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Preface

This volume contains the papers presented at SAT 2023, the 26th International Conference
on Theory and Applications of Satisfiability Testing, held from July 4–8, 2023 in Alghero,
Sardinia, Italy. The SAT 2023 conference was hosted by the University of Sassari in its
Alghero campus.

The International Conference on Theory and Applications of Satisfiability Testing (SAT)
is the premier annual meeting for researchers focusing on the theory and applications of the
propositional satisfiability problem, broadly construed. In addition to plain propositional
satisfiability, it also includes Boolean optimization (such as MaxSAT and Pseudo-Boolean
(PB) constraints), Quantified Boolean Formulas (QBF), Satisfiability Modulo Theories (SMT),
Model Counting, and Constraint Programming (CP) for problems with clear connections
to Boolean-level reasoning. Many hard combinatorial problems can be tackled using SAT-
based techniques including problems that arise in Formal Verification, Artificial Intelligence,
Operations Research, Computational Biology, Cryptography, Data Mining, Machine Learning,
Mathematics, etc. Indeed, the theoretical and practical advances in SAT research over the
past twenty years have contributed to making SAT technology an indispensable tool in a
variety of domains.

SAT 2023 welcomed scientific contributions addressing different aspects of SAT, including
(but not restricted to) theoretical advances (such as exact algorithms, proof complexity, and
other complexity issues), practical search algorithms, knowledge compilation, implementation-
level details of SAT solvers and SAT-based systems, problem encodings and reformulations,
applications (including both novel application domains and improvements to existing ap-
proaches), as well as case studies and reports on findings based on rigorous experimentation.

A total of 67 papers, comprising 47 regular papers, 10 short papers, and 10 tool papers,
were submitted to and reviewed for SAT 2023. Each submission was reviewed by (at least)
three Program Committee members and their selected external reviewers. The review process
included an author response period, during which the authors of submitted papers were
given the opportunity to respond to the initial reviews of their submissions. To reach a
final decision, a Program Committee discussion period followed the author response period.
External reviewers supporting the Program Committee were also invited to participate
directly in the discussions for the papers they reviewed. Finally, 30 papers were accepted, of
which 21 are regular papers, 3 are short papers, and 6 are tool papers.

In addition to the presentations of the accepted papers, the scientific program of SAT
included two invited talks from Albert Atserias (Universitat Politecnica de Catalunya,
Barcelona, Spain) and Ryan Williams (Massachusetts Institute of Technology, USA).

The conference hosted various associated events. In particular, the following three
workshops and one tutorial, affiliated with SAT 2023, were held on July 4, 2023:

Pragmatics of SAT (PoS 2023), organized by Matti Järvisalo and Daniel Le Berre.
The International Workshop on Counting and Sampling (MCW 2023), organized by
Johannes K. Fichte, Markus Hecher, and Kuldeep Meel.
The International Workshop on Quantified Boolean Formulas and Beyond (QBF 2023),
organized by Hubie Chen, Luca Pulina, Martina Seidl, and Friedrich Slivovsky.
A Tutorial on OptiLog, by Carlos Ansótegui.
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The results of several competitive events were also announced at SAT 2023:

The Model Counting Competition 2023 (MC 2023), organized by Markus Hecher and
Johannes K. Fichte.
The QBF Gallery 2023, organized by Luca Pulina and Martina Seidl.
The MaxSAT Evaluation 2023, organized by Matti Järvisalo, Jeremias Berg, Ruben
Martins, and Andreas Niskanen.
The SAT Competition 2023, organized by Marijn Heule, Markus Iser, Matti Järvisalo,
Martin Suda, and Tomáš Balyo.

We thank everyone who contributed to making SAT 2023 a success. In particular,
we thank the Local Arrangements Committee members Luca Pulina and Laura Pandolfo;
the web manager Dario Guidotti; and all the organizers of the SAT affiliated workshops
and competitions. We thank the invited speakers for readily accepting our invitation and
delivering insightful talks.

We are indebted to the Program Committee members and the external reviewers, who
dedicated their time to review and evaluate the submissions to the conference. We thank
the authors of all submitted papers for their contributions, the SAT Association for their
guidance and support in organizing the conference, the EasyChair conference management
system for facilitating the submission and selection of papers as well as scheduling the final
program, and the staff at LIPIcs for coordinating and assisting with the assembly of these
proceedings.

We sincerely thank the sponsors of SAT 2023: The Artificial Intelligence journal for
providing travel support to students attending the conference, the University of Sassari for
financial and organizational support, and Filuta AI and Amazon Web Services for their
financial support.

July 2023 Meena Mahajan and Friedrich Slivovsky



Awards

At SAT 2023, several outstanding contributions and individuals within the community were
acknowledged by the SAT 2023 Program Committee and the SAT Association.

Despite the high quality of work submitted this year, no single paper distinctly stood
out to warrant a Best Paper Award. However, three papers were highlighted for
having received particular attention from the Program Committee for their noteworthy
contributions. The Highlighted Papers are the following:

“Polynomial Calculus for MaxSAT”,
by Ilario Bonacina, María-Luisa Bonet, and Jordi Levy;
“Certified Knowledge Compilation with Application to Verified Model Counting”,
by Randal Bryant, Wojciech Nawrocki, Jeremy Avigad, and Marijn Heule;
“IPASIR-UP: User Propagators for CDCL”,
by Katalin Fazekas, Aina Niemetz, Mathias Preiner, Markus Kirchweger, Stefan
Szeider, and Armin Biere.

We commend the authors of these papers for their valuable work.

The Best Student Paper Award was presented to Benjamin Böhm for the paper titled
“QCDCL vs QBF Resolution: Further Insights”.

The Test-of-Time Award is given by the SAT Association for the most influential paper
published in the SAT Conference 20 ± 1 years ago. This year, the award was presented
to Armin Biere for the paper “Resolve and Expand”, presented at SAT 2004.

The SAT Association conferred a Distinguished Service Award on John Franco in
honour of his long-lasting and foundational contributions to the series of International Con-
ferences on Theory and Applications of Satisfiability Testing (SAT), the SAT association,
and the Journal on Satisfiability, Boolean Modeling and Computation (JSAT).
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Abstract
Dedicated treatment of symmetries in satisfiability problems (SAT) is indispensable for solving
various classes of instances arising in practice. However, the exploitation of symmetries usually
takes a black box approach. Typically, off-the-shelf external, general-purpose symmetry detection
tools are invoked to compute symmetry groups of a formula. The groups thus generated are a set of
permutations passed to a separate tool to perform further analyzes to understand the structure of
the groups. The result of this second computation is in turn used for tasks such as static symmetry
breaking or dynamic pruning of the search space. Within this pipeline of tools, the detection and
analysis of symmetries typically incurs the majority of the time overhead for symmetry exploitation.

In this paper we advocate for a more holistic view of what we call the SAT-symmetry interface.
We formulate a computational setting, centered around a new concept of joint graph/group pairs, to
analyze and improve the detection and analysis of symmetries. Using our methods, no information
is lost performing computational tasks lying on the SAT-symmetry interface. Having access to the
entire input allows for simpler, yet efficient algorithms.

Specifically, we devise algorithms and heuristics for computing finest direct disjoint decomposi-
tions, finding equivalent orbits, and finding natural symmetric group actions. Our algorithms run
in what we call instance-quasi-linear time, i.e., almost linear time in terms of the input size of the
original formula and the description length of the symmetry group returned by symmetry detection
tools. Our algorithms improve over both heuristics used in state-of-the-art symmetry exploitation
tools, as well as theoretical general-purpose algorithms.
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1 Introduction

Many SAT instances, especially of the hard combinatorial type, exhibit symmetries. When
symmetries exhibited by these instances are not handled adequately, SAT solvers may
repeatedly explore symmetric parts of the search space. This can dramatically increase
runtime, sometimes making it impossible for the solver to finish within reasonable time [7].

One common method to handle the symmetries is to add symmetry breaking formulas to
the problem specification [10, 2]. This approach is called static symmetry breaking. Another,
competing, approach is to handle symmetries dynamically during the running of the SAT
solver. There are a variety of such dynamic strategies, exploiting symmetry information
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Figure 1 Blurring the lines of the SAT-symmetry interface. We analyze existing practical routines
(left), draw connections to existing concepts in computational group theory, and describe improved
algorithms in our new SAT-symmetry context (right).

during variable branching [21] and learning [28, 12]. For SAT, the tools Shatter [1] and
BreakID [13, 8] take the static symmetry breaking approach, while SymChaff [28] and
SMS [21] take the dynamic symmetry exploitation approach.

While there is a growing number of competing approaches of how best to handle symmet-
ries, there are also a number of common obstacles: symmetries of the underlying formula
have to be detected first, and the structure of symmetries has to be understood, at least to
some degree. Approaches that handle symmetries can be typically divided into three distinct
steps: (Step 1) symmetry detection, (Step 2) symmetry analysis, and (Step 3) symmetry
breaking, or other ways of exploiting symmetry. In the following, we discuss each of these
steps, also illustrated on the left side of Figure 1.

Step 1. In practice, symmetries are detected by modeling a given SAT formula as a
graph, and then applying an off-the-shelf symmetry detection tool, such as saucy [11],
to the resulting graph. Since symmetries form a permutation group under composition,
a symmetry detection tool does not return all the symmetries. Instead, it only returns a
small set of generators, which, by composition, lead to all the symmetries of the formula.
Indeed, returning only a small set of generators is crucial for efficiency, since the number of
symmetries is often exponential in the size of the formula.

Step 2. Symmetry exploitation algorithms apply heuristics to analyze the structure of
the group described by the generators. This is necessary to enable the best possible use
of the symmetries to improve SAT solver performance. We mention three examples for
structural analyzes. Firstly, the disjoint direct decomposition splits a group into independent
parts that can be handled separately. Secondly, so-called row interchangeability subgroups of
the group [13, 14, 25] are of particular interest since they form a class of groups for which
linear-sized, complete symmetry breaking constraints are known. Thirdly, stabilizers are
commonly used for various purposes among both static and dynamic approaches [27].

Step 3. Lastly, the symmetries and structural insights are used to reduce the search space
in SAT using one of the various static and dynamic symmetry exploitation approaches.

Designing symmetry exploitation algorithms typically involves delicately balancing com-
putational overhead versus how thoroughly symmetries are used. In this trade-off, symmetry
detection (Step 1) and analysis (Step 2) typically induce the majority of the overhead [13].
The main focus of this paper is improving the analysis of symmetries, i.e. (Step 2).
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Practical implementations in use today that perform such structural analyzes do so
through heuristics. While using heuristics is not an issue per se, some heuristics currently in
use strongly depend on properties that the generators returned by symmetry detection tools
may or may not exhibit. For example, BreakID and the MIP heuristic in [25] both rely on
so-called separability of the generating set and a specific arrangement of transpositions being
present. Neither of these properties are guaranteed by contemporary symmetry detection
tools [9].

In fact, modern symmetry detection tools such as Traces [23] and dejavu [3] return
randomly selected symmetries, since the use of randomization provides an asymptotic
advantage in the symmetry detection process itself [4]. However, generating sets consisting
of randomly selected symmetries are in a sense the exact opposite of what is desired for the
heuristics, since with high probability random symmetries satisfy neither of the required
conditions. This is particularly unfortunate, as dejavu is currently the fastest symmetry
detection tool available for graphs stemming from SAT instances [6].

Another downside of the use of practical heuristics for the structural analysis of the group
is that they are often also computationally expensive and make up a large portion of the
runtime of the overall symmetry exploitation process. For example, the row interchangeability
algorithm of BreakID performs multiple callbacks to the underlying symmetry detection
tool, where each call can be expensive.

Altogether, heuristics in use today sometimes cause significant overhead, while also posing
an obstacle to speeding up symmetry detection itself. This immediately poses the question:
why is it that these heuristics are currently in place that cause such a loss of efficiency when
it comes to computations within the SAT-symmetry interface?

We believe that the issue is that tools on either side of the interface treat each other
as a black box. Indeed, when considered as an isolated task, algorithms for the analysis of
permutation groups are well-researched in the area of computational group theory [30]. Not
only is the theory well-understood, but there are also highly efficient implementations [15].
However, we can make two crucial observations regarding the available algorithms. First
and foremost, for group theoretic algorithms from the literature that are deemed to have
linear or nearly-linear runtime [30], the concrete runtime notions actually differ from the
ones applicable in the overall context. In fact, the runtime is essentially measured in terms
of a dense rather than a sparse input description. Therefore, in the context of SAT-solving
or graph algorithms, the runtime of these algorithms should rather be considered quadratic.
Secondly, in computational group theory, algorithms assume that only generators for an
input group are available. However, in the context of the SAT-symmetry interface, not only
a group but also a graph (computed from the original formula) is available. It turns out as a
key insight of our paper that lacking access to the graphs crucially limits the design space
for efficient algorithms.

Contributions. Advocating a holistic view of the SAT-symmetry interface, we develop
algorithms that transcend both into the SAT domain and the symmetry domain at the same
time. This is illustrated in Figure 1 on the right side.

Firstly, we provide a definition for the computational setting such as input, output, and
runtime, under which these algorithms should operate (Section 3). We then extract precise
formal problem definitions from heuristics implemented in state-of-the-art tools (Section 4).
Lastly, we demonstrate the efficacy of our new approach by providing faster theoretical
algorithms for commonly used heuristics, as is described below.

SAT 2023
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Figure 2 An illustration of a color refinement process.

Computational Setting. In our new computational setting, algorithms take as input a joint
graph/group pair, meaning a group S and corresponding graph G, whose symmetry group is
precisely ⟨S⟩. We define a precise notion of instance-linear time, meaning it is linear in the
encoding size of the SAT formula, graph, and group.

New Algorithms. Given a joint graph/group pair, we develop and analyze the following
algorithms:
A1 An instance-linear algorithm for computing the finest direct disjoint decomposition of

the symmetry group of a graph (Section 5). We also give a heuristic specific to SAT
formulas, decomposing the symmetry group on the literals.

A2 An algorithm to simultaneously detect natural symmetric group actions on all the orbits
of a group (Section 6). Here we exploit randomized techniques from computational group
theory for the detection of “giant” permutation groups. We give instance-linear heuristics
which are able to exploit properties of the SAT-symmetry interface.

A3 An instance-quasi-linear algorithm to compute equivalent symmetric orbits, under some
mild assumptions about the generating set (Section 7). In conjunction with (A2), this
enables us to detect all elementary row interchangeability subgroups.

Both (A1) and (A3) improve the (at least) quadratic runtime of previous, general-purpose
permutation group algorithms of [9] and [30], respectively.

2 Preliminaries and Related Work

Graphs and Symmetries. A colored graph G = (V, E, π) consists of a set of vertices V ,
edges E ⊆ V × V , and a vertex coloring π : V → C which maps V to some set of colors C.
We use V (G), E(G), and π(G) to refer to the vertices, edges, and coloring of G, respectively.

A symmetry, or automorphism, of a colored graph G = (V, E, π) is a bijection φ : V → V

such that φ(E) = E as well as π(v) = π(φ(v)) for all v ∈ V . In other words, symmetries
preserve the neighborhood relation of the graph, as well as the coloring of vertices. The
colors of vertices in the graph are solely used to ensure that distinctly colored vertices are
not mapped onto each other using symmetries. Together, all symmetries of a graph form a
permutation group under composition, which we call the automorphism group Aut(G).

In this paper, we call software tools computing the automorphism group of a graph
symmetry detection tools [23, 11, 18, 23, 3]. In the literature, these tools are also often called
practical graph isomorphism solvers. In this paper, we avoid the use of this term in order not
to confuse them with SAT solvers.

Color refinement. A common algorithm applied when computing the symmetries of a
graph is color refinement. Given a colored graph G = (V, E, π), color refinement refines the
coloring π of G into G′ = (V, E, π′). Crucially, the automorphism group remains invariant
under color refinement, i.e., Aut(G) = Aut(G′).

We now describe the algorithm. If two vertices in some color X = π−1(c) have a different
number of neighbors in another color Y = π−1(c′), then X can be split by partitioning it
according to neighbor counts in Y . After the split, two vertices have the same color precisely
if they had the same color before the split, and they have the same number of neighbors in Y .
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We repeatedly split classes with respect to other classes until no further splits are possible.
Figure 2 shows an illustration of the color refinement procedure. A coloring which does not
admit further splits is called equitable. For a graph G, color refinement can be computed in
time O(|E(G)| log |V (G)|) [22, 26].

Let us also recall a different definition for equitable colorings: A coloring π of a graph is
equitable if for all pairs of (not necessarily distinct) color classes C1, C2, all vertices in C1
have the same number of neighbors in C2 (i.e., |N(v) ∩ C2| = |N(v′) ∩ C2| for all v, v′ ∈ C1).
Given a coloring π, color refinement computes an equitable refinement π′, i.e., an equitable
coloring π′ for which π′(v) = π′(v′) implies π(v) = π(v′). In fact, it computes the coarsest
equitable refinement.

Permutation Groups. The symmetric group Sym(Ω) is the permutation group consisting
of all permutations of the set Ω. A permutation group on domain Ω is a group Γ that is
a subgroup of Sym(Ω), denoted Γ ≤ Sym(Ω). For a subset of the domain Ω′ ⊆ Ω, the
restriction of Γ to Ω′ is Γ|Ω′ := {φ|Ω′ | φ ∈ Γ} (where φ|Ω denotes restricting the domain of
φ to Ω). The restriction is not necessarily a group since the images need not be in Ω′. The
pointwise stabilizer is the group Γ(Ω′) := {φ ∈ Γ | ∀p ∈ Ω′ : φ(p) = p}, obtained by fixing all
points of Ω′ individually.

Whenever we are dealing with groups, we use a specific, succinct encoding. Instead of
explicitly representing each element of the group, we only store a subset that is sufficient to
obtain any other element through composition. Formally, let S be a subset of the group Γ,
i.e., S ⊆ Γ. We call S a generating set of Γ whenever we obtain precisely Γ when exhaustively
composing elements of S. We write ⟨S⟩ = Γ. Moreover, each individual element φ ∈ S can
be referred to as a generator of Γ.

We write supp(φ) := {ω | ω ∈ Ω ∧ φ(ω) ̸= ω} for the support of a map, meaning points of
Ω not fixed by φ. The support of a group Γ ∈ Sym(Ω) is the union of all supports of elements
of Γ, i.e., supp(Γ) := {ω | ω ∈ Ω ∧ ∃φ ∈ Γ : φ(ω) ̸= ω}.

We use the cycle notation for permutations φ : Ω → Ω. The permutation of {1, . . . , 5}
given by 1 7→ 2, 2 7→ 3, 3 7→ 1, 4 7→ 5, 5 7→ 4 we write as (1, 2, 3)(4, 5). Note that, for
example (1, 2, 3)(5, 4) and (3, 1, 2)(4, 5) denote the same permutation. Algorithmically the
cycle notation enables us to read and store a permutation φ in time supp(φ).

When considering two permutation groups Γ and Γ′ it is possible that the groups are
isomorphic as abstract groups but not as permutation groups. For example, if we let
the symmetric group Sym(Ω) act component-wise on pairs of elements of Ω, we obtain a
permutation group with domain Ω2 that also has |Ω|! many elements. In fact this group
is isomorphic to Sym(Ω) as an abstract group. We say a group Γ is a symmetric group in
natural action if the group is Sym(Ω), where Ω is the domain of Γ.

SAT and Symmetries. A Boolean satisfiability (SAT) instance F is commonly given in
conjunctive normal form (CNF), which we denote with F = {(l1,1 ∨ · · · ∨ l1,k1), . . . , (lm,1 ∨
· · · ∨ lm,km)}, where each element of F is called a clause. A clause itself consists of a set of
literals. A literal is either a variable or its negation. We use Var(F ) := {v1, . . . , vn} for the
set of variables of F and we use Lit(F ) for its literals.

A symmetry, or automorphism, of F is a permutation of the literals φ : Lit(F ) → Lit(F )
satisfying the following two properties. First, it maps F back to itself, i.e., φ(F ) ≡ F , where
φ(F ) is applied element-wise to the literals in each clause. Here clauses are equivalent, if
they are the same when treated as unordered sets of literals, for example (x ∨ y) ≡ (y ∨ x).
Then F ′ ≡ F if F ′ is obtained from F by reordering the literals of F ′ within the clauses.
Second, for all l ∈ Lit(F ) it must hold that φ(l) = φ(l), i.e., φ induces a permutation of the
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Figure 3 Example model graph M(FE) = M({(x1∨y1), (x2∨y2), (x3∨y3), (x1∨x2∨x3∨z1∨z2)}).
The automorphisms of the graph correspond to the automorphisms of the formula. The coloring on
the right side shows the orbit partition.

variables. For example the permutation mapping xi to ¬xi+1 and xi to xi+1, with indices
taken modulo 4, is a symmetry of (x1 ∨ ¬x2 ∨ x3 ∨ ¬x4) ∧ (x4 ∨ ¬x1 ∨ x2 ∨ ¬x3). The
permutation group of all symmetries of F is Aut(F ) ≤ Sym(Lit(F )).

It is well understood that the symmetries of a SAT formula F can be captured by a
graph. We call this the model graph and denote it with M(F ). While there exists various
constructions for the model graphs, we use the following common construction. Each literal
l ∈ Lit(F ) is associated with a vertex l. Each clause C ∈ F is associated with a vertex C.
All pairs of literals l and l are connected by an edge. For all literals l ∈ C of a clause
C, we connect vertices l and C. Lastly, to distinguish clause vertices from literal vertices,
we color all clauses with color 0 and all literals with color 1. As desired, for this graph,
Aut(F ) = Aut(M(F ))|Lit(F ) holds [29].

Consider the formula FE := {(x1 ∨ y1), (x2 ∨ y2), (x3 ∨ y3), (x1 ∨ x2 ∨ x3 ∨ z1 ∨ z2)}.
Throughout the paper, we use FE as our running example. Figure 3 shows its model
graph. Regarding the symmetries of FE , note that there are symmetries interchanging
all of x1, x2, x3, all of y1, y2, y3 and of the z1, z2. A generating set SE for Aut(FE) is
SE = {(x1, x2, x3)(x1, x2, x3)(y1, y2, y3)(y1, y2, y3), (x1, x2)(x1, x2)(y1, y2)(y1, y2), (z1, z2)}.

Orbits. Given a permutation group Γ ≤ Sym(Ω), we denote with ωΓ ⊆ Ω the orbit of a
point ω ∈ Ω. That is, an element ω′ ∈ Ω is in ωΓ whenever there is a φ ∈ Γ with φ(ω′) = ω.

The orbits of our example Aut(FE) are shown in Figure 3, e.g., the orbit {z1, z2} is green.

3 SAT-Symmetry Computational Setting

Let us describe the computational setting in which our new algorithms operate. Since we
want the theoretical runtimes to reflect more closely the runtimes in practice, there are two
important differences compared to the traditional computational group theory setting. These
differences are in the measure of runtime as well as in the format of the input.

Joint Graph/Group Pairs. Typically, algorithms in computational group theory dealing
with permutation groups assume as their input a generating set of permutations S of a
group Γ = ⟨S⟩. While this is certainly a natural setting when discussing algorithms for
groups in general, in our setting this input format disregards further information that is
readily available. Therefore, we require that algorithms in the SAT-symmetry interface have
access to more information about the input group. Specifically, we may require that the
input consists of both a generating set S and a graph G with ⟨S⟩ = Aut(G). We call this a
joint graph/group pair (G, S). For our SAT context, we may moreover assume that the SAT
formula F with M(F ) = G is available, whenever necessary.
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Instance-Linear Runtime. In computational group theory, given a generating set S for
a permutation group ⟨S⟩ ≤ Sym(Ω), a runtime of O(|S||Ω|) is typically considered linear
time [30]. This is however only a very crude upper bound when seen in terms of the actual
encoding size of a given generating set. In particular, when generators are sparse, as is
common in SAT [29, 11], linear time in this sense is not necessarily linear time in the encoding
size, which is what we would use in a graph-theoretic or SAT context.

Specifically, we are interested in measuring the runtime of algorithms relative to the
encoding size of a generating set given in a sparse format. Therefore, we define the encoding
size of a generating set S as enc(S) := Σp∈S | supp(p)|.

In particular, given a SAT formula F , graph G = (V, E), and generating set S, the goal
is to have algorithms that (ideally) run in time linear in |F | + |V | + |E| + enc(S). In order
to not confuse the “types of linear time”, we refer to such algorithms as instance-linear.
Analogously, an algorithm has instance-quasi-linear time if it runs in time O((|F | + |V | +
|E| + enc(S)) · (log(|F | + |V | + |E| + enc(S)))c) for some constant c.

Illustrative Examples. The task of computing the orbits is an excellent example demonstrat-
ing the usefulness instance-quasi-linear time. As transitive closure, we can find the orbit ∆
of an element in time O(|∆||S|) [30]. However, with instance-quasi-linear time in mind,
we quickly arrive at an algorithm to compute the entire orbit partition in time O(enc(S) ·
α(enc(S))) using a union-find data structure, where α is the inverse Ackermann function.
The inverse Ackermann function exhibits substantially slower growth than log(n).

Furthermore, having access to the graph of a graph/group pair (G, S) gives a significant
advantage in what is algorithmically possible. A good example of the difference is that
testing membership φ ∈ ⟨S⟩ is much easier for the graph/group pair: testing φ(G) = G

(which is true if and only if φ ∈ ⟨S⟩) can be done in instance-linear time. However, testing
φ ∈ ⟨S⟩ without access to the graph is much more involved. The best known method for the
latter involves computing a strong generating set, corresponding base and Schreier table [30],
followed by an application of the fundamental sifting algorithm [30]. Even performing only
the last step of this process (sifting) is not guaranteed to be in instance-linear time.

4 Favorable Group Structures in SAT

We now propose problems which should be solved within the SAT-symmetry computational
setting. We analyze heuristics used in advanced symmetry exploitation algorithms [13, 25, 17],
extracting precise formal definitions.

Disjoint Direct Decomposition. Following [9], we say a direct product of a permutation
group Γ = Γ1 × Γ2 × · · · × Γr is a disjoint direct decomposition of Γ, whenever all Γi have
pairwise disjoint supports. We call Γi a factor of the disjoint direct decomposition of Γ.
A disjoint direct decomposition is finest, if we cannot decompose any factor further into a
non-trivial disjoint direct decomposition. A recent algorithm solves the problem of computing
the finest disjoint direct decomposition for permutation groups in polynomial-time [9].

In our running example, the finest disjoint direct decomposition of Aut(FE) splits the
group into a subgroup H1 permuting only the xi and yi variables, and a subgroup H2
permuting z1 and z2. Indeed, setting H1 = ⟨{(x1, x2, x3)(x1, x2, x3)(y1, y2, y3)(y1, y2, y3),
(x1, x2)(x1, x2)(y1, y2)(y1, y2)}⟩, and H2 = ⟨{(z1, z2)}⟩, we have Aut(FE) = H1 × H2.

Computing a disjoint direct decomposition is a typical routine in symmetry exploitation
tools [13, 25, 17]. It allows for separate treatment of each factor of the decomposition. The
heuristics in use today do not guarantee that the decomposition is the finest disjoint direct
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decomposition: indeed, the heuristics of the tools mentioned above assume that the given
generating sets are already separable [9]. This means it is assumed, that every generator φ ∈ S

only operates on one factor of the disjoint direct decomposition Γ1 × Γ2 × · · · × Γr. Formally,
this means for each φ ∈ S there is one i ∈ {1, . . . , r} for which supp(φ) ∩ supp(Γi) ̸= ∅ holds,
and for all j ∈ {1, . . . , r}, j ̸= i it holds that supp(φ) ∩ supp(Γi) = ∅. For example, the
generating set SE we gave for Aut(FE) is separable.

It is not known how often generating sets given for graphs of SAT formulas are separable
for a given symmetry detection tool, or in particular after reducing the domain to the literals
of the SAT formula. It is however obvious that for the most advanced general-purpose
symmetry detection tools, Traces and dejavu, generators are not separable with very high
probability due to the use of randomly selected generators [9].

Row Interchangeability. We now discuss the concept of row interchangeability [13, 14, 25].
Let F be a SAT formula. Let M be a variable matrix M : {1, . . . , r} × {1, . . . , c} → Var(F ).
We denote the entries of M with xi,j where i ∈ {1, . . . , r} and j ∈ {1, . . . , c}. We define the
shorthand supp(M) := {xi,j | xi,j ∈ M}∪{xi,j | xi,j ∈ M}. The set supp(M) denotes all the
literals involved with the matrix M . We say F exhibits row interchangeability if there exists
a matrix M such that for every permutation φ ∈ Sym({1, . . . , r}), for the induced literal
permutation φ′ : Lit(F )|supp(M) → Lit(F )|supp(M) given by xi,j 7→ xφ(i),j , ¬xi,j 7→ ¬xφ(i),j

it holds that φ′ ∈ Aut(F )|supp(M). Indeed, if this is the case, we can observe that the matrix
M describes a subgroup of Aut(F ) consisting of {π ∈ Aut(F ) | ∃φ ∈ Sym({1, . . . , r}) : φ′ =
π|supp(M)}. We denote this group by HM ≤ Aut(F ).

A crucial fact is that for HM |supp(M), linear-sized complete symmetry breaking is available
[13, 14]. As is also in part discussed in [13, 14], we observe that the complete symmetry
breaking for HM is most effective whenever HM is the only action on supp(M) in Aut(F ), or
more precisely, Aut(F )|supp(M) = HM |supp(M). In this case, we call HM an elementary row
interchangeability subgroup. Otherwise, there are non-trivial symmetries φ ∈ Aut(F )|supp(M)
with φ ̸∈ HM |supp(M) or supp(M) is not a union of orbits. Indeed, in this case, the
complete symmetry breaking of HM might make it more difficult to break such overlapping
symmetries φ: for example, if two row interchangeability subgroups HM and HM ′ overlap,
i.e., supp(M) ∩ supp(M ′) ̸= ∅, complete symmetry breaking can only be guaranteed for one
of them using the technique of [13].

Whenever HM is an elementary row interchangeability subgroup, the situation is much
clearer: we can produce a linear-sized complete symmetry breaking formula and this covers at
least all symmetries on the literals supp(M). In this paper, we therefore focus on computing
elementary row interchangeability groups.

Let us consider FE again: for the matrix M :=
[
x1 x2 x3
y1 y2 y3

]
there is indeed a row

interchangeability subgroup. (Recall that the group HM permutes positive and negative
literals of variables appearing in M .) For this example, HM is both an elementary row
interchangeability group and a factor in the finest direct disjoint decomposition of Aut(FE).

Row Interchangeability and Equivalent Orbits. We now describe the matrix of elementary
row interchangeability groups in more group-theoretic terms. We first define the notion of
equivalent orbits:

▶ Definition 1 (Equivalent orbits; see [30, Subsection 6.1.2]). Two orbits ∆1, ∆2 are equivalent,
if and only if there is a bijection b : ∆1 → ∆2 such that for all φ ∈ Γ and δ ∈ ∆1,
φ(b(δ)) = b(φ(δ)).

We write ∆1 ≡ ∆2 to indicate orbits ∆1 and ∆2 are equivalent. It is easy to see this indeed
defines an equivalence relation on the orbits [30].
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We observe that if a row interchangeability subgroup HM is elementary, each row of the
matrix M is an orbit of Aut(F ). Since all rows are moved simultaneously in the same way,
we remark that rows of M are precisely equivalent orbits with a natural symmetric action:

▶ Lemma 2. Let HM be a row interchangeability subgroup of Γ = Aut(M(F )), and let
∆i = (x1, . . . , xc) denote a row of M . HM is an elementary row interchangeability subgroup
if and only if all of the following hold: (1) ∆i is an orbit with a natural symmetric action in
Γ. (2) For every other row ∆j of M , it holds that ∆i ≡ ∆j. (3) For ∆i = (x1, . . . , xc), ∆i

is also an orbit with ∆i ≡ ∆i.

There is an exact algorithm which computes equivalent orbits in essentially quadratic
runtime [30]. Again, runtimes are difficult to compare due to different pre-conditions in [30].
In any case, the algorithm for equivalent orbits depends on computing a base and strong
generating set, which is too slow from our perspective.

We may split detecting elementary row interchangeability groups into detecting natural
symmetric action on the orbits, followed by computing equivalent orbits. We now turn
to solving the problems defined above in the computational setting of the SAT-symmetry
interface. Specifically, we propose algorithms for the finest disjoint direct decomposition
(Section 5), natural symmetric action (Section 6), and equivalent orbits (Section 7).

5 Finest Disjoint Direct Decomposition

Having established the problems we want to address, we now turn to presenting suitable
algorithms in the SAT-symmetry computational setting. In particular, recall that we want to
make use of joint graph/group pairs in order to state algorithms that run in instance-quasi-
linear time. We begin by computing the finest disjoint direct decomposition.

Specifically, given a joint graph/group pair (G, S), our aim is to compute the finest
disjoint direct decomposition of the group ⟨S⟩. Our proposed algorithm, given the orbits,
can do so in instance-linear time. The disjoint direct decomposition of a group allows us
to separately treat each factor of the decomposition in symmetry exploitation or other
consecutive algorithms.

To simplify the discussion, we assume the graph G to be undirected. However, the
procedure generalizes to both directed and even edge-colored graphs.

Orbit Graph. We describe the orbit graph, which can be constructed from (G, S). We are
particularly interested in the connected components of the orbit graph, which turn out to
correspond exactly to the factors of the finest disjoint direct decomposition.

First, note that the orbit partition π of ⟨S⟩ can be viewed as a vertex coloring of the
graph G, assigning to every vertex its orbit. We consider the graph G′ = (V (G), E(G), π),
i.e., G colored with its orbit partition (see Figure 4, left).

We call two distinct orbits ∆, ∆′ homogeneously connected, whenever either all vertices
v ∈ ∆ are adjacent to all vertices of ∆′, or there is no edge with endpoints both in ∆ and ∆′.
Indeed, we could “flip edges” between homogeneously connected orbits such that they all
become disconnected, without changing the automorphism group (see Figure 4, middle).

We now give the formal definition of the orbit graph. The orbit graph is essentially an
adapted version of the so-called flipped quotient graph (see [20] for a discussion). The vertex
set of the orbit graph is the set of orbits of ⟨S⟩, i.e., {π−1(v) | v ∈ V (G′)}. Two orbits ∆, ∆′

are adjacent in the orbit graph if and only if the orbits are not homogeneously connected in
the original graph G (see Figure 4, right).
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Algorithm 1 Compute the orbit graph.

1 function OrbitGraph(G′)
Input : graph G′ = (V, E, π), where π is the orbit partition of Aut(G′)
Output : orbit graph GO

2 initialize integer array A of size |V | with all 0;
3 initialize empty list W ;
4 initialize empty graph GO;
5 V (GO) := π(V );
6 for ( ∆ ∈ π(V ) )
7 pick an arbitrary v ∈ ∆;
8 for ( (v, v′) ∈ E )
9 increment A[π(v′)];

10 add π(v′) to W ;
11 for ( ∆′ ∈ W )
12 if A[∆′] > 0 and A[∆′] < |π−1(∆′)| then add edge (∆, ∆′) in GO ;
13 A[∆′] := 0;
14 return GO;
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Figure 4 Model graph of FE colored with its orbit partition on the left. The corresponding graph
with flipped edges is in the middle, which disconnects parts of the graph. On the right the orbit
graph is shown, whose 3 connected components correspond to the factors of the finest disjoint direct
decomposition.

Description of Algorithm 1. Algorithm 1 describes how to compute the orbit graph from
G′. The algorithm first initializes the graph GO with a vertex set that contains exactly
one vertex for each orbit of G′. It then counts for each orbit ∆, how many neighbors a
vertex v ∈ ∆ has in the other orbits. Since ∆ is an orbit, this number is the same for all
vertices, so it suffices to compute this for one v ∈ ∆. Finally, the algorithm checks to which
other colors the vertex v and thus the orbit ∆ is not homogeneously connected (Line 12).
If ∆ and ∆′ are not homogeneously connected, the edge (∆, ∆′) is added to the orbit graph.

Remark on the runtime of Algorithm 1. Using appropriate data structures for graphs
(adjacency lists) and colorings (see [23], which in particular includes efficient ways to compute
|π−1(C ′)|), the algorithm can be implemented in instance-linear time.

Orbit Graph to Decomposition. Indeed, the connected components of the orbit graph
represent precisely the factors of the finest disjoint direct decomposition of the automorphism
group of the graph:

▶ Lemma 3. Let Γ = Aut(G). The vertices represented by a connected component of the
orbit graph of G are all in the same factor of the finest direct disjoint decomposition of Γ
and vice versa.
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Figure 5 Illustration of two orbits that are non-homogeneously connected on the left in blue and
purple. On the right, fixing a vertex of one orbit indicated in red immediately partitions the other
orbit into two orbits: the neighbors of the red vertex in green, and the non-neighbors in orange.

Proof. Consider two orbits ∆1, ∆2 of Γ in different factors of any direct disjoint decomposition.
Towards a contradiction, assume ∆1, ∆2 are not homogeneously connected. Note that
naturally, the orbit coloring is equitable. Since the orbit coloring is equitable, the connection
must be regular, i.e., each vertex of ∆1 has d1 neighbors in ∆2, and every vertex of ∆2 has
d2 neighbors in ∆1 for some integers d1, d2. However, 0 < d1 < |∆2| and 0 < d2 < |∆1| hold.

Let us now fix a point δ ∈ ∆1, i.e., consider the point stabilizer Γ(δ). If two orbits
are in different factors of a direct disjoint decomposition, fixing a point of ∆1 must not
change the group action on ∆2. In particular, ∆2 must be an orbit of Γ(δ). However, δ is
adjacent to some vertex δ′ ∈ ∆2 and non-adjacent to some vertex δ′′ ∈ ∆2 (see Figure 5
for an illustration). Having fixed δ, we can therefore not map d′ to d′′. This contradicts
the assumption that ∆1 and ∆2 are in different factors of a direct disjoint decomposition.
Hence, orbits in different factors of a direct disjoint decomposition must be homogeneously
connected in G, i.e., non-adjacent in the orbit graph.

Now assume ∆1 and ∆k are in the same component in the orbit graph. Then, there must
be a path of orbits ∆1, ∆2, . . . , ∆k where each ∆i, ∆i+1 is not homogeneously connected. In
this case, we know for each i ∈ {1, . . . , k − 1} that ∆i and ∆i+1 must be in the same factor
of any disjoint direct decomposition. Therefore, ∆1 and ∆k must be in the same factor of
every disjoint direct decomposition.

On the other hand, if ∆1 and ∆k are in different components in the orbit graph, they are
in different factors of the finest disjoint direct decomposition. ◀

Since connected components can be computed in linear time in the size of a graph, and the
size of the orbit graph is at most linear in the size of the original graph, we can therefore
compute the finest direct disjoint decomposition in instance-linear time. In a consecutive
step, the generators could be split according to factors, producing a separable generating set,
again in instance-linear time. This is done by separating each generator into the different
factors. Finally, given the finest direct disjoint decomposition, we can again produce a joint
graph/group pair for each factor, by outputting for a factor Hi the induced subgraph G′[Hi].
We summarize the above in a theorem:

▶ Theorem 4. Given a joint graph/group pair (G, S) and orbit partition of ⟨S⟩, there is an
instance-linear algorithm which computes the following:
1. The finest disjoint direct decomposition ⟨S⟩ = H1 × H2 × · · · × Hm.
2. A separable generating set S′ with ⟨S′⟩ = G.
3. For all factors i ∈ {1, . . . , m} a joint graph/group pair (Gi, Si) with Aut(Gi) = ⟨Si⟩ = Hi

in instance-linear time.
We recall that if the orbit partition of ⟨S⟩ is not yet available, we can compute it in
instance-quasi-linear time.

Domain Reduction to SAT Literals. For a SAT formula F , we can apply the above
procedure to its model graph M(F ). However, as mentioned above, in SAT we are typically
only interested in symmetries for a subset of vertices, namely the vertices that represent
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literals. Therefore, we are specifically interested in the finest direct disjoint decomposition
of the automorphism group reduced to literal vertices Aut(M(F ))|Lit(F ). The crucial point
here is that when removing orbits that represent clauses, orbits of literal vertices can become
independent and the disjoint direct decomposition can therefore become finer. We cannot
simply apply our algorithm for the induced group Aut(M(F ))|Lit(F ) since this is not a joint
graph/group pair. Of course we could apply the algorithm from [9] that computes finest
disjoint direct decomposition for permutation groups in general. However, we can detect
some forms of independence by simple means using the original joint graph/group pair.
Indeed, we will describe an algorithm that checks in instance-linear time whether the parts
in a given partition of the literals are independent. We can thus at least check whether a
given partition induces a disjoint direct decomposition (the proof can be found in the full
version [5]):

▶ Theorem 5. Let F be a CNF-Formula and (M(F ), S) be a joint graph/group pair for the
model graph of F . Given a partition Lit(F ) = L1 ∪ L2 ∪ · · · ∪ Lt of the literals of F , the
pair (M(F ), S), and its orbits, we can check in instance-linear time whether the partition in-
duces a disjoint direct product (that is, whether Aut(F ) = Aut(F )(L\L1) ×· · ·×Aut(F )(L\Lt)).

6 Natural Symmetric Action

Before we can begin our discussion of the natural symmetric action, we need to discuss
generating (nearly-)uniform random elements (see [30]) of a given permutation group ⟨S⟩.
There is no known algorithm which produces uniform random elements of ⟨S⟩ in quasi linear
time, even in computational group theory terminology [30]. However, there are multiple ways
to produce random elements, most of which are proven to work well in practice, and can be
implemented fairly easily [30, 15]. In this paper, we attempt to only make use of random
elements sparingly. Whenever we do, as is common in computational group theory, we do
not consider the particular method used to generate them and simply denote the runtime
of the generation with µ. Moreover, we discuss potential synergies in the SAT-symmetry
context which might help to avoid random elements in practice, whenever applicable.

We now explain how to efficiently test whether a permutation group is a symmetric group
in natural action. Then, we describe more generally how to determine simultaneously for all
orbits of a permutation group whether the induced action is symmetric in natural action.

Detecting symmetric permutation groups in their natural action is a well-researched
problem in computational group theory. State-of-the-art practical implementations are
available in modern computer algebra systems (such as in [24]). Typically, a natural
symmetric action is detected using a so-called probabilistic giant test, followed by a test to
ensure that the group is indeed symmetric. The tests work by computing (nearly) uniform
random elements of the group and inspecting them for specific properties.

A permutation group is called a giant if it is the symmetric group or the alternating
group in natural action. In many computational contexts, giants are by far the largest groups
that appear, hence their name. Because of this, giants form bottleneck cases for various
algorithms and therefore often need to be treated separately. To test whether a permutation
group is a symmetric group in natural action, we first test whether the group is a giant.

We leverage the following facts:

▶ Fact 6 (see [30, Corollary 10.2.2.]). If a permutation group of degree n contains an element
with a cycle of length p for some prime p with n/2 < p < n − 2 then G is a giant.
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▶ Fact 7 (see [30, Corollary 10.2.3.]). The proportion of elements in Sn containing a cycle of
length p for a prime p with n/2 < p < n − 2 is asymptotically 1/ log(n).

Collectively, these statements show that we only need to generate few random elements of
a group and inspect their cycle lengths to detect a giant. To then distinguish between the
alternating group and the symmetric group, we can check whether all generators belong
to the alternating group. This can be attained using basic routines, such as examining
the so-called parity of a generator (see [30] for more details). Algorithm 2 generalizes the
probabilistic test for a transitive group [30] to a test which is performed simultaneously to
check for a natural symmetric action on all the orbits of a group.

Algorithm 2 Compute whether orbits induce a natural symmetric action.

1 function SymmetricAction(S, O)
Input : generators S with ⟨S⟩ = Γ ≤ Sym(Ω), orbits O := {∆1, . . . , ∆m} of Γ
Output : set of orbits SO ⊆ O, where ∆ ∈ SO induces a natural symmetric action

2 // first, we filter orbits which can at most be alternating
3 for ( ∆i ∈ O )
4 t := ⊤;
5 for ( s ∈ S )
6 if s|∆i

̸∈ Alt(∆i) then t := ⊥ ; // ∆i cannot be alternating
7 if t = ⊤ then O := O ∖ {∆i} ; // ∆i cannot induce symmetric action
8 // second, we test whether orbits are giants
9 SO := ∅;

10 for ( _ ∈ {1, . . . , c log(|Ω|)2} ) // repeat c log(|Ω|)2 times
11 φ := uniform random element of ⟨S|∪∆i∈SO

∆i
⟩;

12 for ( ∆i ∈ O )
13 p := cycle length of longest cycle in φ on ∆i;
14 if p > n/2 ∧ p < n − 2 ∧ p prime then
15 SO := SO ∪ {∆i}; // ∆i induces symmetric action
16 O := O ∖ {∆i};
17 return SO

Description of Algorithm 2. Overall, the algorithm samples uniform random elements of
the group and checks whether the random elements exhibit long prime cycles (see Fact 6).
More precisely, the algorithm first distinguishes between potential alternating and symmetric
groups on each orbit. Then, it computes d = c log(|Ω|)2 random elements. For each random
element and each orbit, we then apply the giant test (Fact 6) to check whether the element
certifies that the orbit induces a natural symmetric action.

Runtime of Algorithm 2. Let us assume access to random elements of the joint graph/group
pair (G, S) with ⟨S⟩ ≤ Sym(Ω) in time µ. Assuming a random element can be produced in
time µ, the algorithm runs in worst-case time O(log(|Ω|)2(µ + |Ω|)).

Correctness of Algorithm 2. Regarding the correctness of the algorithm, the interesting
aspect is to discuss the error probability. We argue that the error probability is at most 1/4 if c

is chosen to larger than 2 ln(2). Practical implementations use c = 20 in similar contexts [24].
If an orbit ∆ does not induce a symmetric action, no error can be made. If an or-

bit ∆ induces a symmetric action, by Fact 7, the probability that one iteration does
not produce a long prime cycle for ∆ is at most (1 − 1/ log(n)). Thus, the probabil-
ity that none of the c log(|Ω|)2 iterations produces a long prime cycle for ∆ is bounded
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by (1 − 1/ log(n))c log(|Ω|)2
≤ (1/e)c log(|Ω|) ≤ 1/(4|Ω|) since c > 2 ln(2). Since there can be

at most |Ω| orbits, using the union bound, we get that the probability that the test fails for
at least one of the orbits is at most |Ω| · 1/(4|Ω|) = 1/4.

When trying to compute a natural symmetric action on a graph/group pair, the following
heuristics can be implemented in instance-linear time.

The first and most straightforward heuristic is that most of the time, it is fairly clear
that the generators describe a natural symmetric action. In particular, symmetry detection
based on depth-first search seem to often produce generators that are transpositions. From
these symmetric actions can be detected immediately. This fact is implicitly used by column
interchangeability heuristics in use today. There are however many more ways to detect
a natural symmetric action, many of which are implemented in modern computer algebra
systems such as [15, 24].

Next, the symmetry detection preprocessor sassy [6] as well as the preprocessing used
by Traces sometimes detect a natural symmetric action on an orbit, by detecting certain
structures of a graph. In these cases, the result should be immediately communicated to
consecutive algorithms. We can also use the graph structure to immediately discard orbits
from the test of Algorithm 2. In particular, all orbits ∆ where G[∆] is neither the empty
graph nor the complete graph cannot have a natural symmetric action.

Furthermore, the generators produced by dejavu and Traces are fairly random (for
some parts even uniformly random [3]). This means they should presumably work well with
the probabilistic tests above. Lastly, internally, symmetry detection tools often produce
so-called Schreier-Sims tables [30], which can be used to produce random elements effectively.

Indeed, for our running example FE , the natural symmetric action can be detected quite
easily: let us consider the generators SE reduced to the orbit of {x1, x2, x3}. We observe that
there is a generator (x1, x2, x3) and (x1, x2). While this is not a set of generators detected
by current symmetry exploitation algorithms [13, 25], this is indeed also an arguably obvious
encoding of a natural symmetric action: for an orbit of size n, an n-cycle in conjunction with
a transposition encodes a symmetric action.

7 Equivalent Orbits

Towards our overall goal to compute row interchangeability subgroups, we can now already
determine which orbits induce a natural symmetric action. By Lemma 2, to detect elementary
row interchangeability subgroups, we only miss a procedure for orbit equivalence.

We describe now how to compute equivalent orbits as the automorphism group of a
special, purpose-built graph. Then, we give a faster algorithm computing equivalent orbits
with natural symmetric action in instance-quasi-linear time, under mild assumptions. In
particular, we can find all classes of equivalent orbits described by Lemma 2.

7.1 Cycle Type Graph
If two orbits are equivalent, they appear in every permutation in “the same manner”: for
example, if orbits ∆1 and ∆2 are equivalent then for every generator g, the cycle types g

induces on ∆1 are the same as the cycle types g induces on ∆2. More generally, equivalent
orbits must be equivalent with respect to every generating set of the group. We introduce
the cycle type graph whose symmetries capture orbit equivalence. This means we can use a
symmetry detection tool to detect equivalent orbits.

For a group Γ ≤ Sym(Ω) and generating set ⟨S⟩ = Γ, we define the cycle type graph C(S)
as follows.
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Firstly, the vertex set of C(S) is the disjoint union V (C(S)) := Ω∪̇
⋃̇

g∈S supp(g). In
other words, there is a vertex for each element of Ω and there are separate elements for all
the points moved by the generators. In particular if a point is moved by several generators
there are several copies of the point.

Secondly, the edges of C(S) are added as follows: each corresponding vertex for x ∈
supp(g) is adjacent to the corresponding vertex for element x ∈ Ω via an undirected edge.
Furthermore, there are directed edges {(x, g(x)) | x ∈ supp(g)}. In other words, for each
generator si ∈ S, we add directed cycles for each cycle of the generator, as shown in Figure 6a.
In the following, we refer to directed cycles added in this manner as cycle gadgets.

Thirdly, we define a vertex coloring for C(S). For this we enumerate the generators,
i.e., S = {s1, . . . , sm}. We then color the vertices in Ω with color 0 and an x ∈ supp(gi)
is colored with (i, t), where t is the length of the cycle in gi containing x. With this, the
cycle type graph is constructed in such a way that its automorphism structure captures
equivalence of orbits, as is described in more detail below.

We record several observations on automorphisms of the cycle type graph (missing proofs
can be found in the full version [5]).

▶ Lemma 8. If ∆1, ∆2 are orbits of Γ then there is some b ∈ Aut(C(S)) for which b(∆1) = ∆2,
if and only if ∆1 ≡ ∆2.

We may formulate the observations in group theoretic terms, giving the following lemma.

▶ Lemma 9. Given a group Γ ≤ S(Ω), its centralizer in the symmetric group CSym(Ω)(Γ)
and the cycle type graph C(Γ) are a joint graph/group pair, i.e., Aut(C(Γ)) = CS(Ω)(Γ).

Since the centralizer of Sym(Ω) in Sym(Ω) is trivial for |Ω| > 2, we get the following corollary.

▶ Corollary 10. If Γ = Sym(Ω) with |Ω| > 2, the cycle type graph of Γ is asymmetric.

It follows from the corollary that for two equivalent orbits with a natural symmetric action
the bijection b commuting with the generators and interchanging the orbits is in fact unique.

While the cycle type graph and the centralizer in the symmetric group (C(Γ), CSym(Ω)(Γ))
is a joint graph/group pair, we still have to compute the group: so far, we only have access
to C(Γ). One option is a symmetry detection tool. However, this goes against our goal
of invoking symmetry detection tools unnecessarily often – and against our goal to find
instance-linear algorithms. Hence, instead of computing the entire automorphism group, our
approach is to make due with less: in the following, we enhance the cycle type graph in a way
such that it becomes “easy” for color refinement. Color refinement is usually applied as a
heuristic approximating the orbit partition of a graph. However, on the enhanced graphs, we
prove that color refinement is guaranteed to compute the orbit partition. Then, we show that
the orbit partition suffices to determine equivalent orbits. Overall, these methods are only
guaranteed to work for orbits with a natural symmetric action, as is the case in elementary
row interchangeability groups.

7.2 Symmetries of Cycle Type Graph with Unique Cycles
Our goal is now to enhance the cycle type graph such that color refinement is able to compute
its orbit partition. This in turn enables us to detect equivalent orbits, and in turn elementary
row interchangeability groups. Towards this goal, we first discuss an algorithm to compute
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(a) Cycle type graph.

1 11 11 1
5 5

(b) Enhanced cycle type graph.

Figure 6 The cycle type graph and enhanced cycle type graph. The figure shows a cycle type
gadget and canonical cyclic order for the permutation (1234)(5678). Automorphisms of this graph
are elements of the centralizer, which indicate equivalent orbits.

unique cycles on orbits. Unique cycles are a key ingredient for our enhanced cycle type graph.
These cycles should be invariant with respect to an ordered generating set, a concept we
explain first.

Given an ordered generating set (s1, . . . , sm) for a permutation group Γ = ⟨{si | i ∈
{1, . . . , m}}⟩ ≤ Sym(Ω), a permutation φ ∈ Sym(Ω) fixes the ordered generating set (point-
wise under conjugation) if for all si we have φ ◦ si ◦ φ−1 = si.

A permutation π ∈ Sym(Ω) is invariant with respect to the ordered generating set if
all permutations φ that fix (s1, . . . , sm) under conjugation also fix (s1, . . . , sm, π) under
conjugation1. Note that all group elements in π ∈ Γ are invariant. However, there can be
further invariant permutations.

We say a permutation π has a unique cycle if for some length ℓ > 1, the permutation π

contains exactly one cycle of ℓ. We now describe a two-step process. Step one is to compute
an invariant permutation with a unique cycle. Step two is to use this to compute an invariant
permutation with a cyclic order.

Unique Cycle from Generators. As a first step we now need an invariant unique cycle to
proceed. We argue how to compute such a cycle for orbits on which our group induces a
natural symmetric action.

We may use random elements to find a unique cycle. In fact, if we perform the giant test
of Section 6, we get access to a unique cycle. However, in that section we needed a prime
length cycle. If we are only interested in unique cycles, not necessarily of prime length, this
process terminates much more quickly: Golomb’s constant [16] measures, as n → ∞, the
probability that a random element φ ∈ Sn has a cycle of length greater than n

2 . The limit is
greater than 4

5 .
In practice the existence of a unique cycle is a mild assumption: on the one hand some

practical heuristics only apply if specific combinations of transpositions are present in the
generators [13, 25]. Each transposition is a unique cycle. On the other hand, randomly
distributed automorphisms, as returned by Traces and dejavu, satisfy having a unique
cycle with high probability, as argued above.

Unique Cycle To Cyclic Order. We now assume we are given an invariant unique cycle C.
The idea is now to extend C using the generators S to a cycle which encompasses the entire
orbit. Crucially, the extension ensures that the result is still invariant (i.e. if we do this for
all orbits simultaneously, the final permutation will be invariant).

1 In group theoretic terms, π is in CSym(Ω)(CSym(Ω)(⟨s1, . . . , sm⟩)).
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0 1 2 3

0 a 1 b c 2 d
0 a 1 b c 2 d 3

Figure 7 An illustration of the cycle overlap algorithm. Overlapping cycles C = (0, 1, 2, 3) and
D = {(0, a, 1, b, c), (2, d)}.

Algorithm 3 The cycle overlap algorithm.

1 function CycleOverlap(C, D)
Input : directed cycle C, overlapping pair-wise disjoint directed cycles

D = {D1, . . . , Dm} (with ∀Di ∈ D : Di ∩ C ̸= ∅,
∀Di, Dj ∈ D : i ̸= j =⇒ Di ∩ Dj = ∅)

Output : directed cycle containing all vertices C ∪ D

2 C ′ :=
⋃

Di∈D C ∩ Di;
3 for ( c ∈ C ′ )
4 D′ := read D from c to next vertex of C ′;
5 insert D′ after c in C;
6 return C;

We now describe the cycle overlap algorithm, which gets as input a directed cycle C,
as well as a collection of cycles D1, . . . , Dm which must be pair-wise disjoint. Furthermore,
each Di must have one vertex in common with C. The result is a cycle C ′ that contains all
vertices of all the cycles. A formal description can be found in Algorithm 3.

Description of Algorithm 3. The algorithm first checks which vertices of D = D1∪· · ·∪Dm

appear in C, and records them into the set C ′. Then, for each c ∈ C ′ in the overlap of C and
D, the algorithm walks along the respective cycle Di containing c, and records all vertices it
observes into D′. It walks along the cycle until another c′ ∈ C ′ is reached (it may record the
entire cycle Di, i.e., c′ = c may hold). Finally, D′ is inserted as a path into C.

The output of the process is invariant under the cyclic orders involved. This means no
matter in which order the cycles from D are processed, the algorithm always returns the
same cyclic order. Figure 7 illustrates the algorithm.

Runtime of Algorithm 3. We may use a doubly-linked list structure for directed cycles
C and D, and an array A to link vertices V to their position in C in time O(1). Assuming
these data structures, inserting a D′ into C can be performed in time |D′|. Indeed, with
these data structures, we can implement the entire algorithm in time O(Σi∈{1,...,m}|Di|). We
may also update the array A to include the new vertices of C added from D.

To get a unique cyclic order, we repeatedly combine C with cycles appearing in generators
that intersect C. Every cycle in a generator only has to be processed once. Eventually C

contains the entire orbit. With careful management of usage-lists of vertices in cycles of
generators, the overall algorithm can be implemented in instance-linear time.

7.3 Cyclic Order to Equivalent Orbits
We finally describe how to find equivalent orbits, assuming invariant cyclic orders are given on
the orbits. An invariant cyclic order for the vertices of each orbit moves us one step closer to
the orbits of the cycle type graph. There are however still many potential bijections between
orbits: indeed, we do not know how each cyclic order should be rotated. We therefore
describe a procedure to refine the cyclic order further.
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Algorithm 4 High-level procedure to obtain equivalent orbits.

1 function EquivalentOrbits(S, ∆1, . . . , ∆m, C∆1 , . . . , C∆m
)

Input : group ⟨S⟩ = Γ ≤ S(Ω), orbit partition ∆1, . . . , ∆m of Γ, unique cycles
C∆1 , . . . , C∆m

Output : partition of v ∈ Ω into equivalent orbits
2 overlap each unique cycle C∆i

with S to obtain canonical cycle C ′
∆i

;
3 construct enhanced cycle type graph C′(S);
4 π := apply color refinement to C′(S);
5 return π

We introduce the enhanced cycle type graph C′(S). We are provided an invariant cyclic
order for each orbit ∆ of Γ, which we denote by C∆. First, we add to the cycle type
graph (Subsection 7.1) a cycle gadget for each C∆. As before, we color the cycle gadget
C∆ according to its cycle length. Next, we enhance all other cycle gadgets using distance
information of C∆: in every cycle gadget we mark each directed edge v1 → v2 with the length
of the (directed) path from v1 to v2 in C∆ (see Figure 6b). We write v1

c−→ v2 whenever the
path from v1 to v2 in C∆ has length c. Note that while we use edge-labels for clarity, these
can be encoded back into vertex colors (see [19, Proof of Lemma 15]).

Just like with the cycle type graph, the automorphism group of the enhanced cycle type
graph C′(S) is the centralizer of Γ and (CSym(Ω)(Γ), C′(Γ)) is a joint graph/group pair (see
Lemma 9). However, it is easier to compute the orbit partition of C′(S).

In fact, our method of obtaining the orbits of C′(S) is rather straightforward: we apply
the color refinement procedure to the enhanced cycle type graph C′(S). The technical proof
that color refinement indeed computes the orbit partition can be found in the full version [5]:

▶ Lemma 11. Color refinement computes the orbit partition of the enhanced cycle type
graph.

Given our high-level procedure in Algorithm 4, and given that color refinement can be
computed in quasi-linear time as previously discussed, leads to the following theorem:

▶ Theorem 12. Given access to a unique cycle per orbit, there is an instance-quasi-linear
algorithm which computes for a joint graph/group pair (G, S) a partition π of equivalent
orbits. Given two equivalent orbits ∆1 ≡ ∆2, there is an algorithm which computes from π a
corresponding matching b : ∆1 → ∆2 such that for all φ ∈ Γ and δ ∈ ∆1, φ(b(δ)) = b(φ(δ))
in time O(|∆1|).

8 Conclusion and Future Work

Exploiting our concept of joint graph/group pairs, we proposed new, asymptotically faster
algorithms for the SAT-symmetry interface. However, most of the new concepts and ap-
proaches of this paper do not only apply to the domain of SAT, but also for example to MIP
[25] and CSP [14]. More computational tasks should be considered in this context, the most
prominent one arguably being pointwise stabilizers [30].

Our new algorithms exploit subroutines with highly efficient implementations available,
but otherwise do not use any complicated data structures. We intend to implement the
algorithms and integrate them into the symmetry detection preprocessor sassy [6].

Finally, in some classes of SAT instances, more complex symmetry structures may arise.
Analyzing and taking advantage of these structures is potential future work. For example,
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in the pigeonhole principle, BreakID finds overlapping row interchangeability groups and
breaks these groups partially. By virtue of being overlapping, the symmetry breaking
constraints produced are not guaranteed to be complete. Specifically, the pigeonhole principle
is an example of instances whose symmetries form a wreath product of two symmetric groups,
i.e., Sn wr Sm (n pigeons, m holes). Procedures to detect and exploit such groups (e.g., by
first using blocks of imprimitivity [30] followed by the algorithms of this paper) could be of
practical interest.
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specific family of CNFs.
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1 Introduction

The problem to decide whether a Boolean formula is satisfiable (SAT) is one of central
problems in computer science, both theoretically and practically. From the theoretical side,
SAT is the canonical NP-complete problem [14], making it intractable unless P=NP. From
the practical side, the “SAT revolution” [31] with the evolution of practical SAT solvers has
turned SAT into a tractable problem for many industrial instances [5].

In this paper we consider the model counting problem (#SAT) which asks how many
satisfying assignments a given Boolean formula has. While #SAT is obviously a generalization
of SAT, it is presumably much harder. #SAT is the canonical complete problem for the
function class #P. While FP=#P would imply P=NP, it is known that FP=#P is even
equivalent to P=PP. The power of #SAT is also illustrated by Toda’s theorem [30] stating
that any problem in the polynomial hierarchy can be solved in polynomial time with oracle
access to #SAT.

Despite its higher complexity, #SAT solving has been actively pursued through the past
two decades [20] and a number of #SAT solvers have been developed throughout the years.
In fact, the past years have witnessed increased interest in #SAT solving with an annual
model counting competition being organised since 2020 as part of the SAT conference [17].
#SAT solvers allow to tackle a large variety of real-world questions, including all kinds of
problems in the areas probabilistic reasoning [2, 25], risk analysis [16, 34] and explainable
artificial intelligence [3, 28].

Unlike in SAT solving where conflict-driven clause learning (CDCL) [26] dominates the
scene, there are a number of conceptually different approaches to #SAT solving, including the
lifting of standard techniques from SAT-solving [29], employing knowledge compilation [24],
and via dynamic programming [19]. While some approaches try to approximate the number
of solutions, we will only consider exact model counting in the following.
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2:2 Proof Complexity of Propositional Model Counting

There is a tight correspondence between practical SAT solving and propositional proof
systems [9]. While we know that in principle every SAT solver implicitly defines a proof system,
a seminal result of [1, 27] established that CDCL (at least in its nondeterministic version) is
equivalent to the resolution proof system. However, practical CDCL with e.g. the VSIDS
heuristics corresponds to an exponentially weaker proof system than resolution [32]. In the
same vein, there has recently been a line of research to understand the correspondence between
solvers for quantified Boolean formulas (QBF) and QBF resolution proof systems [4, 6, 7].

This correspondence between solvers and proofs is not only of theoretical, but also of
immense practical interest as it can be used for proof logging, i.e. for certifying the correctness
of solvers on unsatisfiable SAT or QBF instances. Optimised proof systems have been devised
in terms of RAT/DRAT for SAT [22, 33] and QRAT for QBF [23] for this purpose. These
proof systems aim to capture all modern solving techniques, including preprocessing and
therefore tend to be very powerful [10, 13]. In particular, in contrast to weak proof systems
such as resolution, no lower bounds are known for RAT or QRAT.

In sharp contrast, far less is known about the correspondence of model counting solvers
to proof systems. To our knowledge, there are currently two proof systems for #SAT. One
is a static proof system based on decision DNNFs called kcps(#SAT) (the acronym stands
for Knowledge Compilation based Proof System for #SAT) [11]. The other, a line based
proof system called MICE [18] (the acronym stands for Model-counting Induction by Claim
Extension), was just introduced at the last SAT conference [18]. Interestingly, the system
MICE not only provides a theoretical proof system for #SAT, but also allows proof logging for
a number of state-of-the-art solvers in model counting, including sharpSAT [29], DPDB [19]
and D4 [24], as demonstrated in [18]. Hence MICE proofs can be used to verify the correctness
of answers of these #SAT solvers.

1.1 Our Contributions
We perform a proof complexity analysis of the #SAT proof system MICE from [18]. Prior to
this paper, no proof complexity results for MICE were known. Our results can be summarised
as follows.

(a) A simplified proof system MICE’. We analyse the proof system MICE and define a
somewhat simplified calculus MICE′. Lines in MICE are of the form ((F, V ), A, c) where
F is a propositional formula V is a set of variables, A is a partial assignment and c ∈ N.
Semantically, these lines express that the formula F under the partial assignment A has
precisely c models. The system MICE then employs four rules to derive new lines with the
ultimate goal to derive a line ((F, vars(F )), ∅, c). Thus in the ultimate line, c is the number
of models of the formula F .

The four rules of the system include one axiom rule for satisfying total assignments and
three rules to compose, join and extend existing lines. All the rules have a rather extensive
set of side conditions to verify their applicability. For the composition rule this even includes
an external resolution proof to check that the composition of claims in the rule indeed covers
all models.

The variable set V does not feature in the semantical explanation above. While it might
be tempting to choose V = vars(F ) for all lines (as is done in the final claim), we show that
this restriction is too strong and results in an exponentially weaker system. Nevertheless,
we show that we can slightly adapt the rules of MICE (in particular the extension rule)
and obtain a system MICE′ for which we can impose V = vars(F ) for all lines without
weakening the system. Lines in MICE′ therefore can take the form (F, A, c). This allows
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allows to eliminate and simplify some of the side conditions for the original rules of MICE
when transferring to MICE′. Our simplified system MICE′ is as strong as MICE in terms of
simulations (Propositions 16 and 17). Hence also MICE′ can be used for proof logging for
the #SAT solvers mentioned above.

(b) Lower bounds for MICE and MICE’. In our main result we show an exponential lower
bound for the proof size in MICE′ (and hence also for MICE) for a specific family of CNFs.

As mentioned above, the composition rule of MICE (and MICE′) incorporates resolution
proofs. Exploiting this feature, it is not too hard to transfer resolution lower bounds to MICE′.
In fact, we can show that on unsatisfiable formulas, resolution is polynomially equivalent to
MICE′ (Theorem 18).

However, we would view such a transferred resolution lower bound not as a “genuine” and
interesting lower bound for MICE′. We therefore show a stronger bound for MICE′ for the
number of proof steps (where we disregard the size of the attached resolution proofs). In our
main result we show a lower bound of 2Ω(n) for the number of proof steps for a specific set of
CNFs, termed XOR-PAIRSn, based on the parity function (Theorem 23). Technically, our
lower bound is established by showing that in MICE′ proofs of XOR-PAIRSn, all applications
of the join and extension rules preserve the model count.

1.2 Relations to DNNFs
One of the anonymous reviewers highlighted that there is a close connection between our
work here and Decomposable Negation Normal Forms (DNNFs) as investigated in [8, 11,12].
We were not aware of that work and would like to thank the reviewer for pointing that out.

In particular, it appears that from a MICE′ proof a decision DNNF can be efficiently
extracted. Hence, alternatively to our directly obtained lower bound for MICE′ in Section 5,
one could employ decision DNNF lower bounds as shown via communication complexity
in [8] for MICE′ lower bounds.

1.3 Organisation
The remainder of this paper is organised as follows. After reviewing some standard notions
from propositional logic and proof systems in Section 2, we revise the #SAT proof system
MICE from [18] in Section 3 and show some properties of the system. This gives rise to a
simplified proof system MICE′ which we define in Section 4. Section 5 contains our main
results on the exponential lower bound for MICE′ (and hence for MICE). We conclude in
Section 6 with relations to some open questions and future directions.

2 Preliminaries

We introduce some notations used in this paper. A literal l is a variable z or its negation z,
with var(l) = z. A clause is a disjunction of literals, a conjunctive normal form (CNF) is
a conjunction of clauses. Often, we write clauses as sets of literals and formulas as sets of
clauses. We assume that every propositional formula is written in CNF.

For a formula F , vars(F ) denotes the set of all variables that occur in F , and lits(F ) is the
set of all literals of F . If C ∈ F is a clause and V ⊆ vars(F ) is a set of variables, we define
C|V = {l ∈ C | vars(l) ∈ V } and F |V denotes the formula F with every clause C replaced by
C|V . An assignment is a function α mapping variables to Boolean values. If a function F

evaluates to true under an assignment α, we say α satisfies F and write α |= F . We also
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2:4 Proof Complexity of Propositional Model Counting

allow α to be a partial assignment to vars(F ) or to contain variables not occurring in F .
Occasionally, we interpret an assignment as a CNF consisting of precisely those unit clauses
that specify the assignment. Therefore, the set operations are well defined for formulas and
assignments. We say that two assignments are consistent if their union is satisfiable. For
some set of variables X, ⟨X⟩ denotes the set of all 2|X| possible assignments to X.

In this paper we are interested in proof systems as introduced in [15]. Formally, a proof
system for a language L is a polynomial-time computable function f with rng(f) = L. If
f(w) = x, then w is called f -proof of x ∈ L. In order to compare proof systems we need the
notion of simulations. Let f and g be proof systems for language L. We say that f simulates
g, if for any g-proof w there exists an f -proof w′ with |w′| = |w|O(1) and f(w′) = g(w). If we
can compute w′ in polynomial time from w, we say that f p-simulates g. Two proof systems
are (p-)equivalent if they (p-)simulate each other.

For the language UNSAT of unsatisfiable CNFs, resolution is arguably the most studied
proof system. It operates on Boolean formulas in CNF and has only one rule. This resolution
rule can derive C ∪ D from C ∪ {x} and D ∪ {x} with arbitrary clauses C, D and variable
x. A resolution refutation of a CNF is a derivation of the empty clause □. We sometimes
add a weakening rule that enables us to derive C ∪ D from C for arbitrary clauses C and
D. However, it is well-known that any resolution refutation that uses weakening can be
efficiently transformed into a resolution refutation without weakening.

3 The Proof System MICE for #SAT

In this section we recall the MICE proof system for #SAT from [18] and show some basic
properties of the system.

▶ Definition 1 ([18]). A claim is a triple ((F, V ), A, c) where F is a propositional formula in
CNF, V is a set of variables, A is an assignment with vars(A) ⊆ V and c ∈ N. For such a
claim, let ModA(F, V ) := {α ∈ ⟨V ⟩ | α |= F ∪ A}. The claim is correct if c = |ModA(F, V )|.

Claims will be the lines in our proof systems for model counting. Semantically, they
describe that the formula F under the partial assignment A has exactly c models. The
partial assignment A is sometimes also referred to as the assumption. What is perhaps a bit
mysterious at this point is the role of the variable set V . We will get to this shortly.

The rules of MICE are Exactly One Model (1-Mod), Composition (Comp), Join (Join) and
Extension (Ext). They are specified in Figure 1. We give some intuition on the rules. The
axiom rule (1-Mod) states that if a complete assignment A satisfies a formula F , then F has
exactly one model under A.

With (Comp) we can sum up model counts of a formula F under different partial
assignments A1, . . . , An in order to weaken the assumption to a partial assignment A. This
is only sound if the solutions of F under assumptions A1, . . . , An form a disjoint partition of
the full solution space of F under A. That this is indeed the case can be verified with an
independent proof, e.g. in propositional resolution. This proof is called an absence of models
statement.

The (Join) rule allows us to multiply the model counts of two formulas that are completely
independent restricted to the assumptions. Finally, with (Ext), we can extend simultaneously
all models, i.e. we enlarge the formula and assumption without changing the count.

We can now formally define MICE proofs.

▶ Definition 2 (Fichte, Hecher, Roland [18]). A MICE trace is a sequence π = (I1, . . . , Ik)
where for each i ∈ [k], either
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Ii is a claim if Ii is derived by one of (1-Mod), (Join), (Ext) or
Ii = (I, ρ) if the claim I is derived by (Comp) and ρ is the resolution refutation for the
respective absence of models statement.

A MICE proof of a formula φ is a MICE trace π = (I1, . . . , Ik) where Ik is (or contains
in case of (Comp)) the claim ((φ, vars(φ)), ∅, c) for some c ∈ N.

In [18] it is shown that MICE is a sound and complete proof system for #SAT.
For measuring the proof size, we use two natural options. s(π) notates the size of π which

is the total number of claims plus the number of clauses in resolution proofs in the absence
of models statements. c(π) counts only the number of claims a proof has which is exactly
the number of inference steps that the proof needs.

Exactly One Model.

((F, V ), A, 1) (1-Mod)

(O-1) vars(A) = V ,
(O-2) A satisfies F .

Composition.

((F, V ), A1, c1), . . . , ((F, V ), An, cn)
((F, V ), A,

∑
i∈[n] ci)

(Comp)

(C-1) vars(A1) = vars(A2) = · · · = vars(An) and Ai ̸= Aj for i ̸= j,
(C-2) A ⊆ Ai for all i ∈ [n],
(C-3) there exists a resolution refutation of A ∪ {C|V | C ∈ F} ∪ {Ai | i ∈ [n]}. Such
a refutation is included into the trace and is called an absence of models statement.

Join.

((F1, V1), A1, c1), ((F2, V2), A2, c2)
((F1 ∪ F2, V1 ∪ V2), A1 ∪ A2, c1 · c2) (Join)

(J-1) A1 and A2 are consistent,
(J-2) V1 ∩ V2 ⊆ vars(Ai) for i ∈ {1, 2},
(J-3) vars(Fi) ∩ ((V1 ∪ V2) \ Vi) = ∅ for i ∈ {1, 2}.

Extension.

((F1, V1), A1, c)
((F, V ), A, c) (Ext)

(E-1) F1 ⊆ F , V1 ⊆ V ,
(E-2) V \ V1 ⊆ vars(A),
(E-3) A|V1 = A1,
(E-4) A satisfies F \ F1,
(E-5) for every C ∈ F1: A|V \V1 does not satisfy C.

Figure 1 Inference rules for MICE [18].

In a correct claim ((F, V ), A, c) the count c is uniquely determined by the the formula
F , set of variables V and assumption A. Therefore, we often omit c and refer to the claim
as ((F, V ), A). To ease notation we will usually just write a MICE proof as as sequence of
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2:6 Proof Complexity of Propositional Model Counting

claims I1, . . . , Im and do not explicitly record the used absence of models statements. We
just assume that whenever we use (Comp), the necessary resolution refutation is part of the
MICE proof.

If a formula F is satisfied by the partial assignment A, we can set the remaining variables
arbitrarily. Therefore, the component (F, vars(F )) has exactly 2|vars(F )|−|vars(A)| models
under assumption A. The following construction shows that we can efficiently derive the
corresponding claim in MICE.

▶ Proposition 3. If some assumption A satisfies an arbitrary formula F , there is a MICE
derivation of the claim I = ((F, vars(F )), A, 2|vars(F )\vars(A)|) with s(π) = 7·(|vars(F )\vars(A)|)
and c(π) = 4 · (|vars(F ) \ vars(A)|).

Proof. Let vars(F ) \ vars(A) = {x1, . . . , xn}. For every i ∈ [n] we derive I1
i = ((∅, vars(A) ∪

{xi}), A ∪ {xi}, 1) and I0
i = ((∅, vars(A) ∪ {xi}), A ∪ {xi}, 1) with (1-Mod). This is possible

since every assignment satisfies the empty formula. With (Comp) we get Ii = ((∅, vars(A) ∪
{xi}), A, 2) using the absence of models statement ρi = ((xi), (xi),□). We use (Join) of I1
and I2, then (Join) of the result and I3, and so on. The requirements (J-1), (J-2), and (J-3)
are satisfied. In this way we get ((∅, vars(F )), A, 2|vars(F )\vars(A)|). We use (Ext) to obtain
I = ((F, vars(F )), A, 2|vars(F )\vars(A)|). It is easy to see that all requirements (E-1) to (E-5)
are satisfied. For (E-4), we use that A satisfies F . In total we use 4n MICE steps to derive I

and we have n absence of models statements with 3 clauses each. ◀

We investigate some properties that any claim in a MICE proof has to fulfill. We assume
that any MICE proof has no redundant claims, i.e. in the corresponding proof dag, there is
a path from any node to the final claim. We also observe that for all inference rules, the
derived F and V never shrink. This leads to the following two observations:

▶ Observation 4. If ((F, V ), A) is derived from ((F1, V1), A1) in a MICE trace (not necessarily
in one step), then F1 ⊆ F and V1 ⊆ V .

Therefore, any claim ((F, V ), A) in a MICE proof of φ fulfills F ⊆ φ and V ⊆ vars(φ).

From Definition 1 it is not obvious how F and V are related. Intuitively, one might be
tempted to set V = vars(F ) for any claim ((F, V ), A). However, this would make the proof
system exponentially weaker as we will see later. Lemma 6 will show that we can at least
assume vars(F ) ⊆ V for every claim. To show this we need the following lemma:

▶ Lemma 5. For any claim ((F, V ), A) and any variable x, if x ∈ vars(F ) \ V , then literals
x and x cannot both occur in F .

Proof Sketch. Suppose there exists such an x. Since ((F, V ), A) is not redundant, there
is a path to the final claim. Thus, there have to be claims ((F1, V1), A1) and ((F2, V2), A2)
directly adjacent in the path with F ⊆ F1 ⊆ F2, V ⊆ V1 ⊆ V2 and x /∈ V1, x ∈ V2. Now
((F2, V2), A2) is directly derived from ((F1, V1), A1) in one step. We can argue that this is
not possible. ◀

▶ Lemma 6. Let a formula φ and a MICE proof π for φ be given. Then there is a MICE
proof π′ satisfying vars(F ) ⊆ V for any claim ((F, V ), A) ∈ π′ such that s(π′) = O(s(π)3)
and c(π′) = c(π).

Proof Sketch. Let π = (I1, . . . , Im) with Ii = ((Fi, Vi), Ai). Because of Lemma 5, for any
i ∈ [m], we can assume that there is no variable x ∈ vars(Fi)\Vi that occurs in both polarities
in Fi. Let αi ∈ ⟨vars(Fi) \ Vi⟩ be the assignment that does not satisfy any clause in Fi, i.e. if
x is in Fi we assign αi(x) = 0 and vice versa. For every claim Ii, αi exists and it is unique.
We define
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f(((Fi, Vi), Ai)) := ((Fi, Vi ∪ vars(Fi)), Ai ∪ αi)

with the unique αi defined above. We show by induction that (f(I1), . . . , f(Im)) is a valid
MICE proof for φ. ◀

In the following we always assume vars(F ) ⊆ V for any claim ((F, V ), A). With this
requirement, the conditions of the inference rules can be simplified.

▶ Corollary 7. If we require vars(F ) ⊆ V for every claim ((F, V ), A), the following simplific-
ations for the MICE rules apply:

We can simplify the absence of models statement in the requirement (C-2) to be a refutation
of F ∪ A ∪ {Ai | i ∈ [n]}.
We can remove condition (J-3) for (Join).
We can remove condition (E-5) for (Ext).

However, imposing the stronger condition vars(F ) = V for every claim ((F, V ), A) would
make the proof system exponentially weaker as we illustrate with the next proposition.

▶ Lemma 8. There is a family of formulas (Tn)n∈N such that for both measures s(·) and c(·)
holds:

Tn has polynomial-size MICE proofs and
if vars(F ) = V is required for all claims ((F, V ), A), the shortest MICE proof of Tn has
exponential size.

Proof Sketch. Consider the formula Tn that only has one clause (x1 ∨ x2 ∨ · · · ∨ xn).
To construct a polynomial-size MICE proof, we derive ((∅, vars(Tn)), {x1 = 1}, 2n−1) with

a small number of applications of (1-Mod) and (Join). We get ((Tn, vars(Tn)), {x1 = 1}, 2n−1)
with (Ext). Similarly, we derive ((Tn, vars(Tn)), {x1 = 0, x2 = 1}, 2n−2) and so on. With
applications of (Comp) we combine these claims to ((Tn, vars(Tn)), ∅, 2n − 1).

We can show that any MICE proof with the additional requirement vars(F ) = V needs to
have a claim ((Tn, vars(Tn)), α) for every model α ∈ Mod(Tn). Since Tn has 2n − 1 models,
the proof has size 2Ω(n). ◀

4 A Simplified Proof System MICE’ for #SAT

We now adapt MICE to a new proof system MICE′ that is as strong as MICE and only uses
claims ((F, V ), A) with components satisfying V = vars(F ). Therefore, we can drop the
explicit mentioning of the variable set V and only need to specify the formula F . This makes
the resulting proof system more intuitive and easier to investigate for lower bounds.

The rules of MICE′ are Axiom (Ax), Composition (Comp’), Join (Join’) and Extension
(Ext’). They are specified in Figure 2.

The intuition for the rules (Comp’) and (Join’) are very similar to (Comp) and (Join) from
MICE. The (Ax) rule enables us to derive the claim (∅, ∅, 1) which is trivially true. (Ext’) is
also similar to (Ext) with one important difference: If we use (Ext) in MICE, the assumption
has to assign all variables that are added to the claim. As result, we extend one model of the
original claim to one new model. In (Ext’) however, this is not necessarily the case. As long
as the new assumption satisfies all added clauses, we are allowed to leave new introduced
variables unassigned in the assumption. Like this we extend every model of the original claim
to a set of new models, one for every possible assignment of these unassigned variables.
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2:8 Proof Complexity of Propositional Model Counting

Axiom.

(∅, ∅, 1) (Ax)

Composition.

(F, A1, c1), . . . , (F, An, cn)
(F, A,

∑
i∈[n] ci)

(Comp’)

(C-1) vars(A1) = vars(A2) = · · · = vars(An) and Ai ̸= Aj for i ̸= j,
(C-2) A ⊆ Ai for all i ∈ [n],
(C-3) there exists a resolution refutation of A ∪ F ∪ {Ai | i ∈ [n]}. Such a refutation is
included into the trace and is called an absence of models statement.

Join.

(F1, A1, c1), (F2, A2, c2)
(F1 ∪ F2, A1 ∪ A2, c1 · c2) (Join’)

(J-1) A1 and A2 are consistent,
(J-2) vars(F1) ∩ vars(F2) ⊆ vars(Ai) for i ∈ {1, 2}.

Extension.

(F1, A1, c1)
(F,A, c1 · 2|vars(F )\(vars(F1)∪vars(A))|)

(Ext’)

(E-1) F1 ⊆ F ,
(E-2) A|vars(F1) = A1,
(E-3) A satisfies F \ F1.

Figure 2 Inference rules for MICE′.

▶ Definition 9 (Adapted Proof System MICE′). A claim is a triple (F, A, c) with vars(A) ⊆
vars(F ). For such a claim, let ModA(F ) := {α ∈ ⟨vars(F )⟩ | α |= F ∪ A}. The claim is
correct if c = |ModA(F )|. The rules of MICE′ are (Ax), (Comp’), (Join’) and (Ext’). The
notions of MICE′ traces and MICE′ proofs are defined analogously as for MICE. Furthermore,
we use the same two measures for the proof size s(·) and c(·).

As in the MICE proof system we often omit the count c of claims and assume that no
redundant claims exist in MICE′ proofs, i.e. all claims are connected to the final claim.

We prove that all four derivation rules are sound, i.e. for every derived claim (F, A, c)
holds c = |ModA(F )|. In doing so, we will also provide some intuition on the semantic
meaning of the rules.

▶ Lemma 10. The inference rules of MICE′ are sound.

Proof Sketch. To prove the soundness of every MICE′ rule, we associate every claim (F, A, c)
with the set containing exactly the c models in ModA(F ). With this interpretation, we can
specify how every rule modifies these models. This way, we can show that the resulting
model count is indeed correct for every MICE′ rule.

The soundness of (Ax) is obvious, since Mod∅(∅) = {∅}.



O. Beyersdorff, T. Hoffmann, and L. N. Spachmann 2:9

To show soundness of (Comp’), let (F, A,
∑

i∈[n] ci) be derived with (Comp’) from correct
claims (F, A1, c1), . . . , (F, An, cn). Then we can show

ModA(F ) = {α ∈ ⟨vars(F )⟩ | α |= F ∪ A}.

Next, we show soundness of (Join’). For this, let (F1 ∪ F2, A1 ∪ A2, c1 · c2) be derived
with (Join’) from correct claims (F1, A1, c1) and (F2, A2, c2). We can show that

ModA1∪A2(F1 ∪ F2) = {α1 ∪ α2 | α1 ∈ ModA1(F1), α2 ∈ ModA2(F2)}.

Finally we have to show that (Ext’) is sound. Assume (F, A, c) is derived with (Ext’) from
the correct claim (F1, A1, c1). We can show

ModA(F ) = {α ∪ (A \ A1) ∪ β | α ∈ ModA1(F1), β ∈ ⟨vars(F ) \ (vars(F1) ∪ vars(A))⟩}.

Therefore, claims derived with MICE′ are correct. ◀

▶ Corollary 11. Let claim I = (F, A) and a model α ∈ ModA(F ) be given.
If I is derived with (Comp’) using claims (F, A1), . . . , (F, An), then there exists exactly
one i ∈ [n] such that α ∈ ModAi

(Fi).
If I is derived with (Join’) using claims (F1, A1) and (F2, A2), then for both i ∈ [2] we
have α|vars(Fi) ∈ ModAi

(Fi).
If I is derived with (Ext’) using claim (F1, A1), then α|vars(F1) ∈ ModA1(F1).

We introduce an additional rule (SA) which is similar to the construction in Proposition 3.

▶ Definition 12 (Satisfying Assumption Rule). Under the condition (S-1): A satisfies F , we
allow to derive

(F, A, 2|vars(F )\vars(A)|)
(SA).

This rule is sound and does not make MICE′ proofs much shorter.

▶ Lemma 13. (SA) is sound. Further, if formula φ has a MICE′ proof π that can use the
additional rule (SA), then there exists a MICE′ proof π′ of φ with s(π′) = s(π) + 1 and
c(π′) = c(π) + 1.

Proof. Assume that we applied (SA) in π to derive claim I = (F, A, 2|vars(F )\vars(A)|). Then
we can derive I without (SA) with two MICE′ steps in the following way. We use (Ax) to
get (∅, ∅, 1) and then (Ext’) to derive I. It is easy to see that conditions (E-1) and (E-2)
are fulfilled. (E-3) follows directly from (S-1). The resulting counts are the same since
1 · 2|vars(F )\(vars(F1))∪vars(A))| = 2|vars(F )\vars(A)|. Since we can simulate (SA) with the other
sound MICE′ rules, (SA) is sound as well. If we replace all applications of (SA) like this, then
the proof size increases at most by one, as we need (Ax) only once in the proof. ◀

To justify our definition of MICE′ we have to show that it is indeed a proof system for
#SAT.

▶ Theorem 14. MICE′ is a sound and complete proof system for #SAT.

Proof. The soundness of MICE′ follows directly from the soundness of the inference rules as
shown in Lemma 10.
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Next, we show that MICE′ is complete. For this, let an arbitrary formula φ be given. We
can derive Iα = (φ, α, 1) for every α ∈ Mod(φ) with (SA). For all these models together there
is an absence of models statement. Therefore, we can derive (φ, ∅, |Mod(φ)|) with (Comp’)
from all claims Iα. Note that for unsatisfiable formulas we can derive the final claim with a
single application of (Comp’).

In proof systems, it is also necessary that proofs can be verified in polynomial time. This
is possible in MICE′ since all conditions (C-1), (C-2), (C-3), (J-1), (J-2), (E-1), (E-2) and
(E-3) are easy to check in polynomial time. ◀

Next, we show some basic properties of MICE′.

▶ Lemma 15. Let claim (F1, A1) be used to derive (F, A) (not necessarily in one step). Then
F1 ⊆ F ,
if x ∈ vars(F1) ∩ vars(A), then x ∈ vars(A1) and A(x) = A1(x).

Proof. Because every MICE′ rule does not decrease the formula F , the first property is
obvious.

Let ((F1, A1), . . . , (Fn, An) = (F, A)) be a path in this derivation. It is easy to check that
for all four inference rules of MICE′ we have Ai+1|vars(Fi) ⊆ Ai for i ∈ [n − 1]. We can restrict
both sides and get

(Ai+1|vars(Fi))|vars(F1) = Ai+1|vars(Fi)∩vars(F1) = Ai+1|vars(F1) ⊆ Ai|vars(F1).

Therefore,

A|vars(F1) = An|vars(F1) ⊆ An−1|vars(F1) ⊆ · · · ⊆ A1|vars(F1) = A1.

From A|vars(F1) ⊆ A1 the second property follows. ◀

Using these properties, we can show that the new proof system MICE′ is polynomially
equivalent to MICE. Note that this result is true for both measures of proof size s(·) and c(·).
To prove this equivalence, we show both simulations separately.

First we show that MICE′ is at least as strong as MICE. This simulation is the more
important one for this paper as it implies that lower bounds for MICE′ do also apply for
MICE.

▶ Proposition 16. MICE′ p-simulates MICE.

Proof Sketch. Let π = (I1, . . . , Im) be a MICE proof of a given formula φ. We assume that
vars(F ) ⊆ V for all claims ((F, V ), A) in π which is justified by Lemma 6. We can show by
induction that for f(((F, V ), A)) := (F, A|vars(F )) the sequence π′ = (f(I1), . . . , f(Im)) is a
correct MICE′ proof of φ. ◀

Next we show that MICE′ is not stronger than MICE. Although this result is not needed
for the lower bounds, it is nice to know how our new proof system MICE′ relates to MICE
exactly.

▶ Proposition 17. MICE p-simulates MICE′.

Proof Sketch. Let π = I1, . . . , In with Ii = (Fi, Ai) be a MICE′ proof of a given for-
mula φ. We define f(Ii) := ((Fi, vars(Fi)), Ai) and show that we can derive f(Ik) using
f(I1), . . . , f(Ik−1) with O(|vars(φ)|) MICE steps. ◀
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5 Lower Bounds for MICE and MICE’

In this section we investigate the proof complexity of MICE′. For the analysis we use the two
different measures of proof size.

First, we consider the proof size s(·). For that, we can easily lift known lower bounds from
propositional resolution and get families of formulas that require MICE′ proofs of exponential
size.

However, one could argue, that this is not the kind of hardness we are interested in. In
the second part we get a stronger result by showing a lower bound for the number of inference
steps c(·), i.e. we ignore the sizes of the absence of models statements.

5.1 Lower Bounds for the Proof Size
In this subsection we only consider the proof size s(·) that counts the number of claims plus
the length of all resolution refutations. If we use MICE′ on unsatisfiable formulas, we have
to prove that the formula has zero models. Hence, we can use MICE′ as proof system for
the language UNSAT as well. We show that MICE′ is precisely as strong as resolution for
unsatisfiable formulas.

▶ Theorem 18. MICE′ is polynomially equivalent to Res for unsatisfiable formulas.

Proof Sketch. Let φ be an arbitrary unsatisfiable formula.
We first show that Res is simulated by MICE′. Suppose πRes is a resolution refutation of

φ, then we can use πRes as an absence of models statement and derive the final claim (φ, ∅, 0)
with a single application of (Comp) of zero claims.

Next, we show that MICE′ is simulated by Res. Let a MICE′ refutation π = (I1, . . . , Im)
for φ be given with Ii = (Fi, Ai, ci). Further, let πRes = (φ, X1, X2, . . . , Xm) where Xi is a
sequence of clauses defined as

Xi :=


empty sequence if ci ̸= 0
(Ai) if Ii is derived by (Join’) or (Ext’)
(C ∪ Ai | C ∈ ρ) if Ii is derived by (Comp’) and absence of models statement ρ.

We can show that πRes is a valid resolution trace (with weakening steps). ◀

Many hard families of formulas for resolution are known. One famous example is the
pigeonhole formula family PHP for which an exponential lower bound for resolution was first
shown in [21]. With Theorem 18 we can conclude that these hard formulas for resolution are
also hard for MICE′.

▶ Corollary 19. Any MICE′ proof π of PHPn has size s(π) = 2Ω(n).

We note that it is also quite straightforward to obtain exponential proof size lower bounds
for satisfiable formulas in MICE′ by forcing the system to refute some exponentially hard
CNFs in absence of models statements.

5.2 Lower Bounds for the Number of Inference Steps
One could argue that unsatisfiable formulas such as PHP are not particularly interesting for
model counting. We also note that they have very simple MICE′ proofs of just one step (as
in the simulation of resolution by MICE′ in Theorem 18) and that their hardness for MICE′
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stems solely from the fact that they are hard for resolution (and such resolution proofs need
to be included as an absence of models statement). However, we would argue that this does
not tell us much on the complexity of MICE′ proofs.

We therefore now tighten our complexity measure and consider the proof size measure c(·)
that only counts the number of MICE′ inference steps which is exactly the number of claims
a proof π has. This measure disregards the size of the accompanying resolution refutations
and hence formulas such as PHP become easy.

In our main result we present a family of formulas that is exponentially hard with respect
to this sharper measure of counting inference steps. Such hard formulas need to have many
models as the following upper bound shows.

▶ Observation 20. Every formula φ has a MICE′ proof π with c(π) = |Mod(φ)| + 2.

Proof. The MICE′ proof that we used to show the completeness in Theorem 14 needs one
(Ax) step, |Mod(φ)| applications of (Ext’), and one application of (Comp’). ◀

Therefore, to show exponential lower bounds to the number of steps we will need formulas
with 2Ω(n) models. Next, we show that MICE′ proofs for such formulas do not require claims
with c = 0. In particular, we can assume that there are no such claims in the proofs.

▶ Lemma 21. Let φ ∈ SAT and π be a MICE′ proof of φ. Then there is a MICE′ proof π′ of
φ that has no claim with count c = 0 such that s(π′) = O(s(π)2) and c(π′) ≤ c(π).

Proof Sketch. We consider an arbitrary claim I in the π with c = 0. Since I is not redundant,
there is a path to the final claim. The final claim has count c > 0, since φ is satisfiable.
Therefore, in this path there are two adjacent claims (F1, A1, c1) and (F2, A2, c2) with c1 = 0
and c2 > 0. We can argue that (F2, A2, c2) is derived with (Comp’). We can adapt the absence
of models statement such that (F1, A1, c1) is not needed for this (Comp’) application. ◀

Next, we introduce the family of formulas (XOR-PAIRSn)n∈N. They consist of variables
xi and zij for i, j ∈ [n] and are satisfied exactly if (zij = xi ⊕ xj) for every pair i, j ∈ [n].

▶ Definition 22. The formula XOR-PAIRSn consists of the clauses

C1
ij = (xi ∨ xj ∨ zij), C2

ij = (xi ∨ xj ∨ zij), C3
ij = (xi ∨ xj ∨ zij), C4

ij = (xi ∨ xj ∨ zij)

for i, j ∈ [n].

▶ Theorem 23. Any MICE′ proof π of XOR-PAIRSn requires size c(π) = 2Ω(n).

We start with some observations and lemmas and prove the lower bound at the end of
this section.

The idea of the proof is the following: The final claim has a large count. In order to get a
large count with a small number of MICE′ steps, we have to use (Ext’) or (Join’) such that the
previous counts get multiplied. However, we show that one factor of any such multiplication
is always 1. As a result, the only way to increase the count is with (Comp’). We start with
applications of (Ax) with count 1 and can only sum up those counts with (Comp’). As a
result, we need an exponential number of summands.

▶ Observation 24. XOR-PAIRSn has 2n models.

Proof. We can set xi arbitrarily for all i ∈ [n] and have a unique assignment for the remaining
z variables to satisfy XOR-PAIRSn. ◀
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For the following arguments we will only consider MICE′ proofs of XOR-PAIRSn without
redundant claims (i.e. all claims are connected to the final claim) and without claims with
c = 0 (this is possible by Lemma 21). Our next lemma states that if we have some clause
Cij in a claim, then all missing clauses Cij have to be satisfied by the assumption.

▶ Lemma 25. Let (F, A) be an arbitrary claim in a MICE′ proof of XOR-PAIRSn. If there
are i, j ∈ [n] such that {xi, xj , zij} ⊆ vars(F ), then A has to satisfy every clause Ck

ij for
k ∈ [4] that is not in F .

Proof Sketch. We fix variables i, j ∈ [n] such that {xi, xj , zij} ⊆ vars(F ) and a clause C =
Ck

ij /∈ F for some k ∈ [4]. We consider only the path from (F, A) to (XOR-PAIRSn, ∅) which
has to exist, because otherwise (F, A) is redundant. There have to be claims I1 = (F1, A1)
and I2 = (F2, A2) directly adjacent in this path with F ⊆ F1 ⊆ F2 ⊆ φ, C /∈ F1, C ∈ F2, i.e.
I1 is the last claim in the path that does not contain C. I2 is directly derived from I1 with
one of the four MICE′ steps. We can argue that this is only possible if A satisfies C. ◀

The following lemma is similar in spirit. It shows that if all clauses Cij are missing in a
claim, then xi and xj have to be set in the assumption.

▶ Lemma 26. Let a MICE′ proof of XOR-PAIRSn be given and let (F, A) be an arbitrary
claim in the proof. If there are i, j ∈ [n] such that {xi, xj} ⊆ vars(F ) and zij /∈ vars(F ), then
{xi, xj} ⊆ vars(A).

Proof Sketch. The proof is very similar to the one of Lemma 25. We consider a path from
(F, A) to the final claim and have a closer look at the first claim in this path that contains a
clause Ck

ij for some k ∈ [4]. We argue that we can only derive this claim if {xi, xj} ⊆ vars(A)
is fulfilled. ◀

Using the previous two lemmas, we show that the two inference rules that multiply counts,
i.e. (Join’) and (Ext’), do not affect the count at all for the XOR-PAIRS formulas.

▶ Lemma 27. Let a MICE′ proof of XOR-PAIRSn be given. If the proof contains a (Join’) of
two claims (F1, A1, c1) and (F2, A2, c2), then min(c1, c2) = 1.

Proof. Suppose otherwise, c1 ≥ 2 and c2 ≥ 2.
Assume that all x variables occurring in vars(F1) are assigned in A1. Since c1 ≥ 2,

vars(F1) \ vars(A1) ̸= ∅. In particular, there has to be a zij ∈ vars(F1) \ vars(A1) such that
there is at least one model of F1 and A1 with zij = 0 and one with zij = 1. Then we have
{xi, xj} ⊆ vars(F1) and {xi, xj} ⊆ vars(A1). As a result, A1 has to satisfy all clauses Ck

ij

that are in F1. Because of Lemma 25, A1 has to satisfy the clauses Ck
ij that are not in F1

as well. Thus, A1 has to satisfy all four clauses Ck
ij , which is only possible if zij ∈ vars(A1).

This contradicts the choice of zij . Similarly, we also see that there is at least one x variable
in vars(F2) \ vars(A2).

Hence, we can fix xi ∈ vars(F1) \ vars(A1) and xj ∈ vars(F2) \ vars(A2). Condition (J-2)
implies xi /∈ vars(F2), xj /∈ vars(F1) and in particular i ≠ j. Because of vars(A1) ⊆ vars(F1)
and xj /∈ vars(F1) we get xj /∈ vars(A1) and therefore also xj /∈ vars(A1 ∪ A2). The joined
claim is (F, A) = (F1 ∪ F2, A1 ∪ A2) with {xi, xj} ⊆ vars(F ) and Ck

ij /∈ F for all k, implying
zij /∈ vars(F ). With Lemma 26 we get the contradiction xj ∈ vars(A) = vars(A1 ∪ A2).

Therefore, our assumption c1 ≥ 2 and c2 ≥ 2 was false. ◀

Using this lemma we can show, that w.l.o.g. any MICE′ proof of XOR-PAIRSn does not
use (Join’).
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▶ Lemma 28. Let π be a MICE′ proof of XOR-PAIRSn. Then there is a MICE′ proof π′ that
does not use (Join’) with c(π′) ≤ 2 · c(π).

Proof. Using π we construct a MICE′ proof π′ that does not use (Join’).
For this suppose that in π, the claim I = (F1 ∪ F2, A1 ∪ A2) is derived with (Join’) of

(F1, A1, c1) and (F2, A2, c2). Because of Lemma 27 we can assume that c2 = 1. Thus, there is
a unique assignment α such that vars(A2) ∩ vars(α) = ∅, vars(A2 ∪ α) = vars(F2) and A2 ∪ α

satisfies F2. Then, we can apply (Ext’) to (F1, A1) resulting in (F1 ∪ F2, A1 ∪ A2 ∪ α). We
check the conditions to apply (Ext’).

(E-1) F1 ⊆ F1 ∪ F2 holds.
(E-2) We see that (A1 ∪ A2 ∪ α)|vars(F1) = A1|vars(F1) ∪ A2|vars(F1) ∪ α|vars(F1) = A1. In the
last equation we used three facts:
A1|vars(F1) = A1 is a direct consequence of vars(A1) ⊆ vars(F1).
A2|vars(F1) ⊆ A1 follows from vars(A2|vars(F1)) ⊆ vars(F2) ∩ vars(F1) ⊆ vars(A1) by (J-2)
and the fact that A1 and A2 are consistent by (J-1).
α|vars(F1) = ∅. Assume otherwise that x ∈ vars(α)∩vars(F1). Then x ∈ vars(α)∩vars(F1) ⊆
vars(F2) ∩ vars(F1) ⊆ vars(A2) by (J-2). Thus, x ∈ vars(A2) ∩ vars(α) contradicting the
construction of α.
(E-3) A1 ∪ A2 ∪ α satisfies (F1 ∪ F2) \ F1 ⊆ F2 as A2 ∪ α satisfies F2 by construction.

Applying (Comp’) on the claim (F1 ∪ F2, A1 ∪ A2 ∪ α) we get (F1 ∪ F2, A1 ∪ A2). In this
way we can remove every (Join’) application with one application of each (Ext’) and (Comp’).
Let π′ be the resulting MICE′ proof of XOR-PAIRSn that does not use (Join’). The number
of claims in the proof increases at most by a factor of two. ◀

▶ Lemma 29. Let a MICE′ proof of XOR-PAIRSn be given. Any claim (F, A, c) in the proof
that is derived with (Ext’) from (F1, A1, c1) satisfies c = c1.

Proof. Suppose c ̸= c1. Since c = c1 · 2|vars(F )\(vars(F1)∪vars(A))| there is a variable v ∈ vars(F )
with v /∈ vars(F1) ∪ vars(A). Variable v occurs in some clause Ck

ij ∈ F \ F1. Therefore,
{xi, xj , zij} ⊆ vars(F ). A has to satisfy all clauses of Cij that occur in F \ F1 because of
(E-3). Furthermore, A has to satisfy all clauses of Cij that do not occur in F as well due
to Lemma 25. Since, v /∈ vars(F1), there is no Cij ∈ F1. Therefore, A has to satisfy all four
clauses Cij . For this, xi, xj and zij have to be set in A. Since v occurs in Cij , we have
v ∈ vars(A) which contradicts the choice of v. ◀

Now we have all ingredients to finally prove that the XOR-PAIRS formulas require proofs
with an exponential number of MICE′ steps.

Proof of Theorem 23. Note that with Observation 24, Lemma 27 and Lemma 29 we can
infer immediately that any tree-like MICE′ proof of XOR-PAIRSn, i.e. any proof that uses
every claim except axiom at most one time, has at least size 2n + 2. However, dag-like MICE′

might be stronger than tree-like MICE′. Therefore, the lower bound is not shown yet.
To prove the lower bound in the general case, let π be an arbitrary MICE′ proof of

XOR-PAIRSn. Let π′ be a MICE′ proof of XOR-PAIRSn that does not use (Join’) with
c(π′) ≤ 2 · c(π) which has to exist because of Lemma 28.

We consider an arbitrary fixed path κ in π′ from the axiom to the final claim. Since π′

does not use (Join’), we can only enlarge the formula with (Ext’). Because of Lemma 29, we
have to assign all newly introduced variables when we use (Ext’), i.e. every variable is in at
least one assumption in κ. The only rule that can remove variables from the assumption is
(Comp’).
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Since the final claim has the empty assumption, we have to remove all variables from the
assumption in κ. Therefore, in κ there has to be at least one application of (Comp’) where
we remove a variable xi from the assumption for some i ∈ [n]. Let Iκ

1 = (F κ
1 , Aκ

1 ) be the
claim that was used for the first such (Comp’) in κ to derive Iκ

2 = (F κ
2 , Aκ

2 ).
Let X be the set of all x variables: X := {x1, . . . , xn}. We show

X ⊆ vars(F κ
1 ).

Let xi be a variable that is removed from the assumption by applying (Comp’) to Iκ
1 , i.e.

xi /∈ vars(Aκ
2 ). Suppose, there is a j ∈ [n] such that xj /∈ vars(F κ

1 ) and in particular Cs
ij /∈ F κ

1
for all s ∈ [4], implying zij /∈ vars(F κ

1 ). Let Iκ
r = (F κ

r , Aκ
r ) be the first claim in κ with

zij ∈ vars(F κ
r ) and therefore {xi, xj , zij} ⊆ vars(F κ

r ). Iκ
r has to be derived with (Ext’).

Because of condition (E-3), Aκ
r has to satisfy all clauses Cs

ij in F κ
r . Furthermore, Aκ

r has to
satisfy all clauses Cs

ij that are not in F κ
r because of Lemma 25. Hence, Aκ

r has to satisfy
Cs

ij for all s ∈ [4]. To do so, we have to assign all three variables xi, xj and zij in Aκ
r . In

particular, we have xi ∈ vars(Aκ
r ). Since xi /∈ vars(Aκ

2 ), Lemma 15 states xi /∈ vars(Aκ
r ).

With this contradiction we see that such an xj with xj /∈ vars(F κ
1 ) cannot exist.

Since X ⊆ vars(F κ
1 ), all variables in X were introduced and assigned in the assumption

with (Ext’) in Iκ
1 or previously in κ. Per construction there are no other (Comp’) applications

before Iκ
1 in κ that remove variables in X. Therefore, we have

X ⊆ vars(Aκ
1 ).

We show that for every α ∈ Mod(XOR-PAIRSn) there is a path κ in π′ with α|X = Aκ
1 |X .

Assume that for some fixed model α there is no such path. Since π′ does not use (Join’) and
α ∈ Mod∅(XOR-PAIRSn), Corollary 11 implies that there is a path κ from axiom to the final
claim, such that every claim (F, A) in κ fulfills α|vars(F ) ∈ ModA(F ). In particular,

α|vars(F κ
1 ) ∈ ModAκ

1
(F κ

1 ).

If we restrict both sides on the variables in X and use X ⊆ vars(F κ
1 ), we get

α|X ∈ {β|X | β ∈ ModAκ
1
(F κ

1 )}.

Since X ⊆ vars(Aκ
1 ), all models β ∈ ModAκ

1
(F κ

1 ) have β|X = (Aκ
1 )|X . Therefore, the right

set has only one element which is (Aκ
1 )|X , leading to α|X = (Aκ

1 )|X . Hence, κ is a path with
the claimed property for α.

Since XOR-PAIRSn has 2n models, there are (at least) 2n paths in π′ and in particular 2n

claims Iκ
1 . Because every model of XOR-PAIRSn assigns the x variables differently, all these

claims Iκ
1 are pairwise different. Therefore, π′ has at least 2n claims.

Finally, we see that the arbitrarily chosen MICE′ proof π has size c(π) ≥ 1
2 · c(π′) ≥ 2n−1

leading to the lower bound. ◀

6 Conclusion

We performed a proof-complexity study of the #SAT proof system MICE, exhibiting hard
formulas, both in terms of unsatisfiable CNFs, where their complexity in MICE matches their
resolution complexity, and for highly satisfiable CNFs with many models. As Fichte et al. [18]
show that MICE proofs can be extracted from solver runs for sharpSAT [29], DPDB [19] and
D4 [24], this implies a number of hard instances for these #SAT solvers.
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We believe that the ideas for the lower bound for our formula XOR-PAIRS can be extended
to show hardness of further CNFs with many models. A natural problem for future research
is to construct stronger #SAT proof systems (and #SAT solvers) where formulas such as
XOR-PAIRS become easy.

As pointed out by one reviewer and mentioned in Section 1.2, there appears to be a close
connection between MICE′ proofs and decision DNNFs. Therefore, it seems promising to
investigate if known results from decision DNNFs can be transferred to MICE′. This may
lead to more hard formulas and lower bounds for MICE′.

It would also be interesting to determine the exact relations between the systems MICE,
MICE′ and the kcps(#SAT) proof system from [11] based on certified decision DNNFs.
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Abstract
The backbone of a satisfiable formula is the set of literals that are true in all its satisfying assignments.
Backbone computation can improve a wide range of SAT-based applications, such as verification,
fault localization and product configuration. In this tool paper, we introduce a new backbone
extraction tool called CadiBack. It takes advantage of unique features available in our state-of-
the-art SAT solver CaDiCaL including transparent inprocessing and single clause assumptions,
which have not been evaluated in this context before. In addition, CaDiCaL is enhanced with
an improved algorithm to support model rotation by utilizing watched literal data structures. In
our comprehensive experiments with a large number of benchmarks, CadiBack solves 60% more
instances than the state-of-the-art backbone extraction tool MiniBones. Our tool is thoroughly
tested with fuzzing, internal correctness checking and cross-checking on a large benchmark set. It is
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1 Introduction

In 1997, Parkes first defined the backbone of a propositional formula as the set of literals
whose assignments are true in every satisfying assignment [24]. The size of the backbone is
associated with the hardness of the corresponding propositional problem [23, 27]. Usually,
the larger a backbone, the more tightly constrained the problem becomes, thus the harder
for the solver to find a satisfying assignment [11, 30]. It is proved by Janota that deciding if
a literal is in the backbone of a formula is co-NP complete [17]. Furthermore, Kilby et al.
show that even approximating the backbone is intractable in general [20].

Nevertheless, the identification of the backbone (either in a partial or a complete way)
has a number of practical applications, such as post-silicon fault localization in integrated
circuits [34, 36, 35], interactive product configuration [17], facilitating the solving efficiency
of MaxSAT [14, 28, 29, 31] and random 3-SAT problems [12], as well as improving the
performance of chip verification [26]. Motivated by the wide range of applications, developing
efficient algorithms for computing the backbone of a given propositional formula is important.

Indeed, numerous techniques to compute the backbone have been proposed during the
past few decades. These approaches make use of four main techniques: (i) model enumeration,
which enumerates all models of a satisfiable formula to identify the backbone; (ii) iterative
SAT testing, which repeatedly filters out a candidate or include it in the backbone; (iii) upper
bound checks, which try to identify multiple backbone literals at once; and (iv) the core-based
method, which is guided by unsatisfiable cores and tries to eliminate as many candidates at
once as possible. For example, Kaiser et al. [19] designed three model-enumeration algorithms.
Climer et al. [10] propose a graph-based iterative SAT testing approach.
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Later, Zhu et al. [34, 36] designed more efficient SAT testing approaches for post-silicon
fault localization. Note that, the backbone extractor MiniBones [18, 22] implements both
an iterative and a core-based approach. Despite recent attempts [25, 32, 33] to improve upon
MiniBones, the corresponding tools are not publicly available, and no significant advances
have been made so far which still leaves MiniBones as the state-of-the-art.

Our new backbone extractor CadiBack tries to improve the iterative algorithms of
MiniBones [18, 22] and uses the state-of-the-art SAT solver CaDiCaL [4], extended
with new flipping algorithms to support backbone extraction. Different configurations of
these algorithms are implemented inside CadiBack, empirically evaluated and compared
with MiniBones on a large set of satisfiable instances collected from the main track of the
SAT Competitions from 2004 - 2022, on which CadiBack solves 60% more instances.

The paper is structured as follows. After this introduction, we discuss basic concepts and
notations related to backbone extraction in Section 2. The relevant backbone extraction
algorithms of MiniBones are introduced in Section 3. We then present our improvements
over these algorithms and propose CadiBack in Section 4. The implementation details
of CadiBack are provided in Section 5. Finally, we empirically evaluate CadiBack in
Section 6 and draw conclusions in Section 7.

2 Basic Concepts and Notations

Consider a propositional formula φ in conjunctive normal form (CNF) over a fixed set of
variables V and literals L = V ∪ V, where V = {v̄ | v ∈ V} denotes the negated variables.
For a literal ℓ ∈ L, we define v = |ℓ| as the variable of ℓ, i.e., ℓ ∈ {v, v̄}. In this paper, we
mainly consider full assignments σ : V → {0, 1} assigning variables to Boolean constants “0”
(false) or “1” (true). For convenience, we use the set and logic notation interchangeably for
formulas φ, clauses C ∈ φ and literals ℓ ∈ C, as well as assignments {ℓ | σ(ℓ) = 1}. The
notion of assignments is lifted to literals, formulas and clauses in the natural way through
substitution followed by Boolean expression simplification. A model of φ is an assignment
σ with σ(φ) = 1 and also called satisfying assignment. A formula is satisfiable if it has a
model. Otherwise, it is unsatisfiable. In this paper, we focus on satisfiable formulas φ.

A literal ℓ is a backbone literal of a formula φ iff there exists a model σ of φ with σ(ℓ) = 1
and all other assignments σ′ with σ′(ℓ) = 0 do not satisfy φ, i.e., σ′(φ) = 0. The backbone B
of a formula φ is the set of its backbone literals. We introduce two conditions that determine
whether literals are included or not in the backbone B.

The first condition is based on identifying fixed literals. A clause C = ℓ (or C = {ℓ}
in set notation) having a single literal ℓ is called unit clause. If a unit clause C ∈ φ, the
corresponding literal ℓ is clearly a backbone literal. We call such literals fixed. This also
applies to unit clauses deduced by the SAT solver through for instance clause learning,
simplification and preprocessing [7]. All such fixed literals are included in the backbone B.

The second condition is called disagreement condition, stating that if there are two models
σ and σ′ disagreeing on ℓ, i.e., σ′(ℓ) = σ(ℓ), then neither ℓ nor its negation are backbone
literals (i.e., ℓ, ℓ̄ ̸∈ B). This can be realized by using each newly discovered model σ′ to filter
the list of remaining backbone candidates. For instance, the empty formula over n variables
has both constant assignments σ ≡ 0 and σ′ ≡ 1 as models, disagreeing on all literals, and
thus B = ∅. Note that, there is a special case of the disagreement condition called model
rotation, as described in [18]. Similar ideas have been used for MUS extraction [1]. The
literal ℓ is rotatable [18] in a model σ of φ iff σ(ℓ) = 1 and the assignment τ that differs from
σ only in |ℓ| is a model of φ (τ can be taken as the special case of σ′ in the disagreement
condition). We also call such literals flippable, which applies for the rest of the paper.
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Obviously, a literal which can be flipped is not a backbone literal, nor is its negation, and
both can be dropped from the backbone candidate list. Example 1 below shows how a literal
is determined to be flippable under the model rotation condition.

▶ Example 1. Consider φ = (c̄ ∨ t) ∧ (c ∨ e) ∧ φ′ which encodes “if-then-else(c, t, e)”, where
neither c nor c̄ occur in φ′ but e and t do (they are not “pure”). Assume that the constant
true assignment σ ≡ 1 is a model, i.e., σ(φ′) = 1. Both t and e are set to true, but only the
literal c can be flipped. In the resulting model τ , all variables are set to true except for c,
and c̄ can be flipped (back) in τ to obtain the original model σ. Thus, literal c is flippable.

3 Algorithms in MiniBones

The backbone extraction algorithms of MiniBones [18] take advantage of incremental SAT
solving (refer to [13, 15, 16] for details) to gradually augment the original formula with
implied clauses (particularly learned clauses). These clauses are added implicitly to the
single SAT solver instance during incremental queries, while assuming the negation of one
or more remaining backbone candidate literals. Specifically, these iterative MiniBones
algorithms (Algorithms 3, 4 and 5 in [18]) utilize discovered models and model rotation to
refine the set of candidate literals Λ ⊆ L which is initialized as Λ = {ℓ | σ(ℓ) = 1} by the
first discovered model σ. On termination (Λ = ∅), the backbone B matches the fixed literals
(of the augmented formula) and all other literals are dropped.

There are three iterative algorithms proposed for MiniBones in [18]. The basic algorithm
(Algorithm 3 in [18]) needs at least as many iterations as the number of backbone literals,
which is inefficient on formulas with exactly one solution but many variables. An improved
algorithm (Algorithm 4 in [18]) assumes that at least one of the remaining candidate literals
can be flipped (i.e., using activation literals a temporary clause is added that contains
the disjunction of the negated candidates). If the SAT query under such assumption is
unsatisfiable, all candidates are fixed and the backbone extraction is done. A more advanced
algorithm (Algorithm 5 in [18]) only adds a subset of the remaining candidates, called a
chunk, to the temporary clause. Chunks are limited in size to avoid thrashing the SAT solver
with too large temporary clauses and make it more likely for a call to be unsatisfiable.

Furthermore, MiniBones proposes a new model rotation algorithm (Section 5 in [18]) to
determine flippable (rotatable) literals based on the notion of forcing. A clause C forces a
literal ℓ ∈ C under assignment σ, if σ(C) = σ(ℓ) = 1 and τ(C) = 0 with τ obtained from σ

by flipping ℓ. A literal ℓ is forced in a formula φ under a model σ, if there is a clause C ∈ φ

which forces ℓ under σ. It is straightforward to see that literals which can be flipped in a
model σ of φ are exactly those that are not forced. Based on this observation, the model
rotation algorithm goes over all clauses whenever a new model is found and identifies literals
that are not forced by any of them. If any of the remaining backbone candidates are not
forced, they are dropped from the candidate list.

4 Improved Algorithms in CadiBack

CadiBack is built upon the state-of-the-art SAT solver CaDiCal [4] which has been
extended with additional algorithms to support backbone extraction. The general backbone
extraction algorithm of CadiBack is shown in Algorithm 1 of Figure 1. It follows the
iterative algorithms of MiniBones, which uses complements of backbone estimates (as
constraints) and chunking, but with three key improvements.

SAT 2023
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// Assume φ is satisfiable and use
// K = 1 for one-by-one,
// K = 10 for chunking and
// K =∞ as default (non-chunking).
backbone (CNF φ, chunk rate K =∞)

1 (res, σ)← SAT(φ)
2 assert σ(φ) = res = 1 // φ satisfiable!
3 Λ← {ℓ ∈ σ | ¬flippable(ℓ, σ)} // candidates
4 k ← 1, B ← ∅
5 while Λ ̸= ∅ do

// F ← ∅ for no-fixed, otherwise by default
6 F ← {ℓ ∈ Λ | ℓ is fixed by SAT in φ}
7 B ← B ∪ F , Λ← Λ \ F

8 Γ← pick k′ literals from Λ // chunk
with k′ = min(k, |Λ|)

9 ρ←
∨

ℓ∈Γ ℓ̄ // constraint: flip one in chunk
// Solve φ under ρ with “bool constrain”
// or use activation literal for no-constrain.

10 (res, σ)← SAT(φ | ρ)
11 if res then // SAT call satisfiable

// filter only a single literal for no-filter
12 Λ← {ℓ ∈ Λ | σ(ℓ)}
13 Λ← {ℓ ∈ Λ | ¬flippable(ℓ, σ)}
14 k ← 1 // reset chunk size to 1
15 else // SAT call unsatisfiable
16 B ← B ∪ Γ
17 Λ← Λ \ Γ
18 k ← K · k // increase size geometrically
19 return B // or print when literal is added

Algorithm 1 Extracting backbone of formula φ.

// Assume σ(φ) = σ(ℓ) = 1, unit clauses
// have exactly one watched literal
// and all other clauses are watched
// by two literals w1 ̸= w2 with
// σ(w1) = 1 if σ(w2) = 0 and vice versa.
flippable (CNF φ, literal ℓ, model σ)

1 // return 0 for no-flip
2 for all clauses C watched by ℓ in φ

3 if σ(C \ {ℓ}) = 0 then return 0
4 return 1

Algorithm 2 Checking if literal ℓ

can be flipped in model σ.

// Given a single clausal constraint
// ρ = ℓ1 ∨ · · · ∨ ℓk and assignment σ

// determine whether ρ is conflicting.
// Otherwise pick new decision.
decide (constraint ρ, partial model σ)

1 . . . // handle literal assumptions
2 if σ(ρ) = 1 then//constraint true
3 ℓ← “first” literal in ρ with σ(ℓ)

// speed-up future search for ℓ

4 move ℓ to the front of ρ

5 elif σ(ρ) = 0 then //constraint false
6 . . . // handle conflicting constraint
7 else // constraint undetermined
8 ℓ← highest scored literal in σ(ρ)
9 pick ℓ as new decision and return

10 . . . // fall back to default decisions
Algorithm 3 Picking the next decision

literal under clausal constraint ρ and
the partial model σ.

Figure 1 Our backbone algorithm combines all three iterative approaches from [18]. It simulates
the basic iterative Algorithm 3 in [18] for K = 1 and comes close to the improved Algorithm 4
in [18] for K > |Λ| and the most advanced Algorithm 5 in [18] for other values of K. The difference
between our algorithm and the latter two is that we use a dynamic chunk size that is reset to 1 after
a satisfiable call and grows geometrically as long SAT queries remain unsatisfiable. In any case, it
first identifies an initial model σ and initializes the set of candidates Λ after filtering out flippable
literals F . The remaining candidates are examined in chunks Γ. If all of the literals in the chunk are
backbones, the chunk size is increased. Otherwise, the solver returns a new model σ which is used
to filter the candidate list, as it is guaranteed to disagree with the previous model in at least one of
the literals in the current chunk by assuming the constraint ρ. After that, another model rotation
is performed and the chunk size is reset to 1. Note that, instead of including explicit insertions of
backbones, we can assume that the SAT solver does the insertion implicitly. Flippable literals are
identified by the new flippable algorithm which only traverses clauses watched by the remaining
backbone candidates. The decide algorithm is an optimized version of the decision procedure in our
SAT solver for more efficiently handling large constraints as they arise in this application, which
picks the literal with the highest variables scores (i.e., EVSIDS scores [2] or VMTF stamps [5]).
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First, CadiBack uses transparent incremental inprocessing [15], as CaDiCal is able
to effectively and efficiently simplify the formula (e.g., using variable elimination) during
incremental queries completely transparent to the user, while MiniBones does not support
inprocessing due to the limitation of its base solver MiniSat [13].

Second, to assume the disjunction of the complements, CadiBack utilizes single clause
assumptions through the “void constrain (int lit)” API call in CaDiCaL [16], instead of
adding a clause with the complement literals and an activation literal [13], as in MiniBones.
The reason is that these added clauses and variables by MiniBones may risk to clog the
SAT solver, and handling constraints explicitly can have the benefit to give the SAT solver
more control on selecting decisions. Since the assumed clausal constraint contains a high
number of literals in this application (|V| initially), we extended the existing implementation
of single clause assumptions in CaDiCaL slightly, as shown in Algorithm 3 in Figure 1.
After each restart the SAT solver is forced to decide on a literal to satisfy the constraint.
CadiBack chooses the one with the highest variable score (EVSIDS scores [2] or VMTF
stamps [5]) among all unassigned literals in the constraint.

Third, while in earlier work model rotation only had negative effects on MiniBones [18],
we show that CadiBack benefits from using model rotation to improve efficiency of backbone
computation. The key of this improvement is our fast flipping algorithm implemented in
CaDiCaL, accessible through the new API call “bool flippable (int lit)”. As described
in Algorithm 2 in Figure 1, it uses watch lists to find individual “flippable” literals in models
through propagation instead of going over the whole formula to find unit clauses. We also
consider a variant of Algorithm 2 which eagerly flips flippable literals as they are found, with
the goal to drop even more backbone candidates through flipping. The following example
shows the possibility that flipping a flippable literal can yield additional flippable literals.

▶ Example 2. Continuing Example 1, assume that no clause in φ′ forces literal t under
σ ≡ 1, which is not the case for the first clause (c̄ ∨ t) in φ, as it forces t under σ. Thus, t

cannot be flipped in σ. As c does not occur in φ′, there is no clause forcing c̄ under τ . In
addition, the only other clause (c̄ ∨ t) with t is not forcing as it is satisfied by two literals.
Thus, flipping c makes t flippable in τ (τ ′ obtained from τ by flipping t remains a model
of φ). Therefore, neither c nor t are backbone literals.

To implement this idea we provide a new “bool flip (int lit)” API call in CaDiCaL
which implements a variant of Algorithm 2 in Figure 1, inspired by propagation in SAT solvers.
While for “flippable” we only need to check that there is another satisfied literal in all
traversed clauses watched by the literal ℓ requested to be flipped, the “flip” implementation
needs to unwatch ℓ in these clauses and watch that other satisfied literal instead (unless the
second watched literal in the clause is also satisfied). If finding replacements is successful for
all clauses watched by ℓ (or the other watched literal is satisfied), the value of ℓ is flipped.
Otherwise, it remains unchanged and “flip” fails. Note that this variant of our flipping
algorithm was previously implemented inside the sub-solver Kitten of Kissat to diversify
models with the goal of speeding up the refinement process of SAT sweeping [3].

Algorithm 3 of [18] can be simulated precisely with our algorithm by setting K = 1.
However, Algorithm 5 of [18], which uses a fixed chunk size limit can only be approximated
by setting K = 100, as we change the chunk size k dynamically. Our adaptive scheme
increases k geometrically with rate K as long as SAT queries remain unsatisfiable (which
fixes all backbones in the chunk at once). If the SAT solver finds a model instead then the
chunk size k is reset to one, i.e., the next constraint will only contain the negation of a single
backbone candidate. With K = ∞ the SAT solver is either assuming the complement of a
single or the disjunction of the negation of all remaining backbone candidates which is the
setting of our algorithm closest to Algorithm 4 of [18] which does not limit chunk size at all.
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5 Implementation

Our tool CadiBack uses the extended CaDiCaL [4] and is implemented in roughly 1200
lines of C++ code (counted after formatting with ClangFormat). The source code available
at https://github.com/arminbiere/cadiback is concise and well-documented.

To check the correctness of algorithms and implementations, an internal backbone checker
is implemented inside CadiBack. The checker can be enabled through the command line
option “--check” and is simply a SAT solver instance of CaDiCaL, i.e., if checking is
enabled, CadiBack obtains the checker instance as a copy of the main internal CaDiCaL
solver through the “copy” API call provided by CaDiCaL.

First, it checks correctness of an identified backbone literal ℓ, by confirming that the
input formula φ under the assumption ¬ℓ (negation of the backbone) is unsatisfiable. Second,
it checks the correctness of dropping a literal ℓ from being a backbone candidate (removed
from set Λ in Algorithm 1), by confirming that the input formula φ remains satisfiable under
the assumption ¬ℓ. Third, it checks whether the number of backbone literals found and the
number of dropped literals sum up to the number of variables in the input formula.

Standard grammar-based black-box fuzz-testing was applied [9] with the backbone
checking enabled on all 42 compatible pairs of options used in our experiments in Section 6.
This pairwise combinatorial testing [21] through fuzzing was run for 50 hours in parallel using
as many processes as configurations on a dual processor AMD EPYC 7343 machine (providing
in total 64 virtual cores). In addition, sizes of the backbones of all our benchmarks (see
Section 6) were sanity checked with the ones computed by 12 configurations of CadiBack
and two configurations of MiniBones considered in our experiments.

In addition, for flipping information extraction, the library of CaDiCaL is extended
to provide “bool flippable (int)” and “bool flip (int)” as discussed in the last section.
The model based tester Mobical is also extended correspondingly for testing the new
functionality. This extended version of CaDiCaL with improved constrain handling and
flipping is also available at https://github.com/arminbiere/cadical.

6 Experiments

Benchmarks. To evaluate CadiBack empirically, we collected all benchmarks from the
main track of the SAT competition 2004 to 2022 as our initial benchmark set. We noticed that
benchmarks from one competition year often contain old benchmarks (sometimes arbitrarily
renamed or commented by the competition organizers) from previous competition years. This
caused our initial benchmark set to include several redundant benchmarks. To remove such
duplicates, in a second step, we cleaned up each individual benchmark by removing comments
using a simple DIMACS pretty printer, followed by identifying identical benchmarks through
computing an MD5 checksum and removing redundant ones. Then we ran the state-of-the-art
SAT solver Kissat 3.0.0 [3] with 5,000 second timeout on the no-duplicate benchmark set and
selected benchmarks solved to be satisfiable. In total this yields 1798 benchmarks available
at https://cca.informatik.uni-freiburg.de/sc04to22sat.zip (6 GB) and [6].

Baseline. We choose the state-of-the-art backbone solver MiniBones as our baseline
(ported to support newer C++ compilers available at https://github.com/arminbiere/
minibones). As suggested by [18], we use the configuration “-e -c 100 -i” (called minibones-
core-based), which adopts the core-based approach with a fixed chunk size of 100 and inserts
found backbone literals into the input formula explicitly. Additionally, to evaluate how
our algorithm improves upon the Algorithm 5 in [18], we choose “-u -c 100 -i” (called
minibones-iterative) which implements the algorithm and uses activation literals.

https://github.com/arminbiere/cadiback
https://github.com/arminbiere/cadical
https://cca.informatik.uni-freiburg.de/sc04to22sat.zip
https://github.com/arminbiere/minibones
https://github.com/arminbiere/minibones
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Platform. For benchmark collection we used a machine with an AMD Ryzen Threadripper
3970X 32-Core Processor at 4.5 GHz and 256 GB RAM. All other experiments were conducted
in parallel on a cluster consisting of 32 machines, each with two 8-core Intel Xeon E5-2620
v4 CPUs running at 2.10 GHz (turbo-mode disabled) and 128 GB RAM. Each instance is
allocated to one core with a timeout of 5,000 seconds and a memory limit of 7 GB.

Data Availability. Experimental data including source code and log files are available on
https://cca.informatik.uni-freiburg.de/cadiback.

Overall Results. We run both CadiBack and the baseline MiniBones on all benchmarks
in our benchmark set. We consider an instance solved if the tool completes backbone
computation, i.e., classifies all literals as either backbone or non-backbone. The number of
instances solved over time are presented in Figure 2. It turns out that the best performing
default configuration (default) of CadiBack can solve 732 instances in total, which is 274
more (59.82%) than the best performing configuration of MiniBones, i.e., the iterative
configuration minibones-iterative, which solves only 458 instances. Note that, 11 failing runs
of CadiBack and 61 failing runs of MiniBones hit the memory limit. It is also instructive
to observe that over all selected 1798 instances CadiBack was able to find the first model in
1573 cases, while MiniBones did so in only 1152 cases, which clearly shows the advantage
of using CaDiCaL [4] versus MiniSat [13] in this application. It might be interesting to
investigate whether this improvement transfers to other applications using MiniSat.

In addition, following the SAT manifesto v1.0 [8], we also compare the default configuration
of CadiBack with the best configuration of MiniBones on all satisfiable benchmarks in
the main track of SAT competitions from 2020 to 2022. As a result, CadiBack/MiniBones
solved 22/9 instances in 2020, 52/17 in 2021 and 41/10 in 2022.

Configurations. We study the impact of different design options in CadiBack by evaluating
12 configurations (see Figure 2) including an extension implementing the core-based approach
of MiniBones (Algorithm 7 in [18]). Firstly, we observe that the effects of using smaller
chunks were detrimental in our experiments. In fact, the infinite chunk size K = ∞ (default)
has been very beneficial which solves 732 instances, while chunk size K = 10 (chunking)
solves only 702 instances and chunk size K = 1 (one-by-one) even only 692.

Secondly, we study the impact of design options related to flipping. The experimental
results indicate that removing flippable literals from the candidate list (no-flip) does not
have a significant overall impact. This result differs from the one given by the authors of
MiniBones where the model rotation was detrimental. We attribute this to the efficiency of
using watch lists for the flippable check. The really-flip configuration uses “flip” and simply
tries to flip literals of the candidate chunk in an arbitrary order. It performs similar to the
default configuration which uses “flippable”, but is better in the aspect that the default only
found 30,780,841 flippable literals in total, while really-flip found 32,488,468. This directly
leads to a reduction of the total number of SAT solver calls, which goes down from 2,070,166
calls in no-flip to 1,478,160 calls in default and even down to 992,404 calls in really-flip.

Thirdly, to evaluate the impact of CaDiCal on CadiBack in detail, including its
more advanced inprocessing and its most recent “constrain” API to support single clause
assumptions [16]. We observe that disabling the inprocessing in CaDiCaL (no-inprocessing)
significantly degrades the performance from solving 732 instances to 690 instances. Disabling
the single clause assumption support from CaDiCal in configuration no-constrain and falling
back to activation literals (as MiniBones does) degrades the efficiency of CadiBack even
more significantly to solving only 672 instances.

SAT 2023
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Lastly, we evaluate the impact of our core-based algorithm. The core-based preprocessing
in CadiBack only solves 672 instances. However, since the core-based approach falls back
to default if the considered literal set becomes empty after removing failed assumptions (see
Algorithm 7 in [18] for details), our cores version is more sophisticated than MiniBones
(minibones-core-based), thanks to its advanced features in default. In contrast, the core-based
MiniBones configuration (minibones-core-based) is slightly better than its iterative version
(minibones-iterative) for shorter run times, which matches observations of [18] with the lower
time limit of 800 seconds. One can argue, that the reason probably is that the core-based
algorithm in MiniBones can rely on literal assumptions [13] avoiding the overhead inflicted
from adding temporary clauses and activation literals. However, this slight advantage
degrades for long running instances, as can be seen in Figure 2.
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732  cadiback−default
729  cadiback−no−flip
728  cadiback−no−fixed
726  cadiback−set−phase
725  cadiback−really−flip
702  cadiback−chunking
692  cadiback−one−by−one
690  cadiback−no−inprocessing
672  cadiback−cores
670  cadiback−no−constrain
612  cadiback−no−filter
553  cadiback−plain
458  minibones−iterative
450  minibones−core−based

Figure 2 Benchmarks solved (vertical) over time in seconds (horizontal) where backbone extraction
completed within 5,000 seconds by 12 CadiBack configurations: default denoting all optimizations
enabled except for chunking and cores; no-flip denoting no model rotation; no-fixed representing
no checking on candidates for being fixed explicitly; set-phase denoting picking decisions in SAT
solver to falsify backbone candidates; really-flip denoting flipping flippable literals eagerly; chunking
representing the fine-grained chunk size control (K = 10); one-by-one denoting single literal chunks
(K = 1); no-inprocessing representing no SAT solver internal inprocessing; cores denoting core-based
preprocessing; no-constrain meaning only using activation literals instead of using “constrain” API;
no-filter disables filtering backbone candidates by the disagreement condition; and plain setting K = 1
(as one-by-one) and disabling all other optimizations. We also considered 2 MiniBones configurations:
iterative implementing Algorithm 5 in [18]; and core-based implementing Algorithm 7 in [18].

7 Conclusion

We revisited backbone algorithms and implemented a new open-source backbone extraction
tool CadiBack based on an extended version of the state-of-the-art SAT solver CaDiCaL.
Our extensive evaluation on a large set of benchmarks shows a substantial performance
improvement by solving 60% more benchmarks than the state-of-the-art MiniBones.
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A Appendix

This appendix provides more experimental details. The left plot in Figure 3 emphasizes why
the most simplistic backbone algorithm, i.e., assuming the negation of exactly one remaining
backbone candidate literal, does not scale, as it just takes way too many SAT calls.

Furthermore, in a number of applications it can be beneficial to get the backbones as
soon as they are found, particularly if the backbone search does not terminate. To that end
we evaluate MiniBones and CadiBack as anytime algorithms and compare the number
of backbones they find over time. We modified the default configuration of MiniBones
(minibones-core-based, i.e., corresponding to options “-e -i -c 100”) to print a backbone as
soon as it is found and evaluated it against the default version of CadiBack on the 2022
SAT competition benchmark set. The results are presented on the right in Figure 3.

101 102 103 104 105

cadiback-default

101

102

103

104

105

ca
di

ba
ck

-o
ne

-b
y-

on
e

0 1000 2000 3000 4000 5000
time [s]

0

1

2

3

4

5

Ba
ck

bo
ne

s F
ou

nd

1e6
cadiback-default
minibones-eic100

Figure 3 The left plot compares the one-by-one and the default configuration. Timeouts for
one of the configurations are marked in the margin. Highlighted on the left are 133 (out of 1798)
benchmarks that have exactly one model (every variable is in the backbone). Using an infinite
chunk size (the default), such benchmarks are always solved in 3 SAT calls. The right plot compares
MiniBones and CadiBack in an anytime setting. Shown are the number of backbones found
combined across all instances in the SAT competition 2022 benchmark set.
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Figure 4 Benchmarks solved on satisfiable instances from the SAT Competition 2022.

Table 1 More detailed results for the runs plotted in Fig. 2 on the large SAT competition
2004–2022 benchmark set where: solved instances; failed to solved; to time out of 5,000 seconds hits;
mo memory limit of 7 GB hit; time accumulated process time of solved instances (in seconds); space
sum of the maximum memory usage over solved instances (in MB); max maximum memory usage on
solved instances (in MB); best number of instances with best shortest solving time; unique uniquely
solved number of instances. For the description of the configurations see caption of Fig. 2.

solved failed to mo time space max best unique
cadiback-default 732 842 831 11 694 027 110 614 2600 53 1
cadiback-no-flip 729 845 837 8 686 832 103 021 2600 58 0

cadiback-no-fixed 728 846 835 11 682 242 106 129 2600 70 2
cadiback-set-phase 726 848 838 10 657 492 108 737 2565 163 4
cadiback-really-flip 725 849 838 11 640 447 105 963 2600 46 1
cadiback-chunking 702 872 861 11 630 633 93 625 2600 108 0

cadiback-one-by-one 692 882 871 11 715 101 86 152 2600 30 0
cadiback-no-inprocessing 690 884 873 11 688 418 93 947 2628 116 7

cadiback-cores 672 902 891 11 570 724 100 362 2600 78 1
cadiback-no-constrain 670 904 890 14 693 284 93 836 2546 41 0

cadiback-no-filter 612 962 951 11 562 853 72 360 2600 9 0
cadiback-plain 553 1021 1010 11 544 688 58 500 2655 13 0

minibones-iterative 458 1340 1279 61 402 645 110 138 5281 54 17
minibones-core-based 450 1348 1283 65 348 856 72 793 3542 52 2

Finally we show in Figure 4 the performance of the default version of CadiBack versus
the iterative and core-based versions of MiniBones on the last SAT Competition 2022.
Table 1 gives more details about the runs plotted in Fig. 2.
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1 Introduction

SAT solving has revolutionised the way we practically handle computationally complex
problems [29] and emerged as a central tool for numerous applications [15]. Modern SAT
solving crucially relies on the paradigm of conflict-driven clause learning (CDCL) [24], on
which almost all current SAT solvers are based.

The main theoretical approach to understanding the success of SAT solving (and its limits)
comes through proof complexity [19]. From seminal results [1, 5, 26] we know that CDCL –
viewed as a non-deterministic procedure – is exactly as powerful as propositional resolution,
which is by far the best-understood propositional proof system [19,23]. However, we also know
that practical CDCL using e.g. VSIDS is exponentially weaker than resolution [30]. Moreover,
any deterministic CDCL algorithm will be strictly weaker than resolution unless P=NP [2].
In any case, the mentioned results of [1, 5, 26] imply that all formulas hard for resolution will
be intractable for modern CDCL solvers (at least when disabling preprocessing).

Solving of quantified Boolean formulas (QBF) extends the success of SAT solving to the
presumably computationally harder case of deciding QBFs, a PSPACE-complete problem.
While QBF solving utilises quite different algorithmic approaches [14], which build on
different proof systems, one of the central paradigms again rests on CDCL, lifted to QBFs
in form of QCDCL [31]. In comparison to the propositional case, the main changes are
(i) different decision strategies using information from the prefix, (ii) differently implemented
unit propagation incorporating universal reductions (i.e., dropping trailing universal variables
in clauses), and (iii) adapted methods for learning clauses using a QBF resolution system
called long-distance Q-Resolution [3].

The advances in QBF solving have also stimulated growing research in QBF proof
complexity [6, 9, 11]. As in the propositional case, QBF resolution systems have received
great attention. However, in QBF there are a number of conceptually different resolution
systems of varying strength [4,8, 12]. The core system is Q-Resolution, introduced in 1995
in [22]. This system generalises propositional resolution to QBF by using the resolution rule
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for existential pivots and handling universal variables by universal reduction. A stronger
calculus QU-Resolution [28] also allows universal pivots in resolution steps (and this is
perhaps the most natural QBF resolution system from a logical perspective [7, 9]). Yet
another generalisation is provided in the form of long-distance Q-Resolution [3] which allows
certain merging steps forbidden in Q-Resolution. As mentioned above, QCDCL traces can
be efficiently transformed into long-distance Q-Resolution proofs and this was in fact the
reason for creating that proof system.

A recent line of research has aimed at understanding the precise relationship between
QCDCL and QBF resolution [10,16–18,20]. The findings so far reveal both similarities to
the tight relation between CDCL and resolution in SAT as well as crucial differences. While
the first work [20] by Janota on this topic showed that practical (deterministic) QCDCL is
exponentially weaker than Q-Resolution, the paper [10] demonstrated that QCDCL – even
in its non-deterministic version – is incomparable to Q-resolution. This also implies that
(non-deterministic) QCDCL is exponentially weaker than long-distance Q-Resolution. This is
in sharp contrast to the equivalence of SAT and resolution in the propositional case [1, 5, 26],
as explained above.

These results were strengthened in [16] by developing a lower-bound technique for
QCDCL via a new notion of gauge, by which a number of lower bounds for QCDCL can be
demonstrated (which not necessarily hinge on any QBF resolution hardness). Further, [17,18]
showed that several QCDCL variants, utilising e.g. cube learning, pure-literal elimination,
and different decision strategies give rise to proof systems of different strength.

1.1 Our contributions
In this paper we continue this recent line of research to try to understand to precisely
determine the relationship of QCDCL variants and different QBF resolution systems. The
central quest of our research here is to find different QCDCL variants that are as strong
as QU-Resolution and long-distance Q-Resolution. While we do not claim that these new
algorithms are of immediate practical interest, we believe it is important to theoretically
gauge the full potential of QCDCL. Our results can be summarised as follows.

(a) New QCDCL versions. We realise that there are at least three crucial QCDCL compon-
ents that determine the strength of the algorithm. These are (i) whether decisions are made
according to the prefix or not (policies LEV-ORD or ANY-ORD), (ii) whether unit propagation
always or never includes universal reduction (policies ALL-RED, NO-RED) or whether this
can be freely chosen at each propagation (ANY-RED), and (iii) whether unit propagation can
propagate only existential variables (as in practical QCDCL, policy EXI-PROP) or whether
also universal variables can be propagated (ALL-PROP).

While some of these policies were already defined and investigated in earlier works
[10,17,18], the policies ANY-RED and ALL-PROP are considered here for the first time. We
note that a solver implementing the strategy ALL-PROP together with LEV-ORD and NO-RED
was recently presented by Slivovsky [27] (in fact this motivated our definition of the policies
EXI-PROP and ALL-PROP). We demonstrate that in principle, all the aforementioned policies
can be combined to yield sound and complete QCDCL algorithms (Proposition 8). We
denote these as e.g. QCDCLLEV-ORD

ALL-RED,EXI-PROP (this combination models standard QCDCL).

(b) Characterisation of QBF proof systems. In our main result we tightly characterise
the proof systems QU-Resolution by QCDCLANY-ORD

NO-RED,ALL-PROP as well as (a slight variant of)
long-distance Q-Resolution by QCDCLANY-ORD

ANY-RED,EXI-PROP (Proposition 18 and Theorem 25). These
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results are similar in spirit (and proof method) to the characterisation of propositional
resolution by CDCL [26] and Q-Resolution by QCDCLANY-ORD

NO-RED,EXI-PROP [10]. However, quite some
technical care is needed for the simulations to go through with the modified policies, for
which we use the new notion of a blockade (Definition 22).

The mentioned variant of long-distance Q-Resolution – called mLD-Q-Res (for modified
long-distance Q-Resolution, Definition 17) – is defined such as to contain exactly those
steps that are needed for clause learning in standard QCDCL. The original definition of
long-distance Q-resolution also allows some merging steps that do not occur in clause learning
(those that have merged literals left of the pivot in both clauses). We leave open whether
mLD-Q-Res is indeed weaker or equivalent to long-distance Q-Resolution (cf. Section 6).

(c) Separations between QCDCL variants. We clarify the joint simulation order of QBF
resolution and QCDCL systems (cf. Figure 1 for an overview depicting known and new
results). In general, the emerging picture shows that different choices of policies lead to
incomparable systems (and could thus in principle be exploited for gains in practical solving
over currently used QCDCL, cf. [18, 27]).

One set of results that we highlight here concerns the new system QCDCLLEV-ORD
ANY-RED,EXI-PROP,

which we show to be strictly stronger than standard QCDCL, yet still weaker than mLD-Q-
Res (and incomparable to Q-Resolution). To show that the system is strictly stronger than
standard QCDCL (“ QCDCLLEV-ORD

ALL-RED,EXI-PROP), we exhibit some new family of QBFs which we
show to be hard under the ALL-RED or NO-RED policies, yet tractable under ANY-RED.

1.2 Organisation
The remainder of this paper is organised as follows. We start by reviewing some notions
from QBFs and QBF resolution systems in Section 2. In Section 3 we review the existing
QCDCL models and define our variants. In Section 4 we investigate the simulation order of
the QCDCL proof systems and show various separations. In Section 5 we obtain our main
results, the characterisation of the proof systems QU-Res and mLD-Q-Res. We conclude in
Section 6 with some open questions.

2 Preliminaries

Propositional and quantified formulas. Variables x and negated variables x̄ are called
literals. We denote the corresponding variable as varpxq :“ varpx̄q :“ x.

A clause is a disjunction of literals, but we will sometimes interpret them as sets of literals
on which we can perform set-theoretic operations. A unit clause pℓq is a clause that consists
of only one literal. The empty clause consists of zero literals, denoted pKq. We sometimes
interpret pKq as a unit clause with the “empty literal” K. A clause C is called tautological
if tℓ, ℓ̄u Ď C for some literal ℓ. Alternatively, we will sometimes write ℓ˚ P C instead of
tℓ, ℓ̄u Ď C.

A cube is a conjunction of literals and can also be viewed as a set of literals. We define
a unit cube of a literal ℓ, denoted by rℓs, and the empty cube rJs with “empty literal” J.
A cube D is contradictory if tℓ, ℓ̄u Ď D for some literal ℓ. If C is a clause or a cube, we
define varpCq :“ tvarpℓq : ℓ P Cu. The negation of a clause C “ ℓ1 _ . . . _ ℓm is the cube
␣C :“ C :“ ℓ̄1 ^ . . .^ ℓ̄m.

A (total) assignment σ of a set of variables V is a non-tautological set of literals such
that for all x P V there is some ℓ P σ with varpℓq “ x. A partial assignment σ of V is an
assignment of a subset W Ď V . A clause C is satisfied by an assignment σ if C X σ ‰ H.
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Figure 1 Hasse diagrams of the simulation order of QCDCL with EXI-PROP (above) and
ALL-PROP (below) plus corresponding proof systems. Blue names represent new systems introduced
here. Numbers in brackets are external references, while numbers without brackets are lemmas,
propositions or theorems of this paper.

A cube D is falsified by σ if ␣D X σ ‰ H. A clause C that is not satisfied by σ can be
restricted by σ, defined as C|σ :“

Ž

ℓPC,ℓ̄Rσ ℓ. Similarly we can restrict a non-falsified cube
D as D|σ :“

Ź

ℓPDzσ ℓ. Intuitively, an assignment sets all its literals to true.
A CNF (conjunctive normal form) is a conjunction of clauses and a DNF (disjunctive

normal form) is a disjunction of cubes. We restrict a CNF (resp. DNF) ϕ by an assignment
σ as ϕ|σ :“

Ź

CPϕ non-satisfied C|σ (resp. ϕ|σ :“
Ž

DPϕ non-falsified D|σ). For a CNF (DNF) ϕ
and an assignment σ, if ϕ|σ “ H, then ϕ is satisfied (falsified) by σ.

A QBF (quantified Boolean formula) Φ “ Q ¨ ϕ consists of a propositional formula
ϕ, called the matrix, and a prefix Q. A prefix Q “ Q1

1V1 . . .Q1
sVs consists of non-empty

and pairwise disjoint sets of variables V1, . . . , Vs and quantifiers Q1
1, . . . ,Q1

s P tD,@u with
Q1

i ‰ Q1
i`1 for i P rs´ 1s. For a variable x in Q, the quantifier level is lvpxq :“ lvΦpxq :“ i, if

x P Vi. For lvΦpℓ1q ă lvΦpℓ2q we write ℓ1 ăΦ ℓ2, while ℓ1 ďΦ ℓ2 means ℓ1 ăΦ ℓ2 or ℓ1 “ ℓ2.



B. Böhm and O. Beyersdorff 4:5

For a QBF Φ “ Q ¨ ϕ with ϕ a CNF, we call Φ a QCNF. We define CpΦq :“ ϕ. The QBF
Φ is an AQBF (augmented QBF), if ϕ “ ψ _ χ with CNF ψ and DNF χ. Again we write
CpΦq :“ ψ and DpΦq :“ χ. We will sometimes interpret QCNFs as sets of clauses and cubes.
If Φ is a QCNF or AQBF, we define varpΦq :“

Ť

CPΦ varpCq.
We restrict a QCNF Φ “ Q ¨ ϕ by an assignment σ as Φ|σ :“ Q|σ ¨ ϕ|σ, where Q|σ is

obtained by deleting all variables from Q that appear in σ. Analogously, we restrict an
AQBF Φ “ Q ¨ pψ _ χq as Φ|σ :“ Q|σ ¨ pψ|σ _ χ|σq.

If L is a set of literals (e.g., an assignment), we can get the negation of L, which we define
as ␣L :“ L :“ tℓ̄| ℓ P Lu.

(Long-distance) Q-resolution. Let C1 and C2 be two clauses from a QCNF or AQBF Φ.
Let ℓ be an existential literal with varpℓq R varpC1q Y varpC2q. The resolvent of C1 _ ℓ and
C2 _ ℓ̄ over ℓ is defined as

pC1 _ ℓq
ℓ
’Φ pC2 _ ℓ̄q :“ C1 _ C2

Let C :“ ℓ1 _ . . ._ ℓm be a clause from a QCNF or AQBF Φ such that ℓi ďΦ ℓj for all
i ă j, while i, j P rms. Let k be minimal such that ℓk, . . . , ℓm are universal. Then we can
perform a universal reduction step and obtain

red@
ΦpCq :“ ℓ1 _ . . ._ ℓk´1.

If it is clear that C is a clause, we can just write redΦpCq or even redpCq, if the QBF Φ
is also obvious. We will write redpΦq “ redΦpΦq, if we reduce all clauses of Φ according to
its prefix.

We can also perform partial universal reduction. Let K is a non-tautological set of literals
and let C :“ ℓ1 _ . . ._ ℓm be a clause from a QCNF Φ such that

tℓk, . . . , ℓmu “ tℓ P C| ℓ P K, ℓ is universal and x ăΦ ℓ for all existential x P Cu.

Then we can partially reduce C by K and obtain

red@
Φ,KpCq :“ ℓ1 _ . . ._ ℓk´1.

Intuitively, we will reduce all reducible literals that are also contained in K.
As before, we simply write redK instead of red@

Φ,K if the context is clear.
As defined by Kleine Büning et al. [22], a Q-resolution proof π from a QCNF or AQBF Φ

of a clause C is a sequence of clauses π “ pCiq
m
i“1, such that Cm “ C and for each Ci one of

the following holds:
Axiom: Ci P CpΦq;
Resolution: Ci “ Cj

x
’Φ Ck with x existential, j, k ă i, and Ci non-tautological;

Reduction: Ci “ red@
ΦpCjq for some j ă i.

[3] introduced an extension of Q-resolution proofs to long-distance Q-resolution proofs by
replacing the resolution rule by

Resolution (long-distance): Ci “ Cj

x
’ Ck with x existential and j, k ă i. The resolvent

Ci is allowed to contain tautologies such as u _ ū, if u is universal. If there is such a
universal u P varpCjq X varpCkq, then we require x ăΦ u.

The work [28] presented a further extension for Q-resolution, called QU-resolution, where
we can also resolve over universal literals. Formally, it replaces the resolution rule by

Resolution (QU-Res): Ci “ Cj

x
’Φ Ck with x existential or universal, j, k ă i, and Ci

non-tautological.
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In [4], long-distance Q-resolution and QU-resolution were combined into a new proof system:
long-distance QU`-resolution. The resolution rule is as follows:

Resolution (long-distance QU`-Res): Ci “ Cj

x
’ Ck with x existential or universal and

j, k ă i. The resolvent Ci is allowed to contain tautologies such as u_ ū, if u is universal.
If there is a such a universal u P varpCjq X varpCkq, then we require indexpxq ă indexpuq,
where indexp q is a fixed total order on the variables of Φ such that indexpa1q ă indexpa2q

whenever a1 ăΦ a2 for variables a1, a2 of Φ.

A Q-resolution (resp. long-distance Q-resolution, QU-resolution or long-distance QU`-
resolution) proof from Φ of the empty clause pKq is called a refutation of Φ. In that case, Φ
is called false. We will sometimes interpret π as a set of clauses.

For the sake of completeness, we note that the above described proof systems are
refutational proof systems that cannot be used to prove the truth of a QBF. For that, we
would need analogously defined proof systems that work on cubes instead of clauses. For
these proof systems, it is common to use the notion consensus instead of resolution, as well
as verification instead of refutation. However, as we will purely concentrate on false formulas
in this paper, we omit defining these aspects in more detail.

A proof system P p-simulates a system Q, if every Q proof can be transformed in
polynomial time into a P proof of the same formula. P and Q are p-equivalent (denoted
P ”p Q) if they p-simulate each other.

3 Our QCDCL models

First, we need to formalise QCDCL procedures as proof systems in order to analyse their
complexity. We follow the approach initiated in [10,16–18].

We store all relevant information of a QCDCL run in trails. Since QCDCL uses several
runs and potentially also restarts, a QCDCL proof will typically consist of many trails.

▶ Definition 1 (trails). A trail T for a QCNF or AQBF Φ is a (finite) sequence of pairwise
distinct literals from Φ, including the empty literals K and J. Each two literals in T have to
correspond to pairwise distinct variables from Φ. In general, a trail has the form

T “ ppp0,1q, . . . , pp0,g0q; d1, pp1,1q, . . . , pp1,g1q; . . . ; dr, ppr,1q, . . . , ppr,grqq, (1)

where the di are decision literals and ppi,jq are propagated literals. Decision literals are
written in boldface. We use a semicolon before each decision to mark the end of a decision
level. If one of the empty literals K or J is contained in T , then it has to be the last literal
ppr,grq. In this case, we say that T has run into a conflict.

Trails can be interpreted as non-tautological sets of literals, and therefore as (partial)
assignments. We write x ăT y if x, y P T and x is left of y in T . Furthermore, we write
x ďT y if x ăT y or x “ y.

As trails are produced gradually from left to right in an algorithm, we define T ri, js for
i P t0, . . . , ru and j P t0, . . . , giu as the subtrail that contains all literals from T up to (and
excluding) ppi,jq (resp. di, if j “ 0) in the same order. Intuitively, T ri, js is the state of the
trail before we assigned the literal at the point ri, js (which is ppi,jq or di).

For each point ri, js in the trail there must exist a set of literals Kpi,jq which we call the
reductive set at point ri, js. Intuitively, Kpi,jq contains all literals that are reduced directly
before the point ri, js. The sets Kpi,jq depend on the QCDCL variant (i.e., the reduction
policy). Note that these sets are non-empty only if reduction is enabled.
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For each propagated literal ppi,jq P T there has to be be a clause (or cube) anteT pppi,jqq

such that redKpi,jq
panteT pppi,jqq|T ri,jsq “ pppi,jqq (or rppi,jqs). We call such a clause (cube)

the antecedent clause (cube) of ppi,jq.

▶ Remark 2. In classic QCDCL, all Kpi,jq are set to varpΦq Y varpΦq.

We state some general facts about trails and antecedent clauses/cubes.

▶ Remark 3. Let T be a trail, ℓ P T a propagated literal and A :“ anteT pℓq.
If ℓ is existential, then ℓ P A and for each existential literal x P A with x ‰ ℓ we need
x̄ ăT ℓ.
If ℓ is universal, then ℓ̄ P A and for each universal literal u P A with u ‰ ℓ̄ we need
u ăT ℓ.

▶ Definition 4 (natural trails). We call a trail T natural for formula Φ, if for each i P

t0, . . . , ru the formula redKpi,0q
pΦ|T ri,0sq, contains unit or empty constraints. Furthermore,

the formula redKpi,jq
Φ|T ri,js must not contain empty constraints for each i P rrs, j P rgis,

except ri, js “ rr, grs. Intuitively, this means that decisions are only made if there are no
more propagations on the same decision level possible. Also, conflicts must be immediately
taken care of.

▶ Remark 5. Although it is allowed to define all sets Kpi,jq differently, it might make sense
from a practical perspective to weaken these possibilities. We point out three nuances of
partial reduction in QCDCL that are interesting to consider:

(i) We change the reductive set after each propagation or decision step. That means
that all sets Kpi,jq might be different. This is the strongest possible version of partial
reduction.

(ii) We only update the reductive set after backtracking. That means the sets Kpi,jq are
constant for each trail. It will turn out that this version is enough for our characterisation
of mLD-Q-Res (cf. Theorem 25). Consequently, this version is as strong as version (i).

(iii) We never change the reductive set. That means that the sets Kpi,jq remain constant
throughout the whole QCDCL proof. This version is enough for the separation between
systems with and systems without partial reduction (cf. Theorem 16).

▶ Definition 6 (learnable constraints). Let T be a trail for Φ of the form (1) with ppr,grq P

tK,Ju. Starting with anteT pKq (resp. anteT pJq) we reversely resolve with the antecedent
clauses (cubes) that were used to propagate the existential (universal) variables, until we
stop at some point. Literals that were propagated via cubes (clauses) will be interpreted as
decisions. If a resolution step cannot be performed at some point due to a missing pivot, we
simply skip that antecedent. The clause (cube) we so derive is a learnable constraint. We
denote the sequence of learnable constraints by LpT q.

We can also learn cubes from trails that did not run into conflict. If T is a total assignment
of the variables from Φ, then we define the set of learnable constraints as the set of cubes
LpT q :“ tredD

ΦpDq|D Ď T and D satisfies CpΦqu.

Generally, we allow to learn an arbitrary constraint. However, for the characterisations,
it suffices to concentrate on clause learning. Additionally, most of the time we will simply
learn the clause which we obtain after propagation over every available literal in the trail.
This clause can only consist of negated decision literals, and literals that were reduced during
unit propagation. Since this is the last clause we can derive during clause learning in a trail
T , we will refer to that clause as the rightmost clause in LpT q.
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▶ Definition 7 (QCDCL proof systems). Let D P tLEV-ORD,ANY-ORDu a decision policy,
R P tALL-RED,NO-RED,ANY-REDu a reduction policy and P P tEXI-PROP,ALL-PROPu a
propagation policy (all defined below). A QCDCLD

R,P proof ι from a QCNF Φ “ Q ¨ ϕ of a
clause or cube C is a (finite) sequence of triples

ι :“ rpTi, Ci, πiqs
m
i“1,

where Cm “ C, each Ti is a trail for Φi that follows the policies D, R and P, each Ci P LpTiq

is one of the constraints we can learn from each trail and πi is the proof from Φi of Ci we
obtain by performing the steps described in Definition 6, where Φi are AQBFs that are defined
recursively by setting Φ1 :“ Q ¨ pCpΦq _Hq and

Φj`1 :“
"

Q ¨ ppCpΦjq ^ Cjq _DpΦjqq if Cj is a clause,
Q ¨ pCpΦjq _ pDpΦjq _ Cjqq if Cj is a cube,

for j “ 1, . . . ,m´ 1. If necessary, we set πi :“ H.
We now explain the three types of policies:

Decision policies:
LEV-ORD: For each decision di we have that lvΨ|T ri,0s

pdiq “ 1. I.e., decisions are
level-ordered.
ANY-ORD: Decisions can be made arbitrarily in any order.

Reduction policies:
ALL-RED: All Kpi,jq are set to varpΦq Y varpΦq. This is the classic setting – we have
to reduce all reducible literals during unit propagation.
NO-RED: All Kpi,jq are set to H. We are not allowed to reduce during unit propagation
at all. There is one exception: Combined with ALL-PROP, we are allowed (but not
forced) to reduce universal unit clauses (existential unit cubes) and immediately obtain
a conflict. This is due to reasons of completeness which will be explained later.
ANY-RED: The sets Kpi,jq can be set arbitrarily. Hence, we can choose after each
propagation or decisions step which literals are to be reduced next.

Propagation policies:
EXI-PROP: Unit clauses (cubes) can only propagate existential (universal) literals.
Universal (existential) unit clauses (cubes) will be reduced to the empty clause (cube)
if allowed by the reduction policy.
ALL-PROP: Universal (existential) unit clauses (cubes) will lead to the propagation of
the universal (existential) unit literal. This policy is nullified if combined with ALL-RED.
If combined with NO-RED, we are allowed to reduce universal (existential) unit clauses
(cubes) instead of doing a unit propagation. This is due to reasons of completeness.

Having defined all policies, we can now denote trails that follow the policies D, R and P
as QCDCLD

R,P trails.
We require that T1 is a natural QCDCLD

R,P trail and for each 2 ď i ď m there is a point
rai, bis such that Tirai, bis “ Ti´1rai, bis and TizTirai, bis has to be a natural QCDCLD

R,P trail
for Φi|Tirai,bis. This process is called backtracking. If Ti´1rai, bis “ H, then this is also
called a restart.

If C “ Cm “ pKq, then ι is called a QCDCLD
R,P refutation of Φ. If C “ Cm “ rJs, then ι

is called a QCDCLD
R,P verification of Φ. The proof ends once we have learned pKq or rJs.

If C is a clause, we can stick together the long-distance Q-resolution derivations from
tπ1, . . . , πmu and obtain a long-distance Q-resolution proof from Φ of C, which we call Rpιq.

The size of ι is defined as |ι| :“
řm

i“1 |Ti|. Obviously, we have |Rpιq| P Op|ι|q.
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We can show that all combinations of the above policies lead to sound and complete
proof systems (and algorithms).

▶ Proposition 8. All defined QCDCL variants are sound and complete.

Proof. It suffices to show completeness for the weakest combinations. Hence, we can use
LEV-ORD and choose between ALL-RED and NO-RED, as both are subsumed by ANY-RED. For
EXI-PROP, completeness was already shown in [10]. For ALL-PROP, we distinguish two cases:

(i) ALL-RED: Then we will never propagate universal (existential) literals via clauses
(cubes), as they will always be directly reduced to the empty clause (cube). Hence, this
system is the same as if we would have chosen EXI-PROP.

(ii) NO-RED: We are not forced to do universal (existential) propagations via clauses (cubes).
Therefore, the version with EXI-PROP is already simulated by this combination system.

The soundness follows from the soundness of long-distance QU`-resolution (long-distance
QU`-consensus) proofs, which can be extracted from all QCDCL variants defined here. ◀

4 The simulation order of QCDCL proof systems

While the policies ALL-RED and NO-RED were already introduced in work (cf. [10]), in which
an incomparability between these two models was shown, it is natural to analyse their relation
to our new policy ANY-RED. Obviously, ANY-RED covers (hence: simulates) both ALL-RED
an NO-RED, as we can simply choose to reduce everything or nothing. We want to prove
now that both ALL-RED and NO-RED are exponentially worse than ANY-RED on some family
of QBFs. I.e., we want to show that there exist formulas where we need to reduce some but
not all literals during unit propagation.

These formulas will be hand-crafted, consisting of two already well-known QCNFs, named
MirrorCRn, which is a modified version of the Completion Principle [21], and QParityn [12].

▶ Definition 9 ([17]). The QCNF MirrorCRn consists of the prefix DT@uDT , where X :“
txp1,1q, . . . , xpn,nqu and T :“ ta1, . . . , an, b1, . . . , bnu, and the matrix

xpi,jq _ u _ ai ā1 _ . . . _ ān xpi,jq _ ū _ āi a1 _ . . . _ an

x̄pi,jq _ ū _ bj b̄1 _ . . . _ b̄n x̄pi,jq _ u _ b̄j b1 _ . . . _ bn for i, j P rns.

The reason why we use MirrorCRn instead of CRn is because its matrix is unsatisfiable.
That means that cube learning, which might have a positive effect on CRn (note that there
are false QCNFs that become easy with cube learning [17]) is now completely unavailable.
Additionally, we can now guarantee to always get a conflict once all variables from MirrorCRn

got assigned.

▶ Lemma 10 ([17]). The matrix CpMirrorCRnq of MirrorCRn is unsatisfiable as a proposi-
tional formula.

As MirrorCRn is simply an extension of the Completion Principle (CRn), which is known
to be easy for Q-resolution [21], we can simply reuse the exact same refutation from [21].
Note that we do not need all axiom clauses to refute the formula.

▶ Proposition 11 ([17]). The QBFs MirrorCRn have polynomial-size Q-resolution refutations.

▶ Definition 12 ([12]). The QCNF QParitynpY,w, Sq consists of the prefix DY @wDS, where
Y :“ ty1, . . . , ynu and S :“ ts2, . . . , snu, and the matrix

y1 _ y2 _ s̄2 y1 _ ȳ2 _ s2 ȳ1 _ y2 _ s2 ȳ1 _ ȳ2 _ s̄2

yi _ si´1 _ s̄i yi _ s̄i´1 _ si ȳi _ si´1 _ si ȳi _ s̄i´1 _ s̄i

sn _ w s̄n _ w̄.
for i P t2, . . . , nu,
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When introduced in [17], it was shown that MirrorCRn is hard for all QCDCL models
with level-ordered decisions considered in [17]. We generalize this result and show that the
lower bound for MirrorCRn indeed only depends on the decision policy used and also holds
for our new models introduced here.

▶ Proposition 13. The QBFs MirrorCRnpX,u, T q need exponential-sized refutations in all
our QCDCL variants with the LEV-ORD policy.

Proof. (Sketch) We recall the hardness results of MirrorCRn for classical QCDCL in [17],
which were independent of the reduction policy. One can also show that it is impossible to
propagate universal literals, therefore the propagation policies do not matter, either. ◀

With the QBFs QParityn one obtains one direction of the incomparability between
classical QCDCL (here called QCDCLLEV-ORD

ALL-RED,EXI-PROP) and Q-resolution, being easy for the
former and hard for the latter system.

▶ Theorem 14 ([10, 13]). The QBFs QParityn need exponential-sized Q-resolution and
QU-resolution refutations, but admit polynomial-sized QCDCLLEV-ORD

ALL-RED,EXI-PROP refutations.

We combine the MirrorCR and QParity formulas into a new one, using auxiliary variables.

▶ Definition 15. The QBF MiPan consists of the prefix @zDX@uDT@pDY @wDS@vDr such
that X, u, T are the variables for MirrorCRnpX,u, T q, and Y , w, S are the variables for
QParitynpY,w, Sq. The matrix of MiPan contains the clauses

z _ r̄, z̄ _ r̄

C _ p_ v _ r

C _ p_ v̄ _ r

C _ p̄_ v _ r

C _ p̄_ v̄ _ r

,

/

/

.

/

/

-

for C P CpMirrorCRnpX,U, T qq,

p_D

p̄_D

*

for D P CpQParitynpY,w, Sqq.

We show next that MiPan needs indeed ANY-RED in order to admit polynomial-size
refutations in QCDCL. The idea is that ALL-RED will always lead to refutations of MirrorCRn,
and NO-RED will alternatively lead to Q-resolution refutations of QParityn, which are both
of exponential size.

▶ Theorem 16. The QBFs MiPan

(i) need exponential-size QCDCLLEV-ORD
ALL-RED,EXI-PROP refutations,

(ii) need exponential-size QCDCLLEV-ORD
NO-RED,EXI-PROP refutations,

(iii) but have polynomial-size QCDCLLEV-ORD
ANY-RED,EXI-PROP refutations.

Proof. For (i), since the formula has no unit clauses, we have to start by deciding the
variable z. Because z occurs symmetrically in MiPan, we can assume that we set z to true.
This always triggers the unit propagation of r̄ via the clause z̄ _ r̄. After that, we are forced
to assign the variables from X, U :“ tuu and T along the quantification order. Since the
matrix of MirrorCRn is unsatisfiable, and we need to reduce all literals if possible, we will
detect a conflict at the same time as we would get the conflict in MirrorCRn itself. The proof
we can extract from the trails is essentially a QCDCLLEV-ORD

ALL-RED,EXI-PROP refutation of MirrorCRn,
except that it additionally contains the variables z, p, v and r in some polarities. However,
this does not change the fact that we can still not resolve two clauses that contain X-, U -,
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and T -variables over any X-variable. Therefore, if we shorten the proof by assigning r to
false and z to true, we get a refutation of MirrorCRn, in which we never resolve two clauses
that contain X-, U -, and T -variables over an X-variable. This property is called primitive
(cf. [16]). Also in [16], it was shown that primitive Q-resolution refutations of MirrorCRn

need exponential size.
For (ii), we start in the same way as in (i), but we do not get a conflict once we assigned all

variables of MirrorCRn. Next, we need to decide p in some polarity, but nothing will happen
for the moment. We then start assigning the variables of QParityn along the quantification
order. Now we have to distinguish two cases:

Case 1: We get a conflict in QParityn. But then, because of NO-RED, we can only extract
Q-resolution derivations of learned clauses. And if we get enough conflicts in QParityn, we
can essentially extract a Q-resolution refutation of QParityn, which has exponential size.

Case 2: We do not get a conflict in QPartityn. This might happen when the universal
player assigns the variable w the “wrong” way. Then the only unassigned variable is v. After
deciding it in any polarity, we will always get a conflict in MirrorCRn. If we find enough
conflicts in MirrorCRn, we can essentially extract an exponential-size fully reduced primitive
Q-resolution refutation of MirrorCRn as in (i).

Note that it is possible to get both kind of conflicts. However, it is only important with
what kind of conflicts we were able to derive the empty clause.

Finally, for (iii), we can construct a polynomial-size QCDCLLEV-ORD
ANY-RED,EXI-PROP proof by only re-

ducing the literals w and w̄. After deciding z, propagating r̄, assigning all variables from X, u
and T and deciding p arbitrarily, we can simply copy the polynomial-size QCDCLLEV-ORD

ALL-RED,EXI-PROP

proof of QParityn (note that ALL-RED only applies to w and w̄). At some point, we will
derive the clause ppq or pp̄q, which can be reduced to the empty clause. ◀

One of the initial motivations of this paper was to find a way to p-simulate long-distance
Q-resolution refutations of QCNFs by certain variants of QCDCL. However, it appears that
not all resolution steps that are allowed in long-distance Q-resolution can be recreated with
QCDCL proofs. In long-distance Q-resolution proofs that are extracted from QCDCL, one
can easily observe that for each resolution step C1

ℓ
’ C2, at least one parent clause Ci has

to be an antecedent clause for ℓ or ℓ̄ in the corresponding trail. In particular, there must
be a partial assignment τ and a set of literals K such that redKpCi|τ q becomes unit, i.e.
redKpCi|τ q “ pℓq (resp. pℓ̄q). This is not possible if there are tautologies left of ℓ in Ci that
cannot be reduced.

Motivated by this observation, we introduce a new proof system similar to long-distance
Q-resolution, but with the restriction that such a situation as described above is not allowed.

▶ Definition 17. A long-distance Q-resolution proof is called a mLD-Q-Res proof, if it does
not contain a resolution step between two clauses D and E, such that C “ D

x
’ E for an

existential variable x and there are universal variables u,w such that u˚ P D, w˚ P E and
lvΦpuq, lvΦpwq ă lvΦpxq.

With this definition in place, we can show that mLD-Q-Res proofs can be extracted from
runs of most variants of QCDCL that we defined. Further, for some QCDCL paradigms,
stricter simulations hold.

▶ Proposition 18. The following holds on false QCNFs:
(i) Q-resolution p-simulates QCDCLANY-ORD

NO-RED,EXI-PROP.
(ii) QU-resolution p-simulates QCDCLANY-ORD

NO-RED,ALL-PROP.
(iii) mLD-Q-Res p-simulates QCDCLANY-ORD

ANY-RED,EXI-PROP.
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Proof. Item (i) was already shown in [10].
For (ii), because of ALL-PROP, we might propagate (and resolve) over universal literals,

which can be handled by QU-resolution. It remains to show that NO-RED prevents the
derivation of tautological clauses. This holds because we only use antecedent clauses for
clause learning. Let us assume we learn a tautological clause C from a QCDCLANY-ORD

NO-RED,ALL-PROP

trail T . Then there would be two antecedent clauses D :“ anteT pℓ1q and E :“ anteT pℓ2q

such that there exists a universal literal u with u ‰ ℓ1, ū ‰ ℓ2, u P D and ū P E. We need
ū P T for D to become unit and at the same time we need u P T for E to become unit, which
is not possible. Therefore, we will never derive tautological clauses.

Let us now prove (iii). By definition, we can extract long-distance Q-resolution proof
from QCDCLANY-ORD

ANY-RED,EXI-PROP trails (note that we only propagate existential literals, hence we
also only resolve over existential variables during clause learning). It remains to show that
the kind of resolution step that is forbidden in mLD-Q-Res (but allowed in long-distance
Q-resolution) will never occur during clause learning.

Assume it does. Then we have derived a clause C by resolving two clauses D and E over
some literal x (hence C “ D

x
’ E), such that there exists universal tautologies u˚ P D and

w˚ P E with u˚ ‰ w˚ and lvpu˚q, lvpw˚q ă lvpxq. Then at least one of these parent clauses
needs to be an antecedent clause for a trail T , say D “ anteT pxq. But then D can never
become the unit clause pxq, because we cannot reduce u˚ since it is blocked by x, and we
cannot falsify it by the previous trail assignment since it is a tautology. This is a contradiction
that shows that all resolution and reduction steps are allowed in mLD-Q-Res. ◀

We could formulate analogous results on true QCNFs using the notation of consensus
proofs. However, we will omit this as all separations and characterisations will be performed
on false QCNFs and resolution proofs.

One can easily show that the separation between Q-resolution and long-distance Q-resolution
transfers to a separation between Q-resolution and mLD-Q-Res.

▶ Corollary 19. mLD-Q-Res p-simulates and is exponentially stronger than Q-resolution.

Proof. The simulation follows by definition. The separation follows by Theorem 14 and
Proposition 18 (iii). ◀

In fact, all currently known upper bounds for long-distance Q-resolution can be easily
transformed into mLD-Q-Res upper bounds. However, we leave open the question whether
long-distance Q-resolution is stronger than or equivalent to mLD-Q-Res.

5 Characterisations of QU-resolution and mLD-Q-Res

In this section, show that all the simulations in Proposition 18 can be tightened to equivalences.
For this we will characterise both mLD-Q-Res and QU-resolution by the specific variants of
QCDCL mentioned in Proposition 18. Characterising Q-resolution by QCDCLANY-ORD

NO-RED,EXI-PROP

was already undertaken in [10]. However, we leave open, whether we can extend these
characterisations to long-distance Q-resolution. This will depend on whether it is possible
to polynomially transform the “forbidden” resolution steps that can occur in long-distance
Q-resolution, but cannot be created by QCDCL, into mLD-Q-Res steps.

The characterisations follow the same idea as in [10], in which Q-resolution was character-
ised. One crucial difference is that we now want to use the ANY-RED policy, i.e., in each step
we have to decide what literals to reduce.
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As already mentioned in Remark 5, it suffices to update the reductive sets only after
a conflict. That means that for characterising mLD-Q-Res, it is enough to fix the literals
that are going to be reduced throughout the whole trail. Thus, we introduce the notion of
L-reductive trails.

▶ Definition 20 (L-reductive trails). Let L be a set of literals. A trail T is called L-reductive,
if for each propagation step in T the literals that were selected to be reduced are exactly the
literals in L. Formally, this means that for each ppi,jq there is an antecedent clause (resp.
cube) anteT pppi,jqq such that redLpanteT pppi,jqq|T ri,jsq “ pppi,jqq (resp. rp̄pi,jqs).

Before starting with a new L-reductive trail, we always need to consider the choice of
the reductive set L. As we know from [10] and Proposition 18, tautologies can only be
created when the corresponding literal got reduced somewhere in the trail. In fact, since
QCDCLANY-ORD

NO-RED,EXI-PROP already characterises Q-resolution [10], we can conclude that in some
sense the only purpose of reductions during unit propagation is to create tautological clauses.
Therefore we will distinguish between the tautological and the non-tautological part of a
clause.

▶ Definition 21. Let C be a clause. Let GpCq :“ tu P C : u is universal and ū P Cu.
This set is the tautological part of C. The non-tautological part HpCq of C is defined as
HpCq :“ CzGpCq.

For each QU-resolution proof π and C P π we have GpCq “ H.
Our next notion is similar to the concepts of unreliable [10] and 1-empowering [26].

▶ Definition 22 (Blockades). Let S P tQCDCLANY-ORD
ANY-RED,EXI-PROP,QCDCLANY-ORD

NO-RED,ALL-PROPu and C be
a clause. A tuple pU , α, ℓ,Kq, where U is a trail, ℓ is a literal, α is a non-tautological set of
literals and K is a set of universal literals, is called a blockade of C with respect to S for a
QCNF Φ “ Q ¨ ϕ, if U is a K-reductive S trail with decisions α, such that ℓ P C, α Ď Cztℓ̄u,
K Ď GpCq and αXK “ H.

For S “ QCDCLANY-ORD
ANY-RED,EXI-PROP, we additionally require that ℓ is an existential literal and

α consists of only existential literals.

▶ Example 23. Blockades occur when we are not able to choose all decisions from a
pre-defined non-tautological set α. For example, consider the QCNF

Dx, y@u, vDz pȳ _ z̄q ^ px̄_ ū_ zq ^ px_ y _ v _ zq ^ py _ v̄ _ zq.

Assume that we use QCDCLANY-ORD
ANY-RED,ALL-PROP. Then the clause C :“ x̄ _ ȳ _ u _ ū _ z has a

blockade pU , α, ℓ,Kq with U :“ py, z̄, x̄q, where anteU pz̄q “ ȳ_ z̄, anteU px̄q “ x̄_ ū_ z, as
well as ℓ :“ x̄ P C, α :“ tyu Ď Cztℓ̄u and K :“ tūu.

Intuitively, this means that although the clause C is not directly contained in the formula,
we are still able to detect the implication pα^K Ñ ℓq “ py ^ uq Ñ x̄ (which is equivalent
to ȳ _ ū_ x̄ Ď C) as a composition of decisions and unit propagations. It turns out that,
instead of learning C directly, it is enough to detect a blockade in order to make use of C for
unit propagations in later trails.

The next lemma shows, that we can recall trails (and blockades in particular), that were
detected and stored at an earlier point, and restore all propagations they contained. This will
be important for the characterisations, as we will go through the given proof, find blockades
or conflicts for all clauses in that proof, and recall the corresponding trails (by using this
Lemma) an all their containing propagations whenever the clauses are needed for another
resolution step. In that way, we can virtually store previous trails and recall them later again
as natural trails.
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▶ Lemma 24. Let Φ “ Q ¨ ϕ and Ψ “ Q ¨ ψ be QCNFs such that ψ Ď ϕ.
Let U be a K-reductive trail (for NO-RED we set K “ H) for the QCNF Ψ with decisions

β. Let T be a natural L-reductive trail (L “ H for NO-RED) with decisions α for the QCNF
Φ such that K Ď L, β Ď T and αX L “ H. If T does not run into a clause conflict, then
all propagated literals from U are also contained in T .

Proof. Assume that T does not run into a clause conflict, but there are some propagated
literals from U that are not contained in T . Let ppa,bq be the literal that is leftmost in U with
this property and define A :“ anteU pppa,bqq. Since there are no cubes present, we conclude
that A must be a clause, regardless of whether ppa,bq is existential or universal.

Because ppa,bq is leftmost, all other propagated literals before ppa,bq in U are already
contained in T . Since U was K-reductive, we know that redKpA|Ura,bsq “ pppa,bqq. Because
of K Ď L and Ura, bs Ď T we have either redLpA|T q P tpppa,bqq, pKqu, or A|T becomes true.
Note that we can set K :“ L :“ H for the rest of our argumentation in the case where ppa,bq

is universal.
The first case would contradict our assumption (since T is natural), therefore we have to

assume that A|T becomes true. This means that we can find a literal ppa,bq ‰ u P AX T . If
u was existential, then we would need ū P Ura, bs. But this would also imply ū P T which
contradicts the fact that u P T . Hence u must be universal.

If u was a decision in T , then we would have u P α. Because of αX L “ H we conclude
u R L and also u R K. In order to make u vanish in redKpA|Ura,bsq, we need ū P Ura, bs,
hence also ū P T . However, this is a contradiction because we already assumed u P T .

Therefore, u must have been propagated by an antecedent clause anteT puq. But then we
have K “ H, hence u R K and ū P Ura, bs Ď T , which is a contradiction again because of
u P T . ◀

▶ Theorem 25. The following holds:
QCDCLANY-ORD

ANY-RED,EXI-PROP p-simulates mLD-Q-Res.
QCDCLANY-ORD

NO-RED,ALL-PROP p-simulates QU-resolution.

In detail: Let Φ “ Q ¨ ϕ be a QCNF in n variables and π “ D1, . . . , Dm be a mLD-
Q-Res (QU-resolution) refutation of Φ. Then we can construct a QCDCLANY-ORD

ANY-RED,EXI-PROP

(QCDCLANY-ORD
NO-RED,ALL-PROP) refutation ι of Φ with |ι| P Opn ¨ |π|q.

Proof. We only sketch the proof here.
Going through a given mLD-Q-Res (QU-resolution) refutation π, starting at the axioms,

for each C P π we create specific natural trails (where some of them will later be part of
the QCDCLANY-ORD

ANY-RED,EXI-PROP or QCDCLANY-ORD
NO-RED,ALL-PROP proof) in which all decisions are negated

literals from C, until one of the following events occur:
We get a conflict and learn a subclause of C.
We obtain a blockade of C.

When this happens, we either assign the label “subclause” or the label “blockade” to C.
When a clause was derived via a resolution or reduction step in π, we simply recall the
blockades of its parent clauses by applying Lemma 24 to create a blockade for the resolvent
or a conflict. If a parent clause does not have a blockade, the clause itself (or a subclause)
must have been learned directly and can therefore be used as an antecedent clause for the
trail that either becomes a blockade for the resolvent, or that runs into a conflict from which
we can learn a subclause of the resolvent.

Since a clause C P π can be derived via resolution (say C “ D ’ E) or reduction (say
C “ redpDq), we have to consider all possible cases:
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resolution, both D and E are labelled “blockade”
resolution, D is labelled “blockade”, E is labelled “subclause”, or vice versa
resolution, both D and E are labelled “subclause”
reduction, D is labelled “blockade”
reduction, D is labelled “subclause”

At the end, each clause in π is either labelled “subclause” or “blockade”. In particular,
this holds for the empty clause. Because, by definition, there cannot be a blockade of the
empty clause (we need at least one literal), the empty clause must be labelled “subclause”,
which means we have learned the empty clause. ◀

Proposition 18 and Theorem 25 yield the following characterisations:

▶ Corollary 26. QCDCLANY-ORD
ANY-RED,EXI-PROP ”p mLD-Q-Res and QCDCLANY-ORD

NO-RED,ALL-PROP ”p QU-Res.

▶ Remark 27. Note that our simulations require a particular learning scheme, in which we
almost always restart after each conflict. This is also the reason why we get an improved
simulation complexity of Opn ¨ |π|q compared to Opn3 ¨ |π|q from [10], in which arbitrary
(asserting) learning schemes were allowed (where we do not necessarily restart every time).

Performing our simulation under arbitrary asserting learning schemes might require some
additional analysis on asserting clauses under the ANY-ORD and ANY-RED rules, as a clause
learned from a K1-reductive trail might not be asserting in K2-reductive trails anymore.
However, if it was clear how to guarantee asserting clauses in our systems, we would be able
to obtain similar results as in [10], that is:

For each clause C in the given mLD-Q-Res (QU-resolution) refutation and an arbitrary
asserting learning scheme, we need Opn2q trails and backtracking steps until we either
learn a subclause of C, or we receive a blockade for C.
Under any arbitrary asserting learning scheme, we can perform the simulation in time
Opn3 ¨ |π|q. In particular, we do not need to restart after each conflict.

6 Conclusion

Proving theoretical characterisations of QCDCL variants successfully used in practice is an
important and compelling endeavour. While we contributed to this line research, a number of
open questions remain, both theoretically and practically. In particular, in light of Figure 1,
it seems worthwhile to explore whether some of the QCDCL models shown to be theoretically
better than standard QCDCL can be used for practical solving.

In our quest to modify QCDCL to match the strength of its underlying system long-distance
Q-resolution, we introduced the new proof system mLD-Q-Res, which not only characterises
a strong version of QCDCL, but also simulates all related variants. This allows to use
proof-theoretic results for mLD-Q-Res whenever considering the strength of QCDCL solvers.
Yet, we leave open whether mLD-Q-Res is strictly weaker than or equivalent to long-distance
Q-resolution. Both possible outcomes would be interesting, as either long-distance Q-resolution
does not characterise QCDCL, or there are modifications of QCDCL that unleash the full
strength of long-distance Q-resolution.

Additionally, we exhibited a QCDCL version characterising QU-resolution. One could
try to combine these two characterisations to obtain an even stronger family of QCDCL
variants in the spirit of LDQU`-resolution. Further, cube learning, which can hugely impact
the running time even on false formulas [17], was not considered here. Hence, verifying true
formulas as well as the proof-theoretic characterisation of modifications to QCDCL such as
dependency learning [25] are further topics for future research.
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Abstract
MaxSAT is the problem of finding an assignment satisfying the maximum number of clauses in a
CNF formula. We consider a natural generalization of this problem to generic sets of polynomials
and propose a weighted version of Polynomial Calculus to address this problem.
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Resolution that manipulates polynomials with coefficients in a finite field and either weights in N
or Z. We show the soundness and completeness of these systems via an algorithmic procedure.

Weighted Polynomial Calculus, with weights in N and coefficients in F2, is able to prove efficiently
that Tseitin formulas on a connected graph are minimally unsatisfiable. Using weights in Z, it also
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1 Introduction

The question of whether a set of polynomials F = {f1, . . . , fm} is satisfiable – i.e. to know
if there exists an assignment of the variables α s.t. fi(α) = 0 for every i – is at the root
of algebraic geometry, and it is a natural generalization of SAT, since we can encode CNF
formulas as sets of polynomials (over {0, 1}-valued variables).

The state-of-the-art of practical SAT solving is dominated by CDCL SAT solvers, all
of them based on the Resolution proof system [28, 3]. In the last two decades, these
solvers have reached remarkable efficiency in industrial SAT instances, but to get further
substantial improvements we think it will be necessary to broaden the current paradigm
beyond Resolution. Therefore it makes sense to look at the problem from a different point of
view using algebraic language and methods to have an impact on solving instances.

Another line of investigation is focusing on encodings to overcome the limitations of CDCL
solving. For instance, [21, 5] has shown that the dual-rail encoding allows translating SAT
instances into MaxSAT problems. This results in translations of the Pigeonhole Principle
with polynomial size proofs using MaxSAT resolution. The same applies to the translation of
SAT to Max2SAT using the gadget described in [2]. Moreover, in both cases, general-purpose
MaxSAT solvers are able to solve these instances in practice, even though these MaxSAT
solvers are not based on MaxSAT resolution.

© Ilario Bonacina, Maria Luisa Bonet, and Jordi Levy;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Theory and Applications of Satisfiability Testing (SAT 2023).
Editors: Meena Mahajan and Friedrich Slivovsky; Article No. 5; pp. 5:1–5:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bonacina@cs.upc.edu
https://orcid.org/0000-0002-5697-8070
mailto:bonet@cs.upc.edu
https://orcid.org/0000-0003-1646-7177
mailto:levy@iiia.csic.es
https://orcid.org/0000-0001-5883-5746
https://doi.org/10.4230/LIPIcs.SAT.2023.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


5:2 Polynomial Calculus for MaxSAT

We have algebraic systems that are stronger than Resolution, and therefore it makes sense
to extend those systems to solve MaxSAT problems to see if we can improve on the dual-rail
and Max2SAT translations. Moreover, algebraic systems inherently allow more alternative
encodings of the problems. For instance, we can use a direct encoding into polynomials, or
encode first via a CNF and then translate them into polynomials. These encodings allow us
to use algorithms to compute Groebner bases [10, 9, 18], and efficiency maybe gained by these
changes. For instance, a direct algebraic encoding, and Groebner-based techniques are useful
in practice for coloring [14, 15, 16] and the verification of multiplier circuits [25, 23, 24, 22].
The proof system capturing Groebner-based algorithms is Polynomial Calculus (PC) [12],
which is a proof system strictly stronger than Resolution. Polynomial Calculus is degree-
automatable, in the sense that bounded degree proofs can be found efficiently (in time nO(d),
where d is the degree). This is one more reason to extend PC techniques to MaxSAT.

In this paper, we consider the generalization of MaxSAT to the context of polynomials,
that is the question of what is the maximum number of polynomials of a given set we are
able to simultaneously satisfy. Equivalently, the minimum number of polynomials that we
cannot satisfy. In this algebraic context, there are also MaxSAT problems that have natural
direct encodings as sets of polynomials, for instance, max-cut or max-coloring.

We define an extension of PC suitable for MaxSAT, i.e. a system that not only is able to
prove that a set of polynomials is unsatisfiable but to prove what is the maximum number of
polynomials that can be satisfied simultaneously.

Our generalization of PC to a system suitable for MaxSAT is done in a similar way as the
adaptation of Resolution to systems suitable for MaxSAT, for instance, MaxSAT-Resolution
[7, 8], and weighted Resolution [6]. As weighted Resolution is a system for MaxSAT handling
weighted clauses, we consider weighted PC, a system handling weighted polynomials. We
consider polynomials over finite fields. The intuitive reason for this is that, over a finite field
Fq with q elements, we can express f ̸= 0 as the polynomial equality fq−1 = 1. We define
weighted Polynomial Calculus for polynomials with coefficients in F2 in Section 3 and in
Section 6 we give the definition in the general case.

We call wPCF2,N the weighted version of Polynomial Calculus handling weighted poly-
nomials with coefficients in F2 and weights in N. Intuitively the positive weight of a
clause/polynomial is the “penalty” we pay to falsify it. Weighted Resolution has been
generalized to Z-weighted Resolution, i.e. weighted resolution but with negative weights
[27, 6, 26, 30]. In a similar way, we also define wPCF2,Z as wPCF2,N but where we allow
negative weights in the proofs. Intuitively the meaning of a weighted clause/polynomial with
a negative weight is that it is introduced in the proof as an “assumption” to be justified later,
and the negative weight is to keep track of such assumptions yet to be justified.

Connections of weighted Polynomial Calculus with other MaxSAT systems

It is well known that PC (with an appropriate encoding of CNF formulas, the twin variable
encoding, see Section 2.2) simulates Resolution. This immediately gives that wPCF2,N with
twin variables is as strong as N-weighted Resolution and wPCF2,Z is as strong as Z-weighted
Resolution (aka Sherali-Adams and Circular Resolution [4, 6]). Pictorially the relations
between wPCF2,N/wPCF2,Z and the aforementioned systems can be summarized as in Fig. 1.

None of the systems above are equivalent since wPCF2,N and Z-weighted Resolution are
incomparable. In one direction Tseitin(G) is easy in wPCF2,N while it is hard for Z-weighted
Resolution. This follows from the lower bound in [20]. (Tseitin formulas are treated in more
detail in Section 5.) In the other direction, the Pigeonhole Principle is easy for Z-weighted
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MaxSAT-Resolution

weighted Resolution

Z-weighted ResolutionwPCF2,N
(twin variables)

wPCF2,Z
(twin variables)

=
?

̸= ̸=

̸= ̸=

(PHP)

(Tseitin)

Figure 1 P → Q means that P is at least as strong as Q. A dashed line means the two systems
are incomparable.

Resolution (see for instance [4]) and hence for wPCF2,Z, while it is hard for wPCF2,N. This
follows from the lower bound on the Pigeonhole principle in Polynomial Calculus [29]. Both
the Pigeonhole principle and Tseitin have short proofs in wPCF2,Z.

We recall that Figure 1 can also be read in the context of propositional proof systems.
Indeed, all the MaxSAT systems in Figure 1 can be seen as propositional proof systems, if
the weights of the initial clauses/polynomials are not part of the input but part of the proof
and to refute we just want to derive one instance of the empty clause or the polynomial 1.
In this setting weighted Resolution is the same as Resolution and wPCF2,N is the same as PC
over F2.

Analogous simulations as the ones in Fig. 1 hold also for wPCFq,N/wPCFq,Z.
The main technical contribution of this work is the proof of the completeness of wPCFq,N.

This is proved in detail for F2 in Section 4 and we show how to adapt it to the general
case in Section 6. The completeness is proved via a saturation process which is a natural
generalization of an analogous process used in [7, 8, 1] to prove the completeness of MaxSAT-
Resolution. Unlike for MaxSAT-Resolution, we take a more semantic view of the process
which makes easier to adapt it to the context of polynomials.

Structure of the paper

Section 2 contains all the necessary preliminaries, in particular, the definition of PC and the
extension of MaxSAT to polynomials. In Section 3, we give the formal definition of wPCF2,N
and wPCF2,Z. Section 4 contains the completeness of wPCF2,N. In Section 5, we give an
application of the saturation process to Tseitin formulas. Section 6 shows how to generalize
the definition of wPCF2,N and wPCF2,Z from F2 to a generic finite field. Finally, in Section 7,
we give some concluding remarks.

2 Preliminaries

For n ∈ N, let [n] = {1, . . . , n}. In general, we use capital letters to denote (multi-)sets.

2.1 Polynomial Calculus
Let Fq be a finite field with q elements (it exists whenever q = pk for some prime p and
integer k). For most of this paper, we focus on q = 2, i.e. on the field with two elements 0, 1.
Given a set of variables X, with Fq[X] we denote the ring of multivariate polynomials with
coefficients in Fq and variables in X.

SAT 2023



5:4 Polynomial Calculus for MaxSAT

We denote polynomials using the letters f, g, while we use Greek letters to denote
assignments. An assignment is a function α : X → Fq and for a polynomial f ∈ Fq[X], f(α)
is the evaluation of f in α: the element of Fq resulting from substituting each variable x in
f with α(x) and simplifying the resulting expression. If f(α) = 0 we say that α satisfies f .
The polynomial 1 represents the unsatisfiable polynomial (the equivalent to the empty clause
in SAT).

Next, we define the algebraic proof system Polynomial Calculus, originally introduced by
Clegg et al. [12]. Even though the system can be defined for any field (or even rings, see for
instance [11]), in this paper we only consider finite fields.

Polynomial Calculus over Fq (PCFq
) is a proof system that handles polynomials in

Fq[X]. A derivation in PCFq of a polynomial f from a set of polynomials F is a sequence of
polynomials f1, . . . , fm, where fm = f , and for each i either fi ∈ F , or fi = gfj for some
g ∈ Fq[X] and j < i, or fi = fj + fk for some j, k < i. A refutation is a derivation of the
polynomial 1, and the size of a derivation is the total number of bits needed to express it.

Sometimes, the inference rules of PCFq are given as

f g

f + g
,

f

αf
and f

xf

for all f, g ∈ Fq[X], α ∈ Fq, and x ∈ X. This will just give a polynomial increase in the size
of the derivations (hence it is p-equivalent to our presentation of PCFq

). PCFq
– together

with an encoding of formulas into polynomials – is a Cook-Reckhow propositional proof
system [13].

2.2 From formulas in CNF to polynomials
A clause C is a set of literals, i.e. Boolean variables xi or negated Boolean variables ¬xi

from a given set of variables {x1, . . . , xn}. A CNF formula is a set of clauses, and a k-CNF
is a CNF where each clause has at most k literals. An assignment α : {x1, . . . , xn} → {0, 1}
satisfies a clause if it maps at least a literal to 1, where α(¬xi) := 1 − α(xi). An assignment
satisfies a CNF formula if it satisfies all the clauses in it.

To encode CNF formulas into sets of polynomials that could be refuted in PCFq
, we

use the following encoding with twin variables. We call twin variables the set of variables
X = {x1, . . . , xn, x̄1, . . . , x̄n}. The intended meaning of x̄i is 1 − xi.

For every clause C = {xi : i ∈ I} ∪ {¬xj : j ∈ J}, we associate the monomial M(C) =∏
i∈I x̄i

∏
j∈J xj in the twin variables X. Then a set of clauses {C1, . . . , Cm} is encoded as

{M(C1), . . . , M(Cm)} ∪ {x2
i − xi, xi + x̄i − 1 : i ∈ [n]} .

Any assignment α : {x1, . . . , xn} → {0, 1} can be extended to an assignment α′ : X → {0, 1},
where for each i ∈ [n], α′(xi) = α(xi) and α′(x̄i) = 1−α(xi). Then α satisfies a CNF formula
(i.e. α maps all the clauses to 1) if and only if α′ satisfies the polynomial encoding of F (i.e.
α′ is a common solution of the polynomials).

With this encoding of CNF formulas into polynomials, it is well-known that for every q,
PCFq p-simulates Resolution and indeed the p-simulation is strict [11]. For example, Tseitin
formulas (see Section 5) have polynomial size PCF2 refutations while they require exponential
size in Resolution [32]. Notice that the variables x̄is are not strictly needed for the encoding
(they could be eliminated just by substituting 1−xi for each occurrence of x̄i), but PCFq

with
this alternative encoding does not p-simulate Resolution, not even on k-CNFs [17]. With
different encodings of CNF formulas, for instance, using {±1}-valued variables, it is open
whether PCFq

simulates Resolution (see [31] for lower bounds on PCQ with the ±1-variables).
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2.3 MaxSAT on sets of polynomials
Let X be a generic set of variables. To define partial weighted MaxSAT, we distinguish
between hard and soft clauses. The hard clauses need to be satisfied, while the soft ones
consist of a clause and a weight (a number in N). The weight of a soft clause is the cost
of falsifying it. Given a set of soft clauses F and a set of hard ones H, Weighted Partial
MaxSAT is the problem of finding an assignment to the variables X that satisfies the hard
clauses H, and that minimizes the cost of the falsified soft clauses F .

In this paper, we generalize partial weighted MaxSAT to arbitrary polynomials in Fq[X].
The generalization of the hard constraints of MaxSAT is some set of polynomials H ⊂ Fq[X],
while the generalization of the soft constraints is a multi-set of the form

F = {[ f1 , w1 ], . . . , [ fm , wm ]} ,

where fi ∈ Fq[X] and wi ∈ N. A pair [ f , w ] where f ∈ Fq[X] and w ∈ Z is a weighted
polynomial. The weight w informally measures the “importance” we give to satisfying the
polynomial f . In this context, we are interested in assignments α that minimize the weight
of the falsified soft polynomials in F , and satisfy all the polynomials in H.

▶ Definition 2.1 (H-compatible assignment). Let H ⊆ Fq[X]. An assignment α : X → Fq is
H-compatible if for every h ∈ H, h(α) = 0.

Now, for each assignment α : X → Fq, we measure how close it is to satisfying all the
polynomials in F , and we do this by defining its cost as the sum of the weights of the
polynomials in F not satisfied by α. Therefore, the cost of the assignment α on F is

cost(α, F ) =
∑

i∈[m]

wiχi(α) , (1)

where χi(α) is 1 if fi(α) ̸= 0, and 0 otherwise. Finally, to solve a partial weighted MaxSAT
problem, we want the minimum value of cost(α, F ) for any H-compatible assignment α, i.e.

costH(F ) = min
α H-compatible

cost(α, F ) . (2)

If H = ∅, we denote costH(F ) simply as cost(F ). Of course, if F is satisfiable using a
H-compatible assignment, then costH(F ) = 0.

Notice that, the polynomials in H and the weighted polynomials in F could come from
the translation of a partial weighted MaxSAT instance. However, we cannot assume this is
always the case. Moreover, the polynomials in H could be used to enforce specific types of
assignments.

▶ Example 2.2 (Boolean axioms). If H = {x2 − x : x ∈ X}, the H-compatible assignments
are all the functions α : X → {0, 1}. We refer to this H as Boolean axioms. If we are over F2
then, equivalently, H could be taken as ∅.

In the case of twin variables X = {x1, . . . , xn, x̄1, . . . , x̄n} and the Boolean axioms
H = {x2

i − xi, xi + x̄i − 1 : i ∈ [n]}, the H-compatible assignments are all the functions
α : X → {0, 1} satisfying the additional property that for each i ∈ [n], α(xi) + α(x̄i) = 1. We
refer to this case as Boolean axioms with twin variables. Similarly as before, if we are over
F2, then, equivalently, H could be taken as {xi + x̄i − 1 : i ∈ [n]}.

Sometimes a direct encoding with polynomials not coming from CNF formulas is more
natural. For instance, this is the case of max-cut.

▶ Example 2.3 (max-cut). Given a graph G = (V, E) consider X = {xv : v ∈ V } and let
F = {[ xv1 + xv2 + 1 , 1 ] : (v1, v2) ∈ E} ⊆ F2[X]. Finding cost(F ) is equivalent to finding a
max-cut in G. This codification could be easily generalized to weighted max-cut.

SAT 2023



5:6 Polynomial Calculus for MaxSAT

3 Polynomial Calculus for MaxSAT

We first define Polynomial Calculus for MaxSAT in the special case of polynomials with
coefficients in F2 (the general case is in Section 6). Recall that F2 is the finite field with 2
elements 0 and 1 (this field is unique up to isomorphism), in particular for each element of
a ∈ F2, a2 = a and 2 · a = a + a = 0.

The initial instance consists of a multi-sets of weighted polynomials, i.e. pairs [ f , w ] with
f ∈ F2[X] and w ∈ N, and a set of hard polynomials H. We define Z-weighted Polynomial
Calculus (wPCF2,Z), an inference system that handles weighted polynomials with weights in Z,
and N-weighted Polynomial Calculus (wPCF2,N), an inference system that handles weighted
polynomials with weights in N. Both systems use the same set of inference rules. The formal
definition of wPCF2,Z/wPCF2,N is Definition 3.3, but we discuss first the inference rules of the
system. They are two types: structural rules (the fold, unfold and the H-simplification),
and proper inference rules (sum and split).

To have a sound proof system in the context of partial weighted MaxSAT, we use the
inference rules as substitution rules, that is, when applied, these rules replace the premises
with the conclusions. In this context, a substitution rule is sound if, for every assignment α,
the cost of the set of premises on α equals the cost of the conclusions on α.

Fold-unfold. Let F, G be two multi-sets of weighted polynomials, we say that F and G are
fold-unfold equivalent (F ≈ G) if there is a sequence of multi-sets of weighted polynomials
starting with F and ending with G where from one multi-set to the next, one of the following
substitution rules is applied

[ f , u ] [ f , w ]
[ f , u + w ] (fold) [ f , u + w ]

[ f , u ] [ f , w ] (unfold)

[ f , 0 ] (0-fold) [ f , 0 ] (0-unfold)

where f ∈ F2[X], and w, u ∈ Z.

▶ Example 3.1. For instance, {[ f , 0 ]} ≈ ∅ and {[ f , 2 ]} ≈ {[ f , 1 ], [ f , 1 ]}.

It is immediate to see that the fold-unfold equivalence rules are sound. Notice that this
fold-unfold equivalence is similar to the fold-unfold equivalence used in [6] in the context of
weighted clauses and weighted Resolution.

H-equivalence. In F2[X], the polynomials x2 − x and 0 are two distinct polynomials, but
since they always evaluate to 0, we want to identify them. Moreover, given a set of hard
constraints H , we are only interested in H-compatible assignments, hence we want to identify
two polynomials f, g such that for every H-compatible assignment α, f(α) = g(α). This can
be seen as having a equivalence rule of the form

[ f , w ]
[ g , w ] (H-equivalence)

where f, g ∈ F2[X] and w ∈ Z are such that for every H-compatible assignment α : X → F2,
f(α) = g(α). If f and g are H-equivalent we write f ≡H g (when H is clear from the
context we simply write f ≡ g). In particular, for every H, f2 ≡H f .

Notice that, by definition, if f ≡H g then the cost is preserved on every H-compatible α,
hence the rule is sound on H-compatible αs. To efficiently check whether f ≡H g might be
problematic, depending on H.
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▶ Remark 3.2. The H-equivalence could be checked efficiently for H = ∅, just by looking at
the multilinearization of the polynomials. The multilinearization of a polynomial f , mul(f)
is the unique multilinear polynomial H-equivalent to f .

In the case of polynomials coming from the direct translation of CNF formulas, we use
the H-equivalence for twin variables and H being the Boolean axioms for twin variables. In
this case, the H-equivalence can also be checked efficiently [19, section 4.3 and Theorem 4.4].

Sum and split. Apart from the previous structural rules, in wPCF2,N and wPCF2,Z we have
the following inference rules:

[ f , w ]
[ fg , w ] [ f(g + 1) , w ] (split) [ f , w ] [ g , w ]

[ f + g , w ] [ fg , 2w ] (sum) (3)

for all f, g ∈ F2[X] and w ∈ Z.
Notice that the previous rules are sound. For the split rule, if f(α) = 0 then both the

conclusions are 0, but if f(α) = 1, then exactly one of the conclusions is 1. For the sum
rule, the argument by cases is analogous. The case that justifies the weight of 2w for the
polynomial fg in the conclusion is when f(α) = 1 and g(α) = 1. In this case f(α) + g(α) = 0
and f(α)g(α) = 1, hence the weight of the conclusion fg should equal the sum of the weights
of both premises, which is two.

Formally the definition of wPCF2,Z/wPCF2,N is the following.

▶ Definition 3.3 (wPCF2,Z, wPCF2,N). Given a multi-set of weighted polynomials F and a
set of hard constraints H, a wPCF2,Z derivation of a weighted polynomial [ f , w ] from F and
H is a sequence of multi-sets L0, . . . , Lℓ s.t.
1. L0 = F ,
2. [ f , w ] ∈ Lℓ and all the other weighted polynomials [ f ′ , w′ ] ∈ Lℓ have w′ ∈ N, and
3. for each i > 0 either Li ≈ Li−1 or Li is the result of an application of the split/sum/H-

equivalence rule as a substitution rule on Li−1.
The system wPCF2,N is the restriction of wPCF2,Z where all weights are natural numbers.
The size of a wPCF2,Z/wPCF2,N derivation L0, . . . , Lℓ is the total number of occurrences of
symbols in L0, . . . , Lℓ.

To clarify the definition, we give an example of derivation in wPCF2,N.

▶ Example 3.4 (Example 2.3 cont.). In Fig. 2 we show a wPCF2,N-derivation of [ 1 , 2 ] from
the set of polynomials we saw in Example 2.3 in the case of G being the clique on 4 vertices.
That is the weighted polynomials [ x + y + 1 , 1 ], [ x + z + 1 , 1 ], [ x + t + 1 , 1 ], [ y + z + 1 , 1 ],
[ y + t + 1 , 1 ], [ z + t + 1 , 1 ]. In this derivation, the polynomials that are just copied from
one multiset to the next are substituted with a •. From one multiset to the next we applied
multiple rules in parallel. The horizontal lines are just a visual help to visualize the multisets.
Notice that we have H-equivalences (for H = ∅) applied implicitly. For instance, some sum
only have one consequence since the other is equivalent to 0. This example shows that to
obtain [ 1 , 2 ] it is important to use both consequences of a sum.

We prove now the soundness of wPCF2,Z.

▶ Theorem 3.5 (soundness). Given F = {[ f1 , w1 ], . . . , [ fm , wm ]} where fi ∈ F2[X] and a
set of polynomials H ⊆ F2[X], if there is a wPCF2,Z derivation of [ 1 , w ] from F (and H as
hard constraints), then costH(F ) ≥ w.

SAT 2023



5:8 Polynomial Calculus for MaxSAT

[ x + y + 1 , 1 ]
A1

[ x + z + 1 , 1 ]
A2

[ x + t + 1 , 1 ]
A3

[ y + z + 1 , 1 ]
A4

[ y + t + 1 , 1 ]
A5

[ z + t + 1 , 1 ]
A6

[ A1(z + t) , 1 ] [ A1(z + t + 1) , 1 ] [ z + t , 1 ] [ A2A3 , 2 ] [ A4A5 , 2 ] [ z + t , 1 ] [ z + t + 1 , 1 ]

split sum sum

• [ z + t , 1 ] [ A1A6 , 1 ] [ A2A3 , 1 ] [ A2A3 , 1 ] [ A4A5 , 1 ] [ A4A5 , 1 ] [ 1 , 1 ]

≈ ≈ sum

• [ z + t , 1 ] [ A1A2A3A6 , 2 ] [ y + yz + yt + zt , 1 ] • [ A4A5 , 1 ] • [ 1 , 1 ]

sum

• • [ z + t , 1 ] [ z + t + 1 , 1 ] • • [ 1 , 1 ]

sum

• • [ 1 , 1 ] • • [ 1 , 1 ]

sum

[ A1(z + t) , 1 ] [ A1A2A3A6 , 2 ] [ 1 , 2 ] [ A2A3 , 1 ] [ A4A5 , 1 ]

≈

Figure 2 A wPCF2,N derivation of [ 1 , 2 ] from the axioms of max-cut on a clique of 4 vertices:
[ x1 +x2 +1 , 1 ], [ x1 +x3 +1 , 1 ], [ x1 +x4 +1 , 1 ], [ x2 +x3 +1 , 1 ], [ x2 +x4 +1 , 1 ], [ x3 +x4 +1 , 1 ].

Proof. Let L0, L1, L2, . . . , Ls be a wPCF2,Z derivation of (1; w), i.e. Ls contains [ 1 , w ],
L0 = F and each Li+1 is obtained from Li applying the split, the sum substitution rules,
the fold-unfold equivalence or the H-simplification. We have to show that costH(F ) ≥ w.
We have that costH(Ls) ≥ w since [ 1 , w ] ∈ Ls and all the other weighted polynomials in Ls

have non-negative weights. Hence, to prove the statement is enough to show that for each i,
costH(Li+1) = costH(Li). We prove something slightly stronger, that for each H-consistent
α : X → F2, cost(α, Li+1) = cost(α, Li). This follows immediately from the comments we
already made on the soundness of the various rules. ◀

We conclude this section with an observation on the split and sum rules in wPCF2,Z.
Using weights in Z, one of them is always redundant, unlike the case of weights in N where
both are necessary. To simulate the split rule using the sum rule using weights in Z we can
do the following:

[ f , w ]
≈

[ f , w ] [ fg , w ] [ fg , −w ] [ f(g + 1) , w ] [ f(g + 1) , −w ]
sum

[ f , w ] [ fg , w ] [ f(g + 1) , w ] [ fg + f(g + 1) , −w ] [ f2g(g + 1) , −2w ]
≈ & ≡

[ fg , w ] [ f(g + 1) , w ]

In a similar way, we can also simulate the sum using the split rule using weights in Z.
(The proof of this will appear in the final version of this paper.)

4 Completeness

We show the completeness of wPCF2,N, that is the converse of Theorem 3.5. For simplicity,
we focus on the Boolean axioms as hard constraints, that is H = ∅ or, in the case of twin
variables {x1, . . . , xn, x̄1, . . . , x̄n}, H = {xi + x̄i − 1 : i ∈ [n]}.
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▶ Theorem 4.1 (completeness for Boolean axioms). Given F a set of weighted polynomials
over F2[X], there is a wPCF2,N derivation of [ 1 , costH(F ) ] from F and the set of Boolean
axioms as hard constraints H.

Our proof generalizes the saturation process from [8] and gives an algorithm to find
wPCF2,N-derivations of [ 1 , costH(F ) ]. We five an example of the construction in Section 5.
Clearly the completeness for H = ∅ implies the completeness for H = {xi + x̄i − 1 : i ∈ [n]}.
For instance, just removing the twin variables, that is substituting each variable x̄i with
1 − xi. We show a saturation process that adapts to this context without removing the twin
variables.

Our construction shows indeed something stronger, that wPCF2,N is still complete even if
we restrict the split rule of wPCF2,N to be of the form

[ f , w ]
[ ffx=0fx=1 , w ] [ f(fx=0fx=1 + 1) , w ] ,

where x is some variable and fx=0 is the polynomial resulting from the restriction of f

mapping x to 0, and analogously for fx=1. In the case of twin variables, for fx=0 we also
map x̄ to 1, to be consistent with the Boolean axioms, and analogously for fx=1.

Recall that for polynomials f, g ∈ F2[X], let f ≡ g if for every H-compatible assignment
α, f(α) = g(α). It is immediate to see that ffx=0fx=1 ≡ fx=0fx=1 since for every value
a ∈ F2, a2 = a. Therefore, if f ̸≡ fx=0fx=1 and fx=0fx=1 ̸≡ 0, the special case of the split
rule above allows to infer from f some new polynomials and one of them (fx=0fx=1) without
the variable x.

▶ Definition 4.2. We say that a polynomial f depends on a variable x if for every polynomial
g not containing x (and also x̄ in the case of twin variables), f ̸≡ g.

Notice that, the following are equivalent:
f depends on x,
For H = ∅, the multilinearization of f is a polynomial xf1 + f0 with f1, f0 not containing
x and f1 ̸≡ 0. For the twin variables and H = {xi + x̄i − 1 : i ∈ [n]}, f is equivalent to
a multilinear polynomial of the form xf1 + x̄f ′

1 + f0, with f1, f ′
1, f0 not containing x, x̄,

and f1 ̸≡ f ′
1.

f ̸≡ fx=0fx=1.
(The proof of this will appear in the final version of this paper.) The reason we give these
equivalences is that the third condition makes easier to generalize the whole construction to
arbitrary finite fields.

The main concept used to show the completeness of wPCF2,N is the notion of set of
polynomials saturated w.r.t. a variable.

▶ Definition 4.3 (x-saturated set). Let x ∈ X and S be a set of weighted polynomials. The
set S is x-saturated if every H-compatible assignment α : X → F2 can be modified in x to a
H-compatible assignment satisfying all weighted polynomials in S that depend on x.

Notice that, if S is x-saturated then the subset of polynomials in S depending on
x is satisfiable, but the converse is not true. For instance, {[ x + y , 1 ], [ x + z , 1 ]} is
clearly satisfiable but it is not saturated w.r.t. to x since we cannot extend the assignment
y = 0, z = 1 to satisfy both polynomials.

Next, we give a procedure to x-saturate a set of weighted polynomials S. Recall that we
focus on H being the Boolean axioms. Informally, the procedure to obtain the x-saturation
consists of applying the split rule to a polynomial or the sum of two polynomials, as long
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as the application of these rules generates polynomials that don’t contain the variable x, and
are not equivalent to 0. The procedure is applied as long as it is possible, and we will see
that it finishes in a finite number of steps and when it terminates the generated set must be
x-saturated.

▶ Lemma 4.4. In the context of H the Boolean axioms, for every set of weighted polynomials
S and every variable x, there is a wPCF2,N derivation of a set of polynomials S′ which is
x-saturated.

Proof. For a polynomial f , recall that fx=0 is the evaluation of f in x = 0 and, in the case
of twin variables, the restriction also sets x̄ = 1 (resp. for fx=1).

Suppose we have a set of weighted polynomials S and a variable x. We construct a
sequence of weighted polynomials S0, S1, . . . to find the saturation. We start with S0 = S,
then we want Si+1 to be derivable from Si using the rules of wPCF2,N, and moreover, in Si+1
we added some new polynomial non-dependent on x. The way to obtain Si+1 from Si is the
following. For each i ≥ 0, if there is an [ f , w ] ∈ Si depending on x and s.t. fx=0fx=1 ̸≡ 0,
non-deterministically choose one of such [ f , w ] and let

Si+1 = (Si \ {[ f , w ]}) ∪ {[ fx=0fx=1 , w ], [ fx=0fx=1 + f , w ]} .

The derivation of Si+1 from Si, by substituting [ f , w ] with the weighted polynomials
[ fx=0fx=1 , w ] and [ fx=0fx=1 + f , w ], is justified by:

[ f , w ]
split

[ ffx=0fx=1 , w ] [ f(fx=0fx=1 + 1) , w ]
≡

[ fx=0fx=1 , w ] [ fx=0fx=1 + f , w ]

where the last ≡ holds since ffx=0fx=1 ≡ fx=0fx=1. Notice that, with this substitution, we
have obtained the weighted polynomial [ fx=0fx=1 , w ] where the variable x doesn’t appear
(and hence clearly not depending on x) and it is not equivalent to 0 since the condition to
obtain Si+1 is that fx=0fx=1 ̸≡ 0. We used the assumption that f depends on x to ensure
the polynomial fx=0fx=1 in the conclusions is new and it is not equivalent to the polynomial
f in the premises.

If there are [ f , w ], [ g , w′ ] ∈ Si depending on x, with f ̸≡ g,

(fx=0 + gx=0)(fx=1 + gx=1) ̸≡ 0 ,

and w′ ≥ w > 0, non-deterministically choose two of them. First substitute [ g , w′ ] by
[ g , w ] and [ g , w′ − w ], and then let

Si+1 = (Si \ {[ f , w ], [ g , w ]}) ∪ {[ (f + g)x=0(f + g)x=1 , w ], [ fg , 2w ],
[ (f + g)x=0(f + g)x=1 + f + g , w ]} .

We can obtain Si+1 from Si using first the sum rule to infer [ f + g , w ] and [ fg , 2w ] and
then use the split rule on [ f + g , w ] as we did in the previous case on a single polynomial.

[ f , w ] [ g , w ]
sum

[ f + g , w ] [ fg , 2w ]
split & ≡

[ (f + g)x=0(f + g)x=1 , w ] [ (f + g)x=0(f + g)x=1 + f + g , w ] [ fg , 2w ]

Doing this substitution we obtain a polynomial where the variable x doesn’t appear and it is
not equivalent to 0 since the condition to obtain Si+1 is that (fx=0 + gx=0)(fx=1 + gx=1) ̸≡ 0.
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If we cannot transform Si to Si+1 in neither of the two ways we stop the process.
This sequence of transformations must be finite and the last element Sℓ will be x-saturated.

The process must be finite since otherwise the new sequence given by

σ(i) =
∑

α : X→F2
H-compatible

cost(α, S+
i )

for S+
i the part of Si depending on x, would give a sequence of strictly decreasing natural

numbers. Indeed, all the σ(i)s are natural numbers because we are using the rules of
wPCF2,N, so, no negative weight could appear in any Si and cost(α, S+

i ) ≥ 0. To show
that σ(i + 1) < σ(i) it is sufficient to notice that, by the soundness of wPCF2,N, for every
H-compatible α : X → F2,

cost(α, Si+1) = cost(α, Si) ,

which implies that

cost(α, S+
i+1) + cost(α, {[ h , w ]}) = cost(α, S+

i ) ,

for some polynomial h ̸≡ 0, not depending the variable x and with w > 0. Hence

σ(i + 1) +
∑

α : X→F2
H-compatible

cost(α, {[ h , w ]}) = σ(i) ,

and ∑
α : X→F2

H-compatible

cost(α, {[h, w]}) > 0

because h ̸≡ 0 and w > 0. Therefore, σ(i + 1) < σ(i). And the sequence must be finite.
Now, Sℓ, the last set of the sequence, must be x-saturated. Suppose, towards a contra-

diction, that both α0, i.e. α modified mapping x 7→ 0, and α1, i.e. α modified mapping
x 7→ 1, falsify some polynomials in Sℓ depending on x. (In the case of twin variables α0
also sets x̄ 7→ 1 and α1 also sets x̄ 7→ 0.) Let such polynomials resp. be f, g. That is we
have fx=0(α) ̸= 0, and gx=1(α) ̸= 0. Since Sℓ is the last element of the previous process
we must have that fx=0fx=1 ≡ 0 and gx=0gx=1 ≡ 0. Hence it must be that fx=1(α) = 0,
and gx=0(α) = 0. In particular, f and g are two non-equivalent polynomials. Then, again
by the assumption on Sℓ being the last element of the process, we must also have that
(f + g)x=0(f + g)x=1 ≡ 0, but this is not possible since

(f + g)(α0) = (f + g)x=0(α) = fx=0(α) + gx=0(α) ̸= 0

and similarly fx=1(α) + gx=1(α) ̸= 0. ◀

Notice that in the proof of the previous lemma, there are many alternative ways to
introduce new polynomials not depending on x in each step of the sequence S1, S2, . . . . The
one we chose has the property that we only use a special form of the split rule:

[ f , w ]
[ fx=0fx=1 , w ] [ fx=0fx=1 + f , w ] .

Moreover, we keep the number and the degree of the polynomials we introduce at each step
lower than other alternative choices. For instance, given multilinear polynomials f = xf1 +f0
and g = xg1 + g0 depending on x, we could have done two split to obtain g1f and f1g and
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then sum them to obtain f0g1 + f1g0 (and hence introducing also [ f1g1fg , 2 ]). This would
have resulted in the introduction of a larger number and higher degree polynomials compared
to the construction we gave.

We now show how to obtain the completeness, under the assumption that the saturation
can be computed in wPCF2,N. Essentially iterating the saturation on all the variables one by
one.

▶ Lemma 4.5. Let H ⊂ F2[X]. If for every set of weighted polynomials S and every variable
x, there is a wPCF2,N derivation of a set of polynomials S′ which is x-saturated, then for every
set of weighted polynomials F over F2[X] there exists a wPCF2,N-derivation of [ 1 , costH(F ) ]
from F and the hard constraints H.

Proof. Let X = {x1, . . . , xn}. First saturate F w.r.t. x1. By hypothesis, from F in wPCF2,N
we can derive a x1-saturated set S1. Let S1 = S+

1 ∪S−
1 , where S+

1 is the part of S1 depending
on x1 and S−

1 the part of S1 not depending on x1.
Saturate S−

1 w.r.t. x2. Again, by assumption, from S−
1 we can derive in wPCF2,N a

x2-saturated set S2. This gives a decomposition S2 = S+
2 ∪ S−

2 , where S−
2 are the weighted

polynomials in S2 not depending on x2 (and x1). Continuing saturating by all the variables of
X one by one we arrive at a set Sn, where the weighted polynomials in S−

n are just constants,
i.e. S−

n ≈ {[ 1 , w ]} for some w ∈ N.
To show that w = costH(F ) it is enough to show that

⋃
j∈[n] S+

j is satisfiable by a H-
compatible assignment. Let α : X → F2 be an arbitrary H-compatible assignment. Since Sn

is xn-saturated there is a way to modify α in xn to get a H-compatible assignment satisfying
all S+

n . Let this assignment be αn. Suppose we obtained a H-compatible assignment αi

satisfying
⋃

j≥i S+
j , since Si−1 is xi−1-saturated, there is a way to modify αi in xi−1 to satisfy

all S+
i−1. Let this assignment be αi−1. Since the polynomials in

⋃
j≥i S+

j only contained the
variables xi . . . , xn, the assignment αi−1 continues to satisfy

⋃
j≥i S+

j . We continue this way
until we get an assignment α1 satisfying all

⋃
j∈[n] S+

j . Thus proving that it must have been
that w = costH(F ). ◀

Notice that the previous lemma does not require H to be the Boolean axioms and it is
completely general.

Now, it is immediate to prove the completeness of wPCF2,N (Theorem 4.1). Indeed, by
Lemma 4.4, for every set of weighted polynomials S and every variable x, there is a wPCF2,N
derivation of a set of polynomials S′ which is x-saturated. Then, by Lemma 4.5, there is a
wPCF2,N derivation of [ 1 , costH(F ) ] from F and as set of hard constraints H the Boolean
axioms. This concludes the proof of Theorem 4.1.

5 Tseitin formulas

We exemplify the saturation process on Tseitin formulas, although also Example 3.4 was
found using the saturation process. An implementation of the saturation algorithm in python
is freely available at https://github.com/jordilevy/pyPolyCal.git.

First, we recall what are Tseitin formulas. That is, in this section, consider fixed a graph
G = (V, E) with |V | = 2n + 1 and Boolean variables xv,w for each {v, w} ∈ E. For v ∈ V ,
let N(v) = {w ∈ V : {v, w} ∈ E}. The Tseitin formula on G is a CNF formula expressing
that in each vertex v ∈ V the parity of the variables xe for the edges incident to v is 1, that
is Tseitin(G) is the CNF⋃

v∈V

{ ⊕
w∈N(v)

xv,w = 1 (mod 2)
}

, (4)

https://github.com/jordilevy/pyPolyCal.git
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where
⊕

w∈N(v) xv,w = 1 (mod 2) is encoded as a set of clauses. For instance, if N(v) =
{w1, w2, w3}, then

⊕
w∈N(v) xv,w + 1 (mod 2) is

{xv,w1 , xv,w2 , xv,w3}, {¬xv,w1 , ¬xv,w2 , xv,w3},

{xv,w1 , ¬xv,w2 , ¬xv,w3}, {¬xv,w1 , xv,w2 , ¬xv,w3} . (5)

Since V has an odd size, Tseitin(G) is unsatisfiable.
Consider first the natural encoding of eq. (4) as polynomials. That is consider the set of

variables X = {xv,w : {v, w} ∈ E} and Lv be the polynomial
∑

w∈N(v) xv,w + 1 in F2[X].
It is well known that PCF2 is able to refute {Lv : v ∈ V } in linear size. In wPCF2,N we

prove more.

▶ Proposition 5.1. There is a linear size derivation in wPCF2,N of [ 1 , c ] from {[ Lv , 1 ] :
v ∈ V }, where c is the number of connected components of odd size in G. In particular, if
G is connected, wPCF2,N proves that {[ Lv , 1 ] : v ∈ V } is minimally unsatisfiable, i.e. it is
possible to satisfy all polynomials in it except one.

Proof. We show how to infer [ 1 , 1 ] from {[ Lv , 1 ] : v ∈ V } via the saturation process, when
G is connected. For the saturation process, the order in which we saturate the variables is
not important.

At each intermediate saturation step ℓ there is a set of weighted polynomials Sℓ that
we have to saturate. The set Sℓ has the form {[ LS1 , 1 ], . . . , [ LSm

, 1 ]}, where S1, . . . , Sm

form a partition of V and LSi =
∑

v∈Si
Lv. Moreover, we already saturated w.r.t. all the

variables xv,w with v, w in the same Si.
At the beginning of the saturation process, we have the partition of V consisting of all

the singletons: {{v} : v ∈ V }.
Suppose then we are at an intermediate step ℓ of the saturation. We have a set Sℓ =

{[ LS1 , 1 ], . . . , [ LSm
, 1 ]} and we want to saturate w.r.t. xv,w. By the inductive assumption,

{v, w} is not an internal edge of any of the sets Sis. Hence there are exactly two distinct sets
Si and Sj with v ∈ Si and w ∈ Sj . That is, to saturate Sℓ w.r.t. xv,w is enough to saturate
S ′ = {[ LSi

, 1 ], [ LSj
, 1 ]}. We follow the procedure from Lemma 4.4.

▶ Fact 1. For every linear polynomial L depending on x, Lx=0Lx=1 = Lx=0(Lx=0 + 1) ≡ 0.

By Fact 1, the only possibility is to sum LSi
and LSj

. That is from S ′ we obtain

S ′′ = {[ LSi
+ LSj

, 1 ], [ LSi
LSj

, 2 ]} .

Now, LSi
+LSj

≡ LSi∪Sj
does not contain variables xv′,w′ with v′, w′ ∈ Si ∪Sj . In particular

it does not contain xv,w. To continue the saturation process, the only possibility would be to
do a split on LSi

LSj
, but this produces the polynomial LSi,x=0LSj ,x=0LSi,x=1LSj ,x=1 ≡ 0

by Fact 1. Therefore S ′′ is saturated w.r.t. xv,w. And so is the multi-set

{[ LSk
, 1 ] : k ̸= i, j} ∪ {[ LSi

+ LSj
, 1 ], [ LSi

LSj
, 2 ]} .

The part of this set not depending on xv,w is

Sℓ+1 = {[ LSk
, 1 ] : k ̸= i, j} ∪ {[ LSi

+ LSj
, 1 ]} .

Notice that [ LSi
LSj

, 2 ] is not in Sℓ+1 since it depends on xv,w. The set Sℓ+1 is the one we
want to saturate at the next step for some other variable. During the saturation process we
obtain coarser and coarser partitions of V and, at the end of the whole process, we obtain
{[ LV , 1 ]}. To conclude we just need to observe that LV ≡ |V | ≡ 1. ◀
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To show that wPCF2,N and weighted Resolution are incomparable, we need to consider
Tseitin(G) encoded as a set of polynomials using the twin variables encoding from Section
2.2. Assume all the initial polynomials of this encoding to have weight 1. From this system
of polynomials is still easy to derive [ 1 , c ] in wPCF2,N where c is the number of connected
components of odd size in G. Such derivations can be found using the saturation process,
provided we use the natural heuristic of preferentially taking the sum of two weighted
polynomials [ f , w ] and [ g , w ] when fg ≡ 0. The intuitive reason behind this heuristic
is that in such a sum the number of polynomials in conclusion decreases and we do not
introduce a polynomial of higher degree. Under this heuristic it is immediate to see that the
saturation process will essentially reconstruct the polynomials {[ Lv , 1 ] : v ∈ V (G)}. Indeed,
take for instance the twin variables encoding of the set of clauses in eq. (5), that is

S = {[ x̄v,w1 x̄v,w2 x̄v,w3 , 1 ], [ xv,w1xv,w2 x̄v,w3 , 1 ],
[ x̄v,w1xv,w2xv,w3 , 1 ], [ xv,w1 x̄v,w2xv,w3 , 1 ]} .

We have that the product of any two of the polynomials is divisible by xv,wi x̄v,wi ≡ 0 for
some i. Therefore applying the sum rule on S, eventually we will obtain

[ x̄v,w1 x̄v,w2 x̄v,w3 + xv,w1xv,w2 x̄v,w3 + x̄v,w1xv,w2xv,w3 + xv,w1 x̄v,w2xv,w3 , 1 ] ≡ [ Lv , 1 ] .

6 Polynomial Calculus for MaxSAT (general case)

In this section, we adapt the definition of wPCF2,N and wPCF2,Z from F2 to an arbitrary
finite field Fq. Polynomial Calculus modulo distinct primes has been studied, for instance
in [11]. The Tseitin principle can be extended from counting mod 2 to counting mod p, and
this principle is easy in Polynomial Calculus on polynomials with coefficients in Fp.

That is we focus on polynomials with coefficients in Fq, where q = pk for some fixed
prime p and k ∈ N. Recall that Fq is the finite field with q elements (this field is unique up
to isomorphism), and for each element of a ∈ F, aq = a and p · a = a + · · · + a︸ ︷︷ ︸

p

= 0.

Fold-unfold and H-equivalence. We consider multi-sets of weighted polynomials, i.e. pairs
[ f , w ] with f ∈ Fq[X] and w ∈ Z, under the fold-unfold equivalence and the H-
equivalence. This is the same as what we saw in Section 3 with the only difference that
the polynomials instead of being in F2[X] now belong to Fq[X].

Recall that, for f, g H-equivalent we write f ≡H g. In particular, for every H, fq ≡H f .
Hence, in the application of the rules, by the H-equivalence we can always assume the variables
in all the polynomials to appear with degree at most q−1. Moreover, if H ⊇ {x2 −x : x ∈ X},
then we can assume the polynomials to be multilinear. For H = {x2 − x : x ∈ X}, to check
efficiently if f ≡H g we can then compute the multilinearization of f and g and compare them.
In the case of the twin variables {x1, . . . , xn, x̄1, . . . , x̄n}, H = {x2

i − xi, xi + x̄i − 1 : i ∈ [n]},
we also have that we can check efficiently if f ≡H g using the construction in [19, section 4.3
and Theorem 4.4].

Sum and split. The general forms of the split and sum rules are:

[ f , w ]
[ fg , w ] [ f(gq−1 − 1) , w ] (split)

[ f , w ] [ g , w ]
[ f + g , w ] [ fg , w ] [ f ((f + g)q−1 − 1) , w ] (sum)
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for all f, g ∈ Fq[X] and w ∈ Z. The split rule is sound since for every assignment α : X → Fq

if f(α) = 0 the cost of the premise is 0 and so is the cost of the conclusion. If f(α) ̸= 0, then
either g(α) = 0 or g(α) ̸= 0, but in this latter case then gq−1(α) = 1. The soundness of the
sum rule is analogous.

Using the rules above, we generalize immediately the definition of wPCF2,N and wPCF2,Z
(Definition 3.3) from weighted polynomials with coefficients in F2 to weighted polynomials
with coefficients in Fq. We call the resulting systems wPCFq,N and wPCFq,Z.

Similar to the case of F2, we have that the sum rule is redundant in wPCFq,Z. (The proof
of this fact will appear in the final version of this paper.)

▶ Theorem 6.1 (soundness). Given F = {[ f1 , w1 ], . . . , [ fm , wm ]} where fi ∈ Fq[X] and a
set of polynomials H ⊆ Fq[X], if there is a wPCFq,Z derivation of [ 1 , w ] from F (and H as
hard constraints), then costH(F ) ≥ w.

Proof Sketch. This is a simple generalization of the proof of Theorem 3.5. ◀

We show the completeness in the case of Boolean axioms. That is H = {x2 − x : x ∈ X}
or, for the twin variables {x1, . . . , xn, x̄1, . . . , x̄n} H = {x2

i − xi, xi + x̄i − 1 : i ∈ [n]}.

▶ Theorem 6.2 (completeness for Boolean variables). Given F a multiset of weighted poly-
nomials in Fq[X], there is a wPCFq,N derivation of [ 1 , costH(F ) ] from F , and the set of
Boolean axioms as hard constraints.

The argument is a minor adaptation of the argument we saw in Section 4. The definition
of when a polynomial f depends on a variable x (Definition 4.2), the definition of (x, H)-
saturated set (Definition 4.3), and Lemma 4.5 do not really depend on F2 and can be
trivially extended to Fq. Therefore to prove Theorem 6.2 it is enough to show how to adapt
Lemma 4.4, the lemma showing how to construct the saturation.

▶ Lemma 6.3. For every set of weighted polynomials S and every variable x, there is a
wPCFq,N derivation of a set of polynomials S′ which is (x, H)-saturated, for H the Boolean
axioms.

Proof Sketch. The proof is analogous to the argument for Lemma 4.4. The crucial property
used to prove Lemma 4.4 was that ffx=0fx=1 ≡ fx=0fx=1, which is true for polynomials
with coefficients in F2. For Fq it is analogous: the crucial property is that fq−1fx=0fx=1 ≡
fx=0fx=1. This polynomial can be derived from f using the split rule of wPCFq,N as follows

[ f , w ]
split

[ ffq−2fx=0fx=1 , w ] [ f((fq−2fx=0fx=1)q−1 − 1) , w ]
≡

[ fx=0fx=1 , w ] [ f(fx=0fx=1)q−1 − f , w ] ,

Notice that this generalizes the case of F2. Similar to that special case, we have that this
split is non-trivial if both fx=0fx=1 ̸≡ 0 and fq−2fx=0fx=1 ̸≡ f , which similarly to the case
of F2 is equivalent to saying that f depends on x. (The proof of this fact will appear in
the final version of this paper.) The construction of the sequences of multi-sets is then the
natural adaptation of the construction we saw for F2 to Fq. The reason the sequence is finite
and the obtained multi-set is x-saturated is the same as in Lemma 4.4. ◀
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7 Conclusions

We showed a way to generalize Polynomial Calculus to the context of MaxSAT, for polynomials
with coefficients in a finite field. This involves extending the rules of Polynomial Calculus
to have additional conclusions and applying them replacing premises with conclusions,
to make them sound for MaxSAT. We showed its completeness via a saturation process.
The resulting proof system may be used for SAT or for MaxSAT. The system wPCF2,N is
stronger than MaxSAT Resolution, and wPCF2,Z is stronger than Z-weighted Resolution (aka
Sherali-Adams). As an example, we show how the process is able to prove efficiently Tseitin
formulas.
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Abstract
Computing many useful properties of Boolean formulas, such as their weighted or unweighted model
count, is intractable on general representations. It can become tractable when formulas are expressed
in a special form, such as the decision-decomposable, negation normal form (dec-DNNF). Knowledge
compilation is the process of converting a formula into such a form. Unfortunately existing knowledge
compilers provide no guarantee that their output correctly represents the original formula, and
therefore they cannot validate a model count, or any other computed value.

We present Partitioned-Operation Graphs (POGs), a form that can encode all of the representa-
tions used by existing knowledge compilers. We have designed CPOG, a framework that can express
proofs of equivalence between a POG and a Boolean formula in conjunctive normal form (CNF).

We have developed a program that generates POG representations from dec-DNNF graphs
produced by the state-of-the-art knowledge compiler D4, as well as checkable CPOG proofs certifying
that the output POGs are equivalent to the input CNF formulas. Our toolchain for generating
and verifying POGs scales to all but the largest graphs produced by D4 for formulas from a recent
model counting competition. Additionally, we have developed a formally verified CPOG checker and
model counter for POGs in the Lean 4 proof assistant. In doing so, we proved the soundness of our
proof framework. These programs comprise the first formally verified toolchain for weighted and
unweighted model counting.
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1 Introduction

Given a Boolean formula ϕ, modern Boolean satisfiability (SAT) solvers can find an assignment
satisfying ϕ or generate a proof that no such assignment exists. They have applications across
a variety of domains including computational mathematics, combinatorial optimization, and
the formal verification of hardware, software, and security protocols. Some applications,
however, require going beyond Boolean satisfiability. For example, the model counting problem
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6:2 Certified Knowledge Compilation

requires computing the number of satisfying assignments of a formula, including in cases
where there are far too many to enumerate individually. Model counting has applications in
artificial intelligence, computer security, and statistical sampling. There are also many useful
extensions of standard model counting, including weighted model counting, where a weight
is defined for each possible assignment, and the goal becomes to compute the sum of the
weights of the satisfying assignments.

Model counting is a challenging problem – more challenging than the already NP-hard
Boolean satisfiability. Several tractable variants of Boolean satisfiability, including 2-SAT,
become intractable when the goal is to count models and not just determine satisfiability
[28]. Nonetheless, a number of model counters that scale to very large formulas have been
developed, as witnessed by the progress in recent model counting competitions.

One approach to model counting, known as knowledge compilation, transforms the
formula into a structured form for which model counting is straightforward. For example, the
deterministic, decomposable, negation normal form (det-DNNF) introduced by Darwiche [7, 8],
as well as the more restricted decision-DNNF (dec-DNNF) [17, 24], represent a Boolean
formula as a directed acyclic graph, with terminal nodes labeled by Boolean variables and
their complements, and with each nonterminal node labeled by a Boolean And or Or operation.
Restrictions are placed on the structure of the graph (described in Section 5) such that a
count of the models can be computed by a single bottom-up traversal. Kimmig et al. present
a very general algebraic model counting [19] framework describing properties of Boolean
functions that can be efficiently computed from a det-DNNF representation. These include
standard and weighted model counting, and much more.

One shortcoming of existing knowledge compilers is that they have no generally accepted
way to validate that the compiled representation is logically equivalent to the original formula.
By contrast, all modern SAT solvers can generate checkable proofs when they encounter
unsatisfiable formulas. The guarantee provided by a checkable certificate of correctness
enables users of SAT solvers to fully trust their results. Experience has also shown that being
able to generate proofs allow SAT solver developers to quickly detect and diagnose bugs in
their programs. This, in turn, has led to more reliable SAT solvers.

This paper introduces Partitioned-Operation Graphs (POGs), a form that can encode all
of the representations produced by current knowledge compilers. The CPOG (for “certified”
POG) file format then captures both the structure of a POG and a checkable proof of its
logical equivalence to a Boolean formula in conjunctive normal form (CNF). A CPOG proof
consists of a sequence of clause addition and deletion steps, based on an extended resolution
proof system [27]. We establish a set of conditions that, when satisified by a CPOG file,
guarantees that it encodes a well-formed POG and provides a valid equivalence proof.

Figure 1 illustrates our certifying knowledge compilation and model counting toolchain.
Starting with input formula ϕI , the D4 knowledge compiler [20] generates a dec-DNNF
representation, and the proof generator uses this to generate a CPOG file. The proof checker
verifies the equivalence of the CNF and CPOG representations. The ring evaluator computes
a standard or weighted model count from the POG representation. As the dashed box in
Figure 1 indicates, this toolchain moves the root of trust away from the complex and highly
optimized knowledge compiler to a relatively simple checker and evaluator. Importantly, the
proof generator need not be trusted – its errors will be caught by the proof checker.

To ensure soundness of the abstract CPOG proof system, as well as correctness of its
concrete implementation, we formally verified the proof system as well as versions of the proof
checker and ring evaluator in the Lean 4 proof assistant [11]. Running these two programs
on a CPOG file gives strong assurance that the proof and the model count are correct. Our
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Figure 1 Certifying toolchain. The output of a standard knowledge compiler is converted into a
combined graph/proof (CPOG) which can be independently checked and evaluated.

experience with developing a formally verified proof checker has shown that, even within the
well-understood framework of extended resolution, it can be challenging to formulate a full
set of requirements that guarantee soundness. In fact, our efforts to formally verify our proof
framework exposed subtle conditions that we had to impose on our partitioned sum rule.

We evaluate our toolchain using benchmark formulas from the 2022 standard and weighted
model competitions. Our tools handle all but the largest dec-DNNF graphs generated by D4.
We also measure the benefits of several optimizations as well as the relative performance of
the verified checker with one designed for high performance and capacity.

We also show that our tools can provide end-to-end verification of formulas that have
been transformed by an equivalence-preserving preprocessor. That is, verification is based
on the original formula, and so proof checking certifies correct operation of the preprocessor,
the knowledge compiler, and the proof generator.

We have developed an online supplement to this paper [3] that includes a worked example,
more details on the algorithms, and extensive experimental results.

2 Related Work

Generating proofs of unsatisfiability in SAT solvers has a long tradition [31] and has become
widely accepted due to the formulation of clausal proof systems for which proofs can readily
be generated and efficiently checked [15, 30]. A number of formally verified checkers have
been developed within different verification frameworks [6, 14, 21, 26]. The associated proofs
add clauses while preserving satisfiability until the empty clause is derived. Our work
builds on the well-established technology and tools associated with clausal proof systems,
but we require features not found in proofs of unsatisfiability. Our proofs construct a new
propositional formula, and we must verify that it is equivalent to the input formula. This
requires verifying additional proof steps, including clause deletion steps, and subtle invariants,
as described in Sections 7 and 10.

Capelli, Lagniez, and Marquis developed a knowledge compiler that generates a certificate
in a proof system that is itself based on dec-DNNF [4, 5]. Their CD4 program, a modified
version of D4, generates annotations to the compiled representation, providing information
about how the compiled version relates to the input clauses. It also generates a file of clausal
proof steps in the DRAT format [30]. Completing the certification involves running two
different checkers on the annotated dec-DNNF graph and the DRAT file. Although the
authors make informal arguments regarding the soundness of their frameworks, these do not
provide strong levels of assurance. Indeed, we have identified a weakness in their methodology
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due to an invalid assumption about the guarantees provided by drat-trim, the program it
uses to check the DRAT file. This weakness is exploitable: their framework can be “spoofed”
into accepting an incorrect compilation.

In more detail, CD4 emits a sequence of clauses R that includes the conflict clauses that
arose during a top-down processing of the input clauses. Given input formula ϕI , their first
task is to check whether ϕI ⇒ R, i.e., that any assignment that satisfies ϕI also satisfies each
of the clauses in R. They then base other parts of their proof on that property and use a
separate program to perform a series of additional checks. They use drat-trim to prove the
implication, checking that each clause in R satisifies the reverse asymmetric tautology (RAT)
property with respect to the preceding clauses [15, 18]. Adding a RAT clause C to a set of
clauses maintains satisfiability, but it does not necessarily preserve models. As an example,
consider the following formulas:

ϕ1: (x1 ∨ x3)
ϕ2: (x1 ∨ x3) ∧ (x2 ∨ x3)

Clearly, these two formulas are not equivalent – ϕ1 has six models, while ϕ2 has four. In
particular, ϕ1 allows arbitrary assignments to variable x2. Critically, however, the second
clause of ϕ2 is RAT with respect to ϕ1 – any satisfying assignment to ϕ1 can be transformed
into one that also satisfies ϕ2 by setting x2 to 1, while keeping the values for other variables
fixed.

This weakness would allow a buggy (or malicious) version of CD4 to spoof the checking
framework. Given formula ϕ1 as input, it could produce a compiled result, including
annotations, based on ϕ2 and also include the second clause of ϕ2 in R. The check with
drat-trim would pass, as would the other tests performed by their checker. We have
confirmed this possibility with their compiler and checker.1

This weakness can be corrected by restricting drat-trim to only add clauses that obey the
stronger reverse unit propagation (RUP) property [13, 29]. We have added a command-line
argument to drat-trim that enforces this restriction.2 This weakness, however, illustrates
the general challenge of developing a new proof framework. As we can attest, without
engaging in an effort to formally verify the framework, there are likely to be conditions that
make the framework unsound.

Fichte, Hecher, and Roland [12] devised the MICE proof framework for model counting
programs. Their proof rules are based on the algorithms commonly used by model counters.
They developed a program that can generate proof traces from dec-DNNF graphs and a
program to check adherence to their proof rules. This framework is not directly comparable
to ours, since it only certifies the unweighted model count, but it has similar goals. Again,
they provide only informal arguments regarding the soundness of their framework.

Both of these prior certification frameworks are strongly tied to the algorithms used
by the knowledge compilers and model counters. Some of the conditions to be checked
are relevant only to specific implementations. Our framework is very general and is based
on a small set of proof rules. It builds on the highly developed concepts of clausal proof
systems. These factors were important in enabling formal verification. In Section 12 and the
supplement [3], we also compare the performance of our toolchain to these other two.

1 Downloaded May 18, 2023 as
https://github.com/crillab/d4/tree/333370cc1e843dd0749c1efe88516e72b5239174.

2 Available at https://github.com/marijnheule/drat-trim/releases/tag/v05.22.2023.

https://github.com/crillab/d4/tree/333370cc1e843dd0749c1efe88516e72b5239174
https://github.com/marijnheule/drat-trim/releases/tag/v05.22.2023
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3 Logical Foundations

Let X denote a set of Boolean variables, and let α be an assignment of truth values to some
subset of the variables, where 0 denotes false and 1 denotes true, i.e., α : X ′ → {0, 1} for
some X ′ ⊆ X. We say the assignment is total when it assigns a value to every variable
(X ′ = X), and that it is partial otherwise. The set of all possible total assignments over X
is denoted U .

For each variable x ∈ X, we define the literals x and x, where x is the negation of x.
An assignment α can be viewed as a set of literals, where we write ℓ ∈ α when ℓ = x and
α(x) = 1 or when ℓ = x and α(x) = 0. We write the negation of literal ℓ as ℓ. That is, ℓ = x

when ℓ = x and ℓ = x when ℓ = x.

▶ Definition 1 (Boolean Formulas). The set of Boolean formulas is defined recursively. Each
formula ϕ has an associated dependency set D(ϕ) ⊆ X, and a set of modelsM(ϕ), consisting
of total assignments that satisfy the formula:
1. Boolean constants 0 and 1 are Boolean formulas, with D(0) = D(1) = ∅, with M(0) = ∅,

and with M(1) = U .
2. Variable x is a Boolean formula, with D(x) = {x} and M(x) = {α ∈ U|α(x) = 1}.
3. For formula ϕ, its negation, written ¬ϕ is a Boolean formula, with D(¬ϕ) = D(ϕ) and
M(¬ϕ) = U −M(ϕ).

4. For formulas ϕ1, ϕ2, . . . , ϕk, their product ϕ =
∧

1≤i≤k ϕi is a Boolean formula, with
D(ϕ) =

⋃
1≤i≤k D(ϕi) and M(ϕ) =

⋂
1≤i≤kM(ϕi).

5. For formulas ϕ1, ϕ2, . . . , ϕk, their sum ϕ =
∨

1≤i≤k ϕi is a Boolean formula, with D(ϕ) =⋃
1≤i≤k D(ϕi) and M(ϕ) =

⋃
1≤i≤kM(ϕi).

We highlight some special classes of Boolean formulas. A formula is in negation normal
form when negation is applied only to variables. A formula is in conjunctive normal form
(CNF) when i) it is in negation normal form, and ii) sum is applied only to literals. A CNF
formula can be represented as a set of clauses, each of which is a set of literals. Each clause
represents the sum of the literals, and the formula is the product of its clauses. We use set
notation to reference the clauses within a formula and the literals within a clause. A clause
consisting of a single literal is referred to as a unit clause and the literal as a unit literal.
This literal must be assigned value 1 by any satisfying assignment of the formula.

▶ Definition 2 (Partitioned-Operation Formula). A partitioned-operation formula satisfies
the following for all product and sum operations:
1. The arguments to each product must have disjoint dependency sets. That is, operation∧

1≤i≤k ϕi requires D(ϕi) ∩ D(ϕj) = ∅ for 1 ≤ i < j ≤ k.
2. The arguments to each sum must have disjoint models. That is, operation

∨
1≤i≤k ϕi

requires M(ϕi) ∩M(ϕj) = ∅ for 1 ≤ i < j ≤ k.
We let ∧p and ∨p denote the product and sum operations in a partitioned-operation formula.

4 Ring Evaluation of a Boolean Formula

We propose a general framework for summarizing properties of Boolean formulas along the
lines of algebraic model counting [19].

▶ Definition 3 (Commutative Ring). A commutative ring R is an algebraic structure
⟨A,+,×,0,1⟩, with elements in the set A and with commutative and associative opera-
tions + (addition) and × (multiplication), such that multiplication distributes over addition.
0 is the additive identity and 1 is the multiplicative identity. Every element a ∈ A has an
additive inverse −a such that a+−a = 0.
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We write a− b as a shorthand for a+−b.

▶ Definition 4 (Ring Evaluation Problem). For commutative ring R, a ring weight function
associates a value w(x) ∈ A with every variable x ∈ X. We then define w(x) .= 1− w(x).

For Boolean formula ϕ and ring weight function w, the ring evaluation problem computes

R(ϕ,w) =
∑

α∈M(ϕ)
∏

ℓ∈α w(ℓ) (1)

In this equation, sum ∑ is computed using addition operation +, and product ∏ is computed
using multiplication operation ×.

Many important properties of Boolean formulas can be expressed as ring evaluation
problems. The (standard) model counting problem for formula ϕ requires determining
|M(ϕ)|. It can be cast as a ring evaluation problem by having + and × be addition and
multiplication over rational numbers and using weight function w(x) = 1/2 for every variable
x. Ring evaluation of formula ϕ gives the density of the formula, i.e., the fraction of all
possible total assignments that are models. For n = |X|, scaling the density by 2n yields the
number of models. This formulation avoids the need for a “smoothing” operation, in which
redundant expressions are inserted into the formula [10].

The weighted model counting problem is also defined over rational numbers. Some
formulations allow independently assigning weights W (x) and W (x) for each variable x
and its complement, with the possibility that W (x) + W (x) ̸= 1. We can cast this as a
ring evaluation problem by letting r(x) = W (x) +W (x), performing ring evaluation with
weight function w(x) = W (x)/r(x) for each variable x, and computing the weighted count
as R(ϕ,w) ×

∏
x∈X r(x). Of course, this requires that r(x) ̸= 0 for all x ∈ X.

The function hashing problem provides a test of inequivalence for Boolean formulas.
That is, for n = |X|, let R be a finite field with |A| = m such that m ≥ 2n. For each
x ∈ X, choose a value from A at random for w(x). Two formulas ϕ1 and ϕ2 will clearly
have R(ϕ1, w) = R(ϕ2, w) if they are logically equivalent, and if R(ϕ1, w) ̸= R(ϕ2, w),
then they are clearly inequivalent. If they are not equivalent, then the probability that
R(ϕ1, w) ̸= R(ϕ2, w) will be at least

(
1− 1

m

)n ≥
(
1− 1

2n

)n
> 1/2. Function hashing can

therefore be used as part of a randomized algorithm for equivalence testing [2]. For example,
it can compare different runs on a single formula, either from different compilers or from a
single compiler with different configuration parameters.

5 Partitioned-Operation Graphs (POGs)

Performing ring evaluation on an arbitrary Boolean formula could be intractable, but it is
straightforward for a formula with partitioned operations:

▶ Proposition 5. Ring evaluation with operations ¬, ∧p, and ∨p satisfies the following for
any weight function w:

R(¬ϕ, w) = 1−R(ϕ,w)
R

(∧p
1≤i≤k ϕi, w

)
=

∏
1≤i≤k R(ϕi, w)

R
(∨p

1≤i≤k ϕi, w
)

=
∑

1≤i≤k R(ϕi, w)

As is described in Section 10, we have proved these three equations using Lean 4.
A partitioned-operation graph (POG) is a directed, acyclic graph with nodes N and edges

E ⊆ N ×N . We denote nodes with boldface symbols, such as u and v. When (u,v) ∈ E,
node v is said to be a child of node u. The in- and out-degrees of node u are defined as
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indegree(u) = |E ∩ (N × {u})|, and outdegree(u) = |E ∩ ({u} ×N)|. Node u is said to be
terminal if outdegree(u) = 0. A terminal node is labeled by a Boolean constant or variable.
Node u is said to be nonterminal if outdegree(u) > 0. A nonterminal node is labeled by
Boolean operation ∧p or ∨p. A node can be labeled with operation ∧p or ∨p only if it satisfies
the partitioning restriction for that operation. Every POG has a designated root node r.
Each edge has a polarity, indicating whether (negative polarity) or not (positive polarity)
the corresponding argument should be negated.

A POG represents a partitioned-operation formula with a sharing of common subformulas.
Every node in the graph can be viewed as a partitioned-operation formula, and so we write
ϕu as the formula denoted by node u. Each such formula has a set of models, and we write
M(u) as a shorthand for M(ϕu).

We can now define and compare two related representations:
A det-DNNF graph can be viewed a POG with negation applied only to variables.
A dec-DNNF graph is a det-DNNF graph with the further restriction that any sum node
u has exactly two children u1 and u0, and for these there is a decision variable x such
that any total assignment α ∈M(ub) has α(x) = b, for b ∈ {0, 1}.

The generalizations encompassed by POGs have also been referred to as deterministic
decomposable circuits (d-Ds) [23]. Our current proof generator only works for knowledge
compilers generating dec-DNNF representations, but these generalizations allow for future
extensions, while maintaining the ability to efficiently perform ring evaluation.

We define the size of POG P , written |P |, to be the the number of nonterminal nodes
plus the number of edges from these nodes to their children. Ring evaluation of P can be
performed with at most |P | ring operations by traversing the graph from the terminal nodes
up to the root, computing a value R(u, w) for each node u. The final result is then R(r, w).

6 Clausal Proof Framework

We write (possibly subscripted) θ for formulas encoded as clauses, possibly with extension
variables. We write (possibly subscripted) ϕ for formulas that use no extension variables.

A proof in our framework consists of a sequence of clause addition and deletion steps,
with each step preserving the set of solutions to the original formula. The status of the proof
at any step is represented as a set of active clauses θ, i.e., those that have been added but
not yet deleted. Our framework is based on extended resolution [27], where proof steps can
introduce new extension variables encoding Boolean formulas over input and prior extension
variables. Let Z denote the set of extension variables occuring in formula θ. Starting with θ

equal to input formula ϕI , the proof must maintain the invariant that ϕI ⇔ ∃Z θ.
Clauses can be added in two different ways. One is when they serve as the defining clauses

for an extension variable. This form occurs only when defining ∧p and ∨p operations, as is
described in Section 7. Clauses can also be added or deleted based on implication redundancy.
That is, when clause C satisfies θ ⇒ C for formula θ, then it can either be added to θ to
create the formula θ ∪ {C} or it can be deleted from θ ∪ {C} to create θ.

We use reverse unit propagation (RUP) to certify implication redundancy when adding or
deleting clauses [13, 29]. RUP is the core rule supported by standard proof checkers [15, 30] for
propositional logic. It provides a simple and efficient way to check a sequence of applications
of the resolution proof rule [25]. Let C = {ℓ1, ℓ2, . . . , ℓp} be a clause to be proved redundant
with respect to formula θ. Let D1, D2, . . . , Dk be a sequence of supporting antecedent clauses,
such that each Di is in θ. A RUP step proves that

∧
1≤i≤k Di ⇒ C by showing that the

combination of the antecedents plus the negation of C leads to a contradiction. The negation
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of C is the formula ℓ1 ∧ ℓ2 ∧ · · · ∧ ℓp, having a CNF representation consisting of p unit clauses
of the form ℓi for 1 ≤ i ≤ p. A RUP check processes the clauses of the antecedent in sequence,
inferring additional unit clauses. In processing clause Di, if all but one of the literals in the
clause is the negation of one of the accumulated unit clauses, then we can add this literal to
the accumulated set. That is, all but this literal have been falsified, and so it must be set to
true for the clause to be satisfied. The final step with clause Dk must cause a contradiction,
i.e., all of its literals are falsified by the accumulated unit clauses.

Compared to the proofs of unsatisfiability generated by SAT solvers, ours have important
differences. Most significantly, each proof step must preserve the set of solutions with
respect to the input variables; our proofs must therefore justify both clause deletions and
additions. By contrast, an unsatisfiability proof need only guarantee that no proof step
causes a satisfiable set of clauses to become unsatisfiable, and therefore it need only justify
clause additions.

7 The CPOG Representation and Proof System

A CPOG file provides both a declaration of a POG, as well as a checkable proof that a
Boolean formula, given in conjunctive normal form, is logically equivalent to the POG.
The proof format draws its inspiration from the LRAT [14] and QRAT [16] formats for
unquantified and quantified Boolean formulas, respectively. Key properties include:

The file contains declarations of ∧p and ∨p operations to describe the POG. Declaring a
node u implicitly adds an extension variable u and a set of defining clauses θu encoding
the product or sum operation. This is the only means for adding extension variables to
the proof.
Boolean negation is supported implicitly by allowing the arguments of the ∨p and ∧p

operations to be literals and not just variables.
The file contains explicit clause addition steps. A clause can only be added if it is logically
implied by the existing clauses. A sequence of clause identifiers must be listed as a hint
providing a RUP verification of the implication.
The file contains explicit clause deletion steps. A clause can only be deleted if it is
logically implied by the remaining clauses. A sequence of clause identifiers must be listed
as a hint providing a RUP verification of the implication.
The checker must track the dependency set for every input and extension variable. For
each ∧p operation, the checker must ensure that the dependency sets for its arguments
are disjoint. The associated extension variable has a dependency set equal to the union
of those of its arguments.
Declaring a ∨p operation requires a sequence of clauses providing a RUP proof that
the arguments are mutually exclusive. Only binary ∨p operations are allowed to avoid
requiring multiple proofs of disjointness

7.1 Syntax
Table 1 shows the declarations that can occur in a CPOG file. As with other clausal proof
formats, a variable is represented by a positive integer v, with the first ones being input
variables and successive ones being extension variables. Literal ℓ is represented by a signed
integer, with −v being the logical negation of variable v. Each clause is indicated by a positive
integer identifier C, with the first ones being the IDs of the input clauses and successive ones
being the IDs of added clauses. Clause identifiers must be totally ordered, such that any
clause identifier C ′ given in the hint when adding clause C must have C ′ < C.
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Table 1 CPOG Step Types. C: clause identifier, L: literal, V : variable.

Rule Description

C a L∗ 0 C+ 0 Add RUP clause
d C C+ 0 Delete RUP clause

C p V L∗ 0 Declare ∧p operation
C s V L L C+ 0 Declare ∨p operation

r L Declare root literal

Table 2 Defining Clauses for Product (A) and Sum (B) Operations.

(A). Product Operation ∧p

ID Clause

i v −ℓ1 −ℓ2 · · · −ℓk

i+1 −v ℓ1

i+2 −v ℓ2

. . .

i+k −v ℓk

(B). Sum Operation ∨p

ID Clause

i −v ℓ1 ℓ2

i+1 v −ℓ1

i+2 v −ℓ2

The first set of proof rules are similar to those in other clausal proofs. Clauses can be
added via RUP addition (command a), with a sequence of antecedent clauses (the “hint”).
Similarly for clause deletion (command d).

The declaration of a product operation, creating a node with operation ∧p, has the form:

i p v ℓ1 ℓ2 · · · ℓk 0

Integer i is a new clause ID, v is a positive integer that does not correspond to any previous
variable, and ℓ1, ℓ2, . . . , ℓk is a sequence of k integers, indicating the arguments as literals of
existing variables. As Table 2(A) shows, this declaration implicitly causes k + 1 clauses to
be added to the proof, providing a Tseitin encoding that defines extension variable v as the
product of its arguments.

The dependency sets for the arguments represented by each pair of literals ℓi and ℓj must
be disjoint, for 1 ≤ i < j ≤ k. A product operation may have no arguments, representing
Boolean constant 1. The only clause added to the proof will be the unit literal v. A reference
to literal −v then provides a way to represent constant 0.

The declaration of a sum operation, creating a node with operation ∨p, has the form:

i s v ℓ1 ℓ2 H 0

Integer i is a new clause ID, v is a positive integer that does not correspond to any previous
variable, and ℓ1 and ℓ2 are signed integers, indicating the arguments as literals of existing
variables. Hint H consists of a sequence of clause IDs, all of which must be defining clauses
for other POG operations.3 As Table 2(B) shows, this declaration implicitly causes three

3 The restriction to defining clauses in the hint is critical to soundness. Allowing the hint to include the
IDs of input clauses creates an exploitable weakness. We discovered this weakness in the course of our
efforts at formal verification.
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clauses to be added to the proof, providing a Tseitin encoding that defines extension variable
v as the sum of its arguments. The hint must provide a RUP proof of the clause ℓ1 ∨ ℓ2,
showing that the two children of this node have disjoint models.

Finally, the literal denoting the root of the POG is declared with the r command. It
can occur anywhere in the file. Except in degenerate cases, it will be the extension variable
representing the root of a graph.

7.2 Semantics
The defining clauses for a product or sum operation uniquely define the value of its extension
variable for any assignment of values to the argument variables. For the extension variable u
associated with any POG node u, we can therefore prove that any total assignment α to the
input variables that also satisfies the POG defining clauses will assign a value to u such that
α(u) = 1 if and only if α ∈M(u).

The sequence of operator declarations, asserted clauses, and clause deletions represents a
systematic transformation of the input formula into a POG. Validating all of these steps
serves to prove that POG P is logically equivalent to the input formula. At the completion
of the proof, the following final conditions must hold:
1. There is exactly one remaining clause that was added via RUP addition, and this is a

unit clause consisting of root literal r.
2. All of the input clauses have been deleted.
In other words, at the end of the proof it must hold that the active clauses be exactly those
in θP

.= {{r}} ∪
⋃

u∈P θu, the formula consisting of unit clause {r} and the defining clauses
for the nodes, providing a Tseitin encoding of P . Recognizing that any total assignment to
the input variables implicitly defines the assignments to the extension variables, we can see
that θP is the clausal encoding of ϕr. Let ϕI denote the input formula. The sequence of
clause addition steps provides a forward implication proof that M(ϕI) ⊆M(ϕr). That is,
any total assignment α satisfying the input formula must also satisfy the formula represented
by the POG. Conversely, each proof step that deletes an input clause proves that any total
assignment α that falsifies the clause must falsify ϕr. Deleting all but the final asserted
clause and all input clauses provides a reverse implication proof that M(ϕr) ⊆M(ϕI).

The supplement [3], shows the CPOG description for an input formula with five clauses,
yielding a POG with six nonterminal nodes. It explains how the clause addition and deletion
steps yield a proof of equivalence between the input formula and its POG representation.

8 Generating CPOG from dec-DNNF

A dec-DNNF graph can be directly translated into a POG. In doing this conversion, our
program performs simplifications to eliminate Boolean constants. Except in degenerate cases,
where the formula is unsatisfiable or a tautology, we can therefore assume that the POG does
not contain any constant nodes. In addition, negation is only applied to variables, and so
the only edges with negative polarity will have variables as children. We can therefore view
the POG as consisting of literal nodes corresponding to input variables and their negations,
along with nonterminal nodes, which can be further classified as product and sum nodes.

8.1 Forward Implication Proof
For input formula ϕI and its translation into a POG P with root node r, the most challenging
part of the proof is to show that M(ϕI) ⊆M(ϕr), i.e., that any total assignment α that is
a model of ϕI and the POG definition clauses will yield α(r) = 1, for root literal r. This
part of the proof consists of a series of clause assertions leading to one adding {r} as a unit
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clause. We have devised two methods of generating this proof. The monolithic approach
makes just one call to a proof-generating SAT solver and has it determine the relationship
between the two representations. The structural approach recursively traverses the POG,
generating proof obligations at each node encountered. It may require multiple calls to a
proof-generating SAT solver.

As notation, let ψ be a subset of the clauses in ϕI . For partial assignment ρ, the expression
ψ|ρ denotes the set of clauses γ obtained from ψ by: i) eliminating any clause containing
a literal ℓ such that ρ(ℓ) = 1, ii) for the remaining clauses eliminating those literals ℓ for
which ρ(ℓ) = 0, and iii) eliminating any duplicate or tautological clauses. In doing these
simplifications, we also track the provenance of each simplified clause C, i.e., which of the
(possibly multiple) input clauses simplified to become C. More formally, for C ∈ ψ|ρ, we let
Provρ(C,ψ) denote those clauses C ′ ∈ ψ, such that C ′ ⊆ C ∪

⋃
ℓ∈ρ ℓ. We then extend the

definition of Prov to any simplified formula γ as Provρ(γ, ψ) =
⋃

C∈γ Provρ(C,ψ).
The monolithic approach takes advantage of the clausal representations of the input

formula ϕI and the POG formula ϕr. We can express the negation of ϕr in clausal form
as θr

.=
⋃

u∈P θu|{r}. Forward implication will hold when ϕI ⇒ ϕr, or equivalently when
the formula ϕI ∧ θr is unsatisfiable, where the conjunction can be expressed as the union
of the two sets of clauses. The proof generator writes the clauses to a file and invokes a
proof-generating SAT solver. For each clause C in the unsatisfiability proof, it adds clause
{r} ∪ C to the CPOG proof, and so the empty clause in the proof becomes the unit clause
{r}. Our experimental results show that this approach can be very effective and generates
short proofs for smaller problems, but it does not scale well enough for general use.

We describe the structural approach to proof generation as a recursive procedure
validate(u, ρ, ψ) taking as arguments POG node u, partial assignment ρ, and a set of clauses
ψ ⊆ ϕI . The procedure adds a number of clauses to the proof, culminating with the addition
of the target clause: u ∨

∨
ℓ∈ρ ℓ, indicating that (

∧
ℓ∈ρ ℓ)⇒ u, i.e., that any total assignment

α such that ρ ⊆ α will assign α(u) = 1. The top-level call has u = r, ρ = ∅, and ψ = ϕI .
The result will therefore be to add unit clause {r} to the proof. Here we present a correct,
but somewhat inefficient formulation of validate. We then refine it with some optimizations.

The recursive call validate(u, ρ, ψ) assumes that we have traversed a path from the root
node down to node u, with the literals encountered in the product nodes forming the partial
assignment ρ. The set of clauses ψ can be a proper subset of the input clauses ϕI when a
product node has caused a splitting into clauses containing disjoint variables. The subgraph
with root node u should be a POG representation of the formula ψ|ρ.

The process for generating such a proof depends on the form of node u:
1. If u is a literal ℓ′, then the formula ψ|ρ must consist of the single unit clause C = {ℓ′},

such that any C ′ ∈ Provρ(C,ψ) must have C ′ ⊆ {ℓ′} ∪
⋃

ℓ∈ρ ℓ. Any of these can serve as
the target clause.

2. If u is a sum node with children u1 and u0, then, since the node originated from a
dec-DNNF graph, there must be some variable x such that either u1 is a literal node for
x or u1 is a product node containing a literal node for x as a child. In either case, we
recursively call validate(u1, ρ ∪ {x}, ψ). This will cause the addition of the target clause
u1∨x∨

∨
ℓ∈ρ ℓ. Similarly, either u0 is a literal node for x or u0 is a product node containing

a literal node for x as a child. In either case, we recursively call validate(u0, ρ ∪ {x}, ψ),
causing the addition of the target clause u0 ∨ x ∨

∨
ℓ∈ρ ℓ. These recursive results can be

combined with the second and third defining clauses for u (see Table 2(B)) to generate
the target clause for u, requiring at most two RUP steps.

3. If u is a product node, then we can divide its children into a set of literal nodes λ and a
set of nonterminal nodes u1,u2, . . . ,uk.
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a. For each literal ℓ ∈ λ, we must prove that any total assignment α, such that ρ ⊂ α has
α(ℓ) = 1. In some cases, this can be done by simple Boolean constraint propagation
(BCP). In other cases, we must prove that the formula ψ|ρ∪{ℓ} is unsatisfiable. We do
so by writing the formula to a file, invoking a proof-generating SAT solver, and then
converting the generated unsatisfiability proof into a sequence of clause additions in
the CPOG file. (The solver is constrained to only use RUP inference rules, preventing
it from introducing extension variables.)

b. For a single nonterminal child (k = 1), we recursively call validate (u1, ρ ∪ λ, ψ).
c. For multiple nonterminal children (k > 1), it must be the case that the clauses in
γ = ψ|ρ can be partitioned into k subsets γ1, γ2, . . . , γk such that D(γi)∩D(γj) = ∅ for
1 ≤ i < j ≤ k, and we can match each node ui to subset γi based on its literals. For
each i such that 1 ≤ i ≤ k, let ψi = Provρ(γi, ψ), i.e., those input clauses in ψ that,
when simplified, became clause partition γi. We recursively call validate (ui, ρ ∪ λ, ψi).

We then generate the target clause for node u with a single RUP step, creating the hint
by combining the results from the BCP and SAT calls for the literals, the recursively
computed target clauses, and all but the first defining clause for node u (see Table 2(A)).

Observe that all of these steps involve a polynomial number of operations per recursive call,
with the exception of those that call a SAT solver to validate a literal.

8.2 Reverse Implication Proof
Completing the equivalence proof of input formula ϕI and its POG representation with root
node r requires showing that M(ϕr) ⊆ M(ϕI). This is done in the CPOG framework by
first deleting all asserted clauses, except for the final unit clause for root literal r, and then
deleting all of the input clauses.

The asserted clauses can be deleted in reverse order, using the same hints that were used
in their original assertions. By reversing the order, those clauses that were used in the hint
when a clause was added will still remain when it is deleted.

Each input clause deletion can be done as a single RUP step, based on an algorithm
to test for clausal entailment in det-DNNF graphs [4, 10]. The proof generator constructs
the hint sequence from the defining clauses of the POG nodes via a single, bottom-up pass
through the graph. The RUP deletion proof for input clause C effectively proves that any
total assignment α that satisfies the POG definition clauses but does not satisfy C will yield
α(r) = 0. It starts with the set of literals {ℓ | ℓ ∈ C}, describing the required condition for
assignment α to falsify clause C. It then adds literals via unit propagation until a conflict
arises. Unit literal r gets added right away, setting up a potential conflict.

Working upward through the graph, node u is marked when the collected set of literals
forces u to evaluate to 0. When marking u, the program adds u to the RUP literals and adds
the appropriate defining clause to the hint. A literal node for ℓ will be marked if ℓ ∈ C, with
no hint required. If product node u has some child ui that is marked, then u is marked and
clause i+ 1 from among its defining clauses (see Table 2(A)) is added to the hint. Marking
sum node u requires that its two children are marked. The first defining clause for this node
(see Table 2(B)) will then be added to the hint. At the very end, the program (assuming the
reverse implication holds) will attempt to mark root node r, which would require α(r) = 0,
yielding a conflict.

It can be seen that the reverse implication proof will be polynomial in the size of the
POG, because each clause deletion requires a single RUP step having a hint with length
bounded by the number of POG nodes.
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9 Optimizations

The performance of the structural proof generator for forward implication, both in its
execution time and the size of the proof generated, can be improved by two optimizations
described here. A key feature is that they do not require any changes to the proof framework
– they build on the power of extended resolution to enable new logical structures. They
involve declaring new product nodes to encode products of literals. These nodes are not part
of the POG representation of the formula; they serve only to enable the forward implication
proof. Here we summarize the two optimizations. The supplement [3] provides more details.

Literal Grouping: A single recursive step of validate can encounter product nodes having
many – tens or even hundreds – of literals as children. The earlier formulation of validate
considers each literal ℓ ∈ λ separately, calling a SAT solver for every literal that cannot
be validated with BCP. Literal grouping handles all of these literals together. It defines
product node v having the literals as children. The goal then becomes to prove that any
total assignment must yield 1 for extension variable v. Calling a solver with v set to 0 yields
an unsatisfiability proof that can be mapped back to a sequence of clause additions in the
CPOG file validating all of the literals.

Lemmas: Our formulation of validate requires each call at a node u to recursively validate
all of its children. This effectively expands the graph into a tree, potentially requiring an
exponential number of recursive steps. Instead, for each node u having indegree(u) > 1, the
program can define and generate the proof of a lemma for u when it is first reached by a call
to validate and then apply this lemma for this and subsequent calls. The lemma states that
the POG with root node u satisfies forward implication for a formula γu, where some of the
clauses in this formula are input clauses from ϕI , but others are simplified versions of input
clauses. The key idea is to introduce product nodes to encode (via DeMorgan’s Laws) the
simplified clauses and have these serve as lemma arguments.

The combination of these two optimization guarantees that i) each call to validate for a
product node will cause at most one invocation of the SAT solver, and ii) each call to validate
for any node u will cause further recursive calls only once. Our experimental results [3] show
that these optimizations yield substantial benefits.

10 A Formally Verified Toolchain

We set out to formally verify the system with two goals in mind: first, to ensure that the
CPOG framework is mathematically sound; and second, to implement correct-by-construction
proof checking and ring evaluation (the “Trusted Code” components of Figure 1). These two
goals are achieved with a single proof development in the Lean 4 programming language [11].
Verification was greatly aided by the Aesop [22] automated tactic. In this section, we briefly
describe the functionality we implemented and what we proved about it. More information
is provided in the supplement [3].

Proof checking. The goal of a CPOG proof is to construct a POG that is equivalent to the
input CNF ϕI . The POG being constructed, and the set of active clauses are stored in the
checker state st. The checker begins by parsing the input formula, initializing the active
clauses to θ ← ϕI , and initializing the POG P to an empty one. It then processes every step
of the CPOG proof, either modifying its state by adding/deleting clauses in θ and adding
nodes to P , or throwing an exception if a step is incorrect. Afterwards, it carries out the
final conditions check of Section 7.2. Throughout the process, we maintain invariants that
ensure that P is partitioned and that a successful final check entails the logical equivalence
of ϕI and ϕr, where r is the final POG root (Theorem 6).
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The specifications we use to state these invariants are built on a general theory of
propositional logic, mirroring Section 3. Following the DIMACS CNF convention, we define
the data types Var of variables being positive natural numbers, ILit of literals being non-zero
integers, and PropForm of propositional formulas. PropForm is generic over the type of variables,
so we instantiate it with our type as PropForm Var. Assignments of truth values are taken to
be total functions PropAssignment Var := Var → Bool. Requiring totality is not a limitation:
instead of talking about two equal, partial assignments to a subset X ′ ⊆ X of variables, we
can more conveniently talk about two total assignments that agree on X ′. We write σ |= φ

when σ : PropAssignment Var satisfies φ : PropForm Var.
The invariants refer to the checker state st with fields st.inputCnf for ϕI , st.clauseDb

for θ, st.pog for P , st.pogDefsForm for the clausal POG definitions formula
∧

u∈P θu,
and st.allVars for all variables (original and extension) added so far. For any u ∈ P ,
st.pog.toPropForm u computes ϕu. The first two invariants state that assignments to original
variables extend uniquely to extension variables defining the POG nodes. In the formalization,
we split this into extension and uniqueness:

/-- Any assignment satisfying φ1 extends to φ2 while preserving values on X. -/
def extendsOver (X : Set Var) (φ1 φ2 : PropForm Var) :=

∀ (σ1 : PropAssignment Var), σ1 |= φ1 → ∃ σ2, σ1.agreeOn X σ2 ∧ σ2 |= φ2

/-- Assignments satisfying φ are determined on Y by their values on X. -/
def uniqueExt (X Y : Set Var) (φ : PropForm Var) :=

∀ (σ1 σ2 : PropAssignment Var), σ1 |= φ → σ2 |= φ → σ1.agreeOn X σ2 →
σ1.agreeOn Y σ2

invariants.extends_pogDefsForm : extendsOver st.inputCnf.vars ⊤ st.pogDefsForm
invariants.uep_pogDefsForm : uniqueExt st.inputCnf.vars st.allVars st.pogDefsForm

Note that in the definition of uniqueExt, the arrows associate to the right, so the definition
says that the three assumptions imply the conclusion. The next invariant guarantees that
the set of solutions over the original variables is preserved:

def equivalentOver (X : Set Var) (φ1 φ2 : PropForm Var) :=
extendsOver X φ1 φ2 ∧ extendsOver X φ2 φ1

invariants.equivInput : equivalentOver st.inputCnf.vars st.inputCnf st.clauseDb

Finally, for every node u ∈ P with corresponding literal u we ensure that ϕu is partitioned
(Definition 2) and relate ϕu to its clausal encoding θu

.= u ∧
∧

v∈P θv:

def partitioned : PropForm Var → Prop
| tr | fls | var _ => True
| neg φ => φ.partitioned
| disj φ ψ => φ.partitioned ∧ ψ.partitioned ∧ ∀ τ, ¬(τ |= φ ∧ τ |= ψ)
| conj φ ψ => φ.partitioned ∧ ψ.partitioned ∧ φ.vars ∩ ψ.vars = ∅

invariants.partitioned : ∀ (u : ILit), (st.pog.toPropForm u).partitioned
invariants.equivalent_lits : ∀ (u : ILit), equivalentOver st.inputCnf.vars

(u ∧ st.pogDefsForm) (st.pog.toPropForm x)

These invariants are maintained by valid CPOG proofs. Together with additional invariants
that ensure the correctness of cached computations, they imply the soundness theorem for P
with root node r:
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▶ Theorem 6. If the proof checker has assembled POG P with root node r starting from
input formula ϕI , and final conditions (as stated in Section 7.2) hold of the checker state,
then ϕI is logically equivalent to ϕr.

Proof. Final conditions imply that the active clausal formula θ is exactly θP
.= {{r}} ∪⋃

u∈P θu. The conclusion follows from this and the checker invariants. The full proof is
formally verified in Lean. ◀

After certifying a CPOG proof, the checker can pass its in-memory POG representation to the
ring evaluator, along with the partitioning guarantee provided by invariants.partitioned.

Ring evaluation. We formalized the central quantity (1) in the ring evaluation problem
(Definition 4) in a commutative ring R as follows:

def weightSum {R : Type} [CommRing R]
(weight : Var → R) (φ : PropForm Var) (s : Finset Var) : R :=

Σ τ in models φ s,
∏

x in s, if τ x then weight x else 1 - weight x

The rules for efficient ring evaluation of partitioned formulas are expressed as:

def ringEval (weight : Var → R) : PropForm Var → R
| tr => 1
| fls => 0
| var x => weight x
| neg φ => 1 - ringEval weight φ

| disj φ ψ => ringEval weight φ + ringEval weight ψ

| conj φ ψ => ringEval weight φ * ringEval weight ψ

Proposition 5 is then formalized as follows:

theorem ringEval_eq_weightSum (weight : Var → R) {φ : PropForm Var} :
partitioned φ → ringEval weight φ = weightSum weight φ (vars φ)

To efficiently compute the ring evaluation of a formula represented by a POG node, we
implemented Pog.ringEval and then proved that it matches the specification above:

theorem ringEval_eq_ringEval (pog : Pog) (weight : Var → R) (x : Var) :
pog.ringEval weight x = (pog.toPropForm x).ringEval weight

Applying this to the output of our verified CPOG proof checker, which we know to be
partitioned and equivalent to the input formula ϕI , we obtain a proof that our toolchain
computes the correct ring evaluation of ϕI .

Model counting. Finally, we established that ring evaluation with the appropriate weights
corresponds to the standard model count. To do so, we defined a function that carries out
an integer calculation of the number of models over a set of variables of cardinality nVars:

def countModels (nVars : Nat) : PropForm Var → Nat
| tr => 2^nVars
| fls => 0
| var _ => 2^(nVars - 1)
| neg φ => 2^nVars - countModels nVars φ

| disj φ ψ => countModels nVars φ + countModels nVars ψ

| conj φ ψ => countModels nVars φ * countModels nVars ψ / 2^nVars
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We then formally proved that for a partitioned formula whose variables are among a finite
set s, this computation really does count the number of models over s:

theorem countModels_eq_card_models {φ : PropForm Var} {s : Finset Var} :
vars φ ⊆ s → partitioned φ → countModels (card s) φ = card (models φ s)

In particular, taking s to be exactly the variables of φ, we have that the number of models
of φ on its variables is countModels φ (card (vars φ)).

11 Implementations

We have implemented programs that, along with the D4 knowledge compiler, form the
toolchain illustrated in Figure 1.4 The proof generator is the same in both cases, since it
need not be trusted. Our verified version of the proof checker and ring evaluator have been
formally verified within the Lean 4 theorem prover. Our long term goal is to rely on these.
Our prototype version is written in C. It is faster and more scalable, but we anticipate its
need will diminish as the verified version is further optimized.

Our proof generator is written in C/C++ and uses CaDiCal [1] as its SAT solver. To
convert proof steps back into hinted CPOG clause additions, the generator can use either its
own RUP proof generator, or it can invoke drat-trim [15]. The latter yields shorter proofs
and scales well to large proofs, but each invocation has a high startup cost. We therefore
only use it when solving larger problems (currently ones with over 1000 clauses).

The proof generator can optionally be instructed to generate a one-sided proof, providing
only the reverse-implication portion of the proof via input clause deletion. This can provide
useful information – any assignment that is a model for the compiled representation must
also be a model for the input formula – even when full validation is impractical.

We incorporated a ring evaluator into the prototype checker. It can perform both standard
and weighted model counting with full precision. It performs arithmetic over a subset of the
rationals we call Q2,5, consisting of numbers of the form a · 2b · 5c, for integers a, b, and c,
and with a implemented to have arbitrary range. Allowing scaling by powers of 2 enables the
density computation and rescaling required for standard model counting. Allowing scaling
by powers of both 2 and 5 enables exact decimal arithmetic, handling the weights used in
the weighted model counting competitions. To give a sense of scale, the counter generated a
result with 260,909 decimal digits for one of the weighted benchmarks.

12 Experimental Evaluation

We summarize the results of our experiments here. The supplement [3] provides a more
complete description. For our evaluation, we used the public benchmark problems from the
2022 standard and weighted model competitions.5 We found that there were 180 unique CNF
files among these, ranging in size from 250 to 2,753,207 clauses. We ran our programs on a
processor with 64 GB of memory and having an attached high-speed, solid-state disk. With
a runtime limit of 4000 seconds, D4 completed for 124 of the benchmark problems. Our
proof generator was able to convert all of these into POGs, with their declarations ranging
from 304 to 2,761,457,765 (median 848,784) defining clauses.

4 The source code for all tools is available at https://github.com/rebryant/cpog/releases/tag/v1.0.0.
5 Downloaded from https://mccompetition.org/2022/mc_description.html

https://github.com/rebryant/cpog/releases/tag/v1.0.0
https://mccompetition.org/2022/mc_description.html
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Figure 2 Runtime (left) and proof size (right) for CPOG proofs. The runtime includes proof
generation, checking, and model counting relative to the runtime for D4. The proof size is measured
as total clauses relative to the number of defining clauses.

We ran our proof generator with a time limit of 10,000 seconds. The results are shown in
Figure 2, The left-hand plot shows the elapsed time for the combination of proof generation,
checking, and counting versus the time for D4. The proof generator was able to generate full
proofs for 108 of the problems and one-sided proofs for an additional 9 of them, leaving just
7 with no verification. The prototype checker successfully verified all of the generated proofs.
The longest runtime for the combination of proof generation, checking, and counting for a
full proof was 13,145 seconds. Overall the ratio between the combined time for generation,
checking, and counting versus the time for D4 had a harmonic mean of 5.5. The right-hand
plot shows the total number of clauses in the CPOG file versus the number of defining clauses
for the problems having full proofs. The ratio between the total number of clauses and the
number of defining clauses had a harmonic mean of 3.13. To date, we have not found any
errors in the dec-DNNF graphs generated by D4.

We found that the monolithic approach for generating the forward implication proof
works well for smaller POGs (up to one million defining clauses), but it becomes inefficient for
larger ones. These experiments suggest a possible hybrid approach, stopping the recursion of
the structural approach and shifting to monolithic mode once the subgraph size is below some
threshold. By using monolithic mode, we were also able to perform end-to-end verification of
all but one of the benchmarks that could be verified without preprocessing, with a total time
limit (including preprocessing) of 1,000 seconds.

We also found that our two optimizations: literal grouping and lemmas can provide
substantial improvements in proof size and runtime. In the extreme cases, a lack of lemmas
caused one proof to grow by a factor of 52.5, while a lack of literal grouping caused another
proof to grow by a factor of 39.6. Overall, it is clear that these two optimizations are
worthwhile, and sometimes critical, to success for some benchmarks.
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Running the verified proof checker in Lean 4 required, on average (harmonic mean),
around 5.9 times longer than the prototype checker. Encouragingly, the scaling trends
were identical for the two solvers, indicating that the two checkers have similar asymptotic
performance. We consider a factor of 5.9 to be acceptable for the assurance provided by
formal verification.

In comparing other proof frameworks, we found that the CD4 toolchain ran very fast and
could handle very large benchmarks. Even with a total time limit of 1,000 seconds, including
the time for knowledge compilation, the CD4 toolchain completed 106 benchmarks, while
the CPOG toolchain completed just 82. We found that the runtimes for the MICE toolchain
versus our CPOG toolchain showed little correlation, reflecting the fact that the two solve
different problems and use different approaches. In general, our CPOG toolchain showed
better scaling, in part due to its ability to control the recursion through lemmas. Neither of
these prior toolchains could perform end-to-end verification when the knowledge compilation
was preceded by preprocessing.

13 Conclusions

This paper demonstrates a method for certifying the equivalence of two different representa-
tions of a Boolean formula: an input formula represented in conjunctive normal form, and
a compiled representation that can then be used to extract useful information about the
formula, including its weighted and unweighted model counts. It builds on the extensive
techniques that have been developed for clausal proof systems, including extended resolution
and reverse unit propagation, as well as established tools, such as proof-generating SAT
solvers and drat-trim.

We are hopeful that having checkable proofs for knowledge compilers will allow them
to be used in applications where high levels of trust are required, and that it will provide a
useful tool for developers of knowledge compilers. Our experiments demonstrate that our
toolchain can already handle problems nearly at the limits of current knowledge compilers.
Further engineering and optimization of our proof generator and checker could improve
their performance and capacity substantially. We are hopeful that our tool can be adapted
to handle other knowledge compiler representations, such as sentential decision diagrams
(SDDs) [9].
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Separating Incremental and Non-Incremental
Bottom-Up Compilation
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Abstract
The aim of a compiler is, given a function represented in some language, to generate an equivalent
representation in a target language L. In bottom-up (BU) compilation of functions given as
CNF formulas, constructing the new representation requires compiling several subformulas in L.
The compiler starts by compiling the clauses in L and iteratively constructs representations for
new subformulas using an “Apply” operator that performs conjunction in L, until all clauses are
combined into one representation. In principle, BU compilation can generate representations for
any subformulas and conjoin them in any way. But an attractive strategy from a practical point
of view is to augment one main representation – which we call the core – by conjoining to it the
clauses one at a time. We refer to this strategy as incremental BU compilation. We prove that,
for known relevant languages L for BU compilation, there is a class of CNF formulas that admit
BU compilations to L that generate only polynomial-size intermediate representations, while their
incremental BU compilations all generate an exponential-size core.
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1 Introduction

Knowledge compilation (KC) is a domain of computer sciences that deals with different
models for representing knowledge, or functions. Here, a compilation is a procedure that
changes the representation of a function into something that allows for efficient reasoning.
One aspect of KC is to find classes of representations, or compilation languages, that render
interesting queries tractable [6, 15]. For Boolean functions, many such languages are subsets
of the class of circuits in decomposable negation normal form (DNNF) [5].

When the function to compile into a sublanguage L of DNNF is given as a system
of constraints, say a CNF formula (where constraints are clauses), different compilation
paradigms are available, in particular top-down (TD) compilation and bottom-up (BU)
compilation. TD compilers produce a compiled form as the trace of an algorithm that
explores the space of solutions to the system, for instance the trace of a DPLL algorithm
that does not stop after finding a solution but instead keep searching for more [11, 20]. A
more general description is that TD compilers start from the whole system of constraints and
recursively consider smaller systems. In contrast, BU compilers first compile each constraint
independently, and then combine their compiled representations in pairs to construct a
representation of the whole system. A key component in this paradigm is an “Apply”
operator that, given two functions written in L, efficiently constructs a representation of their
conjunction in L. Since binary conjunction is tractable, under some conditions, for ordered
binary decision diagrams (OBDD) [2], for sentential decision diagrams (SDD) [4], and more
generally for circuits in structured decomposable negation normal form (strDNNF) [19], in
practice the target languages of BU compilers are restricted to sublanguages of strDNNF
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(including OBDD and SDD). A inconvenience of BU compilation is that, to compile a CNF
formula in L, one must first compile several of its subformulas. Empirical observations
show that intermediate subformulas sometimes require representations that are much larger
than both the input and the output of the compiler [10, 16]. A good BU compiler tries to
avoid such hard subformulas by combining the clauses in a smart way following heuristics.
Unfortunately, for some formulas, hard subformulas simply are unavoidable. This has been
proved for several models of BU compilation into OBDD [14, 23, 9, 12] and more generally
into strDNNF [8, 13]. To be more precise, these results show exponential lower bounds on
the size of intermediate results for L-based refutations of unsatisfiable CNF formulas [1],
which can be seen as BU compilations to L when they do not use weakening or projection
rules.

In this paper, we study how BU compilers differ space-wise for different strategies to
combine the clauses. Our main result is that the variant of BU compilation often used
in practice, which we call incremental BU compilation, is less powerful than general BU
compilation in the sense that for some formulas, incremental BU compilation always generates
intermediate representations of exponential size, while general BU compilation can avoid it.
Let us now precise what we mean by incremental BU compilers for CNF formulas. These
are compilers that work clause by clause. An incremental compiler keeps in memory a single
representation for subformulas – that we call the core – and repeatedly combines the core with
a clause until it represents the whole formula. So whenever an “Apply” is done, one of the
inputs is the core and the other represents a clause. Importantly, the next clause to conjoin
to the core may be selected just before the “Apply”, so the order for combining the clauses is
not necessarily decided ahead of compilation. Examples of incremental compiler can be found
in [16] for the compilation of configuration problems into BDD; in the compiler SALADD1 for
compiling systems of pseudo-Boolean constraints into multi-valued decision diagrams (MDD);
and we will later argue that the approach described in [3], which is the basis for the default
compiler of the SDD package2, can in fact be simulated by incremental compilation with only
a polynomial size increase. The BU framework makes no assumption on how the constraints
or clauses are combined and our objective is to show that fixing a strategy, while completely
legitimate in practice, results in unavoidable exponential-size intermediate representations
for some formulas that are otherwise “easy” to compile. Formally our result is the following

▶ Theorem 1. There is an infinite class Φ of CNF formulas such that every ϕ ∈ Φ
over n variables admits polynomial-size compilations in OBDD(∧,r) but all its incremental
compilations in strDNNF(∧,r) create intermediate circuits of size 2Ω(

√
n)poly(1/n).

An L(∧, r) compilation refers to a BU compilation in L that uses the “Apply” to conjoin
elements in L that are “similarly structured” and where arbitrary modifications preserving
equivalence can be made to an intermediate result before it is fed to an “Apply” (this
accounts for the so-called “restructuring” or “reordering” operation). To put our result into
perspective, for L ∈ {OBDD, SDD, strDNNF}, the lower bounds shown in [14, 23, 12, 8, 13]
hold regardless of the BU compilation strategy and, in the few cases where the clauses
are chosen in a certain order, for instance in [9], it is not clear that the formulas for the
lower bounds are easily compiled non-incrementally. Further, we are not aware of practical
BU compilers for CNF formulas that are not incremental or that can not be simulated
by incremental compilation. We do not claim that the development of non-incremental

1 https://www.irit.fr/~Helene.Fargier/BR4CP/CompilateurSALADD.html
2 http://reasoning.cs.ucla.edu/sdd/
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compilers is the path to follow since we doubt of the practicability of that strategy. But we
argue that while lower bounds in the general general framework are strong results, positive
results on the other hand have no practical implication unless they can be proved for the
incremental strategy. Things are different for OBDD-based refutations that rely on the
weakening rule, so we can not make any claim in this context. Some refutation strategies
improve upon the incremental approach using a clustering step [17, 18]. These approaches
are non-incremental but are not very relevant to this work since the clusters are defined
so that variables can be forgotten (i.e., existentially quantified out) after compilation of a
cluster, which is forbidden in our setting as this modifies the function to compile. This is
also the reason why the techniques used by Segerlind to separate tree-like OBDD-based
refutations and general OBDD-based refutations [22] are not applicable in our setting, despite
the apparent proximity with our topic.

The paper is organized as follows. We start in Section 2 with preliminaries where we
describe the compilation languages considered and the general framework for BU compilation.
Then in Section 3 we formalize incremental BU compilation and discuss some of its advantages
compared to general BU compilation. The main part of the paper is Section 4 where we
prove our main result on the separation between incremental and general BU compilation.
Finally, Section 5 briefly discusses the implications of this result in practice and regarding
the choice of a framework for modeling the behavior of algorithms.

2 Preliminaries

A Boolean variable is a variable x over {0, 1} (0 for false, 1 for true). An assignment to
a set X of Boolean variables is a mapping from X to {0, 1}. We call {0, 1}X the set of
assignments to X. A Boolean function f over X is a mapping from {0, 1}X to {0, 1}. When
not specified, var(f) denotes the set of variables of f . A literal is Boolean variable x or its
negation x. We use the usual symbols ∧ and ∨ for conjunction and disjunction. A clause is
a disjunction of literals and a CNF formula ϕ is a conjunction of clauses. We often see ϕ
as the set of its clauses, so that we can write c ∈ ϕ to denote that c is a clause of ϕ, and
ϕ \ c to denote the CNF formula whose clauses are all clauses of ϕ except c. Given a set of
clauses S, we sometimes write

∧
S to denote the CNF formula

∧
c∈S c. CNF formulas are

representations of Boolean functions. Two representations Σ and Σ′ are equivalent, denoted
by Σ ≡ Σ′ if they represent the same function, in particular they must be defined over the
same set of variables. We say that Σ entails Σ′, denoted by Σ |= Σ′ if var(Σ′) ⊆ var(Σ) and
every assignment to var(Σ) that satisfies Σ also satisfies Σ′.

Circuits in strDNNF

A circuit is in negation normal form (NNF) is a Boolean circuit whose gates are ∨-gates and
∧-gates and whose inputs are literals or {0, 1} inputs. In particular there are no ¬-gates
in a circuit in NNF. The set of variables below a gate g is denoted by var(g). A gate g
with inputs g1, . . . , gk is called decomposable when var(gi) ∩ var(gj) = ∅ for every i ≠ j. A
circuit in NNF is in decomposable NNF (DNNF) when all its ∧-gates are decomposable.
Circuits in strDNNF respect a more constrained variant of decomposability called structured
decomposability. It requires a vtree (variable tree), that is, a rooted binary tree T whose
leaves are in bijection with the circuit’s variables. For t a node of T , we denote by var(t)
the set of variables that label leaves under t. The circuit D in DNNF respects T when all
∧-gates have fan-in 2 and when there is a mapping λ from D’s gates to T ’s nodes such that
for every gate g of D,
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Figure 1 A circuit in strDNNF.

var(g) ⊆ var(λ(g)),
if g is a ∨-gate with inputs g1, . . . , gk, then λ(g) = λ(g1) = · · · = λ(gk),
if g is a ∧-gate with inputs g1, g2 then λ(g) = t is an internal node of T and there is a
node t1 under its first child and a node t2 under its second child such that λ(g1) = t1
and λ(g2) = t2.

The size of D, denoted by |D| is the number of connectors in the circuit. Not all circuits in
DNNF are in strDNNF but the class of circuits in strDNNF, called the strDNNF language, is
sufficiently expressive to represent all Boolean functions over finitely many variables [19]. An
example of circuit in strDNNF is shown Figure 1: the mapping between internal gates and
nodes of the vtree is represented with solid, dashed and dotted boxes. Important function
representations in compilation admit linear-time translations into strDNNF, including SDDs
whose definition we omit (see [4]) and OBDDs which we define now.

OBDDs

Given two Boolean functions c0, c1 and a Boolean variable x, the decision node x

c0 c1
represents the function (x∧ c0) ∨ (x∧ c1). Graphically, if x is set to 0 then follow the dashed
arrow, otherwise if x is set to 1 then follow the solid arrow. A binary decision diagram (BDD)
is a directed acyclic graph (DAG) with a single root and two sinks labelled by 0 and 1, and
whose internal nodes are decision nodes. BDDs are interpreted as Boolean functions over
the variables that label their decision nodes. The satisfying assignments are those whose
unique corresponding path leads to the sink 1. An ordered BDD (OBDD) is such that the
variables appear in the same order and at most once along every path from the root to
a sink. Examples of OBDDs are shown in Example 2. The class of OBDDs is called the
OBDD language. The size of an OBDD B, denoted by |B|, is its number of nodes. OBDDs
can be transformed in linear time into strDNNF circuits respecting linear vtrees, that is,
vtrees where every internal node has a child that is a leaf. So OBDDs can be seen as being
structured by linear vtrees.

Bottom-up compilation

Given a language L whose elements are structured by vtrees and a system of finitely many
constraints ϕ (for instance a CNF formula, where constraints are clauses), an L(∧, r) bottom-
up compilation of ϕ in L is a sequence

(Σ1, I1), (Σ2, I2), . . . , (ΣN , IN )

where Σ1, . . . ,ΣN are elements of L such that ΣN ≡ ϕ and where, for every i ∈ {1, . . . , N},
Ii is an instruction telling how Σi is obtained. Three types of instructions are possible:
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Σi = Compile(c) for some constraint c of ϕ. Then Σi ≡ c.
Σi = Apply(Σj ,Σk,∧) for some j, k < i such that Σi,Σj ,Σk respect the same vtree. Then
Σi ≡ Σj ∧ Σk.
Σi = Restructure(Σj) for some j < i. Then Σi ≡ Σj and their vtrees may differ.

The size of the compilation is defined as max1≤i≤N |Σi|. The Restructure instruction accounts
for the r in the name “L(∧, r) compilation”. When this instruction is not used, we say that
we have an L(∧) compilation. Regarding the Apply instruction, the assumption that Σi, Σj
and Σk respect the same vtree is essential since, for many languages L, polynomial-time
conjunction of two elements in L into a another element in L is feasible only when the initial
elements have compatible vtrees. Quadratic-time Apply procedures for conjunction are known
for the languages considered in this paper, namely for OBDD [2], SDD [4] and strDNNF [19].

3 Incremental and Non-Incremental Bottom-Up Compilation

To compile a CNF formula in a bottom-up manner, some compilers work clause by clause.
The idea is to keep one main representation, which we call the core, to which clauses are
conjoined one after the other. We call this strategy incremental bottom-up compilation.
Formally, an incremental L(∧, r) compilation is an L(∧, r) compilation where every Apply
instruction is of the form Apply(Σ, Compile(c), ∧), where Σ ∈ L has been computed previously
in the compilation and c is a clause/constraint of the formula to compile. We used a simplified
framework where, for all Ii, the core is Σi−1 (by convention Σ0 = 1).

Σi = Apply(Σi−1,Σc,∧) where c ∈ ϕ and Σc ≡ c respects the same vtree as Σi−1 and Σi.
Σi = Restructure(Σi−1). Then Σi ≡ Σi−1 and their vtrees may differ.

For convenience the compilation of Σc is implicit. We can visualize the compilation
(Σ1, I1), . . . , (ΣN , IN ) as a directed acyclic graph whose vertices are in bijection with the Σis.
If Ii is a Compile instruction, then Σi is a source of the DAG, else if Ii is Σi = Restructure(Σj)
then there is an edge from Σj to Σi, and if Ii is Σi = Apply(Σj , Σk, ∧), then there is an edge
from Σj to Σi and another one from Σk to Σi. In this DAG representation, if we bypass
the nodes of in-degree 1 created by the Restructure instructions, then an incremental BU
compilation is shaped like a linear tree, that is, a tree such where every node is either a leaf
or has a leaf child. In general BU compilation, the DAG can be shaped like a tree, in which
case we have a tree-like compilation, or it can have a general DAG structure (some Σis may
be inputs to more than one Apply).

▶ Example 2. Consider the CNF formula ϕ = (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x3) =
c1 ∧ c2 ∧ c3 ∧ c4, and the following OBDDs:

x0

x1

x2

10︸ ︷︷ ︸
B1

x0

x1

x2

10︸ ︷︷ ︸
B2

x0

x1

x3

10︸ ︷︷ ︸
B3

x0

x1

x3

10︸ ︷︷ ︸
B4

x0

x1

x2 x2

10︸ ︷︷ ︸
B5

x1

x2

x2

x3

10︸ ︷︷ ︸
B6

x0

x1

x3 x3

10︸ ︷︷ ︸
B′

6

x1

x2 x2

x3 x3

10︸ ︷︷ ︸
B7

B1, B2, B3 and B4 represent the clauses c1, c2, c3 and c4, respectively. Now consider the
following bottom-up compilations of ϕ:
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B1 = Compile(c1)
B2 = Compile(c2)
B5 = Apply(B1, B2,∧)
B3 = Compile(c3)
B6 = Apply(B3, B5,∧)
B4 = Compile(c4)
B7 = Apply(B4, B6,∧) B1 B2 B3 B4

B5

B6

B7 B1 = Compile(c1)
B2 = Compile(c2)
B3 = Compile(c3)
B4 = Compile(c4)
B5 = Apply(B1, B2,∧)
B′

6 = Apply(B3, B4,∧)
B7 = Apply(B5, B

′
6,∧) B1 B2 B3 B4

B5 B′
6

B7

The left compilation is incremental whereas the one on the right is tree-like but non-
incremental since B7 is obtained from B5 and B′

6, none of which represents a clause from ϕ.

In incremental BU compilation, the constraints are conjoined in a certain order. The
framework is general enough that, in practice, the order for the constraints is not necessarily
fixed before the first Apply: an incremental BU compiler that has run a few steps and
computed the core Σ can dynamically decide the next clause to conjoin based on Σ.

Some strategies for BU compilation are definitely not incremental but can be simulated
by incremental BU compilation. For instance, we claim it is the case of the compiler
scheme described in [3] for compiling a CNF formula into an SDD. Since we have omitted
the definition of SDDs, we look at it as a compilation to strDNNF (of which SDD is a
sublanguage). Say ϕ(X) be the CNF formula to compile and let T be a vtree over X. Let Tv
denotes the subtree of T rooted under node v. Reusing some of the terminology in [4], we say
that each clause c of ϕ is hosted at the unique deepest node v of T such that var(c) ⊆ var(v).
Let ϕv be the subformula of ϕ made uniquely of clauses over var(v) and let ϕhostv be the
subformula of ϕ made uniquely of clauses of ϕ hosted at v. Suppose v is not a leaf and let
v1 and v2 be its children. The idea is, given T , to recursively compute a strDNNF circuit
Dv ≡ ϕv for the node v as follows
(1) compute the strDNNF circuits Dv1 ≡ ϕv1 and Dv2 ≡ ϕv2 for v1 and v2 respecting the

vtrees Tv1 and Tv2 respectively
(2) compute D = Apply(Dv1 , Dv2 ,∧) that respects Tv
(3) incrementally conjoin all clauses of ϕhostv to D, perhaps restructuring D to change its

vtree under v between two Apply (so T is modified but only under v).
The strDNNF circuit for the root node of T represents ϕ. Observe that, by definition of a
vtree, in step (2) there is var(ϕv1) ∩ var(ϕv2) = var(v1) ∩ var(v2) = ∅, so we say that the
Apply occurring there is decomposable. We claim that this approach can be simulated by an
incremental strDNNF(∧,r) compilation because any Apply that does not fit the incremental
approach is a decomposable Apply from step (2) and such Apply are easy to simulate in the
incremental approach. The proof of the following is deferred to the appendix.

▶ Proposition 3. Every strDNNF(∧,r) compilation of a CNF formula ϕ where every Apply
that does not involve a clause of ϕ computes the conjunction of two strDNNF circuits
representing subformulas of ϕ over disjoint set of variables, can be transformed into an
incremental strDNNF(∧,r) compilation with only a polynomial increase in size.

Let us mention some advantages of incremental BU compilation. First, many guarantees
on the size of the final output of a BU compilation also hold for incremental BU compilation.
Especially, it is known that if the primal graph of a CNF formula has logarithmic treewidth,
then the formula can be compiled into a polynomial-size SDD [4] and, since the primal
treewidth cannot increase for subformulas it follows that, in the case of a logarithmic
treewidth, polynomial-size compilations in SDD(∧,r) exist even in the incremental case.
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Another example is on the role of restructuring in BU compilation: it is shown in [12] that
OBDD(∧,r) compilations are exponentially more compact than OBDD(∧) compilations and
a careful observation of the proof reveals that the OBDD(∧,r) compilations used there can
be made incremental. So restructuring does not require stronger strategies than incremental
compilation to have a positive effect. From a practical point of view, incremental compilers
have the advantage that the purpose of restructuring is clear (at least when compiling CNF
formulas): it is to reduce the size of the core. This is fairly intuitive and corresponds to what
is done in practice, in particular by the default compiler of the SDD package. One can actually
prove that there is not much interest space-wise in using restructuring for anything else as
any incremental L(∧,r) compilation for L ∈ {OBDD, SDD, strDNNF} can be transformed in
polynomial-time into another L(∧,r) compilation where restructuring never increases the
size of the core. The proof of the following appears in appendix.

▶ Proposition 4. Let L ∈ {OBDD,SDD, strDNNF}, let (Σ1, I1), . . . , (ΣN , IN ) be an
incremental L(∧,r) compilation of the CNF formula ϕ over n variables. There exists an
incremental L(∧,r) compilation (Σ′

1, I
′
1), . . . , (Σ′

M , I
′
M ) of ϕ such that M ≤ 2N and, for every

j ∈ {1, . . . ,M} there is an i ∈ {1, . . . , N} such that Σ′
j ≡ Σi and |Σ′

j | ≤ 2n|Σi|. In addition,
when Σ′

j is obtained by restructuring Σ′
j−1, we have |Σ′

j | ≤ |Σ′
j−1|.

We note that Proposition 4 holds because every clause has a linear-size representation in L

for every vtree. The statement holds for other types of constraints that share this property,
for instance parity constraints [20], but it is not clear whether it applies to general systems
of constraints as well.

In non-incremental BU compilation, restructuring may not be used only for reducing the
size. Indeed, given two circuits in L respecting different vtrees over the same variables, using
an Apply to obtain their conjunction requires changing the vtree of at least one of them, so
it requires a restructuring step. But it can be the case that there is no way to make both
circuits respect the same vtree without a global size increase.

4 Separating Incremental and Non-Incremental Compilation

In this section, we prove the main result of the paper, which is the separation between
incremental and non-incremental bottom-up compilation.

▶ Theorem 1. There is an infinite class Φ of CNF formulas such that every ϕ ∈ Φ
over n variables admits polynomial-size compilations in OBDD(∧,r) but all its incremental
compilations in strDNNF(∧,r) create intermediate circuits of size 2Ω(

√
n)poly(1/n).

4.1 General Idea for the Separation
First we sketch the general idea for proving the separation. We use two CNF formulas ϕ1(X)
and ϕ2(X) and consider the formula ϕ(X) =

∧
c1∈ϕ1

∧
c2∈ϕ2

(c1 ∨ c2). This formula is in
CNF and is equivalent to ϕ1 ∨ ϕ2. Let us say that ϕ1 is unsatisfiable, then ϕ is equivalent
to ϕ2. To compile ϕ in non-incremental OBDD(∧,r), we can first compile independently
the subformulas

∧
c1∈ϕ1

(c1 ∨ c2) ≡ ϕ1 ∨ c2 ≡ c2 for every c2 ∈ ϕ2. This gives one OBDD
Bc2 for every clause of ϕ2. Any clause can be represented by a small OBDD with respect
to any variable ordering so, using restructuring, we can freely choose the variable ordering
for Bc2 . Then, starting from the OBDDs Bc2 for all c2 ∈ ϕ2, we can compile an OBDD
representing ϕ as if we were doing a BU compilation of ϕ2. The idea is summarized in Figure 2
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BU
compile
ϕ1∨c1

2

Bc1
2

∧
c1∈ϕ1

(c1 ∨ c1
2)

BU
compile
ϕ1∨c2

2

Bc2
2

∧
c1∈ϕ1

(c1 ∨ c2
2)

· · ·
BU

compile
ϕ1∨cm

2

Bcm
2

∧
c1∈ϕ1

(c1 ∨ cm2 )

BU compile ϕ2

Bϕ

Figure 2 A bottom-up compilation of ϕ ≡ ϕ1 ∨ ϕ2 when ϕ1 is unsatisfiable.

where c1
2, c

2
2, . . . , c

m
2 are the clauses of ϕ2. The small triangles represent BU compilations of∧

c1∈ϕ1
(c1 ∨ ci2). Each costs roughly the same as a BU compilation of ϕ1. So the cost of this

compilation scheme is roughly m times the cost of a BU compilation of ϕ1, plus the cost of a
BU compilation of ϕ2.

Now what happens when compiling ϕ incrementally in strDNNF(∧,r) (which is more
general than OBDD(∧,r))? Well, let us look at the last instruction Apply of the compilation:
suppose it is D′ = Apply(D,Dγ1∨γ2 ,∧), that is, we conjoin the core circuit D with a
circuit in strDNNF representing the clause γ1 ∨ γ2 where γ1 ∈ ϕ1 and γ2 ∈ ϕ2. But
then D computes the CNF formula ϕ \ (γ1 ∨ γ2), which one can show is equivalent to
(ϕ2 ∨ (ϕ1 \ γ1)) ∧ (ϕ1 ∨ (ϕ2 \ γ2)) ≡ ((ϕ1 \ γ1) ∧ (ϕ2 \ γ2)) ∨ ϕ2 since ϕ1 is unsatisfiable. For
convenience let us assume that ϕ2 is also unsatisfiable and that the minimal unsatisfiable
subsets of ϕ1 and ϕ2 are themselves (so both ϕ1 \ γ1 and ϕ2 \ γ2 are satisfiable). Then the
cost of compiling ϕ incrementally is at least the cost of compiling (ϕ1 \ γ1) ∧ (ϕ2 \ γ2).

To separate general BU compilation from incremental BU compilation, we look for
formulas ϕ1 and ϕ2 that are both easy to compile in OBDD(∧,r), so that ϕ is easy to compile
in non-incremental OBDD(∧,r) using the scheme of Figure 2, but such that (ϕ1 \γ1)∧(ϕ2 \γ2)
can only be represented by exponential-size strDNNF circuits regardless of the vtree and
regardless of the choice of γ1 and γ2. In the next sections, we describe our formulas and give
the formal proof. For the sake of keeping the proof simple, we will choose a formula ϕ2 that
is satisfiable and we will not necessarily look at the very last Apply of the compilation, but
the idea behind the proof is unchanged.

4.2 The Formula ϕ for the Separation
Let X = {xi,j | 1 ≤ i, j ≤ n} and consider the following functions:

ROWn(X) (resp. COLn(X)) is the function over X whose satisfying assignments are
that for which each row (resp. column) of the n×n matrix [xi,j ]i,j contains exactly one 1.
ODD(X) (resp. EVEN(X)) is the function over X whose satisfying assignments are that
for which there is an odd (resp. even) number of 1s in the n× n matrix [xi,j ]i,j .

We will consider CNF formulas representing ROWn(X) and COLn(X), and CNF formulas
encoding ODD(X) and EVEN(X). We distinguish a representation from an encoding in that
the latter uses auxiliary variables while the former does not. The CNF formulas representing
ROWn(X) and COLn(X) are:
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rown(X) =
∧

1≤i≤n

(
(xi,1 ∨ · · · ∨ xi,n) ∧

∧
1≤j<k≤n

(xi,j ∨ xi,k)
)

coln(X) =
∧

1≤j≤n

(
(x1,j ∨ · · · ∨ xn,j) ∧

∧
1≤h<i≤n

(xh,j ∨ xi,j)
)

ODD and EVEN do not have polynomial-size representations in CNF but they have linear-
size encodings. We use the notation (a+ b+ c = 0 mod 2) to denote the clauses (a ∨ b ∨
c) ∧ (a ∨ b ∨ c) ∧ (a ∨ b ∨ c) ∧ (a ∨ b ∨ c). We use the standard encoding [21]:

oddn(X,Y ) = yn ∧
∧

1≤j≤n

∧
1≤i≤n

(yi,j + yi−1,j + xi,j = 0 mod 2)

where y0,j = yn,j−1 if j > 1, and y0,1 = 0. In oddn(X,Y ), the matrix is browsed row-wise
and a satisfying assignment sets yi,j to 1 if and only if the number of 1s found before the cell
i, j is odd.

We define evenn(X,Y ) analogously: we just replace the (a + b + c = 0 mod 2) by
(a+ b+ c = 1 mod 2), which clauses are (a ∨ b ∨ c) ∧ (a ∨ b ∨ c) ∧ (a ∨ b ∨ c) ∧ (a ∨ b ∨ c).
The following holds:

rown(X) ≡ ROWn(X) and coln(X) ≡ COLn(X) and
∃Y.oddn(X,Y ) ≡ ODD(X) and ∃Y.evenn(X,Y ) ≡ EVEN(X).

Let n be an even integer, let ϕ1(X) = rown(X), and let

ϕ∗
1(X,Y ) = ϕ1(X) ∧ oddn(X,Y ) and ϕ2(X) =

∧
1≤j≤n

∧
1≤h<i≤n

(xh,j ∨ xi,j). (1)

ϕ2 represents the function that accepts exactly the matrices [xi,j ]i,j whose columns all
contains at most one 1. We will later refer to this function as AMOpCOLn (at most one per
column). ϕ∗

1 is unsatisfiable since n is even. We will use the following CNF formula for the
separation:

ϕ =
∧

c1∈ϕ∗
1

∧
c2∈ϕ2

(c1 ∨ c2) ≡ ϕ∗
1 ∨ ϕ2 ≡ ϕ2. (2)

4.3 ϕ is Easy to Compile in OBDD(∧,r)
Let us start with the proof that ϕ can be compiled in OBDD(∧,r) using only polynomial-size
OBDDs. The key element here is that both ϕ∗

1 and ϕ2 are easily compiled in OBDD(∧,r).

▶ Lemma 5. The formulas ϕ∗
1 and ϕ2 defined in (1) have polynomial-size OBDD(∧,r)

compilations.

Proof. Let us start with ϕ∗
1. We fix an i between 1 and n. For every j, we separately compile∧

k>j(xi,j ∨ xi,k) ≡ xi,j ∨
∧
k>j xi,k into an OBDD Bj that respects the variable ordering

xi,1, xi,2, . . . , xi,n. It is easy to see that compiling each Bj is feasible in polynomial time in
OBDD(∧,r).

▷ Claim 6. B1 ∧ · · · ∧Bj is equivalent to the OBDD represented in Figure (3a).
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xi,1

xi,2 xi,2

xi,3 xi,3

xi,4 xi,4

. . . . . .

0

0

0

xi,j xi,j 0

01
∧
k>j

xi,k

xi,j+1

xi,j+2

. . .

xi,n

1

0

0

0

0

︸ ︷︷ ︸∧
k>j

xi,k

(a) Intermediate step in the compilation of rown.

x1,1

y1,1 y1,1

x1,2 x1,2

y1,2 y1,2

x1,3 x1,3

y1,3 y1,3

0

0

0
· · ·

(b) Intermediate step in the compilation of oddn.

Figure 3 Intermediate steps in the compilation of ϕ∗
1.

The proof of the Claim 6 is deferred to the appendix. We compile B1 ∧ · · · ∧ Bn ≡∧
j ̸=k(xi,j ∨ xi,k) using only OBDDs of size O(n). Let Bi be the resulting OBDD. Next, it

is easy to compile the clause xi,1 ∧ · · · ∧ xi,n into an OBDD of size O(n) and that respects
the variable ordering xi,1, xi,2, . . . , xi,n. We conjoin this OBDD to Bi and thus obtain an
OBDD that represents xi,1 + · · · + xi,n = 1 whose size is O(n) and that we call Bith row.
Now the OBDDs Bith row for every 1 ≤ i ≤ n have disjoint sets of variables so they can be
incrementally conjoined into a single OBDD Brows of size O(n2) that represents ROWn and
whose variable ordering is x1,1, . . . , x1,n, x2,1, . . . , x2,n, . . . , xn,n.

It remains to compile oddn and to conjoin it to Brows. We can com-
pile oddn incrementally in OBDD(∧,r) using only the variable ordering
x1,1, y1,1, x1,2, y1,2, . . . , x1,n, y1,n, x2,1, y2,1, . . . , xn,n, yn,n. First we conjoin the OB-
DDs for the clauses of the parity constraint y1,1 + x1,1 = 0 mod 2 together, then we add
the OBDDs for the clauses of the parity constraint y1,1 + x1,2 + y1,2 = 0 mod 2, and so
on. Once we have added all clauses of a parity constraint, we end up with an OBDD that
looks like that represented Figure (3b). To add the next parity constraints, we only have
four OBDDs to conjoin before we attain again an OBDD that looks like that represented
Figure (3b). So the sizes of the OBDDs used to compile oddn never grow bigger than O(n2).
We call Bodd the final OBDD.

Finally, since Bodd and Brows have compatible variable orderings, they can be conjoined
in quadratic time, and the compilation of ϕ∗

1 is finished.

For ϕ2, the OBDD(∧,r) compilation scheme used to compile the OBDD Bi computing∧
j ̸=k(xi,j ∨ xi,k), respecting the variable ordering xi,1, . . . , xi,n, and whose is size is in O(n),

can be adapted to compile an OBDD Qj computing
∧
h ̸=i(xh,j ∨xi,j), respecting the variable

ordering x1,j , . . . , xn,j and whose size is in O(n). Since the OBDDs Q1, . . . , Qn have pairwise
disjoint sets of variables, they can be incrementally conjoined in polynomial time to obtain
an OBDD computing Q1 ∧ · · · ∧Qn ≡ ϕ2. ◀
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▶ Lemma 7. The formula ϕ defined by (2) can be compiled in OBDD(∧,r) using only OBDDs
of size polynomial in n.

Proof. For every clause c2 ∈ ϕ2, we use Lemma 5 to construct a small OBDD(∧,r) compilation
of

∧
c1∈ϕ∗

1
(c1 ∨ c2): we take the polynomial-size OBDD(∧,r) compilation of ϕ∗

1 described
in the lemma and we apply a disjunction between every OBDD of the compilation and a
small OBDD representing c2. This gives a compilation of

∧
c1∈ϕ∗

1
(c1 ∨ c2) ≡ ϕ∗

1 ∨ c2 ≡ c2
and increases the size of every OBDD by a constant factor only. We do this for each clause
c2 ∈ ϕ2 independently and obtain an OBDD Bc2 for every c2. Then we use restructuring
to change the variable ordering of the Bc2s (clauses admit linear-size OBDDs under every
variable ordering) so that we can use the polynomial-size compilation of ϕ2 described in
Lemma 5. ◀

4.4 ϕ is Hard to Compile Incrementally in strDNNF(∧,r)
We move to the more difficult part that consists in proving that every incremental
strDNNF(∧,r) compilation of ϕ generates intermediate circuits of exponential size. To
this end, we will need the following lemma (which we prove later):

▶ Lemma 8. Let ϕ be the formula defined by (2). Every incremental strDNNF(∧,r) compil-
ation of ϕ generates an intermediate circuit that can be transformed in polynomial-time into
a circuit in strDNNF computing ROWn−∆ ∧ COLn−∆ for some integer ∆ ≤ 3.

The function ROWn(X) ∧ COLn(X) is widely studied in computer sciences and is often
called the permanent. Its satisfying assignments are the 0/1 matrices [xi,j ]i,j that contain
exactly one 1 in every row and exactly one 1 in every column. In particular, these assignments
are in bijection with the permutations of {1, . . . , n} since every assignment a to X that
satisfies ROWn(X) ∧ COLn(X) uniquely corresponds to the permutation that maps every
i ∈ {1, . . . , n} to the unique j ∈ {1, . . . , n} such that a(xi,j) = 1. The permanent is known
to be hard to represent as OBDDs, as read-once branching programs [25, Theorem 6.2.12.]3,
as circuits in strDNNF [24, Proposition 7 and Lemma 27], and even as circuits in DNNF.

▶ Lemma 9 ([7, Proof of Theorem 1]). Every circuit in DNNF representing ROWn(X) ∧
COLn(X) has size 2Ω(n).

The desired lower bound on incremental bottom-up compilation of ϕ follows directly from
Lemmas 8 and 9. Thus the proof of Theorem 1 is straightforward given Lemmas 7, 8 and 9.
The rest of the section is dedicated to the proof of Lemma 8. Due to space constraint, the
proof of several claims is deferred to appendix.

Consider an incremental strDNNF(∧, r) compilation (D1, I1), . . . , (DN , IN ) of ϕ. The
Apply operations are of the form

Di+1 = Apply(Di, Dc1∨c2 ,∧).

where c1 ∈ ϕ1 ∧ oddn and c2 ∈ ϕ2. Consider the largest integer k < N such that
we have that Dk+1 = Apply(Dk, Dγ1∨γ2 ,∧)
and γ1 is a clause of ϕ1 = rown (and not a clause of oddn)
and there are no clauses c1 ∈ ϕ1 and c2 ∈ ϕ2 such that c1∨c2 ̸= γ1∨γ2 and c1∨c2 |= γ1∨γ2.

3 The functions that we call ROWn and COLn do not equal the functions ROWn and COLn from [25].
Our ROWn(X) ∧ COLn(X) corresponds to PERMn in [25]
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D
Conjoin

missing clauses
D=Dk

Forget
variables Y

D′≡
ψ(X,Y )∧

∧
S\γ1∨γ2

Conjoin
with ODD(X)

D′′≡
∃Y.ψ(X,Y )∧

∧
S\γ1∨γ2

Case disjunction
on γ1∨γ2

D′′′≡
ODD(X)∧

∧
S\γ1∨γ2

Figure 4 Strategy for proving Lemma 8.

For this k we have that every Dh for h > k + 1 is obtained either by a Restructure operation,
or by an Apply with an strDNNF circuit Dc1∨c2 such that c1 is a clause of oddn, or by an
Apply with an strDNNF circuit Dc1∨c2 that is entailed by Dk+1.

▷ Claim 10. For any h > k + 1 such that Dh = Apply(Dh−1, Dc1∨c2 ,∧) and c1 ∈ rown, we
have that Dk |= c1 ∨ c2 or γ1 ∨ γ2 |= c1 ∨ c2.

In the rest of the proof, we write D = Dk for convenience. The strategy for showing
Lemma 8 is to turn D into a circuit in strDNNF representing ROWn−∆ ∧ COLn−∆ by means
of a few polynomial-time transformations, as schematized in Figure 4. This differs slightly
from the strategy described in Section 4.1: we are not considering the very last Apply. The
reason is that the formula ϕ contains some clauses c such that ϕ \ c |= c. A few of these
clauses are even tautological. In a sense, these clauses are “irrelevant” in ϕ. Clearly, if the
last Apply of the compilation is conjoining the core to an irrelevant clause, then this Apply is
in fact not modifying the core and we should look at a previous Apply. One could think that
we could prove the statement for a formula ϕ where irrelevant clauses have been removed.
This is certainly true if we only remove tautologuous clauses. However we do not want to
remove the irrelevant clauses that are non-tautologous since such clauses are not necessarily
irrelevant for subformulas of ϕ. So, rather than removing irrelevant clauses from ϕ, we choose
to keep them and to consider another Apply than the very last one.

By definition, not all clauses of the form c1 ∨ c2 with c1 ∈ ϕ1 and c2 ∈ ϕ2 have been
conjoined to the core during the first k steps of the compilation. Let S = {c1 ∨ c2 | c1 ∈
ϕ1, c2 ∈ ϕ2} and let SD⊨ = {c ∈ S | D |= c} be the set of clauses of S that are entailed by D
and let S′ = SD⊨ \ {γ1 ∨ γ2}. Since γ1 ∨ γ2 has not been conjoined to D we have that

D ≡ ψ ∧
∧
S′

where ψ is a subformula of
∧
c∈oddn

∧
c2∈ϕ2

(c∨c2). Ideally we would like S′ to be S \{γ1 ∨γ2},
but this is generally not the case. Given a clause c, let Sc⊨ = {c′ | c′ ∈ S, c′ ̸= c and c |= c′}
be the set of clauses in S that are distinct from c and that are entailed by c. By Claim 10,
each clause in S is either entailed by D or is entailed by γ1 ∨γ2, so S′ ∪Sγ1∨γ2⊨ = S \{γ1 ∨γ2}.

▷ Claim 11. Let γ = γ1 ∨ γ2. For every vtree over X, there is a strDNNF of size O(n2)
respecting that vtree that represents

∧
Sγ⊨ (by convention

∧
∅ = 1).

By Claim 11, there is an strDNNF circuit Dγ1∨γ2⊨ of size O(n2) that computes
∧
Sγ1∨γ2⊨,

and that respects the same vtree as D, so let D′ = Apply(D,Dγ1∨γ2⊨,∧) whose size is
O(n2|D|). We have that:

D′ ≡ ψ ∧
∧

(S′ ∪ Sγ1∨γ2⊨) = ψ ∧
∧

(S \ {γ1 ∨ γ2})

≡ ψ ∧
∧

c1∈ϕ1\γ1

∧
c2∈ϕ2

(c1 ∨ c2) ∧
∧

c2∈ϕ2\γ2

∧
c1∈ϕ1

(c1 ∨ c2)

≡ ψ ∧ ((ϕ1 \ γ1) ∨ ϕ2) ∧ (ϕ1 ∨ (ϕ2 \ γ2))

The next step is to get rid of ψ, or rather to replace it somehow by the function ODD(X)
that is more convenient to manipulate.

▷ Claim 12. We have that ODD(X) |= ∃Y.ψ(X,Y ).
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In knowledge compilation, the forgetting transformation is, given a Boolean function repres-
entation Σ in some fixed language L and a set Z ⊂ var(Σ), to modify Σ into another function
representation Σ′ in L that is equivalent to ∃Z.Σ [6]. Forgetting is feasible in linear time
for the language of circuits in strDNNF [19]. So we can construct a circuit D′′ in strDNNF
representing ∃Y.D′(X,Y ) and such that |D′′| = O(|D′|) = O(n2|D|). Since ϕ1 and ϕ2 are
formulas over X, we have that

D′′(X) ≡ ∃Y.D′(X,Y ) ≡ ((ϕ1 \ γ1) ∨ ϕ2) ∧ (ϕ1 ∨ (ϕ2 \ γ2)) ∧ ∃Y.ψ(X,Y ).

For every vtree over X, there exists a strDNNF circuit that represents ODD(X), that
respects the vtree, and whose size is in O(|X|) [20, Proposition 5]. Let DODD be such a
circuit respecting the same vtree as D′′. Then we have D′′′ = Apply(D′′, DODD,∧) whose
size is O(|X||D′′|) = O(n4|D|) and such that

D′′′(X) ≡ D′′(X) ∧ ODD(X) ≡
(
(ϕ1 \ γ1) ∨ ϕ2

)
∧

(
ϕ1 ∨ (ϕ2 \ γ2)

)
∧ ODD(X),

where the last equivalence follows from Claim 12. Furthermore, since ODD(X) ∧ ϕ1(X) =
ODD(X) ∧ rown(X) is unsatisfiable (because n is even), we have that

D′′′(X) ≡
((

(ϕ1 \ γ1) ∧ (ϕ2 \ γ2)
)

∨ ϕ2

)
∧ ODD(X).

We have gotten rid of ψ as promised. The rest of the proof requires a case disjunction over
γ1 and γ2.

If γ1 = (xi,1 ∨ · · · ∨xi,n) and γ2 = (xi′,j ∨xi′′,j), we can assume, without loss of generality,
that i ̸= i′ and i ̸= i′′ for otherwise γ1 ∨ γ2 would be tautological. We consider the
partial assignment a to X that maps all variables of the ith row to 0, that maps xi′,j and
xi′′,j to 1, and all other variable of the i′th and i′′th row 0, and that maps two columns
distinct from the jth column to 0. We denote by X ′ all other variables left unassigned.
For instance when i = 1, i′ = 2, i′′ = 3 and j = 1 we may have:

a =

0 0 0 · · · · · · 0
1 0 0 · · · · · · 0
1 0 0 · · · · · · 0
0 0 0
...

...
... X ′

0 0 0




.

Then we observe that (ϕ1 \ γ1)|a = (rown \ γ1)|a = rown−3(X ′), that ϕ2|a ≡ 0, that
(ϕ2 \ γ2)|a ≡ AMOpCOLn−3(X ′), and that ODD(X)|a = ODD(X ′). Thus

D′′′(X)|a ≡ rown−3(X ′) ∧ AMOpCOLn−3(X ′) ∧ ODD(X ′),

but since n− 3 is odd, we have that rown−3(X ′) |= ODD(X ′) and thus

D′′′(X)|a ≡ rown−3(X ′) ∧ AMOpCOLn−3(X ′) ≡ ROWn−3(X ′) ∧ COLn−3(X ′).

If γ1 = (xi,j ∨ xi,j′) and γ2 = (xi,j ∨ xi′,j), then we consider the partial assignment a to
X that maps xi,j , xi,j′ and xi′,j to 1, and all other variables of the ith and i′th rows to
0, and all other variables of the jth and j′th column to 0. We denote by X ′ all other
variables left unassigned. For instance when i = 1, i′ = 2, j = 1 and j′ = 2 we have:
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a =

1 1 0 · · · 0
1 0 0 · · · 0
0 0
...

... X ′

0 0




.

Then we observe that (ϕ1 \ γ1)|a = (rown \ γ1)|a = rown−2(X ′), that ϕ2|a ≡ 0, that
(ϕ2 \ γ2)|a ≡ AMOpCOLn−2(X ′), and that ODD(X)|a = EVEN(X ′). Thus

D′′′(X)|a ≡ rown−2(X ′) ∧ AMOpCOLn−2(X ′) ∧ EVEN(X ′),

but since n− 2 is even, we have that rown−2(X ′) |= EVEN(X ′) so

D′′′(X)|a ≡ rown−2(X ′) ∧ AMOpCOLn−2(X ′) ≡ ROWn−2(X ′) ∧ COLn−2(X ′).

If γ1 = (xi,j ∨ xi,j′) and γ2 = (xi′,j′′ ∨ xi′′,j′′), where j j′ and j′′ are pairwise distinct
and where i, i′ and i′′ are pairwise distinct, then we consider the partial assignment a to
X that maps xi,j , xi,j′ , xi′,j′′ and xi′′,j′′ to 1, and that maps all other variables of the
ith, i′th and i′′th rows to 0, and that maps all other variables of the jth, j′th and j′′th
columns to 0. We denote by X ′ all other variables left unassigned. For instance when
i = 1, i′ = 2, i′′ = 3 and j = 2, j′ = 3, j′′ = 1 we have:

a =

0 1 1 0 · · · 0
1 0 0 0 · · · 0
1 0 0 0 · · · 0
0 0 0
...

...
... X ′

0 0 0




.

Then we observe that (ϕ1 \ γ1)|a = (rown \ γ1)|a = rown−3(X ′), that ϕ2|a ≡ 0, that
(ϕ2 \ γ2)|a ≡ AMOpCOLn−3(X ′), and that ODD(X)|a = ODD(X ′). Thus

D′′′(X)|a ≡ rown−3(X ′) ∧ AMOpCOLn−3(X ′) ∧ ODD(X ′),

but since n− 3 is odd, we have that rown−3(X ′) |= ODD(X ′) and thus

D′′′(X)|a ≡ rown−3(X ′) ∧ AMOpCOLn−3(X ′) ≡ ROWn−3(X ′) ∧ COLn−3(X ′).

All other cases are either similar to the these three, or correspond to cases where γ1 ∨ γ2 is
tautological or entailed by some other clause of S, which is impossible due to the assumptions
on k at the beginning of the proof. So, in all relevant cases, we have a partial assignment a
to X such that

D′′′(X)|a ≡ ROWn−∆(X ′) ∧ COLn−∆(X ′)

for some ∆ ≤ 3. Then we just condition D′′′ on a in linear time and we obtain a strDNNF
circuit over X ′ that computes ROWn−∆(X ′) ∧ COLn−∆(X ′). This concludes the proof of
Lemma 8. Given Lemmas 7 and 9, Theorem 1 follows.
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5 Discussion and Conclusion

In this paper we have shown that non-incremental bottom-up (BU) compilation largely
outperforms incremental BU compilation space-wise. This raises several questions which
we address here. Perhaps the first that comes to mind is: what does it mean regarding
potential improvements of practical BU compilers? We have mentioned a non-incremental
BU compilation algorithm in Proposition 3 and the discussion before but only to give an
example that could be simulated by incremental BU compilation. Looking back at Figure 2,
it seems clustering is the key to the efficient compilation of ϕ into OBDD: first the clauses
are partitioned into disjoint clusters, then each cluster is compiled, and finally the resulting
circuits/diagrams are compiled incrementally together. Clustering is used in OBDD-based
refutations where heuristics create each cluster so that a variable can be forgotten (i.e.,
existentially quantified out) after compilation of the cluster [17, 18]. Contrary to refutations,
compilations do not allow forgetting variables so one should think of different clustering
strategies. But it is reasonable to believe that some formula can actually be compiled quite
efficiently incrementally while a systematic clustering step into a constant number of clusters
would make the compilation much harder. Actually it is not clear this work will fuel any
practical research on BU compilation. Indeed it is not hard to buy into the claim that
hypothetical efficient non-incremental BU compilers ought to be much more complex that
incremental ones. Aguably, finding a good ordering of the clauses for incremental compilers
is not an easy task and it is reasonable to expect that finding a good “DAG ordering” or
“tree ordering” is much harder as the space of possible orderings gets larger.

A discussion that we think is more interesting is about the strength of the frameworks
used to analyze practical algorithms. The framework for BU compilation is very general
and thus exponential lower bounds in this framework are strong results. On the other
hand, positive results may not translate into practical observations as they are obtained in a
framework that is too general. In our case, the positive results on the BU compilation of the
formulas from Theorem 1 will not be observed for any of the practical BU compilers that we
are aware of, as they all work (close to) incrementally. Going further, narrow frameworks
can also help explaining the behavior of algorithms on certain instances. For instance in [8],
specific CNF formulas are shown to be hard for BU compilation and the proof distinguishes
two cases: one where the last Apply conjoins representations for two large subformulas, and
another one where it conjoins at least one representation of a subformula with only a few
clauses. To explain the behavior of incremental BU compilers on these formulas, the second
case would be enough, and this case is arguably the easiest one in [8]. A future direction for
us is the comparison of top-down (TD) compilers and BU compilers. Are there formulas that
are provably hard for TD compilers (described in a suitable framework) but easy for BU
compilers, and vice-versa? For the separation to be observed empirically, tractability results
for BU compilation should use the incremental approach. In particular, should the formulas
of Theorem 1 be hard for TD compilers, we would not be completely satisfied saying that
these formulas answer one direction of the problem.

From a purely theoretical perspective, there are still open problems on BU compilation.
One that is related to this work is the separation of tree-like and general BU compilation. A
careful observation of the nice BU compilations of the formulas of Theorem 1 shows that
they are tree-like, that is, every intermediate OBDD is an input to at most one Apply. We
ask whether there exists a class of formulas that have polynomial-size BU compilation but
such that all tree-like BU compilations generate intermediate results of exponential size.
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A Appendix

A.1 Missing Proofs of Section 3
We show the following lemma before proving Proposition 3.

▶ Lemma 13. Let ϕ1 and ϕ2 be such that var(ϕ1)∩var(ϕ2) = ∅. Given (D1
1, I

1
1 ), . . . , (D1

s , I
1
s )

an incremental strDNNF(∧,r) compilation of ϕ1, and (D2
1, I

2
1 ), . . . , (D2

t , I
2
t ) an incremental

strDNNF(∧,r) compilation of ϕ2, there is an incremental strDNNF(∧,r) compilation of
ϕ1 ∧ ϕ2 whose largest elements has size at most maxi |D1

i | + maxj |D2
j | + 1.
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Proof. Just take the compilation (D1, I1), . . . , (Ds, Is), (Ds+1, Is+1), . . . , (Ds+t, Is+t) where
Ii = I1

i and Di = D1
i for 1 ≤ i ≤ s and Is+j is Ij where every D2

j is replaced by Ds+j =
Ds ∧ D2

j (that is, the root of Ds+j is one ∧-node whose children are Ds and D2
j ). Since

var(Ds) ∩ var(D2
j ) ⊆ var(ϕ1) ∩ var(ϕ2) = ∅, each Ds+j is a strDNNF circuit. It is a bottom-

up compilation of ϕ1 ∧ ϕ2 whose size is at most max(maxi |D1
i |, 1 + |D1

s | + maxj |D2
j |). ◀

▶ Proposition 3. Every strDNNF(∧,r) compilation of a CNF formula ϕ where every Apply
that does not involve a clause of ϕ computes the conjunction of two strDNNF circuits
representing subformulas of ϕ over disjoint set of variables, can be transformed into an
incremental strDNNF(∧,r) compilation with only a polynomial increase in size.

Proof. We can restrict our focus to BU compilations where all circuits constructed, except
the last one, are used as premises for some Restructure or Apply instructions. For D an
intermediate circuit in the compilation, let pred(D) be the set containing D plus all circuits
constructed before D in the compilation and that are used in the construction of D. More
formally, if D = Compile(C) then pred(D) = {D}, if D = Apply(D′, D′′,∧) then pred(D) =
{D} ∪ pred(D′) ∪ pred(D′′) and if D = Restructure(D′) then pred(D) = {D} ∪ pred(D′).
In particular, calling D∗ ≡ ϕ the final circuit of the compilation, pred(D∗) is the set of all
circuits generated during the compilation. Let further kD be the number of decomposable
Apply done to construct D. Consider the last decomposable Apply in the compilation: D =
Apply(D′, D′′,∧) with var(D′)∩var(D′′) = ∅. Suppose there is an incremental strDNNF(∧,r)
compilation of D′ (resp. D′′) whose largest circuit has size at most kD′ +

∑
K∈pred(D′) |K|

(resp. kD′′ +
∑
K∈pred(D′′) |K|). By Lemma 13, there is an incremental BU compilation of D

that generates only circuits of size at most 1+kD′ +kD′′ +
∑
K∈pred(D′) |K|+

∑
K∈pred(D′′) |K|.

And since pred(D′) and pred(D′′) are disjoint for a decomposable Apply, this upper bound
equals kD +

∑
K∈pred(D) |K|. Calling D∗ ≡ ϕ the final circuit of the compilation, we obtain

by induction that ϕ can be compiled by an incremental strDNNF(∧,r) compilation that
generates only circuits of size at most kD∗ +

∑
K∈pred(D∗) |K| where kD∗ = O(|ϕ|), which is

a polynomial size increase compared to the original compilation. ◀

We are now going to prove Proposition 4. Before that, we recall a seemingly insignificant
property of OBDDs, SDDs and strDNNF circuits: given a set X of variables, for every vtree
T over X, every clause c over X has a representation in OBDD, SDD and strDNNF that
respects T and whose size is O(|c|).

▶ Proposition 4. Let L ∈ {OBDD,SDD, strDNNF}, let (Σ1, I1), . . . , (ΣN , IN ) be an
incremental L(∧,r) compilation of the CNF formula ϕ over n variables. There exists an
incremental L(∧,r) compilation (Σ′

1, I
′
1), . . . , (Σ′

M , I
′
M ) of ϕ such that M ≤ 2N and, for every

j ∈ {1, . . . ,M} there is an i ∈ {1, . . . , N} such that Σ′
j ≡ Σi and |Σ′

j | ≤ 2n|Σi|. In addition,
when Σ′

j is obtained by restructuring Σ′
j−1, we have |Σ′

j | ≤ |Σ′
j−1|.

Proof. We follow the instructions I1, . . . , IN and construct (Σ′
1, I

′
1), . . . , (Σ′

M , I
′
M ) along the

way. We denote by Si the subsequence of this sequence, that we have after obtaining Σi.
We begin with Σ′

1 = Σ1, I ′
1 = I1 and S1 = ((Σ′

1, I
′
1)). We will denote by Si · x the sequence

obtained adding x at the end of Si. We say that invariant (I) holds at step i when, after Σi is
constructed, denoting Si = ((Σ′

1, I
′
1), . . . , (Σ′

j , I
′
j)), we have that Σ′

j ≡ Σi and |Σ′
j | ≤ |Σi|. (I)

clearly holds at step 1. Now let us assume that (I) holds at step i, let j = |Si|, and consider
the instruction Ii+1. There are three cases to consider.

Ii+1 is Σi+1 = Restructure(Σi). If |Σi+1| > |Σ′
j | then, since Σi+1 ≡ Σi ≡ Σ′

j , we
simply define Si+1 = Si. Otherwise, if |Σi+1| ≤ |Σ′

j | then we define Σ′
j+1 = Σi+1 and

I ′
j+1 : Σ′

j+1 = Restructure(Σ′
j) (recall that Σ′

j ≡ Σi ≡ Σi+1 = Σ′
j+1 by the invariant) and

Si+1 = Si · (Σ′
j+1, I

′
j+1). In both cases, invariant (I) holds at step i+ 1.
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Ii+1 is Σi+1 = Apply(Σi,Σc,∧) where c ∈ ϕ. Let Σ′
c be the linear-size representation of c

in L that respects the same vtree as Σ′
j . Now define I ′

j+1 as Σ′
j+1 = Apply(Σ′

j ,Σ′
c,∧). We

have that Σ′
j ≡ Σi so Σ′

j+1 ≡ Σi+1. Moreover, since |Σ′
c| ≤ 2|var(c)| ≤ 2n and since the

Apply is a quadratic-time procedure, we have that |Σ′
j+1| ≤ 2n|Σ′

j | ≤ 2n|Σi|. If |Σ′
j+1| ≤

|Σi+1|, then we define Si+1 = Si·(Σ′
j+1, I

′
j+1). Otherwise if |Σ′

j+1| > |Σi+1|, then we define
Σ′
j+2 = Σi+1, I ′

j+2 : Σ′
j+2 = Restructure(Σ′

j+1) and Si+1 = Si · (Σ′
j+1, I

′
j+1) · (Σ′

j+2, I
′
j+2).

In both cases, invariant (I) holds at step i+ 1.
At the end of the construction we have SN = ((Σ′

1, I
′
1), . . . , (Σ′

M , I
′
M )) and Σ′

M ≡ ΣN ≡ ϕ

since (I) holds at step N . At every step, we add at most two elements to Si, so M ≤ 2N .
Furthermore, for every j ≥ 1, Σ′

j+1 is either the result of an Apply between Σ′
j and a clause

of ϕ, or comes from restructuring Σ′
j . So SN is an incremental L(∧,r) compilation of ϕ.

Looking back at our construction of Si, we see that (1) restructuring is only used when it
decreases the size of the OBDD and (2) that every Σ′

j is equivalent to some Σi and that its
size is never greater than 2n|Σi|. ◀

A.2 Missing Proofs of Section 4
▷ Claim 6. B1 ∧ · · · ∧Bj is equivalent to the OBDD represented in Figure (3a).

Proof. Recall that Bj ≡ xi,j ∨
∧
k>j xi,k where i is fixed. So B1 ∧ B2 ∧ · · · ∧ Bj ≡(

xi,1 ∨
∧
k>1 xi,k

)
∧

(
xi,2 ∨

∧
k>2 xi,k

)
∧· · ·∧

(
xi,j ∨

∧
k>j xi,k

)
. We argue by case disjunction

on xi,1 + · · · + xi,j . First, any assignment to (xi,k)k that satisfies xi,1 + · · · + xi,j = 0 clearly
satisfies B1 ∧B2 ∧ · · · ∧Bj . Second, any assignment that satisfies xi,1 + · · · +xi,j = 1 satisfies
B1 ∧B2 ∧ · · · ∧Bj if and only if it satisfies

∧
k>j xi,k. Finally, any assignment that satisfies

xi,1 + · · · + xi,j > 1 falsifies B1 ∧B2 ∧ · · · ∧Bj . Thus B1 ∧B2 ∧ · · · ∧Bj is equivalent to

(xi,1 + · · · + xi,j = 0) ∨ ((xi,1 + · · · + xi,j = 1) ∧ (xi,j+1 + · · · + xi,n = 0))

It is clear that the OBDD represented in Figure (3b) computes the function written above.
◁

▷ Claim 10. For any h > k + 1 such that Dh = Apply(Dh−1, Dc1∨c2 ,∧) and c1 ∈ rown, we
have that Dk |= c1 ∨ c2 or γ1 ∨ γ2 |= c1 ∨ c2.

Proof. Suppose there is an h > k + 1 such that Dh = Apply(Dh−1, Dc1∨c2 ,∧), c1 ∈ rown,
and Dk ̸|= c1 ∨ c2 and γ1 ∨ γ2 ̸|= c1 ∨ c2. If there is no other clause of ϕ that entails c1 ∨ c2
then this contradicts the fact that k is maximal. Otherwise, if c1 ∨ c2 is entailed by another
clause c′

1 ∨ c′
2 of ϕ, then c′

1 ∈ rown(X) since c1 ∨ c2 uses only variables of X while every
clause of oddn(X,Y ) features an encoding variable of Y . In addition, the integer h′ such
that Dh′ = Apply(Dh′−1, Dc′

1∨c′
2
,∧) is greater than k+ 1, for otherwise we would have either

Dk |= Dh′ |= Dc′
1∨c′

2
|= Dc1∨c2 |= c1 ∨ c2 (for h′ < k + 1) or γ1 ∨ γ2 = c′

1 ∨ c′
2 |= c1 ∨ c2

(for h′ = k + 1). So we repeat the argument with the clause c′
1 ∨ c′

2 instead of c1 ∨ c2 until
reaching a contradiction. ◁

▷ Claim 12. We have that ODD(X) |= ∃Y.ψ(X,Y ).

Proof. First note that we have oddn(X,Y ) |= oddn(X,Y ) ∨ ϕ2(X) |= ψ(X,Y ) since ψ is a
subformula of a formula equivalent to oddn(X,Y ) ∨ϕ2(X). Since ∃Y.oddn(X,Y ) ≡ ODD(X),
it only remains to explain that ∃Y.oddn(X,Y ) |= ∃Y.ψ(X,Y ). Let aX be an assignment to
X satisfying ∃Y.oddn(X,Y ). Then there exists an assignment aY to Y such that aX ∪ aY
satisfies oddn(X,Y ). But then aX ∪ aY satisfies ψ(X,Y ), and thus aX satisfies ∃Y.ψ(X,Y ).
So ∃Y.oddn(X,Y ) |= ∃Y.ψ(X,Y ). ◁

SAT 2023
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▷ Claim 11. Let γ = γ1 ∨ γ2. For every vtree over X, there is a strDNNF of size O(n2)
respecting that vtree that represents

∧
Sγ⊨ (by convention

∧
∅ = 1).

Proof. Some clauses of S are tautological, that is, they contain a variable x and its negation
x and are thus equivalent to 1, let Staut ⊂ S be the set of such clauses. We now consider the
different possibilities for γ1 ∨ γ2.

If γ1 = (xi,1 ∨ · · · ∨ xi,n) and γ2 = (xi,j ∨ xi′,j) then γ is tautological so Sγ⊨ ⊆ Staut.
If γ1 = (xi,1 ∨ · · · ∨ xi,n) and γ2 = (xi′,j ∨ xi′′,j) where i, i′ and i′′ are pairwise distinct,
then Sγ⊨ ⊆ Staut.
If γ1 = (xi,j ∨ xi,j′) and γ2 = (xi′,j′′ ∨ xi′′,j′′) where i, i′, i′′ are pairwise distinct and
where j, j′, j′′ are pairwise distinct. Then Sγ⊨ ⊆ Staut.
If γ1 = (xi,j ∨ xi,j′) and γ2 = (xi′,j ∨ xi′′,j) where i, i′, i′′ are pairwise distinct. Then
Sγ⊨ ⊆ Staut.
If γ1 = (xi,j ∨ xi,j′) and γ2 = (xi,j′′ ∨ xi′,j′′) where j, j′, j′′ are pairwise distinct. Then
Sγ⊨ ⊆ Staut.
If γ1 = (xi,j ∨ xi,j′) and γ2 = (xi,j ∨ xi′,j), then Sγ⊨ is the set of all clauses of the form
γ1 ∨ (xi′,j ∨ xi′′,j) for i′′ ̸= i and i′′ ̸= i′, plus all clauses of the form (xi,j′ ∨ xi,j′′) ∨ γ2 for
j′′ ̸= j and j′′ ̸= j′, plus all the tautological clauses.

The claim is trivially true when Sγ⊨ ⊆ Staut, so we only have the last case to consider. For any
given vtree, we want an small strDNNF circuit that computes

∧
i′′ ̸∈{i,i′}(γ1 ∨ xi′,j ∨ xi′′,j) ∧∧

j′′ ̸∈{j,j′}(xi,j′ ∨ xi,j′′ ∨ γ2) ≡
(
γ1 ∨ xi′,j ∨

∧
i′′ ̸∈{i,i′} xi′′,j

)
∧

(
γ2 ∨ xi,j′ ∨

∧
j′′ ̸∈{j,j′} xi,j′′

)
.

It is readily verified that, for any vtree, there are strDNNF circuits of size O(n) that computes∧
i′′ ̸∈{i,i′} xi′′,j and

∧
j′′ ̸∈{j,j′} xi,j′′ and that there are strDNNF circuits of size of size O(1)

computing γ1 ∨ xi′,j and γ2 ∨ xi,j′ . So, for any vtree, we start from these strDNNF circuits
and apply two disjunctions and one conjunction to obtain a strDNNF circuit of size O(n2)
computing the desired function. ◁
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(a) The four possible states of SAT solvers accord-
ing to the IPASIR interface (see [5]).

BCP

Decide Solution
Analysis

Learning

Conflict
Analysis

SAT

UNSAT

cb_decide cb_check_found_model

cb_add_external

cb_add_reason
cb_propagate

backtracking

SOLVING

(b) The five additional states within state Solving
according to the IPASIR-UP interface.

Figure 1 The IPASIR model and its extension with states and transitions within CDCL solving.

enumeration and counting [21]. The introduction of the IPASIR interface [5] enabled a
relatively simple integration of off-the-shelf SAT solver as a black box into larger systems,
typically to incrementally solve a sequence of similar propositional sub-problems.

Many use cases, however, require a tighter integration with a more fine-grained interaction
of the SAT solver with the rest of the system. A prominent example is the CDCL(T )
framework for SMT solvers [35], where the search of the core SAT solver on the propositional
abstraction of the input problem is guided by theory solvers. Other use cases include
MaxSAT solvers, which benefit from knowing if some literals imply others [22], and solvers
for symmetric combinatorial problems, where it is desired to add additional clauses during
search [15]. Currently, such use cases require either workarounds on the user level or non-
trivial modifications of the SAT solver. As a consequence, it is non-trivial to replace the
underlying SAT solver, which prevents taking advantage of recent advancements in SAT
solving. Additionally, non-standard extensions and modifications of the SAT solver, if not
done carefully, often come at the cost of an accidental performance hit.

In this paper, we propose a generic interface able to capture the essential functionalities
necessary to simplify and improve such use cases of SAT solvers. For this purpose, we extend
the IPASIR interface [5] with an interface to facilitate external propagators, also called user
propagators (UP), yielding a new interface called IPASIR-UP.

Our extension allows users (1) to inspect and being notified about changes to the trail
during search, (2) to add clauses to the problem during solving without restarting the search,
and (3) to propagate literals directly, based on external knowledge, without explicitly adding
reason clauses (i.e., using delayed on-demand explanation). Implementing support for such
an interface is non-trivial in a state-of-the-art SAT solver, but enables a wide range of
applications to efficiently use the solver without further, application-specific workarounds and
modifications. To advocate our proposed interface, we implemented it in CaDiCaL [10], a
state-of-the-art incremental SAT solver, on top of its implementation of the IPASIR interface.

Furthermore, we present two representative use cases of this extension of CaDiCaL in two
different application contexts: integrating CaDiCaL via IPASIR-UP as the core SAT solver
into (1) the CDCL-based SAT modulo Symmetries (SMS) framework and (2) a CDCL(T )-
based Satisfiability Modulo Theories (SMT) solver. Our experiments present evidence that
the IPASIR-UP interface provides a rich and concise interface for a modern, proof-producing,
incremental SAT solver with inprocessing in such applications.
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2 An Interface beyond IPASIR

The IPASIR interface, as introduced in [5], considers four possible states of a SAT solver
(see Figure 1a). Initially, and while the formula is under construction, the solver is in state
Unknown. When function solve() is called, it transitions into state Solving. From that
state, the solver can transition to either SAT or UNSAT (or, on interruption, back to Unknown).
Thus, IPASIR allows multiple calls to solve() while modifying the formula or querying
details of the found solution (resp. refutation) between such calls. It is, however, not possible
to interact with the solver while it is in the Solving state (except for interruptions). Our
goal is to extend IPASIR with functions that can provide such interactions, and thereby
allow to simplify and improve several use cases of modern incremental SAT solvers.

For this purpose, our interface IPASIR-UP refines the IPASIR state Solving, which
implements the main CDCL loop, into five states, as shown in Figure 1b. CDCL combines
unit propagation (BCP) with decisions (Decide) until either a clause becomes falsified by the
current assignment or each variable is assigned a truth value. In the first case, the solver
transitions into state Conflict Analysis, where it captures the reason of the contradiction
as a derived driving clause, which is then learned in state Learning. If the learned clause is
empty, the solver transitions to the UNSAT state. Otherwise, it backtracks to a lower decision
level and unit propagation starts again. In the second case, as soon as a complete assignment
is found, a standard CDCL solver will transition into the state SAT. In the presence of an
external propagator, however, we introduce an artificial state called Solution Analysis as
an intermediate state before transitioning to SAT.

In each of the five states in Figure 1b, IPASIR-UP provides a callback (with prefix “cb_”)
to interact with the external propagator (dashed transitions in Figure 1b, see Section 2.3).
Additionally, the propagator is being notified about changes to the trail (states and solid
transitions highlighted in purple in Figure 1b, see Section 2.2). In the following, we briefly
describe the main purpose of each function. Though we illustrate IPASIR-UP here by an
example implementation in C++ (see Listing 1 and Listing 2), the API is low-level enough to
be supported in C as well. Note that many other (in this context) less relevant steps of the
search (e.g. restart, reduce, and inprocessing) are ignored in the model of our interface.

2.1 Configuration and Management
In order to be able to interact with the solver while in the Solving state, a user may

connect and configure an external propagator through IPASIR-UP as follows.

Setup. When the solver is not in the Solving state, the user can connect an external
propagator via the function connect_external_propagator. This propagator may be
disconnected outside of Solving via disconnect_external_propagator. There can be
at most one external propagator connected to a solver.

Observed Variables. While an external propagator is connected, at any point in time (even
during Solving), the user can notify the solver that a variable, that might be even new,
is “relevant” by declaring it as an observed variable via add_observed_var. When not in
state Solving, observed variables can be removed via remove_observed_var. Note that
all IPASIR-UP calls involve observed variables only.

Additional Useful Functions. We propose two additional functions. First, function phase
(as already implemented in some solvers) allows to force a particular phase of the specified
variable when making a decision on that variable. Second, function is_decision can be
queried for a given variable to determine if it is currently assigned by a decision.

SAT 2023
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Listing 1 Functions for Configuration and Management (see Section 2.1).
1 // VALID = UNKNOWN | SATISFIED | UNSATISFIED
2 //
3 // require ( VALID ) -> ensure ( VALID)
4 //
5 void connect_external_propagator ( ExternalPropagator * propagator );
6

7 // require ( VALID ) -> ensure ( VALID)
8 //
9 void disconnect_external_propagator ();

10

11 // require ( VALID_OR_SOLVING ) /\ CLEAN (var) -> ensure ( VALID_OR_SOLVING )
12 //
13 void add_observed_var (int var);
14

15 // require ( VALID ) -> ensure ( VALID)
16 //
17 void remove_observed_var (int var);
18

19 // require ( VALID_OR_SOLVING ) -> ensure ( VALID_OR_SOLVING )
20 //
21 bool is_decision (int observed_var );
22

23 // require ( VALID_OR_SOLVING ) -> ensure ( VALID_OR_SOLVING )
24 //
25 void phase (int lit);
26

27 // require ( VALID_OR_SOLVING ) -> ensure ( VALID_OR_SOLVING )
28 //
29 void unphase (int lit);

The complete signature of each of these functions is shown in Listing 1. The comments
above the functions indicate the IPASIR state of the SAT solver when the function is allowed
to be called (see Figure 1a for their relations). The union of states Unknown, SAT, and UNSAT
is referred to as VALID states here, while the state VALID_OR_SOLVING indicates that the
function can be called also while the solver is in the Solving state.

2.2 Inspecting CDCL via Notifications
We introduce the following three notification functions to capture the changes to the trail (see
Listing 2 for signatures). Note that it is acceptable for a SAT solver to delay these notifications
(e.g., to notify on assignments only once BCP finished). However, all notifications must
happen at the latest before any of the callback functions in Section 2.3 are called.

notify_assignment. This function is called when an observed variable is assigned (either
by BCP or Decide or by Learning a unit clause). Its first argument is the literal that is
satisfied by the assignment, and its second argument is a Boolean flag to indicate when an
assignment is fixed. A fixed assignment is persistent and the user must ensure that it is
never undone (even if backtracking would unassign it or some assumptions of the problem
are changed).

notify_new_decision_level. This function is called on every decision, even if it does not
involve an observed variable. It does not report the actual decision or the current decision
level – it only reports that a decision happened and thus, the decision level is increased.
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notify_backtrack. This function indicates that the solver backtracked to a lower decision
level. Its single argument reports the new decision level. All assignments that are not fixed
and were made above this new decision level must be treated as unassigned.

2.3 Influencing CDCL via Callbacks
In Section 2.2, we focused on notifying the user about the changes to the trail of the SAT
solver. Based on this information, IPASIR-UP allows the user to influence CDCL in various
ways via the following callback functions in each of the five states of the search (see Listing 2
for the function signatures).

Decide. Before the solver makes a decision, the callback cb_decide allows the user to
enforce a user-specific choice of the selected variable and phase. Note that users can inject
decisions only after all assumptions are satisfied.

BCP. During unit propagation, the user can provide additional literals to be propagated
through the cb_propagate callback. Note that this callback returns only a literal to be
propagated. The propagating clause is not required at this point.

Conflict Analysis. If during conflict analysis a previous user propagation (see above)
turns out to be relevant (i.e., necessary to derive the learnt clause), the solver asks the user
for the corresponding reason clause via cb_add_reason_clause_lit, one literal at a time.
The motivation for such delayed lazy explanation (see [19, 35]) during conflict analysis is to
generate and learn only useful clauses.

Solution Analysis. If the solver determines a full assignment without falsifying any
present clauses (i.e., a SAT solution is found), cb_check_found_model is called. This
function tells the solver if the SAT model is consistent with external user constraints. If not,
additional clauses can be added to the problem without restarting the search (see below).

Learning. Whenever the solver has finished BCP (right before Decide), or in case callback
cb_check_found_model returned false, users can add new clauses to the problem. Callback
cb_has_external_clause indicates if a new clause is to be added, which is then added
via cb_add_external_clause_lit, literal by literal. For proof generation, the solver stores
these clauses as irredundant original input clauses. In case the learned clause propagates
(resp. is falsified) under the current trail, the solver transitions to BCP (resp. Conflict
Analysis). When no more clauses are to be added, the solver continues the search.

2.4 External Propagation with Inprocessing
Our interface IPASIR-UP enables a more fine-grained way of incremental SAT solving, where
new clauses may be added not only between two solve calls, but also during solving. Ways
to combine inprocessing with incremental clause addition was proposed in [17, 33], but their
implementations assumed that many clauses are added all at once. Finding an efficient way
to implement [17] when new clauses are added one by one during search (as in IPASIR-UP)
is intriguing future work. For now, we assume that observed variables are internally frozen,
and whenever a variable is added via add_observed_var, it is clean w.r.t. the reconstruction
stack. This guarantees that no restore step is necessary when external clauses are added.
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Listing 2 A C++ example implementation of functions for inspecting and influencing CDCL.
1 class ExternalPropagator {
2 public :
3 virtual ~ ExternalPropagator () { }
4

5 virtual void notify_assignment (int lit , bool is_fixed ) {}
6 virtual void notify_new_decision_level () {}
7 virtual void notify_backtrack ( size_t new_level ) {}
8

9 virtual int cb_decide () { return 0; }
10 virtual int cb_propagate () { return 0; }
11 virtual int cb_add_reason_clause_lit (int propagated_lit ) {
12 return 0;
13 }
14 virtual bool cb_check_found_model ( const std :: vector <int > & model ) {
15 return true;
16 }
17

18 virtual bool cb_has_external_clause () { return false ; }
19 virtual int cb_add_external_clause_lit () { return 0; }
20 };

3 Related Work

The main motivation for incremental reasoning is to allow reusing previously learnt informa-
tion when a similar problem is solved. IPASIR [5] was introduced as a universal interface for
incremental SAT solvers, which enables easy integration into applications to take advantage
of incremental reasoning without specializing for a specific SAT solver. IPASIR-UP extends
IPASIR for use cases that require more fine-grained interaction between the application and
the SAT solver during solving. It not only gives the user more comprehensive access to
information about the solver state during solving, but allows to influence, and thus, guide its
behavior based on user-level information that is not available to the SAT solver.

For instance, adding clauses via IPASIR forces the SAT solver to restart search, delete
assumptions, and discard the trail and the implication graph. On the the other hand, adding
clauses via cb_add_external_clause_lit in IPASIR-UP allows to continue the search while
keeping all assumptions and backtracking only when a conflict is encountered.

Our proposed interface captures and standardizes functionality that is required by a range
of applications, and is thus partially implemented in some tools. An important use case for
interaction with the SAT solver as outlined above is the CDCL(T ) framework [35] for SMT
solvers. State-of-the-art SMT solvers based on this framework (e.g., [6, 13, 14]) currently
all implement a custom interaction layer with the SAT solver (see, e.g., the SAT worker
interface in [13]), which makes replacing these legacy SAT solvers with a state-of-the-art
SAT solver highly non-trivial.

The IntelSAT solver [32] implements efficient clause addition on arbitrary decision levels
(using reimplication to guarantee that no implications are missed on lower decision levels),
but does not support external decisions, lazy propagation explanation, nor notifications.

The state-of-the-art ASP solver clingo [18] provides a generic interface to augment the
tool with theory propagators. It extends the CDCL loop at four locations, with notifications
and the ability to add clauses during the search and upon checking the found model. It does
not, however, support lazy propagation explanation (i.e, cb_propagate with delayed clause
addition) and proof generation. The concept of user propagators has also been introduced in
the SMT solver z3 [11], mainly to enable users to implement custom theory support.
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4 Empirical Evaluation

To show that our interface is effective and efficient in varied use cases, we extended CaDi-
CaL [10], a state-of-the-art incremental SAT solver which implements the IPASIR interface,
with IPASIR-UP. Our extension required ∼800 lines of C++ code in CaDiCaL, accompanied
with another ∼700 lines in its model based tester. We provide an evaluation on two represen-
tative use cases: enumerating graphs with certain properties via SAT Modulo Symmetries [27],
and integrating CaDiCaL as the main CDCL(T ) SAT engine in the SMT solver cvc5 [6].

4.1 Experiments with SMS
SAT modulo Symmetries (SMS) [23–27] is a recently introduced SAT-based framework for
the exhaustive generation of combinatorial objects such as graphs, hypergraphs, or matroids
with a given property while excluding isomorphic copies of the same object (isomorph-free).
In contrast to a generate-and-test approach, which quickly becomes infeasible due to the
extremely fast-growing number of candidate objects, SMS directly generates isomorph-free
objects with the desired property. At its core, SMS runs a CDCL solver on a propositional
formula that encodes the desired property using object variables.

For instance, if the object is a graph, the graph property is expressed using variables eu,v

for each vertex pair u, v indicating existence of an edge between u and v. Isomorphic copies are
avoided by guiding the solver to generate canonical objects, e.g., by requiring the adjacency
matrix to be lexicographically minimal. Static SAT encodings of lexicographic minimality
require an exponential number of clauses [30]. Hence SMS delegates the minimality check to
an external algorithm invoked whenever the SAT solver decides on an object variable. SMS
can perform the minimality check even when many object variables are undecided. This
check tests if a minimal object is consistent with the current partial truth assignment. A
symmetry-breaking clause is sent back to the CDCL solver if the check fails.

In previous work, SMS used clingo [18], an ASP solver with support for adding custom
propagators. The IPASIR-UP interface enables us to replace clingo in SMS with CaDiCaL.
We use cb_has_external_clause to indicate if we have a symmetry-breaking clause to add
and cb_propagate to propagate literals. To exhaustively generate all isomorph-free objects
with the given property, we add a clause forbidding each object found so far. We can do this
via the standard IPASIR interface or IPASIR-UP using callback cb_check_found_model.

In the following, we compare the performance of SMS between CaDiCaL+IPASIR-UP
and clingo on two graph generation tasks. The first task is to generate up to isomorphism
all graphs for a given number n of vertices without additional restrictions, i.e., the formula
describing the graph is empty. The second task is to generate up to isomorphism all non-010-
colorable graphs with a minimum degree of at least three not containing a cycle of length 4.
A graph is 010-colorable if the vertices can be colored with 0 and 1 such that there is no
monochromatic edge with color 0 and no monochromatic triangle with color 1.

These graphs are interesting for topics related to the famous Kochen-Specker Theorem
from quantum mechanics [2]. For encoding the non-010-colorability, we follow previous
work [29]. In contrast to the first task, the encoding is relatively large, even exponential in
the number of vertices, and contains auxiliary non-object variables.

For CaDiCaL, the default configuration propagates literals and exhaustively enumerates
all graphs using the IPASIR-UP interface when possible. Configuration enum-IPASIR
propagates literals and adds symmetry-breaking clauses via IPASIR-UP but uses IPASIR
for enumeration. Configuration no-prop corresponds to default without propagating literals
but learning the clause immediately. Configuration no-inpro corresponds to default without
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Table 1 Enumerating up to isomorphism: all graphs (top) and all KS candidates (bottom).

CaDiCaL+IPASIR-UP [s] Clingo [s]

#vertices #graphs default enum-IPASIR no-prop red irred

All graphs

6 156 0.01 0.02 0.01 0.02 0.01
7 1044 0.09 0.13 0.09 0.10 0.09
8 12346 0.95 1.59 1.00 1.15 1.07
9 274668 34.24 64.27 34.31 81.67 94.65

10 12005168 50815.60 109443.72 57616.47 213959.23 196576.58

#vertices #graphs default no-inpro no-prop red irred

KS candidates

16 0 10.58 9.14 13.58 25.07 18.56
17 1 39.82 31.48 44.58 122.28 87.92
18 0 190.16 59.37 187.29 872.98 493.17
19 8 1220.51 1253.96 1341.80 10542.41 3348.14
20 147 13647.66 16449.50 13493.86 67728.42 82871.65

inprocessing on the non-observed variables. For clingo, we either add the clauses as redundant
(configuration red), i.e., the symmetry-breaking clauses are part of the clause-deletion policy,
or the clauses are irredundant (configuration irred). Table 1 summarizes the results given
the number of vertices in column #vertices. The number of generated graphs is given in
column #graphs. All the here presented experiments ran on a cluster equipped with Intel
Xeon E5-2640v4 CPUs at 2.40 GHz.

For enumeration, the new interface gives a speedup over IPASIR (Table 1, top): with
IPASIR, the search is started at the root level after a model has been found, while with
IPASIR-UP, the current trail is preserved and backtracked. The bottom part of Table 1
shows that the versions using CaDiCaL perform better. Inprocessing improves performance
on the larger instances, but with less vertices it is more efficient to be turned off. On other
SMS applications, we observed clingo and CaDiCaL performing similarly. However, CaDiCaL
with IPASIR-UP shows the potential to solve problems outside the other solver’s reach.

4.2 Experiments with SMT
Satisfiability Modulo Theories (SMT) solvers serve as the back-end reasoning engine for a
variety of applications (e.g., [1,4,12,20,28,34]). The majority of state-of-the-art SMT solvers
are based on the CDCL(T ) framework [35], which tightly integrates theory solvers with a
CDCL SAT solver at its core. The CDCL(T ) SAT engine is queried to find a satisfying
assignment of the propositional abstraction of the input formula, which is then iteratively
refined until either the assignment is T -consistent or the SAT engine determines unsat.

The CDCL(T ) framework requires a tight integration with the SAT solver in a way that
allows the theory layer to interact with the SAT solver during search, i.e., in an online fashion.
This is in contrast to other lazy SMT approaches based on the same abstraction/refinement
principle that integrate a SAT solver as a black box, e.g., lemmas on demand [8,31]. That
is, rather than querying the SAT solver for a full satisfying assignment of the propositional
abstraction, the theory layer guides the search of the SAT solver until a T -consistent
assignment is found or the formula becomes unsatisfiable.

Further, throughout this process, a backward communication channel allows the SAT
solver to notify the theory layer about variable assignments, decisions, and backtracks. The
theory layer uses this information to derive conflicts, propagate theory literals, or suggest
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Table 2 SMT-LIB benchmarks solved by cvc5 and cvc5-ipasirup with a 300 seconds time limit.

cvc5 cvc5-ipasirup
Division solved time [s] solved time [s]

Arith (6,865) 6,303 173,628 6,299 176,278
BitVec (6,045) 5,552 153,899 5,529 161,482
Equality (12,159) 5,320 2,062,804 5,322 2,061,758
Equality+LinearArith (53,453) 45,902 2,288,230 45,906 2,288,352
Equality+MachineArith (6,071) 983 1,533,646 987 1,532,782
Equality+NonLinearArith (21,104) 13,314 2,419,535 13,053 2,486,588
FPArith (3,965) 3,145 268,628 3,155 266,245
QF_Bitvec (42,472) 40,321 984,880 40,320 985,946
QF_Datatypes (8,403) 8,077 110,704 8,168 82,878
QF_Equality (8,054) 8,044 9,394 8,047 7,169
QF_Equality+Bitvec (16,585) 15,817 307,558 16,015 234,369
QF_Equality+LinearArith (3,442) 3,388 23,041 3,381 23,465
QF_Equality+NonLinearArith (709) 627 27,428 629 27,598
QF_FPArith (76,238) 76,054 94,487 76,081 76,700
QF_LinearIntArith (16,387) 11,670 1,575,635 12,004 1,512,696
QF_LinearRealArith (2,008) 1,721 130,408 1,766 113,919
QF_NonLinearIntArith (25,361) 13,037 4,094,712 13,682 3,840,933
QF_NonLinearRealArith (12,134) 11,166 333,933 11,238 316,728
QF_Strings (69,908) 69,357 203,677 69,296 230,918

Total (391,363) 339,798 16,796,234 340,878 16,426,813

decision variables based on theory-guided heuristics. If theory propagations are involved
in deriving a conflict in the SAT solver, the theory layer must provide explanations for
the propagated theory literals. If a partial assignment of the propositional abstraction is
T -inconsistent, the theory layer sends a lemma to the SAT solver to refine the abstraction.

cvc5 is a state-of-the-art CDCL(T ) SMT solver widely used in industry and academic
projects [6]. It relies on a highly customized version of MiniSat [16] as its core SAT engine,
which was extended to support the production of resolution proofs, pushing and popping of
assertion levels, and custom theory-guided decision heuristics. The interaction with cvc5’s
theory layer is directly implemented in MiniSat by various callbacks.

These customizations make it difficult to replace this version of MiniSat with a state-
of-the-art SAT solver and take advantage of improvements in SAT solving. Replacing this
customized MiniSat with a SAT solver that implements IPASIR-UP enables us to easily
switch it out with any other solver that implements the interface. It further has the additional
advantage that interaction with the SAT layer is standardized and clean, i.e., no “hacks”
have to be added to the SAT solver that may accidentally impact performance.

We integrated CaDiCaL with the IPASIR-UP extension as main CDCL(T ) SAT engine
while fully utilizing the IPASIR-UP notification and callback interface: notify_assignment is
used to construct the current partial assignment for the observed theory literals; the incremen-
tal solver state of cvc5 is managed via notify_new_decision_level and notify_backtrack,
which are utilized to restore its internal state when backtracking decisions; cb_propagate and
cb_add_reason_clause_lit are used for theory propagations and explanations; cb_decide
to implement custom decision heuristics; cb_add_external_clause_lit for adding lem-
mas and conflicts; and cb_check_found_model to check whether the SAT assignment is
T -satisfiable. cvc5 further uses phase to set the phase for specific variables, and is_decision
to query if a specific variable was used to make a decision.
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The full integration of CaDiCaL as CDCL(T ) SAT engine of cvc5 required about 700
lines of C++ code on top of cvc5 1.0.5. In the following, we refer to this version of cvc5 with
CaDiCaL as the CDCL(T ) SAT engine as cvc5-ipasirup. Note that proof production is not
yet supported in cvc5-ipasirup, since this requires an extension of the proof infrastructure
of cvc5 to support DRAT proofs (MiniSat was customized to emit resolution proofs).

We evaluate the overall performance of cvc5-ipasirup against cvc5 version 1.0.5 on all
non-incremental benchmarks of the 2022 release of SMT-LIB [7]. We ran this experiment on
a cluster equipped with Intel Xeon E5-2650v4 CPUs and allocated one CPU core, 8GB of
RAM and a time limit of 300 seconds for each solver and benchmark pair (unknown answers
were treated as timeouts). Table 2 shows the number of solved benchmarks and runtime
grouped into the divisions defined in SMT-COMP 2022 [36].

Overall, cvc5-ipasirup solves 1080 more benchmarks than cvc5 and improves over cvc5
in 13 out of 19 divisions. On the 336, 533 commonly solved benchmarks, cvc5-ipasirup
(947, 053s) is 1.16× faster than cvc5 (1, 096, 092s). For quantifier-free divisions, cvc5-
ipasirup significantly improves over cvc5 in arithmetic logics (+1091) and in logics that
combine bit-vectors with arrays (+198). On quantified divisions, cvc5-ipasirup’s perfor-
mance is similar to cvc5 except for the UFNIA logic (in division Equality+NonLinearArith),
where cvc5-ipasirup solves 251 less benchmarks than cvc5. The overall results of cvc5-
ipasirup are very encouraging, given the fact that the cvc5 code base is tuned for its custom
version of MiniSat. This particularly applies to the quantifiers module in cvc5, explaining
the UFNIA performance regression. However, the cvc5-ipasirup implementation provides a
solid baseline to tune and improve cvc5’s internals for the IPASIR-UP interface.

5 Summary and Future Work

In this paper, we proposed an extension of the IPASIR interface of SAT solvers to facilitate
interactions with the solver during the search. We demonstrated the usage and benefits of such
an interface in two representative use cases. However, to enable all functionalities of modern
SAT solvers, some restrictions were introduced. For example, to enable inprocessing, external
clauses can have only observed (i.e., frozen) variables. Further, in our current implementation
proof production is only experimental. In future work it needs to be evaluated and extended
to support further features such as distinction of redundant and irredundant external clauses.

We believe that both developers of more complex reasoning tools and end-users of SAT
solvers can strongly benefit from a unified interface that provides access and control over
the details of CDCL methods during incremental problem solving. Though the proposed
IPASIR-UP interface provides a sufficient set of functions to cover a very wide range of
applications, there are many possible extensions to consider in the future. For example,
users might want to decide when to restart the search or where to backtrack upon a conflict.
Sharing more information about the internal search statistics, or variable and clause scores
could also be valuable. We hope that further discussions and further use cases of IPASIR-UP,
for instance in MaxSAT, knowledge compilation or in QBF reasoning, will make it clear what
kind of extensions and refinements would be the most practical.
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Abstract
Motivated by the need to improve the scalability of Intel’s in-house Static Timing Analysis (STA) tool,
we consider the problem of enumerating all the solutions of a single-output combinational Boolean
circuit, called AllSAT-CT. While AllSAT-CT is immediately reducible to enumerating the solutions of
a Boolean formula in Conjunctive Normal Form (AllSAT-CNF), our experiments had shown that such
a reduction, followed by applying state-of-the-art AllSAT-CNF tools, does not scale well on neither
our industrial AllSAT-CT instances nor generic circuits, both when the user requires the solutions
to be disjoint or when they can be non-disjoint. We focused on understanding the reasons for this
phenomenon for the well-known iterative blocking family of AllSAT-CNF algorithms. We realized
that existing blocking AllSAT-CNF algorithms fail to generalize efficiently for AllSAT-CT, since they
are restricted to Boolean logic. Consequently, we introduce three dedicated AllSAT-CT algorithms
that are ternary-logic-aware: a ternary simulation-based algorithm TALE, a dual-rail&MaxSAT-based
algorithm MARS, and their combination. Specifically, we introduce in MARS two novel blocking clause
generation approaches for the disjoint and non-disjoint cases. We implemented our algorithms in
our new tool HALL. We show that HALL scales substantially better than any reduction to existing
AllSAT-CNF tools on our industrial STA instances as well as on publicly available families of
combinational circuits for both the disjoint and the non-disjoint cases.
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1 Introduction

Static Timing Analysis (STA) [42] is a crucial step in circuit design process that validates the
timing performance of a circuit by checking all possible paths for timing violations. Given
a circuit ∆, Intel’s STA flow constructs a single-output combinational circuit Γ over ∆’s
inputs, such that Γ’s output is 1 if and only if the inputs have the potential to trigger a
timing violation in ∆. Then, the flow enumerates all the solutions in Γ, where every solution
is tested for potential violations in the original circuit ∆1.
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Motivated by a recent necessity to increase the scalability of Intel’s STA flow due to
increasing size of the input circuit, we study the so-called AllSAT-CT problem, which is a
vital component in the flow. In AllSAT-CT, given a combinational circuit Γ with a single
output, the objective is to enumerate all the possible inputs for Γ, for which Γ’s output is 1.

AllSAT-CT is an instance of the AllSAT problem, in which the goal is to enumerate the
solutions of a given Boolean formula. Another instance of AllSAT that received substantially
more attention, is AllSAT-CNF, in which the input formula is provided in Conjunctive
Normal Form (CNF). AllSAT-CNF has various applications, including software testing [22],
data mining [7] and network verification [26]. AllSAT-CT can be immediately reduced
to AllSAT-CNF by translating the circuit to CNF using, e.g., Tseitin encoding [45], and
solved by AllSAT-CNF solvers. There are three main families of approaches to AllSAT-CNF,
all implemented in state-of-the-art AllSAT-CNF tools, called herein Toda tools (solvers),
one per each family [44]. The first family, called blocking [28], applies an incremental SAT
solver [9, 34] to find a solution (satisfying assignment) σ, then generalizes σ to a solution σ′

(by replacing Boolean values by don’t-cares, whenever possible), blocks σ′ with the so-called
blocking clause (which usually contains the negation of all the literals assigned 0 or 1 in σ′)
and iterates. The set of generalized solutions is the (compact) description of all solutions to Γ,
typically in a form of a Disjunctive Normal Form (DNF) formula, in which every generalized
solution is a cube. The second family of nonblocking solvers [14] modifies the SAT solver
to enumerate the solutions explicitly without using blocking clauses. The third BDD-based
family [17] is based on reasoning with Boolean Decision Diagrams (BDDs) [4]. Intel’s STA
flow used to routinely solve AllSAT-CT by using a BDD-based AllSAT-CNF solver until
it ceased to scale due to excessive input size. We tried to apply the Toda tools, but they
failed to scale either. Our investigation showed that, at least for the blocking algorithms,
and independently of our specific industrial application, the existing AllSAT-CNF blocking
approaches do not scale well for AllSAT-CT, since their solution generalization components
are inherently inefficient, being restricted by Boolean logic semantics. Specifically, since one
cannot explicitly assign don’t-cares to the variables in Boolean logic, solution generalization’s
efficiency is hindered.

This insight has led us to introduce three dedicated AllSAT-CT blocking-based algorithms–
TALE, MARS and DUTY–that utilize ternary logic [35] instead of Boolean, either for generalization
only as in TALE, or throughout the entire algorithm as in MARS and DUTY. Notably, ternary
logic-based approaches are applied by the Property Directed Reachability (PDR) algorithm
for model checking [8, 40], but only for the generalization stage. Moreover, as detailed in [46],
there is a distinction between AllSAT algorithms that return disjoint solutions, in which
no two generalized solutions can overlap, and AllSAT algorithms that return non-disjoint
solutions, in which such an overlap is allowed. We explicitly designed MARS to return either
disjoint or non-disjoint solutions, per user request, while TALE and DUTY return non-disjoint
solutions only.

Our first method TALE reduces AllSAT-CT to AllSAT-CNF by using Tseitin encoding [45]
and applies a ternary simulation-based generalization algorithm, commonly used by PDR
implementations [8]. Specifically, TALE generalizes a given solution by simulating whether
reassigning a variable from a Boolean value to a don’t-care value, under the ternary-logic
semantic, would propagate through the circuit and still set the output to 1.

Our second approach, called MARS, also reduces AllSAT-CT to AllSAT-CNF but is using
the dual-rail encoding [5] that allows one to preserve the ternary logic semantics in the
CNF formula by explicitly representing don’t-care values. Specifically, every variable v in
the original circuit is mapped to two Boolean dual-rail variables (v+, v−) in the resulting
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CNF, where assigning both v+ and v− to 0 corresponds to assigning the original v to a
don’t-care. With the dual-rail encoding, we trust the SAT solver to return a generalized
solution by applying anytime MaxSAT-inspired heuristics [31, 32] to increase the number
of don’t-cares assigned to the circuit inputs (that is, the number of 0’s assigned to their
respective dual-rail variables). As mentioned before, MARS can emit both disjoint and
non-disjoint solutions, where, unlike in [46], we achieve this by introducing two different
blocking clause generation approaches. Furthermore, while generalization with MaxSAT in
an auxiliary dual-rail-encoded CNF instance had been applied in PDR [40], our approach of
using a single dual-rail-encoded instance throughout the algorithm, combined with a MaxSAT
approximation for generalization and blocking clause generation in dual-rail, is novel.

Finally, since MARS uses approximate anytime MaxSAT heuristics, its generalized solutions
usually can still be improved. For that, we come up with our third approach called DUTY
that adds TALE on top of the MARS to further generalize the solutions obtained by MARS.

We have implemented our approaches in an open-source tool HALL (Haifa AllSAT).
We found that HALL scales substantially better than any reduction to existing AllSAT-
CNF tools on our industrial STA instances as well as on various publicly available families
of combinational circuits. Specifically, MARS is the best-performing algorithm in disjoint
mode, while DUTY and TALE are the most scalable ones for industrial and generic instances,
respectively, in non-disjoint mode.

The rest of this paper is organized as follows. Sect. 2 presents preliminaries. We review
AllSAT in Sect. 3 and present our new algorithms in Sect. 4. Sect. 5 is dedicated to
experimental evaluation. Sect. 6 is about related work, while in Sect. 7 we conclude and
discuss future work.

2 Preliminaries

We begin by reviewing relevant notions from Boolean and ternary logics. We start with the
standard Boolean logic syntax, which, in our context, is common to both logics. Let V be a
set of variables. A literal l is either a variable v ∈ V , in which case l is positive, or a variable’s
negation ¬v, in which case l is negative. A formula over V under the standard Boolean logic
syntax is in Conjunctive Normal Form (CNF) if it is a conjunction of clauses, where a clause
is a disjunction of literals. Similarly, a formula over V is in Disjunctive Normal Form (DNF)
if it is a disjunction of cubes, where a cube is a conjunction of literals. We assume naturally
that no cube and no clause contains both a variable and its negation.

Assuming that circuits are represented in the standard AIGER format [3], a (combinational
Boolean single-output) circuit Γ with n inputs and m gates is a tuple ⟨I, G, o⟩, where
I = {c1, · · · cn} are input elements (inputs), G = {cn+1, · · · cn+m} are gate elements (gates)
and o = cm+n+1 is a single output element (output). These elements are labeled by a set
of variables denoted by Γ(V ) = {v1, . . . , vn+m+1}. Every input element ci is labeled by a
variable vi. Every gate element ck is labeled by a formula (vk ↔ (li ∧ lj)), where i, j < k and
li, lj are literals of variables vi and vj respectively. The output element o is labeled with
(vn+m+1 ↔ ln+m) where ln+m is vm+n or ¬vm+n. For simplicity, we identify the elements
with their labels (e.g. identify gate ci as vi, gate o with vn+m+1, and so on). See Fig. 1a on
page 7 for an example of a circuit. Finally, Tseitin encoding [45] generates a CNF from a given
circuit Γ, by translating every gate v ↔ l1∧l2 to three clauses (v∨¬l1∨¬l2)∧(¬v∨l1)∧(¬v∨l2)
and adding the unit clause (o) to assert the output.

SAT 2023
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2.1 Boolean Logic Semantics
In Boolean logic, an assignment σ : V 7→ {0, 1} assigns each variable to either 0 or 1. An
assignment σ is called total if σ is a total function and partial otherwise. In Boolean logic, the
cardinality |σ| of an assignment σ is the number of variables assigned under σ. Furthermore,
in Boolean logic, we say that an assignment ρ subsumes the assignment σ, denoted by σ ⊆ ρ

if whenever ρ assigns a variable v, it holds that σ assigns v as well and ρ(v) = σ(v). We
then say that σ extends ρ. For example, ρ ≡ {x1 := 1} subsumes σ ≡ {x1 := 1, x2 := 0},
whereas σ extends ρ. We denote the set of solutions that extend ρ by sol(ρ). An assignment
σ for V = (v1, . . . vn) is said to satisfy a formula F (v1, . . . vn) in Boolean-logic syntax, if
the value of F (σ(v1), . . . , σ(vb)) is 1 under the standard Boolean logic semantic convention.
Specifically if F is in CNF then σ satisfies F if it satisfies at least one literal in every clause
of F , and if F is in DNF then σ satisfies F if there is at least one cube in F with all its
literals satisfied. A solution is a (partial or total) satisfying assignment.

Given an assignment σ, we define a cube Dσ as a conjunction of all positive literals v for
which σ(v) = 1, and all negative literals ¬v for which σ(v) = 0. Same, given a cube D, we
define a (possibly partial) assignment σD in which σD(v) = 1 for every positive literal v in
D and σD(v) = 0 for every negative literal ¬v in D. We then say that σ induces Dσ and
that D induces σD. Naturally, σ satisfies Dσ and σD satisfies D. We say that two formulas
over the same variables, and with the same sets of solutions are logically equivalent.

We next define satisfying assignments for circuits. Given a circuit Γ = ⟨I, G, o⟩, and
an assignment σ for Γ(V ), we say that σ satisfies a circuit element if it satisfies its label.
Specifically, σ satisfies a gate vk ↔ li ∧ lj , if it satisfies the formula (vk ↔ li ∧ lj). We say
that σ satisfies the circuit Γ if σ satisfies all Γ’s gates and σ(o) = 1.

One can easily show that, given a circuit Γ = ⟨I, G, o⟩ and a partial assignment σ : I 7→
{0, 1} to all the inputs of Γ, σ can be uniquely extended to a total assignment τσ : I ∪ G that
satisfies all the gates in G. Since τσ is fully determined by σ, we can define a solution for
partial assignments over all the inputs only. Specifically, given a circuit Γ = ⟨I, G, o⟩ and a
partial assignment to its inputs σ : I 7→ {0, 1}, σ is a solution if and only if τσ(o) = 1. Thus,
for solving AllSAT-CT, it is sufficient to enumerate solutions defined only over the inputs.
This observation holds also for ternary logic, presented next. We say that a circuit and a
formula over the circuit’s input variables are logically equivalent if their sets of solutions is
the same. Finally, σ |= T denotes that an assignment σ satisfies a formula or a circuit T .

2.2 Ternary Logic Semantics
Ternary logic [35] extends the semantics of Boolean logic with an additional value called
don’t-care, which we denote by X. Formally, in ternary logic, an assignment σ : V 7→ {0, 1, X}
assigns each variable to one of the ternary values {0, 1, X}. To define the value of a formula
F in Boolean-logic syntax under a ternary logic assignment σ, we use the ternary logic rules
that extend the Boolean logic rules in which (¬X = X), (X ∧ 1 = X), (X ∧ 0 = 0) and
(X ∧ X = X) (we still have ¬0 = 1, 1 ∧ 0 = 0 and so on, as in the Boolean case). We then
say that σ satisfies F if σ evaluates F to be 1.

We assume that all the assignments in ternary logic are total. Given a ternary assignment
σ, let the support of σ, denoted sup(σ) to be the set of variables v for which either σ(v) = 0
or σ(v) = 1. The cardinality of σ is then the size of the support of σ. We say that assignment
ρ subsumes the assignment σ, denoted by σ ⊆ ρ, if σ(v) = ρ(v) for every v ∈ sup(ρ). We then
say that σ extends ρ. For example, ρ ≡ {x1 := 1, x2 := X} subsumes σ ≡ {x1 := 1, x2 := 0},
whereas σ extends ρ. Other definitions, such as logical equivalence, are identical to Boolean
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logic. The same goes for definitions of circuit assignments with the notable exception of
how a gate can be satisfied: consider a circuit Γ = ⟨I, G, o⟩, an assignment σ and a gate vk

labeled (vk ↔ li ∧ lj). Then the gate vk is satisfied, if it either holds that:
1. σ(vk) = 1, where σ(li) = 1 and σ(lj) = 1, or
2. σ(vk) = 0, where σ(li) = 0 or σ(lj) = 0, or
3. σ(vk) = X, where (σ(li) = X and σ(lj) ̸= 0) or (σ(lj) = X and σ(li) ̸= 0).

Note that a gate can be assigned to a don’t-care value. As before, σ satisfies Γ if σ

satisfies all Γ’s gates and σ(o) = 1, and σ |= T denotes that σ satisfies a CNF or a circuit T .

2.3 Solution Generalization
Solution generalization is a pivotal notion in our context. Given a solution σ |= T , where
T can be a circuit or a CNF formula, any solution σ′ |= T which subsumes σ is called a
generalization, or a generalized solution of σ. Since σ′ can be extended not only to σ, then
by generalizing σ we obtain a compact description σ′ of more solutions. To explore less
solutions and store them compactly, we are interested in generalizations of small cardinality.

A key observation for our context is that in Boolean logic, generalization can be carried
out only by unassigning variables, whereas in ternary logic, generalization can be done
by reassigning variables to X. (This is reflected in our formal definition above, since we
defined subsumption differently for the two logics). The above-mentioned difference makes
ternary-logic-aware generalization substantially more efficient. Indeed, as we show in Sect. 4,
one can easily construct a circuit Γ and a solution σ, such that there exists a generalization
of σ in ternary logic that is strictly smaller that any possible generalization in Boolean logic.

3 The AllSAT Problem

AllSAT is the problem of enumerating all the solutions for a given Boolean formula. Designing
efficient AllSAT algorithms is a challenge. First, finding even a single solution is already
NP-complete, hence an efficient SAT oracle is typically required. Second, since the number
of possible solutions can be very large (exponential in the number of the formula’s variables),
a compact description of the solutions is required.

In this paper, we consider two AllSAT flavours: AllSAT-CNF and AllSAT-CT, depending
on the input formula type. In AllSAT-CNF, we are given a CNF formula T , and in AllSAT-
CT we are given a combinational circuit T . In both cases the solver is expected to return
an enumeration of all solutions for T in a form of a DNF Q that is logically equivalent to
the original T . To see why Q is indeed such an enumeration, note that since every cube
D in Q induces a satisfying partial assignment σD, then every solution that extends σD

also satisfies D, and therefore satisfies Q. Thus, D compactly describes the set of solutions
sol(σD). Then, as every solution to T satisfies at least a single cube D in Q, we have that Q

serves as a compact enumeration of exactly all the solutions for T .
Out of the three main families of AllSAT approaches (blocking [28], non-blocking [14]

and BDD-based [17]), mentioned in Sect. 1, we focus in this paper on the iterative blocking
algorithm [28]. Given a CNF or a circuit, the blocking algorithm uses an incremental SAT
solver [9, 34] to find solutions iteratively, where every solution is generalized, and then blocked
from subsequently reappearing. This blocking is done by using a so-called blocking clause
that prevents this solution and perhaps other solutions found so far, from being re-discovered
by the SAT solver in subsequent iterations. Formally, given a CNF F and a solution σ |= F ,
a clause B is blocking if and only if σ ̸|= B and, for any solution τ |= F such that τ ̸⊆ σ,
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we have τ |= B (the latter part is required to ensure correctness, that is, in order not to
block solutions, not yet reported to the user). By producing generalized solutions, and
adding blocking clauses to the CNF formula, the solver gradually generates all the solutions.
The process terminates when the SAT solver returns UNSAT, which means that no further
solutions can be found, indicating that all possible solutions have been enumerated.

A generic blocking algorithm framework for both AllSAT-CNF and AllSAT-CT, adopted
from [46], is depicted in Alg. 1. Our AllSAT-CT algorithms, described in Sect. 4, follow
this framework. Alg. 1 begins by encoding the circuit Γ into a CNF formula F (if required).
Then, following some initialization, the algorithm runs in a loop until the current formula Fi

is unsatisfiable (line 5), where, for every iteration i, Fi corresponds to the original formula
F , updated with the conjunction of all the blocking clauses generated so far. Inside the
loop, the algorithm first finds a solution σi for Fi by invoking a SAT solver (line 6). Next, it
computes a generalized solution σ′

i by using the GeneralizeSol procedure on σi (line 7).
Then, the algorithm computes the blocking clause bi by using the ComputeBlockingCls
procedure (line 8). Typically, the blocking clause is the negation of the cube Dσ′

i , induced
by the current generalized solution σ′

i (this, however is not always the case; see Sect. 4.2.3).
Afterwards, we update the DNF Q with Dσ′

i and construct the next formula Fi+1 by adding
the newly generated blocking clause to Fi (line 9). Once the loop terminates, the algorithm
returns the DNF Q. As one can see, many factors may impact the efficiency of a blocking
AllSAT solver dramatically, including the choice of the SAT solver, the circuit encoding for
AllSAT-CT, as well as solution generalization and blocking clause computation techniques.

Algorithm 1 Blocking AllSAT Algorithm Template.
Input: Circuit Γ or CNF F

Output: Q in DNF with exactly the same solutions as Γ or F

1: if the input is a circuit (rather than a CNF) then
2: F := EncodeCircuitToCNF(Γ) ▷ The input circuit Γ is converted to CNF F

3: end if
4: i := 1; F1 := F ; Q := ∅
5: while not UNSAT(Fi) do
6: σi := SAT(Fi) ▷ Get the next solution σi

7: σ′
i := GeneralizeSol(σi, Γ) ▷ σ′

i generalizes σi; Γ provided only if available
8: bi := ComputeBlockingCls(σ′

i) ▷ bi is disjunction of literals (clause)
9: Q := Q ∨ Dσ′

i , Fi+1 := Fi ∧ bi ▷ Q is updated by the cube, induced by σ′
i

10: i := i + 1
11: end while
12: return Q ▷ Q may be disjoint or non-disjoint

3.1 Disjoint vs. Non-Disjoint Solutions
We next discuss the concepts of disjoint and non-disjoint solutions generation, and their role
in the blocking framework. Given a CNF formula or a circuit T and two solutions σ |= T

and τ |= T , we say that σ and τ are disjoint, if there is no solution ρ |= T , that extends both
σ and τ . Otherwise we say that the solutions are non-disjoint. Let the DNF Q be a T ’s
AllSAT solution. Two cubes Di, Dj ∈ Q are disjoint if and only if σDi and σDj are disjoint.
The DNF Q is disjoint if all its cubes are pairwise disjoint; otherwise it is non-disjoint. One
can request an AllSAT solver to generate disjoint or non-disjoint DNFs, where both variants
can be of interest, depending on the application [46]. Our industrial application STA does
not require the DNF to be disjoint.
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By default, the blocking framework Alg. 1 does not guarantee that the resulting DNF
Q is disjoint. To produce a disjoint DNF, one can use the following observation from [46].
Let F be the CNF either given as input to Alg. 1 or encoded from a given circuit. We say
that a solution τ to F is blocking-satisfying if τ also satisfies Fi (comprising F and all the
blocking clauses obtained so far). Note that by construction, the solution σi, returned by
the SAT solver at line 6, is blocking-satisfying, but that does not necessarily mean that the
generalized solution σ′ is blocking-satisfying as well. It was observed in [46] that, assuming
the blocking clauses are constructed as B := ¬Dσ′

i , if every generalized solution σ′
i obtained

in line 7 is also blocking-satisfying, then Alg. 1 is guaranteed to return a disjoint DNF.
This observation is applicable to TALE, in which generalization does not necessarily produce
blocking-satisfying solutions, and therefore TALE is not a disjoint solution algorithm. It
is not applicable, however, to MARS, since MARS constructs blocking clauses differently; see
Sect. 4.2.3 for more details.

4 Ternary Logic-based Algorithms for AllSAT-CT

Towards constructing algorithms that are designated for AllSAT-CT, we first observe that
generalizing an existing solution under the Boolean semantics, may result in a solution
with larger cardinality (thus less efficient), than when using ternary logic semantics. This
is because, in Boolean logic, one cannot explicitly assign don’t-care values to the circuit
variables. This observation still holds when the circuit is encoded to CNF by using the
Tseitin encoding or other encodings under the standard definition that maintains only the
Boolean logic semantics (see, e.g. [23]). Thus, using Boolean logic semantics for encoding,
may result in missing smaller generalized solutions. We support this observation by the
following example.

n

p
c

b

a

o

(a) Γ = ⟨I = {a, b, c} ,
G = {n ↔ a ∧ b, p ↔ n ∧ c} , o ≡ ¬p⟩.

C1 = (¬p),
C2 = (p ∨ ¬n ∨ ¬c), C3 = (¬p ∨ n), C4 = (¬p ∨ c),
C5 = (n ∨ ¬a ∨ ¬b), C6 = (¬n ∨ a), C7 = (¬n ∨ b)

(b) Γ’s Tseitin encoding into CNF F = C1 ∧ . . . ∧ C7.

Figure 1 Illustration for Example 1.

▶ Example 1. Consider the circuit Γ in Fig. 1a and the solution σ ≡ {a := 1, b := 1, c := 0}
which satisfies Γ (recall that solutions for circuits are defined over the inputs only). Intuitively,
as long as c is assigned 0, the circuit is satisfied, independently from a’s and b’s values. In
ternary logic, σ can be generalized to a solution σ′

t ≡ {a := X, b := X, c := 0} of cardinality 1
that still satisfies Γ. The corresponding generalized solution in Boolean logic could have been
τ ≡ {c := 0}. However, note that τ is not a solution to Γ, since the gate n cannot remain
unassigned. Therefore, in Boolean logic, σ cannot be generalized to a smaller assignment,
hence the generalized solution is simply σ′

b = σ of cardinality 3. To emphasize this point,
consider the translation of Γ to a CNF F by Tseitin encoding–in Fig. 1b. One can easily
see that unassigning one of a, b or c would render F non-satisfied, since either C6, C7 or C2,
would cease to be satisfied, hence generalizing σ in F to a smaller solution is impossible.

To overcome the problem of inefficient generalization in Boolean logic, we propose several
blocking AllSAT-CT algorithms that are ternary-logic-aware, as we present next.

SAT 2023
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4.1 TALE: the Ternary Simulation-based Algorithm
Our first algorithm TALE instantiates the blocking AllSAT algorithm Alg. 1, while borrowing
a ternary simulation-based generalization procedure from [8], where it is applied at the
generalization stage of the PDR model checking algorithm.

In ternary simulation [6, 18], a circuit Γ = ⟨I, G, o⟩ and an input assignment σ : I 7→
{0, 1, X} (which may not satisfy Γ) are given as input. The values of the gates (vk ↔
li<k ∧ lj<k) in G, are then computed by iteratively evaluating li ∧ lj based on the ternary
semantics outlined in Sect. 2.2. Eventually, ternary simulation returns the evaluation of the
circuit, which is the value of o, which can be either 0, 1 or X.

Given a circuit Γ, the algorithm TALE instantiates Alg. 1 as follows. It first implements
EncodeCircuitToCNF by converting Γ into a CNF F using Tseitin encoding. Then, TALE
uses the standard incremental SAT-based blocking algorithm to iteratively enumerate and
block solutions. The blocking clause computation procedure ComputeBlockingCls simply
returns the negation of the cube Dσ′

i , induced by the generalized solution σ′
i. Our focus is

on the solution generalization step procedure GeneralizeSol in TALE, which is carried out
based on ternary simulation in the original circuit.

Algorithm 2 TALE: GeneralizeSol.
Input: current solution σi (Boolean or ternary); the original circuit Γ = ⟨I, G, o⟩
Output: generalized solution σ′

i (in ternary logic) over the circuit inputs
1: v ∈ I: if v is assigned under σ then σ′

i(v) := σi(v) else σ′
i(v) := X ▷ Initialize σ′

i

2: for v ∈ I; σ′
i(v) ̸= X do ▷ v is a circuit input

3: σ′
i(v) := X

4: Simulate σ′
i with ternary-simulation on Γ to get an evaluation eval(Γ)

5: if eval(Γ) = X then
6: σ′

i(v) := σi(v) ▷ Ternary simulation failed, return the original value of v

7: end if
8: end for
9: return σ′

i

In detail, GeneralizeSol receives the current solution σi (σi is, originally, in Boolean
logic, but Alg. 2 interprets it in ternary logic) and the original circuit Γ and returns a solution
σ′

i |= Γ, in ternary logic, that generalizes σi. First, Alg. 2 initializes σ′
i from σi by setting

every variable unassigned in σi, to X (line 1). Then, the algorithm iterates through all Γ’s
inputs (line 2), and, for every input v where σ′

i(v) is not X, it tentatively assigns X to v in σ′
i

(line 3). Alg. 2 then simulates the updated σ′
i on the circuit C by using ternary simulation

(line 4). If the simulation renders the output X, then v cannot be converted to a don’t-care,
thus the algorithm restores the original value of v, that is σ′

i(v) (lines 5–6). Otherwise, v

remains X in σ′
i. In the end, the algorithm returns the generalized solution σ′

i (line 9).
TALE does not guarantee that the solutions are disjoint, since while generalization guar-

antees that the resulting solution σ′ satisfies the original circuit (thus, the original CNF),
it does not guarantee that the blocking clauses in Fi are satisfied (being unaware of them).
Hence, σ′ is not necessarily blocking-satisfying (recall Sect. 3.1).

4.2 MARS: the Dual-Rail&MaxSAT-based Algorithm
In this section, we introduce our second algorithm, called MARS. Similarly to TALE, MARS
fits into the framework of the blocking algorithm Alg. 1. However, instead of applying a
dedicated GeneralizeSol procedure to generalize solutions, it relies on the SAT solver to
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return an already reasonably generalized solution (hence, MARS implements GeneralizeSol
by simply returning σ′ ≡ σ). This is achieved by using the so-called dual-rail encoding [5, 21]
to convert the circuit to CNF and applying anytime MaxSAT-inspired heuristics [31, 32]
in the underlying SAT solver to heuristically generalize solutions. Here, we introduce two
new blocking clause generation algorithms for the dual-rail encoding, designed to have MARS
return disjoint or non-disjoint solutions, respectively.

Applying the combination of dual-rail encoding and full-blown MaxSAT solving for
generalization was proposed in [40], while [38, 10] had previously introduced a closely
related method of applying, to the same end, a single SAT invocation that assigns all the
decision variables to 0. The latter approach had been proposed in the context of abstraction
refinement [38] and minimal model generation for SMT [10], but was also evaluated in the
context of PDR in [40]. However, in these works, the main flow creates a separate dual-rail
encoded SAT instance for generalization only, while any blocking clauses are created using
the standard Tseitin encoding-based technique and added to a Tseitin-encoded CNF instance,
maintained by the main flow. Thus, our approach of using a single dual-rail-encoded instance
throughout the whole flow, combined with a MaxSAT approximation for generalization and
blocking clause generation native to dual-rail encoding, is novel (in addition, our application
and the high-level algorithm are completely different from those in [40, 38, 10]). Moreover,
our approach of making an AllSAT algorithm return non-disjoint or disjoint solutions, based
on different blocking clause generation schemes, is also new.

In what follows, we first describe the dual-rail encoding, followed by the use of a MaxSAT
approximation in the generalization process and our blocking clause generation algorithms.

4.2.1 The Dual-Rail Encoding

In dual-rail encoding [5], every variable v in the set of variables Γ(V ) in a given circuit
Γ = ⟨I, G, o⟩, is mapped to two Boolean dual-rail variables (v+, v−). This results in a set of
variables U that we use to encode the circuit Γ. The dual-rail encoding induces the following
one-to-one mapping between a Boolean assignment σ over the dual-rail variables U and a
ternary assignment σ over circuit’s original variables V (slightly abusing the notation, we
reuse σ for both assignments):
1. σ(v) = 1 ⇐⇒ (σ(v+) = 1 and σ(v−) = 0)
2. σ(v) = 0 ⇐⇒ (σ(v+) = 0 and σ(v−) = 1)
3. σ(v) = X ⇐⇒ (σ(v+) = 0 and σ(v−) = 0)
4. the combination σ(v+) = σ(v−) = 1 is disallowed.

We now describe the encoding. For a negative literal l = ¬v, we use the following
notation: l+ = v− and l− = v+. Then, to convert the circuit Γ to CNF, the dual-rail
encoding generates the following clauses:
1. For every v ∈ V , we generate the clause (¬v+ ∨ ¬v−) to block the disallowed combination.
2. To translate every gate v ≡ li ∧ lj , we generate the clauses: (v+ ∨ ¬l+

i ∨ ¬l+
j ) ∧ (¬v+ ∨

l+
i ) ∧ (¬v+ ∨ l+

j ) ∧ (¬v− ∨ l−
i ∨ l−

j ) ∧ (v− ∨ ¬l−
i ) ∧ (v− ∨ ¬l−

j ).
3. Finally, we generate the unit clause (o+) to assert the output o.

Note that the dual-rail encoding is heavier than the Tseitin encoding, since it generates
twice as many Boolean variables and many more clauses. To summarize, our algorithm MARS
implements EncodeCircuitToCNF by using the dual-rail encoding.

SAT 2023
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4.2.2 MaxSAT Approximation for On-the-Fly Generalization
MaxSAT is a widely used extension of SAT to optimize a linear Pseudo-Boolean function [2].
Given a CNF formula F and a target bit-vector (target) T = {tn, tn−1, . . . , t1}, where each
target bit ti is a Boolean variable associated with a strictly positive integer weight wi, MaxSAT
finds a model σ to F that minimizes the following objective function: Ψ(σ) =

∑n
i=1 σ(ti)×wi.

A MaxSAT instance is unweighted if and only if all the weights are 1; otherwise it is weighted.
It was observed in [40] that, given a solution σ to a circuit Γ = ⟨I, G, o⟩, one can find a

minimal generalized solution σ′ by the following reduction to unweighted MaxSAT. First, Γ is
converted into a CNF formula F using the dual-rail encoding. Next, given I =

{
v1, . . . , v|I|

}
,

the vector target T is defined to contain both the dual-rail variables for every input of the
original circuit: T =

{
v+

1 , v−
1 . . . , v+

|I|, v−
|I|

}
. By using this reduction, invoking a MaxSAT

solver over F and T guarantees that the resulting solution, when restricted to the circuit
inputs, is of a minimal (but not necessarily minimum) cardinality. This is because, by
definition, the solver maximizes the number of the Boolean dual-rail variables assigned to 0.
Then, since we use clauses to block the assignment (v+ := 1, v− := 1) for every pair of the
dual-rail variables, we have that every solution σ must assign at least one of the dual-rail
variables in every pair to 0. Hence, the minimal solution to F maximizes the number of pairs
of the dual-rail variables, in which both variables are assigned to 0, therefore maximizing the
number of inputs in the original circuit that are assigned to X.

Since, according to our preliminary experiments, obtaining an optimal MaxSAT solution
is computationally expensive, in practice our algorithm MARS does not apply full-scale
MaxSAT solver to generalize the solutions, but rather uses a standard incremental SAT
solver, augmented with two heuristics, applied by anytime MaxSAT solvers [31, 32] to
heuristically minimize the solution. Specifically, in the beginning of the search, we boost the
score of the (would-be) target variables, which describe the dual-rail variables for the circuit
inputs (corresponding to the TSB heuristic in [31, 32]). Additionally, whenever a target
variable is chosen by the solver’s decision heuristic, we assign it to 0 first (corresponding to
the optimistic polarity selection heuristic in [31, 32]). These techniques increase the likelihood
of generating heuristically generalized solutions.

4.2.3 Generating Blocking Clauses in MARS

Fitting into the blocking algorithm Alg. 1, MARS uses the dual-rail encoding to encode the
given circuit Γ = ⟨I, G, o⟩ to a CNF formula F , then trusts the SAT solver, described in
Sect. 4.2.2, (invoked at line 6 of Alg. 1) to return an assignment σ for F that already
heuristically serves as a generalized solution to Γ (whereas GeneralizeSol, invoked next,
simply returns σ). Since the semantics of the dual-rail encoding are ternary-based, we
have that σ also assigns every circuit input v to 0, 1 or X, as described in Sect. 4.2.1. We
finally explain how MARS constructs the blocking clauses, that is, how MARS implements
ComputeBlockingCls. We also show how with this construction, one can make the
distinction between the disjoint and non-disjoint modes, which renders Alg. 1 to return a
disjoint or a non-disjoint DNF, respectively.

Towards implementing ComputeBlockingCls, we make use of the observation that it
is sufficient for the blocking clause B that we construct to force a change in a value, assigned
to at least one of the inputs in sup(σ), in order to block the SAT solver from finding σ again.
In details, for the disjoint case, B needs to force at least one input v ∈ sup(σ) to flip to
¬σ(v) (that is, either 0 or 1), where merely changing v to X is not enough. In that way,
every future solution ρ, found by the solver, will have at least one input in both sup(σ) and
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sup(ρ) that has different values. Thus, every solution that extends σ will be different from a
solution that extends ρ, as required in the disjoint case. For the non-disjoint case, however,
it is sufficient to force at least one input v ∈ sup(σ) to change (to either ¬σ(v) ∈ {0, 1}
or X). This will guarantee that every future solution ρ will have at least one input from
sup(σ) assigned differently than under σ, but altogether σ and ρ can still be non-disjoint;
for example, ρ might subsume σ.

We are now ready to present our core algorithms for blocking clause generation for both
modes. Observe that for every input v in sup(σ), one of the dual-rail variables (v+, v−) must
be satisfied by σ, while the other one must be falsified (since (1, 1) is disallowed).

In the disjoint mode, we set B to be the disjunction of all the dual-rail variables of the
form vϵ, where ϵ ∈ {+, −} for which v ∈ sup(σ) and σ(vϵ) = 0. To see why this works,
assume, without loss of generality, that σ assigns some input v ∈ sup(σ) to 1, that is, it
assigns (v+, v−) to (1, 0). Then, B forces every subsequent solution, in which every other
input u ̸= v ∈ sup(σ) is not flipped (that is, u retains the same value as in σ or is assigned
X), to assign (v+, v−) to (0, 1), thus flipping v from 1 to 0.

In the non-disjoint mode, we set B to the disjunction of negative literals of the dual-rail
variables of the form ¬vϵ, where ϵ ∈ {+, −} for which v ∈ sup(σ) and σ(vϵ) = 1. Again to
see why this works, assume, without loss of generality, that σ assigns some input v to 1, that
is, it assigns (v+, v−) to (1, 0). Then, B forces every subsequent solution, in which all the
other inputs u ̸= v ∈ sup(σ) are unchanged as compared to σ, to assign (v+, v−) to either
(0, 1) or (0, 0), thus changing v by either flipping v to 0 or assigning it X.

Observe that, by construction, any solution τ which is not subsumed by σ is guaranteed
to satisfy our blocking clause in both modes. To better understand the difference between
the non-disjoint and disjoint modes, consider the following example.

▶ Example 2. Consider the circuit Γ in Fig. 1a and the solution σ ≡ {a := X, b := X, c := 0}.
Recall that, if σ(c) = 0, then σ(c+) = 0 and σ(c−) = 1. In the non-disjoint mode, the
generated blocking clause would be B = (¬c−). Adding the clause B, allows for the following
solution τ ≡ {a := 0, b := 0, c := X}, where the solution ρ ≡ {a := 0, b := 0, c := 0} is
subsumed by both σ and τ , thus result in non-disjoint solutions. On the other hand, in the
disjoint mode, the generated blocking clause would be B = (c+), enforcing c to be assigned 1
in every subsequent solution. Adding the clause B would render τ ≡ {a := 0, b := 0, c := 1},
disjoint from σ, the only remaining solution.

4.3 DUTY: Combining MARS and TALE

We finally describe our third algorithm DUTY, which is similar to MARS, except for invoking
the ternary simulation-based generalization method of TALE at line 7 in Alg. 1. Such a
combination makes sense because of the heuristic nature of the on-the-fly generalization
carried out by the SAT solver in MARS. Note that DUTY does not necessarily generate disjoint
solutions, since ternary simulation-based generalization does not guarantee that the blocking
clauses are satisfied. One may expect DUTY to outperform plain MARS, because ternary
simulation over an almost minimized solution is expected to be cheap and, hopefully, efficient.
It is unclear, however, how DUTY compares to TALE. On one hand, DUTY incurs the overhead
of using the dual-rail encoding which generates more clauses and variables than Tseitin
encoding. On the other hand, DUTY carries out generalization on-the-fly during SAT solving
that leaves substantially less work to ternary simulation.

Another important detail is that, in DUTY, MARS’s blocking clause generation is applied
in disjoint mode because of the substantially better performance than the non-disjoint
mode (inside DUTY) in our preliminary experiments. Informally, sharing too many subsumed
solutions slows down the algorithm as it has to enumerate more generalized solutions.
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5 Experimental Results

We implemented our algorithms in a new open-source tool HALL2. Then, we compared these
algorithms within HALL with the AllSAT-CNF Toda tools [44] on our own industrial STA
benchmarks (made publicly available), as well as on circuits from the EPFL combinational
benchmark suite [1] and random circuits. We carried out the comparison for both the disjoint
and non-disjoint cases. In our experiments, we evaluated two criteria: the runtime and the
size, where size refers to the number of cubes in the resulting DNF.

5.1 Evaluation Setup
HALL is written in C++20 on top of Intel® SAT Solver [33]. All the experiments were run
on machines with 32Gb of memory with Intel® Xeon® processors with 3Ghz CPU frequency.
We set the timeout to 3600 seconds.

Since our work considers circuits with one output, we transformed any multi-output
circuits into one-output circuit by applying, over all the outputs, either or (disjunction)
operator (using the utility aigor from the aiger library [3]3) or xor operator (using our own
aigxor utility4). We omit the conversion time in the results as it is negligible. Furthermore,
to evaluate our AllSAT-CT tool against AllSAT-CNF solvers, we translated each circuit from
the AIGER format [3] to CNF using the aigtocnf utility5 from the aiger library.

5.1.1 Benchmarks
We used the following three benchmark sets:

sta_gen – Static Timing Analysis (STA) industrial set: we generated the following
parametrized benchmark family, which encapsulates a variety of real-world STA instances
we had encountered. Given the number of inputs N , each formula F (N) consists of a
disjunction of subformulas F1(N) and F2(N), where each subformula comprises a DNF,
conjuncted with the selector vN or ¬vN . All the cubes in the DNFs have two variables
and are pairwise disjoint. The resulting formula looks as follows, where j = (N − 1)/2:

F1(N) := ((v1 ∧ v2) ∨ . . . ∨ (vj−1 ∧ vj)) ∧ vN

F2(N) := ((vj+1 ∧ vj+2) ∨ . . . ∨ (v(N−2 ∧ vN−1)) ∧ ¬vN

F (N) := F1(N) ∨ F2(N)

To satisfy F (N) with the minimal possible solution σ, it is sufficient to satisfy a pair of
consecutive variables and assign the selector so as to satisfy its subformula (e.g., assign
σ(v1) = σ(v2) = 1 and σ(vN ) = 1). Note that, for F (N) to be well-defined, N must be
odd and N − 1 divisible by 4. While these formulas may be easy to interpret for humans,
we note that they are challenging for the automatic solvers that we inspected.
EPFL combinational benchmark suite [1]: we used the arithmetic and the random_control
sets. We created two instances of each set depending on whether the multiple outputs are
combined using the operator or or the operator xor , resulting in the following four sets:
arithmetic_or, arithmetic_xor, random_control_or, random_control_xor.

2 HALL and all the benchmarks are available at https://github.com/yogevshalmon/allsat-circuits.
3 The library is available at https://github.com/arminbiere/aiger.
4 aigxor is available at https://github.com/yogevshalmon/aiger.
5 We used aigtocnf with the –no-pg option to enforce the translation to preserve the number of solutions.

https://github.com/yogevshalmon/allsat-circuits
https://github.com/arminbiere/aiger
https://github.com/yogevshalmon/aiger


D. Fried, A. Nadel, and Y. Shalmon 9:13

Random combinational circuit: we used the aigfuzz6 utility from the AIGER library [3]
for generating large combinational circuits. We report results only for the family
large_cir_or, where the outputs are combined by the operator or , since using the
operator xor resulted in benchmarks which proved to be too difficult for all the solvers.

5.1.2 Solvers
We compared our tool HALL against the three solvers from the Toda repository [44]: BC, NBC
and BDD. We tried to get access to the more recent solvers BASolver [47] and AllSATCC [25]
but, unfortunately, these tools are not available online, and we could not reach the authors.
Below, we list all the solvers and algorithms that we have used, separated by whether they
are guaranteed to return only disjoint solutions:

Disjoint solutions guaranteed:
NBC [44]: a non-blocking AllSAT-CNF solver.
BDD [44]: a BDD-based AllSAT-CNF solver.
MARS: our tool HALL with MARS in disjoint mode.

Non-Disjoint (that is, disjoint solutions not guaranteed):
BC [44]: blocking clause-based AllSAT-CNF solver. We used the SIMPLIFY and
NONDISJOINT macros to make the solver return (non-disjoint) partial solutions.
TALE: our tool HALL with TALE.
MARS: our tool HALL with MARS in non-disjoint mode.
DUTY: our tool HALL with DUTY.

5.2 Evaluation of the STA Benchmark Sets
In our first experiment, we used our industrial sta_gen benchmark set. We separate our
analysis to disjoint and non-disjoint solvers.

5.2.1 Results for Disjoint Solvers

Table 1 Comparing disjoint solvers on the sta_gen benchmark family. The first column (N)
specifies the number of inputs for each instance. Each pair of columns (T,S) shows the run-time in
seconds (where TO stands to a time-out, MO stands for a memory-out and < 1 for a run-time lower
than 1 second), and the size of the DNF in the number of cubes.

N
Disjoint

MARS NBC BDD
T (sec) S T (sec) S T (sec) S

9 < 1 10 < 1 224 < 1 224
17 < 1 59 < 1 89600 < 1 89600
25 < 1 253 2.111 27582464 48.26 27582464
33 < 1 1315 570.897 7729971200 MO –
37 9.808 59538 TO – MO –
41 TO – TO – MO –

6 We used the following parameters for aigfuzz: “-a -c -l -1”.
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The comparison between the disjoint solvers is shown in Table 1. One can see that our
MARS algorithm is substantially more scalable than the others, but even MARS could only
handle small formulas with up to 37 inputs. This is because sta_gen is a very hard problem
in the disjoint mode, since the structure of the formula implies that the number of total
solutions is exponential. Consequently, NBC and BDD that do not iterate over partial solutions,
thus return all the total solutions, struggle to scale. MARS, which can return partial solutions,
scales somewhat better.

5.2.2 Results for Non-Disjoint Solvers

Table 2 shows our results for the non-disjoint solvers comparison. Notably, our tool HALL, in
all its variants, substantially outperforms BC, because of the limitations of generalization in
Boolean logic as compared to ternary logic, highlighted in our paper.

Observe also that, for the non-disjoint case, HALL was able to solve instances with over
10000 inputs as compared to 37 inputs only for the disjoint case. This is because, for
the non-disjoint case (which is the one required in our industrial usage), solving sta_gen
becomes substantially simpler. Specifically, for every benchmark with N inputs there exists
the following DNF solution with (N − 1)/2 cubes: Q = (v1 ∧ v2 ∧ vN ) ∨ . . . ∨ (vj−1 ∧ vj ∧
vN ) ∨ . . . ∨ (vj+1 ∧ vj+2 ∧ ¬vN ) ∨ . . . ∨ (vN−2 ∧ vN−1 ∧ ¬vN ).

Table 2 Comparing non-disjoint solvers on sta_gen. The first column (N) shows the number of
inputs for each instance (inputs from 33 to 2009 are skipped, because of similarity of the results).
Each subsequent pair of columns (T,S) shows the solver’s run-time in seconds and the size of the
resulting DNF in number of cubes.

N
Non-Disjoint

TALE MARS DUTY BC
T (sec) S T (sec) S T (sec) S T (sec) S

9 < 1 4 < 1 4 < 1 4 < 1 90
17 < 1 8 < 1 9 < 1 8 < 1 10538
25 < 1 12 < 1 12 < 1 12 866.53 1026771
33 < 1 16 < 1 20 < 1 16 TO –

2009 < 1 1004 < 1 1154 < 1 1004 TO –
3009 < 1 1504 1.874 1990 < 1 1504 TO –
4009 1.676 2004 2.917 3036 1.374 2004 TO –
5009 3.349 2504 9.83 3629 2.417 2504 TO –
6009 4.403 3004 40.114 20530 4.181 3004 TO –
7009 7.886 3504 10.294 6098 4.625 3504 TO –
9009 28.909 4504 84.817 6889 11.977 4504 TO –
11009 56.877 5504 TO – 23.0 5504 TO –
13009 96.688 6504 50.361 13704 29.889 6504 TO –

Comparing our algorithms, one can see that DUTY outperforms both TALE and MARS.
Notably, TALE and DUTY return DNFs of the same size, which is the optimal (N − 1)/2, while
MARS returns larger DNFs. Apparently, ternary simulation, applied by both TALE and DUTY
(but not by MARS), was essential to reduce the size of every cube and also the resulting DNF.



D. Fried, A. Nadel, and Y. Shalmon 9:15

5.3 Evaluation of the EPFL and Random Benchmark Sets
Table 3 summarizes the evaluation results on the EPFL and random families. Specifically,
it shows the number of solved instances per each family and solver, where an instance is
considered solved, if the solver completed the enumeration all its solutions within the timeout.

Overall, our tool HALL solved significantly more instances than the others, where its
variant TALE is the winner amongst the non-disjoint solver, while MARS is the winner amongst
the disjoint ones. More specifically, HALL is substantially more efficient on instances, where
the outputs are joined using the operator or . This is because, when the operator or is applied
over the outputs, the solver can set all the outputs, except for one, to a don’t-care. Our
dedicated ternary logic-aware algorithms take full take advantage of this property, while other
solvers, restricted to Boolean logic, fail to do so. On families, where the outputs are joined
using the operator xor , the difference is not that significant, where there is one benchmark
from the arithmetic_xor family, which was solved only by NBC.

Table 3 Comparing the number of instances solved from each benchmark set and overall. The
first column (Family) shows the benchmark family name. The two subsequent columns provide the
number of benchmarks (#Bench) and the average number of inputs for each set (AvgIN). Each of
the subsequent columns shows the number of instances solved for the corresponding solver.

Family #Bench AvgIN Non-Disjoint Disjoint
TALE MARS DUTY BC MARS NBC BDD

arithmetic_or 10 166 4 2 3 0 1 1 0
arithmetic_xor 10 166 0 0 0 0 0 1 0
random_control_or 10 283 9 9 9 4 7 4 4
random_control_xor 10 283 5 5 5 4 4 4 4
large_cir_or 20 597 16 7 16 0 7 0 0

Total 60 – 34 23 33 8 19 10 8

6 Related Work

AllSAT research has so far been mostly focused on the well studied problem of AllSAT-CNF
that is, enumerating all the satisfying assignments of a Boolean formula in CNF [30, 46, 44,
14, 24, 11]; see [44] for an extensive survey. Recent progress in AllSAT-CNF includes [47]
that relies on finding backbone variables, and [25] that uses efficient component analysis.

To the best of our knowledge, the only papers that explicitly consider AllSAT-CT
are [19, 20, 43]. The first two papers introduce blocking non-disjoint AllSAT-CT algorithms,
which utilize a hybrid SAT solver that can carry out conflict analysis and propagation in both
CNF formulas and circuits, where the target application is unbounded model checking. The
third paper enhances the blocking algorithm with structural analysis. All these algorithms
are restricted to Boolean logic in contrast to our ternary logic-aware algorithms. Additionally,
the resulting tools are currently unavailable.

A number of solution generalization methods have been proposed in the context of the
PDR algorithm for model checking [16, 15, 40, 8, 13]; see [40] for an extensive survey. Finding
minimal test cubes in circuit testing is closely related to solution generalization in PDR,
where [39, 37] investigate different techniques, including MaxSAT- and MaxQBF-based.

Finally, another closely related problem is one of generating of all the prime implicants,
given a Boolean formula, studied in [41, 36, 27]. Informally, in our terminology, an implicant
is a cube which implies the original formula (that is, an implicant is a not-necessarily-
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generalized solution). A prime implicant is a generalized cube, which cannot be generalized
further. AllSAT can then be viewed as the problem of finding a (not-necessarily-prime)
implicant cover, which is a significantly simpler problem than that of generating all the prime
implicants.

7 Conclusion & Future Work

Motivated by the need to improve the scalability of Intel’s in-house Static Timing Analysis
(STA) tool, we considered the problem of enumerating all the solutions of a single-output
combinational Boolean circuit, called AllSAT-CT. We introduced several dedicated ternary
logic-based AllSAT-CT algorithms and implemented them in an open-source tool called
HALL. Our experimental results demonstrated that HALL scales substantially better than any
reduction to existing AllSAT-CNF tools on our industrial STA instances as well as on various
publicly available families of combinational circuits.

For future work, we plan to investigate how to utilize other AllSAT-CNF methods,
including the nonblocking technique that modifies the SAT solver to enumerate the solutions
explicitly without blocking clauses, for AllSAT-CT. Furthermore, we plan to explore solutions
to related problems to utilize the relevant techniques for AllSAT-CT, including dual value
propagation in circuits, which is a known method in QBF solving [12] and projected model
counting [29]. Specifically, very recently, we became aware of a tool called dualiza [29], that,
in addition to its main capability of projected model counting, is also capable to enumerate
solutions for circuits in the AIGER format. The tool is based on dual calculus. An initial
study of ours already suggests promising methods of integrating duality considerations into
our algorithms, which we plan to explore.
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Abstract
Recently Dependency Quantified Boolean Formula (DQBF) has attracted a lot of attention in the
SAT community. Intuitively, a DQBF is a natural extension of quantified boolean formula where for
each existential variable, one can specify the set of universal variables it depends on. It has been
observed that a DQBF with k existential variables – henceforth denoted by k-DQBF – is essentially
a k-CNF formula in succinct representation. However, beside this and the fact that the satisfiability
problem is NEXP-complete, not much is known about DQBF.

In this paper we take a closer look at k-DQBF and show that a number of well known classical
results on k-SAT can indeed be lifted to k-DQBF, which shows a strong resemblance between k-SAT
and k-DQBF. More precisely, we show the following.
(a) The satisfiability problem for 2- and 3-DQBF is PSPACE- and NEXP-complete, respectively.
(b) There is a parsimonious polynomial time reduction from arbitrary DQBF to 3-DQBF.
(c) Many polynomial time projections from SAT to languages in NP can be lifted to polynomial

time reductions from the satisfiability of DQBF to languages in NEXP.
(d) Languages in the class NSPACE[s(n)] can be reduced to the satisfiability of 2-DQBF with O(s(n))

universal variables.
(e) Languages in the class NTIME[t(n)] can be reduced to the satisfiability of 3-DQBF with

O(log t(n)) universal variables.
The first result parallels the well known classical results that 2-SAT and 3-SAT are NL- and
NP-complete, respectively.
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1 Introduction

The last few decades have seen a tremendous development of boolean SAT solvers and
their applications in many areas of computing [4]. Motivated by applications in hardware
verification and synthesis [19, 3, 29, 17, 5, 7, 22, 16], there have been attempts to build
efficient solvers for even higher complexity class such as NEXP. One NEXP-complete logic
that recently has attracted a lot of attention is Dependency Quantified Boolean Formulas
(DQBF). Intuitively, DQBF is a natural extension of Quantified Boolean Formula (QBF)
where for each existential variable, one can specify the set of universal variables that it
depends on.
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It has been observed by various researchers that a DQBF is essentially a succinctly
represented boolean formula in conjunctive normal form (CNF), where the information about
each clause is encoded inside the matrix of the DQBF and that the number of existential
variables in a DQBF corresponds precisely to the width of the clauses of the CNF formula
it represents. Such succinctness makes the the satisfiability of DQBF jumps to NEXP-
complete [26, 8], compared to “only” NP-complete for SAT. However, beside these facts, not
much is known about DQBF and it is natural to ask whether there are more resemblances
between DQBF and CNF formulas.

In this paper we show that some well known classical results on SAT can indeed be lifted
to DQBF – only with exponential blow-up in complexity due to the succinctness of DQBF.
To be more precise, for an integer k ⩾ 1, let k-DQBF denote a DQBF with k existentially
quantified variables. We establish the following.
(a) The satisfiability of k-DQBF where k = 1, 2, 3 is coNP-complete, PSPACE-complete

and NEXP-complete, respectively.
(b) There is a parsimonious polynomial time reduction from arbitrary DQBF to 3-DQBF.
Note that (a) parallels the well known classical complexity results on 2-SAT and 3-SAT, i.e.,
NL-complete and NP-complete and (b) parallels the well known parsimonious polynomial
time reduction from an arbitrary boolean formula to a 3-CNF formula.

The fact that DQBF is a succinct representation of CNF formulas actually has the
same flavour as the succinct representation of graphs with boolean circuits [14]. In such
representation, instead of being given the list of edges in a graph, we are given a boolean
circuit C(x̄, ȳ) where x̄, ȳ are vectors of boolean variables with length n. The circuit C
represents a graph with {0, 1}n being the set of vertices and two vertices ū and v̄ are adjacent
if and only if C(ū, v̄) = 1. It is shown in [25] that many natural NP-complete graph problems
become NEXP-complete when succinctly represented. We observe that the proof in [25] can
be modified to obtain reductions from DQBF in the following sense.
(c) If there is a projection (in the sense of [33]) from SAT to a graph problem Π, then there

is a polynomial time (Karp) reduction from DQBF to the succinctly represented Π.
Briefly, a projection is a special kind of polynomial time reductions first introduced in [33]
and it is known that many reductions from SAT to various NP-complete problems are in
fact projections [25]. Intuitively, we can view (c) as lifting the reductions from SAT in the
class NP to the reductions from DQBF in the class NEXP.

We also observe that DQBF can be used to describe the languages in NTIME[t(n)] and
NSPACE[s(n)]. More precisely, we show the following.
(d) Every language in the class NTIME[t(n)] can be reduced to 3-DQBF instances with

O(log t(n)) universal variables.
(e) Every language in the class NSPACE[s(n)] can be reduced to 2-DQBF instances with

O(s(n)) universal variables.
Note that (d) parallels the reductions from the languages in NTIME[t(n)] to SAT in-
stances with O(t(n) log t(n)) variables and (e) parallels the reductions from the languages in
NSPACE[s(n)] to QBF instances with O(s(n)2) variables.

Finally, it is open whether there is a natural bona fide problem in the class NEXP [25].
In addition to DQBF being a natural extension of QBF and SAT, results (a)–(c) exhibit
a strong resemblance between DQBF and CNF formula. Moreover, (d) and (e) show that
DQBF can be used to describe both the classes NTIME[t(n)] and NSPACE[s(n)], as opposed
to the classical results where we need two different logics QBF and SAT to describe them.
Combined with the work in [8], we hope they can be convincing evidences for DQBF to be
the bona fide problem in NEXP, just like SAT in NP and QBF in PSPACE.
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Related works. That DQBF is NEXP-complete is proved in [26] and the hardness proof
uses an unbounded number of existential variables. It is recently improved in [8] where it is
shown that 4 existential variables are sufficient to achieve NEXP-hardness.

Many powerful and interesting techniques have been developed in the last decade for
solving DQBF. See, e.g., [2, 12, 15, 23, 39, 36, 38, 21, 31] and the references within. Some
recent solvers include iDQ [13], dCAQE [35], HQS [18, 37], DQBDD [32] and Pedant [28, 27].
Recently there is also a DQBF track in the annual SAT competitions [1].

As mentioned earlier, various researchers have observed that a DQBF is essentially a
succinctly represented CNF formula, which can be established by the universal expansion [6,
13, 3]. Briefly, it removes the universal variables one by one by considering both its values 0
and 1 separately resulting in an exponentially long boolean formula [6]. Based on this insight,
some DQBF benchmarks can be constructed by encoding succinctly graph reachability
instances and SAT instances [3]. The solver iDQ in [13] is based on universal expansion with
additional refinement strategies that remove unnecessary clauses.

A natural extension of QBF to second-order logic that captures the exponential hierarchy
is studied in [9, 20]. Naturally a DQBF can be viewed as an existential second-order boolean
formula. However, [9, 20] do not study the precise complexity and expressiveness of DQBF
itself. In [30] a characterization of a PSPACE subclass of DQBF is introduced. It requires
that the dependency sets of all the existential variables are either the same or disjoint and
the matrix is in CNF. A close examination shows that it is a Σp

3 subclass of DQBF, though
the precise complexity is still unknown. This subclass is orthogonal to the one in this paper
which is based on the number existential variables.

The celebrated Cook-Levin reductions [10, 24] show that every language in NTIME[t(n)]
can be reduced to CNF formulas with O(t(n)2) variables. The bound on the number of
variables was later improved in [11] to O(t(n) log t(n)). The reduction from languages in
NSPACE[s(n)] to QBF with O(s(n)2) variables is from [34]. In [8] the notion called succinct
projection is introduced as a general method to reduce various natural NEXP-complete
problems to DQBF. It is the analogue of the Cook-Levin reductions for the class NEXP.
Our result (c) shows that the reductions in [25] can be viewed as the “converse” reductions
of the ones in [8].

The succinct representation of graphs with boolean circuits was first introduced in [14]. As
mentioned earlier, under such representation, many NP-complete problems become NEXP-
complete and NL-complete problems become PSPACE-complete [25], using the notion of
projections introduced in [33]. To the best of our knowledge, this is the only known technique
to lift the results from the class NL and NP to the class PSPACE and NEXP.

Organisation. We first introduce some useful notations and the formal definition of DQBF
in Section 2. In Section 3 we study the complexity of DQBF based on the number of
existential variables. We discuss how to lift the reductions for NP-complete problems to
the class NEXP in Section 4. Then, in Section 5 we show the relations between the class
NTIME[t(n)] and NSPACE[s(n)] and DQBF. Finally, we conclude with Section 6.

2 Preliminaries

Notations. In this paper we let Σ = {0, 1}. We use 0 and 1 to represent the boolean values
false and true, respectively. We will use the symbol a, b, c (possibly indexed) to denote an
element in Σ and ā, b̄, c̄ (possibly indexed) to denote a string in Σ∗ with |ā| denoting the
length of ā. To avoid clutter, tuples of values from Σ will be written as strings. For example,
instead of (1, 0, 1, 1), we will simply write 1011.
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We use x, y, z, u, v (possibly indexed) to denote boolean variables and the bar version
x̄, ȳ, z̄, ū, v̄ (possibly indexed) to denote vectors of boolean variables with |x̄| denoting the
length of x̄. We implicitly assume that in a vector x̄ there is no variable occurring more than
once. We write z̄ ⊆ x̄ when every variable in z̄ also occurs in x̄.

We write φ(x̄) to denote a (boolean) formula/circuit with variables/input gates x̄. When
the variables/input gates are not relevant or clear from the context, we simply write φ.

Let φ(x̄) be a formula/circuit where x̄ = (x1, . . . , xn). Let z̄ = (z1, . . . , zn). We write
φ[x̄/z̄] to denote the formula obtained by substituting each xi with zi simultaneously for each
1 ⩽ i ⩽ n. For a string ā = (a1, . . . , an) ∈ Σn, we write φ[x̄ 7→ ā] to denote the evaluation
value of φ when we assign each xi with ai.

For z̄ ⊆ x̄ and ā ∈ Σ|x̄|, we write prjx̄(z̄, ā) to denote the projection of ā to the components
in z̄ according to the order of the variables in x̄. For example, if x̄ = (x1, . . . , x5) and
z̄ = (x2, x4, x5), then prjx̄(z̄, 00101) is 001, i.e., the projection of 00101 to its 2nd, 4th and
5th bits. Note that if ā = (a1, . . . , an) and x̄ = (x1, . . . , xn), prjx̄(xi, ā) is the value ai.

Dependency quantified boolean formula. A dependency quantified boolean formula (DQBF)
in prenex normal form is a formula of the form:

Φ := ∀x1 · · · ∀xn ∃y1(z̄1) · · · ∃yk(z̄k) ϕ (1)

where each z̄i ⊆ (x1, . . . , xn) and ϕ, called the matrix, is a quantifier-free boolean formula using
variables x1, . . . , xn, y1, . . . , yk. The variables x1, . . . , xn are called the universal variables,
y1, . . . , yk the existential variables and each z̄i the dependency set of yi. We call Φ a k-DQBF,
where k is the number of existential variables in Φ. To avoid clutter, sometimes we write Φ
as: Φ := ∀x̄ ∃y1(z̄1) · · · ∃yk(z̄k) ϕ, where x̄ = (x1, . . . , xn).

A DQBF Φ in the form (1) is satisfiable, if there is a tuple (f1, . . . , fk) of functions where
fi : Σ|z̄i| → Σ for every 1 ⩽ i ⩽ k, and by replacing each yi with fi(z̄i), the formula ϕ

becomes a tautology. The tuple (f1, . . . , fk) is called the satisfying Skolem functions for Φ.
In this case, we also say that Φ is satisfiable by the Skolem functions (f1, . . . , fk).

The problem sat(DQBF) is defined as follows. On input DQBF Φ in the form (1), decide
if it is satisfiable. For k ⩾ 1, we denote by sat(k-DQBF) the restriction of sat(DQBF) on
k-DQBF. As a language, sat(DQBF) := {Φ | Φ is a satisfiable DQBF} and sat(k-DQBF) :=
{Φ | Φ is a satisfiable k-DQBF}.

▶ Remark 1. We may allow the matrix ϕ to be in a circuit form, i.e., it is given as a (boolean)
circuit with input gates x1, . . . , xn, y1, . . . , yk. Such form does not effect the generality of
our result since it can be converted to a standard formula form with additional universal
variables, but without additional existential variables. See [8, Proposition 1].

▶ Remark 2. A DQBF can be seen a natural generalization of SAT and QBF. Indeed, a
boolean formula with variables y1, . . . , yk can be seen as a DQBF without any universal
variable and y1, . . . , yk are existential variables with empty dependency set. It is also easy to
see that a QBF is just a DQBF where the dependency set form an ordering w.r.t. inclusion,
i.e., z̄1 ⊆ z̄2 ⊆ · · · ⊆ z̄k. Indeed, a QBF ∀x1∃y1∀x2∃y2 · · · ∀xn∃yn ϕ can be viewed as a DQBF
∀x1∀x2 · · · ∀xn∃y1(x1)∃y2(x1, x2) · · · ∃yn(x1, . . . , xn) ϕ. Conversely, suppose we have a DQBF
Φ as in (1), where z̄1 ⊆ z̄2 ⊆ · · · ⊆ z̄k. Reordering the universal variables, we may assume
that z̄i = (x1, . . . , xji) for each 1 ⩽ i ⩽ k, where j1 ⩽ j2 ⩽ · · · ⩽ jk ⩽ n. Thus, Φ can be
rewritten as the QBF: ∀x1 · · · ∀xj1∃y1∀xj1+1 · · · ∀xj2∃y2∀xj2+1 · · · ∀xjk

∃yk∀xjk+1 · · · ∀xn ϕ.
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Universal expansion. We briefly review the universal expansion method, a useful and well
known method for showing that a k-DQBF essentially represents an exponentially large
k-CNF formula [6, 13, 3]. Let Φ be k-DQBF as in (1). For each ā ∈ Σn, let φā be the
following boolean formula/circuit.

φā := ϕ [x̄/ā, ȳ/(f1(prjx̄(z̄1, ā)), . . . , fk(prjx̄(z̄k, ā)))]

That is, the variables in x̄ in the matrix ϕ are substituted with the values in ā and each
yi with fi(prjx̄(z̄i, ā)). Treating each fi(prjx̄(z̄i, ā)) as a boolean variable, φā is a standard
boolean formula/circuit with k variables and can be rewritten as a k-CNF formula, say, by
building its truth table where each row (in the truth table) with 0 value is represented by
one clause. By expanding the universal quantifiers, the DQBF Φ can be easily seen to be
equivalent to:∧

ā∈Σn

φā,

where we assume each φā is already rewritten in k-CNF.
For our purpose in this paper it is not necessary to convert the entire φā into a k-CNF

formula. We usually only need to extract one clause at a time from the formula φā, which is
facilitated by the following notation. For each (ā, b̄) ∈ Σn × Σk, where ā = (a1, . . . , an) and
b̄ = (b1, . . . , bk), we define the clause Cā,b̄ as ℓ1 ∨ · · · ∨ ℓk, where each literal ℓi is as follows.

ℓi :=

 fi(prjx̄(z̄i, ā)) if bi = 0

¬fi(prjx̄(z̄i, ā)) if bi = 1

We call Cā,b̄ the clause associated with (ā, b̄) and the universal expansion of Φ is defined as:

exp(Φ) :=
∧

(ā,b̄)∈Σn×Σk s.t. ϕ[(x̄,ȳ) 7→(ā,b̄)]=0

Cā,b̄

Intuitively, ϕ[(x̄, ȳ) 7→ (ā, b̄)] = 0 means that we are only interested in the row ā, b̄ that yields
0 in the truth table of ϕ. Since the clause Cā,b̄ is defined precisely to represent such row 0, it
is straightforward to see that exp(Φ) is indeed equivalent to

∧
ā∈Σn φā, and hence, to Φ.

Alternatively, we can also define the expansion exp(Φ) by the following simple rewriting
rule. Let x̄ = (x1, . . . , xn) and ȳ = (y1, . . . , yk). With additional “fresh” k universal variables
v̄ = (v1, . . . , vk), Φ is equivalent to the following DQBF Φ′.

Φ′ := ∀x̄ ∀v̄ ∃y1(z̄1) · · · ∃yk(z̄k)
( k∧

i=1
vi = yi

)
→ ϕ′

where ϕ′ is ϕ[ȳ/v̄], i.e., the formula obtained by simultaneously substituting each yi with vi

in ϕ. Note that ϕ′ no longer uses existentially quantified variables. By simple rewriting rule
and the expansion on the universal quantifiers, we obtain:

∧
(ā,b̄)∈Σn×Σk

( k∨
i=1

(¬bi ∧ fi(prjx̄(z̄i, ā))) ∨ (bi ∧ ¬fi(prjx̄(z̄i, ā)))
)

∨ ϕ′[x̄, v̄ 7→ ā, b̄] (2)

SAT 2023
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For each (ā, b̄) ∈ Σn × Σk, when ϕ′[x̄, v̄ 7→ ā, b̄] = 1, the conjunct already yields 1. Thus, (2)
is equivalent to:

∧
(ā,b̄)∈Σn×Σk s.t. ϕ′[x̄,v̄ 7→ā,b̄]=0

( k∨
i=1

(¬bi ∧ fi(prjx̄(z̄i, ā))) ∨ (bi ∧ ¬fi(prjx̄(z̄i, ā)))
)

Since bi is either 0 or 1, exactly one of ¬bi ∧ fi(prjx̄(z̄i, ā)) and bi ∧ ¬fi(prjx̄(z̄i, ā)) evaluates
to 0. Thus, it evaluates to either fi(prjx̄(z̄i, ā)) or ¬fi(prjx̄(z̄i, ā)). Therefore, the disjunction∨k

i=1(¬bi ∧ fi(prjx̄(z̄i, ā))) ∨ (bi ∧ ¬fi(prjx̄(z̄i, ā))) is equivalent to Cā,b̄.

3 The complexity of sat(k-DQBF)

In this section we will study the complexity of sat(k-DQBF) for k = 1, 2, 3. We will start
with the case when k = 1 and 2 in Subsection 3.1. The case when k = 3 is presented in
Subsection 3.2.

3.1 On sat(1-DQBF) and sat(2-DQBF)
We first establish that sat(1-DQBF) is coNP-complete.

▶ Theorem 3. sat(1-DQBF) is coNP-complete.

Proof. We note that checking whether a boolean formula is tautology is just a special case of
sat(1-DQBF) where the existential variable is not used. Since checking tautology is already
coNP-hard, the same hardness for sat(1-DQBF) follows immediately. To establish the coNP
membership, note that a 1-CNF formula is not satisfiable if and only if it contains two
contradicting literals. We will use the same idea for 1-DQBF.

Let Ψ be the following DQBF.

Ψ := ∀x̄∃y(z̄) ψ, where x̄ = (x1, . . . , xn) (3)

It is straightforward to show that there are two contradicting literals in exp(Ψ) if and only if
there is ā, b̄ ∈ Σn+1 such that:
1. prj(x̄,y)(y, ā) ̸= prj(x̄,y)(y, b̄).
2. prj(x̄,y)(z̄, ā) = prj(x̄,y)(z̄, b̄).
3. ψ[(x̄, y) 7→ ā] = ψ[(x̄, y) 7→ b̄] = 0.
The algorithm for accepting unsatisfiable 1-DQBF works as follows. On input Ψ as in (3),
guess two assignments ā, b̄ and accept if conditions 1–3 hold. ◀

Next we establish that sat(2-DQBF) is PSPACE-complete.

▶ Theorem 4. sat(2-DQBF) is PSPACE-complete.

Proof. The PSPACE-hardness is established by reduction from succinct 2-colorability, which
is known to be PSPACE-complete [25]. The problem succinct 2-colorability is defined as:
On input circuit C, decide if the graph represented by C is 2-colorable, i.e., there is coloring
of the vertices with 3 colors such that no two adjacent vertices have the same color.

Let C(ū, v̄) be the input circuit, where |ū| = |v̄| = n. We may assume that {0, 1} is the
set of colors and view a coloring on the vertices as a function f : {0, 1}n × {0, 1}. Consider
the following 2-DQBF.
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Ψ := ∀x̄1∀x̄2 ∃y1(x̄1)∃y2(x̄2)
(
x̄1 = x̄2 → y1 = y2

)
∧

(
C(x̄1, x̄2) → y1 ̸= y2

)
where |x̄1| = |x̄2| = n. Intuitively, it states that y1 and y2 must represent the same function
and that two adjacent vertices have different colors. It is routine to verify that Ψ is satisfiable
if and only if the graph represented by the circuit C is 2-colorable.

To establish the PSPACE-membership, we will use the same idea that 2-SAT is in NL.
Note that 2-CNF formula can be rewritten as a conjunction of implications:

(ℓ1,1 → ℓ1,2) ∧ (ℓ2,1 → ℓ2,2) ∧ · · · ∧ (ℓn,1 → ℓn,2)

where each ℓi,j is a literal. In turn, it can be viewed as a directed graph where the literals
are the vertices and the implications are the edges. It is not satisfiable if and only if there is
a cycle in the graph that contains a literal ℓ and its negation. To check the existence of such
a cycle, it suffices to use O(t) space, where t is the number of bits required to remember a
literal.

We will use a similar idea to establish the PSPACE-membership of sat(2-DQBF). The
detail is as follows. Let Ψ be the input 2-DQBF.

Ψ := ∀x̄ ∃y1(z̄1)∃y2(z̄2) ψ where x̄ = (x1, . . . , xn).

The algorithm works as follows.
Guess ā ∈ Σn+2 where ψ[(x̄, y1, y2) 7→ ā] = 0 and a variable fi(prjx̄,y1,y2

(z̄i, ā)) in the
clause Cā.
Guess a series of implications from fi(prjx̄,y1,y2(z̄i, ā)) to its negation in exp(Ψ) and vice
versa.

To guess a series of implications from fi(prjx̄,y1,y2(z̄i, ā)) to its negation, it suffices to remember
only one literal at a time which requires only O(n) bits. This establishes the PSPACE-
membership of sat(2-DQBF). ◀

3.2 On sat(k-DQBF) where k ⩾ 3
In this subsection we will consider sat(k-DQBF) where k ⩾ 3. We will first establish that
sat(3-DQBF) is NEXP-complete. Then, we will show how transform arbitrary DQBF to an
equisatisfiable 3-DQBF.

▶ Theorem 5. sat(3-DQBF) is NEXP-complete.

Proof. The membership is straightforward. The proof for hardness is by reduction from
succinct 3-colorability which is known to be NEXP-complete [25]. The idea is quite similar
to the one in [8] which reduces it to sat(4-DQBF). By a more careful book-keeping, we show
that 3 existential variables is enough to encode succinct 3-colorability.

Let C(ū, v̄) be a circuit where |ū| = |v̄| = n and let GC = (VC , EC) be the graph
represented by C. The main idea is simple. We assume that {01, 10, 11} is the set of colors
and represent a 3-coloring of the graph GC with a function f : {0, 1}n × {0, 1}2 → {0, 1}
where for every color c̄ ∈ {01, 10, 11}, for every vertex ā ∈ {0, 1}n, f(ā, c̄) = 1 if and only if
vertex ā is colored with color c̄. We will show that we can construct a 3-DQBF which states
that “the coloring must be proper.”

The details are as follows. Let C(ū, v̄) be the input circuit (to succinct 3-colorability)
where |ū| = |v̄| = n. Consider the following 3-DQBF Ψ.

Ψ := ∀x̄1∀u1∀v1 ∀x̄2∀u2∀v2 ∀x̄3∀u3∀v3

∃y1(x̄1, u1, v1) ∃y2(x̄2, u2, v2) ∃y3(x̄3, u3, v3) ψ

where |x̄1| = |x̄2| = |x̄3| = n and the formula ψ states the following.
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All y1, y2, y3 are the same function. Formally:∧
1⩽i,j⩽3

(
x̄i = x̄j ∧ (ui, vi) = (uj , vj)

)
→ yi = yj

No vertex is assigned with the color 00. Formally:

(u1, v1) = 00 → y1 = 0

Every vertex is assigned with exactly one color from {01, 10, 11}. Formally:

(
x̄1 = x̄2 = x̄3 ∧

(
(u1, v1), (u2, v2), (u3, v3) ̸= 00
and are pairwise different

))
→


exactly
one of
y1, y2, y3

has value 1


Adjacent vertices have different colors. Formally:(

C(x̄1, x̄2) = 1 ∧ (u1, v1) = (u2, v2)
)

→
(
y1 = 0 ∨ y2 = 0

)
It is routine to verify that GC is 3-colorable if and only if Ψ is satisfiable. Moreover, Ψ can
be constructed in polynomial time. ◀

Next, we present a parsimonious polynomial time transformation from arbitrary DQBF
to 3-DQBF. It is the DQBF analogue of the well known transformation from SAT to 3-SAT.

▶ Theorem 6. There is a parsimonious polynomial time (Karp) reduction from sat(DQBF)
to sat(3-DQBF). In other words, there is a polynomial time algorithm such that: On input
DQBF Ψ, it outputs a 3-DQBF Φ such that Ψ and Φ have the same number of satisfying
Skolem functions.

Proof. Before we proceed to give the details, we will first explain the intuition. Consider
the following k-DQBF Ψ.

Ψ := ∀x̄ ∃y1(z̄1) · · · ∃yk(z̄k) ψ where x̄ = (x1, . . . , xn)

Let ni = |z̄i|, for each 1 ⩽ i ⩽ k. We will encode the satisfying Skolem functions (f1, . . . , fk)
for Ψ as one function g : Σn × Σk → Σ as follows. For every ā ∈ Σn, for every b̄ =
(b1, . . . , bk) ∈ Σk,

g(ā, b̄) = 1 if and only if bi = fi(prjx̄(z̄i, ā)) for every 1 ⩽ i ⩽ k

We call such function g the encoding of (f1, . . . , fk). Note that for a function g : Σn ×Σk → Σ
to properly encode k functions (f1, . . . , fk), it has to satisfy the following “functional property”:

For every ā ∈ Σn, there is exactly one b̄ ∈ Σk such that g(ā, b̄) = 1.

Unfortunately DQBF by itself is not strong enough to state such property. For this, we need
another type of encoding that can be expressed with 3-DQBF.

We first introduce a few terminology and notations. For b̄, c̄ ∈ Σk, we denote by b̄ ⩽lex c̄,
if b̄ is “lexicographically” less than or equal to c̄.1 Note that one can easily write a (boolean)
formula φ(x̄1, x̄2), where |x̄1| = |x̄2| = k such that φ[(x̄1, x̄2) 7→ (b̄, c̄)] = 1 if and only if
b̄ ⩽lex c̄. We denote by b̄ − 1 and b̄ + 1 the induced predecessor and successor of b̄ in the
lexicographic ordering of Σk (when b̄ ̸= 0k and b̄ ̸= 1k, respectively).

The monotonic encoding of the functions (f1, . . . , fk) is a function h : Σn × Σk → Σ such
that for every ā ∈ Σn, the following holds.

1 This is the standard lexicographic ordering on Σk where 0 is “less than” 1.
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x̄ = (x1, . . . , xn) v̄ = (v1, . . . , vk) h(x̄, v̄)

ā

...

ā

0k

...

b̄− 1

0
...

0

 all zeroes

ā

ā

...

ā

b̄

b̄+ 1
...

1k

1

1
...

1


all ones

Figure 1 Here b̄ ∈ Σk. The notations b̄ − 1 and b̄ + 1 denote the predecessor and the successor
of b̄, respectively, according to the lexicographic ordering of Σk. The function h : Σn × Σk → Σ is
monotone (w.r.t. v̄), i.e., if h(ā, b̄) = 1, then h(ā, c̄) = 1 for every c̄ greater than b̄ lexicographically.
Such h encodes a function g : Σn × Σk → Σ where g(ā, b̄) = 1 if and only if h(ā, b̄ − 1) = 0 and
h(ā, b̄) = 1.

For every b̄, c̄ ∈ Σk, h(ā, b̄) ⩽ h(ā, c̄) whenever b̄ ⩽lex c̄. That is, it is monotonic w.r.t. to
the last k bits.
For every b̄ = (b1, . . . , bk) ∈ Σk such that bi = fi(prjx̄(z̄i, ā)), for every 1 ⩽ i ⩽ k, the
following holds.
h(ā, c̄) = 0, for every c̄ ∈ Σk where c̄ <lex b̄.
h(ā, c̄) = 1, for every c̄ ∈ Σk where b̄ ⩽lex c̄.

Intuitively, if h is the monotonic encoding of (f1, . . . , fk), the value b̄ = (b1, . . . , bk) where
bi = fi(prjx̄(z̄i, ā)) for every 1 ⩽ i ⩽ k can be identified as the lexicographically smallest b̄
such that g(ā, b̄) = 1. See Figure 1 for an illustration.

Note that if h : Σn × Σk → Σ is the monotonic encoding of (f1, . . . , fk), we can recover
the encoding of (f1, . . . , fk). Indeed, define the function g : Σn × Σk → Σ as follows.

If h(ā, 0n) = 0, then g(ā, b̄) = 1 if and only if h(ā, b̄− 1) = 0 and h(ā, b̄) = 1.
In this case, note that there is exactly one b̄ such that h(ā, b̄ − 1) = 0 and h(ā, b̄) = 1.
Thus, there is exactly one b̄ such that g(ā, b̄) = 1.
If h(ā, 0n) = 1, then g(ā, 0n) = 1 and for every b̄ ̸= 0n, g(ā, b̄) = 0.

Since h is the monotonic encoding of (f1, . . . , fk), it is immediate that g is the encoding of
(f1, . . . , fk).

We now give the details of the reduction from sat(DQBF) to sat(3-DQBF). On input
Ψ := ∀x̄∃y1(z̄1) · · · ∃yk(z̄k) ψ, where x̄ = (x1, . . . , xn), it outputs the following DQBF:

Φ := ∀x̄1∀v̄1 ∀x̄2∀v̄2 ∀x̄3∀v̄3 ∃p1(x̄1, v̄1)∃p2(x̄2, v̄2)∃p3(x̄3, v̄3) ϕ

where |x̄i| = n and |v̄i| = k for each 1 ⩽ i ⩽ 3 and ϕ states the following.
p1 and p2 represent the monotonic encoding of the Skolem functions (f1, . . . , fk) for Ψ (if
exist).
p3 represents the encoding of the Skolem functions (f1, . . . , fk) for Ψ (if exists).

The details of ϕ are as follows. Let x̄i = (xi,1, . . . , xi,n) and v̄i = (vi,1, . . . , vi,k) for every
1 ⩽ i ⩽ 3.
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(1) p1 and p2 represent the same function. Formally:(
x̄1 = x̄2 ∧ v̄1 = v̄2

)
→

(
p1 = p2

)
(2) The function represented by p1 (and p2) is a monotonic w.r.t. the bits in v̄1. Formally:(

x̄1 = x̄2 ∧ v̄1 ⩽lex v̄2
)

→
(
p1 ⩽ p2

)
(3) That v̄1 = 1k implies p1 = 1. Formally:

v̄1 = 1k → p1 = 1

Note that this condition implies that the fact that if p1 represents a function h : Σn×Σk →
Σ, then for every ā ∈ Σn, there is b̄ ∈ Σk such that the value h(ā, b̄) = 1. This is because
p1 represents a monotonic function w.r.t. v̄1.

(4) The function represented by p3 is the encoding of the k functions whose monotonic
encoding is represented by p1 (and p2). Formally:((

x̄1 = x̄2 = x̄3
)

∧
(
v̄1 + 1 = v̄2 = v̄3

))
→

((
p1 = 0 ∧ p2 = 1

)
↔ p3 = 1

)
∧
((
x̄2 = x̄3

)
∧
(
v̄2 = v̄3 = 0k

))
→

(
p2 = 1 ↔ p3 = 1

)
(5) The functions (f1, . . . , fk) encoded by p1, p2, p3 respect the dependency set z̄i for every

1 ⩽ i ⩽ k. Formally:((
x̄1 = x̄2 ∧ v̄1 + 1 = v̄2 ∧ p1 = 0 ∧ p2 = 1

)
∧ p3 = 1

)
→

∧
1⩽i⩽k

prjx̄(z̄i, x̄2) = prjx̄(z̄i, x̄3) → v2,i = v3,i

∧
((
v̄2 = 0k ∧ p2 = 1

)
∧ p3 = 1

)
→

∧
1⩽i⩽k

prjx̄(z̄i, x̄2) = prjx̄(z̄i, x̄3) → v2,i = v3,i

(6) The functions (f1, . . . , fk) encoded by p3 is indeed a satisfying Skolem functions for Ψ.
Formally:

p3 = 1 → ψ[(x̄, y1, . . . , yk)/(x̄3, v̄3)]

It is routine to verify that Ψ and Φ are equisatisfiable. Note also that every Skolem
functions (f1, . . . , fk) for Ψ is uniquely represented by their encoding and monotonic encoding.
Conversely, every encoding and monotonic encoding represented by p3 and p1, p2 uniquely
represented the Skolem functions (f1, . . . , fk) for Ψ. Thus, Ψ and Φ have the same number of
satisfying Skolem functions. By inspection, the 3-DQBF Φ can be constructed in polynomial
time. ◀

4 Lifting the projections in the class NP to the class NEXP

In this section we will establish the relations between the so called projections (from SAT
to NP-complete graph problem Π) and polynomial time reductions (from sat(DQBF) to
the succinctly represented Π). We first recall the definition of projections [33, 25]. Let
ξ : Σ∗ → Σ∗ be a reduction from a language L to another language K. We say that ξ is a
projection, if the following holds.
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There is a polynomial p(n) such that for every w ∈ Σ∗, the length of ξ(w) is p(|w|).
There is a polynomial time (deterministic) algorithm A such that on input 1n and
1 ⩽ i ⩽ p(n), where i is in the binary representation, the output A(1n, i) is one of the
following:

a value (either 0 or 1);
a variable xj (appropriately encoded) where 1 ⩽ j ⩽ n;
the negation of a variable ¬xj (appropriately encoded) where 1 ⩽ j ⩽ n ;

such that if z1 · · · zp(n) are the output A(1n, 1), . . . ,A(1n, p(n)), the following holds. For
every w = b1 · · · bn ∈ Σn:

ξ(w) = z1 · · · zp(n)[(x1, . . . , xn) 7→ (b1, . . . , bn)]

where z1 · · · zp(n)[(x1, . . . , xn) 7→ (b1, . . . , bn)] is the 0-1 string obtained by substituting
each xi with bi.

The intuitive meaning of the algorithm A(1n, i) is as follows. The ith bit of the output of
the reduction ξ on an input of length n is either 0 or 1 or the jth bit of the input (when
A(1n, i) = xj) or the complement of the jth bit of the input (when A(1n, i) = ¬xj). Note
also that if there is a projection ξ from L to K, then there is a polynomial time reduction
from L to K, where on input w, we compute each bit in ξ(w) by computing A(1|w|, i) for
every 1 ⩽ i ⩽ p(|w|). Almost all know reductions from SAT to graph problems are, in fact,
projections. We recall the following result from [25] and briefly review the proof.

▶ Theorem 7 ([25]). If there is a projection from SAT to a graph problem Π, then the
succinct version of Π is NEXP-hard.

Proof. We assume that a graph G = (V,E) is encoded as 0-1 string of length |V |2 representing
the adjacency matrix of G. Let L ∈ NEXP. Let M be the NTM that accepts L in time
2p(n) for some polynomial p(n). For w ∈ Σ∗, let Fw denote the CNF formula obtained by
applying the standard Cook-Levin reduction on w (w.r.t. the NTM M). Assuming that Fw

is encoded as 0-1 string, the length of F (w) is 2q(n) for some polynomial q(n).
We can design a polynomial time deterministic algorithm A that on input w and two

indexes i, j, determine if a literal ℓi appears in clause Cj in the formula Fw. Note that i
and j can be encoded in binary representation with p(n) bits. We can easily modify A into
another algorithm A′ such that on input w and index 1 ⩽ i ⩽ 2q(n), output the bit-i in the
formula Fw.

Let ξ be the projection from SAT to a graph problem Π. Suppose for a formula F ,
the graph ξ(F ) has r(|F |) vertices, for some polynomial r(n). Using ξ, we can design a
polynomial time algorithm B that on input w and index 1 ⩽ i, j ⩽ r(2q(n)) (in binary),
output an index i′ (in binary) such that the bit-i′ in Fw is the same as the (i, j)-entry in
the adjacency matrix of ξ(Fw). We can then combine both algorithms A′ and B to obtain
another algorithm C such that on input w and indexes 1 ⩽ i, j ⩽ r(2q(n)), it outputs the
(i, j)-entry in the adjacency matrix of ξ(Fw). Note that when the length of the input is fixed,
we can construct in polynomial time the boolean circuit representing the algorithm C.

Now, the reduction from L to succinct Π works as follows. On input w, it constructs the
boolean circuit for C where the input length is fixed to |w| + 2 · log r(2q(n)) and the first |w|
input gates are fed with w. Note that the output circuit represents the graph ξ(Fw). Thus,
we obtain the reduction from L to succinct Π. ◀

We show that it can actually be stated as follows.
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▶ Corollary 8. If there is a projection from SAT to a graph problem Π, then there is a poly-
nomial time (Karp) reduction from sat(DQBF) to the problem Π in succinct representation.

Proof. We actually just follow the proof in [25] with a slight modification on the definition
of exp(Ψ). Let Ψ be a DQBF with matrix ψ. We modify the definition of the clause Cā,b̄ as
follows.

If ψ[x̄, v̄ 7→ ā, b̄] = 0, we set Cā,b̄ as in Section 2.
If ψ[x̄, v̄ 7→ ā, b̄] = 1, we set Cā,b̄ as a trivial clause such as (¬x ∨ x ∨ · · · ∨ x) for some
arbitrary variable x.

Under such definition, we can easily design an algorithm A′ that on input DQBF Ψ and
index i, output the ith bit in the formula exp(Ψ). The reduction from sat(DQBF) to succinct
Π can be obtained in exactly the same way as in Theorem 7. ◀

5 The relations between NTIME[t(n)], NSPACE[s(n)] and DQBF

In this section we will show how to reduce the languages in the class NTIME[t(n)] and
NSPACE[s(n)] to DQBF. We implicitly assume that the functions t(n) and s(n) are time/space
constructible. We start with the following theorem which has been proved in [8].2

▶ Theorem 9 ([8, Theorem 1]). For every L ∈ NTIME[t(n)], there is a (deterministic)
algorithm A that runs in time polynomial in n and log t(n) such that on input word w, it
outputs a DQBF Ψ such that w ∈ L if and only if Ψ is satisfiable. Moreover, the output
DQBF Ψ uses O(log t(n)) universal variable and O(1) existential variables, where n is the
length of the input w.

The constant hidden in O(1) in Theorem 9 depends on the number of states, tapes and
tape symbols of the Turing machine M that decides L. Combining Theorem 6 and 9, we
obtain the following corollary.

▶ Corollary 10 ([8, Theorem 1]). For every T (n) ⩾ n, for every L ∈ NTIME[t(n)], there is a
(deterministic) algorithm A that runs in time polynomial in n and log t(n) such that on input
word w, it outputs a 3-DQBF Ψ such that w ∈ L if and only if Ψ is satisfiable. Moreover,
the output DQBF Ψ uses O(log t(n)) universal variable where n is the length of the input w.

Note that since the reductions in Theorem 9 and 6 are parsimonious, the algorithm A in
Corollary 10 is also parsimonious in the sense that if M is the NTM that accepts L, then
the number of accepting runs of M on input word w is the precisely the number of satisfying
Skolem functions for the output DQBF Ψ.

▶ Theorem 11. For every language L ∈ NSPACE[s(n)], there is a deterministic algorithm A
with run time polynomial in n and s(n) such that: On input w, it outputs a 2-DQBF Ψ with
O(s(|w|)) universal variables such that w ∈ L if and only if Ψ is not satisfiable.

Proof. Let L ∈ NSPACE[s(n)] and let M be the NTM that accepts L using s(n) space. We
may assume that M halts on every input word. We first present the reduction to 2-CNF
formula (with exponential blow-up). On input word w, it construct the following formula,
denoted by Fw.
(a) The variables are XC , where the index C ranges over all the configurations of M on w.

2 Actually [8, Theorem 1] establishes Theorem 9 for some exponential t(n), i.e., t(n) = 2p(n) for some
polynomial p(n). However, it can be easily verified that the proof can be used for Theorem 9.
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(b) For every two configurations C1 and C2 where C2 is the next configuration of C1, we
have an implication XC1 → XC2 .

(c) For the initial configuration C0, we have the implication ¬XC0 → XC0 .
(d) For the initial configuration C0 and the accepting configuration Cacc, we have the

implication XCacc
→ ¬XC0 .

It is not difficult to show that M accepts w if and only if Fw is not satisfiable.
We can easily modify the construction above to the case of DQBF by encoding the

configuration of M on w with strings from Σ with length O(s(n)), where n = |w|. That is,
on input word w, we can construct in time polynomial in s(n) a DQBF Ψ such that exp(Ψ)
is equivalent to the formula Fw. The details are as follows. On input word w, construct the
following DQBF:

Ψ := ∀x̄1∀x̄2 ∃y1(x̄1)∃y2(x̄2) ψ

where |x̄1| = |x̄2| = O(s(n)), i.e., x̄1, x̄2 are used to represent the 0-1 encoding of the
configuration of M of w and the matrix ψ states the following.
(1) The functions y1 and y2 are the same. Formally:

x̄1 = x̄2 → y1 = y2

(2) If x̄1 and x̄2 encode configurations and x̄2 is the “next” configuration of x̄1, then y1
implies y2. Formally:

C(x̄1, x̄2) →
(
¬y1 ∨ y2

)
where C(x̄1, x̄2) is a formula that checks whether x̄1 and x̄2 are configurations and x̄2 is
the next configuration of x̄1. Such formula can be easily constructed in time polynomial
in s(n).

(3) If x̄1 is the accepting configuration and x̄2 is the initial configuration, then y1 implies
¬y2. Formally:

C ′(x̄1, x̄2) →
(
¬y1 ∨ ¬y2

)
where C ′(x̄1, x̄2) is a formula that checks whether x̄1 is the accepting configuration and
x̄2 is the initial configuration. Such formula can be easily constructed in time polynomial
in max(n, s(n)).

(4) If x̄1, x̄2 are the initial configuration, then y1 ∨ y2. Formally:

C ′′(x̄1, x̄2) →
(
y1 ∨ y2

)
where C ′′(x̄1, x̄2) is a formula that checks whether x̄1, x̄2 are the initial configuration.
Again, such formula can be easily constructed in time polynomial in max(n, s(n)).

It is not difficult to see that on every input word w, the formula Fw is equivalent to exp(Ψ).
This completes the proof of Theorem 11. ◀

It is not difficult to see that if the TM M in the proof of Theorem 11 is deterministic, we
can easily modify the construction such that w ∈ L if and only if the output Ψ is satisfiable.
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6 Concluding remarks

In this paper we have shown that a number of well known classical results on SAT can be
lifted up to DQBF. Previously it has been observed that DQBF formulas indeed represent
(exponentially large) CNF formulas and that the satisfiability problem becomes NEXP-
complete. In this paper we take one little step forward by presenting a few results that shows
a strong resemblance between DQBF and SAT. Together with the work in [8], we hope that
it can be a convincing evidence for DQBF to be the bona fide problem in NEXP.

We believe there is still a lot of work to do. There are still a plethora of results on SAT
that we haven’t considered and it would be interesting to investigate which results can be
lifted to DQBF and which can’t. We leave it for future work.
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Extended resolution shows that auxiliary variables are very powerful in theory. However, attempts
to exploit this potential in practice have had limited success. One reasonably effective method in this
regard is bounded variable addition (BVA), which automatically reencodes formulas by introducing
new variables and eliminating clauses, often significantly reducing formula size. We find motivating
examples suggesting that the performance improvement caused by BVA stems not only from this
size reduction but also from the introduction of effective auxiliary variables. Analyzing specific
packing-coloring instances, we discover that BVA is fragile with respect to formula randomization,
relying on variable order to break ties. With this understanding, we augment BVA with a heuristic
for breaking ties in a structured way. We evaluate our new preprocessing technique, Structured BVA
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randomization. In a simulated competition setting, our implementation outperforms BVA on both
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1 Introduction

Pre-processing techniques that introduce and eliminate auxiliary variables have been shown
to be helpful both in theory and practice. Theoretically, auxiliary variables lift the power of
solvers from the resolution proof system to Extended Resolution (ER) [23, 8, 11]. In practice,
efforts to exploit this full power of ER have had limited success; however, auxiliary variables
have been used to reencode formulas in a way that drastically reduces their size [4, 2, 15],
often leading to a decreased solve time. In this work we show that this speedup may not be
caused entirely by the reduction in formula size, but by the introduction of certain effective
auxiliary variables.
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A very powerful pre-processing technique is Bounded Variable Elimination (BVE) [9]. As
its name suggests, it eliminates a variable x by resolving each clause containing a literal x

with every clause containing literal x. Importantly, BVE only performs such an elimination
if it helps reduce the formula size (measured as the number of clauses plus the number of
variables). A pre-processing technique that introduces new auxiliary variables is Bounded
Variable Addition (BVA) [15], which is the focus of this article. It is well known that the
introduction of auxiliary variables is crucial for many succinct encodings (e.g., the Tseitin
transformation [23], or cardinality constraints [20, 14]). Following the intuition of BVE, BVA
will only introduce a new variable if it can eliminate a larger number of clauses than it adds.

Auxiliary variables may not only be useful to reduce the size of a formula, but they
can also capture some semantic meaning about the underlying problem to encode, as we
detail in Section 3. As a case study, we consider a recent encoding used by Subercaseaux
and Heule for computing the packing chromatic number of the infinite square grid via SAT
solving [22]. In their work, BVA was found to generate auxiliary variables that represented
clusters of neighboring vertices of the grid. The encoding resulting from running BVA
on a direct encoding of the problem inspired a more efficient encoding, by suggesting the
usefulness of having auxiliary variables capturing clusters of vertices. In this paper, we offer
new insight into this “meaningful variables” phenomenon, which we believe can generalize
to other problems as well. Furthermore, even though the reencoding resulting from BVA
suggested meaningful new variables for the packing coloring problem, it was not as effective
as manually designing a more structured encoding based on some of those variables. We take
this as motivation to identify shortcomings of BVA and improve upon its design.

In general, on problems where BVA is effective, the effect tends to be extreme. BVA
is able to reduce the number of clauses by a ×10 factor or more, improving solve time by
orders of magnitude. However, in this paper, we find that this reduction in solve time is
highly sensitive to randomly scrambling the formula (even when controlling for how CDCL
solvers are generally sensitive to this form of randomization [3]). In particular, randomizing
the order of variables and clauses prior to BVA substantially reduces the positive effect of
BVA on solve time, despite maintaining the same overall reduction in formula size. Using the
packing k-color problem, we show that the effectiveness of BVA relies on the introduction of
a few specific variables that account for only a small fraction of the reduction in formula
size. Moreover, we identify that the lack of effective tie-breaking in BVA is the cause of
this high sensitivity to randomization. Inspired by these new insights into the behavior of
BVA, we present SBVA (Section 4), a version augmented with a tie-breaking heuristic that
enables it to introduce better auxiliary variables at each step, even when the original formula
is randomized. Our heuristic is based on a connectivity measure between variables in the
incidence graph of CNF formulas, which is preserved under randomization of the formula. As
a result, SBVA is able to identify effective auxiliary variables even when the original formula
is scrambled. We evaluate our implementation by running it on more than 29 000 formulas
from the Global Benchmark Database [12]. Experimental results, presented in Section 5,
demonstrate that our approach outperforms the original implementation of BVA.

In summary, the main contributions of this article are:
1. We offer new insight into the behavior of BVA, by exhibiting its ability to introduce

effective auxiliary variables and showing its sensitivity to formula randomization.
2. We design SBVA, a heuristic-guided form of BVA, that introduces new variables in a way

that is robust to randomization.
3. We perform a large-scale evaluation of both BVA and SBVA on benchmark problems

from the SAT Competition and study their behavior on different families of instances.
4. We release an open-source implementation of SBVA that supports DRAT proof logging.
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2 Preliminaries

A literal is either a variable x, or its negation (x). A propositional formula in conjunctive
normal form (CNF) is a conjunction of clauses, which are themselves disjunctions of literals.
An assignment is a mapping from variables to truth values. A positive (negative) literal is
true if the corresponding variable is assigned to true (false, respectively). An assignment
satisfies a clause if at least one of its literals is true, and we say an formula is satisfied if all
of its clauses are. A formula is satisfiable (SAT) if there exists an assignment that satisfies it,
or unsatisfiable (UNSAT) otherwise. For example, the formula (x ∨ y) ∧ (x ∨ z) is made up
of two clauses, (x ∨ y) and (x ∨ z), each with two literals. This formula is satisfiable, since
the assignment of x and z to true and y to false satisfies it.

Auxiliary Variables. There can be many equivalent ways of encoding a problem into CNF,
differing in the meaning assigned to individual variables. Problems often have a direct
encoding, in which variables are assigned for each individual decision element present in a
problem. For example, in a direct encoding of graph coloring, there are k|V | variables, where
each vi,c represents whether node i has color c and k is the number of colors.

Although direct encodings are often the most intuitive, more efficient encodings are
known for a wide variety of problems. These encodings often add auxiliary variables to the
formula, which capture properties about a group of variables. One of the simplest examples
is an AtMostOne(x1, . . . , xn) constraint, which requires that at most one of the variables
x1, . . . , xn is true. Without adding auxiliary variables, this constraint requires Θ(n2) clauses,
which are typically binary clauses between every pair of variables [14]. However, with the
introduction of auxiliary variables, this constraint can be encoded in a linear number of
clauses and variables as follows [13]:

AtMostOne(x1, . . . , xn) = AtMostOne(x1, x2, x3, y) ∧AtMostOne(x4, . . . , xn, y) (1)

where the pairwise encoding is used for AtMostOne(x1, . . . , xn) where n < 4. The split
AtMostOne constraints require that at most one of {x1, x2, x3} is true, and at most one of
{x4, . . . , xn} is true, respectively. The added auxiliary variable y prevents a variable in both
of the groups from being true. The auxiliary variable y is forced false if any of x1, x2, or x3
are true, and forced true if any of x4, . . . , xn are false. If a literal from both groups is true,
the auxiliary variable y prevents the formula from being satisfiable.

Extended Resolution. Starting from the original formula, the Extended Resolution proof
allows only two simple rules:
1. Resolution: Given clauses C ∨ p and D ∨ p, add the clause C ∨D to the proof.
2. Extension: Define a new variable x as x↔ a ∨ b, where a and b are literals in the current

proof. Add the clauses x ∨ a, x ∨ b, and x ∨ a ∨ b to the proof.

In resolution, the clause C ∨D is implied by the first two clauses, resulting in a logically
equivalent formula. In extension, however, the introduction of a new variable x is not implied
by the original clauses, and results in a formula that preserves satisfiability and is only
logically equivalent over the original variables.

Using the extension rule, new variables can be defined in terms of existing variables. The
original rule defined by Tseitin [23] only allows for definitions of the form x ↔ a ∨ b, the
construction for which is given in the definition above. However, the extension rule can be
applied repeatedly to construct variables corresponding to arbitrary propositional formulas
over the original variables. This flexibility is key to the success of Extended Resolution, but
it provides no guidance on how these extensions should be chosen.
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Bounded Variable Addition. Bounded Variable Addition (BVA) [15] is a pre-processing
technique that reduces the number of clauses in a formula by adding new variables. Each
application of BVA first identifies a “grid” of clauses, as shown in Figure 1. Then, BVA adds
a new variable and clauses which resolve together to generate all clauses in the grid.
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L = {a, b}
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◦ x ∨ p ∨ q

◦ x ∨ p ∨ r
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◦ x ∨ t

◦ x ∨ a

◦ x ∨ b

Figure 1 Bounded variable addition transforms groups of clauses (those that form a grid) by
adding a new variable and eliminating a number of clauses.

Collectively, for a formula F , the grid constitutes a set of literals L and a set of partial
clauses P , such that ∀l ∈ L, ∀C ∈ P : (l ∨ C) ∈ F . While bounded-variable elimination
eliminates variables by replacing all the clauses containing a variable with their resolvents,
BVA tries to identify grids of resolvents which can be generated by the introduction of a new
variable and a smaller number of clauses. These grids of clauses capture the fact that either
the entirety of L must be satisfied, or the entirety of P must be satisfied. More precisely,
F =⇒ (

∧
l∈L l)∨ (

∧
C∈P C). By identifying these grids, BVA replaces |L| · |P | clauses with a

single, new variable x and |L|+ |P | clauses (which can generate the original set by resolution
on x in {x ∨ C | C ∈ P} × {x ∨ l | l ∈ L}). Therefore, if |L| · |P | > |L|+ |P |+ 1, then this
replacement results in a reduction in formula size.

Note that a BVA replacement step can be simulated by extended resolution: First, add
the definition x↔ AND(L). In the example above, this means adding the clauses x ∨ a ∨ b,
x ∨ a, and x ∨ b. Afterwards, the clauses x ∨ p ∨ q, x ∨ p ∨ r, x ∨ r ∨ s, and x ∨ t can each be
derived using |L| resolution steps. For example, to derive x ∨ p ∨ q, resolve x ∨ a ∨ b with
a ∨ p ∨ q and the result with b ∨ p ∨ q. Afterward the clauses used in these resolution steps
can be deleted.

The SimpleBoundedVariableAddition algorithm. Manthey et al. [15] propose a greedy
algorithm to identify these grids of resolvents that prioritizes literals which appear in many
clauses called SimpleBoundedVariableAddition. An abbreviated version of a single
variable addition in this algorithm is shown in Algorithm 1.

Each identified grid starts from the most frequently occurring literal l in the current
formula. The grid starts with dimension 1× |Fl|, where Fl is the set of clauses containing l.
From there, the algorithm searches for a literal lmax to add to the grid, which maximizes the
number of remaining resolvents.

To identify the literal lmax, the BVA algorithm looks for the literal for which (lmax ∨ C)
appears in F for the greatest number of clauses C ∈ P (line 4). At each step, a literal is
added to L (line 6), and clauses may be removed from P (line 7). The grid will continue to
shrink until the addition of a literal to the grid would not increase the size of the formula
reduction (line 5), as shown in Figure 2.

In BVA, variable additions are performed as long as there is a reduction in formula size.
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Algorithm 1 A single variable addition in SimpleBoundedVariableAddition [15].

PartialClauses(F , l) := {C \ {l} | (C ∈ F ) ∧ (l ∈ C)}
F := the clauses in the current formula
l := a literal in F

1: L← {l}
2: P ← PartialClauses(F, l)
3: while True do
4: lmax = argmaxlm∈Lits(F ) |P ∩ PartialClauses(F, lm)| ▷ Sensitive to tiebreaking
5: if adding lmax results in a greater reduction then
6: L← L ∪ {lmax}
7: P ← P ∩ PartialClauses(F, lmax)
8: else
9: break

10: if |L| · |P | > |L|+ |P |+ 1 then ▷ If adding this variable would reduce the formula size
11: Sadd ← {x ∨ C | C ∈ P} ∪ {x ∨ lm | lm ∈ L} ▷ Introduce a new variable x

12: Sremove ← {li ∨ C | (li, C) ∈ L× P}
13: F ← (F \ Sremove) ∪ Sadd
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Figure 2 BVA adds variables to form a grid, until the reduction stops increasing. Here, the
largest reduction was 1, and the variable corresponding to the middle grid will be added.

The entirety of Algorithm 1 is repeated using different literals for l to construct multiple
new auxiliary variables. Specifically, the original implementation defines a priority queue of
literals ordered by the number of clauses each literal appears in. Our adaptation of BVA
(Section 4) reuses this implementation detail. These repeated applications of BVA enable
the algorithm to achieve large reductions in formula size, and auxiliary variables added in
previous steps can even be re-used in future variable introductions.

3 Motivating Example

To motivate the need for a heuristic-guided version of BVA, we will first demonstrate the
effect of randomization on existing implementations of BVA, and the disproportionate impact
of a few critical variable additions.

3.1 Packing Colorings
BVA has been shown to be effective on the grid packing k-coloring problems, whose constraints
are based on coloring a circular grid of tiles, shown in Figure 3a. Unlike a standard graph
coloring problem, each color in the packing k-coloring problem is associated with a integer
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distance from 1 to k. When coloring the grid, two tiles can only have the same color if the
taxicab distance between them is greater than the color number. For example, two tiles of
color 3 must have at least 3 tiles between them, while color 1 tiles cannot be adjacent. The
Dr,k problem asks whether the grid of radius r can be colored with k colors.

The direct encoding for this problem consists of variables vi,c, denoting that grid location
i has color c. There are three types of clauses [22]:
1. At-Least-One-Color: ∀i, (vi,1 ∨ vi,2 ∨ · · · ∨ vi,k). Each tile must be colored with a color

between 1 and k.
2. At-Most-One-Distance: ∀i, j, c : d(i, j) ≤ c, (vi,c ∨ vj,c). If the distance between two tiles

is less than or equal to the color, they cannot both have that color.
3. Center-Clause: v(0,0),c for a fixed color c. This is a symmetry-breaking optimization [21],

which has no effect on BVA since it ignores unit clauses.

Previous work [22] showed that BVA can reduce the size of such formulas by a factor
of 4, and induces more than a ×4 speedup on the larger instance (D6,11). They found
that auxiliary variables capture regions of grid tiles within a particular color, i.e. the grid
replacement happens entirely within the binary at-most-one-distance constraints.

We visualize the variables introduced by BVA on D5,10, the packing k-coloring problem
with radius 5 and 10 colors. In the first row of Figure 3b, each of the four plots introduces a
new auxiliary variable x for one of the colors c ∈ {1, . . . , 10} (denoted above each plot). All
the binary clauses for color c (At-Most-One-Distance clauses) of the form (vi,c ∨ vj,c) with
grid location i corresponding to a green square and grid location j corresponding to a yellow
square will be replaced with a smaller number of clauses: (x ∨ vi,c) for each green location i

and (x ∨ vj,c) for each yellow location j.

3.2 Negative Impact of Randomization
We discovered that randomizing packing k-coloring formulas prior to running BVA signi-
ficantly increases the resulting solve time. Furthermore, the variables added by BVA after
randomization fail to capture the clustered regions within the problem’s 2D space that are

(a) Figure from [22] showing
the D3,5 grid packing k-coloring
problem

Var 1 (Color 10) Var 2 (Color 9) Var 3 (Color 8) Var 4 (Color 7)

Original

Var 1 (Color 10) Var 2 (Color 9) Var 3 (Color 8) Var 4 (Color 6)

Randomized

Var 1 (Color 10) Var 2 (Color 8) Var 3 (Color 9) Var 4 (Color 7)

Heuristic

(b) The effect of variable randomization on the first four BVA substi-
tutions in D5,10. The black boxes indicate the first variable addition,
the effect of which is isolated in Table 1.

Figure 3 The auxiliary variables introduced by BVA on the packing k-coloring problem are
sensitive to randomization.
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Table 1 CaDiCaL solve time for the D5,10 packing problem, breaking BVA ties using the
original variable order (sorted), randomized variable order (randomized), or the heuristic proposed
in Section 4 (heuristic). Breaking ties differently has a significant effect on solve time even when the
resulting formula is the same size (Single BVA Step).

# Vars # Clauses Solve (s)

Original formula 610 10688 590.545

Single BVA Step (sorted) 611 9819 105.635
Single BVA Step (randomized) 611 9819 429.396
Single BVA Step (heuristic, this paper) 611 9819 213.018

Full BVA (sorted) 973 2313 38.749
Full BVA (randomized) 971 2305 107.675
Full BVA (heuristic, this paper) 972 2290 55.482

identified without randomization. Figure 3b shows the first four variable additions performed
by BVA on D5,10. The effect is especially noticeable in the first few variable additions. The
structure of these variables is more than a visual artifact. Running BVA to completion
produces a formula that requires more than ×2 the solve time in CaDiCaL compared with
running BVA on the original formula, despite a similar reduction in formula size (see Table 1).

We found that the first variable added by BVA in D5,10 had a disproportionate impact on
the solve time of the formula. We isolated the effect of a single replacement by allowing BVA
to only produce one new auxiliary variable and then evaluating the solve time of the resulting
formula. Table 1 shows that a single variable addition (outlined in black in Figure 3b) can
achieve a ×6 speedup over the original formula and that the impact of this single addition is
also substantially affected by randomization. Although randomization before BVA did not
affect the size reduction of the first variable addition, the randomized formula with a single
BVA step is 2 times slower compared to the original formula.

The importance of individual variable additions and their sensitivity to randomization
suggests that BVA’s impact is derived not only from the size reduction but from the structure
of the variable additions.

3.3 Ties in Bounded Variable Addition

The reason for the BVA’s sensitivity to randomization is due to a detail in the way imple-
mentations treat ties between literals. As described in Section 2, the algorithm chooses the
literal that maximizes the number of remaining resolvents to be eliminated (Algorithm 1,
line 4). If there is a tie between two literals, the original algorithm does not specify which
literal should be used. The original implementation provided by [15] breaks ties using the
variable number in the original formula. Figure 4 shows how breaking ties differently leads
to different variable additions. Note that since BVA eliminates the clauses in the grid when
adding a variable, it is not possible for multiple applications of BVA to eventually add both
variables resulting from a tie.

In the D5,10 packing problem, colors 9 and 10 are almost fully connected; coloring a
tile with color 10 means that no tile within 10 spaces of it can also be colored 10. When
BVA creates a variable for these pairwise constraints, all of the clauses are tied for the
number of preserved resolvents (since every pair of color-10 variables appears in a at-most-
one-distance clause). Since the original implementation used variable number to break ties
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Figure 4 The addition of b or c both lead to a 2 × 3 grid of resolvents. Breaking this tie in
different ways leads to different variable additions.

and ordered variables from top-left to bottom-right, the variable additions it produces follow
that structured pattern. However, when the variable order is randomized, the resulting
region lacks structure and the formula takes longer to solve.

3.4 Recovering Structure

After randomization, BVA struggles to introduce variables that represent coherent clusters
of tiles. However, we note that the original structure is still captured by the original formula
as a whole. For example, in the D5,10 packing problem, two variables representing color 1,
vi,1 and vj,1, only share a pairwise constraint if they are adjacent (i.e. if i and j represent
adjacent tiles). If we could recover a generic metric for how close variables are to each other
(e.g. in the 2D space of D5,10), this metric could be used to help BVA recover structure in
problems where the original variable order does not result in structured variable additions.

The intuition for our heuristic, which is detailed in Section 4, is based on the structure
observed in the packing problem. We notice that while variables in color 10 are indistinguish-
able after randomization (i.e. all fully connected with At-Most-One-Distance clauses), the
variables in color 1 preserve the structure of the original problem: these variables only share
At-Most-One-Distance clauses with their immediate neighbors. Additionally, variables for
the same tile location but different colors are all linked by an At-Least-One-Color constraint,
even after randomization. One could deduce which variables in color 10 are neighbors by
looking at the connectivity of the equivalent tile positions in color 1. Specifically this requires
3 “hops” through clauses: starting at a variable vi,10 in color 10, we find vi,1 in color 1
(via an At-Least-One-Color clause), then find vj,1 in color 1 (via an At-Most-One-Distance
clause), and finally find vj,10 in color 10 (via an At-Least-One-Color clause); the full path is
vi,10 → vi,1 → vj,1 → vj,10.

While it is possible to construct an algorithm to recover this structure specifically for
the k-coloring packing problem, we generalize this concept by counting paths. Specifically,
between two variables vi,10 and vj,10 in color 10 there are many paths of length 3: for
example vi,10 → va,10 → vb,10 → vj,10 (using only At-Most-One-Distance clauses). However,
only adjacent variables in color 10 will have the additional path that goes through color 1:
vi,10 → vi,1 → vj,1 → vj,10. For a given variable in color 10, it will have the most 3-hop paths
to variables of the immediately adjacent grid tiles. We formalize this intuition in Section 4.
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4 Structured Reencoding

In this section we define our implementation of a heuristic for breaking ties during variable
selection in BVA. While our heuristic was initially designed to mitigate the detrimental
effects of randomization on the packing coloring problems, we found that it is also effective
for other problems, even ones which have not been randomized. In Section 5 we show that
our heuristic-guided BVA is effective on a wide variety of problems and offers a significant
improvement to solve time for certain families of formulas.

The 3-Hop Heuristic. Our heuristic is based on the intuition that BVA should prefer to
break ties by adding variables that are close to one another. In Subsection 3.4, we noticed
that in the k-coloring problem, there are some paths between variables that are only present
when variables are close in the problem’s 2-D space. The variable incidence graph compactly
captures this notion of variable adjacency. Here we formally define a heuristic for “variable
distance” based on the number of paths between pairs of variables in the variable incidence
graph.

▶ Definition 1. The Variable Incidence Graph (VIG) of a formula F is an undirected graph
G = (V, E) where V is the set of variables in F , and E contains an edge between variables if
they appear in a clause together. The weight on an edge (v1, v2) is the number of clauses in
which v1 and v2 appear together: w(v1, v2) = |{C ∈ F : {v1, v2} ⊂ Vars(C)}|

We measure variable distance by counting the number of distinct paths between two
variables (i.e. using different intermediate variables or clauses). Edges in the VIG indicate
the number of clauses shared by pairs of variables. For a given sequence of variables
(v1, v2, ..., vn) the number of distinct paths through different combinations of clauses is given
by w(v1, v2) · w(v2, v3) · . . . · w(vn−1, vn). Since edge weights are multiplicative along a path,
the number of different paths of length n through the VIG is given by An, where A is the
adjacency matrix of the VIG. Since we identified that adjacent tiles in the packing problem
have more length-3 paths between them, we define a simple heuristic that counts the number
of paths of length 3 in the VIG, which we call the 3-hop heuristic.

▶ Definition 2. The 3-hop heuristic H(x, y) is defined as the number of distinct paths of
length 3 between two variables x and y in the VIG. Two paths are distinct if they travel
through a different sequence of variables or clauses. Given the VIG adjacency matrix A, the
3-hop heuristic can be computed as H(x, y) = (A3)x,y.

We modify Algorithm 1 to use our heuristic as a tie-breaker, specifically augmenting
the computation of argmax in line 4: when multiple values of lm have the same number
of remaining resolvents, we choose the literal lm with the highest value of H(l, lm). Our
implementation of BVA, called SBVA, is written in C++ and uses the Eigen library for
sparse matrix operations. It is capable of generating DRAT proofs describing the sequence
of variable additions and clause deletions and thus could be used with a solver to generate
certificates of unsatisfiability.

In Figure 5, we show the value of H(x, y) in D5,10 for variables representing color 10
between a variable of interest (outlined in black) and all other variables of color 10. Grid tiles
that are closer in the 2-D space of the packing k-coloring problem have more 3-hop paths
between them and thus have a higher heuristic value. Using our heuristic on a randomized
formula for the packing problem, we recover variables that capture the spatial structure of
the problem. In the third row of Figure 3b, we show the first 4 variables added by SBVA,

SAT 2023



11:10 Effective Auxiliary Variables via Structured Reencoding

25519
25520
25521
25522
25523
25524
25525
25526
25527
25528

Figure 5 The value of the 3-hop heuristic in D5,10 between the color-10 variable for the location
outlined in black and all other color-10 locations.

which cluster variables together using the notion of distance that is inherent in the original
problem. Furthermore, we find that applying this heuristic to the packing problem results in
formulas that solve much faster than BVA on a randomized formula (Table 1).

5 Experimental Details

We evaluated BVA on more than 29,000 formulas from the Global Benchmark Database [12]
in order to study the effects of randomization and our heuristic on BVA. In this section, we
discuss the experimental setup and provide a brief overview of the results. In Section 6, we
analyze the results in more detail and discuss families of formulas that were significantly
impacted by BVA and/or SBVA.

Configurations. We constructed three solver configurations that use BVA in different ways.
All three variants take a formula, (optionally) randomize it with scranfilize, run BVA
(with or without heuristic), and pass it to CaDiCaL to solve. For comparison, we include a
baseline variant that does not run BVA. Since the particular ordering of clauses and variables
in a formula can impact solver performance [3], we also use the scranfilize tool immediately
prior to running CaDiCaL in all configurations. To mitigate this variance, we run the entire
sequence three times for each configuration, averaging across the three runs. The list of
configurations is shown in Table 2. Note that all four configurations have randomization
applied prior to solving with CaDiCaL but only BVA-rand-orig and BVA-rand-3hop
have randomization applied prior to BVA/SBVA.

Table 2 Experimental configurations. Pre and Post refer to arguments passed to scranfilize
before and after running the preprocessor respectively. An empty space indicates the step was
skipped for this variant.

Variant Pre Preprocessor Post Solver

Baseline -p -P -f 0.5 CaDiCaL
BVA-orig BVA -p -P -f 0.5 CaDiCaL
BVA-rand-orig -p -P -f 0.5 BVA -p -P -f 0.5 CaDiCaL
BVA-rand-3hop -p -P -f 0.5 SBVA -p -P -f 0.5 CaDiCaL
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Table 3 PAR-2 scores and number of formulas solved for each variant split by problem type
(ALL/UNSAT/SAT) and dataset (FULL/ANNI-2022). Bold cells indicate the lowest PAR-2 score
or highest number solved for that group.

ALL UNSAT SAT
Dataset Variant PAR-2 # PAR-2 # PAR-2 #

FULL

Baseline 1077.91 21602 756.14 6495 1196.99 15107
BVA-orig 867.04 22140 635.71 6562 948.85 15578
BVA-rand-orig 870.20 22077 673.58 6533 953.25 15544
BVA-rand-3hop 862.29 22173 650.41 6568 935.38 15605

ANNI-2022

Baseline 1262.18 3953 1164.61 2048 1309.41 1905
BVA-orig 1174.80 3987 967.85 2085 1338.31 1902
BVA-rand-orig 1193.27 3958 1053.75 2060 1350.09 1898
BVA-rand-3hop 1188.63 3995 982.84 2088 1350.98 1907

Benchmarks. We evaluated our variants on 29 402 benchmark instances (downloaded on
February 20, 2023) from the Global Benchmark Database (GBD) [12]. We also report results
against the Anniversary Track from the SAT Competition 2022 [1] (labeled as “ANNI-2022”
within this paper) which is included as a subset in the GBD (5355 benchmarks).

Hardware. All experiments were performed on the Bridges-2 system at the Pittsburgh
Supercomputing Center [7] on nodes with 128 cores and 256 GB RAM.

Experimental Setup. We compare the four configurations in a simulated competition setting
with a fixed time limit of 5 000 seconds per benchmark. The total time is computed as the
sum of BVA and CaDiCaL runtimes (scranfilize time is not counted towards this limit).
As noted by Manthey et al. [15], BVA can be quite expensive, even on formulas that do
not reduce significantly. We allow all versions of BVA to run for 200 seconds and if it has
not terminated by then, we instead run the original formula with CaDiCaL. On our full
benchmark, BVA terminates within 200 seconds on approximately 95% of problems. We ran
128 instances in parallel per node, leaving approximately 2GB of memory (for reference, in
the SAT Competition 2022 [1], solvers were allotted 128GB) for each BVA/CaDiCaL process.
This limit is enough for most formulas, but in cases where BVA runs out of memory, we
instead run the original formula in CaDiCaL. In both cases (timeout and out-of-memory), the
already-used time is added to the subsequent solve time of the original formula. This setup
provides a fair comparison as BVA could be realistically configured this way in a competition.

We report the PAR-2 scores and number of formulas solved for each variant in Table 3.
The PAR-2 score is computed as the total time it took to solve an instance (BVA runtime
+ CaDiCaL runtime) or twice the time limit if the formula was not solved within 5 000
seconds. We compute the PAR-2 score individually for each run and average across the
three runs of a given formula. A formula is marked as solved in Table 3 if any of the three
runs solved it within the time limit. Additionally, the set of formulas over which PAR-2 is
computed consists of instances where at least one of the four configurations was able to solve
it. Instances that were not solved by any configuration were not included in the PAR-2 score.
Adding these entirely unsolved instances would not change the number solved and would
simply scale the PAR-2 scores equally for all configurations.
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Figure 6 Formula speedup compared to compression factor for BVA-rand-3hop.

6 Results and Analysis

This section takes a closer look at the performance of BVA-orig, BVA-rand-orig, and
BVA-rand-3hop in comparison to the Baseline configuration. We explore both the effects
of randomization and the effects of the heuristic, in general and on specific families of formulas.
Specifically, we explore the following questions:
Q1: Does compression factor correlate with solve time in the context of BVA?
Q2: What is the effect of randomization on the performance of BVA?
Q3: Can our heuristic outperform randomized BVA?
Q4: How does the performance of our heuristic vary across different families of formulas?

We address these questions directly in the following paragraphs:

A1: Formulas with larger compression factors tend to be solved faster, but this is not
always the case. As demonstrated in Table 1, even small reductions from BVA can have a
large impact on solve time. For example, on the packing k-coloring problem, a single added
variable can reduce solve time by over a factor of 5 if picked correctly (Table 1).

We compute the compression factor of a formula as the ratio of the formula size before to
the size after running BVA. For example, a factor of 1 indicates no reduction, a factor of 2
indicates the formula was reduced to 50% the original size, and a factor of 10 indicates the
formula was reduced to 10% of the original size. Similarly, we compute the speedup as the
ratio of solve time to Baseline solve time (values below 1 indicate the formula was solved
faster). In Figure 6 we plot the speedup of BVA-rand-3hop against the compression factor
for every problem in the benchmark. Equivalent figures for BVA-orig and BVA-rand-orig
look similar and are available in the appendix (Figure A1 and Figure A2).

For formulas that could be greatly reduced, there is an observable trend towards a greater
speedup. However, for small reductions, the speedup is much more variable. In some cases,
even formulas that are reduced to less than 10% of the original size may be slowed down
by BVA. With BVA-rand-3hop, 60% of formulas had a compression factor greater than 1,
40% had a factor greater than 2, and 4% had a factor greater than 10.

A2: Randomization is Detrimental to BVA. Randomization has a negative effect on the
performance of BVA; in all benchmark groups, BVA-rand-orig solved fewer formulas and
has a higher PAR-2 score than BVA-orig. Interestingly, this effect appears to be entirely
due to the structure of the resulting formula and not the resulting size of the formula.
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Figure 7 Difference in reduction size and solve time between BVA-rand-orig and BVA-orig
on formulas from ANNI-2022. Larger points indicate a more-reduced formula.

In Figure 7, we plot the relative solve times of formulas from the ANNI-2022 benchmark
for BVA-rand-orig and BVA-orig. While there is almost no difference in the reduction
sizes of the formulas produced by BVA-rand-orig and BVA-orig (formula sizes differ by
less than 1.5%), a number of formulas were substantially slowed down (Figure 7). Note that
in these plots, randomization prior to BVA is more detrimental for UNSAT formulas and
introduces a lot of variance to SAT formulas.

A3: 3-Hop Heuristic is Robust to Randomization. While randomization has a negative
effect on the original implementation of BVA, we observe that our heuristic-guided BVA is
robust to this effect. Despite being provided with randomized formulas, it is able to generate
high quality variable additions and recover all of the performance loss of BVA-rand-orig,
even surpassing BVA-orig in many cases on number of problems solved and PAR-2 score.
We believe the slight performance improvement over BVA-orig in several cases is due to the
presence of “pre-randomized” formulas in the benchmark; in these cases BVA-orig already
suffers the effects of randomization while BVA-rand-3hop is able to recover the original
structure of the problem.

In Figure 8, we compare the relative solve times of formulas from the ANNI-2022
benchmark for BVA-rand-3hop and BVA-rand-orig. As in the previous section, the
formula sizes between the two variants differs by less than 1.5% on average. However,
BVA-rand-3hop is able to speed up many formulas, especially UNSAT instances.

A4: SBVA performs similar to BVA in most cases and performs extremely well for a few
families. We found that both the original implementation of BVA and our heuristic-guided
version have strong effects for specific families of formulas. In Figure 9, we plot the relative
performance of the four configurations on 10 formula families for which BVA was effective.
For these plots we allow BVA/SBVA to run for the full 5 000 seconds and consider only
the CaDiCaL solve time in the plots in order to understand the effectiveness of the formula
rather than the speed of BVA. In this section, we briefly describe some of the families where
BVA was most effective.

SAT 2023



11:14 Effective Auxiliary Variables via Structured Reencoding

101 102 103 104

BVA-rand-orig solve time (s)

101

102

103

104
B

V
A

-r
a
n
d
-3

h
o
p

so
lv

e
ti

m
e

(s
)

UNSAT

(a) Relative solve time for UNSAT formulas.

101 102 103 104

BVA-rand-orig solve time (s)

101

102

103

104

B
V

A
-r

a
n
d
-3

h
o
p

so
lv

e
ti

m
e

(s
)

SAT

(b) Relative solve time for SAT formulas.

Figure 8 Difference in reduction size and solve time between BVA-rand-3hop and BVA-rand-
orig on formulas from ANNI-2022. Larger points indicate a more-reduced formula.
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Figure 9 Performance of BVA/SBVA on 10 families of formulas where it was effective.

Pigeonhole / PHNF / FPGA-Routing. Pigeonhole formulas try to uniquely assign n

pigeons to m holes. Like the packing k-coloring problem, these formulas consist primarily of
AtLeastOne constraints (a pigeon must be in at least one hole) and pairwise AtMostOne
constraints (two pigeons cannot share a hole). Our benchmark also contains variants of this
problem, e.g. allowing multiple pigeons in a hole. These formulas are difficult for SAT solvers
due to the number of possible permutations.

We found that SBVA was quite effective for UNSAT instances of pigeonhole problems
(note that SAT instances of pigeonhole problems are trivial), able to solve new instances that
the other three configurations could not solve. Interestingly, we found that these newly solved
problems consist mainly of pre-shuffled pigeonhole problems. A full list of solved UNSAT
pigeonhole problems is provided in Table A1. Other pigeonhole-like families in the dataset
include PHNF (Pigeonhole Normal Form) [19] and FPGA-Routing [17], which consists of
problems generated by combining two pigeonhole problems. All forms of BVA were very
effective on these problems compared to Baseline.
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Petri Net Concurrency. Petri nets are a model of concurrent computation that consists of
places and transitions [6]. They are used to model a variety of systems, including chemical
reactions, manufacturing processes, and computer programs. The Petri Net Concurrency
family consists of formulas that encode the satisfiability of Petri nets. All three configurations
of BVA are able to generate very compact encodings for these formulas, with an average
compression factor of more than 20.

Bioinformatics. The bioinformatics family consists of problems that encode genetic evolu-
tionary tree computations into SAT [5]. As noted by the authors of the original BVA paper,
these problems are also reduced significantly with BVA. For the problems in this family, we
found that the average compression factor was more than 7 for all three BVA configurations,
i.e. the formulas were reduced to less than 15% total size on average.

Puzzle / Rooks / Battleship. We found BVA to be useful in several families of formulas
derived from 2-D games. The puzzle family consists of formulas that encode the satisfiability
of a sliding-block puzzle and were contributed by van der Grinten to SAT Comp 2017. The
rooks family asks if it is possible to place N + 1 rooks on a N ×N chessboard such that no
two rooks can attack each other [16]. The battleship family consists of problems that are
derived from the battleship guessing game and were contributed by Skvortsov to SAT Comp
2011. BVA was effective in all three families and SBVA was especially effective for the puzzle
and battleship families.

Antibandwidth / Spectrum Repacking. The antibandwidth [10] and spectrum repacking
[18] formulas are both related to assigning radio stations to channels. Specifically, the
antibandwidth family asks if it possible to assign a given set of stations to a given set of
channels such that the difference in channel between any two stations is at least k. Similarly,
the spectrum repacking family asks if it is possible to reassign a given set of stations into
a smaller set of channels, taking into account physical distances between stations and the
bandwidth of each channel. All configurations of BVA were effective on these problems.

7 Conclusion

Bounded Variable Addition is surprisingly effective at reducing the size of formulas and
improving solve time by introducing auxiliary variables. We discovered that this speedup
is caused not only by the reduction in formula size but also the introduction of certain
effective auxiliary variables. We found that the original implementation was sensitive to
randomization and proposed a new heuristic-guided implementation, SBVA, that is robust
to this effect. In a competition-style benchmark, we show that using SBVA resulted in
the most formulas solved in every category, outperforming both BVA and the baseline (no
preprocessor). Additionally, SBVA was extremely effective on certain families of formulas,
demonstrating that auxiliary variables can be useful in practice if they are chosen carefully.
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A Appendix

A.1 Reduction Size vs. Solve Time
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Figure A1 Formula speedup compared to compression factor for BVA-orig.

100 101 102 103

Compression Factor (BVA-rand-orig)

10−4

10−1

102

S
p

ee
d

u
p

(B
V

A
-r

a
n
d
-o

r
ig

)

Status

SAT

UNSAT

Figure A2 Formula speedup compared to compression factor for BVA-rand-orig.

A.2 Performance on Pigeonhole Problems
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Table A1 Performance on unsatisfiable instances of problems in the pigeon-hole family.

Solve Time (s)
Instance (unsatisfiable) Baseline BVA-orig BVA-rand-orig BVA-rand-3hop

a_rphp035_05 499.77 478.28 327.31 328.82
a_rphp045_05 2165.96 2069.67 1748.25 1952.39
a_rphp055_04 79.75 81.91 79.09 75.39
a_rphp065_04 168.98 164.66 137.85 146.82
a_rphp085_04 760.00 752.18 707.73 661.66
a_rphp098_04 1945.51 2136.84 2726.63 2318.10

ae_rphp035_05 410.54 501.24 426.94 407.24
ae_rphp045_05 2402.73 2549.29 2206.80 2307.20
ae_rphp055_04 83.73 86.48 81.64 74.17
ae_rphp075_04 513.63 515.97 558.53 504.86
ae_rphp095_04-sc2018 1937.08 1686.12 2074.11 1678.99
ae_rphp095_04 1706.39 1611.31 1560.96 1572.97

clqcolor-08-06-07.shuffled-as.sat05-1257 3.28 0.62 0.91 0.81
counting-clqcolor-unsat-set-b-clqcolor-08-06-07.sat05-1257.reshuffled-07 2.69 0.83 0.76 1.02

counting-easier-fphp-012-010.sat05-1214.reshuffled-07 111.76 33.26 30.03 0.11
counting-easier-fphp-014-012.sat05-1215.reshuffled-07 T.O. T.O. T.O. 1.62
counting-easier-php-012-010.sat05-1172.reshuffled-07 139.59 27.07 29.35 3.45
counting-easier-php-018-014.sat05-1175.reshuffled-07 T.O. T.O. T.O. 4224.30
counting-harder-php-014-013.sat05-1187.reshuffled-07 T.O. T.O. T.O. 1760.18

e_rphp035_05-sc2018 424.51 460.54 461.25 387.80
e_rphp035_05 482.43 480.30 419.09 501.65
e_rphp055_04 73.62 81.31 77.03 78.85
e_rphp065_04 139.17 125.17 143.14 144.34
e_rphp096_04 1626.72 1830.11 1492.40 1503.88

easier-fphp-020-015.sat05-1218.reshuffled-07 T.O. T.O. T.O. 4205.14

fphp-010-008.shuffled-as.sat05-1213 0.49 0.22 0.22 0.02
fphp-010-009.shuffled-as.sat05-1227 5.43 4.30 4.22 0.06
fphp-012-010.shuffled-as.sat05-1214 113.38 45.04 36.16 0.12
fphp-012-011.shuffled-as.sat05-1228 1722.86 1525.19 1844.10 0.68
fphp-014-012.shuffled-as.sat05-1215 T.O. T.O. T.O. 1.95
fphp-014-013.shuffled-as.sat05-1229 T.O. T.O. T.O. 564.50
fphp-016-013.shuffled-as.sat05-1216 T.O. T.O. T.O. 383.94
fphp-016-015.shuffled-as.sat05-1230 T.O. T.O. T.O. 1027.46
fphp-018-014.shuffled-as.sat05-1217 T.O. T.O. T.O. 549.07
fphp-020-015.shuffled-as.sat05-1218 T.O. T.O. T.O. 944.65

harder-fphp-016-015.sat05-1230.reshuffled-07 T.O. T.O. T.O. 3496.64
hole10.cnf.mis-98.debugged 2.20 0.95 1.51 1.05

ph9 5.68 1.55 4.02 0.08
ph10 120.63 13.83 50.17 8.64
ph11 3061.40 35.76 790.89 26.45

php-010-008.shuffled-as.sat05-1171 0.64 0.15 0.25 0.03
php-010-009.shuffled-as.sat05-1185 6.59 3.03 3.58 0.07
php-012-010.shuffled-as.sat05-1172 138.30 31.52 23.96 3.02
php-012-011.shuffled-as.sat05-1186 2695.99 1006.29 755.79 26.97
php-014-012.shuffled-as.sat05-1173 T.O. T.O. T.O. 237.47
php-016-013.shuffled-as.sat05-1174 T.O. T.O. T.O. 3024.16

php11e11 3599.98 500.38 780.09 796.55

rphp4_065_shuffled 146.66 148.59 129.96 132.01
rphp4_070_shuffled 213.59 249.18 280.29 227.72
rphp4_075_shuffled 448.36 459.23 415.65 419.72
rphp4_080_shuffled 532.00 519.81 516.74 503.20
rphp4_085_shuffled 666.98 723.74 654.52 648.68
rphp4_090_shuffled 853.68 850.60 919.62 890.40
rphp4_095_shuffled 1571.45 1362.84 1611.21 1342.79
rphp4_100_shuffled 2314.76 2545.95 2361.29 2154.53
rphp4_105_shuffled 3168.06 2948.21 2520.33 2249.50
rphp4_110_shuffled 3726.95 3389.56 3208.10 3665.63
rphp4_115_shuffled 4155.81 4406.08 4169.75 4095.25
rphp4_120_shuffled T.O. 4840.06 4883.44 4948.49
rphp4_125_shuffled T.O. 4613.90 4676.45 3989.60

rphp_p6_r28 T.O. T.O. 4895.39 T.O.

tph6 226.78 12.06 68.97 0.52
tph7 T.O. 249.13 T.O. 0.88
tph8 T.O. T.O. T.O. 188.30
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A.3 Performance on Bioinformatics Problems

Table A2 Performance on unsatisfiable instances of problems in the bioinformatics family.

Solve Time (s)
Instance (unsatisfiable) Baseline BVA-orig BVA-rand-orig BVA-rand-3hop

ndhf_xits_09_UNSAT T.O. 9.69 11.10 10.52
ndhf_xits_10_UNSAT T.O. 70.30 70.43 63.04
ndhf_xits_11_UNSAT T.O. 612.65 869.25 401.50
ndhf_xits_12_UNSAT T.O. T.O. T.O. 1003.12

rbcl_xits_06_UNSAT 5.27 0.20 0.22 0.20
rbcl_xits_07_UNSAT 110.14 0.60 0.60 0.47
rbcl_xits_08_UNSAT 3603.02 2.09 2.15 1.72
rbcl_xits_09_UNKNOWN T.O. 8.11 9.55 10.69
rbcl_xits_10_UNKNOWN T.O. 69.24 56.82 95.77
rbcl_xits_11_UNKNOWN-sc2009 T.O. 311.98 309.87 505.25
rbcl_xits_11_UNKNOWN T.O. 331.32 392.19 528.49
rbcl_xits_12_UNKNOWN T.O. 3607.56 4857.58 T.O.

rpoc_xits_07_UNSAT 54.86 0.95 1.03 0.97
rpoc_xits_09_UNSAT T.O. 41.37 30.13 24.29
rpoc_xits_10_UNKNOWN T.O. 237.25 172.23 182.65
rpoc_xits_11_UNKNOWN-sc2009 T.O. 3863.50 2369.91 1672.29
rpoc_xits_11_UNKNOWN T.O. 1813.61 4624.68 1413.96

Table A3 Performance on satisfiable instances of problems in the bioinformatics family.

Solve Time (s)
Instance (unsatisfiable) Baseline BVA-orig BVA-rand-orig BVA-rand-3hop

ndhf_xits_19_UNKNOWN-sc2011 143.44 31.96 9.59 13.37
ndhf_xits_20_SAT 29.44 2.20 3.32 3.38
ndhf_xits_21_SAT 6.27 2.16 1.13 2.27
ndhf_xits_22_SAT 3.09 1.11 0.50 0.86

rbcl_xits_14_SAT 1.31 0.47 0.46 1.91
rbcl_xits_18_SAT 0.22 0.04 0.05 0.03
rpoc_xits_17_SAT 1.22 0.14 0.11 0.11
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Abstract
Many current complete MaxSAT algorithms fall into two categories: core-guided or implicit hitting
set. The two kinds of algorithms seem to have complementary strengths in practice, so that each
kind of solver is better able to handle different families of instances. This suggests that a hybrid
might match and outperform either, but the techniques used seem incompatible. In this paper, we
focus on PMRES and OLL, two core-guided algorithms based on max resolution and soft cardinality
constraints, respectively. We show that these algorithms implicitly discover cores of the original
formula, as has been previously shown for PM1. Moreover, we show that in some cases, including
unweighted instances, they compute the optimum hitting set of these cores at each iteration. We also
give compact integer linear programs for each which encode this hitting set problem. Importantly,
their continuous relaxation has an optimum that matches the bound computed by the respective
algorithms. This goes some way towards resolving the incompatibility of implicit hitting set and
core-guided algorithms, since solvers based on the implicit hitting set algorithm typically solve the
problem by encoding it as a linear program.
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1 Introduction

MaxSAT is the optimization version of SAT, in which we are given a set of hard clauses
which must always be satisfied, as well as a set of weighted soft clauses, with the objective
to find an assignment which minimizes the weight of the falsified soft clauses. Much like
the case for SAT, the performance of MaxSAT solvers has been steadily improving over
the past few years [5]. Two classes of algorithms have contributed significantly to this
improvement: implicit hitting set (IHS) solvers [12, 14, 13, 6, 8] and core-guided solvers
[18, 2, 24, 23, 22, 19]. Both are based on iteratively calling a SAT solver on formulas derived
from the original MaxSAT instance and extracting unsatisfiable cores, but they are very
different in their operation. IHS solvers exploit the hitting set duality of cores and correction
sets (solutions)[26], and they try to build up a collection of cores that are enough to make
the minimum hitting set match the optimum solution. Crucially, IHS solvers only ask
the SAT solver to extract cores from subsets of the initial MaxSAT instance, which are
all approximately equally hard. Core-guided solvers, on the other hand, reformulate the
input instance with each core they discover so that it exhibits a higher lower bound. The
reformulation generates ever more constrained formulas, which get harder and harder.

Despite their different approaches, both classes of algorithms are competitive, but they
perform well in different families of instances. Hence, it would be desirable to understand
exactly how they relate to each other and build algorithms with the strength of both. In that
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direction, Bacchus and Narodytska [7] showed that the cores discovered by the PM1 [18]
algorithm correspond to a collection of cores of the original instance. Later, Narodytska and
Bjørner [25] showed that for unweighted instances, PM1 actually discovers a hitting set of
these cores of the original formula at every iteration. These results showed that there exists
a close relationship between IHS and core-guided solvers.

Here, we focus on PMRES [24] and OLL [22]. Our contributions are as follows.

We show that, like PM1, each core computed by PMRES and OLL corresponds to a set
of cores of the original MaxSAT instance.
We identify a condition for when the lower bound computed by PMRES or OLL matches
the optimum hitting set of the set of cores of the original formula. This includes the case
when the input instance is unweighted.
We show that the hitting set problem over these cores can be formulated compactly as
an integer linear program for both PMRES and OLL. Moreover, the linear relaxation of
that ILP has a lower bound which is at least as great as the bound computed by PMRES
or OLL, respectively.
The linear program that we give is actually a subset of a higher level relaxation of that
hitting set problem in the Sherali-Adams hierarchy [28].

The first two contributions match what has been done for PM1 previously, although
our proofs are notably simpler, owing to the fact that the cores of PMRES and OLL have
a much more regular structure than those of PM1. The latter two contributions provide
further insight into the relationship between these core-guided algorithms and IHS. The LP
formulation points the way to an algorithm that combines features of both core-guided and
implicit hitting set solvers, since IHS solvers typically solve the hitting set problem with an
ILP solver: any bounds computed by PMRES or OLL can be imported into IHS by way of
this LP. The fact that this LP is a subset of a high level Sherali-Adams relaxation also shows
IHS and core-guided solvers as being two extreme instantiations of the same algorithmic
framework, where both solvers try to solve an implicit hitting set problem. But whereas IHS
discovers only cores of the original formula and offloads solving of the hitting set problem to
an external solver, PMRES very aggressively searches for a non-obvious set of new variables
to add to the linear relaxation of the hitting set problem, in order to keep it as close as
possible to the optimum integer solution, but places a great burden on the SAT solver. This
suggests a more effective tradeoff could be found.

2 Background

In addition to the basics of MaxSAT, we also introduce necessary background on linear
programming and weighted constraint satisfaction problems (WCSPs).

2.1 Satisfiability
A SAT formula ϕ in conjunctive normal form (CNF) is a conjunction of clauses and a clause
is a disjunction of literals. We also view a CNF formula as a set of clauses and a clause as
a set of literals. For a CNF formula F , we write vars(F ) for the set of all variables whose
literals appear in the clauses of F . The Weighted Partial MaxSAT (WPMS) problem is a
generalization of SAT to optimization. A WPMS formula is a triple W = ⟨H,S,w⟩ where H
is a set of hard clauses, S is a set of soft clauses and w : S → R≥0 is a cost function over the
soft clauses. We also write H(W ) = H,S(W ) = S, vars(W ) = vars(H) ∪ vars(S). For an
assignment I over vars(W ), we overload notation to write w(I) ≜

∑
c∈S:I⊢¬c w(c) for the
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cost of the soft clauses that I falsifies. The objective is to find an assignment I to vars(W )
such that all clauses in H are satisfied and the cost of the falsified soft clauses, i.e., w(I), is
minimized. We write opt(W ) ≜ minIw(I) for this value. A WPMS formula ⟨H,S,w⟩ with
w(c) = 1 for all c ∈ S, is a partial MaxSAT formula. If, additionally, H is empty, it is a
MaxSAT formula.

Two WPMS formula W = {H,S,w} and W ′ = {H ′, S′, w′} are equivalent if for each
assignment I to vars(W ) that satisfies H, we can extend it to an assignment I ′ to vars(W ′)
that satisfies H ′ and w(I) = w′(I ′) + b, for some constant b that is the same for all
assignments. For example, W = {∅, {(x), (x)}, w}, where w((x)) = 5, w((x)) = 3 is equivalent
to W ′ = {∅, {(x)}, w′}, where w′((x)) = 2, because the weight of all assignments differs by 3
in W,W ′. This notion of equivalence is important in our subsequent analysis.

Given an unsatisfiable CNF formula F , a set C ⊂ F is a core of F if C is unsatisfiable.
If C is minimal by set inclusion, it is a MUS (minimal unsatisfiable subset) of F . Given a
WPMS formula W = ⟨H,S,w⟩, a set C ⊆ S is a core of W if H ∪ C is unsatisfiable. In the
rest of this paper, we assume for simplicity that H is satisfiable and H ∪ S is unsatisfiable.

In the sequel, we make some assumptions without loss of generality. First, we assume that
all soft clauses in a MaxSAT formula W = ⟨H,S,w⟩ are unit. If there exists a clause ci ∈ S

which is not unit, we create the formula W ′ = ⟨H ′, S′, w′⟩ with H ′ = H ∪ cnf(¬ci ⇐⇒ bi),
S′ = S ∪ {(bi)} \ {ci}, where bi is a fresh variable, called the blocking variable for ci, and
w′((bi)) = w(ci), w′(c) = w(c) for all c ∈ S ∩S′. We see that W is equivalent to W by noting
that we can extend any assignment of W to W ′ by setting bi so that it satisfies bi ⇐⇒ ¬ci.
Moreover, we assume that the unique literal in all soft clauses appears with negative polarity.
If this does not hold, we can make it so by renaming. Because of this assumption, we identify
each soft clause with the unique variable it contains and we use that literal to refer to it.
Finally, we assume that there exist no soft clauses with cost 0, as we can remove those
without affecting satisfiability or cost. However, we use the convention that w(x) = 0 for
all positive literals and all negative literals of variables that do not appear in a soft clause.
Given this convention, a WPMS instance can be written as W = ⟨H,w⟩, and S is implicitly
S = {(xi | w(xi) > 0}. We use the two formulations interchangeably.

Solving WPMS
Most current SAT solvers have the ability to not only report SAT or UNSAT for a given
formula, but also, given a partition of its clauses so that ϕ = ψ ∪χ, report a subset of χ such
that ψ ∪ χ is unsatisfiable. In terms of WPMS, it means a modern SAT solver can give a
subset of S such that H ∪ S is unsatisfiable, i.e., a core of the WPMS formula. Because we
have assumed that S contains negative unit clauses only, it follows that each core of W is a
positive clause entailed by H.

The implicit hitting set (IHS) algorithm for WPMS [12, 14, 13, 6, 8] is based on the
observation that the set of soft clauses CS ⊆ S violated by a solution I is a hitting set of
the set of all cores of W [26]. Hence, an optimal solution is a minimum hitting set of the
cores of W . Hitting sets of all cores are called correction sets.

The IHS algorithm maintains an initially empty set of discovered cores C of W and a
minimum hitting set of C, hs(C). If the SAT formula H ∪ (S \ hs(C)) is satisfiable, then
its solutions are optimal solutions of W and w(hs(C)) = w(W ). Otherwise, a new core is
extracted and added to C and the loop repeats. Actual implementations of the IHS algorithm
in MaxHS [12] and LMHS [27, 9] contain many optimizations over this basic loop.

A core-guided algorithm for WPMS [18, 24, 23, 22, 19] is an iterative algorithm that
generates a sequence of WPMS instances W 0 =

〈
H0, w0〉

= W, . . . ,Wm = ⟨Hm, wm⟩ and a
sequence of lower bounds lb0 = 0 < lb1 < . . . < lbm such that Hi |= Hi−1 for all i ∈ [1,m]
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and W 0 is equivalent to W i for all i ∈ [1,m] and the weights of the assignments differ by lbi,
therefore opt(W ) = lbi + opt(W i). Moreover, in the last iteration it holds opt(Wm) = 0, so
opt(W ) = lbm. In words, a core-guided algorithm generates a sequence of equivalent WPMS
instances such that each successive instance is used to derive an increased lower bound
for the original instance, while decreasing the cost of every solution by the same amount.
The final instance admits a solution with zero weight, and each such solution of Wm is an
optimal solution of W . All such solutions are solutions of the SAT formula Hm |0, defined as
Hm ∪ (x) | w(x) > 0, i.e., with all soft clauses made into hard clauses. In order to derive each
successive instance W i+1 in the sequence, it extracts a core from W i and uses it to transform
it into W i+1 and increase the lower bound, hence the name core-guided. The algorithms
we study here, PMRES and OLL, are core-guided algorithms. Following Narodytska and
Bjørner [25], we call cores of W i for i > 0 meta cores, or metas, to distinguish them from
cores of the original formula W 0. We write mi for the meta discovered at iteration i.

2.2 Linear programming and Weighted Constraint Satisfaction
An integer linear program (ILP) IP has the form min cTx : Ax ≥ b ∧ x ∈ Z≥0, where x
is a vector of n variables, c ∈ Rn, A ∈ Rm×n, b ∈ Rm. For a given x, if Ax ≥ b, then it
is a feasible solution of IP. We write c(x) = cTx for the cost1 of x. We write c(IP ) for
the cost of a feasible solution with minimum cost. The linear relaxation P of IP is the
problem min cTx : Ax ≥ b ∧ x ∈ Rn

≥0, i.e., one where we relax the integrality constraint
x ∈ Zn

≥0. This is called a linear program (LP). Linear programs have the strong duality
property, namely that for every linear program P in the above form, there exists another
linear program PD = max bT y : AT y ≤ c ∧ y ∈ Rm

≥0, with the property that cP D (ŷ) ≤ cP (x̂)
for every feasible solution x̂ of P and ŷ of PD and cP D (y∗) = cP (x∗) for optimal solutions x∗

and y∗. Given a feasible dual solution ŷ, the value AT
i y − ci, the slack of the dual constraint

corresponding to the primal variable xi, is called the reduced cost of xi, denoted rci(ŷ). A
necessary condition for optimality called complementary slackness links the two solutions:
x∗

i rci(y∗) = 0, i.e., for each variable xi, either it is zero or its corresponding dual constraint
(Aiy ≤ ci) is tight (has zero slack).

A Boolean Cost Function Network (CFN) is a pair ⟨V,D,C⟩, where V is a set of variables,
D is a function mapping variables to domains, and C is a set of cost functions. If the domain
of a variable v is binary, we write v for the value v = 1 and v for v = 0. Each cost function
is a pair ⟨S, c⟩ where S ⊆ V is its scope and cS is a function

∏
x∈S D(x) → R≥0 ∪ ∞. We

assume there exists at most one cost function for each scope, so cS is a shortcut for ⟨S, cS⟩.
An assignment IS to a scope S is a function which maps every variable x ∈ S to a value
in D(x). When we omit S, it means S = V . When convenient, we also use I to denote
the set {v = a | I(v) = a, v ∈ V } ∪ {v ̸= b | I(v) ̸= b, v ∈ V, b ∈ D(x)}. For a scope S and
assignment I, I↓S is the projection of I to S. t(S) denotes all possible assignments to S.

We use the convention that for a cost function cS , cS(I) = cS(I↓S), i.e., we implicitly
project to S. For a CFN P , we write cP (I) =

∑
cS∈F cS(I). The Weighted Constraint

Satisfaction Problem (WCSP) is to find an assignment I such that cP (I) < ∞ and that
minimizes cP . The term WCSP is often used to refer both to the underlying CFN and to
the optimization problem, and we do the same here. Additionally, we assume the existence
of a unary cost function c{v} (abbreviated as cv) for every variable v ∈ V and a nullary cost
function c∅, which is a lower bound for cP , becayse all costs are non-negative. A CSP is a
WCSP in which the domain of all cost functions is {0,∞}.

1 We stick to the terminology of weights in MaxSAT and costs in ILP and WCSP, even though they serve
the same purpose.
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A WCSP P = ⟨V,C⟩ can be formulated as the following ILP:

min
∑

cS∈C,l∈t(S)

cS(l)xSl (1)

s.t. (2)

x{v},a =
∑

l∈t(S):v=a∈l

xSl ∀v ∈ V, a ∈ D(v), cS ∈ C (3)

∑
a∈D(v)

x{v},a = 1 ∀v ∈ V (4)

xSl ∈ Z≥0 ∀v ∈ V, cS ∈ C, l ∈ t(S) (5)

The linear relaxation of (1)– (5) defines the local polytope of P . A dual feasible solution
of the local polytope LP has a particular interpretation: it defines a reformulation of the
WCSP. A reformulation can be seen as a set of operations on a WCSP P that create a
new WCSP P̂ with modified costs, but cP (I) = cP̂ (I) for all I. Therefore, a reformulation
is said to preserve equivalence. This notion of equivalence is identical to the equivalence
preserved by core-guided algorithms, with the primary difference being that the lower bound
is explicitly represented in a WCSP in c∅. These operations can intuitively be thought of as
moving cost among cost functions:

Extention: ext(v = a, cS , α), with v ∈ S, a ∈ D(v). This subtracts cost α from c({v}, a)
and adds it to c(S, l) for all tuples l ∈ t(S) : (v = a) ∈ l. To see the correctness of this,
consider the subset of the objective function cv(a)x{v},a +

∑
l∈t(S):(v=a)∈l cS(l)xSl, as

well as constraint (3). Since x{v},a is equal to the sum, the value of the objective remains
unchanged by adding α to one and subtracting it from the other.

Projection: prj(cS , v = a, α), with v ∈ S, a ∈ D(v). This is the same as ext(v, cS ,−α).

Nullary projection: prj0(cS , w). This subtracts cost α from each tuple l ∈ t(S) and moves
it to c∅. This is justified because

∑
l∈t(S) xSl = 1 and the cost of c∅ is a constant in the

objective function.

Because these operations preserve equivalence, they are called Equivalence Preserving
Transformations (EPTs). A valid set of EPTs ensures that all cost functions are non-negative
everywhere, but there are valid sets of EPTs for which any sequence of performing them
leaves intermediate negative costs. A valid set of EPTs can be mapped to a feasible dual
solution of the local polytope LP and vice versa. A set of EPTs which achieves the greatest
increase in c∅, and hence the lower bound, can be mapped to an optimal dual solution of
the local polytope LP [11]. Given a dual solution, the cost of each tuple l ∈ t(S) is given by
the reduced cost of the variable xSl.

For a WCSP P , let Bool(P ) be the CSP (not weighted) defined by accepting exactly
those tuples which have cost 0, i.e., changing all costs which are greater than 0 to ∞. Let
P̂ be a reformulation of P . A consequence of complementary slackness is that if P̂ is an
optimal reformulation, then Bool(P̂ ) has a non-empty arc consistency closure [11, 15], in
which case it is said that P̂ is virtually arc consistent (VAC). This is not a sufficient condition
for optimality, however. Conversely, if P̂ is not VAC, therefore Bool(P̂ ) has an empty arc
consistency closure, there exists a reformulation with a higher c∅.
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3 PMRES

The PMRES algorithm is a core guided solver which was introduced by Narodytska and
Bacchus [24] and is implemented primarily in the Eva solver. We describe it briefly here. In
this description, we use the view of WPMS as hard and soft clauses, rather than hard clauses
and an objective, because the transformations performed by PMRES temporarily violate
the assumptions that allow us to take this alternative view. However, these assumptions are
always restored at the end of each iteration.

3.1 Max-Resolution
Max resolution [20] is a complete inference rule for MaxSAT [10]. It consists of the following
rule on soft clauses, in which the conclusions replace the premises:

(A ∨ x,w)
(B ∨ x,w)
(A ∨B,w)

(A ∨ x ∨B,w)
(B ∨ x ∨A,w)

The first clause in the conclusions is equivalent to what resolution derives. The latter
two are called compensation clauses, as they compensate for the cost of assignments which
do not falsify the conclusion A ∨B but falsify one of the discarded premises. Depending on
the exact form of A and B, the compensation “clauses” may not actually be in clausal form
and would have to be converted to a set of clauses each. We ignore this complication here,
as our presentation of PMRES mostly avoids this case.

The rule is generalized to clauses with different costs w1 > w2 by cloning the heavier
clause into clauses with costs w2 and w1 −w2. When one of the clauses is hard, e.g., w1 = ∞,
we keep it in the conclusions.

Max resolution has the property that if W and Ŵ are the formulas before and after
application of the rule, then they are equivalent.

3.2 Max-Resolution with cores
PMRES uses the specialization of this rule for a binary clause and a unit clause, i.e.,
|A| = 1, B = ∅.

(A ∨ x,w)
(x,w)
(A,w)

(x ∨A,w)

As a core-guided solver, PMRES is an iterative algorithm and the first step in each
iteration is to extract a meta core from W i, or terminate if Hi ∪ Si is satisfiable. Suppose
that the meta is mi = {bi

1, b
i
2, . . . , b

i
ri} ⊆ Si−1 and wi

min = minbj∈C c
i(bi

j). This implies
the presence of the soft clauses (bi

1, w1), . . . , (bi

ri , wri). PMRES first splits each soft clause
(bi

j , w
′) with w′ > wi

min into (bi

j , w
i
min) and (bi

j , w
′ − wi

min). This temporarily violates our
assumption that each soft clause contains a unique literal, but as we will see, this invariant
is restored before the next iteration starts. In the next step, it adds to Hi+1 the hard clause
corresponding to C using the CNF encoding of (bi

1 ∨ di
1), (di

1 ⇐⇒ bi
2 ∨ di

2), . . . (di
ri−2 ⇐⇒
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(b1 ∨ b2 ∨ b3 ∨ b4)
(b5 ∨ b2)
(b5 ∨ b3 ∨ b4)

Figure 1 Cores of the instance used in the running example.

bi
ri−1 ∨ di

ri
1
), (di

ri−1 ⇐⇒ bi
r), where di

1, . . . , d
i
r−1 are fresh variables. It is clear that we can

recover the clause (bi
1 ∨ . . . ∨ bi

r) by resolving (not with max-resolution, as the clauses are
all hard) the first two clauses on di

1, then on di
2, and so on, therefore the encoding and the

clause are equivalent. PMRES then applies max-resolution as follows:

Premises Conclusions

(bi
1 ∨ d1, w

i
min) (bi

1, w
i
min) (d1, w

i
min), (bi

1 ∨ d1, w
i
min)

(d1, w
i
min) (d1 ∨ bi

2 ∨ d2, w
i
min) (bi

2 ∨ d2, w
i
min), ((bi

2 ∨ d2) ∨ d1, w
i
min)

...

(bi
r−1 ∨ dr−1, w

i
min) (bi

r−1, w
i
min) (dr−1, w

i
min), (bi

r−1 ∨ dr−1, w
i
min)

(dr−1, w
i
min) (dr−1 ∨ bi

r, w
i
min) (bi

r, w
i
min), (bi

r ∨ dr−1, w
i
min)

(bi
r, w

i
min) (bi

r, w
i
min) (□, wi

min)

The non-clausal constraints in light gray are tautologies and can be discarded. For
example, by (di

1 ⇐⇒ bi
2 ∨ di

2), (bi
2 ∨ di

2) ∨ di
1 is equivalent to (di

1 ∨ di
1), a tautology. The

clauses in gray are used as input for the next max-resolution step. The framed clauses are
new soft clauses that are kept for the next iteration. Since they are not unary, they are
reified using fresh variables and converted to unit soft clauses, e.g., f ⇐⇒ bi

1 ∧di
1 and (f, w),

where f is the fresh variable. Finally, the empty soft clause (□, wmin) is used to increase the
lower bound for the next iteration by wmin.

Consider now a clause (bi

j , w
′) that was split into two clones (bi

j , wmin) and (bi

j , w
′ −wmin).

The former is consumed by max-resolution, therefore the invariant that each soft clause
contains a unique literal is restored. This also allows us to implement the cloning process as
a simple update: wi+1(bj) = wi(bj) − wmin = w′ − wmin. If it happens that w′ = wmin, we
maintain by the previously mentioned convention that wi+1(bj) = 0.

In the following, we write Hi
R for the formula consisting only of the clauses introduced

by PMRES, therefore Hi = H ∪Hi
R. We also write F i and Di for the set of all variables,

introduced to reify soft clauses (e.g. f above) or to encode the meta core clause (the di
j

variables above), respectively. It has also been previously noted [25, 3] that the conjunction
of the definitions of the F and D and the clauses (bi

1 ∨ di
1) define a monotone circuit, with a

binary gate corresponding to each v ∈ F i ∪ Di, an unnamed ∨ gate corresponding to the
clause (bi

1 ∨ di
1), and an implicit ∧ gate whose inputs are the unnamed ∨ gates, which is the

output of the circuit.

▶ Example 1 (Running Example). Consider an instance W with 5 soft clauses with cost 1
each and corresponding literals b1, . . . , b5, and the cores shown in Figure 1. We show a run
of PMRES in Figure 2 (for readability, we show the objective function rather than the set of
soft clauses) that discovers first the core (b1 ∨ b2 ∨ b3 ∨ b4). It increases the lower bound by
1, adds the variables D1 = {d1

1, d
1
2, d

1
3} and F 1 = {f1

1 , f
1
2 , f

1
3 }, defined as shown in the row

corresponding to iteration 1. Since weights are unit, all original variables except b5 disappear
from the objective. In the next iteration, PMRES discovers the meta {b5, f

1
2 }, increases the
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Iteration Meta New clauses Objective
1 {b1, b2, b3, b4} d1

1 ⇐⇒ b2 ∨ d1
2, d1

2 ⇐⇒ b3 ∨ d1
3,

d1
3 ⇐⇒ b4,
f1

1 ⇐⇒ b1 ∧ d1
1, f1

2 ⇐⇒ b2 ∧ d1
2,

f1
3 ⇐⇒ b3 ∧ d1

3 1 + b5 + f1
1 + f1

2 + f1
3

2 {f1
2 , b5} d2

1 ⇐⇒ b5
f2

1 ⇐⇒ b7 ∧ d2
1 2 + f1

1 + f1
3 + f2

1

Figure 2 PMRES on the running example.

lower bound to 2, and introduces the variables d2
1 and f2

1 . In the next iteration, the instance
is satisfiable. One of the possible solutions is b4, b5, with cost 2, which matches the lower
bound.

3.3 Cores and Hitting Sets of PMRES
We first observe that the f i and di variables created on iteration i are functionally dependent
on the bi variables. Therefore, the formula Hi generated after the ith iteration is logically
equivalent to H, i.e., every solution of H can be extended to exactly one solution of Hi.

▶ Lemma 2. There exists a set Ci such that mi is a core of Hi if and only if for each c ∈ Ci,
c is a core of ϕ.

Proof. The set Ci can be derived from mi and Hi
R by forgetting the variables f and d

that were introduced by PMRES. More concretely, let E0 = {mi}. If there exists c ∈ Ej

such that f ∈ c and f was introduced by PMRES and defined as f ⇐⇒ b ∧ d, we set
Ej+1 = Ej \ {c} ∪ {c \ {f} ∪ {b}, c \ {f} ∪ {d}}, i.e., we replace c by two clauses which have b
and d, respectively, instead of f . If there exists c ∈ Ej such that d ∈ c and d was introduced
by PMRES and defined as d ⇐⇒ b ∨ d′, we set Ej+1 = Ej \ {c} ∪ {c \ {d} ∪ {b, d′}}, i.e.,
we replace d by b, d′ in c. The process eventually terminates because it removes one reference
to a variable introduced by PMRES and replaces it by a variable corresponding to a gate at
a deeper level of the Boolean circuit defined by Hi

R, hence all variables must eventually be
original variables of W 0. It is also confluent because the choice of variable to forget does not
hinder other choices.

Since both forgetting variables and introducing functionally defined variables are
satisfiability-preserving operations, we have mi ∧Hi

R |= Ci and Ci |= mi ∧Hi
R. ◀

▶ Lemma 3. Let hs ⊆ S. Then hs as an assignment can be extended to a solution of Hi
R if

and only it is a hitting set of Ci
∪.

Proof. This follows from lemma 2.
(⇒) hs satisfies Hi

R, hence it satisfies all clauses in Ci, which are cores, so it hits all the
cores.

(⇐) hs is a hitting set of Ci, hence it satisfies all the corresponding clauses, hence it
satisfies Hi

R. ◀

In the following, let Ci
∪ = ∪j∈[1,i]Cj .

▶ Observation 4.
〈
Hi

R, w
0〉

and
〈
Hi

R, w
i
〉

are equivalent.
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Proof. Consider H0 =
〈
Hi

R, w
0〉

. We know that m0 is a core of H0. By applying max
resolution to m0 as described in section 3.2, we get new variables and soft clauses. But these
new variables are defined identically to the variables PMRES introduced to get H1

R, which
is a subset of Hi

R. Hence, we can identify them. By correctness of PMRES, we get that〈
Hi

R, w
1〉

is equivalent to
〈
Hi

R, w
0〉

. We apply the same argument inductively to complete
the proof. ◀

▶ Corollary 5. The WPMS Whs
i =

〈
Hi

R, w
i
〉

encodes the minimum hitting set problem over
Ci

∪, with weights shifted by lbi. Hitting sets with cost lbi, if they exist, are solutions of W i
hs

that use only soft clauses with soft 0.

Proof. From Lemma 3,
〈
Hi

R, w
0〉

encodes minimum hitting set over Ci
∪. From Observation 4,〈

Hi
R, w

0〉
and

〈
Hi

R, w
i
〉

are equivalent, therefore Whs
i encodes minimum hitting set over Ci

∪.
The second part follows from the fact that, for any assignment I, w0(I) = lbi + wi(I), so

if w0(I) = lbi, then wi(I) = 0. ◀

Let us denote by Hi
R |0 the formula Hi

R with all variables x such that w(x) > 0 set
to false so that all models of Hi

R |0 are minimum hitting sets of Ci. Therefore if Hi
R |0 is

satisfiable, the bound computed by PMRES matches the cost of the minimum hitting set
of Ci

∪.

▶ Lemma 6. If W is a PMS instance, Hi
R |0 is satisfiable for all iterations i of PMRES.

Proof.
All variables in D have cost 0.
Moreover, all variables which appear in any meta have cost 0, because it is moved away
by max-resolution.
Therefore, all variables in bj

1, . . . , b
j
rj for j ∈ [1, i] have zero cost.

We construct a solution to Hi
R |0 by setting to false all variables which are inputs to

false ∧-gates (which is done by unit propagation), then we set variables to true by traversing
metas in reverse chronological order:
1. For mi, we pick the first variable in bj

1, . . . , b
j
rj and set it to true. We set all variables in

F i and Di to false (the former is required for mi because, as the last discovered core, all
variables in F i have non-zero weight.

2. Supposing we have satisfied all metas mj+1, . . . ,mi, consider mj . Suppose that 0 ≤
q < |mj | variables in F j that have been set to true by previous steps, with indices
P j = {p1, . . . , p

j
q}. For simplicity of notation, assume that if P j is empty, then pj

q = 0.
Then we set to true the variables bj

r | r ∈ P j as well as bj
pq+1, and set the rest to false.

When pj
q = 0, this reduces to setting the first variable in bj

1 to true.
a. This assignment satisfies the constraints introduced in Hj

R.
b. Moreover, all the variables that appear in mj have cost 0 after the jth iteration.

Therefore they cannot appear in any meta discovered in iterations j + 1, . . . , i and
the assignment we have chosen here does not contradict the assignments chosen in
iterations j + 1, . . . , i. ◀

We can see where the proof of Lemma 6 breaks when applied to WPMS: the assertion 2b
does not hold, because a variable whose cost has not been reduced to 0 may appear in later
metas and our procedure may therefore create a conflicting assignment.
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Iteration Core New clauses Objective
1 {b1, b2, b3, b4} d1

1 ⇐⇒ b2 ∨ d1
2, d1

2 ⇐⇒ b3 ∨ d1
3, 1 + b2 + 2b3 + 3b4 + 5b5+

d1
3 ⇐⇒ b4, f1

1 + f1
2 + f1

3
f1

1 ⇐⇒ b1 ∧ d1
1, f1

2 ⇐⇒ b2 ∧ d1
2,

f1
3 ⇐⇒ b3 ∧ d1

3
2 {f1

2 , b5} d2
1 ⇐⇒ b5 2 + b2 + 2b3 + 3b4 + 4b5+
f2

1 ⇐⇒ f1
2 ∧ d2

1 f1
1 + f1

3 + f2
1

3 {b3, b4, b5} d3
1 ⇐⇒ b4 ∨ d3

2, d3
2 ⇐⇒ b5 4 + b2 + b4 + 2b5+

f3
1 ⇐⇒ b3 ∧ d3

1, f3
2 ⇐⇒ b4 ∧ d3

2 f1
1 + f1

3 + f2
1 + 2f3

1 + 2f3
2

4 {b2, b5} d4
1 ⇐⇒ b5 5 + b4 + b5+
f4

1 ⇐⇒ b2 ∧ d4
1 f1

1 + f1
3 + f2

1 + 2f3
1 + 2f3

2 + f4
1

Figure 3 PMRES on the running example with modified, non-unit weights.

▶ Example 7 (PMRES on a weighted formula). Consider the running example, but with the
modified weights (1, 2, 3, 4, 5), respectively. We assume the same trail as shown in figure 2,
and show in figure 3 the modified execution. After the first two iterations the lower bound will
be 2, as shown. The optimum hitting set is {b2, b3} with cost 5, so the lower bound does not
match the optimum. Indeed, H2

R |0 is unsatisfiable: the clause (f1
2 ∨ b5) can only be satisfied

by f1
2 , because w2(b5) > 0. But f1

2 ⇐⇒ b2 ∧(b3 ∨b4) and w2(b2) > 0, w2(b3) > 0, w2(b4) > 0,
therefore f1

2 is forced to false. Hence, PMRES has to perform more iterations before matching
the bound of the hitting set. A possible trail finds the metas {b3, b4, b5} and {b2, b5} (which
also happen to be cores of W 0), as shown.

We are now ready to state the main result of this section.

▶ Theorem 8. For a PMS instance, at each iteration, PMRES computes an optimum hitting
set of Ci

∪.

Proof. Follows from Lemma 2, Corollary 5, and Lemma 6. ◀

For a WPMS instance, we can get a weaker result: since cores of Hi
R |0 are also cores of

Hi |0, we can extract cores of Hi
R |0, which are metas of W until it becomes satisfiable, at

which point the bound is a hitting set of Ci
∪. It is not clear if that is a desirable thing to do

from a performance perspective.

3.4 PMRES and Linear Programming
In this section, we prove the following.

▶ Theorem 9. There exists an integer linear program ILP i
P which (1) is logically equivalent

to the minimum hitting set problem with sets Ci
∪, (2) has size polynomial in |Hi

R|, and (3)
whose linear relaxation has an optimum which matches that derived by PMRES.

Given the results of section 3.3, (1) is easy to show, since we can generate the set Ci
∪,

then write the hitting constraint for each set in Ci
∪, and use w0 as the objective. Call this

ILP i
hs. But ILP i

hs may be exponentially larger than Hi
R. It is not much harder to show

that we can achieve (1) and (2). As Corollary 5 shows, Hi
R is logically equivalent to that

hitting set problem, so we can replace the constraints of ILP i
hs by Hi

R (i.e., by the standard
encoding of clauses to linear constraints) and get an equivalent problem. Call that ILP i

R

and its linear relaxation LP i
R.

However, we can see that LP i
R is weak, specifically, that c(LP i

R) < c(ILP i
R).
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▶ Example 10 (Running example, continued). Consider the ILPs ILP 2
hs and ILP 2

R corres-
ponding to the hitting set problems for the 2nd iteration of PMRES on the instance W in
our running example. The optimum of both ILP 2

hs and ILP 2
R is 2, as expected, but the

optimum of LP 2
R is only 1.5.

In this specific example, since we have integer costs, the bound of the linear relaxation
allows us to derive a bound of 2 for ILP 2

R, but in general we can get an arbitrarily large
difference. This is not surprising in general, but the fact that PMRES does compute an
optimal hitting set at each iteration suggests that we should be able to do better. This is
the objective of this section.

To construct an LP that meets the requirement of the theorem, we give a WCSP and
its reformulation, which yield an LP (the local polytope) and a dual solution (one which is
created from the formulation), as described in section 2.2. The result could be proved by
directly giving an appropriate LP and dual solution, and proving the result on that, but it
would be more cumbersome and would lack the existing intuitive understanding that has
been developed in WCSP of dual solutions as reformulations.

Proof of theorem 9. We will give first a WCSP P i which admits the same solutions as Hi
R

and has unary costs such that its feasible solutions have the same cost as the hitting set
problem entailed at iteration i of PMRES. This means that the optimum solution of P i

matches the minimum hitting set of Ci
∪. Further, we show that its linear relaxation LP (P i)

admits a dual feasible solution whose cost matches the bound computed by PMRES. We
give this dual solution as a sequence of equivalence preserving transformations of P i, using
the results presented in section 2.2. That linear program, LP (P i), satisfies the requirements
of the theorem.

We first define P i. The high level idea is that the we encode the objective function of
ILP i

R directly as unary costs, and each meta using the well known decomposition into ternary
constraints. The d variables have exactly the same semantics as the auxiliary variables used
in that decomposition. The corresponding f variable corresponds to a single tuple of these
ternary constraints, so we add an f variable to each ternary constraint in order to capture
the cost of that ternary tuple into a unary cost. More precisely, let P 0 = ∅. At iteration i,
where the core discovered is {bi

1, b
i
2, . . . , b

i
r} ⊆ Si−1, P i is defined as P i−1 and additionally

the following variables and cost functions:
0/1 variables b1, . . . , bn, di

j , f i
k, corresponding to the propositional variables of the same

name in W i.
Unary cost functions with scope bi for each bi ∈ vars(W 0), with cbi

(0) = 0, cbi
(1) = c0(bi)

A ternary cost function with scope {bi
1, d

i
1, f

i
1} where each tuple that satisfies bi

1 ∨ di
1 and

f i
1 ⇐⇒ di

1 ∧ bi
1 has cost 0 and the rest have infinite cost.

Quaternary cost functions with scope {bi
j , d

i
j−1, d

i
j , f

i
j}, for j ∈ [2, r− 2], where each tuple

that satisfies di
j−1 ⇐⇒ di

j ∨ bi
j and f i

j ⇐⇒ di
j ∧ bi

j has cost 0 and the rest have infinite
cost.
A binary cost function with cost 0 for each tuple that satisfies di

r−1 = bi
r and infinite cost

otherwise.

It is straightforward to see that P i is equivalent to ILP i
R: (i) they have the same set of

variables, (ii) the only costs in P i are in unary cost functions, so the objective functions are
the same, (iii) the quaternary cost functions satisfy, by construction, the clauses included in
the scope of these functions, and (iv) each clause is present in one cost function. Therefore,
solutions of P i are hitting sets of Ci

∪ and the cost of each solution matches the cost of the
corresponding hitting set.
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b1
1 d1

1 f1
1 0 1 2

0 1 0 0
1 0 0 0 w 0
1 1 1 0 w 0

b1
2 d1

1 d1
2 f1

2 0 3 4

0 0 0 0 0 w 0
0 1 1 0 0
1 1 0 0 0 w 0
1 1 1 1 0 w 0

b1
1 0 1

0 0
1 w 0

d1
1 0 2 3

0 0 w 0
1 0

f1
1 0 2

0 0
1 0 w

b1
2 0 3

0 0
1 w 0

b1
3 0 4 5

0 0 w 0
1 w w 0

f1
2 0 4

0 0
1 0 w

c∅ 0 5

0 w

Figure 4 The evolution of cost functions that leads to the increase of the lower bound by w for the
core {b1

1, b1
2, b1

3}. Each table shows a cost function and how it evolves after each EPT. We omit the rows
which would violate one of the clauses introduced by PMRES, as infinity absorbs all costs, so they are
unaffected by EPTs. The column 0 gives the initial costs. Subsequent columns give the state of each
cost function after all EPTs to that point. Only points in the sequence which affect a given cost func-
tion are given in the corresponding table. Since d1

2 = b1
3 for this core, we simplify the problem here and

replace occurrences of d1
2 by b1

3 rather than include an extra binary cost function to enforce their equal-
ity. The sequence is 1 : ext(b1

1, {b1
1, d1

1, f1
1 }, w), 2 : prj({b1

1, d1
1, f1

1 }, d
1
1, w) and prj({b1

1, d1
1, f1

1 }, f1
1 , w),

3 : ext(b1
2, {b1

, d1
1, b1

3, f1
1 }, w) and ext(d1

1, {b1
, d1

1, b1
3, f1

1 }, w), 4 : prj({b1
, d1

1, b1
3, f1

1 }, b
1
3, w) and

prj({b1
, d1

1, b1
3, f1

1 }, f1
2 , w), 5 : prj0(b1

3, w).

It remains only to show that the LP optimum of relax(P i) matches that produced by PM-
RES. We show a slightly stronger result, namely that there exists a sequence of EPTs such that
in P i, not only does the bound match that produced by PMRES, but the unary costs of each
variable match the weights computed by PMRES. We show this by induction on the number
of iterations. At iteration 0, this holds trivially, as the bound is 0 for both P 0 and PMRES
and the unary costs match the weights by construction. Suppose it holds at iteration k − 1.
Then, the core at iteration k is {bk

1 , b
k
2 , . . . , b

k
r } ⊆ Sk−1. The EPT ext(bk

1 , {bk
1 , d

k
1 , f

k
1 }, wk

min)
enables the EPTs prj({bk

1 , d
k

1 , f
k
1 }, fk

1 , w
k
min) and prj({bk

1 , d
k
1 , f

k
1 }, dk

1 , w
k
min). For j ∈ [2, rk−2],

in addition to extending cost from bk
j , we also extend from d

k

j−1, which has just received
this amount of cost: ext(bk

j , {bk
j , d

k
j−1, d

k
j , f

k
j }, wk

min) and ext(dk

j−1, {bk
j , d

k

j−1, d
k
j , f

k
j }, wk

min),
which enable prj({bk

j , d
k
j−1, d

k
j , f

k
j }, fk

j , w
k
min) and prj({bk

j , d
k
j−1, d

k
j , f

k
j }, dk

j , w
k
min). Finally,

after j = r − 2, we are left with wk
min in dk

r−1. Using dk
r−1 ⇐⇒ bk

r , we move cost from bk
r to

dk
r−1 (specifically: ext((, bk

r , {bk
r , d

k
r })wk

min, then prj({bk
r , d

k
r }, dk

r , w
k
min). Since both dk

r and
d

k

r have cost wk
min, we can apply prj0(dk

r , w
k
min) to increase the lower bound by wk

min.
After these EPTs, not only is the lower bound increased by wk

min, but the variables
bk

1 , . . . , b
k
r have their cost decreased by wk

min, the variables fk
1 , . . . , f

k
r−1 receive cost wk

min,
and the variables dk

1 , . . . , d
k
r−1 stay at 0. This matches the effects of PMRES, as required by

the inductive hypothesis. ◀

▶ Example 11. We move away from our running example here, as showing and explaining
all the cost moves would be tedious and space consuming. Instead, we give a small example
with the core {b1

1, b
1
2, b

1
3} in figure 4. All variables of this core have uniform weight w. We

show how the EPTs remove cost from b1
1, b

1
2, b

1
3 and move it to f1

1 , f1
2 and c∅, leaving all

other cost functions unchanged, even though they were used to make the cost moves possible.
The increase in c∅ comes from a nullary projection from b1

3.
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Note that theorem 9 does not prove that the optimum of (P i) is identical to that of
PMRES at iteration i, but only that it is at least as high, as the following example shows.

▶ Example 12 (Running example, continued). After iteration 2, in the running example, unit
propagation alone detects the core {b3, b4, b5}. This means that when we set these variables
to false because their weight is non-zero, unit propagation generates the empty clause.

Let P̂ i be the reformulation of P i given by theorem 9. Then Hi
R and P̂ i have the same

costs/weights. Hi
R |0 is constructed from Hi

R in the same way as Bool(P i) is constructed
from Bool(P ): by making each non zero cost (weight) into an infinite cost (weight). so Hi

R |0
admits the same solutions as Bool(P̂ i). Moreover, each clause of Hi

R |0 is contained in at
least one constraint of P̂ i, therfore arc consistency on Bool(P̂ i) is at least as strong as unit
propagation on Hi

R |0. And since the core {b3, b4, b5} is not satisfied, the arc consistency
closure of Bool(P̂ i) is empty, therefore its bound can be improved further.

On the other hand, there is no reason to expect that the the optimum of (P i) will
necessarily be higher than the bound computed by PMRES. For example, if Hi

R |0 has no
cores that can be detected by unit propagation, the argument of example 12 does not apply.

4 OLL

OLL [22] is probably the most relevant core-guided algorithm currently, since solvers based on
it, like RC2 [19] and CASHWMaxSAT-CorePlus [21] have done very well in recent MaxSAT
evaluations [5].

4.1 MaxSAT with soft cardinality constraints
OLL is an iterative algorithm, similar to PMRES. For the purposes of this discussion,
it only differs in how it processes each meta that it finds. At iteration i, given the meta
mi = {bi

1, b
i
2, . . . , b

i
ri} ⊆ Si−1, it adds fresh variables oi

1, . . . , o
i
ri−1 and constraints oj ⇐⇒∑ri

k=1 b
i
k > j, then decreases the weight of each variable in mi by wi

min, increases the lower
bound by wi

min, and sets the weight of the fresh variables oi
1, . . . , o

i
ri−1 to wi

min. The o
variables are called sum variables.

OLL with implied cores
We use here a minor modification of OLL, which we denote OLL′. In this variant, before
processing a meta at iteration i, each sum variable oj

k, j < i, k ∈ [2, rj − 1] is replaced by oj
k′

where k′ < k is the lowest index for which w(oj
k′) > 0. This is sound because oj

k → oj
k′ for all

k′ < k, which can be written as ¬oj
k ∨ ok′ . We can resolve the meta at iteration i with this

clause to effectively replace oj
k by oj

k′ . This procedure can be repeated as long as it results in
a meta with non-zero minimum weight, although that step is not required for the results we
obtain next.

We argue that OLL′ matches the behaviour of a realistic implementation like RC2, when
used with an assumption-based solver such as Minisat [16] or a derivative like Glucose [4].
In order to extract a core with Minisat, RC2 asserts the negation of all literals which may
appear in a core as assumptions. These literals are passed to Minisat as a sequence. Minisat
returns a subset of these literals as a core. Crucially, Minisat immediately propagates each
assumption in sequence and never returns in a core a literal which is implied by earlier
assumptions. Therefore, if the literals of the soft clauses introduced by OLL are given in the
order

〈
oi

1, . . . o
i
ri

〉
, we get from oi

j+1 =⇒ oi
j , or equivalently oi

j =⇒ oi
j+1, that all literals oi

j
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are implied by unit propagation from oi
j′ with j′ < j. Therefore, Minisat will not return a

core that contains oi
j if oi

j′ is in the assumptions. This means that OLL′ is identical to OLL
given these implementation details. By inspection of the code of RC2, we can confirm that
it does indeed use this order of assumptions with Minisat, and therefore implements OLL′.

4.2 Cores and Hitting Sets of OLL
In the following, we overload notation that we have used already for PMRES, but we use
them now in the context of OLL′, with the same meaning: Hi

R, Ci, Ci
∪.

▶ Lemma 13. There exists a set Ci such that mi is a core of Hi if and only if for each
c ∈ Ci, c is a core of ϕ.

Proof Sketch. We observe that oi
j =

∨
S⊆mi,|S|>j(∧b∈Sb), therefore it is a monotone function

of the inputs of the core. The entire formula constructed by OLL is therefore also monotone.
We show the result using a similar variable forgetting argument as we did in lemma 2. ◀

The proofs of Lemma 3, Observation 4, and Corollary 5 transfer to OLL′ immediately.
These establish that the WPMS instance

〈
Hi

R, cost
i
〉

encodes the minimum hitting set
problem over Ci

∪, where the cores are derived as described in lemma 13 this time.
In order to show that OLL′ does compute minimum hitting sets at each iteration for

PMS, we have to prove the equivalent of lemma 6.

▶ Lemma 14. If W is a PMS instance, Hi
R |0 is satisfiable for all iterations i of OLL′.

Proof Sketch. The following invariant holds in OLL′: for each meta mi, there exists
0 ≤ k < ri such that w(oi

k′) = 0 for all k′ ≤ k and w(oi
k′) > 0 for all k′ > k. Therefore, any

assignment that sets oj
k′ , k′ < k, to true can be extended by setting oj

k′′ to true as well for all
k′′ < k′ and exactly k′ variables of mi, so that all sum constraints of iteration i are satisfied.

From there, we use the same argument as we did in the proof of lemma 6 to show that,
given an assignment to the variables of the metas mj , . . . ,mi, j < i, we can extend to an
assignment to the variables of mj−1 because any two sum constraints from different iterations
sum over disjoint sets of variables. ◀

As was the case for the corresponding lemma in PMRES, Lemma 14 says nothing about
instances with non-uniform weights.

4.3 OLL and Linear Programming
We prove the equivalent of theorem 9 for OLL′.

▶ Theorem 15. There exists an integer linear program ILP i
P which (1) is logically equivalent

to the minimum hitting set problem with sets Ci
∪, (2) has size polynomial in |Hi

R|, and (3)
whose linear relaxation has an optimum which matches that derived by OLL′.

Proof. We construct a WCSP P i. Its linear relaxation, the local polytope LP (P i), is the LP
we want. Let P 0 = ∅. At iteration i, where the core discovered is {bi

1, b
i
2, . . . , b

i
ri} ⊆ Si−1,

P i is defined as P i−1 and additionally the following variables and cost functions:
0/1 variables bi

1, . . . , b
i
n, oi

1, . . . , o
i
ri−1, corresponding to the propositional variables of the

same name in W i.
Unary cost functions with scope bi for each bi ∈ vars(W 0), with c(bi, 0) = 0, c(bi, 1) =
c0(bi)
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A variable Oi with domain [0, rj ], with c(Oi, 0) = ∞ and c(Oi, j) = 0 for all j ∈ [1, ri].
A decomposition of the sum constraint

∑
j∈[1,ri] b

i
j = Oi, as described by Allouche et

al. [1].
Binary cost functions with scope {Oi, oi

j}, for all j ∈ [1, ri − 1] where the tuples {j′, 1}
and {j′′, 0}, for all 1 ≤ j′ < j < j′′ < ri, have infinite cost, and the rest have cost 0.
These encode the constraint oi

j ⇐⇒ Oi > j.

As before, the equivalence of P i and Hi
R is immediate. We show that there exists a

reformulation of P i that yields the same costs as the weights computed by OLL′, as well as
the same lower bound. The latter relies on previous results [1], which imply that, we can
move cost wi

min from bi
1, . . . , b

i
n to Oi, so that we have c(Oi, j) = jwi

min. Since c(Oi, 0) = ∞,
we can apply prj0(Oi, wi

min). Finally, we can apply ext(Oi = j′, {Oi, oi
j}, wi

min) for all j′ ≥ j,
followed by prj({Oi, oi

j , o
i
j , w

i
min). Once we complete this for all j ∈ [1, ri], there is no cost

in Oi, and each oi
j has cost wi

min, as required. ◀

5 Connection to the Sherali-Adams hierarchy

The Sherali-Adams hierarchy of linear relaxations [28] of a 0/1 integer linear program is a
well known construction for building stronger relaxations. At its kth level, it uses monomials
of degree k and it is known that the level n relaxation (where n is the number of variables
in the ILP) represents the convex hull of the original ILP, meaning that it solves the ILP
exactly. On the flip side, the size of the relaxations grows exponentially with the level of the
hierarchy, meaning that even low level SA relaxations tend to be impractical.

Formally, we derive the kth level SA relaxation as follows. Let SAu
0 (LP ) = LP , the

linear relaxation of the integer program. First, we define the set of multipliers Mk =
{
∏

i∈P1
xi

∏
i∈P2

(1 − xi) | P1, P2 ⊆ [1, n], |P1 ∪ P2| = k, P1 ∩ P2 = ∅}, i.e., the set of all
non-tautological monomials of degree k, using either xi or (1 − xi) as factors. We then
multiply each constraint c ∈ LP0 by each multiplier m ∈ Mk, simplify using x2 = 1 and
x(1 − x) = 0, and finally we replace each higher order monomial by a single 0/1 variable to
get SAu

k(LP ).
In this description, SAu

k does not contain the variables and constraints of LP or any
SAu

j , j ∈ [1, k − 1]. Here, we use instead SAk(LP ) = ∪k
i=0(SAu

k(LP ) ∪ cns(k), where cns(k)
are constraints which ensure consistency between the variables at different levels, i.e., do not
allow xixj = 1 and xi = 0 at the same time.

To show the connection with PMRES, we define the depth measure for variables and,
by extension, cores and formulas. The set the depth of all variables appearing in W 0

to be 0, and we write dp(bj) = 0, for bj ∈ vars(W 0). Consider a meta mi. We define
dp(f i

j) = maxbj∈mi dp(bj) + 1 for all j ∈ [1, ri − 1], and similarly for di
j , j ∈ [1, ri − 1]. With

an overload of notation, we also write dp(mi) = dp(f i
1). Finally, at iteration i, we write

dp(W i) = maxj∈[1,i] dp(mj). In words, the depth of a variable of the original instance has
depth 0, the variables introduced by a meta are one level deeper than variables that appear
in the meta, the depth of a meta is the same as that of the variables it introduces, and the
depth of the instance at iteration i is the deepest meta PMRES has discovered.

The result of this section, is that LP (P i), the linear relaxation that achieves the bound
computed by PMRES, is a subset of the 2dp(W i) level Sherali-Adams relaxation of a specific
linear formulation of the hitting set instance Ci

∪.

▶ Theorem 16. The variables f i
j with dp(f i

j) = k are defined as a linear expression over
variables of at most the level 2k SA relaxation of the hitting set problem over Ci

∪.
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Proof. By induction. It holds for variables with depth 0, since they are variables of the
original formula. Assume that it holds for variables of depth k − 1.

The main observation is that, since f i
j = bi

j ∧ di
j , we can write it as f i

j = bi
jd

i
j , i.e.,

replace the conjunction by multiplication, which is valid for 0/1 variables. Then, since
di

j = bi
j+1 ∨ . . . ∨ bi

ri , we can write it as di
j = max(bi

j+1, . . . , b
i
ri). The max operator is a

piecewise linear function, so this expression is linear. Finally, we replace di
j in the definition

of f i
j to get f i

j = max(bi
jb

i
j+1, . . . , b

i
jb

i
ri). Recall that dp(bi

l) for l ∈ [j + 1, ri] is at most 2k−1,
so f i

j can be written as a linear expression over monomials of degree at most 2k, since it
multiplies two variables which are themselves a linear expression over monomials of degree
at most 2k−1. ◀

Theorem 16 reflects the already known connection between Max-Resolution and the
Sherali-Adams hierarchy in the context of proof systems for satisfiability [17]. Moreover, it is
known that the kth level of the Sherali Adams hierarchy based on the basic LP relaxation
(BLP) of a CSP, another name for the local polytope LP, establishes k-consistency [29].

Theorem 16 is fairly weak. The upper bound is extremely loose and there is no lower
bound. It is useful, however, as it suggests that discovering a meta of depth k involves
potentially proving 2k-inconsistency. It also hints towards minimizing the maximum degree
of monomials entailed by a meta as a metric for choosing among different potential metas.

In the greater context of PMRES compared to IHS, one way to interpret the result of
this section is that the two algorithms are instantiations of the same algorithm: they are
both implicit hitting set algorithms, but where IHS extracts a single core at a time and
offloads the hitting set computation to a specialized solver, PMRES shifts the burden to
the SAT solver to not only extract cores, but discover a higher level relaxation so that the
hitting set problem can be solved in polynomial time.

6 Discussion

6.1 PM1
The results of section 3.3 have of course already been shown for PM1 [7, 25]. The result we
have shown here that is not shown for PM1 is the existence of a compact LP that computes
the same bound as PM1. It is not easy to see how the results of section 3.4 could transfer.
For PMRES and OLL, Hi

R logically entails all the implied cores. This allows us to create
an ILP representation of the hitting set problem immediately, and then strenghten the LP
relaxation using higher order cost functions to achieve the same bound. But for PM1, cores
are solutions of a linear system, so it is not immediately obvious even how to create an ILP
representation of the hitting set problem without enumerating the (potentially exponentially
many) cores of the original formula.

6.2 Practical Implications
Besides revealing a tight connection between the operation of IHS and core-guided algorithms,
there are potential practical implications, in particular from theorem 9. We first observe
that the linear program used to prove theorem 9 is linear in the size of Hi

R, hence the size
of the LP is not too great. Moreover, it can be further reduced by noting that, in order to
replicate the bound of PMRES, the dual variable corresponding to several primal constraints
is always zero. Therefore, they can be removed from the LP without affecting the bound.
After that, the LP can be further simplified by removing variables that appear in only 1
constraint and forgetting (in the sense of the knowledge compilation operation of forgetting)
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variables that appear in only two constraints. In this way, the LP is reduced to contain only
the d and f variables, and uses ri constraints to relate them. In the running example, upon
discovering the core {b1, b2, b3, b4}, the LP needs only the following constraints to satisfy the
requirements of theorem 9:

b1
1 − f1

1 − d1
1 = 0

b1
2 − f1

2 − d1
2 + d1

1 = 0
b1

3 − f1
3 + b1

4 + d1
2 = 1

We omit the details of this mechanical reduction of the LP. But this suggests that the LP
of theorem 9 is not just a theoretical construct, but a practical way to replicate the reasoning
of PMRES. This allows a solver which runs PMRES until some heuristic condition is met,
then passes its progress to IHS using theorem 9 to represent the hitting set problem and the
lower bound. In the other direction, a solver can run IHS, then solve the hitting set problem
once with PMRES to construct Hi

R, then continue solving starting from
〈
Hi

R ∪H,wi
〉
, in

order to simplify solution of the ILP. However, running the two algorithms in sequence is the
simplest form of combining them. Presumably, the greatest performance can be gained by
an even deeper integration, using the LP to communicate progress.

7 Conclusion

We have narrowed the gap between implicit hitting set and core-guided algorithms for
MaxSAT. We have shown that the core-guided algorithms PMRES and OLL, the latter
of which is the basis for the winning solvers of some recent maxsat evaluations, implicitly
compute a potentially exponentially large set of cores of the original MaxSAT formula at
each iteration and a minimum hitting set of those cores under some conditions. Moreover,
we showed that they build a WPMS instance which is logically equivalent to the minimum
hitting set problem over those cores and can therefore be seen as a compressed, polynomial
sized, encoding of that problem. In addition, we showed how this problem is solved: by
generating a subset of a higher level of the Sherali-Adams linear relaxation of that hitting
set problem. These results open up the possibility for tighter integration between PMRES
and IHS.
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Abstract
In 1972, Paul Erdős, Vance Faber, and Lászlo Lovász asked whether every linear hypergraph with
n vertices can be edge-colored with n colors, a statement that has come to be known as the EFL
conjecture. Erdős himself considered the conjecture as one of his three favorite open problems, and
offered increasing money prizes for its solution on several occasions. A proof of the conjecture was
recently announced, for all but a finite number of hypergraphs. In this paper we look at some of the
cases not covered by this proof.

We use SAT solvers, and in particular the SAT Modulo Symmetries (SMS) framework, to
generate non-colorable linear hypergraphs with a fixed number of vertices and hyperedges modulo
isomorphisms. Since hypergraph colorability is NP-hard, we cannot directly express in a propositional
formula that we want only non-colorable hypergraphs. Instead, we use one SAT (SMS) solver to
generate candidate hypergraphs modulo isomorphisms, and another to reject them by finding a
coloring. Each successive candidate is required to defeat all previous colorings, whereby we avoid
having to generate and test all linear hypergraphs.

Computational methods have previously been used to verify the EFL conjecture for small
hypergraphs. We verify and extend these results to larger values and discuss challenges and
directions. Ours is the first computational approach to the EFL conjecture that allows producing
independently verifiable, DRAT proofs.
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1 Introduction

In 1972, Paul Erdős and László Lovász gathered at Vance Faber’s apartment for some tea,
and to prove what was supposed to be an easy theorem about hypergraph edge colorings:
every linear hypergraph can be edge-colored with no more colors than it has vertices. A
hypergraph is a collection of subsets, called (hyper)edges, of a finite set, and it is linear if
any two hyperedges intersect in at most one element (vertex). An edge coloring is a coloring
of the edges such that intersecting edges have different colors. The conjecture, now known as
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Figure 1 The famous extremal examples to the EFL conjecture for n = 7. Left to right: the
complete graph, the projective plane of order 2 (also known as the Fano plane), and the degenerate
plane. Hyperedges are drawn as bounding boxes around vertices, 2-edges are drawn simply as lines.
Each hypergraph is colored with its optimal number of colors; in the case of the planes this is trivial
as the number of colors equals the number of hyperedges.

the Erdős-Faber-Lovász conjecture (EFL) conjecture, is inspired by its prominent extremal
examples, the complete graph, the degenerate plane, and the projective plane (see Figure 1),
each of which requires the full number of colors.

Needless to say, they did not find an easy proof, and the conjecture has remained open
for fifty years. Erdős wrote about it as one of his favorite combinatorial problems [7] and
offered money prizes for a solution [6]. Throughout its lifetime, the conjecture attracted a
lot of attention, and many partial results have been proved. The newest in the series is the
recently announced proof of the conjecture for all but a finite number of cases [17].

In this paper, we look at the conjecture by computational means. We investigate classes
of small hypergraphs, and verify that they can indeed be colored with the conjectured
number of colors. In this respect we follow in the footsteps of Hindman [12] and Romero and
Alonso-Pecina [22], who also investigated small classes of hypergraphs and partially verified
the EFL conjecture. The novel aspects of our work are:
1. we verify the EFL conjecture for more classes of small hypergraphs;
2. where the previous two works had to enumerate and afterwards color all linear hypergraphs,

we interleave these two processes: we generate hypergraphs and colorings alternately,
and thus our method is not constrained by the number of linear hypergraphs, but only
by the number of colorings needed to color them all. In doing this we build on the
recently-proposed co-certificate learning (CCL) [18].

3. We use SAT encodings and SAT solvers, and hence our method enables us to produce
independently verifiable proofs, including of the previous computational results. We are
able to use them effectively due to the recently introduced SAT modulo symmetries (SMS)
framework [20], in which a CDCL SAT solver [9] is enhanced with a custom symmetry
propagator which prunes non-canonical search paths. In this work, we extend SMS, which
was previously used for graphs, and later matroids, to hypergraphs. We achieve this by
modeling hypergraphs by their bipartite incidence graphs, which in turn can be fit into
the SMS framework with some care.

We report on the results of three experiments.
In the first, we tackle the EFL conjecture itself and analyze the nature of the hardness of

verifying the conjecture experimentally in cases we processed. Naturally, we have not found
any counterexamples (the title of the paper would otherwise have been different).



M. Kirchweger, T. Peitl, and S. Szeider 13:3

In the second experiment, we search for extremal examples to the EFL conjecture, namely
linear hypergraphs with n vertices that require n colors. In addition to the known extremal
examples, we were able to enumerate all other small extremal hypergraphs. Inspired by our
findings, we also proved extremality of some infinite families of linear hypergraphs by hand.

In the last experiment, we tackle a generalization of the EFL conjecture (Conjecture 3),
which at the same time also generalizes Vizing’s Theorem about edge colorings in graphs.
This experiment proceeds in a very similar way as the first, and we did not find any
counterexamples in this case either.

In the next sections, we first review the necessary background on hypergraphs and
colorings, followed by an explanation of our SAT-based process, and a discussion of results.

2 The EFL Conjecture

For positive integers n, m, let [n] = {1, . . . , n} and [n, m] = {n, n + 1, . . . , m}. A hypergraph
H = (V, E) consists of a finite vertex set V (we assume V = [n]), and a set E of subsets of
V called hyperedges, or sometimes simply edges. A hyperedge of size k is also called a k-edge.
A hypergraph where each hyperedge has size 2 is called a graph. The graph, denoted by Kn,
which contains all possible 2-edges between n vertices is called the complete graph, or the
clique. The degree of a vertex is the number of hyperedges that contain v. A hypergraph
is called linear if any two of its hyperedges intersect in at most one vertex. Every graph is
trivially a linear hypergraph.

A χ-edge coloring of a hypergraph H = (V, E) is a mapping c : E → [χ] which colors
intersecting hyperedges with different colors: e ∩ f ̸= ∅ =⇒ c(e) ̸= c(f). The chromatic
index of a hypergraph is the smallest integer χ for which a χ-edge coloring exists. The
Erdős-Faber-Lovász (EFL) conjecture postulates the existence of certain edge colorings.

▶ Conjecture 1 (EFL conjecture). Every linear hypergraph with n vertices is n-edge-colorable.

While this paper is primarily about edge colorings of hypergraphs, we will also need to
work with vertex colorings of graphs. A χ-coloring of a graph G = (V, E) is a mapping
c : V → [χ] that maps adjacent vertices to different colors: {u, v} ∈ E =⇒ c(u) ̸= c(v). The
chromatic number of a graph is the smallest χ for which a χ-coloring exists.

A hypergraph H is covered if every pair of vertices {u, v} ⊆ V is contained in some
hyperedge e ∈ E. Linear hypergraphs which are covered and whose hyperedges have size at
least two are known as linear spaces.

▶ Observation 2. If there is a counterexample to the EFL Conjecture with n vertices, then
there is a counterexample with n vertices which is a linear space.

Indeed, one can simply delete singleton hyperedges without decreasing the chromatic index,
due to the fact that singleton hyperedges intersect at most n − 1 other hyperedges in a linear
hypergraph, and any n-edge coloring can always be extended to them. Similarly, adding a
2-edge to cover a pair {u, v} cannot decrease the chromatic index either. By Observation 2,
we thus restrict our search for counterexamples to the EFL conjecture to linear spaces.

The EFL conjecture, if true, is tight, as witnessed by the examples of the (odd) complete
graphs, the degenerate planes, and the projective planes, each of which requires n colors.

When restricted to graphs, the EFL conjecture is easy to prove. The only linear space
on n vertices is the complete graph, and it is an instructive exercise to verify that it is indeed
n-colorable. In fact, a stronger result known as Vizing’s Theorem holds for graphs: a graph
of maximum degree ∆ can be (∆ + 1)-edge-colored (for these graphs we can no longer assume

SAT 2023
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they are covered). Together with the trivial bound arising from the fact that the edges
around a vertex of degree ∆ require ∆ different colors, Vizing’s Theorem implies that the
chromatic index of any graph is either ∆ or ∆ + 1. Again, it is easy to verify that Vizing’s
Theorem in terms of the maximum degree does not hold for linear hypergraphs in general,
but a different, beautiful generalization has been conjectured. This generalization arises from
a reformulation of Vizing’s Theorem in terms of the closed neighborhood of a vertex, which
is the union of the hyperedges containing a vertex,

⋃
v∈e e. In the case of graphs, the size

of the closed neighborhood of v is, by definition, the degree of v + 1, and the maximum
size of any closed neighborhood is ∆ + 1. Vizing’s Theorem then says that a graph can be
edge-colored with a number of colors equal to the largest size of a closed neighborhood. Now,
this version has been conjectured for linear hypergraphs in general.

▶ Conjecture 3 (Füredi [10], Berge [1]). Let H = (V, E) be a linear hypergraph, and let
ζ = maxv∈V

∣∣⋃
v∈e e

∣∣. Then H is ζ-edge-colorable.

We call this conjecture the FB Conjecture.
In the context of this conjecture, we can no longer assume that hypergraphs are covered,

because arbitrary edge addition could increase neighborhood size beyond the admissible
bound. Instead, we say a hypergraph is weakly covered if each vertex pair {u, v} ⊆ V

either is contained in some hyperedge e ∈ E or one of the two vertices has maximum closed
neighborhood. We state a similar observation as before:

▶ Observation 4. If there is a counterexample to the FB Conjecture with n vertices, then
there is a weakly covered counterexample with n vertices without hyperedges of size 1.

Note how the two formulations of Vizing’s Theorem coincide for graphs, but in presence of
larger hyperedges the difference between counting and unifying the neighborhood materializes.

In our experiments, we will validate both conjectures, and we will also search for extremal
examples in addition to those listed in Figure 1.

2.1 Previous Work
A large body of work on the EFL conjecture (Conjecture 1) is available, roughly categorizable
into two groups. In the first group, there are the asymptotic results [3, 13–16,23], of which
the culmination is the recently announced proof of Conjecture 1 for all hypergraphs with a
sufficiently large number of vertices [17]. If correct, this result, at least in theory, leaves the
complete verification of the conjecture down to a finite computation, the verification of the
colorability of a finite number of linear spaces.

In the second group, there are the results which verify the conjecture for a finite number
of small hypergraphs. The first such result known to us is due to Hindman [12], who verified
Conjecture 1 for all hypergraphs with at most 10 vertices. In fact, Hindman proved a stronger
result, namely that every hypergraph whose hyperedges of size at least 3 span at most 10
vertices is colorable; and thus in particular those with at most 10 vertices in total.

▶ Theorem 5 (Hindman [12]). Let H = (V, E) be a linear hypergraph with n vertices, let
E′ = {e ∈ E : |e| ≥ 3}. If |

⋃
E′| ≤ 10, then H is n-edge colorable.

Later, Romero and Alonso-Pecina, building on an existing program to enumerate linear
spaces [2], verified Conjecture 1 up to n ≤ 12 [22]; their contribution lied mainly in a
meta-heuristic coloring algorithm. In our work, we replace ad-hoc hypergraph generation
and coloring tools with a SAT-based workflow, which is more flexible, reliable, and easier to
use. We verify the existing results and explore some generalizations and larger cases.
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3 Reduction to SAT

In the sequel, we shall implicitly generate linear hypergraphs with n vertices and check
that they are colorable with the right number of colors χ in order to validate Conjectures 1
and 3. For the former conjecture, we set χ = n, for the latter, χ is the size of the largest
closed neighborhood. Since in each run we will generate hypergraphs with a fixed number
of hyperedges, we first need to determine bounds on the number m of hyperedges to be
considered for a given number of vertices n.

We can assume the number of hyperedges is at least χ + 1, as ≤ χ hyperedges are trivially
colorable by χ colors, though for generating extremal examples, we also need to consider
m = χ, so we take m ≥ χ. On the upper side, since each hyperedge covers at least one pair
of vertices and no pair is covered twice (which is the same as linearity), the largest possible
number of hyperedges is

(
n
2
)
, when the hypergraph is the complete graph on n vertices.

Additionally, we impose the restrictions given by Observation 2 and 4 respectively.
To enumerate linear hypergraphs with n vertices and m hyperedges, we produce a

propositional formula L(n, m), whose models are exactly these linear hypergraphs. Before
we describe the encoding itself, let us discuss the entire process including coloring and
other parts on a high level. The two hallmarks of our approach are the use of Satisfiability
modulo symmetries (SMS) [20] to enumerate hypergraphs without isomorphic copies, and
an χ-edge-coloring learning technique thanks to which we do not need to enumerate all
hypergraphs in order to show that they are all colorable.

▶ Definition 6. Two hypergraphs H1 = (V, E1) and H2 = (V, E2) are isomorphic, written
H1 ∼= H2, if there is a bijection π : V → V , extended to hyperedges and sets of hyperedges in
the obvious way, so that H2 = π(H1). For any total order ≼ on the set of hypergraphs, we
say that a hypergraph H = (V, E) is canonical if H ≼ π(H) for every π : V → V .

SMS is a general framework which augments a SAT solver with a custom propagator to
check whether the currently constructed hypergraph is canonical. If not, a symmetry clause
is learned and the solver backtracks. SMS performs dynamic symmetry breaking, and thus
prevents the solver from redundantly exploring isomorphic (symmetric) copies of the search
space. Other methods of symmetry exploitation include static symmetry breaking, where
a single symmetry-breaking formula is added at the beginning, but those do not break all
symmetries [4]. We expand on our use of SMS in Section 3.2.

The other important technique that we use is the learning of coloring clauses, recently
proposed under the name co-certificate learning [18]. A naive approach to our problem, even
with symmetry breaking, would consist of enumerating, modulo isomorphisms, all hypergraphs
with n vertices and m hyperedges, and testing that they are all χ-edge-colorable.1 The
coloring process would come wholly after the enumeration process. We, on the other hand,
interleave these two processes. As soon as we generate a candidate hypergraph, we color it.
If it is not colorable, we have found a counterexample to the conjecture. If it is colorable,
we learn a new clause, which we feed back to the hypergraph-generating SAT solver. From
this point onwards, any generated hypergraph will not be colorable by this coloring whose
clause has been learned. Thus, as soon as we discover a set of colorings that colors all
canonical hypergraphs (thanks to SMS, we only generate those), the solver’s active formula
immediately becomes unsatisfiable. See Figure 2 for an overview of the process.

1 Unless NP = coNP, non-colorability cannot be encoded in a polynomial-size propositional formula, i.e.,
we cannot simultaneously encode graph search and non-colorability.

SAT 2023
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Generator

Solution Candidate

Symmetry Check

Colorer

Solution

SMS

coloring
blocking clause

Figure 2 SMS-powered enumeration interleaved with color filtering. One SAT solver generates
candidates, the other colors them, and either reports a solution, or returns a coloring clause to be
learned by the generator.

We will now explain the details of each of these components: the encoding, the details of
hypergraph SMS, and the coloring.

3.1 The Encoding
Our encoding of the existence of a linear hypergraphs is relatively straightforward; the magic
happens in SMS and the learning of coloring clauses. We represent a hypergraph with
n vertices and m hyperedges by its incidence graph and incidence matrix. The incidence
graph I(H) of a hypergraph H = (V, E) is the bipartite graph between V and E, with
those edges {v, e} where v ∈ e. The incidence matrix M(H) of H is the n × m binary
matrix where M(H)i,j = 1 ⇐⇒ vi ∈ ej , for some fixed ordering of the vertices and edges
V = {v1, . . . , vn}, E = {e1, . . . , em}.

Clearly, any of H, I(H), M(H) uniquely determines the other two, and H ∼= H ′ ⇐⇒
I(H) ∼= I(H ′).2 We will use propositional variables Ii,j to represent the incidence matrix,
and we will construct incidence graphs modulo isomorphisms. As the canonical incidence
graph, we pick the one with the lexicographically least incidence matrix, seen as a string of
zeros and ones obtained by concatenating the rows.

We describe the encoding L(n, m) of the linear hypergraphs with n vertices and m edges in
terms of a conjunction of clauses together with cardinality constraints. To encode cardinality
constraints, we use sequential counters [24].

To ensure all hyperedges have size at least 2, we use
∧m

j=1
∑n

i=1 Ii,j ≥ 2.
Similarly, we can request that the degree of each vertex be at least 2 (vertices of degree 1
contribute nothing to the intersection structure):

∧n
i=1

∑m
j=1 Ii,j ≥ 2.

To ensure linearity, we will use the auxiliary variables Si,j,k to denote that vk ∈ ei ∩ ej :∧
1≤i<j≤m

n∧
k=1

(
Ik,i ∨ Ik,j ∨ Si,j,k

)
∧
(
Si,j,k ∨ Ik,i

)
∧
(
Si,j,k ∨ Ik,j

)
∧

∧
1≤k<k′≤n

Si,j,k∨Si,j,k′ .

Now let us look at the constraints added to L(n, m) for the EFL Conjecture. We start with
restricting the search to covered hypergraphs. To ensure that every pair of vertices is covered,
we use the auxiliary variables Ok,k′,i to denote that {vk, vk′} ⊆ ei:∧

1≤k<k′≤n

(
m∧

i=1

(
Ik,i ∨ Ik′,i ∨ Ok,k′,i

)
∧
(
Ok,k′,i ∨ Ik,i

)
∧
(
Ok,k′,i ∨ Ik′,i

))
∧

(
m∨

i=1
Ok,k′,i

)
.

2 For isomorphisms between incidence graphs we require that vertices be mapped to vertices and hyperedges
to hyperedges or, what is the same, that the incidence matrix is not transposed by an isomorphism.
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For the FB Conjecture we additionally parametrize the formula over the maximum size
of the closed neighborhood ζ. Then L(n, m) is enhanced by the following two constraints:

We use Oi,j for vi, vj ∈ e for some edge e and N (k) =
∑

k′∈[n],k′ ̸=k Omin(k,k′),max(k,k′).
To ensure that the size of the closed neighborhood is limited to ζ we add

∧
1≤k<k′≤n

 ∧
i∈[m]

(Ok,k′,i ∨ Ok,k′) ∧ (Ok,k′ ∨
∨

i∈[m]

Ok,k′,i)

 ∧
∧

k∈[n]

N (k) < ζ;

we restrict the search to weakly covered hypergraphs:∧
1≤k<k′≤n

(Ok,k′ ∨ N (k) = ζ − 1 ∨ N (k′) = ζ − 1) .

Note that the complicated-looking expression N (k) = ζ − 1 is a propositional variable
appearing in the encoding of the cardinality constraint.

Last but not least, the variables Si,j to denote that ei ∩ ej ̸= ∅ are needed to describe the
intersection graph of the hypergraph whose existence we are encoding. The intersection graph
of a hypergraph H = (V, E) is the graph S(H) = (E, E∩), where E∩ = {{e1, e2} : e1 ̸=
e2 and e1∩e2 ̸= ∅}. We will need this explicit description of the intersection graph to encode a
necessary condition for a high chromatic index, and also to learn coloring clauses, as explained
in Section 3.3. The variables Si,j can be encoded as follows:

∧
1≤i<j≤m

(
Si,j ∨

∨n
k=1 Si,j,k

)
∧(∧n

k=1 Si,j ∨ Si,j,k

)
.

3.2 SMS
The encoding presented above is rich in symmetries. Any permutation of the rows and
columns of the incidence matrix M(H) of a hypergraph H leads to an isomorphic hypergraph.
Since linearity and non-colorability of the intersection graph are invariants, it is sufficient to
keep only one hypergraph per isomorphism class in the search space.

Kirchweger and Szeider [20] introduced SAT modulo Symmetries (SMS) for graphs, a
method that supports the search for lexicographically minimal graphs with any additional
property encoded with a propositional formula. Later, it was extended to matroids of fixed
rank [19]. SMS for graphs produces only lexicographically minimal graphs given by the
concatenation of the rows of the adjacency matrix, i.e., those for which no permutation of the
set of vertices produces a lexicographically smaller adjacency matrix. The framework checks
during the CDCL procedure whether there is a permutation leading to a lexicographically
smaller graph; if so, a symmetry-breaking clause is added. This is a problem with two pillars
of hardness: during the search, the presence or absence of some edges might be unknown,
and for those an exponential number of possibilities must be accounted for; and even if all
edges are known, finding a suitable permutation is NP-hard [5]. A procedure called the
minimality check verifies some necessary criteria for a partially defined graph to be extensible
to a minimal graph. The procedure tries to construct a permutation leading to a smaller
graph for all extensions of the partially defined graph. If such a permutation exists, we can
add a symmetry-breaking clause to trigger a backtrack. The minimality check builds the
permutation gradually using a branching algorithm for different choices. Most of the time
in practice, the algorithm is fast enough, although sometimes it degrades to exponential
behavior. One can limit the total number of branching steps per call of the minimality check.
This potentially makes the symmetry breaking incomplete, but does not have an impact on
the satisfiability of the formula. Further, it is easy to filter these copies during postprocessing
using tools like Nauty [21].

SAT 2023
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Let us see how we can use SMS for the conjectures on hypergraphs. One possibility to
use SMS as is, is by breaking the symmetries over the intersection graph. Preliminary tests
showed that this approach does not perform well, chiefly due to the fact that for a candidate
intersection graph, the solver must also find the underlying linear hypergraph, and assuming
it breaks symmetries on the intersection graph, it cannot break symmetries of the hypergraph
anymore. However, we can use this framework to break symmetries also for hypergraphs
without (significant) changes.

Let V = {v1, . . . , vn} and the number of hyperedges of a hypergraph be fixed by m. A
hypergraph H1 is lexicographically smaller than H2 (short H1 ≺ H2) if the concatenation of
the rows of the incidence matrix M(H1) is lexicographically smaller than the concatenation
of the rows of M(H2).

Since SMS is originally designed for graphs, we apply the symmetry breaking on the
incidence graph. Note that the incidence matrix M(H) coincides with the first n rows and
last m columns of the adjacency matrix of the incidence graph I(H). Let us have a look at an
example: let H be a hypergraph with the edges e1 = {v0, v1, v2}, e2 = {v0, v3}, e3 = {v1, v3},
and e4 = {v2, v3}. We have

M(H) =

e1 e2 e3 e4
v0 1 1 0 0
v1 1 0 1 0
v2 1 0 0 1
v3 0 1 1 1

, I(H) =

v0 v1 v2 v3 e1 e2 e3 e4
v0 0 0 0 0 1 1 0 0
v1 0 0 0 0 1 0 1 0
v2 0 0 0 0 1 0 0 1
v3 0 0 0 0 0 1 1 1
e1 1 1 1 0 0 0 0 0
e2 1 0 0 1 0 0 0 0
e3 0 1 0 1 0 0 0 0
e4 0 0 1 1 0 0 0 0

.

The red box in I(H) marks the part which is in common with the incidence matrix M(H).

▶ Observation 7. M(H) is lexicographically minimal if and only if there is no permutation
π : [n + m] → [n + m] with π([n]) = [n] such that π(I(H)) ≺ I(H).

SMS supports not only complete symmetry breaking but also symmetry breaking on a set of
given symmetries which can be described by a generalized ordered partition (GOP). Informally,
a GOP gives for each vertex a range to which it can be mapped in the permutation. For a
formal definition we refer to the original SMS paper [20]. In our case the set of permutations
can be described as [([n], 1, n), ([n + 1, n + m], n + 1, n + m)] which means that all elements
in [n] must be mapped by the permutation between 1 and n; all elements in [n + 1, n + m]
must be mapped between n + 1 and n + m.

This allows us to use SMS as follows. Let eu,v denote the variables representing whether
the edge {u, v} is present in the bipartite incidence graph. By definition of bipartite graph,
we can add the unit clauses ev,u for v, u ∈ [n] and also ev,u for v, u ∈ {n + 1, . . . , n + m}.
Additionally, we set ev,n+i = Iv,i. All clauses of L(n, m) can be added unmodified.

Proofs
SAT solvers, in contrast to many other tools for enumeration of combinatorial objects, can
produce formal proofs, typically in the DRAT format. These proofs can be checked by
external (formally verified) tools [25]. In our workflow, on top of ordinary DRAT-emitting
CDCL, we add additional symmetry-breaking and coloring clauses during the search with a
custom propagator altering the formula. In previous work [19] the authors suggested a multi-
step approach for producing the proof. First, SMS is run until it concludes unsatisfiability.
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All learned symmetry-breaking clauses are stored. Then, a second solver without SMS is run
on the initial formula augmented with the symmetry-breaking clauses, and produces a proof
in the ordinary fashion.

In this work, we use an adaption of the CaDiCaL solver [8] with support for custom
propagators and proof logging, including in combination with propagators. The clauses
added by the propagator are assumed to be part of the initial formula for the DRAT proof.
Proof production in the current CaDiCaL version is only experimental.

The DRAT proof is a certificate for the correctness of the reasoning of the solver, but
not for the correctness of the symmetry-breaking clauses. One can either see the symmetry-
breaking clauses as part of the initial formula and apply no additional check, or one can check
whether the symmetry breaking clauses follow a certain structure, and therefore preserve
lexicographically minimal objects, and by extension also satisfiability. Given the permutation
used for generating the symmetry-breaking clause, it is easy to check the correctness of the
clause [19]. For each symmetry-breaking clause we additionally store the permutation and
use a second script for checking the correctness of these clauses.

3.3 Coloring

Suppose the SMS solver has produced a hypergraph H = (V, E) with V = [n]. We check
whether the hypergraph is χ-edge-colorable with χ = n for the EFL Conjecture and χ = ζ

for the FB Conjecture. Observe that whether H is χ-edge-colorable is the same as whether
its intersection graph is χ-(vertex-)colorable. We produce another propositional formula,
CH,χ, with the variables ce,i for each hyperedge e ∈ E and i ∈ [χ] to express that e is colored
with the color i, and with the following constraints:

each edge should have some color:
∧

e∈E

∨
i∈[χ] ce,i ;

intersecting edges should have different colors:∧
e1,e2∈E

e1 ̸=e2∧e1∩e2 ̸=∅

∧
i∈[χ]

ce1,i ∧ ce2,i.

It is not a problem if an edge receives more than one color, as extra colors can always be
dropped without violating the constraints.

We enhance this basic encoding by finding and fixing the colors of a clique in the
intersection graph as follows. We find the vertex v contained in the largest number of
hyperedges {e1, . . . , er} and give these hyperedges the colors 1, . . . , r by adding the unit
clauses ce1,1, . . . , cer,r. We further find any other hyperedges {er+1, . . . , er′} that intersect
with all of these, for a subset-maximal clique in the intersection graph. Since these hyperedges
must all have different colors, we can break the symmetries that arise from permutations of
color names by fixing the colors.

A second SAT solver then finds a coloring c : E → [χ] (a co-certificate, because it certifies
that the hypergraph is not non-χ-edge-colorable [18]), and from this we learn the following
coloring clause, which we add to the SMS SAT solver:

χ∨
k=1

∨
ei,ej∈c−1(k)

Si,j .

The coloring clause says that at least one pair of hyperedges colored the same by c should
intersect, thereby invalidating the coloring c for future hypergraphs.

SAT 2023
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3.4 Restrictions on the Intersection Graph
We can impose further restrictions on the intersection graph for both conjectures based
on the fact that the intersection graph should not be χ-colorable. Any graph that is not
χ-colorable must contain some vertex-critical subgraph, i.e., one which is rendered χ-colorable
by the removal of any vertex, but which is not χ-colorable itself. It is easy to see that a
vertex-critical graph with chromatic number χ + 1 has minimum degree ≥ χ, because adding
a vertex of degree < χ to a χ-colorable graph does not break χ-colorability.

We cannot require that the whole intersection graph itself be critical because that is
incompatible with (weak) coverage, but we can select a critical subgraph of the intersection
graph, using additional variables se indicating whether a vertex is part of the subgraph, and
restrict the minimum degree for this subgraph accordingly. Without loss of generality, we can
additionally request that each vertex (in the intersection graph) representing a hyperedge of
size ≥ 3 is part of the critical subgraph and therefore must have degree ≥ χ. To see that this
last restriction is sound, consider the following process. Given a non-χ-colorable intersection
graph S(H) of some (weakly) covered linear hypergraph H:
1. find a χ-vertex-critical subgraph G ≤ S(H);
2. remove all hyperedges of size ≥ 3 from H which are not contained (as vertices) in G to

obtain H ′;
3. add however many 2-edges are needed to make H ′ (weakly) covered;
4. observe that G ≤ S(H ′), and so H ′ is not χ-edge-colorable.
A hypergraph H whose intersection graph S(H) contains a subgraph containing all hyperedges
of size at least 3 and having minimum degree at least δ is called δ-reduced. It follows that if
a counterexample with n vertices and m hyperedges to either conjecture exists, a (χ − 1)-
reduced (weakly) covered counterexample also exists, with the same number of vertices n,
and a number of hyperedges m′ ≥ m.

3.5 Conjectures
Let us summarize the encoding and how the side constraints relate to the original Conjectures 1
and 3. We will formulate modified versions of the conjectures that match our encoding and
precisely state their relationship to the original conjectures.

▶ Conjecture 8 (EFL’ Conjecture). Every (n − 1)-reduced linear space with n vertices and m

hyperedges is n-edge-colorable.

▶ Proposition 9. If there is a counterexample to the EFL Conjecture with n vertices and
m hyperedges of size at least 2, then there is a counterexample to EFL’ Conjecture with n

vertices and m′ ≥ m hyperedges.

▶ Corollary 10. The EFL Conjecture and the EFL’ Conjecture are equivalent.

▶ Conjecture 11 (FB’ Conjecture). Every (ζ − 1)-reduced weakly covered linear hypergraph
with n vertices, m hyperedges of size at least 2, and maximum closed neighborhood size ζ is
ζ-edge-colorable.

▶ Proposition 12. If there is a counterexample to FB Conjecture with n vertices and m

hyperedges of size at least 2, then there is a counterexample to the FB’ Conjecture with n

vertices and m′ ≥ m hyperedges.

▶ Corollary 13. The FB Conjecture and the FB’ Conjecture are equivalent.
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Figure 3 For selected n, the regions of m for which we verified the EFL’ conjecture, within 3
days of CPU time. For each n, m runs from n to

(
n
2

)
. The color transitions from yellow to red in

proportion to the logarithm of the running time in seconds, red means higher. White regions on the
left are trivial, on the right impossible for linear spaces. Regions we could not solve are in gray.

For given n and m, the individual cases of the EFL’ and FB’ conjectures are, in some sense,
the canonical or essential cases of EFL and FB, respectively, even though the correspondence
between the (n, m)-buckets between the two versions of each conjecture is not one-to-one
(and is made precise by Propositions 9 and 12).

4 Computational Results

In this section we will present the results of our computations. We performed three different
experiments, each on a cluster of machines with different processors3, running Ubuntu 18.04
on Linux 4.15. The source code and scripts for reproducing the results are available as part
of the SMS package at https://github.com/markirch/sat-modulo-symmetries.

The first experiment was targeted at verifying Conjecture 8, and by extension the EFL
conjecture itself. We managed to verify, this time with formal methods capable of proof
logging, the previous known results, and we verified the conjecture in additional cases.
Selected results of this experiment are summarized in Figure 3. The colored cells indicate
which values of n and m we could solve, within a time limit of three days. Our results in
every case agree with the prediction of Erdős, Faber, and Lovász: all linear hypergraphs
are n-colorable. In addition to those shown in Figure 3, we verified all cases listed in the
following theorem.

▶ Theorem 14. The EFL’ Conjecture (Conjecture 8) holds for n, m if n ≤ 12; or
n = 13 and m ∈ [13, 32] ∪ [55, 78]; or
n = 14 and m ∈ [14, 28] ∪ [70, 91]; or
n = 15 and m ∈ [15, 29] ∪ [84, 105]; or
n = 16 and m ∈ [16, 30] ∪ {99} ∪ [101, 120]; or
n = 17 and m ∈ [17, 30] ∪ [117, 136]; or
n = 18 and m ∈ [18, 31] ∪ [134, 153].

The longest successfully terminated case that we encountered was that of n = 15 and
m = 85, which took two days, 15 hours, and 26 minutes to solve, of which one day and 15
and a half hours were spent in the coloring solver.

3 Intel Xeon {E5540, E5649, E5-2630 v2, E5-2640 v4}@ at most 2.60 GHz, AMD EPYC 7402@2.80GHz
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Figure 4 The distribution of the running times for n = 12 and n = 15.

In general, we observed a pattern where hardness of the individual instances culminated
around the middle of the region of the available values

[
n,
(

n
2
)]

, and fell off roughly sym-
metrically on both sides. However, the nature of the hardness differed on the two sides: for
smaller values of m, coloring was negligibly easy (less than 0.1% of the total time) and most
of the time was spent in hypergraph search, while for higher values of m, coloring took up
a much more significant portion of the total time; this proportion peaked for n = 15 and
m = 87, at just over 67%. Selected cases are depicted in Figure 4.

For smaller values of n we can exhaustively enumerate all (n − 1)-reduced linear spaces
and compare their number with the number of learned colorings, to get an idea of the
speedup. We tested this for 10 ≤ n ≤ 12 and found that the total number of colorings is
about 10% smaller than the number of hypergraphs. This is somewhat in contrast with
much higher speedups reported in related work [18], and it would be interesting future work
to investigate why our case behaves differently. One hypothesis that we have is that in our
case, the intersection graphs are not canonical, and hence the colorings do not work as well.
In fact, we could even see isomorphic copies of intersection graphs, which require different
colorings. This is testable by setting up an appropriate experiment, but is somewhat beyond
the scope of this paper.

The aim of the second experiment was to gain insights about the extremal examples to
the EFL conjecture. The second experiment is similar to the first, except that

instead of asking for hypergraphs that cannot be edge-colored with n colors (and getting
none), we asked for hypergraphs that cannot be edge-colored with n − 1 colors;
and we dropped the constraint that the hypergraphs should be (n − 1)-reduced.

Thus, we have enumerated all extremal linear spaces with respect to the EFL conjecture.
The known extremal examples are the degenerate plane (for any n ≥ 3), the complete

graph (for odd n ≥ 3), and the projective plane, where n = k2 + k + 1 for many k including
all prime powers. According to Kang et al. [17], in addition to the odd clique, also “minor
modifications thereof” work. Kahn [15] is similarly cryptic: “[The EFL Conjecture] is sharp
when H is a projective plane or complete graph Kn with n odd, and also in a few related cases,
but there ought to be some slack in the bound away from these extremes.” We enumerated
all extremal examples with n ≤ 12 and in some cases of n = 13, and can confirm that these
“minor modifications,” listed in Theorem 15, are the only other extremal examples.

Let Hn,k be the linear space on n vertices that consists solely of 2-edges and one k-edge,
Hn,3̸∩3 the linear space with 2-edges and two disjoint 3-edges, and Hn,3∩3 the space with
2-edges and two intersecting 3-edges.
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Figure 5 The extremal hypergraph H7,3̸∩3, on the left drawn analogously to K7 from Figure 1,
on the right in a way that highlights symmetries.

▶ Theorem 15. The linear spaces with n ≤ 12 vertices and chromatic index n are precisely
Hn,k for all k ̸≡ n mod 2, and additionally H7,3, H9,3, H11,3, H7,3̸∩3, H11,3∩3, H11,3̸∩3, and
the Fano plane.

We proved Theorem 15 almost entirely computationally, with the only exception of H11,3∩3
and H11,3 ̸∩3, which were too hard to prove non-colorable. In Section 4.1, we provide
the missing manual proofs of extremality and generalize some patterns from Theorem 15.
Theorem 15 remains necessary to show that the enumerated extremal examples are complete.

The hypergraphs Hn,k can be seen as a chain of steps of size 2 linking the complete
graph to the degenerate plane. Even though the complete graph is not extremal for even n,
this chain still exists, only shifted to odd k. In this case the chain can even be considered
somewhat “purer,” as there is neither an “intermediate link” of the wrong parity, as there is
Hn,3 for odd n, nor other exceptions as listed in Theorem 15; and moreover there are no
projective planes for even n (k2 + k + 1 is always odd). One is almost tempted to conjecture
that these are the only extremal examples when n is even.

The enumeration of extremal examples is computationally harder than the verification
of the EFL conjecture, for two reasons. The first is that the coloring clauses are weaker,
and as such more hypergraphs must be searched. The second is that while in the case of
the EFL conjecture all graphs are colorable (all colorability queries satisfiable), in this case
non-colorability sometimes has to be proved. Even though we break color symmetries by
assigning arbitrary colors to one clique in the intersection graph, frequently a clique of the
maximum possible size n − 1, a large part of the intersection graph remains to be colored,
often with other large cliques. Since the formula encoding the existence of a (vertex) coloring
of a clique is nothing else than the famous pigeonhole principle formula [11], known to be
hard for resolution and CDCL solvers, we can expect proving non-colorability to be hard.
This is indeed what we observe: for n = 11 we could not completely solve the case m = 51
(H11,3∩3 and H11,3̸∩3), and for n = 13 there were many cases that were easy in the first
experiment, but which we could not solve now; in fact, we could not even prove (with SAT)
that K13 is not 12-edge-colorable. Since in these cases we can easily enumerate all linear
spaces, the reason for hardness must be unsatisfiable colorability queries. An interesting
avenue for future research would be to improve performance on these hard coloring instances.
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Figure 6 The distribution of the running times for the EFL’ and FB’ conjectures for n ∈ [9, 10].

This experiment also uncovered that the minimality check sometimes struggles and runs
out of the limit (see Section 3.2), and duplicate solutions are produced. In this case, this is
not a problem in and of itself, mainly because the copies are very obviously isomorphic, but
it shows that these highly symmetric hypergraphs pose a challenge for current SMS, and
could serve as benchmarks for future development.

In the third experiment we tackled Conjecture 11, and through it Conjecture 3. The
setup is almost identical to the first experiment, except that we use the other version of the
encoding described in Section 3.1. We summarize our results in another theorem.

▶ Theorem 16. The FB’ Conjecture holds for n and m if n ≤ 10; or
n = 11 and m ∈ [11, 20] ∪ [37, 55]; or
n = 12 and m ∈ [12, 17] ∪ [49, 66].

▶ Corollary 17. The FB Conjecture holds for n ≤ 10.

Verifying the FB Conjecture is much harder than verifying the EFL conjecture; for
example for n = 11 and m = 35, Conjecture 8 was solved in 12 minutes, while the same case
took over a day for Conjecture 11. The running times for n = 9, 10 are shown in Figure 6.

4.1 Extremality Proofs

The main results of this section are Theorems 18, 22, 24, and 27. Theorem 18 says that
a linear space with an odd number of vertices that does not have enough or large enough
hyperedges of size ≥ 3 is extremal. Theorem 22 establishes extremality of Hn,k when n

and k have opposite parity. The other two theorems fill some of the gaps left by the first
two. Theorem 24 gives a sufficient condition for a space of odd size to be non-extremal, and
Theorem 27 shows that spaces with an even number of vertices and only even hyperedges
are non-extremal provided that large hyperedges do not intersect.

We say a color c sees a vertex v (and vice versa) if a c-colored hyperedge contains v.

▶ Theorem 18. Let H be a linear space with n vertices, n odd, whose hyperedges of size ≥ 3
have sizes a1, . . . , aµ. If n ≥

∑µ
i=1 ai(ai − 2) + µ + 2, then H is not (n − 1)-edge-colorable.
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Proof. For a vertex of degree d, there are n − 1 − d colors that do not see it. We have
deg(v) = n − 1 −

∑
v∈e,|e|≥3(|e| − 2), so at most∑

v∈V

( ∑
v∈e,|e|≥3

(|e| − 2)
)

=
µ∑

i=1
ai(ai − 2)

colors do not see every vertex. There are ≤ µ colors used for the hyperedges of size ≥ 3, so at
least one color sees every vertex and is used only on 2-edges; a contradiction for odd n. ◀

▶ Corollary 19. Hn,3̸∩3 and Hn,3∩3 are not (n − 1)-colorable when n ≥ 11 is odd.
▶ Theorem 20. H7,3̸∩3 is not 6-edge-colorable.
Proof. Let A and B be the 3-edges, and v the other vertex. A and B cannot be colored the
same because v needs to see all colors, so the nine 2-edges between A and B use 4 colors, and
some c is used ≥ 3 times. But then each vertex of A and B sees c, and so v cannot see c. ◀

▶ Theorem 21. H9,3̸∩3 is 8-edge-colorable.
Proof. {u, v} 7→ u + v mod 8 if u, v < 8, {u, 8} 7→ 2u if u ≤ 3, else {u, 8} 7→ 2u − 1 mod 8,
{3, 4, 5} 7→ 0, {6, 7, 8} 7→ 5. ◀

▶ Theorem 22. Let n ̸≡ k mod 2, k ∈ [2, n]. Then Hn,k is not (n − 1)-edge-colorable.
Proof. Let the k-edge have the color c. All other vertices must see every color, in particular c.
The color c forms a perfect matching with 1 + (n − k)/2 edges; but n − k is odd. ◀

▶ Corollary 23. Hn,3 is not (n − 1)-edge-colorable when n = 4 or n ≥ 6.
Proof. For even n this follows from Theorem 22, for odd n from Theorem 18. ◀

▶ Theorem 24. Let H be a linear space with n vertices, n odd, and assume that H contains
a vertex v∗ that belongs to every hyperedge of size greater than two. If the number of even
hyperedges (including 2-edges) containing v∗ is ≤ n−1

2 , then H is (n − 1)-edge-colorable.
Proof. Rename vertices so that v∗ = n−1, the even hyperedges containing v∗ are A0, . . . , Ar,
with i ∈ Ai, and the odd hyperedges are B1, . . . , Bs, and they are ordered as follows:

0, 1, . . . , r, (A0 \ {0, n − 1}), . . . , (Ar \ {r, n − 1}), (B1 \ {n − 1}), . . . , (Bs \ {n − 1}), n − 1

Color as follows: u, v < n − 1 =⇒ {u, v} 7→ u + v mod n − 1, if u ≤ n−1
2 and {u, n −

1} ⊆ E, then E 7→ 2u; all thus unassigned hyperedges must be Bi, and we color them
Bi 7→ min(Bi) + max(Bi \ {n − 1}) mod n − 1. The coloring is proper because (1) the
doubling color is applied to at most n−1

2 edges; (2) min(Bi) and max(Bi \ {n − 1}) always
have opposite parity, and hence do not conflict with the doubled colors, which are even;
and (3) two colors assigned by the last rule cannot be the same because min(Bi) ≥ n+1

2(
n−1

2 < a < b < c < d < n − 1 =⇒ a + b ̸≡ c + d mod n − 1
)
. ◀

▶ Corollary 25. Let n ≤ 2k − 1, n ≡ k ≡ 1 mod 2. Then Hn,k is (n − 1)-edge-colorable.
▶ Corollary 26. H5,3 is 4-, H7,3∩3 is 6-, and H9,3∩3 is 8-edge-colorable.
▶ Theorem 27. Let H be a hypergraph with n vertices, n even. If all hyperedges of H are
even, and all those of size greater than 2 are pairwise disjoint, then H is (n−1)-edge-colorable.
Proof. Let the hyperedges of size greater than two be L1, . . . , Lr, let L :=

⋃r
i=1 Li. Rename

the vertices so that all Li are closed under additive inverse: x ∈ Li =⇒ n − 1 − x ∈ Li.
Color Li 7→ 0, u, v < n − 1 =⇒ {u, v} 7→ u + v mod n − 1, {u, n − 1} 7→ 2u mod n − 1. ◀

▶ Corollary 28. Let n ≡ k ≡ 0 mod 2, k ∈ [2, n]. Then Hn,k is (n − 1)-edge-colorable.
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5 Conclusion

In this paper, we used SAT solvers to partially confirm two conjectures about hypergraph
edge colorings for small instances. We achieved this by interleaving the two SAT solvers: one
for symmetry-breaking search for hypergraphs, the other for finding colorings of candidate
hypergraphs, to prune the search space early.

Our experiments show that the hypergraph search and edge-coloring problem is a challeng-
ing benchmark for all components of our framework. To improve the minimality check in SMS,
we plan to combine dynamic symmetry breaking with (partial) static symmetry breaking, for
example by way of sorting the vertices by degree (by a static, poly-size encoding), and limit
the dynamic symmetry breaking to vertices of the same degree. Similarly, it would be very
interesting to improve CDCL performance on these hard coloring problems. Here, it seems,
symmetry-breaking could help, but we have a chicken-and-egg problem: if symmetry-breaking
is sometimes hard for the minimality check, will it be feasible for the coloring part? In any
case, hypergraphs and colorings are very general and expressive combinatorial objects, and as
such are worthy of the attention to improve the performance of general-purpose SAT solvers.
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Abstract
To test a graph’s planarity in SAT-based graph generation we develop SAT encodings with dynamic
symmetry breaking as facilitated in the SAT modulo Symmetry (SMS) framework. We implement
and compare encodings based on three planarity criteria. In particular, we consider two eager
encodings utilizing order-based and universal-set-based planarity criteria, and a lazy encoding based
on Kuratowski’s theorem. The performance and scalability of these encodings are compared on
two prominent problems from combinatorics: the computation of planar Turán numbers and the
Earth-Moon problem. We further showcase the power of SMS equipped with a planarity encoding by
verifying and extending several integer sequences from the Online Encyclopedia of Integer Sequences
(OEIS) related to planar graph enumeration. Furthermore, we extend the SMS framework to directed
graphs which might be of independent interest.
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1 Introduction

Graph generation is the problem of deciding whether a graph with a particular property
exists. Many difficult problems in Combinatorics can be stated as graph generation problems.
Over the last years, SAT-based approaches to graph generation have been proposed, yielding
competitive alternatives to isomorphism-free exhaustive enumeration by canonical construc-
tion path, as implemented in tools like Nauty [34]. By combining the desired graph property
with symmetry breaking, SAT-based approaches can avoid generating a prohibitively large
number of candidate graphs for which the desired property needs to be checked. SAT Modulo
Symmetry (SMS) [30] is a SAT-based approach that supports complete symmetry breaking
performed by a special propagator that collaborates with a CDCL SAT solver [21].

In this article, we look into SAT-based graph generation where the given property entails
the graph being planar.
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There are mainly two options for incorporating planarity into SAT-based graph search:
(i) employing an “eager” encoding of planarity directly into a SAT formula or (ii) using a
“lazy” encoding that incrementally adds clauses to ensure that the partially defined graph, as
represented by the current partial assignment of the solver, is planar. Today, many criteria
for planarity are known. Criteria that are positive in the sense that they state the existence
of a planar embedding, are natural candidates for an eager SAT encoding because valid
variable assignments are in correspondence with embeddings. Criteria that are negative in
the sense that they state the existence of an obstruction against a planar embedding, are
candidates for lazy encoding; once an obstruction has been found, the solver can exclude it
by learning a corresponding clause.

In Section 3, we propose a lazy encoding based on forbidden graph minors and Kuratowski’s
theorem, and two eager encodings of planarity; one is based on Schnyder orders [40], and the
other is based on universal point sets [13].

In Section 5, we compare the performance and scalability of these encodings on three
problem settings.

The first problem setting is from extremal combinatorics [5] and seeks the maximum
number of edges in graphs on n vertices that excludes a certain subgraph. The Turán number
ex(n, H) for an integer n and a graph H is the maximum number of edges in an n-vertex graph
G with no copy of H as a subgraph. Turán famously showed that ex(n, Ck) ≤ (1 − 1

k−1 ) n2

2 ,
where Ck denotes the cycle graph on k vertices ([44], see also [2, Chapter 27]). Dowden [14]
studied the problem restricted to planar graphs G which gives rise to the planar Turán
number exP (n, H). Very recently, planar Turán numbers for various graphs H have become
the subject of intensive research in combinatorics [12, 15, 16, 24, 32]. With our SAT-based
framework, we compute planar Turán numbers for n ≤ 18 where the excluded subgraph is a
cycle of length 4 or 5, as studied in [14].

The second problem setting is an extension of the planar map coloring problem, known
as the Earth-Moon problem introduced by Ringel [37]. It seeks the chromatic number of
a biplanar graph (a graph that can be formed as the union of two planar graphs). The
name of the problem originates from the figurative statement of the problem, which asks for
the minimum number of colors needed to properly color a map consisting of two separate
spherical (planar) maps, an Earth map containing a collection of countries, and a Moon map
containing a colony for each country on Earth. A proper coloring assigns the same color to a
country and its lunar colony and different colors to countries and colonies with a common
boundary. It is known that the number of required colors lies between 9 and 12 (cf. [27,
p. 36] and [26, p. 199]). To encode biplanar graphs for the Earth-Moon problem, we extended
the SMS framework from graphs to directed graphs: antiparallel edges indicate edges in one
planar graph and the remaining edges indicate edges in the other. This extension might be
of independent interest. With this approach, we are able to show the absence of biplanar
graphs with certain order and at least a certain chromatic number.

As the third problem setting, we consider various integer sequences related to planar graph
and digraph enumeration as listed in the On-Line Encyclopedia of Integer Sequences [35].
While existing graph enumeration tools such as plantri [8] mainly aim on plane graphs (i.e.,
planar graphs with a fixed embedding), our approach is the first for planar graphs (no
embeddings involved). For several of the sequences we could verify and extend the known
initial segments with a relatively minor effort. In particular, having common parameters
implemented (such as bounds on degrees, clique/independence number, connectivity, etc.), a
large variety of sequences can be simply tested from the command line just by combining
the desired parameters. We see this as an indication that, in several cases, our approach is
superior and easier to use than standard graph enumeration based approaches and for the
versatility of our framework.
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Related Work

Chimani, Hedtke and Wiedera [10] investigated the problem of finding a planar subgraph
of a given graph with the maximum number of edges. They used encodings to integer
linear programs and pseudo-boolean satisfiability based on various planarity criteria for that
purpose. This problem setting is very different from ours since they work with a given input
graph while we aim to generate graphs for which symmetry breaking plays a central role.

Plantri is the standard tool for the generation of certain types planar graphs and was
developed by Brinkmann and McKay [8]. It enumerates non-isomorphic planar graphs with a
fixed embedding (plane graphs). Since 3-connected planar graphs have a unique embedding,
plantri can directly enumerate various subclasses of 3-connected planar graphs. However,
in general planar graphs can have multiple (up to exponentially many) embeddings and
therefore one must filter duplicates caused by distinct embeddings. With SMS, we can
enumerate planar graphs of any connectivity directly.

2 Preliminaries

For positive integers n, we write [n] := {1, . . . , n}.
We use standard notation for CNF formulas (propositional formulas in conjunctive normal

form), propositional variables, literals, and clauses [36].
We use standard notation for graphs and digraphs [6, 45], in particular, all considered

graphs and digraphs are finite and simple. A graph G consists of a finite set V (G) of vertices
and a set E(G) ⊆ {{u, v} : u ̸= v ∈ V (G)} of edges. Similarly, a directed graph G (or digraph)
G consists of a finite set V (G) of vertices and a set E(G) ⊆ {(u, v) : u ̸= v ∈ V (G)} of directed
edges or arcs. The underlying graph G of a digraph G has the vertex set G(V ) := G(V ) and
edge set E(G) := {{u, v} : (u, v) ∈ E(G)}.

An edge-subdivision operation deletes an edge {u, v} from a graph G, and adds two new
edges {u, w}, {w, v} and a new vertex w ̸∈ V (G). A graph G is a subdivision of another
graph H if G can be obtained from H by successively performing edge-subdivisions.

A graph G is connected if there exists a path between any two vertices u, v ∈ V (G),
that is, there exists a sequence of vertices u = w0, w1, . . . , wk = v with {wi, wi+1} ∈ E(G).
Moreover, G is k-connected if |V (G)| ≥ k + 1 and the deletion of any k − 1 vertices results
in a connected graph. The connectivity κ(G) denotes the largest integer k for which G is
k-connected. Pause to note that the terms “k-connected” and “connectivity k” must not be
confused as the class of k-connected graphs consists all graphs G with connectivity κ(G) ≥ k.
A digraph is weakly k-connected if its underlying graph is k-connected.

To define planarity, some auxiliary terminology is required. A simple curve in the
plane (resp. on the sphere) is the image of a injective continuous mapping ϕ : [0, 1] → R2

(resp. ϕ : [0, 1] → S2). The points ϕ(0), ϕ(1) are the curve’s ends and the remaining points of
the curve form the curve’s interior. A graph is planar if there exists a mapping of the vertex
to the plane (resp. to the sphere) and a mapping of each edge to a simple curve connecting the
two corresponding vertices such the interiors of any two curves is disjoint. Such a mapping
is called embedding. In general, one does not distinguish between embedding in the plane
and embedding on the sphere since any embedding on the sphere can be transferred into the
plane via a stereographic projection, and vice versa.

A plane graph is a planar graph with a fixed embedding. If a graph is 3-connected then
it has a combinatorially unique embedding on the sphere [46], that is, the cyclic order of the
incident edges around any vertex coincide in every embedding. However, graphs that are
not 3-connected can have multiple embeddings, hence one planar graph can correspond to
several plane graphs; see e.g. Figure 1.
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Figure 1 Two embeddings of the same planar graph. The graph is constructed by adding an
edge to every vertex of the grid graph. Since every edge can be drawn in multiple cells, the graph
corresponds to exponentially many non-isomorphic plane graphs.

A k-coloring of a graph G is mapping c : V (G) → [k] such that for every edge {u, v} ∈ E(G)
it holds c(u) ̸= c(v). A graph G is k-colorable if there exists a k-coloring of G and the
chromatic number χ(G) of G denotes the smallest integer k such that G is k-colorable. The
famous four-color theorem states that if G is planar then χ(G) ≤ 4 [3, 38].

For a graph G and permutation of the vertices π : V (G) → V (G), we denote the relabeled
graph by π(G), that is, V (π(G)) = V (G) and E(π(G)) = {{π(u), π(v)} : {u, v} ∈ E(G)}.

During SAT-based graph generation, we encounter partially defined graphs and digraphs.
In a partially defined (di)graph G, the edge set E(G) is partitioned into the set D(G) of
defined edges and the set U(G) of undefined edges. The (di)graph G is fully defined if
U(G) = ∅. A partially defined (di)graph G can be extended to a fully defined (di)graph G′

if V (G′) = V (G) and D(G) ⊆ E(G′) ⊆ D(G) ∪ U(G). If not stated otherwise, graphs are
undirected and fully defined.

3 SAT Encodings for Planarity

There are many different criteria in the literature for a graph being planar. In this section,
we select three of them and implement and benchmark these encodings.

In the context of SAT-based graph generation and enumeration, the graph is not know
during search, so we design the planarity encoding based on the variables describing the
combinatorial object. In other words, we don’t construct formulas for a given input graph,
but rather for all graphs implicitly described by certain propositional variables. For a fixed
number of vertices n, we use the propositional variables eu,v, whose truth values indicate
whether the edge {u, v} is present.

3.1 Encoding Based on Kuratowski’s Theorem
The famous theorem by Kuratowski asserts that a graph is planar if and only if it does not
contain K3,3 or K5 as a topological minor, which means it does not contain a subdivision of
the complete bipartite graph K3,3 or the complete graph K5 as a subgraph. This planarity
criterion is negative in the sense that it is based on the non-existence of a certain object, and
hence is not well suited for an eager SAT encoding.

Towards a lazy SAT encoding, note that the existence of a topological K3,3 or K5 minor
can be checked in linear time [7, 47]. Thus we can efficiently test whether a partially defined
graph can be extended to a planar graph. We can carry out such a test during the CDCL
procedure, whenever an edge variable has been decided, similarly to the SMS minimality
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check [30]. Whenever we determine that the current partially defined graph cannot be
extended to a planar graph, we add a clause preventing that the search on this partially
defined graph with possible further edges continues.

For that we proceed as follows. First, we construct a partially defined graph G given by
the partial assignment of the propositional edge variables. For the sake of planarity testing,
we consider the fully defined graph G′ with V (G′) := V (G), E(G′) := D(G), and U(G′) := ∅.
Since G′ is a subgraph of all extensions of G, its non-planarity implies the non-planarity for
all extensions of G. We apply the Boyer-Myrvold planarity testing algorithm [7] to G′, a
linear time planarity algorithm based on edge additions to compute a planar embedding.
If it concludes that the graph G′ is not planar the algorithm returns a subgraph H of G′,
which is a subdivision of K3,3 or K5. Adding the clause∨

{u,v}∈E(H)

¬eu,v

blocks this specific subgraph.

3.2 Encoding Based on Schnyder Orders

Schnyder [40] proved that a graph G is planar if and only if its incidence order dimension
is at most 3. Formally, there exist three partial orders ≺1, ≺2, ≺3 (which we call Schnyder
orders) such that for every edge {u, v} ∈ E(G) and every vertex w ∈ V (G) \ {u, v} there is
some i ∈ {1, 2, 3} such that u ≺i w and v ≺i w. Since every partial order can be extended to
a total order, one can assume without loss of generality that ≺1, ≺2, ≺3 are total orders. We
refer the interested reader to Chapter 2 of Felsner’s book [18].

This results in a compact encoding for planarity. To enumerate all planar graphs on
a vertex set V = [n], we use variables ou,v,i to indicate whether u ≺i v and introduce the
following constraints:

To ensure that ≺i is transitive, antisymmetric, and a total order, we require for i ∈ {1, 2, 3}
the following constraints.∧

u,v,w∈V
u̸=v ̸=w ̸=u

¬ou,v,i ∨ ¬ov,w,i ∨ ou,w,i,
∧

u,v∈V
u̸=v

¬ou,v,i ∨ ¬ov,u,i,
∧

u,v∈V
u ̸=v

ou,v,i ∨ ov,u,i.

To ensure that ≺1, ≺2, ≺3 form three Schnyder orders of the desired graph, we require∧
u,v∈V

u ̸=v

(
eu,v →

∧
w∈V \{u,v}

∨
i∈{1,2,3}

(ou,w,i ∧ ov,w,i)
)

.

The formula is transformed in a CNF formula using the Tseitin transformation [43]. This
leads to O(n3) variables and O(n3) clauses.

Solutions of the SAT encoding are in correspondence with planar graphs together with a
witnessing triple of orders. Pause to note that, in contrast to the Kuratowski based encoding
where non-planarity is witnessed, planarity is witnessed in this encoding.

One disadvantage of this encoding is that it is not propagating, i.e., if all variables eu,v are
assigned and the graph is not planar then Boolean constraint propagation does not necessarily
lead to a conflict. Further, for a given planar graph there are at least exponentially many
different witnessing triples of orders ≺1, ≺2, ≺3 [18].
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3.3 Encoding Based on Universal Sets
A set S of points from the plane is n-universal if every planar n-vertex graph can be embedded
such that vertices are mapped S as vertices and all edges are straight-line segments. For
instance, a triangular subset of the (n − 1) × (n − 1) grid is n-universal [41], and there exist
n-universal sets of size 1

4 n2 − O(n) [4]. In general, the existence of an n-universal set of
subquadratic size remains one of the central open problems of graph drawing. However,
n-universal sets of minimum size have been computed for n ≤ 11 [9, 39] and for certain
subclasses of planar graphs universal sets of subquadratic size exist [19].

We want to enumerate all planar graphs G with vertex set V = [n] by testing whether
the graph represented by edge variables embeds into a prescribed n-universal point set S

of size k = |S|. Note that, since all edges are drawn as straight-line segments, the injective
mapping P : V → S fully determines the embedding. We use variables mv,p to indicate
whether P (v) = p and use clauses to ensure that no two edges cross. To keep the number of
constraints small, we introduce auxiliary variables sp,q for any distinct p, q ∈ S to indicate
whether the segment determined by p and q is present. Finally, we must forbid the presence
of crossing segments, i.e., segments are only allowed to share a common endpoint. We can
express these conditions by the following constraints: To ensure that P is a mapping and
that the relation is injective, we require∧

v∈V

∨
u∈S

mv,u and
∧

v1,v2∈V, u∈S

¬mv1,u ∨ ¬mv2,u.

To determine the presence of certain segments, we require∧
u,v∈V, a,b∈S

(eu,v ∧ mu,a ∧ mv,b) → sa,b.

Finally, for any a, b, a′, b′ ∈ S such that the segments ab and a′b′ intersect in a non-shared
endpoint, we require

¬sa,b ∨ ¬sa′,b′ .

The intersecting segments can be precomputed based on the point set S and don’t have to
be determined by the SAT encoding.

For the injective mapping, we use O(n2 · k) clauses, for the presence of certain segments
O(n2 · k2) clauses, and for avoiding intersecting segments we use up to O(k4) clauses, where
k = |S| is at least n. Hence, the encoding has O(k4) clauses and O(k2) variables. A variant of
this encoding was already used in [39, Section 4.3] to find universal point sets for a prescribed
list of graphs.

Using the currently best n-universal point set, which are of magnitude O(n2), this
encoding renders itself useless even for relatively small n due to O(k4) = O(n8) clauses.
However, we will test this approach for n ≤ 11 since for this cases there exist reasonably
sized n-universal sets.

4 SAT Modulo Symmetries and Digraphs

In this section, we describe the basic ideas of SMS [30] and how we adapt it to digraphs.
SMS is a dynamic symmetry breaking method for excluding isomorphic copies of graphs

during search. It is designed to keep canonical graphs in the search space and discard all
non-canonical graphs by adding symmetry breaking clauses. The canonical version is given
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by the lexicographically minimal adjacency matrix among all relabelings of the graphs. More
precisely, a graph G is canonical if the row wise concatenation of the adjacency matrix of G

is either equal or lexicographically smaller than the adjacency matrix of any relabeling π(G).
To add symmetry breaking clauses during search, we need to be able to decide whether the

partially defined graph given by the current solver state can be extended to a canonical fully
defined graph. For that a minimality check was designed which checks for some necessary
conditions. More precisely, it checks whether there is a permutation such that π(G′) ≺ G′

for all extensions of the current partial defined graph, i.e., the graph can definitely not
be extended to a lexicographically minimal graph. Such a permutation is called witness.
If the minimality check finds a witness then a symmetry breaking clause based on the
current assignment and the witness permutation is constructed. The clause holds for all
lexicographically minimal graphs and therefore does not exclude any potential solutions.
The construction of potential witness permutations by the minimality check is based on a
branching algorithm by gradually building a permutation starting with the vertex of smallest
index. It is crucial for good performance to have arguments for cutting of a branch early if it
does not lead to a witness permutation.

To adapt SMS for digraphs, note that all definitions for graphs used in the original SMS
article [30] can be adapted to digraphs in a straight forward way. We highlight some of the
adaptions in the following.

Let us start with defining a total order on the set of all digraphs Dn with vertex set [n]
for a fixed n. For that we first define an order on vertex pairs, naturally leading to an order
of the digraphs. A vertex pair (v1, v2) is smaller than (u1, u2) (short (v1, v2) ≺ (u1, u2) ) if
(i) min(v1, v2) < min(u1, u2) or (ii) min(v1, v2) = min(u1, u2) and max(v1, v2) < max(u1, u2)
or (iii) {v1, v2} = {u1, u2} and v1 < u1. For example, for n = 5 we look at the following
order of the non-diagonal elements of the n × n adjacency matrix:

– 1 2 3 4
5 – 9 10 11
6 12 – 15 16
7 13 17 – 19
8 14 18 20 –

The lexicographic order on Dn is given by comparing the string resulting from concatenating
the entries in the adjacency matrix in the order given by ⪯. We use G ≺ H for denoting
that G is lexicographically smaller than H . A digraph G is ⪯-minimal if G ⪯ π(G) holds for
all relabelings.

As in the setting of undirected graphs, the minimality check for digraphs searches for
witnessing permutations. The main difference is that, while in the undirected case the
adjacency matrix is symmetric and only the lower triangular matrix has to be considered, in
the directed case the entire adjacency matrix needs to be checked. However, the main idea
of the algorithm is the same.

A formalism presented in previous work [29] based on object variables and object sym-
metries guaranties that adding symmetry breaking clauses with certain structure based on
some permutations of the variables does preserve lexicographically minimal objects.

5 Experiments

We test our planarity encodings in three problem settings: planar Turán numbers, the
Earth-Moon problem, and planar graph enumeration. To allow comparisons between the
different encodings for each problem setting separately we ensure that the programs run on
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the same hardware. For all encodings we use Python scripts for the generation of the clauses
and feed it to our SMS framework. The underlying SAT solver is an adaption of CaDiCal with
the new interface IPASIR-UP that allows the solver to interact with a custom propagator [17];
this replaces the clingo solver used previously for SMS. For the Boyer-Myrvold planarity
testing algorithm [7], we use the implementation provided in the C++ Boost libraries [1].

We have developed a Python layer over SMS to ease its usage and provide better readable
code (SMS is written in C++ for performance reasons). In this Python layer, we have
implemented various fundamental properties and invariants for graphs and digraphs such
as the bounds on the connectivity, clique number, independence number, or degrees. In
particular, we have implemented the planarity encodings based on Schnyder orders and
universal sets in the Python layer (see Sections 3.2 and 3.3). The Kuratowski encoding,
however, is implemented in C++.

With this Python layer, it should be reasonably easy also for non-programmers to run
experiments from the command line and to add additional properties for graphs and digraphs.
The source code and documentation is available at GitHub1 and Read the Docs2, respectively.

As preliminary results show, the encoding based on universal point performs much worse
than the others (see Table 5). Also recall that n-universal sets of optimal size are hard to find
in general and only have been computed for n ≤ 11. Because of these two major drawbacks,
we omitted this encoding on further benchmarks.

5.1 Planar Turán Numbers

Recall that the planar Turán number exP (n, H) for a graph H is the maximum number of
edges in a planar n-vertex graph G with no copy of H as a subgraph. We are interested in
planar Turán numbers exP (n, Ck), where Ck denotes the cycle graph of length k. The case
k = 3 is rather straight-forward: since triangle-free graphs have at most 2n − 4 edges and
K2,n−2 obtains this bound, it holds exP (n, C3) = 2n − 4 [14]. However, the situation for
k ≥ 4 get more complicated. The currently best estimates for k ∈ {4, 5} are by Dowden [14],
who proved the upper bounds exP (n, C4) ≤ 15

7 (n − 2) for n ≥ 4 and exP (n, C5) ≤ 12n−33
5

for n ≥ 11. These bounds are tight for infinitely many values of n. For example, for k = 4
the bound is tight for all n ≡ 30 (mod 70), and for k = 5 it is tight for all n ≡ 9 (mod 15).

Using our planarity encodings, we determine the exact values of exP (n, C4) and exP (n, C5)
for small values of n. We construct a formula Fn,m,k which is satisfiable if there is a Ck-free
graph with at least m edges. To encode Ck-free graphs we explicitly, we add the clause

¬ev1,v2 ∨ ¬ev2,v3 ∨ · · · ∨ ¬evk−1,vk
∨ ¬evk,v1

for any k distinct vertices v1, . . . , vk ∈ V . Using sequential counters [42], we ensure that the
number of edges is at least m.

Given the ideas in Section 3 for ensuring planarity of the generated graphs, we compute
the exact values of exP (n, Ck). For a fixed n and k, this is done by testing Fn,m,k enhanced
with a planarity encoding for satisfiability, starting with m = n. We increment m until the
formula is unsatisfiable. Our computational result are summarized by the following theorem.

1 https://github.com/markirch/sat-modulo-symmetries/
2 https://sat-modulo-symmetries.readthedocs.io/

https://github.com/markirch/sat-modulo-symmetries/
https://sat-modulo-symmetries.readthedocs.io/
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Table 1 Result for computing exP (n, C4). All computation times are given in seconds. The third
column gives the upper bound by Dowden [14]. SMS also found a graph with 19 vertices and 35
edges within 14 seconds, but we are not aware if this example is extremal for n = 19.

SAT UNSAT

n exP (n, C4) ⌊ 15
7 (n − 2)⌋ Kura Ord Kura Ord

4 4 4 0.00 0.00 0.00 0.00
5 6 6 0.00 0.00 0.00 0.00
6 7 8 0.00 0.00 0.00 0.01
7 9 10 0.01 0.01 0.01 0.02
8 11 12 0.01 0.02 0.02 0.03
9 13 15 0.03 0.04 0.05 0.05
10 16 17 0.04 0.07 0.07 0.06
11 18 19 0.16 0.44 0.16 0.23
12 20 21 0.27 0.98 0.56 2.29
13 22 23 0.23 0.14 1.96 15.27
14 24 25 0.20 0.44 6.46 340.11
15 27 27 1.00 0.85 21.39 294.07
16 29 30 5.87 24.90 172.90 31142.08
17 31 32 5.19 83.59 3479.65 t.o.
18 33 34 14.69 14.85 59862.72 t.o.

▶ Theorem 1. It holds that

exP (n, C4) =
⌊

15
7 (n − 2)

⌋
−


0 for n ∈ {4, 5, 15},
1 for n ∈ [6, 8] ∪ [10, 14] ∪ [16, 18],
2 for n = 9,

and

exP (n, C5) =
⌊

12n − 33
5

⌋
+


0 for n ∈ {9} ∪ [11, 18],
1 for n ∈ {8, 10},
2 for n ∈ [5, 7].

Moreover, based on our computational data, we conjecture that Dowden’s upper bound for
k = 5 is tight for all n ≥ 11.

▶ Conjecture 2. exP (n, C5) =
⌊ 12n−33

5
⌋

for n ≥ 11.

Tables 1 and 2 summarize the computation times for both encodings. The times for solving
Fn,exP (n,Ck),k are given by “SAT” and Fn,exP (n,Ck)+1,k given by “UNSAT”. Computations
not finished within three days are marked with “t.o.” (timeout). The columns labeled “Kura”
provide the times for the encoding based on Kuratowski’s theorem with a propagator and
the columns “Ord” provides the times for the encoding based on Schnyder orders.

In general, we see that the version excluding Kuratowski graphs performs much better,
especially for unsatisfiable cases. For example for n = 17, k = 4 the Kuratowski based
generation is over a hundred times faster than the encoding based on Schnyder orders.
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Table 2 Result for computing exP (n, C5). All computation times are given in seconds. The third
column gives the upper bound by Dowden [14] for n ≥ 11.

SAT UNSAT

n exP (n, C5) ⌊ 12n−33
5 ⌋ Kura Ord Kura Ord

5 7 5 0.00 0.01 0.00 0.00
6 9 7 0.00 0.01 0.01 0.01
7 12 10 0.01 0.02 0.02 0.01
8 13 12 0.02 0.07 0.05 0.11
9 15 15 0.03 0.06 0.07 0.38
10 18 17 0.10 0.29 0.23 1.67
11 19 19 0.12 0.30 0.57 4.89
12 22 22 1.83 1.72 1.99 33.08
13 24 24 0.48 1.61 11.45 271.18
14 27 27 3.18 7.63 35.24 1174.85
15 29 29 2.24 10.82 277.78 15459.24
16 31 31 4.71 59.09 3172.27 235353.58
17 34 34 207.49 890.98 29023.55 t.o.
18 36 36 1851.84 1249.38 t.o. t.o.

5.2 The Earth-Moon Problem
A graph G is biplanar if it can be partitioned into two planar graphs, that is, there exist
two planar graphs G1, G2 with E(G) = E(G1) ∪ E(G2). In that case, we write G = G1 ⊎ G2.
Biplanar graphs are also known as graphs with thickness two. The Earth-Moon problem asks
for the largest chromatic number a biplanar graph can have, denoted by χ2. In 1973, Thom
Sulanke constructed a biplanar graph on 11 vertices with chromatic number 9 by removing
the edges of a C5 from a K11, improving an earlier lower bound by Ringel to χ2 ≥ 9 [22]. On
the other hand, using Euler’s formula, one can derive that any biplanar graph must have a
vertex of degree at most 11, which applied inductively shows that χ2 ≤ 12. Despite of much
research efforts, the estimates 9 ≤ χ2 ≤ 12 could not be improved since then. Some have
suggested that this problem is “as hard as two or three four-color theorems” [26, p. 199].

Searching for biplanar graphs and at least a certain chromatic number seems to be an
extremely challenging problem. Indeed, the problem of deciding whether a graph is biplanar
is NP-complete [33] and checking whether a graph has at least chromatic number χ for a
fixed constant χ ≥ 3 is coNP-complete in general [28]. To admit partial progress, one can
parameterized the Earth-Moon problem by the number n of vertices in the biplanar graph,
denoting the highest chromatic number for a n-vertex biplanar graph by χ2(n). Sulanke’s
lower bound χ2(11) ≥ 9 carries over to n > 11 since adding isolated vertices to a biplanar
graph does not change its chromatic number and keeps the graph biplanar.

Our goal is to show the absence or presence of biplanar graphs for given order n and
chromatic number χ using SMS and planarity encodings.

One possibility of using SMS for biplanar graphs is applying the symmetry breaking
directly at the graph G. This way, we would take edge variables eu,v describing the graph G.
To encode the decomposition G = G1 ⊎ G2, we introduce auxiliary variables e1

u,v and e2
u,v to

indicate whether an edge {u, v} belongs to E(G1) or E(G2), respectively. However, this way
we don’t break all symmetries. If π is an automorphism of G, i.e., π(G) = G, then it does
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not necessarily hold that π(G1) = G1 and π(G2) = G2. In other words, we will get different
partitions representing isomorphic decompositions. This is a real problem in practice as some
experiments on testing biplanarity of K9 showed.

Hence, we propose a different and more efficient approach. Instead of encoding the
biplanar graph G directly, we represent the decomposition G1 ⊎ G2 as a directed graph H

with H = G. H represents the decomposition G1 ⊎ G2 as follows.
{u, v} ∈ E(G1) if and only if (u, v) ∈ E(H) and (v, u) ∈ E(H).
{u, v} ∈ E(G2) if and only if either (u, v) ∈ E(H) or (v, u) ∈ E(H), but not both.

Now we can apply SMS for digraphs as discussed in Section 4. Consider two directed graphs
H and H ′ that represent the decompositions G1 ⊎ G2 = H and G′

1 ⊎ G′
2 = H ′, respectively.

We observe that if H and H ′ are isomorphic, then H and H ′ are isomorphic and Gi and
G′

i are isomorphic, i ∈ {1, 2}. Consequently, it is sound to only consider lexicographically
minimal digraphs H.

We further restrict the digraphs. W.l.o.g., we may assume that if (u, v) ∈ E(H) for
u < v then also (v, u) ∈ E(H). This is the case because (u, v) ≺ (v, u), hence replacing the
arc (u, v) by (v, u) if (v, u) is not present leads to a strictly lexicographically smaller graph
representing the same decomposition.

We note that the symmetry breaking on biplanar graphs using digraphs still has some
potential room for improvement. There are non-isomorphic digraphs H, H ′ whose underlying
graphs H, H ′ are isomorphic, i.e., we have different representation for the same underlying
graph. For example, if the underlying graph is H = K5 (the complete graph on 5 vertices),
we can partition the graph H = G1 ⊎ G2 in almost all ways granted that both G1 and G2
contain at least one edge and none contains all edges. Further, the representation as digraphs
doesn’t exclude all isomorphic partitions, i.e., there are lexicographically minimal digraphs
with the described restrictions representing isomorphic partitions. We plan to design a
version of SMS avoiding these isomorphic copies in the future.

W.l.o.g., we may assume for a decomposition G = G1 ⊎ G2 that G1 is maximal planar,
i.e., inserting any additional edge makes the graph non-planar, since we can move as many
edges as possible from G2 to G1. We encode this by requiring that |E(G1)| = 3n − 6, hence
we can also require |E(G2)| ≤ 3n − 6.

Further, we restrict our search on vertex-critical graphs with respect to the chromatic
number χ, i.e., deleting any vertex decreases the chromatic number of G. Hence we can
assume that the minimum degree of G is ≥ χ − 1.

The following encoding describes the digraph H with vertex set V = [n] that represents
the decomposition of a χ-chromatic graph H = G into two planar subgraphs. We use directed
edge variables du,v to encode the existence of the directed edge (u, v) ∈ E(H).

To restrict the digraph, we require∧
v,u∈V

v<u

dv,u → du,v and
∧

v,u∈V
v<u

e1
v,u ↔ (dv,u ∧ du,v);

this results in e1
v,u ↔ dv,u for v < u. We further require∧

v,u∈V
v<u

e2
v,u ↔ (¬dv,u ∧ du,v) and ev,u = e1

v,u ∧ e2
v,u,

which can be simplified to ev,u ↔ du,v for v < u. Finally, we require∑
v,u∈V

v<u

e1
v,u = 3n − 6 and

∑
v,u∈V

v<u

e2
v,u ≤ 3n − 6,

encoded with sequential counters [42].
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Table 3 Computations for the Earth-Moon problem, given the number n of vertices and the
chromatic number χ. If the timeout of 2 days is reached we write “t.o.”.

χ ≥ 9 χ ≥ 10

n #digraph Kura Ord #digraph Kura Ord

9 0 0.55 18.14
10 0 15.75 2028.21 0 1.95 112.43
11 5554 1709.49 t.o. 0 19.03 4543.13
12 - t.o. t.o. 0 837.14 t.o.
13 - t.o. t.o. 0 146484.00 t.o.

For ensuring at least a certain chromatic number χ, we add coloring clauses ensuring that
the underlying graph cannot be colored with χ − 1 colors. Let Pn be the set of all partitions
of V . Then∧

P ∈Pn

|P |=χ−1

∨
S∈P

∨
u,v∈V

u<v

eu,v

ensures that every (χ−1)-coloring is no proper coloring of the underlying graph for χ−1 ≥ n,
because at least one edge is monochromatic. Since the number of partitions Pn is exponential,
this size of the encoding grows exponentially. However, as our experiments showed, this
approach is still feasible for small values of n. We have also tried a lazy encoding which adds
the clauses incrementally whenever there is a violation instead of adding all clauses right at
the beginning. As it turned out, the results for this version were worse and hence we omit
the results for the lazy version.

Table 3 shows the results and computation times of our experiments. For χ ≥ 9 and
n = 11 the formula is satisfiable and the previously known results were confirmed. For χ ≥ 10
and n ≤ 13 the formula is unsatisfiable. Therefore we have the following result.

▶ Theorem 3. All biplanar graphs on n ≤ 13 vertices are 9-colorable.

Our experiments again show that the Kuratowski-based encoding is superior by orders of
magnitudes. Table 4 summarizes the new results in context of what has been known so far.

In the literature, there are some potential candidates for the Earth-Moon Problem, which
are known to have chromatic number 10, but haven’t been shown to be biplanar yet [23].
One of these graphs is G = C5[4, 4, 4, 4, 3], i.e., a 5-cycle where the first four vertices of the
cycle are inflated to a 4-clique, and the last to a 3-clique. The graph has 19 vertices and
99 edges. We can test whether this graph is biplanar using our planarity encodings. This
can be done by adding constraints that ensure that the underlying graph of the resulting
directed graph is the graph G:∧

u,v∈E(G),u<v

ev,u ∧
∧

u,v∈V (G),u,v /∈E(G)

¬ev,u.

By fixing some of the directed edges, SMS is not applicable anymore for all permutations. We
only allow permuting vertices within the 4-clique and 3-clique, respectively, which preserves
the underlying graph G. Within 12 hours, we are able to show that the graph is not biplanar,
hence we can exclude the graph as a potential candidate.
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Table 4 Current state of knowledge on the Earth-Moon problem for n-vertex biplanar graphs
for 8 ≤ n ≤ 18. Orange cells indicate that there doesn’t exist an n-vertex biplanar graph with
chromatic number χ, blue cells indicate the existence. The cells labeled “new” correspond to new
results obtained in this paper, using the observations that removing an independent set decreases the
chromatic number by at most 1 and since Kn with n ≥ 9 is not biplanar, every biplanar graph with
n ≥ 9 vertices has an independent set of size two. With a minimality argument it is also possible
to exclude the case with n = 18 and χ = 12. If n < χ, the problem is trivially unsatisfiable. If
χ = n, then the only potential n-vertex graph is the complete graph Kn; for n ≤ 8, Kn is known
to be biplanar, for n ≥ 9 it is not biplanar. All biplanar graphs are known to have a chromatic
number ≤ 12, hence all cells in the rightmost column are orange. The cases n ≥ 11 and χ = 9 are
all satisfiable, as witnessed by Sulanke’s graph.

chromatic number χ

n 8 9 10 11 12 13

8 K8

9 K9

10 new K10

11 Sulanke new K11

12 new new K12

13 new new new K13

14 open new new

15 open new new

16 open open new

17 open open new

18 open open new

19 open open open

5.3 Integer Sequences Related to Planar Graphs and Digraphs

Many integer sequences featured in the On-Line Encyclopedia of Integer Sequences (OEIS) [35]
give the number of non-isomorphic n-vertex graphs with a certain property, for n ∈ N. The
encyclopedia is very useful for research in combinatorics because a sequence can for instance
be used to come up with a hypothetical closed formula for a sequence, or to check whether
two graph classes coincide. Often, no closed formula for a sequence is known; therefore, only
a finite prefix is reported on OEIS. In this section, we demonstrate the versatility of our SMS
framework in conjunction with the new planarity encoding to almost effortlessly verify and
extend sequences listed on OEIS. Moreover, it allows us to compute and add new natural
sequences for which no suitable tools have existed.

In the following, we review some specific integer sequences that we could verify or extend
with SMS. The list is not exhaustive and can certainly be improved by further optimization.

Let us start with the sequence for non-isomorphic planar n-vertex graphs OEIS/A5470;
the precise numbers are known for up to n = 12. Table 5 shows the running times required
to verify these numbers with SMS and the three planarity encodings. Since the encoding
based on Kuratowski’s theorem performs significantly better than the other two, we only
used this encoding in the following.

SAT 2023
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Table 5 Enumeration of planar graphs with SMS.

n # (OEIS/A5470) Kura Ord Univ

2 2
3 4
4 11
5 33
6 142 0.02s 0.04s 0.02s
7 822 0.12s 0.27s 0.24s
8 6966 1.02s 3.48s 6.94s
9 79853 13.5s 1m16s 8m50s
10 1140916 5m56s 2h16m 116h
11 18681008 13h53m
12 333312451

OEIS/A49339 counts the number of n-vertex planar graphs with even degrees. With
previous tools, the first 12 terms were computed (Brendan McKay gave 11). We verified
these 12 terms with SMS and extended the sequence by the 13th and 14th terms (about 2
and 40 hours of computation time, respectively).

OEIS/A49339 is also the Euler transform of OEIS/A49365, which counts the number
of connected n-vertex planar graphs with even degrees. Therefore, having n terms of one
sequence, one can compute the n terms of the other. Surprisingly, SMS performed almost
twice as fast for computing the 13th and 14th term on OEIS/A49339.

The sequences OEIS/A49369 to OEIS/A49373 count the number of planar graphs with
minimum degree at least k ∈ {1, 2, 3, 4, 5}. Verifying all terms for k = 3, 4, 5 using SMS took
about 3 hours, 1 hour, and 2 days, respectively. Moreover, we have extended OEIS/A49372
(the sequence for k = 4) by the 16th term, which was computed within 2 days, and
OEIS/A49373 (the sequence for k = 5) by the 26th term, which was computed within 8 days,

OEIS/A255600 counts the number of connected planar regular graphs on 2n vertices with
a girth of at least 4. Note that girth at least 4 is equivalent to C3-free (a.k.a. triangle-free)
and, as noted in the comments of that sequence, all such graphs are 3-regular. SMS can
verify the previous 13 terms within 90 minutes. We have extended the sequence by the 14th
and 15th term, for which the computations took 16 hours and 9 days, respectively.

OEIS/A58378 counts the number of 3-regular 2-connected planar 2n-vertex graphs. SMS
verified all known terms up to n = 13 (i.e., up to 26 vertices) within 5 days.

While plantri was used to enumerate k-connected planar graphs for up to k = 4, it is
surprising that there was no OEIS entry yet for 5-connected planar graphs. So we created
OEIS/A361578.

There was no OEIS entry yet for planar digraphs, so we created it OEIS/A361366 for
up to n = 6. Note that, when compared with the number of planar graphs, the two options
for directing each edge cause an increase in the numbers exponentially. Table 6 gives an
overview of k-connected graphs and weakly k-connected digraphs for k ≤ 5 for both general
and planar settings. Since planar (directed) graphs have connectivity at most 5, we here
only discuss the case k ≤ 5. For more information on higher connectivity on general graphs,
we refer to the table in OEIS/A259862.

Only sequences for weakly k-connected digraphs with k ∈ {0, 1} were known; hence
we created sequences for k ∈ {2, 3}. We also created sequences for weakly k-connected
planar directed graphs for all k ∈ {0, . . . , 3} and added them to OEIS. Surprisingly, when we

https://oeis.org/A5470
https://oeis.org/A49339
https://oeis.org/A49339
https://oeis.org/A49365
https://oeis.org/A49339
https://oeis.org/A49369
https://oeis.org/A49373
https://oeis.org/A49372
https://oeis.org/A49373
https://oeis.org/A255600
https://oeis.org/A58378
https://oeis.org/A361578
https://oeis.org/A361366
https://oeis.org/A259862
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Table 6 Sequences for k-connected planar graphs and weakly k-connected planar digraphs.
Entries marked with ∗ are new.

graphs digraphs

k-connected general planar general planar

k = 0 OEIS/A88 OEIS/A5470 OEIS/A273 OEIS/A361366*
k = 1 OEIS/A1349 OEIS/A3094 OEIS/A3085 OEIS/A361368*
k = 2 OEIS/A2218 OEIS/A21103 OEIS/A361367* OEIS/A361369*
k = 3 OEIS/A6290 OEIS/A944 OEIS/A361370* OEIS/A361371*
k = 4 OEIS/A86216 OEIS/A7027 ? ?
k = 5 OEIS/A86217 OEIS/A361578* ? ?

recently submitted our results to OEIS, Andrew Howroyd extended the sequence for weakly
2-connected graphs by using an approach based on generating functions and combinatorial
species. This gives a beautiful example of how our contribution can stimulate research in
enumerative combinatorics.

Last, we should mention the well-understood class of maximal planar graphs, known as
triangulations. The entries OEIS/A109, OEIS/A7021, and OEIS/A111358 count 3, 4, and
5-connected triangulations, respectively.

6 Conclusion

We have presented a comprehensive study on SAT-based planar graph generation using encod-
ings with dynamic symmetry breaking. Our experimental results compare the effectiveness
and scalability of the Kuratowski-based and order-based encodings in solving combinatorial
problems related to planar graphs. In particular, we provided progress concerning the
computation of planar Turán numbers and the Earth-Moon problem. Furthermore, we have
shown the potential of the SMS framework equipped with planarity encodings by verifying
and extending several OEIS sequences related to planar graph enumeration.

Additionally, we suggest exploring the adaptation of the Kuratowski [18, Section 1.4] and
Schnyder encodings [20] for outerplanar graphs, which presents an interesting application
area for SMS.

For planar graphs, there exists a polynomial-time canonization algorithm [25, 31]. Cook’s
Theorem [11] allows us to translate this algorithm into a polynomially-sized SAT encoding
for planar graph canonization. It would be interesting to see, whether such a symmetry
breaking tailored to planar graphs outperforms the general symmetry breaking in a practical
setting.
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Abstract
Modern SAT solvers are designed to handle problems expressed in Conjunctive Normal Form (CNF)
so that non-CNF problems must be CNF-ized upfront, typically by using variants of either Tseitin or
Plaisted and Greenbaum transformations. When passing from solving to enumeration, however, the
capability of producing partial satisfying assignments that are as small as possible becomes crucial,
which raises the question of whether such CNF encodings are also effective for enumeration.

In this paper, we investigate both theoretically and empirically the effectiveness of CNF conver-
sions for disjoint SAT enumeration. On the negative side, we show that: (i) Tseitin transformation
prevents the solver from producing short partial assignments, thus seriously affecting the effectiveness
of enumeration; (ii) Plaisted and Greenbaum transformation overcomes this problem only in part.
On the positive side, we show that combining Plaisted and Greenbaum transformation with NNF
preprocessing upfront – which is typically not used in solving – can fully overcome the problem and
can drastically reduce both the number of partial assignments and the execution time.
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1 Introduction

State-of-the-art SAT and SMT solvers deal very efficiently with formulas expressed in
Conjunctive Normal Form (CNF). In real-world scenarios, however, it is common for problems
to be expressed as non-CNF formulas. Hence, these problems must be converted into CNF
before being processed by the solver. This conversion is generally done by using variants
of the Tseitin [21] or the Plaisted and Greenbaum [17] transformations, which generate a
linear-size equisatisfiable CNF formula by labelling sub-formulas with fresh Boolean atoms.
These transformations can be employed also for SAT and SMT enumeration (also referred to
in the literature as AllSAT and AllSMT), by projecting the models on the original atoms
only.

When passing from SAT to AllSAT, however, the capability of enumerating partial
satisfying assignments that are as small as possible is crucial, because each prevents from
enumerating a number of total assignments that is exponential w.r.t. the number of unassigned
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atoms. This raises the question of whether CNF encodings conceived for solving are also
effective for enumeration. To the best of our knowledge, however, no research has yet been
published to analyse how the different CNF encodings may affect the effectiveness of the
solvers for AllSAT and AllSMT.

In this paper, we investigate, both theoretically and empirically, the effectiveness of CNF
conversion for enumeration. We focus on AllSAT, restricting to disjoint enumeration. We
expect analogous results for AllSMT. The contribution of this paper is twofold. First, on the
negative side, we show that the commonly employed CNF transformations for SAT are not
suitable for AllSAT. In particular, we notice that the Tseitin encoding introduces top-level
label definitions for sub-formulas with double implications, which need to be satisfied as well
and thus prevent the solver from producing short partial assignments. We also notice that
the Plaisted and Greenbaum transformation solves this problem only in part by labelling
sub-formulas only with single implications if they occur with single polarity, but it has
similar issues to the Tseitin transformation when sub-formulas occur with both polarities.
Second, on the positive side, we show that converting the formula into Negation Normal Form
(NNF) before applying the Plaisted and Greenbaum transformation can fix the problem and
drastically improve the effectiveness of the enumeration process by up to orders of magnitude.

This analysis is confirmed by an experimental evaluation of non-CNF problems originating
from both synthetic and real-world-inspired applications. The results confirm the theoretical
analysis, showing that the combination of NNF with the Plaisted and Greenbaum CNF
allows for a significant reduction in both the number of partial assignments and the execution
time.

Related Work

The impact of using different CNF encodings on the performance for SAT and SMT solving
has been widely studied in the literature [3, 10, 2, 11].

Beyond the basic task of SAT and SMT solving, several applications in probabilistic
reasoning require quantifying the number of solutions of a SAT or SMT formula. Whereas
for some applications it is sufficient to count the number of satisfying assignments, others
require to enumerate all of them. In particular, SAT and SMT disjoint enumeration play
a foundational role in probabilistic reasoning frameworks such as #SMT [5] and Weighted
Model Integration [14, 15, 19]. Specifically, in the case of #SMT(LRA) we need to sum up
the volumes corresponding to each of the models, whereas in WMI we need to integrate some
function w over the polytopes defined by each of the models. Hence, in these cases, it is
essential to enumerate disjoint partial models that are as small and as few as possible.

The problem of model minimization for Tseitin-encoded problems was addressed by [9].
They first propose to simplify the formula by considering its original structure and the current
model; then they use iterative calls to a SAT solver to obtain a minimal model by imposing
increasingly tighter cardinality constraints. This approach can be used to find a single short
model, but it can be very expensive and thus it is unsuitable for model enumeration.

Content

The paper is organized as follows. In §2 we introduce the theoretical background necessary to
understand the rest of the paper. In §3 we analyse the problem of the classical CNF-izations
when used for AllSAT. In §4 we propose one possible solution, whose effectiveness is evaluated
on both synthetic and real-world inspired benchmarks in §5. We conclude the paper in §6,
drawing some final remarks and indicating possible future work.
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2 Background

This section introduces the notation and the theoretical background necessary to understand
what is presented in this paper. We recall the standard syntax, semantics, and results
of propositional logic, and the fundamental ideas behind SAT enumeration and projected
enumeration implemented by modern AllSAT solvers.

2.1 Propositional Logic
In this section, we summarize some basic definitions and results of propositional logic.

Notation and Terminology

In the paper, we adopt the following conventions. We refer to propositional atoms with
capital letters, such as A and B. Propositional formulas are referred to with Greek letters
such as φ,ψ. Total truth assignments are denoted by η, while partial truth assignments are
denoted by µ. The symbols A def= {A1, . . . , AN} and B def= {B1, . . . , BK} denote disjoint sets
of propositional atoms. We denote Boolean constants by B def= {⊤,⊥}.

A propositional formula φ can be defined recursively as follows. The Boolean constants
⊤ and ⊥ are formulas; a Boolean atom A and its negation ¬A are formulas, also referred to
as literals; a connection of two formulas φ and ψ by one of the connectors ∧,∨,→,↔ is a
formula. A sub-formula occurs with positive [resp. negative] polarity (also positively [resp.
negatively]) if it occurs under an even [resp. odd] number of nested negations. Specifically,
φ occurs positively in φ; if ¬φ1 occurs positively [resp. negatively] in φ, then φ1 occurs
negatively [resp. positively] in φ; if φ1 ∧ φ2 or φ1 ∨ φ2 occur positively [resp. negatively]
in φ, then φ1 and φ2 occur positively [resp. negatively] in φ; if φ1 → φ2 occurs positively
[resp. negatively] in φ, then φ1 occurs negatively [resp. positively] and φ2 occurs positively
[resp. negatively] in φ; if φ1 ↔ φ2 occurs in φ, then φ1 and φ2 occur both positively and
negatively in φ.

Negation Normal Form

A Boolean formula is in Negation Normal Form (NNF) iff it is given only by the recursive
applications of ∧ and ∨ to literals. A formula can be converted into NNF by recursively
rewriting implications (α→ β) as (¬α∨ β) and equivalences (α↔ β) as (¬α∨ β)∧ (α∨¬β),
and then by recursively “pushing down” the negations: ¬(α ∨ β) as (¬α ∧ ¬β), ¬(α ∧ β)
as (¬α ∨ ¬β) and ¬¬α as α. If the NNF formula is represented as a DAG, then its size is
linear w.r.t. the original one. (Although this fact is well-known, we provide a formal proof
in the extended version of this paper [13].) Intuitively, we only need at most 2 nodes for
each sub-formula φi of φ, representing NNF(φi) and NNF(¬φi) for positive and negative
occurrences of φi respectively. These nodes are shared among up to exponentially-many
branches generated by expanding the nested iffs.

CNF Transformations

A Boolean formula is in Conjunctive Normal Form (CNF) iff it is a conjunction (∧) of clauses,
where a clause is a disjunction (∨) of literals. Numerous CNF transformation procedures,
commonly referred to as CNF-izations, have been proposed in the literature. In the next
paragraph, we summarize the three most frequently employed techniques.
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The Classic CNF-ization (CNFDM) converts any propositional formula into a logically
equivalent formula in CNF by applying DeMorgan’s rules. First, it converts the formula into
NNF. Second, it recursively rewrites sub-formulas α∨ (β∧γ) as (α∨β)∧ (α∨γ) to distribute
∨ over ∧, until the formula is in CNF. The principal limitation of this transformation lies in
the possible exponential growth of the resulting formula compared to the original (e.g. when
the formula is in DNF), making it unsuitable for modern SAT solvers [1].

The Tseitin CNF-ization (CNFTs) [21] avoids this exponential blow-up by labelling each
sub-formula φi with a fresh Boolean atom Bi, which is used as a placeholder for the
sub-formula. Specifically, it consists in applying recursively bottom-up the rewriting rule
φ =⇒ φ[φi|Bi] ∧ CNFDM(Bi ↔ φi) until the resulting formula is in CNF, where φ[φi|Bi] is
the formula obtained by substituting in φ every occurrence of φi with Bi.

The Plaisted and Greenbaum CNF-ization (CNFPG) [17] is a variant of the CNFTs that
exploits the polarity of sub-formulas to reduce the number of clauses of the final formula.
Specifically, if a sub-formula φi appears only with positive [resp. negative] polarity, then it
can be labelled with a single implication as CNFDM(Bi → φi) [resp. CNFDM(Bi ← φi)].

With both CNFTs and CNFPG, due to the introduction of the label variables, the final
formula does not preserve the equivalence with the original formula but only the equisatis-
fiability. Moreover, they also have a stronger property. If φ(A) is a non-CNF formula and
ψ(A ∪B) is either the CNFTs or the CNFPG encoding of φ, where B are the fresh Boolean
atoms introduced by the transformation, then φ(A) ≡ ∃B.ψ(A ∪B).

Total and partial truth assignments

Given a set of Boolean atoms A, a total truth assignment is a total map η : A 7−→ B. A
partial truth assignment is a partial map µ : A 7−→ B. Notice that a partial truth assignment
represents 2K total truth assignments, where K is the number of unassigned variables by µ.
With a little abuse of notation, we sometimes represent a truth assignment either as a set, s.t.
µ

def= {A | µ(A) = ⊤}∪{¬A | µ(A) = ⊥}, or as a cube, s.t. µ def=
∧

µ(A)=⊤ A∧
∧

µ(A)=⊥ ¬A. If
µ1 ⊆ µ2 [resp. µ1 ⊂ µ2] we say that µ1 is a sub-assignment [resp. strict sub-assignment] of µ2
and that µ2 is a super-assignment [resp. strict super-assignment] of µ1. We denote with φ|µ
the residual of φ under µ, i.e. the formula obtained by substituting in φ each Ai ∈ A with
µ(Ai), and by recursively applying the standard propagation rules of truth values through
Boolean operators.

Given a set of Boolean atoms A and a formula φ(A), we say that a [partial or total] truth
assignment µ : A 7−→ B satisfies φ, denoted as µ |= φ, iff φ|µ = ⊤1. If µ |= φ, then we say
that µ is a model of φ. A partial truth assignment µ is minimal for φ iff µ |= φ and every
strict sub-assignment µ′ ⊂ µ is such that µ′ ̸|= φ.
Most of the modern SAT and SMT solvers do not deal directly with non-CNF formulas,
rather they convert them into CNF by using either CNFTs or CNFPG. As seen in the previous
paragraph, since these transformations introduce fresh atoms into the resulting formulas,
a model of φ(A) can be found as a truth assignment satisfying ∃B.ψ(A ∪B). Given two
disjoint sets of Boolean atoms A,B and a CNF formula ψ(A ∪B), we say that a [partial or
total] truth assignment µA : A 7−→ B satisfies ∃B.ψ iff there exists a total truth assignment
ηB : B 7−→ B such that µA ∪ ηB : A ∪B 7−→ B satisfies ψ.

1 The definition of satisfiability by partial assignment may present some ambiguities for non-CNF and
existentially-quantified formulas [18, 16]. Here we adopt the above definition because it is the easiest
to implement, and it is the one typically used by state-of-the-art SAT solvers. We refer to [18, 16] for
details.
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Algorithm 1 Minimize-Assignment(ψi, ηi,A) // ψi
def= ψ ∧

∧i−1
j=1 ¬µ

A
j , ηi = ηA

i ∪ ηB
i .

1: µA
i ← ηA

i

2: for ℓ ∈ µA
i do

3: if ψi|[µA
i

\{ℓ} ∪ ηB
i

] = ⊤ then
4: µA

i ← µA
i \ {ℓ}

5: return µA
i

2.2 AllSAT and Projected AllSAT
AllSAT is the task of enumerating all the models of a propositional formula. In this paper, we
focus on the enumeration of disjoint models, that is, pairwise mutually-inconsistent models.
Given a Boolean formula φ, we denote with TTA(φ) def= {η1, . . . , ηj . . . ηM} the set of all total
truth assignments satisfying φ. We denote with TA(φ) def= {µ1, . . . , µi . . . , µN} a set of partial
truth assignments satisfying φ s.t.:
(a) every η ∈ TTA(φ) is a super-assignment of some µ ∈ TA(φ);
(b) every pair µi, µj ∈ TA(φ) assigns opposite truth value to at least one atom.
Notice that, whereas TTA(φ) is unique, multiple TA(φ)s are admissible for the same formula
φ, including TTA(φ). AllSAT is the task of enumerating either TTA(φ) or a set TA(φ).
Typically, AllSAT solvers aim at enumerating a set TA(φ) as small as possible, since every
partial model prevents from enumerating a number of total models that is exponential w.r.t.
the number of unassigned atoms, so that to save computational space and time.

The enumeration of a TA(φ) for a non-CNF formula φ is typically implemented by first
converting it into CNF, and then enumerating its models by means of Projected AllSAT.
Specifically, let φ(A) be a non-CNF formula and let ψ(A ∪ B) be the result of applying
either CNFTs or CNFPG to φ, where B is the set of Boolean atoms introduced by either
transformations. TA(φ) is enumerated via Projected AllSAT as TA(∃B.ψ), i.e. as a set of
(partial) truth assignments over A that can be extended to total models of ψ over A ∪B.
We refer to the general schema described in [12], which we briefly recap here.
Let ψ(A ∪B) be a CNF formula over two disjoint sets of Boolean variables A,B, where A
is a set of relevant atoms s.t. we want to enumerate a TA(∃B.ψ). The solver enumerates
one-by-one partial truth assignments µ1, . . . , µi, . . . µN , where each µi

def= µA
i ∪ ηB

i is s.t.:
(i) (satisfiability) µi |= ψ;
(ii) (disjointness) for each j < i, µA

i , µ
A
j assign opposite truth values to some atom in A;

(iii) (minimality) µA
i is minimal, meaning that no literal can be dropped from it without

losing properties (i) and (ii).
A basic disjoint AllSAT procedure (implemented e.g. in MathSAT [6]) works as follows.
At each step i, it finds a total truth assignment ηi

def= ηA
i ∪ ηB

i s.t. ηi |= ψi, where ψi
def=

ψ ∧
∧i−1

j=1 ¬µA
j , and then invokes a minimization procedure on ηA

i to compute a partial truth
assignment µA

i satisfying properties (i), (ii) and (iii). Then, the solver adds the clause ¬µA
i

to ensure property (ii) and it continues the search. This process is iterated until ψN+1 is
found to be unsatisfiable for some N , and the set {µA

i }N
i=1 is returned.

The minimization procedure consists in iteratively dropping literals one-by-one from ηA
i ,

checking if it still satisfies the formula. The outline of this minimization procedure is shown
in Algorithm 1. Each minimization step is O(#clauses ·#vars).

Notice that, since we are in the context of projected AllSAT, the minimization algorithm
only minimizes the relevant variables in A, and the truth value of existentially quantified
variables in B is still used to check the satisfiability of the formula by the current partial
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assignment. Moreover, to enforce the pairwise disjointness between the assignments, ψi

in Algorithm 1 refers to the original formula conjoined with all current blocking clauses∧i−1
j=1 ¬µA

j , whereas conflict clauses are excluded by the minimization, being redundant.
We stress the fact that the work described in this paper is agnostic w.r.t. the disjoint

AllSAT procedure used, provided its output assignments match conditions (i)-(iii) above.

3 The impact of CNF transformations for AllSAT

In this section we analyze the impact of different CNF-izations on the AllSAT task. In
particular, we focus on CNFTs [21] and CNFPG [17]. We point out how CNF-izing AllSAT
problems using these transformations can introduce unexpected drawbacks in the enumeration
process. In fact, we show that the resulting encodings can prevent the solver from effectively
minimizing the models, and thus from enumerating a small set of short partial models.

3.1 The impact of Tseitin CNF transformation
We show that preprocessing the input formula using the CNFTs transformation [21] can be
problematic for enumeration. We first illustrate this issue with an example.

▶ Example 1. Consider the propositional formula

φ
def=

B1︷ ︸︸ ︷
(A1 ∧A2)∨

B5︷ ︸︸ ︷
((

B2︷ ︸︸ ︷
(A3 ∨A4)∧

B3︷ ︸︸ ︷
(A5 ∨A6))︸ ︷︷ ︸

B4

↔ A7) (1)

over the set of atoms A def= {A1, A2, A3, A4, A5, A6, A7}. We first notice that the minimal
partial truth assignment:

µA def= {¬A3,¬A4,¬A7} (2)

suffices to satisfy φ, even though it does not assign a truth value to the sub-formulas (A1∧A2)
and (A5 ∨A6) since the atoms A1, A2, A5, A6 are not assigned.

Nevertheless, φ is not in CNF, and thus it must be CNF-ized by the solver before starting
the enumeration process. If CNFTs is used, then the following CNF formula is obtained:

CNFTs(φ) def=
(¬B1 ∨ A1) ∧ (¬B1 ∨ A2) ∧ ( B1 ∨ ¬A1 ∨ ¬A2)∧ //(B1 ↔ (A1 ∧A2)) (3a)
( B2 ∨ ¬A3) ∧ ( B2 ∨ ¬A4) ∧ (¬B2 ∨ A3 ∨ A4)∧ //(B2 ↔ (A3 ∨A4)) (3b)
( B3 ∨ ¬A5) ∧ ( B3 ∨ ¬A6) ∧ (¬B3 ∨ A5 ∨ A6)∧ //(B3 ↔ (A5 ∨A6)) (3c)
(¬B4 ∨ B2) ∧ (¬B4 ∨ B3) ∧ ( B4 ∨ ¬B2 ∨ ¬B3)∧ //(B4 ↔ (B2 ∧B3)) (3d)
(¬B5 ∨ B4 ∨ ¬A7) ∧ (¬B5 ∨ ¬B4 ∨ A7) ∧ //(B5 ↔ (B4 ↔ A7)) (3e)
( B5 ∨ B4 ∨ A7) ∧ ( B5 ∨ ¬B4 ∨ ¬A7) ∧
( B1 ∨ B5) ∧ (3f)

The fresh atoms B def= {B1, B2, B3, B4, B5} label sub-formulas as in (1). The solver proceeds
to compute TA(∃B.CNFTs(φ)) by enumerating the models of CNFTs(φ) projected over A.
Suppose, e.g., that the solver picks non-deterministic choices, deciding the atoms in the
order {B1, A1, A2, B2, A3, A4, B3, A5, A6, B4, B5, A7} and branching with negative value first.
Then, the first (sorted) total truth assignment found is:
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η
def= {¬B1,¬B2,¬B3,¬B4, B5︸ ︷︷ ︸

ηB

,¬A1,¬A2,¬A3,¬A4,¬A5,¬A6,¬A7︸ ︷︷ ︸
ηA

} (4)

which contains µA (2). The minimization procedure looks for a minimal subset µA′ of ηA s.t.
µA′ ∪ ηB |= CNFTs(φ). One possible output of this procedure is the minimal assignment:

µA′ def= {¬A1,¬A3,¬A4,¬A5,¬A6,¬A7}. (5)

We notice that the partial truth assignment µA (2) satisfies φ and it is s.t. µA ⊂ µA′,
but it does not satisfy ∃B.CNFTs(φ). In fact, three clauses of CNFTs(φ) in (3a) and (3c)
are not satisfied by µA ∪ ηB, since CNFTs(φ)|µA∪ηB = (¬A1 ∨ ¬A2) ∧ (¬A5) ∧ (¬A6). We
remark that this is not a coincidence, since there is no ηB′ such that µA ∪ ηB′ |= CNFTs(φ),
because (3a) and (3c) cannot be satisfied without assigning any atom in {A1, A2} and
{A5, A6} respectively.

Finding µA′ (5) instead of µA (2) clearly causes an efficiency problem, since finding
longer partial models implies that the total number of enumerated models could be up to
exponentially larger. For instance, instead of the single partial assignment µA (2), the solver
may return the following list of 9 partial assignments satisfying ∃B.CNFTs(φ):

B1︷ ︸︸ ︷ B3︷ ︸︸ ︷
{¬A1, ¬A3, ¬A4, ¬A5, ¬A6, ¬A7 } //{¬B1,¬B3}
{¬A1, ¬A3, ¬A4, A5, ¬A7 } //{¬B1, B3}
{¬A1, ¬A3, ¬A4, ¬A5, A6, ¬A7 } //{¬B1, B3}
{ A1, ¬A2, ¬A3, ¬A4, ¬A5, ¬A6, ¬A7 } //{¬B1,¬B3}
{ A1, ¬A2, ¬A3, ¬A4, A5, ¬A7 } //{¬B1, B3}
{ A1, ¬A2, ¬A3, ¬A4, ¬A5, A6, ¬A7 } //{¬B1, B3}
{ A1, A2, ¬A3, ¬A4, ¬A5, ¬A6, ¬A7 } //{ B1,¬B3}
{ A1, A2, ¬A3, ¬A4, A5, ¬A7 } //{ B1, B3}
{ A1, A2, ¬A3, ¬A4, ¬A5, A6, ¬A7 } //{ B1, B3}

(6)

where µA′ (5) is the first in the list. ⌟

The example above shows an intrinsic problem of CNFTs when used for enumeration: if a
minimal partial assignment µA suffices to satisfy φ, this does not imply that µA suffices to
satisfy ∃B.CNFTs(φ), i.e., that some ηB exists such that µA ∪ ηBsatisfies CNFTs(φ) [18].

In fact, consider a generic non-CNF formula φ(A) and a minimal partial truth assignment
µA that satisfies φ, and let φi be some sub-formula of φ which is not assigned a truth value
by µA – for instance, because φi occurs into some positive subformula φi∨φj and µA satisfies
φj . (In Example 1, µA def= {¬A3,¬A4,¬A7}, φi

def= (A1 ∧A2) or φi
def= (A5 ∨A6) respectively.)

Then CNFTs conjoins to the main formula the definition (Bi ↔ φi), so that every satisfying
partial truth assignment µA′ is forced to assign a truth value to φi and thus to some of its
atoms, which may not occur in µA, so that µA′ ⊃ µA. (In the example, the clauses in (3a)
and (3c) force µA′ to assign a truth value also to (A1 ∧A2) and (A5 ∨A6) respectively.)

Thus, by using CNFTs, instead of enumerating one minimal partial model µA for φ, the
solver may be forced to enumerate many partial models µA′ that are minimal for ∃B.CNFTs(φ)
but not for φ, so that their number can be up to exponentially larger in the number of
unassigned atoms in µA. In fact, each such model µA′ conjoins to µA one of the (up to
2|A|−|µA|) partial assignments which are needed to evaluate to either ⊤ or ⊥ all unassigned
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φi’s. (E.g., in (6), the solver enumerates nine µA′s by conjoining µA (2) with an exhaustive
enumeration of partial assignments to A1, A2, A5, A6 that evaluate (A1 ∧A2) and (A5 ∨A6)
to either ⊤ or ⊥.) This may drastically affect the effectiveness of the enumeration.

3.2 The impact of Plaisted and Greenbaum CNF transformation
We point out how the CNFPG [17] can be used to solve these issues, but only in part. We
first illustrate it with an example.

▶ Example 2. Consider the formula φ (1) and the minimal satisfying assignment µA (2) as
in Example 1. Suppose that φ is converted into CNF using CNFPG. Then, the following CNF
formula is obtained:

CNFPG(φ) def=
(¬B1 ∨ A1) ∧ (¬B1 ∨ A2) ∧ //(B1 → (A1 ∧A2)) (7a)
( B2 ∨ ¬A3) ∧ ( B2 ∨ ¬A4) ∧ (¬B2 ∨ A3 ∨ A4)∧ //(B2 ↔ (A3 ∨A4)) (7b)
( B3 ∨ ¬A5) ∧ ( B3 ∨ ¬A6) ∧ (¬B3 ∨ A5 ∨ A6)∧ //(B3 ↔ (A5 ∨A6)) (7c)
(¬B4 ∨ B2) ∧ (¬B4 ∨ B3) ∧ ( B4 ∨ ¬B2 ∨ ¬B3)∧ //(B4 ↔ (B2 ∧B3)) (7d)
(¬B5 ∨ B4 ∨ ¬A7) ∧ (¬B5 ∨ ¬B4 ∨ A7) ∧ //(B5 → (B4 ↔ A7)) (7e)
( B1 ∨ B5) ∧ (7f)

We highlight that (7a) and (7e) are shorter than (3a) and (3e) respectively, since the
corresponding sub-formulas occur only with positive polarity. Suppose, as in Example 1,
that the solver finds the total truth assignment η def= ηB ∪ ηA in (4). In this case, one possible
output of the minimization procedure is the minimal partial truth assignment:

µA′′ def= {¬A3,¬A4,¬A5,¬A6,¬A7}. (8)

This assignment is a strict sub-assignment of µA′ in (5), since the atom A1 is not assigned.
This is possible because the sub-formula (A1∧A2) is labelled by B1 using a single implication,
and the clauses representing (B1 → (A1 ∧ A2)) are satisfied by ηB(B1) = ⊥ even without
assigning A1 and A2. Nevertheless, the assignment µA in (2) that satisfies φ still does not
satisfy ∃B.CNFPG(φ).

Indeed, sub-formulas occurring with double polarity are labelled using double implications
as for CNFTs, raising the same problems as the latter. For instance, the sub-formula (A5∨A6)
occurs with double polarity, since it is under the scope of an “↔”. Hence, the clauses in (7c)
must be satisfied by assigning a truth value also to A5 or A6, and so the partial truth
assignment µA in (2) does not suffice to satisfy ∃B.CNFPG(φ). ⌟

The example above shows that CNFPG has some advantage over CNFTs when enumerating
partial assignments, but it overcomes its effectiveness issues only in part, because a minimal
assignment µA satisfying φ may not suffice to satisfy ∃B.CNFPG(φ), as with CNFTs.

Consider, as in §3.1, a generic non-CNF formula φ(A) and a partial truth assignment µA

that satisfies φ without assigning a truth value to some sub-formula φi. Suppose that φi

occurs only positively in φ – for the negative case the reasoning is dual. (In Example 2, µA def=
{¬A3,¬A4,¬A7}, φi

def= (A1 ∧ A2).) Since CNFPG introduces only the clauses representing
(Bi → φi) – and not those representing (Bi ← φi) – the solver is no longer forced to assign
a truth value to φi, because it suffices to assign ηB(Bi) = ⊥. (In the example, (A1 ∧ A2)
is labelled with B1 in (7a).) In this case, φi plays the role of a “don’t care” term, and this
property allows for the enumeration of shorter partial assignments.
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Nevertheless, a sub-formula can be “don’t care” only if it occurs with single polarity. In
fact, if φi occurs with double polarity – as it is the case, e.g., of sub-formulas under the
scope of an “↔” – then φi is labelled with a double implication (Bi ↔ φi), yielding the same
drawbacks as with CNFTs. (In the example, (A5 ∨A6) occurs with double polarity, and µA′

is forced to assign a truth value also to A5 or A6 to satisfy the clauses in (7c).)

Notice that, to maximize the benefits of CNFPG, the sub-formulas that should be treated
as “don’t care” must have their label assigned to false. In practice, this can be achieved in
part by instructing the solver to split on negative values in decision branches2. Even though
the solver is not guaranteed to always assign to false the labels of “don’t care” sub-formulas,
we empirically verified that this heuristic provides a good approximation of this behaviour.

4 Enhancing enumeration via NNF preprocessing

In this section, we propose a possible solution to address the shortcomings of CNFTs and CNFPG
CNF-izations in model enumeration, described in §3. We show that a simple preprocessing
can avoid this situation. We transform first the input formula into an NNF DAG. In fact,
NNF guarantees that each sub-formula occurs only positively, as every sub-formula φi

occurring with double polarity is converted into two syntactically-different sub-formulas
φ+

i
def= NNF(φi) and φ−i

def= NNF(¬φi) – each occurring only positively – which are then labelled
– with single implications – with two distinct atoms B+

i and B−
i respectively. To improve

the efficiency of the enumeration procedure without affecting its outcome, we also add the
clauses (¬B+

i ∨ ¬B−
i ) when both B+

i and B−
i are introduced, which prevent the solver from

assigning both B+
i and B−

i to true, and thus from exploring inconsistent search branches.

We remark that even with this preprocessing we produce a linear-size CNF encoding,
since the NNF(φ) DAG has linear size w.r.t. φ (see §2.1), and CNFPG introduces one label
definition for each DAG node, each consisting of 1 or 2 clauses. We illustrate the benefit of
this additional preprocessing with the following example.

▶ Example 3. Consider the formula φ of Example 1. By converting it into NNF, we obtain:

φ′ def=
B1︷ ︸︸ ︷

(A1 ∧A2)∨ (

B5︷ ︸︸ ︷
((

B−2︷ ︸︸ ︷
(¬A3 ∧ ¬A4)∨

B−3︷ ︸︸ ︷
(¬A5 ∧ ¬A6))︸ ︷︷ ︸

B−4

∨A7)∧

B6︷ ︸︸ ︷
((

B+
2︷ ︸︸ ︷

(A3 ∨A4)∧

B+
3︷ ︸︸ ︷

(A5 ∨A6))︸ ︷︷ ︸
B+

4

∨¬A7))

︸ ︷︷ ︸
B7

(9)

2 To exploit this heuristic also for sub-formulas occurring only negatively, the latter can be labelled with
a negative label ¬Bi as (¬Bi ← φi).

SAT 2023



15:10 On CNF Conversion for Disjoint SAT Enumeration

Suppose, then, that the formula is converted into CNF using CNFPG. Then, the following
CNF formula is obtained:

CNFPG(NNF(φ)) def=(¬B1 ∨ A1) ∧ (¬B1 ∨ A2)∧ //(B1 → ( A1 ∧ A2)) (10a)
(¬B−

2 ∨ ¬A3) ∧ (¬B−
2 ∨ ¬A4)∧ //(B−

2 → (¬A3 ∧ ¬A4)) (10b)
(¬B−

3 ∨ ¬A5) ∧ (¬B−
3 ∨ ¬A6)∧ //(B−

3 → (¬A5 ∧ ¬A6)) (10c)
(¬B−

4 ∨ B−
2 ∨ B−

3) ∧ //(B−
4 → ( B−

2 ∨ B−
3)) (10d)

(¬B5 ∨ B−
4 ∨ A7) ∧ //(B5 → ( B−

4 ∨ A7)) (10e)
(¬B+

2 ∨ A3 ∨ A4) ∧ //(B+
2 → ( A3 ∨ A4)) (10f)

(¬B+
3 ∨ A5 ∨ A6) ∧ //(B+

3 → ( A5 ∨ A6)) (10g)
(¬B+

4 ∨ B+
2) ∧ (¬B+

4 ∨ B+
3)∧ //(B+

4 → ( B+
2 ∧ B+

3)) (10h)
(¬B6 ∨ B+

4 ∨ ¬A7) ∧ //(B6 → ( B+
4 ∨ ¬A7)) (10i)

(¬B7 ∨ B5) ∧ (¬B7 ∨ B6)∧ //(B7 → ( B5 ∧ B6)) (10j)
( B1 ∨ B7) ∧ (10k)
(¬B+

2 ∨ ¬B−
2) ∧ (10l)

(¬B+
3 ∨ ¬B−

3) ∧ (10m)
(¬B+

4 ∨ ¬B−
4) (10n)

Suppose, e.g., that the solver picks non-deterministic choices, deciding the atoms in the
order {B1, A1, A2, B

−
3 , A5, A6, B

−
2 , A3, A4, B

−
4 , B5, A7, B

+
2 , B

+
3 , B

+
4 , B6, B7}, branching with a

negative value first. Then, the first total truth assignment found is:

η
def= {¬B1, B

−
2 ,¬B−

3 , B
−
4 , B5,¬B+

2 ,¬B+
3 ,¬B+

4 , B6, B7︸ ︷︷ ︸
ηB

,¬A1,¬A2,¬A3,¬A4,¬A5,¬A6,¬A7︸ ︷︷ ︸
ηA

}.

(11)

In this case, the minimization procedure returns µA def= {¬A3,¬A4,¬A7} as in (5),
achieving full minimization. With this additional preprocessing, in fact, the solver is no
longer forced to assign a truth value to A5 or A6. This is possible because, even though
(A5 ∨A6) occurs with double polarity in φ, in NNF(φ) its positive and negative occurrences
are converted into (A5 ∨ A6) and (¬A5 ∧ ¬A6) respectively. Since they appear as two
syntactically-different sub-formulas, CNFPG labels them – with single implications – using
two different atoms B+

3 and B−
3 respectively. This allows the solver to find a model η that

assigns both B−
3 and B+

3 to false. Hence, the clauses in (10c) and (10g) are satisfied even
without assigning A5 and A6, and thus these atoms can be dropped by the minimization
procedure. ⌟

The key idea behind this additional preprocessing is that each sub-formula of NNF(φ)
occurs only positively, so that CNFPG labels them with single implications, and the solver is no
longer forced to assign them a truth value. Consider a sub-formula φi that occurs with double
polarity in φ. In NNF(φ) the two subformulas φ+

i
def= NNF(φi) and φ−i

def= NNF(¬φi) occur only
positively. Then, instead of adding (Bi ↔ φi), we add (B+

i → φ+
i )∧(B−

i → φ−i ), and the solver
can find a truth assignment η that assigns both B−

i and B+
i to false. (In Example 3, instead

of (B3 ↔ (A5 ∨A6)) we add (B+
3 → (A5 ∨A6)) and (B−

3 → (¬A5 ∧¬A6)).) Thus, the clauses
deriving from φi can be satisfied even without assigning a truth value to φi, whose atoms
can be dropped by the minimization procedure – provided that they are not forced to be
assigned by some other sub-formula of φ. (In the example, by setting ηB(B+

3) = ηB(B−
3) = ⊥,

the clauses in (10c) and (10g) are satisfied even without assigning A5 and A6.)
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We have the following general fact: every partial model µA for φ is also a model for
∃B.CNFPG(NNF(φ)), that is, if µA |= φ, then there exists ηB s.t. µA∪ηB |= CNFPG(NNF(φ)).
(The vice versa holds trivially.) A complete formal proof of this fact is presented in an
extended version of this paper [13]. Intuitively, it is easy to see that the suitable ηB is defined
so that, for each sub-formula φi of φ, if φi is made true, false or is unassigned by µA, then
⟨ηB(B+

i ), ηB(B−
i )⟩ is ⟨⊤,⊥⟩, ⟨⊥,⊤⟩, or ⟨⊥,⊥⟩ respectively.

We stress the fact that this does not guarantee that the enumeration procedure always
finds this ηB, but only that such ηB exists. Ad-hoc enumeration heuristics should be
investigated.

▶ Remark 4. We notice that the pre-conversion into NNF is typically never used in plain
SAT solving, because it causes the unnecessary duplication of labels B+

i and B−
i , with extra

overhead and no benefit for the solver.

5 Experimental evaluation

In this section, we experimentally evaluate the impact of different CNF-izations on the
AllSAT task. In order to compare them on a fair ground, we have implemented a base version
of each from scratch in PySMT [7], avoiding specific optimizations done by the solvers. We
used MathSAT [6] as a SAT enumerator, because it implements the enumeration strategy
by [12] described in §2.2. We set the options -dpll.branching_initial_phase=0 to split on the
false branch first and -dpll.branching_cache_phase=2 to enable phase caching.

Experiments run on an Intel Xeon Gold 6238R @ 2.20GHz 28 Core machine with 128
GB of RAM and running Ubuntu Linux 20.04. For each instance, we set a timeout of 1200s.

5.1 Datasets description
We consider three sets of benchmarks of non-CNF formulas coming from different sources,
both synthetic and real-world. In the first set of benchmarks, we generate random Boolean
formulas by nesting Boolean operators up to a fixed depth. The second dataset consists
of Boolean formulas encoding properties of ISCAS’85 circuits [4, 8, 20]. As a third set of
problems, we consider formulas encoding Booleanized Weighted Model Integration (WMI)
problems [14, 15, 19].

The synthetic benchmarks
The synthetic benchmarks are generated by nesting Boolean operators ∧,∨,↔ until some
fixed depth d. Internal and leaf nodes are negated with 50% probability. Operators in
internal nodes are chosen randomly, giving less probability to the ↔ operator. In particular,
↔ is chosen with a probability of 10%, whereas the other two are chosen with an equal
probability of 45%. We generated 100 synthetic instances over a set of 20 Boolean atoms
and depth d = 8.

The circuits benchmarks
The ISCAS’85 benchmarks are a set of 10 combinatorial circuits used in test generation,
timing analysis, and technology mapping [4]. They have well-defined, high-level structures
and functions based on multiplexers, ALUs, decoders, and other common building blocks [8].
We generated random instances as described in [20]. In particular, for each circuit, we
constrained 60%, 70%, 80%, 90% and 100% of the outputs to either 0 or 1, for a total of 250
instances.

SAT 2023
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The WMI benchmarks
WMI problems are generated using the procedure described in [19]. Specifically, the paper
addresses the problem of enumerating all the different paths of the weight function by
encoding it into a skeleton formula. Each instance consists of a skeleton formula of a
randomly-generated weight function, where the conditions are only over Boolean atoms.
Since the conditions are non-atomic, the resulting formula is not in CNF, and thus we
preprocess it with the different CNF-izations before enumerating its models. We generate 10
instances for each depth value 3, 5, 7, 9, each instance involving 10 Boolean atoms and no
real variable, for a total of 40 problems.

We remark on two aspects of these benchmarks. First, we have chosen to have Boolean-
only weight conditions in order to better analyse the capacity of Boolean reasoning of the
solver with the different transformations, without additional factors brought by the SMT
component. Nevertheless, we expect to have similar outcomes also for formulas involving both
Boolean and SMT(LRA) atoms. Notice that these can still be meaningful WMI instances, as
the LRA component may be constrained by the rest of the formula. Second, these formulas
contain existentially quantified SMT(EUF) atoms, so that we enumerate ∃y.φ(A,y) by
projecting the models of φ over the relevant atoms A [19].

5.2 Results
Figures 1, 2, and 3 show the results of the experiments on the synthetic, ISCAS’85 and WMI
benchmarks, respectively. For each group of benchmarks, we report a set of scatter plots to
compare CNFTs, CNFPG and NNF + CNFPG in terms of number models, in the first row, and
execution time, in the second row. Notice the logarithmic scale of the axes!

In §5.3 we also report the CDF of the execution time for plain SAT solving on the
same group of benchmarks. We see from the results that, unlike with enumeration, the
pre-conversion into NNF has no benefit for plain solving, as we observed in Remark 4.

The synthetic benchmarks
The results on the synthetic benchmarks are shown in Figure 1. All the problems were
solved for all the encodings within the timeout. The plots show that CNFPG performs better
than CNFTs, since it enumerates fewer models (first row) in less time (second row) on every
instance. Furthermore, the combination of NNF and CNFPG yields by far the best results,
drastically reducing the number of models and the execution time by orders of magnitude
w.r.t. both CNFTs and CNFPG.

The circuits benchmarks
Figure 2 shows the performance of the different CNF-izations in the circuits benchmarks.
The timeouts are represented by the points on the dashed lines. First, we notice that CNFTs
and CNFPG have very similar behaviour, both in terms of execution time and number of
models. The reason is that in circuits, it is typical to have a lot of sharing of sub-formulas.
Since we constrain the outputs to be 0 or 1 at random [20], most of the sub-formulas occur
with double polarity, so that the two encodings are very similar, if not identical. Second, we
notice that by converting the formula into NNF before applying CNFPG the enumeration is
much more effective, as a much smaller number of models is enumerated, with only a few
outliers. The fact that for some instances NNF + CNFPG takes a little more time can be
caused by the fact that it can produce a formula that is up to twice as large and contains up
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Figure 1 Set of scatter plots comparing the different CNF-izations on the synthetic benchmarks.
The first and second rows compare them in terms of number of models and execution time, respectively.
All the axes are on a logarithmic scale. In these problems, there were no timeouts.
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Figure 2 Set of scatter plots comparing the different CNF-izations on the circuits benchmarks. The
first and second rows compare them in terms of number of models and execution time, respectively.
All the axes are on a logarithmic scale. In these problems, the CNFTs, CNFPG and NNF + CNFPG

reported 49, 44 and 27 timeouts, respectively, represented by the points on the dashed lines.
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Figure 3 Set of scatter plots comparing the different CNF-izations on the WMI benchmarks. The
first and second rows compare them in terms of number of models and execution time, respectively.
All the axes are on a logarithmic scale. In these problems, there were no timeouts.

to twice as many label atoms as the other two encodings, increasing the time to find the
assignments. Notice also that, even enumerating a smaller number of models at a price of a
small time-overhead can be beneficial in many applications, for instance in WMI [14, 15, 19].

The WMI benchmarks

The plots in Figure 3 compare the different CNF-izations in the WMI benchmarks in terms
of number of models and time. All the problems were solved for all the encodings within
the timeout. In these benchmarks, most of the sub-formulas occur with double polarity, so
that CNFTs and CNFPG encodings are almost identical, and they obtain very similar results
in both metrics. The advantage is significant, instead, if the formula is converted into NNF
upfront, since by using NNF + CNFPG the solver enumerates a smaller number of models. In
this application, it is crucial to enumerate as few models as possible, since for each model an
integral must be computed, which is a very expensive operation [14, 15, 19].

5.3 Comparing the CNF encodings for SAT solving

In order to confirm the statement in Remark 4, in the CDFs in Figure 4 we compare the
different CNF encodings for plain SAT solving on the same benchmarks. Even though these
problems are very small for plain solving and SAT solvers deal with them very efficiently, we
can see that converting the formula into NNF before applying CNFPG brings no advantage,
and solving is uniformly slower than with CNFPG or CNFTs. This shows that our novel
technique works specifically for enumeration but not for solving, as expected.
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1(a) Synthetic benchmarks.
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Figure 4 CDF of the time taken for plain SAT solving using the different CNF transformations.
The y-axis reports the instances for which the enumeration finished within the cumulative time on
the x-axis.

6 Conclusions and future work

We have presented a theoretical and empirical analysis of the impact of different CNF-ization
approaches on SAT enumeration. We have shown how the most popular transformations
conceived for SAT solving, namely the Tseitin and the Plaisted and Greenbaum CNF-
izations, prevent the solver from producing short partial assignments, thus seriously affecting
the effectiveness of the enumeration. To overcome this limitation, we have proposed to
preprocess the formula by converting it into NNF before applying the Plaisted and Greenbaum
transformation. We have shown, both theoretically and empirically, that the latter approach
can fully overcome the problem and can drastically reduce both the number of partial
assignments and the execution time.

As future research directions, we plan to further investigate the impact of CNF conversion
also on disjoint SMT enumeration. We expect that in this domain the impact can be even
more relevant, since in SMT multiple instances of the same theory atoms are typically rarer
than for atoms in the Boolean case. Also, disjoint SMT enumeration has a fundamental
role in Weighted Model Integration [14, 15, 19], an important framework for probabilistic
inference in hybrid domains. Hence, we believe that our contribution can have a great impact
on this application, where non-CNF formulas occur frequently. Finally, we think that work
should be done to understand the impact on enumeration with repetitions, i.e. where models
may not be disjoint, for instance in Predicate Abstraction [12].
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Abstract
We study BDD-based bucket elimination, an approach to satisfiability testing using variable elimina-
tion which has seen several practical implementations in the past. We prove that it allows solving
the standard pigeonhole principle formulas efficiently, when allowing different orders for variable
elimination and BDD-representations, a variant of bucket elimination that was recently introduced.
Furthermore, we show that this upper bound is somewhat brittle as for formulas which we get from
the pigeonhole principle by restriction, i.e., fixing some of the variables, the same approach with the
same variable orders has exponential runtime. We also show that the more common implementation
of bucket elimination using the same order for variable elimination and the BDDs has exponential
runtime for the pigeonhole principle when using either of the two orders from our upper bound,
which suggests that the combination of both is the key to efficiency in the setting.
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1 Introduction

We analyze several aspects of a simple approach to propositional satisfiability called bucket
elimination based on binary decision diagrams (BDDs) [5]. It was originally introduced by
Pan and Vardi [15], and works, given a CNF F , as follows: first translate all clauses of F into
BDDs, all having the same variable order. Then, along another variable order, conjoin all
BDDs that contain the current variable x, eliminate x in the result of the conjoin operation
by existential quantification, add the resulting BDD to the current set of BDDs, and finally
delete all BDDs containing x. The end result is a BDD representing one of the constants 1
or 0, depending on if F is satisfiable or not. The algorithm is often described by putting the
BDDs in buckets treated in the variable order as in the pseudocode Algorithm 1. It is not
hard to see that this approach decides satisfiability of all CNF-formulas correctly. We remark
in passing that bucket elimination has also been used as a general approach for reasoning in
artificial intelligence [12]. In particular, in the context of propositional satisfiability one can
implement ordered resolution, also called Davis-Putnam resolution [11], with it, which leads
to an algorithm that is similar to what we described above [17] but uses CNF-formulas to
represent intermediate results and not BDDs. In the remainder, we will only focus on bucket
elimination that is based on BDDs.

Several SAT-solvers using bucket elimination have been implemented [15, 14, 6], also
motivated by a relation to extended resolution which allows extracting clausal refutations of
CNF-formulas efficiently from runs of bucket elimination.

In this paper, we aim to get a theoretical understanding of the strength of bucket
elimination. We first prove that the approach is powerful enough to efficiently solve the
well-known pigeonhole principle formulas PHPn which are hard for other techniques, in
particular resolution [13]. Our bound confirms recent experimental results for a different
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16:2 Bounds on BDD-Based Bucket Elimination

Algorithm 1 BDD-based bucket elimination for CNF-formulas.

Input: clauses C1, . . . , Cm in variable set X, elimination variable order π

1 for x ∈ X do
2 create empty bucket Bx

3 for i = 1, . . . , m do
4 compute a BDD for Ci, put it into By where y is first variable in order π in Ci

5 for x ∈ X in order π do
6 compute BDD D by iteratively conjoining all BDDs in Bx

7 if D is constant 0-BDD then
8 return 0
9 compute a BDD D′ computing ∃xD and put it into By where y is first variable in

order π in D′

10 return 1

encoding that was specifically chosen to make the algorithm efficient [9, 10]. We here show
that also for the standard encoding, there is a choice of variable orders with which bucket
elimination can efficiently solve pigeonhole principle formulas.

We then go on showing that the upper bound for PHPn is in a sense brittle: one can
restrict the formula PHPn by assigning some of its variables, resulting in a formula on which
bucket elimination with the same variable orders as before takes exponential time. This is
surprising since fixing some of the variables reduces the search space and thus should make
the problem easier. However, in the case of bucket elimination it has the opposite effect,
making the runtime explode. This suggests that bucket elimination is not very stable under
small variations of the input.

The final part of this paper is motivated by the fact that the pigeonhole principle has been
used as a benchmark also in [15, 6] where bucket elimination was shown to be practically
inefficient. The difference between our result and [10] on the one hand and [15, 6] on the
other hand is that the latter, as also the implementation of [14], consider the same variable
order for the variable elimination and the order in the BDDs. In contrast, in our result
and the current public version of the implementation of [6, 9, 10]1 two different orders may
be chosen. To explore the impact of this change, we consider bucket elimination for PHPn

where only one of the variable orders we use in our upper bound is used. We show that in
both cases the variant that uses only one order has exponential runtime, which shows that
to efficiently solve PHPn the combination of the two orders is crucial and is more powerful
than each of them individually.

Our results can also be seen in the context of BDD-based proof systems, more specifically,
they are close to results on the proof system OBDD(∧, ∃) [2] which allows general conjunction
and variable elimination without any scheduling restrictions. It was shown in [8] that there
are polynomial size refutations of the pigeonhole principle in this system. This also follows
from our result, which can be interpreted as working in a restricted fragment of OBDD(∧, ∃).
We remark also that [7] claims that the proofs in [8] can be implemented in the algorithm
of [15]. However, this seems to be not the case due to the order restrictions of that algorithm
which are not respected in the proof. It is however possible that, after rearranging the
operations, the proof in [8] could be implemented with two orders, similarly to our result.

1 https://github.com/rebryant/pgbdd

https://github.com/rebryant/pgbdd
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2 Preliminaries

We use the usual integer interval notation, e.g. [n] := {1, . . . , n} and [m, n] := {m, m +
1, . . . , n − 1, n}. When speaking of graphs, we mean finite, simple, undirected graphs. We
write G = (A, B, E) for a bipartite graph with color classes A and B and edge set E.

We assume that the reader is familiar with the basics of propositional satisfiability, in
particular CNF-formulas, see e.g. the introductory chapters of [4]. Given a CNF-formula F

and a partial assignment a, we call the restriction of F by a the CNF which we get by fixing
the variables according to a and simplifying, i.e., we delete all clauses that are satisfied by a

and from the other clauses all literals that are falsified.
An (ordered) binary decision diagram (short BDD or OBDD) is a graph-based representa-

tion of Boolean functions as follows [5]: a BDD over a variable set X consists of a directed
acyclic graph with one source and two sinks. The sinks are labeled 0 and 1, respectively,
while all other nodes are labeled by variables from X. Every node but the sinks has two
out-going edges, called 0-edge and 1-edge, respectively. Given an assignment a to X, we
construct a source-sink path in the BDD starting in the source and iteratively following the
a(x)-edge to the next node, where x is the label of the current node. Eventually, we end up
in a sink whose label is the value computed by the BDD on a. This way, the BDD specifies
a Boolean value for every assignment to X and thus defines a Boolean function. BDDs are
required to be ordered as follows: there is an order π on X such that whenever there is an
edge from a node labeled by x to a node labeled by y, then x appears before y in π. It
follows that on every source-sink path one encounters every variable at most once.

It will sometimes be convenient to reason with complete BDDs which are BDDs in which
all source-sink paths contain all variables as labels. The width of a complete BDD is defined
as the maximal number of nodes that are labeled by the same variable. Clearly, a complete
BDD in n variables and of width w has size at most O(nw). Moreover, it is well known that
when conjoining two BDDs with the same variable order and width w1 and w2, respectively,
the result has the same order and width at most w1 · w2.

We will use the following known lower bound, see e.g. [1, Section 6]; for the convenience
of the reader, we give a self-contained proof in the appendix.

▶ Lemma 1. Every BDD computing
∧

i∈[n] xi ∨ yi with a variable order in which every xi

comes before every yj has at least 2n nodes.

3 A Polynomial Upper Bound for the Pigeonhole Principle

We consider SAT-encodings of pigeonhole problems on bipartite graphs G = (A, B, E)2. We
assume that |B| > |A|, so there is no perfect matching in the graph. In the graphs we
consider, we will have A = [n] and B = [n + 1]. We encode the non-existence of a perfect
matching by generalizing the usual direct encoding of the pigeonhole principle: for every
edge ij ∈ E, we introduce a variable pi,j which encodes if the edge ij is put into a matching
or not. For every i ∈ A, we encode by an at-most-one constraint

AMOi :=
∧

j,k∈N(i),j ̸=k

p̄i,j ∨ p̄i,k,

2 We remark that the same formulas are called bipartite perfect matching benchmarks in [9, 10], but
since the name perfect matching principle is used for a related but different class of formulas in proof
complexity [16], we follow the notation from [3] here and speak of pigeonhole formulas to avoid confusion.

SAT 2023
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that at most one vertex from B is matched to i. Here, N(i) is the neighborhood of i in G,
i.e., the set of vertices connected to i by an edge. For every j ∈ B, we add a clause

ALOj :=
∨

i∈N(j)

pi,j

encoding the fact that j must be matched to one of its neighbors in A.
The pigeonhole formula for G is then

G-PHP :=
∧

j∈B

ALOj ∧
∧
i∈A

AMOi.

We recover the usual pigeonhole problem formula PHPn by considering the complete
bipartite graph Kn,n+1 = ([n], [n + 1], [n] × [n + 1]). Conversely, we get G-PHP from PHPn

by the restriction that sets the variables pi,j for ij /∈ E to 0.
It is useful to consider the variables pi,j of PHPn organized in a matrix where, as usual, i

gives the row index while j gives the column index. Note that with this convention, ALOj

only has variables in column j while AMOi only has variables in row i.
We consider two orders on the variables in PHPn: the row-wise order

πr := p1,1, p1,2, . . . , p1,n+1, p2,1, . . . pn,n+1

that we get by reading the variable matrix row by row and the column-wise order

πc := p1,1, p2,1, . . . , pn,1, p1,2, . . . pn,n+1

that we get by reading the variable matrix column by column. We consider the same orders
for subgraphs G of Kn,n+1 by simply deleting the variables of edges not in G.

▶ Theorem 1. Bucket elimination in which all BDDs have order πr and the elimination
proceeds in order πc refutes PHPn in polynomial time.

Proof. We will polynomially bound the size of all BDDs constructed by the algorithm; since
all BDD operations we use can be performed in time polynomial in the BDD size [5], the
result then follows directly. In this we tacitly also use the fact that all operations on BDDs we
use the constructed BDDs can be assumed to be a minimal size for the variable order due to
canonicity of BDDs. We first analyze the BDDs that result from the respective quantification
steps (Line 9 in Algorithm 1). We denote by F ′

i,j the function computed by the BDD in
which we quantify pi,j . By Fi,j we denote the CNF formula that is the conjunction of all
clauses that have been conjoined before this elimination step. Observe that we get F ′

i,j from
Fi,j by quantifying all variables up to pi,j in πc. Moreover, if pi,j is before pi′,j′ in πc, then
the clauses in Fi,j are a subset of those in Fi′,j′ .

Fi,j consists of all clauses of PHPn that have a variable up to pi,j in the order πc, so
1. the clauses ALOk for all k ≤ j,
2. the clauses p̄i′,k ∨ p̄i′,ℓ, for i′ ∈ [n] and 1 ≤ k < ℓ ≤ n + 1, k < j, and
3. the clauses p̄i′,j ∨ p̄i′,k for i′ ∈ [i] and k ∈ [n + 1], k ̸= j.
Remember that we get F ′

i,j from Fi,j by quantifying the variables up to pi,j in the order πc.
We will show that F ′

i,j can be encoded by a small BDD. We first consider the case j = 1.

▷ Claim 2. An assignment a′ satisfies F ′
i,1 if and only if

a′ sets one of the pi′,1 with i′ ∈ [i + 1, n] to 1, or
there is an i∗ ∈ [i] such that all pi∗,j with j ∈ [2, n + 1] take the value 0 in a′.
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Proof. Assume first that there is a pi′,1 with i′ ∈ [i + 1, n] set to 1 by a′. We extend a′ to
an assignment a of Fi,1 by setting all quantified variables pk,1 for k ∈ [i] to 0. Then ALO1
is satisfied by pi′,1 and the pk,1 for k ∈ [i] satisfy the clauses in 3. Since Fi,1 does not have
clauses from 2, Fi,1 is satisfied by a and thus a′ satisfies F ′

i,1. If there is an i∗ ∈ [i] such that
all pi∗,j with j ∈ [2, n + 1] take the value 0, then set a(pi∗,1) := 1 and a(pk,1) := 0 for all
other k ∈ [i], k ̸= i∗. As before, all clauses of Fi,1 are satisfied and thus F ′

i,1 is satisfied by a′.
For the other direction, assume that a′ satisfies F ′

i,1 and that a is an extension of a′ that
satisfies Fi,1. If there is an i∗ ∈ [i] such that all pi∗,j with j ∈ [2, n + 1] take the value 0, then
there is nothing to show. So assume that for every k ∈ [i] there is a j′ ∈ [2, n + 1] such that
a′(pk,j′) = 1. Since Fi,1 contains the clause p̄k,1 ∨ p̄k,j′ , we have a(pk,1) = 0. Since this is
true for all k ∈ [i] and a satisfies ALO1, there must be i′ ∈ [i + 1, n] which is set to 1 by a′

which completes the proof of the claim. ◁
It follows that Fi,1 can be expressed as a small BDD with variable order πr: check for every
fixed i′ ∈ [i] if the value of all pi,j is 0. Since, for every i ∈ [n], these variables are consecutive
in πr, this can be easily done by a BDD that is essentially a path. We then glue these BDDs
in increasing order of i′ in the obvious way and check for i′ ∈ [i + 1, n] if pi′,1 takes value 1
to get a BDD for Fi,1 of size O(n2), since we have to consider O(n2) variables.

We now consider the case j > 2. In that case, Fi,j contains all variables of PHPn. Note
that if j = n + 1, then Fi,j = PHPn and thus the formula F ′

i,j is unsatisfiable and has a
constant size encoding as a BDD. So assume in the remainder that j ≤ n. Consider an
assignment a′ to F ′

i,j . Let Ia′ be the set of indices i′ ∈ [n] such that for all j′ for which pi′,j′

appears in F ′
i,j we have a′(pi′,j′) = 0.

▷ Claim 3. a′ satisfies F ′
i,j if and only if

1. |Ia′ | ≥ j and there is an index i′ ∈ Ia′ ∩ [i], or
2. |Ia′ | ≥ j − 1 and there is an i∗ ∈ [i + 1, n] \ Ia′ such that a′(pi∗,j) = 1.

Proof. Let first Case 1 be true. Then we can construct a injective function f : [j] → Ia′

with f(j) ∈ Ia′ ∩ [i]. We construct an extension a of a′ to all variables of Fi,j as follows: for
j′ ∈ [j] we set a(pf(j′),j′) := 1 and set all other variables to 0. Then for j′ ∈ [j], the clause
ALOj′ is satisfied by pf(j′),j′ . Let Vi,j the variables of a not assigned in a′. For every i′ /∈ Ia′ ,
the variables pi′,k ∈ Vi,j are assigned to 0, so all clauses of the form p̄i′,k ∨ p̄i′,ℓ in Fi,j are
satisfied. If i′ ∈ Ia′ , then, since f is injective, at most one variable pi′,k with k ∈ [n + 1] is
assigned to 1, so a satisfies AMOi and thus in particular all clauses of the form p̄i′,k ∨ p̄i′,ℓ.
Thus, a satisfies Fi,j and a′ satisfies F ′

i,j .
Now assume Case 2 is true. Construct a injective function f : [j − 1] → Ia′ . We again

construct an extension a of a′: for j′ ∈ [j − 1] we set a(pf(j′),j′) := 1 and set all other
variables in Vi,j to 0. We show that all clauses of Fi,j are satisfied by a. First, ALOj is
satisfied by pi∗,j . For j′ ∈ [j − 1], the clause ALOj is satisfied by pf(j′),j′ . For the binary
clauses, we reason exactly as in the previous case. It follows that a′ satisfies Fi,j .

For the other direction, assume that a′ satisfies F ′
i,j and let a be an extension of a′

that satisfies Fi,j . Since a must in particular satisfy the clauses ALOj′ for j′ ∈ [j − 1],
we can choose, for every j′ ∈ [j − 1], an index f(j′) ∈ [n] such that a(pf(j′),j′) = 1. All
variables in the clauses ALOk for k ∈ [j − 1] are in Vi,j , so all binary clauses pi′,k ∨ p̄i′,ℓ with
k ∈ [j − 1] appear in Fi,j . So in particular, there cannot be k ∈ [j − 1], ℓ ∈ [n + 1] such that
a(pf(k),k) = a(pf(k),ℓ) = 1. It follows that f is injective and for every k ∈ [j − 1] we have
that f(k) ∈ Ia′ . It follows that |Ia′ | ≥ j − 1.

Now assume that Case 1 is false. Say first that |Ia′ | ≱ j, so |Ia′ | = j − 1. Then f is a
bijection. The clause ALOj is satisfied by a, so there must be i∗ ∈ [n] such that a(pi∗,j) = 1.
We claim that i∗ cannot be in Ia′ . By way of contradiction, assume this were wrong. Then,
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16:6 Bounds on BDD-Based Bucket Elimination

because f is a bijection, there is j′ ∈ [j − 1] with f(j′) = i∗. By construction of f , we
have a(pf(j′),j′) = a(pi∗,j′) = 1. Then, because Fi,j contains the clause p̄i∗,j′ ∨ p̄i∗,j , the
assignment a does not satisfy Fi,j which is a contradiction. So i∗ /∈ Ia′ . Moreover, i∗ > i

since otherwise all binary clauses p̄i∗,j ∨ p̄i∗,ℓ would be in Fi,j and thus i∗ would be in Ia′ .
So in this case we have that Case 2 is true.

If there is no index i′ ∈ Ia′ ∩ [i], then we claim that ALOj is satisfied by a variable pi∗,j

for i∗ > i: reasoning with the binary clauses similarly to before, whenever a(pi′,j) = 1 for
some i′ ∈ [i], then i′ ∈ Ia′ . So none of the pi′,j with i′ ∈ [i] satisfy ALOj and it is satisfied by
some pi∗,j which appears in F ′

i,j . Then i∗ /∈ Ia′ due to a′(pi∗,j) = 1, so Case 2 is true. ◁

With Claim 3, we can bound the size of the BDD encoding F ′
i,j : since for every i′ ∈ [n]

the variables pi′,j′ are consecutive in the order πr, we can check if i′ ∈ Ia′ by a BDD of
constant width. By making j parallel copies of this BDD for every i′, we can compute the
size of Ia′ cutting off at j in width O(j). We can also check if there is an index i′ ∈ Ia′ ∩ [i] or
i∗ ∈ [i+1, n]\Ia′ such that a′(pi∗,j) = 1 with only a constant additional factor. Since F ′

i,j has
O(n(n − j)) variables, the overall size of the BDD computing F ′

i,j is O(j(n − j)n) = O(n3).
It remains to bound the size of BDDs we get from the conjoin-steps between quantification

steps. So consider a conjoin step before quantifying pi,j but after the potential previous
quantification. Call the resulting BDD D and let D′ be the BDD we got from the previous
quantification (if there is no previous quantification, set D′ to the constant 1 BDD).

▷ Claim 4. The size of D is O(n3).

Proof. We first claim that when we start conjoining the BDDs in the bucket of variable pi,j ,
the only BDD that does not encode a clause is D′. This is because after every quantification
step the result contains the next variable in the order πc. Thus, since we conjoin only BDDs
that contain the variable pi,j , the BDDs involved in these steps are D′ and potentially BDD
representations of ALOj and clauses p̄i,j ∨ p̄i,k for k > j. First assume that the conjunction
only involves clauses p̄i,j ∨ p̄i,k for k > j. We claim that the result then has size O(d) where d

is the number of conjuncts involved. To see this, observe that if pi,j takes value 0, then all
clauses in the conjunction are true, so the conjunction evaluates to true as well so we can
directly go to the 1-sink. If pi,j takes value 1, then we have to verify if all other pi,k involved
in the conjunction are 0 which can be done by a path of length d because pi,j is the first
variable in πr.

If the conjunction also involves ALOj , then if pi,j takes value 1, we proceed as before
since ALOj is satisfied already. For the case where pi,j takes value 0, we have to check all
other variables in ALOj on a path. ALOj is only conjoined if i = 1, so in that case pi,j is
again the first variable to consider, so this procedure can be done following the order πr.
Overall, the conjunction in this case has size O(n). Note also that in all cases discussed so
far, we can also represent the conjunction by a BDD of constant width.

It remains to consider the case in which D′ is involved in the conjunctions. We can then
see the conjunction as one of several clauses, as discussed above, and D′. As shown above, D′

has width O(j) = O(n), so this is also true for the result D of conjoining some of the clauses,
since the latter contribute only constant width. So D has a BDD of size O(n3). ◁

We have shown that all BDDs that we ever construct in the refutation have size at most
O(n3). We make O(n3) conjoin operations and O(n2) quantifications and all BDD-operations
can be performed in time polynomial in the input, so the overall runtime is polynomial. ◀



S. Mengel 16:7

4 No Closure Under Restrictions

We next show that Theorem 1 is not true for restrictions of PHPn. To this end, we consider
the graph G = ([2n], [2n + 1], E) where the edge set E is defined by

E = {(j, j), (n + j, j), (j, n + 1 + j), (n + j, n + 1 + j), (j, n + 1), (n + j, n + 1), | j ∈ [n]}.

▶ Theorem 5. Bucket elimination in which all BDDs have order πr and the elimination
proceeds in order πc refutes G-PHP in time Ω(2n).

Proof. We will show that bucket elimination constructs an exponential size BDD in its run.
To this end, we first give all the clauses of G-PHP (with the constraint names below):∧

j∈[n]

(
(p̄j,j ∨ p̄j,n+1+j) ∧ (p̄j,j ∨ p̄j,n+1) ∧ (p̄j,n+1 ∨ p̄j,n+1+j)

)︸ ︷︷ ︸
AMOj

∧
∧

j∈[n]

(
(p̄n+j,j ∨ p̄n+j,n+1+j) ∧ (p̄n+j,j ∨ p̄n+j,n+1) ∧ (p̄n+j,n+1 ∨ p̄n+j,n+1+j)

)︸ ︷︷ ︸
AMOn+j

∧
∧

j∈[n]

(
(pj,j ∨ pn+j,j)︸ ︷︷ ︸

ALOj

∧ (pj,n+1+j ∨ pn+j,n+1+j)︸ ︷︷ ︸
ALOn+1+j

)
∧

∨
j∈[n]

pj,n+1 ∨ pn+j,n+1︸ ︷︷ ︸
ALOn+1

We consider the step directly before the quantification of p2n,n+1, so after conjoining the
contents of Bp2n,n+1 to a BDD D in Line 6 in Algorithm 1. We claim that D has exponential
size. To this end, first observe that, at the time of the construction of D, all clauses have
been joined except ALOn+1+j which contain no variables pi,j′ with j′ ∈ [n + 1]. We claim
that all these clauses have contributed to D. Indeed, whenever eliminating pi,j with j ∈ [n],
the result contains the variable pi,n+1 and will thus be put into the bucket Bpi,n+1 eventually.
Then the clause ALOn+1 makes sure that all these BDDs are (after some more conjoining
and quantification) contributing to D. So we get D by conjoining all clauses except the
ALOn+1+j and eliminating all variables up to p2n−1,n+1.

Let F be the function we get from D by fixing pn,2n+1, p2n,2n+1 to 0 and p2n,n+1 to 1. Let
F ′ be the corresponding conjunction of clauses. Then ALOn+1 is satisfied and the remaining
literals p̄i,n+1 are all pure in F ′. Thus, by pure variable elimination, an assignment a to the
variables pj,n+1+j , pn+j,n+1+j for j ∈ [n − 1], which are the variables of F , can be extended
to a satisfying assignment of F ′ if and only if it can be extended to a satisfying assignment of

p̄2n,n ∧ (pn,n ∨ p2n,n) ∧
∧

j∈[n−1]

(p̄j,j ∨ p̄j,n+1+j) ∧ (p̄n+j,j ∨ p̄n+j,n+1+j) ∧ (pj,j ∨ pn+j,j).

Eliminating pj,j , pn+j,j for j ∈ [n], we see that F is equivalent to∧
j∈[n−1]

(p̄j,n+1+j ∨ p̄n+j,n+1+j).

When representing F in a BDD with row-wise variable order, all pj,n+1+j are before all
pn+j,n+1+j , so we are, up to renaming literals which does not change the size of a BDD, in
the situation of Lemma 1. We get that any BDD for F with the order πr has size at least
2n−1 and, since fixing variables does not increase the size of BDD-representations, we get
the same lower bound for D. ◀
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5 Lower Bounds for Single Orders

We will now analyze bucket elimination in which the elimination order is also the order in
which variables appear in the BDDs. This is the behavior of the implementations of [15, 14];
the implementation of [6] allows the use of two orders in the current version. In the variant
with one order, which we call single-order bucket elimination, it is always the variable in the
source of the BDDs that is eliminated, which makes the algorithm simpler. We show here
that neither of the two orders introduced in Section 3 leads to polynomial runtime behavior
on its own, suggesting that it is the combination of both that is required for efficiency.

▶ Lemma 2. Single-order bucket elimination for PHPn with order πc constructs an intermedi-
ate BDD of size 2n.

Proof. Consider the situation after we have eliminated the variables p1,1, p2,1, . . . , pn,1. As
analyzed in the proof of Theorem 1, after eliminating the last of these variables, we have
constructed a BDD for the function F ′

n,1 that is satisfied by an assignment if and only if
there is an i such that all pi,j with j ∈ [2, n + 1] take the value 0. We claim that the
BDD-representation of F ′

n,1 has exponential size.
To show this, we consider the restriction F of F ′

n,1 that we get by fixing all variables pi,j

for j > 3 to 0. Thus, F has the variables p1,2, p1,3, p2,2, p2,3, . . . , pn,2, pn,3. We rename for all
i ∈ [n] the variables pi,2 to xi and pi,3 to yi. The resulting function F ′ evaluates to 1 if and
only if there is an i such that xi and yi take the value 0. Then the negation F̄ of F is given
by F̄ =

∧
i∈[n] xi ∨ yi. Moreover, the variable order of the BDD we have to consider has all

xi before any yi, and thus, by Lemma 1, any BDD for F̄ has size at least 2n. Since BDDs
allow negation and restrictions without size increase, this shows the lower bound for Fn,1
and thus the claim. ◀

▶ Lemma 3. Single-order bucket elimination for PHPn with order πr constructs an intermedi-
ate BDD of size 2n.

Proof. Consider the BDD D we construct after eliminating the first row. The clauses that
contribute to this function are all clauses of AMO1 as well as all ALOj for all j ∈ [n + 1].
When quantifying away the p1,j for j ∈ [n], we get a function F that is satisfied by an
assignment a if there is a j∗ ∈ [n + 1] such that for all j ∈ [n + 1] \ {j∗} there is a pi,j set
to 1 by a; this is because all ALOj have to be satisfied and at most one of them can be
satisfied by p1,j due to AMO1. F has to be represented by a BDD in bucket elimination and
we will show that this requires exponential size. To see this, fix all variables pi,j for i > 3
to 0 and fix p2,n+1 and p3,n+1 to 0. The resulting function is F ′ =

∧
j∈[n] p2,j ∨ p3,j . In the

BDD-representation, all p2,j come before any p3,j , so, up to renaming the variables p2,j to
xj and p3,j to yj , we are in the situation of Lemma 1 and, observing that fixing variables
does not increase the size of a BDD, the lower bound follows from there. ◀

6 Conclusion

We have shown that bucket elimination based SAT-solving using BDDs can efficiently solve
pigeonhole principle formulas, theoretically confirming prior experimental work from [9, 10, 6],
which worked with a slightly different encoding. We have also seen that this result is not
stable under restrictions, showing that, at least for the same orders, there are formulas we get
by restriction of the pigeonhole principle that take exponential time to solve. We have also
seen that the common single-order variant of bucket elimination [15, 14, 6] has exponential
runtime for the two variable orders that in combination allow efficient solving.
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For practical SAT-solving with BDD-based solvers, our results are mixed news: while we
confirm that these solvers are in principle powerful in the sense that they can efficiently solve
instances that are out of reach for resolution and thus CDCL-solvers, our additional results
suggest that in general it might be hard to come up with the right two variable orders for
the instances at hand, in particular since orders good for one type of formulas are bad for
very related formulas. So it is not clear how useful BDD-based bucket elimination will be
beyond very restricted formula classes.

We close the paper with some questions. First, it would be interesting to understand if
for every bipartite graph G the formula G-PHP can be refuted efficiently by choosing orders
adapted to the problem or if there are graphs for which bucket elimination is slow for all
order choices. In particular, one might also consider some of the many different variants
of the pigeonhole principle or mutilated chessboard formulas which have been considered
extensively in the literature as benchmarks for solvers but also in theoretical work, see e.g. the
overview in [16].

Finally, it is not clear if single-order bucket elimination can solve PHPn efficiently for
some order. The experimental work in [5, 10] does not show any such order, and our own
search in this direction has shown only lower bounds that are variants of those presented in
Section 5. It is thus natural to conjecture that in fact single-order variable bucket elimination
cannot solve PHPn efficiently. Note that proving this would in particular show that two
orders make the approach strictly more powerful.
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A Proofs for Section 2 (Preliminaries)

▶ Lemma 1. Every BDD computing
∧

i∈[n] xi ∨ yi with a variable order in which every xi

comes before every yj has at least 2n nodes.

Proof. Consider the partition (X, Y ) where X contains all the xi and Y all the yi. We start
by presenting a known connection to so-called rectangle covers. A rectangle respecting the
partition (X, Y ) is a function f(X, Y ) that can be written as a conjunction

f(X, Y ) := f1(X) ∧ f2(Y ).

All rectangles we consider here will respect (X, Y ), so we do not mention it here explicitly in
the remainder. We say that an assignment a lies in the rectangle f , if f(a) = 1. A rectangle
cover of a function f(X, Y ) is a sequence f1, . . . , fs such that

f(X, Y ) =
∨

i∈[s]

f i(X, Y ) (1)

where the f i are all rectangles. The size of the rectangle cover is defined to be s. Rectangles
are connected to BDDs due to the following result:

▷ Claim 6. If a function f can be represented by a BDD of size s with a variable order in
which all variables in X appear before those in Y , then there is a rectangle cover of f of
size s.

Proof. Let D be a BDD computing f . Let v1, . . . , vℓ the nodes with a label not in X such
that there is an edge from a node with label in X to vi. Remember that every assignment a

to (X, Y ) induces a path through D. Let for every i ∈ [ℓ] the Boolean function f i be defined
as the function accepting exactly the assignments a accepted by D and whose path leads
through a. Then f i is a rectangle, since we can freely combine the paths from the source
to vi with those from vi to the 1-sink. Moreover, every assignment accepted by D must
be accepted by at least one vi since the 1-sink is not labeled by X but the source of D is
(ignoring trivial cases here in which f does not depend on X where the statement is clear
because f itself is a rectangle cover of itself). So we get that

f(X, Y ) =
∨

i∈[ℓ]

f i(X, Y )

and thus f has a rectangle cover of size ℓ. Observing that D has at least the nodes v1, . . . , vℓ

which are all different and thus at least size ℓ, completes the proof of the claim. ◁
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We will show a lower bound on the size of any rectangle cover of the function f(X, Y ) :=∧
i∈[n] xi ∨ yi, using the so-called fooling set method as follows: consider the set M of models

of f(X, Y ) of Hamming weight exactly n. These models assign for each i ∈ [n] exactly one
of xi and yi to 1.

▷ Claim 7. In any rectangle cover of f , no two assignments a, b ∈ M with a ̸= b lie in the
same rectangle.

Proof. By way of contradiction, assume that there is a rectangle cover of f such that there
are a, b ∈ M with a ̸= b that lie in the same rectangle f j . Let aX be the restriction of
a to X and aY that to Y . Define bX and bY analogously. Since a and b are not equal,
there is an i ∈ [n] where a(xi) ̸= b(xi) or a(yi) ̸= b(yi). Since we have by the choice of M

that a(xi) = ¬a(yi) and similarly b(xi) = ¬b(yi), we actually get that a(xi) ̸= b(xi) and
a(yi) ̸= b(yi) are both true. It follows that a(xi) = b(yi) ̸= a(yi) = b(xi).

Now assume w.l.o.g. that a(xi) = b(yi) = 0. Then for c = aX ∪ bY we have f(c) = 0. But
since f j is a rectangle, we have that f j(c) = f j

1 (aX) ∧ f j(bY ) = 1 which is a contradiction.
So a and b cannot lie in the same rectangle, as claimed. ◁

Note that for every assignment aX to X there is an extension to Y such that the resulting
assignment a is in M (simply set for every i ∈ [n] the missing value by a(yi) := ¬a(xi)).
Thus, M has size 2n. By Claim 7 and Claim 6, we get that any rectangle cover of f and
thus any BDD for f has size 2n which completes the proof. ◀
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Abstract
We introduce a new release of our SAT solver Intel® SAT Solver. The new release, called IS23, is
targeted to solve huge instances beyond the capacity of other solvers. IS23 can use 64-bit clause-
indices and store clauses compressedly using bit-arrays, where each literal is normally allocated
fewer than 32 bits. As a preliminary result, we show that only IS23 can handle a gigantic trivially
satisfiable instance with over 8.5 billion clauses. Then, we demonstrate that IS23 enables a significant
improvement in the capacity of our industrial tool for cell placement in physical design, since only
IS23 can solve placement instances with up to 4.3 billion clauses. Finally, we show that IS23 is
substantially more efficient than other solvers for finding many (106) placements on instances with
up to 170 million clauses. We use the latter application to demonstrate that variable succession,
that is, the order in which the variables are provided to the solver, might have a significant impact
on IS23’s performance, thereby providing a new dimension to SAT encoding considerations.
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1 Introduction

A SAT solver decides the classical NP-complete problem of whether the given propositional
formula F in Conjunctive Normal Form (CNF)1 is satisfiable. Modern Conflict-Driven-
Clause-Learning (CDCL) SAT solvers are widely used [5]. They implement backtrack search,
enhanced by conflict clause learning and many other techniques.

SAT research is mostly focused on developing algorithms for solving, within the given
timeout, empirically difficult, but not necessarily large benchmarks. In this study, we targeted
improving the SAT capacity to enable solving huge instances with billions of clauses (cf.
the size of the instances in the main track of the latest SAT competition 2022 [2] ranged
from 264 to 214,309,011 clauses with 7,117,471 being the average). SAT solvers might fail on
huge instances due to limitations related to memory management, uncharacteristic for other
use-cases. To better understand these limitations, recall how SAT solvers manage clauses.

Long clauses (that is, clauses having at least 3 literals) are stored in the so-called clause
buffer. An initial clause C is typically represented by p1` |C|q 32-bit words, containing C’s
size, followed by C’s literals (where conflict clauses have some extra-fields). Let variable
succession be the order in which the variables are provided to the solver. The internal
indices, which represent variables and literals, depend on the variable succession. In most
solvers since MiniSat [9], a positive literal vi (where i reflects its order in the succession) is
represented by the 32-bit literal-index lipviq “ 2ˆ i, while a negative literal ␣vi is represented
by lip␣viq “ 2ˆ i` 1. For example, consider the following formula E:

E “ pC1 “ v1 _ v2 _␣v3q ^ pC2 “ ␣v1 _ v2 _ v3q

1 A CNF formula is a conjunction of clauses (aka, initial clauses), each clause being a disjunction of
Boolean literals, where a literal is a Boolean variable or its negation.
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E would be represented in the clause buffer by the following eight 32-bit words:

C

|C1|
hkkikkj

3 ,

C1
hkkikkj

2, 4, 7 ,

|C2|
hkkikkj

3 ,

C2
hkkikkj

3, 4, 6
G

In order to uniquely identify and access a clause C, solvers use its clause-index ci(C) in
the clause buffer. In our example, ci(C1)=0 and ci(C2)=4.

The fundamental capacity limitation of the older solvers (such as MiniSat and
Glucose [1]), but also some of the most modern solvers (such as MergeSat [15] and the
baseline solver for recent SAT competition winners Kissat [4]) is caused by their clause-index
width being limited to 32 bits or even fewer due to additional bookkeeping (e.g., 31 bits in
Kissat).

The first open-source solver to offer a 64-bit-clause-index version was CryptoMiniSat [25],
which can be compiled with a 64-bit clause-index since May 2017 [24]. A 64-bit clause-index
is also used by CaDiCaL [4]. Although using 64-bit clause-indices eliminates the major
SAT capacity limitation while not affecting the size of the clause buffer, it comes with the
price of inflating data structures which point to clauses (notably, including the Watch Lists
(WLs) [17], which contain two clause-indices per clause), thus increasing the solver’s memory
consumption.

Intel® SAT Solver (IntelSAT) is our CDCL SAT solver, which we released as open-
source last year [18]. We optimized it for incremental SAT solving in the presence of many
satisfiable queries. The original IntelSAT uses a 32-bit clause-index. This paper introduces
a new release of IntelSAT – IS23, aimed at extending the solver’s capacity. IS23 can be
compiled into various versions, including the default IS23 (similar to the original IntelSAT),
IS23-64 and IS23-64C. IS23-64 extends the clause-index width from 32 bits to 64 bits.
IS23-64C uses bit-arrays to store clauses compressedly, where the goal is to reduce the
memory footprint (thus, potentially, also reducing the number of cache misses) at the expense
of applying additional bit-wise operations to access clauses.

We demonstrate our core idea on our example formula E “ pC1 “ v1_ v2_␣v3q^ pC2 “

␣v1 _ v2 _ v3q. Given a clause C, let its literal-width lwpCq be the minimal number of bits
required to store its highest literal index. To store C, we allocate its every literal lwpCq
bits. Observe that, in E, we have lwpC1q “ lwpC2q “ 3, thus the formula (without the clause

sizes) can be represented using 18 bits as
C C1

hkkkkkkkkkkkkikkkkkkkkkkkkj

010
loomoon

2

, 100
loomoon

4

, 111
loomoon

7

;
C2

hkkkkkkkkkkkkikkkkkkkkkkkkj

011
loomoon

3

, 100
loomoon

4

, 110
loomoon

6

G

(in

binary encoding), which requires only one 32-bit word instead of eight. Apparently, to access
clause’s literals, the literal-width must be known upfront. To support clauses with arbitrary
literal-widths, IS23-64C stores clauses in multiple bit-arrays, where all the clauses in a single
bit-array share the same literal-width (along with two other fields as detailed in Sect. 3). In
IS23-64C, the 64-bit clause-index of every clause C contains the unique ID of C’s bit-array
(11 bits) and the bit number where C starts in its bit-array (the remaining 53 bits).

Notably, the sharpSAT model counter [26] first applied the idea of storing subsets of
clauses (aka components) compressedly by limiting the number of bits in every clause to
the maximal literal-width in that component. However, while sharpSAT only stashed the
components compressedly for future usage, we have implemented a full-fledged CDCL SAT
solver with the compressed clause buffer as the underlying data structure.

We carried out several experiments to evaluate the different versions of IS23 against
other solvers, including Kissat, CaDiCaL, CryptoMiniSat and MergeSat.
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In our first preliminary experiment, we show that only IS23-64C can solve a huge trivially
satisfiable instance having 233 “ 8,589,934,592 clauses and 292,057,776,128 literals overall
(in all the input clauses).

Our own interest in extending the capacity of SAT stems from our industrial placement
application. Cell placement is one of the most important problems in VLSI automation [23].
Its most basic version concerns placing without overlap a set of rectangles on a grid. In [8],
we have presented our SAT-based placement tool, which starts with finding one placement
and then optimizes it with incremental SAT queries. We initiated the development of IS23,
since we had been observing an increasing number of cases where our tool failed to find even
the initial placement due to capacity limitations of IntelSAT. Furthermore, recently, we
encountered the need to solve another flavor of the placement problem, we call N -placements:
find a user-given number of different placements (from which promising placements are
subsequently selected and might be further optimized). In the rest of paper, we consider the
problems of finding 1 or N ą 1 placements, leaving optimization outside of our scope.

In our second experiment, we show that only with IS23 can we find one placement for
huge problems, whose corresponding CNF instances have up to 4.3 billion clauses.

In our third experiment, we show that only IS23-64C can find 1,000,000 placements for
instances having up to 170 million clauses, where, to achieve the best results, the variable
succession scheme must be carefully chosen.

The rest of this paper is organized as follows. Sect. 2 presents preliminaries. Sect. 3
introduces IS23. Sect. 4 is about experimental results. Sect. 5 concludes our work.

2 Preliminaries

A literal l is a Boolean variable v, in which case l is positive, or a variable’s negation ␣v, in
which case l is negative. A clause is a disjunction of literals. Let an n-clause and >n-clause
be a clause of size n and >n, respectively. A long clause is a >2-clause; a binary clause is a
2-clause.

A formula F is in Conjunctive Normal Form (CNF) if it is a conjunction (set) of clauses.
A SAT solver receives a CNF formula F and returns a satisfying assignment (aka, model
or solution) µ, which assigns a Boolean value µpvq P t0, 1u to every variable v, where
µp␣vq “ ␣µpvq. For a literal l, let the projection of l in µ µl P tl,␣lu be l iff µplq “ 1 or,
otherwise, ␣l.

In incremental SAT solving (under assumptions) [9, 21], the user may invoke the solver
multiple times, each time with a new set of zero or more assumption literals (called, simply,
the assumptions), while adding zero or more clauses in-between the queries. The solver then
checks the satisfiability of all the clauses provided so far, while enforcing the values of the
current assumptions.

Cell placement (placement) is one of the most important problems in VLSI automation [23].
We consider the following basic (but already NP-complete [13]) version which concerns placing
without overlap a set of rectangles on a grid. The input of the placement problem comprises
the following two components: a rectangular grid region of fixed size and a finite set of
rectangular cells of user-given widths and heights. We are interested in feasible placements,
that is, placements in which no cell overlaps other cells. An example of a feasible placement
is shown below (placing five cells of sizes 4ˆ 1, 4ˆ 3, 2ˆ 2, 2ˆ 4 and 1ˆ 5 on a 7ˆ 6 grid):

SAT 2023



17:4 Solving Huge Instances with Intel® SAT Solver

0 1 2 3 4 5 6 7
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To encode placement into SAT, first, we associate two bitvectors cl and cb with the
left-bottom coordinate pcl, cbq of every cell c (where a Bitvector (BV) b “ tbn, bn´1, . . . , b1u

is a sequence of |b| Boolean variables, called bits). Second, we create two sets of constraints
in BV logic [3] over cl’s and cb’s to ensure that all the cells are inside the grid and there is no
overlap. Third, we apply an eager BV solver [10], which, after preprocessing, translates the
formula to SAT and solves it using a SAT solver. We refer the reader to [8] for all the details.

This paper also considers the N -placement problem of finding a user-given number of
placements. To solve N -placement, we apply the following algorithm, we call SimpleBlock
(first proposed in [16] in the context of model checking). SimpleBlock, shown below,
iteratively finds a solution (placement) µ and immediately blocks it using a single blocking
clause containing the falsified literal per every important variable, where, in our case, the set
of the important variables comprises all the bits of the left-bottom coordinates of every cell:

1: Create a CNF formula F representing the given problem.
2: Invoke a SAT solver over F . Let µ be the returned model (if any).
3: while F is satisfied with µ and the user-given solution threshold N not reached do
4: Block the current solution by adding the following blocking clause to F :

p
ł

cPC
␣ µcl

1 _␣ µcl
2 _ . . ._␣ µcl

|cl|q_ (
Ž

cPC ␣ µcb
1 _␣ µcb

2 _ . . ._␣ µcb
|cb|
q

5: Invoke a SAT solver over F . Let µ be the returned model (if any).

To evaluate different SAT solvers within SimpleBlock, we have implemented SimpleBlock
in both IS23 and CaDiCaL, whereas CryptoMiniSat already supports it.

AllSAT is the problem of enumerating all the solutions in a CNF formula. In practice,
AllSAT tools can stop after finding N solutions, which makes them applicable for solving
N -placement. [27] contains an extensive survey of AllSAT approaches; it also presents three
state-of-the-art AllSAT tools, called Toda tools (solvers) herein. The Toda tools include one
solver per each of the following three families of AllSAT algorithms. The first family of the
so-called blocking solvers use SimpleBlock enhanced (mainly by generalizing each solution
by turning as many variables as possible into don’t cares, thus shortening the blocking
clauses). The second family of nonblocking solvers [11] modifies the SAT solver to enumerate
the solutions explicitly without using blocking clauses. The third family is based on BDD
caching [12] and can be combined with the other two methods. Our empirical evaluation of
N -placement approaches in Sect. 4.3 includes the Toda tools.

3 IS23: the New Release of IntelSAT

This section introduces the IS23 release of IntelSAT. Sect. 3.1 describes the new parametrized
API. Sect. 3.2 is about clause compression.

We would also like to mention a new feature of out-of-memory recovery: when the
operating system refuses to allocate memory, IS23 compacts its data structures and retries,
rather than immediately returning a failure.
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3.1 The API
The users of the solver’s C++ library class, denoted herein by IS23 xα, β, γy, can now para-
metrize the solver at compile-time with the following template parameters:
1. clause-index width α: the width of the C++ variables, used to represent the clause indices.
2. literal-index width β: the width of the C++ variables, used to represent the literal indices.
3. compression flag γ: a Boolean flag indicating whether to compress clauses using bit-arrays.

For the solver to compile, α and β must be powers of 2 and the following assertion must
hold: 8 ď β ď α ď K for a K-bit operating system.

The default version is IS23 ” IS23 x32, 32, 0y. In this paper, we also experiment with
IS23-64 ” IS23 x64, 32, 0y and IS23-64C ” IS23 x64, 32, 1y, where IS23-64 and IS23-64C
can also be accessed from the command-line of the solver’s executable (the executable works
with the standard DIMACS file format).

The literal-index width β had been 32 bits for every open-source SAT solver so far, hence
they can accommodate at most 231 ´ 1 variables. In fact, it is 231 ´ 1 for CaDiCaL, but
only 228 ´ 1 for Kissat and CryptoMiniSat due to additional bookkeeping. Specifically,
Kissat borrows bits from the literal-index to be able to inline binary clauses (that is, store
them in the WLs only without maintaining a copy in the clause buffer), while efficiently
implementing inprocessing [6] as well as failed literal probing and vivification [14]. In
IntelSAT, the WLs are organized similarly to Kissat, but there is currently no need to
borrow bits from the literal-index as inprocessing, failed literal probing and vivification are
expected to be too heavy for both solving rapid satisfiable incremental queries (the original
IntelSAT application) and solving gigantic instances (the current IntelSAT application).

Notably, IS23 is the first solver which can be compiled to allow for a practically unlimited
number of variables (263´1 “ 9,223,372,036,854,775,807 variables using β “ 64, if no bits are
borrowed from the literal-index), where borrowing several bits, if required, is not expected
to limit the number of variables in practice. One could also potentially take advantage of
IS23’s architecture for saving the memory when the number of variables is limited by 215 ´ 1
(using β “ 16). We leave experiments with different literal-index widths to future work.

3.2 Clause Compression
In this section, we describe how IS23-64C manages clauses. For simplicity, we assume herein
that the literal-index width β is 32. Similarly to most SAT solvers, IS23 represents a positive
literal vi by the literal index lipviq “ 2 ˆ i and a negative literal ␣vi by the literal index
lip␣viq “ 2ˆ i`1. As we have mentioned, IS23 inlines any binary clauses into the WLs [4,7],
hence the discussion below concerns long clauses only.

For our purposes, a bit-array is a data structure which supports reading and writing of up
to 64 bits starting from a specific bit to a dynamically allocated buffer (using several bitwise
operations for every access [22]). We have engineered efficient bit-array support in IS23.

Recall from Sect. 1 that the literal-width lwpCq represents the minimal number of bits,
required to store C’s highest literal-index. Our core idea is compressing memory by storing
clauses as bit-arrays, where each literal is represented by lwpCq bits, and the width of the
clause-size field is also clause-dependent. Consequently, we have implemented a new data
structure for storing and accessing clauses, which serves as an alternative for the clause buffer.
The vast majority of the solver’s code is agnostic to how clauses are managed underneath.

Clearly, to access literals in a clause C, lwpCq must be known. To avoid the overhead of
storing lwpCq with every C, we maintain a hash-table of bit-arrays which store clauses, where
the bit-array of a given clause C is determined by its 11-bit hash ID hashpCq, including:
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1. 5 bits: the literal-width lw,
2. 5 bits: clause-size-width sw, that is, the number of bits allocated per clause size, and
3. 1 bit: learnt-status ls, that is, whether the clause is learnt or initial.
The last two fields are useful for compactly storing the clause sizes and simplifying the
implementation of clause deletion strategies, respectively.

For a clause C, hashpCq is maintained as part of its clause-index ci(C), which, for α=64,
leaves more than enough bits (64-11=53) to store the bit-index, where the clause starts in its
bit-array.

Given C, let |C|˚ be C’s compressed size, which we store instead of C’s actual size to
save memory (details will follow).

The layout of a clause C “ l1 _ l2 _ . . ._ l|C| in a bit-array looks as follows (the width is
shown over-brace; glue, stay and act are commonly used fields [1,18] present only in learnt
clauses):

C
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hkkikkj
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˚
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1
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loooooooooooomoooooooooooon

learnt clauses only

;
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G

Given a clause C, how do we determine its clause-size-width swpCq and its compressed size
|C|

˚? Our guiding principle is to use as few bits as possible. Specifically, we use swpCq “ 0
for storing 3-clauses, that is, |C|˚ is not stored for them at all. For every swpCq ą 0, we
reserve the special value |C|˚ “ 0 for clause-deletion heuristic’s machinery. Therefore, the
clause-size-width swpCq “ 1 can accommodate only clauses of size 4, where |C|˚ “ 1 for every
such clause. To determine swpCq for arbitrary clauses, we pre-compute, for clause-size-widths
0 ď w ă 32, the minimal clause size mcspwq stored using w bits to accommodate the special
value 0 and as many clauses sizes as possible for every w. The first 10 values and the recursive
function for mcspwq are shown below:

w 0 1 2 3 4 5 6 7 8 9 an arbitrary n ą 2
mcspwq 3 4 5 8 15 30 61 124 251 506 mcspn ´ 1q ` 2n´1

´ 1

Given a clause C, let wC be the highest w, such that |C| ě mcspwq. We set swpCq “ wC

and for |C| ą 3 : |C|˚ “ |C| ´mcspwCq ` 1.
Let G be the following example formula, where C1 and C2 are initial and C3 is learnt:

G “ pC1 “ v1 _ v2 _␣v6q ^ pC2 “ ␣v1 _ v2 _ v6q
looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

initial clauses

^pC3 “ v1 _ v2 _ v3 _ v4 _ v5q
loooooooooooooooooomoooooooooooooooooon

learnt clause

Note that the clauses C1 and C2 share the hash ID tlw “ 4, sw “ 0, ls “ 0u, while C3 has the
hash ID tlw “ 4, sw “ 2, ls “ 1u. Thus, G would be stored in two bit-arrays as follows (the
widths are shown over-brace, while labels appear under-brace):
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The 64-bit clause-indices would be as follows:
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3.2.1 Clause Compression and Variable Succession

Variables succession has an immediate impact on the memory footprint of IS23-64C, since it
impacts the literal-widths of clauses.

For example, in our latest toy formula G, swapping v3 and v6 would reduce the literal-
width of both C1 and C2 from 4 to 3 without changing the literal-width of C3, thus saving 1
bit per every literal in C1 and C2 and 6 bits overall.

Our core observation is that, if a variable is likely to appear in many clauses, it is crucial
for this variable to appear as early as possible in variable succession. In this work, we suggest
relying on the expert user knowledge of the problem to determine a good variable succession.
We provide two examples below, one of which is backed up by experimental results later in
the paper.

Recall the SAT-based SimpleBlock N -placement algorithm, where we add many blocking
clauses over the same set of important variables. In Sect. 4, we evaluate two versions of
IS23-64C: IS23-64CL has the important variables first in the succession, while IS23-64CH
has them last. Unsurprisingly, IS23-64CL turns out to be significantly more efficient.

Furthermore, many applications of incremental SAT solving augment clauses with the so-
called selector variables (selectors) to be able to enable and disable clauses using assumptions.
Normally, selectors appear late in variable succession, since they are created after the rest
of the instance, thus they are associated with highest possible indices. We expect that, for
certain applications, having the selectors early in the succession would have a substantial
positive impact on IS23-64C’s performance. We leave testing this hypothesis to future work.

Automating the variable succession, that is, having the solver renumber the variables
automatically, while still compressing the clauses efficiently, would not be trivial. In principle,
the solver could try to figure out a good variable succession out of existing clauses, when
a sufficient number of them is provided by the user, and then renumber the variables and
compress the clauses. However, that would require to temporarily store a significant amount
of clauses non-compressedly, which might ruin the compression’s efficiency. To alleviate
this problem, one might renumber variables and recompress clauses frequently, but that
might have a negative impact on the solver’s performance. Hence, automating the variable
succession is a non-trivial task, which we leave to future work.

4 Experimental Results

We carried out three sets of experiments. We denote by CrM-32 and CrM-64 the versions of
CryptoMiniSat with a 32- and 64-bit clause-index, respectively. We omit the results of the
previous version of IntelSAT, since the default IS23 performs at least equally as well, while
our goal is introducing the novel IS23-64 and IS23-64C variants of IS23.

We dub solver errors and exceptions as follows: CIErr or VIErr mean that the clause-
index space or the variable-index space, respectively, has been exhausted; TO or MO stand for
a time-out or a memory-out, respectively; Err stands for other errors (mostly crashes).

The code and the binaries of all the tools and all the benchmarks are publicly available
at [20]. Additionally, IntelSAT’s repository [19] has been updated to IS23.
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Table 1 Solving Spnq. Rows represent instances. The first column contains n. Each pair of
subsequent columns shows the time in seconds and memory in GB for the corresponding SAT solver.

n Kissat CaDiCaL MergeSat CrM-64 IS23 IS23-64 IS23-64C
T M T M T M T M T M T M T M

27 171 21 172 26 5070 35 247 30 227 21 228 21 261 10
28 374 42 347 52 CIErr 505 60 CIErr 459 44 508 19
29 CIErr 702 105 CIErr 1254 125 CIErr 975 90 1023 43
30 CIErr 1523 226 CIErr 2468 249 CIErr 1914 184 2096 81
31 CIErr 3348 453 CIErr 6117 515 CIErr 4262 379 4509 199
32 CIErr 8186 784 CIErr Err CIErr 9064 774 9723 365
33 CIErr Err CIErr Err CIErr MO 20311 678

Table 2 Finding one placement. The first three columns provide the number of rectangles (in
hundreds), variables in CNF (in millions) and clauses in CNF (in millions). Each subsequent pair
or triplet of columns corresponds to one solver. Each shows, for the corresponding solver, either:
(1) the run-time (in hours), the memory usage (in GB) and, optionally, the number of conflicts (in
thousands), or (2) the reason for a failure.

R
102

V
106

C
106

IS23 IS23-64 IS23-64C CrM-64 Kissat CaDiCaL
T M T M CO

103 T M CO
103 T M T M T M

20 152 682 1.4 41 1.6 61 19 2.2 60 19 1.7 114 1.6 64 4.3 151
25 238 1066 CIErr 4.2 95 26 4.3 93 21 7.0 180 CIErr 23.5 217
30 342 1535 CIErr 5.6 138 31 8.9 136 31 VIErr CIErr 27.1 349
35 466 2089 CIErr 14.4 190 54 13.8 186 39 VIErr CIErr TO
40 608 2728 CIErr 13.8 245 46 24.0 245 44 VIErr Err Err
45 770 3453 CIErr 21.8 308 55 25.7 306 55 VIErr Err Err
50 950 4263 CIErr 33.3 382 59 TO VIErr Err Err

4.1 Gigantic Trivially Satisfiable Instances
To compare solvers’ capacity, we created a family of trivially satisfiable instances as follows.

First, consider the following family U of trivially unsatisfiable instances: U(n) contains
2n clauses, where every clause contains a literal for every one of the n variables v1, . . . , vn,
and all the clauses are different (so, every clause falsifies exactly one potential solution). For
example, Up2q “ p␣v1 _␣v2q ^ p␣v1 _ v2q ^ pv1 _␣v2q ^ pv1 _ v2q.

The trivially satisfiable family S is generated from U by adding a new variable vn`1 to every
clause. For example, Sp2q “ p␣v1_␣v2_v3q^p␣v1_v2_v3q^pv1_␣v2_v3q^pv1_v2_v3q.

For the experiments in this and the next subsection (Sect 4.2), we used a machine having
790Mb of memory and an Intel® Xeon® processor of 2.70Ghz CPU frequency. Table 1
compares Kissat, CaDiCaL, MergeSat, CrM-64, IS23, IS23-64 and IS23-64C on S instances
without any time or memory limits (CrM-32 failed with CIErr already on Sp25q).

IS23-64C is the only solver, which can solve the gigantic instance S(33) having 233 “

8,589,934,592 clauses and 233 ˆ p33` 1q “ 292,057,776,128 literals overall.
Note that IS23-64C consumes around half the memory of IS23-64. Why is the gap so

low, given that, for e.g. n “ 32, each literal takes 32{6 “ 5.3 times fewer bits in the clause
buffer (so, seemingly, one could expect IS23-64C to use 5 times rather than 2 times less
memory than IS23-64)? Shortly, because of the Watch Lists. WLs occupy the same amount
of memory for both IS23-64 and IS23-64C, but, for IS23-64C, they dominate the memory
consumption using over 60% of the memory. Thus, compressing the WLs is a promising
direction for future work.

4.2 Finding One Placement
We generated publicly available placement instances in CNF as follows. Each instance in the
family P(R) corresponds to the problem of placing R rectangles of randomly chosen width
and height in the range r1´ 10s on a 103 ˆ 103 grid. The results on these instances roughly
correspond to results on industrial instances of similar size, which we, unfortunately, cannot
share due to IP restrictions.
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For finding one placement, we ran Kissat, CaDiCaL, MergeSat, CrM-32 CrM-64, IS23,
IS23-64 and IS23-64C with the timeout of 48 hours and the memory limit of 512Gb on
instances in rPp2000q, Pp2500q, . . . , Pp5000qs (all the solvers failed on P(5500)). The results are
shown in Table 2 (MergeSat and CrM-32 are omitted as they solved none of the instances).

Our new release of IntelSAT, IS23, is clearly the most scalable solver as IS23-64 solved
even the instance P(5000) having almost 1 billion variables and 4.3 billion clauses, whereas
the next best solver CaDiCaL managed to solve only the P(3000) instance, while being 4.8X

slower and using 2.5X more memory than IS23-64 for P(3000).
Compare IS23-64 with IS23-64C. Usually, IS23-64 outperformed IS23-64C in terms of

run-time. IS23-64C never generated more conflicts than IS23-64, but was almost always
slower, apparently because of the overhead of the bit-wise operations. Surprisingly, IS23-64C
was only slightly more efficient than IS23 in terms of memory consumption. Further analysis
showed that IS23-64C did compress the clause buffer (e.g., by 1.5X for P(4500)), but other
data structures (WLs and variable/literal-indexed arrays) dominated the memory usage.

4.3 Finding Many Placements
In our last experiment, we evaluated the different solvers for finding N “ 1,000,000 placements.
Since finding 106 placements is substantially more difficult than only one, we used smaller
instances in rPp200q, Pp300q, Pp400q, . . .s. However, we decided to also limit the resources: we
used machines with 32Gb of memory only running Intel® Xeon® processors of 3Ghz CPU
frequency and set the timeout to 10 hours.

We ran CaDiCaL, CrM-64, IS23, IS23-64 and the two versions of IS23-64C, IS23-64CL
and IS23-64CH (recall Sect. 3.2.1), within the SimpleBlock algorithm. We also launched
the Toda tools (recall Sect. 2): bc_minisat_all, nbc_minisat_all and bdd_minisat_all.
The last instance for which at least one solver succeeded to find 106 placements was Pp1000q.

The results are shown in Table 3. Observe that only IS23-64CL was able to find 106

placements for all the instances. Unlike for finding one placement, IS23-64 consumed
significantly more memory than IS23-64CL, since the long blocking clauses dominated the
memory consumption (the size of every blocking clause for P(R) is the number of important
variables = 20ˆR). Observe that the various IS23 versions managed to squeeze the memory
usage into 31Gb for several instances of different complexity due to the out-of-memory
recovery feature (recall Sect. 3).

IS23-64CH failed on two instances providing evidence that variable succession scheme
is crucial. In addition to IS23-64CL and IS23-64CH, we have also tested IS23-64CD: the
variable succession scheme, generated by default by our in-house eager SMT solver. IS23-64CD
was able to solve P(900), but not P(1000), hence we upgraded our default to IS23-64CL.

Notably, IntelSAT scaled substantially better than both CaDiCaL and CrM-64 within
SimpleBlock. The explanation may be related to the Incremental Lazy Backtracking (ILB)
principle, implemented already in the original IntelSAT [18]. Specifically, before every
incremental SAT query, CaDiCaL and CrM-64 backtrack to the global decision level after each
model is found, while IntelSAT backtracks to the highest possible decision level, where the
latest blocking clause halts to be falsified. Note that implementing or disabling ILB in any
of the solvers would have no impact on the experiments reported in Table 1 and Table 2,
since the benchmarks used in these experiments are not incremental.

Finally, our IS23-64CL-based N -placement tool scaled much better than the state-of-
the-art AllSAT solvers (Toda tools), despite us using only the basic SimpleBlock algorithm,
which can be substantially improved by techniques, inspired by blocking AllSAT solvers.
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Table 3 Finding 106 placements. The first column in both the sub-tables shows the number of
rectangles (in hundreds); the upper table also contains two columns with the number of variables
and clauses in CNF (in millions). Each subsequent triplet of columns shows, for one solver: the
number of solutions (in thousands), the run-time (in hours) and the memory usage (in GB); in case
of a failure, the last two columns per solver show its reason instead.

R
102

V
106

C
106

IS23 IS23-64 IS23-64CL IS23-64CH
S

103 T M S
103 T M S

103 T M S
103 T M

3 3 15 1000 0.4 15 1000 0.5 16 1000 0.6 10 1000 0.5 14
4 6 27 829 CIErr 1000 0.7 22 1000 0.9 12 1000 0.8 20
5 10 43 644 CIErr 1000 0.9 28 1000 1.3 17 1000 1.2 29
6 14 61 513 CIErr 1000 1.3 31 1000 1.8 23 1000 1.4 31
7 19 84 438 CIErr 1000 1.6 31 1000 2.2 25 1000 1.8 31
8 24 109 372 CIErr 668 MO 1000 2.7 31 1000 2.4 31
9 31 138 338 CIErr 482 MO 1000 3.2 31 769 MO
10 38 171 265 CIErr 449 MO 1000 3.6 31 682 MO

R
102

CrM-64 CaDiCaL bc_minisat_all nbc_minisat_all bdd_minisat_all
S

103 T M S
103 T M S

103 T M S
103 T M S

103 T M
3 30 TO 15 TO 19 TO 1000 0.1 1 0 Err
4 15 TO 8 TO 8 TO 1000 3.4 3 0 Err
5 10 TO 5 TO 0 TO 0 TO 0 TO
6 6 TO 3 TO 0 TO 0 TO 0 TO
7 4 TO 2 TO 0 TO 0 TO 0 TO
8 3 TO 2 TO 0 TO 0 TO 0 TO
9 0 Err 1 TO 0 TO 0 TO 0 TO
10 0 Err 1 TO 0 TO 0 TO 0 TO

5 Conclusion

We introduced the IS23 release of our SAT solver IntelSAT, targeted to solve huge instances
beyond the capacity of other solvers. IS23 can compress the memory by storing clauses in
bit-arrays. We showed that only IS23 can solve a gigantic trivially satisfiable instance with
over 8.5 billion clauses. IS23 also enabled solving huge instances of the industrial placement
problem with up to 4.3 billion clauses. Additionally, IS23 turned out to be substantially
more efficient than other solvers for finding 106 placements on instances with up to 170
million clauses, where a carefully chosen variable succession scheme enabled the best results.
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Abstract
In this paper we present the design and implementation of a Satisfaction-Driven Clause Learning
(SDCL) SAT solver, MapleSDCL, which uses a MaxSAT-based technique that enables it to learn
shorter, and hence better, redundant clauses. We also perform a thorough empirical evaluation
of our method and show that our SDCL solver solves Mutilated Chess Board (MCB) problems
significantly faster than CDCL solvers, without requiring any alteration to the branching heuristic
used by the underlying CDCL SAT solver.
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1 Introduction

Conflict-Driven Clause Learning (CDCL) SAT solvers are routinely used to solve large
industrial problems obtained from variety of applications in software engineering [7], formal
methods [8], security [11, 25] and AI [6], even though the underlying Boolean satisfiability
(SAT) problem is well known to be NP-complete [9] and believed to be intractable in general.
Despite this, solver research has made significant progress in improving CDCL solvers’
components and heuristics [19].

It is well known that CDCL SAT solvers are polynomially equivalent to resolution [20, 1],
and consequently it follows that classes of formulas, such as the pigeon hole principle (PHP),
that are hard for resolution are also hard for CDCL SAT solvers. In order to address such
limitations, researchers are actively designing and implementing solvers that correspond to
stronger propositional proof systems.

One such class of solvers is called Satisfaction-Driven Clause Learning (SDCL) solvers [15,
14, 13], which are based on the propagation redundancy (PR) property [12, 14]. The SDCL
paradigm extends CDCL in the following way: unlike CDCL solvers, SDCL solvers may learn
clauses even when an assignment trail α is consistent. To be more precise, an SDCL solver
first computes a new formula Pα(F ), known as a pruning predicate. Then, it checks the
satisfiability of Pα(F ). If it satisfiable, it means ¬α is redundant with respect to the formula,
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and the solver can learn the clause (¬α). Even though the intuition is clear and procedures
for computing a possible Pα(F ) are very well defined, it is still an extremely challenging task
to automate SDCL.

There are two main problems in this setting: first, the satisfiability check for the formula
Pα(F ) is NP-complete and is hard to solve in general. It essentially requires the SDCL solver
to call another SAT solver that we refer to as a sub-solver. Given that this sub-solver call can
be expensive, one needs to be strategic about when to invoke it during the run of an SDCL
solver. Second, the clauses learned by SDCL can be large, and we want to learn shorter
clauses whenever possible.

To solve this second problem, we propose a novel MaxSAT encoding of the problem of
“what is the smallest subset γ of trail α, such that Pγ(F ) is satisfiable”, to get the shortest
clause (¬γ) to learn. We also apply a resolution-based technique inspired by conflict analysis
to further shorten the clause. We refer to the SDCL solver augmented with our MaxSAT
and clause minimization technique as MapleSDCL. Our experimental evaluation shows that
MapleSDCL performs well on mutilated chess board (MCB) and bipartite perfect matching
problems, that are known to be hard for CDCL solvers.

1.1 Contributions
(I) First, we make a theoretical contribution by introducing a new type of pruning predicate

and a proof that it allows one to detect blocked clauses. This extends the spectrum
of pruning predicates with redundancy notions associated with them. However, we
remark that this is not implemented in our system as we consider it to have little
practical impact.

(II) Second, we prove that when an assignment has a satisfiable positive reduct, finding
a small sub-assignment with the same property is an NP-hard problem. Such small
assignments summarize the reasons for the redundancy and lead to learning smaller
redundant clauses. In essence, we believe that this is the equivalent to conflict analysis
in CDCL solvers.

(III) Third, we introduce a MaxSAT encoding of the above-stated problem. Experimental
results show that calling a MaxSAT solver within the SDCL architecture is not as
expensive as one might expect, and more importantly, significant improvements in the
size of the learned redundant clauses are achievable in practice. These improvements
are even larger after applying conflict analysis techniques to convert the clause into an
asserting one.

(IV) Finally, we show that the resulting SDCL solver can solve mutilated chess board
problems without the need to alter the decision heuristic used by the underlying CDCL
SAT solver. This is a very important property of our approach: the chances of learning
(good) redundant clauses depend much less on choosing exactly the right decision
literals, thus overcoming a serious roadblock for SDCL solver design.

2 Preliminaries on CDCL SAT Solving

CNF formulas. Let X be a finite set of propositional variables. A literal is a propositional
variable (x) or the negation of one (¬x). The negation of a literal l, denoted ¬l, is x if l = ¬x

and is ¬x if l = x. A clause is a disjunction of distinct literals l1 ∨ . . . ∨ ln (interchangeably
denoted with or without brackets). A CNF formula is a conjunction of distinct clauses
C1 ∧ . . . ∧ Cm. When convenient, we consider a clause to be the set of its literals, and a CNF
to be the set of its clauses. In the rest of the paper we assume that all formulas are CNF.
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Satisfaction. An assignment is a set of non-contradictory literals. A total assignment
contains, for each variable x ∈ X , either x or ¬x. Otherwise, it is a partial assignment. We
denote by ¬α the clause consisting of the negation of all literals in the assignment α. An
assignment α satisfies a literal l if l ∈ α, it satisfies a clause C if it satisfies at least one of
the literals in C, and it satisfies a formula F if it satisfies all the clauses in F . We denote
these as α |= l, α |= C, and α |= F , respectively. A model for a formula is an assignment
that satisfies it. A formula with at least one model is satisfiable; otherwise, it is unsatisfiable.
Given a formula F , the SAT problem consists of determining whether F is satisfiable. An
assignment α falsifies a literal l if ¬l ∈ α, falsifies a clause if it falsifies all its literals, and
falsifies a formula if it falsifies at least one of its clauses. The truth values of literals, clauses,
and formulas are undefined for an assignment if they are neither falsified nor satisfied. Given
a clause C and an assignment α, we denote by touchedα(C) the disjunction of all literals of C

that are either satisfied or falsified by α, by untouchedα(C) the disjunction of all undefined
literals, and by satisfiedα(C) the disjunction of all satisfied literals.

Unit propagation. Given a formula F and an assignment α, unit propagation extends α by
repeatedly applying the following rule until reaching a fixed point: if there is a clause with
all literals falsified by α except one literal l, which is undefined, add l to α. If, as a result, a
clause is found that is falsified by α (called conflict), the procedure stops and reports that a
conflict clause has been found.

Formula relations. Two formulas F and G are equisatisfiable, denoted F ≡SAT G, if F is
satisfiable if and only if G is satisfiable, and they are equivalent, denoted F ≡ G, if they are
satisfied by the same total assignments. We write F ⊢1 G (F implies G by unit propagation)
if for every clause C ∈ G of the form l1 ∨ . . . ∨ ln, it holds that unit propagation applied to
F ∧ ¬l1 ∧ . . . ∧ ¬ln results in a conflict. We say that G is a logical consequence of F (written
F |= G) if all models of F are models of G.

CDCL. The Conflict-Driven Clause Learning (CDCL) algorithm is the most successful pro-
cedure to-date for determining whether certain types of industrial formulas are satisfiable [19].
Let F denote such a formula. The CDCL procedure starts with an empty assignment α,
which is extended and reduced in a last-in first-out (LIFO) way, by the following three steps
until the satisfiability of formula is determined (see Algorithm 1 removing lines 9-12):
1. Unit propagation is applied.
2. If a conflict is found, a conflict analysis procedure [26] derives a clause C (called a lemma)

which is a logical consequence of F . If C is the empty clause, we can conclude that F

is unsatisfiable. Otherwise, it is guaranteed that by removing enough literals from α, a
new unit propagation is possible due to C. This process is called backjump. Additionally,
lemma C is conjuncted (learnt) with F , and the procedure returns to step (i).

3. If no conflict is found in unit propagation, either α is a total assignment (and hence it
satisfies the formula), or an undefined literal is chosen and added to α (the branching
step). The choice of this literal, called a decision literal, is determined by sophisticated
heuristics [4] that can have a huge impact on performance of the CDCL procedure.

MaxSAT. Given a formula F , the MaxSAT problem consists of finding the assignment that
satisfies the maximum number of clauses of F . Sometimes the clauses in F are split into
hard and soft clauses, and in this case, the Partial MaxSAT problem consists of finding the
assignment that satisfies all hard clauses and the maximum number of soft clauses.

SAT 2023



18:4 Learning Shorter Redundant Clauses in SDCL Using MaxSAT

3 Propagation Redundancy and SDCL

Despite their success on a variety of real-world applications [23, 21, 5, 16], CDCL SAT solvers
have well-known limitations. Proof complexity techniques have established the polynomial
equivalence between CDCL and general resolution [20, 1], the proof system with the inference
rule that allows one to derive C ∨ D given two clauses of the form l ∨ C and ¬l ∨ D. An
important consequence of this equivalence is that if an unsatisfiable formula does not have a
polynomial size proof by resolution, no run of CDCL can determine the unsatisfiability of
the formula in polynomial time.

3.1 Propagation Redundancy
This limitation has motivated the search for extensions of CDCL solvers that may allow the
resultant method to simulate more powerful proof systems. One example is the extended
resolution proof system [24]: by allowing the introduction of new variables to resolution, it can
produce polynomial size proofs of the pigeon-hole principle [10], which requires exponential-
size resolution proofs otherwise. However, adding new variables would exponentially increase
the search space of the formula. A newer direction [12, 14] tries to avoid the addition of new
variables, and is instead based on the well-known notion of redundancy:

▶ Definition 1. A clause C is redundant with respect to a formula F if F and F ∧ C are
equisatisfiable.

In order to provide a more useful characterization of redundancy, we need some definitions.

▶ Definition 2. Given an assignment α and a clause C, we define C|α = ⊤ if α |= C;
otherwise C|α is the clause consisting of all literals of C that are undefined in α. For a
formula F , we define the formula F|α = {C|α | C ∈ F and α ̸|= C}.

▶ Theorem 3 ([12], Theorem 1). A non-empty clause C is redundant with respect to a
formula F if and only if there exists an assignment ω such that ω |= C and F ∧ ¬C |= F |ω.

From a practical point of view, this characterization does not help much, because even if
we know ω (known as the witness) it is hard to check whether the property holds. This is
why a more limited notion of redundancy has been defined [12]:

▶ Definition 4. A clause C is propagation redundant (PR) with respect to a formula F

if there exists an assignment ω such that ω |= C and F ∧ ¬C ⊢1 F |ω

Note that since F ∧ ¬C ⊢1 F |ω implies F ∧ ¬C |= F |ω, any PR clause is redundant.
Hence, we can add PR clauses to our formula in order to make it easier to solve without
affecting its satisfiability. If we force ω to assign all variables in C but no other variable, we
can obtain weaker but simpler notions of redundancy: if we force ω to satisfy exactly one
literal of C, we obtain literal-propagation redundant (LPR) clauses; if allow ω to satisfy more
than one literal of C, we obtain set-propagation redundant (SPR) clauses. Obviously, any
LPR clause is SPR, and any SPR clause is PR, but none of these three notions are equivalent
as the following examples show.

▶ Example 5 ([12]). Let F = {x ∨ y, x ∨ ¬y ∨ z, ¬x ∨ z, ¬x ∨ u, x ∨ ¬u} and C = x ∨ u.
The witness ω = {x, u} satisfies C and, since F |ω = {z}, it holds that F ∧ ¬C ⊢1 F |ω, that
is, unit propagation on F ∧ ¬x ∧ ¬u ∧ ¬z results in a conflict. Hence, C is SPR w.r.t. F .
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However, it is not LPR. The reason is that there are only two possible witnesses that
satisfy exactly one literal of C: ω1 = {x, ¬u} and ω2 = {¬x, u}. But we have that both
F |ω1 and F |ω2 contain, among others, the empty clause. Hence, F ∧ ¬C ⊢1 F |ω1 and
F ∧ ¬C ⊢1 F |ω2 require that unit propagation on F ∧ ¬C, that is, F ∧ ¬x ∧ ¬u, results in a
conflict, which is not the case.

▶ Example 6 ([12]). Let F = {x ∨ y, ¬x ∨ y, ¬x ∨ z} and C = (x). If we consider the witness
ω = {x, z}, we have that F |ω = {y}. It is obvious that ω |= C and also F ∧¬x ⊢1 y. Thus, C

is PR w.r.t. F . However it is not SPR because the only possible witness would be ω1 = {x},
but F |ω1 = {y, z} and it does not hold that F ∧ ¬x ⊢1 z.

3.2 SDCL and Reducts
It was proved in [12] that the proof system that combines resolution with the addition of PR
clauses admits polynomial-sized proofs for the pigeon hole principle. However, it is not a
trivial task to add this capability to CDCL solvers. This question was addressed with the
development of Satisfiability-Driven Clause Learning (SDCL) [15]. The key notion in this
new solving paradigm is the one of pruning predicate:

▶ Definition 7. Let F be a formula and α an assignment. A pruning predicate for F and
α is a formula Pα(F ) such that if it is satisfiable, then the clause ¬α is redundant w.r.t. F .

SDCL extends CDCL in the following way (See also Algorithm 1). Before making a
decision, a pruning predicate for the assignment α and formula F is constructed. If satisfiable,
we can learn ¬α and use it for backjump and continuing the search, hence pruning away the
search tree without needing to find a conflict. This leads to the simple code in Algorithm 1,
where removing lines 9 to 12 results in the standard CDCL algorithm, and where we can
assume, for simplicity, that analyzeWitness() returns ¬α. More sophisticated versions of
analyzeWitness are discussed in the next Section.

Algorithm 1 The SDCL algorithm. Note that removing lines 9–12 results in the CDCL
algorithm.

1 α := ∅
2 while true do
3 α := unitPropagate(F, α)
4 if conflict found then
5 C := analyzeConflict()
6 F := F ∧ C

7 if C is the empty clause then return UNSAT
8 α := backjump(C, α)
9 else if Pα(F ) is satisfiable then

10 C := analyzeWitness()
11 F := F ∧ C

12 α := backjump(C, α)
13 else
14 if all variables are assigned then return SAT
15 α := α ∪ Decide()
16 end
17 end

SAT 2023



18:6 Learning Shorter Redundant Clauses in SDCL Using MaxSAT

We can understand SDCL as a parameterized algorithm, since the use of different pruning
predicates Pα(F ) leads to distinct types of SDCL algorithms with possibly different underlying
proof systems. In the following, we summarize the contributions of [15, 13] and explain the
different pruning predicates and the corresponding proof systems that are known.

▶ Definition 8. Given formula F and a (partial) assignment α, the positive reduct pα(F )
is the formula ¬α ∧ G, where G = {touchedα(D) | D ∈ F and α |= D}.

That is, we only consider clauses satisfied by α, and among them, only the literals that
are assigned. In [15] it is proved that pα(F ) is a valid pruning predicate. Moreover, a precise
characterization of the redundancy achieved by pα(F ) is given: pα(F ) is satisfiable if and
only if ¬α is set-blocked in F .

▶ Definition 9. A clause C is set-blocked in a formula F if there exists a subset L ⊆ C such
that, for every clause D containing the negation of some literal in C, the clause (C\L)∨¬L∨D

contains two complementary literals.

The results in [15] imply that a proof system based on resolution and set-blocked clauses
has polynomial size proofs for the pigeon hole principle. It is also known [12] that set-blocked
clauses are a particular case of SPR clauses. If one wants to obtain the full power of SPR
clauses, the following pruning predicate is needed:

▶ Definition 10. Given formula F and a (partial) assignment α, the filtered positive
reduct fα(F ) is the formula ¬α ∧ G, where G = {touchedα(D) | D ∈ F and F ∧ α ̸⊢1
untouchedα(D)}.

Again, a precise characterization of the power of fα(F ) is known [13]: fα(F ) is satisfiable
if and only if ¬α is SPR with respect to F . Despite being harder to compute than pα(F ), the
fact that fα(F ) is a subset of the clauses in pα(F ) makes it easier to check for satisfiability.
Finally, another pruning predicate is given in [13] that achieves the full power of PR clauses,
but it is not considered to be practical. We close this sequence of pruning predicates and
their corresponding redundancy characterization with a novel pruning predicate and its
corresponding redundancy notion.

▶ Definition 11. Given formula F and a (partial) assignment α, the purely positive
reduct ppα(F ) is the formula ¬α ∧ G, where G = {satisfiedα(D) | D ∈ F and α |= D}.

Since all clauses in ppα(F ) are subclauses of clauses in pα(F ), whenever ppα(F ) is
satisfiable, pα(F ) is also satisfiable. This proves that ppα(F ) is a pruning predicate, but we
can be more precise about the notion of redundancy it corresponds to.

▶ Definition 12. We say that a literal l ∈ C blocks C in F if an only if for every clause
D in F containing literal ¬l, resolution between C and D gives a tautology. A clause C is
blocked in F if and only if there exists some literal l ∈ C that blocks C in F .

▶ Theorem 13. Given a formula F and an assignment α, the formula ppα(F ) is satisfiable
if and only if the clause ¬α is blocked in F .

Proof.
Left to right. let β be a model of ppα(F ). Since β |= ¬α, we can take any literal ¬l in
¬α satisfied by β. We now prove that ¬l blocks ¬α in F . Let us consider a clause of the
form l ∨ C ∈ F . Since l ∈ α we have that α |= l ∨ C, and hence there is a clause of the form
l ∨ satisfiedα(C) in ppα(F ). Since β |= ppα(F ) and β |= ¬l, necessarily β |= satisfiedα(C).
This means that C contains a literal from α different from l, and hence if we apply resolution
between the clause ¬α and l ∨ C we obtain a tautology.
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Right to left. Assume w.l.o.g. that the clause ¬α is blocked w.r.t. ¬l in F . We prove
that α̂ := α \ {l} ∪ {¬l} is a model of ppα(F ). It is obvious that α̂ satisfies the clause
¬α ∈ ppα(F ). Any other clause D ∈ ppα(F ) is of the form satisfiedα(C) for some C ∈ F

such that α |= C. There are now in principle two cases:
(i) if D is not the unit clause l, it necessarily contains a literal from α different from l, and

hence α̂ satisfies it.
(ii) If D is the unit clause l, this means that clause C ∈ F does not contain any literal from

α except for l. Thus, applying resolution between ¬α and C cannot give a tautology,
contradicting the fact that ¬α is blocked w.r.t ¬l in F . Hence, this case cannot take
place. ◀

We finish this section with one important remark about the computation of reducts in
SDCL: we need to add all already computed redundant clauses in the reduct computation
when trying to find additional ones. Let us show why not doing this is incorrect. Given the
satisfiable formula (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) ∧ (x3 ∨ x4), the SDCL solver might first build the
assignment α = {x1, ¬x2}. Its positive reduct is (¬x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2), which
is satisfiable, and hence we learn the redundant clause ¬x1 ∨ x2. If the solver now builds the
assignment {¬x1, x2}, the positive reduct w.r.t F is (x1 ∨ ¬x2) ∧ (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2),
which is again satisfiable and allows us to learn the clause x1 ∨ ¬x2. However, adding the
two learned redundant clauses to F makes it unsatisfiable. The solution is to build the
second positive reduct w.r.t. F conjuncted with the first learned redundant clause. The
corresponding reduct is (x1 ∨ ¬x2) ∧ (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) ∧ (¬x1 ∨ x2), which is now
unsatisfiable and hence does not allow us to learn the second redundant clause.

A natural question that arises now is whether we also need to add all clauses that were
derived using CDCL-style conflict analysis in a reduct. The answer is that we do not need
to do so. The reason is that, given two formulas G1 ≡ G2, it holds that C is redundant
w.r.t. G1 if and only if C is redundant w.r.t G2. Now, if the current formula that the SDCL
solver has in its database is F ∧ L ∧ R, where F is the original formula, L are the lemmas
derived by CDCL-style conflict analysis and R are the learned redundant clauses, it holds
that F ∧ L ∧ R ≡ F ∧ R. Therefore, it is sufficient to compute redundant clauses w.r.t. F ∧ R

only. Having said that, it is better to compute reduntant clauses w.r.t F ∧ R ∧ U , where U

denotes CDCL-derived unit clauses, because it results in smaller reducts and faster sub-solver
calls. Note that for correctness, clauses in R are never deleted. This design decision prevents
us from using off-the-shelf proof checkers like dpr-trim1. However, as we mention at the end
of Section 5, this checker can be easily adapted.

4 Minimizing SDCL Learned Clauses

In Algorithm 1, we considered the function AnalyzeWitness to always return ¬α, which
was correct due to the results presented in Section 3. However, adding the negation of the
whole assignment results in a very large clause, and it is not a surprise that this is far from
being useful in practice. Already in [15] it was proven that one can learn a much shorter
clause: the negation of all decisions in α. We provide a simple proof that we use to justify
that learning other clauses is also correct:

▶ Theorem 14. Let F be a formula and C a clause that is redundant with respect to F . Any
clause D obtained via resolution steps from F ∧ C is also redundant with respect to F .

1 https://github.com/marijnheule/dpr-trim
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Proof. Let us assume that F is satisfiable and prove that F ∧D also is. Since C is redundant
w.r.t. F we know that F ∧ C is satisfiable. We know that resolution generates logical
consequences, and hence any model of F ∧ C is also a model of F ∧ C ∧ D, which proves
that F ∧ D is satisfiable. ◀

It is well known that, if α is an assignment, starting from ¬α one can apply a series of
resolution steps in order to derive a clause that only consists of decisions. If ¬α is redundant,
the theorem proves that the decision-only clause is also redundant. However, learning the
negation of all decisions is not the ideal situation for at least two reasons. The first one is
that, according to experience from CDCL SAT solving, forcing the solver to learn clauses
that only contain decisions leads to very poor performance in practice. It is certainly true
that these clauses are small, but that is probably their only good property. The second
reason is that not all decisions in α need to be present in the redundant clause. Similarly to
what happens in CDCL, where usually not all decisions are responsible for a conflict, here
not all decisions are responsible for the pruning predicate to be satisfiable. In order to fix
these two issues, we modify AnalyzeWitness so that it finds the smallest subset γ ⊆ α for
which Pγ(F ) is satisfiable. This allows us to learn the hopefully much shorter clause ¬γ and
address one of the open problems mentioned in [14]: “checking if a subset of a conflict clause
is propagation redundant with respect to the formula under consideration.”

▶ Example 15. Consider F = (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ ¬x2 ∨ x5) ∧ (¬x1 ∨ ¬x4 ∨ x5) ∧ (x2 ∨
x4 ∨ ¬x5) ∧ (x3 ∨ x6 ∨ ¬x5) and assignment, α = {x1, x4, x5, ¬x2}, where x5 is the only
non-decision. The positive reduct pα(F ) is (¬x1 ∨ ¬x4 ∨ ¬x5 ∨ x2) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨
¬x2 ∨ x5) ∧ (¬x1 ∨ ¬x4 ∨ x5) ∧ (x2 ∨ x4 ∨ ¬x5) and is satisfiable. Hence we could learn the
redundant clause ¬x1 ∨ ¬x4 ∨ x2 consisting of the negation of the decisions. However the
subset γ = {x1, ¬x2} ⊆ α also has satisfiable positive reduct: (¬x1∨x2)∧(x1∨x2)∧(x1∨¬x2)
and hence we could learn the shorter clause ¬x1 ∨ x2.

4.1 Hardness of Minimization
Unfortunately, as we prove, the problem of finding such small γ is NP-hard. Let us first
formalize it as a decision problem:

▶ Definition 16. Trail-Minimization: given a formula F , an assignment α and an integer
k ≥ 0, we want to know whether there is a subset γ ⊆ α of size k such that pγ(F ) is satisfiable.

Note that in the rest of the paper we focus on the positive reduct of the formula, and
hence our approach allows us to obtain (short) set-blocked clauses. Before introducing the
NP-hard problem that we use to prove the NP-hardness of Trail-Minimization, we need
one definition:

▶ Definition 17. Given α and β two assignments over the same variables {x1, . . . , xn}, we
say that β < α if β ̸= α and for each ¬xi ∈ α we also have that ¬xi ∈ β.

In other words, β < α if, considering an assignment as a sequence of n bits, the sequence
of bits of β is pointwise smaller than the one of α.

▶ Definition 18. Smaller-Model[17]: given a formula F and a total model α of F , we
want to know whether there is a total model β of F such that β < α.

In [17] it is proved that Smaller-Model is NP-hard. Hence, a polynomial reduction
from Smaller-Model to Trail-Minimization proves that the latter is also NP-hard.

▶ Theorem 19. Trail-Minimization is NP-hard.
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Proof. Given (F, α) an instance of Smaller-Model, we can partition α = α+ ∪ α−, where
α+ contains all positive literals in α, and α− contains all negative literals. The reduction
amounts to constructing an instance of Trail-Minimization as follows: the formula is
F̂ := F ∪ α− (that is, we add to F all negative literals in α as unit clauses), the assignment
is α̂ := α and the integer k := |α|. This can be computed in polynomial time and has
polynomial size. Let us now check that (F, α) is a positive instance of Smaller-Model if
and only if (F̂ , α̂, k) is a positive instance of Trail-Minimization.

Left to right: we know, by definition of Smaller-Model, that there exists an assignment
β |= F such that β < α. Since obviously α̂ ⊆ α̂ and |α̂| = k, if we prove that β |= pα̂(F̂ )
we are done. Clause ¬α is satisfied by β because β ̸= α. Since α̂ is a total assignment, we
have that touchedα̂(C) = C for any clause C ∈ F̂ , hence any clause in pα̂(F̂ ) is either (i) a
unit clause consisting of a literal in α−, which is satisfied by β because β < α implies that
β ⊇ α− or (ii) a clause C ∈ F , which is of course satisfied by β since β is a model of F .

Right to left: the only subset of α̂ of size k is α̂ itself. Let us assume that pα̂(F̂ ) is
satisfied by a model β. Since ¬α is a clause in pα̂(F̂ ), we know that β ≠ α. Also, since
pα̂(F̂ ) contains all negative literals of α as unit clauses, we know that β ⊇ α−. Altogether,
this proves that β < α. The only missing piece is to prove that β satisfies F . This is not
difficult to see: since α is a model of F , and touchedα(C) = C for any clause C, all clauses
in F belong to pα̂(F̂ ) and β necessarily satisfies them. ◀

4.2 A MaxSAT Encoding for Trail-Minimization
Knowing that Trail-Minimization is a difficult optimization problem, and being somehow
similar to SAT, it is very natural to try solving it using MaxSAT. Given a formula F , and an
assignment α, we describe a partial MaxSAT formula mpα(F ) whose solutions correspond to
a smallest γ ⊆ α such that pγ(F ) is satisfiable.

Before formally defining mpα(F ), let us explain the intuition behind it. The main idea is
that we have to determine which literals we can remove from α, giving a new assignment γ,
such that pγ(F ) is satisfiable. For each literal l in α, we add an additional variable rl that
indicates whether l is removed. Hence, a truth assignment over these variables induces an
assignment γ ⊆ α. The key point is to construct a formula such that when restricted with
rl’s, it is essentially equivalent to pγ(F ).

More formally, let us assume α = {α1, α2, . . . , αm}. We introduce three sets of additional
variables:

{r1, r2, . . . , rm}: indicate whether αi is removed from α.
{p1, p2, . . . , pm}: replace “positive” occurrences of αi in p(F, α).
{n1, n2, . . . , nm}: replace “negative” occurrences of αi in p(F, α).

Given a clause C, we denote by Ĉ the result of replacing in C, for i = 1 . . . m, every
occurrence of literal αi by pi and every occurrence of literal ¬αi by ni.

Our Partial MaxSAT formula mpα(F ) contains the following hard formulas (that can be
easily converted into clauses), that enforce the semantics of the r, p and n variables:

ri → ¬pi for all i = 1 . . . m

ri → ¬ni for all i = 1 . . . m

¬ri → pi = αi for all i = 1 . . . m

¬ri → ni = ¬αi for all i = 1 . . . m
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Intuitively, if ri is false, and hence we do not to remove αi from the assignment, then pi

is equivalent to αi and ni is equivalent to ¬αi. Otherwise, if ri is removed, we force pi and
ni to be false.

The rest of mpα(F ) is constructed by iterating over all clauses of pα(F ). For each clause
C ∈ pα(F ), we add a set of hard clauses to mpα(F ), constructed as follows. If C is the clause
¬α, we add the hard clause ¬̂α. Otherwise C is of the form S ∨ D, where S is the non-empty
set of literals satisfied by α and D contains the remaining literals, which are touched, but
not satisfied by α. The clauses to be added are:

{Ŝ ∨ D̂ ∨ ri | i = 1 . . . m and αi ∈ S}

The idea here is that if we remove all literals in S from α, then C would not be satisfied
and hence it should not appear in the positive reduct. The addition of the ri’s in the clauses
guarantee that, if all of them are removed, and hence all ri’s are set to true, these clauses
are all satisfied by the ri’s and hence they do not constrain the formula at all. On the other
hand, if some literal in S is not removed, then the corresponding ri is false and we essentially
have the clause Ŝ ∨ D̂, that is what we wanted to impose.

We want to note that we can obtain a smaller formula by, instead of adding multiple
clauses of the form of Ŝ ∨ D̂ ∨ ri, introducing one auxiliary variable aC for each clause
C = S ∨ D and adding the clauses:

Ŝ ∨ D̂ ∨ aC

¬ri → ¬aC for all i = 1 . . . m such that αi ∈ S

Apart from these hard clauses and the hard ones imposing the semantics of r, p and n, our
formula mpα(F ) is completed with the set of soft unit clauses {ri | i = 1 . . . m}, expressing
that we want to remove as many literals as possible while still satisfying the rest of the
formula, which are hard clauses.

▶ Example 20. Let us revisit Example 15, where α = {x1, x4, x5, ¬x2} had pα(F ) satisfiable,
but there was a smaller subset γ = {x1, ¬x2} for which pγ(F ) was also satisfiable. We use
this example to illustrate our encoding. Let us consider that the variables related with xi are
pi, ni, ri for i ∈ {1, 2, 4, 5}. We only show the hard clauses in mpα(F ) that are constructed
from pα(F ). The implications defining the semantics of p, n, r are ignored, as well as the soft
clauses, since those should be easy to understand.

pα(F) mpα(F)
¬x1 ∨ ¬x4 ∨ ¬x5 ∨ x2 n1 ∨ n4 ∨ n5 ∨ n2
x1 ∨ x2 ∨ x4 p1 ∨ n2 ∨ p4 ∨ r1

p1 ∨ n2 ∨ p4 ∨ r4
x1 ∨ ¬x2 ∨ x5 p1 ∨ p2 ∨ p5 ∨ r1

p1 ∨ p2 ∨ p5 ∨ r2
p1 ∨ p2 ∨ p5 ∨ r5

¬x1 ∨ ¬x4 ∨ x5 n1 ∨ n4 ∨ p5 ∨ r5
x2 ∨ x4 ∨ ¬x5 n2 ∨ p4 ∨ n5 ∨ r4

Note that any literal x1 is replaced by p1 since x1 ∈ α. On the other hand, any literal
x2 is replaced by n2 because ¬x2 ∈ α. The interesting fact is that if we set r4, r5 to true
and r1, r2 to false, which means that we are removing x4 and x5 from α (hence obtaining
γ) and propagate the implications, the hard clauses in mpα(F ) become equivalent to pγ(F ).
For example, take the first clause n1 ∨ n4 ∨ n5 ∨ n2. Setting r4 and r5 to true causes the
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implications to unit propagate ¬n4 and ¬n5. Hence the clause is equivalent to n1 ∨ n2.
However, setting r1 to false makes n1 =¬x1 and setting r2 to false makes n2 =x2. All in all,
the clause is equivalent to ¬x1 ∨ x2, which is the first clause of pγ(F ).

If we take clause n2 ∨ p4 ∨ n5 ∨ r4 we can see that it is satisfied due to r4 and thus is not
constraining the other variables. This is as expected, because if we remove x4 from α, it no
longer satisfies the clause x2 ∨ x4 ∨ ¬x5 and hence it should not appear in the reduct.

Finally, the last case is a clause like p1 ∨ n2 ∨ p4 ∨ r1. In this case r1 is false and hence
the last literal in the clause disappears. Also, since r4 is true, it makes p4 false due to the
implications, and r1, r2 being false unit propagates p1 =x1 and n2 =x2, hence making the
clause equivalent to x1 ∨ x2, which is precisely the clause that appears in pγ(F ). All in all,
if we set the r variables to the appropriate values we can obtain the positive reduct of any
subset of α. Below, we formally prove that this encoding is indeed correct.

▶ Theorem 21. Given a formula F and an assignment α = {α1, . . . , αm}, it holds that the
smallest subset γ ⊆ α such that pγ(F ) is satisfiable has size m − k if and only if the optimal
solution to mpα(F ) satisfies k soft clauses.

Proof. We prove something slightly stronger: there exists γ ⊆ α of size m − k such that
pγ(F ) is satisfiable if and only if there exists an assignment that satisfies all hard clauses in
mpα(F ) and exactly k soft clauses.

Left to right. let us consider γ ⊆ α of size m − k with pγ(F ) satisfiable, and let δ be a
model for it. We build an assignment the satisfies all hard clauses in mpα(F ) and exactly k

soft clauses as follows. The first remark is that mpα(F ) only consists of the variables ri, pi, ni

and the ones appearing in αi, for i = 1 . . . m and hence we have to build an assignment β

over those. For i = 1 . . . m we add ri to β if αi ̸∈ γ, and add ¬ri otherwise. Since there are k

literals αi not belonging to γ, it is clear that β satisfies exactly k soft clauses. The assignment
β is completed by making it coincide with δ on the variables of γ and take arbitrary values
for the variables of α \ γ. If we now unit propagate these values on the implications that
define the semantics of r, p and n, we complete β to define values for all pi and ni.

Let us now see that β satisfies the hard clauses in mpα(F ). The implications defining
the semantics of the variables are obviously satisfied. Clause ¬̂α is also satisfied: we know
that this clause is of the form n1 ∨ n2 ∨ . . . ∨ nm. Since δ |= ¬γ, there is a literal αk ∈ γ

such that δ |= ¬αk. By the definition of β, we know that ¬rk ∈ β and hence the formula
¬rk → nk =¬αk propagates nk to be true in β and hence satisfy ¬̂α.

Let us now take another clause C ∈ mpα(F ), which is necessarily of the form Ŝ ∨ D̂ ∨ ri,
with S ∨ D ∈ pα(F ) and ri be such that αi ∈ S. If β |= ri we are done. Otherwise, it is
because αi ∈ γ. Hence, the clause S ∨ D is satisfied by γ due to literal αi ∈ S and pγ(F )
contains the clause touchedγ(S ∨ D). Thus, δ |= touchedγ(S ∨ D). Let us consider that case
where δ satisfies αj ∈ touchedγ(S ∨ D) (the other case is that is satisfies some ¬αj and the
proof is similar). Since αj ∈ γ, we have that rj ̸∈ β and the formula ¬rj → pj = αj

guarantees that β |= pj . We only have to realize that pj is a literal in Ŝ ∨ D̂, to conclude
that β |= C.

Right to left. let us consider an assignment β that satisfies all hard clauses in mpα(F ) and
exactly k soft clauses. We build a subset γ ⊆ α of size m − k such that pγ(F ) is satisfiable.
As expected, γ is constructed by removing from α all αi such that β |= ri. It is obvious that
|γ| = m − k, because β satisfies exactly k unit clauses of the form ri.

In order to prove that pγ(F ) is satisfiable, let us build an assignment δ that coincides
with β over all variables in γ and prove that it is a model. The first clause in pγ(F ) to
consider is ¬γ. Since β |= n1 ∨ . . . ∨ nm and it satisfies the clauses ri → ¬ni it necessarily
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satisfies some ni such that ri is false. Due to the clause ¬ri → ni = ¬αi, it also satisfies
¬αi. Since ri is false in β we have that αi ∈ γ and hence, by the definition of δ, it satisfies
¬αi. This proves that δ |= ¬γ.

Let us now take another clause in pγ(F ), which is necessarily of the form touchedγ(C)
for some C ∈ F such that γ |= C. Since α is a superset of γ, obviously α |= C, and hence a
clause of the form touchedα(C) belongs to pα(F ). This clause in pα(F ) is of the form S ∨ D,
with S containing all literals satisfied by α, and thus we have in mpα(F ) hard clauses of the
form Ŝ ∨ D̂ ∨ ri for every i with αi ∈ S. If γ |= C it is because it satisfies some αi ∈ C with
ri being false in β. Hence, the existence of the clause Ŝ ∨ D̂ ∨ ri implies that β |= Ŝ ∨ D̂.
We know that Ŝ ∨ D̂ is a disjunction of positive p’s and n’s literals. Let us assume that it
satisfies some pk (the case nk is similar). Note that rk has to be false because otherwise the
implications force pk to be false. Hence β satisfies some αk such that rk is false and hence
αk ∈ γ, which means that δ also satisfies αk because they coincide over γ. Since αk ∈ γ, it
belongs to touchedγ(C) which is the clause that we wanted δ to satisfy. ◀

4.3 Practical Remarks
The previous encoding would allow us to learn the redundant clause C := ¬γ. However,
SDCL (see Algorithm 1) requires C to be asserting (i.e. containing exactly one literal of the
last decision level, and hence allowing it to unit propagate after backjumping). In order to
achieve this property, we first observe that, being the negation of a subset of the current
assignment, clause ¬γ is a conflict. Hence, we can apply standard CDCL conflict analysis to
it and obtain a clause that is asserting. For those familiar with SMT, this is essentially what
DPLL(T )-based SMT solvers do when they analyze theory conflicts. Thanks to Theorem 14,
we can guarantee that the final clause we obtain in this process is redundant and hence can
be safely added. Moreover, as can be seen in Section 5, the size of this clause tends to be
even smaller than ¬γ. In addition, this method allows us to learn clauses that are stronger
than set-blocked clauses.

▶ Example 22. Let us consider F = (¬x0 ∨ x1) ∧ (¬x0 ∨ ¬x2) ∧ (x0 ∨ x2) ∧ (¬x1 ∨ x2 ∨
x4) ∧ (x3 ∨ x6 ∨ ¬x5). Assume the SAT solver builds the assignment, from left to right,
{x0, x1, ¬x2, x4, x5} where literals in bold are decisions. If we pick γ = {x0, x1, ¬x2}, we can
see that its reduct (¬x0 ∨ ¬x1 ∨ x2) ∧ (¬x0 ∨ x1) ∧ (¬x0 ∨ ¬x2) ∧ (x0 ∨ x2) is satisfiable. This
mean that we can learn ¬x0 ∨ ¬x1 ∨ x2. Now, in two resolution steps with the reasons of x1
and ¬x2 which are ¬x0 ∨ x1 and ¬x0 ∨ ¬x2, respectively, we can derive the redundant clause
¬x0. However, assignment x0 does not have satisfiable positive reduct. In fact, clause ¬x0 is
not even SPR. It can be checked that it is indeed PR (a possible witness is w = {¬x0, x2, x3}).
This shows that by combining the positive reduct with posterior resolution steps, we can
obtain clauses with stronger redundancy properties than set-blocked clauses, which is the
one obtained by using the positive reduct alone.

One final question that we want to address is whether, in an SDCL implementation, we
should (i) first ask a SAT solver whether pα(F ) is satisfiable, and then, if this is the case, ask
a MaxSAT to possibly find a smaller γ ⊆ α for which pγ is also satisfiable, or (ii) directly
ask a MaxSAT solver whether there exists a subset of γ ⊆ α for which pγ is satisfiable. The
following result sheds some light on this:

▶ Proposition 23. Given a formula F and an assignment α, if mpα(F ) has some solution,
then pα(F ) is satisfiable.
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Proof. By Theorem 21, if mpα(F ) has some solution satisfying k soft clauses, we can build
an assignment γ ⊆ α for which pγ(F ) is satisfiable, and let β be a model for it. It is now
easy to prove that δ := β ∪ α\γ is a model for pα(F ). The first clause in pα(F ) is ¬α, of
which the clause ¬γ ∈ pγ(F ) is a subclause and hence β |= ¬α. This implies that δ |= ¬α.
Now, any other clause C in pα(F ) is of the form touchedα(D) for some D ∈ F such that
α |= D. Expressing touchedα(D) as touchedγ(D) ∨ touchedα\γ(D) helps in our reasoning. If
γ |= D then touchedγ(D) ∈ pγ(F ) and hence β satisfies it. In this case δ |= C. Otherwise,
γ ̸|= D but since α |= D it has to be that α\γ |= D. This implies that α\γ |= touchedα\γ(D)
and hence δ |= C. ◀

This result shows that by directly calling the MaxSAT solver on mpα(F ), the solver
cannot learn more redundant clauses than if we call the SAT solver on pα(F ). Hence, it
makes sense to first call the SAT solver, which should be faster and then, only if pα(F ) has
been found to be satisfiable, call the MaxSAT solver to possibly learn a shorter redundant
clause. If we make an analogy with CDCL, checking pα(F ) for satisfiable would be the
equivalent of unit propagation and solving the MaxSAT formula mpα(F ) the equivalent of
conflict analysis.

5 Experimental Evaluation

5.1 Implementation
We implemented SDCL with the clause minimization techniques described in the previous
section on top of the SAT solver MapleSAT [18]. In order to solve the MaxSAT queries, we
have used EvalMaxSAT [2], an efficient solver that provides a very convenient C++ API.

The changes in Algorithm 1 are limited to analyzeWitness. Once we know that pα(F )
is satisfiable, we construct mpα(F ) and obtain the optimal solution with EvalMaxSAT. This
induces a clause ¬γ, to which standard CDCL conflict analysis is applied in order to derive
an asserting clause, which is learned and used to backjump.

This general idea is refined in different directions. First of all, we do not apply this
procedure before every decision. Without redundant-clause minimization, this might be
a bad decision design, since the length of the learned clause coincides with the decision
level, and hence we should apply it as soon as possible. With clause minimization enabled,
applying this procedure at high decision levels can still give short redundant clauses. Since,
as a consequence of Proposition 23, we know that long assignments are more likely to produce
redundant clauses, it makes sense to delay the check until the assignment is large enough.
However, there is a certain trade-off because at high decision levels, pα(F ) and mpα(F ) are
larger formulas and hence can be more difficult to solve. Our strategy relies on defining a
decision level goal and trying to derive a redundant clause only when we are at this decision
level. We compute the ratio of success (i.e. a redundant clause has been derived) of the
procedure calls; if this ratio is lower than a certain amount (e.g. 15%), we increment the
decision level goal; if it is higher, we decrement it. The rationale for this strategy is to
achieve a predefined ratio of successful calls but not invoking the technique too often.

The second refinement is that our final asserting clause is not always shorter than the
clause obtained by negating all decisions. In those rare situations, we learn the only-decisions
clause. A final refinement consists of only learning clauses of size at most 3. In our SDCL
implementation, we cannot delete redundant clauses we have learned in SDCL unless we also
delete all CDCL learned clauses that have been derived using them. This is why we have to
be very cautious and only learn high-quality redundant clauses.
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Figure 1 Distribution of the amount of minimization achieved in the clause returned by the
MaxSAT solver (left) and in the final asserting clause (right).

One final remark is that, unlike previous SDCL implementations [15, 13], we have not
modified the decision heuristics of the solver. We believe that, due to our conflict minimization
techniques, picking the exact right variable at low decision levels is not so critical.

5.2 Experimental Results
We have evaluated our system on the benchmarks used in [13, 22]. In order to assess the
impact of our Max-SAT based minimization technique, we have presented in Figure 1 results
about one execution of our system on a mutilated chess board benchmark of size 20. Data
for other benchmarks follow along the same lines. On the left-hand histogram, a bar over the
x-point 30 with height 10 means that, in 10% of the calls to minimization, the percentage
(Size MaxSAT clause / Size Only-decisions clause)*100 is between 30% and 35%. That is,
the size of the MaxSAT clause was around one third the size of the only-decisions clause.
The histogram on the right plots the same data, but comparing the final asserting clause
with respect to the only-decisions clause. One can observe that the percentage of reduction
is important and comes from the MaxSAT invocation as well as from the subsequent conflict
analysis call that returns the final asserting clause.

We also studied the cost of calling the SAT solver for checking the satisfiability of pα(F )
and the MaxSAT solver for processing mpα(F ). Our experiments revealed that the cost of
the SAT solver call never exceeds 2% of the total runtime, whereas the calls to MaxSAT are
more expensive and they can account for almost 30% of the total runtime.

Finally, we present in Table 1 results on the performance of our system compared to
others. We want to remark that no change to the decision heuristic of the baseline solver has
been made. We chose Kissat [3] as a representative of a state-of-the-art CDCL SAT solver;
SaDiCaL [15, 13] as the only other existing SDCL system; and our system MapleSDCL. For
SaDiCaL, we used two versions, one using the positive reduct and one using the filtered
positive reduct. Regarding MapleSDCL, we present three configurations: CDCL corresponds
to the standard MapleSAT solver, implementing CDCL; SDCL represents a configuration
using the positive reduct but no MaxSAT-based minimization, i.e., learning the only-decisions
clause, and finally, SDCL-min uses the MaxSAT-based minimization presented in this paper.
The table reports the number of seconds needed to solve each benchmark for each system.
Due to the use of internal time limits in EvalMaxSAT, the exact behavior of SDCL-min
is not reproducible. In order to have a higher confidence in its results we have run it 10
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Table 1 Performance of different systems on mutilated chess board and bipartite perfect matching
problems. Times are in seconds.

SaDiCaL MapleSDCL
Benchmark Kissat Positive Filtered CDCL SDCL SDCL-min

mchess14 4.6 5682 3.6 11.7 7.3 2.7 (10)
mchess15 30.1 > 7200 13.8 54.3 24.7 5.5 (10)
mchess16 107 > 7200 19.5 439 191 9 (10)
mchess17 2293 > 7200 64.8 5038 517 25.8 (10)
mchess18 352 > 7200 71.8 > 7200 3803 52.8 (10)
mchess19 > 7200 > 7200 > 7200 > 7200 3578 128 (10)
mchess20 3720 > 7200 > 7200 > 7200 > 7200 369 (10)
mchess21 > 7200 > 7200 > 7200 > 7200 > 7200 977 (10)
mchess22 > 7200 > 7200 > 7200 > 7200 > 7200 4507 (7)
mchess23 > 7200 > 7200 > 7200 > 7200 > 7200 6041 (2)

randomG-Mix-17 > 7200 > 7200 > 7200 2837 1916 257 (10)
randomG-Mix-18 > 7200 > 7200 > 7200 > 7200 > 7200 1683 (10)
randomG-n17 > 7200 > 7200 > 7200 1266 688 157 (10)
randomG-n18 > 7200 > 7200 > 7200 > 7200 > 7200 2350 (10)

times on each benchmark. For this system, the number in parenthesis corresponds to the
number of executions that solved that instance within the time limit of 7200 seconds, and
the runtime is the average over those successful executions.

For pigeon-hole problems, we observed the same behavior reported in [13], dedicated
decision heuristics are needed and they do not even work if the formula is scrambled. Tseitin
formulas, and other benchmarks from the SAT competition used in [22] are out of reach of
our system, probably to the fact that our current minimization procedure uses the positive
reduct, and not the filtered one. All in all, we observed that our technique gives important
benefit on mutilated chess board and bipartite perfect matching problems, outperforming
all other competitors. We want to remark that the data showed in [22] indicate that their
preprocessing-based technique for detecting PR clauses is able to achieve better performance.
However, our goal was to show how far the SDCL framework can be improved, and we believe
that results confirm that there is still a large space for improvement.

Finally, we would like to mention that MapleSDCL is able to produce proofs that are
checkable with dpr-trim. However, this checker assumes that PR clauses are computed
with respect to the current formula, including all learned lemmas. As already explained,
we compute clauses that are PR with respect to F ∧ R ∧ U , where F is the initial formula,
R contains all redundant clauses we have learned, and U is the set of all CDCL-like unit
lemmas. This has forced us to add simple 6 lines of code to the checker that control which
clauses have to be used when checking that the added PR clauses are correct.

6 Conclusions and Future Work

We have shown how redundant clauses learned within the SDCL approach can be shortened
by encoding the problem as a partial MaxSAT formula. Via extensive empirical evaluation we
show that our technique greatly improves the performance of SDCL over families of formulas
for which it was theoretically known that SDCL had a competitive advantage with respect
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to CDCL. We outline several directions for future work. First of all, we could adapt the
technique to also work for the filtered positive reduct. Secondly, there is a very interesting
research opportunity in developing sophisticated adaptive strategies aimed at deciding as to
when the SDCL solver should attempt to learn a redundant clause. Finally, parallelization of
the MaxSAT calls would greatly improve the runtime of SDCL-based systems.

References
1 Albert Atserias, Johannes Klaus Fichte, and Marc Thurley. Clause-learning algorithms

with many restarts and bounded-width resolution. J. Artif. Intell. Res., 40:353–373, 2011.
doi:10.1613/jair.3152.

2 Florent Avellaneda. A short description of the solver EvalMaxSAT. In Fahiem Bacchus,
Jeremias Berg, Matti Järvisalo, and Ruben Martins, editors, MaxSAT Evaluation 2020, pages
8–9, 2020.

3 Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximillian Heisinger. CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT Competition 2020. In Tomas Balyo,
Nils Froleyks, Marijn Heule, Markus Iser, Matti Järvisalo, and Martin Suda, editors, Proc. of
SAT Competition 2020 – Solver and Benchmark Descriptions, volume B-2020-1 of Department
of Computer Science Report Series B, pages 51–53. University of Helsinki, 2020.

4 Armin Biere and Andreas Fröhlich. Evaluating CDCL variable scoring schemes. In Marijn
Heule and Sean A. Weaver, editors, Theory and Applications of Satisfiability Testing – SAT
2015 – 18th International Conference, Austin, TX, USA, September 24-27, 2015, Proceedings,
volume 9340 of Lecture Notes in Computer Science, pages 405–422. Springer, 2015. doi:
10.1007/978-3-319-24318-4_29.

5 Armin Biere and Daniel Kröning. Sat-based model checking. In Edmund M. Clarke, Thomas A.
Henzinger, Helmut Veith, and Roderick Bloem, editors, Handbook of Model Checking, pages
277–303. Springer, 2018. doi:10.1007/978-3-319-10575-8_10.

6 Avrim L Blum and Merrick L Furst. Fast planning through planning graph analysis. Artificial
intelligence, 90(1-2):281–300, 1997.

7 Cristian Cadar, Vijay Ganesh, Peter M Pawlowski, David L Dill, and Dawson R Engler. EXE:
Automatically Generating Inputs of Death. ACM Transactions on Information and System
Security (TISSEC), 12(2):1–38, 2008.

8 Edmund M Clarke Jr, Orna Grumberg, Daniel Kroening, Doron Peled, and Helmut Veith.
Model Checking. MIT press, 2018.

9 Stephen A. Cook. The Complexity of Theorem-Proving Procedures. In Proceedings of the
3rd Annual ACM Symposium on Theory of Computing, pages 151–158, 1971. doi:10.1145/
800157.805047.

10 Stephen A. Cook. A short proof of the pigeon hole principle using extended resolution.
SIGACT News, 8(4):28–32, 1976. doi:10.1145/1008335.1008338.

11 Julian Dolby, Mandana Vaziri, and Frank Tip. Finding Bugs Efficiently With a SAT Solver.
In Proceedings of the 6th joint meeting of the European Software Engineering Conference and
the ACM SIGSOFT International Symposium on Foundations of Software Engineering, pages
195–204, 2007. doi:10.1145/1287624.1287653.

12 Marijn J. H. Heule, Benjamin Kiesl, and Armin Biere. Short proofs without new variables. In
Leonardo de Moura, editor, Automated Deduction – CADE 26 – 26th International Conference
on Automated Deduction, Gothenburg, Sweden, August 6-11, 2017, Proceedings, volume
10395 of Lecture Notes in Computer Science, pages 130–147. Springer, 2017. doi:10.1007/
978-3-319-63046-5_9.

13 Marijn J. H. Heule, Benjamin Kiesl, and Armin Biere. Encoding redundancy for satisfaction-
driven clause learning. In Tomás Vojnar and Lijun Zhang, editors, Tools and Algorithms for
the Construction and Analysis of Systems – 25th International Conference, TACAS 2019, Held
as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2019,
Prague, Czech Republic, April 6-11, 2019, Proceedings, Part I, volume 11427 of Lecture Notes
in Computer Science, pages 41–58. Springer, 2019. doi:10.1007/978-3-030-17462-0_3.

https://doi.org/10.1613/jair.3152
https://doi.org/10.1007/978-3-319-24318-4_29
https://doi.org/10.1007/978-3-319-24318-4_29
https://doi.org/10.1007/978-3-319-10575-8_10
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/1008335.1008338
https://doi.org/10.1145/1287624.1287653
https://doi.org/10.1007/978-3-319-63046-5_9
https://doi.org/10.1007/978-3-319-63046-5_9
https://doi.org/10.1007/978-3-030-17462-0_3


A. Oliveras, C. Li, D. Wu, J. Chung, and V. Ganesh 18:17

14 Marijn J. H. Heule, Benjamin Kiesl, and Armin Biere. Strong extension-free proof systems. J.
Autom. Reason., 64(3):533–554, 2020. doi:10.1007/s10817-019-09516-0.

15 Marijn J. H. Heule, Benjamin Kiesl, Martina Seidl, and Armin Biere. Pruning through
satisfaction. In Ofer Strichman and Rachel Tzoref-Brill, editors, Hardware and Software:
Verification and Testing – 13th International Haifa Verification Conference, HVC 2017, Haifa,
Israel, November 13-15, 2017, Proceedings, volume 10629 of Lecture Notes in Computer Science,
pages 179–194. Springer, 2017. doi:10.1007/978-3-319-70389-3_12.

16 Marijn J. H. Heule, Oliver Kullmann, and Victor W. Marek. Solving and verifying the boolean
pythagorean triples problem via cube-and-conquer. In Nadia Creignou and Daniel Le Berre,
editors, Theory and Applications of Satisfiability Testing – SAT 2016 – 19th International
Conference, Bordeaux, France, July 5-8, 2016, Proceedings, volume 9710 of Lecture Notes in
Computer Science, pages 228–245. Springer, 2016. doi:10.1007/978-3-319-40970-2_15.

17 Lefteris M. Kirousis and Phokion G. Kolaitis. The complexity of minimal satisfiability problems.
Inf. Comput., 187(1):20–39, 2003. doi:10.1016/S0890-5401(03)00037-3.

18 Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki. Learning rate
based branching heuristic for SAT solvers. In Nadia Creignou and Daniel Le Berre, editors,
Theory and Applications of Satisfiability Testing – SAT 2016 – 19th International Conference,
Bordeaux, France, July 5-8, 2016, Proceedings, volume 9710 of Lecture Notes in Computer
Science, pages 123–140. Springer, 2016. doi:10.1007/978-3-319-40970-2_9.

19 João Marques-Silva, Inês Lynce, and Sharad Malik. Conflict-driven clause learning SAT
solvers. In Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors, Handbook
of Satisfiability – Second Edition, volume 336 of Frontiers in Artificial Intelligence and
Applications, pages 133–182. IOS Press, 2021. doi:10.3233/FAIA200987.

20 Knot Pipatsrisawat and Adnan Darwiche. On the power of clause-learning SAT solvers as
resolution engines. Artif. Intell., 175(2):512–525, 2011. doi:10.1016/j.artint.2010.10.002.

21 Mukul R. Prasad, Armin Biere, and Aarti Gupta. A survey of recent advances in sat-
based formal verification. Int. J. Softw. Tools Technol. Transf., 7(2):156–173, 2005. doi:
10.1007/s10009-004-0183-4.

22 Joseph E. Reeves, Marijn J. H. Heule, and Randal E. Bryant. Preprocessing of propagation
redundant clauses. In Jasmin Blanchette, Laura Kovács, and Dirk Pattinson, editors, Automated
Reasoning – 11th International Joint Conference, IJCAR 2022, Haifa, Israel, August 8-10,
2022, Proceedings, volume 13385 of Lecture Notes in Computer Science, pages 106–124. Springer,
2022. doi:10.1007/978-3-031-10769-6_8.

23 João P. Marques Silva and Karem A. Sakallah. Invited tutorial: Boolean satisfiability algorithms
and applications in electronic design automation. In E. Allen Emerson and A. Prasad Sistla,
editors, Computer Aided Verification, 12th International Conference, CAV 2000, Chicago,
IL, USA, July 15-19, 2000, Proceedings, volume 1855 of Lecture Notes in Computer Science,
page 3. Springer, 2000. doi:10.1007/10722167_3.

24 Grigori S Tseitin. On the complexity of derivation in propositional calculus. Automation of
reasoning: 2: Classical papers on computational logic 1967–1970, pages 466–483, 1983.

25 Yichen Xie and Alexander Aiken. Saturn: A SAT-Based Tool for Bug Detection. In Proceedings
of the 17th International Conference on Computer Aided Verification, CAV 2005, pages 139–143,
2005. doi:10.1007/11513988_13.

26 Lintao Zhang and Sharad Malik. Conflict driven learning in a quantified boolean satisfiability
solver. In Lawrence T. Pileggi and Andreas Kuehlmann, editors, Proceedings of the 2002
IEEE/ACM International Conference on Computer-aided Design, ICCAD 2002, San Jose,
California, USA, November 10-14, 2002, pages 442–449. ACM / IEEE Computer Society, 2002.
doi:10.1145/774572.774637.

SAT 2023

https://doi.org/10.1007/s10817-019-09516-0
https://doi.org/10.1007/978-3-319-70389-3_12
https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.1016/S0890-5401(03)00037-3
https://doi.org/10.1007/978-3-319-40970-2_9
https://doi.org/10.3233/FAIA200987
https://doi.org/10.1016/j.artint.2010.10.002
https://doi.org/10.1007/s10009-004-0183-4
https://doi.org/10.1007/s10009-004-0183-4
https://doi.org/10.1007/978-3-031-10769-6_8
https://doi.org/10.1007/10722167_3
https://doi.org/10.1007/11513988_13
https://doi.org/10.1145/774572.774637




UpMax: User Partitioning for MaxSAT
Pedro Orvalho #

INESC-ID, Instituto Superior Técnico, University of Lisbon, Portugal

Vasco Manquinho #

INESC-ID, Instituto Superior Técnico, University of Lisbon, Portugal

Ruben Martins #

Carnegie Mellon University, Pittsburgh, PA, USA

Abstract
It has been shown that Maximum Satisfiability (MaxSAT) problem instances can be effectively
solved by partitioning the set of soft clauses into several disjoint sets. The partitioning methods can
be based on clause weights (e.g., stratification) or based on graph representations of the formula.
Afterwards, a merge procedure is applied to guarantee that an optimal solution is found.

This paper proposes a new framework called UpMax that decouples the partitioning procedure
from the MaxSAT solving algorithms. As a result, new partitioning procedures can be defined
independently of the MaxSAT algorithm to be used. Moreover, this decoupling also allows users
that build new MaxSAT formulas to propose partition schemes based on knowledge of the problem
to be solved. We illustrate this approach using several problems and show that partitioning has a
large impact on the performance of unsatisfiability-based MaxSAT algorithms.
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1 Introduction

In the last decade, Maximum Satisfiability (MaxSAT) algorithmic improvements have resulted
in the successful usage of MaxSAT algorithms in several application domains such as fault
localization [23], scheduling [14], planning [55], data analysis [9], among other [22, 51, 18].
These improvements resulted from new algorithm designs [39] based on iterative calls
to a highly efficient Satisfiability (SAT) solver. However, MaxSAT algorithms also take
advantage of other techniques, such as effective encodings of cardinality constraints [53] or
the incremental usage of SAT solvers [34].

Another technique for MaxSAT solving is to use partitioning on the soft clauses. For
instance, several solvers use partitioning of soft clauses according to their weight [4], which
are particularly effective when the MaxSAT instance encodes a lexicographic optimization
problem [32]. For the particular case of partial MaxSAT, other techniques have been
proposed, such as using a graph representation of the formula [42]. However, despite its
success for some classes of benchmarks, graph-based partitioning has not been widely used
mainly because (1) the graph representation may become too large to build or to process,
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Figure 1 Overview of UpMax.

and (2) it is not decoupled with the base MaxSAT algorithm (i.e., changing the partition
method implies altering the MaxSAT algorithm). Furthermore, in some cases, the partitions
might not capture the problem structure that is helpful for MaxSAT solving. Since several
MaxSAT algorithms rely on identifying unsatisfiable subformulas, each partition should be
an approximation of an unsatisfiable subformula to be solved separately.

Until now, the partitioning of MaxSAT formulas is interconnected to the subsequent
algorithm to be used. Therefore, it is not easy to define and test new partitioning methods
with several MaxSAT algorithms developed by different people. The first contribution of this
work is to propose a new format called pwcnf for defining MaxSAT formulas where clauses
are split into partitions. Figure 1 illustrates the schematic view of the UpMax architecture
based on the decoupling of the MaxSAT solving algorithm from the split of the clauses on the
MaxSAT formula. Observe that any partitioning method (e.g., graph-based partitioning [42])
can be used to generate the instances in the new pwcnf format. Hence, this new format
allows decoupling of the partitioning procedure from the MaxSAT algorithm, facilitating
the appearance of new partition methods for MaxSAT formulas. Secondly, UpMax is not
restricted to any partitioning scheme. UpMax also allows the MaxSAT user to propose how
to partition MaxSAT formulas based on her domain knowledge of the problem to be solved.
Note that this is not possible with current MaxSAT tools. Thirdly, with little effort, MaxSAT
algorithms based on unsatisfiability approaches can be adapted to the new format. This is
possible due to the newly proposed UpMax architecture. Hence, this paper presents the
results of several algorithms using different partitioning schemes. Finally, we present several
use cases where different user-defined partitioning schemes can be easily defined and tested.
Experimental results show that user-based partitioning significantly impacts the performance
of MaxSAT algorithms. Thus, UpMax decouples clause partitioning from MaxSAT solving,
opening new research directions for partitioning, modeling, and algorithm development.

2 Background

A propositional formula in Conjunctive Normal Form (CNF) is defined as a conjunction of
clauses where a clause is a disjunction of literals such that a literal is either a propositional
variable vi or its negation ¬vi. Given a CNF formula ϕ, the Satisfiability (SAT) problem
corresponds to decide if there is an assignment such that ϕ is satisfied or prove that no such
assignment exists. The Maximum Satisfiability (MaxSAT) is an optimization version of the
SAT problem. Given a CNF formula ϕ, the goal is to find an assignment that minimizes
the number of unsatisfied clauses in ϕ. In partial MaxSAT, clauses in ϕ are split in hard ϕh

and soft ϕs. Given a formula ϕ = (ϕh, ϕs), the goal is to find an assignment that satisfies all
hard clauses in ϕh while minimizing the number of unsatisfied soft clauses in ϕs. The partial



P. Orvalho, V. Manquinho, and R. Martins 19:3

Algorithm 1 Generic Partition-based MaxSAT Algorithm.
Input: ϕ = (ϕh, ϕs)
Output: optimal assignment to ϕ

1 γ ← ⟨γ1, . . . , γn⟩ ← partitionSoft(ϕh, ϕs) // initial partitions
2 if |γ| = 1 then
3 return MaxSAT (ϕh, ϕs) // no partitions

4 foreach γi ∈ γ do
5 ν ← MaxSAT(ϕh, γi)
6 while true do
7 (γi, γj)← selectPartitions(γ)
8 γk ← mergePartitions(γi, γj)
9 γ ← γ \ {γi, γj} ∪ {γk} // update partition set

10 ν ← MaxSAT(ϕh, γk)
11 if |γ| = 1 then
12 return ν

MaxSAT problem can be further generalized to the weighted version, where each soft clause
has an associated weight, and the optimization goal is to minimize the sum of the weights
of the unsatisfied soft clauses. Finally, we assume that ϕh is satisfiable. Moreover, the set
notation is also commonly used to manipulate formulas and clauses, i.e., a CNF formula can
be seen as a set of clauses (its conjunction), and a clause as a set of literals (its disjunction).

2.1 Algorithms for MaxSAT
Currently, state of the art algorithms for MaxSAT are based on successive calls to a SAT
solver [39]. One of the approaches is to perform a SAT-UNSAT linear search on the number
of unsatisfied soft clauses. For that, the algorithm starts by adding a new relaxation variable
ri to each soft clause si ∈ ϕs, where ri represents the unsatisfiability of clause si. Next, it
defines an initial upper bound µ on the number of unsatisfied soft clauses. At each SAT call,
the constraint

∑
ri ≤ µ − 1 is added such that an assignment that improves on the previous

one is found. Whenever the working formula becomes unsatisfiable, then the previous SAT
call identified an optimal assignment. There are a plethora of these algorithms [26, 53, 44, 45].

On the other hand, UNSAT-SAT algorithms start with a lower bound λ on the number
of unsatisfied soft clauses initialized at 0. The algorithm starts with an overconstrained
working formula. At each iteration, the working formula is relaxed by adding additional
relaxation variables allowing more soft clauses to be unsatisfied. Whenever the working
formula becomes satisfiable, then an optimal solution is found. There are also many successful
MaxSAT solvers that use an UNSAT-SAT approach [16, 4, 5, 31, 33, 40, 12]. Two key factors
for the performance of UNSAT-SAT algorithms is the usage of SAT solvers to identify
unsatisfiable subformulas, and the search process being incremental [15, 34]. Instead of
dealing with the whole formula at once, some algorithms try to split the formula into
partitions [4, 35, 42]. In particular, partitioning focuses on splitting the set of soft clauses
into disjoint sets. The motivation is to quickly identify a minimal cost considering just a
subset of soft clauses. Since the sets are disjoint, the sum of the minimal cost of all partitions
defines a lower bound on the optimal solution. Moreover, a smaller instance should be able
to be easier to solve. Hence, the convergence to the optimum is expected to be faster.

Algorithm 1 presents the pseudo-code for this generic approach. First, soft clauses in
ϕs are split into n disjoint sets (line 1). If n = 1, then there is no partitioning and a
MaxSAT solver is called on the whole formula. Otherwise, a MaxSAT solver solves each
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Hard: h1 : (v1 ∨ v2) h2 : (¬v2 ∨ v3) h3 : (¬v1 ∨ ¬v3) h4 : (v4 ∨ v5)
h5 : (¬v5 ∨ v6) h6 : (¬v4 ∨ ¬v6) h7 : (¬v3 ∨ ¬v6)

Soft: s1 : (¬v1) s2 : (¬v3) s3 : (¬v4) s4 : (¬v6)

Figure 2 Example of a MaxSAT formula.

v1 v3 v6

v2 v5v4

v1 v3

v2 v4 v5

v6

h1 h2

h3

h7 h5 h4

h6

s1 s2 s4 s3

Figure 3 VIG graph (left) and RES graph (right) for MaxSAT formula in Figure 2.

partition γi independently (line 5). Next, two partitions are selected and merged (lines 7-8).
The newly merged partition γk is then solved considering the information already obtained
from solving γi and γj . This process is repeated until there is only one partition whose
solution is an optimal assignment to the original MaxSAT instance (line 12). Observe that
several MaxSAT algorithms can be used in this scheme including Fu-Malik [16], WPM3 [6],
MSU3 [33], OLL [40] or a hitting set approach [12, 47], among others [39].

▶ Example 1. Consider the MaxSAT formula in Figure 2. Suppose the soft clauses are split
into two disjoint sets γ1 = {s1, s2} and γ2 = {s3, s4}. Next, a MaxSAT solver is applied to
MaxSAT instances (ϕh, γ1) and (ϕh, γ2). Each of these instances has an optimal solution
of 1. When merging both partitions, a final MaxSAT call is made on (ϕh, γ1 ∪ γ2) with an
initial lower bound of 2 (because γ1 and γ2 are disjoint). Since the lower bound is already
equal to the optimum value, this last call is not likely to be computationally hard.

A related approach to partitioning is Group MaxSAT [7, 17]. Group MaxSAT is a
variation of MaxSAT where soft clauses are grouped, and each group has a weight. The
optimization goal in Group MaxSAT is to minimize the sum of the weights of the unsatisfied
groups. A group is considered unsatisfied if at least one of its soft clauses is unsatisfied.
Note that Group MaxSAT and MaxSAT are solving different optimization problems. The
partitions in Algorithm 1 do not change the optimization goal of MaxSAT but instead are
meant to guide the solver to find an optimal solution to the MaxSAT formula.

2.2 Partitioning MaxSAT Formulas
There are several graph representations for CNF formulas that have been proposed in order
to analyze its structural properties [52, 50, 3]. For instance, it is well-known that industrial
SAT instances can be represented in graphs with high modularity [3]. On the other hand,
graphs that represent randomly generated instances are closer to an Erdös-Rényi model.
Similar observations have also been made in MaxSAT instances [42]. Furthermore, based on
these graph representations, one can partition the set of soft clauses in a MaxSAT instance
by applying a community finding algorithm [10] that maximizes the modularity value.

One possible graph representation is the Variable Incidence Graph (VIG). Let G = (V, E)
denote a weighted undirected graph where V defines the graph vertices and E its edges.
In the VIG representation, we have a vertex vi ∈ V for each variable vi in the MaxSAT
formula ϕ. Next, for each pair of variables vi and vj , if there is at least one clause in ϕ that
contains both variables vi and vj (or its negated literals), then an edge (vi, vj) is added to
the graph. For each clause c ∈ ϕ with n literals, then 1/(n

2 ) is added to the weight of every
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pair of variables that occurs in clause c. Figure 3 illustrates the VIG representation for the
MaxSAT formula in Figure 2. Note that edge weights are not represented to simplify the
figure. Next, if we apply a community finding algorithm that maximizes the modularity, two
communities are identified (vertices with different colors). Hence, soft clauses with variables
in {v1, v2, v3} would define a partition, while soft clauses with variables in {v4, v5, v6} define
the other partition. Therefore, we would have γ1 = {s1, s2} and γ2 = {s3, s4} as the two
partitions of soft clauses. Observe that ϕh ∪ γ1 is an unsatisfiable subformula of ϕ, as well as
ϕh ∪ γ2. In the Clause-Variable Incidence Graph (CVIG) representation, there is a node for
each variable and another node for each clause. Moreover, if a variable vi (or its negation
¬vi) occurs in a clause cj , then there is an edge (vi, cj) in the graph.

On the other hand, in Resolution-based Graphs (RES) only clauses are represented as
vertices. Hence, for each clause cj there is a node in the graph. Let cr

jk be the clause
that results from applying the resolution operation between clauses cj and ck. If cr

jk is
not a tautology, then an edge (cj , ck) is added to the graph with weight 1/|cr

jk| where |cr
jk|

denotes the size of the resolvent clause. Note that if the resolution operation results in a
trivial resolvent, then no edge is added. The right graph in Figure 3 shows the RES graph
representation of the MaxSAT formula in Figure 2. Colors illustrate the three communities
of soft clauses found in this formula, i.e., γ1 = {s1}, γ2 = {s2} and γ3 = {s3, s4}.

3 User-Based Partitioning

All the partitioning methods described in Section 2.2 are automatic and attempt to recover
some partition scheme from the structure of the MaxSAT formula. However, when encoding
a problem into MaxSAT, it is often the case that the user has enough domain knowledge
to provide a potential partition scheme. Unfortunately, the current MaxSAT format does
not support this extra information. Thus, we propose a new generic format for MaxSAT,
pwcnf, where the partition scheme can be defined, and solvers can take advantage of it. The
pwcnf format starts with a header:

p pwcnf n_vars n_clauses topw n_part

and each line in the body is of the form: [part] [weight] [literals*] 0.
In the header, n_vars and n_clauses are the numbers of variables and clauses of the

formula. topw is the weight assigned to the hard clauses and n_part is the number of
partitions. Each partition label ([part]) must be a positive integer from 1 to n_part.

▶ Example 2. Considering the RES graph presented in Figure 3, clearly it has 3 partitions
accordingly to the coloring scheme: green (label 1), yellow (label 2) and orange (label 3).
The pwcnf for this graph is the following:

p pwcnf 6 11 7 3 1 7 -1 -3 0 3 7 -4 -6 0 2 1 -3 0
1 7 1 2 0 3 7 4 5 0 2 7 -3 -6 0 3 1 -4 0
2 7 -2 3 0 3 7 -5 6 0 1 1 -1 0 3 1 -6 0

Alloy [21] is a declarative modeling language based on a first-order relational logic that has
been applied to different software engineering problems [25, 30, 24, 49]. Recently, AlloyMax

has been proposed that extends Alloy with the ability to find optimal solutions [54]. AlloyMax

uses a MaxSAT solver as its optimization engine. So for that, AlloyMax encodes in a MaxSAT
formula the high-level Alloy model. Moreover, AlloyMax uses domain knowledge to partition
the soft clauses in the generated MaxSAT formula. In particular, one partition of soft clauses
is created for each optimization operator used in the Alloy specification. AlloyMax was the
first successful usage of UpMax, which shows that the creation of the new file format makes
it easier for other researchers to integrate partitioning in their applications.
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3.1 Use Case: Minimum Sum Coloring
To illustrate how a user can take advantage of the new proposed format, we analyze the
Minimum Sum Coloring (MSC) problem from graph theory. MSC is the problem of finding
a proper coloring while minimizing the sum of the colors assigned to the vertices. In this
problem, the following conditions must be met: (1) each vertex should be assigned a color;
(2) each vertex is assigned at most one color; and (3) two adjacent vertices cannot be assigned
the same color. The optimization goal is to minimize the number of different colors in the
graph. Let V denote the set of vertices in the graph. Let C denote the set of possible colors.
Let Xv

c be the Boolean that is assigned to 1 if color c is assigned to vertex v. The goal is to
maximize ¬Xv

c , and each soft clause is assigned the weight of c. The user can potentially
group these soft clauses in two distinct ways: (1) variables that share the same color are
grouped, or (2) variables that share the vertex number are grouped. For more details on the
MaxSAT encoding, the reader is referred to the extended version of this paper [43].

▶ Example 3. Assume a user wants to minimize the number of different colors needed to
color a given graph G such that two adjacent vertices cannot share the same color. G has 4
vertices, v1, . . . , v4, and the following set of edges GE = {(v1, v2), (v1, v3), (v2, v3), (v3, v4)}.
Furthermore, there are 4 different colors available c1, . . . , c4. When encoding the problem
into pwcnf the user could provide either the following VERTEX-based or COLOR-based
partition scheme:

VERTEX-based

V1 V2 V3 V4

COLOR-based

C1 C2 C3 C4

¬Xc1
v1

¬Xc2
v1

¬Xc3
v1

¬Xc4
v1

¬Xc1
v2

¬Xc2
v2

¬Xc3
v2

¬Xc4
v2

¬Xc1
v3

¬Xc2
v3

¬Xc3
v3

¬Xc4
v3

¬Xc1
v4

¬Xc2
v4

¬Xc3
v4

¬Xc4
v4

¬Xc1
v1

¬Xc1
v2

¬Xc1
v3

¬Xc1
v4

¬Xc2
v1

¬Xc2
v2

¬Xc2
v3

¬Xc2
v4

¬Xc3
v1

¬Xc3
v2

¬Xc3
v3

¬Xc3
v4

¬Xc4
v1

¬Xc4
v2

¬Xc4
v3

¬Xc4
v4

3.2 Use Case: Seating Assignment Problem
Another example of how a user can take advantage of the pwcnf format is the seating
assignment problem. We encode this problem into MaxSAT and show different partition
schemes that can be provided by the user. Consider a seating assignment problem where the
goal is to seat persons at tables such that the following properties are met: (1) Each table
has a minimum and a maximum number of persons; (2) Each person is seated at exactly one
table; and (3) Each person has some tags that represent their interests. The optimization
goal is to minimize the number of different tags between all persons seated at the same table.

More formally, consider a seating problem with p persons and t tables. Assume that
the set of tags each person may have is defined by G and the set of tables is defined by T .
Consider the Boolean variables Y g

t that are assigned to 1 if there is at least one person p

with a tag g that is seated at table t. The goal of this optimization problem is to minimize∑
t∈T ,g∈G Y g

t subject to the constraints of the problem. When encoding the problem into
MaxSAT, the ¬Y g

t literals will correspond to unit soft clauses. The user can potentially group
these soft clauses in two distinct ways: (1) variables that share the same tag are grouped, or
(2) variables that share the same table are grouped. We call the former partition scheme
TAGS-based and the latter TABLES-based. More details can be found in the extended version
of this paper [43].
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▶ Example 4. Consider that a user wants to seat 5 persons, p1, . . . , p5, in two tables t1, t2.
Each table must have at least 2 persons and at most 3 persons. Each person has a set of
interests described by their tags as follows:

p1 = {A, B}, p2 = {C}, p3 = {B}, p4 = {C, A}, p5 = {A}

When encoding the problem into pwcnf the user could provide either the following
TAGS-based or TABLES-based partition scheme:

TAGS-based

A B C

TABLES-based

t1 t2

¬Y A
t1

¬Y A
t2

¬Y B
t1

¬Y B
t2

¬Y C
t1

¬Y C
t2

¬Y A
t1

¬Y B
t1

¬Y C
t1

¬Y A
t2

¬Y B
t2

¬Y C
t2

4 Experimental Results

UpMax is built on top of the open-source Open-WBO MaxSAT solver [36]. UpMax supports
the new format pwcnf for user-based partitioning presented in Section 3. Alternatively, it
can also take as input a wcnf formula and output a pwcnf formula using an automatic
partitioning strategy based on VIG [37], CVIG [37], RES [42], or randomly splitting the
formula into k partitions. UpMax can also be extended to support additional partitioning
strategies that users may want to implement to evaluate their impact on the performance of
MaxSAT algorithms. Furthermore, we are currently merging the partitions based on their
size. We sort the partitions in increasing order, and we start by giving the smaller partition
to the solver. However, other merging methods can be easily implemented and evaluated.

UpMax currently supports three UNSAT-based algorithms (WBO [31], OLL [40], and
MSU3 [34]) for both unweighted and weighted problems that take advantage of the partitions
using the basic algorithm described in Algorithm 1. WBO uses only at-most-one cardinality
constraints when relaxing the formula at each iteration. In contrast, MSU3 uses a single
cardinality constraint, and OLL uses multiple cardinality constraints. Furthermore, we have
also extended RC2 [20] and Hitman [38], available in PySAT [19], to take advantage of
user-based or graph-based partitions through our pwcnf formulae using Algorithm 1. RC2 is
an improved version of the OLL algorithm [40, 41]. Hitman is a SAT-based implementation
of an implicit minimal hitting set enumerator [38] and can be used as the basic flow of a
MaxHS-like algorithm [11] for MaxSAT. UpMax is publicly available at GitHub [1].

To show the impact of partitioning on the performance of unsatisfiability-based algorithms,
we randomly generate 1,000 instances for both the seating assignment and the minimum
sum coloring problem by varying the different parameters of each problem. We considered
the automatic partitioning strategies available in UpMax (VIG, CVIG, RES, random; for
the random partitioning strategy, we fixed k = 16), the user partitions (UP) described in
Sections 3.1 and 3.2, and no partitions. All of the experiments were run on StarExec [48]
with a timeout of 1800 seconds and a memory limit of 32 GB for each instance.

4.1 Minimum Sum Coloring Problem
Table 1 shows the number of instances solved for the Minimum Sum Coloring problem for
each partitioning strategy and algorithm. Entries highlighted in bold correspond to the
highest number of instances solved for each algorithm. The diversity of algorithms and
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Table 1 Number of solved instances for the Minimum Sum Coloring (MSC) problem.

User Part. Graph Part.
Solver No Part. Vertex Color VIG CVIG RES Random

MSU3 245 758 770 774 770 775 776
OLL 796 863 594 945 944 947 756

WBO 483 622 314 745 750 755 493
Hitman 610 613 471 605 614 609 592

RC2 796 866 528 943 939 944 687

Table 2 Number of solved instances for the Seating Assignment problem.

User Part. Graph Part.
Solver No Part. Table Tag VIG CVIG RES Random

MSU3 558 671 639 659 641 640 565
OLL 526 634 624 627 599 608 528

WBO 306 400 536 400 385 386 360
Hitman 420 403 510 406 425 420 440

RC2 530 620 624 618 600 597 541

partitions used allows us to make some interesting observations regarding the impact of
partitioning on the performance of MaxSAT algorithms. First, we can see that partitioning
MaxSAT algorithms can often significantly outperform their non-partitioning counterparts.
For instance, with partitioning the WBO algorithm can solve 272 more instances than without
partitioning. Secondly, most partition schemes result in performance improvements, even
if the partition is done randomly. In this problem, random partitions had a benefit for
the MSU3 algorithm. This occurs since, until the last partition is added, this algorithm
deals with a subset of soft clauses, resulting in finding smaller unsatisfiable cores. Another
observation is that the user-based partitions were not as good as the graph-based partitions.
This may be partially explained by the fact that the user-based partitions do not consider
the weight of the soft clauses which is important for weighted MaxSAT algorithms. Finally,
we can also observe that different partition strategies have different performance impacts
on different algorithms. This suggests that new algorithms could leverage the partition
information better than our approach presented in Algorithm 1.

Figures 4a and 4b show two scatter plots comparing two MaxSAT algorithms, OLL
and WBO, on the set of instances for the Minimum Sum Coloring problem. Each point in
Figure 4a represents an instance where the x-value (resp. y-value) is the CPU time spent to
solve the instance using the OLL algorithm with the RES partitioning scheme (resp. OLL
without any partitioning scheme). If a point is above the diagonal, then it means that the
algorithm with partitioning outperformed the algorithm without partitioning. The OLL
algorithm was the one with the best performance in the Minimum Sum Coloring (MSC) set
of instances (see Table 1). For many instances, we can observe a 10× speedup for OLL-RES
when compared to OLL-NoPart. Secondly, Figure 4b compares the WBO algorithm with no
partitioning and WBO using the RES partitioning scheme. WBO has the most significant
gap between using partitions (755 instances solved) and not using partitions (483 instances
solved). Figure 4b also shows that many instances that could not be solved without partitions
can now be solved in a few seconds. Both plots support that OLL and WBO greatly improve
their performance on this set of benchmarks when using partitioning. Cactus plots of our
experiments can be found in the extended version of this paper [43].
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Figure 4 Scatter plots comparing different MaxSAT algorithms and respective partitioning
schemes for the problems of Minimum Sum Coloring (MSC) and Seating Assignment (SA).

4.2 Seating Assignment Problem

Table 2 shows the number of instances solved for the Seating Assignment problem for
each partitioning strategy and algorithm. Similar to the previous use case, we can observe
that partitioning can significantly impact the number of solved instances for all evaluated
MaxSAT algorithms. For instance, WBO algorithm with partitioning can solve more 220
instances than without partitioning. Furthermore, almost all the presented partition schemes,
except random partitioning, result in performance improvements when compared to no
partitioning scheme. Moreover, different partition strategies have different performance
impacts on different algorithms. In this problem, user-based partitions achieved the best
results. However, in some algorithms (e.g., MSU3, OLL), tabled-based partitioning is the
best approach, while tag-based partitioning is better for the other algorithms.

Figures 4c and 4d show two scatter plots comparing two MaxSAT algorithms, MSU3
and WBO, on the set of instances for the Seating Assignment problem. Figure 4c shows the
effectiveness of the table-based partitioning scheme against not using partitions in the MSU3
algorithm. We can observe that partitioning leads to faster runtimes, with most points being
above the diagonal. Secondly, Figure 4d compares the WBO algorithm with the tag-based
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and without any partitioning scheme. This algorithm has the biggest gap between using
partitions (536 instances solved) and not using partitions (306 instances solved). Figure 4d
supports that using partitioning with the WBO algorithm on this set of benchmarks greatly
improves its performance with speedups of more than 10× for most of the instances.

4.3 State-of-the-art MaxSAT Solvers
Using the wcnf formulae (No Part.) of both benchmark sets, we compared the performance
of UpMax with some of the best solvers 1 in the MaxSAT Evaluation 2022 [2], such as
MaxHS [13], UWrMaxSat-SCIP [46], CASHWMaxSAT-CorePlus [27], EvalMaxSAT [8], and
MaxCDCL [29]. MaxHS is a MaxSAT solver based on an implicit hitting set approach.
UWrMaxSat is an unsatisfiability-based solver using the OLL algorithm. These solvers can
be seen as better versions than the RC2 and Hitman algorithms available in PySAT. CASH-
WMaxSAT is developed from UWrMaxSat, EvalMaxSAT is based on the OLL algorithm,
and MaxCDCL is an extension for MaxSAT of the CDCL algorithm [28], which combines
Branch and Bound and clause learning.

Regarding the minimum sum coloring problem, MaxHS solved 873 instances, EvalMaxSAT
solved 729, CASHWMaxSAT solved 993 (708 without SCIP), UWrMaxSat solved 994 (728
without SCIP), and MaxCDCL solved 995 instances. Note that solvers using Branch and
Bound excel on these instances, and the performance of CASHWMaxSAT and UWrMaxSat
deteriorates when SCIP is not used. Moreover, these results also show that partitioning
improves less effective MaxSAT algorithms to become competitive with some solvers (e.g.
UWrMaxSat), and outperform other solvers, e.g., MaxHS and EvalMaxSAT. Secondly, re-
garding the seating assignment problem, UWrMaxSat solved 580 instances, CASHWMaxSAT
solved 585, MaxCDCL solved 593, MaxHS solved 643, and EvalMaxSAT solved 653 instances.
When compared with our best results, note that table-based partitioning with the MSU3
algorithm can outperform all these solvers. Moreover, since partitioning can improve the
performance of multiple MaxSAT algorithms and it is beneficial for implicit hitting set
approaches like Hitman, it has the potential to further improve the performance of MaxHS.

Even though partitioning is not expected to improve the performance of MaxSAT solvers
on all problem domains, there are many domains similar to the seating assignment and
minimum sum coloring 2 for which partitioning can provide a significant performance boost in
MaxSAT solving. Finally, we note this work opens new lines of research based on decoupling
of MaxSAT solvers from the procedure that defines the partitions of MaxSAT formulae.

5 Conclusions

In this paper, we propose UpMax, a new framework that decouples the partition generation
from the MaxSAT solving. UpMax allows the user to specify how to partition MaxSAT
formulas with the proposed pwcnf format. With this format, the partitioning of MaxSAT
instances can be done a priori to MaxSAT solving. Experimental results with two use
cases with multiple algorithms show that partitioning can improve the performance of
MaxSAT algorithms and allow them to solve more instances. UpMax provides an extendable
framework that can benefit (1) researchers on partitioning strategies, (2) solver developers
with new MaxSAT algorithms that can leverage partition information, and (3) users that
can benefit from additional information when modeling problems to MaxSAT.

1 We did not modify any of these solvers since each solver has a large codebase with many optimizations,
but these solvers could also use a partitioning approach.

2 Check AlloyMax [54] paper for UpMax’s results on other application domains.
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Abstract
In this paper, we present QMusExt, a tool for the extraction of minimal unsatisfiable sets (MUS)
from quantified Boolean formulas (QBFs) in prenex conjunctive normal form (PCNF). Our tool
generalizes an efficient algorithm for MUS extraction from propositional formulas that analyses and
rewrites resolution proofs generated by SAT solvers.
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1 Introduction

We present the tool QMusExt that computes a minimal unsatisfiable set (MUS), also called
minimal unsatisfiable core, of a false quantified Boolean formula (QBF) Π.ϕ in prenex
conjunctive normal form. An MUS is a subformula of ϕ′ ⊆ ϕ such that Π.ϕ′ is false and
removing any clause from ϕ′ would make the formula true. Hence, an MUS describes a set
of contradicting constraints from which no clause may be removed without eliminating the
inconsistency as well. As this information is very important for understanding the reason of
an inconsistency, many approaches have been presented to compute minimal unsatisfiable
cores for propositional formulas [6]. In general, the MUS of a formula is not necessarily
unique, a formula can have multiple MUSes and usually the smaller ones are preferred, i.e.,
size is a measure on the quality of the MUS extraction algorithm.

For QBFs, only few approaches for calculating MUSes exist so far, although MUS
extraction is an important problem here as well. In [7, 6], theoretical properties of MUS
extraction have been studied. An approach that extracts unsatisfiable cores which are not
necessarily minimal is employed in [13] to validate the correctness of QBF solving results.
In [4] the extraction of unsatisfiable cores is discussed in the context of the quantified MaxSAT
problem. An approach to extract minimal unsatisfiable cores from false QBFs in PCNF was
presented by Lonsing and Egly [8]. In this work, the solver DepQBF was equipped with
an interface for incremental solving that provides a clause grouping feature. They showed
that with this feature, the iterative clause set refinement approach with selector variables
is straight-forward to implement for PCNF formulas. To the best of our knowledge, they
provided the first available tool for MUS extraction. Most recently, Niskanen et al. presented
an approach to find a smallest MUS of a false QBF based on implicit hitting sets [12].
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The approach implemented in our tool QMusExt works differently. It applies a proof-based
approach that was originally suggested for propositional formulas [2]. In particular, it reduces
the set of initial clauses of a Q-resolution proof as produced by modern QBF solvers until an
MUS is extracted. Therefore, the proof needs to be iteratively updated. By exploiting the
duality of true and false QBFs, satisfiable cores of true QBFs can be obtained by employing
our approach. Our tool QMusExt is implemented in C and is available under MIT license at

https://github.com/PlankAndreas/QMusExt.

2 Preliminaries

We consider QBFs of the form Π.ϕ, where Π = Q1X1...QnXn is called the quantifier prefix,
X1, . . . , Xn are pairwise disjoint sets of Boolean variables, Qi ∈ {∀, ∃}, and Qi ̸= Qi+1.
The matrix ϕ is a propositional formula either in prenex conjunctive normal form (PCNF),
i.e., it is a conjunction of clauses, or in prenex disjunctive normal form (PDNF), i.e., it
is a disjunction of cubes. As usual, a clause is a disjunction of literals and a cube is a
conjunction of literals. If convenient, we interpret clauses and cubes as sets of literals. A
literal is a variable or a negated variable. We define Var(l) = x if l = x or l = x̄ for any
literal l. We say a literal is existential (universal), if its variable is existentially (universally)
quantified. Further, l̄ = x if l = x̄ and l̄ = x̄ if l = x. A quantifier prefix Q1X1 . . . QnXn

imposes an ordering < on the variables: if xi ∈ Xi, xj ∈ Xj , and i < j, then xi < xj . For a
propositional formula ϕ, ϕl denotes the formula obtained by setting variable x to true if l =
x and by setting x to false if l = x̄. A QBF ∀XΠ.ϕ is true iff ∀X ′Π.ϕx and ∀X ′Π.ϕx̄ are
true where X ′ = X \ {x}. Respectively, a QBF ∃XΠ.ϕ is true iff ∃X ′Π.ϕx or ∃X ′Π.ϕx̄ is
true. For example ∀x∃y.(x ∨ y) ∧ (x̄ ∨ ȳ) is true and ∃x∀y.(x ∨ y) ∧ (x̄ ∨ ȳ) is false. Every
false QBF Π.ϕ in PCNF can be refuted by Q-resolution [5] which consists of the following
three clause-derivation rules:

Axiom: Any clause of ϕ can be derived.
Resolution: From already derived clauses C ∨ x and D ∨ x̄, a clause C ∨ D can be
derived if there is no literal l with l, l̄ ∈ C ∪ D, x ̸∈ D, x̄ ̸∈ C, and x is existentially
quantified.
Universal Reduction: From an already derived clause C ∨ l, a clause C can be derived
if l is universal and there is no existential literal k ∈ C with l < k.

A QBF is false iff the empty clause □ can be derived via Q-resolution. Dually, every true
QBF Π.ϕ in PCNF can be proven by Q-resolution [3] which consists of the following three
cube-derivation rules:

Axiom: Let σ be a satisfying assignment of ϕ. Then cube
∧

l∈σ l can be derived.
Resolution: From already derived cubes C ∧ x and D ∧ x̄, a cube C ∧D can be derived
if there is no literal l with l, l̄ ∈ C ∪D, x ̸∈ D, x̄ ̸∈ C, and x is universally quantified.
Existential Reduction: From an already derived cube C ∧ l, a cube C can be derived
if l is existential and there is no universal literal k ∈ C with l < k.

A QBF is true iff the empty cube can be derived via Q-resolution. A clause/cube derived via
the resolution rule is called resolvent, while the parent clauses/cubes are called antecedents.
Clauses with no antecedents are called initial clauses. Respectively, cubes without antecedents
are called initial cubes. While initial clauses are directly available from the given PCNF
formula, initial cubes have to be found by the QBF solver. Q-resolution proofs can be
described in terms of resolution graphs. For a false QBF Π.ϕ, a resolution graph P = (V,E)
is a directed acyclic graph (DAG). The set of vertices V = V i ∪ V d consists of initial clauses
V i ⊆ ϕ and derived clauses V d. Edges connect two antecedents and their resolvent, or a
clause C and a clause C ′ that is obtained by universally reducing C. The only sink vertex is
the empty clause denoted by □. Resolution graphs for true QBFs are defined respectively.

https://github.com/PlankAndreas/QMusExt
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A vertex D is called reachable in resolution graph P from a vertex C iff there is a path
from vertex C to vertex D. With cone(P,C) we denote the set of all vertices reachable
from vertex C in a resolution graph P (the cone of a clause C). Dually the set unRe(P,C )
contains all clauses not reachable from clause C. Finally, we define a resolution graph P to
be non-redundant if all vertices are connected. In the following, we will use Q-resolution
proofs to detect minimal (un)satisfiable cores which are defined as follows.

▶ Definition 1 (Minimal Unsatisfiable Core). For a false QBF Φ = Π.ϕ in PCNF, a sub-
formula ϕ′ ⊆ ϕ is a minimal unsatisfiable core of Φ, if Π.ϕ′ is false and Π.ϕ′\{C} is true
for all C ∈ ϕ′.

The size of an unsatisfiable core is the number of its clauses. In general, minimal
unsatisfiable cores are not unique and they can be of different size. For example, the formula
∃x∀y∃z.((x ∨ y ∨ z) ∧ (x̄ ∨ ȳ) ∧ (z̄) ∧ (x ∨ y ∨ z̄) ∧ (z ∨ y)) has minimal unsatisfiable cores
((x ∨ y ∨ z) ∧ (x̄ ∨ ȳ) ∧ (z̄)), ((z̄) ∧ (z ∨ y)), and ((x ∨ y ∨ z) ∧ (x̄ ∨ ȳ) ∧ (x ∨ y ∨ z̄)).

▶ Definition 2 (Minimal Satisfiable Core). For a true QBF Φ = Π.ϕ in PDNF, a sub-formula
ϕ′ ⊆ ϕ is a minimal satisfiable core of Φ, if Π.ϕ′ is true and Π.ϕ′\{C} is false for all C ∈ ϕ′.

3 QMusExt

Our tool QMusExt extracts unsatisfiable cores from Q-resolution refutations of false QBFs.
Further, it extracts satisfiable cores from Q-resolution satisfaction proofs of true QBFs. In
both cases, QMusExt processes Q-resolution proofs in the QRP-format1 and repeatedly calls
the QBF solver DepQBF [9] in version 6.03 for deciding PCNF formulas and for producing
proofs of modified formulas. In the following, we first introduce the algorithm implemented
in QMusExt for extracting unsatisfiable cores, and then discuss the extraction of satisfiable
cores.

Algorithm 1 Minimal Unsatisfiable Core Extraction.

Data: False QBF Π.ϕ in PCNF
Result: Minimal Unsat Core V i

1 (False, P ) ← QBFSolver (Π.ϕ) with P = (V i ∪ V d, E);
2 P ← trim (P );
3 while unmarked clauses exists in V i do
4 C i ← pickUnmarkedClause(V i);
5 (Val, P ′) ← QBFSolver (Π.unRe(P,C i));
6 if Val == True then
7 mark C i as a MUS member;
8 else
9 P ′′ ← rebuildProof (P , P ′);

10 P ← trim (P ′′);
11 end
12 end

1 http://fmv.jku.at/qbfcert/qrp.format
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3.1 Basic Algorithm for the Extraction of Unsatisfiable Cores
Our tool QMusExt is based on the algorithm for the extraction of minimal unsatisfiable
cores for propositional formulas presented in [2]. Whereas the original approach relies on
propositional resolution proofs, QMusExt processes Q-resolution proofs. The latter contain
not only applications of the axiom and the resolution rule, but also universal reductions.
While this has some impacts on the implementation of QMusExt, conceptually the original
algorithm is similar.

The approach implemented by QMusExt is summarized in Algorithm 1. The input is
a false QBF Φ = Π.ϕ in PCNF. First a QBF solver like DepQBF is called. We assume
that the QBF solver returns a pair (Val, P ) where Val is the truth value of the solved
formula and P = (V i ∪ V d, E) is a Q-resolution refutation of Φ. In order to ensure that P is
non-redundant, the function trim is called. Next, QMusExt checks if there is an unmarked
clause in V i. If a clause is unmarked it has not been checked so far if it belongs to the MUS.
As long as there is one unmarked clause in V i, such a clause C i is selected. Then the QBF
Π.ϕ′ is solved where ϕ′ consists of the clauses of P (initial and derived clauses) that are
not in the cone of C i, i.e., those clauses of P that are unreachable from C i. If Φ.ϕ′ is true,
then C i is marked as MUS member. Otherwise, the solver returns a refutation P ′ of Π.ϕ′.
This proof does not contain C i as initial clause, but P ′ could contain clauses from V d as
initial clauses which are not part of V i and therefore also not part of the original clause set
ϕ. Hence, it is not a proof of Π.ϕ in general. Based on information from proof P , P ′ can be
modified to a proof P ′′ such that it contains only initial clauses from V i. In consequence,
P ′′ is a proof of Π.ϕ. This proof P ′′ contains at least one initial clause less than P (clause
C i), but in many cases other clauses other than C i from V i are no initial clauses of P ′′ as
well, because they are not needed to justify initial clauses from P ′. In this way, multiple
clauses not belonging to the MUS can be eliminated in one step. For the next iteration, P is
replaced by a trimmed version of P ′′, i.e., all clauses that are not connected are removed to
ensure that P is non-redundant. The approach is illustrated by the following example.

▶ Example 3. Consider the following QBF Φ1 = Π.ϕ which has seven clauses

∃a, b∀x, y∃c, d.(b̄∨x∨c)∧(b∨x∨c)∧(b∨ȳ∨c̄∨d̄)∧(b̄∨y∨d)∧(ā∨x)∧(a∨x∨c̄∨d̄)∧(a∨x∨c).

The resolution proof P1 in Figure 1 witnesses that this formula is false. For convenience, the
initial clauses V i are labeled by C i

j (with 1 ≤ j ≤ 7) and the derived clauses V d are labeled
by Cd

k (with 1 ≤ k ≤ 10). In this resolution graph with V i = ϕ all clauses are connected to
the empty clause. Hence, it is already non-redundant.

In the first step, we remove clause C i
1 = (b̄ ∨ x ∨ c) as well as its cone clauses Cd

6 =
(x ∨ c), Cd

8 = (x ∨ ȳ ∨ d), Cd
9 = (x ∨ ȳ), and Cd

10 = □. Those clauses are highlighted
in Figure 1. Now a QBF solver is invoked on all remaining clauses, i.e., on the QBF
Φ2 = Π.V i \ {C i

1} ∪ V d \ {Cd
6 , C

d
8 , C

d
9 , C

d
10}.

Also Φ2 is false. Therefore, we can conclude that the clause C i
1 = (b̄ ∨ x ∨ c) is not part

of the minimal unsatisfiable core and can be removed permanently. The resolution proof P2
of Φ2 (the highlighted part of the proof shown in Figure 2 is not a resolution proof of Φ1
as it contains initial clauses that do not occur in ϕ. However, the proof of Φ1 can be used
to rewrite the proof of Φ2 such such that it becomes a proof of Φ1 without using C i

1. In
particular, we need to introduce derivations for initial clauses of P2 that are from V d. These
derivations are obtained from P1. For example, the derivation for Cd

4 needs to be added. In
the new proof, clause C i

2 is not needed for proving Φ1. Therefore, it is also not part of the
MUS. The new proof has only five initial clauses. In the next five iterations, we find out that
none of them can be removed, i.e., all of them are part of the MUS.
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Cd
10 : □

Cd
9 : {x, ȳ}

Cd
8 : {x, ȳ, d}

Cd
7 : {ȳ, c̄, d}

Cd
5 : {b̄}

Cd
4 : {b̄, x, y}

Cd
3 : {x, d̄}

Cd
2 : {a, x, d̄}

C i
7 : {a, x, c}C i

6 : {a, x, c̄, d̄}

Cd
1 : {ā}

C i
5 : {ā, x}C i

4 : {b̄, y, d}C i
3 : {b, ȳ, c̄, d}

Cd
6 : {x, c}

C i
2 : {b, x, c}C i

1 : {b̄, x, c}

Figure 1 Initial resolution refutation for QBF Φ of Example 3 as returned by the QBF solver.
Assume that the clause C i

1 is tested for its MUS membership. The highlighted clauses are in the
cone of C i

1. Only those clauses which are not highlighted are passed to the QBF solver in the next
iteration.

3.2 Extraction of Satisfiable Cores
In contrast to SAT where only unsatisfiable formulas have resolution proofs, also true QBFs
have resolution proofs. As QBFs are usually in PCNF, the solver has to provide initial cubes
that are satisfying assignments of the matrix, i.e., for a true QBF Π.ϕ in PCNF, the solver
provides a PDNF representation Π.ψ from which the empty cube is derived by using the
resolution rule and the existential reduction rule. We can now ask the question what is a
minimal satisfiable core of Π.ψ? Our tool can directly answer this question by processing the
Q-resolution satisfaction proof in a similar manner as discussed above. Minimal satisfiable
cores might be used to find smaller proofs for true formulas. For true formulas, the clausal
representation of the input formula is disadvantageous in general, leading to large initial cubes
and large proofs. As an effect, the proofs are often very large and also the Skolem functions,
the solutions that are extracted from the proofs according to approaches as presented in [1],
are large as well.

4 Evaluation

In this section, we evaluate our tool QMusExt on false (true) instances to extract minimal
unsatisfiable cores and minimal satisfiable cores. In our implementation we used hash maps
as the data structure to store the resolution refutation. This design choice causes a slightly
higher memory usage compared to arrays, however tests showed a significant speed up in
computation time, due to efficient proof manipulations during the iterations. We also decided
to closely interact with DepQBF via API calls, reducing the time needed for the required

SAT 2023
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Cd
10 = □

Cd
9 = {x, ȳ}

Cd
8 : {x, ȳ, d}

Cd
6 : {x, c}

Cd
1 : {ā}

C i
5 : {ā, x}

Cd
7 : {ȳ, c̄, d}

Cd
5 : {b̄}

Cd
4 : {b̄, x, y}

Cd
3 : {x, d̄}

Cd
2 : {a, x, d̄}

C i
7 : {a, x, c}C i

6 : {a, x, c̄, d̄}C i
4 : {b̄, y, d}C i

3 : {b, ȳ, c̄, d}

Figure 2 Rewritten resolution refutation after one iteration. The highlighted part is the proof
for the formula that contains the clauses not reachable from C i

1 (the clauses not highlighted in the
proof above). Hence, this is not a proof of Φ. The dashed edges and vertices from the matrix of Φ
are added in order to obtain a proof for Φ. This proof does not include C i

1 as initial clause. Further,
it does not include C i

2.

solver calls. All experiments were run on a cluster of dual-socket AMD EPYC 7313 @ 16 ×
3.7GHz machines with 4GB memory limit and 1800 seconds as timeout. All experimental
data is available at the webpage of our tool.

4.1 Extraction of Unsatisfiable Cores
For MUS extraction, we consider the formulas of the PCNF track of the QBFEval 2022 and
of the QBFEval 2008. All formulas are available at QBFLib.2 To identify false formulas we
run DepQBF [9] in standard configuration and selected all false formulas that could be solved
within a time limit of 1800 seconds. Out of 1141 formulas of the eval2008 benchmark set
(resp. 259 of the eval2022 benchmark set) 683 (resp. 137) formulas were found to be false.
For the 2008 benchmarks, QMusExt could find the MUSes of 436 formulas with an average
size of 533.50 clauses while the proofs contain 650.58 initial clauses and the original PCNFs
16903.04 clauses on average. For the 2022 benchmarks, QMusExt could find the MUSes of
62 formulas with an average size of 406.63 clauses while the proofs contain 500.53 initial
clauses and the original PCNFs 12270.57 clauses on average. Hence we observe an decrease of
96.84 % and 96.68 % of used clauses compared to the initial clauses and a reduction in proof
clauses of 18.00 % and 18.76 %. The reductions are summarized in Table 2. The average
runtime for successful executions was 120.67 seconds for the 2008 benchmarks and 131.01
seconds for the 2022 benchmarks. On average 444.70 and 265.81 solver calls were needed

2 http://www.qbflib.org

http://www.qbflib.org
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Figure 4 Results for true formulas.

to find MUSes. Figure 3a relates number of solver calls and clause sizes. In the worst case,
only one clause is eliminated per iteration, i.e., the approach is linear in the formula size. In
practice, fewer calls are need indicating the scalability of the approach.

We compared QMusExt to the approach implemented in DepQBF [8] and the recent
approach SMUSer [12] that computes minimum unsatisfiable cores, i.e., a MUS with the
smallest possible cardinality. As finding the smallest MUSes is a computationally harder
problem than finding any MUS, it is not surprising that SMUSer finds fewer MUSes compared
to the other two approaches within the given time limit. In particular, it finds the smallest
MUS for 32 formulas form the 2008 benchmark set. For the 2022 benchmark set, we did
not obtain any result from SMUSer. For all of the formulas for which SMUSer could find a
result, also QMusExt and DepQBF found MUSes. For 24 of these, our tool found cores of the
same size as the cores found by SMUSer. The others differ by 18 clauses at most. Table 1
summarizes the number of solved instances and the average core sizes.

DepQBF is able to find MUSes of 679 (benchmarks from 2008) and of 134 (formulas from
2022). It is not surprising that DepQBF finds more MUSes with the incremental approach
than QMusExt, although QMusExt also relies on DepQBF internally. For the algorithm

SAT 2023
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Table 1 Comparison of the evaluation results.

solved instances average core size
FALSE TRUE FALSE TRUE

eval08 eval22 eval08 eval22 eval08 eval22 eval08 eval22
683 inst. 137 inst. 458 inst. 122 inst.

QMusExt 436 62 253 31 534 407 316 589
DepQBF 679 134 – – 2438 1695 – –
SMUSer 32 – – – 146 – – –

implemented in QMusExt, proofs have to be generated, analyzed and rewritten. If proof
generation is enabled, certain pruning techniques have to be disabled slowing down the
solving process. Further, the proof size can be very large, requiring the implementation of
efficient hashing techniques for finding nodes in the resolution graph. When we compare the
sizes of the MUSes produced by DepQBF to the sizes of the MUSes produced by QMusExt as
done in Figure 3b we see that the cores found by QMusExt are of equal size or smaller.

4.2 Extraction of Satisfiable Cores

We also applied QMusExt on true formulas and observe it it can also find minimal satisfiable
cores of the PDNF. For our experiments, we selected those formulas from the 2022 formulas
and, respectively, from the 2008 formulas, which could be solved by DepQBF in 1800 seconds.
Out of 458 (122) true formulas, our tool could find satisfiable cores for 253 and, respectively,
31 formulas. Out of these, 28 could by decreased in average by 61.32 %. Figure 4a shows the
reduction for the individual formulas. In the most extreme case, a PDNF with 10096 cubes
could be reduced to a PDNF with 25 cubes. We also calculated the Skolem functions from the
original set of initial cubes as well as from the formula reduced to a minimal satisfiable core.
The result is shown in Figure 4b. The Skolem functions are extracted with the QBFCert
framework [11] and represented as And-Inverter Graphs in the Aiger format.3 We measure
the size in terms of gate numbers. In some cases, we observe a slight increase in the size
of the Skolem functions, while there are also cases where the size could be considerably
decreased. In the most extreme case, the Skolem function could be reduced by 99.98 %.
Details are summarized in Table 1 and Table 2.

Table 2 Average size of cores generated by QMusExt (core), average formula sizes (formula),
average number of axiom clauses/cubes (proof), reductions when applying QMusExt and average
run time of QMusExt.

avg. size reductions
formula proof core formula size proof avg. run time (s)

FALSE eval08 651 16904 534 96.84% 17.97% 120.67
eval22 501 12271 407 96.68% 18.76% 131.01

TRUE eval08 840 17950 316 98.24% 62.38% 439.11
eval22 595 70213 589 99.16% 1.01% 179.15

3 http://fmv.jku.at/aiger/

http://fmv.jku.at/aiger/
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5 Conclusion

We presented QMusExt, the first tool that implements the extraction of unsatisfiable cores of
false QBFs based on Q-resolution proofs. Originally, the approach was successfully applied
for SAT [2]. Our experiments indicate that the approach is also promising for QBFs. In
particular, we could observe that the number of necessary solver calls is smaller than the
number of clauses of the input formula. Not surprisingly, an approach based on selector
variables implemented with the incremental interface of the QBF solver DepQBF is more
efficient in terms of runtime. However, the approach of QMusExt finds smaller unsatisfiable
cores in many cases. Further, due to the duality of false and true QBFs, the tool can be be
applied for the extraction of satisfiable cores from PDNF formulas as produced by solvers as
well.

In the future we plan to adapt optimizations of the basic algorithm as proposed in [10]
for QBFs and combine Q-resolution based approaches with approaches based on selector
variables. In addition, we further plan to investigate the pruning potential of proofs and
function extraction.

This work has been supported by the LIT AI Lab funded by the State of Upper Austria.
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Abstract
DRAT is the standard proof format used in the SAT Competition. It is easy to generate but checking
proofs often takes even more time than solving the problem. An alternative is to use the LRAT
proof system. While LRAT is easier and way more efficient to check, it is more complex to generate
directly. Due to this complexity LRAT is not supported natively by any state-of-the-art SAT solver.
Therefore Carneiro and Heule proposed the mixed proof format FRAT which still suffers from
costly intermediate translation. We present an extension to the state-of-the-art solver CaDiCaL
which is able to generate LRAT natively for all procedures implemented in CaDiCaL. We further
present Lrat-Trim, a tool which not only trims and checks LRAT proofs in both ASCII and binary
format but also produces clausal cores and has been tested thoroughly. Our experiments on recent
competition benchmarks show that our approach reduces time of proof generation and certification
substantially compared to competing approaches using intermediate DRAT or FRAT proofs.
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1 Introduction

Proof production became an essential part in SAT solving. For instance, unsatisfiable problems
only count as solved in the SAT Competition if a certifiable proof is provided. Proofs do
increase trust in solving results by providing certificates that can be checked independently.
To increase trust even further proof checkers can also be entirely verified [6, 16].

In the past the only format allowed in the SAT Competition was DRAT [23], even though
the SAT Competition 2023 announced to allow additional formats. However, checking DRAT
proofs often takes several times the amount of solving time. The problem with DRAT is
that the format is not detailed enough to avoid search during checking. Both the solver and
the checker have to propagate clauses (actually using similar data structures). To reduce
this overhead (and simplify verification) all verified proof checkers expect an enriched format.
The DRAT proof is augmented and converted by an (untrusted) external program into such
an enriched format, e.g., LRAT [6] or GRAT [16], which contains enough information to
avoid search and can then be checked easily by the verified proof checker.

On top of the actual clause contents (its literals) the LRAT [6] format requires the
following additional information: (i) clause identifiers (ids) are used to reference clauses and
to make clause deletion steps more concise; (ii) clause antecedent ids used in the resolution
chain when deriving an added clause through reverse unit propagation (RUP) [12], i.e., as
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asymmetric tautology (AT) [14]; (iii) the ID and further resolution paths to refute the
resolvent of the added clause with all clauses containing a RAT (blocking) literal in case the
added clause relies on the stronger resolution asymmetric tautology (RAT) property [15].

These RAT literals would be needed to model more powerful reasoning (such as blocked
clause addition or symmetry breaking etc.) but neither our SAT solver CaDiCaL [4] nor
any top performing SAT solver in the SAT Competition over the last 2 years actually used
such reasoning. Therefore, our efforts to extend CaDiCaL did not need to address the full
power of RAT and we can focus on producing “LRUP” proofs, i.e., reverse-unit-propagation
(RUP) proofs, but still need to augment these proofs with ids and resolution chains.

A similar attempt [1] by Carneiro and Heule led to a new proof format, FRAT, that sits
between LRAT (because it allows for justifications) and DRAT (because it still allows steps
without justification). Their aim was to fill out most “gaps” and leave “harder” to implement
cases as black box to be filled in by an (untrusted) proof checker, i.e., by their FRAT-rs tool
used to convert an FRAT proof to a fully justified LRAT proof. In a recent paper [18] this
limitation of the FRAT producing CaDiCaL [1] forced a parallel proof-producing version of
the award winning SAT solver Mallob to deactivate all steps not covered by FRAT, i.e.,
most inprocessing, as native LRAT proof generation is needed.

In this tool paper, we present an extension of our SAT solver CaDiCaL [4] to generate
the richer LRAT format directly. Our focus is on three different aspects: (A) producing
LRAT proofs for all solver configurations on all benchmarks, (B) comparable performance
and, further, (C) making sure the solver behaves the same with/without proof generation.

Our goal (A) lead us to reimplement LRAT generation in the conflict analysis and all
inprocessing techniques of CaDiCaL, some of which were not covered in the FRAT [1]
producing implementation, such as equivalent literal subsumption (Section 3).

Like other SAT solvers, CaDiCaL generates a vast number of proof steps from which at
the end, a significant fraction turns out to be unnecessary for the derivation of the empty
clause. Thus most tools that process DRAT or FRAT will trim these unnecessary steps
from the proof. However, we are not aware of a tool that does this for LRAT. Therefore we
implemented a new tool called Lrat-Trim to trim proofs down and improve the performance
of checking the proof with the verified checker Cake_Lpr [21] (Section 4).

To validate robustness of our approach we extended CaDiCaL to internally check
LRAT proofs too and fuzzed the extended solver. This allowed us to use the model-based
tester Mobical (which comes with CaDiCaL) to find, debug, and fix bugs much more
efficiently. We further ran the extended new solver on the unsatisfiable problems from the
SAT Competition 2022. We observed (almost) no slow-down without proof production (0.3%)
and only a small slow-down for producing LRAT (5%). Proof checking performance was
improved considerably compared to the two competing approaches DRAT and FRAT (see
Section 5). Checking (and producing) our LRAT proofs has an overhead of 30% over pure
solving, compared to 125% for FRAT and 180% in the SAT Competition mode (i.e., slower
than producing them). Without negligible overhead over plain solving with CaDiCaL, we
managed to check proofs faster than they are produced for a state-of-the-art SAT solver.

Our CaDiCaL extension is available at https://github.com/florianpollitt/radical
and will shortly be merged into the main CaDiCaL repository. Note that a preliminary
version of this paper was presented at the MBMV workshop [19] as work in progress.
Compared to that shorter version, we have improved and present Lrat-Trim, give an
extensive evaluation on the entire problem set of the SAT Competition 2022 (not just a
single problem) and in general provide more details on the implementation.

https://github.com/florianpollitt/radical
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2 Preliminaries

For an introduction to SAT solving please refer to the Handbook of Satisfiability [5]. In our
context it is sufficient to recall that SAT solvers build a partial assignment and along the
way learn new clauses preserving satisfiability until either the assignment satisfies all clauses
or the empty clause is derived, meaning that the problem is unsatisfiable.

A DRAT [23] proof is the sequence of all clauses learned (or in general deduced) by the
SAT solver interleaved with clause deletion steps, which are used to help the proof checker
to focus on the same clauses the solver would see at this point of the proof. This design
principle helps DRAT [23] to easily capture all techniques currently used by SAT solvers
without the need to provide more complex justification e.g. in the form of resolution chains.

The LRAT [6] proof format has more detailed information: Each clause is associated
with a clause identifier and claimed to be the result of resolving/propagating several clauses
in the given order. The list of antecedent clause ids forms a justification and is part of such
an addition step in LRAT. In the rest of the paper we focus on finding these justification.

3 Implementation

The LRAT extension to CaDiCaL was implemented by the first author as part of his master
project and proceeded in four stages: First, the internal proof checker in CaDiCaL for
DRAT clauses was extended to produce LRAT proofs, which is quite inefficient but can
still be enabled through the --lrat-external option. Second, a separate internal LRAT
checker was added to CaDiCaL to validate proofs on-the-fly while running the solver. Third,
we implemented LRAT production for CaDiCaL without any inprocessing. Finally, all
different inprocessing techniques were instrumented to generate LRAT proof chains directly.
Thanks to the second stage, proofs could be validated on-the-fly, dramatically reducing the
implementation effort (particularly for debugging). The implementation of these four stages
took around two months in total but the last two stages only two weeks.

The resolution chain for justifying a new clause can be computed alongside normal CDCL
search with little computational overhead but clause minimization and shrinking are a bit
more involved (Section 3.1). Proof production in preprocessing and inprocessing were of
varying degree of difficulty. The most interesting inprocessing technique from this point of
view is equivalent literal substitution which we discuss in Section 3.2.

3.1 Conflict Analysis
Most clauses derived by a SAT solver originate from clauses learned during conflict analysis.
When the solver finds a mismatch between the current partial assignment and the clauses,
i.e., a conflicting clause which is falsified, then this conflict is analyzed and a clause is learned
which forces the solver to adjust the partial assignment. In the standard implementation of
conflict analysis the learned clause is derived by resolving individual reason clauses in reverse
assignment order, starting with the conflicting clause, which in turn immediately gives the
necessary justification for the (non-minimized first UIP [24]) learned clause.

We have adapted our code to generate chains for various technique relying on conflict
analysis such as hyper binary resolution [13] and vivification [17]. It is crucial to distinguish
between techniques that eliminate false literals (thus, necessitating an extension of the proof
chain) and those that do not.

One recent addition to improve conflict analysis is the concept of “shrinking” [9,10] which
can be interpreted as a more advanced version of “minimization” [8]. Minimization only
removes literals from the learned clause following resolution paths in the implication graph,

SAT 2023
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but does not add any literals. The additional idea in shrinking is to continue trying to resolve
literals on a particular decision level until all but one (the first UIP on that level) is left,
however, without being allowed to add literals from a lower decision level.

Our approach differs from the FRAT flow [1]. Their solver performs a post-process
analysis of the final learned clause Cmini+shrink to rediscover the necessary propagation by
traversing the implication graph, which repeats conflict analysis work. In contrast, we split
the justification process into two parts. First, we derive the justification for the clause CUIP
alongside conflict analysis with little to no overhead. Then, we derive the missing resolution
steps between CUIP and the shrunken and minimized clause Cmini+shrink as a post-process
analysis. We identify literals that differ and add the required reason clauses. Although we
still traverse parts of the implication graph, we avoid repeating the conflict analysis.

Our Algorithm 1 shows the postprocessing step only. The first step has already derived
the justification ChainUIP for the first UIP clause Coriginal from conflict analysis. Our
postprocessing step calculates the justification chain in Chainmini+shrink . For each removed
literal L (in Coriginal but not in Cshrunken), we extend the chain with additional justification
steps (Line 3).

The function calculate_LRAT_Chain(L) (Line 5) extends the chains with the required
reason and preserves the resolution order. It goes recursively over all literals of the reasons
and extends the chain with the reason. If the function reaches a previously used reason
(already_added), it can stop the analysis to avoid duplicated reasons in the chain. Our
calculation stops when we reach literals that appear in Cshrunken (L ̸∈ Chainnew). After
calculating the justification chain for minimization and shrink, we merge the two chains
ChainUIP and Chainnew (Line 4). Starting with an empty chain provides a valid proof when
removing unit literals during both phases.

Algorithm 1 Recursively calculating the prefix LRAT chain for shrinking and minimizing.

Data: currently build LRAT chain ChainUIP
Data: the clause before Coriginal and after minimization and shrinking Cshrunken
Result: resulting LRAT chain Chainfull

1 foreach literal L in Coriginal do
2 if L not in Cshrunken then
3 calculate_LRAT_Chain(L)

4 Chainfull := Chainmini+shrink + ChainUIP

5 calculate_LRAT_Chain (Literal K)

6 C := reason of K in the current assignment

7 foreach Literal L in C different from K do
8 already_added := reason of L in Chainmini+shrink

9 if ¬already_added and L ̸∈ Cshrunken then
10 calculate_LRAT_Chain(L)

11 append C to Chainmini+shrink
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Our approach can potentially lead to duplicated unit clauses: We add unit clauses to the
chain during conflict analysis. We can guarantee no duplicates here, but the same unit clause
might also be added during post process analysis, which means it is actually needed earlier
in Chainmini+shrink and we could remove it from ChainUIP . Note that this cannot happen
for larger clauses since they can appear at most once as a reason for some assignment. Since
removing these unit clauses afterwards would be rather costly, we actually collect unit clauses
separately and put them at the start of the merged chain after the post process analysis for
Cshrunken is finished. Like this, we can avoid duplicates and still get a correct justification
chain for Cshrunken .

3.2 Equivalence Literal Substitution

While the justification process for clauses derived during variable elimination and other
preprocessing techniques that rely on propagation and conflict analysis is similar to normal
learning, producing LRAT proof justifications for equivalent literal substitution [5] is more
involved.

Equivalent literal substitution detects and replaces equivalent literals by a chosen repre-
sentative. For example, if the problem includes the three clauses (¬A ∨ B), (¬B ∨ C) and
(¬C ∨ A) we know that A, B and C are equivalent and we can replace all occurrences of
either literal by one of the others. As is common we use Tarjan’s algorithm [22] to detect
cycles in the graph spanned by the binary clauses (i.e., the binary implication graph) and
fix a representative for each cycle [5]. In the DRAT proof we can simply dump all changed
clauses and delete the old ones.

For LRAT we have to produce the resolution chains. After fixing representatives, proof
chains have to be produced for every changed clause separately. We derive the justification for
each changed or removed literal, similarly as for the shrunken clause in conflict analysis 3.1.

Fixing the representative is a rather arbitrary choice (the smallest absolute value in this
implementation). We considered changing this to the first visited literal during DFS in
Tarjan’s Algorithm, in order to allow reusing some computation and potentially shorten
proofs, but in the end decided against changing solver behavior.

4 Trimming LRAT proofs

In preliminary experiments we observed that the FRAT flow [1] produced significantly smaller
proofs. FRAT-rs trims the proof during translation to LRAT, i.e., it omits clauses that are
not needed to derive the empty clause, allowing for much more efficient proof checking. We
concluded that we needed a tool to do such trimming on LRAT directly in order to obtain
an efficient pure LRAT proof generation and checking flow.

Even though trimming is effective, it is not obvious how to cheaply achieve such reduction
for DRAT proofs because dependencies between proof steps are lacking. Luckily, in LRAT
these dependencies are explicit. Therefore we implemented Lrat-Trim [2], an open-source
LRAT proof trimming and checking tool. It often reduces proofs by a factor of 2 to 3, again
emphasizing how many useless clauses a SAT solver actually derives during search.

Trimming LRAT proofs consists of a backward reachability analysis starting from the
empty clause towards the clauses of the original CNF, marking reached clauses as needed.
Clauses unmarked after this traversal are redundant and can be trimmed. This algorithm is
implemented by depth first search (DFS) along antecedent clauses in justification chains.

SAT 2023
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It also determines the last usage of each clause ID and remaps original clause ids to a
consecutive ID range. On completion we can dump the proofs back to a file in a forward
manner, only writing needed clauses and their antecedents and skipping redundant clauses.
While doing this we can eagerly mark clauses once they are not used anymore.

Before starting to write proof lines, we check whether there are redundant original clauses
and if so write a single deletion line with all unused original clause ids. This minimizes the
life-span of clauses in the trimmed LRAT proof, both for added and original clauses. Note
that Lrat-Trim, in contrast to DRAT-Trim, does not require access to the original CNF
nor looks at literals of clauses to trim proofs.

We also implemented a checking mode in Lrat-Trim which, given the original CNF
and an LRAT proof, checks that the resolution chains of added clauses can be resolved to
produce the claimed clauses. It also checks that clauses are not used after they are deleted
in a deletion step. This checking mode comes in two flavors. The default is to first trim
the clauses with the trimming algorithm described above and only check needed clauses.
Alternatively Lrat-Trim supports forward checking, which checks added clauses on-the-fly
during parsing and in particular allows to delete clauses in deletion steps eagerly.

On the one hand, forward checking reduces maximum memory usage to at most that of
the solving process, whereas backward checking needs to keep the whole proof in memory
which is usually much more than maximum usage during solving. On the other hand, forward
checking substantially increases checking time, as all clauses have to be checked without
trimming information, irrespective of being needed or not.

During the development of Lrat-Trim substantial effort went into making parsing as
fast and robust as possible and also provide meaningful error messages during parsing and
checking. The parsing code amounts to roughly 900 lines of C code out of 2400 lines for the
whole tool (including comments but formatted with ClangFormat).

All three proof formats (DRAT, FRAT and LRAT) have a binary version. We implemented
the binary format for LRAT (both in CaDiCaL and in Lrat-Trim) which is only supported
by CLRAT [7], a formally verified checker for LRAT using ACL2. We are grateful to Peter
Lammich who provided us a tool that converts LRAT proofs (with some extra requirements
on proofs) to GRAT [16] that his checker can check. However, GRAT is stricter as duplicate
or extraneous ids are not allowed. We leave it to future work to produce stricter proofs.

5 Experiments

While checking for our extensions not to change solver behavior with and without proof
generation, i.e., validating (C), we realized that two changes to the solver became necessary.
First, scheduling of garbage collection during bounded-variable elimination depends on the
number of bytes allocated for clauses, which changed with LRAT proof generation, as clauses
require an ID and thus became larger. Therefore, our CaDiCaL extension always uses
clause ids, which is not expected to have major impact on performance nor memory usage.
The second change is due to the way conflicts were derived in equivalent literal detection.
Originally detection was aborted on such a conflict, which we now simply delay until detection
finishes. Then the conflicting literal is propagated to yield a proper LRAT proof.

Our goal (A) of being able to always generate correct proofs was tested by intensive
fuzzing of our solver, proof generation, and proof checking. We attempted to apply the
same approach to the FRAT extension of CaDiCaL [1] but immediately experienced failing
proofs, due to several reasons, particularly with respect to handling unit clauses in the input
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Figure 1 Performance on unsatisfiable instances from the SAT Competition 2022.

CNF. We also observed that chains often listed the same clause id multiple times. Reducing
these occurrences might lead to a substantial speedup, since justifying one literal can pull in
several more clauses (e.g., if some of the literals have been removed by minimization).

After fuzzing, we ran our LRAT flow on the problems of the SAT Competition 2022 and
found three issues: (i) Cake_Lpr did not accept some input files, because they contained
trailing empty lines, which we then removed manually; (ii) Cake_Lpr requires a very large
amount of memory (around the size of the proof file); (iii) one node of the cluster showed
irregular behavior, when many proofs were written to the temporary disk at the same time,
which lead to corrupted proof files resulting in an Lrat-Trim error. Reducing the number of
jobs per node fixed this issue and we did not discover any further problem with the generated
proofs, validating (A) and showing again the effectiveness of fuzzing.

To compare performance, i.e., showing that we achieved (B), of our extended version
to the base version of CaDiCaL (added clause ids taking up space without being used),
we let both versions write generated proofs to /dev/null in order to ensure that we do
not introduce any bias due to file I/O limits as LRAT proofs exceed DRAT proofs in size
substantially. This yielded an average overhead of 5% for our new LRAT proof production
versus DRAT in base CaDiCaL.

For the remaining empirical analysis we have chosen to focus on the 127 benchmarks from
the SAT Competition 2022, which were shown to be unsatisfiable during the competition.
First, we tried to determine how much proofs can be reduced with our new tool Lrat-Trim.

SAT 2023
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It turns out, that some proofs were reduced to one percent, i.e., 99% of the output is not
useful for deriving the contradiction. These problems stem from the sudoku-N30 family. In
other proofs 80% and more clauses are needed – most of these problems have a short runtime
(around 200 s), contain a large amount of fixed variables and accordingly many clauses are
simplified by removing these units, where each removal contributes a proof step.

In order to determine the performance of our new solving and checking flow, we compared
the following three workflows: (i) the (competition) DRAT workflow, i.e., generating the
DRAT proof, converting it to LRAT with DRAT-Trim, then checking that proof; (ii) the
FRAT workflow, i.e., generating the FRAT proof, converting it to LRAT with FRAT-rs,
then checking it; (iii) our new LRAT flow including generating, trimming, and checking the
proof. All workflows use binary proof formats, except for feeding Cake_Lpr at the end.

We also ported the FRAT extensions [1] to the newest CaDiCaL version, but did not
try to fix any issues. Nevertheless, we ran the ported version (see Figure 1a) which is now
able to use the latest heuristics used in CaDiCaL, except for shrinking which had to be
deactivated as it is not supported by the original FRAT code [1].

The first observation we can make is that the overhead of trimming and proof checking
is quite consistent among our configurations, but wildly differs for FRAT: If many clauses
without justification are used for the proof, the translation needs a lot of search – although,
as expected, less than using the conversion to DRAT

To our surprise, we observed several timeouts though. They all seem to origin from
one family submitted by AWS in 2022, where solving took less than 600 s, but elaboration
(translation) never finishes. In comparison, DRAT-Trim also needs a very long time (6 000 s),
but stays well below the time limit. It is unclear what the problem is and thus we tested one
instance aws-c-common:aws_priority_queue_s_sift_either on a (twice as fast) computer
where it took nearly 10 h to convert the 400 MB FRAT proof to a 3.8 GB LRAT proof. We
have reported the issue on GitHub,1 but have not heard back yet.

A comparison of Lrat-Trim with FRAT-rs in both normal mode and super strict mode
is shown in Figure 1c. We used the feature of our extended version of CaDiCaL to generate
proofs both in LRAT and in FRAT, where in FRAT, every step is properly justified. The
results show that Lrat-Trim scales much better than FRAT-rs, although there was a bug
which we reported that made FRAT-rs significantly slower when not using the super strict
mode. Furthermore, Lrat-Trim can also check proofs directly and it turns out that the
additional overhead of this (untrusted) checking compared to parsing and trimming is small.

Overall, our new LRAT proof flow performs best, with reasonably small overhead on
solving. To ease visual comparison, we printed all different configurations into a single graph
(Figure 1d). The fastest option is (of course) “no-checking” but our new method is not too far
behind. Figure 2 shows that the overhead (cost) of proof checking compared to not checking
any proofs. Our approach performs best taking only 30% more time than pure solving. The
existing competing approaches are much slower with DRAT incurring an overhead of 180%
and FRAT still requiring 125% more time than solving, i.e., both more than doubling overall
certification time, while our approach has faster checking than solving.

As a sanity check, we also tested our LRAT proof flow using the default shrinking (see
Fig 3). We observed that our new approach remains faster compared to the FRAT proof
flow, confirming our initial findings.

1 https://github.com/digama0/frat/issues/18

https://github.com/digama0/frat/issues/18
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6 Conclusion

We have implemented native LRAT proof production in our SAT solver CaDiCaL. Even
though direct production of LRAT proofs slows down the solver slightly this loss is by far
offset by the reduction in proof checking time, both compared to DRAT and FRAT proofs.
At the end our certification flow adds only 30% overhead compared to pure solving while
other approaches take more than twice the time for certification.

It might be interesting to apply this work to recent results on distributed proof generation
in the context of the cloud solver Mallob [18] as well as our multi-core solver in Gim-
satul [11]. We also see the question of how to handle clause ids for virtual binary clauses as
a technical challenge. Such clauses occur in both Gimsatul [11] and the state-of-the-art
sequential solver kissat [3].
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Abstract
Proof formats for SAT solvers have diversified over the last decade, enabling new features such
as extended resolution-like capabilities, very general extension-free rules, inclusion of proof hints,
and pseudo-boolean reasoning. Interference-based methods have been proven effective, and some
theoretical work has been undertaken to better explain their limits and semantics. In this work, we
combine the subsumption redundancy notion from [9] and the overwrite logic framework from [42].
Natural generalizations then become apparent, enabling even shorter proofs of the pigeonhole
principle (compared to those from [27]) and smaller unsatisfiable core generation.
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1 Introduction

The impressive recent improvements in SAT solving have come coupled with the need to
ascertain their results. While satisfiability results are straightforward to check, unsatisfiab-
ility results require massive proofs, sometimes petabytes in size [28, 24]. The search for
proof systems that enable both easy proof generation and smaller proofs has yield many
achievements [17, 15, 53, 27, 41, 3, 9, 16, 4].

Modern proof systems rely on redundancy properties presenting a phenomenon known as
interference [31, 23, 42]. Whereas traditional proof systems derive clauses that are implied
by the premises, interference-based proof systems merely require introduced clauses to be
consistent with them. Interference proofs preserve the existence of a model throughout the
proof, rather than models themselves. A somewhat counterintuitive semantics thus arises:
introducing a clause in an interference-based proof system does not only depend on the
presence of some clauses, but also on the absence of some other clauses [39, 42].

The most general interference-based proof system in the literature is known as DSR [9].
While its predecesor DPR had success in generating short proofs of the pigeonhole formula
without introducing new variables [27], DSR did not seem to succeeded in improving this
result, despite being intuitively well-suited for it.

In this work, we analyze the semantics of DSR proofs extending previous work on DPR
proofs [42]. We find similar results to that article; in particular, satisfiability-preserving DSR
proofs can be reinterpreted as more traditional, DAG-shaped, model-preserving proofs over
an extension of propositional logic with a mutation operator. Crucially, these DAG-shaped
proofs remove the whole-formula dependence interference is characterized by, enabling an
easier analysis of the necessary conditions for satisfiability-preservation.
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This analysis hints at a generalization we call weak substition redundancy (WSR ["wIz@~]),
which allows shorter, more understandable, easier to generate, faster to check proofs. We
demonstrate this by giving an even shorter proof of the pigeonhole formula. We also provide a
couple of examples where smaller unsatisfiable cores can be generated during proof checking,
and fewer lemmas are required during proof generation.

Interference-based proofs

Much of proof generation and checking is still done in the same way as a couple decades
ago, by logging the sequence of learnt clauses in CDCL checkers, sometimes together with
antecedents, and checking those clauses for simple entailment criteria such as reverse unit
propagation (RUP) [17, 54]. Other parts of the proof are generated using more advanced
deduction techniques; even their infrequent use can dramatically decrease the size of generated
proofs [20, 53, 32, 26], overcoming not only technical limitations in proof generation, but
also theoretical bounds [18, 51, 52]. Clause deletion information is also recorded in the proof,
which is needed to reduce memory footprint in checking [21].

Much research has been invested on finding ever more powerful proof rules [31, 27, 9]
that allow to succintly express inprocessing techniques such as Gaussian elimination [48,
47, 38, 10, 16] or symmetry breaking [1, 2, 22]. These proof rules are collectively called
interference-based rules, since their derivation depends on the whole formula rather than just
on the presence of some specific clauses [31, 23, 39, 42]. One of the most general interference
techniques is substitution redundancy (SR), which allows a version of reasoning without loss
of generality [9]; this technique has been recently lifted to pseudo-Boolean reasoning with
impressive results [16].

Substitution redundancy and the pigeonhole problem

A previous version of SR, called propagation redundancy (PR) [27], was successful in achieving
short proofs of the pigeonhole problem, known for having exponential proofs in resolution [18]
and polynomial yet cumbersome proofs in extended resolution [11]. The proof from [27] can
be understood in terms of reasoning without loss of generality [42]: it assumes that a given
pigeon is in a given pigeonhole, for otherwise we could swap pigeons around.

PR does not have a method to swap the values of variables; rather, it can only conditionally
set them to true or false. Hence, linearly many reasoning steps are needed to just to achieve
the swap. SR, on the other hand, allows variable swaps, so one could expect that the clause
expressing the result of this swap would satisfy the SR property. Surprisingly, it does not; in
fact, the clause fails to satisfy a requirement that in its PR version was almost trivial.

Interference and logical dependency

Interference-based proofs do not have a “dependence” or “procedence” structure: since the
ability to introduce a clause is contingent on the whole formula, no notion of “antecedents”
exists for SR and its predecessors. This becomes a problem when computing unsatisfiable
cores and trimmed proofs [37]; it also has the potential to harm the performance of proof
checkers, since some techniques that allow skipping unnecessary steps during proof checking
are based on logical dependence [19].

This also relates to an issue arising when generating proof fragments for inprocessing
techniques. Sometimes, a clause C cannot be introduced as SR because some lemmas are
needed; the proof generator might know these lemmas and how to derive them. However,
because interference depends on the whole formula, introducing the lemmas before C can
further constrain the requirements for C to be introduced, demanding yet more lemmas.
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Contributions

Previous work showed that the semantics of PR can be expressed in terms of overwrite
logic [42]. Overwrite logic extends propositional logic with an overwrite operator. Within
overwrite logic, DPR proofs can be regarded as DAG-shaped, model-preserving proofs; PR
introduction can then be shown to behave as reasoning without loss of generality.

In Section 3 we provide an extension to the overwrite logic framework, called mutation
logic, which elucidates the semantics of DSR proofs. In particular, model-preserving proofs
within mutation logic mimicking satisfiability-preserving DSR proofs can be extracted, as
shown in Section 3.1. This allows a clearer understanding of the SR redundancy rule, which
in turn makes some improvements over SR apparent.

By introducing minor modifications to the definition of SR, in Section 4 we obtain a new,
more powerful redundancy rule called weak substitution redundancy (WSR). WSR proofs are
more succint than DSR proofs, which we demonstrate by providing a shorter proof of the
pigeonhole problem using only O(n2) clause introductions in Section 5.1.

Furthermore, WSR enables finer-grained ways to reason about dependency in interference-
based proofs. This can yield shorter proof checking runtimes and smaller trimmed proofs
and unsatisfiability cores when SR clauses are used (Section 5.2), as well as easier proof
generation techniques by providing clearer separation for interference lemmas (Section 5.3).

2 Preliminaries

Given a literal l, we denote its complement as l. We denote clauses by juxtaposing its literals
within square brackets, i.e. we denote the clause l1 ∨ l2 ∨ l3 as [l1l2l3]. We similarly denote
conjunctions of literals, called cubes, as juxtaposed literals within angle brackets, e.g. ⟨l1l2l3⟩.
Crucially, we only consider clauses and cubes that do not contain complementary literals,
as most SAT solvers and proof checkers already make that assumption. Equivalently, we
disallow tautological clauses and unsatisfiable cubes. We also define complementation for
clauses and cubes, i.e. [l1 . . . ln] =

〈
l1 . . . ln

〉
and ⟨l1 . . . ln⟩ =

[
l1 . . . ln

]
. SAT solving typically

operates over formulas in conjunctive normal form (CNF), which are conjunctions of clauses.
Here we regard CNF formulas as finite sets of clauses.

An atom is either a literal, or one of the symbols ⊤ or ⊥ representing the propositional
constants true and false. Complementation is extended to atoms with ⊤ = ⊥ and ⊥ = ⊤.
We can then define the usual propositional semantics as follows. A model I is a total map
from atoms to {⊤,⊥} such that I(⊤) = ⊤ and I(l) = I(l) for all atoms l.

We say that I satisfies a literal l (written I |= l) whenever I(l) = ⊤. This definition is
recursively extended in the usual way to clauses (disjunctively), cubes and CNF formulas
(conjunctively). Similarly, we use the typical notions of entailment (denoted |=), logical
equivalence (≡) and satisfiability. We also say that a logical expression φ satisfiability-entails
another expression ψ (denoted φ |=sat ψ) whenever, if φ is satisfiable, then ψ is satisfiable
too. Similarly, φ is satisfiability-equivalent to ψ (denoted φ ≡sat ψ) whenever φ and ψ are
either both satisfiable or both unsatisfiable (i.e. φ |=sat ψ and ψ |=sat φ).

An atomic substitution σ is a total map from atoms to atoms satisfying the following
constraints:

(i) σ(⊤) = ⊤.
(ii) σ(l) = σ(l) for all atoms l.
(iii) σ(l) ̸= l only for finitely many atoms l.

SAT 2023
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This definition is essentially equivalent to the substitutions from [9]. The form presented
here makes it easier to compose atomic substitutions with other atomic substitutions, i.e.
(σ ◦ τ)(l) = σ(τ(l)), and with models, i.e. (I ◦ σ)(l) = I(σ(l)); the latter is a model that
satisfies a given logical expression φ iff I satisfies the expression resulting from applying the
substitution σ to φ.

Note that atomic substitutions have a finite representation: only finitely many literals are
mapped to atoms other than themselves, and giving the mapping for one polarity fixes the
mapping for the other polarity. Hence, one can represent a substitution as a set of mappings
{x1 7→ l1, . . . , xn 7→ ln} where the xi are pairwise distinct variables, the li are atoms, and
any variable other than the xi is mapped to itself.

Our restriction that clauses must be non-tautological is somewhat at odds with the
concept of substitutions. An atomic substitution σ trivializes a clause C if either:
(a) there is a literal l ∈ C with σ(l) = ⊤.
(b) there are two literals l, k ∈ C with σ(l) = σ(k).
Applying σ to C yields a tautology whenever σ trivializes C, and a (non-tautological) clause
otherwise. Then we can define the reduct of a clause C or a CNF formula F by an atomic
substitution σ as:

C
∣∣
σ

= [σ(l) | l ∈ C and σ(l) ̸= ⊥] , if σ does not trivialize C
F

∣∣
σ

=
{
C

∣∣
σ

| C ∈ F and σ does not trivialize C
}

▶ Lemma 1. Let C be a clause, F be a CNF formula, and σ be an atomic substitution. The
following then hold:

(i) σ trivializes C if and only if I ◦ σ |= C for all models I.
(ii) If σ does not trivialize C, then I ◦ σ |= C if and only if I |= C

∣∣
σ

for all models I.
(iii) I ◦ σ |= F if and only if I |= F

∣∣
σ

for all models I.

Proof. Let us first show (ii). First, observe that I satisfies C
∣∣
σ

if and only if I satisfies σ(l)
for some literal l ∈ C. But this is equivalent to (I ◦ σ)(l) = ⊤ for some l ∈ C, which is
precisely I ◦ σ |= C.

We now show (i). The “only if” implication is straightforward from the definition of a
trivializing substitution. For the “if” implication, we show that if σ does not trivialize C,
then I ◦ σ falsifies C for some model I. Claim (ii) gives out that any model I falsifying C

∣∣
σ
,

which exists because it is a (non-tautological) clause, has this property.
Claim (iii) then follows easily from claims (i) and (ii). ◀

Note that, for atomic substitutions that only map variables to the constants ⊤ or ⊥, there
exists a correspondence with cubes. In particular, given variables x1, . . . , xn, y1, . . . , ym, the
cube Q is bijectively associated to the atomic substitution Q⋆ where:

Q = ⟨x1 . . . xn y1 . . . ym⟩ Q⋆ = {x1 7→ ⊤, . . . , xn 7→ ⊤, y1 7→ ⊥, . . . , ym 7→ ⊥}

2.1 Interference-based redundancy notions
Throughout the last decade, several redundancy notions collectively called interference-based
rules have appeared in the literature [31, 27, 23, 9]. Originating from clause elimination
techniques [29, 30, 33], interference can be also used to introduce clauses in the formula;
unlike more classical techniques, though, these clauses do not need to be implied by the
formula, but rather consistent with it. Specifically, given a CNF formula F , introducing a
clause C through interference requires that F ≡sat F ∪ {C}.



A. Rebola-Pardo 22:5

An

An−1 En

. . .
A2

A1 E2

A0 E1

E0

res

res

res

sub

Figure 1 General form of a subsumption-merge chain [39, 43] deriving the clause An from
premises E0, . . . , En. sub represents the subsumption rule, so it requires E0 ⊆ A0. res represents
the resolution rule, which can be applied if there is a literal li ∈ Ai−1 with li ∈ Ei; in this case,
Ai = Ai−1 \ {li} ∨ Ei \ {li}. Subsumption-merge chains additionally require that the res inferences
are actually self-subsuming [14], i.e. Ei \ {li} ⊆ Ai−1. Under these conditions, the clause An is a
RUP clause over any CNF formula containing E0, . . . , En. Conversely, any RUP clause over F can
be derived as An through a subsumption-merge chain from some clauses E0, . . . , En ∈ F . In fact,
the Ei are the reason clauses used during unit propagation in a RUP check in reverse ordering (up
to a topologically-compatible reordering) [15, 39].

Many interference-based rules are based on a criterion for entailment called reverse unit
propagation (RUP) [17]. A clause C is called a RUP clause over a CNF formula F whenever
unit propagation applied to F using the assumption literals C yields a conflict; under these
circumstances, it can be shown that F |= C.

RUP clauses can be characterized in terms of resolution proofs. In particular, a clause
C is a RUP clause over F if and only if C can be derived from F through a derivation of
a particular form, called a subsumption-merge chain [39]. These are derivations as shown
in Figure 1, starting with a subsumption inference and followed by a number of resolution
merges, also known as self-subsuming resolutions [14]. The specifics of subsumption-merge
chains in relation to RUPs are not quite relevant for our discussion; we direct the interested
reader to [39, 43]. For us, it suffices to know that checking whether C is a RUP clause over
F is essentially the same as finding the subsumption-merge chain that derives C from F [54].

Building on RUP clauses, many redundancy notions can be defined. The most relevant for
our discussion are, in increasing generality order, resolution-asymmetric tautologies (RATs),
propagation redundancies (PRs) and substitution-redundancies (SRs):

▶ Definition 2. Let C be a clause and F be a CNF formula.
(i) We say C is a RAT clause [31] over F upon a literal l whenever l ∈ C and, for every

clause D ∈ F with l ∈ D, the expression C ∨ D \ {l} is either a tautology or a RUP
clause over F .

(ii) We say C is a PR clause [27] over F upon a cube Q whenever Q |= C (i.e. Q ∩ C ̸= ∅)
and each clause in F

∣∣
Q⋆ is a RUP clause over F

∣∣
C

⋆ .
(iii) We say C is a SR clause [9] over F upon an atomic substitution σ whenever σ trivializes

C and each clause in F
∣∣
σ

is a RUP clause over F
∣∣
C

⋆ .

For a given witness (i.e. the literal l, the cube Q or the substitution σ), checking whether
a clause C is a RAT/PR/SR clause over F upon the corresponding witness is polynomial
over the size of F . In particular, this check takes at most one RUP check for each clause [9];
and RUP checking is quadratic on the size of F [15]. Finding the right witness is nevertheless
NP-complete [27]. These redundancy notions satisfy the general condition for interference:
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▶ Theorem 3. Let C be a clause and F be a CNF formula, and assume either of the
following:
(a) C is a RAT clause over F upon a literal l [31].
(b) C is a PR clause over F upon some cube Q [27].
(c) C is an SR clause over F upon some atomic substitution σ [9].
Then, F ≡sat F ∪ {C}.

In this paper we will mostly focus on substitution redundancy, which is the most general
of them. However, we will use an equivalent definition, as per [9, Lemma 5]: instead of the
condition that each clause in F

∣∣
σ

is a RUP clause over F
∣∣
C

⋆ , we require that, for each clause
D ∈ F , either σ trivializes D, or C |= D

∣∣
σ
, or the clause C ∨D

∣∣
σ

is a RUP clause over F .

2.2 Proof systems for SAT solving

RUP clauses provided the first effective solution to the problem of certifying an unsatisfiability
result from a SAT solver. In particular, learnt clauses in a CDCL SAT solver [45] are RUP
clauses [17, 15], so checking that each clause in the list of learnt clauses is a RUP clause over
the previously derived formula amounts to certifying that the last clause in the list is entailed
by the solved formula. If that clause is the empty clause, the list constitutes a refutation.

However, the proof complexity of RUP proofs is rather poor: there exist many simple
problems whose refutations in resolution-based proof systems, such as RUP, are exponential
on the size of the refuted formula [18, 51, 52]. In fact, this problem extends to (purely)
CDCL SAT solvers, on which these results impose a performance upper bound [40, 5].

To alleviate the impact of these results, some inprocessing techniques were developed,
including reencoding of cardinality constraints [6, 35], Gaussian elimination over Z2 [48, 47]
and symmetry breaking [1, 2]. Unfortunately, the aforementioned limitations still apply to
the generated refutation, so emitting a RUP proof would still take exponential time.

Allowing interference-based reasoning in the proof led to a vast number of proof formats [20,
53, 27, 13, 12, 34, 49, 9, 4] and proof generation techniques [46, 36, 22, 38, 10, 8, 16, 7]. The
proof complexity of these systems is equivalent to that of extended resolution [50, 44, 32, 26],
for which no exponential lower bounds are known.

Unlike more traditional, DAG-shaped proofs, interference-based proofs take the form of a
list of clause introductions and deletions. Starting with the input CNF formula F , clause
introductions of the form i: C add a clause C to F , whereas clause deletions of the form
d: C remove C from F . At each point in the proof there is an accumulated formula where
all the previous instructions in the proof have been applied.

Just as DAG-shaped proofs like resolution maintain a soundness invariant (i.e. each
model satisfying the premises of the proof also satisfies the conclusion), interference-based
proofs are satisfiability-preserving [39]: at any point in an interference-based proof of F , the
accumulated formula G satisfies F |=sat G. This is guaranteed by imposing some conditions
on clause introductions; clause deletions do not have any requirements, because deleting a
clause is always satisfiability-preserving.

Different proof systems then arise from different conditions on clause introductions.
Delete Resolution Asymmetric Tautology (DRAT) requires them to be either RUP clauses
or RAT clauses over the accumulated formula [20, 53], and similarly for Delete Propagation
Redundancy (DPR) [27] and Delete Substitution Redundancy (DSR) [9]. Note that, in the
case of introducing a RAT/PR/SR clause (as opposed to a RUP clause), the witness ω must
be specified; in this case we denote it as i: C, ω.
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2.3 Overwrite logic
Interference-based proofs represent a structural and semantic departure from traditional
proof systems. This is due to the non-monotonic properties of SR: an SR clause over F
upon σ is not necessarily an SR clause over a formula containing F . [31, 39].

The consequences of non-monotonicity are far-reaching. Interference-based proofs can-
not be freely composed as, for example, resolution proofs can [25]: the correctness of a
clause introduction depends, in principle, on the whole formula, which motivated the name
“interference” as opposed to “inference” [23].

DPR proofs can be seen as model-preserving, tree-shaped, monotonic proofs over a more
general logic, known as overwrite logic [42]. There, a model I can be conditionally overwritten
with an overwrite rule of the form (Q := T ), where Q and T are cubes. Then, the model
I ◦ (Q := T ) is defined as I ◦ Q⋆ if I |= T , or as I otherwise. That is, if T is satisfied,
then the minimal assignment satisfying Q is overwritten on I. Instead of clauses, overwrite
logic deals with overwrite clauses, represented as ∇ε1 . . . εn. C, where C is a clause and
the εi = (Qi := Ti) are overwrite rules. Such an overwrite clause is satisfied by a model I
whenever I ◦ ε1 ◦ · · · ◦ εn |= C.

This framework accurately expresses the reasoning performed by PR introduction [42]:

▶ Theorem 4. Let C be a PR clause over a CNF formula F upon a cube Q. Then, the
implication F |= ∇(Q := C). (F ∪ {C}) holds.

This result means that non-monotonic, satisfiability-preserving reasoning using PR clauses
can be turned into monotonic, model-preserving reasoning in overwrite logic. [42] further
introduces a traditional, DAG-shaped proof system over overwrite clauses that mimics PR
proofs, hence suggesting that the whole-formula dependence featured by interference-based
proof systems can, to some extent, be curbed.

3 Mutation semantics for DSR proofs

The overwrite logic presented in Section 2.3 was designed to formalize the semantics of DPR
proofs. In particular, models are overwritten with cubes, which act as witnesses for PR
clause introductions. In order to extend this framework to DSR proofs, the role of cubes
must now be fulfilled by atomic substitutions. Here we introduce mutation logic, which is a
straightforward extension of overwrite logic.

In its most general form, a mutation rule is an expression (σ := τ), where σ is an atomic
substitution and τ is any logical expression that can be evaluated under a model. We call τ
the trigger of the rule, and σ its effect. Mutation rules themselves are not logical expressions
and they cannot be satisfied or falsified. They are instead intended to codify the idea “if the
trigger τ is satisfied, then apply the effect substitution σ”. We thus define the application of
a mutation rule (σ := τ) to a model I as:

I ◦ (σ := τ) =
{
I ◦ σ if I |= τ

I if I ̸|= τ

As with overwrite logic, the main difference with propositional logic is the inclusion
of a mutation operator ∇. As in [42], one can recursively define mutation formulas as
either propositional formulas, or expressions of the form ∇(σ := τ). φ where σ is an atomic
substitution and φ, τ are mutation formulas. The semantics of the mutation operator are
given by I |= ∇(σ := τ). φ whenever I◦(σ := τ) |= φ. In other words: evaluating ∇(σ := τ). φ
corresponds to evaluating a formula φ′ obtained from φ by applying the effect σ to φ only if
the trigger τ is satisfied.
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This framework is very general, but just as discussed in [42], nothing meaningful is lost
by introducing some strong restrictions. For the purpose of this paper, we will only consider
cubic mutation rules of the form (σ := Q) where Q is a propositional cube. The logical
expressions we will use are of three kinds, where we use ∇ε⃗. φ to denote a nested mutation
∇ε1. . . .∇εn. φ with cubic mutations εi:

Mutation clauses of the form ∇ε⃗. C where C is a propositional clause.
Mutation CNF formulas (MCNF), which are finite sets of mutation clauses. The semantics
of MCNF formulas are conjunctive, i.e. they are satisfied if every mutation clause in them
is satisfied.
Uniformly mutation CNF formulas (UMCNF) of the form ∇ε⃗. F where F is a propositional
CNF formula. ∇ distributes over the propositional connectives, e.g. ∇ε⃗. (φ1 ∧ φ2) ≡
(∇ε⃗. φ1) ∧ (∇ε⃗. φ2). Hence, UMCNF can be embedded in the fragment of the MCNF
formulas that contain clauses with the same mutation prefix.

Similarly to how overwrite logic allows the expression of PR clauses as model-preserving
inferences under an overwrite [42], SR clauses become consequences under a mutation.

▶ Theorem 5. Let F be a CNF formula and C be an SR clause over F upon an atomic
mutation σ. Then, F |= ∇(σ := C). (F ∪ {C}).

Proof. Let I be any model with I |= F . Our goal is to show that the model I ′ = I ◦ (σ := C)
satisfies F ∪ {C}. If I |= C holds, then I ′ = I, which satisfies both F and C.

Let us now show the case with I ̸|= C, where we have I ′ = I ◦ σ. First observe that, since
C is an SR clause upon σ, the clause C is trivialized by σ. Lemma 1 then shows I ′ |= C.
Now, consider any clause D ∈ F . By the definition of SR clauses, either σ trivializes D, or
C |= D

∣∣
σ
, or the clause C ∨D

∣∣
σ

is a RUP clause over F .
As above, the first case implies I ′ |= D. For the second and third cases, it suffices to

show I |= D
∣∣
σ
, since Lemma 1 then proves I ′ |= D. For the second case, this follows from

I |= C. For the third case, it follows from I |= F and I ̸|= C. We have thus shown that
I ′ |= F ∪ {C} as we wanted. ◀

As for PR clauses in [42], one can read Theorem 5 as claiming that SR clause introduction
(and in general, interference-based reasoning) performs reasoning without loss of generality.
In particular: C can be assumed in F because, were it not to hold in a given model of F , a
transformation, namely the one given by σ, could be applied to the variables such that F is
still satisfied after the transformation, and C becomes satisfied too.

3.1 DSR proofs as model-preserving proofs
The entailment in Theorem 5 raises the question whether SR proofs can be equivalently
expressed as model-preserving, DAG-shaped proofs over the corresponding mutated clauses.
Following [42], we can define a proof system as shown in Figure 2.

▶ Theorem 6. The inference rules in Figure 2 are sound, i.e. any model satisfying the
premises of each rule satisfies its conclusion as well.

Proof. The proofs for res and sub are straightforward, since the ∇ operator preserves
implications.

For ∇taut, consider any model I, and let I ′ = I ◦ ε⃗ ◦ (σ := C). If I ◦ ε⃗ |= C, then
I ′ = I ◦ ε⃗, which satisfies C. Otherwise, I ′ = I ◦ ε⃗ ◦ σ, and since σ trivializes C we have
I ′ |= C.
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res
∇ε⃗. C \ {l} ∨ D \

{
l
}∇ε⃗. C ∇ε⃗. D

sub
∇ε⃗. D

∇ε⃗. C
where C ⊆ D

∇taut
∇ε⃗. ∇(σ := C). C

where σ trivializes C

∇intro
∇ε⃗. ∇(σ := Q). C

∇ε⃗. C ⋆∇ε⃗. Q ∨ C
∣∣
σ where ⋆ is only needed if Q ̸|= C

∣∣
σ

∇elim
∇ε⃗. C

∣∣
σ

∇ε⃗. ∇(σ := Q). C ∇ε⃗. ∇(σ := Q). C
∣∣
σ where σ does not trivialize C

Figure 2 A proof system over mutation clauses.

Let us now show ∇elim correct. Consider any model I satisfying the premises, and call
I ′ = I ◦ ε⃗ ◦ (σ := C), so that I ′ |= C and I ′ |= C

∣∣
σ
. If I ◦ ε⃗ |= Q, then I ′ = I ◦ ε⃗ ◦ σ satisfies

C; then I ◦ ε⃗ satisfies C
∣∣
σ

by Lemma 1. Otherwise, I ′ = I ◦ ε⃗ satisfies C
∣∣
σ
.

Finally, for ∇intro, let I be any model satisfying the premises, and I ′ = I ◦ ε⃗ ◦ (σ := Q).
If I ◦ ε⃗ satisfies Q then either it also satisfies Q ∨ C

∣∣
σ

or Q |= C
∣∣
σ
. Either way, we can

conclude I ◦ ε⃗ |= C
∣∣
σ
, and since in this case we have I ′ = I ◦ ε⃗ ◦ σ, Lemma 1 implies that

I ′ |= C. The other case is I ◦ ε⃗ ̸|= Q, and in this case I ′ = I ◦ ε⃗, which satisfies C. ◀

Upon closer inspection of the proof of Theorem 5, the relation between the SR property
and satisfiability-preservation becomes clearer. When each clause D ∈ F is required that
either σ trivializes D, or C |= D

∣∣
σ
, or the clause C ∨ D

∣∣
σ

is a RUP clause over F , these
conditions enable deriving ∇(σ := C). D through rules ∇taut or ∇intro hold: the left-hand
premise in ∇intro just means that C has been derived earlier in the SR proof, while the
right-hand premise ensures that C ∨D

∣∣
σ

can be derived (e.g. as a RUP clause).
On the other hand, ∇taut guarantees that ∇(σ := C). C can be derived, since the

definition of SR clauses forces C to be trivialized by σ. Given that ∇ distributes over ∧,
these conditions are proving F |= ∇(σ := C). F .

Similar to [42], a translation of a DSR proof into a mutation logic proof then works as
follows. At each step in the DSR proof, we consider the list of rules (σi := Ci) corresponding
to each SR clause Ci introduced upon σi earlier in the proof; this list is potentially empty,
e.g. at the start of the proof. Let us denote this list by ε⃗. Then, at that point, all clauses
D in the accumulated CNF formula have been derived as mutation clauses ∇ε⃗. D in the
translation. The translation then proceeds as follows:
1. Deletions in the DSR proof are not translated.
2. A RUP clause C can be derived through a subsumption-merge chain [39]; rules res and

sub can express a similar derivation of the mutation version of C.
3. For an SR clause C over a CNF formula F upon an atomic substitution σ, we must derive

mutation clauses D∇ = ∇ε⃗.∇(σ := C). D for each clause D ∈ F ∪ {C}.
a. When σ trivializes D, the mutation clause D∇ can be derived as an axiom through

∇taut. Note that this case includes the case D = C as well; this detail will become
relevant in Section 4.1.

b. When C |= D
∣∣
σ
, the mutation clause D∇ can be infered from ∇ε⃗. D through ∇intro.

We know this premise has been previously derived because D ∈ F .
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c. When C ∨ D
∣∣
σ

is a RUP clause over F , a subsumption-merge chain deriving that
clause with premises in F exists [15, 39]. Replacing clauses D′ with mutation clauses
∇ε⃗. D′, resolution inferences with ∇res and subsumption inferences with ∇sub in
that proof then yields a derivation of ∇ε⃗. C ∨D

∣∣
σ

from previously derived mutation
clauses. Finally, the rule ∇intro derives D∇.

4. At the end of the proof, the empty clause [ ] is derived in the SR clause, and the translation
has derived the mutated clause ∇ε. [ ]. The identity [ ] = [ ]

∣∣
σ

for all substitutions σ
ensures that ∇elim can be iteratively applied to eliminate all mutation operators, so
that [ ] is derived in the translation as well.

4 Extending DSR proofs

Understanding DSR proofs as mutation logic proofs opens the door to finer-grained reasoning
about interference-based proofs. Crucially, one of the main issues with interference-based
proofs is that deriving a clause involves reasoning over the whole currently derived formula.
In particular, interference-based proofs can be highly non-monotonic: deleting a clause in
the current formula can enable new SR introductions; and conversely, introducing a clause
can disable previously available SR introductions.

This is, at first sight, at odds with the translation described in Section 3.1: the proofs we
obtain there are model-preserving, DAG-shaped proofs with clear dependencies with other
derived clauses. What can be derived in a subproof is never affected by independent proof
sub-DAGs, so clause introduction never disables SR introductions. Deletions are even more
intriguing, since they do not even exist in the mutation logic framework (just as there is no
notion of deletion in a resolution proof DAG).

Another noticeable feature is how differently an SR clause C over F is treated in the
definition compared to the clauses D ∈ F . Even if at first sight it might look reasonable to
consider different conditions on the premises and on the conclusion, the translation from
Section 3.1 uses the same set of inference rules to derive both C∇ and D∇.

4.1 Weak substitution redundancy
In the translation, the conditions of the definition are used to guarantee that C∇ can be
derived through a ∇taut inference. However, we have three rules that can derive this
mutated clause, and the three are involved in deriving D∇ for each D ∈ F . We can thus relax
the conditions over C by demanding just the same as for each D: either σ must trivialize C,
or C |= C

∣∣
σ
, or the clause C ∨ C

∣∣
σ

must be a RUP clause over F .
Furthermore, there is nothing in the translation forcing us to derive D∇ for each and all

clauses D ∈ F . Rather, we must only do so for those clauses that the proof uses later on.
However, even if we do not need D after the SR introduction, we still can use D for the RUP
checks of other clauses in F . Note that this is not quite the same as deleting D before the
SR introduction: doing so could make the RUP checks of other clauses in F fail.

These two details suggest an extension of substitution redundancy, which we call weak
substitution redundancy (WSR).

▶ Definition 7. A clause C is a WSR clause over a CNF formula F upon an atomic
substitution σ modulo a subformula ∆ ⊆ F whenever, for each clause D ∈ (F \ ∆) ∪ {C},
either of the following holds:
(a) σ trivializes D.
(b) C |= D

∣∣
σ
.

(c) C ∨D
∣∣
σ

is a RUP clause over F .
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▶ Theorem 8. Let C be a WSR clause over a CNF formula F upon an atomic substitution
σ modulo a subformula ∆ ⊆ F . Then, F |= ∇(σ := C). ((F \ ∆) ∪ {C}) holds. In particular,
if F is satisfiable, then so is (F \ ∆) ∪ {C}.

Proof. Similar to the proof of Theorem 5. The main difference is that F |= ∇(σ := C). C
must now be shown using the same reasoning as F |= ∇(σ := C). D for D ∈ F . ◀

The complexity of checking a WSR clause introduction is similar to that of a PR/SR
check. On the one hand, one extra RUP check might be needed if C ∨C

∣∣
σ

is not a tautology;
on the other hand, one RUP check is spared for each clause in ∆.

A minor benefit of WSR clauses is that, while not every RUP is a RAT, PR or SR clause,
every RUP clause is a WSR clause upon the identity atomic substitution. The reason for
this is that the condition that the atomic substitution σ must trivialize [ ] always fails. This
allows reasoning about WSR proofs without the need for case discussion.

▶ Corollary 9. Let C be clause and F be a CNF formula. Then, C is a RUP clause over F
if and only if C is a WSR clause over F upon the identity atomic substitution modulo ∅.

This, together with the embedded notion of deletions as ∆, enables the definition of a
proof system with only one rule w: C, σ \ ∆. This rule introduces clause C and deletes
clauses in ∆, and is correct whenever C is a WSR clause over F upon σ modulo ∆. We call
this proof system the WSR proof system.

5 Applications of WSR proofs

So far, we have not yet shown any benefit of WSR over SR (or that they are not equivalent,
for that matter). In this section, we demonstrate techniques using WSR proofs that are
unavailable in previously existing interference-based proof systems.

5.1 A shorter proof of the pigeonhole problem
One of the first propositional problems that was found to only have exponential resolution
proofs was the pigeonhole problem [18]. While polynomial proofs in the extended resolution
system had already been known for a decade [11], these proofs needed to introduce fresh
variables to support definitions. However, the seminal work on PR clauses presented a shorter
DPR proof that did not use extra variables, using O(n3) instructions [27].

In [42] an analysis of this proof from the overwrite logic perspective was presented; let us
briefly reproduce it here. The pigeonhole problem encodes the unsatisfiable problem “find an
assignment of n pigeons to n− 1 pigeonholes such that no two pigeons share the same hole”.
We consider variables pij encoding “pigeon i is in hole j”. Let us define the following clauses:

Hin = [pij | 1 ≤ j < n] for n > 0 and 1 ≤ i ≤ n

Pijk = [pik pjk] for 1 ≤ i < j and 1 ≤ k

Lijn =
[
pi(n−1) pnj

]
for n > 1, 1 ≤ i < n and 1 ≤ j < n− 1

Rin =
[
pi(n−1)

]
for n > 1 and i < n

Briefly, Hin says that pigeon i stays in some hole 1 ≤ j < n; Pijk prevents that pigeons i
and j both occupy hole k; Lijn can be read as “if the pigeon i is in the last hole, then hole j
does not contain the last pigeon”; and finally Rin prevents that pigeon i is in the last hole.
The pigeonhole problem for n pigeons is then encoded by

Πn = {Hin | 1 ≤ i ≤ n} ∪ {Pijk | 1 ≤ i < j ≤ n and 1 ≤ k < n}
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Intuitively, a refutation of Πn proceeds by noting that, without loss of generality, each pigeon
i < n is not in hole n− 1; were this not the case, one can swap pigeon i with pigeon n (which
is not in hole n because that would violate Pin(n−1)). Then, pigeons 1, . . . , (n− 1) and holes
1, . . . , (n − 2) are in the conditions of the pigeonhole problem Πn−1. This process can be
iterated until Π1 is reached, which is trivially unsatisfiable.

The proof from [27] follows this reasoning, but a single PR clause is not expressive enough
to encode swaps: the only mutations that it can handle are setting variables to true or false.
Thus, the proof first derives clauses Lijn for 1 ≤ i < n and 1 ≤ j < n− 1 as PR clauses with
the cube Qijn =

〈
pi(n−1) pnjpijpn(n−1)

〉
. This encodes the following reasoning: without loss

of generality, if the pigeon i is in the last hole, then hole j does not contain the last pigeon;
were this not the case, ensure that pigeon i is not in the last hole but in the hole j instead,
and that the last pigeon is not in hole j but in the last hole instead. Once the clauses Lijn

have been derived for each 1 ≤ i < n, the clause Rin ensuring that pigeon i is not in the last
hole can be derived as a RUP clause.

When considered together, the mutations Q⋆
ijn for 1 ≤ j < n − 1 express the atomic

substitution that swaps pigeons i and n, that is:

σin = {pij 7→ pnj , pnj 7→ pij | 1 ≤ j < n} for 1 ≤ i < n

DSR can handle this kind of mutation. Let us write a DSR derivation of Πn−1 from Πn

(where we are omitting some trailing deletions for simplicity):

(i: R1n, σ1n), . . . , (i: R(n−1)n, σ(n−1)n), (i: H1(n−1)), . . . , (i: H(n−1)(n−1))

Clauses Hi(n−1) can be introduced as RUP clauses, since they result from resolution on
Hin and Rin. Furthermore, one would hope for the Rin clauses to be SR clauses over the
preceding formula upon σin. Let us check this. For each clause D in the preceding formula
F , we need to check that either of the following holds:
(a) D is trivialized by σin

(b)
〈
pi(n−1)

〉
|= D

∣∣
σin

(c) the clause D∇ =
[
pi(n−1)

]
∨D

∣∣
σin

is a RUP clause over F .
Checking case by case one can see that the reduct D

∣∣
σin

is always another clause in F , so
D∇ is either a tautology or can be derived by subsumption from F (which implies it is a
RUP clause).

The clause Rin, nevertheless, is not an SR clause over F upon σin, because it is not
trivialized by σin. Observe, however, that

C∇ = C ∨ C
∣∣
σin

=
[
pi(n−1) pn(n−1)

]
= Pin(n−1) ∈ F

In particular, C∇ it is a RUP clause over F . Hence, Rin is in fact a WSR clause over F upon
σin modulo ∅. Hence, we can define the WSR derivation πn of Π1 from Πn given in Figure 3
for n > 1. The derivation πn has O(n2) instructions, and is in fact a refutation, since [] ∈ Π1.

5.2 Smaller cores and shorter checking runtime
SAT solvers generate proofs which often introduce clauses uninvolved in the derivation of a
contradiction. This is practically unavoidable because of how solvers generate proofs: solvers
mostly just log every learnt clause [17], and at that point the solver does not know what
learnt clauses will be useful.

State-of-the-art proof checkers thus validate the proof backwards [19, 53]. Starting from
the empty clause at the end of the proof, the checker finds out what clauses are needed
to derive each clause as a RUP clause. Required clauses are then marked; as the checker
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Figure 3 A WSR refutation πn of the pigeonhole problem Πn for n ≥ 1 containing only O(n2)
instructions. Here, π1 is the empty list and id represents the identity atomic substitution.

w: R1n, σ1n \ ∅
w: R2n, σ2n \ ∅

...
w: R(n−1)n, σ(n−1)n \ ∅
w: H1(n−1), id \ {R1n}
w: H2(n−1), id \ {R2n}

...
w: H(n−1)(n−1), id \ ({R1n} ∪ (Πn \ Πn−1))
πn−1

proceeds backwards, unmarked clauses are skipped. If one were to visualize a RUP proof as
a DAG, this amounts to only checking the connected component that actually derives the
empty clause while disregarding all other connected components in the DAG.

Backwards checking has three interesting consequences. First, it vastly improves checking
runtime: not only are checks for unmarked clauses skipped, but also their premises are
skipped as well (unless they are used to derive another marked clause). Second, a shorter,
trimmed proof can be extracted as a by-product of checking. Finally, by the time the checker
reaches the start of the proof, the marked clauses in the input formula form a (not necessarily
minimal) unsatisfiable core.

Backwards checking in interference-based proofs

Interference-based proofs do not have DAG-like dependencies as RUP proofs have. Let us
formalize the problem of backwards checking in this situation. We assume that the checker
keeps track of a CNF formula F and marked clauses M ⊆ F as it proceeds backwards
through the proof. When a RAT/PR/SR introduction i: C, ω is reached with C ∈ M , the
checker removes C from both the formula F and the marked clauses M and validates the
corresponding RAT/PR/SR introduction. The goal then is to find some (preferably small)
subformula M ′ with M ⊆ M ′ ⊆ F such that C is a RAT/PR/SR clause upon ω over M ′;
this will be the new set of marked clauses.

In the best case scenario, C satisfies the corresponding redundancy property over M , so
the checker can move on with M ′ = M . There is only one way the redundancy property
might not hold over M : when one of the RUP checks from Definition 2 fails over M (but still
succeeds over F ), the premises of the induced subsumption-merge chain must become marked;
let us (conspicuously) call this set of newly marked clauses ∆. The problem we are tackling
is whether clauses in ∆ really need their own RUP check as mandated by Definition 2.

For RAT, it turns out, they do not: one can show that, for a witness literal l in a RAT
check, the clauses in ∆ never contain l, so they never trigger further RUP checks. Such a
convenient coincidence does not hold for PR or SR, though. In order to establish that C is a
PR/SR clause upon some M ′, the clauses in ∆ must undergo their own RUP check, which
might add new clauses to ∆, and so on until fixpoint.

This is nevertheless wasteful. By the time the first ∆ has been computed, introducing C
can already be claimed to be satisfiability-preserving, just not as a PR/SR: the conditions
above prove that C is a WSR clause upon ω over M ∪ ∆ modulo ∆. This means that a
proof checker (even one that only checks PR/SR) can simply set M ′ = M ∪ ∆ and continue
checking the rest of the proof.

SAT 2023
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To the best of our knowledge, existing checkers do not deal with this situation in an
optimal way, e.g. the reference DPR checker dpr-trim resorts instead to the fixpoint method1.
Note that the fixpoint method always produces a larger M ′ than the WSR-based method,
with associated longer runtimes, larger unsatisfiability cores and longer trimmed proofs.

Even if for (uncertified) checking WSR only seems relevant at a theoretical level, state-
of-the-art proof checkers emit trimmed, annotated proofs that can be further checked with
a verified tool [12, 49]. The formats these annotated proofs use, such as LRAT or LPR,
are based on RAT/PR, and so the fixpoint method is needed if an annotated proof must
be emitted in one of these formats. Either way, the need for the fixpoint method could be
removed by emitting WSR-based annotated proofs.

▶ Example 10. Let us define three CNF formulas. The formula M contains clauses:

[a c x] [a u v x] [c u v x] [a x y z] [a c x y] [a b u]
[c u] [u y z]

[
a b c

]
[c x z]• [c xz]• [c x y]• [a b u v x]•

The formula ∆ contains:

[b u x]
[
b t v x y

] [
b t v x z

]
[t v y z]

[
t v y z

]
Finally, Γ =

{[
b x u y z

]}
. Let us assume that a proof checker is checking a DSR refutation

of the unsafistiable formula F = M ∪ ∆ ∪ Γ backwards. It eventually reaches the first
instruction, an SR clause introduction for C = [xu] upon the atomic substitution σ =
{x 7→ ⊤, a 7→ ⊤, v 7→ ⊥, t 7→ ⊤}. At this point, the clauses in M (in addition to C) have
been marked for checking; since this is the first instruction, the marked clauses after checking
C for SR are an unsatisfiable core of F . One can check that σ trivializes C, and that all
clauses in M except for the ones highlighted with • satisfy the conditions in Definition 2
using propagation clauses exclusively from M . For the highlighted clauses, propagating with
clauses from M ∪ ∆ does suffice to satisfy Definition 2.

As we learnt in Section 4, we can now stop checking: C is a WSR clause over the formula
M ∪ ∆ modulo ∆; the newly marked clauses (which form the generated unsatisfiable core)
are thus M ∪ ∆. Current checkers will nevertheless not stop here, since SR is more restrictive
than WSR. In particular, they check the newly marked clauses ∆ for the conditions in
Definition 2 as well. As it turns out, C is not even an SR clause over M ∪ ∆, but only over
F : for the RUP check for C ∨

[
t v y z

] ∣∣
σ

to succeed, the clause in Γ is needed too. That
clause becomes subsequently marked, and a further check is performed for it. This check
finally succeeds, reaching a fixpoint.

This example shows that SR marks strictly more clauses than WSR, which translates
into larger generated unsatisfiable cores and trimmed proofs, as well as a longer checking
runtime since the extra marked clauses will be themselves checked.

5.3 Interference-free interference lemmas
The differences between SR and WSR presented in Section 5.2 can too be exploited during
proof generation. While the largest share of a proof generated by a state-of-the-art SAT solver
consists of learnt clauses introduced as RUP clauses as well as clause deletions, inprocessing
techniques also contribute to the proof. Typically, an inprocessing technique performs some

1 See https://github.com/marijnheule/dpr-trim/blob/
83eb40b9028100aca63a419eb6d08b45acf517ad/dpr-trim.c, line 660.

https://github.com/marijnheule/dpr-trim/blob/83eb40b9028100aca63a419eb6d08b45acf517ad/dpr-trim.c
https://github.com/marijnheule/dpr-trim/blob/83eb40b9028100aca63a419eb6d08b45acf517ad/dpr-trim.c
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reasoning and then a (to some extent) hardcoded proof fragment of the results is generated.
No proof search is performed; rather, the specialized reasoning performed by the inprocessing
technique is translated into the target proof system by a method that has previously been
proven correct (on paper, not in silico).

Interference-based proof systems are notable for their ability to generate succint proof
fragments for many inprocessing techniques and non-CDCL methods, including parity
reasoning [38, 16], symmetry breaking [22] and BDD-based reasoning [7]. Devising these
proofs is complex for several reasons; among them is that, in an interference-based proof
system, introduced lemmas may need further lemmas for satisfy Definition 2.

Let us assume we want to generate a proof fragment deriving a clause C as an SR clause
from F upon some atomic substitution σ. The clause C has been obtained through some
inprocessing technique, and we know that all the clauses D∇ = C ∨ D

∣∣
σ

for D ∈ F are
implied by C because of some property of the inprocessing technique. However, we might find
that some of the D∇ are not RUPs over F ; after all, RUP is just a criterion for entailment.
We can derive some additional clauses (i.e. lemmas) L1, . . . , Ln from F such that D∇ is a
RUP over F ∪ L1, . . . , Ln, but now the definition of SR clauses demands that the Li

∇ are
RUP clauses as well, which might need additional clauses and so on.

This is, in essence, the proof generation version of the proof checking situation from
Section 5.2. Just as we did there, with WSR we can completely bypass the need to prove
that the Li

∇ are RUP clauses: C is already a WSR clause over F ∪
{
L1, . . . , Ln

}
upon σ

modulo
{
L1, . . . , Ln

}
. In other words, WSR allows introducing interference lemmas that

need not be taken into account for RUP checks.

▶ Example 11. Let us consider the CNF formula F containing clauses:

[a b x y] [a b x y z] [a b x z] [a u v] [c u v]
[
a c b y

]
[a c b y][

c b y z
] [

c b x y z
] [

c b x z
]

[u v] [u v] [u v]

We want to derive the clause C = [x]. Unfortunately, C is not a RUP clause over F , so we
try to introduce it as an SR clause upon the atomic substitution σ = {x 7→ ⊤, y 7→ z, z 7→ y}.
This almost works: all the conditions in Definition 2 hold, except for C∨

[
b c x z

] ∣∣
σ

=
[
b c x y

]
not being a RUP clause over F . We can derive some RUP lemmas from F , for example
L1 = [a y v] and then L2 = [a y]; the clause

[
b c x y

]
is indeed a RUP clause over F ∪ {L1, L2}.

Here is where WSR and SR show their differences again. Under WSR, we can already
introduce C in F , because the paragraph above implies that C is a WSR clause over
F ∪ {L1, L2} upon σ modulo {L1, L2}. This is not the case for SR, though: because the
clause C ∨ L2

∣∣
σ

= [a x z] is not a RUP clause over F ∪ {L1, L2}, the clause C is not SR over
F upon σ. We would need to find additional lemmas to make it so, which might then need
further lemmas themselves.

6 Conclusion

We have presented a generalization of the SR redundancy notion, called weak substitution
redundancy (WSR). This extension is straightforward once the semantics of interference have
been understood, which we achieve by extending the overwrite logic framework from [42]
into mutation logic, which is able to handle atomic substitutions.

The main differences between SR and WSR are the weakening of one unnecessarily strong
condition in the definition, and the specification of a set of clauses that can be used for
ensuring the interference conditions but will not participate in interference themselves.

SAT 2023
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These minor differences have an impact on the versatility of the proof system. Shorter
proofs can be obtained, lemmas can be used in a less obstrusive way, the efficiency of the
backwards checking algorithm is enhanced, and smaller unsatisfiable cores and trimmed
proofs can be generated.
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Abstract
This paper presents a novel application of QBF solving to automata reduction. We focus on
Transition-based Emerson-Lei automata (TELA), which is a popular formalism that generalizes
many traditional kinds of automata over infinite words including Büchi, co-Büchi, Rabin, Streett,
and parity automata. Transitions in a TELA are labelled with acceptance marks and its accepting
formula is a positive Boolean combination of atoms saying that a particular mark has to be visited
infinitely or finitely often. Algorithms processing these automata are often very sensitive to the
number of acceptance marks. We introduce a new technique for reducing the number of acceptance
marks in TELA based on satisfiability of quantified Boolean formulas (QBF). We evaluated our
reduction technique on TELA produced by state-of-the-art tools of the libraries Owl and Spot and
by the tool ltl3tela. The technique reduced some acceptance marks in automata produced by
all the tools. On automata with more than one acceptance mark obtained by translation of LTL
formulas from literature with tools Delag and Rabinizer 4, our technique reduced 27.7% and 39.3% of
acceptance marks, respectively. The reduction was even higher on automata from random formulas.
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1 Introduction

Automata over infinite words like Büchi, Rabin, Streett, or parity automata play a crucial
role in many algorithms related to concurrency theory, game theory, and formal methods in
general. In particular, they are used in specification, verification, analysis, monitoring, and
synthesis of various systems with infinite behaviour. In 1987, Emerson and Lei [12] introduced
automata over infinite words where acceptance conditions are arbitrary combinations of
acceptance primitives saying that a certain set of states should be visited finitely often
or infinitely often. In 2015, the same kind of acceptance condition was described in the
Hanoi omega-automata format (HOAF) [3]. The only difference is that the acceptance
primitives talk about finitely or infinitely often visited acceptance marks rather than sets
of states. Acceptance marks are placed on transitions and each mark identifies the set of
transitions containing this mark. Hence, these automata are called transition-based Emerson-
Lei automata (TELA) and they generalize many traditional kinds of automata over infinite
words including Büchi, co-Büchi, Rabin, Streett, and parity automata.
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TELA have attracted a lot of attention during the last few years [5, 15, 16, 18]. Their
popularity comes probably from the fact that these automata can often use fewer states
than equivalent automata with simpler acceptance conditions. Further, algorithms handling
TELA can automatically handle all automata with traditional acceptance conditions. TELA
can be obtained for example by translating formulas of linear temporal logic (LTL) [17]
with tools ltl2dela (known as Delag) [16] or ltl2dgra (known as Rabinizer 4) [13] of the
Owl library, ltl2tgba of the Spot library [9], or ltl3tela [15]. There are also algorithms
processing these automata, for example the emptiness check [5] or translation of TELA to
parity automata [18, 7].

Algorithms processing TELA are often sensitive to the number of acceptance marks more
than to other parts of the automaton. For example, the transformation of TELA to parity
automata based on color appearance record [18] transforms a TELA with m acceptance marks
and s states into a parity automaton with up to m! · s states. Further, the emptiness-check
algorithm [5] is exponential in the number of acceptance marks that appear in acceptance
primitives saying that a mark has to be visited finitely often, while it is only polynomial in
other measures of the input automaton.

The number of acceptance marks can be algorithmically reduced to one as every TELA
can be transformed to an equivalent Büchi automaton (this can be easily done for example
by Spot [9]), but this reduction is paid by dramatic changes of state space: the number of
states can increase exponentially in the number of acceptance marks and some important
structural properties like determinism can be lost. This motivates our study of a technique
reducing the number of acceptance marks without altering the structure of the automaton.

Our reduction technique is heavily based on quantified Boolean formulas (QBF). For a
given TELA and parameters C,K, it produces a QBF which is satisfiable if and only if there
exists an automaton with the same structure, K acceptance marks, an acceptance formula
in disjunctive normal form with C cubes (i.e., conjunction of literals), and the same set of
accepting runs as the original automaton. The placement of the marks on transitions and
the acceptance formula can be obtained from a model of the formula. Besides this formula,
we describe also the construction of two simpler formulas whose satisfiability implies the
existence of an automaton with the same structure, K acceptance marks, and the same set
of accepting runs, but not vice versa.

We have implemented our reduction technique in a tool called telatko. We show that
the tool can reduce acceptance marks in automata produced by Delag [16], Rabinizer 4 [13]
(both included in the Owl library), Spot [9], and ltl3tela [15]. While the reduction is
relatively modest on TELA produced by ltl3tela and Spot, it is substantial on automata
produced by the tools of the Owl library.

Related results

There is a simple technique [4] reducing the number of acceptance marks in transition-based
generalised Büchi automata (TGBA) without changing its structure. We are not aware of any
existing research aimed at simplification of acceptance formulas of TELA or reduction of the
number of its acceptance marks without increasing the number of states. There exists only
a SAT-based approach that transforms a deterministic TELA to an equivalent automaton
with a given acceptance condition and a given number of states [2] (if such an automaton
exists). Further, there are some SAT-based approaches aimed to reduce the number of
states of automata over infinite words. More precisely, there are reductions designed for
nondeterministic Büchi automata [11], deterministic Büchi automata [10], and deterministic
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generalized Büchi automata [1]. Note that these techniques are usually very slow and their
authors typically suggest to use them only for specific purposes like looking for cases where
some automata construction can be improved.

Casares, Colcombet, and Fijalkow very recently introduced a structure called alternating
cycle decomposition (ACD) [6] which compactly represents all accepting and non-accepting
automata cycles. We expect that ACD could be used to reduce the number of acceptance
marks or to simplify the acceptance condition. However, such a reduction is not obvious.

Structure of the paper

The next section introduces basic terms used in the paper. Section 3 explains the construction
of the three mentioned quantified Boolean formulas. The reduction algorithm based on these
formulas is presented in Section 4. Section 5 describes our tool telatko implementing the
reduction technique. Experimental results are shown in Section 6. Finally, Section 7 suggests
other applications of our QBF-based reduction technique and closes the paper.

2 Preliminaries

In this section we recall the basic terms related to TELA and QBF.

▶ Definition 1 (TELA). A transition-based Emerson-Lei automaton (TELA) is a tuple
A = (Q,M,Σ, δ, qI , φ), where

Q is a finite set of states,
M is a finite set of acceptance marks,
Σ is a finite alphabet,
δ ⊆ Q× Σ× 2M ×Q is a transition relation,
qI ∈ Q is an initial state, and
φ is the acceptance condition constructed according to the following abstract syntax
equation, where m ranges over M .

φ ::= true | false | Inf m | Finm | (φ ∧ φ) | (φ ∨ φ)

A tuple t = (p, a,M ′, q) ∈ δ is the transition leading from state p to state q labelled with
a and acceptance marks M ′. The set M ′ is also referred to by mks(t). For a set of transitions
T ⊆ δ, let mks(T ) =

⋃
t∈T mks(t) denote the set of marks that appear on transitions in T .

A run π of A over an infinite word u = u0u1u2 . . . ∈ Σω is an infinite sequence of
adjacent transitions π = (q0, u0,M0, q1)(q1, u1,M1, q2) . . . ∈ δω where q0 = qI . Let inf (π)
denote the set of transitions that appear infinitely many times in π. Run π is accepting iff
inf (π) satisfies the formula φ, where a set T of transitions satisfies Inf m iff m ∈ mks(T )
and it satisfies Finm iff m ̸∈ mks(T ). The language of A is the set L(A) = {u ∈ Σω |
there is an accepting run of A over u}. Two automata A,B are equivalent if L(A) = L(B).

An acceptance formula φ is in disjunctive normal form (DNF) if it is a disjunction of
cubes, where each cube is a conjunction of atoms of the form Finm or Inf m. Each acceptance
formula can be transformed into an equivalent formula in DNF. Formula false corresponds
to the disjunction of zero cubes and formula true corresponds to the cube with zero atoms.

A path from a state p to a state q is a finite sequence of adjacent transitions of the
form ρ = (q0, u0,M0, q1)(q1, u1,M1, q2) . . . (qn−1, un−1,Mn−1, qn) ∈ δ+ such that p = q0 and
q = qn. A nonempty set of states S ⊆ Q is called a nontrivial strongly connected component
(SCC) if for each p, q ∈ S there is a path from p to q. An SCC S is maximal if there is no
SCC S′ satisfying S ⊊ S′. In the rest of this paper, SCC always refers to a maximal SCC.

SAT 2023
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Given a set of states S ⊆ Q, let δS = δ ∩ (S × Σ× 2M × S) denote the set of all transitions
between states in S. Further, for each mark m ∈M , let δm = {t ∈ δ | m ∈ mks(t)} denote
the set of all transitions marked with m. A set of transitions T ⊆ δ is called a cycle if there
exists a path from a state p to the same state containing each transition of T at least once
and no transition outside T . Finally, we assume that each TELA A contains only states q
that are reachable from the initial state qI (i.e., q = qI or there is a path from qI to q) as
states that are not reachable from qI can be eliminated without any impact on L(A). We
also assume that each TELA has at least one SCC as automata without any SCC trivially
describe an empty language.

In graphical representation, we often use acceptance marks 1 , 2 , . . . ∈M . Further, an
edge p qa

kj denotes the transition (p, a, { j , k }, q) ∈ δ.
By choosing an appropriate acceptance condition, one can easily represent many classical

kinds of automata over infinite words. For example, a Büchi automaton can be represented
as a TELA with the acceptance condition φ = Inf 1 and the single mark 1 placed on all
transitions leaving the accepting states of the Büchi automaton. Further, a Rabin automaton
with k acceptance pairs can be similarly represented as a TELA with acceptance condition
φ = (Fin 1 ∧ Inf 1’ ) ∨ . . . ∨ (Fin k ∧ Inf k’ ) and marks M = { 1 , 1’ , . . . , k , k’ }.

Quantified Boolean formulas (QBF) are Boolean formulas extended with universal and
existential quantification over propositional variables. We assume that subformulas of the
form ∀x.ψ and ∃x.ψ do not contain another quantification of variable x inside ψ. The
semantics of ∀x.ψ and ∃x.ψ is given by equivalences

∀x.ψ ≡ ψ[x→ true] ∧ ψ[x→ false]
∃x.ψ ≡ ψ[x→ true] ∨ ψ[x→ false]

where ψ[x→ ρ] denotes the formula ψ with all occurrences of x simultaneously replaced by
ρ. The equivalences imply that each QBF can be transformed into an equivalent Boolean
formula. However, the size of this Boolean formula can be exponential in the size of the
original QBF. Let V be the set of all propositional variables. A mapping µ : V → {0, 1} is a
model of a QBF φ iff it is a satisfying assignment of an equivalent Boolean formula. A QBF
is satisfiable iff it has a model.

3 Construction of quantified Boolean formulas

Recall that we aim to reduce the number of acceptance marks in a given TELA A =
(Q,M,Σ, δ, qI , φ) without altering its structure and language. In other words, we look for

a set N of acceptance marks satisfying |N | < |M |,
an acceptance formula ψ over N , and
a function nm : δ → Q× Σ× 2N ×Q assigning new marks to transitions (i.e., for each
t = (p, a,M ′, q) ∈ δ, we assume that nm(t) = (p, a,N ′, q) for some N ′ ⊆ N) such that
the automaton B = (Q,N,Σ,nm(δ), qI , ψ) is equivalent to A.

We will actually look for ψ and nm such that each run π = t0t1t2 . . . of A is accepting
if and only if the run nm(t0)nm(t1)nm(t2) . . . of B is accepting. This requirement clearly
guarantees the equivalence of A and B, but it is not a necessary condition for the equivalence.
Indeed, there exist automata where relaxing this requirement can lead to a bigger reduction
of acceptance marks (see Figure 1). However, looking for ψ and nm that preserve the
acceptance of individual runs makes the problem easier as we can, for example, ignore the
labelling of transitions by the elements of Σ.
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Figure 1 The left automaton accepts the words that contain infinitely many occurrences of both
a and b. Each accepting run of the left automaton has to contain infinitely many occurrences of both
transitions looping on the initial state. Hence, there does not exist any automaton with the same
accepting runs as the left automaton and less than two acceptance marks. The right automaton
accepts the same language using one acceptance mark and a different set of accepting runs.

Our reduction method is based on two facts. First, the acceptance of a run π is fully
determined by inf (π). Second, each set inf (π) is a cycle and vice versa.

▶ Lemma 2. A set T ⊆ δ is a cycle if and only if there is a run π such that inf (π) = T .

Proof. To prove the direction “=⇒”, we assume that T is a cycle. The definition says that
there exists a path τ from a state p to the same state containing each transition of T at
least once and no transition outside T . As our automata contain only reachable states, there
exists a path ρ from the initial state qI to p or p = qI and we set ρ = ε. The infinite sequence
π = ρ.τω is a run satisfying inf (π) = T .

To prove the direction “⇐=”, we consider a run π. As inf (π) is the set of transitions that
appear infinitely many times in π, there has to be a suffix π′ of π containing only transitions
of inf (π). Let p be the first state of π′. As each transition of π′ appears infinitely many
times in π and thus also in π′, there has to be a finite prefix ρ of π′ such that ρ is a path from
p to p that contains all transitions of inf (π). In other words, the set inf (π) is a cycle. ◀

Hence, our goal can be reformulated as follows. We look for a new acceptance formula ψ
and a function nm such that for each cycle T ⊆ δ, it holds that T satisfies φ if and only if
nm(T ) satisfies ψ. This can be roughly denoted by the formula

∀T ⊆ δ . cycle(T ) =⇒
(
satisfiesφ(T ) ⇐⇒ satisfiesψ(nm(T ))

)
.

In fact, this corresponds to the shape of the QBF we will construct. As we are looking for ψ
and nm such that the formula holds, the subformula satisfiesψ(nm(T )) contains many free
variables representing possible instances of ψ and nm. If the formula is satisfiable, then each
of its models encodes a desired instance of ψ and nm. In the following, we assume that we are
looking for a new acceptance formula ψ in DNF. The choice of DNF is not fundamental, but
inherited from our previous attempt to reduce acceptance formulas. The presented method
can be easily adapted to look for ψ in conjunctive normal form (CNF) or in a different shape.

Now we describe the construction of the QBF in detail. The construction is parameterized
by two integers C,K ≥ 0, where K is the desired number of acceptance marks and C is the
number of cubes of ψ. Without loss of generality, we assume that the reduced automaton
will use the acceptance marks NK = {1, 2, . . . ,K}. We start with a description of Boolean
variables used in the constructed QBF.

For each transition t ∈ δ, variable et says whether t is in the current set T or not.

et =
{

1 if t ∈ T
0 otherwise
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For each transition t ∈ δ and acceptance mark k ∈ NK , variable nt,k says whether k is
on the transition nm(t) or not.

nt,k =
{

1 if k ∈ mks(nm(t))
0 otherwise

For each c ∈ {1, 2, . . . , C} and acceptance mark k ∈ NK , variables ic,k and fc,k say
whether the cth cube of ψ contains atoms Inf k or Fin k, respectively.

ic,k =
{

1 if the cth cube of ψ contains Inf k
0 otherwise

fc,k =
{

1 if the cth cube of ψ contains Fin k
0 otherwise

By e⃗, n⃗, i⃗, f⃗ we denote the vectors of all variables of the form et, nt,k, ic,k, and fc,k, respectively.
The constructed QBF have the form

ΦC,K(n⃗, i⃗, f⃗) = ∀e⃗ . cycle(e⃗) =⇒
(
satisfiesφ(e⃗) ⇐⇒ satisfiesC,K(e⃗, n⃗, i⃗, f⃗)

)
,

where ∀e⃗ denotes the sequence composed of ∀et for all variables et. Now we define the
subformulas satisfiesφ(e⃗), satisfiesC,K(e⃗, n⃗, i⃗, f⃗), and three versions of cycle(e⃗).

The subformula satisfiesφ(e⃗) says whether T satisfies the original acceptance formula φ
and it is derived directly from φ. Recall that T satisfies Inf m iff m ∈ mks(T ), which means
that T contains some transition with mark m. As the transitions with mark m form the set
δm, Inf m can be expressed by

∨
t∈δm

et. Similarly, T satisfies Finm iff m ̸∈ mks(T ), which
can be expressed by

∧
t∈δm

¬et. Hence, satisfiesφ(e⃗) arises from φ by replacing
all atoms of the form Inf m by

∨
t∈δm

et and
all atoms of the form Finm by

∧
t∈δm

¬et.

Next, we construct the subformula satisfiesC,K(e⃗, n⃗, i⃗, f⃗) that evaluates to true iff nm(T )
satisfies ψ. The subformula reflects the basic structure of ψ. As we assume that ψ is a
disjunction of C cubes, we have

satisfiesC,K(e⃗, n⃗, i⃗, f⃗) =
∨

c∈{1,2,...,C}

ξc,K(e⃗, n⃗, i⃗, f⃗)

where each ξc,K(e⃗, n⃗, i⃗, f⃗) corresponds to one cube. Recall that the presence of atoms Inf k
and Fin k in the cth cube is given by variables ic,k and fc,k, respectively. Inf k is satisfied
by nm(T ) iff T contains a transition t such that k ∈ mks(nm(t)), which can be expressed
as

∨
t∈δ(et ∧ nt,k). Similarly, Fin k is satisfied by nm(T ) iff there is no transition t ∈ T such

that k ∈ mks(nm(t)), which can be expressed as
∧
t∈δ ¬(et ∧ nt,k). Hence, we set

ξc,K(e⃗, n⃗, i⃗, f⃗) =
∧

k∈NK

(
ic,k =⇒

∨
t∈δ

(et ∧ nt,k)
)
∧

(
fc,k =⇒

∧
t∈δ

¬(et ∧ nt,k)
)
.

It remains to define the subformula cycle(e⃗). Let Te⃗ denote the set of transitions
represented by e⃗. The original intended meaning of cycle(e⃗) is

cycle(e⃗) ⇐⇒ Te⃗ is a cycle.

In fact, only the direction “⇐=” is needed for the correctness of our reduction method.
If there are some valuations of e⃗ such that cycle(e⃗) holds and Te⃗ is not a cycle, then we
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will superfluously require the equivalence satisfiesφ(e⃗) ⇐⇒ satisfiesC,K(e⃗, n⃗, i⃗, f⃗) on these
valuations. These superfluous constraints can lead to loss of reduction opportunities, but
not to incorrectness. This observation allows us to trade the precision of cycle(e⃗) for its
simplicity.

We define three versions of cycle(e⃗):
cycle1(e⃗) is a lightweight version, which only says that Te⃗ is nonempty and Te⃗ ⊆ δS for
some SCC S. Except for SCCs, it does not use the information about the automaton
structure, but it comes with an interesting simplification of the whole formula ΦC,K .
cycle2(e⃗) is an intermediate version. It says that Te⃗ is nonempty, Te⃗ ⊆ δS for some SCC
S, and every transition in Te⃗ has a preceding and a succeeding transition in Te⃗, which is
a necessary condition for being a cycle, but not a sufficient one.
cycle3(e⃗) is a strict version saying that Te⃗ is a cycle. Unfortunately, it uses additional
universally quantified variables corresponding to automata states. Transformation of
ΦC,K to prenex normal form turns the quantifiers to existential ones and the resulting
formula thus contains quantifier alternation.

We write Φj,C,K when we want to emphasize that a particular formula ΦC,K contains the
version cyclej(e⃗).

3.1 Lightweight version cycle1(e⃗)

The lightweight version is defined as

cycle1(e⃗) =
∨

SCC S

( ∨
t∈δS

et ∧
∧

t′∈δ∖δS

¬et′
)

which means only that Te⃗ is nonempty and Te⃗ ⊆ δS for some SCC S. This condition is
satisfied by every cycle.

The formula Φ1,C,K built with cycle1(e⃗) says that for every nonempty set T ⊆ δS where
S is an SCC, T satisfies φ if and only if nm(T ) satisfies ψ. Note that the only aspects of a
transition t reflected by the formula are its set of marks mks(t) and its affiliation to an SCC.
Hence, we do not have to distinguish between transitions that are affiliated to the same SCC
and have the same sets of marks.

Let us now fix an SCC S. We define an equivalence ∼S ⊆ δS × δS on transitions such
that t1 ∼S t2 whenever mks(t1) = mks(t2).

▶ Lemma 3. Assume that there is a function nm and a formula ψ such that

for every set ∅ ̸= T ⊆ δS it holds (T satisfies φ ⇐⇒ nm(T ) satisfies ψ). (1)

Then there exists a function nm′ that respects the equivalence ∼S (i.e., it assigns the same
marks to equivalent transitions) and

for every set ∅ ̸= T ⊆ δS it holds (T satisfies φ ⇐⇒ nm′(T ) satisfies ψ). (2)

Proof. Let nm be a function and ψ a formula such that (1) holds. To construct the function
nm′, we first select one transition from each equivalence class of ∼S . For every transition
t = (p, a,M ′, q) ∈ δS , by t we denote the selected transition equivalent to t and we define the
function nm′ such that nm′(t) = (p, a,mks(nm(t)), q). Note that we do not need to discuss
the value of nm′ on transitions outside δS as it is not relevant for the lemma. Clearly, nm′

respects the equivalence ∼S . It remains to show that (2) holds for nm′ and ψ.
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Figure 2 An automaton structure (left) and two sets Te⃗ (middle and right) that are not cycles
even if cycle2(e⃗) holds. The transition labels and acceptance marks are not depicted.

Let T ⊆ δS be a nonempty set. We construct the set T = {t | t ∈ T}. As mks(t) = mks(t)
for all transitions of δS , we get mks(T ) = mks(T ) and thus

T satisfies φ ⇐⇒ T satisfies φ.

Now we apply (1) to T and we get

T satisfies φ ⇐⇒ nm(T ) satisfies ψ.

Finally, the definition of nm′ implies that nm′(T ) = nm(T ) and thus

nm(T ) satisfies ψ ⇐⇒ nm′(T ) satisfies ψ.

Altogether, we obtain

T satisfies φ ⇐⇒ T satisfies φ ⇐⇒ nm(T ) satisfies ψ ⇐⇒ nm′(T ) satisfies ψ

which proves that (2) holds for nm′ and ψ. ◀

The lemma suggests the following simplification of the whole formula Φ1,C,K built with
cycle1(e⃗). Before we build the formula, we compute the equivalences ∼S for all SCCs and
temporarily remove all transitions affiliated to SCCs except one of each equivalence class.
Then we build the formula Φ1,C,K for the pruned automaton. The more transitions we
removed, the shorter formula with less et variables we obtain. If the formula Φ1,C,K for
the pruned automaton is satisfiable, we derive nm and ψ from its model and extend nm to
all transitions of the original automaton such that it changes the acceptance marks on all
equivalent transitions in the same way. In the following, we use this simplification whenever
Φ1,C,K is employed.

3.2 Intermediate version cycle2(e⃗)
The intermediate version says that Te⃗ is nonempty, Te⃗ ⊆ δS for some SCC S, and for each
state q ∈ Q it holds that Te⃗ contains a transition leading to q if and only if it contains a
transition leaving q. Formally,

cycle2(e⃗) = cycle1(e⃗) ∧
∧
q∈Q

( ∨
t′∈δ ∩ Q×Σ×2M ×{q}

et′ ⇐⇒
∨

t′′∈δ ∩ {q}×Σ×2M ×Q

et′′

)
.

This condition is satisfied by every cycle, but also by some sets of transitions that are not
cycles. Some examples of such sets are provided in Figure 2.

3.3 Strict version cycle3(e⃗)
Before we give the definition of cycle3(e⃗), we prove that cycles can be characterised in the
following way.
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▶ Lemma 4. A nonempty set T ⊆ δ is a cycle if and only if, for each set of states S ⊆ Q,
one of the following conditions holds.
A. All transitions in T lead from a state in S to a state in S (i.e., T ⊆ δS).
B. All transitions in T lead from a state outside S to a state outside S (i.e., T ⊆ δQ∖S).
C. T contains a transition leading from a state in S to a state outside S and a transition

leading from a state outside S to a state in S.

Proof. We first prove the direction “=⇒”. Let T be a cycle and S ⊆ Q be an arbitrary set
of states. We show that if (A) and (B) do not hold, then (C) has to hold. Hence, assume
that T ̸⊆ δS and T ̸⊆ δQ∖S . Then there are two cases.

T contains a transition t ∈ δS and a transition t′ ∈ δQ∖S . The definition of a cycle implies
that there exists a path t1t2 . . . tn ∈ T+ from a state p back to p containing both t and t′.
However, this implies that T contains a transition leading from a state in S to a state
outside S and a transition leading from a state outside S to a state in S.
T contains a transition t leading from a state in S to a state outside S (or vice versa).
However, as T is a cycle, there exists a path t1t2 . . . tn ∈ T+ that leads from a state p to
the same state and contains t. Hence, T has to contain also a transition leading from a
state outside S to a state in S (or vice versa).

In both cases, (C) holds.
Now we prove the opposite direction “⇐=” by contraposition. Assume that a nonempty

set T is not a cycle. We show that there is a set S ⊆ Q such that neither (A) nor (B) nor
(C) holds. Let p be a state such that some transition of T leads from p. We define the set
Spost of states reachable from p via transitions in T and the set Spre of states from which p

is reachable via transitions of T .

Spost = {p} ∪ {q ∈ Q | there is a path in T+ from p to q}
Spre = {p} ∪ {q ∈ Q | there is a path in T+ from q to p}

As there is a transition of T leading from p, we have that T ̸⊆ δQ∖Spost and T ̸⊆ δQ∖Spre , i.e.,
(B) does not hold for Spost and Spre. Further, the definition of Spost implies that there is
no transition of T leading from a state in Spost to a state outside Spost , which means that
(C) does not hold for Spost . Similarly, T contains no transition leading from a state outside
Spre to a state in Spre, which means that (C) does not hold for Spre. Now we prove by
contradiction that (A) does not hold for at least one of Spost , Spre. Hence, let us assume that
T ⊆ δSpost and T ⊆ δSpre . Then for each ti ∈ T leading from pi to qi we have that pi ∈ Spost
and qi ∈ Spre, which implies that

pi = p (we set ρ′
i = ε in this case) or there is a path ρ′

i ∈ T+ leading from p to pi, and
qi = p (we set ρ′′

i = ε in this case) or there is a path ρ′′
i ∈ T+ leading from qi to p.

Then there is a path ρi = ρ′
itiρ

′′
i ∈ T+ leading from p back to p and containing ti. If we

concatenate all these paths, we get the path ρ1ρ2 . . . ρ|T | ∈ T+ that contains all transitions
of T and leads from p back to p, which means that T is a cycle. This is a contradiction. ◀

The formula cycle3(e⃗) says that Te⃗ is nonempty and each set S ⊆ Q satisfies (A) or (B)
or (C). For each state q ∈ Q, variable sq says whether q is in the current set S or not.

sq =
{

1 if q ∈ S
0 otherwise
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By s⃗ we denote the vectors of all variables of the form sq. The formula cycle3(e⃗) is defined
as follows.

cycle3(e⃗) =
∨
t∈δ

et ∧ ∀s⃗ . ζA(e⃗, s⃗) ∨ ζB(e⃗, s⃗) ∨ ζC(e⃗, s⃗)

ζA(e⃗, s⃗) =
∧

t=(p,a,M ′,q)∈δ

(
et =⇒ (sp ∧ sq)

)
ζB(e⃗, s⃗) =

∧
t=(p,a,M ′,q)∈δ

(
et =⇒ (¬sp ∧ ¬sq)

)
ζC(e⃗, s⃗) =

( ∨
t=(p,a,M ′,q)∈δ

et ∧ sp ∧ ¬sq
)
∧

( ∨
t=(p,a,M ′,q)∈δ

et ∧ ¬sp ∧ sq
)

3.4 Complexity of formulas
The constructed formulas Φj,C,K for j ∈ {1, 2, 3} use |δ| universally quantified variables
et, |δ| · K free variables nt,k, and C · K free variables ic,k and fc,k. The formula Φ3,C,K
additionally uses |Q| variables sq that are existentially quantified (when the formula is
transformed to prenex normal form) in the scope of universal quantification of variables et.

To analyze the length of the formulas, we start with its subformulas. One can easily
check that |satisfiesφ(e⃗)| ∈ O(|φ| · |δ|) and |satisfiesC,K(e⃗, n⃗, i⃗, f⃗)| ∈ O(C ·K · |δ|). Further,
|cycle1(e⃗)|, |cycle2(e⃗)| ∈ O(S · |δ|), where S is the number of SCCs in the automaton. Next,
|cycle3(e⃗)| ∈ O(|δ|+ |Q|), which can be simplified to |cycle3(e⃗)| ∈ O(|δ|) as |Q| ≤ |δ| follows
from the assumptions that all states are reachable and each automaton has at least one SCC.
Altogether, we get |Φ1,C,K |, |Φ2,C,K | ∈ O(S · |δ|+ |φ| · |δ|+C ·K · |δ|) = O

(
(S+ |φ|+C ·K) · |δ|

)
and |Φ3,C,K | ∈ O(|δ|+ |φ| · |δ|+ C ·K · |δ|) = O

(
(|φ|+ C ·K) · |δ|

)
. Note that the formula

Φ3,C,K is asymptotically shorter than Φ1,C,K and Φ2,C,K , but it contains an additional
quantifier alternation.

3.5 Optimizations of formulas
Finally, we mention three simple optimizations of the formula construction, which are always
applied in the rest of the paper.

The first optimization is based on the fact that every cycle is completely included in the
transition set δS of some SCC S. Hence, all transitions t that do not lead between states of
the same SCC can be completely ignored during the formula construction. The acceptance
marks on such a transition t do not affect the acceptance of any run as t appears at most
once on each run. For these transitions t, we can define nm(t) such that mks(nm(t)) = ∅.

The second optimization is specific for Φ3,C,K . In the construction of cycle3(e⃗), we replace
the subformula

∨
t∈δ et enforcing the nonemptiness of Te⃗ by cycle2(e⃗). This modification

prolongs the formula, but it does not change the overall semantics of cycle3(e⃗) and our
preliminary experiments showed that QBF solvers can often solve the modified formula
Φ3,C,K faster.

The third optimization extends Φj,C,K into the conjunction

Φj,C,K ∧
∧

c∈{1,2,...,C}

∧
k∈NK

(¬ic,k ∨ ¬fc,k).

The added part says that no cube contains both Inf k and Fin k for any k. A cube with both
Inf k and Fin k would be useless as it cannot be satisfied by any run.



T. Schwarzová, J. Strejček, and J. Major 23:11

Algorithm 1 The single-level reduction procedure.

Procedure SingleLevelReduction(A, j, reduceC )
Input: TELA A = (Q,M,Σ, δ, qI , φ), j ∈ {1, 2, 3}, reduceC ∈ {true, false}
Output: an equivalent TELA with the same structure as A and with at most as

many acceptance marks as in A

CA ← the number of cubes in the formula φ transformed to DNF
KA ← the number of acceptance marks in A
C ← CA
K ← KA
while K > 1 ∧ satisfiable(Φj,C,K−1) do K ← K−1
if K = 1 then

if all cycles in A are accepting then // check the condition true
return (Q, ∅,Σ, δ′, qI , true) where δ′ is δ with all marks removed

if all cycles in A are rejecting then // check the condition false
return (Q, ∅,Σ, δ′, qI , false) where δ′ is δ with all marks removed

if reduceC then // reduction of the number of cubes
while C > 1 ∧ satisfiable(Φj,C−1,K) do C ← C−1

if K < KA ∨ C < CA then
compute nm and ψ from a model of Φj,C,K
return (Q,NK ,Σ,nm(δ), qI , ψ)

return A

We have also made some experiments with breaking the symmetries in the formula models.
In particular, we have ordered new acceptance marks by their placements on transitions
and we have ordered the cubes by their content. As the effect of these modifications was
inconclusive, we do not describe it here.

4 Reduction algorithm

This section explains how we use the QBF constructed in the previous section to reduce the
number of acceptance marks in TELA. First, we describe a single-level reduction, which uses
only a single kind of QBF. More precisely, we talk about level 1, level 2, or level 3 reduction
when Φ1,C,K , Φ2,C,K , or Φ3,C,K is used, respectively.

The reduction procedure called SingleLevelReduction is given in Algorithm 1. Besides
the reduction of acceptance marks, the algorithm also reduces the number of cubes in the
acceptance formula if the last argument reduceC is set to true. The first while loop gradually
decreases the number of marks until K = 1 is reached or the QBF solver behind the function
satisfiable(Φj,C,K−1) fails to reduce the number of marks, i.e., it claims unsatisfiability of
the formula or it runs out of resources. If the loop ends with K = 1, we check whether an
acceptance condition without any mark (i.e., true or false) can be used. These checks are
based on an inspection of the automaton rather than on QBF solving. If some of the checks
succeeds, we return the corresponding automaton without any acceptance mark. Otherwise,
if reduceC is set to true then the procedure gradually reduces the number of cubes in the
second while loop. Note that the loop never checks for acceptance condition with 0 cubes as
it is equivalent to false and this case was treated above. Finally, if the procedure succeeds to
reduce the number of marks or cubes, it constructs the modified automaton. Otherwise, it
returns the original automaton.
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automaton A

0a
1
b

2
3 c

3
d

(Fin 1 ∧ Inf 2 ) ∨ (Inf 0 ∧ Fin 1 ∧ Inf 3 )

SingleLevelReduction(A, 1, true)

0a
2
b

0
2 c

1
d

Inf 0 ∧ Fin 1 ∧ Inf 2

SingleLevelReduction(A, 2, true)

a
0
b

0 c
1
d

Inf 0 ∧ Fin 1

SingleLevelReduction(A, 3, true)

0a
0
b

c

d

Fin 0

Figure 3 An example illustrating the results of the three single-level reductions: an input
automaton A and the automata obtained by reducing it with level 1, level 2, and level 3.

The algorithm can be reformulated to use an incremental approach instead of building
a new formula in each iteration of the while loops. The incremental version of the first
while loop builds the formula Φ = Φj,C,K−1 only in the first iteration. In each subsequent
iteration, it extends this formula with a condition saying that one more mark is not used
in the automaton, i.e., the mark is neither on edges, nor in the acceptance formula. For
example, if we want to say that the mark k ∈ NK is not used, we replace Φ by

Φ ∧
∧
t∈δ

¬nt,k ∧
∧

c∈{1,2,...C}

(¬ic,k ∧ ¬fc,k).

The second while loop can be transformed to an incremental version similarly. The in-
cremental approach benefits from the fact that some QBF solvers can decide an extended
formula faster as they reuse the information computed when solving the original formula.

Figure 3 shows a very simple automaton A and the three automata produced by calls
of SingleLevelReduction(A, j, true) for j ∈ {1, 2, 3}. The figure clearly illustrates that the
higher level of reduction we use, the more acceptance marks can be reduced. On the other
side, lower levels are typically faster. The best results can be often achieved by combining
reductions of all levels. We call this approach multi-level reduction. It is a straightforward
sequential application of the three levels, see Algorithm 2.

5 Implementation

The presented reduction algorithms have been implemented in a tool called telatko. It is
implemented in Python 3 and uses the Spot library [9] for automata parsing and manipulation,
and the theorem prover Z3 [8] to solve the satisfiability of QBF transformed to prenex (non-
CNF) normal form. Our tool is available at

https://gitlab.fi.muni.cz/xschwar3/telatko

under the GNU GPLv3 license. The tool can be executed by the command

telatko -F <input.hoa> [-L j] [-C] [-I] [-T t] [-O <output.hoa>]

https://gitlab.fi.muni.cz/xschwar3/telatko
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Algorithm 2 The multi-level reduction procedure.

Procedure MultiLevelReduction(A, reduceC )
Input: TELA A = (Q,M,Σ, δ, qI , φ) and reduceC ∈ {true, false}
Output: an equivalent TELA with the same structure as A and with at most as

many acceptance marks as in A

A ← SingleLevelReduction(A, 1, false)
A ← SingleLevelReduction(A, 2, false)
A ← SingleLevelReduction(A, 3, reduceC )
return A

where
-F <input.hoa> specifies the file with the input automaton in HOA format [3],
-L j specifies the reduction level; if omitted, the multi-level reduction is used,
-C switches on the reduction of the number of cubes after the number of marks is reduced

(it corresponds to reduceC = true in Algorithms 1 and 2),
-I switches on the incremental version,
-T t sets the timeout for each QBF query to t seconds (the default value is 50 seconds),
-O <output.hoa> specifies the output file; if omitted, the produced automaton is sent to

stdout in the HOA format.

If some call of the function satisfiable(Φj,C,K−1) in the first while loop of Algorithm 1
does not return true, then the name of the output automaton (included in the generated
HOA) encodes the reason for it. In the case of a single level reduction, the name has the
form Lj_k_X, where j is the considered level, k = K − 1 is the number of acceptance marks
considered by the formula, X is either U if the formula is unsatisfiable or T if the solver did
not decide within the time limit. If X is T, a longer timeout may lead to further reductions.
If the multi-level reduction is used, the automaton name contains the information from
all levels. For example, the name ‘L1_5_U L2_3_U L3_1_T’ means that level 1 reduced the
number of marks to 6 (reduction to 5 is impossible on this level), level 2 reduced it to 4, and
level 3 to 2 as the QBF solver did not finish in the time limit when trying to reduce the
number of marks to 1.

6 Experimental evaluation

To evaluate our reduction technique, we applied telatko to automata produced by the
following process. We started with two sets of LTL formulas.

One set contains all LTL formulas from literature that are provided by the tool genltl
of the Spot library [9] 2.10.4. For parameterized formula patterns, we consider instances
for all combinations of parameter values from 1 to 4.
The second set consists of 400 random LTL formulas with 4 atomic propositions. These
formulas were generated by the tool randltl of the Spot library.

On both these sets, we applied the tool ltlfilt of the Spot library to simplify the formulas
and remove duplicates and formulas equivalent to true and false. After these steps, we
had 348 LTL formulas from literature and 335 random formulas. Formulas from both
sets have been translated to nondeterministic TELA by two state-of-the-art translators,
namely ltl2tgba (used with option -G to get generic TELA) from the Spot library [9]
and ltl3tela [15], and to deterministic TELA by ltl3tela with option -D1 and by two
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Table 1 Considered translators and the numbers of fails and successfully constructed automata
with at most 1 mark and with at least 2 marks for each translator and set of formulas.

348 formulas from literature 335 random formulas

automata with automata with

translator (version)web fails at most
1 mark

at least
2 marks fails at most

1 mark
at least

2 marks

ltl2tgba -G (2.10.4)1 0 278 70 0 320 15
ltl3tela (2.2.0)2 18 239 91 0 286 49
ltl3tela -D1 (2.2.0)2 20 247 81 0 291 44
ltl2dela (21.0)3 5 214 129 0 246 89
ltl2dgra (21.0)3 12 102 234 0 130 205

state-of-the-art translators from the Owl library [14], namely ltl2dela (known as Delag) [16]
and ltl2dgra (known as Rabinizer 4) [13]. Some translators failed on some formulas: they
usually reached a timeout of 60 seconds or produced an automaton that cannot be parsed
by the Spot library. Further, we have removed automata with 0 or 1 acceptance mark as
there is a little point in reducing these. Table 1 shows the exact versions of the translators.
For each translator and each set of formulas, the table also provides the number of fails, the
number of produced automata with less than two marks, and the number of automata with
at least two marks. The numbers of automata with at least two marks are typeset in bold as
these automata are actually used for the experimental evaluation of our reduction technique.

To all automata, we have applied all single-level reductions and the multi-level reduction,
always with incremental approach and without reducing the number of cubes. We do not
reduce the number of cubes as our primary aim is to reduce the number of acceptance
marks. The timeout for each QBF query was set to 30 seconds. All reductions have been
performed by the tool telatko built with Spot library version 2.10.4 and Z3 version 4.8.15.
The experiments have been run on a computer with Intel® Core™ i7-8700 processor and
32 GB of memory running Ubuntu 20.04.4. We used the tool autcross of the Spot library
to get the statistics of the reduced automata and the running times.

For each automata set identified by the translator and the set of formulas, Table 2 shows
the cumulative numbers of marks in the input automata set and after each reduction, together
with the reduction ratio and total time spent by the considered reduction. The column solver
timeout shows the number of automata for which the last query to QBF solver did not finish
within the 30 seconds limit. The timeout of the last QBF query means that the automaton
may be potentially further reduced if a longer time limit is used. One can observe that a
higher level sometimes achieves a smaller reduction than a lower level (e.g., compare level 1
and level 2 for ltl3tela on automata coming from formulas from literature). This is caused
by the QBF solver timeouts occurring earlier as formulas constructed by the higher level are
more complex. The automata sets produced by ltl2dela and ltl2dgra on formulas from
literature do not contain any automaton where level 2 or level 3 achieves a better result than
level 1. However, all levels contribute to the reductions in the multi-level setting.

1 https://spot.lrde.epita.fr
2 https://github.com/jurajmajor/ltl3tela
3 https://owl.model.in.tum.de/

https://spot.lrde.epita.fr
https://github.com/jurajmajor/ltl3tela
https://owl.model.in.tum.de/
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Table 2 For each automata set identified by the translator and the set of formulas, the table
provides the cumulative number of acceptance marks before any reduction (in the box), after
reduction of individual levels and after multi-level reduction (column marks). The column reduction
shows the percentage of saved acceptance marks and time reports the cumulative reduction time in
seconds. The column solver timeout indicates the number of instances where the last call to the
QBF solver timed out.

reduction of marks in automata
from formulas from literature

reduction of marks in automata
from random formulas

translator reduction
level marks reduction

[%]
time
[s]

solver
timeout marks reduction

[%]
time
[s]

solver
timeout

ltl2tgba -G 198 marks in 70 automata 32 marks in 15 automata
1 198 0.0 48.5 0 32 0.0 8.4 0
2 198 0.0 65.2 0 31 3.1 9.4 0
3 189 4.5 409.8 7 26 18.8 43.9 1

multi 189 4.5 427.6 7 26 18.8 44.9 1

ltl3tela 348 marks in 91 automata 120 marks in 49 automata
1 332 4.6 530.3 13 101 15.8 32.4 0
2 334 4.0 551.0 14 100 16.7 32.3 0
3 326 6.3 698.5 18 95 20.8 66.9 1

multi 319 8.3 1619.2 18 95 20.8 73.4 1

ltl3tela -D1 272 marks in 81 automata 97 marks in 44 automata
1 272 0.0 383.1 9 95 2.1 23.8 0
2 272 0.0 386.6 10 95 2.1 24.6 0
3 272 0.0 950.2 14 92 5.2 54.1 0

multi 272 0.0 1659.6 16 92 5.2 67.2 1

ltl2dela 523 marks in 129 automata 234 marks in 89 automata
1 386 26.2 811.4 18 154 34.2 89.0 0
2 391 25.2 1071.6 19 153 34.6 123.6 0
3 397 24.1 7326.8 26 149 36.3 172.7 2

multi 378 27.7 9186.0 24 148 36.8 219.8 2

ltl2dgra 882 marks in 234 automata 491 marks in 205 automata
1 544 38.3 859.1 14 293 40.3 275.6 0
2 554 37.2 1073.5 17 280 43.0 283.9 0
3 553 37.3 1349.7 22 267 45.6 433.6 3

multi 535 39.3 2434.0 23 264 46.2 411.7 2
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Table 3 The effect of multi-level reduction on all considered automata constructed from formulas
from literature. A cell on coordinates (x, y) contains the number of automata that have been reduced
from x to y acceptance marks. If the cell contains a sum of two numbers, the latter represents the
number of automata where the attempt to reduce another mark has been unsuccessful due to a QBF
solver timeout.

ac
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m

ar
ks

af
te

r
th

e
re

du
ct

io
n 20–24 0+1

15–19 0+4 0+1
10–14 0+8 0+1 0

9 0 0 0 0
8 0+16 0+1 0 0 0
7 0 0+2 0 0+1 0 0
6 2+12 0+3 0 0+1 1 0 0
5 10+5 2 0 0+1 1 0 0 0
4 46+10 14 5+2 10 2+1 4 4 0+1 0
3 73+2 5+2 2 0 1 0 0 0+1 0 0
2 96+10 27 8+1 4 2 0 0+1 0 0 0 0
1 149 11 4 2 1 1 0 0 0 0 0
0 27 2 1 0 0 0 0 0 0 0 0

2 3 4 5 6 7 8 9 10–14 15–19 20–24
acceptance marks before the reduction

Table 4 The effect of multi-level reduction on all considered automata constructed from random
formulas. The meaning of each cell is the same as in Table 3.

ac
ce
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ce
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ar
ks

af
te

r
th

e
re

du
ct

io
n 5 0 0+1 0 0 0

4 0 2 0+1 0 0 1
3 11+1 8 2 0 0 1 0
2 107+3 29+1 22 1 1 0 0 0
1 188 10 9 0 0 0 0 0
0 3 0 0 0 0 0 0 0

2 3 4 5 6 7 8 9
acceptance marks before the reduction

Table 3 shows the effect of multi-level reduction to the number of acceptance marks in
individual automata constructed from formulas from literature. The table indicates that in
many cases only 1 or 2 marks can be saved. However, the achieved reduction is substantial
for some automata with a higher number of original acceptance marks. For example, in 26
cases, we have reduced 7 or more acceptance marks to only 4 or less. Table 4 shows the same
information for automata constructed from random formulas.

Figure 4 presents the time spent by multi-level reduction on individual automata of each
automata set. The charts show a pleasing finding that for every set, most automata are
reduced in under 5 seconds and the high cumulative running times are caused by a relatively
small number of complicated automata.
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Figure 4 Running times of telatko on individual automata of each automata set. Automata
sets constructed from formulas from literature are in the upper graph, automata sets constructed
from random formulas are in the lower graph. Each line shows the time (y axis) needed by telatko
to process the xth automaton of the set, where automata in the set are ordered by their processing
time.
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7 Conclusions

We have presented a method reducing the number of acceptance marks in transition-based
Emerson-Lei automata with use of QBF solving and without altering automata structure. We
have implemented the method in a tool called telatko. The current applications of the tool
are twofold. First, it can reduce the number of acceptance marks of a given TELA. Second, it
discloses how tools producing TELA are economical with acceptance marks. The presented
experimental results show that the tool can indeed reduce the number of acceptance marks in
automata produced by all considered state-of-the-art LTL to automata translators. Further,
it clearly shows that the translators of the Owl library are significantly less economical with
acceptance marks than the other two translators.

The reduction of acceptance marks is not the only application of the presented approach.
For example, it can be easily adapted to look for an equivalent automaton with the same
structure and an acceptance formula of a specific form (e.g., without any Finm atoms).
Even though the QBF queries can be time-consuming, in practice one can often find a good
trade-off between speed and efficiency by adjusting the formula precision and choosing a
reasonable timeout.
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Abstract
When using a QBF solver for solving application problems encoded to quantified Boolean formulas
(QBFs), mainly two things can potentially go wrong: (1) the solver could be buggy and return a
wrong result or (2) the encoding could be incorrect. To ensure the correctness of solvers, sophisticated
fuzzing and testing techniques have been presented. To ultimately trust a solving result, solvers
have to provide a proof certificate that can be independently checked. Much less attention, however,
has been paid to the question how to ensure the correctness of encodings.

The validation of QBF encodings is particularly challenging because of the variable dependencies
introduced by the quantifiers. In contrast to SAT, the solution of a true QBF is not simply a variable
assignment, but a winning strategy. For each existential variable x, a winning strategy provides a
function that defines how to set x based on the values of the universal variables that precede x in
the quantifier prefix. Winning strategies for false formulas are defined dually.

In this paper, we provide a tool for validating encodings using winning strategies and interactive
game play with a QBF solver. As the representation of winning strategies can get huge, we also
introduce validation based on partial winning strategies. Finally, we employ winning strategies for
testing if two different encodings of one problem have the same solutions.
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1 Introduction

Quantified Boolean formulas (QBFs) extend propositional formulas with universal and exist-
ential quantifiers over the Boolean variables [3], rendering their decision problem PSPACE-
complete. As many application problems from artificial intelligence and formal verification
have efficient QBF representations (see [16] for a survey) and as much progress has been
made in the development of QBF solving tools [13], QBFs provide an appealing framework
for solving such problems. In practice, however, obtaining correct and concise QBF encodings
can be complex and error-prone as currently hardly any support for testing and debugging
QBF encodings is available. The complexity of getting correct encodings comes on the one
hand from the fact, that QBFs provide only a low-level language operating on the bit level
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and on the other hand from their interactive nature resulting from the quantifier alternations.
The evaluation of a QBF can be seen as a two-player game between the existential and the
universal player, where the existential player’s goal is to satisfy the formula and the universal
player’s goal is to falsify the formula. Hence, models of true QBFs and counter-models of
false QBFs are also called their winning strategies.

A winning strategy is a set of Boolean functions that defines how to set existential
(universal) variables of a QBF to satisfy (falsify) a true (false) formula. A winning strategy
provides the solution of the encoded application problem like the plan of a planning problem
or the witness that no plan exists. Basically, winning strategies can be obtained in two forms:
(1) statically, in terms of serialized functions that map existential variables to universal
variables (or vice versa) [1], or (2) as interactive game play either with a QBF solver as
opponent or by proof rewriting [6]. In contrast to SAT, where a solution is simply a variable
assignment, the correctness of a winning strategy is challenging to validate, because of the
dependencies between the variables. To prove that a winning strategy in serialized form is
indeed a solution of a given QBF ϕ, a co-NP-hard problem has to be solved if ϕ is true, and
an NP-hard problem has to be solved otherwise. This check can be automated by using a
SAT solver. To show that a winning strategy is indeed a solution of an application problem,
mainly remains a manual task. It is even non-trivial to find out if two variants of a problem
encoding (e.g., a basic version and an optimization) share some common solutions.

We present a tool that supports the interactive testing of encodings based on serialized
winning strategies in terms of Boolean functions as well as on dynamic validation, i.e., playing
interactively against a QBF solver. We also propose a combination of both approaches for
scalable validation based on partial winning strategies. To automate the testing process of
an encoding, we implement a fuzz-testing approach for randomly exploring different parts of
the search space. Fuzz testing has been successfully employed for testing solvers [5], but not
for testing encodings. Finally, we present an approach to compare different variants of an
encoding. While it is in general not feasible to prove that two encodings are equivalent, our
tool supports testing if the two encodings share a common winning strategy. With a case
study, we illustrate how our tool can be used to evaluate and understand QBF encodings.

2 Preliminaries

We consider closed QBF formulas in prenex normal form, i.e., of the form Q1X1 · · · QnXn.ϕ,
where quantifiers Qi ∈ {∀, ∃}, Qi ̸= Qi+1, and Xi are disjoint sets of variables. The matrix
ϕ is a propositional formula over

⋃
Xi. A QBF ∀XΠ.ϕ is true iff both ∀X ′Π.ϕ[x/⊤] and

∀X ′Π.ϕ[x/⊥] are true where X ′ = X \ {x} and ϕ[x/t] is obtained from ϕ by replacing x by
truth constant t. A QBF ∃XΠ.ϕ is true iff ∃X ′Π.ϕ[x/⊤] or ∃X ′Π.ϕ[x/⊥] is true. Often,
the semantics of a QBF is also expressed as a two-player game: In the ith move, the values
of the variables in Xi are chosen by the existential player if Qi = ∃ and otherwise by the
universal player. If all variables are assigned and the formula evaluates to true (false), then
the existential (universal) player wins. A QBF is true (false) iff there is a winning strategy
for the existential (universal) player. Winning strategies can be represented in terms of
Skolem/Herbrand functions. A winning strategy for a true QBF Π.ϕ over existential variables
X is a set S = {fx | x ∈ X} of Skolem functions such that each fx is a Boolean function
over the universal variables preceding x in the prefix and ϕ[X/S] is valid. Dually, a winning
strategy for a false QBF Π.ϕ over universal variables Y is a set H = {fy | y ∈ Y } of Herbrand
functions such that fy is a Boolean function over the existential variables preceding y in the
prefix and ϕ[Y/H] is unsatisfiable.
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Figure 1 Validation workflow with SQval.

3 QBF Validation With Interactive Play

With our tool SQval (Scalable QBF Validator), we support the validation of QBF encodings
independent of any specific QBF application. The general workflow is shown in Figure 1.
The tool accepts both formulas in prenex conjunctive normal form (PCNF) and formulas in
prenex non-CNF format. Hence, the QDIMACS format for PCNF formulas and the QCIR
format [9] for prenex non-CNF formulas are supported.

3.1 Playing with Skolem/Herbrand Functions

Given a true QBF ∃X1∀Y1∃X2∀Y2 . . . ∃Xn∀Yn.ϕ which has the set S of Skolem functions as
one solution. These functions can be used to calculate the values of the existential variables
in Xi based on provided values of the universal variables Yj with j < i. As the variables of
X1 occur in the outermost quantifier block, they do not depend on any universal variables.
Therefore, their Skolem functions are constant and can immediately be provided. Then
the user has to enter the values for variables Y1. Alternatively, they can also be randomly
selected. Based on the values of the variables in Y1, the values of the variables in X2 are
calculated. This procedure is repeated until all variables are assigned a value and the matrix
ϕ evaluates to true. Evaluation of a false QBF works dually by using Herbrand functions.

There are solvers like Caqe [14] that construct Herbrand and Skolem functions during
the solving process and there are frameworks that retrospectively extract functions from
proofs produced by the solvers [11, 2, 4, 12]. Such functions allow to independently certify
the correctness of a solving result by using a SAT solver. Little information, however, is
provided on the correctness of the problem encoding. Here, we use the functions to “execute”
test cases and interpret the results in an interactive manner. In our interactive play, Skolem
functions automatically decide the moves of the existential player in the case of true instances.
For false instances, Herbrand functions provide the moves of the universal player.

The Herbrand and Skolem functions have to be precomputed and can be provided in the
AIGER format or as propositional formula in CNF format. In addition, encoding-specific
assertions can be provided to SQval as CNF formulas. These assertions are checked under
the full variable assignment at the end of the play. Such an assertion could be used, for
example, to check if some goal condition is met or if some invariants are not violated in the
game play. An example is given in the case study presented in Section 5.

The advantage of this method is the one-time cost of generating Skolem/Herbrand
functions. Their evaluation is computationally cheap, because only truth values need to be
propagated. However, even for simple problems, these functions can become very large and
producing such functions often considerably slows down the solvers, because powerful pre-
and inprocessing techniques have to be disabled. To overcome this drawback, we present an
alternative approach in the following.

SAT 2023
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3.2 Playing with a QBF Solver
Given a true QBF of the form Φ1 = ∃X1∀Y1Π.ϕ1 or a false QBF of the form Φ2 = ∀Y2∃X2Π.ϕ2,
most QBF solvers are able to provide assignments σX1 and σY2 such that Φ1 evaluates to
true under σX1 and Φ2 evaluates to false under σY2 . If we apply σX1 on Φ1, we obtain the
true QBF Φ′

1 = ∀Y1.ϕ′. As this QBF has to be true for all assignments of variables Y1, we
pick now an interesting assignment and apply it on Φ′

1 to obtain the true QBF Φ′′
1 which

starts with an existential quantifier block (or it has become the empty formula). Now we
can ask a QBF solver for a satisfying assignment of these outermost variables and proceed in
this way until all variables are finally assigned. Similarly, we can interactively evaluate Φ2.

Based on this approach, we can replace large Skolem/Herbrand functions and avoid slower
QBF solvers. The disadvantages of the approach is that a linear number of QBF problems
must be solved: one for each round of validation.

3.3 Hybrid Validation
For many instances, the two interactive play approaches presented above are either limited
by the size of the Skolem/Herbrand functions or by the costs of the QBF solver calls. As a
solution, we suggest combining both approaches. First, we precompute Skolem/Herbrand
functions only for the variables in the first k quantifier blocks of a QBF Φ. Based on these
functions, we calculate the truth values of the variables which they define, and replace them
respectively in Φ. Now we obtain a QBF Φ′ with k quantifier alternations less and fewer
variables. Then we proceed with evaluating Φ′ by playing against a QBF solver.

The certification framework QBFcert [11] supports the generation of partial winning
strategies, so we can use the respective options to obtain the functions of the variables from
the first k quantifier blocks. We also provide an extractor for obtaining partial winning
strategies from a full winning strategy by specifying the variables that should be considered.
The partial winning strategies remain smaller than full winning strategies and we can take
advantage of faster non-certifying solvers for the validation. Note that, one can generate
assignments in the outer-most quantifier block with almost any non-certifying solver. In
case the certifying solvers are too slow, one would use such an assignment to speed up the
validation. In Section 5 we will demonstrate the memory/time tradeoff with partial strategies.

4 Common Winning Strategies of Two Encodings

Often, the same problem can be encoded in many ways resulting in formulas with different
winning strategies. Consider for example two encodings of a two-player game for which we
have a basic reference encoding that is very hard to solve, but which is most likely correct.
Further, there is an optimized encoding which can be solved faster and which only has
winning strategies that must also be solutions to the basic encoding. Therefore, we call
the basic encoding more relaxed than the optimized encoding. To increase the trust in the
optimized encoding, we want to validate if a found winning strategy is indeed a solution of
the basic encoding. To this end, we want to take a winning strategy of one formula and
enrich the other formula with this encoding. If this enriched formula has the same truth
value, then we can conclude that the winning strategy of the first encoding is also a winning
strategy of the second encoding. As two encodings might be defined over different variables,
we need to introduce a set of common variables C that occur in both formulas (in practice
some renaming of the variables not occurring in C might be necessary to avoid name clashes).
This validation approach also works both for true and false formulas.
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We first define a subsumption check between two true QBF formulas ϕ1, ϕ2. For this
purpose, we use certificates, which are essentially winning strategies.

▶ Definition 1. Let ϕ1 and ϕ2 be two true QBFs with common variables C. We define ϕ1
solution-subsumes ϕ2 (written as ϕ1 ⊑ ϕ2) iff for all winning strategies S for ϕ1, also ϕ2[S/C]
is true.

We can only test ϕ1 ⊑ ϕ2 for particular instances of S. To show the subsumption of ϕ1
to ϕ2, we need to show that a given strategy S of ϕ1 is also a strategy for ϕ2. Recall that a
strategy is simply a function from universal variables to existential variables. As long as the
same function works for ϕ2, the subsumption relation is not refuted.

To show that, we first rewrite S to S′ to avoid common name conflicts with ϕ2. While
rewriting S to S′, we leave the common variables untouched (which are part of the winning
strategy we consider). For example, in the game instances in the case study 5, we do not
rewrite black player and white player moves. Finally, we create a new formula S′ ∧ ϕ2. We
claim that the new formula is True iff S′ is a strategy for ϕ2. Otherwise, checking this single
S is sufficient to refute solution-subsumption, which is useful for bug detection. The S′

formula essentially forces the existential variables given values to the universal variables.
Since the QBF solver has to satisfy both S′ and ϕ2 which share common variables, the
assignments to the common variables are always the same. In our game instances, the black
moves for the opponent’s white moves are forced by the rewritten strategy S′.

While for true formulas, the (possibly modified) winning strategy is just conjunctively
added to the matrix, for false formulas it is additionally necessary to change the quantifier type
of the variables defined by the winning strategy to existential. If the formula remains false,
then the winning strategy of the first formula is also a winning strategy of the second formula.
Since checking for common solutions has similar memory problems as the winning strategies
for the interactive play presented in Section 3, we also support checking solution-subsumption
with partial winning strategies. Our tool is completely agnostic to the completeness of a
winning strategy. Examples are shown in the next section.

5 Case Study

We provide an open source implementation of validation and winning strategy equivalence.
All benchmarks and data are available online.1 To obtain a winning strategy, our tool
SQval (Scalable QBF Validator) first generates a proof trace in QRP-format using the solver
DepQBF [10]. Then it extracts the winning strategy using the QRPcert framework [11]. For
interactive plays, it uses solver DepQBF for QDIMACS instances and solver Quabs [8] for
QCIR instances. All computations for the experiments are run on a cluster.2

As a case study, we conducted an experiment with two QBF encodings for positional
games. In particular, we compare two encodings for the game Hex: Lifted Neighbour-Based
(LN) and Stateless Neighbour-based (SN) in [15]. In the Hex game, players (black, white)
take turns to occupy empty positions on a NxN board with hexagonal cells. The player
who connects appropriate opposite borders with a path of pegs of their own color wins the
game. To demonstrate validation and equivalence checking, we first consider a small Hex

1 https://github.com/irfansha/SQval
2 http://www.cscaa.dk/grendel-s, each problem uses one core on a Huawei FusionServer Pro V1288H

V5 server, with 384 GB main memory and 48 cores of 3.0 GHz (Intel Xeon Gold 6248R).
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(a) Hein puzzle 12, before Hex preprocessing.

e 1 2 3 0
a 4 5 6 0
e 7 8 9 0
a 10 11 12 0
e 13 14 15 0
a 16 17 18 0
e 19 20 21 0

(b) Move variables in all Hein-12 QBF instances.

Table 1 Number of valid runs/ Number of invalid runs for each instance and each assertion.

static dynamic hybrid

Inst: / Assert: GA LPA LBA GA LPA LBA GA LPA LBA
LN-Hein-12 100/0 100/0 100/0 100/0 100/0 100/0 100/0 100/0 100/0
SN-Hein-12 100/0 100/0 100/0 100/0 100/0 100/0 100/0 100/0 100/0
SN-R-Hein-12 100/0 100/0 91/9 100/0 100/0 84/16 100/0 100/0 84/16

instance, Hein-12 (see Figure 2a), due to Piet Hein [7]. We first preprocess the instance as in
[15], resulting in 8 open positions. Using the preprocessed instance, we generate three QBF
instances for a winning strategy of depth 7:

LN-Hein-12 : Instance generated with LN, both players can only occupy empty positions.
SN-Hein-12 : Instance generated with SN, black player can only occupy empty positions.
SN-R-Hein-12 : Instance generated with SN with relaxed constraints for optimization, in
which the black player is allowed to occupy previous black positions.

All three QBF instances solve the Hex instance, and their first 7 layers (cf. 2b) correspond
to the moves taken, i.e., variables encoding 1 out of max 8 open positions (3 bits) per layer.

5.1 Validating Hein-12 Instances

The Hein-12 puzzle indeed has a winning strategy at depth 7, so all 3 instances are true
formulas. For validation, we propose three assertions that are relevant to these encodings.

Goal-Assertion (GA): “Goal is reached at the end of the play”. For the LN instance,
satisfying the goal constraint is specified by the assertion clause “314 0”.
Legal-Play-Assertion (LPA): “Black does not play on white positions”. We generate
inequality constraints between black moves and preceding white moves as a CNF.
Legal-Black-Assertion (LBA): “Black does not play on black positions”. We generate
inequality constraints between different black moves as a CNF.

GA and LPA should hold for all instances, whereas LBA should only hold for the LN-
Hein-12 and SN-Hein-12 instances. We use all 3 types of QBF validation for checking these 3
assertions on all 3 encodings. We run 100 iterations with a random generator with seeds
ranging from 0-99. For hybrid validation, we use partial certificates up to depth 3 and
validate the rest with a QBF solver. In Table 1, we present for each case the number of
passing/failing runs. Indeed, both static, dynamic, and hybrid validation show some runs
revealing the failure of assertion LBA for SN-R-hein-12, while all other tests pass. For
Hein-12, all three validation techniques take a few seconds and a few MB for each iteration.
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Table 2 Listing the result of the subsumption tests between instances for Q1 ⊑ Q2.

Q1: / Q2: LN-Hein-12 SN-Hein-12 SN-R-Hein-12
LN-Hein-12 T T T
SN-Hein-12 T T T
SN-R-Hein-12 F F T

5.2 Equivalence Check for Hein-12
Validating GA and LPA increases the confidence in the correctness of the previous encodings.
Additionally, we expect that LN-Hein-12 and SN-Hein-12 have the same winning strategies,
since in both encodings, the black player can only play on open positions, and the same
moves lead to equivalent states. This cannot be checked with our testing or fuzzing approach.
Instead, we apply our subsumption check on all combinations of the 3 encodings. Table 2
shows the results from our subsumption check. Indeed, LN-Hein-12 and SN-Hein-12 appear
to be equivalent (on the winning strategy returned by the solver). However, we found a
strategy for SN-R that is not valid for SN and LN. Indeed, SN-R can play on already occupied
black positions, which leads to invalid strategies for the LN and SN encodings. On the other
hand, every move played in LN or SN is also valid in SN-R, resulting in subsumption in the
other direction. These results are consistent with the intention behind the encodings.

5.3 Validating Larger Hex Instances With Partial Certificates
The Hein-12 instance has only 8 open positions after preprocessing, and we checked only
for depth 7. On this small example, all 3 validation approaches worked equally well. Since
the certificates remain small, the subsumption checks can be done within a few seconds.
However, certificates grow exponentially in size with the number of variables in each layer and
alternation depth. To show the difference between the validation strategies, we experiment
with a harder Hex instance, Hein-09, which has 10 open positions after preprocessing, and
we generate instances with a winning strategy of depth 9.

In Table 3, we observe that the full certificates in AAG format (Ascii And-Inverter Graph)
are quite large, in the range of 532.7 MB – 7.8 GB. Note that the partial certificates are much
smaller, but increasing with the level. Table 4 shows the resources required for generating
the QRP traces for different settings, and for extracting certificates from the traces.

To show the difference between the 3 validation approaches on the harder instance Hein-09,
we consider assertion GA for validation. From Table 5, we observe that static validation
with full certificates for LN is infeasible. While we can validate the other encodings using
full certificates, it takes up to 20 GB. Dynamic validation performs well on SN and SN-R,
while it takes 1203 seconds for validating a single iteration of an LN instance. Note that

Table 3 Size in Bytes of (partial) certificates in AAG format, for each encoding instance with
increasing levels of partial certificates. QRP trace is the size of the trace generated by solver
DepQBF.

Enc: / Cert: Full L1 L3 L5 L7 L9 QRP trace

LN-Hein-09 7.8G 108 1.1K 21.8K 434K 8.2M 6.8G
SN-Hein-09 641.6M 96 1.1K 23.4K 437.3K 8.2M 344M
SN-R-Hein-09 532.7M 96 1.2K 24.2K 461.1K 8.7M 394.5M

SAT 2023
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Table 4 Time and Memory used for generating the QRP trace and extracting certificates from it.

Peak Memory (MB) Time Taken (Sec)

Enc: / Cert: QRP trace Full L3 L9 QRP trace Full L3 L9

LN-Hein-09 13470 10390 7580 9750 1165 261 59 233
SN-Hein-09 615.46 1.54 1.54 1.54 54 20 21 15
SN-R-Hein-09 535.9 1.54 1.54 1.54 54 13 4 15

Table 5 Peak Memory (PM) in MB and Time Taken (TT) in seconds for assertion GA (seed 0).

static dynamic hybrid-L3

Inst: PM TT PM TT PM TT
LN-Hein-09 – TO 64.1 1203 1.54 1.6
SN-Hein-09 20.08K 2100 1.54 9.4 1.53 0.4
SN-R-Hein-09 18.35K 1226 1.53 5.4 1.53 0.4

to run 100 iterations with different seeds, we would need approximately 100*1203 seconds.
Hybrid validation performs clearly the best in both time and memory, never exceeding a
couple of seconds or 2 MB. Of course, generating a partial certificate via QRP trace is still
the bottleneck for hybrid validation. However, we only pay a one-time cost for generating
partial certificates, which can be used any number of times for validation or subsumption
checks.

We will now experiment with subsumption checking, using full or partial certificates. For
Hein-09 the QBF instances appended with a certificate can exceed 15 GB in CNF. Note that,
we only need partial certificates with all existential black move variables, i.e., L9 in Table
3. These never exceed 10 MB (in AAG format), so a complete subsumption check with L9
partial certificates only is feasible. We compute subsumption checks on all combinations of 3
encodings, i.e., for each combination we append one QBF with the certificate of the other,
and use a QBF solver. From Table 6, it is clear that subsumption with full certificates blows
up, often exceeding 50 GB of memory. In fact, we could not generate the appended instance
with LN certificates since the instances themselves can exceed 20 GB.

On the other hand, with L9 certificates, we could check non-subsumption for SN-R with
SN and LN, taking 446 and 84 seconds, respectively. DepQBF runs out of time when trying to
prove the subsumption cases, but never uses more than 2 GB for solving with L9 certificates.
Intuitively, proving non-subsumption is indeed easier than proving subsumption. One could
try to use preprocessors, to speed up the subsumption checks for L9 certificates, but full
certificate subsumption would still be out of reach.

Table 6 Peak Memory in GB during subsumption checks between Hein-09 instances.

LN-Hein-09 SN-Hein-09 SN-R-Hein-09

Inst: Full L9 Full L9 Full L9
LN-Hein-09 - 1.53 - 1.57 - 1.57
SN-Hein-09 63.7 1.53 63.7 1.6 63.7 1.6
SN-R-Hein-09 50.74 1.6 50.78 1.6 50.8 1.69
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6 Conclusion and Future Work

In this paper, we proposed validation techniques with winning strategies and interactive play
with a QBF solver. For scalable validation, we proposed using partial winning strategies for
outer layers and interactive play for deeper layers. We extended the idea of validation to
solution-equivalence of encodings that have some common winning strategy. To evaluate
various techniques proposed, we conducted a case study on 2-player game encodings for
the game Hex. We showed that with the use of winning strategies, one can increase the
confidence of encoding correctness. In the most scalable approach, generating QRP traces
remains the bottleneck, as solvers generate complete traces. While checking solver correctness
requires complete traces, partial traces/certificates are sufficient for encoding validation. One
future research direction would be to allow QBF solvers to generate partial traces efficiently.
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Abstract
Dynamical solvers for combinatorial optimization are usually based on 2nd degree polynomial
interactions, such as the Ising model. These exhibit high success for problems that map naturally to
their formulation. However, SAT requires higher degree of interactions. As such, these quadratic
dynamical solvers (QDS) have shown poor solution quality due to excessive auxiliary variables and
the resulting increase in search-space complexity. Thus recently, a series of cubic dynamical solver
(CDS) models have been proposed for SAT and other problems. We show that such problem-agnostic
CDS models still perform poorly on moderate to large problems, thus motivating the need to utilize
SAT-specific heuristics. With this insight, our contributions can be summarized into three points.
First, we demonstrate that existing make-only heuristics perform poorly on scale-free, industrial-like
problems when integrated into CDS. This motivates us to utilize break counts as well. Second,
we derive a relationship between make/break and the CDS formulation to efficiently recover break
counts. Finally, we utilize this relationship to propose a new make/break heuristic and combine it
with a state-of-the-art CDS which is projected to solve SAT problems several orders of magnitude
faster than existing software solvers.

2012 ACM Subject Classification Mathematics of computing → Probabilistic algorithms; Computer
systems organization → Analog computers
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Supplementary Material InteractiveResource (Experimental data, benchmarks and solver infrastruc-
ture): https://ising.ece.rochester.edu/sat

1 Introduction

The slowdown of general purpose computing has given rise to novel architectures to solve NP-
Hard problems. One such approach is to go beyond the von Neumann paradigm and leverage
systems whose evolution under physical laws carries out certain type of computation efficiently.
This approach has shown potential for success at least in combinatorial optimization problems.
In this regard, most of the literature has focused on quantum computing: specifically on
Quantum Annealing (QA) [12, 21] and Adiabatic Quantum Computing (AQC) [2]. Recently,
another non-von Neumann approach: Ising machines, has been gaining traction. The state-
of-the-art Ising machines work completely in the classical regime relying on extremely fast
dynamics of the system. Hence, these are less sensitive to noise when compared to quantum
computers. Some notable examples are using coupled oscillators [52], capacitors in a resistive
network [1, 46,57], and modulated pulses of light [31].
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These approaches have shown extraordinary performance on the weighted MaxCut
problem when compared to software based approaches [1, 27,46]. However, applications to
SAT have been less successful. This is due to ① the lack of support for super-quadratic
interactions; and ② the failure to leverage problem-specific information.

In this work, we examine and alleviate these shortcomings so as to revive the fast solution-
finding capabilities of Ising machines. We focus on the Ising model of computation, both due
to its successful implementation as fast dynamical hardware accelerators [1, 31,32,52] and
as algorithms [27]. We limit ourselves to 3-SAT due to problem reducibility and simplicity
of discussion. We will specifically base our analysis using simulations of an Ising machine
proposed recently [57], as it represents a near-term achievable piece of hardware.

The novel contributions of this work can be summarized into three points:
1. Demonstrating the shortcomings of previous super-quadratic solvers and heuristic pro-

posals on uniform random and scale-free problems.
2. Deriving a relation between cubic dynamical formulations and the make/break counts of

variables in a 3-SAT formula.
3. Proposing novel make/break heuristics by leveraging the cubic formulation and demonstrat-

ing their viability by comparing a simulated dynamics-based solver against state-of-the-art
software SAT solvers.

The rest of the paper is organized as follows. Section 2 provides a background on the
Ising model and related work. Section 3 introduces a cubic formulation for 3-SAT and
demonstrates the shortcomings of problem-agnostic dynamical solvers. Building on this
insight, Section 4 demonstrates and analyzes the inadequacy of existing make-only heuristics
in solving scale-free problems. This motivates us to also utilize break counts. We then derive
a relationship that enable us to easily recover break counts from the cubic formulation itself.
We utilize this relationship to propose a new heuristic using both makes and breaks. In
Section 5, we combine this heuristic with a state-of-the-art cubic dynamical system and
compare it against existing CDCL and SLS solvers. Finally, we conclude our findings in
Section 6 as well as propose future directions for research.

2 Background

2.1 Preliminaries
When discussing SAT formulas, we use the notation introduced in “The Handbook of
Satisfiability” [13]. Unless otherwise specified, all problems discussed are in 3-SAT form.
N and M refer to the number of variables and clauses respectively. xn ∈ {0, 1} is used to
denote an arbitrary variable, and a ∈ {0, 1}N is the full assignment vector. Uniform and
scale-free problems used for testing are generated using the methodology described in a work
by Ansótegui et al. [4, 5].

2.2 Quadratic Models: Ising and QUBO
The Ising model was originally formulated by Wilhelm Lenz and solved in a simplified form
by his student Ernst Ising [38]. It describes a system of magnetic spins (si), expressed in one
dimension. Each spin takes the values, si = ±1. Each pair of spins (si, sj) is “coupled” with
some coefficient Jij . An external field hi can also exist, which imposes some linear coefficient
to the spins. The overall energy of an N -spin system is expressed via the Hamiltonian H:

H(s, J, h) = −
N∑

i<j

Jijsisj −
N∑
i

hisi = −sT Js − hT s (1)
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An Ising system will seek a state s such that H(s) is minimized. Hence, Jij > 0 implies spin
affinity, known as ferromagnetism: si will tend to equal sj . Jij < 0 implies spin repulsion,
known as antiferromagnetism: si will tend to equal −sj .

When referring to Ising formulation parameters, s describes the complete spin state
vector, J the complete coupling matrix. Subscripts will be added to indicate a single element,
for instance si or Jij . A state vector s∗ for which H(s∗) = 0 is referred to as a ground state of
H. We can express any given state vector for a SAT encoded Hamiltonian as an assignment
to the original CNF problem, where si = 1 → xi, and si = −1 → x̄i.

Another equivalent formulation is the Quadratic Unconstrained Binary Optimization
(QUBO) form, where variables xi take values in {0, 1}. An Ising formula can be trivially
transformed into a QUBO formula using the following replacement rule for spins:

s = 2x − 1 (2)

Formulating SAT as a QUBO problem is cleaner than its equivalent Ising formulation. Hence,
in our discussions, we will use QUBO formulas, where xi = 1 indicates “true” and xi = 0
indicates “false”, and a ∈ {0, 1}N denotes the variable assignment vector. For convenience,
we will refer to a dynamics-based QUBO/Ising solver as a quadratic dynamical solver (QDS).
A QDS can be implemented in a wide variety of mediums [31,32,52], but we will focus on
a CMOS-compatible hardware proposed by Afoakwa et al. [1] called Bistable Resistively-
coupled Ising Machine (BRIM). There are some compelling reasons to use BRIM as the
baseline for comparison:
1. CMOS compatibility: Unlike quantum systems and many other Ising machines, BRIM

is electronic-based and can be fabricated using today’s CMOS technology. This allows
for easier extension of its design and integration with other heuristics to improve its
performance. The proposed design is also more feasible and energy efficient in the near
term as discussed in previous work [1].

2. All-to-all connectivity: Many Ising machine implementations have limited connectivity
between spins which greatly limits its true capacity. To solve problems on such machines,
one needs to transform the input graph into another (much bigger) graph that the
hardware can map; a process called embedding. Embedding is NP-Hard in itself [20, 51].
BRIM supports all-to-all connectivity and thus, doesn’t suffer from this problem.

3. Extremely fast dynamics: Unlike variants of Coherent Ising Machines (CIM) [31] which
rely on FPGA computation to emulate coupling, the time evolution of BRIM is completely
done naturally based on physics. Thus, BRIM can achieve good solutions very quickly as
is established in previous works [1, 46].

Specifics on the BRIM model used for simulation is explained later in Section 4.3.1 and
the pseudocode can be found in Appendix A. Throughout this work, we assume a variant of
BRIM model with quantized nodal interactions [57].

2.3 Related Work
Physics-Based Optimization for SAT

Optimization literature has previously utilized physical computational methods. Myriad
dynamical systems have been proposed which implement the quadratic Ising model to
solve NP-Hard optimization problems, including time-evolving quantum systems [2,24,32],
modulated optical pulses [31], coupled electronic oscillators [52], and resistively coupled
capacitors [1]. These approaches have shown success in natively quadratic problems such as
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graph MaxCut, however their application to SAT has been largely unsuccessful as we will see.
As an example, in one work [26], the authors proposed to optimize the Maximal Independent
Set (MIS) reduction of 3-SAT with quantum annealing. In another work [15], the authors
demonstrated the theoretical feasibility of gate-based quantum computing using noise-free
QAOA simulations. In the near-term, quantum computers suffer from noise-induced errors
which severely limits its performance and scalability [7, 11,47,53].

Optimization software algorithms loosely inspired by physical dynamics have also been
proposed. The best known is simulated annealing (SA) [35]. SA minimizes a given cost func-
tion by taking inspiration from metallurgical processes with gradually decreasing temperature.
Other notable physics-inspired examples are evolutionary algorithms [6].

Algorithms which directly simulate physical phenomena for optimization have also been
proposed. Among these, simulated bifurcation (SB) [27] and continuous-time dynamical
system (CTDS) [23] are primary examples. The former simulates chaotically bifurcating
Ising models, the latter a chaotic system with exponentially growing factors. A GPU
implementation of CTDS was shown to outperform MiniSAT in certain large problems [40].

Hardware SAT Solvers

Hardware acceleration of SAT algorithms broadly falls into two categories: total solvers
(implementing an algorithm in its entirety) and subset accelerators (implementing specific
operations of a SAT algorithm). The former generally implement SLS algorithms [30, 41, 48]
due to their simpler heuristics. In one work, the authors proposed a novel combination of
naturally stochastic “p-bit” hardware to accelerate a simplified variant of ProbSAT [48]
(see Section 4.1). There are examples of total CDCL hardware [28], however complex
heuristics preclude efficient implementation. Subset solvers are commonly Boolean constraint
propagation (BCP) accelerators [22]. BCP is particularly computationally demanding in
CDCL (upwards of 90% of computation time [22, 50]). The fixed proportion means BCP
accelerators can only provide an 8-10× speedup by Amdahl’s law. Other novel solvers include
an analog circuit proposed [56] and demonstrated [17] by implementing the aforementioned
CTDS algorithm [23]. Interested readers are referred to an in-depth survey for a more
thorough treatment of SAT hardware acceleration [50].

High-degree Dynamical Solvers

The inability of classical quadratic models to generalize to higher-degree polynomial interac-
tions has motivated a recent surge in Ising-like high-degree models1. Formulations of k-SAT
and NAE-SAT have been proposed and simulated in various dynamical systems [9, 16]. The
SB algorithm has been extended to support high-degree polynomial interactions [33] with
potential applications to highly parallel SAT solvers. These models have been shown to signi-
ficantly outperform the traditional quadratic reductions described in literature [36,38,44,51].
However, as we will discuss in Section 3.2, models implementing problem-agnostic local
minima escaping heuristics demonstrate poor solution quality for moderate to large problems.

1 Note that, all the citations refer to high-degree polynomial interactions as “high-order”, not to be
confused with high-order logic.
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3 High-degree Polynomial Formulation

3.1 Reformulating SAT
Finding the globally minimum energy of a QDS model is proven to be NP-Hard, allowing
for a large number of problems to be reformulated as QDS Hamiltonians [38]. An initial
proposal to reduce 3-SAT to a QUBO model was to formulate it as a “Maximal Independent
Subset” (MIS) problem [38]. While MIS can be more naturally encoded into the QUBO
model, encoding an M clause CNF requires 3M QUBO spins, an unacceptable level of
search-space bloat. Instead, we propose a cubic Hamiltonian HC as a “natural” expression
of 3-SAT. Thus, for a given M -clause CNF 3-SAT formula:

f =
M∧

i=1
(ℓi,1 ∨ ℓi,2 ∨ ℓi,2) (3)

the proposed Hamiltonian HC is given by:

HC =
M∑

i=1
g(ℓi,1)g(ℓi,2)g(ℓi,3) (4)

where for each clause literal ℓi,j

g(ℓi,j) =
{

(1 − xn) ℓi,j = xn

xn ℓi,j = x̄n

(5)

Here xn is the variable corresponding to the jth literal of the ith clause, n ∈ {1, ..., N}. Each
variable in a problem only has one associated spin, hence this formulation requires N spins
to represent the complete CNF. k-SAT problems for k > 3 have a natural analogue with
higher-degree terms, as discussed in a recent work [16]. However, we limit our focus to 3-SAT.

We observe that g(ℓi,j) ∈ {0, 1}, with g(ℓi,j) = 0 corresponding to true ℓi,j and g(ℓi,j) = 1
corresponding to false ℓi,j . A clause Ci = (ℓi,1 ∨ ℓi,2 ∨ ℓi,3) is satisfied if and only if at least
one of its literals is true. Therefore, we observe:

▶ Proposition 1 (Clause Satisfaction). A clause Ci = (ℓi,1 ∨ ℓi,2 ∨ ℓi,3) is satisfied by the state
vector a if and only if g(ℓi,1)g(ℓi,2)g(ℓi,3) = 0.

Since the Hamiltonian HC is a sum over such clause-derived products, we conclude:

▶ Lemma 2 (Ground States are SAT). a is a ground state of HC (HC(a) = 0) if and only if
a satisfies the underlying CNF formula f .

The logical equivalence between HC and a given CNF formula makes HC a desirable
Hamiltonian for QDS implementation. However, the QDS model is limited to quadratic and
linear terms only, and it lacks support for 3rd-degree polynomial (cubic) interactions which
is required in HC . Therefore, to implement HC in a QDS format, one must “quadratize” all
cubic terms by introducing extra auxiliary spins and extra terms to penalize undesirable
states [25,36,44]2.

2 We do note that, the MAX-2-SAT reduction of 3-SAT [54] does map naturally to the QDS format.
However, mathematically, it is equivalent to the one proposed by Kolmogorov et al. [36] and thus, suffer
from the same problems.
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In a recent work [16], the authors have demonstrated a drop in solution quality after such
“quadratization”. This motivated them to propose an Ising-formulated {+1, −1} high-degree
polynomial model. With experimental analysis for uniform random problems, the authors
showed its superior performance compared to QDS.

Throughout our discussion, we limit our scope to solvers with support for cubic interactions
and refer to these as cubic dynamical solvers (CDS).

3.2 Problem Agnostic Heuristics
As with naive gradient descent, dynamics-based solvers (QDS and CDS) can be trapped in
local minima in the energy landscape. Classical optimization algorithms such as simulated
annealing (SA) [35] overcome such local traps by introducing stochastic behavior (occasionally
accept a “bad” state). It has been proven that given enough time, SA can converge to the
global optimum [39]. Thus, a common approach for hardware solvers is to mimic the behavior
of the SA algorithm by introducing random noise to perturb the system. Example noise
sources include varying external oscillations [52], random polarity flips [1], and transverse
quantum field fluctuations [32]. The strength of these perturbations decrease over the course
of the run according to an annealing schedule. The primary motivation of such a schedule
is to broadly explore the search-space initially and then (hopefully) settle into some global
optimum towards the end. In general, these perturbations are applied randomly across
problem variables, taking into account no knowledge of problem type or structure.

A recently proposed CDS used such problem agnostic perturbations [16], as have previous
works proposing dynamics-based solvers [1,26]. Here, we refer to this as the Anneal heuristic.
Just like prior works on BRIM [1,46], we use a linear annealing schedule to induce artificial
spin flips. Let p0 and p1 be the start and end probabilities respectively. Then, at any given
time t and a total run time of T , the instantaneous probability p to flip a spin is given by:
p = p0 − t(p0−p1)

T . Thus, each spin is treated as an i.i.d. Bernoulli random variable with flip
probability p.

Fig. 1 shows the performance of CDS with Anneal heuristic on 5 sets of 100 generated
uniform random problems with M/N = 4.25 and N ∈ {100, 200, 300, 400, 500}. The left
figure shows the number of instances solved as N increases with a constant run time of 0.1
ms. The system easily finds solutions to 99% of the 100-variable problems, however the
solved proportion drops quickly to 26% for N = 500. We also consider the possibility that
the larger instances require longer system evolution times. Fig. 1 [right] shows the number
of solved instances for the 500-variable set as run time is increased up to 2 ms (20× longer).
We observe only a minor increase in solved proportion to 48%. Parameter sweeps of p0/p1
are also unable to improve solution quality for larger instances.

Theory suggests that all problems would be solved given a sufficiently long run time
with a conservative, ergodicity-preserving schedule [39]. However, these results suggest that
such schedules/anneal times would not represent a substantial speedup (if any) over other
existing solutions. To give some context, WalkSAT is capable of solving the same 500 variable
instances in as little as 5 ms. Therefore, we believe that such a problem-agnostic or “blind”
annealing is insufficient.

4 Integrating SLS Heuristics

The reason for the comparatively poor performance of the problem-agnostic Anneal heur-
istic lies largely in the existence of this conference. SAT is a well-studied problem whose
peculiarities are exploited by solver heuristics. CDCL-style clause learning uses Boolean
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Figure 1 Evaluation of CDS with a problem-agnostic Anneal heuristic. Left: Number of uniform
random instances solved out of 100 with a constant run time of 0.1 ms as problem size increases.
Right: Number of 500 variable instances solved as we increase the system run time.

resolution to actively store information on the problem at hand, and VSIDs have been shown
to exploit large scale problem structures [37]. SLS algorithms such as WalkSAT [34, 45]
include a veritable buffet of different heuristics for variable selection based on various scoring
and ranking mechanisms.

Problem-agnostic dynamical systems have yet to adopt such advanced heuristics to
exploit the existing body of SAT-specific knowledge. Prior implementations of BRIM used
the Anneal heuristic. While sufficient for more unstructured problems (e.g. MaxCut [1, 32]),
such annealing schedule falls short for a structured problem like 3-SAT requires. The results
shown in Fig. 1 demonstrate the shortcomings of this uniform random heuristic. This
motivates us to propose ProbSAT-like stochastic heuristics to increase search-space efficiency
of CDS. We first discuss why it is a good idea to start with the ProbSAT heuristic, then
move onto discussion of a hardware friendly variant and further improvements.

4.1 The ProbSAT heuristic and its variant
ProbSAT [8] defines a probability distribution for all problem variables based upon an
internally determined score. The score in turn depends on the variable’s make and break
counts. We use standard definitions for these terms, restated here for clarity.

▶ Definition 3 (Make Clause). For a given assignment a, the make count of variable xn is
the number of newly satisfied clauses after flipping xn. We denote it as Mn(a).

▶ Definition 4 (Break Clause). For a given assignment a, the break count of variable xn is
the number of newly unsatisfied clauses after flipping xn. We denote it as Bn(a).

We observe that the net change in SAT clauses by flipping variable xn with current
assignment a is Mn(a) − Bn(a). For simplicity, we omit the argument a from subsequent
uses.

Note that for a particular variable xn, any currently UNSAT clause in which it appears
is necessarily a make clause, while break clauses are a subset of currently SAT clauses. The
original ProbSAT paper examined two candidate distribution functions: polynomial and
exponential. For both classes of function, the authors found that using Bn alone provided a
more effective heuristic.

ProbSAT explores the search-space solely based upon the probability distribution, hence
the logic is relatively simple compared to other SLS algorithms. Accordingly, a ProbSAT-style
algorithm is suitable for hardware implementations [48,49]. The original algorithm works
sequentially, choosing random UNSAT clauses and sampling from its variables based on the
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defined distribution. However, sequential flips are both impractical and undesirable for CDS
integration, as they require complicated synchronization and information propagation across
the system. Instead, it is easier to allow variables to flip in parallel (distributed manner).

Building on this motivation, researchers proposed a Biased Random Walk (BRW) heuristic
as a modification to ProbSAT [48]. The approach allows parallel flips and relies solely on Mn.
The authors proposed two different update rules for the flipping probability, depending on
Mn: linear and nonlinear. The linear rule probability, pl is parameterized by pstep, and for
a particular variable xn, pl(xn) = Mn × pstep. The nonlinear rule has two parameters: pinit

and pstep. The first make clause of a variable xn sets pnl(xn) = pinit and every subsequent
make contributes pstep. Our simulations of both rules using uniform random problems verified
that the nonlinear rule produced much better results. Hence, we use this rule whenever we
refer to BRW3.

4.2 Combining BRW with CDS
In the original paper [48], the authors implemented the BRW algorithm in hardware using
stochastic Magnetic Tunnel Junction (MTJ) devices to represent the variables. It turns out,
Mn are easy to calculate in such a parallel system. The authors proposed a digital circuit
which couples the states of individual variables to determine clause state. Instead of designing
a stand-alone BRW hardware, we propose a CDS system, cBRIM (BRIM with support for
cubic terms), so as to leverage its fast dynamics (spins could flip every 20 ps [1]), along with
a BRW-like heuristic as its annealing algorithm. We refer to this solver as cBRIM-BRW. The
details of cBRIM are explained later in Section 4.3.1.

Experimental analyses demonstrated the superior performance of an MTJ-based BRW
solver over WalkSAT and ProbSAT [48]. However, the experiments were only done with
uniform random problems. To consider problems of a heterogeneous structure, we consider
the variable interaction graph (VIG) of the formula. The problem variables form the VIG
vertex set, with edges connecting variables co-appearing in a clause4. The VIG was originally
introduced as a means of reasoning about CDCL resolution and algorithm behavior [43],
but has since become a standard means of reasoning about problem structure [3]. It has
been established that industrial problem VIGs exhibit scale-free structure [4, 5]. Specifically,
the number of clauses each variable appears in (and consequently the vertex degree in the
VIG) follows a power-law distribution. In such a model, the probability of any given node
to have degree d has the form: P (d) ∝ d−β . Industrial instances generally have β ∈ [2, 3]
compared to β > 18 for uniform random problems. This implies that there is a rapid fall in
the probability of high-degree variables for uniform random problems and hence relatively
low degree variance (< 0.3× the average degree) compared to that of industrial (> 1.5×) [4].

Consequently, real-world problems do not follow the Erdös-Renyi model used to generate
the uniform random instances. Therefore, we simulate cBRIM-BRW and run custom generated
power-law problems of 500 and 1000 variables with different values of β parameter [5]. For all
the runs, we set pinit = 0.03, pstep = 0.2 for scale-free problems, and pinit = 0.07, pstep = 0.9
for uniform-like problems: both tuned for the best performance on 500 variable instances.

Fig. 2 shows how many problems cBRIM-BRW solved given different β values. We can
observe that, as β increases (problems become more uniform-like), the performance of
cBRIM-BRW improves generally. This is expected as BRW is demonstrated to work well

3 pl or pnl can be greater than 1. The authors didn’t elaborate, but presumably the probability is capped
at 1.

4 This differs slightly from the bipartite graph form described in another work [5], however the significance
of vertex degree is equivalent.
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Figure 2 Number of problems solved by cBRIM-BRW out of 100 power-law distributed problems
with 500 and 1000 variables for increasing β. We set cutoff run time of 0.11 ms and 1.1 ms for 500
and 1000 variables respectively.

for uniform random problems [48]. However, when β ∈ [2.5, 3], the performance degrades.
Moreover, the parameters tuned for 500 variable scale-free problems did not work well on
larger problems: particularly in the case of β = 2.5. Thus, the optimal choice of parameters
in cBRIM-BRW appears to be sensitive to the size of scale-free problems, far from ideal for
practical use. These results lead us to conjecture that Mn alone may not contain sufficient
information to determine advantageous flips. Therefore, we propose to leverage both Mn

and Bn in a stochastic heuristic.

4.3 Towards a better heuristic
A primary consideration for algorithms like BRW to use only Mn is that Bn is much harder
to obtain in hardware. It relies both on problem structure and current variable assignments,
imposing more hardware complexity. However, it turns out, the CDS formulation does provide
some information that we can leverage to get Bn without requiring complex hardware.

4.3.1 Recovering Break Counts
Here, we discuss how to leverage inherent information from the CDS formulation to recover
Bn. Let us denote HCn as the Hamiltonian of all the clauses involving the variable xn:

HCn =
∑

xn∈Ci

g(ℓi,1)g(ℓi,2)g(ℓi,3) (6)

where we denote ℓi,2 and ℓi,3 as the non-xn literals appearing in each clause and ℓi,1 = {xn, x̄n}
without loss of generality. From HCn, we now consider only the terms containing xn. Recall
from the definition of g(ℓi,j) in Eq. 5 that these terms will have the form ±xng(ℓi,2)g(ℓi,3).

▶ Definition 5 (xn-Relevant Form). A clause Ci = (ℓi,1 ∨ ℓi,2 ∨ ℓi,3) where ℓi,1 ∈ {xn, x̄n}
has xn-relevant form Ri|xn

= ±g(ℓi,2)g(ℓi,3)

We now define the state of a clause containing xn, independent of xn’s assignment.

▶ Definition 6 (xn-UNSAT Clause). Let clause Ci = (ℓi,1 ∨ ℓi,2 ∨ ℓi,3) where ℓi,1 ∈ {xn, x̄n}.
Ci is xn-UNSAT iff the subclause (ℓi,2 ∨ ℓi,3) is UNSAT.

Suppose Ci contains the literal xn. Then Ri|xn
= −g(ℓi,2)g(ℓi,3). Furthermore, if Ci is

xn-UNSAT, then Ri|xn
= −1 and 0 otherwise. On the contrary, if Ci contains the negated

literal x̄n, then Ri|xn
= g(ℓi,2)g(ℓi,3), with Ri|xn

= 1 in the case that Ci is xn-UNSAT.
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We now connect these definitions with previous notions of make and break clauses. Note
that a clause can only be a make or break with respect to xn if it is xn-UNSAT.

▶ Observation 7. If xn = 1, then all clauses with Ri|xn
= 1 are makes, and all clauses

with Ri|xn
= −1 are breaks. If xn = 0, then all clauses with Ri|xn

= −1 are makes, and all
clauses with Ri|xn

= 1 are breaks.

This leads us to the following Lemma:

▶ Lemma 8. For some variable xn,

∑
xn∈Ci

Ri|xn
= (1 − 2xn) × (Bn − Mn) =

{
Mn − Bn xn = 1
Bn − Mn xn = 0

Before stating the final theorem, we need to introduce just the basic principle of how our
proposed CDS system, cBRIM, works.
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Figure 3 High level system overview of proposed cBRIM. The blue part is the baseline BRIM,
while the orange part is new hardware to support cubic terms.

We extend BRIM [1, 46, 57] to support cubic terms for 3-SAT and refer to it as cubic
BRIM or cBRIM in short. The full hardware details are beyond the scope of this paper and
a number of variations in circuit design can achieve similar behavior at the system level.
Here, we only discuss a high-level behavior model as shown in Fig. 3 and the pseudocode
for simulation is shown in Appendix A. The general idea is to construct the hardware that
naturally minimizes the cubic Hamiltonian HC . The baseline system consists of an array
of N bi-stable capacitive nodes whose voltages ∈ [0, 1] represent the variables.5 Nodes are
interconnected by programmable resistive coupling units q. The resistance of a coupling unit
connecting node n and node j, is given by:

5 Note that the original BRIM uses a virtual ground ( Vdd+Vss

2 ). The voltage of the nodal capacitor
ranges from Vss to Vdd. Relative to the virtual ground, the polarity of the voltage serves as the spin
representation (±1). In our current design, we do not use a virtual ground and the voltage quantizes to
bit representation {0, 1}. This is because the bit representation is more convenient for SAT problems.
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Rnj = R

|qnj |
(7)

Where R is a constant resistance and qnj is normalized to [−1, +1]. Thus, strong coupling
means lower resistance. The sign of qnj is implemented as follows: ① when qnj > 0, the
nodes are coupled in a parallel fashion (output of one node is connected to the positive input
terminal of the other, via resistance Rnj : Outn → In+

j , Outj → In+
n ); ② when qnj < 0, they

are coupled in an antiparallel fashion (Outn → In−
j , Outj → In−

n ); ③ nodes are disconnected
if qnj = 0. Each node n can also have a linear bias ln.

To support cubic terms, we add extra coupling units c. The idea is to pass voltages xj

and xk through an AND gate to get xjk = xj × xk. Then we apply xjk across a resistance of
Rnjk = ( R

|cnjk| ) and feed the resulting current to node n. The inputs to the AND gate are
also programmable via multiplexers (MUX) depending on the 3-SAT formula. Now, applying
Kirchhoff’s current law, the rate of change of variable xn is determined by the total incoming
current via coupling resistors as described below:

dxn

dt
= 1

RC
× (ln +

∑
j

qnjxj +
∑
j<k

cnjkxjxk) (8)

where C is the nodal capacitance. Moreover, as shown in Fig. 3, the variables can also be
perturbed according to a selected heuristic of choice. If this perturbation is just a Gaussian
white noise ∼ N (0, σ2), then the system is governed by Langevin dynamics (see Appendix B
for more details). Now, consider the Hamiltonian HC defined in Eq. 4. We can expand the
summation and combine same degree polynomial terms together as shown below:

HC = constant +
∑

n

Lnxn +
∑
n<j

Qnjxnxj +
∑

n<j<k

Cnjkxnxjxk (9)

where Ln, Qnj and Cnjk are respectively the coefficients of linear, quadratic, and cubic terms.
If we take the gradient of HC with respect to xn, we get,

∂HC

∂xn
= Ln +

∑
j

Qnjxj +
∑
j<k

Cnjkxjxk (10)

Comparing Eq. 8 and Eq. 10, if we set ln = −Ln, qnj = −Qnj and cnjk = −Cnjk, then we
can write,

dxn

dt
= −α

∂HC

∂xn
(11)

where α = 1
RC is a known constant. Such a system is Lyapunov locally asymptotically

stable [1] because it satisfies the criterion, ∇HC · dx
dt < 0, unless x is a local minimum.

Therefore, cBRIM naturally seeks a local minimum of HC and stays there when found (unless
perturbed by some heuristic). Moreover, using Definition 5 and the fact that xn-Relevant
forms are derived only from terms containing xn, we can further write:

dxn

dt
= −α

∂HC

∂xn
= −α

∑
xn∈Ci

Ri|xn
(12)

Thus, the time dependent trajectory of each variable xn is determined by the sum of all
xn-Relevant forms. Now, we can state the theorem that connects the system evolution of
cBRIM with Mn/Bn of each variable.
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▶ Theorem 9. Using Lemma 8 in Eq. 12, dxn

dt = α(1 − 2xn) × (Mn − Bn)

From Eq. 8, cBRIM provides us the quantity (Mn − Bn) in Theorem 9 as the total
incoming current to each variable xn. Thus, coupled with the hardware to generate Mn as
in cBRIM-BRW, we can recover Bn information without explicitly considering other variable
states. This simplifies the hardware and takes advantage of the dynamical interactions
between nodes. We now propose a new heuristic to leverage this.

4.3.2 The tanh-make-break (TMB) heuristic
Motivated by the shortcomings of BRW as discussed in Section 4.2, we propose a heuristic
that utilizes both Mn and Bn. The probability to flip a variable xn is given by Eq. 13 using
two nonlinear functions f and h:

p(xn) = f(xn) · h(xn) (13)

In our testing, we selected f(xn) = tanh (cm · Mn) and h(xn) = 1 − tanh (cb · Bn). Here,
cm > 0 and cb > 0 are the make and break coefficients respectively. A number of nonlinear
functions could work, and we leave exhaustive exploration as future work. The motivation
behind the choice of tanh is threefold:

Convenience: Given the range (tanh(y) ∈ [0, 1] for y ≥ 0), the product f(xn) · h(xn) is
mathematically a convenient probability without any need for normalization. Physically,
it is easy to design a simple circuit with tanh-like behavior.
SAT preservation: If all clauses are SAT, then tanh (cm · Mn) = 0 for all xn. Therefore,
the system will not be perturbed once a satisfying state is reached.
Nonlinearity: Previous heuristics using Mn and Bn utilized nonlinear functions with a
steep slope [8, 48]. It was shown to significantly outperform linear functions. Therefore,
we seek to preserve this characteristic.

We combine this tanh-make-break (TMB) heuristic with cBRIM and refer to this solver
as cBRIM-TMB. Empirical observations suggest TMB heuristic is not overly sensitive to
parameters. For instance, cm = 0.9, cb = 0.4 works best for the tested scale-free problems
while for uniform random problems, cm = 0.9, cb = 0.6 works the best. Moreover, we found
that the same cm and cb parameters worked for both 500- and 1000-variable problems.

2.3 2.5 3 5 10 100000
β
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70

80

90
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Figure 4 The performance of cBRIM-TMB tested on the same problems as in Fig. 2 and the same
cutoff times. The plot shows the number of problems solved (out of 100) for varying values of β.

Fig. 4 demonstrates the performance of cBRIM-TMB which can be directly compared
against that of cBRIM-BRW shown in Fig. 2. Unlike cBRIM-BRW, cBRIM-TMB is able to solve
most of the industrial-like scale-free problems as well as uniform random problems with only
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a minor dip in performance when β ≈ 3. Moreover, it is able to maintain high success rates
using the same parameters for both 500 and 1000 variable problems, indicating a weaker
dependence on problem size for parameter tuning unlike cBRIM-BRW.

We leave it as future work to analyze the time dependent solver behavior, and to relate
the performance of heuristics with problem structure. In the next section, we compare
cBRIM-TMB with state-of-the-art CDCL and SLS solvers on generated scale-free and uniform
random problems to estimate its real-world efficacy.

5 Evaluation

We now compare the performance of cBRIM-BRW and our proposed cBRIM-TMB against three
state-of-the-art solvers: one CDCL based: KISSAT [14] and two SLS based: WalkSAT [34]
and ProbSAT [8]. CDCL solvers have consistently outperformed other paradigms in SAT
competitions, particularly in large industrial benchmarks. KISSAT and its variants are
paradigmatic of high performance CDCL, placing top in recent SAT competitions [10,14].
WalkSAT is representative of flip-efficient SLS heuristics, both in standalone solvers and
those integrated into hybrid CDCL-SLS approaches [34]. Comparing against both algorithms
will provide further context in which to evaluate cBRIM-TMB’s performance. We also choose
to compare with the original ProbSAT solver since our heuristic is derived from it.

5.1 Methodology
Results of all software solvers: KISSAT [14], WalkSAT [34], and ProbSAT [8] are collected
on an Intel Xeon Platinum 8268 CPU running at 2.90GHz. Each process is granted 8 GB
of memory. KISSAT is allowed to run with a timeout of 10,000 seconds. WalkSAT is run
with a 5 million flips cutoff with 20 retries using the -best heuristic (otherwise known
as “SKC”) [45]. ProbSAT is used with its default configuration, with no cutoff specified.
cBRIM-TMB and cBRIM-BRW are simulated by solving differential equations that describe the
system dynamics. Each problem is simulated 20 times with different initial conditions. We
start with 1 ms simulation time, up to 200 ms for unsolved instances.

A 200-problem suite of 1000-variable instances were generated using a tool developed
by Ansótegui et al. [4]. 100 are uniform random with M/N = 4.25 (4250 clauses) and 100
are scale-free with M/N = 3.4 (3400 clauses) and β = 2.935, which is observed to produce
satisfiable problems about 50% of the time, with many being “hard” instances. All problems
are verified as satisfiable using either WalkSAT or KISSAT. Instances are limited to 1000
variables and cBRIM run times are kept short due to the large simulation overhead of CDS
(about 105× slower than real hardware time).

For the reported solver time and flips, we use a “metric-to-solution” (MTS) formula,
which is a generalization of “time-to-solution” [29] and is given by:

MTS =

m × log10(0.01)
log10(1 − S) S < 0.99

m otherwise
(14)

where, m is the average value of the metric of interest (time or flips) and S is the success
probability of finding a satisfying solution for a single problem. Thus, MTS tells us the
estimated metric value needed to find a solution with 99% probability, consequently penalizing
solvers finding solutions with low success rate. The reported flips and times for WalkSAT,
cBRIM-TMB, and cBRIM-BRW are then “flips-to-solution”(FTS) and “time-to-solution” (TTS)
respectively. The flip counts used to calculate FTS for cBRIM-TMB and cBRIM-BRW are the
sum of “heuristic flips” and “natural flips”. The latter are purely due to system dynamics,
excluding that of the added heuristic.
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5.2 Results
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Figure 5 Solver performance comparisons on 200 randomly generated 1000-variable problems: 100
scale-free with M = 3400 and 100 uniform random with M = 4250. (a) The proportion of problem
instances solved by each solver as time increases. Reported times for cBRIM-TMB and WalkSAT are
calculated using the MTS formula in Eq. 14. (b) Comparing the performance of cBRIM-TMB and
cBRIM-BRW on the 100 scale-free problems as time increases. (c) The same plot but with increasing
flip count for the SLS solvers and cBRIM-TMB. Flip counts are similarly scaled according to Eq. 14.

First, we tested cBRIM with a problem-agnostic annealing schedule which could only
solve 7% of the 200 problems with a TTS of 0.59 s in the worst case. Due to this poor
performance and the requirement of ever longer run times, we have decided to remove it
from the main analysis. Fig. 5a shows the proportion of problems solved by cBRIM-TMB and
the software solvers versus execution time. cBRIM-TMB and the SLS solvers were able to solve
all 200 problems. In contrast, KISSAT is able to solve all scale-free problems quickly, but is
unable to solve 4 uniform random problems before the cutoff. Both SLS solvers outperformed
KISSAT in the majority of the instances. However, 23 of the 100 scale-free problems are
solved faster by KISSAT, with a geometric mean speedup of 2×. This indicates that some
aspects of industrial problem structure is captured in the benchmark suite which KISSAT is
able to exploit.

We also observe that for all the solvers, the curves flatten as we increase the run time.
For cBRIM-TMB, 199 of the 200 problems could be solved in just 1.56 s in the worst-case,
while the remaining scale-free problem took 28.8× longer. WalkSAT and ProbSAT have
a similar trend in terms of run time increase, but it is not as dramatic. For instance, 199
problems took 14.53 seconds and 86.84 seconds respectively, while the last problem took
2.6× and 5.6× longer respectively. Like cBRIM-TMB, ProbSAT struggled with a scale-free
problem while a uniform random problem proved difficult for WalkSAT. KISSAT could
solve 50% of the instances within 1 s with majority of them being scale-free. The uniform
random problems that it could solve, took orders of magnitude longer in the worst-case
scenario. It is worth noting that larger scale-free problems likely favor CDCL solvers over
SLS counterparts [10]. Therefore, the performance picture of CDS such as cBRIM-TMB for
large real industrial instances is incomplete. Nevertheless, the results in Fig. 5a portray CDS
as a promising avenue for execution time reduction.

Next, we compare the two versions of cBRIM. We find that both cBRIM-TMB and cBRIM-BRW
perform similarly well for uniform random problems (except that cBRIM-BRW could not solve
1 problem instance). Therefore, Fig. 5b only shows the performance on the 100 scale-free
problems with increasing run time. We can observe that cBRIM-TMB is consistently better
than cBRIM-BRW by about 4× and moreover, the latter could not solve 6 out of the 100
scale-free problems. This emphasizes the importance of considering Bn for industrial-like
problems.
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Another interesting analysis is to look at how efficiently these solvers arrive at a solution.
Fig. 5c shows the proportion of problems solved as flip counts increase for cBRIM-TMB and the
SLS solvers. Both WalkSAT and ProbSAT do outperform cBRIM-TMB. WalkSAT in particular
stands out as the most “flip-efficient”. This is to be expected: a system doing parallel flips
can effect many more state changes than sequential algorithms. Several variables can flip in
a single move, compared to just one for WalkSAT or ProbSAT. The redundancy of parallel
flip schemes with respect to Mn/Bn is another area for future study and optimization. In
any case, the extremely fast dynamics of cBRIM-TMB more than compensates for higher flip
counts which results in its observed speedup. This will become even clearer in the following
analysis.

Table 1 Summary of the results shown in Figure 5 for each problem type. The time and flip
values are the geometric mean of all successful solutions for each solver scaled by the MTS formula
in Eq. 14.

Solver Dist Solved Time (s) Flips Flip-rate (Flips/µs)
cBRIM-TMB Scale-Free 100/100 4.06e-03 2.78e+07 6853.00

Uniform 100/100 5.41e-03 9.34e+06 1726.00
cBRIM-BRW Scale-Free 94/100 1.58e-02 4.00e+06 252.58

Uniform 99/100 6.86e-03 8.62e+06 1255.88
KISSAT Scale-Free 100/100 2.50e-01 N/A N/A

Uniform 96/100 1.62e+02 N/A N/A
WalkSAT Scale-Free 100/100 1.03e-01 5.23e+05 5.23

Uniform 100/100 2.59e-01 1.96e+06 7.54
ProbSAT Scale-Free 100/100 6.01e-01 3.2e+06 5.32

Uniform 100/100 4.30e-01 2.05e+06 4.77

Table 1 summarizes the results of each solver’s performance separately on scale-free and
uniform random problems. The reported times and flips are the geometric mean of the
respective metric for all successful runs scaled by the MTS formula in Eq. 14. As an example,
let us take the case of scale-free problems. cBRIM-TMB requires about 53× and 8.7× more
flips than WalkSAT and ProbSAT respectively. However, it flips over 550× faster than both
the SLS solvers in the geometric average case (see “Flip-rate” in table) which results in
cBRIM-TMB having a net speedup of 25× and 147× over WalkSAT and ProbSAT respectively.
Fast hardware dynamics enable a high “Flip-rate” for cBRIM-TMB which takes about 0.5 ns
to flip a variable, compared to numerous instructions per flip for software solvers [46].

KISSAT outperforms ProbSAT by 2.4× in run time for scale-free problems, but falls
behind both cBRIM-TMB and WalkSAT. As expected, uniform random problems proved
particularly difficult for KISSAT. Such problems lack structure that a CDCL solver like
KISSAT can exploit [18,37].

6 Conclusions and future work

Non-von Neumann computing using dynamical systems show potential for extreme speedup
and energy efficiencies for difficult optimization problems. Most of these solvers operate on
quadratic models like Ising/QUBO. Recently, cubic dynamical solvers (CDS) have also been
proposed for problems like SAT. In this paper, we show that such CDS systems that rely
on problem-agnostic heuristics do not seem to offer any tangible benefit over software SAT
solvers. This motivates us to utilize SAT-specific heuristics. The combination of a make-only
heuristic with CDS does perform well for uniform random problems but underperforms for

SAT 2023



25:16 Combining Cubic Dynamical Solvers with Make/Break Heuristics to Solve SAT

industrial-like, scale-free instances. Our analysis lead us to the opinion that Mn alone might
be insufficient for such skewed variable distribution in problems and we need to take into
account Bn as well. In the process, we derive a novel relationship between the time derivative
of each variable in CDS to its (Mn − Bn) quantity. Given that Mn can be computed easily,
one can recover Bn using this relationship. This allows us to propose a new heuristic using a
nonlinear tanh-based function of Mn and Bn which we combine with CDS. With simulation
results, our proposed solver, called cBRIM-TMB, is projected to perform orders of magnitude
faster than software SAT solvers both in scale-free and uniform random problems. The
speedup can be attributed to the extremely fast dynamics of CDS-based systems that give
rise to a high flip-rate.

We believe that cBRIM-TMB is just a first attempt at combining a make/break heuristic
with a CDS system. Further design space exploration is likely to come up with more
efficient solution systems. Testing on real SAT instances is also needed to judge the true
effectiveness of our solver especially because a reduction from generic k-SAT to 3-SAT is
required. Moreover, since real SAT instances are huge (containing hundreds of thousands of
variables), efficient software-hardware co-design approach is necessary owing to the limited
capacity of hardware. We hope that our proposed solver can make CDS a promising paradigm
to solve SAT and encourage more people to contribute to it.
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A Cubic BRIM (cBRIM) Simulation

For simulation purposes, we consider the product voltage xjk as an auxiliary variable and
incorporate all the coefficients ln, qnj and cnjk into one matrix J . We simulate cBRIM using
the following pseudocode:

// f: the 3SAT formula
// simtime : the total anneal time ,
// tstep: the simulation step size
procedure cBRIM (f, simtime , tstep) {

// Initialize the coupling matrix and variable
// based on the problem
J_matrix , x_vector = initialize_problem (f);

// Update the auxiliary variable , x_jk = x_j * x_k
update_auxiliary ( x_vector );
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// Initialize time to 0
time = 0;

// Main simulation loop
while(time < simtime ) {

// Get the quantized variables in {0 ,1}
qx_vector = Quant( x_vector );

// Compute the derivatives of variables
// by matrix vector multiplication
dxdt = ( J_matrix * qx_vector )/(R * C);

// Select heuristic spin flips
hflips = heuristic (f, time , qx_vector );

// Assign opposing currents to perform heuristic flips
// hfR is heuristic flip resistance (1 KOhm)
for ( var_id in hflips ) {

dxdt( var_id ) =
(! hflips ( var_id ) - x_vector ( var_id )) / (hfR * C);

}

// Update the voltages of variables
x_vector += dxdt * tstep;

// Limit voltages in [0, 1]
limit( x_vector );

// Update the auxiliary variables
update_auxiliary ( x_vector );

// Increment time
time += tstep;

}

// return quantized state , 1 for true and 0 for false
return Quant( x_vector );

}

B Langevin cBRIM

Here, we give a theoretical analysis of using a simple Gaussian white noise perturbation
η ∼ N (0, σ2) in cBRIM. We can rewrite Eq. 8 as follows:

dxn

dt
= 1

RC
× (ln +

∑
j

qnjxj +
∑
j<k

cnjkxjxk) + η (15)

Following a similar procedure as in Eq. 9 to Eq. 11, we arrive at the following expression:

dxn

dt
= −α

∂HC

∂xn
+ η (16)
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where α = 1
RC . Such a system is governed by Langevin dynamics and the joint probability

density P (x, t) for some state x evolves according to the Fokker-Planck equation [42]:

∂P (x, t)
∂t

= ∇·
[
αP (x, t)∇HC + σ2

2 ∇P (x, t)
]

(17)

We can derive the stationary distribution when t → ∞ by setting ∂P (x,t)
∂t = 0 in Eq. 17. This

results in the boltzmann distribution as intended [19,55]:

P∞(x) = 1
Z

exp
[

−2αHC(x)
σ2

]
(18)

where Z is the normalization constant. Eq. 18 implies that when the system settles into
equilibrium, the ground state(s) have higher probability than other states.
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Abstract
The width complexity measure plays a central role in Resolution and other propositional proof
systems like Polynomial Calculus (under the name of degree). The study of width lower bounds is
the most extended method for proving size lower bounds, and it is known that for these systems,
proofs with small width also imply the existence of proofs with small size. Not much has been
studied, however, about the width parameter in the Cutting Planes (CP) proof system, a measure
that was introduced by Dantchev and Martin in 2011 under the name of CP cutwidth.

In this paper, we study the width complexity of CP refutations of graph isomorphism formulas.
For a pair of non-isomorphic graphs G and H, we show a direct connection between the Weisfeiler–
Leman differentiation number WL(G, H) of the graphs and the width of a CP refutation for the
corresponding isomorphism formula Iso(G, H). In particular, we show that if WL(G, H) ≤ k, then
there is a CP refutation of Iso(G, H) with width k, and if WL(G, H) > k, then there are no CP
refutations of Iso(G, H) with width k − 2. Similar results are known for other proof systems, like
Resolution, Sherali–Adams, or Polynomial Calculus. We also obtain polynomial-size CP refutations
from our width bound for isomorphism formulas for graphs with constant WL-dimension.

2012 ACM Subject Classification Theory of computation → Proof complexity; Theory of computa-
tion → Complexity theory and logic; Mathematics of computing → Graph theory

Keywords and phrases Cutting Planes, Proof Complexity, Linear Programming, Combinatorial
Optimization, Weisfeiler–Leman Algorithm, Graph Isomorphism

Digital Object Identifier 10.4230/LIPIcs.SAT.2023.26

Related Version Full Version: https://eccc.weizmann.ac.il/report/2023/063/

Funding Supported by the Deutsche Forschungsgemeinschaft (DFG) under project number 430150230,
“Complexity measures for solving propositional formulas”.

1 Introduction

Central to the field of combinatorial optimization is the NP-hard problem of finding integer
solutions to linear programs. This is done by optimizing the linear objective function ⟨c,x⟩
(for a given vector c ∈ Rn) over the set of feasible points x for the LP relaxation, described
by a rational polytope of the form

P = {x ∈ Rn | Ax ≥ b, 0 ≤ x ≤ 1},

where A ∈ Zm×n is some integer matrix, and b ∈ Zm is an integer vector.1 If the polytope is
integral (i. e., only contains integer vertices), one can optimize over all real vectors in P (i. e.,
solve the linear relaxation in weakly polynomial time). Otherwise, one has to consider the
integral hull PZ := conv(P ∩ Zn) for the optimization, i. e., the smallest polytope containing

1 Note that we restrict our attention to polytopes in [0, 1]n rather than polyhedrons in Rn.

© Jacobo Torán and Florian Wörz;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Theory and Applications of Satisfiability Testing (SAT 2023).
Editors: Meena Mahajan and Friedrich Slivovsky; Article No. 26; pp. 26:1–26:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jacobo.toran@uni-ulm.de
https://www.uni-ulm.de/in/theo/m/toran/
https://orcid.org/0000-0003-2168-4969
mailto:florian.woerz@uni-ulm.de
https://www.uni-ulm.de/in/theo/m/woerz/
https://orcid.org/0000-0003-2463-8167
https://doi.org/10.4230/LIPIcs.SAT.2023.26
https://eccc.weizmann.ac.il/report/2023/063/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


26:2 Cutting Planes Width and the Complexity of Graph Isomorphism Refutations

the integral points of P . As was already suggested by Gomory [22] and later by Chvátal [12],
in such a case, one can iteratively refine the set of feasible solutions by adding further valid
constraints described by hyperplanes, or, more precisely, half-spaces, to the set of inequalities
describing P . These half spaces still contain PZ but – hopefully – cut off some parts of P .
For this purpose, the cut rule adds an inequality of the form ⟨a,x⟩ ≥ ⌈b⌉ with an integral
vector a and a rational number b such that every point of P satisfies the inequality ⟨a,x⟩ ≥ b.
If b is not an integer, then the former inequality is not valid for (some) fractional solutions
but still valid for all integer solutions. This process yields a sequence

P ⊇ P (1) ⊇ P (2) ⊇ · · · ⊇ PZ

of polytopes. If some polytope P (i) in this sequence is empty, P cannot have integer solutions.

Cutting Planes Proof System. Using this idea, Cook et al. [16] introduced the Cutting
Planes proof system. In this system, one is initially given a set

{ ∑n
j=1 ai,jxj ≥ bi

∣∣ i ∈ [m]
}

of integer inequalities describing the polytope P . Using the two deduction rules introduced in
Definition 2, one can repeatedly deduce new inequalities, aiming to derive the contradictory
inequality 0 ≥ 1. Obtaining a sequence of inequalities ending with 0 ≥ 1 is possible if and
only if the initial set of inequalities does not admit an integer solution. This yields the
Cutting Planes proof system (formally introduced in Section 2.2).

In particular, CP can be used to refute unsatisfiable CNF formulas (by translating them
into affine inequalities). Cutting Planes is a strong proof system that can simulate Resolution,
and it is exponentially stronger for several formula classes [16]. Exponential lower bounds
on the size of a Cutting Planes proof (as measured in the number of inequalities) have
been shown using the interpolation method [45, 27, 30] and, more recently, using lifting and
communication complexity results [21] that can be traced back to [34, 9, 31].

Other complexity measures for CP have been studied. These measures are defined
by the directed acyclic graph representing the proof (one connects the premises with the
consequences). The rank of a proof is the maximum number of applications of the cut
rule along any path in the directed graph. This is known as the Chvátal rank in linear
optimization (see [36] for an excellent overview in this area) and was introduced in [10] in the
area of proof complexity. This measure is the analogon of depth in Resolution [54]. Further,
Dantchev and Martin [18] introduced the parameter cutwidth, defined as the maximum
number of variables present in an inequality derived by performing a cut. This measure
was further studied in [46] under the name of width, where the author presents linear lower
bounds for this measure, as well as width/rank tradeoffs. In the case of Resolution, there is
also a related complexity measure of width that measures how many literals are present in
the largest clause in a refutation. In Polynomial Calculus, the analogous measure is degree.
The seminal paper [5] showed that proving width lower bounds for Resolution is a way to
prove size lower bounds for Resolution. This result extends to the corresponding measures in
Polynomial Calculus [13, 35]. These papers sparked interest in the width/degree complexity
measures, resulting in a long line of papers proving lower bounds for these measures. The
situation for CP width lower bounds is dramatically more sparse. We are only aware of the
two mentioned references [18, 46].

In this paper, we study graph isomorphism formulas with respect to the parameters rank
and width. This allows us to prove size upper bounds for isomorphism formulas based on
graphs with constant Weisfeiler–Leman dimension. We also show lower bounds for these
formulas in a subsystem of CP. A strong motivation for this study is that Cutting Planes
is a promising candidate to be used in future efficient implementations of SAT solvers.
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Furthermore, proof complexity results also hold for all integer linear programming solvers
based on the Gomory–Chvátal rule. These solvers provide up-to-date methods for solving
NP-hard Boolean optimization problems.

Weisfeiler–Leman and Proof Complexity. The graph isomorphism problem (GI), i. e., the
task of deciding whether two given graphs are isomorphic, has been intensively studied and
is well known for its unresolved complexity, as it is one of the few problems in NP that is not
known to be complete for this class nor to be in P. It is also unknown whether GI ∈ co-NP.

A naïve heuristic to distinguish two non-isomorphic colored graphs is the 1-dimensional
Weisfeiler–Leman algorithm (WL), or color refinement algorithm. This algorithm updates
the original vertex colors according to the multiset of colors of their neighbors. This basic
step is applied repeatedly until the colorings stabilize. This procedure can be generalized to
the k-dimensional Weisfeiler–Leman algorithm (k-WL) [56, 55]. In this more refined variant,
the set of k-tuples of vertices is partitioned into automorphism-invariant equivalence classes
(see, e. g., [37] for an overview of this procedure). It had been conjectured that GI is solvable
using the k-dimensional Weisfeiler–Leman algorithm, with k being sublinear in the number
of vertices of the graphs. However, this was shown to be false in the seminal work of Cai,
Fürer, and Immerman [11]. Fascinatingly, the authors achieved this by relating the power of
k-WL to the expressive power of Ck, the k-variable fragment of first-order logic augmented
with counting quantifiers, and a variant of an Ehrenfeucht-Fraïssé game [20, 19] called the
bijective k-pebble game. Nevertheless, the Weisfeiler–Leman method still plays a central role
in the algorithmic research on GI; for example, Babai’s famous algorithm for GI [3] uses the
Weisfeiler–Leman method as a subroutine.

The field of proof complexity provides a different approach to studying the complexity
of the GI problem. Here, one tries to find the smallest size of a proof of the fact that two
graphs are non-isomorphic. It holds that GI is in co-NP if and only if there is a concrete
proof system with polynomial-size proofs of non-isomorphism. Similar to the Cook–Reckhow
program [15] for the unsatisfiability problem UNSAT, this defines a clear line of research
trying to provide superpolynomial size lower bounds for refuting graph (non)isomorphism
formulas in stronger and stronger proof systems. The situation is even more interesting here
than in the SAT case since it was proven in [4] that GI is in co-AM, a randomized version
of co-NP. Hence, it would not be too surprising if GI ∈ co-NP, and this would imply the
existence of polynomial-size proofs for the problem in some system.

In a recent line of work, the power of different proof systems has been studied with respect
to their power in refuting graph isomorphism. The first example of such a lower bound was
given in [51] for the Resolution proof system. This result led to lower bounds for stronger
proof systems. These studies also make use of the Weisfeiler–Leman algorithm. The authors
of [6] exactly characterized the power of the Weisfeiler–Leman algorithm in terms of an
algebraic proof system between degree-k Nullstellensatz and degree-k Polynomial Calculus.
Moreover, it has been shown in [1, 42, 26] that the power of k-WL lies between the k-th and
(k+ 1)-st level of the canonical Sherali–Adams LP hierarchy [49]. Furthermore, it was shown
in [44] and independently in [14] that pairs of non-isomorphic n-vertex graphs exist such
that any Sum-of-Squares proof of non-isomorphism must have degree Ω(n). Closely related
are the results of [2] that show that Sum-of-Squares degree and Polynomial Calculus degree
correlate to the Weisfeiler–Leman dimension (up to constant factors). Recently, in [52], an
exact connection was shown between the width and depth measures in (narrow) Resolution
and the number of variables and the quantifier depth needed to distinguish a pair of graphs
by first-order logic sentences. This result extends to a lower bound for the strong SRC-1
proof system, equipping Resolution with a symmetry rule [53].

SAT 2023
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1.1 Our Results and Techniques
We show a strong connection between the Weisfeiler–Leman graph differentiation number
and the geometric Cutting Planes proof system. We write G ≡CP

k H if there is no width-k
Cutting Planes refutation of Iso(G,H), the set of inequalities encoding the statement that
the graphs G and H are isomorphic. Further, we write G ≡WL

k H if the graphs G and H

cannot be distinguished using the logic Ck. Our main result is the following theorem.

▶ Theorem 1 (Main Result). Let G and H be two non-isomorphic graphs. Then,

G ≡CP
k H =⇒ G ≡WL

k H =⇒ G ≡CP
k−2 H. (1)

In other words,
1. If WL(G,H) ≤ k, then Iso(G,H) can be refuted by Cutting Planes using width k.
2. If WL(G,H) > k, then Iso(G,H) is not refutable in Cutting Planes using width k − 2.

We achieve the first result by using the winning positions of Spoiler in the bijective pebble
game to derive the necessary inequalities. The second result is shown by constructing a set of
matrices that “protect” a given point in the isomorphism polytope from being cut away using
cuts of a certain width. This result is achieved by proving a so-called protection lemma for
graph isomorphism. This type of lemmata has a long tradition in combinatorial optimization
(see, e. g., [36]) and has also been used in the area of proof complexity in [10, 18, 40].
The concrete matrices are being constructed using winning positions for Duplicator in the
bijective pebble game. From the first result, we can derive polynomial-size CP refutations
for isomorphism formulas for graphs with constant WL-dimension.

We also show a size lower bound for refuting graph isomorphism formulas in the subsystem
of tree-like Cutting Planes with polynomially bounded coefficients by using known results
from communication complexity.

1.2 Organization of This Paper
The remainder of this paper is organized as follows. Section 2 introduces our notation, the
Cutting Planes proof system, the Gomory–Chvátal rule, our encoding of graph isomorphism
as a set of affine inequalities, and necessary tools from descriptive complexity. We proceed
in Section 3 by showing the tight connection between the Weisfeiler–Leman differentiation
number for graphs and the width of refuting the corresponding graph isomorphism formulas
in the Cutting Planes proof system. Section 4 establishes the lower bound for isomorphism
formulas in Tree-CP with polynomially bounded coefficients. Due to space constraints, the
proofs of some lemmas are presented in the full-length version of the paper.

2 Preliminaries

2.1 Notation
We let N denote the set of positive integers, and for n ∈ N, we define [n] := {k ∈ N | 1 ≤
k ≤ n}. This paper will denote tuples, vectors, and matrices in boldface. Given two vectors
x,a ∈ Rn, we let ⟨a,x⟩ :=

∑n
i=1 aixi denote the standard inner product.

2.2 The Cutting Planes Proof System
In this paper, we consider Cutting Planes as an inference system used for refuting unsatisfiable
CNF formulas, as suggested by [16]. For this, a CNF formula F is translated into a system
of affine inequalities that have a 0-1-solution if and only if the corresponding assignment
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satisfies F . These inequalities can then be manipulated according to certain rules. It is known
that a formula is unsatisfiable if and only if, applying these rules, it is possible to obtain the
contradiction 0 ≥ 1. A clause C = (ℓ1∨· · ·∨ℓk) is converted to τ(C) ≡

[
τ(ℓ1)+· · ·+τ(ℓk) ≥ 1

]
,

where for each literal ℓi, we let τ(ℓi) := x if ℓi = x and τ(ℓi) := 1 − x if ℓi = ¬x. We also
add the additional inequalities x ≥ 0 and −x ≥ −1 for each variable x, forcing them to take
values between 0 and 1 (this is a relaxation of the condition x ∈ {0, 1}).

▶ Definition 2. Let a ∈ Zn, ai ∈ Zn, γi ∈ Z for i ∈ [m], and x be a vector of n variables.
The Cutting Planes proof system (CP) has two rules:

Linear combination: From the linear inequalities ⟨a1,x⟩ ≥ γ1, . . . , ⟨am,x⟩ ≥ γm and non-
negative integers α1, . . . , αm, we can derive the inequality

∑m
i=1 αi⟨ai,x⟩ ≥

∑m
i=1 αiγi.

Rounding: From ⟨a,x⟩ ≥ γ, if all the coefficients in a are divisible by a positive integer
b > 0, then we can derive the inequality ⟨ a

b ,x⟩ ≥ ⌈ γ
b ⌉.

We can assume, without loss of generality, as done in [10], that a rounding operation
is always applied after each application of the linear combination rule and, therefore, both
rules can be merged into a single one (called Gomory–Chvátal cut, GC cut in [10]).

▶ Remark 3. As is standard (see, e. g., [36]), we will sometimes write a ≤ b or −b ≤ −a for a
Cutting Planes inequality of the form b ≥ a when it is more natural in our arguments.

▶ Definition 4. A Cutting Planes refutation for a set of affine inequalities f = {f1, . . . , fm},
is a sequence (g1, . . . , gt) of affine inequalities satisfying that

each gi is either an inequality in f (an axiom) or is obtained from previous inequalities by
a GC cut,
and gt is the inequality 0 ≥ 1.

It is well-known that all the above-mentioned derivation rules are sound for integer
solutions. Furthermore, the proof system is complete in the sense that each unsatisfiable
CNF formula has a Cutting Planes refutation (see, e. g., [12]).

A CP refutation can be represented in the usual way as a directed acyclic graph in which
each vertex corresponds to an affine inequality in the proof. The axioms are the sources, the
inequality 0 ≥ 1 is the only sink, and for every application of a GC cut, there is an edge
pointing from each of the vertices whose corresponding inequalities are involved in the cut
to the vertex representing the result of the cut. The most common complexity measure for
a CP refutation is its size, defined as the number of vertices in the refutation graph. Two
other complexity measures play a central role in our results:

▶ Definition 5. The rank of a CP refutation (also called depth) is the length of the longest
path from an axiom to the 0 ≥ 1 inequality in the refutation graph.

The cutwidth, or just width, of a CP refutation is the maximum number of variables in
an inequality that results from a GC cut. By this, we mean the number of variables remaining
after the linear combination in the rule has been performed or, equivalently, the number of
variables after the GC cut (linear combination plus rounding) has been done. If no GC cut is
used, we consider the cutwidth to be 0.

For any complexity measure C and any unsatisfiable system of affine inequalities f , the
C-complexity of f is the minimum value of C over all CP refutations of f .
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2.3 Two Sets of Affine Inequalities for Graph Isomorphism
We only deal undirected simple graphs. Such a graph is a tuple G = (VG, EG), where VG is
a finite set of vertices and EG ⊆

(
VG

2
)

is the set of edges. For a vertex v in a graph G, we
denote by NG(v) the set of its neighbors, and for a set of vertices S, we define NG(S) as
the set of neighbors of the vertices in S. If the graph is clear from the context, we drop the
subscripts.

Two graphs G = (VG, EG) and H = (VH , EH) are isomorphic if there is a bijection
φ : VG → VH (called isomorphism from G to H) such that {u, v} ∈ EG ⇐⇒

{
φ(u), φ(v)

}
∈

EH holds for all u, v ∈ VG. We will denote this by G ∼= H.
Let G = (VG, EG) and H = (VH , EH) be two graphs with VG = VH = {1, . . . , n}. We

will use the set of variables xi,j with i, j ∈ [n]. If xi,j is greater than 0, this indicates that
vertex i in G is mapped to vertex j in H.

For convenience, we consider two different sets of inequalities for which there is a satisfying
integer assignment if and only if there is an isomorphism between G and H. The first set
of affine inequalities is the one usually used in linear optimization. Let A and B be the
adjacency matrices of the graphs G and H . The graphs are isomorphic if and only if there is
a permutation matrix X satisfying AX = XB. This is expressed by the following sets of
inequalities. To keep the following definition concise, we write two inequalities a ≤ b and
b ≤ a as the equality a = b.

▶ Definition 6 (MIso Formulas). The set of affine inequalities MIso(G,H) (for matrix
isomorphism) contains the following axioms:
Type 1 axioms: For every v ∈ VG the equality

∑
w∈VH

xv,w = 1; and for every w ∈ VH the
equality

∑
v∈VG

xv,w = 1. Applied to the matrix X, these axioms mean that the sum of
each row, as well as the sum of each column, is one.

Type 2 axioms: These encode the matrix product AX = XB. For each position (i, j) ∈ [n]2,
we have the equality (AX)i,j = (XB)i,j, or alternatively

∑
k∈N(i) xk,j =

∑
ℓ∈N(j) xi,ℓ.

Type 3 axioms: These are for every variable x the CP axioms x ≤ 1 and x ≥ 0.

An alternative set of affine inequalities over the same set of variables is sometimes more
convenient and has been used before for encoding the isomorphism principle in other proof
systems like Resolution [51, 48, 52] or Polynomial Calculus [6]. Instead of the inequalities
for the matrices, for every two pairs of vertices v, v′ ∈ VG and w,w′ ∈ VH such that (v, v′)
is an edge in G and (w,w′) is not an edge in H (or the other way around) we include an
inequality indicating that v is not mapped to w or v′ is not mapped to w′.

▶ Definition 7 (Iso Formulas). The set Iso(G,H) contains the following inequalities:
Type 1 and Type 3 axioms: These are exactly the same as in the MIso formulas.
Type 2 axioms: For every v, v′ ∈ VG and w,w′ ∈ VH such that

{
(v, w), (v′, w′)

}
is not an

isomorphism in the graphs induced by {v, v′} and {w,w′}, the inequality xv,w +xv′,w′ ≤ 1,
indicating that an edge cannot be mapped to a non-edge or vice-versa.

Both systems of inequalities have the same set of 0-1 solutions, which encode the
isomorphisms between G and H but can have different sets of fractional solutions. For
example, setting all variables xi,j to 1

n is always a solution for Iso(G,H) (even when the
graphs are non-isomorphic) but only satisfies MIso(G,H) when these are regular graphs. A
fractional isomorphism is a solution that satisfies the MIso formulas but is not necessarily
integral.
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▶ Definition 8. The graphs G and H are fractional isomorphic if there exists a doubly
stochastic matrix P with AP = PB, where A and B are the adjacency matrices of G and H,
respectively. The matrix P is then called fractional isomorphism between G and H.

We show that there are short CP derivations of each set of inequalities from the other,
although, for the derivation of MIso(G,H) from Iso(G,H), we need to use the CG-cut rule.

▶ Lemma 9. There is a polynomial-size CP derivation of the set of inequalities Iso(G,H)
from MIso(G,H) without using the GC cut rule.

Since fractional solutions can only be eliminated in CP using the GC cut rule, this result
implies that the set of solutions of MIso(G,H) is included in the set of solutions of Iso(G,H).
We consider a derivation in the other direction:

▶ Lemma 10. For any two connected graphs G,H with maximum degree d, there is a
polynomial-size CP derivation with rank 2 and width 2d of the set of inequalities MIso(G,H)
from Iso(G,H).

2.4 The Weisfeiler–Leman Number and the Bijective k-Pebble Game
In order to express different properties of graphs by certain fragments of first-order logic
sentences, Immerman introduced the following definition.

▶ Definition 11 ([32, 33]). For a logic L (of first-order logic sentences), the graphs G and H
are L-equivalent, denoted by G ≡L H, if for all sentences ψ ∈ L it holds that

G ⊨ ψ ⇐⇒ H ⊨ ψ.

Otherwise, we say that L can distinguish G from H, denoted by G ̸≡L H.

For n ∈ N, we introduce a counting quantifier ∃≥n. The formula ∃≥nxψ has the meaning
that “there are at least n distinct x satisfying ψ”. We also need the notion of quantifier
depth (also called quantifier rank).

▶ Definition 12 ([41]). The quantifier depth of a formula ψ is defined inductively as follows:
If ψ is atomic, then qd(ψ) = 0;
qd(¬ψ) = qd(ψ);
qd(ψ1 ∨ ψ2) = max

{
qd(ψ1), qd(ψ2)

}
;

qd(∃≥nxψ) = qd(ψ) + 1.

▶ Definition 13. The k-variable counting logic Ck is the set of first-order logic formulas
that use counting quantifiers but at most k different variables (possibly re-quantifying them).
Further, Ck

r is the subclass of Ck where the quantifier depth in the formulas is restricted to r.

For example, ∃x
[
∃≥8y E(x, y)∧∀y

(
E(x, y) → ∃≥2xE(y, x)

)]
lies in C2

3 and says that there
is a vertex that has at least 8 neighbors, each of which has at least 2 neighbors themselves.

▶ Definition 14. The Weisfeiler–Leman differentiation number of two graphs G and H is
defined by

WL(G,H) :=
{

min{k ∈ N | G ̸≡Ck H} if G ̸∼= H

∞ if G ∼= H.

For a graph G, we say that it has Weisfeiler–Leman dimension at most k if and only if
G ̸≡Ck+1 H for all graphs H non-isomorphic to G.
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Let G and H be two graphs for the remainder of this section. We describe the r-round
bijective k-pebble game of Hella [29], adapting the excellent notation from [1]. This game can
be used to test Ck

r -equivalence. We first describe some notation and the concept of partial
isomorphism before proceeding to introduce the game itself.

▶ Notation 15. Let k ∈ N. Suppose v = (v1, . . . , vk) ∈ (VG ∪ {⋆})k. For i ∈ [k] and
v ∈ VG ∪ {⋆}, we let v[i/v] denote the tuple (v1, . . . , vi−1, v, vi+1, . . . , vk). Further, we let
|v|⋆ denote the number of stars in the tuple v.

▶ Definition 16. Let k ∈ N and let v = (v1, . . . , vk) ∈ (VG ∪ {⋆})k and w = (w1, . . . , wk) ∈
(VH ∪ {⋆})k be two k-tuples. We say that the pair (v,w) induces/is a partial isomorphism
between G and H if, for every i, j ∈ [k] we have:
1. vi = ⋆ if and only if wi = ⋆;
2. vi = vj if and only if wi = wj;
3. {vi, vj} ∈ EG if and only if {wi, wj} ∈ EH .

In the following game, Spoiler wants to exhibit a difference between the given graphs,
while Duplicator tries to disguise such a difference by maintaining a partial isomorphism.

▶ Definition 17. Let k, r ∈ N. The r-round bijective k-pebble game on the graphs G and H
is played by two players, called Spoiler and Duplicator. There are k pairs of matched pebbles
in the game. The game proceeds in rounds. The game position after round r is finished can
be represented by a pair (v,w) ∈ (VG ∪ {⋆})k × (VH ∪ {⋆})k. The game starts with some
initial position (v0,w0). If this initial tuple does not induce a partial isomorphism between
the graphs, Spoiler wins the game after 0 rounds. We now describe the round r + 1 of the
game. For this, we suppose that the position after round r is given by (v,w).

If |v|⋆ = |w|⋆ = 0, Spoiler must choose a position i ∈ [k] (otherwise, he can still opt to do
this deletion step). The tuples are updated to v[i/⋆] and w[i/⋆].
Duplicator then chooses a bijection φ : VG → VH (if no such bijection exists, she has lost).
Spoiler picks a vertex v ∈ VG and a position i ∈ [k] such that vi = wi = ⋆, and the tuples
are updated to v[i/v] and w[i/φ(v)].

If the new (v,w) does not induce a local isomorphism, then Spoiler has won after r + 1
rounds. Otherwise, the game continues with the next round. We say that Duplicator has a
winning strategy if she can make the game last indefinitely.

It was shown in [11, 29] that WL(G,H) ≤ k if and only if Spoiler has a winning strategy
for the bijective k-pebble game on G and H starting from the initial position (v,w) with
v = w = (⋆, . . . , ⋆).

3 CP Refutations for Isomorphism Formulas

We fix two graphs G and H. For the remainder of this paper, it is sometimes convenient to
use an alternative view of the pebbling configurations used in Section 2.4.

▶ Definition 18 (zip Operator). Let k ∈ N and let v = (v1, . . . , vk) ∈ (VG ∪ {⋆})k and
w = (w1, . . . , wk) ∈ (VH ∪ {⋆})k. We write

p = zip(v,w)

to denote the set p ⊆ VG × VH given by

p :=
{

(vi, wi)
∣∣ i ∈ [k] such that vi ̸= ⋆ and wi ̸= ⋆

}
.
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Definition 16 can easily be adapted to game positions denoted in the way above.

▶ Notation 19. Let k, r ∈ N. For a game position p ⊆ VG × VH , we write p ∈ Dk(G,H) if p
is a winning position for Duplicator in the k-bijective game played on G and H. Similarly,
the set Dk

r (G,H) is defined for the positions in which Duplicator does not lose in r rounds
in the game. We use the notation Sk

r (G,H) to denote winning positions for Spoiler in the
respective game.

As in [1, 6], we now define an equivalence relation on (VG ∪ {⋆})k ∪ (VH ∪ {⋆})k.

▶ Definition 20 ([1, 6]). Let k ∈ N. Further, let G and H be two graphs and let K,K ′ ∈
{G,H}, not necessarily distinct. Additionally, let u ∈ (VK ∪ {⋆})k and u′ ∈ (VK′ ∪ {⋆})k.
We write u ≡Dk u′ if p := zip(u,u′) ∈ Dk(K,K ′).

It was shown in [1, Lemma 3] that ≡Dk is an equivalence relation.

3.1 Constructing a CP Refutation from the Bijective Pebble Game
We show that if a pair (G,H) of non-isomorphic graphs can be separated by the bijective
k-pebble game in r rounds, then there is a CP refutation for Iso(G,H) having width k and
rank r simultaneously. By Lemma 9, the same result holds for the MIso(G,H) formulas. We
use the equivalence relation ≡Dk to define a bipartite graph with certain properties.

▶ Definition 21. Let p ⊆ VG × VH be an initial position of the bijective pebble game played
on the graphs G and H. The bipartite graph Bk

r (p) is defined as B := Bk
r (p) = (VG ⊎VH , EB)

with edge set

EB :=
{

{v, w}
∣∣ p ∪

{
(v, w)

}
̸∈ Sk

r (G,H)
}
.

We need the following result from [6]:

▶ Lemma 22. Suppose that Spoiler has a winning position for the bijective k-pebble game
played on the graphs G and H in r+1 rounds starting from position p. In the graph B := Bk

r (p)
there are two sets S ⊆ VG and T ⊆ VH with the following properties:

N(S) = T , N(T ) = S, and |S| > |T |;
Spoiler can win the game in r rounds from the starting position p ∪

{
(v, w)

}
for every

pair (v, w) ∈ VG × VH with the property v ∈ S ↔ w ̸∈ T .

Proof. By assumption, p ∈ Sk
r+1(G,H). This means that for all bijections φ : VG → VH that

Duplicator can provide, there is always a v ∈ VG that Spoiler can choose in return, such that
he still has a winning strategy from the position p ∪

{
v, φ(v)

}
in r rounds. Hence for this

v, we have
{
v, φ(v)

}
̸∈ EB. Thus, there can be no perfect matching in the graph B. By

Hall’s marriage theorem [28], a set S ⊆ VG exists with |NB(S)| < |S|. We choose S to be an
inclusion-maximal set with this property. Further, let

T := NB(S).

We claim that NB(T ) = S holds. To reach a contradiction, suppose that there is a vertex

v ∈ NB(T ) \ S. (2)

The maximality of S implies NB(v) ̸⊆ T . Let

w ∈ NB(v) \ T (3)
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be a vertex witnessing this fact. Since v ∈ NB(T ), there exists a vertex

w′ ∈ NB(v) ∩ T. (4)

Moreover, since T = NB(S) there is a vertex

v′ ∈ NB(w′) ∩ S. (5)

The choice of the vertices in Equations (2) – (5) implies that there are edges

{v′, w′}, {v, w′}, {v, w} ∈ EB .

This means that Duplicator has a winning strategy for the r-round k-bijective pebble game
from the starting positions p ∪

{
(v′, w′)

}
, p ∪

{
(v, w′)

}
, and p ∪

{
(v, w)

}
. Since ≡Dk is

an equivalence relation, we thus have that she also has a winning strategy starting from
p ∪

{
(v′, w)

}
. Hence, {v′, w} ∈ EB . However, this contradicts w ̸∈ NB(S). ◀

For a game position p =
{

(v1, w1), . . . , (vℓ, wℓ)
}

⊆ VG × VH we let Sp :=
∑ℓ

i=1 xvi,wi
.

Note that, in particular, S∅ = 0.

▶ Theorem 23. Suppose that Spoiler has a winning strategy for the r-round bijective k-pebble
game played on the graphs G and H with initial position p0. Then, there is a CP derivation
of the inequality Sp0 ≤ |p0| − 1 from Iso(G,H) having width k and rank r simultaneously.

Proof. We prove the theorem by induction on r, the number of rounds in the game. First, we
consider the base case, where Spoiler wins the game from p0 in 0 rounds. Since |VG| = |VH |, it
must be that p0 is not a local isomorphism; therefore, there are two pairs (v, w), (v′, w′) ∈ p0
that induce a local non-isomorphism. Hence, the inequality xv,w + xv′,w′ ≤ 1 must be a
Type 2 axiom of Iso(G,H). Adding the Type 3 axiom inequalities xa,b ≤ 1 for all |p0| − 2
many other pairs (a, b) ∈ p0 \

{
(v, w), (v′, w′)

}
, we obtain a derivation of Sp0 ≤ |p0| − 1.

For the induction step, let p ⊆ p0 with |p| = ℓ < k be the set of pairs not deleted by
Spoiler at the beginning of the first round in the game. It suffices to show that it is possible
to derive the inequality Sp ≤ |p| − 1. We consider the bipartite graph B from Definition 21.
From Lemma 22, we know that there are two sets S ⊆ VG and T ⊆ VH with N(S) = T ,
N(T ) = S and |S| > |T | and such that for every pair (v, w) with v ∈ S ↔ w ̸∈ T , Spoiler can
win the game in r-rounds from the start position p ∪

{
(v, w)

}
. By the induction hypothesis,

there is a CP derivation of Sp + xv,w ≤ |p| for all such pairs.
We notice first that we can derive the inequalities∑
v∈S, w∈T

xv,w ≤ |T | and
∑

v∈S, w∈T

xv,w ≤ |S|. (6)

To derive the first one of them, observe that for each w ∈ T , we have the axiom inequality∑
v∈VG

xv,w ≤ 1, which can be reduced to
∑

v∈S xv,w ≤ 1 by adding the axioms xv,w ≥ 0
for all v ∈ S. We obtain the first expression by adding the inequalities for all w ∈ T . The
second one is completely analogous. Adding both inequalities of (6) together, we get:∑

v∈S, w∈T

xv,w +
∑

v∈S, w∈T

xv,w ≤ |T | + |S|. (7)

Since |T | + |S| < |S| + |S| = n, Inequality (7) can be weakened to∑
v∈S, w∈T

xv,w +
∑

v∈S, w∈T

xv,w ≤ n− 1.
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Next, for each vertex v ∈ S adding over all inequalities Sp + xv,w ≤ |p| corresponding to
pairs (v, w) for w ∈ T (derived inductively) we get∑

w∈T

(Sp + xv,w) ≤ |T |ℓ,

and adding over all v ∈ S, we obtain∑
v∈S

∑
w∈T

(Sp + xv,w) ≤ |S||T |ℓ. (8)

Analogously, considering the pairs with v ̸∈ S and w ∈ T , we get∑
w∈T

∑
v∈S

(Sp + xv,w) ≤ |S||T |ℓ. (9)

Let γ := |S||T | + |S||T |. By adding the inequalities corresponding to the long Type 1
axioms for all vertices v ∈ VG, we can derive the inequality∑

v∈VG, w∈VH

xv,w ≥ n.

Subtracting (8) and (9) from this, we get∑
v∈S, w∈T

xv,w +
∑

v∈S, w∈T

xv,w − γSp ≥ n− γℓ.

Also subtracting the weakened version of (7), we derive

−γSp ≥ 1 − γℓ.

Observe that this last inequality has been obtained as the linear combination of axioms
and previous inequalities, and therefore, the derivation can be done in one step. Using the
rounding rule dividing by γ, we get

−Sp ≥
⌈

1 − γℓ

γ

⌉
= 1 − ℓ,

which is equivalent to Sp ≤ ℓ− 1. The linear combination and the rounding rule count as
one use of the GC-rule. ◀

▶ Corollary 24. If G ̸≡Ck
r
H, then there is a CP refutation for Iso(G,H) having width k and

rank r simultaneously.

Proof. Spoiler can win the game starting at the empty initial position p0 = ∅. The above
result implies that the contradiction 0 ≤ −1 can be derived with the desired parameters. ◀

▶ Corollary 25. If a pair of non-isomorphic graphs G,H with n vertices each can be separated
by the bijective k-pebble game, then there is a CP refutation for Iso(G,H) having size nO(k).

Proof. This follows from the observation that the CP refutation of Iso(G,H) described above
only contains axioms and inequalities of the form Sp ≤ |p| − 1 for sets of pairs p. Since there
are at most

∑k
i=0

(
n
i

)2 = nO(k) such sets of pairs, the result follows. ◀

Grohe [24] proved that two non-isomorphic graphs in every non-trivial minor-closed
graph class can be distinguished using k-WL for a constant k. This implies that for these
graphs, the Cutting Planes procedure can produce polynomial-size certificates of graph
non-isomorphism. As a concrete example, we mention that it was shown in [38] that the
Weisfeiler–Leman dimension of the class of all finite planar graphs is at most 3. Furthermore,
2-WL asymptotically almost surely decides isomorphism for random regular graphs [8, 39].
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3.2 CP Width Lower Bound for the Isomorphism Formulas
As described in [36], for a polytope P ⊂ Rn, the Chvátal closure P ′ is the polytope of all
points x such that, for every a ∈ Zn and every b ∈ R, we have[

∀y ∈ P : ⟨a,y⟩ ≥ b
]

=⇒ ⟨a,x⟩ ≥ ⌈b⌉; (10)

that is, we remove all points of the polytope P that are (in a certain sense) definitely
not integer solutions. By iteratively defining P (i+1) := (P (i))′, we obtain a sequence
P = P (0) ⊇ P (1) ⊇ P (2) ⊇ . . . of polytopes. The Chvátal rank can then be seen as the
smallest r such that P (r) = PZ (it was shown by Schrijver [47] that such an r always exists).

Protection lemmas have a long tradition in optimization theory for the study of the
Chvátal rank. For the CP rank, such lemmas have been used in [10] and [40]. A protection
lemma for CP width was introduced in [18]. We give a width protection lemma adapted to
the graph isomorphism problem. This generalizes (10). The following notation is employed.

▶ Notation 26. Given a matrix X ∈ Rn×n and a set I ⊆ [n] we denote by X|I ∈ Rn×n the
projection of X to the rows in I, that is, to the positions Rows[I] := {(i, j) | i ∈ I, j ∈ [n]}
(meaning that the rows which are not in I are set to 0).

▶ Definition 27. Let G and H be two graphs with n vertices each and let PG,H be the polytope
in [0, 1]n×n defined by the MIso(G,H) inequalities. For k ∈ N, we define

P ′
G,H(k) :=

{
X ∈ PG,H

∣∣∣∣ ∀A ∈ Zn×n, ∀b ∈ R, ∀I ⊆ [n] with |I| = k :[
∀ Y ∈ PG,H : ⟨A,Y|I⟩F ≥ b

]
=⇒ ⟨A,X|I⟩F ≥ ⌈b⌉

}
.

Here ⟨A,B⟩F :=
∑n

i=1
∑n

j=1 ai,j bi,j denotes the Frobenius inner product between the matrices
A = (ai,j) ∈ Rn×n and B = (bi,j) ∈ Rn×n.

▶ Lemma 28 (Protection Lemma for Graph Isomorphism). Let k ∈ N. Further, let X ∈ [0, 1]n×n

be a fractional isomorphism in the polytope PG,H . Suppose that for any I ⊆ [n] with |I| ≤ k,
there is a set of matrices Y1, . . . ,Ys ∈ [0, 1]n×n satisfying:

For all t ∈ [s], (Yt)i,j ∈ {0, 1} in all positions (i, j) ∈ Rows[I];
for all t ∈ [s], the matrix Yt is a fractional solution of PG,H ; and
the restriction X|I is a convex combination of Y1|I , . . . ,Ys|I .

Then, X ∈ P ′
G,H(k).

Proof. Suppose, to reach a contradiction, that X is a fractional isomorphism in PG,H but
X ̸∈ P ′

G,H(k). Then, by Definition 27 there exists a matrix A ∈ Zn×n, a real number b ∈ R,
and a set I ⊆ [n] with |I| = k such that for all Y ∈ PG,H we have ⟨A,Y|I⟩F ≥ b but
⟨A,X|I⟩F < ⌈b⌉. Since X ∈ PG,H , we have ⟨A,X|I⟩F ≥ b. This implies that ⟨A,X|I⟩F ̸∈ Z.

For all the protection matrices Yt ∈ {Y1, . . . ,Ys}, since they are 0-1-valued in Rows[I],
we have that ⟨A,Yt|I⟩F is an integer. Also, since Yt is in the polytope, ⟨A,Yt|I⟩F ≥ b.
Combining both facts, we have ⟨A,Yt|I⟩F ≥ ⌈b⌉. However, since X|I is a convex combination
of the protection matrices, it must hold ⟨A,X|I⟩F ≥ ⌈b⌉, which is a contradiction. ◀

Note that for |I| = k, the above restrictions consider kn variables. In previously published
protection lemmas, these restrictions had size k. However, our version can only make the
construction of the protection matrices harder.

For each game position p ⊆ VG × VH , we define a matrix Mp that we will show in
Lemma 35 to be a fractional isomorphism between G and H. We begin by first defining
auxiliary functions that will be used to define the entries of this matrix. Since ≡Dk is an
equivalence relation, we can define the type of v ∈ (VG ∪ {⋆})k as the equivalence class of v.
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▶ Definition 29 ([6]). Given a tuple v ∈ (VG ∪ {⋆})k we let

c(v) := [v]≡
Dk

be the equivalence class of v. Further, we define

t(v) := |c(v) ∩ (VG ∪ {⋆})k|.

▶ Definition 30. Let v ∈ (VG ∪ {⋆})k and w ∈ (VH ∪ {⋆})k. For every non-empty game
position q = zip(v,w) ̸= ∅, the function ζ is defined in the following way:

ζ(q) :=
{

0 if c(v) ̸= c(w)
1

t(v) otherwise. (11)

For q = ∅, we let ζ(∅) := 1.

We use the function ζ to define the entries of the matrix. For a game position p ⊆ VG ×VH

and a tuple (v, w) ∈ VG × VH , we use the notation p ∪ vw as a shorthand for p ∪
{

(v, w)
}

.

▶ Definition 31. Let p ⊆ VG × VH be a game position with |p| ≤ k − 1. For every i, j ∈ [n],
the number mp

i,j is defined in the following way:

mp
i,j :=

{
0 if p ∪ viwj ̸∈ Dk(G,H)

ζ(p∪viwj)
ζ(p) otherwise. (12)

We further define the matrix Mp by letting (Mp)i,j := mp
i,j for each i, j ∈ [n].

Observe that in the case ζ(p) = 0, the value of mp
i,j is 0 because the first case in (11)

implies that p ∪ viwj ̸∈ Dk(G,H), ensuring that we do not divide by zero in (12). The
following result follows directly from the definition of the matrix entries.

▶ Lemma 32. If p ∈ Dk(G,H) and (vi, wj) ∈ p, then
(i) mp

i,j = 1, and
(ii) mp

i′,j = mp
i,j′ = 0 for i ̸= i′ and j ̸= j′.

▶ Notation 33. Let v = (v1, . . . , vk) ∈ (VG ∪ {⋆})k such that there is an i ∈ [k] with vi = ⋆.
Such tuples represent positions in the bijective pebble game and are thus closed under
permutations when the corresponding tuple in the other graph is permuted with the same
permutation; see, e. g., [1, Claim 11]. For v ∈ VG, we let vv be the tuple that results by
replacing any ⋆ in v with v.

In the following, we tacitly assume an ordering v1 ≺ v2 ≺ · · · ≺ vn on the vertices of
the graph and often identify a vertex vi with its number i in this order. Hence, we can
now speak of matrix positions (v, w). This helps to keep the following notation clear. The
following technical lemma is needed in the next results. It follows from the properties of the
equivalence relations defined by the bijective game.

▶ Lemma 34. Let p ⊆ VG × VH with |p| ≤ k − 1, and p = zip(a,b). Then, for every
(v, w) ∈ VG × VH , if c(av) = c(bw), then

t(av) = t(a) ·
∣∣{w′ ∈ VH

∣∣ c(av) = c(bw′)
}∣∣ .

Proof. Since c(av) = c(bw), we have∣∣{w′ ∈ VH

∣∣ c(av) = c(bw′)
}∣∣ =

∣∣{v′ ∈ VG

∣∣ c(av) = c(av′)
}∣∣ = |c(av)|

|c(a)| = t(av)
t(a) . ◀
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▶ Lemma 35. Let a ∈ (VG ∪ {⋆})k and b ∈ (VH ∪ {⋆})k be such that c(a) = c(b) and such
that p := zip(a,b) has size |p| < k − 1. Then, the matrix Mp is a fractional isomorphism
between G and H.

Proof. We first show that when p is as above, the axioms expressed that we are dealing with
a double stochastic matrix are satisfied by Mp (even when |p| = k − 1). For each v ∈ VG we
have∑

w∈VH

(Mp)v,w =
∑

w∈VH

c(a v)=c(bw)

ζ(p ∪ vw)
ζ(p) =

∑
w∈VH

c(a v)=c(bw)

t(a)
t(av) .

By Lemma 34 we have
∣∣{w ∈ VH

∣∣ c(av) = c(bw)
}∣∣ = t(av)/t(a). Hence, the sum of a row

in the matrix adds to 1. The proof for the columns is analogous.
For the case of the isomorphism axioms, let (v, w) ∈ VG × VH . We have to show∑
i∈N(v)

mp
i,w =

∑
j∈N(w)

mp
v,j . (13)

By the result on the double stochasticity of the matrices just proved above, since |p ∪ iw| ≤
k − 1, we have that for every i ∈ N(v),

1 =
∑

j∈VH

mp∪iw
v,j =

∑
j∈N(w)

mp∪iw
v,j ,

where the last equality holds because only for the neighbors of w the value of mp∪iw
v,j can

be different from 0. By the definition, if mp∪iw
v,j ̸= 0, then this number can be expressed as

ξ ·mp
v,j , with

ξ := t(av) · t(a i)
t(a) · t(a iv) .

Therefore,∑
j∈N(w)

mp
v,j =

∑
j∈N(w)

mp∪iw
v,j

1
ξ

= 1
ξ
.

Similarly for every j ∈ N(w), we have

1 =
∑

i∈N(v)

mp∪vj
i,w ,

and also the numbers mp∪vj
i,w (when different from 0) can be expressed as ξ ·mp

i,w. Therefore
both sums in (13) are equal. ◀

We observe that in the previous result, it does not suffice that |p| ≤ k− 1 in order for the
matrix Mp to be a fractional isomorphism between G and H . As a counterexample consider
G to be a cycle with 6 vertices and H to be the union of two cycles with 3 vertices each, and
let A and B be the adjacency matrices of these graphs. Duplicator wins the 2-pebble game
on G,H ; however, it can be easily checked that for p =

{
(v, w)

}
for any pair v ∈ VG, w ∈ VH ,

the matrix Mp does not satisfy AMp = MpB.

▶ Theorem 36. Let G and H be two non-isomorphic graphs with n vertices each such that
G ≡Ck H. Further, let p ∈ Dk(G,H) with |p| < k − 1 and consider the matrix Mp. For any
I ⊆ [n] with |I| < k − 1, there is a set of matrices Y1, . . . ,Ys, satisfying:
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Each of these matrices is 0-1-valued on Rows[I];
each of these matrices is a fractional isomorphism in PG,H of the form Mp′ , with
|p′| < k − 1, and p′ ∈ Dk(G,H); and
the restriction Mp|I is a convex combination of Y1|I , . . . ,Ys|I .

Proof. We prove the result by induction on ℓ = |I|. For the induction base ℓ = 1, let p be a
game starting position as above and let I = {i1}. Consider the matrix Mp. We can suppose
that w. l. o. g. that i1 is not a vertex contained in a tuple of p and also that for all j ∈ [n],
the matrix entry mp

i1,j ̸= 1. Otherwise, Mp already has the desired properties.
Let us start with the simpler case in which |p| < k − 2. Also, not all the positions in

a row i1 of Mp can be 0 since we are dealing with a fractional isomorphism. Under these
conditions, there is a set of at least two non-zero elements in that row; let us call this set
NZ(i1). This follows from the fact that the sum of the row elements adds to 1. For each
j ∈ NZ(i1) let pj := p ∪ vi1wj and consider the matrices Yj := Mpj for j ∈ NZ(i1).

These matrices have the following properties: According to Lemma 32, they have 0-1
values on the row i1. Due to Lemma 35, the matrices Mpj are fractional isomorphisms since
|pj | < k − 1. All the pj considered as game positions are winning positions for Duplicator
in the k-bijective game since they can be reached if Spoiler adds the pair (vi1 , wj) (for any
j ∈ NZ(i1)) which is a valid move since these positions are non-zero in Mp, meaning that
p ∪ vi1wj is also a winning position for Duplicator. It is only left to show that Mp|I is a
convex combination of the restriction to Rows[I] of the matrices Mpj , but this follows from
the fact that for each j ∈ NZ(i1), the matrix Mpj has a 1 in position (i1, j), and 0’s in all
other positions in the row i1, and all these positions have the same value in Mp. Therefore,
Mp|I can be obtained as a convex combination of the restriction to Rows[I] of the new
matrices, multiplying each one of them times (Mp)i1,j . This is a correct combination since
for p = zip(a,b), and c(avi1) = c(bwj), we have

(Mp)i1,j = t(a)
t(avi1)

and the number of such matrices is equal to∣∣NZ(i1)
∣∣ =

∣∣{j ∣∣ c(avi1) = c(bwj)
}∣∣ = t(avi1)

t(a) .

Let us now suppose |p| = k − 2. In this situation, we cannot just add elements to p since
then, we cannot guarantee that the resulting matrix is a fractional isomorphism, and we have
to delete some elements from p first. Let (v, w) be any pair in p and let p̂ = p \

{
(v, w)

}
.

For any j ∈ NZ(i1) let p′
j := p̂ ∪ vi1wj and consider the matrices Yj := Mp′

j . Again these
matrices have 0-1 values on the row i1 and encode fractional isomorphisms since each p′

j has
the right length and is a winning position for Duplicator in the k-bijective game since these
positions can be reached if Spoiler deletes (v, w) from p and adds (vi1 , wj), which are valid
moves since these positions are non-zero in Mp, meaning that p ∪ vi1wj is also a winning
position for Duplicator and, therefore, p′

j is also one. It is only left to show that Mp|I is a
convex combination of the restriction to Rows[I] of the matrices Mp′

j . Let p = zip(av,bw).
The value of a non-zero position in row i1 in Mp is

t(av)
t(av vi1) .

If there is a non-zero position in row i1 in Mp, then the same position in Mp̂ is also non-zero
since p̂ ⊆ p. Each matrix Mp′

j has a 1 in position (i1, j) and 0’s in the other positions in
that row. If (Mp)i1,j ̸= 0, then Mp′

j is one of the Y matrices since (Mp̂)i1,j ̸= 0. There are
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∣∣{j ∣∣ c(av vi1) = c(bwwj)
}∣∣ = t(av vi1)

t(aw)

non-zero positions in row i1 in Mp. Multiplying the Y matrices corresponding to these
positions times t(a v)

t(a v vi1 ) and adding them together, we obtain the convex combination.
The induction step is completely analogous. Given Mp and I = {i1, . . . , iℓ}, let I ′ =

{i1, . . . , iℓ−1}. By induction, we can construct a set of matrices Yt of the form Mp′ with p′

containing a set of pairs
{

(i1, j1), . . . , (iℓ−1, jℓ−1)
}

satisfying the conditions and such that
Mp|I′ is a convex combination of the constructed matrices. These are 0-1 on Rows[I ′]. In
one last step, we can construct from these the matrices for I as in the case for ℓ = 1. A
convex combination from convex combinations is still one. ◀

▶ Corollary 37. If Duplicator has a winning strategy for the k-pebble bijective game played
on G,H, then there is no CP refutation of MIso(G,H) of width k − 2.

Proof. This follows from Lemma 28 and the previous result since they together imply that
each Mp corresponding to a winning position p for Duplicator of size |p| ≤ k−2 survives cuts
of size k− 2. At each step, starting from the empty position p = ∅, we consider the fractional
isomorphism Mp. There are protection matrices for it that also correspond to winning
positions p′ for the Duplicator with size |p′| ≤ k− 2. For each of these new positions p′ there
are also protection matrices and therefore, it is not possible, allowing only cuts of width k−2,
to eliminate any of these fractional isomorphisms from PG,H . ◀

A close inspection of the proof of the previous theorem, together with Lemma 28, also
gives a connection to CP rank.

▶ Corollary 38. Let k ≥ 3. If Duplicator has a winning strategy for the r-round k-pebble
bijective game played on G,H, then there is no CP refutation of MIso(G,H) of width k − 2
and rank r

k−2 .

4 Tree-CP∗ Size Lower Bounds for Refuting Isomorphism

Proving size lower bounds for Cutting Planes refutations of the isomorphism problem is a
challenging open question. Basically, the two only known methods for proving such bounds
are interpolation and lifting. Neither of these methods is suitable for isomorphism formulas.
Interpolation requires some monotone problem, and GI is highly non-monotone. Also, after
applying lifting, one obtains some constructed formulas that are not isomorphism formulas.
Using some known results from communication complexity, we can, however, show size lower
bounds for the restricted case of tree-like Cutting Planes proofs with polynomially bounded
coefficients (we denote this system with Tree-CP∗). A refutation is tree-like if the underlying
directed acyclic graph is a tree. A CP proof for a formula F has polynomially bounded
coefficients if there exists a constant c > 0 such that the absolute value of all coefficients
used in inequalities of the proof is bounded by O(nc), where n is the number of variables
of F . The system Tree-CP∗ is non-trivial, allowing, for example, polynomial-sized proofs for
the pigeonhole principle [16].

In [34], the size of Tree-CP proofs for a formula F was related to the communication
complexity of a search problem for F , showing that if the underlying search problem has high
communication complexity, this implies a lower bound for the Tree-CP size of refuting F .
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Critical block sensitivity is a communication complexity measure introduced in [31],
extending the classical concept of block sensitivity [43]. It is an easy fact that a critical
block sensitivity lower bound for a problem implies the same bound for the communication
complexity of the search problem.

In [23, Theorem 3], lower bounds on the critical block sensitivity of Tseitin formulas were
proved. The authors showed that there exist graph families of bounded degree, with critical
block sensitivity communication Ω(n/ log n) which by the results in [34] imply a size lower
bound of Ω(2n/ log2 n) for Tree-CP∗ refutations of Tseitin formulas.

It was shown in [50, Lemma 4.2] that there is a direct reduction from Tseitin to isomorph-
ism formulas, and it is, thus, possible to obtain lower bounds for isomorphism formulas from
lower bounds for Tseitin formulas. As a direct consequence of all these results, we obtain:

▶ Corollary 39. There are families of non-isomorphic graphs G,H, with n vertices each,
and such that the refutation of MIso(G,H) in Tree-CP∗ requires size Ω(2n/ log2 n).

5 Conclusions and Open Problems

We have shown an exact characterization of the Weisfeiler–Leman graph differentiation
number of two graphs in terms of the cutwidth needed for refuting the corresponding
isomorphism formula. Let us emphasize that Equation (1) holds for both the Iso and MIso
formulas. For this, we have introduced a new protection lemma for the graph isomorphism
polytope. This new connection enabled us to show that the Cutting Planes proof system can
show graph non-isomorphism in polynomial time for graphs with a constant Weisfeiler–Leman
dimension. Furthermore, by using known results from communication complexity, we were
able to give a lower bound for the size of tree-like CP refutations with polynomially bounded
coefficients for refuting graph isomorphism inequalities. Some important questions remain
open. Maybe the most interesting one is to prove CP size lower bounds for isomorphism
formulas. This is quite challenging since basically all the lower bounds for this kind of
formula are based on graphs related to the Tseitin formulas, and recently a quasi-polynomial
upper bound for the CP size of such formulas has been shown [17]. Furthermore, it would
be interesting to have trade-off results between the dimension of the WL algorithm and
its iteration number (this is equivalent to a trade-off between the number k of pebbles in
Hella’s bijective pebble game and the number r of rounds). While trade-off results are known
for these parameters [7, 25], they do not hold for structures of bounded arity (like graphs).
However, due to the connection of these parameters to the Resolution proof system [52] and
the Cutting Planes proof system, as shown in this paper, such results would immediately
imply proof complexity trade-offs (in our case, between width and rank for Cutting Planes).
Moreover, it is open if the second implication in (1) can be improved.
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Abstract
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that CDCL solvers can simulate resolution proofs with polynomial overhead. However, previous
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a learned clause has at least one inference where a literal appears in both premises (aka, a merge
literal). Specifically, we show that proofs of this kind can simulate resolution proofs with at most a
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1 Introduction

Over the last two decades, CDCL SAT solvers have had a dramatic impact on many areas of
software engineering [10], security [13, 28], and AI [7]. This is due to their ability to solve
very large real-world formulas that contain upwards of millions of variables and clauses [17].
Both theorists and practitioners have expended considerable effort in understanding the
CDCL algorithm and the reasons for its unreasonable effectiveness in the context of practical
applications. While progress has been made, many questions remain unanswered.

Perhaps the most successful set of tools for understanding the CDCL algorithm comes
from proof complexity, and a highly influential result is that shows that idealized models
of CDCL are polynomially equivalent to the resolution proof system, proved independently
by Atserias, Fichte, and Thurley [2], and Pipatsrisawat and Darwiche [23], building on
initial results by Beame et al. [5] and Hertel et al. [15]. (See also a recent alternative proof
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by Beyersdorff and Böhm [6].) Such simulation results are useful because they provide us
with a much simpler object (resolution proofs) to analyze than CDCL with its complicated
implementation details.

Proof complexity models of CDCL need to assume a few traits of the algorithm. A series
of papers have focused on understanding which of the assumptions are needed for a simulation
of resolution to hold, often introducing refinements of resolution along the way. For instance,
the question of whether restarts are needed, while still open, has been investigated at length,
and the pool resolution [26] and RTL [9] proof systems were devised to capture proofs
produced by CDCL solvers that do not restart. The importance of decision heuristics has
also been explored, with results showing that neither static [21] nor VSIDS-like [27] ordering
of variables are enough to simulate resolution in full generality (unless VSIDS scores are
periodically erased [16]). In the case of static ordering, the (semi-)ordered resolution proof
system [21] was used to reason about such variants of CDCL solvers.

But even if we stay within the idealized model, it is not clear how efficient CDCL is in
simulating resolution. The analysis of Pipatsrisawat and Darwiche gives an O(n4) overhead –
that is, if a formula over n variables has a resolution refutation of length L, then a CDCL
proof with no more than O(n4L) steps exists. Beyersdorff and Böhm [6] improved the
overhead to O(n3), and it is unclear whether it can be further reduced. Furthermore, to
the best of our knowledge, prior to our paper, we did not even know if the overhead can be
avoided altogether.

1.1 Learning Schemes in CDCL and Connection with Merges
A common feature of CDCL solvers is the use of 1-empowering learning schemes [22, 2]: that
is, they only learn clauses which enable unit propagations that were not possible before. An
example of 1-empowering learning scheme is the popular First Unique Implication Point
(1UIP) learning scheme [18]. To model this behavior we build upon a connection between
1-empowerment, and merges [1], i.e., resolution steps involving clauses with shared literals.

Nearly every CDCL solver nowadays uses the 1UIP learning scheme, where conflict
analysis starts with a clause falsified by the current state of the solver and sequentially
resolves it with clauses responsible for unit propagations leading to the conflict, until the
clause becomes asserting, i.e., unit immediately upon backjumping.

Descriptions of early implementations of CDCL solvers [18, 20] already remark on the
importance of learning an asserting clause, since that nudges the solver towards another part
of the search space, and consequently early alternative learning schemes explored learning
many kinds of asserting clauses. First observe that conflict analysis can be extended to
produce other asserting clauses that appear after the 1UIP during conflict analysis such as
intermediate UIPs and the last UIP [4]. The early solver GRASP can even learn multiple
UIP clauses from a single conflict. While there is empirical evidence that it is often best
to stop conflict analysis at the 1UIP [29], recent work has identified conditions where it is
advantageous to continue past it [14] (see also the discussion of learning schemes therein).

Ryan [24, §2.5] also observed empirically that clause quality is negatively correlated with
the length of the conflict analysis derivation and considered the opposite approach, that
is, learning clauses that appear before the 1UIP during conflict analysis in addition to the
1UIP. This approach is claimed to be useful for some empirical benchmarks but, like any
scheme that learns multiple clauses, slows down Boolean constraint propagation (BCP) in
comparison to a scheme that learns just the 1UIP.

Later works provide a more theoretically oriented approach to understanding the strength
of 1UIP and to learning clauses that appear before the 1UIP [12, 22]. In particular, and
highly relevant for our discussion, Pipatsrisawat and Darwiche identified 1-empowerment
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as a fundamental property of asserting clauses. Furthermore they identified a connection
between 1-empowering clauses and merges, and used the simplicity of checking for merges as
an approximation for 1-empowerment.

An orthogonal approach is to extend the 1UIP derivation by resolving it with clauses
other than those that would usually be used during conflict analysis [3]. A prominent example
is clause minimization [25], where literals are eliminated from the 1UIP clause by resolving it
with the appropriate input clauses, independently of their role in the conflict, so the resultant
clause that is actually learned is a shorter and therefore stronger version of the 1UIP.

Furthermore, a relation between merges and unit-resolution completeness has also been
observed in the context of knowledge compilation [11]. Finally, the amount of merges directly
inferable from a formula (i.e., in a single resolution step) has been proposed, under the
name of mergeability, as a measure to help explain the hardness of a formula based on both
controlled experiments as well as analysis of real-world instances [30].

To summarize, merges are relevant in the context of CDCL learning schemes for the
following reason: all practical CDCL learning schemes either produce a 1-empowering clause
or extend one, and since 1-empowering clauses always contain a merge in its derivation,
we have that all practical learning schemes produce a clause that contains a merge in its
derivation, which is exactly the property imposed by the proof systems we introduce below.

1.2 Our Contributions
As mentioned earlier, we build upon a connection between 1-empowerment and merges [22, 2],
and introduce a DAG-like version of Andrews’ tree-like merge resolution1 which includes
CDCL with an arbitrary 1-empowering learning scheme. This is because for any 1-empowering
clause, at least one step in its resolution derivation must resolve two clauses that share a
common literal: a merge step in the sense of Andrews [1]. This is precisely the condition
that our merge resolution proof system enforces. Clause minimization procedures, as long as
they are applied on top of 1-empowering clauses, are also modelled by merge resolution.

We prove that, on the one hand, merge resolution is able to simulate resolution with only
a linear overhead. On the other hand, we show a quadratic separation between resolution
and merge resolution; that is there exist formulas with resolution proofs of linear length that
require merge resolution proofs of quadratic length. The practical consequence of this pair of
results is that CDCL may be polynomially worse than resolution because of the properties of
a standard learning scheme, but the blow-up due to these properties is not more than linear.

We also consider weaker proof systems, all of which contain 1UIP (and do so with finer
granularity), but not necessarily other asserting learning schemes. A technical point of
interest is that we work with proof systems that are provably not closed under restrictions,
which is unusual in proof complexity. This fact forces our proof to exploit syntactic properties
of the proof system, as opposed to relying on more convenient semantic properties.

2 Preliminaries

A literal is either a variable x1 = x or its negation x0 = x. A clause is a disjunction of literals,
and a CNF formula is a conjunction of clauses. The support of a clause or vars(C) is the set
of variables it contains. A resolution derivation from a formula F is a sequence of clauses
η = C1, . . . , CL such that Ci is either an axiom in F or it is the conclusion of applying the
resolution rule

1 Andrews referred to this simply as merge resolution, however as his system was tree-like, we feel that it
is more in keeping with modern terminology to refer to it as tree-like merge resolution.
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Res(A ∨ x,B ∨ x, x) = Res(A ∨ x,B ∨ x) = A ∨B

on two premises Cj , Ck with j, k < i. The unique variable x that appears with opposite
signs in the premises of a resolution inference is called the pivot. If furthermore there
is a literal common to A and B the resolvent is called a merge. If instead of being the
result of a syntactic inference we allow Ci to be any clause semantically implied by Cj

and Ck, even if Cj and Ck might not be resolvable, then we say η is a semantic resolution
derivation. A derivation is a refutation if its last clause is the empty clause ⊥. We denote
η[a, b] = {Ci ∈ η | i ∈ [a, b]}.

We assume that every clause in a derivation is annotated with the premises it is obtained
from, which allows us to treat the proof as a DAG where vertices are clauses and edges point
from premises to conclusions. When this DAG is a tree we call a derivation tree-like, and
when it is a centipede (i.e., a maximally unbalanced tree) we call it input.

A derivation is unit if in every inference at least one of the premises is a unit clause
consisting of a single literal. Since neither input nor unit resolution are complete proof
systems, we write F ⊢i C (respectively F ⊢1 C) to indicate that there exists an input (resp.
unit) resolution derivation of C from F .

A clause C syntactically depends on an axiom A with respect to a derivation η if there is
a path from A to C in the DAG representation of η. This does not imply that A is required
to derive C, since a different derivation might not use A.

A restriction – or more formally a variable substitution, since we allow mapping variables
to other variables – is a mapping ρ : X → X ∪{0, 1}, successively extended to literals, clauses,
formulas, and derivations, simplifying where needed. We write ρ(x) = ∗ as a shorthand for
ρ(x) = x. It is well-known that if η is a resolution derivation from F and ρ is a restriction,
then η↾ρ is a semantic resolution derivation from F ↾ρ.

It is convenient to leave satisfied clauses in place in a derivation that is the result of
applying a restriction to another derivation so that we can use the same indices to refer
to both derivations. To do that we use the symbol 1 and treat it as a clause that always
evaluates to true, is not supported on any set, does not depend on any clause, and cannot be
syntactically resolved with any clause.

A semantic derivation can be turned into a syntactic derivation by ignoring unnecessary
clauses. Formally, if η is a semantic resolution derivation, we define its syntactic equivalent
s(η) as the syntactic resolution derivation obtained by replacing each clause of C ∈ η by
a clause s(C) as follows. If C is an axiom then s(C) = C. Otherwise let A and B be the
parents of C. If s(A) ⊨ C we set s(C) = s(A), analogously with s(B). Otherwise we set
s(C) = Res(s(A), s(B)). It is not hard to see that for each Ci ∈ η, s(Ci) ⊨ Ci.

2.1 CDCL
We need to define a few standard concepts from CDCL proofs. An in-depth treatment can
be found in the Handbook of Satisfiability [8]. Let F be a CNF formula, to which we refer as
a clause database. A trail τ is a sequence of tuples (xji = b, Ci) where Ci is either a clause
in F or the special symbol d representing a decision. We denote by α<i the assignment
{xji

= b | i′ < i}. A trail is valid with respect to F if for every position i that is not a
decision we have that Ci↾α<i

= xb
ji

, in which case we say that Ci propagates xb
ji

, and if for
every decision i there is no clause C ∈ F such that C↾α<i

= xb.
We denote by dl(i) = dl(i − 1) + JCi = dK the decision level at position i, that is the

number of decisions up to i. Here JCi = dK is the indicator of the event that the ith variable
on the trail was set by a decision. We mark the position of the last decision in a trail by i∗.
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A clause C is asserting if it is unit at the last decision in the trail, that is C↾α<i∗ = xb.
It is 1-empowering if C is implied by F and can lead to new unit propagations after being
added to F , that is if there exists a literal ℓ ∈ C such that for some A ∈ {⊥, ℓ}, it holds that
F ∧ C \ ℓ ⊬1 A. If a clause is not 1-empowering then we say it is absorbed by F .

Given a clause D|τ | falsified by a trail τ , the conflict derivation is an input derivation
D|τ |, D|τ |−1, . . . , Dk where Di−1 = Res(Di, Ci, xji) if Ci ̸= d and xji ∈ Di, and Di−1 = Di

otherwise. The first (i.e., with the largest index) asserting clause in the derivation is called
the 1UIP. Note that Di∗ is always asserting (because Di∗ is falsified by α≤i∗ but not by
α<i∗), therefore we can assume that the 1UIP always has index at least i∗.

We call a sequence of input derivations input-structured if the last clause of each derivation
can be used as an axiom in successive derivations. The last clause of each but the last
derivation is called a lemma. A CDCL derivation is an input-structured sequence of conflict
derivations, where learned clauses are lemmas. This definition is similar to that of Resolution
Trees with Input Lemmas [9], with the difference that the sequence only needs to be ordered,
without imposing any further tree-structure on the global proof.

The following Lemmas highlight the practical relevance of merges by relating them to
1UIP, asserting, and 1-empowering clauses.

▶ Lemma 1 ([22, Proposition 2]). If a clause is asserting, then it is 1-empowering.2

▶ Lemma 2 ([2, Lemma 8]). If A ∨ x and B ∨ x are absorbed but A ∨ B is 1-empowering,
then A ∨B is a merge. In particular, if a clause is 1-empowering, then it contains a merge
in its derivation.

▶ Lemma 3. The 1UIP clause is a merge.

Proof. Let Di = Res(Ci+1, Di+1) be the 1UIP. Every clause in F that is not already satisfied
by α<i∗ , and in particular Ci for i > i∗ and D|τ |, contains at least two literals at the
last decision level, otherwise it would have propagated earlier. This also applies to clauses
Di+1, . . . , D|τ |, since they are not asserting.

We accounted for 4 literals at the last decision level present in the premises of Di, of which
2 are not present in the conclusion because they are the pivots. In order for Di to contain
only one literal at the last decision level, the remaining two literals must be equal. ◀

3 Merge Resolution

Andrews’ definition of merge resolution [1] considers tree-like proofs with the additional
restriction that in every inference at least one premise is an axiom or a merge. He also
observes that such derivations can be made input-structured.

▶ Observation 4 ([1]). A tree-like merge resolution derivation can be decomposed into an
input-structured sequence where all the lemmas are merges.

This observation is key when working with such derivations, as is apparent in Section 4,
to the point that we define our proof systems in terms of the input-structured framework.
Every resolution proof can be thought of as being input-structured if we consider it as a
sequence of unit-length input resolutions and every clause as a lemma; it is when we impose
restrictions on which clauses are permitted as lemmas that we obtain different proof systems.

Andrews’ main result is that the merge restriction does not affect tree-like resolution.

2 The original result does not prove 1-consistency, but the proof is analogous.
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▶ Lemma 5 ([1, Lemma 5]). If there is a tree-like resolution derivation of C of length L

where at most the root is a merge, then there is an input resolution derivation of some C ′ ⊆ C

of length at most L.

▶ Theorem 6 ([1, Theorem 1]). If there is a tree-like resolution derivation of C of length L,
then there is a tree-like merge resolution derivation of some C ′ ⊆ C of length at most L.

If we lift the tree-like restriction from the input-structured view of merge resolution proofs
we obtain a proof system between tree- and DAG-like resolution where clauses can be reused
(i.e., have outdegree larger than 1) if and only if they are merges or, in other words, lemmas
in the input-structured decomposition. As a consequence of Lemma 3 this proof system
already includes CDCL refutations produced by solvers that use the 1UIP learning scheme.
In order to model all asserting learning schemes we allow reusing clauses that contain a
merge not only when they are inferred but anywhere in their derivation.

▶ Definition 7. A merge resolution derivation is an input-structured sequence of input
resolution derivations where all derivations but the last contain a merge.

It follows from Lemmas 1 and 2 that refutations produced by solvers that use any asserting
learning scheme are in merge resolution form.

We immediately have from the simulation of resolution by CDCL [23, 2] that merge
resolution polynomially simulates standard resolution. In Section 4 we make this simulation
more precise and prove that the simulation overhead can be made linear, and in Section 5
that the simulation is optimal because there exist formulas that have resolution refutations
of linear length but require merge resolution refutations of quadratic length.

4 Simulation

As an auxiliary tool to simulate resolution in merge resolution we define the input-resolution
closure of a set G, denoted Cli(G) = {C | ∃C ′ ⊆ C, G ⊢i C

′}, as the set of clauses derivable
from G via input resolution plus weakening. It is well-known that, since input resolution
derivations can be assumed to be regular – using each variable at a pivot at most once –
without loss of generality, we can also assume them to have length at most linear in the
number of variables.

▶ Observation 8. If G is a CNF formula over n variables and C ∈ Cli(G) then there is a
regular input resolution derivation of some C ′ ⊆ C from G of length at most n.

Combining Theorem 6 with the idea that in order to simulate a resolution derivation we
do not need to generate each clause, but only do enough work so that in the following steps
we can pretend that we had derived it [23, 2], we can prove that merge resolution simulates
resolution with at most a multiplicative linear overhead in the number of variables.

▶ Theorem 9. If F is a CNF formula over n variables that has a resolution refutation of
length L then it has a merge resolution refutation of length O(nL).

Proof. Let π = (C1, . . . , CL) be a resolution refutation. We construct a sequence of sets
F = G0 ⊆ · · · ⊆ GL with the following properties.
1. Gt \ F is the set of lemmas in a merge resolution derivation from F of length at most

(2n+ 1)t.
2. π[1, t] ⊆ Cli(Gt).
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This is enough to prove the theorem: since ⊥ ∈ Cli(GL) we can obtain ⊥ from GL in
length n, so the total length of the refutation is (2n+ 1)L+ n.

We build the sets by induction, starting with G0 = F . Assume we have built Gt and let
C = Ct+1. If C ∈ Cli(Gt) we set Gt+1 = Gt and we are done. Otherwise C = Res(A,B)
with A,B ∈ π[1, t], and by induction we have A,B ∈ Cli(Gt), therefore by Observation 8
there are input resolution derivations of A′ ⊆ A and B′ ⊆ B of length at most n. Since
neither A′ ⊨ C nor B′ ⊨ C, A′ and B′ can be resolved and therefore there is a tree-like
derivation η of C ′ ⊆ C from Gt of length at most 2n+ 1. By Theorem 6 there is a tree-like
merge resolution derivation η′ of C ′′ ⊆ C from Gt of length at most 2n+ 1. By Observation 4
the derivation η′ can be decomposed into a sequence of input derivations of total length at
most 2n+ 1. Let E be the lemmas in that sequence and set Gt+1 = Gt ∪ E. We have that
C ∈ Cli(F ∪ E) ⊆ Cli(Gt+1), and that we can obtain E from Gt in at most 2n + 1 steps.
Thus Gt+1 has all the required properties. ◀

5 Separation

We prove the following separation between standard and merge resolution.

▶ Theorem 10. There exists a family of formulas Fn over O(n log n) variables and O(n log n)
clauses that have resolution refutations of length O(n log n) but every merge resolution
refutation requires length Ω(n2 log n).

5.1 Formula

Let ℓ,m, n be positive integers. We have variables xi for i ∈ [mℓ − 1] and wj,k for j ∈ [ℓ]
and k ∈ [n]. For convenience we define x0 = 1 and xmℓ = 0, which are not variables. Let
X = {xi | i ∈ [mℓ− 1]}, Wj = {wj,k | k ∈ [n]} and W =

⋃
j∈[ℓ] Wj . For each j ∈ [ℓ] we build

the following gadget:

wj,k = wj,k+1 for k ∈ [n− 1] (1)

Each equality is expanded into the two clauses Bj,k,1 = wj,k∨wj,k+1 and Bj,k,0 = wj,k∨wj,k+1,
and we collectively call them W = {Bj,k,b | j ∈ [ℓ], k ∈ [n− 1], b ∈ {0, 1}}. Observe that the
j-th gadget implies wj,1 = wj,n. Additionally we build the following gadget:

(w1,1 = w1,n) → x1 (2)
(wı̂,1 = wı̂,n) → (xi−1 → xi) for i ∈ [2,mℓ− 1] (3)
(wℓ,1 = wℓ,n) → xmℓ−1 (4)

where ı̂ ∈ [ℓ] denotes the canonical form of i (mod ℓ). Each constraint is expanded into
the two clauses Ai,1 = wı̂,1 ∨ wı̂,n ∨ xi−1 ∨ xi and Ai,0 = wı̂,1 ∨ wı̂,n ∨ xi−1 ∨ xi, and we
collectively call them X = {Ai,b | i ∈ [mℓ], b ∈ {0, 1}}. The formula X ∪ W is called Fℓ,m,n.

5.2 Upper Bound

It is not hard to see that there is a resolution refutation of Fℓ,m,n of length O(ℓ · (m+ n)).
Indeed, we first derive the two clauses representing wj,1 = wj,n for each j ∈ [ℓ], which requires
O(nℓ) steps:
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wj,1 ∨ wj,2 wj,2 ∨ wj,3

wj,1 ∨ wj,3

...

wj,1 ∨ wj,n−1 wj,n−1 ∨ wj,n

wj,1 ∨ wj,n

(5)

Then we resolve each of the X axioms with one of these clauses, appropriately chosen so that
we obtain pairs of clauses of the form wb

ı̂ ∨ xi−1 ∨ xi for i ∈ [mℓ], and resolve each pair to
obtain the chain of implications x1, . . . , xi → xi+1, . . . , xnℓ−1 in O(mℓ) steps.

wı̂,1 ∨ wı̂,n wı̂,1 ∨ wı̂,n ∨ xi−1 ∨ xi

wı̂,1 ∨ xi−1 ∨ xi

wı̂,1 ∨ wı̂,n wı̂,1 ∨ wı̂,n ∨ xi−1 ∨ xi

wı̂,1 ∨ xi−1 ∨ xi

xi−1 ∨ xi

(6)

Since we have derived a chain of implications x1, x1 → x2, . . . , xmℓ−1 → xmℓ−1, xmℓ−1 we
can complete the refutation in O(mℓ) more steps. Let us record our discussion.

▶ Lemma 11. Fℓ,m,n has a resolution refutation of length O(ℓ · (m+ n)).

Before we prove the lower bound let us discuss informally what are the natural ways to
refute this formula in merge resolution, so that we understand which behaviours we need to
rule out.

If we try to reproduce the previous resolution refutation, since we cannot reuse the clauses
representing wj,1 = wj,n because they are not merges, we have to rederive them each time
we need them, which means that it takes O(mnℓ) steps to derive the chain of implications
x1, . . . , xi → xi+1, . . . , xnℓ−1. We call this approach refutation 1 . This refutation has merges
(over wı̂,1, xi−1, and xi) when we produce wb

ı̂,1 ∨ xi−1 ∨ xi, and (over xi−1 and xi) when we
produce xi−1 ∨ xi, but since we never reuse these clauses the refutation is in fact tree-like.

An alternative approach, which we call refutation 2 , is to start working with the X
axioms instead. In this proof we clump together all of the repeated constraints of the form
wj,1 ̸= wj,n for every j ∈ [ℓ], and then resolve them out in one go. In other words, we first
derive some clausal encoding of the sequence of constraints

Di =
( ∨

ı̂∈[min(i,ℓ)]

wı̂,1 ̸= wı̂,n

)
∨ xi for i ∈ [mℓ] , (7)

where Di can be obtained from Di−1 and the pair of X axioms Ai,b, then resolve away the
inequalities from Dmℓ =

∨
j∈[ℓ] wj,1 ̸= wj,n using the W axioms. However, representing any

of the constraints Di for i ≥ ℓ requires 2ℓ clauses, which is significantly larger than mnℓ and
even superpolynomial for large enough ℓ, so this refutation is not efficient either. Note that
this refutation has merges (over W variables) each time that we derive Di with i ≥ ℓ.

A third and somewhat contrived way to build a refutation is to derive the pair of clauses
representing wj,1 = wj,n using a derivation whose last step is a merge, so that they can be
reused. Each of these clauses can be derived individually in O(mnℓ) steps, for a total of
O(mnℓ2) steps, by slightly adapting refutation 1, substituting each derivation of xi → xi+1
by a derivation of wj,1 ∨ wj,n ∨ xi ∨ xi+1 whenever i ≡ j (mod ℓ) so that at the end we
obtain wj,1 ∨ wj,n instead of the empty clause. Such a substitution clause can be obtained,
e.g., by resolving wj,1 ∨ wj,2 ∨ xi ∨ xi+1 with wj,2 ∨ wj,n ∨ xi ∨ xi+1 as follows
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wj,2 ∨ wj,3 wj,3 ∨ wj,4

wj,2 ∨ wj,4

...

wj,2 ∨ wj,n−1 wj,n−1 ∨ wj,n

wj,2 ∨ wj,n wı̂,1 ∨ wı̂,n ∨ xi−1 ∨ xi

wı̂,1 ∨ wı̂,2 ∨ xi−1 ∨ xi

wı̂,1 ∨ wı̂,2 wı̂,1 ∨ wı̂,n ∨ xi−1 ∨ xi

wı̂,2 ∨ wı̂,n ∨ xi−1 ∨ xi

wı̂,1 ∨ wı̂,n ∨ xi−1 ∨ xi

(8)

After deriving wj,1 = wj,n as merges we follow the next steps of refutation 1 and complete
the refutation in O(mℓ) steps. We call this refutation 3 .

Observe that the minimum length of deriving the clauses representing wj,1 = wj,n is
only O(n), even in merge resolution, so if we only used the information that refutation 3
contains these clauses we would only be able to bound its length by Ω(ℓ · (m+n)). Therefore
when we compute the hardness of deriving a clause we need to take into account not only its
semantics but how it was obtained syntactically.

5.3 Lower Bound
Before we begin proving our lower bound in earnest we make two useful observations.

▶ Lemma 12. Let η be a resolution derivation that only depends on W axioms. Then η does
not contain any merges, and all clauses are supported on W .

Proof. We prove by induction that every clause in η is of the form wj,k ∨ wj,k′ with k ̸= k′.
This is true for the axioms. By induction hypothesis, a generic resolution step over wj,k is of
the form

wj,k ∨ wj,k′ wj,k ∨ wj,k′′

wj,k′′ ∨ wj,k′

(9)

and in particular is not a merge. ◀

▶ Lemma 13. Let η be a resolution derivation of a clause C supported on W variables that
uses an X axiom. Then η uses at least one Ai,b axiom for each i ∈ [mℓ].

Proof. We prove the contrapositive and assume that there is an axiom Ai,b that is used, and
either both Ai+1,0 and Ai+1,1 are not used, or both Ai−1,0 and Ai−1,1 are not. In the first
case the literal xi appears in every clause in the path from Ai,b to C, contradicting that C is
supported on W variables. Analogously with literal xi−1 in the second case. ◀

At a high level, our first step towards proving the lower bound is to rule out that
refutations like refutation 2 can be small, and to do that we show that wide clauses allow for
very little progress. This is a common theme in proof complexity, and the standard tool is
to apply a random restriction to a short refutation in order to obtain a narrow refutation.
However, merge resolution is not closed under restrictions, as we prove later in Corollary 24,
and because of this we need to argue separately about which merges are preserved.

We observed that derivation fragments where no X variable appears do not contain any
merges, but we cannot claim that clauses where no X variable appears are not merges.
However, refutation 3 suggests that deriving a clause supported on W variables that depends
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27:10 Limits of CDCL Learning via Merge Resolution

on X axioms should still be hard, so we restrict our attention to the beginning of the
refutation, before any such clause is derived. Within this first part it does hold that clauses
where no X variable appears are not merges.

With this characterization in hand we then show that the resulting refutation needs to
use all X variables, and picks up a pair of W variables each time that a new X variable
appears. If we were to introduce the X variables in order, and since we ruled out wide
clauses, every time that we use ℓ many X variables we also need to eliminate proportionately
as many W variables before we move onto the next interval of X variables. We would expect
to eliminate variables Ω(mℓ) times, and each elimination requires Ω(n) steps. Of course the
refutation might not use X variables in order, but we can still break the proof into parts,
each corresponding roughly to an interval of ℓ many X variables.

Let us begin implementing our plan by defining the class of restrictions that we use and
which need to respect the structure of the formula. A restriction is an autarky [19] with
respect to a set of clauses G if it satisfies every clause that it touches; in other words for every
clause C ∈ G either C↾ρ = 1 or C↾ρ = C. A restriction is k-respecting if it is an autarky
with respect to W axioms, we have Fℓ,m,n↾ρ

∼= Fk,m,n up to variable renaming, and every X
variable is mapped to an X variable. Our definition of a narrow clause is also tailored to
the formula at hand, and counts the number of different W -blocks that a clause C mentions.
Formally µ(C) = |{j ∈ [ℓ] | ∃xj,k ∈ vars(C)}|.

▶ Lemma 14. Let π be a resolution refutation of Fℓ,m,n of length L = o((4/3)ℓ/8). There
exists an ℓ/4-respecting restriction ρ such that every clause in π↾ρ has µ(C) ≤ ℓ/8.

Proof. We use the probabilistic method. Consider the following probability distribution J
over {0, 1, ∗}ℓ: each coordinate is chosen independently with Pr[Ji = 0] = Pr[Ji = 1] = 1/4,
Pr[Ji = ∗] = 1/2. Given a random variable J ∼ J sampled according to this distribution, we
derive a random restriction ρ as follows: ρ(wj,i) = Jj , ρ(xi) = ∗ if Jı̂ = ∗, and ρ(xi) = ρ(xi−1)
otherwise (where ρ(x0) = 1). We denote the set of indices not assigned by J by J−1(∗).

Observe that Fℓ,m,n↾ρ
∼= F|J−1(∗)|,m,n up to variable renaming, and by a Chernoff bound

we have Pr[|J−1(∗)| < ℓ/4] ≤ e−ℓ/16.
We also have, for every clause C ∈ π with µ(C) > ℓ/8, that

Pr[C↾ρ ̸= 1] ≤ (3/4)µ(C) ≤ (3/4)ℓ/8 . (10)

Therefore, by a union bound over the length of the refutation, the probability that |J−1(∗)| <
ℓ/4 or that any clause has µ(C↾ρ) > ℓ/8 is bounded away from 1 and we conclude that there
exists a restriction ρ that satisfies the conclusion of the lemma. ◀

Note that s(π↾ρ) is a resolution refutation of Fn,ℓ,m↾ρ, but not necessarily a merge resol-
ution refutation, therefore we lose control over which clauses may be reused3. Nevertheless,
we can identify a fragment of s(π↾ρ) where we still have enough information.

▶ Lemma 15. Let π be a merge resolution refutation of Fn,ℓ,m and ρ be the restriction from
Lemma 14. There exists an integer t such that ψ = s(π[1, t]↾ρ) is a resolution derivation of a
clause supported on W variables that depends on an X axiom and where no clause supported
on W variables is reused.

Proof. Let Ct ∈ π be the first clause that depends on an X axiom and such that Dt = s(Ct↾ρ)
is supported on W , which exists because ⊥ is one such clause.

3 Recall that s(π) is the syntactic equivalent of π.



M. Vinyals, C. Li, N. Fleming, A. Kolokolova, and V. Ganesh 27:11

By definition of t, we have that every ancestor Dk ∈ ψ of Dt that is supported on W

variables corresponds to a clause Ck in π that only depends on W axioms, hence by Lemma 12
Ck is not a merge. By definition of merge resolution Ck is not reused, and by construction
of s(·) neither is Dk.

It remains to prove that Dt depends on an X axiom. Since Ct depends on an X axiom, at
least one of its predecessors Cp and Cq also does, say Cp. By definition of t, Dp = s(Cp↾ρ) is
not supported on W , and hence by Lemma 12 either Dp depends on an X axiom or Dp = 1.
Analogously, if Cq also depends on an X axiom then so does Dq = s(Cj↾ρ) (or it is 1) and
we are done. Otherwise Cq is of the form wj,k ∨ wj,k′ and is either satisfied by ρ or left
untouched. In both cases we have that Dq ̸⊨ Ct↾ρ (trivially in the first case and because Dq

contains the pivot while Ct does not in the second), hence Dt depends on Dp. ◀

Note that Ct may be semantically implied by the W axioms, and have a short derivation
as in refutation 3, therefore we are forced to use syntactic arguments to argue that deriving
Ct using an X axiom requires many resolution steps.

The next step is to break ψ into m (possibly intersecting) parts, each corresponding
roughly to the part of ψ that uses X axioms with variables in an interval of length ℓ (by
Lemma 13 we can assume that ψ contains axioms from every interval). To do this we use
the following family of restrictions defined for i ∈ [n]:

σi(xi′) =


1 if i′ ≤ iℓ

∗ if iℓ < i′ ≤ (i+ 1)ℓ
0 if (i+ 1)ℓ < i′

σi(wi′,j) = ∗ (11)

Let Xi = X ∩ σ−1
i (∗) and note that Fℓ,m,n↾σi

∼= Fℓ,1,n.
Clauses in ψ with many X variables could be tricky to classify, but intuitively it should

be enough to look at the smallest positive literal and the largest negative literal, since these
are the hardest to eliminate. Therefore we define r(C) to be the following operation on a
clause: literals over W variables are left untouched, all positive X literals but the smallest
are removed, and all negative X literals but the largest are removed. Formally,

r

( ∨
i∈A

xi ∨
∨
i∈B

xi ∨
∨

(i,j)∈C

w
bi,j

i,j

)
= xmin A ∨ xmax B ∨

∨
(i,j)∈C

w
bi,j

i,j (12)

where xmin A (resp. xmax B) is omitted if A (resp. B) is empty.
We need the following property of r(C).

▶ Lemma 16. If C↾σi
̸= 1 and vars(r(C)) ∩Xi = ∅ then C↾σi

is supported over W variables.

Proof. The hypothesis that vars(r(C)) ∩Xi = ∅ implies that the smallest positive X literal
in C is either not larger than iℓ or larger than (i+1)ℓ, but the hypothesis that C↾σi

̸= 1 rules
out the first case. Therefore all positive X literals are falsified by σi. Analogously the largest
negative X literal is not larger than iℓ and all negative X literals are also falsified. ◀

Now we are ready to formally define how to divide ψ.

▶ Definition 17. The i-th part of ψ is the sequence ψi of all clauses C ∈ ψ such that C is
either
1. an X axiom not satisfied by σi; or
2. the conclusion of an inference with pivot in Xi; or
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27:12 Limits of CDCL Learning via Merge Resolution

3. the conclusion of an inference with pivot in W that depends on an X axiom if r(C)
contains a variable in Xi; or

4. a clause that does not depend on X axioms if the only immediate successor of C is in ψi.

For convenience we use the same indexing for ψi and ψ, so elements of ψi are not
necessarily consecutive. Note that ψi needs not be a valid derivation.

This is the point in the proof where we use crucially that the original derivation is in
merge resolution form: because clauses that do not depend on X axioms are not merges,
they have only one successor and the definition is well-formed.

As an example, if ψ were refutation 1, whose only clause supported over W variables that
depends on X axioms is the final empty clause and therefore satisfies the guarantees given
by the conclusion of Lemma 15, then we would divide it as follows. Axioms A1,b, . . . , Aℓ,b

are all part of ψ1 because of Item 1. The result of resolving axioms Ai,b with the clauses
representing wi,1 = wi,n in order to obtain the implications xi → xi+1 for i ∈ [1, ℓ] are also
part of ψ1 because of Item 3. This implies that the W axioms and intermediate clauses used
to derive wi,1 = wi,n are also part of ψ1 because of Item 4. Derivations of xi+1 from xi

and xi → xi+1 for i ∈ [1, ℓ] are part of ψ1 because of Item 2. Similarly ψ2 will contain the
analogous clauses with i ∈ [ℓ+ 1, 2ℓ] and so on. Note that each part ψi contains derivations
of wj,1 = wj,n for j ∈ [ℓ], but they refer to different copies of the same derivation.

Ideally we would like to argue that parts ψi are pairwise disjoint and of size Ω(nℓ), which
would allow us to bound |ψ| =

∑
i∈[m]|ψi| = Ω(mnℓ). This is not quite true, but nevertheless

clauses do not appear in too many different parts and we have the following bound.

▶ Lemma 18. Let ψ and {ψi | i ∈ [m]} be as discussed above. Then 2|ψ| ≥
∑

i∈[m]|ψi|.

Proof. Axioms may appear in at most two different ψi, and clauses obtained after resolving
with an X pivot in only one. The only other clauses that depend on an X axiom and may
appear in different ψi are obtained after resolving with a W pivot, but since r(C) only
contains two X variables, such clause only may appear in two different ψi. Finally, clauses
that do not depend on an X axiom appear in the same ψi as one clause of the previous types,
and therefore at most two different parts. ◀

To conclude the proof we need to argue that each ψi has size Ω(nℓ). The intuitive reason
is that ψi must use one X axiom for each j ∈ [(iℓ, (i+ 1)ℓ], which introduces a pair of W
variables from each Wj block, but since no clause contains more than ℓ/8 such variables, we
need to use enough W axioms to remove the aforementioned W variables. Formally we first
need to extract a valid derivation from ψi as we do in the next lemma.

▶ Definition 19. For each i ∈ [m] let ti be the smallest integer such that clause Cti depends
on an X axiom (with respect to ψ), Cti

↾σi
is supported on W variables, and Cti

∈ ψi. If no
such clause exists then we set ti = ∞.

▶ Lemma 20. For each i ∈ [m], ti is finite and s(ψi[1, ti]↾σi
) is a valid resolution derivation.

Proof. We prove by induction that for all k ≤ min(ti, t), if the clause Ck ∈ ψ depends on
an X axiom and is not satisfied by σi, then there exists a clause Ck′ ∈ ψi with k′ ≤ k that
implies Ck modulo σi, that is Ck′↾σi

⊨ Ck↾σi
, and depends on an X axiom (over ψ).

When Ck is a non-satisfied X axiom we can simply take Ck′ = Ck by Item 1 of Definition 17.
Otherwise let Cp and Cq be the premises of Ck in ψ and we consider a few cases.

Case 1: the pivot is an X variable. Then both premises depend on an X axiom (by
Lemma 12).
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Case 1.1: the pivot is an Xi variable. Then we can take Ck′ = Ck by Item 2 of
Definition 17.

Case 1.2: the pivot is an Xi′ variable with i′ ̸= i. Then the pivot is assigned by σi and
exactly one of the premises, say Cp, is non-satisfied. By the induction hypothesis we
can take Ck′ = Cp′ .

Case 2: the pivot is a W variable. If either premise were satisfied, and since σi only assigns
X variables, the satisfied literal would carry over to Ck, hence neither premise is satisfied.
Case 2.1: exactly one premise depends on an X axiom, say Cp. Then Cp′ is present in
ψi, and by Item 4 of Definition 17 the other premise Cq is present in ψi if and only if
the conclusion Ck is.

Case 2.2: both premises depend on an X axiom. Then both Cp′ and Cq′ are present in
ψi.

Therefore in both subcases it is enough to prove that Ck ∈ ψi, since then we can take
Ck′ = Ck and we have that Ck↾σi

follows from a valid semantic resolution step. Assume
for the sake of contradiction that Ck /∈ ψi. Then for Item 3 of Definition 17 not to apply
it must be that r(Ck) does not contain any variable from Xi. By Lemma 16 Ck↾σi

is a
clause supported on W variables, which by definition of Cti

implies that k = ti. However,
since the pivot is a W variable, Cp′↾σi

is also supported on W variables and, together
with the fact that Cp′ depends on an X axiom, this contradicts that Cti

is the first such
clause.

This finishes the induction argument and proves that ψi[1, ti]↾σi
is a valid semantic

derivation, from where it follows that s(ψi[1, ti]↾σi) is a valid syntactic derivation. It also
follows from the induction hypothesis that ti ≤ t: since Ct is left untouched by σi and
depends on an X axiom, there exists a clause Ct′ ∈ ψi that depends on an X axiom and
such that Ct′↾σi

⊨ Ct↾σi
= Ct, which is supported on W variables. ◀

Having established that each ψi is a valid derivation, we show that they are large in the
following two lemmas.

▶ Lemma 21. For each i ∈ [m] the clause Cti↾σi depends on an X axiom with respect to
derivation s(ψi[1, ti]↾σi

).

Proof. We prove by induction that for every clause Dk ∈ s(ψi[1, ti]↾σi), if Ck depends on an
X axiom (over ψ) then so does Dk (over s(ψi[1, ti]↾σi

)). This is immediate when Dk is an
axiom.

Otherwise fix Ck, Ek = Ck↾σi
, and Dk = s(Ek), and let Ep = Cp↾σi

and Eq = Cq↾σi
be

the premises of Ek in the semantic derivation ψi[1, ti]↾σi . When both Cp and Cq depend on
an X axiom, then by hypothesis so do Dp and Dq and we are done because at least one
of them is used to syntactically derive Dk. Otherwise one premise, say Cp, depends on an
X axiom and the other premise, say Cq, does not. In that case, because σi only affects X
variables, all the axioms used in the derivation of Cq are left untouched by σi, therefore we
have that Dq = Eq = Cq, which contains the pivot used to derive Ck and therefore Eq alone
does not imply Ek. In other words, the other premise Ep is semantically needed to derive
Ek, and thus Dp = s(Ep) is syntactically used to derive Dk. ◀

▶ Lemma 22. Let η be a resolution derivation from Fℓ,1,n of a clause C supported on W

variables that depends on an X axiom. Then |η| ≥ (n− 2)(ℓ− µ(C))/2.

Proof. By Lemma 13 we can assume that η uses at least one Aj,b axiom for each j ∈ [ℓ].
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Let J = {j ∈ [ℓ] | ∃wj,k ∈ vars(C)} be the set of W blocks mentioned by C. We show
that for each j ∈ J = [ℓ] \J at least (n− 2)/2 axioms over variables in Wj appear in η, which
makes for at least (n− 2)|J |/2 = (n− 2)(ℓ− µ(C))/2 axioms.

Fix j ∈ J and assume for the sake of contradiction that less than (n− 2)/2 axioms over
variables in Wj appear in η. Then there exists k ∈ [2, n − 1] such that variable wj,k does
not appear in η. Rename variables as follows: wj,k′ 7→ yk′ for k′ < k, and wj,k′ 7→ yk′−n for
k′ > k. Then we can prove by induction, analogously to the proof of Lemma 12, that every
clause derived from axiom Aj,b is of the form yk′ ∨ yk′′ ∨D where D are literals supported
outside Wj . Since that includes C, it contradicts our assumption that j /∈ J . ◀

To conclude the proof of Theorem 10 we simply need to put the pieces together.

Proof of Theorem 10. We take as the formula family Fℓ=48 log n,n,n, for which a resolution
refutation of length O(n log n) exists by Lemma 11.

To prove a lower bound we assume that a merge resolution refutation π of length
L ≤ n3 = 216ℓ = o((4/3)8ℓ) exists; otherwise the lower bound trivially holds. We apply the
restriction given by Lemma 14 to π and we use Lemma 15 to obtain a resolution derivation ψ
of a clause supported on W variables that uses an X axiom. We then break ψ into m parts
ψi, each of size at least nℓ/16 as follows from Lemmas 20, 21, and 22. Finally by Lemma 18
we have |π| ≥ |ψ| ≥ mnℓ/32 = Ω(n2 log n). ◀

5.4 Structural Consequences
Theorem 10 immediately gives us two unusual structural properties of merge resolution. One
is that proof length may decrease when introducing a weakening rule.

▶ Corollary 23. There exists a family of formulas over O(n log n) variables and O(n log n)
clauses that have merge resolution with weakening refutations of length O(n log n) but every
merge resolution refutation requires length Ω(n2 log n).

Proof. Consider the formula Fn ∧ z, where Fn is the formula given by Theorem 10 and z is
a new variable. If we weaken every clause C ∈ Fn to C ∨ z then we can derive F ∨ z ⊢ z in
O(n log n) merge resolution steps because each inference is a merge. However, if we cannot
do weakening, then z cannot be resolved with any clause in Fn and the lower bound of
Theorem 10 applies. ◀

The second property is that merge resolution is not a natural proof systems in the sense
of [5] because proof length may increase after a restriction.

▶ Corollary 24. There exists a restriction ρ and a family of formulas over O(n log n) variables
and O(n log n) clauses that have merge resolution refutations of length O(n log n) but every
merge resolution refutation of Fn↾ρ requires length Ω(n2 log n).

Proof. Consider the formula Gn = (Fn ∨z)∧z, where Fn is the formula given by Theorem 10,
F ∨ z = {C ∨ z | C ∈ F}, and z is a new variable. As in the proof of Corollary 23 there is a
merge resolution derivation of z of length O(n log n) steps, while Gn↾ρ = Fn. ◀

6 Further Proof Systems

In order to model CDCL with 1UIP more closely and possibly obtain a stronger separation we
look at restricted versions of merge resolution, which in this section we refer to as Resolution
with Merge Ancestors (RMA) to disambiguate it from the rest. The diagram in Figure 1 can
help keeping track of these.
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Resolution

RMA (Merge Res)

LRMAREL RML

LRML

LREML

1UIP CDCL

Asserting CDCL

10

35
33

34
34

35

Figure 1 Relations between proof systems. A solid arrow A B indicates that A simulates
B with no overhead. A dashed arrow A B indicates that A simulates B with no overhead, but
B requires linear overhead to simulate A. Statements proving separations are referenced.

▶ Definition 25 (Definition 7, restated). A Resolution with Merge Ancestors (RMA) derivation
is an input-structured sequence of input resolution derivations where all derivations but the
last contain a merge.

Note that by Lemma 5 it does not matter if we require the sequence of derivations of
an RMA derivation to be input derivations or if we allow general trees. In fact, our lower
bound results hold for a more general proof system where we only ask that every clause with
outdegree larger than 1 has an ancestor that is a merge. Such a proof system does not have
a simple input structure, but can rather be thought of as a sequence of tree-like resolution
derivations whose roots are merges, followed by a standard resolution derivation using the
roots of the previous derivations as axioms.

To make the connection back to CDCL, we can define a proof system called Resolution
with Empowering Lemmas that captures CDCL refutations produced by solvers that use any
asserting learning scheme or 1-empowering learning scheme.

▶ Definition 26. Let C1, . . . , CL−1 be the lemmas of an input-structured sequence of input
derivations. The sequence is a Resolution with Empowering Lemmas (REL) derivation of a
formula F if Ci is 1-empowering with respect to F ∪ {Cj : j < i} for all i ∈ [1, L− 1].

It follows from Lemma 2 that such refutations are in RMA form.

▶ Observation 27. A REL derivation is a RMA derivation.

It might seem more natural to work with the REL proof system rather than its merge-based
counterparts, since REL is defined exactly through the 1-empowering property. However,
while the merge property is easy to check because it is local to the derivation at hand, we can
only determine if a clause is 1-empowering by looking at the full history of the derivation,
in particular what the previous lemmas are. This makes REL too cumbersome to analyse.
Furthermore, refutations produced by CDCL applying a clause minimization scheme on top
of an asserting clause might not be in REL form, but they are still in RMA form.

We also discussed in Section 3 we that 1UIP CDCL solvers produce derivations where
lemmas themselves are merges. We call this proof system Resolution with Merge Lemmas,
or RML for short.

SAT 2023



27:16 Limits of CDCL Learning via Merge Resolution

▶ Definition 28. A Resolution with Merge Lemmas (RML) derivation is an input-structured
sequence of input resolution derivations where all lemmas are merges.

We can be even more restrictive and observe that input derivations produced by a CDCL
solver that we describe next is that once a variable is resolved, it does not appear later in
the derivation.

▶ Definition 29. A resolution derivation η is strongly regular if for every resolution step i,
the pivot variable xi is not amongst the variables of any clause Ci ∈ η[i, L]. A sequence of
derivations is locally regular if every derivation in the sequence is strongly regular. A LRML
derivation (resp. LRMA) is a locally regular RML derivation (resp. RMA).

Finally we can consider derivations that have empowering, merge lemmas and are locally
regular. These still include 1UIP proofs.

▶ Definition 30. A LREML derivation is a derivation that is both LRML and REL.

All of the proof systems we defined are quadratically separated from resolution simply
because they are weaker than RMA. At the same time, all of these proof systems still simulate
standard resolution up to linear overhead, as we show next.

Going back to the proof of Theorem 9, we first observe that the resulting RMA refutation
is in fact an RML refutation.

Recall that the proof idea is to maintain a set of clauses Gt such that all clauses in the
proof up to time t can be derived from Gt by input derivation. Then, given a new clause Ct+1
that can be obtained from Gt with a derivation η, we transform η into a merge resolution
derivation using Theorem 6, and we add its lemmas to Gt+1. Since Theorem 6 produces
RML derivations, so is the final derivation we construct.

To make the simulation work also for LREML we need the following lemma.

▶ Lemma 31 ([23]). If F absorbs A ∨ x and B ∨ x, then F ⊢i C
′ ⊆ A ∨B.

The simulation itself follows the general structure of Theorem 9, except that we need
some additional work to construct Gt+1 from Gt.

▶ Theorem 32. If F is a CNF formula over n variables that has a resolution refutation of
length L then it has a LREML refutation of length O(nL).

Proof. Let π = (C1, . . . , CL) be a resolution refutation. As we already showed it is enough
to construct a sequence of sets F = G0 ⊆ · · · ⊆ GL such that Gt \ F is the set of lemmas
in a LREML derivation from F of length at most (2n+ 1)t, and π[1, t] ⊆ Cli(Gt). Assume
we have built Gt and let C = Ct+1. If C ∈ Cli(Gt) we set Gt+1 = Gt and we are done.
Otherwise we showed that there are input resolution derivations of A′ ⊆ A and B′ ⊆ B from
Gt of length at most n, which we can assume are strongly regular, and that A′ and B′ can
be resolved together.

At this point we deviate from the proof of Theorem 9. We inductively build an intermediate
sequence of sets Gt = G0

t ⊆ . . . ⊆ Gk
t with the following properties.

1. Gj
t is the set of lemmas in a LREML derivation from Gt of length at most p.

2. A′ and B′ can be derived from Gj
t in at most 2n− p resolution steps.

The base case G0
t = Gt is trivial. For the inductive case, let us first assume that either A′

or B′ is 1-empowering, say A′. Let E be the first 1-empowering clause in the derivation of A′.
By Lemma 2 E is a merge, therefore we are allowed to take Gj+1

t = Gj
t ∪ {E}. Furthermore,

if A′ and E could be derived from Gj
t in r and s steps, then A′ can be derived from Gj+1

t in
r − s steps, simply by omitting the first s steps in the derivation.
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Otherwise, by Lemma 31 we reached a set Gj
t such that C ∈ Cli(Gj

t ). In this case we
choose k = j and Gt+1 = Gk

t . Since Gt+1 can be obtained in p ≤ 2n steps from Gt, it
satisfies the required properties. This concludes both the inner and outer inductions. ◀

One consequence of the proof systems we introduce being polynomially equivalent to
resolution is that they are conjectured to be incomparable with respect to the related RTL
and pool resolution proof systems, since these are conjectured to be exponentially weaker
than resolution. This would not be too unexpected given the different purposes of the
proof systems: RTL and pool resolution were introduced to study restarts, and include
proofs produced by CDCL without restarts but any kind of learning, while the purpose of
merge-based proof systems is to study learning, and include proofs produced by CDCL with
our without restarts but only asserting learning.

We can separate the different proof systems that we introduced using a few variations of
Fℓ,m,n where we add a constant number of redundant clauses for each i ∈ [ℓ]. We present
the results that we obtain next, and defer the proofs to the full version.

▶ Proposition 33. There exists a family of formulas over O(n log n) variables and O(n log n)
clauses that have RMA refutations of length O(n log n) but every LRMA refutation requires
length Ω(n2 log n).

▶ Proposition 34. There exists a family of formulas over O(n log n) variables and O(n log n)
clauses that have RML and LRMA and refutations of length O(n log n) but every LRML
refutation requires length Ω(n2 log n).

▶ Proposition 35. There exists a family of formulas over O(n log n) variables and O(n log n)
clauses that have LRML refutations of length O(n log n) but every REL refutation requires
length Ω(n2 log n).

7 Concluding Remarks

In this paper, we address the question of the tightness of simulation of resolution proofs
by CDCL solvers. Specifically, we show that RMA, among other flavours of DAG-like
merge resolution, simulates standard resolution with at most a linear multiplicative overhead.
However, contrary to what we see in the tree-like case, this overhead is necessary. While
the proof systems we introduce help us explain one source of overhead in the simulation of
resolution by CDCL, it is not clear if they capture it exactly. In other words, an interesting
future direction would be to explore whether it is possible for CDCL to simulate some flavour
of merge resolution with less overhead than what is required to simulate standard resolution.
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Abstract
The past three decades have witnessed notable success in designing efficient SAT solvers, with
modern solvers capable of solving industrial benchmarks containing millions of variables in just a few
seconds. The success of modern SAT solvers owes to the widely-used CDCL algorithm, which lacks
comprehensive theoretical investigation. Furthermore, it has been observed that CDCL solvers still
struggle to deal with specific classes of benchmarks comprising only hundreds of variables, which
contrasts with their widespread use in real-world applications. Consequently, there is an urgent need
to uncover the inner workings of these seemingly weak yet powerful black boxes.

In this paper, we present a first step towards this goal by introducing an approach called
CausalSAT, which employs causal reasoning to gain insights into the functioning of modern SAT
solvers. CausalSAT initially generates observational data from the execution of SAT solvers and
learns a structured graph representing the causal relationships between the components of a SAT
solver. Subsequently, given a query such as whether a clause with low literals blocks distance (LBD)
has a higher clause utility, CausalSAT calculates the causal effect of LBD on clause utility and
provides an answer to the question. We use CausalSAT to quantitatively verify hypotheses previously
regarded as “rules of thumb” or empirical findings, such as the query above or the notion that clauses
with high LBD experience a rapid drop in utility over time. Moreover, CausalSAT can address
previously unexplored questions, like which branching heuristic leads to greater clause utility in order
to study the relationship between branching and clause management. Experimental evaluations
using practical benchmarks demonstrate that CausalSAT effectively fits the data, verifies four “rules
of thumb”, and provides answers to three questions closely related to implementing modern solvers.
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1 Introduction

Boolean Satisfiability (SAT) is a fundamental problem in computer science that involves
determining whether there exists an assignment σ that satisfies a given Boolean formula F .
The applications of SAT are vast and varied, including but not limited to bioinformatics [29],
AI planning [22], and hardware and system verification [7,11]. The seminal work of Cook [13]
demonstrated that SAT is NP-complete. Unsurprisingly, early algorithmic methods such as
local search and the DPLL paradigm [14] faced significant scalability challenges in practice.
In the early ’90s, the introduction of Conflict Driven Clause Learning (CDCL) [45] ushered
in a new era of interest from both theoreticians and practitioners. The outcome of this
development is the emergence of effective heuristics that empower SAT solvers to handle
challenging instances across various domains. This remarkable advancement is widely
recognized as the SAT revolution [3, 6, 15,25,30–32,45].

The modern CDCL SAT solvers owe their performance to well-designed and tightly
integrated core components: branching [25,30], phase selection [38], clause learning [4, 28],
restarts [3, 18, 19, 24], and learnt clause cleaning [5, 34]. Consequently, the progress has been
driven largely by the continuous improvement of heuristics for these core components. The
annual SAT competition [21] has provided evidence of a pattern in which the development of
heuristics for one core component necessitates and encourages the design of new heuristics
for other components to ensure tight integration. Such progress, however, necessitated the
solvers to be complex, whereas a typical modern SAT solver is made up of approximately
15 − 30 thousand lines of code and employs a wide variety of strategies to solve different
types of problems. Therefore, to make further progress in the design of SAT solvers, it is
crucial to understand the inner workings of these SAT solvers.

Traditional complexity-theoretic studies focus on analyzing the limitations of SAT solvers:
such as determining the explanations for why SAT solvers struggle for certain instances [16].
These approaches, however, fail to inform reasons for their success in solving industrial-size
instances. Several prior studies provide intuitive hypotheses on why certain SAT-solving
heuristics work well on some benchmarks [34,48,53]. These hypotheses are mostly derived
from the researcher or developer’s intuition and empirically tested in an ad-hoc manner.
The tight coupling of heuristics has been a crucial part of the development of modern
solvers [47, 49]. For instance, Biere et al. [9] found that certain branching heuristics work
particularly well in combination with specific restart heuristics. Similarly, Oh [33] observed
that in order to achieve the best solver performance, the decay factor used in activity
calculations must be adjusted according to the active restart heuristics.

Motivated by the role played by empirical studies in the development of new heuristics, we
take the approach of usage of data-driven methods to develop understandings of the behavior
of SAT solvers. Our work relies on the CrystalBall framework [48] that provides white-box
access to the execution of a state-of-the-art SAT solver, thereby enabling large-scale data
collection. Given the recent development in the field of causal reasoning [35], we investigate
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whether it is possible to develop a framework that may use white-box access to the execution
of SAT solving to generate causal reasoning to explain the interplay among the features and
heuristics of SAT solving?

Several studies have investigated the behavior of modern solvers. Elffers et al. [16]
explored the effectiveness of various solver components by employing a large set of theoretical
benchmarks, with the running time serving as the parameter to evaluate their utility.
Simon [46] focused on analyzing the generated clauses’ utility by examining the proofs
produced by a SAT solver. Kokkala et al. [23] utilized DRAT-trim-based proofs to investigate
the impact of restart and learned clause cleaning heuristics on the length of trimmed proofs.
They also investigated the relationship between different parameters and the probability
of a clause being included in the trimmed proof. Soos et al. [48] employed CrystalBall to
deduce the statistical correlation between the utility of learned clauses and SAT-solving
features. Nevertheless, all of these studies were based on correlation analysis and lacked a
causal reasoning perspective in understanding solver behavior.

In this work, we propose to use causal reasoning to answer what factors influence the
utility of clauses in memory management in SAT solvers. Our approach combines prior
knowledge and experimental data to derive a causal model, a graph whose nodes represent
different components and heuristics of the solver, and its edges represent causal relations
between them. The derived causal model explicitly encodes assumptions about the underlying
phenomenon in clause memory management. The causal model allows us to query it by
applying a set of principled rules known as do-calculus to compute the effect of a particular
factor on the utility of clauses. These rules ensure that each query computes the right
statistical quantity given the model without introducing bias in the estimates. We find that
our derived models fit the data reasonably well even when less data is available. Using our
framework, we were able to confirm several well-known hypotheses about solvers, which
highlights its potential and assures its correctness. Additionally, we have used the framework
to inquire about some unresolved questions related to the solving process, and it has provided
us with answers to those inquiries. This highlights that our framework provides a fresh
perspective on how to approach and analyze solvers.

We demonstrate the application of our approach to study four hypotheses that stem
from observations or assumptions in prior work and encode these as causal queries. We find
that clauses with lower Literal Block Distance (LBD) have greater utility; thus, lower LBD
clauses should be prioritized in clause memory management. We find that small clauses
have greater utility, regardless of their LBD. We also justify the hierarchical clause memory
management that high LBD clauses should be cached for a short time since their utility
experiences a rapid drop over time. Moreover, we verify that LBD has a larger causal
impact than the size on clause utility, and hence LBD is a preferable choice for prioritizing
clauses in memory management. We additionally study three novel questions that have
not been formulated before, such as which branching heuristic results in a greater clause
utility, to study the relationship between branching and clause management. We find that
as a branching heuristic, Maple [24] leads to a greater clause utility than VSIDS [31]. To
summarize, we demonstrate that causal reasoning allows one to evaluate the crucial choices
in the design of SAT solvers.

2 Background and Motivation

2.1 CDCL Solvers
CDCL-based SAT solvers begin with an initially empty set of assignments, maintaining
a partial assignment at each step. The solver incrementally assigns a subset of variables
until the current partial assignment is unable to satisfy the current formula. At this point,
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the solver employs a backtracking mechanism to trace the cause of unsatisfiability, which
is expressed as a conflict clause. Modern solvers frequently perform restarts, resetting the
partial assignment to empty.

Modern SAT solvers may run for millions of conflicts during a single execution, with each
conflict resulting in the learning of one or more clauses that are subsequently added to a
database. As this database grows over time, it becomes necessary to periodically remove
some of the less useful clauses to maintain solver efficiency. To accomplish this, various
heuristics have been proposed that predict the usefulness of learned clauses. These heuristics,
collectively known as learned clause cleaning heuristics, enable the solver to identify and
remove unnecessary clauses, improving performance and scalability. A branching heuristic is
employed to determine which variable to select for each decision point in the search process.
A restart heuristic is used to determine when the solver should restart the search process
from the beginning.

2.2 Learnt Clause Cleaning
One of the most crucial parts of a CDCL-based SAT solver is the learning of clauses, which
occurs rapidly. In fact, a typical SAT solver can learn millions of clauses within a minute
of operation. However, the sheer volume of these clauses can hinder the solver’s efficiency.
To address this issue, learnt clause cleaning heuristics were developed. These heuristics
evaluate the “utility” of a clause based on some parameters and determine whether to retain
or discard it. A heuristic may prioritize keeping clauses with higher utility while discarding
those with lower utility to optimize the solver’s performance. Previous literature proposed
various parameters to determine the usefulness of a clause. Een et al. [15] employed the
notion of activity (or VSIDS) as a surrogate for utility. Activity is a parameter that indicates
a clause’s involvement in recent conflicts. On the other hand, Audemard et al. [3] utilized
literal block distance (LBD) as a proxy for utility, where LBD represents the number of unique
decision levels in the clause. Despite its success, it is difficult to tell why LBD is a good
indicator of utility and disentangle its impact from other solving heuristics. To illustrate this,
we highlight some of the existing hypotheses along with novel questions about the utility of
clauses below.

Clauses with small LBD have greater utility.
Small clauses have greater utility.
High-LBD clause experiences a rapid drop in clause utility over time.
LBD has a greater impact on clause utility than clause size.
What factor, other than LBD, size, and activity, has the greatest impact on clause utility?
Which branching heuristic results in the greatest clause utility?
Which restart heuristic results in the greatest clause utility?

It is thus natural to ask if these hypotheses and questions explain the underlying SAT-
solving behavior well. Do they provide new insights into other aspects of solving? We show
that in order to correctly answer such questions, we require a principled framework to even
compute the right statistical quantities from data.

2.3 Causal Model
A causal model represents the set of features that cause an outcome and the function that
measures the effect of the features on the outcome. Prior work proposes prior domain
knowledge such as causal invariant transformations [51], score-based learning algorithms [42],
interventional causal representation learning [1, 10, 39] or learning invariant relationships
from training datasets from different distributions [2, 37] to construct causal models.
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As with probabilistic graphical models, the underlying representation of the causal model
is (1) a directed acyclic graph (DAG) G = (V, E) where the vertices V are the set of random
variables V = {X1, . . . , Xn} and the edges (Xi, Xj) ∈ E represent causal relationships Xi

causes Xj and (2) set of parameters Θ quantifying the relationships between the variables
in V . The set of variables V can take either discrete or continuous values. We say that a
subset of variables S ⊂ V cause Xi, if Xi = g({Xj}j∈S , NY ) for some function g and NY a
random variable independent of all other variables. The set of functions is parameterized
by θ ∈ Θ. Henceforth, we will use causal models and causal graphs interchangeably. The
absence of an edge from X to Y represents (conditional) independence. Due to this, causal
graphs are also known as causal Bayesian networks. Causal graphs still have the probabilistic
interpretation of their associative (Bayesian) counterpart: they represent a joint probability
distribution of the variables in V , determined by their conditional independence relationships,
i.e., Pθ(V ) = Πi Pr[Xi|paXi ], Xi ∈ V , where paXi represents the parents of the Xi vertex.

Causal Inference
The causal graph has a quantitative interpretation: we use it to answer do-queries that
estimate the causal effect between a treatment variable and an outcome variable.

do-query. We say there is a causal effect between a treatment variable Xi and an outcome
variable Y if under an intervention on the treatment variable Xi, the outcome variable
changes. Given a set of variables V = {X1, . . . , Xn, Y }, an intervention on a variable Xi

is an experiment where the experimenter controls the variable Xi ∈ S to take a value u of
another independent (from other variables ∈ V ) variable, i.e., Xi = u. More generally, we
can intervene on a subset of variables S ⊂ V . This operation has been formalized as the do
operator by Pearl [35]. The do operator thus changes the value of Xi while keeping every
other variable in V the same, except for those directly or indirectly affected by Xi. This is
akin to removing the edges of the nodes in S to their parents in the graph G, resulting in a
manipulated graph. The intervention effect on the outcome variable, e.g., Pr[Y |do(Xi = u)],
is then measured by data generated under the distribution of the manipulated graph. Do-
queries are thus fundamentally different from observational or conditional queries in that
it requires being able to set the value of the variable Xi to a potentially unobserved value
and keeping every other unaffected variable in V the same. The framework to reason about
do-queries has been formalized in a set of rules known as the do-calculus which has been
shown to be sound and complete [20].

Average Treatment Effect (ATE). Given a causal graph, a treatment variable X, and an
outcome variable Y , the average treatment effect measures the change of the expected value
of the outcome variable when we intervene on the treatment variable and change it from a
constant value b to a.

▶ Definition 1 (Average Treatment Effect). The average treatment effect of a variable X

(called the treatment) on the target variable Y (called the outcome) is:

ATE(X, Y, a, b) = E [Y |do(X = a)]− E [Y |do(X = b)] ,

where a, b are constants for which X is defined. We omit the constants when the query
is over the domain of X. Following Definition 1, the conditional average treatment effect
(CATE) measures the average outcome conditioned on a variable W of interest.

SAT 2023



28:6 Explaining SAT Solving Using Causal Reasoning

▶ Definition 2 (Conditional Average Treatment Effect). The conditional average treatment
effect of X on Y conditioned on a variable of interest W is:

CATE(X, Y, W, a, b) = E [Y |do(X = a), W ]− E [Y |do(X = b), W ] .

Why Causal Analysis?
Deriving the right quantities to compute is challenging without a proper framework. As an
example, we first consider LBD, Propagation, i.e., the number of times a clause is involved
in propagation, and LastTouch, i.e., the number of conflicts since a clause is involved in
conflict analysis. We collect data corresponding to these variables during the SAT-solving
process of 80 instances by varying several of the existing heuristics. Suppose we want to
compute the impact of Propagation on LastTouch, that is, the expected change of LastTouch
if Propagation increases by one. This quantity can be written as the expected value of
LastTouch when Propagation increased from one to two: E [LastTouch | Propagation = 2] −
E [LastTouch | Propagation = 1] = −431.29.

However, there is a common cause, LBD, that affects both Propagation and LastTouch.
Having this knowledge at hand, we need to “control” for LBD. “Controlling” for a common
cause in statistical measurements means binning over the observed values of the common cause.
Thus, the right quantity to compute is:

∑
z(E [LastTouch | Propagation = 2, LBD = z] −

E [LastTouch | Propagation = 1, LBD = z]) Pr[LBD = z]. Notice that we can represent such
relationships between variables using a causal model, i.e., a graph where the nodes are
variables and the edges represent causal relations. We show the graph corresponding to our
example in Figure 1a. Estimating this statistical quantity using a linear regression model
that fits the data yields −2.92. Thus, our first attempt at estimating the effect did not model
the underlying process precisely.

Let us now consider a fourth variable, Activity that is also correlated with Propagation
and LastTouch (see Figure 1b). Should we control for this variable as well? Suppose we
controlled for it and estimated again the effect of Propagation on LastTouch as the following:∑

z,a

(E [LastTouch | Propagation = 2, LBD = z, Activity = a]−

E [LastTouch | Propagation = 1, LBD = z, Activity = a]) Pr[LBD = z] Pr[Activity = a]

On the collected data, this results in an estimated effect of −1.96. However, Activity
should not be controlled for since it is not a common cause, but rather it is affected by both
Propagation and LastTouch. Intuitively, during SAT solving, the Activity is computed after
these two variables. The correct estimate is

∑
z(E [LastTouch | Propagation = 2, LBD = z]−

E [LastTouch | Propagation = 1, LBD = z]) Pr[LBD = z] = -2.92. Over-controlling biased the
estimated effect. It is thus crucial to identify the correct set of variables to control.

3 Causal Reasoning for SAT Solving

LBD, size, and activity have long been employed to predict the utility of learned clauses
in SAT solvers. For instance, Kissat [8] consistently retains clauses with LBD ≤ 2, while
CryptoMiniSat [49] always preserves clauses with LBD ≤ 3. These heuristics constitute
a critical component and substantially enhance the performance of modern SAT solvers.
Despite being considered a “rule of thumb” for solver design, whether a low-LBD clause
yields higher utility than a high-LBD clause still remains uncertain.
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LBD

Propagation LastTouch

∑
z

(E[LastTouch|Propagation=2,LBD=z]

− E[LastTouch|Propagation=1,LBD=z])Pr[z]

(a)

LBD

Propagation LastTouch

Activity

∑
z,a

(E[LastTouch|Propagation=2,LBD=z,Activity=a]

− E[LastTouch|Propagation=1,LBD=z,Activity=a])Pr[z]Pr[a]

(b)

Figure 1 Causal models help correctly identify the set of variables to control for. (a) Estimated
effect of Propagation on LastTouch when LBD is a cause of both. (b) Over-controlling while estimating
the effect of Propagation on LastTouch when Activity is introduced. We use the notation Pr[z] and
Pr[a] as a shorthand for Pr[LBD = z] and Pr[Activity = a], respectively.

To better comprehend the functionality of these factors and promote the discovery of new
factors, we propose a causality-based approach to examine the influence of these factors on
the utility of learned clauses. Our objective is to use this method to address queries closely
tied to the implementation of modern SAT solvers, such as whether a high or low LBD clause
offers greater utility and what other factors significantly impact clause utility. The findings
can then be leveraged to inform the design of SAT solvers.

Overview

We introduce an approach designed to address SAT-related inquiries. Figure 2 displays our
approach’s overview, while Algorithm 1 depicts the pseudo-code for our prototype. Initially,
we generate observational data from a SAT solver at Line 1. This data records factor values
and clause utility (formally defined in Section 3.1). Subsequently, we construct a causal graph
representing the causal relationship between all variables, including factors and clause utility,
Line 3, based on our prior knowledge and observational data. Meanwhile, we formulate
each SAT-related question into a causal query at Line 4. For instance, the LBD-related
question can be formulated as a computation of the causal effect from LBD to clause utility.
From Lines 5 to 9, we calculate a causal effect estimate. First, we identify a mathematical
expression for the estimation known as an estimand. Next, the estimand is evaluated on
observational data to calculate the causal effect estimate. If the resulting estimate passes
the refutation test, it is returned as the final causal effect; otherwise, a failure is reported.
Lastly, we return the causal effect corresponding to the original question.

In the subsequent subsections, we will delve into each component depicted in Figure 2.
Section 3.1 outlines the process of generating observational data from a SAT solver. Section 3.2
elaborates on the construction of a causal graph using our prior knowledge of SAT solvers and
the generated data. Section 3.3 introduces the SAT-related questions of interest and describes
their formulation into a causal query. Lastly, Section 3.4 demonstrates the computation of
the causal effect for a given query.
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SAT Solver
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Causal Graph
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Data Generation

Causal Reasoning

Structure Learning

Query Formulation

Result

Figure 2 Our approach overview, from data generation to the causal estimate.

Algorithm 1 Our approach (CausalSAT).

1: data← generate observational data from a SAT solver;
2: whiteList, blackList← decode predefined and blocked edges from prior knowledge;
3: causalGraph← HillClimbing(whiteList, blackList, data);
4: query← formulate a question;
5: estimand← Identify(query, causalGraph)
6: estimates← Estimate(estimand, causalGraph, data);
7: passRefutation← Refute(estimates, query, causalGraph, data);
8: if passRefutation then return estimates;
9: else return Failure;

3.1 Data Generation

To accomplish our goal of exploring causality and assess the utility of a clause, we collected
data that included traces of the SAT solver’s execution. These traces captured various
characteristics of a clause at different stages of the instance-solving process, as well as the
future utility of the clause. We work with a set of unsatisfiable instances. For each instance,
we run the SAT solver multiple times with different combinations of heuristics. To complete
the data collection procedure, we employ a two-pass system. During the forward pass, we run
the SAT solver until it reaches the conclusion of unsatisfiability. To gather data on all the
learned clauses, we deactivated the learned clause cleaning heuristic during the execution of
the SAT solver. Consequently, all the learned clauses were retained throughout the solver’s
execution. We store data about all the learned clauses at different snapshots of solving.
However, this data lacks labeling about whether each clause was useful in proof generation.
To address this issue, we execute a backward pass using the proof generator DRAT-trim.
In this pass, we label all the data collected in the forward pass by how many times the
clause will be used in the next 10k conflicts. By combining the data from both passes, we
obtain a complete dataset for our study. As a result, each data point in our dataset includes
information about the instance, the heuristics used, the learned clauses, some of its features,
and the usefulness of each clause in proof generation.
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Features and Heuristics. In general, the accuracy of a causal model is often improved with
a larger number of features and a larger training dataset. However, many algorithms for
detecting causal structures are limited in their ability to handle a large number of features.
Therefore, we have selected a subset of important features that are commonly used in modern
SAT solver literature. In Table 1, we list all the features we have in our data. In our study,
we adopted the definition of clause utility as proposed in [48], which relies on the frequency
of clause usage observed in the proofs reconstructed by DRAT-trim [52]. It should be noted
that the proof generated by DRAT-trim may differ significantly from the proof generated by
the SAT solver, necessitating caution in interpretation.

Table 1 Data collected about clauses during solving.

Branching Heuristics to determine the order in which variables are assigned
values during the search. We consider VSIDS [31] and Maple [24,26].

Restart Heuristics to determine when the solver should restart. We consider
Geometric [50] , LBD-based [4], and Luby [19,27] heuristics.

Size number of literals in a clause.
LBD number of distinct decision levels of literals in a clause.
Activity measure of clause’s importance in the search process, based on the

clause’s involvement in recent conflicts.
UIP number of times that the clause took part in a 1st-UIP conflict

generation since its creation.
Propagation number of times the clause was used in propagations.
LastTouch number of conflicts since the clause was used during a 1st-UIP conflict

clause generation.
Time number of conflicts since the generation of this clause.
Utility within the next 10,000 conflicts, the number of times this clause has

been used in DRAT proof generation. The number is weighted based
on at which points the clauses are used.

3.2 Structure Learning

A causal graph can be built following our prior knowledge. For example, the clause manage-
ment heuristic is a known cause for the average LBD of learned clauses. If we preserve the
clause of small LBD but remove that of large LBD during clause reduction, the average LBD
will go down. Therefore, we can add to the causal graph an edge from clause management
heuristic to average LBD to represent the known causality between them. For another
instance, both branching and restart heuristics are user-defined parameters, and therefore no
other variables inside the SAT solver can cause them. We can then block incoming edges for
both heuristics. Overall, we add the following constraints based on our prior knowledge:

No incoming edges are allowed for Branching and Restart since they are given by users.
No incoming edges are allowed for Time because time ticks are fixed in our experiments.
No incoming edges allowed for LBD and Size except for edges from Branching and Restart
because LBD and Size are determined before other variables.
No outgoing edges are allowed for Utility because Utility follows other variables.

SAT 2023



28:10 Explaining SAT Solving Using Causal Reasoning

However, prior knowledge is insufficient to build a complete causal graph in many scenarios
because the knowledge we have about the system is always incomplete, like a SAT solver.
Hence, a complete causal graph has to be learned from the observational data. We use
the hill-climbing algorithm [44] in our approach to learn a causal graph for its practical
performance. The algorithm starts from an initial directed graph. In each step, we randomly
add, remove, or reverse an edge of the graph to form candidate graphs. A score function
called Bayesian Information Criterion [40], which favors a graph with a simple structure
and lower log-likelihood over the data, is then applied to these candidate graphs to select
a locally optimal graph. The process continues until a fixed point where we do not find a
better graph.

Furthermore, we apply k-fold cross-validation to the learning process to lower the variance
of the returned graph. The dataset is initially partitioned into k subsets. Subsequently, for
each iteration, we learn a graph on k − 1 subsets and evaluate its fitness over the remaining
subset. Finally, we obtain an averaged graph by taking a majority vote from the k candidates
on the existence and the direction of each edge.

There are other structure-learning algorithms available such as the PC Stable algorithm [12].
However, the PC Stable algorithm always returns a graph with a few undirected edges in
our experiments, which means the algorithm failed to infer the causal direction between
some variables. Due to its algorithmic nature, the hill-climbing algorithm always returns a
directed graph, meeting our requirements. A detailed comparison between structure-learning
algorithms is out of the scope of this paper, and we refer the interested readers to [41].
Additionally, we present a pseudo-code of the hill-climbing algorithm in Appendix A [54].

3.3 Queries on SAT Solving

Are you curious about whether a clause with a high or low LBD possesses a greater utility?
Alternatively, you might be interested in determining which factor – size or LBD – exerts a
more significant influence on clause utility. Previously, one would have to rely on personal
experience or experiment with heuristics to reach a conclusion. However, with our proposed
method, you simply need to transform these inquiries into causal queries, and our causal
model will provide the answers.

In this section, we initially present the different query types supported by our approach.
Following that, we explore questions closely related to SAT solver implementation and
demonstrate the process of formulating them into causal queries. Our primary focus lies on
queries concerning clause utility, with the intention of examining the variables that exert a
substantial influence on clause utility.

Query Type

Our causal framework accommodates three distinct query categories, as detailed below:
Average Treatment Effect (ATE) quantifies the variation in the outcome variable when
the treatment variable shifts from one value to another.
Conditional Average Treatment Effect (CATE) encapsulates the ATE, considering a
condition for an additional variable.
We propose the Averaged Conditional Average Treatment Effect (ACATE) concept to
account for the need to average the CATE across all values of the conditional variable.
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▶ Definition 3 (Averaged Conditional Average Treatment Effect).

ACATE(X, Y, W, a, b) =
∑

w

(E [Y |do(X = a), W = w]−

E [Y |do(X = b), W = w]) Pr[W = w]

LBD. In modern SAT solvers, LBD serves as a key factor for clause memory management
heuristics after being introduced in Glucose [4]. It is assumed that the clause of small LBD
has greater utility and is therefore favored during clause reduction. The assumption drives us
to ask the question: which clause, with low or high LBD, has greater utility? The question
can be translated to calculate the causal effect from LBD to clause utility, corresponding
to an ATE query (Q1) in Table 2. The ATE measures the average change of the outcome
(clause utility) if the treatment (LBD) changes from one to two. Following the assumption
that a clause of small LBD has greater utility, increasing LBD will decrease the utility, and
hence the ATE is expected to be negative. If the ATE is indeed negative, we prove the
assumption. Otherwise, if ATE is positive, we reach the opposite conclusion that the clause
of large LBD has greater utility. Finally, if ATE equals zero, the LBD has no effect on clause
utility, and clauses with large or small LBD have the same utility.

Table 2 Causal queries for questions on SAT solving.

Question Query

Q1 Which clause, with low or high LBD,
has greater utility? ATE(LBD, Utility, 2, 1) < 0

Q2 Which type of clause, large or small,
has greater utility? What if the LBD is fixed?

{
ATE(Size, Utility, 2, 1) < 0
ACATE(Size, Utility, LBD, 2, 1) > 0

Q3 Which clause, with low or high LBD,
experiences a rapid drop in utility over time?

{
CATE(Time, Utility, LBD ≤ 6, 10000, 0) ≥ 0
CATE(Time, Utility, LBD > 6, 10000, 0) < 0

Q4 Which factor, size or LBD,
has a greater impact on clause utility? |ATE(Size, Utility, 2, 1)| > |ATE(LBD, Utility, 2, 1)|

Q5 Which factor, besides size, LBD, and activity,
has the greatest impact on clause utility? arg maxTreatment ̸=Utility{|ATE(Treatment, Utility, 2, 1)|}

Q6 Which branching heuristic, VSIDS or Maple,
results in a greater clause utility? ATE(Branching, Utility, Maple, VSIDS)

Q7 Which restart heuristic, Geometric, LBD-based,
or Luby, results in the greatest clause utility?


ATE(Restart, Utility, Luby, Geometric)
ATE(Restart, Utility, Luby, LBD-based)
ATE(Restart, Utility, Geometric, LBD-based)

Size. Modern solvers assume a small clause has higher utility than a large clause, which
brings us to the question: which type of clause, large or small, has a greater utility? The
question is formulated into the first ATE query (Q2) in Table 2, which implies a decreasing
utility when the clause size increases from one to two. If the resulting ATE is negative, a
small clause is proved to have greater utility. Otherwise, a large clause has a greater utility
if the ATE is positive. Lastly, the size does not affect utility if the ATE is zero.

A historical implementation of Glucose [17] prioritizing large clauses of the same LBD
outperformed the one favoring small clauses, which implies that large clauses have greater
utility given a fixed LBD. The observation is counter-intuitive because small clauses are
usually assumed to be more useful, and people think it still holds when LBD is fixed.
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Consequently, we ask the question: which type of clause, large or small, has greater utility
given a fixed LBD? The question is formulated into an ACATE query (Q2) in Table 2, which
implies a decreasing utility when clause size increases from one to two conditioned on a fixed
LBD. The hypothesis will be verified if the ACATE is indeed positive or disproved otherwise.

LBD over Time. Modern SAT solvers adopt multi-tier clause memory management heuristic:
more useful clauses are preserved for a long time, while less useful clauses are cached for a
short time. Clauses are classified based on LBD. For example, Kissat [8] stores learned clauses
with LBD ≤ 6 in the long-time tier with the rest in the short-time tier. This observation
implies that low-LBD clauses are expected to maintain their utility for a long time, while
conversely, the utility of large-LBD clauses is expected to drop quickly over time.

The implication drives us to ask the question: Which clause, with low or high LBD,
experiences a rapid drop in utility over time? Following that, we formulate the question
into (Q3) in Table 2. The first query formulates that small-LBD clauses do not experience
a decrease in utility when time ticks from 0 to 10,000, while the second one encodes that
large-LBD clauses experience a utility drop over time. We model the time period as 10,000
conflicts because the data is collected per 10,000 conflicts. If the answers to two queries are
both yes, the hypothesis is verified from a causal perspective.

Size vs. LBD. In modern SAT solvers, variants of clause management heuristics are based
on size and LBD, but a question remains open: which has a greater impact on clause utility?
We formulate the question into (Q4) in Table 2 to compare the causal effects on clause
utility between size and LBD. If the size (resp. LBD) has a greater effect on clause utility,
we suggest clause size (resp. LBD) be involved more in clause management. Note that we
compare the effects over normalized data to eliminate the unfairness due to different orders
of magnitude for size and LBD.

Beyond Size, LBD, and Activity. Modern SAT solvers consider size, LBD, and activity as
the key factors in predicting clause utility, while other factors received less attention. To
motivate new clause management heuristics, we utilize CausalSAT to identify new factors for
predicting clause utility. As shown in (Q5) of Table 2, we formulate an optimization query
to find the treatment that has the largest effect on clause utility. The discovery may inspire
the design of new clause management heuristics.

Branching Heuristics. Modern SAT solvers can only deploy one branching heuristic at
a time, which defers the hard choice among heuristics to users. In this work, we provide
suggestions from a causal perspective. We ask the question: which branching heuristic
results in a greater clause utility? We consider two prevalent heuristics, VSIDS [31] and
Maple [24,26]. Following that, we formulated the question into an ATE query (Q6) in Table 2.
The query evaluates the effect on clause utility when the branching heuristic changes from
VSIDS to Maple. A positive ATE indicates Maple yields a higher utility, while a negative
value implies VSIDS demonstrates a superior utility. Otherwise, the ATE equals zero, which
implies the branching heuristic has no impact on clause utility.

Restart Heuristics. Considering three dominant restart heuristics Geometric [50], LBD-
based [4], and Luby [19, 27], we provide suggestions on the choice of restart heuristics by
asking the question: Which restart heuristic, Geometric, LBD-based, or Luby, results in the
greatest clause utility? Following that, we formulate the question into three ATE queries (Q7)



J. Yang, A. Shaw, T. Baluta, M. Soos, and K. S. Meel 28:13

in Table 2, which compares the causal effects on clause utility among three heuristics. For
example, if the first two ATEs are positive, Luby leads to higher utility than Geometric and
LBD-based. Hence Luby is a preferred heuristic for high clause utility. Similar arguments
apply to Geometric and LBD-based heuristics.

3.4 Causal Reasoning
In this section, we outline the process for calculating a query with the aid of a causal graph
and observational data. Initially, we demonstrate the identification of controlled variables
that bias the effect estimation. Following that, we exemplify the calculation of a causal
effect using linear regression and the identified variables. Lastly, we discuss the utilization of
refutation tests for validating the employed estimation technique.

3.4.1 Identification
A causal query asks to calculate the effect of treatment on the outcome (with some conditions).
The naive way to do the calculation is to intervene in the treatment, i.e., change the treatment
from one value to the other and observe the variation in outcome. However, intervening
in treatment is infeasible in many applications like SAT solving, where it’s impossible to
increase the size of a clause and then observe the changes in utility. Alternatively, we can
estimate the effect from the observational data. As motivated in Section 2.2, we have to
identify a set of controlled variables to eliminate bias.

There are three methods to identify the controlled variables: backdoor, frontdoor, and
instrumental variable identification. We use backdoor identification in our approach because
frontdoor and instrumental variable identification always failed to find these variables in
our experiments. Interested readers may refer to [36] for the details of other methods. The
backdoor algorithm returns a set of variables called backdoor set, which is the smallest set
separating the treatment and effect after removing the paths from the treatment to the
outcome. These paths carry the pure effect from treatment to the outcome. A backdoor set
represents a set of variables that exert an implicit effect on the treatment and outcome, such
as the common cause LBD in Figure 1a. Controlling these variables ensures an unbiased
estimation of the causal effect. Using a backdoor set, we can convert an ATE query into an
expression called estimand, which can be evaluated over observational data to estimate the
causal effect. Details of the backdoor algorithm are deferred to Appendix B [54].

3.4.2 Effect Estimation
We utilize linear regression as the estimator, given its effectiveness and interpretability.
As a widely used estimator for causal effects, linear regression delivers remarkably strong
performance. Its estimate is simple to interpret, signifying the average shift in the outcome
when the treatment rises by one unit. Consequently, we demonstrate that the coefficient β

corresponding to the treatment variable X signifies the ACATE value.

▶ Lemma 4. Suppose Z ∪W is a backdoor set and E [Y | X = x, Z = z, W = w] is linear,
i.e., E [Y | X = x, Z = z, W = w] = β0 + β1x + βT

2 z + βT
3 w. We obtain

ACATE(X, Y, W, a, b) = (a− b)β1

We defer the proof to Appendix C [54] due to the page limit.
To identify a backdoor set that incorporates the conditional variable W , we can desig-

nate W as an element of the set and seek a valid backdoor set. In practice, we presume
E [Y | X = x, Z = z, W = w] to be linear and employ (a − b)β1 as an estimate of ACATE.
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This conclusion is also applicable to ATE and CATE, with the proof detailed in Appendix [54].
To enhance confidence in statistical estimations, we conduct refutation tests to verify our
estimation method. For example, we can assess whether the estimate changes substantially
upon adding an independent random variable to the data as a common cause of the treatment
and outcome. Interested readers may refer to Appendix D [54] for more details.

4 Experimental Evaluation

We implement a prototype called CausalSAT to evaluate our approach over practical instances.
CausalSAT is built on top of a structure-learning package, bnlearn [41], and a causal-reasoning
package, DoWhy [43]. We first present CausalSAT fits the dataset and then use it to answer
the queries in Table 2.

For our experiments, we used a high-performance computing cluster. We collected traces
of the run using instances from the SAT competition benchmarks. Because of the construction
of our framework, we could only use unsatisfiable instances. Additionally, the process of
collecting traces added significant overhead to the SAT-solving process, preventing us from
gathering data from instances that took more than an hour to solve in a modern SAT solver
or instances that could be solved within a few seconds. To ensure a variety of data, we
chose to use 80 UNSAT instances from the SAT competition benchmarks from 2014-’18.
We allowed a 2-hour timeout for all instances to run and record the traces. Afterward, we
sampled data from those traces to ensure an equal representation of all types of instances.
In total, we gathered 4 million data points. Lastly, we ran the hill-climbing algorithm using
10-fold cross-validation and obtained the causal graph in Figure 3.

Activity

Utility

Branching

LBD

Size Propagation

UIP

Restart

Time

LastTouch

Figure 3 The causal graph CausalSAT derives using 10-fold cross-validation and 4 million points.

Summary. Our model fits the dataset, attaining a comparable loss to both linear models
and decision trees while exhibiting a higher Pearson correlation with clause utility than
any individual variable. With the model in place, we answer the questions in Table 2. For
LBD, a small value leads to a larger clause utility, but large value results in a smaller utility
that drops rapidly over time. For size, a large clause has greater utility, and the statement
also holds when the LBD is fixed. Overall, the LBD has a greater impact than the size on
clause utility. Besides LBD, size, and activity, the number of propagations has the greatest
impact. Last but not least, Maple has a greater utility between branching heuristics, and
Luby achieves the highest utility among restart heuristics.
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4.1 Fitness on Data

We evaluate the fitness of CausalSAT on the dataset by showing a comparable prediction
error and a stronger correlation with clause utility than any individual variable. We present
the competence of CausalSAT with a linear model and decision tree by evaluating their
performance based on the mean squared error (MSE) metric (the lower, the better). We
further demonstrate that the Pearson correlation of CausalSAT with clause utility is higher
than that of any individual variable.

CausalSAT delivers a comparable prediction error with a linear model and decision tree.
We evaluate the mean squared error (MSE) of predicting clause utility for the three models.
We adopt 10-fold cross-validation where the dataset is split into ten subsets, and every time
the model is trained on nine subsets and evaluated on the remaining subset. The overall
MSE is averaged over the 10 evaluations. Table 3 presents the MSE on different data sizes.
When 0.5 million data points are available, CausalSAT obtains an MSE of 10050.41, which is
smaller than both the linear model and decision tree. The result shows that CausalSAT still
fits the data when we don’t have much data available. On the other hand, the MSE of the
decision tree decreases significantly as the data size increases, and the decision tree finally
becomes the best predictor. Note that the prediction is not the focus of a causal model so it
is expected to observe a smaller MSE from the decision tree when large data is available.

Table 3 Mean squared error in 10-fold cross-validation.

Data Size Linear Model Decision Tree CausalSAT

0.5 million 10087.79 13400.43 10050.41
1 million 9848.14 10731.84 9810.78
2 million 9986.05 7555.20 9951.33
4 million 9977.85 4335.32 9943.03

Additionally, we evaluate the correlation with Utility for any individual variable and
CausalSAT. We compute the Pearson correlation coefficient between any individual variable
and Utility except for Branching and Restart. Pearson correlation coefficient is a measure
of linear correlation between two variables and has a value between -1 and 1, with 1 (resp.
-1) indicating a strong positive (resp. negative) linear relationship and 0 suggesting no
linear relationship between the variables. The Pearson correlation for CausalSAT measures
the linear relationship between the Utility and the prediction generated by CausalSAT. As
shown in Table 4, CausalSAT’s prediction has a higher correlation with Utility than any
individual variable. Consequently, any individual variable is not a good indicator for Utility
while CausalSAT, considering all variables and their causal relationship, delivers a better
correlation with clause utility.

Table 4 Correlation with clause utility.

Activity LBD LastTouch Size Propagation UIP Time CausalSAT

Correlation 0.2819 -0.0285 -0.0326 -0.0283 0.2381 0.2557 0.0933 0.3425

SAT 2023
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4.2 Query Answering

We use CausalSAT to answer the questions in Table 2 by calculating the causal effects for
the queries. Table 5 lists the calculations and answers, where the causal estimates all pass
the three refutation tests. We use the original data to calculate ATE for a single variable
due to its interpretability while using normalized data in Q4 and Q5 to compare ATEs
between variables to eliminate the unfairness of their different orders of magnitude. We
apply standard score normalization to the data. As follows, we explain the answers in detail:

(A1) LBD has a negative effect on clause utility, indicating that clauses with low LBD
have greater utility. Hence, a low-LBD clause should be prioritized over a high-LBD
clause in clause memory management.
(A2) Both ATE and ACATE values are negative, indicating that small clauses have
greater utility, which also holds when LBD is fixed, though with a smaller effect. The
answer to the fixed-LBD case contradicts the previous observation that a large clause is
assumed to have greater utility when LBD is fixed.
(A3) Time has a positive effect on Utility for a low-LBD clause and a negative effect for a
high-LBD clause. The results show that a high-LBD clause experiences a rapid drop in
utility while the utility of a low-LBD clause even increases over time. Therefore, low-LBD
clauses should be preserved in memory for a longer time than high-LBD clauses.
(A4) LBD has a larger absolute ATE value than size, indicating a greater impact on
clause utility. The result suggests the usage of LBD in a clause memory management
heuristic against the size from a causal perspective.
(A5) Appendix E [54] lists the ATE of all variables on clause utility over the normalized
data. Among them, Propagation has the greatest effect. The result suggests the introduc-
tion of Propagation into the future design of clause memory management heuristics.
(A6) Branching has a positive effect on Utility when changing the strategy from VSIDS to
Maple. Hence, Maple leads to greater utility and serves as a recommended branching
heuristic for high-clause-utility scenarios.
(A7) Luby restart leads to a greater utility than Geometric and LBD-based, achieving the
greatest utility. Hence, Luby is a recommended restart heuristic for high-clause-utility
scenarios.

Table 5 Query estimates and their interpretations.

Query Answer

Q1 ATE(LBD, Utility, 2, 1) = −0.2610 < 0 Low-LBD clause has greater utility.

Q2
{

ATE(Size, Utility, 2, 1) = −0.0314 < 0
ACATE(Size, Utility, LBD, 2, 1) = −0.0202 < 0

Small clause has greater utility,
which also holds when LBD is fixed.

Q3
{

CATE(Time, Utility, LBD ≤ 6, 10000, 0) = 0.3772 > 0
CATE(Time, Utility, LBD > 6, 10000, 0) = −0.0884 < 0

High-LBD clause experiences a rapid
drop in utility over time.

Q4 |ATE(Size, Utility, 2, 1)| = 2.6660 < |ATE(LBD, Utility, 2, 1)| = 3.3754 LBD has a greater impact than size.

Q5 arg maxTreatment ̸=Utility{|ATE(Treatment, Utility, 2, 1)|} Propagation has the greatest impact
on utility.

Q6 ATE(Branching, Utility, Maple, VSIDS) = 18.5745 > 0 Maple leads to greater utility.

Q7


ATE(Restart, Utility, Luby, Geometric) = 6.7347 > 0
ATE(Restart, Utility, Luby, LBD-based) = 17.7385 > 0
ATE(Restart, Utility, Geometric, LBD-based) = 11.0037 > 0

Luby leads to the greatest utility.
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5 Conclusion

This work serves as the first work to utilize causality to uncover the inner workings of modern
SAT solvers. We proposed a framework to calculate the causal effects on clause utility from
key factors such as LBD, size, activity, and the choice of heuristics. The causal results
verified the “rules of thumb” in solver implementation, for example, that a low-LBD clause
is assumed to have greater utility than a high-LBD clause. We also answered questions
closely related to SAT solving, for instance, which factor, size or LBD, has a greater impact
on clause utility? The causal framework provides a systematical way to quantitatively
investigate the relationship among components of a SAT solver, which paves the way to
further understanding how modern SAT solvers work.

This work opens several promising directions for future research. Our immediate focus
will be enhancing our framework by introducing a new definition for clause utility. This
revised definition will consider the frequency of a learned clause’s usage by a SAT solver
rather than its usage in DRAT proof generation. Additionally, We aim to include a definition
for clause utility that encompasses both satisfiable and unsatisfiable instances, expanding
beyond our current analysis of unsatisfiable cases. Looking ahead, we intend to incorporate a
broader range of features into our study and extend a further investigation into the obtained
causal graph’s structure and causal estimates’ value to enrich our analysis.

References
1 Kartik Ahuja, Yixin Wang, Divyat Mahajan, and Yoshua Bengio. Interventional causal

representation learning. In Proc. of NeurIPS Workshop on Causality for Real-world Impact,
2022.

2 Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk
minimization. arXiv preprint, 2019. arXiv:1907.02893.

3 Gilles Audemard and Laurent Simon. Glucose: a solver that predicts learnt clauses quality.
SAT Competition, 2009.

4 Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in modern SAT solvers.
In Proc. of IJCAI, 2009.

5 Gilles Audemard and Laurent Simon. On the glucose SAT solver. International Journal on
Artificial Intelligence Tools, 2018.

6 Armin Biere. Lingeling, Plingeling and Treengeling entering the SAT competition 2013. Proc.
of SAT competition, 2013.

7 Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Symbolic model checking
without BDDs. In Proc. of TACAS, 1999.

8 Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximillian Heisinger. CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT Competition 2020. In Proc. of SAT
Competition – Solver and Benchmark Descriptions, 2020.

9 Armin Biere and Andreas Fröhlich. Evaluating CDCL variable scoring schemes. In Proc. of
DAC, 2015.

10 Johann Brehmer, Pim De Haan, Phillip Lippe, and Taco Cohen. Weakly supervised causal
representation learning. In Proc. of UAI Workshop on Causal Representation Learning, 2022.

11 Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking ANSI-C programs.
In Proc. of TACAS, 2004.

12 Diego Colombo and Marloes H. Maathuis. Order-Independent Constraint-Based Causal
Structure Learning. Journal of Machine Learning Research, 2014.

13 Stephen A Cook. The complexity of theorem-proving procedures. In Proc. of STOC, 1971.
14 Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem-

proving. Communications of the ACM, 1962.

SAT 2023

https://arxiv.org/abs/1907.02893


28:18 Explaining SAT Solving Using Causal Reasoning

15 Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Proc. of SAT, 2003.
16 Jan Elffers, Jesús Giráldez-Cru, Stephan Gocht, Jakob Nordström, and Laurent Simon. Seeking

practical cdcl insights from theoretical sat benchmarks. In IJCAI, pages 1300–1308, 2018.
17 Laurent Simon Gilles Audemard. Glucose 1.0, 2009. sources/glucose/core/Solver.C:Lines 631–

635. URL: https://www.labri.fr/perso/lsimon/downloads/softwares/glucose_1.0.zip.
18 Carla P Gomes, Bart Selman, Henry Kautz, et al. Boosting combinatorial search through

randomization. Proc. of AAAI/IAAI, 1998.
19 Jinbo Huang et al. The Effect of Restarts on the Efficiency of Clause Learning. In Proc. of

IJCAI, 2007.
20 Yimin Huang and Marco Valtorta. Pearl’s calculus of intervention is complete. In Proc. of

UAI, 2006.
21 Matti Järvisalo, Daniel Le Berre, Olivier Roussel, and Laurent Simon. The international SAT

solver competitions. AI Magazine, 2012.
22 Henry A Kautz, Bart Selman, et al. Planning as Satisfiability. In Proc. of ECAI, 1992.
23 Janne I Kokkala and Jakob Nordström. Using resolution proofs to analyse CDCL solvers. In

Proc. of CP, 2020.
24 Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki. Learning rate based

branching heuristic for SAT solvers. In Proc. of SAT, 2016.
25 Jia Hui Liang, Chanseok Oh, Minu Mathew, Ciza Thomas, Chunxiao Li, and Vijay Ganesh.

Machine learning-based restart policy for CDCL SAT solvers. In Proc. of SAT, 2018.
26 Jia Hui Liang, Pascal Poupart, Krzysztof Czarnecki, and Vijay Ganesh. An empirical study of

branching heuristics through the lens of global learning rate. In Proc. of SAT, 2017.
27 Michael Luby, Alistair Sinclair, and David Zuckerman. Optimal speedup of Las Vegas

algorithms. Information Processing Letters, 1993.
28 Mao Luo, Chu-Min Li, Fan Xiao, Felip Manya, and Zhipeng Lü. An effective learnt clause

minimization approach for CDCL SAT solvers. In Proc. of IJCAI, 2017.
29 Inês Lynce and Joao Marques-Silva. SAT in bioinformatics: Making the case with haplotype

inference. In Proc. of SAT, 2006.
30 João P Marques-Silva and Karem A Sakallah. GRASP: A search algorithm for propositional

satisfiability. IEEE Transactions on Computers, 1999.
31 Matthew W Moskewicz, Conor F Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.

Chaff: Engineering an efficient SAT solver. In Proc. of DAC, 2001.
32 Alexander Nadel and Vadim Ryvchin. Chronological backtracking. In Proc. of SAT, 2018.
33 Chanseok Oh. Between SAT and UNSAT: the fundamental difference in CDCL SAT. In Proc.

of SAT, 2015.
34 Chanseok Oh. Improving SAT solvers by exploiting empirical characteristics of CDCL. PhD

thesis, New York University, 2016.
35 Judea Pearl. Causal inference in statistics: An overview. Statistics Surveys, 2009.
36 Judea Pearl. Causality. Cambridge University Press, 2009.
37 Jonas Peters, Peter Bühlmann, and Nicolai Meinshausen. Causal inference by using invariant

prediction: identification and confidence intervals. Journal of the Royal Statistical Society.
Series B (Statistical Methodology), pages 947–1012, 2016.

38 Knot Pipatsrisawat and Adnan Darwiche. A lightweight component caching scheme for
satisfiability solvers. In Proc. of SAT, 2007.

39 Bernhard Schölkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner,
Anirudh Goyal, and Yoshua Bengio. Toward causal representation learning. Proc. of IEEE,
109(5):612–634, 2021.

40 Gideon Schwarz. Estimating the dimension of a model. The Annals of Statistics, 1978.
41 Marco Scutari. Learning Bayesian Networks with the bnlearn R Package. Journal of Statistical

Software, 2010.
42 Marco Scutari and Radhakrishnan Nagarajan. Identifying significant edges in graphical models

of molecular networks. Artificial Intelligence in Medicine, 2013.

https://www.labri.fr/perso/lsimon/downloads/softwares/glucose_1.0.zip


J. Yang, A. Shaw, T. Baluta, M. Soos, and K. S. Meel 28:19

43 Amit Sharma, Emre Kiciman, et al. DoWhy: A Python package for causal inference, 2019.
URL: https://github.com/microsoft/dowhy.

44 Qiang Shen and Rónán Daly. Methods to accelerate the learning of bayesian network structures.
In Proc. of UK Workshop on Computational Intelligence, 2007.

45 JP Marques Silva and Karem A Sakallah. Conflict analysis in search algorithms for satisfiability.
In Proc. of ICTAI, 1996.

46 Laurent Simon. Post mortem analysis of sat solver proofs. In POS@ SAT, pages 26–40, 2014.
47 Mate Soos, Jo Devriendt, Stephan Gocht, Arijit Shaw, and Kuldeep S Meel. Cryptominisat

with CCAnr at the SAT competition 2020. SAT COMPETITION, 2020.
48 Mate Soos, Raghav Kulkarni, and Kuldeep S Meel. CrystalBall: Gazing in the Black Box of

SAT Solving. In Proc. of SAT, 2019.
49 Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending SAT solvers to cryptographic

problems. In Proc. of SAT, 2009.
50 Toby Walsh. Search in a small world. In Proc. of IJCAI, pages 1172–1177, 1999.
51 Ruoyu Wang, Mingyang Yi, Zhitang Chen, and Shengyu Zhu. Out-of-distribution generalization

with causal invariant transformations. In Proc. of CVPR, pages 375–385, 2022.
52 Nathan Wetzler, Marijn JH Heule, and Warren A Hunt Jr. DRAT-trim: Efficient checking

and trimming using expressive clausal proofs. In Proc. of SAT, 2014.
53 Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. SATzilla: portfolio-based

algorithm selection for SAT. Journal of artificial intelligence research, 2008.
54 Jiong Yang, Arijit Shaw, Teodora Baluta, Mate Soos, and Kuldeep S. Meel. Explaining sat

solving using causal reasoning. arXiv, 2023. arXiv:2306.06294.

SAT 2023

https://github.com/microsoft/dowhy
https://arxiv.org/abs/2306.06294




LS-DTKMS: A Local Search Algorithm for
Diversified Top-k MaxSAT Problem
Junping Zhou #

School of Information Science and Technology, Northeast Normal University, Changchun, China

Jiaxin Liang #

School of Information Science and Technology, Northeast Normal University, Changchun, China

Minghao Yin1 #

School of Information Science and Technology, Northeast Normal University, Changchun, China
Key Laboratory of Applied Statistics of MOE, Northeast Normal University, Changchun, China

Bo He #

School of Information Science and Technology, Northeast Normal University, Changchun, China

Abstract
The Maximum Satisfiability (MaxSAT), an important optimization problem, has a range of applica-
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1 Introduction

The Maximum Satisfiability (MaxSAT), an optimization version of the famous Satisfiability
(SAT) problem, concerns about finding an assignment to satisfy all hard clauses as well
as the maximum number of soft clauses by given a general form of propositional formula,
which is represented as the Conjunctive Normal Form (CNF) containing both hard and soft
clauses. Recently, the success of the MaxSAT algorithms [9, 11, 12, 17, 35] has contributed
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to a significant number of applications, such as network routing [20], planning and schedul-
ing [27], combinatorial auctions [4], software engineering [13], data analysis [8] and machine
learning [19]. Among these real-life applications, one actually benefits from not just one
solution but diverse solutions. For example, in a social network, mining diverse communities
often helps to find different topics and reduce the amount of overlapping information [7]. In
robotic motion planning, practitioners are often interested in finding diverse paths because
some pre-computed paths sometimes become invalid due to the relocation of obstacles or the
reconfiguration of the robot [31]. In natural language understanding, machine translation
systems benefit from working with multiple plausible parses of a sentence because sentences
are often ambiguous [15]. In computational biology, computing multiple configurations of a
protein structure is believed to be helpful to assess the sensitivity of the model [38]. Thus, in
order to better meet the users’ needs in numerous applications, it is essential to determine
diverse solutions for MaxSAT problem.

This problem is introduced as the Diversified Top-k MaxSAT (DTKMS) problem, which
is equivalent to MaxSAT when k = 1. Given a CNF formula, the objective of DTKMS is to
determine at most k feasible assignments such that each assignment satisfies all hard clauses
and the k assignments together satisfy the maximum number of soft clauses. As an extension
of the MaxSAT problem, DTKMS is a bi-standard optimization problem that balances
correlation and diversity of results. Now, a straightforward method for solving DTKMS
involves first exhaustively searching for all feasible assignments and then employing the max
k-coverage algorithm. Unfortunately, this method is not practical because the enumeration
consumes enormous amounts of time and memory. Thus, to effectively solve DTKMS, two
major challenges should be tackled. (1) As the number of feasible assignments for MaxSAT
is potentially exponential, how can the diversification requirement be met without generating
highly overlapping assignments? (2) Without an exhaustive search, how can the quality of
the solutions be guaranteed?

In this work, for replying the above challenges, we propose a local search algorithm for the
DTKMS problem, named LS-DTKMS, which features new scoring functions, including score
of variable and score of assignment. To avoid generating highly overlapping assignments, we
design a new score of variable scheme, unlike the previous one that only works on the current
assignment. We evaluate the effect of flipping variables on both the current assignment and
the DTKMS solution containing k assignments. By applying the new scheme in our variable
selection heuristic, LS-DTKMS is able to generate diversified assignments. In addition,
we design a score of assignment scheme to estimate the quality of a feasible assignment.
After combining it with a key solution updating rule, LS-DTKMS can achieve a guaranteed
approximation ratio of 0.25 if the final solution is obtained according to the updating rule.
We conduct experiments to compare LS-DTKMS against top-k MaxSAT based DTKMS
solvers on top-k MaxSAT instances from the MaxSAT Evaluation (MSE) 2020 top-k track.
The results demonstrate that LS-DTKMS significantly outperforms the other solvers. To
further verify the effectiveness of our algorithm, we apply LS-DTKMS to Diversified Top-k
Clique Search (DTKCS) problem, which is to find k maximal cliques such that they cover
the maximum number of vertices in a given graph [37]. The experimental results show that
LS-DTKMS has better improvement than the state-of-the-art DTKCS solvers.

The outline of the paper is as follows. We first present some related definitions and a
framework of top-k MaxSAT based DTKMS algorithm. In Section 3, we propose a local
search algorithm and discuss the details of the techniques involved. In Section 5, we show
the experimental results. Finally, we conclude the paper.
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2 Diversified Top-k MaxSAT Problem

2.1 Preliminaries

A literal is either a Boolean variable x (positive literal) or its negation ¬x (negative literal).
The polarity of a positive literal is 1, while the polarity of a negative literal is 0. A clause is
a disjunction of literals. A formula F in Conjunctive Normal Form (CNF) is a conjunction
of clauses, which can be represented as a set of clauses. Any variable in F may take values
true or false. An assignment αi for F with n variables, x1, x2, ..., xn, is a mapping that
assigns each variable a value and it is expressed by αi = v1v2...vn, where vi (1 ≤ i ≤ n) is
the corresponding value of xi. Given an assignment, a clause is satisfied iff at least one of
its literals is true, and a formula F is satisfied iff each clause in F is satisfied.

The Maximum Satisfiability (MaxSAT) problem is to find an assignment that satisfies all
hard clauses and maximizes the number of satisfied soft clauses of a given CNF formula, F =
Hard ∪ Soft, whose clauses can be distinguished into hard clauses and soft clauses, and Hard
(resp. Soft) represents the set of hard (resp. soft) clauses. For a MaxSAT formula F , we
say an assignment α is a feasible assignment of F iff it satisfies all hard clauses of F . Given
a set of feasible assignments, S = {α1, α2, · · · , αk}, of a MaxSAT formula F , the private
satisfied soft clauses of αi (αi ∈ S), denoted by priv(αi, S), is the subset of soft clauses only
satisfied by αi, i.e., priv(αi, S) = sat(αi) \ sat(S \ {αi}), where sat(αi) is the set of satisfied
soft clauses by αi.

▶ Definition 1 (Diversified Top-k MaxSAT (DTKMS) Problem). Given a formula F = Hard
∪ Soft and a positive integer k, the Diversified Top-k MaxSAT problem is to compute a set
S with at most k feasible assignments such that these feasible assignments in S satisfy the
maximum number of soft clauses of F ; that is to say, |sat(α1) ∪ sat(α2) ∪ · · · ∪ sat(αk)| is
maximized, where sat(αi) (αi ∈ S and 1 ≤ i ≤ k) is the set of soft clauses satisfied by αi.

It is easy to see that the DTKMS problem is a generalization of MaxSAT, where MaxSAT
aims to find one solution, while DTKMS attempts to find k diversified solutions. Since
both MaxSAT and DTKMS study the same type of formulae, which involve hard and soft
clauses, to avoid confusion, we will distinguish the formulae according to different problems,
expressed as DTKMS or MaxSAT formulae. Given a DTKMS formula F and an integer k,
we use S to denote the solution of a DTKMS instance F and sat(S) to denote the set of soft
clauses satisfied by S.

▶ Definition 2 (Hamming Distance). Given two feasible assignments αi and αj of a DTKMS
formula, the hamming distance between αi and αj , denoted by HDist(αi, αj), is the number
of variables whose corresponding values in the two feasible assignments are different.

For example, let α1 = 110 and α2 = 100 be two feasible assignments of a formula with
three variables x1, x2 and x3. There is only one variable x2 with different values in α1 and
α2, so the hamming distance between the two feasible assignments is 1. Clearly, for two
assignments αi and αj , they are not identical if HDist(αi, αj) > 0. The higher hamming
distance, the higher degree of diversification of two feasible assignments. Note that the
hamming distance HDist(αi, αj) can be calculated in polynomial time [30]. Given a set of
feasible assignments S and a feasible assignment α /∈ S, we use HDist(α, S) > 0 to denote
α is different from any feasible assignment in S, i.e., for ∀αi ∈ S, we have HDist(α, αi) > 0.
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Algorithm 1 LS-DTKMS.

Input: a DTKMS instance F = Hard ∪ Soft, an integer k, and a cutoff time
Output: a solution of DTKMS S∗

1 m = m0, S∗ = ∅;
2 while elapsed time < cutoff do

// mmax and m0 are parameters
3 if m < mmax then m← 2×m;
4 else m0 ← m0 + 1, m← m0;
5 for each soft clause c do
6 ClauseConf [c] = 1
7 S ← ConstructS(F, m);
8 if |sat(S)| = |Soft| then return S;
9 S ← UpdateS(F, S, m);

10 if |sat(S)| > |sat(S∗)| then S∗ ← S;
11 return S∗;

2.2 Top-k MaxSAT based DTKMS Algorithm
This subsection presents a top-k MaxSAT based DTKMS algorithm. This algorithm follows
a greedy algorithm for the max k-coverage problem, which is the problem of selecting k

subsets from a collection of subsets such that their union contains as many elements as
possible. Given a DTKMS instance F and an integer k, this algorithm iteratively selects
the best feasible assignment that can satisfy the maximum number of soft clauses and then
adds it into the solution S until the top-k feasible assignments are added into S. In essence,
the whole process can be accomplished by a top-k MaxSAT solver, which outputs the top-k
feasible assignments. This algorithm can achieve an approximation ration of 0.632, which is
the best-possible polynomial time approximation algorithm for the k-coverage problem [29].

3 A New Local Search Algorithm for DTKMS

This section describes our local search algorithm, called LS-DTKMS, for solving DTKMS on
top level. Details of important components will be presented in the following.

3.1 Framework of LS-DTKMS
LS-DTKMS (Algorithm 1) alternatively performs solution construction (ConstructS) and
solution update (UpdateS) until a given cutoff time is reached. At first, LS-DTKMS initializes
S∗ and m (line 1), where m is a parameter used in the Best From Multiple Selections (BMS)
strategy [10]. The BMS strategy is a probabilistic method for choosing a variable of good
quality from a large set, which is effective for improving the performance of local search.
Specifically, the strategy chooses m random variables, and returns the best one. Then the
algorithm enters a loop (lines 2–10). In each iteration, the parameter m is changed to obtain
diversified results (lines 3–4), and ClauseConf (described in the next subsection) is initialized
for each soft clause (lines 5–6). Thereafter a solution S with at most k feasible assignments
is constructed (line 7). If all soft clauses are satisfied by S, S is directly returned (line 8);
otherwise, UpdateS is performed to improve the quality of S (line 9). If the new solution
obtained by UpdateS is better than the best-found solution S∗, S∗ is updated. Finally, when
the loop terminates, LS-DTKMS returns S∗ (line 11).
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3.2 Finding a Single Feasible Assignment with Diversity

Local search for DTKMS requires that the k generated feasible assignments are lowly
overlapping with each other so as to enhance the usefulness of each individual feasible
assignment. Specifically, when a feasible assignment has been built, DTKMS problem prefers
the next feasible assignment that is dissimilar with the old one. Thus, it is vital to generate
diversified feasible assignments to be better applied in both ConstructS and UpdateS. To
get such feasible assignments, we define a novel score of variable and a variable selection
heuristic.

3.2.1 Score of Variable

The variable scoring function is defined by incorporating the benefit of the number of satisfied
soft clauses under the candidate solution S and the increment of total weight of satisfied
clauses under the current assignment by flipping a variable. The specific definition is as
follows.

▶ Definition 3 (score of variable). Given a DTKMS formula F , a candidate solution S

containing at most k assignments, and an assignment α ∈ S, the score of a variable v,
denoted by score(v), is defined as score(v) = λ1 · score1(v) + λ2 · score2(v), where λ1, λ2
(0 ≤ λ1, λ2 ≤ 1) are weighting factors, and score1(v) and score2(v) are defined as follows.

score1(v) is defined under the candidate solution S. The score1 of v is score1(v) =
|sat((S \{α})∪{α′})|− |sat(S)|, where α′ is an assignment obtained by flipping the value
of the variable v in α.
score2(v) is defined under the current assignment. The score2 of v is defined as
score2(v) = make(v)− break(v), where make(v) and break(v) represent the total weights
of the clauses which would become satisfied and falsified under α respectively if the value
of v is flipped.

The weights of clauses are set using the clause weighting mechanism [21], which works
as follows. At first, the weight of each hard and soft clause is set to 1. Then, the update
rules involve: (1) With probability sp, for each satisfied hard clause c with w(c) > 1,
w(c) = w(c)− h_inc, and for each satisfied soft clause c with w(c) > 1, w(c) = w(c)− 1; (2)
With probability 1− sp, for each falsified hard clause c, w(c) = w(c) + h_inc, and for each
falsified soft clause c with w(c) < weightLimit, w(c) = w(c) + 1. In the above rules, h_inc

(h_inc > 1) is a constant, and weightLimit is a limit of the maximum weight value of soft
clauses.

Apparently, score1(v) and score2(v) both encourage the transformation of the clauses
from falsified to satisfied. The score1(v) inclines the contribution of soft clauses from a
global perspective. When flipping variables with score1(v), the variables with the greater
increment of the number of satisfied soft clauses under the candidate solution may be chosen.
Flipping such variables is beneficial to finding a better solution. The score2(v) focuses
on emphasizing the importance of hard clauses from a local point of view. When flipping
variables using score2(v), it is likely that the picked variables have greater increment of
the weight of satisfied hard clauses under the current assignment. Flipping such variables
contributes to finding a better assignment. By integrating score1(v) and score2(v), our
scoring function is more flexible in the sense that it can select variables according to both
local and global perspectives.

SAT 2023
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3.2.2 Variable Selection Heuristic
In this part, two variable selection heuristics are designed to increase the diversity of the search.
One is used in initial assignment construction to generate a diversified initial assignment.
The other is applied in local search to modify the initial assignment with the aim of finding
a feasible assignment.

The first variable heuristic strategy is implemented by using a Boolean array ClauseConf
to express the state of each soft clause, where ClauseConf [c] = 1 identifies the soft clause c is
falsified and unselected during each loop iteration in LS-DTKMS; otherwise, ClauseConf [c] =
0. We prefer to choose a variable in the clause c with ClauseConf [c] = 1. The reason for
doing so is that we prefer to choose the falsified soft clauses to satisfy as many soft clauses in
Soft\ sat(S) as possible. The details of the update rules for ClauseConf are given as follows.
At first, the ClauseConf of each soft clause is initialized to 1. Then ClauseConf is updated
based on two circumstances.
1. During finding a feasible assignment process: when a soft clause c is selected during one

iteration (ConstructS and UpdateS execution) in LS-DTKMS, then ClauseConf [c] = 0.
2. During updating the solution S process: when removing α from S, the ClauseConf of

each clause c in priv(α, S) is set to 1; when adding α into S, the ClauseConf of each
clause c in priv(α, S) is set to 0.

After a clause c is picked, a variable is selected randomly from c to flip so as to build a initial
assignment dissimilar with the one extracted from the candidate solution S.

The second variable selection heuristic is a two-priority-level heuristic with the purpose
of constructing a diversified feasible assignment, which works as follows.
1. The first priority level: If there exist variables whose score(v) > 0, choose a variable with

BMS strategy, breaking ties by selecting the one that is least recently flipped. In details, if
the number of the variables with score(v) > 0 is less than a constant m, choose a variable
with the greatest score; otherwise, a set is built by randomly selecting m variables whose
score(v) > 0 and then a variable with the highest score in the newly-built set is selected.

2. The second priority level: There are no variables with score(v) > 0, which indicates that
the local search is stuck in the local optimum. In this case, the weights of the clauses
are first updated. Then a random falsified hard clause is selected if such clauses exist;
otherwise, a random falsified soft clause is selected. Finally, a variable with the highest
score is chosen from the clause, breaking ties by selecting the one that is least recently
flipped.

3.2.3 The Framework of Finding a Single Feasible Assignment
The pseudo code of finding a single feasible assignment FindAssignment is outlined in
Algorithm 2. FindAssignment consists of two phases: initial assignment construction phase
(lines 2–13) and local search phase (lines 14–25). In the first phase, with a certain probability
p (the noise parameter), an assignment is randomly generated (lines 2–4). With a certain
probability 1 − p, the last feasible assignment is extracted from S. Then a variable v is
selected using the first variable heuristic strategy and the initial assignment is generated
by flipping the selected variable v (lines 6–13). After building an initial assignment α,
FindAssignment enters the local search phase, which iteratively modifies α until a given time
limit is reached. During each iteration, if a new feasible assignment is constructed, which
uses the hamming distance to measure, the assignment is returned (lines 15–16). Otherwise,
a variable is selected through the two-priority-level heuristic to find a new assignment (lines
17–25). Finally, the assignment α∗ is returned (line 26).
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Algorithm 2 FindAssignment(F, S, m).

1 α∗ = ∅;
// initial assignment construction phase

2 if with probability p then
3 α← generate a random assignment;
4 update the weights of clauses;
5 else
6 α← extract the last feasible assignment from S;
7 S ← S \ α;
8 if C = {c|ClauseConf [c] = 1} ̸= ∅ then
9 c← randomly select a falsified soft clause under α in C;

10 else
11 c← randomly select a falsified soft clause in Soft \sat(S);
12 v ← select a variable from c with the highest score;
13 α← flip v in α;

// local search phase
14 while elapsed time < cutoff do
15 if α is a feasible assignment and HDist(α, S) > 0 then
16 α∗ ← α; break;
17 if D = {v|score(v) > 0} ̸= ∅ then
18 v ← select a variable from D with BMS strategy;
19 else
20 update the weights of clauses;
21 if exists falsified hard clauses then
22 c← select a hard clause randomly;
23 else c← select a soft clause randomly;
24 v ← select a variable from c with the highest score;
25 α← flip v in α;

26 return α∗;

3.3 Constructing a Candidate Solution for DTKMS Problem
In the subsection, we present the solution construction algorithm ConstructS in Algorithm 3
to build a candidate solution S with at most k feasible assignments. In ConstructS, if the
size of S is less than k or a given time limit is not reached, a loop is executed iteratively
(lines 2–6). In each iteration, FindAssignment is called to individually generate a diversified
feasible assignment (line 4). If the new assignment is not empty, it is inserted into S (line
5). Next, ClauseConf is updated according to the update rules (line 6). Note that when
a candidate solution has been generated by ConstructS, the feasible assignments in S are
different, which can be guaranteed by FindAssignment.

3.4 Solution Updating for DTKMS Problem
When a candidate solution has been generated by ConstructS, our algorithm needs to further
improve the quality of the solution, and this leaves a question: how to evaluate the quality
of a feasible assignment in a solution. In the following, we define a scoring function on
assignments to evaluate the importance of each feasible assignment.

SAT 2023
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Algorithm 3 ConstructS (F, S, m).

1 S = ∅, α = ∅;
2 while |S| < k or elapsed time < cutoff do
3 if |sat(S)| = |Soft| then break;
4 α← FindAssignment(F, S, m);
5 if α ̸= ∅ then S ← S ∪ {α};
6 update ClauseConf ;
7 return S

3.4.1 Score of Assignment
The scoring function on assignments is crucial in the local search algorithm for DTKMS
because it provides the measure of each assignment in a solution, which helps to decide how
to replace an old assignment from a solution and thus further improve the solution.

▶ Definition 4 (score of assignment). Given a solution S of a DTKMS instance, and an
assignment α ∈ S, the score of α is score(α) = |priv(α, S)|.

By using the score of assignment scheme, a solution updating rule works as follows by
given a a solution S of a DTKMS instance, and any an assignment α ∈ S.

When an assignment needs to be removed from S, we pick the one with the lowest
score(α). Note that such an assignment may not be the one with the least number of
satisfied soft clauses. Our algorithm LS-DTKMS prefers removing an assignment αmin

with the lowest score(α) because it does very little contribution to the DTKMS solution,
even if it may satisfy a large number of soft clauses.
After removing an assignment αmin with the lowest score(α) from S based on the above
method, we construct a new solution S′ by adding an assignment α. To guarantee the
quality of the solution, the assignment α to be added should hold the Inequality (1).

|priv(α, S′)| > |priv(αmin, S)|+ |sat(S)|
|S|

(1)

where S′ = S \ αmin ∪ {α} and |S| records the number of assignments in the solution S.
With the help of the above solution updating rule, we can guarantee that if a solution is
obtained according to Inequality (1), then our algorithm LS-DTKMS can achieve a guaranteed
approximation ratio of 0.25, which is demonstrated in Lemma 5.

▶ Lemma 5. Let F be a DTKMS instance, k be an integer, S∗ be an optimal solution of F ,
and S′ be a solution updated by Inequality (1). Then |sat(S′)| ≥ 0.25× |sat(S∗)|.

Proof. When an algorithm for DTKMS constructs a solution S′
i from S′

i−1, the condition
|priv(α, S′

i)| > |priv(αmin, S′
i−1)|+ |sat(S′

i−1)|
|S′

i−1| is equivalent to |E|+|G| > |C|+|E|+ |sat(S′
i−1)|

|S′
i−1|

represented in Figure 1. Since |sat(S′
i−1)| = |A| + |B| + |C| + |D| + |E| + |F |, |sat(S′

i)| =
|A|+ |B|+ |D|+ |E|+ |F |+ |G|, and |S′

i−1| = k, we have |sat(S′
i)| > (1 + 1

k )|sat(S′
i−1)|.

Next, we prove the fact that solving the DTKMS problem is equivalent to the max
k-coverage. We reduce the max k-coverage problem to the DTKMS problem as follows.
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Figure 1 The illustration of Lemma 5.

1. For each element ui in U , create a variable xi.
2. For each element up in the subset Ci and each element uq in the subset U \ Ci, create a

hard clause ¬xp ∨ ¬xq.
3. For each element ui in U , create a soft clause xi.

We can draw a conclusion that solving the DTKMS problem is equivalent to the max
k-coverage problem, which is to select k subsets from C = {C1, C2, . . . , Cm} such that
their union has the maximum cardinality by giving a set U of n elements and an integer
k. In addition, we can obtain the Inequality (2) |cov(C ′

i)| > (1 + 1
k )|cov(C ′

i−1)|, where
cov(C ′

i) is the set of elements covered by a solution C ′
i of a max k-coverage instance. When

Inequality (2) is satisfied, a theoretical result that a max k-coverage algorithm can achieve
a guarantee approximation ration of 0.25 is proved in [5]. Therefore, we can conclude that
|sat(S′)| ≥ 0.25× |sat(S∗)|. ◀

3.4.2 The Framework of Solution Updating
The framework of solution updating algorithm UpdateS is presented in Algorithm 4. At first,
UpdateS initializes the solution S′ and step (line 1). Then it enters a loop (lines 2–10), in
which UpdateS iteratively generates a feasible assignment and updates S with the solution
updating rule described in the above. Significantly, if a solution is obtained by Inequality
(1), our algorithm can achieve a guaranteed approximation ratio of 0.25. Finally, a better
solution is returned (line 11).

Algorithm 4 UpdateS (F, S, m).

1 step = 0, S′ = ∅;
2 while within the time limit do
3 if step > maxstep then break;
4 α← FindAssignment(F, S, m);
5 αmin ← select an assignment α with the lowest score(α) from S;
6 S′ = S \ αmin ∪ {α};
7 if |priv(α, S′)| > |priv(αmin, S)|+ |sat(S)|

|S| then
8 S ← S′, step← 0;
9 else step← step + 1;

10 update ClauseConf ;
11 return S;

SAT 2023
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Table 1 Description of the top-k track benchmarks in MSE 2020.

Families |Var | |Hard| |Soft| Families |Var | |Hard| |Soft|
aes (1) 147 240 147 maxone (2) 485 2817 485
aes-key-recovery (1) 21368 372240 407 MaxSATQueriesinInterpretableClassifiers (5) 1991 14448 1058
atcoss (2) 192216 890542 301 mbd (2) 29703 73188 4637
bcp (2) 152 462 125 packup (5) 13138 73769 7572
CircuitDebuggingProblems (2) 144580 0 432737 protein_ins (5) 2253 2190700 59
CircuitTraceCompaction (2) 158890 494821 20 pseudoBoolean (3) 839 1610 815
close_solutions (4) 68053 2600438 67868 railway-transport (2) 64743 1668566 4945
ConsistentQueryAnswering (3) 44526 46593 10856 ramsey (1) 36 0 210
des (3) 86878 388071 4707 reversi (6) 2981 16521 45
drmx-atmostk (3) 927 1408 47 scheduling (1) 201204 767081 1707
fault-diagnosis (1) 137900 758138 49770 SeanSafarpour (1) 238290 0 936006
frb (1) 760 41367 760 treewidth-computation (3) 88809 814018 60
gen-hyper-tw (1) 62531 197071 48 uaq (3) 2205 3805 189
maxclique (3) 182 16885 182 xai-mindset2 (1) 1330 4763 378
MaximumCommonSub-GraphExtraction (3) 2044 99615 41

4 Experimental Evaluation

In this section, we carry out two experiments to evaluate the performance of LS-DTKMS.
The first experiment compares LS-DTKMS against top-k MaxSAT based DTKMS algorithms
on top-k maxsat instances from the MaxSAT Evaluation (MSE) 2020 top-k track2. The
second experiment applies LS-DTKMS to Diversified Top-k Clique Search (DTKCS) problem,
whose instances are from DIMACS graph benchmarks3.

4.1 Experimental Preliminaries
Our algorithm LS-DTKMS is implemented in C++ and compiled by g++ with “-o3”. There
are 9 parameters in it. (1) m0, mmax: the initial and the maximum value of the number
of samplings used in BMS, respectively. (2) p: the probability, used to generate an initial
assignment. (3) sp: the smooth probability, used in the clause weighting scheme. (4) hinc:
the increment of falsified hard clauses, used in the clause weighting scheme. (5) WeightLimit:
the limit on soft clause weight, used in the clause weighting scheme. (6) maxstep: the limit
on the step of updating the solution. (7) λ1, λ2: two coefficients of score(v), used for variable
selection. The parameters are tuned according to our experience, and are listed as follows:
m0 = 15, mmax = 125, p = 0.2, sp = 0.01, hinc = 2, weightLimit = 1, maxstep = 23×106,
λ1 = 0.6, and λ2 = 0.4.

The first experiment compares LS-DTKMS with four top-k MaxSAT based DTKMS
algorithms, all of which exploit top-k MaxSAT solvers from top-k track in MSE 2020. The
solvers in the top-k track can return k best feasible assignments, which follows the idea of the
DTKMS algorithm based on top-k MaxSAT. In the experiment, we use four types of top-k
MaxSAT solvers: MaxHS [6], Open-WBO [26], Maxino[3], and RC2 [18]. In each type, we
exploit the best one, namely, MaxHS, Open-WBO, maxino, and RC2-A, where RC2-A is the
best top-k MaxSAT solver by far. In the second experiment, we evaluate LS-DTKMS with
two state-of-the-art incomplete DTKCS solvers, TOPKLS [32] and HEA-D [34]. TOPKLS
and HEA-D are state-of-the-art incomplete solvers for DTKCS problem, where HEA-D is
the best one by far. In addition, to ensure LS-DTKMS can solve DTKCS benchmarks, we
model these instances into DTKMS instances using usual encoding [22]. All experiments
are conducted on a server with an Intel(R) Xeon(R) 2.10GHz CPU and 256GB of memory
under CentOS Linux release 7.9.2009. For each instance, four top-k MaxSAT based DTKMS

2 https://maxsat-evaluations.github.io/2020/benchmarks.html
3 https://iridia.ulb.ac.be/~fmascia/maximum_clique/

https://maxsat-evaluations.github.io/2020/benchmarks.html
https://iridia.ulb.ac.be/~fmascia/maximum_clique/
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Table 2 Comparison on top-k maxsat with k=2 and k=3.

k=2 k=3
Families Open-WBO MaxHS Maxino RC2-A LS-DTKMS Open-WBO MaxHS Maxino RC2-A LS-DTKMS
aes (1) NA(600.00) 129(25.34) 130(0.23) 130(0.20) 147(7.38) NA(600.00) 132(25.34) 132(0.23) 132(0.19) 147(8.37)
aes-key-recovery (1) NA(600.00) 406(600.00) NA(600.00) 406(600.00) 407(40.92) NA(600.00) 406(600.00) NA(600.00) 406(600.00) 407(62.34)
atcoss (2) 265.5(364.80) 265.5(23.54) 265.5(25.87) 265.5(43.51) 290.5(53.49) 265.5(102.71) 265.5(23.96) 265.5(26.24) 265.5(43.83) 290.5(56.31)
bcp (2) 73.5(0.02) 73.5(0.01) 73.5(0.01) 73.5(0.00) 74(7.43) 73.5(0.02) 73.5(0.01) 73(0.01) 73.5(0.01) 74(7.93)
CircuitDebugging-
Problems (2)

432736
(322.08)

432736
(299.53)

432736
(4.09)

432736
(4.31)

432737
(23.71)

432736
(322.25)

432736.5
(299.76)

432736
(4.22)

432736
(6.41)

432736.5
(24.69)

CircuitTraceCo-
mpaction (2) 12.5(22.60) 12(37.54) 12.5(9.52) 12.5(20.99) 14(13.61) 13(22.02) 13(38.90) 13(9.58) 13(20.28) 16.5(11.55)

close_solutions (4) 67857
(44.56)

67857
(178.48)

67857.3
(12.45)

67857
(2.45)

67861.3
(28.55)

67858.3
(43.71)

67858.3
(158.82)

67858.3
(12.46)

67858.3
(2.92)

67862
(31.66)

ConsistentQuery-
Answering (3) 0(1.63) 0(0.05) 0(0.25) 0(0.05) 0(21.42) 0(1.62) 0(0.06) 0(0.25) 0(0.06) 0(23.06)

des (3) 3978(251.09) 3977(333.09) 4699.3(112.24) 4700(30.56) 4701.7(103.27) 3978(251.61) 3978(251.17) 4699.3(112.79) 4700(30.25) 4701.7(61.81)
drmx-atmostk (3) 29(0.67) 29(98.53) 19(201.58) 28.7(21.05) 32(132.99) 29.3(0.68) 30(94.93) 19(201.60) 29.7(21.33) 44(125.54)

fault-diagnosis (1) 49593
(34.63)

49593
(122.39)

49593
(24.46)

49593
(7.01)

49593
(8.22)

49593
(38.30)

49593
(150.28)

49593
(25.17)

49593
(7.39)

49593
(8.43)

frb (1) 40(46.34) NA(600.00) NA(600.00) 42(6.97) 54(84.00) 40(46.56) NA(600.00) NA(600.00) 43(7.14) 77(89.27)
gen-hyper-tw (1) 44(128.45) 44(117.65) 44(233.96) 44(117.94) 44(121.98) 44(131.84) 44(61.67) 44(242.70) 44(116.78) 44(127.47)
maxclique (3) 18.7(1.37) 20(56.54) 19.7(4.91) 19.3(0.56) 30(11.58) 116.3(1.39) 116(61.49) 116.3(4.96) 116.3(0.00) 135.7(10.55)
MaximumCom-
monSub-Graph-
Extraction (3)

19(226.61) 20.3(130.08) 20.3(122.02) 20(107.98) 22.3(149.94) 20(224.80) 21.3(218.50) 21.3(120.73) 21(105.84) 25(152.61)

maxone (2) 238.5(0.18) 238(0.18) 238.5(0.05) 238(0.21) 254(79.91) 245(0.18) 240(0.18) 240(0.05) 238(0.23) 257.5(73.90)
MaxSATQuerie-
sinInterpretable-
Classifiers (5)

527.2(23.11) 553.3(89.70) 525.6(1.98) 526.6(6.21) 556(68.68) 528.2(23.48) 554.5(120.08) 526.6(1.98) 528.2(6.62) 557.2(69.06)

mbd (2) 4616(198.04) 4616(61.28) 4615.5(1.70) 4616(0.59) 4636(0.17) 4617(194.40) 4617(58.63) 4616.5(1.70) 4617(0.61) 4636(0.19)
packup (5) 6959.8(11.81) 6957.4(6.58) 6958.2(1.03) 6959.2(0.78) 7209.8(25.10) 6965.4(11.98) 6966.6(6.88) 6966(1.03) 6964.8(0.91) 7209.8(29.17)
protein_ins (5) 29.6(85.07) 30.4(98.79) 30(206.86) 29.6(33.40) 38.2(140.30) 30.6(88.13) 31(192.14) 30.6(188.86) 29.8(33.89) 39.8(104.50)
pseudoBoolean (3) 408(0.81) 408(0.05) 407.7(0.07) 408(0.04) 409(1.70) 408(0.78) 408.3(0.05) 407.7(0.07) 408(0.05) 410(2.23)
railway-transport (2) 4920.5(27.41) 4921(44.00) 4920.5(6.67) 4920.5(4.36) 4932.5(14.94) 4775.5(27.95) 4775.5(34.61) 4775.5(6.71) 4775.5(4.43) 4932.5(19.35)
ramsey (1) 210(0.10) 210(0.65) 210(0.72) 210(0.31) 210(16.27) 210(0.10) 210(0.66) 210(0.69) 210(0.32) 210(16.32)
reversi (6) 32.3(2.01) 31.8(10.50) 31.8(6.52) 32.17(4.97) 37.3(46.55) 33(2.08) 32.7(9.97) 32.5(6.55) 32.8(5.26) 39.3(47.57)
scheduling (1) 1478(600.00) 1476(209.98) 1478(29.94) 1478(107.71) 1481(297.34) 1478(600.00) 1477(600.00) 1478(29.94) 1478(104.15) 1481(162.31)

SeanSafarpour (1) NA(600.00) NA(600.00) 936004
(312.62)

936004
(44.42) NA(600.00) NA(600.00) NA(600.00) 936004

(320.09)
936004
(48.05) NA(600.00)

treewidth-compu-
tation (3) 52.8(28.90) 52.8(26.56) 52.8(16.11) 52.8(15.32) 52.8(17.99) 52.8(37.75) 52.8(33.12) 52.8(16.09) 52.8(15.25) 52.8(20.22)

uaq (3) 140.3(10.06) 136.7(16.81) 137.3(25.72) 141.3(7.88) 170(79.88) 140.3(10.08) 138.3(17.95) 138.3(26.89) 149.3(7.97) 173(84.54)
xai-mindset2 (1) 374(0.07) 372(0.06) 374(0.02) 359(0.02) 376(22.43) 374(0.07) 372(0.07) 374(0.03) 360(0.01) 376(27.31)

solvers are executed once, and all other incomplete solvers, including LS-DTKMS, TOPKLS,
and HEA-D are executed 10 times with different settings of random seeds. The cutoff time
for them is set to 600 seconds. Note that we use the default values of all the parameters for
TOPKLS, HEA-D, Open-WBO, Maxino, RC2-A, and MaxHS.

4.2 Experiment Results on Top-k MaxSAT

Table 2 and 3 show the results of the comparison of LS-DTKMS with four top-k MaxSAT
based DTKMS solvers on 73 top-k MaxSAT instances (belong to 29 families). Since for some
instances when k is set to 5 or more, all soft clauses are satisfied, we set the parameter k
to 2, 3, 4, and 5, respectively. In the two tables, the first column records the name of each
family as well as the number of instances in each family (in brackets). For each family of
instances, we report the average number of variables (|V ar|), hard clauses (|Hard|), and
soft clauses (|Soft|) (Table 1), the average number of satisfied soft clauses and the average
runtime in seconds (in brackets) that each solver can solve within the cutoff time (Table 2
and 3). If a solver fails to find a feasible solution, the corresponding result is marked with
“NA”. As shown in the two tables, LS-DTKMS achieves the best results in terms of solution
quality on most families. In addition, as k gets larger, the solution quality of LS-DTKMS
are almost stable. Hence, the performance of LS-DTKMS is considerably better than the
ones of four top-k MaxSAT based DTKMS solvers. Moreover, the runtime of LS-DTKMS is
comparable to the other solvers for the majority of instances.

SAT 2023
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Table 3 Comparison on top-k maxsat with k=4 and k=5.

k=4 k=5
Families (29) Open-WBO MaxHS Maxino RC2-A LS-DTKMS Open-WBO MaxHS Maxino RC2-A LS-DTKMS
aes (1) NA(600.00) 132(25.53) 132(0.23) 132(0.20) 147(6.12) NA(600.00) 132(25.95) 132(0.23) 132(0.21) 147(5.12)
aes-key-recovery (1) NA(600.00) 406(600.00) NA(600.00) 406(600.00) 407(73.34) NA(600.00) 406(600.00) NA(600.00) 406(600.00) 407(75.12)
atcoss (2) 265.5(108.59) 265.5(25.35) 265.5(22.44) 265.5(53.06) 290.5(57.96) 265.5(110.47) 265.5(26.79) 265.5(22.90) 265.5(57.42) 290.5(62.12)
bcp (2) 73.5(0.01) 73.5(0.01) 73(0.01) 73.5(0.00) 74(7.78) 73.5(0.01) 73.5(0.01) 73(0.01) 73.5(0.01) 74(6.99)
CircuitDebugging-
Problems (2)

432736
(321.45)

432736.5
(299.95)

432736
(5.33)

432736
(9.11)

432736.5
(23.08)

432736.5
(322.19)

432736.5
(300.17)

432736.5
(6.04)

432736.5
(10.00)

432736.5
(24.57)

CircuitTraceCo-
mpaction (2) 13(20.56) 13(26.65) 13(6.31) 13(26.10) 18.5(14.03) 13(21.41) 13(30.88) 13(6.25) 13(26.68) 20(14.28)

close_solutions (4) 67858.3
(45.49)

67858.3
(87.84)

67858.3
(17.21)

67858.3
(4.35)

67866
(37.92)

67858.3
(44.75)

67858.3
(130.86)

67858.3
(17.03)

67858.3
(4.81)

67866
(40.90)

ConsistentQuery-
Answering (3) 0(1.63) 0(0.05) 0(0.24) 0(0.04) 0(21.38) 0(1.65) 0(0.05) 0(0.25) 0(0.05) 0(22.46)

des (3) 3978.5(246.31) 3978.5(329.68) 4700(122.37) 4700.7(31.35) 4701.7(58.56) 4706.5(244.65) 4706.5(213.85) 4625.3(110.95) 4626(55.35) 4626.3(113.76)
drmx-atmostk (3) 31(0.67) 31.7(99.74) 22(201.60) 31.3(21.58) 46.7(116.70) 31(0.66) 31.7(96.77) 22(201.63) 31.7(21.65) 46.7(116.83)

fault-diagnosis (1) 49593
(30.24)

49593
(150.27)

49593
(20.74)

49593
(7.59)

49593
(11.28)

49593
(30.27)

49593
(180.01)

49593
(20.25)

49593
(7.69)

49593
(8.12)

frb (1) 45(43.69) NA(600.00) NA(600.00) 45(7.00) 110(99.09) 45(44.15) NA(600.00) NA(600.00) 45(7.04) 122(123.14)
gen-hyper-tw (1) 44(178.53) 44(105.23) 44(221.92) 44(116.71) 38(88.79) 44(181.03) 44(188.43) 44(223.14) 44(112.24) 42(94.13)
maxclique (3) 117(2.03) 116.7(60.98) 117(5.03) 117(0.01) 143(11.09) 117(1.50) 116.7(138.22) 117(5.00) 117(0.00) 150.3(10.49)
MaximumCom-
monSub-Graph-
Extraction (3)

23(219.66) 22.3(187.72) 23(107.63) 23(104.37) 26(151.78) 23(224.80) 22.3(197.61) 23(107.63) 23.7(105.67) 27(149.65)

maxone (2) 245(0.23) 243(0.18) 245(0.05) 238(0.22) 258(69.85) 248(0.17) 245(0.19) 245.5(0.03) 238(0.23) 258(64.77)
MaxSATQuerie-
sinInterpretable-
Classifiers (5)

528.2(22.02) 554.5(120.58) 526.6(1.84) 528.2(6.87) 557.2(67.97) 528.2(23.08) 554.5(110.08) 526.6(1.87) 528.2(6.93) 557.2(64.76)

mbd (2) 4617(259.82) 4617(42.93) 4616.5(1.85) 4617.5(0.69) 4636(0.29) 4617.5(255.90) 4617(47.07) 4617(1.83) 4618(0.67) 4636(0.16)
packup (5) 6972.4(11.34) 6972.4(7.04) 6973.2(0.99) 6971.2(0.89) 7209.8(28.74) 6972.6(11.38) 6972.6(7.32) 6973.4(0.98) 6973.2(0.92) 7209.8(26.52)
protein_ins (5) 31.6(91.45) 31.8(180.38) 31.6(209.63) 30.4(34.42) 48(104.57) 33.6(102.35) 33.6(174.08) 33.8(167.46) 31.4(35.70) 55.4(101.52)
pseudoBoolean (3) 408(0.82) 408.3(0.05) 408.3(0.07) 408(0.05) 410(1.96) 408(0.83) 408.3(0.05) 408.3(0.06) 408(0.05) 410(0.91)
railway-transport (2) 4777(21.63) 4777(38.16) 4777(7.38) 4777(4.30) 4932.5(23.28) 4777(27.77) 4777(38.07) 4777(7.28) 4777(4.79) 4932.5(24.23)
ramsey (1) 210(0.10) 210(0.70) 210(0.72) 210(0.30) 210(14.12) 210(0.10) 210(0.81) 210(0.73) 210(0.32) 210(10.31)
reversi (6) 33.8(2.08) 33.3(9.71) 33.3(6.92) 33.8(4.65) 40.7(48.64) 33.8(2.21) 33.3(19.36) 33.3(6.98) 33.8(5.12) 41.3(42.49)
scheduling (1) 1481(600.00) 1479(600.00) 1481(37.57) 1479(98.38) 1481(183.23) 1705(18.41) 1705(416.33) 1705(37.95) 1705(29.76) 1707(18.01)

SeanSafarpour (1) NA(600.00) NA(600.00) 936004
(315.25)

936004
(45.29) NA(600.00) NA(600.00) NA(600.00) 936004

(335.92)
936004
(56.57) NA(600.00)

treewidth-compu-
tation (4) 52.8(41.45) 52.8(32.04) 52.8(14.79) 52.8(14.38) 52.8(18.57) 52.8(45.45) 52.8(31.81) 52.8(14.75) 52.8(15.61) 52.8(26.67)

uaq (3) 140.3(15.97) 138.3(20.87) 138.3(29.22) 155(10.00) 183(82.52) 140.3(16.46) 138.3(27.23) 138.3(31.06) 155(11.57) 183(73.48)
xai-mindset2 (1) 374(0.07) 372(0.08) 374(0.03) 361(0.00) 376(29.21) 374(0.07) 372(0.11) 374(0.03) 362(0.03) 376(45.13)

4.3 Experiment Results on DTKCS
In this subsection, we compare LS-DTKMS against two solvers on 37 DIMACS instances and
set the parameter k to 5, 10, 15, and 20, respectively. To save space, we omit the experiment
results that cannot be encoded into DTKMS and only display the ones of the 21 instances in
Table 3 and 4. In the two tables, we report the number of hard clauses (|hard|), the number
of soft clauses (|soft|), the largest number of satisfied soft clauses (best), the average one
(avg), and the average time in seconds obtained by executing each solver ten times (time).
Note that the scale of each instance is listed according to the transformed DIMACS instance
using usual encoding, which causes the number of variables is equal to the number of soft
clauses. The results show that the performance of LS-DTKMS is surprisingly good on most
of instances. LS-DTKMS outperforms the other two solvers on all instances when k=15,
and on most instances when k=5, 10 and 20. Specifically, LS-DTKMS cannot find the best
solution for just 1 instance (C125.9 when k=10), which demonstrates that LS-DTKMS is a
competitive DTKMS solver.

5 Related work

In this section, we review the related work, including the diversity in SAT and other diversified
top-k problems.

Diversity in SAT. The diversity has been studied in the SAT problem and its related
problems. For example, Agbaria et al. studied the diversity in SAT, whose diversity is
measured by the value of the average distance between each pair of solutions normalized
by the number of variables. They proposed two SAT-based methods to generate diverse
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Table 4 Comparison on DTKCS with k=5 and k=10.

k=5 k=10
TOPKLS HEA-D LS-DTKMS TOPKLS HEA-D LS-DTKMS

Instances (21) |Hard| |Soft| best(avg) time best(avg) time best(avg) time best(avg) time best(avg) time best(avg) time

brock200_2 10024 200 52(52) 110.63 52(52) 151.98 52(52) 53.96 93(93) 126.26 91(90) 210.78 99(99) 211.32
brock200_4 6811 200 73(73) 378.36 75(74) 169.93 77(75) 128.59 121(121) 36.53 133(130) 471.57 135(133) 35.17
brock400_2 20014 400 110(110) 187.87 115(112) 293.57 120(120) 207.95 192(192) 25.51 191(190) 263.77 229(228) 339.11
brock400_4 20035 400 119(119) 159.26 122(118) 352.24 129(129) 265 192(192) 530.14 191(190) 196.11 231(231) 225.13
C1000.9 49421 1000 271(270) 292.07 264(259) 534.38 321(319) 281.39 464(464) 497.64 474(471) 219.83 507(507) 116.46
C125.9 787 125 101(101) 73.04 113(112) 6.90 123(122) 5.89 104(104) 0.03 125(125) 0.00 122(120) 9.62
C250.9 3141 250 155(155) 553.33 173(167) 154.54 193(193) 28.48 206(206) 406.89 250(249) 0.02 250(246) 2.32
C500.9 12418 500 212(212) 222.91 224(219) 372.79 257(256) 147.64 323(321) 285.76 372(369) 329.21 443(441) 284.39
gen200_p0.9_44 1990 200 130(130) 561.09 149(145) 55.35 174(174) 223.79 166(166) 249.74 200(200) 0.00 200(197) 15.34
gen200_p0.9_55 1990 200 145(145) 392.94 160(157) 5.93 185(185) 106.08 174(174) 84.37 200(200) 0.00 200(200) 70.21
gen400_p0.9_55 7980 400 184(184) 193.76 200(197) 296.86 219(207) 209.95 264(264) 127.53 334(329) 179.58 380(380) 351.47
gen400_p0.9_65 7980 400 189(189) 283.49 217(210) 283.67 250(250) 218.55 274(274) 453.39 340(338) 262.97 377(377) 191.76
gen400_p0.9_75 7980 400 196(196) 402.29 240(232) 192.26 265(265) 220.12 276(276) 74.51 344(342) 113.96 367(367) 57.04
hamming8-4 11776 256 80(80) 10.05 80(80) 4.54 80(80) 8.33 160(160) 0.98 160(160) 75.85 160(160) 8.2
keller4 5100 171 55(55) 7.29 55(55) 11.01 55(55) 2.24 99(99) 274.42 98(97) 248.39 110(110) 114.16
MANN_a27 702 378 366(366) 524.8 378(378) 0.00 378(375) 260.1 378(378) 100.54 378(378) 0.00 378(378) 52.15
MANN_a45 1980 1035 973(973) 462.08 1035(1035) 0.01 1035(1032) 35.85 1034(1034) 62.14 1035(1035) 0.01 1035(1035) 66.36
MANN_a81 6480 3321 3036(3032) 335.67 3321(3321) 0.12 3321(3320) 31.47 3301(3301) 88.8 3321(3321) 0.12 3321(3321) 1.52
p_hat300-1 33917 300 39(39) 7.67 39(39) 55.04 39(39) 7.05 73(73) 85.72 68(68) 226.72 74(73) 268.54
p_hat300-2 22922 300 79(79) 222.49 80(77) 111.64 94(93) 55.15 110(110) 73.2 130(127) 373.91 150(150) 343.28
p_hat300-3 11460 300 108(108) 9.00 116(113) 232.32 138(138) 6.69 148(147) 251.25 193(187) 408.68 195(195) 109.7

solutions (satisfying assignments) of SAT for use in the hardware semiformal verification [1].
As a detailed extension of [1], Nadel further discussed the diversekSet problem in SAT, that is,
the problem of efficiently generating a number of diverse solutions given a formula [28]. Alòs
et al. proposed a minimum decision tree computation algorithm based on MaxSAT encoding,
where one of the tasks is to generate diverse solutions with different variable assignments
to extract multiple minimum decision trees. The diversity is enforced by target variables
during the incremental calls to the SAT solver, allowing the algorithm to favour the polarity
of target variables that were less frequent in previous solutions [2].

Diversified top-k problem. The diversified top-k problem has been extensively studied,
which aims to find diversified top-k results. [16, 32, 34, 37] studied the diversified top-k
clique problem and [33] worked on the diversified top-k s-plex problem, both of which are
to find k cliques or s-plex to maximize the number of covered vertices. Fan et al. studied
the diversified top-k graph pattern matching problem, which to find a set of k matches
such that the bi-criteria diversification function is maximized [14]. Liu et al. defined the
k shortest paths with diversity problem of finding top-k shortest paths to minimizes the
total length [24]. Xu et al. proposed two exact algorithms for the spatial diversified top-k
routes (SDkR) query to obtain k trip routes with high popularity [36]. Lin et al. introduced
the diversified top-k lasting cohesive subgraphs problem, which finds k maximal lasting (k,
σ)-cores with maximum coverage regarding the number of vertices and timestamps [23]. Lyu
et al. presented an algorithm for the diversified top-k biclique search problem which aims
to find k maximal bicliques that cover the maximum number of edges [25]. Overall, the
diversity top-k problem is becoming increasingly important research field.

6 Conclusion and Future Work

In this study, we propose a local search algorithm for DTKMS, called LS-DTKMS, which
features scoring functions to select variables and assignments. The results show that LS-
DTKMS achieves good performance across a broad range of instances, including the top-k
MaxSAT instances and DTKCS instances. In the future, we will attempt to further improve
LS-DTKMS via a few novel heuristic rules.
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Table 5 Comparison on DTKCS with k=15 and k=20.

k=15 k=20
TOPKLS HEA-D LS-DTKMS TOPKLS HEA-D LS-DTKMS

Instances (21) |Hard| |Soft| best(avg) time best(avg) time best(avg) time best(avg) time best(avg) time best(avg) time

brock200_2 10024 200 125(125) 296.52 128(126) 230.60 143(143) 70.22 146(146) 296.52 155(154) 372.79 164(160) 339.04
brock200_4 6811 200 151(151) 20.98 167(163) 410.85 191(190) 25.73 170(170) 20.98 192(188) 94.76 198(196) 44.24
brock400_2 20014 400 248(248) 491.45 264(263) 231.79 320(320) 220.73 292(292) 491.45 319(318) 240.85 369(369) 259.81
brock400_4 20035 400 252(252) 142.27 263(262) 305.84 327(327) 256.96 287(287) 142.27 325(318) 184.80 360(360) 180.30
C1000.9 49421 1000 587(587) 177.08 664(657) 136.11 770(770) 316.18 689(689) 177.08 841(833) 56.72 823(823) 372.70
C125.9 787 125 125(125) 0.00 125(125) 0.00 125(125) 19.74 125(125) 0.00 125(125) 0.00 125(125) 11.92
C250.9 3141 250 226(226) 86.74 250(250) 0.00 250(250) 119.19 223(223) 86.74 250(250) 0.00 250(250) 4.16
C500.9 12418 500 383(383) 57.54 490(488) 27.51 500(500) 142.67 418(418) 57.54 500(500) 0.00 500(500) 64.40
gen200_p0.9_44 1990 200 168(168) 2.83 200(200) 0.00 200(200) 9.16 200(200) 2.83 200(200) 0.00 200(200) 18.28
gen200_p0.9_55 1990 200 172(172) 1.61 200(200) 0.00 200(200) 11.77 200(200) 1.61 200(200) 0.00 200(200) 32.98
gen400_p0.9_55 7980 400 310(310) 43.22 400(400) 0.03 400(400) 9.42 326(325) 43.22 400(400) 0.01 400(400) 44.03
gen400_p0.9_65 7980 400 319(319) 88.31 400(400) 0.02 400(400) 12.81 341(341) 88.31 400(400) 0.01 400(400) 39.76
gen400_p0.9_75 7980 400 311(311) 442.95 400(400) 0.01 400(400) 11.35 335(335) 442.95 400(400) 0.00 400(400) 69.26
hamming8-4 11776 256 224(224) 69.23 240(229) 416.12 240(240) 41.98 246(246) 69.23 222(220) 353.77 251(251) 318.61
keller4 5100 171 126(126) 535.79 131(130) 218.73 149(149) 206.85 142(142) 535.79 152(151) 171.54 153(151) 52.11
MANN_a27 702 378 378(378) 0.14 378(378) 0.00 378(378) 6.13 378(378) 0.00 378(378) 0.00 378(378) 4.64
MANN_a45 1980 1035 1035(1033) 1.55 1035(1035) 0.01 1035(1035) 13.31 1035(1035) 1.55 1035(1035) 0.01 1035(1035) 57.91
MANN_a81 6480 3321 3321(3321) 338.63 3321(3321) 0.13 3321(3321) 116.70 3321(3321) 338.63 3321(3321) 0.13 3321(3321) 44.86
p_hat300-1 33917 300 108(105) 360.05 98(97) 198.69 108(107) 251.24 125(125) 360.05 121(118) 229.45 140(140) 224.28
p_hat300-2 22922 300 134(134) 57.61 162(159) 344.25 191(191) 257.23 144(144) 57.61 187(185) 194.29 220(219) 44.66
p_hat300-3 11460 300 168(168) 54.77 240(234) 156.88 276(276) 233.52 177(177) 54.77 275(274) 207.40 276(272) 46.18
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Abstract
Many practical applications require synthesizing directed graphs that satisfy the acyclic constraint
along with some side constraints. Several methods have been devised for encoding acyclicity of
directed graphs into SAT, each of which is based on a cycle-detecting algorithm. The leaf-elimination
encoding (LEE) repeatedly eliminates leaves from the graph, and judges the graph to be acyclic if
the graph becomes empty at a certain time. The vertex-elimination encoding (VEE) exploits the
property that the cyclicity of the resulting graph produced by the vertex-elimination operation entails
the cyclicity of the original graph. While VEE is significantly smaller than the transitive-closure
encoding for sparse graphs, it generates prohibitively large encodings for large dense graphs. This
paper reports on a comparison study of four SAT encodings for acyclicity of directed graphs, namely,
LEE using unary encoding for time variables (LEE-u), LEE using binary encoding for time variables
(LEE-b), VEE, and a hybrid encoding which combines LEE-b and VEE. The results show that the
hybrid encoding significantly outperforms the others.
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1 Introduction

Many practical combinatorial problems require synthesizing acyclic directed graphs, such as
utility networks, planning problems [9], Markov networks [2], neural networks, and Bayesian
networks [1, 8]. As there are side constraints involved beyond acyclic constraints, these
problems are more complicated than simply checking if a synthesized subgraph is acyclic. In
this paper, we focus on how to solve such problems with SAT solvers by encoding the acyclic
constraint into SAT. While efficient algorithms exist for checking the acyclicity of directed
graphs, it is still unknown which method performs well for encoding acyclicity of directed
graphs into SAT.

Several methods have been devised for encoding acyclicity of directed graphs into SAT,
each of which is based on a cycle-detecting algorithm. The leaf-elimination encoding
(LEE), which is basically the same as the tree-reduction encoding [4] and the binary labeling
encoding [6], is inspired by the leaf-elimination algorithm. The algorithm repeatedly eliminates
leaves from the graph, and judges the graph to be acyclic if the graph becomes empty at a
certain time.
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Another approach is the transitive-closure encoding for directed graphs, which relies on
the proposition that a graph’s transitive closure preserves the graph’s acyclicity. However the
transitive closure encoding can be prohibitively large. For that reason, GraphSAT, which is an
SMT solver integrating acyclicity checking into SAT solving, has been proposed [4]. Recently,
the vertex-elimination encoding (VEE) [10] was proposed, which exploits the property that
the cyclicity of the resulting graph produced by the vertex-elimination operation [11] entails
the cyclicity of the original graph. VEE can be significantly smaller than the transitive-closure
encoding for sparse graphs. However, for dense graphs, it is asymptotically the same as the
transitive-closure encoding.

This paper first presents a comparison study of three SAT encodings for acyclicity of
directed graphs, namely, LEE using unary encoding for time variables (LEE-u), LEE using
binary encoding for time variables (LEE-b), and VEE. This paper then proposes a hybrid
encoding, which combines the strengths of LEE-b and VEE. The hybrid encoding starts
with VEE, and switches to LEE-b when the resulting graph after vertex elimination becomes
dense. The experimental results show that the hybrid encoding significantly outperforms the
others.

2 Preliminaries

The constraint acyclic_d(V, E) takes a base directed graph G = (V, E), where V is a set of
vertices, and E is a set of directed edges. The task is to synthesize a acyclic subgraph of
G. More precisely, each vertex in V has a binary variable, called a characteristic variable,
associated with it, which is 1 iff the vertex is in the subgraph to be synthesized. Each edge in
E also has an associated characteristic variable, which indicates if the edge is in the subgraph.
The constraint acyclic_d(V, E) is true if the subgraph of G determined by the characteristic
variables is acyclic.

In the following, we use the notation (u, v) to denote a directed edge from vertex u to
vertex v. The function b(x) returns the characteristic variable of x. A vertex v is called an
in-vertex if b(v) = 1, and an edge e = (v1, v2) is called an in-edge if b(e) = 1. For each edge
e = (v1, v2) in E, b(e) → b(v1) ∧ b(v2), meaning that if an edge is in the subgraph, then both
end vertices connected by the edge must be in the subgraph as well.

For a directed graph G = (V, E), the function nbs−(v) returns the set of in-neighbors
connected to v by incoming edges in the base graph:

nbs−(v) = {u | (u, v) ∈ E}

and the function nbs+(v) returns the set of out-neighbors connected to v by outgoing edges
in the base graph:

nbs+(v) = {u | (v, u) ∈ E}.

A vertex v is said to be peripheral if either it has no in-neighbors or it has no out-neighbors.
In particular, a peripheral vertex v is called a leaf in this paper if it has no out-neighbors.
Note that singleton vertices that are not connected to any other vertices are treated as leaves.

3 The Leaf-Elimination Encoding (LEE)

Given a directed graph, the leaf-elimination algorithm detects cycles by repeatedly eliminating
leaves from the graph from time 0 to a certain maximum time. If the graph is empty at the
maximum time, then the graph is acyclic; otherwise, the graph is cyclic.
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The maximum time is determined by the longest path in the graph. As the graph that
comprises a list of linearly connected vertices has the longest path, the maximum time is
upper bounded by n, where n = |V |. While finding the longest path in a graph is NP-hard,
a tight upper bound can be obtained in some cases.

There is a straightforward CSP (Constraint Satisfaction Problem) model for the acyclicity
constraint, which mimics the leaf-elimination algorithm for detecting cycles. For each vertex,
a variable, called a time variable, is utilized to indicate the time at which the vertex becomes a
leaf and is removed from the graph. The domain of the time variables is 0..m, where m is the
maximum time. The constraints ensure that only leaves can be removed at each time, and the
graph must be empty at time m. If the graph is cyclic, then the CSP model is unsatisfiable.
The encodings of the CSP model into SAT are called leaf-elimination encodings (LEE).
Different methods can be utilized to encode time variables, such as unary encoding (also
called direct encoding [3]) and binary encoding (also called log encoding [5]). When binary
encoding is used for time variables, LEE, called LEE-b, is compact and can encode large
graphs. However, it is well known that binary encoding has weak propagation strength [7],
yet, the results in Section 6 show that the binary encoding pays off.

3.1 LEE-u
LEE-u (similar to tree reduction in [10]) employs a matrix of binary variables A of size n×m,
where n = |V |, the number of vertices in the base graph, and m is the maximum time. The
entry Av,t is 1 if and only if vertex v has been eliminated by time t. The encoding imposes
the following constraints on the variables:

For v ∈ V :
∑

u∈nbs+(v) b((v, u)) = 0 ↔ Av,0 (1)

For v ∈ V , t ∈ 1..m: Av,t−1 → Av,t (2)

For v ∈ V , t ∈ 1..m, u ∈ nbs+(v): b((v, u)) ∧ ¬Au,t−1 → ¬Av,t (3)

For v ∈ V : Av,m (4)

Constraint (1) states that all leaves, i.e., vertices that have no outgoing edges, are eliminated
at time 0. Constraint (2) enforces that once a vertex is eliminated, it is eliminated forever.
Constraint (3) entails that a vertex cannot be eliminated at time t if any of its out-neighbors
is not eliminated at time t − 1. Constraint (4) forces every vertex to be eliminated at time m.

The correctness of the encoding is supported by the fact that the vertices that occur in a
cycle can never be eliminated, i.e. Av,t cannot be equal to 1 for t ∈ 1 . . . m, and constraints
(3) and (4) are unsatisfiable for any vertex in a cycle.

The number of variables, besides the characteristic variables, used by LEE-u is the size
of A, which is O(n × m). The number of clauses used by LEE-u, which is dominated by
Constraint (3), is O(n × m × d), where d is the average degree of the vertices in the base
graph.

3.2 LEE-b
LEE-b is a variant of LEE, which encodes time variables using binary encoding. Binary
encoding is more compact than unary encoding. It employs a sequence of binary variables for
encoding a domain variable. Each combination of values of the binary variables represents a
value for the domain variable. If there are holes in the domain, then not-equal constraints are
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generated to disallow assigning those hole values to the variable. Also, inequality constraints
(≥ and ≤) are generated to prohibit assigning out-of-bounds values to the variable if either
bound is not 2k − 1 for some k. A detailed description of general techniques for binary
encodings for domain variables and primitive constraints can be found in [13].

LEE-b uses a variable Tv with the domain 0..m for each vertex v in V , where m is the
maximum time. LEE-b imposes the following constraints on time variables:

For v ∈ V :
∑

u∈nbs+(v) b((v, u)) = 0 ↔ Tv = 0 (5)

For v ∈ V , u ∈ nbs+(v): b((v, u)) → Tv > Tu (6)

Constraint (5) states that Tv = 0 if and only if vertex v is a leaf. Constraint (6) entails that
for each directed edge (v, u), Tv > Tu, meaning that vertex v is removed after vertex u. The
encoding of Tv > Tu can be found in [12].

The correctness of the encoding is supported by the fact that the constraint Tv > Tu is
not commutative and constraint (6) is unsatisfiable if u and v occur in a cycle.

The number of variables, besides the characteristic variables, used by LEE-b is O(n ×
log2(m)). The number of clauses used by LEE-b is O(n× log2(m)×d), where d is the average
degree of the vertices in the base graph.

4 Vertex-Elimination Encoding

The vertex-elimination encoding (VEE) [10] exploits the fact that the sequence of graphs
produced by the vertex elimination operation [11] with respect to an elimination ordering
preserves the acyclicity of the original graph.

Let O be an elimination ordering, O = [v1, v2, . . . , vn], and G0 be the original directed
graph, G0 = ([v1, v2, . . . , vn], E0). It is assumed that there are no vertices with self-loops in
G0. VEE produces a sequence of graphs G1, G2, . . ., Gn by eliminating vertices according
to the elimination ordering. The vertex-elimination graph is the union of the graphs G∗ =
G0

⋃
G1 . . .

⋃
Gn. Let Gi−1 = ([vi, . . . , vn], Ei−1). The graph Gi = ([vi+1, . . . , vn], Ei) is

obtained by eliminating vi from Gi−1, where

Ei = Ei−1 −
{(u, vi)|u ∈ nbs−(vi)} −
{(vi, u)|u ∈ nbs+(vi)} +
{(u, w)|u ∈ nbs−(vi), w ∈ nbs+(vi), u ̸= w}.

The operation eliminates vi’s adjacent edges, and adds the edge (u, w) into Ei for each u in
vi’s in-neighbors and each w in vi’s out-neighbors if u ̸= w and the edge is not contained in
Ei. Each newly added edge (u, w) is attached with a characteristic binary variable b((u, w)).
In addition, for all u in nbs−(vi) and w in nbs+(vi) such that u ̸= w, the variable b((u, w))
is entailed by the variables b((u, vi)) and b((vi, w)):

b((u, vi)) ∧ b((vi, w)) → b((u, w)). (7)

For each u in nbs−(vi), if u ∈ nbs+(vi), VEE, after eliminating vi, generates the following
constraint to ensure that there is no cycle between u and vi in Ei−1

¬b((u, vi)) ∨ ¬b((vi, u)). (8)

Constraints (7) and (8) ensure that the acyclicity of Ei entails the acyclicity of Ei−1.
Therefore, with the accumulated constraints, E0 is acyclic if Ei is acyclic by induction on i.
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The correctness of VEE is guaranteed by the fact that a cycle of any length in G0 will
lead to a cycle of size 2 in Gi−1 (i ∈ 1..n), which will make constraint (8) unsatisfiable.

The number of binary variables used by VEE, which is upper bounded by O(n2), is
determined by the number of edges in the original graph and the number of new edges added
during the vertex elimination process. The number of clauses generated by VEE is O(d2 × n),
where n =|V | and d is the average degree of the vertex-elimination graph. In comparison,
the transitive closure encoding uses O(n2) variables and generates O(n3) clauses [10]. While
VEE is significantly more compact than the transitive clause encoding for sparse graphs, it
is asymptotically the same as the transitive-closure encoding in the worst case.

5 Hybrid Encoding

The resulting graph obtained after each vertex elimination tends to be more dense than the
original graph, and VEE becomes closer to the transitive-closure encoding. Thus, the encoding
may become prohibitively large. One idea to alleviate code explosion while harnessing the
propagation strengths of VEE is to start with VEE when the graph is sparse, and switch
to LEE-b when the graph becomes dense. We call this encoding that combines VEE and
LEE-b a hybrid encoding.

Formally, given any elimination ordering [v1, v2, . . . , vn] and a switch position 0 ≤ i ≤ n,
the hybrid encoding uses the constraints (7) and (8) of VEE to generate the graph Gi by
eliminating the vertices v1, · · · , vi from the original graph G0. Then constraints (5) and (6)
of LEE-b are used to encode the acyclicity of Gi.

The correctness of a hybrid encoding is guaranteed by the correctness of VEE and LEE-b.
For any i ∈ 0 . . . n, constraints (7) and (8) ensure that if Gi is acyclic then G0 is also acyclic.
If LEE ensures that Gi is acyclic, and VEE ensures that there are no cycles in G1, G2, . . .,
Gi−1, then the hybrid encoding also ensures that the graph G0 is acyclic. The encoding size
depends on the encoding sizes of VEE and LEE-b, as well as the switching heuristic.

A concrete hybrid encoding needs to decide when to switch to LEE-b. In our imple-
mentation, the hybrid encoding uses the mindegree heuristic (selecting a vertex with the
smallest total number of incoming and outgoing edges in the graph generated by the vertex
elimination). It switches to LEE-b if the current graph Gc = G0

⋃
G1 · · ·

⋃
Gi contains 2.3

times as many edges as the original graph G0 or the current graph Gc contains more than
30 × n edges based on preliminary experiments, where n is the number of vertices in the
original graph G0.

6 Experimental Results

All the encodings discussed above have been implemented in Picat1 (version 3.4). Picat
provides a state-of-art SAT-based CSP solver. For example, it won two gold medals in the
2022 XCSP solver competition2 and two silver medals in the 2022 MiniZinc Challenge.3
Picat encodes constraints into SAT and employs Kissat4 as the underlying SAT solver.

This section presents the results of an experiment comparing the encodings on the
GraphSAT benchmarks.5 The benchmarks consist of five categories of instances with graph
sizes ranging from 15 to 10002 vertices. The GraphSAT benchmarks are modelled with

1 http://picat-lang.org
2 https://www.xcsp.org/competitions/
3 https://www.minizinc.org/challenge2022/results2022.html
4 https://github.com/arminbiere/kissat
5 https://users.aalto.fi/~rintanj1/software.html
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Table 1 Summary of results.

#Insts Benchmark LEE-u LEE-b VEE HYB Virtual-HYB
26 COMB 28.03 42.54 0.13 0.13 0.13
31 EMPTYCORNER 160.89 1.99 3.84 1.99 1.51
36 EMPTYMIDDLE 67.01 6.93 0.92 2.02 0.87
9 ESCAPE 379.45 22.74 285.91 23.64 15.38
14 ROOMCHAIN 343.35 342.99 15.38 15.34 11.94

116
TOTAL 16350.64 6423.84 2944.2 565.29 387.09

AVE 140.95 55.38 25.38 4.87 3.34
#SOLVED 94 108 112 116 116

conjunctive-normal-form clauses and some graph constraints encoded as acyclic constraints.
These benchmarks are introduced by [9] and have been also used to evaluate implementations
of the acyclic constraint in [10]. All the CPU times reported below were measured on Linux
Ubuntu with a 3.20GHz and 16G RAM Intel i7-8700 machine. The time limit used was 10
minutes per instance.

Table 1 gives a summary of the experimental results, where the column #Insts indicates
the number of instances, the column Benchmark indicates the benchmark category, and each
of the remaining columns indicates the average CPU time taken by an encoding. Virtual-
HYB is the “virtual best” encoding among 21 different hybrid encodings, each of which
uses VEE to eliminate p ∈ {0, 5, · · · , 100} percent of vertices and then switches to LEE-b.
Note that the hybrid encoding with p = 0 is equivalent to LEE-b, and the hybrid encoding
with p = 100 is VEE. The row Total gives the total CPU time for all instances, AVE the
average CPU time per instance, and #Solved the number of solved instances within the
time limit. In the experiments, the maximum time m used in LEE is n.6

It can be seen that, among the four encodings, HYB performs the best. HYB succeeds
on all of the 116 instances, while LEE-u, LEE-b, and VEE, respectively, fail on 22, 8 and 4
instances. It can also be seen that while both LEE-u and LEE-b are based on the idea of
leaf elimination, LEE-b is much better than LEE-u. On average, HYB is 5 times as fast
as VEE, and 10 times as fast as LEE-b. HYB is also more robust than VEE and LEE-b.
For each category, HYB has similar performance to the best of LEE-u, LEE-b, and VEE.
Virtual-HYB performs the best on each category, but it is intended as a comparison with
a form of virtual best heuristic. The results of Virtual-HYB entail that there is potential
to improve the hybrid encoding by giving a better heuristic to decide when to switch from
VEE to LEE-b.

Figure 1a gives the runtime distribution of the five encodings. Virtual-HYB overall
outperforms the other encodings, and HYB always solves more instances than VEE, LEE-b
and LEE-u when the solving time limit is set to more than 6 seconds. Also as the solving
time increases, HYB gets close to Virtual-HYB. Figure 1b compares the solving time of
HYB with (VEE + LEE-b)/2, the average CPU time of VEE and LEE-b. Each dot in
the figure denotes an instance. It can be seen that HYB is faster than the average of VEE
and LEE-b on most non-trivial instances (i.e. the instances not solved in 1 second by either
VEE or LEE-b). This illustrates that HYB encoding is robust. The performance of HYB
can be closer to the best between VEE and LEE-b. Figure 1c shows the average number of

6 We experimented with optimizing for some special cases, such as removing peripheral vertices, but the
difference was negligible.
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Figure 1 Detailed comparisons between the encodings.

Table 2 A comparison on encoding sizes.

Benchmark |V| |E| LEE-u LEE-b VEE HYB
#vars #cls #vars #cls #vars #cls #vars #cls

COMB005-3 134 1215 24473 208373 13559 86741 4241 13483 4241 13483
COMB010-3 389 3595 170363 1599113 43319 276548 12306 39618 12306 39618

EMPTYCORNER024-1 578 2877 347359 1697K 37951 164478 18990 105021 35753 209184
EMPTYCORNER075-1 5252 26247 fail fail 427631 1945K 255548 4491K 459127 2680K
EMPTYMIDDLE025-2 1252 10610 fail fail 155233 878838 75075 883099 159303 1071K
EMPTYMIDDLE030-1 902 4497 834330 4110K 59490 260162 32174 224943 61454 359879

escape08-1 4098 89688 fail fail 1269K 8047K fail fail 1618K 11180K
escape10-1 10002 229252 fail fail 3675K 23235K fail fail 4569K 30856K

ROOMCHAIN005-2 510 4223 282256 2385K 52076 295302 19328 76752 19328 76752
ROOMCHAIN006-3 917 11025 901673 10932K 147290 866044 49244 253186 49244 253186

edges in the vertex-elimination graph of each category generated by using VEE to eliminate
p ∈ {0, 5, · · · , 100} percent of vertices. We can see that VEE is much faster than LEE-b
on the categories where the graph size is small and grows slowly, such as the COMB and
ROOMCHAIN categories.

Table 2 gives the graph sizes of 10 selected instances and the encoding sizes. The column
|V| gives the number of vertices, and |E| gives the number of edges in the base graph.
For each encoding, the table gives the number of variables (#vars) and the number of
clauses (#cls) in the generated code. The entry fail indicates that the encoder fails to finish
generating the encoding, i.e. the encoder runs out of memory or time. LEE-u fails on 4 of
the instances, VEE fails on 2 of the instances, while LEE-u and HYB succeed on all the
instances. Naturally for failed encodings, the SAT solver is never invoked. The results also
show that LEE-u produces the largest encodings, and for the EMPTYMIDDLE instances
the encoder runs out of memory. This may explain why the performance of LEE-u is also
the worst.

Table 3 gives the CPU time of each run, which includes both the translation time and
solving time. The entry T.O. indicates that the run does not finish within the time limit.
HYB succeeds in solving all the 10 instances, while each of the other encoders fails to solve
some of the instances. In addition, HYB is faster than both VEE and LEE-b on some
instances, such as the EMPTYCORNER075-1 instance. LEE-b is significantly faster than
VEE on instances where VEE fails, such as escape08-01.

SAT 2023
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Table 3 A comparison on CPU times.

Benchmark LEE-u LEE-b VEE HYB
COMB005-3 7.21 17.36 0 .08 0.08
COMB010-3 115.17 195.78 0.59 0.59

EMPTYCORNER024-1 26.86 0.3 0.42 0.35
EMPTYCORNER075-1 fail 14.52 24.58 11.5
EMPTYMIDDLE025-2 fail 43.15 5.66 11.49
EMPTYMIDDLE030-1 26.44 0.84 1.05 1.03

escape08-1 fail 15.96 fail 29.04
escape10-1 fail 150.98 fail 101.84

ROOMCHAIN005-2 T.O. T.O. 45.55 45.79
ROOMCHAIN006-3 T.O. T.O. 11.56 11.61

7 Discussion and Conclusion

This paper compares several SAT encodings for the acyclic constraint on directed graphs.
For LEE, this paper compares two encodings of time variables, and shows that the decision
on which encoding to select has a great impact on the performance. While LEE-b is compact,
it fails on some mid-sized instances due to its weak propagation caused by the binary
representation of time variables. Our study also confirms that, while VEE is effective for
sparse mid-sized graphs, it generates prohibitively large encodings for larger graphs even
when the graphs are sparse.

Most importantly, our study finds that the hybrid encoding, which starts with VEE and
switches to LEE-b when the graph becomes dense, significantly outperforms both LEE-b
and VEE. The good performance of the hybrid encoding is attributed to its combination of
VEE’s strong propagation and LEE-b’s conciseness. The hybrid encoding clearly advances
the state of the art. Ultimately, to solve more difficult problems, scalability is needed. The
hybrid encoding will be a new starting point for future researchers and practitioners.

As the idea of hybridization is new in this context, it warrants more investigation. For
example, further work needs to be done to find even better heuristics for switching from VEE
to LEE-b. Also, the idea of hybridization may also be effective for encoding other graph
constraints, such as the reachability constraint.
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