
Learning Shorter Redundant Clauses in SDCL
Using MaxSAT
Albert Oliveras
Technical University of Catalonia, Barcelona, Spain

Chunxiao Li
University of Waterloo, Canada

Darryl Wu
University of Waterloo, Canada

Jonathan Chung
University of Waterloo, Canada

Vijay Ganesh
University of Waterloo, Canada

Abstract
In this paper we present the design and implementation of a Satisfaction-Driven Clause Learning
(SDCL) SAT solver, MapleSDCL, which uses a MaxSAT-based technique that enables it to learn
shorter, and hence better, redundant clauses. We also perform a thorough empirical evaluation
of our method and show that our SDCL solver solves Mutilated Chess Board (MCB) problems
significantly faster than CDCL solvers, without requiring any alteration to the branching heuristic
used by the underlying CDCL SAT solver.

2012 ACM Subject Classification Theory of computation

Keywords and phrases SAT, SDCL, MaxSAT

Digital Object Identifier 10.4230/LIPIcs.SAT.2023.18

Funding Albert Oliveras: Supported by grant PID2021-122830OB-C43, funded by MCIN/AEI/
10.13039/501100011033 and by “ERDF: A way of making Europe”.

1 Introduction

Conflict-Driven Clause Learning (CDCL) SAT solvers are routinely used to solve large
industrial problems obtained from variety of applications in software engineering [7], formal
methods [8], security [11, 25] and AI [6], even though the underlying Boolean satisfiability
(SAT) problem is well known to be NP-complete [9] and believed to be intractable in general.
Despite this, solver research has made significant progress in improving CDCL solvers’
components and heuristics [19].

It is well known that CDCL SAT solvers are polynomially equivalent to resolution [20, 1],
and consequently it follows that classes of formulas, such as the pigeon hole principle (PHP),
that are hard for resolution are also hard for CDCL SAT solvers. In order to address such
limitations, researchers are actively designing and implementing solvers that correspond to
stronger propositional proof systems.

One such class of solvers is called Satisfaction-Driven Clause Learning (SDCL) solvers [15,
14, 13], which are based on the propagation redundancy (PR) property [12, 14]. The SDCL
paradigm extends CDCL in the following way: unlike CDCL solvers, SDCL solvers may learn
clauses even when an assignment trail α is consistent. To be more precise, an SDCL solver
first computes a new formula Pα(F), known as a pruning predicate. Then, it checks the
satisfiability of Pα(F). If it satisfiable, it means ¬α is redundant with respect to the formula,

© Albert Oliveras, Chunxiao Li, Darryl Wu, Jonathan Chung, and Vijay Ganesh;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Theory and Applications of Satisfiability Testing (SAT 2023).
Editors: Meena Mahajan and Friedrich Slivovsky; Article No. 18; pp. 18:1–18:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-5893-1911
https://orcid.org/0000-0001-5378-1136
https://orcid.org/0000-0002-6029-2047
https://doi.org/10.4230/LIPIcs.SAT.2023.18
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Learning Shorter Redundant Clauses in SDCL Using MaxSAT

and the solver can learn the clause (¬α). Even though the intuition is clear and procedures
for computing a possible Pα(F) are very well defined, it is still an extremely challenging task
to automate SDCL.

There are two main problems in this setting: first, the satisfiability check for the formula
Pα(F) is NP-complete and is hard to solve in general. It essentially requires the SDCL solver
to call another SAT solver that we refer to as a sub-solver. Given that this sub-solver call can
be expensive, one needs to be strategic about when to invoke it during the run of an SDCL
solver. Second, the clauses learned by SDCL can be large, and we want to learn shorter
clauses whenever possible.

To solve this second problem, we propose a novel MaxSAT encoding of the problem of
“what is the smallest subset γ of trail α, such that Pγ(F) is satisfiable”, to get the shortest
clause (¬γ) to learn. We also apply a resolution-based technique inspired by conflict analysis
to further shorten the clause. We refer to the SDCL solver augmented with our MaxSAT
and clause minimization technique as MapleSDCL. Our experimental evaluation shows that
MapleSDCL performs well on mutilated chess board (MCB) and bipartite perfect matching
problems, that are known to be hard for CDCL solvers.

1.1 Contributions
(I) First, we make a theoretical contribution by introducing a new type of pruning predicate

and a proof that it allows one to detect blocked clauses. This extends the spectrum
of pruning predicates with redundancy notions associated with them. However, we
remark that this is not implemented in our system as we consider it to have little
practical impact.

(II) Second, we prove that when an assignment has a satisfiable positive reduct, finding
a small sub-assignment with the same property is an NP-hard problem. Such small
assignments summarize the reasons for the redundancy and lead to learning smaller
redundant clauses. In essence, we believe that this is the equivalent to conflict analysis
in CDCL solvers.

(III) Third, we introduce a MaxSAT encoding of the above-stated problem. Experimental
results show that calling a MaxSAT solver within the SDCL architecture is not as
expensive as one might expect, and more importantly, significant improvements in the
size of the learned redundant clauses are achievable in practice. These improvements
are even larger after applying conflict analysis techniques to convert the clause into an
asserting one.

(IV) Finally, we show that the resulting SDCL solver can solve mutilated chess board
problems without the need to alter the decision heuristic used by the underlying CDCL
SAT solver. This is a very important property of our approach: the chances of learning
(good) redundant clauses depend much less on choosing exactly the right decision
literals, thus overcoming a serious roadblock for SDCL solver design.

2 Preliminaries on CDCL SAT Solving

CNF formulas. Let X be a finite set of propositional variables. A literal is a propositional
variable (x) or the negation of one (¬x). The negation of a literal l, denoted ¬l, is x if l = ¬x

and is ¬x if l = x. A clause is a disjunction of distinct literals l1 ∨ . . . ∨ ln (interchangeably
denoted with or without brackets). A CNF formula is a conjunction of distinct clauses
C1 ∧ . . . ∧ Cm. When convenient, we consider a clause to be the set of its literals, and a CNF
to be the set of its clauses. In the rest of the paper we assume that all formulas are CNF.

A. Oliveras, C. Li, D. Wu, J. Chung, and V. Ganesh 18:3

Satisfaction. An assignment is a set of non-contradictory literals. A total assignment
contains, for each variable x ∈ X , either x or ¬x. Otherwise, it is a partial assignment. We
denote by ¬α the clause consisting of the negation of all literals in the assignment α. An
assignment α satisfies a literal l if l ∈ α, it satisfies a clause C if it satisfies at least one of
the literals in C, and it satisfies a formula F if it satisfies all the clauses in F . We denote
these as α |= l, α |= C, and α |= F , respectively. A model for a formula is an assignment
that satisfies it. A formula with at least one model is satisfiable; otherwise, it is unsatisfiable.
Given a formula F , the SAT problem consists of determining whether F is satisfiable. An
assignment α falsifies a literal l if ¬l ∈ α, falsifies a clause if it falsifies all its literals, and
falsifies a formula if it falsifies at least one of its clauses. The truth values of literals, clauses,
and formulas are undefined for an assignment if they are neither falsified nor satisfied. Given
a clause C and an assignment α, we denote by touchedα(C) the disjunction of all literals of C

that are either satisfied or falsified by α, by untouchedα(C) the disjunction of all undefined
literals, and by satisfiedα(C) the disjunction of all satisfied literals.

Unit propagation. Given a formula F and an assignment α, unit propagation extends α by
repeatedly applying the following rule until reaching a fixed point: if there is a clause with
all literals falsified by α except one literal l, which is undefined, add l to α. If, as a result, a
clause is found that is falsified by α (called conflict), the procedure stops and reports that a
conflict clause has been found.

Formula relations. Two formulas F and G are equisatisfiable, denoted F ≡SAT G, if F is
satisfiable if and only if G is satisfiable, and they are equivalent, denoted F ≡ G, if they are
satisfied by the same total assignments. We write F ⊢1 G (F implies G by unit propagation)
if for every clause C ∈ G of the form l1 ∨ . . . ∨ ln, it holds that unit propagation applied to
F ∧ ¬l1 ∧ . . . ∧ ¬ln results in a conflict. We say that G is a logical consequence of F (written
F |= G) if all models of F are models of G.

CDCL. The Conflict-Driven Clause Learning (CDCL) algorithm is the most successful pro-
cedure to-date for determining whether certain types of industrial formulas are satisfiable [19].
Let F denote such a formula. The CDCL procedure starts with an empty assignment α,
which is extended and reduced in a last-in first-out (LIFO) way, by the following three steps
until the satisfiability of formula is determined (see Algorithm 1 removing lines 9-12):
1. Unit propagation is applied.
2. If a conflict is found, a conflict analysis procedure [26] derives a clause C (called a lemma)

which is a logical consequence of F . If C is the empty clause, we can conclude that F

is unsatisfiable. Otherwise, it is guaranteed that by removing enough literals from α, a
new unit propagation is possible due to C. This process is called backjump. Additionally,
lemma C is conjuncted (learnt) with F , and the procedure returns to step (i).

3. If no conflict is found in unit propagation, either α is a total assignment (and hence it
satisfies the formula), or an undefined literal is chosen and added to α (the branching
step). The choice of this literal, called a decision literal, is determined by sophisticated
heuristics [4] that can have a huge impact on performance of the CDCL procedure.

MaxSAT. Given a formula F , the MaxSAT problem consists of finding the assignment that
satisfies the maximum number of clauses of F . Sometimes the clauses in F are split into
hard and soft clauses, and in this case, the Partial MaxSAT problem consists of finding the
assignment that satisfies all hard clauses and the maximum number of soft clauses.

SAT 2023

18:4 Learning Shorter Redundant Clauses in SDCL Using MaxSAT

3 Propagation Redundancy and SDCL

Despite their success on a variety of real-world applications [23, 21, 5, 16], CDCL SAT solvers
have well-known limitations. Proof complexity techniques have established the polynomial
equivalence between CDCL and general resolution [20, 1], the proof system with the inference
rule that allows one to derive C ∨ D given two clauses of the form l ∨ C and ¬l ∨ D. An
important consequence of this equivalence is that if an unsatisfiable formula does not have a
polynomial size proof by resolution, no run of CDCL can determine the unsatisfiability of
the formula in polynomial time.

3.1 Propagation Redundancy
This limitation has motivated the search for extensions of CDCL solvers that may allow the
resultant method to simulate more powerful proof systems. One example is the extended
resolution proof system [24]: by allowing the introduction of new variables to resolution, it can
produce polynomial size proofs of the pigeon-hole principle [10], which requires exponential-
size resolution proofs otherwise. However, adding new variables would exponentially increase
the search space of the formula. A newer direction [12, 14] tries to avoid the addition of new
variables, and is instead based on the well-known notion of redundancy:

▶ Definition 1. A clause C is redundant with respect to a formula F if F and F ∧ C are
equisatisfiable.

In order to provide a more useful characterization of redundancy, we need some definitions.

▶ Definition 2. Given an assignment α and a clause C, we define C|α = ⊤ if α |= C;
otherwise C|α is the clause consisting of all literals of C that are undefined in α. For a
formula F , we define the formula F|α = {C|α | C ∈ F and α ̸|= C}.

▶ Theorem 3 ([12], Theorem 1). A non-empty clause C is redundant with respect to a
formula F if and only if there exists an assignment ω such that ω |= C and F ∧ ¬C |= F |ω.

From a practical point of view, this characterization does not help much, because even if
we know ω (known as the witness) it is hard to check whether the property holds. This is
why a more limited notion of redundancy has been defined [12]:

▶ Definition 4. A clause C is propagation redundant (PR) with respect to a formula F

if there exists an assignment ω such that ω |= C and F ∧ ¬C ⊢1 F |ω

Note that since F ∧ ¬C ⊢1 F |ω implies F ∧ ¬C |= F |ω, any PR clause is redundant.
Hence, we can add PR clauses to our formula in order to make it easier to solve without
affecting its satisfiability. If we force ω to assign all variables in C but no other variable, we
can obtain weaker but simpler notions of redundancy: if we force ω to satisfy exactly one
literal of C, we obtain literal-propagation redundant (LPR) clauses; if allow ω to satisfy more
than one literal of C, we obtain set-propagation redundant (SPR) clauses. Obviously, any
LPR clause is SPR, and any SPR clause is PR, but none of these three notions are equivalent
as the following examples show.

▶ Example 5 ([12]). Let F = {x ∨ y, x ∨ ¬y ∨ z, ¬x ∨ z, ¬x ∨ u, x ∨ ¬u} and C = x ∨ u.
The witness ω = {x, u} satisfies C and, since F |ω = {z}, it holds that F ∧ ¬C ⊢1 F |ω, that
is, unit propagation on F ∧ ¬x ∧ ¬u ∧ ¬z results in a conflict. Hence, C is SPR w.r.t. F .

A. Oliveras, C. Li, D. Wu, J. Chung, and V. Ganesh 18:5

However, it is not LPR. The reason is that there are only two possible witnesses that
satisfy exactly one literal of C: ω1 = {x, ¬u} and ω2 = {¬x, u}. But we have that both
F |ω1 and F |ω2 contain, among others, the empty clause. Hence, F ∧ ¬C ⊢1 F |ω1 and
F ∧ ¬C ⊢1 F |ω2 require that unit propagation on F ∧ ¬C, that is, F ∧ ¬x ∧ ¬u, results in a
conflict, which is not the case.

▶ Example 6 ([12]). Let F = {x ∨ y, ¬x ∨ y, ¬x ∨ z} and C = (x). If we consider the witness
ω = {x, z}, we have that F |ω = {y}. It is obvious that ω |= C and also F ∧¬x ⊢1 y. Thus, C

is PR w.r.t. F . However it is not SPR because the only possible witness would be ω1 = {x},
but F |ω1 = {y, z} and it does not hold that F ∧ ¬x ⊢1 z.

3.2 SDCL and Reducts
It was proved in [12] that the proof system that combines resolution with the addition of PR
clauses admits polynomial-sized proofs for the pigeon hole principle. However, it is not a
trivial task to add this capability to CDCL solvers. This question was addressed with the
development of Satisfiability-Driven Clause Learning (SDCL) [15]. The key notion in this
new solving paradigm is the one of pruning predicate:

▶ Definition 7. Let F be a formula and α an assignment. A pruning predicate for F and
α is a formula Pα(F) such that if it is satisfiable, then the clause ¬α is redundant w.r.t. F .

SDCL extends CDCL in the following way (See also Algorithm 1). Before making a
decision, a pruning predicate for the assignment α and formula F is constructed. If satisfiable,
we can learn ¬α and use it for backjump and continuing the search, hence pruning away the
search tree without needing to find a conflict. This leads to the simple code in Algorithm 1,
where removing lines 9 to 12 results in the standard CDCL algorithm, and where we can
assume, for simplicity, that analyzeWitness() returns ¬α. More sophisticated versions of
analyzeWitness are discussed in the next Section.

Algorithm 1 The SDCL algorithm. Note that removing lines 9–12 results in the CDCL
algorithm.

1 α := ∅
2 while true do
3 α := unitPropagate(F, α)
4 if conflict found then
5 C := analyzeConflict()
6 F := F ∧ C

7 if C is the empty clause then return UNSAT
8 α := backjump(C, α)
9 else if Pα(F) is satisfiable then

10 C := analyzeWitness()
11 F := F ∧ C

12 α := backjump(C, α)
13 else
14 if all variables are assigned then return SAT
15 α := α ∪ Decide()
16 end
17 end

SAT 2023

18:6 Learning Shorter Redundant Clauses in SDCL Using MaxSAT

We can understand SDCL as a parameterized algorithm, since the use of different pruning
predicates Pα(F) leads to distinct types of SDCL algorithms with possibly different underlying
proof systems. In the following, we summarize the contributions of [15, 13] and explain the
different pruning predicates and the corresponding proof systems that are known.

▶ Definition 8. Given formula F and a (partial) assignment α, the positive reduct pα(F)
is the formula ¬α ∧ G, where G = {touchedα(D) | D ∈ F and α |= D}.

That is, we only consider clauses satisfied by α, and among them, only the literals that
are assigned. In [15] it is proved that pα(F) is a valid pruning predicate. Moreover, a precise
characterization of the redundancy achieved by pα(F) is given: pα(F) is satisfiable if and
only if ¬α is set-blocked in F .

▶ Definition 9. A clause C is set-blocked in a formula F if there exists a subset L ⊆ C such
that, for every clause D containing the negation of some literal in C, the clause (C\L)∨¬L∨D

contains two complementary literals.

The results in [15] imply that a proof system based on resolution and set-blocked clauses
has polynomial size proofs for the pigeon hole principle. It is also known [12] that set-blocked
clauses are a particular case of SPR clauses. If one wants to obtain the full power of SPR
clauses, the following pruning predicate is needed:

▶ Definition 10. Given formula F and a (partial) assignment α, the filtered positive
reduct fα(F) is the formula ¬α ∧ G, where G = {touchedα(D) | D ∈ F and F ∧ α ̸⊢1
untouchedα(D)}.

Again, a precise characterization of the power of fα(F) is known [13]: fα(F) is satisfiable
if and only if ¬α is SPR with respect to F . Despite being harder to compute than pα(F), the
fact that fα(F) is a subset of the clauses in pα(F) makes it easier to check for satisfiability.
Finally, another pruning predicate is given in [13] that achieves the full power of PR clauses,
but it is not considered to be practical. We close this sequence of pruning predicates and
their corresponding redundancy characterization with a novel pruning predicate and its
corresponding redundancy notion.

▶ Definition 11. Given formula F and a (partial) assignment α, the purely positive
reduct ppα(F) is the formula ¬α ∧ G, where G = {satisfiedα(D) | D ∈ F and α |= D}.

Since all clauses in ppα(F) are subclauses of clauses in pα(F), whenever ppα(F) is
satisfiable, pα(F) is also satisfiable. This proves that ppα(F) is a pruning predicate, but we
can be more precise about the notion of redundancy it corresponds to.

▶ Definition 12. We say that a literal l ∈ C blocks C in F if an only if for every clause
D in F containing literal ¬l, resolution between C and D gives a tautology. A clause C is
blocked in F if and only if there exists some literal l ∈ C that blocks C in F .

▶ Theorem 13. Given a formula F and an assignment α, the formula ppα(F) is satisfiable
if and only if the clause ¬α is blocked in F .

Proof.
Left to right. let β be a model of ppα(F). Since β |= ¬α, we can take any literal ¬l in
¬α satisfied by β. We now prove that ¬l blocks ¬α in F . Let us consider a clause of the
form l ∨ C ∈ F . Since l ∈ α we have that α |= l ∨ C, and hence there is a clause of the form
l ∨ satisfiedα(C) in ppα(F). Since β |= ppα(F) and β |= ¬l, necessarily β |= satisfiedα(C).
This means that C contains a literal from α different from l, and hence if we apply resolution
between the clause ¬α and l ∨ C we obtain a tautology.

A. Oliveras, C. Li, D. Wu, J. Chung, and V. Ganesh 18:7

Right to left. Assume w.l.o.g. that the clause ¬α is blocked w.r.t. ¬l in F . We prove
that α̂ := α \ {l} ∪ {¬l} is a model of ppα(F). It is obvious that α̂ satisfies the clause
¬α ∈ ppα(F). Any other clause D ∈ ppα(F) is of the form satisfiedα(C) for some C ∈ F

such that α |= C. There are now in principle two cases:
(i) if D is not the unit clause l, it necessarily contains a literal from α different from l, and

hence α̂ satisfies it.
(ii) If D is the unit clause l, this means that clause C ∈ F does not contain any literal from

α except for l. Thus, applying resolution between ¬α and C cannot give a tautology,
contradicting the fact that ¬α is blocked w.r.t ¬l in F . Hence, this case cannot take
place. ◀

We finish this section with one important remark about the computation of reducts in
SDCL: we need to add all already computed redundant clauses in the reduct computation
when trying to find additional ones. Let us show why not doing this is incorrect. Given the
satisfiable formula (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) ∧ (x3 ∨ x4), the SDCL solver might first build the
assignment α = {x1, ¬x2}. Its positive reduct is (¬x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2), which
is satisfiable, and hence we learn the redundant clause ¬x1 ∨ x2. If the solver now builds the
assignment {¬x1, x2}, the positive reduct w.r.t F is (x1 ∨ ¬x2) ∧ (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2),
which is again satisfiable and allows us to learn the clause x1 ∨ ¬x2. However, adding the
two learned redundant clauses to F makes it unsatisfiable. The solution is to build the
second positive reduct w.r.t. F conjuncted with the first learned redundant clause. The
corresponding reduct is (x1 ∨ ¬x2) ∧ (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) ∧ (¬x1 ∨ x2), which is now
unsatisfiable and hence does not allow us to learn the second redundant clause.

A natural question that arises now is whether we also need to add all clauses that were
derived using CDCL-style conflict analysis in a reduct. The answer is that we do not need
to do so. The reason is that, given two formulas G1 ≡ G2, it holds that C is redundant
w.r.t. G1 if and only if C is redundant w.r.t G2. Now, if the current formula that the SDCL
solver has in its database is F ∧ L ∧ R, where F is the original formula, L are the lemmas
derived by CDCL-style conflict analysis and R are the learned redundant clauses, it holds
that F ∧ L ∧ R ≡ F ∧ R. Therefore, it is sufficient to compute redundant clauses w.r.t. F ∧ R

only. Having said that, it is better to compute reduntant clauses w.r.t F ∧ R ∧ U , where U

denotes CDCL-derived unit clauses, because it results in smaller reducts and faster sub-solver
calls. Note that for correctness, clauses in R are never deleted. This design decision prevents
us from using off-the-shelf proof checkers like dpr-trim1. However, as we mention at the end
of Section 5, this checker can be easily adapted.

4 Minimizing SDCL Learned Clauses

In Algorithm 1, we considered the function AnalyzeWitness to always return ¬α, which
was correct due to the results presented in Section 3. However, adding the negation of the
whole assignment results in a very large clause, and it is not a surprise that this is far from
being useful in practice. Already in [15] it was proven that one can learn a much shorter
clause: the negation of all decisions in α. We provide a simple proof that we use to justify
that learning other clauses is also correct:

▶ Theorem 14. Let F be a formula and C a clause that is redundant with respect to F . Any
clause D obtained via resolution steps from F ∧ C is also redundant with respect to F .

1 https://github.com/marijnheule/dpr-trim

SAT 2023

https://github.com/marijnheule/dpr-trim

18:8 Learning Shorter Redundant Clauses in SDCL Using MaxSAT

Proof. Let us assume that F is satisfiable and prove that F ∧D also is. Since C is redundant
w.r.t. F we know that F ∧ C is satisfiable. We know that resolution generates logical
consequences, and hence any model of F ∧ C is also a model of F ∧ C ∧ D, which proves
that F ∧ D is satisfiable. ◀

It is well known that, if α is an assignment, starting from ¬α one can apply a series of
resolution steps in order to derive a clause that only consists of decisions. If ¬α is redundant,
the theorem proves that the decision-only clause is also redundant. However, learning the
negation of all decisions is not the ideal situation for at least two reasons. The first one is
that, according to experience from CDCL SAT solving, forcing the solver to learn clauses
that only contain decisions leads to very poor performance in practice. It is certainly true
that these clauses are small, but that is probably their only good property. The second
reason is that not all decisions in α need to be present in the redundant clause. Similarly to
what happens in CDCL, where usually not all decisions are responsible for a conflict, here
not all decisions are responsible for the pruning predicate to be satisfiable. In order to fix
these two issues, we modify AnalyzeWitness so that it finds the smallest subset γ ⊆ α for
which Pγ(F) is satisfiable. This allows us to learn the hopefully much shorter clause ¬γ and
address one of the open problems mentioned in [14]: “checking if a subset of a conflict clause
is propagation redundant with respect to the formula under consideration.”

▶ Example 15. Consider F = (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ ¬x2 ∨ x5) ∧ (¬x1 ∨ ¬x4 ∨ x5) ∧ (x2 ∨
x4 ∨ ¬x5) ∧ (x3 ∨ x6 ∨ ¬x5) and assignment, α = {x1, x4, x5, ¬x2}, where x5 is the only
non-decision. The positive reduct pα(F) is (¬x1 ∨ ¬x4 ∨ ¬x5 ∨ x2) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨
¬x2 ∨ x5) ∧ (¬x1 ∨ ¬x4 ∨ x5) ∧ (x2 ∨ x4 ∨ ¬x5) and is satisfiable. Hence we could learn the
redundant clause ¬x1 ∨ ¬x4 ∨ x2 consisting of the negation of the decisions. However the
subset γ = {x1, ¬x2} ⊆ α also has satisfiable positive reduct: (¬x1∨x2)∧(x1∨x2)∧(x1∨¬x2)
and hence we could learn the shorter clause ¬x1 ∨ x2.

4.1 Hardness of Minimization
Unfortunately, as we prove, the problem of finding such small γ is NP-hard. Let us first
formalize it as a decision problem:

▶ Definition 16. Trail-Minimization: given a formula F , an assignment α and an integer
k ≥ 0, we want to know whether there is a subset γ ⊆ α of size k such that pγ(F) is satisfiable.

Note that in the rest of the paper we focus on the positive reduct of the formula, and
hence our approach allows us to obtain (short) set-blocked clauses. Before introducing the
NP-hard problem that we use to prove the NP-hardness of Trail-Minimization, we need
one definition:

▶ Definition 17. Given α and β two assignments over the same variables {x1, . . . , xn}, we
say that β < α if β ̸= α and for each ¬xi ∈ α we also have that ¬xi ∈ β.

In other words, β < α if, considering an assignment as a sequence of n bits, the sequence
of bits of β is pointwise smaller than the one of α.

▶ Definition 18. Smaller-Model[17]: given a formula F and a total model α of F , we
want to know whether there is a total model β of F such that β < α.

In [17] it is proved that Smaller-Model is NP-hard. Hence, a polynomial reduction
from Smaller-Model to Trail-Minimization proves that the latter is also NP-hard.

▶ Theorem 19. Trail-Minimization is NP-hard.

A. Oliveras, C. Li, D. Wu, J. Chung, and V. Ganesh 18:9

Proof. Given (F, α) an instance of Smaller-Model, we can partition α = α+ ∪ α−, where
α+ contains all positive literals in α, and α− contains all negative literals. The reduction
amounts to constructing an instance of Trail-Minimization as follows: the formula is
F̂ := F ∪ α− (that is, we add to F all negative literals in α as unit clauses), the assignment
is α̂ := α and the integer k := |α|. This can be computed in polynomial time and has
polynomial size. Let us now check that (F, α) is a positive instance of Smaller-Model if
and only if (F̂ , α̂, k) is a positive instance of Trail-Minimization.

Left to right: we know, by definition of Smaller-Model, that there exists an assignment
β |= F such that β < α. Since obviously α̂ ⊆ α̂ and |α̂| = k, if we prove that β |= pα̂(F̂)
we are done. Clause ¬α is satisfied by β because β ̸= α. Since α̂ is a total assignment, we
have that touchedα̂(C) = C for any clause C ∈ F̂ , hence any clause in pα̂(F̂) is either (i) a
unit clause consisting of a literal in α−, which is satisfied by β because β < α implies that
β ⊇ α− or (ii) a clause C ∈ F , which is of course satisfied by β since β is a model of F .

Right to left: the only subset of α̂ of size k is α̂ itself. Let us assume that pα̂(F̂) is
satisfied by a model β. Since ¬α is a clause in pα̂(F̂), we know that β ≠ α. Also, since
pα̂(F̂) contains all negative literals of α as unit clauses, we know that β ⊇ α−. Altogether,
this proves that β < α. The only missing piece is to prove that β satisfies F . This is not
difficult to see: since α is a model of F , and touchedα(C) = C for any clause C, all clauses
in F belong to pα̂(F̂) and β necessarily satisfies them. ◀

4.2 A MaxSAT Encoding for Trail-Minimization
Knowing that Trail-Minimization is a difficult optimization problem, and being somehow
similar to SAT, it is very natural to try solving it using MaxSAT. Given a formula F , and an
assignment α, we describe a partial MaxSAT formula mpα(F) whose solutions correspond to
a smallest γ ⊆ α such that pγ(F) is satisfiable.

Before formally defining mpα(F), let us explain the intuition behind it. The main idea is
that we have to determine which literals we can remove from α, giving a new assignment γ,
such that pγ(F) is satisfiable. For each literal l in α, we add an additional variable rl that
indicates whether l is removed. Hence, a truth assignment over these variables induces an
assignment γ ⊆ α. The key point is to construct a formula such that when restricted with
rl’s, it is essentially equivalent to pγ(F).

More formally, let us assume α = {α1, α2, . . . , αm}. We introduce three sets of additional
variables:

{r1, r2, . . . , rm}: indicate whether αi is removed from α.
{p1, p2, . . . , pm}: replace “positive” occurrences of αi in p(F, α).
{n1, n2, . . . , nm}: replace “negative” occurrences of αi in p(F, α).

Given a clause C, we denote by Ĉ the result of replacing in C, for i = 1 . . . m, every
occurrence of literal αi by pi and every occurrence of literal ¬αi by ni.

Our Partial MaxSAT formula mpα(F) contains the following hard formulas (that can be
easily converted into clauses), that enforce the semantics of the r, p and n variables:

ri → ¬pi for all i = 1 . . . m

ri → ¬ni for all i = 1 . . . m

¬ri → pi = αi for all i = 1 . . . m

¬ri → ni = ¬αi for all i = 1 . . . m

SAT 2023

18:10 Learning Shorter Redundant Clauses in SDCL Using MaxSAT

Intuitively, if ri is false, and hence we do not to remove αi from the assignment, then pi

is equivalent to αi and ni is equivalent to ¬αi. Otherwise, if ri is removed, we force pi and
ni to be false.

The rest of mpα(F) is constructed by iterating over all clauses of pα(F). For each clause
C ∈ pα(F), we add a set of hard clauses to mpα(F), constructed as follows. If C is the clause
¬α, we add the hard clause ¬̂α. Otherwise C is of the form S ∨ D, where S is the non-empty
set of literals satisfied by α and D contains the remaining literals, which are touched, but
not satisfied by α. The clauses to be added are:

{Ŝ ∨ D̂ ∨ ri | i = 1 . . . m and αi ∈ S}

The idea here is that if we remove all literals in S from α, then C would not be satisfied
and hence it should not appear in the positive reduct. The addition of the ri’s in the clauses
guarantee that, if all of them are removed, and hence all ri’s are set to true, these clauses
are all satisfied by the ri’s and hence they do not constrain the formula at all. On the other
hand, if some literal in S is not removed, then the corresponding ri is false and we essentially
have the clause Ŝ ∨ D̂, that is what we wanted to impose.

We want to note that we can obtain a smaller formula by, instead of adding multiple
clauses of the form of Ŝ ∨ D̂ ∨ ri, introducing one auxiliary variable aC for each clause
C = S ∨ D and adding the clauses:

Ŝ ∨ D̂ ∨ aC

¬ri → ¬aC for all i = 1 . . . m such that αi ∈ S

Apart from these hard clauses and the hard ones imposing the semantics of r, p and n, our
formula mpα(F) is completed with the set of soft unit clauses {ri | i = 1 . . . m}, expressing
that we want to remove as many literals as possible while still satisfying the rest of the
formula, which are hard clauses.

▶ Example 20. Let us revisit Example 15, where α = {x1, x4, x5, ¬x2} had pα(F) satisfiable,
but there was a smaller subset γ = {x1, ¬x2} for which pγ(F) was also satisfiable. We use
this example to illustrate our encoding. Let us consider that the variables related with xi are
pi, ni, ri for i ∈ {1, 2, 4, 5}. We only show the hard clauses in mpα(F) that are constructed
from pα(F). The implications defining the semantics of p, n, r are ignored, as well as the soft
clauses, since those should be easy to understand.

pα(F) mpα(F)
¬x1 ∨ ¬x4 ∨ ¬x5 ∨ x2 n1 ∨ n4 ∨ n5 ∨ n2
x1 ∨ x2 ∨ x4 p1 ∨ n2 ∨ p4 ∨ r1

p1 ∨ n2 ∨ p4 ∨ r4
x1 ∨ ¬x2 ∨ x5 p1 ∨ p2 ∨ p5 ∨ r1

p1 ∨ p2 ∨ p5 ∨ r2
p1 ∨ p2 ∨ p5 ∨ r5

¬x1 ∨ ¬x4 ∨ x5 n1 ∨ n4 ∨ p5 ∨ r5
x2 ∨ x4 ∨ ¬x5 n2 ∨ p4 ∨ n5 ∨ r4

Note that any literal x1 is replaced by p1 since x1 ∈ α. On the other hand, any literal
x2 is replaced by n2 because ¬x2 ∈ α. The interesting fact is that if we set r4, r5 to true
and r1, r2 to false, which means that we are removing x4 and x5 from α (hence obtaining
γ) and propagate the implications, the hard clauses in mpα(F) become equivalent to pγ(F).
For example, take the first clause n1 ∨ n4 ∨ n5 ∨ n2. Setting r4 and r5 to true causes the

A. Oliveras, C. Li, D. Wu, J. Chung, and V. Ganesh 18:11

implications to unit propagate ¬n4 and ¬n5. Hence the clause is equivalent to n1 ∨ n2.
However, setting r1 to false makes n1 =¬x1 and setting r2 to false makes n2 =x2. All in all,
the clause is equivalent to ¬x1 ∨ x2, which is the first clause of pγ(F).

If we take clause n2 ∨ p4 ∨ n5 ∨ r4 we can see that it is satisfied due to r4 and thus is not
constraining the other variables. This is as expected, because if we remove x4 from α, it no
longer satisfies the clause x2 ∨ x4 ∨ ¬x5 and hence it should not appear in the reduct.

Finally, the last case is a clause like p1 ∨ n2 ∨ p4 ∨ r1. In this case r1 is false and hence
the last literal in the clause disappears. Also, since r4 is true, it makes p4 false due to the
implications, and r1, r2 being false unit propagates p1 =x1 and n2 =x2, hence making the
clause equivalent to x1 ∨ x2, which is precisely the clause that appears in pγ(F). All in all,
if we set the r variables to the appropriate values we can obtain the positive reduct of any
subset of α. Below, we formally prove that this encoding is indeed correct.

▶ Theorem 21. Given a formula F and an assignment α = {α1, . . . , αm}, it holds that the
smallest subset γ ⊆ α such that pγ(F) is satisfiable has size m − k if and only if the optimal
solution to mpα(F) satisfies k soft clauses.

Proof. We prove something slightly stronger: there exists γ ⊆ α of size m − k such that
pγ(F) is satisfiable if and only if there exists an assignment that satisfies all hard clauses in
mpα(F) and exactly k soft clauses.

Left to right. let us consider γ ⊆ α of size m − k with pγ(F) satisfiable, and let δ be a
model for it. We build an assignment the satisfies all hard clauses in mpα(F) and exactly k

soft clauses as follows. The first remark is that mpα(F) only consists of the variables ri, pi, ni

and the ones appearing in αi, for i = 1 . . . m and hence we have to build an assignment β

over those. For i = 1 . . . m we add ri to β if αi ̸∈ γ, and add ¬ri otherwise. Since there are k

literals αi not belonging to γ, it is clear that β satisfies exactly k soft clauses. The assignment
β is completed by making it coincide with δ on the variables of γ and take arbitrary values
for the variables of α \ γ. If we now unit propagate these values on the implications that
define the semantics of r, p and n, we complete β to define values for all pi and ni.

Let us now see that β satisfies the hard clauses in mpα(F). The implications defining
the semantics of the variables are obviously satisfied. Clause ¬̂α is also satisfied: we know
that this clause is of the form n1 ∨ n2 ∨ . . . ∨ nm. Since δ |= ¬γ, there is a literal αk ∈ γ

such that δ |= ¬αk. By the definition of β, we know that ¬rk ∈ β and hence the formula
¬rk → nk =¬αk propagates nk to be true in β and hence satisfy ¬̂α.

Let us now take another clause C ∈ mpα(F), which is necessarily of the form Ŝ ∨ D̂ ∨ ri,
with S ∨ D ∈ pα(F) and ri be such that αi ∈ S. If β |= ri we are done. Otherwise, it is
because αi ∈ γ. Hence, the clause S ∨ D is satisfied by γ due to literal αi ∈ S and pγ(F)
contains the clause touchedγ(S ∨ D). Thus, δ |= touchedγ(S ∨ D). Let us consider that case
where δ satisfies αj ∈ touchedγ(S ∨ D) (the other case is that is satisfies some ¬αj and the
proof is similar). Since αj ∈ γ, we have that rj ̸∈ β and the formula ¬rj → pj = αj

guarantees that β |= pj . We only have to realize that pj is a literal in Ŝ ∨ D̂, to conclude
that β |= C.

Right to left. let us consider an assignment β that satisfies all hard clauses in mpα(F) and
exactly k soft clauses. We build a subset γ ⊆ α of size m − k such that pγ(F) is satisfiable.
As expected, γ is constructed by removing from α all αi such that β |= ri. It is obvious that
|γ| = m − k, because β satisfies exactly k unit clauses of the form ri.

In order to prove that pγ(F) is satisfiable, let us build an assignment δ that coincides
with β over all variables in γ and prove that it is a model. The first clause in pγ(F) to
consider is ¬γ. Since β |= n1 ∨ . . . ∨ nm and it satisfies the clauses ri → ¬ni it necessarily

SAT 2023

18:12 Learning Shorter Redundant Clauses in SDCL Using MaxSAT

satisfies some ni such that ri is false. Due to the clause ¬ri → ni = ¬αi, it also satisfies
¬αi. Since ri is false in β we have that αi ∈ γ and hence, by the definition of δ, it satisfies
¬αi. This proves that δ |= ¬γ.

Let us now take another clause in pγ(F), which is necessarily of the form touchedγ(C)
for some C ∈ F such that γ |= C. Since α is a superset of γ, obviously α |= C, and hence a
clause of the form touchedα(C) belongs to pα(F). This clause in pα(F) is of the form S ∨ D,
with S containing all literals satisfied by α, and thus we have in mpα(F) hard clauses of the
form Ŝ ∨ D̂ ∨ ri for every i with αi ∈ S. If γ |= C it is because it satisfies some αi ∈ C with
ri being false in β. Hence, the existence of the clause Ŝ ∨ D̂ ∨ ri implies that β |= Ŝ ∨ D̂.
We know that Ŝ ∨ D̂ is a disjunction of positive p’s and n’s literals. Let us assume that it
satisfies some pk (the case nk is similar). Note that rk has to be false because otherwise the
implications force pk to be false. Hence β satisfies some αk such that rk is false and hence
αk ∈ γ, which means that δ also satisfies αk because they coincide over γ. Since αk ∈ γ, it
belongs to touchedγ(C) which is the clause that we wanted δ to satisfy. ◀

4.3 Practical Remarks
The previous encoding would allow us to learn the redundant clause C := ¬γ. However,
SDCL (see Algorithm 1) requires C to be asserting (i.e. containing exactly one literal of the
last decision level, and hence allowing it to unit propagate after backjumping). In order to
achieve this property, we first observe that, being the negation of a subset of the current
assignment, clause ¬γ is a conflict. Hence, we can apply standard CDCL conflict analysis to
it and obtain a clause that is asserting. For those familiar with SMT, this is essentially what
DPLL(T)-based SMT solvers do when they analyze theory conflicts. Thanks to Theorem 14,
we can guarantee that the final clause we obtain in this process is redundant and hence can
be safely added. Moreover, as can be seen in Section 5, the size of this clause tends to be
even smaller than ¬γ. In addition, this method allows us to learn clauses that are stronger
than set-blocked clauses.

▶ Example 22. Let us consider F = (¬x0 ∨ x1) ∧ (¬x0 ∨ ¬x2) ∧ (x0 ∨ x2) ∧ (¬x1 ∨ x2 ∨
x4) ∧ (x3 ∨ x6 ∨ ¬x5). Assume the SAT solver builds the assignment, from left to right,
{x0, x1, ¬x2, x4, x5} where literals in bold are decisions. If we pick γ = {x0, x1, ¬x2}, we can
see that its reduct (¬x0 ∨ ¬x1 ∨ x2) ∧ (¬x0 ∨ x1) ∧ (¬x0 ∨ ¬x2) ∧ (x0 ∨ x2) is satisfiable. This
mean that we can learn ¬x0 ∨ ¬x1 ∨ x2. Now, in two resolution steps with the reasons of x1
and ¬x2 which are ¬x0 ∨ x1 and ¬x0 ∨ ¬x2, respectively, we can derive the redundant clause
¬x0. However, assignment x0 does not have satisfiable positive reduct. In fact, clause ¬x0 is
not even SPR. It can be checked that it is indeed PR (a possible witness is w = {¬x0, x2, x3}).
This shows that by combining the positive reduct with posterior resolution steps, we can
obtain clauses with stronger redundancy properties than set-blocked clauses, which is the
one obtained by using the positive reduct alone.

One final question that we want to address is whether, in an SDCL implementation, we
should (i) first ask a SAT solver whether pα(F) is satisfiable, and then, if this is the case, ask
a MaxSAT to possibly find a smaller γ ⊆ α for which pγ is also satisfiable, or (ii) directly
ask a MaxSAT solver whether there exists a subset of γ ⊆ α for which pγ is satisfiable. The
following result sheds some light on this:

▶ Proposition 23. Given a formula F and an assignment α, if mpα(F) has some solution,
then pα(F) is satisfiable.

A. Oliveras, C. Li, D. Wu, J. Chung, and V. Ganesh 18:13

Proof. By Theorem 21, if mpα(F) has some solution satisfying k soft clauses, we can build
an assignment γ ⊆ α for which pγ(F) is satisfiable, and let β be a model for it. It is now
easy to prove that δ := β ∪ α\γ is a model for pα(F). The first clause in pα(F) is ¬α, of
which the clause ¬γ ∈ pγ(F) is a subclause and hence β |= ¬α. This implies that δ |= ¬α.
Now, any other clause C in pα(F) is of the form touchedα(D) for some D ∈ F such that
α |= D. Expressing touchedα(D) as touchedγ(D) ∨ touchedα\γ(D) helps in our reasoning. If
γ |= D then touchedγ(D) ∈ pγ(F) and hence β satisfies it. In this case δ |= C. Otherwise,
γ ̸|= D but since α |= D it has to be that α\γ |= D. This implies that α\γ |= touchedα\γ(D)
and hence δ |= C. ◀

This result shows that by directly calling the MaxSAT solver on mpα(F), the solver
cannot learn more redundant clauses than if we call the SAT solver on pα(F). Hence, it
makes sense to first call the SAT solver, which should be faster and then, only if pα(F) has
been found to be satisfiable, call the MaxSAT solver to possibly learn a shorter redundant
clause. If we make an analogy with CDCL, checking pα(F) for satisfiable would be the
equivalent of unit propagation and solving the MaxSAT formula mpα(F) the equivalent of
conflict analysis.

5 Experimental Evaluation

5.1 Implementation
We implemented SDCL with the clause minimization techniques described in the previous
section on top of the SAT solver MapleSAT [18]. In order to solve the MaxSAT queries, we
have used EvalMaxSAT [2], an efficient solver that provides a very convenient C++ API.

The changes in Algorithm 1 are limited to analyzeWitness. Once we know that pα(F)
is satisfiable, we construct mpα(F) and obtain the optimal solution with EvalMaxSAT. This
induces a clause ¬γ, to which standard CDCL conflict analysis is applied in order to derive
an asserting clause, which is learned and used to backjump.

This general idea is refined in different directions. First of all, we do not apply this
procedure before every decision. Without redundant-clause minimization, this might be
a bad decision design, since the length of the learned clause coincides with the decision
level, and hence we should apply it as soon as possible. With clause minimization enabled,
applying this procedure at high decision levels can still give short redundant clauses. Since,
as a consequence of Proposition 23, we know that long assignments are more likely to produce
redundant clauses, it makes sense to delay the check until the assignment is large enough.
However, there is a certain trade-off because at high decision levels, pα(F) and mpα(F) are
larger formulas and hence can be more difficult to solve. Our strategy relies on defining a
decision level goal and trying to derive a redundant clause only when we are at this decision
level. We compute the ratio of success (i.e. a redundant clause has been derived) of the
procedure calls; if this ratio is lower than a certain amount (e.g. 15%), we increment the
decision level goal; if it is higher, we decrement it. The rationale for this strategy is to
achieve a predefined ratio of successful calls but not invoking the technique too often.

The second refinement is that our final asserting clause is not always shorter than the
clause obtained by negating all decisions. In those rare situations, we learn the only-decisions
clause. A final refinement consists of only learning clauses of size at most 3. In our SDCL
implementation, we cannot delete redundant clauses we have learned in SDCL unless we also
delete all CDCL learned clauses that have been derived using them. This is why we have to
be very cautious and only learn high-quality redundant clauses.

SAT 2023

18:14 Learning Shorter Redundant Clauses in SDCL Using MaxSAT

Figure 1 Distribution of the amount of minimization achieved in the clause returned by the
MaxSAT solver (left) and in the final asserting clause (right).

One final remark is that, unlike previous SDCL implementations [15, 13], we have not
modified the decision heuristics of the solver. We believe that, due to our conflict minimization
techniques, picking the exact right variable at low decision levels is not so critical.

5.2 Experimental Results
We have evaluated our system on the benchmarks used in [13, 22]. In order to assess the
impact of our Max-SAT based minimization technique, we have presented in Figure 1 results
about one execution of our system on a mutilated chess board benchmark of size 20. Data
for other benchmarks follow along the same lines. On the left-hand histogram, a bar over the
x-point 30 with height 10 means that, in 10% of the calls to minimization, the percentage
(Size MaxSAT clause / Size Only-decisions clause)*100 is between 30% and 35%. That is,
the size of the MaxSAT clause was around one third the size of the only-decisions clause.
The histogram on the right plots the same data, but comparing the final asserting clause
with respect to the only-decisions clause. One can observe that the percentage of reduction
is important and comes from the MaxSAT invocation as well as from the subsequent conflict
analysis call that returns the final asserting clause.

We also studied the cost of calling the SAT solver for checking the satisfiability of pα(F)
and the MaxSAT solver for processing mpα(F). Our experiments revealed that the cost of
the SAT solver call never exceeds 2% of the total runtime, whereas the calls to MaxSAT are
more expensive and they can account for almost 30% of the total runtime.

Finally, we present in Table 1 results on the performance of our system compared to
others. We want to remark that no change to the decision heuristic of the baseline solver has
been made. We chose Kissat [3] as a representative of a state-of-the-art CDCL SAT solver;
SaDiCaL [15, 13] as the only other existing SDCL system; and our system MapleSDCL. For
SaDiCaL, we used two versions, one using the positive reduct and one using the filtered
positive reduct. Regarding MapleSDCL, we present three configurations: CDCL corresponds
to the standard MapleSAT solver, implementing CDCL; SDCL represents a configuration
using the positive reduct but no MaxSAT-based minimization, i.e., learning the only-decisions
clause, and finally, SDCL-min uses the MaxSAT-based minimization presented in this paper.
The table reports the number of seconds needed to solve each benchmark for each system.
Due to the use of internal time limits in EvalMaxSAT, the exact behavior of SDCL-min
is not reproducible. In order to have a higher confidence in its results we have run it 10

A. Oliveras, C. Li, D. Wu, J. Chung, and V. Ganesh 18:15

Table 1 Performance of different systems on mutilated chess board and bipartite perfect matching
problems. Times are in seconds.

SaDiCaL MapleSDCL
Benchmark Kissat Positive Filtered CDCL SDCL SDCL-min

mchess14 4.6 5682 3.6 11.7 7.3 2.7 (10)
mchess15 30.1 > 7200 13.8 54.3 24.7 5.5 (10)
mchess16 107 > 7200 19.5 439 191 9 (10)
mchess17 2293 > 7200 64.8 5038 517 25.8 (10)
mchess18 352 > 7200 71.8 > 7200 3803 52.8 (10)
mchess19 > 7200 > 7200 > 7200 > 7200 3578 128 (10)
mchess20 3720 > 7200 > 7200 > 7200 > 7200 369 (10)
mchess21 > 7200 > 7200 > 7200 > 7200 > 7200 977 (10)
mchess22 > 7200 > 7200 > 7200 > 7200 > 7200 4507 (7)
mchess23 > 7200 > 7200 > 7200 > 7200 > 7200 6041 (2)

randomG-Mix-17 > 7200 > 7200 > 7200 2837 1916 257 (10)
randomG-Mix-18 > 7200 > 7200 > 7200 > 7200 > 7200 1683 (10)
randomG-n17 > 7200 > 7200 > 7200 1266 688 157 (10)
randomG-n18 > 7200 > 7200 > 7200 > 7200 > 7200 2350 (10)

times on each benchmark. For this system, the number in parenthesis corresponds to the
number of executions that solved that instance within the time limit of 7200 seconds, and
the runtime is the average over those successful executions.

For pigeon-hole problems, we observed the same behavior reported in [13], dedicated
decision heuristics are needed and they do not even work if the formula is scrambled. Tseitin
formulas, and other benchmarks from the SAT competition used in [22] are out of reach of
our system, probably to the fact that our current minimization procedure uses the positive
reduct, and not the filtered one. All in all, we observed that our technique gives important
benefit on mutilated chess board and bipartite perfect matching problems, outperforming
all other competitors. We want to remark that the data showed in [22] indicate that their
preprocessing-based technique for detecting PR clauses is able to achieve better performance.
However, our goal was to show how far the SDCL framework can be improved, and we believe
that results confirm that there is still a large space for improvement.

Finally, we would like to mention that MapleSDCL is able to produce proofs that are
checkable with dpr-trim. However, this checker assumes that PR clauses are computed
with respect to the current formula, including all learned lemmas. As already explained,
we compute clauses that are PR with respect to F ∧ R ∧ U , where F is the initial formula,
R contains all redundant clauses we have learned, and U is the set of all CDCL-like unit
lemmas. This has forced us to add simple 6 lines of code to the checker that control which
clauses have to be used when checking that the added PR clauses are correct.

6 Conclusions and Future Work

We have shown how redundant clauses learned within the SDCL approach can be shortened
by encoding the problem as a partial MaxSAT formula. Via extensive empirical evaluation we
show that our technique greatly improves the performance of SDCL over families of formulas
for which it was theoretically known that SDCL had a competitive advantage with respect

SAT 2023

18:16 Learning Shorter Redundant Clauses in SDCL Using MaxSAT

to CDCL. We outline several directions for future work. First of all, we could adapt the
technique to also work for the filtered positive reduct. Secondly, there is a very interesting
research opportunity in developing sophisticated adaptive strategies aimed at deciding as to
when the SDCL solver should attempt to learn a redundant clause. Finally, parallelization of
the MaxSAT calls would greatly improve the runtime of SDCL-based systems.

References
1 Albert Atserias, Johannes Klaus Fichte, and Marc Thurley. Clause-learning algorithms

with many restarts and bounded-width resolution. J. Artif. Intell. Res., 40:353–373, 2011.
doi:10.1613/jair.3152.

2 Florent Avellaneda. A short description of the solver EvalMaxSAT. In Fahiem Bacchus,
Jeremias Berg, Matti Järvisalo, and Ruben Martins, editors, MaxSAT Evaluation 2020, pages
8–9, 2020.

3 Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximillian Heisinger. CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT Competition 2020. In Tomas Balyo,
Nils Froleyks, Marijn Heule, Markus Iser, Matti Järvisalo, and Martin Suda, editors, Proc. of
SAT Competition 2020 – Solver and Benchmark Descriptions, volume B-2020-1 of Department
of Computer Science Report Series B, pages 51–53. University of Helsinki, 2020.

4 Armin Biere and Andreas Fröhlich. Evaluating CDCL variable scoring schemes. In Marijn
Heule and Sean A. Weaver, editors, Theory and Applications of Satisfiability Testing – SAT
2015 – 18th International Conference, Austin, TX, USA, September 24-27, 2015, Proceedings,
volume 9340 of Lecture Notes in Computer Science, pages 405–422. Springer, 2015. doi:
10.1007/978-3-319-24318-4_29.

5 Armin Biere and Daniel Kröning. Sat-based model checking. In Edmund M. Clarke, Thomas A.
Henzinger, Helmut Veith, and Roderick Bloem, editors, Handbook of Model Checking, pages
277–303. Springer, 2018. doi:10.1007/978-3-319-10575-8_10.

6 Avrim L Blum and Merrick L Furst. Fast planning through planning graph analysis. Artificial
intelligence, 90(1-2):281–300, 1997.

7 Cristian Cadar, Vijay Ganesh, Peter M Pawlowski, David L Dill, and Dawson R Engler. EXE:
Automatically Generating Inputs of Death. ACM Transactions on Information and System
Security (TISSEC), 12(2):1–38, 2008.

8 Edmund M Clarke Jr, Orna Grumberg, Daniel Kroening, Doron Peled, and Helmut Veith.
Model Checking. MIT press, 2018.

9 Stephen A. Cook. The Complexity of Theorem-Proving Procedures. In Proceedings of the
3rd Annual ACM Symposium on Theory of Computing, pages 151–158, 1971. doi:10.1145/
800157.805047.

10 Stephen A. Cook. A short proof of the pigeon hole principle using extended resolution.
SIGACT News, 8(4):28–32, 1976. doi:10.1145/1008335.1008338.

11 Julian Dolby, Mandana Vaziri, and Frank Tip. Finding Bugs Efficiently With a SAT Solver.
In Proceedings of the 6th joint meeting of the European Software Engineering Conference and
the ACM SIGSOFT International Symposium on Foundations of Software Engineering, pages
195–204, 2007. doi:10.1145/1287624.1287653.

12 Marijn J. H. Heule, Benjamin Kiesl, and Armin Biere. Short proofs without new variables. In
Leonardo de Moura, editor, Automated Deduction – CADE 26 – 26th International Conference
on Automated Deduction, Gothenburg, Sweden, August 6-11, 2017, Proceedings, volume
10395 of Lecture Notes in Computer Science, pages 130–147. Springer, 2017. doi:10.1007/
978-3-319-63046-5_9.

13 Marijn J. H. Heule, Benjamin Kiesl, and Armin Biere. Encoding redundancy for satisfaction-
driven clause learning. In Tomás Vojnar and Lijun Zhang, editors, Tools and Algorithms for
the Construction and Analysis of Systems – 25th International Conference, TACAS 2019, Held
as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2019,
Prague, Czech Republic, April 6-11, 2019, Proceedings, Part I, volume 11427 of Lecture Notes
in Computer Science, pages 41–58. Springer, 2019. doi:10.1007/978-3-030-17462-0_3.

https://doi.org/10.1613/jair.3152
https://doi.org/10.1007/978-3-319-24318-4_29
https://doi.org/10.1007/978-3-319-24318-4_29
https://doi.org/10.1007/978-3-319-10575-8_10
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/1008335.1008338
https://doi.org/10.1145/1287624.1287653
https://doi.org/10.1007/978-3-319-63046-5_9
https://doi.org/10.1007/978-3-319-63046-5_9
https://doi.org/10.1007/978-3-030-17462-0_3

A. Oliveras, C. Li, D. Wu, J. Chung, and V. Ganesh 18:17

14 Marijn J. H. Heule, Benjamin Kiesl, and Armin Biere. Strong extension-free proof systems. J.
Autom. Reason., 64(3):533–554, 2020. doi:10.1007/s10817-019-09516-0.

15 Marijn J. H. Heule, Benjamin Kiesl, Martina Seidl, and Armin Biere. Pruning through
satisfaction. In Ofer Strichman and Rachel Tzoref-Brill, editors, Hardware and Software:
Verification and Testing – 13th International Haifa Verification Conference, HVC 2017, Haifa,
Israel, November 13-15, 2017, Proceedings, volume 10629 of Lecture Notes in Computer Science,
pages 179–194. Springer, 2017. doi:10.1007/978-3-319-70389-3_12.

16 Marijn J. H. Heule, Oliver Kullmann, and Victor W. Marek. Solving and verifying the boolean
pythagorean triples problem via cube-and-conquer. In Nadia Creignou and Daniel Le Berre,
editors, Theory and Applications of Satisfiability Testing – SAT 2016 – 19th International
Conference, Bordeaux, France, July 5-8, 2016, Proceedings, volume 9710 of Lecture Notes in
Computer Science, pages 228–245. Springer, 2016. doi:10.1007/978-3-319-40970-2_15.

17 Lefteris M. Kirousis and Phokion G. Kolaitis. The complexity of minimal satisfiability problems.
Inf. Comput., 187(1):20–39, 2003. doi:10.1016/S0890-5401(03)00037-3.

18 Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki. Learning rate
based branching heuristic for SAT solvers. In Nadia Creignou and Daniel Le Berre, editors,
Theory and Applications of Satisfiability Testing – SAT 2016 – 19th International Conference,
Bordeaux, France, July 5-8, 2016, Proceedings, volume 9710 of Lecture Notes in Computer
Science, pages 123–140. Springer, 2016. doi:10.1007/978-3-319-40970-2_9.

19 João Marques-Silva, Inês Lynce, and Sharad Malik. Conflict-driven clause learning SAT
solvers. In Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors, Handbook
of Satisfiability – Second Edition, volume 336 of Frontiers in Artificial Intelligence and
Applications, pages 133–182. IOS Press, 2021. doi:10.3233/FAIA200987.

20 Knot Pipatsrisawat and Adnan Darwiche. On the power of clause-learning SAT solvers as
resolution engines. Artif. Intell., 175(2):512–525, 2011. doi:10.1016/j.artint.2010.10.002.

21 Mukul R. Prasad, Armin Biere, and Aarti Gupta. A survey of recent advances in sat-
based formal verification. Int. J. Softw. Tools Technol. Transf., 7(2):156–173, 2005. doi:
10.1007/s10009-004-0183-4.

22 Joseph E. Reeves, Marijn J. H. Heule, and Randal E. Bryant. Preprocessing of propagation
redundant clauses. In Jasmin Blanchette, Laura Kovács, and Dirk Pattinson, editors, Automated
Reasoning – 11th International Joint Conference, IJCAR 2022, Haifa, Israel, August 8-10,
2022, Proceedings, volume 13385 of Lecture Notes in Computer Science, pages 106–124. Springer,
2022. doi:10.1007/978-3-031-10769-6_8.

23 João P. Marques Silva and Karem A. Sakallah. Invited tutorial: Boolean satisfiability algorithms
and applications in electronic design automation. In E. Allen Emerson and A. Prasad Sistla,
editors, Computer Aided Verification, 12th International Conference, CAV 2000, Chicago,
IL, USA, July 15-19, 2000, Proceedings, volume 1855 of Lecture Notes in Computer Science,
page 3. Springer, 2000. doi:10.1007/10722167_3.

24 Grigori S Tseitin. On the complexity of derivation in propositional calculus. Automation of
reasoning: 2: Classical papers on computational logic 1967–1970, pages 466–483, 1983.

25 Yichen Xie and Alexander Aiken. Saturn: A SAT-Based Tool for Bug Detection. In Proceedings
of the 17th International Conference on Computer Aided Verification, CAV 2005, pages 139–143,
2005. doi:10.1007/11513988_13.

26 Lintao Zhang and Sharad Malik. Conflict driven learning in a quantified boolean satisfiability
solver. In Lawrence T. Pileggi and Andreas Kuehlmann, editors, Proceedings of the 2002
IEEE/ACM International Conference on Computer-aided Design, ICCAD 2002, San Jose,
California, USA, November 10-14, 2002, pages 442–449. ACM / IEEE Computer Society, 2002.
doi:10.1145/774572.774637.

SAT 2023

https://doi.org/10.1007/s10817-019-09516-0
https://doi.org/10.1007/978-3-319-70389-3_12
https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.1016/S0890-5401(03)00037-3
https://doi.org/10.1007/978-3-319-40970-2_9
https://doi.org/10.3233/FAIA200987
https://doi.org/10.1016/j.artint.2010.10.002
https://doi.org/10.1007/s10009-004-0183-4
https://doi.org/10.1007/s10009-004-0183-4
https://doi.org/10.1007/978-3-031-10769-6_8
https://doi.org/10.1007/10722167_3
https://doi.org/10.1007/11513988_13
https://doi.org/10.1145/774572.774637

	1 Introduction
	1.1 Contributions

	2 Preliminaries on CDCL SAT Solving
	3 Propagation Redundancy and SDCL
	3.1 Propagation Redundancy
	3.2 SDCL and Reducts

	4 Minimizing SDCL Learned Clauses
	4.1 Hardness of Minimization
	4.2 A MaxSAT Encoding for Trail-Minimization
	4.3 Practical Remarks

	5 Experimental Evaluation
	5.1 Implementation
	5.2 Experimental Results

	6 Conclusions and Future Work

