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Preface

The International Symposium on Mathematical Foundations of Computer Science (MFCS
conference series) is a venue for high-quality original research in all branches of Theoretical
Computer Science. MFCS is among the conferences with the longest history in the field —
the first conference in the series was held already in 1972. For many years, the conference
rotated between the Czech Republic, Slovakia, and Poland, but since 2013 it has expanded
its realm and traveled around different countries in Europe. In 2023, at its 48th edition,
MFCS was held in Bordeaux, France, on August 28th — September 1st.

This volume contains the invited contributions and the 84 contributed talks. The invited
speakers were Marthe Bonamy (University of Bordeaux, France), Joan Boyar (University of
Southern Denmark), Artur Czumaj (University of Warwick, UK), Laura Kovacs (TU Wien,
Austria), and Paul Spirakis (university of Liverpool, UK).

The program committee of MFCS 2023 selected 84 papers out of the 209 submissions,
with the authors of the submitted papers representing 38 countries. We express our deep
gratitude to all the members of the program committee and the reviewers for their extensive
reports and thorough discussions on the submissions’ merits. We also warmly thank the
invited speakers, as well as the authors of the submitted papers. MFCS proceedings have
been published in the Dagstuhl/LIPIcs series since 2016. We thank Michael Wagner and the
LIPIcs team for their kind help and support.

Jéréme Leroux
Sylvain Lombardy
David Peleg
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Exploring the Space of Colourings with Kempe
Changes

Marthe Bonamy &
CNRS, LaBRI, Université de Bordeaux, France

—— Abstract

Kempe changes were introduced in 1879 in an attempt to prove the 4-colour theorem. They are a
convenient if not crucial tool to prove various colouring theorems. Here, we consider how to navigate
from a colouring to another through Kempe changes. When is it possible? How fast?
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Kempe changes were introduced in 1879 in an attempt to prove the 4-colour theorem [4].
They are a convenient if not crucial tool to prove various colouring theorems, most notably
the 4-colour theorem [1] (every planar graph is 4-colourable) and Vizing’s edge colouring
theorem [7] (the edges of any graph can be partitioned into at most A + 1 matchings, where
A is the maximum degree of a vertex in the graph). Given a coloured graph, a Kempe change
consists in considering two colours a and b and a vertex coloured a, then swapping colours a
and b in the maximal (a,b)-coloured component containing the specified vertex. Here, we
consider how to navigate from a colouring to another through a series of Kempe changes.
When is it possible? How fast? A seminal conjecture of Vizing from 1965 [8] states that in
any graph, from any edge-colouring we can reach an optimal one through a well-chosen series
of Kempe changes. While this remained a major challenge for decades, being only proved for
graphs with maximum degree 3 or 4 [5, 2], then last year for triangle-free graphs [3], Narboni
recently provided a full proof of the conjecture [6]. This notably implies that given at least
one more colour than the optimal number, one can navigate from any edge-colouring to any
other. The extra colour is necessary. How these results extend to the context of multigraphs
remains widely open.

We will also discuss the number of steps necessary to navigate from any vertex-colouring of
a k-degenerate graph to any other, when the number of colours is sufficiently large compared
to the degeneracy, as well as the Kempe equivalent of Hadwiger’s conjecture and whether
Kempe changes can be useful in the context of graphs with a forbidden minor. If time
permits, we will see how this tool can be used for efficient sampling of random colourings of
a graph and for counting the number of distinct colourings.
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Online Algorithms with Predictions

Joan Boyar 24
University of Southern Denmark, Odense, Denmark

—— Abstract

We give an introduction to online algorithms with predictions, from an algorithms researcher’s

perspective, concentrating on minimization problems.
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1 Extended Abstract

We begin with an introduction to online algorithms with predictions, where the online
algorithm is given additional information, some predictions, which should, presumably,
improve its performance. The seminal papers in this area, by Lykouris and Vassilvitskii [9, 10]
and Purohit, Svitkina and Kumar [11], appeared at conferences in 2018 and have since inspired
many other researchers to work in this area. A current list of related publications can be
found on a dedicated website [1], which listed 145 articles as of July 10, 2023.

Online algorithms are those that as input receive a sequence of requests, each of which
must be handled by the algorithm making an irrevocable decision, before the next request
arrives. The research area, online algorithms with predictions, is related to an older line of
research within online algorithms, advice complexity [5, 7, 4, 6], where the online algorithm
is given “advice” which is assumed to be correct. In contrast, in the area of online algorithms
with predictions, the predictions given to these online algorithms may come from machine
learning and generally contain errors. In both of these models, the online algorithm receives
extra information and the performance of an algorithm is measured using the competitive
ratio (asymptotically, the worst-case ratio over all possible input sequences of the cost
obtained by the algorithm compared to the cost of OPT, the optimal offline algorithm, on
the same input). In advice complexity, the goal is to achieve a good competitive ratio with
as few bits of advice as possible. In contrast, the goal in online algorithms with predictions
is to achieve a good competitive ratio, despite errors in the predictions.

The amount of error in the predictions, p, for an input sequence I with correct values, p,
is given by some error measure, (I, p, p). This is typically normalized as n(I,p, p)/ OpT(I),
where OPT(]) is the cost achieved by an optimal offline algorithm on input sequence I. An
online algorithm with predictions should have a competitive ratio that degrades gracefully
with increasing error (smoothness), performing near optimally if there is no error (consistency),
but not performing too poorly, even if the predictions are terrible (robustness).

Results for two different minimization problems are presented, demonstrating

the relevance of advice complexity for the paging problem with predictions [2] and

the relevance of random order analysis [8] for a problem where, according to competitive

analysis, no algorithm can be better than the trivial Follow-the-Predictions algorithm [3].
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Modern Parallel Algorithms

Artur Czumaj @&
University of Warwick, Coventry, UK

—— Abstract

Recent advances in the design of efficient parallel algorithms have been largely focusing on the

nowadays classical model of parallel computing called Massive Parallel Computation (MPC), which
follows the framework of MapReduce systems. In this talk we will survey recent advances in the
design of algorithms for graph problems for the MPC model and will mention some interesting open
questions in this area.
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1 Overview

Many modern computer applications require performing computations on massive amounts
of data. Traditional models of computation, such as the RAM model or shared-memory
parallel systems, are often inadequate for such computations, as the input do not fit into the
available memory of even most advanced modern systems. The restrictions imposed by the
limited memory in the available architectures and the requirement of fast processing of data
has naturally led to the development of new models of parallel and distributed computation
that are more suitable for processing massive amounts of data. On the basis of the successes
of such massively parallel computation frameworks, such as MapReduce, Hadoop, Dryad,
or Spark, Karloff, Suri, and Vassilvitskii (SODA 2010) introduced the Massive Parallel
Computing (MPC) model that provides a clean abstraction of these frameworks and captures
the modern needs of computation at a massive scale. After some later refinements, the MPC
model has became the standard theoretical model of algorithmic study. At a very high-level,
an MPC system consists of a collection of machines that can communicate with each other
through indirect communication channels. The computation proceeds in synchronous rounds,
where at each round the machines receive messages from other machines, perform arbitrarily
complex local computations, and finally send appropriate messages to other machines so
that the next round can start. The crucial factors in the analysis of algorithms in the MPC
model are the number of rounds and the capacity of individual machines.

In the MPC model, there are m machines and each of them has s words of local space
at its disposal. Initially, each machine receives its share of the input. For example, in the
context of graph problems where the input is a collection V' of nodes and FE of edges, the input
is arbitrarily distributed among the machines (and so s - m > |V| + |E|). The computation
proceeds in synchronous rounds in which each machine processes its local data and performs
an arbitrary complex local computation on its data. At the end of each round, machines
exchange messages. Fach message is sent only to a single machine specified by the machine
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that is sending the message. All messages sent and received by each machine in each round,
as well as the output have to fit into the machine’s local space s (in particular, in a single
round, any machine can send at most s messages and be the recipient of at most s messages).

It has been quickly observed that the central parameter of the MPC is its local space s.
While originally the main research has been frequently focused on the case when s is almost
as large as the input size, most recent study has been concentrated on the low-space regime
when s = N? for some ¢ € (0, 1), often ¢ being arbitrarily small.

The talk will survey this topic, focusing on graph problems for the low-space regime.
We will discuss recent advances in the design of algorithms for graph problems for the
MPC model for fundamental problems like connectivity and matching. We will also study
the relation between the MPC model and some other fundamental models of parallel and
distributing computations, including the classical PRAM model and the distributed LOCAL
and Congested Clique models. We will also list some interesting open questions in this area.



Algebraic Reasoning for (Un)Solvable Loops

Laura Kovacs &
TU Wien, Austria

—— Abstract

Loop invariants describe valid program properties that hold before and after every loop iteration.
As such, loop invariants are the workhorses in formalizing loop semantics and automating the formal
analysis and verification of programs with loops.

While automatically synthesizing loop invariants is, in general, an uncomputable problem, when
considering only single-path loops with linear updates (linear loops), the strongest polynomial
invariant is in fact computable [5, 9, 6, 3]. Yet, already for loops with “only” polynomial updates,
computing the strongest invariant has been an open challenge since 2004 [8].

In this invited talk, we first present computability results on polynomial invariant synthesis
for restricted polynomial loops, called solvable loops [11]. Key to solvable loops is that one can
automatically compute invariants from closed-form solutions of algebraic recurrence equations that
model the loop behaviour [6, 4]. We also establish a technique for invariant synthesis for classes of
loops that are not solvable, termed unsolvable loops [1].

We next study the limits of computability in deriving the (strongest) polynomial invariants
for arbitrary polynomial loops. We prove that computing the strongest polynomial invariant of
arbitrary, single-path polynomial loops is very hard [10] — namely, it is at least as hard as the Skolem
problem [2, 12], a prominent algebraic problem in the theory of linear recurrences. Going beyond
single-path loops, we show that the strongest polynomial invariant is uncomputable already for
multi-path polynomial loops with arbitrary quadratic polynomial updates [7].
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Sliding into the Future: Investigating Sliding
Windows in Temporal Graphs

Nina Klobas &

Department of Computer Science, Durham University, UK
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Department of Computer Science, University of Liverpool, UK

—— Abstract

Graphs are fundamental tools for modelling relations among objects in various scientific fields.

However, traditional static graphs have limitations when it comes to capturing the dynamic nature
of real-world systems. To overcome this limitation, temporal graphs have been introduced as a
framework to model graphs that change over time. In temporal graphs the edges among vertices
appear and disappear at specific time steps, reflecting the temporal dynamics of the observed system,
which allows us to analyse time dependent patterns and processes. In this paper we focus on the
research related to sliding time windows in temporal graphs. Sliding time windows offer a way to
analyse specific time intervals within the lifespan of a temporal graph. By sliding the window along
the timeline, we can examine the graph’s characteristics and properties within different time periods.

This paper provides an overview of the research on sliding time windows in temporal graphs.
Although progress has been made in this field, there are still many interesting questions and
challenges to be explored. We discuss some of the open problems and highlight their potential for
future research.
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1 Introduction

Graphs are used to model (binary) relations among different objects. They consist of a set
of vertices, where two of them are connected together with an edge. They have become a
fundamental tool for modelling diverse systems and real-world problems, steaming through
the wide range of scientific fields. Let us mention just a few of them. In Social sciences
they can be used to model different interactions among people (for example friendships,
communications, etc.), in Chemistry they can model chemical compounds where the vertices
represent different atoms of the compound and edges correspond to the chemical bonds among
them, in molecular Biology they can model physical interactions between proteins, gene
co-expression or biochemical reactions, in Physics they model interactions among particles,
where nodes represent interactions where particles are created or destroyed and edges are
particles traveling between the interactions. Having such a varied application and use, it is
not surprising that the graph theory has been the subject of extensive research over the past
centuries.
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When studying real-life problems, it becomes evident that this ’simple’ graph model
is often insufficient. Many problems exhibit dynamic behavior, where the connections or
interactions among their vertices change over time. For instance, in transportation networks,
specific roads may be closed during certain intervals. In social networks, individuals may only
interact at particular times of the day or month. Similarly, in information and communication
networks, information or messages are transmitted from a source to a recipient through
a set of connections at specific times. These graph models share a common attribute:
their underlying graph topology or network structure undergoes discrete changes over time.
This observation naturally gives rise to the concept of temporal graphs, which provide a
straightforward and intuitive model for representing graphs that change over time, called
temporal graphs.

» Definition 1 (temporal graph [24]). A temporal graph G is a pair (G, \), where G = (V, E)
is an underlying (static) graph and X\ : E — 2" is a time labeling function which assigns to
every edge of G a set of discrete time labels.

Due to their relevance and applicability in many areas, temporal graphs have been studied
from various perspectives and under different names such as dynamic [9,19], evolving [7,12,16],
time-varying [1,17,36], and graphs over time [27].

In most applications of temporal graphs, information can naturally only move along edges
in a way that respects the ordering of their timestamps (i.e. time labels), that is, information
can only flow along sequences of edges whose time labels are increasing (or non-decreasing).
Motivated by this fact, most studies on temporal graphs have focused on “path-related”
problems, such as e.g. temporal analogues of distance, diameter, reachability, exploration,
and centrality [2,3,10,14,15,22,25,26,30,34,40]. In these problems, the most fundamental
notion is that of a temporal path from a vertex u to a vertex v, which is a path from w
to v such that the time labels of the time labels of the edges are increasing (or at least
non-decreasing) in the direction from u to v. To complement this direction, several attempts
have been recently made to define meaningful “non-path” temporal graph problems which
appropriately model specific applications. Some examples include temporal cliques, cluster
editing, temporal vertex cover, temporal graph coloring, temporally transitive orientations of
temporal graphs [4,6,11,18,21,23,32,33,37,39].

One of the main goals in temporal graphs’ research is to lift (algorithmic) graph theory
models and results to a temporal/dynamic domain, in order to model natural, real world
situations which are subject to discrete changes over time. The main challenge in this front
is to find appropriate natural extensions and definitions of such problems. For instance, in
static graphs, a shortest path between two vertices is a path connecting these two vertices
with the smallest number of edges. On the other hand, in temporal graphs, there are at
least three, equally natural, different analogues of a shortest path. First, a shortest temporal
path from u to v is one that contains the smallest number of edges. Second, a foremost
temporal path from u to v is one that arrives at v with the smallest time-stamp. Third, a
fastest temporal path from u to v is one that has the smallest duration. These three types of
temporal paths are illustrated in Figure 1.

What is common to most of the path-related problems is that their extension from static
to temporal graphs often follows easily and quite naturally from their static counterparts. For
example, requiring a graph to be (temporally) connected results in requiring the existence of
a (temporal) path among each pair of vertices. In the case of non-path related problems,
the exact definition and its application is not so straightforward. Let us consider the case of
cliques. Defining cliques in a temporal graph as the set of vertices that interact at least once
in the lifetime of the graph would be a bit counter intuitive, as two vertices may just interact
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Figure 1 In this temporal graph, the shortest path from s to ¢ is (s, ¢, t) as it contains two edges;
the foremost temporal path is (s, a,b,t) as it arrives at time 5; the fastest temporal path is (s, d, e, t)
a it has duration 9 — 7+ 1= 3.

at the first time step and never again. To help with this problem, Viard et al. [37] introduced
the idea of the sliding time window of some size A, where they define a temporal clique as a
set of vertices where in all A consecutive time steps each pair of vertices interacts at least
once. There is a natural motivation for this problem, namely to be able to find the contact
patterns among high-school students. Following the idea of Viard et al. [37], many other
problems on temporal graph were defined wiusing sliding time windows. In this paper we
present an overview of works on sliding windows in temporal graphs and at the end provide
some open problems and further ideas with potential research topics.

2 Preliminaries and Notations

In the literature there are many (slightly) different notations and terminologies used for
certain structures in temporal graph. For the purpose of this paper, we fix the following
notation and definitions.

Given a (static) graph G = (V, E) with vertices in V and edges in E, an edge between

two vertices v and v is denoted by wv, and in this case v and v are said to be adjacent in G.

For every i,j € N, where i < j, we let [i,j] = {i,i+ 1,...,7} and [j] = [, j]. Throughout
the paper we consider temporal graphs whose underlying graphs are finite and whose time
labeling functions only map to finite sets. This implies that there is some ¢ € N such that, for
every t' > t, no edge of G is active at ¢’ in (G, \). We denote the smallest such ¢ by T, i.e.,
T =max{t € A(e) | e € E}, and call T the lifetime of (G, ). Unless otherwise specified, n
denotes the number of vertices in the underlying graph G, and T denotes the lifetime of the
temporal graph G. We refer to each integer ¢ € [T] as a time step of (G, ). The instance (or

snapshot) of (G, \) at time t is the static graph Gy = (V, E;), where Ey, = {e € E : t € A(e)}.

Note that the size of a temporal graph G is |G| .= |V| + Zthl | Eyl.

Forevery t =1,..., T — A+ 1, let W; = [t,t + A — 1] be the A-time window that starts
at time t. For every v € V and every time step ¢, we denote the appearance of vertex v at
time t by the pair (v,t) and the edge appearance (or time-edge) of e at time ¢ by (e, t). For
t € A(e) we also say that e is active at time ¢ in (G, A). That is, for every edge e € E, A(e)
denotes the set of time steps at which e is active.

A temporal vertex subset of (G, ) is a set of vertex appearances in (G, \), i.e. a set of
the form S C {(v,¢) | v € V,t € [T]}. For a temporal vertex subset S and some A-time
window W; within the lifetime T of (G, A), we denote by S[W;] = {(v,t) € S|t € W} the
subset of all vertex appearances in S in the A-time window W;. For a A-time window W;
within the lifetime of a temporal graph (G, \), we denote by E[W;] = {e € E | A(e)NW, # 0}
the set of all edges which appear at some time step within W;.
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3 Known Results on Sliding Windows

In this section we present some of the known results on temporal graphs using sliding windows.
As we discussed, the aim is to find a suitable definition for well motivated graph problems,
that take in consideration also the changes that appear over time.

3.1 Temporal Cliques

In a (static) graph G = (V, E), a clique C C V is a collection of vertices, where every two of
them are connected. We say that a clique C is maximal, if there exists no other vertex in
V'\ C that is connected to all of the vertices in C. There are many applications of (maximal)
cliques for modeling real-world problems. For example, in their work Creamer et al. [13]
calculate hierarchical structures in complex (communication) networks using cliques, and
in [35] Samudrala and Moult use cliques in the context of protein structure modeling.

Viard et al. [37] extended the notion of cliques to temporal graphs. Their work was
motivated by the contact patterns among French high-school students. They studied the
dataset with real-world contacts between individuals, captured with sensors. Where an edge
e at time ¢t was formed between two subjects if they were close enough to each other at time ¢
for the detection to happen. The aim is to determine groups of students that were interacting
more often. The obstacle in this case is how to naturally define such groups. If two students
interacted only once and then never again, their interaction should not be considered as
“valuable” as in the case when students interact more often, over certain period of time. With
this in mind, the authors present the following natural definition of a A-clique.

» Definition 2. A A-clique C in a temporal graph G = (G, \) with a life-time T, is a pair
(X, 1), where X is a subset of vertices of G and I C [T], such that for every two vertices
u,v € X there is a time-edge (uv,t) in G in every A-time window W; € I.

Intuitively, among each pair of vertices in X there is a time-edge every A time steps in
the time interval I. The significance of the parameter A is that it measures the level of
interaction in A-cliques. A small value of A means that the interaction among vertices has
to occur more often compared to the case of large A values. The selection of A depends on
the data set and the purpose of the analysis.

The authors provide an algorithm that in O(27Ln2m3 + 2"n%m?) time computes all
maximal A-cliques of a temporal graph (G, ), where n = V(G) and M = }_ g Ale).
This result was further improved by Himmel et. al. [23] by providing an adaptation of the
Bron-Kerbosch algorithm for enumerating maximal cliques, where they improve the running
time to O(2"T'm), where m = |E(G)|.

Cliques may not be always practical for modelling real-world situations as they can be too
restrictive, for example some edges may not exist due to measurement errors or other reasons
specific to the application. To overcome this issue, various relaxations of the clique concept
have been developed. One popular approach is the use of k-plexes, a degree-based relaxation
of cliques that requires every vertex to be connected to all but at most k — 1 vertices in the
k-plex, excluding itself. Extending this idea to temporal graphs, Bentert et al. [6] introduce
the study of A — k-plexes, where they relax the condition of A-clique by allowing each vertex
to have up to k — 1 missing connections to other vertices in each A consecutive time steps.
They adapt the algorithm for A-cliques to enumerate them, and provide some heuristic
speed-up techniques that are useful when dealing with practical scenarios.
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3.2 Temporal Vertex Cover

The vertex cover problem on a static graph G asks for a set of vertices S in V(G), of a
minimum size, such that each edge e € F(G) has at least one endpoint in S (i.e., is covered
by at least one vertex in the vertex cover). To extend the idea to temporal graphs one needs
to first find a relevant and well motivated definition. For example, requiring that each edge
is covered whenever it appears (i. e., there is a vertex cover in every snapshot of the temporal
graph), may be a bit too restrictive. A well known motivation behind the vertex cover on
static graphs is a problem of placing security guards throughout the airport, where corridors
represent edges and two corridors meet in a vertex. Then a vertex cover is a collection of
corridor intersections, where we place security guards such that the airport is fully observed
by the security. Suppose now that during the day, for some reason, certain corridors are
not in use (some gates may be open only during specific times). And suppose now also that
a criminal needs a specific amount of time, without any supervision, to execute an illegal
activity. Now, to prevent all such acts, we do not need to fully monitor each sector of the
airport all the time, but we just have to make sure we check each part often enough. With
this in mind, Akrida et al. [4] introduced the notion of sliding window temporal vertex cover.

» Definition 3. A A-sliding window temporal vertex cover S C V(G) x [T] (or A-TVC for
short) in a temporal graph (G, ), with a lifetime T, is a collection of vertex appearances,
such that each edge e € E(G) is covered in every A-time window W; C [T, if it appears.

When determining A-TVC of a given temporal graph, one wants to always find the one of
minimum size. In their work Akrida et al. [4] first prove that a relaxed version of the problem
(where A =T, i.e., each edge has to be covered at least once in the whole lifetime T of the
graph) is NP-hard already for the temporal graphs where the underlying graph is a star. For
this sub-problem they prove also that the optimal solution cannot be obtained in O(2¢7)
time (for some small €), assuming the Strong Exponential Time Hypothesis (SETH), as well
as that it does not admit a Polynomial-Time Approximation Scheme (PTAS). For the general
problem they provide an exact dynamic algorithm running in O(TA(n +m) - 2"A(A+1)
on arbitrary temporal graphs, which cannot admit much more improvements (as it is almost

time

at the lower complexity bound). They complement this result by providing an algorithm
that, for graphs where each snapshot has a vertex cover number bounded by k, runs in an
FPT time, when parameterized by A. They investigate also the problem’s approximability
and prove that A-TVC does not admit a PTAS, even when A = 2, maximum degree of the
underlying graph is 3 and every connected component of each snapshot is of size at most
7. In addition, they augment this result by providing approximation algorithms with ratios
(i) nn+InA+ %, (ii) 2k, where k is the maximum number of appearances of an edge in a
sliding window, (iii) d, where d is the maximum vertex degree in every snapshot.

The study of A-TVC problem was then further extended by Hamm et. al. [21]. The
researchers studied the A-sliding window vertex cover problem on sparse temporal graphs.
They proved that the problem is NP-hard when A > 2 and the underlying graph G of
the temporal graph (G,\) is a path or a cycle. On the other hand, they developed a
polynomial-time algorithm for solving T-TVC on paths and cycles, where T is the lifetime of
the temporal graph. This raises the interesting question of whether there exists a boundary
value for A that distinguishes between the tractable and intractable categories on paths,
thus determining the complete dichotomy of the problem. Moreover, for any A > 2 they
augmented these results with a PTAS for A-TVC on paths and cycles, which complements
the hardness result. In addition, the authors presented three algorithms to counter the
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hardness of the A-TVC problem for arbitrary (non-restricted) temporal graphs. The first
algorithm is an exact algorithm for A-TVC with an exponential running time dependency
on the number of edges in the underlying graph. Using this algorithm, they developed a
polynomial-time (d — 1)-approximation algorithm for any d > 3, where d is the maximum
vertex degree in any time step (which improved on d-approximation algorithm from Akrida
et al.). Finally, the authors presented a simple fixed-parameter tractable algorithm with
respect to the size of an optimum solution.

3.3 Temporal Coloring

In a static graph G a coloring problem asks for a minimum number of colors associated to
vertices, such that two endpoints of each edge are not assigned the same color. A classical
motivation behind this problem is allocating radio frequencies to radio towers at specific
locations. Here the idea is to allocate different frequencies to towers that are located close
enough to cause an overlap in transmission. In this case each tower is represented as a node
of the graph, where two of them are connected if the towers are positioned so close that they
interfere with each other, and each frequency represents a different color. Now, coloring the
graph properly results in an assignment of frequencies, that causes no interference.

Let us consider a bit more evolved scenario, where instead of static radio towers, we
observe mobile agents. Here every agent broadcasts information over a specific communication
channel while it listens on all others. Therefore, when two agents are in close proximity, they
exchange information only if they broadcast on different channels. We assume that agents
can switch channels at any time. To ensure maximum information exchange, it is essential
to find a schedule of assigning broadcasting channels to the agents over time that minimizes
the number of required channels. This should allow each pair of agents to communicate at
least once within every small time window when they are close to each other.

Following this motivation Mertzios et al. [33] introduce the study of temporal coloring
using sliding windows. Where one wants to determine the coloring of vertex appearances,
using the smallest possible number of colors, such that each edge is properly colored (incident
vertices are of different color) at least once in every A consecutive time steps, if the edge
appears. For a formal definition see the following.

» Definition 4. A A-sliding window temporal coloring (or A-TC for short) in a temporal
graph (G, \), with a lifetime T, is a function ¢ : V(G) x [T] — N, that assigns one color
¢(v,t) to each vertex appearance, such that for every A-time window W; C [T], and every
edge e € E[W] there is at least one time step t € W, where e appears and its two endpoints
u,v are colored using different colors, i. e., (e,t) is a time-edge in (G, \) and Pp(u,t) # ¢(v,t).

Mertzios et al. [32] start by studying a subcase of the problem, when A =T In this case
the objective is to ensure that each edge is properly colored (its endpoints are of different
color) at least once in the whole life time T of the temporal graph. Surprisingly, even the
restricted subcase turns out to be NP-hard, already when one is asking if 2 colors are enough
to color it properly. This presents a stark contrast to the static case, where identifying if a
graph is 2-colorable (bipartite) can be accomplished in linear time. On the positive side they
show that the this subcase admits a polynomial kernel, when parameterized by the number
of vertices in the input temporal graph. For the general case they prove that the problem
is NP-hard, and provide two algorithms for it. One is an exponential-time algorithm, that
asymptotically matches the running time lower bound (assuming ETH), and the second one
is a linear time FPT algorithm, with respect to the number n of vertices.
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In addition to the above mentioned work, some other variations of coloring temporal
graphs have been explored (e.g. example [18,29,39]), however these studies do not use the
approach with sliding windows.

3.4 Temporal Matching

Given a static graph G the problem of (maximum) matching asks for a (maximum) set
of pairwise independent edges, that is, edges that share no endpoints. This problem has
numerous applications in fields such as scheduling and planning, chemistry modeling, job
allocation, and more. Once the time-dimension is added to the graph model, there can be
different ways to carry over the definition to temporal graphs.

Following the idea of a sliding time window, Mertzios et al. [31] introduced the problem
of A-MAXIMUM TEMPORAL MATCHING (A-TM), where one wants to determine a maximum
set of time-edges that are pairwise A-independent. Two time-edges (e, t),(f,t') are A-
independent if (i) eN f =0, or (ii) eN f # @ and |t — /| > A. In other words, for any
feasible solution of A-TM, it is not possible to match a vertex more than once within any
time interval of duration A. This condition can represent scenarios where a short “recovery”
period is needed for every vertex that participates in the matching, such as a brief period of
rest after engaging in an energy-demanding activity.

In contrast to the Edmonds’ polynomial-time algorithm for finding a maximum matching
in static graphs, Mertzios et al. [31] prove that A-TM does not even admit an approximation
algorithm, meaning it is APX hard, already in the case when A = 2 and the lifetime T of
the temporal graph is 3. In addition, they show that the problem remains NP-hard even if
the underlying graph, of the input temporal graph, is just a path. On the positive side, they
provide an approximation algorithm for any constant A, which achieves an approximation
ration of % + ¢, where € = m. Besides that, they show that a problem admits two FPT
algorithms, one when it is parameterized by the solution size, and the second one, when it is
parameterized by the combined parameter A and the size of a maximum matching of the
underlying graph.

It is worth mentioning that another related variant of MAXIMUM TEMPORAL MATCHING
has been studied (see Baste et al. [5]). In this model the authors do not use the A-time
windows, but instead require an edge to appear at least A consecutive time steps, in order
to be eligible for a matching. A temporal matching then consists of independent edge
time-blocks of length at least A.

4 Further Work

In the previous section we presented some already completed works on temporal graphs, that
use the idea of sliding time windows. In this section we focus on problems that, to the best
of our knowledge, have not yet been investigated using the sliding windows, and give rise to
some interesting research questions.

4.1 Dominating Set

In a static graph G, a dominating set is a subset of vertices D C V(G), such that each
vertex V(G) is either in D or has a neighbor in D. The Dominating set problem asks for
a dominating set of G of minimum size. One of the applications of the dominating set is
in routing protocols for ad hoc wireless networks. The fundamental concept behind this
approach involves identifying a dominating set within a network of devices and using these
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dominating nodes for message routing. More specifically, when a user u wants to transmit a
message to a user v, the routing process consists of determining the shortest path between
the dominating neighbors of user u and user v. By ensuring that all devices admit at least
one dominating neighbor, this method guarantees the delivery of messages.

In the word where these agents become mobile (i.e., they travel around the space), one
can model this problem using temporal graph, where the aim is to find a temporal dominating
set. Similarly as in other cases, we do not necessarily want to find a dominating set in every
time step (as this would be to costly), therefore an approach with sliding time windows
would be of use. We propose the following definition.

» Definition 5. A A-sliding window temporal dominating set (A-SWDS) is a subset of vertex
appearances D C V(G) x [T, of a temporal graph (G, \), with the lifetime T, such that for
any vertex appearance (v,t) the following holds:

1. (v,t') € D, where |t —t'| < A or

2. (u,t") € D, where u is a neighbor of v in G and |t —t'| < A.

Intuitively, any vertex of the underlying temporal graph is at any time step ¢ either at most
A time-units away from being in D, or it has a neighbor that is at most A time-units away
from being in D. Since the Dominating set problem is already NP-hard on static graphs, it
remains hard also for temporal graphs. So the interesting research question for the A-SWDS
would be if there exist any exact algorithms for it, i.e., some FPT algorithms, or maybe
some approximation algorithms.

It is important to mention that there already exist some variations of the dominating set
problems on temporal graphs. Casteigts and Flocchini [8] propose three different definitions
of dominating sets on temporal graphs, namely temporal dominating set, evolving dominating
set and permanent dominating set. In the temporal and evolving dominating set, one wants
to determine the smallest set of vertices D, such that, in the temporal case, each vertex is
dominated in at least one time step, and in the evolving case, each vertex is dominated in
every time step. While the evolving dominating set D consists of vertex appearances, such
that all vertex appearances are dominated in each time step. More specifically, in the first
two cases, once a vertex is selected to be in D it is in D for all lifetime of the graph, while in
the last case one vertex can be in D only at specific times. Some research has been done
for aforementioned problems. For interested readers, we recommend exploring the following
works [20, 28, 38], among others.

4.2 Edge Cover

The minimum edge covering problem on a static graph G asks for a minimum set Ec C E(G)
of edges such that every vertex in V(@) is incident to at least one edge in F¢. Calculating a
minimum edge cover can be done in polynomial time, by finding a maximum matching and
then extending it greedily until all vertices are covered.

For the version of the edge covering problem on temporal graphs we propose the following
definition.

» Definition 6. A A-sliding window temporal edge covering (A-SWEC) is a subset of edge
appearances EC C E(G) x [T], of a temporal graph (G, \), with the lifetime T, such that
every vertex appearance (v,t) is incident to at least one time-edge from the selected set
EC C E xT, in every time window t € W}.

Since many problems become significantly more challenging when dealing with temporal
graphs, it would be really interesting to explore whether the same holds true for the A-SWEC
problem. Applying the exact approach used for static graphs may not yield direct results, as
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it requires to first find a (suitable definition of a) temporal maximum matching. It is worth
noting that in Section 3.4 we presented a A-MAXIMUM TEMPORAL MATCHING, which turns
out to be NP-hard.

4.3 Periodic connectivity

We say that a temporal graph (G, \) is temporally connected if there exists a temporal
path among each pair of vertices. Some results regarding the connectivity of temporal
graphs have already been established, for example [3,26,30]. However, what if we introduce
additional constraints and require that each vertex can reach any other vertex within every
A time-window? In such cases, we refer to the temporal graph (G, \) as being A-temporally
connected. Tt would be interesting to study, for example, what is the minimum number of
labels needed to label a given graph G in such a way that ensures A-temporal connectivity
of (G, \)? We can further restrict this problem by allowing only limited number & of labels
to be added per each edge.

4.4 (Temporal) Graph Classes

Based on the properties of the studied graphs, we can assign them into different graph classes.
For instance there are graphs that are k-colorable (can be properly colored using k colors),
k-regular (each vertex is of degree k), or planar (can be drawn on a plane without any edges
crossing), among others.

To extend the concept of graph classes to the temporal setting with sliding windows, we
propose introducing temporal graph classes. One such class could be the A sliding window
k-colorable temporal graphs, which refers to temporal graphs that can be temporally colored
using k colors. Another class would be the A sliding window k-regular temporal graphs,
where each vertex admits exactly k different neighbors in every A time-window, or perhaps
each vertex v admits exactly k different neighbors in a time step ¢ € W; for every time
window W;. Similarly, we can define A sliding window planar temporal graphs as temporal
graphs that are planar in some t' € W; for every time-window W;. Further refinement of
these classes is possible by imposing additional restrictions. For example, we can consider
temporal graphs that are 3-colorable in every 5-time window. In such graphs, every vertex
appearance (v,t') is assigned one of three colors, ensuring that within each sliding window
Wy of size 5, there is at least one time step where the edge e, that appears in W, is properly
colored.

Overall, these extensions allow for the classification of temporal graphs based on their
temporal characteristics, enabling the exploration of various graph classes in the context of
sliding windows.

5 Conclusion

The study of temporal graphs has emerged as an important area of research with significant
implications for understanding and analyzing dynamic systems. In this paper, we have
presented a short overview of the works on sliding windows in temporal graphs. The concept
of a sliding time window allows us to focus on specific temporal intervals within the lifetime
of a temporal graph, providing valuable insights into the changing behavior and patterns
of interactions. Give that this research field is fairly young, there are still many intriguing
questions and challenges to be addressed. We presented some of them here and hope that
this work inspires further exploration and investigation into these intriguing problems.
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—— Abstract

The concept of Roman domination has recently been studied concerning enumerating and counting
in F. N. Abu-Khzam et al. (WG 2022). More technically speaking, a function that assigns 0,1, 2 to
the vertices of an undirected graph is called a Roman dominating function if each vertex assigned
zero has a neighbor assigned two. Such a function is called minimal if decreasing any assignment
to any vertex would yield a function that is no longer a Roman dominating function. It has been
shown that minimal Roman dominating functions can be enumerated with polynomial delay, i.e.,
between any two outputs of a solution, no more than polynomial time will elapse. This contrasts
what is known about minimal dominating sets, where the question whether or not these can be
enumerated with polynomial delay is open for more than 40 years. This makes the concept of Roman
domination rather special and interesting among the many variants of domination problems studied
in the literature, as it has been shown for several of these variants that the question of enumerating
minimal solutions is tightly linked to that of enumerating minimal dominating sets, see M. Kanté
et al. in STAM J. Disc. Math., 2014. The running time of the mentioned enumeration algorithm
for minimal Roman dominating functions (Abu-Khzam et al., WG 2022) could be estimated as
O(1.9332™) on general graphs of order n. Here, we focus on special graph classes, as has been also
done for enumerating minimal dominating sets before. More specifically, for chordal graphs, we
present an enumeration algorithm running in time O(1.8940™). It is unknown if this gives a tight
bound on the maximum number of minimal Roman dominating functions in chordal graphs. For
interval graphs, we can lower this time bound further to @(1.7321™), which also matches the known
lower bound concerning the maximum number of minimal Roman dominating functions. We can
also provide a matching lower and upper bound for forests, which is (incidentally) the same, namely
O*(v/3"). Furthermore, we present an optimal enumeration algorithm running in time O*(%/3") for
split graphs and for cobipartite graphs, i.e., we can also give a matching lower bound example for
these graph classes. Hence, our enumeration algorithms for interval graphs, forests, split graphs and
cobipartite graphs are all optimal. The importance of our results stems from the fact that, for other
types of domination problems, optimal enumeration algorithms are not always found.

Interestingly, we use a different form of analysis for the running times of our different algorithms,
and the branchings had to be tailored and tweaked to obtain the intended optimality results. Our
Roman dominating functions enumeration algorithm for trees and forests is distinctively different
from the one for minimal dominating sets by Rote (SODA 2019).Our approach also allows to give
concrete formulas for counting minimal Roman dominating functions on more concrete graph families
like paths.
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1 Introduction

ROMAN DOMINATION comes with a nice (hi)story, on how to position armies on the various
regions to secure the Roman Empire with the smallest cost, measured in the number of
armies. “To secure” means that either (1) a region r has at least one army or (2) a region r’
neighboring r contains two armies, so that it can afford sending one army to the region r
without diminishing 7’’s self-defense capabilities.

It is easy to view ROMAN DOMINATION as a graph-theoretic problem, where the map
is modeled as a graph. ROMAN DOMINATION has received notable attention in the last
two decades [7,17,23,26, 40,41, 44,48,49,51]. Relevant to our work is the development
of exact algorithms: ROMAN DOMINATION can be solved in O(1.5014™) time (and space),
see [40,52,54]. More combinatorial studies can be found in [16,18,25,35,39,42,43,47,55,56,57]
as well as in the more recent chapter on Roman domination of [34]. Although independently
introduced in [46], the differential of a graph is tightly related, see also [1,8,9,10]. To briefly
summarize all these findings, in many ways concerning complexity, ROMAN DOMINATION and
DOMINATING SET behave exactly the same. There are two notable and related exceptions,
as delineated in [2], concerning extension problems and output-sensitive enumeration.

Ezxtension problems often arise from search-tree algorithms for their optimization coun-
terpart as follows. Assume that a search-tree node corresponds to a partial solution (or
pre-solution) U and instead of proceeding with the search-tree algorithm (by exploring all
the possible paths from this node onward) we ask whether we can extend U to a meaningful
solution S. In the case of DOMINATING SET, this means that S is an inclusion-wise minimal
dominating set that contains U. Unfortunately, this EXTENSION DOMINATING SET problem
and many similar problems are NP-hard, see [6,12,14,15,37,38,45]. Even worse: when
parameterized by the “pre-solution size,” EXTENSION DOMINATING SET is one of the few
problems known to be complete for the parameterized complexity class W3], as shown in [11].
This blocks any progress on the HITTING SET TRANSVERSAL PROBLEM by using extension
test algorithms, which is the question whether all minimal hitting sets of a hypergraph can be
enumerated with polynomial delay (or even output-polynomial) only. This question is open
for four decades by now and is equivalent to several enumeration problems in logic, database
theory and also to enumerating minimal dominating sets in graphs, see [22,24, 29, 36].

By way of contrast and quite surprisingly, with an appropriate definition of the notion of
minimality, the extension variant of ROMAN DOMINATION is solvable in polynomial time [3].
This was the key observation to show that enumerating all minimal Roman dominating
functions is possible with polynomial delay. This triggered further interest in looking
into enumerating minimal Roman dominating functions on graph classes, as also done in
the case of DOMINATING SET, see [5,20,21,30,32,33]. The basis of the output-sensitive
enumeration result of [2] was several combinatorial observations. Here, we find ways how to
use the underlying combinatorial ideas for non-trivial enumeration algorithms for minimal
Roman dominating functions in split graphs, cobipartite graphs, interval graphs, forests
and chordal graphs and for counting these exactly for paths. All these graph classes will
be explained in separate sections below. These exploits constitute the main results of this
paper. More details can be found at the end of the next section. Due to lack of space,
further technical details can be found in [4]. We summarize known bases of lower and upper
bounds on the number of minimal (Roman) dominating sets (resp. functions) in the next
table; new results are shown with boxes; for matching bounds, only one number is displayed;
c.f. [2,21,27,33]. Polynomial delay is achievable for the mentioned special graph classes
for enumerating minimal dominating sets [36, 38], but it is unclear how to combine these
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approaches with good input-sensitive enumeration, while all input-sensitive results concerning
minimal Roman dominating functions can also be implemented with polynomial delay, by
interleaving extension tests with branching.

graph class: ‘ general ‘ chordal ‘ split ‘ interval ‘ forests ‘ cobipartite
domination 1.5704 /1.7159 1.3195/1.3674

V3/15048 | V3 | U3 /95
4 ||

V/3/1.8940 {%\ \/3\ \/3\

2 Definitions and Known Results

1.7441 /1.9332

¥

Roman dom.

Let N={1,2,3,...} be the set of positive integers. For n € N, let [n] = {m € N | m < n}.
We only consider undirected simple graphs. Let G = (V, E) be a graph. For U C V', G[U]
denotes the graph induced by U. For v € V, Ng(v) = {u € V | {u,v} € E} denotes the
open neighborhood of v, while Ng[v] := Ng(v) U {v} is the closed neighborhood of v. |Ng(v)|
is called the degree of v; a vertex of degree 1 is known as a leaf. We extend such set-valued
functions X : V. — 2V to X : 2V — 2V by setting X(U) = U,y X(u). Subset D C V
is a dominating set, or ds for short, if Ng[D] = V. For D C V and v € D, define the
private neighborhood of v € V' with respect to D as Pg p (v) = Ng[v]\ Ng[D\ {v}]. A
function f: V — {0, 1,2} is called a Roman dominating function, or rdf for short, if for each
v €V with f(v) =0, there exists a u € Ng (v) with f (u) = 2. Simplifying notation, we set
Vi(f) ={veV | f(v)=1i}forie{0,1,2}. The weight ws of a function f: V — {0,1,2}
equals |V;| 4 2|Va2|. The ROMAN DOMINATION problem asks, given G and an integer k, if
there exists an rdf of weight at most k. Connecting to the original motivation, G models a
map of regions, and if the region vertex v belongs to V;, then we place ¢ armies on v.

For defining the problem EXTENSION ROMAN DOMINATION, we first need to define the
order < on {0,1,2}V: for f,g € {0,1,2}V, let f < g if and only if f (v) < g (v) forallv € V.
Thus, we extend the usual linear ordering < on {0, 1,2} to functions mapping to {0, 1,2} in
a pointwise manner. We call a function f € {0,1,2}V" a minimal Roman dominating function
if and only if f is an rdf and there exists no rdf g, g # f, with g < f. The weights of minimal
rdfs can vary considerably. Consider for example a star K ,, with center c¢. Then, fi(c) =2,
fi(v) = 0 otherwise; fa(v) =1 for all vertices v; f3(c) =0, f3(u) =2 for one u # ¢, f3(v) =1
otherwise, define three minimal rdfs with weights wy, =2, and wy, = wy, =n + 1.

In [2], several combinatorial properties of minimal Roman dominating functions were
derived that were central for obtaining a general algorithmic enumeration result and that are
also important when studying special graph classes. This is summarized as follows.

» Theorem 2.1. Let G = (V,E) be a graph, f : V — {0,1,2} and abbreviate G’ =
G Vo (f)UVa(f)]. Then, [ is a minimal rdf if and only if the following conditions hold:
1. Ne [Va (DN Vi () =0,

2. Yo e Vo (f): Par vy (v) € {v}, also called privacy condition, and

3. Vo (f) is a minimal dominating set of G'.

This combinatorial result has been the key to show a polynomial-time decision procedure
for the extension problem (Given a graph G = (V, E), a function f : V — {0,1,2}, the
question is if there is minimal rdf g with f < g). It can also be used to design enumeration
algorithms that are input-sensitive. The simplest exploit is to branch on all vertices whether
or not a vertex should belong to V5(f). Once Va(f) is fixed, its neighborhood will form Vg (f)
and the remaining vertices will be Vi(f). For better running times, this approach has to be
refined, see Section 5. We obtain estimates of running times for branching algorithms as
explained in [28], including an introduction into the Measure-and-Conquer analysis.
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3 Enumerating Minimal RDFs in Split and in Cobipartite Graphs

A split graph G = (V, E) consists of a bipartition of V as C' and I, such that C forms a clique
and I is an independent set. Let f:V — {0,1,2} be a minimal rdf of G. If V(f) contains
both a vertex v, from C and a vertex v; from I, then v; cannot find a private neighbor
in G, contradicting the minimality of f. We can hence first branch to decide if V5(f) C C
or if Vo(f) C I. After dealing with the simple case that |Va(f) N C| = 1 separately, we can
assume that all private neighbors of V5(f) C C are in I and that all private neighbors of
Va(f) C I are in C. We will describe a simple branching algorithm in which we can assume to
immediately delete vertices that are assigned the value 0, as they will be always dominated.

Case 1. One element of C is assigned a value of 2. We can guess this element in O(n) and
proceed as follows.
1. Elements of C' with no neighbors in I are assigned a value of zero.
2. Pick v € C with at least two neighbors in I and branch by either setting f(v) = 2 and
assign 0 to vertices in N(v) N1 or f(v) = 0 (this leads to the branching vector (3,1)).
3. When all elements of C' have exactly one neighbor in I, pick some v € C with
N(v) NI = {w}. Distinguish two cases.
3.1 w has at least one other neighbor z € C. Then either f(v) =2, f(w) = f(z) =0 (in
fact, all neighbors of w are assigned 0), or f(v) = 0 (this leads to a (3,1) branch).
3.2 N(w) = {v}: either f(v) =2, f(w) =0o0r f(v) =0, f(w) =1 (this leads to the
branching vector (2,2)).

Case 2. No element of C' is assigned a value of 2.

1. Then any isolated element of I is automatically assigned a value of 1 and can be
deleted. Moreover, any element of C' with no neighbors in I is assigned a value of 1
and deleted.

2. Pick a vertex v of degree at least two in I and branch by either setting f(v) = 2 and
assigning 0 to all its neighbors or set f(v) = 1 (this leads to the branching vector
(3,1)).

3. When all elements of I are leaves, pick v € I with N(v) N C = {w}. Distinguish 2
cases.

3.1 w has at least one more neighbor z € I: either f(v) =2, f(w) =0, f(z) =1 or
f(v) =1 (delete v) (this leads to the branching vector (3,1)).

3.2 N(w) NI = {v}: either f(v) =2, f(w) =0or f(v) = f(w) =1 (this leads to the
branching vector (2,2)).

Notice that the analysis of the recursion is very simple: an rdf f is gradually defined,
and the branching vectors describe the number of newly defined vertices. The worst-case
branching vector is (1, 3), which leads to the following claim.

» Proposition 3.1. All minimal rdfs in a split graph of order n are enumerable in O*(1.4656™).

» Remark 3.2. For cobipartite graphs, a similar reasoning applies. Now, it could be possible
that one vertex z of the bipartition side X finds its private neighbor p, in X itself and that
one vertex y of the other bipartition side Y finds its private neighbor p, in Y, such that
the edges xp, and yp, do not exist. If G contains no universal vertices, then irrespectively
whether the Va(f)-vertices lie only in X or in Y, there must be at least one other vertex in
Va(f) on the same side. But this means that they must find their private neighbors on the
other side. The branching is hence analogous to the split graph case.
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n—1 if n € [2] n if n € [3]
CPQv” = . CP§1L = .
CP,E,n—W ifn>2 .2, CP,E,n,—l —+ Cp,gmfz + Cp,27n73 + CP,§,n73’ ifn>3

Figure 1 The mutual recurrences for determining the number of minimal rdfs on a path P,.

The previous arguments are invalid in the case of bipartite graphs. Here, we conjecture that
the general case is not really easier than the bipartite case, as with minimal ds enumeration.
However, we can boost our algorithm and its simple analysis to actually prove an optimal
enumeration result. In order to do this, a rather straightforward refinement of the previous
case analysis suffices. Together with Remark 3.2 as well as the trick of interleaving the
branching with extension tests as described in [2], this refined branching algorithm proves:

» Theorem 3.3. All minimal rdfs in a split graph or a cobipartite graph of order n can be
enumerated in time (9*(\3/?:”), using polynomial space and polynomial delay only.

We can complement Theorem 3.3 by showing lower bound examples in the following that
prove that our simple branching algorithm analysis is optimal for split and cobipartite graphs.

» Theorem 3.4. There exist split and cobipartite graphs of order n with Q(\?’/gn) many
minimal rdfs.

Proof. We consider the graph G; = (Cy U I, Ey) with C, = {c1,...,cat}, It = {v1,..., v},
3t =n=|Ct ULl and E; = ((;’f) U {{cai—1,vi}, {coi,v;} | © € [t]} (for the cobipartite
case, I; is also a clique). Thus, v; € I; has degree 2. If Vo(f) C Cy, there are three
ways to Roman-dominate any v; € Iy, ¢9;—1,¢2; € Cy with a minimal rdf f: f(co;) = 2,
fleai1) = f(vi) =0 or f(eaim1) =2, f(c2) = f(vi) =0o0r f(v;) =1, f(cai-1) = f(c2i) =0
(resp. flcaim1) = f(cas) = 1, if Va(f) = 0). This yields 3* = /3" many minimal rdfs. There
can be at most 2¢ = \3/571 minimal rdfs f on G; with Vo(f) C I;. Hence, G; is a graph of
order n = 3t that has ¥/3" + /2" —1¢ Q(\:’/gn) many minimal rdfs. <

Minimal dominating sets in cobipartite graphs where all dominating set vertices belong to
one clique only correspond to minimal rdfs with no vertex assigned 1. So, we can use our rdf
enumeration algorithm to enumerate minimal dominating sets on cobipartite graphs. This
improves on the hitherto best published algorithm from [19] but would be worse than [53].

4  Counting Minimal Roman Dominating Functions on Paths
The following is the main result of this section, devoted to counting.

» Proposition 4.1. The number of minimal Roman dominating functions of a path P, grows
as O*(cgp,p)s with crp,p < 1.6852.

This should be compared with the recursion of Bréd [13] that yields the following
asymptotic behavior for the number of minimal dominating sets of a path with n vertices:

» Corollary 4.2 (follows from [13]). The number of minimal dominating sets of a path P,
grows as O*(ch p), with cp,p < 1.4013.

As every minimal dominating set D C V of a graph G = (V, E) corresponds to the minimal
rdf f:V —{0,1,2} with Va(f) = D and Vi (f) =V \ D, it is clear that cpp < crp,p.
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Proof of Proposition 4.1. Let Cp,, count the number of minimal rdfs of a FP,,. Furthermore,
let Cpa,, and CP,i,n denote the number of minimal rdfs of a P, where the first vertex
is assigned 2, or where it is decided that the first vertex is not assigned 2, respectively.
Clearly, Cpn = Cp2,n + Cp3,,. Consider P, = (V,, Ey) with Vi, = {v; | i € [n]} and
E, ={vvi41|i€[n—1]}. Let n >3 and f:V,, — {0,1,2} be a minimal rdf.

If f(v1) =2, then f(vy) =0. Also f(v3) # 2, as v; would not have a private neighbor but
itself for f(vs) = 2. This shows (including trivial initial cases) the left-hand side of Figure 1.
If f(v1) # 2, then we have two subcases: (a) if f(v1) = 1, then we know f(vs) # 2; (b) if
f(v1) =0, then f(v2) = 2 is enforced. But we know more compared to the initial situation: vy
has already a private neighbor, namely v;. Thus, we have further possibilities for vs: f(v3) = 2
or f(vs) = 0. The first subcase is as before: vz has no private neighbor. If f(v3) = 0, then
either f(v4) = 2 and v4 has no private neighbor, or f(v4) # 2; hence the recursions on the right-
hand side of Figure 1. Keeping in mind that Cp;—3 = Cp2n-3+ Cpz,, 3, we see Cp, =
Cron+Cps, =Cp3, 2+tCp3, 1 +CP2n-2+Cpn-3=Cps, 1+CpPn-2+Cpn_s.
Conversely, Cpn = Cp2n+Cp3,, =Cps,, o+ Cpz,. Hence,

Cpﬁn = CP,§,71, + CP,ZTL—Q = P2n—1 + (CP,§,n—2 + CP,in—él) + (CP,in—S + CP,i,n—5)7
which gives, ignoring the cases for small values of n, the following single recursion:

Cp3.0=Cpsn-11tCp3,-3+Cp3,4tCps, 5~ 1.6852"

2,n
As Cp,, = Cp5, o+ Cps,., the same asymptotic behavior holds for Cp,. <

We will further extend this result towards forests and towards interval graphs in the next
sections, starting with a more general description of such branching algorithms.

5 A General Approach to Branching for Minimal RDFs

In this section, we sketch the general strategy that we apply for enumerating minimal rdfs.
In most cases, the branching will look for a yet undecided vertex v (that we will call active
henceforth) and will decide to label it with 2 in one branch and not to label it with 2 in the
other branch. Now, in the first branch, we can say something about the neighbors of v as
well: according to Theorem 2.1, they cannot be finally labelled with 1. We express this and
similar properties by (always) splitting the vertex set V of the current graph G = (V, E) into:

A: active vertices. In the very beginning of the branching, all vertices are active.

V;: vertices that cannot be assigned a value of 4, i € {1,2}, due to previous decisions.

Vo: set of vertices assigned a value of zero that are not yet dominated.

Sometimes, the branching also considers a vertex from V;, which will be assigned 0 (and
hence is deleted) in the branch when it is not assigned 2. We can also call extendibility tests
before doing the branching in order to achieve polynomial delay; see [2].

Possibly, we can also (temporarily) have (and speak of) vertex sets V; (with ¢ € {1,2})
with the meaning that each vertex in V; is assigned the value 7. Our algorithms will preserve
the invariant that a vertex v € V; must have a neighbor put into V5 (in the original graph),
i.e., N(v)NVy # 0, which is a property that can be exploited in our analysis. Namely, a vertex
is put into V; only if one of its neighbors has been put into V5. However, notice that once the
effect (mostly implied by Theorem 2.1) of putting a vertex v into V; on its neighborhood N (v)
has been taken care of, such a vertex v can be deleted from the “current graph” to simplify
the considerations. More precisely, for i € {1,2}, our algorithms automatically delete vertices
assigned a value of i after making sure the neighbors are placed in V3_;. It could happen
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that the neighbor of a vertex w € V5 is assigned the value 2. Then, w must be assigned 0;
as it is dominated, it can and will be deleted. Similarly, if the neighbor of a vertex w € V;
is assigned the value 1, w must be assigned 0 and is hence deleted. Only finally, it should
be checked if a function f: V — {0, 1,2} that is constructed during branching is indeed a
minimal rdf, as possibly some vertices assigned 2 do not have a private neighbor. During the
course of our algorithm, whenever we speak of the degree of a vertex (in the current graph)
in the following, we only count in neighbors in AU V; U V5. In most stages of our algorithms,
we can assume V; = (), as we will explain.

Reduction rules are an important ingredient of any branching algorithm, as also shown
in [28]. We will make use of the following reduction rules. Similar rules appeared in [2].

» Reduction Rule 5.1. If v € V5 with N(v) C V3, then set f(v) = 1 and delete v.
» Reduction Rule 5.2. If v € V; with N(v) C Vi, then set f(v) =0 and delete v.
» Reduction Rule 5.3. If v € A with N(v) C V3, then put v into Va.

» Lemma 5.1. The three presented reduction rules are sound.

In contrast to our approach in Section 3, we will now perform a Measure-and-Conquer
analysis of the branching algorithms that we will describe. As a measure, we take

WAV, V2, Vo) = [A| + wi [Vi] + w2 V2

for the “current graph” with vertex set partitioned as AU Vi UV, U V. Hence, whenever
we measure our graph, we can assume V; = (). In the beginning of the algorithm, A =V
and Vi = Vo = V) = V; = 0. To explain the work of the reduction rules, consider an isolated
vertex (in the very beginning). The reduction rules will first move it into V5 and then into V;
to finally delete it. We will choose the constants wy,ws € [0, 1] to assess the running times of
our algorithms best possible, hence also delivering upper bounds on the number of minimal
rdfs of graphs of order n belonging to a specific graph class.

Concerning the reduction rules, we can easily observe that their application will never
increase the measure. We will list in the following several branching rules (for the different
graph classes) and we always assume that the rules are carried out in the given order.

6 Enumerating Minimal RDFs on Interval Graphs and Forests

Recall that an interval graph can be described as the intersection graph of a collection of
intervals on the real line. This means that the vertices correspond to intervals and that
there is an edge between two such vertices if the intervals have a non-empty intersection. We
assume in the following that G = (V, E) is an interval graph with the interval representation
T ={I, := [ly, 7] }vev, i-e., I, is the left border and r, is the right border of the interval
representing the vertex v. We call v € U leftmost in U C V if it is a vertex from U that has
the smallest value of r, among all vertices in U. A vertex leftmost in V is simply called
leftmost. Notice that this notion of a leftmost vertex will be used in many places in the rules
exhibited in the following and is not available in the setting of general graphs as investigated
in [3] but relies on the interval graph structure. Our algorithm always branches on the
leftmost vertex. Then, it simply considers all cases. We now present more details.

The reduction rules from Section 5 imply that each vertex in v € A has at least one neighbor
in AU Vs. Concerning the measure, we will have w; = 1 and set ws = w = 0.57. We will
present the branching rules that constitute the backbone of our algorithm for enumerating
minimal rdfs on interval graphs. We often provide illustrations of the different branching
scenarios. In our figures, we adhere to the following drawing conventions:
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v
. v
&< < O—D<
(a) v is already dominated. (b) v € A has neighbors in V.

Figure 2 Branching Rules 6.1 and 6.2. Here (and elsewhere in these illustrations) we only sketch
important parts of a subgraph, not necessarily covering all cases of the rules within the drawings.

(a) v € A has neighbors in A. (b) v € A has neighbors in V2 and in A.

Figure 3 Branching Rules 6.3 and 6.4.

O are vertices in A, @ are vertices in V;, @ are vertices in AU V;.

O are vertices in Va.

<> are vertices in AU Vs, for which the exact set is not further defined.

<@ are vertices in AU Vi U Va, for which the exact set is not further defined.

» Branching Rule 6.1. Let v be the leftmost vertex in Vi and let u be the leftmost vertex in
N(v) N (AU V3) and branch as follows: (1) Put v in Vj. (2) Put v in V5 and u in Vj.

» Lemma 6.1. The branching of Branching Rule 6.1 is a complete case distinction. Moreover,
it leads at worst to the following branching vector: (1,1 + w).

One can formulate and prove similar lemmas for the other branching rules that we present;
see [4]. The branching vectors and branching numbers are summarized in Table 1.

» Branching Rule 6.2. Let v be the leftmost vertex in (AU V3). If v € A and N(v)NA =10
hold, branch as follows: (1) Put v in Vo and N(v) N Vz in Vp. (2) Put v in V.

» Branching Rule 6.3. Let v be leftmost in (AU V3). If v € A and |N(v) N A > 2 hold,
branch as follows: (1) Put v in V5 and all vertices in N(v) N A into V. (2) Put v in Va.

» Branching Rule 6.4. Let v be the leftmost vertex in (AU Va). If v € A, [N(v) N V3| > 1
and |N(v) N A| =1 with u € N(v) N 4 hold, then branch: (1) Put v in Vo, N(v) N ({u} U V)
in Vp. (2) Put w in V3 and {v} U (N(v) NV3) in V. (3) Put v in V5 and u in Va.

» Branching Rule 6.5. Let v be the leftmost vertex in (AU Vz). If N[v] N A = {v,u} with
N[v]NVa =0 and |N(u) N A| > 3, branch as follows:

(1) Put v in Vo, uin Vy and N(u) \ {v} in V. (2) Put v in Va.

» Branching Rule 6.6. Let v1 be the leftmost vertex in (AU Va). If N[vy]N A = {vy,va} with
Nv]NVa =0, N(va) N A = {v1,v3} and if there exists a u € N(v3) such that N(u) = {vs},
then branch as follows: (1) Put v; in V5, vy in Vg and vs in Vo, (2) Put vy in Vi, vs in V5.
(3) Put ve in V5 and vy, v3 in Vo and w in V3. (4) Put ve,vs in Vo and vy, u in V.

» Branching Rule 6.7. Let v; be the leftmost vertex in (AUV3), such that N[vi]NA = {vy, v},
with N[ve]NVz = 0 and N(v2) N (AUVL) = {v1, v3}. If there is a u leftmost in A\ {vy,v2,v3},
with {v3} € N(u), then branch as follows: (1) Put v; in Va and vy in Vg and v3 in Va. (2)
Put vy in Vi, vg in Va. (3) Put vy in V, vy in V5 and vz in V. (4) Put ve,vs in Vs and vy, u
in Vo and N(u) \ {vs} in Va.
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u
V1 Vo
v3
(a) v1 € A has only on neighbor in A which (b) v1,v2,v3 € A is a path and v3 has a leaf neighbor.

has degree bigger than 2.

Figure 4 Branching Rules 6.5 and 6.6.

wq

U1

Wa U2

(a) v1,v2,v3 € A is a path and there exists a (b) v € V4 is the leftmost vertex.
u € AN N(v3) with one more neighbor.

Figure 5 Rules 6.7 and 6.8.

» Branching Rule 6.8. Let v be the leftmost vertex in (AU V3). If v € V5, branch like: (1)

For each u € N(v) N A: win Vo and N[v] \ {u} into Vp. (2) Put v in V3 and N(v) N A in Va.

» Theorem 6.2. All minimal rdfs of an interval graph of order n can be enumerated in time

o (\/§n> , with polynomial delay and in polynomial space.

This result is optimal, as there are interval graphs that have V3" many minimal rdfs, namely
collections of paths on two vertices:  — y can be Roman-dominated by f(z) = f(y) =1 or
by assigning two to one vertex and zero to the other one, i.e., we get three possibilities per
two vertices. For optimally enumerating minimal ds in interval graphs, see [31].

Recall that a forest is an acyclic undirected graph. A branching scenario that is similar to,
but slightly more complex than, that of interval graphs can be used for forests (see [4]).

» Theorem 6.3. A forest of order n has at most V3" many minimal rdfs. They can also be
enumerated in time O (\/gn), with polynomial delay and in polynomial space.

Table 1 Branching scenarios on interval graphs.

rule branching vector branching number
6.1 & 6.2 (1,1 4+w) 1.7314

6.3 (3,1 —w) 1.6992

6.4 24w 2+w,2-w) 1.6829

6.5 (4—-2w,1 —w) 1.7274

6.6 B-w,2—-w,4,4) 1.6877

6.7 B-w,2—-w,3,5—-w) 1.7315

6.8 (wWH+|Nw)NA],...,w+ |Nw)NA,w+ (1 —-w) |N(@w)NA|) <+V3<1.7321

[N(v)NA| many times
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Table 2 Branching rules and their vectors and numbers for chordal graphs; worst cases in red.

Rule branching vector branching number
7.1 (1 —w2,1+3min(l — wi,ws)) 1.8940
7.2 (1+wi +wa, 1 — ws) 1.8014
7.3 (wi, w1 + 2w2) 1.8940
7.4 (w1,2 — wi + min(l — w1, w2)) 1.8940
7.5 & 7.16 (w1, 2w + wa) 1.7915
7.6 ((.U1 + w2, w1 + (:JQ) 1.8321
77 & 7.14 (1+ w2, 14+ w2) never worse than Branching Rule 7.6
7.8 (1 4+ w2 +min(l — wo,w1),1) 1.6181
7.9 (2,1 — wa) 1.8471
7.10 (14 wo,1) 1.779
7.11 (14w +2(1 —w2),wr) 1.5743
7.12 (14 2w2,1) never worse than Branching Rule 7.10
7.13 (2 + w2, 1 — ws) 1.7249
715 & 717 | (2— w1 +w2,2 + w2, 2 — wa) 1.8005

w

(a) v € A has at least 3 neighbors in AUV5.  (b) v € A has one neighbor w € V2 and at least one
neighbor in V7 that has only further neighbors in V.

Figure 6 Branching Rules 7.1 and 7.2.

This result is again optimal, as there are forests that have V3" many minimal rdfs, namely
collections of P5. A similar optimality result was obtained by Rote [50] for enumerating
minimal dominating sets in forests by using different techniques: there are (at most) /95"
many of them in forests of order n.

7  Enumerating Minimal RDFs in Chordal Graphs

Recall that a graph is chordal if the only induced cycles it might contain have length three.
In this quite technical section, we explain the following result whose optimality is open.

» Theorem 7.1. All minimal Roman dominating functions of a chordal graph of order n
can be enumerated with polynomial delay and in polynomial space in time O(1.8940™).

We are following the general approach sketched in Section 5. We adopt as a measure
p = |A| +wi V1] + w2 |Va|. To obtain our result, we set w; = 0.710134 and wy = 0.434799.

Initially, all vertices are in A. Each branching rule assumes the preceding rules have been
applied exhaustively and none of their conditions is applicable anymore. We omit stating
correctness lemmas and lemmas concerning branching vectors but refer to Table 2. These
lemmas are in general quite simple.

» Branching Rule 7.1. If v € A has at least three neighbors in A U V5, then we branch as
follows: (1) Set f(v) = 2 and update the neighbors accordingly. (2) Add v to Va.
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v w

(a) v € Vs is simplicial with at least 2  (b) v € V% has exact one neighbor in V7, possibly
neighbors. more neighbors in V5.

O—1t+H—e—

v w

(c) v € A is a leaf with a neighbor 272 (d) v € A s a leaf with a neighbor w € V2 with at
which has only further neighbors in V5. least one neighbor in AU V;.

Figure 7 Branching Rules 7.5, 7.6, 7.7 and 7.8.

From now on, we can assume that a vertex from A of degree at least 3 has a neighbor in V7.

» Branching Rule 7.2. If v € A has at least one neighbor w in V5 and at least one neighbor u
in V; such that all neighbors of u (but v and possibly w) are in V7, then we branch as follows:
(1) Set f(v) = 2 and update the neighbors accordingly. (2) Add v to Va.

Knowing (by our invariants) that elements of V; are guaranteed to have neighbors in V5, the
next two branching rules apply to some elements of V; (illustration can be found in [4]):

» Branching Rule 7.3. If v € V] has at least two neighbors in V5, then we branch as follows:
(1) Set f(v) =2 and update the neighbors accordingly. (2) Set f(v) = 0 and delete v.

» Branching Rule 7.4. If v € V1 has at least three neighbors in A U V, then we branch as
follows: (1) Set f(v) = 2 and update the neighbors accordingly. (2) Set f(v) = 0 and delete v.

From now on, we discuss branching on simplicial vertices (or sometimes on vertices in the
neighborhood of simplicial vertices as in [5]).

» Observation 7.2. Simplicial vertices in V;, can only have neighbors in AU Vo UV;. As we
already considered vertices in Vi with > 3 neighbors in AU Vs, in the following branchings, a
vertex in Vi has < 2 neighbors in AU Vy, not both of them in Va due to Branching Rule 7.3.

» Branching Rule 7.5. If v € V] is simplicial and of degree at least two, then branch as follows:
(1) Set f(v) = 2 and update the neighbors accordingly. (2) Set f(v) = 0 and delete v.

» Observation 7.3. We note that an isolated pair of adjacent leaves, say v, w, give rise to
a path, which has already been studied. However, assuming previous branching rules have
resulted in such a path, the worst case is when v € Vo and w € Vi. To see this, note that if
both v and w are in Vs or both in Vi, they would be deleted by Reduction Rules 5.1 or 5.2.

» Branching Rule 7.6. If v € V; is a vertex with exactly one neighbor w € V; and possibly
more neighbors in Va, then we branch as follows: (1) Set f(w) =2, f(v) = 0 and update the
neighbors of w accordingly. (2) Set f(w) =0 and f(v) = 1 and delete v, w.

» Branching Rule 7.7. Let v € A with N(v) = {w}, w € V5, with N(w) \ {v} C V. Then,
branch as follows: (1) Set f(v) =2 and f(w) =0. (2) Set f(v) = f(w) =1 and delete v, w.
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M.—<

(a) v € A with exactly one neighbor (b) v € V4 is a leaf with (c) v € Vi is a leaf with

in A and possible other neighbors in V. a neighbor in A. a neighbor in A.
v
v w
(d) v € A is simplicial and (e) v € A is a simplicial vertex of degree
has only neighbors in Va. at least 3 and at least one neighbor in A.

Figure 8 Branching Rules 7.9, 7.10,7.11, 7.12 and 7.13.

» Branching Rule 7.8. If v € A with N(v) = {w} and w € V5 and if there is at least one
further neighbor of w that belongs to A U Vi, then we branch as follows: (1) Set f(v) = 2
and f(w) = 0 and update all neighbors of w to Vz or to V. (2) Set f(v) = 1 and delete v.

The following rule again deals with a leaf vertex as a special case.

» Branching Rule 7.9. Let v € A with N(v) N A = {w} and N(v)\ {w} C V;. Then, branch:
(1) Set f(v) =2 and f(w) = 0, update all neighbors of w to Vz or to V5. (2) Add v to Va.
» Branching Rule 7.10. If v € V5 with N(v) = {w}, w € A, then we branch as follows: (1)
Set f(w) =2 and f(v) = 0; update N(w) accordingly. (2) Add w to V5 and set f(v) = 1.
» Branching Rule 7.11. If v € V; with N(v) = {w}, w € A and |N(w) N A| = 2, then branch:
(1) Set f(v) =2, f(w) = 0 and put the neighbors of w into V5. (2) Set f(v) = 0 and delete v.

» Branching Rule 7.12. If v € A is simplicial, of degree > 2 with N(v) C V&, then branch: (1)
Set f(v) = 2 and assign zero to all its neighbors (delete N[v]). (2) Set f(v) =1 and delete v.

» Branching Rule 7.13. If v € A is simplicial, with |[N(v)| > 2 and N(v) N A # 0, then we
branch as follows: (1) Set f(v) = 2 and update the neighbors accordingly. (2) Add v to Va.

Finally, we consider simplicial vertices in V5 of degree > 2, now covering the remaining cases.

» Branching Rule 7.14. Let v € V4 be a simplicial vertex of degree two with a neighbor
w € A. If the other neighbor w’ of v is in V4, then we branch as follows: (1) Set f(w) = 2
and f(v) = f(w') = 0. (2) Add w to Va, set f(v) =1 and delete v.

» Branching Rule 7.15. If v € Vj is simplicial with two neighbors w,w’ € A, then we branch as
follows: (1) Set f(w) =2, f(v) = 0 and add w’ to V3. (2) Set f(w') =2 and f(w) = f(v) = 0.
(3) Add w and w’ to V; and set f(v) = 1.

» Branching Rule 7.16. If v € V5 is simplicial, of degree at least two, with a neighbor w such

that N[w]\ {v} C Vi, then we branch as follows: (1) Set f(w) = 2, f(v) = 0 and delete N|[v].
(2) Set f(w) =0 and delete it.

» Branching Rule 7.17. If v € V3 is simplicial, with neighbors w,w’ € Vi s.t. N[w] C N[w'],
then branch: (1) Set f(w') =2, f(v) = f(w) =0. (2) Set f(w') =0 and delete it.

» Lemma 7.4. Our rules cover all possible cases for chordal graphs.
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It remains open whether enumeration on chordal graphs can be improved further, so we

hereby pose it as an open problem, or whether one can obtain a higher lower bound, which
might also be a gap-improvement on general graphs. So far, the best lower bound for general
graphs is a collection of C5’s [2], which is clearly not a chordal graph. The worst-case example

for chordal graphs is a collection of P’s, see Section 4 and our discussions on interval graphs.
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We present quantitative logics with two-step semantics based on the framework of quantitative logics

introduced by Arenas et al. (2020) and the two-step semantics defined in the context of weighted
logics by Gastin & Monmege (2018). We show that some of the fragments of our logics augmented
with a least fixed point operator capture interesting classes of counting problems. Specifically, we
answer an open question in the area of descriptive complexity of counting problems by providing
logical characterisations of two subclasses of #P, namely SpanL and TotP, that play a significant role
in the study of approximable counting problems. Moreover, we define logics that capture FPSPACE
and SpanPSPACE, which are counting versions of PSPACE.
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1 Introduction

We examine counting problems from the viewpoint of descriptive complexity. We present a
quantitative logic with a least fixed point operator and two-step semantics. In the first step,
given a structure, a formula generates a set. In the second step, a quantitative interpretation
results from the cardinality of that set. These semantics allow us to use a uniform approach
to identify logical fragments that capture several counting complexity classes.

In 1979, Valiant introduced the complexity class #P in his seminal paper [32] and used
it to characterise the complexity of computing the permanent function. #P is the class of
functions that count accepting paths of non-deterministic poly-time Turing machines, or,
equivalently, the number of solutions to problems in NP. For example, #SAT is the function
that, on input a formula ¢ in CNF, returns the number of satisfying assignments of ¢. Since
then, counting complexity has played an important role in computational complexity theory.

Descriptive complexity provides characterisations of complexity classes in terms of the
logic needed to express their problems. The Biichi-Elgot—Trakhtenbrot theorem [9, 15, 31]
characterising regular languages in terms of Monadic Second-Order logic and Fagin’s the-
orem [17], which states that Existential Second-Order logic captures NP, are two fundamental
results in this area. Another prominent result was the introduction of the class MaxSNP [29],
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which has played a central role in the study of the hardness of approximation for optimization
problems [6]. Moreover, descriptive complexity is an interesting and active research field with
more recent results in the logical characterisation of the class P [20], dynamic complexity [33],
symmetric linear programs [7], and counting complexity [5, 12], among others.

As in the case of optimization problems, an interesting, long-standing question is the
logical characterisation of approximable counting problems. This is also a meaningful line of
research since very few counting problems can be computed exactly in polynomial time. In
the case of counting problems, the appropriate notion of approximability is the existence
of a fully polynomial randomized approximation scheme (fpras). We denote the class of
approximable counting problems by FPRAS [13, §].

A counting class is considered robust if it has either natural complete problems or nice
closure properties. Two robust subclasses of #P defined in terms of Turing Machines (TMs),
are of great significance in the quest for a characterisation of approximable counting problems.
The first one is TotP, which contains all self-reducible counting problems whose decision
version is in P. It is noteworthy that TotP is not contained in FPRAS, unless RP = NP [§],
but almost all known approximable counting problems belong to TotP (see e.g. [23, 22, 27]).
The second class, namely SpanL [2], is contained in TotP, and it consists of the functions that
count different outputs of non-deterministic log-space transducers, i.e. TMs with output. To
the best of our knowledge, SpanL is the only counting class so far defined in terms of TMs,
that, despite containing #P-complete problems [2], contains only approximable problems [4].

Our contribution. Our main objective is to provide logical characterisations of the classes
SpanL and TotP, which was posed as an open question in [5]. To this end, we introduce
a variant of the quantitative logics from [5]. Our two-step semantic definition is the key
difference between our approach and that in [5]. The first step is an intermediate semantics,
where the meaning of a formula is given as a set of strings that, intuitively, represent
computation paths. In the second step, a concrete semantics associates with each formula the
size of the set resulting from the intermediate semantics. Gastin et al. follow an analogous
approach for weighted logics in [18], to give a connection to weighted automata.

In Section 4, we introduce logics equipped with least fixed point formulae that capture
“span-classes” of restricted space, namely SpanL and SpanPSPACE, in a natural way (Theor-
ems 4.7 and 4.13). When we consider such classes, we are interested in counting the number
of different outputs produced by a transducer. Semantics that map the set of quantitative
formulae to N interpret every accepting path as a contributing unit. Then, by evaluating the
sum of formulae as the sum of natural numbers, one can sum up the accepting paths of a
TM. On the other hand, when a formula is evaluated as a set of output strings and the sum
of formulae as the union of sets, they can count the number of different TM outputs.

We also consider two classes, namely #PSPACE and TotP, which contain functions that
count the accepting or all paths of TMs with restricted resources, respectively. Using our
alternative semantics, a computation path can be encoded as a sequence of configurations
visited by the TM along that path — in other words, its computation history — so that different
paths are mapped to different sequences. In Section 5, we provide a logical characterisation
of the class of functions that count the number of accepting paths of poly-space TMs, namely
#PSPACE [25] (Theorem 5.3), which coincides with FPSPACE, i.e. the class of poly-space
computable functions. FPSPACE has already been characterised by a logic with a partial
fixed point [5]. Interestingly, the logic we define here uses a least fixed point. In Section 6,
we introduce a quantitative logic that captures TotP (Theorem 6.6). In Section 7, we discuss
how to obtain two least fixed point logics that capture NL and PSPACE by specialising the
semantics. We believe that the semantics we propose in this paper can contribute insight to
the study of counting complexity classes.
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Related work. Arenas et al. and Saluja et al. give logical characterisations of #P in [30, 5].

The authors of [30] substitute existential quantification over second-order variables of 3S0
with counting second-order variables. The work in [5] incorporated counting into the syntax
of the logic by introducing Quantitative Second-Order logic (QS0), a logic for quantitative
functions, which is based on the framework of weighted logics [11, 18, 1]. There has been
progress in characterising counting classes with respect to their approximability in the
context of descriptive complexity. Saluja et al. defined the classes #X; and #RX, in [30],
and proved that they contain only problems that admit an fpras. A more recent variant
of #X; [12] is also a subclass of FPRAS. The class #RIMH; [13] is conjectured to contain
problems which are neither as hard to approximate as #SAT nor admit an fpras, and
it was used to classify Boolean #CSP with respect to their approximability [14]. Since
NP-complete problems cannot have approximable counting versions unless RP = NP [13],
Arenas et al. suggested in [5] to examine robust classes of counting problems with an easy
decision version. The papers [5, 8] defined such counting classes and examined them with
respect to the approximability of their problems. There is also work on logics that capture
superclasses of #P, namely SpanP [24] and FPSPACE [25]. Compton and Gridel were the
first to characterise SpanP in [10], followed by Arenas et al. in [5], where they also introduced
a logic that captures FPSPACE. Finally, in [12], Durand et al. introduced a framework for
the descriptive complexity of arithmetic circuit classes.

2 Preliminaries

Turing machines. A (two-tape non-deterministic) Turing machine (TM) N is a quintuple
N =1(9,%,90,q0,qr), where Q is a set of states, 3 = {0,1} is the alphabet, § C (Q x (X U
{.1)?) x (@ x (ZuU{.}) x {L, R}?) is the transition relation, qo is the initial state, and gr
is the final accepting state. We assume the TM N has a read-only input tape and a work
tape that it can read and write on. L and R in a transition designate that the respective
tape head moves to the left or right. A configuration ¢ of N encodes a snapshot of the
computation of N and is defined in the usual way (see e.g. [28]). We can apply a compatible
transition to a configuration to result in a new configuration in the expected way. W.l.o.g.
we assume that every TM has a binary computation tree: any configuration is compatible
with zero, one or two transitions. In the latter case, we call these transitions, the left and
right non-deterministic transition. A transducer M is a TM with a write-only output tape,
on which a string over X is written from left to right. The output of a computation is
valid if M stops in the accepting state. A TM or transducer is called deterministic if at
every configuration at most one transition can be applied. By restricting the time or space
resources of a TM or transducer in the usual way, we can obtain an NPTM (non-deterministic
poly-time TM), an NL-transducer (non-deterministic log-space transducer) etc.

We say that f is computable in polynomial time (resp. logarithmic/polynomial space), if
there is a deterministic polynomial-time (resp. log-space/poly-space) transducer M, such
that for every x € ¥*, f(x) is the valid output of M on input . We define the functions
that count paths (resp. outputs) of a TM (resp. transducer) as follows.

» Definition 2.1. Let M be a Turing machine and T a transducer. We define functions
acepr, totyr, spany : % — NU {400}, such that for every x € ¥*:

(a) accpr(x) = #(accepting computation paths of M on input x),

(b) totpar(x) = #(computation paths of M on input x) — 1,

(c) spany(x) = #(different valid outputs of T on input x).

7:3
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Classes of counting problems. The classes defined in Definition 2.2 are already known,
except for SpanPSPACE, which is presently defined.

» Definition 2.2 ([2, 27, 25]). (a) SpanL = {spany : ¥* = N | M is an NL-transducer},
(b) TotP = {tota; : * = N | M is an NPTM},

(c) FPSPACE = {f : ¥* = N | f is computable in polynomial space},

(d) #PSPACE = {accys : ¥* = N | M is a non-deterministic poly-space TM}.

(e) SpanPSPACE = {span,; : ¥* = N | M is a non-deterministic poly-space transducer}.

» Remark 2.3. Note that in the definition of TotP, one is subtracted from the total number
of paths so that a function can take the zero value. Since a TotP function f can be
associated with an NPTM M that has a binary computation tree, f(x) = totp(z) =
#(branchings of M on input z), where a branching is an occurrence of a configuration on
the computation tree, where M makes a non-deterministic choice.

» Remark 2.4. For the class SpanL, note that, by the pigeonhole principle, an NL-transducer
has infinitely many accepting paths if and only if the length of its accepting runs is not
bounded by a polynomial. It then makes sense to attach a clock that imposes a polynomial-
time bound to each NLTM, as suggested in [2]. In this way, every NLTM is also an NPTM
with a finite number of computation paths. Similarly, we assume that a clock that imposes
an exponential-time bound can be attached to a non-deterministic poly-space TM.

» Proposition 2.5 ([2, 27, 25]). SpanL C TotP C #P C FPSPACE = #PSPACE C
SpanPSPACE. The first two inclusions are proper unless P = NP.

The decision version of a function f:¥* — Nis {z | f(x) > 0}. We say that a function
f X" — N is self-reducible if its value on an instance can be recursively computed by
evaluating f on a polynomial number of smaller instances. A formal definition of self-
reducibility can be found in [3]. TotP can be characterised as the closure under parsimonious
reductions of the class of self-reducible #P functions whose decision version is in P [27].

» Example 2.6. Consider the problem of counting independent sets of all sizes in a graph G,
denoted by #IS. Let M be the NPTM that makes the following computation: given G;_1
and v, ...,vn, M non-deterministically chooses to add vertex v; to the independent set or
not, and defines G; to be either G;_; where v;, all its neighbours, and all edges adjacent
to them have been removed, or G;_; where v; and its adjacent edges have been removed,
respectively. Then, M recursively continues on G; and v;41,...,v,. Consider M’ that on
input G = (V = {vy,...,v,}, E) simulates M on G and vy, ..., v,, and has also an additional
dummy path. Then, #IS(G) = #(paths of M’ on input G) — 1.

Logics. A relational vocabulary ¢ = {R}', ..., REm} is a finite set of relation symbols.
Each relation symbol R; has a positive integer k; as its designated arity. A finite structure
A= (A, Ry,..., Ry) over o consists of a finite set A, which is called the universe of A and
relations Ry,...,R,, of arities k1, .., k,,, on A, which are interpretations of the corresponding
relation symbols. We may write that arity(R;) = k; or that R; is a k;-ary relation. The size of
the structure, denoted by |A| or |A], is the size of its universe. A finite ordered structure is a
finite structure with an extra relation <, which is interpreted as a total order on the elements
of the universe. In sequel, A denotes a finite ordered structure unless otherwise specified.
For convenience we use letters B, C, R, S, and so on, to denote both relation symbols and
their interpretations. For example, the vocabulary of binary strings is oy, = {<?, B'}.
Binary string = 00101 corresponds to the structure A = ({0,1,...,4}, <, B = {2,4}), where
relation B represents the positions where z is one. Moreover, |A| = 5.
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First-order formulae over o are defined in the usual way, using first-order variables that
range over the universe of a structure, the relation symbols from o, equality, the logical
operators A, V,, —, and first-order quantifiers Vz and Jz. For convenience and clarity, we
omit function and constant symbols from the syntax of FO, but we include T, which is the
logical constant for truth. A first-order formula with no free variable occurrences is called a
first-order sentence, where an occurrence of x is free if it does not lie in the scope of either
Jx or Vx. In addition to the syntax of FO, SO includes and quantifies over second-order
variables that range over relations, are denoted by uppercase letters, and each of them has
an arity. S0 includes formulae of the form X (x1,...,2), where X is a second-order variable
of arity k, and z1,...,x are first-order variables. The fragment of SO consisting only of
existential second-order formulae is called existential second-order logic and is abbreviated
as 3S0. We use the usual A, v,V | ¢ interpretation of an SO-formula ¢, given a structure
A and first- and second-order assignments v and V, respectively. If ¢ has no free first- or
second-order variables, v or V, respectively, can be omitted. We refer the reader to [16] for a
more extensive presentation of FO and SO.

The logical symbols of Quantitative Second-Order logic, denoted by QS0, include all
the logical symbols of SO and the quantitative quantifiers ¥ and 1 for sum and product

quantification, respectively. The arity of a second-order variable X is denoted by arity(X).

When we write logic A over o, we mean the set of A formulae over . The set of QS0 formulae
over o are defined by the following grammar:

az= ¢ | s | (a+a) | (0-a) | Zz.a | Mr.a | EX.a | NX.a (1)

where ¢ is an SO formula over o, s € N, x is a first-order and X a second-order variable. A
formula « in QSO0 is a sentence if every variable occurrence in « is bound by a first-order,
second-order, or quantitative quantifier. The evaluation of a QSO0 formula « is a function
[a] that on input A, v, and V returns a number in N. We refer the reader to [5, p. 5] for
the definition of the semantics of QS0 formulae. When « is a sentence, [«](A) is used to
denote [a](A,v,V) for any v, V. We say that f € QSO if there exists a € QS0 such that
f(enc(A)) = [@](A), for every A. Note that QS0 is a set of logical formulae, whereas QSO is
a class of functions. For every logic A, we can define a corresponding class of functions as
above, and we denote it by A.

» Definition 2.7. A logic A captures a complexity class C, and equivalently C = N, over finite

ordered structures over o, if the following two conditions hold:

1. For every f € C, there is a sentence o € A, such that f(enc(A)) = [a](A) for every finite
ordered structure A over o.

2. For every sentence a € A, there is a function f € C, such that [o](A) = f(enc(A)) for
every finite ordered structure A over o.

Moreover, A captures C over finite ordered structures if A captures C over finite ordered

structures over o, for every o.

For example, YXQSO(FO) = #P over finite ordered structures [5], where ZQS0(F0) is the
set of QS0 formulae that 1 is not allowed and ¢ in (1) is restricted to be an FO formula.

Triples (A, v, V) can be encoded in space polynomial in |A| using a standard mapping
from finite ordered structures to strings over {0, 1} (see for example [26, Chapter 6]). We
assume that a TM M takes as input the encoding of A (or (A,v,V)), denoted by enc(.A)
(resp. enc(A,v,V)), even if we write M (A) (resp. M(A,v,V)) for the sake of brevity.

In all cases that we consider in this paper, the initial configuration of a TM is FO
definable [21] and therefore, to prove that A captures C, it suffices to verify conditions 1
and 2 in Definition 2.7 for f(enc(A,v,V)) = [a](A,v,V), where v,V encode the initial
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Expl[z](A,v,V) = {v(z)}
Expl[X](A,v,V) = {V(X)}
{e}, AV, VEp

0, otherwise

Expl[p](A, v, V) = {

Explag + ag](A,v, V) = Explay](A, v, V) U Expl[as](A, v, V)
Expllag - az](A, v, V) = Expl[a1](A, v, V) o Expllas](A, v, V)

Expl[Ty.a](A,v, U Expl[a](A, v[a/y],V)
a€A

Expl[ZY.a](A,0,V) = | Explla](A,v, V[B/Y])
BCAF

Table 1 Intermediate semantics of £S0(A) formulae.

configuration of a TM that corresponds to f. Finally, we often use that (a) A,v,V = ¢ can
be decided in deterministic logarithmic space, if ¢ is an FO formula, and in deterministic
polynomial space, if ¢ € S0, for every finite structure .4 [21], and (b) given A, the lexicographic
order on k-tuples over A induced by < is FO expressible and is also denoted by <.

3 The quantitative logic £S0(4)
The logic £S0(A) over o, where A € {FO, S0}, is defined by the following grammar:
ax=z | X | ¢ | (a+a) | (a-a) | Zya | Y.« (2)

where ¢ is in A, x, y are first-order variables, and X, Y are second-order variables. The
syntax of logic £S0(A) is the same as that of £QS0(A), where a formula can also be a first-
and second-order variable, but not a number s € N. TF0(A) is the fragment of £S0(4) in
which ¥ is not allowed over second-order variables. We say that a £S0(A) formula is z-free
(resp. X -free) if it is given by grammar (2) without x (resp. X).

» Notation Remark 3.1. We denote X - ¢(X) (or p(X) - X) by ¢(X).

We define the semantics of the logic £ZS0(A) in two phases: a formula « is mapped to a
set of strings. Then, the semantic interpretation of formula « is defined to be the size of
this set. Formally, [o](A,v,V) = [Explla](A,v, V)|, where Expl[a](A, v, V) is recursively
defined in Table 1. Expl stands for Explicit and we call Expl[a](A, v, V) the intermediate
semantic interpretation of formula a. Note that U and o between sets of strings have replaced
sum and multiplication of natural numbers, respectively, in the semantics of QS0. S; U Ss is
the union of S; and Sy, whereas S; 0 Sy is concatenation of sets of strings lifted from the
concatenation operation on strings, that is Sy 0 Sy ={zoy | z € S1,y € Sa}. For example,
{g,a1,az2a3} o {e,a2a3} = {¢, azas, a1, a1a2as, asasasasz}, where ¢ denotes the empty string.
In specific, if one of Si, Sy is (), then S; o Sy = 0.

» Notation Remark 3.2. For a finite set K, K* := J,, o K" denotes the set of strings over K,

P(K*) the powerset of K*, and ¢ the empty string. For an A over o, Ry := P(A*) denotes
the set of relations on A of arity k.
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» Remark 3.3. Note that for a formula a € £S0(A) and s € Expl[a](A, v, V), we have that
5 € (AUU;enRi)*. In this paper, we consider logics that are either X-free or z-free,
and so for a formula « in some of these logics and s € Expl[a](A,v, V), either s € A* or
5 € (U;jeny Ri)*, respectively.

The length of a, denoted by |/, is defined as the length of « as a string of symbols, boolean
formulae and sum operators are treated as one symbol. The length of s € A* U (U, Ri)",
denoted by |s|, is the standard length of strings. It is not hard to define an encoding enc(s)
of s, such that |enc(s)| < |s|-log|A], if s € A*, and |enc(s)| < |s| - |A|*, if s € (U;<ijep Ri)*

» Lemma 3.4. Let a be a £S0(A) formula over o. For every finite ordered structure A over o,
v, and V, and every s € Expl[a](A,v,V), |s| < |a]. Moreover, (a) if « is an X -free formula,
then |enc(s)| < |a| - log|A|, and (b) if o is an x-free formula, then |enc(s)| < || - poly(|A]).

3.1 The logic £30(A) with recursion

By adding a function symbol f to the syntax of ZSO0(A), we obtain formulae defined below:

Bi= o | X | ¢ | flar.z) | (B+8) | (8-8) | Ty.8 | TY.B 3)

where [ is a first-order function symbol with arity(f) = k, and 1, ..., 2 are first-order
variables, also denoted by Z. In like manner, we can add a second-order function symbol to
£S0(A). In particular, we consider only second-order function symbols of arity 1, i.e. of the
form f(X), where X is a second-order variable. A £S0(A) formula 8(X, f) with a second-order
function symbol f(Y) is called arity-consistent when it has at most one free second-order
variable X, where X has the same arity as Y. We fix an arity k for the first-order function
symbol, or the argument of the second-order function symbol.

To extend the semantics of £ZS0(A) to the case of formula f(z1,...,x), we say that F is a
first-order function assignment for A, if F(f) : A¥ — P(A*). In the case of formula f(X), we
say that F is a second-order function assignment for A, if F(f) : Ry — P(K*), where K can
be either A or ;o Ri. We define FOF to be the set of functions h : A¥ — P(A*), SOF the
set of functions h : Ry, — P(A*), and RSOF the set of functions h : Ry — P((U;en Ri)*)-

Given v and V, we define Expl[f(Z)](A,v,V, F) := F(f)(v(Z)) and [f(Z)](A,v,V, F) :=
|F(f)(v(Z))|. The semantics of f(X) are defined in an analogous way. Now we can add to

the syntax of £S0(4), formulae of the form [Ifp;5](Z) (resp. [ifp,B](X)), where § is a (resp.

arity-consistent) £S0(A) formula equipped with a first-order (resp. second-order) function
symbol f. To define the semantics of [Ifp; 5](Z), we first define two lattices. The first lattice
is (P(A*),C), i.e. it contains all sets of strings over A. The bottom element is () and the
top element is the set A*. The second lattice is (FOF,<p): for g,h € FOF, g <p h iff
g(%) C h(Z), for every F. The bottom element is gy which takes the value §) for every ¥, and
the top element is g4, which is equal to A* for every Z. For an infinite increasing sequence
of functions hy <p hy <p h3 <p --- from FOF, we define lim,_, ; o hy, := h, where for
every z € A¥, h(z) = U, ey hn(@).

We interpret 3(%, f) as an operator T on FOF. For every h € FOF and @ € AF,
Ts(h)(a@) = Expl[8(Z, f)](A,v,V,F), where v is a first-order assignment for A such that
v(Z) = @ and F is a first-order function assignment for A such that F(f) = h. The following
propositions state that T is monotone on (FOF, <p).

» Proposition 3.5. Let [ be a first-order function symbol with arity(f) = k and 8 be a
formula over o defined by grammar (3), such that if 8 contains a function symbol, then this
function symbol is f. Let also A be a finite ordered structure over o, h,g: A¥ — P(A*) and
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H, G be function assignments such that H(f) = h and G(f) = g. If h <p g, then for every
first- and second-order assignments v and V', respectively:

Expl[8](A,v,V, H) C Expl[f](A,v,V,G).

» Proposition 3.6. For every formula [Ifp, B|(%), where B is in £SO(A) equipped with a
first-order function symbol, operator Ty is monotone on the complete lattice (FOF,<p). In
other words, for every h,g € FOF, if h <p g, then Tg(h) <p Ts(g).

Thus, by the Knaster-Tarski theorem, T3 has a least fixed point. To compute the least
fixed point of T}, let us consider the sequence of functions {h;}ien, hi : A¥ — P(A*), where
ho(@) = 0 for every @ € A, and h;y1 = Ts(h;), for every i € N. We define Ifp(Tj) :=
limy, 4 o hp. Finally, Expl [lfp,5](Z) |(A, v, V) = lfp(Ts)(v(Z)) = limy— o0 by (v(Z)) and
[ p;B1(Z) [(A, v, V) = [limy, 1 o hp(v(F))]. The semantics of [lfp,B](X) are defined in a
completely analogous way. Examples 4.3, 4.8, and 4.9 make clear how formulae of the form
[fp;8](Z) are interpreted.

The logics we define below are fragments of £30(80) with recursion. Given a formula
[fp;8](Z) or [lfp;B](X) in any of them, operator Tj is monotone on the complete lattice
(F,<p), where F can be FOF, SOF, or RSOF.

» Remark 3.7. The name of a logic with recursion will be of the form Ry, Zp,(Ls), where
L; € {fo,so} indicates that function symbol f is over first- or second-order variables,
respectively, Ly € {fo, so} means that quantifier ¥ is over first- or second-order variables,
respectively, and Lz € {FO, S0} means that ¢ in (2) is in Ls.

4 Logics that capture SpanlL and SpanPSPACE
» Definition 4.1. R¢,Z¢o(FO) over o is the set of formulae [Ifp,B](Z), where B is defined by:

Bu=a | flx,...;xk) [ (B+6) | (a-p) | Typ (4)

where « is an X -free LFO(FO) formula over o, x1,...,xk,y are first-order variables, and f is
a first-order function symbol.

» Remark 4.2. Notice that for a formula [lfp;3](Z) € RsoZs0(F0), it may be the case that
[ p;B](¥) ](A,v, V) = +o00 analogously to the fact that the computation of an NLTM may
contain cycles. For the sake of simplicity, we assume that an NL-transducer M can have
infinitely many accepting paths and SpanL contains functions from ¥* to NU {+oco}. To be
in accordance with the literature, we can adjust the syntax of R¢oZso(F0) formulae to express
the operation of the clock attached to NLTMs as discussed in Remark 2.4.

Let N be an NL-transducer and A be over ¢ with |A| = n. The number of different
configurations of N is at most n* — 1 for some k € N. To encode them, we use k-tuples over
A. To encode the output symbol, if any, that is produced at some configuration, it suffices to
use two distinct elements of A, since the output alphabet is ¥ = {0, 1}; we use the minimum
element and the successor of the minimum element, which are both FO expressible. Below, we
informally write ¢(c) to denote ¢(x) interpreted in A where first-order variable x is assigned
c € A. Formula [Ifp span_ () counts the different valid outputs of NV, where spani(Z, f) is:

—

acc(Z) + L§.Xz. (outputy (&, 7, z) + output, (Z, 7, 2) + nexto(F, §) + next, (L, 7)) - f(7).
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Algorithm 1 NLTM M Sp3*®.

Input: v, A,v,V, where v is a subformula of

1 if v == « has no function symbol then simulate the transducer from
Proposition 4.5

2 if v == f(¥) then simulate MSp3** (5, A, v[v()/Z],V)

3 if v ==, + 72 then

4 non-deterministically choose 7' € {v1,72}

5 simulate M‘S’jz)sub(“y'7 A, v, V)

6 if v==a -~ then

7 for s € A* where |s| < |a| do

8 ‘ if s € Expl[a](A,v,V) then simulate MSpf,"b('y’,A, v, V)
9 if y ==5 y.7 then
10 non-deterministically choose a € A
11 simulate M Sp5**(v', A, v[a/y], V)

Interpretations of z and &, ¢ encode a bit of the output, and configurations of N, re-
spectively. Formulae next;(c, c_;)7 ¢t = 0,1, say that if N is in configuration ¢ and makes
non-deterministic choice 4, then it is in d , and no output symbol is produced. Formulae
output; (¢, d ,b), 1= 0,1, state that N makes choice ¢ and so it transitions from configuration
Zto ¢ and writes the bit encoded by b on the next output cell. When N is in some ¢ that
only a deterministic transition can be made, then exactly one of next;(é, c_")7 output; (¢, c, b),
i = 0,1, is satisfied in A for a ¢ € A* (and a b € A). Formula acc(@) states that & is the
accepting configuration. All aforementioned formulae can be expressed in FO. Note that
for any A, v, and V, Expl[ [lfp ;span_|(Z) |(A, v, V) is a set of strings in A* that encode the
outputs of N.

/1

/0 /1

Crej Cacc

Figure 1 The computation tree of a transducer N on some input enc(A). ¢/b represents that N enters
configuration encoded by ¢ and writes bit b on the output tape.

» Example 4.3. Consider the computation tree shown in Figure 1 which corresponds to
a transducer N that on input enc(A) has three outputs, and spany(enc(A)) = 1. Let 0,1
denote the minimum and the successor of the minimum element of A, respectively. Then,
Expl[ [lfp; spani ] (%) | (A, v[Cacc/T]) = {5} and
Expl{[1fp; spanc|(2) | (A, v[ére; /7)) =
Expl[ [lfp span,|(Z) ](A, v[é1/]) = (Z)U{l} f(@)Uf(cs) ={1}e(00P)U{l}ofe} = {1},
Expl[ [ifp span,](Z) ](A, v[Cinit /Z]) = DU {0} o f(¢1) = {01}.
Intuitively, the intermediate interpretation of [lfp; spani](¢) is the set of the different valid
outputs N produces during its computation starting from the configuration encoded by ¢.
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» Proposition 4.4. Given an NL-transducer N, spany (enc(A)) = [ [lfp sspan ] (Z) [(A, v, V),
for every A, v, and V, such that v(Z) encodes the starting configuration of N.

To prove that RepXe(FO) C SpanL, first note that X-free ZFO(F0) formulae can be easily
evaluated by NLTMs as Proposition 4.5 states.

» Proposition 4.5. For every X -free £FO(FQ) formula « over o, there is an NL-transducer
M, that on input enc(A,v,V) has exactly one accepting run for each s € Expl[a](A,v,V),
on which it outputs enc(s), and no other accepting runs.

» Proposition 4.6. Let [Ifp5](Z) be an ReoLto(FO) formula over o. There is an NL-transducer
Mg, such that spanyr, (enc(A,v,V)) = [[ifp,;5](Z) [(A,v,V), for every A,v and V.

Proof. Let [Ifp;5](Z) € ReoZeo(F0). The NL-transducer Mg (A, v, V) calls MSp3* (8, A, v,V)
from Algorithm 1. If 3 does not contain a function symbol, then [ [Ifp,S](Z) ](A,v, V) =
[B](A,v, V). By Proposition 4.5, there is an NL-transducer M, such that
spanp(enc(A,v,V)) = [B](A,v,V). In this case, let Mg be M. Similarly, for any sub-
formula « of 8 without function symbols, M, is the NL-transducer associated with «a from
Proposition 4.5. <

» Theorem 4.7. Ri X (FO) = Spanl over finite ordered structures.
The following are examples of specific SpanL problems expressed in Rg,Zso (FO).

» Example 4.8. Let § = (V,E, <) represent a directed graph with a source. Then,
[[fp;B](z)][(G,v,V) is the number of sinks in the graph, where 3(z, f) := Vy-E(x,y) -
x4+ Xy.E(x,y) - f(y), and v(z) is the source of the graph.

» Example 4.9. Let N = (Q = {q0,---,@n-1,%0,---€m}, L, By, E1,<) represent an NFA
N over the input alphabet {0, 1}, together with 1™; @ is the universe, L = {{o,...,lm}
is a relation that distinguishes states of N from the encoding of 1™, and E;, i = 0,1,
is the set of i-transitions of N. Let SB(x,y, f) := acc(z) + (y < max) - X' Xy’ . (v =
y+1)- (Eo(x, ') -ming + Fy (x, 2") -minl) - f(«',y"), where ming and min;, and max express
the minimum, the successor of the minimum, and the maximum element of @, respectively,
acc(x) expresses that z is an accepting state of N, and y' = y + 1 is defined so that ¢’ is the
successor of y. Then, [ [Ifp;8](z,y) }(NV,v,V) is the number of strings of length at most m
accepted by N, where v(z) encodes the starting state of N, and v(y) encodes the minimum
element of L. This problem is SpanL-complete and was defined in [2] as the census function
of an NFA.

We now introduce the logic RgoZs0(S0), which captures SpanPSPACE.

» Definition 4.10. R;.Z:,(S0) over o is the set of formulae [lfp;B](X), where 3 is defined by:

Bu=a | f(X) [ (B+P) [ (a-p) | Xyp | XV.B (5)

where « is an X -free £S0(S0) formula over o, y is a first-order variable, X, Y are second-order
variables, and f is a second-order function symbol.

» Remark 4.11. Relations Ry, ..., R,, on A with arity(R;) =k, 1 < j < m, can be encoded
by one relation R on A of arity k + [logm], by defining R(%,@) iff R;(@), for every @ € A¥,
where 7 is the i-th smallest [log m]-tuple over A. We use this observation to show that a
second-order function symbol f with arity(f) = 1, suffices to capture SpanPSPACE.
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» Remark 4.12. To avoid formulae [Ifp ;3](X) € ReoZs0(S0) with [ [Ifp;3](X) [(A,v, V) = 400,
we can adjust the syntax of RgoZs0(S0) similarly to Remark 4.2. The only difference is that
now the clock imposes an exponential-time bound.

Let A over o with |A| =n and M = (Q, 3,0, g0, ¢r) be a non-deterministic poly-space
transducer that uses n¢ — 1 space. Let also k = max{d, [log |Q|]}. We can use k-tuples over
A, to encode n? — 1 tape cells and |Q| states. W.l.o.g. assume that M has a single tape. A
configuration of M can be encoded by the tuple of k-ary relations C = (T, E, P,Q): T()
iff cell ¢ encoded by € contains symbol 1 (tape contents), E(¢) denotes that all cells greater
than ¢ contain the symbol . (end of zeros and ones on the tape), P(¢) indicates that the
head is on cell ¢ (head’s position), and Q(¢) means that N is in state ¢ that is encoded by
¢. As in the case of SpanL, a bit that M outputs at some time step is encoded using two
elements of A. Formulae Next;(X,Y), Output,(X,Y,z), i = 0,1, and Acc(X) express similar
facts for the computation of M as the respective formulae defined for SpanL. They can be
expressed in FO as the formulae that describe the computation of an NPTM in the proof
of Fagin’s theorem [21]. By Remark 4.11, the aforementioned formulae can be replaced by
first-order formulae such that a unique relation is used to encode the configuration of M.
Therefore, we abuse notation and write Next;(X,Y"), Output,(X,Y, z), and Acc(X).

» Theorem 4.13. R,,X,(SO) = SpanPSPACE over finite ordered structures.

Proof. The proof of RgXs(SO) C SpanPSPACE is analogous to that of Proposition 4.6.
For the inclusion SpanPSPACE C R4, ¥ (SO), given a non-deterministic poly-space trans-
ducer M, consider the formula spanpspace(X, f) = Acc(X) + ZY.):a:.(OutputO(X7 Y,z) +
Output, (X, Y, z)+Nexto(X,Y)+Next; (X,Y))- f(Y). Then, [[Up; spanpspace] (X) (A, v, V) =
spany(enc(A)), for every A, v, V', such that V(X)) encodes the initial configuration of M. <=

5 R I (S0) captures #PSPACE

In this section, we prove that the logic £S0(S0) equipped with a second-order function
symbol and a restricted form of recursion captures #PSPACE over finite ordered structures.
Superscript r in the name of the logic stands for the fact that recursion is restricted.

» Definition 5.1. R %.,(S0) over o is the set of formulae [fp; B](X), where 3 is defined by:

Bu= a | (a+p) | ZY.0(X,Y)- f(Y) (6)

where X, Y are second-order variables, v is an SO formula over o, a is an x-free £S0(S0)
formula over o, and f is a second-order function symbol.

» Remark 5.2. In the case of #PSPACE, we can attach a clock to non-deterministic poly-
space TMs, and restrict the syntax of R Eg,(S0) accordingly, as in Section 4. An alternative
approach is the following: it can be proven that for every § € RL Zs,(S0), [3] is in FPSPACE
in the sense that there is a deterministic poly-space TM N such that on input enc(A, v, V)
outputs [B](A,v, V), if [B](A,v,V) € N, and the symbol L, if [B](A,v,V) = +oo. By
Proposition 2.5, R[ ¥, (SO) C #PSPACE, where we consider a slightly different kind of a
non-deterministic poly-space TM which on input z, if f(x) = 400, it outputs L and halts,
and if f(x) =m € N, it generates m accepting paths.

» Theorem 5.3. Rl ¥, (SO) = #PSPACE over finite ordered structures.
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6 R’ (FO) captures TotP

SO0 SO

We define a fragment of £S0(FQ) with recursion, which we call RE,Z% (FO). Definitions 6.1

SO0Tso
and 6.2 will be used to restrict the use of ¥ operator.

» Definition 6.1. We say that a formula ©(Y) syntactically defines Y if o(Y') is of the form
YyY (§) < ¥(Y), for some formula 1.

» Definition 6.2. We say that a formula ¢(X,Y) (a) extends X to Y if it is of the
form V§Y(§) < X (@) V¥ (X,¥), and (b) strictly extends X to Y if it is of the form
Vi(Y () < X(@§)VY(X, 7)) A (=X (DAY (), for some formula ¢ and arity(X) = arity(Y').

» Notation Remark 6.3. (a) Y := ¢ - « denotes LY.p(Y) - o, where ¢ syntactically defines Y
and (b) Y := p(X) - f(Y) denotes LY.p(X,Y) - Y - f(Y), where ¢ (strictly) extends X to Y.

» Definition 6.4.

(a) The £S0*(FQ) formulae over o are the x-free £SO(FQ) formulae with the restriction that
the second-order sum operator only appears asY := ¢ -a, ¢ € FO.

(b) REZL,(FO) over o is the set of formulae [lfp, B](X), where B is defined by:

S0 so

Bu=a | Yi=9pX)-f(Y) | a+B | ¢-B | B+B+T | ¢p-B+—¢- (7)

where « is a £S0%(FQ) formula, ¢,1 € FO, ¢ strictly extends X to Y, and f is a
second-order function symbol.

To express the generic TotP problem in RL IZ (F0), we first describe how an NPTM run
can be encoded. Let A be of size n and N = (9, %, 4, qo, ¢r) be an NPTM that uses at most
n? — 1 time. W.l.o.g. assume that N has a single tape. We define I' = X U {.} = {0,1, .},
I'g =T x Q, and k = max{d, [log(3 + 3|Q|)]}. To encode cells, time steps, and symbols in
I'uT'g, we use k-tuples over A. Let S be a relation of arity 3k, such that, if i represents
the symbol v € T, then S(¢,#,7) signifies that cell & contains symbol v at time step &I 7
represents the symbol-state pair (v,q) € I'g, then S(é,t,7) signifies that & contains symbol 7,
the head is at cell & and N is in state ¢ at time step . We use the FO expressible formulae
Z 4+ 1 and min to describe the successor of £ and the minimum k-tuple, respectively.

We say that a relation S of arity 3k on A describes a partial run cocy - - - ¢, of N, when
(a) there is some t e A, such that for every < T, there are &7 € A, such that S(e, t, ),
and for every ¢/ > t and &7 € A¥, not S(¢, ¢, 7), (b) S(—, min, —) describes the encoding
of the starting configuration ¢y, and (c) if S(—,¢,—) describes the encoding of ¢;, then
S(—,t+1,—) either describes the encoding of ¢;; 1 or is empty. We say that formula (¢, 1, )
describes a partial run cocy - - - ¢, when ¢ defines in A a relation that does so. We use the
standard notion of deﬁnablhty7 where (%) defines R in A, if for every @ € A*, R(a) iff
A,v[d/Z] = ¢(Z). For example, let Sy be a relation of arity 3k that describes the beglnnlng
of a run by N on enc(A). Sy can be defined in FO by § = min A ¢, (Z, Z), where ., encodes
the starting configuration, as, for instance, in [21].

Below we define formula tot(X, f), the least fixed point of which applied on Sy is equal
to the number of branchings of N on input enc(A):

branch(X Z Y :=ndet;(X) - f(Y) + T) + —branch(X)(nfinal(X) - ¥ := det(X) - f(Y)).
i=0,1

Let X be interpreted as a relation S, that describes a partial run cg ... ¢, of N. Formula
branch checks whether the current configuration c¢,, creates a branching. Formulae ndet;,
i = 0,1, and det extend S, to a relation S, that describes the run cg...cpcmy1, where
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Cm+1 1s the configuration that NV reaches from ¢, by making non-deterministic choice i or a
deterministic transition, respectively. The evaluation continues recursively on S,c,,. Finally,
if ¢;, is a configuration where N halts, nfinal becomes false and recursion stops. Moreover,
ndet;(X,Y), i =0,1, and det(X,Y’) are FO formulae that strictly extend X to Y. As a result,
there is a bijection between the strings in Expl[[lfp; tot](X)](A,v, V) and branchings of
N(enc(A)). Assume that ¢, is a configuration that is not the initial configuration ¢y and
leads to a non-deterministic choice. Then, ¢, can be mapped to a string Sjo...05; € (Ra)*
in Expl[ [ifp; tot](X)](A, v, V), where S; extends S;_1, for every 2 < j <4, and S; describes
co---Cm- If ¢o leads to a non-deterministic choice, it is mapped to string .

» Proposition 6.5. Given an NPTM N, [[lfp; tot](X)[(A,v,V) =
#(branchings of N(enc(A)), where V(X) encodes the initial configuration of N.

The specific form of any [Ifp, 3](X) € RS, I, (FO) guarantees that there is an NPTM that

SO0~ so

generates a number of paths equal to [ [Ifp, 5](X) J(A,v, V) + 1.

» Theorem 6.6. R X! (LFP) = TotP over finite ordered structures.

7 Conclusions and open questions

Inspired by the two-step semantics developed in the context of weighted logics, we introduced
two-step semantics that enriches the existing framework of quantitative logics, i.e. logics
for expressing counting problems. We provided logical characterisations of SpanL and
TotP, answering an open question of [5]. Furthermore, we determined logics that capture
SpanPSPACE and FPSPACE. Compared to the other classes, the logic that captures TotP
was defined in a more complicated way that is related to the properties of TotP problems:
recursion of the logic expresses self-reducibility and the restricted form of the recursion
captures the easy-decision property. It is worth investigating whether TotP is captured by
a simpler, more elegant logic. The intermediate semantics can express sets of computation
paths of TMs, different valid outputs of transducers, or solutions to computational problems.
In particular, in the case of SpanL and SpanPSPACE, union and concatenation of sets are
more suitable than addition and multiplication of QS0; when the union (resp. concatenation)
of two sets of strings is computed, identical outputs will contribute one string to the resulting
set. In general, using the intermediate semantics, it becomes possible to keep track of paths,
outputs, and solutions, apply operations on them, and then count them. Another difference
between our logics and quantitative logics from [5], is that in [5], only first-order function
symbols were considered and interpreted as functions h : A¥ — N. Then, the respective
second lattice (F,<p) is not complete and the least fixed point was defined by considering
the supports of functions in F [5, Section 6]. By defining here, functions whose values are sets
of strings, the lattice (F, <p), where F is one of FOF, SOF, or RSOF, becomes complete,
and the definition of the least fixed point is straightforward.

The two-step semantics we propose in this work is noteworthy for reasons beyond its
primary objective. For instance, by specifying the concrete semantics such that any non-empty
set maps to 1 and the empty set to 0, our results yield least-fixed-point logical characterisations
of NL and PSPACE, the decision variants of SpanL and FPSPACE, respectively. It is known
that these two classes are captured by FO and SO, equipped with the transitive closure
operator, respectively [21]. Our logics combine the least fixed point with quite natural
syntactic definitions, without resorting to different fixed-point operators for each logic.

We believe that the logical characterisation of SpanL can yield more direct ways to
approximate its problems. Rg,Zso(FO) formulae bear some resemblance to regular grammars,
(or, equivalently, to NFAs), since the syntax of the logic, at each recursive call, concatenates
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a string of fixed length from the left with f(Z). An interesting question is whether one can
adjust the fpras for #NFA and apply it directly to the syntax of R¢oZso(FO), giving an fpras
metatheorem for the logic. Moreover, it is only natural to investigate the class that results
from allowing arbitrary concatenations of recursive calls, and to expect a natural connection
to context-free languages. Note that the problem of counting the strings of a specific length
accepted by a context-free grammar admits a quasi-polynomial randomized approximation
algorithm [19] and it is open whether it has an fpras.

Another interesting question remains the logical characterisation of a class for which
computing the permanent of a matrix is complete under parsimonious reductions. This was
the first problem shown in [32] to be #P-complete under Turing reductions, and it has an
fpras [22]. Therefore, such a result would provide a new subclass of FPRAS and refine the
complexity of the well-studied PERMANENT problem.
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—— Abstract
In 1992 Bir6, Hujter and Tuza introduced, for every fixed connected graph H, the class of H-graphs,

defined as the intersection graphs of connected subgraphs of some subdivision of H. Such classes
of graphs are related to many known graph classes: for example, K»-graphs coincide with interval
graphs, Ks-graphs with circular-arc graphs, the union of T-graphs, where T ranges over all trees,
coincides with chordal graphs. Recently, quite a lot of research has been devoted to understanding
the tractability border for various computational problems, such as recognition or isomorphism
testing, in classes of H-graphs for different graphs H.

In this work we undertake this research topic, focusing on the recognition problem. Chaplick,
Topfer, Vobornik, and Zeman showed an XP-algorithm testing whether a given graph is a T-graph,
where the parameter is the size of the tree T'. In particular, for every fixed tree T the recognition of
T-graphs can be solved in polynomial time. Tucker showed a polynomial time algorithm recognizing
K3-graphs (circular-arc graphs). On the other hand, Chaplick et al. showed also that for every fixed
graph H containing two distinct cycles sharing an edge, the recognition of H-graphs is NP-hard.

The main two results of this work narrow the gap between the NP-hard and P cases of H-graph
recognition. First, we show that the recognition of H-graphs is NP-hard when H contains two
distinct cycles. On the other hand, we show a polynomial-time algorithm recognizing L-graphs,
where L is a graph containing a cycle and an edge attached to it (which we call lollipop graphs).
Our work leaves open the recognition problems of M-graphs for every unicyclic graph M different
from a cycle and a lollipop.
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1 Introduction

One of the most important and most widely studied types of graph representations is an
intersection model, in which the vertices are represented by sets and the edges by the pairs of
intersecting sets. Due to practical and theoretical applications, intersection graphs of simple
geometric objects are among the most intensively studied. In this paper, we consider a special
kind of intersection graphs, called H-graphs, introduced by Bir6, Hujter and Tuza [5]. Since
H-graphs generalize many known geometric intersection graph classes, they form a good
background that allows to study basic computational problems in some systematic way. We
first define H-graphs formally using the terminology we adapt throughout the paper.

Let H be a connected graph. An H-model of a graph G is a pair (H?, ¢), where H? is a
subdivision of H and ¢ is a mapping from V(G) to the subsets of V/(H?), such that:

for every v € V(G), the subgraph of H? induced by the set ¢(v) is connected,

for every distinct u,v € V(G) we have uwv € E(Q) iff ¢(u) N ¢(v) # 0.

A graph G is an H-graph if G admits an H-model. In particular, every graph G is an
H-graph for some graph H, e.g., for H = G.

Many known geometric intersection graph classes are H-graphs for an appropriately
chosen graph H or are H-graphs for some simpler class of graphs H, where by H-graphs we
mean the union of the classes of H-graphs over H € H:

Ky-graphs coincide with the class of interval graphs, which are defined as the intersection

graphs of intervals on the line,

K3-graphs coincide with the class of circular-arc graphs, which are defined as the inter-

section graphs of arcs of a fixed circle,

T-graphs, where 7 contains all trees, coincide with the class of chordal graphs, which are

defined as graphs containing no induced cycles of size > 4 [14],

P-graphs, where P contains all planar graphs, coincide with the class of string graphs,

which are defined as the intersection graphs of curves in the plane.

The recent research on H-graphs, initiated by Chaplick et al. [10], aims to generalize
efficient optimization algorithms from simple classes of graphs on wider families of H-graphs,
as well as to determine the boundary of “polynomial tractability” for such computational
problems as recognition or isomorphism testing. Here we aim for efficient parameterized
algorithms, whose running time depends on the size n of the input graph and the parameter |H|,
where |H| is the size of the graph H. First, we search for algorithms that work in polynomial
time in 7 and |H|, then for FPT algorithms working in time f(|H|)n®M)
function f, and finally for XP algorithms working in time O(n/(H1)) for some computable
function f. Various NP-complete problems on H-graphs were studied in the parameterized
setting and shown to admit FPT and XP algorithms, e.g., [1,2,4,8,10,11,13,16]. Some recent
research is also focused on studying the combinatorial properties of H-graphs, which can be
later used to construct efficient algorithms in these classes of graphs (see e.g. [11,13]).

In this work we are focusing on the recognition problem. For a graph class G, the

for some computable

recognition problem for G is to decide whether an input graph G belongs to G. For a graph
class G defined in a geometrical way, the recognition problem of G usually boils down to
testing whether the input graph has a representation appropriate for the class G. There
are known linear time recognition algorithms for interval graphs [6] and chordal graphs [21].
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In the context of our research, circular-arc graphs form an important class of graphs. The
recognition problem for circular-arc graphs was initially thought to be NP-hard [7], but since
the 1980s we already know that it admits a polynomial time algorithm [22]. Currently, two
linear-time algorithms recognizing circular-arc graph are known [17,20], but both of them are
rather lengthy and non-trivial. No simple polynomial-time algorithm recognizing circular-arc
graphs is known.

Although the recognition of chordal graphs takes linear time, with a tree T on the input
deciding whether a graph G is a T-graph is NP-complete [18]. On the other hand, Chaplick et
al. [10] gave an XP algorithm parameterized by |T'| recognizing T-graphs. It is open whether
the problem can be solved by an FPT algorithm (in [9] it is shown that proper T-graphs can
be recognized in FPT, where a T-graph G is called proper if there exists a T-model (T}, @)
of G such that for no pair u,v € V(G) we have ¢(u) C ¢(v)). Moreover, Chaplick et al. [10]
showed that recognition of H-graphs is NP-complete if H contains a diamond (a cycle on
four vertices with a chord) as a minor [10]. That is, recognition of H-graphs is NP-complete
for every fixed H which contains two distinct cycles sharing an edge.

1.1 Our results
Our first result states the following, which extends the hardness result from [10]:

» Theorem 1.1. For every fixed graph H containing two distinct cycles, the recognition of
H-graphs is NP-complete.

Theorem 1.1 raises interests in M-graphs, where M is a unicyclic graph (a connected graph
containing exactly one cycle). In particular, we are focusing on:
the recognition problem for the class of M-graphs, where M is any fixed graph that
consists of a cycle and some trees attached to it,
the recognition problem for the class of medusa graphs, which are defined as M-graphs,
where M is the class that contains all unicyclic graphs. Note that medusa graphs extend
both circular-arc graphs and chordal graphs.

T 7‘7 N \ __________
>Y< HH\DTXH ek,

Figure 1.1 From left to right: a unicyclic graph M, an M-graph G, an M-model (M?, ¢) of G.

An M-model of a graph G is an M-model of G where M € M. Suppose G is a medusa
graph and suppose G admits an M-model (M?,$) for some M € M. A clique C in G
satisfies the Helly property in (M?, ¢) if Neec ¢(c) # 0, and the model (M?,¢) of G satisfies
the Helly property if every clique of G satisfies the Helly property in (M?,$). A medusa
graph G is Helly if G admits an M-model that satisfies the Helly property. Figure 1.1 shows
a fixed unicyclic graph M, another graph G which is an M-graph, and an M-model (M?, ¢)
of G. Since (M?,¢) satisfies the Helly property, G is a Helly medusa graph. We show the
following regarding medusa graph:

» Theorem 1.2.
1. The problem of recognizing medusa graphs is NP-complete.
2. The problem of recognizing Helly medusa graphs is polynomial time solvable.
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Our most important (and perhaps most difficult) result concerns the class of L-graphs (which
we call lollipop graphs), where L is a unicyclic graph that consists of a cycle with an edge
attached. Note that L-graphs extend the class of circular-arc graphs.

» Theorem 1.3. The problem of recognizing L-graphs is polynomial time solvable.

Our research reveals connections between problems we consider and certain problems
related to the Helly property studied in the class of circular-arc graphs. In particular, we
introduce the Helly Cliques problem, in which for a given circular-arc graph G and its cliques
Ci,...,C we need to decide whether G has a circular-arc model in which all the cliques
Ci,...,Cy satisfy the Helly property. We show that the recognition of medusa graphs is
polynomial time equivalent to the Helly Cliques problem. We refer to [3,12] for two different
proofs that the Helly Cliques problem is NP-complete. Also, to devise a polynomial algorithm
recognizing L-graphs, we exploit an FPT algorithm for the Helly Cliques problem (for k = 1)
devised in [12].

2 Preliminaries

We refer to the full version of this paper for the full version of this section.

2.1 Graphs and posets

All graphs considered in this paper are simple, that is, they have no multiedges and no loops.
We denote a complete graph and a cycle on n vertices by K,, and C,,, respectively. A hole in
a graph is an induced cycle on at least four vertices.

A wunicyclic graph is a connected graph that has exactly one cycle. For a unicyclic
graph M, we denote by Mo the set of vertices of the unique cycle of M.

We assume that the reader has some basic knowledge on partially ordered sets (posets).

2.2 M-graphs

Suppose M is a fixed unicyclic graph. Let (M?,¢) be an M-model of a graph G. If the
subdivision M? of M is not relevant for our considerations, we denote the model (M?, ¢)
simply by (M, ¢) or even by ¢ (if M is clear from the context). In this case we treat (M, ¢)
as the intersection model of G in which every set ¢(v) forms an arcwise connected subset of
some fixed plane drawing of the unicyclic graph M. Then My is the part of the drawing
which contains the points of the drawing corresponding to the vertices and contained in the
curves representing the edges from the unique cycle of M.

Let M be a unicyclic graph. We say that a graph G is a saturated M-graph if G has an
M-model and has no M*-model for any proper minor M* of M.

» Observation 2.1. Suppose M* is a minor of M. If G has an M*-model, then G has an
M -model.

2.3 Interval and Circular-Arc Graphs

We assume that the reader has some basic knowledge of interval and circular-arc graphs. In
our context we can define them as Ks-graphs and K3-graphs.

Given an interval graph H and an interval model ¢ of H, for every x € R we denote by
C(z) the set {v € V(H) :x € ¢(v)}. A sector S of ¢ is a maximal interval in R such that
C(x) = C(y) holds for every =,y € S. Given a sector S of ¢, the clique set C(S) of S is
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equal to C(z), where z is any point inside S. Clearly, every two sectors of ¢ are disjoint
and the union of all sectors of ¢ covers R (note that ¢ has at least two sectors S such that
C(S) =0). We say that a sector S of ¢ is:

= mazimal if C(S) is a maximal clique in H,

= minimal if C(S) C C(S’) for any sector S adjacent to S.

An interval model ¢ of H is normalized if ¢ has exactly 2¢ + 1 sectors (we count also the
sectors with the empty clique set), where ¢ is the number of maximal cliques in H. We refer
to the full version of this paper for more details on the relations between normalized interval
models of H and consecutive orderings of maximal cliques of H represented by the PQ-tree
of H (see Figure 2.1).

C(]L4) N C(]LS) N C(]LG) N

OMy).  O2).  C(ls)
. P :

D
=) D),
o @ W
= 5 BLO

i & s 5 g 8 & &8 & 5 &8
- A A

(@) A normalized interval model ¢ of H. Sectors of ¢ are (b) PQ-tree T of H with leaf
separated by dashed lines. order Lj,L2,L3,Ls,Ls,Le cor-
responding to consecutive clique
ordering C'1, C2,C3,Cy4,Cs5,Cs.

Figure 2.1

Observe that we can obtain any interval model of H in the following way: first we choose
a normalized model ¢ of H (which is equivalent to picking a consecutive ordering of maximal
cliques of H) and then for each maximal sector S of ¢ we shift (by a little) the endpoints of
the intervals of ¢ that lie on the borders of S (see Figure 2.2).

Since the definition of normalized models for circular-arc graphs is technical, we refer to
the full version of this paper for the details. Here we only mention that in such models the
relative relation between intersecting arcs (containment, covering the circle, or overlapping)
depends on the relative relation between the closed neighbourhoods of the corresponding
vertices of the graph.

3 (Helly) Medusa Graphs

We refer to the full version of this paper for the full version of this section.

Recall that an M-model of a graph G is an M-model of G where M € M. We introduce
normalized M-models, based on the following partition of V(G) into the circle part Ve and
the tree part Vp. Start with Vo = () and repeatedly add to Vi:
= V(C),if Cis a hole in G,
= V/(P), if P is an induced path in G joining two non-adjacent vertices from V.

Finally, let Vi = V'~ V. Such a partition Vo U Vr of V(G) is unique and polynomial time
computable. We call an M-model (M, ¢) of G normalized if:
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(a) An interval model ¢ of H. Sectors of ¢ are separated by (b) PQ-tree T of H with leaf

dashed lines. order Ls, L4, L3, Le, L2, L1 cor-
responding to clique ordering
Cs,C4,C5,C6,Ca, Ch.

Figure 2.2

= ¢(v) N Mo # 0 for every v € V¢,
= ¢(v)N Mo =0 for every v € Vr,
= {p(v) N Mp :v € Ve} is a normalized circular-arc model of G[V].

» Lemma 3.1. Every M-graph G has a normalized M-model 1.

Sketch of the proof: Let Vo U Vr be a partition of V(G) into the circle part Vo and the
tree part Vr of G. Let (M, ) be an M-model of G. The model (M, ) already satisfies
P(v) N Mo # 0 for every v € Vio. Let Ty,...,Ty be a partition of Vr into connected
components of G[Vr]. Let N¢(T;) be the neighbourhood of T; in the cycle part of G,
i.e. No(T;) = N(T;) N V. First we prove that for every i € [k] the graph G[T; U No(T;)]
is chordal and the set N (T;) forms a clique in G[V¢]. In particular, each G[T; U N (T;)]
has an F;-model ¢; for some tree F;. Next, we note that 1|V restricted to Mo forms a
circular arc model of G[V¢] in which each clique N¢(T;) is Helly. We normalize this model.
Finally, we obtain a normalized M-model (M’, ¢) of G by joining a point of F; contained in
N ¢i(Ne(T3)) to a point of Mo contained in () ¢(Ne(T;)) and then by merging the models
¥ and 1; for i € [k] appropriately. <

This yields our main theorem characterizing medusa graphs.

» Theorem 3.2. (see the full version of this paper for the full proof) Let G be a graph, let
V(G) = Vo U Vr be a partition of V(G) into the circle part Vo and the tree part Vi of G,
and let Ty, ..., Ty be a partition of Vr into connected components of G[Vr|. Then:

1. G is a medusa graph if and only if G[V] is a circular arc graph in which for every i € [k]
the set No(T;) induces a cliqgue in G[V¢], and G[Ve] admits a normalized circular-arc
model in which every clique Ne(T;) is Helly.

2. G is a Helly medusa graph if and only if G[V] is a Helly circular arc graph.

The conclusions of Theorem 3.2 bring our attention to the Helly Cliques problem.

» Lemma 3.3. (see the full version of this paper for the full proof) Recognition of medusa
graphs is poly-time equivalent to the Helly Cliques problem.

We can summarize the section with the following theorem (which extends Theorem 1.2).
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Figure 4.1 Above: {a,b, c}-centered L-model ¢ of G. Below left: Intervals ¢*(a), ¢ (b), ¢"(c): for
z € {a,b,c}, ¢*(z) is the shortest interval in Lo \ P that contains (Lo \ ¢(z)) and every interval
(J#(I) which has a non-empty intersection with (Lo \ ¢(z)). Below right: schematic view of ¢*

with the components Ii,...,Is. Our second key step should output H containing H such that
V(H) = {a,b,c} and E(H) = {ab, bc}.

» Theorem 3.4.

1. The problem of recognizing medusa graphs is NP-complete.

2. The problem of recognizing medusa graphs parameterized by the number k of components
in the tree part G[Vr] of the input graph is FPT.

3. The problem of recognizing Helly medusa graphs is polynomial time solvable.

Proof. The statements of the theorem follow from Lemma 3.3, from the fact that the Helly
Cliques problem is NP-complete [3,12] and can be solved in time 2°*1°8%) poly(n) [12], and
from the fact that Helly circular-arc graphs recognition can be solved in linear-time [19]. <

4 Lollipop Graphs

In this section we derive a polynomial time algorithm for recognizing L-graphs, where L is the
graph which consists of the clique K3 and an edge attached to one vertex of K3 (L is called
a lollipop and L-graphs are called lollipop graphs). Since there are known polynomial-time
algorithms recognizing K s-graphs [10] and K3-graphs [17,20], we assume that an input
graph G = (V| E) is not an L*-graph for any proper minor L* of L. Hence our goal is to test
whether G is a saturated L-graph.

We fix a plane drawing of L which consists of the circle Lo and the stick Lg attached to
Lo in the point P (see Figure 4.1 for an illustration). Then we treat an L-model ¢ of G as
the intersection model of G in which every set ¢(v) forms an arcwise connected subset of the
drawing of L. We call the arcs contained in Lo \ P as intervals and we introduce left-right
orders of the points in Lo \ P (consistent with the clockwise order) and in Lg ~ P.

Let C be a clique of G. An L-model ¢ of G is C-centered if C ={v €V : P € ¢(v)}
and G is C-centered if G admits a C-centered L-model. For example, the model ¢ shown in
Figure 4.1 is {a, b, c}-centered.

Our approach consists of three key steps. The first step is summarized as follows.
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» Theorem 4.1. There is a polynomial time algorithm that, given a graph G, either decides
that G is a saturated L-graph, or outputs a set of cliques C of G such that, if G is a saturated
L-graph then G is a C-centered L-graph for some C € C.

Given the above theorem it remains to efficiently decide whether G is a C-centered graph for
some fixed clique C of G. Let Z denote the set of components of G[V \ C]. Note that for
every I € T the set I induces an interval graph in G if G is C-centered.

Suppose ¢ is a C-centered model of G. To describe our second step, for every c € C' let
¢*(c) denote the shortest interval in Lo ~\ P containing the interval Lo \ ¢(c¢) and every
interval |J ¢(I) whenever Lo \ ¢(c) intersects | J #(1), for I € Z. Let H, be an interval graph
with the vertex set C' = {c € C': ¢*(c) # 0} and with the intersection model given by the
intervals {¢*(c) : c € C"}.

Let C' C C and let H be an interval graph on the vertex set C’'. A C-centered L-model
¢ of G is (C, H)-centered if Hy, = H and G is (C, H)-centered if G admits a (C, H)-centered
model. For example, the model ¢ from Figure 4.1 is ({a, b, ¢}, H)-centered, where H is such
that V(H) = {a,b,c} and E(H) = {ab,bc}. Our second step comes down to the following.

» Theorem 4.2. There is a polynomial time algorithm that, given a graph G and a clique
C CV(G), outputs a set of interval graphs H such that, if G is a C-centered L-graph, then
G is a (C, H)-centered L-graph for some H € H.

Our final step, which is the most technical and probably most difficult, can be summarized
as follows:

» Theorem 4.3. There is a polynomial time algorithm that, given a graph G, a clique
C CV(G), and an interval graph H on a subset C' of C, decides whether G is a (C,H)-
centered graph.

The algorithm from Theorem 4.3 exploits dynamic programming along the PQ-tree of H
to test whether there is a partition (J,J’) of the components of Z together with a total
ordering < of J such that there is a (C, H)-centered model ¢ of G that places the interval
graphs of J on Lo \ P in the order < and the interval graphs of 7’ on the stick Lg.

4.1 Sketch of the proof of Theorem 4.1 (the first key step)

We refer to the full version of this paper for the full proof.

Let G be a graph which is neither K 3-graph nor Ks-graph. Let Vo U Vr be the partition
of V(@) into the circle part Vi and the tree part Vp of G, and let T be the set of all maximal
cliques of the chordal graphs G[T' U N¢(T)], where T runs over the components of G[Vr]
(see Section 3). The algorithm for Theorem 4.1 works as follows. For every C* € T:

output C* and denote by Z* the components of G[V ~ C*],

for every component I € Z* let C' = {v € C* : v has a neighbour in I},

accept G as saturated L-graph if G[I U C’] admits a circular arc model with C’ Helly
(we use a poly-time algorithm for the Helly Cliques problem with k = 1) and G[V \ I]
admits an interval model with C* as the leftmost maximal clique,
if G[I] is an interval graph, then for every maximal clique D of G[I] output the clique
C(D)=C"U{veD:C"CN(()}.
Now we give a sketch of the proof that this algorithm is correct. Assuming G is a saturated
L-graph, we first argue G admits an L-model ¢ such that:

there is a clique C* from T such that the set (] ¢(C*) is contained in Lg \ P and () ¢(C*)

is as close to P as possible,
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for every component I € Z* we have either | J¢(I) C Lo or |Jo(I) C (Ls \ P).
As we show in the full version of this paper, such properties are satisfied by so-called saturated
L-models of G. Given such ¢, we fall into one of the following cases:

P is not covered by |J@(I) for any I € Z*. Then ¢ can be easily turned into C*-centered
L-model of G (since the algorithm adds C* to C, Theorem 4.1 is satisfied).

P is covered by |J¢(I) for some I € Z*. The algorithm accepts G if I is the only
component on Lo (which possibly induces a circular-arc graph and covers the whole
circle Lp). Otherwise, if two components from Z* are represented on Lo, then all the
components in Z* induce interval graphs in G. In this case we argue that ¢ can be turned
into a C'(D)-centered model, where D is a maximal clique in G[I] with () ¢(D) next to P
(since the algorithm adds C(D) to C, Theorem 4.1 is satisfied).

Given the previous, the algorithm for Theorem 4.1 either accepts G, or outputs C of size at

most O(n?) (T has size O(n) and for every C* € T the total number of maximal cliques in

the interval components of G[V ~\ C*] is O(n)).

4.2 Sketch of the proof of Theorem 4.2 (the second key step)

We refer to the full version of this paper for the full proof.

Counsider a graph G and a clique C of G. Let Z be the set of components of G[V \ C].
For now, consider a C-centered model ¢. Then every I € Z induces an interval graph and
{¢(v) | v € I} is an interval model for G[I]. We partition I € Z according to the intersection
with Lo and Lg in the model ¢:

Igz{IeI:U¢(I)gLO} and Ij;:{IeI:U(;s(I)gLS}.

For I € Z, let C(I) = {c € C : ¢ is not adjacent to some vertex in I'}. Let ¢ be a C-
centered model of G. Note that the graph Hy, defined in Section 4, can be equivalently
defined such that

C'=V(Hy) = U C(I) and E(Hy) = {{c,c'} : there is I € Ig such that ¢, € C(I)}.
IeTy

Similarly, the model ¢* of H, can be equivalently defined such that for every ¢ € C’ the set
¢*(c) is the shortest interval that contains |J@(I) for every I € Ig such that ¢ € C(I) — see
Figure 4.1 for an illustration. Note that every non-minimal sector of ¢* contains at least one
component from Ig and every I € Ig occupies a sector of ¢* with the clique set C(I).

We distinguish the interval graphs I € Z as follows:

I € 7 is called ambiguous if G[C' U I] has an interval model with C as its left-most clique

(hence, I might be placed on the stick); otherwise I is called circle.

An ambiguous component I € 7 is simple if N(u)NC = N(v) N C for all u,v € I.
We denote the sets of the circle, ambiguous, ambiguous simple, and ambiguous non-simple
components by Z., Z,, Z,s, and Z,,s, respectively. Clearly, Z. C Ig, for every C-centered
model ¢. Moreover, we show that for every I € Z. and every C-centered model ¢ of G
the component I occupies a maximal sector of ¢* and no other component occupies this
sector — see the circle component I in Figure 4.1. We additionally assume that C(I) # C(J)
for every two simple components I # J since otherwise we may simply consider the input
without J.
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We order Z based on their subset relation on {C(I) : I € Z} and their classification into
Ta, Tys, and Z,,,s. We define C; for I,J € T as

Ic,J if (C()
(C
(C

C(J)) or
C(J)and I €Z.and J €Z,) or
C(J)and I € Z,,s and J € Ias).

N

—
~ ~
— —
I

Then (Z,C,;) is a poset, where C; is the reflexive closure of Cj;.

> Claim 4.4. For every C-centered model ¢ we have Ig C 7,, the components from Igb form
a chain in (Z,C;), and the left-right order of the components on Lg coincides with (Igf, Cy).

Let D C 7 be defined as follows. For every J € Z,,
(D1) if C(I) C C(J) for some I € Z.., add J to D.
(D2) if J € T is such that the downset of J has the width at least 4 in (Z,C,), add J to D.
We show that the components from D need to be represented on the stick in any C-centered
model of G.

Since every maximal sector of ¢* contains a component from A? and the components
from A? occupy maximal sectors of ¢*, the set A? determines the set of all maximal cliques
of Hy. Hence, the interval graph H is uniquely determined by the antichain A? containing
the maximal components from (Ig7 C;). Therefore, we refer to Hy as to H(A?).

Let Z/ = Z \ D. Let A be the set of the maximal components in (Z’,C;). Let ¢ be a
C-centered L-model of G. Since A forms an antichain and Igf forms a chain, their intersection
contains at most one element. If AN Ig = (), then A% = A and we output H(A) as a
candidate. If |[ANZZ| = {4}, then A? = (A~ {A}) U A3, where Aj is an antichain in the
downset of A. Hence we try all of the O(n) maximal components in A € A combined with
all antichains in DS(A). Since A ¢ D, its downset has the width at most 3 and there are
O(n?) antichains in DS(A) which can be enumerated in polynomial time.

4.3 Sketch of the proof of Theorem 4.3 (the third key step)

We refer to the full version of this paper for the full proof.

First, we reduce the input instance G, C, H, so as there is no component I € 7 such that
C(I) is the clique set of a minimal sector of an interval model of H (the set of cliques of
minimal sectors of an interval model of H is independent on the model of H).

Let T be the PQ-tree of H, let V(T) be the nodes of T, and let R be the root of T. For
N e V(T), let L(N) denote the set of all leaves of T which descend N in T. We set £ = L(R).
For L € L let C(L) denote the clique of H represented by L. We refer to the full version of
this paper for more about PQ-trees.

Our main task is to find a partition (J,J’) of Z' = Z \. D together with a total ordering
< of J such that there is a model ¢ that places the interval graphs of J on the circle Lo in
the order < and the interval graphs of 7’ on the stick Lg.

The easy part is to check whether 7’ C Z' can be placed on the stick. We need to check
whether (J’ U D) forms a chain in the poset (Z,,C), with C being the reflexive closure of
the following binary relation C, defined for distinct I, J € Z,:

IcJ if C(I)CC%(J), where
C*(J) ={c e C: cis not adjacent to every vertex in J}.

Now, let us consider how to test whether J C 7’ together with an ordering < allows a
model that places the interval graphs of 7 in the order of < on the circle. We will denote such
an ordering (J, <) as a good order for R. Our final dynamic program then determines the
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good orderings in a bottom up fashion. Hence we will define a good order (K, <) with respect
to some node N of T and with respect to some left and right borders, (B, Bg), which are
cliques in H. Since this definition is technical (see the full version of this paper), we describe
some properties of good orderings that occur in (Ig, <), where ¢ is a (C, H)-centered model
of G and (Ig, <¢) is the left-right order of the components from Ig on Lo \ P.

Let ¢ be a (C, H)-centered model of G. For L € L let inner(L) ={I €Z': C(I) = C(L)}
and let inner‘é(]L) = inner(LL) ﬂIg, and inner%(IL) = inner(L) N Z%. Additionally, assume the
maximal cliques of H appear in ¢* in the order C(ILy),...,C(LL,). For every L; € £ we define
the left zone zonei(]Li) of L; as an interval of (Ig, <) including the components from the
sectors of ¢* contained strictly between the maximal sector S(IL;) with the clique set C(L;)
and the minimal sector of ¢* preceding S(L;) in ¢*. We define the right zone zone%(Li)
of IL; analogously and we set zone?(IL;) = zone? (IL;) U innerg (L) u zone%(Li). For a non-leaf
node N, let zone?(N) = Uy, zone?(LL). Figure 4.2 shows the zones for some example
model ¢*. Components from the sets zone’i(]Li), inner“fo)(]Li)7 and zone‘fz(Li) are illustrated
as red, black, and blue dots, respectively. We have, for example, zonef (Ls) = {Iy, I, I11 },
zonef (L) = {Ig}, and inner(LLy) = {Is, Is, Ir}. We have zone?(Q,) = {Io, ..., L1z} as

L(Qq) = {L3, Ly, L5}

zone® (Ly) zone® (LLz) zone®(Lz) zone®(Ls) zone®(Ls) zone® (Lg)
1 ‘ Ty3114 Iy5116
] 00 o0
: I3 112 : t V13 | I17 ‘ I21
: [ [ i : : [ : [
‘ v ‘ v ‘ L ovig v
P I12:95y 5 Ig I7 111910 ! t Y13 Ig o I90716I25
N T I 00 0; @ ‘ i i o e e

T ! Mo : y v ! o | v
1 4 L Ve iz Io 9 i Iig 718
@ o @ i i@
I 1 I 1 —
1 CH Ig g 1 Vig

L i

V2

Figure 4.2 Zones in ¢*.

Among others, we show that for every i € [n] (below we assume C'(LLg) = C(Lp41) = 0):
the set zonei(Li) forms a chain in (Z,, C), (zonei(Li), C) is equal to (zonef (L;), <) and
zonef(Li) respects the border C(IL;_1)NC(L;), which means C(L;_1)NC(L;) C zonef(]Li),
the set zone%(Li) forms a chain in (Z,, C), we have (zone%(]Li), C) is equal to the reverse
of (zone%(]Li), <) and zone%(Li) respects the border C(L;) N C(LL;+1), which means
C(IL;) NC(Lijzq) C zone%(Li).

The next step is to define when (K, <) is a good order for N and borders (Br, Bg).

Roughly speaking, (K, <) is defined such that it allows to derive an admissible order
Lq,..
Moreover, it is required that the left zone of IL; respects the border By, the right zone of
L,, respects the border By, and the right zone of L; and the left zone of IL;;1 respect the
border C(L;) N C(L;41) for i € [m — 1]. For example, in Figure 4.2 (zone?(L3), <) is a good
order for Ly and the borders ({v1,va}, {v1,v2,v7,vs8,v9}), (zone?(Q1), <4) = (lo, ..., [15) is
a good order for Q; and for the borders ({v1,va}, {v1,v2,v7}). Finally, the full definition of
good orders allows us to prove Theorem 4.6, which boils down the problem of searching for a
(C, H)-centered model of G to the problem of testing whether there is a “good triple” for the
set 7' and the node R.

., L,, of the leaves from £(N) and to define the zones for L; in (K, <) for all i € [m)].
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» Definition 4.5. Let N be a node of T and I* CI'. A triple (J,J’, <) is good for the
set Z*, the node N, and the borders (B, Bg), if:

{TJ,J'} is a partition of T*.

(T, =) is a good order for the node N and the borders (B, Br),

J'UD is a chain in (Z,,C).
If (B, Bgr) = (0,0), we simply say (J,J’, <) is good for the set T* and the node N.

With the notion of a good triple we obtain the following theorem that characterizes all
(C, H)-centered models of G.

» Theorem 4.6 (see the full version of this paper for the full proof). Let G be a graph.

1. For every (C, H)-centered model ¢ of G the triple (Ig,Ig N D, <) is good for I' and
the node R.

2. For every triple (J,J', <) that is good for ' and the node R, there is a (C, H)-centered
model ¢ of G such that (J, <) = (24, <) and J' UD = T5.

Our algorithm needs to test whether there exists a good triple for the set Z' = comp(R).
Roughly speaking, this technical part is done as follows: first, we carefully define the sets
comp(N) C 7’ for every node N € V(T) and then we compute good triples! for every set
comp(N) using dynamic programming over T.

5 Butterfly-Graphs

Here we sketch an approach to proving Theorem 1.1. The main task is to show NP-hardness
of recognizing butterfly-graphs, where a butterfly is the graph consisting of two K3’s joined
on one vertex.

» Theorem 5.1. BUTTERFLY-GRAPH RECOGNITION is NP-complete.

It is easy to see NP-membership [10]. To show NP-hardness, we reduce from the BIPARTITE
2-TRACK; that is to decide whether a given bipartite graph G is 2-track. A graph G is
2-track if there are sets F1, F5 whose union is E(G) such that (V(G), E1) and (V(G), E2)
are interval graphs. Gongalves & Ochem proved NP-hardness of this problem [15].

Construction: For a given bipartite graph G we construct a graph G’ that is a butterfly-
graph if and only if G is 2-track. Let .S be a star K 4 where every edge is subdivided once.
The vertex set V(G') consists of V/(S), a vertex w, for every vertex v € V(G), an edge-vertex
Wy, for every edge uv € E(G) and V(S). The edge set E(G’) consists of (V(QG))7 E(S) and
the edges of making w,, adjacent to w € V(G) \ {u, v} for every edge uv € E(G). Finally,
we add every edge between V(G) and V(S).

Given G the graph G’ can be constructed in polynomial time. It remains to show that G is
2-track if and only if G’ is a butterfly-graph. For the formal proof we refer to the full version
of this paper. Here we only sketch how we construct a butterfly-model of G’ provided G is a
bipartite 2-track (witnessed by interval models ¢1 and ¢ of (V(G), E1) and (V(G), E2)). A
butterfly-model of G’ is obtained as follows (see Figure 5.1 for an illustration):

we embed ¢, and ¢ into a subdivision H? of the butterfly as shown in Figure 5.1,

we represent the vertices of S in the center of H?,

for v € V(G) we represent w, by the set V(H?) \ (¢1(v) U ¢2(v)) (see green set ws)

for uv € E(G), we represent wy, by the set ¢;(u) N ¢;(v) if uv € E; (see red set waz).

1 Since these sets might have exponential size, the algorithm calculates only their “fingerprints”.
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Figure 5.1 A bipartite graph G (to the left) as a 2-track (red and blue edges) witnessed by
interval models ¢; and ¢ (in the middle), and a butter fly-model of G’ (to the right).

6 Conclusions

The question whether for a fixed graph H the class of H-graphs can be recognized in
polynomial time was posed by Biro, Hujter, and Tuza over 30 years ago [5]. The main results
of our work show that the boundary between polynomial and NP-hard cases of H-graphs
recognition lies somewhere between unicyclic graphs H, strictly above the class of circular-arc
graphs. The research carried out so far reveals connections between the H-graphs recognition
problems for unicyclic graphs H and certain problems related to the Helly property of
circular-arc graphs. The latter problems are now intensively studied [12] and the positive
results achieved so far allow us to state the following conjecture.

» Conjecture 6.1. The recognition of H-graphs is polynomial-time solvable if and only if H
s a unicyclic graph or H is a tree.

In particular, we believe that the techniques introduced in our work, suitably extended, can
be used to devise polynomial algorithms for the cases where H consists of a cycle and some
edges attached to it. The situation might be different when we allow to have trees attached
to the cycle in H. The difficulty might be caused by the lack of a data structure maintaining
all representations of a T-graph, where T is a tree different than a path (counterparts of
PQ-trees for interval graphs).
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—— Abstract

We consider distributed algorithms in the realistic scenario where distributed message passing is

operated by circuits. We show that within this setting, modal substitution calculus MSC precisely
captures the expressive power of circuits. The result is established via constructing translations
that are highly efficient in relation to size. We also observe that the coloring algorithm based on
Cole-Vishkin can be specified by logarithmic size programs (and thus also logarithmic size circuits)
in the bounded-degree scenario.
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1 Introduction

Distributed computing concerns computation in networks and relates directly to various
fields of study including, inter alia, cellular automata and neural networks. In this paper we
study distributed systems based on circuits. A distributed system is a labeled directed graph
(with self-loops allowed) where nodes communicate by sending messages to each other. In
each communication round a node sends a message to its neighbours and updates its state
based on (1) its own previous state and (2) the messages received from the neighbours.
Descriptive complexity of distributed computing was initiated in [8], [11] and [9]. The
articles [8] and [9] characterized classes of constant-time distributed algorithms via modal
logics. The constant-time assumption was lifted in [11] which showed that the expressive
power of finite message passing automata (FMPAS) is captured by modal substitution calculus
MSC, which is an extension of modal logic by Datalog-style rules. The papers [8], [11] and [9]
did not consider identifiers, i.e., ID-numbers roughly analogous to IP-addresses. It is worth
noting that identifiers are, for various reasons, a key concept in much of the literature on
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In this paper we study distributed computing based on circuits in a scenario with unique
identifiers. Each node runs a copy of the same circuit C. In each communication round,
the node sends its current bit string s to its neighbours and updates to a new string s’ by
feeding s and the strings sq,. .., $;, sent by the neighbours to C (letting s’ be the output of
(). This is a realistic model of distributed computing which also takes local computation —
the computation steps of the circuit — into account. Typically in distributed computing, only
communication steps count. Since we study distributed systems, we call our circuits message
passing circuits, or MPCs, although formally they are just plain circuits.

We establish an exact match between this circuit-based model and the logic MSC. Unlike
earlier works on descriptive complexity of distributed computing, we work in the circuit-style
paradigm where an algorithm is specified via an allocation function F that produces, in the
simplest case, for each input n € Z,, a circuit F'(n) that operates on all distributed systems
(i.e., labeled directed graphs, or Kripke models) of size n. As one of our main results, we prove
that programs of the MSC-logic and constant fan-in message passing circuits translate to
each other with only a linear blow-up in size. Thus, we can work interchangeably with circuit
allocation functions and MSC-program allocation functions. The related formal statements
are as follows, with II denoting the set of proposition symbols considered (including ones for
ID-bits) while A is a degree bound for graphs.

» Theorem 12. Given an MPC of size m for (II, A), we can construct an equivalent I1-
program of MSC. For a constant bound c for the fan-in of MPCs, the size of the program is
O(m).

» Theorem 13. Given II, A and a Il-program of MSC of size m, we can construct an
equivalent MPC for (I, A) of size O(Am + |II]) when A >0 and O(m + |II|) when A = 0.

We are especially interested in the feasible scenario where F(n) is a circuit of size O(logn).
From the above results we can prove that, for a constant A and constant fan-in bound, if we
have an allocation function producing log-size circuits, we also have an allocation function for
log-size programs, and vice versa. We put this into use by demonstrating that for graphs of
degree bound A, we can produce programs of size O(logn) that compute a (A + 1)-coloring
via a Cole-Vishkin [6] style approach — implying also an analogous result for circuits.

Generally, the circuit-based approach suits well for studying the interplay of local com-
putation and message passing. While important, such effects have received relatively little
attention in studies on distributed computing. We provide a range of related results.

Related work. As already mentioned, descriptive complexity of distributed computing has
been largely initiated in [9], which characterizes a range of related complexity classes via
modal logics. It is shown, for example, that graded modal logic captures the class MB(1)
containing problems solvable in constant time by algorithms whose recognition capacity
is sufficient all the way up to distinguishing between multisets of incoming messages but
no further. In the paper, the link to logic helps also in separating some of the studied
classes. The constant-time limitation is lifted in [11], which shows that finite distributed
message passing automata (FMPAs) correspond to modal substitution calculus MSC, which
is the logic studied also in the current paper. The work on MSC is extended in [15], which
proves that while MSC corresponds to synchronized automata, the u-fragment of the modal
p-calculus similarly captures asynchronous distributed automata.

Distributed computing with identifiers has been studied from the point of view of logic
earlier in [4]. The paper [4] approaches identifiers via a uniform logical characterization of a
certain class of algorithms using IDs, while our work is based on the circuit-style paradigm
with formulas and circuits being given based on model size. Thus the two approaches are
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not comparable in any uniquely obvious way. Nevertheless, one simple difference between
our work and [4] is that we treat IDs bit by bit as concrete bit strings. Thus we can express,
e.g., that the current ID has a bit 1 without implying that the current node cannot have the
smallest ID in the system. This is because there is no guarantee on what the set of IDs in
the current graph (or distributed system) is, and in a directed graph, we cannot even scan
through the graph to find out. On the other hand, the logic in [4] can express, e.g., that the
current node has the largest ID, which we cannot do. Of course, with a non-uniform formula
allocation function, the circuit-style paradigm can even specify non-computable properties.

The closest work to the current article is [11] which gives the already mentioned charac-
terization of finite message passing automata via MSC. The paper does not work within the
circuit-style paradigm. Furthermore, we cannot turn our circuit to an FMPA and then use
the translation of [11], as this leads to an exponential blow-up in size. Also, the converse
translation is non-polynomial in [11]. Furthermore, that paper does not discuss identifiers, or
the Cole-Vishkin algorithm, and the work in the paper is based on the paradigm of relating
properties directly with single formulae rather than our circuit-style approach. Concerning
further related and wvery timely work, [2] studies graph neural networks (or GNNs) and
establishes a match between aggregate-combine GNNs and graded modal logic. For further
related work on GNNs and logic, see, e.g., [7]. Concerning yet further work on logical
characterizations of distributed computing models, we mention the theses [12, 16]. For
unique identifiers in graph neural networks, see [14, 17, 10].

2 Preliminaries

We let Z, denote the set of positive integers. For every n € Z., we let [n] denote the
set {1,...,n} and [n]o the set {0,...,n}. For any set S, we let |S| denote the size (or
cardinality) of S. Let PROP be a countably infinite set of proposition symbols. We suppose
PROP partitions into two infinite sets PROPy and PROP;, with the intuition that PROP,
contains ordinary proposition symbols while PROP; consists of distinguished proposition
symbols reserved for encoding ID-numbers. We denote finite sets of proposition symbols
by II ¢ PROP. By IIj (respectively, II;), we mean the subset of II containing ordinary
(respectively, distinguished) propositions. The set PROP is associated with a linear order
<PROP which also induces a linear order < over any set S C PROP.

Let II be a finite set of proposition symbols. A Kripke model over II is a structure
(W, R, V) with a non-empty domain W, an accessibility relation R C W x W and a
valuation function V : II — P(W) giving each p € II a set V(p) of nodes where p is
considered true. A pointed Kripke model is a pair (M, w) where M is a Kripke model
and w a node in the domain of M. We let succ(w) denote the set {v e W | (w,v) € R}.

As in [9, 11], we model distributed systems by Kripke models. An edge (w,u) € R linking
the node w to u via the accessibility relation R means that w can see messages sent by wu.
Thereby we adopt the convention of [9, 11] that messages travel in the direction opposite to
the edges of R. An alternative to this would be to consider modal logics with only inverse
modalities, i.e., modalities based on the inverse accessibility relation R~!.

We next define general notions concerning acceptance of infinite sequences of bit strings.
Let k € N and consider an infinite sequence S = (b;);jen of k-bit strings b;. Let A C [k] and
P C [k] be subsets, called attention bits and print bits (or bit positions, strictly speaking).
Let (@;)jen and (p;)jen be the corresponding sequences of substrings of the strings in S,
that is, (@;);jen records the substrings with positions in A, and analogously for (p;);en. Let
(7;)jen be the sequence of substrings with positions in A U P. We say that S accepts in

9:3

MFCS 2023



9:4

Descriptive Complexity for Distributed Computing with Circuits

round n if at least one bit in @,, is 1 and all bits in each @,, for m < n are zero. Then also S
outputs p,,. More precisely, S accepts in round n with respect to (k, A, P), and p,,
is the output of S with respect to (k, A, P). The sequence (7;) ey is the appointed
sequence w.r.t. (k, A, P), and the vector 7; the appointed string of round j.

We then define some logics relevant to this article. For a finite set II of proposition
symbols, the set of ML(IT)-formulas is given by the grammar ¢ == T | p| =@ | (¢Ap) | Op
where p € IT and T is a logical constant symbol. The truth of a formula ¢ in a pointed Kripke
model (M, w) is defined as follows: (M, w) Ep < w € V(p) and (M, w) = Q¢ < (M,v) E ¢
for some v € W such that (w,v) € R. The semantics for T,—, A is the usual one.

Now, let us fix a set VAR = {V; | i € N} of schema variables. We will mostly use
meta variables XY, Z, and so on to denote symbols in VAR. The set VAR is associated with
a linear order <VAR inducing a corresponding linear order <7 over any 7 C VAR. Given a
set T C VAR and a set IT C PROP, the set of (II, T )-schemata of modal substitution
calculus (or MSC) is the set generated by the grammar ¢ ==T | p | V; | ¢ | (¢ A @) | O,
where p € Il and V; € 7. A terminal clause of MSC (over II) is a string of the form
Vi(0) :— ¢, where V; € VAR and ¢ € ML(II). An iteration clause of MSC (over II) is a
string of the form V; :— 4 where V; € VAR and v is a (II, T )-schema for some set 7 C VAR.
In a terminal clause V;(0) :— ¢, the symbol V; is the head predicate and ¢ the body of the
clause. Similarly, V; is the head predicate of the iteration clause V; :— v while 9 is the body.

Let T ={Y1,...,Y:r} C VAR be a finite, nonempty set of k distinct schema variables. A
(IL, T)-program A of MSC consists of two lists

Y1(0) :— o1 Yii—

Y5(0) :— ¢x Y i— g

of clauses (or rules) and two sets of predicates P C T and A C T, namely print predicates
and respectively attention predicates of A. The first list contains k terminal clauses over II
and the second contains k iteration clauses whose bodies are (IT, T)-schemata. The set PU.A
is the set of appointed predicates of A. We call A a II-program if it is a (II, T )-program
for some 7 C VAR. The set of head predicates of A is denoted by HEAD(A). For each
variable Y; € HEAD(A), we define that Y;' := ;. Recursively, assume we have defined an
ML(II)-formula Y;" for each ¥; € HEAD(A). The formula an+1 is obtained by replacing
each Y; in 9; by Y;". Then Y;" is the nth iteration formula of Y;. More generally, if ¢
is a (II, 7)-schema, then we let ™! denote the ML (II)-formula obtained from the schema
¢ by simultaneously replacing each Y; € HEAD(A) with Y;*. Now, let (M, w) be a pointed
IT-model. We define that (M, w) = A if for some n and some attention predicate Y of A, we
have (M, w) = Y™. In Section 3, we will also define output conditions for MSC using print
predicates.

For every (II,7T)-schema v, we let md(¢) denote the modal depth of ¢ (i.e., the
maximum nesting depth of diamonds ¢ in t). We let mdt(A) (respectively, mdi(A)) denote
the maximum modal depth of the bodies of the terminal clauses (resp., of the iteration
clauses) of A. By SUBS(A) we denote the set of all subschemata of A, including head
predicates and bodies of iteration and terminal clauses. If S is a set of schemata, SUBS(SS)
is the set of all subschemata of all schemata in S.

» Example 1. Given a proposition symbol p and a pointed Kripke model (M, w), we say
that p is reachable from w if there exists a directed path from w to a node v in M such that
(M,v) E p. Now, consider the program X (0) :— p, X :— 0X where X is the appointed
predicate. It is easy to show that (M,w) = X7 for some j < n if and only if p is reachable
from w, where n is the domain size of M.
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Next we define a class of Kripke models which includes identifiers that are encoded by
proposition symbols. Assume that pi,...,ps enumerate all the distinguished propositions in
II in the order <PROP. For each node w of a Kripke model M over II, we let ID(w) denote
the identifier of w, that is, the |II;]-bit string such that the ith bit of ID(w) is 1 if and
only if (M,w) = p;. The model M is a Kripke model with identifiers if ID(w) # ID(w’)
for each pair of distinct nodes w and w’ of M. We let K(IT, A) denote the class of finite
Kripke models (W, R, V') over II with identifiers such that the out-degree of each node is
at most A € N. For a node w, let sq,...,sq be the identifiers of the members of succ(w)

in the lexicographic order. A node v € succ(w) is the ¢th neighbour of w iff ID(v) = s;.

Analogously to ID(w), if p1,...,p, enumerate all the propositions in IT in the order <FPROF

then the local input of a node w of a Kripke model M over II is the m-bit string ¢ such
that the ith bit of ¢ is 1 if and only if (M, w) = p;.

2.1 Circuits and distributed computation

Here we first recall some basics related to circuits and then define a related distributed
computation model. A Boolean circuit is a directed acyclic graph where each node of
non-zero in-degree is labeled by one of the symbols A, V,—. The nodes of a circuit are called

gates. The in-degree of a gate u is called the fan-in of u, and the out-degree of u is fan-out.

The input gates of a circuit are precisely the gates that have zero fan-in; these gates are
not labeled by A, V,—. The output-gates are the ones with fan-out zero; we allow multiple
output gates in a circuit. Note that gates with A,V can have any positive fan-in (also 1).
The fan-in of every gate labeled with — is 1. The size |C| of a circuit C' is the number of
gates in C'. The depth d(C) of C is the longest path length (number of edges) from an input
gate to an output gate. The height h(G) of a gate G in C is the longest path length from
an input gate to the gate G. Thus the height of an input gate is zero. Both the input gates
and output gates of a circuit are linearly ordered. A circuit with n input gates and k output
gates then computes a function of type {0,1}" — {0,1}*. This is done in the natural way,
analogously to the Boolean operators corresponding to A, V, -, see for example [13] for the
formal definition. The output of the circuit is the binary string determined by the output
bits of the output gates.

From a Boolean formula it is easy to define a corresponding circuit by considering its
inverse tree representation, meaning the tree representation with edges pointing in the inverse
direction (toward the root). A node v in the inverse tree representation is the parent of w if
there is an edge from w to v. Then w is a child of v. Note that input gates do not have
any children and output gates have no parents. The descendants of w are defined such
that every child of w is a descendant of w and also every child of a descendant of w is a
descendant of w.

» Definition 2. Let II be a set of propositions and A € N. A circuit for (II, A) is a circuit
C that specifies a function f : {0, 1}HFEA+D) 5 L0 1}F for some k € N. The number k is
called the state length of C. The circuit C is also associated with sets A C [k] and P C [k]
of attention bits and print bits, respectively. For convenience, we may also call a circuit
C for (I, A) a message passing circuit (or MPC) for (II, A). The set AU P is called the
set of appointed bits of the circuit.

A circuit C is suitable for a Kripke model M € K(II, A’) with identifiers if C' is a message
passing circuit for (IT, A) for some A > A’. A circuit C for (II, A) with |[II;| = m is referred
to as a circuit for m ID-bits. We let CIRC(IIy, A) denote the set of all circuits C' such
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that, for some II with II N PROP( = Iy, the circuit C' is a circuit for (I, A). We stress that

strictly speaking, when specifying an MPC, we should always specify (together with a circuit)

the sets I1, A, the attention and print bits, and an ordering of the input and output gates.
Before giving a formal definition of distributed computation in a Kripke model M €

K(II, A) with a circuit C for (II, A), we describe the process informally. Each node u of M

runs a copy of the circuit C. The node u is associated with a local input, which is the binary

string that corresponds to the set of propositions true at w. In the beginning of computation,

the circuit at u reads the string 5 - 0° at u, where 3 is the local input at u and £ = k(A + 1),

so 0° is simply the part of the input to C that does not correspond to proposition symbols.

Then the circuit enters a state which is the k-bit output string of C. Let s(0,u) denote this

string and call it the state in communication round 0 at the node u. Now, recursively,

suppose we know the state s(n,u) in communication round n € N for each node u. The state
s(n+ 1,u) for round n + 1 at u is then computed as follows.

1. At each node u, the circuit sends s(n,u) to the nodes w such that R(w,u). Note here
that messages flow opposite to the direction of R-edges.

2. The circuit at u updates its state to s(n + 1,u) which is the k-bit string obtained as the
output of the circuit with the input 5-3p---5A which is the concatenation of the k-bit
strings s; (for ¢ € {0,...,A}) specified as follows. The string S is the local input at .
The string 5y is the state s(n,u). Let i € {1,...,m}, where m < A is the out-degree of
u. Then 3; is the state s(n,v;) of the ith neighbour v; of u. For i > m, we have 5; = 0.

We then define computation of MPCs formally. An MPC C for (II, A) of state length k
and a Kripke model M = (W, R, V') € K(II, A) define a synchronized distributed system which
executes an w-sequence of rounds defined as follows. Each round n € N defines a global
configuration f,,: W — {0,1}*. Let %, denote the binary string corresponding to the set
of propositions true at w (i.e., local input). The configuration of round 0 is the function
fo such that fo(w) is the k-bit binary string produced by C' with the input Z,, - 0¥(A+1,
Recursively, assume we have defined f,,. Let vq,...,v, € succ(w) be the neighbours of
w (m < A) given in the order of their IDs. Let 5, be the concatenation ., - 8o ---35a of
k-bit binary strings such that (1) 5o = fn(w), (2) $; = fu(v;) for each i € {1,...,m}, (3)
3, =0%for j € {m+1,...,A}. Then f,+1(w) is the output string of C' with input 3,,.
Now, consider the sequence (f,(w))nen of k-bit strings that C' produces at w. Suppose the
sequence (fy,(w))nen accepts (resp. outputs p) in round n w.r.t. (k, A, P). Then w accepts
(resp., outputs p) in round n. Note that the circuit at w keeps executing after round n.

Given a Kripke model M = (W, R, V), a solution labeling is a function W — {0, 1}*
associating nodes with strings. The strings represent outputs of the nodes on distributed
computation. We could, e.g., label the nodes with strings corresponding to “yes” and
“no”. A partial solution labeling for M is a partial function from W to {0,1}*, that
is, a function of type U — {0,1}* for some U C W. Partial solution labelings allow for
“divergent computations” on some nodes in W. The global output of a circuit C over a
model M = (W, R,V) is a function g : U — {0,1}* such that (1) U C W, (2) for all w € U,
the circuit C' outputs g(w) in some round n, and (3) C does not produce an output for any
v € W\ U. Now, fix a finite set Il C PROP of proposition symbols. Intuitively, these are
the “actual” propositions in models, while the set of ID-propositions will grow with model
size. Let M(IIp) denote the class of all finite Kripke models M with IDs and having a set IT
of proposition symbols such that II " PROPy = IIy. Thus Il is the same for all models in
M(I1y) but the symbols for IDs vary. Consider a subclass M C M(I). Now, a distributed
computing problem over M is a mapping p with domain M that associates to each input
M a (possibly infinite) set p(M) of partial solution labelings for M. The set p(M) represents
the set of acceptable answers to the problem p over M. Many graph problems (e.g., colorings)
naturally involve a set of such answer labelings.
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For A € N, we let M(IIp, A) denote the restriction of M(IIy) to models with maximum
out-degree A. A circuit sequence for M(Ily, A) is a function F' : Z, — CIRC(IIp, A) such
that F(n) is a circuit for [logn] ID-bits. Now, F solves a problem p over M(IIy, A) if
the global output of F(n) belongs to p(M) for each M € M(IIy, A) of domain size n. Let
¢ € N. We define DCC4 [logn] to be the class of distributed computing problems solvable
by a circuit sequence F for some M € M(Ily, A) of maximum fan-in ¢ circuits such that
the size of F(n) is O(logn). The related LOGSPACE uniform class requires that each F' can
be computed in LOGSPACE. DCC stands for distributed computing by circuits. Note that
circuit sequences for DCC4 [log n] are trivially sequences for NC*.

3 Extensions of MSC

The rest of this article is basically a proof of the expressive equivalence of MSC and MPCs
over distributed systems, with a small blow-up in the respective sizes of programs and
circuits. The argument is long, but we have divided it into suitably short lemmas to improve
readability. The argument splits into the following two main parts:
1. equivalence of MPCs and message passing MSC, or MPMSC, an auxiliary logic to be
defined below,
2. equivalence of MPMSC and MSC.
MPMSC is mainly used as a tool, and indeed, MPMSC and the related notions greatly help
shorten and organize our arguments.
We define MPMSC via two further auxiliary logics. Let II be a set of propositions and
T a set of schema variables. Let A € N. In Multimodal MSC (or MMSC), instead of O,
we have the operators ¢1,...,0a, and otherwise the syntax is as in MSC. The schema ;¢
simply asks if ¢ is true at the ith neighbour. More formally, if (M, w) is a pointed Kripke
model with identifiers, then (M, w) | O;p < (M, v;) E ¢ such that (w,v;) € R and v; is the

ith neighbour of w, noting that if the out-degree of w is less than i, then {;¢p is false at w.

A (IT, A)-program of MMSC is exactly like a II-program of MSC but we are only allowed
to use operators ¢1,..., O instead of ¢. A II-program A of MMSC is a (I, A)-program
for any A > d, where d is the maximum subindex in any diamond in A. We also fix print
and attention predicates for programs of MMSC. Note that MMSC is not a logic in the
usual sense as the operators {; require information about the predicates defining IDs. This
could be remedied via signature changes and limiting attention to multimodal models with
relations having out-degree at most one. This approach would be a bit messy, and the current
approach suffices for this article.

We next define MSC with conditional rules (or CMSC). Here we allow “if-else” rules
as iteration clauses. Let ¢1,...,p, and ¢4, ..., %, and also x be (II, T)-schemata of basic
MSC. A conditional iteration clause is a rule of the form X :—,, .. ¥1;...;%n; x. The
schemata ¢; are conditions for the head predicate X and the schemata ; are the related
consequences. The last schema Y is called the backup. Note that when n = 0, we have a
standard MSC clause. II-programs of CMSC are exactly as for MSC, but we are allowed to
use conditional iteration clauses. Thus a program A of CMSC consists of k terminal clauses,

k' < k conditional iteration clauses and k — k' standard iteration clauses for some k € Z, .

Again we also fix some sets of schema variables as print and attention predicates.

To fix the semantics, we will specify — as in MSC — the nth iteration formula of each
head predicate. Informally, we always use the first (from the left) condition ¢; that holds
and thus evaluate the corresponding consequence v; as the body of our rule. If none of the
conditions hold, then we use the backup. Let A be a II-program of CMSC. First, we let
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the zeroth iteration clause Y;? of a head predicate ¥; € HEAD(A) be the terminal clause

3

of Y;. Recursively, assume we have defined an ML(II)-formula Y;* for each ¥; € HEAD(A).

Now, consider the rule Y; :—,, o t1;...;%,;x. Let go’-‘“ be the formula obtained by

replacing each schema variable Y}, in the condition ¢; by YJk”. The formulae x™*! and wzﬂ
are obtained analogously. Then, the formula Yi”Jrl is

i (( A _w?H) A SOZH /\1/),?“) v (( A ﬁSO;Hrl) A Xnﬂ)

k<m **j<k j<m

Often the backup schema x is just the head predicate X of the rule. This means the
truth value of the head predicate does not change if none of the conditions hold. We say
that a condition ¢y, is hot at w in round n > 1 if the formula ¢} is true at w and none of
the “earlier” formulas ¢} for conditions of the same rule (so j < k) are true. Otherwise the
backup is hot. We call a conditional iteration clause (or the corresponding head predicate)
active in round n > 1 at node w if one of the condition formulas of the rule is hot.

We finally specify message passing MSC (or MPMSC) essentially as multimodal MSC
with conditional rules. The (II, A)-programs are exactly like (II, A)-programs of MMSC
with conditional rules and the following restrictions. (1) The modal depth of terminal clauses
and conditions of rules is zero. (2) The consequences, backups and bodies of standard
iteration clauses all have modal depth at most one. As in MMSC, operators { are not
allowed. A II-program of MPMSC is defined analogously to a II-program MMSC. Thus a
program of MPMSC contains k terminal clauses, k' < k conditional iteration clauses and
k — k' standard iteration clauses for some k € Z. We also fix sets of attention and print
predicates. The semantics is defined as for CMSC, noting that now diamonds ¢; are used.
A non-terminal clause of a program of MPMSC is a communication clause if it contains
at least one diamond. A communication clause is listening in round n € Z. if one of the
following holds. (1) A condition ¢; is hot and the corresponding consequence has a diamond.
(2) A backup is hot and has a diamond. (3) The rule is not conditional but has a diamond.

3.1 Notions of equivalence and acceptance

Here we introduce useful acceptance and output conditions for programs of all variants
of MSC, including standard MSC. The acceptance conditions will be consistent with the
already given conditions for standard MSC.

Let A be a program and A and P the sets of attention and print predicates. Let Y7,..., Y%
enumerate the head predicates in A in the order <VAR. Let M = (W, R, V) be a Kripke
model. Each round n € N defines a global configuration g,,: W — {0,1}* given as follows.
The configuration of the nth round is the function g, such that the ith bit of g, (w) is 1
if and only if (M,w) E Y. If the sequence (g,(w))nen accepts (respectively outputs p)
in round n with respect to (k,.A, P), then we say that the node w accepts (respectively
outputs p) in round n. Then n is the output round (also called the computation time)
of A at w. Note that the output round is a unique round since the accepting round is unique
by the definition of infinite bit sequences where print and attention bits are fixed. We write
(M, w) = A if node w accepts in some round n. For a program A of message passing MSC
and model M, a global communication round is a computation round n where at least
one communication clause is listening in at least one node of M. A program A outputs p at
w in global communication time m if the output round of A at w is n and m < n is the
number of global communication rounds in the set {0,...,n} of rounds in the computation.

Now, let £ denote the set of all programs of all of our variants of MSC. Let C denote
the set of all MPCs. For each A € £, we say that a Kripke model M is suitable for A if
M interprets (at least) all the proposition symbols that occur in A. For a message passing
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circuit for (IT, A), we say that M is suitable for the circuit if the set of proposition symbols
interpreted by M is precisely II and the maximum out-degree of M is at most A. Now, let x
and y be any members of C U L. We say that « and y are (acceptance) equivalent if for
each Kripke model M that is suitable for both z and y and for each node w in the model, =
and y produce the same output at w or neither produce any output at all at w. We say that
x and y are strongly equivalent, if for each M suitable for  and y and for each node w in
the model and in every round n, the objects = and y produce the same appointed string 7,
at w. We also define a special weakened equivalence notion for MPMSC and MPC. We say
that a program A of MPMSC and a circuit C are strongly communication equivalent,
if for each M suitable for both A and C and for each node w in the model, the appointed
sequence S of the circuit is precisely the sequence (7;),eq of appointed strings of the program,
where G C Z, is the set of global communication rounds n of the program. Moreover, the
MPMSC must not accept in any non-communication round. Finally, the length or size of
a program (respectively, a schema) of any variant of MSC is the number of occurrences of
proposition symbols, head predicates, and operators T, =, A, ¢, ;. The modal depth md(A)
of a program A is the maximum modal depth of its rule bodies (iteration and terminal).

4 Linking MPMSC to message passing circuits

To obtain the desired descriptive characterizations, we begin by translating MPCs to MPMSC.

4.1 From MPC to MPMSC

To ultimately translate MPCs to MPMSC, we will first show how to simulate the evaluation
of a standard Boolean circuit with a diamond-free program of MSC. Let C be a circuit of
depth d with ¢ input and k output gates. Let L denote any of the variants of MSC. Fix
schema variables I1,...I; and Oq,..., Oy, with both sequences given here in the order
Consider a program A of L with the following properties.

1. The set of schema variables of A contains (at least) the variables I,...I;,Oq,..., O.
2. The program has no diamond operators (¢ or ¢;) and contains no proposition symbols.
3. The terminal clause for each schema variable X is X (0) :— L.

Let P: {1, T} — {1, T}* be the function defined as follows. For each input (z1,...,2¢) €
{L, T} to P, modify A to a new program A(z1,...,z,) by changing each terminal clause
I;(0) :— L to I;(0) :— z;. Let (y1,...yx) € {L, T}* be the tuple of truth values of the dth
iteration formulas O¢, ... ,Og, where we recall that d is the depth of our circuit C. Then we
define P(z1,...,x¢) := (y1,...,yx). Now, if P defined this way is identical to the function
computed by C, then A simulates the circuit C' (w.r.t. I1,..., Iy and Oq,...,Of).

» Lemma 3. For each circuit C of size m and with n edges, there exists a program of L of
size O(m + n) that simulates C, where L is any of the variants of MSC. Furthermore, with
constant fan-in, the size of the program is O(m).

Proof. Assume first that the depth d of C' is at least 1. Next we modify C so that we obtain
a circuit C’ with the following properties: (1) The height of each output gate is the same, (2)
the depth of C" is O(d), (3) the size of C” is O(|C|) and (4) C’ specifies the same function as
C'. The formal construction of C’ is given in [1]. Then we define a schema variable for each
gate of C’. The variables for the input gates are I1,..., I, while those for the output gates
are O1,...,0. Let X be a schema variable for a A-gate G of C’. We define a corresponding
terminal clause X (0) :— L and iteration clause X :— Y7 A --- A'Yj, where Y7,...,Y; are the
variables for the gates that connect to G. With constant fan-in we have a constant amount of

<VAR'
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connecting gates and therefore the length of each rule is O(1). Similarly, for a variable X’ for
a disjunction gate G', we define the rules X'(0) :— L and X' :— Y/ V... VY] where Y{,..., Y]
are the variables for the gates connecting to G’. For negation, we define X" (0) :— L and
X" :— =Y, where Y is the variable for the connecting gate. We let the terminal clauses for
the head predicates I; relating to input gates be I;(0) :— L. This choice of rules is irrelevant,
as when checking if a program simulates a circuit, we modify the terminal rules to match
input strings. The related iteration clause is I; :— I;.

Finally, in the extreme case where the depth of C is 0 (each input gate is also an output
gate), we define the program with the head predicate sequence (I, ..., 1) = (Oq,...,Of) and
such that the (terminal and iteration) clause for each head predicate I; = O; is I; :— L. <«

» Theorem 4. Given an MPC for (II, A) of size m, we can construct a strongly communic-
ation equivalent (I1, A)-program of MPMSC. Supposing a constant bound ¢ for the fan-in of
MPCs, the size of the program is linear in the size of the circuit. Moreover, the computation
time is O(d) times the computation time of the MPC, where d is the depth of the MPC.

Proof. Let C' be an MPC for (II, A) of state length k. We will first explain informally
how our program A¢ for the circuit C' will work. The program A uses k head predicates
to simulate the state of the circuit. We will use Lemma 3 to build our program, and the
operators ; will be used to simulate receiving messages of neighbours. The program Ag
computes in repeated periods of d + 1 rounds, where d = d(C) is the depth of C. Simulating
the reception of neighbours’ messages takes one round, and the remaining d rounds go to
simulating the evaluation of the circuit.

Now we define our program formally. First we define a clock; the idea is for A¢ to
simulate the computation of C' once per each cycle of the clock. We assume that the depth
of C' is at least 1, because if it is 0 then the clock is omitted and the rules of the program
are trivial to construct. The clock consists of the head predicates Ty, T1,. .., Tgc) and the
following rules: Ty(0) :— L, Ty :— Tycey, T1(0) :— T, Tt :— Tp and for i € [d(C) — 1], we
have T;11(0) :— L and T;41 :— T;. In every round, precisely one of the head predicates T;
is true and the others are false. In round 0, the only true predicate is 77, and in round
i € [d(C) — 1], the only true predicate is T;11. After d(C) rounds the predicate Tj is true,
and in the next round the clock starts over again.

Let I'c be a program simulating the internal evaluation of the circuit C as given in the
proof of Lemma 3. We will obtain A¢ by using the clock and rewriting some of the iteration
clauses of ' as follows. If X¢ is a head predicate corresponding to a non-input gate G in
I'c, then we rewrite the corresponding iteration clause X¢ :— ¢ to X¢ :—1, ¢, ¥; X, where
h(G) is the height of the gate G.

For every ¢ € [|II|], we let I}' refer to the head predicate of I'c that corresponds to the
input gate of C' that reads the truth value of proposition py. For every i € [k] and j € [A]o
we let I(; jy refer to a head predicate of I'c that corresponds to the input gate of C' that
reads the ith value of the state string of the jth neighbour. The “neighbour 0” refers to the
home node. Next, we will rewrite the clauses with head predicates corresponding to input
gates. For every ¢ € [k], we let O; refer to the head predicate of I'c that corresponds to the
ith output gate of C. The terminal (respectively, iteration) clause for I'! is rewritten to be
I(0) :— p; (vesp., I i—7, pi; IN). If j # 0, then the terminal (resp., iteration) clause for
every I(; ;) is rewritten to be I(; ;y(0) :— L (resp., I(; jy :—m, 0;Os; I(; 5)). The terminal (resp.,
iteration) clause for every I(; oy is rewritten to be I(; 0y(0) :— L (resp., I(;0) :—1, Os; L(i0))-
Now, we have obtained the iteration and terminal clauses of Aq.
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The attention and print predicates of A¢ are defined as follows. Let A C [k] (resp.
P C [k]) be the set of the attention (resp., print) bit positions in C. The print predicates
of Ac are precisely the head predicates O;, where j € P. If the depth of C' is 0, then the
attention predicates of Ac are precisely the head predicates O;, where j € A. If the depth
of C is greater than 0, then we add a fresh attention predicate A’ whose terminal clause is
A’(0) :— L and whose iteration clause is the disjunction of the head predicates O; where
j € A. This is done to ensure that our program accepts during a communication round.

We analyze how A¢c works. The program executes in a periodic fashion in cycles with
d(C) + 1 rounds in each cycle. In round 0, the program A¢ reads the proposition symbols
and records the local input with the head predicates I whose truth values will remain
constant for the rest of the computation. Also, T} evaluates to true in round 0. In round 1,
the head predicates corresponding to gates at height one are active and thus updated. (Note
that the predicates [(; j) for input gates are inactive because Tp is false, so they stay false in
round 1, because in round 0 they evaluate to false and the backup has no effect on the truth
value.) From height one, the execution then continues to predicates for gates at height two,
and so on. In round d(C), the head predicates for output gates O; are active. The program
also outputs if an attention predicate is true. In round d(C') + 1, the predicate Tp is true
and thus the input gate predicates I(; ;) are active, and thereby the program starts again by
updating them using diamonds ¢;. They obtain truth values that correspond to an input
string to our circuit. The program then proceeds to simulate height one in round d(C) + 2,
continuing in further rounds all the way up to height d(C') gates and finishing the second
cycle of the execution of A¢. The subsequent cycles are analogous. Thus our program Ag
simulates C' in a periodic fashion.

It is easy to check that the program A¢ is strongly communication equivalent to C'. The
communication clauses in A¢ are synchronous, i.e., all nodes are listening in the same rounds.
This is because simulating the circuit takes the same amount of time at every node. The
translation is clearly linear in the size of C (for constant fan-in C') due to Lemma 3. |

4.2 From MPMSC to MPC

Converting an MPMSC-program to a circuit is, perhaps, easier. The state string of the
constructed MPC essentially stores the values of the head predicates and proposition symbols
used by the program and computes a new state string by simulating the program clauses.
We begin with the following lemma that shows how to get rid of conditional rules.

» Lemma 5. Given a Il-program of CMSC, we can construct a strongly equivalent I1-program
of MSC of size linear in the size of the CMSC-program and with the same maximum modal
depth in relation to both terminal and iteration clauses.

Proof. The full proof — given in [1] — is based on expressing the conditions of conditional
clauses within a standard clause. The non-trivial part is to keep the translation linear. This
can be achieved by using the conditions as “flags”. For example, consider a conditional
iteration clause X :—,, ,, ¥1;%2; x. The corresponding standard iteration clause is

X = (1 A1) V (m1 A ((p2 Ah2) V (22 A X)),

which is clearly equivalent and linear in size to the original conditional iteration clause. This
translation can be easily generalized for arbitrary conditional iteration clauses. |

It is easy to get the following corresponding result for MPMSC from the proof of the
previous lemma, recalling that terminal clauses in MPMSC are always of modal depth zero.
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» Corollary 6. Given a II-program of MPMSC of size m, we can construct a strongly
equivalent TI-program of MMSC of size O(m) and with the same mazimum modal depth of
iteration clauses and with terminal clauses of modal depth zero. All diamond operators in
the constructed program also appear in the original one.

We are now ready to prove the following.

» Theorem 7. Given I, A and a I-program of MPMSC of size m, we can build a strongly
equivalent MPC for (I, A) of size O(Am + |II|) when A > 0 and O(m + |II|) when A = 0.

Proof. We give the proof idea; the full proof is in [1]. We first transform the MPMSC-program
to a strongly equivalent MMSC-program (Corollary 6). From that program, we construct an
MPC whose state string stores the truth values of head predicates and proposition symbols.
The circuit is essentially constructed directly from the inverse tree representations of clauses.
Head predicates and proposition symbols in the scope of a diamond will correspond to input
gates for bits sent by neighbouring nodes. Moreover, head predicates and propositions not in
the scope of a diamond relate to input gates for the home node. In communication round
zero, the circuit uses a subcircuit constructed from terminal clauses, and in later rounds, it
uses a subcircuit constructed from iteration clauses. |

5 Linking standard MSC to MPC and MPMSC

To simulate MPMSC (and MMSC) in MSC, we will need to simulate each {; with ¢ only.
The following lemma is the key step in the process. In the lemma, note that while the
computation time may seem large at first, |II;] is typically logarithmic.

» Lemma 8. Given II and a II-program of MPMSC of size m where the maximum subindex
of a diamond is I, we can construct an equivalent II-program of CMSC of size O(I+ |II1|+m).
The computation time is O(2M11) times the computation time of the MPMSC-program.

Proof. Let us first discuss the key ideas of the proof. The key idea of simulating diamonds
Qi with ¢ is to scan through the neighbours one by one, in the order given by the IDs. To
keep the outputs of our translation small in size, different diamonds ¢; will be “read” in
different rounds. For this, we will use, together with IDs, the notion of a clock.

Clocks are an essential part in the proof, so let us discuss how they operate. A clock
is basically a subprogram controlling head predicates My, ..., My, where ¢ = |II;|. At each
node and in each iteration round of a CMSC-program, the truth values of the head predicates
My, ..., M, always define a binary string s with ¢ bits. While s changes during computation,
different nodes have the same s at any given time instant. More formally, letting s,,(7) denote
s at node u at iteration step i, we have s, (i) = s,(¢) for all u and v. In the first iteration
step, we have s = 0, and then, the string s goes through all the £-bit strings in lexicographic
order. After that, the process starts again from 0°.

The clock string s is constant for more than a single iteration round of the CMSC-program.
There are two reasons for this. Firstly, updating the clock string s to the lexicographically
next string takes some time (and uses some auxiliary head predicates). Secondly, the clock
has been designed to help the main program simulate multimodal diamonds {; with the
single diamond ¢ of CMSC, and this requires some time. Let us next discuss how the clock
string is indeed used.

For each string s, the main CMSC-program scans through all neighbours at each node.
The goal is to find a neighbour whose ID is a precise match with s. Let Xip be a head
predicate that becomes true at each node u precisely at those rounds where the ID of u
matches with s. Then, at node v, checking whether some neighbour has an ID matching the
current string s is reduced to checking if ¢ X1p holds.
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Using the value of Xip at neighbouring nodes, it is easy to simulate each ¢{; with {, as
long as we reserve enough time for scanning through all neighbours of each node. For the
full formal details, see [1]. <

The next theorem follows immediately from the above Lemma and Lemma 5.

» Theorem 9. Given II and a I1-program of MPMSC of size m where the mazximum subindex
in a diamond is I, we can construct an equivalent II-program of MSC of size O(I + |II1| +m).
The computation time is 22D times the computation time of the MPMSC-program.

5.1 A normal form for MSC

A program of MSC]J1] is a program of MSC where the modal depth of terminal (respectively,
iteration) clauses is zero (resp., at most one). This normal form of MSC is essentially used
as the tool when translating a program of MSC to MPMSC and ultimately to MPC. We
begin with the following lemma that shows we can force the modal depth of each terminal
clause to zero.

» Lemma 10. For every II-program A of MSC, there exists an equivalent I1-program of MSC
where the modal depth of terminal clauses is zero. The size of the program is linear in the
size of A and the computation time is linear in the computation time of A.

Proof. We sketch the proof; for the full proof, see [1]. The proof is based on (1) using CMSC
suitably in order to modify terminal clauses so that their diamonds become part of iteration
clauses and (2) then translating CMSC to MSC. <

We then show that the modal depth of iteration clauses can be reduced to one.

» Theorem 11. For every Il-program A of MSC, there exists an equivalent II-program of
MSCJ1]. The size of the MSCI1]-program is linear in the size of A and the computation time
of the program is O(max (1, md(A))) times the computation time of A.

Proof. We sketch the proof; for the full proof, see [1]. We first transform the original
MSC-program to one where the modal depth of the terminal clauses is zero by Lemma 10.
Then we use CMSC to replace each subschema of type (¢ with a fresh head predicate Xy
such that in the thereby obtained program, the modal depth of each iteration clause is at
most 1. Finally, we translate CMSC to MSC by Lemma 5. <

5.2 Linking MSC and MPCs

We are now ready to link MSC to MPCs. In Section 4.1 we proved Theorem 4 that shows we
can translate MPCs to strongly communication equivalent MPMSC-programs of size linear
in the size of the MPC. On the other hand, Theorem 9 shows that we can translate any
MPMSC-program to an equivalent program of MSC. We get the following theorem.

» Theorem 12. Given an MPC for (II, A), we can construct an equivalent II-program of
MSC. For a constant bound c for the fan-in of MPCs, the size of the program is linear in
the size of the circuit. The computation time is O(d + 2"1) times the computation time of

the MPC, where d is the depth of the MPC.

Theorem 7 showed that we can translate an MPMSC-program to a strongly equivalent
MPC. Theorem 11 showed how to translate an MSC-program to a strongly equivalent
MSCJ1]-program, implying that translating an MSC-program to an MPMSC-program can be
done without blowing up program size too much. These results directly imply the following.
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» Theorem 13. Given I, A and a II-program of MSC of size m, there exists an equivalent
MPC for (II, A) of size O(Am + |II|) when A >0 and O(m + |II|) when A = 0. The
computation time is O(max(1,d)) times the computation time of the MSC-program, where d
s the modal depth of the MSC-program.

By the above results, we observe that problems in DCC{ [logn] can be alternatively
described with sequences of MSC-programs.

Finally, we note that Theorem 4 is one of our main results. It reminds us that communic-
ation time is indeed a different concept than computation time.

6 Brief notes on graph coloring

As proof-of-concept for this article, we briefly and informally discuss the Cole-Vishkin
algorithm [5], a fundamental method used in distributed graph coloring. The CV-algorithm
takes advantage of a phenomenon whereby it is possible to logarithmically reduce the size of
a binary string by replacing it with a binary encoding of one of its positions. By iterating
this technique, it is possible to reduce the size of an n-size string down to three in O(log"(n))
iterations. Applied as a distributed algorithm to an n-coloring in an oriented tree or forest,
it is possible to reduce the number of colors to single digits in O(log*(n)) communication
rounds [6]. By extension, Barenboim and Elkin [3] show a number of ways this can be
combined with other simpler iterative algorithms to produce fast (A + 1)-color reduction
algorithms, i.e. algorithms that reduce the number of colors from the size of a graph down
to its maximum degree plus one, which is optimal in the worst-case scenario.

While the communication time of these algorithms has been studied before, little is
generally understood about the duration of their local (node-internal) computation and the
necessary program length required to formally express them.

In the full preprint version of this paper [1] (available online), we prove that given a
bound for the degree A of a graph, the CV-algorithm and a broader simple (A + 1)-color
reduction algorithm can be expressed with a program of MPMSC with size logarithmic in
the number of nodes. Additionally, the expression is uniform for all degree bounds. In other
words, for any A, the Cole-Vishkin algorithm (and the associated (A + 1)-color reduction
algorithm) can be expressed in a compact way in MSC and thus also in the related distributed
computing class where MPCs are from NC!. The following theorem is obtained as a result.

» Theorem 14. Given a bounded-degree graph with at most n nodes, there exists an MPMSC-
program of size O(log(n)) that defines a (A+1)-coloring for the graph. The computation time
is O(log(n)log(log(n))log*(n)) of which log™(n) + O(1) are global communication rounds.

By Theorems 14 and 9, we get a program of MSC of size O(|I1;| +1log(n)) with an increase

20D While the computation time may seem large, note

in computation time by a factor of
that |II;| is typically logarithmic. We emphasize that the computation and communication

times of a program are very different concepts and the former will usually dwarf the latter.

7 Conclusion

We have characterized distributed computation via circuits in terms of the logic MSC. The
translations lead to only polynomial increase in size, and in the constant-degree scenario, the
increase is only linear. In the future, we aim to expand these studies to concern models with
weights, pushing the approach closer to work on neural networks.
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—— Abstract
We analyse an algorithm solving stochastic mean-payoff games, combining the ideas of relative
value iteration and of Krasnoselskii-Mann damping. We derive parameterized complexity bounds
for several classes of games satisfying irreducibility conditions. We show in particular that an
e-approximation of the value of an irreducible concurrent stochastic game can be computed in
a number of iterations in O(|loge|) where the constant in the O(-) is explicit, depending on the
smallest non-zero transition probabilities. This should be compared with a bound in O(¢™*|log(¢)))
obtained by Chatterjee and Ibsen-Jensen (ICALP 2014) for the same class of games, and to a O(e™ ')
bound by Allamigeon, Gaubert, Katz and Skomra (ICALP 2022) for turn-based games. We also
establish parameterized complexity bounds for entropy games, a class of matrix multiplication games
introduced by Asarin, Cervelle, Degorre, Dima, Horn and Kozyakin. We derive these results by
methods of variational analysis, establishing contraction properties of the relative Krasnoselskii-Mann
iteration with respect to Hilbert’s semi-norm.
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1 Introduction

1.1 Motivation and context

Stochastic mean-payoff games are a fundamental class of zero-sum games, appearing in
various guises. In turn-based games, two players play sequentially, alternating moves, or
choices of an action, being aware of the previous decision of the other player. Turn-based
games with mean-payoff and finite state and action spaces are among the unsettled problems
in complexity theory: they belong to the complexity class NP N coNP [14, 40] but are
not known to be polynomial-time solvable. We refer the reader to the survey [7] for more
information on the different classes of turn-based games. In contrast, in concurrent games,
at each stage, the two players choose simultaneously one action, being unaware of the choice
of the other player at the same stage. Turn-based games are equivalent to a subclass of
concurrent games (in which in each state, one of the two players is a dummy). The existence

© Marianne Akian, Stéphane Gaubert, Ulysse Naepels, and Basile Terver;
37 licensed under Creative Commons License CC-BY 4.0

48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023).

Editors: Jérome Leroux, Sylvain Lombardy, and David Peleg; Article No. 10; pp. 10:1-10:15

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:Marianne.Akian@inria.fr
mailto:Stephane.Gaubert@inria.fr
mailto:Ulysse.Naepels@polytechnique.edu
mailto:Basile.Terver@polytechnique.edu
https://doi.org/10.4230/LIPIcs.MFCS.2023.10
https://arxiv.org/pdf/2305.02458.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2

Relative Krasnoselskii—-Mann lteration

of the value for concurrent stochastic mean-payoff games is a celebrated result of Mertens and
Neyman [28]. This builds on earlier results by Bewley and Kohlberg, connecting mean-payoff
concurrent games with discounted concurrent games, by making the discount factor tend to 1,
see [11]. Concurrent games are hard to solve exactly: the value is an algebraic number whose
degree may be exponential in the number of states [21]. Moreover, concurrent reachability
games are square-root sum hard [16].

Another class consists of entropy games, introduced by Asarin, Cervelle, Degorre, Dima,
Horn and Kozyakin as an interesting category of “matrix multiplication games” [8]. Entropy
games capture a variety of applications, arising in risk sensitive control [23, 6], portfolio
optimization [3], growth maximization and population dynamics [36, 33, 32, 39]. Asarin et
al. showed that entropy games belong to the class NP N coNP, showing an analogy with turn
based games. In [1], Akian, Gaubert, Grand-Clément and Guillaud showed that entropy
games are actually special cases of stochastic mean-payoff games, in which action spaces are
infinite sets (simplices), and payments are given by Kullback-Leibler divergences.

A remarkable subclass of stochastic mean-payoff games arises when imposing ergodicity
or irreducibility conditions. Such conditions entail that the value of the game is independent
of the initial state. The simplest condition of this type requires that every pair of policies
(Markovian stationary strategies) of the two players induces an irreducible Markov chain.
Then, the solution of the game reduces to solving a nonlinear eigenproblem of the form
T(u) = Ae+wu, in which u € R™ is a non-linear eigenvector, A is a non-linear eigenvalue, which
provides the value of the mean-payoff game, e is the unit vector of R™, and T is a self-map of
R™, the dynamic programming operator of the game, which we shall refer to as the “Shapley”
operator. In fact, Shapley originally introduced a variant of this operator, adapted to the
discounted case [34]. The undiscounted mean-payoff case was subsequently considered by
Gillette [20]. We refer the reader to [29, 31] for background on Shapley operators and on the
“operator approach” to games, and to [2] for a discussion of the non-linear eigenproblem.

In the one-player case, White [38] introduced relative value iteration, which consist in fixed
point iterations up to additive constants A\, € R, i.e. x4+1 = T(x) — Age. This solves the non-
linear eigenproblem T'(u) = Ae+ u under a primitivity assumption. However, this assumption
appears to be too restrictive in the light of the classical Krasnoselkii-Mann algorithm [25, 27],
which allows one to find a fixed point of a nonexpansive self-map T of a finite dimensional
normed space, by constructing the “damped” sequence xp11 = (1 — )T (x) + 02k, where
0 < 6 < 1. Indeed, it was proposed in [19] to apply this algorithm to the non-linear
eigenproblem T'(u) = Ae 4+ u, thought of as a fixed point problem in the quotient vector space
R™/Re. We will refer to this algorithm as the relative Krasnoselskii—-Mann value iteration.
An error bound in O(1/vk) was derived in [19] for this algorithm, as a consequence of a
general theorem of Baillon and Bruck [10], and the existence of an asymptotic geometric
convergence rate was established in a special case. This left open the question of obtaining
stronger iteration complexity bounds, in a “white box model”, for specific classes of stochastic
mean-payoff games.

1.2 Contribution

We apply the relative Krasnoselskii-Mann value iteration algorithm to deduce complexity
bounds for several classes of stochastic games. We consider in particular unichain concurrent
stochastic mean-payoff games, in which every pair of policies of the two players induces a
unichain transition matrix (i.e., a stochastic matrix with a unique final class). We define ppin
to be the smallest non-zero off-diagonal transition probability in the model. Corollary 20
shows that the relative Krasnoselskii-Mann iteration yields an e-approximation of the value
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of the game, after C|log e iterations. The factor C' is exponential in the bit-size of the input,
it has an essential term of the form k6~%, in which k¥ < n is a certain “unichain index”,
which is equal to 1 if all the transition probabilities are positive, 8 = pmin/(1 4+ Pmin), and
n denotes the number of states. Then, we consider the special case of unichain turn-based
games, with rational transition probabilities whose denominator divides M. Theorem 23
shows that optimal policies can be obtained after a number of iterations of order M*. The
main tool is Theorem 19, which shows that a suitable iterate of the Shapley operator of a
unichain concurrent game is a contraction in Hilbert’s seminorm. This theorem is proved
using techniques of variational analysis, in particular we use a classical result of Mills [30],
characterizing the directional derivative of the value of a matrix game, and properties of
nonsmooth semidifferentiable maps.

Finally, we introduce a variant of the relative Krasnoselkii-Mann algorithm, adapted to
entropy games. Theorem 26 shows that an irreducible entropy game can be solved exactly
in a time of order (1 +.4/m)* where k < n is a certain “irreducibility index”, m > 1 is the
smallest multiplicity of an off-diagonal transition, and A is a measure of the ambiguity of
the game. In particular, we have W < A < n' =YW where W is the maximal multiplicity
of a transition. The proof exploits the Birkhoff-Hopf theorem, which states that a positive
matrix is a contraction in Hilbert’s projective metric.

The proofs of the present results can be found in the extended version of this article [4].

1.3 Related work

The algorithmic approach of stochastic mean-payoff games games satisfying irreducibility con-
ditions goes back to the work of Hoffman and Karp [22], applying policy iteration. Chatterjee
and Ibsen-Jensen [13] studied concurrent stochastic mean-payoff games, under appropriate
conditions of ergodicity. They showed in particular that the problem of approximation of the
value is in FNP, and that this approximation problem, restricted to turn-based ergodic games,
is at least as hard as the decision problem for simple stochastic games. They also showed that
value iteration provides and e-approximation of the value of a concurrent stochastic game
statisfying an irreducibility condition in O(re~!|loge|) iterations, where T denotes a bound
of the passage time between any two states under an arbitrary strategy, see Theorem 18, ibid.
A recent “universal bound” on value iteration by Allamigeon, Gaubert, Katz and Skomra [5,
Th. 13] entails an improvement of this bound to O(re~!). Corollary 20 further improves this
bound to get C|loge|. However, the later result requires an unichain assumption, whereas
the assumption of [5, Th. 13] is milder.

The question of computing the value of a concurrent discounted stochastic game has
been studied by Hansen, Koucky, Lauritzen, Miltersen and Tsigaridas in [21], who showed,
using semi-algebraic geometry techniques, that an e-approximation of the value of a general
concurrent game can be obtained in polynomial time if the number n of states is fixed. The
exponent of the polynomial is of order O(n)™" and it was remarked in [21] that “getting a
better dependence on n is a very interesting open problem”. Boros, Gurvich, Elbassioni and
Makino considered the notion of e-ergodicity of a concurrent mean-payoff game, requiring
that the mean-payoff of two initial states differ by at most €. They provided a potential-
reduction algorithm allowing one to decide e-ergodicity, and to get an e-approximation of the
value, with a dependence in € of order ¢~O 2" nmax(ALIB]) | gee [12]. Attia and Oliu-Barton
developed in [9] a bisection algorithm, with a complexity bound polynomial in |loge| and
in |A|™ and |B|™ where A, B are the action spaces. In contrast to these three works, our
approach only applies to the subclass of unichain concurrent games, but its complexity has a
better dependence in the number of states; in particular, the exponents in our bound is at
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most n, and the execution time grows only polynomially with the numbers of actions |A|
and |B|. Moreover, our approach applies more generally to infinite (compact) action spaces
(we only need an oracle evaluating the value of a possibly infinite matrix game up to a given
accuracy).

The analysis of relative value iteration, using contraction techniques, goes back to the work
of Federguen, Schweitzer and Tijms [17], dealing with the one-player and finite action spaces
case, under a primitivity condition. The novelty here is the analysis of the concurrent two-
player case, as well as the analysis of the effect of the Krasnoselskii-Mann damping, allowing
one to replace earlier primitivity conditions by a milder unichain condition. Moreover, even
in the one-player case, our formula for the contraction rate given in Theorem 19 improves
the one of [17].

Our results of Section 9 dealing with entropy games are inspired by the series of works [8,
1, 5]. The subclass of “Despot-free” entropy games can be solved in polynomial time [1], and
it is an open question whether general entropy games can be solved in polynomial time. The
approach of [5] entails that one can get an e-approximation of the value of an entropy game
in O(e™!) iterations, where the factor in the O(-) is exponential in the parameters of the
game. This bound is refined here to O(|loge|), in which the factor in the O(-) depends on a
measure of “ambiguity” — but our approach requires an irreducibility assumption.

2  Preliminary results on Shapley operators

Let n be an integer. A map T : R™ — R" is said to be order-preserving when: Vz,y €
R*z <y = T(x) < T(y), where < denotes the standard partial order of R™. It is
additively homogeneous when: Vo € R", VA € R, T(z + Ae) = T'(z) + Ae where e is the vector
of R™ having 1 in each coordinate.

» Definition 1. A map T : R™ — R"™ is an (abstract) Shapley operator if it is order-preserving
and additively homogeneous.

We will justify the terminology “Shapley operator” in the next section, where we give
concrete examples, arising as dynamic programming operators of different classes of zero-sum
repeated games. We set [n] := {1,...n}. For any z € R", we denote t(z) := max,¢[,) z; and
b(z) = min;ep,) z; (read “top” and “bottom”). We define the Hilbert’s seminorm of = by:
lz]la = t(x) — b(x). Since ||z|jg = 0 iff € Re, we get that || - ||z is actually a norm on
the quotient vector space R™/Re. We also notice that ||z||c = inf{A € R} | —de <z < Ae}
and ||z||g = inf{8 —a € R} | a,5 € R,ae < z < fe}. Tt is easy to show, thanks to these
expressions, that a Shapley operator T is non-expansive (i.e., 1-Lipschitz) for || - ||g and
for || - ||eo- Then, it induces a self-map T on the quotient vector space R"/Re, sending the
equivalence class = + Re to T'(x) + Re, and which is non-expansive.

» Definition 2. We define the escape rate x(T') of a Shapley operator T as limy,_,o k=T (v),
where v is an arbitrary vector in R™. The lower and upper escape rates are defined respectively

by X(T) = limy 00 k= 1b(T*(v)) and X(T) = limy 00 k= 16(T*(v)).

Since T' is nonexpansive in the sup-norm, the existence and the values of these limits are
independent of the choice of v € R™. In general, the escape rate x(T) = limy_, o0 k17" (v)
may not exist, but a subadditive argument shows that the lower and upper escape rates
always exist, see e.g. [18]. A fundamental tool to establish the existence of the escape rate is
to consider the following ergodic equation.

» Definition 3. We say that the ergodic equation has a solution when there exists A\ € R
and u € R™ such that : T(u) = e + u.
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» Observation 4. If the above ergodic equation is solvable, then x(T') = Xe. More generally,
if ae +v < T(v) < Be+wv for some v € R and o, B € R, then a < x(T) < X(T) < f.

Proof. By an immediate induction, and as T is order-preserving and additively homogeneous
we have : kae +v < TF(v) < kBe+v. Then, ka +b(v) < b(T*(v)) < t(T*(v)) < kB +t(v).
Dividing by k and letting &k tend to infinity, we obtain the second statement. |

We are inspired by the following observation from fixed point theory.

» Observation 5. Suppose now that T is v-contraction in Hilbert’s seminorm || - || g, for
some q 21 and 0 < v < 1. Then, the ergodic equation is solvable.

Shapley operators include (finite dimensional) Markov operators, which are of the form
T(x) = Mz, where M is a n X n stochastic matrix (meaning that M has nonnegative entries
and row sums one). In this case, an exact formula is known for the contraction rate. In fact,
one can consider the operator norm of M, thought of as a linear map acting on the quotient
vector space R"™/Re, ||M ||y = sup LMl

ugRe

llulla
» Theorem 6 (Corollary of [15]) ||M||H = 5(M) = 1—min1<i<j<n { Zke[n] min(Mi;g, Mj )}

The term 6(M) is known as Dobrushin ergodicity coefficient.

3 Two classes of zero-sum two-player repeated games

We next recall the definition and basic properties of two classes of zero-sum two-player games
with finite state spaces. More details can be found in [29] for stochastic games and in [8, 1]
for entropy games.

3.1 Concurrent repeated zero-sum stochastic two-player games

)

We assume that the state space is equal to [n] = {1,...,n}. We call the two players “Min’
and “Max”. The game is specified by the following data. For every state i € [n], we are given
two non-empty compact sets A(¢) and B(i), representing the admissible actions of players
Min and Max, respectively. For every i € [n] and every choice of actions (a,b) € A(i) x B(i),
we are given a real number r?b, representing an instantaneous payment, and a stochastic
vector PP = (P2)jeln), meaning that P2 > 0 and that ) jeln) PP =1. We assume that
the functions (a,b) — r¢® and (a,b) — Pia’b are continuous.

The concurrent game is played in successive stages, starting from a known initial state g
at stage 0. We denote by aj and by the actions selected by Players Min and Max at stage
k, respectively, and by i the state at this stage. The history until stage k consists of the
sequence Hy, = ((ig, ag, be)oge<k,ir). A randomized strategy of Player Min (resp. Max) is a
collection of measurable functions assigning to every history Hj a probability measure oy
(resp. Bi) on the compact set A(ix) (resp. B(ix)). At stage k, being informed of the history
Hj, up to this stage, Player Min draws a random action aj according to the probability

measure aj, and similarly, Player Max draws a random action by according to the probability
measure ;. Then, Player Min makes to Player Max an instantaneous payment of rf:’b"',
and the next state ix41 is drawn randomly according to the probability measure (Pzi’“;”“) j€ln]
on the state space [n], i.e., the conditional probability that ;11 = j, given the history Hy,
and actions ay, by, is given by P;i’“f’“ We shall say that a strategy is pure or deterministic
if the action of the player is chosen as a deterministic function of the history. We denote

by ok (resp. 7x) the strategy of Player Min (resp. Max) at stage k, and denote by ¢ and 7
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the sequences (ox)r>0 and (7g)r>0. In this way, to any initial state ig € [n] and any pair of
strategies (o, T) of the two players is associated the infinite random sequence (ix, ag, b ) k>0
We denote by E;’O’T the expectation operator with respect to this process.

We shall consider special classes of strategies. We denote by Ax the set of probability
measures on a compact set X. A randomized policy of Player Min is a map « : [n] —
UsemDag), @ = ;. For each i € [n], daj(a) determines the probability an action a € A;
is chosen, according to this policy. Thus, the set of randomized policies of Min, HII\{HH, can
be identified to Hie[n] A a)- A policy of Min is said to be pure if for all i € [n], a; is a
Dirac measure, so that do; = d,, for some a; € A;. Such a policy prescribes to play the
deterministic action a; when in state i. Therefore, a pure policy is uniquely specified by the
map ¢ — a;. This allows us to identify the set of pure policies, denoted by Hll\)/““, to the
product [[;c(,
that the decision prescribed by o depends only on the current state ix. In other words, it is
obtained by selecting, at each time step, a randomized policy of Player Min, and playing
the action according to this policy. A Markovian strategy is pure if only pure policies are

A;. A randomized Markovian strategy o of Player Min is a strategy such

selected. It is stationary if the same policy is applied at every time step k. In this way, a
pure (resp. randomized) Markovian stationary strategy can be identified to a pure (resp.
randomized) policy. We shall use the same notation and terminology for Player Max, mutatis
mutandis. In particular, we denote by Hl\R/[ax and Hgla" the sets of randomized and pure
policies of Player Max. We shall also denote by IIp = TN x IIM#* and Tl = Y™ x TN
the spaces of pairs of policies.

Given an initial state iy and a pair of strategies (o, 7) of the two players, the expected
payment received by Player Max in horizon N is defined by

N—-1
N . TRO,T ag,bg
Ji, (0,7) = E; E Ty
k=0

We shall denote by JV (o, 7) the vector of R™ with the above ig entry, for each i € [n]. The
finite horizon game has a value v"V € R™ and has a pair of optimal (randomized) strategies
(o*,7*), meaning that

I¥(o%,7) <o = TN(o%,77) <IN (0,7 | (1)

for all pairs (o,7) of strategies, see [29]. Moreover, one can choose the pair of optimal
strategies (*,7*) to be Markovian, that is (o}, 7;) € IIg for all k£ < N (but it generally
depends on k and N). These optimal strategies can be obtained by using the dynamic
programming equation of the game, as follows.

For any i,j € [n], a; € Ay and B; € Ap), let us denote

pte [ ta@as ) ad PG = [ prdaase) . @)
A(i)x B(4) A(i)x B(i)

This extends the functions (a,b) = r*" and (a,b) — Pﬁj’-b from A(i) x B(i) to Aau) X Apg)-
We then define the Shapley operator T of the concurrent game as the map 7 : R™ — R”
such that

T;(v) = min  max (r-ai’ﬁi + P%“Biv-), fori e [n], veR"™ . 3

0)=_ min max (r%+ 3 P5to, [n] (3)

j€ln]
Note that in the above expression the infimum and supremum commute, owing to the
“" and
(a,b) — Pi‘z-b (this follows from Sion’s minimax theorem). Moreover, the operator T satisfies
the properties of Definition 1.

compactness of action spaces, and continuity assumptions on the functions (a,b) — r
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Then, the value of the concurrent game in finite horizon is obtained from the recurrence
equations: v° =0, oV = T(vN~1). Moreover, optimal strategies of the game when the
remaining time is k < N (or at stage N — k) are obtained by choosing optimal policies « and
B with respect to the vectors v*, that is such that a; and f3; are optimal in the expression of
T;(v*) in (3).

We now describe the mean-payoff game, which is obtained by considering the Cesaro
limit of the payoff as the horizon N tends to infinity. More precisely, we set:

Xi (o,7) == limsup N_lJiI;/(a, T) X (o,7) == liminf N_lJi]X(a, T) .
N—ooo N—o0

We shall say that the game with mean-payoff has a value x* € R™ if for all ¢ > 0, there exists

strategies o¢, 7¢ of the two players which are e-optimal, meaning that for every strategies

oand 7, —ee + xT(0°,7) < x* < x " (0,7°) + ce. Mertens and Neyman [28], building on a

result of Bewley and Kohlberg [11], showed that when the action spaces A(¢) and B(i) are

finite, the mean-payoff game has a value (actually, in a stronger uniform sense). Moreover,

the value coincides with the escape rate of the Shapley operator, i.e., x* = limy T%(0)/k.

A counter-example of Vigeral shows that these properties do not carry over to the case of
general compact action spaces [37].

One particular case that will interest us is when the ergodic equation is solvable, that is
when there exists A € R and v € R™ such that T'(v) = Ae + v. In that case, x* = Ae and
there exists optimal randomized strategies for the two players which are both Markovian
and stationary. Such a pair of strategies is obtained by choosing a pair («, 3) of policies such
that o and 8 achieve the minimum and the maximum, respectively, in the expression of T'(v)
in (3). We shall see that the ergodic equation is always solvable under a unichain condition,
even in the case of compact action spaces (Theorem 11).

A remarkable subclass of concurrent games consists of turn-based games. Then, the
actions spaces A(¢) and B(i) are required to be finite, and for every state ¢ € [n], we assume
that either A(¢) or B() is a singleton. In other words, there is a bipartition [n] = Iniin W Inax
of the set of states, so that in every state i € Inn (resp. Inax), Min (resp. Max) is the
only player who has to take a decision. Then, the Shapley operator of the game reduces to
Ti(x) = minge a(;) MaXpe p(s) (r?’b +22; Pf}-bxj), for i € [n], where again the min and max
commute, because in every i € [n], either the min or the max is taken over a set reduced
to a singleton. When the ergodic equation T'(v) = e + v of a turn-based game is solvable,
one obtains pure optimal policies in the mean-payoff game, by selecting actions that achieve
the minimum and the maximum in each coordinate [T'(v)]; with ¢ € [n]. More generally, the
existence of pure optimal policies for turn-based mean-payoff stochastic games was shown by
Liggett and Lippman [26]. An illustrative example is given in Appendix A.

3.2 Entropy games

Entropy games were introduced in [8]. We use here the slightly more general model of [1, 5],
to which we refer for background. An entropy game is a turn-based game played on a
(finite) digraph (V, &), with two players, called “Despot” and “Tribune”, and an additional
non-deterministic player, called “People”. We assume the set of vertices V has a non-trivial
partition: V =Vp WV W Vp. Players Despot, Tribune, and People control the states in Vp,
Vr and Vp respectively, and they alternate their moves, i.e., &€ C (Vp x V) U (Vr x Vp) U
(Vp x Vp). We suppose that every edge (p,d) € & with p € Vp and d € Vp is equipped with
a multiplicity m,q which is a (positive) natural number. For simplicity of exposition, we
shall define here the value of an entropy game using only pure policies. More precisely, a
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(pure) policy o of Despot is a map which assigns to every node d € Vp a node t such that
(d,t) € &. Similarly, a policy 7 of Tribune is a map which assigns to every node t € V1 a
node p € Vp. We denote by n the cardinality of V. Such a pair of policies determine a
n x n matrix M7, such that M7, = mr(o(a)),a- Given an initial state d € Vp, we measure
the “freedom” of Player People by the limit R(c,7) = limy_ o [((M77)*e)g]'/*. A pair of
(pure) policies determine a subgraph G 7, obtained by keeping only the successor prescribed
by o for every node of Vp, and similarly for 7 and Vy. Then, the “freedom” of player
People is precisely the geometric growth rate of the number of paths of length 3k starting
from node d, counted with multiplicities, as k — co. In general, the graph G°7 may have
several strongly connected components, and it is observed in [5] that R(o, 7) coincides with
the maximal spectral radii of the diagonal blocks of the matrix M%7 corresponding to the
strongly connected components to which the initial state d has access in G%7. In an entropy
game, Despot wishes to minimize the freedom of People, whereas Tribune (a reference to the
magistrate of Roman republic) wishes to maximize it. It is shown in [1] that the entropy
game has a value in the space of pure policies, meaning that there exists pure policies o™, 7%,
such that R(c*,7) < R(c*,7*) < R(o,7*) for all pure policies o, 7. (Actually, more general,
history dependent, strategies are considered in [1], and it is shown there that pure policies
are optimal).

The dynamic programming operator of an entropy game is the self-map F' of RZ given
by Fy(x) = minev,. (4,4)ce MaAXpev, (¢p)ee Zd’GVD,(p,d’)ES My @ Tqr, for d € Vp. Then, the
operator T := logoF o exp is a Shapley operator. It is shown in [1] that the value of the
entropy game with initial state d is given by the limit limy_,oo[(F*(e))]"/*.

4  The unichain property

Recall that to every n X n nonnegative matrix M is associated a digraph with set of nodes
[n], such that there is an arc from ¢ to j if M;; > 0. The matrix is érreducible if this digraph
is strongly connected. It is unichain if this digraph has a unique final strongly connected
component (a strongly components is final if any path starting from this component stays
in this component). The property of unichainedness is sometimes referred to as ergodicity
since a stochastic matrix is unichain iff it has only one invariant measure, or equivalently, if
the only harmonic vectors (i.e. the solutions v of Mv = v) are the constant vectors, see the
discussion in Theorem 1.1 of [2], and the references therein.

Given a pair (o,7) € IIp of pure policies, we define the stochastic matrix: P%7 =
P T )i setnl
» Definition 7. We say that a game is unichain (resp. irreducible) if for all pairs of pure
policies o, T, the matriz P> is unichain (resp. irreducible).

» Definition 8. We say that a subset S of the states is closed under the action of a matriz
P77 4f, starting from a state s € S and playing according to the policies o and T, the next
state is still in S.

» Remark 9. If S is a set closed under the action of an unichain matrix P%7, then S contains
the final class of this matrix.

» Remark 10. The final class does not have to be the same for all pairs o, 7 of policies in our
definition of unichain games.

The following theorem addresses the issue of the existence of a solution to the ergodic
equation in the case of a unichain game.
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» Theorem 11. Let T be the Shapley operator of a unichain concurrent stochastic game.
Then, there exists a vector v € R™ and A € R such that T'(v) = e +wv. Moreover, there exists
a pair of optimal (randomized) Markovian stationary strategies, obtained by selecting actions
that achieve the minimum and maximum in the expression of [T'(v)];, for each state i € [n].

5 Relative value iteration

Relative value iteration was introduced in [38] to solve one player stochastic mean-payoff
games (i.e., average cost Markov decision processes). The “vanilla” value iteration algorithm
consists in computing the sequence xp11 = T(xy), starting from xg = 0. Then, xj yields
the value vector of the game in horizon k, an so, we expect xx to go to infinity as k — oco.
The idea of relative value is to renormalize the sequence by additive constants. We state in
Algorithm 1 a general version of relative value iteration, allowing for approximate dynamic
programming oracles. This will allow us to obtain complexity results in the Turing model of
computation, by computing a rational approximation of the value of the Shapley operator
T'(z) at a given rational vector z up to a given accuracy.

Algorithm 1 Relative value iteration in approximate arithmetics.

1: input: A final requested numerical precision € > 0 and a parameter 0 < 7 < €/3. An
oracle T' which provides an n-approximation in the sup-norm of a Shapley operator T
r=0€eR"
repeat

z="T(z) —t(T(z))e
until ||z — T(z)||luz < /3
a:=b(T(z) —z); 8 =t(T(z) — x)
return z, o, 8 > The lower and upper escape rates of T are included in the interval
[ —€/3, 8 + €/3], which is of width at most e

» Theorem 12. Suppose that T is a Shapley operator. Then,

1. When it terminates, Algorithm 1 returns a valid interval of width at most € containing
the lower and upper escape rates of T.

2. If there is an integer q and a scalar 0 < v < 1 such that T is a ~y-contraction in Hilbert’s
seminorm, and if 1) is chosen small enough, in such a way that n(12 + 24q/(1 —v)) <,
then Algorithm 1 terminates in at most q(log || T(0)|| g + log6 + | log€|)/|log | iterations.

The proof exploits the nonexpansiveness of the operator T' in Hilbert’s seminorm.

6 KrasnoselskiirMann damping

We shall see that for turn-based or concurrent games, it is useful to replace the original
Shapley operator by a Krasnoselskii-Mann damped version of this operator. This will allow
the relative-value iteration algorithm to converge under milder conditions.

» Definition 13. If T is a Shapley operator, and 0 < 6 < 1, we define Ty =01 + (1 — )T
where I is the identity operator.

We will call Krasnoselskii—Mann operator the Ty operator. It is easy to show that it is also
a Shapley operator. The following observation relates the ergodic constant of a damped
Shapley operator with the ergodic constant of the original Shapley operator.
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» Lemma 14. Let T be a Shapley operator, u € R™ and A € R. Then, T(u) = e + u if and
only if To(u) = (1 — O)Xe +u. In particular, x(T) = (1 — )~ 1x(Ty) holds as soon as the
ergodic equation T(u) = Ae 4+ u is solvable.

Proof. The equivalence is straightforward, and x(T') = (1—60)~1x(Tp) follows from Obs. 4. <

We consider the iteration zx11 = Tp(x) — t(Ty(zk))e, obtained by applying relative value
iteration (as in Algorithm 1) to the Krasnoselskii-Mann operator Ty, with an arbitrary initial
condition xy € R™. Ishikawa showed that the ordinary Krasnoselskii-Mann iteration applied
to a nonexpansive self-map of a finite dimensional normed space does converge, as soon as a
fixed point exists [24]. This entails the following result.

» Theorem 15 (Compare with [19]). Let T : R™ — R™ be a Shapley operator, and 0 < 6 < 1.
Then, the sequence xj obtained by applying relative value iteration to the Krasnoselskii—Mann
operator Ty converges if and only if Ju € R*, X € R, T(u) = Ae + u.

A multiplicative variant of this result was proved in Theorem 11 of [19].

7 Contraction properties of unchain games under pure policies

We define the following parameter, representing the minimal value of a non-zero off-

{prb . Pf]b > 0}, and set 0 :=

diagonal transition probability, pmin = o

min
i,j€lnl iZj, (a,b)€Ax B
Pmin/ (1+Pmin). For every pair of policies o, 7 of the two players, we set Q77 = 0I+(1—0)P>7.
For any sequence of pairs of pure policies o1,71,...,0k,7;, we define, for all i € [n],

Si(o1, 715 0k, ) = {7 1 [QT0T ... Q7] > 0}

» Lemma 16. Suppose a concurrent game is unichain. Then, there is an integer k < n
such that for all i1,iq € [n], and for all sequences of pairs of pure policies 01,71, ...,0k, Tk,
Si, (01, 1y 0k, T) N Siy (01, T1y oo, Ok, Tk) # D

We call the unichain index of the game, and denote by kyy,; the smallest integer k satisfying
the property of Lemma 16. Similarly, we call irreducibility index of an irreducible game,
and denote by ki, the smallest integer k such that for every sequence of pure policies
01,T1," "+ ,0k, Tk, the matrix Q7™ ... Q7™ is positive. We have 1 < kuni < Kirr-

The following result will allow us to obtain a geometric contraction rate. The proofs of
this theorem and of the next proposition show in particular that k,,; < n if the game is
unichain and kj,, < n if the game is irreducible.

» Theorem 17. Let us suppose that a concurrent game with n states is unichain, with
unichain index k = kyyi. Then, for all sequences 01,71, -+ , 0k, Tk 0of pairs of pure policies of
the two players, |Q7 ™ ...Q %™ ||g <1 — 6*.

The following proposition improves the bound on the contraction rate provided by Theorem 17,
in the special case of irreducible games.

» Proposition 18. Let us suppose that a concurrent game with n states is irreducible, and
let k = ki be the irreducibility index of the game. Then, for all sequences 01,71, , 0k, Tk
of pairs of pure policies of the two players, ||Q7™ ... Q%% ™ |lg < 1 — nb*.



M. Akian, S. Gaubert, U. Naepels, and B. Terver

8 Solving concurrent and turn-based games by relative
Krasnoselskii—Mann iteration

We first establish a general bound for concurrent unichain games. Recall that 6 = pyin /(1 +
pmin)-

» Theorem 19. Let Ty be the Krasnoselskii—Mann operator of a concurrent and unichain
game. Then, Tgk“ni is a contraction in Hilbert’s seminorm, with rate bounded by 1 — @%uni,
Moreover, if the game is irreducible, Tek'irr is a contraction in Hilbert’s seminorm, with rate
bounded by 1 — n@kir .

Combining this result with Theorem 12, we obtain the following result, in which we
denote by [|7]|eo = max; 4 [r¢’| the sup-norm of the payment function.

» Corollary 20. Let T be the Shapley operator of a concurrent unichain game, and € €
(0,1). Algorithm 1, applied to the Krasnoselskii-Mann operator Ty, with the precision 1)
prescribed in Theorem 12, provides an e-approximation of the value of the game in at most
(|log(€)| + log 24 + 1og ||7|| oo ) kuni® ~*uni iterations.

We now consider the special case of turn-based games. Then, the value is a rational
number, and there are optimal pure policies. We now apply our approach to compute exactly
the value and to find optimal pure policies.

» Assumption 21. We now assume that the probabilities Pﬁj’.b are rational numbers with a

common denominator denoted by M. We also assume that the payments rf’b are integers.

» Lemma 22 (Coro. of [35]). Let P be a n X n unichain matriz whose entries are rational
numbers with a common denominator M. Then, the entries of the unique invariant measure
of P are rational numbers of denominator at most nM™ 1.

When Algorithm 1 halts, returning a vector € R™, we select two pure policies o* and 7*
that reach the minimum and maximum in the expression of T'(z), meaning that, for i € [n],
we have:

o o*(i),b o™ ()b, _ . a,7* (1) a, 7 (3)
Ti(x) = brenBaé) <7‘i + jez[n] P afJ) = arenlir(li) (7“1' + jez[n] P x]) . (4)

» Theorem 23. Consider a unichain turn-based stochastic game satisfying Assumption 21.
Let us choose € = (1 — 0)(n2M>"=)=1 5o that Algorithm 1 applied to Ty runs in at most

(21logn + 2(n — 1) log M + log 24 4 10g ||7| 00 )0 ki (5)

iterations. Let x* be the vector returned by the algorithm. Let us select pure policies o* and
T* reaching respectively the minimum and maximum in the expression of T(x*), as in (4).
Then, these policies are optimal.

9 Multiplicative Krasnoselskii-Mann Damping applied to Entropy
Games

In the case of entropy games, the ergodic eigenproblem, for the operator F' defined in Sec-
tion 3.2, consists in finding v € R™ and A € R such that exp(\) exp(u) = F(u). Equivalently,
Ae +u =T(u) where T = log oF o exp. If this equation is solvable, then exp()\) is the value
of the entropy game, for all initial states d € Vp. To solve this equation, we fix a positive
number 9 > 0, and consider the following “multiplicative” variant of the Krasnoselskii-Mann
operator:
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[Tm’ﬁ(v)]d o logtevgn,(ldr,lt)ee pe\?g?ﬁp)e(&; (19 eXp(Ud> i d’evD,X(;;,d’)ee e eXp(Ud')) ’
recalling that m, 4 denotes the multiplicity of the arc (p,d’). Unlike in the additive case, we
do not perform a “convex combination” of the identity map and of the Shapley operator,
but we only add the “diagonal term” ¥ exp(vg), where ¢ can still interpreted as a “damping
intensity”, albeit in a multiplicative sense. If T'(u) = Ae + u, then, one readily checks that
T9(u) = pe+u, where p = log(¥ +exp(\)), and vice versa, so the non-linear eigenproblems
for T and T}, » are equivalent. As in the additive case, the damping intensity must be tuned
to optimize the complexity bounds. We shall say that the multiplicity my, v is off-diagonal if
there is no path d — t — p — d’ in the graph of the game. Equivalently, for any choices
of policies o, 7 of the two players, the entry m, ¢+ does not appear on the diagonal of the
matrix M7, defined in Section 3.2. Then, we denote by m the minimum of off-diagonal
multiplicities, observe that m is precisely the minimum of all off-diagonal entries of the
matrices M%7 associated to all pairs of policies. We set ¢ .= m.

We shall say that an entropy game is irreducible if for every pair of policies o, 7, the
matrix M7 is irreducible. The irreducibility indez ki, of an irreducible entropy game is
the smallest integer k such that for all policies o1, 7, ..., 0k, Tk, the matrix M7 ... MkTk
has positive entries. Arguing as in the case of stochastic concurrent games, we get that
kirr < n as soon as the game is irreducible. We define the [-ambiguity of the entropy game
A = maXgq q'eVp, MaXey 1y ,...,00,7 (]\4"171 . MUZTL)d,d/. Observe that (MUlTl . Mgln)d,d/ is
the number of paths from d to d’ counted with multiplicities, in the finite horizon game
induced by the policies o1,71,...,0;, 71 (this motivates the term “l-ambiguity”). If the
game is irreducible, we define the ambiguity of the game A := max; <k All/ . We set
W = max, g)cen(vpxVp) Mp.ds and observe that W < A < nl= k.

irr

» Theorem 24. Let T, y be the multiplicative Krasnoselskii—Mann operator of an irreducible
entropy game. Then, Tflf;.rﬁ is a contraction in Hilbert’s seminorm, with contraction rate

bounded by Aj\%—i, where M = (1+ A/m)km-‘

We recall the following separation bound.

» Theorem 25 (Coro. of [5]). Suppose two pairs of (pure) policies yield distinct values in an
entropy game with n Despot’s states. Then, these values differ at least by v, ! where

vy = 2"(n + 1)8"n2"2+"+164"2 max(1, I/V/2)4"2 .
Then, using Theorem 12, we deduce:

» Theorem 26. Consider an irreducible entropy game, with irreducibility index ki.,. Let
us choose € = (1 + (m + W)v,)™!, so that Algorithm 1 applied to Ty, 9 runs in at most
(log(1 + (m + W)v,) + log 6) ke M /2 iterations. Moreover, let x* be the vector returned by
the algorithm. Let us select pure policies o* and T reaching respectively the minimum and
mazimum in the expression of T, 9(x*). Then, these policies are optimal.

10 Concluding Remarks

We have established parameterized complexity bounds for relative value iteration applied to
several classes of stochastic games satisfying irreducibility conditions. These bounds rely on
contraction properties in Hilbert’s seminorm. It would be interesting to see whether these
contraction properties can also be exploited to derive complexity bounds for policy iteration,
instead of value iteration.
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Example of turn-based stochastic mean-payoff game

A turn-based stochastic mean-payoff game is represented below. Min states are represented

by squares; Max states are represented by circles; Nature states are represented by small
diamonds. The payments made by Min to Max are shown on the arcs. For every Nature
state, the next state is chosen with the uniform distribution among the successors. The
associated Shapley operator is the map T : R?® — R? shown at right.
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T1(xz)=1+ max(2 + L;zg ,—3+ 71142&3 )
Ty(x)=min (5 + max(2 + 225, —3 4 2ufes) | 4 3.4 £tez)

T3(z)=4 + nla‘ux(LJQ””3 , 71“”?“63)

The unichain index defined in Section 7 is kyn; = 1. Indeed, for all pairs of policies (o1, 71),
we have Sy(o1,71) D {1,3}, S3(o1,71) D {2,3}, and Sa(o1,7) D {2,3} if o1 sends Min

state 2 to Max state 3, and Sz(o1,71) = {1,2} if o1 sends Min state 2 to Max state 1.

In all cases, we have S;(o1,71) N S;(0o1,71) # @ for i # j. We have pmin = 1/3, and
0 = pmin/(1 4+ pmin) = 1/4. It follows from Theorem 19 that the damped Shapley operator
Ty is a contraction of rate 3/4. We know from Theorem 11 that the ergodic eigenproblem is

solvable. By applying Algorithm 1, we find T'(u) = Ae + u with (=1, —0.5,0) and A = 3.75.

An approximation of u of precision < 10~® in the sup norm is reached after only 15 iterations,
to be compared with the precision of order (3/4)!® ~ 102 given by the theoretical upper
bound, for the same number of iterations. Thus, the convergence may be faster in practice
than the one shown in Corollary 20. We deduce from T'(u) = Ae + u that the value of the
mean-payoff game is 3.75 regardless of the initial state. Optimal policies ¢ and 7 of both
players are obtained by selecting the actions that achieve the minimum or the maximum
in the expression of T'(u). The non-trivial actions of these optimal policies are as follows:
from Min state 2 (square at bottom right), go to Max state 3 (circle at the top level), from
Max state 2 (circle at the middle level), and also from Max state 3, got to the top right state
(diamond) of Nature. These policies are shown on the figure above (red: policy of Min; blue:
policy of Max). The stochastic matrix P°" and payment vector r%" associated to these
policies are given by

3 0 1/2 1/2
rr=| 4|, PoT=|1/2 12 0
4 0 1/2 1/2
The unique invariant measure of the matrix P27 is 7 = (1/4,1/2,1/4), and we have

mr®T = 15/4 = 3.75, consistently with the value of the mean-payoff already found.
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1 Introduction

Vector Addition Systems with States (VASS, for short) are rich mathematical models for the
description of distributed systems, as well as chemical and biological processes, and more [19].
A VASS essentially consists of a finite-state machine whose transitions are labelled with
integer vectors. Besides the current state, a configuration of the VASS also comprises the
current values of a set of counters. When a transition is taken, the state of the machine
changes and the values of the counters are updated by adding to them the vector that labels
the transition. VASS arise naturally as an arguably-cleaner model than Petri nets, due to
their reachability problem being polytime-interreducible with that of Petri nets.

While VASS are a very expressive model of concurrency that admits algorithmic analysis,
the complexity of several associated decision problems is prohibitively high. For instance,
the reachability problem, which asks “is a given target configuration reachable from a given
initial configuration?”, was recently proved to be Ackermann-complete [6, 15, 14].

Continuous VASS were introduced by Blondin and Haase [2] as an alternative to con-
tinuous Petri nets [7] which trade off the ability to encode discrete information in favor of
computational and practical benefits. Their only difference compared to VASS concerns how
the counters are updated: In continuous VASS, when a transition is taken, the machine is
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Figure 1 From qo, with initial counter values 0, the state g2 can be reached with counter values
{(3i+a,6i+b) | (a,b) € {(0,0),(1,1)},7 € N}; with continuous semantics, it can be reached with
counter values & +y where z € {(0,0)} U{(a,b) | 0 < a,b < 1} and y lies on the ray {(¢,2¢) | ¢ € N}.

allowed to scale the update vector by some scalar 0 < a < 1 before adding it to the current
counter values (see Figure 1). In contrast to the situation with “discrete” VASS, the computa-
tional complexity of the reachability problem for continuous VASS is relatively low. Namely,
in [2] the reachability problem for continuous VASS is shown to be NP-complete while the
complexity of the same problem for discrete VASS is Ackermann-complete [6, 15, 14].

Despite the relatively low computational complexity, NP is not universally considered as
tractable. The only subcase previously known to be in P was that of cyclic reachability when
counters are allowed to hold negative values. It is also worth noting that the aforementioned
NP upper bound is obtained by encoding the reachability problem into the existential
fragment of the first-order theory of the reals with addition and order. It is natural to
ask whether more efficient algorithms or encodings into “simpler” logics exist, e.g. linear
programming, even if only for particular subcases.

Fixed-dimension VASS. The relatively new Ackermann lower bound for VASS reachability
has renewed interest in what could be named the Bordeauz- Warsaw program: the study of
the computational complexity of the reachability problem for low-dimensional VASS and
extensions thereof (see, e.g., [4, 3, 5, 8]). In such cases, there may be efficient algorithms for
the problem and, to quote Czerwinski and Orlikowski [6], “it is easier to [design] sophisticated
techniques working in a simpler setting [that might] result in finding new techniques useful in
much broader generality.” For dimensions 1 and 2 (and counter updates encoded in binary)
the problem is NP-complete [12] and PSPACE-complete [1], respectively.

An important structural restriction on VASS which is often used as an intermediate step
in establishing upper bounds is that of flatness, i.e. disallowing nested cycles. In fact, the
upper bounds for dimensions 1 and 2 mentioned above can be seen as a consequence of such
VASS being effectively flattable [16]. A further restriction consists of asking that the set of
all runs of the VASS can be represented by a single regular expression mox7 ... Tn_1X; T
over the transitions. Such VASS are called linear path schemes (LPS, for short). Linear path
schemes played an essential role in [1], where it is shown that for any path that witnesses
reachability, there exists a linear path scheme that also witnesses reachability.

VASS variants. In this work we study continuous VASS. For complexity matters, we assume
all counter updates are encoded in binary. As decision problems, we focus on reachability
(via a path that might make the counters negative); nonnegative reachability, i.e. reachability
via a path that keeps the counters nonnegative at all times; and zero-test reachability,
corresponding to reachability with the added constraint that some states can only be visited
with value zero for a designated counter. We summarize known and new results in Table 1.
Below, we give a textual account of the complexity bounds from the table.

(Discrete) Reachability. The NP-hardness bound for LPS can be shown using a simple
reduction from the SUBSETSUM problem with multiplicities, i.e. summands can be added
more than once. The latter is known to be NP-complete, see e.g. [9, Proposition 4.1.1].
The upper bound for the general case is folklore and is proven in [11] even with resets.
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Continuous reachability. The NP-hardness bound for flat VASS is stated in [2, Lemma
4.13(a)] for nonnegative reachability but the reduction establishes it for reachability as
well. The upper bound for the general case follows from [2, Corollary 4.10]. Membership
in P for LPS can be derived from [2, Theorem 4.15] which states that continuous cyclic
reachability is in P. In this work, we give an alternative algorithm for continuous cyclic
reachability and present a full decision procedure for continuous reachability for LPS.

Nonnegative reachability. For fixed dimension d, only an Fy (1) upper bound is known
[15]. NP-hardness for LPS follows from the same proof as for reachability since the
construction has no negative updates. Finally, the NP upper bound for flat VASS is
folklore: (nonnegative) reachability in flat VASS can be encoded into existential Presburger
Arithmetic (PA), a theory whose decidability is NP-complete (see, e.g., [10]).

Continuous nonnegative reachability. The NP upper and lower bounds for the general and
flat cases follow from (the proofs of) the same results in the continuous reachability case.
For the P upper bound, however, one cannot rely on [2, Theorem 4.15]. In fact, cyclic
reachability (for general dimensions) is NP-hard in the continuous nonnegative case [2,
Lemma 4.13(b)]. This is, thus, the first novel complexity bound we establish.

Zero-test reachability. The NP-hardness bound for LPS is a consequence of reachability
being a subcase of zero-test reachability. The matching upper bound for flat VASS is an
extension of the classical encoding into PA which accounts for linear constraints imposed
by the zero tests on cycles. Finally, the general model is also known as Minsky machines
and its reachability problem was proven undecidable by Minsky himself [17].

Continuous zero-test reachability. The NP-hardness for flat VASS is a consequence of
reachability being a subcase of zero-test reachability. For LPS, the lower bound is novel
and points to continuous zero-test reachability not being a suitable approximation of the
discrete case. The general case is undecidable in dimension 4 or higher [2, Theorem 4.17].

Our contributions. Our main contribution is a geometrical understanding of the reachability
sets of continuous VASS (see Theorem 1, Theorem 5, and Theorem 7). The latter allows us
(1) to prove that short LPS suffice as witnesses of (nonnegative) reachability (see Theorem 11
and Theorem 18), and (2) to give new algorithms for the reachability problem for LPS (see
Theorem 13 and Theorem 19) via encodings of their reachability sets into tractable theories.
Namely, we stay within linear programming solutions to enable efficient implementation of
our algorithms. Finally, we establish that zero-test reachability for LPS is NP-hard even in
dimension 2 (Theorem 21).

Table 1 Summary of computational complexity results for the reachability problem for VASS of
fixed dimension. We write lower bounds for simpler cases and upper bounds for more general ones.
New results are shown in green (upper) and red (lower bounds).

Discrete Continuous
Problem General ‘ Flat ‘ LPS General Flat LPS
Reachability in NP = NP-hard in NP NP-hard in P

Nonneg. reach. | in Ackermann | in NP | NP-hard in NP NP-hard
Zero-test reach. Undecidable in NP | NP-hard | Undecidable | NP-hard | NP-hard
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2 Preliminaries

In this work, Qs denotes the set of all strictly positive rational numbers; and Qxg, all
nonnegative ones — including 0. Similarly, N, i.e. the set of all natural numbers, includes 0,
however N+ does not.

Let d be a positive integer. For any & € Q%, and € R, we define the open ball of radius
r around x as usual: B, (z) = {y € Q?: |z — y||, < r}. Let X C Q% Then, the interior of
X is int(X) = {x € X | Je > 0, B.(x) C X}; the closure of X is cl(X) = {x € Q% | Ve >
0, B:(x) N X # 0}; and the boundary of X is bd(X) = cl(X) \ int(X). Finally, we define the
relative interior of X, relint(X), as its interior with respect to its embedding into its own
affine hull as follows: relint(X) = {x € X | Je > 0, B.(x) Naff(X) C X}.

Let G C Q4 be a set of (generating) vectors. We write cone(G) to denote the (rational
convezx) cone {Zfzo a;g; | k € N,g; € G,a; € Q>o}. The (linear) span of G is defined as
follows: span(G) = {Zfzo a;g; | k € N,g; € G,a; € Q}. Finally, the affine hull aff(G) of
G is the set {Zf:o a;g; | k € N,g; € G,a; € (@72?:0 a; = 1}. (In particular, note that if
0 € G then aff(G) = span(G) = span(H), for some H C G with cardinality at most d.)

2.1 Continuous VASS

Let d be a positive integer. A continuous VASS V of dimension d is a tuple (@, T, ¢) where
Q is a finite set of states, T C @ x Q is a finite set of transitions, and ¢ : T — Q< assigns an
update label to every transition.

Paths and runs. A configuration ¢ € Q x Q¢ is a tuple consisting of a state and the concrete
values of the d counters of the VASS. We denote the configuration (p,z) by p(x).

A path 7 is a sequence (p1,p2)(p2,p3) .- (Pn—1,Pn) € T of transitions. We write || to
denote the length of the path, i.e. |7| =n—1. A run pis a sequence g1 (x1)g2(x2) . .. gn(xyn) of
configurations such that for all 1 < i < n we have: (¢;, ¢i+1) € T and @;+0;-0(qi, Git1) = Tit1
for some «; € Q with 0 < a; < 1. Often, we refer to the «; as the coefficients of the run.
We say p induces the path (q1,¢2) ... (¢n—1,qn). Conversely, we sometimes say a run is lifted
from a path. For instance, m can be lifted to a run p1(y1)...pn(yn) by fixing p1(y1) as
initial configuration and by choosing adequate coefficients «; for all transitions.

As a more concrete example, consider the path (go, ¢1), (¢1,42), (¢2,¢3) in Figure 1, whose
transitions are labelled by (1,0) and (0,1). Starting from the configuration (0,0) and using
the coefficients «; = 0.3 and as = 0.5 this path lifts to the run ¢o(0,0)q1(0.3,0)¢2(0.3,0.5).

We consider continuous VASS in a setting where only nonnegative counter values are
allowed, denoted Q>0 VASS; and one which allows negative counters, denoted QVASS.

Reachability. Let p(x) and ¢(y) be two configurations. We say ¢(y) is reachable from p(x),
denoted p(x) = ¢(y), if there exists a run whose first and last configurations are p(z) and
q(y) respectively. For a path 7, we write p(x) =+ ¢(y) if, additionally, such a run exists which
can be lifted from 7. Given a configuration p;(x) and a state ¢, we define the reachability
set of a path m = (p1,p2) ... (Pn—1,Pn) Or a set P of paths below.

Reach®(7) = {y € Q| p1(x) = pn(y)} Reach”(P) = |J,.c p Reach™ ()

If & = 0 then we write simply Reach(w) and Reach(P).
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3 The Geometry of QVASS Reachability Sets

In this section we discuss the geometry of the reachability sets in continuous VASS of
dimension d. We first discuss paths and cycles separately. Then, we show that for solving

the reachability problem, we only need to take short linear path schemes into consideration.

3.1 The geometry of reachability sets for cycles

For this section, we fix a cycle x = (p1,p2) - - . (Pm, Pm+1), With p1 = ppy1. We study the
geometry of the set Reach(xT), where x* stands for {x* | kK € Ny¢}.

Intuitively, following x allows us to add a scaled version of each transition vector along x
arbitrarily many times, with the proviso that the scaling is strictly positive (the restriction
to scale up to 1 disappears since we can repeatedly take the cycle). Thus, we can intuitively
reach the interior of a cone, i.e. a positive linear combination of the vectors along x. For

example, a cycle with vectors (1,0) and (0, 1) will allow us to reach {(z,y) | * > 0,y > 0}.

However, this intuition needs to be formalized carefully to account for linear dependencies
between the vectors. This may render the cone not full-dimensional, i.e. its linear span may
be a strict subspace of the vector space it is in. That would mean that the interior of the
cone is empty. However, in such cases, the reachability set still is a “flattened” version of the
interior, namely the relative interior of the cone.

3.1.1 From cycles to cones

We formalize our intuition by proving that Reach(x™) is the relative interior of the cone
generated by G(x) = {€(pi,pi+1) | 1 <i <mj.

Indeed, all points & € Reach(x™) can be obtained as positive linear combinations of
generators. To any such x, we can add or subtract any generating vector and stay within
cone(G(x)), as long as it is sufficiently scaled down. Conversely, if one can add and subtract
suitably scaled versions of all generating vectors to a point x € cone(G(x)), and remain
within cone(G(x)), then it must be in the (relative) interior of cone(G(x)).

» Theorem 1. Let G(x) be as defined above. Then, Reach(x™) = relint(cone(G(x))).

Note that we consider the set G(x) of all labels of transitions from x, ignoring the fact
that multiple transitions can have the same label. This is justified by the following lemma
for the cycle x with generator G(x).

» Lemma 2. We have that relint(cone({\€(p;, pi+1) | 1 < i < m, N\ € Qs0})) is equal to
{2° aigi | ai € Qso}.

A concrete case: dimension 2. For intuition, we state a consequence of Theorem 1 in
dimension 2. For d = 2, a cone C is trivial if there exists v € Q¢ such that C is a subset of
the line {r-v | r € Q}, and otherwise it is full-dimensional. For a trivial cone, its relative
interior is either the entire cone (if the cone is the entire line), or the cone without 0, if the
cone is a ray. It is easy to see that for a cycle x whose vector labellings G(x) are co-linear
to v, the reachability set of xT in the continuous semantics is cone(G(x)), excluding any
end-points (since the only possible end-point is 0 if cone(G(x)) is a ray). For full-dimensional
cones, we can take any positive combination of the generators, but since no element of the
generators can be taken zero times, the reachability set excludes the boundary. See Figure 2
(left) for a visualization. In the following statement we write int(G(x)) and bd(G(x)) for
int(cone(G(x))) and bd(cone(G(x))) respectively.
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sg = (3, 2)

Figure 2 On the left: a cone with its boundary in blue; on the right: a zonotope with G =
{(1.5,1),(1.5,-1),(0,2)}, where adj(G) is drawn in blue.

» Corollary 3. Let G(x) be as above. In dimension d = 2, one of the following holds.
FEither cone(G(x)) is trivial and Reach(x™) is cone(G(x)), excluding any end-points;
or cone(G(x)) is nontrivial and Reach(x™) = int(G(x)).

3.2 The geometry of reachability sets for paths

For this section, we fix a path 7 = (p1,p2) - .. (Pm, Pm+1). Similarly to the case of cycles, we
establish a connection between Reach(7) and a type of polytope known as a zonotope.

Intuitively, since we now have a path that is taken once (rather than a cycle), the restriction
that the scaling is at most 1 comes into play, and limits us. Moreover, multiplicities of
linearly dependent vectors along the path also matter.

Zonotopes. Let G = {g1,...,9r} C Q% be a finite set of (generating) vectors. We write
zono(G) to denote the zonotope® {Z?Zl a;g; | a; € Q,0 <a; <1}

Following our interior-based approach for cycles, we study the reachable part of the
boundary of a zonotope. We define s as the sum of all vectors in G, or sg = EgeGg.
Additionally, we define the set adj(G) of faces of zono(G) that are adjacent to sg below. A
face of zono(G) is any nonempty intersection of zono(G) with a half-space H such that none
of the interior points of zono(G) lies on the boundary of H.

» Definition 4 (Adjacent Sets). We define adj(G) as the union of {sg} and all x € Q on
the relative interior of a face of zono(G) that contains sg. (See Figure 2 for intuition.)

Observe that adj(G) = () whenever sg € int(zono(G)).

3.2.1 From paths to zonotopes

We show Reach(w) has a close relation with a zonotope whose generator is derived from
the multiset M = [€(p;, pi+1) | 1 < i < m]. Intuitively, we obtain from M a generator G(r)
by summing together co-linear vectors that are in the same “orientation”. For example,
the vectors (1,0) and (2,0) along a single path have the same effect as (3,0), but (1,0)
and (—1,0) have distinct effects. Technically, this is captured by grouping together vectors
that are in the cones of each other. More formally, choose M’ C M \ {0} such that for all
u € M \ {0} there is a unique vector u’ € M’ such that w € cone(w'). Then, define G(r) as

follows: G(x) = {ZueMncone(u,) ulu € M’} .

L Zonotope is the standard term, but since we do not use any of its special properties, the reader may
view this as a standard polytope.
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We show that the reachability set of = can be computed by taking zono(G(w)), and
removing its boundary except for faces adjacent to sg. The intuition behind this is similar
to that of cycles: one can add strictly positive-scaled versions of the generating vectors, and
therefore boundary elements that are obtained using 0-scales are unreachable. However, in
zonotopes there are additional boundary faces that are obtained by capping the scale at 1 on
some elements, and these are the faces adjacent to s¢ (with s¢ itself being the reachable
vector where all elements are scaled to 1).

» Theorem 5. Let G(w) be as above. Then, Reach(rw) = relint(cone(G)) U adj(G(x)).

As with cycles, compared to the multiset of all path labels, we restrict our attention to a
simpler set G of vectors. The following result connecting them is almost immediate.

» Lemma 6. Let x € Q. Then, there exists (ai,...,a,) € Q" such that x = Y., a;g;
and 0 < a; <1, for all 1 <i <mn, if and only if x € Reach(r).

3.3 The geometry of reachability sets for linear path schemes

A linear path scheme (LPS, for short) is a regular expression o] 71 ... x; 7, over the trans-
itions. Importantly, the ; are (possibly empty) paths; the x; are cycles; and mox171 . - . XnTn
is a valid path. Each LPS determines an infinite set {Woxlfl cooxXFrmn | k1. Ky € Nog) of
paths that follows each of the paths exactly once and each of the cycles an arbitrary number
of times. For this section, we fix a linear path scheme o = WQXT?Tl X T

3.3.1 From LPS to cones and a zonotope

From previous developments in this work, the reader might already believe that the reachab-
ility set of an LPS can be shown to be the Minkowski sum of suitable subsets of convex cones
and zonotopes. It transpires that one can further simplify this and obtain a characterization
which involves a single zonotope and a single cone.

Below, we write G(m) to denote the generator of the zonotope for the path w7y ... m, as
defined in Subsubsection 3.2.1; for each 1 < i < n, we write G(x;) to denote the generator of
the convex cone for the cycle x; as defined in Subsubsection 3.1.1.

» Theorem 7. Reach(c) is? relint(zono(G(n))) U adj(G(r)) + relint (cone (J;—; G(xi))) -

To prove the theorem, we establish two intermediate results. The first one, together
with Theorem 5, already yields the first (Minkowski) summand. The result below follows
immediately from the definitions and commutativity of the Minkowski sum.

» Lemma 8. We have that Reach(c) = Reach(mom ... m,) + >, Reach(x;).

The next result allows us to group the sums of cycle reachability sets into a single convex
cone. Indeed, Theorem 1 and an induction on the following lemma yield the last summand
from Theorem 7.

» Lemma 9. Let C and C’ be cones with generators G and G’ respectively. Then, C + C' =
cone(G U G’) and relint(C + C’) = relint(C) + relint(C”).

2 To avoid clutter, we omit some parentheses: union has higher precedence than Minkowski sum.
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4 The Complexity of QVASS Reachability

In this section, we use our results concerning the geometry of reachability sets to give an
NP decision procedure for the reachability problem.

» Theorem 10. Given a QVASS of dimension d, and two configurations p(x) and q(y),
determining whether p(x) = q(y) is in NP.

First, without loss of generality, we assume & = 0. Indeed, p(x) = ¢(y) if and only if
p(0) = q(y — ). In the following we prove that if p(0) = g(ax) then there is an LPS ¢ such
that p(0) = ¢(x) for some 7 € o and ¢ has size polynomial on the number of transitions
|T| and on the dimension d. Then, we show that checking whether p(0) = ¢(x) under a
given linear path scheme is decidable in polynomial time. It follows that to check whether a
configuration is reachable, in a general QVASS, one can guess a polynomial-sized LPS and
check whether the corresponding configuration is reachable in it.

4.1 Short linear path schemes suffice

Presently, we argue that for any path we can find an LPS with a number of cycles that is
polynomial in the number of transitions of the QVASS and the dimension such that all paths
and cycles are simple, the set of transitions in the LPS is the same as that in the path, and
the reachability set of the LPS includes that of the path.

For convenience, we define the support of a path m =t ...t, as the set of all transitions
that are present in the path: [7] = {t; | 1 <i < n}. For an LPS o = mox] ... x} 7, its
support is [#] = [mo] U UL, (Dl U [mi)):

» Theorem 11. Let w be an arbitrary path. Then, there exists a linear path scheme
o = ToX{ 71X} Tn, with n < |T|, such that all 7; and x; are simple paths and cycles,
respectively, [7] = [o], and Reach(w) C Reach(o).

Most properties of the LPS in the result above follow from considering an LPS with
minimal length, with the length of an LPS defined as |o| = || + >, |xi| + |mi|. The main
technical hurdle is thus the upper bound on the number of cycles. Our approach is to remove
cycles whose support is covered by other cycles. The result below, which follows directly
from Theorem 1 and Lemma 9, gives us that flexibility. As in Subsection 3.3, we write G(x)
to denote the generator of the convex cone for x, i.e. G(x) = {£(¢) | t € [x]}-

» Lemma 12. Let x be a cycle and C be a set of cycles. If [x] € Upec[0] then Reach(x™) +
> gec Reach(6) =37, Reach(6T).

Hence, to check whether a configuration is reachable in a general QVASS, one can guess a
polynomial-sized LPS and check whether the corresponding configuration is reachable in it.
To conclude membership in NP, it remains to argue that the latter check can be realized in
polynomial time.

4.2 Reachability for linear path schemes is tractable

In this section, we show that determining whether a configuration is reachable via a linear
path scheme is decidable in polynomial time.

» Theorem 13. Given LPS o and x,y € Q¢, determining whether y € Reach® (o) is in P.
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Based on Theorem 7 and the geometric characterizations of the reachability sets of cycles
and paths, it suffices to show how to determine whether there exist z,c € Q% in a zonotope
and a cone, respectively, such that y = z + ¢. To do so, we make Lemma 6 and Lemma 2
effective by encoding them into systems of linear inequalities with strict-inequality constraints.
It is known that the feasibility problem for linear programs is decidable in polynomial time
even in the presence of strict inequalities (see, e.g., [18, Ch. 8.7.1]).

Henceforth, we fix an LPS ¢ = mox{ 71 ... X, 7,. We also adopt the notation from
Subsection 3.3: G(7) denotes the generator of the zonotope for the path momy ... 7,; and
G(x:) the generator of the cone for y; for each 1 < i <mn.

4.2.1 Encoding the zonotope

Let G(7) = {g1,--.,Gm}. We now define the matrix A € Q4*(™+9) and the vector a € Q%:

(g1)1 (g2 (gm)1 -1 0 0
A (g1)2 (9.2)2 (Gm)2 0 -1 0 wnda— (0.0 "
(g1)a (92)a --- (Gm)a 0 ... 0 -1

Further, we define the matrix B € Q™*(m+4) and the vector b € Q™ as:
B=(I 0 ... 0)andb=(1,1,...,1), (2)

where I is the m x m identity matrix and O is the m x 1 zero vector. Finally, we define
C € Qm*(mtd) and ¢ € Q™ as follows.

C=(-I 0 ... 0)andc=(0,0,...,0) (3)
» Lemma 14. Az =a A Bz <bACz < c has a solution (c,y) € Q™ jff y € Reach(r).
This follows immediately from the fact that, by construction, the system has a solution if
and only if there exists (aq,...,am) € (0,1] such that y = >°1" | @;g;, and Lemma 6.
4.2.2 Encoding the cone

The encoding for the code is even simpler, but requires we adapt our notation slightly.
Let U, G(xi) = {g1,--,Gm}. We define the matrix A € Q?*(™+9) and vector a € Q¢
as in Equation 1; and C € Q"*(m+4) and ¢ € Q% as in Equation 3.

» Lemma 15. Az =a A Cz < c has a solution (c,y) € Q"+ iff y € 31" Reach(x]").

This time the lemma follows from Lemma 2 and because, by construction, the system has a
solution if and only if there are (o, ..., ay,) nonnegative such that y = > 1" | ag;.

Proof of Theorem 13. The result follows from the fact that Lemma 8 can be made effective
by encoding it into a master system of linear inequalities for the zonotope and the cycle. <«

5 The Complexity of Q>oVASS Reachability

We now give an NP decision procedure for the reachability problem for Q>oVASS.

» Theorem 16. Given a Q> VASS of dimension d, and configurations p(x) and q(y),
determining whether p(x) = q(y) is in NP.
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The structure of our argument is similar to the one in Section 4: we prove that short
LPS suffice and then we prove reachability is tractable for LPS. The first part is considerably
more complicated for Q>(VASS and it is based on the fact that short LPS exist for QVASS.
For this reason, we need additional notation: We write p(x) = ¢(y) to denote that ¢(y) is
reachable from p(x) in a Q>¢VASS and instead use p(x) 25 ¢q(y) to denote that ¢(y) is
reachable from p(x) with respect to QVASS semantics (i.e. when allowing negative counter
values). Similarly, we write Reach®(-) for reachability sets w.r.t. QVASS and ReachZ(-) for
that w.r.t. Q>0VASS. We make repeated use of the following result by Blondin and Haase.

» Lemma 17 (From [2, Proposition 4.5]). There exists a path 7 such that q(x) = q(y) if
and only if there exist paths my,ma, ™3 such that:

L. g(z) > q(y);

2. q(x) = q(x’), for some x’ € Q%y;

3. ¢(y") KEN q(y), for some y’ € Qéof and

4. ] = [m] = [m2] = [ms]-

Moreover, if item 1-item 4 hold, then y € ReachZ(mm3 m3).

Intuitively, ¢(x) = ¢(y) if the following conditions hold: first, we obviously need ¢(z) 2
q(y), and second, we need ¢(x) to allow some “wiggle room” using the same transitions as 7
and while keeping the counters nonnegative. Similarly, there should be wiggle room to reach
q(y) with nonnegative counters. The lemma also shows that these conditions are necessary.

5.1 Short linear path schemes suffice

We start by proving that short LPS suffice.

» Theorem 18. Let 7 be an arbitrary path such that p(x) = q(y). Then, there exists a
linear path scheme o = Woxi"m X T, with:

n <1Ql,

m; is a simple path for all 0 < i < n,

Ixil <4QIUT|+d+2)(|T|+ 1) for all1 <i<n, and

y € Reach% (o).

Let us we outline our approach to prove this. Consider a path 7 such that p(x) = q(y).
We decompose 7 into m = 790171 - - - 0,,7,, where the 7; are simple paths separated by at most
|Q| (not necessarily simple) cycles ;. We would now like to replace each cycle 6 with a
short LPS T, as per the third item in Theorem 18. Note that we cannot readily do so
using Theorem 11, as it does not guarantee nonnegative reachability. We thus take a more
elaborate approach, as follows.

Consider a cycle §. By applying Lemma 17, we can replace 6 by an LPS m 7 3.
We now apply Theorem 11 to 7, thus obtaining an LPS o = /,L()Cfrul <+ (i such that
Reach®(m2) C Reach® (o) for all z (note that nonnegativity is no longer maintained). Recall
that our goal is to represent 7r§L as an LPS, so we cannot use o™, as it is not an LPS.
Instead, we show that by looking at the concrete path ¢ = poip1 -+ (mpm we have
Reach® (7)) C Reach®(g "), and & is an LPS.

The next challenge is to plug back &1 as part of an LPS for #. To do so, we need to find
LPS for m; and w3. We show that this is possible. We can now use Lemma 17 again, in the
opposite direction, to conclude that 7T17T;_ w3 can be described by an LPS with appropriate
bounds, retaining nonnegative reachability.
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5.2 Reachability for linear path schemes is tractable

As in the QVASS case, here we are able to prove that determining whether a configuration is
reachable via an LPS is decidable in polynomial time.

» Theorem 19. Given LPS o and x,y € Q‘éo, determining if y € Reach2 (o) is in P.
Once more, our argument relies on an encoding into a system of linear inequalities. How-
ever, in contrast to QVASS, the encoding is slightly less elegant. For each path 7= =
(p1,02) - - - (DmsPm+1) occurring inside o, instead of encoding an (affine) zonotope into a
system of linear equalities, we focus directly on the m steps of the path.

Let b; = (p;, pi+1) for all 1 <i < m. We will use the b; instead of the zonotope basis
G(7) of Subsection 4.2. We now adapt the system from Subsection 4.2 to account for the
nonnegativity of partial sums induced by the path prefixes. Recall A, a, B, b, C, and c as
defined in Equation 1, Equation 2, and Equation 3. We introduce d + md new variables —
the first d account for an initial vector @, and the remaining md represent the intermediate
values of the path after each transition.

Intuitively, we obtain from the above matrices new ones, denoted A’, a’, B’, b’, C’
so that A’ includes the constraints Af_; AT, (ack + Z?Zl(bj)sz) = Zm+2d+(n—1)d+k > 0.
We thus have the following.

» Lemma 20. For a path m, the system A’z = a’ N\B’z < b’ ANC’z < ¢’ of linear inequalities
has a solution (o, y,,t) € Qm+24+md if and only if p1(x) = pms1(y).

Proof of Theorem 19. By Lemma 20, it suffices to argue that nonnegative reachability via a
cycle xT of o can also be encoded into a system of linear inequalities. For this, we make use of

the “if” direction of Lemma 17, which for x™ amounts to p(x) X, p(y) iff (1) p(x) X, p(y),
(2) p(x) 5 p(x’) for some &’ € Q>o, (3) p(y’) = p(y) for some y’ € Q>p. Condition 1 can
be encoded in a system of linear inequalities by Lemma 15, and conditions 2 and 3 can be
encoded in such systems too as per Lemma 20. We can now conjoin the systems for the
paths and cycles to obtain a master system of linear inequalities of polynomial size. <

6 The Complexity of Reachability with Zero Tests

We now argue that the reachability problem for continuous VASS with zero tests is NP-hard,
already for LPS of dimension 2. For convenience, we state the result for QVASS. However,
we note that the same proof establishes the result for Q>¢VASS.

We start by formally defining the model. A continuous VASS V of dimension 2 with zero
tests is a tuple (Q,t,¢, Z1, Zs), where V' = (Q,t,¥) is a continuous VASS and Z; C @Q for
1=1,2. Arun p=qi(@1) ... ¢qn(xy) of such a VASS is a run of V' such that, additionally,
for all 1 <4 < n we have that if ¢, € Z;, for some j € {1,2}, then (x;); = 0. That is, any
run that reaches a state in Z; must be such that the the value of the j-th counter is 0 then.

» Theorem 21. For every d € N,d > 2, given a QVASS (or Q>¢ VASS) of dimension d, and
two configurations p(x) and q(y), determining whether p(x) = q(y) is NP-hard, even for
linear path schemes of dimension 2.

We reduce from the PRIMECOVER problem: Given a set X of prime numbers and a
collection S of subsets of X, with T" € N, determine whether there is a subset S’ C S
such that [[, g [[,e. p =T It is straightforward to prove PRIMECOVER is NP-hard by
reduction from the the EXACTCOVER problem [13].
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Figure 3 In the dotted blue box, a multiplier gadget is shown: the state above is an element of
Z1 (noted by z = 0) while the state below is an element of Z> (noted by y = 0); The whole LPS

encodes an instance of PRIMECOVER with S = {s1, s2,...,$n} — recall that d; = HpeC’_ p.

Now, for each s € S we create multiplier gadgets as depicted in Figure 3 where d = HpES P
and e = [logy([[scs [I,esP)] + 1, and we link them in an LPS with transitions (gi, ¢i+1), for
1 <4 < |S], labelled with (0,0) updates (see Figure 3). We claim that PRIMECOVER has a
positive answer if and only if ¢;(1,0) = q)c|(T,0) in the constructed LPS.

7 Conclusion

We gave geometrical characterizations for the reachability sets of continuous VASS and
their flat and LPS restrictions. Using these, we showed that polynomial-sized LPS suffice
as witnesses of reachability and that reachability in linear path schemes is tractable. In
addition, we sharpened hardness results in the presence of zero tests: it is NP-hard already
for dimension two.
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—— Abstract

We study the classic problem of searching for a hidden target in the line and the m-ray star, in a
setting in which the searcher has some prediction on the hider’s position. We first focus on the main
metric for comparing search strategies under predictions; namely, we give positive and negative
results on the consistency-robustness tradeoff, where the performance of the strategy is evaluated at
extreme situations in which the prediction is either error-free, or adversarially generated, respectively.
For the line, we show tight bounds concerning this tradeoff, under the untrusted advice model, in
which the prediction is in the form of a k-bit string which encodes the responses to k binary queries.
For the star, we give tight, and near-tight tradeoffs in the positional and the directional models,
in which the prediction is related to the position of the target within the star, and to the ray on
which the target hides, respectively. Last, for all three prediction models, we show how to generalize
our study to a setting in which the performance of the strategy is evaluated as a function of the
searcher’s desired tolerance to prediction errors, both in terms of positive and inapproximability
results.
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1 Introduction

Searching for a hidden target is one of the original disciplines within the field of Operations
Research, but also a topic of significant study in Computer Science, both from the point
of view of theoretical analysis and applications. This class of problems typically involves a
mobile searcher that must locate an immobile target (often called hider) which hides in some
unknown point of the search environment. Search problems provide natural formulations of
real-life applications such as search-and-rescue missions [41], de-mining operations [2], and
robot-based exploration [27].

Among the most well-studied search problems is searching on the line, in which the
environment is the unbounded line, and its generalization, the m-ray search, or star search
problem. In the m-ray search problem, the environment consists of m unbounded and
concurrent rays, with a common point O, which is called the origin. Starting from O, the
searcher must locate the target by following a strategy, defined as an infinite sequence of
the form (x;,u;);, where z; € RT and u; € {0,...,m — 1}, and with the following semantics:
in iteration ¢, the searcher starts from O, traverses the ray w; up to distance z; from O,
then returns back to O, before continuing with iteration ¢ + 1, until the target is eventually
located. Note that for m = 2, the star environment reduces to the infinite line.
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Competitive Search in the Line and the Star with Predictions

Since the search environment is unbounded, the standard framework for evaluating the
performance of a search strategy is competitive analysis, first introduced in [11]. Given a
target ¢ hiding at some unknown point of the star, define d(t) as the distance of ¢ from O,
and d(X,t) as the distance covered (or cost incurred) by a searcher that follows X, until ¢ is
located (i.e., the first time the searcher is reached, assuming a unit-speed searcher). The
competitive ratio of X is formally defined as

Cr(X) = sup d(X.1)

¢ d(t) (1)

Searching on the line has a long history of study, going back to the work of Bellman [12]
and Beck [10]. Beck and Newman [11] were the first to show that an optimal competitive
ratio equal to 9 can be obtained by a simple doubling strategy, i.e., a strategy of the form
x; = 2°. The m-ray search problem was first studied in the seminal works of Gal [24, 25]
and independently by Baeza-Yates et al. [8]. Both problems have been extended in a variety
of settings and generalizations related to TCS, AI and OR since the 1960s, due to their
useful abstraction of resource allocation under uncertainty. For instance, linear and ray
searching have connections to the design of interruptible systems in Al [4, 13], the design
of hybrid algorithms [32], and pipelined filter ordering in databases [18]. They are also
involved in the analysis of strategies for more complex search problems, such as spiral search
on the plane [38]. There are numerous studies on variants of linear and star search; see,
e.g., [31, 36, 29, 44, 33, 16, 20, 5, 19, 37, 15, 34, 46, 6, 43, 51, 36, 17] as well as the book [1]
for a game-theoretic perspective of these problems. Note that the above are only some
representative works, and that the problems have been studied under several other variants.

1.1 Searching with predictions

In this work, we study the power and limitations of search strategies with predictions, in
which the searcher aims to improve the competitive ratio of its strategy by leveraging some
inherently imperfect information on the target. This follows a very active line of research in
online computation and algorithms with incomplete information, that was initiated with the
works [45] and [49]. A very large number of problems have been studied under this model
(see, e.g., the survey [47] and the online collection [42]).

In regards to the search problems we study, the nature of the prediction may vary
according to the application at hand. We are interested in the following models, which were
introduced in [3] in the context of linear search.

(a) The prediction is a k-bit string. Here, the search is enhanced with a k-bit string that
encodes some information on the target; alternatively, we may think of the prediction
string as responses to binary queries given by k experts. For example, a single bit can
provide a (potentially erroneous) response to queries such as “Is the target at distance
at most d from O”, or “Is the target on an even-indexed ray?”. This is a powerful model
that generalizes the concept of advice complexity so as to allow for advice that may be
erroneous. Note that search and exploration problems have been studied extensively
under the standard advice complexity model (see, e.g., [21, 23, 28, 35, 48]), however
all such studies rely crucially on advice that is error-free. Moreover, unlike works in
which each query is noisy [14], i.e., the query responses are erroneous with some known
probability, in our setting we do not rely on any probabilistic assumptions in regards to
the quality of the advice.
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(b) The prediction is directional. Here, the prediction is an index in {0,...,m — 1} which
describes the ray on which the target lies. This is a natural prediction can be useful, for
example, in a search-and-rescue application, in which there is a hint about the direction
a missing person may have taken when last seen.

(c) The prediction is positional. Here, the prediction describes the position of the target
within the environment, namely it is of the form (d,w), where d corresponds to the
predicted distance from the origin, and u corresponds to the predicted ray on which the
target hides. This is, likewise, a very natural prediction (e.g., in a search-and-rescue
mission, it provides a hint about the last reported whereabouts of the missing person).

We establish two objectives towards the evaluation of search strategies with predictions.
The first objective is to find strategies of optimal, or near-optimal tradeoff between their
consistency (namely, the competitive ratio assuming error-free prediction) and their robustness
(namely, the competitive ratio assuming adversarially generated predictions). This is one of
the standard methods of analyzing algorithms with predictions, since it establishes strong
guarantees on worst-case (extreme) situations with respect to the quality of the prediction;
see, e.g., [562, 40, 39, 3, 7] for applications to other online problems, and settings of incomplete
information, more generally. Specifically, we are interested in showing both positive and
negative results on the best-possible consistency that can be achieved by r-robust strategies,
for any given r.

Our second objective goes beyond the consistency/robustness tradeoffs, and we evaluate
the performance of the search strategy beyond the two extreme scenarios of error-free and
adversarial error. Specifically, we study the novel setting in which the searcher defines an
application-specific tolerance parameter H that determines its desired tolerance to errors or,
equivalently, an anticipated upper bound on the prediction error (that may be known by
historical data on previous searches). This parameter is defined appropriately for each of the
three prediction models we study. Namely, in the untrusted advice model, H is related to the
number of erroneous advice bits (or query responses); in the directional model H describes
the distance of the predicted ray index to the one of the actual hiding target; and in the
positional model, H is related to the distance between the predicted and the actual target
position. The tolerance model is motivated by recent works in learning-enhanced online
algorithms with weak predictions, in which the prediction is an upper bound of some pertinent
parameter of the input (see e.g., online knapsack with frequency predictions [30], where the
prediction is an upper bound on the size of items that appear online). Our objective is
thus to quantify the tradeoff between the competitive ratio and the robustness as a function
of the tolerance and other parameters of the problem (e.g., the number of queries, in the
query-based model). Following [30], we will make use of the term weak prediction to refer to
this setting.

The problems we study have applications in more general decision-making settings that
go beyond the confines of search theory. This is since m-ray search, as discussed above, is an
abstraction of resource allocation among m different tasks. To illustrate with an example,
consider a researcher who has to allocate time among m different projects, without knowing
ahead of time which project will be completed successfully. The researcher, however, may
have some intuition about which of these tasks is the most likely to succeed. This problem
fits the m-ray search abstraction with a directional prediction. In the weak prediction setting,
H describes, more generally, the specific projects which the researcher believes are more
likely to be successful.

12:3

MFCS 2023



12:4

Competitive Search in the Line and the Star with Predictions

Learning-augmented search has received attention in recent years. [3] studied consist-
ency/robustness (Pareto) tradeoffs for linear search in the three prediction models described
above. [9] studied a graph search setting where every node in the graph provides a prediction
of its distance to the target vertex. [22] showed how to robustify graph exploration algorithms,
where the prediction is related to the spanning tree of the explored graph.

1.2 Contribution

Our first results apply to the untrusted advice model (i.e, the k-query model). We prove tight
upper and lower bounds on the best consistency that an r-robust strategy for linear search
can achieve, for any r > 9, any size of advice k, and with no assumptions on the nature of
the strategy. This improves upon both the upper and the lower bounds of [3], which gave
a non-tight lower bound for £ = 1 and » = 9, and a non-tight lower bound for r > 9 and
k =1 for a restricted class of strategies called asymptotic. Here, the challenge is on the lower
bound side. Specifically, we reduce the problem to a parallel search problem that involves 2%
searchers, and we rely on a novel application of Gal’s functional theorem [26] to prove an
information-theoretic tight lower bound. While this theorem has been previously applied in
parallel search problems [44], its application in our setting is much more challenging, since
we require that each of the 2 searchers must be individually r-robust. Specifically, unlike
previous works, the proof requires an explicit labeling scheme that maps the search lengths
of each parallel searcher to lengths of a “global” sequence. We also extend our upper bound
to weak predictions, by applying tools from the theory of games with a lying responder [50],
in order to bound the effect of erroneous query responses to the performance.

Our second class of results is on the directional prediction model of m-ray search. We
give the first upper and lower bounds on the consistency-robustness tradeoffs, which extend
those of [3] to star search. Here, the main challenge is again on the lower bound side, and
specifically in the weak predictions setting. We show how a generalization of a biased search
approach, in which the searcher allocates more time towards the predicted ray, allows us to
prove an asymptotically tight bound on the competitive ratio as a function of the tolerance
and the number of rays.

Last, we show tight (Pareto-optimal) consistency-robustness tradeoffs for m-ray search in
the positional model. As with the directional model, the only previous known results applied
to linear search [3]. The proof uses tools that circumvent the exact study of linear recurrence
relations inherent in m-ray search problems. To our knowledge, this is a new approach
towards impossibility results on this type of search games. As with the other models, we
also provide tight upper and lower bounds on the competitive ratio under weak predictions.
We emphasize that beyond the tight and near-tight results, the generalization to star search
and the accompanied analysis under weak predictions are conceptually novel aspects of this
work and extend the performance guarantees beyond the consistency/robustness tradeofs.

Due to space limitations, we omit or sketch technical details in some of the proofs.

2 Preliminaries

We review some notation and known results concerning m-ray searching. Without predictions,
a strategy is described by a sequence of the form X = (x;,u;);>0; we refer to i as the iteration!
of the strategy, to x; as the length of the i-th search segment, to u; as the ray searched
in iteration ¢, and to the point at which the searcher turns in the i-th iteration as the

1 We will consider a numbering of iterations that starts either with 0, or with 1, depending on which
simplifies the presentation.
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corresponding turn point. Note that for linear search (m = 2), we may assume, without loss
of generality, that u; = ¢ mod m, and that ;o > x;. We make the standing assumption that
the target lies within distance at least a fixed value, otherwise every strategy has unbounded
competitive ratio. It is well-known that the worst-case hiding positions of the target, i.e.,
the positions that maximize Cr(X), are infinitesimally beyond the turn points of a searcher
that follows X, namely, at distances x; + € on rays u;, for € > 0.

A strategy for m-ray search is called cyclic, if it explores the rays in a fixed permutation
of {0,...,m — 1}, e.g., if u; = i mod m. The competitive ratio of a cyclic strategy of the
form X = (z;,7 mod m); is easily shown to be equal to

1+m—1
Ly

Cr(X) =14 sup —=2_~*
i

)

2)

In particular, a cyclic strategy is called geometric if z; = b?, for some fixed b > 1 which is
called the base of the strategy; we will denote such strategies by Gp. Geometric strategies
are significant since they are often optimal for several variants of linear search. From (2), it
follows that the competitive ratio of Gy is therefore equal to 1+ 2b™ /(b —1). This expression
is minimized for b = m/(m — 1), and the resulting optimal competitive ratio, denoted by r*,,
is equal to

mm

1 + me, Where pm = m

Thus, given r > r* | strategy Gp has competitive ratio at most r if ™ /(b — 1) < p,., where
pr is defined to be equal to (r — 1)/2. We will denote by b, the largest such b for which G
is r-competitive, i.e., the largest real root of the function f(z) =a™/(m —1) — p,.

Under the prediction framework, the searcher is given some information & in regards to

the target ¢, and determines a strategy X}, (we will often omit A when it is clear from context).

Following [3], we define the consistency of a strategy as its competitive ratio assuming no
prediction error, and its robustness as its competitive ratio assuming adversarial prediction
error. Note, in particular, that the robustness of a strategy is equal to its competitive ratio
without any prediction, and we will thus use these two terms interchangeably. We say that a
strategy is r-robust if its robustness is at most r (similarly for the consistency), and that it is
Pareto-optimal if its consistency and robustness are in an optimal tradeoff relation.

Let Y = (y;)2, denote a sequence in RT. We define ay as ay = limsup,,_, y}l
This parameter appears prominently in Gal’s theorem [26] which, informally, gives a lower
bound on the supremum of a set of functionals by the supremum of these functionals over
geometrically increasing sequences. From it, it follows that any m-ray search strategy Y
with search lengths (y;); has competitive ratio at least 1 + QQ?}:, hence if the strategy is
r-competitive it must be that ay < b,.

/n

3 Linear search with untrusted advice

In this section, we study linear search in a model in which the prediction is an untrusted
advice string of size k. We first show optimal upper and lower bounds on the best consistency
of r-robust strategies, then in Section 3.1 we study the extension to weak predictions.

Our results will show and exploit connections between a single-searcher strategy with k-bit
advice, and a multi-searcher strategy with 2* parallel searchers, but no advice. Hence, we
first present some definitions and notation concerning the setting of p > 1 parallel searchers,
labeled from the set {0,...,p — 1}. In a p-searcher strategy, each searcher j defines its
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own strategy of the form X; = (z;4,u;:)52,. We thus denote the p-searcher strategy as
X ={X; }?;S, or equivalently, we say that it is defined by the set { X }?;é. The competitive
ratio of a p-searcher strategy is the worst-case ratio of the first time one of the p searchers
finds the target ¢ (assuming unit-speed searchers) and the distance d(t) of the target from
the origin [44].

Observe that the optimal consistency of an r-robust strategy with k& advice bits is equal
to the competitive ratio of a parallel search strategy that is defined by 2* searchers, each of
which is individually r-robust. Namely, if the advice is error-free, it can be used to select the
single-searcher strategy, among the 2* ones, that reaches the target at optimal cost. Note
that, by construction, the robustness of this strategy is at most r, since each individual
searcher is r-robust. This observation applies to both positive and negative results on the
consistency /robustness tradeoffs.

We first show an upper bound on the consistency of r-robust strategies:

» Theorem 1. For any r > 9, there is an r-robust strategy for searching on the line with
1/

k-bit advice that has consistency at most 1 + 2%, where ¢ = 21,

Proof sketch. Let S denote the 2¥-parallel strategy as defined by the set Sp, ... Sor_; where
S; = (V1 imod 2), if j is even and S; = (5", (i + 1) mod 2), if j is odd,

for some b > 1 that will be specified later. That is, each individual strategy is near-geometric,
and half of the searchers explore ray 0 in their first iteration, whereas the other half explore
ray 1. We require that each strategy in S is r-robust which implies, from the discussion in
Section 2, that b must satisfy b7 < b,., hence b < bi/ q, <

Note that this upper bound is not only of theoretical significance, but can be obtained
in practice via a query-based implementation. This is because the i-th advice bit can be
interpreted, equivalently, as a response to a subset query that asks whether the target is
hiding within a specific subset of the infinite line. Informally, the theorem shows which
questions to ask to k different experts? about the whereabouts of the target so as to maximize
the efficiency of search, while remaining robust to adversarial responses.

We now move to the lower bound. We first show a useful property of parallel search.
To illustrate the property, consider Figure 1, which shows the first segments of a p-parallel
strategy defined by S1,...S5,. In this example, the first segment of strategies Sp,....5; is to
the left ray of the line, whereas the first segment of S;1,...,5, is to the right ray of the
line. Furthermore, the lengths of these segments are in increasing order, in the left and the
right ray, respectively, as illustrated. We observe that, without loss of generality, a target
that hides infinitesimally beyond the first turnpoint in S;, with j € {1,...,p — 1} is first
discovered by S;jy1, and if j = p, it is first discovered by S;. This is because, if this was not
the case, then one of the strategies would mark its second turn before it had explored any
new parts of the line, which would mean that the corresponding second segment would be
redundant and thus could be omitted.

We can argue, inductively, that the same property extends not only to targets hiding
infinitesimally beyond the first turn points, but beyond every turn point. To formalize this
concept, let S be a p-parallel strategy defined by single-searcher strategies S1,...,S,. We say
that S; is responsible for the i-th turn point of S; if S; is the first strategy in S to discover a

2 Experts may be inherently erroneous; in Theorem 4 we extend the result to account for query errors.
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Figure 1 A snapshot of the first iteration in a p-parallel strategy.

target hiding infinitesimally beyond the i-th turnpoint of S;. The following lemma shows
that it suffices to consider p-parallel strategies in which a “snapshot” of the first iteration
of the p individual strategies provides a global picture about the relative turnpoints of all
individual strategies, for all subsequent iterations. This will help us setup the lower bound.

» Lemma 2. For any p-searcher strategy S, there is a p-searcher strategy 8" = {S},...,S,}
such that there is a bijection 7™ : {1,...p} — {1,...p} with the property that for any
jed{l,...,p}, S;r(j) is responsible for the i-th turn point of S} for alli € NT, and S’ has
competitive ratio no worse than S.

We now show how to prove the lower bound.

» Theorem 3. For anyr > 9, every r-robust strategy for searching on the line with untrusted

bi/q
b,—17

advice of size k has consistency at most 1 + 2 where ¢ = 21,

Proof sketch. For convenience of notation, let n = 2*, and let S be an n-parallel strategy
defined by Si,...S5,, and which satisfies the property of Lemma 2. Let ¢ be such that
strategies Si,...S; start their first iteration to the left (in increasing order of this length),

whereas S;11,...S, start their first iteration to the right (again in increasing length order).

Thus, we have that S; is responsible for S;_1, forall j € {2,..., 2k}, whereas S is responsible
for S,,. The situation is depicted in Figure 1, where p = n.

Let s, denote the search length of the m-th iteration of .S;. For any fixed m, consider
a target hiding infinitesimally beyond the m-th turn point of S, for each j. Since S;4, is
responsible for S;, for all j € {1,...i—1,i+1,...n — 1}, we have

m—1
i1 Sit1l
b

8j,m

Cr(S)>1+2 forall je{l,...i—1,i4+1,...n—1}. (3)

In addition, since S;11 and S; are responsible for S; and S,,, respectively, we have that

m—1 m—1
Cr(S) > 1422221 S g 0y(g) > 1 4 2220=L 5Ll (4)
Sim—1 Sn,m—1
and note the subtle, but important differences in the indexing of the denominators between (3)
and (4). This motivates our next step, in which we label the lengths of all search segments of
the 2% strategies in S in a way that will allow us to use the above lower bounds. Let {x;}22,
denote the set of all segment lengths in the parallel strategy S. We map bijectively each such
length to a segment length of one of the strategies S;, according to the following function.

Tjtmn, if j e [1,...i—1]
€Ti_ ifjeli+1,...n—1
T A A )
Tn—1+mn, if j=1
Ln+mn, if j =n.
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Combining (3), (4) and the mapping (5), we can show that

Cr(S) > 1+ 2sup _l;lxl (6)
m 1=0 Tmn—1+1
m

Define the functional F;,, to be F,, = Zn,ll;lz

= Tmn—1+1
satisfies the conditions of Gal’s Theorem [2%] Therefore,

. It is easy to see that this functional

Zmn Oél 11
Cr(S) > 1+ 2sup Ml:—l, where o = lim sup xl/ . (7)
m o qmn—1+1 I—00

If & <1, the RHS of (7) is unbounded. If a > 1, (7) gives

amn+l _ 2

o
Cr(§)>1+2 T > 142 . 3
HS) 21 " (= 1)gmn-tez=l = MR ®

We will now use the fact that each strategy in S is individually r-robust, in order to bound
« from below, and thus Cr(S) as well. From [31] we know that any r-competitive single
searcher strategy of the form Y = (y;)52, satisfies y; = O(b}.). Given the labeling scheme (5),

it follows that x; = O(bf;/"), hence from the definition of o, a < b/™. Therefore, (8) gives

2/n bl/q
>14+2—— =1+2-"
Cr(8) 2 1427 =1+ 257,
which completes the proof. |

We give some intuition behind the significance of the mapping (5) in the proof. The
labeling accomplishes two goals: First, it leads to (6), whose sums in the numerator and the
denominator contain summands with “contiguous” indices: this is an essential requirement
for the application of Gal’s theorem. Second, it implies that each strategy S; is of the form

(T (jy4n1) 29, Where 7 is a bijection over {1,...,n}, which allows us to argue that oo < be/m

3.1 Extension to weak predictions

We show how to extend the upper bound to incorporate weak predictions. In this setting, as
discussed in Section 1, given advice of size k, and robustness requirement r > 9, the searcher
specifies a tolerance parameter H < k/2. The objective is to obtain an r-robust strategy of
minimum competitive ratio assuming that at most H advice bits are erroneous.

To address this problem, we will make use of a result by Rivest et al. [50], who studied
games with a lying responder. In their setting, given k € N, H < k/2, and a domain
D ={1,...,m}, the objective is to find the index of an unknown x € D, using k queries, of
which up to H may receive incorrect responses. A query can be a comparison query of the
form “Is < M?”, for some given M € [1,m], or more generally, a subset query of the form
“Is x in S?”, where S is a subset of the domain D. Define the sum of binomial coefficients

((an)) D (];]), for m < N. In [50] it was shown that as long as m < 2/ ((E)), k
comparison queries suffice to find « in the above game, in the presence of at most H < k/2

errors. This leads to the following extension of Theorem 1.

» Theorem 4. For anyr > 9, and any H < k/2, there is an r-robust strategy for searching on
1/
the line with k-bit advice that has competitive ratio at most 1 —|—2;7:—_ql, where q = Qk_l/((fl))
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We can further show that

1 < 1
q ~ ok(-H(FE)-1’

where H denotes the binary entropy function. This allows for a direct comparison to the
Pareto-optimal upper bound of Theorem 1. In particular, we observe that as k increases, the
effect of the advice error in the competitive ratio becomes marginal, even if H is as high as
linear in k.

4 Ray search with directional prediction

In this section, we study m-ray search in the setting in which the prediction is the ray of the
hiding target. Without loss of generality, we suppose that the prediction is the ray indexed 0.

For the upper bound, we consider the following strategy that generalizes the biased search
approach of [20]. The searcher fixes some b > 1 and § > 1, to be specified later, and explores
the rays in the cyclic order 0,1,...,m — 1. If the ray visited in the i-th iteration is ray 0, it
explores it to a length equal to §b?, otherwise, i.e., if the visited ray is in {1,...,m — 1}, it
explores it to a length equal to b’. Thus the search combines elements of geometric search
with a bias towards the predicted ray, as expressed by the parameter .

» Theorem 5. For every b > 1, 6 > 1, the strategy descm’bed above has consistency at most

2 b™ b™—b bt pm_p m
1+2bm T+ 551 51> and robusiness at most 1 +2(5bm Tt 20— 5 — 20™.

Observe that if 5 = 1, then both the consistency and the robustness of the above strategy
are equal to 1 + 2b 7, as expected (i.e., the competitive ratio of a geometric strategy with
base b). For any fixed b, by increasing ¢, the consistency of the resulting strategy improves,
at the expense of its robustness. We would like thus to optimize the robustness by choosing
0 as a function of b, m and the desired consistency, however it is not obvious that this is
possible analytically. Instead, suppose that we choose b = (m + 1)/m, namely the base of
the geometric strategy that results in an optimal competitive ratio for m-ray search equal to

=1+2pj;,. Then 37— < e/(e — 1), which implies that the consistency of the strategy is
at most

2 e 2 e

5;([% —m) = 5o (P —m) + O(1).

1
+ e—1

On the other hand, the robustness of the strategy is at most

81 81 9

1+25—+2%( m)—4:§(6+p;‘n—m)+0(1).

Therefore, if we would like the strategy to be c-consistent, where ¢ = O(1) + 2¢, for some
¢, we can choose J to be equal to ﬁ(p; —m), and the resulting robustness is then at
most §(pf, —m)(1 + ﬁ) + O(1). We can also obtain more precise tradeoffs as m — oo,
since in this case, it is known that ), =1+ 2p7, =1+ 2em.

robustness at most 2e(m + —5-). In particular, given ¢, the strategy is (O(1) + 2¢)-consistent,
and (O(1) 4+ 2em(1 + (R )-robust.

Next, we show a negative result on the tradeoff between the consistency and robustness
that any strategy can achieve. The proof follows an approach that we generalize in the weak
predictions setting (proof of the lower bound in Theorem 8).
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» Theorem 7. Any c-consistent strategy for searching with directional prediction, where
¢ = 1+ 2¢, has robustness at least 1 + 2pf, (1 + ﬁ)) In particular, for m — oo, its
robustness is at least 1 + 2e(m —1)(1+ =5).

4.1 Extension to weak predictions

We consider the model in which if the predicted ray is h € {0,...,m — 1}, then the searcher
would like to minimize its competitive ratio, assuming that the target hides in one of the rays
in the interval [h — H mod m,h + H mod m|, where H < m/2 is the tolerance parameter.
This captures the case that the hiding ray is expected to be in a vicinity of the predicted
ray, with respect to the tolerance of the searcher. We denote this set of rays by Ry, and its
complement, by Ry, and note that |Ry| = 2H + 1 and |Rg| = m — 2H — 1. Without loss of
generality, we may assume that Ry = {0,...2H}.

We prove an asymptotically tight bound on the tradeoff between the competitive ratio
and the robustness, that generalizes the error-free setting. Note that every strategy has
competitive ratio at least 1 + 2p55,, since the weak prediction may incur a search in a
(2H +1)-ray star. We also obtain an interesting corollary: as the competitive ratio approaches
the optimal bound of 1+ 2p5;; , |, the robustness increases dramatically.

» Theorem 8. For every ¢ > piy_, there exists a strategy with directional hint that has

competitive ratio 1 + 2¢, and robustness at most O(=—22=—(m — 2H)). Furthermore,
c—p
m—2H—1
this bound is tight, i.e., every strategy of competitive ratio 1 + 2¢ has robustness at least

(285 (1 — 2H)).

=
C=Pm_2H-1

Proof. We first prove the upper bound, which generalizes the strategy we used in the context
of consistency /robustness tradeoffs. Define b = 221; L i.e., the optimal base of a geometric
strategy for searching in a (2H + 1)-ray star, and § > 1, to be specified later. Consider
a cyclic strategy which visits rays 0,...,m — 1 in this order, and which works in rounds.
Specifically, in round i, it explores ray j € Ry to length 6bH+1Di+i and every ray in Ry
to length b(2H+Di+2H  The competitive ratio of this strategy, assuming error at most H,
is maximized for targets hiding infinitesimally beyond the turn points on ray 2H in Rpy.

Simple calculations show that the competitive ratio is

1 b2H+1

1+2p541 + @(gm(m —2H — 1)),

and note that bzb;i% is at most e/(e — 1), by the choice of b. Thus, for the competitive

ratio to be at most 1 + 2¢, it must be that

seam 2 (9)

C = Pari1
The robustness of the strategy is evaluated for a target hiding at distance infinitesimally
beyond the turn points of the searcher on ray m — 1. After simple calculations we obtain that
the robustness is at most O(0p3 ., 1 (m —2H +1)), which from (9) is at most O( 722 (m —

P41
2H)), and which proves the upper bound.

We now proceed with the lower bound. Any strategy for the problem consists of phases,
which alternate between searching a subset of Ry and a subset of Ry . Namely, every strategy
X is of the form X = (x;);>0, in which z;, for even i, describes the aggregate explored
length of X on rays that belong exclusively in Ry, and z; for ¢ odd, describes the aggregate
explored length on rays that belong exclusively in Ry. Thus, in each phase i, the searcher
incurs a cost of 2x;, for all ¢ (except for the phase at which the target is found).
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Define S; = Z;:o xaj, and S) = Z;;g xj4+1. Then from the competitiveness of the
strategy, for all even 4, and for any target ¢y hiding in Ry that is discovered in phase 2(i+1),
. / X !
Si + S; <emeE> SZ+Sl’
d(tm) d(tn)
We know that searching in a (2H + 1)-ray has competitive ratio at least 1+ 2p3,_ ;. This

means that for all i, there exists a target d; that is discovered in phase 2(i + 1) such that

142

(10)

1+2sqp—2

d- > 1+ 2P;H+1»
K3 (2

. =< . . . . S; *
hence there ex1sjcs some ¢ for which the above inequality gives 1 + 238 2 1+ 2050 — 6
where € — 0, as i is allowed to be unbounded. To simplify the exposition, we can thus assume
that e = 0, and obtain

Pamt1

(11)

Moreover, for any i, there exists a hiding position for a target ¢} in Ry that is first discovered
in phase 2¢ 4+ 1 it must be that
S’ S’
1+2—->m—-2H -1=d(t;)) = O(——+——
ap e ) =0 =1
since 2.5} describes the cost incurred by the searcher on rays in Ry, right before phase 2i + 1
starts. Note also that this inequality holds for all 4, unlike (11), that holds only for .
To bound the robustness, consider the phase 2i + 1, with i as defined above, and the
target t%, again as defined above. Then we have that

(12)

S; + S? S-
Robustness > 1+ 2 L=Q((1+ =) (m —2H)), (13)
d(t?) Si
from (12). Moreover, from (10) and (11) we have that
Sz-l-/Sgg *5 é%zﬁ%’
S Prmvr S; T €= Pimga
and substituting the above inequality to (10) yields the result. <

5 Ray search with positional prediction

In this section we study m-ray searching in the setting in which the prediction is the position
of the target in the star environment. Namely, the prediction h is a pair (dp, up), where dj, is
the predicted distance from O and wuy, is the predicted ray. We first show the upper bound.

» Theorem 9. For any r > r},, there is an r-robust strategy of consistency at most 1 +2ﬁ.

We will now show that the strategy of Theorem 9 is Pareto-optimal. The proof of the
following theorem generalizes, but also simplifies the lower bound of [3] which applies only
to linear search (m = 2). The crux in the proof is to exploit the properties of the parameter
ay, where Y will be defined as the sequence of search lengths of a cyclic strategy defined
by a linear recurrence relation. In particular, these properties allow us to bypass technical
complications related to the study of such relations, by establishing appropriate lower bounds
(as opposed to solving the recurrence relation).
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» Theorem 10. For any r > r},, no r-robust strategy for searching with positional prediction

has consistency better than 1 + 2ﬁ.

Proof sketch. Using techniques rooted in previous studies of star search, we can show that
there exists a cyclic strategy of the form
. . Zgzo Yi . .
yj, = h,for some index j, ~and 1+ 2=2="— =y forall j € [m —1,73],
Yj—m+1
which is r-robust and minimizes the consistency (among all r-robust strategies). It follows
that for all j < jj, the search length y; is determined by the recurrence

Yj = 7(Yj-mt1 = Yj-m) (14)
with some initial conditions yqg, ..., ym—1. We have that
Jh Jrn—1 m—1
d(Y,h) =Y y;=dn+2 ) y; =dn+2r(jn—m+1 — %0) + Y _ U, (15)
§=0 j=0 §=0

where we used the fact that >, y; is telescoping, as seen by (14). From (15) we have
d(dL;h) =1+ 2%%“ + i(zg’;}f Yj — Yo). Since Y is cyclic, and dj, = yj,,, we obtain that

d(Y,h)

sup ——— > 14 2sup =14 2rsup
h dn Jh Yin Jn Yin

Define the functional F;(Y) = y]*yﬁ This functional satisfies the conditions of Gal’s
J
] j—m+1
functional theorem [26], hence sup; ="+ > Ly = ay . Since Y is r-robust, as

Y5 - ay
discussed in Section 2 r > Cr(X) >
br. Thus, (16) gives

TYjp, —m+1 Yjp—m~+1 (16)

a?}zl, where it must be ay < b,., from the definition of

d(Y, h) o 1
— L = >1+2 m=1+2 >142 .
Sl;llp dp, 21+ Ozyflay + ay —1 + b, —1

Hence, the consistency of Y is at least 1 + 2b—1_1, and thus so is the consistency of X. <«

5.1 Extension to weak predictions

Given the prediction h related to a target t, we define the prediction error as the distance
between t and h in the star, normalized by the distance d(h) of the prediction’s position
from the origin. Namely, n = w. We distinguish between different types of the error:
If d and h are in the same ray, but d(t) > d(h) we call the error positive, whereas if d and h
are in the same ray, but d(t) < d(h) we call the error negative. If the error is neither positive
or negative, then h and t are in different rays.

Let X}, denote the Pareto-optimal strategy of Theorem 9. Let H > 0 denote the tolerance
parameter that is specified by the searcher, and consider the strategy Xj(14m), i.e., the
strategy that pretends that the prediction is at the same ray as h, but at distance d(h)(1+ H)
from O. The following result is a corollary of Theorem 9.

» Corollary 11. For any H > 0 and r > r;,, strategy Xy, (141 s r-robust and has competitive
ratio at most min{1 + 2;:’—_}{, r}, if the error is either positive or negative, and at most H.
Otherwise, its competitive ratio is at most r.

Last, we can show that the above tradeoffs are tight.

» Theorem 12. For any r-robust strategy with positional prediction, there exists ¢ > 0 such

that its competitive ratio is no better than min{l + 2%, r} for positive or negative error at

most q. Otherwise, its competitive ratio is at least r.
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—— Abstract

We study the nascent setting of online computation with imperfect advice, in which the online

algorithm is enhanced by some prediction encoded in the form of an imperfect, and possibly erroneous
binary string. The algorithm is oblivious to the advice error, but defines a desired tolerance, namely
an upper bound on the number of erroneous advice bits it can tolerate. This is a model that
generalizes the Pareto-based advice model, in which the performance of the algorithm is only
evaluated at the extreme values of error (namely, if the advice has either no errors, or if it is
generated adversarially). It also subsumes the model in which the algorithm elicits a prediction on
the online sequence, via imperfect responses to a number of binary queries.

In this work, we establish connections between games with a lying responder, also known
as Rényi-Ulam games, and the design and analysis of online algorithms with imperfect advice.
Specifically, we demonstrate how to obtain upper and lower bounds on the competitive ratio for
important online problems such as time-series search, online bidding, and fractional knapsack. Our
techniques provide the first lower bounds for online problems in this model. We also highlight
and exploit connections between competitive analysis with imperfect advice and fault-tolerance in
multiprocessor systems. Last, we show how to waive the dependence on the tolerance parameter, by
means of resource augmentation and robustification.

2012 ACM Subject Classification Theory of computation — Online algorithms

Keywords and phrases Online computation, Rényi-Ulam games, query models, beyond worst-case
analysis

Digital Object Identifier 10.4230/LIPIcs. MFCS.2023.13
Related Version Full Version: arxiv.org/abs/2301.01631

Funding The first author was partially funded by the grant ANR-19-CE48-0016 from the French
National Research Agency (ANR).The second author was supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC) [funding reference number DGECR-2018-00059).

1 Introduction

Online computation, and competitive analysis, in particular, have served as the definitive
framework for the theoretical analysis of algorithms in a state of uncertainty. While the early,
standard definition of online computation [37] assumes that the algorithm has no knowledge
in regard to the request sequence, in practical situations, the algorithm may indeed have
certain limited, but possibly inaccurate such information (e.g., some lookahead, or historical
information on typical sequences). Hence, there is a clear need for more nuanced models that
capture the power and limitations of online algorithms enhanced with external information.

One such approach, within Theoretical Computer Science, is the framework of advice
complezity; see [18, 9, 20], the survey [10] and the book [25]. In the advice-complexity model
(and in particular, the tape model [8, 9]), the online algorithm receives a string that encodes
information concerning the request sequence, and which can help improve its performance.
The objective is to quantify the tradeoffs between the size of the advice (in terms of the
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number of bits) and the competitive ratio of the algorithm. This model places stringent
requirements: the advice is assumed to be error-free, and may be provided by an omnipotent
oracle. Thus, as noted in [34], this model is mostly of theoretical significance.

A different and more practical approach studies the effect of predictions towards improving
the competitive ratio. In this model, the online algorithm is enhanced with some imperfect
information concerning the request sequence, without restrictions on its size. One is interested
in algorithms whose performance degrades gently as a function of the prediction error, and
specifically perform well if the prediction is error-free (what is called the consistency of the
algorithm), but also remain robust under any possible error (what is called the robustness of
the algorithm). This line of research was initiated with the works [31] and [35], and a large
number of online problems have been studied under this model (see, e.g., the survey [34] and
the online collection [29]).

A combination of the advice complexity and prediction models is the untrusted or Pareto-
based advice model, introduced in [5]. Here, parts of the advice may be erroneous, and
the algorithm’s performance is evaluated in two extreme situations, in regard to the advice
error. At the one extreme, the advice is error-free, whereas, at the other extreme, the
advice is generated by a (malicious) adversary who aims to maximize the performance
degradation of the algorithm. Using the terminology of algorithms with predictions, these
two competitive ratios are called consistency and robustness, respectively. The objective is
to identify algorithms that are Pareto-efficient, and ideally Pareto-optimal, i.e., attain the
best-possible tradeoffs between these two extreme measures. Several online problems have
been studied recently within this framework of Pareto-optimality (both within the advice
and the predictions models); see, e.g., [39, 28, 26, 4, 6].

1.1 Online computation with imperfect advice

The starting observation that motivates this work is that the Pareto-based framework of
untrusted advice only focuses on extreme competitive ratios, namely the consistency and the
robustness. A more general issue, instead, is to evaluate the impact of the advice error on the
performance of the online algorithm. Given an advice string of size k, let us denote by n < k
the number of erroneous bits. Naturally, the algorithm does not know the exact advice error
ahead of time. Instead, the algorithm defines an application-specific parameter H < k which
determines the desired tolerance to errors, or, equivalently, an anticipated upper bound on
the advice error. This is motivated by recent works in learning-enhanced online algorithms
with weak predictions, in which the prediction is an upper bound of some pertinent parameter
of the input (see e.g., online knapsack with frequency predictions [23], where the prediction
is an upper bound on the number of items of each value that appear online). Our objective
is to quantify the tradeoffs between advice size, tolerance and competitive ratio, both from
the point of upper and lower bounds.

A different interpretation of imperfect advice treats each advice bit as a (potentially
erroneous) response to a binary query concerning the input. Hence, one may think of k-bit
advice as a prediction elicited by means of k£ imperfect binary experts. Note that queries are
known to help improve the performance of approximation algorithms in ML applications.
For example, [33] studied clustering with noisy queries, where a query asks whether two
points should belong in the same cluster, and where each query receives a correct response
with probability p that is known to the algorithm. A different example is parsimonious
learning-augmented caching [22], in which the system learns the predicted next-arrival time
of certain appropriately queried pages.
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In this work, we study the power, but also the limitations of online algorithms with
adversarially erroneous queries. Unlike [33], we do not rely on any probabilistic assumptions
concerning the query responses. To our knowledge, the imperfect advice model (in particular,
its binary query-based interpretation) has only been applied to the problems of contract
scheduling [6] and time-series search [7], from the point of view of upper bounds. While these
works showed that binary queries help improve the algorithmic performance, both in terms
of theoretical and empirical analysis, no principled methodology for obtaining lower bounds
has been developed so far.

1.2 Contribution

We establish connections between games with a lying responder and the design and analysis
of online algorithms with imperfect advice. Namely, we show how to leverage results from
the analysis of Rényi-Ulam games, and obtain both positive and negative results on the
competitive analysis. We apply these tools to three important and well-studied online
problems, namely time-series search, online bidding, and online fractional knapsack. Our
results improve the known upper bounds for these problems, where such results were already
known, but also provide the first lower bounds on the competitive ratio of online problems
in this setting, without any restrictive assumptions.

More precisely, we begin as a warm-up® with the time-series search problem in Section 3,
which illustrates how these techniques can help us improve upon the results of [7]; we also
show how to evaluate the competitive ratios, using approximations based on the binary
entropy function. In Section 4, we study a more complex application, namely the online
bidding problem, first studied in [5] in the context of untrusted advice. Here, the crucial part
is establishing near-optimal lower bounds. We achieve this by formulating a multi-processor
version of online bidding in [ < 2* processors, in which a certain number of processors may
be faulty; we then relate the competitive ratio of this problem to the imperfect advice setting,
by relating fault-tolerance in the processor level, to the inherent error in Rényi-Ulam games.
In Section 5 we study the online fractional knapsack problem. Here, we present an algorithm
whose competitive ratio converges to 1 at a rate exponential in k, as long as H < k/2. We
also present a near-matching lower bound that shows that our algorithm is close-to-optimal.
For the upper bound, the crux is to allocate queries so as to approximate two appropriately
defined parameters of the instance. For the lower bound, we use an information theoretic
argument. Specifically, we show a reduction from Rényi-Ulam games: if there existed an
algorithm of competitive ratio better than a certain value, one could play the game beyond
the theoretical performance bound, which is a contradiction.

As explained above, the parameter H expresses the algorithm’s desired tolerance to
errors, and is thus application-specific. In Section 6 we show how to waive the assumption
that the precise tolerance is known ahead of time, in two different ways: First, by resource-
augmentation arguments, i.e., by comparing the performance of an algorithm with perfect
(error-free) advice of size k to that of an algorithm with [ > k advice bits but potentially
very high advice error. Second, by robustifying the algorithm, namely by requiring that the
algorithm performs well even if the error happens to exceed the tolerance parameter.

The techniques we develop can be applicable to other online problems. Specifically, our
approach to the online bidding problem defines the following general framework: For upper
bounds, one would aim to define a collection of “candidate” algorithms that are closely

1 For ski rental, which is another canonical warm-up problem, [5] showed that a single advice bit suffices
to obtain optimal consistency/robustness. Hence, the problem is resolved under the imperfect advice
model as well.
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ranked in terms of their worst-case performance. Then the advice can be used so as to select
a suitable candidate from this collection that is close to the best-possible. For lower bounds,
one would aim to show that in any collection of candidate algorithms, the erroneous queries
may have to always return a solution sufficiently far, in terms of “rank”, from the best one;
then one needs to relate the concept of “rank” to performance, from a lower-bound point
of view. This last part highlights connections between an online problem with adversarial
advice and its fault-tolerant version in a parallel system (with no advice). On the other
hand, our approach to the time-series and fractional knapsack problems illustrate another
general technique: For upper bounds, one should identify some important parameters of the
problem, then allocate the queries appropriately so as to approximate them in the presence
of response errors. For lower bounds, information-theoretic arguments should establish a
reduction from a Rényi-Ulam game to the online problem.

There are two additional observations concerning the results in this work. First, we allow
adaptive queries, in that the response to the i-th query is a function of responses to the
previous ¢ — 1 queries. Second, it is important to note that the results we present cannot
be obtained straightforwardly by applying some error-correcting code. More precisely, one
may be tempted to dedicate some advice bits towards error correction and use the remaining
error-free bits in the spirit of classic advice complexity results. However, such an approach
may very well be suboptimal since, depending on the problem at hand, an optimal algorithm
may benefit more from a large number of somewhat erroneous advice bits than from a smaller
number of perfect bits, and the analysis must take into account this possibility.

Due to space limitations, we omit or only sketch certain technical proofs. We refer to the
full version on arXiv for the complete proofs.

2 Games with a lying responder

We review some core results related to games with a lying responder which will be in the
heart of the analysis of online problems with imperfect advice. We are particularly interested
in [36], which studied games between a questioner and a responder, related to an unknown
value z drawn from a domain D, where D is a subset of reals or in general a totally ordered
set. The questioner may ask general queries of the form “is z in S”, where S is some subset of
D, and which are called subset queries. The upper bounds of [36] hold even if the questioner
asks much simpler queries, namely comparison queries of the form “is x at most a”, for some
given a. Both the upper and lower bounds in [36] are expressed in terms of partial sums of
binomial coefficients. Formally, we define:

((Z) . JZ: (JJV) for m < N.

We are interested, in particular, in the following game played over a continuous space:

CONTINUOUSSEARCH(k, H) game. In this game, x is a real number with z € D = (0, 1],
and the questioner asks k queries, at most H of which may receive erroneous responses. The
objective of the questioner is to find an interval I, such that = € I, and |I;| is minimized.

» Lemma 1 ([36]). Any questioner’s strategy for CONTINUOUSSEARCH (k, H) with H < k/2
is such that |I,| > ((Ilfl)) /28, Moreover, for H < k/2, there is a strategy, named C-
WEIGHTING, that uses comparison queries and outputs an interval Iy, with |Iw,| <

()
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The following game will be useful in our analysis of online time-series and fractional
knapsack.

FIND(k, H) game. In this game, given k and H < k/2, and D = {1,...,m}, the objective
is to find an unknown x € D, using k queries, up to H of which may be answered incorrectly.
The proof of the following theorem is direct from Lemma 1:

» Theorem 2. The largest positive integer pu(k, H) such that a questioner can identify any
number x € {1,2,...,u(k, H)} in the FIND(k, H) game is such that

yoo ((k ;{H» < u(k, H) < 2¢/ ((Z» |

We define two further games that will be of interest to our analysis. The first is related
to searching in cyclic permutations, and will be useful in the upper-bound analysis of online
bidding.

MINCYCLIC(n, k, H) game. Given an array A[0...n — 1] whose elements are an unknown
cyclic permutation of {0,...,n — 1}, the objective is to use k queries, at most H < k/2 of
which can be erroneous, so as to output an index of the array whose element is as small as
possible.

» Theorem 3. There is a questioner’s strategy for MINCycLIC(n, k, H) based on k comparison
queries that outputs an index j such that A[j] < [n ((k;{H)) J2K=H7 ) for all H < k/2.

Last, we define a game that is related to searching in general permutations, and it will be
useful in establishing lower bounds on the competitiveness of online bidding.

SEARCH(n, k, H) game. Given an array, A[0,...,n — 1] whose elements are an unknown
permutation of {0,...,n — 1}, the objective is to use k queries, at most H of which can be
erroneous, so as to output an index of the array whose element is as small as possible.

» Theorem 4. For any questioner’s strategy for the SEARCH(n, k, H) game, there is a respon-
der’s strategy such that if e is the element of A that is returned, then Ale] > |n ((I’fl)) /2F].

3 A warm-up: Online time-series search

The online (time series) search problem formulates a simple, yet fundamental setting in
decision-making under uncertainty. In this problem, a player must sell an indivisible asset
within a certain time horizon, e.g., within a certain number of days d, that is unknown to the
player. On each day i, a price p; is revealed, and the player has two choices: either accept
the price, and gain a profit p; (at which point the game ends), or reject the price (at which
point the game continues to day ¢ + 1). If the player has not accepted a price by day d, then
it accepts by default the last price pg. The competitive ratio of the player’s algorithm is the
worst-case ratio, over all price sequences, of the maximum price in the sequence divided by
the price accepted by the player.

The problem was introduced and studied in [19] that gave a simple, deterministic algorithm
that achieves a competitive ratio equal to \/M/m, where M, m are upper and lower bounds
on the maximum and minimum price in the sequence, respectively, and which are assumed
to be known to the algorithm. This bound is optimal for deterministic algorithms. Time-
series search is a basic paradigm in online financial optimization, and several variants and
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generalizations have been studied [17, 30, 40, 16]; see also the survey [27]. The problem
has also been used as a case study for evaluating several performance measures of online
algorithms, including measures alternative to competitive analysis [11, 1].

Time-series search was recently studied under the imperfect advice framework in 7], who
227752 00 the competitive ratio with k-bit advice and
tolerance H, under the assumption that H < k/4. Note that no upper bound is known for
H € (k/4,k/2]. If the advice is error-free, i.e., in the advice-complexity model, then a tight

showed an upper bound of (M/m)

1
bound on the competitive ratio equal to (M/m)2*+1 is due to [16].

We show the following result, as an application of the FIND(k, H) game discussed in
Section 2.

» Theorem 5. Consider the online time series search problem, with imperfect advice of size
k and tolerance H < k/2. There is an algorithm that uses k comparison queries, and that

has competitive ratio at most (M/m)ﬁ, where U = [2F—H/ ((k;IH ))L for any H < k/2.
In contrast, no (deterministic) algorithm based on k subset queries has competitive ratio less
than (M /m) T+, where L = [2%/ ((}}))W

Proof. We first show the upper bound. Let a1, ...ay,r be defined such that r = & = 22 =

m ay

L= g = %, hence r = (M/m)Y/ U+ The algorithm uses k comparison queries so
as to find the best reservation price, in the set {a;}?_,, i.e., a threshold p above which the
algorithm will always accept a price in the sequence. In particular, it can choose p to be the
maximum value in {a;}{_; that does not exceed the maximum price in the sequence. This
follows from Theorem 2, since U < 27/ (( * EH )) From the definition of the set {a;}{;,
it easily follows that this algorithm has competitive ratio at most r, which completes the
proof of the upper bound.

We now show the lower bound. By way of contradiction, suppose that there is an
algorithm A for time-series search with k-bit imperfect advice, and of competitive ratio less
than C = (M/m)757. We will show that A could then be used in the FIND(k, H) game so
as to identify, using k queries, an unknown value in {1,..., L 4+ 1}, which is a contradiction
to the upper bound of Theorem 2.

To arrive at the contradiction, define ay,...,ar, and r’ such that
o ap  az _aL M
—_— T — T T/ 4. — - 7’
ay ar—1  ar

hence ' = (M /m)L%r1 = (. Consider a game between the online algorithm A and the
adversary, in which the request sequences consist of prices in {m,as,...,ar, M}. More
precisely, consider the set of request sequences of the form o; = m,aq,...,a;, for all i €
[1, L+ 1], where ay41 is defined to be equal to M. In o;, A must accept price a; to be strictly
less than C-competitive. Equivalently, A uses k queries with at most H errors, and finds a;

in the set {a;}7*!, which contradicts Theorem 2. <

3.1 Comparison of the bounds

In order to compare the upper and lower bounds of Theorem 5, we need to be able to evaluate
the partial sum of binomial coefficients. Since this partial sum does not have a closed form,
we will rely on the following useful approximation from [32]. Let H denote the binary entropy
function. Then

2NH(F) N m
e () =2 o <m < 1)
8m(1 — %) m
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We will also use the following property of the binary entropy function
4p(1 —p) < H(p) < (4p(1 —p))/™*, for all p € (0,1). (2)

We first show that the algorithm of Theorem 5 improves upon the one of [7]. First, note
that [7] assumes that H < k/4, whereas Theorem 5 applies to all H < k/2. Furthermore,
we improve on the competitive ratio for all values of H and k. For this, it suffices to show
that ((k;iH»/?k*H < 22H=k/2 ghich, from (1) holds if k=M (H(T)—1) < 92H—k/2 o
equivalently (k— H)(H(725;) — 1) < 2H —k/2. Let 7 be such that 7 = H/k (hence 7 < 1/2),
then the latter is equivalent to showing that H(;=) < 3£2T. Using (2), it suffices to show
that

A7(1 = 27) 1 /1n 1427
( — )1/1 4 < — ,
(1-7) 2—27

which holds for all 7 < 1/2.

Next, we investigate how close the upper and lower bounds of Theorem 5 are to each
other. Recall that the bounds are of the form (M /m)"/(U+1) and (M/m)Y/ 4+ Using (1),
and ignoring for simplicity the floors and ceilings, we obtain that

U > 2F=D0-HEE) and L < \/8kr(1 — 7)2K0 70,

The above inequalities, along with (2) show that the upper and lower bounds are very close
to each other, since for any fixed value of 7, we have that U > 29(%) and I < 20(k)

4  Online bidding

Online bidding was introduced in [15] as a canonical problem for formalizing doubling-based
strategies in online and offline optimization problems, such as searching for a target on the
line, minimum latency, and hierarchical clustering. In this problem, a player wants to guess
a hidden, unknown real value u > 1. To this end, the player defines an (infinite) sequence
X = (x;) of positive, increasing bids, which is called its strategy. The cost of discovering the
hidden value u using the strategy X, denoted by ¢(X,u), is defined to be equal to 511 T,
where j, is such that x;, 1 < u < z;,. Hence one naturally defines the competitive ratio of
the bidder’s strategy X as Cr(X) = sup,, @

In the standard version of the problem, i.e, assuming no advice, the doubling strategy
x; = 2 achieves optimal competitive ratio equal to 4. Online bidding was studied under the
untrusted advice model in [5], which gave bounds on the consistency/robustness tradeoffs.

It was also studied under a model in which the prediction is the hidden value in [3, 5].

The problem is related to contract scheduling, studied in [6], see also the discussion in
Section 4.1.3.

4.1 Online bidding with imperfect advice
4.1.1 Upper bound

The idea behind the upper bound is as follows. We will consider bidding sequences from a
space of 2% geometrically-increasing sequences (see Definition 6). In the ideal situation of
perfect advice, the k advice bits could be used to identify the best strategy in this space. In
the presence of advice errors, we will show how to exploit the cyclic structure of this space,
in conjunction with our upper bound for the MINCycLIC game (Theorem 3), so as to find a
strategy that is not too far from the optimal.

We first define the space of geometrically-increasing bidding sequences.
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» Definition 6. For given b > 1, and | € NT define X, as the set of bidding sequences
{Xo,... X11}, in which X; = (b31)%2, for alli € 0,1 — 1].

From the definition of &, it is easy to see that for any potential target u, there is a
cyclic permutation 7 of {0, ...l — 1} which determines an ordering of the strategies in A} in
terms of their performance. More precisely, suppose that X7 (g is the best sequence that
discovers u at least cost, say C. Then Xy ;) discovers u at cost at most b'C. This property
can help us show the following upper bound:

» Theorem 7. There is a bidding strategy based on k comparison queries of competitive ratio
14U

1
at most 15 (1 + 13_kU) T ,where U = [2H (") 1.

4.1.2 Lower bound

The idea behind the lower bound is as follows. With k advice bits, the best one can do is
choose the best strategy from a set X' that consists of at most 2* strategies. Note that if the
advice were error-free, |X| could be as large as 2¥; however, in the presence of errors, the
algorithm may choose to narrow |X|.

Our approach combines two ideas. The first idea uses the abstraction of the
SEARCH(n, k, H) game, and the lower bound of Theorem 4. This result will allow us
to place a lower bound on the rank of the chosen strategy, where the best strategy has rank
0. The second idea is to define a measure that relates how much worse a strategy of rank j
in X has to be relative to the best strategy in X. We will accomplish this by appealing to
the concepts of parallelism and fault tolerance.

More precisely, given integers p, and ¢, with ¢ < p, we define the fault-tolerant parallel
bidding problem, denoted by FPB(p, ¢), as follows. The player is allowed to run, in parallel, p
bidding strategies; however, ¢ of these strategies can be faulty, in that they never discover
the target; e.g., we can think of a fault strategy as one in which the player abruptly stops
submitting bids, at some point in time, akin to a “byzantine” failure. The cost of discovering
a target u is then defined as the minimum cost at which one of the p — ¢ non-faulty strategies
discovers the target, noting that the faults are dictated by an adversary that aims to maximize
this cost. The competitive ratio is defined accordingly.

The next theorem is the main technical result for FPB(p, ¢), which gives a lower bound
on the competitive ratio of any strategy for this problem, as a function of the parameters p,
¢ and ag. Here, X is defined as the sorted sequence of all bids in the p-parallel strategy X,
in non-decreasing order. Moreover, given a sequence X of positive reals, we define ax to be

equal to limsup,_, xz/i

» Theorem 8. FEvery p-parallel strategy X for FPB(p, ¢) has competitive ratio Cr(X) >
a1t
=

Proof sketch. We use properties of p-parallel strategies so as to show that any such strategy

atetl -
satisfies Cr(X) =0 We then use Gal’s functional theorem [21] to obtain the

> sup, W
result. We omit several technical details. |
We now show how to obtain a lower bound for the problem by combining the above ideas.
We emphasize a subtle point: unlike error-free advice of size k, where one should always
choose the best strategy out of a collection of exactly 2* strategies, it is conceivable that, in
the presence of errors, this collection could very well be of size [ < 2¥. This is because, as [
decreases, so does the effect of errors on the competitive ratio. In other words, we need to
establish the result for all values I < 2%, and not only for | = 2*.
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» Theorem 9. For every bidding sequence X and k subset queries in the imperfect advice
model, we have Cr(X) > +(1+ L)**1/E where L = 2%/ ((fl)) .

Proof. Every bidding strategy will use the query responses so as to select a strategy from a
set X = {Xy,...,X;_1} of candidate sequences, for some | < 2*. For a given target value
u, there is an ordering of the [ sequences in X such that Xy has no worse competitive
ratio than X (;11), namely the permutation orders the sequences in decreasing order of
performance. From Theorem 4, it follows that the strategy will choose a sequence X; such
that 7(j) > [l ((I’})) /2F|. The competitive ratio of the selected sequence is at least the
competitive ratio of the [-parallel strategy defined by X, in which up to ¢; = [l ((Z)) /2F]
sequences may be faulty. From Theorem 8,

l:‘rl—‘rgﬁl

or(x) = S it =11 (7)) /240 3)

ag —

We now consider two cases. Suppose first that | < L. In this case, case ¢; = 0, and
therefore (3) implies that Cr(X) > algl/(al)z —1), which is minimized for a ¢ = (I+1)%/! > 1,
therefore Cr(X) > }(I + 1)**'/!. This function is decreasing in I, and since I < L we
have Cr(X) > +(1 + L)'*'/L. Next, suppose that | € [L,2*]. In this case, (3) gives

1(1+41/L)
Cr(X) > =X——. The above expression is minimized for oy = (14-L)'/!, and by substitution
aX—l X

we obtain again Cr(X) > 1 (1 + L)'+/E, <

4.1.3 Comparison of the bounds

We can prove that the ratio between the two bounds is approximately

UB _ VBRI Tk(1 - 1)1~ H(Z5)) k(1 - H(r))

LB — ok(1-7)(1-H(:Z5)) 2k(1=H(r)) ’

log

where 7 = H/k. We infer that as k increases, and for any fixed value of 7, the upper and
lower bounds become very close to each other.

Note that the techniques of [6] imply an online bidding strategy with imperfect advice
of competitive ratio roughly equal to f(2k/H), where f is the decreasing function f(z) =
la+ 2)'%. Thus, if H = O(k), then the competitive ratio is independent of the number of
queries k. In contrast, the competitive ratio of Theorem 7 is roughly equal to f(2*/U), which
is smaller than f(2k/H), and which rapidly decreases as the number of queries k increases.

We also note that our analysis implies a tight bound on the advice complexity of online
bidding. No previous bounds on the advice complexity of this problem were known.

5  Online fractional knapsack

In the online fractional knapsack problem, the request sequence consists of items, where item
i has a value v; € RY and a size s; € (0,1]. The algorithm has a knapsack of unit capacity,
and when considering item 4, it can accept irrevocably a fraction f; € (0, 1] of the item,
subject to capacity constraints. More precisely, the algorithm aims to maximize Y (f; - v;)

K3
subject to Y (fi-s;) < 1. Online fractional knapsack has important applications in sponsored

K2
search auctions, ad allocation and online trading, and has been studied in several settings,
e.g., [2, 24, 38, 14]. In this section, we study this problem in the imperfect advice setting.
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Let d; = v;/s; denote the density of item i. While the offline version of the problem admits
an optimal solution via a simple greedy algorithm (that sorts all items by non-decreasing
order of density, and accepts items in this order until the knapsack is full), the online version
is more challenging. Suppose that d; € [L, U], for L, U known to the algorithm. [13, 12] gave
matching O(log(U/L)) and Q(log(U/L)) upper and lower bounds on the competitive ratio of
the problem, respectively, and [41] showed an optimal bound of In(U/L) 4 1 for deterministic
algorithms.

5.1 Upper bound

As in all previous work, we assume that the density of all items is in [L, U] for known values
of L and U. Let d* denote the smallest density of an item included at a positive fraction
in the optimal solution. That is, the optimal algorithm OPT accepts a fraction 1 of items
with density larger than d*, and fills the remaining space with a fraction of items of density
d*. Unfortunately, knowing d* (even its exact value) is not sufficient for an online algorithm
to be anywhere as efficient as OPT. For example, an algorithm that accepts a fraction 1 of
items of density larger than d* has unbounded competitive ratio in sequences that consist
only of items of density d*. Similarly, an algorithm that accepts a fraction 1 of items with
density at least d* has unbounded competitive ratio in sequences in which items of density
d* appear early in the sequence, and items of greater density later in the sequence. However,
if we denote by ¢* € (0,1) the fraction of the knapsack in the optimal solution that is either
empty or occupied with items of density d*, then knowing the exact value of both d* and c¢*
suffices to achieve optimality. Our approach will then aim to use k comparison queries so as
to approximate ¢* and d*, then use these approximations to choose fractional items.

5.1.1 Algorithm and analysis

We describe the online algorithm. We first define two types of partitions, related to the
parameters d* and ¢*. In what concerns d*, partition the interval [L, U] into s sub-intervals
I,...,Issuch that I; = [d;_1,d;), for s that will be specified later. We also set L = do, U = d;.
The values d; are defined so that: = ZTI) = 3—? =...= dfil‘ Thus, we have 8 = (U/L)/*
and d; = L - 8%, and note that d* € I, for some z € [1, s].

In what concerns the parameter ¢*, we partition the interval [0, 1] into m sub-intervals

I,..., I, such that I/ = [¢;—1,¢;); we have ¢ = 0 and ¢, = 1. The value of m will be
determined later; the values ¢; are defined so that ¢; = ¢5 — %1 =c3 — %2 =...=cCy — C”‘T’l
It readily follows that for ¢ > 1, we have ¢; = % In particular, ¢; = %,

1 pm-1
and o = BT T

Provided that s -m < |[2F—H/ ((k;{H ))J, Theorem 2 shows that the algorithm can use k
comparison queries so as to identify both x and y. Given these values, the algorithm reserves,
in its knapsack, a capacity ¢ = ¢, for items with density in the range I, = [dy—1,d5), to
which we refer as critical items. The algorithm uses the remaining capacity of 1 — ¢ for items
of density larger than d,, to which we refer as heavy items, and accepts a fraction 1 of all

Note also that ¢* € I}, for some y € [1,m].

critical items, as long as the capacity c reserved for them allows. Similarly, the algorithm
accepts a fraction 1 of heavy items and places them in their dedicated space of the knapsack.
Given that ¢* € I, we have 1 — ¢ > 1 — c*; that is, the reserved capacity for heavy items is
at least equal to the total size of these items. In other words, the algorithm can afford to
accept all heavy items. The algorithm rejects all items of density smaller than d,_1.
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» Theorem 10. For any H < k/2, the above algorithm has competitive ratio

min fm(B) where = (U/L)l/s7 and fin(8) = g™ =1

s,meN Bm—l -1

subject to  s-m < [2F1/ ((k ;{H»J

5.2 Lower bound

We will show a lower bound C(k, H) on the competitive ratio of any algorithm with imperfect
advice. For the sake of contradiction, suppose there is an algorithm A of competitive
ratio better than C(k, H). Our proof is based on a reduction from the FIND(k, H) game.
Specifically, we prove that, based on A, we obtain a questioner’s strategy for FIND(k, H)
which can find a value z € {1,...,p}, with p = [2¥/ ((I’j,))] +1, which contradicts Theorem 2.

We give the intuition behind the proof. Let s and m be any two positive integers such
that s-m < pand s-(m+1) > p. Define § = (U/L)"/*, and d; = U - B¢, for i € [1,s]. Given
a pair (z,y) of integers, where x € {1,...,s} and y € {1,...m + 1}, define the sequence

Ox,y = ((dlv ]-)a (d27 1)3 cey (dxflv ]-)7 (da:a Cy)v

where (d;, j) indicates a subsequence of j/e items, each of which has size € and density d;,
and where € is infinitesimally small. ¢, € [0,1] is defined appropriately in the proof. For this
sequence, OPT(04,) = (1 — ¢y)dz—1 + cydy. There are s- (m + 1) > p such sequences, and
O,y is a prefix sequence of o, 411, and o4, is a prefix sequence of 0,41.1. In the proof, we
consider request sequences of this form, and we show that if A is C(k, H)-competitive, its
decisions can help find any given z € {1,...,p}, which contradicts Theorem 2.

» Theorem 11. For the fractional knapsack problem, where items densities are in [L,U],
no deterministic algorithm with k subset queries, out of which H < k/2 may have erroneous
responses, can achieve a competitive ratio better than

2 1
Ck,H) = sf?niélN gm(B) where (= (U/L)l/s, gm(B) = (%)UWH)

subject to  s-m < [2F/ ((2))1 +1.

Comparison of the bounds

Let 7 = H/k. Since % < B, using (1), the upper bound of Theorem 10 is at most (U/L)?,

where ¢ < 1/2’“(1_7)(1_?{(&)). Furthermore, since % > g (for all 8 > 3), the lower
bound of Theorem 11 is at least (U/L)? (1/3)7, where ¢’ > 1/(2/8kr(1 — 7)2F0-H() 4 1),

for all U/L > 3. For simplicity, we omitted the floors and ceilings.

6 Waiving the assumption of the tolerance parameter

In the imperfect advice setting we have studied so far, the algorithm defines an application-
specific tolerance parameter that measures its desired tolerance to errors (or equivalently,
an anticipated upper bound on the error). This parameter is in a sense required, since the
analysis of Rényi-Ulam games in [36] involves the extreme value of error (i.e., H) instead
of the instance-specific error value (i.e., ). Nevertheless, in this section, we discuss how
to mitigate the need for pre-determining a tolerance parameter. We propose two different
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approaches, based on resource-augmentation, and robustification, which we discuss in what
follows. We use the time-series search and online bidding problems as illustrations, even
though our approach may carry through in other online problems, at the expense of more
complex calculations.

6.1 Resource augmentation

In this setting, we compare an oblivious online algorithm A with [ advice bits and no
information on the error bound, to an online algorithm B that has k ideal (i.e. error-free)
advice bits. Specifically, we are interested in finding the smallest [ > k (as a function of k)
for which algorithm A is at least as good as algorithm B, regardless of the advice error of A.

The following theorem shows that O(1)-factor resource augmentation suffices to obtain
an oblivious algorithm that is at least as efficient as any algorithm that operates in the ideal
setting of error-free advice, and even if a fraction 1/3 — ¢ of the advice bits may be erroneous,
for any constant c.

» Theorem 12. Consider the time-series and the online bidding problems. For all sufficiently
large k, and any c € (0,1/3), there is an oblivious online algorithm A with advice of size I,
whose competitive ratio is at least as good as that of any online algorithm B with k bits of
perfect (i.e. error-free) advice, where | = ——X————k + 1, for any error n < (1/3 — ¢)l

(3+e)1-H(370))

in the advice of A.

6.2 Robustification

In this setting, we augment the imperfect advice framework by requiring not only that the
algorithm minimizes the competitive ratio assuming that the advice error is at most the
tolerance H, but also that its competitive ratio does not exceed a robustness requirement r,
for some specified r, if the error exceeds H (and in particular, if the advice is adversarially
generated). We call such online algorithms r-robust. Thus, this model can be seen as an
extension of both the imperfect advice and the untrusted advice model of [5].

For the time-series problem, we obtain the following result, which generalizes Theorem 5.
In particular, note that Theorem 5 is a special case of Theorem 13 for p = 1.

» Theorem 13. Consider the online time series search problem, with imperfect advice of
size k, tolerance H < k/2, and robustness r = (M/m)?, where p € (1/2,1]. There is
an r-robust algorithm that uses k comparison queries, and has competitive ratio at most
(M/m)%, where U = |2k / <(k;IH))j, for any H < k/2. Moreover, no (deterministic)

algorithm based on k subset queries has competitive ratio better than (M/m)ip%, where
L=[2k/ ((k;f’))l.

The analysis of r-robust algorithms for online bidding is more challenging, in particular
in what concerns the impossibility results. We give an overview of the approach. For the
upper bound, we can follow an analysis along the lines of Theorem 7, however, each bidding
sequence in the collection X}, o+ must be individually r-robust. This is easy to enforce, and it
requires that b much be such that 52 /(b — 1) < r. The lower bound is more subtle: the proof
follows the lines of Theorem 9, but uses the fact that if all the [ sequences in Xg,..., X;_1
must be r-robust, then a% /(ax — 1) < r. We obtain the following:
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» Theorem 14. For cvery r > 4 there is an r-robust bidding strategy with k-bit imperfect
advice that has competitive ratio at most

b>1 H2F — 1

b2’“+U+1

o 1 k o H
7 subjGCt to bZH' /(ka _ 1) <r, and where U = |—2H << H ))1

Furthermore, every r-robust bidding strategy has competitive ratio at least
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—— Abstract

Based on a theorem of Bergman [6, Theorem 4.5.3] we show that multivariate noncommutative
polynomial factorization is deterministic polynomial-time reducible to the factorization of bivariate
noncommutative polynomials. More precisely, we show the following;:

1. In the white-box setting, given an n-variate noncommutative polynomial f € F(X) over a field F
(either a finite field or the rationals) as an arithmetic circuit (or algebraic branching program),
computing a complete factorization of f into irreducible factors is deterministic polynomial-time
reducible to white-box factorization of a noncommutative bivariate polynomial g € F(z,y); the
reduction transforms f into a circuit for g (resp. ABP for g), and given a complete factorization
of g (namely, arithmetic circuits (resp. ABPs) for irreducible factors of g) the reduction recovers
a complete factorization of f in polynomial time.

We also obtain a similar deterministic polynomial-time reduction in the black-box setting.

2. Additionally, we show over the field of rationals that bivariate linear matrix factorization of
4 x 4 matrices is at least as hard as factoring square-free integers. This indicates that reducing
noncommutative polynomial factorization to linear matrix factorization (as done in [1]) is unlikely
to succeed over the field of rationals even in the bivariate case. In contrast, multivariate linear
matrix factorization for 3 x 3 matrices over rationals is in polynomial time.
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1 Introduction

The main aim of this paper is to show that multivariate polynomial factorization in the free
noncommutative ring F(xy, za, ..., z,) is polynomial-time reducible to bivariate noncommut-
ative polynomial factorization in the bivariate ring F(x,y). Such a result for commutative
polynomial factorization is well-known due to Kaltofen’s seminal work [9, 10] on multivariate
polynomial factorization in the commutative polynomial ring Fly1, y2,. .., yn]. However, this
problem was open for noncommutative polynomials. Recently, a randomized polynomial-time
algorithm was obtained for the factorization of noncommutative polynomials over finite fields,
where the input polynomial is given by a noncommutative formula [1].} Broadly speaking,
the algorithm of [1] works via Higman linearization ([8] [6] [7]) and reduces the problem to
linear matrix factorization which turns out to have a randomized polynomial-time algorithm
over finite fields.

L Factorization of homogeneous noncommutative polynomials is easier as it can be reduced to factorization
of a special case of commutative polynomials. See [4] for details.
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» Problem 1 (Linear Matrix Factorization Problem). The linear matriz factorization problem
over a field F takes as input a linear matriz: L = Ag + Z?:l A;x;, where the A; are d X d
scalar matrices (over F), the x;,1 <1i < n are noncommuting variables, and Ay is assumed
invertible for technical reasons. The problem is to compute a factorization of L as a product
of irreducible linear matrices.

The study of matrix factorization (linear matrix factorization, in particular) is an import-
ant part of Cohn’s factorization theory over general free ideal rings. [6, 5.

Coming back to the polynomial factorization algorithm described in [1], the algorithm
reduces polynomial factorization to linear matrix factorization which is, in turn, reducible
to the problem of computing a common invariant subspace for a collection of n matrices.
The common invariant subspace problem over finite fields can be efficiently solved using
Ronyai’s algorithm [12] which is based on the Artin-Wedderburn theorem for decomposition of
algebras. This approach, however, runs into serious difficulties over rationals. Given a simple
matrix algebra? A over rationals, we do not know an efficient algorithm for checking if A is a
division algebra or whether it has zero divisors. This is one of our motivations for obtaining
a reduction from multivariate polynomial factorization to bivariate factorization. Because
Higman Linearization of a bivariate noncommutative polynomial given by a formula will
yield a bivariate linear matrix. One could hope that factorization of a bivariate linear matrix
is computationally easier than factorization of an n-variate linear matrix. Unfortunately, this
is not the case. As we will see, even for 4-dimensional bivariate linear matrices the problem
of factorization is at least as hard as factoring square-free integers.

Multivariate to Bivariate

We start with some formal preliminaries. Let F be any field and X = {z1,22,...,2,} be a
set of n free noncommuting variables. Let X* denote the set of all free words (which are
monomials) over the alphabet X with concatenation of words as the monoid operation and
the empty word € as identity element.

The free noncommutative ring F(X) consists of all finite F-linear combinations of monomi-
als in X*, where the ring addition + is coefficient-wise addition and the ring multiplication
* is the usual convolution product. More precisely, let f,g € F(X) and let f(m) € F
denote the coeflicient of monomial m in polynomial f. Then we can write f =" f(m)m
and g = > g(m)m, and in the product polynomial fg for each monomial m we have
fa(m) =3 aem f(m1)g(ma). The degree of a monomial m € X* is the length of the
monomial m, and the degree deg f of a polynomial f € F(X) is the degree of a largest
degree monomial in f with nonzero coefficient. For polynomials f, g € F(X) we clearly have
deg(fg) = deg f +degg.

A nontrivial factorization of a polynomial f € F(X) is an expression of f as a product
f = gh of polynomials g,h € F(X) such that degg > 0 and degh > 0. A polynomial
f e F(X) is irreducible if it has no nontrivial factorization and is reducible otherwise. For
instance, all degree 1 polynomials in F(X) are irreducible. Clearly, by repeated factorization
every polynomial in F(X) can be expressed as a product of irreducibles.

The problem of noncommutative polynomial identity testing (PIT) for multivariate poly-
nomials is known to easily reduce to noncommutative PIT for bivariate polynomials: the
reduction is given by the z; — xy?,1 < i < n, which transforms a given arithmetic circuit
(or formula or algebraic branching program) computing a polynomial f(z1,za,...,2,) to the

2 j.e. the algebra has no nontrivial two-sided ideals.
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bivariate polynomial g(x,y) = f(zy,2y?,...,2y"™). As this substitution map ensures that
every monomial of f is mapped to a distinct monomial of g(x, y), f is the zero polynomial if and
only if g(z,y) is the zero polynomial. Indeed, this map even gives an injective homomorphism
from the ring F(z1, 22, ..., zy) to F(z,y) [6, Problem 14, Exercises 2.5]. However, it does not
preserve factorizations. For example, the polynomial f = z3z1 + 2422 + 2421 + 2522 € F(X)
is clearly irreducible. But the image of f under this map has the nontrivial factorization
(xy? +2y®) (yry+y?xy?). Thus, it cannot be used to obtain a reduction from noncommutative
multivariate polynomial factorization to bivariate polynomial factorization.

Bergman'’s 1-inert embedding

However, based on a theorem of Bergman [6, Theorem 4.5.3], we can obtain a polynomial-time
reduction from factorization of multivariate noncommutative polynomials in F{x1, o, ..., z,)
given by arithmetic circuits (resp. noncommutative algebraic branching programs(ABP)) to
factorization of bivariate noncommutative polynomials in F(z,y), again given by arithmetic
circuit (resp. an ABP). This reduction is polynomial-time bounded for both finite fields
and rationals. In the case of rationals we need to ensure that the bit complexities of all
numbers involved are polynomially bounded. Furthermore, we show that essentially the same
reduction works in the black-box setting as well.

The notion of 1-inert embeddings is defined below for free noncommutative polynomials.

» Definition 2 (1-inert embedding). [5] Let Xoo = {x1,22,...} be a countably infinite set
of free noncommuting variables and {x,y} be two free noncommuting variables. A 1-inert
embedding of F(X ) into F(x,y) is an injective homomorphism ¢ : F(X) — F(x,y) such
that for each polynomial f € F(X), if its image o(f) factorizes nontrivially in F{z,y) as
©(f) = g1-g2 then their preimages o~ (g1) and ¢~ *(g2) ewist and, since ¢ is a homomorphism,
it gives a nontrivial factorization f = o~ (g1)p " (g2) of f in F(X).

» Remark 3. The above definition implies that for all factorizations ¢(f) = gige2, the
polynomials g; and gs are in the range of . Cohn [6, 5] treats 1-inert embeddings ¢ : Ry — Ra
for general noncommutative integral domains Ry and Rg, which we do not require for our
results.

» Definition 4. A complete factorization of noncommutative polynomial f € F(X) is a
factorization f = f1 - fo--- f into a product of irreducible polynomials f; € F(X).

Given an algebraic branching program (resp. Arithmetic Circuit) for f, we can efficiently
obtain an algebraic branching program (resp. Arithmetic Circuit) for ¢(f) and then we
use idea of running a substitution automata on ABPs or circuits (see e.g. [4], [2], [3]) to
construct a complete factorization of f given a complete factorization of ¢(f). In the next
section we will elaborate and expand upon Bergman’s embedding theorem [5] and show how
to get an effective algorithmic version which is useful for our purpose of reconstruction of
factors of f from factors of p(f).

The rest of the paper is organized as follows: In Section 2 we give necessary details of
Bergman’s result. In Section 3 we present the reductions. Motivated by the connection
between noncommutative polynomial factorization and linear matrix factorization, in Section 4
we show a hardness result for bivariate linear matrix factorization for 4 x 4 linear matrices
over rationals. In contrast we obtain an efficient linear matrix factorization algorithm for
3 x 3 linear matrices over rationals.
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2 Bergman’s embedding

We recall the graded lexicographic ordering < on monomials in {z,y}*, which is a total
ordering on {z,y}* defined as follows:

For monomials my, mg € {x,y}*, m1 # ma, we say my < my if either deg(m;) < deg(ms)
or deg(my) = deg(msz) and in the leftmost position i where they differ we have m[i] =y
and my[i] = x.

For any polynomial g, let supp(g) denote the set of all monomials of g with non-zero
coefficient. When m; < mso we say that monomial m; is smaller than monomial ms.
Equivalently, we say mq is larger than m;. The leading monomial of a polynomial g € F(z,y)
is the monomial m € supp(g) (denoted by lm(g)) such that w < m for all w € supp(g). That
is, the leading monomial of g is the largest monomial in supp(g).

For a monomial m € {z,y}* let dy(m) (resp. dy(m)) denote the number of occurrences
of z (resp. y) in m. The imbalance i(m) of the monomial m is defined as

i(m) = d, (m) — d, (m).

Let B C F(z,y) be the set of all polynomials f such that every monomial m € supp(f)
has imbalance zero, i.e. i(m) = 0 for all m € supp(f). Clearly, B is a subalgebra of F(x,y).
Let T be the set of all minimally balanced monomials. That is, for m € T either m = € or
i(m) = 0 and for any proper prefix m’ of m such that m’ # €, i(m’) > 0. Notice that for all
monomials m € T\ {e} its leftmost symbol m[1] is z. We arrange the nontrivial monomials
in T in increasing <-ordering. Let u; denote the i** monomial in this ordering. Let w; be
the monomial obtained from w; by replacing every occurrence of x by y and y by z. Let
T ={u; | i > 1}. It is easy to see that the monomials in 7'UT generate the algebra B.
In fact, every monomial m € B is uniquely expressible as a product gi¢s ... gs, where each
g € TUT. If g; € T it is a T-factor of m and if g; € T it is T-factor of m. Let C be the
subalgebra of B generated by {u; +u; | ¢ > 1}.

» Lemma 5. Let B and C be the subalgebras of F{x,y) as defined above.
The leading monomial m of any polynomial in C' has the form m = w;, u;, - - - u;,, where
each u;; is a T-factor. That is, m does not have any T-factor.
Every polynomial f € B\ C can be written as f = g+ h for some g € C and h € B, such
that the leading monomial of h has a T-factor.

Proof. By definition, each g € C' is an linear combination of products of the form Hizl(uik +
u;,, ). Hence, if supp(g) contains the monomial vivs ... ve, where vy, € {u;,,q;, } for k € [¢],
then supp(g) also contains the degree-d monomial uj uj, ...uj, (in fact, with the same
coefficient as vivy ... vg). If uj uj, ... uj, # viva... v, then, by definition of <, the monomial
Uj, Uy, - - - Uj, is larger than vivs ... ve. Therefore, the leading monomial of any polynomial
g € C has the form claimed.

Next, let f € B\ C. We will show the second part of the lemma by induction on the
leading monomial of f w.r.t. the <-ordering (which is a well ordering on monomials).

The base case of the induction is when the leading monomial of f has a T-factor then the
claim follows as f = 0+ f and 0 € C. Suppose the leading monomial of f is m = u;, uj, - - - uj,.
If the coefficient of m in f is a # 0, let

fi=f —aluy, +a5,) (wy, +73,) - - (w), +5,). (1)

If my is the leading monomial of f; then clearly m; < m. Furthermore, f; € B\ C as
f — f1 € C. By induction hypothesis, we have f; = ¢’ + h such that ¢’ € C and the leading
monomial of h has a T-factor. Since f = (f — fi) +¢ +hand g = (f — f1) + ¢’ € C, this
completes the induction and the proof. <



V. Arvind and P.S. Joglekar

Let Xoo = {1, 22,...} be a countably infinite set of free noncommuting indeterminates.
Consider the mapping ¢ : F(X ) — F(z,y) defined as follows:

Let o(x;) = u; +u; for all ; € X.

Extend ¢ to all monomials by multiplication. That is, ¢(x;, @4, ... @i, ) = H?Zl o(xs;).

Further, extend ¢ to the ring F(X,.) by linearity: o(31_, aimi) = S2¢_, asp(m;), for

monomials m,; € X% and scalars a; € F for i =1 to ¢.

» Lemma 6. The map ¢ defined above is an injective homomorphism (i.e. a homomorphic
embedding) from the ring F(X) to Flx,y).

Proof. To see that ¢ is a homomorphism, we first note that, by linearity, we have p(f +g) =

o(f) + ¢lg) for f,g € F(Xo). To verify that o(fg) = ¢(f)e(g), let f =3, fmm and
9=, 9mm where fn,, g, € F are the coefficients of monomial m in f and g, respectively.

Then ¢(fg) = ¢ (3, fmm)(3_,, Guw)) = ¢ (Emw fmgwmw). Which, by linearity of ¢,
equals } 2., ., fmguwe(m)p(w) = o(f)e(g)-

In order to show ¢ is injective, it suffices to show ¢(f) # 0 for f # 0. Suppose
m € supp(f). Then p(m) # 0, by the definition of p. Hence, if m is the only monomial in
supp(f) it follows that o(f) # 0.

Otherwise, suppose m’ € supp(f) and m’ # m. Let u be largest common prefix of
m and m’. Then m = ux;v and m' = uz,;w, for monomials u,v,w € X% and z; # z;.
Noting that ¢(z;) = u; + w; and ¢(z;) = u; + @; we have p(m) = p(u)(u; + u;)e(v)
and ¢(m') = ¢(u)(u; +T;)e(w). From the definition of ¢, clearly ¢(u) is a homogeneous
polynomial in F(z,y). Let deg(e(w)) = D. Suppose £ = |u;| = |u;| and ¢/ = |u;| = |g,].
Without loss of generality suppose that u; < u;. Hence ¢ < ¢'. As u; and u; are minimally
balanced, u; cannot be a prefix of u;. Also, as u;[1] = = and %;[1] = y, u; cannot be
a prefix of ;. Therefore, for any monomials wy; € supp(¢(m)) and we € supp(p(m’)),
wi and we will differ in the length ¢ subword starting at location D + 1. It follows that
supp(p(m)) Nsupp(p(m’)) = 0. Hence, ¢(f) # 0 implying that ¢ is injective. <

The subalgebra C has the important property that if f € C' then all factors of f are in C
as well. In order to keep our presentation self-contained we include a complete proof with
more details than are given in [5].

» Theorem 7 (Bergman; [5, Chapter 4, Theorem 5.2]). Let f € C. For any factorization
f =g h the polynomials g and h are in C'.

Proof. First we show that all monomials of ¢ have the same imbalance. Likewise, all
monomials of A have the same imbalance. Suppose amin and G.,q; are the minimum and
the maximum imbalances of monomials of g. Let b,,;, and by, be the minimum and the
maximum imbalance of monomials of h. Let M, be a smallest monomial (with respect to
<) in supp(g) with imbalance @i, and My, be a largest monomial (with respect to <) in
supp(g) with imbalance ap,qz. Let Winin, Wimae be monomials similarly defined for polynomial
h corresponding to by, and by,q,. Now consider the product monomial © = Mypa:Wmaz-
We claim that v is uniquely expressible as a product of a monomial of g and a monomial
of h. To see this, suppose © = m/w’ where m’ € supp(g), w’ € supp(h) and Mmyqa. # m' or
Winaz 7 w'. Now, as i(u) = i(Mmaz) + 1(Wmae) = (M) + i(w’") and Mz, Wnae are the
monomials with highest imbalance of g and h respectively, we must have i(m') = i(mmaz)
and i(w') = i(Wmagz)- SO we get, m' < Mypae and W' < Wpee by the choice of My, and
Winaz- BUut a8 U = MypaeWmaz = m'w’, clearly either my,q, is a strict prefix of m’ or wy,qz 18
a strict prefix of w’. In the former case we have m,,., < m’, and in the later case Wy < w'.
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These contradict the fact that m' < Myar and W < Wmee. Hence, 4 = MyazWmaz iS the
unique expression of u as a product of a monomial of g and a monomial of h. Consequently,
u has non-zero coefficient in f = g.h. Clearly u has imbalance amqz + bmaz. Similarly,
monomial v = MyyinWmin is non-zero in f and has imbalance @iy + bymin- As f € C, each
monomial of f has imbalance 0. Hence, ¢z + bmaz = 0 and amin + bmin = 0. It follows
that Gmaz = —bmaz < —bmin = Gmin, IMPLYING Grmin = Gmaz = @ and byin = bae = —a.
Thus, all monomials of g have imbalance a and all monomials of i have imbalance —a.
Let m be the leading monomial of f. Clearly, m is a maximum degree monomial of
f- Moreover, m is largest among the max-degree monomials of f. Let m = mymsy with
my € supp(g) and meo € supp(h). We have i(m1) = a, i(m2) = —a. As f € C, the monomial
m obtained by replacing every occurrence of x by y, and y by x in m is also in supp(f).
Moreover, m is the smallest monomial among the max-degree monomials of f. This forces
that the monomial m; (obtained by interchanging z,y in mq) is in supp(g). Similarly,
monomial my (obtained by swapping x,y in ms) is in supp(h). We have i(m;) = —a and
i(m2) = a. Now, all monomials of g have the same imbalance, and my,m; € supp(g). This
forces a = —a = 0. Consequently, all monomials in supp(g) U supp(h) have imbalance zero
which implies g,h € B. Now, applying Lemma 5 to g and h we have:
1. g= g1+ go, h=hi + ha, g1,h1 € C, such that Im(gy) has a T-factor 4, and Im(hs) has
a T-factor 7.
2. Consequently, the deg(g2) prefix of Im(gohy) contains the T-factor @ and the deg(hz)
suffix of Im(g; hs) contains the T-factor v.
3. Finally, the deg(g2) prefix and the deg(hs) suffix of lm(gs - ha) contain, respectively, the
T-factors % and v.

Hence the leading monomials lm(gs - h1),1lm(g1 - h2), and lm(gs - ha) are all distinct and
cannot mutually cancel. Therefore, the leading monomial of f =go-hy1+91-ha+g2-ho
contains a T-factor unless both g» = 0 and hs = 0. Now, f =go-h1+g1-hatgo-ho = f—gi1hy.
As f € C and g1, hy € C it implies f € C. However, by Lemma 5, the leading monomial of
f cannot have a T-factor. It forces go = 0 and hy = 0 which implies ¢g,h € C. <

Theorem 7 implies that ¢ is a 1-inert embedding (Definition 2).

» Theorem 8. Let f € F(X), where X = {x1,...,2,}. Suppose f' = o(f) =g -k isa
non-trivial factorization of p(f) in F{x,y). Then there is a non-trivial factorization f = g-h
for g,h € F(X), such that p(g) = ¢’ and ¢(h) =1'.

Proof. As F(X) C F(X), the embedding ¢ maps f € F(X) to some f' = ¢(f) € C.
Suppose [/ = ¢’ - h' is a nontrivial factorization of f’ in F(x,y). By Theorem 7, as f' € C,
its factors ¢’,h’ € C. Since ¢’ € C, it is an F-linear combination of products of the form
(ug, + g ) (Ut, +Usgy) - - - (ug, +Uz,). By definition of ¢,

(utl +Tt1)(ut2 +th) cee (ute +Tt@) = So(xtlxtz cee xte)'

Hence, by linearity, it follows that ¢’ = ¢(g) for some nontrivial polynomial g € F(X.),
similarly there is a nontrivial polynomial h € F(X,) such that ' = ¢(h). Since ¢ is a
homomorphism, we have

o(f)=Ff =g -h =g oh)=e(g-h).

As o is injective, we have f = g-h. To complete the proof we need to argue that g, h € F(X).
Let Var(g) be the subset of variables that occur in some non-zero monomial of g. We claim
that Var(g) C X. Suppose Var(g) contains some z; ¢ X. Let m € supp(g) be the largest
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monomial (in <-ordering) in which x; occurs. Then the monomial m - lm(h) contains the
variable z; and has a non-zero coefficient in f = gh. This is a contradiction as f € F(X) and
X does not contain x;. Hence Var(g) C X. Similarly, Var(h) C X. <

3 Multivariate to Bivariate reduction

We now apply Bergman’s theorem (Theorem 7) to show that multivariate noncommutative
polynomial factorization is reducible to bivariate noncommutative polynomial factorization.
We require some preparatory observations.

Let X = {x1,22,...,2n}, and v1,vs,...,v, be any n distinct and minimally balanced
monomials in {z,y}*. We define ¢ : F(X) — F(z,y): p(x;) = v; +7; for all 4, which extends
by multiplication, i.e. @(z; i, ... 2 ) = H§:1 @(z;;), to monomials, and by linearity to
F(X). The definition of ¢ is essentially like in the proof of Bergman’s theorem, except that
X is finite and the v;,1 < ¢ < n are any n distinct minimally balanced monomials. The
following lemma is on the same lines as Theorem 7 and Theorem 8. The straightforward
proof is by a suitable renaming of the variables z1, ..., z, before and after application of
Theorem 7 in the proof of Theorem 8.

» Lemma 9. Let X = {z1,...,z,} and f € F(X). Suppose vi,va,...,v, € {z,y}* are
distinct minimally balanced monomials. If f' = p(f) =g’ - I’ is a non-trivial factorization
of f inF(x,y) then there are polynomials g,h € F(X) such that ¢' = ¢(g), i = p(h) and
f=g-h.

In order to obtain a polynomial-time computable reduction it is convenient to choose
V1, V2, ..., U, such that each v; has the same length. The next lemma ensures that £ = O(log n)
suffices. This follows from the fact that the number of minimally balanced monomials of
length 2/ is at least as large as the (¢ — 2)** Catalan number, and well-known asymptotic
lower bounds on Catalan numbers.

» Lemma 10. There are at least n minimally balanced monomials of length 2¢ in {x,y}*
for £ > max([log2n],6). Furthermore, the lexicographically first n minimally balanced
monomials of length 2¢ can be computed in time polynomial in n.

Proof. Consider monomials v of the form v = z - w - y, where w is a Dyck monomial. 3
That is, w is a balanced monomial such that every prefix of w has at most as many y’s
as z’s. Notice that w € {x,y}?~2
more z than y. So any such monomial is minimally balanced of length 2¢. The number
of Dyck monomials of length 2¢ — 2 is Cy_; (the (£ — 1) Catalan number). A standard

. It follows that any nontrivial prefix of v has strictly

estimate yields Cy ~ %, which implies that Cj, is 2°2(%). Specifically, Cy, > 2F for k > 5.

If n < 2671 and ¢ > 6 then there are at least n minimally balanced monomials of length
2¢, for ¢ = max([log2n],6). Clearly, we can compute the v;,1 < i < n by enumeration in
poly(n) time. <
3.1 White-box reduction

We first describe the reduction in the white-box case for input polynomial f € F(X) given
by a noncommutative arithmetic circuit.

3 Essentially a balanced parenthesis string with x as left and y as right parenthesis, respectively.
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» Lemma 11. Let X = {z1,...,2,} and f € F(X) be a noncommutative polynomial given
by arithmetic circuit C of size s. Then there is a deterministic polynomial time algorithm that
outputs an arithmetic circuit computing the polynomial o(f) € F{x,y), where the minimally
balanced monomials v;,1 < i < n defining the map ¢ are as described by Lemma 10.

Proof. For 1 < i < n, we note that the sum of two monomials v; + 7; can be computed by
a noncommutative arithmetic formula F; of size O(logn). Let C’ be the arithmetic circuit
obtained from circuit C' by replacing input variable z; with the formula F;. Clearly, C’
computes ¢(f) and its size is polynomially bounded. |

» Lemma 12. For f € F(X) suppose o(f) = f1 - f4--- f. is a complete factorization of
o(f) in F{z,y) into irreducible factors f! € F(x,y). Then there are irreducible polynomials

f1, fas .oy fr €F(X) such that f = f1fa... fr and ©(f;) = f for each i.

Proof. It follows by repeated application of Lemma 9 that if o(f) = f] - f4---f., is a
factorization into irreducible factors f! € F(x,y), then there are polynomials f1, fo,..., fr €
F(X) such that f = fife... fr and ©(f;) = f! for each i. We claim each f; is irreducible.
For, if f; = g - h is a nontrivial factorization of f; in F(X) then clearly f! = o(f;) = ¢(g)¢(h)
is a nontrivial factorization of f/, which contradicts its irreducibility. <

Suppose C! is an arithmetic circuit of size s for f] for i € [r]. We will construct a circuit
of size poly(s},n) for f; efficiently for each i € [r], which is the crucial part of our multivariate
to bivariate reduction. The next lemma describes the algorithm crucial to the white-box
reduction.

» Lemma 13. Given as input a noncommutative arithmetic circuit C for the polynomial
o(g) € F(z,y), where g € F(X) is a degree d polynomial, X = {x1,xa,...,x,}, there is a
deterministic polynomial-time algorithm, running in time poly(d, size(C),n) that computes a
noncommutative arithmetic circuit C' for the polynomial g. Furthermore, if ©(g) is given by
an algebraic branching program then the algorithm computes an algebraic branching program

forg.

Proof. The proof is based on the idea of evaluating a noncommutative arithmetic circuit on
an automaton (specifically, a substitution automaton) described in [4] (see e.g., for related
applications [2],[3]).

Let ¢’ = p(g). Let g =3, a,m where m € X* and a,, is the coefficient of m in g. As
noted before, the map ¢ has the property that supp(p(m)) Nsupp(e(m’)) = 0 for monomials
m # m' in X*. Moreover if m = x;, 2, ... x;, has nonzero coefficient o, in ¢ then ¢’ has a
monomial m’ = v;,v;, ... v;, with coefficient «,,. Hence, to retrieve an arithmetic circuit for
g from the given circuit C’ for ¢’ our aim is to carry out the following transformation of the
polynomial g’ given by the circuit C":

Get rid of the monomials of ¢’ containing of all v; € T for j € [n].

For each remaining monomial m’ of ¢’ substitute x; wherever the monomial v; occurs as

substring in m/ for ¢ € [n].

We will accomplish this transformation by evaluating the circuit C’ at suitably chosen
matrix substitutions x < M, and y < M,, where M, and M, will be N x N matrices
for polynomially bounded N. The resulting evaluation C'(M,,M,) will be an N x N
matrix. A designated entry of this matrix will contain the polynomial g. Clearly, if we can
efficiently compute the claimed matrices M, and M, it will yield an arithmetic circuit C
for the polynomial g. These matrices M, and M, will be obtained as transition matrices
of a substitution automaton that will carry out the above transformation steps on the
polynomial ¢'.
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A finite substitution automaton A is a deterministic finite automata A along with a
substitution map § : Q X {z,y} — Q x (X UF) where Q is a set of states and X =
{x1,29,...,2,} are noncommuting variables. For i,j5 € Q, a € {z,y}, v € X UF, if
d(i,a) = (j,u), it means that when automata A in state i reads a, it replaces a by u and
transitions to state j. For each a € {z,y} we can define a |Q]| X |Q)| transition matrix M,
such that M, (4,j) = w if 6(i,a) = (j,u) and 0 otherwise.

With § we associate projections d; : @ X {z,y} = Q and 3 : Q@ x {z,y} — X UF defined
as 01(i,a) = j and d3(i,a) = w if §(4,a) = (j,u). The functions é; and d2 extend naturally
to monomials: For w € {z,y}*, J1(i,w) = j means the automaton A goes from state i to
j on reading w. Let W, denotes length ¢ prefix of w and w, denotes ¢! symbol of w from
left. d2(i, w) = p means p = ngﬂo_l (81 (¢, 1¢), wes1). Note that §2(i,w) has the form 3 - w’
where § € F,w’ € X*. For a € F define d2(i, - w) as a - d2(i, w).

Let ¢'(z,y) = >, amm € F(z,y). Then, the (s,t)'" entry of the |Q| x |Q| matrix
g' (M, My) is a polynomial g € F(X) such that g =3 . amd2(s, m), where Wy is the set
of all monomials that take the automaton A from state s to state .

Clearly, if ¢’ has an arithmetic circuit of size s then we can construct an arithmetic circuit
of size poly(s,n,|Q|) for g in deterministic time poly(s,n, |Q|).

Turning back to the reduction, consider the input circuit C for ¢’ = p(g) € F(z,y). We
will construct a substitution automaton A such that the polynomial g is the (s,t)!" entry of
the matrix g’ (M, M,).

Description of the Substitution Automata

As each v; is minimally balanced it must begin with symbol z and end with symbol y. As
|v;| > 2, the second symbol of v; is also z (if it was y, then the balanced monomial zy would
be a strict prefix of a minimally balanced monomial v;, which is a contradiction). So clearly
each v; is of the form zzw,;yy, where w; is a Dyck monomial. Let v] = zw;y for i € [n].
We can easily design a deterministic finite automaton A’ with O(mn) states such that the
language accepted by A’ is precisely the finite set {v],v5,...,v],}, where m is the length of
v; for i € [n]. Let 6’ denote the transition function and @’ be the set of states of A’, where
¢1 is the initial state and ¢y, is the final state associated with acceptance of string v} for
i € [n]. A" has a tree structure with root ¢; and leaves gy, for i € [n], and any root to leaf
path has length exactly 2¢ — 2. We now define the substitution automaton A. Its state set
is @ = Q" U{qo,9,¢r}- The transition function § : @ x {z,y} — @ x (X UF) is defined as
follows:

1. 6(qo, ) = (q1,1);6(q0,y) = (g, 0).

for g € Q" \ {qs,]1 <i<n}. and a € {z,y}, let §(q,a) = (§'(q,a),1).

5(47.,) = (41 0): 8(g7,.9) = (g7.s) for each i € [n].

5((]f,93) = (q1,1) and 5(qf7y) = (gr,0).

0(¢r,a) = (gr,0) for a € {z,y}.

bl o\

The final state of A is ¢y. For a monomial w € {z,y}*, starting at state gy the automaton
A substitutes all the variables with 1 as long as it matches with a prefix of v; for i € [n]
(given by transitions in 1,2 above). When the monomial matches with v; for some 4 (which
will happen while reading symbol y as each string v; ends with y), A substitutes y by z;
and moves to state gy. If it reads x instead of y then A enters a rejecting state g, (given by
transition in 3 above). Hence, if A finds substring v; in w it replaces it with x;. Whenever
A is in state ¢y, it means the monomial read so far is of the form v;, v;, ... v;,, and it has
replaced it with x;, x;, ... z;,. If in the state g5 symbol y is encountered, it means the next
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substring cannot match with a minimally balanced monomial (as these start with x) and the
automaton goes to the rejecting state ¢,. If in state gy variable x is read the automaton goes
to state g1 and restarts the search for a new substring that matches with some v; (transition
in 4 above).

In conclusion A replaces all the monomials of the form v;, v, ...v;, by @i, @iy ... x4, If
the monomial contains an occurrence of v;, or it is not of the form v; v;, ...v;,, then A
zeros out that monomial by suitably setting an occurrence of y to zero or enters the reject
state ¢,.

It follows that the (go,qs)"" entry of the |Q| x |Q| matrix ¢’(M,, M,) is the polynomial
g, where ¢’ = ¢(g), and M,, M, are the transition matrices for the substitution automaton
A. This completes the proof.

Finally, if ¢(g) is given by an algebraic branching program P then it is easy to see that
the above construction with the substitution automaton A yields P(M,, M, ) which is an
algebraic branching program. <

The main theorem of this section, stated below, summarizes the discussion in this section.

» Theorem 14. [n the white-box setting, factorization of multivariate noncommutative
polynomials into irreducible factors is deterministic polynomial-time reducible to factorization
of bivariate noncommutative polynomials into irreducible factors. More precisely, given as
input f € F(X) by an arithmetic circuit (resp. algebraic branching program), the problem of
computing a complete factorization f = f1 - fo--- f, where each f; is output as an arithmetic
circuit (resp. algebraic branching program) is deterministic polynomial-time reducible to the
same problem for bivariate polynomials in F(x,y).

Proof. We describe the reduction:

1. Input f € F(X) (as a circuit or ABP).

2. Transform f to f' = p(f) € F(z,y) as a circuit (resp. ABP) by the algorithm of Lemma 10.

3. Compute a complete factorization of f' = f - f4--- f., where each f/ € F(x,y) is
irreducible and is computed as a circuit (resp. ABP).

4. Apply the algorithm of Lemma 13 to obtain a complete factorization of f = fi - fo--- fr,
where each f; is irreducible and is output as a circuit (resp. ABP).

The correctness of the reduction and its polynomial time bound follow from Lemmas 9,
10 and 13. |

» Remark 15. We note that in the case F is the field Q (of rationals), we need to take into
account the bit complexity of the rational numbers involved and argue that the reduction
is still polynomial time computable. The main point to note here is that the reduction
guarantees the size of the factor f; is polynomially bounded in the size of g;,1 < ¢ < r,
where the size of g; includes the sizes of any rational numbers that might be involved in the
description of the arithmetic circuit (or ABP) for g;.

» Remark 16. We note here that the ring F(X) is not a unique factorization domain. That is,
a polynomial f € F(X) may have, in general, multiple factorizations into irreducibles [6]. A
standard example is the polynomial x + xyx which factorizes as z(1+yx) as well as (1 +xy)z,
where z,y,1 4+ yx,1 + xy are irreducible. As the map ¢ is an injective homomorphism,
there is a 1-1 correspondence between factorizations of ¢(f) and factorizations of f. More
specifically, our reduction takes as input any complete factorization ¢(f) = f1f5 ... f. and
computes the corresponding complete factorization f = fifa... f, of f.

4 We can dispense with the reject state ¢, as suitably setting an occurrence of y to 0 would also suffice.
We have transitions to the reject state g, for exposition.
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» Remark 17. We note that the embedding ¢ does not preserve sparsity® of the polynomial
f. More precisely, if the sparsity of the n-variate degree d polynomial f is s then the sparsity
of the bivariate polynomial ¢(f) is O(2%s). Thus, using this embedding map we do not
get a reduction from sparse n-variate degree d polynomial factorization to sparse bivariate
polynomial factorization, where s, d are allowed to be part of the running time. This problem
remains unanswered.

3.2 Black-box reduction

The reduction in the black-box case is essentially identical. The only point to note, which is
easy to see, is that the analogue of Lemma 13 holds in the black-box setting. We state that
below. We recall what a black-box means in the noncommutative setting.

» Definition 18. A noncommutative polynomial f € F(X) given by black-box essentially
means we can evaluate f at any matriz substitution x; < M;, M; € FN*N where the cost

of each evaluation is the matrix dimension N.

In the black-box setting, suppose we have an efficient algorithm for bivariate noncommut-
ative polynomial factorization of degree D polynomials g € F(x, y), where the algorithm takes
a black-box for g and outputs black-boxes for the irreducible factors of some factorization of
¢ in time poly(D). Then, given a black-box for a degree D n-variate polynomial f € F(X) as
input, we require that the reduction transforms it into a black-box of a bivariate polynomial
g € F(x,y), and from the output black-boxes of ¢’s irreducible factors, the reduction has to
efficiently recover black-boxes for the corresponding irreducible factors of f.

» Lemma 19. Given as input a black-box for the polynomial o(g) € F{x,y}, where g € F(X)
is a degree d polynomial, X = {1, xa, ...,z }, with matriz substitutions for x and y computed
in deterministic polynomial-time time we can obtain a black-box for the polynomial g € F(X).

Proof. The proof of Lemma 13 already implies this because the matrices M, and M,
described there do not require ¢(g) to be given in white-box as circuit or ABP. Thus, the
black-box for ¢(g) yields a black-box for g by accessing the (qo, )™ entry of the matrix
output ¢(g) (Mg, My). <

As a consequence we obtain the claimed reduction from multivariate factorization to
bivariate factorization in the black-box setting as well.

» Theorem 20. The problem of computing a complete factorization of f € F(X) given by
black-bozx is deterministic polynomial-time reducible to the problem of black-box computation
of a complete factorization of polynomials in F(x,y).

Proof. Given a black-box for f we obtain a black-box for ¢(f) applying Lemma 10. Then,
given a complete factorization ¢(f) = fi - f5--- f. where each factor f/ is output by a
black-box for it, by Lemma 19 we can obtain black-boxes for each f;. This yields a complete
factorization f = f1 - fo--- f, of f where the factors are given by black-box. <

5 The sparsity of a polynomial f is the number of monomials in supp(f).
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4 Factorizing 4 X 4 linear matrices over QQ

We have shown in Section 3 that multivariate noncommutative polynomial factorization is
efficiently reducible to the bivariate case. Suppose f € F(z,y) is a bivariate polynomial given
by a formula of size s. Applying Higman linearization [6], as done in [1], we can transform
the problem to the factorization of bivariate linear matrices Ag + Aix + Aoy, where the
matrices have size bounded by 2s. In [1] the problem of factorizing an n-variate polynomial
f € F(X) given by a formula was solved in two steps when F is a finite field: (i) Transform
f to a linear matrix L and factorize L into irreducible factors by reducing it to the common
invariant subspace problem, and (ii) extract the factors of f from the factors of L. This
approach fails for F = QQ because the common invariant subspace problem for matrices over
Q is at least as hard as factoring square-free integers [12]. In this section, we show that linear
matrix factorization over Q, even for 4 x 4 bivariate linear matrices, remains at least as hard
as factoring square-free integers. Thus, efficient polynomial factorization over QQ remains
elusive even for bivariate polynomials. Our proof is based on ideas from Ronyai’s work [12].

Let «, 8 € @ be nonzero rationals. The generalized quaternion algebra H(c, 3) is the 4-
dimensional algebra over Q generated by elements 1, u, v, uv where the rules for multiplication
in H(a, ) are given by u? = a, v? = 3, and uv = —vu. A simple algebra A over a field F is
an algebra that has no nontrivial two-sided ideal. The center C of algebra A is the subalgebra
consisting of all elements of A that commute with every element of A. Furthermore, it
follows from some general theory [11, Chapter 1.6] that:

» Fact 21. For any nonzero o, f € Q, the algebra H(«, 8) is a simple algebra with center Q.
The algebra H(«, 3) is either a division algebra (which means no zero divisors in it) or is
isomorphic to the algebra of 2 X 2 matrices over Q (which means it has zero divisors).

The 4-dimensional algebra H(«, ) can be represented as an algebra of 4 x 4 matrices
over Q, which is the regular representation. The matrix corresponding to 1 is I, and the

01 00 0 0 1 0
matrices corresponding to u and v are M,, = g 8 8 (1) and M, = g 8 8 _01
0 0 a O 0 -8 0 O

We next show that factorizing 4 x 4 bivariate linear matrices is at least as hard as finding
zero divisors in generalized quaternion algebras.

» Theorem 22. Finding zero divisors in an input quaternion algebra H(«, B) is polynomial-
time reducible to factorizing 4 X 4 bivariate linear matrices Ag + Ar1x + Asy, where each
scalar matriz A; is in My(Q).

Proof. Let H(«, 3) be the given generalized quaternion algebra. Then H(a, ) = {a, +
aju + agv + azuv | a; € Q}, where u?
multiplication.

= o, v2 = B3, and wv = —vu defines the algebra

We now consider factorizations of the 4 x 4 linear matrix Iy + M,x + M,y.

> Claim 23. The linear matrix I, + M,z + M,y is irreducible if and only if the quaternion
algebra H(a, ) is a division algebra.

Proof of Claim. Suppose the linear matrix L = Iy + M,x + M,y has a nontrivial factorization
L=1,+ M,z + M,y = FG. That means neither F' nor G is a scalar matrix. By a theorem
of Cohn [6, Theorem 5.8.8], there are invertible scalar matrices P and @ in My4(Q) such that

pia-[4 1]
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» Remark 24. To apply Cohn’s theorem the matrix L needs to be monic. That is, the matrix
[M, | M,] must have full row rank and [MI | MT]T must have full column rank. This is
ensured as matrices M, and M, are full rank.

Ao
Dy

matrices. As P and Q are invertible, both Ay and By are invertible. Hence PLP~! =
-1

!
[g g} . {go BP] = [g/ g,] , where A’ B’ and D’ are also linear matrices. Recall
o Do

that Iy, M, and M, are the matrix representations of the elements 1,u, and v in the basis
{1,u,v,uv} of H(a, ). Treating P as a basis change matrix, the above equation yields a
new basis {wy, ws, w3, ws} of H(a, ). Let dim(A’) = k. Then 1 < dim(A4’) < 3 and the
vectors wy, . .., wy, spans a k-dimensional subspace W C H(«, 8) that is a common invariant

Putting x = y = 0 we observe that PQ = [ 39 ] , where Ag, By and Dg are scalar
0

subspace for the matrices I, M,,, M, and M,,. In other words, the subspace W is preserved
under left multiplication by u and v. We can assume, without loss of generality, that wy # 1:
if £ > 1 then clearly we can assume this. If £k = 1 notice that w; = 1 is impossible because
the subspace W is not preserved under left multiplication by u or v. Then the four elements
w1, uwy, vwi, wvwp are all in W and hence linearly dependent. Thus, some nontrivial linear

combination ypwi +71uwy +y2vwi +y3uvw; is 0. which means (70 +y1utyv+y3uv) X wy = 0.

Hence w; is a zero divisor in H(«, 3). Conversely, if z € H(«, ) is a zero divisor then the
left ideal J = {xz | x € H(a, §)} is a proper subspace of H(«, ) that is invariant under M,
and M,. Applying Cohn’s theorem [6, Theorem 5.8.8], we obtain invertible scalar matrices

P and @ such that PLQ = [g g} = K}l ﬂ . LI) 3] . [é g} . <

To complete the reduction, notice that if Iy + M,z + M,y is irreducible then H(a, 3) is a
division algebra. On the other hand, if we are given a nontrivial factorization Iy+M,z+ M,y =
FG then, analyzing the proof of Cohn’s theorem [6, Theorem 5.8.8] (also see [1] for details),
by suitable row and column operations we can compute in polynomial time the invertible
scalar matrices P and @ from the factors F' and G. Hence, by the proof of the above claim,
we can efficiently compute a zero divisor wy in H(c, (). <

As finding zero-divisors in the quaternion algebra H(a, ) is known to be at least as hard as
square-free integer factorization [12] we have the following.

» Corollary 25. Factorizing 4 x 4 bivariate linear matrices over Q is at least as hard as
factorizing square-free integers.

5 Factorizing 3 X 3 linear matrices over QQ

In this section we present a deterministic polynomial-time algorithm for factorization of 3 x 3
multivariate linear matrices over Q. We start with a simple observation about linear matrix
factorization in general.

» Lemma 26. Suppose L =I5+ Z?:l A;x; is a linear matriz where each A;,0 <i <d is a
d x d matriz over Q. Then L is irreducible if the characteristic polynomial of A; is irreducible
over Q for any 1.

Proof. For if L is reducible then there is an invertible scalar matrix P such that PLP~! =

A 0 S Al .
[D B} , which implies that PA; P~ = Dl’» Bl for scalar matrices A%, Bf, and D}. Thus,
7 K3
the characteristic polynomial of A; is the product of the characteristic polynomials of A
and B} which is a nontrivial factorization. <
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The proof of the following theorem is based on linear algebra and Cohn’s theorem [6,
Theorem 5.8.8].

» Theorem 27. There is a deterministic polynomial-time algorithm for factorization of 3 x 3
multivariate linear matrices over Q.

Proof. We will first consider linear matrices of the form L = I3 + 2?21 A;x;, where each
A; € M3(Q) and the z; are noncommuting variables. The algorithm computes a complete
factorization of L into (at most three) irreducible linear matrix factors. By Cohn’s theorem
[6, Theorem 5.8.8], either L is irreducible or there is an invertible scalar matrix P such that

A 0
PLP! = [D B} . Either A or B is a 1x1 matrix. If Aisa 1x 1 matrix then corresponding
to it there is a 1-dimensional common invariant subspace spanned by a vector, say v, for the

matrices A;,1 < i < n. More precisely, the row vector vT

A;, and vTA; = \jvT where \; € Q is the corresponding eigenvalue of matrix A; for each 1.
Likewise, if B is a 1 x 1 matrix then there is a corresponding 1-dimensional common invariant
subspace spanned by a (column) vector u such that A;u = p;u for eigenvalues p; of A;. In
either case, the common eigenspace is easy to compute from the characteristic polynomial
of say A; and then verifying that it is an eigenspace for the remaining A; as well. This

A0 I 0] (I O
. . . . _1 _ . . e .
will yield the factorization PLP~" = [0 I] [D I} {0 B} , where B is a 2 x 2 linear

matrix. The problem now reduces to factorizing the linear matrix B = I+ ., B;z;, where
B; € M2(Q). A simple case analysis described below yields a polynomial-time algorithm for
factorization of B.

is an eigenvector for each matrix

1. If the characteristic polynomial of any B; is irreducible over Q then the linear matrix B
is clearly irreducible.

2. If some B; has two distinct eigenvalues A # X € Q then the corresponding eigenspaces
are 1-dimensional, spanned by their eigenvectors u # u/. Then either u or v’ has to be an
eigenvector for every B; (otherwise B is irreducible), in which case we have a factorization
of B.

3. Suppose each B; has only one eigenvalue A\;. Then, by linear algebra, after a basis change

B; is either of the form [)(\)’ } in which case the eigenspace is 1-dimensional with

Ai
eigenvector (10)T. We can check if this eigenspace is invariant for each B; or not as
A O

before. Otherwise, after basis change each B; = {0 \

14+ E?:l Niz; 0 1 0
B = . n .
0 1 0 1+ Ei:l A%

} = \;I> and the factorization is

<
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—— Abstract

Entropic risk (ERisk) is an established risk measure in finance, quantifying risk by an exponential
re-weighting of rewards. We study ERisk for the first time in the context of turn-based stochastic
games with the total reward objective. This gives rise to an objective function that demands the
control of systems in a risk-averse manner. We show that the resulting games are determined and,
in particular, admit optimal memoryless deterministic strategies. This contrasts risk measures
that previously have been considered in the special case of Markov decision processes and that
require randomization and/or memory. We provide several results on the decidability and the
computational complexity of the threshold problem, i.e. whether the optimal value of ERisk exceeds
a given threshold. In the most general case, the problem is decidable subject to Shanuel’s conjecture.
If all inputs are rational, the resulting threshold problem can be solved using algebraic numbers,
leading to decidability via a polynomial-time reduction to the existential theory of the reals. Further
restrictions on the encoding of the input allow the solution of the threshold problem in NP N coNP.
Finally, an approximation algorithm for the optimal value of ERisk is provided.
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1 Introduction

Stochastic Models. Formal analysis of stochastic models is ubiquitous across disciplines
of science, such as computer science [4], biology [43], epidemiology [29], and chemistry [28],
to name a few. In computer science, a fundamental stochastic model are Markov decision
processes (MDPs) [46], which extend purely stochastic Markov chains (MCs) with non-
determinism to represent an agent interacting with a stochastic environment. Stochastic
games (SGs) [49, 18, 19] in turn generalize MDPs by introducing an adversary, modelling
the case where two agents engage in adversarial interaction in the presence of a stochastic
environment. Notably, SGs can also be used to conservatively model MDPs where transition
probabilities are not known precisely [15, 53]. See also [46] and [14, 21] for further applications
of MDPs and SGs.
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Figure 1 Illustration of the entropic risk measure. The random variable X takes values x1 to
x4 uniformly with probability i each. Expectation considers the average of x;, while entropic risk
yields the (normalized logarithm of the) average of y; = e™7%¢.

Strategies and Objectives. In MDPs and SGs, the recipes to resolve choices are called
strategies. The objective of the agent is to optimize a payoff function against all possible
strategies of the adversary. One of the most fundamental problems studied in the context
of MDPs and SGs is the optimization of total reward (and the related stochastic shortest
path problem [7]). Here, every state (or, equivalently, transition) of the stochastic model is
assigned a cost or reward and the payoff of a trajectory is the total sum of rewards appearing
along the path. MDPs and SGs with total reward objectives provide an appropriate model to
study a wide range of applications, such as traffic optimization [27], verification of stochastic
systems [26, 47], or navigation / probabilistic planning [50].

Risk-lgnorance of Expectation. Typically, the expectation of the obtained total reward
is optimized. However, the expectation measure is ignorant towards aspects of risk; an
expectation maximizing agent accepts a one-in-a-million chance of extremely high rewards
over a slightly worse, but guaranteed outcome. Such a behaviour might be undesirable in
a lot of situations: Consider a one-shot lottery where with a chance of 10~ we win 2 - 106
times our stake and otherwise lose everything — a two-times increase in expectation. The
optimal strategy w.r.t. expectation would bet all available assets, ending up broke in nearly
all outcomes.

Risk-Aware Alternatives. To address this issue, risk-aware objectives create incentives to
prefer slightly smaller performance in terms of expectation in exchange for a more “stable”
behaviour. To this end, several variants have been studied in the verification literature,
such as (a) variance-penalized expected payoff [45, 22] that combines the expected value
with a penalty for the variance of the resulting probability distribution; (b) trade-off of the
expectation and variance for various notions of variance [40, 11]; (c¢) quantiles and conditional
value-at-risk (CVaR) [47, 42, 35]; to name a few.

Drawbacks. The current approaches suffer from the following three drawbacks:

1. The above studies focus on the second moment (variance) along with the first moment
(mean), but do not incorporate other moments of the payoff distribution.

2. All approaches are studied only for MDPs; none of them have been extended to SGs.

3. Even in MDPs, the above problems require complicated strategies. For example, trade-offs
between expectation and variance require memory and randomization [11, 40], while
optimizing variance-penalized expected payoffs, quantiles, or the CVaR of the total reward
require exponential memory [45, 30, 44, 42].
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Entropic Risk. The notion of entropic risk [24] has been widely studied in finance and
operation research, see e.g. [23, 10]. Informally, instead of weighing each outcome uniformly
and then aggregating it (as in the case for regular expectation), entropic risk re-weighs
outcomes by an exponential function, then computes the expectation, and finally re-normalizes
the value. We illustrate this in Figure 1. The exact definition of entropic risk is introduced
later on.

Advantages. Aside from satisfying many desirable properties of risk measures established in
finance, entropic risk brings several crucial advantages in our specific setting, of which we list
a few: Compared to expectation, “bad” outcomes are penalized more than “good” outcomes
add value. Thus, an agent optimizing entropic risk seeks to reduce the chances of particularly
bad outcomes while also being interested in a good overall performance. In contrast to
variance minimization, it is beneficial to increase the probability of extremely good outcomes
(which would increase variance). Moreover, the entropic risk incorporates all moments of
the distribution. In particular, even if the expectation is infinite, entropic risk still provides
meaningful values (opposed to both expectation and variance). Note that the expected total

reward objective is often addressed under additional assumptions excluding this case [8, 26].

Additionally, entropic risk is a time-consistent risk measure. In our situation, this means
that the risk evaluation at a state is the same for any history. This is in stark contrast to,
e.g., quantile and CVaR optimal strategies, which after a series of unfortunate events start
behaving recklessly (e.g. expectation optimal). Due to these advantages, ERisk has already
been studied in the context of MDPs [33, 5]. However, to the best of our knowledge, neither
the arising computational problems nor the more general setting of SGs have been addressed.

1.1 Our results

In this work we consider the notion of entropic risk in the context of SGs as well as the

special cases of MCs and MDPs. For an overview of our complexity results, see Table 1.

1. Determinacy and Strategy Complexity. We establish several basic results, in particular
that SGs with the entropic risk objective are determined and that pure memoryless
optimal strategies exist for both players. This stands in contrast to other notions of risk,
where even in MDPs strategies require memory and/or randomization.

2. Ezact Computation. When allowing Euler’s number e as the basis of exponentiation, the

threshold problem whether the optimal entropic risk lies above a given bound is decidable
subject to Shanuel’s conjecture. If the basis of exponentiation and all other numbers in
the input are rational, then all numbers resulting from the involved exponentiation are
shown to be algebraic. We obtain a reduction to the existential theory of the reals and
thus a PSPACE upper bound in this case.
Furthermore, we identify a notion of small algebraic instance in which all occurring
numbers are not only algebraic, but have a small representation and are contained in
an algebraic extensions of QQ of low degree. The threshold problem for small algebraic
instances of MCs and MDPs can efficiently be solved by explicit computations in an
algebraic extension of Q. We obtain polynomial-time algorithms for MCs and MDPs, and
conclude that the threshold problem lies in NP N co-NP for SGs in this case. For small
algebraic instances, we furthermore show that an explicit closed form of the optimal value
can be computed (a) in polynomial time for MCs; and consequently (b) in polynomial
space for SGs.

3. Approzimate Computation. We provide an effective way to compute an approximation, i.e.
determine the optimal entropic risk up to a given precision of € > 0. To this end, we show
that in the general case, by considering enough bits of arising irrational numbers, we can
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Table 1 Overview of the decidability and complexity results for SGs, MDPs and MCs.

threshold problem optimal value
general algebraic small algebraic computation for approximation with small
instances instances instances small algebraic rewards and risk
(Thm. 14) (Thm. 16) (Thm. 19) instances (Thm. 20)  aversion factor (Thm. 21)
SGs decidable in NP N coNP | | . in polynomial space
MDP. subject to in PSPACE in polynomial space
S s .
MC Shanuel’s (in 3R) in PTIME N 1 ol 6 in polynomial time
S conjecture in polynomial time

bound the incurred error. In MDPs and MCs, the optimal value can be approximated in
time polynomial in the size of the model, in —log(e), and in the magnitude of the rewards.
For SGs, this implies the existence of a polynomial-space approximation algorithm.

1.2 Related Work

The entropic risk objective has been studied before in MDPs: An early formulation can
be found in [33] under the name risk-sensitive MDPs focusing on the finite-horizon setting.
The paper [34] considers an exponential utility function applied to discounted rewards and
optimal strategies are shown to exist, but not to be memoryless in general. In [20], the
entropic risk objective is considered for MDPs with a general Borel state space and in [5]
a generalization of this objective is studied on such MDPs. To the best of our knowledge,
however, all previous work in the context of MDPs focuses on optimality equations and
general convergence results of value iteration, while the resulting algorithmic problems for
finite-state MDPs have not been investigated. Furthermore, we are not aware of work on the
entropic risk objective in SGs.

For other objectives capturing risk-aversion, algorithmic problems have been analyzed
on finite-state MDPs: Variance-penalized expectation has been studied for finite-horizon
MDPs with terminal rewards in [17] and for infinite-horizon MDPs with discounted rewards
and mean payoffs [22], and total rewards [45]. For total rewards, optimal strategies require
exponential memory and the threshold problem is in NEXPTIME and EXPTIME-hard [45].

In [40], the optimization of expected accumulated rewards under constraints on the
variance are studied for finite-horizon MDPs. Possible tradeoffs between expected value and
variance of mean payoffs and other notions of variability have been studied in [11].

To control the chance of bad outcomes, the problem to maximize or minimize the
probability that the accumulated weight lies below a given bound w has been addressed in
MDPs [30, 31]. Similarly, quantile queries ask for the minimal weight w such that the weight
of a path stays below w with probability at least p for the given value p under some or all
schedulers [51, 48]. Both of these problems have been addressed for MDPs with non-negative
weights and are solvable in exponential time in this setting [51, 30]. Optimal strategies
require exponential memory and the decision version of these problems is PSPACE-hard [30].

The conditional value-at-risk (CVaR), a prominent risk-measure, has been investigated
for mean payoff and weighted reachability in MDPs in [35] as well as for total rewards
in MDPs [44, 42]. The optimal CVaR of the total reward in MDPs with non-negative
weights can be computed in exponential time and optimal strategies require exponential
memory [44, 42]. The threshold problem for optimal CVaR of total reward in MDPs with
integer weights is at least as hard as the Positivity-problem for linear recurrence sequences,
a well-known problem in analytic number theory whose decidability status is, since many
decades, open [44].
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For all these objectives capturing risk-aversion in some sense, we are not aware of any
work addressing the resulting algorithmic problems on SGs.

2 Preliminaries

In this section, we recall the basics of (turn-based) SGs and relevant objectives. For further
details, see, e.g., [46, 4, 26, 21]. We assume familiarity with basic notions of probability
theory (see, e.g., [9]). We write D(X) to denote the set of all probability distributions over a
countable set X, i.e. mappings d : X — [0, 1] such that ) _ d(z) = 1. The support of a
distribution d is supp(d) := {z € X | d(z) > 0}. For a set S, S* and S refer to the set of
finite and infinite sequences of elements of .S, respectively.

Markov Chains, MDPs, and Stochastic Games

A Markov chain (MC) (e.g. [4]), is a tuple M = (S,4§), where S is a set of states, and
§: S = D(9) is a transition function that for each state s yields a probability distribution
over successor states. We write (s, s’) instead of §(s)(s’) for the probability to move from
sto s for s, € S. A (infinite) path in an MC is an infinite sequence s, $1,... of states

such that for all ¢, we have §(s;, s;+1) > 0. We denote the set of infinite paths by Pathsy.

Together with a state s, an MC M induces a unique probability distribution Pry s over the
set of all infinite paths Pathsy starting in s. For a random variable f : Pathsy — R, we write
Em,s(f) for the expected value of f under the probability measure Pry s.

A turn-based stochastic game (SG) (e.g. [18]) is a tuple (Smax, Smin, 4, A), where Sy ax
and Sy are disjoint sets of Maximizer and Minimizer states, inducing the set of states
S = Smax U Smin, A denotes a finite set of actions, furthermore overloading A to also act
as a function assigning to each state s a set of non-empty available actions A(s) C A, and
A : S x A — D(S) is the transition function that for each state s and (available) action
a € A(s) yields a distribution over successor states. For convenience, we write A(s,a,s’)
instead of A(s,a)(s’"). Moreover, optfleA(s) refers to maxqea(s) if § € Smax and minge 4¢s)
if s € Shin, i-e. the preference of either player in a state s. We omit the superscript s
where clear from context. Given a function f :S — R assigning values to states, we write
A(s,a)(f) =D cgA(s,a,8") - f(s) for the weighted sum over the successors of s under
a € A(s). A Markov decision process (MDP) (e.g. [46]) can be seen as an SG with only one
player, i.e. Spax = 0 or Sy, = 0.

The semantics of SGs is given in terms of resolving choices by strategies inducing an MC
with the respective probability space over infinite paths. Intuitively, a stochastic game is
played in turns: In every state s, the player to whom it belongs chooses an action a from the
set of available actions A(s) and the play advances to a successor state s’ according to the
probability distribution given by A(s,a). Starting in a state sp and repeating this process
indefinitely yields an infinite sequence p = spagsias - -+ € (S x A)* such that for every i € Ny
we have a; € A(s;) and A(s;, ai, 8i+1) > 0. We refer to such sequences as (infinite) paths or
plays and denote the set of all infinite paths in a given game G by Pathsg. Furthermore, we
write p; to denote the i-th state in the path p. Finite paths or histories FPathsg are finite
prefixes of a play, i.e. elements of (S x A)* x S consistent with A and A.

The decision-making of the players is captured by the notion of strategies. Strategies are
functions mapping a given history to a distribution over the actions available in the current
state. For this paper, memoryless deterministic strategies (abbreviated MD strategies, also
called positional strategies) are of particular interest. These strategies choose a single action

in each state, irrespective of the history, and can be identified with functions o : S — A.

Since we show that these strategies are sufficient for the discussed notions, we define the
semantics of games only for these strategies and refer the interested reader to the mentioned
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literature for further details. We write Ilg for the set of all strategies and Hg'D for memoryless
deterministic ones. We call a pair of strategies a strategy profile, written m = (o, 7). We
identify a profile with the induced joint strategy m(s) := o(s) if 8 € Smax and 7(s) otherwise.

Given a profile 7 = (0, 7) of MD strategies for a game G, we write G™ for the MC obtained
by fixing both strategies. So, G™ = (S, 4), where §(s) := A(s,n(s)). Together with a state s,
the MC G™ induces a unique probability distribution Pr¢ , over the set of all infinite paths
Pathsg. For a random variable over paths f : Pathsg — R, we write Egs[f] for the expected
value of f under the probability measure Prg ..

Objectives

Usually, we are interested in finding strategies that optimize the value obtained for a particular
objective. We introduce some objectives of interest.

Reachability. A reachability objective is specified by a set of target states T C S. We define
OT ={p | Ji.p; € T} the set of all paths eventually reaching a target state. Given a strategy
profile  and a state s, the probability for this event is given by Pr¢ ([0T]. On games,
we are interested in determining the value Valg o7 (s) = max,emomin, o Pret[0T] of a
state s, which intuitively is the best probability we can ensure against an optimal opponent.
Generally, one would consider supremum and infimum over strategies instead maximum and
minimum over MD strategies. However, for reachability we know that these value coincide
and the game is determined, i.e. the order of max and min does not matter [19]. Finally, we
know that the value Valg o7 is a solution of the following set of equations

v(s) =0 for s € Sp, wv(s)=1forseT, and v(s)=opt,cas) A(s,a)(v) otherwise, (1)

where Sy is the set of states that cannot reach T' against an optimal Minimizer strategy [13].

Total Reward. The total reward objective is specified by a reward function r : S — R>o,
assigning non-negative rewards to every state. The total reward obtained by a particular path
is defined as the sum of all rewards seen along this path, TR(p) :== > =, r(p;). Note that
since we assume r(s) > 0, this sum is always well-defined. Classically, we want to optimize
the expected total reward, i.e. determine Valg grr(s) == maxaengmminTeHgDEg’; [TR]. This
game is determined and MD strategies suffice [16]. (To be precise, that work considers a
more general formulation of total reward, our case is equivalent to the case x =cand T = ()
(Def. 3) and the quantitative rPATL formula (({1})R] ._»[Fff].)

3 Entropic Risk

As hinted in the introduction, for classical total reward we optimize the expectation and
disregard other properties of the actual distribution of obtained rewards. This means that
an optimal strategy may accept arbitrary risks if they yield minimal improvements in terms
of expectation. To overcome this downside, we consider the entropic risk:

» Definition 1. Let b > 1 a basis, X a random variable, and v > 0 a risk aversion factor.
The entropic risk (of X with base b and factor ) (see, e.g., [25]) is defined as

ERisk, (X) == — 1 log, (E[b—"*])).

One often chooses b = e. Nevertheless, we also consider rational values for b, which allows us
to apply techniques from algebraic number theory to arising computational problems.
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» Example 2. Consider a random variable X that takes values z1 = 1, o = 2, x3 = 4, and
x4 = 5 with probability 1/4 each. Figure 1 illustrates how the entropic risk measure of X
with base e is obtained for some risk aversion factor v: The values z; are depicted on the
zr-axis. We now map the values x; to values y; = e~7% on the y-axis. Then, the expected
value of e~ 7X can be obtained as the arithmetic mean of the values y;. The result is mapped
back to the z-axis via y — —% log(y), the inverse of z — e~7*, and we obtain ERisk, (X).

The example shows that deviations to lower values are penalized, i.e. taken into consideration
more strongly, by this risk measure. For a different perspective, we can also consider the
Taylor expansion of ERisk w.r.t. 7, which is ERisk,(X) = E[X] — Z - Var[X] + O(7?) (see,
e.g., [2]). The terms hidden in O(y?) comprise all moments of X and exhibit an asymmetry
such that ERisk is roughly the expected value minus a penalty for deviations to lower values.

3.1 Entropic Risk in SGs

We are interested in the case X = TR, i.e. optimizing the risk for total rewards. We write
ERisk{ () = —1 log, (EE 5[b7 7))

to denote the entropic risk of the total reward achieved by the strategy profile # when
starting in state §, omitting sub- and superscripts where clear from context. Clearly, this
is well defined for any profile: We have that b= TR(r) = b7 2 e = [12, 6777 and
each factor lies between 0 and 1, thus the product converges (possibly with limit 0).

We also give an insightful characterization for integer rewards. If r(s) € N, we have

ERisk( (1) = —2 log, (anoprgé[m =n)- b—w) . (2)

Naturally, our goal is to optimize the entropic risk. In this work, we mainly consider the
corresponding decision variant, which we call the entropic risk threshold problem:

Entropic risk threshold problem: Given an SG G, state §, reward function r, risk
parameter -, risk basis b, and threshold ¢, decide whether there exists a Maximizer
strategy o such that for all Minimizer strategies 7 we have ERisk{ ,((0,7)) > ¢.

Note that (for now) we do not assume any particular encoding of the input. For example,
the reward function r could be given symbolically, describing irrational numbers. A second
variant of the threshold problem asks whether the optimal value

ERisk{’, = sup, cpp infren, ERisk¢ ((o,7)) (3)

is at least t for a given threshold ¢t. We will see that SGs with the entropic risk as objective
function are determined and hence the two variants are equivalent. Before proceeding with
our solution approaches, we provide an illustrative example.

» Example 3. Consider the MDP of Figure 2. The optimal total reward is obtained by
choosing action risk in state s;: Then, we actually obtain an infinite total reward through
state so. In comparison, choosing action safe would yield a reward of 6 in total. Now,
consider the entropic risk. When choosing action risk, we obtain a total reward of 2 and oo
with probability % each, while action safe yields 6 with probability 1. Let b =2 and v =1
for simplicity. Then, we obtain an entropic risk of —log, (3272 4 £27°°) = 3 under action
risk and —log,(27%) = 6 for safe. Thus, action safe is preferable.

15:7

MFCS 2023



15:8

Entropic Risk for Turn-Based Stochastic Games

Figure 2 Our running example to demonstrate several properties of entropic risk. For ease of
presentation, the system actually is an MDP, where all states belong to Maximizer. States are
denoted by boxes and their reward is written next to the state name. Transition probabilities are
written next to the corresponding edges, omitting probability 1.

» Remark 4. As hinted above, entropic risk is finite whenever a finite reward is obtained with
non-zero probability, i.e. for any strategy profile 7, ERiskg’ ;(m) = o0 iff Prg [TR = oo] = 1.
In contrast, expectation is infinite whenever there is a non-zero chance of infinite reward, i.e.

¢.s[TR] = oo iff Pr¢ §[TR = oo] > 0. So, entropic risk allows us to meaningfully compare
strategies which yield infinite total reward with some positive probability.

3.2 Exponential Utility

Observe that the essential part of the entropic risk is the inner expectation. Thus, we consider
the negative exponential utility

NegUtill () == Eg 4[b~7 ™.

We have ERisk{ () = —%logb(NegUtilg,g(w)). Observe that in our case 0 <
NegUtilgyé(w) < 1 for any m, as 0 < TR < oo. Moreover, ERiskgyg(ﬂ) >t iff
NegUtilg ,(m) < b777, thus, a risk-averse agent (in our case Maximizer) wants to mini-
mize NegUtil. The optimal value is

NegUtill", := infycrgsup, e EG L0 T (4)

We again omit sub- and superscripts where clear from context. We show later that games
with NegUtil or ERisk as payoff functions are determined. Thus, the order of sup and
inf in the above definition does not matter. We call a Maximizer-strategy o optimal if
ERisk{", = infreng ERisk{ ,((0,7)) and analogously for Minimizer-strategies.

4 Basic Properties and Decidability

In this section, we establish several results for SGs with entropic risk as objective functions
concerning determinacy, strategy complexity, and decidability in the general case. We mainly
work on games with NegUtil as payoff function. As ERisk can be obtained from NegUtil via
the monotone function —% log(+), most results, such as determinacy or strategy complexity,
will transfer directly to games with ERisk as objective function.

First, we show that the games are determined, i.e. the order of sup and inf in Equation (3)
and Equation (4) can be switched. Then, we show that games with NegUtil as payoff
function can be seen as reachability games via a reduction that introduces irrational transition
probabilities in general. We conclude that considering only MD strategies is sufficient to
obtain the optimal value, i.e. sup and inf can be replaced with a max and min over MD
strategies. From this, we derive a system of inequalities that has a solution if and only if
the optimal value satisfies ERisk* >t for a given threshold ¢. We conclude this section by
observing that the satisfiability of this system of inequalities can be expressed as a sentence
in the language of the reals with exponentiation. In this way, we obtain the conditional
decidability of the entropic risk threshold problem in SGs subject to Shanuel’s conjecture.
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Throughout this section, fix a game G, reward function r, state §, risk parameter -y, and
risk basis b. Omitted proofs can be found in the extended version [3].
4.1 Determinacy and Optimality Equation
» Lemma 5. Stochastic games with NegUtil as payoff function are determined, i.e.
infaGHG SupTEHGEg:: [bi’y TR] = SupTGHG indeHGEg:: [bi’y TR]'

Proof. This follows from the classical result on determinacy of Borel games [41], see [39] for
a concrete formulation for stochastic games. In particular, the game is zero-sum and NegUtil
is a bounded, Borel-measurable function. |

As ERisk is obtained from NegUtil via a monotone function, also games with ERisk as payoff
function are determined. While ERisk” is difficult to tackle directly due to its non-linearity,
we can derive the following optimality equation for NegUtil™*:

» Lemma 6. The optimal utility NegUtil* is a solution of the following system of constraints:

() = b7 Oplaeac ) Alsia,s) (s, ()

s'eS
—S . . . . o . .
where opt~ is min for a Maximizer state s and max for a Minimizer state.

Unfortunately, NegUtil is not the unique or, at least, the pointwise smallest or largest
fixed point of this equation system. Consider the case where r = 0, i.e. b7"(5) = 1. Here,
every constant vector is a fixed point, however NegUtil* = 1. More generally, as the equations
are purely multiplicative, for any fixed point v, every multiple A - v is a fixed point, too.

» Example 7. Again consider the example of Figure 2 with b = 2 and v = 1. The (simplified)
equations we get are:

—2 : 1 1 —2 —4
v, = 2 -mln{§vg+§v3,v4} Vg =277 vy V3 = U3 vy =2"""vs,

where v; corresponds to the value of s;. First, for vy, we observe that vo = 0 is the only valid

assignment. Then, we have that v; = 272 . min{%O + %7)3, 2743} = 273 - min{v3, 27 3v3}.
Clearly, this system is underdetermined and we obtain a distinct solution for any value of vs.

To solve these issues, we need to define “anchors” of the equation. We observe the resemblance
of classical fixed point equations for stochastic systems. In particular, for r = 0, Equation (5)
is the same as for reachability, Equation (1).

4.2 Reduction to Reachability

We define Sy = {s | max,min,Prg’{[TR > 0] = 0} and Su = {s | max,min,Prg [ [TR =
oo] = 1} the set of states in which Maximizer cannot obtain a total reward of more than 0
with positive probability against an optimal opponent strategy or ensure infinite reward with
probability 1, respectively. We show later on that these sets are simple to compute and MD
strategies are sufficient. Since r(s) > 0, all states in s € Sy necessarily have r(s) = 0. Observe
that So may be empty, but then S = S, and so NegUtil* = 0, ERisk® = co. Through these
sets, we can connect optimizing the utility to a reachability objective.
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» Lemma 8. For any state s in the game G, the optimal utility NegUtil* is equal to the
minimal probability of reaching the set Sy from s in game Gg, defined as follows: We
add a designated sink state s (which may belong to either player and only has a self-loop
back to itself) and define Ag(s,a,s') = b=7"6) . A(s,a,5') for s, € S, a € A(s) and
Arg(s,a,8) = (1— b_"”'(s)). There is a direct correspondence between optimal strategies.

We note that reachability games can also be reduced to our case:

» Lemma 9. For any game G and (absorbing) reachability goal T, we have Valg o7(s) =
1 — NegUtilg(s) with reward r(s) = 1p(s) and v = 1.

We highlight that this reduction from entropic risk games to reachability games is not
an effective reduction in the computational sense, since Gg comprises irrational transition
probabilities even for entirely rational inputs. We discuss how to tackle this in the next
section and first proceed to derive some useful properties from this correspondence.

» Lemma 10. The optimal utility NegUtil™ is the pointwise smallest solution of

v(s) =0 forse€ Sy, v(s)=1 forse Sy, and ©)

v(s) = OT)‘LZGA(S)I)_W'(S) -A(s,a){v) otherwise

Yet, there might be multiple fixed points to the system of equations. This is to be
expected, since already reachability on MDPs exhibits this problem [32]. We provide a
discussion of these issues together with a sufficient condition for uniqueness in the extended
version [3].

4.3 Strategy Complexity

By Lemma 8, the optimal negative exponential utility is achieved by reachability-optimal
strategies in Gg. With the known results on reachability [18], this yields:

» Theorem 11. MD strategies are sufficient to optimize the negative exponential utility and
thus also entropic risk. More precisely, for all SGs G, there is an MD strategy o for the
Mazimizer such that ERisk!", = inf,cn, ERisk{ ((0,7)) and analogously for the Minimizer.

» Remark 12. We highlight that this means that this notion of risk is history independent:
Which actions are optimal does not depend on what has already “gone wrong”, but purely on
the potential future consequences. This is in stark contrast to, e.g., conditional value-at-risk
optimal strategies for total reward, which require exponential memory and switch to a purely
expectation maximizing (i.e. risk-ignorant) behaviour after “enough” went wrong [42].

4.4 System of Inequalities

The problem we want to solve is deciding whether the Maximizer can ensure an entropic risk
of at least t. Unfortunately, the reachability game Gg is not directly computable, since even
for rational rewards b=7"(®) may be irrational. As such, we cannot use this transformation
directly to prove decidability or complexity results and need to take a different route.
Analogous to the classical solution to reachability, we first convert the problem to a system of
inequalities. Intuitively, we replace every max with > for all options and dually min with <
(again, recalling that Maximizer wants to minimize the value in Gg). Formally, we consider
the following:
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v(8) < b7, v(s) =0 fors€ Sy, v(s) =1 for s €Sy,
v(s) < b7 L A(s,a) (V) for s € Smax, a € A(s),
v(s) > p=r(s) . A(s,a){v) for s € Spmin, a € A(s), and (7)
— pr(s) .
\/GGA(S) v(s) =0 A(s,a){v) forse S

Observe that this essentially is the decision variant to the standard quadratic program for
reachability applied to Gg [19].

» Lemma 13. The system of equations 7 has a solution if and only if ERisk™ > t.

4.5 Decidability Subject to Shanuel’s Conjecture

From Equation (7), we obtain a conditional decidability result for the general case:

» Theorem 14. Let all quantities, i.e. rewards, transition probabilities, the risk-aversion
factor v, and the basis b be given as formulas in the language of reals with exponentiation
(i.e. with functions +, -, and exp: x +— €% ). Then, the entropic risk threshold problem for
SGs is decidable subject to Schanuel’s conjecture.

Proof. In this case, the existence of a solution to Equation (7) can also be expressed as
a sentence in the language of the reals with exponentiation. The corresponding theory is
known to be decidable subject to Shanuel’s conjecture (see e.g. [37]) as shown by [38], and
decidability of this theory is equivalent to the so-called “weak Schanuel’s conjecture”. <

In particular, this allows us to treat instances with basis b = e. Yet, even if all rewards,
transition probabilities, and y are given as rational values, but the basis b equals e, we do
not know how to check the satisfiability of Equation (7) without relying on the theory of
the reals with exponentiation. Note, however, that we do not need the “full power” of the
exponential function: All values appearing in an exponent in Equation (7) are constants. So,
the restricted exponential function that agrees with exp on a closed interval [a1, az] and is zero
outside of this interval is sufficient. The theory of the reals with restricted exponentiation has
some additional nice properties compared to the theory of the reals with full exponentiation:
For example, it allows for quantifier elimination by [52] and related works. Nevertheless, this
does not allow us to immediately obtain an unconditional decidability result.

5 The Algebraic Case

If all occurring values are rational, then all numbers of the system of inequalities Equation (7)
are algebraic. The results of this section establish that the threshold problem for such
instances is decidable. A detailed exposition of the results can be found in the extended
version [3]; an overview of the complexity results can also be found in Table 1. Formally, we
define:

» Definition 15. An algebraic instance of the entropic risk threshold problem is an instance
where all occurring values, i.e. the transition probabilities of the game G, all rewards assigned
by the reward function r, the risk-aversion parameter -y, the basis b, and the threshold t, are
rational and encoded as the fraction of co-prime integers in binary.
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In general, for algebraic instances, there is a reduction of our problem to the existential
theory of the reals, leading to the following result where dR denotes the complexity class of
problems that are polynomial-time reducible to the existential theory of the reals:

» Theorem 16. For algebraic instances, the entropic risk threshold problem is decidable in
dR and thus in PSPACE.

Already for Markov chains, it is unclear whether the upper complexity bound can be
improved. For a discussion on this issue, see also the extended version [3].

For Theorem 16, we use the standard decision procedure for the existential theory of the
reals as a “black box” and do not make use of the special form of our problem. To exploit
the specific structure of the system of inequalities, we note that for explicit computations on
algebraic numbers the following two quantities are relevant for the resulting computational
complexity: Firstly, the degree of the field extension of QQ in which the computation can
be carried out. Secondly, the bitsize of the coeflicients of the minimal polynomials of the
involved algebraic numbers (see, e.g., [1, 6]). Alternatively, the bitsize of the representations
of the algebraic numbers in a fixed basis of the field extension in which the computations can
be carried out can be used. Note that the size of the basis is precisely the degree of that field
extension. Motivated by these observations, we consider small algebraic instances, which
allow us to prove that all occurring algebraic numbers have a sufficiently small representation.

» Definition 17. A small algebraic instance of the entropic risk threshold problem consists
of a SG G with rational transition probabilities, an integer reward function r, a rational
risk-aversion parameter vy, a rational basis b, and a rational threshold t. Moreover, the
rewards, v, and t are encoded in unary, and as the fraction of co-prime integers encoded in
unary, respectively. The remaining rational numbers are encoded as the fraction of co-prime
integers in binary. If G is an MDP or a MC, we call the instance a small algebraic instance
of an MDP or a MC.

» Remark 18. For simplicity, we assume for small algebraic instances that all rewards are in
N. If this is not the case, we can multiply all rewards with the least common multiple D
of the denominators of the rewards and use a new risk-aversion parameter