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Abstract
Motivated by the need to improve the scalability of Intel’s in-house Static Timing Analysis (STA) tool,
we consider the problem of enumerating all the solutions of a single-output combinational Boolean
circuit, called AllSAT-CT. While AllSAT-CT is immediately reducible to enumerating the solutions of
a Boolean formula in Conjunctive Normal Form (AllSAT-CNF), our experiments had shown that such
a reduction, followed by applying state-of-the-art AllSAT-CNF tools, does not scale well on neither
our industrial AllSAT-CT instances nor generic circuits, both when the user requires the solutions
to be disjoint or when they can be non-disjoint. We focused on understanding the reasons for this
phenomenon for the well-known iterative blocking family of AllSAT-CNF algorithms. We realized
that existing blocking AllSAT-CNF algorithms fail to generalize efficiently for AllSAT-CT, since they
are restricted to Boolean logic. Consequently, we introduce three dedicated AllSAT-CT algorithms
that are ternary-logic-aware: a ternary simulation-based algorithm TALE, a dual-rail&MaxSAT-based
algorithm MARS, and their combination. Specifically, we introduce in MARS two novel blocking clause
generation approaches for the disjoint and non-disjoint cases. We implemented our algorithms in
our new tool HALL. We show that HALL scales substantially better than any reduction to existing
AllSAT-CNF tools on our industrial STA instances as well as on publicly available families of
combinational circuits for both the disjoint and the non-disjoint cases.
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1 Introduction

Static Timing Analysis (STA) [42] is a crucial step in circuit design process that validates the
timing performance of a circuit by checking all possible paths for timing violations. Given
a circuit ∆, Intel’s STA flow constructs a single-output combinational circuit Γ over ∆’s
inputs, such that Γ’s output is 1 if and only if the inputs have the potential to trigger a
timing violation in ∆. Then, the flow enumerates all the solutions in Γ, where every solution
is tested for potential violations in the original circuit ∆1.
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Motivated by a recent necessity to increase the scalability of Intel’s STA flow due to
increasing size of the input circuit, we study the so-called AllSAT-CT problem, which is a
vital component in the flow. In AllSAT-CT, given a combinational circuit Γ with a single
output, the objective is to enumerate all the possible inputs for Γ, for which Γ’s output is 1.

AllSAT-CT is an instance of the AllSAT problem, in which the goal is to enumerate the
solutions of a given Boolean formula. Another instance of AllSAT that received substantially
more attention, is AllSAT-CNF, in which the input formula is provided in Conjunctive
Normal Form (CNF). AllSAT-CNF has various applications, including software testing [22],
data mining [7] and network verification [26]. AllSAT-CT can be immediately reduced
to AllSAT-CNF by translating the circuit to CNF using, e.g., Tseitin encoding [45], and
solved by AllSAT-CNF solvers. There are three main families of approaches to AllSAT-CNF,
all implemented in state-of-the-art AllSAT-CNF tools, called herein Toda tools (solvers),
one per each family [44]. The first family, called blocking [28], applies an incremental SAT
solver [9, 34] to find a solution (satisfying assignment) σ, then generalizes σ to a solution σ′

(by replacing Boolean values by don’t-cares, whenever possible), blocks σ′ with the so-called
blocking clause (which usually contains the negation of all the literals assigned 0 or 1 in σ′)
and iterates. The set of generalized solutions is the (compact) description of all solutions to Γ,
typically in a form of a Disjunctive Normal Form (DNF) formula, in which every generalized
solution is a cube. The second family of nonblocking solvers [14] modifies the SAT solver
to enumerate the solutions explicitly without using blocking clauses. The third BDD-based
family [17] is based on reasoning with Boolean Decision Diagrams (BDDs) [4]. Intel’s STA
flow used to routinely solve AllSAT-CT by using a BDD-based AllSAT-CNF solver until
it ceased to scale due to excessive input size. We tried to apply the Toda tools, but they
failed to scale either. Our investigation showed that, at least for the blocking algorithms,
and independently of our specific industrial application, the existing AllSAT-CNF blocking
approaches do not scale well for AllSAT-CT, since their solution generalization components
are inherently inefficient, being restricted by Boolean logic semantics. Specifically, since one
cannot explicitly assign don’t-cares to the variables in Boolean logic, solution generalization’s
efficiency is hindered.

This insight has led us to introduce three dedicated AllSAT-CT blocking-based algorithms–
TALE, MARS and DUTY–that utilize ternary logic [35] instead of Boolean, either for generalization
only as in TALE, or throughout the entire algorithm as in MARS and DUTY. Notably, ternary
logic-based approaches are applied by the Property Directed Reachability (PDR) algorithm
for model checking [8, 40], but only for the generalization stage. Moreover, as detailed in [46],
there is a distinction between AllSAT algorithms that return disjoint solutions, in which
no two generalized solutions can overlap, and AllSAT algorithms that return non-disjoint
solutions, in which such an overlap is allowed. We explicitly designed MARS to return either
disjoint or non-disjoint solutions, per user request, while TALE and DUTY return non-disjoint
solutions only.

Our first method TALE reduces AllSAT-CT to AllSAT-CNF by using Tseitin encoding [45]
and applies a ternary simulation-based generalization algorithm, commonly used by PDR
implementations [8]. Specifically, TALE generalizes a given solution by simulating whether
reassigning a variable from a Boolean value to a don’t-care value, under the ternary-logic
semantic, would propagate through the circuit and still set the output to 1.

Our second approach, called MARS, also reduces AllSAT-CT to AllSAT-CNF but is using
the dual-rail encoding [5] that allows one to preserve the ternary logic semantics in the
CNF formula by explicitly representing don’t-care values. Specifically, every variable v in
the original circuit is mapped to two Boolean dual-rail variables (v+, v−) in the resulting
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CNF, where assigning both v+ and v− to 0 corresponds to assigning the original v to a
don’t-care. With the dual-rail encoding, we trust the SAT solver to return a generalized
solution by applying anytime MaxSAT-inspired heuristics [31, 32] to increase the number
of don’t-cares assigned to the circuit inputs (that is, the number of 0’s assigned to their
respective dual-rail variables). As mentioned before, MARS can emit both disjoint and
non-disjoint solutions, where, unlike in [46], we achieve this by introducing two different
blocking clause generation approaches. Furthermore, while generalization with MaxSAT in
an auxiliary dual-rail-encoded CNF instance had been applied in PDR [40], our approach of
using a single dual-rail-encoded instance throughout the algorithm, combined with a MaxSAT
approximation for generalization and blocking clause generation in dual-rail, is novel.

Finally, since MARS uses approximate anytime MaxSAT heuristics, its generalized solutions
usually can still be improved. For that, we come up with our third approach called DUTY
that adds TALE on top of the MARS to further generalize the solutions obtained by MARS.

We have implemented our approaches in an open-source tool HALL (Haifa AllSAT).
We found that HALL scales substantially better than any reduction to existing AllSAT-
CNF tools on our industrial STA instances as well as on various publicly available families
of combinational circuits. Specifically, MARS is the best-performing algorithm in disjoint
mode, while DUTY and TALE are the most scalable ones for industrial and generic instances,
respectively, in non-disjoint mode.

The rest of this paper is organized as follows. Sect. 2 presents preliminaries. We review
AllSAT in Sect. 3 and present our new algorithms in Sect. 4. Sect. 5 is dedicated to
experimental evaluation. Sect. 6 is about related work, while in Sect. 7 we conclude and
discuss future work.

2 Preliminaries

We begin by reviewing relevant notions from Boolean and ternary logics. We start with the
standard Boolean logic syntax, which, in our context, is common to both logics. Let V be a
set of variables. A literal l is either a variable v ∈ V , in which case l is positive, or a variable’s
negation ¬v, in which case l is negative. A formula over V under the standard Boolean logic
syntax is in Conjunctive Normal Form (CNF) if it is a conjunction of clauses, where a clause
is a disjunction of literals. Similarly, a formula over V is in Disjunctive Normal Form (DNF)
if it is a disjunction of cubes, where a cube is a conjunction of literals. We assume naturally
that no cube and no clause contains both a variable and its negation.

Assuming that circuits are represented in the standard AIGER format [3], a (combinational
Boolean single-output) circuit Γ with n inputs and m gates is a tuple ⟨I, G, o⟩, where
I = {c1, · · · cn} are input elements (inputs), G = {cn+1, · · · cn+m} are gate elements (gates)
and o = cm+n+1 is a single output element (output). These elements are labeled by a set
of variables denoted by Γ(V ) = {v1, . . . , vn+m+1}. Every input element ci is labeled by a
variable vi. Every gate element ck is labeled by a formula (vk ↔ (li ∧ lj)), where i, j < k and
li, lj are literals of variables vi and vj respectively. The output element o is labeled with
(vn+m+1 ↔ ln+m) where ln+m is vm+n or ¬vm+n. For simplicity, we identify the elements
with their labels (e.g. identify gate ci as vi, gate o with vn+m+1, and so on). See Fig. 1a on
page 7 for an example of a circuit. Finally, Tseitin encoding [45] generates a CNF from a given
circuit Γ, by translating every gate v ↔ l1∧l2 to three clauses (v∨¬l1∨¬l2)∧(¬v∨l1)∧(¬v∨l2)
and adding the unit clause (o) to assert the output.

SAT 2023
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2.1 Boolean Logic Semantics
In Boolean logic, an assignment σ : V 7→ {0, 1} assigns each variable to either 0 or 1. An
assignment σ is called total if σ is a total function and partial otherwise. In Boolean logic, the
cardinality |σ| of an assignment σ is the number of variables assigned under σ. Furthermore,
in Boolean logic, we say that an assignment ρ subsumes the assignment σ, denoted by σ ⊆ ρ

if whenever ρ assigns a variable v, it holds that σ assigns v as well and ρ(v) = σ(v). We
then say that σ extends ρ. For example, ρ ≡ {x1 := 1} subsumes σ ≡ {x1 := 1, x2 := 0},
whereas σ extends ρ. We denote the set of solutions that extend ρ by sol(ρ). An assignment
σ for V = (v1, . . . vn) is said to satisfy a formula F (v1, . . . vn) in Boolean-logic syntax, if
the value of F (σ(v1), . . . , σ(vb)) is 1 under the standard Boolean logic semantic convention.
Specifically if F is in CNF then σ satisfies F if it satisfies at least one literal in every clause
of F , and if F is in DNF then σ satisfies F if there is at least one cube in F with all its
literals satisfied. A solution is a (partial or total) satisfying assignment.

Given an assignment σ, we define a cube Dσ as a conjunction of all positive literals v for
which σ(v) = 1, and all negative literals ¬v for which σ(v) = 0. Same, given a cube D, we
define a (possibly partial) assignment σD in which σD(v) = 1 for every positive literal v in
D and σD(v) = 0 for every negative literal ¬v in D. We then say that σ induces Dσ and
that D induces σD. Naturally, σ satisfies Dσ and σD satisfies D. We say that two formulas
over the same variables, and with the same sets of solutions are logically equivalent.

We next define satisfying assignments for circuits. Given a circuit Γ = ⟨I, G, o⟩, and
an assignment σ for Γ(V ), we say that σ satisfies a circuit element if it satisfies its label.
Specifically, σ satisfies a gate vk ↔ li ∧ lj , if it satisfies the formula (vk ↔ li ∧ lj). We say
that σ satisfies the circuit Γ if σ satisfies all Γ’s gates and σ(o) = 1.

One can easily show that, given a circuit Γ = ⟨I, G, o⟩ and a partial assignment σ : I 7→
{0, 1} to all the inputs of Γ, σ can be uniquely extended to a total assignment τσ : I ∪ G that
satisfies all the gates in G. Since τσ is fully determined by σ, we can define a solution for
partial assignments over all the inputs only. Specifically, given a circuit Γ = ⟨I, G, o⟩ and a
partial assignment to its inputs σ : I 7→ {0, 1}, σ is a solution if and only if τσ(o) = 1. Thus,
for solving AllSAT-CT, it is sufficient to enumerate solutions defined only over the inputs.
This observation holds also for ternary logic, presented next. We say that a circuit and a
formula over the circuit’s input variables are logically equivalent if their sets of solutions is
the same. Finally, σ |= T denotes that an assignment σ satisfies a formula or a circuit T .

2.2 Ternary Logic Semantics
Ternary logic [35] extends the semantics of Boolean logic with an additional value called
don’t-care, which we denote by X. Formally, in ternary logic, an assignment σ : V 7→ {0, 1, X}
assigns each variable to one of the ternary values {0, 1, X}. To define the value of a formula
F in Boolean-logic syntax under a ternary logic assignment σ, we use the ternary logic rules
that extend the Boolean logic rules in which (¬X = X), (X ∧ 1 = X), (X ∧ 0 = 0) and
(X ∧ X = X) (we still have ¬0 = 1, 1 ∧ 0 = 0 and so on, as in the Boolean case). We then
say that σ satisfies F if σ evaluates F to be 1.

We assume that all the assignments in ternary logic are total. Given a ternary assignment
σ, let the support of σ, denoted sup(σ) to be the set of variables v for which either σ(v) = 0
or σ(v) = 1. The cardinality of σ is then the size of the support of σ. We say that assignment
ρ subsumes the assignment σ, denoted by σ ⊆ ρ, if σ(v) = ρ(v) for every v ∈ sup(ρ). We then
say that σ extends ρ. For example, ρ ≡ {x1 := 1, x2 := X} subsumes σ ≡ {x1 := 1, x2 := 0},
whereas σ extends ρ. Other definitions, such as logical equivalence, are identical to Boolean
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logic. The same goes for definitions of circuit assignments with the notable exception of
how a gate can be satisfied: consider a circuit Γ = ⟨I, G, o⟩, an assignment σ and a gate vk

labeled (vk ↔ li ∧ lj). Then the gate vk is satisfied, if it either holds that:
1. σ(vk) = 1, where σ(li) = 1 and σ(lj) = 1, or
2. σ(vk) = 0, where σ(li) = 0 or σ(lj) = 0, or
3. σ(vk) = X, where (σ(li) = X and σ(lj) ̸= 0) or (σ(lj) = X and σ(li) ̸= 0).

Note that a gate can be assigned to a don’t-care value. As before, σ satisfies Γ if σ

satisfies all Γ’s gates and σ(o) = 1, and σ |= T denotes that σ satisfies a CNF or a circuit T .

2.3 Solution Generalization
Solution generalization is a pivotal notion in our context. Given a solution σ |= T , where
T can be a circuit or a CNF formula, any solution σ′ |= T which subsumes σ is called a
generalization, or a generalized solution of σ. Since σ′ can be extended not only to σ, then
by generalizing σ we obtain a compact description σ′ of more solutions. To explore less
solutions and store them compactly, we are interested in generalizations of small cardinality.

A key observation for our context is that in Boolean logic, generalization can be carried
out only by unassigning variables, whereas in ternary logic, generalization can be done
by reassigning variables to X. (This is reflected in our formal definition above, since we
defined subsumption differently for the two logics). The above-mentioned difference makes
ternary-logic-aware generalization substantially more efficient. Indeed, as we show in Sect. 4,
one can easily construct a circuit Γ and a solution σ, such that there exists a generalization
of σ in ternary logic that is strictly smaller that any possible generalization in Boolean logic.

3 The AllSAT Problem

AllSAT is the problem of enumerating all the solutions for a given Boolean formula. Designing
efficient AllSAT algorithms is a challenge. First, finding even a single solution is already
NP-complete, hence an efficient SAT oracle is typically required. Second, since the number
of possible solutions can be very large (exponential in the number of the formula’s variables),
a compact description of the solutions is required.

In this paper, we consider two AllSAT flavours: AllSAT-CNF and AllSAT-CT, depending
on the input formula type. In AllSAT-CNF, we are given a CNF formula T , and in AllSAT-
CT we are given a combinational circuit T . In both cases the solver is expected to return
an enumeration of all solutions for T in a form of a DNF Q that is logically equivalent to
the original T . To see why Q is indeed such an enumeration, note that since every cube
D in Q induces a satisfying partial assignment σD, then every solution that extends σD

also satisfies D, and therefore satisfies Q. Thus, D compactly describes the set of solutions
sol(σD). Then, as every solution to T satisfies at least a single cube D in Q, we have that Q

serves as a compact enumeration of exactly all the solutions for T .
Out of the three main families of AllSAT approaches (blocking [28], non-blocking [14]

and BDD-based [17]), mentioned in Sect. 1, we focus in this paper on the iterative blocking
algorithm [28]. Given a CNF or a circuit, the blocking algorithm uses an incremental SAT
solver [9, 34] to find solutions iteratively, where every solution is generalized, and then blocked
from subsequently reappearing. This blocking is done by using a so-called blocking clause
that prevents this solution and perhaps other solutions found so far, from being re-discovered
by the SAT solver in subsequent iterations. Formally, given a CNF F and a solution σ |= F ,
a clause B is blocking if and only if σ ̸|= B and, for any solution τ |= F such that τ ̸⊆ σ,

SAT 2023
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we have τ |= B (the latter part is required to ensure correctness, that is, in order not to
block solutions, not yet reported to the user). By producing generalized solutions, and
adding blocking clauses to the CNF formula, the solver gradually generates all the solutions.
The process terminates when the SAT solver returns UNSAT, which means that no further
solutions can be found, indicating that all possible solutions have been enumerated.

A generic blocking algorithm framework for both AllSAT-CNF and AllSAT-CT, adopted
from [46], is depicted in Alg. 1. Our AllSAT-CT algorithms, described in Sect. 4, follow
this framework. Alg. 1 begins by encoding the circuit Γ into a CNF formula F (if required).
Then, following some initialization, the algorithm runs in a loop until the current formula Fi

is unsatisfiable (line 5), where, for every iteration i, Fi corresponds to the original formula
F , updated with the conjunction of all the blocking clauses generated so far. Inside the
loop, the algorithm first finds a solution σi for Fi by invoking a SAT solver (line 6). Next, it
computes a generalized solution σ′

i by using the GeneralizeSol procedure on σi (line 7).
Then, the algorithm computes the blocking clause bi by using the ComputeBlockingCls
procedure (line 8). Typically, the blocking clause is the negation of the cube Dσ′

i , induced
by the current generalized solution σ′

i (this, however is not always the case; see Sect. 4.2.3).
Afterwards, we update the DNF Q with Dσ′

i and construct the next formula Fi+1 by adding
the newly generated blocking clause to Fi (line 9). Once the loop terminates, the algorithm
returns the DNF Q. As one can see, many factors may impact the efficiency of a blocking
AllSAT solver dramatically, including the choice of the SAT solver, the circuit encoding for
AllSAT-CT, as well as solution generalization and blocking clause computation techniques.

Algorithm 1 Blocking AllSAT Algorithm Template.
Input: Circuit Γ or CNF F

Output: Q in DNF with exactly the same solutions as Γ or F

1: if the input is a circuit (rather than a CNF) then
2: F := EncodeCircuitToCNF(Γ) ▷ The input circuit Γ is converted to CNF F

3: end if
4: i := 1; F1 := F ; Q := ∅
5: while not UNSAT(Fi) do
6: σi := SAT(Fi) ▷ Get the next solution σi

7: σ′
i := GeneralizeSol(σi, Γ) ▷ σ′

i generalizes σi; Γ provided only if available
8: bi := ComputeBlockingCls(σ′

i) ▷ bi is disjunction of literals (clause)
9: Q := Q ∨ Dσ′

i , Fi+1 := Fi ∧ bi ▷ Q is updated by the cube, induced by σ′
i

10: i := i + 1
11: end while
12: return Q ▷ Q may be disjoint or non-disjoint

3.1 Disjoint vs. Non-Disjoint Solutions
We next discuss the concepts of disjoint and non-disjoint solutions generation, and their role
in the blocking framework. Given a CNF formula or a circuit T and two solutions σ |= T

and τ |= T , we say that σ and τ are disjoint, if there is no solution ρ |= T , that extends both
σ and τ . Otherwise we say that the solutions are non-disjoint. Let the DNF Q be a T ’s
AllSAT solution. Two cubes Di, Dj ∈ Q are disjoint if and only if σDi and σDj are disjoint.
The DNF Q is disjoint if all its cubes are pairwise disjoint; otherwise it is non-disjoint. One
can request an AllSAT solver to generate disjoint or non-disjoint DNFs, where both variants
can be of interest, depending on the application [46]. Our industrial application STA does
not require the DNF to be disjoint.
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By default, the blocking framework Alg. 1 does not guarantee that the resulting DNF
Q is disjoint. To produce a disjoint DNF, one can use the following observation from [46].
Let F be the CNF either given as input to Alg. 1 or encoded from a given circuit. We say
that a solution τ to F is blocking-satisfying if τ also satisfies Fi (comprising F and all the
blocking clauses obtained so far). Note that by construction, the solution σi, returned by
the SAT solver at line 6, is blocking-satisfying, but that does not necessarily mean that the
generalized solution σ′ is blocking-satisfying as well. It was observed in [46] that, assuming
the blocking clauses are constructed as B := ¬Dσ′

i , if every generalized solution σ′
i obtained

in line 7 is also blocking-satisfying, then Alg. 1 is guaranteed to return a disjoint DNF.
This observation is applicable to TALE, in which generalization does not necessarily produce
blocking-satisfying solutions, and therefore TALE is not a disjoint solution algorithm. It
is not applicable, however, to MARS, since MARS constructs blocking clauses differently; see
Sect. 4.2.3 for more details.

4 Ternary Logic-based Algorithms for AllSAT-CT

Towards constructing algorithms that are designated for AllSAT-CT, we first observe that
generalizing an existing solution under the Boolean semantics, may result in a solution
with larger cardinality (thus less efficient), than when using ternary logic semantics. This
is because, in Boolean logic, one cannot explicitly assign don’t-care values to the circuit
variables. This observation still holds when the circuit is encoded to CNF by using the
Tseitin encoding or other encodings under the standard definition that maintains only the
Boolean logic semantics (see, e.g. [23]). Thus, using Boolean logic semantics for encoding,
may result in missing smaller generalized solutions. We support this observation by the
following example.

n

p
c

b

a

o

(a) Γ = ⟨I = {a, b, c} ,
G = {n ↔ a ∧ b, p ↔ n ∧ c} , o ≡ ¬p⟩.

C1 = (¬p),
C2 = (p ∨ ¬n ∨ ¬c), C3 = (¬p ∨ n), C4 = (¬p ∨ c),
C5 = (n ∨ ¬a ∨ ¬b), C6 = (¬n ∨ a), C7 = (¬n ∨ b)

(b) Γ’s Tseitin encoding into CNF F = C1 ∧ . . . ∧ C7.

Figure 1 Illustration for Example 1.

▶ Example 1. Consider the circuit Γ in Fig. 1a and the solution σ ≡ {a := 1, b := 1, c := 0}
which satisfies Γ (recall that solutions for circuits are defined over the inputs only). Intuitively,
as long as c is assigned 0, the circuit is satisfied, independently from a’s and b’s values. In
ternary logic, σ can be generalized to a solution σ′

t ≡ {a := X, b := X, c := 0} of cardinality 1
that still satisfies Γ. The corresponding generalized solution in Boolean logic could have been
τ ≡ {c := 0}. However, note that τ is not a solution to Γ, since the gate n cannot remain
unassigned. Therefore, in Boolean logic, σ cannot be generalized to a smaller assignment,
hence the generalized solution is simply σ′

b = σ of cardinality 3. To emphasize this point,
consider the translation of Γ to a CNF F by Tseitin encoding–in Fig. 1b. One can easily
see that unassigning one of a, b or c would render F non-satisfied, since either C6, C7 or C2,
would cease to be satisfied, hence generalizing σ in F to a smaller solution is impossible.

To overcome the problem of inefficient generalization in Boolean logic, we propose several
blocking AllSAT-CT algorithms that are ternary-logic-aware, as we present next.

SAT 2023
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4.1 TALE: the Ternary Simulation-based Algorithm
Our first algorithm TALE instantiates the blocking AllSAT algorithm Alg. 1, while borrowing
a ternary simulation-based generalization procedure from [8], where it is applied at the
generalization stage of the PDR model checking algorithm.

In ternary simulation [6, 18], a circuit Γ = ⟨I, G, o⟩ and an input assignment σ : I 7→
{0, 1, X} (which may not satisfy Γ) are given as input. The values of the gates (vk ↔
li<k ∧ lj<k) in G, are then computed by iteratively evaluating li ∧ lj based on the ternary
semantics outlined in Sect. 2.2. Eventually, ternary simulation returns the evaluation of the
circuit, which is the value of o, which can be either 0, 1 or X.

Given a circuit Γ, the algorithm TALE instantiates Alg. 1 as follows. It first implements
EncodeCircuitToCNF by converting Γ into a CNF F using Tseitin encoding. Then, TALE
uses the standard incremental SAT-based blocking algorithm to iteratively enumerate and
block solutions. The blocking clause computation procedure ComputeBlockingCls simply
returns the negation of the cube Dσ′

i , induced by the generalized solution σ′
i. Our focus is

on the solution generalization step procedure GeneralizeSol in TALE, which is carried out
based on ternary simulation in the original circuit.

Algorithm 2 TALE: GeneralizeSol.
Input: current solution σi (Boolean or ternary); the original circuit Γ = ⟨I, G, o⟩
Output: generalized solution σ′

i (in ternary logic) over the circuit inputs
1: v ∈ I: if v is assigned under σ then σ′

i(v) := σi(v) else σ′
i(v) := X ▷ Initialize σ′

i

2: for v ∈ I; σ′
i(v) ̸= X do ▷ v is a circuit input

3: σ′
i(v) := X

4: Simulate σ′
i with ternary-simulation on Γ to get an evaluation eval(Γ)

5: if eval(Γ) = X then
6: σ′

i(v) := σi(v) ▷ Ternary simulation failed, return the original value of v

7: end if
8: end for
9: return σ′

i

In detail, GeneralizeSol receives the current solution σi (σi is, originally, in Boolean
logic, but Alg. 2 interprets it in ternary logic) and the original circuit Γ and returns a solution
σ′

i |= Γ, in ternary logic, that generalizes σi. First, Alg. 2 initializes σ′
i from σi by setting

every variable unassigned in σi, to X (line 1). Then, the algorithm iterates through all Γ’s
inputs (line 2), and, for every input v where σ′

i(v) is not X, it tentatively assigns X to v in σ′
i

(line 3). Alg. 2 then simulates the updated σ′
i on the circuit C by using ternary simulation

(line 4). If the simulation renders the output X, then v cannot be converted to a don’t-care,
thus the algorithm restores the original value of v, that is σ′

i(v) (lines 5–6). Otherwise, v

remains X in σ′
i. In the end, the algorithm returns the generalized solution σ′

i (line 9).
TALE does not guarantee that the solutions are disjoint, since while generalization guar-

antees that the resulting solution σ′ satisfies the original circuit (thus, the original CNF),
it does not guarantee that the blocking clauses in Fi are satisfied (being unaware of them).
Hence, σ′ is not necessarily blocking-satisfying (recall Sect. 3.1).

4.2 MARS: the Dual-Rail&MaxSAT-based Algorithm
In this section, we introduce our second algorithm, called MARS. Similarly to TALE, MARS
fits into the framework of the blocking algorithm Alg. 1. However, instead of applying a
dedicated GeneralizeSol procedure to generalize solutions, it relies on the SAT solver to
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return an already reasonably generalized solution (hence, MARS implements GeneralizeSol
by simply returning σ′ ≡ σ). This is achieved by using the so-called dual-rail encoding [5, 21]
to convert the circuit to CNF and applying anytime MaxSAT-inspired heuristics [31, 32]
in the underlying SAT solver to heuristically generalize solutions. Here, we introduce two
new blocking clause generation algorithms for the dual-rail encoding, designed to have MARS
return disjoint or non-disjoint solutions, respectively.

Applying the combination of dual-rail encoding and full-blown MaxSAT solving for
generalization was proposed in [40], while [38, 10] had previously introduced a closely
related method of applying, to the same end, a single SAT invocation that assigns all the
decision variables to 0. The latter approach had been proposed in the context of abstraction
refinement [38] and minimal model generation for SMT [10], but was also evaluated in the
context of PDR in [40]. However, in these works, the main flow creates a separate dual-rail
encoded SAT instance for generalization only, while any blocking clauses are created using
the standard Tseitin encoding-based technique and added to a Tseitin-encoded CNF instance,
maintained by the main flow. Thus, our approach of using a single dual-rail-encoded instance
throughout the whole flow, combined with a MaxSAT approximation for generalization and
blocking clause generation native to dual-rail encoding, is novel (in addition, our application
and the high-level algorithm are completely different from those in [40, 38, 10]). Moreover,
our approach of making an AllSAT algorithm return non-disjoint or disjoint solutions, based
on different blocking clause generation schemes, is also new.

In what follows, we first describe the dual-rail encoding, followed by the use of a MaxSAT
approximation in the generalization process and our blocking clause generation algorithms.

4.2.1 The Dual-Rail Encoding

In dual-rail encoding [5], every variable v in the set of variables Γ(V ) in a given circuit
Γ = ⟨I, G, o⟩, is mapped to two Boolean dual-rail variables (v+, v−). This results in a set of
variables U that we use to encode the circuit Γ. The dual-rail encoding induces the following
one-to-one mapping between a Boolean assignment σ over the dual-rail variables U and a
ternary assignment σ over circuit’s original variables V (slightly abusing the notation, we
reuse σ for both assignments):
1. σ(v) = 1 ⇐⇒ (σ(v+) = 1 and σ(v−) = 0)
2. σ(v) = 0 ⇐⇒ (σ(v+) = 0 and σ(v−) = 1)
3. σ(v) = X ⇐⇒ (σ(v+) = 0 and σ(v−) = 0)
4. the combination σ(v+) = σ(v−) = 1 is disallowed.

We now describe the encoding. For a negative literal l = ¬v, we use the following
notation: l+ = v− and l− = v+. Then, to convert the circuit Γ to CNF, the dual-rail
encoding generates the following clauses:
1. For every v ∈ V , we generate the clause (¬v+ ∨ ¬v−) to block the disallowed combination.
2. To translate every gate v ≡ li ∧ lj , we generate the clauses: (v+ ∨ ¬l+

i ∨ ¬l+
j ) ∧ (¬v+ ∨

l+
i ) ∧ (¬v+ ∨ l+

j ) ∧ (¬v− ∨ l−
i ∨ l−

j ) ∧ (v− ∨ ¬l−
i ) ∧ (v− ∨ ¬l−

j ).
3. Finally, we generate the unit clause (o+) to assert the output o.

Note that the dual-rail encoding is heavier than the Tseitin encoding, since it generates
twice as many Boolean variables and many more clauses. To summarize, our algorithm MARS
implements EncodeCircuitToCNF by using the dual-rail encoding.
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4.2.2 MaxSAT Approximation for On-the-Fly Generalization
MaxSAT is a widely used extension of SAT to optimize a linear Pseudo-Boolean function [2].
Given a CNF formula F and a target bit-vector (target) T = {tn, tn−1, . . . , t1}, where each
target bit ti is a Boolean variable associated with a strictly positive integer weight wi, MaxSAT
finds a model σ to F that minimizes the following objective function: Ψ(σ) =

∑n
i=1 σ(ti)×wi.

A MaxSAT instance is unweighted if and only if all the weights are 1; otherwise it is weighted.
It was observed in [40] that, given a solution σ to a circuit Γ = ⟨I, G, o⟩, one can find a

minimal generalized solution σ′ by the following reduction to unweighted MaxSAT. First, Γ is
converted into a CNF formula F using the dual-rail encoding. Next, given I =

{
v1, . . . , v|I|

}
,

the vector target T is defined to contain both the dual-rail variables for every input of the
original circuit: T =

{
v+

1 , v−
1 . . . , v+

|I|, v−
|I|

}
. By using this reduction, invoking a MaxSAT

solver over F and T guarantees that the resulting solution, when restricted to the circuit
inputs, is of a minimal (but not necessarily minimum) cardinality. This is because, by
definition, the solver maximizes the number of the Boolean dual-rail variables assigned to 0.
Then, since we use clauses to block the assignment (v+ := 1, v− := 1) for every pair of the
dual-rail variables, we have that every solution σ must assign at least one of the dual-rail
variables in every pair to 0. Hence, the minimal solution to F maximizes the number of pairs
of the dual-rail variables, in which both variables are assigned to 0, therefore maximizing the
number of inputs in the original circuit that are assigned to X.

Since, according to our preliminary experiments, obtaining an optimal MaxSAT solution
is computationally expensive, in practice our algorithm MARS does not apply full-scale
MaxSAT solver to generalize the solutions, but rather uses a standard incremental SAT
solver, augmented with two heuristics, applied by anytime MaxSAT solvers [31, 32] to
heuristically minimize the solution. Specifically, in the beginning of the search, we boost the
score of the (would-be) target variables, which describe the dual-rail variables for the circuit
inputs (corresponding to the TSB heuristic in [31, 32]). Additionally, whenever a target
variable is chosen by the solver’s decision heuristic, we assign it to 0 first (corresponding to
the optimistic polarity selection heuristic in [31, 32]). These techniques increase the likelihood
of generating heuristically generalized solutions.

4.2.3 Generating Blocking Clauses in MARS

Fitting into the blocking algorithm Alg. 1, MARS uses the dual-rail encoding to encode the
given circuit Γ = ⟨I, G, o⟩ to a CNF formula F , then trusts the SAT solver, described in
Sect. 4.2.2, (invoked at line 6 of Alg. 1) to return an assignment σ for F that already
heuristically serves as a generalized solution to Γ (whereas GeneralizeSol, invoked next,
simply returns σ). Since the semantics of the dual-rail encoding are ternary-based, we
have that σ also assigns every circuit input v to 0, 1 or X, as described in Sect. 4.2.1. We
finally explain how MARS constructs the blocking clauses, that is, how MARS implements
ComputeBlockingCls. We also show how with this construction, one can make the
distinction between the disjoint and non-disjoint modes, which renders Alg. 1 to return a
disjoint or a non-disjoint DNF, respectively.

Towards implementing ComputeBlockingCls, we make use of the observation that it
is sufficient for the blocking clause B that we construct to force a change in a value, assigned
to at least one of the inputs in sup(σ), in order to block the SAT solver from finding σ again.
In details, for the disjoint case, B needs to force at least one input v ∈ sup(σ) to flip to
¬σ(v) (that is, either 0 or 1), where merely changing v to X is not enough. In that way,
every future solution ρ, found by the solver, will have at least one input in both sup(σ) and
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sup(ρ) that has different values. Thus, every solution that extends σ will be different from a
solution that extends ρ, as required in the disjoint case. For the non-disjoint case, however,
it is sufficient to force at least one input v ∈ sup(σ) to change (to either ¬σ(v) ∈ {0, 1}
or X). This will guarantee that every future solution ρ will have at least one input from
sup(σ) assigned differently than under σ, but altogether σ and ρ can still be non-disjoint;
for example, ρ might subsume σ.

We are now ready to present our core algorithms for blocking clause generation for both
modes. Observe that for every input v in sup(σ), one of the dual-rail variables (v+, v−) must
be satisfied by σ, while the other one must be falsified (since (1, 1) is disallowed).

In the disjoint mode, we set B to be the disjunction of all the dual-rail variables of the
form vϵ, where ϵ ∈ {+, −} for which v ∈ sup(σ) and σ(vϵ) = 0. To see why this works,
assume, without loss of generality, that σ assigns some input v ∈ sup(σ) to 1, that is, it
assigns (v+, v−) to (1, 0). Then, B forces every subsequent solution, in which every other
input u ̸= v ∈ sup(σ) is not flipped (that is, u retains the same value as in σ or is assigned
X), to assign (v+, v−) to (0, 1), thus flipping v from 1 to 0.

In the non-disjoint mode, we set B to the disjunction of negative literals of the dual-rail
variables of the form ¬vϵ, where ϵ ∈ {+, −} for which v ∈ sup(σ) and σ(vϵ) = 1. Again to
see why this works, assume, without loss of generality, that σ assigns some input v to 1, that
is, it assigns (v+, v−) to (1, 0). Then, B forces every subsequent solution, in which all the
other inputs u ̸= v ∈ sup(σ) are unchanged as compared to σ, to assign (v+, v−) to either
(0, 1) or (0, 0), thus changing v by either flipping v to 0 or assigning it X.

Observe that, by construction, any solution τ which is not subsumed by σ is guaranteed
to satisfy our blocking clause in both modes. To better understand the difference between
the non-disjoint and disjoint modes, consider the following example.

▶ Example 2. Consider the circuit Γ in Fig. 1a and the solution σ ≡ {a := X, b := X, c := 0}.
Recall that, if σ(c) = 0, then σ(c+) = 0 and σ(c−) = 1. In the non-disjoint mode, the
generated blocking clause would be B = (¬c−). Adding the clause B, allows for the following
solution τ ≡ {a := 0, b := 0, c := X}, where the solution ρ ≡ {a := 0, b := 0, c := 0} is
subsumed by both σ and τ , thus result in non-disjoint solutions. On the other hand, in the
disjoint mode, the generated blocking clause would be B = (c+), enforcing c to be assigned 1
in every subsequent solution. Adding the clause B would render τ ≡ {a := 0, b := 0, c := 1},
disjoint from σ, the only remaining solution.

4.3 DUTY: Combining MARS and TALE

We finally describe our third algorithm DUTY, which is similar to MARS, except for invoking
the ternary simulation-based generalization method of TALE at line 7 in Alg. 1. Such a
combination makes sense because of the heuristic nature of the on-the-fly generalization
carried out by the SAT solver in MARS. Note that DUTY does not necessarily generate disjoint
solutions, since ternary simulation-based generalization does not guarantee that the blocking
clauses are satisfied. One may expect DUTY to outperform plain MARS, because ternary
simulation over an almost minimized solution is expected to be cheap and, hopefully, efficient.
It is unclear, however, how DUTY compares to TALE. On one hand, DUTY incurs the overhead
of using the dual-rail encoding which generates more clauses and variables than Tseitin
encoding. On the other hand, DUTY carries out generalization on-the-fly during SAT solving
that leaves substantially less work to ternary simulation.

Another important detail is that, in DUTY, MARS’s blocking clause generation is applied
in disjoint mode because of the substantially better performance than the non-disjoint
mode (inside DUTY) in our preliminary experiments. Informally, sharing too many subsumed
solutions slows down the algorithm as it has to enumerate more generalized solutions.
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5 Experimental Results

We implemented our algorithms in a new open-source tool HALL2. Then, we compared these
algorithms within HALL with the AllSAT-CNF Toda tools [44] on our own industrial STA
benchmarks (made publicly available), as well as on circuits from the EPFL combinational
benchmark suite [1] and random circuits. We carried out the comparison for both the disjoint
and non-disjoint cases. In our experiments, we evaluated two criteria: the runtime and the
size, where size refers to the number of cubes in the resulting DNF.

5.1 Evaluation Setup
HALL is written in C++20 on top of Intel® SAT Solver [33]. All the experiments were run
on machines with 32Gb of memory with Intel® Xeon® processors with 3Ghz CPU frequency.
We set the timeout to 3600 seconds.

Since our work considers circuits with one output, we transformed any multi-output
circuits into one-output circuit by applying, over all the outputs, either or (disjunction)
operator (using the utility aigor from the aiger library [3]3) or xor operator (using our own
aigxor utility4). We omit the conversion time in the results as it is negligible. Furthermore,
to evaluate our AllSAT-CT tool against AllSAT-CNF solvers, we translated each circuit from
the AIGER format [3] to CNF using the aigtocnf utility5 from the aiger library.

5.1.1 Benchmarks
We used the following three benchmark sets:

sta_gen – Static Timing Analysis (STA) industrial set: we generated the following
parametrized benchmark family, which encapsulates a variety of real-world STA instances
we had encountered. Given the number of inputs N , each formula F (N) consists of a
disjunction of subformulas F1(N) and F2(N), where each subformula comprises a DNF,
conjuncted with the selector vN or ¬vN . All the cubes in the DNFs have two variables
and are pairwise disjoint. The resulting formula looks as follows, where j = (N − 1)/2:

F1(N) := ((v1 ∧ v2) ∨ . . . ∨ (vj−1 ∧ vj)) ∧ vN

F2(N) := ((vj+1 ∧ vj+2) ∨ . . . ∨ (v(N−2 ∧ vN−1)) ∧ ¬vN

F (N) := F1(N) ∨ F2(N)

To satisfy F (N) with the minimal possible solution σ, it is sufficient to satisfy a pair of
consecutive variables and assign the selector so as to satisfy its subformula (e.g., assign
σ(v1) = σ(v2) = 1 and σ(vN ) = 1). Note that, for F (N) to be well-defined, N must be
odd and N − 1 divisible by 4. While these formulas may be easy to interpret for humans,
we note that they are challenging for the automatic solvers that we inspected.
EPFL combinational benchmark suite [1]: we used the arithmetic and the random_control
sets. We created two instances of each set depending on whether the multiple outputs are
combined using the operator or or the operator xor , resulting in the following four sets:
arithmetic_or, arithmetic_xor, random_control_or, random_control_xor.

2 HALL and all the benchmarks are available at https://github.com/yogevshalmon/allsat-circuits.
3 The library is available at https://github.com/arminbiere/aiger.
4 aigxor is available at https://github.com/yogevshalmon/aiger.
5 We used aigtocnf with the –no-pg option to enforce the translation to preserve the number of solutions.

https://github.com/yogevshalmon/allsat-circuits
https://github.com/arminbiere/aiger
https://github.com/yogevshalmon/aiger
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Random combinational circuit: we used the aigfuzz6 utility from the AIGER library [3]
for generating large combinational circuits. We report results only for the family
large_cir_or, where the outputs are combined by the operator or , since using the
operator xor resulted in benchmarks which proved to be too difficult for all the solvers.

5.1.2 Solvers
We compared our tool HALL against the three solvers from the Toda repository [44]: BC, NBC
and BDD. We tried to get access to the more recent solvers BASolver [47] and AllSATCC [25]
but, unfortunately, these tools are not available online, and we could not reach the authors.
Below, we list all the solvers and algorithms that we have used, separated by whether they
are guaranteed to return only disjoint solutions:

Disjoint solutions guaranteed:
NBC [44]: a non-blocking AllSAT-CNF solver.
BDD [44]: a BDD-based AllSAT-CNF solver.
MARS: our tool HALL with MARS in disjoint mode.

Non-Disjoint (that is, disjoint solutions not guaranteed):
BC [44]: blocking clause-based AllSAT-CNF solver. We used the SIMPLIFY and
NONDISJOINT macros to make the solver return (non-disjoint) partial solutions.
TALE: our tool HALL with TALE.
MARS: our tool HALL with MARS in non-disjoint mode.
DUTY: our tool HALL with DUTY.

5.2 Evaluation of the STA Benchmark Sets
In our first experiment, we used our industrial sta_gen benchmark set. We separate our
analysis to disjoint and non-disjoint solvers.

5.2.1 Results for Disjoint Solvers

Table 1 Comparing disjoint solvers on the sta_gen benchmark family. The first column (N)
specifies the number of inputs for each instance. Each pair of columns (T,S) shows the run-time in
seconds (where TO stands to a time-out, MO stands for a memory-out and < 1 for a run-time lower
than 1 second), and the size of the DNF in the number of cubes.

N
Disjoint

MARS NBC BDD
T (sec) S T (sec) S T (sec) S

9 < 1 10 < 1 224 < 1 224
17 < 1 59 < 1 89600 < 1 89600
25 < 1 253 2.111 27582464 48.26 27582464
33 < 1 1315 570.897 7729971200 MO –
37 9.808 59538 TO – MO –
41 TO – TO – MO –

6 We used the following parameters for aigfuzz: “-a -c -l -1”.
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The comparison between the disjoint solvers is shown in Table 1. One can see that our
MARS algorithm is substantially more scalable than the others, but even MARS could only
handle small formulas with up to 37 inputs. This is because sta_gen is a very hard problem
in the disjoint mode, since the structure of the formula implies that the number of total
solutions is exponential. Consequently, NBC and BDD that do not iterate over partial solutions,
thus return all the total solutions, struggle to scale. MARS, which can return partial solutions,
scales somewhat better.

5.2.2 Results for Non-Disjoint Solvers

Table 2 shows our results for the non-disjoint solvers comparison. Notably, our tool HALL, in
all its variants, substantially outperforms BC, because of the limitations of generalization in
Boolean logic as compared to ternary logic, highlighted in our paper.

Observe also that, for the non-disjoint case, HALL was able to solve instances with over
10000 inputs as compared to 37 inputs only for the disjoint case. This is because, for
the non-disjoint case (which is the one required in our industrial usage), solving sta_gen
becomes substantially simpler. Specifically, for every benchmark with N inputs there exists
the following DNF solution with (N − 1)/2 cubes: Q = (v1 ∧ v2 ∧ vN ) ∨ . . . ∨ (vj−1 ∧ vj ∧
vN ) ∨ . . . ∨ (vj+1 ∧ vj+2 ∧ ¬vN ) ∨ . . . ∨ (vN−2 ∧ vN−1 ∧ ¬vN ).

Table 2 Comparing non-disjoint solvers on sta_gen. The first column (N) shows the number of
inputs for each instance (inputs from 33 to 2009 are skipped, because of similarity of the results).
Each subsequent pair of columns (T,S) shows the solver’s run-time in seconds and the size of the
resulting DNF in number of cubes.

N
Non-Disjoint

TALE MARS DUTY BC
T (sec) S T (sec) S T (sec) S T (sec) S

9 < 1 4 < 1 4 < 1 4 < 1 90
17 < 1 8 < 1 9 < 1 8 < 1 10538
25 < 1 12 < 1 12 < 1 12 866.53 1026771
33 < 1 16 < 1 20 < 1 16 TO –

2009 < 1 1004 < 1 1154 < 1 1004 TO –
3009 < 1 1504 1.874 1990 < 1 1504 TO –
4009 1.676 2004 2.917 3036 1.374 2004 TO –
5009 3.349 2504 9.83 3629 2.417 2504 TO –
6009 4.403 3004 40.114 20530 4.181 3004 TO –
7009 7.886 3504 10.294 6098 4.625 3504 TO –
9009 28.909 4504 84.817 6889 11.977 4504 TO –
11009 56.877 5504 TO – 23.0 5504 TO –
13009 96.688 6504 50.361 13704 29.889 6504 TO –

Comparing our algorithms, one can see that DUTY outperforms both TALE and MARS.
Notably, TALE and DUTY return DNFs of the same size, which is the optimal (N − 1)/2, while
MARS returns larger DNFs. Apparently, ternary simulation, applied by both TALE and DUTY
(but not by MARS), was essential to reduce the size of every cube and also the resulting DNF.
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5.3 Evaluation of the EPFL and Random Benchmark Sets
Table 3 summarizes the evaluation results on the EPFL and random families. Specifically,
it shows the number of solved instances per each family and solver, where an instance is
considered solved, if the solver completed the enumeration all its solutions within the timeout.

Overall, our tool HALL solved significantly more instances than the others, where its
variant TALE is the winner amongst the non-disjoint solver, while MARS is the winner amongst
the disjoint ones. More specifically, HALL is substantially more efficient on instances, where
the outputs are joined using the operator or . This is because, when the operator or is applied
over the outputs, the solver can set all the outputs, except for one, to a don’t-care. Our
dedicated ternary logic-aware algorithms take full take advantage of this property, while other
solvers, restricted to Boolean logic, fail to do so. On families, where the outputs are joined
using the operator xor , the difference is not that significant, where there is one benchmark
from the arithmetic_xor family, which was solved only by NBC.

Table 3 Comparing the number of instances solved from each benchmark set and overall. The
first column (Family) shows the benchmark family name. The two subsequent columns provide the
number of benchmarks (#Bench) and the average number of inputs for each set (AvgIN). Each of
the subsequent columns shows the number of instances solved for the corresponding solver.

Family #Bench AvgIN Non-Disjoint Disjoint
TALE MARS DUTY BC MARS NBC BDD

arithmetic_or 10 166 4 2 3 0 1 1 0
arithmetic_xor 10 166 0 0 0 0 0 1 0
random_control_or 10 283 9 9 9 4 7 4 4
random_control_xor 10 283 5 5 5 4 4 4 4
large_cir_or 20 597 16 7 16 0 7 0 0

Total 60 – 34 23 33 8 19 10 8

6 Related Work

AllSAT research has so far been mostly focused on the well studied problem of AllSAT-CNF
that is, enumerating all the satisfying assignments of a Boolean formula in CNF [30, 46, 44,
14, 24, 11]; see [44] for an extensive survey. Recent progress in AllSAT-CNF includes [47]
that relies on finding backbone variables, and [25] that uses efficient component analysis.

To the best of our knowledge, the only papers that explicitly consider AllSAT-CT
are [19, 20, 43]. The first two papers introduce blocking non-disjoint AllSAT-CT algorithms,
which utilize a hybrid SAT solver that can carry out conflict analysis and propagation in both
CNF formulas and circuits, where the target application is unbounded model checking. The
third paper enhances the blocking algorithm with structural analysis. All these algorithms
are restricted to Boolean logic in contrast to our ternary logic-aware algorithms. Additionally,
the resulting tools are currently unavailable.

A number of solution generalization methods have been proposed in the context of the
PDR algorithm for model checking [16, 15, 40, 8, 13]; see [40] for an extensive survey. Finding
minimal test cubes in circuit testing is closely related to solution generalization in PDR,
where [39, 37] investigate different techniques, including MaxSAT- and MaxQBF-based.

Finally, another closely related problem is one of generating of all the prime implicants,
given a Boolean formula, studied in [41, 36, 27]. Informally, in our terminology, an implicant
is a cube which implies the original formula (that is, an implicant is a not-necessarily-
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generalized solution). A prime implicant is a generalized cube, which cannot be generalized
further. AllSAT can then be viewed as the problem of finding a (not-necessarily-prime)
implicant cover, which is a significantly simpler problem than that of generating all the prime
implicants.

7 Conclusion & Future Work

Motivated by the need to improve the scalability of Intel’s in-house Static Timing Analysis
(STA) tool, we considered the problem of enumerating all the solutions of a single-output
combinational Boolean circuit, called AllSAT-CT. We introduced several dedicated ternary
logic-based AllSAT-CT algorithms and implemented them in an open-source tool called
HALL. Our experimental results demonstrated that HALL scales substantially better than any
reduction to existing AllSAT-CNF tools on our industrial STA instances as well as on various
publicly available families of combinational circuits.

For future work, we plan to investigate how to utilize other AllSAT-CNF methods,
including the nonblocking technique that modifies the SAT solver to enumerate the solutions
explicitly without blocking clauses, for AllSAT-CT. Furthermore, we plan to explore solutions
to related problems to utilize the relevant techniques for AllSAT-CT, including dual value
propagation in circuits, which is a known method in QBF solving [12] and projected model
counting [29]. Specifically, very recently, we became aware of a tool called dualiza [29], that,
in addition to its main capability of projected model counting, is also capable to enumerate
solutions for circuits in the AIGER format. The tool is based on dual calculus. An initial
study of ours already suggests promising methods of integrating duality considerations into
our algorithms, which we plan to explore.
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