flat” type theory
that has no type universes or at most a universe of propositions, we opt to use a subtheory of
UTT[C] to make several of the proofs in this work more convenient3 – for example, we use the
fact that UTT[C] is logically consistent and strongly normalising. In particular, this subtheory
of UTT[C] contains dependent function types, dependent pair types, an impredicative type
universe of propositions, and the atomic types 0, 1, and N4.

We write τ to denote the chosen subtheory of UTT[C], extended with subtype universes
and a (sometimes arbitrary or variable) set of subtyping judgements C. When it is not
necessarily clear what specific set of subtyping judgements τ is equipped with, we write τ [C]
to denote τ equipped with the specific set of subtyping judgements C. We also write τ [C; R]
to denote the theory τ [C] which has been extended by a specific subtyping judgement or
rule R.

3 Metatheory

In our analysis of τ , we will first examine the metatheory of τ equipped with a set of only
monotonic subtyping relations. In particular, we will describe an embedding of τ [C] in
UTT[C]. In order to describe this embedding, we first need to develop a notion of the level
of a type – a measure of it’s complexity or “order” under the Curry-Howard interpretation of
types as propositions. Afterwards, we will examine the metatheory of the general case where
τ is equipped with a set of subtyping relations wherein some are non-monotonic. In both
cases, we will prove logical consistency and strong normalisation of τ .

3.1 Type Level

To properly analyse the metatheory of subtype universes, we need to understand under what
conditions can subtype universes be reflected on to type universes. In order to do this, we
need a notion of the “level” of a type; a description of where a given type fits in the type
universe hierarchy. If this notion is well-formed, we will be able to transform terms of a type
theory with “well-behaved” subtyping judgements into a type theory where the metatheoretic
properties we care about have already been proven.

3 We use a different set of subtyping judgements to UTT[C], such as using ⊢ A type rather than ⊢ A : Type,
but this is primarily for brevity when writing judgements

4 The atomic types, type constructors, and type of Propositions are all defined using UTT’s inductive
schemata [12]. While τ can easily be expanded to include inductive data types and inductive propositions,
we have elected to skip these inclusions for simplicity and brevity of argument.

F. Bradley and Z. Luo 9:7

In particular, we use UTT[C], Luo’s Unifying Theory of dependent Types extended with
coercive subtyping, as our target theory for this syntactic transformation. This is due to many
of the metatheoretic properties we are interested in having been proven for this theory[15, 8].
As such, our own notion of type level is similar in practice to that which Luo uses, but a
different approach is necessary; Luo’s approach uses type isomorphism and type universes to
define level, and we do not have the luxury of the latter [12].

Instead, our notion of type level is defined recursively; basic types (e.g. propositions,
Prop, N → N, etc.) should be of type level 0, and subtype universes should correspond to
increasing the type level by 1.

▶ Definition 4. For a given type A within a context Γ considered in τ , we define its type
level LΓ(A) by recursion as follows:

If Γ ⊢ A = P : Prop, then LΓ(A) = 0;
If Γ ⊢ A = Prop, 0, 1, or N, then LΓ(A) = 0;
If ∃B, C such that Γ ⊢ A = Π(x : B).C, then LΓ(A) = maxx:B{LΓ(B), LΓ(C[x])};
If ∃B, C such that Γ ⊢ A = Σ(x : B).C, then LΓ(A) = maxx:B{LΓ(B), LΓ(C[x])};
If ∃B such that Γ ⊢ A = U(B), then LΓ(A) = LΓ(B) + 1.
If ∃B, c, s such that Γ ⊢ A = σ1(s) and Γ ⊢ s = ⟨B, c⟩, then LΓ(A) = LΓ(B);
If ∃N such that Γ, s : U(N) ⊢ A = σ1(s) then LΓ(A) = maxM≤N {LΓ(M)};
Otherwise, LΓ(A) is undefined.

We need to ensure that our notion of type level is well-formed, i.e. every type has a type
level, and only types have a type level.

▶ Lemma 5. If Γ ⊢ A type, then precisely one of the following hold:
Γ ⊢ A = P : Prop
Γ ⊢ A = Prop
Γ ⊢ A = 0
Γ ⊢ A = 1
Γ ⊢ A = N
∃B, C such that Γ ⊢ A = Π(x : B).C
∃B, C such that Γ ⊢ A = Σ(x : B).C
Γ ⊢ A = U(B)
∃s such that Γ ⊢ A = σ1(s)

Proof. By induction on derivations of the form Γ ⊢ A type. ◀

▶ Corollary 6. LΓ(A) is defined if and only if Γ ⊢ A type.

One of the key metatheoretic features we are interested in is strong normalisation, and so
it is also important to check that our notion of type level is invariant under reduction. As
discussed in section 2.1, we inherit the same two-step reduction process as that described in
Luo, Soloviev and Xue’s work on the implementation of coercive subtyping [15]. The first
step is c-reduction, wherein coercions are inserted where appropriate to ensure that terms are
well-formed and well-typed. The second step is the more typical reduction process via the
application of β-reduction. As our goal in this section is to describe an embedding of τ into
UTT[C], we can informally treat this reduction process as if it were a single step, putting
c-reduction at the same level as β-reduction.

▶ Definition 7. Let M ▷ N denote that applying a single step of reduction to M yields N .
Likewise, let ▷∗ denote the reflexive and transitive closure of ▷, i.e. M ▷∗ N denotes that
applying 0 or more steps of reduction to M yields N .

TYPES 2022

9:8 A Metatheoretic Analysis of Subtype Universes

▶ Theorem 8. If A ▷ B then LΓ(A) = LΓ(B).

Proof. To show that this is true in general, we simply need to show that this holds true for
reduction via the computation rule U-σ1-Comp. For any object s of type U(B), we obtain
that it is of the form ⟨B, c⟩ for some B and c by induction on derivations. As LΓ(σ1(s)) is
defined by its reduction with respect to U -σ1-Comp, this holds. ◀

▶ Corollary 9. If A ▷∗ B then LΓ(A) = LΓ(B).

▶ Remark 10. Luo’s notion of type level had a couple of valuable properties: for example, if
two types are type-isomorphic, then they had the same level. For our own notion of type
level, this doesn’t necessarily hold: if we consider the case of τ with empty C, then every
subtype universe is type-isomorphic to the unit type.

There are also other cases which should serve as counterexamples at a glance, but end up
being much more interesting under a closer look. Unfortunately, this is outside the scope of
this paper.5

3.2 A Syntactic Transformation
As previously mentioned, subtype universes can be thought of as a collection of pairs of
objects; the first object in the pair is the subtype of the supertype, and the second object of
the pair is the coercion through which it is a subtype. We can make this intuition explicit
with a syntactic transformation by turning subtype universes in τ into the type of dependent
pairs in UTT[C], where the first object is the name of the subtype and the second object is
the coercion.

This intuition only works if the subtype has a name in the corresponding type universe.
This leads us to a formal definition of monotonicity:

▶ Definition 11. A coercive subtyping relation A ≤c B is monotonic if LΓ(A) ≤ LΓ(B). A
set of coercive subtyping judgements and rules C is monotonic if every coercive subtyping
relation derived from C is monotonic.

However, we’ve already seen that there are some non-monotonic subtyping judgements
which may be desirable, so we will revisit the case of non-monotonic subtyping later; for
now, we focus on the case of monotonic subtyping. For monotonic C, we define a syntactic
transformation δ : τ → UTT[C] by recursion as described in figure 1.

In this section, we describe both judgements derived in τ and judgements derived in
UTT[C]. While one can view the underlying type theory T as a subtheory of UTT, we use
a different set of judgements. As such, we distinguish between them where necessary; any
judgement derived in τ will be denoted with ⊢τ , and any judgement derived in UTT[C] will
be denoted with ⊢UTT. Moreover, any context in τ will be written as Γ, and any context in
UTT[δ(C)] will be written as δ(Γ)

To ensure this is a useful transformation, we need to check whether or not types have names
in the expected type universes; whether we can derive the judgements we expect regarding
translated terms; and whether this transformation preserves metatheoretic properties we’re
interested in, such as logical consistency and strong normalisation.

Prior to this, however, we need to discuss the translation of subtyping and how δ can
preserve any notion of subtyping. For some derivation Γ ⊢τ A ≤c B, we expect to be able to
take any Γ ⊢ a : A and derive that Γ ⊢ a : B; if δ is to preserve subtyping, then we also need to
ensure that not only can we derive δ(Γ) ⊢UTT δ(a) : δ(A), but also that δ(Γ) ⊢UTT δ(a) : δ(B).

5 We encourage the curious reader to think about the following example: for Γ, a : A ⊢ P : Prop, consider
whether or not the types Π(a : A).P and Π(X : U(A)).Π(x : σ1(X)).P [c(x)/a] are type-isomorphic.

F. Bradley and Z. Luo 9:9

δ(U(B)) = Σ(X : TypeLΓ(B)).(X → δ(B)) δ(σ2) = π2

δ(⟨A, c⟩) = (tLΓ(B)
LΓ(A) ◦ n(δ(A)), δ(c)) δ(σ1) = T ◦ π1

δ(Πx:AB) = Πx:δ(A)δ(B) δ(λ(a : A).B) = λ(a : δ(A)).δ(B)

δ(Σx:AB) = Σx:δ(A)δ(B) δ((a, b)) = (δ(a), δ(b))

δ(π1) = π1 δ(π2) = π2 δ(f(x)) = δ(f)(δ(x))

δ(0) = 0 δ(1) = 1 δ(∗) = ∗

δ(N) = N δ(0) = 0 δ(S) = S

δ(Prop) = Prop δ(∀(x : A).P) = Prf(∀(x : δ(A)).δ(P))

δ(Λ(a : A).P) = Λ(a : δ(A)).δ(P)

Figure 1 The transformation of terms in τ [C] into terms in UTT[δ(C)] under δ.

As we have only defined the domain of our transformation δ as being UTT[C] for some C,
we can exactly specify our target theory by choosing which subtyping judgements and rules
it uses, depending on our initial choice of C for τ . As such, we extend our definition of δ to
include the subtyping judgements of τ , sending any A ≤c B ∈ C to δ(A) ≤δ(c) δ(B); we write
the collection of the latter as δ(C). Moreover, we can precisely say that, for C a fixed set of
subtyping judgements and rules, we can define a syntactic transformation δ : τ → UTT[δ(C)]
per the above.

▶ Theorem 12. If Γ ⊢ A type, then δ(Γ) ⊢ δ(A) : Type and there exists some i ∈ ω and
some term n in UTT[δ(C)] such δ(Γ) ⊢ n : Typei and Ti(n) = δ(A).

Proof. Proof by induction on derivations of Γ ⊢ A type and cross-referencing with lemma 5.
We consider the following cases:
Case 1. ∃B, P such that A is of the form ∀(b : B).P . As in UTT the predicate ∀(x : A).P

exists for any type A and any predicate P over A and has a name in Prop, we may take
i = 0 and n to be the name of Prf(∀(b : δ(B)).δ(P)) in Type0.

Case 2. A of the form Prop. Trivially, we may take i = 0 and n = prop : Type0 .

Case 3. A of the form 0, 1, or N. We take advantage of UTT’s rules which introduce the
names of inductive data types to establish that, as all of these constructors do not have
any types in their generating sequence of inductive schemata, i = 0 and δ(A) must have
names in Type0 [12].

Case 4. ∃B, C such that A is of the form Π(x : B).C, or Σ(x : B).C. Similarly, these types
have a name in Typei if and only if both δ(B) has a name in Typej and δ(C) has a name
in Typek. Assuming δ(B) has a name in Typej and δ(C) has a name in Typek, we may
take i = max{j, k} and thus δ(A) has a name in Typei, which is as desired.

Case 5. ∃B such that A is of the form U(B). Using the same reasoning as per Π types:
as δ(A) = Σ(X : TypeLΓ(B)).(X → δ(B)), we note that TypeLΓ(B) has a name in
TypeLΓ(B)+1 and that X → δ(B) has a name in TypeLΓ(B), and so we may take n as the
name for TypeLΓ(B).

Case 6. ∃s such that A is of the form σ1(s). By induction, we have some B and c such that
Γ ⊢ s = ⟨B, c⟩ and thus A = B by U -σ1-Comp. We may take i = LΓ(A) and n to be the
name of δ(B) in TypeLΓ(A).

TYPES 2022

9:10 A Metatheoretic Analysis of Subtype Universes

Case 7. ∃B such that A is of the form σ1(s), where s : U(B) is variable. As C is monotonic,
we know that LΓ(A) is at most LΓ(B) and thus we may take i = LΓ(B) and n to be the
name of δ(A) in TypeLΓ(B). ◀

▶ Theorem 13. For coherent and monotonic C, the rules of τ [C] are admissible in UTT[δ(C)]
under transformation by δ.

Proof. This is a special case of theorem 23 taking k = 0. ◀

▶ Lemma 14. Let R be a coherent subtyping judgement or rule. Then δ(R) is coherent.

Proof. Assume that R ⊢ A ≤c B. By our definition of δ, we immediately have that δ(Γ) ⊢ δ(c) :
δ(A) → δ(B). Injectivity of δ implies both: that δ(Γ) ̸ ⊢ δ(A) ≤δ(c) δ(A) for every Γ, A, and
c; and that if δ(Γ) ⊢ δ(A) ≤δ(c) δ(B) and δ(Γ) ⊢ δ(A) ≤δ(c′) δ(B), then δ(Γ) ⊢ c = c′. Thus
δ(A) ≤δ(c δ(B) is coherent for every derivation of A ≤c B from R. ◀

3.3 On Monotonic Subtyping
▶ Theorem 15 (Logical consistency). For monotonic C, τ is logically consistent, i.e. there
does not exist some Γ and p such that Γ ⊢ p : ∀(P : Prop).P .

Proof. Proof by contradiction. Assume that there does exist some Γ and p such that
Γ ⊢ p : ∀(P : Prop).P . Under syntactic transformation by δ, we obtain δ(Γ) ⊢ δ(p) : Prf(∀(P :
Prop).P), which contradicts the logical consistency of UTT[C]. ◀

▶ Theorem 16 (Preservation of one-step reduction). For monotonic C, if M ▷ N then
δ(M) ▷ δ(N).

Proof. Proof by induction on the terms of τ . For every reduction M ▷R N in τ via a
computation rule R, we show that there exists a computation rule S such that δ(M)▷S δ(N)
in UTT[C].

As before, there are several trivial cases which have been omitted for brevity, most of
which are special cases of the computation rule µ for UTT’s inductive types6. We focus on
the non-trivial cases regarding subtyping and subtype universes.
Case 1. f(a) ▷Sub-Comp f(c(a)) ⇒

δ(f(a)) def= δ(f)(δ(a)) ▷CA2 δ(f)(δ(c)(δ(a))) def= δ(f)(δ(c(a))) def= δ(f(c(a)))
Case 2. σ1(⟨A, c⟩) ▷U -σ1-Comp A ⇒

δ(σ1(⟨A, c⟩)) def= δ(σ1)(δ(⟨A, c⟩)) def= TLΓ(B) ◦ π1(tLΓ(B)
LΓ(A) ◦ n(δ(A)), δ(c))

▷Σ1 TLΓ(B)(t
LΓ(B)
LΓ(A) ◦ n(δ(A))) def= δ(A)

Case 3. σ2(⟨A, c⟩) ▷U -σ2-Comp c ⇒
δ(σ2(⟨A, c⟩)) def= δ(σ2)(δ(⟨A, c⟩)) def= π2((tLΓ(B)

LΓ(A) ◦ n(δ(A)), δ(c))) ▷Σ2 δ(c) ◀

▶ Corollary 17 (Preservation of multi-step reduction). For monotonic C, if M ▷∗ N then
δ(M) ▷∗ δ(N).

▶ Theorem 18 (Strong normalisation). For monotonic C, if Γ ⊢ M : A, then M is strongly
normalisable, i.e. every possible sequence of reductions of M is finite.

6 These include Π types, Σ types, N, 1, 0.

F. Bradley and Z. Luo 9:11

Proof. Proof by contradiction. Assume that there does exist some Γ and M such that
Γ ⊢ M : A where M has an infinite reduction sequence. Under transformation by δ we obtain
δ(M). As δ preserves multi-step reduction, we obtain an infinite reduction sequence of δ(M),
which contradicts the strong normalisation of UTT[C]. ◀

▶ Remark 19. For monotonic C, we can take advantage of our transformation δ and the
decidability of type-checking in UTT[C] to show that in τ both type checking and the
subtyping relation is decidable. For any given term M in τ , we can consider the type of
δ(M). As UTT[C] is a conservative extension7 of UTT, we can type-check δ(M). As δ is
injective, we are also able to know the form of the type of δ(M) in UTT[C] and thus also
in τ .

To show that subtyping is also decidable, for any given pair of types A, B, we can consider
the construction of a term t which is well-typed if and only if the subtyping relation A ≤ B

is derivable (such as λ(f : B → N).λ(a : A).f(a).) [17]. By checking if δ(t) is well-typed in
UTT[C], we can decide whether or not A ≤ B.

3.4 On Non-Mononotic Subtyping
When analysing the more general case of the metatheory of τ [C], where the set of subtyping
judgements C contains some non-monotonic subtyping relations, one will often run into
immediate difficulty. Our first approach to this problem was to try and use the notion that
the use of coercive subtyping is a kind of shorthand for the insertion of exact coercions.
The extension of a type theory with coercive subtyping should be a conservative extension,
and likewise extending a type theory with additional subtyping rules should not affect the
underlying theory [15, 13].

One could interpret the extension of a type theory with additional coercive subtyping
rules as a kind of weakly conservative extension – it should not “add” new types to the
theory, and one should not suddenly be able to obtain terms in types that were previously
uninhabited. Furthermore, if you have a term that depends on the existence of a subtyping
judgement, then it should be possible to construct another term of the same type that doesn’t
rely on that subtyping judgement through the insertion of coercions – this can form the
basis of a type-checking algorithm, assuming you have a type-checking algorithm for the case
where C is empty.

When applying this idea to τ , the existence of subtype universes causes immediate
problems. If you have a term that depends on an object of a subtype universe, say ⟨A, c⟩ :
U(B), then you can attempt to construct another object of the same type by both inserting
coercions and by replacing instances of ⟨A, c⟩ with ⟨B, idB⟩. At the term-level, this idea
requires effort, but is sound. Unfortunately, the idea does not work in general due to the
presence of new types.

Consider a subtyping rule from which we may derive A ≤c B, and extending τ [C] with R.
Observe that

Σ(x : U(B)). EqU(B)(x, ⟨A, c⟩)

where EqA
def= ∀(x : A).∀(y : A).∀(P : Prop).(P (x) ↔ P (y)) is the type of propositional

Leibniz equality on a given type A. Whilst this type can be derived in τ [C; R], it cannot
be derived in τ [C], and there’s no obvious process from which we may try to extend the
type-checking algorithm for τ [C].

7 More accurately, UTT[C] is equivalent to a type theory which is a conservative extension of UTT – the
exact meaning of “conservativity” of τ with respect to T is not always clear with the rules for coercive
subtyping we have used.

TYPES 2022

9:12 A Metatheoretic Analysis of Subtype Universes

David Aspinall’s work on the predicative typed lambda calculus λPower lead to him
introducing a notion of “rough types” [1]. Where as one may intuit our first approach
described above as an attempt to blur terms together to extend a type-checking algorithm,
Aspinall’s approach instead blurs types together, organises them into rough types, and
develops a rough-type-checking algorithm. Aspinall shows that, as long as there is a method
to calculate the rough type of a given term, this is sufficient to be able to prove strong
normalisation for the calculus.

We believe Aspinall’s approach would also work for τ . However, it also possible to further
generalise the definitions and proofs given in sections 3.2 and 3.3 to cover practically most
non-monotonic subtyping relations. The key insight is that most non-monotonic subtyping
relations are still relatively well-behaved: by measuring how far a subtyping relation is from
being monotonic, we’re able to adjust the embedding of τ into UTT[C] in response. We first
introduce this measurement:

▶ Definition 20. A coercive subtyping relation A ≤c B is k-monotonic if LΓ(B)−LΓ(B)+k ≥
0. A set of coercive subtyping judgements and rules C is k-monotonic if every coercive
subtyping relation derived from C is k-monotonic.

This is a generalisation of monotonicity of subtyping – in particular, any given monotonic
subtyping relation is 0-monotonic. If we consider the example of pointed subtypes introduced
earlier in section 2.3

Σ(x : U(B)).σ1(x) ≤q B,

we can calculate that the difference between the level of the supertype and the level of the
subtype is independent of the choice of the type B.

LΓ(B) − LΓ(Σ(x : U(B)).σ1(x)) = LΓ(B) − max(LΓ(B) + 1, LΓ(σ1(x))) (1)
= min(−1, −LΓ(σ1(x))) (2)

If you wanted to extend τ [] with the rule B type ⊢ Σ(x : U(B)).σ1(x) ≤q B, then this
subtyping rule would be 1-monotonic. At worst, because a type can only be constructed with
a finite number of Us, we know that there must always exist some k such that this subtyping
rule is k-monotonic.

▶ Corollary 21. Let R be an i-monotonic coherent coercive subtyping rule, and let C be
a j-monotonic set of coherent coercive subtyping judgements. Then [C; R] is (at worst)
(i + j)-monotonic.

From here, one can modify the embedding δ described in section 3.2: if you have a
bounded measure k of the difference in level between a supertype and a subtype, then
this says that if you were attempting to embed τ [C] into UTT[C] by mapping U(B) to
Σ(X : TypeLΓ(B)).(X → δ(B)), then the particular choice of TypeLΓ(B) is k levels under
where it needs to be for δ(A) to have a name.

▶ Definition 22. For a given set of k-monotonic subtyping judgements C, define a syntactic
transformation δk : τ [C] → UTT[δk(C)] defined identically to δ except

δk(U(B)) def= Σ(X : TypeLΓ(B)+k).(X → δk(B)), δk(⟨A, c⟩) = (tLΓ(B)+k
LΓ(A) ◦n(δk(A)), δk(c))

F. Bradley and Z. Luo 9:13

As there is only a minor difference between δk and δ, it’s easy to see that a lot of the
proofs needed to show that δk is a well-behaved embedding that preserves term reduction
are almost identical to the proofs for δ, except for the extra terms of k, as seen in the proof
of theorem 23. As a result, the proofs of theorem 12 and lemma 14 are functionally identical,
as are the proofs regarding logical consistency, term reduction and strong normalisation.

▶ Theorem 23. For coherent and k-monotonic C, the rules of τ [C] are admissible in
UTT[δ(C)] under transformation by δk.

Proof. As τ is a subtheory of UTT[C] as discussed in section 2.3, the majority of the rules
of τ are effectively derivable in UTT[C] by default. We omit the trivial cases (such as rules
for the unit type, dependent function types, etc.) and instead focus on the non-trivial cases
regarding coercive subtyping and subtype universes.

δk-Sub-Intro

δk(Γ) ⊢ δk(f) : Π(x : δk(B)).δk(C)
δk(Γ) ⊢ δk(A) <δk(c) δk(B) δk(Γ) ⊢ δk(a) : δk(A)

δk(Γ) ⊢ δk(f)(δk(a)) : [δk(c)(δk(a))/x]δ(C)
derivable

δk-Sub-Comp

δk(Γ) ⊢ δk(f) : Πx:δk(A)δk(C)
δk(Γ) ⊢ δk(A) <δk(c) δk(B) δk(Γ) ⊢ δk(a) : δk(A)

Γ ⊢ δk(f)(δk(a)) = δk(f)(δk(c(a))) : [δk(c)(δk(a))/x]δk(C)
derivable

δk-U -Form
δk(Γ) ⊢ δk(B) type

δk(Γ) ⊢ Σ(X : TypeLΓ(B)+k).(X → δk(B)) : TypeLΓ(B)+k+1
derivable

δk-U -Intro
δk(Γ) ⊢ δk(A) <δk(c) δk(B)

δk(Γ) ⊢ δk(⟨A, c⟩) : Σ(X : TypeLΓ(B)+k).(X → δk(B))
derivable

δk-U -σ1-Elim

δk(Γ) ⊢ δk(B) : TypeLΓ(B)
Γ ⊢ δk(t) : Σ(X : TypeLΓ(B)+k).(X → δk(B))

Γ ⊢ TLΓ(B)+k ◦ π1(δk(t)) : Type
derivable

δk-U -σ2-Elim

δk(Γ) ⊢ δk(B) : TypeLΓ(B)
δk(Γ) ⊢ δk(t) : Σ(X : TypeLΓ(B)+k).(X → δk(B))

δk(Γ) ⊢ π2(δk(t)) : π1(δk(t)) → δk(B)
derivable

δk-U -σ1-Comp

δk(Γ) ⊢ δk(B) : TypeLΓ(B)
δk(Γ) ⊢(δk(A), δk(c)) : Σ(X : TypeLΓ(B)+k).(X → δk(B))

δk(Γ) ⊢ TLΓ(B)+k ◦ π1(δk(⟨A, c⟩)) = δk(A) : Type
derivable

δk-U -σ2-Comp

δk(Γ) ⊢ δk(B) : TypeLΓ(B)
δk(Γ) ⊢ δk(A), δk(c)) : Σ(X : TypeLΓ(B)+k).(X → δk(B))

δk(Γ) ⊢ π1(δk(⟨A, c⟩)) = δk(c) : δk(A) → δk(B)
derivable

◀

▶ Theorem 24 (Logical consistency). For k-monotonic C, τ is logically consistent, i.e. there
does not exist some Γ and p such that Γ ⊢ p : ∀(P : Prop).P .

▶ Theorem 25 (Preservation of one-step reduction). For k-monotonic C, if M ▷ N then
δ(M) ▷ δ(N).

▶ Corollary 26 (Preservation of multi-step reduction). For k-monotonic C, if M ▷∗ N then
δ(M) ▷∗ δ(N).

TYPES 2022

9:14 A Metatheoretic Analysis of Subtype Universes

▶ Theorem 27 (Strong normalisation). For k-monotonic C, if Γ ⊢ M : A, then M is strongly
normalisable, i.e. every possible sequence of reductions of M is finite.

▶ Remark 28. As in the case with monotonic subtyping, as the embedding δk is injective,
we can type-check any given term M of τ [C] with k-monotonic C by type-checking the term
δk(M) in UTT[δ(C)].

4 On Subtyping and Bounded Quantification

Works on subtyping and on specific type systems or programming languages with an imple-
mentation of subtyping or bounded quantification often have a variety of basic subtyping
rules or judgements used to enrich the type system. Some of these are particularly popular
amongst authors due to their power, or their ability in making for an expressive type system.
When it comes to the metatheory of subtyping, particular instances or combinations of
subtyping rules can also often cause problems with regards to normalisation and logical
consistency, but also in often desirable properties, such as the decidability of subtyping.

4.1 With Dependent Functions
Bounded quantification was first introduced by Cardelli and Wegner in the language Fun,
with a handful of subsumptive subtyping rules to introduce non-trivial subtypes into the
system [3]. Fun has been a core for study and analysis, and several variations, simplifications
and extensions have come about. In a paper analysing the subtyping of one of these variations
called minimal bounded Fun, Pierce proves that the subtyping relation is undecidable by
encoding the halting problem as a subtyping problem [17].

In particular, the interaction between two subtyping rules causes this undecidability; the
existence of a universal supertype Top, and a dependent function subtyping rule.

Γ ⊢ A type
Γ ⊢ A ≤ Top

Γ ⊢ B1 ≤ A1 Γ, α ≤ B1 ⊢ A2 ≤ B2

Γ ⊢ ∀(α ≤ A1).A2 ≤ ∀(α ≤ B1).B2

Top alone can cause a plethora of issues (as discussed later in this section), but the
function subtyping rule used is of particular interest. Castagna and Pierce have spoken about
the issues this rule presents, and have discussed several variations [4]. However, the version
presented above can also be presented in coercive subtyping.

▶ Lemma 29 (Coherency of Π-Infer). The subtyping rule

Π-Infer

Γ ⊢ A1 ≤c B1 Γ, a : A1 ⊢ A2 type
Γ, b : B1 ⊢ B2 type Γ, a : A1 ⊢[c(a)/b]B2 ≤d A2

Γ ⊢ Π(b : B1).B2 ≤q Π(a : A1).A2

is coherent, where

q = λ(g : Π(b : B1).B2).λ(a : A1).d(a, g(c(a)))

Proof. Per the definition of coherency, we have three conditions we need to check. First, we
check that q has the expected type.

q : (Π(x : B1).B2) → (Π(x : A1).A2)

F. Bradley and Z. Luo 9:15

Secondly, we check the case where A1 = B1 and B2 = A2, and thus c is the identity function
idA1 and d is the constant function λ(x : A1). idA2 . We obtain, through various computation
rules,

q = λ(g : Π(x : A1).A2).λ(x : A1).d(x, g(c(x))) (3)
= λ(g : Π(x : A1).A2).λ(x : A1).(λ(x : A1). id)(x, g(id(x))) (4)
= λ(g : Π(x : A1).A2).λ(x : A1). id(g(id(x))) (5)
= λ(g : Π(x : A1).A2).λ(x : A1).g(x) (6)
= idΠ(x:A1).A2) (7)

as desired. Similarly, for the third case, it’s easy to see that coherency of the hypothesis
implies equality for multiple different derivations of q. ◀

One of the primary hurdles with this subtyping rule is that how the context is filled
with regards to the codomains is uncertain, which may be evidence of an issue. Splitting
this rule into two, with one for contravariance in the domain and the other for covariance
in the codomain, is also possible [13] and arguably easier: Cardelli and Wegner’s original
formulation of the language Fun only uses a subtyping rule for the codomain, which can be
shown to be decidable [17].

4.2 With Universal Supertypes
In coercive subtyping, the implementation of a universal supertype is often impossible for the
sheer reason that it cannot be implemented coherently – Top cannot contain a single object8,
and so needs to be able to describe every possible object of the system. For extremely simple
type theories, such as a theory containing only finite types and no type constructors, this is
relatively trivial; but for even marginally more complex theories, the complexity and size of
Top grows rapidly.

Even ignoring coherency issues for a moment, the same approach we have taken with
respect to the metatheory of reflecting subtype universes on to type universes can’t be taken.
Adding a universal supertype Top to τ always results in non-monotonic subtyping; if we
choose any n ∈ ω such that LΓ(Top) def= n, we can always find a subtype of strictly greater
level (such as Un+1(1).)

Introducing bounded quantification in conjunction with Top into a system also has an
immediate concern in the semantics of the type ∀(X ≤ Top).X. Equivalently, in a system
where we have mechanised bounded quantification via subtype universes or power types, we
can consider the type U(Top) – for all intents and purposes, this should be a type of all types.
By Girard’s paradox, these systems should be non-normalising and thus inconsistent9 [7].

Under the set-theoretic containment semantics, any universal supertype has to be transfin-
ite in nature in the same way that a type of all types is transfinite in nature. It may be
possible to “solve” the metatheoretic issues that universal supertypes present by taking a
similar approach to type universes: by replacing Top with a series of partial supertypes
Top1, Top2, ... equipped with subtyping relations Top1 ≤ Top2 ≤

8 Assuming the system has at least two distinct terms!
9 There are several interesting routes through which one may attempt to obtain a proof of this inconsistency;

the traditional approach here is to obtain what is essentially a bijection between a type and its power
type, which is a contradiction by the diagonal lemma [10, 19]. Another possible route may be that,
through subtype universes, a type theory may be capable of modelling itself – how large this model may
be is unclear, however.

TYPES 2022

9:16 A Metatheoretic Analysis of Subtype Universes

In fact, with subtype universes, such a set of partial supertypes can completely replace
the typical use of type universes by replacing quantification over Typei with bounded
quantification over Topi. Furthermore, i doesn’t necessarily need to be indexed by ω; one
can take any partially ordered set I and, for i, j ∈ I, let Topi ≤ Topj whenever i ≤ j.

4.3 With Subtype Universes
A subtyping inference rule for power types introduced by both Cardelli and Aspinall is as
follows:

Γ ⊢ A ≤ B

Γ ⊢ Power(A) ≤ Power(B)

We can form an equivalent rule for τ as follows:

Γ ⊢ A ≤c B

Γ ⊢ U(A) ≤λ(X:U(A)).⟨σ1(X),c◦σ2(X)⟩ U(B)

which is well-typed and thus coherent by transitivity of subtyping. Under the set-theoretic
notion of subtypes as subsets, this is also an extremely useful rule; we can reason about
collections of subsets. On the other hand, this also greatly impacts any higher structure on
subtype universes; we may wish to reason about the subtypes of U(B) without taking into
account the subtypes of B itself.

There is also an issue of whether subtype universes and subtyping should be allowed to
interact in the first place; subtype universes are an extension of a system with subtyping, and
one may consider that system to have already had a set of subtyping relations judgements
and rules implemented. Even then, being able to reason about subtyping relations with
subtype universes can still be useful. We consider the following example:

O(n) def= Σ(x : N).(x < n)

O(n) ≤π1 N

N ≤λ(n:N).⟨O(n),π1⟩ U(N)

This example of ordinals-as-types was derived from looking at the logical consistency of
certain subtyping relations and attempting to recreate Girard’s paradox [7]. However, the
two above subtyping judgements have an interesting property; the coherency of the second
subtyping judgement now depends on the former. By allowing subtyping judgements to
quantify over subtype universes, the coherency of any one subtyping judgement becomes
dependent on the other judgements in the system.

4.4 Decidability of Typing and Subtyping
While we have sketched a proof that type-checking is decidable for monotonic subtyping and a
subset of non-monotonic subtyping (i.e. those which are k-monotonic), there is still the open
question of whether or not non-monotonic subtyping is decidable in general (i.e. for C that are
non-monotonic but where there does not exist a k such that C is k-monotonic). Furthermore,
our results rely primarily on the advantages that coercive subtyping brings: whether or not
these ideas apply to systems that use subsumptive subtyping is left unanswered, especially
for non-monotonicity.

F. Bradley and Z. Luo 9:17

There do exist examples of non-monotonic subtyping being decidable, such as Com-
pagnoni’s proof for System F ω

∧ [6]. F ω
∧ uses subsumptive subtyping and the dependent

function subtyping rule, but drops the universal supertype Top in favour of empty inter-
section types quantifying over a kind. Additionally, Aspinall’s work on power types lead to
the development of rough-typing [1] – a kind of approximate type-checking that’s powerful
enough to still prove results such as strong normalisation. The algorithm Aspinall outlines
provides enough information that one could likely refine it into a full type-checking algorithm.

In both Aspinall’s work on power types and in Hutchins’ work on pure subtype systems, [11]
the authors point out that bounded quantification can be used to subsume a notion of kinds.
Aspinall emulates the Edinburgh Logical Framework in λPower, and his rough type-checking
can be seen as a notion of kinding . Likewise, Hutchins describes a process through which
functions using kinds can be equivalently described through bounded quantification over
types without any loss of generality.

This does open up several questions, such as whether you can “retrofit” kinds into a pure
type system with bounded quantification. The difficulty of a generation or inversion lemma
when working without coercive subtyping lends to one fear in regards to the combined use of
both Top and power types. Top ≤ Top allows one to express non-terminating computations
with power types; in a system where the distinction between terms and types are blurred, is
it possible to form non-normalising types, just as one can express non-normalising terms?

5 Applications

5.1 Bounded Quantification
The mechanisation of bounded quantification was one of the key motivations for introducing
power types in Cardelli’s original paper [2]. Cardelli described a focus on the expressiveness
of his system at the cost of non-terminating type-checking, but his formulation considered
the case where subtyping was entire subsumed by typing (i.e. A ≤ B as shorthand for
A : Power(B)). Maclean and Luo’s subtype universes showed that the mechanisation of
bounded quantification could preserve metatheoretic properties, but also kept typing and
subtyping disjoint enough that subtype universes could lead to a more expressive system [16].

Subtype universes as described in this paper are capable of modelling bounded quantific-
ation; one should consider λ(A ≤ B).M as shorthand for λ(x : U(B)).[σ1(x)/A]M . This is
particularly useful when it comes to record types. For example, consider a function

darken : {luminosity : Float32} → Float32 → {luminosity : Float32}

This function is clearly sufficient in the case where we’re handling objects that only carry
luminosity data, but if we were to use subtyping to parse an object which also carried hue
and saturation data, then we would receive an object with only luminosity data back. To fix
this issue, we can use bounded quantification, and instead use the function

darken : Π(X : U({luminosity : Float32})).σ1(X) → Float32 → σ1(X)

which allows us to preserve any excess information parsed in.
Subtyping can also be taken into consideration and used when designing languages and

software to prevent errors. Often a collection of types designed to model information or
objects will have some higher notion of structure on them; for example, the type Q equipped
with addition, subtraction, multiplication and division forms a field. When designing the
data types used to model these objects, we may wish for these operations to be as close to

TYPES 2022

9:18 A Metatheoretic Analysis of Subtype Universes

independent of which type we’re considering them in. For example, take Int16 ≤c Float32.
For any two x, y : Int16, we would expect c(x + y) = c(x) + c(y), and we may wish to choose
a c or change our definitions of + accordingly.

These approaches make for future-safe design and development of software. Often during
the development of software one may wish to refactor code to improve its maintainability,
reduce complexity, or prepare for adding new features; by taking these safe-guarding measures
in the design-process, errors can be prevented and type-safety can be ensured. We also retain
one of the key advantages of subtype universes and power types in that these objects can be
interpreted as types; we can consider functions that range over types, which is not possible
with just bounded quantification. Our system is also capable of modelling new kinds of
subtyping relations through this process.

For example, for a given type B, consider the type of pointed subtypes Π(x : U(B)).σ1(x).
Intuitively, a pointed subtype of B is also a subtype of B, but Maclean and Luo’s subtype
universes had no way of describing this subtyping relation coherently. However, with the
introduction of σ2 in our system, we can obtain the exact coercion through which one type
is a subtype of another type, and so we can use the coherent subtype relation

Σ(x : U(B)).σ1(x) ≤q B where q
def= λ(y : Π(x : U(B)).σ1(x)).(σ2(π1(y)))(π2(y)).

With Maclean’s subtype universes, we could implement behavioural subtyping with relative
ease, but one could not describe subtyping relations which used bounded quantification.
Being able to combine the two makes for a more expressive system.

5.2 Natural Langauge Semantics
Subtyping has a variety of applications in natural language semantics in describing the
relationships between different categories and groups. When we start formalising these
relationships, there quickly becomes a desire for some notion of bounded quantification.

Montague grammar, introduced in Richard Montague’s seminal work, solves this problem
by interpreting categorisation as propositions [18]. By semantically typing different language
constructs, we can interpret a fully constructed sentence as a type. For example, we could
interpret the sentence “all grass is green” as a term of type ∀x.isGrass(x) → isGreen(x). As
lemongrass is a type of grass and thus isLemongrass(x) ≤ isGrass(x), we would also obtain
the sentence “all lemongrass is green”10.

However, we quickly run into an issue with Montague grammar in that we can form
nonsense sentences: we can semantically type the sentence “all purple is trains” or “the
month of December plays football”, but these sentences don’t make sense and are likely
undesirable. We can instead model natural language semantics in a modern type theory,
where every category of objects has its own type and subtyping is used to describe the
relationships between categories of objects [14, 5]. For example, we can consider the type of
Woman as a subtype of Human, or Chair as a subtype of Furniture. This allows us to use
subtype universes to model categorisation of objects. Using U -Infer as an example, one may
infer from Fish ≤ Animals that U(Fish) ≤ U(Animals) – i.e. that a type of species of fish is
also type of species of animal.

We can also use subtype universes to model subsective adjectives. For example, how
should one interpret the adjective “skillful” versus the adjective “small”? Let CN be the
universe of common nouns. For any common noun, the interpretation of small : Π(A :

10 While one may understand types as propositions via the Curry-Howard correspondence, the subtleties of
subtyping with propositions in a type theory where propositions are treated distinctly from types is still
an unexplored topic. Further analysis and discussion on this is outside the scope of this work, however.

F. Bradley and Z. Luo 9:19

CN).A → Prop is both sound and meaningful. However, using the same idea to obtain
skillful : Π(A : CN).A → Prop presents some issues. Whilst skillful(Doctor) makes sense, an
example such as skillful(Chair) is obviously not intended. If we wish to exclude unintended
combinations from our modelling of language, we can instead consider the semantic typing
skillful : Π(A : U(Human)).σ1(A) → Prop. Of course, as Doctor ≤c Human, we have that
skillful(⟨Doctor, c⟩) is a well-typed expression. However, this now excludes unintended cases
– skillful(⟨Chair, c′⟩) is ill-typed because Chair ̸≤ Human.

5.3 Point-Set Topology
Subtyping has some interesting relationships with topology. For example, one could choose
a set of subtyping judgements and rules such that a type and its subtypes model a space
and its open sets. Under this application, the subtype universe of a space corresponds to its
topology – the set of open sets.

This is a relatively easy process if the space we want to look at has a given metric, as the
topology derived from a metric space is given by the union of open balls around points. As
an example, we consider the rational numbers with the Euclidean metric (denoted d). We
first model the rational numbers Q as N×N /0 with addition, multiplication, metric, and
ordering defined in the typical ways, e.g. we define the Euclidean metric d : Q → Q → Q
such that d(x, y) = |x − y|.

We then consider the following three coherent subtyping rules:

Γ ⊢ z : Q, Γ ⊢ r : Q
Γ ⊢ Σ(x : Q).(d(z, x) < r) ≤π1 Q

Γ ⊢ I type Γ, x : I ⊢ A ≤c Q
Γ ⊢ Σ(i : I)A ≤λ(p:Σ(i:I)A).c(π1(p),π2(p)) Q

Γ ⊢ A <c Q Γ ⊢ B <c′ Q
Γ ⊢ Σ(a : A).Σ(b : B).(c(a) = c′(b)) <c◦π1 Q

These three rules are sufficient for U(Q) to be a topology of Q. It’s rather simple to check
that there exists an empty subtype; that the arbitrary union of subtypes is also a subtype;
and that the intersection of two subtypes is also a subtype.

We do, however, have a multitude of technical and semantic issues to work our way
through. Is this the correct notion of union and intersection, for example? Have we chosen
our basis correctly, or is there a different basis for the topology which is more convenient to
work with (for example, slicing the real line)?

Under the above rules, there exists multiple empty subtypes – whilst the rules we’ve
introduced could be further refined to prevent these issues, we may also wish to reason
about U(Q) as a setoid. Similarly, we may also want to reason about Q as a setoid as there
exists multiple different ways of expressing the same rational number: for example, 1/2
is represented by the pairs (1, 2), (2, 4), (3, 6), and so on. There is an obvious notion of
propositional equality EqQ we can equip to Q by defining

EqQ(p, q) def= (π1(p − q) = 0) : Prop .

However, with a notion of point-set topology formalised, we can also equip Q with a notion
of equality based on open sets.

EqQ
′(p, q) def= ∀(x : U(Q)).((∃(r : σ1(x)).(p = r)) ∧ (∃(s : σ1(x)).(q = s))).

Whilst EqQ is certainly more reasonable for reasoning about arithmetic or number theory, it’s
plausible that EqQ

′ and similar notions may be more useful for reasoning about continuity,
limits, or Cauchy sequences. Exploring this further is outside the scope of this paper, however.

TYPES 2022

9:20 A Metatheoretic Analysis of Subtype Universes

When using subtype universes to model topologies, the coercions used in the subtyping
judgements can be understood as mapping open sets to open sets. We leave open the
question of whether these coercions can be interpreted as a continuous embedding of one
space into another and what this means for the semantics of a type theory. Nonetheless,
understanding subtyping as continuous embedding could provide some new intuition for the
problems regarding universal supertypes: Top is not only a universal supertype, but also a
space in which every space in a type theory can be embedded into. If we want to be able to
use a universal super type with coercive subtyping, then we need some way to describe every
object of our type theory.

We can immediately ask questions and draw conclusions about what such a space looks
like: for example, if we take a type theory consisting only of finite types with no type
constructors, then Top is described by N. For any type theory modelling anything more
complicated, Top is unlikely to look like a slice of R∞, as any space embedding into R∞

must be both seperable and metrizable11.

6 Conclusion

This work generalised and extended Maclean and Luo’s prior notion of subtype universes in
order to provide support for a much wider range of coercive subtyping relations. By examining
a type system lacking the traditional type universe hierarchy of Type0, Type1, Type2, ..., we
have allowed for subtypes more complicated than their supertype; and by allowing one to
obtain the coercion through the σ2 operator, we are able to express coherent subtyping
judgements and rules that use subtype universes.

In doing so, we have found that the metatheory remains relatively well-behaved regardless
of the choice in subtyping relations; both monotonic and k-monotonic subtyping result in
logical consistency and strong normalisation of terms. Additionally, we have sketched a proof
of the decidability of type-checking and subtyping in both cases by embedding terms into
UTT[C] and type-checking there instead. However, whether or not similar results can be
proven for non-monotonic subtyping in general (i.e. where there does not exist a k such that
subtyping is k-monotonic) is left open.

Throughout the course of this paper, we hope to have shed some light regarding particular
uses of subtyping, such as the difficulties of using a universal supertype Top. However, we
have left several questions open, such as whether or not τ is confluent, the subtleties of
subtyping between propositions, and how closely linked subtyping and subtype universes are
to a notion of continuous embeddings.

In particular, we want to more closely examine Hutchins’ work on pure subtype sys-
tems [11]: systems akin to pure type systems wherein the typing relation is entirely subsumed
by the subtyping relation, a notion “almost completely dual to [...] the approach taken by
Cardelli” . Simple questions such as the decidability of subtyping or how one may implement
a notion of propositional logic into a pure subtype system are left open, and we look forward
to working on this in the future.

References
1 David Aspinall. Subtyping with power types. In Peter G. Clote and Helmut Schwichtenberg,

editors, Computer Science Logic, pages 156–171, Berlin, Heidelberg, 2000. Springer Berlin
Heidelberg.

11 More formally, every seperable and metrizable space is homeomorphic to a subset of the Hilbert cube
[0, 1]∞, which is a subspace of R∞. This is established in the proof of Urysohn’s metrization theorem.

F. Bradley and Z. Luo 9:21

2 Luca Cardelli. Structural subtyping and the notion of power type. In Proceedings of the
15th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
’88, pages 70–79, New York, NY, USA, 1988. Association for Computing Machinery. doi:
10.1145/73560.73566.

3 Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and polymorphism.
ACM Comput. Surv., 17(4):471–523, December 1985. doi:10.1145/6041.6042.

4 Giuseppe Castagna and Benjamin C. Pierce. Decidable bounded quantification. In Proceedings
of the 21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’94, pages 151–162, New York, NY, USA, 1994. Association for Computing Machinery.
doi:10.1145/174675.177844.

5 Stergios Chatzikyriakidis and Zhaohui Luo. On the interpretation of common nouns:
Types versus predicates. In Stergios Chatzikyriakidis and Zhaohui Luo, editors, Mod-
ern Perspectives in Type-Theoretical Semantics, pages 43–70. Springer Cham, 2017. doi:
10.1007/978-3-319-50422-3.

6 Adriana Compagnoni. Higher-order subtyping and its decidability. Information and Computa-
tion, 191(1):41–103, 2004. doi:10.1016/j.ic.2004.01.001.

7 Thierry Coquand. An analysis of Girard’s paradox. Technical Report RR-0531, INRIA, May
1986. URL: https://hal.inria.fr/inria-00076023.

8 Healfdene Goguen. A Typed Operational Semantics for Type Theory. PhD thesis, University
of Edinburgh, 1994.

9 Douglas J. Howe. The computational behaviour of girard’s paradox. Technical report, Cornell
University, Ithaca, New York, USA, March 1987.

10 Antonius J. C. Hurkens. A simplification of Girard’s paradox. In Mariangiola Dezani-Ciancaglini
and Gordon Plotkin, editors, Typed Lambda Calculi and Applications, pages 266–278, Berlin,
Heidelberg, 1995. Springer Berlin Heidelberg.

11 DeLesley S. Hutchins. Pure subtype systems. In Proceedings of the 37th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’10, pages
287–298, New York, NY, USA, 2010. Association for Computing Machinery. doi:10.1145/
1706299.1706334.

12 Zhaohui Luo. Computation and Reasoning: A Type Theory for Computer Science. Oxford
University Press, London, March 1994.

13 Zhaohui Luo. Coercive subtyping. Journal of Logic and Computation, 9(1):105–130, February
1999. doi:10.1093/logcom/9.1.105.

14 Zhaohui Luo. Common nouns as types. In D. Béchet and A. Dikovsky, editors, Proceedings of
the 7th International Conference on Logical Aspects of Computational Linguistics (LACL’12),
pages 173–185, Berlin, Heidelberg, 2012. Springer-Verlag.

15 Zhaohui Luo, Sergey Soloviev, and Tao Xue. Coercive subtyping: Theory and implementation.
Information and Computation, 223:18–42, 2013. doi:10.1016/j.ic.2012.10.020.

16 Harry Maclean and Zhaohui Luo. Subtype Universes. In Ugo de’Liguoro, Stefano Berardi,
and Thorsten Altenkirch, editors, 26th International Conference on Types for Proofs and
Programs (TYPES 2020), volume 188 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 9:1–9:16, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.TYPES.2020.9.

17 Benjamin C. Pierce. Bounded quantification is undecidable. In Proceedings of the 19th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’92,
pages 305–315, New York, NY, USA, 1992. Association for Computing Machinery. doi:
10.1145/143165.143228.

18 Richmond H. Thomason, editor. Formal Philosophy: Selected Papers of Richard Montague.
Yale University Press, New Haven, 1974.

19 Kevin Watkins. Hurkens’ simplification of Girard’s paradox, July 2004. URL: https://www.
cs.cmu.edu/~kw/research/hurkens95tlca.elf.

TYPES 2022

https://doi.org/10.1145/73560.73566
https://doi.org/10.1145/73560.73566
https://doi.org/10.1145/6041.6042
https://doi.org/10.1145/174675.177844
https://doi.org/10.1007/978-3-319-50422-3
https://doi.org/10.1007/978-3-319-50422-3
https://doi.org/10.1016/j.ic.2004.01.001
https://hal.inria.fr/inria-00076023
https://doi.org/10.1145/1706299.1706334
https://doi.org/10.1145/1706299.1706334
https://doi.org/10.1093/logcom/9.1.105
https://doi.org/10.1016/j.ic.2012.10.020
https://doi.org/10.4230/LIPIcs.TYPES.2020.9
https://doi.org/10.1145/143165.143228
https://doi.org/10.1145/143165.143228
https://www.cs.cmu.edu/~kw/research/hurkens95tlca.elf
https://www.cs.cmu.edu/~kw/research/hurkens95tlca.elf

The Münchhausen Method in Type Theory
Thorsten Altenkirch #

School of Computer Science, University of Nottingham, UK

Ambrus Kaposi #

Eötvös Loránd University, Budapest, Hungary

Artjoms Šinkarovs #

Heriot-Watt University, Edinburgh, Scotland, UK

Tamás Végh #

Eötvös Loránd University, Budapest, Hungary

Abstract
In one of his long tales, after falling into a swamp, Baron Münchhausen salvaged himself and the
horse by lifting them both up by his hair. Inspired by this, the paper presents a technique to justify
very dependent types. Such types reference the term that they classify, e.g. x : F x. While in most
type theories this is not allowed, we propose a technique on salvaging the meaning of both the term
and the type. The proposed technique does not refer to preterms or typing relations and works in a
completely algebraic setting, e.g categories with families. With a series of examples we demonstrate
our technique. We use Agda to demonstrate that our examples are implementable within a proof
assistant.

2012 ACM Subject Classification Theory of computation → Type theory; Theory of computation
→ Type structures

Keywords and phrases type theory, proof assistants, very dependent types

Digital Object Identifier 10.4230/LIPIcs.TYPES.2022.10

Supplementary Material Software: https://bitbucket.org/akaposi/combinator/src/master/
post-types2022, archived at swh:1:dir:9609c613a09bd552cbca4546d247e3cefebef9cd

Funding Ambrus Kaposi: Supported by the “Application Domain Specific Highly Reliable IT
Solutions” project which has been implemented with support from the National Research, Devel-
opment and Innovation Fund of Hungary, financed under the Thematic Excellence Programme
TKP2020-NKA-06 (National Challenges Subprogramme) funding scheme, and by Bolyai Scholarship
BO/00659/19/3.
Artjoms Šinkarovs: Supported by the Engineering and Physical Sciences Research Council through
the grant EP/N028201/1.

1 Introduction

When we want to understand how powerful the given type system is, we identify objects
that the given type is allowed to depend on. For instance, in simply-typed systems types
are built from a fixed set of ground types and operations. In System F we introduce type
variables and binders making it possible to define new operations that compute types. In
dependently-typed systems we are allowed to compute types from terms.

At the same time, we rarely explore dependencies within a typing relation. For example,
consider the case when the type is allowed to depend on the term that it is typing:

x : Fx

Such a situation is often referred to as very dependent type [10]. The immediate two questions
arise: (i) does this ever occur in practice? (ii) how do you support this within a type system?

© Thorsten Altenkirch, Ambrus Kaposi, Artjoms Šinkarovs, and Tamás Végh;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Types for Proofs and Programs (TYPES 2022).
Editors: Delia Kesner and Pierre-Marie Pédrot; Article No. 10; pp. 10:1–10:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:thorsten.altenkirch@nottingham.ac.uk
https://orcid.org/0000-0002-6582-5025
mailto:akaposi@inf.elte.hu
https://orcid.org/0000-0001-9897-8936
mailto:a.sinkarovs@hw.ac.uk
https://orcid.org/0000-0003-3292-2985
mailto:vetuaat@inf.elte.hu
https://orcid.org/0000-0002-3784-6523
https://doi.org/10.4230/LIPIcs.TYPES.2022.10
https://bitbucket.org/akaposi/combinator/src/master/post-types2022
https://bitbucket.org/akaposi/combinator/src/master/post-types2022
https://archive.softwareheritage.org/swh:1:dir:9609c613a09bd552cbca4546d247e3cefebef9cd;origin=https://bitbucket.org/akaposi/combinator;visit=swh:1:snp:0f573a88d457ab486e9342cce4c44c0ed0cee352;anchor=swh:1:rev:4b2e54be6fc188768cfe8699af84b524145eb312
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 The Münchhausen Method in Type Theory

Let us consider an example where such a type occurs very naturally. There is a well-known
type isomorphism, saying that pairs can be represented as functions from boolean:

A × B ∼= (b : Bool) → if b then A else B.

Consider now upgrading the isomorphism to dependent product on the left hand side. Given
A : Type, B : A → Type, we want something like

Σ A B ∼= (b : Bool) → if b then A else (B □),

but what do you put in the placeholder □? It should be the output of the function when the
input is b = true. Once the function is given a name, we can refer to it:

f : (b : Bool) → if b then A else (B (f true))

Supporting such definitions in a type system can be tricky. Hickey gives [10] a type
system with very dependent functions using pre-terms and typing relations [5]. However, it
turns out that many very dependent types can be understood algebraically and even encoded
in proof assistants.

Many practical examples are easier to understand when very dependent types are present.
One familiar example is the use of type universes in proof assistants such as Coq or Agda.
Both systems use Russell universes, and if we ignore the universe levels, Set is of type Set in
Agda, and Type is of type Type in Coq. This is clearly the case of very dependent types.

Our main observation is that algebraic presentation requires cutting the cycle of a
given very dependent type. This is achieved by introducing a temporary placeholder type
and a number of equations that eliminate the placeholders. The proposed scheme can be
summarised as follows. For a very dependent type (x : F x) find:

A : Set; G : A → Set; α : {a : A} → G a → A

Such that F can be decomposed in G ◦ α. In this case, a very dependent type can be expressed
as the following triplet:

a : A – Placeholder
x : G a – The data
eq : a ≡ α x – Closing the cycle

This approach works if these equations are propositional, but it forces a lot of transport
along the newly introduced equations (this situation is commonly referred to as transport
hell). In Agda we can turn these propositional equations into definitional ones by means of
rewrite rules or forward declarations.

The main contribution of this paper lies in applying the Münchhausen method to
five practical examples. Our setting is Martin-Löf type theory extended with function
extensionality, UIP (uniqueness of identity proofs) and forward declarations. From [12] we
know that such a formulation without forward declarations is conservative with respect to
its intensional version. This means that, in principle, all the presented types that do not use
forward declarations can be given in intensional type theory, but in a much more verbose
way. We conjecture that the same holds for the type theory with forward declarations as
well, but as these are not very well understood, we would not claim this.

We use Agda to demonstrate concrete implementation of our examples, but there is
nothing Agda-specific in the method itself. In Agda, the Münchausen method can be realised
in four different ways:

T. Altenkirch, A. Kaposi, A. Šinkarovs, and T. Végh 10:3

1. Identity types and explicit equations (Section 3);
2. Forward declarations (Sections 3, 4 and 5);
3. Shallow embedding as described in [14] (Sections 6 and 6);
4. Postulates and rewrite rules (Section 7)

While it is not yet clear whether all very dependent types as defined in [10] can be
handled by the proposed method, we believe that the examples that we provide give a first
step towards answering this question.

This paper is an Agda script, therefore all the examples in the paper have been
typechecked.

The content of this paper was presented at the TYPES’22 conference in Nantes [3].

2 Background

In this section we give a brief introduction to Agda, which is an implementation of Martin-
Löf’s dependent type theory [16] extended with a number of constructions such as inductive
data types, records, modules, etc. We make a brief overview of the features that are used in
this paper. For the in-depth introduction please refer to Agda’s user manual [1].

2.1 Datatypes
Datatypes are defined as follows:

data N : Set where
zero : N
suc : N → N

data Fin : N → Set where
zero : {n : N} → Fin (suc n)
suc : {n : N} → Fin n → Fin (suc n)

The type N of unary natural numbers is a datatype with two constructors: zero and suc. The
type of N is Set which is Agda’s builtin type of small types.

The type Fin is indexed by N and it also has two constructors zero and suc. The names
of the constructors can overlap. In the definition of the Fin constructors we used implicit
argument syntax1 to define the variable n. When using constructors of Fin, we can leave out
specifying these arguments relying on Agda’s automatic inference. These can be also passed
explicitly as follows:

a : Fin 2
a = zero {n = 1}

Numbers 0, 1, 2, . . . are implicitly mapped into N in the usual way.

2.2 Records
Agda makes it possible to define records2. They generalise dependent products, making it
possible to name the fields. For example, we can define the type of dependent pairs using
records as follows:

1 https://agda.readthedocs.io/en/v2.6.3/language/implicit-arguments.html
2 https://agda.readthedocs.io/en/v2.6.3/language/record-types.html

TYPES 2022

https://agda.readthedocs.io/en/v2.6.3/language/implicit-arguments.html
https://agda.readthedocs.io/en/v2.6.3/language/record-types.html

10:4 The Münchhausen Method in Type Theory

record Pair (A : Set) (B : A → Set) : Set where
constructor _,_
field

fst : A
snd : B fst

The Pair record is parametrised by the type A and the family B (over A). The type has two
fields named fst and snd that correspond to first and second projections of the dependent pair.
Finally, we can give a constructor _,_ that we can use to construct the values of type Pair.
Note that the constructor uses the mixfix notation3. This means that arguments replace the
underscores, so the comma , becomes a binary operation. The values can be constructed as
follows:

b : Pair N Fin
b = 5 , zero

2.3 Modules
Modules4 make it possible to collect the definitions that logically belong together, giving
them a separate namespace. Modules can accept parameters. They abstract variables for
the definitions within the module. In the paper we only use modules to group the definitions
together and reuse the names of the definitions. For example, here we define modules X and
Y, where Y is parametrised with the variable n, which is a natural number.

module X where
foo : N
foo = 5

module Y (n : N) where
foo : N
foo = n

2.4 Forward Declarations
Agda makes it possible5 to make a declaration and provide a definition later. This is useful
when dealing with mutual definitions. For example, we can have a mutual definition of even
and odd numbers as the following indexed types:

data Even : N → Set
data Odd : N → Set

data Even where
zero : Even zero
suc : {n : N} → Odd n → Even (suc n)

data Odd where
suc : {n : N} → Even n → Odd (suc n)

3 https://agda.readthedocs.io/en/v2.6.3/language/mixfix-operators.html
4 https://agda.readthedocs.io/en/v2.6.3/language/module-system.html
5 https://agda.readthedocs.io/en/v2.6.3/language/mutual-recursion.html#mutual-recursion-

forward-declaration

https://agda.readthedocs.io/en/v2.6.3/language/mixfix-operators.html
https://agda.readthedocs.io/en/v2.6.3/language/module-system.html
https://agda.readthedocs.io/en/v2.6.3/language/mutual-recursion.html#mutual-recursion-forward-declaration
https://agda.readthedocs.io/en/v2.6.3/language/mutual-recursion.html#mutual-recursion-forward-declaration

T. Altenkirch, A. Kaposi, A. Šinkarovs, and T. Végh 10:5

First we defined the signature of both data types; after that we gave the definitions of
their constructors. By making such a forward declaration, we were able to refer Odd in the
definition of the suc constructor in Even.

2.5 Postulates
Agda makes it possible6 to declare objects without ever providing a definition. This can be
thought of as a typed free variable. For example, we can postulate that there exists some
natural number q:

postulate
q : N

2.6 Rewrite Rules
Agda makes it possible to define rewrite rules7, which are typically used to turn propositional
equations into definitional ones. However, in combination with postulates, we can also simulate
some reduction behaviour. For example, we can postulate natural numbers, eliminator for
natural numbers and reduction equalities. Then we can use rewrite rules to simulate reduction.

postulate
Nat : Set
z : Nat
s : Nat → Nat
elim : (P : Nat → Set) → P z → ((n : Nat) → P n → P (s n))

→ (n : Nat) → P n
elim-z : ∀ {P pz ps} → elim P pz ps z ≡ pz
elim-s : ∀ {P pz ps n} → elim P pz ps (s n) ≡ ps n (elim P pz ps n)
{-# REWRITE elim-z elim-s #-}

We postulate the type for natural numbers Nat and its two constructors z and s. After that,
we postulate the type for the eliminator for natural numbers in the usual way. Finally we
define two β-like equalities for the eliminator. By turning these equalities into rewrite rules,
we make our eliminator to reduce in the usual way.

3 Dependent Sequences

We start with a detailed exploration of the dependent product isomorphism presented in the
introduction. While this example is not very practical, it is concise and easy to understand.

For a fixed pair of types, the encoding of non-dependent pair can be expressed in Agda
as follows:

pair : (b : Bool) → if b then String else N
pair true = "Types" – first projection
pair false = 22 – second projection

6 https://agda.readthedocs.io/en/v2.6.3/language/postulates.html
7 https://agda.readthedocs.io/en/v2.6.3/language/rewriting.html

TYPES 2022

https://agda.readthedocs.io/en/v2.6.3/language/postulates.html
https://agda.readthedocs.io/en/v2.6.3/language/rewriting.html

10:6 The Münchhausen Method in Type Theory

Surprisingly, similar presentation of dependent pairs for a fixed type and a family over it
is expressible in Agda using forward declarations. For example, for N and Fin we have:

dpair-hlpr : N
dpair : (b : Bool) → if b then N else Fin dpair-hlpr
dpair-hlpr = dpair true

dpair true = 5 – first projection of type N
dpair false = # 3 – second projection of type Fin 5

According to Münchhausen method, we “cut” the cyclic dependency of dpair by introducing
a placeholder called dpair-hlpr. Here forward declarations make it possible to postpone the
definition of dpair-hlpr. After that, we define dpair and we “close the cycle” by giving the
value to the placeholder.

Let us try to abstract this encoding to arbitrary types, and prove the isomorphism from
the introduction. For non-dependent pairs, we have:

module _ (ext : ∀ {a b} → Extensionality a b) where
Pair : Set → Set → Set
Pair A B = (b : Bool) → if b then A else B

Pair∼=× : ∀ A B → (A × B) ↔ Pair A B
Pair∼=× A B = mk↔ {f = to}{from} (to◦from , λ _ → refl)

where
to : _; from : _; to◦from : _
to (a , b) = λ {true → a; false → b}
from f = f true , f false
to◦from f = ext λ {true → refl; false → refl}

The ↔ is a type for bijections, and mk↔ constructs the bijection from forward and backward
functions and a pair of proofs that they are inverses of each other. As can be seen, conversion
from Pair is memoisation. Correspondingly, conversion into Pair is “unmemoisation”. These
operations are clearly inverses of each other, assuming functional extensionality.

Encoding of dependent pairs has to mention the placeholder h and the value that this
placeholder gets (f true) by means of explicit equation eq.

record DPair (A : Set) (B : A → Set) : Set where
constructor _▷_[_]
field

h : A
f : (b : Bool) → if b then A else B h
eq : h ≡ f true

Such an encoding corresponds to the first variant of the Münchhausen method, as the equality
that closes the cycle is made explicit. Note that eq corresponds to the definition of dpair-hlpr
in the presentation above.

The isomorphism between dependent pairs and DPair requires a little bit more work, as
we are dealing with equations within the structure. Assuming functional extensionality ext
and uniqueness of identity proofs uip, equality of two DPairs can be derived from point-wise
pair equality given by _≡d_.

T. Altenkirch, A. Kaposi, A. Šinkarovs, and T. Végh 10:7

module _ (ext : ∀ {a b} → Extensionality a b)
(uip : ∀ {A : Set}{a b : A} → (p q : a ≡ b) → p ≡ q) where

record _≡d_ {A}{B} (a b : DPair A B) : Set where
constructor _&_
field

fst : DPair.h a ≡ DPair.h b
snd : DPair.f a false ≡ subst B (sym fst) (DPair.f b false)

≡d⇒≡ : ∀ {A B} {a b : DPair A B} → a ≡d b → a ≡ b

With these definitions at hand, the isomorphism between DPairs and Σ types is very similar
to its non-dependent version:

Pair∼=Σ : ∀ A B → (Σ A B) ↔ DPair A B
Pair∼=Σ A B = mk↔ {f = to}{from} (to◦from , λ _ → refl)

where
to (a , b) = a ▷ (λ {true → a; false → b}) [refl]
from (h ▷ f [eq]) = f true , subst B eq (f false)
to◦from (h ▷ f [eq]) = ≡d⇒≡ (sym eq & cong (λ x → subst B x (f false)) (sym◦sym eq))

As can be seen, working with explicit equalities is tricky. Switching to more powerful
type theories (e.g. cubical type theory) would eliminate the necessity to use axioms, but it
would not solve the transport hell problem. The pair example works so nicely, because we
essentially turned the propositional equality into the definitional one.

3.1 Infinite Sequences
In the type theory proposed by Hickey, the only extension to the standard type theory is
addition of very dependent functions. It is observed that (very) dependent records can be
always presented as very dependent functions by choosing a domain type that enumerates
the fields. This is essentially what the example with dependent pairs does – Σ type has two
fields that are enumerated by booleans.

However, dependent functions can do more than that, as their domain does not have to be
finite. Let us now consider such an infinite case by defining non-increasing infinite sequences.
With a little abuse of notation, we can present those as the following very dependent type.

– ↓-seq : (n : Nat) → if n == 0 then N else Fin (1 + ↓-seq (n - 1))

The same Münchhausen technique with forward declarations can be used to define such a
function. We start by forward declaring Ty (expression on the right hand side of the arrow
in the type above) and its interpretation I into natural numbers.

Ty : N → Set
I : ∀ n → Ty n → N

At the same time we forward declare the actual sequence that we want to define:

↓-seq : (n : N) → Ty n

The type of the elements in the sequence is defined inductively as follows: for zero we
have N, the successor case gives us Fin of whatever the interpretation of the sequence that
we are defining at predecessor is going to return us.

TYPES 2022

10:8 The Münchhausen Method in Type Theory

Ty 0 = N
Ty (suc n) = Fin $ suc $ I n (↓-seq n)

The interpretation of the elements at the given sequence is straight-forward: zero case
has a natural number that we return; elements of Fin types are casted into natural numbers.

I 0 n = n
I (suc n) i = toN i

Finally, we define the actual data of our non-increasing infinite sequence.

↓-seq 0 = 5
↓-seq 1 = # 3
↓-seq 2 = # 2
↓-seq (suc (suc (suc n))) = # 0

Notice that in this particular case, the types of the elements in sequence only depend on
the previous element. We can imagine full induction, where the element can depend on all
the previously defined elements. In this case induction-recursion becomes crucially important
to generate an n-fold dependent type.

4 Multi-dimensional Arrays

The next example we consider is a type for multi-dimensional arrays that are commonly found
in array languages such as APL [13]. Arrays can be thought of as n-dimensional rectangles,
where the size of the rectangle is given by the shape, which is a vector of natural numbers
describing extents along each dimension. Array languages follow the slogan “everything
is an array”, treating natural numbers and shape vectors as arrays. Natural numbers are
0-dimensional arrays, e.g. their shape is the empty vector. Shape vectors are 1-dimensional
arrays, e.g. their shapes are 1-element vectors.

The problem with capturing this construction with inductive types is the following
circularity. Array types depend on shapes, but the shapes are arrays. That is, the index of
the type is the very type that we are defining.

4.1 Unshaped arrays
One way to define the array type inductively is to avoid the shape argument entirely. This
construction is proposed by Jenkins [9]:

module Unshaped where
data Ar : Set where

z : Ar – Natural numbers with zero (z)
s : Ar → Ar – and successor (s)
[] : Ar – Cons lists with empty list ([])
:: : Ar → Ar → Ar – and cons operation (_::_).
reshape : Ar → Ar → Ar – Multi-dimensional array constructor.

With these definitions we get a closed universe of arrays of natural numbers. On the
positive side, we obtained the uniformity of arrays as in APL – if a function expects an array,
it is possible to pass a number or a vector without any casting.

T. Altenkirch, A. Kaposi, A. Šinkarovs, and T. Végh 10:9

0a 1a 2a 3a : Ar – Natural numbres
0a = z; 1a = s 0a; 2a = s 1a; 3a = s 2a

v2 v4 mat22 : Ar
v2 = 2a :: 2a :: [] – Vector [2,2]
v4 = 1a :: 0a – Flattened identity matrix [[1,0],[0,1]]

:: 0a :: 1a :: []
mat22 = reshape v2 v4 – Identity matrix of shape [2,2]

On the negative side, our array type does not enforce any shape invariants. That is, we can
produce non-rectangular arrays such as:

weird1 = reshape (2a :: 2a :: []) (1a :: 2a :: 3a :: [])
weird2 = (3a :: []) :: weird1

While it might be possible to define the meaning for such cases, normally they are considered
type errors. We could also try restricting these constructions with refinement types, but we
are interested in intrinsically-typed solution instead.

4.2 Inductive-inductive
Intrinsically-typed array universe can be defined using inductive-inductive types, following
the ideas from [18]. We define arrays and shapes mutually.

module Univ where
data Sh : Set
data Ar : Sh → Set
data Sh where

scal : Sh
vec : Ar scal → Sh
mda : ∀ {s} → Ar (vec s) → Sh

The shapes form the following hierarchy: scalars (e.g. natural numbers) have a unit shape;
vector shapes are parametrised by scalars; multi-dimensional shapes are parametrised by
vectors.

Nat : Set
Nat = Ar scal

Vec : Nat → Set
Vec n = Ar (vec n)

prod : ∀ {n} → Vec n → Nat

We define names Nat and Vec which are synonyms for arrays of the corresponding shape.
We also make a forward declaration of the prod function that computes the product of the
given vector. Now we are ready to define the array universe as follows:

data Ar where
z : Nat
s : Nat → Nat

TYPES 2022

10:10 The Münchhausen Method in Type Theory

[] : Vec z
:: : ∀ {n} → Nat → Vec n → Vec (s n)
reshape : ∀ {n} → (s : Vec n) → Vec (prod s) → Ar (mda s)

We use exactly the same constructors as before, except vectors are indexed by their length,
and multi-dimensional arrays are indexed by shape vectors. Also, the reshape constructor
has a coherence condition saying that the number of elements (prod s) in the vector we are
reshaping matches the new shape s.

We complete the definition of prod, expressing it as a fold with multiplication _*n_
(defined as usual, not shown here).

0a 1a 2a 3a : Nat
0a = z; 1a = s z; 2a = s 1a; 3a = s 2a; 4a = s 3a

prod [] = 1a

prod (x :: xs) = x *n prod xs

Vector and matrix examples can be expressed as follows.

v2 : Vec 2a

v2 = 2a :: 2a :: []

v4 : Vec 4a

v4 = 1a :: 0a

:: 0a :: 1a :: []

mat22 : Ar (mda v2)
mat22 = reshape v2 v4

While the numbers, vectors and arrays are elements of the same universe, we did not achieve
the desired array uniformity. The problem is that we maintain the distinction between arrays
and shapes, even though morally they are the same thing. For example, the type of mat22
is Ar (mda v2), not Ar v2. Also, the expression reshape [] (1a :: [])) cannot be typed as Nat,
even though it is an array of the empty shape.

4.3 Münchhausen universe
In order to resolve the lack of uniformity, we use the Münchhausen method (the variant with
forward declarations). Our goal is to equate Ar and Sh. Therefore, we forward-declare Sh as
a placeholder to bootstrap the array type. After that we close the cycle by defining Sh to be
Ar with a certain index.

We start with forward-declaring types N (natural numbers) and shapes Sh that are
indexed by natural numbers. Both of these types are placeholders that we will eliminate
later.

module UniformUniv where
N : Set
Sh : N → Set

The array type is a concrete definition, whereas its parameter is a placeholder type.

data Ar : ∀ {n} → Sh n → Set

T. Altenkirch, A. Kaposi, A. Šinkarovs, and T. Végh 10:11

We make forward declarations of N and Sh constructors that are needed to fill-in the indices
of the array type. Note that N constructors are used to fill-in the indices of Sh constructors.

z’ : N
s’ : N → N
[]’ : Sh z’
::’ : ∀ {n} → N → Sh n → Sh (s’ n)

We define names Nat and Vec for 0-dimensional and 1-dimensional arrays correspondingly.
We also make a forward declaration of prod as before, except we use placeholder types.

Nat : Set
Nat = Ar []’

Vec : N → Set
Vec n = Ar (n ::’ []’)

prod : ∀ {n} → Sh n → N

Now we can define an array universe, exactly as before.

data Ar where
z : Nat
s : Nat → Nat
[] : Vec z’
:: : ∀ {n} → Nat → Vec n → Vec (s’ n)
reshape : ∀ {n} → (s : Sh n) → Vec (prod s) → Ar s

Finally, we eliminate the placeholder types by equating N and Sh with 0-dimensional and
1-dimensional arrays correspondingly. After we do this, we define the placeholder constructors
to be those defined in Ar.

N = Ar []’
Sh n = Ar (n ::’ []’)
z’ = z; s’ = s; []’ = []; _::’_ = _::_

This closes the cycle and turns Ar into a very dependent type that is witnessed by the
following Agda expression:

_ : ∀ {n : Ar []} → (s : Ar (n :: [])) → Set
_ = Ar

As expected, our examples are definable, and 1-dimensional arrays can be immediately used
as array shapes.

0a 1a 2a 3a 4a : Nat
0a = z; 1a = s 0a; 2a = s 1a; 3a = s 2a; 4a = s 3a

v2 : Ar (2a :: [])
v2 = 2a :: 2a :: []

v4 : Ar (4a :: [])
v4 = 1a :: 0a :: 0a :: 1a :: []

TYPES 2022

10:12 The Münchhausen Method in Type Theory

One technical drawback that we ran into is that with such a cyclic type, Agda loops when
attempting to define pattern-matching functions. The loop happens when solving the
unification problem – it has to check that two arrays type match. As array types are indexed,
Agda has to unify the indices, which triggers unifying the type of the indices, and so on. As
a workaround, we can define eliminators via rewrite rules, which makes it possible to define
prod. The rest works as expected.

prod {n} xs = sh-elim _ 1a (λ n x xs r → x *n r) n xs

mat22 : Ar v2

mat22 = reshape v2 v4

scal-test : Nat
scal-test = reshape [] (1a :: [])

5 Russell Universes

In pure type systems [5] there is no separate sort for terms and types, there are only terms
and those terms which appear on the right hand side of the colon in the typing relation
are called types. Using well-typed terms, this would lead to the following very dependent
type for the sort of terms: Tm : (Γ : Con) → Tm Γ U → Set. That is, terms depend on a
context and a term of type U. Using the Münchhausen method (its variant with forward
declarations), we can make sense of this. We temporarily introduce types and the type U’
for the universe, then after declaring the sort of terms we can say that actually types are
just terms of type U’, then we can add the actual U operator for terms and close the loop
by saying that U’ is the same as U. Using forward declarations, part of the syntax of type
theory is given as follows.

data Con : Set
Ty : Con → Set – forward declaration
data Con where

· : Con
▷ : (Γ : Con) → Ty Γ → Con

U’ : ∀ {Γ} → Ty Γ – forward declaration
data Tm : (Γ : Con) → Ty Γ → Set
Ty Γ = Tm Γ U’
data Tm where

U : ∀ {Γ} → Ty Γ
Π : ∀ {Γ} → (A : Ty Γ) → Ty (Γ ▷ A) → Ty Γ
lam : ∀ {Γ A B} → Tm (Γ ▷ A) B → Tm Γ (Π A B)

U’ = U

Note that such a theory is inconsistent through Russell’s paradox, but it is easy to fix this
by stratification (adding natural number indices to Ty and U, see e.g. [15]). More precisely,
we say that a stratified category with families (CwF [6]) with a type former U : (i : N) → Ty
Γ (i+1) satisfying U i [σ]T = U i is Russell if the equations Ty Γ i = Tm Γ (U i) and A [
σ]T = A [σ]t hold (where _[_]T and _[_]t are the substitution operations for types and
terms, respectively).

T. Altenkirch, A. Kaposi, A. Šinkarovs, and T. Végh 10:13

Any CwF with a hierarchy of Tarski universes can be equipped with a Russell family
structure supporting the same type formers as the Tarski universe. A hierarchy of Tarski
universes is given by the universe types U i : Ty Γ (i+1), their decoding El : Tm Γ (U i) → Ty Γ
i, a code for each universe u i : Tm Γ (U (i+1)) such that their decoding is the actual universe
El (u i) = U i. We further have the evident substitution rules and additional operations
expressing that U is closed under certain type formers. The Russell family structure then is
defined by TyR Γ i := Tm Γ (U i) and TmR Γ A := Tm Γ (El A), both substitution operations
are _[_]t, context extension is Γ ▷R A := Γ ▷ El A. The Russell universe is defined as UR i :=
u i, thus we obtain the Russell sort equation by TyR Γ i = Tm Γ (U i) = Tm Γ (El (u i)) =
TmR Γ (UR i). We formalised this model construction using the shallow embedding trick of
[14], the formalisation is part of the source code of the current paper8.

6 Type Theory without Contexts

Having Russell universes could be called “type theory without types” as types are just special
terms. Type theory without contexts is when contexts are just types without free variables.

When defining type theory as an algebraic theory, the final goal is to describe the rules
for types and terms. Contexts and substitutions (the category structure) are only there as
supporting infrastructure. However, when enough structure is added to types and terms,
we don’t need this supporting infrastructure anymore and we can get rid of it using the
Münchhausen technique. We will still have explicit substitutions, but we use terms instead
of context morphisms. The resulting theory with very dependent types includes the following
sorts and operations. Note that some of these operations are not only very dependently
typed, but the typing is very mutual: for example, the type of Ty includes ⊤ which is only
listed later.

Ty : Ty ⊤ → Set
Tm : (Γ : Ty ⊤) → Ty Γ → Set
[]T : Ty Γ → Tm ∆ (Γ [tt]T) → Ty ∆
[]t : Tm Γ A → (σ : Tm ∆ (Γ [tt]T)) → Tm ∆ (A [σ]T)
id : Tm Γ (Γ [tt]T)
⊤ : Ty Γ
tt : Tm Γ ⊤
Σ : (A : Ty Γ) → Ty (Σ Γ (A [snd id]T)) → Ty Γ
, : (a : Tm Γ A) → Tm Γ (B [id , a]T) → Tm Γ (Σ A B)
fst : Tm Γ (Σ A B) → Tm Γ A
snd : (w : Tm Γ (Σ A B)) → Tm Γ (B [id , fst w]T)

It is difficult to derive the above in Agda using forward declarations or rewrite rules, but
working on paper (in extensional type theory) this is possible. A model of type theory without
contexts is given by a CwF with ⊤ and Σ types9 where the following equations hold.

8 See https://bitbucket.org/akaposi/combinator/src/master/post-types2022/russel.lagda
9 List of notations: the category is denoted Con, Sub, _◦_, id, the empty context (terminal object) ⋄, the

empty substitution ε, types are Ty Γ with the substitution operation _[_]T, terms Tm Γ A with _[_]t,
context extension _▷_, substitution extension _,_ and projections p : Sub (Γ ▷ A) Γ, q : Tm (Γ ▷ A)
(A [p]T). The type former ⊤ : Ty Γ comes with constructor tt and η law. Σ’s constructor is denoted
,, the destructors are fst and snd and we have both β laws and an η law.

TYPES 2022

https://bitbucket.org/akaposi/combinator/src/master/post-types2022/russel.lagda

10:14 The Münchhausen Method in Type Theory

Con = Ty ⋄
Sub ∆ Γ = Tm ∆ (Γ [ε]T)
σ ◦ ν = σ [ν]t
⋄ = ⊤
ε = tt
Γ ▷ A = Σ Γ (A [q]T)
σ , t = σ , t
p = fst id
q = snd id

Note that the well-typedness of the second equation depends on the first equation, as Γ : Con
has to be viewed as Γ : Ty ⋄ and then we can substitute it with the empty substitution to
obtain Γ [ε]T : Ty ∆. Just as substitutions are special terms, composition of substitutions
is a special case of substitution of terms, the empty context is ⊤ : Ty ⋄, context extension is
a Σ type where A : Ty Γ, but Σ requires a Ty (⋄ ▷ Γ), so we need a Sub (⋄ ▷ Γ) Γ = Tm (⋄ ▷

Γ) (Γ [ε]T) = Tm (⋄ ▷ Γ) (Γ [p]T), which is given by q {⋄}{Γ}.
We can check that in a model of type theory without contexts, the very dependent types

listed above are all valid.
As for Russell models, we have a model construction which replaces any CwF with ⊤ and

Σ with a model without contexts. We cannot directly use the equations of model without
contexts above for the model construction. E.g. if we said that Con’ := Ty ⋄ and ⋄’ := ⊤
and Ty’ Γ := Ty (⋄ ▷ Γ) then we would have Con’ = Ty ⋄ ≠ Ty (⋄ ▷ ⊤) = Ty’ ⋄’. Instead we
define Con’ := Ty (⋄ ▷ ⊤), ⋄’ := ⊤ and Ty’ Γ := Ty (⋄ ▷ Γ [ε , tt]T). Now we have Con’ =
Ty (⋄ ▷ ⊤) = Ty (⋄ ▷ ⊤ [ε , tt]T) = Ty (⋄ ▷ ⋄’ [ε , tt]T) = Ty’ ⋄’. We refer to Appendix A
for the definition of the rest of the components of the output model and also for a proof that
if the input model has Π types then so does the output model. We formalised this model
construction using shallow embedding [14], the formalisation is part of the source code of the
current paper10.

7 Combinatory Type Theory

In our final example, we also present a (dependnet) type theory without contexts. Instead of
eliminating contexts with equations as we did in the previous section, we avoid introducing
them in the encoding. This raises the question: if there are no contexts, how do we talk
about well-scoped variables? As a matter of fact, we do not talk about variables at all.

It is well known that for simply-typed systems, combinator calculus [11] gives a contextless
presentation of the type system. There are no variables, function space is built-in, and the
combinators S and K are used to define functions.

Combinator calculus for dependently-typed systems is a much more challenging [17] task,
and it was never defined. Unsurprisingly, contextless dependently-typed theory is an example
of a very dependent type, and we use Münchhausen method to define it. Specifically, we
use postulates and rewrite rules to encode very dependent types. While there might be a
solution with forward declarations, we chose rewrite rules for the sake of simplicity of the
presentation.

10 See https://bitbucket.org/akaposi/combinator/src/master/post-types2022/uncat.lagda

https://bitbucket.org/akaposi/combinator/src/master/post-types2022/uncat.lagda

T. Altenkirch, A. Kaposi, A. Šinkarovs, and T. Végh 10:15

First Attempt
In our first attempt we started defining a non-dependent function type, hoping to internalise
it in the universe and define Π types afterwards. Concretely, we define types Ty, terms Tm
indexed by types, the universe U, and eliminate the Ty type. After that, we define the arrow
type _⇒_, applications, the arrow type within the universe |⇒| and the equation that turns
the arrow into the internal arrow.

module FirstAttempt where
postulate

Ty : Set – Types
Tm : Ty → Set – Terms
U : Ty – Universe
TmU : Ty ≡ Tm U – Russell-ification
{-# REWRITE TmU #-}
⇒ : Ty → Ty → Ty – Non-dependent (external) arrow type
$: Tm (X ⇒ Y) → Tm X → Tm Y – Applications
|⇒| : Tm (U ⇒ U ⇒ U) – Internal arrow type
∅⇒ : X ⇒ Y ≡ |⇒| $ X $ Y – Internalising arrow

While this looks promising, after rewriting ∅⇒ we run into the following problem. Consider
the sequence of rewrites that is happening for the type Tm (X ⇒ Y) which is the type of the
first argument of the application _$_.

_1 : Tm (X ⇒ Y) – Expands to
_1 : Tm (|⇒| $ X $ Y) – Show hidden arguments
2 : Tm (($_ {U}{U ⇒ U} |⇒| X) $ Y) – Arrow in (U ⇒ U) again!

As Agda applies all the rewrite rules before type checking, we end-up in the infinite rewrite
loop. There does not seem to be an easy fix.

Second Attempt
Now we start with Π types straight away and use them to define dependent combinators.
The notion of types, terms and the universe is the same as before.

module SecondAttempt where
postulate

Ty : Set
Tm : Ty → Set
U : Ty
Tm-U : Tm U ≡ Ty
{-# REWRITE Tm-U #-}

We introduce the notion of a U-valued family and the application operation for it. Using
family we can immediately define Π types and applications to the terms of Π types.

Fam : Ty → Ty – Fam X ≈ (X ⇒ U)
$f : Tm (Fam X) → Tm X → Ty – Apply (x : X) to (t : Fam X)

Pi : (X : Ty) → Tm (Fam (Fam X)) – X → ((X ⇒ U) ⇒ U)
$: {X : Ty}{Y : Tm (Fam X)}

→ Tm (Pi X $f Y) → (a : Tm X) → Tm (Y $f a)

TYPES 2022

10:16 The Münchhausen Method in Type Theory

Consider defining a non-dependent function type for (X Y : Ty) using the Pi type. We can
immediately apply X to Pi, but then we need to turn Y into a constant X-family in order to
complete the definition (Pi X $f □). To achieve this we introduce the Kf combinator that
turns a type into a constant family. Its beta rule is the same as of the standard K combinator.
Using Kf we can complete the definition of non-dependent arrow.

Kf : (Y : Ty) → Tm (Fam X) – Kf Y ≈ λ a → Y
Kf$: ∀ {a : Tm X} → _$f_ {X} (Kf Y) a ≡ Y
{-# REWRITE Kf$ #-}

⇒ : (X Y : Ty) → Ty
X ⇒ Y = Pi X $f (Kf Y)

Let us remind ourselves, the type of dependent K combinator:

[K] : (X : Set)(Y : X → Set) → (x : X) (y : Y x) → X
[K] X Y x y = x

Translation into our formalism requires expressing (x : X)(y : Y x) → X as a Pi type. More
precisely, how do we express (Y x → X) as an X-family? We do this by introducing a helper
combinator with the corresponding beta rule. After that, defining dependent K and its beta
rule becomes straight-forward.

postulate – Dependent K
Yx⇒Z : ∀ X (Y : Tm (Fam X)) → (Z : Ty) → Tm (Fam X)
Yx⇒Z$: ∀ X Y Z {x : Tm X} → Yx⇒Z X Y Z $f x ≡ Y $f x ⇒ Z
{-# REWRITE Yx⇒Z$ #-}

Kd : {Y : Tm (Fam X)} → Tm (Pi X $f Yx⇒Z X Y X)
Kd$: ∀ {Y : Tm (Fam X)}{x : Tm X}{y : Tm (Y $f x)}

→ Kd {X = X}{Y = Y} $ x $ y ≡ x
{-# REWRITE Kd$ #-}

Similarly to dependent K, we start with reminding ourselves the type of the dependent S
combinator. We will use the same strategy of defining extra combinators to construct parts
of the type signature.

[S] : (X : Set)(Y : X → Set)
(Z : (x : X) → Y x → Set) – λ (x : X) → Yx⇒U x

→ (f : (x : X) → (y : Y x) → Z x y) – λ (x : X) → Π[Yx][Zx] x
→ (g : (x : X) → Y x)
→ ((x : X) → Z x (g x)) – λ (g : ΠXY) → ΠX[Zx[gx]] g

[S] X Y Z f g x = f x (g x)

We annotate the combinators we introduced at the corresponding positions of the [S] type.
With these definitions, we can define dependent S and its beta rule as follows.

T. Altenkirch, A. Kaposi, A. Šinkarovs, and T. Végh 10:17

postulate – Dependent S
Yx⇒U : ∀ X (Y : Tm (Fam X)) → Tm (Fam X)
Yx⇒U$: ∀ X Y {x : Tm X} → Yx⇒U X Y $f x ≡ Fam (Y $f x)
{-# REWRITE Yx⇒U$ #-}

Π[Yx][Zx] : ∀ X (Y : Tm (Fam X)) → (Z : Tm (Pi X $f Yx⇒U X Y)) → Tm (Fam X)
Π[Yx][Zx]$: ∀ X Y Z {x : Tm X} → Π[Yx][Zx] X Y Z $f x ≡ Pi (Y $f x) $f (Z $ x)
{-# REWRITE Π[Yx][Zx]$ #-}

Zx[gx] : ∀ X (Y : Tm (Fam X)) (Z : Tm (Pi X $f Yx⇒U X Y))
→ Tm (Pi X $f Y) → Tm (Fam X)

Zx[gx]$: ∀ X Y Z g {x} → Zx[gx] X Y Z g $f x ≡ Z $ x $f (g $ x)
{-# REWRITE Zx[gx]$ #-}

ΠX[Zx[gx]] : ∀ X (Y : Tm (Fam X)) (Z : Tm (Pi X $f Yx⇒U X Y))
→ Tm (Fam (Pi X $f Y))

ΠX[Zx[gx]]$: ∀ X Y Z g → ΠX[Zx[gx]] X Y Z $f g ≡ Pi X $f (Zx[gx] X Y Z g)
{-# REWRITE ΠX[Zx[gx]]$ #-}

Sd : {Y : Tm (Fam X)}{Z : Tm (Pi X $f Yx⇒U X Y)}
→ Tm (Pi X $f Π[Yx][Zx] X Y Z

⇒ (Pi (Pi X $f Y) $f (ΠX[Zx[gx]] X Y Z)))
Sd$: {Y : Tm (Fam X)}{Z : Tm (Pi X $f Yx⇒U X Y)}

→ {f : Tm (Pi X $f Π[Yx][Zx] X Y Z) }
→ {g : Tm (Pi X $f Y)}
→ {x : Tm X}
→ Sd $ f $ g $ x ≡ f $ x $ (g $ x)

{-# REWRITE Sd$ #-}

Finally, with a few more rewrite rules, we can define non-dependent S and K combinators
as special cases of their dependent versions.

K : Tm (X ⇒ Y ⇒ X)
K {X}{Y} = Kd {X}{Kf Y}

S : Tm ((X ⇒ Y ⇒ Z) ⇒ (X ⇒ Y) ⇒ X ⇒ Z)
S {X}{Y}{Z} = Sd {X}{Kf Y}{K $ (Kf Z)}

We made a good progress with defining combinatory type theory. However, current
combinators are not yet powerful enough to internalise Pi and Fam. The problem is that
in Pi, Kd and Sd type parameters X, Y and Z are quantified externally. We need to define
the version of these combinators that internalises this quantification within U. There is
no conceptual problem in doing so, but the resulting terms become incredibly large and
inconvenient to work with. Specifically, the one for the dependent S combinator. It is not
clear whether there is a more elegant way of doing this.

TYPES 2022

10:18 The Münchhausen Method in Type Theory

8 Conclusions

This paper demonstrates a technique to justify and make practical use of very dependent
types. Our method is based on the observation that the “cycle” of a very dependent type can
be “cut” by introducing placeholder types, defining the data and then eliminating placeholders
by means of equations.

When we try to apply the proposed technique within the actual theorem provers such
as Agda, we have a few choices on how to implement this. First, we can pack together
placeholders, data and explicit equalities, e.g. as we do in DPair type in Section 3. This
is a straight-forward implementation of the Münchhausen technique. However, dealing
with explicit propositional equalities as parts of data often brings us to the situation called
“transport hell”. For example, the isomorphism proof about DPairs is an instance of that.
Alternatively, for the objects of very dependent types, we can turn propositional equalities
into definitional ones. On paper, extensional type theory achieves this, and in special cases
we can use shallow embedding (as in the formalisation of Sections 5 and 6). In Agda, there
are two ways to do this: forward declarations and rewrite rules. Forward declarations are
demonstrated when declaring pair in Section 3, Ar universe in Section 4 and Tm in Section 5.
While this is a very convenient feature of Agda, it is considered11 not very well understood
by many Agda developers. Also, as we have seen with Ar example, currently it leads to loops
in the typechecker, which is clearly a bug.

Rewrite rules [7] make it possible to turn arbitrary propositional equalities into definitional
ones, but this feature of Agda is considered unsafe. However, it is clearly a localized imple-
mentation of extensional type theory which is conservative over intensional type theory with
extensionality principles (as available in Cubical Agda). We expect that the conservativity
result [12] extends to our setting and hence the use of rewriting rules is only a cosmetic
and labour saving tool to avoid transport hell. We use rewrite rules in Section 7. Currently,
the interplay between the rewrite rules and the typechecker is not always satisfying. For
example, our first attempt in Section 7 ends up in an infinite rewrite, as all the rules have to
fire before the typechecker. We believe that more interleaved approach to rewriting could
make our example to typecheck.

The examples show that very dependent types can be used in a fully algebraic setting,
i.e. without referring to untyped preterms as in [10]. The essential ingredient are forward
declarations, i.e. we introduce the type of an object but only define it later while already
using it in the types of other objects – see [2] for a formal definition of this concept. This is
also the idea in inductive-inductive definitions, where constructors may depend on previous
constructors [4, 8].

Clearly, Agda provides us with a mechanism to play around with these concepts but it is
not yet clear what exactly the theory behind these constructions is. In this sense, our paper
raises questions instead of answering them. We believe that this is a valuable contribution to
the subject.

References

1 Agda Development Team. Agda 2.6.3 documentation, 2023. Accessed [2023/05/01]. URL:
https://agda.readthedocs.io/en/v2.6.3/.

2 Thorsten Altenkirch, Nils Anders Danielsson, Andres Löh, and Nicolas Oury. ΠΣ: Dependent
types without the sugar. Functional and Logic Programming, pages 40–55, 2010.

11 See the following Agda issue https://github.com/agda/agda/issues/1556 that discusses forward
declarations and very dependent types.

https://agda.readthedocs.io/en/v2.6.3/
https://github.com/agda/agda/issues/1556

T. Altenkirch, A. Kaposi, A. Šinkarovs, and T. Végh 10:19

3 Thorsten Altenkirch, Ambrus Kaposi, Artjoms Šinkarovs, and Tamás Végh. The Münchhausen
method and combinatory type theory. In Delia Kesner and Pierre-Marie Pédrot, editors, 28th
International Conference on Types for Proofs and Programs (TYPES 2022). University of
Nantes, 2022. URL: https://types22.inria.fr/files/2022/06/TYPES_2022_paper_8.pdf.

4 Thorsten Altenkirch, Peter Morris, Fredrik Nordvall Forsberg, and Anton Setzer. A categorical
semantics for inductive-inductive definitions. In CALCO, pages 70–84, 2011. doi:10.1007/
978-3-642-22944-2_6.

5 Henk Barendregt. Introduction to generalized type systems. J. Funct. Program., 1(2):125–154,
1991. doi:10.1017/s0956796800020025.

6 Simon Castellan, Pierre Clairambault, and Peter Dybjer. Categories with families: Unityped,
simply typed, and dependently typed. CoRR, abs/1904.00827, 2019. arXiv:1904.00827.

7 Jesper Cockx. Type Theory Unchained: Extending Agda with User-Defined Rewrite Rules. In
Marc Bezem and Assia Mahboubi, editors, 25th International Conference on Types for Proofs
and Programs (TYPES 2019), volume 175 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 2:1–2:27, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.TYPES.2019.2.

8 Fredrik Nordvall Forsberg. Inductive-inductive definitions. PhD thesis, Swansea University
(United Kingdom), 2013.

9 J. I. Glasgow and M. A. Jenkins. Array theory, logic and the nial language. In Proceedings.
1988 International Conference on Computer Languages, pages 296–303, October 1988. doi:
10.1109/ICCL.1988.13077.

10 Jason J. Hickey. Formal objects in type theory using very dependent types. In In Foundations
of Object Oriented Languages 3, 1996.

11 J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinators and Lambda-Calculus.
Cambridge University Press, 1986.

12 Martin Hofmann. Conservativity of equality reflection over intensional type theory. In Stefano
Berardi and Mario Coppo, editors, Types for Proofs and Programs, pages 153–164, Berlin,
Heidelberg, 1996. Springer Berlin Heidelberg.

13 Kenneth E. Iverson. A Programming Language. John Wiley & Sons, Inc., New York, NY,
USA, 1962.

14 Ambrus Kaposi, András Kovács, and Nicolai Kraus. Shallow embedding of type theory is
morally correct. In Graham Hutton, editor, Mathematics of Program Construction, pages
329–365, Cham, 2019. Springer International Publishing.

15 András Kovács. Generalized universe hierarchies and first-class universe levels. In Florin
Manea and Alex Simpson, editors, 30th EACSL Annual Conference on Computer Science
Logic, CSL 2022, February 14-19, 2022, Göttingen, Germany (Virtual Conference), volume
216 of LIPIcs, pages 28:1–28:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/LIPIcs.CSL.2022.28.

16 Per Martin-Löf. An intuitionistic theory of types. In Giovanni Sambin and Jan M. Smith,
editors, Twenty-five years of constructive type theory (Venice, 1995), volume 36 of Oxford
Logic Guides, pages 127–172. Oxford University Press, 1998.

17 Conor McBride. What is the combinatory logic equivalent of intuitionistic type theory?
Answer to question on StackOverflow, 2012. URL: https://stackoverflow.com/questions
/11406786/what-is-the-combinatory-logic-equivalent-of-intuitionistic-type-
theory.

18 Artjoms Šinkarovs. Multi-dimensional arrays with levels. In Max S. New and Sam Lindley,
editors, Proceedings Eighth Workshop on Mathematically Structured Functional Programming,
MSFP@ETAPS 2020, Dublin, Ireland, 25th April 2020, volume 317 of EPTCS, pages 57–71,
2020. doi:10.4204/EPTCS.317.4.

TYPES 2022

https://types22.inria.fr/files/2022/06/TYPES_2022_paper_8.pdf
https://doi.org/10.1007/978-3-642-22944-2_6
https://doi.org/10.1007/978-3-642-22944-2_6
https://doi.org/10.1017/s0956796800020025
https://arxiv.org/abs/1904.00827
https://doi.org/10.4230/LIPIcs.TYPES.2019.2
https://doi.org/10.1109/ICCL.1988.13077
https://doi.org/10.1109/ICCL.1988.13077
https://doi.org/10.4230/LIPIcs.CSL.2022.28
https://stackoverflow.com/questions/11406786/what-is-the-combinatory-logic-equivalent-of-intuitionistic-type-theory
https://stackoverflow.com/questions/11406786/what-is-the-combinatory-logic-equivalent-of-intuitionistic-type-theory
https://stackoverflow.com/questions/11406786/what-is-the-combinatory-logic-equivalent-of-intuitionistic-type-theory
https://doi.org/10.4204/EPTCS.317.4

10:20 The Münchhausen Method in Type Theory

A The Type Theory without Contexts model construction

The input is a CwF with ⊤ and Σ types both having η rules. We use the same notation
as in Section 6, the components of the model are Con, Ty, and so on. The components of
the output model without contexts are denoted the same. We list all of them here in the
following order: category, terminal object, types, terms, context extension, unit, Σ. This
model construction was fully formalised in Agda.

Con := Ty (⋄ ▷ ⊤)
Sub ∆ Γ := Tm (⋄ ▷ ∆ [ε , tt]T) (Γ [ε , tt]T)
σ ◦ ν := σ [ε , ν]t
id := q
⋄ := ⊤
ε := tt
Ty Γ := Ty (⋄ ▷ Γ [ε , tt]T)
A [σ]T := A [ε , σ]T
Tm Γ A := Tm (⋄ ▷ Γ [ε , tt]T) A
t [σ]t := t [ε , σ]t
Γ ▷ A := Σ Γ (A [ε , q]T)
σ , t := σ , t
p := fst q
q := snd q
⊤ := ⊤
tt := tt
Σ A B := Σ A (B[ε , (q [p]t , q)])T
u , v := u , v
fst t := fst t
snd t := snd t

All the equations hold. If the input model has Π types, so does the output model. If the
input model has a Coquand-universe, so does the output model. The operations are the
following.

Π A B := Π A (B[ε , (q [p]t , q)])T
lam t := lam (t [ε , (q [p]t , q)]t)
app t := (app t) [ε , fst q , snd q]t
U := U
El t := El t
c A := c A

All the equations hold.

Pragmatic Isomorphism Proofs Between Coq
Representations: Application to Lambda-Term
Families
Catherine Dubois # Ñ

Samovar, ENSIIE, 1 square de la résistance, 91025 Évry-Courcouronnes, France

Nicolas Magaud # Ñ

Lab. ICube UMR 7357 CNRS Université de Strasbourg, 67412 Illkirch, France

Alain Giorgetti # Ñ

Université de Franche-Comté, CNRS, Institut FEMTO-ST, F-25030 Besançon, France

Abstract
There are several ways to formally represent families of data, such as lambda terms, in a type theory
such as the dependent type theory of Coq. Mathematical representations are very compact ones
and usually rely on the use of dependent types, but they tend to be difficult to handle in practice.
On the contrary, implementations based on a larger (and simpler) data structure combined with a
restriction property are much easier to deal with.

In this work, we study several families related to lambda terms, among which Motzkin trees,
seen as lambda term skeletons, closable Motzkin trees, corresponding to closed lambda terms, and
a parameterized family of open lambda terms. For each of these families, we define two different
representations, show that they are isomorphic and provide tools to switch from one representation
to another. All these datatypes and their associated transformations are implemented in the Coq
proof assistant. Furthermore we implement random generators for each representation, using the
QuickChick plugin.

2012 ACM Subject Classification Theory of computation→ Lambda calculus; Theory of computation
→ Logic and verification; Theory of computation → Type theory

Keywords and phrases Data Representations, Isomorphisms, dependent Types, formal Proofs,
random Generation, lambda Terms, Coq

Digital Object Identifier 10.4230/LIPIcs.TYPES.2022.11

Supplementary Material Software (Source Code): https://github.com/magaud/postTYPES2022
archived at swh:1:dir:f01d28048087438c173ad32a5536f79755285465

Funding Alain Giorgetti: Supported by the EIPHI Graduate School (contract ANR-17-EURE-0002).

1 Introduction

Choosing the most appropriate implementation of mathematical objects to perform computa-
tions and proofs is challenging. Indeed, efficient (well-suited for computations) representations
are often difficult to handle when it comes to proving properties of these objects. Conversely,
well-suited representations for proofs often have fairly poor performances when it comes to
computing. The simplest example is the implementation of natural numbers. Using a unary
representation, proofs (especially inductive reasoning) are easy to carry out but computing
is highly inefficient. Using a binary representation makes computations faster, however it is
more difficult to use reasoning principles such as the induction principle on natural numbers.

In the field of λ-calculus, representations that are closest to mathematics are usually
implemented using dependent types. This makes them easily readable and understandable
by mathematicians. However it is rather challenging and requires a strong background in
functional programming and theorem proving to handle them smoothly. Representations

© Catherine Dubois, Nicolas Magaud, and Alain Giorgetti;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Types for Proofs and Programs (TYPES 2022).
Editors: Delia Kesner and Pierre-Marie Pédrot; Article No. 11; pp. 11:1–11:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:catherine.dubois@ensiie.fr
http://web4.ensiie.fr/~catherine.dubois
https://orcid.org/0000-0002-9477-8109
mailto:magaud@unistra.fr
https://dpt-info.u-strasbg.fr/~magaud
https://orcid.org/0000-0002-9477-4394
mailto:alain.giorgetti@femto-st.fr
https://members.femto-st.fr/alain-giorgetti/en
https://orcid.org/0000-0002-0990-9611
https://doi.org/10.4230/LIPIcs.TYPES.2022.11
https://github.com/magaud/postTYPES2022
https://archive.softwareheritage.org/swh:1:dir:f01d28048087438c173ad32a5536f79755285465
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Pragmatic Isomorphism Proofs Between Coq Representations

based on a larger type (a non-dependent one) and a restriction property are easier to handle
in practice, but less intuitive. In addition, one needs to take extra care to make sure that the
combination of the larger type and the restriction property exactly represents the expected
objects.

Overall there is no perfect representation for a given mathematical object. To overcome
this challenge, we propose to deal with several different isomorphic representations of families
of mathematical objects simultaneously. To do that, we present a rigorous methodology to
partially automate the construction of the transformation functions between two isomorphic
representations and prove these transformations correct. We apply these techniques to some
families of objects related to λ-calculus, namely closable Motzkin trees, uniquely closable
Motzkin trees and m-open λ-terms.

Our first examples revisit an article of Bodini and Tarau [3] in which they define Prolog
generators for closed lambda terms and their skeletons seen as Motzkin trees, efficient
generators for closable and uniquely closable skeletons and study their statistical properties.
Our contributions are to formalize in Coq these different notions, prove the equivalence
of several definitions that underlie the generators designed by Bodini and Tarau, and
write random generators to be used with QuickChick [12]. We then extend the discourse
to a parameterized family of open λ-terms, named m-open λ-terms. All the considered
representations, transformations between isomorphic representations and isomorphism proofs
are formalized1 in the Coq proof assistant [2, 7]. We propose some generic tools to help
setting up the correspondence between two isomorphic types more easily. We hope such a
methodology could be reused to deal with other families of objects, having different and
isomorphic representations.

Related Work. Dealing with various isomorphic representations of the same mathematical
objects is a common issue in computer science. Research results span from theoretical
high-level approaches such as homotopy type theory [19] or cubical type theory [5] to more
pragmatic proposals such as ours. In the context of formal specifications and proofs about
mathematical concepts, several frameworks have been proposed to deal with several types and
their transformation functions. A seminal work on changing (isomorphic) data representation
was implemented by Magaud [14] as a plugin for Coq in the early 2000s. In this approach, the
transformation functions were provided by the user and only the proofs were ported. Here,
we aim at helping the programmer to write the transformation functions as well as their
proofs of correctness. In [6], Cohen et al. focus on refining from abstract representations,
well-suited for reasoning, to computationally well-behaved representations. In our work,
both representations are considered of equal importance, and none of them is preferred.
Finally, our work is closely related to the concept of views, introduced by Wadler in [20] and
heavily used in the dependently-typed programming language Epigram [16]. In this approach,
operations are made independent of the actual implementation of the types they work on.
Pattern-matching on an element of type A can be carried out following the structure of the
type B provided A and B are isomorphic types. The correspondence functions we shall
implement in this article provide an example of a concrete implementation of views.

Regarding random generators and enumerators, Paraskevopoulou et al. [17] recently
proposed a new framework, on top of the QuickChick testing tool for Coq. It allows to
automatically derive such generators by extracting the computational contents from inductive
relations.

1 The Coq code is available at https://archive.softwareheritage.org/browse/origin/https://
github.com/alaingiorgetti/postTYPES2022.

https://archive.softwareheritage.org/browse/origin/https://github.com/alaingiorgetti/postTYPES2022
https://archive.softwareheritage.org/browse/origin/https://github.com/alaingiorgetti/postTYPES2022

C. Dubois, N. Magaud, and A. Giorgetti 11:3

Paper Outline. In Sect. 2, we present a general methodology and interfaces to capture all
the features of two representations of a given family of objects, and to switch easily from one
representation to the other. In Sect. 3, we show how our approach applies to representations
of closable Motzkin trees – that are the skeletons of closed λ-terms – and to representations
of uniquely closable Motzkin trees. In Sect. 4, we adapt our approach to the parameterized
family of m-open λ-terms. In Sect. 5, several applications of the presented isomorphic types
are exposed. In Sect. 6, we draw some conclusions and present some promising perspectives.

2 Specifying Families Using Two Different Representations

As we shall see with examples related to pure λ-terms, a family of mathematical objects can
usually be defined formally in two different but equivalent ways: either using an inductive
datatype, possibly dependent, or using a larger non dependent datatype, together with a
restriction property. In this section, we summarize which elements are required to specify
the two datatypes and their basic properties. We then show how to derive the isomorphism
properties automatically. One of these isomorphism properties can always be derived
automatically, using a generic approach based on a functor, whereas the other one, which
relies on a proof by induction on the data, is carried out using Ltac. In the examples
presented in this article, the types have at most one level of dependency. Even if the Ltac
code is as generic as possible, it may not generalize well when the level and complexity of
the dependencies increase.

2.1 Types
A restricted type (T,is_P) is a dependent pair defined by a type T : Type, called its base
type, and a predicate is_P : T → Prop, called its restriction or filter. The restricted
type (T,is_P) is intended to represent the inhabitants of T satisfying the restriction is_P.
For practical reasons, these two objects are encapsulated together as a record type rec_P
isomorphic to the Σ-type {x : T | is_P x}.

Record rec_P := Build_rec_P {
P_struct :> T;
P_prop : is_P P_struct

}.

In addition to this practical type, we assume that we also have another possibly dependent
type P for the same family of objects. This type is usually closer to the way mathematicians
would define such objects. However, it may be less convenient to handle in practice (e.g.
when proving in a proof assistant such as Coq) and thus we shall prefer using the larger type
T and the restriction is_P rather than the type P when programming operations and proving
lemmas on such a family.

2.2 Transformations and Their Properties
Once the datatypes T and P and the filter is_P are defined, we build the expected isomorphisms
as two transformation functions rec_P2P (from rec_P ≡ {x : T | is_P x} to P) and P2rec_P
(from P to rec_P ≡ {x : T | is_P x}). The first function rec_P2P can be defined as follows,
with an auxiliary function T2P : ∀ (x:T), is_P x → P transforming any element x : T
that satisfies is_P into an element of P.

Definition rec_P2P m := T2P (P_struct m) (P_prop m).

TYPES 2022

11:4 Pragmatic Isomorphism Proofs Between Coq Representations

To define the reverse transformation P2rec_P, we first implement a function P2T from P to T
and then prove that the image of any x by P2T satisfies the predicate is_P, i.e. we prove the
following lemma:

Lemma is_P_lemma: ∀ v, is_P (P2T v).

Then the transformation P2rec_P can be defined as follows:

Definition P2rec_P (x:P) : rec_P := Build_rec_P (P2T x) (is_P_lemma x).

2.3 Partial Automation of Specification and Proofs
In order to automate some parts of the process, we provide an abstract definition of the
minimum requirements for the two involved types, as shown in the module type declaration
(a.k.a. interface or signature) family reproduced in the following code snippet.

Module Type family.
Parameter T : Set.
Parameter is_P : T → Prop.
Parameter P : Set.
Parameter T2P : ∀ (x:T), is_P x → P.
Parameter P2T : P → T.
Parameter is_P_lemma : ∀ v, is_P (P2T v).
Parameter P2T_is_P :
∀ (t : T) (H : is_P t), P2T (T2P t H) = t.

Parameter proof_irr :
∀ x (p1 p2:is_P x), p1 = p2.

End family.

We assume that we have the type T and a restricting predicate is_P as well as the type
P. We also provide two conversion functions T2P and P2T, together with two proofs: a proof
is_P_lemma that is_P holds for all images (P2T v) of the inhabitants v of P, and a proof
P2T_is_P that for all inhabitants t : T satisfying the predicate is_P, P2T is a left inverse
of T2P.

Then, the roundtrip lemma P2rec_PK stating that P2rec_P is a left inverse for rec_P2P
can be proved automatically using the functor equiv_family, reproduced in the following
code snippet.

Module Type equiv_sig (f:family).
Import f.
Parameter rec_P : Type.
Parameter rec_P2P : rec_P → P.
Parameter P2rec_P : P → rec_P.
Parameter P2rec_PK : ∀ x: rec_P, P2rec_P (rec_P2P x) = x.
End equiv_sig.

Module equiv_family (Import f:family) <: equiv_sig(f).
Record rrec_P := Build_rrec_P {

P_struct :> T;
P_prop : is_P P_struct

}.

Definition rec_P := rrec_P.

Definition rec_P2P m := T2P (P_struct m) (P_prop m).
Definition P2rec_P (x:P) : rec_P := Build_rrec_P (P2T x) (is_P_lemma x).

C. Dubois, N. Magaud, and A. Giorgetti 11:5

Lemma P2rec_PK : ∀ x: rec_P, P2rec_P (rec_P2P x) = x.
Proof.

unfold rec_P2P, P2rec_P; intros; simpl.
generalize (is_P_lemma (T2P (P_struct x) (P_prop x))).
rewrite P2T_is_P.
intros; destruct x; simpl in *.
rewrite (proof_irr _ P_prop0 i).
reflexivity.

Qed.
End equiv_family.

The proof of P2rec_PK is generic and only relies on the components of the module f which
has type family.

The proof of the other roundtrip lemma rec_P2PK cannot be derived abstractly using a
functor. Indeed, the argument of this lemma is an element m of the inductively-defined type
P. Therefore no proof can be carried out before we have an explicit definition of P. Once this
definition is provided, the proof of the second lemma is rather straightforward and can be
automated using some Ltac constructs. Although the Ltac proof is not generic, it works easily
for all examples provided in this paper. We believe that this could be generalized to arbitrary
datatypes by using some meta-programming tools such as Coq-elpi [10] or MetaCoq [18].

In the next subsection, we shall extend our interface and build a new functor to automat-
ically generate some random generators for the two representations P and {x : T | is_P x} at
stake.

2.4 Random Generators
Property based testing (PBT) has become famous in the community of functional languages.
Mainly popularized by QuickCheck [4] in Haskell, PBT is also available in proof assistants. In
Coq, the random testing plugin QuickChick [12] allows us to check the validity of executable
conjectures with random inputs, before trying to write formal proofs of these conjectures.
QuickChick is mainly a generic framework providing combinators to write testing code, in
particular random generators, and also to prove their correctness.

Our general framework also provides guidelines to develop random generators for all
the datatypes under study. Generators, either user-defined or automatically derived by
QuickChick, have a type G Ty where Ty is the type of the generated values and G is an
instance of the Coq Monad typeclass. They are usually parameterized by a natural number n
that controls their termination (called fuel in the Coq community). It may also serve as a
bound on the depth of the generated values, even if it is not always guaranteed.

Let us assume that a random generator of values of type T, named gen_T : nat → G T,
is available. We are interested in providing a generator for each datatype: (i) a generator
of values of type T satisfying the property is_P, (ii) a generator of values of type rec_P
embedding a value of type T and a proof that the latter satisfies the property is_P, (iii) a
generator of values of type P. Thanks to QuickChick and the bijections we have previously
defined, they can be obtained quite easily, using three new functors explained below. All
these generators come in a sized version, i.e. they are parameterized with a natural number
which is randomly chosen, when used with a QuickChick test command.

The first functor we propose, generators_family1, allows the definition of the random
generator gen_filter_P which implements the strategy generate and test. It can be obtained
when are available an executable version of the predicate is_P, named is_Pb, and a proof of
decidability of is_P, named is_P_dec. A value default_P of the considered family - which
is guaranteed by a proof default_is_P - is also required.

TYPES 2022

11:6 Pragmatic Isomorphism Proofs Between Coq Representations

Module Type family_for_generators1 (Import f : family).
Import f.
Module facts := equiv_family (f).
Parameter is_Pb : T → bool.
Parameter is_P_dec : ∀ x:T, is_P x ↔ is_Pb x = true.
Parameter gen_T : nat → G T.
Parameter default_P : T.
Parameter default_is_P : is_Pb default_P = true.

End family_for_generators1.

Module generators_family1 (f : family) (g : family_for_generators1 f).
Import f.
Import g.
Import g.facts.

Definition filter_max := 100.
Fixpoint gen_filter_P_aux nb n :=
match nb with
| 0 ⇒ returnGen default_P
| S p ⇒ do! val ← gen_T n;

if is_Pb val then returnGen val
else gen_filter_P_aux p n

end.
Definition gen_filter_P : nat → G T := gen_filter_P_aux filter_max.

End generators_family1.

The random generator gen_filter_P randomly produces a value val of type T thanks
to gen_T and checks whether is_Pb val is true, in which case it outputs val. Otherwise, it
discards the value and tries again. If the maximum number of tries filter_max is reached,
it yields the provided default value default_P.

The next two functors can be used to derive a random generator for one family representa-
tion from that of the alternative representation. When the random generator gen_P of values
of type P is available, using the functor generators_family3 shown below, we can obtain a
random generator of values of type rec_P, i.e. a value of type T and a proof that it satisfies
the property is_P (thanks to the functions and lemmas derived using equiv_family). The
functor generators_family2 (omitted here) does the opposite job.

Module Type family_for_generators3 (Import f : family).
Parameter gen_P : nat → G P.

End family_for_generators3.

Module generators_family3 (Import f : family)
(Import g : family_for_generators3 f)
(Import facts : equiv_sig f).
Definition gen_rec_P n : G rec_P :=
do! p ← gen_P n;
returnGen (P2rec_P p).

End generators_family3.

In the next section, we shall see how to instantiate our framework with two different
representations of closable Motzkin trees and uniquely closable Motzkin trees, to automatically
prove the equivalence between the representations and to automatically derive random
generators.

C. Dubois, N. Magaud, and A. Giorgetti 11:7

3 Two Instances: Closable Motzkin Trees and Uniquely Closable
Motzkin Trees

This section presents two simple examples of infinite families of objects with two representa-
tions in Coq. These examples are presented as applications of our formal framework, including
formal proofs of isomorphisms between representations and the design of their corresponding
random generators. Whereas our methodology applies to any pair of isomorphic datatypes,
we have chosen to focus our applications primarily on data families related to the λ-terms
from the pure (i.e., untyped) λ-calculus.

Let us briefly recall that the λ-calculus is a universal formalism to represent computations
with functions. A (pure) λ-term is either a variable (x, y, . . .), an abstraction λx.t, that
binds the variable x in the λ-term t, or a term of the form t u for two λ-terms t and u. The
term λx.t represents a function of the variable x. The term t u represents an application of
the function (represented by) t to the function (represented by) u. A variable x in free in the
term t if it is not bound in t (by some λx). A closed term is a term without free variables.
Terms are considered up to renaming of their bound variables.

The two examples come from a study for the efficient enumeration of closed λ-terms, by
Bodini and Tarau [3], that starts from binary-unary trees, a.k.a. Motzkin trees, that can be
seen as skeletons of λ-terms. For self-containment, all the definitions and properties of this
study that are formalized here are kindly reminded to the reader.

A Motzkin tree is a rooted ordered tree built from binary, unary and leaf nodes. Thus
the set of Motzkin trees can be seen as the free algebra generated by the constructors v, l
and a of respective arity 0, 1 and 2. Their type in Coq, named motzkin, is the following
inductive type.
Inductive motzkin : Set :=
| v : motzkin
| l : motzkin → motzkin
| a : motzkin → motzkin → motzkin.

3.1 Closable Motzkin Trees
The skeleton of the λ-term t is the Motzkin tree obtained by erasing all the occurrences of
the variables in t. A Motzkin tree is closable if it is the skeleton of at least one closed λ-term.
As in [3], we define a predicate for characterizing closable Motzkin trees:
Fixpoint is_closable (mt: motzkin) :=

match mt with
| v ⇒ False
| l m ⇒ True
| a m1 m2 ⇒ is_closable m1 ∧ is_closable m2
end.

This predicate only requires the presence of at least one occurrence of the unary node on
each rooted path of the Motzkin tree. For instance, the tree l (a v (l v)) is closable (it is
the skeleton of the closed λ-term λx.x(λy.y)), whereas the tree a (l v) v is not closable.

Bodini and Tarau proposed a grammar generating closable Motzkin trees [3, Section 3],
that we adapt in Coq as an inductive type, named closable.
Inductive closable :=
| La : motzkin → closable
| Ap : closable → closable → closable.

TYPES 2022

11:8 Pragmatic Isomorphism Proofs Between Coq Representations

Table 1 Two instances of the Module Type family and the functor equiv_family repres-
enting closable Motzkin trees and uniquely closable Motzkin trees. Statements required in the
functor Module Type family (upper part of the array) are proven automatically. The roundtrip
statement rec_P2PK (last line of the array), which corresponds to rec_closable2closableK and
rec_ucs2ucsK does not belong to the functor but can be proven automatically in both settings.

Abstraction Closable Skeletons Uniquely Closable Skeletons
T motzkin motzkin
is_P is_closable is_ucs
P closable ucs
T2P motzkin2closable motzkin2ucs
P2T closable2motzkin ucs2motzkin
is_P_lemma automatically proved using Ltac
P2T_is_P automatically proved using Ltac
proof_irr proof_irr_is_closable proof_irr_is_ucs

rec_P automatically derived in the functor
rec_P2P automatically derived in the functor
P2rec_P automatically derived in the functor
P2rec_PK automatically derived in the functor

rec_P2PK automatically proved using Ltac

For example, La (a v (l v)) is the closable term corresponding to the Motzkin tree
l (a v (l v)).

To prove that there is a bijection between closable Motzkin trees specified using the type
rec_closable and inductive objects whose type is closable, using our approach, we simply
need to provide two functions motzkin2closable and closable2motzkin.

Fixpoint motzkin2closable (m : motzkin) : is_closable m → closable :=
match m as m0 return (is_closable m0 → closable) with
| v ⇒ fun H : is_closable v ⇒ let H0 := match H return closable with end in H0
| l m0 ⇒ fun _ : is_closable (l m0) ⇒ La m0
| a m1 m2 ⇒ fun H : is_closable (a m1 m2) ⇒

match H with
| conj Hm1 Hm2 ⇒ Ap (motzkin2closable m1 Hm1) (motzkin2closable m2 Hm2)
end

end.

Fixpoint closable2motzkin c :=
match c with
| La m ⇒ l m
| Ap c1 c2 ⇒ a (closable2motzkin c1) (closable2motzkin c2)
end.

Because it involves dependent pattern matching, defining directly motzkin2closable as
a function is not immediate. However it is easily carried out interactively as a lemma, in a
proof-like manner, using the tactic fix.

The transformation functions and the isomorphism properties between the two types
closable and rec_closable can then be automatically generated, as summarized in the
second column of Table 1.

C. Dubois, N. Magaud, and A. Giorgetti 11:9

3.1.1 Random Generators
Random generators for closable and rec_closable have been used to test the different
lemmas before proving them, for example the roundtrip lemma rec_closable2closableK,
which is an instance of the pattern rec_P2PK. Corresponding QuickChick commands can be
found in our formal development.

The generator for Motzkin trees, gen_motzkin, required by any of the other generators,
is obtained automatically, thanks to QuickChick:

Derive (Arbitrary, Show) for motzkin.

In the context of closable Motzkin trees, the gen_closable generator associated to the
tailored simple inductive type closable can be easily obtained using QuickChick. Thanks to
the functor generators_family3, we can derive the random generator of values of the corres-
ponding restricted type, as it is illustrated by the following snippet of code, where closable is
an instance of the family, and fact_cl is defined as the module equiv_family (closable).

Module gen_closable3 : family_for_generators3 (closable).
Definition gen_P := gen_closable.
End gen_closable3.

Module V3 := generators_family3 closable gen_closable3 facts_cl.

To test the motzkin2closable function (T2P in the family interface), we need a generator
that produces closable Motzkin trees. It is not relevant to use the previously defined generator
which we have derived from that of closable values and thus obtained using, as a main
ingredient, the function under test itself. For that purpose, the generator gen_filter_P
obtained by applying the functor generators_family1 can be useful, however such a
generator usually discards many values to produce the required ones. A handmade generator,
as gen_closable_struct defined below, is usually preferred.

As a representative of this kind of custom generators, we expose its code in the following
code snippet and explain it.

Fixpoint gen_closable_struct_aux (k : nat) (n : nat) : G motzkin :=
match n with
| 0 ⇒ match k with

0 ⇒ returnGen default_closable
| _ ⇒ returnGen v
end

| S p ⇒
match k with
0 ⇒ oneOf [

(returnGen default_closable);
(do! mt ← gen_closable_struct_aux (S k) p; returnGen (l mt));
(do! mt0 ← gen_closable_struct_aux k p; do! mt1 ← gen_closable_struct_aux k p;

returnGen(a mt0 mt1))]
| _ ⇒ oneOf [

(returnGen v);
(do! mt ← gen_closable_struct_aux (S k) p; returnGen (l mt));
(do! mt0 ← gen_closable_struct_aux k p; do! mt1 ← gen_closable_struct_aux k p;

returnGen(a mt0 mt1))]
end

end.

Definition gen_closable_struct : nat → G motzkin := gen_closable_struct_aux 0.

TYPES 2022

11:10 Pragmatic Isomorphism Proofs Between Coq Representations

We first define an intermediate function that uses the additional parameter k denoting the
number of l constructors at hand. So, if both k and n are equal to 0, the generator emits the
default value (here l v, stored in default_closable). If n is 0 but at least one l is available,
then the generator produces the leaf v. When n is not 0, again we have two treatments
depending on whether we have already introduced the constructor l or not. In both cases,
the generator picks one of the several ways to produce a value – thanks to oneOf, and thus
either stops with a value (resp. l v or v), recursively produces a closable Motzkin tree which
is used to build a resulting unary Motzkin tree, or recursively generates two closable Motzkin
trees used to produce a binary Motzkin tree. The final custom generator is obtained using
the previous intermediate function with k equal to 0.

We recommend testing that this generator does produce Motzkin trees which are closable,
as follows:

QuickCheck (sized (fun n ⇒ forAll (gen_closable_struct n) is_closableb)).
(* +++ Passed 10000 tests (0 discards) *)

To define the proof-carrying version of the custom generator, we follow a similar scheme
but also produce a proof that the produced value mt is closable, i.e. a term of type
is_closable mt. We use the Program facility which allows us to produce certified programs
and generates proof obligations. Here these proof obligations are automatically solved.

3.2 Uniquely Closable Motzkin Trees
A Motzkin tree is uniquely closable if there exists exactly one closed λ-term having it as its
skeleton.

We first define a predicate is_ucs for characterizing uniquely closable skeletons. This
predicate specifies that a Motzkin tree is uniquely closable if and only if there is exactly one
unary node on each rooted path.

Fixpoint is_ucs_aux m b :=
match m with
| v ⇒ b = true
| l m ⇒ if b then False

else is_ucs_aux m true
| a m1 m2 ⇒ is_ucs_aux m1 b ∧ is_ucs_aux m2 b
end.

Definition is_ucs m := is_ucs_aux m false.

This Coq predicate corresponds to the second Prolog predicate uniquelyClosable2 intro-
duced by Bodini and Tarau [3, Section 4], after a first Prolog predicate uniquelyClosable1
using a natural number to count the number of λ binders above each leaf, instead of a
Boolean flag as here. A Coq formalization of this other characterization of uniquely closable
Motzkin trees, and a formal proof of their equivalence, are presented in Section 5.4.

We then define an inductive type ucs that also represents uniquely closable Motzkin
trees.

Inductive ca :=
| V : ca
| B : ca → ca → ca.

Inductive ucs :=
| L : ca → ucs
| A : ucs → ucs → ucs.

C. Dubois, N. Magaud, and A. Giorgetti 11:11

Even though we use the abbreviations ca for ClosedAbove and ucs for UniquelyClosable,
these types exactly correspond to Haskell datatypes given in [3]. For instance, the Motzkin
tree l (a v v) and the corresponding ucs term L (B V V) represent uniquely closable
skeletons. The closable tree l (a (l v) v) is not uniquely closable, because it is the
skeleton of two closed λ-terms, namely λx.(λy.y)x and λx.(λy.x)x.

Using the same infrastructure as for closable Motzkin trees, the transformation functions
and the isomorphism properties between the two types ucs and rec_ucs can be automatically
generated, as summarized in the last column of Table 1.

We proceed in the same way for random generators. Using QuickChick, the generator
gen_ucs is automatically derived from the definition of the inductive types ca and ucs. The
user-defined generator gen_ucs_struct is very close to gen_closable_struct. Similarly
we use Program to define the one producing values and proofs.

4 Pure Open λ-Terms in De Bruijn Form

Let us now address the questions of formal representations and random generation of pure
open λ-terms modulo variable renaming. The definitions in this section are not present in
Bodini and Tarau’s work [3].

To get rid of variable names, we adopt de Bruijn’s proposal to replace each variable in a
λ-term by a natural number, called its de Bruijn index [8]. When a de Bruijn index is not
too high, it encodes a variable bound by the number of λ’s between its location and the λ

that binds it. Otherwise, it encodes a free variable. We consider de Bruijn indices from 0, to
ease their formalization with the Coq type nat for natural numbers. For instance, the term
λ.(1 (λ.1)) in de Bruijn form represents the term λx.(y (λz.x)) with the free variable y.

4.1 Types
The tree structure of open λ-terms in de Bruijn form can be represented by unary-binary
trees whose leaves are labeled by a natural number. They are the inhabitants of the following
inductive Coq type lmt (acronym for labeled Motzkin tree).

Inductive lmt : Set :=
| var : nat → lmt
| lam : lmt → lmt
| app : lmt → lmt → lmt.

However the property of being closed cannot be defined by induction on this definition of
λ-terms. Indeed, if the term λ t is closed, then the term t is not necessarily closed, it can also
have a free variable. The more general property of m-openness overcomes this limitation:
for any natural number m, the λ-term t is said to be m-open if the term λ . . . λ t with m

abstractions before t is closed. Whereas the “m-open” terminology is recent [1], the notion
has been studied since 2013, by Grygiel and Lescanne [11,13].

With the following definition, (is_open m t) holds iff the labeled Motzkin tree t encodes
an m-open λ-term. This function call indeed visits the tree t and counts (from m) the number
of λs (constructor lam) traversed so far. At each leaf (constructor var) it checks that its de
Bruijn indice i is lower than this number m of traversed abstractions.

Fixpoint is_open (m: nat) (t: lmt) : Prop :=
match t with
| var i ⇒ i < m
| lam t1 ⇒ is_open (S m) t1
| app t1 t2 ⇒ is_open m t1 ∧ is_open m t2
end.

TYPES 2022

11:12 Pragmatic Isomorphism Proofs Between Coq Representations

For instance, the tree lam (app (var 0) (lam (var 1))) is 0-open (its skeleton is the
closable term l (a v (l v))), whereas the tree lam (app (var 1) (lam (var 1))) is
1-open, but not 0-open.

Because of the extra parameter m, the formal framework presented in Sect. 2 must
be adapted and we propose a new module type param_family together with a functor
equiv_param_family to automatically prove one of the roundtrip lemmas. The other one
can be easily proved correct using the same sequences of Ltac constructs as for the non
dependent case.

The following record type parameterized by m is such that (rec_open m) describes m-open
terms. As previously, the first field stores the datum, here a labeled Motzkin tree (i.e., T is
lmt), and the second field stores a proof that it is m-open.

Record rec_open (m:nat) : Set := Build_rec_open {
open_struct :> lmt;
open_prop : is_open m open_struct

}.

It is however more natural to describe m-open terms with a dependent type (open m)
enclosing the condition i < m at leaves, as follows.

Inductive open : nat → Set :=
| open_var : ∀ (m i:nat), i < m → open m
| open_lam : ∀ (m:nat), open (S m) → open m
| open_app : ∀ (m:nat), open m → open m → open m.

4.2 Transformations and Their Properties
In order to switch from one representation to the other whenever needed, we provide two
functions rec_open2open m and open2rec_open m, and Coq proofs for two roundtrip lemmas
justifying that they are mutual inverses.

From the Record Type to the Dependent Type. The function rec_open2open m from
the record type (rec_open m) to the dependent type (open m) is defined by

Definition rec_open2open (m : nat) (r : rec_open m) :=
lmt2open (open_struct m r) m (open_prop m r).

where lmt2open is the following dependent recursive function.

Fixpoint lmt2open (t:lmt) : ∀ m:nat, is_open m t → open m :=
match t as u return (∀ m0 : nat, is_open m0 u → open m0) with
| var n ⇒ fun (m0 : nat) (H : is_open m0 (var n)) ⇒ open_var m0 n H
| lam u ⇒ fun (m0 : nat) (H : is_open m0 (lam u)) ⇒

open_lam m0 (lmt2open u (S m0) H)
| app u w ⇒

fun (m0 : nat) (H : is_open m0 (app u w)) ⇒
match H with
| conj H0 H1 ⇒ open_app m0 (lmt2open u m0 H0) (lmt2open w m0 H1)
end

end.

It is rather difficult to define this function directly. We choose to develop it as a proof,
as advocated by McBride [15], in an interactive manner, letting Coq handle the type
dependencies. Once the term is built, we simply revert the proof and declare it directly as a
fixpoint construction to make it look like a function, more readable and understandable for
humans than a proof script.

C. Dubois, N. Magaud, and A. Giorgetti 11:13

From the Dependent Type to the Record Type. The process to define the inverse function
open2rec_open m from the dependent type (open m) to the record type (rec_open m) is
rather different, and can be decomposed as follows. First of all, a function (open2lmt m)
turns each dependent term t of type open m into a labeled Motzkin tree.

Fixpoint open2lmt (m:nat) (t : open m) : lmt :=
match t with
| open_var m i _ ⇒ var i
| open_lam m u ⇒ lam (open2lmt (S m) u)
| open_app m t1 t2 ⇒ app (open2lmt m t1) (open2lmt m t2)
end.

Then we prove automatically, using the same Ltac constructs as for the previous examples,
the following lemma that states that the function open2lmt m always outputs an m-open
term.

Lemma is_open_lemma : ∀ m t, is_open m (open2lmt m t).

Once this lemma is proved, we can derive automatically the transformation open2rec_open,
by using the functor equiv_param_family.

Definition open2rec_open m t := Build_rec_open m (open2lmt m t) (is_open_lemma m t).

As we did in the previous sections, we then need to prove a lemma open2lmt_is_open
which relates the functions open2lmt and lmt2open, without taking into account the restric-
tion property.

Lemma open2lmt_is_open : ∀ m t H, open2lmt m (lmt2open t m H) = t.

Both lemmas are part of the interface param_family for a parametric family, extending the
interface family. Thus, applying the appropriate functor, we automatically derive a proof of
the first roundtrip lemma:

Lemma open2rec_openK : ∀ m r, open2rec_open m (rec_open2open m r) = r.

The proof of the second roundtrip lemma proceeds by induction on x of type open m. It is
immediately proven using the Ltac constructs proposed in the previous sections.

Lemma rec_open2openK : ∀ m x, rec_open2open m (open2rec_open m x) = x.

4.3 Random Generators
The required generator gen_lmt is automatically derived by QuickChick from the definition
of the inductive type lmt. The custom generators for λ-terms satisfying the open m property,
with or without proofs, are written following the same canvas as before. The generator
corresponding to the inductive type open is no longer derived automatically by QuickChick, in
particular because proofs have to be inserted when using the open_var constructor. However
it is easy to define it manually.

4.4 Characterization of Open λ-Terms From Their Skeleton
This subsection presents definitions and formal proofs relating Bodini and Tarau’s skeletons
for λ-terms (Section 3) with m-open λ-terms introduced in this section, not present in Bodini
and Tarau’s work.

TYPES 2022

11:14 Pragmatic Isomorphism Proofs Between Coq Representations

The skeleton of a λ-term is the Motzkin tree obtained by erasing the labels at its leaves.

Fixpoint skeleton (t: lmt) : motzkin :=
match t with
| var _ ⇒ v
| lam t1 ⇒ l (skeleton t1)
| app t1 t2 ⇒ a (skeleton t1) (skeleton t2)
end.

This function (specified by toMotSkel in [3]) connects Motzkin trees without labels (Sect. 3)
and Motzkin trees with labels defined in this section.

As the skeleton function cannot be inverted functionality, we define a pseudo-reverse,
from Motzkin trees without labels to labeled Motzkin trees, as the following family of
inductive relations (label m), for all natural numbers m.

Inductive label : nat → motzkin → lmt → Prop :=
| Lvar : ∀ m i, i < m → label m v (var i)
| Llam : ∀ m mt t, label (S m) mt t → label m (l mt) (lam t)
| Lapp : ∀ m mt1 mt2 t1 t2, label m mt1 t1 → label m mt2 t2
→ label m (a mt1 mt2) (app t1 t2).

The label-removing function skeleton and the label-adding relation label can be used
together as follows, to define a second characterization of m-open λ terms among labeled
Motzkin trees t.

Definition skeleton_open (m:nat) (t:lmt) : Prop := label m (skeleton t) t.

The proof of the following equivalence with the first characterization (is_open, introduced
in Section 4) is straightforward.

Lemma skeleton_is_open_eq : ∀ m t, skeleton_open m t ↔ is_open m t.

An m1-open λ-term is also an m2-open λ-term for all m2 ≥ m1.

Lemma label_mon : ∀ m1 mt t, label m1 mt t → ∀ m2, m1 ≤ m2 → label m2 mt t.

Consequently, for any labeled Motzkin tree t, there is a minimal natural number m such that
t is an m-open λ-term. It can be computed for instance by the following function.

Fixpoint minimal_openness (t : lmt) : nat :=
match t with
| var i ⇒ i+1
| lam t ⇒ match minimal_openness t with S m ⇒ m | _ ⇒ 0 end
| app t1 t2 ⇒ max (minimal_openness t1) (minimal_openness t2)
end.

The function skeleton and the relation label are pseudo-inverses in the sense of the following
two lemmas.

Lemma label_skeletonK : ∀ t : lmt, label (minimal_openness t) (skeleton t) t.

Lemma skeleton_labelK : ∀ m : nat, ∀ mt : motzkin, ∀ t : lmt,
label m mt t → skeleton t = mt.

The lemmas label_skeletonK and skeleton_is_open_eq jointly establish that the
labeled Motzkin tree t is a (minimal_openness t)-open λ-term.

Lemma lmt_minimal_openness : ∀ t : lmt, is_open (minimal_openness t) t.

C. Dubois, N. Magaud, and A. Giorgetti 11:15

Finally, it is easy to prove by induction that minimal_openness t indeed computes the
smallest openness m such that t is an m-open λ-term.
Lemma minimality : ∀ t : lmt, ∀ m : nat, is_open m t → m ≥ minimal_openness t.

5 Use Cases

In this section we use the previous examples of types to formalize all the propositions in
Bodini and Tarau’s work [3] that are related to Motzkin trees and pure λ-terms.

5.1 Another Definition for Closable Skeletons
Bodini and Tarau [3, section 3] first defined closable skeletons with a Prolog predicate –
named isClosable – whose adaptation in Coq is
Fixpoint isClosable2 (mt: motzkin) (V: nat) :=

match mt with
| v ⇒ V > 0
| l m ⇒ isClosable2 m (S V)
| a m1 m2 ⇒ isClosable2 m1 V ∧ isClosable2 m2 V
end.

Definition isClosable (mt: motzkin) := isClosable2 mt 0.

For each λ binder this function increments a counter V (starting at 0). Then it checks at
each leaf that its label is strictly positive. This definition is slightly more complicated than
that of the Coq predicate is_closable presented in Sect. 3. We have proved formally that
both definitions are equivalent:
Lemma is_closable_isClosable_eq : ∀ (mt: motzkin), is_closable mt ↔ isClosable mt.

The two implications of this equivalence are proved by structural induction and thanks to
the following two lemmas, themselves proved by structural induction.
Lemma isClosable2_S : ∀ m n, isClosable2 m n → isClosable2 m (S n).
Lemma isClosable_l : ∀ m, isClosable (l m).

We can notice that this proof is simpler than expected: Although the generalization
isClosable2 is required to define the predicate isClosable, the proof avoids the effort to
invent generalizations to isClosable2 of the predicate is_closable and the equivalence
lemma. Similarly, after “packing” the predicate isClosable in the following record type, it
was possible to define and prove isomorphism with the algebraic datatype closable without
having to generalize the record and the datatype to isClosable2.
Record recClosable : Type := Build_recClosable {

Closable_struct : motzkin;
Closable_prop : isClosable Closable_struct

}.

5.2 Two Definitions for the Size of Terms
Bodini and Tarau [3, Proposition 1] state the following proposition to justify that two different
size definitions lead to the same sequence of numbers of closed λ-terms modulo variable
renaming, counted by increasing size.

TYPES 2022

11:16 Pragmatic Isomorphism Proofs Between Coq Representations

▶ Proposition 1. The set of terms of size n for size defined by the respective weights 0, 1
and 2 for variables, abstractions and applications is equal to the set of terms of size n + 1 for
size defined by weight 1 for variables, abstractions and applications.

This proposition holds not only for all Motzkin trees (without labels), but also for closable
ones, labeled ones, and for m-open λ-terms. Since we proposed two Coq types for closable
Motzkin trees and for m-open λ-terms, we formalize Proposition 1 by six propositions in
Coq, all of the form
Proposition proposition1X : ∀ t : X, size111X t = size012X t + 1.

with X in {motzkin, rec_closable, closable, lmt, rec_open, open}, and with adequate
functions size111X and size012X, not detailed here, defining both sizes for each type.
More precisely, thanks to the coercion (P_struct :> T) in the record types, the functions
size*rec_P are not defined, but advantageously replaced by the functions size*T. Here, *
is either 111 or 012 and (T,P) is either (motzkin,closable) or (lmt,open). For record types,
the proposition then takes the following form:
Proposition proposition1rec_P : ∀ t : rec_P, size111T t = size012T t + 1.

This proposition is a straightforward consequence of the corresponding proposition on the
type T (named proposition1T, according to our naming conventions). This mechanism
being similar for all record types, it can easily be mechanized.

The situation is very different with – potentially – dependent types (named P in our
general framework), if we forbid ourselves to use their isomorphism with a record type to
prove their proposition (named proposition1P, according to our naming conventions). Here,
the propositions for P in {closable,open} are proved by structural induction and linear
arithmetic, because the latter suffices to inductively define the size functions. However, the
general situation may be arbitrarily more complex, so no general mechanization can be
considered.

5.3 Characterization of Closable Motzkin Trees
This section and the next one present two propositions from Bodini and Tarau’s work [3]
that cannot be formalized with the single unlabeled notion of skeleton introduced in that
work, but also require a formalization of λ-terms with labels for their variables, such that
the one introduced in Section 4 of the present paper.

The first of these two propositions is the following characteristic property for closable
Motzkin trees [3, Proposition 2].

▶ Proposition 2. A Motzkin tree is the skeleton of a closed λ-term if and only if it exists at
least one λ-binder on each path from the leaf to the root.

After defining a closed λ-term as a 0-open λ-term, we can state Proposition 2 in Coq, as
follows.
Definition is_closed t := is_open 0 t.
Proposition proposition2 : ∀ mt : motzkin,

(∃ t : lmt, skeleton t = mt ∧ is_closed t) ↔ is_closable mt.

This formalization is close to the text of Proposition 2. It relies on the base type
motzkin and the restriction is_closable. A formulation of this proposition with the type
rec_closable or closable would be useless, because these more precise types already
include the closability property characterized by the proposition.

The proof of this proposition is straightforward.

C. Dubois, N. Magaud, and A. Giorgetti 11:17

5.4 Characterization of Uniquely Closable Motzkin Trees
Bodini and Tarau propose the following characteristic property for uniquely closable Motzkin
trees [3, Proposition 4].

▶ Proposition 3. A skeleton is uniquely closable if and only if exactly one lambda binder is
available above each of its leaf nodes.

The predicates is_ucs and is_ucs_aux presented in Section 3.2 correspond to the Prolog
predicate uniquelyClosable2 of [3, Section 4] and to the characteristic property “exactly
one lambda binder is available above each of its leaf nodes” of Proposition 4 of [3]. Therefore,
proving Proposition 3 consists in showing that this property is equivalent to the definition
“We call a skeleton uniquely closable if it exists exactly one closed lambda term having it as
its skeleton.” [3, page 6], which gives the following Coq code.

Proposition proposition4: ∀ mt : motzkin,
(∃! t, skeleton t = mt ∧ is_closed t) ↔ is_ucs mt.

However, this proposition cannot be proved directly, because (is_closed t) is a special
case of (is_open m t), which is parametrized by a natural number m, while (is_ucs mt)
is a special case of of (is_ucs_aux mt b), which is only parameterized by a Boolean b.
The rest of this section addresses this issue by generalizing the proposition to any natural
number m, using a characterization (ucs1_aux mt m) parametrized by this integer and put
in correspondence with (is_ucs_aux mt b).

The following predicates ucs1_aux and ucs1 adapt in Coq the Prolog predicate named
uniquelyClosable1 in [3].

Fixpoint ucs1_aux (t:motzkin) (n:nat) : Prop :=
match t with
| v ⇒ (1 = n)
| l m ⇒ ucs1_aux m (S n)
| a m1 m2 ⇒ ucs1_aux m1 n ∧ ucs1_aux m2 n
end.

Definition ucs1 (t:motzkin) := ucs1_aux t O.

We then use the predicate ucs1_aux to state a generalization of Proposition 3 to any
openness m, then the predicate ucs1 to state its specialization when m = 0, which is a
variant of Proposition 3.

Lemma proposition4ucs1_aux : ∀ (mt : motzkin) (m : nat),
(∃! t, skeleton t = mt ∧ is_open m t) ↔ ucs1_aux mt m.

Corollary proposition4ucs1: ∀ mt : motzkin,
(∃! t, skeleton t = mt ∧ is_closed t) ↔ ucs1 mt.

Independently, we can prove that the two charaterizations of uniquely closable Motzkin
trees are equivalent.

Lemma ucs1_is_ucs_eq : ∀ mt : motzkin, ucs1 mt ↔ is_ucs mt.

As usually when formalizing pen-and-paper proofs, we get more precise statements
and more detailed proofs. For example, we formally proved Proposition 1 in [3] as four
propositions, corresponding to four distinct data families.

TYPES 2022

11:18 Pragmatic Isomorphism Proofs Between Coq Representations

6 Conclusions and Perspectives

We have presented a framework to define and formally prove isomorphisms between Coq
datatypes, and to produce random generators for them. After applying it to several examples
related to lambda term families, we have formalized in Coq a large subset of the computational
and logical content of Bodini and Tarau’s paper [3] about pure λ-terms. Although our work
is clearly dealing with Coq representations, our technique could be useful to other proof
assistant tools and could be developed for example in Isabelle/HOL or Agda.

Technically, our present approach using interfaces allows us to automatically derive only
one of two round-trip properties, that state that the considered transformations are inverse
bijections. The other one, which proceeds by induction on the type P, cannot be generated
automatically by a functor, however, we can prove it automatically using some advanced
tactic combinations using Ltac. In the near future, we plan to investigate in more details
whether using external tools like MetaCoq [18] or elpi [10] and Coq-elpi [10] would increase
the genericity of our approach compared to simply relying on Ltac.

Our framework obviously applies to other formalization topics. It was inspired by previous
work, including one on Coq representations of permutations and combinatorial maps [9]. We
plan to complete this work and revisit it using this structuring framework. The proofs of
isomorphisms presented in this paper were elementary because the two types in bijection
were very close to one another. In the more general case of two different points of view on
the same family (e.g., permutations seen as injective endofunctions or products of disjoint
cycles), isomorphisms can be arbitrarily more difficult to prove.

References
1 Maciej Bendkowski, Olivier Bodini, and Sergey Dovgal. Statistical Properties of Lambda Terms.

The Electronic Journal of Combinatorics, 26(4):P4.1, October 2019. doi:10.37236/8491.
2 Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development,

Coq’Art : The Calculus of Inductive Constructions. Springer-Verlag, Berlin/Heidelberg, May
2004. 469 pages.

3 Olivier Bodini and Paul Tarau. On uniquely closable and uniquely typable skeletons of lambda
terms. In Fabio Fioravanti and John P. Gallagher, editors, Logic-Based Program Synthesis and
Transformation. LOPSTR 2017, volume 10855 of Lecture Notes in Computer Science, pages
252–268. Springer, Cham, 2018. doi:10.1007/978-3-319-94460-9_15.

4 Koen Claessen and John Hughes. QuickCheck: a lightweight tool for random testing of
Haskell programs. In Proceedings of the Fifth ACM SIGPLAN International Conference on
Functional Programming, volume 35 of SIGPLAN Not., pages 268–279. ACM, New York, 2000.
doi:10.1145/351240.351266.

5 Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical type theory:
A constructive interpretation of the univalence axiom. In Tarmo Uustalu, editor, 21st
International Conference on Types for Proofs and Programs (TYPES 2015), volume 69 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 5:1–5:34, Dagstuhl, Germany,
2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.TYPES.2015.
5.

6 Cyril Cohen, Maxime Dénès, and Anders Mörtberg. Refinements for free! In Georges
Gonthier and Michael Norrish, editors, Certified Programs and Proofs. CPP 2013, volume
8307 of Lecture Notes in Computer Science, pages 147–162. Springer, Cham, 2013. doi:
10.1007/978-3-319-03545-1_10.

7 Coq development team. The Coq Proof Assistant Reference Manual, Version 8.13.2. INRIA,
2021. URL: http://coq.inria.fr.

https://doi.org/10.37236/8491
https://doi.org/10.1007/978-3-319-94460-9_15
https://doi.org/10.1145/351240.351266
https://doi.org/10.4230/LIPIcs.TYPES.2015.5
https://doi.org/10.4230/LIPIcs.TYPES.2015.5
https://doi.org/10.1007/978-3-319-03545-1_10
https://doi.org/10.1007/978-3-319-03545-1_10
http://coq.inria.fr

C. Dubois, N. Magaud, and A. Giorgetti 11:19

8 N. G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic formula
manipulation, with application to the Church-Rosser theorem. Indagationes Mathematicae
(Proceedings), 75(5):381–392, January 1972. doi:10.1016/1385-7258(72)90034-0.

9 Catherine Dubois and Alain Giorgetti. Tests and proofs for custom data generators. Formal
Aspects of Computing, 30(6):659–684, July 2018. doi:10.1007/s00165-018-0459-1.

10 Cvetan Dunchev, Ferruccio Guidi, Claudio Sacerdoti Coen, and Enrico Tassi. ELPI: Fast,
Embeddable, λProlog Interpreter. In Martin Davis, Ansgar Fehnker, Annabelle McIver, and
Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence, and Reasoning. LPAR
2015, volume 9450 of Lecture Notes in Computer Science, pages 460–468. Springer, Berlin,
Heidelberg, 2015. doi:10.1007/978-3-662-48899-7_32.

11 Katarzyna Grygiel and Pierre Lescanne. Counting and generating lambda terms. Journal of
Functional Programming, 23(5):594–628, September 2013. doi:10.1017/S0956796813000178.

12 Leonidas Lampropoulos and Benjamin C. Pierce. QuickChick: Property-Based Testing in
Coq. Software Foundations series, volume 4. Electronic textbook, August 2022. Version 1.3.1
https://softwarefoundations.cis.upenn.edu/qc-1.3.1.

13 Pierre Lescanne. On counting untyped lambda terms. Theoretical Computer Science, 474:80–97,
February 2013. doi:10.1016/j.tcs.2012.11.019.

14 Nicolas Magaud. Changing data representation within the Coq system. In David A. Basin
and Burkhart Wolff, editors, Theorem Proving in Higher Order Logics. TPHOLs 2003, volume
2758 of Lecture Notes in Computer Science, pages 87–102. Springer, Berlin, Heidelberg, 2003.
doi:10.1007/10930755_6.

15 Conor McBride. Elimination with a motive. In Paul Callaghan, Zhaohui Luo, James McKinna,
and Robert Pollack, editors, Types for Proofs and Programs. TYPES 2000, volume 2277
of Lecture Notes in Computer Science, pages 197–216. Springer, Berlin, Heidelberg, 2000.
doi:10.1007/3-540-45842-5_13.

16 Conor McBride and James McKinna. The view from the left. Journal of Functional Program-
ming, 14(1):69–111, 2004. doi:10.1017/S0956796803004829.

17 Zoe Paraskevopoulou, Aaron Eline, and Leonidas Lampropoulos. Computing correctly with
inductive relations. In Proceedings of the 43rd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, PLDI 2022, pages 966–980. ACM, New
York, 2022. doi:10.1145/3519939.3523707.

18 Matthieu Sozeau, Abhishek Anand, Simon Boulier, Cyril Cohen, Yannick Forster, Fabian
Kunze, Gregory Malecha, Nicolas Tabareau, and Théo Winterhalter. The MetaCoq project.
Journal of Automated Reasoning, 64(5):947–999, 2020. doi:10.1007/s10817-019-09540-0.

19 The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of
Mathematics. https://homotopytypetheory.org/book, Institute for Advanced Study, 2013.

20 Philip Wadler. Views: A way for pattern matching to cohabit with data abstraction. In
Proceedings of the 14th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, POPL ’87, pages 307–313. ACM Press, 1987. doi:10.1145/41625.41653.

TYPES 2022

https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1007/s00165-018-0459-1
https://doi.org/10.1007/978-3-662-48899-7_32
https://doi.org/10.1017/S0956796813000178
https://softwarefoundations.cis.upenn.edu/qc-1.3.1
https://doi.org/10.1016/j.tcs.2012.11.019
https://doi.org/10.1007/10930755_6
https://doi.org/10.1007/3-540-45842-5_13
https://doi.org/10.1017/S0956796803004829
https://doi.org/10.1145/3519939.3523707
https://doi.org/10.1007/s10817-019-09540-0
https://homotopytypetheory.org/book
https://doi.org/10.1145/41625.41653

A Semantics of K into Dedukti
Amélie Ledein # Ñ

Université Paris-Saclay, Inria, CNRS, ENS Paris-Saclay, Laboratoire Méthodes Formelles, France

Valentin Blot # Ñ

Université Paris-Saclay, Inria, CNRS, ENS Paris-Saclay, Laboratoire Méthodes Formelles, France

Catherine Dubois # Ñ

ENSIIE, Samovar, Évry-Courcouronnes, France

Abstract
K is a semantical framework for formally describing the semantics of programming languages thanks
to a BNF grammar and rewriting rules on configurations. It is also an environment that offers
various tools to help programming with the languages specified in the formalism. For example, it is
possible to execute programs thanks to the generated interpreter, or to check their properties thanks
to the provided automatic theorem prover called the KProver. K is based on Matching Logic, a
first-order logic with an application and fixed-point operators, extended with symbols to encode
equality, typing and rewriting. This specific Matching Logic theory is called Kore.

Dedukti is a logical framework having for main goal the interoperability of proofs between
different formal proof tools. Several translators to Dedukti exist or are under development, in order
to automatically translate formalizations written, for instance, in Coq or PVS. Dedukti is based
on the λΠ-calculus modulo theory, a λ-calculus with dependent types and extended with a primitive
notion of computation defined by rewriting rules. The flexibility of this logical framework allows to
encode many theories ranging from first-order logic to the Calculus of Constructions.

In this article, we present a paper formalization of the translation from K into Kore, and a
paper formalization and an automatic translation tool, called KaMeLo, from Kore to Dedukti in
order to execute programs in Dedukti.

2012 ACM Subject Classification Theory of computation → Operational semantics

Keywords and phrases Programming language, Semantics, Rewriting, Logical framework, Type
theory

Digital Object Identifier 10.4230/LIPIcs.TYPES.2022.12

Supplementary Material Software: https://gitlab.com/semantiko/kamelo
archived at swh:1:dir:9353026d393b52e5bc149a469a3d2386fb923dff

Funding Amélie Ledein: Digicosme and EuroProofNet

Acknowledgements We want to thank the K team, especially Andrei Arusoaie, Xiaohong Chen,
Denisa Diaconescu, Everett Hildenbrandt, Zhengyao Lin, Dorel Lucanu, Ana Pantilie and Traian-
Florin Serbanuta for their prompt responses to our many questions.

1 Introduction

The main objective of formal methods is to obtain greater confidence in programs. Before
verifying a program, it must be written in a programming language whose syntax and
semantics are precisely known. Therefore, we must first have a formalization of the semantics
of the programming language used to write the program we wish to verify. Several tools make
it possible to write formal semantics for example Centaur [7], ASF+SDF [23], Ott [20],
Sail [3], Lem [17] or K [19, 2]. In this article, we are only interested in the latter, since
there are currently a large number of programming language semantics written in K such as
Java [6], C [13] or JavaScript [18].

© Amélie Ledein, Valentin Blot, and Catherine Dubois;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Types for Proofs and Programs (TYPES 2022).
Editors: Delia Kesner and Pierre-Marie Pédrot; Article No. 12; pp. 12:1–12:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:amelie.ledein@inria.fr
https://lmf.cnrs.fr/Perso/AmelieLedein
https://orcid.org/0000-0002-8122-7092
mailto:valentin.blot@inria.fr
https://valentinblot.org/pro/
mailto:catherine.dubois@ensiie.fr
https://www.ensiie.fr/~dubois
https://orcid.org/0000-0002-9477-8109
https://doi.org/10.4230/LIPIcs.TYPES.2022.12
https://gitlab.com/semantiko/kamelo
https://archive.softwareheritage.org/swh:1:dir:9353026d393b52e5bc149a469a3d2386fb923dff;origin=https://gitlab.com/semantiko/kamelo;visit=swh:1:snp:b7a2687611b749d144a4590e10087c7b6cab5f56;anchor=swh:1:rev:9351bfdac9b0047db82958a7ac572e0cba51bb55
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 A Semantics of K into Dedukti

K is a semantical framework that offers many features for writing a semantics such as
attributes to specify evaluation strategies. Once the semantics of a language L has been
specified, K allows to execute a program P written in L but also offers the possibility of
verifying some properties – expressed in the form of reachability properties – on the program
P using the automatic theorem prover KProver [21]. As it is possible to automatically
translate K semantics into a Matching Logic theory named Kore, the particularity of the
K framework is to see any semantics S of a programming language L as a logical theory ΓL.
That is the reason we look at the translation of K into Dedukti, which is a logical framework
based on the λΠ-calculus modulo theory having for main goal the interoperability of
proofs between different formal proof tools.

In this article, we are more particularly interested in the translation into Dedukti of
any semantics written in K in order to execute programs in Dedukti. Our first contribution
is a paper formalization of the translation from K into Kore. As no article has been yet
published on this translation, this contribution was elaborated by reverse engineering on
Kore files as well as thanks to discussions with the K team. Independently, we formalize
transformations similar to what was done in IsaK [15, 16], which is a formalization in
Isabelle – but not based on Kore – of the static and dynamic semantics of K. In addition,
the second contribution is a paper formalization and an automatic tool, called KaMeLo [1],
from Kore to Dedukti in order to execute programs in Dedukti. The general overview
of the translation pipeline presented in this article is available in Figure 1. This is the first
translation into Dedukti involving a semantical framework.

Kore

K

Matching
Logic

can be translated into

based on

Dedukti

λΠ-calculus
modulo theory

based on

KaMeLo

High-level language
Language
Logic
Logical framework

Figure 1 Overview of the translation pipeline presented in this article.

A long-term goal is not only to execute a program P written with the formalized language
L within Dedukti, but also to verify the proofs established by the KProver, or even make
this proof with Dedukti if the KProver has failed, and also formally check meta-properties
about the language L. This long-term goal can be seen as a new pipeline for program
verification, which is parametrized by a programming language and leaves the user free to
choose the proof assistant they wish.

This article is structured as follows: first, we explain how to write a K semantics (Section 2).
Then, we present a mathematical structure M to abstract K in order to formalize some
internal transformations that K does on semantics (Section 3). Thanks to the mathematical
structure M, we formalize a computational translation T into the λΠ-calculus modulo
theory (Section 4). Finally, we present our implementation of T (Section 5).

A. Ledein, V. Blot, and C. Dubois 12:3

In the following, the keywords of a language or what is native in a language will be
distinguished by color. The language of Dedukti will be distinguished by a blue color,
the language of K by an orange color and the language of Kore by a red color. These
facilitate reading but are not necessary for understanding.

2 What is the K framework?

This section introduces the K framework by explaining how to write a semantics using a
small example, and then by presenting the diversity of K features. This section ends with
the K grammar that we consider in the rest of this article.

2.1 A first K semantics
In this subsection, we show an example based on booleans and two binary symbols, which
are lazily evaluated, to illustrate how to write a semantics in K. As usual, the first step to
formalize a semantics is to define the syntax and then the semantics associated to the syntax.

2.1.1 Define the syntax of a language
Defining the syntax of a language in K is similar to writing a BNF grammar. This is done in
the module LAZY-SYNTAX (Figure 2 - lines 1 to 9) with the definition of booleans, which
are typed by sort MyBool, a lazy disjunction, noted ||, and a lazy conjunction, noted &&.
A terminal symbol will be written between quotes, as for example ”||”, and anything else
in bold will therefore be a non-terminal symbol. In order to make the syntax parseable, it
is possible to use attributes, i.e. keywords between square brackets, allowing to specify the
associativity (left, right, non-assoc) or to add parentheses to the language (bracket).
We explain the other possible attributes as we go along. Moreover, K supports the Kleene
operators “*” and “+”, written List and NeList respectively.

1 module LAZY-SYNTAX
2 syntax MyBool ::= ”true” [constructor]
3 | ”false” [constructor]
4 syntax KResult ::= MyBool
5 syntax BExp ::= MyBool
6 | BExp ”||” BExp [left, function]
7 | BExp ”&&” BExp [left, constructor, strict(1)]
8 | ”(” BExp ”)” [bracket]
9 endmodule
10 module LAZY
11 imports LAZY-SYNTAX
12 configuration <k> $PGM : BExp </k>

13 rule false || B => B
14 rule true || _ => true

15 rule true && B => B
16 rule false && _ => false
17 endmodule

Figure 2 Syntax and semantics of booleans, a lazy disjunction and a lazy conjunction.

The subtyping relation between the sorts MyBool and BExp (Figure 2 - line 5) means
that the boolean values true and false are also boolean expressions. In addition, any
symbol has either the attribute constructor, when the symbol is an element of the syntax,
or the attribute function, when the symbol is a helper function used to define the semantics,
e.g. functions to manipulate the environment.

TYPES 2022

12:4 A Semantics of K into Dedukti

2.1.2 Define the semantics associated to the syntax
The main ingredients for defining the semantics of each element of the syntax are configurations
and rewriting rules. Some attributes are also useful to define evaluation strategies. The
semantics of a lazy disjunction and a lazy conjunction is defined in the module LAZY
(Figure 2 - lines 10 to 17) which imports the syntax module (line 11 thanks to imports).

2.1.2.1 Configurations

A configuration models the state of the program and is composed of cells. For example,
the configuration ⟨⟨ x = 10; ⟩k ⟨ x 7→ 0 ⟩env⟩ is composed of two cells, one labelled by k

containing the program to be executed and the other labelled by env containing the current
values of the variables. In the example in Figure 2, the configuration contains only the cell k

(line 12). The configuration variable $PGM will contain the parsed program given by the user.

2.1.2.2 Rewriting rules

A K rewriting rule is a 1st order rule which can be either conditional, noted rule LHS =>
RHS requires Cond, or unconditional, noted rule LHS => RHS. Moreover, a K rewriting
rule can be non-linear, i.e. variables in the left-hand side can appear several times. The
variables in the left-hand side (LHS) can be omitted using a wildcard (_) when they are not
used in the right-hand side (RHS), as in the rule on line 14 or 16 (Figure 2). Finally, K
supports partial rewriting modulo ACUI, i.e. associativity (assoc), commutativity (comm),
identity (unit) and idempotence (idem).

Any K rewriting rule can be applied to a whole configuration, if the rewriting rule defines
the semantics associated to the syntax, or does not mention the configuration, if the rewriting
rule defines a helper function. This distinction is illustrated more precisely in the next
paragraph.

2.1.2.3 Evaluation strategies

To define an evaluation strategy, i.e. specifying the order in which the sub-expressions are
evaluated, it is possible to use contexts (context) as is conventionally done, but also context
aliases (context alias) which allow contexts to be generated automatically rather than
systematically writing similar contexts.

There are also two attributes for defining an evaluation strategy: strict defines non-
deterministic strategies and seqstrict defines deterministic strategies from left to right by
default. It is also possible to restrict the list of sub-expressions that must be evaluated by
giving a list of numbers as done in Figure 2. Indeed, the attribute strict(1) forces the
evaluation of the first argument of the symbol &&, and then it is possible to apply one of the
rules on line 15 or 16. To use these attributes, the user needs to define the sort KResult
which allows to distinguish final values from expressions thanks to subtyping. For instance,
as MyBool is a sub-sort of KResult (Figure 2 - line 4), a final value is either false or true.

Whichever way an evaluation strategy is defined, it is translated using K computations
and freezers. A K computation is a list of computations to be performed sequentially and
built with the constructors . and ↷, whereas a freezer is a symbol that encapsulates the
part of the computation that should not yet be modified, i.e. the tail of the K computation,
while waiting for the head of the K computation to be evaluated. This mechanism is inspired
by evaluation contexts [26] and continuations v ↷ C.
The rewriting rules generated by strict(1) (Rules n°1 and n°2, with the attributes heat
and cool) as well as an example of an execution are detailed in Figure 3. Freezers are noted

A. Ledein, V. Blot, and C. Dubois 12:5

(❄nb
sym arg) where sym is a symbol, nb the number of the argument whose value we expect,

and arg the list of other arguments. As the symbol && has the attribute constructor, the
rules on lines 15 and 16 (Figure 2) are respectively translated by K into the rules n°3 and
n°4 (Figure 3). In contrast, as the symbol || has the attribute function, so K does not
transform the rules on lines 13 and 14 (Figure 2). The translation of the attribute strict(1)
into rewriting rules is similar in the case of attributes strict and seqstrict.

1. rule ⟨ E1 && E2 ↷ S ⟩k => ⟨ E1 ↷ (❄1
&& E2) ↷ S ⟩k requires ¬ (isKResult E1) [heat]

2. rule ⟨ E1 ↷ (❄1
&& E2) ↷ S ⟩k => ⟨ E1 && E2 ↷ S ⟩k requires isKResult E1 [cool]

3. rule ⟨ true && B ↷ S ⟩k => ⟨ B ↷ S ⟩k
4. rule ⟨ false && _ ↷ S ⟩k => ⟨ false ↷ S ⟩k

⟨ (true && false) && (true && true) ↷ . ⟩k
↪→1 ⟨ (true && false) ↷ (❄1

&& (true && true)) ↷ . ⟩k
↪→3 ⟨ false ↷ (❄1

&& (true && true)) ↷ . ⟩k
↪→2 ⟨ false && (true && true) ↷ . ⟩k

↪→4 ⟨ false ↷ . ⟩k

abstracted by

⟨ e1 && e2 ↷ s ⟩k
↪→1 ⟨ e1 ↷ (❄1

&& e2) ↷ s ⟩k
↪→3 ⟨ v1 ↷ (❄1

&& e2) ↷ s ⟩k
↪→2 ⟨ v1 && e2 ↷ s ⟩k

↪→4 ⟨ v1 ↷ s ⟩k

Figure 3 Translation of the attributes strict(1) and an example execution.

In this article, a rewriting rule that has a constructor symbol as its head is called
semantical, and a rewriting rule that has a function symbol as its head is called evaluation.
The attributes assoc, comm, unit and idem generate equations, named equational rules. A
rewriting rule with the attribute heat or cool is called an evaluation strategy rule.

2.2 Additional features
The previous subsection illustrated the main K features. However, there are many other
features, coming from attributes or the K standard library, in order to bring more precision
to a semantics.

2.2.1 Definable features thanks to the attributes
K has about 70 attributes. Papers about K, e.g. [19], mention very few of them and the
documentation [2] is not exhaustive and complete. However, many features require the use
of attributes. This section presents the list of attributes in Figure 4 that we hope to be as
exhaustive as possible.

About importation. Alibrary ≜ { hook }
Avisibility ≜ { public, private }
Abackend ≜ { symbolic, concrete, kast, kore }

About parsing. Aparsing ≜ { left, right, non-assoc, prefer, avoid, applyPriority }
Asort ≜ { token, locations, hook }
Atoken ≜ { prefer, prec(nb), hook }

About printing. Aprinting ≜ { color, colors, symbol, klabel, bracketLabel,
format, latex, unused }

About symbol. Afamily ≜ { constructor, function, token, bracket, macro }
Aproperty ≜ { injective, total, freshGenerator, binder }
Astrategy ≜ { strict, seqstrict, result, hybrid }

About cell. Astructure ≜ { multiplicity= {"+" | "*" }, type=" ⟨sort⟩" }
Aconsole ≜ { exit=" ⟨sort⟩", stream= {"stdin" | "stdout" | "stderr" } }

About rewriting. Amodulo ≜ { assoc, comm, unit, idem }
Arule ≜ { heat, cool,

priority(nb), owise, anywhere, unboundVariables }
About proof. AKProver ≜ { symbolic, concrete, all-path, one-path, simplification,

trusted, smtlib, smt-lemma, smt-hook, memo }

Figure 4 List of K attributes as exhaustive as possible.

TYPES 2022

12:6 A Semantics of K into Dedukti

About importation. What comes from the K standard library, briefly presented in Sec-
tion 2.2.2, has the attribute hook. Furthermore, we can specify the visibility of a module or
an import (Avisibility) or that a module is only useful for some backends (Abackend).

About parsing. The user can precise constraints about parsing such as the associativity
of symbols (left, right, non-assoc) but also to reject cases of parsing ambiguity (prefer,
avoid, applyPriority). Moreover, it is possible to type a part of the AST by declaring
particular identifiers (token) that can be used later in the semantics. The precedence of a
token is given by the attribute prec(nb). Sorts with the attribute token are only composed
of symbols with the attribute function or token, and only these sorts can be composed of
token symbols. Finally, K is able to insert file, line and column meta-data into the parse
tree on a subtree of type s when parsing, when the sort s has the attribute locations.

About printing. There are also some attributes to change colors of printing in the console
(color, colors), the names (symbol, klabel, bracketLabel) and the printing (format) of
the symbols and to define a latex name (latex). Moreover, K will warn the user if a symbol
is declared but not used in any of the rules. The user can disable this warning for a particular
symbol or cell by adding the attribute unused.

About symbol. Compared to an evaluation strategy defined with the attributes strict
and seqstrict (Section 2.1.2.3), it is possible to develop more complex ones thanks to the
attributes result and hybrid. For example, these attributes can allow lists of values to be
considered as values.

A symbol can be (1) a constructor, (2) a function, (3) a token, (4) a bracket or (5) a macro
(Afamily). Functions can be defined as injective (injective) or total (total, formerly called
functional). Moreover, it is possible to request K to generate fresh values and use them
with fresh variables !Var (freshGenerator) and also to define binder (binder).

About cell. The user can choose if a cell is optional (multiplicity="?") or can appear
several times (multiplicity="*"). These attributes allow the user to design a set of cells,
which type can be defined by sorts List, Set or Map thanks to the attribute type. Moreover,
each cell can have a console exit value (exit) or can print on the standard stream (stream).

About rewriting. Theoretically rewriting rules can be applied in any order, but K allows
the user to associate a priority to each rule (priority(nb)) or to indicate that a rule applies
only if no other can apply (owise). Moreover, the attribute anywhere can be used to prevent
K from automatically computing the configuration in a rewriting rule. Finally, it is also
possible to allow variables to be unbound in the left-hand side of a rewriting rule thanks to
the attribute unboundVariables or with unbound variables ?Var.

The semantics of most of these attributes are specified in the rest of this article.

2.2.2 Definable features thanks to the K standard library
The K standard library is composed of eight files. The file prelude.md is imported into any
K definition and contains only two lines that import the following two files: domains.md
which defines the types of several usual data structures, for instance, the sorts Bytes, Array,
Map, Set, List, Bool, Int, String or Float, and kast.md which corresponds to the syntax
of K. Moreover, the file rat.md is an implementation of the rational integers, the file

A. Ledein, V. Blot, and C. Dubois 12:7

substitution.md is an implementation allowing substitution (required by the attribute
binder), and the file unification.md is an implementation allowing unification. Finally,
the two last files are ffi.md which allows C functions to be called and json.md which allows
JSON files to be read. The three following symbols are also defined: . : K [constructor],
↷ : KItem × K → K [constructor] and inj : ∀ (From, To : K), From → To.

2.3 A K grammar

To conclude this section, we present the overview of the translation from K semantics which is
available in Figure 5 and formalized in the next section. The K grammar that we consider in
this article is available in Figure 6. A K file can contain several modules (module/endmodule).
It is possible to import files into another file (requires or require) or to import one or more
modules into another module (imports or import). Additionally, an attribute is associated
to a module (Amodule), a sort (Asort), a symbol (Asymbol), a cell (Acell), a rewriting rule
(Arule), a context (Acontext) or a context alias (Acontext−alias). Moreover, a configuration
variable begins with $ such as $PGM, a fresh variable begins with ! and an unbound variable
in a rewriting rule begins with ?. Finally, there are three cast operators noted :, :: and :>.

The K grammar in Figure 6 is almost complete. In order not to make it too heavy, we
have omitted a part of the syntax allowing to declare precedence and associativity of symbols
since this is only useful for the generation of the K parser extended with the user-defined
language L (Figure 5).

In addition, we consider that the declarations with at least one of the attributes related
to symbolic execution (AKProver) have been deleted as well as the syntactic sugar has been
simplified. For example,
syntax BExp ::= MyBool | BExp ”&&” BExp is syntactic sugar for
syntax BExp ::= MyBool
syntax BExp ::= BExp ”&&” BExp. We do not take into account either the syntax ...
or the fact that the rewriting arrow => can be nested following Li and Gunter [15] who
explain that this syntax is ambiguous syntactic sugar. We assume that the syntactic sugar is
simplified by the black box “Desugar” (Figure 5).

In this article, we only consider a K semantics if K accepts it as well as the K grammar
(Figure 6) – after deleting a part of the syntax and the syntactic sugar.

K syntax
and

semantics
of the

language L

∧
Accept the K semantics

Reject the K semantics

Desugar

Check with the
grammar (Fig. 6)

Generate the
parser of K + L

thanks to
the K syntax

Check with the
parser of K + L

Add the
dependencies

Abstract
K syntax
(Fig. 7)

Transform
K abstract

(Fig. 8 to 14)
Printing
(Fig. 15)

Kore

KAST

true

false

Figure 5 Overview of the translation from K semantics.

We just explained the two first black boxes in Figure 5. Other boxes are explained (black
one) or formalized (white one) in the next section.

TYPES 2022

12:8 A Semantics of K into Dedukti

⟨carac⟩ ::= [a-zA-Z | 0-9 | - | _]
⟨int⟩ ::= [1-9][0-9]*
⟨string⟩ ::= " ⟨carac⟩* "
⟨name-module⟩ ::= ⟨carac⟩+
⟨symbol⟩ ::= ⟨carac⟩+
⟨str-of-reg-expr⟩ ::= a regular expression between quotes

⟨require⟩ ::= (require | requires) " ⟨carac⟩+ [.k | .md] "
⟨import⟩ ::= (import | imports) [public | private]? ⟨name-module⟩

⟨sort⟩ ::= [A-Z #] ⟨carac⟩*
⟨sort-syntax⟩ ::= syntax ⟨sort⟩ ([token | locations | Asort

+
,])?

| syntax ⟨sort⟩ ::= ⟨sort⟩ ([token])?

⟨terminal⟩ ::= ⟨string⟩
⟨non-terminal⟩ ::= ⟨sort⟩
⟨syntax-item⟩ ::= ⟨terminal⟩ | ⟨non-terminal⟩
⟨separator⟩ ::= ⟨string⟩
⟨syntax⟩ ::= syntax [{ ⟨sort⟩+, }]? ⟨sort⟩ ::= ⟨symbol⟩(⟨sort⟩∗,) [Asymbol

∗
,]

| syntax [{ ⟨sort⟩+, }]? ⟨sort⟩ ::= ⟨syntax-item⟩+ [Asymbol
∗
,]

| syntax ⟨sort⟩ ::= r ⟨str-of-reg-expr⟩ [{ token } ∪ Atoken
∗
,]

| syntax ⟨sort⟩ ::= List { ⟨sort⟩, ⟨separator⟩ }
| syntax ⟨sort⟩ ::= NeList { ⟨sort⟩, ⟨separator⟩ }

⟨config-variable⟩ ::= $[A-Z]+
⟨initial-value⟩ ::= ⟨symbol⟩ | ⟨config-variable⟩
⟨cell⟩ ::= < ⟨name⟩ Acell

∗
, > ⟨initial-value⟩ [: ⟨sort⟩]? < / ⟨name⟩>

| < ⟨name⟩ Acell
∗
, > ⟨cell⟩+ < / ⟨name⟩>

⟨configuration⟩ ::= configuration ⟨cell⟩+

⟨variable⟩ ::= [? | !]? [A-Z] ⟨carac⟩* | _
⟨pattern⟩ ::= (⟨variable⟩ | ⟨symbol⟩) [: ⟨sort⟩ | :: ⟨sort⟩]?

| { ⟨pattern⟩+ } :> ⟨sort⟩
⟨rule⟩ ::= rule ⟨pattern⟩+ => ⟨pattern⟩+ [requires ⟨pattern⟩+]? [Arule

∗
,]

⟨context⟩ ::= context ⟨pattern⟩+ [requires ⟨pattern⟩+]? ([Acontext
+
,])?

⟨context-alias⟩ ::= context alias [⟨carac⟩+]: ⟨pattern⟩+ ([Acontext−alias
+
,])?

⟨sentence⟩ ::= ⟨sort-syntax⟩ | ⟨syntax⟩
| ⟨configuration⟩ | ⟨rule⟩
| ⟨context⟩ | ⟨context-alias⟩

⟨module⟩ ::= module ⟨name-module⟩ ([Amodule
+
,])?

⟨import⟩*
⟨sentence⟩*

endmodule

⟨file⟩ ::= ⟨require⟩* ⟨module⟩*

where Amodule ≜ Avisibility ∪ Abackend ∪ { not-lr1 }
Asymbol ≜ Aparsing ∪ Afamily ∪ Aproperty ∪ Astrategy ∪ Amodulo ∪ Aprinting ∪ Avisibility

Acell ≜ Astructure ∪ Aconsole ∪ { unused="", color= ⟨string⟩ }
Acontext ≜ { result }

Acontext−alias ≜ { result, context }

Figure 6 The considered K grammar, where X is any element of X.

A. Ledein, V. Blot, and C. Dubois 12:9

3 Abstracting the K framework

This section presents a mathematical structure M which abstracts the syntax of K. After the
presentation of the structure M as well as the translation of the K syntax into the structure
M, we present various transformations of the structure M that correspond to the static
semantics of K. To present this work, we start with the output of the black box “Add the
dependencies” (Figure 5) that recursively replaces each require command with the contents
of these files, and then recursively replaces each import command with the contents of the
module that must be imported. We consider that the output of the black box is a single
module whose name corresponds to the name of the main initial semantics file. At this
stage, the following attributes have finished influencing the transformation: hook, Avisibility,
Abackend, not-lr1, Aparsing, token, Atoken, locations, Aprinting and AKProver.

3.1 An abstract view of K
To abstract a K file, we use the 7-uplet M ≜ (Sort, Rel, Sym, Config, R, Context,
Contextalias), where Sort is the set of sorts, Rel is the set of subtyping relations, Sym

is the set of symbols, Config is the set of configurations, R is the set of rewriting rules,
Context is the set of contexts and Contextalias is the set of context aliases. Figure 7 shows
the translation || . || of K syntax to the abstract structure M. Syntactic declarations can
create sorts, subtyping relations between two sorts, or symbols. As K allows mixfix notations,
we translate them into prefix notations such as || syntax Exp ::= ”if” Bool ”then” Exp
”else” Exp || = || syntax Exp ::= if-then-else(Bool, Exp, Exp) ||. Moreover, a
configuration declaration generates a list of trees l. Section 3.2 shows that l is transformed
into a single tree. Finally, any unconditional rewriting rule can be seen as a conditional rule
with the condition “true”.

|| syntax s ([Attr])? || = Sort ← { s }
|| syntax s1 ::= s2 ([Attr])? || = Sort ← { s1 ; s2 } ; Rel ← { s2 < s1 }
|| syntax { α1, ..., αn } α ::= sym (s1, ..., sx) [Attr] || with n ≥ 0 and x ≥ 0 =
Sort ← { α ; s1 ; ... ; sx } \ { α1, ..., αn } ;
Sym ← { sym : ∀α1, ..., ∀αn, s1 × ...× sx → α [Attr] }

|| syntax { α1, ..., αn } α ::= i1 ... ix [Attr] || with n ≥ 0 and x ≥ 1 =
|| syntax { α1, ..., αn } α ::= t1-...-tn (s1, ..., sx) [Attr] ||

where ti ∈ Iterminal ≜ { ik | k ∈ J1; xK and ik ∈ ⟨terminal⟩ }
si ∈ Inon−terminal ≜ { ik | k ∈ J1; xK and ik ∈ ⟨non-terminal⟩ }

|| syntax s ::= r ⟨str-of-reg-expr⟩ [Attr] || = Sort ← { s }
|| syntax s1 ::= List { s2, sep } || = Sort ← { s1 ; s2 }
|| syntax s1 ::= NeList { s2, sep } || = Sort ← { s1 ; s2 }

|| configuration cell1 ... celln || with n ≥ 1 = Config ← { (|| cell1 ||rec ; ... ; || celln ||rec) }
|| < C > v : s </ C > ||rec = [C]s(v) (If s is not given, we can infer it from v.)
|| < C > cell1 ... celln </ C > ||rec = <C>(|| cell1 ||rec, ..., || celln ||rec)

|| rule LHS => RHS [Attr] || = R ← { (LHS
true
↪→ RHS [Attr]) }

|| rule LHS => RHS requires Cond [Attr] || = R ← { (LHS
Cond
↪→ RHS [Attr]) }

|| context C ([Attr])? || = Context ← { (C, true, Attr) }
|| context C requires Cond ([Attr])? || = Context ← { (C, Cond, Attr) }
|| context alias [label]: CA ([Attr])? || = Contextalias ← { (label, CA, Attr) }

Figure 7 From K to an abstract 7-uplet, where X ← data is the set X extended with data.

The following subsection explains the internal transformations made by K from the
obtained mathematical structure M.

TYPES 2022

12:10 A Semantics of K into Dedukti

3.2 Compilation of a K semantics
This subsection formalizes the transformations on the previous mathematical structure M
that correspond to the static semantics of K. After these transformations, the 7-uplet M
will become a quadruplet. As we abstract the content of the K standard library by the sets
Sortlib, Rellib Symlib and Rlib, we initially assume that Sort = Sortlib, Rel = Rellib, Sym

= Symlib and R = Rlib whereas Config, Context and Contextalias are empty. The goal of
the first transformation (Figure 8) is to check the validity of a K semantics.

Each symbol should be a constructor, a function, a token, a bracket or a macro. If this is
not the case, it means that the symbol is implicitly a constructor. We therefore explicitly
add the attribute constructor, which defines the new set Sym′ (Figure 8). Regarding the
attribute macro, the documentation is not precise enough. According to Li and Gunter [14],
macros are subject to many errors when writing semantics, but in practice macros are always
considered as syntactic sugar. The associated rewriting rules are used only once at the
beginning of an evaluation of the input programs, to rewrite the syntactic sugar into another
term. Macros can therefore be replaced by functions as they are not more expressive.

Moreover, a semantics must have only one configuration, and some attributes have precise
restrictions such as the attributes strict and seqstrict are incompatible with function,
while a bracket symbol of a given sort has only one argument of that sort.

|| (Sort, Rel, Sym, Config, R, Context, Contextalias) ||check-input =
(Sort, Rel, Sym′, Config′, R, Context, Contextalias)

where
C ≜ { s ∈ Sym | constructor ∈ Attr(s) }
F ≜ { s ∈ Sym | function ∈ Attr(s) }
T ≜ { s ∈ Sym | token ∈ Attr(s) }
B ≜ { s ∈ Sym | bracket ∈ Attr(s) }
Ma ≜ { s ∈ Sym | macro ∈ Attr(s) }
W ≜ Sym \ (C ∪ F ∪ T ∪ B ∪ Ma)
W ′ ≜ { n : ∀−→v ,

−→
t → α [Attr ∪ {constructor}] | n : ∀−→v ,

−→
t → α [Attr] ∈ W }

Sym′ ≜ C ∪ F ∪ T ∪ B ∪ Ma ∪ W ′

Config′ ≜ [k]K($PGM) if Config = ∅; Config if card(Config) = 1
Constraints:

The set { C, F , T , B, Ma, W } must be a partition of Sym.
Config is the empty set or a singleton, where each cell have a unique name.
For all n : ∀−→v ,

−→
t → α [Attr] ∈ F , { strict, seqstrict } ∩ Attr = ∅.

For all n : ∀−→v ,
−→
t → α [Attr] ∈ B, −→v = −→0 and −→t = α.

Figure 8 Formalization of the function || . ||check-input.

Generate evaluation strategy rules thanks to contexts and context aliases. We have
seen that to define evaluation strategies in K, we can define context aliases, contexts
or use the attributes strict and seqstrict. We assume the existence of a function
|| . ||delete-context-alias that transforms a context alias into contexts as well as a function
|| . ||delete-context that transforms a context into rewriting rules. The lack of information in
the documentation prevents us from formalizing these two functions.

Generate evaluation strategy rules thanks to attributes. We formalize the rule generation
from the attributes strict and seqstrict (when the attributes result and hybrid are
not also used) in Figure 9, where nbArg(sym) is the number of argument(s) of the symbol
sym and n is implicitly used to denote the arity of a symbol. For example, rules 1. and 2.
(Figure 3) illustrate the translation formalized in Figure 9.

A. Ledein, V. Blot, and C. Dubois 12:11

|| (Sort, Rel, Sym, Config, R) ||generate-strategy = (Sort, Rel, Sym′, Config, R′)
where

Sstrict ≜ { s ∈ Sym | strict ∈ Attr(s) }
Sseqstrict ≜ { s ∈ Sym | seqstrict ∈ Attr(s) }
Freezer ≜ { ❄

nj
sym : K× ...× K︸ ︷︷ ︸

nbArg(sym)−1

→ KItem [constructor]

| and strict (n1,...,nk) ∈ Attr(sym)
or seqstrict (n1,...,nk) ∈ Attr(sym) }

Sym′ ≜ Sym ∪ Freezer

R′ ≜ R ∪ Rstrict ∪ Rseqstrict
Constraint:

Every argument of the attribute strict or seqstrict should be in [1; arity(sym)].
Rstrict is composed of the following rewriting rules:

For all sym ∈ Sstrict such that strict (n1,...,nj) ∈ Attr(sym), for all k ∈ { n1, ..., nj }:
sym E1 ... En

c
↪→ Ek ↷ (❄k

sym E1 ... Ek−1 Ek+1 ... En) [heat], where c ≜ ¬ (isKResult Ek)
Ek ↷ (❄k

sym E1 ... Ek−1 Ek+1 ... En)
c

↪→ sym E1 ... En [cool], where c ≜ isKResult Ek

Rseqstrict is composed of the following rewriting rules:
For all sym ∈ Sseqstrict such that seqstrict (n1,...,nj) ∈ Attr(sym), for all k ∈ { n1, ..., nj }:
sym E1 ... En

c
↪→ Ek ↷ (❄k

sym E1 ... Ek−1 Ek+1 ... En) [heat]
where c ≜ isKResult E1 ∧ ... ∧ isKResult Ek−1 ∧ ¬ (isKResult Ek)

Ek ↷ (❄k
sym E1 ... Ek−1 Ek+1 ... En)

c
↪→ sym E1 ... En [cool], where c ≜ isKResult Ek

Figure 9 Formalization of the function || . ||generate-strategy.

Encapsulate the configuration. According to the grammar in Figure 6, a configuration is a
list of finite branching trees. However K encapsulates any configuration [cell1;...; celln] as
follows: <GT>(<T>(cell1,..., celln), [GC]Int(0)), where GT ≜ GeneratedTop and GC ≜
GeneratedCounter. For instance, the initial configuration from Figure 2 becomes
⟨ ⟨ ⟨ $PGM : BExp ⟩k ⟩T ⟨ 0 ⟩GC ⟩GT .
Thus, after this transformation, any configuration becomes a single finite branching tree.

Generate implicit cells. Now that we have generated the full configuration, we formalize
the completion of the rewriting rules in Figure 10. For instance, the result of mgconf Config

is ⟨ ⟨ ⟨ pgm ⟩k ⟩T ⟨ c ⟩GC ⟩GT , where Config is the initial configuration of Figure 2, pgm

and c are fresh variables. Moreover, rule 4. from Figure 3 becomes:
rule ⟨ ⟨ ⟨ false && _ ↷ S ⟩k ⟩T ⟨ c ⟩GC ⟩GT => ⟨ ⟨ ⟨ false ↷ S ⟩k ⟩T ⟨ c ⟩GC ⟩GT .

|| (Sort, Rel, Sym, Config, R) ||add-cell = (Sort, Rel, Sym, Config, R′)
where

R′ ≜ { || l
c

↪→ r [Attr] ||x | l
c

↪→ r [Attr] ∈ R and x ≜ mgconf Config }
with mgconf (<C>(Cell1, ..., Celln)) ≜ <C>(mgconf Cell1, ..., mgconf Celln)

mgconf ([C]s(v)) ≜ [C]s(f), where f is a fresh variable
with || l

c
↪→ r [Attr] ||x ≜ l

c
↪→ r [Attr], if the head symbol of l is a function symbol

l
c

↪→ r [Attr], if anywhere ∈ Attr

l
x c

↪→ r x [Attr], otherwise
with p x ≜ x [

−−−−→
[C]s(y) \

−−−−→
[C]s(v)] where

−−−−→
[C]s(v) are the leaves appearing in p

Figure 10 Formalization of the function || . ||add-cell.

Split the configuration. Now we are ready to decompose the configuration into sorts and
symbols. The generated rewriting rules are useful to complete the initial configuration with
the value given by the user thanks to the configuration variable. The formalization is available
in Figure 11, where GT ≜ GeneratedTop and GC ≜ GeneratedCounter.

TYPES 2022

12:12 A Semantics of K into Dedukti

|| (Sort, Rel, Sym, Config, R) ||split-config = (Sort′, Rel, Sym′, R′)
where

Sort′ ≜ Sort ∪ { SortC | <C>(c1, ..., cn) ∈ Config }
Symcell ≜ { C : Type (<C>(c1, ..., cn)) [constructor] | <C>(c1, ..., cn) ∈ Config}
Syminit ≜ { initC : SortC [function, initializer] | <C>(c1, ..., cn) ∈ Config}
Symget ≜ { getGC : SortGT → SortGC [function] }
Sym′ ≜ Sym ∪ Symcell ∪ Syminit ∪ Symget

Rinit ≜ { initC ↪→ C((GetInit c1), ..., (GetInit cn)) [initializer]
| <C>(c1, ..., cn) ∈ Config}

R′ ≜ R ∪ Rinit ∪ { getGC(GT(X,V)) ↪→ V }
with Type (<X>(c1, ..., cn)) ≜ RetType(c1) × ... × RetType(cn) → SortX

with RetType (<X>(c1, ..., cn)) ≜ SortX

RetType ([X]s(v)) ≜ s

with GetInit (<X>(c1, ..., cn)) ≜ initX

GetInit ([X]s(v)) ≜ v

Figure 11 Formalization of the function || . ||split-config.

For example, the symbol initK : SortK and the rule initK ↪→ K $PGM are generated
as well as the symbols GT : SortT × SortGC → SortGT and T : SortK → SortT.

Add implicit attributes. Implicitly, every symbol with the attribute constructor also has
the attributes total, formerly called functional, and injective, as formalized in Figure 12.

|| (Sort, Rel, Sym, R) ||add-attributes = (Sort, Rel, Sym′, R)
where

Sconstructor ≜ { s ∈ Sym | constructor ∈ Attr(s) }
S′

constructor ≜ { n : ∀−→v ,
−→
t → α [Attr ∪ {total, injective}]

| n : ∀−→v ,
−→
t → α [Attr] ∈ Sconstructor }

Sym′ ≜ (Sym \ Sconstructor) ∪ S′
constructor

Figure 12 Formalization of the function || . ||add-attributes.

Manage the fresh values. When using a K rewriting rule, any occurrence of a fresh variable
!X is replaced by the current value presents in the cell GeneratedCounter and the current
value of the cell GeneratedCounter is replaced by a new one. For instance, the rewriting
rule rule ⟨ ⟨ ⟨ foo X ↷ S ⟩k ⟩T ⟨ c ⟩GC ⟩GT => ⟨ ⟨ ⟨ !X ↷ S ⟩k ⟩T ⟨ c ⟩GC ⟩GT becomes
rule ⟨ ⟨ ⟨ foo X ↷ S ⟩k ⟩T ⟨ c ⟩GC ⟩GT => ⟨ ⟨ ⟨ c ↷ S ⟩k ⟩T ⟨ c + 1 ⟩GC ⟩GT .

Add type-related symbols and extend the typing hierarchy. Implicitly, every user-defined
sort is a sub-sort of KItem. Moreover, K generates projection symbols and predicate symbols
such as isKResult, as shown in Figure 13.

|| (Sort, Rel, Sym, R) ||typing = (Sort, Rel′, Sym′, R′)
where

Rel′ ≜ Rel ∪ {s < KItem | s ∈ Sort \ { K ; KItem } }
Fprojection ≜ { projs : K → s [projection, function] | s ∈ Sort \ { K } }
Fpredicate ≜ { iss : K → Bool [predicate, function, total] | s ∈ Sort }
Sym′ ≜ Sym ∪ Fprojection ∪ Fpredicate

Rprojection ≜ { s (injKItem
t X) ↪→ X [projection]

| s ∈ Fprojection if t is the output type of s }
Rpredicate ≜ { p (injKItem

s X) ↪→ true [] | p ∈ Fpredicate if s is the output sort of p }
Rpred−owise ≜ { p X ↪→ false [owise] | p ∈ Fpredicate }
R′ ≜ R ∪ Rprojection ∪ Rpredicate ∪ Rpred−owise

Figure 13 Formalization of the function || . ||typing.

A. Ledein, V. Blot, and C. Dubois 12:13

Checking the coherence of the typing hierarchy. We can construct a graph where the
nodes are elements of Sort and the edges are modelled by the elements of Rel. We reject
the semantics if the graph contains at least one cycle.

Add injections. K adds injections (inj) to get full well-typed terms. This step takes into
account the constraints of semantic casts (:), strict casts (::) and projection casts (:>).

Checking the constraints on the attribute binder. The first argument of a symbol with
the attribute binder must have the sort KVar, which is a native K sort. Then, to do a
substitution, it is the responsibility of each backend to correctly implement the interface
proposed by K, i.e. the file substitution.md.

Checking the constraints on List and NeList. It is not possible to add two or more List
or/and NeList constructions at the same time to the same sort. For example, it is not
allowed to write syntax Exp ::= List{Int,","} | List{Bool,","}.

Checking the constraints on the K standard library. The user cannot extend the K
standard library with constructor symbols, so the set
{ n : ∀−→v ,

−→
t → α [Attr] ∈ Sym | constructor ∈ Attr and α ∈ Sortlib } should be empty.

That is the reason why we named a sort MyBool and not Bool in Figure 2.

Checking the constraints on rewriting rules. Finally, each rewriting rule needs to respect
the BNF in Figure 14 and the sort of every condition must be boolean.

a ::= x | (σ a ... a) x is a variable
b ::= x | (σ b ... b) | (f b ... b) σ is a constructor symbol
c ::= f b ... b f is a function symbol
rule ::= σ a ... a ↪→ b | σ a ... a

c
↪→ b

| f a ... a ↪→ b | f a ... a
c

↪→ b

Figure 14 Constraints on rewriting rules.

We have presented the various translations carried out internally by K. We do not claim
that this list is exhaustive but it reflects our understanding of the translation from K to
Kore. This paper formalization was elaborated by reverse engineering on Kore files as well
as thanks to discussions with K developpers. It seems possible to print a (almost always valid)
new K file after each transformation but this has not been implemented. So far only the
following attributes have not been taken into account during the transformation: Amodulo,
{ priority(), owise }, { multiplicity, type, exit, stream } and { injective, total }.

3.3 From K to Kore
We present the translation from the abstraction of K into Kore (Figure 15). Thanks to the
obtained quadruplet, we can translate a K semantics into a specific Matching Logic theory
named Kore. Every red keyword can be translated into a Matching Logic pattern but this
translation is beyond the scope of this article. The pattern φsym can take 3 different forms
corresponding to the axioms of injectivity, non-overlapping and exhaustivity of constructors.

4 From the K framework to the λΠ-calculus modulo theory

This section presents the λΠ-calculus modulo theory and Dedukti, a logical framework
based on it. Then, we formalize the translation from K to the λΠ-calculus modulo

TYPES 2022

12:14 A Semantics of K into Dedukti

|| (Sort, Rel, Sym, R) ||Kore =
sort s{α1,...,αn} [] for all s ∈ Sort \ Sortlib

hooked-sort s{α1,...,αn} [] for all s ∈ Sortlib

symbol sym{α1,...,αn}(θ1,...,θm) : θ’ [Attr] for all sym ∈ Sym \ Symlib

hooked-symbol sym{α1,...,αn}(θ1,...,θm) : θ’ [Attr] for all sym ∈ Symlib

axiom {R} \exists {R}(x2 : θ2,
\equals {θ2, R}(x2 : θ2, inj {θ1, θ2}(x1 : θ1))) [subsort (θ1, θ2)] for all θ1 < θ2 ∈ Rel

axiom {R} \exists {R}(x : θ,
\equals {θ, R}(x : θ, sym x1 ... xn)) [total] for all sym ∈ Stotal

axiom {α1,...,αn} φsym [constructor] for all sym ∈ Sconstructor
axiom {R} \equals {θ, R}(sym(sym(x1 : θ, x2 : θ), x3 : θ),

sym(x1 : θ, sym(x2 : θ, x3 : θ))) [assoc] for all sym ∈ Sassoc
axiom {R} \equals {θ, R}(sym(x1 : θ, x2 : θ),

sym(x2 : θ, x1 : θ)) [comm] for all sym ∈ Scomm
axiom {R} \equals {θ, R}(sym(e, x : θ), x : θ) [unit]
axiom {R} \equals {θ, R}(sym(x : θ, e), x : θ) [unit] for all sym ∈ Sunit
axiom {R} \equals {θ, R}(sym(x : θ, x : θ), x : θ) [idem] for all sym ∈ Sidem

axiom {R} \implies {R}(c, \equals {R, R}(l, r)) [Attr] for all l
c

↪→ r [Attr] ∈ Rfunction

axiom {R} \rewrites {R}(\and {R}(c, l), r) [Attr] for all l
c

↪→ r [Attr] ∈ Rconstructor

where Sa ≜ { s ∈ Sym | a ∈ Attr(s) } and Ra ≜ { l
c

↪→ r [Attr] ∈ R | a ∈ Attr(head(l)) }

Figure 15 The printer to Kore.

theory. This translation has been implemented in a tool written in OCaml, named
KaMeLo, which is presented in the next section.

4.1 The λΠ-calculus modulo theory
The λΠ-calculus modulo theory, λΠ≡T in short, is a logical framework, i.e. allowing
to define theories, introduced by Cousineau and Dowek [10]. λΠ≡T is an extension of the
λ-calculus with dependent types and a primitive notion of computation defined thanks to
rewriting rules [11]. The syntax as well as the typing rules that define the λΠ≡T are available
in Figure 16, where the typing judgment Γ ⊢ t : A means that the term t has type A with
respect to the context Γ. The specific typing judgment Γ ⊢ A : Type indicates that A is a
type under the context Γ. We also consider a signature Σ, and a set of higher-order rewriting
rules R. In this framework, for any rewriting rule l ↪→ r ∈ R, FV (r) ⊆ FV (l) holds (where
FV (p) is the set of free variables of p). The use of such a rewriting rule requires that for any
substitution σ, the instantiation of its left-hand side lσ and the instantiation of its right-hand
side rσ are well-typed with the same type (Γ ⊢ lσ : A and Γ ⊢ rσ : A for a certain type A).

Syntax s := Type | Kind sort
t := s | c | x | t t | λ(x : t).t | Π(x : t).t term
Γ := ∅ | Γ, x : t context

where c is a constant of Σ,
x is a variable

Typing
(sort)

Γ ⊢ Type : Kind

Γ ⊢ A : Type
(const) (c : A) ∈ Σ

Γ ⊢ c : A

Γ ⊢ A : Type
(var) (x : A) ∈ Γ

Γ ⊢ x : A

Γ ⊢ f : Π(x : A).B Γ ⊢ a : A
(app)

Γ ⊢ f a : B{x\a}

Γ ⊢ Π(x : A).B : s Γ, x : A ⊢ b : B
(abs)

Γ ⊢ λ(x : A).b : Π(x : A).B

Γ ⊢ A : Type Γ, x : A ⊢ B : s
(prod)

Γ ⊢ Π(x : A).B : s

Γ ⊢ t : A Γ ⊢ B : s(conv) A ≡βR B
Γ ⊢ t : B

(≡reduc)
Γ ⊢ (λ(x : A).t) u ≡ t{x\u}

Γ ⊢ lσ : A Γ ⊢ rσ : A(≡rule) l ↪→ r ∈ R
Γ ⊢ lσ ≡ rσ

where s ∈ {Type ; Kind}, B{x\a} is the substitution of a for x in B, and ≡βR is the reflexive,
transitive, symmetric and contextual closure of ≡, generated by the rules ≡reduc and ≡rule.

Figure 16 Syntax and typing of λΠ≡T with a signature Σ and a rewriting system R.

A. Ledein, V. Blot, and C. Dubois 12:15

Note that in the conversion rule (conv), the equivalence relation depends not only on
β-reduction but also on the rewriting system R. Moreover, in order to have the decidability
of the type-checking, the condition A ≡βR B of the rule (conv) must be decidable, which is
ensured when the considered rewriting systems are convergent. Finally, contexts can contain
ill-formed elements and the order of the elements does not matter. Indeed, thanks to the
rule (var), only well-formed elements in the context can be used when doing a proof. This
presentation has been proved equivalent to the usual presentations by Dowek [12].

4.2 Dedukti
Dedukti [4, 5] is a logical framework based on the λΠ≡T . Indeed, expressing the Calculus
of Constructions in Dedukti is equivalent to defining it as a theory of the λΠ≡T . Several
logics have been encoded in Dedukti, facilitating the interoperability of proofs between
various formal tools [9, 22]. In this section, we only present the features available in Dedukti
needed in this article.

Typing and symbols. The syntax of the λΠ≡T is directly accessible in Dedukti: TYPE
(Kind is not accessible to the user but only inferred by the system), λ (abstraction), Π
(dependent product). We write A → B when the dependent product Π (x : A), B is not
dependent, i.e. when x /∈ FV (B).

The signature is defined from symbols. If the declaration of a symbol is made with the
keyword symbol alone, the symbol is said to be defined, without any particular property,
whereas with the additional keyword constant, the symbol is said to be constant and can
not be reduced by any rewriting rule.

Rewriting rules. A Dedukti rule is written rule LHS ↪→ RHS in which the free variables
are noted $x, $y, etc. As in K, it is possible to use a wildcard (_) on the left-hand side when
a free variable is not used in the right-hand side. Dedukti rules allow higher-order, can be
non-linear and do not necessarily apply to the head of the term, but are not conditional.

4.3 Translation from abstract K to the λΠ-calculus modulo theory
Section 3 presented an abstract version of K: any K file can thus be reduced to a set of sorts,
subtyping relations, symbols and rewriting rules. Figure 17 presents the translation of these
sets into the λΠ-calculus modulo theory.

|| (Sort, Rel, Sym, R) ||λΠ≡T =
K : Type
s : K for all s ∈ Sort \ {K}
n : Π(a1 : α1), ..., Π(an : αn), Π(t1 : τ1), ..., Π(tn : τn), α for all n : ∀−→α ,−→τ → α [Attr] ∈ Sym
l ↪→ r for all l ↪→ r ∈ Runconditional

|| Rconditional ||CTRS
|| (Rel, Sym, Rstrategy) ||strategy

where Runconditional ≜ { l ↪→ r | l
c

↪→ r [Attr] ∈ R if c = true }
where Rconditional ≜ { l

c
↪→ r [Attr] | l

c
↪→ r [Attr] ∈ R if c ̸= true and { heat, cool } ∩ Attr = ∅ }

where Rstrategy ≜ { l
c

↪→ r [Attr] | l
c

↪→ r [Attr] ∈ R if heat ∈ Attr or cool ∈ Attr }

Figure 17 From abstract K to the λΠ≡T .

Any sort becomes a symbol of type K, except the sort K itself, which has the type Type.
Symbols and unconditional rules are unchanged and the set of rewriting rules obtained
at the end of the translation || . ||λΠ≡T is { l ↪→ r | for all l ↪→ r ∈ Runconditional } ∪
|| Rconditional ||CTRS ∪ || (Rel, Sym, Rstrategy) ||strategy. The translation function || . ||CTRS is
explained in Section 4.3.1 and the translation function || . ||strategy is explained in Section 4.3.2.

TYPES 2022

12:16 A Semantics of K into Dedukti

4.3.1 Translating conditional rewriting rules
In this section, we are interested in the translation of conditional rewriting rules. As
conditional rewriting rules are not primitive in λΠ≡T , it is necessary to find an encoding of
a conditional rewriting system (CTRS) into a non-conditional rewriting system (TRS).

4.3.1.1 From a CTRS to a TRS: Examples

We present two examples to illustrate the encoding of a CTRS into a TRS.

An example without owise. Consider the following system:
(1) max X Y

c
↪→ Y , where c ≜ X < Y

(2) max X Y
c

↪→ X, where c ≜ X ≥ Y .
The resulting encoding is available in Figure 18 as well as an execution.

(0) max X Y ↪→ ♭max X Y ♭ ♭ max 5 3 ↪→0 ♭max 5 3 ♭ ♭
(1′) ♭max X Y ♭ C ↪→ ♭max X Y (X < Y) C ↪→1′ ♭max 5 3 (5 < 3) ♭
(1′′) ♭max X Y true C ↪→ Y ↪→∗ ♭max 5 3 false ♭
(2′) ♭max X Y C ♭ ↪→ ♭max X Y C (X ≥ Y) ↪→2′ ♭max 5 3 false (5 ≥ 3)
(2′′) ♭max X Y C true ↪→ X ↪→∗ ♭max 5 3 false true ↪→2′′ 5

Figure 18 Rules generated with the variant of Viry’s encoding (left) and a computation (right).

The general idea of the encoding, proposed in this section and initially proposed by
Viry [24], is to add as many arguments as there are conditions for a symbol defined with
conditional rules. In Figure 18, rule (0) rewrites a term whose head symbol is max into
a term using the corresponding extended version of arity 4, ♭max here, where all boolean
arguments are ♭, indicating that the boolean arguments have not yet been initialised by a
condition. Rules (1′) and (2′) initialize the conditions to be computed whereas rules (1′′)
and (2′′) reduce the size of the term since one of the conditions has been evaluated to true.
This encoding has the advantage of not fixing the order of evaluation of the conditions but
increases the computation time by doubling the initial number of rules.

Contrary to Viry, we choose to extend the signature, as here with the symbol ♭max,
rather than replacing each symbol of the signature by an equivalent symbol with a greater
arity. This choice makes it possible to follow the computations of the conditions and does
not force us to translate the obtained normal forms.

An example with owise. The previous example can also be written more succinctly:
max X Y

c
↪→ Y , where c ≜ X < Y

max X Y ↪→ X [owise]
To encode the attribute owise, we have two possibilities: implement an algorithm that
determines the complementary condition or consider that all conditions necessarily reduce to
either true or false. According to the expressiveness of the conditions that can be written
in K (Figure 14), we add the following hypothesis: any boolean function is a total function.
Under this assumption, it is not required to compute the complementary condition as we
can generate a rule where every boolean argument is false, as shown in Figure 19. This case
is formalized in 5.(c) (Figure 20).

Furthermore, K accepts a set of unconditional rules with at least one rule having the
attribute owise. We exclude this case because we cannot model “If no other rule applies”,
with a boolean condition. This is equivalent to the use of the attribute priority(nb), with
which we do not yet take into account.

A. Ledein, V. Blot, and C. Dubois 12:17

(0) max X Y ↪→ ♭max X Y ♭
(1′) ♭max X Y ♭ ↪→ ♭max X Y (X < Y)
(1′′) ♭max X Y true ↪→ Y
(2′) ♭max X Y false ↪→ X

Figure 19 Rules generated with the variant of Viry’s encoding, when the attribute owise is used.

4.3.1.2 From a CTRS to a TRS: Formalization

We present the translation, noted || . ||CTRS previously, as an algorithm in Figure 20. This
translation takes as argument a set R of conditional rewriting rules

c

l ↪→ r [Attr]. To avoid
naming conflicts, we also assume that ♭ is an unused symbol name and that it does not
appear in the head of any symbol name.

According to Figure 10, we need to change the definition of the head symbol of a rule.
We note head<k> the function computing the head symbol of the cell <k>, for a given rule,
without considering the symbols ., ↷ and inj. Now, we are able to define the function
returning the head symbol of a rule:

head(l c
↪→ r [Attr]) =

{
head<k>(l c

↪→ r) if the rule is a semantical rule and anywhere /∈ Attr

f otherwise, where l ≜ f a ... a (Figure 14)
We also define the set of rules noted Cσ, in which the rules share the same head symbol σ,
that is Cσ ≜ { l

c
↪→ r [Attr] | head (l c

↪→ r [Attr]) = σ }. We assume that, if there is a rule
with the attribute owise in Cσ for a given σ, all the other rules in Cσ must have a condition.

After calculating each set Cσ from R, we run the algorithm presented in Figure 20, for
each Cσ, where X is the number of conditional rules in Cσ.

1. If X = 0, Cσ is unchanged and the algorithm stops. Otherwise, initialize i to 0 and go to 2.
2. Generate the most general left-hand side for a given symbol σ, noted mglhsσ.
3. Generate the extended symbol ♭σ of type T1 → ...→ Tn−1 → ♭Bool→ ...→ ♭Bool→ Tn,

with X argument(s) of type ♭Bool, where ♭Bool = Bool∪{♭}, and σ of type T1× ...×Tn−1 → Tn.
4. Generate the substitution rule: mglhsσ ↪→ mglhsσ[updatesame(σ, ♭σ, ♭)]σ

5. For each rule l
c

↪→ r [Attr] ∈ Cσ:
a. If c ̸= true and owise /∈ Attr:

Increment i by 1
Generate the initialization rule:
l [updatediff (σ, ♭σ, ♭, i, _)]σ ↪→ l [updatediff (σ, ♭σ, c, i, _)]σ
Generate the reduction rule: l [updatediff (σ, ♭σ, true, i, _)]σ ↪→ r

b. If c = true and owise /∈ Attr:
Generate the reduction rule: l [updatesame(σ, ♭σ, _)]σ ↪→ r

c. If c = true and owise ∈ Attr:
Generate the reduction rule: l [updatesame(σ, ♭σ, false)]σ ↪→ r

where:
* t1[t2]σ means that we substitute t2 for the subterm with the head symbol σ in t1.
* argi(t) corresponds to the i-th argument of t and arity(t) to the number of arguments of t.
* mglhsσ ≜ (mgconf init-config) [[k]K(x) \ [k]K((injKItem

RetT ype(σ) σ f1 ... farity(σ)) ↷ L)],
where init-config is the initial configuration, and fi and L are fresh variables.

* updatediff (σ, ♭σ, s1, i, s2) = ♭σ x1 ... xarity(σ)+X with xj =

 argj(σ) if 1 ≤ j ≤ arity(σ)
s1 if j = arity(σ) + i

s2 otherwise

* updatesame(σ, ♭σ, s) = ♭σ x1 ... xarity(σ)+X with xj =
{

argj(σ) if 1 ≤ j ≤ arity(σ)
s otherwise

Figure 20 Variant of Viry’s encoding.

TYPES 2022

12:18 A Semantics of K into Dedukti

4.3.2 Translating evaluation strategies
As we saw in Section 3.2, some conditional rewriting rules can be generated during the
translation of K to Kore, as is the case for the evaluation strategies defined by the attributes
strict and seqstrict. The rewriting rules generated by these attributes require the
translation of the K computations, i.e. the symbols . and ↷, the freezers but also the
predicate isKResult. However, these conditional rewriting rules are part of a known case
where Viry’s encoding is not confluent, notably because the order of application of some
rewriting rules modifies the result of the condition, which can stop the computation. Figure 21
shows the translation of the rules of Figure 3 with Viry’s encoding (on the right) and an
example of a valid but stuck execution1 (on the left).

1 E1 && E2 ↷ C ↪→ (true && true) && false ↷ .
♭&& E1 E2 ♭ ↷ C ↪→1 ♭&& (true && true) false ♭ ↷ .

2 ♭&& E1 E2 ♭ ↷ C ↪→ ↪→2 ♭&& (true && true)
♭&& E1 E2 (not(isKResult E1)) ↷ C false

3 ♭&& E1 E2 true ↷ C ↪→ E1 ↷ (❄1
&& E2) ↷ C (not(isKResult (true && true))) ↷ .

4 E1 ↷ (❄1
&& E2) ↷ C ↪→ ↪→∗ ♭&& (true && true) false true ↷ .

(♭❄1
&& E1 E2 ♭) ↷ C ↪→3 (true && true) ↷ (❄1

&& false) ↷ .
5 (♭❄1

&& E1 E2 ♭) ↷ C ↪→ ↪→4 (♭❄1
&& (true && true) false ♭) ↷ .

(♭❄1
&& E1 E2 (isKResult E1)) ↷ C ↪→5 (♭❄1

&& (true && true)
6 (♭❄1

&& E1 E2 true) ↷ C ↪→ E1 && E2 ↷ C false
7 true && B ↷ C ↪→ B ↷ C (isKResult (true && true))) ↷ .
8 false && _ ↷ C ↪→ false ↷ C ↪→∗ (♭❄1

&& (true && true) false false) ↷ .

Figure 21 Rules generated with previous encoding (left) and a stuck execution (right).

Intuitively, these rules are used to ensure that E1 is of a specific sort in order to allow or
not its evaluation. The idea of our new encoding is to specialize some terms of the rules, i.e.
to refine the pattern-matching in order to ensure the desired type. For example, rule 2. in
Figure 3 becomes ⟨ (injKItem

Bool E1) ↷ (❄1
&& E2) ↷ S ⟩k ↪→ ⟨ (injBExp

Bool E1) && E2 ↷ S ⟩k,
where we force E1 to have the sort Bool. Thus this rule can be used only if the term E1
is a fully computed Boolean expression. Morevoer, rule 1. in Figure 3 becomes the single
rule ⟨ (X1 && X2) && E2 ↷ S ⟩k ↪→ ⟨ (X1 && X2) ↷ (❄1

&& E2) ↷ S ⟩k because there is only
one constructor associated to BExp and no token symbol. Symbols with the attribute
function or macro are not considered, because they are not allowed in the left-hand side of
a rule, as well as symbols with the attribute bracket, because these ones disappear during
the compilation process of K. The full formalization is available in Figure 22.

|| (Rel, Sym, R) ||strategy = R′

where
Sub ≜ { s | s < KResult ∈ Rel }
Rcool ≜ { r ∈ R | cool ∈ Attr(r) }
R′

cool ≜ { (l ↪→ r) [x \ injKItem
s x] | l

c
↪→ r ∈ Rcool where c ≜ (isKResult x), s ∈ Sub }

Rheat ≜ { r ∈ R | heat ∈ Attr(r) }
Ss2

s1 ≜ { injs2
s f | where f is a fresh variable and s ∈ ({ s | s < s1 ∈ Rel} \ Sub) }

Ps2
s1 ≜ { injs2

s1
(n
−→
f) | where

−→
f are fresh variables and n : ∀−→v ,

−→
t → α [Attr] ∈ Sym

if α = s1 and { constructor, token } ∩ Attr ̸= ∅ }
R′

heat ≜ { (l ↪→ r) [x1, ... , xk \ injKItem
s1

x1, ... , injKItem
sk

xk] [injs2
s1

x \ t]
| l

c
↪→ r ∈ Rheat and (s1, ..., sk) ∈ Subk and t ∈ (Ss2

s1 ∪ P
s2
s1),

where c ≜ (isKResult x1 ∧ ... ∧ isKResult xk ∧ ¬ (isKResult injs2
s1

x) }
R′ ≜ R \ (Rheat ∪ Rcool) ∪ (R′

heat ∪R′
cool)

Figure 22 Specialization of the evaluation strategy rules.

1 It is also possible to obtain false.

A. Ledein, V. Blot, and C. Dubois 12:19

4.3.3 Semantics preservation
The soundness of the translation is not formally proved in this article. Informally, our
translation seeks to ensure that the program executed in the K framework and the program
executed in Dedukti have the same behaviour. If the language described is deterministic,
K and Dedukti compute the same value or give the same final state. If the language is
non-deterministic, K allows to obtain all possible final configurations. In Dedukti, it is only
possible to obtain one final configuration, because the algorithm is deterministic.

As previously, we assume that every condition is reducible into false or true. We also
assume that the K semantics does not use the following attributes: no cell of the configuration
has one of the attributes multiplicity, stream, type, exit, no evaluation strategy based on
result or hybrid, and no rewriting rule has the attribute priority(), unboundVariables,
assoc, comm, unit or idem. Lastly, we assume that, for a given symbol, among the associated
evaluation rules, only one rule has the attribute owise and in this case, other rules must
have a condition.

The two following parts present the soundness and completeness statements, thanks to
the function | . | which is translated a K term into a Dedukti one by induction on Term(K):

| sym x1 ... xn | ≜ ˙sym | x1 | ... | xn |, if ˙sym ∈ ΣDedukti,
| x | ≜ x, where x is a variable

4.3.3.1 Soundness

The next conjecture helps to assert that any derivation in K is also a derivation in Dedukti.

▶ Conjecture 1. For any K rewriting step l ↪→ r, there is a DK derivation | l | ↪→∗ | r |.

▶ Corollary (From K to Dedukti). For every derivation l ↪→∗ r in K, there is a derivation |
l | ↪→∗ | r | in Dedukti.

4.3.3.2 Completeness

We note F lat the set of every term starting with ♭.
We note Ghost the set of every term having at least one symbol in F lat.

▶ Lemma 1. | . | : Term(K) → Term(Dedukti) \ Ghost is a bijection.

We define the translation function || . ||K2DK : Term(K) → Term(Dedukti) such that
|| t ||K2DK = | t | and the detranslation function || . ||DK2K : Term(Dedukti) → Term(K) such

that || t ||DK2K =
{

| t |−1 if t /∈ Ghost

|| t ||forget if t ∈ Ghost
.

The function forget is defined inductively on Term(Dedukti):
|| sym x1 ... xn ||forget ≜ sym || x1 ||forget ... || xn ||forget, if sym /∈ F lat

|| ♭sym x1 ... xn ||forget ≜ sym || x1 ||forget ... || xi ||forget,
if ♭sym ∈ F lat, where xi+1 ... xn are conditions

|| x ||forget ≜ x, where x is a variable

The following conjecture states that any derivation in Dedukti is also a derivation in K,
except if the derivation begins or ends with a term generated by the Viry encoding.

▶ Conjecture 2 (From Dedukti to K). For every derivation l ↪→∗ r in Dedukti, there is a
derivation || l ||DK2K ↪→∗ || r ||DK2K in K if l /∈ Ghost or r /∈ Ghost.

▶ Corollary (Preservation of confluence). If the rewriting system R written in K is confluent,
then the translation of the rewriting system R in Dedukti is confluent.

TYPES 2022

12:20 A Semantics of K into Dedukti

▶ Corollary (Preservation of termination). If the rewriting system R written in K is termi-
nating, then the translation of the rewriting system R in Dedukti is terminating.

5 Implementation and examples

This section focuses on the implementation of the translations presented in the previous
section, i.e. on the tool KaMeLo [1] which allows to translate Kore into Dedukti.

5.1 KaMeLo in a nutshell
In practice, the formalizations presented in Section 3.2 as well as the printer to Kore
(Figure 15) correspond to the command kompile implemented by the K team. Like the
command krun, also implemented by the K team, KaMeLo allows programs translated
into Kore to be executed in Dedukti thanks to the K semantics translated into Kore.
KaMeLo implements the translation formalized in Figure 20 and Figure 22.

Moreover, it is the responsibility of each backend to implement the K standard library and
to support the appropriate attributes. The backend KaMeLo does not support the attributes
multiplicity, stream, type, exit, result, hybrid, priority(), unboundVariables,
assoc, comm, unit and idem. The implementation of the K standard library in Dedukti is
available on https://gitlab.com/semantiko/DK-BiblioteKo.

5.2 KaMeLo in action
From a semantics of 84 lines of a simple while-language similar to IMP in [25], it is possible
to obtain a Kore file of 4 130 lines (18 sorts, 5 hooked sorts, 102 symbols, 78 hooked symbols
and 552 axioms). However, in order to execute a program, the axioms with the attributes
subsort, total, constructor, assoc, comm, unit or idem do not need to be translated.
The translation of this semantics in Dedukti has 723 lines (122 symbols and 122 rewriting
rules). To execute the following program computing the GCD of x and y

decl x, y ; x = 20 ; y = 15 ;
while not((y <= x) and (x <= y)) do

{ if y < x then x = x - y ; else y = y - x ; }

the command $ krun --depth 0 --output kore GCD.imp allows to translate the program
in Kore. After translating it into Dedukti, the result is: <generatedTop> (<T> (<k> .)
(<env> (inj y 7→ inj 5) ; (inj x 7→ inj 5))) (<generatedCounter> 0);.
The source code of KaMeLo [1] is joined by some tests as the one presented here.

6 Conclusion

This article presents a paper formalization of the translation from K into Kore and, a paper
formalization and an automatic tool, called KaMeLo, from Kore to Dedukti, in order
to execute programs in Dedukti. There has already been a translation of a programming
language in Dedukti [8, 9], but this is the first time a semantical framework has been
translated into Dedukti.

This work needs to be extended to take into account the attributes priority()/owise,
multiplicity/type and result/hybrid. The attributes assoc, comm, unit, idem and
unboundVariables can theoretically not be translated in the general case.

https://gitlab.com/semantiko/DK-BiblioteKo

A. Ledein, V. Blot, and C. Dubois 12:21

The verification of proof objects generated by the KProver as well as the encoding
of the theoretical foundations of K into those of Dedukti, are not in the scope of this
article and will be the subject of future work. The translation presented here is nevertheless
necessary to run a program and will be reused for proof checking.

References

1 GitLab of KaMeLo. URL: https://gitlab.com/semantiko/kamelo.
2 Website of K. URL: https://kframework.org/.
3 Website of Sail. URL: https://www.cl.cam.ac.uk/~pes20/sail/.
4 Ali Assaf, Guillaume Burel, Raphal Cauderlier, David Delahaye, Gilles Dowek, Catherine

Dubois, Frédéric Gilbert, Pierre Halmagrand, Olivier Hermant, and Ronan Saillard. Expressing
theories in the λΠ-calculus modulo theory and in the Dedukti system. In TYPES: Types for
Proofs and Programs, Novi SAd, Serbia, May 2016. URL: https://hal-mines-paristech.
archives-ouvertes.fr/hal-01441751.

5 Frédéric Blanqui, Gilles Dowek, Émilie Grienenberger, Gabriel Hondet, and François Thiré.
Some axioms for mathematics. In Naoki Kobayashi, editor, 6th International Conference on
Formal Structures for Computation and Deduction, FSCD 2021, July 17-24, 2021, Buenos
Aires, Argentina (Virtual Conference), volume 195 of LIPIcs, pages 20:1–20:19. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.FSCD.2021.20.

6 Denis Bogdănaş and Grigore Roşu. K-Java: A Complete Semantics of Java. In Proceedings
of the 42nd Symposium on Principles of Programming Languages (POPL’15), pages 445–456.
ACM, January 2015. doi:10.1145/2676726.2676982.

7 Patrick Borras, Dominique Clément, Th. Despeyroux, Janet Incerpi, Gilles Kahn, Bernard
Lang, and V. Pascual. CENTAUR: The System. In Peter B. Henderson, editor, Proceedings
of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software
Development Environments, Boston, Massachusetts, USA, November 28-30, 1988, pages 14–24.
ACM, 1988. doi:10.1145/64135.65005.

8 Raphaël Cauderlier and Catherine Dubois. ML Pattern-Matching, Recursion, and Rewriting:
From FoCaLiZe to Dedukti. In ICTAC 2016 - 13th International Colloquium on Theoretical
Aspects of Computing, volume 9965 of LNCS, pages 459–468, Taipei, Taiwan, October 2016.
doi:10.1007/978-3-319-46750-4_26.

9 Raphaël Cauderlier and Catherine Dubois. FoCaLiZe and Dedukti to the rescue for proof
interoperability. In Mauricio Ayala-Rincón and César A. Muñoz, editors, ITP 2017: Interna-
tional Conference on Interactive Theorem Proving, page 532, Brasília, Brazil, September 2017.
doi:10.1007/978-3-319-66107-0_9.

10 D. Cousineau and Gilles Dowek. Embedding Pure Type Systems in the Lambda-Pi-Calculus
Modulo. In TLCA, 2007.

11 Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In Handbook of Theoretical
Computer Science, Volume B: Formal Models and Semantics, pages 243–320, 1990.

12 Gilles Dowek. Interacting Safely with an Unsafe Environment. CoRR, abs/2107.07662, 2021.
arXiv:2107.07662, doi:10.4204/EPTCS.337.3.

13 Chris Hathhorn, Chucky Ellison, and Grigore Roşu. Defining the Undefinedness of C. In
Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’15), pages 336–345. ACM, June 2015. doi:10.1145/2813885.2737979.

14 Liyi Li and Elsa L. Gunter. IsaK: A Complete Semantics of K. Technical report, University of
Illinois at Urbana-Champaign, June 2018. URL: https://hdl.handle.net/2142/100116.

15 Liyi Li and Elsa L. Gunter. IsaK-static: A complete static semantics of K. In Formal Aspects of
Component Software - 15th International Conference, FACS 2018, Proceedings, pages 196–215.
Springer-Verlag Berlin Heidelberg, 2018. doi:10.1007/978-3-030-02146-7_10.

TYPES 2022

https://gitlab.com/semantiko/kamelo
https://kframework.org/
https://www.cl.cam.ac.uk/~pes20/sail/
https://hal-mines-paristech.archives-ouvertes.fr/hal-01441751
https://hal-mines-paristech.archives-ouvertes.fr/hal-01441751
https://doi.org/10.4230/LIPIcs.FSCD.2021.20
https://doi.org/10.1145/2676726.2676982
https://doi.org/10.1145/64135.65005
https://doi.org/10.1007/978-3-319-46750-4_26
https://doi.org/10.1007/978-3-319-66107-0_9
https://arxiv.org/abs/2107.07662
https://doi.org/10.4204/EPTCS.337.3
https://doi.org/10.1145/2813885.2737979
https://hdl.handle.net/2142/100116
https://doi.org/10.1007/978-3-030-02146-7_10

12:22 A Semantics of K into Dedukti

16 Liyi Li and Elsa L. Gunter. A Complete Semantics of K and Its Translation to Isabelle.
In Antonio Cerone and Peter Csaba Ölveczky, editors, Theoretical Aspects of Computing –
ICTAC 2021, pages 152–171, Cham, 2021. Springer International Publishing.

17 Dominic Mulligan, Scott Owens, Kathryn Gray, Tom Ridge, and Peter Sewell. Lem: Reusable
Engineering of Real-world Semantics. ACM SIGPLAN Notices, 49, August 2014. doi:
10.1145/2628136.2628143.

18 Daejun Park, Andrei Ştefănescu, and Grigore Roşu. KJS: A Complete Formal Semantics
of JavaScript. In Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’15), pages 346–356. ACM, June 2015. doi:
10.1145/2737924.2737991.

19 Grigore Ros,u and Traian Florin S, erbănută. An overview of the K semantic framework. The
Journal of Logic and Algebraic Programming, 79(6):397–434, August 2010. doi:10.1016/j.
jlap.2010.03.012.

20 Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Thomas Ridge, Susmit
Sarkar, and Rok Strnĭsa. Ott: Effective tool support for the working semanticist. Journal of
Functional Programming, 20(1):71–122, 2010. doi:10.1017/S0956796809990293.

21 Andrei Stefănescu, Daejun Park, Shijiao Yuwen, Yilong Li, and Grigore Roşu. Semantics-based
program verifiers for all languages. In Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications, pages
74–91, Amsterdam Netherlands, October 2016. ACM. doi:10.1145/2983990.2984027.

22 François Thiré. Sharing a library between proof assistants: Reaching out to the HOL
family. Electronic Proceedings in Theoretical Computer Science, 274:57–71, July 2018. doi:
10.4204/eptcs.274.5.

23 M. G. J. van den Brand, A. van Deursen, J. Heering, H. A. de Jong, M. de Jonge, T. Kuipers,
P. Klint, L. Moonen, P. A. Olivier, J. Scheerder, J. J. Vinju, E. Visser, and J. Visser. The
Asf+Sdf Meta-environment: A Component-Based Language Development Environment. In
Reinhard Wilhelm, editor, Compiler Construction, pages 365–370, Berlin, Heidelberg, 2001.
Springer Berlin Heidelberg. doi:10.1007/3-540-45306-7_26.

24 Patrick Viry. Elimination of Conditions. Journal of Symbolic Computation, 28(3):381–401,
1999. doi:10.1006/jsco.1999.0288.

25 Glynn Winskel. The formal semantics of programming languages - an introduction. Foundation
of computing series. MIT Press, 1993.

26 A.K. Wright and M. Felleisen. A syntactic approach to type soundness. Inf. Comput.,
115(1):38–94, November 1994. doi:10.1006/inco.1994.1093.

https://doi.org/10.1145/2628136.2628143
https://doi.org/10.1145/2628136.2628143
https://doi.org/10.1145/2737924.2737991
https://doi.org/10.1145/2737924.2737991
https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.1017/S0956796809990293
https://doi.org/10.1145/2983990.2984027
https://doi.org/10.4204/eptcs.274.5
https://doi.org/10.4204/eptcs.274.5
https://doi.org/10.1007/3-540-45306-7_26
https://doi.org/10.1006/jsco.1999.0288
https://doi.org/10.1006/inco.1994.1093

Type Theory with Explicit Universe Polymorphism
Marc Bezem #

University of Bergen, Norway

Thierry Coquand #

University of Gothenburg, Sweden

Peter Dybjer #

Chalmers University of Technology, Gothenburg, Sweden

Martín Escardó #

University of Birmingham, UK

Abstract
The aim of this paper is to refine and extend proposals by Sozeau and Tabareau and by Voevodsky
for universe polymorphism in type theory. In those systems judgments can depend on explicit
constraints between universe levels. We here present a system where we also have products indexed
by universe levels and by constraints. Our theory has judgments for internal universe levels, built up
from level variables by a successor operation and a binary supremum operation, and also judgments
for equality of universe levels.

2012 ACM Subject Classification Theory of computation → Type theory

Keywords and phrases type theory, universes in type theory, universe polymorphism, level-indexed
products, constraint-indexed products

Digital Object Identifier 10.4230/LIPIcs.TYPES.2022.13

Acknowledgements The authors are grateful to the anonymous referees for useful feedback, and
to Matthieu Sozeau for an update on the current state of universe polymorphism in Coq. We
acknowledge the support of the Centre for Advanced Study (CAS) at the Norwegian Academy of
Science and Letters in Oslo, Norway, which funded and hosted the research project Homotopy Type
Theory and Univalent Foundations during the academic year 2018/19.

1 Introduction

The system of simple type theory, as introduced by Church [9], is elegant and forms the basis
of several proof assistants. However, it has some unnatural limitations: it is not possible in
this system to talk about an arbitrary type or about an arbitrary structure. For example, it
is not possible to form the collection of all groups as needed in category theory. In order to
address these limitations, Martin-Löf [22, 21] introduced a system with a type V of all types.
A function A → V in this system can then be seen as a family of types over a given type
A. It is natural in such a system to refine the operations exponential and cartesian product
in simple type theory to operations of dependent products and sums. After the discovery
of Girard’s paradox [16], Martin-Löf [23] introduced a distinction between small and large
types, similar to the distinction introduced in category theory between large and small sets,
and the type V became the (large) type of small types. The name “universe” for such a type
was chosen in analogy with the notion of universe introduced by Grothendieck to represent
category theory in set theory.

Later, Martin-Löf [24] introduced a countable sequence of universes

U0 : U1 : U2 : · · ·

We refer to the indices 0, 1, 2, . . . as universe levels.
© Marc Bezem, Thierry Coquand, Peter Dybjer, and Martín Escardó;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Types for Proofs and Programs (TYPES 2022).
Editors: Delia Kesner and Pierre-Marie Pédrot; Article No. 13; pp. 13:1–13:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Marc.Bezem@uib.no
https://orcid.org/0000-0002-7320-1976
mailto:Thierry.Coquand@cse.gu.se
https://orcid.org/0000-0002-5429-5153
mailto:peterd@chalmers.se
https://orcid.org/0000-0003-4043-5204
mailto:m.escardo@bham.ac.uk
https://orcid.org/0000-0002-4091-6334
https://doi.org/10.4230/LIPIcs.TYPES.2022.13
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Type Theory with Explicit Universe Polymorphism

Before the advent of univalent foundations, most type theorists expected only the first
few universe levels to be relevant in practical formalisations. One thought that it might be
feasible for a user of type theory to explicitly assign universe levels to their types and then
simply add updated versions of earlier definitions when they were needed at different levels.
However, the number of copies of definitions does not only grow with the level, but also with
the number of type arguments in the definition of a type former. (The latter growth can be
exponential!)

To deal with this, Huet [20] introduced a specific form of universe polymorphism that
allowed the use of U : U on the condition that each occurrence of U can be disambiguated as
Ui in a consistent way. This approach has been followed by Harper and Pollack [18] and in
Coq [35]. These approaches to implicit universe polymorphism are, however, problematic
with respect to modularity. As pointed out in [11, 28]: one can prove A → B in one file, and
B → C in another file, while A → C is not valid.

Leaving universe levels implicit also causes practical problems, since universe level
disambiguation can be a costly operation, slowing down type-checking significantly. Moreover,
so-called universe inconsistencies can be hard to explain to the user.

In order to cope with these issues, Courant [11] introduced explicit universe levels, with
a supremum operation (see also Herbelin [19]). Explicit universe levels are also present in
Agda [32] and Lean [12, 7]. However, whereas Courant has universe level judgments, Agda
has a type of universe levels, and hence supports the formation of level-indexed products.

With the advent of Voevodsky’s univalent foundations, the need for universe polymorphism
has only increased. One often wants to prove theorems uniformly for arbitrary universes.
These theorems may depend on several universes and there may be constraints on the level of
these universes. In response to this Voevodsky [39] and Sozeau and Tabareau [30] proposed
type theories parameterized by (arbitrary but fixed) universe levels and constraints.

The univalence axiom states that for any two types X,Y the canonical map

idtoeqX,Y : (X = Y) → (X ≃ Y)

is an equivalence. Formally, the univalence axiom is an axiom scheme which is added to
Martin-Löf type theory. If we work in Martin-Löf type theory with a countable tower of
universes, each type is a member of some universe Un. Such a universe Un is univalent
provided for all X,Y : Un the canonical map idtoeqX,Y is an equivalence. Let UAn be the type
expressing the univalence of Un, and let uan : UAn for n = 0, 1, . . . be a sequence of constants
postulating the respective instances of the univalence axiom. We note that X = Y : Un+1
and X ≃ Y : Un and hence UAn : Un+1. We can express the universe polymorphism of these
judgments internally in all of the above-mentioned systems by quantifying over universe
levels, irrespective of having universe level judgments or a type of universe levels.

To be explicit about universes can be important, as shown by Waterhouse [40, 8], who
gives an example of a large presheaf with no associated sheaf. A second example is the fact
that the embedding Group(Un) → Group(Un+1) of the type of groups in a universe Un into
that of the next universe Un+1 is not an equivalence. That is, there are more groups in the
next universe [5].

We remark that universes are even more important in a predicative framework than in an
impredicative one, for uniform proofs and modularity. Consider for example the formalisation
of real numbers as Dedekind cuts, or domain elements as filters of formal neighbourhoods.
Both belong to U1 since they are properties of elements in U0. However, even in a system
using an impredicative universe of propositions, such as the ones in [20, 12], there is a need
for definitions parametric in universe levels.

M. Bezem, T. Coquand, P. Dybjer, and M. Escardó 13:3

Terminology

Following Cardelli [6], we distinguish between implicit and explicit polymorphism:

Parametric polymorphism is explicit when parametrization is obtained by explicit
type parameters in procedure headings, and corresponding explicit applications of
type arguments when procedures are called . . . Parametric polymorphism is called
implicit when the above type parameters and type applications are not admitted, but
types can contain type variables which are unknown, yet to be determined, types.

Motivation

Many substantial Agda developments make essential use of explicit universe polymorph-
ism with successor and finite suprema. Examples include the Agda standard library [34],
the cubical Agda library [36], 1Lab [33], the Agda-HoTT library [37], agda-unimath [27],
TypeTopology [14], HoTT-UF-in-Agda [13] (Midlands Graduate School 2019 lecture notes).

The original motivation for this work was to formalise the type theory of Agda, including
explicit universe polymorphism. In doing that, we found ourselves modifying Agda’s treatment
of universes as follows:

We have universe level judgments, like Courant [11], instead of a type of universe levels,
like Agda.
We add the possibility of expressing explicit universe level constraints. This is not only
more general but also arguably gives a more natural way of expressing types involving
universes.
We do not require a first universe level zero, so that every definition that involves universes
is polymorphic.
We include a Type judgment, which does not refer to universes, as in Martin-Löf [25].

Our resulting type theory is orthogonal to the presence or absence of cumulativity. In
the body of the paper, we treat universes à la Tarski, but we also give an appendix with a
version à la Russell.

We have checked that the lecture notes [13] on HoTT/UF, which include 9620 lines of
Agda without comments, can be rewritten without universe level zero. We believe, based
on what we learned from this experiment, that the above Agda developments could also
be rewritten in this way. Experience with these Agda developments suggest that a type for
levels in Agda could be replaced by level judgments in practice. The fact that levels form a
type in Agda automatically allows for nested universal quantification over levels, which we
instead add explicitly to our type theory.

Summary of main contributions

Like Courant, we present a type theory with universe levels and universe level equations as
judgments. Moreover, we don’t restrict the levels to be natural numbers. Instead we just
assume that they form a sup-semilattice with an inflationary endomorphism. In this way
all levels are built up from level variables by a successor operation and a binary supremum
operation. Unlike most other systems, we do not have a level constant 0 for the first
universe level. Thus all types involving universes depend on level variables; they are universe
polymorphic.

Furthermore, we make the polymorphism fully explicit in the sense of Cardelli by adding
level-indexed products. In this way we regain some of the expressivity Agda gets from having
a type Level of universe levels. Finally, we present a type theory with constraints as judgments
similar to the ones by Sozeau and Tabareau [30] and Voevodsky [39] but extended with
constraint-indexed products.

TYPES 2022

13:4 Type Theory with Explicit Universe Polymorphism

Plan

In Section 2 we display rules for a basic version of dependent type theory with Π,Σ,N, and
an identity type former Id.

In Section 3 we explain how to add an externally indexed sequence of universes Un,Tn (n ∈
N) à la Tarski, without cumulativity rules. In Appendix A we present a system with
cumulativity, and in Appendix B we present a system à la Russell.

In Section 4 we introduce a notion of universe level, and let judgments depend not only
on a context of ordinary variables, but also on level variables α, . . . , β. This gives rise to a
type theory with level polymorphism, which we call “ML-style” as long as we do not bind
level variables. We then extend this theory with level-indexed products of types [α]A and
corresponding abstractions ⟨α⟩A to give full level polymorphism.

In Section 5 we extend the type theory in Section 4 with constraints (lists of equations
between level expressions). Constraints can now appear as assumptions in hypothetical
judgments. Moreover, we add constraint-indexed products of types [ψ]A and corresponding
abstractions ⟨ψ⟩A. This goes beyond the systems of Sozeau and Tabareau [30] and Voevodsky
[39]. In Section 6 we compare our type theory with Voevodsky’s and Sozeau-Tabareau’s and
briefly discuss some other approaches. Finally, in Section 7 we outline future work.

2 Rules for a basic type theory

We begin by listing the rules for a basic type theory with Π,Σ,N, and Id. A point of departure
is the system described by Abel et al. in [1], since a significant part of the metatheory of this
system has been formalized in Agda. This system has Π-types, N and one universe. However,
for better readability we use named variables instead of de Bruijn indices. We also add Σ
and Id, and, in the next sections, a tower of universes.

The judgment Γ ⊢ expresses that Γ is a context. The judgment Γ ⊢ A expresses that A is
a type in context Γ. The judgment Γ ⊢ a : A expresses that A is a type and a is a term of
type A in context Γ. The rules are given in Figure 1.

() ⊢
Γ ⊢ A

Γ, x : A ⊢
(x fresh) Γ ⊢

Γ ⊢ x : A (x :A in Γ)

Figure 1 Rules for context formation and assumption.

We may also write A type (Γ) for Γ ⊢ A, and may omit the global context Γ, or the
part of the context that is the same for all hypotheses and for the conclusion of the rule.
Hypotheses that could be obtained from other hypotheses through inversion lemmas are
often left out, for example, the hypothesis A type in the first rule for Π and Σ in Figure 2.

B type (x : A)
Πx:AB type

b : B (x : A)
λx:Ab : Πx:AB

c : Πx:AB a : A
ca : B(a/x)

B type (x : A)
Σx:AB type

a : A b : B(a/x)
(a, b) : Σx:AB

c : Σx:AB

c.1 : A
c : Σx:AB

c.2 : B(c.1/x)

Figure 2 Rules for Π and Σ.

M. Bezem, T. Coquand, P. Dybjer, and M. Escardó 13:5

We write = for definitional equality (or conversion). The following rules express that
conversion is an equivalence relation and that judgments are invariant under conversion. The
rules are given in Figures 3 and 4.

a : A A = B

a : B
a = a′ : A A = B

a = a′ : B

A = B A = C

B = C

A type
A = A

a = b : A a = c : A
b = c : A

a : A
a = a : A

Figure 3 General rules for conversion.

A = A′ B = B′ (x : A)
Πx:AB = Πx:A′ B′

c = c′ : Πx:AB a = a′ : A

c a = c′ a′ : B(a/x)

b : B (x : A) a : A

λx:Ab a = b(a/x) : B(a/x)
f x = g x : B (x : A)

f = g : Πx:AB

A = A′ B = B′ (x : A)
Σx:AB = Σx:A′ B′

c = c′ : Σx:AB

c.1 = c′.1 : A

c = c′ : Σx:AB

c.2 = c′.2 : B(c.1/x)
a : A b : B(a/x)

(a, b).1 = a : A

a : A b : B(a/x)
(a, b).2 = b : B(a/x)

c.1 = c′.1 : A c.2 = c′.2 : B(c.1/x)
c = c′ : Σx:AB

Figure 4 Conversion rules for Π and Σ.

By now we have introduced several parametrized syntactic constructs for types and terms,
such as Πx:AB, λx:Ab, c a, (a, b).2. Conversion rules for Π and Σ were given in Figure 4. and
those rules imply that = is a congruence.(Some cases of congruence are subtle. Exercise:
show congruence of = for λx:Ab and (a, b).) In the sequel we will tacitly assume the inference
rules ensuring that = is a congruence for all syntactic constructs that are to follow.

We now introduce the type of natural numbers N with the usual constructors 0,S and
eliminator R, as an example of an inductive data type. Rules with the same hypotheses are
written as one rule with several conclusions. The rules are given in Figure 5.

We also add identity types Id(A, a, a′) for all A type, a : A and a′ : A, with constructor
refl(A, a) and (based) eliminator J(A, a,C, d, a′, q). The rules are given in Figure 6.

In this basic type theory we can define, for example, isContr(A) := Σa:AΠx:AId(A, a, x)
for A type, expressing that A is contractible. If also B type, we can define Equiv(A,B) :=
Σf :A→BΠb:B isContr(Σx:AId(B, b, f(x))), which is the type of equivalences from A to B. This
example will also be used later on.

N type 0 : N
n : N

S(n) : N
P type (x : N) a : P (0/x) g : Πx:N(P → P (S(x)/x))

R(P, a, g, 0) = a : P (0/x)

P type (x : N) a : P (0/x) g : Πx:N(P → P (S(x)/x)) n : N
R(P, a, g, n) : P (n/x) R(P, a, g, S(n)) = g n R(P, a, g, n) : P (S(n)/x)

Figure 5 Rules and conversion rules for the datatype N.

TYPES 2022

13:6 Type Theory with Explicit Universe Polymorphism

A type a : A a′ : A
Id(A, a, a′) type

a : A
refl(A, a) : Id(A, a, a)

a : A C type (x : A, p : Id(A, a, x)) d : C(a/x, refl(A, a)/p) a′ : A q : Id(A, a, a′)
J(A, a,C, d, a′, q) : C(a′/x, q/p) J(A, a,C, d, a, refl(A, a)) = d : C(a/x, refl(A, a)/p)

Figure 6 Rules and conversion rule for identity types.

3 Rules for an external sequence of universes

We present an external sequence of universes of codes of types, together with the decoding
functions. (We do not include rules for cumulativity here, leaving them for Appendix A.)
The rules are given in Figure 7.

Um type
A : Um

Tm(A) type Un
m : Un Tn(Un

m) = Um
(n > m)

Figure 7 Rules and conversion rules for all universes Um and their codes Un
m (n > m).

Here and below m and n, as super- and subscripts of U and T, are external natural
numbers, and n ∨m is the maximum of n and m. This means, for example, that Um type is
a schema, yielding one rule for each m.

Next we define how Π,Σ,N, and Id are “relativized” to codes of types, and how they are
decoded, in Figures 8 and 9.

A : Un B : Tn(A) → Um

Πn,mAB : Un∨m Tn∨m (Πn,mAB) = Πx:Tn(A)Tm(B x)

A : Un B : Tn(A) → Um

Σn,mAB : Un∨m Tn∨m (Σn,mAB) = Σx:Tn(A)Tm(B x)

Figure 8 Rules and conversion rules for Π and Σ for codes of types.

Nn : Un Tn(Nn) = N

A : Un a0 : Tn(A) a1 : Tn(A)
Idn(A, a0, a1) : Un Tn(Idn(A, a0, a1)) = Id(Tn(A), a0, a1)

Figure 9 Rules and conversion rules for codes of N and Id.

In the following section we present a type theory with internal universe level expressions.
This theory has finitely many inference rules.

M. Bezem, T. Coquand, P. Dybjer, and M. Escardó 13:7

4 A type theory with universe levels and polymorphism

The problem with the type system with an external sequence of universes is that we have to
duplicate definitions that follow the same pattern. For instance, we have the identity function

idn := λX:Unλx:Tn(X)x : ΠX:UnTn(X) → Tn(X)

This is a schema that may have to be defined (and type-checked) for several n. We address
this issue by introducing universe level expressions: we write α, β, . . . for level variables, and
l,m, . . . for level expressions which are built from level variables by suprema l ∨m and the
next level operation l+. Level expressions form a sup-semilattice l ∨ m with a next level
operation l+ such that l ∨ l+ = l+ and (l ∨m)+ = l+ ∨m+. (We don’t need a 0 element.)
We write l ⩽ m for l ∨m = m and l < m for l+ ⩽ m. See [4] for more details.

We have a new context extension operation that adds a fresh level variable α to a context,
a rule for assumption, and typing rules for level expressions, in Figure 10.

Γ ⊢
Γ, α level ⊢

(α fresh) Γ ⊢
Γ ⊢ α level (α in Γ) l level m level

l ∨m level
l level
l+ level

Figure 10 Rules for typing level expressions, extending Figure 1.

We also have level equality judgments Γ ⊢ l = m and want to enforce that judgments are
invariant under level equality. To this end we add the rule that Γ ⊢ l = m when Γ ⊢ l level
and Γ ⊢ m level and l = m in the free sup-semilattice above with _+ and generators (level
variables) in Γ.

In the next section we will also consider hypothetical level equality judgments, i.e., we
may have constraints in Γ, quotienting the free sup-semilattice above.

We tacitly assume additional rules ensuring that level equality implies definitional equality
of types and terms. It then follows from the rules of our basic type theory that judgments
are invariant under level equality: if l = m and a(l/α) : A(l/α), then a(m/α) : A(m/α).

We will now add rules for internally indexed universes in Figure 11. Note that l < m is
shorthand for the level equality judgment m = l+ ∨m.

l level
Ul type

A : Ul

Tl(A) type
l < m

Um
l : Um Tm(Um

l) = Ul

Figure 11 Rules and conversion rule for universes Ul and their codes.

The remaining rules are completely analogous to the rules in Figure 8 and Figure 9 for
externally indexed universes with external numbers replaced by internal levels. (To rules
without assumptions, such as the first two in Fig. 9, we need to add assumptions like n level,
for other rules these assumptions can be obtained from inversion lemmas.)

We expect that normalisation holds for this system. This would imply decidable type-
checking. This would also imply that if a : N in a context with only level variables, then a is
convertible to a numeral.

TYPES 2022

13:8 Type Theory with Explicit Universe Polymorphism

Interpreting the level-indexed system in the system with externally indexed universes

A judgment in the level-indexed system can be interpreted in the externally indexed system
relative to an assignment ρ of external natural numbers to level variables. We simply replace
each level expression in the judgment by the corresponding natural number obtained by
letting l+ ρ = l ρ+ 1 and (l ∨m) ρ = max(l ρ,mρ).

Rules for level-indexed products

In Agda Level is a type, and it is thus possible to form level-indexed products of types as
Π-types. In our system this is not possible, since level is not a type. Nevertheless, it is useful
for modularity to be able to form level-indexed products. Thus we extend the system with
the rules in Figure 12.

A type (α level)
[α]A type

t : [α]A l level
t l : A(l/α)

u : A (α level)
⟨α⟩u : [α]A

t α = u α : A (α level)
t = u : [α]A

u : A (α level) l level
(⟨α⟩u) l = u(l/α) : A(l/α)

Figure 12 Rules and conversion rule for level-indexed products.

In this type theory we can reflect, for example, isContr(A) := Σa:AΠx:AId(A, a, x) for
A type as follows. In the context α level, A : Uα, define

isContrα(A) := Σα,α A (λa:Tα(A)(Πα,α A (λx:Tα(A)Idα(A, a, x)))).

Then Tα(isContrα(A)) = isContr(Tα(A)). We can further abstract to obtain the following
typing:

⟨α⟩λA:Uα
isContrα(A) : [α](Uα → Uα).

In a similar way we can reflect Equiv(A,B) for A,B type by defining in context
α level, β level, A : Uα, B : Uβ a term Eqα,β(A,B) : Uα∨β such that Tα∨β(Eqα,β(A,B)) =
Equiv(Tα(A),Tβ(B)).

An example that uses level-indexed products beyond the ML-style polymorphism (provided
by Sozeau and Tabareau and by Voevodsky) is the following type which expresses the theorem
that univalence for universes of arbitrary level implies function extensionality for functions
between universes of arbitrary levels.

([α]IsUnivalent Uα) → [β][γ]FunExt Uβ Uγ

In other words, global univalence implies global function extensionality.
Since an assumption of global function extensionality can replace many assumptions of

local function extensionality (provided by ML-style polymorphism), this can also give rise to
shorter code, see the example Eq-Eq-cong’ in [13].

5 A type theory with level constraints

To motivate why it may be useful to introduce the notion of judgment relative to a list of
constraints on universe levels, consider the following type in a system without cumulativity.
(We use Russell style notation for readability, see Appendix B for the rules for the Russell
style version of our system.)

M. Bezem, T. Coquand, P. Dybjer, and M. Escardó 13:9

ΠA:Ul B:Um C:Un
Id Ul∨m (A×B) (C ×A) → Id Um∨l (B ×A) (C ×A)

This is well-formed provided l ∨m = n ∨ l. There are several independent solutions:

l = α,m = β, n = α ∨ β

l = α,m = γ ∨ α, n = γ

l = β ∨ γ,m = β, n = γ

l = α,m = β, n = β

where α, β, and γ are level variables. It should be clear that there cannot be any most general
solution, since this solution would have to assign variables to l,m, n.

In a system with level constraints, we could instead derive the (inhabited under UA) type

ΠA:Uα B:Uβ C:Uγ
Id Uα∨β (A×B) (C ×A) → Id Uα∨γ (B ×A) (C ×A)

which is valid under the constraint α∨β = α∨ γ, which captures all solutions simultaneously.
Without being able to declare explicitely such constraints, one would instead need to

write four separate definitions.
Surprisingly, if we add a least level 0 to the term levels (like in Agda) then there is a

most general solution, namely l = α ∨ β ∨ δ, m = β ∨ γ, n = α ∨ γ,1 since it can be seen as
an instance of a Associative Commutative Unit Idempotent unification problem [3].

It is however possible to find equation systems which do not have a most general unifier,
even with a least level 0, using the next level operation. For instance, the system l+ = m∨ n
does not have a most general unifier, using a reasoning similar to the one in [15].

Rules for level constraints

A constraint is an equation l = m, where l and m are level expressions. Voevodsky [39]
suggested to introduce universe levels with constraints. This corresponds to mathematical
practice: for instance, at the beginning of the book [17], the author introduces two universes
U and V with the constraint that U is a member of V . In our setting this will correspond to
introducing two levels α and β with the constraint α < β.

Note that α < β holds iff β = β ∨ α+. We can thus avoid declaring this constraint if we
instead systematically replace β by β ∨ α+. This is what is currently done in the system
Agda. However, this is a rather indirect way to express what is going on. Furthermore, the
example at the beginning of this section shows that this can lead to an artificial duplication
of definitions.

Recall that we have in Section 4, e.g., the rule that Um
l : Um if l < m valid, that is, if

l < m holds in the free semilattice. In the extended system in this section, this typing rule
also applies when l < m is implied by the constraints in the context Γ. For instance, we have
α+ ⩽ β in a context with constraints α ⩽ γ and γ+ ⩽ β.

To this end we introduce a new context extension operation Γ, ψ extending a context Γ
by a finite set of constraints ψ. The first condition for forming Γ, ψ is that all level variables
occurring in ψ are declared in Γ. The second condition is that the finite set of constaints in
the extended context Γ, ψ is loop-free. A finite set of constraints is loop-free if it does not
create a loop, i.e., a level expression l such that l < l modulo this set of constraints, see [4].

1 We learnt this from Thiago Felicissimo, with a reference to the work [15].

TYPES 2022

13:10 Type Theory with Explicit Universe Polymorphism

We also have a new judgment form Γ ⊢ ψ valid that expresses that the constraints in ψ

hold in Γ, that is, are implied by the constraints in Γ. If there are no constraints in Γ, the
judgment Γ ⊢ {l = m} valid amounts to the same as Γ ⊢ l = m in Section 4. Otherwise it
means that the constraints in ψ hold in the sup-semilattice with _+ presented by Γ.

As shown in [4], Γ ⊢ ψ valid as well as loop-checking, is decidable in polynomial time.
Voevodsky [39] did not describe a mechanism to eliminate universe levels and constraints.

In Figure 12 we gave rules for eliminating universe levels and in Figure 13 below we give
rules for eliminating universe level constraints.

Rules for constraint-indexed products

We introduce a “restriction” or “constraining” operation with the rules in Figure 13.

A type (ψ)
[ψ]A type

t : A (ψ)
⟨ψ⟩t : [ψ]A

ψ valid
[ψ]A = A

ψ valid
⟨ψ⟩t = t

Figure 13 Rules for constraining.

Here is a simple example of the use of this system. In order to represent set theory in
type theory, we can use a type V satisfying the following equality Id Uβ V (ΣX:Uα

X → V).
This equation is only well-typed modulo the constraint α < β.

We can define in our system a constant

c = ⟨α β⟩⟨α < β⟩λY :Uβ
Id Uβ Y (ΣX:Uα

X → Y) : [α β][α < β](Uβ → Uβ+)

This is because ΣX:Uα
X → Y has type Uβ in the context

α : level, β : level, α < β, Y : Uβ

We can further instantiate this constant c on two levels l and m, and this will be of type

[l < m](Um → Um+)

and this can only be used further if l < m holds in the current context2.

In the current system of Agda, the constraint α < β is represented indirectly by writing
β on the form γ ∨ α+ and c is defined as

c = ⟨α γ⟩λY :Uα+∨γ
Id Uα+∨γ Y (ΣX:Uα

X → Y) : [α γ](Uα+∨γ → Uα++∨γ+)

which arguably is less readable.

2 It is interesting to replace Id Uβ in the definition of c above by Eq. We leave it to the reader to verify
the following typing, for which no constraint is needed:

c′ = ⟨α β⟩λY :Uβ
Eq Y (ΣX:Uα

X → Y) : [α β](Uβ → Uβ∨α+)

M. Bezem, T. Coquand, P. Dybjer, and M. Escardó 13:11

In general, if we build a term t of type A in a context using labels α1, . . . , αm and
constraint ψ and variables x1 : A1, . . . , xn : An we can introduce a constant

c = ⟨α1 . . . αm⟩⟨ψ⟩λx1 ... xnt : [α1 . . . αm][ψ]Πx1:A1 ... xn:AnA

We can then instantiate this constant c l1 . . . lm u1 . . . un, but only if the levels l1 . . . lm
satisfy the constraint ψ.

We remark that Voevodsky’s system [39] has no constraint-indexed products and no
associated application operation, and instantiation of levels is only a meta-level operation.
Sozeau and Tabareau [30] do not have constraint-index products either. However, they do
have a special operation for instantiating universe-polymorphic constants defined in the
global environment.
▶ Remark 1. Let’s discuss some special cases and variations.

First, it is possible not to use level variables at all, making the semilattice empty, in
which case the type theory defaults to one without universes as presented in Section 2.

Second, one could have exactly one level variable in the context. Then any constraint
would either be a loop or trivial. In the latter case, the finitely presented semilattice
is isomorphic to the natural numbers with successor and max. Still, we get some more
expressivity than the type theory in Section 3 since we can express universe polymorphism
in one variable.

Third, with arbitrarily many level variables but not using constraints we get the type
theory in Section 4.

Fourth, we could add a bottom element, or empty supremum, to the semilattice. Without
level variables and constraints, the finitely presented semilattice is isomorphic to the natural
numbers with successor and max and we would get the type theory in Section 3. We would
also get a first universe. (Alternatively, one could have one designated level variable 0 and
constraints 0 ⩽ α for all level variables α.)

Fifth, we note in passing that the one-point semilattice with _+ has a loop.

6 Related work

We have already discussed both Coq’s and Agda’s treatment of universe polymorphism in
the introduction, including the work of Huet, Harper and Pollack, Courant, Herbelin, and
Sozeau and Tabareau, as well as of Voevodsky. In this section we further discuss the latter
two, as well as some recent related work.

Lean

One can roughly describe the type system of Lean [12, 7] as our current type system where
we only can declare constants of the form c = ⟨α1 . . . αn⟩M : [α1 . . . αn]A where there
are no new level variables introduced in M and A.

Voevodsky

One of our starting points was the 79 pp. draft [39] by Voevodsky, where type theories are
parametrized by a fixed but arbitrary finite set of constraints over a given finite set Fu of
u-level variables. A u-level expression [39, Def. 2.0.2] is either a numeral, or a variable in Fu,
or an expression of the form M + n with n a numeral and M a u-level expression, or of the
form max(M1,M2) with M1,M2 u-level expression. A constraint is an equation between two
u-level expressions. Given the finite set of constraints, A is the set of assigments of natural
numbers to variables in Fu that satisfy all constraints.

TYPES 2022

13:12 Type Theory with Explicit Universe Polymorphism

The rules 7 and 10 in [39, Section 3.4] define how to use constraints: two types (and,
similarly, two terms) become definitionally equal if, for all assignments in A, the two types
become essentially syntactically equal after substitution of all variables in Fu by their assigned
natural number. For example, the constraint α < β makes Uβ and Umax(1,β) definitionally
equal.

For decidability, Voevodsky refers in the proof of [39, Lemma 2.0.4, proof] to Presburger
Arithmetic, in which his constraints can easily be expressed.3This indeed implies that
definitional equality is decidable, even “in practice [...] expected to be very easily decidable
i.e. to have low complexity of the decision procedure” [39, p. 5, l. -13]. The latter is confirmed
by [4].

The remaining sections of [39] are devoted to extending the type theory with data types,
W -types and identity types, and to its metatheory.

We summarize the main differences between our type theories and Voevodsky’s as follows.
In [39], u-levels are natural numbers, even though u-level expressions can also contain u-level
variables, successor and maximum. Our levels are elements of an abstract sup-semilattice
with a successor operation. In the abstract setting, for example, α ∨ β = α+ does not imply
β = α+, whereas in [39] it does. In [39], constraints are introduced, once and for all, at the
level of the theory. In our proposal they are introduced at the level of contexts. There are
no level-indexed products and no constraint-indexed products in [39]. We also remark that
Voevodsky’s system is Tarski-style and has cumulativity (rules 29 and 30 in [39, Section 3.4]).
Our system is also Tarski-style, but we present a Russell-style version in Appendix B. We
present rules for cumulativity in Appendix A.

Sozeau and Tabareau

In Sozeau and Tabareau’s [30] work on universe polymorphism in the Coq tradition, there
are special rules for introducing universe-monomorphic and universe-polymorphic constants,
as well as a rule for instantiating the latter. However, their system does not include the full
explicit universe polymorphism provided by level- and constraint-indexed products. In our
system, with explicit universe polymorphism, we can have a uniform treatment of definitions,
all of the form

c : A = t

where A is a type and t a term of type A, and these definitions can be local as well.
The constraint languages differ: their constraints are equalities or (strict) inequalities

between level variables, while ours are equalities between level expressions generated by the
supremum and successor operations.

Furthermore, they consider cumulative universe hierarchies à la Russell, while our universes
are à la Tarski and we consider both non-cumulative (like Agda) and cumulative versions.

One further important difference is that their system has been completely implemented
and tested on significant examples, while our system is at this stage only a proposal. The
idea would be that the users have to declare explicitly both universe levels and constraints.
The Agda implementation shows that it works in practice to be explicit about universe levels,
and we expect that to be explicit about constraints will actually simplify the use of the
system, but this has yet to be tested in practice. Recently, Coq has been extended to support
universes and constraint annotations from entirely implicit to explicit. Moreover, our level-
and constraint-indexed products can to some extent be simulated by using Coq’s module
system [29].

3 For this it seems necessary to also require that A is defined by a finite set of constraints.

M. Bezem, T. Coquand, P. Dybjer, and M. Escardó 13:13

Assaf and Thiré

Assaf [2] considers an alternative version of the calculus of constructions where subtyping is
explicit. This new system avoids problems related to coercions and dependent types by using
the Tarski style of universes and by introducing additional equations to reflect equality. In
particular he adds an explicit cumulativity map T0

1 : U0 → U1. He argues that “full reflection”
is necessary to achieve the expressivity of Russell style. He introduces the explicit cumulative
calculus of constructions (CC↑) which is closely related to our system of externally indexed
Tarski style universes. This is analysed further in the PhD thesis of F. Thiré [38].

7 Conjectures and future work

Canonicity and normalization have been proved for a type theory with an external tower of
universes [10]. We conjecture that these proofs can be modified to yield proofs of analogous
properties (and their corollaries) for our type theories in Section 4 and 5. In particular,
decidability of type checking should follow using [4].

References
1 Andreas Abel, Joakim Öhman, and Andrea Vezzosi. Decidability of conversion for type theory

in type theory. Proceedings of the ACM on Programming Languages, 2(POPL):23:1–23:29,
2018. doi:10.1145/3158111.

2 Ali Assaf. A calculus of constructions with explicit subtyping. In 20th International Conference
on Types for Proofs and Programs, TYPES, pages 27–46, 2014.

3 Franz Baader and Jörg H. Siekmann. Unification theory. In Handbook of Logic in Artificial
Intelligence and Logic Programming, Volume 2, Deduction Methodologies, pages 41–126. Oxford
University Press, 1994.

4 Marc Bezem and Thierry Coquand. Loop-checking and the uniform word problem for join-
semilattices with an inflationary endomorphism. Theoretical Computer Science, 913:1–7, 2022.
doi:10.1016/j.tcs.2022.01.017.

5 Marc Bezem, Thierry Coquand, Peter Dybjer, and Martín Escardó. The Burali-Forti argument
in HoTT/UF with applications to the type of groups in a universe. https://www.cs.bham.ac.
uk/~mhe/TypeTopology/Ordinals.BuraliForti.html, 2022.

6 Luca Cardelli. Basic polymorphic typechecking. Science of Computer Programming, 8(2):147–
172, 1987. doi:10.1016/0167-6423(87)90019-0.

7 Mario Carneiro. The type theory of Lean. Master Thesis, Carnegie-Mellon University, 2019.
8 Antoine Chambert-Loir. A presheaf that has no associated sheaf. https://freedommathdance.

blogspot.com/2013/03/a-presheaf-that-has-no-associated-sheaf.html, 2013.
9 Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic Logic,

5:56–68, 1940.
10 Thierry Coquand. Canonicity and normalization for dependent type theory. Theoretical

Computer Science, 777:184–191, 2019. doi:10.1016/j.tcs.2019.01.015.
11 Judicaël Courant. Explicit universes for the calculus of constructions. In Theorem Proving

in Higher Order Logics, TPHOLs, volume 2410 of Lecture Notes in Computer Science, pages
115–130. Springer, 2002. doi:10.1007/3-540-45685-6_9.

12 Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von Raumer.
The Lean theorem prover (system description). In Conference on Automated Deduction
(CADE-25), volume 9195 of Lecture Notes in Computer Science, pages 378–388, 2015.

13 Martín Hötzel Escardó. Introduction to univalent foundations of mathematics with Agda.
CoRR, 2019. arXiv:1911.00580.

14 Martín Hötzel Escardó et al. TypeTopology. https://www.cs.bham.ac.uk/~mhe/
TypeTopology/index.html. Agda development.

15 Thiago Felicissimo, Frédéric Blanqui, and Ashish Kumar Barnawal. Translating proofs from
an impredicative type system to a predicative one. In Computer Science Logic (CSL), 2023.

TYPES 2022

https://doi.org/10.1145/3158111
https://doi.org/10.1016/j.tcs.2022.01.017
https://www.cs.bham.ac.uk/~mhe/TypeTopology/Ordinals.BuraliForti.html
https://www.cs.bham.ac.uk/~mhe/TypeTopology/Ordinals.BuraliForti.html
https://doi.org/10.1016/0167-6423(87)90019-0
https://freedommathdance.blogspot.com/2013/03/a-presheaf-that-has-no-associated-sheaf.html
https://freedommathdance.blogspot.com/2013/03/a-presheaf-that-has-no-associated-sheaf.html
https://doi.org/10.1016/j.tcs.2019.01.015
https://doi.org/10.1007/3-540-45685-6_9
https://arxiv.org/abs/1911.00580
https://www.cs.bham.ac.uk/~mhe/TypeTopology/index.html
https://www.cs.bham.ac.uk/~mhe/TypeTopology/index.html

13:14 Type Theory with Explicit Universe Polymorphism

16 Jean-Yves Girard. Thèse d’État. PhD thesis, Université Paris VII, 1971.
17 Jean Giraud. Cohomologie non abélienne. Springer, 1971. doi:10.1007/978-3-662-62103-5.
18 Robert Harper and Robert Pollack. Type checking with universes. Theoretical Computer

Science, 89:107–136, 1991.
19 Hugo Herbelin. Type inference with algebraic universes in the Calculus of Inductive Construc-

tions. http://pauillac.inria.fr/~herbelin/articles/univalgcci.pdf, 2005.
20 Gérard Huet. Extending the calculus of constructions with Type:Type. unpublished manuscript,

April 1987.
21 Per Martin-Löf. On the strength of intuitionistic reasoning. Preprint, Stockholm University,

1971.
22 Per Martin-Löf. A theory of types. Preprint, Stockholm University, 1971.
23 Per Martin-Löf. An intuitionistic theory of types. Preprint, Stockholm University, 1972.
24 Per Martin-Löf. An intuitionistic theory of types: Predicative part. In H. E. Rose and J. C.

Shepherdson, editors, Logic Colloquium ‘73, pages 73–118. North Holland, 1975.
25 Per Martin-Löf. Constructive mathematics and computer programming. In Logic, Methodology

and Philosophy of Science, VI, 1979, pages 153–175. North-Holland, 1982.
26 Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.
27 Egbert Rijke, Elisabeth Bonnevier, Jonathan Prieto-Cubides, Fredrik Bakke, and others.

Univalent mathematics in Agda. https://github.com/UniMath/agda-unimath/.
28 Carlos Simpson. Computer theorem proving in mathematics. Letters in Mathematical Physics,

69(1-3):287–315, July 2004. doi:10.1007/s11005-004-0607-9.
29 Matthieu Sozeau. Explicit universes. https://coq.inria.fr/refman/addendum/universe-

polymorphism.html#explicit-universes.
30 Matthieu Sozeau and Nicolas Tabareau. Universe polymorphism in Coq. In Interactive

Theorem Proving (ITP), 2014.
31 Thomas Streicher. Semantics of Type Theory. Birkhäuser, 1991.
32 Agda team. The Agda manual. URL: https://agda.readthedocs.io/en/v2.6.2.1/.
33 The 1Lab Development Team. The 1Lab. https://1lab.dev.
34 The Agda Community. Agda standard library. https://github.com/agda/agda-stdlib.
35 The Coq Community. Coq. https://coq.inria.fr.
36 The Cubical Agda Community. A standard library for Cubical Agda. https://github.com/

agda/cubical.
37 The HoTT-Agda Community. HoTT-Agda. https://github.com/HoTT/HoTT-Agda.
38 François Thiré. Interoperability between proof systems using the logical framework De-

dukti. (Interopérabilité entre systèmes de preuve en utilisant le cadre logique Dedukti).
PhD thesis, École normale supérieure Paris-Saclay, Cachan, France, 2020. URL: https:
//tel.archives-ouvertes.fr/tel-03224039.

39 Vladimir Voevodsky. Universe polymorphic type system. http://www.math.ias.edu/
Voevodsky/voevodsky-publications_abstracts.html#UPTS, 2014.

40 William C. Waterhouse. Basically bounded functors and flat sheaves. Pacific Math. J,
57(2):597–610, 1975.

A Formulation with cumulativity

We introduce an operation Tm
l (A) : Um if A : Ul and l ⩽ m (i.e., m = l ∨m).4

We require Tm(Tm
l (A)) = Tl(A). Note that this yields, e.g., a : Tm(Tm

l (A)) if a : Tl(A).
We also require Tm

l (Nl) = Nm (l ⩽ m), and Tm
l (Ul

k) = Um
k (k < l ⩽ m), as well as Tm

l (A) = A

(l = m) and Tn
m(Tm

l (A)) = Tn
l (A) (l ⩽ m ⩽ n), for all A : Ul.

4 Recall that the equality of universe levels is the one of sup-semilattice with the _+ operation.

https://doi.org/10.1007/978-3-662-62103-5
http://pauillac.inria.fr/~herbelin/articles/univalgcci.pdf
https://github.com/UniMath/agda-unimath/
https://doi.org/10.1007/s11005-004-0607-9
https://coq.inria.fr/refman/addendum/universe-polymorphism.html#explicit-universes
https://coq.inria.fr/refman/addendum/universe-polymorphism.html#explicit-universes
https://agda.readthedocs.io/en/v2.6.2.1/
https://1lab.dev
https://github.com/agda/agda-stdlib
https://coq.inria.fr
https://github.com/agda/cubical
https://github.com/agda/cubical
https://github.com/HoTT/HoTT-Agda
https://tel.archives-ouvertes.fr/tel-03224039
https://tel.archives-ouvertes.fr/tel-03224039
http://www.math.ias.edu/Voevodsky/voevodsky-publications_abstracts.html#UPTS
http://www.math.ias.edu/Voevodsky/voevodsky-publications_abstracts.html#UPTS

M. Bezem, T. Coquand, P. Dybjer, and M. Escardó 13:15

We can then simplify the product and sum rules to

A : Ul B : Tl(A) → Ul

ΠlAB : Ul

A : Ul B : Tl(A) → Ul

ΣlAB : Ul

with conversion rules

Tl (ΠlAB) = Πx:Tl(A)Tl(B x) Tl (ΣlAB) = Σx:Tl(A)Tl(B x)

and

Tm
l (ΠlAB) = ΠmTm

l (A)(λx:Tl(A)Tm
l (B x)) Tm

l (ΣlAB) = ΣmTm
l (A)(λx:Tl(A)Tm

l (B x))

Recall the family Idl(A, a, b) : Ul for A : Ul and a : Tl(A) and b : Tl(B), with judgemental
equality Tl(Idl(A, a, b)) = Id(Tl(A), a, b). We add the judgmental equalities Tm

l (Idl(A, a, b)) =
Idm(Tm

l (A), a, b); note that a and b are well-typed since Tm(Tm
l (A)) = Tl(A).

Example. Recall the type Eql,l(A,B) : Ul for A and B in Ul, with judgmental equality
Tl(Eql,l(A,B)) = Equiv(Tl(A),Tl(B)). For m > l, a consequence of univalence for Um and
Ul is that we can build an element of the type

Id(Um,Eqm,m(Tm
l (A),Tm

l (B)), Idm(Um
l , A,B)).

B Notions of model and formulation à la Russell

Generalised algebraic presentation

In a forthcoming paper, we plan to present some generalised algebraic theories of level-indexed
categories with families with extra structure. The models of these theories provide suitable
notions of model of our type theories with level judgments. Moreover, the theories presented
in this paper are initial objects in categories of such models.

▶ Remark 2. As explained in [31], in order to see the theories in this paper as presenting
initial models, it is enough to use a variation where application c a : B(a/x) for c : Πx:AB

and a : A is annoted by the type family A,B (and similarly for the pairing operation). If the
theories satisy the normal form property, it can then be shown that also the theories without
annotated application are initial.

Russell formulation

Above, we presented type theories with universe level judgments à la Tarski. There are
alternative formulations à la Russell (using the terminology introduced in [26] of universes).
One expects these formulations to be equivalent to the Tarski-versions, and thus also initial
models. For preliminary results in this direction see [2, 38].

With this formulation, the version without cumulativity becomes

A : Un

A type

A : Un B : Um(x : A)
Πx:AB : Un∨m

A : Un B : Um(x : A)
Σx:AB : Un∨m

l level
N : Ul

TYPES 2022

13:16 Type Theory with Explicit Universe Polymorphism

A : Un a0 : A a1 : A
Id(A, a0, a1) : Un

l < n

Ul : Un

For the version with cumulativity, we add the rules

A : Ul l ⩽ n

A : Un

and the rules for products and sums can be simplified to

A : Un B : Un (x : A)
Πx:AB : Un

A : Un B : Un (x : A)
Σx:AB : Un

For m > l the consequence of univalence for Um and Ul mentioned in Appendix A can
now be written simply as

Id(Um,Equiv(A,B), Id(Ul, A,B)).

▶ Remark 3. In the version à la Tarski, with or without cumulativity, terms have unique
types, in the sense that if t : A and t : B then A = B, by induction on t. But for this to
be valid, we need to annotate application as discussed in Remark 2. Even with annotated
application, the following property is not elementary: if Un and Um are convertible then n is
equal to m. This kind of property is needed for showing the equivalence between the Tarski
and the Russell formulation.
▶ Remark 4. If, in a system without cumulativity, we extend our system of levels with a least
level 0, then if we restrict N to be of type U0, and Un to be of type Un+1 then well formed
terms have unique types.
▶ Remark 5. It should be the case that the above formulation à la Russell presents the initial
CwF with extra extructure for the standard type formers and a hierarchy of universes, but
the proof doesn’t seem to be trivial, due to Remark 3.

A Univalent Formalization of Constructive Affine
Schemes
Max Zeuner #

Department of Mathematics, Stockholm University, Sweden

Anders Mörtberg #

Department of Mathematics, Stockholm University, Sweden

Abstract
We present a formalization of constructive affine schemes in the Cubical Agda proof assistant.
This development is not only fully constructive and predicative, it also makes crucial use of
univalence. By now schemes have been formalized in various proof assistants. However, most
existing formalizations follow the inherently non-constructive approach of Hartshorne’s classic
“Algebraic Geometry” textbook, for which the construction of the so-called structure sheaf is rather
straightforwardly formalizable and works the same with or without univalence. We follow an
alternative approach that uses a point-free description of the constructive counterpart of the Zariski
spectrum called the Zariski lattice and proceeds by defining the structure sheaf on formal basic
opens and then lift it to the whole lattice. This general strategy is used in a plethora of textbooks,
but formalizing it has proved tricky. The main result of this paper is that with the help of the
univalence principle we can make this “lift from basis” strategy formal and obtain a fully formalized
account of constructive affine schemes.

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of
computation → Constructive mathematics; Theory of computation → Type theory

Keywords and phrases Affine Schemes, Homotopy Type Theory and Univalent Foundations, Cubical
Agda, Constructive Mathematics

Digital Object Identifier 10.4230/LIPIcs.TYPES.2022.14

Related Version Full Version: https://arxiv.org/abs/2212.02902

Supplementary Material Software (Agda Source Code): https://github.com/agda/cubical/blob/
310a0956bb45ea49a5f0aede0e10245292ae41e0/Cubical/Papers/AffineSchemes.agda

archived at swh:1:cnt:beb6a5859db19530348074be6e9166c04871e6c7

Funding This paper is based upon research supported by the Swedish Research Council (SRC,
Vetenskapsrådet) under Grant No. 2019-04545. The research has also received funding from the
Knut and Alice Wallenberg Foundation through the Foundation’s program for mathematics.

Acknowledgements We would like to thank Thierry Coquand for his continued feedback and
invaluable comments throughout this project. We are also indebted to Felix Cherubini for his
comments and his work on the Cubical Agda library, particularly for his ring solver. Furthermore,
we thank Martín Hötzel Escardó, Peter Dybjer, Peter LeFanu Lumsdaine, Egbert Rijke and the
participants of the “Proof and Computation” autumn school in Fischbachau for our discussions.

1 Introduction

Algebraic geometry originated as the study of solutions of polynomials. Historically, the
geometric objects of interest would be for example complex affine varieties – subsets of
Cn defined by systems of polynomial equations. Starting with the pioneering work of
Grothendieck in the 1960s, the scope of the discipline was drastically widened, making it
one of the most pervasive in modern day mathematics. At the heart of this development
are schemes – geometric objects that generalize from algebraically closed fields, like C, to
arbitrary commutative rings.

© Max Zeuner and Anders Mörtberg;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Types for Proofs and Programs (TYPES 2022).
Editors: Delia Kesner and Pierre-Marie Pédrot; Article No. 14; pp. 14:1–14:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zeuner@math.su.se
https://orcid.org/0000-0003-3092-8144
mailto:anders.mortberg@math.su.se
https://orcid.org/0000-0001-9558-6080
https://doi.org/10.4230/LIPIcs.TYPES.2022.14
https://arxiv.org/abs/2212.02902
https://github.com/agda/cubical/blob/310a0956bb45ea49a5f0aede0e10245292ae41e0/Cubical/Papers/AffineSchemes.agda
https://github.com/agda/cubical/blob/310a0956bb45ea49a5f0aede0e10245292ae41e0/Cubical/Papers/AffineSchemes.agda
https://archive.softwareheritage.org/swh:1:cnt:beb6a5859db19530348074be6e9166c04871e6c7;origin=https://github.com/agda/cubical;visit=swh:1:snp:6c0fa1eed7d4351ff101f5a072743b01435e35e9;anchor=swh:1:rev:310a0956bb45ea49a5f0aede0e10245292ae41e0;path=/Cubical/Papers/AffineSchemes.agda
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Univalent Constructive Affine Schemes

A point a ∈ C corresponds to the maximal ideal of the polynomial ring C[x] consisting of
polynomials p such that p(a) = 0, i.e. the ideal generated by (x− a). By looking not only at
maximal ideals, but also at prime ideals of C[x], we arrive at the spectrum of C[x], denoted
SpecC[x]. As C[x] has a non-maximal prime ideal, the zero-ideal, SpecC[x] contains an
additional point to C and carries a very different topology. This is called the Zariski topology
in which the open sets are generated by basic opens D(p) ⊆ SpecC[x] where p ∈ C[x]. If
p ≠ 0, D(p) corresponds to the set of points a where p(a) ̸= 0 together with the zero-ideal.
The spectrum can then be equipped with a structure sheaf that associates to every Zariski
open set U a ring of “rational functions” definable on U . For a basic open D(p), this will
be the ring of function q(x)/p(x)n where q is another polynomial. This corresponds to the
functions of the quotient ring C(x) that are definable everywhere but at the zeros of p. See
Vakil’s “The Rising Sea” [34, Ex. 3.2.3.1] for a more in-depth discussion of this motivating
example and an illustration of SpecC[x].

This construction can be carried out for any commutative ring R instead of C[x]: the
spectrum SpecR is the set of prime ideals of R and its Zariski topology is again generated by
basic opens. For f ∈ R, the basic open D(f) is the set of prime ideals that do not contain f .
The structure sheaf maps D(f) to the localization R[1/f], the ring of fractions r/fn where
r ∈ R and the denominator is a power of f . One can prove that this always defines a sheaf,
i.e. is compatible with taking covers of open sets in a certain sense.

When Grothendieck introduced the general notion of (affine) schemes, he did so in a
structural fashion that is typical for his work. Mathematical objects, in particular algebraic
structures, are taken to be identical if they are isomorphic in some unique, or at least
canonical, way. When constructing the structure sheaf, however, this leads to a problem of
well-definedness: if D(f) = D(g), then we better have R[1/f] = R[1/g]. Unfortunately, it is
not difficult to come up with examples violating this. For example, we have D(x) = D(x2) in
C[x] (both functions vanish only at 0), but formally speaking C[x][1/x] is not strictly the same
ring as C[x][1/x2] despite them clearly being isomorphic and describing the same sub-ring of
the quotient ring C(x), as 1/x = x/x2.

In this paper we show how this problem can be solved with the help of univalence. In
particular, we present a formalization in Cubical Agda [35] of constructive affine schemes
following Coquand, Lombardi and Schuster [10]. In the constructive setting, the Zariski
spectrum of a commutative ring is replaced by the so-called Zariski lattice. Elements of this
lattice are finitely generated by formal basic opens, which allows for a completely predicative
approach that does not require additional assumptions like Voevodsky’s resizing axioms [38].

The definition of constructive affine schemes still works analogously to the classical
definition given in most textbooks ranging from Grothendieck’s authoritative classic “EGA
I” [13], to more modern treatments such as “Algebraic Geometry” by Görtz and Wedhorn
[15], “The Rising Sea” by Vakil [34], or Johnstone’s “Stone Spaces” [18]. In either case one
starts with the basic opens, on which the structure sheaf is defined and proved to be a
sheaf. Using abstract categorical machinery this is then lifted to a sheaf on the whole Zariski
spectrum/lattice. More precisely, one takes the right Kan extension along the inclusion of
basic opens, which preserves the sheaf property.

From a constructive, predicative point of view there are two differences that make this
construction work for the Zariski lattice. Predicatively, the inclusion of basic opens into the
Zariski lattice is one of small categories, while the inclusion into the classical spectrum is
not. Furthermore, since we are only concerned with sheaves on a distributive lattice and not
on a general locale or topological space, we only have to consider finite covers. This allows
for a predicative proof that the right Kan extension preserves sheaves on lattices. From a

M. Zeuner and A. Mörtberg 14:3

classical point of view this is not really a restriction as SpecR is always a coherent space. As
a result, sheaves on SpecR are in bijection to (finitary) sheaves on the Zariski lattice. For
more details see e.g. Johnstone’s “Stone Spaces” [18] and Section 6.1 of this paper.

Regardless of whether one formalizes the classical or constructive definitions, the main
bottlenecks of the formalization are already found at the level of basic opens. First and
foremost, there is the well-definedness problem described above. The second bottleneck is
proving that the structure sheaf actually is a sheaf on basic opens. In fact, the problem
with the textbook proof of the sheaf property is the well-definedness problem in disguise.
Those two points were exactly where the most prominent formalization of schemes [4] in
Lean’s mathlib [26] encountered problems. In this paper, we show that with the help of
univalence it is in fact possible to overcome the issues of well-definedness and formalize
the structure sheaf directly on basic opens and prove its sheaf property. Even though we
work in the constructive, predicative setting using the Zariski lattice, the techniques used
to overcome the problems on the level of basic opens should be applicable to a classical
formalization in type theory with univalence and classical axioms added. The key insight is
that localizations are not just commutative rings, but also commutative algebras over R. In
R-algebras, isomorphisms, and thus also paths, between two localizations are unique, which
ensures well-definedness of the structure sheaf.

As mentioned above, our work is completely formalized1 in Cubical Agda, an extension of
the Agda proof assistant [31] based on the cubical type theory of [7, 8] with fully constructive
support of the univalence axiom and higher inductive types (HITs). However, nothing relies
crucially on cubical features, or on univalence and eliminators applied to higher constructors
of HITs computing definitionally, in our formalization. The only HoTT/UF features that
we rely on are univalence and set quotients (from which propositional truncation follows).
It would hence be possible to perform the formalization in a system implementing Book
HoTT [33] or in UniMath [36]. Our work is thus in line with the aim of Voevodsky’s
Foundations library [39] of developing a library of constructive set-level mathematics based
on Univalent Foundations.

Contributions

As mentioned above, the formalization presented in this paper generally follows the con-
structive, lattice-based approach of [10]. However, a number of design choices had to be
made to ensure predicativity of our formalization and to enable us to formally prove the
well-definedness of the structure sheaf. As a result some definitions and proofs deviate
from the presentation in [10]. The main design choices and contributions of the paper and
formalization can be summarized under the following topics:

Commutative algebra: our formalization of localizations of commutative rings in
Section 3.1 closely follows Atiyah and MacDonald’s classic textbook [2], which works
very well for our constructive approach. However, giving a predicative definition of the
Zariski lattice that does not increase universe levels was more intricate. To this end,
Section 3.2 contains a construction that refines the ideal-based description of [10] using
ideas of Español [14].

1 All results discussed are integrated in the agda/cubical library and are summarized in:
https://github.com/agda/cubical/blob/310a0956bb45ea49a5f0aede0e10245292ae41e0/Cubical/
Papers/AffineSchemes.agda
This is a permalink to the library at the time of writing, which type-checks with Agda version 2.6.3.
A clickable rendered version that might be subject to change can be found here:
https://agda.github.io/cubical/Cubical.Papers.AffineSchemes.html

TYPES 2022

https://github.com/agda/cubical/blob/310a0956bb45ea49a5f0aede0e10245292ae41e0/Cubical/Papers/AffineSchemes.agda
https://github.com/agda/cubical/blob/310a0956bb45ea49a5f0aede0e10245292ae41e0/Cubical/Papers/AffineSchemes.agda
https://agda.github.io/cubical/Cubical.Papers.AffineSchemes.html

14:4 Univalent Constructive Affine Schemes

Category theory: in Section 4 we present a formal notion of sheaf on a distributive
lattice that closely follows [10]. However, in [10] presheaves are extended from a basis of
a distributive lattice to the whole lattice in a somewhat non-standard finitary way. This
is to ensure predicativity, but it actually causes problems when working in a univalent
setting. We found that the point-wise right Kan extension of presheaves, as e.g. presented
in MacLane’s classic textbook [23], works just fine even in the constructive and predicative
setting. We then give a proof that the Kan extension preserves the sheaf property. This
can be seen as the main step towards a constructive and predicative “comparison lemma”
that gives an equivalence of categories between sheaves on a lattice and sheaves on a
basis of the lattice.
Constructive affine schemes: in Section 5 we construct the structure sheaf on basic
opens and extend it to the Zariski lattice. We give general heuristics for constructing
presheaves (valued in R-algebras) on subsets defined using propositional truncation. The
well-definedness of the presheaves thus constructed follows from univalence. The structure
sheaf is a special instance of this construction with the basic opens seen as a subset of
the Zariski lattice. Proving the sheaf property on basic opens can then be reduced to
standard commutative algebra, again by using univalence in a way that does not require
to extract the isomorphisms underlying the applications of univalence.

2 Background

Here we give the necessary background for the paper. We first sketch the constructive
approach to schemes of [10]. We then continue with an introduction to the concepts of
Cubical Agda needed for the paper.

2.1 Affine schemes constructively
Recall that, classically, the spectrum of a commutative ring R is the set of its prime ideals
SpecR = {p ⊆ R | p prime} equipped with the Zariski topology. The open sets of this
topology are generated by basic opens D(f) = {p | f /∈ p} for f ∈ R. Constructively, there
are two issues with this. First, the notion of prime ideal is not really well-behaved. One of
the main reasons for this is that the central notion of localizing at a prime ideal p actually
uses the set-theoretic complement R \ p, which does not work well constructively without
additional decidability assumptions.2 To remedy this, one can define the notion of a prime
filter on R and check that classically those are exactly the complements of prime ideals.

The second issue concerns the point-set definition of a topological space itself. For a
constructive development of algebraic geometry it is preferable to avoid this definition and
instead characterize the locale of open sets of SpecR in a direct, point-free way. This can
be done by observing that the closed sets of the Zariski topology admit a direct algebraic
characterization. Every closed set is of the form V (a) = {p | a ⊆ p}, where a is a radical
ideal. An ideal a ⊆ R is radical if a =

√
a, where

√
a =

{
x ∈ R | ∃n > 0 : xn ∈ a

}
The locale of Zariski opens can thus be characterized by the set of radical ideals of R. The
join and meet operation can be defined using addition and multiplication of ideals.

2 See e.g. the discussion by Mines, Richman and Ruitenberg in their standard textbook on constructive
algebra [27, Section III.3].

M. Zeuner and A. Mörtberg 14:5

From a predicative viewpoint this is still unsatisfactory. Predicatively, the ideals of a
ring form a proper class and consequently the Zariski locale is not a set in such a setting.
However, by restricting to the lattice of compact open sets of the Zariski topology these size
issues can be avoided.3 Classically, the objects of this lattice are finite unions of basic opens
D(f1) ∪ · · · ∪D(fn) and the join and meet operation are just union ∪ and intersection ∩.
Note that for the meet this only works because basic opens are closed under intersections,
i.e. we have D(f) ∩D(g) = D(fg) for any f, g ∈ R.

As with the locale of Zariski opens, this so-called Zariski lattice LR of a commutative
ring R can be described in a point-free way. This was first done by Joyal [19], using the
observation that the Zariski lattice has a certain universal property. The lattice itself can be
defined as the free distributive lattice generated by formal symbols D(f), f ∈ R, satisfying
the following relations:

D(1) = ⊤ and D(0) = ⊥ (1)
∀f, g ∈ R : D(fg) = D(f) ∧D(g) (2)
∀f, g ∈ R : D(f + g) ≤ D(f) ∨D(g) (3)

The induced map D : R→ LR is universal in the following sense: for any distributive lattice
L and support map d : R→ L, i.e. any map d such that conditions (1)-(3) above hold for d
(in place of D), there is a unique lattice homomorphism φ : LR → L such that the following
commutes

R

LR L

D d

∃! φ

Using the correspondence of Zariski opens with radical ideals, the elements of LR can also
be described as the radicals of finitely generated ideals. For two finitely generated ideals
a, b ⊆ R, the join and meet of the radicals are then given by
√
a ∨
√
b =
√
a + b and

√
a ∧
√
b =
√
ab

using the fact that addition and multiplication of two finitely generated ideals is again finitely
generated. The support D : R→ LR maps f ∈ R to the radical of the principal ideal

√
⟨f⟩

and for any support d : R→ L, the unique morphism φ : LR → L is given by

φ
(√
⟨f1, . . . , fn⟩

)
= d(f1) ∨ · · · ∨ d(fn)

In Section 3.2, we will show how to formalize this Zariski lattice of radicals of finitely
generated ideals and prove its universal property while avoiding size issues.

The lattice theoretic approach does require a notion of a sheaf on a distributive lattice.
Recall that a sheaf on a topological space X is just a sheaf on the locale of open sets of X.
By restricting the definition of sheaf on a locale to finite covers one obtains sheaves on a
distributive lattice. This means that for any distributive lattice L, a presheaf F : Lop → C,
valued e.g. in commutative rings (i.e. C = CommRing), is a sheaf if for all x1, . . . , xn ∈ L the
following is an equalizer diagram

3 Through a more careful analysis one might be able to define the structure sheaf on the large Zariski
locale in predicative univalent foundations, as long as one uses a small type of basic opens. See the
recent work by de Jong and Hötzel Escardó [11] and by Tosun and Hötzel Escardó [32] for results of this
kind. For the development of constructive and predicative scheme theory however, it seems certainly
advantageous to work with the small Zariski lattice.

TYPES 2022

14:6 Univalent Constructive Affine Schemes

F
(n∨
i=1

xi

)
→

n∏
i=1
F(xi) ⇒

∏
i<j

F(xi ∧ xj)

A basis of a distributive lattice is a subset B ⊆ L containing ⊤ and closed under meets, such
that for any x ∈ L there exists a finite list b1, . . . , bn ∈ B such that x =

∨n
i=1 bi. In Section 4,

we describe how to obtain sheaves on L from sheaves on B. This works analogous to the
special case of the so-called comparison lemma for topological spaces. For the structure sheaf,
the idea is to map D(f) to the ring R[1/f], the localization of R away from f . Recall that for
a subset S ⊆ R containing 1 and being closed under multiplication, the localization S−1R is
defined as the ring of fractions r/s where r ∈ R and s ∈ S. Equality of fractions is given by

r1

s1
= r2

s2
iff ∃u ∈ S : u(r1s2 − r2s1) = 0

R[1/f] is defined by localizing with S = {1, f, f2, f3, . . . }. Its elements are thus fractions r/fn

where the denominator is a power of f and equality can be rephrased as

r

fn
= r′

fm
iff ∃k ∈ N : fk+mr = fk+nr′

Verifying that the presheaf defined by sending D(f) to R[1/f] is indeed a sheaf on the basis
BR ⊆ LR of basic opens proceeds the same way in any constructive or classical account.
As indicated in the introduction, there are some issues to be overcome when formalizing
the construction of the structure sheaf. In this paper we discuss what a solution to these
problems can look like in a univalent setting.4

2.2 Set-level univalent mathematics in Cubical Agda
We will now briefly discuss the concepts needed from Cubical Agda for this paper, for more
details see [35]. Our notation is inspired by Agda syntax and the agda/cubical library,
but we have taken some liberties when typesetting, e.g. shortening notations and omitting
some projections and universe levels whenever possible. We write Type ℓ for universes (at
level ℓ) and Σ[x ∈ A] B(x) for dependent pair types over a family B : A→ Type ℓ. The
major difference when working in Cubical Agda compared to vanilla Agda or Book HoTT is
that the primary identity type is changed from Martin-Löf’s inductive construction [25] to a
primitive path-type. The identification x≡ y is captured by PathAxy, the type of functions
p : I → A, where I is a primitive interval type, restricting definitionally to x and y at the
endpoints i0 and i1 of I. Cubical Agda also has a dependent path type, PathP. Given a line
of types B : I → Type, which we may think of as B(i0) ≡ B(i1), and x : B(i0), y : B(i1), the
type PathP B x y expresses that x and y may be identified relative to B. The regular path
type _≡_ is, by definition, PathP (λ i → A), i.e. the special case of a constant line of types.

Cubical Agda also comes with a function ua : A≃B → A≡B which promotes equiv-
alences (or isomorphisms) of types to paths between these types. The fact that this map
is an equivalence itself is a way to formulate Voevodsky’s univalence axiom. A reasonable
question to ask in a univalent setting is whether an equivalence of types can be promoted to

4 A solution that is e.g. taken in [10], is to map D(f) to S−1
f R, the ring of fractions whose denominators

are elements of the saturation Sf = {g | D(f) ⊆ D(g) }. It is immediate to see that if D(f) = D(g),
then S−1

f R = S−1
g R, but it is not as natural to work with these rings. Usually, one still wants to appeal

to the “canonical isomorphism” between R[1/f] and S−1
f R, as in e.g. [13, Sect. 1.3].

M. Zeuner and A. Mörtberg 14:7

an equality of structured types, such as groups or rings. The Structure Identity Principle
(SIP) [33, Sect. 9.8] is an informal principle which attempts to answer this: given two
structured types (A,SA) and (B,SB) and an equivalence of underlying types A ≃ B which
is a homomorphisms with respect to the structure in question, we get a path of structured
types (A,SA)≡ (B,SB). For instance, an isomorphism of rings R and S induces a path
R≡S. This has been implemented in agda/cubical using the cubical SIP of Angiuli, Cav-
allo, Mörtberg and Zeuner [1]. For this paper we will use sip to denote the function that
turns isomorphisms of commutative rings or R-algebras (over a ring R) into paths.

Univalence refutes Uniqueness of Identity Proofs (UIP), or Streicher’s axiom K [30],
because it produces equality proofs in Type that are not equal [33, Ex. 3.1.9]. In the presence
of univalence, it is therefore important to keep track of which types satisfy UIP or related
principles expressing the complexity of a type’s equality relation. In the terminology of
HoTT/UF, a type satisfying UIP is called an h-set (homotopy set, henceforth simply set),
while a type whose elements are all equal is called an h-proposition (henceforth proposition).

Another very important concept in HoTT/UF is that of contractible types, i.e. types with
exactly one element:

isContr : Type → Type
isContr A = Σ[x ∈ A] ((y : A) → x ≡ y)

We can characterize propositions as types whose equality types are contractible, just as sets
are types whose equality types are propositions. Thus contractible types, propositions, and
sets serve as the bottom three layers of an infinite hierarchy of types introduced by Voevodsky,
known as h-levels [37] or n-types [33]. This paper is about set-level mathematics, so we are
mainly interested in these 3 bottom layers. However, univalence implies that collections of
set-level structures (e.g. the collection of all commutative rings or R-algebras) are one level
higher than sets. Types at this level are called h-groupoids (heceforth groupoids) and will
be the only types of h-level higher than 2 in the paper. We write isProp A to say that A
is a proposition and isSet A to say that A is a set. The “universe of propositions” hProp ℓ
is defined as Σ[A ∈ Type ℓ] (isProp A), and if isSet A, we call functions S : A → hProp ℓ
a subset of A. For a : A we denote by a ∈ S the type of proofs that a is actually in S. It
is often convenient to identify the subset S with Σ[a ∈ A] (a ∈ S), which can be seen as
a sub-type of A. With some abuse of notation we will not distinguish between subsets as
functions and the corresponding Σ-type. We thus write a : S for elements of S when the
proof of a belonging to S can be ignored.

Another concept from HoTT/UF which Cubical Agda supports are higher inductive types
(HITs). These allow us to define many important operations on types, such as truncations.
For instance, the propositional truncation is defined by:

data ∥_∥ (A : Type ℓ) : Type ℓ where
|_| : A → ∥ A ∥
squash : isProp ∥ A ∥

This HIT takes a type A and forces it to be a proposition. This is a very important
construction for capturing existential quantification in HoTT/UF:

∃[x ∈ A] P (x) = ∥Σ[x ∈ A] P (x) ∥

In this paper, we follow the HoTT Book terminology and say that x merely exists when it is
existentially quantified. Note that the propositional truncation in the definition is crucial. In
HoTT/UF, ΣAP without the truncation is interpreted as the total space of P , which may
be highly non-trivial. For example, a subset B of a lattice L is a basis if

TYPES 2022

14:8 Univalent Constructive Affine Schemes

∀ (x : L)→ ∃[b1, . . . , bn ∈ B] (
∨n
i=1 bi ≡ x)

Here the propositional truncation is necessary. We will see this in Section 3.2, when proving
that the basic opens form a basis of LR.

The main HIT that we use in this paper is the set quotient, which quotients a type by
an arbitrary relation, yielding a set. It has three constructors: [_], which includes elements
of the underlying type, eq/, which equates all pairs of related elements, and squash/, which
ensures that the resulting type is a set:

data _/_ (A : Type ℓ) (R : A → A → Type ℓ) : Type ℓ where
[_] : (a : A) → A / R
eq/ : (a b : A) → (r : R a b) → [a] ≡ [b]
squash/ : isSet (A / R)

We can write functions out of A / R by pattern-matching; this amounts to writing a function
out of A (the clause for [_]) which sends R-related elements of A to equal results (the clause
for eq/), such that the image of the function is a set (the clause for squash/). Set quotients
and propositional truncations have in common that the resulting type will be of a fixed
h-level and this makes it very hard to map into types of higher h-levels. In fact, the higher
the h-level of the target type, the more complicated the coherence conditions that need to be
proved. We will see an example of this in Section 5.

3 Commutative algebra

In this section, we first discuss our formalization of localizations of rings, followed by the
definition of the Zariski lattice. These objects can be described by universal properties, but
may also be concretely implemented as set quotients. One of the guiding principles of this
project was to work with concrete implementations and mainly use universal properties to
construct equivalences and paths (via the SIP). As a result the formalization follows the
usual informal treatment in the commutative algebra literature quite closely.

3.1 Localizations
Our formalization of localizations of commutative rings follows the classic textbook of Atiyah
and MacDonald [2], with our main result being a path version of [2, Cor. 3.2]. Note that the
definition of localization is actually the same in classical and constructive algebra.5 For the
remainder of this paper we will only consider commutative rings with a multiplicative unit
(denoted by 1). Let R be such a ring and S a subset of R that contains 1 and is closed under
multiplication. The formalization of localization is then straightforward:

S−1R : Type
S−1R = (R × S) / _≈_

where
≈ : R × S → R × S → Type
(r1 , s1 , _) ≈ (r2 , s2 , _) = Σ[(u , _) ∈ S] (u · r1 · s2 ≡ u · r2 · s1)

The underscores in the definition of ≈ correspond to the proofs that s1, s2 and s are elements
of S respectively. As these are unimportant to the definition of ≈, we can safely omit them.

5 Compare [2] with e.g. the books by Lombardi and Quitté [22] or Mines, Richman and Ruitenburg [27].

M. Zeuner and A. Mörtberg 14:9

▶ Remark 1. It might be surprising that we define ≈ using a Σ and not an ∃ (as is done e.g.
in [39]). However, it turns out that it does not matter whether one quotients by the truncated
relation using ∃ or the untruncated relation using Σ, as the resulting set-quotients will be
equivalent. As we do not need to prove anything about ≈ except it being an equivalence
relation, it is more convenient to work without the truncation.
Equipping S−1R with the structure of a commutative ring is laborious in Cubical Agda, but
the proofs generally proceed as in any textbook. The same holds for the universal property.
Note that for this we need the canonical homomorphism _/1 : R→ S−1R, mapping r : R to
[r , 1], the equivalence class corresponding to r/1. The universal property then states that
for any commutative ring A with a morphism φ : R → A, such that for all s : S we have
φ(s) ∈ A× (i.e. that φ(s) is a unit in A), there is a unique morphism ψ : S−1R→ A, such
that the following commutes

R

S−1R A

_/1 φ

∃! ψ

The key observation for the main results of this paper is that localizations are R-algebras
via the canonical homomorphism _/1. The type of R-algebras is equivalent to the Σ-
type of a commutative ring A together with a ring homomorphism φ : R → A. An
homomorphism between R-algebras (A,φ) and (B,ψ) is just a ring homomorphism χ : A→ B

together with a path χ ◦ φ ≡ ψ. The type of R-algebra homomorphisms will be denoted by
HomR

[
(A,φ) , (B,ψ)

]
or just HomR

[
A,B

]
if the morphisms are clear from context.

The universal property of localization then becomes a statement about R-algebras.
In HoTT/UF unique existence is defined as contractibility of Σ-types, so the universal
property of the localization at S becomes: for any R-algebra (A,φ) s.t. φ(S) ⊆ A×, the type
HomR

[
S−1R , (A,φ)

]
is contractible. Combining the proof of [2, Cor. 3.2] with the SIP, we

can then prove the following:6

▶ Lemma 2. Let A be a commutative ring with a morphism φ : R→ A satisfying
∀(s : S)→ φ(s) ∈ A×
∀(r : R)→ φ(r) ≡ 0→ ∃[s ∈ S] (sr ≡ 0)
∀(a : A)→ ∃[(r , s) ∈ R× S] (φ(r)φ(s)−1 ≡ a)

From this we can construct a path S−1R ≡ A, which is unique as a path in R-algebras.

With this result we can transport proofs about localizations to any suitable ring and morphism
pair, i.e. R-algebra, satisfying the three conditions above. Below we will see a few applications
of this result that will be used for formalizing constructive affine schemes. The important case
for our purpose is R[1/f], the localization of R away from f . This can be seen as inverting a
single element f in R. The subset S = {1, f, f2, f3, ...} is easily defined in Cubical Agda as
the set of g : R for which we have an inhabitant of ∃[n ∈ N] (g ≡ fn).

For the remainder of this section let f, g : R. By the canonical homomorphism we get
an element g/1 in R[1/f]. With a bit of abuse of notation we denote the localization away
from this element by R[1/f][1/g]. This is an R-algebra by applying the canonical morphism
_/1 twice. We can of course also localize away from (f · g), thus obtaining R[1/fg]. Using
Lemma 2, we can construct a (unique) path between these two, which will be used for the
structure sheaf. Similarly, we also get other useful paths.

6 In Lean’s mathlib a localization is defined to be any ring-morphism-pair satisfying the three conditions
of Lemma 2. The formulation of this predicate is attributed to Neil Strickland in [4].

TYPES 2022

14:10 Univalent Constructive Affine Schemes

▶ Lemma 3. We have the following paths for both commutative rings and R-algebras:
1. R[1/f][1/g] ≡ R[1/fg]
2. R[1/f] ≡ R, if f ∈ R×
3. R[1/f] ≡ R[1/g], if f/1 ∈ R[1/g]× and g/1 ∈ R[1/f]×

3.2 The Zariski lattice
Next, we provide a definition of the Zariski lattice that does not lead to size issues, while
still being convenient to work with. We have already seen that the Zariski lattice LR, which
classically corresponds to the compact open sets of the Zariski topology, can be described
as the lattice of radicals of finitely generated ideals. The meet and join of this lattice are
defined using multiplication and addition of ideals. With some elementary ideal theory this
should be straightforward to formalize. Unfortunately, without any form of impredicativity,
like resizing axioms, this leads to size issues.

So far we have avoided being explicit about universe levels, but in this section let ℓ be
the level of the base ring R, that is, the level of the universe in which the underlying type
of R lives. Being precise about universe levels, subsets of R are elements of R → hProp ℓ,
living in Type (ℓ + 1), the next bigger universe. The type of all ideals of R, which is just
the Σ-type of subsets satisfying the ideal property, is hence in Type (ℓ+ 1). However, for
technical reasons to be discussed in the next section, we need LR : Type ℓ. Consequently, the
definition of LR must not rely on the type of all ideals of R.

To avoid this issue, we use a construction due to Español [14]. Since we are only concerned
with the radicals of finitely generated ideals, we can describe LR in terms of generators
instead of arbitrary ideals. In particular, a list of generators α = [α0, . . . , αn] with αi : R
corresponds to the radical of the ideal generated by the αi. In other words, we can obtain
LR by quotienting the type of lists with elements in R, by the relation

α ∼ β ⇔
(
∀ i→ βi ∈

√
⟨α0, . . . , αn⟩

)
and

(
∀ i→ αi ∈

√
⟨β0, . . . , βm⟩

)
Here ⟨α0, . . . , αn⟩ is the ideal generated by the αi’s. As both the type of lists and ∼ live in
Type ℓ so does their quotient LR. It might seem more natural to quotient by the relation

α ∼∼∼ β ⇔
√
⟨α0, . . . , αn⟩ ≡

√
⟨β0, . . . , βm⟩

Unfortunately the type of paths between two such radicals is large, as for any two ideals I, J
we have I ≡ J : Type (ℓ+ 1). Still, ∼ is equivalent to ∼∼∼ in the sense that we have α ∼ β if
and only if α ∼∼∼ β. This equivalence can then be used in proofs.

Equipping LR with the distributive lattice structure requires us to introduce operations
on lists that correspond to ideal addition and multiplication. For the join we can take list
concatenation _ ++_ as this corresponds to addition of finitely generated ideals in the sense
that for any two lists α, β we have that

⟨ [α0, . . . , αn] ++ [β0, . . . , βm] ⟩ ≡ ⟨α0, . . . , αn, β0, . . . , βm⟩
≡ ⟨α0, . . . , αn⟩+ ⟨β0, . . . , βm⟩ (4)

When checking that _ ++_ defines an operation on the quotient LR, it suffices to check that
it respects ∼∼∼, which in turn follows from (4).

For the meet of LR we need to define an operation _ · ·_ on lists that corresponds to
multiplication of finitely generated ideals. For two lists α, β this product α · ·β is the list of
all products of the form αiβj . Proving the correspondence to ideal multiplication, i.e.

M. Zeuner and A. Mörtberg 14:11

⟨ [α0, . . . , αn] · · [β0, . . . , βm] ⟩ ≡ ⟨α0β0, . . . , αnβ0, . . . , α0βm, . . . , αnβm⟩
≡ ⟨α0, . . . , αn⟩ · ⟨β0, . . . , βm⟩ (5)

is much more involved than (4), but gives us the well-definedness of _ · ·_ on the quotient.
Proving the lattice laws also proceeds by using (4) and (5), together with the equivalence
of ∼ and ∼∼∼, thus reducing these laws to special cases of standard equalities about ideal
addition/multiplication and radical ideals.

Showing the universal property of LR is then relatively straightforward. Note that the
basic opens are defined by the map D : R → LR, sending f : R to [[f]], the equivalence
class of the singleton list [f]. It then becomes straightforward to verify that for f, g : R

D(g) ≤ D(f) ⇔
√
⟨g⟩ ⊆

√
⟨f⟩ ⇔ f ∈ R[1/g]× ⇔ isContr

(
HomR

[
R[1/f] , R[1/g]

])
The last two logical equivalences hold by some standard commutative algebra and the
universal property of localization.7 The basic opens as a subset of LR are defined as the
function BasicOpens : LR → hProp, sending a to ∃[f ∈ R] (D(f) ≡ a). In other words
a ∈ BasicOpens if there merely exists an f such that a equals D(f). The type of basic opens
is then the type BR = Σ[a ∈ LR] (a ∈ BasicOpens). Note that by the universal property, the
only lattice morphism LR → LR commuting with D is the identity and from this it follows
that for any list α = [α0, . . . , αn] the equivalence class [α] is the finite join

∨n
i=0 D(αi).

Since being a basis is a proposition, this is enough to prove that the basic opens form a basis
of LR.

4 Category theory

We now turn to category theory and describe the machinery needed to lift sheaves from the
basis of a distributive lattice to the whole lattice. The lifting of a presheaf defined on a
subset of a distributive lattice, seen as a sub-poset category, is obtained by taking the right
Kan extension along the inclusion. The general theory of limits and Kan extensions in the
formalization closely follows Mac Lane [23]. We will not discuss details here, but only sketch
the lattice case in order to introduce notation and show where size issues enter the picture.

Note that for any category C and P : C → hProp, CP = Σ[x ∈ C] (x ∈ P) becomes a
subcategory of C by taking arrows between pairs to be arrows between the first projections.
The projection fst induces a fully faithful embedding of CP into C. Let us now fix a distributive
lattice L : Type ℓ. For any P : L→ hProp ℓ, LP becomes a sub-poset of L.

Let C be an ℓ-complete category (i.e. with limits of diagrams in Type ℓ). The right Kan
extension then exists for any C-valued presheaf G on LP :(

LP
)op

Lop C
fst G

Ran G

(
Ran G

)
(x) = lim

←−

{
G(u)→ G(v) | u, v : LP s.t. v ≤ u ≤ x

}

7 As all the types above are propositions, we could also replace logical equivalence with equivalence of
types ≃.

TYPES 2022

14:12 Univalent Constructive Affine Schemes

Moreover, since the functor induced by fst is fully faithful, Ran G extends G in the sense that
we have a natural isomorphism between G and

(
Ran G) ◦ fst. For the structure sheaf we need

to consider presheaves valued in CommRing ℓ, the category of commutative rings living in
the same universe as the base ring R. This category is ℓ-complete but not (ℓ+ 1)-complete.
It is precisely for this reason that we required LR to be in Type ℓ.

The main result of this section is that taking the right Kan extension of a presheaf defined
on the basis of a lattice preserves the sheaf property.8 This requires a definition of sheaf on
both distributive lattices and their bases suitable for formalization. For the remainder of
this section we fix a basis B of L. When outlining the formalization, we defined sheaves
on lattices by restricting the usual definition in terms of equalizer diagrams to finite covers.
However, we can express these equalizers as finite limits over diagrams of a certain shape.9
This approach is also taken by Coquand, Lombardi and Schuster in [10]. We decided to
follow it as it allows one to work with special data types for the shapes of the diagrams
involved, which is convenient in the formalization.

▶ Definition 4 (Sheaf diagram shapes). The category of the sheaf diagram shape for covers of
size n, has as objects indices i, where 1 ≤ i ≤ n, or pairs of indices (i, j), where 1 ≤ i < j ≤ n.
Arrows are either identity arrows or inclusions of singleton indices from the left i 7→ (i, j) or
right j 7→ (i, j).

In Agda the objects and arrows can be described as the terms of the following data types:

data DLShfDiagOb (n : N) : Type where
sing : Fin n → DLShfDiagOb n
pair : (i j : Fin n) → i < j → DLShfDiagOb n

data DLShfDiagHom (n : N) : DLShfDiagOb n → DLShfDiagOb n → Type where
idAr : {x : DLShfDiagOb n} → DLShfDiagHom n x x
singPairL : {i j : Fin n} {p : i < j} → DLShfDiagHom n (sing i) (pair i j p)
singPairR : {i j : Fin n} {p : i < j} → DLShfDiagHom n (sing j) (pair i j p)

Here Fin n is the finite type of n elements from 1 to n. Composition is easily defined by case
analysis as it is not possible to compose two non-identity arrows and the laws then follow
directly. We denote the resulting category by DLShfDiagCat n.
▶ Remark 5. In order for this to define a category in HoTT/UF we have to prove that the
hom-types are sets, i.e. that for x, y : DLShfDiagOb n we have isSet (DLShfDiagHom n x y).
This follows from a retraction argument using the encode-decode method [33].
Given a list of elements α = [α1, . . . , αn] with αi : L, we get a corresponding diagram in
the form of a functor DLShfDiagCat n→ Lop sending the singleton index i to αi and (i, j)
to αi ∧ αj . We call this the diagram associated to α. Furthermore, let F : Lop → C be a
presheaf, we then have a diagram DLShfDiagCat n→ C, obtained by composing the diagram
associated to α with F . We call this the F-diagram associated to α.

The join
∨n
i=1 αi induces a cone over the diagram associated to α and it is in fact a

limiting cone because limits are least upper bounds in the opposite of a poset category. A
presheaf on L is a sheaf if it preserves these limits:

8 In fact the right Kan extension (as opposed to left Kan) establishes an equivalence of categories between
sheaves on a lattice L and sheaves on a basis B of L, with its inverse being restriction to B. This is the
special case of the so-called comparison lemma for distributive lattices.

9 See e.g. Mac Lane [23, Thm. V.2.1].

M. Zeuner and A. Mörtberg 14:13

▶ Definition 6 (Sheaves on a distributive lattice). We say that F is a sheaf on the distributive
lattice L, if for all lists α = [α1, . . . , αn] with αi : L the induced cone of F

(∨n
i=1 αi

)
over

the F-diagram associated to α is a limiting cone. In other words F
(∨n

i=1 αi
)

is the limit of
the diagram

F
(∨n

i=1 αi
)

F(αi) F(αi ∧ αj) F(αj)

for all 1 ≤ i < j ≤ n.

We now turn our attention to the corresponding notion for the basis B. Let G : Bop → C be
a presheaf. For a list α = [α1, . . . , αn] with αi : B, we have a diagram DLShfDiagCat n→ C,
which is obtained by composing the diagram associated to α with G. We call this the
G-diagram associated to α. As B is in general not closed under finite joins, the definition of
a basis-sheaf below has an extra condition, saying that limits of the associated diagrams are
only preserved if they exist.

▶ Definition 7 (Sheaves on a basis of a distributive lattice). We say that G is a sheaf on the
basis B of a distributive lattice, if for all α = [α1, . . . , αn] with αi : B, such that

∨n
i=1 αi is

in B, the induced cone of G
(∨n

i=1 αi
)

over the G-diagram associated to α is a limiting cone.

The following lemma only holds for sheaves on the whole lattice, since it requires closure
under finite joins.

▶ Lemma 8. Let F : Lop → C, then F is sheaf if and only if F(⊥) is terminal in C and for
all x, y : L the following is a pullback square

F(x ∨ y) F(x)

F(y) F(x ∧ y)

⌟

Proof. We start by observing that Definition 6 also applies to the empty list []. The join
over [] is just ⊥ and the associated diagram is the “empty” diagram. So if F is a sheaf then
F(⊥) is terminal. Furthermore, the pullback squares are exactly the sheaf condition for two
element lists. This concludes the “only if” direction.

For the other direction, we proceed by induction on the length n. The base case n = 0
follows from F(⊥) being terminal. For the inductive step take a list α1, . . . , αn : L of length
n. By assumption the following is a pullback square

F
(∨n

i=1 αi
)

F
(∨n

i=2 αi
)

F(α1) F
(∨n

i=2(α1 ∧ αi)
)

⌟

Now both lists α1, . . . , αn and α1 ∧ α1, . . . , α1 ∧ αn are of length n − 1. By applying the
induction hypothesis to both, one can easily check that F

(∨n
i=1 αi

)
is the desired limit. ◀

This alternative characterization can be used to prove our “comparison lemma” for distributive
lattices. For the remainder of this section, let G : Bop → C be a sheaf on the basis B. The
key observation is the following technical lemma.

TYPES 2022

14:14 Univalent Constructive Affine Schemes

▶ Lemma 9. For any list of elements α1, . . . , αk : B, we have that10

(
Ran G

)(∨k
i=1 αi

) ∼= lim
←−

{
G(αi)→ G(αi ∧ αj)← G(αj) | 1 ≤ i < j ≤ k

}
(6)

Proof sketch. By definition we have(
Ran G

)(∨k
i=1 αi

)
= lim
←−

{
G(u)→ G(v) | u, v : B s.t. v ≤ u ≤

∨k
i=1 αi

}
This immediately gives us the map from left to right, since we can restrict the defining
diagram of

(
Ran G

)(∨k
i=1 αi

)
to the G-diagram associated to α.

For the inverse map we have to show that given any X : C with a cone based at X over
the G-diagram associated to α, we can extend this to a cone based at X over the defining
diagram of

(
Ran G

)(∨k
i=1 αi

)
. Assume we have X : C with such a cone and let u : B such

that u ≤
∨k
i=1 αi. Then

∨k
i=1(u ∧ αi) ≡ u and hence

∨k
i=1(u ∧ αi) is in B. This means that

we can apply the assumption that G is a sheaf to this join. By substituting along this path,
we can see G(u) as the limit of the G-diagram associated to the u ∧ αi’s. By composing with
restrictions we get a cone based at X over the G-diagram associated to the u ∧ αi’s, and
thus an arrow X → G(u). It is not hard to show that this is functorial in u, which gives
us the desired inverse arrow. The proof that the two maps are mutually inverse, is quite
cumbersome and we will omit it here. ◀

The proof of the following theorem is the most technical of the entire formalization, so again
we only give an outline.

▶ Theorem 10. Ran G is a sheaf on the distributive lattice L.

Proof sketch. It suffices to check the terminal and pullback condition of Lemma 8. We
will restrict our attention to the pullback case here. Let x, y : L and note that, as being a
pullback square is a proposition, we can take covers x ≡

∨n
i=1 βi and y ≡

∨m
i=1 γi by base

elements, i.e. βi, γj : B for all i and j. Substituting these covers for x and y, we have to prove
the following: given X : C and arrows f and g such that the outer square in the diagram
below commutes, then there is a unique arrow h making the whole diagram commute:

X

(
Ran G

)(∨n+m
i=1 (β ++γ)i

) (
Ran G

)(∨n
i=1 βi

)
(
Ran G

)(∨m
i=1 γi

) (
Ran G

)((∨n
i=1 βi

)
∧

(∨m
i=1 γi

))

∃! h

f

g

(7)

Here (β ++γ) is the list-concatenation of β and γ. Applying Lemma 9 to (β ++γ), we get
such an arrow h from a cone based at X over the diagram{

G
(
(β ++γ)i

)
→ G

(
(β ++γ)i ∧ (β ++γ)j

)
← G

(
(β ++γ)j

)
| 1 ≤ i < j ≤ n+m

}
10 This is actually how the extension

(
Ran G

)
is defined in [10]. However, in general we cannot use concrete

covers of arbitrary elements of L by base elements to construct a functor into C if its h-level is unknown.

M. Zeuner and A. Mörtberg 14:15

To construct such a cone, we apply Lemma 9 to both β and γ and precompose the resulting
limiting cones with f and g respectively. This gives us two cones based at X, one over the
G-diagram associated to β and the other one over the G-diagram associated to γ. Note that
the two cones are compatible in the following sense: for all 1 ≤ i ≤ n and 1 ≤ j ≤ m the
following square commutes

X G(βi)

G(γj) G(βi ∧ γj)

This is because the outer square in diagram (7) commutes and it is sufficient to construct a
cone based at X over the G-diagram associated to (β ++γ).

Note that the induced h is the unique cone morphism between the cone thus constructed
and the limiting cone obtained from applying Lemma 9 to (β ++γ). Moreover, f and g

are the unique cone morphisms between their respective precomposition-cones based at X
and the limiting cones obtained from applying Lemma 9 to β and γ respectively. From this
it follows by a cumbersome diagram chase that h is the unique morphism making the two
triangles in diagram (7) commute. ◀

Formalizing the gaps in the above proof sketches is quite tedious and uses involved transports.
We refer the interested reader to the formalization.

5 The structure sheaf

We now have all the ingredients needed to formalize the structure sheaf. The basic opens
BR form a basis of LR and we have seen in the previous section how sheaves can be extended
along the embedding fst : BR → LR. What should the structure sheaf on BR then look like?
Focusing on the underlying presheaf and its action on objects for now, we need a function
BR → CommRing ℓ, which upon unfolding the definition of BR becomes(

Σ[a ∈ LR] ∃[f ∈ R] (D(f) ≡ a)︸ ︷︷ ︸
prop. trunc.

)
−→ CommRing ℓ︸ ︷︷ ︸

groupoid

Since membership in BR is defined as a mere existence condition using propositional truncation,
we can only specify the behavior of the structure sheaf in the case where we are given a point
constructor of this truncation. If a : LR is a basic open, such an element of the truncation
consists of an element f : R and a path p : D(f) ≡ a. In this case we know that the structure
sheaf should send (a , | f , p |) to R[1/f]. If the goal type were a proposition, this would
be enough to specify a function. However, the type of commutative rings is a groupoid,
requiring us to construct some non-trivial higher coherences.

To circumvent this problem we use the observation that the localizations are actually
R-algebras and that we could regard the structure sheaf as taking values in R-algebras. What
is usually called the structure sheaf in the literature is this R-algebra-valued sheaf composed
with the forgetful functor to commutative rings. In other words, the structure sheaf factors
through the forgetful functor from R-algebras to commutative rings. The single reason why
the situation is more well-behaved in R-algebras is the fact that

D(g) ≤ D(f) ⇐⇒ isContr
(

HomR

[
R[1/f] , R[1/g]

])

TYPES 2022

14:16 Univalent Constructive Affine Schemes

Contractibility is a powerful concept in HoTT/UF and we will show how this can be used to
solve the coherence issues of the structure sheaf and gives rise to a reduction argument for the
sheaf property. We start with two lemmas for general constructions involving propositional
truncations and R-algebras. Note that these results are pretty much tailored to the situation
of the structure sheaf, but should also hold for other univalent categories, which are always
groupoids and even sets if they are posetal [33, Lemma 9.1.9, Ex. 9.1.14]. With a bit of
abuse of notation we will use R-Alg to denote both the type and the category of R-algebras.

▶ Lemma 11. Let X : Type and F : X → R-Alg. Assume further that for x, y : X we have
an isomorphism of R-algebras φxy : F(x) ∼= F(y) such that for x, y, z : X we have a path
φxz ≡ φyz ◦ φxy. Then we can construct a map ∥F∥ : ∥X ∥ → R-Alg such that for x : X we
have ∥F∥

(
| x |

)
= F(x) definitionally.

Proof. Since R-Alg is a groupoid, we can apply a result by Kraus [20, Prop. 2.3]. In order
to construct ∥F∥ we need a family of paths over any two elements of X satisfying a certain
coherence condition. For x, y : X we get a path sip φxy : x ≡ y. The corresponding coherence
condition states that for x, y, z : X, we need a path sip φxz ≡ sip φxy • sip φyz (where _•_
is path composition). By the functoriality of sip, which follows from the functoriality of
ua, this path type is equivalent to sip φxz ≡ sip (φyz ◦ φxy). But by assumption we have
φxz ≡ φyz ◦ φxy, so by applying sip to this path we are done. ◀

For the next lemma, note that for any category C and family P : C → Type, we have the
subcategory C∥P∥ of C induced by λ x→ ∥P (x) ∥ : C → hProp.

▶ Lemma 12. Let C be a category with a family P : C → Type and a family of R-algebras
F :

(
Σ[x ∈ C] P (x)

)
→ R-Alg. Assume furthermore that for x, y : C, p : P (x), q : P (y)

with an arrow f : C [x, y] we have

isContr
(

HomR

[
F(y , q) , F(x , p)

])
We can then construct a “universal” presheaf

Pu :
(
C∥P∥

)op → R-Alg

such that for x : C with p : P (x) we have

Pu(x , | p |) = F(x , p)

definitionally, and for y : C, q : P (y) with arrow f : C [x, y], Pu (f) is the unique R-algebra
morphism from F(y , q) to F(x , p).

Proof. We first describe the action of Pu on objects. By currying we fix x : C and need to
provide a function ∥P (x) ∥ → R-Alg. For this we apply Lemma 11 to F(x ,_) : P (x)→ R-Alg.
From our contractibility assumption it follows that given p, q : P (x) there are unique
morphisms from F(x , p) to F(x , q) and vice versa, so F(x , p) ∼= F(x , q). It remains to
check that the family of isomorphisms thus defined is closed under composition in the sense
of Lemma 11. Again, this follows from contractibility.

For the action of Pu on morphisms, we start by proving something stronger. Given
x, y : C, p : ∥P (x) ∥, q : ∥P (y) ∥ with an arrow f : C[x, y], we have:

isContr
(

HomR

[
Pu(x , p) , Pu(y , q)

])

M. Zeuner and A. Mörtberg 14:17

As being contractible is a proposition, we can assume that p = | p′ | and q = | q′ |. In this
case Pu(x , p) = F(y , p′) and Pu(y , q) = F(y , q′) and we can just use our contractibility
hypothesis. Since a morphism between (x , p) and (y , q) in C∥P∥ is just a morphism
f : C[x, y], we can take Pu(f) to be the center of contraction of the contractible type of
R-algebra morphisms above. The functoriality of Pu then follows immediately. ◀

We now want to apply this construction to the Zariski lattice (seen as a poset category). In
the situation of Lemma 12 with C = LR we set, for a : LR:

P (a) = Σ[f ∈ R] (D(f) ≡ a) and F(a , f , p) = R[1/f].

If we are given b ≤ a with D(f) ≡ a and D(g) ≡ b then D(g) ≤ D(f) and the type of
R-algebra morphisms from R[1/f] to R[1/g] is contractible. This way we obtain the desired

Pu :
(
BR

)op → R-Alg

Composing with the forgetful functor from R-algebras to commutative rings gives us the
desired presheaf on basic opens, denoted by OB . From this we finally obtain the structure
(pre-)sheaf O :

(
LR

)op → CommRing using the right Kan extension machinery described in
Section 4. The following fact then becomes rather straightforward to verify:

▶ Proposition 13. For any f : R we get a path O
(
D(f)

)
≡ R[1/f].

Proof. There is a canonical proof pf = | f , refl | of D(f) belonging to the basic opens. Since
we have a natural isomorphism between OB and O ◦ fst, we can use the SIP for commutative
rings to obtain a path O

(
D(f)

)
≡ OB

(
D(f) , pf

)
. But in R-algebras Pu

(
D(f) , pf

)
equals

R[1/f] definitionally and applying the forgetful functor to this gives us R[1/f] as a commutative
ring (unfortunately not by refl). ◀

As a corollary we obtain the standard sanity check:

▶ Corollary 14. O
(
⊤LR

)
≡ O

(
D(1)

)
≡ R.

Proof. D(1) is the top element of the Zariski lattice by definition, so the first path is just
refl. By Proposition 13 we get that O

(
D(1)

)
≡ R[1/1]. Combining this with Lemma 3.2, we

get the desired path. ◀

It remains to prove that OB is indeed a sheaf. At this point the standard strategy is to
reduce the general case of a cover D(h) ≡

∨n
i=1 D(fi) to the special case h = 1 and then

proceed by some algebraic computations in the rings R[1/fi].11 Informally this reduction step
follows from a short argument, but it identifies certain localizations by appealing to their
canonical isomorphisms. Making this formal in a system without univalence requires to take
the isomorphisms at face value and results in cumbersome diagram chases. This problem
is described in detail in [4]. There the ultimate breaking point was identifying the rings
R[1/f][1/g] and R[1/fg]. As the authors point out, simply providing a path between those
rings does not solve the problem at hand, since what is actually needed is a path between
the diagrams occurring in the sheaf condition. For the remainder of this section we want to
show that we can conclude that OB is a sheaf from the aforementioned special case, using
the observation that the canonical morphisms are unique in R-algebras. In our formalization,
the special case of covers of D(1) reads as follows:

11 See for example [15, theorem 2.33.], [13, theorem 1.3.7] or [18, theorem V.3.3]. Note that in these
classical textbooks the sheaf property only has to be verified for finite covers because basic opens are
quasi-compact. In contrast, we are restricted to finite covers by definition.

TYPES 2022

14:18 Univalent Constructive Affine Schemes

▶ Lemma 15. For a ring A with f1, . . . , fn : A such that 1 ∈ ⟨f1, . . . , fn⟩, we have

A ≡ lim
←−

{
A[1/fi]→ A[1/fifj]← A[1/fj] | 1 ≤ i < j ≤ n

}
More precisely, the canonical cone of A over the diagram above is a limiting cone.

Proof. The proof follows closely the textbook approach, see e.g. Mac Lane and Moerdijk [24,
p. 125], by some hands-on algebra in the different rings involved. It is precisely at this point
that working with concrete implementations of the A[1/fi] as set quotients really simplifies
the formalization. ◀

Reducing the sheaf property of OB to Lemma 15 can now be done using the special nature
of Pu. We also need that the forgetful functor preserves and reflects limits and some basic
results about dependent paths. In the library this is packaged up in a generalized, technical
lemma, working for arbitrary diagrams, not only those needed for the sheaf property. For
the sake of readability however, we proceed to prove our main result directly.

▶ Theorem 16. OB is a sheaf on the basic opens.

Proof. Again for readability, we restrict ourselves to the case of binary covers, i.e. the
situation where D(h) ≡ D(f) ∨D(g) for f, g, h : R. As described in the proof of Lemma 8,
in this case the sheaf property can be reformulated as stating that sq below is a pullback.

OB
(
D(h) , ph

)
OB

(
D(g) , pg

)
OB

(
D(f) , pf

)
OB

(
D(fg) , pfg

)sq
R[1/h] R[1/g]

R[1/f] R[1/fg]

sqR

Here the p’s are, as in the proof of Proposition 13, the canonical proofs that the D’s are in
fact basic opens. Note that by definition, sq is obtained by applying the forgetful functor to
sqR and since the forgetful functor preserves limits (and in particular pullbacks) it suffices
to prove that sqR is a pullback in R-algebras.

The assumption D(h) ≡ D(f) ∨D(g) gives us
√
⟨h⟩ ≡

√
⟨f, g⟩ and by some standard

algebra 1 ∈ ⟨f/1, g/1⟩ in R[1/h]. This lets us apply Lemma 15 with A = R[1/h] and we get that
sq∗ is a pullback (in rings):

R[1/h] R[1/h][1/g]

R[1/h][1/f] R[1/h][1/fg]

⌟
sq∗

As all the vertices of sq∗ are R-algebras, by the canonical morphisms coming from R, and all
the edges of sq∗ commute with these canonical morphisms, we can lift sq∗ to a square sq∗R in
R-algebras. Since the forgetful functor reflects limits (and thus pullbacks), we get that sq∗R
is a pullback square as well.

All that we need is a path sq∗R ≡ sqR and we are done, as we can transport the property
of being a pullback square along this path of squares. It is immediate in Cubical Agda that
to give a path between squares we need to give four paths between the respective vertices
and four dependent paths between the morphisms over the paths of vertices. In order to see
how this applies to our situation, let us first look at the left side of sq∗R and sqR. We get the
following square where we have to provide paths at the top and bottom and a dependent
path filling this square connecting the vertical arrows ψ and φ:

M. Zeuner and A. Mörtberg 14:19

R[1/h] R[1/h]

R[1/h][1/f] R[1/f]

≡≡≡≡≡

ψ φ

≡≡≡≡

For the top path we just choose refl. For the bottom we apply Lemma 3 and get a path

R[1/h][1/f] ≡ R[1/hf] ≡ R[1/f]

where the first path is just Lemma 3.1 and the second path is Lemma 3.2 using the fact
that D(hf) ≡ D(f) by absorption. Let p denote the composition of these two paths. The
dependent path between ψ and φ is then of type

PathP
(
λ i→ HomR

[
R[1/h] , p i

])
ψ φ

By a standard result about PathP, this is equivalent to the non-dependent path type

transport
(
λ i→ HomR

[
R[1/h] , p i

])
ψ ≡ φ

But by definition φ is the center of contraction of the type HomR

[
R[1/h] , R[1/f]

]
. By

contractibility, we hence get a path to the transport of ψ and thus the desired dependent
path. Repeating this strategy four times, as described in the diagram below, gives us the
desired path sq∗R ≡ sqR and finishes the proof.

R[1/h] R[1/g]

R[1/h] R[1/h][1/g]

R[1/h][1/f] R[1/h][1/fg]

R[1/f] R[1/fg]

∃!

∃!

≡≡≡≡≡

∃!

≡≡≡
≡≡

⌟

∃!

≡≡≡
≡≡

≡≡≡≡≡

PathPPathP

PathP

PathP

◀

Combining this with Theorem 10 we get:

▶ Corollary 17. O is a sheaf on the Zariski lattice LR.

Most of the argument in the proof of Theorem 16, including the crucial transport goes
through for the general Pu construction and cones over arbitrary diagrams. If we take the
action of Pu on any cone of any shape, we only need two things for establishing that this is
a limiting cone: first, a limiting cone in R-algebras of the same shape and second, a family
of paths between the corresponding vertices of the two cones. In the case of structure sheaf
the limiting cone is provided by Lemma 15 and the paths are provided by Lemma 3. As a
matter of fact, the general case is actually easier to formalize and computationally better
behaved, even though the pullback case is easier to visualize.

TYPES 2022

14:20 Univalent Constructive Affine Schemes

6 Conclusion

In this paper we presented a fully constructive and predicative formalization of the structure
sheaf on the Zariski lattice in Cubical Agda. To this end, we gave a construction of the
Zariski lattice associated to a commutative ring that does not increase the universe level
even when working predicatively. We formalized the notion of sheaf on a distributive lattice
and formally proved the first steps towards a “comparison lemma” for distributive lattices.
In particular, we showed how to extend a sheaf defined on the basis of a lattice, and taking
values in any complete category, to a sheaf on the whole lattice. Applying this to the Zariski
lattice we then constructed the structure sheaf on its basis. We had to solve higher coherence
conditions in order to show that this construction is well-defined. The main insight was that
by essentially regarding the structure sheaf to be valued in algebras, not rings, we could use
contractibility to solve the coherence issues. Furthermore, it was the same contractibility
result that let us formalize the textbook proof of the sheaf property with the help of some
univalent machinery.

As discussed in the introduction nothing in the paper crucially relied on cubical features,
but they proved convenient in the formalization. In particular, having more things holding by
refl, eliminators computing also for higher constructors, and having direct access to dependent
paths in the form of PathP types simplified many of the formal proofs. We hope nevertheless
that the main ideas introduced in this paper could prove useful for formalizations in other
systems. For the remainder of this paper we want to make a few comments that should help
putting our work into context.

6.1 Comparison to the classical definition of affine schemes
Even though the constructive, predicative approach described in this paper is similar to the
standard, classical textbook approach to affine schemes in the sense that it involves a “lifting”
from basic opens, it might not be immediately clear whether we loose anything by working
with the Zariski lattice and finitary lattice sheaves. As mentioned in the introduction, from
a classical perspective this is not the case because SpecR is a coherent space. A topological
space X is coherent if it is compact, sober (its non-empty irreducible closed subsets are
the closure of a single point), and its compact opens are closed under finite intersections
and form a basis of the topology of X. A coherent map between coherent spaces X and
Y is a continuous map f : X → Y such that for any compact open K ⊆ Y , its pre-image
f−1(K) is compact as well. Stone’s representation theorem for distributive lattices [29] states
that the functor from the category of coherent spaces with coherent maps to distributive
lattices, sending a coherent space to the lattice of its compact opens, is an equivalence of
categories.12 For the inverse direction we take a distributive lattice and recover the opens of
the corresponding space by taking ideals on that lattice. We can even recover the points of
the space by taking prime filters on the lattice. In the case of SpecR the prime filters of
LR are just the complements of prime ideals of R.13

The approach of defining LR through formal generators D(f) and obtaining the locale of
Zariski opens as the ideals of LR, is taken in Johnstone’s “Stone Spaces” [18, Chap. V.3]. The
structure sheaf on the resulting locale of LR-ideals can then be constructed by only defining
it on the base elements D(f). In our predicative and constructive setting we only extend the

12 Furthermore, any coherent space is coherently homeomorphic to Spec R for some ring R [17], i.e. Spec
as a functor from commutative rings to coherent spaces is essentially surjective.

13 See also the discussion by Coquand, Lombardi and Schuster in the introduction of [9].

M. Zeuner and A. Mörtberg 14:21

structure sheaf construction on basic opens to LR. Again, classically no information is lost.
Whether one considers the structure sheaf to be defined on SpecR as a topological space, on
the locale of LR-ideals or only on LR, it is determined (up to unique isomorphism) by what
happens at the level of basic opens.

More generally, for any coherent space X, the category of sheaves on X is equivalent to
the category of (finitary) lattice-sheaves on the compact opens of X. This follows from the
comparison lemma for topological spaces, which gives us an equivalence between sheaves
on X and sheaves on the basis of compact opens of X. But since the compact opens are
all compact we only have to consider finite covers for the sheaf property, which gives us
the equivalence to lattice-sheaves on compact opens. Formalizing this classical fact would
certainly be interesting in its own right. But as we are interested in the formalization of
constructive mathematics, we will just see this fact as a justification that the notion of
constructive affine scheme that we arrive at is not fundamentally weaker than the standard
classical definition.

6.2 Existing formalizations
To our knowledge, we have presented the first constructive and predicative formalization of
affine schemes. However, there are several classical formalizations of affine and general schemes
in the literature by now. Examples include an early setoid-based formalization in Coq by
Chicli [6], the aforementioned formalization in Lean’s mathlib [4], a more recent formalization
in Isabelle/HOL [3], and a univalent Coq formalization in the UniMath library [5]. It is
noteworthy that none of these formalizations define the structure sheaf on basic opens first.
Instead, they follow the approach of Hartshorne’s classic textbook “Algebraic Geometry”
[16]. This approach directly defines the structure sheaf on arbitrary opens, but is inherently
non-constructive. Assuming classical reasoning (including the axiom of choice) it is quite
straightforward to formalize Hartshorne’s definition. As a result, the UniMath formalization
[5] does not actually use univalence in its definition of the structure sheaf.

It should be mentioned however, that in the beginning the Lean formalization [4] did use
the “lift from basic opens approach”. Being unable to formalize the notion of “canonical
isomorphism” between localizations R[1/f] in a satisfactory way, Lean’s mathlib [26] con-
sequently adopted a non-standard take on localizations. Ultimately, the definition of the
structure sheaf got completely overhauled using the Hartshorne approach. Buzzard et al.
argue in [4, Sect. 3.4] that even with the structure sheaf directly defined using univalence,
proving the sheaf property would run into the same problems that they encountered. As the
equality/path obtained by an application of the univalence axiom would still carry around
the isomorphism in question, it is a priori unclear what has actually been gained by working
with paths, as opposed to working with isomorphisms directly. One of the main results of this
paper is that on the contrary we can use univalence in a genuinely helpful way to construct
the structure sheaf on basic opens and prove its sheaf property. This is achieved by shifting
the focus to R-algebras, where the canonical isomorphisms between localizations become the
center of contraction of the corresponding path spaces. Indeed, the localizations R[1/f] form
a full subcategory of the category of R-algebras that is posetal and equivalent to the poset
of basic opens.

6.3 Different univalent approaches to basic opens
One of the main challenges of our formalization was to solve the higher coherence issues when
constructing the structure presheaf on basic opens. These coherence issues arose because the
basic opens were defined as a subset of the Zariski lattice (i.e. as functions into propositions)

TYPES 2022

14:22 Univalent Constructive Affine Schemes

using propositional truncation. In constructive mathematics it is common to define subsets
X as sets A with an embedding i : A ↪→ X and one can prove in HoTT/UF that these two
notions of subsets are equivalent. This raises the question whether one could define the type
of basic opens more directly, thus eliminating the coherence issues.

The basic opens can be defined as a quotient on R, equating any f and g such that√
⟨f⟩ =

√
⟨g⟩. A first, now deprecated, formalization attempt defined the structure sheaf

on this type. However, in this case we need to map from a set quotient into an groupoid,
which is notoriously hard. The general characterization of such maps given by Kraus and von
Raumer [21, Thm. 13] is not easily applicable in this case. As a result, we ended up working
in R-algebras because the contractibility of the path spaces between localizations solved the
coherence issues in this case as well. Rijke has since suggested, in private communications,
that the basic opens can be seen as the Rezk completion [33, Sec. 9.9] of R as a poset
category with the pre-order f ≤ g given by inclusion

√
⟨f⟩ ⊆

√
⟨g⟩. This could potentially

be used for an alternative development where coherence issues are avoided altogether.

6.4 Towards constructive quasi-compact, quasi-separated schemes

The structure sheaf, as constructed in this paper, lets us define constructive affine schemes.
This is of course only the first step towards a formalization of constructive schemes. Schemes
are classically defined as a special class of locally ringed spaces. However, in the constructive,
predicative setting of [10] we are confined to ringed lattices, i.e. distributive lattices equipped
with a sheaf valued in commutative rings. These correspond to ringed coherent spaces. Maps
between those are maps of ringed spaces where the underlying continuous map is coherent.
Morphisms of schemes, however, are just morphisms of locally ringed spaces, i.e. morpisms
of ringed spaces that induce local morphisms on the stalks. In general these two types of
morphisms do not coincide.

Fortunately, the situation is well-behaved for quasi-compact, quasi-separated schemes, a
very important class of schemes that, in particular, encompasses all Noetherian schemes.14

They are actually just the schemes where the underlying topological space is coherent.
Furthermore, if X and Y are quasi-compact, quasi-separated schemes, for any morphism
of locally ringed spaces (f, f ♯) : (X,OX) → (Y,OY), the underlying continuous map f is
coherent. As pointed out in [10], this was essentially already proved by Grothendieck [13, Sec.
6.1]. This makes the constructive lattice-based approach to quasi-compact, quasi-separated
schemes as worked out in [10] possible.

Such an approach still needs to be able to talk about morphisms of quasi-compact, quasi-
separated schemes, i.e. morphisms of locally ringed spaces. This problem is circumvented in
[10] by considering locally affine morphisms. A locally affine morphism is induced by ring
homomorphisms on affine covers and it is a standard exercise to show that for general schemes
this is equivalent to a morphism of locally ringed spaces. For a formalization however, it
could be advantageous to work with a constructive reformulation of morphisms of locally
ringed spaces. Schuster discusses the right constructive, point-free notion of a morphism
of locally ringed spaces in the setting of formal topology in [28]. Transferring this to a
development based on ringed lattices could lead to a constructive account of quasi-compact,
quasi-separated schemes closer to the usual classical presentation and easier to formalize.

14 Deligne in fact argued that this class of schemes is actually sufficient for a lot of applications in algebraic
geometry [12].

M. Zeuner and A. Mörtberg 14:23

References
1 Carlo Angiuli, Evan Cavallo, Anders Mörtberg, and Max Zeuner. Internalizing representation

independence with univalence. Proc. ACM Program. Lang., 5(POPL), January 2021. doi:
10.1145/3434293.

2 Michael Francis Atiyah and Ian Grant MacDonald. Introduction to Commutative Algebra.
Addison-Wesley-Longman, 1969.

3 Anthony Bordg, Lawrence Paulson, and Wenda Li. Simple Type Theory is not too Simple:
Grothendieck’s Schemes Without Dependent Types. Experimental Mathematics, 0(0):1–19,
2022. doi:10.1080/10586458.2022.2062073.

4 Kevin Buzzard, Chris Hughes, Kenny Lau, Amelia Livingston, Ramon Fernández Mir, and
Scott Morrison. Schemes in lean. Experimental Mathematics, 0(0):1–9, 2021. doi:10.1080/
10586458.2021.1983489.

5 Tim Cherganov. Sheaf of rings on Spec R, 2022. URL: https://github.
com/UniMath/UniMath/blob/0df0949b951e198c461e16866107a239c8bc0a1e/UniMath/
AlgebraicGeometry/Spec.v.

6 Laurent Chicli. Une formalisation des faisceaux et des schémas affines en théorie des types
avec Coq. Technical Report RR-4216, INRIA, June 2001. URL: https://hal.inria.fr/
inria-00072403.

7 Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical Type Theory:
A Constructive Interpretation of the Univalence Axiom. In Tarmo Uustalu, editor, 21st
International Conference on Types for Proofs and Programs (TYPES 2015), volume 69 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 5:1–5:34, Dagstuhl, Germany,
2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.TYPES.2015.
5.

8 Thierry Coquand, Simon Huber, and Anders Mörtberg. On Higher Inductive Types in
Cubical Type Theory. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS 2018, pages 255–264, New York, NY, USA, 2018. ACM. doi:
10.1145/3209108.3209197.

9 Thierry Coquand, Henri Lombardi, and Peter Schuster. The projective spectrum as a
distributive lattice. Cahiers de Topologie et Géométrie différentielle catégoriques, 48(3):220–
228, 2007.

10 Thierry Coquand, Henri Lombardi, and Peter Schuster. Spectral schemes as ringed lattices.
Annals of Mathematics and Artificial Intelligence, 56(3):339–360, 2009.

11 Tom de Jong and Martín Hötzel Escardó. On Small Types in Univalent Foundations. Logical
Methods in Computer Science, Volume 19, Issue 2, May 2023. doi:10.46298/lmcs-19(2:
8)2023.

12 Pierre Deligne and Jean-François Boutot. Cohomologie étale: les points de départ. In
Cohomologie Etale, pages 4–75, Berlin, Heidelberg, 1977. Springer Berlin Heidelberg.

13 Jean Dieudonné and Alexandre Grothendieck. Éléments de géométrie algébrique, volume 1.
Springer Berlin Heidelberg New York, 1971.

14 Luis Español. Le spectre d’un anneau dans l’algèbre constructive et applications à la dimension.
Cahiers de Topologie et Géométrie Différentielle Catégoriques, 24(2):133–144, 1983. URL:
http://www.numdam.org/item/CTGDC_1983__24_2_133_0/.

15 Ulrich Görtz and Torsten Wedhorn. Algebraic geometry. Springer, 2010.
16 Robin Hartshorne. Algebraic geometry, volume 52. Springer Science & Business Media, 2013.
17 Melvin Hochster. Prime ideal structure in commutative rings. Transactions of the American

Mathematical Society, 142:43–60, 1969.
18 Peter T. Johnstone. Stone spaces, volume 3. Cambridge university press, 1982.
19 André Joyal. Les théoremes de chevalley-tarski et remarques sur l’algèbre constructive. Cahiers

Topologie Géom. Différentielle, 16:256–258, 1976.

TYPES 2022

https://doi.org/10.1145/3434293
https://doi.org/10.1145/3434293
https://doi.org/10.1080/10586458.2022.2062073
https://doi.org/10.1080/10586458.2021.1983489
https://doi.org/10.1080/10586458.2021.1983489
https://github.com/UniMath/UniMath/blob/0df0949b951e198c461e16866107a239c8bc0a1e/UniMath/AlgebraicGeometry/Spec.v
https://github.com/UniMath/UniMath/blob/0df0949b951e198c461e16866107a239c8bc0a1e/UniMath/AlgebraicGeometry/Spec.v
https://github.com/UniMath/UniMath/blob/0df0949b951e198c461e16866107a239c8bc0a1e/UniMath/AlgebraicGeometry/Spec.v
https://hal.inria.fr/inria-00072403
https://hal.inria.fr/inria-00072403
https://doi.org/10.4230/LIPIcs.TYPES.2015.5
https://doi.org/10.4230/LIPIcs.TYPES.2015.5
https://doi.org/10.1145/3209108.3209197
https://doi.org/10.1145/3209108.3209197
https://doi.org/10.46298/lmcs-19(2:8)2023
https://doi.org/10.46298/lmcs-19(2:8)2023
http://www.numdam.org/item/CTGDC_1983__24_2_133_0/

14:24 Univalent Constructive Affine Schemes

20 Nicolai Kraus. The general universal property of the propositional truncation. In Hugo
Herbelin, Pierre Letouzey, and Matthieu Sozeau, editors, 20th International Conference on
Types for Proofs and Programs (TYPES 2014), volume 39 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 111–145, Dagstuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. doi:10.4230/LIPIcs.TYPES.2014.111.

21 Nicolai Kraus and Jakob von Raumer. Coherence via well-foundedness: Taming set-quotients
in homotopy type theory. In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS ’20, pages 662–675, New York, NY, USA, 2020. Association for
Computing Machinery. doi:10.1145/3373718.3394800.

22 Henri Lombardi and Claude Quitté. Commutative Algebra: Constructive Methods: Finite
Projective Modules, volume 20. Springer, 2015.

23 Saunders Mac Lane. Categories for the working mathematician, volume 5. Springer Science &
Business Media, 2013.

24 Saunders Mac Lane and Ieke Moerdijk. Sheaves in geometry and logic: A first introduction to
topos theory. Springer Science & Business Media, 2012.

25 Per Martin-Löf. An Intuitionistic Theory of Types: Predicative Part. In H. E. Rose and J. C.
Shepherdson, editors, Logic Colloquium ’73, volume 80 of Studies in Logic and the Foundations
of Mathematics, pages 73–118. North-Holland, 1975. doi:10.1016/S0049-237X(08)71945-1.

26 The mathlib Community. The lean mathematical library. In Proceedings of the 9th ACM
SIGPLAN International Conference on Certified Programs and Proofs, CPP 2020, pages
367–381, New York, NY, USA, 2020. Association for Computing Machinery. doi:10.1145/
3372885.3373824.

27 Ray Mines, Fred Richman, and Wim Ruitenburg. A course in constructive algebra. Springer
Science & Business Media, 2012.

28 Peter Schuster. The zariski spectrum as a formal geometry. Theoretical Computer Science,
405(1):101–115, 2008. Computational Structures for Modelling Space, Time and Causality.
doi:10.1016/j.tcs.2008.06.030.

29 Marshall Harvey Stone. Topological representations of distributive lattices and brouwerian
logics. Časopis pro pěstování matematiky a fysiky, 67(1):1–25, 1938.

30 Thomas Streicher. Investigations Into Intensional Type Theory. Habilitation thesis, Ludwig-
Maximilians-Universität München, 1993. URL: https://www2.mathematik.tu-darmstadt.
de/~streicher/HabilStreicher.pdf.

31 The Agda Development Team. The Agda programming language. URL: http://wiki.portal.
chalmers.se/agda/pmwiki.php.

32 Ayberk Tosun and Martín Hötzel Escardó. Patch locale of a spectral locale in univalent type
theory, 2023. arXiv:2301.04728.

33 The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of
Mathematics. https://homotopytypetheory.org/book, Institute for Advanced Study, 2013.

34 Ravi Vakil. The rising sea: Foundations of algebraic geometry, 2017. draft. URL: https:
//math.stanford.edu/~vakil/216blog/FOAGnov1817public.pdf.

35 Andrea Vezzosi, Anders Mörtberg, and Andreas Abel. Cubical agda: A dependently typed
programming language with univalence and higher inductive types. Journal of Functional
Programming, 31:e8, 2021. doi:10.1017/S0956796821000034.

36 V. Voevodsky, B. Ahrens, D. Grayson, et al. UniMath: Univalent Mathematics. Available at
https://github.com/UniMath.

37 Vladimir Voevodsky. Univalent foundations, September 2010. Notes from a talk in
Bonn. URL: https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/
Bonn_talk.pdf.

38 Vladimir Voevodsky. Resizing rules – their use and semantic justification. slides from a talk at
types, bergen, 11 september, 2011.

39 Vladimir Voevodsky. An experimental library of formalized mathematics based on the
univalent foundations. Mathematical Structures in Computer Science, 25(5):1278–1294, 2015.
doi:10.1017/S0960129514000577.

https://doi.org/10.4230/LIPIcs.TYPES.2014.111
https://doi.org/10.1145/3373718.3394800
https://doi.org/10.1016/S0049-237X(08)71945-1
https://doi.org/10.1145/3372885.3373824
https://doi.org/10.1145/3372885.3373824
https://doi.org/10.1016/j.tcs.2008.06.030
https://www2.mathematik.tu-darmstadt.de/~streicher/HabilStreicher.pdf
https://www2.mathematik.tu-darmstadt.de/~streicher/HabilStreicher.pdf
http://wiki.portal.chalmers.se/agda/pmwiki.php
http://wiki.portal.chalmers.se/agda/pmwiki.php
https://arxiv.org/abs/2301.04728
https://homotopytypetheory.org/book
https://math.stanford.edu/~vakil/216blog/FOAGnov1817public.pdf
https://math.stanford.edu/~vakil/216blog/FOAGnov1817public.pdf
https://doi.org/10.1017/S0956796821000034
https://github.com/UniMath
https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/Bonn_talk.pdf
https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/Bonn_talk.pdf
https://doi.org/10.1017/S0960129514000577

Univalent Monoidal Categories
Kobe Wullaert # Ñ

Delft University of Technology, The Netherlands

Ralph Matthes # Ñ

IRIT, Université de Toulouse, CNRS, Toulouse INP, UT3, France

Benedikt Ahrens # Ñ

Delft University of Technology, The Netherlands
University of Birmingham, UK

Abstract
Univalent categories constitute a well-behaved and useful notion of category in univalent foundations.
The notion of univalence has subsequently been generalized to bicategories and other structures in
(higher) category theory. Here, we zoom in on monoidal categories and study them in a univalent
setting. Specifically, we show that the bicategory of univalent monoidal categories is univalent.
Furthermore, we construct a Rezk completion for monoidal categories: we show how any monoidal
category is weakly equivalent to a univalent monoidal category, universally. We have fully formalized
these results in UniMath, a library of univalent mathematics in the Coq proof assistant.

2012 ACM Subject Classification Theory of computation → Type theory; Theory of computation
→ Logic and verification

Keywords and phrases Univalence, Monoidal categories, Rezk completion, Displayed (bi)categories,
Proof assistant Coq, UniMath library

Digital Object Identifier 10.4230/LIPIcs.TYPES.2022.15

Funding Benedikt Ahrens: This work was partially funded by EPSRC under agreement number
EP/T000252/1.

Acknowledgements We gratefully acknowledge the work by the Coq development team in providing
the Coq proof assistant and surrounding infrastructure, as well as their support in keeping UniMath
compatible with Coq. Furthermore, we thank Niels van der Weide for helpful discussions on the
subject matter and for reviewing the formalization. We also thank Vikraman Choudhury for a
question regarding the connection of the monoidal Rezk completion to the Day convolution product.
Furthermore, we thank the anonymous referees for their helpful feedback; besides triggering further
thoughts on the technical aspects, it helped us to improve the presentation.

1 Introduction

When working in univalent foundations (see [15]), definitions have to be designed carefully
in order to correspond, via the intended semantics, to the expected notions in set-theoretic
foundations. The notion of univalent category [2] has been shown to be a good notion, in
the sense that it corresponds to the usual notion of category under Voevodsky’s model in
simplicial sets [9].1 Examples of univalent categories are plentiful, but not all categories
arising in practice – for instance when studying categorical semantics of type theory – are
univalent. In [2], the authors give a construction of a “free” univalent category from any
category C, which they call the Rezk completion of C.

Since then, the univalence condition and completion operation have been studied further.

1 To emphasize that univalent categories are the right notion of category in univalent foundations, they
are just called “categories” in [2].

© Kobe Wullaert, Ralph Matthes, and Benedikt Ahrens;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Types for Proofs and Programs (TYPES 2022).
Editors: Delia Kesner and Pierre-Marie Pédrot; Article No. 15; pp. 15:1–15:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:K.F.Wullaert@tudelft.nl
https://kfwullaert.github.io/
https://orcid.org/0000-0003-4281-2739
mailto:Ralph.Matthes@irit.fr
https://www.irit.fr/~Ralph.Matthes/
https://orcid.org/0000-0002-7299-2411
mailto:B.P.Ahrens@tudelft.nl
https://benediktahrens.gitlab.io
https://orcid.org/0000-0002-6786-4538
https://doi.org/10.4230/LIPIcs.TYPES.2022.15
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Univalent Monoidal Categories

Firstly, in [16], Van der Weide constructs a class of higher inductive types using the
groupoid quotient. It is shown that the groupoid quotient gives rise to a biadjunction
between the bicategory of groupoids and the bicategory of 1-types (which is isomorphic to the
bicategory of univalent groupoids); the left adjoint thus yields a univalent completion operation
for groupoids. Van der Weide furthermore lifts this completion to “structured groupoids”,
that is, to groupoids equipped with an algebra structure for some endo-pseudofunctor on
(univalent) groupoids.

Secondly, the univalence condition on categories was extended to bicategories in [1] and
to other (higher-)categorical structures in [4]. In more detail, [4] develops a notion of theory
for mathematical structures, and a notion of univalence for models of such theories.

Thirdly, univalent displayed graphs are used in [5] to define and study higher groups.
In the present paper, we continue the study of univalent (higher-)categorical structures,

focusing on monoidal categories. Monoidal categories are very useful in a variety of contexts,
such as quantum mechanics [7] and computing [6], modeling concurrency [11], probability
theory [13] and probabilistic programming [12], and neural networks [10]. We present two
results on monoidal categories:
1. We show that the bicategory of univalent monoidal categories is univalent. Here, a

univalent monoidal category is a univalent category with a monoidal structure.
2. We construct, for any monoidal category, a monoidal Rezk completion. It is, in particular,

a univalent monoidal category; the challenge lies in establishing the universal property of
a Rezk completion, here modified for monoidal categories.

Both results have been formalized in the UniMath library of univalent mathematics, based
on the Coq proof assistant.

The first of these results may be considered to be a basic sanity check; failing to prove this
would question the validity of our definitions. However, its proof is technically difficult, and,
in our experience, only feasible through the disciplined application of “displayed” technology
as developed in [3] and [1].

The second result consists, more specifically, of a lifting of the Rezk completion for
categories as constructed in [2] to the monoidal structure. As such, it also relies on dis-
played technology: the equivalence expressing the universal property of our monoidal Rezk
completion is given as a displayed equivalence on top of the equivalence constructed in [2].

Our work is strongly related to some of the work mentioned above.
Firstly, an instance of Van der Weide’s work covers monoidal groupoids; see [16, Sec-

tion 6.7.4]. Compared to that work, our work discusses monoidal categories rather than
groupoids, but does not cover general structures. In particular, we also provide a completion
operation for lax and oplax monoidal categories. Work on the “pushout” of our and Van der
Weide’s work, a Rezk completion for structured categories, is ongoing (see also Section 5).

Secondly, [4, Example 8.7] studies monoidal categories. It is shown there that the general
univalence condition on a model of the theory of monoidal categories defined in that work
simplifies, in the case of monoidal categories, to the underlying category being univalent.
Thus, the univalent monoidal categories of [4, Example 8.7] are the same as the ones studied
in the present work.

In the remainder of the introduction, we review the Rezk completion and displayed
(bi)categories, respectively. We also give some details about the formalization.

▶ Notation 1. In order to stay consistent with the notation used in UniMath , we write the
composition in diagrammatic order, i. e., the composition of f : x → y and g : y → z is
denoted as f · g : x → z.

https://github.com/UniMath/UniMath
https://github.com/UniMath/UniMath

K. Wullaert, R. Matthes, and B. Ahrens 15:3

There are different notions of sameness between categories:

▶ Definition 2. A functor F : C → D is called
1. a weak equivalence if it is fully faithful and essentially surjective;
2. a (strong) equivalence if it is fully faithful and split essentially surjective. Equivalently,

this means that F is invertible up to a natural isomorphism;
3. an adjoint equivalence is a (strong) equivalence F whose inverse (up to a natural

isomorphism) is the right adjoint of F ;
4. an isomorphism if it is fully faithful and the function on objects is an equivalence of

types.

Even though these four concepts are closely related, they enjoy different properties. The
Rezk completion is, in general, only a weak equivalence; categorical structure does not
necessarily transfer along a weak equivalence. For strict categories (i. e., categories whose
type of objects is a set), the statement that every weak equivalence is an (adjoint) equivalence
is equivalent to the axiom of choice. However, if one restricts to univalent categories, these
four notions are always equivalent (without using the axiom of choice).

1.1 Review of the Rezk completion for categories
The Rezk completion for categories was constructed in [2]. In essence, given a category
C, its Rezk completion is given by a univalent category RC(C) and a weak equivalence
H : C → RC(C). This weak equivalence has the following property: any functor F : C → E ,
with E a univalent category, factors uniquely via H, as depicted in the following diagram.

C

RC(C) E

FH

∃!

(1)

▶ Remark 3. The universal property satisfied by the Rezk completion is a bicategorical one,
see Definition 5. From a purely category-theoretic viewpoint, the factorization in Equation (1)
is unique up to natural isomorphism. However, since E is univalent, the functor category
[RC(C), E] is also univalent. Therefore, the factorization of such a functor is unique.

In [2], it is said that the construction gives a universal way to replace a category by a
univalent category. This construction is indeed universal in a bicategorical sense, according
to the following lemma:

▶ Lemma 4 ([2, Thm. 8.4], precomp_adjoint_equivalence). Let H : C → D be a weak
equivalence between categories. For any univalent category E, the functor H · (−) : [D, E] →
[C, E] is an adjoint equivalence of categories.

Lemma 4, when applied to the Rezk completion, provides an instance of a “(left) universal
arrow”:

▶ Definition 5 (left_universal_arrow). Let R : B2 → B1 be a pseudo-functor. A left
universal arrow from an object x : (B1)0 to R is given by:
1. an object L x : (B2)0,
2. a morphism ηx : B1(x, R(L x));
3. for any y : (B2)0, the functor

ηx · (R −) : B2(L x, y) → B1(x, R y) ,

which acts on morphisms by applying R and whiskering with ηx, is an adjoint equivalence
of categories.

TYPES 2022

https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.CategoryTheory.PrecompEquivalence.html#precomp_adjoint_equivalence
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.PseudoFunctors.UniversalArrow.html#left_universal_arrow

15:4 Univalent Monoidal Categories

▶ Remark 6. Writing Cat for the bicategory of categories, functors, and natural transform-
ations, and Catuniv for the full sub-bicategory of Cat consisting of univalent categories,
functors, and natural transformations, Lemma 4 applied to the Rezk completion of C provides
a universal arrow from C to the inclusion Catuniv ↪→ Cat. We expect the following to
hold: if we have, for any object x, a left universal arrow to R with object part L x, then
the assignment x 7→ L x induces a pseudo-functor L : B1 → B2 which is a left biadjoint
to R. Hence, Lemma 4 applied to the Rezk completion would yield a left bi-adjoint to
the inclusion Catuniv ↪→ Cat. However, we have not found a reference for the connection
between universal arrows and biadjunctions. As we do not need this correspondence, we do
not develop it further.

▶ Remark 7. In [2], the Rezk completion has been constructed as the co-restriction of the
Yoneda embedding to its image. It is already known how the Yoneda embedding transports
the monoidal structure; more details on the connection between these approaches are given
in Section 4.5. However, this construction raises the universe level of the type of objects
and morphisms. In https://1lab.dev/Cat.Univalent.Rezk.html, the authors show how
to decrease the universe level of the type of objects by one, using the construction of small
images (and, in particular, higher inductive types). One can also construct (the type of
objects of) the Rezk completion as a higher inductive type. This has been done in [15].

In this paper, we work with an abstract Rezk completion of a category instead of a
concrete implementation. Consequently, the approach presented here can be applied to any
of those constructions.

1.2 Review of displayed (bi)categories
In this section, we recall the basic concepts of displayed bicategories and their univalence.
More information can be found in [1].

Let us first briefly recall the idea of displayed categories.
Many concrete examples of categories are given by structured sets and structure-preserving

functions. An example of this is the category Mon of monoids and monoid homomorphisms.
In particular, an identity morphism is an identity function (i. e., the identity morphism in
Set) and the composition of monoid homomorphisms is given by the composition of the
underlying functions (i. e., the composition in Set). Therefore, working in a category of
structured sets often means lifting structure of the category Set to the additional structure.
An example of this phenomenon is the product of monoids: the underlying set of a product
of monoids can be constructed as the product of the underlying sets (Example 8).

The notion of displayed category formalizes the process of creating a new category out
of an old category by adding structure and/or properties on the objects and/or morphisms in
the following way: a displayed category ([3, Def. 3.1]) specifies precisely the extra structure
and the extra laws needed to build the new category out of the old one. This new category
is then called the total category of the displayed category ([3, Def. 3.2]).

▶ Example 8. The category Mon of monoids can be constructed as a total category over
Set as follows:
1. For X : Set, the type of displayed objects over X is the type of monoid structures on X:∑

m:X×X→X

∑
e:X

isAssociative(m) ×
∏
x:X

(e · x = x × x · e = x) ,

where isAssociative(m) is the proposition stating that m is associative.

https://1lab.dev/Cat.Univalent.Rezk.html

K. Wullaert, R. Matthes, and B. Ahrens 15:5

2. Assume given X, Y : Set, f : Set(X, Y) and (mX , eX , pX) (resp. (mY , eY , pY)) a dis-
played object over X (resp. Y), i. e., the structure of a monoid. The type of displayed
morphisms over f is the proposition stating that f is a monoid homomorphism from
(mX , eX , pX) to (mY , eY , pY):

(f eX = eY) ×
∏

x1,x2:X
f (mX(x1, x2)) = mY (f x1, f x2) .

Analogously, there is also the notion of a displayed bicategory:

▶ Definition 9 ([1, Def. 6.1], disp_bicat). Let B be a bicategory. A displayed bicategory
D over B consists of:
1. for any x : B, a type Dx of displayed objects over x,
2. for any f : B(x, y) and x̄ : Dx and ȳ : Dy, a type Df (x̄, ȳ) of displayed morphisms over f ,
3. for any α : B(x, y)(f, g) and f̄ : Df (x̄, ȳ) and ḡ : Dg(x̄, ȳ), a set f̄

α=⇒ ḡ of displayed
2-cells over α;

together with a composition of displayed morphisms and displayed 2-cells (over the composition
in B) and a displayed identity morphism and 2-cell (over the identity morphism resp. 2-cell
in B). The axioms of a bicategory have corresponding displayed axioms (over those axioms
in B).

▶ Definition 10 ([1, Def. 6.2], total_bicat). Let D be a displayed bicategory over B. The
total bicategory of D, denoted as

∫
D, has as i-cells (with i = 0, 1, 2), pairs (x, x̄) where x

is an i-cell of B and x̄ is a displayed i-cell of D over x.

▶ Example 11. The bicategory whose objects are categories equipped with a terminal object,
whose morphisms are functors preserving the terminal objects (strongly) and whose 2-cells
are natural transformations, can be constructed as a total bicategory over Cat as follows:
1. For C : Cat, the type of displayed objects over Cat is the type expressing that C has a

terminal object:∑
X: C

isTerminal(X) .

2. Assume given C, D : Cat, F : Cat(C, D) and (TC , pC) (resp. (TD, pD)) displayed objects
over C (resp. D). The type of displayed morphisms over F is the proposition stating that
F preserves the terminal object:

isIsomorphism(!) ,

where ! is the unique morphism F TC → TD given by the universal property of the terminal
object TD.

3. Let F, G : Cat(C, D) be functors between categories C and D and assume:
a. (TC , pC) (resp. (TD, pD)) a witness that C (resp. D) has a terminal object, i. e., it is a

displayed object over C (resp. D),
b. µF (resp. µG) a proof witnessing that F (resp. G) preserves the terminal object

strongly, i. e., µF (resp. µG) is a displayed morphism over F (resp. G).
For any natural transformation α : F ⇒ G, the type of displayed 2-cells over α is the
unit type.

Given displayed bicategories D1 and D2 over a bicategory B, we construct the product
D1×D2 over B. The displayed objects, morphisms, and 2-cells are pairs of objects, morphisms,
and 2-cells, respectively (disp_dirprod_bicat).

TYPES 2022

https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.DisplayedBicats.DispBicat.html#disp_bicat
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.DisplayedBicats.DispBicat.html#total_bicat
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.DisplayedBicats.Examples.Prod.html#disp_dirprod_bicat

15:6 Univalent Monoidal Categories

A displayed bicategory is locally univalent if the function of type

f̄ =p ḡ → f̄ ∼=idtoiso2,1
f,g

(p) ḡ ,

sending refl to the identity displayed isomorphism, is an equivalence of types for all morphisms
f and g of the same type, p : f = g and f̄ (resp. ḡ) displayed morphisms over f (resp. g).

A displayed bicategory is globally univalent if the function of type

x̄ =p ȳ → x̄ ≃idtoiso2,0
x,y(p) ȳ ,

sending refl to the identity displayed adjoint equivalence, is an equivalence of types for all
objects x and y, p : x = y and x̄ (resp. ȳ) displayed objects over x (resp. y).

A displayed bicategory is univalent if it is both locally and globally univalent (disp_
univalent_2, disp_univalent_2_1, disp_univalent_2_0).

▶ Lemma 12 ([1, Thm. 7.4], total_is_univalent_2). Let D be a displayed bicategory
over B and q ∈ {locally, globally}. Then

∫
D is q-univalent if B is q-univalent and D is

q-univalent.

▶ Remark 13. As witnessed by Lemma 12, certain properties of the total bicategory can be
expressed in terms of the base bicategory and the displayed bicategory. This allows one to
divide a problem, in this case showing univalence, into multiple steps.

Therefore, while we are interested in studying the total bicategory, we usually only
describe the displayed bicategory.

▶ Definition 14 ([1, Defs. 7.7, 7.8], disp_locally_groupoid, disp_2cells_isaprop). A
displayed bicategory D over a bicategory B is called
1. Locally groupoidal if all displayed 2-cells over invertible 2-cells are invertible;
2. Locally propositional if each type of displayed 2-cells is a proposition.

We will also need the displayed analogue of the concept of a functor being essentially
surjective:

▶ Definition 15 (disp_functor_disp_ess_split_surj). A displayed functor F̄ : D1 → D2
over a functor F : C1 → C2 is displayed split essentially surjective if for any x : C
and ȳ : (D2)F x, a displayed object x̄ : (D1)x is given together with a displayed isomorphism
between F̄ x̄ and ȳ over the identity isomorphism IdF x.

1.3 Formalization in UniMath
The results presented here are formulated inside intensional dependent type theory. We
carefully distinguish between data and properties, i. e., data is always explicitly given which
avoids the use of the axiom of choice and the law of excluded middle. The results presented
here are formalized and checked in the library UniMath [17] of univalent mathematics, based
on the proof assistant Coq [14].

The formalization referred to in this paper is presented in the UniMath commit 6d2d288
(more precisely, the given link leads to the source code repository right after merging this
commit). A generated HTML documentation of the sources at this commit is hosted online.
Most of our definitions, lemmas, and theorems are accompanied by a link which leads to the
corresponding definition, lemma, and theorem in the documentation.

The formalization is built upon the existing library of (bi)category theory and the theory
of displayed (bi)categories. The (1-)categorical formulation of displayed categories has been
developed in [3] and the bicategorical formulation has been developed in [1].

https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.DisplayedBicats.DispUnivalence.html#disp_univalent_2
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.DisplayedBicats.DispUnivalence.html#disp_univalent_2
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.DisplayedBicats.DispUnivalence.html#disp_univalent_2_1
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.DisplayedBicats.DispUnivalence.html#disp_univalent_2_0
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.DisplayedBicats.DispUnivalence.html#total_is_univalent_2
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.DisplayedBicats.DispBicat.html#disp_locally_groupoid
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.DisplayedBicats.DispBicat.html#disp_2cells_isaprop
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.CategoryTheory.DisplayedCats.Functors.html#disp_functor_disp_ess_split_surj
https://github.com/UniMath/UniMath
https://coq.inria.fr
https://github.com/UniMath/UniMath
https://github.com/UniMath/UniMath/tree/6d2d288264d28f2d1966bb518de180d73e1c5e47

K. Wullaert, R. Matthes, and B. Ahrens 15:7

CatS

CatP

CatUA

CatLU CatRU CatA

CatT U

CatU Cat CatT

Def.23

Def.22

Def.19
Def.20

Def.21

Def.18 Def.17

(2)

Figure 1 Overview of construction steps towards MonCat and MonCatstg.

The accompanying code, specific to this work, consists of approximately 7000 lines of
code. However, the formalisation also made it necessary to contribute to the UniMath library
on monoidal categories more generally.

2 The bicategory of monoidal categories

In this section we construct the bicategory MonCat (resp. MonCatstg) of monoidal
categories, lax (resp. strong) monoidal functors and monoidal natural transformations. We
construct this bicategory as the total bicategory of a displayed bicategory over the bicategory
Cat of categories, functors, and natural transformations.

This displayed bicategory in itself is constructed by stacking different displayed bicatego-
ries. First, we construct a displayed bicategory CatT (resp. CatU) over Cat that adds a
tensor (resp. a unit). Then, we construct displayed bicategories CatLU , CatRU and CatA

over the total bicategory of CatT U := CatT × CatU that add the left unitor, right unitor
and the associator, respectively. The product of these displayed bicategories is denoted
by CatUA and the laws that relate the unitors and the associator, e. g., the triangle and
pentagon identities, are represented by a full (displayed) sub-bicategory CatP of CatUA.
Lastly, we also have a displayed (sub)bicategory CatS of CatP that enforces the strongness
of the monoidal functors.

The construction is summarized in Figure 1. The precise meaning of this diagram is
explained in the rest of this section and further explained in Remark 24.
▶ Remark 16. Although the construction of MonCat (resp. MonCatstg) is standard (when
working in univalent foundations), we explain the construction in quite some detail because
both Section 3 and Section 4 heavily depend on the construction of monoidal categories
(resp. lax/strong monoidal functors and natural transformations) in this displayed way. In
particular, this allows us to fix notation and allows for the big picture of the constructions
to become more visible.

The first displayed bicategory we construct adds the structure of a tensor and a unit.
Since the unit and tensor are (without the unitors) independent of each other, we can define
this as the product of displayed bicategories, the first representing the tensor and the second
representing the unit.

TYPES 2022

https://github.com/UniMath/UniMath

15:8 Univalent Monoidal Categories

▶ Definition 17 (bidisp_tensor_disp_bicat). The displayed bicategory CatT over Cat
is defined as follows:
1. The displayed objects over a category C : Cat are the functors of type C × C → C, called

tensors over C and are denoted by ⊗C.
2. The displayed morphisms over a functor F : C → D from ⊗C to ⊗D are the natural

transformations of type (F × F) · ⊗D ⇒ ⊗C · F , called witnesses of tensor-preservation of
F and are denoted by µF .

3. The displayed 2-cells over a natural transformation α : F ⇒ G from µF to µG are the
proofs of the proposition∏

x,y:C
(αx ⊗D αy) · µG

x,y = µF
x,y · αx⊗C y .

▶ Definition 18 (bidisp_unit_disp_bicat). The displayed bicategory CatU over Cat is
defined such that:
1. The displayed objects over a category C : Cat are the objects of C, called units over C and

are denoted by IC.
2. The displayed morphisms over a functor F : C → D from IC to ID are the morphisms of

type D(ID, F IC), called witnesses of unit-preservation of F and are denoted by ϵF .
3. The displayed 2-cells over a natural transformation α : F ⇒ G from ϵF to ϵG are the

proofs of the proposition

ϵF · αIC = ϵG .

We denote by CatT U the displayed bicategory which is the product of CatT and CatU

(bidisp_tensor_unit).
To fix some notation: The total bicategory

∫
CatT U has as objects triples (C, ⊗C , IC)

where C is a category, ⊗C a tensor on C and IC a unit on C. A morphism from (C, ⊗C , IC)
to (D, ⊗D, ID) is a triple (F, µF , ϵF) where F is a functor of type C → D, µF a witness of
tensor-preservation of F and ϵF a witness of unit-preservation of F .

We now add the unitors and the associator. Since they are independent of each other
(before adding the triangle and pentagon equalities), we can again define them as a product
of displayed bicategories. These displayed bicategories have trivial displayed 2-cells since
monoidal natural transformations only use the data of the tensor and the unit. Thus we
define these displayed bicategories as displayed categories. The formal construction of
turning a displayed category into a displayed bicategory with trivial 2-cells is formalized as
disp_cell_unit_bicat.

▶ Definition 19 (bidisp_lu_disp_bicat). The displayed bicategory CatLU over
∫

CatT U

is defined as the displayed category (with trivial 2-cells) such that:
1. The displayed objects over a triple (C, ⊗C , IC) are the natural isomorphisms of type

(IC ⊗C −) ⇒ IdC, called left unitors over (C, ⊗C , IC) and are denoted by λC.
2. The displayed morphisms over a triple (F, µF , ϵF) from λC to λD are proofs of the

proposition:∏
x:C

(ϵF ⊗D IdF x) · µF
IC,x · FλC

x = λD
F x .

▶ Definition 20 (bidisp_ru_disp_bicat). The displayed bicategory CatRU over
∫

CatT U

is defined as the displayed category (with trivial 2-cells) such that:
1. The displayed objects over a triple (C, ⊗C , IC) are the natural isomorphisms of type

(− ⊗C IC) ⇒ IdC, called right unitors over (C, ⊗C , IC) and are denoted as ρC.

https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.TensorLayer.html#bidisp_tensor_disp_bicat
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.UnitLayer.html#bidisp_unit_disp_bicat
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.TensorUnitLayer.html#bidisp_tensor_unit
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.DisplayedBicats.Examples.DisplayedCatToBicat.html#disp_cell_unit_bicat
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.AssociatorUnitorsLayer.html#bidisp_lu_disp_bicat
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.AssociatorUnitorsLayer.html#bidisp_ru_disp_bicat

K. Wullaert, R. Matthes, and B. Ahrens 15:9

2. The displayed morphisms over a triple (F, µF , ϵF) from ρC to ρD are proofs of the propo-
sition:∏

x:C
(IdF x ⊗D ϵF) · µF

x,IC
· FρC

x = ρD
F x .

▶ Definition 21 (bidisp_associator_disp_bicat). The displayed bicategory CatA over∫
CatT U is defined as the displayed category (with trivial 2-cells) such that:

1. The displayed objects over a triple (C, ⊗C , IC) are the natural isomorphisms of type
((− ⊗C −) ⊗C −) ⇒ (− ⊗C (− ⊗C −)), called associators over (C, ⊗C , IC) and are denoted
as αC.

2. The displayed morphisms over a triple (F, µF , ϵF) from αC to αD are proofs of the
proposition:∏

x,y,z:C
(µF

x,y ⊗D IdF z) · µF
x⊗Cy,z · FαC

x,y,z = αD
F x,F y,F z · (IdF x ⊗D µF

y,z) · µF
x,y⊗Cz .

We denote by CatUA the displayed bicategory over
∫

CatT U which is the product of
CatLU , CatRU and CatA (bidisp_assunitors_disp_bicat).

▶ Definition 22 (disp_bicat_univmon). The displayed bicategory CatP is the full displayed
sub-bicategory of CatUA specified by the product of the following predicates:
1. Triangle equality:∏

x,y:C
αx,I,y · Idx ⊗ λy = ρx ⊗ Idy .

2. Pentagon equality:∏
w,x,y,z:C

(αw,x,y ⊗ Idz) · αw,x⊗y,z · Idw ⊗ αx,y,z = αw⊗x,y,z · αw,x,y⊗z .

▶ Definition 23 (disp_bicat_univstrongfunctor). The displayed bicategory CatS is the
(non-full) displayed sub-bicategory of CatP where the displayed morphisms are proofs of the
proposition

isIso(ϵ) ×
∏

x,y:C
isIso(µx,y) .

The bicategory of monoidal categories, lax (resp. strong) monoidal functors, and monoidal
natural transformations is denoted by MonCat :=

∫
CatP (resp. MonCatstg :=

∫
CatS).

▶ Remark 24. The constructions are summarized in Figure 2. The dashed arrows correspond
to the projection induced by the product of the displayed bicategories to any of the compo-
nents. In particular, this means that the dashed arrows induce a (bi)pullback (of displayed
bicategories). The filled arrows represent that we have a forgetful pseudofunctor (given by
the projection of a total bicategory to its base bicategory). Lastly, the hooked arrows mean
that the domain is constructed as a (displayed) full sub-bicategory.
▶ Remark 25. An object in MonCat is of the form (((C, ⊗, I), λ, ρ, α), tri, pent). Usually,
one wants to consider an object in MonCat to be of the form (C, (((⊗, I), λ, ρ, α), tri, pent)),
i. e., as a category equipped with a monoidal structure. The displayed bicategory whose
objects are categories equipped with a monoidal structure can be constructed by applying
the sigma construction ([1, Definition 6.6(2)], sigma_bicat). Furthermore, this displayed
bicategory is univalent by a criterion presented in [1]. As this does not change the message
of the paper, we refer the reader to [1] for the precise statements, but we do show that the
criteria are satisfied in Lemmas 31, 33, and 35.

TYPES 2022

https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.AssociatorUnitorsLayer.html#bidisp_ass_disp_bicat
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.AssociatorUnitorsLayer.html#bidisp_assunitors_disp_bicat
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.FinalLayer.html#disp_bicat_univmon
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.FinalLayer.html#disp_bicat_univstrongfunctor
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.DisplayedBicats.Examples.Sigma.html#sigma_bicat

15:10 Univalent Monoidal Categories

▶ Remark 26. In the formalization of CatLU (resp. CatRU , CatA), we do not yet require a
left unitor (resp. right unitor, associator) to be an isomorphism. Since being an isomorphism is
a proposition, we could and did add these three (indexed) conditions only in the formalization
of CatP . This simplifies the proof of univalence of the bicategory of univalent monoidal
categories that is built from MonCat.

In Section 4, we construct a Rezk completion for monoidal categories. We are interested
in studying the hom-categories of MonCat and thus, in particular, the displayed hom-
categories. We now introduce some notations. Let B be a bicategory and x, y : B objects.
The hom-category from x to y is denoted by B(x, y). Any morphism f : B(x, y) induces a
functor between hom-categories, more precisely:

▶ Definition 27. Let B be a bicategory, f : B(x, y) a morphism and z : B an object. The
functor given by precomposition with f and target object z is the functor

f · (−) : B(y, z) → B(x, z) ,

where the action on the objects is given by precomposition, i. e., g 7→ f · g, and the action on
the morphisms is given by left whiskering, i. e., α 7→ f ◁ α.

We also refer to the functor given by precomposition with f as the precomposition functor
with f .

Let D be a displayed bicategory over B and x̄ ∈ Dx and ȳ ∈ Dy be displayed objects. The
(total) hom-category

∫
D((x, x̄), (y, ȳ)) can be constructed as a total category of a displayed

category over B(x, y). We denote this displayed category by D(x̄, ȳ) (so we use the same
notation for the hom-categories and displayed hom-categories).

In particular, the precomposition functor w. r. t. the total bicategory
∫

D of a morphism
(f, f̄) can be defined as a displayed functor over the precomposition functor f · (−) (w. r. t.
B) where we precompose/left whisker (in the displayed sense) with f̄ :

▶ Definition 28. Let D be a displayed bicategory over a bicategory B, x̄ : Dx, ȳ : Dy displayed
objects, f̄ : Df (x̄, ȳ) a displayed morphism and z̄ : Dz a displayed object. The displayed
functor given by precomposition with f̄ and target displayed object z̄ is the displayed
functor

f̄ · (−) : D(ȳ, z̄) → D(x̄, z̄)

over the functor given by precomposition with f and target object z.

We also refer to the displayed functor given by precomposition with f̄ as the displayed
precomposition functor with f̄ .

3 The univalent bicategory of monoidal categories

In this section we present our proof of univalence of the bicategory MonCatuniv of univalent
monoidal categories, with Theorem 37 as the main result. (We also obtain a version with
strong monoidal functors in place of lax monoidal functors.) In this proof, we rely heavily on
the displayed machinery built in [1], for modular construction of bicategories, and proofs of
their univalence.

In the formalization of this univalence proof, we have not used the formalization of a
monoidal category as presented above. Instead, we have changed the definition of a tensor
from being a functor to a more explicit, unfolded definition. It is not necessarily obvious that

K. Wullaert, R. Matthes, and B. Ahrens 15:11

the resulting bicategory is indeed that of monoidal categories, lax (resp. strong) monoidal
functors, and monoidal natural transformations. Therefore, we construct an equivalence of
types of monoidal categories as presented above on the one hand and using this explicit
definition on the other hand (cmonoidal_to_noncurriedmonoidal, cmonoidal_adjequiv_
noncurried_hom).

Recall from Lemma 12 that the total bicategory of a displayed bicategory is univalent if
both the base bicategory and the displayed bicategory are univalent. Since Catuniv is uni-
valent [[1, Prop. 3.19], univalent_cat_is_univalent_2], the task of proving MonCatuniv
univalent therefore reduces to showing that ΣΣCatT U

CatUACatP from the previous section is
univalent, restricted to the full sub-bicategory Catuniv of Cat. (This is to be read modulo
the repackaging hinted to in Remark 25.)

The sigma construction of univalent displayed bicategories is univalent provided that
both displayed bicategories are locally groupoidal and locally propositional [[1, Prop. 7.9],
sigma_disp_univalent_2_with_props]. The previously defined displayed bicategories are
locally propositional since they either express an (indexed) equality of morphisms or the
type of 2-cells is the unit type. Thus in this section, we show that the displayed bicategories
from Section 2 are univalent and locally groupoidal.
▶ Remark 29. In this section we restrict the displayed bicategories to the bicategory Catuniv of
univalent categories. For example, the restriction of CatT U is considered as the pullback of the
displayed bicategory CatT U along the inclusion of Catuniv into Cat. We denote the restric-
tion of the displayed bicategory Catℓ by Catℓ|univ for ℓ ∈ {T, U, TU, LU, RU, A, UA, P, S}.

▶ Lemma 30 (tensor_disp_is_univalent_2). CatT |univ is univalent.

Proof. CatT |univ is locally univalent by a straightforward calculation, we therefore only
discuss that it is globally univalent.

Let ⊗1, ⊗2 be two tensors on C. We have to show that idtoiso2,0
⊗1,⊗2

is an equivalence of
types. In order to show this, we factorize this function as follows:

⊗1 = ⊗2 DispAdjEquiv(⊗1, ⊗2)

tensorEq(⊗1, ⊗2) tensorIso(⊗1, ⊗2)

idtoeq

idtoiso2,0
⊗1,⊗2

eqtoiso

,

where tensorEq(⊗1, ⊗2) is the type∑
α:

∏
x,y:C

,x⊗1y=x⊗2y

∏
f :C(x1,x2)

∏
g:C(y1,y2)

f ⊗1 g = f ⊗2 g ,

where the equality f ⊗1 g = f ⊗2 g is dependent over αx1,y1 and αx2,y2 .
The type tensorIso(⊗1, ⊗2) is the same as tensorEq(⊗1, ⊗2) where we replaced the first

equality by an isomorphism (and the dependent equality of morphisms is replaced by pre-
and post-composing with the isomorphism).

The function idtoeq : ⊗1 = ⊗2 → tensorEq(⊗1, ⊗2) maps equality to pointwise equality
(on both the objects and morphisms). Because our hom-types are sets, this is an equivalence.
The function eqtoiso : tensorEq(⊗1, ⊗2) → tensorIso(⊗1, ⊗2) replaces identity by isomorphism.
Since C is a univalent category, eqtoiso is indeed an equivalence. Since a displayed adjoint
equivalence in CatT translates into the notion of tensorIso(⊗1, ⊗2), we construct in a
straightforward manner a function from tensorIso(⊗1, ⊗2) to DispAdjEquiv(⊗1, ⊗2), which is
for the same reason an equivalence. ◀

TYPES 2022

https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.EquivalenceMonCatNonCurried.html#cmonoidal_to_noncurriedmonoidal
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.EquivalenceMonCatNonCurried.html#cmonoidal_adjequiv_noncurried_hom
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.EquivalenceMonCatNonCurried.html#cmonoidal_adjequiv_noncurried_hom
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.Core.Examples.BicatOfUnivCats.html#univalent_cat_is_univalent_2
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.DisplayedBicats.Examples.Sigma.html#sigma_disp_univalent_2_with_props
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.TensorLayer.html#bidisp_tensor_disp_prebicat_is_univalent_2

15:12 Univalent Monoidal Categories

Each type of (displayed) 2-cells in CatU is contractible, hence:

▶ Lemma 31 (tensor_disp_locally_groupoidal). CatT |univ is locally groupoidal.

Proof. CatT |univ being locally groupoidal means that if a natural isomorphism α preserves
the tensor, then so does its inverse. This is immediate since the tensor product of isomorphisms
is again an isomorphism (by functoriality of the tensor). ◀

▶ Lemma 32 (unit_disp_is_univalent_2). CatU |univ is univalent.

Proof. CatU |univ is locally univalent by a straightforward calculation. Therefore, we only
discuss why it is globally univalent.

Let I, J : C be objects representing a unit object. As with the tensor layer, we factorize
idtoiso2,0

I,J and show that each function in the factorization is an equivalence. The factorization
is given by:

I = J DispAdjEquiv(I, J)

I ∼= J

idtoiso2,0
I,J

The definition of a displayed adjoint equivalence in this displayed bicategory translates
precisely to an isomorphism in the underlying category C, which gives us the arrow to the
right and a proof that it is an equivalence. The left arrow is given by idtoisoI,J and is an
equivalence precisely because C is a univalent category. ◀

▶ Lemma 33 (unit_disp_locally_groupoidal). CatU |univ is locally groupoidal.

▶ Lemma 34 (assunitors_disp_is_univalent_2). CatUA|univ is univalent.

Proof. Since the product of univalent displayed bicategories is univalent, it remains to show
that CatLU |univ,CatRU |univ and CatA|univ are univalent.

These displayed bicategories are locally univalent because the type of (displayed) 2-cells
is the unit type and the type of (displayed) 1-cells is a proposition.

Since the type of objects (resp. morphisms, 2-cells) is a set (resp. proposition, contractible)
and the base category is locally univalent, we can apply [1, Prop. 7.10]. This proposition
asserts that a displayed bicategory is univalent if a function of type (a ≃idtoiso2,0(p) b) →
(a =p b) can be constructed. The latter means precisely that we have to construct displayed
morphisms over an identity morphism. In the case of the left unitor, this means that we
have to construct a term of type (λ1 = λ2) provided that the identity morphism on (C, ⊗, I)
preserves the left unitor (as in Definition 19.2). The proofs that CatRU |univ and CatA|univ
are univalent is analogous. ◀

▶ Lemma 35 (assunitors_disp_locally_groupoidal). CatUA|univ is locally groupoidal.

Proof. This follows from the following lemmas:
1. The product of locally groupoidal displayed bicategories is locally groupoidal.
2. A displayed bicategory whose type of displayed 2-cells is the unit is locally groupoidal.

◀

A full displayed sub-bicategory of a univalent displayed bicategory is univalent, hence:

▶ Lemma 36 (tripent_disp_is_univalent_2). CatP |univ is univalent.

https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.TensorLayer.html#bidisp_tensor_disp_locally_groupoid
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.UnitLayer.html#bidisp_unit_disp_prebicat_is_univalent_2
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.UnitLayer.html#bidisp_unit_disp_locally_groupoid
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.AssociatorUnitorsLayer.html#bidisp_assunitors_is_disp_univalent_2
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.AssociatorUnitorsLayer.html#bidisp_assunitors_disp_locally_groupoid
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.FinalLayer.html#disp_bicat_tripent_is_univalent_2

K. Wullaert, R. Matthes, and B. Ahrens 15:13

Since a full displayed sub-bicategory of a displayed locally groupoidal bicategory is locally
groupoidal, we have that CatP |univ is locally groupoidal.

▶ Theorem 37 (UMONCAT_is_univalent_2). The bicategory of univalent monoidal categories,
lax monoidal functors, and monoidal natural transformations is univalent.

▶ Lemma 38 (UMONCAT_disp_strong_is_univalent_2). CatS |univ is univalent.

Proof. This follows immediately from Lemma 36 since the type of displayed 1-cells is a mere
proposition. ◀

▶ Theorem 39 (UMONCAT_strong_is_univalent_2). The bicategory of univalent monoidal
categories, strong monoidal functors, and monoidal natural transformations is univalent.

4 The Rezk completion for monoidal categories

Some constructions of (monoidal) categories do not yield univalent (monoidal) categories. For
instance, categories built from syntax usually have sets of objects; the presence of non-trivial
isomorphisms in such a category hence entails that it is not univalent. Another example
is when constructing colimits of univalent monoidal categories; the usual construction of
such a colimit often yields a non-univalent monoidal category. In such cases, a “completion
operation”, turning a monoidal category into a univalent one, is handy.

In this section we construct, for each monoidal category, a free univalent monoidal
category, which we call the monoidal Rezk completion. More precisely, we solve the following
problem:

▶ Problem 40. Given a Rezk completion H : C → D of a category C and a monoidal structure
M := (⊗, I, λ, ρ, α) on C, construct a monoidal structure M̂ := (⊗̂, Î, λ̂, ρ̂, α̂) on D and a
strong monoidal structure for H w. r. t. M and M̂ , such that for any univalent monoidal
category (E , N), the isomorphism of categories

H · (−) : Cat(D, E) → Cat(C, E)

lifts to the category of lax (resp. strong) monoidal functors:

H · (−) : MonCat((D, M̂), (E , N)) → MonCat((C, M), (E , N)) .

Once solved, we call (D, M̂) the monoidal Rezk completion of (C, M). Analogous to
the Rezk completion for categories, the monoidal Rezk completion exhibits the bicategory
MonCatuniv (resp. MonCatstg

univ) as a reflective full sub-bicategory of MonCat (resp.
MonCatstg).

Although any categorical structure on a category can be transported along an equivalence
of categories such that they become equivalent in the corresponding bicategory of structured
categories, this might not be the case if one considers a weak equivalence. On the way
towards solving Problem 40, we show, in particular, how to transport a monoidal structure
along a weak equivalence of categories (see Remark 61), provided that the target category
is univalent. That construction is not limited to the specific weak equivalence given by the
Rezk completion.

Analogous to the univalence proof of MonCatuniv (resp. MonCatstg
univ) given in Section 3,

we rely on the theory of displayed categories in order to solve this problem by dividing it
into subgoals. In each of the subgoals, we use the same strategy. In Section 4.1, we explain
the strategy in detail for the subgoal of equipping D (resp. H : C → D) with a tensor (resp.
tensor-preserving structure).

TYPES 2022

https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.FinalLayer.html#UMONCAT_is_univalent_2
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.FinalLayer.html#disp_bicat_univstrongfunctor_is_univalent_2
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.UnivalenceMonCat.FinalLayer.html#UMONCAT_strong_is_univalent_2

15:14 Univalent Monoidal Categories

4.1 The Rezk completion of a category with a tensor
Let C be a category and H : C → D a Rezk completion of C. Let ⊗ : C × C → C be a functor.

In this section we equip D with a functor ⊗̂ : D × D → D such that
1. H has the structure of a strong tensor-preserving functor, i. e., we have a natural iso-

morphism µH : (H × H) · ⊗̂ ⇒ ⊗ · H.
2. The precomposition functor of (H, µH) is an isomorphism of categories.

▶ Definition 41 (TransportedTensor, TransportedTensorComm). The lifted tensor ⊗̂ on D
is the (unique) functor ⊗̂ : D × D → D such that there is a natural isomorphism as depicted
in the following diagram:

D × D

C × C D

C

µH

⊗̂H×H

⊗ H

▶ Remark 42. The functor ⊗̂ is given by applying Lemma 4 to the weak equivalence
H × H : C × C → D × D.
▶ Remark 43. The natural isomorphism is labelled as µH because this natural isomorphism
is precisely the structure we need to have that H is a (strong) tensor-preserving functor.

▶ Lemma 44 (HT_eso). Let E be a univalent category and ⊗E : E × E → E be a functor.
The displayed precomposition functor (Definition 28) µH · (−) with target displayed object ⊗E
(as a displayed object in CatT) is displayed split essentially surjective. Consequently, the
precomposition functor

(H, µH) · (−) :
∫

CatT ((D, ⊗̂), (E , ⊗E)) →
∫

CatT ((C, ⊗), (E , ⊗E))

is essentially surjective.

Proof. Let G : D → E be a functor and µH·G a natural transformation of type

(H × H) · (G × G) · ⊗E ⇒ ⊗ · H · G .

witnessing that H · G is a lax tensor-preserving functor. We have to construct a natural
transformation witnessing that G is a lax tensor-preserving functor, i. e., we have to define a
natural transformation

µG : (G × G) · ⊗E ⇒ ⊗̂ · G .

Since H × H is a weak equivalence and E is univalent, it suffices to define a natural
transformation of type

(H × H) · (G × G) · ⊗E ⇒ (H × H) · ⊗̂ · G .

which we define as:

D × D E × E

C × C C D E

D × D

G×G

µH·G ⊗EH×H

⊗

H×H

H
(µH)−1

G

⊗̂

For a detailed proof that µH·G is (displayed) isomorphic to the (displayed) composition of
µH and µG, we refer the reader to the formalization. ◀

https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.CategoryTheory.Monoidal.RezkCompletion.LiftedTensor.html#TransportedTensor
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.CategoryTheory.Monoidal.RezkCompletion.LiftedTensor.html#TransportedTensorComm
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.CategoryTheory.Monoidal.RezkCompletion.LiftedTensor.html#HT_eso

K. Wullaert, R. Matthes, and B. Ahrens 15:15

▶ Lemma 45 (HT_ff). Let E be a univalent category and ⊗E : E × E → E be a functor.
The displayed precomposition functor µH · (−) is displayed fully faithful. Consequently, the
precomposition functor (H, µH) · (−) between the tensor-preserving functor categories is fully
faithful.

Proof. It is displayed faithful because the type stating that a natural transformation preserves
a tensor is a mere proposition. In order to show that it is displayed full, notice that we have
to show an equality of morphisms, i. e., a proposition. Therefore, we are able to use that
H × H is essentially surjective which allows us to work with objects in C instead of D which
leads to the result. ◀

▶ Theorem 46 (precomp_tensor_catiso). A category equipped with a tensor admits a Rezk
completion: Let (E , ⊗E) :

∫
CatT . If E is univalent, then

(H, µH) · (−) :
∫

CatT ((D, ⊗̂), (E , ⊗E)) →
∫

CatT ((C, ⊗), (E , ⊗E))

is an isomorphism of categories.

Proof. First notice that both categories are univalent, indeed: since E is univalent, so are
Cat(D, E) and Cat(C, E) and in Section 3, we have proven that the displayed bicategory
CatT |univ is locally univalent, i. e., the displayed hom-categories are univalent. Hence, it
suffices to show that this functor is a weak equivalence, i. e., fully faithful and essentially
surjective. Fully faithfulness can always be concluded if both the functor on the base
categories and the displayed functor are. The total functor is essentially surjective if this
holds on the base and at the displayed level, provided extra information: it suffices that
the base category and the displayed category are univalent. So we conclude the result from
combining the assumption that H is a weak equivalence and lemmas 45 and 44. ◀

▶ Remark 47. The strategy introduced in this section will be repeated in the next section, so
we refer back to this section for the necessary details (if needed).

4.2 The Rezk completion of a category with a tensor and unit
In Section 4.1, we have shown how the structure of a tensor ⊗ on C transports along a weak
equivalence H : C → D to a tensor on a univalent category D. Furthermore, H has the
structure of a strong tensor-preserving functor and that (D, ⊗̂) is universal in the sense that
objects in

∫
CatT admit a Rezk completion.

In this section, we show that the same result holds when we add the choice of an object
to a category, playing the role of the tensorial unit. This construction is trivial, but we will
also discuss how we can conclude that objects in

∫
CatT U admit a Rezk completion.

As before, let H : C → D be a weak equivalence from a category C to a univalent category
D. Let I : C, thus (C, I) :

∫
CatU . Clearly we have (H, IdH I) :

∫
CatU ((C, I), (D, H I)).

To conclude that (D, H I) is universal, we apply the same reasoning as in Section 4.1.
We have to show that for any (E , IE) : CatU with E univalent, the displayed precomposition
functor

IdH I · (−) : CatU (H I, IE) → CatU (I, IE)

is displayed fully faithful and displayed split essentially surjective. We denote Î := (H I) and
ϵH := IdÎ .

TYPES 2022

https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.CategoryTheory.Monoidal.RezkCompletion.LiftedTensor.html#HT_ff
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.MonoidalRezkCompletion.html#precomp_tensor_catiso

15:16 Univalent Monoidal Categories

▶ Lemma 48 (HU_eso). The displayed precomposition functor (Definition 28) ϵH · (−)
with target displayed object IE is displayed split essentially surjective. Consequently, the
precomposition functor (H, ϵH) · (−) with target object (E , IE) between unit tensor-preserving
functor categories is essentially surjective.

Proof. It is merely surjective since the witness, expressing that the weak equivalence preserves
the unit, is an identity morphism. ◀

▶ Lemma 49 (HU_ff). The displayed precomposition functor ϵH · (−) is displayed fully
faithful. Consequently, the precomposition functor (H, ϵH) · (−) between the unit-preserving
functor categories is fully faithful.

Proof. It is displayed faithful since the type of 2-cells is a property. The witness expressing
that the weak equivalence preserves the unit is an identity morphism. Hence, it is displayed
full. ◀

Using the exact same reasoning used in Theorem 46, we conclude:

▶ Theorem 50 (precomp_unit_catiso). A category equipped with a unit admits a Rezk
completion: Let (E , IE) :

∫
CatU . If E is univalent, then

(H, ϵH) · (−) :
∫

CatU ((D, Î), (E , IE)) →
∫

CatU ((C, I), (E , IE))

is an isomorphism of categories.

So we have proven that objects in CatT and CatU admit a Rezk completion. From these
results, we conclude that objects in CatT U admit a Rezk completion:

▶ Theorem 51 (precomp_tensorunit_catiso). Let (E , ⊗E , IE) : CatT U . If E is univalent,
then

(H, µH, ϵH) · (−) :
∫

CatT U ((D, ⊗̂, Î), (E , ⊗E , IE)) →
∫

CatT U ((C, ⊗, I), (E , ⊗E , IE))

is an isomorphism of categories, i. e., objects in
∫

CatT U admit a Rezk completion.

Proof. The product of univalent displayed bicategories is again univalent. Thus, both the
domain and codomain of this functor are univalent. Hence, by the same argument as in
Theorem 46, it reduces to proving that the displayed precomposition functor is a displayed
weak equivalence. The displayed precomposition functor is the product of the displayed
precomposition functors of µH resp. ϵH. Since the product of displayed weak equivalences is
again a weak equivalence, the result now follows. ◀

4.3 The Rezk completion of a category with a tensor, unit, unitors and
associator

In this section, we prove that every object in
∫

CatLU (resp.
∫

CatRU and
∫

CatA) has a
Rezk completion.

As above, we let H : C → D be a weak equivalence from a category C to a univalent
category D, and let C be equipped with a tensor ⊗ and a unit I. The lifted tensor on D is
denoted by ⊗̂ and Î := H I. The witness that H preserves the tensor (resp. unit) (strongly)
is denoted by µH (resp. ϵH = IdH I).

https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.CategoryTheory.Monoidal.RezkCompletion.LiftedTensorUnit.html#HU_eso
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.CategoryTheory.Monoidal.RezkCompletion.LiftedTensorUnit.html#HU_ff
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.MonoidalRezkCompletion.html#precomp_unit_catiso
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.MonoidalRezkCompletion.html#precomp_tensorunit_catiso

K. Wullaert, R. Matthes, and B. Ahrens 15:17

▶ Remark 52. In all the constructions of this section, we use the lifted tensor ⊗̂ and unit
Î. The specific shape of these lifts does not matter; we could state the constructions for
an arbitrary Rezk completion of CatT U . However, by univalence we have uniqueness of the
tensor and unit on D under the proviso that H preserves them both.

Before lifting a left unitor from C to D, we first define a natural isomorphism witnessing
that the weak equivalence preserves tensoring with the unit object (on the left):

▶ Lemma 53 (LiftPreservesPretensor). There is a natural isomorphism H · (Î ⊗̂ −) ⇒
(I ⊗ −) · H.

Proof. This is given by the following composition:

C D

C × C D × D

C D

H

(I,−) (Î,−)
H×H

⊗ ⊗̂

H

µH

where the upper square is given by a trivial equality of functors. ◀

▶ Definition 54 (TransportedLeftUnitor). Let λ be a left unitor on (C, ⊗, I), that is,
(C, ⊗, I, λ) :

∫
CatLU . The lifted left unitor λ̂ on (D, ⊗̂, Î) is the unique natural isomorphism

that maps to the vertical composition of the natural isomorphism (defined in Lemma 53) and
λ ▷ H, under the precomposition functor with H.

An immediate calculation shows:

▶ Lemma 55 (H_plu). H preserves the left unitor.

▶ Theorem 56 (precomp_lunitor_catiso). The objects in
∫

CatLU admit a Rezk comple-
tion:

Let (E , ⊗E , IE , λE) :
∫

CatLU . If E is univalent, then (H, µH, ϵH, pluH) · (−) of type∫
CatLU ((D, ⊗̂, Î, λ̂), (E , ⊗E , IE , λE)) →

∫
CatLU ((C, ⊗, I, λ), (E , ⊗E , IE , λE))

is an isomorphism of categories, where pluH is a witness that H preserves the left unitor (as
provided by Lemma 55).

Proof. As before, it reduces to show that the displayed precomposition functor (Definition 28)
is a displayed weak equivalence. It is displayed fully faithful since the type of 2-cells in
CatLU is the unit type. We now show that it is displayed split essentially surjective. Let
G : D → E be a lax tensor and unit preserving functor such that H · G preserves the left
unitor. We have to show that G also preserves the left unitor. Since we have to show a
proposition, the claim now follows from combining the essential surjectivity of H and then
applying the assumption on H · G. ◀

Completely analogous is the case of right unitor:

▶ Theorem 57 (precomp_runitor_catiso). The objects in
∫

CatRU admit a Rezk comple-
tion.

TYPES 2022

https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.CategoryTheory.Monoidal.RezkCompletion.LiftedUnitors.html#LiftPreservesPretensor
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.CategoryTheory.Monoidal.RezkCompletion.LiftedUnitors.html#TransportedLeftUnitor
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.CategoryTheory.Monoidal.RezkCompletion.LiftedUnitors.html#H_plu
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.MonoidalRezkCompletion.html#precomp_lunitor_catiso
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.MonoidalRezkCompletion.html#precomp_runitor_catiso

15:18 Univalent Monoidal Categories

In order to prove that every object in
∫

CatA has a Rezk completion, we use an analogous
trick as is used for objects in, e. g.,

∫
CatLU . An associator for (D, ⊗̂) is a natural isomorphism

between functors of type (D × D) × D → D. Since the product of weak equivalences is
again a weak equivalence, such a natural isomorphism corresponds uniquely to a natural
isomorphism between functors of type (C × C) × C → D. Analogous to the constructions of
the left and right unitor, the natural isomorphism (of type (C × C) × C → D) is not given by
α ▷ H as this does not give us the correct type of functors. In the case of the left unitor, we
only had to provide a natural isomorphism to match the domain, but for the associator, we
furthermore need a natural isomorphism to match the codomain.

▶ Theorem 58 (precomp_associator_catiso). The objects in
∫

CatA admit a Rezk com-
pletion.

4.4 The Rezk completion of a monoidal category
In this section, we are able to conclude that the objects in MonCat and MonCatstg admit
a Rezk completion.

In the previous sections, we have lifted all the structure of a monoidal category to a
weakly equivalent univalent category.

However, it still remains to show that the lifted structure (D, ⊗̂, Î, λ̂, ρ̂, α̂) satisfies the
properties of a monoidal category if (C, ⊗, I, λ, ρ, α) does.

▶ Lemma 59 (TransportedTriangleEq, TransportedPentagonEq). The lifted monoidal
structure satisfies the pentagon and triangle equalities: If the triangle (resp. pentagon)
equality holds for (C, ⊗, I, λ, ρ, α), then it also holds for (D, ⊗̂, Î, λ̂, ρ̂, α̂).

▶ Theorem 60 (precomp_monoidal_catiso). Any monoidal category admits a Rezk com-
pletion (considered in the bicategory of lax monoidal functors).

Proof. In Theorem 56, Theorem 57 and Theorem 58 we have shown how the categories∫
CatLU ,

∫
CatRU and

∫
CatA admit a Rezk completion. Hence,

∫
(CatLU ×CatRU ×CatA)

admits a Rezk completion.
Thus, to conclude that the total bicategory of CatP (over

∫
(CatLU × CatRU × CatA))

admits a Rezk completion, it suffices to show that the displayed precomposition functor
with respect to CatP is displayed fully faithful and displayed split essentially surjective.
The displayed hom-categories of CatP are the terminal categories. Hence, the displayed
precomposition functor must be the displayed identity functor. Consequently, this displayed
precomposition functor is a weak equivalence. ◀

▶ Remark 61 (RezkCompletion_monoidal_cat, RezkCompletion_monoidal_functor). As
part of the proof of Theorem 60, we have shown how to transfer a monoidal structure along a
weak equivalence of categories, provided that the target category is univalent. More precisely,
for any monoidal category C, univalent category D, and weak equivalence H : C → D, we
construct a monoidal structure M on D, and a structure of a (strong) monoidal functor on
H with respect to C and M .

Next, we prove that any monoidal category admits a Rezk completion in the bicategory
of strong monoidal functors. Concretely, we show the following theorem:

▶ Theorem 62 (precomp_strongmonoidal_catiso). Let C be a monoidal category and
H : C → D the Rezk completion of C as constructed in Theorem 60. If E is a univalent
monoidal category, then

H · (−) : MonCatstg(D, E) → MonCatstg(C, E)

is an isomorphism of categories.

https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.MonoidalRezkCompletion.html#precomp_associator_catiso
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.CategoryTheory.Monoidal.RezkCompletion.LiftedMonoidal.html#TransportedTriangleEq
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.CategoryTheory.Monoidal.RezkCompletion.LiftedMonoidal.html#TransportedPentagonEq
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.MonoidalRezkCompletion.html#precomp_monoidal_catiso
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.CategoryTheory.Monoidal.RezkCompletion.MonoidalRezkCompletion.html#RezkCompletion_monoidal_cat
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.CategoryTheory.Monoidal.RezkCompletion.MonoidalRezkCompletion.html#RezkCompletion_monoidal_functor
https://benediktahrens.gitlab.io/unimathdoc/6d2d288/UniMath.Bicategories.MonoidalCategories.MonoidalRezkCompletion.html#precomp_strongmonoidal_catiso

K. Wullaert, R. Matthes, and B. Ahrens 15:19

Proof. First note that H is indeed strong monoidal by the definition of µH and ϵH. Hence,
the statement is well-defined.

As before, we have to conclude that the displayed precomposition functor (Definition 28)
((µH)−1, (ϵH)−1) · (−) is fully faithful and displayed split essentially surjective.

The displayed precomposition functor is fully faithful since every type of displayed 2-cells
in MonCatstg is the unit type.

The displayed precomposition functor is split essentially surjective since the lift of a
natural isomorphism is a natural isomorphism. ◀

4.5 The Rezk completion of a monoidal category using Day convolution
A concrete implementation of the Rezk completion of a category C is given by restricting the
Yoneda embedding to its full image [2, Thm. 8.5]. It is well-known that any monoidal structure
on C induces a monoidal structure on its category of presheaves [Cop, Set] [8, Prop. 4.1]. The
tensor product of two presheaves F, G is given by the Day convolution F ⊗Day G. Furthermore,
the Day convolution of representable presheaves is again representable, i. e., for any two
objects x, y : C, one can construct a natural isomorphism

C(−, x) ⊗Day C(−, y) ∼= C(−, x ⊗ y) .

Consequently, the Yoneda embedding has the structure of a strong monoidal functor. As one
would expect, the full subcategory of representable presheaves becomes the monoidal Rezk
completion. One way to show this result is to show that the universal property of monoidal
Rezk completion holds. However, we already know that the full subcategory of representable
presheaves has a monoidal structure (induced by the monoidal Rezk completion). Therefore,
it suffices to show that the Rezk monoidal structure is equal to the Day monoidal structure.

Each piece of data of the Rezk monoidal structure is defined using a universal property in
the sense that it is a unique lifting of some functor or natural transformation. For example,
the (lifted) tensor product ⊗̂ is the unique functor satisfying the equation

⊗ ·よ= (よ×よ) · ⊗̂ ,

where よ is the Yoneda embedding restricted to its full image, i. e., the concrete weak
equivalence. Using that a category of presheaves is univalent, the Day tensor product also
satisfies this equation. Hence, the Day tensor product and the lifted tensor coincide. The
lifted unit is by definition equal to the unit of the Day monoidal structure. Analogously, one
can argue that the Day unitors and associator also satisfy the universal property of the lifted
unitors resp. associator.

This shows that, for the concrete implementation of the Rezk completion using represen-
table presheaves, the monoidal Rezk completion is given by the Day convolution.
▶ Remark 63. This section has briefly explained what one needs to do in order to work with
a specific implementation of the Rezk completion of a category. Indeed, Let (C, ⊗, I, λ, ρ, α)
be a monoidal category and a specific univalent category D which is weakly equivalent to C
as witnessed by H : C → D. Furthermore, assume we have a functor ⊗̂ : D × D → D and
natural isomorphisms λ̂, ρ̂ and α̂ which have the types of a left unitor, right unitor and the
associator (w. r. t. ⊗̂ as the tensor and H I as the unit).

Then, in order to show that (D, ⊗̂, H I, λ̂, ρ̂, α̂) is the monoidal Rezk completion, it suffices
to show that the pieces of data satisfy the property of the lifted tensor, lifted left unitor,
lifted right unitor and the lifted associator. In particular, one does not have to show manually
that (D, ⊗̂, H I, λ̂, ρ̂, α̂) is a monoidal category, H becomes a (strong) monoidal functor and
that it satisfies the universal property of the monoidal Rezk completion; this all follows from
the argument above.

TYPES 2022

15:20 Univalent Monoidal Categories

5 Conclusion

We have studied (the bicategory of) monoidal categories in univalent foundations. First,
we showed that the bicategory of univalent monoidal categories is univalent. Second, we
constructed a Rezk completion for monoidal categories; specifically, we lifted the Rezk
completion for categories to the monoidal structure. Our technique also works for lax and
oplax monoidal categories, with minimal modifications. We have not presented this work
here, but the UniMath code is available online.2

The second result provides a blueprint for constructing completion operations for “cate-
gories with structure”. By “structure”, we mean categorical structure such as functors and
natural transformations. Here, the main challenge is to define a suitable notion of signature
that allows us to specify structure on a category. Such a signature should translate into a
suitable “tower” of displayed (bi)categories and come with the necessary boilerplate code for
using it. Work on this topic will be reported elsewhere.

References
1 Benedikt Ahrens, Dan Frumin, Marco Maggesi, Niccolò Veltri, and Niels van der Weide.

Bicategories in univalent foundations. Math. Struct. Comput. Sci., 31(10):1232–1269, 2021.
doi:10.1017/S0960129522000032.

2 Benedikt Ahrens, Krzysztof Kapulkin, and Michael Shulman. Univalent categories and
the Rezk completion. Math. Struct. Comput. Sci., 25(5):1010–1039, 2015. doi:10.1017/
S0960129514000486.

3 Benedikt Ahrens and Peter LeFanu Lumsdaine. Displayed categories. Log. Methods Comput.
Sci., 15(1), 2019. doi:10.23638/LMCS-15(1:20)2019.

4 Benedikt Ahrens, Paige Randall North, Michael Shulman, and Dimitris Tsementzis. The
Univalence Principle, 2021. To be published in Memoirs of the American Mathematical Society.
arXiv:2102.06275.

5 Johannes Schipp von Branitz and Ulrik Buchholtz. Using displayed univalent graphs to
formalize higher groups in univalent foundations, 2021. URL: https://ulrikbuchholtz.dk/
durgs.pdf.

6 Lucas Dixon and Aleks Kissinger. Monoidal categories, graphical reasoning, and quantum
computation, 2009. Presented at Workshop on Computer Algebra Methods and Commutativity
of Algebraic Diagrams (CAM-CAD). URL: https://www.researchgate.net/publication/
265098183_Monoidal_Categories_Graphical_Reasoning_and_Quantum_Computation.

7 Pau Enrique Moliner, Chris Heunen, and Sean Tull. Space in monoidal categories. Electronic
Proceedings in Theoretical Computer Science, 266, April 2017. doi:10.4204/EPTCS.266.25.

8 Geun Bin Im and G.M. Kelly. A universal property of the convolution monoidal structure.
Journal of Pure and Applied Algebra, 43(1):75–88, 1986. doi:10.1016/0022-4049(86)90005-8.

9 Krzysztof Kapulkin and Peter LeFanu Lumsdaine. The simplicial model of Univalent Found-
ations (after Voevodsky). Journal of the European Mathematical Society, 23(6):2071–2126,
2021. URL: https://ems.press/journals/jems/articles/274693.

10 Yuri I. Manin and Matilde Marcolli. Homotopy theoretic and categorical models of neural
information networks, 2020. arXiv:2006.15136.

11 Chad Nester. Concurrent process histories and resource transducers. Log. Methods Comput.
Sci., 19(1), 2023. doi:10.46298/lmcs-19(1:7)2023.

12 Dario Stein and Sam Staton. Compositional semantics for probabilistic programs with exact
conditioning. In 36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS

2 https://github.com/Kfwullaert/UniMath/tree/LaxMonoidalRezkCompletion

https://github.com/UniMath/UniMath
https://doi.org/10.1017/S0960129522000032
https://doi.org/10.1017/S0960129514000486
https://doi.org/10.1017/S0960129514000486
https://doi.org/10.23638/LMCS-15(1:20)2019
https://arxiv.org/abs/2102.06275
https://ulrikbuchholtz.dk/durgs.pdf
https://ulrikbuchholtz.dk/durgs.pdf
https://www.researchgate.net/publication/265098183_Monoidal_Categories_Graphical_Reasoning_and_Quantum_Computation
https://www.researchgate.net/publication/265098183_Monoidal_Categories_Graphical_Reasoning_and_Quantum_Computation
https://doi.org/10.4204/EPTCS.266.25
https://doi.org/10.1016/0022-4049(86)90005-8
https://ems.press/journals/jems/articles/274693
https://arxiv.org/abs/2006.15136
https://doi.org/10.46298/lmcs-19(1:7)2023
https://github.com/Kfwullaert/UniMath/tree/LaxMonoidalRezkCompletion

K. Wullaert, R. Matthes, and B. Ahrens 15:21

2021, Rome, Italy, June 29 - July 2, 2021, pages 1–13. IEEE, 2021. doi:10.1109/LICS52264.
2021.9470552.

13 Kirk Sturtz. Categorical probability theory, 2014. arXiv:1406.6030.
14 The Coq Development Team. The Coq proof assistant, version 8.13.0, January 2021. URL:

https://zenodo.org/record/4501022.
15 The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of

Mathematics. http://homotopytypetheory.org/book, Institute for Advanced Study, 2013.
16 Niels van der Weide. Constructing Higher Inductive Types. PhD thesis, Radboud University,

2020. URL: https://hdl.handle.net/2066/226923.
17 Vladimir Voevodsky, Benedikt Ahrens, Daniel Grayson, et al. UniMath – A computer-checked

library of univalent mathematics. Available at http://unimath.github.io/UniMath/ , 2023.

TYPES 2022

https://doi.org/10.1109/LICS52264.2021.9470552
https://doi.org/10.1109/LICS52264.2021.9470552
https://arxiv.org/abs/1406.6030
https://zenodo.org/record/4501022
http://homotopytypetheory.org/book
https://hdl.handle.net/2066/226923
http://unimath.github.io/UniMath/

	p000-Frontmatter
	Preface

	p001-Mulligan
	1 Introduction
	1.1 On operating systems
	1.2 On programmable proof-checkers
	1.3 Introducing the Supervisionary system

	2 Implemented logic
	3 The Supervisionary kernel state
	3.1 The type-former heap
	3.2 The type heap
	3.3 The constant and term heap
	3.4 The theorem heap
	3.5 Specifying kernel functions
	3.6 Programming in user-space

	4 Future work
	4.1 Capabilities on steroids
	4.2 Hardware-accelerated proof-checking

	5 Conclusions
	5.1 Related work
	5.2 On trust
	5.3 Closing remarks

	p002-Geuvers
	1 Introduction
	2 Natural Deduction from Truth Tables
	3 Monotone and non-monotone connectives
	3.1 For non-monotone connectives, one classical introduction suffices

	4 Variants of Classical Natural Deduction
	5 Proof terms for natural deduction
	5.1 Proof terms for truth table natural deduction with conclusion variables
	5.2 Proof terms and reductions: the intuitionistic case
	5.3 Proof terms and reductions: the classical multi-conclusion case
	5.4 Proof terms and reductions: the classical single-conclusion case

	6 Truth Table Logic
	7 Conclusion
	8 Future and Related Research

	p003-Colledan
	1 Introduction
	2 Circuits and Dynamic Lifting: a Bird's-Eye View
	3 Generalized Quantum Circuits
	4 Proto-Quipper-K
	4.1 Types and Terms
	4.2 Proto-Quipper-K's Typing Rules
	4.3 A Big-Step Operational Semantics

	5 Type Soundness
	6 Conclusion
	A Type Derivations

	p004-Grienenberger
	1 Introduction
	2 Expressing ecumenism in lambdaPi-calculus modulo theory
	2.1 The lambdaPi-calculus modulo theory
	2.2 Ecumenical STT and its subtheories

	3 Properties of the logical fragments of theory U
	3.1 Well-typedness
	3.2 Normalization
	3.2.1 Super-consistency
	3.2.2 Models of Constructive STT

	4 First order ecumenism
	4.1 Reference systems: constructive and classical predicate logic
	4.2 Soundness and conservativity of Constructive Predicate Logic
	4.3 Soundness and conservativity of Ecumenical Predicate Logic

	5 Higher order ecumenism
	5.1 Reference systems: constructive and classical HOL-lambda
	5.2 Soundness and conservativity of Constructive STT
	5.2.1 Soundness of Constructive STT
	5.2.2 Conservativity of Constructive STT

	5.3 Soundness and conservativity of Ecumenical STT

	6 Conclusion

	p005-Padovani
	1 Introduction
	2 Syntax and Semantics of coreCSLL
	3 Type System
	4 A quick recollection of muMALL
	5 Fair Termination of coreCSLL
	6 Example: a Compare-and-Swap register
	7 Concluding Remarks
	A Supplement to Section 3

	p006-Stassen
	1 Introduction
	1.1 MTT: a general modal type theory
	1.2 From theory to practice
	1.3 Contributions

	2 A surface syntax for MTT
	2.1 Bidirectional Syntax
	2.2 The surface syntax by example

	3 Normalization by Evaluation
	3.1 The Domain
	3.2 Evaluation
	3.3 Quotation
	3.4 The NbE function

	4 Implementing a Mode Theory
	5 Semantic Type-Checking Algorithm
	5.1 Semantic Contexts
	5.2 Checking and Synthesis

	6 Case study: guarded recursion in mitten
	6.1 Guarded recursion
	6.2 Implementation
	6.3 Streams in guarded mitten

	7 Related Work
	8 Conclusions and future work

	p007-Mull
	1 Introduction
	2 Preliminaries
	2.1 Meta-Theory
	2.2 Tiered Pure Type Systems

	3 Irrelevancy-Eliminating Translation
	3.1 Eliminating Completely Irrelevant Rules
	3.2 Eliminating Completely Isolated Sorts
	3.3 The Final Translation

	4 Conclusions

	p008-Reis
	1 Introduction
	2 Intersection Types
	2.1 Finite Rank

	3 Linear Rank Intersection Types
	3.1 Linear Rank
	3.2 Type System
	3.3 Type Inference Algorithm
	3.3.1 Unification
	3.3.2 Type Inference

	3.4 Remarks

	4 Resource Inference
	4.1 Type System
	4.2 Type Inference Algorithm

	5 Conclusions and Future Work

	p009-Bradley
	1 Introduction
	2 Expressive Subtype Universes
	2.1 Coercive Subtyping
	2.2 Subtype Universes
	2.3 Flat Type Theories

	3 Metatheory
	3.1 Type Level
	3.2 A Syntactic Transformation
	3.3 On Monotonic Subtyping
	3.4 On Non-Mononotic Subtyping

	4 On Subtyping and Bounded Quantification
	4.1 With Dependent Functions
	4.2 With Universal Supertypes
	4.3 With Subtype Universes
	4.4 Decidability of Typing and Subtyping

	5 Applications
	5.1 Bounded Quantification
	5.2 Natural Langauge Semantics
	5.3 Point-Set Topology

	6 Conclusion

	p010-Altenkirch
	1 Introduction
	2 Background
	2.1 Datatypes
	2.2 Records
	2.3 Modules
	2.4 Forward Declarations
	2.5 Postulates
	2.6 Rewrite Rules

	3 Dependent Sequences
	3.1 Infinite Sequences

	4 Multi-dimensional Arrays
	4.1 Unshaped arrays
	4.2 Inductive-inductive
	4.3 Münchhausen universe

	5 Russell Universes
	6 Type Theory without Contexts
	7 Combinatory Type Theory
	8 Conclusions
	A The Type Theory without Contexts model construction

	p011-Dubois
	1 Introduction
	2 Specifying Families Using Two Different Representations
	2.1 Types
	2.2 Transformations and Their Properties
	2.3 Partial Automation of Specification and Proofs
	2.4 Random Generators

	3 Two Instances: Closable Motzkin Trees and Uniquely Closable Motzkin Trees
	3.1 Closable Motzkin Trees
	3.1.1 Random Generators

	3.2 Uniquely Closable Motzkin Trees

	4 Pure Open lambda-Terms in De Bruijn Form
	4.1 Types
	4.2 Transformations and Their Properties
	4.3 Random Generators
	4.4 Characterization of Open lambda-Terms From Their Skeleton

	5 Use Cases
	5.1 Another Definition for Closable Skeletons
	5.2 Two Definitions for the Size of Terms
	5.3 Characterization of Closable Motzkin Trees
	5.4 Characterization of Uniquely Closable Motzkin Trees

	6 Conclusions and Perspectives

	p012-Ledein
	1 Introduction
	2 What is the K framework?
	2.1 A first K semantics
	2.1.1 Define the syntax of a language
	2.1.2 Define the semantics associated to the syntax

	2.2 Additional features
	2.2.1 Definable features thanks to the attributes
	2.2.2 Definable features thanks to the K standard library

	2.3 A K grammar

	3 Abstracting the K framework
	3.1 An abstract view of K
	3.2 Compilation of a K semantics
	3.3 From K to Kore

	4 From the K framework to the lambda-Pi-calculus modulo theory
	4.1 The lambda-Pi-calculus modulo theory
	4.2 Dedukti
	4.3 Translation from abstract K to the lambda-Pi-calculus modulo theory
	4.3.1 Translating conditional rewriting rules
	4.3.2 Translating evaluation strategies
	4.3.3 Semantics preservation

	5 Implementation and examples
	5.1 KaMeLo in a nutshell
	5.2 KaMeLo in action

	6 Conclusion

	p013-Bezem
	1 Introduction
	2 Rules for a basic type theory
	3 Rules for an external sequence of universes
	4 A type theory with universe levels and polymorphism
	5 A type theory with level constraints
	6 Related work
	7 Conjectures and future work
	A Formulation with cumulativity
	B Notions of model and formulation à la Russell

	p014-Zeuner
	1 Introduction
	2 Background
	2.1 Affine schemes constructively
	2.2 Set-level univalent mathematics in Cubical Agda

	3 Commutative algebra
	3.1 Localizations
	3.2 The Zariski lattice

	4 Category theory
	5 The structure sheaf
	6 Conclusion
	6.1 Comparison to the classical definition of affine schemes
	6.2 Existing formalizations
	6.3 Different univalent approaches to basic opens
	6.4 Towards constructive quasi-compact, quasi-separated schemes

	p015-Wullaert
	1 Introduction
	1.1 Review of the Rezk completion for categories
	1.2 Review of displayed (bi)categories
	1.3 Formalization in UniMath

	2 The bicategory of monoidal categories
	3 The univalent bicategory of monoidal categories
	4 The Rezk completion for monoidal categories
	4.1 The Rezk completion of a category with a tensor
	4.2 The Rezk completion of a category with a tensor and unit
	4.3 The Rezk completion of a category with a tensor, unit, unitors and associator
	4.4 The Rezk completion of a monoidal category
	4.5 The Rezk completion of a monoidal category using Day convolution

	5 Conclusion

