CadiBack: Extracting Backbones with CaDiCalL

Armin Biere =
Universitat Freiburg, Germany

Nils Froleyks &

Johannes Kepler Universitat, Linz, Austria

Wenxi Wang &
University of Texas at Austin, TX, USA

—— Abstract

The backbone of a satisfiable formula is the set of literals that are true in all its satisfying assignments.

Backbone computation can improve a wide range of SAT-based applications, such as verification,
fault localization and product configuration. In this tool paper, we introduce a new backbone
extraction tool called CADIBACK. It takes advantage of unique features available in our state-of-
the-art SAT solver CADICAL including transparent inprocessing and single clause assumptions,
which have not been evaluated in this context before. In addition, CADICAL is enhanced with
an improved algorithm to support model rotation by utilizing watched literal data structures. In
our comprehensive experiments with a large number of benchmarks, CADIBACK solves 60% more
instances than the state-of-the-art backbone extraction tool MINIBONES. Our tool is thoroughly
tested with fuzzing, internal correctness checking and cross-checking on a large benchmark set. It is
publicly available as open source, well documented and easy to extend.

2012 ACM Subject Classification Theory of computation — Automated reasoning
Keywords and phrases Satisfiability, Backbone, Incremental Solving

Digital Object Identifier 10.4230/LIPIcs.SAT.2023.3

Supplementary Material Software: https://github.com/arminbiere/cadiback
archived at swh:1:dir:9e9c1ac209792174194cde74eb3a385f48ceade?

1 Introduction

In 1997, Parkes first defined the backbone of a propositional formula as the set of literals
whose assignments are true in every satisfying assignment [24]. The size of the backbone is
associated with the hardness of the corresponding propositional problem [23, 27]. Usually,
the larger a backbone, the more tightly constrained the problem becomes, thus the harder
for the solver to find a satisfying assignment [11, 30]. It is proved by Janota that deciding if
a literal is in the backbone of a formula is co-NP complete [17]. Furthermore, Kilby et al.
show that even approximating the backbone is intractable in general [20].

Nevertheless, the identification of the backbone (either in a partial or a complete way)
has a number of practical applications, such as post-silicon fault localization in integrated
circuits [34, 36, 35], interactive product configuration [17], facilitating the solving efficiency
of MaxSAT [14, 28, 29, 31] and random 3-SAT problems [12], as well as improving the
performance of chip verification [26]. Motivated by the wide range of applications, developing
efficient algorithms for computing the backbone of a given propositional formula is important.

Indeed, numerous techniques to compute the backbone have been proposed during the
past few decades. These approaches make use of four main techniques: (7) model enumeration,
which enumerates all models of a satisfiable formula to identify the backbone; (i7) iterative
SAT testing, which repeatedly filters out a candidate or include it in the backbone; (iii) upper
bound checks, which try to identify multiple backbone literals at once; and (iv) the core-based
method, which is guided by unsatisfiable cores and tries to eliminate as many candidates at
once as possible. For example, Kaiser et al. [19] designed three model-enumeration algorithms.
Climer et al. [10] propose a graph-based iterative SAT testing approach.

© Armin Biere, Nils Froleyks, and Wenxi Wang;

licensed under Creative Commons License CC-BY 4.0
26th International Conference on Theory and Applications of Satisfiability Testing (SAT 2023).
Editors: Meena Mahajan and Friedrich Slivovsky; Article No. 3; pp. 3:1-3:12

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:biere@cs.uni-freiburg.de
https://orcid.org/0000-0001-7170-9242
mailto:nils.froleyks@jku.at
https://orcid.org/0000-0003-3925-3438
mailto:wenxiw@utexas.edu
https://orcid.org/0000-0002-2407-8123
https://doi.org/10.4230/LIPIcs.SAT.2023.3
https://github.com/arminbiere/cadiback
https://archive.softwareheritage.org/swh:1:dir:9e9c1ac209792174194cde74eb3a385f48ceade2;origin=https://github.com/arminbiere/cadiback;visit=swh:1:snp:90a4e8cce7a1dcf751de1854e65ae747d9416b9d;anchor=swh:1:rev:7731a2f525b970575864f5502584d352837540ef
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2

CadiBack: Extracting Backbones with CaDiCalL

Later, Zhu et al. [34, 36] designed more efficient SAT testing approaches for post-silicon
fault localization. Note that, the backbone extractor MINIBONES [18, 22] implements both
an iterative and a core-based approach. Despite recent attempts [25, 32, 33] to improve upon
MINIBONES, the corresponding tools are not publicly available, and no significant advances
have been made so far which still leaves MINIBONES as the state-of-the-art.

Our new backbone extractor CADIBACK tries to improve the iterative algorithms of
MINIBONES [18, 22] and uses the state-of-the-art SAT solver CADICAL [4], extended
with new flipping algorithms to support backbone extraction. Different configurations of
these algorithms are implemented inside CADIBACK, empirically evaluated and compared
with MINIBONES on a large set of satisfiable instances collected from the main track of the
SAT Competitions from 2004 - 2022, on which CADIBACK solves 60% more instances.

The paper is structured as follows. After this introduction, we discuss basic concepts and
notations related to backbone extraction in Section 2. The relevant backbone extraction
algorithms of MINIBONES are introduced in Section 3. We then present our improvements
over these algorithms and propose CADIBACK in Section 4. The implementation details
of CADIBACK are provided in Section 5. Finally, we empirically evaluate CADIBACK in
Section 6 and draw conclusions in Section 7.

2 Basic Concepts and Notations

Consider a propositional formula ¢ in conjunctive normal form (CNF) over a fixed set of
variables V and literals £ = V UV, where V = {v | v € V} denotes the negated variables.
For a literal ¢ € L, we define v = |¢| as the variable of ¢, i.e., £ € {v,v}. In this paper, we
mainly consider full assignments o: V — {0,1} assigning variables to Boolean constants “0”
(false) or “1” (true). For convenience, we use the set and logic notation interchangeably for
formulas ¢, clauses C' € ¢ and literals ¢ € C, as well as assignments {¢ | o(¢) = 1}. The
notion of assignments is lifted to literals, formulas and clauses in the natural way through
substitution followed by Boolean expression simplification. A model of ¢ is an assignment
o with o(¢) = 1 and also called satisfying assignment. A formula is satisfiable if it has a
model. Otherwise, it is unsatisfiable. In this paper, we focus on satisfiable formulas .

A literal £ is a backbone literal of a formula ¢ iff there exists a model o of ¢ with o(¢) =1
and all other assignments ¢’ with o/(¢) = 0 do not satisfy ¢, i.e., ’(¢) = 0. The backbone B
of a formula ¢ is the set of its backbone literals. We introduce two conditions that determine
whether literals are included or not in the backbone B.

The first condition is based on identifying fized literals. A clause C = ¢ (or C' = {{}
in set notation) having a single literal ¢ is called unit clause. If a unit clause C' € ¢, the
corresponding literal ¢ is clearly a backbone literal. We call such literals fized. This also
applies to unit clauses deduced by the SAT solver through for instance clause learning,
simplification and preprocessing [7]. All such fixed literals are included in the backbone B.

The second condition is called disagreement condition, stating that if there are two models
o and o' disagreeing on £, i.e., o’ (¢) = o(f), then neither ¢ nor its negation are backbone
literals (i.e., £, £ ¢ B). This can be realized by using each newly discovered model o’ to filter
the list of remaining backbone candidates. For instance, the empty formula over n variables
has both constant assignments o = 0 and ¢’ = 1 as models, disagreeing on all literals, and
thus B = (). Note that, there is a special case of the disagreement condition called model
rotation, as described in [18]. Similar ideas have been used for MUS extraction [1]. The
literal £ is rotatable [18] in a model o of ¢ iff o(¢) = 1 and the assignment 7 that differs from
o only in |f] is a model of ¢ (7 can be taken as the special case of ¢’ in the disagreement
condition). We also call such literals flippable, which applies for the rest of the paper.

A. Biere, N. Froleyks, and W. Wang

Obviously, a literal which can be flipped is not a backbone literal, nor is its negation, and
both can be dropped from the backbone candidate list. Example 1 below shows how a literal
is determined to be flippable under the model rotation condition.

» Example 1. Consider ¢ = (¢V t) A (cVe) A" which encodes “if-then-else(c, ¢, e)”, where
neither ¢ nor ¢ occur in ¢’ but e and ¢ do (they are not “pure”). Assume that the constant
true assignment o = 1 is a model, i.e., o(¢’) = 1. Both ¢ and e are set to true, but only the
literal ¢ can be flipped. In the resulting model 7, all variables are set to true except for c,
and ¢ can be flipped (back) in 7 to obtain the original model o. Thus, literal c is flippable.

3 Algorithms in MiniBones

The backbone extraction algorithms of MINIBONES [18] take advantage of incremental SAT
solving (refer to [13, 15, 16] for details) to gradually augment the original formula with
implied clauses (particularly learned clauses). These clauses are added implicitly to the
single SAT solver instance during incremental queries, while assuming the negation of one
or more remaining backbone candidate literals. Specifically, these iterative MINIBONES
algorithms (Algorithms 3, 4 and 5 in [18]) utilize discovered models and model rotation to
refine the set of candidate literals A C £ which is initialized as A = {{ | 0(¢) = 1} by the
first discovered model . On termination (A = (}), the backbone B matches the fixed literals
(of the augmented formula) and all other literals are dropped.

There are three iterative algorithms proposed for MINIBONES in [18]. The basic algorithm
(Algorithm 3 in [18]) needs at least as many iterations as the number of backbone literals,
which is inefficient on formulas with exactly one solution but many variables. An improved
algorithm (Algorithm 4 in [18]) assumes that at least one of the remaining candidate literals
can be flipped (i.e., using activation literals a temporary clause is added that contains
the disjunction of the negated candidates). If the SAT query under such assumption is
unsatisfiable, all candidates are fixed and the backbone extraction is done. A more advanced
algorithm (Algorithm 5 in [18]) only adds a subset of the remaining candidates, called a
chunk, to the temporary clause. Chunks are limited in size to avoid thrashing the SAT solver
with too large temporary clauses and make it more likely for a call to be unsatisfiable.

Furthermore, MINIBONES proposes a new model rotation algorithm (Section 5 in [18]) to
determine flippable (rotatable) literals based on the notion of forcing. A clause C forces a
literal ¢ € C under assignment o, if 0(C) = o(f) =1 and 7(C) = 0 with 7 obtained from o
by flipping £. A literal £ is forced in a formula ¢ under a model o, if there is a clause C' € ¢
which forces ¢ under o. It is straightforward to see that literals which can be flipped in a
model o of ¢ are exactly those that are not forced. Based on this observation, the model
rotation algorithm goes over all clauses whenever a new model is found and identifies literals
that are not forced by any of them. If any of the remaining backbone candidates are not
forced, they are dropped from the candidate list.

4 Improved Algorithms in CadiBack

CADIBACK is built upon the state-of-the-art SAT solver CADICAL [4] which has been
extended with additional algorithms to support backbone extraction. The general backbone
extraction algorithm of CADIBACK is shown in Algorithm 1 of Figure 1. It follows the
iterative algorithms of MINIBONES, which uses complements of backbone estimates (as
constraints) and chunking, but with three key improvements.

3:3

SAT 2023

3:4

CadiBack: Extracting Backbones with CaDiCalL

// Assume ¢ is satisfiable and use // Assume o(¢) = o(£) = 1, unit clauses
// K =1 for one-by-one, // have exactly one watched literal
// K =10 for chunking and // and all other clauses are watched
// K = oo as default (non-chunking). // by two literals wq # we with
backbone (CNF ¢, chunk rate K = co) // o(wi) = 1if o(wz) = 0 and vice versa.
1 (res,0) < SAT(y) flippable (CNF ¢, literal ¢, model o)
2 assert o(p) =res=1 // ¢ satisfiable! 1 // return 0 for no-flip
3 A<« {l €o|—flippable(¢,0)} // candidates 2 for all clauses C' watched by £ in ¢
s kel B 3 if o(C\ {£}) =0 then return 0
5 while A # () do ¢ returnl
// F < 0 for no-fixed, otherwise by default Algorithm 2 Checking if literal ¢
6 F< {f{ecA|lisfixed by SAT in ¢} can be flipped in model o.
4 B+ BUF, A< A\F // Given a single clausal constraint
8 I + pick k' literals from A // chunk // p=~F1V -V and assignment o
with &' = min(k, |A]) // determine whether p is conflicting.
9 2 Vier £ // constraint: flip one in chunk // Otherwise pick new decision.
// Solve ¢ under p with “bool constrain” decide (constraint p, partial model o)
// or use activation literal for no-constrain. t ... // handle literal assumptions
10 (res, o) <= SAT(¢ | p) 2 if o(p) =1 then// constraint true
11 if res then // SAT call satisfiable 3 € < “first” literal in p with o(¢)
// filter only a single literal for no-filter // speed-up future search for ¢
12 Ae{leA]a(t)} 4 move £ to the front of p
13 A+ {£ € A | —flippable(¢,0)} 5 elif o(p) = 0 then //constraint false
14 k<1 // reset chunk size to 1 6 ... // handle conflicting constraint
15 else // SAT call unsatisfiable 7 else // constraint undetermined
16 B+~ BUT 8 £ < highest scored literal in o(p)
17 A~ A\T 9 pick ¢ as new decision and return
18 k< K -k // increase size geometrically 10 ... // fall back to default decisions
19 return B // or print when literal is added Algorithm 3 Picking the next decision

literal under clausal constraint p and
Algorithm 1 Extracting backbone of formula ¢. the partial model o.

Figure 1 Our backbone algorithm combines all three iterative approaches from [18]. It simulates
the basic iterative Algorithm 3 in [18] for K = 1 and comes close to the improved Algorithm 4
in [18] for K > |A| and the most advanced Algorithm 5 in [18] for other values of K. The difference
between our algorithm and the latter two is that we use a dynamic chunk size that is reset to 1 after
a satisfiable call and grows geometrically as long SAT queries remain unsatisfiable. In any case, it
first identifies an initial model o and initializes the set of candidates A after filtering out flippable
literals F'. The remaining candidates are examined in chunks I'. If all of the literals in the chunk are
backbones, the chunk size is increased. Otherwise, the solver returns a new model ¢ which is used
to filter the candidate list, as it is guaranteed to disagree with the previous model in at least one of
the literals in the current chunk by assuming the constraint p. After that, another model rotation
is performed and the chunk size is reset to 1. Note that, instead of including explicit insertions of
backbones, we can assume that the SAT solver does the insertion implicitly. Flippable literals are
identified by the new flippable algorithm which only traverses clauses watched by the remaining
backbone candidates. The decide algorithm is an optimized version of the decision procedure in our
SAT solver for more efficiently handling large constraints as they arise in this application, which
picks the literal with the highest variables scores (i.e., EVSIDS scores [2] or VMTF stamps [5]).

A. Biere, N. Froleyks, and W. Wang

First, CADIBACK uses transparent incremental inprocessing [15], as CADICAL is able
to effectively and efficiently simplify the formula (e.g., using variable elimination) during
incremental queries completely transparent to the user, while MINIBONES does not support
inprocessing due to the limitation of its base solver MINISAT [13].

Second, to assume the disjunction of the complements, CADIBACK utilizes single clause
assumptions through the “void constrain (int 1it)” API call in CADICAL [16], instead of
adding a clause with the complement literals and an activation literal [13], as in MINIBONES.
The reason is that these added clauses and variables by MINIBONES may risk to clog the
SAT solver, and handling constraints explicitly can have the benefit to give the SAT solver
more control on selecting decisions. Since the assumed clausal constraint contains a high
number of literals in this application (]V| initially), we extended the existing implementation
of single clause assumptions in CADICAL slightly, as shown in Algorithm 3 in Figure 1.
After each restart the SAT solver is forced to decide on a literal to satisfy the constraint.
CADIBACK chooses the one with the highest variable score (EVSIDS scores [2] or VMTF
stamps [5]) among all unassigned literals in the constraint.

Third, while in earlier work model rotation only had negative effects on MINIBONES [18],
we show that CADIBACK benefits from using model rotation to improve efficiency of backbone
computation. The key of this improvement is our fast flipping algorithm implemented in
CADICAL, accessible through the new API call “bool flippable (int 1it)". As described
in Algorithm 2 in Figure 1, it uses watch lists to find individual “flippable” literals in models
through propagation instead of going over the whole formula to find unit clauses. We also
consider a variant of Algorithm 2 which eagerly flips flippable literals as they are found, with
the goal to drop even more backbone candidates through flipping. The following example
shows the possibility that flipping a flippable literal can yield additional flippable literals.

» Example 2. Continuing Example 1, assume that no clause in ¢’ forces literal ¢ under
o =1, which is not the case for the first clause (¢ V t) in ¢, as it forces ¢t under o. Thus, ¢
cannot be flipped in 0. As ¢ does not occur in ¢’, there is no clause forcing ¢ under 7. In

addition, the only other clause (¢ V t) with ¢ is not forcing as it is satisfied by two literals.

Thus, flipping ¢ makes t flippable in 7 (7’ obtained from 7 by flipping ¢ remains a model
of ¢). Therefore, neither ¢ nor ¢ are backbone literals.

To implement this idea we provide a new “bool flip (int 1it)” API call in CADICAL

which implements a variant of Algorithm 2 in Figure 1, inspired by propagation in SAT solvers.

While for “flippable” we only need to check that there is another satisfied literal in all
traversed clauses watched by the literal ¢ requested to be flipped, the “f1ip” implementation
needs to unwatch ¢ in these clauses and watch that other satisfied literal instead (unless the
second watched literal in the clause is also satisfied). If finding replacements is successful for

all clauses watched by ¢ (or the other watched literal is satisfied), the value of ¢ is flipped.

Otherwise, it remains unchanged and “flip” fails. Note that this variant of our flipping
algorithm was previously implemented inside the sub-solver KITTEN of KISSAT to diversify
models with the goal of speeding up the refinement process of SAT sweeping [3].

Algorithm 3 of [18] can be simulated precisely with our algorithm by setting K = 1.

However, Algorithm 5 of [18], which uses a fixed chunk size limit can only be approximated
by setting K = 100, as we change the chunk size & dynamically. Our adaptive scheme
increases k geometrically with rate K as long as SAT queries remain unsatisfiable (which
fixes all backbones in the chunk at once). If the SAT solver finds a model instead then the
chunk size k is reset to one, i.e., the next constraint will only contain the negation of a single
backbone candidate. With K = oo the SAT solver is either assuming the complement of a
single or the disjunction of the negation of all remaining backbone candidates which is the
setting of our algorithm closest to Algorithm 4 of [18] which does not limit chunk size at all.

3:5

SAT 2023

3:6

CadiBack: Extracting Backbones with CaDiCalL

5 Implementation

Our tool CADIBACK uses the extended CADICAL [4] and is implemented in roughly 1200
lines of C++ code (counted after formatting with CLANGFORMAT). The source code available
at https://github.com/arminbiere/cadiback is concise and well-documented.

To check the correctness of algorithms and implementations, an internal backbone checker
is implemented inside CADIBACK. The checker can be enabled through the command line
option “--check” and is simply a SAT solver instance of CADICAL, i.e., if checking is
enabled, CADIBACK obtains the checker instance as a copy of the main internal CADICAL
solver through the “copy” API call provided by CADICAL.

First, it checks correctness of an identified backbone literal ¢, by confirming that the
input formula ¢ under the assumption —¢ (negation of the backbone) is unsatisfiable. Second,
it checks the correctness of dropping a literal ¢ from being a backbone candidate (removed
from set A in Algorithm 1), by confirming that the input formula ¢ remains satisfiable under
the assumption —¢. Third, it checks whether the number of backbone literals found and the
number of dropped literals sum up to the number of variables in the input formula.

Standard grammar-based black-box fuzz-testing was applied [9] with the backbone
checking enabled on all 42 compatible pairs of options used in our experiments in Section 6.
This pairwise combinatorial testing [21] through fuzzing was run for 50 hours in parallel using
as many processes as configurations on a dual processor AMD EPYC 7343 machine (providing
in total 64 virtual cores). In addition, sizes of the backbones of all our benchmarks (see
Section 6) were sanity checked with the ones computed by 12 configurations of CADIBACK
and two configurations of MINIBONES considered in our experiments.

In addition, for flipping information extraction, the library of CADICAL is extended
to provide “bool flippable (int)” and “bool flip (int)” as discussed in the last section.
The model based tester MOBICAL is also extended correspondingly for testing the new
functionality. This extended version of CADICAL with improved constrain handling and
flipping is also available at https://github.com/arminbiere/cadical.

6 Experiments

Benchmarks. To evaluate CADIBACK empirically, we collected all benchmarks from the
main track of the SAT competition 2004 to 2022 as our initial benchmark set. We noticed that
benchmarks from one competition year often contain old benchmarks (sometimes arbitrarily
renamed or commented by the competition organizers) from previous competition years. This
caused our initial benchmark set to include several redundant benchmarks. To remove such
duplicates, in a second step, we cleaned up each individual benchmark by removing comments
using a simple DIMACS pretty printer, followed by identifying identical benchmarks through
computing an MD5 checksum and removing redundant ones. Then we ran the state-of-the-art
SAT solver Kissat 3.0.0 [3] with 5,000 second timeout on the no-duplicate benchmark set and
selected benchmarks solved to be satisfiable. In total this yields 1798 benchmarks available
at https://cca.informatik.uni-freiburg.de/sc04to22sat.zip (6 GB) and [6].

Baseline. We choose the state-of-the-art backbone solver MINIBONES as our baseline
(ported to support newer C++ compilers available at https://github.com/arminbiere/
minibones). Assuggested by [18], we use the configuration “-e -c 100 -i” (called minibones-
core-based), which adopts the core-based approach with a fixed chunk size of 100 and inserts
found backbone literals into the input formula explicitly. Additionally, to evaluate how
our algorithm improves upon the Algorithm 5 in [18], we choose “~u -c 100 -i” (called
minibones-iterative) which implements the algorithm and uses activation literals.

https://github.com/arminbiere/cadiback
https://github.com/arminbiere/cadical
https://cca.informatik.uni-freiburg.de/sc04to22sat.zip
https://github.com/arminbiere/minibones
https://github.com/arminbiere/minibones

A. Biere, N. Froleyks, and W. Wang

Platform. For benchmark collection we used a machine with an AMD Ryzen Threadripper
3970X 32-Core Processor at 4.5 GHz and 256 GB RAM. All other experiments were conducted
in parallel on a cluster consisting of 32 machines, each with two 8-core Intel Xeon E5-2620
v4 CPUs running at 2.10 GHz (turbo-mode disabled) and 128 GB RAM. Each instance is
allocated to one core with a timeout of 5,000 seconds and a memory limit of 7 GB.

Data Availability. Experimental data including source code and log files are available on
https://cca.informatik.uni-freiburg.de/cadiback.

Overall Results. We run both CADIBACK and the baseline MINIBONES on all benchmarks
in our benchmark set. We consider an instance solved if the tool completes backbone
computation, i.e., classifies all literals as either backbone or non-backbone. The number of
instances solved over time are presented in Figure 2. It turns out that the best performing
default configuration (default) of CADIBACK can solve 732 instances in total, which is 274
more (59.82%) than the best performing configuration of MINIBONES, i.e., the iterative
configuration minibones-iterative, which solves only 458 instances. Note that, 11 failing runs
of CADIBACK and 61 failing runs of MINIBONES hit the memory limit. It is also instructive
to observe that over all selected 1798 instances CADIBACK was able to find the first model in
1573 cases, while MINIBONES did so in only 1152 cases, which clearly shows the advantage
of using CADICAL [4] versus MINISAT [13] in this application. It might be interesting to
investigate whether this improvement transfers to other applications using MINISAT.

In addition, following the SAT manifesto v1.0 [8], we also compare the default configuration
of CADIBACK with the best configuration of MINIBONES on all satisfiable benchmarks in
the main track of SAT competitions from 2020 to 2022. As a result, CADIBACK/MINIBONES
solved 22/9 instances in 2020, 52/17 in 2021 and 41/10 in 2022.

Configurations. We study the impact of different design options in CADIBACK by evaluating
12 configurations (see Figure 2) including an extension implementing the core-based approach
of MINIBONES (Algorithm 7 in [18]). Firstly, we observe that the effects of using smaller
chunks were detrimental in our experiments. In fact, the infinite chunk size K = oo (default)
has been very beneficial which solves 732 instances, while chunk size K = 10 (chunking)
solves only 702 instances and chunk size K =1 (one-by-one) even only 692.

Secondly, we study the impact of design options related to flipping. The experimental
results indicate that removing flippable literals from the candidate list (no-flip) does not
have a significant overall impact. This result differs from the one given by the authors of
MINIBONES where the model rotation was detrimental. We attribute this to the efficiency of
using watch lists for the flippable check. The really-flip configuration uses “f1ip” and simply
tries to flip literals of the candidate chunk in an arbitrary order. It performs similar to the
default configuration which uses “flippable”, but is better in the aspect that the default only
found 30,780,841 flippable literals in total, while really-flip found 32,488,468. This directly
leads to a reduction of the total number of SAT solver calls, which goes down from 2,070,166
calls in no-flip to 1,478,160 calls in default and even down to 992,404 calls in really-flip.

Thirdly, to evaluate the impact of CADICAL on CADIBACK in detail, including its
more advanced inprocessing and its most recent “constrain” API to support single clause
assumptions [16]. We observe that disabling the inprocessing in CADICAL (no-inprocessing)
significantly degrades the performance from solving 732 instances to 690 instances. Disabling
the single clause assumption support from CADICAL in configuration no-constrain and falling
back to activation literals (as MINIBONES does) degrades the efficiency of CADIBACK even
more significantly to solving only 672 instances.

3:7

SAT 2023

https://cca.informatik.uni-freiburg.de/cadiback

3:8

CadiBack: Extracting Backbones with CaDiCalL

Lastly, we evaluate the impact of our core-based algorithm. The core-based preprocessing
in CADIBACK only solves 672 instances. However, since the core-based approach falls back
to default if the considered literal set becomes empty after removing failed assumptions (see
Algorithm 7 in [18] for details), our cores version is more sophisticated than MINIBONES
(minibones-core-based), thanks to its advanced features in default. In contrast, the core-based
MINIBONES configuration (minibones-core-based) is slightly better than its iterative version
(minibones-iterative) for shorter run times, which matches observations of [18] with the lower
time limit of 800 seconds. One can argue, that the reason probably is that the core-based
algorithm in MINIBONES can rely on literal assumptions [13] avoiding the overhead inflicted
from adding temporary clauses and activation literals. However, this slight advantage
degrades for long running instances, as can be seen in Figure 2.

600
|

400
|

O 732 cadiback-default
A 729 cadiback—no—flip
728 cadiback—no-fixed
X 726 cadiback-set-phase
725 cadiback-really-flip
v 702 cadiback—chunking
692 cadiback-one-by-one
690 cadiback—no-inprocessing
9 672 cadiback-cores
@ 670 cadiback—-no-constrain
612 cadiback—no-filter
553 cadiback-plain
458 minibones-—iterative
m 450 minibones-core-based

I I I I I I
0 1000 2000 3000 4000 5000

200
|

Figure 2 Benchmarks solved (vertical) over time in seconds (horizontal) where backbone extraction
completed within 5,000 seconds by 12 CADIBACK configurations: default denoting all optimizations
enabled except for chunking and cores; no-flip denoting no model rotation; no-fixed representing
no checking on candidates for being fixed explicitly; set-phase denoting picking decisions in SAT
solver to falsify backbone candidates; really-flip denoting flipping flippable literals eagerly; chunking
representing the fine-grained chunk size control (K = 10); one-by-one denoting single literal chunks
(K = 1); no-inprocessing representing no SAT solver internal inprocessing; cores denoting core-based
preprocessing; no-constrain meaning only using activation literals instead of using “constrain” API;
no-filter disables filtering backbone candidates by the disagreement condition; and plain setting K = 1
(as one-by-one) and disabling all other optimizations. We also considered 2 MINIBONES configurations:
iterative implementing Algorithm 5 in [18]; and core-based implementing Algorithm 7 in [18].

7 Conclusion

We revisited backbone algorithms and implemented a new open-source backbone extraction
tool CADIBACK based on an extended version of the state-of-the-art SAT solver CADICAL.
Our extensive evaluation on a large set of benchmarks shows a substantial performance
improvement by solving 60% more benchmarks than the state-of-the-art MINIBONES.

A. Biere, N. Froleyks, and W. Wang

—— References

1

10

11

12

13

Anton Belov and Jodo Marques-Silva. Accelerating MUS extraction with recursive model
rotation. In Per Bjesse and Anna Slobodova, editors, International Conference on Formal
Methods in Computer-Aided Design, FMCAD 11, Austin, TX, USA, October 30 — November
02, 2011, pages 37-40. FMCAD Inc., 2011.

Armin Biere. Adaptive restart strategies for conflict driven SAT solvers. In Hans Kleine
Biining and Xishun Zhao, editors, Theory and Applications of Satisfiability Testing — SAT 2008,
11th International Conference, SAT 2008, Guangzhou, China, May 12-15, 2008. Proceedings,
volume 4996 of Lecture Notes in Computer Science, pages 28-33. Springer, 2008. doi:
10.1007/978-3-540-79719-7_4.

Armin Biere and Mathias Fleury. Gimsatul, [saSAT and Kissat entering the SAT Competition
2022. In Tomas Balyo, Marijn Heule, Markus Iser, Matti Jarvisalo, and Martin Suda, editors,
Proc. of SAT Competition 2022 — Solver and Benchmark Descriptions, volume B-2022-1 of
Department of Computer Science Series of Publications B, pages 10-11. University of Helsinki,
2022.

Armin Biere, Mathias Fleury, and Maximillian Heisinger. CaDiCal,, Kissat, Paracooba entering
the SAT Competition 2021. In Tomas Balyo, Nils Froleyks, Marijn Heule, Markus Iser, Matti
Jéarvisalo, and Martin Suda, editors, Proc. of SAT Competition 2021 — Solver and Benchmark
Descriptions, volume B-2021-1 of Department of Computer Science Report Series B, pages
10-13. University of Helsinki, 2021.

Armin Biere and Andreas Frohlich. Evaluating CDCL variable scoring schemes. In Marijn
Heule and Sean A. Weaver, editors, Theory and Applications of Satisfiability Testing — SAT
2015 — 18th International Conference, Austin, TX, USA, September 24-27, 2015, Proceedings,
volume 9340 of Lecture Notes in Computer Science, pages 405-422. Springer, 2015. doi:
10.1007/978-3-319-24318-4_29.

Armin Biere, Nils Froleyks, and Wenxi Wang. Sampled and Normalized Satisfiable Instances

from the main track of the SAT Competition 2004 to 2022, March 2023. doi:10.5281/zenodo.

7750076.

Armin Biere, Matti Jarvisalo, and Benjamin Kiesl. Preprocessing in SAT solving. In Armin
Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability
— Second Edition, volume 336 of Frontiers in Artificial Intelligence and Applications, pages
391-435. 1I0S Press, 2021. doi:10.3233/FAIA200992.

Armin Biere, Matti Jarvisalo, Daniel Le Berre, Kuldeep S. Meel, and Stefan Mengel. The SAT
practitioner’s manifesto, September 2020. doi:10.5281/zenodo.4500928.

Robert Brummayer, Florian Lonsing, and Armin Biere. Automated testing and debugging of
SAT and QBF solvers. In Ofer Strichman and Stefan Szeider, editors, Theory and Applications
of Satisfiability Testing — SAT 2010, 13th International Conference, SAT 2010, Edinburgh,
UK, July 11-14, 2010. Proceedings, volume 6175 of Lecture Notes in Computer Science, pages
44-57. Springer, 2010. doi:10.1007/978-3-642-14186-7_6.

Sharlee Climer and Weixiong Zhang. Searching for backbones and fat: A limit-crossing
approach with applications. In AAAI/IAAI pages 707-712, 2002.

Michael Codish, Yoav Fekete, and Amit Metodi. Backbones for equality. In Valeria Bertacco
and Axel Legay, editors, Hardware and Software: Verification and Testing — 9th International
Haifa Verification Conference, HVC 2013, Haifa, Israel, November 5-7, 2013, Proceedings,
volume 8244 of Lecture Notes in Computer Science, pages 1-14. Springer, 2013. doi:10.1007/
978-3-319-03077-7_1.

Olivier Dubois and Gilles Dequen. A backbone-search heuristic for efficient solving of hard
3-SAT formulae. In IJCAI, volume 1, pages 248-253, 2001.

Niklas Eén and Niklas Sorensson. An extensible SAT-solver. In Enrico Giunchiglia and
Armando Tacchella, editors, Theory and Applications of Satisfiability Testing, 6th International
Conference, SAT 2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Revised
Papers, volume 2919 of Lecture Notes in Computer Science, pages 502-518. Springer, 2003.
do0i:10.1007/978-3-540-24605-3_37.

3:9

SAT 2023

https://doi.org/10.1007/978-3-540-79719-7_4
https://doi.org/10.1007/978-3-540-79719-7_4
https://doi.org/10.1007/978-3-319-24318-4_29
https://doi.org/10.1007/978-3-319-24318-4_29
https://doi.org/10.5281/zenodo.7750076
https://doi.org/10.5281/zenodo.7750076
https://doi.org/10.3233/FAIA200992
https://doi.org/10.5281/zenodo.4500928
https://doi.org/10.1007/978-3-642-14186-7_6
https://doi.org/10.1007/978-3-319-03077-7_1
https://doi.org/10.1007/978-3-319-03077-7_1
https://doi.org/10.1007/978-3-540-24605-3_37

3:10

CadiBack: Extracting Backbones with CaDiCalL

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Mohamed El Bachir Menai. A two-phase backbone-based search heuristic for partial MAX-SAT—
an initial investigation. In Innovations in Applied Artificial Intelligence: 18th International
Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert
Systems, IEA/AIE 2005, Bari, Italy, June 22-24, 2005. Proceedings 18, pages 681-684.
Springer, 2005.

Katalin Fazekas, Armin Biere, and Christoph Scholl. Incremental inprocessing in SAT solving.
In Mikol4s Janota and Inés Lynce, editors, Theory and Applications of Satisfiability Testing
- SAT 2019 - 22nd International Conference, SAT 2019, Lisbon, Portugal, July 9-12, 2019,
Proceedings, volume 11628 of Lecture Notes in Computer Science, pages 136—154. Springer,
2019. doi:10.1007/978-3-030-24258-9_9.

Nils Froleyks and Armin Biere. Single clause assumption without activation literals to speed-up
1C3. In Formal Methods in Computer Aided Design, FMCAD 2021, pages 72-76. IEEE, 2021.
doi:10.34727/2021/isbn.978-3-85448-046-4_15.

Mikolas Janota. SAT solving in interactive configuration. PhD thesis, University College
Dublin, 2010.

Mikolas Janota, Inés Lynce, and Joao Marques-Silva. Algorithms for computing backbones of
propositional formulae. AT Commun., 28(2):161-177, 2015. doi:10.3233/AIC-140640.
Andreas Kaiser and Wolfgang Kiichlin. Detecting inadmissible and necessary variables in large
propositional formulae. In Intl. Joint Conf. on Automated Reasoning (Short Papers), pages
96-102. University of Siena, 2001.

Philip Kilby, John Slaney, Sylvie Thiébaux, Toby Walsh, et al. Backbones and backdoors in
satisfiability. In AAAI volume 5, pages 1368-1373, 2005.

D. Richard Kuhn, Dolores R. Wallace, and Albert M. Gallo. Software fault interactions
and implications for software testing. IEEE Trans. Software Eng., 30(6):418-421, 2004.
doi:10.1109/TSE.2004.24.

Jodo Marques-Silva, Mikol4s Janota, and Inés Lynce. On computing backbones of propositional
theories. In Helder Coelho, Rudi Studer, and Michael J. Wooldridge, editors, FCAI 2010 —
19th European Conference on Artificial Intelligence, Lisbon, Portugal, August 16-20, 2010,
Proceedings, volume 215 of Frontiers in Artificial Intelligence and Applications, pages 15-20.
IOS Press, 2010.

Rémi Monasson, Riccardo Zecchina, Scott Kirkpatrick, Bart Selman, and Lidror Troy-
ansky. Determining computational complexity from characteristic ‘phase transitions’ Nature,
400(6740):133-137, 1999.

Andrew J. Parkes. Clustering at the phase transition. In Benjamin Kuipers and Bonnie L.
Webber, editors, Proceedings of the Fourteenth National Conference on Artificial Intelligence
and Ninth Innovative Applications of Artificial Intelligence Conference, AAAI 97, IAAI 97,
July 27-31, 1997, Providence, Rhode Island, USA, pages 340-345. AAAI Press / The MIT
Press, 1997.

Alessandro Previti and Matti Jarvisalo. A preference-based approach to backbone computation
with application to argumentation. In Proceedings of the 33rd Annual ACM Symposium on
Applied Computing, pages 896-902, 2018.

Miroslav N Velev. Formal verification of vliw microprocessors with speculative execution. In
Computer Aided Verification: 12th International Conference, CAV 2000, Chicago, IL, USA,
July 15-19, 2000. Proceedings 12, pages 296-311. Springer, 2000.

Ryan Williams, Carla P. Gomes, and Bart Selman. Backdoors to typical case complexity. In
Georg Gottlob and Toby Walsh, editors, IJCAI-03, Proceedings of the Eighteenth International
Joint Conference on Artificial Intelligence, Acapulco, Mezico, August 9-15, 2003, pages 1173—
1178. Morgan Kaufmann, 2003.

Guogiang Zeng, Chongwei Zheng, Zhengjiang Zhang, and Yongzai Lu. An backbone guided
extremal optimization method for solving the hard maximum satisfiability problem. In 2012
International Conference on Computer Application and System Modeling, pages 1301-1304.
Atlantis Press, 2012.

Weixiong Zhang. Configuration landscape analysis and backbone guided local search.: Part i:
Satisfiability and maximum satisfiability. Artificial Intelligence, 158(1):1-26, 2004.

https://doi.org/10.1007/978-3-030-24258-9_9
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_15
https://doi.org/10.3233/AIC-140640
https://doi.org/10.1109/TSE.2004.24

A. Biere, N. Froleyks, and W. Wang

30 Weixiong Zhang. Phase transitions and backbones of the asymmetric traveling salesman
problem. Journal of Artificial Intelligence Research, 21:471-497, 2004.

31 Weixiong Zhang, Ananda Rangan, Moshe Looks, et al. Backbone guided local search for
maximum satisfiability. In IJCAI, volume 3, pages 1179-1186, 2003.

32 Yueling Zhang, Min Zhang, and Geguang Pu. Optimizing backbone filtering. Science of
Computer Programming, 187:102374, 2020.

33 Yueling Zhang, Min Zhang, Geguang Pu, Fu Song, and Jianwen Li. Towards backbone
computing: A greedy-whitening based approach. AI Communications, 31(3):267-280, 2018.

34 Charlie Shucheng Zhu, Georg Weissenbacher, and Sharad Malik. Post-silicon fault localisation
using maximum satisfiability and backbones. In 2011 Formal Methods in Computer-Aided
Design (FMCAD), pages 63-66. IEEE, 2011.

35 Charlie Shucheng Zhu, Georg Weissenbacher, and Sharad Malik. Silicon fault diagnosis
using sequence interpolation with backbones. In Yao-Wen Chang, editor, The IEEE/ACM
International Conference on Computer-Aided Design, ICCAD 2014, San Jose, CA, USA,
November 3-6, 2014, pages 348-355. IEEE, 2014. doi:10.1109/ICCAD.2014.7001373.

36 Charlie Shucheng Zhu, Georg Weissenbacher, Divjyot Sethi, and Sharad Malik. SAT-based tech-
niques for determining backbones for post-silicon fault localisation. In 2011 IEEE International
High Level Design Validation and Test Workshop, pages 84-91. IEEE, 2011.

A Appendix

This appendix provides more experimental details. The left plot in Figure 3 emphasizes why
the most simplistic backbone algorithm, i.e., assuming the negation of exactly one remaining
backbone candidate literal, does not scale, as it just takes way too many SAT calls.

Furthermore, in a number of applications it can be beneficial to get the backbones as
soon as they are found, particularly if the backbone search does not terminate. To that end
we evaluate MINIBONES and CADIBACK as anytime algorithms and compare the number
of backbones they find over time. We modified the default configuration of MINIBONES
(minibones-core-based, i.e., corresponding to options “-e -i -c 100”) to print a backbone as
soon as it is found and evaluated it against the default version of CADIBACK on the 2022
SAT competition benchmark set. The results are presented on the right in Figure 3.

le6
XK X MO NOKX X X 30MK X X
10° 4 —— cadiback-default
&o 54
minibones-eic100
° X
10% 4 44
(‘D
; . .
5 s
¢ 1034 £ 34
5
~
:
2 107 221
S o
101 4 H
° 04
10t 102 103 104 10° 0 1000 2000 3000 4000 5000
cadiback-default time [s]

Figure 3 The left plot compares the one-by-one and the default configuration. Timeouts for
one of the configurations are marked in the margin. Highlighted on the left are 133 (out of 1798)
benchmarks that have exactly one model (every variable is in the backbone). Using an infinite
chunk size (the default), such benchmarks are always solved in 3 SAT calls. The right plot compares
MiNIBONES and CADIBACK in an anytime setting. Shown are the number of backbones found
combined across all instances in the SAT competition 2022 benchmark set.

3:11

SAT 2023

https://doi.org/10.1109/ICCAD.2014.7001373

3:12 CadiBack: Extracting Backbones with CaDiCalL

50
1

B

e 0 41 cadiback-default
L £ 10 minibones-iterative
6 minibones-core-based

@
3

T T T T T T

0 1000 2000 3000 4000 5000

Figure 4 Benchmarks solved on satisfiable instances from the SAT Competition 2022.

Table 1 More detailed results for the runs plotted in Fig. 2 on the large SAT competition
2004—2022 benchmark set where: solved instances; failed to solved; to time out of 5,000 seconds hits;
mo memory limit of 7 GB hit; time accumulated process time of solved instances (in seconds); space
sum of the maximum memory usage over solved instances (in MB); max maximum memory usage on
solved instances (in MB); best number of instances with best shortest solving time; unique uniquely
solved number of instances. For the description of the configurations see caption of Fig. 2.

solved failed to mo time space max best unique

cadiback-default 732 842 831 11 694027 110614 2600 53 1
cadiback-no-flip 729 845 837 8 686832 103021 2600 58 0
cadiback-no-fixed 728 846 835 11 682242 106129 2600 70 2
cadiback-set-phase 726 848 838 10 657492 108737 2565 163 4
cadiback-really-flip 725 849 838 11 640447 105963 2600 46 1
cadiback-chunking 702 872 861 11 630633 93625 2600 108 0
cadiback-one-by-one 692 882 871 11 715101 86152 2600 30 0
cadiback-no-inprocessing 690 884 873 11 688418 93947 2628 116 7
cadiback-cores 672 902 891 11 570724 100362 2600 78 1
cadiback-no-constrain 670 904 890 14 693284 93836 2546 41 0
cadiback-no-filter 612 962 951 11 562853 72360 2600 9 0
cadiback-plain 553 1021 1010 11 544688 58500 2655 13 0
minibones-iterative 458 1340 1279 61 402645 110138 5281 54 17
minibones-core-based 450 1348 1283 65 348856 72793 3542 52 2

Finally we show in Figure 4 the performance of the default version of CADIBACK versus
the iterative and core-based versions of MINIBONES on the last SAT Competition 2022.
Table 1 gives more details about the runs plotted in Fig. 2.

	1 Introduction
	2 Basic Concepts and Notations
	3 Algorithms in MiniBones
	4 Improved Algorithms in CadiBack
	5 Implementation
	6 Experiments
	7 Conclusion
	A Appendix

