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Preface

The International Symposium on Mathematical Foundations of Computer Science (MFCS
conference series) is a venue for high-quality original research in all branches of Theoretical
Computer Science. MFCS is among the conferences with the longest history in the field –
the first conference in the series was held already in 1972. For many years, the conference
rotated between the Czech Republic, Slovakia, and Poland, but since 2013 it has expanded
its realm and traveled around different countries in Europe. In 2023, at its 48th edition,
MFCS was held in Bordeaux, France, on August 28th – September 1st.

This volume contains the invited contributions and the 84 contributed talks. The invited
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Exploring the Space of Colourings with Kempe
Changes
Marthe Bonamy #

CNRS, LaBRI, Université de Bordeaux, France

Abstract
Kempe changes were introduced in 1879 in an attempt to prove the 4-colour theorem. They are a
convenient if not crucial tool to prove various colouring theorems. Here, we consider how to navigate
from a colouring to another through Kempe changes. When is it possible? How fast?
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Kempe changes were introduced in 1879 in an attempt to prove the 4-colour theorem [4].
They are a convenient if not crucial tool to prove various colouring theorems, most notably
the 4-colour theorem [1] (every planar graph is 4-colourable) and Vizing’s edge colouring
theorem [7] (the edges of any graph can be partitioned into at most ∆ + 1 matchings, where
∆ is the maximum degree of a vertex in the graph). Given a coloured graph, a Kempe change
consists in considering two colours a and b and a vertex coloured a, then swapping colours a

and b in the maximal (a, b)-coloured component containing the specified vertex. Here, we
consider how to navigate from a colouring to another through a series of Kempe changes.
When is it possible? How fast? A seminal conjecture of Vizing from 1965 [8] states that in
any graph, from any edge-colouring we can reach an optimal one through a well-chosen series
of Kempe changes. While this remained a major challenge for decades, being only proved for
graphs with maximum degree 3 or 4 [5, 2], then last year for triangle-free graphs [3], Narboni
recently provided a full proof of the conjecture [6]. This notably implies that given at least
one more colour than the optimal number, one can navigate from any edge-colouring to any
other. The extra colour is necessary. How these results extend to the context of multigraphs
remains widely open.

We will also discuss the number of steps necessary to navigate from any vertex-colouring of
a k-degenerate graph to any other, when the number of colours is sufficiently large compared
to the degeneracy, as well as the Kempe equivalent of Hadwiger’s conjecture and whether
Kempe changes can be useful in the context of graphs with a forbidden minor. If time
permits, we will see how this tool can be used for efficient sampling of random colourings of
a graph and for counting the number of distinct colourings.

References
1 Kenneth Appel and Wolfgang Haken. The solution of the four-color-map problem. Scientific

American, 237(4):108–121, 1977.
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Online Algorithms with Predictions
Joan Boyar # Ñ

University of Southern Denmark, Odense, Denmark

Abstract
We give an introduction to online algorithms with predictions, from an algorithms researcher’s
perspective, concentrating on minimization problems.
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1 Extended Abstract

We begin with an introduction to online algorithms with predictions, where the online
algorithm is given additional information, some predictions, which should, presumably,
improve its performance. The seminal papers in this area, by Lykouris and Vassilvitskii [9, 10]
and Purohit, Svitkina and Kumar [11], appeared at conferences in 2018 and have since inspired
many other researchers to work in this area. A current list of related publications can be
found on a dedicated website [1], which listed 145 articles as of July 10, 2023.

Online algorithms are those that as input receive a sequence of requests, each of which
must be handled by the algorithm making an irrevocable decision, before the next request
arrives. The research area, online algorithms with predictions, is related to an older line of
research within online algorithms, advice complexity [5, 7, 4, 6], where the online algorithm
is given “advice” which is assumed to be correct. In contrast, in the area of online algorithms
with predictions, the predictions given to these online algorithms may come from machine
learning and generally contain errors. In both of these models, the online algorithm receives
extra information and the performance of an algorithm is measured using the competitive
ratio (asymptotically, the worst-case ratio over all possible input sequences of the cost
obtained by the algorithm compared to the cost of Opt, the optimal offline algorithm, on
the same input). In advice complexity, the goal is to achieve a good competitive ratio with
as few bits of advice as possible. In contrast, the goal in online algorithms with predictions
is to achieve a good competitive ratio, despite errors in the predictions.

The amount of error in the predictions, p̂, for an input sequence I with correct values, p,
is given by some error measure, η(I, p̂, p). This is typically normalized as η(I, p̂, p)/ Opt(I),
where Opt(I) is the cost achieved by an optimal offline algorithm on input sequence I. An
online algorithm with predictions should have a competitive ratio that degrades gracefully
with increasing error (smoothness), performing near optimally if there is no error (consistency),
but not performing too poorly, even if the predictions are terrible (robustness).

Results for two different minimization problems are presented, demonstrating
the relevance of advice complexity for the paging problem with predictions [2] and
the relevance of random order analysis [8] for a problem where, according to competitive
analysis, no algorithm can be better than the trivial Follow-the-Predictions algorithm [3].
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Modern Parallel Algorithms
Artur Czumaj # Ñ

University of Warwick, Coventry, UK

Abstract
Recent advances in the design of efficient parallel algorithms have been largely focusing on the
nowadays classical model of parallel computing called Massive Parallel Computation (MPC), which
follows the framework of MapReduce systems. In this talk we will survey recent advances in the
design of algorithms for graph problems for the MPC model and will mention some interesting open
questions in this area.
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1 Overview

Many modern computer applications require performing computations on massive amounts
of data. Traditional models of computation, such as the RAM model or shared-memory
parallel systems, are often inadequate for such computations, as the input do not fit into the
available memory of even most advanced modern systems. The restrictions imposed by the
limited memory in the available architectures and the requirement of fast processing of data
has naturally led to the development of new models of parallel and distributed computation
that are more suitable for processing massive amounts of data. On the basis of the successes
of such massively parallel computation frameworks, such as MapReduce, Hadoop, Dryad,
or Spark, Karloff, Suri, and Vassilvitskii (SODA 2010) introduced the Massive Parallel
Computing (MPC) model that provides a clean abstraction of these frameworks and captures
the modern needs of computation at a massive scale. After some later refinements, the MPC
model has became the standard theoretical model of algorithmic study. At a very high-level,
an MPC system consists of a collection of machines that can communicate with each other
through indirect communication channels. The computation proceeds in synchronous rounds,
where at each round the machines receive messages from other machines, perform arbitrarily
complex local computations, and finally send appropriate messages to other machines so
that the next round can start. The crucial factors in the analysis of algorithms in the MPC
model are the number of rounds and the capacity of individual machines.

In the MPC model, there are m machines and each of them has s words of local space
at its disposal. Initially, each machine receives its share of the input. For example, in the
context of graph problems where the input is a collection V of nodes and E of edges, the input
is arbitrarily distributed among the machines (and so s · m ≥ |V | + |E|). The computation
proceeds in synchronous rounds in which each machine processes its local data and performs
an arbitrary complex local computation on its data. At the end of each round, machines
exchange messages. Each message is sent only to a single machine specified by the machine
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3:2 Modern Parallel Algorithms

that is sending the message. All messages sent and received by each machine in each round,
as well as the output have to fit into the machine’s local space s (in particular, in a single
round, any machine can send at most s messages and be the recipient of at most s messages).

It has been quickly observed that the central parameter of the MPC is its local space s.
While originally the main research has been frequently focused on the case when s is almost
as large as the input size, most recent study has been concentrated on the low-space regime
when s = Nϕ for some ϕ ∈ (0, 1), often ϕ being arbitrarily small.

The talk will survey this topic, focusing on graph problems for the low-space regime.
We will discuss recent advances in the design of algorithms for graph problems for the
MPC model for fundamental problems like connectivity and matching. We will also study
the relation between the MPC model and some other fundamental models of parallel and
distributing computations, including the classical PRAM model and the distributed LOCAL
and Congested Clique models. We will also list some interesting open questions in this area.
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Abstract
Loop invariants describe valid program properties that hold before and after every loop iteration.
As such, loop invariants are the workhorses in formalizing loop semantics and automating the formal
analysis and verification of programs with loops.

While automatically synthesizing loop invariants is, in general, an uncomputable problem, when
considering only single-path loops with linear updates (linear loops), the strongest polynomial
invariant is in fact computable [5, 9, 6, 3]. Yet, already for loops with “only” polynomial updates,
computing the strongest invariant has been an open challenge since 2004 [8].

In this invited talk, we first present computability results on polynomial invariant synthesis
for restricted polynomial loops, called solvable loops [11]. Key to solvable loops is that one can
automatically compute invariants from closed-form solutions of algebraic recurrence equations that
model the loop behaviour [6, 4]. We also establish a technique for invariant synthesis for classes of
loops that are not solvable, termed unsolvable loops [1].

We next study the limits of computability in deriving the (strongest) polynomial invariants
for arbitrary polynomial loops. We prove that computing the strongest polynomial invariant of
arbitrary, single-path polynomial loops is very hard [10] – namely, it is at least as hard as the Skolem
problem [2, 12], a prominent algebraic problem in the theory of linear recurrences. Going beyond
single-path loops, we show that the strongest polynomial invariant is uncomputable already for
multi-path polynomial loops with arbitrary quadratic polynomial updates [7].
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Abstract
Graphs are fundamental tools for modelling relations among objects in various scientific fields.
However, traditional static graphs have limitations when it comes to capturing the dynamic nature
of real-world systems. To overcome this limitation, temporal graphs have been introduced as a
framework to model graphs that change over time. In temporal graphs the edges among vertices
appear and disappear at specific time steps, reflecting the temporal dynamics of the observed system,
which allows us to analyse time dependent patterns and processes. In this paper we focus on the
research related to sliding time windows in temporal graphs. Sliding time windows offer a way to
analyse specific time intervals within the lifespan of a temporal graph. By sliding the window along
the timeline, we can examine the graph’s characteristics and properties within different time periods.

This paper provides an overview of the research on sliding time windows in temporal graphs.
Although progress has been made in this field, there are still many interesting questions and
challenges to be explored. We discuss some of the open problems and highlight their potential for
future research.
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1 Introduction

Graphs are used to model (binary) relations among different objects. They consist of a set
of vertices, where two of them are connected together with an edge. They have become a
fundamental tool for modelling diverse systems and real-world problems, steaming through
the wide range of scientific fields. Let us mention just a few of them. In Social sciences
they can be used to model different interactions among people (for example friendships,
communications, etc.), in Chemistry they can model chemical compounds where the vertices
represent different atoms of the compound and edges correspond to the chemical bonds among
them, in molecular Biology they can model physical interactions between proteins, gene
co-expression or biochemical reactions, in Physics they model interactions among particles,
where nodes represent interactions where particles are created or destroyed and edges are
particles traveling between the interactions. Having such a varied application and use, it is
not surprising that the graph theory has been the subject of extensive research over the past
centuries.
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5:2 Sliding into the Future: Investigating Sliding Windows in Temporal Graphs

When studying real-life problems, it becomes evident that this ’simple’ graph model
is often insufficient. Many problems exhibit dynamic behavior, where the connections or
interactions among their vertices change over time. For instance, in transportation networks,
specific roads may be closed during certain intervals. In social networks, individuals may only
interact at particular times of the day or month. Similarly, in information and communication
networks, information or messages are transmitted from a source to a recipient through
a set of connections at specific times. These graph models share a common attribute:
their underlying graph topology or network structure undergoes discrete changes over time.
This observation naturally gives rise to the concept of temporal graphs, which provide a
straightforward and intuitive model for representing graphs that change over time, called
temporal graphs.

▶ Definition 1 (temporal graph [24]). A temporal graph G is a pair (G, λ), where G = (V, E)
is an underlying (static) graph and λ : E → 2N is a time labeling function which assigns to
every edge of G a set of discrete time labels.

Due to their relevance and applicability in many areas, temporal graphs have been studied
from various perspectives and under different names such as dynamic [9,19], evolving [7,12,16],
time-varying [1, 17,36], and graphs over time [27].

In most applications of temporal graphs, information can naturally only move along edges
in a way that respects the ordering of their timestamps (i.e. time labels), that is, information
can only flow along sequences of edges whose time labels are increasing (or non-decreasing).
Motivated by this fact, most studies on temporal graphs have focused on “path-related”
problems, such as e.g. temporal analogues of distance, diameter, reachability, exploration,
and centrality [2, 3, 10,14,15,22,25,26,30,34,40]. In these problems, the most fundamental
notion is that of a temporal path from a vertex u to a vertex v, which is a path from u

to v such that the time labels of the time labels of the edges are increasing (or at least
non-decreasing) in the direction from u to v. To complement this direction, several attempts
have been recently made to define meaningful “non-path” temporal graph problems which
appropriately model specific applications. Some examples include temporal cliques, cluster
editing, temporal vertex cover, temporal graph coloring, temporally transitive orientations of
temporal graphs [4, 6, 11,18,21,23,32,33,37,39].

One of the main goals in temporal graphs’ research is to lift (algorithmic) graph theory
models and results to a temporal/dynamic domain, in order to model natural, real world
situations which are subject to discrete changes over time. The main challenge in this front
is to find appropriate natural extensions and definitions of such problems. For instance, in
static graphs, a shortest path between two vertices is a path connecting these two vertices
with the smallest number of edges. On the other hand, in temporal graphs, there are at
least three, equally natural, different analogues of a shortest path. First, a shortest temporal
path from u to v is one that contains the smallest number of edges. Second, a foremost
temporal path from u to v is one that arrives at v with the smallest time-stamp. Third, a
fastest temporal path from u to v is one that has the smallest duration. These three types of
temporal paths are illustrated in Figure 1.

What is common to most of the path-related problems is that their extension from static
to temporal graphs often follows easily and quite naturally from their static counterparts. For
example, requiring a graph to be (temporally) connected results in requiring the existence of
a (temporal) path among each pair of vertices. In the case of non-path related problems,
the exact definition and its application is not so straightforward. Let us consider the case of
cliques. Defining cliques in a temporal graph as the set of vertices that interact at least once
in the lifetime of the graph would be a bit counter intuitive, as two vertices may just interact
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Figure 1 In this temporal graph, the shortest path from s to t is (s, c, t) as it contains two edges;
the foremost temporal path is (s, a, b, t) as it arrives at time 5; the fastest temporal path is (s, d, e, t)
a it has duration 9 − 7 + 1 = 3.

at the first time step and never again. To help with this problem, Viard et al. [37] introduced
the idea of the sliding time window of some size ∆, where they define a temporal clique as a
set of vertices where in all ∆ consecutive time steps each pair of vertices interacts at least
once. There is a natural motivation for this problem, namely to be able to find the contact
patterns among high-school students. Following the idea of Viard et al. [37], many other
problems on temporal graph were defined wiusing sliding time windows. In this paper we
present an overview of works on sliding windows in temporal graphs and at the end provide
some open problems and further ideas with potential research topics.

2 Preliminaries and Notations

In the literature there are many (slightly) different notations and terminologies used for
certain structures in temporal graph. For the purpose of this paper, we fix the following
notation and definitions.

Given a (static) graph G = (V, E) with vertices in V and edges in E, an edge between
two vertices u and v is denoted by uv, and in this case u and v are said to be adjacent in G.
For every i, j ∈ N, where i ≤ j, we let [i, j] = {i, i + 1, . . . , j} and [j] = [1, j]. Throughout
the paper we consider temporal graphs whose underlying graphs are finite and whose time
labeling functions only map to finite sets. This implies that there is some t ∈ N such that, for
every t′ > t, no edge of G is active at t′ in (G, λ). We denote the smallest such t by T , i. e.,
T = max{t ∈ λ(e) | e ∈ E}, and call T the lifetime of (G, λ). Unless otherwise specified, n

denotes the number of vertices in the underlying graph G, and T denotes the lifetime of the
temporal graph G. We refer to each integer t ∈ [T ] as a time step of (G, λ). The instance (or
snapshot) of (G, λ) at time t is the static graph Gt = (V, Et), where Et = {e ∈ E : t ∈ λ(e)}.
Note that the size of a temporal graph G is |G| := |V | +

∑T
t=1 |Et|.

For every t = 1, . . . , T − ∆ + 1, let Wt = [t, t + ∆ − 1] be the ∆-time window that starts
at time t. For every v ∈ V and every time step t, we denote the appearance of vertex v at
time t by the pair (v, t) and the edge appearance (or time-edge) of e at time t by (e, t). For
t ∈ λ(e) we also say that e is active at time t in (G, λ). That is, for every edge e ∈ E, λ(e)
denotes the set of time steps at which e is active.

A temporal vertex subset of (G, λ) is a set of vertex appearances in (G, λ), i.e. a set of
the form S ⊆ {(v, t) | v ∈ V, t ∈ [T ]}. For a temporal vertex subset S and some ∆-time
window Wi within the lifetime T of (G, λ), we denote by S[Wi] = {(v, t) ∈ S | t ∈ Wi} the
subset of all vertex appearances in S in the ∆-time window Wi. For a ∆-time window Wi

within the lifetime of a temporal graph (G, λ), we denote by E[Wi] = {e ∈ E | λ(e)∩Wi ̸= ∅}
the set of all edges which appear at some time step within Wi.
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5:4 Sliding into the Future: Investigating Sliding Windows in Temporal Graphs

3 Known Results on Sliding Windows

In this section we present some of the known results on temporal graphs using sliding windows.
As we discussed, the aim is to find a suitable definition for well motivated graph problems,
that take in consideration also the changes that appear over time.

3.1 Temporal Cliques

In a (static) graph G = (V, E), a clique C ⊆ V is a collection of vertices, where every two of
them are connected. We say that a clique C is maximal, if there exists no other vertex in
V \ C that is connected to all of the vertices in C. There are many applications of (maximal)
cliques for modeling real-world problems. For example, in their work Creamer et al. [13]
calculate hierarchical structures in complex (communication) networks using cliques, and
in [35] Samudrala and Moult use cliques in the context of protein structure modeling.

Viard et al. [37] extended the notion of cliques to temporal graphs. Their work was
motivated by the contact patterns among French high-school students. They studied the
dataset with real-world contacts between individuals, captured with sensors. Where an edge
e at time t was formed between two subjects if they were close enough to each other at time t

for the detection to happen. The aim is to determine groups of students that were interacting
more often. The obstacle in this case is how to naturally define such groups. If two students
interacted only once and then never again, their interaction should not be considered as
“valuable” as in the case when students interact more often, over certain period of time. With
this in mind, the authors present the following natural definition of a ∆-clique.

▶ Definition 2. A ∆-clique C in a temporal graph G = (G, λ) with a life-time T , is a pair
(X, I), where X is a subset of vertices of G and I ⊆ [T ], such that for every two vertices
u, v ∈ X there is a time-edge (uv, t) in G in every ∆-time window Wi ∈ I.

Intuitively, among each pair of vertices in X there is a time-edge every ∆ time steps in
the time interval I. The significance of the parameter ∆ is that it measures the level of
interaction in ∆-cliques. A small value of ∆ means that the interaction among vertices has
to occur more often compared to the case of large ∆ values. The selection of ∆ depends on
the data set and the purpose of the analysis.

The authors provide an algorithm that in O(2nn2m3 + 2nn3m2) time computes all
maximal ∆-cliques of a temporal graph (G, λ), where n = V (G) and m =

∑
e∈E(G) λ(e).

This result was further improved by Himmel et. al. [23] by providing an adaptation of the
Bron-Kerbosch algorithm for enumerating maximal cliques, where they improve the running
time to O(2nTm), where m = |E(G)|.

Cliques may not be always practical for modelling real-world situations as they can be too
restrictive, for example some edges may not exist due to measurement errors or other reasons
specific to the application. To overcome this issue, various relaxations of the clique concept
have been developed. One popular approach is the use of k-plexes, a degree-based relaxation
of cliques that requires every vertex to be connected to all but at most k − 1 vertices in the
k-plex, excluding itself. Extending this idea to temporal graphs, Bentert et al. [6] introduce
the study of ∆ − k-plexes, where they relax the condition of ∆-clique by allowing each vertex
to have up to k − 1 missing connections to other vertices in each ∆ consecutive time steps.
They adapt the algorithm for ∆-cliques to enumerate them, and provide some heuristic
speed-up techniques that are useful when dealing with practical scenarios.
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3.2 Temporal Vertex Cover
The vertex cover problem on a static graph G asks for a set of vertices S in V (G), of a
minimum size, such that each edge e ∈ E(G) has at least one endpoint in S (i. e., is covered
by at least one vertex in the vertex cover). To extend the idea to temporal graphs one needs
to first find a relevant and well motivated definition. For example, requiring that each edge
is covered whenever it appears (i. e., there is a vertex cover in every snapshot of the temporal
graph), may be a bit too restrictive. A well known motivation behind the vertex cover on
static graphs is a problem of placing security guards throughout the airport, where corridors
represent edges and two corridors meet in a vertex. Then a vertex cover is a collection of
corridor intersections, where we place security guards such that the airport is fully observed
by the security. Suppose now that during the day, for some reason, certain corridors are
not in use (some gates may be open only during specific times). And suppose now also that
a criminal needs a specific amount of time, without any supervision, to execute an illegal
activity. Now, to prevent all such acts, we do not need to fully monitor each sector of the
airport all the time, but we just have to make sure we check each part often enough. With
this in mind, Akrida et al. [4] introduced the notion of sliding window temporal vertex cover.

▶ Definition 3. A ∆-sliding window temporal vertex cover S ⊆ V (G) × [T ] (or ∆-TVC for
short) in a temporal graph (G, λ), with a lifetime T , is a collection of vertex appearances,
such that each edge e ∈ E(G) is covered in every ∆-time window Wi ⊆ [T ], if it appears.

When determining ∆-TVC of a given temporal graph, one wants to always find the one of
minimum size. In their work Akrida et al. [4] first prove that a relaxed version of the problem
(where ∆ = T , i. e., each edge has to be covered at least once in the whole lifetime T of the
graph) is NP-hard already for the temporal graphs where the underlying graph is a star. For
this sub-problem they prove also that the optimal solution cannot be obtained in O(2ϵT )
time (for some small ϵ), assuming the Strong Exponential Time Hypothesis (SETH), as well
as that it does not admit a Polynomial-Time Approximation Scheme (PTAS). For the general
problem they provide an exact dynamic algorithm running in O(T ∆(n + m) · 2n∆(∆+1)) time
on arbitrary temporal graphs, which cannot admit much more improvements (as it is almost
at the lower complexity bound). They complement this result by providing an algorithm
that, for graphs where each snapshot has a vertex cover number bounded by k, runs in an
FPT time, when parameterized by ∆. They investigate also the problem’s approximability
and prove that ∆-TVC does not admit a PTAS, even when ∆ = 2, maximum degree of the
underlying graph is 3 and every connected component of each snapshot is of size at most
7. In addition, they augment this result by providing approximation algorithms with ratios
(i) ln n + ln ∆ + 1

2 , (ii) 2k, where k is the maximum number of appearances of an edge in a
sliding window, (iii) d, where d is the maximum vertex degree in every snapshot.

The study of ∆-TVC problem was then further extended by Hamm et. al. [21]. The
researchers studied the ∆-sliding window vertex cover problem on sparse temporal graphs.
They proved that the problem is NP-hard when ∆ ≥ 2 and the underlying graph G of
the temporal graph (G, λ) is a path or a cycle. On the other hand, they developed a
polynomial-time algorithm for solving T -TVC on paths and cycles, where T is the lifetime of
the temporal graph. This raises the interesting question of whether there exists a boundary
value for ∆ that distinguishes between the tractable and intractable categories on paths,
thus determining the complete dichotomy of the problem. Moreover, for any ∆ ≥ 2 they
augmented these results with a PTAS for ∆-TVC on paths and cycles, which complements
the hardness result. In addition, the authors presented three algorithms to counter the
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hardness of the ∆-TVC problem for arbitrary (non-restricted) temporal graphs. The first
algorithm is an exact algorithm for ∆-TVC with an exponential running time dependency
on the number of edges in the underlying graph. Using this algorithm, they developed a
polynomial-time (d − 1)-approximation algorithm for any d ≥ 3, where d is the maximum
vertex degree in any time step (which improved on d-approximation algorithm from Akrida
et al.). Finally, the authors presented a simple fixed-parameter tractable algorithm with
respect to the size of an optimum solution.

3.3 Temporal Coloring

In a static graph G a coloring problem asks for a minimum number of colors associated to
vertices, such that two endpoints of each edge are not assigned the same color. A classical
motivation behind this problem is allocating radio frequencies to radio towers at specific
locations. Here the idea is to allocate different frequencies to towers that are located close
enough to cause an overlap in transmission. In this case each tower is represented as a node
of the graph, where two of them are connected if the towers are positioned so close that they
interfere with each other, and each frequency represents a different color. Now, coloring the
graph properly results in an assignment of frequencies, that causes no interference.

Let us consider a bit more evolved scenario, where instead of static radio towers, we
observe mobile agents. Here every agent broadcasts information over a specific communication
channel while it listens on all others. Therefore, when two agents are in close proximity, they
exchange information only if they broadcast on different channels. We assume that agents
can switch channels at any time. To ensure maximum information exchange, it is essential
to find a schedule of assigning broadcasting channels to the agents over time that minimizes
the number of required channels. This should allow each pair of agents to communicate at
least once within every small time window when they are close to each other.

Following this motivation Mertzios et al. [33] introduce the study of temporal coloring
using sliding windows. Where one wants to determine the coloring of vertex appearances,
using the smallest possible number of colors, such that each edge is properly colored (incident
vertices are of different color) at least once in every ∆ consecutive time steps, if the edge
appears. For a formal definition see the following.

▶ Definition 4. A ∆-sliding window temporal coloring (or ∆-TC for short) in a temporal
graph (G, λ), with a lifetime T , is a function ϕ : V (G) × [T ] → N, that assigns one color
ϕ(v, t) to each vertex appearance, such that for every ∆-time window Wi ⊆ [T ], and every
edge e ∈ E[Wt] there is at least one time step t ∈ Wi, where e appears and its two endpoints
u, v are colored using different colors, i. e., (e, t) is a time-edge in (G, λ) and ϕ(u, t) ̸= ϕ(v, t).

Mertzios et al. [32] start by studying a subcase of the problem, when ∆ = T . In this case
the objective is to ensure that each edge is properly colored (its endpoints are of different
color) at least once in the whole life time T of the temporal graph. Surprisingly, even the
restricted subcase turns out to be NP-hard, already when one is asking if 2 colors are enough
to color it properly. This presents a stark contrast to the static case, where identifying if a
graph is 2-colorable (bipartite) can be accomplished in linear time. On the positive side they
show that the this subcase admits a polynomial kernel, when parameterized by the number
of vertices in the input temporal graph. For the general case they prove that the problem
is NP-hard, and provide two algorithms for it. One is an exponential-time algorithm, that
asymptotically matches the running time lower bound (assuming ETH), and the second one
is a linear time FPT algorithm, with respect to the number n of vertices.
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In addition to the above mentioned work, some other variations of coloring temporal
graphs have been explored (e.g. example [18,29,39]), however these studies do not use the
approach with sliding windows.

3.4 Temporal Matching
Given a static graph G the problem of (maximum) matching asks for a (maximum) set
of pairwise independent edges, that is, edges that share no endpoints. This problem has
numerous applications in fields such as scheduling and planning, chemistry modeling, job
allocation, and more. Once the time-dimension is added to the graph model, there can be
different ways to carry over the definition to temporal graphs.

Following the idea of a sliding time window, Mertzios et al. [31] introduced the problem
of ∆-Maximum Temporal Matching (∆-TM), where one wants to determine a maximum
set of time-edges that are pairwise ∆-independent. Two time-edges (e, t), (f, t′) are ∆-
independent if (i) e ∩ f = ∅, or (ii) e ∩ f ≠ ∅ and |t − t′| ≥ ∆. In other words, for any
feasible solution of ∆-TM, it is not possible to match a vertex more than once within any
time interval of duration ∆. This condition can represent scenarios where a short “recovery”
period is needed for every vertex that participates in the matching, such as a brief period of
rest after engaging in an energy-demanding activity.

In contrast to the Edmonds’ polynomial-time algorithm for finding a maximum matching
in static graphs, Mertzios et al. [31] prove that ∆-TM does not even admit an approximation
algorithm, meaning it is APX hard, already in the case when ∆ = 2 and the lifetime T of
the temporal graph is 3. In addition, they show that the problem remains NP-hard even if
the underlying graph, of the input temporal graph, is just a path. On the positive side, they
provide an approximation algorithm for any constant ∆, which achieves an approximation
ration of 1

2 + ϵ, where ϵ = 1
2(2∆−1) . Besides that, they show that a problem admits two FPT

algorithms, one when it is parameterized by the solution size, and the second one, when it is
parameterized by the combined parameter ∆ and the size of a maximum matching of the
underlying graph.

It is worth mentioning that another related variant of Maximum Temporal Matching
has been studied (see Baste et al. [5]). In this model the authors do not use the ∆-time
windows, but instead require an edge to appear at least ∆ consecutive time steps, in order
to be eligible for a matching. A temporal matching then consists of independent edge
time-blocks of length at least ∆.

4 Further Work

In the previous section we presented some already completed works on temporal graphs, that
use the idea of sliding time windows. In this section we focus on problems that, to the best
of our knowledge, have not yet been investigated using the sliding windows, and give rise to
some interesting research questions.

4.1 Dominating Set
In a static graph G, a dominating set is a subset of vertices D ⊆ V (G), such that each
vertex V (G) is either in D or has a neighbor in D. The Dominating set problem asks for
a dominating set of G of minimum size. One of the applications of the dominating set is
in routing protocols for ad hoc wireless networks. The fundamental concept behind this
approach involves identifying a dominating set within a network of devices and using these

MFCS 2023
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dominating nodes for message routing. More specifically, when a user u wants to transmit a
message to a user v, the routing process consists of determining the shortest path between
the dominating neighbors of user u and user v. By ensuring that all devices admit at least
one dominating neighbor, this method guarantees the delivery of messages.

In the word where these agents become mobile (i. e., they travel around the space), one
can model this problem using temporal graph, where the aim is to find a temporal dominating
set. Similarly as in other cases, we do not necessarily want to find a dominating set in every
time step (as this would be to costly), therefore an approach with sliding time windows
would be of use. We propose the following definition.

▶ Definition 5. A ∆-sliding window temporal dominating set (∆-SWDS) is a subset of vertex
appearances D ⊆ V (G) × [T ], of a temporal graph (G, λ), with the lifetime T , such that for
any vertex appearance (v, t) the following holds:
1. (v, t′) ∈ D, where |t − t′| ≤ ∆ or
2. (u, t′) ∈ D, where u is a neighbor of v in G and |t − t′| ≤ ∆.
Intuitively, any vertex of the underlying temporal graph is at any time step t either at most
∆ time-units away from being in D, or it has a neighbor that is at most ∆ time-units away
from being in D. Since the Dominating set problem is already NP-hard on static graphs, it
remains hard also for temporal graphs. So the interesting research question for the ∆-SWDS
would be if there exist any exact algorithms for it, i. e., some FPT algorithms, or maybe
some approximation algorithms.

It is important to mention that there already exist some variations of the dominating set
problems on temporal graphs. Casteigts and Flocchini [8] propose three different definitions
of dominating sets on temporal graphs, namely temporal dominating set, evolving dominating
set and permanent dominating set. In the temporal and evolving dominating set, one wants
to determine the smallest set of vertices D, such that, in the temporal case, each vertex is
dominated in at least one time step, and in the evolving case, each vertex is dominated in
every time step. While the evolving dominating set D consists of vertex appearances, such
that all vertex appearances are dominated in each time step. More specifically, in the first
two cases, once a vertex is selected to be in D it is in D for all lifetime of the graph, while in
the last case one vertex can be in D only at specific times. Some research has been done
for aforementioned problems. For interested readers, we recommend exploring the following
works [20,28,38], among others.

4.2 Edge Cover
The minimum edge covering problem on a static graph G asks for a minimum set EC ⊆ E(G)
of edges such that every vertex in V (G) is incident to at least one edge in EC . Calculating a
minimum edge cover can be done in polynomial time, by finding a maximum matching and
then extending it greedily until all vertices are covered.

For the version of the edge covering problem on temporal graphs we propose the following
definition.

▶ Definition 6. A ∆-sliding window temporal edge covering (∆-SWEC) is a subset of edge
appearances EC ⊆ E(G) × [T ], of a temporal graph (G, λ), with the lifetime T , such that
every vertex appearance (v, t) is incident to at least one time-edge from the selected set
EC ⊆ E × T , in every time window t ∈ W ′

t .

Since many problems become significantly more challenging when dealing with temporal
graphs, it would be really interesting to explore whether the same holds true for the ∆-SWEC
problem. Applying the exact approach used for static graphs may not yield direct results, as
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it requires to first find a (suitable definition of a) temporal maximum matching. It is worth
noting that in Section 3.4 we presented a ∆-Maximum Temporal Matching, which turns
out to be NP-hard.

4.3 Periodic connectivity
We say that a temporal graph (G, λ) is temporally connected if there exists a temporal
path among each pair of vertices. Some results regarding the connectivity of temporal
graphs have already been established, for example [3, 26, 30]. However, what if we introduce
additional constraints and require that each vertex can reach any other vertex within every
∆ time-window? In such cases, we refer to the temporal graph (G, λ) as being ∆-temporally
connected. It would be interesting to study, for example, what is the minimum number of
labels needed to label a given graph G in such a way that ensures ∆-temporal connectivity
of (G, λ)? We can further restrict this problem by allowing only limited number k of labels
to be added per each edge.

4.4 (Temporal) Graph Classes
Based on the properties of the studied graphs, we can assign them into different graph classes.
For instance there are graphs that are k-colorable (can be properly colored using k colors),
k-regular (each vertex is of degree k), or planar (can be drawn on a plane without any edges
crossing), among others.

To extend the concept of graph classes to the temporal setting with sliding windows, we
propose introducing temporal graph classes. One such class could be the ∆ sliding window
k-colorable temporal graphs, which refers to temporal graphs that can be temporally colored
using k colors. Another class would be the ∆ sliding window k-regular temporal graphs,
where each vertex admits exactly k different neighbors in every ∆ time-window, or perhaps
each vertex v admits exactly k different neighbors in a time step t′ ∈ Wt for every time
window Wt. Similarly, we can define ∆ sliding window planar temporal graphs as temporal
graphs that are planar in some t′ ∈ Wt for every time-window Wt. Further refinement of
these classes is possible by imposing additional restrictions. For example, we can consider
temporal graphs that are 3-colorable in every 5-time window. In such graphs, every vertex
appearance (v, t′) is assigned one of three colors, ensuring that within each sliding window
Wt of size 5, there is at least one time step where the edge e, that appears in Wt is properly
colored.

Overall, these extensions allow for the classification of temporal graphs based on their
temporal characteristics, enabling the exploration of various graph classes in the context of
sliding windows.

5 Conclusion

The study of temporal graphs has emerged as an important area of research with significant
implications for understanding and analyzing dynamic systems. In this paper, we have
presented a short overview of the works on sliding windows in temporal graphs. The concept
of a sliding time window allows us to focus on specific temporal intervals within the lifetime
of a temporal graph, providing valuable insights into the changing behavior and patterns
of interactions. Give that this research field is fairly young, there are still many intriguing
questions and challenges to be addressed. We presented some of them here and hope that
this work inspires further exploration and investigation into these intriguing problems.

MFCS 2023



5:10 Sliding into the Future: Investigating Sliding Windows in Temporal Graphs

References
1 Eric Aaron, Danny Krizanc, and Elliot Meyerson. DMVP: foremost waypoint coverage of

time-varying graphs. In Proceedings of the 40th International Workshop on Graph-Theoretic
Concepts in Computer Science (WG), pages 29–41, 2014.

2 Eleni C. Akrida, Leszek Gasieniec, George B. Mertzios, and Paul G. Spirakis. Ephemeral
networks with random availability of links: The case of fast networks. Journal of Parallel and
Distributed Computing, 87:109–120, 2016.

3 Eleni C. Akrida, Leszek Gasieniec, George B. Mertzios, and Paul G. Spirakis. The complexity of
optimal design of temporally connected graphs. Theory of Computing Systems, 61(3):907–944,
2017.

4 Eleni C. Akrida, George B. Mertzios, Paul G. Spirakis, and Viktor Zamaraev. Temporal vertex
cover with a sliding time window. Journal of Computer and System Sciences, 107:108–123,
2020.

5 Julien Baste, Binh-Minh Bui-Xuan, and Antoine Roux. Temporal matching. Theor. Comput.
Sci., 806:184–196, 2020.

6 Matthias Bentert, Anne-Sophie Himmel, Hendrik Molter, Marco Morik, Rolf Niedermeier,
and René Saitenmacher. Listing all maximal k-plexes in temporal graphs. In Proceedings of
the 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and
Mining (ASONAM), pages 41–46, 2018.

7 Binh-Minh Bui-Xuan, Afonso Ferreira, and Aubin Jarry. Computing shortest, fastest, and
foremost journeys in dynamic networks. International Journal of Foundations of Computer
Science, 14(2):267–285, 2003.

8 Arnaud Casteigts and Paola Flocchini. Deterministic algorithms in dynamic networks: Prob-
lems, analysis, and algorithmic tools. Technical report, Defence R&D Canada, 2013.

9 Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro. Time-varying
graphs and dynamic networks. International Journal of Parallel, Emergent and Distributed
Systems, 27(5):387–408, 2012.

10 Arnaud Casteigts, Anne-Sophie Himmel, Hendrik Molter, and Philipp Zschoche. Finding
temporal paths under waiting time constraints. Algorithmica, 83(9):2754–2802, 2021.

11 Jiehua Chen, Hendrik Molter, Manuel Sorge, and Ondrej Suchý. Cluster editing in multi-layer
and temporal graphs. In Proceedings of the 29th International Symposium on Algorithms and
Computation (ISAAC), volume 123, pages 24:1–24:13, 2018.

12 Andrea E. F. Clementi, Claudio Macci, Angelo Monti, Francesco Pasquale, and Riccardo
Silvestri. Flooding time of edge-markovian evolving graphs. SIAM Journal on Discrete
Mathematics, 24(4):1694–1712, 2010.

13 Germán Creamer, Ryan Rowe, Shlomo Hershkop, and Salvatore J. Stolfo. Segmentation and
automated social hierarchy detection through email network analysis. In Advances in Web
Mining and Web Usage Analysis, 9th International Workshop on Knowledge Discovery on the
Web, WebKDD 2007, Lecture Notes in Computer Science, pages 40–58, 2007.

14 Jessica A. Enright, Kitty Meeks, George B. Mertzios, and Viktor Zamaraev. Deleting edges
to restrict the size of an epidemic in temporal networks. Journal of Computer and System
Sciences, 119:60–77, 2021.

15 Thomas Erlebach, Michael Hoffmann, and Frank Kammer. On temporal graph exploration.
Journal of Computer and System Sciences, 119:1–18, 2021.

16 Afonso Ferreira. Building a reference combinatorial model for MANETs. IEEE Network,
18(5):24–29, 2004.

17 Paola Flocchini, Bernard Mans, and Nicola Santoro. Exploration of periodically varying
graphs. In Proceedings of the 20th International Symposium on Algorithms and Computation
(ISAAC), pages 534–543, 2009.

18 Subhankar Ghosal and Sasthi C Ghosh. Channel assignment in mobile networks based on
geometric prediction and random coloring. In Proceedings of the 40th IEEE Conference on
Local Computer Networks (LCN), pages 237–240, 2015.



N. Klobas, G. B. Mertzios, and P. G. Spirakis 5:11

19 George Giakkoupis, Thomas Sauerwald, and Alexandre Stauffer. Randomized rumor spreading
in dynamic graphs. In Proceedings of the 41st International Colloquium on Automata, Languages
and Programming (ICALP), pages 495–507, 2014.

20 Leonidas J. Guibas, Nikola Milosavljevic, and Arik Motskin. Connected dominating sets on
dynamic geometric graphs. Comput. Geom., 46(2):160–172, 2013.

21 Thekla Hamm, Nina Klobas, George B. Mertzios, and Paul G. Spirakis. The complexity of
temporal vertex cover in small-degree graphs. In Thirty-Sixth AAAI Conference on Artificial
Intelligence, AAAI 2022, February 22 - March 1, 2022, pages 10193–10201, 2022.

22 Klaus Heeger, Danny Hermelin, George B. Mertzios, Hendrik Molter, Rolf Niedermeier, and
Dvir Shabtay. Equitable scheduling on a single machine. In Proceedings of the 35th AAAI
Conference on Artificial Intelligence (AAAI), pages 11818–11825. AAAI Press, 2021.

23 Anne-Sophie Himmel, Hendrik Molter, Rolf Niedermeier, and Manuel Sorge. Adapting the
bron-kerbosch algorithm for enumerating maximal cliques in temporal graphs. Social Network
Analysis and Mining, 7(1):35:1–35:16, 2017.

24 David Kempe, Jon M. Kleinberg, and Amit Kumar. Connectivity and inference problems for
temporal networks. Journal of Computer and System Sciences, 64(4):820–842, 2002.

25 Nina Klobas, George B. Mertzios, Hendrik Molter, Rolf Niedermeier, and Philipp Zschoche.
Interference-free walks in time: temporally disjoint paths. Auton. Agents Multi Agent Syst.,
37(1), 2023.

26 Nina Klobas, George B. Mertzios, Hendrik Molter, and Paul G. Spirakis. The complexity of
computing optimum labelings for temporal connectivity. In 47th International Symposium on
Mathematical Foundations of Computer Science, MFCS 2022, August 22-26, 2022, Vienna,
Austria, volume 241, pages 62:1–62:15, 2022.

27 Jure Leskovec, Jon M. Kleinberg, and Christos Faloutsos. Graph evolution: Densification and
shrinking diameters. ACM Transactions on Knowledge Discovery from Data, 1(1), 2007.

28 Subhrangsu Mandal and Arobinda Gupta. Approximation algorithms for permanent domin-
ating set problem on dynamic networks. In Distributed Computing and Internet Technology
- 14th International Conference, ICDCIT 2018, Bhubaneswar, India, January 11-13, 2018,
Proceedings, volume 10722 of Lecture Notes in Computer Science, pages 265–279. Springer,
2018.

29 Andrea Marino and Ana Silva. Coloring temporal graphs. Journal of Computer and System
Sciences, 123:171–185, 2022.

30 George B. Mertzios, Othon Michail, and Paul G. Spirakis. Temporal network optimization
subject to connectivity constraints. Algorithmica, 81(4):1416–1449, 2019.

31 George B Mertzios, Hendrik Molter, Rolf Niedermeier, Viktor Zamaraev, and Philipp Zschoche.
Computing maximum matchings in temporal graphs. In Proceedings of the 37th International
Symposium on Theoretical Aspects of Computer Science (STACS), volume 154, pages 27:1–
27:14, 2020.

32 George B. Mertzios, Hendrik Molter, Malte Renken, Paul G. Spirakis, and Philipp Zschoche.
The complexity of transitively orienting temporal graphs. In Proceedings of the 46th In-
ternational Symposium on Mathematical Foundations of Computer Science (MFCS), pages
75:1–75:18, 2021.

33 George B. Mertzios, Hendrik Molter, and Viktor Zamaraev. Sliding window temporal graph
coloring. Journal of Computer and System Sciences, 120:97–115, 2021.

34 Othon Michail and Paul G. Spirakis. Traveling salesman problems in temporal graphs.
Theoretical Computer Science, 634:1–23, 2016.

35 Ram Samudrala and John Moult. A graph-theoretic algorithm for comparative modeling of
protein structure11edited by f. cohen. Journal of Molecular Biology, 279(1):287–302, 1998.

36 John Kit Tang, Mirco Musolesi, Cecilia Mascolo, and Vito Latora. Characterising temporal
distance and reachability in mobile and online social networks. Computer Communication
Review, 40(1):118–124, 2010.

MFCS 2023



5:12 Sliding into the Future: Investigating Sliding Windows in Temporal Graphs

37 Tiphaine Viard, Matthieu Latapy, and Clémence Magnien. Computing maximal cliques in
link streams. Theoretical Computer Science, 609:245–252, 2016.

38 John Whitbeck, Marcelo Dias de Amorim, Vania Conan, and Jean-Loup Guillaume. Temporal
reachability graphs. In The 18th Annual International Conference on Mobile Computing and
Networking, Mobicom’12, Istanbul, Turkey, August 22-26, 2012, pages 377–388. ACM, 2012.

39 Feng Yu, Amotz Bar-Noy, Prithwish Basu, and Ram Ramanathan. Algorithms for channel
assignment in mobile wireless networks using temporal coloring. In Proceedings of the 16th
ACM international conference on Modeling, analysis & simulation of wireless and mobile
systems (MSWiM), pages 49–58, 2013.

40 Philipp Zschoche, Till Fluschnik, Hendrik Molter, and Rolf Niedermeier. The complexity
of finding small separators in temporal graphs. Journal of Computer and System Sciences,
107:72–92, 2020.



Roman Census: Enumerating and Counting Roman
Dominating Functions on Graph Classes
Faisal N. Abu-Khzam #

Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon

Henning Fernau # Ñ

Fachbereich IV, Informatikwissenschaften, Universität Trier, Germany

Kevin Mann #

Fachbereich IV, Informatikwissenschaften, Universität Trier, Germany

Abstract
The concept of Roman domination has recently been studied concerning enumerating and counting
in F. N. Abu-Khzam et al. (WG 2022). More technically speaking, a function that assigns 0, 1, 2 to
the vertices of an undirected graph is called a Roman dominating function if each vertex assigned
zero has a neighbor assigned two. Such a function is called minimal if decreasing any assignment
to any vertex would yield a function that is no longer a Roman dominating function. It has been
shown that minimal Roman dominating functions can be enumerated with polynomial delay, i.e.,
between any two outputs of a solution, no more than polynomial time will elapse. This contrasts
what is known about minimal dominating sets, where the question whether or not these can be
enumerated with polynomial delay is open for more than 40 years. This makes the concept of Roman
domination rather special and interesting among the many variants of domination problems studied
in the literature, as it has been shown for several of these variants that the question of enumerating
minimal solutions is tightly linked to that of enumerating minimal dominating sets, see M. Kanté
et al. in SIAM J. Disc. Math., 2014. The running time of the mentioned enumeration algorithm
for minimal Roman dominating functions (Abu-Khzam et al., WG 2022) could be estimated as
O(1.9332n) on general graphs of order n. Here, we focus on special graph classes, as has been also
done for enumerating minimal dominating sets before. More specifically, for chordal graphs, we
present an enumeration algorithm running in time O(1.8940n). It is unknown if this gives a tight
bound on the maximum number of minimal Roman dominating functions in chordal graphs. For
interval graphs, we can lower this time bound further to O(1.7321n), which also matches the known
lower bound concerning the maximum number of minimal Roman dominating functions. We can
also provide a matching lower and upper bound for forests, which is (incidentally) the same, namely
O∗(

√
3n). Furthermore, we present an optimal enumeration algorithm running in time O∗( 3√3n) for

split graphs and for cobipartite graphs, i.e., we can also give a matching lower bound example for
these graph classes. Hence, our enumeration algorithms for interval graphs, forests, split graphs and
cobipartite graphs are all optimal. The importance of our results stems from the fact that, for other
types of domination problems, optimal enumeration algorithms are not always found.

Interestingly, we use a different form of analysis for the running times of our different algorithms,
and the branchings had to be tailored and tweaked to obtain the intended optimality results. Our
Roman dominating functions enumeration algorithm for trees and forests is distinctively different
from the one for minimal dominating sets by Rote (SODA 2019).Our approach also allows to give
concrete formulas for counting minimal Roman dominating functions on more concrete graph families
like paths.
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6:2 Roman Census

1 Introduction

Roman Domination comes with a nice (hi)story, on how to position armies on the various
regions to secure the Roman Empire with the smallest cost, measured in the number of
armies. “To secure” means that either (1) a region r has at least one army or (2) a region r′

neighboring r contains two armies, so that it can afford sending one army to the region r

without diminishing r′’s self-defense capabilities.
It is easy to view Roman Domination as a graph-theoretic problem, where the map

is modeled as a graph. Roman Domination has received notable attention in the last
two decades [7, 17, 23, 26, 40, 41, 44, 48, 49, 51]. Relevant to our work is the development
of exact algorithms: Roman Domination can be solved in O(1.5014n) time (and space),
see [40,52,54]. More combinatorial studies can be found in [16,18,25,35,39,42,43,47,55,56,57]
as well as in the more recent chapter on Roman domination of [34]. Although independently
introduced in [46], the differential of a graph is tightly related, see also [1, 8, 9, 10]. To briefly
summarize all these findings, in many ways concerning complexity, Roman Domination and
Dominating Set behave exactly the same. There are two notable and related exceptions,
as delineated in [2], concerning extension problems and output-sensitive enumeration.

Extension problems often arise from search-tree algorithms for their optimization coun-
terpart as follows. Assume that a search-tree node corresponds to a partial solution (or
pre-solution) U and instead of proceeding with the search-tree algorithm (by exploring all
the possible paths from this node onward) we ask whether we can extend U to a meaningful
solution S. In the case of Dominating Set, this means that S is an inclusion-wise minimal
dominating set that contains U . Unfortunately, this Extension Dominating Set problem
and many similar problems are NP-hard, see [6, 12, 14, 15, 37, 38, 45]. Even worse: when
parameterized by the “pre-solution size,” Extension Dominating Set is one of the few
problems known to be complete for the parameterized complexity class W[3], as shown in [11].
This blocks any progress on the Hitting Set Transversal Problem by using extension
test algorithms, which is the question whether all minimal hitting sets of a hypergraph can be
enumerated with polynomial delay (or even output-polynomial) only. This question is open
for four decades by now and is equivalent to several enumeration problems in logic, database
theory and also to enumerating minimal dominating sets in graphs, see [22,24,29,36].

By way of contrast and quite surprisingly, with an appropriate definition of the notion of
minimality, the extension variant of Roman Domination is solvable in polynomial time [3].
This was the key observation to show that enumerating all minimal Roman dominating
functions is possible with polynomial delay. This triggered further interest in looking
into enumerating minimal Roman dominating functions on graph classes, as also done in
the case of Dominating Set, see [5, 20, 21, 30, 32, 33]. The basis of the output-sensitive
enumeration result of [2] was several combinatorial observations. Here, we find ways how to
use the underlying combinatorial ideas for non-trivial enumeration algorithms for minimal
Roman dominating functions in split graphs, cobipartite graphs, interval graphs, forests
and chordal graphs and for counting these exactly for paths. All these graph classes will
be explained in separate sections below. These exploits constitute the main results of this
paper. More details can be found at the end of the next section. Due to lack of space,
further technical details can be found in [4]. We summarize known bases of lower and upper
bounds on the number of minimal (Roman) dominating sets (resp. functions) in the next
table; new results are shown with boxes; for matching bounds, only one number is displayed;
c.f. [2, 21, 27, 33]. Polynomial delay is achievable for the mentioned special graph classes
for enumerating minimal dominating sets [36, 38], but it is unclear how to combine these
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approaches with good input-sensitive enumeration, while all input-sensitive results concerning
minimal Roman dominating functions can also be implemented with polynomial delay, by
interleaving extension tests with branching.

graph class: general chordal split interval forests cobipartite
domination 1.5704 / 1.7159 3√3 / 1.5048 3√3 3√3 13√95 1.3195 / 1.3674
Roman dom. 1.7441 / 1.9332

√
3 / 1.8940 3√3

√
3

√
3 3√3

2 Definitions and Known Results

Let N = {1, 2, 3, . . . } be the set of positive integers. For n ∈ N, let [n] = {m ∈ N | m ≤ n}.
We only consider undirected simple graphs. Let G = (V, E) be a graph. For U ⊆ V , G[U ]
denotes the graph induced by U . For v ∈ V , NG(v) := {u ∈ V | {u, v} ∈ E} denotes the
open neighborhood of v, while NG[v] := NG(v) ∪ {v} is the closed neighborhood of v. |NG(v)|
is called the degree of v; a vertex of degree 1 is known as a leaf. We extend such set-valued
functions X : V → 2V to X : 2V → 2V by setting X(U) =

⋃
u∈U X(u). Subset D ⊆ V

is a dominating set, or ds for short, if NG[D] = V . For D ⊆ V and v ∈ D, define the
private neighborhood of v ∈ V with respect to D as PG,D (v) := NG [v] \ NG [D \ {v}]. A
function f : V → {0, 1, 2} is called a Roman dominating function, or rdf for short, if for each
v ∈ V with f (v) = 0, there exists a u ∈ NG (v) with f (u) = 2. Simplifying notation, we set
Vi (f) := {v ∈ V | f (v) = i} for i ∈ {0, 1, 2}. The weight wf of a function f : V → {0, 1, 2}
equals |V1| + 2|V2|. The Roman Domination problem asks, given G and an integer k, if
there exists an rdf of weight at most k. Connecting to the original motivation, G models a
map of regions, and if the region vertex v belongs to Vi, then we place i armies on v.

For defining the problem Extension Roman Domination, we first need to define the
order ≤ on {0, 1, 2}V : for f, g ∈ {0, 1, 2}V , let f ≤ g if and only if f (v) ≤ g (v) for all v ∈ V .
Thus, we extend the usual linear ordering ≤ on {0, 1, 2} to functions mapping to {0, 1, 2} in
a pointwise manner. We call a function f ∈ {0, 1, 2}V a minimal Roman dominating function
if and only if f is an rdf and there exists no rdf g, g ̸= f , with g ≤ f . The weights of minimal
rdfs can vary considerably. Consider for example a star K1,n with center c. Then, f1(c) = 2,
f1(v) = 0 otherwise; f2(v) = 1 for all vertices v; f3(c) = 0, f3(u) = 2 for one u ≠ c, f3(v) = 1
otherwise, define three minimal rdfs with weights wf1 = 2, and wf2 = wf3 = n + 1.

In [2], several combinatorial properties of minimal Roman dominating functions were
derived that were central for obtaining a general algorithmic enumeration result and that are
also important when studying special graph classes. This is summarized as follows.

▶ Theorem 2.1. Let G = (V, E) be a graph, f : V → {0, 1, 2} and abbreviate G′ :=
G [V0 (f) ∪ V2 (f)]. Then, f is a minimal rdf if and only if the following conditions hold:
1. NG [V2 (f)] ∩ V1 (f) = ∅,
2. ∀v ∈ V2 (f) : PG′,V2(f) (v) ⊈ {v}, also called privacy condition, and
3. V2 (f) is a minimal dominating set of G′.

This combinatorial result has been the key to show a polynomial-time decision procedure
for the extension problem (Given a graph G = (V, E), a function f : V → {0, 1, 2}, the
question is if there is minimal rdf g with f ≤ g). It can also be used to design enumeration
algorithms that are input-sensitive. The simplest exploit is to branch on all vertices whether
or not a vertex should belong to V2(f). Once V2(f) is fixed, its neighborhood will form V0(f)
and the remaining vertices will be V1(f). For better running times, this approach has to be
refined, see Section 5. We obtain estimates of running times for branching algorithms as
explained in [28], including an introduction into the Measure-and-Conquer analysis.
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3 Enumerating Minimal RDFs in Split and in Cobipartite Graphs

A split graph G = (V, E) consists of a bipartition of V as C and I, such that C forms a clique
and I is an independent set. Let f : V → {0, 1, 2} be a minimal rdf of G. If V2(f) contains
both a vertex vc from C and a vertex vi from I, then vi cannot find a private neighbor
in G, contradicting the minimality of f . We can hence first branch to decide if V2(f) ⊆ C

or if V2(f) ⊆ I. After dealing with the simple case that |V2(f) ∩ C| = 1 separately, we can
assume that all private neighbors of V2(f) ⊆ C are in I and that all private neighbors of
V2(f) ⊆ I are in C. We will describe a simple branching algorithm in which we can assume to
immediately delete vertices that are assigned the value 0, as they will be always dominated.

Case 1. One element of C is assigned a value of 2. We can guess this element in O(n) and
proceed as follows.
1. Elements of C with no neighbors in I are assigned a value of zero.
2. Pick v ∈ C with at least two neighbors in I and branch by either setting f(v) = 2 and

assign 0 to vertices in N(v) ∩ I or f(v) = 0 (this leads to the branching vector (3, 1)).
3. When all elements of C have exactly one neighbor in I, pick some v ∈ C with

N(v) ∩ I = {w}. Distinguish two cases.
3.1 w has at least one other neighbor x ∈ C. Then either f(v) = 2, f(w) = f(x) = 0 (in

fact, all neighbors of w are assigned 0), or f(v) = 0 (this leads to a (3, 1) branch).
3.2 N(w) = {v}: either f(v) = 2, f(w) = 0 or f(v) = 0, f(w) = 1 (this leads to the

branching vector (2, 2)).

Case 2. No element of C is assigned a value of 2.
1. Then any isolated element of I is automatically assigned a value of 1 and can be

deleted. Moreover, any element of C with no neighbors in I is assigned a value of 1
and deleted.

2. Pick a vertex v of degree at least two in I and branch by either setting f(v) = 2 and
assigning 0 to all its neighbors or set f(v) = 1 (this leads to the branching vector
(3, 1)).

3. When all elements of I are leaves, pick v ∈ I with N(v) ∩ C = {w}. Distinguish 2
cases.

3.1 w has at least one more neighbor x ∈ I: either f(v) = 2, f(w) = 0, f(x) = 1 or
f(v) = 1 (delete v) (this leads to the branching vector (3, 1)).

3.2 N(w) ∩ I = {v}: either f(v) = 2, f(w) = 0 or f(v) = f(w) = 1 (this leads to the
branching vector (2, 2)).

Notice that the analysis of the recursion is very simple: an rdf f is gradually defined,
and the branching vectors describe the number of newly defined vertices. The worst-case
branching vector is (1, 3), which leads to the following claim.

▶ Proposition 3.1. All minimal rdfs in a split graph of order n are enumerable in O∗(1.4656n).

▶ Remark 3.2. For cobipartite graphs, a similar reasoning applies. Now, it could be possible
that one vertex x of the bipartition side X finds its private neighbor px in X itself and that
one vertex y of the other bipartition side Y finds its private neighbor py in Y , such that
the edges xpy and ypx do not exist. If G contains no universal vertices, then irrespectively
whether the V2(f)-vertices lie only in X or in Y , there must be at least one other vertex in
V2(f) on the same side. But this means that they must find their private neighbors on the
other side. The branching is hence analogous to the split graph case.
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CP,2,n =

{
n − 1 if n ∈ [2]
CP,2,n−2, if n > 2

CP,2,n =

{
n if n ∈ [3]
CP,2,n−1 + CP,2,n−2 + CP,2,n−3 + CP,2,n−3, if n > 3

Figure 1 The mutual recurrences for determining the number of minimal rdfs on a path Pn.

The previous arguments are invalid in the case of bipartite graphs. Here, we conjecture that
the general case is not really easier than the bipartite case, as with minimal ds enumeration.

However, we can boost our algorithm and its simple analysis to actually prove an optimal
enumeration result. In order to do this, a rather straightforward refinement of the previous
case analysis suffices. Together with Remark 3.2 as well as the trick of interleaving the
branching with extension tests as described in [2], this refined branching algorithm proves:

▶ Theorem 3.3. All minimal rdfs in a split graph or a cobipartite graph of order n can be
enumerated in time O∗( 3

√
3n), using polynomial space and polynomial delay only.

We can complement Theorem 3.3 by showing lower bound examples in the following that
prove that our simple branching algorithm analysis is optimal for split and cobipartite graphs.

▶ Theorem 3.4. There exist split and cobipartite graphs of order n with Ω( 3
√

3n) many
minimal rdfs.

Proof. We consider the graph Gt = (Ct ∪ It, Et) with Ct = {c1, . . . , c2t}, It = {v1, . . . , vt},
3t = n = |Ct ∪ It| and Et =

(
Ct

2
)

∪ {{c2i−1, vi}, {c2i, vi} | i ∈ [t]} (for the cobipartite
case, It is also a clique). Thus, vi ∈ It has degree 2. If V2(f) ⊆ Ct, there are three
ways to Roman-dominate any vi ∈ It, c2i−1, c2i ∈ Ct with a minimal rdf f : f(c2i) = 2,
f(c2i−1) = f(vi) = 0 or f(c2i−1) = 2, f(c2i) = f(vi) = 0 or f(vi) = 1, f(c2i−1) = f(c2i) = 0
(resp. f(c2i−1) = f(c2i) = 1, if V2(f) = ∅). This yields 3t = 3

√
3n many minimal rdfs. There

can be at most 2t = 3
√

2n minimal rdfs f on Gt with V2(f) ⊆ It. Hence, Gt is a graph of
order n = 3t that has 3

√
3n + 3

√
2n − 1 ∈ Ω( 3

√
3n) many minimal rdfs. ◀

Minimal dominating sets in cobipartite graphs where all dominating set vertices belong to
one clique only correspond to minimal rdfs with no vertex assigned 1. So, we can use our rdf
enumeration algorithm to enumerate minimal dominating sets on cobipartite graphs. This
improves on the hitherto best published algorithm from [19] but would be worse than [53].

4 Counting Minimal Roman Dominating Functions on Paths

The following is the main result of this section, devoted to counting.

▶ Proposition 4.1. The number of minimal Roman dominating functions of a path Pn grows
as O∗(cn

RD,P), with cRD,P ≤ 1.6852.

This should be compared with the recursion of Bród [13] that yields the following
asymptotic behavior for the number of minimal dominating sets of a path with n vertices:

▶ Corollary 4.2 (follows from [13]). The number of minimal dominating sets of a path Pn

grows as O∗(cn
D,P), with cD,P ≤ 1.4013.

As every minimal dominating set D ⊆ V of a graph G = (V, E) corresponds to the minimal
rdf f : V → {0, 1, 2} with V2(f) = D and V0(f) = V \ D, it is clear that cD,P ≤ cRD,P.
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6:6 Roman Census

Proof of Proposition 4.1. Let CP,n count the number of minimal rdfs of a Pn. Furthermore,
let CP,2,n and CP,2,n denote the number of minimal rdfs of a Pn where the first vertex
is assigned 2, or where it is decided that the first vertex is not assigned 2, respectively.
Clearly, CP,n = CP,2,n + CP,2,n . Consider Pn = (Vn, En) with Vn = {vi | i ∈ [n]} and
En = {vivi+1 | i ∈ [n − 1]}. Let n ≥ 3 and f : Vn → {0, 1, 2} be a minimal rdf.
If f(v1) = 2, then f(v2) = 0. Also f(v3) ̸= 2, as v1 would not have a private neighbor but
itself for f(v3) = 2. This shows (including trivial initial cases) the left-hand side of Figure 1.
If f(v1) ̸= 2, then we have two subcases: (a) if f(v1) = 1, then we know f(v2) ̸= 2; (b) if
f(v1) = 0, then f(v2) = 2 is enforced. But we know more compared to the initial situation: v2
has already a private neighbor, namely v1. Thus, we have further possibilities for v3: f(v3) = 2
or f(v3) = 0. The first subcase is as before: v3 has no private neighbor. If f(v3) = 0, then
either f(v4) = 2 and v4 has no private neighbor, or f(v4) ̸= 2; hence the recursions on the right-
hand side of Figure 1. Keeping in mind that CP,n−3 = CP,2,n−3 + CP,2,n−3, we see CP,n =
CP,2,n + CP,2,n = CP,2,n−2 + CP,2,n−1 + CP,2,n−2 + CP,n−3 = CP,2,n−1 + CP,n−2 + CP,n−3.
Conversely, CP,n = CP,2,n + CP,2,n = CP,2,n−2 + CP,2,n. Hence,

CP,n = CP,2,n + CP,2,n−2 = CP,2,n−1 + (CP,2,n−2 + CP,2,n−4) + (CP,2,n−3 + CP,2,n−5),

which gives, ignoring the cases for small values of n, the following single recursion:

CP,2,n = CP,2,n−1 + CP,2,n−3 + CP,2,n−4 + CP,2,n−5 ≈ 1.6852n

As CP,n = CP,2,n−2 + CP,2,n, the same asymptotic behavior holds for CP,n. ◀

We will further extend this result towards forests and towards interval graphs in the next
sections, starting with a more general description of such branching algorithms.

5 A General Approach to Branching for Minimal RDFs

In this section, we sketch the general strategy that we apply for enumerating minimal rdfs.
In most cases, the branching will look for a yet undecided vertex v (that we will call active
henceforth) and will decide to label it with 2 in one branch and not to label it with 2 in the
other branch. Now, in the first branch, we can say something about the neighbors of v as
well: according to Theorem 2.1, they cannot be finally labelled with 1. We express this and
similar properties by (always) splitting the vertex set V of the current graph G = (V, E) into:

A: active vertices. In the very beginning of the branching, all vertices are active.
Vi: vertices that cannot be assigned a value of i, i ∈ {1, 2}, due to previous decisions.
V0: set of vertices assigned a value of zero that are not yet dominated.

Sometimes, the branching also considers a vertex from V1, which will be assigned 0 (and
hence is deleted) in the branch when it is not assigned 2. We can also call extendibility tests
before doing the branching in order to achieve polynomial delay; see [2].

Possibly, we can also (temporarily) have (and speak of) vertex sets Vi (with i ∈ {1, 2})
with the meaning that each vertex in Vi is assigned the value i. Our algorithms will preserve
the invariant that a vertex v ∈ V1 must have a neighbor put into V2 (in the original graph),
i.e., N(v)∩V2 ≠ ∅, which is a property that can be exploited in our analysis. Namely, a vertex
is put into V1 only if one of its neighbors has been put into V2. However, notice that once the
effect (mostly implied by Theorem 2.1) of putting a vertex v into Vi on its neighborhood N(v)
has been taken care of, such a vertex v can be deleted from the “current graph” to simplify
the considerations. More precisely, for i ∈ {1, 2}, our algorithms automatically delete vertices
assigned a value of i after making sure the neighbors are placed in V3−i. It could happen
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that the neighbor of a vertex w ∈ V2 is assigned the value 2. Then, w must be assigned 0;
as it is dominated, it can and will be deleted. Similarly, if the neighbor of a vertex w ∈ V1
is assigned the value 1, w must be assigned 0 and is hence deleted. Only finally, it should
be checked if a function f : V → {0, 1, 2} that is constructed during branching is indeed a
minimal rdf, as possibly some vertices assigned 2 do not have a private neighbor. During the
course of our algorithm, whenever we speak of the degree of a vertex (in the current graph)
in the following, we only count in neighbors in A ∪ V1 ∪ V2. In most stages of our algorithms,
we can assume V1 = ∅, as we will explain.

Reduction rules are an important ingredient of any branching algorithm, as also shown
in [28]. We will make use of the following reduction rules. Similar rules appeared in [2].
▶ Reduction Rule 5.1. If v ∈ V2 with N(v) ⊆ V2, then set f(v) = 1 and delete v.
▶ Reduction Rule 5.2. If v ∈ V1 with N(v) ⊆ V1, then set f(v) = 0 and delete v.
▶ Reduction Rule 5.3. If v ∈ A with N(v) ⊆ V1, then put v into V2.

▶ Lemma 5.1. The three presented reduction rules are sound.

In contrast to our approach in Section 3, we will now perform a Measure-and-Conquer
analysis of the branching algorithms that we will describe. As a measure, we take

µ(A, V1, V2, V0) = |A| + ω1 |V1| + ω2 |V2|

for the “current graph” with vertex set partitioned as A ∪ V1 ∪ V2 ∪ V0. Hence, whenever
we measure our graph, we can assume V1 = ∅. In the beginning of the algorithm, A = V

and V1 = V2 = V0 = V1 = ∅. To explain the work of the reduction rules, consider an isolated
vertex (in the very beginning). The reduction rules will first move it into V2 and then into V1
to finally delete it. We will choose the constants ω1, ω2 ∈ [0, 1] to assess the running times of
our algorithms best possible, hence also delivering upper bounds on the number of minimal
rdfs of graphs of order n belonging to a specific graph class.

Concerning the reduction rules, we can easily observe that their application will never
increase the measure. We will list in the following several branching rules (for the different
graph classes) and we always assume that the rules are carried out in the given order.

6 Enumerating Minimal RDFs on Interval Graphs and Forests

Recall that an interval graph can be described as the intersection graph of a collection of
intervals on the real line. This means that the vertices correspond to intervals and that
there is an edge between two such vertices if the intervals have a non-empty intersection. We
assume in the following that G = (V, E) is an interval graph with the interval representation
I = {Iv := [lv, rv]}v∈V , i.e., lv is the left border and rv is the right border of the interval
representing the vertex v. We call v ∈ U leftmost in U ⊆ V if it is a vertex from U that has
the smallest value of ru among all vertices in U . A vertex leftmost in V is simply called
leftmost. Notice that this notion of a leftmost vertex will be used in many places in the rules
exhibited in the following and is not available in the setting of general graphs as investigated
in [3] but relies on the interval graph structure. Our algorithm always branches on the
leftmost vertex. Then, it simply considers all cases. We now present more details.
The reduction rules from Section 5 imply that each vertex in v ∈ A has at least one neighbor
in A ∪ V2. Concerning the measure, we will have ω1 = 1 and set ω2 = ω = 0.57. We will
present the branching rules that constitute the backbone of our algorithm for enumerating
minimal rdfs on interval graphs. We often provide illustrations of the different branching
scenarios. In our figures, we adhere to the following drawing conventions:
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6:8 Roman Census

v

u

...

(a) v is already dominated.

v
...

(b) v ∈ A has neighbors in V2.

Figure 2 Branching Rules 6.1 and 6.2. Here (and elsewhere in these illustrations) we only sketch
important parts of a subgraph, not necessarily covering all cases of the rules within the drawings.

v
...

(a) v ∈ A has neighbors in A.

v

u

...

(b) v ∈ A has neighbors in V2 and in A.

Figure 3 Branching Rules 6.3 and 6.4.

are vertices in A, are vertices in V1, are vertices in A ∪ V1.
are vertices in V2.
are vertices in A ∪ V2, for which the exact set is not further defined.
are vertices in A ∪ V1 ∪ V2, for which the exact set is not further defined.

▶ Branching Rule 6.1. Let v be the leftmost vertex in V1 and let u be the leftmost vertex in
N(v) ∩ (A ∪ V2) and branch as follows: (1) Put v in V0. (2) Put v in V2 and u in V0.

▶ Lemma 6.1. The branching of Branching Rule 6.1 is a complete case distinction. Moreover,
it leads at worst to the following branching vector: (1, 1 + ω) .

One can formulate and prove similar lemmas for the other branching rules that we present;
see [4]. The branching vectors and branching numbers are summarized in Table 1.
▶ Branching Rule 6.2. Let v be the leftmost vertex in (A ∪ V2). If v ∈ A and N(v) ∩ A = ∅
hold, branch as follows: (1) Put v in V2 and N(v) ∩ V2 in V0. (2) Put v in V1.
▶ Branching Rule 6.3. Let v be leftmost in (A ∪ V2). If v ∈ A and |N(v) ∩ A| ≥ 2 hold,
branch as follows: (1) Put v in V2 and all vertices in N(v) ∩ A into V0. (2) Put v in V2.

▶ Branching Rule 6.4. Let v be the leftmost vertex in (A ∪ V2). If v ∈ A, |N(v) ∩ V2| ≥ 1
and |N(v) ∩ A| = 1 with u ∈ N(v) ∩ A hold, then branch: (1) Put v in V2, N(v) ∩ ({u} ∪ V2)
in V0. (2) Put u in V2 and {v} ∪ (N(v) ∩ V2) in V0. (3) Put v in V0 and u in V2.
▶ Branching Rule 6.5. Let v be the leftmost vertex in (A ∪ V2). If N [v] ∩ A = {v, u} with
N [v] ∩ V2 = ∅ and |N(u) ∩ A| ≥ 3, branch as follows:
(1) Put v in V2, u in V0 and N(u) \ {v} in V2. (2) Put v in V2.

▶ Branching Rule 6.6. Let v1 be the leftmost vertex in (A ∪ V2). If N [v1] ∩ A = {v1, v2} with
N [v1] ∩ V2 = ∅, N(v2) ∩ A = {v1, v3} and if there exists a u ∈ N(v3) such that N(u) = {v3},
then branch as follows: (1) Put v1 in V2, v2 in V0 and v3 in V2. (2) Put v1 in V1, v2 in V2.
(3) Put v2 in V2 and v1, v3 in V0 and u in V1. (4) Put v2, v3 in V2 and v1, u in V0.
▶ Branching Rule 6.7. Let v1 be the leftmost vertex in (A∪V2), such that N [v1]∩A = {v1, v2},
with N [v2]∩V2 = ∅ and N(v2)∩ (A∪V2) = {v1, v3}. If there is a u leftmost in A\{v1, v2, v3},
with {v3} ⊊ N(u), then branch as follows: (1) Put v1 in V2 and v2 in V0 and v3 in V2. (2)
Put v1 in V1, v2 in V2. (3) Put v1 in V0, v2 in V2 and v3 in V2. (4) Put v2, v3 in V2 and v1, u

in V0 and N(u) \ {v3} in V2.
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v u
...

(a) v1 ∈ A has only on neighbor in A which
has degree bigger than 2.

v1 v2

v3

u

...

(b) v1, v2, v3 ∈ A is a path and v3 has a leaf neighbor.

Figure 4 Branching Rules 6.5 and 6.6.

v1 v2 v3 u

w1

w2

...

(a) v1, v2, v3 ∈ A is a path and there exists a
u ∈ A ∩ N(v3) with one more neighbor.

v

u1

u2

...

(b) v ∈ V2 is the leftmost vertex.

Figure 5 Rules 6.7 and 6.8.

▶ Branching Rule 6.8. Let v be the leftmost vertex in (A ∪ V2). If v ∈ V2, branch like: (1)
For each u ∈ N(v) ∩ A: u in V2 and N [v] \ {u} into V0. (2) Put v in V1 and N(v) ∩ A in V2.

▶ Theorem 6.2. All minimal rdfs of an interval graph of order n can be enumerated in time
O∗

(√
3n

)
, with polynomial delay and in polynomial space.

This result is optimal, as there are interval graphs that have
√

3n many minimal rdfs, namely
collections of paths on two vertices: x − y can be Roman-dominated by f(x) = f(y) = 1 or
by assigning two to one vertex and zero to the other one, i.e., we get three possibilities per
two vertices. For optimally enumerating minimal ds in interval graphs, see [31].
Recall that a forest is an acyclic undirected graph. A branching scenario that is similar to,
but slightly more complex than, that of interval graphs can be used for forests (see [4]).

▶ Theorem 6.3. A forest of order n has at most
√

3n many minimal rdfs. They can also be
enumerated in time O∗

(√
3n

)
, with polynomial delay and in polynomial space.

Table 1 Branching scenarios on interval graphs.

rule branching vector branching number
6.1 & 6.2 (1, 1 + ω) 1.7314

6.3 (3, 1 − ω) 1.6992
6.4 (2 + ω, 2 + ω, 2 − ω) 1.6829
6.5 (4 − 2ω, 1 − ω) 1.7274
6.6 (3 − ω, 2 − ω, 4, 4) 1.6877
6.7 (3 − ω, 2 − ω, 3, 5 − ω) 1.7315
6.8 (ω + |N(v) ∩ A|, . . . , ω + |N(v) ∩ A|︸ ︷︷ ︸

|N(v)∩A| many times

, ω + (1 − ω) · |N(v) ∩ A|) ≤
√

3 ≤ 1.7321
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Table 2 Branching rules and their vectors and numbers for chordal graphs; worst cases in red.

Rule branching vector branching number
7.1 (1 − ω2, 1 + 3 min(1 − ω1, ω2)) 1.8940
7.2 (1 + ω1 + ω2, 1 − ω2) 1.8014
7.3 (ω1, ω1 + 2ω2) 1.8940
7.4 (ω1, 2 − ω1 + min(1 − ω1, ω2)) 1.8940

7.5 & 7.16 (ω1, 2ω1 + ω2) 1.7915
7.6 (ω1 + ω2, ω1 + ω2) 1.8321

7.7 & 7.14 (1 + ω2, 1 + ω2) never worse than Branching Rule 7.6
7.8 (1 + ω2 + min(1 − ω2, ω1), 1) 1.6181
7.9 (2, 1 − ω2) 1.8471
7.10 (1 + ω2, 1) 1.779
7.11 (1 + ω1 + 2(1 − ω2), ω1) 1.5743
7.12 (1 + 2ω2, 1) never worse than Branching Rule 7.10
7.13 (2 + ω2, 1 − ω2) 1.7249

7.15 & 7.17 (2 − ω1 + ω2, 2 + ω2, 2 − ω2) 1.8005

v

(a) v ∈ A has at least 3 neighbors in A ∪ V2.

v

u

w

...

(b) v ∈ A has one neighbor w ∈ V2 and at least one
neighbor in V1 that has only further neighbors in V1.

Figure 6 Branching Rules 7.1 and 7.2.

This result is again optimal, as there are forests that have
√

3n many minimal rdfs, namely
collections of P2. A similar optimality result was obtained by Rote [50] for enumerating
minimal dominating sets in forests by using different techniques: there are (at most) 13

√
95n

many of them in forests of order n.

7 Enumerating Minimal RDFs in Chordal Graphs

Recall that a graph is chordal if the only induced cycles it might contain have length three.
In this quite technical section, we explain the following result whose optimality is open.

▶ Theorem 7.1. All minimal Roman dominating functions of a chordal graph of order n

can be enumerated with polynomial delay and in polynomial space in time O(1.8940n).

We are following the general approach sketched in Section 5. We adopt as a measure
µ = |A| + ω1 |V1| + ω2 |V2|. To obtain our result, we set ω1 = 0.710134 and ω2 = 0.434799.

Initially, all vertices are in A. Each branching rule assumes the preceding rules have been
applied exhaustively and none of their conditions is applicable anymore. We omit stating
correctness lemmas and lemmas concerning branching vectors but refer to Table 2. These
lemmas are in general quite simple.
▶ Branching Rule 7.1. If v ∈ A has at least three neighbors in A ∪ V2, then we branch as
follows: (1) Set f(v) = 2 and update the neighbors accordingly. (2) Add v to V2.
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v

(a) v ∈ V2 is simplicial with at least 2
neighbors.

v

w

...

(b) v ∈ V2 has exact one neighbor in V1, possibly
more neighbors in V2.

v w

...

(c) v ∈ A is a leaf with a neighbor in V2
which has only further neighbors in V2.

v w

(d) v ∈ A is a leaf with a neighbor w ∈ V2 with at
least one neighbor in A ∪ V1.

Figure 7 Branching Rules 7.5, 7.6, 7.7 and 7.8.

From now on, we can assume that a vertex from A of degree at least 3 has a neighbor in V1.

▶ Branching Rule 7.2. If v ∈ A has at least one neighbor w in V2 and at least one neighbor u

in V1 such that all neighbors of u (but v and possibly w) are in V1, then we branch as follows:
(1) Set f(v) = 2 and update the neighbors accordingly. (2) Add v to V2.

Knowing (by our invariants) that elements of V1 are guaranteed to have neighbors in V2, the
next two branching rules apply to some elements of V1 (illustration can be found in [4]):

▶ Branching Rule 7.3. If v ∈ V1 has at least two neighbors in V2, then we branch as follows:
(1) Set f(v) = 2 and update the neighbors accordingly. (2) Set f(v) = 0 and delete v.

▶ Branching Rule 7.4. If v ∈ V1 has at least three neighbors in A ∪ V2 then we branch as
follows: (1) Set f(v) = 2 and update the neighbors accordingly. (2) Set f(v) = 0 and delete v.

From now on, we discuss branching on simplicial vertices (or sometimes on vertices in the
neighborhood of simplicial vertices as in [5]).

▶ Observation 7.2. Simplicial vertices in V1 can only have neighbors in A ∪ V2 ∪ V1. As we
already considered vertices in V1 with ≥ 3 neighbors in A ∪ V2, in the following branchings, a
vertex in V1 has ≤ 2 neighbors in A ∪ V2, not both of them in V2 due to Branching Rule 7.3.

▶ Branching Rule 7.5. If v ∈ V1 is simplicial and of degree at least two, then branch as follows:
(1) Set f(v) = 2 and update the neighbors accordingly. (2) Set f(v) = 0 and delete v.

▶ Observation 7.3. We note that an isolated pair of adjacent leaves, say v, w, give rise to
a path, which has already been studied. However, assuming previous branching rules have
resulted in such a path, the worst case is when v ∈ V2 and w ∈ V1. To see this, note that if
both v and w are in V2 or both in V1, they would be deleted by Reduction Rules 5.1 or 5.2.

▶ Branching Rule 7.6. If v ∈ V2 is a vertex with exactly one neighbor w ∈ V1 and possibly
more neighbors in V2, then we branch as follows: (1) Set f(w) = 2, f(v) = 0 and update the
neighbors of w accordingly. (2) Set f(w) = 0 and f(v) = 1 and delete v, w.

▶ Branching Rule 7.7. Let v ∈ A with N(v) = {w}, w ∈ V2, with N(w) \ {v} ⊆ V2. Then,
branch as follows: (1) Set f(v) = 2 and f(w) = 0. (2) Set f(v) = f(w) = 1 and delete v, w.
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v

w

...

(a) v ∈ A with exactly one neighbor
in A and possible other neighbors in V1.

v

(b) v ∈ V2 is a leaf with
a neighbor in A.

v w

(c) v ∈ V1 is a leaf with
a neighbor in A.

v

...

(d) v ∈ A is simplicial and
has only neighbors in V2.

v

w

...

(e) v ∈ A is a simplicial vertex of degree
at least 3 and at least one neighbor in A.

Figure 8 Branching Rules 7.9, 7.10,7.11, 7.12 and 7.13.

▶ Branching Rule 7.8. If v ∈ A with N(v) = {w} and w ∈ V2 and if there is at least one
further neighbor of w that belongs to A ∪ V1, then we branch as follows: (1) Set f(v) = 2
and f(w) = 0 and update all neighbors of w to V2 or to V0. (2) Set f(v) = 1 and delete v.

The following rule again deals with a leaf vertex as a special case.

▶ Branching Rule 7.9. Let v ∈ A with N(v) ∩ A = {w} and N(v) \ {w} ⊆ V1. Then, branch:
(1) Set f(v) = 2 and f(w) = 0, update all neighbors of w to V2 or to V0. (2) Add v to V2.

▶ Branching Rule 7.10. If v ∈ V2 with N(v) = {w}, w ∈ A, then we branch as follows: (1)
Set f(w) = 2 and f(v) = 0; update N(w) accordingly. (2) Add w to V2 and set f(v) = 1.

▶ Branching Rule 7.11. If v ∈ V1 with N(v) = {w}, w ∈ A and |N(w) ∩ A| = 2, then branch:
(1) Set f(v) = 2, f(w) = 0 and put the neighbors of w into V2. (2) Set f(v) = 0 and delete v.

▶ Branching Rule 7.12. If v ∈ A is simplicial, of degree ≥ 2 with N(v) ⊂ V2, then branch: (1)
Set f(v) = 2 and assign zero to all its neighbors (delete N [v]). (2) Set f(v) = 1 and delete v.

▶ Branching Rule 7.13. If v ∈ A is simplicial, with |N(v)| ≥ 2 and N(v) ∩ A ̸= ∅, then we
branch as follows: (1) Set f(v) = 2 and update the neighbors accordingly. (2) Add v to V2.

Finally, we consider simplicial vertices in V2 of degree ≥ 2, now covering the remaining cases.

▶ Branching Rule 7.14. Let v ∈ V2 be a simplicial vertex of degree two with a neighbor
w ∈ A. If the other neighbor w′ of v is in V2, then we branch as follows: (1) Set f(w) = 2
and f(v) = f(w′) = 0. (2) Add w to V2, set f(v) = 1 and delete v.

▶ Branching Rule 7.15. If v ∈ V2 is simplicial with two neighbors w, w′ ∈ A, then we branch as
follows: (1) Set f(w) = 2, f(v) = 0 and add w′ to V1. (2) Set f(w′) = 2 and f(w) = f(v) = 0.
(3) Add w and w′ to V2 and set f(v) = 1.

▶ Branching Rule 7.16. If v ∈ V2 is simplicial, of degree at least two, with a neighbor w such
that N [w] \ {v} ⊆ V1, then we branch as follows: (1) Set f(w) = 2, f(v) = 0 and delete N [v].
(2) Set f(w) = 0 and delete it.

▶ Branching Rule 7.17. If v ∈ V2 is simplicial, with neighbors w, w′ ∈ V1 s.t. N [w] ⊂ N [w′],
then branch: (1) Set f(w′) = 2, f(v) = f(w) = 0. (2) Set f(w′) = 0 and delete it.

▶ Lemma 7.4. Our rules cover all possible cases for chordal graphs.
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It remains open whether enumeration on chordal graphs can be improved further, so we
hereby pose it as an open problem, or whether one can obtain a higher lower bound, which
might also be a gap-improvement on general graphs. So far, the best lower bound for general
graphs is a collection of C5’s [2], which is clearly not a chordal graph. The worst-case example
for chordal graphs is a collection of P2’s, see Section 4 and our discussions on interval graphs.
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Abstract
We present quantitative logics with two-step semantics based on the framework of quantitative logics
introduced by Arenas et al. (2020) and the two-step semantics defined in the context of weighted
logics by Gastin & Monmege (2018). We show that some of the fragments of our logics augmented
with a least fixed point operator capture interesting classes of counting problems. Specifically, we
answer an open question in the area of descriptive complexity of counting problems by providing
logical characterisations of two subclasses of #P, namely SpanL and TotP, that play a significant role
in the study of approximable counting problems. Moreover, we define logics that capture FPSPACE
and SpanPSPACE, which are counting versions of PSPACE.
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1 Introduction

We examine counting problems from the viewpoint of descriptive complexity. We present a
quantitative logic with a least fixed point operator and two-step semantics. In the first step,
given a structure, a formula generates a set. In the second step, a quantitative interpretation
results from the cardinality of that set. These semantics allow us to use a uniform approach
to identify logical fragments that capture several counting complexity classes.

In 1979, Valiant introduced the complexity class #P in his seminal paper [32] and used
it to characterise the complexity of computing the permanent function. #P is the class of
functions that count accepting paths of non-deterministic poly-time Turing machines, or,
equivalently, the number of solutions to problems in NP. For example, #Sat is the function
that, on input a formula φ in CNF, returns the number of satisfying assignments of φ. Since
then, counting complexity has played an important role in computational complexity theory.

Descriptive complexity provides characterisations of complexity classes in terms of the
logic needed to express their problems. The Büchi–Elgot–Trakhtenbrot theorem [9, 15, 31]
characterising regular languages in terms of Monadic Second-Order logic and Fagin’s the-
orem [17], which states that Existential Second-Order logic captures NP, are two fundamental
results in this area. Another prominent result was the introduction of the class MaxSNP [29],
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which has played a central role in the study of the hardness of approximation for optimization
problems [6]. Moreover, descriptive complexity is an interesting and active research field with
more recent results in the logical characterisation of the class P [20], dynamic complexity [33],
symmetric linear programs [7], and counting complexity [5, 12], among others.

As in the case of optimization problems, an interesting, long-standing question is the
logical characterisation of approximable counting problems. This is also a meaningful line of
research since very few counting problems can be computed exactly in polynomial time. In
the case of counting problems, the appropriate notion of approximability is the existence
of a fully polynomial randomized approximation scheme (fpras). We denote the class of
approximable counting problems by FPRAS [13, 8].

A counting class is considered robust if it has either natural complete problems or nice
closure properties. Two robust subclasses of #P defined in terms of Turing Machines (TMs),
are of great significance in the quest for a characterisation of approximable counting problems.
The first one is TotP, which contains all self-reducible counting problems whose decision
version is in P. It is noteworthy that TotP is not contained in FPRAS, unless RP = NP [8],
but almost all known approximable counting problems belong to TotP (see e.g. [23, 22, 27]).
The second class, namely SpanL [2], is contained in TotP, and it consists of the functions that
count different outputs of non-deterministic log-space transducers, i.e. TMs with output. To
the best of our knowledge, SpanL is the only counting class so far defined in terms of TMs,
that, despite containing #P-complete problems [2], contains only approximable problems [4].

Our contribution. Our main objective is to provide logical characterisations of the classes
SpanL and TotP, which was posed as an open question in [5]. To this end, we introduce
a variant of the quantitative logics from [5]. Our two-step semantic definition is the key
difference between our approach and that in [5]. The first step is an intermediate semantics,
where the meaning of a formula is given as a set of strings that, intuitively, represent
computation paths. In the second step, a concrete semantics associates with each formula the
size of the set resulting from the intermediate semantics. Gastin et al. follow an analogous
approach for weighted logics in [18], to give a connection to weighted automata.

In Section 4, we introduce logics equipped with least fixed point formulae that capture
“span-classes” of restricted space, namely SpanL and SpanPSPACE, in a natural way (Theor-
ems 4.7 and 4.13). When we consider such classes, we are interested in counting the number
of different outputs produced by a transducer. Semantics that map the set of quantitative
formulae to N interpret every accepting path as a contributing unit. Then, by evaluating the
sum of formulae as the sum of natural numbers, one can sum up the accepting paths of a
TM. On the other hand, when a formula is evaluated as a set of output strings and the sum
of formulae as the union of sets, they can count the number of different TM outputs.

We also consider two classes, namely #PSPACE and TotP, which contain functions that
count the accepting or all paths of TMs with restricted resources, respectively. Using our
alternative semantics, a computation path can be encoded as a sequence of configurations
visited by the TM along that path – in other words, its computation history – so that different
paths are mapped to different sequences. In Section 5, we provide a logical characterisation
of the class of functions that count the number of accepting paths of poly-space TMs, namely
#PSPACE [25] (Theorem 5.3), which coincides with FPSPACE, i.e. the class of poly-space
computable functions. FPSPACE has already been characterised by a logic with a partial
fixed point [5]. Interestingly, the logic we define here uses a least fixed point. In Section 6,
we introduce a quantitative logic that captures TotP (Theorem 6.6). In Section 7, we discuss
how to obtain two least fixed point logics that capture NL and PSPACE by specialising the
semantics. We believe that the semantics we propose in this paper can contribute insight to
the study of counting complexity classes.
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Related work. Arenas et al. and Saluja et al. give logical characterisations of #P in [30, 5].
The authors of [30] substitute existential quantification over second-order variables of ∃SO
with counting second-order variables. The work in [5] incorporated counting into the syntax
of the logic by introducing Quantitative Second-Order logic (QSO), a logic for quantitative
functions, which is based on the framework of weighted logics [11, 18, 1]. There has been
progress in characterising counting classes with respect to their approximability in the
context of descriptive complexity. Saluja et al. defined the classes #Σ1 and #RΣ2 in [30],
and proved that they contain only problems that admit an fpras. A more recent variant
of #Σ1 [12] is also a subclass of FPRAS. The class #RΠH1 [13] is conjectured to contain
problems which are neither as hard to approximate as #Sat nor admit an fpras, and
it was used to classify Boolean #CSP with respect to their approximability [14]. Since
NP-complete problems cannot have approximable counting versions unless RP = NP [13],
Arenas et al. suggested in [5] to examine robust classes of counting problems with an easy
decision version. The papers [5, 8] defined such counting classes and examined them with
respect to the approximability of their problems. There is also work on logics that capture
superclasses of #P, namely SpanP [24] and FPSPACE [25]. Compton and Grädel were the
first to characterise SpanP in [10], followed by Arenas et al. in [5], where they also introduced
a logic that captures FPSPACE. Finally, in [12], Durand et al. introduced a framework for
the descriptive complexity of arithmetic circuit classes.

2 Preliminaries

Turing machines. A (two-tape non-deterministic) Turing machine (TM) N is a quintuple
N = (Q,Σ, δ, q0, qF ), where Q is a set of states, Σ = {0, 1} is the alphabet, δ ⊆ (Q × (Σ ∪
{ })2) × (Q × (Σ ∪ { }) × {L,R}2) is the transition relation, q0 is the initial state, and qF

is the final accepting state. We assume the TM N has a read-only input tape and a work
tape that it can read and write on. L and R in a transition designate that the respective
tape head moves to the left or right. A configuration c of N encodes a snapshot of the
computation of N and is defined in the usual way (see e.g. [28]). We can apply a compatible
transition to a configuration to result in a new configuration in the expected way. W.l.o.g.
we assume that every TM has a binary computation tree: any configuration is compatible
with zero, one or two transitions. In the latter case, we call these transitions, the left and
right non-deterministic transition. A transducer M is a TM with a write-only output tape,
on which a string over Σ is written from left to right. The output of a computation is
valid if M stops in the accepting state. A TM or transducer is called deterministic if at
every configuration at most one transition can be applied. By restricting the time or space
resources of a TM or transducer in the usual way, we can obtain an NPTM (non-deterministic
poly-time TM), an NL-transducer (non-deterministic log-space transducer) etc.

We say that f is computable in polynomial time (resp. logarithmic/polynomial space), if
there is a deterministic polynomial-time (resp. log-space/poly-space) transducer M , such
that for every x ∈ Σ∗, f(x) is the valid output of M on input x. We define the functions
that count paths (resp. outputs) of a TM (resp. transducer) as follows.

▶ Definition 2.1. Let M be a Turing machine and T a transducer. We define functions
accM , totM , spanT : Σ∗ → N ∪ {+∞}, such that for every x ∈ Σ∗:
(a) accM (x) = #(accepting computation paths of M on input x),
(b) totM (x) = #(computation paths of M on input x) − 1,
(c) spanT (x) = #(different valid outputs of T on input x).
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Classes of counting problems. The classes defined in Definition 2.2 are already known,
except for SpanPSPACE, which is presently defined.

▶ Definition 2.2 ([2, 27, 25]). (a) SpanL = {spanM : Σ∗ → N | M is an NL-transducer},
(b) TotP = {totM : Σ∗ → N | M is an NPTM},
(c) FPSPACE = {f : Σ∗ → N | f is computable in polynomial space},
(d) #PSPACE = {accM : Σ∗ → N | M is a non-deterministic poly-space TM}.
(e) SpanPSPACE = {spanM : Σ∗ → N | M is a non-deterministic poly-space transducer}.

▶ Remark 2.3. Note that in the definition of TotP, one is subtracted from the total number
of paths so that a function can take the zero value. Since a TotP function f can be
associated with an NPTM M that has a binary computation tree, f(x) = totM (x) =
#(branchings of M on input x), where a branching is an occurrence of a configuration on
the computation tree, where M makes a non-deterministic choice.
▶ Remark 2.4. For the class SpanL, note that, by the pigeonhole principle, an NL-transducer
has infinitely many accepting paths if and only if the length of its accepting runs is not
bounded by a polynomial. It then makes sense to attach a clock that imposes a polynomial-
time bound to each NLTM, as suggested in [2]. In this way, every NLTM is also an NPTM
with a finite number of computation paths. Similarly, we assume that a clock that imposes
an exponential-time bound can be attached to a non-deterministic poly-space TM.

▶ Proposition 2.5 ([2, 27, 25]). SpanL ⊆ TotP ⊆ #P ⊊ FPSPACE = #PSPACE ⊆
SpanPSPACE. The first two inclusions are proper unless P = NP.

The decision version of a function f : Σ∗ → N is {x | f(x) > 0}. We say that a function
f : Σ∗ → N is self-reducible if its value on an instance can be recursively computed by
evaluating f on a polynomial number of smaller instances. A formal definition of self-
reducibility can be found in [3]. TotP can be characterised as the closure under parsimonious
reductions of the class of self-reducible #P functions whose decision version is in P [27].

▶ Example 2.6. Consider the problem of counting independent sets of all sizes in a graph G,
denoted by #IS. Let M be the NPTM that makes the following computation: given Gi−1
and vi, . . . , vn, M non-deterministically chooses to add vertex vi to the independent set or
not, and defines Gi to be either Gi−1 where vi, all its neighbours, and all edges adjacent
to them have been removed, or Gi−1 where vi and its adjacent edges have been removed,
respectively. Then, M recursively continues on Gi and vi+1, . . . , vn. Consider M ′ that on
input G = ⟨V = {v1, . . . , vn}, E⟩ simulates M on G and v1, . . . , vn, and has also an additional
dummy path. Then, #IS(G) = #(paths of M ′ on input G) − 1.

Logics. A relational vocabulary σ = {Rk1
1 , ...,Rkm

m } is a finite set of relation symbols.
Each relation symbol Ri has a positive integer ki as its designated arity. A finite structure
A = ⟨A,R1, ..., Rm⟩ over σ consists of a finite set A, which is called the universe of A and
relations R1,...,Rm of arities k1, .., km on A, which are interpretations of the corresponding
relation symbols. We may write that arity(Ri) = ki or that Ri is a ki-ary relation. The size of
the structure, denoted by |A| or |A|, is the size of its universe. A finite ordered structure is a
finite structure with an extra relation ≤, which is interpreted as a total order on the elements
of the universe. In sequel, A denotes a finite ordered structure unless otherwise specified.
For convenience we use letters B,C,R, S, and so on, to denote both relation symbols and
their interpretations. For example, the vocabulary of binary strings is σbs = {≤2, B1}.
Binary string x = 00101 corresponds to the structure A = ⟨{0, 1, ..., 4},≤, B = {2, 4}⟩, where
relation B represents the positions where x is one. Moreover, |A| = 5.
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First-order formulae over σ are defined in the usual way, using first-order variables that
range over the universe of a structure, the relation symbols from σ, equality, the logical
operators ∧,∨,¬,→, and first-order quantifiers ∀x and ∃x. For convenience and clarity, we
omit function and constant symbols from the syntax of FO, but we include ⊤, which is the
logical constant for truth. A first-order formula with no free variable occurrences is called a
first-order sentence, where an occurrence of x is free if it does not lie in the scope of either
∃x or ∀x. In addition to the syntax of FO, SO includes and quantifies over second-order
variables that range over relations, are denoted by uppercase letters, and each of them has
an arity. SO includes formulae of the form X(x1, . . . , xk), where X is a second-order variable
of arity k, and x1, . . . , xk are first-order variables. The fragment of SO consisting only of
existential second-order formulae is called existential second-order logic and is abbreviated
as ∃SO. We use the usual A, v, V |= φ interpretation of an SO-formula φ, given a structure
A and first- and second-order assignments v and V , respectively. If φ has no free first- or
second-order variables, v or V , respectively, can be omitted. We refer the reader to [16] for a
more extensive presentation of FO and SO.

The logical symbols of Quantitative Second-Order logic, denoted by QSO, include all
the logical symbols of SO and the quantitative quantifiers Σ and Π for sum and product
quantification, respectively. The arity of a second-order variable X is denoted by arity(X).
When we write logic Λ over σ, we mean the set of Λ formulae over σ. The set of QSO formulae
over σ are defined by the following grammar:

α ::= φ | s | (α+ α) | (α · α) | Σx.α | Πx.α | ΣX.α | ΠX.α (1)

where φ is an SO formula over σ, s ∈ N, x is a first-order and X a second-order variable. A
formula α in QSO is a sentence if every variable occurrence in α is bound by a first-order,
second-order, or quantitative quantifier. The evaluation of a QSO formula α is a function
JαK that on input A, v, and V returns a number in N. We refer the reader to [5, p. 5] for
the definition of the semantics of QSO formulae. When α is a sentence, JαK(A) is used to
denote JαK(A, v, V ) for any v, V . We say that f ∈ QSO if there exists α ∈ QSO such that
f(enc(A)) = JαK(A), for every A. Note that QSO is a set of logical formulae, whereas QSO is
a class of functions. For every logic Λ, we can define a corresponding class of functions as
above, and we denote it by Λ.

▶ Definition 2.7. A logic Λ captures a complexity class C, and equivalently C = Λ, over finite
ordered structures over σ, if the following two conditions hold:
1. For every f ∈ C, there is a sentence α ∈ Λ, such that f(enc(A)) = JαK(A) for every finite

ordered structure A over σ.
2. For every sentence α ∈ Λ, there is a function f ∈ C, such that JαK(A) = f(enc(A)) for

every finite ordered structure A over σ.
Moreover, Λ captures C over finite ordered structures if Λ captures C over finite ordered
structures over σ, for every σ.

For example, ΣQSO(FO) = #P over finite ordered structures [5], where ΣQSO(FO) is the
set of QSO formulae that Π is not allowed and φ in (1) is restricted to be an FO formula.

Triples (A, v, V ) can be encoded in space polynomial in |A| using a standard mapping
from finite ordered structures to strings over {0, 1} (see for example [26, Chapter 6]). We
assume that a TM M takes as input the encoding of A (or (A, v, V )), denoted by enc(A)
(resp. enc(A, v, V )), even if we write M(A) (resp. M(A, v, V )) for the sake of brevity.

In all cases that we consider in this paper, the initial configuration of a TM is FO
definable [21] and therefore, to prove that Λ captures C, it suffices to verify conditions 1
and 2 in Definition 2.7 for f(enc(A, v, V )) = JαK(A, v, V ), where v, V encode the initial
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Expl[x](A, v, V ) = {v(x)}
Expl[X](A, v, V ) = {V (X)}

Expl[φ](A, v, V ) =
{

{ε}, if A, v, V |= φ

∅, otherwise

Expl[α1 + α2](A, v, V ) = Expl[α1](A, v, V ) ∪ Expl[α2](A, v, V )
Expl[α1 · α2](A, v, V ) = Expl[α1](A, v, V ) ◦ Expl[α2](A, v, V )

Expl[Σy.α](A, v, V ) =
⋃

a∈A

Expl[α](A, v[a/y], V )

Expl[ΣY.α](A, v, V ) =
⋃

B⊆Ak

Expl[α](A, v, V [B/Y ])

Table 1 Intermediate semantics of ΣSO(Λ) formulae.

configuration of a TM that corresponds to f . Finally, we often use that (a) A, v, V |= φ can
be decided in deterministic logarithmic space, if φ is an FO formula, and in deterministic
polynomial space, if φ ∈ SO, for every finite structure A [21], and (b) given A, the lexicographic
order on k-tuples over A induced by ≤ is FO expressible and is also denoted by ≤.

3 The quantitative logic ΣSO(Λ)

The logic ΣSO(Λ) over σ, where Λ ∈ {FO, SO}, is defined by the following grammar:

α ::= x | X | φ | (α+ α) | (α · α) | Σy.α | ΣY.α (2)

where φ is in Λ, x, y are first-order variables, and X, Y are second-order variables. The
syntax of logic ΣSO(Λ) is the same as that of ΣQSO(Λ), where a formula can also be a first-
and second-order variable, but not a number s ∈ N. ΣFO(Λ) is the fragment of ΣSO(Λ) in
which Σ is not allowed over second-order variables. We say that a ΣSO(Λ) formula is x-free
(resp. X-free) if it is given by grammar (2) without x (resp. X).

▶ Notation Remark 3.1. We denote X · φ(X) (or φ(X) ·X) by φ(X).

We define the semantics of the logic ΣSO(Λ) in two phases: a formula α is mapped to a
set of strings. Then, the semantic interpretation of formula α is defined to be the size of
this set. Formally, JαK(A, v, V ) = |Expl[α](A, v, V )|, where Expl[α](A, v, V ) is recursively
defined in Table 1. Expl stands for Explicit and we call Expl[α](A, v, V ) the intermediate
semantic interpretation of formula α. Note that ∪ and ◦ between sets of strings have replaced
sum and multiplication of natural numbers, respectively, in the semantics of QSO. S1 ∪ S2 is
the union of S1 and S2, whereas S1 ◦ S2 is concatenation of sets of strings lifted from the
concatenation operation on strings, that is S1 ◦ S2 = {x ◦ y | x ∈ S1, y ∈ S2}. For example,
{ε, a1, a2a3} ◦ {ε, a2a3} = {ε, a2a3, a1, a1a2a3, a2a3a2a3}, where ε denotes the empty string.
In specific, if one of S1, S2 is ∅, then S1 ◦ S2 = ∅.

▶ Notation Remark 3.2. For a finite set K, K∗ :=
⋃

n∈NK
n denotes the set of strings over K,

P(K∗) the powerset of K∗, and ε the empty string. For an A over σ, Rk := P(Ak) denotes
the set of relations on A of arity k.
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▶ Remark 3.3. Note that for a formula α ∈ ΣSO(Λ) and s ∈ Expl[α](A, v, V ), we have that
s ∈ (A ∪

⋃
i∈N Ri)∗. In this paper, we consider logics that are either X-free or x-free,

and so for a formula α in some of these logics and s ∈ Expl[α](A, v, V ), either s ∈ A∗ or
s ∈ (

⋃
i∈N Ri)∗, respectively.

The length of α, denoted by |α|, is defined as the length of α as a string of symbols, boolean
formulae and sum operators are treated as one symbol. The length of s ∈ A∗ ∪ (

⋃
i∈N Ri)∗,

denoted by |s|, is the standard length of strings. It is not hard to define an encoding enc(s)
of s, such that |enc(s)| ≤ |s| · log |A|, if s ∈ A∗, and |enc(s)| ≤ |s| · |A|k, if s ∈ (

⋃
1≤i≤k Ri)∗.

▶ Lemma 3.4. Let α be a ΣSO(Λ) formula over σ. For every finite ordered structure A over σ,
v, and V , and every s ∈ Expl[α](A, v, V ), |s| ≤ |α|. Moreover, (a) if α is an X-free formula,
then |enc(s)| ≤ |α| · log |A|, and (b) if α is an x-free formula, then |enc(s)| ≤ |α| · poly(|A|).

3.1 The logic ΣSO(Λ) with recursion
By adding a function symbol f to the syntax of ΣSO(Λ), we obtain formulae defined below:

β ::= x | X | φ | f(x1, . . . , xk) | (β + β) | (β · β) | Σy.β | ΣY.β (3)

where f is a first-order function symbol with arity(f) = k, and x1, . . . , xk are first-order
variables, also denoted by x⃗. In like manner, we can add a second-order function symbol to
ΣSO(Λ). In particular, we consider only second-order function symbols of arity 1, i.e. of the
form f(X), where X is a second-order variable. A ΣSO(Λ) formula β(X, f) with a second-order
function symbol f(Y ) is called arity-consistent when it has at most one free second-order
variable X, where X has the same arity as Y . We fix an arity k for the first-order function
symbol, or the argument of the second-order function symbol.

To extend the semantics of ΣSO(Λ) to the case of formula f(x1, . . . , xk), we say that F is a
first-order function assignment for A, if F (f) : Ak → P(A∗). In the case of formula f(X), we
say that F is a second-order function assignment for A, if F (f) : Rk → P(K∗), where K can
be either A or

⋃
i∈N Ri. We define FOF to be the set of functions h : Ak → P(A∗), SOF the

set of functions h : Rk → P(A∗), and RSOF the set of functions h : Rk → P((
⋃

i∈N Ri)∗).
Given v and V , we define Expl[f(x⃗)](A, v, V, F ) := F (f)(v(x⃗)) and Jf(x⃗)K(A, v, V, F ) :=

|F (f)(v(x⃗))|. The semantics of f(X) are defined in an analogous way. Now we can add to
the syntax of ΣSO(Λ), formulae of the form [lfpfβ](x⃗) (resp. [lfpfβ](X)), where β is a (resp.
arity-consistent) ΣSO(Λ) formula equipped with a first-order (resp. second-order) function
symbol f . To define the semantics of [lfpf β](x⃗), we first define two lattices. The first lattice
is (P(A∗),⊆), i.e. it contains all sets of strings over A. The bottom element is ∅ and the
top element is the set A∗. The second lattice is (FOF ,≤F ): for g, h ∈ FOF , g ≤F h iff
g(x⃗) ⊆ h(x⃗), for every x⃗. The bottom element is g0 which takes the value ∅ for every x⃗, and
the top element is gmax, which is equal to A∗ for every x⃗. For an infinite increasing sequence
of functions h1 ≤F h2 ≤F h3 ≤F · · · from FOF , we define limn→+∞ hn := h, where for
every x ∈ Ak, h(x) =

⋃
n∈N hn(x).

We interpret β(x⃗, f) as an operator Tβ on FOF . For every h ∈ FOF and a⃗ ∈ Ak,
Tβ(h)(⃗a) = Expl[β(x⃗, f)](A, v, V, F ), where v is a first-order assignment for A such that
v(x⃗) = a⃗ and F is a first-order function assignment for A such that F (f) = h. The following
propositions state that Tβ is monotone on (FOF ,≤F ).

▶ Proposition 3.5. Let f be a first-order function symbol with arity(f) = k and β be a
formula over σ defined by grammar (3), such that if β contains a function symbol, then this
function symbol is f . Let also A be a finite ordered structure over σ, h, g : Ak → P(A∗) and
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H,G be function assignments such that H(f) = h and G(f) = g. If h ≤F g, then for every
first- and second-order assignments v and V , respectively:

Expl[β](A, v, V,H) ⊆ Expl[β](A, v, V,G).

▶ Proposition 3.6. For every formula [lfpf β](x⃗), where β is in ΣSO(Λ) equipped with a
first-order function symbol, operator Tβ is monotone on the complete lattice (FOF ,≤F ). In
other words, for every h, g ∈ FOF , if h ≤F g, then Tβ(h) ≤F Tβ(g).

Thus, by the Knaster–Tarski theorem, Tβ has a least fixed point. To compute the least
fixed point of Tβ , let us consider the sequence of functions {hi}i∈N, hi : Ak → P

(
A∗), where

h0(⃗a) = ∅ for every a⃗ ∈ Ak, and hi+1 := Tβ(hi), for every i ∈ N. We define lfp(Tβ) :=
limn→+∞ hn. Finally, Expl[ [lfpfβ](x⃗) ](A, v, V ) := lfp(Tβ)(v(x⃗)) = limn→+∞ hn(v(x⃗)) and
J [lfpfβ](x⃗) K(A, v, V ) = | limn→+∞ hn(v(x⃗))|. The semantics of [lfpfβ](X) are defined in a
completely analogous way. Examples 4.3, 4.8, and 4.9 make clear how formulae of the form
[lfpfβ](x⃗) are interpreted.

The logics we define below are fragments of ΣSO(SO) with recursion. Given a formula
[lfpfβ](x⃗) or [lfpfβ](X) in any of them, operator Tβ is monotone on the complete lattice
(F ,≤F ), where F can be FOF , SOF , or RSOF .
▶ Remark 3.7. The name of a logic with recursion will be of the form RL1ΣL2(L3), where
L1 ∈ {fo, so} indicates that function symbol f is over first- or second-order variables,
respectively, L2 ∈ {fo, so} means that quantifier Σ is over first- or second-order variables,
respectively, and L3 ∈ {FO, SO} means that φ in (2) is in L3.

4 Logics that capture SpanL and SpanPSPACE

▶ Definition 4.1. RfoΣfo(FO) over σ is the set of formulae [lfpfβ](x⃗), where β is defined by:

β ::= α | f(x1, . . . , xk) | (β + β) | (α · β) | Σy.β (4)

where α is an X-free ΣFO(FO) formula over σ, x1, . . . , xk, y are first-order variables, and f is
a first-order function symbol.

▶ Remark 4.2. Notice that for a formula [lfpfβ](x⃗) ∈ RfoΣfo(FO), it may be the case that
J [lfpfβ](x⃗) K(A, v, V ) = +∞ analogously to the fact that the computation of an NLTM may
contain cycles. For the sake of simplicity, we assume that an NL-transducer M can have
infinitely many accepting paths and SpanL contains functions from Σ∗ to N ∪ {+∞}. To be
in accordance with the literature, we can adjust the syntax of RfoΣfo(FO) formulae to express
the operation of the clock attached to NLTMs as discussed in Remark 2.4.

Let N be an NL-transducer and A be over σ with |A| = n. The number of different
configurations of N is at most nk − 1 for some k ∈ N. To encode them, we use k-tuples over
A. To encode the output symbol, if any, that is produced at some configuration, it suffices to
use two distinct elements of A, since the output alphabet is Σ = {0, 1}; we use the minimum
element and the successor of the minimum element, which are both FO expressible. Below, we
informally write φ(c) to denote φ(x) interpreted in A where first-order variable x is assigned
c ∈ A. Formula [lfpf spanL](x⃗) counts the different valid outputs of N , where spanL(x⃗, f) is:

acc(x⃗) + Σy⃗.Σz.
(
output0(x⃗, y⃗, z) + output1(x⃗, y⃗, z) + next0(x⃗, y⃗) + next1(x⃗, y⃗)

)
· f(y⃗).
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Algorithm 1 NLTM MSpsub
β .

Input: γ,A, v, V , where γ is a subformula of β
1 if γ == α has no function symbol then simulate the transducer from

Proposition 4.5
2 if γ == f(y⃗) then simulate MSpsub

β (β,A, v[v(y⃗)/x⃗], V )
3 if γ == γ1 + γ2 then
4 non-deterministically choose γ′ ∈ {γ1, γ2}
5 simulate MSpsub

β (γ′,A, v, V )
6 if γ == α · γ′ then
7 for s ∈ A∗ where |s| ≤ |α| do
8 if s ∈ Expl[α](A, v, V ) then simulate MSpsub

β (γ′,A, v, V )
9 if γ ==

∑
y.γ′ then

10 non-deterministically choose a ∈ A

11 simulate MSpsub
β (γ′,A, v[a/y], V )

Interpretations of z and x⃗, y⃗ encode a bit of the output, and configurations of N , re-
spectively. Formulae nexti(c⃗, c⃗′), i = 0, 1, say that if N is in configuration c⃗ and makes
non-deterministic choice i, then it is in c⃗′, and no output symbol is produced. Formulae
outputi(c⃗, c⃗′, b), i = 0, 1, state that N makes choice i and so it transitions from configuration
c⃗ to c⃗′ and writes the bit encoded by b on the next output cell. When N is in some c⃗ that
only a deterministic transition can be made, then exactly one of nexti(c⃗, c⃗′), outputi(c⃗, c⃗′, b),
i = 0, 1, is satisfied in A for a c⃗′ ∈ Ak (and a b ∈ A). Formula acc(c⃗) states that c⃗ is the
accepting configuration. All aforementioned formulae can be expressed in FO. Note that
for any A, v, and V , Expl[ [lfpf spanL](x⃗) ](A, v, V ) is a set of strings in A∗ that encode the
outputs of N .

c⃗init

c⃗1/0

c⃗3/1 c⃗4

c⃗5/0

c⃗rej

c⃗6/1 c⃗7/1

c⃗acc c⃗acc

Figure 1 The computation tree of a transducer N on some input enc(A). c⃗/b represents that N enters
configuration encoded by c⃗ and writes bit b on the output tape.

▶ Example 4.3. Consider the computation tree shown in Figure 1 which corresponds to
a transducer N that on input enc(A) has three outputs, and spanN (enc(A)) = 1. Let 0,1
denote the minimum and the successor of the minimum element of A, respectively. Then,

Expl[ [lfpf spanL](x⃗) ](A, v[⃗cacc/x⃗]) = {ε}, and
Expl[ [lfpf spanL](x⃗) ](A, v[⃗crej/x⃗]) = ∅,
Expl[ [lfpf spanL](x⃗) ](A, v[⃗c1/x⃗]) = ∅∪{1}◦f(c⃗3)∪f(c⃗4) = {1}◦ (0◦∅)∪{1}◦{ε} = {1},
Expl[ [lfpf spanL](x⃗) ](A, v[⃗cinit/x⃗]) = ∅ ∪ {0} ◦ f(c⃗1) = {01}.

Intuitively, the intermediate interpretation of [lfpf spanL](c⃗) is the set of the different valid
outputs N produces during its computation starting from the configuration encoded by c⃗.
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▶ Proposition 4.4. Given an NL-transducer N , spanN (enc(A)) = J [lfpf spanL](x⃗) K(A, v, V ),
for every A, v, and V , such that v(x⃗) encodes the starting configuration of N .

To prove that RfoΣfo(FO) ⊆ SpanL, first note that X-free ΣFO(FO) formulae can be easily
evaluated by NLTMs as Proposition 4.5 states.

▶ Proposition 4.5. For every X-free ΣFO(FO) formula α over σ, there is an NL-transducer
M , that on input enc(A, v, V ) has exactly one accepting run for each s ∈ Expl[α](A, v, V ),
on which it outputs enc(s), and no other accepting runs.

▶ Proposition 4.6. Let [lfpfβ](x⃗) be an RfoΣfo(FO) formula over σ. There is an NL-transducer
Mβ, such that spanMβ

(enc(A, v, V )) = J [lfpfβ](x⃗) K(A, v, V ), for every A, v and V .

Proof. Let [lfpfβ](x⃗) ∈ RfoΣfo(FO). The NL-transducer Mβ(A, v, V ) calls MSpsub
β (β,A, v, V )

from Algorithm 1. If β does not contain a function symbol, then J [lfpfβ](x⃗) K(A, v, V ) =
JβK(A, v, V ). By Proposition 4.5, there is an NL-transducer M , such that
spanM (enc(A, v, V )) = JβK(A, v, V ). In this case, let Mβ be M . Similarly, for any sub-
formula α of β without function symbols, Mα is the NL-transducer associated with α from
Proposition 4.5. ◀

▶ Theorem 4.7. RfoΣfo(FO) = SpanL over finite ordered structures.

The following are examples of specific SpanL problems expressed in RfoΣfo(FO).

▶ Example 4.8. Let G = ⟨V,E,≤⟩ represent a directed graph with a source. Then,
J [lfpfβ](x) K(G, v, V ) is the number of sinks in the graph, where β(x, f) := ∀y¬E(x, y) ·
x+ Σy.E(x, y) · f(y), and v(x) is the source of the graph.

▶ Example 4.9. Let N = ⟨Q = {q0, . . . , qn−1, ℓ0, . . . , ℓm}, L,E0, E1,≤⟩ represent an NFA
N over the input alphabet {0, 1}, together with 1m; Q is the universe, L = {ℓ0, . . . , ℓm}
is a relation that distinguishes states of N from the encoding of 1m, and Ei, i = 0, 1,
is the set of i-transitions of N . Let β(x, y, f) := acc(x) + (y < max) · Σx′.Σy′.(y′ =
y+ 1) ·

(
E0(x, x′) · min0 +E1(x, x′) · min1

)
· f(x′, y′), where min0 and min1, and max express

the minimum, the successor of the minimum, and the maximum element of Q, respectively,
acc(x) expresses that x is an accepting state of N , and y′ = y + 1 is defined so that y′ is the
successor of y. Then, J [lfpfβ](x, y) K(N , v, V ) is the number of strings of length at most m
accepted by N , where v(x) encodes the starting state of N , and v(y) encodes the minimum
element of L. This problem is SpanL-complete and was defined in [2] as the census function
of an NFA.

We now introduce the logic RsoΣso(SO), which captures SpanPSPACE.

▶ Definition 4.10. RsoΣso(SO) over σ is the set of formulae [lfpfβ](X), where β is defined by:

β ::= α | f(X) | (β + β) | (α · β) | Σy.β | ΣY.β (5)

where α is an X-free ΣSO(SO) formula over σ, y is a first-order variable, X,Y are second-order
variables, and f is a second-order function symbol.

▶ Remark 4.11. Relations R1, . . . , Rm on A with arity(Rj) = k, 1 ≤ j ≤ m, can be encoded
by one relation R on A of arity k + ⌈logm⌉, by defining R(⃗i, a⃗) iff Ri(⃗a), for every a⃗ ∈ Ak,
where i⃗ is the i-th smallest ⌈logm⌉-tuple over A. We use this observation to show that a
second-order function symbol f with arity(f) = 1, suffices to capture SpanPSPACE.
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▶ Remark 4.12. To avoid formulae [lfpfβ](X) ∈ RsoΣso(SO) with J [lfpfβ](X) K(A, v, V ) = +∞,
we can adjust the syntax of RsoΣso(SO) similarly to Remark 4.2. The only difference is that
now the clock imposes an exponential-time bound.

Let A over σ with |A| = n and M = (Q,Σ, δ, q0, qF ) be a non-deterministic poly-space
transducer that uses nd − 1 space. Let also k = max{d, ⌈log |Q|⌉}. We can use k-tuples over
A, to encode nd − 1 tape cells and |Q| states. W.l.o.g. assume that M has a single tape. A
configuration of M can be encoded by the tuple of k-ary relations C⃗ = (T,E, P,Q): T (c⃗)
iff cell c encoded by c⃗ contains symbol 1 (tape contents), E(c⃗) denotes that all cells greater
than c contain the symbol (end of zeros and ones on the tape), P (c⃗) indicates that the
head is on cell c (head’s position), and Q(c⃗) means that N is in state q that is encoded by
c⃗. As in the case of SpanL, a bit that M outputs at some time step is encoded using two
elements of A. Formulae Nexti(X⃗, Y⃗ ), Outputi(X⃗, Y⃗ , x), i = 0, 1, and Acc(X⃗) express similar
facts for the computation of M as the respective formulae defined for SpanL. They can be
expressed in FO as the formulae that describe the computation of an NPTM in the proof
of Fagin’s theorem [21]. By Remark 4.11, the aforementioned formulae can be replaced by
first-order formulae such that a unique relation is used to encode the configuration of M .
Therefore, we abuse notation and write Nexti(X,Y ), Outputi(X,Y, x), and Acc(X).

▶ Theorem 4.13. RsoΣso(SO) = SpanPSPACE over finite ordered structures.

Proof. The proof of RsoΣso(SO) ⊆ SpanPSPACE is analogous to that of Proposition 4.6.
For the inclusion SpanPSPACE ⊆ RsoΣso(SO), given a non-deterministic poly-space trans-
ducer M , consider the formula spanpspace(X, f) := Acc(X) + ΣY.Σx.

(
Output0(X,Y, x) +

Output1(X,Y, x)+Next0(X,Y )+Next1(X,Y )
)
·f(Y ). Then, J [lfpf spanpspace](X) K(A, v, V ) =

spanM (enc(A)), for every A, v, V , such that V (X) encodes the initial configuration of M . ◀

5 Rr
soΣso(SO) captures #PSPACE

In this section, we prove that the logic ΣSO(SO) equipped with a second-order function
symbol and a restricted form of recursion captures #PSPACE over finite ordered structures.
Superscript r in the name of the logic stands for the fact that recursion is restricted.

▶ Definition 5.1. Rr
soΣso(SO) over σ is the set of formulae [lfpf β](X), where β is defined by:

β ::= α | (α+ β) | ΣY.φ(X,Y ) · f(Y ) (6)

where X,Y are second-order variables, φ is an SO formula over σ, α is an x-free ΣSO(SO)
formula over σ, and f is a second-order function symbol.

▶ Remark 5.2. In the case of #PSPACE, we can attach a clock to non-deterministic poly-
space TMs, and restrict the syntax of Rr

soΣso(SO) accordingly, as in Section 4. An alternative
approach is the following: it can be proven that for every β ∈ Rr

soΣso(SO), JβK is in FPSPACE
in the sense that there is a deterministic poly-space TM N such that on input enc(A, v, V )
outputs JβK(A, v, V ), if JβK(A, v, V ) ∈ N, and the symbol ⊥, if JβK(A, v, V ) = +∞. By
Proposition 2.5, Rr

soΣso(SO) ⊆ #PSPACE, where we consider a slightly different kind of a
non-deterministic poly-space TM which on input x, if f(x) = +∞, it outputs ⊥ and halts,
and if f(x) = m ∈ N, it generates m accepting paths.

▶ Theorem 5.3. Rr
soΣso(SO) = #PSPACE over finite ordered structures.
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6 Rr
soΣ

r
so(FO) captures TotP

We define a fragment of ΣSO(FO) with recursion, which we call Rr
soΣr

so(FO). Definitions 6.1
and 6.2 will be used to restrict the use of Σ operator.

▶ Definition 6.1. We say that a formula φ(Y ) syntactically defines Y if φ(Y ) is of the form
∀y⃗Y (y⃗) ↔ ψ(y⃗), for some formula ψ.

▶ Definition 6.2. We say that a formula φ(X,Y ) (a) extends X to Y if it is of the
form ∀y⃗Y (y⃗) ↔ X(y⃗) ∨ ψ(X, y⃗), and (b) strictly extends X to Y if it is of the form
∀y⃗

(
Y (y⃗) ↔ X(y⃗)∨ψ(X, y⃗)

)
∧∃y⃗

(
¬X(y⃗)∧Y (y⃗)

)
, for some formula ψ and arity(X) = arity(Y ).

▶ Notation Remark 6.3. (a) Y := φ · α denotes ΣY.φ(Y ) · α, where φ syntactically defines Y ,
and (b) Y := φ(X) · f(Y ) denotes ΣY.φ(X,Y ) · Y · f(Y ), where φ (strictly) extends X to Y .

▶ Definition 6.4.
(a) The ΣSOr(FO) formulae over σ are the x-free ΣSO(FO) formulae with the restriction that

the second-order sum operator only appears as Y := φ · α, φ ∈ FO.
(b) Rr

soΣr
so(FO) over σ is the set of formulae [lfpf β](X), where β is defined by:

β ::= α | Y := ψ(X) · f(Y ) | α+ β | φ · β | β + β + ⊤ | φ · β + ¬φ · β (7)

where α is a ΣSOr(FO) formula, φ,ψ ∈ FO, ψ strictly extends X to Y , and f is a
second-order function symbol.

To express the generic TotP problem in Rr
soΣr

so(FO), we first describe how an NPTM run
can be encoded. Let A be of size n and N = (Q,Σ, δ, q0, qF ) be an NPTM that uses at most
nd − 1 time. W.l.o.g. assume that N has a single tape. We define Γ = Σ ∪ { } = {0, 1, },
ΓQ = Γ × Q, and k = max{d, ⌈log(3 + 3|Q|)⌉}. To encode cells, time steps, and symbols in
Γ ∪ ΓQ, we use k-tuples over A. Let S be a relation of arity 3k, such that, if r⃗ represents
the symbol γ ∈ Γ, then S(c⃗, t⃗, r⃗) signifies that cell c⃗ contains symbol γ at time step t⃗. If r⃗
represents the symbol-state pair (γ, q) ∈ ΓQ, then S(c⃗, t⃗, r⃗) signifies that c⃗ contains symbol γ,
the head is at cell c⃗, and N is in state q at time step t⃗. We use the FO expressible formulae
x⃗+ 1 and min to describe the successor of x⃗ and the minimum k-tuple, respectively.

We say that a relation S of arity 3k on A describes a partial run c0c1 · · · cm of N , when
(a) there is some t⃗ ∈ Ak, such that for every t⃗′ ≤ t⃗, there are c⃗, r⃗ ∈ Ak, such that S(c⃗, t⃗′, r⃗),
and for every t⃗′ > t⃗ and c⃗, r⃗ ∈ Ak, not S(c⃗, t⃗′, r⃗), (b) S(−,min,−) describes the encoding
of the starting configuration c0, and (c) if S(−, t⃗,−) describes the encoding of ci, then
S(−, t⃗+ 1,−) either describes the encoding of ci+1 or is empty. We say that formula φ(c⃗, t⃗, r⃗)
describes a partial run c0c1 · · · cm, when φ defines in A a relation that does so. We use the
standard notion of definability, where φ(x⃗) defines R in A, if for every a⃗ ∈ Ak, R(⃗a) iff
A, v[⃗a/x⃗] |= φ(x⃗). For example, let S0 be a relation of arity 3k that describes the beginning
of a run by N on enc(A). S0 can be defined in FO by y⃗ = min ∧φc0(x⃗, z⃗), where φc0 encodes
the starting configuration, as, for instance, in [21].

Below we define formula tot(X, f), the least fixed point of which applied on S0 is equal
to the number of branchings of N on input enc(A):

branch(X)
( ∑

i=0,1
Y := ndeti(X) · f(Y ) + ⊤

)
+ ¬branch(X)

(
nfinal(X) · Y := det(X) · f(Y )

)
.

Let X be interpreted as a relation Sp that describes a partial run c0 . . . cm of N . Formula
branch checks whether the current configuration cm creates a branching. Formulae ndeti,
i = 0, 1, and det extend Sp to a relation Snew, that describes the run c0 . . . cmcm+1, where
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cm+1 is the configuration that N reaches from cm by making non-deterministic choice i or a
deterministic transition, respectively. The evaluation continues recursively on Snew. Finally,
if cm is a configuration where N halts, nfinal becomes false and recursion stops. Moreover,
ndeti(X,Y ), i = 0, 1, and det(X,Y ) are FO formulae that strictly extend X to Y . As a result,
there is a bijection between the strings in Expl[ [lfpf tot](X) ](A, v, V ) and branchings of
N(enc(A)). Assume that cm is a configuration that is not the initial configuration c0 and
leads to a non-deterministic choice. Then, cm can be mapped to a string S1 ◦ . . .◦Si ∈ (R3k)∗

in Expl[ [lfpf tot](X) ](A, v, V ), where Sj extends Sj−1, for every 2 ≤ j ≤ i, and Si describes
c0 . . . cm. If c0 leads to a non-deterministic choice, it is mapped to string ε.

▶ Proposition 6.5. Given an NPTM N , J [lfpf tot](X) K(A, v, V ) =
#(branchings of N(enc(A)), where V (X) encodes the initial configuration of N .

The specific form of any [lfpf β](X) ∈ Rr
soΣr

so(FO) guarantees that there is an NPTM that
generates a number of paths equal to J [lfpf β](X) K(A, v, V ) + 1.

▶ Theorem 6.6. Rr
soΣr

so(LFP) = TotP over finite ordered structures.

7 Conclusions and open questions

Inspired by the two-step semantics developed in the context of weighted logics, we introduced
two-step semantics that enriches the existing framework of quantitative logics, i.e. logics
for expressing counting problems. We provided logical characterisations of SpanL and
TotP, answering an open question of [5]. Furthermore, we determined logics that capture
SpanPSPACE and FPSPACE. Compared to the other classes, the logic that captures TotP
was defined in a more complicated way that is related to the properties of TotP problems:
recursion of the logic expresses self-reducibility and the restricted form of the recursion
captures the easy-decision property. It is worth investigating whether TotP is captured by
a simpler, more elegant logic. The intermediate semantics can express sets of computation
paths of TMs, different valid outputs of transducers, or solutions to computational problems.
In particular, in the case of SpanL and SpanPSPACE, union and concatenation of sets are
more suitable than addition and multiplication of QSO; when the union (resp. concatenation)
of two sets of strings is computed, identical outputs will contribute one string to the resulting
set. In general, using the intermediate semantics, it becomes possible to keep track of paths,
outputs, and solutions, apply operations on them, and then count them. Another difference
between our logics and quantitative logics from [5], is that in [5], only first-order function
symbols were considered and interpreted as functions h : Ak → N. Then, the respective
second lattice (F ,≤F ) is not complete and the least fixed point was defined by considering
the supports of functions in F [5, Section 6]. By defining here, functions whose values are sets
of strings, the lattice (F ,≤F ), where F is one of FOF , SOF , or RSOF , becomes complete,
and the definition of the least fixed point is straightforward.

The two-step semantics we propose in this work is noteworthy for reasons beyond its
primary objective. For instance, by specifying the concrete semantics such that any non-empty
set maps to 1 and the empty set to 0, our results yield least-fixed-point logical characterisations
of NL and PSPACE, the decision variants of SpanL and FPSPACE, respectively. It is known
that these two classes are captured by FO and SO, equipped with the transitive closure
operator, respectively [21]. Our logics combine the least fixed point with quite natural
syntactic definitions, without resorting to different fixed-point operators for each logic.

We believe that the logical characterisation of SpanL can yield more direct ways to
approximate its problems. RfoΣfo(FO) formulae bear some resemblance to regular grammars,
(or, equivalently, to NFAs), since the syntax of the logic, at each recursive call, concatenates
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a string of fixed length from the left with f(x⃗). An interesting question is whether one can
adjust the fpras for #NFA and apply it directly to the syntax of RfoΣfo(FO), giving an fpras
metatheorem for the logic. Moreover, it is only natural to investigate the class that results
from allowing arbitrary concatenations of recursive calls, and to expect a natural connection
to context-free languages. Note that the problem of counting the strings of a specific length
accepted by a context-free grammar admits a quasi-polynomial randomized approximation
algorithm [19] and it is open whether it has an fpras.

Another interesting question remains the logical characterisation of a class for which
computing the permanent of a matrix is complete under parsimonious reductions. This was
the first problem shown in [32] to be #P-complete under Turing reductions, and it has an
fpras [22]. Therefore, such a result would provide a new subclass of FPRAS and refine the
complexity of the well-studied Permanent problem.
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Abstract
In 1992 Biró, Hujter and Tuza introduced, for every fixed connected graph H, the class of H-graphs,
defined as the intersection graphs of connected subgraphs of some subdivision of H. Such classes
of graphs are related to many known graph classes: for example, K2-graphs coincide with interval
graphs, K3-graphs with circular-arc graphs, the union of T -graphs, where T ranges over all trees,
coincides with chordal graphs. Recently, quite a lot of research has been devoted to understanding
the tractability border for various computational problems, such as recognition or isomorphism
testing, in classes of H-graphs for different graphs H.

In this work we undertake this research topic, focusing on the recognition problem. Chaplick,
Töpfer, Voborník, and Zeman showed an XP-algorithm testing whether a given graph is a T -graph,
where the parameter is the size of the tree T . In particular, for every fixed tree T the recognition of
T -graphs can be solved in polynomial time. Tucker showed a polynomial time algorithm recognizing
K3-graphs (circular-arc graphs). On the other hand, Chaplick et al. showed also that for every fixed
graph H containing two distinct cycles sharing an edge, the recognition of H-graphs is NP-hard.

The main two results of this work narrow the gap between the NP-hard and P cases of H-graph
recognition. First, we show that the recognition of H-graphs is NP-hard when H contains two
distinct cycles. On the other hand, we show a polynomial-time algorithm recognizing L-graphs,
where L is a graph containing a cycle and an edge attached to it (which we call lollipop graphs).
Our work leaves open the recognition problems of M -graphs for every unicyclic graph M different
from a cycle and a lollipop.
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1 Introduction

One of the most important and most widely studied types of graph representations is an
intersection model, in which the vertices are represented by sets and the edges by the pairs of
intersecting sets. Due to practical and theoretical applications, intersection graphs of simple
geometric objects are among the most intensively studied. In this paper, we consider a special
kind of intersection graphs, called H-graphs, introduced by Biró, Hujter and Tuza [5]. Since
H-graphs generalize many known geometric intersection graph classes, they form a good
background that allows to study basic computational problems in some systematic way. We
first define H-graphs formally using the terminology we adapt throughout the paper.

Let H be a connected graph. An H-model of a graph G is a pair (Hϕ, ϕ), where Hϕ is a
subdivision of H and ϕ is a mapping from V (G) to the subsets of V (Hϕ), such that:

for every v ∈ V (G), the subgraph of Hϕ induced by the set ϕ(v) is connected,
for every distinct u, v ∈ V (G) we have uv ∈ E(G) iff ϕ(u) ∩ ϕ(v) ̸= ∅.

A graph G is an H-graph if G admits an H-model. In particular, every graph G is an
H-graph for some graph H, e.g., for H = G.

Many known geometric intersection graph classes are H-graphs for an appropriately
chosen graph H or are H-graphs for some simpler class of graphs H, where by H-graphs we
mean the union of the classes of H-graphs over H ∈ H:

K2-graphs coincide with the class of interval graphs, which are defined as the intersection
graphs of intervals on the line,
K3-graphs coincide with the class of circular-arc graphs, which are defined as the inter-
section graphs of arcs of a fixed circle,
T -graphs, where T contains all trees, coincide with the class of chordal graphs, which are
defined as graphs containing no induced cycles of size ⩾ 4 [14],
P-graphs, where P contains all planar graphs, coincide with the class of string graphs,
which are defined as the intersection graphs of curves in the plane.

The recent research on H-graphs, initiated by Chaplick et al. [10], aims to generalize
efficient optimization algorithms from simple classes of graphs on wider families of H-graphs,
as well as to determine the boundary of “polynomial tractability” for such computational
problems as recognition or isomorphism testing. Here we aim for efficient parameterized
algorithms, whose running time depends on the size n of the input graph and the parameter |H|,
where |H| is the size of the graph H . First, we search for algorithms that work in polynomial
time in n and |H|, then for FPT algorithms working in time f(|H|)nO(1) for some computable
function f , and finally for XP algorithms working in time O(nf(|H|)) for some computable
function f . Various NP-complete problems on H-graphs were studied in the parameterized
setting and shown to admit FPT and XP algorithms, e.g., [1,2,4,8,10,11,13,16]. Some recent
research is also focused on studying the combinatorial properties of H-graphs, which can be
later used to construct efficient algorithms in these classes of graphs (see e.g. [11, 13]).

In this work we are focusing on the recognition problem. For a graph class G, the
recognition problem for G is to decide whether an input graph G belongs to G. For a graph
class G defined in a geometrical way, the recognition problem of G usually boils down to
testing whether the input graph has a representation appropriate for the class G. There
are known linear time recognition algorithms for interval graphs [6] and chordal graphs [21].
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In the context of our research, circular-arc graphs form an important class of graphs. The
recognition problem for circular-arc graphs was initially thought to be NP-hard [7], but since
the 1980s we already know that it admits a polynomial time algorithm [22]. Currently, two
linear-time algorithms recognizing circular-arc graph are known [17,20], but both of them are
rather lengthy and non-trivial. No simple polynomial-time algorithm recognizing circular-arc
graphs is known.

Although the recognition of chordal graphs takes linear time, with a tree T on the input
deciding whether a graph G is a T -graph is NP-complete [18]. On the other hand, Chaplick et
al. [10] gave an XP algorithm parameterized by |T | recognizing T -graphs. It is open whether
the problem can be solved by an FPT algorithm (in [9] it is shown that proper T -graphs can
be recognized in FPT, where a T -graph G is called proper if there exists a T -model (Tϕ, ϕ)
of G such that for no pair u, v ∈ V (G) we have ϕ(u) ⊆ ϕ(v)). Moreover, Chaplick et al. [10]
showed that recognition of H-graphs is NP-complete if H contains a diamond (a cycle on
four vertices with a chord) as a minor [10]. That is, recognition of H-graphs is NP-complete
for every fixed H which contains two distinct cycles sharing an edge.

1.1 Our results
Our first result states the following, which extends the hardness result from [10]:

▶ Theorem 1.1. For every fixed graph H containing two distinct cycles, the recognition of
H-graphs is NP-complete.

Theorem 1.1 raises interests in M -graphs, where M is a unicyclic graph (a connected graph
containing exactly one cycle). In particular, we are focusing on:

the recognition problem for the class of M -graphs, where M is any fixed graph that
consists of a cycle and some trees attached to it,
the recognition problem for the class of medusa graphs, which are defined as M-graphs,
where M is the class that contains all unicyclic graphs. Note that medusa graphs extend
both circular-arc graphs and chordal graphs.

Figure 1.1 From left to right: a unicyclic graph M , an M -graph G, an M -model (Mϕ, ϕ) of G.

An M-model of a graph G is an M -model of G where M ∈ M. Suppose G is a medusa
graph and suppose G admits an M-model (Mϕ, ϕ) for some M ∈ M. A clique C in G

satisfies the Helly property in (Mϕ, ϕ) if
⋂

c∈C ϕ(c) ̸= ∅, and the model (Mϕ, ϕ) of G satisfies
the Helly property if every clique of G satisfies the Helly property in (Mϕ, ϕ). A medusa
graph G is Helly if G admits an M-model that satisfies the Helly property. Figure 1.1 shows
a fixed unicyclic graph M , another graph G which is an M -graph, and an M -model (Mϕ, ϕ)
of G. Since (Mϕ, ϕ) satisfies the Helly property, G is a Helly medusa graph. We show the
following regarding medusa graph:

▶ Theorem 1.2.
1. The problem of recognizing medusa graphs is NP-complete.
2. The problem of recognizing Helly medusa graphs is polynomial time solvable.

MFCS 2023
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Our most important (and perhaps most difficult) result concerns the class of L-graphs (which
we call lollipop graphs), where L is a unicyclic graph that consists of a cycle with an edge
attached. Note that L-graphs extend the class of circular-arc graphs.

▶ Theorem 1.3. The problem of recognizing L-graphs is polynomial time solvable.

Our research reveals connections between problems we consider and certain problems
related to the Helly property studied in the class of circular-arc graphs. In particular, we
introduce the Helly Cliques problem, in which for a given circular-arc graph G and its cliques
C1, . . . , Ck we need to decide whether G has a circular-arc model in which all the cliques
C1, . . . , Ck satisfy the Helly property. We show that the recognition of medusa graphs is
polynomial time equivalent to the Helly Cliques problem. We refer to [3, 12] for two different
proofs that the Helly Cliques problem is NP-complete. Also, to devise a polynomial algorithm
recognizing L-graphs, we exploit an FPT algorithm for the Helly Cliques problem (for k = 1)
devised in [12].

2 Preliminaries

We refer to the full version of this paper for the full version of this section.

2.1 Graphs and posets
All graphs considered in this paper are simple, that is, they have no multiedges and no loops.
We denote a complete graph and a cycle on n vertices by Kn and Cn, respectively. A hole in
a graph is an induced cycle on at least four vertices.

A unicyclic graph is a connected graph that has exactly one cycle. For a unicyclic
graph M , we denote by MO the set of vertices of the unique cycle of M .

We assume that the reader has some basic knowledge on partially ordered sets (posets).

2.2 M -graphs
Suppose M is a fixed unicyclic graph. Let (Mϕ, ϕ) be an M -model of a graph G. If the
subdivision Mϕ of M is not relevant for our considerations, we denote the model (Mϕ, ϕ)
simply by (M,ϕ) or even by ϕ (if M is clear from the context). In this case we treat (M,ϕ)
as the intersection model of G in which every set ϕ(v) forms an arcwise connected subset of
some fixed plane drawing of the unicyclic graph M . Then MO is the part of the drawing
which contains the points of the drawing corresponding to the vertices and contained in the
curves representing the edges from the unique cycle of M .

Let M be a unicyclic graph. We say that a graph G is a saturated M -graph if G has an
M -model and has no M∗-model for any proper minor M∗ of M .

▶ Observation 2.1. Suppose M∗ is a minor of M . If G has an M∗-model, then G has an
M -model.

2.3 Interval and Circular-Arc Graphs
We assume that the reader has some basic knowledge of interval and circular-arc graphs. In
our context we can define them as K2-graphs and K3-graphs.

Given an interval graph H and an interval model ϕ of H, for every x ∈ R we denote by
C(x) the set {v ∈ V (H) : x ∈ ϕ(v)}. A sector S of ϕ is a maximal interval in R such that
C(x) = C(y) holds for every x, y ∈ S. Given a sector S of ϕ, the clique set C(S) of S is
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equal to C(x), where x is any point inside S. Clearly, every two sectors of ϕ are disjoint
and the union of all sectors of ϕ covers R (note that ϕ has at least two sectors S such that
C(S) = ∅). We say that a sector S of ϕ is:

maximal if C(S) is a maximal clique in H,
minimal if C(S) ⊊ C(S′) for any sector S′ adjacent to S.

An interval model ϕ of H is normalized if ϕ has exactly 2c+ 1 sectors (we count also the
sectors with the empty clique set), where c is the number of maximal cliques in H. We refer
to the full version of this paper for more details on the relations between normalized interval
models of H and consecutive orderings of maximal cliques of H represented by the PQ-tree
of H (see Figure 2.1).
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v6

v7
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v10

v11
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v16
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(a) A normalized interval model ϕ of H. Sectors of ϕ are
separated by dashed lines.

P1

P2 P3

L1 L2 Q1 L6

L3 L4 L5

(b) P Q-tree T of H with leaf
order L1,L2,L3,L4,L5,L6 cor-
responding to consecutive clique
ordering C1, C2, C3, C4, C5, C6.

Figure 2.1

Observe that we can obtain any interval model of H in the following way: first we choose
a normalized model ϕ of H (which is equivalent to picking a consecutive ordering of maximal
cliques of H) and then for each maximal sector S of ϕ we shift (by a little) the endpoints of
the intervals of ϕ that lie on the borders of S (see Figure 2.2).

Since the definition of normalized models for circular-arc graphs is technical, we refer to
the full version of this paper for the details. Here we only mention that in such models the
relative relation between intersecting arcs (containment, covering the circle, or overlapping)
depends on the relative relation between the closed neighbourhoods of the corresponding
vertices of the graph.

3 (Helly) Medusa Graphs

We refer to the full version of this paper for the full version of this section.
Recall that an M-model of a graph G is an M -model of G where M ∈ M. We introduce

normalized M-models, based on the following partition of V (G) into the circle part VC and
the tree part VT . Start with VC = ∅ and repeatedly add to VC :

V (C), if C is a hole in G,
V (P ), if P is an induced path in G joining two non-adjacent vertices from VC .

Finally, let VT = V ∖ VC . Such a partition VC ∪ VT of V (G) is unique and polynomial time
computable. We call an M-model (M,ϕ) of G normalized if:

MFCS 2023



8:6 Recognizing H-Graphs – Beyond Circular-Arc Graphs

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v14

v15

v16

P1

P2

P3Q1

C(L1)C(L2)C(L3)C(L4)C(L5) C(L6)

(a) An interval model ϕ of H. Sectors of ϕ are separated by
dashed lines.

P1

P2P3

L1L2Q1 L6

L3L4L5

(b) P Q-tree T of H with leaf
order L5,L4,L3,L6,L2,L1 cor-
responding to clique ordering
C5, C4, C3, C6, C2, C1.

Figure 2.2

ϕ(v) ∩MO ̸= ∅ for every v ∈ VC ,
ϕ(v) ∩MO = ∅ for every v ∈ VT ,
{ϕ(v) ∩MO : v ∈ VC} is a normalized circular-arc model of G[VC ].

▶ Lemma 3.1. Every M-graph G has a normalized M-model ψ.

Sketch of the proof: Let VC ∪ VT be a partition of V (G) into the circle part VC and the
tree part VT of G. Let (M,ψ) be an M-model of G. The model (M,ψ) already satisfies
ψ(v) ∩ MO ̸= ∅ for every v ∈ VC . Let T1, . . . , Tk be a partition of VT into connected
components of G[VT ]. Let NC(Ti) be the neighbourhood of Ti in the cycle part of G,
i.e. NC(Ti) = N(Ti) ∩ VC . First we prove that for every i ∈ [k] the graph G[Ti ∪ NC(Ti)]
is chordal and the set NC(Ti) forms a clique in G[VC ]. In particular, each G[Ti ∪NC(Ti)]
has an Fi-model ψi for some tree Fi. Next, we note that ψ|VC restricted to MO forms a
circular arc model of G[VC ] in which each clique NC(Ti) is Helly. We normalize this model.
Finally, we obtain a normalized M-model (M ′, ϕ) of G by joining a point of Fi contained in⋂
ψi(NC(Ti)) to a point of MO contained in

⋂
ϕ(NC(Ti)) and then by merging the models

ψ and ψi for i ∈ [k] appropriately. ◀

This yields our main theorem characterizing medusa graphs.

▶ Theorem 3.2. (see the full version of this paper for the full proof) Let G be a graph, let
V (G) = VC ∪ VT be a partition of V (G) into the circle part VC and the tree part VT of G,
and let T1, . . . , Tk be a partition of VT into connected components of G[VT ]. Then:
1. G is a medusa graph if and only if G[VC ] is a circular arc graph in which for every i ∈ [k]

the set NC(Ti) induces a clique in G[VC ], and G[VC ] admits a normalized circular-arc
model in which every clique NC(Ti) is Helly.

2. G is a Helly medusa graph if and only if G[VC ] is a Helly circular arc graph.
The conclusions of Theorem 3.2 bring our attention to the Helly Cliques problem.

▶ Lemma 3.3. (see the full version of this paper for the full proof) Recognition of medusa
graphs is poly-time equivalent to the Helly Cliques problem.

We can summarize the section with the following theorem (which extends Theorem 1.2).
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Figure 4.1 Above: {a, b, c}-centered L-model ϕ of G. Below left: Intervals ϕ∗(a), ϕ∗(b), ϕ∗(c): for
x ∈ {a, b, c}, ϕ∗(x) is the shortest interval in LO ∖ P that contains (LO ∖ ϕ(x)) and every interval⋃

ϕ(I) which has a non-empty intersection with (LO ∖ ϕ(x)). Below right: schematic view of ϕ∗

with the components I1, . . . , I5. Our second key step should output H containing H such that
V (H) = {a, b, c} and E(H) = {ab, bc}.

▶ Theorem 3.4.
1. The problem of recognizing medusa graphs is NP-complete.
2. The problem of recognizing medusa graphs parameterized by the number k of components

in the tree part G[VT ] of the input graph is FPT.
3. The problem of recognizing Helly medusa graphs is polynomial time solvable.

Proof. The statements of the theorem follow from Lemma 3.3, from the fact that the Helly
Cliques problem is NP-complete [3, 12] and can be solved in time 2O(k log k)poly(n) [12], and
from the fact that Helly circular-arc graphs recognition can be solved in linear-time [19]. ◀

4 Lollipop Graphs

In this section we derive a polynomial time algorithm for recognizing L-graphs, where L is the
graph which consists of the clique K3 and an edge attached to one vertex of K3 (L is called
a lollipop and L-graphs are called lollipop graphs). Since there are known polynomial-time
algorithms recognizing K1,3-graphs [10] and K3-graphs [17, 20], we assume that an input
graph G = (V,E) is not an L∗-graph for any proper minor L∗ of L. Hence our goal is to test
whether G is a saturated L-graph.

We fix a plane drawing of L which consists of the circle LO and the stick LS attached to
LO in the point P (see Figure 4.1 for an illustration). Then we treat an L-model ϕ of G as
the intersection model of G in which every set ϕ(v) forms an arcwise connected subset of the
drawing of L. We call the arcs contained in LO ∖ P as intervals and we introduce left-right
orders of the points in LO ∖ P (consistent with the clockwise order) and in LS ∖ P .

Let C be a clique of G. An L-model ϕ of G is C-centered if C = {v ∈ V : P ∈ ϕ(v)}
and G is C-centered if G admits a C-centered L-model. For example, the model ϕ shown in
Figure 4.1 is {a, b, c}-centered.

Our approach consists of three key steps. The first step is summarized as follows.

MFCS 2023
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▶ Theorem 4.1. There is a polynomial time algorithm that, given a graph G, either decides
that G is a saturated L-graph, or outputs a set of cliques C of G such that, if G is a saturated
L-graph then G is a C-centered L-graph for some C ∈ C.

Given the above theorem it remains to efficiently decide whether G is a C-centered graph for
some fixed clique C of G. Let I denote the set of components of G[V ∖ C]. Note that for
every I ∈ I the set I induces an interval graph in G if G is C-centered.

Suppose ϕ is a C-centered model of G. To describe our second step, for every c ∈ C let
ϕ∗(c) denote the shortest interval in LO ∖ P containing the interval LO ∖ ϕ(c) and every
interval

⋃
ϕ(I) whenever LO ∖ϕ(c) intersects

⋃
ϕ(I), for I ∈ I. Let Hϕ be an interval graph

with the vertex set C ′ = {c ∈ C : ϕ∗(c) ̸= ∅} and with the intersection model given by the
intervals {ϕ∗(c) : c ∈ C ′}.

Let C ′ ⊆ C and let H be an interval graph on the vertex set C ′. A C-centered L-model
ϕ of G is (C,H)-centered if Hϕ = H and G is (C,H)-centered if G admits a (C,H)-centered
model. For example, the model ϕ from Figure 4.1 is ({a, b, c}, H)-centered, where H is such
that V (H) = {a, b, c} and E(H) = {ab, bc}. Our second step comes down to the following.

▶ Theorem 4.2. There is a polynomial time algorithm that, given a graph G and a clique
C ⊆ V (G), outputs a set of interval graphs H such that, if G is a C-centered L-graph, then
G is a (C,H)-centered L-graph for some H ∈ H.

Our final step, which is the most technical and probably most difficult, can be summarized
as follows:

▶ Theorem 4.3. There is a polynomial time algorithm that, given a graph G, a clique
C ⊆ V (G), and an interval graph H on a subset C ′ of C, decides whether G is a (C,H)-
centered graph.

The algorithm from Theorem 4.3 exploits dynamic programming along the PQ-tree of H
to test whether there is a partition (J ,J ′) of the components of I together with a total
ordering ≺ of J such that there is a (C,H)-centered model ϕ of G that places the interval
graphs of J on LO ∖ P in the order ≺ and the interval graphs of J ′ on the stick LS .

4.1 Sketch of the proof of Theorem 4.1 (the first key step)
We refer to the full version of this paper for the full proof.

Let G be a graph which is neither K1,3-graph nor K3-graph. Let VC ∪VT be the partition
of V (G) into the circle part VC and the tree part VT of G, and let T be the set of all maximal
cliques of the chordal graphs G[T ∪ NC(T )], where T runs over the components of G[VT ]
(see Section 3). The algorithm for Theorem 4.1 works as follows. For every C∗ ∈ T :

output C∗ and denote by I∗ the components of G[V ∖ C∗],
for every component I ∈ I∗ let C ′ = {v ∈ C∗ : v has a neighbour in I},

accept G as saturated L-graph if G[I ∪ C ′] admits a circular arc model with C ′ Helly
(we use a poly-time algorithm for the Helly Cliques problem with k = 1) and G[V ∖ I]
admits an interval model with C∗ as the leftmost maximal clique,
if G[I] is an interval graph, then for every maximal clique D of G[I] output the clique
C(D) = C ′ ∪ {v ∈ D : C ′ ⊆ N(v)}.

Now we give a sketch of the proof that this algorithm is correct. Assuming G is a saturated
L-graph, we first argue G admits an L-model ϕ such that:

there is a clique C∗ from T such that the set
⋂
ϕ(C∗) is contained in LS ∖P and

⋂
ϕ(C∗)

is as close to P as possible,
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for every component I ∈ I∗ we have either
⋃
ϕ(I) ⊆ LO or

⋃
ϕ(I) ⊆ (LS ∖ P ).

As we show in the full version of this paper, such properties are satisfied by so-called saturated
L-models of G. Given such ϕ, we fall into one of the following cases:

P is not covered by
⋃
ϕ(I) for any I ∈ I∗. Then ϕ can be easily turned into C∗-centered

L-model of G (since the algorithm adds C∗ to C, Theorem 4.1 is satisfied).
P is covered by

⋃
ϕ(I) for some I ∈ I∗. The algorithm accepts G if I is the only

component on LO (which possibly induces a circular-arc graph and covers the whole
circle LO). Otherwise, if two components from I∗ are represented on LO, then all the
components in I∗ induce interval graphs in G. In this case we argue that ϕ can be turned
into a C(D)-centered model, where D is a maximal clique in G[I] with

⋂
ϕ(D) next to P

(since the algorithm adds C(D) to C, Theorem 4.1 is satisfied).
Given the previous, the algorithm for Theorem 4.1 either accepts G, or outputs C of size at
most O(n2) (T has size O(n) and for every C∗ ∈ T the total number of maximal cliques in
the interval components of G[V ∖ C∗] is O(n)).

4.2 Sketch of the proof of Theorem 4.2 (the second key step)

We refer to the full version of this paper for the full proof.
Consider a graph G and a clique C of G. Let I be the set of components of G[V ∖ C].

For now, consider a C-centered model ϕ. Then every I ∈ I induces an interval graph and
{ϕ(v) | v ∈ I} is an interval model for G[I]. We partition I ∈ I according to the intersection
with LO and LS in the model ϕ:

Iϕ
O =

{
I ∈ I :

⋃
ϕ(I) ⊆ LO

}
and Iϕ

S =
{
I ∈ I :

⋃
ϕ(I) ⊆ LS

}
.

For I ∈ I, let C(I) = {c ∈ C : c is not adjacent to some vertex in I}. Let ϕ be a C-
centered model of G. Note that the graph Hϕ, defined in Section 4, can be equivalently
defined such that

C ′ = V (Hϕ) =
⋃

I∈Iϕ
O

C(I) and E(Hϕ) =
{

{c, c′} : there is I ∈ Iϕ
O such that c, c′ ∈ C(I)

}
.

Similarly, the model ϕ∗ of Hϕ can be equivalently defined such that for every c ∈ C ′ the set
ϕ∗(c) is the shortest interval that contains

⋃
ϕ(I) for every I ∈ Iϕ

O such that c ∈ C(I) – see
Figure 4.1 for an illustration. Note that every non-minimal sector of ϕ∗ contains at least one
component from Iϕ

O and every I ∈ Iϕ
O occupies a sector of ϕ∗ with the clique set C(I).

We distinguish the interval graphs I ∈ I as follows:
I ∈ I is called ambiguous if G[C ∪ I] has an interval model with C as its left-most clique
(hence, I might be placed on the stick); otherwise I is called circle.
An ambiguous component I ∈ I is simple if N(u) ∩ C = N(v) ∩ C for all u, v ∈ I.

We denote the sets of the circle, ambiguous, ambiguous simple, and ambiguous non-simple
components by Ic, Ia, Ias, and Ians, respectively. Clearly, Ic ⊆ Iϕ

O, for every C-centered
model ϕ. Moreover, we show that for every I ∈ Ic and every C-centered model ϕ of G
the component I occupies a maximal sector of ϕ∗ and no other component occupies this
sector – see the circle component I2 in Figure 4.1. We additionally assume that C(I) ̸= C(J)
for every two simple components I ̸= J since otherwise we may simply consider the input
without J .
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We order I based on their subset relation on {C(I) : I ∈ I} and their classification into
Ia, Ias, and Ians. We define ⊂t for I, J ∈ I as

I ⊂t J if
(
C(I) ⊊ C(J)

)
or(

C(I) = C(J) and I ∈ Ic and J ∈ Ia

)
or(

C(I) = C(J) and I ∈ Ians and J ∈ Ias

)
.

Then (I,⊆t) is a poset, where ⊆t is the reflexive closure of ⊂t.

▷ Claim 4.4. For every C-centered model ϕ we have Iϕ
S ⊆ Ia, the components from Iϕ

S form
a chain in (I,⊆t), and the left-right order of the components on LS coincides with (Iϕ

S ,⊆t).

Let D ⊆ I be defined as follows. For every J ∈ Ia,
(D1) if C(I) ⊆ C(J) for some I ∈ Ic, add J to D.
(D2) if J ∈ I is such that the downset of J has the width at least 4 in (I,⊆t), add J to D.
We show that the components from D need to be represented on the stick in any C-centered
model of G.

Since every maximal sector of ϕ∗ contains a component from Aϕ and the components
from Aϕ occupy maximal sectors of ϕ∗, the set Aϕ determines the set of all maximal cliques
of Hϕ. Hence, the interval graph Hϕ is uniquely determined by the antichain Aϕ containing
the maximal components from (Iϕ

O,⊆t). Therefore, we refer to Hϕ as to H(Aϕ).
Let I ′ = I ∖ D. Let A be the set of the maximal components in (I ′,⊆t). Let ϕ be a

C-centered L-model of G. Since A forms an antichain and Iϕ
S forms a chain, their intersection

contains at most one element. If A ∩ Iϕ
S = ∅, then Aϕ = A and we output H(A) as a

candidate. If |A ∩ Iϕ
S | = {A}, then Aϕ = (A ∖ {A}) ∪ A3, where A3 is an antichain in the

downset of A. Hence we try all of the O(n) maximal components in A ∈ A combined with
all antichains in DS(A). Since A /∈ D, its downset has the width at most 3 and there are
O(n3) antichains in DS(A) which can be enumerated in polynomial time.

4.3 Sketch of the proof of Theorem 4.3 (the third key step)
We refer to the full version of this paper for the full proof.

First, we reduce the input instance G,C,H , so as there is no component I ∈ I such that
C(I) is the clique set of a minimal sector of an interval model of H (the set of cliques of
minimal sectors of an interval model of H is independent on the model of H).

Let T be the PQ-tree of H, let V (T) be the nodes of T, and let R be the root of T. For
N ∈ V (T), let L(N) denote the set of all leaves of T which descend N in T. We set L = L(R).
For L ∈ L let C(L) denote the clique of H represented by L. We refer to the full version of
this paper for more about PQ-trees.

Our main task is to find a partition (J ,J ′) of I ′ = I ∖ D together with a total ordering
≺ of J such that there is a model ϕ that places the interval graphs of J on the circle LO in
the order ≺ and the interval graphs of J ′ on the stick LS .

The easy part is to check whether J ′ ⊆ I ′ can be placed on the stick. We need to check
whether (J ′ ∪ D) forms a chain in the poset (Ia,⊑), with ⊑ being the reflexive closure of
the following binary relation ⊏, defined for distinct I, J ∈ Ia:

I ⊏ J if C(I) ⊆ Cs(J), where
Cs(J) = {c ∈ C : c is not adjacent to every vertex in J}.

Now, let us consider how to test whether J ⊆ I ′ together with an ordering ≺ allows a
model that places the interval graphs of J in the order of ≺ on the circle. We will denote such
an ordering (J ,≺) as a good order for R. Our final dynamic program then determines the
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good orderings in a bottom up fashion. Hence we will define a good order (K,≺) with respect
to some node N of T and with respect to some left and right borders, (BL, BR), which are
cliques in H. Since this definition is technical (see the full version of this paper), we describe
some properties of good orderings that occur in (Iϕ

O,≺ϕ), where ϕ is a (C,H)-centered model
of G and (Iϕ

O,≺ϕ) is the left-right order of the components from Iϕ
O on LO ∖ P .

Let ϕ be a (C,H)-centered model of G. For L ∈ L let inner(L) = {I ∈ I ′ : C(I) = C(L)}
and let innerϕ

O(L) = inner(L) ∩ Iϕ
O, and innerϕ

S(L) = inner(L) ∩ Iϕ
S . Additionally, assume the

maximal cliques of H appear in ϕ∗ in the order C(L1), . . . , C(Ln). For every Li ∈ L we define
the left zone zoneϕ

L(Li) of Li as an interval of (Iϕ
O,≺ϕ) including the components from the

sectors of ϕ∗ contained strictly between the maximal sector S(Li) with the clique set C(Li)
and the minimal sector of ϕ∗ preceding S(Li) in ϕ∗. We define the right zone zoneϕ

R(Li)
of Li analogously and we set zoneϕ(Li) = zoneϕ

L(Li) ∪ innerϕ
O(Li) ∪ zoneϕ

R(Li). For a non-leaf
node N, let zoneϕ(N) =

⋃
L∈L(N) zoneϕ(L). Figure 4.2 shows the zones for some example

model ϕ∗. Components from the sets zoneϕ
L(Li), innerϕ

O(Li), and zoneϕ
R(Li) are illustrated

as red, black, and blue dots, respectively. We have, for example, zoneϕ
L(L3) = {I9, I10, I11},

zoneϕ
R(L2) = {I8}, and innerϕ

O(L2) = {I5, I6, I7}. We have zoneϕ(Q1) = {I9, . . . , I18} as
L(Q1) = {L3,L4,L5}.

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v14

v15

v16

zoneϕ(L1) zoneϕ(L2) zoneϕ(L3) zoneϕ(L4) zoneϕ(L5) zoneϕ(L6)

I1

I2

I3

I4 I5 I6 I7

I8

I9

I10

I11

I12

I13I14 I15I16

I17

I18

I19

I20

I21

I22
P1

P2 P3

L1 L2 Q1 L6

L3 L4 L5

Figure 4.2 Zones in ϕ∗.

Among others, we show that for every i ∈ [n] (below we assume C(L0) = C(Ln+1) = ∅):
the set zoneϕ

L(Li) forms a chain in (Ia,⊑), (zoneϕ
L(Li),⊏) is equal to (zoneϕ

L(Li),≺ϕ) and
zoneϕ

L(Li) respects the border C(Li−1)∩C(Li), which means C(Li−1)∩C(Li) ⊏ zoneϕ
L(Li),

the set zoneϕ
R(Li) forms a chain in (Ia,⊑), we have (zoneϕ

R(Li),⊏) is equal to the reverse
of (zoneϕ

R(Li),≺ϕ) and zoneϕ
R(Li) respects the border C(Li) ∩ C(Li+1), which means

C(Li) ∩ C(Li+1) ⊏ zoneϕ
R(Li).

The next step is to define when (K,≺) is a good order for N and borders (BL, BR).
Roughly speaking, (K,≺) is defined such that it allows to derive an admissible order
L1, . . . ,Lm of the leaves from L(N) and to define the zones for Li in (K,≺) for all i ∈ [m].
Moreover, it is required that the left zone of L1 respects the border BL, the right zone of
Lm respects the border BR, and the right zone of Li and the left zone of Li+1 respect the
border C(Li) ∩C(Li+1) for i ∈ [m− 1]. For example, in Figure 4.2 (zoneϕ(L3),≺ϕ) is a good
order for L3 and the borders ({v1, v2}, {v1, v2, v7, v8, v9}), (zoneϕ(Q1),≺ϕ) = (I9, . . . , I18) is
a good order for Q1 and for the borders ({v1, v2}, {v1, v2, v7}). Finally, the full definition of
good orders allows us to prove Theorem 4.6, which boils down the problem of searching for a
(C,H)-centered model of G to the problem of testing whether there is a “good triple” for the
set I ′ and the node R.
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▶ Definition 4.5. Let N be a node of T and I⋆ ⊆ I ′. A triple (J ,J ′,≺) is good for the
set I⋆, the node N, and the borders (BL, BR), if:

{J ,J ′} is a partition of I⋆.
(J ,≺) is a good order for the node N and the borders (BL, BR),
J ′ ∪ D is a chain in (Ia,⊑).

If (BL, BR) = (∅, ∅), we simply say (J ,J ′,≺) is good for the set I⋆ and the node N.

With the notion of a good triple we obtain the following theorem that characterizes all
(C,H)-centered models of G.

▶ Theorem 4.6 (see the full version of this paper for the full proof). Let G be a graph.
1. For every (C,H)-centered model ϕ of G the triple (Iϕ

O, I
ϕ
S ∖ D,≺ϕ) is good for I ′ and

the node R.
2. For every triple (J ,J ′,≺) that is good for I ′ and the node R, there is a (C,H)-centered

model ϕ of G such that (J ,≺) = (Iϕ
O,≺ϕ) and J ′ ∪ D = Iϕ

S .

Our algorithm needs to test whether there exists a good triple for the set I ′ = comp(R).
Roughly speaking, this technical part is done as follows: first, we carefully define the sets
comp(N) ⊆ I ′ for every node N ∈ V (T) and then we compute good triples1 for every set
comp(N) using dynamic programming over T.

5 Butterfly-Graphs

Here we sketch an approach to proving Theorem 1.1. The main task is to show NP-hardness
of recognizing butterfly-graphs, where a butterfly is the graph consisting of two K3’s joined
on one vertex.

▶ Theorem 5.1. Butterfly-Graph Recognition is NP-complete.

It is easy to see NP-membership [10]. To show NP-hardness, we reduce from the Bipartite
2-Track; that is to decide whether a given bipartite graph G is 2-track. A graph G is
2-track if there are sets E1, E2 whose union is E(G) such that (V (G), E1) and (V (G), E2)
are interval graphs. Gonçalves & Ochem proved NP-hardness of this problem [15].

Construction: For a given bipartite graph G we construct a graph G′ that is a butterfly-
graph if and only if G is 2-track. Let S be a star K1,4 where every edge is subdivided once.
The vertex set V (G′) consists of V (S), a vertex wv for every vertex v ∈ V (G), an edge-vertex
wuv for every edge uv ∈ E(G) and V (S). The edge set E(G′) consists of

(
V (G)

2
)
, E(S) and

the edges of making wuv adjacent to w ∈ V (G) ∖ {u, v} for every edge uv ∈ E(G). Finally,
we add every edge between V (G) and V (S).

Given G the graph G′ can be constructed in polynomial time. It remains to show that G is
2-track if and only if G′ is a butterfly-graph. For the formal proof we refer to the full version
of this paper. Here we only sketch how we construct a butterfly-model of G′ provided G is a
bipartite 2-track (witnessed by interval models ϕ1 and ϕ2 of (V (G), E1) and (V (G), E2)). A
butterfly-model of G′ is obtained as follows (see Figure 5.1 for an illustration):

we embed ϕ1 and ϕ2 into a subdivision Hϕ of the butterfly as shown in Figure 5.1,
we represent the vertices of S in the center of Hϕ,
for v ∈ V (G) we represent wv by the set V (Hϕ) ∖ (ϕ1(v) ∪ ϕ2(v)) (see green set w2)
for uv ∈ E(G), we represent wuv by the set ϕi(u) ∩ ϕi(v) if uv ∈ Ei (see red set w23).

1 Since these sets might have exponential size, the algorithm calculates only their “fingerprints”.
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Figure 5.1 A bipartite graph G (to the left) as a 2-track (red and blue edges) witnessed by
interval models ϕ1 and ϕ2 (in the middle), and a butterfly-model of G′ (to the right).

6 Conclusions

The question whether for a fixed graph H the class of H-graphs can be recognized in
polynomial time was posed by Biro, Hujter, and Tuza over 30 years ago [5]. The main results
of our work show that the boundary between polynomial and NP-hard cases of H-graphs
recognition lies somewhere between unicyclic graphs H , strictly above the class of circular-arc
graphs. The research carried out so far reveals connections between the H-graphs recognition
problems for unicyclic graphs H and certain problems related to the Helly property of
circular-arc graphs. The latter problems are now intensively studied [12] and the positive
results achieved so far allow us to state the following conjecture.

▶ Conjecture 6.1. The recognition of H-graphs is polynomial-time solvable if and only if H
is a unicyclic graph or H is a tree.

In particular, we believe that the techniques introduced in our work, suitably extended, can
be used to devise polynomial algorithms for the cases where H consists of a cycle and some
edges attached to it. The situation might be different when we allow to have trees attached
to the cycle in H . The difficulty might be caused by the lack of a data structure maintaining
all representations of a T -graph, where T is a tree different than a path (counterparts of
PQ-trees for interval graphs).
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1 Introduction

Distributed computing concerns computation in networks and relates directly to various
fields of study including, inter alia, cellular automata and neural networks. In this paper we
study distributed systems based on circuits. A distributed system is a labeled directed graph
(with self-loops allowed) where nodes communicate by sending messages to each other. In
each communication round a node sends a message to its neighbours and updates its state
based on (1) its own previous state and (2) the messages received from the neighbours.

Descriptive complexity of distributed computing was initiated in [8], [11] and [9]. The
articles [8] and [9] characterized classes of constant-time distributed algorithms via modal
logics. The constant-time assumption was lifted in [11] which showed that the expressive
power of finite message passing automata (FMPAs) is captured by modal substitution calculus
MSC, which is an extension of modal logic by Datalog-style rules. The papers [8], [11] and [9]
did not consider identifiers, i.e., ID-numbers roughly analogous to IP-addresses. It is worth
noting that identifiers are, for various reasons, a key concept in much of the literature on
distributed computing.
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9:2 Descriptive Complexity for Distributed Computing with Circuits

In this paper we study distributed computing based on circuits in a scenario with unique
identifiers. Each node runs a copy of the same circuit C. In each communication round,
the node sends its current bit string s to its neighbours and updates to a new string s′ by
feeding s and the strings s1, . . . , sm sent by the neighbours to C (letting s′ be the output of
C). This is a realistic model of distributed computing which also takes local computation –
the computation steps of the circuit – into account. Typically in distributed computing, only
communication steps count. Since we study distributed systems, we call our circuits message
passing circuits, or MPCs, although formally they are just plain circuits.

We establish an exact match between this circuit-based model and the logic MSC. Unlike
earlier works on descriptive complexity of distributed computing, we work in the circuit-style
paradigm where an algorithm is specified via an allocation function F that produces, in the
simplest case, for each input n ∈ Z+, a circuit F (n) that operates on all distributed systems
(i.e., labeled directed graphs, or Kripke models) of size n. As one of our main results, we prove
that programs of the MSC-logic and constant fan-in message passing circuits translate to
each other with only a linear blow-up in size. Thus, we can work interchangeably with circuit
allocation functions and MSC-program allocation functions. The related formal statements
are as follows, with Π denoting the set of proposition symbols considered (including ones for
ID-bits) while ∆ is a degree bound for graphs.
▶ Theorem 12. Given an MPC of size m for (Π,∆), we can construct an equivalent Π-
program of MSC. For a constant bound c for the fan-in of MPCs, the size of the program is
O(m).
▶ Theorem 13. Given Π, ∆ and a Π-program of MSC of size m, we can construct an
equivalent MPC for (Π,∆) of size O(∆m + |Π|) when ∆ > 0 and O(m + |Π|) when ∆ = 0.

We are especially interested in the feasible scenario where F (n) is a circuit of size O(log n).
From the above results we can prove that, for a constant ∆ and constant fan-in bound, if we
have an allocation function producing log-size circuits, we also have an allocation function for
log-size programs, and vice versa. We put this into use by demonstrating that for graphs of
degree bound ∆, we can produce programs of size O(log n) that compute a (∆ + 1)-coloring
via a Cole-Vishkin [6] style approach – implying also an analogous result for circuits.

Generally, the circuit-based approach suits well for studying the interplay of local com-
putation and message passing. While important, such effects have received relatively little
attention in studies on distributed computing. We provide a range of related results.

Related work. As already mentioned, descriptive complexity of distributed computing has
been largely initiated in [9], which characterizes a range of related complexity classes via
modal logics. It is shown, for example, that graded modal logic captures the class MB(1)
containing problems solvable in constant time by algorithms whose recognition capacity
is sufficient all the way up to distinguishing between multisets of incoming messages but
no further. In the paper, the link to logic helps also in separating some of the studied
classes. The constant-time limitation is lifted in [11], which shows that finite distributed
message passing automata (FMPAs) correspond to modal substitution calculus MSC, which
is the logic studied also in the current paper. The work on MSC is extended in [15], which
proves that while MSC corresponds to synchronized automata, the µ-fragment of the modal
µ-calculus similarly captures asynchronous distributed automata.

Distributed computing with identifiers has been studied from the point of view of logic
earlier in [4]. The paper [4] approaches identifiers via a uniform logical characterization of a
certain class of algorithms using IDs, while our work is based on the circuit-style paradigm
with formulas and circuits being given based on model size. Thus the two approaches are
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not comparable in any uniquely obvious way. Nevertheless, one simple difference between
our work and [4] is that we treat IDs bit by bit as concrete bit strings. Thus we can express,
e.g., that the current ID has a bit 1 without implying that the current node cannot have the
smallest ID in the system. This is because there is no guarantee on what the set of IDs in
the current graph (or distributed system) is, and in a directed graph, we cannot even scan
through the graph to find out. On the other hand, the logic in [4] can express, e.g., that the
current node has the largest ID, which we cannot do. Of course, with a non-uniform formula
allocation function, the circuit-style paradigm can even specify non-computable properties.

The closest work to the current article is [11] which gives the already mentioned charac-
terization of finite message passing automata via MSC. The paper does not work within the
circuit-style paradigm. Furthermore, we cannot turn our circuit to an FMPA and then use
the translation of [11], as this leads to an exponential blow-up in size. Also, the converse
translation is non-polynomial in [11]. Furthermore, that paper does not discuss identifiers, or
the Cole-Vishkin algorithm, and the work in the paper is based on the paradigm of relating
properties directly with single formulae rather than our circuit-style approach. Concerning
further related and very timely work, [2] studies graph neural networks (or GNNs) and
establishes a match between aggregate-combine GNNs and graded modal logic. For further
related work on GNNs and logic, see, e.g., [7]. Concerning yet further work on logical
characterizations of distributed computing models, we mention the theses [12, 16]. For
unique identifiers in graph neural networks, see [14, 17, 10].

2 Preliminaries

We let Z+ denote the set of positive integers. For every n ∈ Z+, we let [n] denote the
set {1, . . . , n} and [n]0 the set {0, . . . , n}. For any set S, we let |S| denote the size (or
cardinality) of S. Let PROP be a countably infinite set of proposition symbols. We suppose
PROP partitions into two infinite sets PROP0 and PROP1, with the intuition that PROP0
contains ordinary proposition symbols while PROP1 consists of distinguished proposition
symbols reserved for encoding ID-numbers. We denote finite sets of proposition symbols
by Π ⊂ PROP. By Π0 (respectively, Π1), we mean the subset of Π containing ordinary
(respectively, distinguished) propositions. The set PROP is associated with a linear order
<PROP which also induces a linear order <S over any set S ⊆ PROP.

Let Π be a finite set of proposition symbols. A Kripke model over Π is a structure
(W,R, V ) with a non-empty domain W , an accessibility relation R ⊆ W × W and a
valuation function V : Π → P(W ) giving each p ∈ Π a set V (p) of nodes where p is
considered true. A pointed Kripke model is a pair (M,w) where M is a Kripke model
and w a node in the domain of M . We let succ(w) denote the set { v ∈ W | (w, v) ∈ R }.

As in [9, 11], we model distributed systems by Kripke models. An edge (w, u) ∈ R linking
the node w to u via the accessibility relation R means that w can see messages sent by u.
Thereby we adopt the convention of [9, 11] that messages travel in the direction opposite to
the edges of R. An alternative to this would be to consider modal logics with only inverse
modalities, i.e., modalities based on the inverse accessibility relation R−1.

We next define general notions concerning acceptance of infinite sequences of bit strings.
Let k ∈ N and consider an infinite sequence S = (bj)j∈N of k-bit strings bj . Let A ⊆ [k] and
P ⊆ [k] be subsets, called attention bits and print bits (or bit positions, strictly speaking).
Let (aj)j∈N and (pj)j∈N be the corresponding sequences of substrings of the strings in S,
that is, (aj)j∈N records the substrings with positions in A, and analogously for (pj)j∈N. Let
(rj)j∈N be the sequence of substrings with positions in A ∪ P . We say that S accepts in
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9:4 Descriptive Complexity for Distributed Computing with Circuits

round n if at least one bit in an is 1 and all bits in each am for m < n are zero. Then also S
outputs pn. More precisely, S accepts in round n with respect to (k, A, P ), and pn
is the output of S with respect to (k, A, P ). The sequence (rj)j∈N is the appointed
sequence w.r.t. (k,A, P ), and the vector rj the appointed string of round j.

We then define some logics relevant to this article. For a finite set Π of proposition
symbols, the set of ML(Π)-formulas is given by the grammar φ ::= ⊤ | p | ¬φ | (φ∧φ) | ♢φ
where p ∈ Π and ⊤ is a logical constant symbol. The truth of a formula φ in a pointed Kripke
model (M,w) is defined as follows: (M,w) |= p ⇔ w ∈ V (p) and (M,w) |= ♢φ ⇔ (M, v) |= φ

for some v ∈ W such that (w, v) ∈ R. The semantics for ⊤,¬,∧ is the usual one.
Now, let us fix a set VAR := {Vi | i ∈ N } of schema variables. We will mostly use

meta variables X,Y, Z, and so on to denote symbols in VAR. The set VAR is associated with
a linear order <VAR inducing a corresponding linear order <T over any T ⊆ VAR. Given a
set T ⊆ VAR and a set Π ⊆ PROP, the set of (Π, T )-schemata of modal substitution
calculus (or MSC) is the set generated by the grammar φ ::= ⊤ | p | Vi | ¬φ | (φ ∧ φ) | ♢φ,
where p ∈ Π and Vi ∈ T . A terminal clause of MSC (over Π) is a string of the form
Vi(0) :− φ, where Vi ∈ VAR and φ ∈ ML(Π). An iteration clause of MSC (over Π) is a
string of the form Vi :− ψ where Vi ∈ VAR and ψ is a (Π, T )-schema for some set T ⊆ VAR.
In a terminal clause Vi(0) :− φ, the symbol Vi is the head predicate and φ the body of the
clause. Similarly, Vi is the head predicate of the iteration clause Vi :− ψ while ψ is the body.

Let T = {Y1, . . . , Yk} ⊆ VAR be a finite, nonempty set of k distinct schema variables. A
(Π, T )-program Λ of MSC consists of two lists

Y1(0) :− φ1 Y1 :− ψ1

...
...

Yk(0) :− φk Yk :− ψk

of clauses (or rules) and two sets of predicates P ⊆ T and A ⊆ T , namely print predicates
and respectively attention predicates of Λ. The first list contains k terminal clauses over Π
and the second contains k iteration clauses whose bodies are (Π, T )-schemata. The set P ∪ A
is the set of appointed predicates of Λ. We call Λ a Π-program if it is a (Π, T )-program
for some T ⊆ VAR. The set of head predicates of Λ is denoted by HEAD(Λ). For each
variable Yi ∈ HEAD(Λ), we define that Y 0

i := φi. Recursively, assume we have defined an
ML(Π)-formula Y ni for each Yi ∈ HEAD(Λ). The formula Y n+1

j is obtained by replacing
each Yi in ψj by Y ni . Then Y ni is the nth iteration formula of Yi. More generally, if φ
is a (Π, T )-schema, then we let φn+1 denote the ML(Π)-formula obtained from the schema
φ by simultaneously replacing each Yi ∈ HEAD(Λ) with Y ni . Now, let (M,w) be a pointed
Π-model. We define that (M,w) |= Λ if for some n and some attention predicate Y of Λ, we
have (M,w) |= Y n. In Section 3, we will also define output conditions for MSC using print
predicates.

For every (Π, T )-schema ψ, we let md(ψ) denote the modal depth of ψ (i.e., the
maximum nesting depth of diamonds ♢ in ψ). We let mdt(Λ) (respectively, mdi(Λ)) denote
the maximum modal depth of the bodies of the terminal clauses (resp., of the iteration
clauses) of Λ. By SUBS(Λ) we denote the set of all subschemata of Λ, including head
predicates and bodies of iteration and terminal clauses. If S is a set of schemata, SUBS(S)
is the set of all subschemata of all schemata in S.

▶ Example 1. Given a proposition symbol p and a pointed Kripke model (M,w), we say
that p is reachable from w if there exists a directed path from w to a node v in M such that
(M,v) |= p. Now, consider the program X(0) :− p, X :− ♢X where X is the appointed
predicate. It is easy to show that (M,w) |= Xj for some j < n if and only if p is reachable
from w, where n is the domain size of M .
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Next we define a class of Kripke models which includes identifiers that are encoded by
proposition symbols. Assume that p1, . . . , pℓ enumerate all the distinguished propositions in
Π in the order <PROP. For each node w of a Kripke model M over Π, we let ID(w) denote
the identifier of w, that is, the |Π1|-bit string such that the ith bit of ID(w) is 1 if and
only if (M,w) |= pi. The model M is a Kripke model with identifiers if ID(w) ̸= ID(w′)
for each pair of distinct nodes w and w′ of M . We let K(Π,∆) denote the class of finite
Kripke models (W,R, V ) over Π with identifiers such that the out-degree of each node is
at most ∆ ∈ N. For a node w, let s1, . . . , sd be the identifiers of the members of succ(w)
in the lexicographic order. A node v ∈ succ(w) is the ith neighbour of w iff ID(v) = si.
Analogously to ID(w), if p1, . . . , pm enumerate all the propositions in Π in the order <PROP,
then the local input of a node w of a Kripke model M over Π is the m-bit string t such
that the ith bit of t is 1 if and only if (M,w) |= pi.

2.1 Circuits and distributed computation
Here we first recall some basics related to circuits and then define a related distributed
computation model. A Boolean circuit is a directed acyclic graph where each node of
non-zero in-degree is labeled by one of the symbols ∧,∨,¬. The nodes of a circuit are called
gates. The in-degree of a gate u is called the fan-in of u, and the out-degree of u is fan-out.
The input gates of a circuit are precisely the gates that have zero fan-in; these gates are
not labeled by ∧,∨,¬. The output-gates are the ones with fan-out zero; we allow multiple
output gates in a circuit. Note that gates with ∧,∨ can have any positive fan-in (also 1).
The fan-in of every gate labeled with ¬ is 1. The size |C| of a circuit C is the number of
gates in C. The depth d(C) of C is the longest path length (number of edges) from an input
gate to an output gate. The height h(G) of a gate G in C is the longest path length from
an input gate to the gate G. Thus the height of an input gate is zero. Both the input gates
and output gates of a circuit are linearly ordered. A circuit with n input gates and k output
gates then computes a function of type {0, 1}n → {0, 1}k. This is done in the natural way,
analogously to the Boolean operators corresponding to ∧,∨,¬, see for example [13] for the
formal definition. The output of the circuit is the binary string determined by the output
bits of the output gates.

From a Boolean formula it is easy to define a corresponding circuit by considering its
inverse tree representation, meaning the tree representation with edges pointing in the inverse
direction (toward the root). A node v in the inverse tree representation is the parent of w if
there is an edge from w to v. Then w is a child of v. Note that input gates do not have
any children and output gates have no parents. The descendants of w are defined such
that every child of w is a descendant of w and also every child of a descendant of w is a
descendant of w.

▶ Definition 2. Let Π be a set of propositions and ∆ ∈ N. A circuit for (Π, ∆) is a circuit
C that specifies a function f : {0, 1}|Π|+k(∆+1) → {0, 1}k for some k ∈ N. The number k is
called the state length of C. The circuit C is also associated with sets A ⊆ [k] and P ⊆ [k]
of attention bits and print bits, respectively. For convenience, we may also call a circuit
C for (Π,∆) a message passing circuit (or MPC) for (Π,∆). The set A∪ P is called the
set of appointed bits of the circuit.

A circuit C is suitable for a Kripke model M ∈ K(Π,∆′) with identifiers if C is a message
passing circuit for (Π,∆) for some ∆ ≥ ∆′. A circuit C for (Π,∆) with |Π1| = m is referred
to as a circuit for m ID-bits. We let CIRC(Π0,∆) denote the set of all circuits C such
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9:6 Descriptive Complexity for Distributed Computing with Circuits

that, for some Π with Π ∩ PROP0 = Π0, the circuit C is a circuit for (Π,∆). We stress that
strictly speaking, when specifying an MPC, we should always specify (together with a circuit)
the sets Π, ∆, the attention and print bits, and an ordering of the input and output gates.

Before giving a formal definition of distributed computation in a Kripke model M ∈
K(Π,∆) with a circuit C for (Π,∆), we describe the process informally. Each node u of M
runs a copy of the circuit C. The node u is associated with a local input, which is the binary
string that corresponds to the set of propositions true at u. In the beginning of computation,
the circuit at u reads the string s · 0ℓ at u, where s is the local input at u and ℓ = k(∆ + 1),
so 0ℓ is simply the part of the input to C that does not correspond to proposition symbols.
Then the circuit enters a state which is the k-bit output string of C. Let s(0, u) denote this
string and call it the state in communication round 0 at the node u. Now, recursively,
suppose we know the state s(n, u) in communication round n ∈ N for each node u. The state
s(n+ 1, u) for round n+ 1 at u is then computed as follows.
1. At each node u, the circuit sends s(n, u) to the nodes w such that R(w, u). Note here

that messages flow opposite to the direction of R-edges.
2. The circuit at u updates its state to s(n+ 1, u) which is the k-bit string obtained as the

output of the circuit with the input s · s0 · · · s∆ which is the concatenation of the k-bit
strings si (for i ∈ {0, . . . ,∆}) specified as follows. The string s is the local input at u.
The string s0 is the state s(n, u). Let i ∈ {1, . . . ,m}, where m ≤ ∆ is the out-degree of
u. Then si is the state s(n, vi) of the ith neighbour vi of u. For i > m, we have si = 0k.
We then define computation of MPCs formally. An MPC C for (Π,∆) of state length k

and a Kripke model M = (W,R, V ) ∈ K(Π,∆) define a synchronized distributed system which
executes an ω-sequence of rounds defined as follows. Each round n ∈ N defines a global
configuration fn : W → {0, 1}k. Let tw denote the binary string corresponding to the set
of propositions true at w (i.e., local input). The configuration of round 0 is the function
f0 such that f0(w) is the k-bit binary string produced by C with the input tw · 0k(∆+1).
Recursively, assume we have defined fn. Let v1, . . . , vm ∈ succ(w) be the neighbours of
w (m ≤ ∆) given in the order of their IDs. Let sw be the concatenation tw · s0 · · · s∆ of
k-bit binary strings such that (1) s0 = fn(w), (2) si = fn(vi) for each i ∈ {1, . . . ,m}, (3)
sj = 0k for j ∈ {m + 1, . . . ,∆}. Then fn+1(w) is the output string of C with input sw.
Now, consider the sequence (fn(w))n∈N of k-bit strings that C produces at w. Suppose the
sequence (fn(w))n∈N accepts (resp. outputs p) in round n w.r.t. (k,A, P ). Then w accepts
(resp., outputs p) in round n. Note that the circuit at w keeps executing after round n.

Given a Kripke model M = (W,R, V ), a solution labeling is a function W → {0, 1}∗

associating nodes with strings. The strings represent outputs of the nodes on distributed
computation. We could, e.g., label the nodes with strings corresponding to “yes” and
“no”. A partial solution labeling for M is a partial function from W to {0, 1}∗, that
is, a function of type U → {0, 1}∗ for some U ⊆ W . Partial solution labelings allow for
“divergent computations” on some nodes in W . The global output of a circuit C over a
model M = (W,R, V ) is a function g : U → {0, 1}∗ such that (1) U ⊆ W , (2) for all w ∈ U ,
the circuit C outputs g(w) in some round n, and (3) C does not produce an output for any
v ∈ W \ U . Now, fix a finite set Π0 ⊆ PROP0 of proposition symbols. Intuitively, these are
the “actual” propositions in models, while the set of ID-propositions will grow with model
size. Let M(Π0) denote the class of all finite Kripke models M with IDs and having a set Π
of proposition symbols such that Π ∩ PROP0 = Π0. Thus Π0 is the same for all models in
M(Π0) but the symbols for IDs vary. Consider a subclass M ⊆ M(Π0). Now, a distributed
computing problem over M is a mapping p with domain M that associates to each input
M a (possibly infinite) set p(M) of partial solution labelings for M . The set p(M) represents
the set of acceptable answers to the problem p over M . Many graph problems (e.g., colorings)
naturally involve a set of such answer labelings.
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For ∆ ∈ N, we let M(Π0,∆) denote the restriction of M(Π0) to models with maximum
out-degree ∆. A circuit sequence for M(Π0,∆) is a function F : Z+ → CIRC(Π0,∆) such
that F (n) is a circuit for ⌈log n⌉ ID-bits. Now, F solves a problem p over M(Π0,∆) if
the global output of F (n) belongs to p(M) for each M ∈ M(Π0,∆) of domain size n. Let
c ∈ N. We define DCCc∆[log n] to be the class of distributed computing problems solvable
by a circuit sequence F for some M ∈ M(Π0,∆) of maximum fan-in c circuits such that
the size of F (n) is O(log n). The related LogSpace uniform class requires that each F can
be computed in LogSpace. DCC stands for distributed computing by circuits. Note that
circuit sequences for DCCc∆[log n] are trivially sequences for NC1.

3 Extensions of MSC

The rest of this article is basically a proof of the expressive equivalence of MSC and MPCs
over distributed systems, with a small blow-up in the respective sizes of programs and
circuits. The argument is long, but we have divided it into suitably short lemmas to improve
readability. The argument splits into the following two main parts:
1. equivalence of MPCs and message passing MSC, or MPMSC, an auxiliary logic to be

defined below,
2. equivalence of MPMSC and MSC.
MPMSC is mainly used as a tool, and indeed, MPMSC and the related notions greatly help
shorten and organize our arguments.

We define MPMSC via two further auxiliary logics. Let Π be a set of propositions and
T a set of schema variables. Let ∆ ∈ N. In Multimodal MSC (or MMSC), instead of ♢,
we have the operators ♢1, . . . ,♢∆, and otherwise the syntax is as in MSC. The schema ♢iφ
simply asks if φ is true at the ith neighbour. More formally, if (M,w) is a pointed Kripke
model with identifiers, then (M,w) |= ♢iφ ⇔ (M, vi) |= φ such that (w, vi) ∈ R and vi is the
ith neighbour of w, noting that if the out-degree of w is less than i, then ♢iφ is false at w.
A (Π,∆)-program of MMSC is exactly like a Π-program of MSC but we are only allowed
to use operators ♢1, . . . ,♢∆ instead of ♢. A Π-program Λ of MMSC is a (Π,∆)-program
for any ∆ ≥ d, where d is the maximum subindex in any diamond in Λ. We also fix print
and attention predicates for programs of MMSC. Note that MMSC is not a logic in the
usual sense as the operators ♢i require information about the predicates defining IDs. This
could be remedied via signature changes and limiting attention to multimodal models with
relations having out-degree at most one. This approach would be a bit messy, and the current
approach suffices for this article.

We next define MSC with conditional rules (or CMSC). Here we allow “if-else” rules
as iteration clauses. Let φ1, . . . , φn and ψ1, . . . , ψn and also χ be (Π, T )-schemata of basic
MSC. A conditional iteration clause is a rule of the form X :−φ1,...,φn

ψ1; . . . ;ψn;χ. The
schemata φi are conditions for the head predicate X and the schemata ψi are the related
consequences. The last schema χ is called the backup. Note that when n = 0, we have a
standard MSC clause. Π-programs of CMSC are exactly as for MSC, but we are allowed to
use conditional iteration clauses. Thus a program Λ of CMSC consists of k terminal clauses,
k′ ≤ k conditional iteration clauses and k − k′ standard iteration clauses for some k ∈ Z+.
Again we also fix some sets of schema variables as print and attention predicates.

To fix the semantics, we will specify – as in MSC – the nth iteration formula of each
head predicate. Informally, we always use the first (from the left) condition φi that holds
and thus evaluate the corresponding consequence ψi as the body of our rule. If none of the
conditions hold, then we use the backup. Let Λ be a Π-program of CMSC. First, we let
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the zeroth iteration clause Y 0
i of a head predicate Yi ∈ HEAD(Λ) be the terminal clause

of Yi. Recursively, assume we have defined an ML(Π)-formula Y ni for each Yi ∈ HEAD(Λ).
Now, consider the rule Yi :−φ1,...,φm

ψ1; . . . ;ψm;χ. Let φn+1
j be the formula obtained by

replacing each schema variable Yk in the condition φj by Y nk . The formulae χn+1 and ψn+1
k

are obtained analogously. Then, the formula Y n+1
i is∨

k≤m

(( ∧
j<k

¬φn+1
j

)
∧ φn+1

k ∧ ψn+1
k

)
∨

(( ∧
j≤m

¬φn+1
j

)
∧ χn+1

)
.

Often the backup schema χ is just the head predicate X of the rule. This means the
truth value of the head predicate does not change if none of the conditions hold. We say
that a condition φk is hot at w in round n ≥ 1 if the formula φnk is true at w and none of
the “earlier” formulas φnj for conditions of the same rule (so j < k) are true. Otherwise the
backup is hot. We call a conditional iteration clause (or the corresponding head predicate)
active in round n ≥ 1 at node w if one of the condition formulas of the rule is hot.

We finally specify message passing MSC (or MPMSC) essentially as multimodal MSC
with conditional rules. The (Π,∆)-programs are exactly like (Π,∆)-programs of MMSC
with conditional rules and the following restrictions. (1) The modal depth of terminal clauses
and conditions of rules is zero. (2) The consequences, backups and bodies of standard
iteration clauses all have modal depth at most one. As in MMSC, operators ♢ are not
allowed. A Π-program of MPMSC is defined analogously to a Π-program MMSC. Thus a
program of MPMSC contains k terminal clauses, k′ ≤ k conditional iteration clauses and
k − k′ standard iteration clauses for some k ∈ Z+. We also fix sets of attention and print
predicates. The semantics is defined as for CMSC, noting that now diamonds ♢i are used.
A non-terminal clause of a program of MPMSC is a communication clause if it contains
at least one diamond. A communication clause is listening in round n ∈ Z+ if one of the
following holds. (1) A condition φi is hot and the corresponding consequence has a diamond.
(2) A backup is hot and has a diamond. (3) The rule is not conditional but has a diamond.

3.1 Notions of equivalence and acceptance
Here we introduce useful acceptance and output conditions for programs of all variants
of MSC, including standard MSC. The acceptance conditions will be consistent with the
already given conditions for standard MSC.

Let Λ be a program and A and P the sets of attention and print predicates. Let Y1, . . . , Yk
enumerate the head predicates in Λ in the order <VAR. Let M = (W,R, V ) be a Kripke
model. Each round n ∈ N defines a global configuration gn : W → {0, 1}k given as follows.
The configuration of the nth round is the function gn such that the ith bit of gn(w) is 1
if and only if (M,w) |= Y ni . If the sequence (gn(w))n∈N accepts (respectively outputs p)
in round n with respect to (k,A,P), then we say that the node w accepts (respectively
outputs p) in round n. Then n is the output round (also called the computation time)
of Λ at w. Note that the output round is a unique round since the accepting round is unique
by the definition of infinite bit sequences where print and attention bits are fixed. We write
(M,w) |= Λ if node w accepts in some round n. For a program Λ of message passing MSC
and model M , a global communication round is a computation round n where at least
one communication clause is listening in at least one node of M . A program Λ outputs p at
w in global communication time m if the output round of Λ at w is n and m ≤ n is the
number of global communication rounds in the set {0, . . . , n} of rounds in the computation.

Now, let L denote the set of all programs of all of our variants of MSC. Let C denote
the set of all MPCs. For each Λ ∈ L, we say that a Kripke model M is suitable for Λ if
M interprets (at least) all the proposition symbols that occur in Λ. For a message passing
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circuit for (Π,∆), we say that M is suitable for the circuit if the set of proposition symbols
interpreted by M is precisely Π and the maximum out-degree of M is at most ∆. Now, let x
and y be any members of C ∪ L. We say that x and y are (acceptance) equivalent if for
each Kripke model M that is suitable for both x and y and for each node w in the model, x
and y produce the same output at w or neither produce any output at all at w. We say that
x and y are strongly equivalent, if for each M suitable for x and y and for each node w in
the model and in every round n, the objects x and y produce the same appointed string rn
at w. We also define a special weakened equivalence notion for MPMSC and MPC. We say
that a program Λ of MPMSC and a circuit C are strongly communication equivalent,
if for each M suitable for both Λ and C and for each node w in the model, the appointed
sequence S of the circuit is precisely the sequence (rj)j∈G of appointed strings of the program,
where G ⊆ Z+ is the set of global communication rounds n of the program. Moreover, the
MPMSC must not accept in any non-communication round. Finally, the length or size of
a program (respectively, a schema) of any variant of MSC is the number of occurrences of
proposition symbols, head predicates, and operators ⊤, ¬, ∧, ♢, ♢i. The modal depth md(Λ)
of a program Λ is the maximum modal depth of its rule bodies (iteration and terminal).

4 Linking MPMSC to message passing circuits

To obtain the desired descriptive characterizations, we begin by translating MPCs to MPMSC.

4.1 From MPC to MPMSC
To ultimately translate MPCs to MPMSC, we will first show how to simulate the evaluation
of a standard Boolean circuit with a diamond-free program of MSC. Let C be a circuit of
depth d with ℓ input and k output gates. Let L denote any of the variants of MSC. Fix
schema variables I1, . . . Iℓ and O1, . . . , Ok, with both sequences given here in the order <VAR.
Consider a program Λ of L with the following properties.
1. The set of schema variables of Λ contains (at least) the variables I1, . . . Iℓ, O1, . . . , Ok.
2. The program has no diamond operators (♢ or ♢i) and contains no proposition symbols.
3. The terminal clause for each schema variable X is X(0) :− ⊥.
Let P : {⊥,⊤}ℓ → {⊥,⊤}k be the function defined as follows. For each input (x1, . . . , xℓ) ∈
{⊥,⊤}ℓ to P , modify Λ to a new program Λ(x1, . . . , xℓ) by changing each terminal clause
Ii(0) :− ⊥ to Ii(0) :− xi. Let (y1, . . . yk) ∈ {⊥,⊤}k be the tuple of truth values of the dth
iteration formulas Od1 , . . . , Odk, where we recall that d is the depth of our circuit C. Then we
define P (x1, . . . , xℓ) := (y1, . . . , yk). Now, if P defined this way is identical to the function
computed by C, then Λ simulates the circuit C (w.r.t. I1, . . . , Iℓ and O1, . . . , Ok).

▶ Lemma 3. For each circuit C of size m and with n edges, there exists a program of L of
size O(m+ n) that simulates C, where L is any of the variants of MSC. Furthermore, with
constant fan-in, the size of the program is O(m).

Proof. Assume first that the depth d of C is at least 1. Next we modify C so that we obtain
a circuit C ′ with the following properties: (1) The height of each output gate is the same, (2)
the depth of C ′ is O(d), (3) the size of C ′ is O(|C|) and (4) C ′ specifies the same function as
C. The formal construction of C ′ is given in [1]. Then we define a schema variable for each
gate of C ′. The variables for the input gates are I1, . . . , Iℓ while those for the output gates
are O1, . . . , Ok. Let X be a schema variable for a ∧-gate G of C ′. We define a corresponding
terminal clause X(0) :− ⊥ and iteration clause X :− Y1 ∧ · · · ∧ Yj , where Y1, . . . , Yj are the
variables for the gates that connect to G. With constant fan-in we have a constant amount of
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connecting gates and therefore the length of each rule is O(1). Similarly, for a variable X ′ for
a disjunction gate G′, we define the rules X ′(0) :− ⊥ and X ′ :− Y ′

1 ∨· · ·∨Y ′
j where Y ′

1 , . . . , Y
′
j

are the variables for the gates connecting to G′. For negation, we define X ′′(0) :− ⊥ and
X ′′ :− ¬Y , where Y is the variable for the connecting gate. We let the terminal clauses for
the head predicates Ii relating to input gates be Ii(0) :− ⊥. This choice of rules is irrelevant,
as when checking if a program simulates a circuit, we modify the terminal rules to match
input strings. The related iteration clause is Ii :− Ii.

Finally, in the extreme case where the depth of C is 0 (each input gate is also an output
gate), we define the program with the head predicate sequence (I1, . . . , Iℓ) = (O1, . . . , Ok) and
such that the (terminal and iteration) clause for each head predicate Ii = Oi is Ii :− ⊥. ◀

▶ Theorem 4. Given an MPC for (Π,∆) of size m, we can construct a strongly communic-
ation equivalent (Π,∆)-program of MPMSC. Supposing a constant bound c for the fan-in of
MPCs, the size of the program is linear in the size of the circuit. Moreover, the computation
time is O(d) times the computation time of the MPC, where d is the depth of the MPC.

Proof. Let C be an MPC for (Π,∆) of state length k. We will first explain informally
how our program ΛC for the circuit C will work. The program ΛC uses k head predicates
to simulate the state of the circuit. We will use Lemma 3 to build our program, and the
operators ♢i will be used to simulate receiving messages of neighbours. The program ΛC
computes in repeated periods of d+ 1 rounds, where d = d(C) is the depth of C. Simulating
the reception of neighbours’ messages takes one round, and the remaining d rounds go to
simulating the evaluation of the circuit.

Now we define our program formally. First we define a clock; the idea is for ΛC to
simulate the computation of C once per each cycle of the clock. We assume that the depth
of C is at least 1, because if it is 0 then the clock is omitted and the rules of the program
are trivial to construct. The clock consists of the head predicates T0, T1, . . . , Td(C) and the
following rules: T0(0) :− ⊥, T0 :− Td(C), T1(0) :− ⊤, T1 :− T0 and for i ∈ [d(C) − 1], we
have Ti+1(0) :− ⊥ and Ti+1 :− Ti. In every round, precisely one of the head predicates Ti
is true and the others are false. In round 0, the only true predicate is T1, and in round
i ∈ [d(C) − 1], the only true predicate is Ti+1. After d(C) rounds the predicate T0 is true,
and in the next round the clock starts over again.

Let ΓC be a program simulating the internal evaluation of the circuit C as given in the
proof of Lemma 3. We will obtain ΛC by using the clock and rewriting some of the iteration
clauses of ΓC as follows. If XG is a head predicate corresponding to a non-input gate G in
ΓC , then we rewrite the corresponding iteration clause XG :− φ to XG :−Th(G) φ;XG, where
h(G) is the height of the gate G.

For every ℓ ∈ [ |Π| ], we let IΠ
ℓ refer to the head predicate of ΓC that corresponds to the

input gate of C that reads the truth value of proposition pℓ. For every i ∈ [k] and j ∈ [∆]0
we let I(i,j) refer to a head predicate of ΓC that corresponds to the input gate of C that
reads the ith value of the state string of the jth neighbour. The “neighbour 0” refers to the
home node. Next, we will rewrite the clauses with head predicates corresponding to input
gates. For every i ∈ [k], we let Oi refer to the head predicate of ΓC that corresponds to the
ith output gate of C. The terminal (respectively, iteration) clause for IΠ

i is rewritten to be
IΠ
i (0) :− pi (resp., IΠ

i :−T0 pi; IΠ
i ). If j ̸= 0, then the terminal (resp., iteration) clause for

every I(i,j) is rewritten to be I(i,j)(0) :− ⊥ (resp., I(i,j) :−T0 ♢jOi; I(i,j)). The terminal (resp.,
iteration) clause for every I(i,0) is rewritten to be I(i,0)(0) :− ⊥ (resp., I(i,0) :−T0 Oi; I(i,0)).
Now, we have obtained the iteration and terminal clauses of ΛC .
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The attention and print predicates of ΛC are defined as follows. Let A ⊆ [k] (resp.
P ⊆ [k]) be the set of the attention (resp., print) bit positions in C. The print predicates
of ΛC are precisely the head predicates Oj , where j ∈ P . If the depth of C is 0, then the
attention predicates of ΛC are precisely the head predicates Oj , where j ∈ A. If the depth
of C is greater than 0, then we add a fresh attention predicate A′ whose terminal clause is
A′(0) :− ⊥ and whose iteration clause is the disjunction of the head predicates Oj where
j ∈ A. This is done to ensure that our program accepts during a communication round.

We analyze how ΛC works. The program executes in a periodic fashion in cycles with
d(C) + 1 rounds in each cycle. In round 0, the program ΛC reads the proposition symbols
and records the local input with the head predicates IΠ

i whose truth values will remain
constant for the rest of the computation. Also, T1 evaluates to true in round 0. In round 1,
the head predicates corresponding to gates at height one are active and thus updated. (Note
that the predicates I(i,j) for input gates are inactive because T0 is false, so they stay false in
round 1, because in round 0 they evaluate to false and the backup has no effect on the truth
value.) From height one, the execution then continues to predicates for gates at height two,
and so on. In round d(C), the head predicates for output gates Oi are active. The program
also outputs if an attention predicate is true. In round d(C) + 1, the predicate T0 is true
and thus the input gate predicates I(i,j) are active, and thereby the program starts again by
updating them using diamonds ♢i. They obtain truth values that correspond to an input
string to our circuit. The program then proceeds to simulate height one in round d(C) + 2,
continuing in further rounds all the way up to height d(C) gates and finishing the second
cycle of the execution of ΛC . The subsequent cycles are analogous. Thus our program ΛC
simulates C in a periodic fashion.

It is easy to check that the program ΛC is strongly communication equivalent to C. The
communication clauses in ΛC are synchronous, i.e., all nodes are listening in the same rounds.
This is because simulating the circuit takes the same amount of time at every node. The
translation is clearly linear in the size of C (for constant fan-in C) due to Lemma 3. ◀

4.2 From MPMSC to MPC
Converting an MPMSC-program to a circuit is, perhaps, easier. The state string of the
constructed MPC essentially stores the values of the head predicates and proposition symbols
used by the program and computes a new state string by simulating the program clauses.
We begin with the following lemma that shows how to get rid of conditional rules.

▶ Lemma 5. Given a Π-program of CMSC, we can construct a strongly equivalent Π-program
of MSC of size linear in the size of the CMSC-program and with the same maximum modal
depth in relation to both terminal and iteration clauses.

Proof. The full proof – given in [1] – is based on expressing the conditions of conditional
clauses within a standard clause. The non-trivial part is to keep the translation linear. This
can be achieved by using the conditions as “flags”. For example, consider a conditional
iteration clause X :−φ1,φ2 ψ1;ψ2;χ. The corresponding standard iteration clause is

X :− (φ1 ∧ ψ1) ∨ (¬φ1 ∧ ((φ2 ∧ ψ2) ∨ (¬φ2 ∧ χ))),

which is clearly equivalent and linear in size to the original conditional iteration clause. This
translation can be easily generalized for arbitrary conditional iteration clauses. ◀

It is easy to get the following corresponding result for MPMSC from the proof of the
previous lemma, recalling that terminal clauses in MPMSC are always of modal depth zero.
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▶ Corollary 6. Given a Π-program of MPMSC of size m, we can construct a strongly
equivalent Π-program of MMSC of size O(m) and with the same maximum modal depth of
iteration clauses and with terminal clauses of modal depth zero. All diamond operators in
the constructed program also appear in the original one.

We are now ready to prove the following.

▶ Theorem 7. Given Π, ∆ and a Π-program of MPMSC of size m, we can build a strongly
equivalent MPC for (Π,∆) of size O(∆m + |Π|) when ∆ > 0 and O(m + |Π|) when ∆ = 0.

Proof. We give the proof idea; the full proof is in [1]. We first transform the MPMSC-program
to a strongly equivalent MMSC-program (Corollary 6). From that program, we construct an
MPC whose state string stores the truth values of head predicates and proposition symbols.
The circuit is essentially constructed directly from the inverse tree representations of clauses.
Head predicates and proposition symbols in the scope of a diamond will correspond to input
gates for bits sent by neighbouring nodes. Moreover, head predicates and propositions not in
the scope of a diamond relate to input gates for the home node. In communication round
zero, the circuit uses a subcircuit constructed from terminal clauses, and in later rounds, it
uses a subcircuit constructed from iteration clauses. ◀

5 Linking standard MSC to MPC and MPMSC

To simulate MPMSC (and MMSC) in MSC, we will need to simulate each ♢i with ♢ only.
The following lemma is the key step in the process. In the lemma, note that while the
computation time may seem large at first, |Π1| is typically logarithmic.

▶ Lemma 8. Given Π and a Π-program of MPMSC of size m where the maximum subindex
of a diamond is I, we can construct an equivalent Π-program of CMSC of size O(I+ |Π1|+m).
The computation time is O(2|Π1|) times the computation time of the MPMSC-program.

Proof. Let us first discuss the key ideas of the proof. The key idea of simulating diamonds
♢i with ♢ is to scan through the neighbours one by one, in the order given by the IDs. To
keep the outputs of our translation small in size, different diamonds ♢i will be “read” in
different rounds. For this, we will use, together with IDs, the notion of a clock.

Clocks are an essential part in the proof, so let us discuss how they operate. A clock
is basically a subprogram controlling head predicates M1, . . . ,Mℓ, where ℓ = |Π1|. At each
node and in each iteration round of a CMSC-program, the truth values of the head predicates
M1, . . . ,Mℓ always define a binary string s with ℓ bits. While s changes during computation,
different nodes have the same s at any given time instant. More formally, letting su(i) denote
s at node u at iteration step i, we have su(i) = sv(i) for all u and v. In the first iteration
step, we have s = 0ℓ, and then, the string s goes through all the ℓ-bit strings in lexicographic
order. After that, the process starts again from 0ℓ.

The clock string s is constant for more than a single iteration round of the CMSC-program.
There are two reasons for this. Firstly, updating the clock string s to the lexicographically
next string takes some time (and uses some auxiliary head predicates). Secondly, the clock
has been designed to help the main program simulate multimodal diamonds ♢i with the
single diamond ♢ of CMSC, and this requires some time. Let us next discuss how the clock
string is indeed used.

For each string s, the main CMSC-program scans through all neighbours at each node.
The goal is to find a neighbour whose ID is a precise match with s. Let XID be a head
predicate that becomes true at each node u precisely at those rounds where the ID of u
matches with s. Then, at node v, checking whether some neighbour has an ID matching the
current string s is reduced to checking if ♢XID holds.
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Using the value of XID at neighbouring nodes, it is easy to simulate each ♢i with ♢, as
long as we reserve enough time for scanning through all neighbours of each node. For the
full formal details, see [1]. ◀

The next theorem follows immediately from the above Lemma and Lemma 5.

▶ Theorem 9. Given Π and a Π-program of MPMSC of size m where the maximum subindex
in a diamond is I, we can construct an equivalent Π-program of MSC of size O(I+ |Π1| +m).
The computation time is 2O(|Π1|) times the computation time of the MPMSC-program.

5.1 A normal form for MSC
A program of MSC[1] is a program of MSC where the modal depth of terminal (respectively,
iteration) clauses is zero (resp., at most one). This normal form of MSC is essentially used
as the tool when translating a program of MSC to MPMSC and ultimately to MPC. We
begin with the following lemma that shows we can force the modal depth of each terminal
clause to zero.

▶ Lemma 10. For every Π-program Λ of MSC, there exists an equivalent Π-program of MSC
where the modal depth of terminal clauses is zero. The size of the program is linear in the
size of Λ and the computation time is linear in the computation time of Λ.

Proof. We sketch the proof; for the full proof, see [1]. The proof is based on (1) using CMSC
suitably in order to modify terminal clauses so that their diamonds become part of iteration
clauses and (2) then translating CMSC to MSC. ◀

We then show that the modal depth of iteration clauses can be reduced to one.

▶ Theorem 11. For every Π-program Λ of MSC, there exists an equivalent Π-program of
MSC[1]. The size of the MSC[1]-program is linear in the size of Λ and the computation time
of the program is O(max(1,md(Λ))) times the computation time of Λ.

Proof. We sketch the proof; for the full proof, see [1]. We first transform the original
MSC-program to one where the modal depth of the terminal clauses is zero by Lemma 10.
Then we use CMSC to replace each subschema of type ♢ψ with a fresh head predicate X♢ψ

such that in the thereby obtained program, the modal depth of each iteration clause is at
most 1. Finally, we translate CMSC to MSC by Lemma 5. ◀

5.2 Linking MSC and MPCs
We are now ready to link MSC to MPCs. In Section 4.1 we proved Theorem 4 that shows we
can translate MPCs to strongly communication equivalent MPMSC-programs of size linear
in the size of the MPC. On the other hand, Theorem 9 shows that we can translate any
MPMSC-program to an equivalent program of MSC. We get the following theorem.

▶ Theorem 12. Given an MPC for (Π,∆), we can construct an equivalent Π-program of
MSC. For a constant bound c for the fan-in of MPCs, the size of the program is linear in
the size of the circuit. The computation time is O(d+ 2|Π1|) times the computation time of
the MPC, where d is the depth of the MPC.

Theorem 7 showed that we can translate an MPMSC-program to a strongly equivalent
MPC. Theorem 11 showed how to translate an MSC-program to a strongly equivalent
MSC[1]-program, implying that translating an MSC-program to an MPMSC-program can be
done without blowing up program size too much. These results directly imply the following.
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▶ Theorem 13. Given Π, ∆ and a Π-program of MSC of size m, there exists an equivalent
MPC for (Π,∆) of size O(∆m + |Π|) when ∆ > 0 and O(m + |Π|) when ∆ = 0. The
computation time is O(max(1, d)) times the computation time of the MSC-program, where d
is the modal depth of the MSC-program.

By the above results, we observe that problems in DCCc∆[log n] can be alternatively
described with sequences of MSC-programs.

Finally, we note that Theorem 4 is one of our main results. It reminds us that communic-
ation time is indeed a different concept than computation time.

6 Brief notes on graph coloring

As proof-of-concept for this article, we briefly and informally discuss the Cole-Vishkin
algorithm [5], a fundamental method used in distributed graph coloring. The CV-algorithm
takes advantage of a phenomenon whereby it is possible to logarithmically reduce the size of
a binary string by replacing it with a binary encoding of one of its positions. By iterating
this technique, it is possible to reduce the size of an n-size string down to three in O(log∗(n))
iterations. Applied as a distributed algorithm to an n-coloring in an oriented tree or forest,
it is possible to reduce the number of colors to single digits in O(log∗(n)) communication
rounds [6]. By extension, Barenboim and Elkin [3] show a number of ways this can be
combined with other simpler iterative algorithms to produce fast (∆ + 1)-color reduction
algorithms, i.e. algorithms that reduce the number of colors from the size of a graph down
to its maximum degree plus one, which is optimal in the worst-case scenario.

While the communication time of these algorithms has been studied before, little is
generally understood about the duration of their local (node-internal) computation and the
necessary program length required to formally express them.

In the full preprint version of this paper [1] (available online), we prove that given a
bound for the degree ∆ of a graph, the CV-algorithm and a broader simple (∆ + 1)-color
reduction algorithm can be expressed with a program of MPMSC with size logarithmic in
the number of nodes. Additionally, the expression is uniform for all degree bounds. In other
words, for any ∆, the Cole-Vishkin algorithm (and the associated (∆ + 1)-color reduction
algorithm) can be expressed in a compact way in MSC and thus also in the related distributed
computing class where MPCs are from NC1. The following theorem is obtained as a result.

▶ Theorem 14. Given a bounded-degree graph with at most n nodes, there exists an MPMSC-
program of size O(log(n)) that defines a (∆+1)-coloring for the graph. The computation time
is O(log(n) log(log(n)) log∗(n)) of which log∗(n) + O(1) are global communication rounds.

By Theorems 14 and 9, we get a program of MSC of size O(|Π1|+log(n)) with an increase
in computation time by a factor of 2O(|Π1|). While the computation time may seem large, note
that |Π1| is typically logarithmic. We emphasize that the computation and communication
times of a program are very different concepts and the former will usually dwarf the latter.

7 Conclusion

We have characterized distributed computation via circuits in terms of the logic MSC. The
translations lead to only polynomial increase in size, and in the constant-degree scenario, the
increase is only linear. In the future, we aim to expand these studies to concern models with
weights, pushing the approach closer to work on neural networks.
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Abstract
We analyse an algorithm solving stochastic mean-payoff games, combining the ideas of relative
value iteration and of Krasnoselskii–Mann damping. We derive parameterized complexity bounds
for several classes of games satisfying irreducibility conditions. We show in particular that an
ϵ-approximation of the value of an irreducible concurrent stochastic game can be computed in
a number of iterations in O(| log ϵ|) where the constant in the O(·) is explicit, depending on the
smallest non-zero transition probabilities. This should be compared with a bound in O(ϵ−1| log(ϵ)|)
obtained by Chatterjee and Ibsen-Jensen (ICALP 2014) for the same class of games, and to a O(ϵ−1)
bound by Allamigeon, Gaubert, Katz and Skomra (ICALP 2022) for turn-based games. We also
establish parameterized complexity bounds for entropy games, a class of matrix multiplication games
introduced by Asarin, Cervelle, Degorre, Dima, Horn and Kozyakin. We derive these results by
methods of variational analysis, establishing contraction properties of the relative Krasnoselskii–Mann
iteration with respect to Hilbert’s semi-norm.
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1 Introduction

1.1 Motivation and context
Stochastic mean-payoff games are a fundamental class of zero-sum games, appearing in
various guises. In turn-based games, two players play sequentially, alternating moves, or
choices of an action, being aware of the previous decision of the other player. Turn-based
games with mean-payoff and finite state and action spaces are among the unsettled problems
in complexity theory: they belong to the complexity class NP ∩ coNP [14, 40] but are
not known to be polynomial-time solvable. We refer the reader to the survey [7] for more
information on the different classes of turn-based games. In contrast, in concurrent games,
at each stage, the two players choose simultaneously one action, being unaware of the choice
of the other player at the same stage. Turn-based games are equivalent to a subclass of
concurrent games (in which in each state, one of the two players is a dummy). The existence
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of the value for concurrent stochastic mean-payoff games is a celebrated result of Mertens and
Neyman [28]. This builds on earlier results by Bewley and Kohlberg, connecting mean-payoff
concurrent games with discounted concurrent games, by making the discount factor tend to 1,
see [11]. Concurrent games are hard to solve exactly: the value is an algebraic number whose
degree may be exponential in the number of states [21]. Moreover, concurrent reachability
games are square-root sum hard [16].

Another class consists of entropy games, introduced by Asarin, Cervelle, Degorre, Dima,
Horn and Kozyakin as an interesting category of “matrix multiplication games” [8]. Entropy
games capture a variety of applications, arising in risk sensitive control [23, 6], portfolio
optimization [3], growth maximization and population dynamics [36, 33, 32, 39]. Asarin et
al. showed that entropy games belong to the class NP ∩ coNP, showing an analogy with turn
based games. In [1], Akian, Gaubert, Grand-Clément and Guillaud showed that entropy
games are actually special cases of stochastic mean-payoff games, in which action spaces are
infinite sets (simplices), and payments are given by Kullback-Leibler divergences.

A remarkable subclass of stochastic mean-payoff games arises when imposing ergodicity
or irreducibility conditions. Such conditions entail that the value of the game is independent
of the initial state. The simplest condition of this type requires that every pair of policies
(Markovian stationary strategies) of the two players induces an irreducible Markov chain.
Then, the solution of the game reduces to solving a nonlinear eigenproblem of the form
T (u) = λe+u, in which u ∈ Rn is a non-linear eigenvector, λ is a non-linear eigenvalue, which
provides the value of the mean-payoff game, e is the unit vector of Rn, and T is a self-map of
Rn, the dynamic programming operator of the game, which we shall refer to as the “Shapley”
operator. In fact, Shapley originally introduced a variant of this operator, adapted to the
discounted case [34]. The undiscounted mean-payoff case was subsequently considered by
Gillette [20]. We refer the reader to [29, 31] for background on Shapley operators and on the
“operator approach” to games, and to [2] for a discussion of the non-linear eigenproblem.

In the one-player case, White [38] introduced relative value iteration, which consist in fixed
point iterations up to additive constants λk ∈ R, i.e. xk+1 = T (xk)−λke. This solves the non-
linear eigenproblem T (u) = λe+u under a primitivity assumption. However, this assumption
appears to be too restrictive in the light of the classical Krasnoselkii–Mann algorithm [25, 27],
which allows one to find a fixed point of a nonexpansive self-map T of a finite dimensional
normed space, by constructing the “damped” sequence xk+1 = (1 − θ)T (xk) + θxk, where
0 < θ < 1. Indeed, it was proposed in [19] to apply this algorithm to the non-linear
eigenproblem T (u) = λe + u, thought of as a fixed point problem in the quotient vector space
Rn/Re. We will refer to this algorithm as the relative Krasnoselskii–Mann value iteration.
An error bound in O(1/

√
k) was derived in [19] for this algorithm, as a consequence of a

general theorem of Baillon and Bruck [10], and the existence of an asymptotic geometric
convergence rate was established in a special case. This left open the question of obtaining
stronger iteration complexity bounds, in a “white box model”, for specific classes of stochastic
mean-payoff games.

1.2 Contribution
We apply the relative Krasnoselskii–Mann value iteration algorithm to deduce complexity
bounds for several classes of stochastic games. We consider in particular unichain concurrent
stochastic mean-payoff games, in which every pair of policies of the two players induces a
unichain transition matrix (i.e., a stochastic matrix with a unique final class). We define pmin
to be the smallest non-zero off-diagonal transition probability in the model. Corollary 20
shows that the relative Krasnoselskii–Mann iteration yields an ϵ-approximation of the value
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of the game, after C| log ϵ| iterations. The factor C is exponential in the bit-size of the input,
it has an essential term of the form kθ−k, in which k ⩽ n is a certain “unichain index”,
which is equal to 1 if all the transition probabilities are positive, θ = pmin/(1 + pmin), and
n denotes the number of states. Then, we consider the special case of unichain turn-based
games, with rational transition probabilities whose denominator divides M . Theorem 23
shows that optimal policies can be obtained after a number of iterations of order Mk. The
main tool is Theorem 19, which shows that a suitable iterate of the Shapley operator of a
unichain concurrent game is a contraction in Hilbert’s seminorm. This theorem is proved
using techniques of variational analysis, in particular we use a classical result of Mills [30],
characterizing the directional derivative of the value of a matrix game, and properties of
nonsmooth semidifferentiable maps.

Finally, we introduce a variant of the relative Krasnoselkii–Mann algorithm, adapted to
entropy games. Theorem 26 shows that an irreducible entropy game can be solved exactly
in a time of order (1 + A/m)k where k ⩽ n is a certain “irreducibility index”, m ⩾ 1 is the
smallest multiplicity of an off-diagonal transition, and A is a measure of the ambiguity of
the game. In particular, we have W ⩽ A ⩽ n1−1/nW where W is the maximal multiplicity
of a transition. The proof exploits the Birkhoff-Hopf theorem, which states that a positive
matrix is a contraction in Hilbert’s projective metric.

The proofs of the present results can be found in the extended version of this article [4].

1.3 Related work
The algorithmic approach of stochastic mean-payoff games games satisfying irreducibility con-
ditions goes back to the work of Hoffman and Karp [22], applying policy iteration. Chatterjee
and Ibsen-Jensen [13] studied concurrent stochastic mean-payoff games, under appropriate
conditions of ergodicity. They showed in particular that the problem of approximation of the
value is in FNP, and that this approximation problem, restricted to turn-based ergodic games,
is at least as hard as the decision problem for simple stochastic games. They also showed that
value iteration provides and ϵ-approximation of the value of a concurrent stochastic game
statisfying an irreducibility condition in O(τϵ−1| log ϵ|) iterations, where τ denotes a bound
of the passage time between any two states under an arbitrary strategy, see Theorem 18, ibid.
A recent “universal bound” on value iteration by Allamigeon, Gaubert, Katz and Skomra [5,
Th. 13] entails an improvement of this bound to O(τϵ−1). Corollary 20 further improves this
bound to get C| log ϵ|. However, the later result requires an unichain assumption, whereas
the assumption of [5, Th. 13] is milder.

The question of computing the value of a concurrent discounted stochastic game has
been studied by Hansen, Koucký, Lauritzen, Miltersen and Tsigaridas in [21], who showed,
using semi-algebraic geometry techniques, that an ϵ-approximation of the value of a general
concurrent game can be obtained in polynomial time if the number n of states is fixed. The
exponent of the polynomial is of order O(n)n2 and it was remarked in [21] that “getting a
better dependence on n is a very interesting open problem”. Boros, Gurvich, Elbassioni and
Makino considered the notion of ϵ-ergodicity of a concurrent mean-payoff game, requiring
that the mean-payoff of two initial states differ by at most ϵ. They provided a potential-
reduction algorithm allowing one to decide ϵ-ergodicity, and to get an ϵ-approximation of the
value, with a dependence in ϵ of order ϵ−O(22nn max(|A|,|B|)), see [12]. Attia and Oliu-Barton
developed in [9] a bisection algorithm, with a complexity bound polynomial in | log ϵ| and
in |A|n and |B|n where A, B are the action spaces. In contrast to these three works, our
approach only applies to the subclass of unichain concurrent games, but its complexity has a
better dependence in the number of states; in particular, the exponents in our bound is at
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most n, and the execution time grows only polynomially with the numbers of actions |A|
and |B|. Moreover, our approach applies more generally to infinite (compact) action spaces
(we only need an oracle evaluating the value of a possibly infinite matrix game up to a given
accuracy).

The analysis of relative value iteration, using contraction techniques, goes back to the work
of Federguen, Schweitzer and Tijms [17], dealing with the one-player and finite action spaces
case, under a primitivity condition. The novelty here is the analysis of the concurrent two-
player case, as well as the analysis of the effect of the Krasnoselskii–Mann damping, allowing
one to replace earlier primitivity conditions by a milder unichain condition. Moreover, even
in the one-player case, our formula for the contraction rate given in Theorem 19 improves
the one of [17].

Our results of Section 9 dealing with entropy games are inspired by the series of works [8,
1, 5]. The subclass of “Despot-free” entropy games can be solved in polynomial time [1], and
it is an open question whether general entropy games can be solved in polynomial time. The
approach of [5] entails that one can get an ϵ-approximation of the value of an entropy game
in O(ϵ−1) iterations, where the factor in the O(·) is exponential in the parameters of the
game. This bound is refined here to O(| log ϵ|), in which the factor in the O(·) depends on a
measure of “ambiguity” – but our approach requires an irreducibility assumption.

2 Preliminary results on Shapley operators

Let n be an integer. A map T : Rn → Rn is said to be order-preserving when: ∀x, y ∈
Rn, x ⩽ y =⇒ T (x) ⩽ T (y), where ⩽ denotes the standard partial order of Rn. It is
additively homogeneous when: ∀x ∈ Rn, ∀λ ∈ R, T (x + λe) = T (x) + λe where e is the vector
of Rn having 1 in each coordinate.

▶ Definition 1. A map T : Rn → Rn is an (abstract) Shapley operator if it is order-preserving
and additively homogeneous.

We will justify the terminology “Shapley operator” in the next section, where we give
concrete examples, arising as dynamic programming operators of different classes of zero-sum
repeated games. We set [n] := {1, . . . n}. For any x ∈ Rn, we denote t(x) := maxi∈[n] xi and
b(x) := mini∈[n] xi (read “top” and “bottom”). We define the Hilbert’s seminorm of x by:
∥x∥H = t(x) − b(x). Since ∥x∥H = 0 iff x ∈ Re, we get that ∥ · ∥H is actually a norm on
the quotient vector space Rn/Re. We also notice that ∥x∥∞ = inf{λ ∈ R+ | −λe ⩽ x ⩽ λe}
and ∥x∥H = inf{β − α ∈ R+ | α, β ∈ R, αe ⩽ x ⩽ βe}. It is easy to show, thanks to these
expressions, that a Shapley operator T is non-expansive (i.e., 1-Lipschitz) for ∥ · ∥H and
for ∥ · ∥∞. Then, it induces a self-map T on the quotient vector space Rn/Re, sending the
equivalence class x + Re to T (x) + Re, and which is non-expansive.

▶ Definition 2. We define the escape rate χ(T ) of a Shapley operator T as limk→∞ k−1T k(v),
where v is an arbitrary vector in Rn. The lower and upper escape rates are defined respectively
by χ(T ) = limk→∞ k−1b(T k(v)) and χ(T ) = limk→∞ k−1t(T k(v)).

Since T is nonexpansive in the sup-norm, the existence and the values of these limits are
independent of the choice of v ∈ Rn. In general, the escape rate χ(T ) = limk→∞ k−1T k(v)
may not exist, but a subadditive argument shows that the lower and upper escape rates
always exist, see e.g. [18]. A fundamental tool to establish the existence of the escape rate is
to consider the following ergodic equation.

▶ Definition 3. We say that the ergodic equation has a solution when there exists λ ∈ R
and u ∈ Rn such that : T (u) = λe + u.
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▶ Observation 4. If the above ergodic equation is solvable, then χ(T ) = λe. More generally,
if αe + v ⩽ T (v) ⩽ βe + v for some v ∈ Rn and α, β ∈ R, then α ⩽ χ(T ) ⩽ χ(T ) ⩽ β.

Proof. By an immediate induction, and as T is order-preserving and additively homogeneous
we have : kαe + v ⩽ T k(v) ⩽ kβe + v. Then, kα + b(v) ⩽ b(T k(v)) ⩽ t(T k(v)) ⩽ kβ + t(v).
Dividing by k and letting k tend to infinity, we obtain the second statement. ◀

We are inspired by the following observation from fixed point theory.

▶ Observation 5. Suppose now that T q is γ-contraction in Hilbert’s seminorm ∥ · ∥H , for
some q ⩾ 1 and 0 < γ < 1. Then, the ergodic equation is solvable.

Shapley operators include (finite dimensional) Markov operators, which are of the form
T (x) = Mx, where M is a n × n stochastic matrix (meaning that M has nonnegative entries
and row sums one). In this case, an exact formula is known for the contraction rate. In fact,
one can consider the operator norm of M , thought of as a linear map acting on the quotient
vector space Rn/Re, ∥M∥H = sup

u/∈Re

∥Mu∥H
∥u∥H

.

▶ Theorem 6 (Corollary of [15]). ∥M∥H = δ(M) := 1−min1⩽i<j⩽n

{ ∑
k∈[n] min(Mik, Mjk)

}
.

The term δ(M) is known as Dobrushin ergodicity coefficient.

3 Two classes of zero-sum two-player repeated games

We next recall the definition and basic properties of two classes of zero-sum two-player games
with finite state spaces. More details can be found in [29] for stochastic games and in [8, 1]
for entropy games.

3.1 Concurrent repeated zero-sum stochastic two-player games
We assume that the state space is equal to [n] = {1, . . . , n}. We call the two players “Min”
and “Max”. The game is specified by the following data. For every state i ∈ [n], we are given
two non-empty compact sets A(i) and B(i), representing the admissible actions of players
Min and Max, respectively. For every i ∈ [n] and every choice of actions (a, b) ∈ A(i) × B(i),
we are given a real number rab

i , representing an instantaneous payment, and a stochastic
vector P a,b

i = (P ab
ij )j∈[n], meaning that P ab

ij ⩾ 0 and that
∑

j∈[n] P ab
ij = 1. We assume that

the functions (a, b) 7→ rab
i and (a, b) 7→ P a,b

i are continuous.
The concurrent game is played in successive stages, starting from a known initial state i0

at stage 0. We denote by ak and bk the actions selected by Players Min and Max at stage
k, respectively, and by ik the state at this stage. The history until stage k consists of the
sequence Hk = ((iℓ, aℓ, bℓ)0⩽ℓ<k, ik). A randomized strategy of Player Min (resp. Max) is a
collection of measurable functions assigning to every history Hk a probability measure αk

(resp. βk) on the compact set A(ik) (resp. B(ik)). At stage k, being informed of the history
Hk up to this stage, Player Min draws a random action ak according to the probability
measure αk, and similarly, Player Max draws a random action bk according to the probability
measure βk. Then, Player Min makes to Player Max an instantaneous payment of rak,bk

ik
,

and the next state ik+1 is drawn randomly according to the probability measure (P akbk
ik,j )j∈[n]

on the state space [n], i.e., the conditional probability that ik+1 = j, given the history Hk

and actions ak, bk, is given by P akbk
ik,j . We shall say that a strategy is pure or deterministic

if the action of the player is chosen as a deterministic function of the history. We denote
by σk (resp. τk) the strategy of Player Min (resp. Max) at stage k, and denote by σ and τ
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the sequences (σk)k⩾0 and (τk)k⩾0. In this way, to any initial state i0 ∈ [n] and any pair of
strategies (σ, τ) of the two players is associated the infinite random sequence (ik, ak, bk)k⩾0.
We denote by Eσ,τ

i0
the expectation operator with respect to this process.

We shall consider special classes of strategies. We denote by ∆X the set of probability
measures on a compact set X. A randomized policy of Player Min is a map α : [n] →
∪i∈[n]∆A(i), i 7→ αi. For each i ∈ [n], dαi(a) determines the probability an action a ∈ Ai

is chosen, according to this policy. Thus, the set of randomized policies of Min, ΠMin
R , can

be identified to
∏

i∈[n] ∆A(i). A policy of Min is said to be pure if for all i ∈ [n], αi is a
Dirac measure, so that dαi = δai

for some ai ∈ Ai. Such a policy prescribes to play the
deterministic action ai when in state i. Therefore, a pure policy is uniquely specified by the
map i 7→ ai. This allows us to identify the set of pure policies, denoted by ΠMin

P , to the
product

∏
i∈[n] Ai. A randomized Markovian strategy σ of Player Min is a strategy such

that the decision prescribed by σk depends only on the current state ik. In other words, it is
obtained by selecting, at each time step, a randomized policy of Player Min, and playing
the action according to this policy. A Markovian strategy is pure if only pure policies are
selected. It is stationary if the same policy is applied at every time step k. In this way, a
pure (resp. randomized) Markovian stationary strategy can be identified to a pure (resp.
randomized) policy. We shall use the same notation and terminology for Player Max, mutatis
mutandis. In particular, we denote by ΠMax

R and ΠMax
P the sets of randomized and pure

policies of Player Max. We shall also denote by ΠP = ΠMin
P × ΠMax

P and ΠR = ΠMin
R × ΠMax

R
the spaces of pairs of policies.

Given an initial state i0 and a pair of strategies (σ, τ) of the two players, the expected
payment received by Player Max in horizon N is defined by

JN
i0

(σ, τ) := Eσ,τ
i0

[
N−1∑
k=0

rak,bk

ik

]
.

We shall denote by JN (σ, τ ) the vector of Rn with the above i0 entry, for each i0 ∈ [n]. The
finite horizon game has a value vN ∈ Rn and has a pair of optimal (randomized) strategies
(σ∗, τ∗), meaning that

JN (σ∗, τ) ⩽ vN = JN (σ∗, τ∗) ⩽ JN (σ, τ∗) , (1)

for all pairs (σ, τ) of strategies, see [29]. Moreover, one can choose the pair of optimal
strategies (σ∗, τ∗) to be Markovian, that is (σ∗

k, τ∗
k ) ∈ ΠR for all k ⩽ N (but it generally

depends on k and N). These optimal strategies can be obtained by using the dynamic
programming equation of the game, as follows.

For any i, j ∈ [n], αi ∈ ∆A(i) and βi ∈ ∆B(i), let us denote

rαi,βi

i =
∫

A(i)×B(i)
ra,b

i dαi(a)dβi(b) and P αi,βi

i,j =
∫

A(i)×B(i)
P a,b

i,j dαi(a)dβi(b) . (2)

This extends the functions (a, b) 7→ ra,b
i and (a, b) 7→ P a,b

i,j from A(i) × B(i) to ∆A(i) × ∆B(i).
We then define the Shapley operator T of the concurrent game as the map T : Rn → Rn

such that

Ti(v) = min
αi∈∆A(i)

max
βi∈∆B(i)

(
rαi,βi

i +
∑

j∈[n]

P αi,βi

ij vj

)
, for i ∈ [n], v ∈ Rn . (3)

Note that in the above expression the infimum and supremum commute, owing to the
compactness of action spaces, and continuity assumptions on the functions (a, b) 7→ ra,b

i and
(a, b) 7→ P ab

ij (this follows from Sion’s minimax theorem). Moreover, the operator T satisfies
the properties of Definition 1.
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Then, the value of the concurrent game in finite horizon is obtained from the recurrence
equations: v0 = 0, vN = T (vN−1). Moreover, optimal strategies of the game when the
remaining time is k < N (or at stage N − k) are obtained by choosing optimal policies α and
β with respect to the vectors vk, that is such that αi and βi are optimal in the expression of
Ti(vk) in (3).

We now describe the mean-payoff game, which is obtained by considering the Cesaro
limit of the payoff as the horizon N tends to infinity. More precisely, we set:

χ+
i0

(σ, τ) := lim sup
N→∞

N−1JN
i0

(σ, τ) χ−
i0

(σ, τ) := lim inf
N→∞

N−1JN
i0

(σ, τ) .

We shall say that the game with mean-payoff has a value χ∗ ∈ Rn if for all ε > 0, there exists
strategies σε, τ ε of the two players which are ε-optimal, meaning that for every strategies
σ and τ , −εe + χ+(σε, τ) ⩽ χ∗ ⩽ χ−(σ, τ ε) + εe. Mertens and Neyman [28], building on a
result of Bewley and Kohlberg [11], showed that when the action spaces A(i) and B(i) are
finite, the mean-payoff game has a value (actually, in a stronger uniform sense). Moreover,
the value coincides with the escape rate of the Shapley operator, i.e., χ∗ = limk T k(0)/k.
A counter-example of Vigeral shows that these properties do not carry over to the case of
general compact action spaces [37].

One particular case that will interest us is when the ergodic equation is solvable, that is
when there exists λ ∈ R and v ∈ Rn such that T (v) = λe + v. In that case, χ∗ = λe and
there exists optimal randomized strategies for the two players which are both Markovian
and stationary. Such a pair of strategies is obtained by choosing a pair (α, β) of policies such
that α and β achieve the minimum and the maximum, respectively, in the expression of T (v)
in (3). We shall see that the ergodic equation is always solvable under a unichain condition,
even in the case of compact action spaces (Theorem 11).

A remarkable subclass of concurrent games consists of turn-based games. Then, the
actions spaces A(i) and B(i) are required to be finite, and for every state i ∈ [n], we assume
that either A(i) or B(i) is a singleton. In other words, there is a bipartition [n] = IMin ⊎ IMax
of the set of states, so that in every state i ∈ IMin (resp. IMax), Min (resp. Max) is the
only player who has to take a decision. Then, the Shapley operator of the game reduces to
Ti(x) = mina∈A(i) maxb∈B(i)

(
ra,b

i +
∑

j P a,b
i,j xj

)
, for i ∈ [n], where again the min and max

commute, because in every i ∈ [n], either the min or the max is taken over a set reduced
to a singleton. When the ergodic equation T (v) = λe + v of a turn-based game is solvable,
one obtains pure optimal policies in the mean-payoff game, by selecting actions that achieve
the minimum and the maximum in each coordinate [T (v)]i with i ∈ [n]. More generally, the
existence of pure optimal policies for turn-based mean-payoff stochastic games was shown by
Liggett and Lippman [26]. An illustrative example is given in Appendix A.

3.2 Entropy games
Entropy games were introduced in [8]. We use here the slightly more general model of [1, 5],
to which we refer for background. An entropy game is a turn-based game played on a
(finite) digraph (V,E), with two players, called “Despot” and “Tribune”, and an additional
non-deterministic player, called “People”. We assume the set of vertices V has a non-trivial
partition: V = VD ⊎ VT ⊎ VP . Players Despot, Tribune, and People control the states in VD,
VT and VP respectively, and they alternate their moves, i.e., E ⊂ (VD × VT ) ∪ (VT × VP ) ∪
(VP ×VD). We suppose that every edge (p, d) ∈ E with p ∈ VP and d ∈ VD is equipped with
a multiplicity mpd which is a (positive) natural number. For simplicity of exposition, we
shall define here the value of an entropy game using only pure policies. More precisely, a
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(pure) policy σ of Despot is a map which assigns to every node d ∈ VD a node t such that
(d, t) ∈ E. Similarly, a policy τ of Tribune is a map which assigns to every node t ∈ VT a
node p ∈ VP . We denote by n the cardinality of VD. Such a pair of policies determine a
n × n matrix Mσ,τ , such that Mσ,τ

d,d′ = mτ(σ(d)),d′ . Given an initial state d̄ ∈ VD, we measure
the “freedom” of Player People by the limit R(σ, τ) := limk→∞[((Mσ,τ )ke)d̄]1/k. A pair of
(pure) policies determine a subgraph Gσ,τ , obtained by keeping only the successor prescribed
by σ for every node of VD, and similarly for τ and VT . Then, the “freedom” of player
People is precisely the geometric growth rate of the number of paths of length 3k starting
from node d̄, counted with multiplicities, as k → ∞. In general, the graph Gσ,τ may have
several strongly connected components, and it is observed in [5] that R(σ, τ) coincides with
the maximal spectral radii of the diagonal blocks of the matrix Mσ,τ corresponding to the
strongly connected components to which the initial state d̄ has access in Gσ,τ . In an entropy
game, Despot wishes to minimize the freedom of People, whereas Tribune (a reference to the
magistrate of Roman republic) wishes to maximize it. It is shown in [1] that the entropy
game has a value in the space of pure policies, meaning that there exists pure policies σ∗, τ∗,
such that R(σ∗, τ) ⩽ R(σ∗, τ∗) ⩽ R(σ, τ∗) for all pure policies σ, τ . (Actually, more general,
history dependent, strategies are considered in [1], and it is shown there that pure policies
are optimal).

The dynamic programming operator of an entropy game is the self-map F of Rn
>0 given

by Fd(x) = mint∈VT ,(d,t)∈E maxp∈VP ,(t,p)∈E

∑
d′∈VD,(p,d′)∈E mp,d′xd′ , for d ∈ VD. Then, the

operator T := log ◦F ◦ exp is a Shapley operator. It is shown in [1] that the value of the
entropy game with initial state d̄ is given by the limit limk→∞[(F k(e))d̄]1/k.

4 The unichain property

Recall that to every n × n nonnegative matrix M is associated a digraph with set of nodes
[n], such that there is an arc from i to j if Mij > 0. The matrix is irreducible if this digraph
is strongly connected. It is unichain if this digraph has a unique final strongly connected
component (a strongly components is final if any path starting from this component stays
in this component). The property of unichainedness is sometimes referred to as ergodicity
since a stochastic matrix is unichain iff it has only one invariant measure, or equivalently, if
the only harmonic vectors (i.e. the solutions v of Mv = v) are the constant vectors, see the
discussion in Theorem 1.1 of [2], and the references therein.

Given a pair (σ, τ) ∈ ΠP of pure policies, we define the stochastic matrix: P σ,τ =
(P σ(i),τ(i)

i,j )i,j∈[n].

▶ Definition 7. We say that a game is unichain (resp. irreducible) if for all pairs of pure
policies σ, τ , the matrix P σ,τ is unichain (resp. irreducible).

▶ Definition 8. We say that a subset S of the states is closed under the action of a matrix
P σ,τ if, starting from a state s ∈ S and playing according to the policies σ and τ , the next
state is still in S.

▶ Remark 9. If S is a set closed under the action of an unichain matrix P σ,τ , then S contains
the final class of this matrix.
▶ Remark 10. The final class does not have to be the same for all pairs σ, τ of policies in our
definition of unichain games.
The following theorem addresses the issue of the existence of a solution to the ergodic
equation in the case of a unichain game.
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▶ Theorem 11. Let T be the Shapley operator of a unichain concurrent stochastic game.
Then, there exists a vector v ∈ Rn and λ ∈ R such that T (v) = λe + v. Moreover, there exists
a pair of optimal (randomized) Markovian stationary strategies, obtained by selecting actions
that achieve the minimum and maximum in the expression of [T (v)]i, for each state i ∈ [n].

5 Relative value iteration

Relative value iteration was introduced in [38] to solve one player stochastic mean-payoff
games (i.e., average cost Markov decision processes). The “vanilla” value iteration algorithm
consists in computing the sequence xk+1 = T (xk), starting from x0 = 0. Then, xk yields
the value vector of the game in horizon k, an so, we expect xk to go to infinity as k → ∞.
The idea of relative value is to renormalize the sequence by additive constants. We state in
Algorithm 1 a general version of relative value iteration, allowing for approximate dynamic
programming oracles. This will allow us to obtain complexity results in the Turing model of
computation, by computing a rational approximation of the value of the Shapley operator
T (x) at a given rational vector x up to a given accuracy.

Algorithm 1 Relative value iteration in approximate arithmetics.

1: input: A final requested numerical precision ϵ > 0 and a parameter 0 < η ⩽ ϵ/3. An
oracle T̃ which provides an η-approximation in the sup-norm of a Shapley operator T .

2: x := 0 ∈ Rn

3: repeat
4: x := T̃ (x) − t(T̃ (x))e
5: until ∥x − T̃ (x)∥H ⩽ ϵ/3
6: α := b(T̃ (x) − x); β := t(T̃ (x) − x)
7: return x, α, β ▷ The lower and upper escape rates of T are included in the interval

[α − ϵ/3, β + ϵ/3], which is of width at most ϵ

▶ Theorem 12. Suppose that T is a Shapley operator. Then,
1. When it terminates, Algorithm 1 returns a valid interval of width at most ϵ containing

the lower and upper escape rates of T .
2. If there is an integer q and a scalar 0 < γ < 1 such that T q is a γ-contraction in Hilbert’s

seminorm, and if η is chosen small enough, in such a way that η(12 + 24q/(1 − γ)) ⩽ ϵ,
then Algorithm 1 terminates in at most q(log ∥T (0)∥H + log 6 + | log ϵ|)/| log γ| iterations.

The proof exploits the nonexpansiveness of the operator T in Hilbert’s seminorm.

6 Krasnoselskii–Mann damping

We shall see that for turn-based or concurrent games, it is useful to replace the original
Shapley operator by a Krasnoselskii–Mann damped version of this operator. This will allow
the relative-value iteration algorithm to converge under milder conditions.

▶ Definition 13. If T is a Shapley operator, and 0 < θ < 1, we define Tθ = θI + (1 − θ)T
where I is the identity operator.

We will call Krasnoselskii–Mann operator the Tθ operator. It is easy to show that it is also
a Shapley operator. The following observation relates the ergodic constant of a damped
Shapley operator with the ergodic constant of the original Shapley operator.
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▶ Lemma 14. Let T be a Shapley operator, u ∈ Rn and λ ∈ R. Then, T (u) = λe + u if and
only if Tθ(u) = (1 − θ)λe + u. In particular, χ(T ) = (1 − θ)−1χ(Tθ) holds as soon as the
ergodic equation T (u) = λe + u is solvable.

Proof. The equivalence is straightforward, and χ(T ) = (1−θ)−1χ(Tθ) follows from Obs. 4. ◀

We consider the iteration xk+1 = Tθ(xk) − t(Tθ(xk))e, obtained by applying relative value
iteration (as in Algorithm 1) to the Krasnoselskii–Mann operator Tθ, with an arbitrary initial
condition x0 ∈ Rn. Ishikawa showed that the ordinary Krasnoselskii–Mann iteration applied
to a nonexpansive self-map of a finite dimensional normed space does converge, as soon as a
fixed point exists [24]. This entails the following result.

▶ Theorem 15 (Compare with [19]). Let T : Rn → Rn be a Shapley operator, and 0 < θ < 1.
Then, the sequence xk obtained by applying relative value iteration to the Krasnoselskii–Mann
operator Tθ converges if and only if ∃u ∈ Rn, λ ∈ R, T (u) = λe + u.

A multiplicative variant of this result was proved in Theorem 11 of [19].

7 Contraction properties of unchain games under pure policies

We define the following parameter, representing the minimal value of a non-zero off-
diagonal transition probability, pmin = min

i,j∈[n],i̸=j, (a,b)∈A×B
{P a,b

i,j : P a,b
i,j > 0}, and set θ :=

pmin/(1+pmin). For every pair of policies σ, τ of the two players, we set Qσ,τ := θI+(1−θ)P σ,τ .
For any sequence of pairs of pure policies σ1, τ1, . . . , σk, τk, we define, for all i ∈ [n],
Si(σ1, τ1, . . . , σk, τk) := {j | [Qσ1,τ1 . . . Qσk,τk ]ij > 0}.

▶ Lemma 16. Suppose a concurrent game is unichain. Then, there is an integer k ⩽ n

such that for all i1, i2 ∈ [n], and for all sequences of pairs of pure policies σ1, τ1, . . . , σk, τk,
Si1(σ1, τ1, . . . , σk, τk) ∩ Si2(σ1, τ1, . . . , σk, τk) ̸= ∅.

We call the unichain index of the game, and denote by kuni the smallest integer k satisfying
the property of Lemma 16. Similarly, we call irreducibility index of an irreducible game,
and denote by kirr, the smallest integer k such that for every sequence of pure policies
σ1, τ1, · · · , σk, τk, the matrix Qσ1,τ1 . . . Qσk,τk is positive. We have 1 ⩽ kuni ⩽ kirr.

The following result will allow us to obtain a geometric contraction rate. The proofs of
this theorem and of the next proposition show in particular that kuni ⩽ n if the game is
unichain and kirr ⩽ n if the game is irreducible.

▶ Theorem 17. Let us suppose that a concurrent game with n states is unichain, with
unichain index k = kuni. Then, for all sequences σ1, τ1, · · · , σk, τk of pairs of pure policies of
the two players, ∥Qσ1,τ1 . . . Qσk,τk ∥H ⩽ 1 − θk.

The following proposition improves the bound on the contraction rate provided by Theorem 17,
in the special case of irreducible games.

▶ Proposition 18. Let us suppose that a concurrent game with n states is irreducible, and
let k = kirr be the irreducibility index of the game. Then, for all sequences σ1, τ1, · · · , σk, τk

of pairs of pure policies of the two players, ∥Qσ1,τ1 . . . Qσk,τk ∥H ⩽ 1 − nθk.



M. Akian, S. Gaubert, U. Naepels, and B. Terver 10:11

8 Solving concurrent and turn-based games by relative
Krasnoselskii–Mann iteration

We first establish a general bound for concurrent unichain games. Recall that θ = pmin/(1 +
pmin).

▶ Theorem 19. Let Tθ be the Krasnoselskii–Mann operator of a concurrent and unichain
game. Then, T kuni

θ is a contraction in Hilbert’s seminorm, with rate bounded by 1 − θkuni .
Moreover, if the game is irreducible, T kirr

θ is a contraction in Hilbert’s seminorm, with rate
bounded by 1 − nθkirr .

Combining this result with Theorem 12, we obtain the following result, in which we
denote by ∥r∥∞ := maxi,a,b |rab

i | the sup-norm of the payment function.

▶ Corollary 20. Let T be the Shapley operator of a concurrent unichain game, and ϵ ∈
(0, 1). Algorithm 1, applied to the Krasnoselskii–Mann operator Tθ, with the precision η

prescribed in Theorem 12, provides an ϵ-approximation of the value of the game in at most
(| log(ϵ)| + log 24 + log ∥r∥∞)kuniθ

−kuni iterations.

We now consider the special case of turn-based games. Then, the value is a rational
number, and there are optimal pure policies. We now apply our approach to compute exactly
the value and to find optimal pure policies.

▶ Assumption 21. We now assume that the probabilities P a,b
i,j are rational numbers with a

common denominator denoted by M . We also assume that the payments ra,b
i are integers.

▶ Lemma 22 (Coro. of [35]). Let P be a n × n unichain matrix whose entries are rational
numbers with a common denominator M . Then, the entries of the unique invariant measure
of P are rational numbers of denominator at most nMn−1.

When Algorithm 1 halts, returning a vector x ∈ Rn, we select two pure policies σ∗ and τ∗

that reach the minimum and maximum in the expression of T (x), meaning that, for i ∈ [n],
we have:

Ti(x) = max
b∈B(i)

(
r

σ∗(i),b
i +

∑
j∈[n]

P
σ∗(i),b
ij xj

)
= min

a∈A(i)

(
r

a,τ∗(i)
i +

∑
j∈[n]

P
a,τ∗(i)
ij xj

)
. (4)

▶ Theorem 23. Consider a unichain turn-based stochastic game satisfying Assumption 21.
Let us choose ϵ = (1 − θ)(n2M2(n−1))−1, so that Algorithm 1 applied to Tθ runs in at most

(2 log n + 2(n − 1) log M + log 24 + log ∥r∥∞)θ−kunikuni (5)

iterations. Let x∗ be the vector returned by the algorithm. Let us select pure policies σ∗ and
τ∗ reaching respectively the minimum and maximum in the expression of T (x∗), as in (4).
Then, these policies are optimal.

9 Multiplicative Krasnoselskii–Mann Damping applied to Entropy
Games

In the case of entropy games, the ergodic eigenproblem, for the operator F defined in Sec-
tion 3.2, consists in finding u ∈ Rn and λ ∈ R such that exp(λ) exp(u) = F (u). Equivalently,
λe + u = T (u) where T = log ◦F ◦ exp. If this equation is solvable, then exp(λ) is the value
of the entropy game, for all initial states d ∈ VD. To solve this equation, we fix a positive
number ϑ > 0, and consider the following “multiplicative” variant of the Krasnoselskii–Mann
operator:
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[Tm,ϑ(v)]d = log min
t∈VT ,(d,t)∈E

max
p∈VP ,(t,p)∈E

(
ϑ exp(vd) +

∑
d′∈VD,(p,d′)∈E

mp,d′ exp(vd′)
)

,

recalling that mp,d′ denotes the multiplicity of the arc (p, d′). Unlike in the additive case, we
do not perform a “convex combination” of the identity map and of the Shapley operator,
but we only add the “diagonal term” ϑ exp(vd), where ϑ can still interpreted as a “damping
intensity”, albeit in a multiplicative sense. If T (u) = λe + u, then, one readily checks that
Tm,ϑ(u) = µe + u, where µ = log(ϑ + exp(λ)), and vice versa, so the non-linear eigenproblems
for T and Tm,ϑ are equivalent. As in the additive case, the damping intensity must be tuned
to optimize the complexity bounds. We shall say that the multiplicity mp,d′ is off-diagonal if
there is no path d′ → t → p → d′ in the graph of the game. Equivalently, for any choices
of policies σ, τ of the two players, the entry mp,d′ does not appear on the diagonal of the
matrix Mσ,τ , defined in Section 3.2. Then, we denote by m the minimum of off-diagonal
multiplicities, observe that m is precisely the minimum of all off-diagonal entries of the
matrices Mσ,τ associated to all pairs of policies. We set ϑ := m.

We shall say that an entropy game is irreducible if for every pair of policies σ, τ , the
matrix Mσ,τ is irreducible. The irreducibility index kirr of an irreducible entropy game is
the smallest integer k such that for all policies σ1, τ1, . . . , σk, τk, the matrix Mσ1τ1 . . . Mσkτk

has positive entries. Arguing as in the case of stochastic concurrent games, we get that
kirr ⩽ n as soon as the game is irreducible. We define the l-ambiguity of the entropy game
Al := maxd,d′∈VD

maxσ1,τ1,...,σl,τl
(Mσ1τ1 . . . Mσlτl)d,d′ . Observe that (Mσ1τ1 . . . Mσlτl)d,d′ is

the number of paths from d to d′ counted with multiplicities, in the finite horizon game
induced by the policies σ1, τ1, . . . , σl, τl (this motivates the term “l-ambiguity”). If the
game is irreducible, we define the ambiguity of the game A := max1⩽l⩽kirr A1/l

l . We set
W := max(p,d)∈E∩(VP ×VD) mp,d, and observe that W ⩽ A ⩽ n1−1/kirrW .
▶ Theorem 24. Let Tm,ϑ be the multiplicative Krasnoselskii–Mann operator of an irreducible
entropy game. Then, T kirr

m,ϑ is a contraction in Hilbert’s seminorm, with contraction rate
bounded by M̄−1

M̄+1 , where M̄ := (1 + A/m)kirr .
We recall the following separation bound.
▶ Theorem 25 (Coro. of [5]). Suppose two pairs of (pure) policies yield distinct values in an
entropy game with n Despot’s states. Then, these values differ at least by ν−1

n where

νn := 2n(n + 1)8nn2n2+n+1e4n2
max(1, W/2)4n2

.

Then, using Theorem 12, we deduce:
▶ Theorem 26. Consider an irreducible entropy game, with irreducibility index kirr. Let
us choose ϵ = (1 + (m + W )νn)−1, so that Algorithm 1 applied to Tm,ϑ runs in at most
(log(1 + (m + W )νn) + log 6)kirrM̄/2 iterations. Moreover, let x∗ be the vector returned by
the algorithm. Let us select pure policies σ∗ and τ∗ reaching respectively the minimum and
maximum in the expression of Tm,ϑ(x∗). Then, these policies are optimal.

10 Concluding Remarks

We have established parameterized complexity bounds for relative value iteration applied to
several classes of stochastic games satisfying irreducibility conditions. These bounds rely on
contraction properties in Hilbert’s seminorm. It would be interesting to see whether these
contraction properties can also be exploited to derive complexity bounds for policy iteration,
instead of value iteration.



M. Akian, S. Gaubert, U. Naepels, and B. Terver 10:13

References
1 M. Akian, S. Gaubert, J. Grand-Clément, and J. Guillaud. The operator approach to entropy

games. Theory of Computing Systems, 63:1089–1130, 2019.
2 M. Akian, S. Gaubert, and A. Hochart. Ergodicity conditions for zero-sum games. Discrete

Contin. Dyn. Syst., 35(9):3901–3931, 2015.
3 M. Akian, A. Sulem, and M. I. Taksar. Dynamic optimization of long-term growth rate for a

portfolio with transaction costs and logarithmic utility. Mathematical Finance, 11(2):153–188,
April 2001.

4 Marianne Akian, Stéphane Gaubert, Ulysse Naepels, and Basile Terver. Solving irreducible
stochastic mean-payoff games and entropy games by relative Krasnoselskii–Mann iteration,
2023. Extended version of the present article, arXiv:2305.02458.

5 X. Allamigeon, S. Gaubert, R. D. Katz, and M. Skomra. Universal Complexity Bounds Based
on Value Iteration and Application to Entropy Games. In Mikołaj Bojańczyk, Emanuela Merelli,
and David P. Woodruff, editors, 49th International Colloquium on Automata, Languages, and
Programming (ICALP 2022), volume 229 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 110:1–110:20, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik.

6 V. Anantharam and V. S. Borkar. A variational formula for risk-sensitive reward. SIAM J.
Contro. Optim., 55(2):961–988, 2017.

7 D. Andersson and P. B. Miltersen. The complexity of solving stochastic games on graphs. In
Proceedings of the 20th International Symposium on Algorithms and Computation (ISAAC),
volume 5878 of Lecture Notes in Comput. Sci., pages 112–121. Springer, 2009.

8 E. Asarin, J. Cervelle, A. Degorre, C. Dima, F. Horn, and V. Kozyakin. Entropy games
and matrix multiplication games. In Proceedings of the 33rd International Symposium on
Theoretical Aspects of Computer Science (STACS), volume 47 of LIPIcs. Leibniz Int. Proc.
Inform., pages 11:1–11:14, Wadern, 2016. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

9 L. Attia and M. Oliu-Barton. A formula for the value of a stochastic game. PNAS,
52(116):26435–26443, 2019.

10 J. B. Baillon and R. E. Bruck. Optimal rates of asymptotic regularity for averaged nonexpansive
mappings. In K. K. Tan, editor, Proceedings of the Second International Conference on Fixed
Point Theory and Applications, pages 27–66. World Scientific Press, 1992.

11 T. Bewley and E. Kohlberg. The asymptotic theory of stochastic games. Math. Oper. Res.,
1(3):197–208, 1976.

12 E. Boros, K. Elbassioni, V. Gurvich, and K. Makino. A potential reduction algorithm for two-
person zero-sum mean payoff stochastic games. Dynamic Games and Applications, 8(1):22–41,
July 2018.

13 K. Chatterjee and R. Ibsen-Jensen. The complexity of ergodic mean-payoff games. Extended
version of a paper published in the proceedings of ICALP, 2014. arXiv:1404.5734.

14 A. Condon. The complexity of stochastic games. Inform. and Comput., 96(2):203–224, 1992.
15 R. L. Dobrushin. Central limit theorem for nonstationary Markov chains. I. Theory of

Probability & Its Applications, 1(1):65–80, January 1956.
16 K. Etessami and M. Yannakakis. Recursive concurrent stochastic games. Logical Methods in

Computer Science, 4(4), November 2008.
17 A Federgruen, P.J Schweitzer, and H.C Tijms. Contraction mappings underlying undiscounted

Markov decision problems. Journal of Mathematical Analysis and Applications, 65(3):711–730,
1978.

18 S. Gaubert and J. Gunawardena. The Perron-Frobenius theorem for homogeneous, monotone
functions. Trans. of AMS, 356(12):4931–4950, 2004.

19 S. Gaubert and N. Stott. A convergent hierarchy of non-linear eigenproblems to compute
the joint spectral radius of nonnegative matrices. Mathematical Control and Related Fields,
10(3):573–590, 2020.

MFCS 2023

https://arxiv.org/abs/1404.5734


10:14 Relative Krasnoselskii–Mann Iteration

20 D. Gillette. Stochastic games with zero stop probabilities, volume III, chapter 9, pages 179–188.
Princeton University Press, 1958.

21 K. Arnsfelt Hansen, M. Koucky, N. Lauritzen, P. Bro Miltersen, and E. P. Tsigaridas. Exact
algorithms for solving stochastic games. In STOC 2011, 2011.

22 A. J. Hoffman and R. M. Karp. On nonterminating stochastic games. Manag. Sci., 12(5):359–
370, 1966.

23 R. A. Howard and J. E. Matheson. Risk-sensitive Markov decision processes. Management
Science, 18(7):356–369, 1972.

24 S. Ishikawa. Fixed points and iteration of a nonexpansive mapping in a Banach space.
Proceedings of the American Mathematical Society, 59(1):65–71, 1976.
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A Example of turn-based stochastic mean-payoff game

A turn-based stochastic mean-payoff game is represented below. Min states are represented
by squares; Max states are represented by circles; Nature states are represented by small
diamonds. The payments made by Min to Max are shown on the arcs. For every Nature
state, the next state is chosen with the uniform distribution among the successors. The
associated Shapley operator is the map T : R3 → R3 shown at right.
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1 T1(x)=1 + max(2 + x2+x3
2 , −3 + x1+x3

2 )

T2(x)=min
(
5 + max(2 + x2+x3

2 , −3 + x1+x3
2 ), 1 + 3 + x1+x2

2

)
T3(x)=4 + max( x2+x3

2 , x1+x2+x3
3 )

The unichain index defined in Section 7 is kuni = 1. Indeed, for all pairs of policies (σ1, τ1),
we have S1(σ1, τ1) ⊃ {1, 3}, S3(σ1, τ1) ⊃ {2, 3}, and S2(σ1, τ1) ⊃ {2, 3} if σ1 sends Min
state 2 to Max state 3, and S2(σ1, τ1) = {1, 2} if σ1 sends Min state 2 to Max state 1.
In all cases, we have Si(σ1, τ1) ∩ Sj(σ1, τ1) ̸= ∅ for i ̸= j. We have pmin = 1/3, and
θ = pmin/(1 + pmin) = 1/4. It follows from Theorem 19 that the damped Shapley operator
Tθ is a contraction of rate 3/4. We know from Theorem 11 that the ergodic eigenproblem is
solvable. By applying Algorithm 1, we find T (u) = λe + u with (−1, −0.5, 0) and λ = 3.75.
An approximation of u of precision < 10−8 in the sup norm is reached after only 15 iterations,
to be compared with the precision of order (3/4)15 ≃ 10−2 given by the theoretical upper
bound, for the same number of iterations. Thus, the convergence may be faster in practice
than the one shown in Corollary 20. We deduce from T (u) = λe + u that the value of the
mean-payoff game is 3.75 regardless of the initial state. Optimal policies σ and τ of both
players are obtained by selecting the actions that achieve the minimum or the maximum
in the expression of T (u). The non-trivial actions of these optimal policies are as follows:
from Min state 2 (square at bottom right), go to Max state 3 (circle at the top level), from
Max state 2 (circle at the middle level), and also from Max state 3, got to the top right state
(diamond) of Nature. These policies are shown on the figure above (red: policy of Min; blue:
policy of Max). The stochastic matrix P σ,τ and payment vector rσ,τ associated to these
policies are given by

rσ,τ =

 3
4
4

 , P σ,τ =

 0 1/2 1/2
1/2 1/2 0
0 1/2 1/2

 .

The unique invariant measure of the matrix P σ,τ is π = (1/4, 1/2, 1/4), and we have
πrσ,τ = 15/4 = 3.75, consistently with the value of the mean-payoff already found.
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1 Introduction

Vector Addition Systems with States (VASS, for short) are rich mathematical models for the
description of distributed systems, as well as chemical and biological processes, and more [19].
A VASS essentially consists of a finite-state machine whose transitions are labelled with
integer vectors. Besides the current state, a configuration of the VASS also comprises the
current values of a set of counters. When a transition is taken, the state of the machine
changes and the values of the counters are updated by adding to them the vector that labels
the transition. VASS arise naturally as an arguably-cleaner model than Petri nets, due to
their reachability problem being polytime-interreducible with that of Petri nets.

While VASS are a very expressive model of concurrency that admits algorithmic analysis,
the complexity of several associated decision problems is prohibitively high. For instance,
the reachability problem, which asks “is a given target configuration reachable from a given
initial configuration?”, was recently proved to be Ackermann-complete [6, 15, 14].

Continuous VASS were introduced by Blondin and Haase [2] as an alternative to con-
tinuous Petri nets [7] which trade off the ability to encode discrete information in favor of
computational and practical benefits. Their only difference compared to VASS concerns how
the counters are updated: In continuous VASS, when a transition is taken, the machine is
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q0 q1 q2 q3(1, 0)

(0, 0)

(0, 1)

(1, 2)

(2, 4)

Figure 1 From q0, with initial counter values 0, the state q2 can be reached with counter values
{(3i + a, 6i + b) | (a, b) ∈ {(0, 0), (1, 1)}, i ∈ N}; with continuous semantics, it can be reached with
counter values x + y where x ∈ {(0, 0)} ∪ {(a, b) | 0 < a, b ≤ 1} and y lies on the ray {(i, 2i) | i ∈ N}.

allowed to scale the update vector by some scalar 0 < α ≤ 1 before adding it to the current
counter values (see Figure 1). In contrast to the situation with “discrete” VASS, the computa-
tional complexity of the reachability problem for continuous VASS is relatively low. Namely,
in [2] the reachability problem for continuous VASS is shown to be NP-complete while the
complexity of the same problem for discrete VASS is Ackermann-complete [6, 15, 14].

Despite the relatively low computational complexity, NP is not universally considered as
tractable. The only subcase previously known to be in P was that of cyclic reachability when
counters are allowed to hold negative values. It is also worth noting that the aforementioned
NP upper bound is obtained by encoding the reachability problem into the existential
fragment of the first-order theory of the reals with addition and order. It is natural to
ask whether more efficient algorithms or encodings into “simpler” logics exist, e.g. linear
programming, even if only for particular subcases.

Fixed-dimension VASS. The relatively new Ackermann lower bound for VASS reachability
has renewed interest in what could be named the Bordeaux-Warsaw program: the study of
the computational complexity of the reachability problem for low-dimensional VASS and
extensions thereof (see, e.g., [4, 3, 5, 8]). In such cases, there may be efficient algorithms for
the problem and, to quote Czerwiński and Orlikowski [6], “it is easier to [design] sophisticated
techniques working in a simpler setting [that might] result in finding new techniques useful in
much broader generality.” For dimensions 1 and 2 (and counter updates encoded in binary)
the problem is NP-complete [12] and PSPACE-complete [1], respectively.

An important structural restriction on VASS which is often used as an intermediate step
in establishing upper bounds is that of flatness, i.e. disallowing nested cycles. In fact, the
upper bounds for dimensions 1 and 2 mentioned above can be seen as a consequence of such
VASS being effectively flattable [16]. A further restriction consists of asking that the set of
all runs of the VASS can be represented by a single regular expression π0χ+

1 . . . πn−1χ+
n πn

over the transitions. Such VASS are called linear path schemes (LPS, for short). Linear path
schemes played an essential role in [1], where it is shown that for any path that witnesses
reachability, there exists a linear path scheme that also witnesses reachability.

VASS variants. In this work we study continuous VASS. For complexity matters, we assume
all counter updates are encoded in binary. As decision problems, we focus on reachability
(via a path that might make the counters negative); nonnegative reachability, i.e. reachability
via a path that keeps the counters nonnegative at all times; and zero-test reachability,
corresponding to reachability with the added constraint that some states can only be visited
with value zero for a designated counter. We summarize known and new results in Table 1.
Below, we give a textual account of the complexity bounds from the table.

(Discrete) Reachability. The NP-hardness bound for LPS can be shown using a simple
reduction from the SubsetSum problem with multiplicities, i.e. summands can be added
more than once. The latter is known to be NP-complete, see e.g. [9, Proposition 4.1.1].
The upper bound for the general case is folklore and is proven in [11] even with resets.
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Continuous reachability. The NP-hardness bound for flat VASS is stated in [2, Lemma
4.13(a)] for nonnegative reachability but the reduction establishes it for reachability as
well. The upper bound for the general case follows from [2, Corollary 4.10]. Membership
in P for LPS can be derived from [2, Theorem 4.15] which states that continuous cyclic
reachability is in P. In this work, we give an alternative algorithm for continuous cyclic
reachability and present a full decision procedure for continuous reachability for LPS.

Nonnegative reachability. For fixed dimension d, only an Fd+O(1) upper bound is known
[15]. NP-hardness for LPS follows from the same proof as for reachability since the
construction has no negative updates. Finally, the NP upper bound for flat VASS is
folklore: (nonnegative) reachability in flat VASS can be encoded into existential Presburger
Arithmetic (PA), a theory whose decidability is NP-complete (see, e.g., [10]).

Continuous nonnegative reachability. The NP upper and lower bounds for the general and
flat cases follow from (the proofs of) the same results in the continuous reachability case.
For the P upper bound, however, one cannot rely on [2, Theorem 4.15]. In fact, cyclic
reachability (for general dimensions) is NP-hard in the continuous nonnegative case [2,
Lemma 4.13(b)]. This is, thus, the first novel complexity bound we establish.

Zero-test reachability. The NP-hardness bound for LPS is a consequence of reachability
being a subcase of zero-test reachability. The matching upper bound for flat VASS is an
extension of the classical encoding into PA which accounts for linear constraints imposed
by the zero tests on cycles. Finally, the general model is also known as Minsky machines
and its reachability problem was proven undecidable by Minsky himself [17].

Continuous zero-test reachability. The NP-hardness for flat VASS is a consequence of
reachability being a subcase of zero-test reachability. For LPS, the lower bound is novel
and points to continuous zero-test reachability not being a suitable approximation of the
discrete case. The general case is undecidable in dimension 4 or higher [2, Theorem 4.17].

Our contributions. Our main contribution is a geometrical understanding of the reachability
sets of continuous VASS (see Theorem 1, Theorem 5, and Theorem 7). The latter allows us
(1) to prove that short LPS suffice as witnesses of (nonnegative) reachability (see Theorem 11
and Theorem 18), and (2) to give new algorithms for the reachability problem for LPS (see
Theorem 13 and Theorem 19) via encodings of their reachability sets into tractable theories.
Namely, we stay within linear programming solutions to enable efficient implementation of
our algorithms. Finally, we establish that zero-test reachability for LPS is NP-hard even in
dimension 2 (Theorem 21).

Table 1 Summary of computational complexity results for the reachability problem for VASS of
fixed dimension. We write lower bounds for simpler cases and upper bounds for more general ones.
New results are shown in green (upper) and red (lower bounds).

Discrete Continuous
Problem General Flat LPS General Flat LPS

Reachability in NP = NP-hard in NP NP-hard in P
Nonneg. reach. in Ackermann in NP NP-hard in NP NP-hard in P
Zero-test reach. Undecidable in NP NP-hard Undecidable NP-hard NP-hard

MFCS 2023
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2 Preliminaries

In this work, Q>0 denotes the set of all strictly positive rational numbers; and Q≥0, all
nonnegative ones – including 0. Similarly, N, i.e. the set of all natural numbers, includes 0,
however N>0 does not.

Let d be a positive integer. For any x ∈ Qd, and r ∈ R, we define the open ball of radius
r around x as usual: Br(x) = {y ∈ Qd : ∥x − y∥2 < r}. Let X ⊆ Qd. Then, the interior of
X is int(X) = {x ∈ X | ∃ε > 0, Bε(x) ⊆ X}; the closure of X is cl(X) = {x ∈ Qd | ∀ε >

0, Bε(x) ∩ X ̸= ∅}; and the boundary of X is bd(X) = cl(X) \ int(X). Finally, we define the
relative interior of X, relint(X), as its interior with respect to its embedding into its own
affine hull as follows: relint(X) = {x ∈ X | ∃ε > 0, Bε(x) ∩ aff(X) ⊆ X}.

Let G ⊆ Qd be a set of (generating) vectors. We write cone(G) to denote the (rational
convex) cone {

∑k
i=0 aigi | k ∈ N, gi ∈ G, ai ∈ Q≥0}. The (linear) span of G is defined as

follows: span(G) = {
∑k

i=0 aigi | k ∈ N, gi ∈ G, ai ∈ Q}. Finally, the affine hull aff(G) of
G is the set {

∑k
i=0 aigi | k ∈ N, gi ∈ G, ai ∈ Q,

∑k
i=0 ai = 1}. (In particular, note that if

0 ∈ G then aff(G) = span(G) = span(H), for some H ⊆ G with cardinality at most d.)

2.1 Continuous VASS

Let d be a positive integer. A continuous VASS V of dimension d is a tuple (Q, T, ℓ) where
Q is a finite set of states, T ⊆ Q × Q is a finite set of transitions, and ℓ : T → Qd assigns an
update label to every transition.

Paths and runs. A configuration c ∈ Q×Qd is a tuple consisting of a state and the concrete
values of the d counters of the VASS. We denote the configuration (p, x) by p(x).

A path π is a sequence (p1, p2)(p2, p3) . . . (pn−1, pn) ∈ T ∗ of transitions. We write |π| to
denote the length of the path, i.e. |π| = n−1. A run ρ is a sequence q1(x1)q2(x2) . . . qn(xn) of
configurations such that for all 1 ≤ i < n we have: (qi, qi+1) ∈ T and xi+αi·ℓ(qi, qi+1) = xi+1
for some αi ∈ Q with 0 < αi ≤ 1. Often, we refer to the αi as the coefficients of the run.
We say ρ induces the path (q1, q2) . . . (qn−1, qn). Conversely, we sometimes say a run is lifted
from a path. For instance, π can be lifted to a run p1(y1) . . . pn(yn) by fixing p1(y1) as
initial configuration and by choosing adequate coefficients αi for all transitions.

As a more concrete example, consider the path (q0, q1), (q1, q2), (q2, q3) in Figure 1, whose
transitions are labelled by (1, 0) and (0, 1). Starting from the configuration (0, 0) and using
the coefficients α1 = 0.3 and α2 = 0.5 this path lifts to the run q0(0, 0)q1(0.3, 0)q2(0.3, 0.5).

We consider continuous VASS in a setting where only nonnegative counter values are
allowed, denoted Q≥0VASS; and one which allows negative counters, denoted QVASS.

Reachability. Let p(x) and q(y) be two configurations. We say q(y) is reachable from p(x),
denoted p(x) ∗−→ q(y), if there exists a run whose first and last configurations are p(x) and
q(y) respectively. For a path π, we write p(x) π−→ q(y) if, additionally, such a run exists which
can be lifted from π. Given a configuration p1(x) and a state q, we define the reachability
set of a path π = (p1, p2) . . . (pn−1, pn) or a set P of paths below.

Reachx(π) = {y ∈ Qd | p1(x) π−→ pn(y)} Reachx(P ) =
⋃

π∈P Reachx(π)

If x = 0 then we write simply Reach(π) and Reach(P ).
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3 The Geometry of QVASS Reachability Sets

In this section we discuss the geometry of the reachability sets in continuous VASS of
dimension d. We first discuss paths and cycles separately. Then, we show that for solving
the reachability problem, we only need to take short linear path schemes into consideration.

3.1 The geometry of reachability sets for cycles
For this section, we fix a cycle χ = (p1, p2) . . . (pm, pm+1), with p1 = pm+1. We study the
geometry of the set Reach(χ+), where χ+ stands for {χk | k ∈ N>0}.

Intuitively, following χ allows us to add a scaled version of each transition vector along χ

arbitrarily many times, with the proviso that the scaling is strictly positive (the restriction
to scale up to 1 disappears since we can repeatedly take the cycle). Thus, we can intuitively
reach the interior of a cone, i.e. a positive linear combination of the vectors along χ. For
example, a cycle with vectors (1, 0) and (0, 1) will allow us to reach {(x, y) | x > 0, y > 0}.
However, this intuition needs to be formalized carefully to account for linear dependencies
between the vectors. This may render the cone not full-dimensional, i.e. its linear span may
be a strict subspace of the vector space it is in. That would mean that the interior of the
cone is empty. However, in such cases, the reachability set still is a “flattened” version of the
interior, namely the relative interior of the cone.

3.1.1 From cycles to cones
We formalize our intuition by proving that Reach(χ+) is the relative interior of the cone
generated by G(χ) = {ℓ(pi, pi+1) | 1 ≤ i ≤ m}.

Indeed, all points x ∈ Reach(χ+) can be obtained as positive linear combinations of
generators. To any such x, we can add or subtract any generating vector and stay within
cone(G(χ)), as long as it is sufficiently scaled down. Conversely, if one can add and subtract
suitably scaled versions of all generating vectors to a point x ∈ cone(G(χ)), and remain
within cone(G(χ)), then it must be in the (relative) interior of cone(G(χ)).

▶ Theorem 1. Let G(χ) be as defined above. Then, Reach(χ+) = relint(cone(G(χ))).

Note that we consider the set G(χ) of all labels of transitions from χ, ignoring the fact
that multiple transitions can have the same label. This is justified by the following lemma
for the cycle χ with generator G(χ).

▶ Lemma 2. We have that relint(cone({λ1ℓ(pi, pi+1) | 1 ≤ i ≤ m, λi ∈ Q>0})) is equal to
{
∑m

i=1 aigi | ai ∈ Q>0}.

A concrete case: dimension 2. For intuition, we state a consequence of Theorem 1 in
dimension 2. For d = 2, a cone C is trivial if there exists v ∈ Qd such that C is a subset of
the line {r · v | r ∈ Q}, and otherwise it is full-dimensional. For a trivial cone, its relative
interior is either the entire cone (if the cone is the entire line), or the cone without 0, if the
cone is a ray. It is easy to see that for a cycle χ whose vector labellings G(χ) are co-linear
to v, the reachability set of χ+ in the continuous semantics is cone(G(χ)), excluding any
end-points (since the only possible end-point is 0 if cone(G(χ)) is a ray). For full-dimensional
cones, we can take any positive combination of the generators, but since no element of the
generators can be taken zero times, the reachability set excludes the boundary. See Figure 2
(left) for a visualization. In the following statement we write int(G(χ)) and bd(G(χ)) for
int(cone(G(χ))) and bd(cone(G(χ))) respectively.

MFCS 2023
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x

y

x

y

sG = (3, 2)

Figure 2 On the left: a cone with its boundary in blue; on the right: a zonotope with G =
{(1.5, 1), (1.5, −1), (0, 2)}, where adj(G) is drawn in blue.

▶ Corollary 3. Let G(χ) be as above. In dimension d = 2, one of the following holds.
Either cone(G(χ)) is trivial and Reach(χ+) is cone(G(χ)), excluding any end-points;
or cone(G(χ)) is nontrivial and Reach(χ+) = int(G(χ)).

3.2 The geometry of reachability sets for paths
For this section, we fix a path π = (p1, p2) . . . (pm, pm+1). Similarly to the case of cycles, we
establish a connection between Reach(π) and a type of polytope known as a zonotope.

Intuitively, since we now have a path that is taken once (rather than a cycle), the restriction
that the scaling is at most 1 comes into play, and limits us. Moreover, multiplicities of
linearly dependent vectors along the path also matter.

Zonotopes. Let G = {g1, . . . , gk} ⊆ Qd be a finite set of (generating) vectors. We write
zono(G) to denote the zonotope1 {

∑k
j=1 aigi | ai ∈ Q, 0 ≤ ai ≤ 1}.

Following our interior-based approach for cycles, we study the reachable part of the
boundary of a zonotope. We define sG as the sum of all vectors in G, or sG =

∑
g∈G g.

Additionally, we define the set adj(G) of faces of zono(G) that are adjacent to sG below. A
face of zono(G) is any nonempty intersection of zono(G) with a half-space H such that none
of the interior points of zono(G) lies on the boundary of H.

▶ Definition 4 (Adjacent Sets). We define adj(G) as the union of {sG} and all x ∈ Qd on
the relative interior of a face of zono(G) that contains sG. (See Figure 2 for intuition.)

Observe that adj(G) = ∅ whenever sG ∈ int(zono(G)).

3.2.1 From paths to zonotopes
We show Reach(π) has a close relation with a zonotope whose generator is derived from
the multiset M = [ℓ(pi, pi+1) | 1 ≤ i ≤ m]. Intuitively, we obtain from M a generator G(π)
by summing together co-linear vectors that are in the same “orientation”. For example,
the vectors (1, 0) and (2, 0) along a single path have the same effect as (3, 0), but (1, 0)
and (−1, 0) have distinct effects. Technically, this is captured by grouping together vectors
that are in the cones of each other. More formally, choose M ′ ⊆ M \ {0} such that for all
u ∈ M \ {0} there is a unique vector u′ ∈ M ′ such that u ∈ cone(u′). Then, define G(π) as
follows: G(π) =

{∑
u∈M∩cone(u′) u

∣∣∣ u′ ∈ M ′
}

.

1 Zonotope is the standard term, but since we do not use any of its special properties, the reader may
view this as a standard polytope.
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We show that the reachability set of π can be computed by taking zono(G(π)), and
removing its boundary except for faces adjacent to sG. The intuition behind this is similar
to that of cycles: one can add strictly positive-scaled versions of the generating vectors, and
therefore boundary elements that are obtained using 0-scales are unreachable. However, in
zonotopes there are additional boundary faces that are obtained by capping the scale at 1 on
some elements, and these are the faces adjacent to sG (with sG itself being the reachable
vector where all elements are scaled to 1).

▶ Theorem 5. Let G(π) be as above. Then, Reach(π) = relint(cone(G)) ∪ adj(G(π)).

As with cycles, compared to the multiset of all path labels, we restrict our attention to a
simpler set G of vectors. The following result connecting them is almost immediate.

▶ Lemma 6. Let x ∈ Qd. Then, there exists (a1, . . . , an) ∈ Qn such that x =
∑n

i=1 aigi

and 0 < ai ≤ 1, for all 1 ≤ i ≤ n, if and only if x ∈ Reach(π).

3.3 The geometry of reachability sets for linear path schemes
A linear path scheme (LPS, for short) is a regular expression π0χ+

1 π1 . . . χ+
n πn over the trans-

itions. Importantly, the πi are (possibly empty) paths; the χi are cycles; and π0χ1π1 . . . χnπn

is a valid path. Each LPS determines an infinite set {π0χk1
1 . . . χkn

n πn | k1, . . . , kn ∈ N>0} of
paths that follows each of the paths exactly once and each of the cycles an arbitrary number
of times. For this section, we fix a linear path scheme σ = π0χ+

1 π1 . . . χ+
n πn.

3.3.1 From LPS to cones and a zonotope
From previous developments in this work, the reader might already believe that the reachab-
ility set of an LPS can be shown to be the Minkowski sum of suitable subsets of convex cones
and zonotopes. It transpires that one can further simplify this and obtain a characterization
which involves a single zonotope and a single cone.

Below, we write G(π) to denote the generator of the zonotope for the path π0π1 . . . πn as
defined in Subsubsection 3.2.1; for each 1 ≤ i ≤ n, we write G(χi) to denote the generator of
the convex cone for the cycle χi as defined in Subsubsection 3.1.1.

▶ Theorem 7. Reach(σ) is2 relint(zono(G(π))) ∪ adj(G(π)) + relint (cone (
⋃n

i=1 G(χi))) .

To prove the theorem, we establish two intermediate results. The first one, together
with Theorem 5, already yields the first (Minkowski) summand. The result below follows
immediately from the definitions and commutativity of the Minkowski sum.

▶ Lemma 8. We have that Reach(σ) = Reach(π0π1 . . . πn) +
∑n

i=1 Reach(χ+
i ).

The next result allows us to group the sums of cycle reachability sets into a single convex
cone. Indeed, Theorem 1 and an induction on the following lemma yield the last summand
from Theorem 7.

▶ Lemma 9. Let C and C ′ be cones with generators G and G′ respectively. Then, C + C ′ =
cone(G ∪ G′) and relint(C + C ′) = relint(C) + relint(C ′).

2 To avoid clutter, we omit some parentheses: union has higher precedence than Minkowski sum.
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4 The Complexity of QVASS Reachability

In this section, we use our results concerning the geometry of reachability sets to give an
NP decision procedure for the reachability problem.

▶ Theorem 10. Given a QVASS of dimension d, and two configurations p(x) and q(y),
determining whether p(x) ∗−→ q(y) is in NP.

First, without loss of generality, we assume x = 0. Indeed, p(x) ∗−→ q(y) if and only if
p(0) ∗−→ q(y − x). In the following we prove that if p(0) ∗−→ q(x) then there is an LPS σ such
that p(0) π−→ q(x) for some π ∈ σ and σ has size polynomial on the number of transitions
|T | and on the dimension d. Then, we show that checking whether p(0) ∗−→ q(x) under a
given linear path scheme is decidable in polynomial time. It follows that to check whether a
configuration is reachable, in a general QVASS, one can guess a polynomial-sized LPS and
check whether the corresponding configuration is reachable in it.

4.1 Short linear path schemes suffice
Presently, we argue that for any path we can find an LPS with a number of cycles that is
polynomial in the number of transitions of the QVASS and the dimension such that all paths
and cycles are simple, the set of transitions in the LPS is the same as that in the path, and
the reachability set of the LPS includes that of the path.

For convenience, we define the support of a path π = t1 . . . tn as the set of all transitions
that are present in the path: JπK = {ti | 1 ≤ i ≤ n}. For an LPS σ = π0χ+

1 . . . χ+
n πn, its

support is JσK = Jπ0K ∪
⋃n

i=1 (JχiK ∪ JπiK).

▶ Theorem 11. Let π be an arbitrary path. Then, there exists a linear path scheme
σ = π0χ+

1 π1 . . . χ+
n πn, with n ≤ |T |, such that all πi and χi are simple paths and cycles,

respectively, JπK = JσK, and Reach(π) ⊆ Reach(σ).

Most properties of the LPS in the result above follow from considering an LPS with
minimal length, with the length of an LPS defined as |σ| = |π0| +

∑n
i=1 |χi| + |πi|. The main

technical hurdle is thus the upper bound on the number of cycles. Our approach is to remove
cycles whose support is covered by other cycles. The result below, which follows directly
from Theorem 1 and Lemma 9, gives us that flexibility. As in Subsection 3.3, we write G(χ)
to denote the generator of the convex cone for χ, i.e. G(χ) = {ℓ(t) | t ∈ JχK}.

▶ Lemma 12. Let χ be a cycle and C be a set of cycles. If JχK ⊆
⋃

θ∈CJθK then Reach(χ+) +∑
θ∈C Reach(θ+) =

∑
θ∈C Reach(θ+).

Hence, to check whether a configuration is reachable in a general QVASS, one can guess a
polynomial-sized LPS and check whether the corresponding configuration is reachable in it.
To conclude membership in NP, it remains to argue that the latter check can be realized in
polynomial time.

4.2 Reachability for linear path schemes is tractable
In this section, we show that determining whether a configuration is reachable via a linear
path scheme is decidable in polynomial time.

▶ Theorem 13. Given LPS σ and x, y ∈ Qd, determining whether y ∈ Reachx(σ) is in P.
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Based on Theorem 7 and the geometric characterizations of the reachability sets of cycles
and paths, it suffices to show how to determine whether there exist z, c ∈ Qd in a zonotope
and a cone, respectively, such that y = z + c. To do so, we make Lemma 6 and Lemma 2
effective by encoding them into systems of linear inequalities with strict-inequality constraints.
It is known that the feasibility problem for linear programs is decidable in polynomial time
even in the presence of strict inequalities (see, e.g., [18, Ch. 8.7.1]).

Henceforth, we fix an LPS σ = π0χ+
1 π1 . . . χ+

n πn. We also adopt the notation from
Subsection 3.3: G(π) denotes the generator of the zonotope for the path π0π1 . . . πn; and
G(χi) the generator of the cone for χi for each 1 ≤ i ≤ n.

4.2.1 Encoding the zonotope
Let G(π) = {g1, . . . , gm}. We now define the matrix A ∈ Qd×(m+d) and the vector a ∈ Qd:

A =


(g1)1 (g2)1 . . . (gm)1 −1 0 . . . 0
(g1)2 (g2)2 . . . (gm)2 0 −1 0 . . .

...
...

...
...

...
...

. . .
...

(g1)d (g2)d . . . (gm)d 0 . . . 0 −1

 and a = (0, . . . , 0), (1)

Further, we define the matrix B ∈ Qm×(m+d) and the vector b ∈ Qm as:

B =
(
I 0 . . . 0

)
and b = (1, 1, . . . , 1), (2)

where I is the m × m identity matrix and 0 is the m × 1 zero vector. Finally, we define
C ∈ Qm×(m+d) and c ∈ Qm as follows.

C =
(
−I 0 . . . 0

)
and c = (0, 0, . . . , 0) (3)

▶ Lemma 14. Az = a ∧ Bz ≤ b ∧ Cz < c has a solution (α, y) ∈ Qm+d iff y ∈ Reach(π).

This follows immediately from the fact that, by construction, the system has a solution if
and only if there exists (α1, . . . , αm) ∈ (0, 1] such that y =

∑m
i=1 αigi, and Lemma 6.

4.2.2 Encoding the cone
The encoding for the code is even simpler, but requires we adapt our notation slightly.

Let
⋃n

i=1 G(χi) = {g1, . . . , gm}. We define the matrix A ∈ Qd×(m+d) and vector a ∈ Qd

as in Equation 1; and C ∈ Qm×(m+d) and c ∈ Qd as in Equation 3.

▶ Lemma 15. Az = a ∧ Cz < c has a solution (α, y) ∈ Qm+d iff y ∈
∑n

i=1 Reach(χ+
i ).

This time the lemma follows from Lemma 2 and because, by construction, the system has a
solution if and only if there are (α1, . . . , αm) nonnegative such that y =

∑m
i=1 αigi.

Proof of Theorem 13. The result follows from the fact that Lemma 8 can be made effective
by encoding it into a master system of linear inequalities for the zonotope and the cycle. ◀

5 The Complexity of Q≥0VASS Reachability

We now give an NP decision procedure for the reachability problem for Q≥0VASS.

▶ Theorem 16. Given a Q≥0VASS of dimension d, and configurations p(x) and q(y),
determining whether p(x) ∗−→ q(y) is in NP.

MFCS 2023
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The structure of our argument is similar to the one in Section 4: we prove that short
LPS suffice and then we prove reachability is tractable for LPS. The first part is considerably
more complicated for Q≥0VASS and it is based on the fact that short LPS exist for QVASS.
For this reason, we need additional notation: We write p(x) ∗−→ q(y) to denote that q(y) is
reachable from p(x) in a Q≥0VASS and instead use p(x) ∗

99K q(y) to denote that q(y) is
reachable from p(x) with respect to QVASS semantics (i.e. when allowing negative counter
values). Similarly, we write Reachx(·) for reachability sets w.r.t. QVASS and Reachx

≥0(·) for
that w.r.t. Q≥0VASS. We make repeated use of the following result by Blondin and Haase.

▶ Lemma 17 (From [2, Proposition 4.5]). There exists a path π such that q(x) π−→ q(y) if
and only if there exist paths π1, π2, π3 such that:
1. q(x) π2

99K q(y);
2. q(x) π1−→ q(x′), for some x′ ∈ Qd

≥0;
3. q(y′) π3−→ q(y), for some y′ ∈ Qd

≥0; and
4. JπK = Jπ1K = Jπ2K = Jπ3K.
Moreover, if item 1–item 4 hold, then y ∈ Reachx

≥0(π1π+
2 π3).

Intuitively, q(x) π−→ q(y) if the following conditions hold: first, we obviously need q(x) π2
99K

q(y), and second, we need q(x) to allow some “wiggle room” using the same transitions as π

and while keeping the counters nonnegative. Similarly, there should be wiggle room to reach
q(y) with nonnegative counters. The lemma also shows that these conditions are necessary.

5.1 Short linear path schemes suffice
We start by proving that short LPS suffice.

▶ Theorem 18. Let π be an arbitrary path such that p(x) π−→ q(y). Then, there exists a
linear path scheme σ = π0χ+

1 π1 . . . χ+
n πn, with:

n ≤ |Q|,
πi is a simple path for all 0 ≤ i ≤ n,
|χi| ≤ 4|Q|(|T | + d + 2)(|T | + 1) for all 1 ≤ i ≤ n, and
y ∈ Reachx

≥0(σ).
Let us we outline our approach to prove this. Consider a path π such that p(x) π−→ q(y).

We decompose π into π = τ0θ1τ1 · · · θnτn where the τi are simple paths separated by at most
|Q| (not necessarily simple) cycles θi. We would now like to replace each cycle θ with a
short LPS χ+, as per the third item in Theorem 18. Note that we cannot readily do so
using Theorem 11, as it does not guarantee nonnegative reachability. We thus take a more
elaborate approach, as follows.

Consider a cycle θ. By applying Lemma 17, we can replace θ by an LPS π1π+
2 π3.

We now apply Theorem 11 to π2, thus obtaining an LPS σ = µ0ζ+
1 µ1 · · · ζ+

mµm such that
Reachz(π2) ⊆ Reachz(σ) for all z (note that nonnegativity is no longer maintained). Recall
that our goal is to represent π+

2 as an LPS, so we cannot use σ+, as it is not an LPS.
Instead, we show that by looking at the concrete path σ = µ0ζ1µ1 · · · ζmµm we have
Reachz(π+

2 ) ⊆ Reachz(σ+), and σ+ is an LPS.
The next challenge is to plug back σ+ as part of an LPS for θ. To do so, we need to find

LPS for π1 and π3. We show that this is possible. We can now use Lemma 17 again, in the
opposite direction, to conclude that π1π+

2 π3 can be described by an LPS with appropriate
bounds, retaining nonnegative reachability.
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5.2 Reachability for linear path schemes is tractable
As in the QVASS case, here we are able to prove that determining whether a configuration is
reachable via an LPS is decidable in polynomial time.

▶ Theorem 19. Given LPS σ and x, y ∈ Qd
≥0, determining if y ∈ Reachx

≥0(σ) is in P.
Once more, our argument relies on an encoding into a system of linear inequalities. How-
ever, in contrast to QVASS, the encoding is slightly less elegant. For each path π =
(p1, p2) . . . (pm, pm+1) occurring inside σ, instead of encoding an (affine) zonotope into a
system of linear equalities, we focus directly on the m steps of the path.

Let bi = ℓ(pi, pi+1) for all 1 ≤ i ≤ m. We will use the bi instead of the zonotope basis
G(π) of Subsection 4.2. We now adapt the system from Subsection 4.2 to account for the
nonnegativity of partial sums induced by the path prefixes. Recall A, a, B, b, C, and c as
defined in Equation 1, Equation 2, and Equation 3. We introduce d + md new variables –
the first d account for an initial vector x, and the remaining md represent the intermediate
values of the path after each transition.

Intuitively, we obtain from the above matrices new ones, denoted A′, a′, B′, b′, C′

so that A′ includes the constraints
∧d

k=1
∧m

n=1

(
xk +

∑n
j=1(bj)kzj

)
= zm+2d+(n−1)d+k ≥ 0.

We thus have the following.

▶ Lemma 20. For a path π, the system A′z = a′ ∧B′z ≤ b′ ∧C′z < c′ of linear inequalities
has a solution (α, y, x, ι) ∈ Qm+2d+md if and only if p1(x) π−→ pm+1(y).

Proof of Theorem 19. By Lemma 20, it suffices to argue that nonnegative reachability via a
cycle χ+ of σ can also be encoded into a system of linear inequalities. For this, we make use of
the “if” direction of Lemma 17, which for χ+ amounts to p(x) χ+

−−→ p(y) iff (1) p(x)
χ+
999K p(y),

(2) p(x) χ−→ p(x′) for some x′ ∈ Q≥0, (3) p(y′) χ−→ p(y) for some y′ ∈ Q≥0. Condition 1 can
be encoded in a system of linear inequalities by Lemma 15, and conditions 2 and 3 can be
encoded in such systems too as per Lemma 20. We can now conjoin the systems for the
paths and cycles to obtain a master system of linear inequalities of polynomial size. ◀

6 The Complexity of Reachability with Zero Tests

We now argue that the reachability problem for continuous VASS with zero tests is NP-hard,
already for LPS of dimension 2. For convenience, we state the result for QVASS. However,
we note that the same proof establishes the result for Q≥0VASS.

We start by formally defining the model. A continuous VASS V of dimension 2 with zero
tests is a tuple (Q, t, ℓ, Z1, Z2), where V ′ = (Q, t, ℓ) is a continuous VASS and Zi ⊆ Q for
i = 1, 2. A run ρ = q1(x1) . . . qn(xn) of such a VASS is a run of V ′ such that, additionally,
for all 1 ≤ i ≤ n we have that if qi ∈ Zj , for some j ∈ {1, 2}, then (xi)j = 0. That is, any
run that reaches a state in Zj must be such that the the value of the j-th counter is 0 then.

▶ Theorem 21. For every d ∈ N, d ≥ 2, given a QVASS (or Q≥0VASS) of dimension d, and
two configurations p(x) and q(y), determining whether p(x) ∗−→ q(y) is NP-hard, even for
linear path schemes of dimension 2.

We reduce from the PrimeCover problem: Given a set X of prime numbers and a
collection S of subsets of X, with T ∈ N, determine whether there is a subset S′ ⊆ S

such that
∏

s′∈S′
∏

p∈s′ p = T . It is straightforward to prove PrimeCover is NP-hard by
reduction from the the ExactCover problem [13].
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Figure 3 In the dotted blue box, a multiplier gadget is shown: the state above is an element of
Z1 (noted by x = 0) while the state below is an element of Z2 (noted by y = 0); The whole LPS
encodes an instance of PrimeCover with S = {s1, s2, . . . , sn} – recall that di =

∏
p∈ci

p.

Now, for each s ∈ S we create multiplier gadgets as depicted in Figure 3 where d =
∏

p∈s p

and e = ⌈log2(
∏

s∈S

∏
p∈s p)⌉ + 1, and we link them in an LPS with transitions (qi, qi+1), for

1 ≤ i ≤ |S|, labelled with (0, 0) updates (see Figure 3). We claim that PrimeCover has a
positive answer if and only if q1(1, 0) ∗−→ q|C|(T, 0) in the constructed LPS.

7 Conclusion

We gave geometrical characterizations for the reachability sets of continuous VASS and
their flat and LPS restrictions. Using these, we showed that polynomial-sized LPS suffice
as witnesses of reachability and that reachability in linear path schemes is tractable. In
addition, we sharpened hardness results in the presence of zero tests: it is NP-hard already
for dimension two.
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1 Introduction

Searching for a hidden target is one of the original disciplines within the field of Operations
Research, but also a topic of significant study in Computer Science, both from the point
of view of theoretical analysis and applications. This class of problems typically involves a
mobile searcher that must locate an immobile target (often called hider) which hides in some
unknown point of the search environment. Search problems provide natural formulations of
real-life applications such as search-and-rescue missions [41], de-mining operations [2], and
robot-based exploration [27].

Among the most well-studied search problems is searching on the line, in which the
environment is the unbounded line, and its generalization, the m-ray search, or star search
problem. In the m-ray search problem, the environment consists of m unbounded and
concurrent rays, with a common point O, which is called the origin. Starting from O, the
searcher must locate the target by following a strategy, defined as an infinite sequence of
the form (xi, ui)i, where xi ∈ R+ and ui ∈ {0, . . . , m − 1}, and with the following semantics:
in iteration i, the searcher starts from O, traverses the ray ui up to distance xi from O,
then returns back to O, before continuing with iteration i + 1, until the target is eventually
located. Note that for m = 2, the star environment reduces to the infinite line.
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12:2 Competitive Search in the Line and the Star with Predictions

Since the search environment is unbounded, the standard framework for evaluating the
performance of a search strategy is competitive analysis, first introduced in [11]. Given a
target t hiding at some unknown point of the star, define d(t) as the distance of t from O,
and d(X, t) as the distance covered (or cost incurred) by a searcher that follows X, until t is
located (i.e., the first time the searcher is reached, assuming a unit-speed searcher). The
competitive ratio of X is formally defined as

Cr(X) = sup
t

d(X, t)
d(t) . (1)

Searching on the line has a long history of study, going back to the work of Bellman [12]
and Beck [10]. Beck and Newman [11] were the first to show that an optimal competitive
ratio equal to 9 can be obtained by a simple doubling strategy, i.e., a strategy of the form
xi = 2i. The m-ray search problem was first studied in the seminal works of Gal [24, 25]
and independently by Baeza-Yates et al. [8]. Both problems have been extended in a variety
of settings and generalizations related to TCS, AI and OR since the 1960s, due to their
useful abstraction of resource allocation under uncertainty. For instance, linear and ray
searching have connections to the design of interruptible systems in AI [4, 13], the design
of hybrid algorithms [32], and pipelined filter ordering in databases [18]. They are also
involved in the analysis of strategies for more complex search problems, such as spiral search
on the plane [38]. There are numerous studies on variants of linear and star search; see,
e.g., [31, 36, 29, 44, 33, 16, 20, 5, 19, 37, 15, 34, 46, 6, 43, 51, 36, 17] as well as the book [1]
for a game-theoretic perspective of these problems. Note that the above are only some
representative works, and that the problems have been studied under several other variants.

1.1 Searching with predictions

In this work, we study the power and limitations of search strategies with predictions, in
which the searcher aims to improve the competitive ratio of its strategy by leveraging some
inherently imperfect information on the target. This follows a very active line of research in
online computation and algorithms with incomplete information, that was initiated with the
works [45] and [49]. A very large number of problems have been studied under this model
(see, e.g., the survey [47] and the online collection [42]).

In regards to the search problems we study, the nature of the prediction may vary
according to the application at hand. We are interested in the following models, which were
introduced in [3] in the context of linear search.

(a) The prediction is a k-bit string. Here, the search is enhanced with a k-bit string that
encodes some information on the target; alternatively, we may think of the prediction
string as responses to binary queries given by k experts. For example, a single bit can
provide a (potentially erroneous) response to queries such as “Is the target at distance
at most d from O”, or “Is the target on an even-indexed ray?”. This is a powerful model
that generalizes the concept of advice complexity so as to allow for advice that may be
erroneous. Note that search and exploration problems have been studied extensively
under the standard advice complexity model (see, e.g., [21, 23, 28, 35, 48]), however
all such studies rely crucially on advice that is error-free. Moreover, unlike works in
which each query is noisy [14], i.e., the query responses are erroneous with some known
probability, in our setting we do not rely on any probabilistic assumptions in regards to
the quality of the advice.
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(b) The prediction is directional. Here, the prediction is an index in {0, . . . , m − 1} which
describes the ray on which the target lies. This is a natural prediction can be useful, for
example, in a search-and-rescue application, in which there is a hint about the direction
a missing person may have taken when last seen.

(c) The prediction is positional. Here, the prediction describes the position of the target
within the environment, namely it is of the form (d, u), where d corresponds to the
predicted distance from the origin, and u corresponds to the predicted ray on which the
target hides. This is, likewise, a very natural prediction (e.g., in a search-and-rescue
mission, it provides a hint about the last reported whereabouts of the missing person).

We establish two objectives towards the evaluation of search strategies with predictions.
The first objective is to find strategies of optimal, or near-optimal tradeoff between their
consistency (namely, the competitive ratio assuming error-free prediction) and their robustness
(namely, the competitive ratio assuming adversarially generated predictions). This is one of
the standard methods of analyzing algorithms with predictions, since it establishes strong
guarantees on worst-case (extreme) situations with respect to the quality of the prediction;
see, e.g., [52, 40, 39, 3, 7] for applications to other online problems, and settings of incomplete
information, more generally. Specifically, we are interested in showing both positive and
negative results on the best-possible consistency that can be achieved by r-robust strategies,
for any given r.

Our second objective goes beyond the consistency/robustness tradeoffs, and we evaluate
the performance of the search strategy beyond the two extreme scenarios of error-free and
adversarial error. Specifically, we study the novel setting in which the searcher defines an
application-specific tolerance parameter H that determines its desired tolerance to errors or,
equivalently, an anticipated upper bound on the prediction error (that may be known by
historical data on previous searches). This parameter is defined appropriately for each of the
three prediction models we study. Namely, in the untrusted advice model, H is related to the
number of erroneous advice bits (or query responses); in the directional model H describes
the distance of the predicted ray index to the one of the actual hiding target; and in the
positional model, H is related to the distance between the predicted and the actual target
position. The tolerance model is motivated by recent works in learning-enhanced online
algorithms with weak predictions, in which the prediction is an upper bound of some pertinent
parameter of the input (see e.g., online knapsack with frequency predictions [30], where the
prediction is an upper bound on the size of items that appear online). Our objective is
thus to quantify the tradeoff between the competitive ratio and the robustness as a function
of the tolerance and other parameters of the problem (e.g., the number of queries, in the
query-based model). Following [30], we will make use of the term weak prediction to refer to
this setting.

The problems we study have applications in more general decision-making settings that
go beyond the confines of search theory. This is since m-ray search, as discussed above, is an
abstraction of resource allocation among m different tasks. To illustrate with an example,
consider a researcher who has to allocate time among m different projects, without knowing
ahead of time which project will be completed successfully. The researcher, however, may
have some intuition about which of these tasks is the most likely to succeed. This problem
fits the m-ray search abstraction with a directional prediction. In the weak prediction setting,
H describes, more generally, the specific projects which the researcher believes are more
likely to be successful.

MFCS 2023
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Learning-augmented search has received attention in recent years. [3] studied consist-
ency/robustness (Pareto) tradeoffs for linear search in the three prediction models described
above. [9] studied a graph search setting where every node in the graph provides a prediction
of its distance to the target vertex. [22] showed how to robustify graph exploration algorithms,
where the prediction is related to the spanning tree of the explored graph.

1.2 Contribution
Our first results apply to the untrusted advice model (i.e, the k-query model). We prove tight
upper and lower bounds on the best consistency that an r-robust strategy for linear search
can achieve, for any r ≥ 9, any size of advice k, and with no assumptions on the nature of
the strategy. This improves upon both the upper and the lower bounds of [3], which gave
a non-tight lower bound for k = 1 and r = 9, and a non-tight lower bound for r > 9 and
k = 1 for a restricted class of strategies called asymptotic. Here, the challenge is on the lower
bound side. Specifically, we reduce the problem to a parallel search problem that involves 2k

searchers, and we rely on a novel application of Gal’s functional theorem [26] to prove an
information-theoretic tight lower bound. While this theorem has been previously applied in
parallel search problems [44], its application in our setting is much more challenging, since
we require that each of the 2k searchers must be individually r-robust. Specifically, unlike
previous works, the proof requires an explicit labeling scheme that maps the search lengths
of each parallel searcher to lengths of a “global” sequence. We also extend our upper bound
to weak predictions, by applying tools from the theory of games with a lying responder [50],
in order to bound the effect of erroneous query responses to the performance.

Our second class of results is on the directional prediction model of m-ray search. We
give the first upper and lower bounds on the consistency-robustness tradeoffs, which extend
those of [3] to star search. Here, the main challenge is again on the lower bound side, and
specifically in the weak predictions setting. We show how a generalization of a biased search
approach, in which the searcher allocates more time towards the predicted ray, allows us to
prove an asymptotically tight bound on the competitive ratio as a function of the tolerance
and the number of rays.

Last, we show tight (Pareto-optimal) consistency-robustness tradeoffs for m-ray search in
the positional model. As with the directional model, the only previous known results applied
to linear search [3]. The proof uses tools that circumvent the exact study of linear recurrence
relations inherent in m-ray search problems. To our knowledge, this is a new approach
towards impossibility results on this type of search games. As with the other models, we
also provide tight upper and lower bounds on the competitive ratio under weak predictions.
We emphasize that beyond the tight and near-tight results, the generalization to star search
and the accompanied analysis under weak predictions are conceptually novel aspects of this
work and extend the performance guarantees beyond the consistency/robustness tradeoffs.

Due to space limitations, we omit or sketch technical details in some of the proofs.

2 Preliminaries

We review some notation and known results concerning m-ray searching. Without predictions,
a strategy is described by a sequence of the form X = (xi, ui)i≥0; we refer to i as the iteration1

of the strategy, to xi as the length of the i-th search segment, to ui as the ray searched
in iteration i, and to the point at which the searcher turns in the i-th iteration as the

1 We will consider a numbering of iterations that starts either with 0, or with 1, depending on which
simplifies the presentation.
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corresponding turn point. Note that for linear search (m = 2), we may assume, without loss
of generality, that ui = i mod m, and that xi+2 > xi. We make the standing assumption that
the target lies within distance at least a fixed value, otherwise every strategy has unbounded
competitive ratio. It is well-known that the worst-case hiding positions of the target, i.e.,
the positions that maximize Cr(X), are infinitesimally beyond the turn points of a searcher
that follows X, namely, at distances xi + ϵ on rays ui, for ϵ > 0.

A strategy for m-ray search is called cyclic, if it explores the rays in a fixed permutation
of {0, . . . , m − 1}, e.g., if ui = i mod m. The competitive ratio of a cyclic strategy of the
form X = (xi, i mod m)i is easily shown to be equal to

Cr(X) = 1 + sup
i

2
∑i+m−1

j=0 xj

xi
. (2)

In particular, a cyclic strategy is called geometric if xi = bi, for some fixed b > 1 which is
called the base of the strategy; we will denote such strategies by Gb. Geometric strategies
are significant since they are often optimal for several variants of linear search. From (2), it
follows that the competitive ratio of Gb is therefore equal to 1 + 2bm/(b − 1). This expression
is minimized for b = m/(m − 1), and the resulting optimal competitive ratio, denoted by r∗

m,
is equal to

1 + 2ρ∗
m, where ρ∗

m = mm

(m − 1)m−1 .

Thus, given r ≥ r∗
m, strategy Gb has competitive ratio at most r if bm/(b − 1) ≤ ρr, where

ρr is defined to be equal to (r − 1)/2. We will denote by br the largest such b for which Gb

is r-competitive, i.e., the largest real root of the function f(x) = xm/(m − 1) − ρr.
Under the prediction framework, the searcher is given some information h in regards to

the target t, and determines a strategy Xh (we will often omit h when it is clear from context).
Following [3], we define the consistency of a strategy as its competitive ratio assuming no
prediction error, and its robustness as its competitive ratio assuming adversarial prediction
error. Note, in particular, that the robustness of a strategy is equal to its competitive ratio
without any prediction, and we will thus use these two terms interchangeably. We say that a
strategy is r-robust if its robustness is at most r (similarly for the consistency), and that it is
Pareto-optimal if its consistency and robustness are in an optimal tradeoff relation.

Let Y = (yi)∞
i=0 denote a sequence in R+. We define αY as αY = lim supn→∞ y

1/n
n .

This parameter appears prominently in Gal’s theorem [26] which, informally, gives a lower
bound on the supremum of a set of functionals by the supremum of these functionals over
geometrically increasing sequences. From it, it follows that any m-ray search strategy Y

with search lengths (yi)i has competitive ratio at least 1 + 2 αm
Y

αY −1 , hence if the strategy is
r-competitive it must be that αY ≤ br.

3 Linear search with untrusted advice

In this section, we study linear search in a model in which the prediction is an untrusted
advice string of size k. We first show optimal upper and lower bounds on the best consistency
of r-robust strategies, then in Section 3.1 we study the extension to weak predictions.

Our results will show and exploit connections between a single-searcher strategy with k-bit
advice, and a multi-searcher strategy with 2k parallel searchers, but no advice. Hence, we
first present some definitions and notation concerning the setting of p > 1 parallel searchers,
labeled from the set {0, . . . , p − 1}. In a p-searcher strategy, each searcher j defines its

MFCS 2023
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own strategy of the form Xj = (xj,i, uj,i)∞
i=0. We thus denote the p-searcher strategy as

X = {Xj}p−1
j=0 , or equivalently, we say that it is defined by the set {Xj}p−1

j=0 . The competitive
ratio of a p-searcher strategy is the worst-case ratio of the first time one of the p searchers
finds the target t (assuming unit-speed searchers) and the distance d(t) of the target from
the origin [44].

Observe that the optimal consistency of an r-robust strategy with k advice bits is equal
to the competitive ratio of a parallel search strategy that is defined by 2k searchers, each of
which is individually r-robust. Namely, if the advice is error-free, it can be used to select the
single-searcher strategy, among the 2k ones, that reaches the target at optimal cost. Note
that, by construction, the robustness of this strategy is at most r, since each individual
searcher is r-robust. This observation applies to both positive and negative results on the
consistency/robustness tradeoffs.

We first show an upper bound on the consistency of r-robust strategies:

▶ Theorem 1. For any r ≥ 9, there is an r-robust strategy for searching on the line with
k-bit advice that has consistency at most 1 + 2 b1/q

r

br−1 , where q = 2k−1.

Proof sketch. Let S denote the 2k-parallel strategy as defined by the set S0, . . . S2k−1 where

Sj = (bj+iq, i mod 2), if j is even and Sj = (bj+iq, (i + 1) mod 2), if j is odd,

for some b > 1 that will be specified later. That is, each individual strategy is near-geometric,
and half of the searchers explore ray 0 in their first iteration, whereas the other half explore
ray 1. We require that each strategy in S is r-robust which implies, from the discussion in
Section 2, that b must satisfy bq ≤ br, hence b ≤ b

1/q
r . ◀

Note that this upper bound is not only of theoretical significance, but can be obtained
in practice via a query-based implementation. This is because the i-th advice bit can be
interpreted, equivalently, as a response to a subset query that asks whether the target is
hiding within a specific subset of the infinite line. Informally, the theorem shows which
questions to ask to k different experts2 about the whereabouts of the target so as to maximize
the efficiency of search, while remaining robust to adversarial responses.

We now move to the lower bound. We first show a useful property of parallel search.
To illustrate the property, consider Figure 1, which shows the first segments of a p-parallel
strategy defined by S1, . . . Sp. In this example, the first segment of strategies S1, . . . Si is to
the left ray of the line, whereas the first segment of Si+1, . . . , Sp is to the right ray of the
line. Furthermore, the lengths of these segments are in increasing order, in the left and the
right ray, respectively, as illustrated. We observe that, without loss of generality, a target
that hides infinitesimally beyond the first turnpoint in Sj , with j ∈ {1, . . . , p − 1} is first
discovered by Sj+1, and if j = p, it is first discovered by S1. This is because, if this was not
the case, then one of the strategies would mark its second turn before it had explored any
new parts of the line, which would mean that the corresponding second segment would be
redundant and thus could be omitted.

We can argue, inductively, that the same property extends not only to targets hiding
infinitesimally beyond the first turn points, but beyond every turn point. To formalize this
concept, let S be a p-parallel strategy defined by single-searcher strategies S1, . . . , Sp. We say
that Sj is responsible for the i-th turn point of Sl if Sj is the first strategy in S to discover a

2 Experts may be inherently erroneous; in Theorem 4 we extend the result to account for query errors.
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S1

S2

Si

Si+1

Si+2

Sp

O

Figure 1 A snapshot of the first iteration in a p-parallel strategy.

target hiding infinitesimally beyond the i-th turnpoint of Sl. The following lemma shows
that it suffices to consider p-parallel strategies in which a “snapshot” of the first iteration
of the p individual strategies provides a global picture about the relative turnpoints of all
individual strategies, for all subsequent iterations. This will help us setup the lower bound.

▶ Lemma 2. For any p-searcher strategy S, there is a p-searcher strategy S ′ = {S′
1, . . . , S′

p}
such that there is a bijection π : {1, . . . p} → {1, . . . p} with the property that for any
j ∈ {1, . . . , p}, S′

π(j) is responsible for the i-th turn point of S′
j for all i ∈ N+, and S ′ has

competitive ratio no worse than S.

We now show how to prove the lower bound.

▶ Theorem 3. For any r ≥ 9, every r-robust strategy for searching on the line with untrusted
advice of size k has consistency at most 1 + 2 b1/q

r

br−1 , where q = 2k−1.

Proof sketch. For convenience of notation, let n = 2k, and let S be an n-parallel strategy
defined by S1, . . . Sn, and which satisfies the property of Lemma 2. Let i be such that
strategies S1, . . . Si start their first iteration to the left (in increasing order of this length),
whereas Si+1, . . . Sn start their first iteration to the right (again in increasing length order).
Thus, we have that Sj is responsible for Sj−1, for all j ∈ {2, . . . , 2k}, whereas S1 is responsible
for Sn. The situation is depicted in Figure 1, where p = n.

Let sj,m denote the search length of the m-th iteration of Sj . For any fixed m, consider
a target hiding infinitesimally beyond the m-th turn point of Sj , for each j. Since Sj+1 is
responsible for Sj , for all j ∈ {1, . . . i − 1, i + 1, . . . n − 1}, we have

Cr(S) ≥ 1 + 2
∑m−1

l=1 sj+1,l

sj,m
, for all j ∈ {1, . . . i − 1, i + 1, . . . n − 1}. (3)

In addition, since Si+1 and S1 are responsible for Si and Sn, respectively, we have that

Cr(S) ≥ 1 + 2
∑m−1

l=1 si+1,l

si,m−1
and Cr(S) ≥ 1 + 2

∑m−1
l=1 s1,l

sn,m−1
, (4)

and note the subtle, but important differences in the indexing of the denominators between (3)
and (4). This motivates our next step, in which we label the lengths of all search segments of
the 2k strategies in S in a way that will allow us to use the above lower bounds. Let {xl}∞

l=1
denote the set of all segment lengths in the parallel strategy S. We map bijectively each such
length to a segment length of one of the strategies Sj , according to the following function.

sj,m =


xj+mn, if j ∈ [1, . . . i − 1]
xj−1+mn if j ∈ [i + 1, . . . n − 1]
xn−1+mn, if j = i

xn+mn, if j = n.

(5)
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Combining (3), (4) and the mapping (5), we can show that

Cr(S) ≥ 1 + 2 sup
m

∑mn
l=1 xl∑n−1

l=0 xmn−1+l

. (6)

Define the functional Fm to be Fm =
∑mn

l=1
xl∑n−1

l=0
xmn−1+l

. It is easy to see that this functional

satisfies the conditions of Gal’s Theorem [26]. Therefore,

Cr(S) ≥ 1 + 2 sup
m

∑mn
l=1 αl∑n−1

l=0 αmn−1+l
, where α = lim sup

l→∞
x

1/l
l . (7)

If α ≤ 1, the RHS of (7) is unbounded. If α > 1, (7) gives

Cr(S) ≥ 1 + 2 sup
m

αmn+1 − α

(α − 1)αmn−1 αn−1
α−1

≥ 1 + 2 α2

αn − 1 . (8)

We will now use the fact that each strategy in S is individually r-robust, in order to bound
α from below, and thus Cr(S) as well. From [31] we know that any r-competitive single
searcher strategy of the form Y = (yj)∞

j=1 satisfies yj = O(bj
r). Given the labeling scheme (5),

it follows that xj = O(bj/n
r ), hence from the definition of α, α ≤ b

1/n
r . Therefore, (8) gives

Cr(S) ≥ 1 + 2 b
2/n
r

br − 1 = 1 + 2 b
1/q
r

br − 1 ,

which completes the proof. ◀

We give some intuition behind the significance of the mapping (5) in the proof. The
labeling accomplishes two goals: First, it leads to (6), whose sums in the numerator and the
denominator contain summands with “contiguous” indices: this is an essential requirement
for the application of Gal’s theorem. Second, it implies that each strategy Sj is of the form
(xπ(j)+nl)∞

l=0, where π is a bijection over {1, . . . , n}, which allows us to argue that α ≤ b
1/n
r .

3.1 Extension to weak predictions
We show how to extend the upper bound to incorporate weak predictions. In this setting, as
discussed in Section 1, given advice of size k, and robustness requirement r ≥ 9, the searcher
specifies a tolerance parameter H ≤ k/2. The objective is to obtain an r-robust strategy of
minimum competitive ratio assuming that at most H advice bits are erroneous.

To address this problem, we will make use of a result by Rivest et al. [50], who studied
games with a lying responder. In their setting, given k ∈ N+, H ≤ k/2, and a domain
D = {1, . . . , m}, the objective is to find the index of an unknown x ∈ D, using k queries, of
which up to H may receive incorrect responses. A query can be a comparison query of the
form “Is x ≤ M?”, for some given M ∈ [1, m], or more generally, a subset query of the form
“Is x in S?”, where S is a subset of the domain D. Define the sum of binomial coefficients((

N
m

))
:=

∑m
j=0

(
N
j

)
, for m ≤ N . In [50] it was shown that as long as m ≤ 2k/

((
k
H

))
, k

comparison queries suffice to find x in the above game, in the presence of at most H ≤ k/2
errors. This leads to the following extension of Theorem 1.

▶ Theorem 4. For any r ≥ 9, and any H ≤ k/2, there is an r-robust strategy for searching on
the line with k-bit advice that has competitive ratio at most 1+2 b1/q

r

br−1 , where q = 2k−1/
((

k
H

))
.
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We can further show that
1
q

≤ 1
2k(1−H( H

k ))−1
,

where H denotes the binary entropy function. This allows for a direct comparison to the
Pareto-optimal upper bound of Theorem 1. In particular, we observe that as k increases, the
effect of the advice error in the competitive ratio becomes marginal, even if H is as high as
linear in k.

4 Ray search with directional prediction

In this section, we study m-ray search in the setting in which the prediction is the ray of the
hiding target. Without loss of generality, we suppose that the prediction is the ray indexed 0.

For the upper bound, we consider the following strategy that generalizes the biased search
approach of [20]. The searcher fixes some b > 1 and δ > 1, to be specified later, and explores
the rays in the cyclic order 0, 1, . . . , m − 1. If the ray visited in the i-th iteration is ray 0, it
explores it to a length equal to δbi, otherwise, i.e., if the visited ray is in {1, . . . , m − 1}, it
explores it to a length equal to bi. Thus the search combines elements of geometric search
with a bias towards the predicted ray, as expressed by the parameter δ.

▶ Theorem 5. For every b > 1, δ > 1, the strategy described above has consistency at most
1 + 2 bm

bm−1 + 2
δ

bm

bm−1
bm−b
b−1 , and robustness at most 1 + 2δ bm+1

bm−1 + 2 bm+1

bm−1
bm−b
b−1 − 2bm.

Observe that if δ = 1, then both the consistency and the robustness of the above strategy
are equal to 1 + 2 bm

b−1 , as expected (i.e., the competitive ratio of a geometric strategy with
base b). For any fixed b, by increasing δ, the consistency of the resulting strategy improves,
at the expense of its robustness. We would like thus to optimize the robustness by choosing
δ as a function of b, m and the desired consistency, however it is not obvious that this is
possible analytically. Instead, suppose that we choose b = (m + 1)/m, namely the base of
the geometric strategy that results in an optimal competitive ratio for m-ray search equal to
r∗

m = 1 + 2ρ∗
m. Then bm

bm−1 ≤ e/(e − 1), which implies that the consistency of the strategy is
at most

1 + 2 e

e − 1 + 2
δ

e

e − 1(ρ∗
m − m) = 2

δ

e

e − 1(ρ∗
m − m) + O(1).

On the other hand, the robustness of the strategy is at most

1 + 2δ
81
36 + 281

36(ρ∗
m − m) − 4 = 9

2(δ + ρ∗
m − m) + O(1).

Therefore, if we would like the strategy to be c-consistent, where c = O(1) + 2c̃, for some
c̃, we can choose δ to be equal to e

(e−1)c̃ (ρ∗
m − m), and the resulting robustness is then at

most 9
2 (ρ∗

m − m)(1 + e
(e−1)c̃ ) + O(1). We can also obtain more precise tradeoffs as m → ∞,

since in this case, it is known that r∗
m = 1 + 2ρ∗

m = 1 + 2em.

▶ Corollary 6. For m → ∞, the above strategy has consistency at most 1 + 2 e
e−1 + 2

δ em, and
robustness at most 2e(m + δ

e−1 ). In particular, given c̃, the strategy is (O(1) + 2c̃)-consistent,
and (O(1) + 2em(1 + e

(e−1)c̃ )-robust.

Next, we show a negative result on the tradeoff between the consistency and robustness
that any strategy can achieve. The proof follows an approach that we generalize in the weak
predictions setting (proof of the lower bound in Theorem 8).
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▶ Theorem 7. Any c-consistent strategy for searching with directional prediction, where
c = 1 + 2c̃, has robustness at least 1 + 2ρ∗

m−1(1 + 1
c̃−1 )). In particular, for m → ∞, its

robustness is at least 1 + 2e(m − 1)(1 + 1
c̃−1 ).

4.1 Extension to weak predictions
We consider the model in which if the predicted ray is h ∈ {0, . . . , m − 1}, then the searcher
would like to minimize its competitive ratio, assuming that the target hides in one of the rays
in the interval [h − H mod m, h + H mod m], where H ≤ m/2 is the tolerance parameter.
This captures the case that the hiding ray is expected to be in a vicinity of the predicted
ray, with respect to the tolerance of the searcher. We denote this set of rays by RH , and its
complement, by RH , and note that |RH | = 2H + 1 and |RH | = m − 2H − 1. Without loss of
generality, we may assume that RH = {0, . . . 2H}.

We prove an asymptotically tight bound on the tradeoff between the competitive ratio
and the robustness, that generalizes the error-free setting. Note that every strategy has
competitive ratio at least 1 + 2ρ∗

2H+1, since the weak prediction may incur a search in a
(2H +1)-ray star. We also obtain an interesting corollary: as the competitive ratio approaches
the optimal bound of 1 + 2ρ∗

2H+1, the robustness increases dramatically.

▶ Theorem 8. For every c̃ > ρ∗
2H−1 there exists a strategy with directional hint that has

competitive ratio 1 + 2c̃, and robustness at most O( ρ∗
2H+1

c̃−ρ∗
m−2H−1

(m − 2H)). Furthermore,
this bound is tight, i.e., every strategy of competitive ratio 1 + 2c̃ has robustness at least
Ω( ρ∗

2H+1
c̃−ρ∗

m−2H−1
(m − 2H)).

Proof. We first prove the upper bound, which generalizes the strategy we used in the context
of consistency/robustness tradeoffs. Define b = 2H+1

2H , i.e., the optimal base of a geometric
strategy for searching in a (2H + 1)-ray star, and δ > 1, to be specified later. Consider
a cyclic strategy which visits rays 0, . . . , m − 1 in this order, and which works in rounds.
Specifically, in round i, it explores ray j ∈ RH to length δb(2H+1)i+j , and every ray in RH

to length b(2H+1)i+2H . The competitive ratio of this strategy, assuming error at most H,
is maximized for targets hiding infinitesimally beyond the turn points on ray 2H in RH .
Simple calculations show that the competitive ratio is

1 + 2ρ∗
2H+1 + Θ(1

δ

b2H+1

b2H+1 − 1(m − 2H − 1)),

and note that b2H+1

b2H+1−1 is at most e/(e − 1), by the choice of b. Thus, for the competitive
ratio to be at most 1 + 2c̃, it must be that

δ ∈ Ω( m − 2H

c̃ − ρ∗
2H+1

). (9)

The robustness of the strategy is evaluated for a target hiding at distance infinitesimally
beyond the turn points of the searcher on ray m − 1. After simple calculations we obtain that
the robustness is at most O(δρ∗

2H+1(m − 2H + 1)), which from (9) is at most O( ρ∗
2H+1

c̃−ρ∗
2H+1

(m −
2H)), and which proves the upper bound.

We now proceed with the lower bound. Any strategy for the problem consists of phases,
which alternate between searching a subset of RH and a subset of RH . Namely, every strategy
X is of the form X = (xi)i≥0, in which xi, for even i, describes the aggregate explored
length of X on rays that belong exclusively in RH , and xi for i odd, describes the aggregate
explored length on rays that belong exclusively in RH . Thus, in each phase i, the searcher
incurs a cost of 2xi, for all i (except for the phase at which the target is found).
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Define Si =
∑i

j=0 x2j , and S′
i =

∑i−1
j=0 x2j+1. Then from the competitiveness of the

strategy, for all even i, and for any target tH hiding in RH that is discovered in phase 2(i+1),

1 + 2Si + S′
i

d(tH) ≤ c ⇒ c̃ ≥ Si + S′
i

d(tH) . (10)

We know that searching in a (2H + 1)-ray has competitive ratio at least 1 + 2ρ∗
2H+1. This

means that for all i, there exists a target di that is discovered in phase 2(i + 1) such that

1 + 2 sup
i

Si

di
≥ 1 + 2ρ∗

2H+1,

hence there exists some ī for which the above inequality gives 1 + 2 Sī

dī
≥ 1 + 2ρ∗

2H+1 − ϵ,
where ϵ → 0, as ī is allowed to be unbounded. To simplify the exposition, we can thus assume
that ϵ = 0, and obtain

d(t̄i) ≤ Sī

ρ∗
2H+1

. (11)

Moreover, for any i, there exists a hiding position for a target t′
i in RH that is first discovered

in phase 2i + 1 it must be that

1 + 2 S′
i

d(t′
i)

≥ m − 2H − 1 ⇒ d(t′
i) = O( S′

i

m − 2H − 1), (12)

since 2S′
i describes the cost incurred by the searcher on rays in RH , right before phase 2i + 1

starts. Note also that this inequality holds for all i, unlike (11), that holds only for ī.
To bound the robustness, consider the phase 2̄i + 1, with ī as defined above, and the

target t′
ī
, again as defined above. Then we have that

Robustness ≥ 1 + 2
Sī + S′

ī

d(t′
ī
) = Ω((1 + Sī

S′
ī

)(m − 2H)), (13)

from (12). Moreover, from (10) and (11) we have that

Sī + S′
ī

S′
ī

≤ c̃

ρ∗
2H+1

⇒ Sī

S′
ī

≥
ρ∗

2H+1
c̃ − ρ∗

2H+1
,

and substituting the above inequality to (10) yields the result. ◀

5 Ray search with positional prediction

In this section we study m-ray searching in the setting in which the prediction is the position
of the target in the star environment. Namely, the prediction h is a pair (dh, uh), where dh is
the predicted distance from O and uh is the predicted ray. We first show the upper bound.

▶ Theorem 9. For any r ≥ r⋆
m, there is an r-robust strategy of consistency at most 1+2 1

br−1 .

We will now show that the strategy of Theorem 9 is Pareto-optimal. The proof of the
following theorem generalizes, but also simplifies the lower bound of [3] which applies only
to linear search (m = 2). The crux in the proof is to exploit the properties of the parameter
αY , where Y will be defined as the sequence of search lengths of a cyclic strategy defined
by a linear recurrence relation. In particular, these properties allow us to bypass technical
complications related to the study of such relations, by establishing appropriate lower bounds
(as opposed to solving the recurrence relation).
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12:12 Competitive Search in the Line and the Star with Predictions

▶ Theorem 10. For any r ≥ r⋆
m, no r-robust strategy for searching with positional prediction

has consistency better than 1 + 2 1
br−1 .

Proof sketch. Using techniques rooted in previous studies of star search, we can show that
there exists a cyclic strategy of the form

yjh
= h, for some index jh and 1 + 2

∑j
i=0 yi

yj−m+1
= r, for all j ∈ [m − 1, jh],

which is r-robust and minimizes the consistency (among all r-robust strategies). It follows
that for all j ≤ jh, the search length yj is determined by the recurrence

yj = r(yj−m+1 − yj−m), (14)

with some initial conditions y0, . . . , ym−1. We have that

d(Y, h) =
jh∑

j=0
yj = dh + 2

jh−1∑
j=0

yj = dh + 2r(yjh−m+1 − y0) +
m−1∑
j=0

yj , (15)

where we used the fact that
∑

j yj is telescoping, as seen by (14). From (15) we have
d(Y,h)

dh
= 1 + 2 ryjh−m+1

dh
+ 1

dh
(
∑m−1

j=0 yj − y0). Since Y is cyclic, and dh = yjh
, we obtain that

sup
h

d(Y, h)
dh

≥ 1 + 2 sup
jh

ryjh−m+1

yjh

= 1 + 2r sup
jh

yjh−m+1

yjh

. (16)

Define the functional Fj(Y ) = yj−m+1
yj

. This functional satisfies the conditions of Gal’s

functional theorem [26], hence supj
yj−m+1

yj
≥ αj−m+1

Y

αY
= α−m

Y . Since Y is r-robust, as
discussed in Section 2 r ≥ Cr(X) ≥ αm

Y

αY −1 , where it must be αY ≤ br, from the definition of
br. Thus, (16) gives

sup
h

d(Y, h)
dh

≥ 1 + 2 αm
Y

αY − 1α−m
Y = 1 + 2 1

αY − 1 ≥ 1 + 2 1
br − 1 .

Hence, the consistency of Y is at least 1 + 2 1
br−1 , and thus so is the consistency of X. ◀

5.1 Extension to weak predictions
Given the prediction h related to a target t, we define the prediction error as the distance
between t and h in the star, normalized by the distance d(h) of the prediction’s position
from the origin. Namely, η = |d(t)−d(h)|

d(h) . We distinguish between different types of the error:
If d and h are in the same ray, but d(t) > d(h) we call the error positive, whereas if d and h

are in the same ray, but d(t) < d(h) we call the error negative. If the error is neither positive
or negative, then h and t are in different rays.

Let Xh denote the Pareto-optimal strategy of Theorem 9. Let H > 0 denote the tolerance
parameter that is specified by the searcher, and consider the strategy Xh(1+H), i.e., the
strategy that pretends that the prediction is at the same ray as h, but at distance d(h)(1+H)
from O. The following result is a corollary of Theorem 9.
▶ Corollary 11. For any H > 0 and r ≥ r∗

m, strategy Xh(1+H) is r-robust and has competitive
ratio at most min{1 + 2 1+H

br−1 , r}, if the error is either positive or negative, and at most H.
Otherwise, its competitive ratio is at most r.

Last, we can show that the above tradeoffs are tight.
▶ Theorem 12. For any r-robust strategy with positional prediction, there exists q > 0 such
that its competitive ratio is no better than min{1 + 2 1+q

br−1 , r} for positive or negative error at
most q. Otherwise, its competitive ratio is at least r.
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Abstract
We study the nascent setting of online computation with imperfect advice, in which the online
algorithm is enhanced by some prediction encoded in the form of an imperfect, and possibly erroneous
binary string. The algorithm is oblivious to the advice error, but defines a desired tolerance, namely
an upper bound on the number of erroneous advice bits it can tolerate. This is a model that
generalizes the Pareto-based advice model, in which the performance of the algorithm is only
evaluated at the extreme values of error (namely, if the advice has either no errors, or if it is
generated adversarially). It also subsumes the model in which the algorithm elicits a prediction on
the online sequence, via imperfect responses to a number of binary queries.

In this work, we establish connections between games with a lying responder, also known
as Rényi-Ulam games, and the design and analysis of online algorithms with imperfect advice.
Specifically, we demonstrate how to obtain upper and lower bounds on the competitive ratio for
important online problems such as time-series search, online bidding, and fractional knapsack. Our
techniques provide the first lower bounds for online problems in this model. We also highlight
and exploit connections between competitive analysis with imperfect advice and fault-tolerance in
multiprocessor systems. Last, we show how to waive the dependence on the tolerance parameter, by
means of resource augmentation and robustification.
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1 Introduction

Online computation, and competitive analysis, in particular, have served as the definitive
framework for the theoretical analysis of algorithms in a state of uncertainty. While the early,
standard definition of online computation [37] assumes that the algorithm has no knowledge
in regard to the request sequence, in practical situations, the algorithm may indeed have
certain limited, but possibly inaccurate such information (e.g., some lookahead, or historical
information on typical sequences). Hence, there is a clear need for more nuanced models that
capture the power and limitations of online algorithms enhanced with external information.

One such approach, within Theoretical Computer Science, is the framework of advice
complexity; see [18, 9, 20], the survey [10] and the book [25]. In the advice-complexity model
(and in particular, the tape model [8, 9]), the online algorithm receives a string that encodes
information concerning the request sequence, and which can help improve its performance.
The objective is to quantify the tradeoffs between the size of the advice (in terms of the
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number of bits) and the competitive ratio of the algorithm. This model places stringent
requirements: the advice is assumed to be error-free, and may be provided by an omnipotent
oracle. Thus, as noted in [34], this model is mostly of theoretical significance.

A different and more practical approach studies the effect of predictions towards improving
the competitive ratio. In this model, the online algorithm is enhanced with some imperfect
information concerning the request sequence, without restrictions on its size. One is interested
in algorithms whose performance degrades gently as a function of the prediction error, and
specifically perform well if the prediction is error-free (what is called the consistency of the
algorithm), but also remain robust under any possible error (what is called the robustness of
the algorithm). This line of research was initiated with the works [31] and [35], and a large
number of online problems have been studied under this model (see, e.g., the survey [34] and
the online collection [29]).

A combination of the advice complexity and prediction models is the untrusted or Pareto-
based advice model, introduced in [5]. Here, parts of the advice may be erroneous, and
the algorithm’s performance is evaluated in two extreme situations, in regard to the advice
error. At the one extreme, the advice is error-free, whereas, at the other extreme, the
advice is generated by a (malicious) adversary who aims to maximize the performance
degradation of the algorithm. Using the terminology of algorithms with predictions, these
two competitive ratios are called consistency and robustness, respectively. The objective is
to identify algorithms that are Pareto-efficient, and ideally Pareto-optimal, i.e., attain the
best-possible tradeoffs between these two extreme measures. Several online problems have
been studied recently within this framework of Pareto-optimality (both within the advice
and the predictions models); see, e.g., [39, 28, 26, 4, 6].

1.1 Online computation with imperfect advice
The starting observation that motivates this work is that the Pareto-based framework of
untrusted advice only focuses on extreme competitive ratios, namely the consistency and the
robustness. A more general issue, instead, is to evaluate the impact of the advice error on the
performance of the online algorithm. Given an advice string of size k, let us denote by η ≤ k

the number of erroneous bits. Naturally, the algorithm does not know the exact advice error
ahead of time. Instead, the algorithm defines an application-specific parameter H ≤ k which
determines the desired tolerance to errors, or, equivalently, an anticipated upper bound on
the advice error. This is motivated by recent works in learning-enhanced online algorithms
with weak predictions, in which the prediction is an upper bound of some pertinent parameter
of the input (see e.g., online knapsack with frequency predictions [23], where the prediction
is an upper bound on the number of items of each value that appear online). Our objective
is to quantify the tradeoffs between advice size, tolerance and competitive ratio, both from
the point of upper and lower bounds.

A different interpretation of imperfect advice treats each advice bit as a (potentially
erroneous) response to a binary query concerning the input. Hence, one may think of k-bit
advice as a prediction elicited by means of k imperfect binary experts. Note that queries are
known to help improve the performance of approximation algorithms in ML applications.
For example, [33] studied clustering with noisy queries, where a query asks whether two
points should belong in the same cluster, and where each query receives a correct response
with probability p that is known to the algorithm. A different example is parsimonious
learning-augmented caching [22], in which the system learns the predicted next-arrival time
of certain appropriately queried pages.
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In this work, we study the power, but also the limitations of online algorithms with
adversarially erroneous queries. Unlike [33], we do not rely on any probabilistic assumptions
concerning the query responses. To our knowledge, the imperfect advice model (in particular,
its binary query-based interpretation) has only been applied to the problems of contract
scheduling [6] and time-series search [7], from the point of view of upper bounds. While these
works showed that binary queries help improve the algorithmic performance, both in terms
of theoretical and empirical analysis, no principled methodology for obtaining lower bounds
has been developed so far.

1.2 Contribution
We establish connections between games with a lying responder and the design and analysis
of online algorithms with imperfect advice. Namely, we show how to leverage results from
the analysis of Rényi-Ulam games, and obtain both positive and negative results on the
competitive analysis. We apply these tools to three important and well-studied online
problems, namely time-series search, online bidding, and online fractional knapsack. Our
results improve the known upper bounds for these problems, where such results were already
known, but also provide the first lower bounds on the competitive ratio of online problems
in this setting, without any restrictive assumptions.

More precisely, we begin as a warm-up1 with the time-series search problem in Section 3,
which illustrates how these techniques can help us improve upon the results of [7]; we also
show how to evaluate the competitive ratios, using approximations based on the binary
entropy function. In Section 4, we study a more complex application, namely the online
bidding problem, first studied in [5] in the context of untrusted advice. Here, the crucial part
is establishing near-optimal lower bounds. We achieve this by formulating a multi-processor
version of online bidding in l ≤ 2k processors, in which a certain number of processors may
be faulty; we then relate the competitive ratio of this problem to the imperfect advice setting,
by relating fault-tolerance in the processor level, to the inherent error in Rényi-Ulam games.
In Section 5 we study the online fractional knapsack problem. Here, we present an algorithm
whose competitive ratio converges to 1 at a rate exponential in k, as long as H < k/2. We
also present a near-matching lower bound that shows that our algorithm is close-to-optimal.
For the upper bound, the crux is to allocate queries so as to approximate two appropriately
defined parameters of the instance. For the lower bound, we use an information theoretic
argument. Specifically, we show a reduction from Rényi-Ulam games: if there existed an
algorithm of competitive ratio better than a certain value, one could play the game beyond
the theoretical performance bound, which is a contradiction.

As explained above, the parameter H expresses the algorithm’s desired tolerance to
errors, and is thus application-specific. In Section 6 we show how to waive the assumption
that the precise tolerance is known ahead of time, in two different ways: First, by resource-
augmentation arguments, i.e., by comparing the performance of an algorithm with perfect
(error-free) advice of size k to that of an algorithm with l > k advice bits but potentially
very high advice error. Second, by robustifying the algorithm, namely by requiring that the
algorithm performs well even if the error happens to exceed the tolerance parameter.

The techniques we develop can be applicable to other online problems. Specifically, our
approach to the online bidding problem defines the following general framework: For upper
bounds, one would aim to define a collection of “candidate” algorithms that are closely

1 For ski rental, which is another canonical warm-up problem, [5] showed that a single advice bit suffices
to obtain optimal consistency/robustness. Hence, the problem is resolved under the imperfect advice
model as well.
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ranked in terms of their worst-case performance. Then the advice can be used so as to select
a suitable candidate from this collection that is close to the best-possible. For lower bounds,
one would aim to show that in any collection of candidate algorithms, the erroneous queries
may have to always return a solution sufficiently far, in terms of “rank”, from the best one;
then one needs to relate the concept of “rank” to performance, from a lower-bound point
of view. This last part highlights connections between an online problem with adversarial
advice and its fault-tolerant version in a parallel system (with no advice). On the other
hand, our approach to the time-series and fractional knapsack problems illustrate another
general technique: For upper bounds, one should identify some important parameters of the
problem, then allocate the queries appropriately so as to approximate them in the presence
of response errors. For lower bounds, information-theoretic arguments should establish a
reduction from a Rényi-Ulam game to the online problem.

There are two additional observations concerning the results in this work. First, we allow
adaptive queries, in that the response to the i-th query is a function of responses to the
previous i − 1 queries. Second, it is important to note that the results we present cannot
be obtained straightforwardly by applying some error-correcting code. More precisely, one
may be tempted to dedicate some advice bits towards error correction and use the remaining
error-free bits in the spirit of classic advice complexity results. However, such an approach
may very well be suboptimal since, depending on the problem at hand, an optimal algorithm
may benefit more from a large number of somewhat erroneous advice bits than from a smaller
number of perfect bits, and the analysis must take into account this possibility.

Due to space limitations, we omit or only sketch certain technical proofs. We refer to the
full version on arXiv for the complete proofs.

2 Games with a lying responder

We review some core results related to games with a lying responder which will be in the
heart of the analysis of online problems with imperfect advice. We are particularly interested
in [36], which studied games between a questioner and a responder, related to an unknown
value x drawn from a domain D, where D is a subset of reals or in general a totally ordered
set. The questioner may ask general queries of the form “is x in S”, where S is some subset of
D, and which are called subset queries. The upper bounds of [36] hold even if the questioner
asks much simpler queries, namely comparison queries of the form “is x at most a”, for some
given a. Both the upper and lower bounds in [36] are expressed in terms of partial sums of
binomial coefficients. Formally, we define:((

N

m

))
:=

m∑
j=0

(
N

j

)
, for m ≤ N.

We are interested, in particular, in the following game played over a continuous space:

CONTINUOUSSEARCH(k, H) game. In this game, x is a real number with x ∈ D = (0, 1],
and the questioner asks k queries, at most H of which may receive erroneous responses. The
objective of the questioner is to find an interval Ix such that x ∈ Ix and |Ix| is minimized.

▶ Lemma 1 ([36]). Any questioner’s strategy for ContinuousSearch(k, H) with H ≤ k/2
is such that |Ix| ≥

((
k
H

))
/2k. Moreover, for H ≤ k/2, there is a strategy, named C-

Weighting, that uses comparison queries and outputs an interval IW,x with |IW,x| ≤((
k−H

H

))
/2k−H .
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The following game will be useful in our analysis of online time-series and fractional
knapsack.

FIND(k, H) game. In this game, given k and H ≤ k/2, and D = {1, . . . , m}, the objective
is to find an unknown x ∈ D, using k queries, up to H of which may be answered incorrectly.

The proof of the following theorem is direct from Lemma 1:

▶ Theorem 2. The largest positive integer µ(k, H) such that a questioner can identify any
number x ∈ {1, 2, . . . , µ(k, H)} in the Find(k, H) game is such that

2k−H/

((
k − H

H

))
≤ µ(k, H) ≤ 2k/

((
k

H

))
.

We define two further games that will be of interest to our analysis. The first is related
to searching in cyclic permutations, and will be useful in the upper-bound analysis of online
bidding.

MINCYCLIC(n, k, H) game. Given an array A[0 . . . n − 1] whose elements are an unknown
cyclic permutation of {0, . . . , n − 1}, the objective is to use k queries, at most H ≤ k/2 of
which can be erroneous, so as to output an index of the array whose element is as small as
possible.

▶ Theorem 3. There is a questioner’s strategy for MinCyclic(n, k, H) based on k comparison
queries that outputs an index j such that A[j] ≤ ⌈n

((
k−H

H

))
/2k−H⌉, for all H ≤ k/2.

Last, we define a game that is related to searching in general permutations, and it will be
useful in establishing lower bounds on the competitiveness of online bidding.

SEARCH(n, k, H) game. Given an array, A[0, . . . , n − 1] whose elements are an unknown
permutation of {0, . . . , n − 1}, the objective is to use k queries, at most H of which can be
erroneous, so as to output an index of the array whose element is as small as possible.

▶ Theorem 4. For any questioner’s strategy for the Search(n, k, H) game, there is a respon-
der’s strategy such that if e is the element of A that is returned, then A[e] ≥ ⌊n

((
k
H

))
/2k⌋.

3 A warm-up: Online time-series search

The online (time series) search problem formulates a simple, yet fundamental setting in
decision-making under uncertainty. In this problem, a player must sell an indivisible asset
within a certain time horizon, e.g., within a certain number of days d, that is unknown to the
player. On each day i, a price pi is revealed, and the player has two choices: either accept
the price, and gain a profit pi (at which point the game ends), or reject the price (at which
point the game continues to day i + 1). If the player has not accepted a price by day d, then
it accepts by default the last price pd. The competitive ratio of the player’s algorithm is the
worst-case ratio, over all price sequences, of the maximum price in the sequence divided by
the price accepted by the player.

The problem was introduced and studied in [19] that gave a simple, deterministic algorithm
that achieves a competitive ratio equal to

√
M/m, where M, m are upper and lower bounds

on the maximum and minimum price in the sequence, respectively, and which are assumed
to be known to the algorithm. This bound is optimal for deterministic algorithms. Time-
series search is a basic paradigm in online financial optimization, and several variants and
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generalizations have been studied [17, 30, 40, 16]; see also the survey [27]. The problem
has also been used as a case study for evaluating several performance measures of online
algorithms, including measures alternative to competitive analysis [11, 1].

Time-series search was recently studied under the imperfect advice framework in [7], who
showed an upper bound of (M/m)22H−k/2 on the competitive ratio with k-bit advice and
tolerance H, under the assumption that H ≤ k/4. Note that no upper bound is known for
H ∈ (k/4, k/2]. If the advice is error-free, i.e., in the advice-complexity model, then a tight
bound on the competitive ratio equal to (M/m)

1
2k+1 is due to [16].

We show the following result, as an application of the Find(k, H) game discussed in
Section 2.

▶ Theorem 5. Consider the online time series search problem, with imperfect advice of size
k and tolerance H ≤ k/2. There is an algorithm that uses k comparison queries, and that
has competitive ratio at most (M/m)

1
U+1 , where U = ⌊2k−H/

((
k−H

H

))
⌋, for any H ≤ k/2.

In contrast, no (deterministic) algorithm based on k subset queries has competitive ratio less
than (M/m)

1
L+1 , where L = ⌈2k/

((
k
H

))
⌉.

Proof. We first show the upper bound. Let a1, . . . aU , r be defined such that r = a1
m = a2

a1
=

. . . = aU

aU−1
= M

aU
, hence r = (M/m)1/(U+1). The algorithm uses k comparison queries so

as to find the best reservation price, in the set {ai}U
i=1, i.e., a threshold p above which the

algorithm will always accept a price in the sequence. In particular, it can choose p to be the
maximum value in {ai}U

i=1 that does not exceed the maximum price in the sequence. This
follows from Theorem 2, since U ≤ 2k−H/

((
k−H

H

))
. From the definition of the set {ai}U

i=1,
it easily follows that this algorithm has competitive ratio at most r, which completes the
proof of the upper bound.

We now show the lower bound. By way of contradiction, suppose that there is an
algorithm A for time-series search with k-bit imperfect advice, and of competitive ratio less
than C = (M/m)

1
L+1 . We will show that A could then be used in the Find(k, H) game so

as to identify, using k queries, an unknown value in {1, . . . , L + 1}, which is a contradiction
to the upper bound of Theorem 2.

To arrive at the contradiction, define a1, . . . , aL and r′ such that

r′ = a1

m
= a2

a1
= . . . = aL

aL−1
= M

aL
,

hence r′ = (M/m)
1

L+1 = C. Consider a game between the online algorithm A and the
adversary, in which the request sequences consist of prices in {m, a1, . . . , aL, M}. More
precisely, consider the set of request sequences of the form σi = m, a1, . . . , ai, for all i ∈
[1, L + 1], where aL+1 is defined to be equal to M . In σi, A must accept price ai to be strictly
less than C-competitive. Equivalently, A uses k queries with at most H errors, and finds ai

in the set {aj}L+1
j=1 , which contradicts Theorem 2. ◀

3.1 Comparison of the bounds
In order to compare the upper and lower bounds of Theorem 5, we need to be able to evaluate
the partial sum of binomial coefficients. Since this partial sum does not have a closed form,
we will rely on the following useful approximation from [32]. Let H denote the binary entropy
function. Then

2NH( m
N )√

8m(1 − m
N )

≤
((

N

m

))
≤ 2NH( m

N ), for 0 < m < N/2. (1)
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We will also use the following property of the binary entropy function

4p(1 − p) ≤ H(p) ≤ (4p(1 − p))1/ ln 4, for all p ∈ (0, 1). (2)

We first show that the algorithm of Theorem 5 improves upon the one of [7]. First, note
that [7] assumes that H ≤ k/4, whereas Theorem 5 applies to all H ≤ k/2. Furthermore,
we improve on the competitive ratio for all values of H and k. For this, it suffices to show
that

((
k−H

H

))
/2k−H < 22H−k/2, which, from (1) holds if 2(k−H)(H( H

k−H )−1) < 22H−k/2, or
equivalently (k − H)(H( H

k−H ) − 1) < 2H − k/2. Let τ be such that τ = H/k (hence τ ≤ 1/2),
then the latter is equivalent to showing that H( τ

1−τ ) < 1+2τ
2−2τ . Using (2), it suffices to show

that

(4τ(1 − 2τ)
(1 − τ)2 )1/ ln 4 <

1 + 2τ

2 − 2τ
,

which holds for all τ ≤ 1/2.
Next, we investigate how close the upper and lower bounds of Theorem 5 are to each

other. Recall that the bounds are of the form (M/m)1/(U+1), and (M/m)1/(L+1). Using (1),
and ignoring for simplicity the floors and ceilings, we obtain that

U ≥ 2k(1−τ)(1−H( τ
1−τ )) and L ≤

√
8kτ(1 − τ)2k(1−H(τ)).

The above inequalities, along with (2) show that the upper and lower bounds are very close
to each other, since for any fixed value of τ , we have that U ≥ 2Θ(k) and L ≤ 2Θ(k).

4 Online bidding

Online bidding was introduced in [15] as a canonical problem for formalizing doubling-based
strategies in online and offline optimization problems, such as searching for a target on the
line, minimum latency, and hierarchical clustering. In this problem, a player wants to guess
a hidden, unknown real value u ≥ 1. To this end, the player defines an (infinite) sequence
X = (xi) of positive, increasing bids, which is called its strategy. The cost of discovering the
hidden value u using the strategy X, denoted by c(X, u), is defined to be equal to

∑ju

i=1 xi,
where ju is such that xju−1 < u ≤ xju

. Hence one naturally defines the competitive ratio of
the bidder’s strategy X as Cr(X) = supu

c(X,u)
u .

In the standard version of the problem, i.e, assuming no advice, the doubling strategy
xi = 2i achieves optimal competitive ratio equal to 4. Online bidding was studied under the
untrusted advice model in [5], which gave bounds on the consistency/robustness tradeoffs.
It was also studied under a model in which the prediction is the hidden value in [3, 5].
The problem is related to contract scheduling, studied in [6], see also the discussion in
Section 4.1.3.

4.1 Online bidding with imperfect advice
4.1.1 Upper bound
The idea behind the upper bound is as follows. We will consider bidding sequences from a
space of 2k geometrically-increasing sequences (see Definition 6). In the ideal situation of
perfect advice, the k advice bits could be used to identify the best strategy in this space. In
the presence of advice errors, we will show how to exploit the cyclic structure of this space,
in conjunction with our upper bound for the MinCyclic game (Theorem 3), so as to find a
strategy that is not too far from the optimal.

We first define the space of geometrically-increasing bidding sequences.

MFCS 2023



13:8 Rényi-Ulam Games and Online Computation with Imperfect Advice

▶ Definition 6. For given b > 1, and l ∈ N+ define Xb,l as the set of bidding sequences
{X0, . . . Xl−1}, in which Xi = (bi+jl)∞

j=0, for all i ∈ [0, l − 1].

From the definition of Xb,l, it is easy to see that for any potential target u, there is a
cyclic permutation π of {0, . . . l − 1} which determines an ordering of the strategies in Xb,l in
terms of their performance. More precisely, suppose that Xπ(0) is the best sequence that
discovers u at least cost, say C. Then Xπ(i) discovers u at cost at most biC. This property
can help us show the following upper bound:

▶ Theorem 7. There is a bidding strategy based on k comparison queries of competitive ratio

at most 1+U
2k

(
1 + 2k

1+U

)1+ 1+U

2k

, where U = ⌈2H
((

k−H
H

))
⌉.

4.1.2 Lower bound
The idea behind the lower bound is as follows. With k advice bits, the best one can do is
choose the best strategy from a set X that consists of at most 2k strategies. Note that if the
advice were error-free, |X | could be as large as 2k; however, in the presence of errors, the
algorithm may choose to narrow |X |.

Our approach combines two ideas. The first idea uses the abstraction of the
Search(n, k, H) game, and the lower bound of Theorem 4. This result will allow us
to place a lower bound on the rank of the chosen strategy, where the best strategy has rank
0. The second idea is to define a measure that relates how much worse a strategy of rank j

in X has to be relative to the best strategy in X . We will accomplish this by appealing to
the concepts of parallelism and fault tolerance.

More precisely, given integers p, and ϕ, with ϕ < p, we define the fault-tolerant parallel
bidding problem, denoted by FPB(p, ϕ), as follows. The player is allowed to run, in parallel, p

bidding strategies; however, ϕ of these strategies can be faulty, in that they never discover
the target; e.g., we can think of a fault strategy as one in which the player abruptly stops
submitting bids, at some point in time, akin to a “byzantine” failure. The cost of discovering
a target u is then defined as the minimum cost at which one of the p − ϕ non-faulty strategies
discovers the target, noting that the faults are dictated by an adversary that aims to maximize
this cost. The competitive ratio is defined accordingly.

The next theorem is the main technical result for FPB(p, ϕ), which gives a lower bound
on the competitive ratio of any strategy for this problem, as a function of the parameters p,
ϕ and αX̄ . Here, X̄ is defined as the sorted sequence of all bids in the p-parallel strategy X,
in non-decreasing order. Moreover, given a sequence X of positive reals, we define αX to be
equal to lim supi→∞ x

1/i
i .

▶ Theorem 8. Every p-parallel strategy X for FPB(p, ϕ) has competitive ratio Cr(X) ≥
αp+1+ϕ

X̄

αp

X̄
−1 .

Proof sketch. We use properties of p-parallel strategies so as to show that any such strategy

satisfies Cr(X) ≥ supq

∑q+ϕ+1
i=0

x̄i∑q−(p−1)
i=q

x̄i

. We then use Gal’s functional theorem [21] to obtain the

result. We omit several technical details. ◀

We now show how to obtain a lower bound for the problem by combining the above ideas.
We emphasize a subtle point: unlike error-free advice of size k, where one should always
choose the best strategy out of a collection of exactly 2k strategies, it is conceivable that, in
the presence of errors, this collection could very well be of size l < 2k. This is because, as l

decreases, so does the effect of errors on the competitive ratio. In other words, we need to
establish the result for all values l ≤ 2k, and not only for l = 2k.
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▶ Theorem 9. For every bidding sequence X and k subset queries in the imperfect advice
model, we have Cr(X) ≥ 1

L (1 + L)1+1/L, where L = 2k/
((

k
H

))
.

Proof. Every bidding strategy will use the query responses so as to select a strategy from a
set X = {X0, . . . , Xl−1} of candidate sequences, for some l ≤ 2k. For a given target value
u, there is an ordering of the l sequences in X such that Xπ(i) has no worse competitive
ratio than Xπ(i+1), namely the permutation orders the sequences in decreasing order of
performance. From Theorem 4, it follows that the strategy will choose a sequence Xj such
that π(j) ≥ ⌊l

((
k
H

))
/2k⌋. The competitive ratio of the selected sequence is at least the

competitive ratio of the l-parallel strategy defined by X , in which up to ϕl = ⌊l
((

k
H

))
/2k⌋

sequences may be faulty. From Theorem 8,

Cr(X) ≥
αl+1+ϕl

X̄

αl
X̄

− 1
, with ϕl = ⌊l

((
k

H

))
/2k⌋. (3)

We now consider two cases. Suppose first that l < L. In this case, case ϕl = 0, and
therefore (3) implies that Cr(X) ≥ αl+1

X̄
/(αl

X̄
−1), which is minimized for αX̄ = (l+1)1/l > 1,

therefore Cr(X) ≥ 1
l (l + 1)1+1/l. This function is decreasing in l, and since l < L we

have Cr(X) ≥ 1
L (1 + L)1+1/L. Next, suppose that l ∈ [L, 2k]. In this case, (3) gives

Cr(X) ≥ α
l(1+1/L)
X̄

αl
X̄

−1 . The above expression is minimized for αX̄ = (1+L)1/l, and by substitution

we obtain again Cr(X) ≥ 1
L (1 + L)1+1/L. ◀

4.1.3 Comparison of the bounds
We can prove that the ratio between the two bounds is approximately

log UB
LB ≤

√
8kτ(1 − τ)k(1 − τ)(1 − H( τ

1−τ ))
2k(1−τ)(1−H( τ

1−τ )) − k(1 − H(τ))
2k(1−H(τ)) ,

where τ = H/k. We infer that as k increases, and for any fixed value of τ , the upper and
lower bounds become very close to each other.

Note that the techniques of [6] imply an online bidding strategy with imperfect advice
of competitive ratio roughly equal to f(2k/H), where f is the decreasing function f(x) =
1
x (1 + x)1+ 1

x . Thus, if H = Θ(k), then the competitive ratio is independent of the number of
queries k. In contrast, the competitive ratio of Theorem 7 is roughly equal to f(2k/U), which
is smaller than f(2k/H), and which rapidly decreases as the number of queries k increases.

We also note that our analysis implies a tight bound on the advice complexity of online
bidding. No previous bounds on the advice complexity of this problem were known.

5 Online fractional knapsack

In the online fractional knapsack problem, the request sequence consists of items, where item
i has a value vi ∈ R+ and a size si ∈ (0, 1]. The algorithm has a knapsack of unit capacity,
and when considering item i, it can accept irrevocably a fraction fi ∈ (0, 1] of the item,
subject to capacity constraints. More precisely, the algorithm aims to maximize

∑
i

(fi · vi)

subject to
∑
i

(fi · si) ≤ 1. Online fractional knapsack has important applications in sponsored

search auctions, ad allocation and online trading, and has been studied in several settings,
e.g., [2, 24, 38, 14]. In this section, we study this problem in the imperfect advice setting.
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Let di = vi/si denote the density of item i. While the offline version of the problem admits
an optimal solution via a simple greedy algorithm (that sorts all items by non-decreasing
order of density, and accepts items in this order until the knapsack is full), the online version
is more challenging. Suppose that di ∈ [L, U ], for L, U known to the algorithm. [13, 12] gave
matching O(log(U/L)) and Ω(log(U/L)) upper and lower bounds on the competitive ratio of
the problem, respectively, and [41] showed an optimal bound of ln(U/L) + 1 for deterministic
algorithms.

5.1 Upper bound
As in all previous work, we assume that the density of all items is in [L, U ] for known values
of L and U . Let d∗ denote the smallest density of an item included at a positive fraction
in the optimal solution. That is, the optimal algorithm Opt accepts a fraction 1 of items
with density larger than d∗, and fills the remaining space with a fraction of items of density
d∗. Unfortunately, knowing d∗ (even its exact value) is not sufficient for an online algorithm
to be anywhere as efficient as Opt. For example, an algorithm that accepts a fraction 1 of
items of density larger than d∗ has unbounded competitive ratio in sequences that consist
only of items of density d∗. Similarly, an algorithm that accepts a fraction 1 of items with
density at least d∗ has unbounded competitive ratio in sequences in which items of density
d∗ appear early in the sequence, and items of greater density later in the sequence. However,
if we denote by c∗ ∈ (0, 1) the fraction of the knapsack in the optimal solution that is either
empty or occupied with items of density d∗, then knowing the exact value of both d∗ and c∗

suffices to achieve optimality. Our approach will then aim to use k comparison queries so as
to approximate c∗ and d∗, then use these approximations to choose fractional items.

5.1.1 Algorithm and analysis
We describe the online algorithm. We first define two types of partitions, related to the
parameters d∗ and c∗. In what concerns d∗, partition the interval [L, U ] into s sub-intervals
I1, . . . , Is such that Ii = [di−1, di), for s that will be specified later. We also set L = d0, U = ds.
The values di are defined so that: β = d1

d0
= d2

d1
= . . . = ds

ds−1
. Thus, we have β = (U/L)1/s

and di = L · βi, and note that d∗ ∈ Ix for some x ∈ [1, s].
In what concerns the parameter c∗, we partition the interval [0, 1] into m sub-intervals

I ′
1, . . . , I ′

m such that I ′
i = [ci−1, ci); we have c0 = 0 and cm = 1. The value of m will be

determined later; the values ci are defined so that c1 = c2 − c1
β = c3 − c2

β = . . . = cm − cm−1
β .

It readily follows that for i ≥ 1, we have ci = βm+i−1−βm+i−2

βm−1 . In particular, c1 = βm−βm−1

βm−1 ,
and 1

1−c1
= βm−1

βm−1−1 . Note also that c∗ ∈ I ′
y for some y ∈ [1, m].

Provided that s · m ≤ ⌊2k−H/
((

k−H
H

))
⌋, Theorem 2 shows that the algorithm can use k

comparison queries so as to identify both x and y. Given these values, the algorithm reserves,
in its knapsack, a capacity c = cy−1 for items with density in the range Ix = [dx−1, dx), to
which we refer as critical items. The algorithm uses the remaining capacity of 1 − c for items
of density larger than dx, to which we refer as heavy items, and accepts a fraction 1 of all
critical items, as long as the capacity c reserved for them allows. Similarly, the algorithm
accepts a fraction 1 of heavy items and places them in their dedicated space of the knapsack.
Given that c∗ ∈ Iy, we have 1 − c > 1 − c∗; that is, the reserved capacity for heavy items is
at least equal to the total size of these items. In other words, the algorithm can afford to
accept all heavy items. The algorithm rejects all items of density smaller than dx−1.
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▶ Theorem 10. For any H ≤ k/2, the above algorithm has competitive ratio

min
s,m∈N

fm(β) where β = (U/L)1/s, and fm(β) = βm − 1
βm−1 − 1

subject to s · m ≤ ⌊2k−H/

((
k − H

H

))
⌋.

5.2 Lower bound
We will show a lower bound C(k, H) on the competitive ratio of any algorithm with imperfect
advice. For the sake of contradiction, suppose there is an algorithm A of competitive
ratio better than C(k, H). Our proof is based on a reduction from the Find(k, H) game.
Specifically, we prove that, based on A, we obtain a questioner’s strategy for Find(k, H)
which can find a value z ∈ {1, . . . , p}, with p = ⌈2k/

((
k
H

))
⌉+1, which contradicts Theorem 2.

We give the intuition behind the proof. Let s and m be any two positive integers such
that s · m ≤ p and s · (m + 1) > p. Define β = (U/L)1/s, and di = U · βi, for i ∈ [1, s]. Given
a pair (x, y) of integers, where x ∈ {1, . . . , s} and y ∈ {1, . . . m + 1}, define the sequence

σx,y = ((d1, 1), (d2, 1), . . . , (dx−1, 1), (dx, cy),

where (di, j) indicates a subsequence of j/ϵ items, each of which has size ϵ and density di,
and where ϵ is infinitesimally small. cy ∈ [0, 1] is defined appropriately in the proof. For this
sequence, OPT(σx,y) = (1 − cy)dx−1 + cydx. There are s · (m + 1) > p such sequences, and
σx,y is a prefix sequence of σx,y+1, and σx,m is a prefix sequence of σx+1,1. In the proof, we
consider request sequences of this form, and we show that if A is C(k, H)-competitive, its
decisions can help find any given z ∈ {1, . . . , p}, which contradicts Theorem 2.

▶ Theorem 11. For the fractional knapsack problem, where items densities are in [L, U ],
no deterministic algorithm with k subset queries, out of which H ≤ k/2 may have erroneous
responses, can achieve a competitive ratio better than

C(k, H) = min
s,m∈N

gm(β) where β = (U/L)1/s, gm(β) = (β2 − β + 1
2β + 1 )1/(m+1)

subject to s · m ≤ ⌈2k/

((
k

H

))
⌉ + 1.

Comparison of the bounds

Let τ = H/k. Since βm−1
βm−1−1 ≤ β, using (1), the upper bound of Theorem 10 is at most (U/L)q,

where q ≤ 1/2k(1−τ)(1−H( τ
1−τ )). Furthermore, since β2−β+1

2β+1 ≥ β
3 (for all β ≥ 3), the lower

bound of Theorem 11 is at least (U/L)q′(1/3)q′ , where q′ ≥ 1/(2
√

8kτ(1 − τ)2k(1−H(τ)) + 1),
for all U/L ≥ 3. For simplicity, we omitted the floors and ceilings.

6 Waiving the assumption of the tolerance parameter

In the imperfect advice setting we have studied so far, the algorithm defines an application-
specific tolerance parameter that measures its desired tolerance to errors (or equivalently,
an anticipated upper bound on the error). This parameter is in a sense required, since the
analysis of Rényi-Ulam games in [36] involves the extreme value of error (i.e., H) instead
of the instance-specific error value (i.e., η). Nevertheless, in this section, we discuss how
to mitigate the need for pre-determining a tolerance parameter. We propose two different
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approaches, based on resource-augmentation, and robustification, which we discuss in what
follows. We use the time-series search and online bidding problems as illustrations, even
though our approach may carry through in other online problems, at the expense of more
complex calculations.

6.1 Resource augmentation
In this setting, we compare an oblivious online algorithm A with l advice bits and no
information on the error bound, to an online algorithm B that has k ideal (i.e. error-free)
advice bits. Specifically, we are interested in finding the smallest l ≥ k (as a function of k)
for which algorithm A is at least as good as algorithm B, regardless of the advice error of A.

The following theorem shows that O(1)-factor resource augmentation suffices to obtain
an oblivious algorithm that is at least as efficient as any algorithm that operates in the ideal
setting of error-free advice, and even if a fraction 1/3 − c of the advice bits may be erroneous,
for any constant c.

▶ Theorem 12. Consider the time-series and the online bidding problems. For all sufficiently
large k, and any c ∈ (0, 1/3), there is an oblivious online algorithm A with advice of size l,
whose competitive ratio is at least as good as that of any online algorithm B with k bits of
perfect (i.e. error-free) advice, where l = 1

( 2
3 +c)(1−H(

1
3 −c

2
3 +c

))
k + 1, for any error η ≤ (1/3 − c)l

in the advice of A.

6.2 Robustification
In this setting, we augment the imperfect advice framework by requiring not only that the
algorithm minimizes the competitive ratio assuming that the advice error is at most the
tolerance H, but also that its competitive ratio does not exceed a robustness requirement r,
for some specified r, if the error exceeds H (and in particular, if the advice is adversarially
generated). We call such online algorithms r-robust. Thus, this model can be seen as an
extension of both the imperfect advice and the untrusted advice model of [5].

For the time-series problem, we obtain the following result, which generalizes Theorem 5.
In particular, note that Theorem 5 is a special case of Theorem 13 for ρ = 1.

▶ Theorem 13. Consider the online time series search problem, with imperfect advice of
size k, tolerance H ≤ k/2, and robustness r = (M/m)ρ, where ρ ∈ (1/2, 1]. There is
an r-robust algorithm that uses k comparison queries, and has competitive ratio at most
(M/m)

2ρ−1
U+1 , where U = ⌊2k−H/

((
k−H

H

))
⌋, for any H ≤ k/2. Moreover, no (deterministic)

algorithm based on k subset queries has competitive ratio better than (M/m)
2ρ−1
L+1 , where

L = ⌈2k/
((

k−H
H

))
⌉.

The analysis of r-robust algorithms for online bidding is more challenging, in particular
in what concerns the impossibility results. We give an overview of the approach. For the
upper bound, we can follow an analysis along the lines of Theorem 7, however, each bidding
sequence in the collection Xb,2k must be individually r-robust. This is easy to enforce, and it
requires that b much be such that b2/(b − 1) ≤ r. The lower bound is more subtle: the proof
follows the lines of Theorem 9, but uses the fact that if all the l sequences in X0, . . . , Xl−1
must be r-robust, then α2

X̄
/(αX̄ − 1) ≤ r. We obtain the following:
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▶ Theorem 14. For every r ≥ 4 there is an r-robust bidding strategy with k-bit imperfect
advice that has competitive ratio at most

min
b>1

b2k+U+1

b2k − 1
, subject to b2k+1

/(b2k

− 1) ≤ r, and where U = ⌈2H

((
k − H

H

))
⌉.

Furthermore, every r-robust bidding strategy has competitive ratio at least

min
α>1

α2k+L+1

α2k − 1
subject to α2k/(αk − 1) ≤ r, and where L = ⌊

((
k

H

))
⌋.
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Abstract
Based on a theorem of Bergman [6, Theorem 4.5.3] we show that multivariate noncommutative
polynomial factorization is deterministic polynomial-time reducible to the factorization of bivariate
noncommutative polynomials. More precisely, we show the following:
1. In the white-box setting, given an n-variate noncommutative polynomial f ∈ F⟨X⟩ over a field F

(either a finite field or the rationals) as an arithmetic circuit (or algebraic branching program),
computing a complete factorization of f into irreducible factors is deterministic polynomial-time
reducible to white-box factorization of a noncommutative bivariate polynomial g ∈ F⟨x, y⟩; the
reduction transforms f into a circuit for g (resp. ABP for g), and given a complete factorization
of g (namely, arithmetic circuits (resp. ABPs) for irreducible factors of g) the reduction recovers
a complete factorization of f in polynomial time.
We also obtain a similar deterministic polynomial-time reduction in the black-box setting.

2. Additionally, we show over the field of rationals that bivariate linear matrix factorization of
4 × 4 matrices is at least as hard as factoring square-free integers. This indicates that reducing
noncommutative polynomial factorization to linear matrix factorization (as done in [1]) is unlikely
to succeed over the field of rationals even in the bivariate case. In contrast, multivariate linear
matrix factorization for 3 × 3 matrices over rationals is in polynomial time.
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1 Introduction

The main aim of this paper is to show that multivariate polynomial factorization in the free
noncommutative ring F⟨x1, x2, . . . , xn⟩ is polynomial-time reducible to bivariate noncommut-
ative polynomial factorization in the bivariate ring F⟨x, y⟩. Such a result for commutative
polynomial factorization is well-known due to Kaltofen’s seminal work [9, 10] on multivariate
polynomial factorization in the commutative polynomial ring F[y1, y2, . . . , yn]. However, this
problem was open for noncommutative polynomials. Recently, a randomized polynomial-time
algorithm was obtained for the factorization of noncommutative polynomials over finite fields,
where the input polynomial is given by a noncommutative formula [1].1 Broadly speaking,
the algorithm of [1] works via Higman linearization ([8] [6] [7]) and reduces the problem to
linear matrix factorization which turns out to have a randomized polynomial-time algorithm
over finite fields.

1 Factorization of homogeneous noncommutative polynomials is easier as it can be reduced to factorization
of a special case of commutative polynomials. See [4] for details.

© Vikraman Arvind and Pushkar S. Joglekar;
licensed under Creative Commons License CC-BY 4.0

48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023).
Editors: Jérôme Leroux, Sylvain Lombardy, and David Peleg; Article No. 14; pp. 14:1–14:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:arvind@imsc.res.in
https://www.imsc.res.in/~arvind/
mailto:joglekar.pushkar@gmail.com
https://doi.org/10.4230/LIPIcs.MFCS.2023.14
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


14:2 Multivariate to Bivariate Reduction for Noncommutative Polynomial Factorization

▶ Problem 1 (Linear Matrix Factorization Problem). The linear matrix factorization problem
over a field F takes as input a linear matrix: L = A0 +

∑n
i=1 Aixi, where the Ai are d× d

scalar matrices (over F), the xi, 1 ≤ i ≤ n are noncommuting variables, and A0 is assumed
invertible for technical reasons. The problem is to compute a factorization of L as a product
of irreducible linear matrices.

The study of matrix factorization (linear matrix factorization, in particular) is an import-
ant part of Cohn’s factorization theory over general free ideal rings. [6, 5].

Coming back to the polynomial factorization algorithm described in [1], the algorithm
reduces polynomial factorization to linear matrix factorization which is, in turn, reducible
to the problem of computing a common invariant subspace for a collection of n matrices.
The common invariant subspace problem over finite fields can be efficiently solved using
Ronyai’s algorithm [12] which is based on the Artin-Wedderburn theorem for decomposition of
algebras. This approach, however, runs into serious difficulties over rationals. Given a simple
matrix algebra2 A over rationals, we do not know an efficient algorithm for checking if A is a
division algebra or whether it has zero divisors. This is one of our motivations for obtaining
a reduction from multivariate polynomial factorization to bivariate factorization. Because
Higman Linearization of a bivariate noncommutative polynomial given by a formula will
yield a bivariate linear matrix. One could hope that factorization of a bivariate linear matrix
is computationally easier than factorization of an n-variate linear matrix. Unfortunately, this
is not the case. As we will see, even for 4-dimensional bivariate linear matrices the problem
of factorization is at least as hard as factoring square-free integers.

Multivariate to Bivariate

We start with some formal preliminaries. Let F be any field and X = {x1, x2, . . . , xn} be a
set of n free noncommuting variables. Let X∗ denote the set of all free words (which are
monomials) over the alphabet X with concatenation of words as the monoid operation and
the empty word ϵ as identity element.

The free noncommutative ring F⟨X⟩ consists of all finite F-linear combinations of monomi-
als in X∗, where the ring addition + is coefficient-wise addition and the ring multiplication
∗ is the usual convolution product. More precisely, let f, g ∈ F⟨X⟩ and let f(m) ∈ F
denote the coefficient of monomial m in polynomial f . Then we can write f =

∑
m f(m)m

and g =
∑

m g(m)m, and in the product polynomial fg for each monomial m we have
fg(m) =

∑
m1m2=m f(m1)g(m2). The degree of a monomial m ∈ X∗ is the length of the

monomial m, and the degree deg f of a polynomial f ∈ F⟨X⟩ is the degree of a largest
degree monomial in f with nonzero coefficient. For polynomials f, g ∈ F⟨X⟩ we clearly have
deg(fg) = deg f + deg g.

A nontrivial factorization of a polynomial f ∈ F⟨X⟩ is an expression of f as a product
f = gh of polynomials g, h ∈ F⟨X⟩ such that deg g > 0 and deg h > 0. A polynomial
f ∈ F⟨X⟩ is irreducible if it has no nontrivial factorization and is reducible otherwise. For
instance, all degree 1 polynomials in F⟨X⟩ are irreducible. Clearly, by repeated factorization
every polynomial in F⟨X⟩ can be expressed as a product of irreducibles.

The problem of noncommutative polynomial identity testing (PIT) for multivariate poly-
nomials is known to easily reduce to noncommutative PIT for bivariate polynomials: the
reduction is given by the xi → xyi, 1 ≤ i ≤ n, which transforms a given arithmetic circuit
(or formula or algebraic branching program) computing a polynomial f(x1, x2, . . . , xn) to the

2 i.e. the algebra has no nontrivial two-sided ideals.
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bivariate polynomial g(x, y) = f(xy, xy2, . . . , xyn). As this substitution map ensures that
every monomial of f is mapped to a distinct monomial of g(x, y), f is the zero polynomial if and
only if g(x, y) is the zero polynomial. Indeed, this map even gives an injective homomorphism
from the ring F⟨x1, x2, . . . , xn⟩ to F⟨x, y⟩ [6, Problem 14, Exercises 2.5]. However, it does not
preserve factorizations. For example, the polynomial f = x3x1 + x4x2 + x4x1 + x5x2 ∈ F⟨X⟩
is clearly irreducible. But the image of f under this map has the nontrivial factorization
(xy2 +xy3)(yxy+y2xy2). Thus, it cannot be used to obtain a reduction from noncommutative
multivariate polynomial factorization to bivariate polynomial factorization.

Bergman’s 1-inert embedding

However, based on a theorem of Bergman [6, Theorem 4.5.3], we can obtain a polynomial-time
reduction from factorization of multivariate noncommutative polynomials in F⟨x1, x2, . . . , xn⟩
given by arithmetic circuits (resp. noncommutative algebraic branching programs(ABP)) to
factorization of bivariate noncommutative polynomials in F⟨x, y⟩, again given by arithmetic
circuit (resp. an ABP). This reduction is polynomial-time bounded for both finite fields
and rationals. In the case of rationals we need to ensure that the bit complexities of all
numbers involved are polynomially bounded. Furthermore, we show that essentially the same
reduction works in the black-box setting as well.

The notion of 1-inert embeddings is defined below for free noncommutative polynomials.

▶ Definition 2 (1-inert embedding). [5] Let X∞ = {x1, x2, . . .} be a countably infinite set
of free noncommuting variables and {x, y} be two free noncommuting variables. A 1-inert
embedding of F⟨X∞⟩ into F⟨x, y⟩ is an injective homomorphism φ : F⟨X⟩ → F⟨x, y⟩ such
that for each polynomial f ∈ F⟨X⟩, if its image φ(f) factorizes nontrivially in F⟨x, y⟩ as
φ(f) = g1·g2 then their preimages φ−1(g1) and φ−1(g2) exist and, since φ is a homomorphism,
it gives a nontrivial factorization f = φ−1(g1)φ−1(g2) of f in F⟨X⟩.

▶ Remark 3. The above definition implies that for all factorizations φ(f) = g1g2, the
polynomials g1 and g2 are in the range of φ. Cohn [6, 5] treats 1-inert embeddings φ : R1 → R2
for general noncommutative integral domains R1 and R2, which we do not require for our
results.

▶ Definition 4. A complete factorization of noncommutative polynomial f ∈ F⟨X⟩ is a
factorization f = f1 · f2 · · · fr into a product of irreducible polynomials fi ∈ F⟨X⟩.

Given an algebraic branching program (resp. Arithmetic Circuit) for f , we can efficiently
obtain an algebraic branching program (resp. Arithmetic Circuit) for φ(f) and then we
use idea of running a substitution automata on ABPs or circuits (see e.g. [4], [2], [3]) to
construct a complete factorization of f given a complete factorization of φ(f). In the next
section we will elaborate and expand upon Bergman’s embedding theorem [5] and show how
to get an effective algorithmic version which is useful for our purpose of reconstruction of
factors of f from factors of φ(f).

The rest of the paper is organized as follows: In Section 2 we give necessary details of
Bergman’s result. In Section 3 we present the reductions. Motivated by the connection
between noncommutative polynomial factorization and linear matrix factorization, in Section 4
we show a hardness result for bivariate linear matrix factorization for 4× 4 linear matrices
over rationals. In contrast we obtain an efficient linear matrix factorization algorithm for
3× 3 linear matrices over rationals.

MFCS 2023



14:4 Multivariate to Bivariate Reduction for Noncommutative Polynomial Factorization

2 Bergman’s embedding

We recall the graded lexicographic ordering ≺ on monomials in {x, y}∗, which is a total
ordering on {x, y}∗ defined as follows:

For monomials m1, m2 ∈ {x, y}∗, m1 ̸= m2, we say m1 ≺ m2 if either deg(m1) < deg(m2)
or deg(m1) = deg(m2) and in the leftmost position i where they differ we have m1[i] = y

and m2[i] = x.
For any polynomial g, let supp(g) denote the set of all monomials of g with non-zero

coefficient. When m1 ≺ m2 we say that monomial m1 is smaller than monomial m2.
Equivalently, we say m2 is larger than m1. The leading monomial of a polynomial g ∈ F⟨x, y⟩
is the monomial m ∈ supp(g) (denoted by lm(g)) such that w ≺ m for all w ∈ supp(g). That
is, the leading monomial of g is the largest monomial in supp(g).

For a monomial m ∈ {x, y}∗ let dx(m) (resp. dy(m)) denote the number of occurrences
of x (resp. y) in m. The imbalance i(m) of the monomial m is defined as

i(m) = dx(m)− dy(m).

Let B ⊂ F⟨x, y⟩ be the set of all polynomials f such that every monomial m ∈ supp(f)
has imbalance zero, i.e. i(m) = 0 for all m ∈ supp(f). Clearly, B is a subalgebra of F⟨x, y⟩.
Let T be the set of all minimally balanced monomials. That is, for m ∈ T either m = ϵ or
i(m) = 0 and for any proper prefix m′ of m such that m′ ̸= ϵ, i(m′) > 0. Notice that for all
monomials m ∈ T \ {ϵ} its leftmost symbol m[1] is x. We arrange the nontrivial monomials
in T in increasing ≺-ordering. Let ui denote the ith monomial in this ordering. Let ui be
the monomial obtained from ui by replacing every occurrence of x by y and y by x. Let
T = {ui | i ≥ 1}. It is easy to see that the monomials in T ∪ T generate the algebra B.
In fact, every monomial m ∈ B is uniquely expressible as a product g1g2 . . . gℓ, where each
gj ∈ T ∪ T . If gj ∈ T it is a T -factor of m and if gj ∈ T it is T -factor of m. Let C be the
subalgebra of B generated by {ui + ui | i ≥ 1}.

▶ Lemma 5. Let B and C be the subalgebras of F⟨x, y⟩ as defined above.
The leading monomial m of any polynomial in C has the form m = ui1ui2 · · ·uiℓ

, where
each uij

is a T -factor. That is, m does not have any T -factor.
Every polynomial f ∈ B \C can be written as f = g + h for some g ∈ C and h ∈ B, such
that the leading monomial of h has a T -factor.

Proof. By definition, each g ∈ C is an linear combination of products of the form
∏ℓ

k=1(uik
+

uik
). Hence, if supp(g) contains the monomial v1v2 . . . vℓ, where vk ∈ {ujk

, ujk
} for k ∈ [ℓ],

then supp(g) also contains the degree-d monomial uj1uj2 . . . ujℓ
(in fact, with the same

coefficient as v1v2 . . . vℓ). If uj1uj2 . . . ujℓ
̸= v1v2 . . . vℓ then, by definition of ≺, the monomial

uj1uj2 . . . ujℓ
is larger than v1v2 . . . vℓ. Therefore, the leading monomial of any polynomial

g ∈ C has the form claimed.
Next, let f ∈ B \ C. We will show the second part of the lemma by induction on the

leading monomial of f w.r.t. the ≺-ordering (which is a well ordering on monomials).
The base case of the induction is when the leading monomial of f has a T -factor then the

claim follows as f = 0+f and 0 ∈ C. Suppose the leading monomial of f is m = uj1uj2 · · ·ujℓ
.

If the coefficient of m in f is α ̸= 0, let

f1 = f − α(uj1 + uj1)(uj2 + uj2) . . . (ujℓ
+ ujℓ

). (1)

If m1 is the leading monomial of f1 then clearly m1 ≺ m. Furthermore, f1 ∈ B \ C as
f − f1 ∈ C. By induction hypothesis, we have f1 = g′ + h such that g′ ∈ C and the leading
monomial of h has a T -factor. Since f = (f − f1) + g′ + h and g = (f − f1) + g′ ∈ C, this
completes the induction and the proof. ◀
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Let X∞ = {x1, x2, . . .} be a countably infinite set of free noncommuting indeterminates.
Consider the mapping φ : F⟨X∞⟩ 7→ F⟨x, y⟩ defined as follows:

Let φ(xi) = ui + ui for all xi ∈ X∞.
Extend φ to all monomials by multiplication. That is, φ(xi1xi2 . . . xik

) =
∏k

j=1 φ(xij ).
Further, extend φ to the ring F⟨X∞⟩ by linearity: φ(

∑t
i=1 αimi) =

∑t
i=1 αiφ(mi), for

monomials mi ∈ X∗
∞ and scalars αi ∈ F for i = 1 to t.

▶ Lemma 6. The map φ defined above is an injective homomorphism (i.e. a homomorphic
embedding) from the ring F⟨X∞⟩ to F⟨x, y⟩.

Proof. To see that φ is a homomorphism, we first note that, by linearity, we have φ(f + g) =
φ(f) + φ(g) for f, g ∈ F⟨X∞⟩. To verify that φ(fg) = φ(f)φ(g), let f =

∑
m fmm and

g =
∑

m gmm where fm, gm ∈ F are the coefficients of monomial m in f and g, respectively.
Then φ(fg) = φ ((

∑
m fmm)(

∑
w gww)) = φ

(∑
m,w fmgwmw

)
. Which, by linearity of φ,

equals
∑

m,w fmgwφ(m)φ(w) = φ(f)φ(g).
In order to show φ is injective, it suffices to show φ(f) ̸= 0 for f ̸= 0. Suppose

m ∈ supp(f). Then φ(m) ̸= 0, by the definition of φ. Hence, if m is the only monomial in
supp(f) it follows that φ(f) ̸= 0.

Otherwise, suppose m′ ∈ supp(f) and m′ ̸= m. Let u be largest common prefix of
m and m′. Then m = uxiv and m′ = uxjw, for monomials u, v, w ∈ X∗

∞ and xi ̸= xj .
Noting that φ(xi) = ui + ui and φ(xj) = uj + uj we have φ(m) = φ(u)(ui + ui)φ(v)
and φ(m′) = φ(u)(uj + uj)φ(w). From the definition of φ, clearly φ(u) is a homogeneous
polynomial in F⟨x, y⟩. Let deg(φ(u)) = D. Suppose ℓ = |ui| = |ui| and ℓ′ = |uj | = |uj |.
Without loss of generality suppose that ui ≺ uj . Hence ℓ ≤ ℓ′. As ui and uj are minimally
balanced, ui cannot be a prefix of uj . Also, as ui[1] = x and uj [1] = y, ui cannot be
a prefix of uj . Therefore, for any monomials w1 ∈ supp(φ(m)) and w2 ∈ supp(φ(m′)),
w1 and w2 will differ in the length ℓ subword starting at location D + 1. It follows that
supp(φ(m)) ∩ supp(φ(m′)) = ∅. Hence, φ(f) ̸= 0 implying that φ is injective. ◀

The subalgebra C has the important property that if f ∈ C then all factors of f are in C

as well. In order to keep our presentation self-contained we include a complete proof with
more details than are given in [5].

▶ Theorem 7 (Bergman; [5, Chapter 4, Theorem 5.2]). Let f ∈ C. For any factorization
f = g · h the polynomials g and h are in C.

Proof. First we show that all monomials of g have the same imbalance. Likewise, all
monomials of h have the same imbalance. Suppose amin and amax are the minimum and
the maximum imbalances of monomials of g. Let bmin and bmax be the minimum and the
maximum imbalance of monomials of h. Let mmin be a smallest monomial (with respect to
≺) in supp(g) with imbalance amin, and mmax be a largest monomial (with respect to ≺) in
supp(g) with imbalance amax. Let wmin, wmax be monomials similarly defined for polynomial
h corresponding to bmin and bmax. Now consider the product monomial u = mmaxwmax.
We claim that u is uniquely expressible as a product of a monomial of g and a monomial
of h. To see this, suppose u = m′w′ where m′ ∈ supp(g), w′ ∈ supp(h) and mmax ̸= m′ or
wmax ̸= w′. Now, as i(u) = i(mmax) + i(wmax) = i(m′) + i(w′) and mmax, wmax are the
monomials with highest imbalance of g and h respectively, we must have i(m′) = i(mmax)
and i(w′) = i(wmax). So we get, m′ ≺ mmax and w′ ≺ wmax by the choice of mmax and
wmax. But as u = mmaxwmax = m′w′, clearly either mmax is a strict prefix of m′ or wmax is
a strict prefix of w′. In the former case we have mmax ≺ m′, and in the later case wmax ≺ w′.
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These contradict the fact that m′ ≺ mmax and w′ ≺ wmax. Hence, u = mmaxwmax is the
unique expression of u as a product of a monomial of g and a monomial of h. Consequently,
u has non-zero coefficient in f = g.h. Clearly u has imbalance amax + bmax. Similarly,
monomial v = mminwmin is non-zero in f and has imbalance amin + bmin. As f ∈ C, each
monomial of f has imbalance 0. Hence, amax + bmax = 0 and amin + bmin = 0. It follows
that amax = −bmax ≤ −bmin = amin, implying amin = amax = a and bmin = bmax = −a.
Thus, all monomials of g have imbalance a and all monomials of h have imbalance −a.

Let m be the leading monomial of f . Clearly, m is a maximum degree monomial of
f . Moreover, m is largest among the max-degree monomials of f . Let m = m1m2 with
m1 ∈ supp(g) and m2 ∈ supp(h). We have i(m1) = a, i(m2) = −a. As f ∈ C, the monomial
m̄ obtained by replacing every occurrence of x by y, and y by x in m is also in supp(f).
Moreover, m̄ is the smallest monomial among the max-degree monomials of f . This forces
that the monomial m̄1 (obtained by interchanging x, y in m1) is in supp(g). Similarly,
monomial m̄2 (obtained by swapping x, y in m2) is in supp(h). We have i(m̄1) = −a and
i(m̄2) = a. Now, all monomials of g have the same imbalance, and m1, m̄1 ∈ supp(g). This
forces a = −a = 0. Consequently, all monomials in supp(g) ∪ supp(h) have imbalance zero
which implies g, h ∈ B. Now, applying Lemma 5 to g and h we have:
1. g = g1 + g2, h = h1 + h2, g1, h1 ∈ C, such that lm(g2) has a T -factor ū, and lm(h2) has

a T -factor v̄.
2. Consequently, the deg(g2) prefix of lm(g2h1) contains the T -factor ū and the deg(h2)

suffix of lm(g1h2) contains the T -factor v̄.
3. Finally, the deg(g2) prefix and the deg(h2) suffix of lm(g2 · h2) contain, respectively, the

T -factors ū and v̄.

Hence the leading monomials lm(g2 · h1), lm(g1 · h2), and lm(g2 · h2) are all distinct and
cannot mutually cancel. Therefore, the leading monomial of f̂ = g2 · h1 + g1 · h2 + g2 · h2
contains a T -factor unless both g2 = 0 and h2 = 0. Now, f̂ = g2 ·h1+g1 ·h2+g2 ·h2 = f−g1h1.
As f ∈ C and g1, h1 ∈ C it implies f̂ ∈ C. However, by Lemma 5, the leading monomial of
f̂ cannot have a T -factor. It forces g2 = 0 and h2 = 0 which implies g, h ∈ C. ◀

Theorem 7 implies that φ is a 1-inert embedding (Definition 2).

▶ Theorem 8. Let f ∈ F⟨X⟩, where X = {x1, . . . , xn}. Suppose f ′ = φ(f) = g′ · h′ is a
non-trivial factorization of φ(f) in F⟨x, y⟩. Then there is a non-trivial factorization f = g · h
for g, h ∈ F⟨X⟩, such that φ(g) = g′ and φ(h) = h′.

Proof. As F⟨X⟩ ⊂ F⟨X∞⟩, the embedding φ maps f ∈ F⟨X⟩ to some f ′ = φ(f) ∈ C.
Suppose f ′ = g′ · h′ is a nontrivial factorization of f ′ in F⟨x, y⟩. By Theorem 7, as f ′ ∈ C,
its factors g′, h′ ∈ C. Since g′ ∈ C, it is an F-linear combination of products of the form
(ut1 + ut1)(ut2 + ut2) . . . (utℓ

+ utℓ
). By definition of φ,

(ut1 + ut1)(ut2 + ut2) . . . (utℓ
+ utℓ

) = φ(xt1xt2 . . . xtℓ
).

Hence, by linearity, it follows that g′ = φ(g) for some nontrivial polynomial g ∈ F⟨X∞⟩,
similarly there is a nontrivial polynomial h ∈ F⟨X∞⟩ such that h′ = φ(h). Since φ is a
homomorphism, we have

φ(f) = f ′ = g′ · h′ = φ(g) · φ(h) = φ(g · h).

As φ is injective, we have f = g ·h. To complete the proof we need to argue that g, h ∈ F⟨X⟩.
Let Var(g) be the subset of variables that occur in some non-zero monomial of g. We claim
that Var(g) ⊆ X. Suppose Var(g) contains some xi ̸∈ X. Let m ∈ supp(g) be the largest
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monomial (in ≺-ordering) in which xi occurs. Then the monomial m · lm(h) contains the
variable xi and has a non-zero coefficient in f = gh. This is a contradiction as f ∈ F⟨X⟩ and
X does not contain xi. Hence Var(g) ⊆ X. Similarly, Var(h) ⊆ X. ◀

3 Multivariate to Bivariate reduction

We now apply Bergman’s theorem (Theorem 7) to show that multivariate noncommutative
polynomial factorization is reducible to bivariate noncommutative polynomial factorization.
We require some preparatory observations.

Let X = {x1, x2, . . . , xn}, and v1, v2, . . . , vn be any n distinct and minimally balanced
monomials in {x, y}∗. We define φ : F⟨X⟩ → F⟨x, y⟩: φ(xi) = vi + vi for all i, which extends
by multiplication, i.e. φ(xi1xi2 . . . xik

) =
∏k

j=1 φ(xij
), to monomials, and by linearity to

F⟨X⟩. The definition of φ is essentially like in the proof of Bergman’s theorem, except that
X is finite and the vi, 1 ≤ i ≤ n are any n distinct minimally balanced monomials. The
following lemma is on the same lines as Theorem 7 and Theorem 8. The straightforward
proof is by a suitable renaming of the variables x1, . . . , xn before and after application of
Theorem 7 in the proof of Theorem 8.

▶ Lemma 9. Let X = {x1, . . . , xn} and f ∈ F⟨X⟩. Suppose v1, v2, . . . , vn ∈ {x, y}∗ are
distinct minimally balanced monomials. If f ′ = φ(f) = g′ · h′ is a non-trivial factorization
of f ′ in F⟨x, y⟩ then there are polynomials g, h ∈ F⟨X⟩ such that g′ = φ(g), h′ = φ(h) and
f = g · h.

In order to obtain a polynomial-time computable reduction it is convenient to choose
v1, v2, . . . , vn such that each vi has the same length. The next lemma ensures that ℓ = O(log n)
suffices. This follows from the fact that the number of minimally balanced monomials of
length 2ℓ is at least as large as the (ℓ− 2)th Catalan number, and well-known asymptotic
lower bounds on Catalan numbers.

▶ Lemma 10. There are at least n minimally balanced monomials of length 2ℓ in {x, y}∗

for ℓ ≥ max(⌈log 2n⌉, 6). Furthermore, the lexicographically first n minimally balanced
monomials of length 2ℓ can be computed in time polynomial in n.

Proof. Consider monomials v of the form v = x · w · y, where w is a Dyck monomial. 3

That is, w is a balanced monomial such that every prefix of w has at most as many y’s
as x’s. Notice that w ∈ {x, y}2ℓ−2. It follows that any nontrivial prefix of v has strictly
more x than y. So any such monomial is minimally balanced of length 2ℓ. The number
of Dyck monomials of length 2ℓ − 2 is Cℓ−1 (the (ℓ − 1)th Catalan number). A standard
estimate yields Ck ∼ 4k

k3/2√
π

, which implies that Ck is 2Ω(k). Specifically, Ck > 2k for k ≥ 5.
If n < 2ℓ−1 and ℓ ≥ 6 then there are at least n minimally balanced monomials of length
2ℓ, for ℓ = max(⌈log 2n⌉, 6). Clearly, we can compute the vi, 1 ≤ i ≤ n by enumeration in
poly(n) time. ◀

3.1 White-box reduction
We first describe the reduction in the white-box case for input polynomial f ∈ F⟨X⟩ given
by a noncommutative arithmetic circuit.

3 Essentially a balanced parenthesis string with x as left and y as right parenthesis, respectively.
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▶ Lemma 11. Let X = {x1, . . . , xn} and f ∈ F⟨X⟩ be a noncommutative polynomial given
by arithmetic circuit C of size s. Then there is a deterministic polynomial time algorithm that
outputs an arithmetic circuit computing the polynomial φ(f) ∈ F⟨x, y⟩, where the minimally
balanced monomials vi, 1 ≤ i ≤ n defining the map φ are as described by Lemma 10.

Proof. For 1 ≤ i ≤ n, we note that the sum of two monomials vi + vi can be computed by
a noncommutative arithmetic formula Fi of size O(log n). Let C ′ be the arithmetic circuit
obtained from circuit C by replacing input variable xi with the formula Fi. Clearly, C ′

computes φ(f) and its size is polynomially bounded. ◀

▶ Lemma 12. For f ∈ F⟨X⟩ suppose φ(f) = f ′
1 · f ′

2 · · · f ′
r is a complete factorization of

φ(f) in F⟨x, y⟩ into irreducible factors f ′
i ∈ F⟨x, y⟩. Then there are irreducible polynomials

f1, f2, . . . , fr ∈ F⟨X⟩ such that f = f1f2 . . . fr and φ(fi) = f ′
i for each i.

Proof. It follows by repeated application of Lemma 9 that if φ(f) = f ′
1 · f ′

2 · · · f ′
r, is a

factorization into irreducible factors f ′
i ∈ F⟨x, y⟩, then there are polynomials f1, f2, . . . , fr ∈

F⟨X⟩ such that f = f1f2 . . . fr and φ(fi) = f ′
i for each i. We claim each fi is irreducible.

For, if fi = g · h is a nontrivial factorization of fi in F⟨X⟩ then clearly f ′
i = φ(fi) = φ(g)φ(h)

is a nontrivial factorization of f ′
i , which contradicts its irreducibility. ◀

Suppose C ′
i is an arithmetic circuit of size s′

i for f ′
i for i ∈ [r]. We will construct a circuit

of size poly(s′
i, n) for fi efficiently for each i ∈ [r], which is the crucial part of our multivariate

to bivariate reduction. The next lemma describes the algorithm crucial to the white-box
reduction.

▶ Lemma 13. Given as input a noncommutative arithmetic circuit C for the polynomial
φ(g) ∈ F⟨x, y⟩, where g ∈ F⟨X⟩ is a degree d polynomial, X = {x1, x2, . . . , xn}, there is a
deterministic polynomial-time algorithm, running in time poly(d, size(C), n) that computes a
noncommutative arithmetic circuit C ′ for the polynomial g. Furthermore, if φ(g) is given by
an algebraic branching program then the algorithm computes an algebraic branching program
for g.

Proof. The proof is based on the idea of evaluating a noncommutative arithmetic circuit on
an automaton (specifically, a substitution automaton) described in [4] (see e.g., for related
applications [2],[3]).

Let g′ = φ(g). Let g =
∑

m αmm where m ∈ X∗ and αm is the coefficient of m in g. As
noted before, the map φ has the property that supp(φ(m))∩ supp(φ(m′)) = ∅ for monomials
m ̸= m′ in X∗. Moreover if m = xi1xi2 . . . xiℓ

has nonzero coefficient αm in g then g′ has a
monomial m′ = vi1vi2 . . . viℓ

with coefficient αm. Hence, to retrieve an arithmetic circuit for
g from the given circuit C ′ for g′ our aim is to carry out the following transformation of the
polynomial g′ given by the circuit C ′:

Get rid of the monomials of g′ containing of all vj ∈ T for j ∈ [n].
For each remaining monomial m′ of g′ substitute xi wherever the monomial vi occurs as
substring in m′ for i ∈ [n].

We will accomplish this transformation by evaluating the circuit C ′ at suitably chosen
matrix substitutions x ← Mx and y ← My, where Mx and My will be N × N matrices
for polynomially bounded N . The resulting evaluation C ′(Mx, My) will be an N × N

matrix. A designated entry of this matrix will contain the polynomial g. Clearly, if we can
efficiently compute the claimed matrices Mx and My it will yield an arithmetic circuit C

for the polynomial g. These matrices Mx and My will be obtained as transition matrices
of a substitution automaton that will carry out the above transformation steps on the
polynomial g′.
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A finite substitution automaton A is a deterministic finite automata A along with a
substitution map δ : Q × {x, y} → Q × (X ∪ F) where Q is a set of states and X =
{x1, x2, . . . , xn} are noncommuting variables. For i, j ∈ Q, a ∈ {x, y}, u ∈ X ∪ F, if
δ(i, a) = (j, u), it means that when automata A in state i reads a, it replaces a by u and
transitions to state j. For each a ∈ {x, y} we can define a |Q| × |Q| transition matrix Ma

such that Ma(i, j) = u if δ(i, a) = (j, u) and 0 otherwise.
With δ we associate projections δ1 : Q×{x, y} → Q and δ2 : Q×{x, y} → X ∪ F defined

as δ1(i, a) = j and δ2(i, a) = u if δ(i, a) = (j, u). The functions δ1 and δ2 extend naturally
to monomials: For w ∈ {x, y}∗, δ1(i, w) = j means the automaton A goes from state i to
j on reading w. Let w̃ℓ denotes length ℓ prefix of w and wℓ denotes ℓth symbol of w from
left. δ2(i, w) = p means p =

∏|w|−1
ℓ=0 δ2(δ1(i, w̃ℓ), wℓ+1). Note that δ2(i, w) has the form β ·w′

where β ∈ F, w′ ∈ X∗. For α ∈ F define δ2(i, α · w) as α · δ2(i, w).
Let g′(x, y) =

∑
m αmm ∈ F⟨x, y⟩. Then, the (s, t)th entry of the |Q| × |Q| matrix

g′(Mx, My) is a polynomial g ∈ F⟨X⟩ such that g =
∑

m∈Wt
αmδ2(s, m), where Wt is the set

of all monomials that take the automaton A from state s to state t.
Clearly, if g′ has an arithmetic circuit of size s then we can construct an arithmetic circuit

of size poly(s, n, |Q|) for g in deterministic time poly(s, n, |Q|).
Turning back to the reduction, consider the input circuit C for g′ = φ(g) ∈ F⟨x, y⟩. We

will construct a substitution automaton A such that the polynomial g is the (s, t)th entry of
the matrix g′(Mx, My).

Description of the Substitution Automata

As each vi is minimally balanced it must begin with symbol x and end with symbol y. As
|vi| > 2, the second symbol of vi is also x (if it was y, then the balanced monomial xy would
be a strict prefix of a minimally balanced monomial vi, which is a contradiction). So clearly
each vi is of the form xxwiyy, where wi is a Dyck monomial. Let v′

i = xwiy for i ∈ [n].
We can easily design a deterministic finite automaton A′ with O(mn) states such that the
language accepted by A′ is precisely the finite set {v′

1, v′
2, . . . , v′

n}, where m is the length of
vi for i ∈ [n]. Let δ′ denote the transition function and Q′ be the set of states of A′, where
q1 is the initial state and qfi

is the final state associated with acceptance of string v′
i for

i ∈ [n]. A′ has a tree structure with root q1 and leaves qfi
for i ∈ [n], and any root to leaf

path has length exactly 2ℓ− 2. We now define the substitution automaton A. Its state set
is Q = Q′ ∪ {q0, qf , qr}. The transition function δ : Q× {x, y} → Q× (X ∪ F) is defined as
follows:
1. δ(q0, x) = (q1, 1); δ(q0, y) = (qr, 0).
2. for q ∈ Q′ \ {qfi |1 ≤ i ≤ n}. and a ∈ {x, y}, let δ(q, a) = (δ′(q, a), 1).
3. δ(qfi , x) = (qr, 0); δ(qfi , y) = (qf , xi) for each i ∈ [n].
4. δ(qf , x) = (q1, 1) and δ(qf , y) = (qr, 0).
5. δ(qr, a) = (qr, 0) for a ∈ {x, y}.

The final state of A is qf . For a monomial w ∈ {x, y}∗, starting at state q0 the automaton
A substitutes all the variables with 1 as long as it matches with a prefix of vi for i ∈ [n]
(given by transitions in 1,2 above). When the monomial matches with vi for some i (which
will happen while reading symbol y as each string vi ends with y), A substitutes y by xi

and moves to state qf . If it reads x instead of y then A enters a rejecting state qr (given by
transition in 3 above). Hence, if A finds substring vi in w it replaces it with xi. Whenever
A is in state qf , it means the monomial read so far is of the form vi1vi2 . . . vit , and it has
replaced it with xi1xi2 . . . xit

. If in the state qf symbol y is encountered, it means the next
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substring cannot match with a minimally balanced monomial (as these start with x) and the
automaton goes to the rejecting state qr. If in state qf variable x is read the automaton goes
to state q1 and restarts the search for a new substring that matches with some vi (transition
in 4 above).

In conclusion A replaces all the monomials of the form vi1vi2 . . . vit
by xi1xi2 . . . xit

. If
the monomial contains an occurrence of vi, or it is not of the form vi1vi2 . . . vit , then A
zeros out that monomial by suitably setting an occurrence of y to zero or enters the reject
state qr.4

It follows that the (q0, qf )th entry of the |Q| × |Q| matrix g′(Mx, My) is the polynomial
g, where g′ = φ(g), and Mx, My are the transition matrices for the substitution automaton
A. This completes the proof.

Finally, if φ(g) is given by an algebraic branching program P then it is easy to see that
the above construction with the substitution automaton A yields P (Mx, My) which is an
algebraic branching program. ◀

The main theorem of this section, stated below, summarizes the discussion in this section.

▶ Theorem 14. In the white-box setting, factorization of multivariate noncommutative
polynomials into irreducible factors is deterministic polynomial-time reducible to factorization
of bivariate noncommutative polynomials into irreducible factors. More precisely, given as
input f ∈ F⟨X⟩ by an arithmetic circuit (resp. algebraic branching program), the problem of
computing a complete factorization f = f1 · f2 · · · fr where each fi is output as an arithmetic
circuit (resp. algebraic branching program) is deterministic polynomial-time reducible to the
same problem for bivariate polynomials in F⟨x, y⟩.

Proof. We describe the reduction:
1. Input f ∈ F⟨X⟩ (as a circuit or ABP).
2. Transform f to f ′ = φ(f) ∈ F⟨x, y⟩ as a circuit (resp. ABP) by the algorithm of Lemma 10.
3. Compute a complete factorization of f ′ = f ′

1 · f ′
2 · · · f ′

r, where each f ′
i ∈ F⟨x, y⟩ is

irreducible and is computed as a circuit (resp. ABP).
4. Apply the algorithm of Lemma 13 to obtain a complete factorization of f = f1 · f2 · · · fr,

where each fi is irreducible and is output as a circuit (resp. ABP).

The correctness of the reduction and its polynomial time bound follow from Lemmas 9,
10 and 13. ◀

▶ Remark 15. We note that in the case F is the field Q (of rationals), we need to take into
account the bit complexity of the rational numbers involved and argue that the reduction
is still polynomial time computable. The main point to note here is that the reduction
guarantees the size of the factor fi is polynomially bounded in the size of gi, 1 ≤ i ≤ r,
where the size of gi includes the sizes of any rational numbers that might be involved in the
description of the arithmetic circuit (or ABP) for gi.
▶ Remark 16. We note here that the ring F⟨X⟩ is not a unique factorization domain. That is,
a polynomial f ∈ F⟨X⟩ may have, in general, multiple factorizations into irreducibles [6]. A
standard example is the polynomial x+xyx which factorizes as x(1+yx) as well as (1+xy)x,
where x, y, 1 + yx, 1 + xy are irreducible. As the map φ is an injective homomorphism,
there is a 1-1 correspondence between factorizations of φ(f) and factorizations of f . More
specifically, our reduction takes as input any complete factorization φ(f) = f ′

1f ′
2 . . . f ′

r and
computes the corresponding complete factorization f = f1f2 . . . fr of f .

4 We can dispense with the reject state qr, as suitably setting an occurrence of y to 0 would also suffice.
We have transitions to the reject state qr for exposition.
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▶ Remark 17. We note that the embedding φ does not preserve sparsity5 of the polynomial
f . More precisely, if the sparsity of the n-variate degree d polynomial f is s then the sparsity
of the bivariate polynomial φ(f) is O(2ds). Thus, using this embedding map we do not
get a reduction from sparse n-variate degree d polynomial factorization to sparse bivariate
polynomial factorization, where s, d are allowed to be part of the running time. This problem
remains unanswered.

3.2 Black-box reduction

The reduction in the black-box case is essentially identical. The only point to note, which is
easy to see, is that the analogue of Lemma 13 holds in the black-box setting. We state that
below. We recall what a black-box means in the noncommutative setting.

▶ Definition 18. A noncommutative polynomial f ∈ F⟨X⟩ given by black-box essentially
means we can evaluate f at any matrix substitution xi ←Mi, Mi ∈ FN×N , where the cost
of each evaluation is the matrix dimension N .

In the black-box setting, suppose we have an efficient algorithm for bivariate noncommut-
ative polynomial factorization of degree D polynomials g ∈ F⟨x, y⟩, where the algorithm takes
a black-box for g and outputs black-boxes for the irreducible factors of some factorization of
g in time poly(D). Then, given a black-box for a degree D n-variate polynomial f ∈ F⟨X⟩ as
input, we require that the reduction transforms it into a black-box of a bivariate polynomial
g ∈ F⟨x, y⟩, and from the output black-boxes of g’s irreducible factors, the reduction has to
efficiently recover black-boxes for the corresponding irreducible factors of f .

▶ Lemma 19. Given as input a black-box for the polynomial φ(g) ∈ F{x, y}, where g ∈ F⟨X⟩
is a degree d polynomial, X = {x1, x2, . . . , xn}, with matrix substitutions for x and y computed
in deterministic polynomial-time time we can obtain a black-box for the polynomial g ∈ F⟨X⟩.

Proof. The proof of Lemma 13 already implies this because the matrices Mx and My

described there do not require φ(g) to be given in white-box as circuit or ABP. Thus, the
black-box for φ(g) yields a black-box for g by accessing the (q0, qf )th entry of the matrix
output φ(g)(Mx, My). ◀

As a consequence we obtain the claimed reduction from multivariate factorization to
bivariate factorization in the black-box setting as well.

▶ Theorem 20. The problem of computing a complete factorization of f ∈ F⟨X⟩ given by
black-box is deterministic polynomial-time reducible to the problem of black-box computation
of a complete factorization of polynomials in F⟨x, y⟩.

Proof. Given a black-box for f we obtain a black-box for φ(f) applying Lemma 10. Then,
given a complete factorization φ(f) = f ′

1 · f ′
2 · · · f ′

r where each factor f ′
i is output by a

black-box for it, by Lemma 19 we can obtain black-boxes for each fi. This yields a complete
factorization f = f1 · f2 · · · fr of f where the factors are given by black-box. ◀

5 The sparsity of a polynomial f is the number of monomials in supp(f).
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4 Factorizing 4 × 4 linear matrices over Q

We have shown in Section 3 that multivariate noncommutative polynomial factorization is
efficiently reducible to the bivariate case. Suppose f ∈ F⟨x, y⟩ is a bivariate polynomial given
by a formula of size s. Applying Higman linearization [6], as done in [1], we can transform
the problem to the factorization of bivariate linear matrices A0 + A1x + A2y, where the
matrices have size bounded by 2s. In [1] the problem of factorizing an n-variate polynomial
f ∈ F⟨X⟩ given by a formula was solved in two steps when F is a finite field: (i) Transform
f to a linear matrix L and factorize L into irreducible factors by reducing it to the common
invariant subspace problem, and (ii) extract the factors of f from the factors of L. This
approach fails for F = Q because the common invariant subspace problem for matrices over
Q is at least as hard as factoring square-free integers [12]. In this section, we show that linear
matrix factorization over Q, even for 4× 4 bivariate linear matrices, remains at least as hard
as factoring square-free integers. Thus, efficient polynomial factorization over Q remains
elusive even for bivariate polynomials. Our proof is based on ideas from Ronyai’s work [12].

Let α, β ∈ Q be nonzero rationals. The generalized quaternion algebra H(α, β) is the 4-
dimensional algebra over Q generated by elements 1, u, v, uv where the rules for multiplication
in H(α, β) are given by u2 = α, v2 = β, and uv = −vu. A simple algebra A over a field F is
an algebra that has no nontrivial two-sided ideal. The center C of algebra A is the subalgebra
consisting of all elements of A that commute with every element of A. Furthermore, it
follows from some general theory [11, Chapter 1.6] that:

▶ Fact 21. For any nonzero α, β ∈ Q, the algebra H(α, β) is a simple algebra with center Q.
The algebra H(α, β) is either a division algebra (which means no zero divisors in it) or is
isomorphic to the algebra of 2× 2 matrices over Q (which means it has zero divisors).

The 4-dimensional algebra H(α, β) can be represented as an algebra of 4× 4 matrices
over Q, which is the regular representation. The matrix corresponding to 1 is I4, and the

matrices corresponding to u and v are Mu =


0 1 0 0
α 0 0 0
0 0 0 1
0 0 α 0

 and Mv =


0 0 1 0
0 0 0 −1
β 0 0 0
0 −β 0 0

.

We next show that factorizing 4× 4 bivariate linear matrices is at least as hard as finding
zero divisors in generalized quaternion algebras.

▶ Theorem 22. Finding zero divisors in an input quaternion algebra H(α, β) is polynomial-
time reducible to factorizing 4 × 4 bivariate linear matrices A0 + A1x + A2y, where each
scalar matrix Ai is in M4(Q).

Proof. Let H(α, β) be the given generalized quaternion algebra. Then H(α, β) = {ao +
a1u + a2v + a3uv | ai ∈ Q}, where u2 = α, v2 = β, and uv = −vu defines the algebra
multiplication.

We now consider factorizations of the 4× 4 linear matrix I4 + Mux + Mvy.

▷ Claim 23. The linear matrix I4 + Mux + Mvy is irreducible if and only if the quaternion
algebra H(α, β) is a division algebra.

Proof of Claim. Suppose the linear matrix L = I4 +Mux+Mvy has a nontrivial factorization
L = I4 + Mux + Mvy = FG. That means neither F nor G is a scalar matrix. By a theorem
of Cohn [6, Theorem 5.8.8], there are invertible scalar matrices P and Q inM4(Q) such that

PLQ =
[

A 0
D B

]
.
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▶ Remark 24. To apply Cohn’s theorem the matrix L needs to be monic. That is, the matrix
[Mu | Mv] must have full row rank and [MT

u | MT
v ]T must have full column rank. This is

ensured as matrices Mu and Mv are full rank.

Putting x = y = 0 we observe that PQ =
[

A0 0
D0 B0

]
, where A0, B0 and D0 are scalar

matrices. As P and Q are invertible, both A0 and B0 are invertible. Hence PLP −1 =[
A 0
D B

]
·
[

A0 0
D0 B0

]−1

=
[

A′ 0
D′ B′

]
, where A′, B′ and D′ are also linear matrices. Recall

that I4, Mu and Mv are the matrix representations of the elements 1, u, and v in the basis
{1, u, v, uv} of H(α, β). Treating P as a basis change matrix, the above equation yields a
new basis {w1, w2, w3, w4} of H(α, β). Let dim(A′) = k. Then 1 ≤ dim(A′) ≤ 3 and the
vectors w1, . . . , wk spans a k-dimensional subspace W ⊂ H(α, β) that is a common invariant
subspace for the matrices I4, Mu, Mv and Muv. In other words, the subspace W is preserved
under left multiplication by u and v. We can assume, without loss of generality, that w1 ̸= 1:
if k > 1 then clearly we can assume this. If k = 1 notice that w1 = 1 is impossible because
the subspace W is not preserved under left multiplication by u or v. Then the four elements
w1, uw1, vw1, uvw1 are all in W and hence linearly dependent. Thus, some nontrivial linear
combination γ0w1+γ1uw1+γ2vw1+γ3uvw1 is 0. which means (γ0+γ1u+γ2v+γ3uv)×w1 = 0.
Hence w1 is a zero divisor in H(α, β). Conversely, if z ∈ H(α, β) is a zero divisor then the
left ideal J = {xz | x ∈ H(α, β)} is a proper subspace of H(α, β) that is invariant under Mu

and Mv. Applying Cohn’s theorem [6, Theorem 5.8.8], we obtain invertible scalar matrices

P and Q such that PLQ =
[

A 0
D B

]
=

[
A 0
0 I

]
·
[

I 0
D I

]
·
[
I 0
0 B

]
. ◁

To complete the reduction, notice that if I4 + Mux + Mvy is irreducible then H(α, β) is a
division algebra. On the other hand, if we are given a nontrivial factorization I4+Mux+Mvy =
FG then, analyzing the proof of Cohn’s theorem [6, Theorem 5.8.8] (also see [1] for details),
by suitable row and column operations we can compute in polynomial time the invertible
scalar matrices P and Q from the factors F and G. Hence, by the proof of the above claim,
we can efficiently compute a zero divisor w1 in H(α, β). ◀

As finding zero-divisors in the quaternion algebra H(α, β) is known to be at least as hard as
square-free integer factorization [12] we have the following.

▶ Corollary 25. Factorizing 4 × 4 bivariate linear matrices over Q is at least as hard as
factorizing square-free integers.

5 Factorizing 3 × 3 linear matrices over Q

In this section we present a deterministic polynomial-time algorithm for factorization of 3× 3
multivariate linear matrices over Q. We start with a simple observation about linear matrix
factorization in general.

▶ Lemma 26. Suppose L = Id +
∑n

i=1 Aixi is a linear matrix where each Ai, 0 ≤ i ≤ d is a
d×d matrix over Q. Then L is irreducible if the characteristic polynomial of Ai is irreducible
over Q for any i.

Proof. For if L is reducible then there is an invertible scalar matrix P such that PLP −1 =[
A 0
D B

]
, which implies that PAiP

−1 =
[

A′
i 0

D′
i B′

i

]
, for scalar matrices A′

i, B′
i, and D′

i. Thus,

the characteristic polynomial of Ai is the product of the characteristic polynomials of A′
i

and B′
i which is a nontrivial factorization. ◀
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The proof of the following theorem is based on linear algebra and Cohn’s theorem [6,
Theorem 5.8.8].

▶ Theorem 27. There is a deterministic polynomial-time algorithm for factorization of 3× 3
multivariate linear matrices over Q.

Proof. We will first consider linear matrices of the form L = I3 +
∑n

i=1 Aixi, where each
Ai ∈M3(Q) and the xi are noncommuting variables. The algorithm computes a complete
factorization of L into (at most three) irreducible linear matrix factors. By Cohn’s theorem
[6, Theorem 5.8.8], either L is irreducible or there is an invertible scalar matrix P such that

PLP −1 =
[

A 0
D B

]
. Either A or B is a 1×1 matrix. If A is a 1×1 matrix then corresponding

to it there is a 1-dimensional common invariant subspace spanned by a vector, say v, for the
matrices Ai, 1 ≤ i ≤ n. More precisely, the row vector vT is an eigenvector for each matrix
Ai, and vT Ai = λiv

T where λi ∈ Q is the corresponding eigenvalue of matrix Ai for each i.
Likewise, if B is a 1×1 matrix then there is a corresponding 1-dimensional common invariant
subspace spanned by a (column) vector u such that Aiu = µiu for eigenvalues µi of Ai. In
either case, the common eigenspace is easy to compute from the characteristic polynomial
of say A1 and then verifying that it is an eigenspace for the remaining Ai as well. This

will yield the factorization PLP −1 =
[
A 0
0 I

]
·
[

I 0
D I

]
·
[
I 0
0 B

]
, where B is a 2× 2 linear

matrix. The problem now reduces to factorizing the linear matrix B = I2 +
∑n

i=1 Bixi, where
Bi ∈M2(Q). A simple case analysis described below yields a polynomial-time algorithm for
factorization of B.

1. If the characteristic polynomial of any Bi is irreducible over Q then the linear matrix B

is clearly irreducible.
2. If some Bi has two distinct eigenvalues λ ̸= λ′ ∈ Q then the corresponding eigenspaces

are 1-dimensional, spanned by their eigenvectors u ̸= u′. Then either u or u′ has to be an
eigenvector for every Bj (otherwise B is irreducible), in which case we have a factorization
of B.

3. Suppose each Bi has only one eigenvalue λi. Then, by linear algebra, after a basis change

Bi is either of the form
[
λi 1
0 λi

]
in which case the eigenspace is 1-dimensional with

eigenvector (10)T . We can check if this eigenspace is invariant for each Bj or not as

before. Otherwise, after basis change each Bi =
[
λi 0
0 λi

]
= λiI2 and the factorization is

B =
[
1 +

∑n
i=1 λixi 0
0 1

]
·
[
1 0
0 1 +

∑n
i=1 λixi

]
. ◀
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Abstract
Entropic risk (ERisk) is an established risk measure in finance, quantifying risk by an exponential
re-weighting of rewards. We study ERisk for the first time in the context of turn-based stochastic
games with the total reward objective. This gives rise to an objective function that demands the
control of systems in a risk-averse manner. We show that the resulting games are determined and,
in particular, admit optimal memoryless deterministic strategies. This contrasts risk measures
that previously have been considered in the special case of Markov decision processes and that
require randomization and/or memory. We provide several results on the decidability and the
computational complexity of the threshold problem, i.e. whether the optimal value of ERisk exceeds
a given threshold. In the most general case, the problem is decidable subject to Shanuel’s conjecture.
If all inputs are rational, the resulting threshold problem can be solved using algebraic numbers,
leading to decidability via a polynomial-time reduction to the existential theory of the reals. Further
restrictions on the encoding of the input allow the solution of the threshold problem in NP ∩ coNP.
Finally, an approximation algorithm for the optimal value of ERisk is provided.
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1 Introduction

Stochastic Models. Formal analysis of stochastic models is ubiquitous across disciplines
of science, such as computer science [4], biology [43], epidemiology [29], and chemistry [28],
to name a few. In computer science, a fundamental stochastic model are Markov decision
processes (MDPs) [46], which extend purely stochastic Markov chains (MCs) with non-
determinism to represent an agent interacting with a stochastic environment. Stochastic
games (SGs) [49, 18, 19] in turn generalize MDPs by introducing an adversary, modelling
the case where two agents engage in adversarial interaction in the presence of a stochastic
environment. Notably, SGs can also be used to conservatively model MDPs where transition
probabilities are not known precisely [15, 53]. See also [46] and [14, 21] for further applications
of MDPs and SGs.
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Figure 1 Illustration of the entropic risk measure. The random variable X takes values x1 to
x4 uniformly with probability 1

4 each. Expectation considers the average of xi, while entropic risk
yields the (normalized logarithm of the) average of yi = e−γxi .

Strategies and Objectives. In MDPs and SGs, the recipes to resolve choices are called
strategies. The objective of the agent is to optimize a payoff function against all possible
strategies of the adversary. One of the most fundamental problems studied in the context
of MDPs and SGs is the optimization of total reward (and the related stochastic shortest
path problem [7]). Here, every state (or, equivalently, transition) of the stochastic model is
assigned a cost or reward and the payoff of a trajectory is the total sum of rewards appearing
along the path. MDPs and SGs with total reward objectives provide an appropriate model to
study a wide range of applications, such as traffic optimization [27], verification of stochastic
systems [26, 47], or navigation / probabilistic planning [50].

Risk-Ignorance of Expectation. Typically, the expectation of the obtained total reward
is optimized. However, the expectation measure is ignorant towards aspects of risk; an
expectation maximizing agent accepts a one-in-a-million chance of extremely high rewards
over a slightly worse, but guaranteed outcome. Such a behaviour might be undesirable in
a lot of situations: Consider a one-shot lottery where with a chance of 10−6 we win 2 · 106

times our stake and otherwise lose everything – a two-times increase in expectation. The
optimal strategy w.r.t. expectation would bet all available assets, ending up broke in nearly
all outcomes.

Risk-Aware Alternatives. To address this issue, risk-aware objectives create incentives to
prefer slightly smaller performance in terms of expectation in exchange for a more “stable”
behaviour. To this end, several variants have been studied in the verification literature,
such as (a) variance-penalized expected payoff [45, 22] that combines the expected value
with a penalty for the variance of the resulting probability distribution; (b) trade-off of the
expectation and variance for various notions of variance [40, 11]; (c) quantiles and conditional
value-at-risk (CVaR) [47, 42, 35]; to name a few.

Drawbacks. The current approaches suffer from the following three drawbacks:
1. The above studies focus on the second moment (variance) along with the first moment

(mean), but do not incorporate other moments of the payoff distribution.
2. All approaches are studied only for MDPs; none of them have been extended to SGs.
3. Even in MDPs, the above problems require complicated strategies. For example, trade-offs

between expectation and variance require memory and randomization [11, 40], while
optimizing variance-penalized expected payoffs, quantiles, or the CVaR of the total reward
require exponential memory [45, 30, 44, 42].
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Entropic Risk. The notion of entropic risk [24] has been widely studied in finance and
operation research, see e.g. [23, 10]. Informally, instead of weighing each outcome uniformly
and then aggregating it (as in the case for regular expectation), entropic risk re-weighs
outcomes by an exponential function, then computes the expectation, and finally re-normalizes
the value. We illustrate this in Figure 1. The exact definition of entropic risk is introduced
later on.

Advantages. Aside from satisfying many desirable properties of risk measures established in
finance, entropic risk brings several crucial advantages in our specific setting, of which we list
a few: Compared to expectation, “bad” outcomes are penalized more than “good” outcomes
add value. Thus, an agent optimizing entropic risk seeks to reduce the chances of particularly
bad outcomes while also being interested in a good overall performance. In contrast to
variance minimization, it is beneficial to increase the probability of extremely good outcomes
(which would increase variance). Moreover, the entropic risk incorporates all moments of
the distribution. In particular, even if the expectation is infinite, entropic risk still provides
meaningful values (opposed to both expectation and variance). Note that the expected total
reward objective is often addressed under additional assumptions excluding this case [8, 26].
Additionally, entropic risk is a time-consistent risk measure. In our situation, this means
that the risk evaluation at a state is the same for any history. This is in stark contrast to,
e.g., quantile and CVaR optimal strategies, which after a series of unfortunate events start
behaving recklessly (e.g. expectation optimal). Due to these advantages, ERisk has already
been studied in the context of MDPs [33, 5]. However, to the best of our knowledge, neither
the arising computational problems nor the more general setting of SGs have been addressed.

1.1 Our results
In this work we consider the notion of entropic risk in the context of SGs as well as the
special cases of MCs and MDPs. For an overview of our complexity results, see Table 1.
1. Determinacy and Strategy Complexity. We establish several basic results, in particular

that SGs with the entropic risk objective are determined and that pure memoryless
optimal strategies exist for both players. This stands in contrast to other notions of risk,
where even in MDPs strategies require memory and/or randomization.

2. Exact Computation. When allowing Euler’s number e as the basis of exponentiation, the
threshold problem whether the optimal entropic risk lies above a given bound is decidable
subject to Shanuel’s conjecture. If the basis of exponentiation and all other numbers in
the input are rational, then all numbers resulting from the involved exponentiation are
shown to be algebraic. We obtain a reduction to the existential theory of the reals and
thus a PSPACE upper bound in this case.
Furthermore, we identify a notion of small algebraic instance in which all occurring
numbers are not only algebraic, but have a small representation and are contained in
an algebraic extensions of Q of low degree. The threshold problem for small algebraic
instances of MCs and MDPs can efficiently be solved by explicit computations in an
algebraic extension of Q. We obtain polynomial-time algorithms for MCs and MDPs, and
conclude that the threshold problem lies in NP ∩ co-NP for SGs in this case. For small
algebraic instances, we furthermore show that an explicit closed form of the optimal value
can be computed (a) in polynomial time for MCs; and consequently (b) in polynomial
space for SGs.

3. Approximate Computation. We provide an effective way to compute an approximation, i.e.
determine the optimal entropic risk up to a given precision of ε > 0. To this end, we show
that in the general case, by considering enough bits of arising irrational numbers, we can
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15:4 Entropic Risk for Turn-Based Stochastic Games

Table 1 Overview of the decidability and complexity results for SGs, MDPs and MCs.

threshold problem optimal value

general algebraic small algebraic computation for approximation with small
instances instances instances small algebraic rewards and risk

(Thm. 14) (Thm. 16) (Thm. 19) instances (Thm. 20) aversion factor (Thm. 21)

SGs decidable
subject to
Shanuel’s
conjecture

in PSPACE
(in ∃R)

in NP ∩ coNP in polynomial space
in polynomial space

MDPs
in PTIME in polynomial timeMCs in polynomial time

bound the incurred error. In MDPs and MCs, the optimal value can be approximated in
time polynomial in the size of the model, in − log(ε), and in the magnitude of the rewards.
For SGs, this implies the existence of a polynomial-space approximation algorithm.

1.2 Related Work
The entropic risk objective has been studied before in MDPs: An early formulation can
be found in [33] under the name risk-sensitive MDPs focusing on the finite-horizon setting.
The paper [34] considers an exponential utility function applied to discounted rewards and
optimal strategies are shown to exist, but not to be memoryless in general. In [20], the
entropic risk objective is considered for MDPs with a general Borel state space and in [5]
a generalization of this objective is studied on such MDPs. To the best of our knowledge,
however, all previous work in the context of MDPs focuses on optimality equations and
general convergence results of value iteration, while the resulting algorithmic problems for
finite-state MDPs have not been investigated. Furthermore, we are not aware of work on the
entropic risk objective in SGs.

For other objectives capturing risk-aversion, algorithmic problems have been analyzed
on finite-state MDPs: Variance-penalized expectation has been studied for finite-horizon
MDPs with terminal rewards in [17] and for infinite-horizon MDPs with discounted rewards
and mean payoffs [22], and total rewards [45]. For total rewards, optimal strategies require
exponential memory and the threshold problem is in NEXPTIME and EXPTIME-hard [45].

In [40], the optimization of expected accumulated rewards under constraints on the
variance are studied for finite-horizon MDPs. Possible tradeoffs between expected value and
variance of mean payoffs and other notions of variability have been studied in [11].

To control the chance of bad outcomes, the problem to maximize or minimize the
probability that the accumulated weight lies below a given bound w has been addressed in
MDPs [30, 31]. Similarly, quantile queries ask for the minimal weight w such that the weight
of a path stays below w with probability at least p for the given value p under some or all
schedulers [51, 48]. Both of these problems have been addressed for MDPs with non-negative
weights and are solvable in exponential time in this setting [51, 30]. Optimal strategies
require exponential memory and the decision version of these problems is PSPACE-hard [30].

The conditional value-at-risk (CVaR), a prominent risk-measure, has been investigated
for mean payoff and weighted reachability in MDPs in [35] as well as for total rewards
in MDPs [44, 42]. The optimal CVaR of the total reward in MDPs with non-negative
weights can be computed in exponential time and optimal strategies require exponential
memory [44, 42]. The threshold problem for optimal CVaR of total reward in MDPs with
integer weights is at least as hard as the Positivity-problem for linear recurrence sequences,
a well-known problem in analytic number theory whose decidability status is, since many
decades, open [44].
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For all these objectives capturing risk-aversion in some sense, we are not aware of any
work addressing the resulting algorithmic problems on SGs.

2 Preliminaries

In this section, we recall the basics of (turn-based) SGs and relevant objectives. For further
details, see, e.g., [46, 4, 26, 21]. We assume familiarity with basic notions of probability
theory (see, e.g., [9]). We write D(X) to denote the set of all probability distributions over a
countable set X, i.e. mappings d : X → [0, 1] such that

∑
x∈X d(x) = 1. The support of a

distribution d is supp(d) := {x ∈ X | d(x) > 0}. For a set S, S⋆ and Sω refer to the set of
finite and infinite sequences of elements of S, respectively.

Markov Chains, MDPs, and Stochastic Games

A Markov chain (MC) (e.g. [4]), is a tuple M = (S, δ), where S is a set of states, and
δ : S → D(S) is a transition function that for each state s yields a probability distribution
over successor states. We write δ(s, s′) instead of δ(s)(s′) for the probability to move from
s to s′ for s, s′ ∈ S. A (infinite) path in an MC is an infinite sequence s0, s1, . . . of states
such that for all i, we have δ(si, si+1) > 0. We denote the set of infinite paths by PathsM.
Together with a state s, an MC M induces a unique probability distribution PrM,s over the
set of all infinite paths PathsM starting in s. For a random variable f : PathsM → R, we write
EM,s(f) for the expected value of f under the probability measure PrM,s.

A turn-based stochastic game (SG) (e.g. [18]) is a tuple (Smax, Smin, A, ∆), where Smax
and Smin are disjoint sets of Maximizer and Minimizer states, inducing the set of states
S = Smax ∪ Smin, A denotes a finite set of actions, furthermore overloading A to also act
as a function assigning to each state s a set of non-empty available actions A(s) ⊆ A, and
∆ : S × A → D(S) is the transition function that for each state s and (available) action
a ∈ A(s) yields a distribution over successor states. For convenience, we write ∆(s, a, s′)
instead of ∆(s, a)(s′). Moreover, opts

a∈A(s) refers to maxa∈A(s) if s ∈ Smax and mina∈A(s)
if s ∈ Smin, i.e. the preference of either player in a state s. We omit the superscript s

where clear from context. Given a function f : S → R assigning values to states, we write
∆(s, a)⟨f⟩ :=

∑
s′∈S ∆(s, a, s′) · f(s′) for the weighted sum over the successors of s under

a ∈ A(s). A Markov decision process (MDP) (e.g. [46]) can be seen as an SG with only one
player, i.e. Smax = ∅ or Smin = ∅.

The semantics of SGs is given in terms of resolving choices by strategies inducing an MC
with the respective probability space over infinite paths. Intuitively, a stochastic game is
played in turns: In every state s, the player to whom it belongs chooses an action a from the
set of available actions A(s) and the play advances to a successor state s′ according to the
probability distribution given by ∆(s, a). Starting in a state s0 and repeating this process
indefinitely yields an infinite sequence ρ = s0a0s1a1 · · · ∈ (S × A)ω such that for every i ∈ N0
we have ai ∈ A(si) and ∆(si, ai, si+1) > 0. We refer to such sequences as (infinite) paths or
plays and denote the set of all infinite paths in a given game G by PathsG. Furthermore, we
write ρi to denote the i-th state in the path ρ. Finite paths or histories FPathsG are finite
prefixes of a play, i.e. elements of (S × A)⋆ × S consistent with A and ∆.

The decision-making of the players is captured by the notion of strategies. Strategies are
functions mapping a given history to a distribution over the actions available in the current
state. For this paper, memoryless deterministic strategies (abbreviated MD strategies, also
called positional strategies) are of particular interest. These strategies choose a single action
in each state, irrespective of the history, and can be identified with functions σ : S → A.
Since we show that these strategies are sufficient for the discussed notions, we define the
semantics of games only for these strategies and refer the interested reader to the mentioned
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15:6 Entropic Risk for Turn-Based Stochastic Games

literature for further details. We write ΠG for the set of all strategies and ΠMD
G for memoryless

deterministic ones. We call a pair of strategies a strategy profile, written π = (σ, τ). We
identify a profile with the induced joint strategy π(s) := σ(s) if s ∈ Smax and τ(s) otherwise.

Given a profile π = (σ, τ ) of MD strategies for a game G, we write Gπ for the MC obtained
by fixing both strategies. So, Gπ = (S, δ̂), where δ̂(s) := ∆(s, π(s)). Together with a state s,
the MC Gπ induces a unique probability distribution Prπ

G,s over the set of all infinite paths
PathsG. For a random variable over paths f : PathsG → R, we write Eπ

G,s[f ] for the expected
value of f under the probability measure Prπ

G,s.

Objectives

Usually, we are interested in finding strategies that optimize the value obtained for a particular
objective. We introduce some objectives of interest.

Reachability. A reachability objective is specified by a set of target states T ⊆ S. We define
♢T = {ρ | ∃i.ρi ∈ T} the set of all paths eventually reaching a target state. Given a strategy
profile π and a state s, the probability for this event is given by Prπ

G,s[♢T ]. On games,
we are interested in determining the value ValG,♢T (s) := maxσ∈ΠMD

G
minτ∈ΠMD

G
Prσ,τ

G,s[♢T ] of a
state s, which intuitively is the best probability we can ensure against an optimal opponent.
Generally, one would consider supremum and infimum over strategies instead maximum and
minimum over MD strategies. However, for reachability we know that these value coincide
and the game is determined, i.e. the order of max and min does not matter [19]. Finally, we
know that the value ValG,♢T is a solution of the following set of equations

v(s) = 0 for s ∈ S0, v(s) = 1 for s ∈ T , and v(s) = opta∈A(s) ∆(s, a)⟨v⟩ otherwise, (1)

where S0 is the set of states that cannot reach T against an optimal Minimizer strategy [13].

Total Reward. The total reward objective is specified by a reward function r : S → R≥0,
assigning non-negative rewards to every state. The total reward obtained by a particular path
is defined as the sum of all rewards seen along this path, TR(ρ) :=

∑∞
i=1 r(ρi). Note that

since we assume r(s) ≥ 0, this sum is always well-defined. Classically, we want to optimize
the expected total reward, i.e. determine ValG,E TR(s) := maxσ∈ΠMD

G
minτ∈ΠMD

G
Eσ,τ

G,s[TR]. This
game is determined and MD strategies suffice [16]. (To be precise, that work considers a
more general formulation of total reward, our case is equivalent to the case ⋆ = c and T = ∅
(Def. 3) and the quantitative rPATL formula ⟨⟨{1}⟩⟩Rr

max=?[Fcff].)

3 Entropic Risk

As hinted in the introduction, for classical total reward we optimize the expectation and
disregard other properties of the actual distribution of obtained rewards. This means that
an optimal strategy may accept arbitrary risks if they yield minimal improvements in terms
of expectation. To overcome this downside, we consider the entropic risk:

▶ Definition 1. Let b > 1 a basis, X a random variable, and γ > 0 a risk aversion factor.
The entropic risk (of X with base b and factor γ) (see, e.g., [25]) is defined as

ERiskγ(X) := − 1
γ logb(E[b−γX ]).

One often chooses b = e. Nevertheless, we also consider rational values for b, which allows us
to apply techniques from algebraic number theory to arising computational problems.
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▶ Example 2. Consider a random variable X that takes values x1 = 1, x2 = 2, x3 = 4, and
x4 = 5 with probability 1/4 each. Figure 1 illustrates how the entropic risk measure of X

with base e is obtained for some risk aversion factor γ: The values xi are depicted on the
x-axis. We now map the values xi to values yi = e−γxi on the y-axis. Then, the expected
value of e−γX can be obtained as the arithmetic mean of the values yi. The result is mapped
back to the x-axis via y 7→ − 1

γ log(y), the inverse of x 7→ e−γx, and we obtain ERiskγ(X).

The example shows that deviations to lower values are penalized, i.e. taken into consideration
more strongly, by this risk measure. For a different perspective, we can also consider the
Taylor expansion of ERisk w.r.t. γ, which is ERiskγ(X) = E[X] − γ

2 · Var[X] + O(γ2) (see,
e.g., [2]). The terms hidden in O(γ2) comprise all moments of X and exhibit an asymmetry
such that ERisk is roughly the expected value minus a penalty for deviations to lower values.

3.1 Entropic Risk in SGs
We are interested in the case X = TR, i.e. optimizing the risk for total rewards. We write

ERiskγ
G,ŝ(π) := − 1

γ logb(Eπ
G,ŝ[b−γX ])

to denote the entropic risk of the total reward achieved by the strategy profile π when
starting in state ŝ, omitting sub- and superscripts where clear from context. Clearly, this
is well defined for any profile: We have that b−γ TR(ρ) = b−γ

∑∞
i=1

r(ρi) =
∏∞

i=1 b−γr(ρi) and
each factor lies between 0 and 1, thus the product converges (possibly with limit 0).

We also give an insightful characterization for integer rewards. If r(s) ∈ N, we have

ERiskγ
G,ŝ(π) = − 1

γ logb

(∑∞

n=0
Prπ

G,ŝ[TR = n] · b−γn
)

. (2)

Naturally, our goal is to optimize the entropic risk. In this work, we mainly consider the
corresponding decision variant, which we call the entropic risk threshold problem:

Entropic risk threshold problem: Given an SG G, state ŝ, reward function r, risk
parameter γ, risk basis b, and threshold t, decide whether there exists a Maximizer
strategy σ such that for all Minimizer strategies τ we have ERiskγ

G,ŝ((σ, τ)) ≥ t.

Note that (for now) we do not assume any particular encoding of the input. For example,
the reward function r could be given symbolically, describing irrational numbers. A second
variant of the threshold problem asks whether the optimal value

ERiskγ∗
G,s := supσ∈ΠG

infτ∈ΠG ERiskγ
G,s((σ, τ)) (3)

is at least t for a given threshold t. We will see that SGs with the entropic risk as objective
function are determined and hence the two variants are equivalent. Before proceeding with
our solution approaches, we provide an illustrative example.

▶ Example 3. Consider the MDP of Figure 2. The optimal total reward is obtained by
choosing action risk in state s1: Then, we actually obtain an infinite total reward through
state s2. In comparison, choosing action safe would yield a reward of 6 in total. Now,
consider the entropic risk. When choosing action risk, we obtain a total reward of 2 and ∞
with probability 1

2 each, while action safe yields 6 with probability 1. Let b = 2 and γ = 1
for simplicity. Then, we obtain an entropic risk of − log2( 1

2 2−2 + 1
2 2−∞) = 3 under action

risk and − log2(2−6) = 6 for safe. Thus, action safe is preferable.
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15:8 Entropic Risk for Turn-Based Stochastic Games

s1, 2 s2, 2

s3, 0s4, 4
safe

0.5

0.5

risk

Figure 2 Our running example to demonstrate several properties of entropic risk. For ease of
presentation, the system actually is an MDP, where all states belong to Maximizer. States are
denoted by boxes and their reward is written next to the state name. Transition probabilities are
written next to the corresponding edges, omitting probability 1.

▶ Remark 4. As hinted above, entropic risk is finite whenever a finite reward is obtained with
non-zero probability, i.e. for any strategy profile π, ERiskγ

G,ŝ(π) = ∞ iff Prπ
G,ŝ[TR = ∞] = 1.

In contrast, expectation is infinite whenever there is a non-zero chance of infinite reward, i.e.
Eπ

G,ŝ[TR] = ∞ iff Prπ
G,ŝ[TR = ∞] > 0. So, entropic risk allows us to meaningfully compare

strategies which yield infinite total reward with some positive probability.

3.2 Exponential Utility
Observe that the essential part of the entropic risk is the inner expectation. Thus, we consider
the negative exponential utility

NegUtilγG,ŝ(π) := Eπ
G,ŝ[b−γ TR].

We have ERiskγ
G,ŝ(π) = − 1

γ logb(NegUtilγG,ŝ(π)). Observe that in our case 0 ≤
NegUtilγG,ŝ(π) ≤ 1 for any π, as 0 ≤ TR ≤ ∞. Moreover, ERiskγ

G,ŝ(π) ≥ t iff
NegUtilγG,ŝ(π) ≤ b−γ·t, thus, a risk-averse agent (in our case Maximizer) wants to mini-
mize NegUtil. The optimal value is

NegUtilγ∗
G,s := infσ∈ΠGsupτ∈ΠG

Eσ,τ
G,s[b−γ TR]. (4)

We again omit sub- and superscripts where clear from context. We show later that games
with NegUtil or ERisk as payoff functions are determined. Thus, the order of sup and
inf in the above definition does not matter. We call a Maximizer-strategy σ optimal if
ERiskγ∗

G,s = infτ∈ΠG ERiskγ
G,s((σ, τ)) and analogously for Minimizer-strategies.

4 Basic Properties and Decidability

In this section, we establish several results for SGs with entropic risk as objective functions
concerning determinacy, strategy complexity, and decidability in the general case. We mainly
work on games with NegUtil as payoff function. As ERisk can be obtained from NegUtil via
the monotone function − 1

γ log(·), most results, such as determinacy or strategy complexity,
will transfer directly to games with ERisk as objective function.

First, we show that the games are determined, i.e. the order of sup and inf in Equation (3)
and Equation (4) can be switched. Then, we show that games with NegUtil as payoff
function can be seen as reachability games via a reduction that introduces irrational transition
probabilities in general. We conclude that considering only MD strategies is sufficient to
obtain the optimal value, i.e. sup and inf can be replaced with a max and min over MD
strategies. From this, we derive a system of inequalities that has a solution if and only if
the optimal value satisfies ERisk∗ ≥ t for a given threshold t. We conclude this section by
observing that the satisfiability of this system of inequalities can be expressed as a sentence
in the language of the reals with exponentiation. In this way, we obtain the conditional
decidability of the entropic risk threshold problem in SGs subject to Shanuel’s conjecture.
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Throughout this section, fix a game G, reward function r, state ŝ, risk parameter γ, and
risk basis b. Omitted proofs can be found in the extended version [3].

4.1 Determinacy and Optimality Equation
▶ Lemma 5. Stochastic games with NegUtil as payoff function are determined, i.e.

infσ∈ΠGsupτ∈ΠG
Eσ,τ

G,s[b−γ TR] = supτ∈ΠG
infσ∈ΠGE

σ,τ
G,s[b−γ TR].

Proof. This follows from the classical result on determinacy of Borel games [41], see [39] for
a concrete formulation for stochastic games. In particular, the game is zero-sum and NegUtil
is a bounded, Borel-measurable function. ◀

As ERisk is obtained from NegUtil via a monotone function, also games with ERisk as payoff
function are determined. While ERisk∗ is difficult to tackle directly due to its non-linearity,
we can derive the following optimality equation for NegUtil∗:

▶ Lemma 6. The optimal utility NegUtil∗ is a solution of the following system of constraints:

v(s) = b−γr(s) · opts
a∈A(s) ·

∑
s′∈S

∆(s, a, s′) · v(s′), (5)

where opts is min for a Maximizer state s and max for a Minimizer state.

Unfortunately, NegUtil is not the unique or, at least, the pointwise smallest or largest
fixed point of this equation system. Consider the case where r ≡ 0, i.e. b−γr(s) = 1. Here,
every constant vector is a fixed point, however NegUtil∗ ≡ 1. More generally, as the equations
are purely multiplicative, for any fixed point v, every multiple λ · v is a fixed point, too.

▶ Example 7. Again consider the example of Figure 2 with b = 2 and γ = 1. The (simplified)
equations we get are:

v1 = 2−2 · min{ 1
2 v2 + 1

2 v3, v4} v2 = 2−2 · v2 v3 = v3 v4 = 2−4 · v3,

where vi corresponds to the value of si. First, for v2, we observe that v2 = 0 is the only valid
assignment. Then, we have that v1 = 2−2 · min{ 1

20 + 1
2 v3, 2−4v3} = 2−3 · min{v3, 2−3v3}.

Clearly, this system is underdetermined and we obtain a distinct solution for any value of v3.

To solve these issues, we need to define “anchors” of the equation. We observe the resemblance
of classical fixed point equations for stochastic systems. In particular, for r ≡ 0, Equation (5)
is the same as for reachability, Equation (1).

4.2 Reduction to Reachability
We define S0 = {s | maxσminτ Prσ,τ

G,s[TR > 0] = 0} and S∞ = {s | maxσminτ Prσ,τ
G,s[TR =

∞] = 1} the set of states in which Maximizer cannot obtain a total reward of more than 0
with positive probability against an optimal opponent strategy or ensure infinite reward with
probability 1, respectively. We show later on that these sets are simple to compute and MD
strategies are sufficient. Since r(s) ≥ 0, all states in s ∈ S0 necessarily have r(s) = 0. Observe
that S0 may be empty, but then S = S∞ and so NegUtil∗ = 0, ERisk∗ = ∞. Through these
sets, we can connect optimizing the utility to a reachability objective.
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▶ Lemma 8. For any state s in the game G, the optimal utility NegUtil∗ is equal to the
minimal probability of reaching the set S0 from s in game GR, defined as follows: We
add a designated sink state s (which may belong to either player and only has a self-loop
back to itself) and define ∆R(s, a, s′) = b−γr(s′) · ∆(s, a, s′) for s, s′ ∈ S, a ∈ A(s) and
∆R(s, a, s) = (1 − b−γr(s)). There is a direct correspondence between optimal strategies.

We note that reachability games can also be reduced to our case:

▶ Lemma 9. For any game G and (absorbing) reachability goal T , we have ValG,♢T (s) =
1 − NegUtil∗G(s) with reward r(s) = 1T (s) and γ = 1.

We highlight that this reduction from entropic risk games to reachability games is not
an effective reduction in the computational sense, since GR comprises irrational transition
probabilities even for entirely rational inputs. We discuss how to tackle this in the next
section and first proceed to derive some useful properties from this correspondence.

▶ Lemma 10. The optimal utility NegUtil∗ is the pointwise smallest solution of

v(s) = 0 for s ∈ S∞, v(s) = 1 for s ∈ S0, and

v(s) = opts
a∈A(s)b

−γr(s) · ∆(s, a)⟨v⟩ otherwise
(6)

Yet, there might be multiple fixed points to the system of equations. This is to be
expected, since already reachability on MDPs exhibits this problem [32]. We provide a
discussion of these issues together with a sufficient condition for uniqueness in the extended
version [3].

4.3 Strategy Complexity
By Lemma 8, the optimal negative exponential utility is achieved by reachability-optimal
strategies in GR. With the known results on reachability [18], this yields:

▶ Theorem 11. MD strategies are sufficient to optimize the negative exponential utility and
thus also entropic risk. More precisely, for all SGs G, there is an MD strategy σ for the
Maximizer such that ERiskγ∗

G,s = infτ∈ΠG ERiskγ
G,s((σ, τ)) and analogously for the Minimizer.

▶ Remark 12. We highlight that this means that this notion of risk is history independent:
Which actions are optimal does not depend on what has already “gone wrong”, but purely on
the potential future consequences. This is in stark contrast to, e.g., conditional value-at-risk
optimal strategies for total reward, which require exponential memory and switch to a purely
expectation maximizing (i.e. risk-ignorant) behaviour after “enough” went wrong [42].

4.4 System of Inequalities
The problem we want to solve is deciding whether the Maximizer can ensure an entropic risk
of at least t. Unfortunately, the reachability game GR is not directly computable, since even
for rational rewards b−γr(s) may be irrational. As such, we cannot use this transformation
directly to prove decidability or complexity results and need to take a different route.
Analogous to the classical solution to reachability, we first convert the problem to a system of
inequalities. Intuitively, we replace every max with ≥ for all options and dually min with ≤
(again, recalling that Maximizer wants to minimize the value in GR). Formally, we consider
the following:
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v(ŝ) ≤ b−γt, v(s) = 0 for s ∈ S∞, v(s) = 1 for s ∈ S0,

v(s) ≤ b−γr(s) · ∆(s, a)⟨v⟩ for s ∈ Smax, a ∈ A(s),

v(s) ≥ b−γr(s) · ∆(s, a)⟨v⟩ for s ∈ Smin, a ∈ A(s), and∨
a∈A(s)

v(s) = b−γr(s) · ∆(s, a)⟨v⟩ for s ∈ S

(7)

Observe that this essentially is the decision variant to the standard quadratic program for
reachability applied to GR [19].

▶ Lemma 13. The system of equations 7 has a solution if and only if ERisk∗ ≥ t.

4.5 Decidability Subject to Shanuel’s Conjecture
From Equation (7), we obtain a conditional decidability result for the general case:

▶ Theorem 14. Let all quantities, i.e. rewards, transition probabilities, the risk-aversion
factor γ, and the basis b be given as formulas in the language of reals with exponentiation
(i.e. with functions +, ·, and exp: x 7→ ex). Then, the entropic risk threshold problem for
SGs is decidable subject to Schanuel’s conjecture.

Proof. In this case, the existence of a solution to Equation (7) can also be expressed as
a sentence in the language of the reals with exponentiation. The corresponding theory is
known to be decidable subject to Shanuel’s conjecture (see e.g. [37]) as shown by [38], and
decidability of this theory is equivalent to the so-called “weak Schanuel’s conjecture”. ◀

In particular, this allows us to treat instances with basis b = e. Yet, even if all rewards,
transition probabilities, and γ are given as rational values, but the basis b equals e, we do
not know how to check the satisfiability of Equation (7) without relying on the theory of
the reals with exponentiation. Note, however, that we do not need the “full power” of the
exponential function: All values appearing in an exponent in Equation (7) are constants. So,
the restricted exponential function that agrees with exp on a closed interval [a1, a2] and is zero
outside of this interval is sufficient. The theory of the reals with restricted exponentiation has
some additional nice properties compared to the theory of the reals with full exponentiation:
For example, it allows for quantifier elimination by [52] and related works. Nevertheless, this
does not allow us to immediately obtain an unconditional decidability result.

5 The Algebraic Case

If all occurring values are rational, then all numbers of the system of inequalities Equation (7)
are algebraic. The results of this section establish that the threshold problem for such
instances is decidable. A detailed exposition of the results can be found in the extended
version [3]; an overview of the complexity results can also be found in Table 1. Formally, we
define:

▶ Definition 15. An algebraic instance of the entropic risk threshold problem is an instance
where all occurring values, i.e. the transition probabilities of the game G, all rewards assigned
by the reward function r, the risk-aversion parameter γ, the basis b, and the threshold t, are
rational and encoded as the fraction of co-prime integers in binary.
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In general, for algebraic instances, there is a reduction of our problem to the existential
theory of the reals, leading to the following result where ∃R denotes the complexity class of
problems that are polynomial-time reducible to the existential theory of the reals:

▶ Theorem 16. For algebraic instances, the entropic risk threshold problem is decidable in
∃R and thus in PSPACE.

Already for Markov chains, it is unclear whether the upper complexity bound can be
improved. For a discussion on this issue, see also the extended version [3].

For Theorem 16, we use the standard decision procedure for the existential theory of the
reals as a “black box” and do not make use of the special form of our problem. To exploit
the specific structure of the system of inequalities, we note that for explicit computations on
algebraic numbers the following two quantities are relevant for the resulting computational
complexity: Firstly, the degree of the field extension of Q in which the computation can
be carried out. Secondly, the bitsize of the coefficients of the minimal polynomials of the
involved algebraic numbers (see, e.g., [1, 6]). Alternatively, the bitsize of the representations
of the algebraic numbers in a fixed basis of the field extension in which the computations can
be carried out can be used. Note that the size of the basis is precisely the degree of that field
extension. Motivated by these observations, we consider small algebraic instances, which
allow us to prove that all occurring algebraic numbers have a sufficiently small representation.

▶ Definition 17. A small algebraic instance of the entropic risk threshold problem consists
of a SG G with rational transition probabilities, an integer reward function r, a rational
risk-aversion parameter γ, a rational basis b, and a rational threshold t. Moreover, the
rewards, γ, and t are encoded in unary, and as the fraction of co-prime integers encoded in
unary, respectively. The remaining rational numbers are encoded as the fraction of co-prime
integers in binary. If G is an MDP or a MC, we call the instance a small algebraic instance
of an MDP or a MC.

▶ Remark 18. For simplicity, we assume for small algebraic instances that all rewards are in
N. If this is not the case, we can multiply all rewards with the least common multiple D

of the denominators of the rewards and use a new risk-aversion parameter γ′ = γ/D. The
resulting negative exponential utility is not affected by this transformation. The change of
the optimal entropic risk by a factor of D can be addressed by also rescaling the threshold
t′ = t · D. Nevertheless, note that this affects the encoding size of the risk-aversion factor γ.
Relying on algorithms for explicit computations in algebraic numbers [1, 6], we obtain:

▶ Theorem 19. For small algebraic instances, the entropic risk threshold problem: (a)
belongs to NP ∩ coNP for SGs; and (b) can be solved in polynomial time for MDPs or MCs.

While the mentioned results concern the threshold problem, we can even go a step further
in small algebraic instances of MCs. Here, the system of inequalities simplifies to a linear
system of equations, which we can solve explicitly in the algebraic numbers. For small
algebraic instances, this is possible in polynomial time yielding the following result.

▶ Theorem 20. For small algebraic instances, an explicit representation of NegUtil∗ can be
computed in: (a) polynomial time for MCs; and (b) in polynomial space for SGs and MDPs.

6 Approximation Algorithms

The results of the previous section suggest, depending on the form of the input, a polynomial-
space algorithm or even worse in the general case. Clearly, this is somewhat unsatisfactory
for practical applications. Recall that the difficulties are due to the occurring irrational
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transition probabilities. In the hope that we can work with approximations of these numbers,
we now aim to identify an approach which allows us to approximate the correct answer, i.e.
compute a value close to the optimal entropic risk that the Maximizer can ensure. Again,
fix an SG G, reward function r, risk parameter γ, and risk basis b throughout this section.
Then, given a precision ε > 0, we aim to compute a value v such that |ERisk∗ − v| < ε, i.e.
an approximation with small absolute error.

Since entropic risk is the logarithm of utility, we need to obtain an approximation of
NegUtil∗ to a sufficiently small relative error. Concretely, we need to compute a value vU

such that b−γε ≤ vU / NegUtil∗ ≤ bγε. Then, v = − 1
γ logb(vU ) yields an approximation, since

ERisk∗ − v = − 1
γ logb(NegUtil∗) + 1

γ logb(vU ) = 1
γ logb(vU / NegUtil∗) = (∗)

(∗) ≥ 1
γ logb(b−γε) = −ε and (∗) ≤ 1

γ logb(bγε) = ε.

(When we are interested in a concrete value for v, we need to determine vU with a slightly
higher precision and then approximate logb(vU ) sufficiently.) Now, in order to approximate
NegUtil∗, we still need to deal with a system comprising potentially irrational transition
probabilities. We argue that the occurring values b−γr(s) can be “rounded” to a sufficient
precision while keeping the overall relative error small. Using techniques from [12], we provide
an effective way to compute a game G≈, which behaves “similarly” to the reachability game
GR from Lemma 8, in the extended version [3]. Once G≈ is computed, we can employ classical
solution methods, such as linear equation solving for MCs, linear programming for MDPs, or,
e.g., quadratic programming for SGs leading to an algorithm in polynomial space for SGs.

▶ Theorem 21. In MCs and MDPs, the optimal value ERisk∗ can be approximated up to an
absolute error of ε in time polynomial in the size of the system, − log(ε), log b, γ · rmax, and
1/(γ · rmin), where rmax and rmin are the largest and smallest occurring non-zero rewards,
respectively. For SGs, this is possible in polynomial space.

In particular, for fixed b and γ, and bounded rewards (both from above and below), we
obtain a PTIME solution for MC and MDP. In general, the procedure is exponential for SG.
Alternatively, we can also apply different approaches such as value iteration [36].

▶ Remark 22. We note the connection to the small algebraic case: The “limiting factor” in
both cases is the (size of the) product of γ and the state rewards. If these are fixed or given
in unary, respectively, the complexity of our proposed algorithms is significantly reduced.

As a final note, recall that we do not assume γ or the transition probabilities to be rational.
We only require that we can expand their binary representation to arbitrary precision. Then,
we can conservatively approximate their logarithm to evaluate the required rounding precision
and approximate the transition probabilities of G≈ in the same way.

7 Conclusion

We applied the entropic risk to total rewards in SGs to capture risk-averse behavior in these
games. The objective forces agents to achieve a good overall performance while keeping the
chance of particularly bad outcomes small. We showed that SGs with the entropic risk as
payoff function are determined and admit optimal MD-strategies. This reflects the time-
consistency of entropic risk and makes entropic risk an appealing objective as, in contrast,
the optimization of other risk-averse objective functions that have been studied on MDPs in
the literature require strategies with large memory or complicated randomization.
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Computationally, difficulties arise due to the involved exponentiation leading to irrational
or even transcendental numbers. For the general case, we obtained decidability of the
threshold problem only subject to Shanuel’s conjecture while for purely rational inputs, the
problem can be solved via a reduction to the existential theory of the reals. Additional
restrictions on the encoding of the input allowed us to obtain better upper bounds. Further,
we provided an approximation algorithm for the optimal value. For an overview of the results,
see Table 1.

A question that is left open is whether the entropic risk threshold problem for algebraic
instances of MCs can be solved more efficiently than by the polynomial-time reduction to
the existential theory of the reals. This case constitutes a bottleneck in the complexity.
Furthermore, we worked with non-negative rewards, which made a reduction from games
with the entropic risk objective to reachability games possible. Dropping the restriction
to non-negative rewards constitutes an interesting direction of future research, in which
additional difficulties arise and a reduction to reachability is not possible anymore. A further
direction for future work is the experimental evaluation of the proposed algorithms to assess
their practical applicability as well as to investigate the behavior of the resulting optimal
strategies. In particular, it might be interesting to investigate the “cost” of risk-awareness,
namely how much the expected total reward of a risk-aware strategy differs from a purely
expectation maximizing one on realistic systems.
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Abstract
Opacity is a property of privacy and security applications asking whether, given a system model, a
passive intruder that makes online observations of system’s behaviour can ascertain some “secret”
information of the system. Deciding opacity is a PSpace-complete problem, and hence there are no
polynomial-time algorithms to verify opacity under the assumption that PSpace differs from PTime.
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1 Introduction

In privacy and security applications and communication protocols, it is desirable to keep
some information about the system or its behaviour secret. Such requirements put additional
restrictions on the information flow of the system and have widely been discussed in the
literature as various properties, including anonymity [14, 32, 38], non-interference [8, 12, 19,
33], secrecy [1, 3, 10], security [17], perfect security [46], and opacity [20, 30]. Anonymity is
the property to preserve secrecy of identity of actions; for instance, web servers should not
be able to learn the true source of a request. Non-interference asks whether, give two input
states of the system that share the same values of specified variables, the behaviors of the
system started from these states are indistinguishable by the observer under the observation
of the specified variables. Secrecy expresses whether an observer can ever find out that a
trajectory of the system belongs to a set of secret trajectories, and perfect security requires
that an observer that knows the set of all trajectories of the system cannot deduce any
information about occurrences of high-security events by observing low-security events.

In this paper, we are interested in (various types of) opacity, which in a sense generalizes
the other mentioned properties; namely, the properties above can be verified by reduction to
opacity. More specifically, Alur et al. [1] have shown that secrecy captures non-interference
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and perfect security, and Lin [26] has provided an extensive discussion and comparison of all
these properties. He has in particular shown that anonymity and secrecy, and the properties
of observability [27], diagnosability [25, 37], and detectability [28, 29, 39] of discrete-event
systems are special cases of opacity. Wu et al. [44] and Góes et al. [18] discuss applications
of opacity in location privacy, and Wintenberg et al. [42] apply opacity in contact tracing.

Given a system model, opacity asks whether a malicious passive observer (an intruder) with
a complete knowledge of the structure of the model can ascertain some “secret” information
of the system by making online incomplete observations of system’s behaviour. The secret
information is modeled either as a set of states or as a set of behaviours of the system. Based
on the incomplete observations, the intruder estimates the state/behaviour of the system, and
the system is opaque if for every secret state/behaviour of the system, there is a non-secret
state/behaviour of the system that looks the same to the intruder. If the secret information
is given as a set of states, we talk about state-based opacity [9, 11], whereas if the secret
information is given as a set of secret behaviours (a language), we talk about language-based
opacity [3, 15]. Several notions of opacity have been discussed in the literature for systems
modeled by automata and Petri nets; see Jacob et al. [24] for an overview. In this paper, we
focus on finite automata models and on the notions of opacity that we review in Section 3.

The fastest existing algorithms verifying the notions of opacity under consideration have
exponential-time complexity with respect to the number of states of the automaton. In fact,
the verification of opacity is a PSpace-complete problem [4, 5, 24], and hence we may conclude
that there are no polynomial-time algorithms deciding opacity unless PTime = PSpace.
Although the assumption that PTime ̸= PSpace excludes the existence of polynomial-time
algorithms, the question whether there is a significantly faster (i. e., sub-exponential-time)
algorithm remains open.

To achieve stronger lower bounds (although still conditional), we use the Exponential
Time Hypothesis (ETH) and its strong version – the Strong Exponential Time Hypothesis
(SETH). Both hypotheses were formulated by Impagliazzo and Paturi [23] and are based on
the observation that (so far) we were not able to find algorithms that would, in the worst
case, solve SAT significantly faster than the algorithms trying all possible truth assignments.
In particular, ETH states that 3-SAT cannot be solved in time 2o(n) where n is the number
of variables. However, it admits algorithms solving 3-SAT in time O(cn) where c < 2. In
fact, the current fastest 3-SAT algorithm of Paturi et al. [31], improved by Hertli [21], runs
in time O∗(1.30704n). With increasing k, the current fastest k-SAT algorithms are getting
slower; for instance, the best 4-SAT algorithm of Hertli [21] runs in time O∗(1.46899n). This
observation motivated the formulation of SETH that claims that, for any constant c < 2,
there is always a sufficiently large k such that k-SAT cannot be solved in time O(cn) [23].
Both hypotheses imply that the complexity classes PTime and NP are separated; moreover,
SETH implies ETH.

In this paper, we show that under (S)ETH, there are no significantly faster algorithms
verifying opacity. In particular, we show that unless SETH fails, there is no algorithm that
decides whether a given n-state automaton satisfies the considered notions of opacity and
runs in time O∗(2n/c), for any c > 2 (Theorem 8 and Corollary 15). Since the number of
symbols in the alphabet of our construction is unbounded and the standard binary encoding
of symbols does not work under SETH, it is not clear whether this result also holds for
automata with a fixed size (binary) alphabet. We partially explore this question under ETH
rather than SETH. We show that unless ETH fails, there is no algorithm that decides whether
a given n-state automaton (over a binary alphabet) satisfies the considered notions of opacity
and runs in time O∗(2o(n)). Our results are summarized in Table 1; for the complexity upper
bounds, we refer the reader to the literature [5, 34].
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Table 1 An overview of the algorithmic complexity of deciding opacity under the projection
P : Σ∗ → Γ∗, where n is the number of states of the automaton and ε > 0.

Lower bound Upper bound

Γ not fixed |Γ| = 2

LBO O∗ (
2n/(2+ε)) O∗(2o(n)) O∗(2n)

CSO O∗ (
2n/(2+ε)) O∗(2o(n)) O∗(2n)

ISO O∗ (
2n/(2+ε)) O∗(2o(n)) O∗(2n)

IFO O∗ (
2n/(2+ε)) O∗(2o(n))

{
O∗(2n) if IQNS = INS × FNS

O∗(
2n2)

otherwise
k-SO O∗ (

2n/(2+ε)) O∗(2o(n)) O∗(2n)
INSO O∗ (

2n/(2+ε)) O∗(2o(n)) O∗(2n)

As a by-product, we obtain a new conditional lower bound for deciding universality (and
hence inclusion and equivalence) for nondeterministic automata (NFA): Unless SETH fails,
there is no c > 2 such that the universality of an n-state NFA can be decided in time O∗(2n/c)
(Corollary 18). This result strengthens the result of Fernau and Krebs [16] showing that if
ETH is true, the universality of an n-state NFA cannot be decided in time O∗(2o(n)).

2 Preliminaries

We assume that the reader is familiar with automata theory [22]. For a set S, the cardinality
of S is denoted by |S| and the power set of S by 2S . If S is a singleton, S = {x}, we often
simply write x instead of {x}. The set of all non-negative integers is denoted by N.

An alphabet Σ is a finite nonempty set of symbols. A string over Σ is a finite sequence
of symbols from Σ. The set of all strings over Σ is denoted by Σ∗; the empty string is
denoted by ε. A language L over Σ is a subset of Σ∗. For a string u ∈ Σ∗, the length
of u is denoted by |u|. With every pair of alphabets (Σ, Γ) with Γ ⊆ Σ, we associate the
morphism P : Σ∗ → Γ∗ defined by P (a) = ε, for a ∈ Σ − Γ, and P (a) = a, for a ∈ Γ; such
morphisms are usually called projections. Intuitively, the action of the projection P is to
erase all symbols that do not belong to Γ; the symbols of Γ are usually called observable
symbols of Σ under the projection P . We lift the projection P from strings to languages
in the usual way. The inverse projection of P is the function P −1 : Γ∗ → 2Σ∗ defined by
P −1(w) = {w′ ∈ Σ∗ | P (w′) = w}.

A nondeterministic finite automaton (NFA) is a structure A = (Q, Σ, δ, I, F ), where Q

is a finite set of states, Σ is an input alphabet, I ⊆ Q is a set of initial states, F ⊆ Q is a
set of accepting states, and δ : Q × Σ → 2Q is a transition function that can be extended to
the domain 2Q × Σ∗ by induction. If the accepting states are irrelevant, we omit them and
simply write A = (Q, Σ, δ, I). The language accepted by A from the states of Q0 ⊆ Q by the
states of F0 ⊆ F is the set Lm(A, Q0, F0) = {w ∈ Σ∗ | δ(Q0, w) ∩ F0 ̸= ∅} and the language
generated by A from the states of Q0 is the set L(A, Q0) = Lm(A, Q0, Q); in particular,
the language accepted by A is Lm(A) = Lm(A, I, F ) and the language generated by A is
L(A) = L(A, I). The NFA A is deterministic (DFA) if |I| = 1 and |δ(q, a)| ≤ 1 for every
state q ∈ Q and every symbol a ∈ Σ.

For an alphabet Γ ⊆ Σ, we define the projected automaton of A, denoted by P (A), as
the reachable part of a DFA obtained from A by replacing every transition (q, a, r) with
the transition (q, P (a), r), followed by the standard subset construction [22]. The projected
automaton of A is also known as the observer of A in the literature.
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We define the configuration of A as the state of the projected automaton P (A) of A.
A (Boolean) formula consists of variables, symbols for logical connectives: conjunction,

disjunction, negation; and parentheses. A literal is a variable or its negation. A clause is a
disjunction of literals. A formula is in conjunctive normal form (CNF) if it is a conjunction of
clauses. If each clause has at most k literals, the formula is in k-CNF. A formula is satisfiable
if there is an assignment of 1 and 0 to the variables evaluating the formula to 1. Given a
k ≥ 3 and a formula in k-CNF, the k-CNF Boolean satisfiability problem (k-SAT) is to decide
whether the formula is satisfiable. If the formula in k-CNF has n variables, enumerating
all the 2n possible truth assignments results in an O(2nnk)-time algorithm for k-SAT; the
polynomial part O(nk) comes from checking up to nk clauses. We use the notation O∗ to
hide polynomial factors, that is, O∗(g(n)) = O(g(n) · poly(n)).

The exponential time hypothesis states that 3-SAT cannot be solved in sub-exponential
time 2o(n), where n is the number of variables in the 3-CNF formula [23].

▶ Hypothesis 1 (Exponential Time Hypothesis (ETH)). There is some ε > 0 such that 3-SAT
cannot be solved in time O(2εn), where n is the number of variables in the formula.

The strong ETH states that deciding k-SAT needs O∗(2n) time for large k [23].

▶ Hypothesis 2 (Strong ETH (SETH)). For every ε > 0, there is some k ≥ 3 such that
k-SAT cannot be solved in time O(2(1−ε)n).

3 Opacity Definitions

We now review the notions of opacity considered in this paper. We distinguish two types of
opacity: those representing the secret by strings and those representing the secret by states.

Language-based opacity is a property asking whether for every secret behaviour, there
is a non-secret behaviour that is the same under a considered projection; in this case, an
intruder cannot distinguish the secret behaviour from a non-secret behaviour.

▶ Definition 3. An NFA A = (Q, Σ, δ, I) is language-based opaque (LBO) with respect to
disjoint languages LS , LNS ⊆ L(A), called secret and non-secret languages, respectively, and
a projection P : Σ∗ → Γ∗ for Γ ⊆ Σ, if LS ⊆ P −1P (LNS).

The LBO problem is to decide whether A is LBO with respect to LS, LNS, and P .

Although this definition is a special case of the most general notion of trace opacity of
Bryans et al. [9], it is general enough to capture other notions, such as strong nondeterministic
non-interference or non-deducibility on composition of Best at al. [8] and Busi and Gorrieri [12].
The secret and non-secret languages are often considered to be regular to ensure that the
inclusion problem is decidable [2].

State-based opacity hides the secret information into states. In this paper, we consider
five notions of state-based opacity. Current-state opacity requires that an intruder cannot
identify, at any instance of time, whether the system is currently in a secret state.

▶ Definition 4. An NFA A = (Q, Σ, δ, I) is current-state opaque (CSO) with respect to
two disjoint sets QS , QNS ⊆ Q of secret and non-secret states, respectively, and a projection
P : Σ∗ → Γ∗ for Γ ⊆ Σ, if for every string w ∈ Σ∗ such that δ(I, w) ∩ QS ≠ ∅, there exists a
string w′ ∈ Σ∗ such that P (w) = P (w′) and δ(I, w′) ∩ QNS ̸= ∅.

The CSO problem is to decide whether A is CSO with respect to QS, QNS, and P .

Initial-state opacity requires that an intruder can never ascertain whether the computation
started in a secret state.
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▶ Definition 5. An NFA A = (Q, Σ, δ, I) is initial-state opaque (ISO) with respect to two
disjoint sets IS , INS ⊆ I of secret and non-secret initial states, respectively, and a projection
P : Σ∗ → Γ∗ for Γ ⊆ Σ, if for every w ∈ L(A, IS), there exists w′ ∈ L(A, INS) such that
P (w) = P (w′).

The ISO problem is to decide whether A is ISO with respect to IS, INS, and P .

Initial-and-final-state opacity [43] generalizes both CSO and ISO. The secret is represented
as a set of pairs of an initial state and of an accepting state. Therefore, ISO is a special case
of initial-and-final-state opacity where the accepting states do not play a role, while CSO is
a special case where the initial states do not play a role.

▶ Definition 6. An NFA A = (Q, Σ, δ, I, F ) is initial-and-final-state opaque (IFO) with
respect to two disjoint sets IQS , IQNS ⊆ I × F of secret and non-secret pairs of states,
respectively, and a projection P : Σ∗ → Γ∗ for Γ ⊆ Σ, if for every secret pair (q0, qf ) ∈ IQS

and every string w ∈ Lm(A, q0, qf ), there exists a non-secret pair (q′
0, q′

f ) ∈ IQNS and a
string w′ ∈ Lm(A, q′

0, q′
f ) such that P (w) = P (w′).

The IFO problem is to decide whether A is IFO with respect to IQS, IQNS, and P .

The algorithmic time complexity of deciding IFO is known to be O∗(2n2) in general, and
O(22n) if IQS = IS ×FS and IQNS = INS ×FNS , for some IS , INS ⊆ I and FS , FNS ⊆ F [43].
Our complexity in Table 1 is based on the following observations.

Consider an NFA A = (Q, Σ, δ, I, F ) and two sets IQS , IQNS ⊆ I ×F . The IFO property
of A is unchanged if all pairs (s, f1), (s, f2), . . . , (s, fk) with a common left component are
replaced by a single pair of the form (s, {f1, f2, . . . , fk}). This reduces the number of pairs
to be considered to n, where n is the number of states of A. For every pair (si, Fi) ∈ I × 2F ,
we define the language Li = Lm(A, si, Fi) and the languages

LS =
⋃

(si,Fi)∈IQS

Li and LNS =
⋃

(si,Fi)∈IQNS

Li .

Then, deciding whether A is IFO with respect to IQS , IQNS , and P is equivalent to
deciding whether the inclusion P (LS) ⊆ P (LNS) holds true. Since both LS and LNS can be
represented by NFAs consisting of at most n copies of A, they have O(n2) states. The inclusion
P (LS) ⊆ P (LNS) of languages of two NFAs can be tested in time O(n22n2) = O∗(2n2), which
is a complexity upper bound that coincides with the bound of Saboori and Hadjicostis [36],
who used trellis automata.

If IQNS = INS × FNS ⊆ I × F , then the NFA for LNS coincides with A where the initial
states are INS and the final states are FNS . In particular, this automaton has n states, and
therefore the inclusion P (LS) ⊆ P (LNS) can be tested in time O(n22n) = O∗(2n).

The notion of k-step opacity generalizes CSO by requiring that the intruder cannot
ascertain the secret in the current and k subsequent states. By definition, CSO is equivalent
to 0-step opacity. We use a slight generalisation of a definition of Saboori and Hadjicostis [35]
that was formulated by Balun and Masopust [5].

▶ Definition 7. An NFA A = (Q, Σ, δ, I) is k-step opaque (k-SO), for a given k ∈ N ∪ {∞},
with respect to two disjoint sets QS , QNS ⊆ Q of secret and non-secret states, respectively, and
a projection P : Σ∗ → Γ∗ for Γ ⊆ Σ, if for every string st ∈ L(A) such that |P (t)| ≤ k and
δ(δ(I, s) ∩ QS , t) ̸= ∅, there exists a string s′t′ ∈ L(A) such that P (s) = P (s′), P (t) = P (t′),
and δ(δ(I, s′) ∩ QNS , t′) ̸= ∅.

The k-SO problem is to decide whether A is k-SO with respect to QS, QNS, and P .
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A special case of k-SO for k being infinity is called infinite-step opacity (INSO). These two
notions are closely related for finite automata, because an n-state automaton is infinite-step
opaque if and only if it is (2n − 2)-step opaque [45].

For the state-based opacity notions, we may assume, without loss of generality, that the
projection P is an identity; indeed, the transitions labeled by symbols from Σ − Γ can be
seen as ε-transitions, and hence they can be removed by the classical algorithm eliminating
ε-transitions [22]. This algorithm does not change the number of states but can quadratically
increase the number of transitions. In the sequel, we omit the projection if it is an identity.

4 Lower Bounds under Strong Exponential Time Hypothesis

We now show that under the strong exponential time hypothesis, there is no algorithm deciding
current-state opacity that would be significantly faster than the best known algorithm.

▶ Theorem 8. Unless SETH fails, there is no algorithm deciding whether a given n-state
NFA is CSO that runs in time O∗(2n/(2+ε)), for any ε > 0.

Proof. For a given formula φ in k-CNF with n variables X = {x1, . . . , xn} and m clauses
C = {c1, . . . , cm}, we construct, in polynomial time, an instance of CSO consisting of an
NFA Aφ with N = 2n + 2 states and of sets of secret and non-secret states QS and QNS ,
respectively, such that Aφ is CSO with respect to QS and QNS if and only if φ is satisfiable.
As a result, if there was an algorithm solving CSO in time O∗(2N/(2+ε)), then there would
be an algorithm solving k-SAT in time O(poly(n)) + O∗(2(2n+2)/(2+ε)) = O∗(2(1−δ)n), for
δ = ε/(2 + ε) > 0, which contradicts SETH, and proves the theorem.

Intuitively, we construct the NFA Aφ such that when Aφ reads a string of a particular
type (based on Zimin words), it is forced to examine all possible assignments to the variables
x1, . . . , xn. If none of the assignments satisfies φ, then, after reading the whole string, the
automaton Aφ ends up in a configuration that contains only secret states, rendering thus Aφ

not CSO. On the other hand, when a satisfying assignment is encountered (or the string is
not of the particular type), a non-secret state is permanently added to the configuration of
Aφ, and hence Aφ is CSO.

Formally, the NFA Aφ = (Q, Σ, δ, I), where the set of states is Q = {qs, qns} ∪ {x0
i , x1

i |
xi ∈ X} with xr

i representing the assignment of r ∈ {0, 1} to the variable xi, the alphabet
Σ = Γ = {a1, . . . , an+1} × C, that is, the projection P is an identity, and the set of secret
states is QS = {qs}, that is, the state qs is the only secret state, the remaining states are
non-secret. For an illustration of the construction, the reader may follow Example 14 together
with the rest of the proof.

Let L be the set of literals of φ. We use the function cl : L → 2C that assigns to a literal
ℓ the set cl(ℓ) = {c ∈ C | ℓ ∈ c} of clauses containing ℓ, and define the transition function δ

as follows, see Figure 1 for an illustration:
The self-loops (qs, σ, qs) and (qns, σ, qns) belong to δ for every σ ∈ Σ;
For every state x0

i and every c ∈ C,
the transition (x0

i , (ai, c), x1
i ) ∈ δ;

the self-loop (x0
i , (aj , c), x0

i ) ∈ δ for 1 ≤ j ≤ i − 1;
the transition (x0

i , (ai, c), x0
j ) ∈ δ for 1 ≤ j ≤ i − 1;

the transition (x0
i , (aj , c), qns) ∈ δ for i + 1 ≤ j ≤ n + 1;

the transition (x0
i , (aj , c), qns) ∈ δ for 1 ≤ j ≤ n + 1 and c ∈ cl(¬xi);

For every state x1
i and c ∈ C,

the transition (x1
i , (ai, c), qns) ∈ δ;

the self-loop (x1
i , (aj , c), x1

i ) ∈ δ, for 1 ≤ j ≤ i − 1;
the transition (x1

i , (aj , c), qns) ∈ δ for 1 ≤ j ≤ n + 1 and c ∈ cl(xi).
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Figure 1 The NFA Aφ of Theorem 8, where the initial states are squared, the single secret state
qs is in bold, and for positive integers i ≤ j, [i, j] = {i, i + 1, . . . , j} and a[i,j] = {ar | r ∈ [i, j]}.

Finally, the set of initial states is I = {qs} ∪ {x0
1, . . . , x0

n}, corresponding to the assignment
of 0 to all variables of φ.

We now define a language Wφ = Zn · ({an+1} × C), where Zn is a language over the
alphabet {a1, a2, . . . , an} × C recursively defined as follows:

Z1 = {a1} × C and Zi = Zi−1 · ({ai} × C) · Zi−1, for 1 < i ≤ n .

Such strings are known as Zimin words and it is well known that any string of Zn is of length
2n − 1 [40] and that

the symbol on the ℓth position of any string from Zn is of the form {aj} × C, where
j − 1 is the number of trailing zeros in the binary representation of ℓ [41]. (1)

We finish the proof in a series of claims. The first claim shows that along any string of
Zn, the states {x0

i , x1
i | xi ∈ X} of Aφ encode all possible assignments to the variables.

▷ Claim 9. Let AX
φ denote Aφ without the states qs and qns and the corresponding

transitions. For every w ∈ Zn, after reading the prefix of w of length ℓ ≤ 2n − 1, the
configuration of AX

φ is {xrn
n , x

rn−1
n−1 , . . . , xr1

1 }, where rnrn−1 · · · r1 represents ℓ in binary.

▷ Claim 10. Every configuration of Aφ contains the secret state qs.

By Claims 9 and 10, and because only the state qs itself is reachable from qs and only
the state qns itself is reachable from qns, we have the following observation specifying the
computation of Aφ along the strings of Zn.

▷ Claim 11. After reading the prefix of w ∈ Zn of length ℓ ≤ 2n − 1, the configuration of Aφ

is either {xrn
n , x

rn−1
n−1 , . . . , xr1

1 } ∪ {qs} or {xrn
n , x

rn−1
n−1 , . . . , xr1

1 } ∪ {qs, qns}, where rnrn−1 · · · r1
represents ℓ in binary. ◁
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If there is a satisfying assignment, then the non-secret state qns is reached by Aφ.

▷ Claim 12. For every prefix w of a string in Zn, if the configuration of Aφ after reading w

satisfies φ, then after reading any further symbol in Σ, the configuration of Aφ contains qns.

We now show that if φ is satisfiable, then Aφ is CSO. To this end, we consider an arbitrary
string w over Σ, and we denote by u the longest prefix of w that is a prefix of a string in Zn.
Let ℓ be the minimal number such that its binary representation rnrn−1 · · · r1 is a satisfying
assignment to the variables of φ.

If ℓ ≤ |u|, then, by Claim 11, the configuration of Aφ after reading any prefix of u of
length ℓ′ ≤ ℓ contains non-secret states xrn

n , x
rn−1
n−1 , . . . , xr1

1 , where rnrn−1 · · · r1 represents ℓ′

in binary, and, by Claim 12, the (ℓ + 1)st symbol of w moves Aφ to a configuration that
contains qns; that is, Aφ is CSO.

If ℓ > |u|, we have w = u(as, c)v for (as, c) ∈ Σ and v ∈ Σ∗. Because φ is satisfiable, we
have |u| < 2n − 1. By Claim 11, the configuration of Aφ after reading u contains xrn

n , . . . , xr1
1 ,

where rnrn−1 · · · r1 represents |u| in binary. Let rt be the rightmost zero of rnrn−1 · · · r1, that
is, rnrn−1 · · · r1 = rnrn−1 · · · rt+101 · · · 1. Then, |u| + 1 is rnrn−1 · · · rt+110 · · · 0 in binary
and, by (1), the symbol (as, c) /∈ {at} × C. However, if s < t, then x1

s goes to state qns

under {as} × C, while if s > t, then x0
t goes to state qns under {as} × C. In both cases, the

non-secret state qns is in the next configuration of Aφ, and hence Aφ is CSO.

To prove that if φ is not satisfiable, then Aφ is not CSO, we use the following claim.

▷ Claim 13. If φ is not satisfiable, there is a string wφ ∈ Zn such that the configuration of
Aφ after reading wφ is {x1

n, x1
n−1, . . . , x1

1} ∪ {qs}.

We now show that if φ is not satisfiable, then Aφ is not CSO. To this end, we consider the
string wφ constructed in Claim 13, which we extend to a string from Wφ = Zn · ({an+1} × C)
by adding a symbol of the form {an+1} × C. Since φ is not satisfiable, there is a clause
c ∈ C that is not satisfied by the assignment of 1 to the variables; that is, there is c /∈⋃n

i=1 cl(xi). Then, the string wφ(an+1, c) moves the automaton Aφ from the configuration
{x1

n, x1
n−1, . . . , x1

1} ∪ {qs} to the configuration {qs}, and hence Aφ is not CSO. ◀

We now illustrate the construction.

▶ Example 14. For simplicity, we consider a 2-CNF formula

φ = (x2 ∨ x2) ∧ (x1 ∨ x2) ∧ (¬x1 ∨ x3) ∧ (¬x2 ∨ ¬x3) ∧ (x3)

with three variables x1, x2, x3 and five clauses c1 = {x2, x2}, c2 = {x1, x2}, c3 = {¬x1, x3},
c4 = {¬x2, ¬x3}, and c5 = {x3}. The automaton Aφ = (Q, Σ, δ, {qs, x0

1, x0
2, x0

3}) is depic-
ted in Figure 2, where Q = {qs, qns} ∪ {x0

1, x1
1, x0

2, x1
2, x0

3, x1
3}, Σ = Γ = {a1, a2, a3, a4} ×

{c1, c2, c3, c4, c5}, and qs is the only secret state. Since φ is not satisfiable, Aφ is not CSO;
indeed, the string w = (a1, c1)(a2, c2)(a1, c5)(a3, c3)(a1, c1)(a2, c1)(a1, c4)(a4, c4) moves Aφ

to the configuration {qs} consisting solely of the secret state, cf. Figure 3 depicting the
reachable configurations of Aφ.

On the other hand, if we consider the formula φ′ = c1∧c2∧c3∧c4, then φ′ is satisfiable, and
hence the NFA Aφ′ obtained from Aφ by removing all transitions under symbols containing
c5, is CSO; it is visible from the reachable configurations of Aφ′ depicted in Figure 4.

The considered problems are all PSpace-complete, and hence reducible to each other in
polynomial time. However, this fact does not provide us with much information about the
reductions. Even though some particular reductions have been discussed in the literature by
Wu and Lafortune [43] and Balun and Masopust [5, 6], they are in most cases not suitable to
prove lower bounds.
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Figure 2 The NFA Aφ illustrating Theorem 8; the initial states are squared.

qs, x
0
3, x

0
2, x

0
1 qs, x

0
3, x

0
2, x

1
1 qs, x

0
3, x

1
2, x

0
1 qs, x

0
3, x

1
2, x

1
1

qs, x
1
3, x

0
2, x

0
1qs, x

1
3, x

0
2, x

1
1qs, x

1
3, x

1
2, x

0
1qs, x

1
3, x

1
2, x

1
1

Q′ ⊆ Q with qns ∈ Q′{qs}

(a1, c1)
(a1, c2)
(a1, c5)

(a2, c1)
(a2, c3)
(a2, c5) (a1, c5)

(a3, c3)
(a3, c5)

(a1, c1)
(a1, c2)(a2, c1)(a1, c4)

(a4, c4)

ΣΣ

Figure 3 The configurations of Aφ – all undefined transitions go to the dashed middle state.
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We now discuss the case of other types of opacity.

▶ Corollary 15. Unless SETH fails, there is no algorithm deciding if a given n-state NFA is
LBO/ISO/IFO/k-SO/INSO that runs in time O∗(2n/(2+ε)), for any ε > 0.

Proof. Consider the instance of CSO given by the NFA A and the sets QS and QNS

constructed in the proof of Theorem 8. Then, A is CSO with respect to QS = {qs} and
QNS = Q − QS if and only if A is LBO with respect to LS = Lm(A, qs, qs) = Σ∗ and
LNS = Lm(A, {x0

1, . . . , x0
n}, Q − {qs}). Since the parts of A corresponding to languages LS

and LNS are disjoint, the instance of LBO may be encoded directly into A by defining the
corresponding states accepting the languages LS and LNS . Hence, the instance of LBO is of
the same size as the instance of CSO. Therefore, if we solved the instance of LBO in time
O∗(2(1−δ)n), we would also solve the instance of CSO in time O∗(2(1−δ)n).

Since there is no transition in A from the sole secret state qs to another state, the NFA
A is CSO if and only if A is k-SO, for any k ∈ N∪ {∞}, and hence the result holds for k-SO
as well as for INSO.

Furthermore, the NFA A is CSO with respect to the sets QS and QNS if and only if
A is ISO with respect to the secret initial state IS = {qs} and non-secret initial states
INS = {x0

1, . . . , x0
n}. Indeed, since L(A, IS) = Σ∗, the NFA A is not CSO if and only if there

is a string w ∈ Σ∗ that moves A from the initial configuration INS to the configuration ∅,
which is if and only if A is not ISO. As a result, solving ISO in time O∗(2(1−δ)n) would solve
CSO in time O∗(2(1−δ)n).

Finally, if all states of A are accepting, then A is ISO with respect to IS = {qs} and
INS = {x0

1, . . . , x0
n} if and only if A is IFO with respect to IQS = {(qs, qs)} and IQNS =

INS × Q; hence, solving IFO in time O∗(2(1−δ)n) would solve ISO in time O∗(2(1−δ)n). ◀

5 Lower Bounds under Exponential Time Hypothesis

The number of symbols in the NFA constructed in Theorem 8 depends on the number of
clauses in the instance of SAT. Since the standard binary encoding of symbols does not work
under SETH, it is an open problem whether the results of Theorem 8 and Corollary 15 also
hold for a fixed-sized alphabet.

Although we do not answer this question, we provide a lower bound for NFAs over
a binary alphabet under ETH. Namely, we show that there is no algorithm solving the
considered notions of opacity for such n-state NFAs that runs in time O∗(2o(n)). We obtain
the result by adjusting the construction of Fernau and Krebs [16], who showed that there is
no algorithm solving the universality problem for n-state NFAs over a binary alphabet that
runs in time O∗(2o(n)) unless ETH fails, and by using the observation of Cassez et al. [13]
that universality can be reduced to opacity.

▶ Theorem 16. Unless ETH fails, there is no algorithm deciding whether a given n-state
NFA (over a binary alphabet) is CSO that runs in time O∗(2o(n)).

Proof. A 3-coloring of a graph G = (V, E) is a function µ : V → {a, b, c}. The coloring is
proper if µ(u) ̸= µ(v) whenever uv ∈ E. The 3-Coloring problem is to decide, given a
graph G, whether there is a proper 3-coloring of G.

For a graph G with n vertices, V = {v1, v2, . . . , vn}, and m edges, we construct an NFA
A = (Q, Σ, δ, I), where the states are Q = {s, f}∪{q1, . . . , qn}∪{x1, . . . , xn−1 | x ∈ {a, b, c}},
the alphabet is Σ = Γ = {a, b, c}, the initial state is I = {q1}, the secret state is QS = {s},
and the non-secret states are QNS = Q − QS . We define the transition function δ as shown
in Figure 5, and further extended it by adding three transitions (qi, a, aj−i), (qi, b, bj−i), and
(qi, c, cj−i) for every edge vivj ∈ E with i < j.
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q1 q2 q3 q4 qn

an−1 an−2 an−3 a1

bn−1 bn−2 bn−3 b1

cn−1 cn−2 cn−3 c1

s

f

a, b, c a, b, c a, b, c a, b, c a, b, c

a, b, c a, b, c a, b, c

a

a, b, c a, b, c a, b, c b

a, b, c a, b, c a, b, c

c

a, b, c

Figure 5 The main part of the NFA A resulting from the reduction of Theorem 16 without the
transitions corresponding to the edges of G. The secret state is state s.

Intuitively, the coloring of G is encoded as a string w = c1 · · · cn of length n, where ci

is the color of vertex i, and A is CSO with respect to {s} and Q − {s} if and only if the
non-secret state f is reachable under w; indeed, the secret state s is reachable under every
string of length n.

Fernau and Krebs [16] showed that A ends up in state f under w if and only if w encodes
a coloring that is not proper. Therefore, if w is a proper 3-coloring of G, then w does not
move A to state f ; that is, only the secret state s is reached under w, and hence A is not
CSO with respect to {s} and Q − {s}. On the other hand, if G does not have a proper
3-coloring, then every string of length n moves A to both secret state s and non-secret state
f ; that is, A is CSO with respect to {s} and Q − {s}.

If G has n vertices and m edges, then A has N = 4n − 1 states and M = 12n + 3m − 12
transitions. If there was an O∗(2o(N))-time algorithm deciding CSO, we could reduce the
instance of 3-Coloring to an instance of CSO in time O(N + M), and solve CSO in
time O∗(2o(N)). Altogether, we could solve 3-Coloring in time O(N + M) + O∗(2o(N)) =
O∗(2o(n)), which contradicts ETH. ◀

Similarly to the discussion in the previous section, to prove the lower bound for the other
notions of opacity, it seems natural to combine the construction of the previous proof with
the existing reductions among the notions [5, 6, 43]. However, most of the reductions result
in too large, though polynomial, instances, and hence they are not suitable for our purposes.
Therefore, new reductions are needed.

▶ Corollary 17. Unless ETH fails, there is no algorithm deciding if a given n-state NFA
(over a binary alphabet) is LBO/ISO/IFO/k-SO/INSO that runs in time O∗(2o(n)).

Proof. For the NFA A of Theorem 16, we have A is CSO with respect to {s} and Q − {s} if
and only if A is LBO with respect to LS = Lm(A, q1, s) and LNS = Lm(A, q1, Q − {s}) [43].
If we could solve LBO in time O∗(2o(n)), we could solve 3-Coloring in time O∗(2o(n)).

Furthermore, since there is no transition from the sole secret state s, the automaton A
is CSO with respect to {s} and Q − {s} if and only if A is k-SO with respect to {s} and
Q − {s}, for any k ∈ N ∪ {∞}. Therefore, the result holds for k-SO as well as for INSO.

Now, we take the NFA A and add a copy of states q1, q2, . . . , qn, denoted by q′
1, q′

2, . . . , q′
n,

together with all transitions to states different from s, that is, we add (q′
i, x, p) for every

transition (qi, x, p) with p ̸= s. We set the states q1 and q′
1 initial, and denote the result by

A′. Then, the NFA A is CSO with respect to {s} and Q − {s} if and only if A′ is ISO with
respect to IS = {q1} and INS = {q′

1}. Indeed, if A is CSO with respect to {s} and Q − {s},
then for every w moving A to state s, there is w′ moving A to state f ; and so do the strings
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w and w′ in A′, which shows that A′ is ISO with respect to IS = {q1} and INS = {q′
1}. On

the other hand, if A is not CSO with respect to {s} and Q − {s}, then there is w moving A
only to state s, and hence w cannot be read by A′ from state q′

1, which shows that A′ is not
ISO with respect to IS = {q1} and INS = {q′

1}. If we could solve ISO in time O∗(2o(n)), we
could solve 3-Coloring in time O∗(2o(n)) by reducing it to ISO and solving ISO in time
O∗(2o(N+n)) = O∗(2o(n)), for N = 4n − 1.

If we in addition set the states s and f accepting, then A′ is ISO with respect to IS = {q1}
and INS = {q′

1} if and only if A′ is IFO with respect to IQS = {(q1, s)} and IQNS = {(q′
1, f)},

and hence if we could solve IFO in time O∗(2o(n)), we could solve 3-Coloring in time
O∗(2o(n)). ◀

6 Discussion and Conclusions

We showed that if the strong exponential time hypothesis holds true, then, for any c > 2,
there are no algorithms deciding various types of opacity in time O∗(2n/c). Therefore, the
current algorithms cannot be significantly improved.

More precisely, the results say that there are no algorithms deciding various types of
opacity in time O∗(

√
2n) = O∗(1.414213562n). However, the results admit the existence of

algorithms deciding opacity in time O∗(1.5n). Whether such algorithms exist or whether the
current lower bounds can be strengthen remains an open problem.

The construction used in the proof of Theorem 8 can be utilized to improve the conditional
lower bound of deciding universality for NFAs. The universality problem for NFAs asks
whether, given an NFA, the NFA accepts all strings over its alphabet. If we set the only
secret state qs of the NFA A of Theorem 8 to be non-accepting and all the other states to be
accepting, we obtain an NFA that is universal if and only if the automaton A is CSO with
respect to {qs} and Q − {qs}. We thus have the following consequence improving the result
of Fernau and Krebs [16].

▶ Corollary 18. Unless SETH fails, there is no algorithm deciding whether a given n-state
NFA is universal that runs in time O∗(2n/(2+ε)), for any ε > 0. ◀

Consequently, we immediately have the following result.

▶ Corollary 19. Given two NFAs A1 and A2 with n1 and n2 states, respectively, let n =
max(n1, n2). Unless SETH fails, there is no algorithm deciding whether Lm(A1) ⊆ Lm(A2)
in time O∗(2n/(2+ε)), and there is no algorithm deciding whether Lm(A1) = Lm(A2) in time
O∗(2n/(2+ε)), for any ε > 0. ◀

We left the question whether Theorem 8 also holds for NFAs over a fixed-size alphabet
open. Although we did not answer this question, we showed that ETH implies the non-
existence of sub-exponential-time algorithms deciding various types of opacity over a binary
alphabet.

Inspecting Table 1, the reader may notice quite a large gap between the lower and upper
bounds for the verification of IFO without any restrictions on the form of non-secret pairs. To
improve the upper bound or to (conditionally) show that no such improvements are possible
is a challenging open problem.

It is worth noticing that the construction in the proof of Corollary 15 produces an instance
of a special case of the problem where the non-secret pairs are of the form IQNS = INS ×FNS ,
and hence the special case is tight under the strong exponential time hypothesis.
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1 Introduction

Context. The study of classes of relations on words has become an important topic in
language theory [12, 23, 5, 13, 9], and also in areas such as databases and verification
where they are used to build expressive languages. For instance, classes of relations of
this kind are relevant for querying strings over relational databases [3], comparing paths
in graph databases [2], or defining string constraints for model checking [20]. The most
studied such classes include recognizable, automatic, and rational relations, each one of the
latter two strictly extending the previous one. Rational relations are those definable by
multi-head automata, with heads possibly moving asynchronously; automatic relations are
rational relations that are accepted by multi-head automata whose heads are forced to move
synchronously; and recognizable relations correspond to finite unions of products of regular
languages (or, equivalently, to languages recognized via finite monoids, by Mezei’s Theorem).
By definition, all of these classes coincide with the class of regular languages when restricted
to unary relations.

1 This result was achieved by using the knowledge package and its companion tool knowledge-clustering.
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17:2 Separating Automatic Relations

Prior work has focused on the Rec-definability problem, which takes as input
an n-ary rational relation R and asks whether it is equivalent to a recognizable relation⋃

i Li,1 × · · · × Li,n, where each Li,j is a regular language. Intuitively, the problem asks
whether the different components of the rational relation R are almost independent of one
another. The study of Rec-definability is relevant since relations enjoying this property
are often amenable to some analysis including, e.g., abstract interpretations in program
verification, variable elimination in constraint logic programming, and query processing over
constraint databases (see the introduction of [1] for a thorough discussion on this topic).

In general, Rec-definability of rational relations is undecidable, but it becomes
decidable for two important subclasses: deterministic rational relations and automatic
relations. For deterministic rational relations, Rec-definability has been shown to be
decidable in double-exponential time for binary relations by Valiant [27] – improving Stearns’s
triple-exponential bound [25]. The decidability result was later extended to relations of
arbitrary arity by Carton, Choffrut and Grigorieff [8, Theorem 3.7]. For automatic relations,
the decidability of Rec-definability can be obtained by a simple reduction to the problem
of checking whether a finite automaton recognizes an infinite language [21] – which is decidable
via a standard reachability argument. The precise complexity of the problem, however, was
only recently pinned down. By applying techniques based on Ramsey Theorem over infinite
graphs, it was shown that Rec-definability of automatic relations is PSpace-complete
when relations are specified by non-deterministic automata [1, Theorem 1] [4, Corollary 2.9].

On the other hand, much less is known about the Rec-separability problem, which
takes two n-ary rational relations R, R′ ⊆ A∗×A∗ and checks whether there is a recognizable
relation S =

⋃
i Li,1 × · · · × Li,n with R ⊆ S and R′ ∩ S = ∅. In other words, this problem

asks whether we can overapproximate R with a recognizable relation S that is constrained
not to intersect with R′. Separability problems of this kind abound in theoretical computer
science, in particular in formal language theory where they have gained a lot of attention
over the last few years – see, e.g., [24, 16, 11, 10].

As for definability, the Rec-separability problem for rational relations is in general
undecidable. In this paper we focus on the separability problem for automatic relations, that
is, the restriction of the Rec-separability problem defined above to the case when both
R and R′ are automatic relations. Notice that when R′ is the complement of R this problem
boils down to Rec-definability. However, Rec-separability for automatic relations is
more general than Rec-definability, and to this day it is unknown whether it is decidable.

Main contributions and technical approach. While we do not solve the separability problem
for automatic relations, we report on some significant progress in our understanding of the
problem. We start by establishing a tight connection between Rec-separability and the
colorability problem for “automatic graphs”, which may shed some light on the difficulty
of the former problem. An automatic graph [7, 14, 17, 18] is an infinite graph defined on a
regular set of finite words, whose edge set is described by a binary automatic relation. The
regular colorability problem is then the problem of checking if a given automatic
graph is finitely colorable, with the restriction that each color forms a regular language.
Concretely, we show that the Rec-separability problem for binary automatic relations is
equivalent, under polynomial time reductions, to the regular colorability problem.
Moreover, we introduce a hierarchy (k-Rec)k>0 of recognizable relations so that the coloring
problem, when restricted to k > 0 colors – called k-regular colorability problem –
reduces to the separability problem by relations of k-Rec. Concretely:
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▶ Theorem 3.1. There are polynomial-time reductions:
1. from the Rec-separability problem to the regular colorability problem;
2. from the regular colorability problem to the Rec-separability problem; and
3. from the k-regular colorability problem to the k-Rec-separability problem,

for every k > 0.
Further, the last two reductions are so that the second relation in the instance of the separa-
bility problem is the identity Id.

The regular colorability problem seems challenging, and in particular we lack
tools for establishing that an automatic graph is finitely colorable; let alone checking that
said colors define regular sets. On the other hand, it is easy to see that the k-regular
colorability problem is undecidable for each fixed k > 1 if we lift the restriction that
colors define regular sets, i.e., checking if an automatic graph admits a k-coloring – this has
been proved in an unpublished thesis by Köcher [15, Proposition 6.5]. To be more precise, the
problem is even co-recursively enumerable-complete2. We establish that this undecidability
holds even with the restriction on colors being regular sets:

▶ Theorem 4.4. The k-regular colorability problem on automatic graphs is un-
decidable, for every k ⩾ 2. More precisely, the problem is recursively enumerable-complete.
This holds also for connected automatic graphs.

Note that the definitions of k-regular colorability problem and k-colorability
problem look similar, and are both undecidable, but the former is RE-complete while the
latter is coRE-complete.

By reduction from the k-regular colorability problem we obtain an important
consequence for our separability problem: It is undecidable to check if two automatic relations
can be separated by a recognizable relation defined by a fixed number of unions of products of
regular languages. More specifically, fix k > 0 and define k-Prod as the class of recognizable
relations of the form S =

⋃
1⩽i⩽k Li,1 × · · · × Li,n – this hierarchy is intertwined with

the (k-Rec)k>0 hierarchy introduced previously. We show that the k-Prod-separability
problem, i.e., the problem of checking separability for binary automatic relations R and R′

in terms of a recognizable relation S in the class k-Prod, is undecidable for any k ⩾ 2.

▶ Theorem 5.6. The k-Prod-separability problem is undecidable, for every k ⩾ 2.

At this point, a natural question is whether our choice of restricting the study to the
class k-Prod, for fixed k > 1, is not too strong, in the sense that it turns undecidable not
only the separability but also the definability problem for automatic relations. We show that
this is not the case; in fact, by using a simple adaptation of the proof techniques in [1] we
can show that the problem of checking if an automatic relation can be expressed as a relation
in k-Prod, for any fixed k > 0, is decidable in single-exponential time:

▶ Corollary 6.4. The k-Prod-definability problem is decidable, for every k > 0.

Remark. For simplicity, we focus on binary automatic relations only. Extending the
decidability results to n-ary automatic relations, for n > 2 is direct by applying tools in [1].

2 The upper bound follows from De Bruijn–Erdős Theorem.
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2 Preliminaries

Automatic and recognizable relations. Let A be a finite alphabet. We write A⊥ for the
extension of A with a fresh symbol ⊥. Given a pair (w1, w2) ∈ A∗ × A∗, we write w1 ⊗ w2
for the word over alphabet A⊥ × A⊥ that is obtained as follows: first, padding the shorter
word with ⊥’s until both words are of the same length, and then reading the two words
synchronously as if they were a single word over a binary alphabet. For example, if w1 = aaba

and w2 = aa, then w1 ⊗ w2 = (a, a)(a, a)(b,⊥)(a,⊥). For any relation R ⊆ A∗ × A∗, let us
write ⊗R to denote the set

⊗R =̂ {u⊗ v | (u, v) ∈ R} ⊆ (A⊥ × A⊥)∗.

We then have the following:
R ⊆ A∗ × A∗ is an automatic relation iff ⊗R is a regular language;
R ⊆ A∗×A∗ is a recognizable relation iff R =

⋃n
i=1 Ai×Bi, where n ∈ N and all the Ai’s

and Bi’s are regular languages over A.
We denote by Rec the class of all recognizable relations.

▶ Example 2.1. For any fixed constant c > 0, the relation R composed by all pairs of words
of the form (an, an+c), for n ⩾ 0, is automatic. In turn, R is not recognizable. An example
of a non-automatic relation is the one consisting of all pairs of the form (an, ad·n), for n > 0,
for any constant d > 1. ⌟

Separability. Let R and R′ be automatic relations over an alphabet A. A recognizable
relation S over A separates R from R′ if R ⊆ S and R′ ∩ S = ∅.

▶ Example 2.2. Consider the automatic relations R = {(an, an+1) | n ⩾ 0} and R′ =
{(an, an+2) | n ⩾ 0}. They are separable by the recognizable relation

S = (Aeven ×Aodd) ∪ (Aodd ×Aeven),

where Aeven and Aodd are the regular languages (aa)∗ and a(aa)∗, respectively. ⌟

We study the following separability problem, for a class C of recognizable relations.

Problem: C-separability problem
Input: Automatic relations R and R′ over A

Question: Is there a recognizable relation in C over A that separates R from R′?

We also consider the C-definability problem, which takes as input an automatic relation
R and asks if there is a recognizable relation S in C with S = R. It is easy to see that the
C-definability problem corresponds to an instance of the C-separability problem.

▷ Fact 2.3. For any class C of recognizable relations, the C-definability problem is
Turing-reducible to the C-separability problem.

Proof. Reduce an instance R of the definability problem to the instance (R, (A∗×A∗)\R)
of the separability problem. ◀

The following is known regarding the complexity of the Rec-definability problem.

▶ Proposition 2.4 ([1, Theorem 1]). The Rec-definability problem for automatic relations
specified by non-deterministic automata is PSpace-complete.
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Automatic graphs. Let L be a language of finite words over A, and R ⊆ L × L binary
relation over A. They naturally define a directed graph G = ⟨L, R⟩, i.e., the nodes of G are
the words over L and there is an edge in G from word u to word v iff (u, v) ∈ R. An automatic
graph is a graph of the form ⟨L, R⟩, for R an automatic relation and L a regular language3.
A k-coloring of ⟨L, R⟩ is a partition of L into k sets V1, . . . Vk such that (Vi × Vi) ∩ E = ∅
for every i.

▶ Example 2.5. Consider again the automatic relation R = {(an, an+c) | n ⩾ 0}, where
c > 0 is a fixed constant. The graph ⟨a∗, R⟩ is formed by a disjoint union of c infinite directed
paths, and thus it is 2-colorable. ⌟

A k-regular coloring of an automatic graph is a k-coloring whose colors (Vi)1⩽i⩽k are regular
languages. A regular coloring is a k-regular coloring for some k.

▶ Example 2.6. The automatic graph ⟨a∗, R⟩ from Example 2.5 is 2-regular colorable. In
fact, it suffices to define color V1 as having every word of the form an with n ≡ i (mod 2c),
for i ∈ [0, c− 1], and V2 = A∗ \ V1. ⌟

The k-regular colorability problem is the problem of whether a given automatic
graph has a k-regular coloring. The regular colorability problem is the problem of
whether a given automatic graph has a regular coloring.

3 Separability is Equivalent to Regular Colorability

We start by showing that the separability problem in terms of arbitrary recognizable
relations is equivalent, under polynomial time reductions, to the regular colorability
problem. To make our statement precise, we need some terminology introduced below. Let
k-Rec be the class of languages expressed by unions of products of k regular languages which
form a partition, that is (in the binary case), relations of the form (Li1×Lj1)∪· · ·∪(Liℓ

×Ljℓ
),

with i1, j1, . . . , iℓ, jℓ ∈ J1, kK, for some regular partition L1, . . . , Lk of A∗ and ℓ ∈ N. Note
that Rec =

⋃
k k-Rec. Let us denote by Id the identity relation (on any implicit alphabet).

Observe that Id is automatic but not recognizable.

▶ Theorem 3.1. There are polynomial-time reductions:
1. from the Rec-separability problem to the regular colorability problem;
2. from the regular colorability problem to the Rec-separability problem; and
3. from the k-regular colorability problem to the k-Rec-separability problem,

for every k > 0.
Further, the last two reductions are so that the second relation in the instance of the separa-
bility problem is the identity Id.

Proof. We start with the last two reductions. Given an automatic graph ⟨L, E⟩ over an
alphabet A, consider the instance R1, R2 for the Rec-separability problem, where R1 = E

and R2 = Id. If ⟨L, E⟩ is k-regular colorable via the coloring V1, . . . , Vk then the k-Rec
relation

⋃
i̸=j Vi × Vj separates R1 and R2. Conversely, if a k-Rec relation R ⊆ A∗ × A∗ on

the partition V1 ∪̇ · · · ∪̇ Vk = A∗ separates R1 and R2, then
⋃

i̸=j Vi × Vj also separates R1
and R2, and this implies that V1, . . . , Vk is a k-coloring for ⟨A∗, E⟩.

3 Note that an automatic graph can contain self-loops. However, since the presence of such an edge
prevent the graph from being k-colorable for any k ⩾ 0, all our examples will be self-loop-free.

MFCS 2023



17:6 Separating Automatic Relations

For the first reduction, let us introduce some terminology. Given two relations R1, R2
over A∗, say that u ∈ A∗ is compatible with u′ ∈ A∗ when for all words v ∈ A∗:

(compℓ): (u, v) ∈ R1 ⇒ (u′, v) ̸∈ R2, (compr): (v, u) ∈ R1 ⇒ (v, u′) ̸∈ R2,
(comp′

ℓ): (u′, v) ∈ R1 ⇒ (u, v) ̸∈ R2 and (comp′
r): (v, u′) ∈ R1 ⇒ (v, u) ̸∈ R2.

Define the incompatibility graph IncR1,R2 as the graph whose vertices are all words of A∗,
and with an edge from u to v whenever u is not compatible with v. Note that IncR,Id is
exactly the graph ⟨A∗, R⟩. For a less trivial example of an incompatibility graph, see the full
version.

▶ Lemma 3.2. If R1 and R2 are automatic, then so is IncR1,R2 . Moreover, we can build
an automaton for IncR1,R2 in polynomial time in the size of the automata for R1 and R2.

Given an instance (R1, R2) of the separability problem, we reduce it to the regular
colorability problem on its incompatibility graph IncR1,R2 .
Left-to-right implication: Assume that there exists S in k-Rec that separates R1 from R2.

Then S can be written as (Ai1 ×Aj1) ∪ · · · ∪ (Aiℓ
×Ajℓ

), where (A1, . . . , Ak) is a partition
of A∗ in k regular languages. We define the color of a word u ∈ A∗ as the unique i ∈ J1, kK
s.t. u ∈ Ai. In other words, the coloring is simply (A1, . . . , Ak).

This is indeed a proper coloring: if u and u′ have the same color, we claim that u

is compatible with u′. Indeed, take any v ∈ A∗: if (u, v) ∈ R1, then (u, v) ∈ S, so
(u, v) ∈ Aim ×Ajm for some m. But since u has the same color as u′, the fact that u ∈ Aim

implies u′ ∈ Aim
, and hence (u′, v) ∈ Aim

× Ajm
⊆ S. But S separates R1 from R2, and

therefore (u′, v) ̸∈ R2. This tells us that (compℓ) holds. The other conditions hold by
symmetry. We conclude that (A1, . . . , Ak) defines a proper coloring of IncR1,R2 , and this
coloring, with k colors, is regular since the Ai’s are regular languages by definition.
Right-to-left implication: Assume that IncR1,R2 is finitely colorable, say by (A1, . . . , Ak).

Then let S be the union of all Si’s where

Si =̂ {(u, v) | u ∈ Ai and (u′, v) ∈ R1 for some u′ ∈ Ai}
∪ {(u, v) | v ∈ Ai and (u, v′) ∈ R1 for some v′ ∈ Ai}.

Since (A1, . . . , Ak) covers every node of IncR1,R2 , we get R1 ⊆ S. Moreover, we claim that
R2 ∩ S = ∅. Indeed, if (u, v) ∈ S, then (u, v) ∈ Si for some i, j. It either means that
1 (u′, v) ∈ R1 for some u′ ∈ Ai, or 2 (u, v′) ∈ R2 for some v′ ∈ Ai. In case 1 , the

fact that u ∈ Ai implies that u and u′ have the same color. Thus, u must be compatible with
u′ and hence (u, v) ̸∈ R2 using (comp′

ℓ). The other case is symmetric. Therefore, (u, v) ̸∈ R2,
and thus S separates R1 from R2.

Finally, S is recognizable; in fact, S =
⋃k

i=1
(
Ai × R1[Ai]

)
∪

(
R−1

1 [Ai]× Ai

)
, where for

any set X ⊆ A∗ we define R1[X] (resp. R−1
1 [X]) as the set of v ∈ A∗ (resp. u ∈ A∗) such

that (u, v) ∈ R1 for some u ∈ X (resp. v ∈ X). Hence, R1 and R2 are Rec-separable. ◀

It is not known to date whether the regular colorability problem is decidable,
and hence the same holds for the Rec-separability problem in light of the previous
theorem. This is due to the fact that there are no known characterizations of when an
automatic graph is finitely colorable. In spite of this, we believe that the connection between
separability and finite colorability is of interest, as it provides us with a way to define and
study meaningful restrictions of our problems. The first such restriction corresponds to the
k-regular colorability problem for automatic graphs, which we study in the next
section.

https://arxiv.org/abs/2305.08727
https://arxiv.org/abs/2305.08727
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4 k-Regular Colorability Problem

While we do not know how to approach the regular colorability problem, we show
that as soon as we add the restriction that the number of colors is bounded, the problem
becomes undecidable; i.e., the k-regular colorability problem is undecidable for k ⩾ 2.
Using this, we obtain in the next section the undecidability for the separability problem
on two natural classes of recognizable relations. This is proven by a reduction from a suitable
problem on reversible Turing Machines with certain restrictions, which we call “well-founded”.

4.1 Regularity of Reachability for Turing Machines
We use the standard notation u[i..j] to denote the factor of a word u between (and including)
positions i and j, and u[i] to denote u[i..i]. Consider any deterministic Turing Machine (TM)
T = ⟨Q, Γ,⊥, δ, q0, F ⟩, where Q is the set of states, Γ is tape alphabet, ⊥ is the blank symbol,
δ : (Q \ F )× Γ⊥ → Q× Γ× {L, R} is the transition (partial) function, where Γ⊥ = Γ ∪ {⊥},
and q0 and F is the initial and set of final states, respectively. We represent a configuration
with tape content w · ⊥ω (where w ∈ Γ∗ · {⊥}), in state q and with the head pointing to the
cell number 1 ⩽ i ⩽ |w|, as the string

w[1..i− 1] · (w[i], q) · w[i + 1..|w|]

over the alphabet AT = Γ∪(Γ⊥×Q). In light of this representation, we will henceforth denote
by “configuration” any string from the set ConfsT =̂ (Γ∗ · (Γ⊥×Q))∪ (Γ∗ · (Γ×Q) ·Γ∗). The
initial configuration is (⊥, q0). The configuration graph of T is the infinite graph GT having
ConfsT as set of vertices and an edge from c to c′, denoted c→ c′, if c′ is the configuration
of the next step of T starting from c. Observe that the configuration graph GT of any TM T

is an effective automatic graph (see, e.g., [18]).
We say that a deterministic TM T is reversible if every node of GT has in-degree at most

1, in other words if the machine is co-deterministic4. We say that a TM T is a well-founded
Reversible Turing Machine (wf-RTM ) if its configuration graph is such that (1) the initial
configuration has in-degree 0 (2) every node has in-degree and out-degree at most one (3)
there are no infinite backward paths c1 ← c2 ← · · · in GT .

Note that every well-founded Reversible Turing Machine is deterministic and reversible
and, moreover, its configuration graph is a (possibly infinite) disjoint union of directed paths,
which are all finite, or isomorphic to (N, +1). The set of reachable configurations, denoted by
Reach, is the set of all configurations that admit a path from the initial configuration in GT ,
for a given TM T . Such a configuration graph is depicted on Figure 2a.

The reachable regularity problem is the problem of, given a wf-RTM T , whether
its set of reachable configurations is a regular language. To show that is it undecidable, we
exhibit a reduction from the halting problem on deterministic reversible Turing machines.

▶ Proposition 4.1 ([19, Theorem 1]). The halting problem on deterministic reversible Turing
machines is undecidable.

For more details and pointers on reversible Turing machines, see [22, Chapter 5].

▶ Lemma 4.2. The reachable regularity problem is undecidable.

4 Note that a modern proof of undecidability of the isomorphism problem for automatic structures by
Blumensath [6, §VIII. Theorem 4.3, p. 396 & second claim, p. 398] also relies on the use of reversible
Turing machines.

MFCS 2023



17:8 Separating Automatic Relations

Proof sketch. By reducing the halting problem on deterministic reversible Turing machines,
in such a way that the reachable configurations whose state q coincide with the state of the
original machine are of the form (uqvanbn) where (uqv) is a configuration of the original
machine, a and b are new symbols, and n ∈ N. Transitions are defined in such a way
that the new machine is a wf-RTM: this is implemented by having, for every transition
uqv → u′q′v′ of the original machine and every n ∈ N, a (multi-step) transition (uqvanbn)→∗

(u′q′v′an+1bn+1) – and is illustrated in Figure 1. Moreover:

0 0 1 0 1 a a a b b b

p

0 0 1 0 1 1 a a b b b

0 0 1 0 1 1 a a a a b

0 0 1 0 1 1 a a a a b b b b

0 0 1 0 1 1 a a a a b b b b

q

simulate T

overwrite the first two b’s
with a’s

append three b’s

go back to the new posi-
tion, in the new state

Figure 1 Encoding of a single transition of the form “when reading a blank in state p, write a 1,
go in state q and move right” of the machine T in the machine T ′ in the proof of Lemma 4.2. Red
unlabelled states represent states of T ′ that are not originally present in T .

if the original machine was halting, then the reachable configurations of the new one are
finite and hence regular;
otherwise, the set of reachable configurations is not regular, which follows from the
non-regularity of any infinite subset of {anbn | n ∈ N}.

See the full version for more details. ◀

4.2 Undecidability of the k-Regular Colorability Problem
We can now show undecidability for the k-regular colorability problem by reduction
from the reachable regularity problem as defined before.

▷ Fact 4.3. Given an automatic graph, the set of nodes with no predecessor is effectively a
regular language.

▶ Theorem 4.4. The k-regular colorability problem on automatic graphs is un-
decidable, for every k ⩾ 2. More precisely, the problem is recursively enumerable-complete.
This holds also for connected automatic graphs.

https://arxiv.org/abs/2305.08727
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· · ·Init

Reach

(a) Configuration graph of a well-founded
Reversible Turing Machine.

· · ·nodes originat-
ing from Init

nodes originating from Reach

(b) The automatic graph to which it is reduced.

Figure 2 Reduction used in the proof of Theorem 4.4.

Proof. Lower bound. By reduction from the reachable regularity problem for
wf-RTMs (Lemma 4.2). We first show it for k = 2. Given a wf-RTM T , let cinit be its
initial configuration. Observe that the set Init of all vertices of GT with in-degree 0 is
an effective regular language (by Fact 4.3), and that cinit ∈ Init. Let B and R be fresh
symbols. Consider the automatic graph ⟨L, E⟩ for L = {B, R} × ConfsT , having an edge
from (z, c) ∈ {B, R} × ConfsT to (z′, c′) ∈ {B, R} × ConfsT if either
1. (z, z′) = (B, R) and c = c′;
2. (z, z′) = (R, B) and there is an edge from c to c′ in GT ; or
3. (z, z′) = (B, B), c = cinit and c′ ∈ Init \ {cinit}.
Fresh symbols B and R are utilized to represent two versions of each configuration - one in
Blue and one in Red. This graph is depicted on Figure 2. Note that ⟨L, E⟩ is connected and
2-colorable: in fact, it is a directed (possibly infinite) tree with root (B, cinit).

We claim that ⟨L, E⟩ is 2-regular colorable if, and only if, the set of reachable configurations
of T is a regular language. In fact, up to permuting the two-colors, ⟨L, E⟩ admits a unique
2-coloring, defined by:

C1 =̂ {B} × Reach ∪ {R} × (ConfsT \ Reach)

and C2 is the complement of C1. If Reach is regular, then so is C1. Dually, if C1 is regular,
then Reach is the set of configurations c such that (B, c) ∈ C1 and hence is regular. It follows
that ⟨A∗, E⟩ is 2-regular colorable if and only if the reachable configurations of T are regular,
which concludes the proof for k = 2.

To prove the statement for any k > 2, we define ⟨L, Ek⟩ as the result of adding a (k − 2)-
clique to ⟨L, E⟩ and adding an edge from every vertex of the clique to every vertex incident to
an edge of E. This forces the clique to use k− 2 colors that cannot be used in the remaining
part of the graph and the proof is then analogous.
Upper-bound. We show that the problem is recursively enumerable. Let us define a

k-colored automaton like a regular (complete) DFA, except that instead of having a set of
final states, it has a partition ⟨C1, . . . , Ck⟩ of its states. Such an automaton recognizes a
regular coloring A∗ → {1, . . . , k}. Given an automatic graph ⟨L, R⟩ – specified by NFA’s A1
and A2 recognizing L and ⊗R respectively – and a k-colored automaton B, we can build, by
a product construction, an NFA A′

2 which accepts all u⊗ v ∈ ⊗R such that the color of u is
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distinct from the color of v. Then, A′
2 is equivalent to A2 if, and only if, B describes a proper

k-coloring of ⟨L, R⟩. The RE upper-bound of the k-regular colorability problem
follows: it suffices to enumerate all k-colored automata and check for equivalence. ◀

Note that this reduction provides an easy way of building graphs in the shape of Figure 2b
that are 2-colorable (in fact, they are trees) but not 2-regular colorable. In fact, we can
provide a slightly more direct construction.

▶ Example 4.5. On the alphabet A = {a, b}, the tree T depicted in Figure 3 whose set of
vertices is V = a∗b∗ and whose set of edges is E = Eincr ∪ Einit, with

Eincr = {(apbq, ap+1bq+1) | p, q ∈ N}
Einit = {(ε, ap) | p ∈ N} ∪ {(ε, bq) | q ∈ N},

is automatic but not 2-regular colorable. Indeed, its only 2-coloring consists in partitioning
the vertices of T into

C = {anbn | n ∈ 2N} ∪ {apbq | p > q and q is odd} ∪ {apbq | p < q and p is odd}

and its complement V \ C. Let P = {apbq | p, q ∈ 2N} = (aa)∗(bb)∗: P is regular, yet
C ∩ P = {anbn | n ∈ 2N} is not. Hence, C is not regular, and thus T is not 2-regular
colorable. ⌟

ε ab a2b2 a3b3

a aab a3b2 a4b3

b abb a2b3 a3b4

aa a3b a4b2 a5b3

C V \ C

Figure 3 The automatic tree T of Example 4.5, and its unique 2-coloring (C, V \ C), which is
not regular.

5 Separability for Bounded Recognizable Relations

In this section we capitalize on the undecidability result of the previous section, showing
how this implies the undecidability for the separability problem on two natural classes of
bounded recognizable relations, namely: k-Rec, and k-Prod. Remember that, for any k,
k-Prod is the subclass of Rec consisting of unions of k cross-products of regular languages
(which is a subclass of 22k-Rec).

k-Rec-separability. First, observe that the 1-Rec-separability problem is trivially
decidable, since the only possible separator is A∗ × A∗. However, for any other k > 1, the
problem is undecidable.

▶ Proposition 5.1. The k-Rec-separability problem is undecidable, for every k > 1.

Proof. A consequence of the reduction from the k-regular colorability problem of
Theorem 3.1, combined with the undecidability of the latter for every k > 1 (Theorem 4.4). ◀
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k-Prod-separability. On the k-Prod hierarchy we will find the same phenomenon. In
particular the case k = 1 is also trivially decidable.

▶ Proposition 5.2. The 1-Prod-separability problem is decidable.

Proof. Given two automatic relations R1, R2, there exists S ∈ 1-Prod that separates R1
from R2 if and only if π1(R1)× π2(R1) separates R1 from R2. ◀

As soon as k > 1, the k-Prod separability problem becomes undecidable. This is a
consequence of the following simple lemma.

▶ Lemma 5.3. A symmetric automatic relation R and the identity Id are separable by a
relation in 2-Prod iff they have a separator of the form (A×B) ∪ (B ×A).

Proof. Assume that S ∈ 2-Prod separates R from Id. Then R ⊆ S, but since R is symmetric,
R = R−1 ⊆ S−1 so R ⊆ S ∩ S−1, and hence R ⊆ S ∩ S−1. Moreover, since S has a trivial
intersection with Id, so does S ∩ S−1. Hence, S ∩ S−1 separates R from Id.

Since S ∈ 2-Prod, there exists A1, A2, B1, B2 ⊆ A∗ such that S = A1 × B1 ∪ B2 × A2.
Note that S ∩ Id = ∅ yields Ai ∩Bi = ∅ for each i ∈ {1, 2}. Finally:

S ∩ S−1 =
(
A1 ×B1 ∪B2 ×A2

)
∩

(
B1 ×A1 ∪A2 ×B2

)
=

(
(A1 ×B1) ∩ (B1 ×A1)

)
∪

(
(A1 ×B1) ∩ (A2 ×B2)

)
∪

(
(B2 ×A2) ∩ (B1 ×A1)

)
∪

(
(B2 ×A2) ∩ (A2 ×B2)

)
=

( =∅︷ ︸︸ ︷
(A1 ∩B1)× (A1 ∩B1)

)
∪

(
(A1 ∩A2)× (B1 ∩B2)

)
∪

(
(B1 ∩B2)× (A1 ∩A2)

)
∪

(
(A2 ∩B2)× (A2 ∩B2)︸ ︷︷ ︸

=∅

)
=

(
(A1 ∩A2)× (B1 ∩B2)

)
∪

(
(B1 ∩B2)× (A1 ∩A2)

)
. ◀

We can then establish the following:

▶ Corollary 5.4. A symmetric automatic relation R and Id are separable by a relation in
2-Prod iff ⟨A∗, R⟩ is 2-regular colorable.

Proof. By observing that for any symmetric relation R ⊆ A∗ × A∗, we have that A, B ⊆ A∗

is a coloring of ⟨A∗, R⟩ if, and only if, (A×B) ∪ (B ×A) separates R from Id. ◀

We can now easily show undecidability for the 2-Prod separability problem by
reduction from the 2-regular colorability problem.

▶ Lemma 5.5. The 2-Prod-separability problem is undecidable.

Proof. By reduction from the 2-regular colorability problem on automatic graphs,
which is undecidable by Theorem 4.4. Let ⟨L, R⟩ be an automatic graph and ⟨L, R′⟩ the
symmetric closure of ⟨L, R⟩. It follows that ⟨L, R′⟩ is still automatic and that there is a
2-regular coloring for ⟨L, R′⟩ iff there is a 2-regular coloring for ⟨L, R⟩ (the same coloring in
fact). Thus, by Corollary 5.4, ⟨L, R⟩ is 2-regular colorable iff there is a 2-Prod relation that
separates R′ from Id. ◀

Further, this implies undecidability for every larger k:

▶ Theorem 5.6. The k-Prod-separability problem is undecidable, for every k ⩾ 2.
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R2

R1

S S′ \ S

a0

b0

a1

b1

a2

b2

u ∈ A∗

v ∈ A∗

Figure 4 Construction in the proof of Theorem 5.6 for k = 5. S is depicted as the union of two
(gray) rectangles since S ∈ 2-Prod. The relation R′

1 is obtained from R1 (blue shape) by adding
all blue edges, namely (ai, bi) for 1 ⩽ i ⩽ k − 2. The relation R′

2 is obtained from R2 (red shape)
by adding all red edges, namely every other edge involving a vertex ai or bi. Finally, S′ (five gray
rectangles) is obtained from S by adding each {ai} × {bi}.

Proof. The case k = 2 is shown in Lemma 5.5, so suppose k > 2. The proof goes by
reduction from the 2-Prod-separability problem. Let R1, R2 be a pair of automatic
relations over an alphabet A. Consider the alphabet extended with 2(k − 2) fresh symbols
A′ = A ∪̇ {a1, . . . , ak−2, b1, . . . , bk−2}. We build automatic relations R′

1, R′
2 over A′ such that

(R1, R2) are 2-Prod separable over A iff (R′
1, R′

2) are k-Prod separable over A′.
Let R′

1 = R1 ∪̇ {(ai, bi) : 1 ⩽ i ⩽ k − 2} and

R′
2 = R2 ∪̇ {(ai, w) : w ∈ A∗, 1 ⩽ i ⩽ k − 2} ∪̇

{(w, bi) : w ∈ A∗, 1 ⩽ i ⩽ k − 2} ∪̇
{(ai, bj) : 1 ⩽ i, j ⩽ k − 2, i ̸= j} ∪̇
{(bi, aj) : 1 ⩽ i, j ⩽ k − 2}

If (R1, R2) has a 2-Prod separator S, then S̃ ∪̇ {(ai, bi) : 1 ⩽ i ⩽ k − 2} is a k-Prod
separator of (R′

1, R′
2).

Conversely, if S′ = (A1 ×B1) ∪ · · · ∪ (Ak ×Bk) is a k-Prod separator of (R′
1, R′

2), then
for every i there must be some ji such that Aji ×Bji contains (ai, bi). Observe that

Aji
∪Bji

cannot contain any ai′ or bi′ for i′ ̸= i, and
Aji
∪Bji

cannot contain any w ∈ A∗;
since otherwise we would have (Aji

×Bji
) ∩R′

2 ̸= ∅. Hence, {i 7→ ji}i is injective, and thus
S′ is of the form S′ = (A1 ×B1) ∪ (A2 ×B2) ∪ ({a1} × {b1}) ∪ · · · ∪ ({ak−2} × {bk−2}). We
can further assume that A1, B1, A2, B2 do not contain any ai or bi since otherwise we can
remove them preserving the property of being a k-Prod separator of R′

1 and R′
2. Hence,

S =̂ (A1 × B1) ∪ (A2 × B2) must cover R1 and be disjoint from R2, obtaining that S is a
2-Prod separator of R1 and R2. ◀

6 Definability for Bounded Recognizable Relations

Up until now, we have examined two hierarchies of bounded recognizable relations, namely
k-Prod and k-Rec. Our previous analysis demonstrated that, for any element in these
hierarchies (where k > 1), the separability problem is undecidable. Nevertheless, we will
now establish that the definability problem is decidable.

Given an automatic relation R ⊆ A∗ × A∗, consider the automatic equivalence relation
∼R ⊆ A∗ × A∗, defined as w ∼R w′ if for every v ∈ A∗ we have
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1. (w, v) ∈ R iff (w′, v) ∈ R, and
2. (v, w) ∈ R iff (v, w′) ∈ R.

It turns out that equivalence classes of ∼R define the coarsest partition onto which R

can be recognized in terms of k-Rec:

▶ Lemma 6.1. For every automatic R ⊆ A∗ × A∗, ∼R has index at most k if, and only if,
R is in k-Rec.

Proof. Left-to-right Assume that ∼R has the equivalence classes E1, . . . , Ek. Consider
the set P ⊆ {1, . . . , k}2 of all pairs (i, j) such that there are ui ∈ Ei and uj ∈ Ej with
(ui, uj) ∈ R. Define the k-Rec relation R′ =

⋃
(i,j)∈P Ei × Ej . We claim that R = R′. In

fact, by definition of ∼R , note that if there are ui ∈ Ei and uj ∈ Ej with (ui, uj) ∈ R, then
Ei×Ej ⊆ R. Hence, R′ ⊆ R. On the other hand, for every pair (u, v) ∈ R there is (i, j) ∈ P

such that u ∈ Ei, v ∈ Ej implying (u, v) ∈ R′. Hence, R ⊆ R′.
Right-to-left If R is a union of products of sets from the partition E1 ∪̇ · · · ∪̇ Ek = A∗,

then every two elements of each Ei are ∼R -related, and thus ∼R has index at most k. ◀

We can then conclude that the definability problem for k-Rec is decidable.

▶ Corollary 6.2. The k-Rec-definability problem is decidable, for every k > 0.

Proof. An automatic relation R is in k-Rec iff ∼R has at most k equivalence classes by
Lemma 6.1. In other words, an automatic relation R is not in k-Rec iff the complement of
∼R contains a (k + 1)-clique, which can be easily tested. ◀

The relation ∼R can also be used to characterize which automatic relations are definable
in the class k-Prod.

▶ Lemma 6.3. An automatic relation R is in k-Prod if, and only if, R = (A1 ×B1)∪ · · · ∪
(Ak ×Bk) where each Ai and Bi is a union of equivalence classes of ∼R .

Proof. It suffices to show that for every equivalence class E from ∼R , if A1 ∩ E ̸= ∅ then
R = ((A1 ∪ E)×B1) ∪ · · · ∪ (Ak ×Bk), and similarly for B1. Assume w ∈ A1 ∩ E and take
any pair (u, v) ∈ E × B1. We show that (u, v) ∈ R. By definition of ∼R , since (w, v) ∈ R

and w ∼R u, we have that (u, v) ∈ R. ◀

Again, this characterization allows us to show that definability in the class k-Prod is
decidable.

▶ Corollary 6.4. The k-Prod-definability problem is decidable, for every k > 0.

Proof. By brute force testing whether the automatic relation R is equivalent to (A1 ×B1)∪
· · · ∪ (Ak ×Bk) for every possible Ai, Bi which is a union of equivalence classes of ∼R . ◀

7 Discussion

We have established, among other things, the undecidability of the k-regular colorability
problem for k ⩾ 2. Yet, little is known about the regular colorability problem.

▶ Conjecture 7.1. The Rec-separability problem – or, equivalently, the regular
colorability problem – is undecidable.

Beyond its decidability status, the structural properties of regular colorability evades us:
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▶ Conjecture 7.2. Over automatic graphs, the following notions are pairwise disjoint:
1. to be finitely regular colorable,
2. to be finitely colorable,
3. not to contain unbounded cliques.

Note that the implications (1) ⇒ (2) ⇒ (3) trivially hold. Moreover, recall that while the
automatic tree of Example 4.5 is not 2-regular colorable, it is 3-regular colorable (it suffices
to color ε with a new color, and then color apbq by looking at the parity of p− q). Hence, it
does not prove that (2) ̸⇒ (1). Likewise, on arbitrary infinite graphs, we know that there
exists triangle-free graphs that are not finitely colorable [26] – but we believe these graphs
not to be automatic, and hence they would not prove that (3) ̸⇒ (2).

Finally, observe that it is decidable to test whether an automatic graph has infinite cliques
[18, Corollary 5.5]. We conjecture that this property generalizes to unbounded cliques.

▶ Conjecture 7.3. The problem of whether an automatic graph has bounded cliques is
decidable.
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Abstract
Orienting the edges of an undirected graph such that the resulting digraph satisfies some given
constraints is a classical problem in graph theory, with multiple algorithmic applications. In
particular, an st-orientation orients each edge of the input graph such that the resulting digraph
is acyclic, and it contains a single source s and a single sink t. Computing an st-orientation of a
graph can be done efficiently, and it finds notable applications in graph algorithms and in particular
in graph drawing. On the other hand, finding an st-orientation with at most k transitive edges is
more challenging and it was recently proven to be NP-hard already when k = 0. We strengthen this
result by showing that the problem remains NP-hard even for graphs of bounded diameter, and for
graphs of bounded vertex degree. These computational lower bounds naturally raise the question
about which structural parameters can lead to tractable parameterizations of the problem. Our
main result is a fixed-parameter tractable algorithm parameterized by treewidth.
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1 Introduction

An orientation of an undirected graph is an assignment of a direction to each edge, turning the
initial graph into a directed graph (or digraph for short). Notable examples of orientations
are acyclic orientations, which guarantee the resulting digraph to be acyclic; transitive
orientations, which make the resulting digraph its own transitive closure; and Eulerian
orientations, in which each vertex has equal in-degree and out-degree. Of particular interest
for our research are certain constrained acyclic orientations, which find applications in
several domains, including graph planarity and graph drawing. More specifically, given a
graph G = (V, E) and two vertices s, t ∈ V , an st-orientation of G, also known as bipolar

© Carla Binucci, Giuseppe Liotta, Fabrizio Montecchiani, Giacomo Ortali, and Tommaso Piselli;
licensed under Creative Commons License CC-BY 4.0

48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023).
Editors: Jérôme Leroux, Sylvain Lombardy, and David Peleg; Article No. 18; pp. 18:1–18:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:carla.binucci@unipg.it
https://orcid.org/0000-0002-5320-9110
mailto:giuseppe.liotta@unipg.it
https://orcid.org/0000-0002-2886-9694
mailto:fabrizio.montecchiani@unipg.it
https://orcid.org/0000-0002-0543-8912
mailto:giacomo.ortali@unipg.it
https://orcid.org/0000-0002-4481-698X
mailto:tommaso.piselli@studenti.unipg.it
https://orcid.org/0000-0002-7088-920X
https://doi.org/10.4230/LIPIcs.MFCS.2023.18
http://arxiv.org/abs/2306.03196
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


18:2 On the Parameterized Complexity of Computing st-Orientations

10

4

5
19

17

18

12

16

0

9

13
11

7

8

6

15

3

2

14

1

20

(a)

10==s

4

5

19

17

18

12

16
0

9

1311

7

8

6

15

3 2

14

1==t

20

(b)
10==s

4

5 19

17

18

12

16

0

9

13

11

7

8

6

15

3

2

14

1==t

20

(c)

Figure 1 (a): An undirected graph G with randomly labeled vertices. (b)-(c): Two polyline
drawings of G computed by using different st-orientations. The drawing in (b) uses an st-orientation
without transitive edges and it has smaller area and number of bends than the drawing in (c).

orientation, is an orientation of its edges such that the corresponding digraph is acyclic and
contains a single source s and a single sink t. It is well-known that G admits an st-orientation
if and only if it is biconnected after the addition of the edge st (if not already present). The
computation of an st-numbering (an equivalent concept defined on the vertices of the graph)
is for instance part of the quadratic-time planarity testing algorithm by Lempel, Even and
Cederbaum [11]. Later, Even and Tarjan [8] showed how to compute an st-numbering in
linear time, and used this result to derive a linear-time planarity testing algorithm. In the
field of graph drawing, bipolar orientations are a central algorithmic tool to compute different
types of layouts, including visibility representations, polyline drawings, dominance drawings,
and orthogonal drawings (see [5, 9] for references). On a similar note, a notable result states
that a planar digraph admits an upward planar drawing if and only if it is the subgraph of a
planar st-graph, that is, a planar digraph with a bipolar orientation [6].

Recently, Binucci, Didimo and Patrignani [1] focused on st-orientations with no transitive
edges. We recall that an edge uv is transitive if the digraph contains a path directed from u

to v; for example, the bold (red) edges in Figure 1c are transitive, see also Section 2 for formal
definitions. Besides being of theoretical interest, such orientations, when they exist, can
be used to compute readable and compact drawings of graphs [1]. For example, a classical
graph drawing algorithm relies on st-orientations to compute polyline representations of
planar graphs. The algorithm is such that both the height and the number of bends of the
representations can be reduced by computing st-orientations with few transitive edges. See
Algorithm Polyline in [5] for details and Figure 1 for an example.

Unfortunately, while an st-orientation of an n-vertex graph can be computed in O(n) time,
computing one that has the minimum number of transitive edges is much more challenging
from a computational perspective. Namely, Binucci et al. [1] prove that the problem of
deciding whether an st-orientation with no transitive edges exists is NP-complete, and provide
an ILP model for planar graphs.
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tw k

∅ para-NP-hardFPT

δ + k σ + k

Figure 2 The complexity landscape of the st-Orientation problem. The symbols tw, δ, and σ

denote the treewidth, the maximum vertex degree, and the diameter of the graph, respectively. The
boxes with red boundaries denote the new results presented in this paper.

Contribution. We study the parameterized complexity of finding st-orientations with few
transitive edges. More formally, given a graph G and an integer k, the st-Orientation
problem asks for an st-orientation of G with at most k transitive edges (see also Section 2).
As already discussed, st-Orientation is para-NP-hard by the natural parameter k [1]. We
strengthen this result by showing that, for k = 0, st-Orientation remains NP-hard even for
graphs of diameter at most six, and for graphs of vertex degree at most four. In light of these
computational lower bounds, we seek for structural parameters that can lead to tractable
parameterizations of the problem. Our main result is a fixed-parameter tractable algorithm
for st-Orientation parameterized by treewidth, a central parameter in the parameterized
complexity analysis (see [7, 12]). Figure 2 depicts a summary of the computational complexity
results known for the st-Orientation problem.

It is worth remarking that by Courcelle’s theorem one can derive an (implicit) FPT algo-
rithm parameterized by treewidth and k, while we provide an explicit algorithm parameterized
by treewidth only. The main challenge in applying dynamic programming over a tree decom-
position is that the algorithm must know if adding an edge to the graph may cause previously
forgotten non-transitive edges to become transitive, and, if so, how many of them. To tackle
this difficulty, we describe an approach that avoids storing information about all edges that
may potentially become transitive; instead, the algorithm guesses the edges that will be
transitive in a candidate solution and ensures that no other edge will become transitive in
the course of the algorithm. Our technique can be easily adapted to handle more general
constraints on the sought orientation, for instance the presence of multiple sources and sinks.

Paper structure. We begin with preliminary definitions and basic tools, which can be
found in Section 2. In Section 3 we describe our main result, an FPT algorithm for the
st-Orientation problem parameterized by treewidth. Section 4 contains our second
contribution, namely we adapt the NP-hardness proof in [1] to prove that the result holds
also for graphs that have bounded diameter and for graphs with bounded vertex degree.
In the latter case, the graphs used in the reduction not only have bounded vertex degree
(at most four), but are also subdivisions of triconnected graphs. In Section 5 we list some
interesting open problems that stem from our research.

For space reasons, some proofs have been omitted, and the corresponding statements are
marked with (⋆).

2 Preliminaries

Edge orientations. Let G = (V, E) be an undirected graph. An orientation O of G is an
assignment of a direction, also called orientation, to each edge of G. We denote by DO(G) the
digraph obtained from G by applying the orientation O. For each undirected pair (u, v) ∈ E,
we write uv if (u, v) is oriented from u to v in DO(G), and we write vu otherwise. A directed
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path from a vertex u to a vertex v is denoted by u ⇝ v. A vertex of DO(G) is a source
(sink) if all its edges are outgoing (incoming). An edge uv of DO(G) is transitive if DO(G)
contains a directed path u⇝ v distinct from the edge uv. A digraph DO(G) is an st-graph
if: (i) it contains a single source s and a single sink t, and (ii) it is acyclic. An orientation O

such that DO(G) is an st-graph is called an st-orientation.

st-Orientation
Input: An undirected graph G = (V, E), two vertices s, t ∈ V , and an integer k ≥ 1.
Output: An st-orientation O of G such that the resulting digraph DO(G) contains at
most k transitive edges.

We recall that st-Orientation is NP-complete already for k = 0 [1], which hinders
tractability in the parameter k. Also, in what follows, we always assume that the input
graph G is connected, otherwise we can immediately reject the instance as any orientation
would give rise to at least one source and one sink for each connected component of G.

Tree-decompositions. Let (X , T ) be a pair such that X = {Xi}i∈[ℓ] is a collection of subsets
of vertices of a graph G = (V, E), called bags, and T is a tree whose nodes are in one-to-one
correspondence with the elements of X . When this creates no ambiguity, Xi will denote
both a bag of X and the node of T whose corresponding bag is Xi. The pair (X , T ) is a
tree-decomposition of G if:
1.

⋃
i∈[ℓ] Xi = V ,

2. For every edge uv of G, there exists a bag Xi that contains both u and v, and
3. For every vertex v of G, the set of nodes of T whose bags contain v induces a non-empty

(connected) subtree of T .
The width of (X , T ) is maxℓ

i=1 |Xi| − 1, while the treewidth of G, denoted by tw(G), is
the minimum width over all tree-decompositions of G. The problem of computing a tree-
decomposition of width tw(G) is fixed-parameter tractable in tw(G) [3]. A tree-decomposition
(X , T ) of a graph G is nice if T is a rooted binary tree with the following additional
properties [4]:
1. If a node Xi of T has two children whose bags are Xj and Xj′ , then Xi = Xj = Xj′ . In

this case, Xi is a join bag.
2. If a node Xi of T has only one child Xj , then Xi ̸= Xj and there exists a vertex v ∈ G

such that either Xi = Xj ∪ {v} or Xi ∪ {v} = Xj . In the former case Xi is an introduce
bag, while in the latter case Xi is a forget bag.

3. If a node Xi is the root or a leaf of T , then Xi = ∅. In this case, Xi is a leaf bag.
Given a tree-decomposition of width ω of G, a nice tree-decomposition of G with the same
width can be computed in O(ω · n) time [10].

3 The st-Orientation Problem Parameterized by Treewidth

In this section, we describe a fixed-parameter tractable algorithm for st-Orientation
parameterized by treewidth. In fact, the algorithm we propose can solve a slightly more
general problem. Namely, it does not assume that s and t are part of the input, but it looks
for an st-orientation in which the source and the sink can be any pair of vertices of the input
graph. However, if s and t are prescribed, a simple check can be added to the algorithm (we
will highlight the crucial point in which the check is needed) to ensure this property.

Let G = (V, E) be an undirected graph. A solution of the st-Orientation problem is
an orientation O of G such that DO(G) is an st-graph with at most k transitive edges. Let
(X , T ) be a tree-decomposition of G of width ω. For a bag Xi ∈ X , we denote by G[Xi] the
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Figure 3 (a) The directed edges wv and vu make all edges e1, ..., es transitive. (b) Each pair of
directed edges wpv and vqu, for p ∈ [1, h] and q ∈ [1, s], makes e transitive.

subgraph of G induced by the vertices of Xi, and by Ti the subtree of T rooted at Xi. Also,
we denote by Gi the subgraph of G induced by all the vertices in the bags of Ti. We adopt a
dynamic-programming approach performing a bottom-up traversal of T . The solution space
is encoded into records associated with the bags of T , which we describe in the next section.

3.1 Encoding solutions

Before describing the records stored for each bag, we highlight the main challenges about
how to encode the partial solutions computed throughout the course of the algorithm. Let v

be a vertex introduced in a bag Xi. Adding v and its incident edges to a partial solution may
either turn many (possibly linearly many) forgotten edges into transitive edges and/or it
may make the same forgotten edge transitive with respect to arbitrarily many different paths.
This is schematically illustrated in Figure 3, where Xi and its child bag Xj are highlighted
by shaded regions. In Figure 3a, e1, . . . , es are forgotten edges, i.e., edges in Gi but not in
G[Xi]; if we orient edge (u, v) from v to u and edge (v, w) from w to v all edges e1, . . . , es

become transitive. In Figure 3b, e is a forgotten edge, while u1, . . . , us and w1, . . . , wh are
vertices of bag Xj ; orienting the edges (wp, v) from wp to v (1 ≤ p ≤ h) and the edges (v, uq)
from v to uq, turns e into a transitive edge with respect to h × s different paths. In case
of Figure 3a the algorithm cannot afford reconsidering the forgotten edges as they can be
arbitrarily many. In case of Figure 3b the algorithm should avoid counting e multiple times
(for each newly created path). To overcome these issues, the algorithm guesses the edges that
are transitive in a candidate solution and verifies that no other edge can become transitive
during the bottom-up visit of T . This is done by suitable records, describe below.

Let O be a solution and consider a bag Xi ∈ X . The record Ri of Xi that encodes O

represents the interface of the solution O with respect to Xi. For ease of notation, the
restriction of DO(G) to Gi is denoted by Di, and similarly the restriction to G[Xi] is D[Xi].
Record Ri stores the following information.

Oi which is the orientation of D[Xi].
Ai which is the subset of the edges of D[Xi] that are transitive in DO(G). We call such
edges admissible transitive edges or simply admissible edges. The edges of Gi not in Ai

are called non-admissible. We remark that an edge of Ai may not be transitive in Di.
Pi which is the set of ordered pairs of vertices (a, b) such that: (i) a, b ∈ Xi, and (ii) Di

contains the path a⇝ b.

MFCS 2023
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Fi which is the set of ordered pairs of vertices (a, b) such that: (i) a, b ∈ Xi, and (ii)
connecting a to b with a directed path makes a non-admissible edge of Di to become
transitive.
ci which is the cost of Ri, that is, the number of transitive edges in Di. Note that
ci ≥ |Ai|.
Si which maps each vertex v ∈ Xi to a Boolean value Si(v) that is true if and only if v is
a source in Di. Analogously, Ti maps each vertex v ∈ Xi to a Boolean value Ti(v) that is
true if and only if v is a sink in Di.
σi which is a flag that indicates whether DO(G) contains a source that belongs to Gi but
not to Xi. Analogously, τi is a flag that indicates whether DO(G) contains a sink that
belongs to Gi but not to Xi.

Observe that, for a bag Xi, different solutions O and O′ of G may be encoded by the
same record Ri. In this case, O and O′ are equivalent. Clearly, this defines an equivalent
relation on the set of solutions for G, and each record represents an equivalence class. The
goal of the algorithm is to incrementally construct the set of records (i.e., the quotient set)
for each bag rather than the whole set of solutions. More formally, for each bag Xi ∈ X ,
we associate a set of records Ri = {R1

i , ..., Rh
i }. While this is not essential for establishing

fixed-parameter tractability, we further observe that if more records are equal except for
their costs, it suffices to keep in Ri the one whose cost is no larger than any other record.
The next lemma easily follows.

▶ Lemma 1 (⋆). For a bag Xi, the cardinality of Ri is 2O(ω2). Also, each record of Ri has
size O(ω2).

3.2 Description of the algorithm
We are now ready to describe our dynamic-programming algorithm over a nice tree-
decomposition (X , T ) of the input graph G. Let Xi be the current bag visited by the
algorithm. We compute the records of Xi based on the records computed for its child or
children (if any). If the set of records of a bag is empty, the algorithm halts and returns a
negative answer. We distinguish four cases based on the type of the bag Xi. Observe that,
to index the records within Ri, we added a superscript q ∈ [h] to each record, and we will do
the same for all the record’s elements.

Xi is a leaf bag. We have that Xi is the empty set and Ri consists of only one record, i.e.,
Ri = {R1

i = ⟨∅, ∅, ∅, ∅, 0, ∅, ∅, false, false⟩}.

Xi is an introduce bag. Let Xj = Xi \ {v} be the child of Xi. Initially, Ri = ∅. Next,
the algorithm exhaustively extends each record Rp

j ∈ Rj to a set of records of Ri as follows.
Let Ov be the set of all the possible orientations of the edges incident to v in G[Xi], and
similarly let Av be the set of all the possible subsets of the edges incident to v in G[Xi]. The
algorithm considers all possible pairs (o, t) such that o ∈ Ov and t ∈ Av. For each pair (o, t),
we proceed as follows.
1. Let q = |Ri|+ 1, the algorithm computes a candidate orientation Oq

i of G[Xi] starting
from Op

j and orienting the edges of v according to o.
2. Similarly, it computes the candidate set of admissible edges Aq

i starting from Ap
j and

adding to it the edges in t.
3. Next, it sets the candidate cost cq

i = cp
j + |t|.
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Figure 4 Illustration of Step 5c of the algorithm when Xi is an introduce bag.

4. Let the extension ⟨Oq
i ,Aq

i , cq
i ⟩ be valid if:

a. cq
i ≤ k;

b. there is no pair (a, b) ∈ Pp
j so that bv, va ∈ D[Xq

i ];
c. there is no pair (a, b) ∈ Fp

j so that av, vb ∈ D[Xq
i ].

Clearly, if an extension is not valid, the corresponding record cannot encode any solution;
namely, condition (a) ensures that the candidate cost does not exceed k, condition (b)
guarantees the absence of cycles, condition (c) guarantees that no non-admissible edge
becomes transitive. Hence, if an extension is not valid, the algorithm discards it and
continues with the next pair (o, t).

5. Instead, if the extension is valid, the algorithm computes the record Rq
i = ⟨Oq

i ,Aq
i ,Pq

i ,Fq
i ,

cq
i ,Sq

i , T q
i , σq

i , τ q
i ⟩ of Ri, where σq

i = σp
j , τ q

i = τp
j (recall that Xj ⊂ Xi). To complete the

record Rq
i , it remains to compute Sq

i , T q
i , Pq

i and Fq
i .

a. For each vertex w ∈ Xj , we set Sq
i (w) = true if and only if Sp

j (w) = true and there
is no edge of v oriented from v to w in D[Xq

i ] (which would make w not a source
anymore). Similarly, for each vertex w ∈ Xj , we set T q

i (w) = true if and only if
T p

j (w) = true and there is no edge of v oriented from w to v in D[Xq
i ]. Finally, we set

Sq
i (v) = true if and only if v is a source in D[Xq

i ] (as by the definition), and we set
T q

i (v) = true if and only if v is a sink in D[Xq
i ].

b. We initially set Pq
i = ∅. We recompute the paths from scratch as follows. We build

an auxiliary digraph D∗ which we initialize with D[Xq
i ]. We then add to D∗ the

information about paths in Pp
j . Namely, for each (a, b) ∈ Pp

j , we add an edge ab to
D∗ (if it does not already exists). Once this is done, for each pair u, w ∈ Xi ×Xi for
which there is a path u⇝ w in D∗, we add the pair (u, w) to Pq

i .
c. Consider now Fq

i . We initially set Fq
i = Fp

j . Observe that the addition of v might
have created new pairs of vertices that should belong to Fq

i . Namely, for each pair
(a, b) ∈ Fp

j , we verify what are the vertices c such that D[Xq
i ] contains a path a⇝ c

while D[Xp
j ] does not (observe that a⇝ c contains v, possibly c = v); for each such

vertex, we add (c, b) to Fq
i . See Figure 4a for an illustration. Similarly, we verify what

are the vertices d such that D[Xq
i ] contains a path d⇝ b while D[Xp

j ] does not (again
d⇝ b contains v, possibly d = v); for each such vertex, we add (a, d) to Fq

i . Finally,
we consider all the edges incident to v and that are not in Aq

i . These edges are not
admissible and we should further update Fq

i accordingly. This can be done as follows:
we consider each edge incident to v not in Aq

i , for each such an edge e we verify what
are the pairs of vertices in Xi (including e’s endpoints) such that connecting them
with a path makes e transitive, we add such pairs to Fq

i if not already present. See
Figure 4b for an illustration.
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Xi is a forget bag. Let Xj = Xi ∪ {v} be the child of Xi. The algorithm computes Ri by
exhaustively merging records of Rj as follow.
1. For each Rp

j ∈ Rj , we remove from Op
j and Ap

j all the edges incident to v and from Pp
j

and Fp
j all the pairs where one of the vertices is v. Observe that due to this operation,

there might now be records that are identical except possibly for their costs. Among
them, we only keep one record whose cost is no larger than any other record.

2. Let Rp
j be a record of Rj that was not discarded by the procedure above. If Sp

j (v) ∧ σp
j ,

we discard Rp
j (because the encoded orientation would contain two sources), else we set

σp
j = true (because v is a source). Similarly, if T p

j (v) ∧ τp
j , we discard Rp

j , else we set
τp

j = true. At this point, if the record has not been discarded yet and vertices s and t are
prescribed, we can add the following check. If Sp

j (v) ∧ σp
j , then v is a source, hence if

v ̸= s, we discard the record. Analogously, if T p
j (v) ∧ τp

j , then v is a sink, hence if v ̸= t,
we discard the record.

3. Finally, we remove from Sp
j and T p

j the values Sp
j (v) and T p

j (v).
4. All the records that have not been discarded and have been updated according to the

above procedure are added to Ri.

Xi is a join bag. Let Xj = Xj′ be the two children of Xi. The algorithm computes Ri by
exhaustively checking if a pair of records, one from Xj and one from Xj′ , can be merged
together. For each pair Rp

j and Rp′

j′ , we proceed as follows.
1. We initially set Ri = ∅. The two records Rp

j and Rp′

j′ are mergeable if:
a. Op

j = Op′

j′ ;
b. Ap

j = Ap′

j′ ;
c. cp

j + cp′

j′ − |Ap
j | ≤ k;

d. there is no pair (a, b) ∈ Pp
j such that (b, a) ∈ Pp′

j′ ;
e. there is no pair (a, b) ∈ Pp

j such that (a, b) ∈ Fp′

j′ ;
f. there is no pair (a, b) ∈ Pp′

j′ such that (a, b) ∈ Fp
j ;

g. ¬(σp
j ∧ σp′

j′ );
h. ¬(τp

j ∧ τp′

j′ ).
Conditions a-b are obviously necessary to merge the records. Condition c guarantees
that the number of transitive edges (avoiding double counting the admissible edges in Xi)
is at most k. Condition d guarantees the absence of cycles. Conditions e-f guarantee that
no non-admissible edge becomes transitive. Conditions g-h guarantee that the resulting
orientation contains at most one source and one sink. If the two records are not mergeable,
we discard the pair and proceed with the next one. Otherwise we create a new record Rq

i ,
with q = |Ri|+ 1, and continue to the next step.

2. Based on the previous discussion, we can now compute Rq
i as follows:

a. Oq
i = Op

j ;
b. Aq

i = Ap
j ;

c. cq
i = cp

j + cp′

j′ − |Ap
j |;

d. For each pair (a, b) of vertices of Xi, we add it to Pq
i if it is contained in Pp

j or in Pp′

j′ .
e. For each pair (a, b) of vertices of Xi, we add it to Fq

i if Fp
j (a, b) ∨ Fp′

j′ (a, b).
f. For each vertex v of Xi, we set Sq

i (v) = Sp
j (v) ∧ Sp′

j′ (v);
g. For each vertex v of Xi, we set T q

i (v) = T p
j (v) ∧ T p′

j′ (v);
h. σq

i = σp
j ∨ σp′

j′ ;
i. τ q

i = τp
j ∨ τp′

j′ .
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The next lemma establishes the correctness of the algorithm.

▶ Lemma 2. Graph G admits a solution for st-Orientation if and only if the algorithm
terminates after visiting the root of T . Also, the algorithm outputs a solution, if any.

Proof. (→) Suppose that the algorithm terminates after visiting the root bag Xρ of T . We
reconstruct a solution O of G as follows. We can assume that our algorithm stores additional
pointers for each record (a common practice in dynamic programming), such that each record
has a single outgoing pointer (and potentially many incoming pointers). Consider a record
Rq

i of a bag Xi. If Xi is an introduce bag, there is only one record Rp
j of the child bag Xj

from which Rq
i was generated and the pointer links Rq

i and Rp
j . If Xi is forget bag, there

might be multiple records that have been merged into Rq
i and in this case the pointer link Rq

i

with one of these records with minimum cost. If Xi is a join bag, there are two mergeable
records Rp

j and Rp′

j′ that have been merged together, and the pointer links Rq
i to Rp

j and
Rp′

j′ . With these pointers at hand, we can apply a top-down traversal of T , starting from the
single (empty) record of the root bag Xρ and reconstruct the corresponding orientation O.
Namely, when visiting an introduce bag and the corresponding record, we orient the edges of
the introduced vertex v according to the orientation Ov defined by the record.

We now claim that DO(G) is an st-graph with at most k transitive edges. Suppose first,
for a contradiction, that DO(G) contains more than one source. Let s and s′ be two sources
of DO(G). Then Sq

i (s) = false in the bag Xi in which s has been forgotten, and similarly
for Sq

i (s′). This is however not possible by construction of Sq
i . Thus, either the record Rq

i

has been discarded because Sp
j (v) ∧ σp

j (see item 2 when Xi is a forget bag) or σp
j = false.

The first case contradicts the fact that Rq
i is a record used to reconstruct O. The second

case implies that s′ has not been encountered; however, in this latter case the algorithm sets
σp

j = true, hence some descendant record will be discarded as soon as s′ is forgotten, again
contradicting the fact that we are considering records with pointers up to the root bag. A
symmetric argument shows that DO(G) contains a single sink. We next argue that DO(G)
is acyclic. Suppose, again for a contradiction, that DO(G) contains a cycle. In particular,
the cycle was created either in an introduce bag or in a join bag. In the former case, let
v be the last vertex of this cycle that has been introduced in a bag Xi. Let a, b be the
neighbors of v that are part of the cycle, and w.l.o.g. assume that the edges are va and
bv. It must be Pq

i does not contain the pair (a, b), otherwise we would have discarded this
particular orientation for the edges incident to v (see item 4.b when Xi is an introduce bag).
On the other hand, one easily verifies that when introducing a vertex v, all the new paths
involving v are computed from scratch (see item 5.b when Xi is an introduce bag), and,
similarly, when joining two bags, the existence of a path in one of the two bags is correctly
reported in the new record (see item 2.d when Xi is a join bag). If the cycle was created
in a join bag the argument is analogous, in particular, observe that we verify that there
is no path contained in the record of one of the child bags such that the same path with
reversed direction exists in the record of the other child bag (see item 1.d when Xi is a
join bag). We conclude this direction of the proof by showing that DO(G) contains at most
k transitive edges. Observe first that the cost of the record ensures that at most k edges
of G are part of some set of admissible edges. Suppose, for a contradiction, that DO(G)
contains more than k transitive edges. Then there is a bag Xi and a record Rq

i in which a
non-admissible edge became transitive. Also, Xi is either an introduce or a join bag. If Xi

introduced a vertex v, observe that all the newly introduced edges are incident to v. On the
other hand, the algorithm discarded the orientations of the edges of v for which there is a
pair (a, b) ∈ Fp

j (with Xj being the child of Xi) so that av, vb ∈ D[Xq
i ] (see item 4.c when
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Xi is an introduce bag). Then either the orientation was discarded, which contradicts the
fact that we are considering a record used to build the solution, or Fp

j missed the pair (a, b).
Again one verifies this second case is not possible, because the new pairs that are formed in
an introduce bag are correctly identified (see item 5.c when Xi is an introduce bag) by the
algorithm and similarly for join bags (see item 2.e when Xi is a join bag). If Xi is a join
bag, the argument is analogous, in particular, we verified that there is no path in one of the
two child records that makes transitive a non-admissible edge in the other child record (see
items 1.e and 1.f when Xi is a join bag). This concludes the first part of the proof.
(←) It remains to prove that, if G admits a solution O, then the algorithm terminates after
visiting the root Xρ of T . If this were not the case, there would be a bag Xi of T and a
candidate record that encodes O, such that the record has been incorrectly discarded by
the algorithm; we show that this is not possible. Suppose first that Xi is an introduce bag.
Then a candidate record is discarded if the cost exceeds k, or if a cycle is created, or if a
non-admissible edge becomes transitive (see the conditions of item 4 when Xi is an introduce
bag). In all cases the candidate record does not encode a solution. If Xi is a forget bag, we
may discard a candidate record if it is identical to another but has a non-smaller cost (see
item 1 when Xi is a forget bag). Hence we always keep a record that either encodes the
solution at hand or a solution with fewer transitive edges but with exactly the same interface
at Xi. Also, we may discard a record if the forgotten vertex v is a source and Gi already
contains a source (see item 2 when Xi is a forget bag). This is correct, because no further
edge can be added to v after it is forgotten. A symmetric argument holds for the case in
which a record is discarded due to v being a sink. Finally, if Xi is a join bag, pairs of records
of its children bags are discarded if not mergeable (see the conditions of item 1 when Xi is a
join bag). One easily verifies that failing one of the conditions for mergeability implies that
the record does not encode a solution (see also the discussion after item 1). ◀

The next theorem summarizes our contribution.

▶ Theorem 3 (⋆). Given an input graph G = (V, E) of treewidth ω and an integer k ≥ 0,
there is an algorithm that either finds a solution of st-Orientation or reject the input in
time 2O(ω2) · n.

4 The Complexity of the Non-Transitive st-OrientationProblem for
Graphs of Bounded Diameter and Bounded Degree

We begin by recalling the special case of st-Orientation considered in [1]. An st-orientation
O of a graph G is non-transitive if DO(G) does not contain transitive edges.

Non-Transitive st-Orientation (NT-st-Orientation)
Input: An undirected graph G = (V, E), and two vertices s, t ∈ V .
Output: An non-transitive st-orientation O of G such that vertices s and t are the source
and sink of DO(G), respectively.

The hardness proof of NT-st-Orientation in [1] exploits a reduction from Not-all-equal
3-Sat (NAE-3-Sat) [13]. Recall that the input of NAE-3-Sat is a pair ⟨X, φ⟩ where X is
a set of boolean variables and φ is a set of clauses, each composed of three literals out of
X, and the problem asks for an assignment of the variables in X so that each clause in φ is
composed of at least one true variable and one false variable.
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In this section, we show that NT-st-Orientation is NP-hard even for graphs of bounded
diameter and for graphs of bounded vertex degree that are subdivisions of triconnected
graphs. To prove our results, we first summarize the construction used in [1].

4.1 A Glimpse into the Hardness Proof of NT-st-Orientation
The construction in [1] adopts three types of gadgets, which we recall below. Given an edge
e of a digraph D such that e has an end-vertex v of degree 1, we say that e enters D if it is
outgoing with respect to v, and we say that e exits D otherwise. Similarly, given a directed
edge e = uv, we say that e exits u and that e enters v.

The fork gadget F is depicted in Figure 5a. See Lemma 1 of [1]. Namely, if F does not
contain s or t (the source and sink prescribed in the input), then in any non-transitive
orientation O of a graph G containing F , either e1 enters F and e9, e10 exit F , or
vice versa. Figure 5a depicts F , DO1(F ) and DO2(F ), where O1 and O2 are the two
st-orientations admitted by F .
The variable gadget Gx associated to a variable x ∈ X is shown in Figure 5b; observe
it contains the designated vertices s and t. Its crucial property is stated in Lemma 2
of [1]. Namely, in any non-transitive st-orientation O of a graph G containing Gx, either
x exists Gx and x enters Gx, or vice-versa.
The split gadget Sk is shown in Figure 5c; it consists of k−1 fork gadgets chained together,
for some fixed k > 0. The crucial property of this gadget is described in Lemma 3 of [1].
Namely, in any non-transitive st-orientation O of a graph G containing Sk, either x (the
input edge of Sk) enters Sk and the edges e9 and e10 of the fork gadgets F1, ..., Fk−1
incident to one degree-1 vertex (the outgoing edges of Sk) exit Sk, or vice-versa.

Given an instance ⟨X, φ⟩ of NAE-3-Sat, the instance ⟨Gφ, s, t⟩ of NT-st-Orientation
is constructed as follow. For each x ∈ X we add Gx and two split gadgets Sk and Sk, where
k (resp. k) is the number of clauses where x appears in its non-negated (resp. negated)
form (edges x and x are the input edges of Sk and Sk, respectively). Finally, for each clause
c = (x1, x2, x3) ∈ φ, we add a vertex c that is incident to an output edge of the split gadget
of each of its variables. See Figure 6b, where the non-dashed edges and all the vertices with
the exception of g define Gφ. It can be shown that ⟨X, φ⟩ is a yes-instance of NAE-3-Sat if
and only if ⟨Gφ, s, t⟩ is a yes-instance of NT-st-Orientation [1].

4.2 Hardness for Graphs of Bounded Diameter
Given an undirected graph G, the distance between two vertices of G is the length of any
shortest path connecting them. The diameter of G is the maximum distance over all pairs of
vertices of the graph. We now adapt the construction in Section 4.1 to show that NT-st-
Orientation remains NP-hard also for graphs of bounded diameter. We define the extended
fork gadget by adding an edge e11 to the fork gadget (see Figure 6a).

Construction of Hφ. Given an instance ⟨X, φ⟩ of NAE-3-Sat and the instance ⟨Gφ, s, t⟩
of NT-st-Orientation computed as described in Section 4.1, we define ⟨Hφ, s, t⟩ as follows.
We first set Hφ = Gφ. Then, we add a vertex g to Hφ and an edge (g, f) for each vertex f

belonging to a fork F of Hφ and incident to the corresponding edges e3, e6, and e7. Also,
we add edges (g, t) and (s, g), and we subdivide each of them once. See Figure 6b (the
non-dashed edges and all the vertices with the exception of g define Gφ).
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(a) F .
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(b) Gx.

DO(F1)

DO(F2)

DO(Fk−1)
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DO(Sk)

output edges

input edge

(c) Sk.

Figure 5 (a) The fork gadget F and its two possible non-transitive st-orientations. (b) The
variable gadget DO(Gx) associated to x ∈ X, where O is one of its two possible orientations. (c)
The split gadget DO(Sk) associated to x, where O is one of its two possible orientations.

▶ Theorem 4 (⋆). NT-st-Orientation is NP-hard for graphs of diameter at most 6.

Proof sketch. We construct Hφ as described above. Observe that any vertex of G is at
distance at most 3 to g, hence Hφ has diameter at most 6. We show that a non-transitive
st-orientation of Gφ corresponds to a non-transitive st-orientation of Hφ (→) and vice
versa (←).

(→) Given a non-transitive st-orientation O′ of Gφ, we construct an st-orientation O of Hφ

by extending O′ as follow. We orient the four edges of Hφ \Gφ connecting s to t such that the
path is directed from s to g. For each other edge e, which is incident to g, we orient it so that
e enters g if and only if e is the edge incident to an extended fork gadget whose corresponding
edge e1 is an entering edge. See Figure 6b. For each two vertices a, b ∈ DO(Hφ), there is
no path a⇝ b so that ag, gb ∈ DO(Hφ). Hence, since DO′(Gφ) has no cycle, also DO(Hφ)
has no cycle. Consequently, O is an acyclic orientation with s and t being its single source
and sink, respectively. We now show that it does not contain transitive edges. Let e = ab be
any edge of DO(Hφ). We have that any path from s⇝ t containing g either contains edges
incident to degree-2 vertices or edges e1, e3, and e11 of an extended fork gadget. All these
edges have endpoints which are not adjacent by construction. Hence, there is no path a⇝ b

containing g and, since O′ is non-transitive, e is not transitive in DO(Hφ).

(←) This direction is based on the observation that, given an extended fork gadget F , in any
non-transitive st-orientation O of G, either e3 enters f and e6, e7 exit f or vice versa. ◀
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Figure 6 (a) A fork gadget F extended with edge e11. (b) Graphs DO′ (Gφ), defined by the
non-dashed edges, and graph DO(Hφ), obtained from G by adding g and the dashed edges. O′ and
O are non-transitive st-orientations of Gφ and Hφ, respectively. O is obtained by extending O′.

4.3 Hardness Subdivisions of Triconnected Graphs with Bounded Degree
We prove now that NT-st-Orientation is NP-hard even if G is a 4-graph, i.e., the degree
of each vertex is at most 4, and, in addition, it is a subdivision of a triconnected graph.

Construction of Jφ. Given an instance ⟨X, φ⟩ of NAE-3-Sat and the instance ⟨Gφ, s, t⟩
of NT-st-Orientation computed as described in Section 4.1, we compute ⟨Jφ, s, t⟩ as
follows. We remove s and t from J ′′

φ = Gφ. We obtain a disconnected graph whose connected
components are Jφ,1, ..., Jφ,h. We add a vertex si and a vertex ti to each Jφ,i (which will
play the role of local sources and sinks for each component). Next, for each i ∈ [1, h− 1]:
(i) We add the edge (si, si+1) and (ti+1, ti); (ii) We add an edge ei+1,i incident to a vertex
identified as the f -vertex of a fork gadget of Jφ,i+1 and to a vertex identified as the f -vertex
of a fork gadget of Jφ,j . We denote by J ′

φ the obtained graph; see Figure 7a for a schematic
illustration. For each Jφ,i (i ∈ [1, h]) of J ′

φ, the only vertices having degree higher than 4
are si and ti. For each i ∈ [1, h], we proceed as follow. We first consider ti. If ti has degree
p ≤ 4, we do nothing. Otherwise, if p ≥ 5, we proceed as follows: (i) We consider p− 1 edges
incident to ti and to vertices of Jφ,i and we remove them; (ii) We connect the endpoints
vi

1, ..., vi
p of the removed edges that are not ti to a split gadget Sp−1 and ti to the input edge

of Sp−1. Figure 7b depicts ti (i ∈ [1, h]) and its neighborhood {vi
1, ..., vi

p} in J ′
φ and Figure 7c

depicts how ti is connected to the vertices vi
1, ..., vi

p after the above operation. We perform a
symmetric operation on si. The resulting graph is denoted by Jφ, and it has vertex degree
at most four by construction.

▶ Theorem 5 (⋆). NT-st-Orientation is NP-hard for 4-graphs that are subdivisions of
triconnected graphs.
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Figure 7 (a) Schematic representation of graph J ′
φ. (b-c) How vertex ti is connected to its

neighbourhood in (b) J ′
φ and (c) Jφ.

5 Open Problems

Several interesting open problems stem from our research. Among them:

Is there an FPT-algorithm for the st-Orientation problem parameterized by treewidth
running in 2o(ω2) · poly(n) time?
Does st-Orientation parameterized by treedepth admit a polynomial kernel?
We have shown that finding non-transitive st-orientations is NP-hard for graphs of vertex
degree at most four. On the other hand, the problem is trivial for graphs of vertex degree
at most two. What is the complexity of the problem for vertex degree at most three?
Similarly, one can observe that the problem is easy for graphs of diameter at most two,
while it remains open the complexity for diameter in the range [3, 5].
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We study the problem of finding a Hamiltonian cycle under the promise that the input graph has a
minimum degree of at least n/2, where n denotes the number of vertices in the graph. The classical
theorem of Dirac states that such graphs (a.k.a. Dirac graphs) are Hamiltonian, i.e., contain a
Hamiltonian cycle. Moreover, finding a Hamiltonian cycle in Dirac graphs can be done in polynomial
time in the classical centralized model.

This paper presents a randomized distributed CONGEST algorithm that finds w.h.p. a Hamilto-
nian cycle (as well as maximum matching) within O(log n) rounds under the promise that the input
graph is a Dirac graph. This upper bound is in contrast to general graphs in which both the decision
and search variants of Hamiltonicity require Ω̃(n2) rounds, as shown by Bachrach et al. [PODC’19].

In addition, we consider two generalizations of Dirac graphs: Ore graphs and Rahman-Kaykobad
graphs [IPL’05]. In Ore graphs, the sum of the degrees of every pair of non-adjacent vertices is at
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1 Introduction

The Hamiltonian path and Hamiltonian cycle problems are fundamental in computer science
and appeared in Karp’s 21 NP-complete problems [15]. A Hamiltonian path is a path that
visits every vertex in the graph exactly once and a Hamiltonian cycle is a cycle that visits
every vertex in the graph exactly once. We say that a graph is Hamiltonian if it contains a
Hamiltonian cycle.

While the problem is hard in general (assuming P ̸= NP), for some classes of graphs, it is
guaranteed that all their members are Hamiltonian. In particular, the classical theorem of
Dirac states that every graph in which the minimum degree is at least n/2 is Hamiltonian
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(we refer to graphs that satisfy this condition as Dirac graphs). This condition is tight in
the sense that if we are only guaranteed that the minimum degree is at least αn for any
0 < α < 1/2, then the problem remains NP-complete [10].

In FOCS’87 Goldberg proposed the question of whether there is an NC-algorithm for
finding a Hamiltonian cycle in Dirac graphs. 1 This question was answered affirmatively
by Dahlhaus et al. [9, 10], who gave a fast parallel algorithm on CREW-PRAM to find a
Hamiltonian cycle in Dirac graphs. Their algorithm works in O(log4 n) parallel time and
uses O(n + m) number of processors where m denotes the number of edges of the graphs.

Aside from the theoretical appeal of the problem, finding a Hamiltonian cycle in a graph
also provides us with a maximum matching of the graph (and even perfect matching when n

is even). Therefore, it is natural to ask whether the algorithm of Dahlhaus et al. [10] can
be translated to the CONGEST model. To this end, one may attempt to use the PRAM
simulation of Lotker, Patt-Shamir, and Peleg [19] for diameter-2 graphs (which applies for
Dirac graphs). However, this simulation is only valid when the number of processors is
linear in the number of vertices in the graph. Another attempt is to use the more general
transformation of Ghaffari and Li [13] that provide a randomized CONGEST algorithm that
simulates any CRCW-PRAM algorithm that uses 2m processors, runs in T parallel rounds,
and operates on the input graph G that is stored in the PRAM’s shared memory. The round
complexity of the attained CONGEST algorithm is T · τmix(G) · 2O(

√
log n), where τmix(G) is

the mixing-time of G. Thus even for constant mixing time, this yields a simulation of the
algorithm of [10] in CONGEST with 2O(

√
log n) rounds. Moreover, since the mixing time of

Dirac’s graph can be Θ(n) 2, the round complexity of this simulation can be super-linear in
n. Consequently, our goal is to improve upon this round complexity by directly designing an
algorithm for the CONGEST model. Indeed we provide an algorithm with an exponential
improvement in the round complexity. Specifically, our algorithm for finding a Hamiltonian
cycle in Dirac graphs runs in O(log n) rounds. When the algorithm terminates, each vertex
outputs the identifier of the vertex that is before it and the vertex that is after it on the
cycle 3.

In the CONGEST model, it is standard to assume that the processors have unbounded
computational power. Therefore, one may wonder whether finding a Hamiltonian cycle in
general graphs in o(n2) rounds is possible. It was recently shown by Bachrach et al. [1] that
even the problem of testing Hamiltonicity in the CONGEST model [21] requires Ω̃(n2) rounds.
Therefore, it is natural to focus on restricted families of graphs such as Dirac graphs and
their generalizations. Since the classical result of Dirac, there have been many generalizations
of Dirac’s theorem (see [17] and references therein), e.g., graph families that are defined by
sufficient conditions on degrees, neighborhoods, and other graph parameters [20, 2, 5, 18, 6,
7, 12, 11]. The first important generalization of Dirac’s theorem is by Ore [20] who proved
that every graph in which the sum of degrees of each pair of non-adjacent vertices is at least
n is Hamiltonian. A more recent generalization, which also generalizes Ore’s theorem, and
allows graphs with less edges, is by Rahman and Kaykobad [22] who proved that every graph
in which the sum of degrees of each pair of non-adjacent vertices plus their distance is at
least n + 1 has a Hamiltonian path. We refer to graphs that satisfy these conditions as Ore

1 See [10] and [23] for more details.
2 Consider a Dirac graph, over n vertices, which is composed of two cliques of size n/2 with a perfect

matching between the cliques.
3 We note that although the input graph is undirected, the outputs of the vertices yield an oriented

Hamiltonian cycle (or path).
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graphs and RK graphs, respectively. We prove that our distributed CONGEST algorithm
and its analysis can be adapted (without changing the round complexity asymptotically) for
these generalizations of Dirac graphs as well.

Our Results

Our main result is stated in the following theorem.

▶ Theorem 1. There exists a distributed algorithm for computing a Hamiltonian cycle in
Dirac graphs that runs in O(log n) rounds in the CONGEST model. The algorithm succeeds
with high probability.4

We also prove the following, more general, theorem in the full version.

▶ Theorem 2. There exists a distributed algorithm for computing a Hamiltonian cycle in
Ore graphs and a Hamiltonian path in RK graphs that runs in O(log n) rounds in the
CONGEST model. The algorithm succeeds with high probability.

A nice outcome of Theorem 2 is that a sequential simulation of the CONGEST algorithm
for the RK graphs yields a polynomial time sequential algorithm for finding a Hamiltonian
path in these graphs as well.

1.1 High-level Description of the Algorithm
Our algorithm maintains a path-cover of the graph, where a path-cover is a set of paths in
the graph such that each vertex of the graph belongs to exactly one of the paths in the set.

Initially, the path-cover consists of paths of constant length. Hence the size of the
initial path-cover is linear in n. Then the algorithm proceeds in iterations, where in each
iteration, the size of the path-cover decreases by a constant factor, with constant probability.
Consequently, after Θ(log n) iteration, the size of the path-cover is 1. Namely, a Hamiltonian
path is found. The decrease in the size of the path-cover occurs as in each iteration (with
constant probability) a constant fraction of the paths are merged into other paths, as we
describe next.

We consider three types of merges. An elementary merge occurs when a path P is
merged into a path Q by connecting the endpoints of P to the endpoints of an edge of Q.
A concatenation merge occurs when two paths are merged by connecting their endpoints.
Finally, a cycle merge occurs when merging two cycles that are connected with an edge into
a single path.

In each iteration, the algorithm proceeds as follows. First, the paths of the path-cover
are paired. Now, two phases are performed, as follows. In the first phase of each iteration,
only pairs of paths for which a special condition (which we describe momentarily) holds are
merged. The special condition guarantees that each one of these pairs can be merged into a
single path. Specifically, a pair of paths, (P, Q) satisfy this special condition if the subgraph
induced on the vertices of each one of them has a Hamiltonian cycle and additionally P and
Q are connected with an edge to each other.

In the second phase of each iteration, concatenations and elementary merges are performed.
The merges that are performed in this phase are selected as follows. Let P be a path in the
path cover. The elements of P consists of its edges and its endpoints. Initially, each element

4 We say that an event occurs with high probability (w.h.p.) if it occurs with probability at least
1 − 1/poly(n).
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of P reserves itself to at most a single path, Q. The path Q is selected as follows. If the
(reserved) element is an endpoint of P , v, then Q is a path with an endpoint incident to v,
chosen uniformly at random from the set of such paths. Otherwise, if the (reserved) element
is an edge 5 of P , (u, v), then Q is a path with an endpoint incident to u, chosen uniformly
at random from the set of such paths. A reservation of an element of P to a path Q grants Q

the exclusive right to be merged into P using this element. The purpose of these reservations
is to avoid a scenario in which two different paths are trying to merge into another path by
using the same element.

We say that a reservation of an element is useful for a path Q if Q can be merged into
another path via this element. By construction, all reservations of endpoints are useful.
However, a reservation of an edge may be non-useful since the decision to reserve an edge to
a path, Q, is done only by one of the endpoints of e. Hence, it might be the case that the
other endpoint of e is not adjacent to the other endpoint of Q. Nonetheless, we show that on
expectation, a constant fraction of the paths will have at least one useful reservation. After
setting the reservations, each path is notified of the set of its useful reservations (if any).
This can be carried out without congestion because of the exclusivity of the reservations.
Then each path arbitrarily selects one of its useful reservations.

At this point, each path that has a useful reservation can be merged into another path via
the respective reserved element exclusively. However, there are two problems with executing
these merges. The first problem is that we want to avoid lengthy sequences of merges as this
blows up the round complexity of the algorithm. Roughly speaking, this comes from the
fact that when we merge paths (possibly many) into a single new path, all vertices of the
corresponding (old) paths are updated about the identity of the new path. Moreover, for
each new path (which is an outcome of possibly many merging operations), the algorithm
constructs a spanning tree, of depth 2, which spans the vertices of the path. See more details
in the full version on the role of these spanning trees in our algorithm.

The second problem is that these sequences of merges may be conflicting. A simple
example of a conflict is when a graph P tries to merge into Q via an edge of Q, and Q

tries to merge into P via an edge of P . Clearly, these two merges cannot be carried out
simultaneously. Moreover, this example can be extended into arbitrarily long cycles.

Fortunately, these two problems can be remedied by the following simple idea. Each
path tosses a fair coin. Then each path, P , is merged via its selected (reserved) element
only if P tossed tails and Q tossed heads, where Q is the path of the respective element.
On expectation 1/4 of the merges will be in the “right” orientation. In our analysis, we
prove that this suffices for our needs (see more details on Subsection 4.3). This completes
the description of the second phase of each iteration and concludes the description of the
algorithm.

1.2 Correctness and Analysis of the Algorithm
The analysis of the algorithm has two ingredients. The first and main ingredient is showing
that for any fixed iteration, the size of the path cover decreases by a constant fraction on
expectation. The second ingredient is showing that after Θ(log n) iterations, with high
probability, all paths are merged into a single Hamiltonian path.

5 We note that although the graph is undirected, we keep an orientation on the edges of the paths of the
path cover (so the obtained paths are directed).
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For the first ingredient of the analysis, we define the notion of being a good path. Roughly
speaking, a path is good if there are sufficiently many edges connecting its endpoints to
vertices of other paths (the actual definition is more cumbersome than this, but this is
essentially the property that we need). This property guarantees that any good path has
many options for merging into other paths. In particular, the number of options is linear in
the size of the current path cover (Lemma 14). We use this fact to show that, on any fixed
iteration, a good path receives a useful reservation with constant probability (Claim 15).

Finally, we prove that there are sufficiently many good paths. Recall that at the beginning
of each iteration, the paths are paired. In the algorithm analysis, we prove that for each one
of the pairs of paths, (P, Q), that were not merged in the first phase, either P or Q are good
with respect to the current path-cover. We then show that consequently, this guarantees
that with constant probability, a constant fraction of these paths will be merged into other
paths in the second phase of the algorithm.

1.3 Adaptation of the Algorithm for ORE and RK Graphs
Since the family of RK graphs contains Ore graphs we, from now on, focus on RK graphs.
We begin by proving some structural properties of RK graphs. One of these properties is that
the vertices in RK graphs can be partitioned into 3 sets A, C, and H where all the vertices in
H satisfy Dirac’s condition and the subgraph induced on each one of the sets A and C, form
a clique. This structure allows us to perform as in the algorithm for Dirac graphs with the
only difference that at the beginning of each iteration, we get rid of (almost) all the paths in
which one endpoint is not in H . Another technicality that we need to handle is the fact that
our algorithm for Dirac graphs uses spanning trees to manage the communication within
the different paths in the path cover. In RK graphs these spanning trees may not span the
entire respective paths. However, we show that with a slight adaptation, it is possible to
maintain communication within the paths while adding only a constant factor blow-up in
the round complexity.

1.4 Related Work
Parallel Algorithms

As mentioned above, Dahlhaus et al. [10] gave a O(log4 n) CREW-PRAM algorithm that
uses a linear number of processors to find a Hamiltonian cycle in Dirac graphs. Another
generalization of Dirac graphs are Chvátal graphs. A graph is called a Chvátal graph if its
degree sequence d1 ≤ d2 ≤ · · · ≤ dn satisfies that for every k < n/2, dk ≤ k implies that
dn−k ≥ n− k. Chvátal proved (see e.g., [3]) that Chvátal graphs are also Hamiltonian. In [6]
a sequential polynomial time algorithm that finds Hamiltonian cycles in Chvátal graphs has
been shown. Sárközy [23] proved that a deterministic O(log4 n) time EREW-PRAM algorithm
with a polynomial number of processors that finds a Hamiltonian cycle in a η-Chvátal graphs
exists. A graph is called η-Chvátal graphs if for every k < n/2, dk ≤ min{k + ηn, n/2}, it
holds that dn−k−ηn ≥ n− k, where 0 < η < 1.

Distributed Algorithms with a Promise

It is known that a random G(n, p) graph contains w.h.p. a Hamiltonian cycle if p is at
least (log n + log log n + t(n))/n, for any divergent function t(n) [4]. Thus for any such
p, the problem of deciding whether the graph is Hamiltonian becomes trivial; however,
finding the Hamiltonian path or cycle, in this case, is still non-trivial. The problem of
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finding a Hamiltonian cycle in the distributed setting was initially studied by Levy et al. [16]
that provided an upper bound whose round complexity is O(n3/4+ϵ) that w.h.p. finds a
Hamiltonian cycle given that p = ω(

√
log n/n1/4). Thereafter, other upper bounds were

designed in the CONGEST model (in which the message size is bounded) for dealing with
various ranges of p, as described next. The algorithm of Chatterjee et al. [8] works for
p ≤ c ln n

nδ , (0 < δ ≤ 1) and finds a Hamiltonian cycle w.h.p. in Õ(nδ) rounds. For p in
Ω̃(1/

√
n), Turau [24], provides an algorithm that finds w.h.p. a Hamiltonian cycle in O(log n)

rounds. More recently, Ghaffari and Li [13] showed the existence of a distributed algorithm
for finding a Hamiltonian cycle, w.h.p., in G(n, d) for d = C log n whose round complexity is
2O(
√

log n), where C is a sufficiently large constant.

Lower Bounds in the CONGEST Model

It is well known that certain properties can not be decided in the CONGEST model in a
number of rounds which is o(n2) [21]. As mentioned above, Bachrach et al. [1] proved a
lower bound of Ω̃(n2) rounds for various problems in the CONGEST model, including Testing
Hamiltonicity in general graphs.

1.5 Comparison with the Algorithm of Dahlhaus et al. [10]

As mentioned above, our algorithm builds on ideas from the algorithm of Dahlhaus et al. [10]
for finding a Hamiltonian path in Dirac’s graphs. Their algorithm also proceeds in iterations
such that at each iteration it first performs cycle merges, then it performs concatenation
merges and finally, it performs elementary merges. However, the specific structure of their
algorithm and how these merges are selected are quite different from our algorithm.

We shall demonstrate several structural differences without going into all the details of
their algorithm (which is more involved than our algorithm). These differences serve us
in obtaining an improved round complexity and a simpler algorithm. Thereafter we shall
emphasize the specific differences that arise from the fact that our algorithm works in the
CONGEST model rather than the PRAM model.

The first structural difference is that on each iteration, before their algorithm turns into
performing elementary merges it first has to exhaust most of the cycle merges, which requires
an inner loop of Θ(log n) steps and thereafter it exhausts most of the concatenation merges
by executing a special subroutine of Israeli and Shiloach [14] which returns both a vertex
cover and an approximated maximum matching.

This subroutine is executed twice. One time on the subgraph induced on the endpoints
of the paths in the path cover and another time on an auxiliary graph where on one side we
have the set of paths and on the other side we have the set of edges composing the paths.

The reason that their algorithm exhausts the three types of merges in phases is that the
progress of each phase relies on the exhaustion of the merges of the previous step.

For comparison, per iteration, our algorithm performs only one step of cycle merges
and then one step in which both concatenation and elementary merges are performed
simultaneously. We prove that this is sufficient to make enough progress per iteration.

Another difference is that in their algorithm, at the beginning of each iteration, every
path is classified into one of two types. We are able to avoid this classification altogether
and use a somewhat different classification only in the analysis.

We next list several challenges that arise specifically in the CONGEST model and in
particular do not allow us to easily translate the algorithm of [10] into the CONGEST model.
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The first problem is that we do not have shared memory among the processors so how
can we efficiently merge even a pair of paths? To this end, our algorithm maintains spanning
trees, of depth 2, on each one of the paths in the constructed path cover. Therefore, initially,
we have a linear (in n) number of spanning trees (and this number decreases as the algorithm
progresses). We show that each edge participates in at most 2 different spanning trees
and so communication within vertices of the same path can be maintained without causing
congestion.

Another problem is concerned with elementary merges. Consider a path cover P and an
edge (u, v) on a path P ∈ P. An elementary merge of a path Q into P can be performed
via (u, v) only if one endpoint of Q is adjacent to u and the other is adjacent to v. However,
there might be many endpoints that are adjacent to u or v, so how can we find the set of
paths that can be merged via (u, v) into P without communicating too much between u and
v? As mentioned above, we show that we don’t have to find this set. Specifically, we show
that when u reserves the edge (u, v) to an endpoint that is adjacent to u, picked uniformly at
random, then every path receives a useful reservation with constant probability. We remark
that in this case, we rely on the randomness of our algorithm while the algorithm of [10] is
deterministic.

Finally, we want to avoid long sequences of merges so we won’t have to deal with long
sequences of updates. To this end, we use the coin tosses of the vertices and perform merge
operations only if they agree with the orientation defined by the coin tosses. As described
above, this is also useful for avoiding conflicting merges. Consequently, the merges can be
carried out simultaneously with very little and local coordination.

2 Paths-Merge Types and Paths Classification

Notation

Let G = (V, E) be an undirected simple graph, where V is the vertex set, and E ⊆ {{u, v} |
u, v ∈ V } is the edge set. Let n denote |V | and let m denote |E|. For a path P = (u1, . . . , uℓ),
we denote by V (P ) the vertex set of P , i.e., V (P ) ≜ {u1, . . . , uℓ}. For v ∈ V , let N(v) denote
the neighbors set of v in G, that is N(v) = {u ∈ V | {v, u} ∈ E}. Let d(v) denote the degree
of v, i.e, d(v) = |N(v)|. For a pair of vertices u and v, let δ(u, v) denote the length of a
shortest path between u and v. We say that a set of paths in G, {Pi}k−1

i=0 , is a path-cover of
G if its union covers the vertex set of G, that is, if

⋃k−1
i=1 V (Pi) = V (G). For a path P in G,

let dP (v) denote the number of neighbours of v in P . For a path P = (u, . . . , v), we refer to
the vertices u and v as the endpoints of P .

Path Merging Types

Through the course of the algorithm’s execution, the algorithm performs three kinds of path
merging depending on the paths at hand: an elementary merge, a concatenation, and cycle
merging (see Figure 1). These merge operations are defined as follows.

▶ Definition 3 (Elementary merge [10]). Let P = (u1, . . . , uℓ) and Q = (v1, . . . , vm) be two
disjoint paths. If {u1, vi}, {uℓ, vi+1} ∈ E, then (v1, . . . , vi, u1, . . . , uℓ, vi+1, . . . , vm) is a path.
If {u1, vi+1}, {uℓ, vi} ∈ E, then (v1, . . . , vi, uℓ, . . . , u1, vi+1, . . . , vm) is a path. In either case,
we say that we merged P into Q along the edge {vi, vi+1}. We call this step an elementary
merging operation.

MFCS 2023



19:8 Dist. CONGEST Alg. for Finding Ham. Paths in Dirac Graphs and Generalizations

v1
vi

vi+1

vm

uℓu1

P

Q

(a) elementary merge operation.

u1

uℓ

v1

vm
P Q

(b) concatenation merge operation.

DC

(c) cycle merge operation.

Figure 1 Path merging types.

▶ Definition 4 (Concatenation [10]). Let P = (u1, . . . , uℓ) and Q = (v1, . . . , vm) be two
disjoint paths. If there is an edge connecting an endpoint of P (either u1, or uℓ) and an
endpoint v ∈ {v1, vm} of Q, then we can use any of these edges to concatenate P and Q and
say that we concatenated P to Q along vertex v. We call this operation a concatenation.

▶ Definition 5 (Cycle Merging [10]). Let C and D be two disjoint cycles. If there is an edge
connecting a vertex from C and a vertex from D, we can use this edge to get a path that
passes through all the vertices of C and D. We call this operation a cycle merging.

Paths Classification

For the sake of the analysis of the algorithm we classify the paths that the algorithm maintains
as sociable paths (à la Dahlhaus et al. [10]) or as cycled paths, as follows.

▶ Definition 6 ([10]). Let P = (u, . . . , v) be a path in a graph G. We say that the path P is
sociable if dP (u) + dP (v) + 1 ≤ |V (P )|.

▶ Definition 7 (Cycled Path). Let P = (u1, . . . , uℓ) be a path in a graph G. We say that the
path P is cycled if {u1, uℓ} ∈ E or if there exists an edge of P , {ui, ui+1} such that both
{u1, ui+1}, {ui, uℓ} ∈ E.

It is easy to see that if a path P is cycled, then the subgraph induced on V (P ) is Hamiltonian.
We shall use the following basic claim, the proof of which is deferred to the full version.

▷ Claim 8. Let P = (u1, . . . , uℓ) be a path that is not cycled. Then P is sociable.

3 The Algorithm

In this section, we list our distributed algorithm (see Algorithm 1) without giving all the
details of implementation. We then prove its correctness in Section 4 and in the full version
we discuss in more detail how the algorithm is implemented in the CONGEST model. We
establish the following theorem.

▶ Theorem 1. There exists a distributed algorithm for computing a Hamiltonian cycle in
Dirac graphs that runs in O(log n) rounds in the CONGEST model. The algorithm succeeds
with high probability.

3.1 Listing of the Distributed Algorithm
Our algorithm begins with finding an initial path-cover of the graph in which each path is
of length at least 2, denoted by P0. Then the algorithm proceeds in Θ(log n) iterations (in
which the size of the path-cover decreases by a constant fraction with constant probability).
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uj
uj+1

Q

P

v1 vℓ

(a) The vertex uj reserves the edge {uj , uj+1} for
v1 (an endpoint of Q). However, {uj , uj+1} is non-
useful for Q since vℓ (the other endpoint of Q) is
not connected with an edge to uj+1.

uj
uj+1

Q

P

v1 vℓ

(b) The vertex uj reserves the edge {uj , uj+1} for
v1 (an endpoint of Q). The edge {uj , uj+1} is useful
for Q since vℓ is connected with an edge to uj+1 and
so Q can be merged into P via {uj , uj+1}.

Figure 2 Useful versus non-useful reservations.

We denote the path-cover at the beginning of the i-th iteration by Pi. At the beginning
of each iteration, the paths in Pi are partitioned into pairs. Each pair of paths (P, Q) such
that P and Q are connected with an edge, and both P and Q are cycled are merged (Step 5).
We denote by Pa

i the resulting path-cover.
Thereafter, each edge and endpoint of a path in Pa

i reserves itself to an endpoint of
another path in Pa

i , which is picked uniformly at random.
Then, each path P in the path-cover selects out of the elements that were reserved to

it (i.e., either an edge or an endpoint) a single element, ℓ, such that P can be merged to
another path via ℓ (we refer such elements as useful for P ).

Each path, P , tosses a random fair coin, yP . Next, all the merges are performed
simultaneously where a path P is merged via its selected element, ℓ, to a path Q only if
yP = tails and yQ = heads.

▶ Remark 9. When a path P is merged to a path Q where yP = tails and yQ = heads, the
orientation of Q is kept, and the orientation of P may be reversed to maintain consistency
with the orientation of Q. For example, if P = (y1, . . . , yℓ) is merged to Q via {u, v} where
the orientation of {u, v} is from u to v and y1 is connected to v and yℓ is connected to u

then the orientation of P is reversed after the merge.

4 Correctness of the Algorithm

In this section, we prove the correctness of our algorithm.
We begin by giving a lower bound on the number of possible merges for each path in the

path-cover. We then use this bound to give a lower bound on the expected number of merges
carried out in each iteration. Finally, we prove that with high probability after Θ(log n)
iterations, all paths are merged into a single path. Some of the proofs are deferred to the full
version.

4.1 Number of Possible Merges for Good Paths

In this section, we provide the proof of Lemma 11 which gives a lower bound on the number
of possible ways a path P can be merged into a path Q. We then define the notion of good
paths (Definition 13). Roughly speaking, a path is good if its endpoints are neighbors of
sufficiently many vertices that belong to other paths in the path cover. Thereafter, we use
Lemma 11 to give a lower bound on the total number of ways a good path, P , can be merged
into any other path in the path-cover (Lemma 14).
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Algorithm 1 Finding a Hamiltonian path in a Dirac graph.

Input: A Dirac graph G = (V, E).
Invariant: The algorithm maintains a path-cover Pi for every i ≥ 0. The path-cover

Pi+1 is computed from Pi via elementary merges, cycle merges and
concatenation merges operations.

Output: PΘ(log n) is a Hamiltonian path. w.h.p. // For the exact constant within

the Θ notation we refer the reader to Lemma 18.

1 Compute a path-cover, P0 in the graph such that each path is of size at least 2.
2 for i← 0 to ℓ = Θ(log n) do
3 Pair all paths (except for at most one) and let Ii denote the set of these pairs of

paths.
4 Let Li ⊆ Ii denote the set of paired paths that have an edge between them and

for which both paths are cycled.
5 Perform cycle merges on all pairs in Li. // see Definition 5

6 Let Pa
i denote the current path-cover

7 For every v ∈ V let Di(v) denote the subset of endpoints of paths in Pa
i , u, such

that {u, v} ∈ E

8 for every P ∈ Pa
i where P = (u1, . . . , uℓ) do

9 Every uj for j ∈ {1, . . . , ℓ− 1} picks an endpoint v u.a.r. from Di(uj) and
reserves the edge (uj , uj+1) for v.

10 Additionally, each endpoint of P , v, reserves itself to an endpoint which is
picked u.a.r. from Di(v).

11 yP ←

{
heads, w.p. 1/2,

tails, o.w.
.

12 Mi ← ∅
13 for every P ∈ Pa

i do
14 We say that an endpoint or an edge, x, is useful for P (w.r.t. Pa

i ) if P can be
concatenated or merged along x to another path in Pa

i .
15 Let Si(P ) denote the set of elements reserved for the endpoints of P in

Steps 8-10 which are also useful for P .
16 P picks arbitrarily one of the elements in Si(P ) (assuming it is not empty)

and adds it to Mi.
17 Perform concatenation merges and elementary merges with accordance to Mi and

the yP variables: a path P1 merges into a path P2 if there is a corresponding
merge operation in Mi and if yP1 = tails and yP2 = heads. // see

Definitions 3, 4

18 return Pℓ.

Let P = (u, . . . , v) and Q = (a, . . . , b) be disjoint paths in G. Let M(P, Q) denote the
number of edges along which one can merge P into Q via elementary merging plus the number
of vertices along which one can concatenate P to Q (see Definitions 3 and 4, respectively).
Let d(P, Q) denote the number of endpoints of Q connected with an edge to an endpoint
of P .

We begin with extending the following lemma from [10].

▶ Lemma 10 (Lemma. 5.2.5 [10], restated). Let P = (u, . . . , v) and Q be disjoint paths in G.
If d(P, Q) = 0, then the number of edges along which one can merge P into Q via elementary
merging operations is at least dQ(u) + dQ(v)− |V (Q)|+ 1.



N. Biton, R. Levi, and M. Medina 19:11

To achieve better round complexity, our algorithm performs concatenation and elementary
merges simultaneously. To this end, we prove the following lemma, which extends Lemma 10
so that it also applies to cases where d(P, Q) > 0.

▶ Lemma 11. Let P = (u, . . . , v) and Q = (a, . . . , b) be disjoint paths in G such that
|V (P )|, |V (Q)| ≥ 2. Then,

M(P, Q) ≥ dQ(u) + dQ(v)− |V (Q)|+ 1 . (1)

We next give a lower bound on the number of merging operations which applies for a
subset of paths in the path cover. We shall use the following definition.

▶ Definition 12. Let P be a path cover and let A(P) denote the set of paths, P = (u, . . . , v),
in P such that there exists a path P ′ ∈ P for which |V (P ′)| ≥ |V (P )| and dP ′(u)+dP ′(v) = 0.

In words, A(P) is the set of paths, P ∈ P for which there exists another path, P ′ ∈ P , which
is not shorter than P and for which the endpoints of P are not adjacent to any of the vertices
composing P ′. We next define the notion of good path.

▶ Definition 13 (good path). Let P be a path cover. A path P ∈ P is good (w.r.t. P) if it
is sociable or in A(P).

The following lemma gives a lower bound on the number of merging operations for any
path which is good. In the proof of the lemma, we extend ideas from Corollary 5.2.6 and
Lemma 5.2.7 of Dahlhaus et al. [10]. Our extension allows us to drop the stringent requirement
of Dahlhaus et al. [10] that the endpoints of P are not adjacent to endpoints of any other
path in the path cover. This allows us to support the execution of both concatenations and
elementary merging operations simultaneously.

▶ Lemma 14. Let P be a path-cover of G. For P ∈ P define M(P ) def=
∑

Q∈P\{P } M(P, Q).
Then, for every good path, P ∈ P it holds that M(P ) ≥ |P|.

4.2 Expected Number of Merges
In this section, we prove Claim 16 which states that the expected number of merges of each
iteration is sufficiently large.

More specifically, for a fixed iteration i, we prove that if the number of cycle-merges
performed at Step 5 is below some threshold (specifically if |Li| ≤ |Pi|/12), then the expected
size of Mi (the set of concatenation merges and elementary merges added in Step 16) is a
constant fraction of the size of Pi. We first prove the following claim which gives a lower
bound on the probability that a good path receives a useful reservation.

▷ Claim 15. Fix an iteration i. For any P which is good with respect to A(Pa
i ), it holds

that P receives a useful reservation for at least one element with probability at least 1/3.

Proof. Fix an iteration i and let P be a good path with respect to A(Pa
i ). Let F denote

the set of edges and endpoints that P can be merged to (see Definitions 3, 4) in Pa
i . By

Lemma 14, it holds that |F | ≥ |Pa
i |. Let x = 2|Pa

i | denote the total number of endpoints
of paths in Pa

i . Since every edge and endpoint in F is reserved for P with a probability of
at least 1/x, the probability that P received at least one reservation of an element in F is
at least 1− (1− 1/x)|F |. since (1− 1/x)|F | ≤ (1− 1/(2|Pa

i |))|Pa
i | ≤ 1/

√
e, it holds that this

probability is at least 1/3. ◁
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▷ Claim 16. If Li ≤ |Pi|/12 then E(|Mi| | Pi) ≥ |Pi|/36.

Proof. We first observe that in every pair (P, Q) ∈ Ii \ Li at least one path is good with
respect to Pa

i . To see this, observe that there are two cases. The first case is that P and
Q are not connected with an edge. This implies that at least one of them is in A(Pa

i ) The
second case is that at least one of them is not cycled, which by Claim 8 implies that at least
one of them is sociable, as desired. We next lower bound the number of pairs in Ii \ Li.
Since the number of pairs is at least (|Pi| − 1)/2 ≥ |Pi|/4 and |Li| < |Pi|/12 it holds that
|Ii \ Li| ≥ |Pi|/4− |Pi|/12 = |Pi|/6.

Therefore, by Claim 15, the expected size of merges that are added to Mi is at least
|Ii \ Li|/2 · (1/3) ≥ |Pi|/36, as required. ◁

4.3 The Progress of Each Iteration
In this section, we prove the following lemma.

▶ Lemma 17. For any iteration i of Algorithm 1 it holds that E(|Pi+1|) ≤ (1−1/144)·E(|Pi|).

Proof. Fix an iteration i. If Li ≥ |Pi|/12 then at least |Pi|/12 paths of Pi are merged and
so |Pi+1| ≤ (1− 1/12)|Pi|, as desired.

Otherwise, by Claim 16, E(|Mi|) ≥ |Pi|/36. Consider a merge operation in Mi in which
path P is merged into path Q. This merge is carried in Step 17 only if yP = tails and
yQ = heads, which happens with probability 1/4. We denote these merge operations by M ′

i ,
hence E(|M ′

i |)| ≥ Pi|/(36 · 4) = |Pi|/144. Moreover, since |Pi+1| ≤ |Pi| − |M ′
i | (recall that

merges can occur before Step 17), it follows that E(|Pi+1| | Pi) ≤ |Pi| − E(|M ′
i | | Pi) ≤

(1− 1/144) · |Pi|.
The lemma follows since

E(|Pi+1|) =
∑
Pi

Pr(Pi) ·E(|M ′
i | | Pi) ≤

∑
Pi

Pr(Pi) ·(1−1/144) · |Pi| = (1−1/144) ·E(|Pi|) ,

as required. ◀

4.3.1 Number of Iterations
In this section, we prove that if the for-loop in Step 2 of Algorithm 1 performs Θ(log n)
iterations, then the path that is returned at the end of the algorithm is Hamiltonian w.h.p.

We note that, although the algorithm uses independent coin tosses between different
iterations, the success of two different iterations are random variables that may be dependent.
Therefore we cannot use concentration bounds that assume the independence of the random
variables (such as Chernoff’s bound). Roughly speaking, the dependence comes from the fact
that the constructed path cover depends on the coin tosses of previous iterations. Nonetheless,
we can show that Θ(log n) iterations are sufficient.

The proof of our main theorem (Theorem 1) follows directly from the following lemma.

▶ Lemma 18. The path returned in Step 18 is Hamiltonian w.h.p.

Proof. Lemma 17 and the fact that |P0| ≤ n imply that

E(|Pℓ|) ≤ (1− 1/144)ℓ · E(|P0|) ≤ (1− 1/144)ℓ · n .

It follows that for ℓ ≥ 2
log2(144/143) · log2 n, it holds that E(|Pℓ|) ≤ 1

n .
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Thus, by Markov’s Inequality, it follows that the probability that the Algorithm fails is

Pr(|Pℓ| > 1) ≤ E(|Pℓ|)
1 ≤ 1

n
,

as required. ◀
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Abstract
Semiring semantics of first-order logic generalises classical Boolean semantics by permitting truth
values from a commutative semiring, which can model information such as costs or access restrictions.
This raises the question to what extent classical model-theoretic properties still apply, and how this
depends on the algebraic properties of the semiring.

In this paper, we study this question for the classical locality theorems due to Hanf and Gaifman.
We prove that Hanf’s locality theorem generalises to all semirings with idempotent operations,
but fails for many non-idempotent semirings. We then consider Gaifman normal forms and show
that for formulae with free variables, Gaifman’s theorem does not generalise beyond the Boolean
semiring. Also for sentences, it fails in the natural semiring and the tropical semiring. Our main
result, however, is a constructive proof of the existence of Gaifman normal forms for min-max and
lattice semirings. The proof implies a stronger version of Gaifman’s classical theorem in Boolean
semantics: every sentence has a Gaifman normal form which does not add negations.
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1 Introduction

Originally motivated by provenance analysis in databases (see e.g. [18, 12] for surveys),
semiring semantics is based on the idea to evaluate logical statements not just by true or false,
but by values in some commutative semiring (K,+, ·, 0, 1). In this context, the standard
semantics appears as the special case when the Boolean semiring B = ({⊥,⊤},∨,∧,⊥,⊤)
is used. Valuations in other semirings provide additional information, beyond truth or
falsity: the tropical semiring T = (R∞

+ ,min,+,∞, 0) is used for cost analysis, the natural
semiring N = (N,+, ·, 0, 1) for counting evaluation strategies and proofs, and the Viterbi-
semiring V = ([0, 1]R,max, ·, 0, 1) models confidence scores. Finite or infinite min-max
semirings (K,max,min, a, b) can model, for instance, different access levels to atomic data
(see e.g. [10]); valuations of a first-order sentence ψ in such security semirings determine
the required clearance level that is necessary to access enough information to determine
the truth of ψ. Further, semirings of polynomials or formal power series permit us to track
which atomic facts are used (and how often) to establish the truth of a sentence in a given
structure, and this has applications for database repairs [26] and also for the strategy analysis
of games [17, 14]. Semiring semantics replaces structures by K-interpretations, which are
functions π : LitA(τ) → K, mapping fully instantiated τ -literals φ(a) over a universe A to
values in a commutative semiring K. The value 0 ∈ K is interpreted as false, while all other
values in K are viewed as nuances of true or, perhaps more accurately, as true, with some
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20:2 Locality Theorems in Semiring Semantics

additional information. In provenance analysis, this is sometimes referred to as annotated
facts. The value 1 ∈ K is used to represent untracked information and is used in particular
to evaluate true equalities and inequalities.

The development of semiring semantics raises the question to what extent classical
techniques and results of logic extend to semiring semantics, and how this depends on the
algebraic properties of the underlying semirings. Previous investigations in this direction
have studied, for instance, the relationship between elementary equivalence and isomorphism
for finite semiring interpretations and their definability up to isomorphism [15], Ehrenfeucht-
Fraïssé games [7], and 0-1 laws [13].

The purpose of this paper is to study locality in semiring semantics. Locality is a
fundamental property of first-order logic in classical semantics and an important limitation
of its expressive power. It means that the truth of a first-order formula ψ(x) in a given
structure only depends on a neighbourhood of bounded radius around x, and on the existence
of a bounded number of local substructures. Consequently, first-order logic cannot express
global properties such as connectivity or acyclicity of graphs. On graphs there are natural
and canonical notions of the distance between two points and of a neighbourhood of a given
radius around a point. To define these notions for an arbitrary relational structure A one
associates with it its Gaifman graph G(A) = (A,E) where two points a ̸= b are adjacent if,
and only if, they coexist in some atomic fact. There exist several notions of locality; the
most common ones are Hanf locality and Gaifman locality, and the fundamental locality
theorems for first-order logic are Hanf’s locality theorem and Gaifman’s normal form theorem.
In a nutshell, Hanf’s theorem gives a criterion for the m-equivalence (i.e. indistinguishability
by sentences of quantifier rank up to m) of two structures based on the number of local
substructures of any given isomorphism type, while Gaifman’s theorem states that every
first-order formula is equivalent to a Boolean combination of local formulae and basic local
sentences, which has many model-theoretic and algorithmic consequences. We shall present
precise statements of these results in Sect. 3 and Sect. 4.

Locality thus provides powerful techniques, also for logics that go beyond first-order logic
by counting properties, generalised quantifiers, or aggregate functions, [1, 21, 22, 23]. It has
applications in different areas including low-complexity model-checking algorithms [19, 20],
approximation schemes for logically defined optimisation problems [8], automata theory [25],
computational issues on database transactions [2], and most recently also in learning theory,
for the efficient learning of logical concepts [3, 5, 4]. This motivates the question, whether
locality is also applicable in semiring semantics. The relevant semiring interpretations in this
context are model-defining, which means that for any pair of complementary literals Ra,¬Ra
precisely one of the values π(Ra), π(¬Ra) is 0, and track only positive information which
means that π(¬Ra) can only take the values 0 or 1. Model defining interpretations π define a
unique structure Aπ and we thus obtain a well-defined Gaifman graph G(π) := G(Aπ), with
the associated notions of distance and neighbourhoods. The assumption that only positive
information is tracked is necessary to get meaningful locality properties (see Sect. 2).

We clearly cannot generalise all known locality properties of first-order logic to semiring
semantics in arbitrary commutative semirings. On semirings whose operations are not
idempotent, we cannot expect a Gaifman normal form, since for computing the value of a
quantified statement, we have to add or multiply values of subformulae for all elements of
the structure, which gives an inherent source of non-locality. As a consequence, some of the
locality results that we prove hold only under certain algebraic assumptions on the semiring,
and further there turns out to be a difference of the locality properties of sentences and those
of formulae with free variables. We shall establish the following results.
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(1) First-order formulae are Hanf-local for all semirings.
(2) Hanf’s locality theorem generalises to all fully idempotent semirings (in which both

addition and multiplication are idempotent).
(3) For formulae with free variables, Gaifman’s normal form theorem does not generalise

beyond the Boolean semiring.
(4) For sentences, Gaifman’s normal form theorem also fails in certain important semirings

such as the natural semiring and the tropical semiring.
(5) Over min-max semirings (and even lattice semirings), every first-order sentence has a

Gaifman normal form.
(6) In classical Boolean semantics, every sentence has a Gaifman normal form which does

not introduce new negations.

The results (1), (2) on Hanf locality (Sect. 3) are proved by adaptations of the arguments
for the Boolean case. The results (3) and (4) are established in Sect. 5 via specific examples
of formulae that defeat locality, using simple algebraic arguments. The most ambitious result
and the core of our paper is (5), a version of Gaifman’s theorem for min-max semirings
(Sect. 6), which we later generalise to lattice semirings (Sect. 7). It requires a careful choice
of the right syntactical definitions for local sentences and, since the classical proofs in [11, 9]
do not seem to generalise to semiring semantics, a new approach for the proof, based on
quantifier elimination. This new approach also leads to a stronger version of Gaifman’s
theorem in Boolean semantics (6), which might be of independent interest.

2 Semiring Semantics

This section gives a brief overview on semiring semantics of first-order logic (see [16] for more
details) and the relevant algebraic properties of semirings. A commutative1 semiring is an
algebraic structure (K,+, ·, 0, 1) with 0 ̸= 1, such that (K,+, 0) and (K, ·, 1) are commutative
monoids, · distributes over +, and 0 · a = a · 0 = 0. We focus on semirings that are naturally
ordered, in the sense that a ≤ b :⇔ ∃c(a+ c = b) is a partial order. For the study of locality
properties, an important subclass are the fully idempotent semirings, in which both operations
are idempotent (i.e., a+ a = a and a · a = a). Among these, we consider in particular all
min-max semirings (K,max,min, 0, 1) induced by a total order (K,≤) with minimal element
0 and maximal element 1, and the more general lattice semirings (K,⊔,⊓, 0, 1) induced by a
bounded distributive lattice (K,≤).

For a finite relational vocabulary τ and a finite universe A, we write LitA(τ) for the set
of instantiated τ -literals Ra and ¬Ra with a ∈ Aarity(R). Given a commutative semiring K,
a K-interpretation (of vocabulary τ and universe A) is a function π : LitA(τ) → K. It is
model-defining if for any pair of complementary literals L, ¬L precisely one of the values
π(L), π(¬L) is 0. In this case, π induces a unique (Boolean) τ -structure Aπ with universe A
such that, for every literal L ∈ LitA(τ), we have that Aπ |= L if, and only if, π(L) ̸= 0.

A K-interpretation π : LitA(τ) → K extends in a straightforward way to a valuation
π[[φ(a)]] of any instantiation of a formula φ(x) ∈ FO(τ), assumed to be written in negation
normal form, by a tuple a ⊆ A. The semiring semantics π[[φ(a)]] is defined by induction.
We first extend π by mapping equalities and inequalities to their truth values, by setting
π[[a = a]] := 1 and π[[a = b]] := 0 for a ̸= b (and analogously for inequalities). Further,
disjunctions and existential quantifiers are interpreted as sums, and conjunctions and universal
quantifiers as products:

1 In the following, semiring always refers to a commutative semiring.
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π[[ψ(a) ∨ ϑ(a)]] := π[[ψ(a)]] + π[[ϑ(a)]] π[[ψ(a) ∧ ϑ(a)]] := π[[ψ(a)]] · π[[ϑ(a)]]

π[[∃xϑ(a, x)]] :=
∑
a∈A

π[[ϑ(a, a)]] π[[∀xϑ(a, x)]] :=
∏
a∈A

π[[ϑ(a, a)]].

Since negation does not correspond to a semiring operation, we insist on writing all formulae
in negation normal form. This is a standard approach in semiring semantics (cf. [16]).
Equivalence of formulae now takes into account the semiring values and is thus more fine-
grained than Boolean equivalence.

▶ Definition 1 (≡K). Two formulae ψ(x), φ(x) are K-equivalent (denoted ψ ≡K φ) if
π[[ψ(a)]] = π[[φ(a)]] for every model-defining K-interpretation π (over finite universe) and
every tuple a. For a class S of semirings, we write ψ ≡S φ if ψ ≡K φ holds for all K ∈ S.

Towards locality properties, we define distances between two elements a, b in a K-
interpretation π based on the induced structure Aπ.

▶ Definition 2 (Gaifman graph). The Gaifman graph G(π) of a model-defining K-interpre-
tation π : LitA(τ) → K is defined as the Gaifman graph G(Aπ) of the induced τ -structure.
That is, two elements a ̸= b of A are adjacent in G(Aπ) if, and only if, there exists a positive
literal L = Rc1 . . . cr ∈ LitA(τ) such that π(L) ̸= 0 and a, b ∈ {c1, . . . cr}.

We write d(a, b) ∈ N for the distance of a and b in G(π). We further define the r-
neighbourhood of an element a in π as Bπ

r (a) := {b ∈ A : d(a, b) ≤ r}. For a tuple a ∈ Ak

we put Bπ
r (a) :=

⋃
i≤k B

π
r (ai).

Locality properties are really meaningful only for semiring interpretations π : LitA(τ) → K

that track only positive information, which means that π(¬L) ∈ {0, 1} for each negative
literal ¬L. Indeed, if also negative literals carry non-trivial information, then either these
must be taken into account in the definition of what “local” means, which will trivialise the
Gaifman graph (making it a clique) so locality would become meaningless, or otherwise local
information no longer suffices to determine values of even very simple sentences involving
negative literals, such as ∃x∃y¬Rxy. We therefore consider here only K-interpretations over
finite universes which are model-defining and track only positive information.

3 Hanf Locality

The first formalisation of locality that we consider is Hanf locality. We present generalisations
of both the Hanf locality rank and of Hanf’s locality theorem, where the latter is conditional
on algebraic properties of the semirings. One point that requires care in the adaptation of
the classical proofs (cf. [9, 24]) is the combination of partial isomorphisms on disjoint and
non-adjacent neighbourhoods. In the setting of semiring semantics, this depends on the
assumption that K-interpretations only track positive information.

▶ Lemma 3. Let πA and πB be model-defining K-interpretations that track only positive
information. Let σ : BπA

r (a) → BπB
r (b) and σ′ : BπA

r (a′) → BπB
r (b′) be two partial isomorph-

isms between disjoint r-neighbourhoods in πA and πB. If d(a, a′) > 2r+1 and d(b, b′) > 2r+1,
then (σ ∪ σ′) : BπA

r (a, a′) → BπB
r (b, b′) is also a partial isomorphism.

In classical Boolean semantics, a formula ψ(x) is Hanf-local with Hanf locality rank r, if
for any two tuples a in A and b in B we have the equivalence that A |= ψ(a) ⇔ B |= ψ(b)
whenever there is a bijection f : A → B such that the r-neighbourhoods BA

r (a, c) and
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BA
r (b, f(c)) are isomorphic for all c ∈ A. It is known that every first-order formula is Hanf-

local, with locality rank depending only on the quantifier rank. The proof of this fact [24]
relies on an inductive argument which, from given bijections between (3r+1)-neighbourhoods
of k-tuples, builds bijections between r-neighbourhoods of (k+ 1)-tuples. Based on Lemma 3,
the inductive argument can be adapted to semiring semantics to get the following result,
which does not assume any specific properties of the underlying semiring (for details, see [6]).

▶ Proposition 4 (Hanf locality in semiring semantics). Let K be an arbitrary semiring. For
every first-order formula φ(x), there exists r ∈ N, depending only on the quantifier rank of φ,
such that for all model-defining K-interpretations πA, πB that track only positive information,
and all tuples a, b we have that πA[[φ(a)]] = πB [[φ(b)]] whenever there is a bijection f : A → B

such that BπA
r (a, c) ∼= BπB

r (b, f(c)) for all c ∈ A.

A much more fundamental result is Hanf’s locality theorem which provides a sufficient
combinatorial criterion for the m-equivalence of two structures, i.e. for their indistinguishab-
ility by sentences of quantifier rank up to m. We follow the classical proof in [9], which
proceeds by showing that Hanf’s criterion admits the construction of a back-and-forth system
(Ij)j≤m which, by the Ehrenfeucht-Fraïssé theorem, implies the m-equivalence of the two
structures. It turns out that this method carries over to K-interpretations precisely in the
case that the semiring K is fully idempotent. We further show that for semirings that are
not fully idempotent, there actually are counterexamples to Hanf’s locality theorem.

To define back-and-forth systems between K-interpretations, first notice that the notion
of partial isomorphisms generalises in an obvious way to K-interpretations (cf. [6]).

▶ Definition 5 (Back-and-forth system). Let πA and πB be two K-interpretations and let
k ≥ 0. A m-back-and-forth system for πA and πB is a sequence (Ij)j≤m of finite sets of
partial isomorphisms between πA and πB such that

∅ ∈ Im, and
for all j < m, the set Ij+1 has back-and-forth extensions in Ij , i.e., whenever a 7→ b ∈ Ij+1
then for every c ∈ A there exists d ∈ B, and vice versa, such that (ac) 7→ (bd) is in Ij.

We write (Ij)j≤m : πA
∼=m πB if (Ij)j≤m is a m-back-and-forth system for πA and πB.

Back-and-forth systems can be seen as algebraic descriptions of winning strategies in
Ehrenfeucht-Fraïssé games, and in classical semantics, an m-back-and-forth system between
two structures exists if, and only if, the structures are m-equivalent. However, in semiring
semantics this equivalence may, in general, fail in both directions [7]. A detailed investigation
of the relationship between elementary equivalence, Ehrenfeucht-Fraïssé games, and back-and-
forth-systems in semiring semantics is outside the scope of this paper, and will be presented
in forthcoming work. For the purpose of studying Hanf locality, we shall need just the fact
that in the specific case of fully idempotent semirings, m-back-and-forth systems do indeed
provide a sufficient criterion for m-equivalence.

▶ Proposition 6. Let πA and πB be K-interpretations into a fully idempotent semiring K.
If there is an m-back-and-forth system (Ij)j≤m for πA and πB, then πA ≡m πB.

Proof. We show by induction that for every first-order formula ψ(x) of quantifier rank j ≤ m

and every partial isomorphism a 7→ b ∈ Ij we have that πA[[ψ(a)]] = πB[[ψ(b)]]. For j = 0
this is trivial. For the inductive case it suffices to consider formulae ψ(x) = ∃y φ(x, y) and
ψ(x) = ∀y φ(x, y), and a map a 7→ b ∈ Ij+1. We have that

MFCS 2023
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πA[[∃y φ(a, y)]] =
∑
c∈A

πA[[φ(a, c)]] and πB [[∃y ψ(b, y)]] =
∑
d∈B

πB [[φ(b, d)]],

πA[[∀y φ(a, y)]] =
∏
c∈A

πA[[φ(a, c)]] and πB [[∀y ψ(b, y)]] =
∏
d∈B

πB [[φ(b, d)]].

Since the semiring is fully idempotent, the valuations πA[[∃y φ(a, y)]] and πA[[∀y φ(a, y)]]
only depend on the set of all values πA[[φ(a, c)]] for c ∈ A, and not on their multiplicities. It
thus suffices to prove that the sets of values are identical for (πA, a) and (πB , b), i.e.

{πA[[φ(a, c)]] : c ∈ A} = {πB [[φ(b, d)]] : d ∈ B}.

But this follows immediately from the fact that a 7→ b has back and forth extensions in Ij ,
and from the induction hypothesis: for each c ∈ A there exists some d ∈ B, and vice versa,
such that the map (a, c) 7→ (b, d) is in Ij , and therefore πA[[φ(a, c)]] = πB [[φ(b, d)]]. ◀

To formulate Hanf’s criterion for K-interpretations πA, πB, we write πA ⇌r,t πB, for
r, t ∈ N, if for every isomorphism type ι of r-neighbourhoods, either πA and πB have the
same number of realisations of ι, or both have at least t realisations.

▶ Theorem 7 (Hanf’s theorem for fully idempotent semirings). Let K be a fully idempotent
semiring. For all m, ℓ ∈ N there exist r = r(m) ∈ N and t = t(m, ℓ) ∈ N such that for all
model-defining K-interpretations πA and πB that track only positive information and whose
Gaifman graphs have maximal degree ≤ ℓ, we have that πA ≡m πB whenever πA ⇌r,t πB.

Proof. Given m, ℓ ∈ N, let r0 = 0, inductively define ri+1 = 3ri + 1, and set r = rm−1.
Further, let t = m · e+ 1, where e := 1 + ℓ+ ℓ2 + · · · + ℓr is the maximal number of elements
in an r-neighbourhood of a point, in K-interpretations with Gaifman graphs with maximal
degree ℓ. Assume that πA and πB are K-interpretations with that property, such that
πA ⇌r,t πB .

We construct an m-back-and-forth system (Ij)j≤m for (πA, πB) by setting

Ij := {a 7→ b : |a| = |b| = m− j and BπA
rj

(a) ∼= BπB
rj

(b)}.

We have Im = {∅}, and since πA ⇌r,t πB, we have for every a ∈ A some b ∈ B, and vice
versa, such that BπA

r (a) ∼= BπB
r (b), so Im has back-and-forth extensions in Im−1. Consider

now a partial isomorphism a 7→ b in Ij+1. There is an isomorphism ρ : BπA
3rj+1(a) ∼= BπB

3rj+1(b).
By symmetry, it suffices to prove the forth-property: for every a ∈ A we must find some
b ∈ B such that aa 7→ bb ∈ Ij which means that BπA

rj
(aa) ∼= BπB

rj
(bb).

Case 1 (a close to a). If a ∈ Bπa
2rj+1(a), then we choose b = ρ(a) ∈ BπB

2rj+1(b). This is a
valid choice since BπA

rj
(aa) ⊆ BπA

3rj+1(a) so ρ also provides an isomorphism between BπA
rj

(aa)
and BπB

rj
(bb).

Case 2 (a far from a). If a ̸∈ Bπa
2rj+1(a), then BπA

rj
(a) ∩ BπA

rj
(a) = ∅. Hence, it suffices

to find b ∈ B such that BπB
rj

(b) has the same isomorphism type as BπA
rj

(a) (call this ι) with
the property that b has distance at least 2rj + 2 to b. Since πA and πB only track positive
information the isomorphisms can be combined by Lemma 3 to show that BπA

rj
(aa) ∼= BπB

rj
(bb).

Assume that no such b exists. Let s be the number of elements realising ι in πB . Since
all of them are have distance at most 2rj + 1 from b and there are at most t elements
in r-neighbourhoods around b, we have that s ≤ t. On the other side there are at least
s+ 1 elements realising ι in πA, namely s elements in BπA

2rj+1(a) (due to ρ) and a. But this
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contradicts the fact that ι either has the same number of realisations in πA and πB , or more
than t realisations in both interpretations. Hence such an element b exists, and we have
proved that (Ij)j≤m is indeed a m-back-and-forth system for (πA, πB).

By Proposition 6 this implies that πA ≡m πB . ◀

On the other side, we observe that Hanf’s locality theorem in general fails for semirings
with non-idempotent operations.

▶ Example 8 (Counterexample Hanf). Consider the natural semiring (N,+, ·, 0, 1) and
ψ = ∃xUx over signature τ = {U}. For each n, we define a model-defining K-interpretation
πn with universe {a1, . . . , an} by setting π(Uai) = 1 for all i. Then πn[[ψ]] =

∑
i π(Uai) = n.

As we only have unary predicates, all neighbourhoods are trivial. That is, they consist of
just one element and all of them have the same isomorphism type. Thus, πn realises this
single isomorphism type precisely n times, which means that πn ⇌r,t πt for all r, t with n ≥ t.
But πn[[ψ]] ̸= πt[[ψ]] for n ̸= t, so Hanf’s theorem fails for the natural semiring.

This example readily generalises to all semirings containing an element s ∈ K for which
there are arbitrarily large numbers n,m ∈ N with m · s ̸= n · s or sm ̸= sn (m · s and sm refer
to the m-fold addition and multiplication of s, respectively). Indeed, we can map all atoms
Uai to s and observe that Hanf’s theorem fails for either ψ = ∃xUx or ψ = ∀xUx. ⌟

4 Gaifman Normal Forms in Semirings Semantics

We briefly recall the classical notion of Gaifman normal forms (cf. [11, 9]), which capture
locality in a syntactic way. Gaifman normal forms are Boolean combinations of local formulae
φ(r)(x) and basic local sentences. A local formula φ(r)(x) is a formula in which all quantifiers
are relativised to the r-neighbourhood of x, for instance ∃y ϑ(x, y) is relativised to ∃y(d(x, y) ≤
r ∧ ϑ(x, y)). Here, d(x, y) ≤ r asserts that x and y have distance ≤ r in the Gaifman graph,
which can easily be expressed in first-order logic (in Boolean semantics). A basic local sentence
asserts that there exist scattered elements, i.e., elements with distinct r-neighbourhoods,
which all satisfy the same r-local formula: ∃x1 . . . ∃xm(

∧
i̸=j d(xi, xj) > 2r∧

∧
i φ

(r)(xi)). By
Gaifman’s theorem, every formula has an equivalent Gaifman normal form, which intuitively
means that it only makes statements about distinct local neighbourhoods.

Moving to semiring semantics, we keep the notion of Gaifman normal forms close to the
original one, with two exceptions. First, we only consider formulae in negation normal form.
This means that we restrict to positive Boolean combinations and, in turn, permit the duals
of basic local sentences (i.e., the negations of basic local sentences, in negation normal form).
Second and most importantly, we lose the ability to express relativised quantifiers2 in our
logic. Instead, we extend first-order logic by adding relativised quantifiers (ball quantifiers)
of the form Qy∈Bτ

r (x) for Q ∈ {∃, ∀} with the following semantics: given a formula φ(x, y),
a K-interpretation π : LitA(τ) → K, and an element a, we define

π[[∃y∈Bτ
r (a) φ(a, y)]] :=

∑
b∈Bπ

r (a)

π[[φ(a, b)]], π[[∀y∈Bτ
r (a) φ(a, y)]] :=

∏
b∈Bπ

r (a)

π[[φ(a, b)]].

We drop τ and write ∃y∈Br(a) or ∀y∈Br(a) if the signature is clear from the context.

2 We could use the same formula for d(x, y) ≤ r as in the Boolean case. However, this formula would not
just evaluate to 0 or 1, but would include the values of all edges around x, so each relativised quantifier
would have the unintended side-effect of multiplying with the edge values in the neighbourhood. One
can show that this side-effect would make Gaifman normal forms impossible (see [6] for details).
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φ(r)(x, y) =

∀z1∈Br1 (x)
(
∃z2∈Br2 (z1) ∀z3∈Br3 (z1) ¬Ez2z3

)
∨ ∀z4∈Br4 (y) Exz4

x y

z1

z2 z3

z4

r1

r2 r3

r4

r

Figure 1 Example of a local formula and the corresponding quantification dag D(φ), with circles
indicating Br(xy). In this example, φ(r)(x, y) is r-local for all r ≥ max(r1 + r2, r1 + r3, r4).

This alone is not as expressive as the Boolean notion. For instance, consider φ(r)(x) =
∃y(d(x, y) ≤ r

2 ∧ ∃z(d(x, z) ≤ r ∧ d(y, z) ≤ r
2 ∧ . . . )) which quantifies z local around y. Using

ball quantifiers, we want to write this as φ(r)(x) = ∃y∈B r
2
(x)(∃z∈B r

2
(y) . . . ), so we also

permit ball quantifiers around previously quantified variables (here y), as long as they stay
within the r-neighbourhood of x (here: r

2 + r
2 ≤ r).

To formalise this condition, we consider the quantification dag D(φ) of a formula φ(x)
which contains nodes for all variables in φ and where for every quantifier Qz∈Br′(y) in φ,
we add an edge z → y with distance label r′ (see Figure 1). If the summed distance of any
path ending in a free variable x ∈ x is at most r, then φ is r-local.

▶ Definition 9 (Local formula). An r-local τ -formula around x, denoted φ(r)(x), is built
from τ -literals by means of ∧, ∨ and ball quantifiers Qz∈Bτ

r′(y) such that in the associated
quantification dag D(φ), all paths ending in a free variable x ∈ x have total length at most r.

We emphasise that in the Boolean case, Definition 9 is equivalent to the standard notion,
so we do not add expressive power. For convenience, we allow quantification Qz∈Br′(y)φ(y, z)
around a tuple y, which can easily be simulated by regular ball quantifiers.

For basic local sentences, we further need to quantify over scattered tuples. To this end,
we also add scattered quantifiers ∃r-sc(y) and ∀r-sc(y) with the following semantics:

π[[∃r-sc(y)φ(y)]] =
∑
a⊆A

d(ai,aj)>2r for i̸=j

π[[φ(a)]], π[[∀r-sc(y)φ(y)]] =
∏
a⊆A

d(ai,aj)>2r for i̸=j

π[[φ(a)]].

We remark that in idempotent semirings, which will be the main focus of our positive
results, the addition of ball quantifiers makes it possible to express d(x, y) ≤ r by a formula
that only assumes values 0 or 1, such as ∃x′∈B r

2
(x) ∃y′∈B r

2
(y) (x′ = y′), which is r

2 -local
around xy, or alternatively ∃x′∈Br(x) (x′ = y), which is r-local only around x. Analogously
for d(x, y) > r, so we permit the use of distance formulae to simplify notation whenever
we work in idempotent semirings. Scattered quantifiers can then easily be expressed as
∃r-sc(y1, . . . ym)ϑ(y) := ∃y1 . . . ∃ym

( ∧
i<j d(yi, yj) > 2r ∧ ϑ(y)

)
and ∀r-sc(y1, . . . ym)ϑ(y) :=

∀y1 . . . ∀ym

( ∨
i<j d(yi, yj) ≤ 2r ∨ ϑ(y)

)
.

▶ Definition 10 (Local sentence). A basic local sentence is a sentence of the form

∃r-sc(y1, . . . ym)
∧

i≤m

φ(r)(yi) or ∀r-sc(y1, . . . ym)
∨

i≤m

φ(r)(yi).

A local sentence is a positive Boolean combination of basic local sentences.

Based on these notions we can now formulate precisely the questions about Gaifman
normal forms in semiring semantics:
(1) For which semirings K does every first-order sentence have a K-equivalent local sentence?
(2) For which semirings K is it the case that every first-order formula is K-equivalent to a

positive Boolean combination of local formulae and basic local sentences?
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5 Counterexamples Against Gaifman Normal Forms

This section presents two examples for which a Gaifman normal form does not exist. Both
use the vocabulary τ = {U} with only unary predicates, so that the Gaifman graph G(π)
of any K-interpretation π : LitA(τ) → K is trivial and the r-neighbourhood of a point, for
any r, consists only of the point itself. Thus, local formulae φ(r)(x) around x can always be
written as positive Boolean combinations of literals Ux, ¬Ux and equalities x = x, x ̸= x.
Scattered tuples are simply distinct tuples, so we write ∃distinct(x) instead of ∃r-sc(x).

5.1 A Formula Without a Gaifman Normal Form
Consider the formula ψ(x) := ∃y(Uy ∧ y ̸= x) which, in classical Boolean semantics, has the
Gaifman normal form φ(x) := ∃distinct(y, z)(Uy ∧Uz) ∨ (¬Ux∧ ∃yUy). However, in semiring
semantics it is in general not the case that ψ(x) ≡K φ(x). Here we consider the specific case
of a universe with two elements A = {a, b} and K-interpretations πst with πst(Ua) = s and
πst(Ub) = t, where s, t ∈ K \ {0} and s ̸= t. Then πst[[ψ(a)]] = t but πst[[φ(a)]] = st+ ts. So,
unless K is the Boolean semiring, we find elements s, t where πst[[ψ(a)]] ̸= πst[[φ(a)]].

Of course, it might still be the case that there is a different Gaifman normal form of ψ(x)
for semiring interpretations in a specific semiring K. We prove that this is not the case.

▶ Proposition 11. In any naturally ordered semiring with at least three elements, the formula
ψ(x) = ∃y(Uy ∧ y ̸= x) does not have a Gaifman normal form.

For the proof, we describe the values that the building blocks of Gaifman normal forms
may assume in πst. Recall that a local formula α(x) is equivalent to a positive Boolean
combination of literals Ux, ¬Ux, and equalities. Since πst(¬Ux) = 0 for all x ∈ A, we
can view the evaluation πst[[α(a)]] as an expression built from the semiring operations, the
value πst(Ua) = s and constants 0, 1. Analogously for πst[[α(b)]], but using πst(Ub) = t

instead of s. Hence there is a polynomial pα(X) ∈ K[X] such that πst[[α(a)]] = pα(s) and
πst[[α(b)]] = pα(t), for all interpretations πst. For the evaluation of a basic local sentence
β = ∃distinct(y, z)(α(y) ∧ α(z)), we then obtain πst[[β]] = pα(s)pα(t) + pα(t)pα(s). That is, β
can be described by a polynomial pβ(X,Y ) ∈ K[X,Y ] such that πst[[β]] = pβ(s, t) and pβ is
symmetric (that is, pβ(X,Y ) = pβ(Y,X)). The same holds for universal basic local sentences
β = ∀distinct(y, z)(α(y) ∨ α(z)).

Every Gaifman normal form φ(x) can thus be represented by a polynomial fφ(X,Y ) =∑
i hi(X)gi(X,Y ), with symmetric gi, such that πst[[φ(a)]] = fφ(s, t) for all s, t. Proposi-

tion 11 then follows from the following algebraic observation (see [6] for a proof).

▶ Lemma 12. Let K be a naturally ordered semiring with at least three elements. For any
polynomial f(X,Y ) =

∑
i hi(X)gi(X,Y ) where the gi are symmetric polynomials, there exist

values s, t ∈ K \ {0} such that f(s, t) ̸= t.

5.2 A Sentence Without a Gaifman Normal Form
While Gaifman normal forms need not exist for formulae, in all relevant semirings beyond
the Boolean one, they might still exist for sentences. Indeed, we shall prove a positive result
for min-max semirings. However, such a result seems only possible for semirings where both
operations are idempotent, similar to Hanf’s theorem. For other semirings one can find rather
simple counterexamples, as we illustrate for the tropical semiring T = (R∞

+ ,min,+,∞, 0).

▶ Proposition 13. The sentence ψ := ∃z∀x∃y(Uy ∨ x = z) has no Gaifman normal form in
the tropical semiring.

MFCS 2023
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The proof again works by describing the values of basic local sentences, this time in
T-interpretations of increasingly large size. One can then show that these values are either
constant or grow too fast, compared to the value of ψ (see [6] for details). A similar
construction works for the natural semiring (N,+, ·, 0, 1) and we conjecture that it can be
adapted to any infinite semiring with operations that are not idempotent.

6 Gaifman’s Theorem for Min-Max Semirings

In this section, we prove our main result: a version of Gaifman’s theorem for sentences
evaluated in min-max semirings (which can be lifted to lattice semirings, see Sect. 7). We
write M for the class of min-max semirings and refer to ≡M as minmax-equivalence.

▶ Theorem 14 (Gaifman normal form). Let τ be a finite relational signature. Every FO(τ)-
sentence ψ is minmax-equivalent (≡M) to a local sentence.

Contrary to Hanf’s locality theorem, we cannot follow the classical proofs of Gaifman’s
theorem. For instance, the proof in [9] is based on the Ehrenfeucht-Fraïssé method and
makes use of characteristic sentences, which in general do not exist in semiring semantics
over min-max semirings (cf. [15]). Gaifman’s original proof [11] is a constructive quantifier
elimination argument (which is similar to our approach), but makes use of negation to
encode case distinctions in the formula, which is not possible in semiring semantics. Another
argument why Gaifman’s proof does not go through is that it applies to formulae, whereas
formulae need not have Gaifman normal forms in our setting (cf. Sect. 5.1).

Instead, we present a novel proof of Gaifman’s theorem that applies to the Boolean case
as well as to min-max semirings. While our strategy is similar to Gaifman’s – a constructive
elimination of quantifier alternations – we have to phrase all results in terms of sentences and
need to be more careful to derive equivalences that hold in all min-max semirings. These
restrictions lead to a slight strengthening of Gaifman’s classical result (see Sect. 7).

6.1 Toolbox
The proof is rather technical, but is based on a few simple observations. First notice
that min-max semirings share many algebraic properties with the Boolean semiring. As
a consequence, many classical logical equivalences are also minmax-equivalences, such as
distributivity or idempotence. In particular, we can make use of disjunctive normal forms,
conjunctive normal forms and prenex normal forms. Moreover, we can exploit the inherent
symmetry of min-max semirings to simplify our proofs: arguments for existential sentences
can be dualised for universal sentences (see [6] for details). However, we still have to consider
quantifier alternations, which pose the main challenge.

Concerning locality, we make two simple but crucial observations. For the first one,
consider a local formula φ(r)(x, y) around two variables x and y. Such a formula may assert
that x and y are close to each other, for instance φ(r)(x, y) = Exy. But if x and y do not
occur together within one literal, then φ(r) intuitively makes independent statements about
the neighbourhood of x, and the neighbourhood of y, so we can split φ(r) into two separate
local formulae. For the general case φ(r)(x) in several variables, we group x into tuples
x1, . . . , xn with the idea that φ(r) makes independent statements about each group xi.

▶ Lemma 15 (Separation). Let φ(r)(x1, . . . , xn) be a local formula around x1 . . . xn and define
Xi as the set of variables connected to some x ∈ xi in D(φ). If each literal of φ(r)(x1, . . . , xn)
uses only variables in xi ∪Xi for a single i, then φ(r)(x1, . . . , xn) is minmax-equivalent to a
positive Boolean combination of r-local formulae around a single group xi.
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The second observation is that we can perform a clustering of any tuple (a1, . . . , an) ∈ An

into classes I1, . . . , Ik so that elements within one class have “small” distance to each other,
whereas different classes are “far apart”. This simple combinatorial observation is a fruitful
tool to construct Gaifman normal forms: it becomes easy to quantify elements with a known
clustering, and by the following lemma we can then do a disjunction over all clusterings.

▶ Definition 16 (Configuration). Let π be a K-interpretation with universe A. Let P =
{I1, . . . , Ik} be a partition of {1, . . . , n} and define representatives il = min Il of each class.
We say that a tuple (a1, . . . , an) ∈ An is in configuration (P, r), if
(a) d(ail

, ai) ≤ 5n−kr − r, for all i ∈ Il, l ∈ {1, . . . , k}, and
(b) d(ail

, ail′ ) > 4 · 5n−kr, for all l ̸= l′ (representatives are (2 · 5n−kr)-scattered).

Such a partition always exists: condition (a) remains true if we merge two classes violating
(b), so starting from P = {{1}, . . . , {n}} we can merge classes until (b) holds.

▶ Lemma 17 (Clustering). Let π be a K-interpretation on A. For all tuples (a1, . . . , an) ∈ An

and all r ≥ 1, there is a partition P such that (a1, . . . , an) is in configuration (P, r).

6.2 Proof Outline for Gaifman’s Theorem
The heart of our proof is the elimination of quantifier alternations. Due to space reasons,
we refer to the full version [6] for detailed proofs. Here we present an overview of the main
steps. Each steps proves, building on the previous ones, that sentences of a certain fragment
can be translated to minmax-equivalent local sentences. These fragments consist of
(1) sentences of the form ∃r-sc(x1, . . . xm)

∧
i≤m φ

(r)
i (xi);

(2) existential sentences ∃xφ(r)(x);
(3) existential-universal sentences ∃y∀xφ(r)(y, x);
(4) all first-order sentences (Theorem 14).

We first note that Theorem 14 (step (4)) is a rather simple consequence of (2) and (3).
By applying (3) and putting the resulting local sentence in prenex normal form, we can bring
∃∗∀∗-sentences into ∀∗∃∗-form. We can thus inductively3 eliminate quantifier alternations by
swapping quantifiers, until at most one alternation remains and (2) or (3) apply directly.

For step (1), note that the difference to a basic local sentence is that we permit different
local formulae φ(r)

i for each xi (such sentences have been called asymmetric in [20, 8]). Our
proof is an inductive construction of the equivalent local sentence. This step is quite technical,
but greatly simplifies the following constructions.

To prove (2), we have to rewrite the ∃∗-prefix as a scattered quantifier ∃r-sc(x). This
essentially follows from the Clustering and Separation Lemmas: for a given partition P =
{I1, . . . , Ik} we can do a scattered quantification of the representatives xi1 , . . . , xik

, and then
quantify the elements of each class Il locally around its representative xil

.
Step (3) is the core of the elimination argument and the most difficult step of the proof.

We roughly follow the structure of Gaifman’s proof [11] and, for a sentence ∃y∀xφ(r)(y, x),
first split ∀x into those elements close to y (which we can quantify locally within φ) and
those elements far from x, using the Separation Lemma. Eventually, we arrive at a positive
Boolean combination of sentences ∃y(φ(r)

close(y) ∧ ∀x/∈Bs(y) φ(s)
far(x)). Here, the far elements

3 An attentive reader may notice that we have to deal with formulae with free variables in the induction,
but (2), (3) only apply to sentences. We resolve this issue by temporarily substituting atoms with free
variables by fresh relation symbols, without affecting the Gaifman graph (see [6, Abstraction Lemma]).
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are covered by the outside quantifier ∀x/∈Bs(y) with the obvious semantics. As in Gaifman’s
proof, the main challenge is the elimination of this outside quantifier. Gaifman approaches this
by using negation to encode case distinctions in the Gaifman normal form. Our proof instead
consists of a series of surprisingly difficult syntactical transformations that avoid negation,
eventually leading to a minmax-equivalent local sentence without outside quantifiers.

7 Strengthening Gaifman’s Theorem

In this section, we rephrase our main result in terms of Boolean semantics, which leads
to a novel strengthening of Gaifman’s classical theorem. Interestingly, Theorem 14 can be
regained from the Boolean result by algebraic techniques, and even lifted to lattice semirings.
These insights suggest that the merit of our proof, and the reason why it is more complicated
than Gaifman’s original proof, is the construction of a Gaifman normal form without the
use of negation. Since our proof applies in particular to the Boolean semiring and hence to
standard Boolean semantics (the only difference is that we use ball quantifiers instead of
distance formulae, but these are interchangeable), we obtain the following corollary.

▶ Corollary 18 (Gaifman normal form without negation). Let τ be a finite relational signature.
In Boolean semantics, every FO(τ)-sentence ψ has an equivalent local sentence ψ′ such
that every relation symbol occurring only positively (only negatively) in ψ also occurs only
positively (only negatively) in ψ′, not counting occurrences within distance formulae.

We believe that this result may be of independent interest. A similar adaptation of
Gaifman’s theorem has been considered in [20], namely that existential sentences are equi-
valent to positive Boolean combinations of existential basic local sentences. Our proof of
step (2) implies a similar result (cf. [6]), as we also construct a positive Boolean combination
of existential basic local sentences. However, we permit distance formulae d(x, y) > 2r
within local formulae (which are abbreviations for universal quantifiers), while [20] does not.
Moreover, the approximation schemes of [8] are based on a version of Gaifman’s theorem
for sentences positive in a single unary relation (i.e., no negations are added in front of this
relation). Their proof uses a version of Ehrenfeucht-Fraïssé games, which is quite different
from our syntactical approach. Since unary relations do not occur in distance formulae,
Corollary 18 subsumes their result. Interestingly, [20, 8] both share our observation that the
proof of the respective version of Gaifman’s theorem is surprisingly difficult.

To prove Theorem 14 from Corollary 18, one can show (cf. [6]) that with some preparation,
Boolean equivalences ≡B can be lifted to lattice-equivalences ≡L (which subsume ≡M). This
is done by applying separating homomorphisms of [15] to turn a falsifying K-interpretation π,
witnessing ̸≡L, into a falsifying Boolean structure h◦π, witnessing ̸≡B. Such homomorphisms
h exist for all min-max semirings [15] and also for the more general lattice semirings [7, 6].
We obtain the following generalisation of Theorem 14 by lifting the Boolean result.

▶ Corollary 19. Let τ be a finite relational signature. Every FO(τ)-sentence ψ is lattice-
equivalent (≡L) to a local sentence.

We remark that the lifting argument implies that for many sentences (to be precise, those
where no relation occurs both positively and negatively, cf. [6]), the Gaifman normal form in
min-max and lattice semirings coincides with the one for Boolean semantics in Corollary 18
(but not necessarily with Gaifman’s original construction). A further consequence is that the
counterexample for formulae in Sect. 5.1 also applies to Corollary 18.
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8 Conclusion

Semiring semantics is a refinement of classical Boolean semantics, which provides more
detailed information about a logical statement than just its truth or falsity. This leads to a
finer distinction between formulae: statements that are equivalent in the Boolean sense may
have different valuations in semiring interpretations, depending on the underlying semiring.
It is an interesting and non-trivial question, which logical equivalences and, more generally,
which model-theoretic methods, can be carried over from classical semantics to semiring
semantics, and how this depends on the algebraic properties of the underlying semiring.

Here we have studied this question for locality properties of first-order logic, in particular
for Hanf’s locality theorem and for Gaifman normal forms. Our setting assumes semiring
interpretations which are model-defining and track only positive information, since these are
the conditions that provide well-defined and meaningful locality notions. However, from the
outset, it has been clear that one cannot expect to transfer all locality properties of first-order
logic to semiring semantics in arbitrary commutative semirings. Indeed, semiring semantics
evaluates existential and universal quantifiers by sums and products over all elements of the
universe, which gives an inherent source of non-locality if these operations are not idempotent.

Most positive locality results thus require that the underlying semirings are fully idem-
potent. Under this assumption, one can adapt the classical proof of Hanf’s locality theorem
to the semiring setting, relying on a back-and-forth argument that itself requires fully idem-
potent semirings. The question whether there exist Gaifman normal forms in semiring
semantics turned out to be more subtle. Indeed, for formulae with free variables Gaifman
normal forms need not exist once one goes beyond the Boolean semiring. Also for sentences,
one can find examples that do not admit Gaifman normal forms in semirings that are not
fully idempotent. We have presented such an example for the tropical semiring.

Our main result, however, is a positive one and establishes the existence of Gaifman
normal forms over the class of all min-max and lattice semirings. Intuitively, it relies on the
property that in min-max semirings, the value of a quantified statement ∃xφ(x) or ∀xφ(x)
coincides with a value of φ(a), for some witness a. This needs, for instance, not be the case in
lattice semirings, and hence the generalisation to lattice semirings uses a different approach
based on separating homomorphisms. It is still an open question whether, in analogy to
Hanf’s theorem, Gaifman normal forms exist over all fully idempotent semirings. The proof
of our main result, which is based on quantifier elimination arguments, turned out to be
surprisingly difficult; we identified the lack of a classical negation operator as the main reason
for its complexity. An interesting consequence of this restriction is a stronger version of
Gaifman’s classical theorem in Boolean semantics: every sentence has a Gaifman normal
form which, informally speaking, does not add negations.

For applications such as provenance analysis, min-max semirings are relevant, for instance,
for studying access levels and security issues. A much larger interesting class of semirings
with wider applications are the absorptive ones, including the tropical semiring, in which
addition is idempotent, but multiplication in general is not. We have seen that Gaifman
normal forms for such semirings need not exist for all sentences. The question arises whether
one can establish weaker locality properties for absorptive semirings, applicable perhaps to
just a relevant fragment of first-order logic.
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Abstract
We prove that functions over the reals computable in polynomial time can be characterised using
discrete ordinary differential equations (ODE), also known as finite differences. We also provide
a characterisation of functions computable in polynomial space over the reals. In particular, this
covers space complexity, while existing characterisations were only able to cover time complexity,
and were restricted to functions over the integers, and we prove that no artificial sign or test function
is needed even for time complexity. At a technical level, this is obtained by proving that Turing
machines can be simulated with analytic discrete ordinary differential equations. We believe this
result opens the way to many applications, as it opens the possibility of programming with ODEs,
with an underlying well-understood time and space complexity.
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1 Introduction

Recursion schemes constitute a major approach to classical computability theory and, to
some extent, to complexity theory. The foundational characterisation of FPTIME, based
on bounded primitive recursion on notations, due to Cobham [10] gave birth to the field
of implicit complexity at the interplay of logic and theory of programming. Alternative
characterizations, based on safe recursion [1] or on ramification ([16, 15]) or for other
classes [17] followed: see [8, 9] for monographs.

Initially motivated to help understanding how analogue models of computations compare
to classical digital ones, in an orthogonal way, various computability and complexity classes
have been recently characterised using Ordinary Differential Equations (ODE). An unexpected
side effect of these proofs is the possibility of programming with classical ODEs, over the
continuum. It recently led to solving various open problems. This includes the proof of
the existence of a universal ODE [6], the proof of the Turing-completeness of chemical
reactions [11], or hardness of problems related to dynamical systems [12].

Discrete ODEs, that we consider in this article, are an approach in-between born from
the attempt of [4, 5] to explain some of the constructions for continuous ODEs in an easier
way. The basic principle is, for a function f(x), to consider its discrete derivative defined as
∆f(x) = f(x + 1)− f(x) (also denoted f ′(x) in what follows to help analogy with classical
continuous counterparts). A consequence of this attempt is the characterisation obtained
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in [4, 5]. They provided a characterisation of FPTIME for functions over the integers
that does not require the specification of an explicit bound in the recursion, in contrast to
Cobham’s work [10], nor the assignment of a specific role or type to variables, in contrast to
safe recursion or ramification [1, 14]. Instead, they only assume involved ODEs to be linear,
a very classical natural concept for differential equations.
▶ Remark 1. Unfortunately, even if it was the original motivation, both approaches for
characterising complexity classes for continuous and discrete ODEs are currently not directly
connected. A key difference is that there is no simple expression (no analogue of the Leibniz
rule) for the derivative of the composition of functions in the discrete settings. The Leibniz
rule is a very basic tool for establishing results over the continuum, using various stability
properties, but that cannot be used easily over discrete settings.

In the context of algebraic classes of functions, the following notation is classical: call
operation an operator that takes finitely many functions and returns some new function
defined from them. Then [f1, f2, . . . , fk; op1, op2, . . . , opℓ] denotes the smallest set of functions
containing f1, f2, . . . , fk that is closed under the operations op1, op2, . . . opℓ. Call discrete
function a function of type f : S1×· · ·×Sd → S′

1× . . . S′
d′ , where each Si, S′

i is either N or Z.
Write FPTIME for the class of functions computable in polynomial time, and FPSPACE
for the class of functions computable in polynomial space.
▶ Remark 2. The literature considers two possible definitions for FPSPACE, according to
whether functions with non-polynomial size values are allowed or not. In our case, we should
add “whose outputs remain of polynomial size”, to resolve the ambiguity1.

A main result of [4, 5] is the following (LDL stands for linear derivation on length):

▶ Theorem 3 ([4]). For functions over the reals, we have LDL = FPTIME where LDL =
[0, 1, πk

i , ℓ(x), +,−,×, sg(x) ; composition, linear length ODE].

In particular, writing as usual BA for functions from A to B, we deduce:

▶ Corollary 4 (Functions over the integers). LDL ∩ NN = FPTIME ∩ NN.

That is to say, LDL (and hence FPTIME for functions over the integers) is the smallest
class of functions that contains the constant functions 0 and 1, the projections πk

i of the
ie coordinate of a vector of size k, the length function ℓ(x), mapping an integer to the
length of its binary representation, the addition x+y, the subtraction x−y, the multiplication
x × y, the sign function sg(x) and that is closed under composition (when defined) and
linear length-ODE scheme: the linear length-ODE scheme, formally given by Definition 15,
corresponds to defining a function from a linear ODEs with respect to derivation along the
length of the argument, so of the form ∂f(x,y)

∂ℓ = A[f(x, y), x, y] · f(x, y) + B[f(x, y), x, y].
Here, we use the notation ∂f(x,y)

∂ℓ which corresponds to the derivation of f along the
length function: given some function L : Np+1 → Z and in particular for the case where
L(x, y) = ℓ(x),

∂f(x, y)
∂L

= ∂f(x, y)
∂L(x, y) = h(f(x, y), x, y) (1)

is a formal synonym for f(x + 1, y) = f(x, y) + (L(x + 1, y)− L(x, y)) · h(f(x, y), x, y).

1 Otherwise, the class is not closed by composition: this may be considered as a basic requirement when
talking about the complexity of functions. The issue is about the usage of not counting the output as
part of the total space used. In this model, given f computable in polynomial space, and g in logarithmic
space, f ◦ g (and g ◦ f) is computable in polynomial space. But this is not true, if we assume only f
and g to be computable in polynomial space, since the first might give an output of exponential size.
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▶ Remark 5. This concept introduced in [4, 5], is motivated by the fact that the latter
expression is similar to the classical formula for continuous ODEs:

δf(x, y)
δx

= δL(x, y)
δx

· δf(x, y)
δL(x, y) ,

and hence is similar to a change of variable. Consequently, a linear length-ODE is basically
a linear ODE over a variable t once the change of variable t = ℓ(x) is done.

However, in the context of (classical) ODEs, considering functions over the reals is more
natural than only functions over the integers. Call real function a function f : S1×· · ·×Sd →
S′

1×. . . S′
d′ , where each Si, S′

i is either R, N or Z. A natural question about the characterisation
of FPTIME for real functions arises, and not only discrete functions: we consider here
computability over the reals in its most classical approach, namely computable analysis [19].

As a first step, the class LDL• = [0, 1, πk
i , ℓ(x), +,−,×, cond(x), x

2 ; composition, linear

length ODE] has been considered in [3, 2] where some characterisation of PTIME was
obtained, but only for functions from the integers to the reals (i.e. sequences) while it would
be more natural to characterise functions from the reals to the reals. More importantly, this
was obtained by assuming that some non-analytic exact function is among the basic
available functions to simulate a Turing machine: cond valuing 1 for x > 3

4 and 0 for x < 1
4 .

We prove first this is not needed, and mainly, we extend all previous results to real
functions, furthermore covering not only time complexity but also space complexity. Consider

LDL◦ = [0, 1, πk
i , ℓ(x), +,−, tanh,

x

2 ,
x

3 ; composition, linear length ODE],

where ℓ : N → N is the length function, mapping some integer to the length of its binary
representation, x

2 : R→ R is the function dividing by 2 (similarly for x
3 ) and all other basic

functions defined exactly as for LDL, but considered here as functions from the reals to reals.

▶ Remark 6. This class is LDL but without the sg(x) function, nor the multiplication function,
or LDL• but without the cond function, nor the multiplication. This is done by adding the
analytic tanh functions as a substitute (and adding x/3).

▶ Remark 7. We can consider N ⊂ Z ⊂ R but as functions may have different types of
outputs, the composition is an issue. We consider, as in [3, 2], that composition may not be
defined in some cases: it is a partial operator. For example, given f : N→ R and g : R→ R,
the composition of g and f is defined as expected, but f cannot be composed with a function
such as h : N→ N.

First, we improve Theorem 3 by stating FPTIME over the integers can be characterised
algebraically using linear length ODEs and only analytic functions (i.e. no need for sign
function). Since LDL◦ is about functions over the reals, and Theorem 3 is about functions
over the integers, we need a way to compare these classes. Given a function f : Rd → Rd′

sending every integer n ∈ Nd to the vicinity of some integer of Nd, say at distance less than
1/4, we write DP(f) for its discrete part: this is the function from Nd → Nd′ mapping n ∈ Nd

to the integer rounding of f(n). Given a class C of such functions, we write DP(C) for the
class of the discrete parts of the functions of C.

▶ Theorem 8. DP(LDL◦) = FPTIME ∩ NN.

Write LDL◦ for the class obtained by adding some effective limit operation similar to the
one considered in [3] to get LDL•. We get a characterization of functions over the reals (and
not only sequences as in [3]) computable in polynomial time.
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▶ Theorem 9 (Generic functions over the reals). LDL◦ ∩ RR = FPTIME ∩ RR

More generally: LDL◦ ∩ RNd×Rd′

= FPTIME ∩ RNd×Rd .

We also prove that, by adding a robust linear ODE scheme (Definition 18), we get a
class RLD◦ (this stands for robust linear derivation) with the similar statements but for
FPSPACE.

▶ Theorem 10. DP(RLD◦) = FPSPACE ∩ NN.

▶ Theorem 11 (Generic functions over the reals). RLD◦ ∩ RR = FPSPACE ∩ RR

More generally: RLD◦ ∩ RNd×Rd′

= FPSPACE ∩ RNd×Rd .

As far as we know, this is the first time a characterisation of FPSPACE with discrete
ODEs is provided. If we forget the context of discrete ODEs, FPSPACE has been charac-
terised in [18] but using a bounded recursion scheme, i.e. requiring some explicit bound in
the spirit of Cobham’s statement [10]. We avoid this issue by considering numerically stable
schemes, which are very natural in the context of ODEs.

At a technical level, all our results are obtained by proving Turing machines can be
simulated with analytic discrete ODEs in a suitable manner. We believe our constructions
could be applied to many other situations, where programming with ODEs is needed.

In Section 2, we recall some basic statements about the theory of discrete ODEs. In
Section 3, we establish some properties about particular functions required for our proofs.
In Section 4 we prove our main technical result: Turing machines can be simulated using
functions from LDL◦. Section 5 is about converting integers and reals (dyadic) to words of
a specific form. Section 6 is about applications of our toolbox. We prove in particular all
above theorems.

2 Some concepts related to discrete ODEs

In this section, we recall some concepts and definitions from discrete ODEs, either well-known
or established in [4, 5, 3]. We consider here that tanh is tanh, the hyperbolic tangent. The
papers [4, 5] use similar definitions with the sign function sg and [3] with the piecewise affine
function cond, that values 1 for x > 3

4 and 0 for x < 1
4 , instead of tanh.

▶ Definition 12 ([3]). A tanh-polynomial expression P (x1, ..., xh) is an expression built-on
+,−,× (often denoted ·) and tanh functions over a set of variables V = {x1, ..., xh} and
integer constants.

We need to measure the degree, similarly to the classical notion of degree in polyno-
mial expression, but considering all subterms that are within the scope of a tanh function
contributes to 0 to the degree.

▶ Definition 13 ([3]). The degree deg(x, P ) of a term P in x ∈ V is defined inductively as
follows: deg(x, x) = 1 and for x′ ∈ V ∪ Z such that x′ ≠ x, deg(x, x′) = 0; deg(x, P + Q) =
max{deg(x, P ), deg(x, Q)}; deg(x, P ×Q) = deg(x, P ) + deg(x, Q); deg(x, tanh(P )) = 0. A
tanh-polynomial expression P is essentially constant in x if deg(x, P ) = 0.

A vectorial function (resp. a matrix or a vector) is said to be a tanh-polynomial expression
if all its coordinates (resp. coefficients) are, and essentially constant if all its coefficients are.

▶ Definition 14 ([4, 5, 3]). A tanh-polynomial expression g(f(x, y), h(x, y), x, y) is essentially
linear in f(x, y) if it is of the form: A[f(x, y), h(x, y), x, y] · f(x, y) + B[f(x, y), h(x, y), x, y]
where A and B are tanh-polynomial expressions essentially constant in f(x, y).
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For example, the expression P (x, y, z) = x · tanh (x2 − z) · y + y3 is essentially linear in
x, essentially constant in z and not linear in y. The expression: z + (1 − tanh(x)) · (1 −
tanh(−x)) · (y − z) is essentially constant in x and linear in y and z.

▶ Definition 15 (Linear length ODE [4, 5]). A function f is linear length-ODE definable from
u essentially linear in f(x, y), g and h, if it corresponds to the solution of

f(0, y) = g(y) and
∂f(x, y)

∂ℓ
= u(f(x, y), h(x, y), x, y). (2)

A fundamental fact is that the derivation with respect to length provides a way to do
some change of variables:

▶ Lemma 16 ([4, 5]). Assume that (2) holds. Then f(x, y) is given by f(x, y) = F(ℓ(x), y)
where F is the solution of the initial value problem

F(1, y) = g(y), and
∂F(t, y)

∂t
= u(F(t, y), h(2t − 1, y), 2t − 1, y). (3)

This means f(x, y) depends only on the length of its first argument: f(x, y) = f(2ℓ(x), y).
Then (3) can be seen as defining a function (with this latter property) by a recurrence of
type

f(20, y) = g(y), and f(2t+1, y) = u(f(2t, y), h(2t − 1, y), 2t, y). (4)

for some u is essentially linear in f(2t, y). As recurrence (3) is basically equivalent to (2):

▶ Corollary 17 (Linear length ODE presented with powers of 2). A function f is linear L-ODE
definable iff the value of f(x, y) depends only on the length of its first argument and satisfies
(4), for some g and h, and u, essentially linear in f(2t, y).

We assume it is easier for our reader to deal with recurrences of the form (4) than with
ODEs of the form (2). Consequently, this is how we will describe many functions from now on,
starting with some basic functions, authorising compositions, and the above schemes. As an
example, n 7→ 2n can easily be defined that way (by 20 = 1, and 2n+1 = 2 · 2n = 2n + 2n) and
we can produce n 7→ 2p(n) for any polynomial p. For example, (n1, . . . , nk)→ 2n1n2...nk can
be obtained, using k such schemes in turn, providing the case of the polynomial p(n) = nk.

When talking about space complexity, we will also consider the case where the ODE is
not derivated with respect to length but with classical derivation. For functions over the
reals an important issue is numerical stability.

▶ Definition 18 (Robust linear ODE [4, 5]). A bounded function f is robustly linear ODE
definable from u essentially linear in f(x, y), g and h if:
1. it corresponds to the solution of

f(0, y) = g(y) and
∂f(x, y)

∂x
= u(f(x, y), h(x, y), x, y), (5)

2. where the schema (5) is polynomially numerically stable.

Here, writing a =n b for ∥a − b∥ ≤ 2−n for conciseness, 2. means formally there
exists some polynomial p such that, for all integer n, writing ϵ(n) = p(n + ℓ(y)), if you
consider any solution of ỹ =ϵ(n) y and h̃(x, ỹ) =ϵ(n) h(x, ỹ), and f̃(0, ỹ) =ϵ(n) g(y) and
∂ f̃(x,ỹ)

∂x =ϵ(n) u(f̃(x, ỹ), h̃(x, ỹ), x, ỹ) then f̃(x, ỹ) =ϵ(n) f(x, y).
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3 Some results about various functions

A key part of our proofs is the construction of very specific functions in LDL◦: we write
{x} for the fractional part of the real x, i.e. {x} = x − ⌊x⌋. We provide some graphical
representations of some of them to show that these functions are sometimes highly non-trivial
(see for e.g. Figures 3 or 6).

A first observation is that we can uniformly approximate the ReLU(x) = max(0, x)
function using a essentially constant function:

▶ Lemma 19. We denote by Y (x, 2m+2) the function Y (x, 2m+2) = 1+tanh(2m+2x)
2 (illustrated

by Figure 1). For all integer m, for all x ∈ R, |ReLU(x)− xY (x, 2m+2)| ≤ 2−m.

Figure 1 Graphical representation of xY (x, 22+2) obtained with maple.

We deduce we can uniformly approximate the continuous sigmoid functions (when 1/(b−a)
is in LDL◦) defined as: s(a, b, x) = 0 whenever w ≤ a, x−a

b−a whenever a ≤ x ≤ b, and 1
whenever b ≤ x.

▶ Lemma 20 (Uniform approximation of any piecewise continuous sigmoid). Assume 1
b−a is

in LDL◦. Then there is some function C-s(m, a, b, x) ∈ LDL◦ (illustrated by Figure 2) such
that for all integer m, | C-s(m, a, b, x)− s(a, b, x)| ≤ 2−m.

Figure 2 Graphical representation of C-s(2, 1
2 , 3

4 , x) and C-s(25, 1
2 , 3

4 , x) obtained with maple.

Proof. We can write s(a, b, x) = ReLU(x−a)−ReLU(x−b)
b−a . Thus, | C-s(m + 1 + c, a, b, x) −

s(a, b, x)| ≤ 2.2−m−1−c

b−a , using the triangle inequality. Take c such that 1
b−a ≤ 2c. ◀

The existence of the following function will play an important role to obtain the various
functions of the next corollary.
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▶ Theorem 21. There exists some function ξ : N2 → R in LDL◦ (illustrated in Fig-
ure 3) such that for all n, m ∈ N and x ∈ [−2n, 2n], whenever x ∈ [⌊x⌋ + 1

8 , ⌊x⌋ + 7
8 ] ,∣∣ξ(2m, 2n, x)− {x− 1

8}
∣∣ ≤ 2−m.

Figure 3 Graphical representations of ξ(2, 4, x) obtained with maple: some details on the right.

The main idea of the proof is, by parity, to reduce the problem to construct an auxiliary
function ξ′ that works for x ≥ 0, writing ξ(2m, N, x) = ξ′(2m+2, N, x)−ξ′(2m+2, N,−x)+ 3

4−
3
4 C-s(2

m+2, 0, 1
8 , x), and then proving that ξ′ is definable in LDL◦, using an adhoc recursive

(in n) definition of it.

▶ Corollary 22 (A bestiary of functions). There exist
1. ξ1, ξ2 : N2 × R 7→ R ∈ LDL◦ such that, for all n, m ∈ N, ⌊x⌋ ∈ [−2n + 1, 2n], whenever

x ∈ [⌊x⌋ − 1
2 , ⌊x⌋ + 1

4 ] , |ξ1(2m, 2n, x) − {x}| ≤ 2−m, and whenever x ∈ [⌊x⌋, ⌊x⌋ + 3
4 ] ,

|ξ2(2m, 2n, x)− {x}| ≤ 2−m (see Figure 4).
2. σ1, σ2 : N2 × R 7→ R ∈ LDL◦ such that, for all n, m ∈ N, ⌊x⌋ ∈ [−2n + 1, 2n], whenever

x ∈ [⌊x⌋ − 1
2 , ⌊x⌋ + 1

4 ], σ1(2m, 2n, x) − ⌊x⌋ ≤ 2−m, and whenever x ∈ [⌊x⌋, ⌊x⌋ + 3
4 ],

|σ2(2m, 2n, x)− ⌊x⌋| ≤ 2−m (see Figure 5).
3. λ : N2 × R 7→ [0, 1] ∈ LDL◦ such that for all m, n ∈ N, ⌊x⌋ ∈ [−2n + 1, 2n], whenever

x ∈ [⌊x⌋ + 1
4 , ⌊x⌋ + 1

2 ], |λ(2m, 2n, x) − 0| ≤ 2−m, and whenever x ∈ [⌊x⌋ + 3
4 , ⌊x⌋ + 1],

|λ(2m, 2n, x)− 1| ≤ 2−m.
4. mod2 : N2 ×R 7→ [0, 1] ∈ LDL◦ such that for all m, n ∈ N, ⌊x⌋ ∈ [−2n + 1, 2n], whenever

x ∈ [⌊x⌋ − 1
4 , ⌊x⌋+ 1

4 ], |mod2(2m, 2n, x)-⌊x⌋mod 2| ≤ 2−m.

Figure 4 Graphical representation of ξ1(2, 4, x) and ξ2(2, 4, x) obtained with maple.
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Figure 5 Graphical representation of σ1(2, 4, x) and σ2(2, 4, x) obtained with maple.

Figure 6 Graphical representation of ÷2(2, 4, x) obtained with maple.

5. ÷2 : N2 × R 7→ [0, 1] ∈ LDL◦ such that for all m, n ∈ N, ⌊x⌋ ∈ [−2n + 1, 2n], whenever
x ∈ [⌊x⌋ − 1

4 , ⌊x⌋+ 1
4 ], | ÷2 (2m, 2n, x)− ⌊x⌋//2| ≤ 2−m, with // the integer division (see

Figure 6).

Proof. Take ξ1(M, N, x) = ξ(M, N, x − 3
8 ) − 1

2 , ξ2(M, N, x) = ξ(N, x − 7
8 ), σi(M, N, x) =

x − ξi(M, N, x), λ(M, N, x) = C-s(2M, 1/4, 1/2, ξ(2M, N, x − 9/8)), mod2(M, N, x) = 1 −
λ(M, N/2, 1

2 x + 7
8 ), ÷2(M, N, x) = 1

2 (σ1(M, N, x)−mod2(M, N, x)). ◀

Observing that for if(d, l) = 4 s(1, 2, 1/2 + d + l/4)− 2, for l ∈ [0, 1], we have if(0, l) = 0,
and if(1, l) = l, and using Lemma 20 on this sigmoid, we get:

▶ Lemma 23. There exists C-if ∈ LDL◦ such that, l ∈ [0, 1], if we take |d′ − 0| ≤ 1/4, then
| C-if(d′, l)− 0| ≤ 2−m, and if we take |d′ − 1| ≤ 1/4, then | C-if(d′, l)− l| ≤ 2−m.

▶ Lemma 24. Let α1, α2, . . . , αn be some integers, and V1, V2, . . . , Vn some constants. We
write send(αi 7→ Vi)i∈{1,...,n} for the function that maps any x ∈ [αi − 1/4, αi + 1/4] to Vi,
for all i ∈ {1, . . . , n}.

There is some function in LDL◦, that we write C-send(2m, αi 7→ Vi)i∈{1,...,n}, that maps
any x ∈ [αi − 1/4, αi + 1/4] to a real at distance at most 2−m of Vi, for all i ∈ {1, . . . , n}.

▶ Lemma 25. Let N be some integer. Let α1, α2, . . . , αn be some integers, and Vi,j for 1 ≤
i ≤ n some constants, with 0 ≤ j < N . We write send((αi, j) 7→ Vi,j)i∈{1,...,n},j∈{0,...,N−1}
for the function that maps any x ∈ [αi − 1/4, αi + 1/4] and y ∈ [j − 1/4, j + 1/4] to Vi,j , for
all i ∈ {1, . . . , n}, j ∈ {0, . . . , N − 1}.
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There is some function in LDL◦, that we write
C-send(2m, (αi, j) 7→ Vi,j)i∈{1,...,n},j∈{0,...,N−1}, that maps any x ∈ [αi − 1/4, αi + 1/4] and
y ∈ [j − 1/4, j + 1/4] to a real at distance at most 2−m of Vi,j, for all i ∈ {1, . . . , n},
j ∈ {0, . . . , N − 1}.

4 Simulating Turing machines with functions of LDL◦

This section is devoted to the simulation of a Turing machine using some analytic functions,
and in particular functions from LDL◦. We use some ideas from [3] but with several
improvements, as we need to deal with errors and avoid multiplications.

Consider without loss of generality some Turing machine M = (Q, {0, 1, 3}, qinit, δ, F )
using the symbols 0, 1, 3, where B = 0 is the blank symbol.
▶ Remark 26. The reason of the choice of symbols 1 and 3 will be made clear later.
We assume Q = {0, 1, . . . , |Q|−1}. Let . . . l−kl−k+1 . . . l−1l0r0r1 . . . rn. . . . denote the content
of the tape of the Turing machine M . In this representation, the head is in front of symbol
r0, and li, ri ∈ {0, 1, 3} for all i. Such a configuration C can be denoted by C = (q, l, r),
where l, r ∈ Σω are words over alphabet Σ = {0, 1, 3} and q ∈ Q denotes the internal state of
M . Write: γword : Σω → R for the function that maps a word w = w0w1w2 . . . to the dyadic
γword(w) =

∑
n≥0 wn4−(n+1).

The idea is that such a configuration C can also be encoded by some element C =
(q, l, r) ∈ N× R2, by considering r = γword(r) and l = γword(l). In other words, we encode
the configuration of a bi-infinite tape Turing machine M by real numbers using their radix
4 encoding, but using only digits 1,3. Notice that this lives in Q × [0, 1]2. Denoting the
image of γword : Σω → R by I, this even lives in Q× I2.
▶ Remark 27. Notice that I is a Cantor-like set: it corresponds to the rational numbers that
can be written using only 1 and 3 in base 4. We write IS for those with at most S digits
after the point (i.e. of the form n/4S for some integer n).

▶ Lemma 28. We can construct some function Next in LDL◦ that simulates one step of
M : given a configuration C, writing C ′ for the next configuration, we have for all integer m,
∥Next(2m, C)− C

′∥ ≤ 2−m.

Proof. We can write l = l0l• and r = r0r•, where l0 and r0 are the first letters of l and r, and
l• and r• corresponding to the (possibly infinite) word l−1l−2 . . . and r1r2 . . . respectively.

... l• l0 r0 r• ...︸ ︷︷ ︸
l

︸ ︷︷ ︸
r

The function Next is of the form Next(q, l, r) = Next(q, l•l0, r0r•) = (q′, l′, r′) defined as
a definition by case of type:

(q′, l′, r′) =
{

(q′, l•l0x, r•) whenever δ(q, r0) = (q′, x,→)
(q′, l•, l0xr•) whenever δ(q, r0) = (q′, x,←)

This can be rewritten as a first candidate for the function Next. Consider the similar
function working over the representation of the configurations as reals, considering r0 = ⌊4r⌋

Next(q, l, r) = Next(q, l•l0, r0r•) = (q′, l′, r′)

=
{

(q′, l•l0x, r•) whenever δ(q, r0) = (q′, x,→)
(q′, l•, l0xr•) whenever δ(q, r0) = (q′, x,←)
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• in the first case “→” : l′ = 4−1l + 4−1x and r′ = r• = {4r}
• in the second case “←” : l′ = l• = {4l} and r′ = 4−2{4r}+ 4−2x + ⌊4l⌋/4 (6)

We introduce the following functions: →: Q× {0, 1, 3} 7→ {0, 1} and ←: Q× {0, 1, 3} 7→
{0, 1} such that → (q, a) (respectively: ← (q, a)) is 1 when δ(q, a) = (·, ·,→) (resp. (·, ·,←)),
i.e. the head moves right (resp. left), and 0 otherwise. We define nextqq

a = q′ if δ(q, a) =
(q′, ·, ·), i.e. values (q′, x, m) for some x and m ∈ {←,→}.

We can rewrite Next(q, l, r) = (q′, l
′
, r′) as l′ =

∑
q,r0

[
→ (q, r0)

(
l

4 + x

4

)
+← (q, r0)

{
4l

}]
and r′ =

∑
q,r0

[
→ (q, r0) {4r}+← (q, r0)

(
{4r}
42 + x

42 + ⌊4l⌋
4

)]
, and, using notation of

Lemma 25, q′ = send((q, r) 7→ nextqq
r)q∈Q,r∈{0,1,3}(q, ⌊4r⌋).

Our problem with such expressions is that they involve some discontinuous functions
such as the integer part and the fractional part function, and we would rather have analytic
(hence continuous) functions. A key point is that from our trick of using only symbols 1
and 3, we are sure that in an expression like ⌊4r⌋, either it values 0 (this is the specific case
where there remain only blanks in r), or that 4r lives in an interval [1, 2] or in interval [3, 4].
That means that we could replace ⌊4r⌋ by σ(4r) if we take σ as some continuous function
that would be affine and values respectively 0, 1 and 3 on {0} ∪ [1, 2] ∪ [3, 4] (that is to say
matches ⌊4r⌋ on this domain). A possible candidate is σ(x) = s(1/4, 3/4, x) + s(9/4, 11/4, x).
Then considering ξ(x) = x−σ(x), then ξ(4r) would be the same as {4r}: that is, considering
r0 = σ(4r), replacing in the above expression every {4·} by ξ(·), and every ⌊·⌋ by σ(·), and
get something that would still work the same, but using only continuous functions.

But, we would like to go to some analytic functions and not only continuous functions,
and it is well-known that an analytic function that equals some affine function on some
interval (e.g. on [1,2]) must be affine, and hence cannot be 3 on [3, 4]. But the point is that
we can try to tolerate errors, and replace s(·, ·) by C-s(2m+c, ·, ·) in the expressions above for
σ and ξ, taking c such that (3 + 1/42)3|Q| ≤ 2c. This would just introduce some error at
most (3 + 1/42)3|Q|2−c2−m ≤ 2−m.
▶ Remark 29. We could also replace every → (q, r) in above expressions for l

′ and r′ by
C-send(k, (q, r) 7→→ (q, r))(q, σ(4r)), for a suitable error bound k, and symmetrically for
← (q, r). However, if we do so, we still might have some multiplications in the above
expressions.
The key is to use Lemma 23: we can also write the above expressions as

l′ =
∑

q,r

[
C-if

(
2m+c, C-send(22, (q, r) 7→→ (q, r))(q, σ(4r)), l

4 + x
4

)
+ C-if

(
2m+c, C-send(22, (q, r) 7→← (q, r))(q, σ(4r)), ξ(4l)

)]
r′ =

∑
q,r

[
C-if

(
2m+c, C-send(22, (q, r) 7→→ (q, r))(q, σ(4r)), ξ(4r)

)
+ C-if

(
2m+c, C-send(22, (q, r) 7→← (q, r))(q, σ(4r)), ξ(4r)

42 + x
42 + σ(4l)

4

)]
and still have the same bound on the error. ◀

Once we have one step, we would like to simulate some arbitrary computation of a Turing
machine, by considering the iterations of function Next.

The problem of above construction, is that, even if we start from the exact encoding
C of a configuration, it introduces some error (even if at most 2−m). If we want to apply
again the function Next, then we will start not exactly from the encoding of a configuration.
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Looking at the choice of the function σ, a small error can be tolerated (roughly if the process
does not involve points at distance less than 1/4 of I), but this error is amplified (roughly
multiplied by 4 on some component), before introducing some new errors (even if at most
2−m). The point is that if we repeat the process, very soon it will be amplified, up to a level
where we have no true idea or control about what becomes the value of above function.

However, if we know some bound on the space used by the Turing machine, we can
correct it to get at most some fixed additive error: a Turing machine using a space S uses at
most S cells to the right and to the left of the initial position of its head. Consequently, a
configuration C = (q, l, r) of such a machine involves words l and r of length at most S. Their
encoding l, and r are expected to remain in IS+1. Consider roundS+1(l) = ⌊4S+1l⌋/4S+1.

For a point l of IS+1, 4S+1l is an integer, and l = roundS+1(l). But now, for a point l̃ at
distance less than 4−(S+2) from a point l ∈ IS+1, roundS+1(̃l) = l. In other words, roundS+1
“deletes” errors of order 4−(S+2). Consequently, we can replace every l in above expressions
by σ1(22S+4, 22S+3, 4S+1l)/4S+1, as this is close to roundS+1(l), and the same for r, where
σ1 is the function from Corollary 22. We could also replace m by m + 2S + 4 to guarantee
that 2−m ≤ 4−(S+2). We get the following important improvement of the previous lemma:

▶ Lemma 30. We can construct some function Next in LDL◦ that simulates one step of M ,
i.e. that computes the Next function sending a configuration C of Turing machine M to C

′,
where C ′ is the next one: ∥Next(2m, 2S , C)−C

′∥ ≤ 2−m. Furthermore, it is robust to errors
on its input, up to space S: considering ∥C̃ − C∥ ≤ 4−(S+2), ∥Next(2m, 2S , C̃)− C

′∥ ≤ 2−m

remains true.

▶ Proposition 31. Consider some Turing machine M that computes some function f : Σ∗ →
Σ∗ in some time T (ℓ(ω)) on input ω. One can construct some function f̃ : N2 × R→ R in
LDL◦ that does the same: f̃(2m, 2T (ℓ(ω)), γword(ω)) that is at most 2−m far from γword(f(ω)).

Proof. The idea is to define the function Exec that maps some time 2t and some initial
configuration C to the configuration at time t. This can be obtained using previous lemma
by Exec(2m, 0, 2T , C) = C and Exec(2m, 2t+1, 2T , C) = Next(2m, 2T , Exec(2m, 2t, 2T , C)).

We can then get the value of the computation as Exec(2m, 2T (ℓ(ω)), 2T (ℓ(ω)), Cinit) on input
ω, considering Cinit = (q0, 0, γword(ω)). By applying some projection, we get the following
function f̃(2m, 2T , y) = π3

3(Exec(2m, 2T , 2T , (q0, 0, y))) that satisfies the property. ◀

Actually, in order to get FPSPACE, observe that we can also replace the linear length
ODE by a linear ODE.

▶ Proposition 32. Consider some Turing machine M that computes some function f :
Σ∗ → Σ∗ in some polynomial space S(ℓ(ω)) on input ω. One can construct some function
f̃ : N2 × R → R in RLD◦ that does the same: we have f̃(2m, 2S(ℓ(ω)), γword(ω)) that is at
most 2−m far from γword(f(ω)).

Proof. The idea is the same, but not working with powers of 2, and with linear ODE:
define the function Exec that maps some time t and some initial configuration C to the
configuration at time t. This can be obtained using previous lemma by Exec(2m, 0, 2S , C) = C

and Exec(2m, t + 1, 2S , C) = Next(2m, 2S , Exec(2m, t, 2S , C)).
In order to claim this is a robust linear ODE, we need to state that Exec(2m, t, 2S , C)

is polynomially numerically stable: but this holds, since to estimate this value at 2−n it is
sufficient to work at precision 4−max(m,n,S+2) (independently of t, from the rounding).

We can then get the value of the computation as Exec(2m, 2S(ℓ(ω)), 2S(ℓ(ω)), Cinit) on input
ω, considering Cinit = (q0, 0, γword(ω)). By applying some projection, we get the following
function f̃(2m, 2S , y) = π3

3(Exec(2m, S, 2S , (q0, 0, y))) that satisfies the property. ◀
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5 Converting integers and dyadics to words, and conversely

One point of our simulations of Turing machines is that they work over I, through encoding
γword, while we would like to talk about integers and real numbers: we need to be able to
convert an integer (more generally a dyadic) into some encoding over I and conversely.

Fix the following encoding: every digit in the binary expansion of d is encoded by a pair
of symbols in the radix 4 expansion of d ∈ I ∩ [0, 1]: digit 0 (respectively: 1) is encoded by
11 (resp. 13) if before the “decimal” point in d, and digit 0 (respectively: 1) is encoded by 31
(resp. 33) if after. For example, for d = 101.1 in base 2, d = 0.13111333 in base 4.

By iterating ℓ(n) times the function

F (r1, l2) =
{

(÷2(r1), (l2 + 5)/4) whenever mod2(r1) = 0
(÷2(r1), (l2 + 7)/4) whenever mod2(r1) = 1.

over (n, 0), and then projecting on the second argument, we can prove:

▶ Lemma 33 (From N to I). We can construct some function Decode : N2 → R in LDL◦

that maps m and n to some point at distance less than 2−m from γword(n).

This technique can be extended to consider decoding of tuples: there is a function
Decode : Nd+1 → R in LDL◦ that maps m and n to some point at distance less than 2−m

from γword(n), with n defined componentwise.
Conversely, given d, we need a way to construct d. Actually, as we will need to avoid

multiplications, we state that we can even do something stronger: given d, and (some
bounded) λ we can construct λd.

▶ Lemma 34 (From I to R, and multiplying in parallel). We can construct some function
EncodeMul : N2 × [0, 1] × R → R in LDL◦ that maps m, 2S, γword(d) and (bounded) λ to
some real at distance at most 2−m from λd, whenever d is of length less than S.

6 Proofs and applications

When we say that a function f : S1 × · · · × Sd → Rd′ is (respectively: polynomial time or
space) computable this will always be in the sense of computable analysis: see e.g. [7, 19]. We
actually follow the formalisation in [3] of required concepts from computable analysis, able
to mix complexity issues dealing with integer and real arguments. Theorem 8 follows from
point 1. of next Proposition for one inclusion, and previous simulation of Turing machines
for the other.

▶ Proposition 35.
1. All functions of LDL◦ are computable (in the sense of computable analysis) in polynomial

time.
2. All functions of RLD are computable (in the sense of computable analysis) in polynomial

space.

The proof of the proposition consists in observing this holds for the basic functions and
that composition preserves polynomial time (respectively: space) computability and also
by linear length ODEs. This latter fact is established by computable analysis arguments,
reasoning on some explicit formula giving the solution of linear length ODE. Regarding space,
the main issue is the need to prove the schema given by Definition 18 guarantees f is in
FPSPACE, when u, g, and h are. Assuming condition 1. of Definition 18 would not be
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sufficient: the problem is f(x, y) may polynomially grow too fast or have a modulus function
that would grow too fast. The point is, in Definition 18, we assumed f to be both bounded
and satisfying 2., i.e. polynomial numerical robustness. With these hypotheses, it is sufficient
to work with the precision given by this robustness condition and these conditions guarantee
the validity of computing with such approximated values.

We now go to various applications of it and of our toolbox. First, we state a characterisa-
tion of FPTIME for general functions, covering both the case of a function f : Nd → Rd′ ,
f : Rd → Rd′ as a special case: only the first type (sequences) was covered by [3].

▶ Theorem 36 (Theorem 9). A function f : Rd × Nd′′ → Rd′ is computable in polynomial
time iff there exists f̃ : Rd × Nd′′+2 → Rd′ ∈ LDL◦ such that for all x ∈ Rd, X ∈ N,
x ∈

[
−2X , 2X

]
, m ∈ Nd′′ , n ∈ N, ∥f̃(x, m, 2X , 2n)− f(x, m)∥ ≤ 2−n.

The reverse implication of Theorem 36 follows from Proposition 35, (1.) and arguments
from computable analysis. For the direct implication, for sequences, that is to say, functions
of type f : Nd′′ → Rd′ (i.e. d = 0, the case considered in [3]) we are almost done: reasoning
componentwise, we only need to consider f : Nd′′ → R (i.e. d′ = 1). As the function is
polynomial time computable, this means that there is a polynomial time computable function
g : Nd′′+1 → {1, 3}∗ so that on m, 2n, it provides the encoding ϕ(m, n) of some dyadic
ϕ(m, n) with ∥ϕ(m, n)− f(m)∥ ≤ 2−n for all m. The problem is then to decode, compute
and encode the result to produce this dyadic, using our previous toolbox.

More precisely, from Proposition 31, we get g̃ with |g̃(2e, 2p(max(m,n)), Decode(2e, m, n))−
γword(g(m, n))| ≤ 2−e for some polynomial p corresponding to the time required to compute
g, and e = max(p(max(m, n)), n). Then we need to transform the value to the correct dyadic:
we mean f̃(m, n) = EncodeMul(2e, 2t, g̃(2e, 2t, Decode(2e, m, n)), 1), where t = p(max(m, n)),
e = max(p(max(m, n)), n) provides a solution such that ∥f̃(m, 2n)− f(m)∥ ≤ 2−n.

▶ Remark 37. This is basically what is done in [3], except that we do it here with analytic
functions. However, as already observed in [3], this cannot be done for the case d ≥ 1,
i.e. for example for f : R→ R. The problem is that we used the fact that we can decode:
Decode maps an integer n to its encoding n (but is not guaranteed to do something valid on
non-integers). There cannot exist such functions that would be valid over all reals, as such
function must be continuous, and there is no way to map continuously real numbers to finite
words. This is where the approach of the article [3] is stuck.

To solve this, we use an adaptive barycentric technique. By lack of space, we discuss
only the case of a polynomial time computable function f : R × N → R. From standard
arguments from computable analysis (see e.g. [Corollary 2.21][13]), the following holds and
the point is to be able to realise all this with functions from LDL◦.

▶ Lemma 38. Assume f : R× N→ R is computable in polynomial time. There exists some
polynomial m : N2 → N and some f̃ : N4 → Z computable in polynomial time such that for
all x ∈ R, ∥2−nf̃(⌊2m(n,M)x⌋, u, 2M , 2n)− f(x, u)∥ ≤ 2−n whenever x

2m(n,M) ∈ [−2M , 2M ].

Assume we consider an approximation σi (with either i = 1 or i = 2) of the integer part
function given by Lemma 22. Then, given n, M , when 2m(n,M)x falls in some suitable interval
Ii for σi (see statement of Lemma 22), we are sure that σi(2e, 2m(n,M)+X+1, 2m(n,M)x) is at
some distance upon control from ⌊2m(n,M)x⌋. Consequently, 2−nf̃(σi(2m(n,M)+X+1, 2m(n,M)

x), u, 2M , 2n) provides some 2−n-approximation of f(x, u), up to some error upon control.
When this holds, we then use an argument similar to what we describe for sequences: using
functions from LDL◦, we can decode, compute, and encode the result to provide this dyadic.
It is provided by an expression Formulai(x, u, M, n) of the form EncodeMul(2e, 2t, ˜̃f(22, 2t,

Decode(2e, σi(2e, 2M , 2m(n,M)x))), 2−n).
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The problem is that it might also be the case that 2m(n,M)x falls in the complement
of the intervals (Ii)i. In that case, we have no clear idea of what could be the value of
σi(2e, 2m(n,M)+X+1, 2m(n,M)x), and consequently of what might be the value of the above
expression Formulai(x, u, M, n). But the point is that when it happens for an x for σ1, we
could have used σ2, and this would work, as one can check that the intervals of type I1 covers
the complements of the intervals of type I2 and conversely. They also overlap, but when x is
both in some I1 and I2, Formula1(x, u, M, n) and Formula2(x, u, M, n) may differ, but they
are both 2−n approximation of f(x).

The key is to compute some suitable “adaptive” barycenter, using function λ, provided by
Corollary 22. Writing ≈ for the fact that two values are closed up to some controlled bounded
error, observe from the statements of Lemma 22 that whenever λ(·, 2n, x) ≈ 0, we know
that σ2(·, 2n, x) ≈ ⌊x⌋; whenever λ(·, 2n, x) ≈ 1 we know that σ1(·, 2n, x) ≈ ⌊x⌋; whenever
λ(·, 2n, x) ∈ (0, 1), we know that σ1(·, 2n, x) ≈ ⌊x⌋+1 and σ2(·, 2n, x) ≈ ⌊x⌋. That means that
if we consider λ(·, 2n, x)Formula1(x, u, M, n)+(1−λ(·, 2n, n))Formula2(x, u, M, n) we are sure
to be close (up to some bounded error) to some 2−n approximation of f(x). There remains
that this requires some multiplication with λ. But from the form of Formulai(x, u, M, n),
this could be also be written as follows, ending the proof of Theorem 36.

EncodeMul(2e, 2t, ˜̃f(2e, 2t, Decode(2e, σ1(2e, 2M , 2m(n,M)x))), λ(2e, 2M , 2m(n,M)x)2−n)+

EncodeMul(2e, 2t, ˜̃f(2e, 2t, Decode(2e, σ2(2e, 2M , 2m(n,M)x))), (1 − λ(2e, 2M , 2m(n,M)x))2−n) (7)

From the fact that we have the reverse direction in Theorem 36, it is natural to consider
the operation that maps f̃ to f . Namely, we introduce the operation ELim (ELim stands
for Effective Limit):

▶ Definition 39 (Operation ELim). Given f̃ : Rd×Nd′′ ×N→ Rd′ ∈ LDL◦ such that for all
x ∈ Rd, X ∈ N, x ∈

[
−2X , 2X

]
, m ∈ Nd′′ , n ∈ N, ∥f̃(x, m, 2X , 2n)− f(x, m)∥ ≤ 2−n, then

ELim(f̃) is the (clearly uniquely defined) corresponding function f : Rd → Rd′ .

▶ Theorem 40. A continuous function f is computable in polynomial time if and only if all its
components belong to LDL◦, where LDL◦ = [0, 1, πk

i , ℓ(x), +,−, cond(x), x
2 , x

3 ; composition,
linear length ODE, ELim].

For the reverse direction, by induction, the only thing to prove is that the class of functions
from to the integers computable in polynomial time is preserved by the operation ELim.
Take such a function f̃ . By definition, given x, m, X we can compute f̃(x, m, 2X , 2n) with
precision 2−n in time polynomial in n. This must be, by definition of ELim schema, some
approximation of f(x, m) over [−2X , 2X ], and hence f is computable in polynomial time.
This also gives directly Theorem 9 as a corollary.

We obtain the statements for polynomial space computability (Theorems 10 and 11)
replacing LDL◦ by RLD◦, using similar reasoning about space instead of time, considering
point 2. instead of 1. of Proposition 35, and Proposition 32 instead of Proposition 31.

References
1 Stephen Bellantoni and Stephen Cook. A new recursion-theoretic characterization of the

poly-time functions. Computational Complexity, 2:97–110, 1992.
2 Manon Blanc and Olivier Bournez. A characterization of polynomial time computable functions

from the integers to the reals using discrete ordinary differential equations. Submitted. Journal
version of [3]. Preliminary version available on arXiv:2209.13599.

https://arxiv.org/abs/2209.13599


M. Blanc and O. Bournez 21:15

3 Manon Blanc and Olivier Bournez. A characterization of polynomial time computable functions
from the integers to the reals using discrete ordinary differential equations. In Jérôme Durand-
Lose and György Vaszil, editors, Machines, Computations, and Universality – 9th International
Conference, MCU 2022, Debrecen, Hungary, August 31 – September 2, 2022, Proceedings,
volume 13419 of Lecture Notes in Computer Science, pages 58–74. Springer, 2022. MCU’22
Best Student Paper Award. doi:10.1007/978-3-031-13502-6_4.

4 Olivier Bournez and Arnaud Durand. Recursion schemes, discrete differential equations and
characterization of polynomial time computation. In Peter Rossmanith, Pinar Heggernes, and
Joost-Pieter Katoen, editors, 44th Int Symposium on Mathematical Foundations of Computer
Science, MFCS, volume 138 of LIPIcs, pages 23:1–23:14. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2019.

5 Olivier Bournez and Arnaud Durand. A characterization of functions over the integers
computable in polynomial time using discrete ordinary differential equations. Computational
Complexity, 32(2):7, 2023.

6 Olivier Bournez and Amaury Pouly. A universal ordinary differential equation. In International
Colloquium on Automata Language Programming, ICALP’2017, 2017.

7 Vasco Brattka, Peter Hertling, and Klaus Weihrauch. A tutorial on computable analysis. In
New computational paradigms, pages 425–491. Springer, 2008.

8 P. Clote. Computational models and function algebras. In Edward R. Griffor, editor, Handbook
of Computability Theory, pages 589–681. North-Holland, Amsterdam, 1998.

9 Peter Clote and Evangelos Kranakis. Boolean functions and computation models. Springer
Science & Business Media, 2013.

10 Alan Cobham. The intrinsic computational difficulty of functions. In Y. Bar-Hillel, editor,
Proceedings of the International Conference on Logic, Methodology, and Philosophy of Science,
pages 24–30. North-Holland, Amsterdam, 1962.

11 Francois Fages, Guillaume Le Guludec, Olivier Bournez, and Amaury Pouly. Strong turing
completeness of continuous chemical reaction networks and compilation of mixed analog-digital
programs. In Computational Methods in Systems Biology-CMSB 2017, 2017. CMSB’2017 Best
Paper Award.

12 Daniel S. Graça and Ning Zhong. Handbook of Computability and Complexity in Analysis,
chapter Computability of Differential Equations, pages 71–99. Springer, 2018.

13 Ker-I Ko. Complexity Theory of Real Functions. Progress in Theoretical Computer Science.
Birkhaüser, Boston, 1991.

14 D. Leivant. Intrinsic theories and computational complexity. In LCC’94, number 960 in
Lecture Notes in Computer Science, pages 177–194, 1995.

15 Daniel Leivant. Predicative recurrence and computational complexity I: Word recurrence
and poly-time. In Peter Clote and Jeffery Remmel, editors, Feasible Mathematics II, pages
320–343. Birkhäuser, 1994.

16 Daniel Leivant and Jean-Yves Marion. Lambda calculus characterizations of Poly-Time.
Fundamenta Informatica, 19(1,2):167,184, 1993.

17 Daniel Leivant and Jean-Yves Marion. Ramified recurrence and computational complexity II:
substitution and poly-space. In L. Pacholski and J. Tiuryn, editors, Computer Science Logic,
8th Workshop, CSL’94, volume 933 of Lecture Notes in Computer Science, pages 369–380,
Kazimierz, Poland, 1995. Springer.

18 David B Thompson. Subrecursiveness: Machine-independent notions of computability in
restricted time and storage. Mathematical Systems Theory, 6(1-2):3–15, 1972.

19 Klaus Weihrauch. Computable Analysis: an Introduction. Springer, 2000.

MFCS 2023

https://doi.org/10.1007/978-3-031-13502-6_4




MaxCut Above Guarantee
Ivan Bliznets #

Utrecht University, The Netherlands

Vladislav Epifanov #

HSE University, St. Petersburg, Russia

Abstract
In this paper, we study the computational complexity of the Maximum Cut problem parameterized
above guarantee. Our main result provides a linear kernel for the Maximum Cut problem in connected
graphs parameterized above the spanning tree. This kernel significantly improves the previous
O(k5) kernel given by Madathil, Saurabh, and Zehavi [ToCS 2020]. We also provide subexponential
running time algorithms for this problem in special classes of graphs: chordal, split, and co-bipartite.
We complete the picture by lower bounds under the assumption of the ETH. Moreover, we initiate a
study of the Maximum Cut problem above 2

3 |E| lower bound in tripartite graphs.
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1 Introduction

The maximum cut problem, Max-Cut for short, is a well-studied optimization problem
in computer science and graph theory. In this problem, we need to split the vertices of
a given graph into two parts, such that the sum of weights of edges going between two
parts is maximum. The weighted version of the decision problem was one of Karp’s 21
NP-complete problems [14]. However, it is known that even unweighted Maximum Cut is
NP-complete [10]. It is easy to see that the problem admits an FPT-algorithm parameterized
by the solution size, since the size of solution is relatively large. Specifically, if m is the
number of edges in the input graph, then using a greedy argument we can construct a cut
of size m

2 . That is why it is natural to study parameterization above lower bounds. Under
such parameterization [13], our goal is to find a solution of size k + l(I) where I is the
input instance, l(I) is a polynomial time computable lower bound and k is our parameter.
For more details about parameterizations of this type, we refer interested readers to a
very nice survey written by Gutin and Mnich [13]. Mahajan and Raman were the first
who studied the Maximum Cut problem parameterized above lower bounds [16]. They
showed that Maximum Cut parameterized above lower bound m

2 admits an FPT-algorithm.
Later Crowston et al. [4, 5] presented a 2O(k) algorithm and a kernel with O(k5) vertices
for Maximum Cut in the connected graph under more refined lower bound m

2 + n−1
4 .

Subsequently, Crowtson et al. [3] presented an O(k3)-vertex kernel, and finally, Etscheid and
Mnich [8] constructed an O(k)-vertex kernel. However, Maximum Cut admits other lower
bounds. One such lower bounds for a connected graph is n − 1. To construct a cut of this
size, it is enough to find a spanning tree and then partition vertices such that all edges of the
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tree appear in the cut. Note that lower bounds m
2 + n−1

4 , n − 1 are incomparable. We denote
Maximum Cut parameterized above spanning tree by Max-Cut-AST. Madathil et al. [15]
presented an O∗(8k)-time algorithm and a kernel with O(k5) vertices for Max-Cut-AST.
Note that the lower bounds m

2 + n−1
4 and n − 1 are incomparable, since in very sparse graphs

n − 1 > m
2 + n−1

4 but in dense graphs m
2 + n−1

4 > n − 1. So, the linear kernel designed by
Etscheid and Mnich [9] does not provide a linear kernel for the parameterization above n − 1.

In this paper, we continue the study of Max-Cut-AST. Our main result establishes
an O(k)-vertex kernel for this problem. This result resolves an Open Problem 2 from the
survey [13] and significantly improves upon the previous O(k5)-vertex kernel.

▶ Theorem 1. Max-Cut-AST has a kernel with O(k) vertices and O(k) edges.

▶ Theorem 2. There is no kernel with sublinear number of vertices for Max-Cut-AST
unless ETH fails.

Maximum Cut does not admit a 2o(m)-time algorithm unless the ETH fails [2]. Hence,
Max-Cut-AST also does not admit 2o(k)-time algorithm unless the ETH fails. However, we
show that we can get a significant improvement if we restrict our input to special classes of
graphs. Specifically, we proved the following theorems.

▶ Theorem 3. Max-Cut-AST can be solved in a connected co-bipartite graph G in
2O(

√
k) poly time.

▶ Theorem 4. Max-Cut-AST on connected chordal graphs and split graphs admits a
2O(

√
k) poly-time algorithm.

We complement these results with conditional lower bounds assuming the Exponential Time
Hypothesis.

▶ Theorem 5. Max-Cut-AST does not admit 2o(
√

k) poly or 2o(
√

n) poly algorithms on
split graphs and on chordal graphs unless the ETH is false.

▶ Theorem 6. Max-Cut-AST does not admit 2o( 4√
k) poly algorithm on co-bipartite graphs

unless the ETH is false.

We also initiate a new parameterization of Maximum Cut on tripartite graphs. First, we
show that Max-Cut-AST on tripartite graphs is essentially as hard as Max-Cut-AST
on general graphs. Note that it is easy to see that a tripartite graph admits cut of size 2

3 m

where m is the number of edges. However, it is not clear how to find such cut if the partition
is not provided in the input. We prove that we can construct a randomized polynomial
time algorithm that finds such cut. In order to design the algorithm we employ semidefinite
programming and technique used to find a best known approximation of Maximum Cut [12].

▶ Theorem 7. There is a polynomial time randomized algorithm that finds an edge cut of
size 2

3 |E(G)| on an input tripartite graph G.

Note that the lower bound 2
3 m is essentially tight since disjoint union of k triangles is

a tripartite graph and the maximum cut equals to 2k while the total number of edges is
3k. Therefore it is natural to ask whether Maximum Cut above 2

3 |E(G)| admits an FPT
algorithm in tripartite graphs. Unfortunately, we have not resolved the question and state it
as an open problem. However, we show that finding cuts significantly bigger than 2

3 |E(G)|
is hard even in tripartite graphs that contain such cuts. Formally, we proved the following
theorem.

▶ Theorem 8. Assuming P ̸= NP for any 0 < ε < 1
6 there is no polynomial time algorithm

that finds cut of size ≥
( 2

3 + ε
)

|E| in tripartite graph if such cut exists.
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2 Preliminaries

In this paper we work with undirected simple graphs. Only in very special cases we allow
multigraphs and multi-edges. We explicitly mention situation when we start working with
multi-edges. We use standard graph notations which can be found in [7]. As usual we
denote by n or |V (G)| number of vertices in a graph G. Similarly by m or |E(G)| we denote
number of edges in a graph G. Generally by k we denote value of parameter that is under
consideration at the moment of discussion. Complement of the graph G we denote by Ḡ.
We recall that V (Ḡ) = V (G) and e ∈ E(Ḡ) if and only if e ̸∈ E(G). Recall that in the
Maximum Cut problem we need to partition vertices of a given graph into two parts such
the number of edges between two parts is the maximum possible. By EG(A, B) we denote
the set of edges going from the set A to the set B in the graph G. If the graph G is clear
from the context we omit subscript G. Partition of vertices of graph into two disjoint parts
A and B we denote by (A, B). Slightly abusing notation in some cases we refer to cut as
a set of edges E(A, B) and in other cases we refer to cut as a partition of vertices (A, B).
mc(G) denotes size of the maximum cut of the graph G. We call a vertex an articulation
point/vertex if its removal increase number of connected components. Recall that block is a
maximal 2-connected component.

Chordal graphs are graphs that do not contain induced cycles on ℓ vertices for ℓ ≥ 4.

Co-bipartite graphs are graphs whose complement graph is bipartite.
Many of our results concern the parameterized complexity of the problems, including

fixed-parameter tractable algorithms, kernelization algorithms, and some hardness results for
certain parameters. For a detailed survey in parameterized algorithms we refer to the book of
Cygan et al [6]. Due to the space constraints, proofs of lemmas marked by (⋆) are omitted.

3 Kernel

In this section we provide a linear kernel for Max-Cut-AST. Recall that in this problem, we
are given a connected graph G, integer k, and our goal is to determine if G has a maximum
cut of size at least n − 1 + k. Before we proceed we formulate lemma by Mathadil et al. [15]
that we are using in our algorithm.

▶ Lemma 9 ([15]). There exists a polynomial time algorithm that for (G, k) either concludes
that graph G has a cut of size at least |V (G)| − 1 + k or finds a set S ⊆ V (G) such that
|S| ≤ 3k and each block of G − S is either a clique or a cycle.

▶ Theorem 1. Max-Cut-AST has a kernel with O(k) vertices and O(k) edges.

Proof. First of all we apply algorithm from Lemma 9. After this step either we conclude
that input instance is Yes-instance and we can output a trivial kernel or we find a set S

with properties described in Lemma 9. In the later case we proceed with an application of
reduction rules. Our reduction rules maintain the following properties: (i) graph is connected;
(ii) each block of G − S is either a cycle or a clique, however some of these cycles might
become cycles of length 2 (our graph might become a multi-graph).

We call a vertex of G − S special if it has an edge to S or if it is an articulation point of
G − S.

We are ready to present our first reduction rule.

Rule 1: Let U be a block in G \ S, v ∈ U is the only special vertex in U and U ̸= {v}
Remove: Vertices U \ {v}
Parameter: Reduce k by mc(U) − (|U | − 1)
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Proof of correctness. Note that U has no other articulation points or vertices with edges to
S except v. Therefore, v is an articulation point of the whole graph G. Hence, the maximum
cut in G equals to the sum of the cut in U and G − (U \ {v}).

This reduction deletes all edges in U , so the maximum cut decreases by mc(U). Besides we
delete |U | − 1 vertices. Hence, the parameter should be decreased by mc(U) − (|U | − 1). ◀

Rule 2: Let v has no neighbors in G \ S, and exactly one neighbor in S i.e. N(v) = u ∈ S

Remove: v

Parameter: Reduce k by multiplicity of edge uv − 1

Proof of correctness. Under this constrains v is either a pendant vertex in G or vertex
connected with some other vertex u by multiple edges. Removal of v decreases the maximum
cut by multiplicity of edge uv and number of vertices decreases by one. ◀

Since a block can consist of one vertex only in case this vertex is isolated, exhaustive
application of these two rules leave every block with at least two special vertices or the whole
connected component is a single vertex with at least two edges towards S and neighborhood
of size at least 2.

▶ Lemma 11. In a graph where Rules 1, 2 do not apply, every connected component of
G − S has at least two edges to S.

Proof. Let C be a connected component of G − S such that |E(S, C)| = 1. Therefore, at
most one vertex from C is a special vertex but not an articulation point.

If C is composed of a single block then it has no articulation points and therefore has a
block with only one special vertex. Hence, either Rule 1 or Rule 2 must be applicable.

Otherwise C has at least two leaf blocks, each of them having exactly one articulation
point. At least one of these leaf blocks has no other special vertices and can be reduced by
Rule 1. ◀

▶ Lemma 12. Let f be the number of edges between S and those connected components of
G − S which have at least 3 edges to S. If f ≥ 24k then (G, k) is a YES-instance.

Proof. Let U1, . . . , Um be a connected components of G − S. Without loss of generality we
can assume that the first l of them have more than three edges to S and the other have only
2. Note that l ≤ f

3 .
If f ≥ 24k we construct a cut of G with at least |V (G)| + k edges. First of all, in

each connected component Ui we construct a cut of size at least |V (Ui)| − 1 according to a
spanning tree lower bound. After that we put the whole S into one of the parts so that at
least half of edges between S and G − S is cut. Note that number of edges between S and
G − S is at least 2(m − l) + f .

So, the constructed cut has the following size:

mc(G) ≥
m∑

i=1
(|V (Ui)| − 1) + (m − l) + f

2 =
m∑

i=1
|V (Ui)| − l + f

2 ≥
m∑

i=1
|V (Ui)| − f

3 + f

2

=
m∑

i=1
|V (Ui)| + f

6 ≥
m∑

i=1
|V (Ui)| + 4k ≥

m∑
i=1

|V (Ui)| + |S| + k ≥ V (G) + k

Constructed cut has size at least ≥ V (G) − 1 + k which means that (G, k) is a Yes-
instance. ◀



I. Bliznets and V. Epifanov 22:5

Before we state the next reduction rule we prove the following auxiliary claim.

▷ Claim 13. Let M be a maximum cut in a graph G, and edge e is a bridge in G then
e ∈ M .

Proof. If e ∈ M then there is nothing to prove. Otherwise, e ̸∈ M . Let e = uv. The
maximum cut M induces a partition of vertices in G into two parts V1, V2. Without loss of
generality u, v ∈ V1. The edge e also induces a partition of V (G) into two parts W1, W2, each
part corresponds to a connected component in a graph G − e. Without loss of generality,
we assume that u ∈ W1, v, ∈ W2. Let us consider the following partitioning (A, B) where
A = (V1 ∩ W1) ∪ (V2 ∩ W2), B = (V1 ∩ W2) ∪ (V2 ∩ W1). Note that u ∈ A, v ∈ B. So the
cut generated by partitioning (A, B) contains edge e. Moreover, if edge e′ ≠ e then either
e′ connects two vertices from W1 or two vertices from W2. Hence, if e′ ∈ M then e′ has
one endpoint in A and the other in B. So, M is not a maximum cut which leads to a
contradiction. ◁

Rule 3 Let U be a block in G − S which is a clique, W ⊆ U is the set of special vertices
such that |W | ≤ ⌈|U |/2⌉

Remove: Vertices V (U) \ W and a maximal subset of edges F in G[W ] such that (G −
(U − W )) \ F is connected

Parameter: Reduce k by mc(U) − |V (U)| + |W | − |E(G[W ] \ F )|)

Proof of correctness. Let G′ be a graph obtained from G by deletion of all edges from U

and vertices V (U) \ W .
Since U is a clique, its maximum cut is achieved when its vertices are divided between

partitions equally (or almost equally if |U | is odd). Since |W | ≤ ⌈|U |/2⌉, any cut of G′ can be
extended to induced maximum cut of U (simply add vertices from U \ W to both parts such
that they contain ⌈|U |/2⌉ and ⌊|U |/2⌋ vertices from U). Therefore, mc(G′)+mc(U) ≤ mc(G).

Since G′ and U do not have common edges we have mc(G′)+mc(U) ≥ mc(G). Combining
the two inequalities we have mc(G′) + mc(U) = mc(G).

Let G′′ be a graph (G − (U − W )) \ F . Note that V (G′′) = V (G′) and E(G′′) =
E(G′) ∪ (E(G[W ]) \ F ). Each edge from the set E(G[W ]) \ F is a bridge in G′′, otherwise F

is not maximal. In any graph maximum cut contains all bridges, by Claim 13, so we have:
mc(G′′) = mc(G′) + |E(G[W ]) \ F | = mc(G) − mc(U) + |E(G[W ]) \ F |. And this proves
correctness of the reduction.

Note that the reduction preserves the clique-cycle-forest property of G − S as we delete
the subset V (U) \ W and the clique W was replaced by a spanning tree. So each edge in the
spanning tree of W can be seen as a clique on two vertices. ◀

Rule 4 Let e = bc be an edge from E(G − S) such that degG b = degG c = 2, and a, d be
the other neighbours of b and c respectively (note that a and d may be the same
vertex)

Remove: vertices b, c and add edge ad if a ̸= d

Parameter: No changes applied

Proof of correctness. Let G′ be graph obtained after application of the reduction rule. We
prove that mc(G′) = mc(G) − 2.

First, we show that mc(G′) ≥ mc(G) − 2. Let (A, B) be partition of G that produces the
maximum cut. Induced partition in the subgraph G′ has cut of size ≥ mc(G) − 2. Indeed,
if all 3 edges ab, bc, cd are in cut E(A, B), then a, d are in different partitions. Hence, the
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induced partition cuts an edge ad in G′ having a cut of size mc(G) − 3 + 1 = mc(G) − 2 in
G′. If at most 2 edges from the set {ab, bc, cd} belong to the cut E(A, B) then obviously
induced vertex partition has cut at least |E(A, B)| − 2 = mc(G) − 2.

To prove that mc(G) ≥ mc(G′) + 2 we construct partitioning of vertices V (G) based
on partitioning of vertices V (G′). Let (A′, B′) be the maximum cut in G′. We construct
partition of V (G) simply by adding vertices b, c to partition (A′, B′). We place c be in the
same part as a and b be in the other. Let us call obtained partition (A, B). In this case
edges ab, bc belong to cut E(A, B), edge cd is in the cut if and only if ad was in the cut of
the graph G′. Hence, |EG(A, B)| = |EG′(A′, B′)|+2.

Since the lower bound and the maximum cut size decrease by two, the parameter should
not be changed.

Note that after application of the reduction rule G′ − S is a clique-cycle-forest as G − S.
However, the reduction can remove a cycle of length 3 or turn a cycle of size 4 into two
multiple edges. ◀

▶ Lemma 14. If none of the above rules is applicable to G then at least half of all vertices
in every block of G − S are special.

Proof. For cliques it is true since otherwise rule 3 is applicable. Cycles can not have 2
consecutive non-special vertices since otherwise we can apply reduction rule 4. ◀

Rule 5 If there are at least k even cycles blocks in G − S

Return: Yes-instance.

Proof of correctness. Consider a subgraph H containing k even cycles of G − S. We
construct a spanning forest in H , to do this we remove an arbitrary edge in each cycle. This
forest can be extended to a spanning tree F of the whole G. If we add back previously
deleted edges of the subgraph H we obtain a bipartite graph (all introduced cycle have even
length). The bipartite subgraph has exactly |V (G)| − 1 + k edges, hence, G has a required
cut and we can output Yes. ◀

Now we can bound the total size of connected components in G − S that have at least 3
edges to S (note that here we are speaking about connected components and not blocks). We
split blocks of these components into several types and bound the total number of vertices in
block of each type. We consider the following types of blocks from connected components
with at least 3 edges going to S:
1. Blocks with ≥ 3 articulation points;
2. Blocks with < 3 articulation points and at least one special vertex that is not an articulate

vertex;
3. Even cycles with exactly two special vertices which are articulation points;
4. Cliques and odd cycles with exactly two special vertices which are articulation points.
These types of blocks cover all possibilities, since in connected components with at least
three edges towards S all blocks with only one special vertex were removed by rule 1. Below
for each type we bound the total size of blocks of this type.

1. For the graph G − S we consider a bipartite forest of blocks and articulation points F : for
every block X we introduce a vertex aX and for every articulation point y we introduce
a vertex by. Moreover, aXby ∈ E(F ) if and only if y ∈ V (X). Each articulation point
belong to at least two blocks. Therefore leaves and isolated vertices in F correspond to
blocks with one and zero articulation points respectively. We recall, that we removed all
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blocks with at most one special vertex except isolated vertices with at least two edges
going to S. Hence, each block corresponding to isolated vertex or leaf in the forest F has
an edge going to S, as every non-isolated block left has at least two special vertices each
of these blocks has its own edge to S. Hence, by Lemma 12 we have that there are at
most 24k leaves and isolated vertices in F .
It is known that for any tree or forest T the following holds∑

v∈T :degT v>2
(deg(v) − 2) ≤ number of leaves in T.

Hence, we have∑
v∈F :degF v>2

(degF (v) − 2) ≤ 24k. (1)

Moreover,
∑

v∈F :degF v>2 degF (v) ≤ 3
∑

v∈F :degF v>2(degF (v) − 2) ≤ 3 · 24k = 72k.

Note that the total number of articulation points in blocks with at least 3 articulation
points is bounded by

∑
v∈F :degF v>2 degF (v). The total number of special vertices that

are not articulation points in such blocks is bounded by 24k, by Lemma 12. Therefore,
the total number of special vertices in blocks with at least 3 articulation points is bounded
by 72k + 24k = 96k. Hence, by Lemma 14 these blocks have at most 2 · 96k = 192k

vertices.
2. Each block of these type has at least one special vertex v that is not an articulation point.

This vertex must have an edge to S. Therefore at least one third of special vertices in
this type blocks are vertices with an edge to S. By Lemma 12, number of vertices with
an edge to S is at most 24k. Hence, blocks of this type have at most 3 · 24k = 72k special
vertices. Moreover, by lemma 14 we conclude that the total number of vertices in these
blocks is at most 2 · 72k = 144k.

3. There is at most k such blocks otherwise the reduction rule 5 is applicable. By Lemma 14
each of these blocks has at most 4 vertices, so their total size is at most 4k.

4. We note, that the only blocks in this category are simple edge between two articulation
points. Indeed, a clique having more vertices would be reduced by Rule 3. An odd cycle
with only two special vertices must have size 3 by Lemma 14. However, a cycle on 3
vertices is also a clique, so it is also subject to reduction by rule 3.
To bound the number of vertices in these blocks we again use forest of blocks and
articulation points F constructed before. Let us mark and count vertices in this forest
that belong to one of the following classes:
a. vertices of degree ≥ 3: there is at most 24k of such vertices, follows from inequality 1
b. other vertices corresponding to blocks of type 2 and 3: Note that blocks of

first type have degree ≥ 3 and therefore are counted in previous point. Before we
showed that there are at most 24k blocks of the second type and at most k blocks of
the third type, so there are at most 25k vertices of these type.

c. vertices corresponding to articulation points with an edge to S: by Lemma 12
there is at most 24k such vertices.

Recall that we mark all vertices from bullets a, b, c. Hence, in total there are at most
24k + 25k + 24k = 73k marked vertices. Note that every block of type 4 corresponds to
an unmarked vertex.
Unmarked vertices correspond to blocks of type 4 and articulation points that (i) does
not have an edge to S, (ii) belongs to exactly two blocks. We cannot have a path of
unmarked vertices of length 6 since otherwise Rule 4 is applicable.
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Note that every unmarked vertex is of degree 2. We consider a forest F ′ obtained from
F by contracting every path of unmarked vertices into an edge. F ′ is a forest with only
marked vertices so it has at most 73k vertices and at most ≤ 73k − 1 edges. No more
than 6 unmarked vertices can be mapped to a single edge of F . Hence, there are at most
6(73k − 1) = 438k − 6 unmarked vertices in F . Recall that number of blocks of type 4 is
at most the number of unmarked vertices. Moreover, each such block contains at most 2
vertices. Hence, number of vertices in such blocks is at most 876k − 12.

We just have shown that number of vertices in connected components with at least three
edges to S is at most O(k). Now it is left to obtain a bound for the total size of connected
components that have exactly 2 edges to S (one edge is not possible due to Rules 1, 2, zero
edges is impossible due to connectivity of the graph). From now on we are considering only
blocks of connected components that have exactly 2 edges to S. Since each leaf block has an
edge to S, these components are either a single block with 2 edges to S, or a chain of blocks
with two leaf blocks having exactly one edge to S, or a single vertex having two edges going
to S.

Note that every block in these components has exactly 2 special vertices or the whole
component is a single vertex with two edges going to S. Hence, each such block is a cycle C4,
or a cycle C2 (a double edge), or a single edge K2, or the whole component is just one vertex.

Rule 6 If the total number of vertices in the connected components of G − S with 2 edges
to S is at least 20k

Return: YES.

Proof of correctness. Let S′ = S ∪ (even cycle blocks of connected components of G − S

with 2 edges to S) and U = other vertices of these components. Due to Rule 5 we have at
most k even cycles in G−S. Moreover, we are considering blocks that have at most 4 vertices.
Hence, at most 4k vertices can belong to an even cycles. Therefore, |S′| ≤ 3k + 4k = 7k and
|U | ≥ 20k − 4k ≥ 16k.

Every vertex in U has a degree 2 in G. Hence, there are no edges between vertices in U ,
since otherwise to this edge Rule 4 is applicable. Therefore each vertex in U has 2 edges
going to S′. We prove that in this case the graph contains a cut of size at least V (G) + k.
To do this we consider the following procedure:

take a spanning forest H in G such that each tree in the forest has exactly one vertex
in S′;
uniformly randomly partition vertices in S′ in two parts;
place the rest of all vertices in the part so that all edges from trees in H are in cut.

Note that every two vertices from different trees are placed in parts randomly independently.
Hence, each edge between trees can be in the constructed cut with probability 1

2 . Since
|S′| ≤ 7k and each tree has one vertex in S′ there is at least |V (G)| − 7k edges in H.
Every vertex in U has two edges to vertices in S′. Hence, one of the edges is an edge
between two trees in H. Therefore, the expected number of edges in the cut is at least
≥ |E(H)| + 16k

2 = |V (G)| − |S′| + 16k
2 ≥ |V (G)| − 7k + 16k

2 = |V (G)| + k. Hence, we proved
that a cut of size at least |V (G)| − 1 + k exists.

Note that this procedure can be derandomized using method of conditional probabilit-
ies [17] which allows to find a required cut deterministically, if needed. ◀

Now we are ready to bound the overall number of vertices. Recall that there are at
most 192k vertices in blocks of type 1, at most 144k vertices in blocks of type 2, at most
4k vertices in blocks of type 3, at most 876k − 12 vertices in blocks of type 4. Hence,
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number of vertices in connected components with at least 3 edges going to S is at most
192k + 144k + 4k + 876k − 12 = 1216k − 12. We also have at most 20k vertices in other
connected components of G − S and at most 3k vertices in S. In total we have at most
1216k − 12 + 20k + 3k = O(k) vertices.

In order to bound number of edges we employ the final reduction rule.

Rule 7 If graph contains at least 2k + 2|V (G)| edges
Return: YES-instance.

Proof of correctness. Every graph has a cut of size at least |E(G)|
2 . Hence, in this case

graph has a cut of size at least 2k+2|V (G)|
2 = |V (G)| + k which means that our input is a

Yes-instance. ◀

Taking into account that |V (G)| = O(k) after application of Rule 7 we conclude that
|E(G)| = O(k).

The algorithm either produces a graph with O(k) vertices and edges or concludes that
the graph has a required cut. In the latter we can output a trivial YES-instance. Hence, we
constructed a linear kernel.

Note that the final graph might contain multi-edges. However, in this case we can apply
reduction rule 4 backwards and replace every multi-edge with a cycle of length 4. It is easy
to see that exhaustive application of this operations increase kernel size only linearly. ◀

The following theorem shows that the obtained kernel has asymptotically optimal size unless
ETH fails.

▶ Theorem 2. There is no kernel with sublinear number of vertices for Max-Cut-AST
unless ETH fails.

Proof. A trivial brute force algorithm solves Max-Cut in O(2|V (G)|). A kernel with o(k)
vertices would imply that we can solve Max-Cut in 2o(k) = 2o(|E(G)|) which is impossible
unless ETH fails. ◀

4 Subexponential Algorithms for Max-Cut-AST

In this section we present subexponential algorithms for Max-Cut-AST in chordal and
co-bipartite input graphs.

4.1 Co-bipartite Graphs
▶ Theorem 3. Max-Cut-AST can be solved in a connected co-bipartite graph G in
2O(

√
k) poly time.

Proof. Note that co-bipartite graphs consist of two disjoint cliques and edges between them.
At least one of the cliques contains at least half of the vertices. Therefore, each co-bipartite
graph contains at least n

2 ( n
2 − 1)/2 edges. It is well known that a maximum edge cut in any

graph contains at least half of all edges. Hence, in any co-bipartite graph maximum cut size
is at least n

2 ( n
2 − 1)/4. Therefore, if n

2 ( n
2 − 1)/4 ≥ n − 1 + k we can output Yes immediately.

Otherwise, k = Ω(n2) and the simple brute-force algorithm with working time 2nnO(1) is
actually 2O(

√
k) poly algorithm. ◀
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4.2 Chordal Graphs
First of all we recall some well-known results and prove auxiliary lemma.

▶ Lemma 17 ([11]). For an input chordal graph G we can find a tree decomposition of
minimum width in polynomial time. Moreover, in this tree decomposition all vertices of each
bag induce a clique in the original input graph G.

▶ Lemma 18 ([1]). Given an input graph G and its tree decomposition of width k one can
find the size of maximum cut in 2O(k) poly time.

▶ Lemma 19. Let H be an induced subgraph in a connected graph G and graph H has a cut
with at least ℓ edges then the graph G has a cut of size at least |V (G)| − |V (H)| + ℓ.

Proof. Assume that (A, B) is the partitioning of V (H) into two parts such that |E(A, B)| ≥ ℓ.
We complete the partitioning (A, B) with vertices from G \ H such that we get a cut of size
at least |V (G)| − |V (H)| + ℓ.

Let us consider a spanning forest F of the graph G such that each tree T from the forest
F has only one vertex from V (H) and the vertex is a root node of the tree. For each vertex
v ∈ V (G) we assign a tree Tv such that v ∈ Tv and Tv ∈ F . Moreover, for each v ∈ V (G) we
assign vertex rv ∈ V (H) such that rv ∈ Tv and rv is a root vertex of Tv. Now we are ready
to present the partitioning. If dTv

(v, rv) is even we place v in the same part as rv, otherwise
we place v in the opposite part of rv. In the constructed partitioning each edge of forest F

is in the cut, since for each vertex its ancestor belong to a different part. Since the graph
G is connected we have that |E(F )| = |V (G)| − |V (H)|. Also the partitioning contains all
edges from the initial cut of subgraph H. Therefore, we constructed a cut of size at least
|V (G)| − |V (H)| + ℓ. ◀

Now we have all ingredients to prove the main theorem of this subsection.

▶ Theorem 4. Max-Cut-AST on a connected chordal graphs admits a 2O(
√

k) poly-time
algorithm.

Proof. Using Lemma 17 we find tree decomposition of the input graph G. In this tree
decomposition each bag is a clique. We denote by ℓ − 1 the treewidth of the input graph G.
Hence, there is a bag of size ℓ. It means that G contains a subgraph H such that H is a
clique on ℓ vertices. If ℓ(ℓ−1)

4 ≥ k + ℓ − 1 then by Lemma 19 we conclude that the graph G

contains a cut of size at least n + k − 1.
Otherwise, ℓ(ℓ−1)

4 < k + ℓ − 1 and we have ℓ < 5 + 2
√

k. Hence, ℓ = O(
√

k) and we can
find and exact value of the maximum cut by standard dynamic programming using tree
decomposition. The running time of this algorithm is 2O(l) poly = 2O(

√
k) poly. ◀

▶ Corollary 21. Max-Cut-AST on a connected split graph admits a 2O(
√

k) poly algorithm.

Proof. The statement immediately follows from the previous theorem since the class of all
split graphs is a subclass of all chordal graphs. ◀

4.3 Lower Bounds
Under assumption of the Exponential Time Hypothesis we show that algorithms for chordal
and split graphs are essentially tight.

▶ Theorem 5. Max-Cut-AST does not admit 2o(
√

k) poly or 2o(
√

n) poly algorithms on
split graphs and on chordal graphs unless the ETH is false.
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Proof. Bodlaender and Jansen [1] presented a reduction of Max-Cut on arbitrary graph G

to Max-Cut on split graph. This reduction transform graph G with a cut K into a graph G′

on |V (G)|+ |E(Ḡ)| vertices with |V (G)| ·(|V (G)|−1)/2+2|E(Ḡ)| edges. Moreover, G has the
maximum edge cut K if and only if G′ has the maximum edge cut 2|E(Ḡ)| + K. Note that
2|E(Ḡ)| + K = O(n2) and |V (G)| + |E(Ḡ)| = O(n2). Hence, by solving Max-Cut-AST in
2o(

√
k) poly time (or in 2o(

√
|V (G′)|) poly) on split graphs we can solve Max-Cut on arbitrary

graphs in 2o(n) poly time. However, it is known that under assumption of ETH Max-Cut
does not admit 2o(n) poly algorithm [6]. So we get a desired contradiction. ◀

▶ Theorem 6. Max-Cut-AST does not admit 2o( 4√
k) poly algorithm on co-bipartite graphs

unless the ETH is false.

Proof. Bodlaender and Jansen [1] presented a reduction of Max-Cut on split graphs to Max-
Cut on co-bipartite graph. If the initial split graph G contains n vertices then the obtained co-
bipartite graph will contain O(n) vertices and O(n2) edges. It means that k = O(n2). If Max-
Cut-AST admits 2o( 4√

k) poly = 2o( 4√
n2) poly = 2o(

√
n) poly algorithm on co-bipartite graphs

then we can solve Max-Cut on split graphs in 2o( 4√
k) poly = 2o( 4√

n2) poly = 2o(
√

n) poly
which contradict the previous theorem. ◀

5 Tripartite Graphs

5.1 Parametrization Above a Spanning Tree
▶ Lemma 24. Let us assume that Max-Cut-AST on tripartite graphs with n vertices admits
algorithm with running time T (k, n) where k is the parameter. Then Max-Cut-AST on
arbitrary graph G with n′ vertices and m′ edges can be solved in T (k, n′ + 2m′) + poly(n′)
time.

Proof. To prove the statement we reduce Max-Cut-AST on arbitrary graph G to Max-
Cut-AST on tripartite graph G′ such that |V (G′)| = |V (G)| + |2E(G)|. We construct G′

in the following way, for each edge e = uv ∈ E(G): (i) create two vertices eu, ev; (ii) delete
edge uv; (iii) add edges ueu, euev, evv. Essentially we subdivide each edge twice. It is easy
to see that V (G) is an independent set in graph G′ and G′ \ G is a disjoint union of edges.
Hence, G′ is a tripartite graph.

Now we provide a connection between the size of maximum cut in the graph G and
the size of maximum cut in G′. We claim that mc(G′) = mc(G) + 2|E(G)|. Having
partition (A′, B′) of vertices V (G′) we construct partitioning (A, B) of V (G) such that
|E(A, B)| ≥ |E(A′, B′)| − 2|E(G)|. We take A = A′ ∩ V (G), B = B′ ∩ V (G). All edges in
E(G′) we can partition in triples of the following type ueu, euev, evv. It is easy to see that
if cut E(A′, B′) contains all three edges ueu, euev, evv then cut E(A, B) contains at least
one edge. So it means that for each triple we lose at most 2 edges in E(A, B) compared to
E(A′, B′). Hence, |E(A, B)| ≥ |E(A′, B′)| − 2|E(G)|.

Now, it is enough to prove that having a cut (A, B) of graph G we can construct a
cut (A′B′) of G′ such that |E(A′, B′)| ≥ |E(A, B)| + 2|E(G)|. In order to do this for each
edge e = uv we place vertices eu, ev in the opposite part to vertices u, v correspondingly,
i.e. if u ∈ A, v ∈ B then we put u, ev to A′ and v, eu to B′, similarly, if u, v ∈ A then
we put u, v to A′ and eu, ev to B′. It is easy to see that for such cut (A′, B′) we have
|E(A′, B′)| ≥ |E(A, B)| + 2|E(G)|.

So we proved that mc(G′) = mc(G) + 2|E(G)|. Recall that |V (G′)| = |V (G)| + |2E(G)|.
Hence, mc(G′) − (|V (G′)| − 1) = mc(G) − (V (G) − 1). Therefore, answer for Max-Cut-AST
on graph G′ is the same as the answer for Max-Cut-AST on graph G. As G′ is tripartite
we have proved the desired result. ◀
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Above lemma implies the following result.

▶ Corollary 25. There is no 2o(k) poly algorithm for Max-Cut-AST on tripartite graphs
under assumption of the ETH.

Proof. Such algorithm would imply that Max-Cut-AST can be solved on arbitrary graph
in 2o(k) poly time by lemma 24. However, existence of such algorithm contradict to the
ETH [15]. ◀

5.2 Parameterization Above 2
3 |E|

First of all we show that any tripartite graph G has a maximum cut of size at least 2
3 |E|. Let

assume that G has parts V1, V2, V3. It is easy to see that |E(V1, V2 ∪ V3)| + E|(V2, V1 ∪ V3)| +
E|(V3, V1 ∪ V2)| = 2|E(G)|. So at least one of the cuts (V1, V2 ∪ V3), (V2, V1 ∪ V3), (V3, V1 ∪ V2)
has size 2

3 |E|. However, even knowing that a graph is tripartite we may not have a partition
itself.

Below we show that we can find an edge cut of size 2
3 |E| in tripartite graphs even if

partition on three parts is not provided in the input. To get this result we employ semi-definite
programming.

▶ Theorem 7. There is a polynomial time randomized algorithm that finds an edge cut of
size 2

3 |E(G)| on an input tripartite graph G.

Proof. First of all for each vertex vi ∈ G we assign vector v⃗i ∈ Rn and formulate the following
program:

min λ

∀i ∈ V (G) ⟨v⃗i, v⃗i⟩ = 1
∀ij ∈ E(G) ⟨v⃗i, v⃗j⟩ ≤ λ

Essentially we are looking for n unit vectors such that minimum angle between any two
vectors that correspond to adjacent vertices is maximized. We known that the input graph is
tripartite, hence there is a solution such that λ ≤ − 1

2 . To achieve the value − 1
2 it is enough

to map vertices of first part into (1, 0, . . . 0), vertices of second part into (− 1
2 ,

√
3

2 , 0, . . . , 0),
vertices of third part into (− 1

2 , −
√

3
2 , 0, . . . , 0). It means that in the optimum solution of the

semidefinite program angle between two vectors corresponding to two adjacent vertices is
at least 2π

3 . It is known [18] that for any ϵ semidefinite programming can be solved with
additive error of size ϵ in polynomial time from the input and log 1

ϵ . Therefore, we can find
the optimum value of λ up to additive error ϵ. After that we generate a random hyperplane
and split vertices of graph into two parts. We put vertex vi to the first part if the vector
v⃗i is lying on one side of the generated hyperplane or to the second if v⃗i is lying on the
other side of the hyperplane. The expected value of an edge e = vivj being in the cut under
such partitioning is equal to arccos(v⃗i, v⃗j) ≥ arccos(− 1

2 + ϵ) = 2
3 − δ(ϵ) [18, Chapter 6].

Hence, the expected value of the cut is at least ( 2
3 − δ(ϵ))|E|. We choose ϵ in such way that

δ(ϵ)|E| ≤ 1
6 . Since derivative of arccos(·) is bounded in the neighborhood of − 1

2 we can take
ϵ = 1

1000|E|2 . If we choose ϵ in this way we obtain a polynomial time algorithm which output
a cut of expected value at least 2

3 |E| − 1
6 . Note that the value 2

3 |E| − 1
6 is not integer and the

size of a cut is an integer. So, the algorithm sometimes must output values of size at least
⌈ 2

3 |E|⌉ − 1
6 = ⌈ 2

3 |E|⌉. Since the cut size is bounded by |E|, our algorithm output value of
size ⌈ 2

3 |E|⌉ with probability at least Ω( 1
|E| ). Therefore it is enough to repeat the algorithm

polynomial number of times, take the largest cut among all generated. The algorithm will
not output cut of size at least ⌈ 2

3 |E|⌉ only with exponentially small probability. ◀
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▶ Lemma 27 (⋆). Under the assumption P ̸= NP there is no polynomial time algorithm that
for each tripartite graph G finds a cut of size at least 5

6 |E| if it exists.

In the following theorem we show that fraction 5
6 can be replaced with any fraction of

the following type 2
3 + ϵ where ϵ ∈ (0, 1

6 ). Informally speaking to achieve this results it is
enough to add large number of disjoint subgraphs K3 to the construction in the previous
theorem. Indeed, each partition of a triangle cuts at most 2 edges out of 3. Therefore, by
adding triangles we make fraction of size of maximum cut to the total number of edges being
close to 2

3 .

▶ Theorem 8. Assuming P ̸= NP for any 0 < ε < 1
6 there is no polynomial time algorithm

that finds cut of size ≥
( 2

3 + ε
)

|E| in tripartite graph if such cut exists.

Proof. In order to refute existence of such algorithm we show that using this algorithm we
can construct a polynomial time algorithm that on tripartite graphs with the number of
edges divisible by 6 outputs cut of size at least 5

6 |E|, if such cut exits.
Let us assume that tripartite graph G contains n vertices and m edges and we need to

check existence of cut of size at least 5
6 m. If we add k disjoint triangles to the graph G

then essentially we need to check if in the new graph exists a cut of size at least ≥ 5m
6 + 2k,

since in each triangle we can cut at most two edges. However, the number of edges in the
new graph is m + 3k. Therefore the ratio between the cut and the overall number of edges
becomes 5m/6+2k

m+3k . This fraction tends to 2
3 as long as we increase k. Consider the maximum

integer k such that the fraction is not smaller than 2
3 + ε. Note that, for fixed ε we have

k = O(m). Since we chose the maximum k with such properties we have that:
5m/6 + 2(k + 1)

m + 3(k + 1) <
2
3 + ε (2)

Now it it left to show that cuts with 5
6 m − 1 edges does not satisfy required equation, i.e.

that:
5m/6 + 2k − 1

m + 3k
<

2
3 + ε

To do this it is enough to show that 5m/6+2k−1
m+3k < 5m/6+2(k+1)

m+3(k+1) . Below we provide detailed
computations.

5m/6 + 2k − 1
m + 3k

<
5m/6 + 2(k + 1)

m + 3(k + 1)

0 <
5m/6 + 2k + 2

m + 3k + 3 − 5m/6 + 2k − 1
m + 3k

0 <
(5m/6 + 2k + 2)(m + 3k) − (5m/6 + 2k − 1)(m + 3k + 3)

(m + 3k + 3)(m + 3k)

0 <
(5m/6 + 2k)(m + 3k) + 2(m + 3k) − (5m/6 + 2k)(m + 3k + 3) + (m + 3k + 3)

(m + 3k + 3)(m + 3k)

0 <
(5m/6 + 2k)(m + 3k) + 2(m + 3k) − (5m/6 + 2k)(m + 3k) − 3(5m/6 + 2k) + (m + 3k + 3)

(m + 3k + 3)(m + 3k)

0 <
2(m + 3k) − 3(5m/6 + 2k) + (m + 3k + 3)

(m + 3k + 3)(m + 3k)

0 <
m(2 − 5/2 + 1) + k(6 − 6 + 3) + 3

(m + 3k + 3)(m + 3k)

0 <
m/2 + 3k + 3

(m + 3k + 3)(m + 3k)
Hence, the constructed graph with disjoint triangles G′ contains cut of size 5m

6 + 2k if
and only if it contains at least

( 2
3 + ε

)
|E(G′)|. Moreover, it happens if and only if initial

graph contained a cut with at least 5
6 |E(G)| edges. ◀

MFCS 2023
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6 Conclusion

In Section 5 we initiate study of Maximum Cut problem on tripartite graphs parameterized
above 2

3 |E| lower bound. We think that existence of an FPT algorithm for this problem is
an interesting open question.
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1 Introduction

A pseudo-random number generator is a deterministic algorithm that runs in polynomial time
using a short random seed as its input, and produces a long sequence that is indistinguishable
from a truly random sequence in polynomial time. The versatile applications of pseudo-
random numbers have been extensively explored in the literature, particularly in cryptography
where they are employed for tasks such as key generation, encryption, and digital signatures.

In 1985, Rueppel and Massey introduced the knapsack generator (or subset sum generator)
[16] whose security ultimately relies on the NP-hard modular subset sum problem: given
integers ω0, . . . , ωn−1, t and q, find a subset of the ωi’s that sum to t modulo q, i.e. to find
bits x0, . . . , xn−1 ∈ {0, 1} such that

n−1∑
i=0

xiωi = t mod q.
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In the knapsack generator, the modulus q is usually taken as a power of 2, q = 2n, the
weights ω0, . . . , ωn−1 are kept secret and given n secret control bits u0, . . . , un−1, one extends
them using a linear feedback generator (a fast but non-cryptographically secure pseudo-
random number generator) to obtain a flow of pseudo-random bits (ui)0≤i≤N+n−2. For
i ∈ {0, . . . , N − 1}, one then computes

vi =
n−1∑
j=0

ui+jωj mod 2n

and outputs yi which are the ρ = n− ℓ leading bits of vi where ℓ is a given parameter.
In 2011, Knellwolf and Meier [12] presented a cryptanalysis of this generator. They used

a guess-and-determine strategy coupled with lattice-based techniques to recover most of the
key in relevant instances of the generator. In order to run said attack, they needed to guess
all the n initial control bits. Hence their attack had a time complexity Ω(2n). In 2009, Von
zur Gathen and Shparlinski [20] presented the fast knapsack generator that had a far smaller
key and was sensibly faster but had not undergone a serious cryptanalysis until recently [14].
We consider another variant of the subset sum pseudorandom generator, suggested by von
zur Gathen and Shparlinski in 2004 [19].

The family of generators proposed by von zur Gathen and Shparlinski can be described
in an abstract way using two integer parameters λ and n and three independent components:

a control-sequence generator CSG : {0, 1}λ × N→ {0, 1}n;
an Abelian cyclic group (G, +) of order q where the group law is denoted additively;
a deterministic and public conversion function Ψ : G → {0, 1}ρ where ρ denotes the
output length of the pseudo-random generator.

The seed of this generalized subset-sum generator consists in a bit-string seed0 ∈ {0, 1}λ and
n group elements P1, . . . , Pn ∈ G. The bit size of the seed is thus equal to λ + n · ⌈log2(q)⌉.
At each iteration i ∈ N, the control-sequence generator generates an n-bit string vi =
(v1

i , . . . , vn
i ) = CSG(seed0, i), computes the group element Qi defined by

Qi = [v1
i ]P1 + · · ·+ [vn

i ]Pn ∈ G

and outputs si = Ψ(Qi) ∈ {0, 1}ρ.

In the Rueppel-Massey classical subset sum generator, the group G is thus the group of
modular residue G = Zq, the control-sequence generator is defined by a linear feedback shift
register and the conversion function is a truncation. In [19], von zur Gathen and Shparlinski
proposed to use for G the group of rational points of an elliptic curve defined over a (prime)
finite field, a linear feedback shift register as the control-sequence generator and again a
truncation for the conversion function (more precisely, truncation of the x-coordinate of the
elliptic curve point Qi). They proposed to use λ = n and an elliptic curve defined over a
finite field Zp where p is a n-bit prime number. By the Hasse-Weil theorem [9], the number
of group elements q is around 2n and the total seed size is ≃ n + n · n = n · (n + 1). They
suggested that Ψ should discard ℓ = log2(n) low-order bits of the x-coordinate of the point
before using it as pseudo-random output.

Von zur Gathen and Shparlinski claimed that: “the only available attack on this generator
is the brute force search over all parameters defining this generator” and thus using n

as small as 12 should provide a 128-bit security level. The statistical properties of the
sequences generated by this pseudo-random generator were analyzed in [4, 1, 8] but its
cryptographic security has not been studied up to the present article. We present a simple
attack against this generator and a lattice-based attack on another variant derived from this
abstraction. In the instantiation suggested by von zur Gathen and Shparlinski, our attack
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has complexity O
(
21.78n

)
well below the O

(
2n(n+1)) brute-force attack. Our attacks rely on

a sub-quadratic algorithm for solving a vectorial variant of the 3SUM problem, which is of
independent interest. We provide a thorough analysis of the attacks and their complexities,
and demonstrate their practicality through implementations and experiments.

2 High-level description of the attack

We consider the case where the control sequence generated by the CSG is known by the
adversary. If this is not the case, they can simply try all possible values for seed0 ∈ {0, 1}λ

which increases the complexity of the attack by a multiplicative factor 2λ.
We assume that the control sequence generator outputs uniform and independent n-bit

strings vi = CSG(seed0, i) for each i ∈ N. Note that in the concrete schemes that we attack,
this is obviously false; we nevertheless carry our analysis under this assumption and our
experimental results will show that it actually holds in practice.

Let us suppose that an adversary finds three indices i, j, k such that vi + vj = vk as
vectors of integers, i.e. where the addition is performed coordinate-wise over Z. In this case,
the adversary knows that the relation Qi + Qj = Qk holds in the group G. They are not
given the actual values of the points Qi, Qj and Qk but only the values Ψ(Qi), Ψ(Qj) and
Ψ(Qk). Assume that the number of preimages through Ψ is limited and that the adversary
can efficiently compute them; they can simply check if Ψ(X + Y ) = Ψ(Qk) for all (X, Y )
such that Ψ(X) = Ψ(Qi) and Ψ(Y ) = Ψ(Qj). If there exists only one such pair (X, Y ) then
the adversary can safely assume that Qi = X, Qj = Y (and Qk = X + Y ).

The number of pairs (X, Y )’s such that

Ψ(X + Y ) = Ψ(Qk) (1)

is difficult to estimate and depends heavily on the group G and the conversion function Ψ.
In [17], Shoup studied the computational complexity of the discrete logarithm in Abelian
groups in the context of algorithms which do not exploit any special properties of the
encodings of group elements. Shoup introduced the generic group model where each group
element is encoded as a unique and arbitrary binary string (picked uniformly at random
and independent of the actual group structure). As a consequence, it is not possible for an
algorithm in this model to exploit any special properties of the encodings and group elements
can only be operated on using an oracle that provides access to the group operations. If we
make a similar assumption on the group G and the conversion function Ψ is a truncation
of ℓ bits out of the (log2 q)-bit encodings of group elements, then we can expect that the
number of preimages is close to 2ℓ and the number of pairs (X, Y ) different from (Qi, Qj)
for which (1) holds is expected to be

2ℓ · 2ℓ/2log2(q)−ℓ ≃ 23ℓ/q. (2)

In particular if ρ > 2 · log2(q)/3, one expects the number of candidates for (Qi, Qj , Qk) to be
constant in a “generic” group. It is worth mentioning that this assumption does not hold in
the classical knapsack generator that uses the group G = Zm since in this case, the number
of candidates for a single equation will be about 22ℓ.

Each relation vi + vj = vk gives two relations in the group G:

Qi = v1
i P1 + · · ·+ vn

i Pn and Qj = v1
j P1 + · · ·+ vn

j Pn

If the adversary collect sufficiently many linearly independent such relations, they would be
able to retrieve all the weights used in the generalized knapsack generator.

MFCS 2023
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Table 1 Tabulating all solutions of x + y = z for x, y, z ∈ {0, 1}.

x 0 0 0 0 1 1 1 1
y 0 0 1 1 0 0 1 1
z 0 1 0 1 0 1 0 1

x + y 0 0 1 1 1 1 2 2

In the following, we describe and analyse an algorithm to find “good triplets” of indices
(i, j, k) such that vi +vj = vk and show how to use it to attack the elliptic knapsack generator
when ρ = n− log2(n) (as suggested by von zur Gathen and Shparlinski).

3 Finding “Good Triplets”

Assume that three lists A, B, and C, each of size N , are made of uniformly random n-bit
strings. Let Y be the random variable that counts the number of triplets (x, y, z) ∈ A×B×C

such that x + y = z when x, y and z are seen over Zn and not modulo 2. When this relation
holds, we call (x, y, z) a “good triplet”. Our goals in this section are twofold: 1) lower-bound
the probability that A, B and C contain a good triplet and 2) design an algorithm to find
good triplets efficiently.

As a warm-up, examining the simplest case (n = 1) is interesting (cf. Table 1). Looking
at this table, we see that Pr(x + y = z) = 3/8. We next prove the following

▶ Theorem 1. E (Y ) = N3
(

3
8

)n

, and Pr(Y = 0) ≤ 1
N3

(
8
3

)n

+ 3
N

(
10
9

)n

+ 3
N2

(
4
3

)n

.

The proof is given in Appendix A. It boils down to estimating the variance of Y and using
the second-moment inequality. With N = α(8/3)n/3, Theorem 1 yields:

Pr(Y = 0) ≤ 1
α3 + 3

α
(0.801...)n + 3

α2 (0.69...)n.

Therefore, setting α = 10 is sufficient to ensure that a good triplet exists with probability
99.9%. In addition, it follows from the theorem that

Pr(Y = 0) ≤ 1
E (Y ) + 3

(E (Y ))2/3 + 3
(E (Y ))1/3 . (3)

3.1 A Simple Sub-Quadratic Algorithm to Find Good Triplets
Finding a “good triplet” (such that x + y = z) can be done using a naive quadratic algorithm:
for all pairs (x, y) in A × B, check if x + y ∈ C; if so, return (x, y, x + y) ; after this loop,
return ⊥ (to handle the case where the algorithm fails). This could potentially be sped up a
little by exploiting the fact that x and y are necessarily disjoint.

In this section, we present a simple algorithm to find a good triplet more efficiently. We
work under the assumption that the input lists have size N := α(8/3)n/3 for some constant
α ≥ 4. Under this condition, (3) ensures that there is a good triplet with probability at least
3

64 . This assumption will be relaxed in the next section.
Looking again at Table 1, we see that Pr(x = 1 | x+y = z) = 1/3 while Pr(z = 1 | x+y =

z) = 2/3. In other terms, even though x, y, z are sampled uniformly at random, if we restrict
our attention to good triplets, then x and y are biased towards zero (sparse) while z is biased
towards 1 (dense).
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This observation suggests an algorithm to find good triplets efficiently: remove from A, B

(resp. C) input vectors of Hamming weight different from n/3 (resp. 2n/3), then run the
naive quadratic algorithm on what remains.

▶ Theorem 2. This algorithm terminates in O (Ne) with e = 2 ln(9/4)/ ln(8/3) ≈ 1.654 and
succeeds with probability Ω

( 1
n

)
.

Proof. Let H denote the binary entropy function, meaning that H(x) = −x log2(x)− (1−
x) log2(1− x), for all 0 < x < 1. The following standard bounds for the binomial coefficient
can be derived from Stirling’s formula:

2nH(x)√
8nx(1− x)

≤
(

n

xn

)
≤ 2nH(x)√

2πnx(1− x)
, (0 < x < 1/2) (4)

It follows from the discussion juste before the statement of the theorem that there are 3n

good triplets on n bits (out of 8n triplets in total). The number of good triplets that satisfy
the weight condition imposed by the algorithm is

N =
(

n

n/3, n/3, n/3

)
=

(
n

2n/3

)(
2n/3
n/3

)
≥ 2nH(2/3)
√

n4/3
22n/3

2
√

n/3
= 3
√

3
8n

3n.

If the input list contain a good triplet, then the algorithm described above returns it with
probability greater than 0.65/n. The claimed time complexity is in fact a consequence of the
next theorem (Theorem 5), and we will therefore not prove it here. ◀

3.2 Sub-Quadratic Algorithm with Overwhelming Success Probability
We generalize the algorithm of the previous section by relaxing the weight condition. This
yields Algorithm 1. It takes an additional argument w controlling the maximum allowed
weight. In the sequel, all the stated complexities must be understood “up to a constant
factor”. Let ϵ denote a constant in the open interval

(
0; 1

6
)
. Let X ∼ B(n, p) be a binomial

random variable. We will use the classical inequality (5) given below, a proof of which can
be found in [2] amongst others. Here, D(a, p) is the Kullback-Leibler divergence between an
a-coin and a p-coin:

Pr(X ≤ an) ≤ exp(−nD(a, p)) if a < p. (5)
Pr(X ≥ an) ≤ exp(−nD(a, p)) if a > p,

D(a, p) = a ln a

p
+ (1− a) ln 1− a

1− p
.

We denote by wt(x) the Hamming weight of a bit string x.

Algorithm 1 Find good triplets.
1: function FindTriplet(A, B, C, w)
2: A′ ← {x ∈ A | wt(x) ≤ w}
3: B′ ← {y ∈ B | wt(y) ≤ w}
4: for all x, y ∈ A′ ×B′ do
5: if x + y ∈ C then
6: return (x, y, z)
7: return ⊥

MFCS 2023
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▶ Lemma 3. With w = n
( 1

3 + ϵ
)
, if the input contains a good triplet, then Algorithm 1

returns ⊥ with probability less than 2 exp(−2nϵ2).

Proof. Assume that the input lists contain a good triplet (x∗, y∗, z∗). It will be discarded if
and only if the weight of either x∗, y∗ is greater than w. We know that the weight of x∗ and
y∗ follows a binomial distribution of parameters (n, 1/3), therefore (5) shows that either has
weight greater than n(1/3 + ϵ) with probability less than exp(−nD(1/3 + ϵ, 1/3)).

The (“well-known”) fact that D(p + ϵ, p) ≥ 2ϵ2 combined with union bound (for x∗ and
y∗) then yields the announced result. ◀

▶ Lemma 4. Let T denote the running time of Algorithm 1 with w = n
( 1

3 + ϵ
)
. Then

E [T ] ≤ N + N2 exp
[
−2nD

( 1
3 + ϵ, 1

2
)]

.

Proof. Filtering the input lists and keeping only low-weight vectors can be done in linear
time. Given the complexity of the naive quadratic algorithm, the total time complexity is
simply T = N + |A′| · |B′|.

Let X ∼ B(n, 1/2) be a binomial random variable modeling the weight of a random
n-bit vector. Such a vector belongs to A′ or B′ if its weight is less than or equal to w,
and this happens with probability s := Pr(X ≤ w). The binomial tail bound (5) yields
s ≤ exp

[
−nD

( 1
3 + ϵ, 1

2
)]

.
The sizes of A′ and B′ are stochastically independent random variables following a

binomial distribution of parameters (N, s) with expectation Ns. The expected running time
of the quadratic algorithm on A′ and B′ is therefore E (|A′| × |B′|) = E |A′| × E |B′| = N2s2.
Combining this with the upper bound on s gives the announced result. ◀

▶ Theorem 5. Write e = 2 · ln(9/4)
ln(8/3) ≈ 1.654 For all d > e there is an algorithm that runs

in time O
(
Nd

)
, where N denotes the size of the input list and fails to reveal a good triplet

present in the input with negligible probability (in n).

Proof. Let e < d < 2 be a complexity exponent greater than the bound e given in the
statement of the theorem. There always exist ϵ > 0 such that

d = 2− 6
D

( 1
3 + ϵ, 1

2
)

1
3 ln 8

3 + ϵ ln 2
.

Indeed, setting ϵ = 0 in this expression yields the lower-bound exponent e of the theorem,
and the expression of d is increasing as a function of ϵ; it reaches d = 2 for ϵ = 1/6.

Let N0 := (8/3)n/3, so that input lists of size N0 contain a single good triplet in average.
We distinguish two cases depending of the size of the input lists.

Suppose that N ≤ 2ϵnN0, where N denotes the size of the input lists. In this case
run Algorithm 1 with w = n

( 1
3 + ϵ

)
. Lemma 3 guarantees the exponentially small failure

probability while lemma 4 tells us that the expected running time T is less than N +
N2 exp[−2nD

( 1
3 + ϵ, 1

2
)
].

A quick calculation shows that the algorithm then runs in time O
(
Nd

)
– the value of d

has been chosen for this purpose. The theorem is proved in this case.
If N > 2nϵN0, then slice the input lists in chunks of size 4N0 and run Algorithm 1 with

w = n/3 on each successive chunk until a solution is found. Each chunk contains a good
triplet with probability at least 3

64 thanks to (3). The algorithm reveals this triplet, if it
exists, with probability Ω

( 1
n

)
, because it always works if the algorithm of the previous

section works.



C. Bouillaguet, F. Martinez, and D. Vergnaud 23:7

There are 2ϵn/4 chunks (i.e., exponentially many). Because the chunks are disjoint parts
of the input lists, success in a chunk is independent from the others. Therefore the probability
that this process fails to reveal a good triplet is negligible. The running time of this procedure
is O

(
NNe−1

0
)
. Because N0 ≤ N , this is less than O (Ne). ◀

▶ Remark 6. Ab, Bb and Cb the subsets of strings of A, B and C whose first bit is equal to b

(for b ∈ {0, 1}), then a good triplet necessarily belongs to one of the three sets A0 ×B0 ×C0,
A0 ×B1 ×C1 or A1 ×B0 ×C1 (and the search for a good triplet in A×B ×C thus reduces
to the search in those three sets). The expected cardinality of A0, A1, B0, B1, C0 and C1 is
N/2 and applying this idea recursively, one obtains (assuming the division is always done
in a “balanced” manner) a time complexity T (N) which heuristically satisfies the recursion
T (N) = 3T (N/2) + O(N) (and thus T (N) = O(N log2(3)) = O(N1.59)). This improves a bit
the complexity of our algorithm, but this “divide-and-conquer” approach is probably more
complex to implement. It would be interesting to see if one can combine this approach with
our filtering technique.

4 Practical Key-recovery Attack on the von zur Gathen-Shparlinski
Elliptic Subset Sum Generator

In this section, we consider the instantiation of the knapsack generator suggested by
von zur Gathen and Shparlinski in [19]. In particular, the group G is an elliptic curve
E defined over a (prime) finite field Fp (where p ≥ 5 is an n-bit prime number). It is a
rational curve given by the following Weierstrass equation

E : y2 = x3 + ax + b

for some a, b ∈ Fp with 4a3 + 27b2 ̸= 0. It is well known that the set E(Fp) of Fp-rational
points (including the special point O at infinity) forms an Abelian group with an appropriate
composition rule (denoted additively) where O is the neutral element – for more details
on elliptic curves, we refer to [5, 21]. Von zur Gathen and Shparlinski suggested to use a
conversion function Ψ : E → {0, 1}ρ that simply truncates ℓ = log2(n) least significant bits
of the x-coordinate of a point (with ρ = n− ℓ). An n-bit linear feedback shift register is used
as the control-sequence generator (as in the Rueppel-Massy classical knapsack generator)
and the overall seed length is thus n(n + 1) bits.

4.1 Attack on the Elliptic Subset Sum Generator
The adversary first “guesses” seed0. In other terms, all subsequent steps have to be repeated
2n times, one for each possible value of seed0.

Following the analysis from Section 3, one needs to construct three sets A, B, C of
independent n-bit strings size N = α(8/3)n/3 ≤ α20.472n in order to find a good triplet
(i, j, k) such that vi + vj = vk time O

(
N1.654...

)
= O

(
20.78n

)
with probability at least

1 − 7/α. We need to have n/2 such good triplets in order to find the n points P1, . . . , Pn

used as weights in this elliptic knapsack generator, and we can hope to obtain them with
constant positive probability from an output sequence made of Ω

(
n2(8/3)n/3)

output values
in {0, 1}ρ. In our implementation, we do not distinguish the sets A, B, and C and simply
run the algorithm from the previous section with A = B = C the sets of all vectors vi
corresponding to all known outputs si ∈ {0, 1}ρ.

Note that, as in the classical knapsack generator, the control sequence is not made of
independent n-bit strings since if one denotes (un)n≥0 the sequence output by the linear
feedback shift register, we have

vi = (v1
i , . . . , vn

i ) = (ui, ui+1, . . . , ui+n−1) ∈ {0, 1}n

MFCS 2023



23:8 Cryptanalysis of a Generalized Subset-Sum Pseudorandom Generator

for i ∈ N. The analysis given in Section 3 does not apply to such sequences but we make the
heuristic assumption that these n-bit tuples are “sufficiently” random and that our algorithm
will succeed with a similar probability (this heuristic is validated by our experiments).

We then follow the general idea given above but for each good triplet (i, j, k) such that
vi + vj = vk, if the adversary finds two points X and Y on the elliptic curve such that
Ψ(X) = si, Ψ(Y ) = sj and Ψ(X + Y ) = sk, then this gives rise to two possible relations:
1. X = Qi, Y = Qj (and X + Y = Qi + Qj = Qk), but also
2. X = −Qi, Y = −Qj (and X + Y = −(Qi + Qj) = −Qk).
This is due to the fact that on an elliptic curve, a point and its negative have representations
with much in common since they share the same the x-coordinate (and the y-coordinates
are opposites). This “non-genericness” of elliptic curves is well-known and has important
consequences in cryptography1. However, with a truncation of log2(n) bits of the x-coordinate
of the points, we expect the number of points triple compatible with (si, sj , sk) to be equal
to only 2.

Note that for the first good triplet computed in the attack, the sign is not a problem
since the generator parametrized with the n points P1, . . . , Pn outputs the same sequence
as the one parametrized with the n points −P1, . . . ,−Pn. The adversary can then pick up
arbitrarily (Qi, Qj) = (X, Y ) or (Qi, Qj) = (−X,−Y ). However, for the subsequent relations
obtained from other good triplets, the sign choice may be incompatible with the first one
and this will result in a system with no solutions. In order to be able to solve the system,
we need to have n linear relations among the points P1, . . . , Pn and each good triplet gives
us two such relations (the third one is by construction is a linear combination of the two
others and is useless in solving the linear system). Assuming that n is even, one needs to
make n/2− 1 choices for the sign of each relation (after the first one), and the adversary can
simply “guess” all such signs. This multiplies the running time of the algorithm by a factor
2n/2−1.

Once the n/2 good triplets have been found, the algorithm can inverse the system and
obtain the n points P1, . . . , Pn. From these values, the points P1, . . . , Pn. The overall
complexity of the attack is thus

O
(

2n(20.78n + 22 log(n) + 2n/2−1) + poly(n)
)

= O
(
21.78n

)
binary operations.

4.2 Experimental Results
We implement our attack using sagemath v.9.5 on a laptop. Our codes are available at
https://github.com/floretteM/Knapsack. In our implementation, we did not need the
exhaustive search on the signs mentioned above since we instead looked for good triplets
that involve a point already found (and this sets up the sign with certainty). This makes the
probability of finding such good triplets more complex to analyse but this trick works well in
practice.

We first consider the elliptic curve defined by the equation y2 = x3 + 5x + 5 over Fp

where p = 216 − 15. This curve contains q = 65111 points. We present the attack when
the control sequence (vi) is known and we consider n = 16 as suggested by von zur Gathen
and Shparlinski. The key size in this setting is equal to 256 bits. We present in Table 2
the number m of outputs needed and the time necessary to recover the secret weights with
probability at least 50% when ℓ bits are missing.

1 For instance, the ECDSA signature scheme is malleable in the sense that if the pair of integers (r, s) is

https://github.com/floretteM/Knapsack
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Table 2 Key-recovery with exhaustive search and q a 16-bit integer.

ℓ 1 2 3 4 5 6
m 1000 1000 1000 1000 1000 1885

time 6.9s 5.3s 5.6s 5.02s 5.7s 26.7s

When 7 bits are truncated we cannot recover the weights even with 3000 outputs. But
we earlier observed that the algorithm would not work well if ℓ > log2(q)/3, see (2). With
the proposed choice of ℓ = log2 n = 5, our results are coherent with the heuristic.

To test the limits of our attack, we also implement it for elliptic curves with larger group
orders (i.e. for parameters larger than those suggested by von zur Gathen and Shparlinski).
This gives an algorithm with overall complexity O

(
2n(20.78n + 2n/2) · poly(n, log(p))

)
.

We consider the elliptic curve defined by the equation y2 = x3 + x + 14 over Fp where
p = 240 + 15 but still n = 16. With this choice we can focus on recovering the points of the
elliptic curves from the outputs without being to bothered by finding the good triplets. This
curve contains q = 1099510687747 points. We present in Table 3 the number m of outputs
needed and the time necessary to recover the secret weights with probability at least 50%
when ℓ bits are missing.

Table 3 Key-recovery with exhaustive search and q a 40-bit integer.

ℓ 1 2 3 4 5 6 7 8 9
m 1885 1885 1885 1885 1885 1885 1885 1885 1750

time 2.1s 2.1s 2.08s 2.5s 2.6s 2.1s 3.5s 8.3s 26.7s

5 Practical Key-recovery Attack on the Subset Product Generator

Following the generalization of the knapsack generator to elliptic curves proposed by von
zur Gathen and Shparlinski, it is natural to consider other variants using Abelian groups of
interest in cryptography. The most natural choice is to use (a subgroup of) the multiplicative
group of a finite field Zp for some prime number p. This group is certainly not generic since
there exist sub-exponential time discrete logarithm algorithms in these groups, but it seems
that representation of group elements by the unique member of its class in {0, . . . , p− 1} is
sufficiently “generic” that using truncation of their bit-representation as a conversion function
would permit an adversary to mount a lattice-based attack on this generator even if a quarter
of the bits of each group elements is discarded when computing the output of the generator.

More precisely, in this section, we consider a multiplicative variant of the subset sum
generator where:

the control-sequence generator is a linear feedback shift register with a λ-bit seed;
the Abelian cyclic group (G, ·) is the multiplicative group of a (prime) finite field Zp (note
that it is denoted multiplicatively);
the public conversion function Ψ : G → {0, 1}ρ where ρ = ⌊α · log2(p)⌋ is simply the
truncation of ⌈(1− α) log2(p)⌉ bits of the unique member of its group element class in
{0, . . . , p− 1}. The notation ÷ denotes the euclidean division.

a valid signature of a given message then so is (r, −s) [18].
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We call this generator the subset product generator.

5.1 Description of the Attack
In this setting, the seed consists in a bit-string seed0 ∈ {0, 1}λ and n group elements
g1, . . . , gn ∈ Z∗

p. The bit size of the seed is thus equal to λ + n · ⌈log2(p)⌉. At each
iteration i ∈ N, the control-sequence generator generates an n-bit string vi = (v1

i , . . . , vn
i ) =

CSG(seed0, i), computes the group element hi defined by

hi = g
v1

i
1 · · · g

vn
i

n ∈ Z∗
p

and outputs si = Ψ(hi) = hi div 2ℓ ∈ {0, 1}k where p is a (k + ℓ) -bit long prime number
(with k = ⌊α · log2(p)⌋).

A straightforward adaptation of the attack of the Section 4 gives an attack with complexity
O(2λ · (20.78n + p2(1−α)) for α ≥ 2/3. Note that the complexity does not involve the O(2n/2)
term that came from the indecision on the signs in the elliptic curve variant of the knapsack
generator. We remark that one can improve the complexity of the attack by replacing the
brute-force search on the missing bits with the use of Coppersmith technique to retrieve
them.

Coppersmith’s method. Coppersmith’s method [7, 6] is a technique to find small integer
zeroes of univariate or bivariate polynomials modulo a given integer. It has been generalized
for finding small roots of (modular) multivariate polynomial equations with integer coefficients
by several authors and notably used to attack algebraic pseudo-random generators (see [11,
10, 3, 14] and references therein). These techniques work by constructing a Euclidean lattice
associated with the system of equations, and then finding short vectors in this lattice using
lattice reduction algorithms. In its most basic variant, given a polynomial f(X1, . . . , Xk)
defined modulo an integer p, one can find a “small” root (x1, . . . , xk) ∈ Zk

p under the
condition that |xi| ≤ Bi for some bounds (B1, . . . , Bk). The method succeeds (heuristically)
in polynomial time when (up to small constant factors),∏

i∈M

Bi1
1 . . . Bik

k ≤ p

when f can be written as a sum of monomials of the form

f(X1, . . . , Xk) =
∑
i∈M

aiX
i1
1 . . . Xik

k

for some ai ∈ Z∗
p. For this simple variant, the lattice is constructed using only the polynomial

f but there exist variants – with better upper-bounds on the root (x1, . . . , xk) – using lattices
of higher dimensions with shifts or powers of the polynomial f (see [11] for details).

Description of the attack. For a vector vi output by the control sequence generator, we
have

hi = g
v1

i
1 · · · g

vn
i

n ∈ Z∗
p

with hi = (2ℓsi + xi) where xi ∈ {0, . . . , 2ℓ − 1} is some value unknown to the adversary.
Given a good triplet (i, j, k) with vi + vj = vk, we have hi · hj = hk mod p and thus:

(2ℓsi + xi) · (2ℓsj + xj) = (2ℓsk + xk) mod p.
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The unknowns (xi, xj , xk) are thus “small” roots of an equation of the form

Axi + Bxj + xixj − xk + C = 0 mod p

where A = 2ℓsi, B = 2ℓsj and C = (2ℓsi·2ℓsj−2ℓsk) mod p are values known by the adversary.
One can thus apply Coppersmith’s technique to this polynomial and the basic technique
(without using shifts or powers of the polynomial) will succeed if |xi|, |xj |, |xk| ≤ p1/5. A
simple trick allows us to improve readily this bound by setting y = xixj − xk such that
|y| ≤ 22ℓ and solving the equation

g(xi, xj , y) = Axi + Bxj + y + C = 0 mod p

in (xi, xj , y) is sufficient to recover (xi, xj , xk). Using the basic Coppersmith’s technique
(again without using shifts or powers of this polynomial), this attack will succeed (heuristically)
in polynomial-time if |xi|, |xj |, |xk| ≤ p1/4. For α ≥ 3/4, we thus obtain an attack with the
overall complexity

O
(
2λ · 20.78n + n · poly(log2(p))

)
= O

(
2λ · 20.78n

)
.

▶ Remark 7. Note that we can improve the bound on the size of the “small” root by using
shifts and powers of the polynomial g(xi, xj , y). For instance, if one considers the family of
fours polynomials

{g, xi · g, xj · g, g2}

that vanishes in (xi, xj , y) modulo p with total multiplicity (1 + 1 + 1 + 2) = 5 and involve
the following set of monomials:

{xi, xj , y, x2
i , xixj , xiy, x2

j , xjy, y2}

with a sum of degrees equal to (1 + 1 + 2 + 2 + 2 + 3 + 2 + 3 + 4) = 20, we obtain that
the Coppersmith’s method succeeds (heuristically) if |xi|, |xj |, |xk| ≤ p5/20 = p1/4 (see [11]).
This gives the same bound as above. However, if we reintroduce the variable xk and replace
the monomial xixj by y + xk, the total degree of the set of monomials decreases to 19 and
this decreases the bound to p5/19. It is possible to decrease a bit further the exponent of p

in this bound, at the cost of using a lattice of higher dimension in Coppersmith’s technique
using the technique of unravelled linearization from [10] (see also [3]).

5.2 Experimental Results
Exhaustive search on the truncated bits. We consider first the finite field Fp with p = 2q+1
and q = 99839. We choose weights in the cyclic multiplicative group G of order q made
by the non-quadratic residues of K minus zero. We present the attack when the control
sequence (vi) is known and we consider n = 16 for which the key size is equal to 256 bits.
We present in Table 4 the number m of outputs needed and the time necessary to recover
the secret weights with probability at least 50% when ℓ bits are missing.

When 7 bits are truncated we cannot recover the weights even with 1885 outputs.
Now we consider the finite field Fp with p = 2q + 1 and

q = 72536599031050480402372360602698911648481683373808860129469667649180998227293

a 256-bit number, but still n = 16. With this choice we can focus on recovering the points
from the outputs without being bothered by finding the good triplets.

MFCS 2023
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Table 4 Key-recovery with exhaustive search and q a 16-bit integer.

ℓ 1 2 3 4 5 6
m 1000 1000 1000 1000 1000 1885

time 0.51s 0.45s 0.44s 0.47s 0.58s 2.1s

Table 5 Key-recovery with exhaustive search and q a 256-bit integer.

ℓ 1 2 3 4 5 6 7 8 9
m 1000 1000 1000 1000 1000 1000 1000 1000 1000

time 0.46s 0.50s 0.48s 0.43s 0.55s 0.70s 0.87s 1.9s 6.6s

Coppersmith method. We consider the attack on the second group with p = 2q + 1
and q a 256-bit number. First, we implement the attack with the single polynomial g =
Axi + Bxj + y + C. As the Coppersmith method is a bit more unpredictable, we present in
Table 6 the number m of outputs needed and the time necessary to recover the weights with
probability at least 50% when ℓ bits are missing.

Table 6 Key-recovery with Coppersmith method and q a 256-bit integer.

ℓ 2 4 8 16 32 62 63
m 1000 1000 1000 1000 1000 1000 1000

time 0.71s 0.67s 0.68s 0.61s 0.63s 0.51s 0.55s

If we follow the heuristic in Coppersmith’s method we should be able to retrieve the
weights up to ℓ = 64 and ℓ = 64 is the first instance where the attack stops working. If we
try to consider the family of polynomials {g, xig, xjg, yg, g2} instead the improvement on
the upper-bound from p1/4 to p5/19 would not be significant for 256-bit integers.
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A Proof of Theorem 1

We now proceed to prove theorem 1.

Proof. Let x, y, z, u, v denote five independent random bits, and set:

ρ = Pr(x + y = z)
σ = Pr(u + v = z | x + y = z)
τ = Pr(u + y = v | x + y = z)

We already know that ρ = 3/8. Building a simple table as above shows that σ = τ = 5/12
(see Table 7).

Table 7 Tabulating u + v, x + y, u + y for x, y, z, u, v ∈ {0, 1}.

u 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
x 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
y 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
z 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

u + v 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
x + y 0 0 1 1 1 1 2 2 0 0 1 1 1 1 2 2
u + y 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

u 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
v 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
x 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
y 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
z 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

u + v 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
x + y 0 0 1 1 1 1 2 2 0 0 1 1 1 1 2 2
u + y 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2

Let X(i, j, k) denote the binary random variable that takes the value 1 if and only if
A[i] + B[j] = C[k], so that Y =

∑
X(i, j, k). Unless mentioned otherwise, all sums are taken

over 0 ≤ i, j, k < N ; we omit the indices to alleviate notations.
The expected value of Y is easy to determine. Because the elements of the lists are

identically distributed, Pr(A[i] + B[j] = C[k]) is independent of i, j and k and its value is ρn.
We get:

E (Y ) = E
(∑

X(i, j, k)
)

=
∑

E (X(i, j, k)) =
∑

Pr(A[i] + B[j] = C[k]) = N3
(3

8

)n

.

Because Y is the sum of binary random variables, we are entitled to use the “conditional
expectation inequality” [15] (see also [13, MPR]):

Pr(Y > 0) ≥
n∑

i=1

E (Yj)
E (Y | Yi = 1) . (6)

Which, in our case, gives:

Pr(Y > 0) ≥
∑ E (X(i, j, k))

E (Y | X(i, j, k) = 1) .
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As argued above, the value of the term under the sum is independent of i, j and k, so this
boils down to: Pr(Y > 0) ≥

( 3
8
)n

/E(Y | X(0, 0, 0) = 1). It remains to compute the expected
number of good triplets under the assumption that there is at least one. This yields:

E(Y | X(0, 0, 0) = 1) =
∑

Pr(A[i] + B[j] = C[k] | A[0] + B[0] = C[0])

We split this sum into 8 parts by considering separately the situation where i = 0,
j = 0 and k = 0 (resp. ̸= 0 for each summation index). We introduce the shorthand
pijk = Pr (A[i] + B[j] = C[k] | A[0] + B[0] = C[0]) and we assume that i, j, k > 0. Because
A[i] is sampled independently from A[0] (resp. B, C), the two events inside the conditional
probability are in fact independent and therefore pijk =

( 3
8
)n. But when at least one index

is zero, this is no longer the case. The extreme situation is p000 = 1.
When there is a single non-zero summation index, the situation is rather simple. If

x + y = z, then x + U = z if and only if U = y, and this happens with probability 2−n

because U is uniformly random. This shows that pi00 = p0j0 = p00k = 2−n.
It remains to deal with the case of two non-zero summation indices. In fact, pij0 is simply

σn, while both pi0k and p0jk are equal to τn (by the symmetry between the role of the first
two lists).

It follows that

E (Y | X(0, 0, 0) = 1)

= (N − 1)3
(

3
8

)n

+ 3(N − 1)2
(

5
12

)n

+ 3(N − 1) · 2−n + 1

= N3
(

3
8

)n

+ 3N2
(

5
12

)n

+ 3N2−n + 1−∆

with ∆ =
(
3N2 − 3N + 1

) (
3
8

)n

+ 3(2N − 1)
(

5
12

)n

+ 3 · 2−n.

The “error term” ∆ is always positive for N ≥ 1. Going back to the beginning, we have:

Pr (Y > 0) ≥ N3(3/8)n

N3(3/8)n + 3N2(5/12) + 3N(1/2)n + 1−∆

≥ 1
1 + 3N−1(10/9)n + 3N−2(4/3)n + N−3(8/3)n

Using the convexity of x 7−→ 1/(1 + x), we obtain

Pr(Y = 0) ≤ 3N−1(10/9)n + 3N−2(4/3)n + N−3(8/3)n. ◀
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Abstract
Bayes’ rule tells us how to invert a causal process in order to update our beliefs in light of new
evidence. If the process is believed to have a complex compositional structure, we may observe that
the inversion of the whole can be computed piecewise in terms of the component processes. We
study the structure of this compositional rule, noting that it relates to the lens pattern in functional
programming. Working in a suitably general axiomatic presentation of a category of Markov kernels,
we see how we can think of Bayesian inversion as a particular instance of a state-dependent morphism
in a fibred category. We discuss the compositional nature of this, formulated as a functor on the
underlying category and explore how this can used for a more type-driven approach to statistical
inference.
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1 Introduction

A Markov kernel f is a function whose output is stochastic given the input. It can be thought
of as a stateless device which, if supplied with inputs, will produce an output that depends
probabilistically on the input. Mathematically speaking, this is nothing but a conditional
distribution P(y|x). The problem of Bayesian inversion is that we observe the output of
such a device but only have a probabilistic “prior” belief about the input, and we would like
to update our beliefs about what the input was given the output. For example, suppose
a process takes the roll of an unseen die and tells us whether it was even or odd, except
with probability 10% it flips the result. If the process tells us that a specific roll resulted in
“even” then Bayes’ law tells us how we should update a prior belief that the die is uniformly
random, to obtain a belief about what the specific roll was.

It is commonly the case that the process is not a black box, but is a composite process
formed from simpler pieces. The conditional distribution formed by sequentially composing
two such stochastic functions is given by forming their joint distribution and then marginalising
over the middle variable. In the case of a long chain of sequentially composed functions,
belief updating for the whole can be done “compositionally” in terms of belief updating for
each individual part, in a process notably similar to backpropagation in neural networks. A
process such as this underlies probabilistic programming languages, which are able to run
programs “backwards” after conditioning on some output.
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24:2 The Compositional Structure of Bayesian Inference

The goal of this paper is to study this process of compositional Bayesian inversion of
Markov kernels in isolation, using a suitable axiomatisation of a category of Markov kernels.
We provide a method to build categories whose morphisms are pairs of a Markov kernel and
an associated “Bayesian inverter”, which is itself built compositionally.

Symmetric monoidal categories with compatible families of copy and delete morphisms
have been identified as an expressive language for synthetically representing concepts from
probability theory [5, 8]. The typical interpretation given is that the objects represent
sets or measurable spaces, and morphisms are Markov kernels between them. Branded
Markov categories [8] in this context, these categories have recently seen widespread use in
applied category theory as a foundation of probability for two reasons: they allow working
axiomatically while abstracting over the specific details of theories such as stochastic matrices,
Gaussian kernels and Giry (measure-theoretic) kernels; and they provide a rich string-diagram
calculus allowing for simple graphical presentations of many calculations and constructions
in probability.

PX(x)PY (y)
Y

X ∑
y∈Y

PX×Y (−, y)
Y

X

Product distributions Parallel composition Marginalisation Deletion

PX(x)δ(x, x′) X

∑
y∈Y

Pf (z|y)Pg(y|x) g fX Z

Diagonal distributions Copying Chapman-Kolmogorov Sequential composition

Figure 1 The graphical representation of common formulas for probability distributions.

A categorical translation of Bayes’ law allows for a general definition of a Bayesian inverse
to a morphism in a Markov category. However, in contrast to many other contexts where we
have a notion of dualising morphisms, Bayesian inverses depend on an extra piece of data:
the prior distribution. This is abstracted in our definition as a state on an object X, or a
morphism out of the monoidal unit, I → X, which represents a (non-conditional) probability
distribution on X. This leads us to the abstract definition of a Bayesian inverse [5]:

▶ Definition 1 (Bayesian Inversion). Let f : X → Y and p : I → X, a kernel f ′ : Y → X is
called a Bayesian inverse of f at p if the following equation holds:

p f

f ′ X

Y

=
f

p

X

Y

This categorical based approach to Bayes’ law naturally leads to a question of whether
Bayesian inverses compose; that is, can we construct a Bayesian inverse of a composite kernel
f ◦ g as a composite of the separate Bayesian inverses of f and g? Inspecting the relevant
equation

p g f

f ′ g′
=

f g

p (1)
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we can observe that this is indeed true if f ′ and g′ are Bayesian inverse to f and g, but
we have to ask for f ′ not to be inverse to f at p, but rather at g ◦ p: in some sense the
type of this composition is dependent on the kernels that it is being applied to. In other
words, assuming a hypothetical function BayesInv(f, p) which computes Bayesian inverses,
the composite could be expressed as

BayesInv(f ◦ g, p) = BayesInv(g, p) ◦ BayesInv(f, g ◦ p)

Notably this has a similar form to the reverse-mode chain rule for Jacobian matrices that
underlies backpropagation, J⊤

g◦f (x) = J⊤
g (f(x))J⊤

f (x). As such we think of the composition
rule as a chain rule for Bayesian updating. To formalise the compositionality of such a
construction we would typically like to promote it to a functor on our Markov category,
which we denote in general as C. The fact that Bayesian inverses are indexed by p in this
way makes choosing the target of such a a Bayesian inversion functor nontrivial however.

One approach to making Bayesian inversion functorial, taken by Cho and Jacobs [5], is to
work instead in a category where the objects X are equipped with a choice of p : I → X: in
this case, there is always a canonical choice of inverse morphism, making Bayesian inversion
into a “dagger” functor. Although such a setting is still a Markov category, this approach
does depart from the operational interpretation of morphisms as stochastic kernels, because
the distribution produced is already present in the type of the morphism. So the morphisms
have more of a “relational” role.

In this paper we take an alternative approach and instead consider a category where
the morphisms are indexed families of kernels. Consequently, we can represent the entire
(I → X)-indexed family of Bayesian inverses as a single morphism, resolving the problems
faced previously. The morphisms of this category have a very similar structure to a lens from
database theory and functional programming [7], but, instead of performing deterministic
updates to data structures, this performs Bayesian updates to beliefs. We therefore call such
pairs Bayesian lenses.

This category is however “too big” in the sense that it contains everything whose type
matches that of the Bayesian inverse. Rather than a failure of the abstraction, we view this
as a feature allowing us to encode not only exact Bayesian inversion, but also approximate
updaters and other structures. To pick out the specific lenses corresponding to the actual
Bayesian inverse of f we therefore use a functor C → BLens, which encodes a choice of
Bayesian inverse for each kernel.

The category of Bayesian lenses is constructed as a fibred category that is closely related
to the families fibration, commonly used in the semantics of dependent types. We embrace
this relationship by extending BLens into a larger category constructed from a generalised
families fibration which leads us to a category of dependent Bayesian lenses, which have not
only indexed families as morphisms, but indexed objects as well. This construction admits
Bayesian inverses whose domains are allowed to depend on the prior distribution at which
the inverse is taken. In certain Markov categories this allows us to consider inverses as being
restricted to the support of the prior, which puts the construction on a neater theoretical
foundation, and which clarifies thinking about the Bayesian inversion of structure maps
in the category. Since Bayes’ law does not define how beliefs should be updated after a
zero-probability observation, this falls into the usual pattern in computer science of using a
type system to “make illegal states unrepresentable”1.

1 This phrase originated with Yaron Minsky in the blog post https://blog.janestreet.com/
effective-ml-revisited/
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24:4 The Compositional Structure of Bayesian Inference

2 Preliminaries

▶ Definition 2 (Markov Categories [8]). A Markov category is a symmetric monoidal category
C with the structure of a commutative comonoid on each object, such that:

the assignment of counits (“delete” or “discard” maps) to objects is natural; and
comultiplications (“copy” maps) are compatible with the monoidal structure:

X ⊗ Y

X ⊗ Y

X ⊗ Y

=

X

X Y

Y X

Y

▶ Example 3 (Stochastic Matrices, [8] example 2.5). There is a Markov category FinStoch
whose objects are finite sets, and whose morphisms f : X → Y are stochastic matrices
f : X × Y → [0, 1], i.e. satisfying

∑
y∈Y f(x, y) = 1 for all x ∈ X. Identity morphisms are

identity matrices, and composition of morphisms is by matrix multiplication, known in this
context as the Chapman-Kolmogorov equation, (g ◦ f)(x, z) =

∑
y∈Y f(x, y) · g(y, z). The

symmetric monoidal structure of FinStoch is given on objects by cartesian product, and on
morphisms by tensor product of stochastic matrices: (f ⊗g)((x, x′), (y, y′)) = f(x, y) ·g(x′, y′).

▶ Example 4 (Gaussian Kernels, [8] section 6). There is a Markov category Gauss whose
objects are Euclidean spaces Rn, and whose morphisms f : Rm → Rn are triples of a matrix
M ∈ Rm×n, a vector µ ∈ Rn and a positive semidefinite matrix σ ∈ Rn×n, considered to
represent an affine function with independent Gaussian noise f(v) = Mv + N (µ, σ). The
definitions of categorical composition and monoidal product are slightly involved, but can be
derived from laws of Gaussian probability.

▶ Example 5 (Probability Kernels, [8] section 4). Giry [10] introduced a monad G on the
category of measurable spaces, now known as the Giry monad, taking each measurable space
to the space of probability measures on it, equipped with an appropriate measurable structure.
The Kleisli category Kl(G) is a Markov category, also known as Stoch, which allows working
with arbitrary measure-theoretic probability and contains many other important Markov
categories as subcategories, including the previous two examples. Although this category is
in a sense canonical, it suffers from many undesirable properties due to extremely general
nature of measure theory. One example which is relevant in the later sections is the spaces
representing the support of certain distributions.

Keeping these examples in mind, we refer to the morphisms of such a category as Markov
kernels or more simply as kernels.

▶ Definition 6 (Almost-Sure Equality [5]). A pair of kernels f, g : X → Y are p-almost-surely
equal for some p : I → X, if the following equality holds

p

f Y

X

= p

g Y

X

In this case we write f ≃p g.
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We note that this equation is similar in shape to that which defines a Bayesian inverse.
Indeed this pattern of considering a kernel composed onto one branch of a copy is a standard
way to consider a kernel in the context of a distribution on its domain. The appearance of
this pattern in the definition of the Bayesian inverse means exactly that we are defining the
concept only up to almost-sure equality.

▶ Proposition 7 (Bayesian inverses are almost-surely equal). For any kernel f : X → Y and
state p : I → X, if two kernels g, g′ : Y → X both satisfy the conditions of a Bayesian inverse
to f , then g ≃f◦p g′. ◀

Considering the interpretation of these equations, this result makes intuitive sense. It
essentially says that Bayesian inversion is uniquely defined only on the points where Bayes’
law would not have you divide by zero. This allows us to be mindful of the partiality of Bayes’
law without requiring the added complication of considering partial maps. However, this will
complicate matters later when we establish the functoriality of Bayes’ law. In fact, as we
will see, we will need some extra coherence assumptions to ensure that Bayesian inversion is
functorial, rather than only almost-surely functorial.

3 Bayesian Updates Compose Optically

The Bayesian inverse of a kernel is defined with respect to a prior state on the domain of
the kernel. We want to consider the general inverse of a kernel A → B as a function which
assigns to each prior p : I → A, a p-inverse B → A. However the space of priors with respect
to which a kernel can be inverted depends on the domain of the kernel: it is the set of
states C(I, dom(f)). To formalise this dependence we construct an indexed category. Just as
indexed sets (Xi)i∈I can be thought of as functions I → Set, we define indexed categories
as (pseudo)functors into Cat. We consider Bayesian inverses in the context of an indexed
category C → Cat sending X to a category of C(I, X)-indexed kernels.

▶ Definition 8 (The Stat construction). We define the indexed category of C-state-indexed
kernels, Stat : Cop → Cat, as follows.

For each X, Stat(X) is the category of C(I, X)-indexed kernels, where
objects are the objects of C;
morphisms A → B are functions C(I, X) → C(A, B); and
composition and identities are pointwise given by the corresponding structure in C.

For f : X → Y in C we obtain a reindexing functor f∗ : Stat(Y ) → Stat(X) which
acts as the identity on objects; and
reindexes functions by sending σ : C(I, Y ) → C(A, B) to f∗σ defined by:

C(I, X) C(I, Y ) C(A, B)

p f ◦ p σ(f ◦ p)

Since the reindexing functors are defined by pre-composition it is easy to verify that Stat is
indeed a functor.

This provides sufficient expressive power to represent general Bayesian inverses. For a
kernel f : X → Y , the general Bayesian inverse of f is a morphism Y → X in Stat(X).
However it is awkward to have to work across a large collection of categories in order to
represent the inverses for every kernel. Really we would like to assemble the collection of
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categories into a single category containing all of the inverses. Fortunately this category is
described exactly by the Grothendieck construction [2, §8.3]. The Grothendieck construction
realises an equivalence between indexed categories and fibrations – functors with a property
of being suitably projection-like. The core of the construction is a disjoint union of the
constituent categories, equipped with morphisms induced by the reindexing functors that
connect each of the otherwise disjoint components.

Indexed categories F : C → Cat
Fibrations PF :

(∐
C∈C F (C)

)
→ C

We proceed to construct the category of all state-indexed kernels in this way, which we will
call the category of Bayesian lenses.

▶ Definition 9 (Bayesian Lenses). We define the category of Bayesian lenses as the Grothen-
dieck construction BLens(C) =

∐
X∈C Stat(X)op.

Explicitly this is a category whose objects are pairs
(

X
A

)
of objects from C, and whose

morphisms are of the form (f, f ♯) :
(

X
A

)
→

(
Y
B

)
where f is a kernel X → Y , and f ♯ is a family

of “backward” kernels, C(I, X) → C(B, A). The composition of two such morphisms(
X

A

)
(f,f♯)−−−−→

(
Y

B

)
(g,g♯)−−−−→

(
Z

C

)
is (g ◦ f, (g ◦ f)♯) where (g ◦ f)♯ is a function C(I, X) → C(C, A), sending p : I → X to the
composition

C
g♯(f◦p)−−−−−→ B

f♯(p)−−−−−→ A.

We call the morphisms of this category Bayesian lenses.

▶ Remark 10. Contrary to our general description of the Grothendieck construction, we in
fact used the “fibrewise” opposite of Stat, taking Stat(X)op for each X in C. Ultimately
this does not change the space of functions we can represent, but it provides a neater type
signature for the morphisms we care about. Namely this means the Bayesian inverse of a
kernel will be a morphism

(
X
X

)
→

(
Y
Y

)
, rather than

(
X
Y

)
→

(
Y
X

)
. We think of the appearance

of the opposite here as signalling that we are working with a kind of bidirectional process.
Spivak [19] proposes that the fibrewise opposite of a fibration be considered as a gen-

eralisation of the lens construction from database theory and functional programming [7].
More clearly, if C is the category of sets (which is degenerately a Markov category), then
f ♯ : C(I, X) → C(B, A) can be equivalently written f ♯ : X × B → A, and we recover the
standard definition of a lens. This motivates our use of the term “Bayesian lens” for these
morphisms.

▶ Proposition 11 (Bayesian inversion is almost functorial). If C has Bayesian inverses for
ever kernel at every prior, then Bayesian inversion defines a functor T : C → BLens(C) up
to almost-sure equality.

Proof. Because Bayesian inverses are only unique up to almost-equality, T is only almost
surely functorial: it maps each object X to

(
X
X

)
, and each kernel f : X → Y to a lens

(f, f ♯) :
(

X
X

)
→

(
Y
Y

)
whose inverse component is given by a representative of the almost-surely

unique family of Bayesian inversions of f .
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Given a pair of composable kernels X
f−→ Y

g−→ Z, we need to check that this mapping
is almost surely functorial. Following equation (1), we note that the state with respect to
which this functoriality is almost sure is g ◦ f ◦ p, for every state p on X. We therefore need
to verify that(

X

X

)
(f,f♯)−−−−→

(
Y

Y

)
(g,g♯)−−−−→

(
Z

Z

)
≃g◦f

(
X

X

) (g◦f,(g◦f)♯)
−−−−−−−−→

(
Z

Z

)
.

This follows from three applications of Definition 1:

p f g

(g ◦ f)♯
p

= p

f g

= p f

f ♯
p

g

= p f g

g♯
f◦p f ♯

p

◀

Note that although Markov categories in general may not admit all Bayesian inverses, we
can always restrict to a wide subcategory C† consisting of only those kernels which admit
inverses.

4 Dependent Bayesian Lenses

Those familiar with categorical semantics of type theory might observe that the construction
of Bayesian lenses is similar to that of the families fibration [12, §1.2]. This construction,
commonly used in the interpretation of dependent types, constructs a category whose objects
and morphisms are set-indexed families of objects and morphisms from another underlying
category. As a fibration this category projects onto the category of sets, by picking out the
indexing set or reindexing function under each family.

▶ Definition 12 (The families fibration [12, §1.2]). The indexed category of families over a
category C is the functor FamC : Setop → Cat defined as so:

For a set X, FamC(X) is the category whose objects are X-indexed families of objects
X → Ob(C) and whose morphisms A → B are families of morphisms ϕ : {x ∈ X} →
C(Ax, Bx) .
For a function α : Y → X, the induced reindexing functor α∗ : FamC(X) → FamC(Y ) is
given by pre-composition with alpha:

α∗(A) : X
α−→ Y

A−→ Ob(C)

α∗(ϕ) : {y ∈ Y } α−→ {α(x) ∈ X} ϕ−→ C
(
Aα(y), Bα(y)

)
Alternatively, viewing sets as discrete categories, FamC is the functor that sends X to the
functor category Cat(X, C) and reindexes by precomposition with the function viewed as a
functor between discrete categories.

A crucial difference between this and the indexed category in Definition 8 is that the latter
is indexed only by sets of the form C(I, X) whereas FamC(−) allows for arbitrary indexing
sets. Having the indexing sets take the form C(I, −) allows us to additionally restrict the
reindexing functors to those represented by kernels of C. Formally we can see this as the
result of reindexing FamC(−) itself with the state functor:
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24:8 The Compositional Structure of Bayesian Inference

▶ Definition 13 (State-indexed families). The indexed category StFamC : Cop → Cat is given
by the composite of functors:

Cop Setop Cat

A C(I, A) CC(I,A)

B C(I, B) CC(I,B)

FamCC(I,−)op

f f◦− α 7→α(f◦−)

This has as objects C(I, X)-indexed families of objects from C and as morphisms C(I, X)-
indexed families of kernels from C.

Note that the categories indexed by StFam are more general than those indexed by
Stat: the objects of StFamC(X) are whole functions C(I, X) → Ob(C), whereas an object
of StatC(X) is merely a single object of C.

▶ Proposition 14. StatC is a subfunctor of StFamC given by restricting to subcategories
which consist only of constantly-indexed families of objects i.e. those families C(I, X) → Ob(C)
which are constant functions. ◀

Observing that StFam is a generalisation of Stat, we are led to consider whether the
fibration constructed from StFam could profitably be considered as a generalised category
of lenses. By analogy with the use of Fam in dependent type theory we refer to these as
dependent Bayesian lenses.

▶ Definition 15 (Dependent Bayesian Lenses). We define the category of dependent Bayesian
lenses over C to be the Grothendieck construction of the fibrewise opposite of StFam,

DBLens(C) =
∐

X∈C

StFamC(X)op .

Unpacking this definition we have that:
Objects of DBLens(C) are pairs

(
X
A

)
where X ∈ C and A : C(I, X) → Ob(C). We think of

this as representing a set of dependent pairs, whose elements are ⟨p, a⟩ ∈ C(I, X) × A(p).
Morphisms

(
X
A

)
→

(
Y
B

)
are pairs (f, f ♯) of a kernel f : X → Y and a family of kernels

f ♯ : {p ∈ C(I, X)} → C(B(f ◦ p), A(p)).
The composition is as with the non-dependent version in Definition 9. Aside from the
fact that f ♯ is here considered as a dependent function, the data of a morphism is the
same. It is straightforward to verify that the extra dependent typing data still aligns
where appropriate.

▶ Remark 16. The functor C(I, −)op : Cop → Setop can be made into a lax monoidal functor
with structure maps induced by functions C(I, X ⊗ Y ) → C(I, X) × C(I, Y ) which map states
to pairs of states obtained by deleting either variable. Then it follows by results in [14] that
StFam is the composition of lax monoidal functors, and so its Grothendieck construction
inherits a monoidal structure.

5 Support Objects

Giving an abstract account of Bayes’ law, Definition 1 promises to be very important in
studying Bayesian statistics synthetically, but it is in some way unsatisfying because it only
specifies a morphism up to almost-sure equality. For example, considering FinStoch, if a
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distribution p : I → X is not fully supported, then the inverse of a kernel X → Y is only
specified by the above definition at the points in the support of p. We can work around this
ambiguity however by instead considering inverses as kernels between objects representing
the supports of distributions.

Fritz [8] proposes a definition for support objects in a Markov category, but does not
develop the idea further. Here we investigate some properties of support objects and explain
how they can be used to enhance the theory of abstract Bayesian inversion.

▶ Definition 17. Fix a state p : I → X. An object Xp is called a support of p if Xp

represents the covariant functor (C(X, −)/ ≃p) : C → Set.

This definition succinctly captures the essential properties of the support of a distribution,
but it is quite opaque and does not encourage intuition. If an object is a support of another
object, intuitively it should behave as a subspace, having an inclusion map which satisfies some
extra properties. We state this formally in terms of the existence of certain section-retraction
kernels representing this inclusion.

▶ Proposition 18. Xp is a support of p : I → X if and only if there is a section-retraction
pair Xp

i−→ X
r−→ Xp such that for any kernels f, g : X → Y we have f ≃p g ⇐⇒ f ◦ i = g ◦ i.

Proof. Assume Xp is a support. This means we have a natural isomorphism Φ : (C(X, −)/ ≃p

) → C(Xp, −). We take i = ΦX(idX), then we see from the following naturality square that
the action of Φ must be to pre-compose representative morphisms with i:

i [idX ]≃p

C(Xp, X) C(X, X)/ ≃p

C(Xp, Y ) C(X, Y )/ ≃p

f ◦ i [f ]≃p

C(X,f)/≃pC(Xp,f)

ΦX

ΦY

Hence we establish the property that pre-composition by i is an isomorphism between
kernels from X and ≃p-equivalences classes of kernels from Xp. We further have that
idXp

= Φ(Φ−1(idXp
)) = Φ−1(idXp

) ◦ i, so we can take the retract to be r = Φ−1(id).
Conversely, given such an i and r, it is clear that pre-composition by i defines a function

C(X, Y ) → C(Xp, Y ) natural in Y and the assumed property of i guarantees that this is a
bijection from ≃p-equivalence classes. Finally we have that i ◦ r ◦ i = i, so i ◦ r ≃p idXp .
Hence pre-composition by r is an inverse to (−) ◦ i : (C(X, −)/ ≃p) → C(Xp, −). ◀

While support objects are not necessarily unique, they must be unique up to isomorphism,
since two support objects for the same distribution must by definition represent the same
presheaf. When we disuss a given support object we therefore really mean a given support
object along with a choice of section and retraction.

Now, if we have a distribution on X, p : I → X, and a kernel f : X → Y we can push p

forward to a distribution f ◦ p on Y . So f restricts to a kernel f |p = r ◦ f ◦ i : Xp → Yf◦p.
Dually we have an inclusion of kernels g : Xp → Yq into ⟨g⟩ = i ◦ g ◦ r : X → Y . Using these
there is an obvious adjustment to the definition of Bayesian inversion in order to capture
Bayesian inverses between supports:
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▶ Definition 19 (Bayesian-inverse-with-support). Fix kernels p : I → X and f : X → Y

with support objects Xp and Yf◦p. We call a kernel f ♯
p : Yf◦p → Xp a Bayesian inverse with

support if ⟨f ♯
p⟩ is an ordinary Bayesian inverse for f at p.

This is very similar to the previous definition. However the presence of support objects in
f ♯

p’s domain and codomain mean that the kernel is more canonical than an ordinary Bayesian
inverse. In fact for any ordinary inverse f ♯

p, its restriction to the distribution f ◦ p is an
inverse-with-support.

▶ Theorem 20 (Unique Bayesian Inversion). Fix kernels f : X → Y and p : I → X, and
support objects Xp and Yf◦p. If f has an ordinary Bayesian inverse at p, then there is a
unique inverse-with-support to f at p.

Proof. See Appendix A. ◀

This final result suggests that we can now define a functor that picks out the canonical
inverse for a given kernel. Recall that in Proposition 11 we were almost able to show
that Bayesian inversion defines a functor C → BLens(C) except that the functoriality
constraint only holds up to almost-equality. Using support objects we improve this into strict
functoriality between kernels. Bayesian inversion with supports departs from the previous
situation slightly in that the domain and codomain of the inverse kernels vary as the indexing
distribution varies. Fortunately this is exactly the extra level of generality afforded us by
dependent Bayesian lenses.

▶ Proposition 21. If C has Bayesian inverses for every kernel, and support objects for every
distribution I → X then the fibred category DBLens(C) has a section T : C → DBLens(C)
sending kernels to families of their Bayesian inverses between support objects.

Proof. We write explicitly the mapping defining T . On objects T (X) =
(

X
SX

)
where SX :

C(I, X) → Ob(C) maps p to a choice of support object Xp. On kernels f : X → Y , we have
T (X) = (f, f ♯) :

(
X

SX

)
→

(
Y

SY

)
where for each p ∈ C(I, X), f ♯

p : Yf◦p → Xp is given by the
Bayesian inverse with support of f at p.

The functoriality of T follows similarly to in Proposition 11. Briefly, if f and g are
composable Bayesian inverses with support, then ⟨f⟩ and ⟨g⟩ are composable ordinary
inverses, so by Proposition 11 their composition must be an inverse. By the definition of
the inclusions it is immediately that ⟨f⟩ ◦ ⟨g⟩ = ⟨f ◦ g⟩, so f ◦ g is an inverse-with-support.
Then by uniqueness, the fact that the composition f ◦ g is a Bayesian inverse implies the
strict equality required for functoriality. ◀

▶ Remark 22. Proposition 21 proves the compatibility of sequential composition in a Markov
category with Bayesian inversion, however there is another axis for composition in our
graphical notation. This is the parallel composition, or monoidal product of C. To ask for
this structure to be compatible with inversion is to ask for the functor T to respect the
monoidal structure. Indeed as we noted in Remark 16, we may naturally define a monoidal
product on DBLens(C), then T straightforwardly inherits the structure of a lax monoidal
functor with respect to this.
▶ Remark 23. Most of the results developed in this section relied on the existence of support
objects. Indeed this is satisfied for our first two examples Example 3 and Example 4, but
this is quite a strong assumption in general. The approach to functorial Bayesian inversion
taken in [5] and later expanded on in [8] is to work in a category ProbStoch(C) whose
objects are equipped with a choice of distribution and whose morphisms are quotiented by
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almost-sure equality with respect to these chosen distributions. This makes exact functoriality
straightforward to prove, but it detracts from the interpretation of morphisms as stochastic
functions. Working in ProbStoch(C) we are unable to think of Bayesian updating as a
dynamic process which maps observations to new distributions, since the resultant distribution
is already encoded in the codomain.

We could instead take a hybrid approach, using dependent Bayesian lenses where the for-
wards kernel is still valued in C but the “backwards’ mapping is in ProbStoch(C). This means
the type of a general inverse can become a function {p ∈ C(I, X)} → ProbStoch(C)((Y, f ◦
p), (X, p)). This provides a lot of the same theoretical niceties of support objects, including
exact functoriality, while still applying in a more general context. We leave the further
investigation of this construction to future work.

6 Example: Estimating Transition Probabilities in Markov Chains

To illustrate the compositional nature of Bayesian inversion in practice we consider how to
view a typical Bayesian inference problem in this framework. Namely we use as our example,
the common problem of learning transition probabilities for a Markov chain from an observed
sequence of states [21].

In the category FinStoch, a Markov chain is nothing but an endomorphism t : S → S

for some finite set S of states, with an initial state distribution s : I → S. Often we do not
know the actual transition probabilities, but instead have a family of distributions dependent
on another external parameter, t : S ⊗ Θ → S. In such a situation we want to choose an
optimal value of Θ based on a sequence of observations of states in the past. A common
technique for choosing this value is to consider the observed state sequence as an element of
the space S ⊗ . . . ⊗ S, with which we can perform a Bayesian update. That is, given a state
sequence (s1, . . . , sn) we would like to compute a posterior distribution P(Θ|s1, . . . , sn).

From the data involved we can define a family of maps fn : Θ → S⊗n describing the
distribution over n-length state sequences corresponding to any value of Θ (see Figure 2 for
an example). Computing the Bayesian inverse of fn we obtain kernels which map sequences
S⊗n to posterior distributions over Θ. Of course, as we have already discussed, in order to
compute this all we need is the Bayesian inverse for the transition matrix t. Knowing the
functorial relationship between “forward” models fn and their corresponding inverse models,
we can build an inverse for fn out of many copies of the inverse for t.

f4 =

t

t

t

s

Θ

S

S

S

S

Figure 2 An example of a “state-trace” kernel obtained from a Markov chain, yielding state
sequences of length 4.
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Figure 2 depicts a typical composite which we may want to invert. It consists only of
four kinds of non-trivial cell: the transition matrix t, the initial state distribution s, copy
maps copyS : S → S ⊗ S and copyΘ : Θ → Θ ⊗ Θ, and a delete map deleteΘ : Θ → I. As t

is an arbitrary kernel there is little we can say about its Bayesian inverse, but we can fully
characterise the inverses for the other kinds of cells. The inverse of s at p should have a
type s♯

p : Sp → I, but by the uniqueness of the delete map this is equal to deleteSp : Sp → I.
Dually, filling in the definition of Bayesian inversion for deleteΘ at p requires that (deleteΘ)♯

p

is exactly p : I → Θ.
Finally we consider the Bayesian inverse of copyS . Of course the case for copyΘ is identical.

In the case of non-dependent Bayesian lenses, without supports, it is difficult to understand
what these copy maps do. The copy operation is supported on only a small subset of its
domain. Intuitively this is the diagonal set {(s, s)|s ∈ S}, but in the abstract case this set
notation is not valid. We may wonder if there is a way that we can describe this using only
the axiomatic setting we have been working with so far. Indeed, we can show that there is in
fact an isomorphism of the support object (S ⊗ S)copyΘ◦p

∼= Sp and moreover, the morphism
witnessing this isomorphism is exactly the Bayesian inverse of copy.

This isomorphism is a very powerful fact. It enforces in the type of a morphism, using the
notion of dependent typing present in DBLens(C), that the observations we make from a
process involving copying should preserve the exact equalities expected given our knowledge
about the generative processes from which the observations originated.

It is not difficult to derive an explicit formula for this with traditional probability theory,
but our structural viewpoint can offer a more pedagogical approach to describing inference
algorithms. Using a 2-dimensional syntax for kernels and understanding the compositional
nature of Bayesian inversion, a lot of the apparent complexity of equations in statistics
is clarified by applying operations piecewise on string diagrams. It additionally becomes
straightforward to see how to extend this to more complicated scenarios. For example, a
hidden Markov model is obtained from the above example simply by postcomposing each
wire with an additional kernel o : S → O. Then compositionality described exactly how to
extend a solution to account for the additional mapping.

This approach provides not just additional pedagogy, but also is very amenable to
algorithmic study: as future work, we hope to investigate ways in which, by isolating the
basic repeated units and their compositional structure, we can automatically generate a lot
of the additional data required and can perhaps facilitate certain optimisations.

7 Further work

Our work situates Bayesian inversion amongst a range of bidirectional processes observed
in different contexts, each of which exhibit lens (or lens-like) structure and “cybernetic”
application [4]: reverse-mode automatic differentiation (generalizing backpropagation of
error) [6]; economic games [9]; reinforcement learning [11]; and database updating [7]. It
was in this latter setting, in the context of functional programming, that lenses were first
described, and generalizations of lenses remain in popular use in that setting. This points to a
first avenue for future work: a new approach to probabilistic programming that incorporates
both Bayesian and differential updating, extending the currently popular use of deterministic
lenses, and with general application to cybernetic systems.

Probabilistic programming languages allow the programmer essentially to construct
Markov kernels in a compositional way using a standard programming language syntax,
and perform inference on the resulting models [20]. Typically, performing inference is not
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transparently compositional, and so we hope that our results will lead to improvements
here, for instance by allowing the programmer to “amortize” parts of an inference process.
Perhaps more importantly, our approach could lead to the use of a dependent type system
to statically rule out events of measure zero. Furthermore, in a generically bidirectional
language of the kind we envisage, we expect that compilers will be able to share optimizations
across differential and probabilistic parts.

We expect these ideas not only to be of use to language designers therefore, but also to
users. In many applications of probabilistic inference, one first constructs a “joint model”: a
joint state across all the variables of interest, which may factorise according to a Bayesian
network or other graphical model. Because computing exact Bayesian inversions involves
marginalization (normalization: the sum or integral in the Chapman-Kolmogorov equation),
and such a computation is often intractable, one usually resorts to approximate methods,
and this is where the “extra” morphisms in categories of Bayesian lenses come in: they can
be understood as approxmate inverses.

By parameterizing these lenses, one can associate to them loss functions that characterize
“how far” a given inversion is from optimality2; like the inversions themselves, these losses
depend on both the priors and the observations, and they again compose according to a lens
pattern. The third author, in the unpublished works [17, 18], has begun developing this
programme, based on ideas from compositional game theory [9]. It results in an account
of approximate inference whose algorithms are “correct by construction”, which may be
an advantage over traditional methods which simply start from a given joint distribution.
Moreover, because the loss functions are “local” to each lens, the resulting framework captures
the compositional structure seemingly exhibited by “predictive coding” neural circuits in
the brain [1]. Similarly, by making use of the lens structure presented here, the framework
suggests a formal unification of backprop and predictive coding, as sought by various authors
[13, 15], and it reveals connections to the method of backward induction in reinforcement
learning [11]. We hope that future developments make use of these relationships, so that we
may build intelligent systems that are both efficient and well-understood.
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A Uniqueness of Bayesian Inversion

▶ Notation 24. In the graphical language we denote the inclusion and restriction kernels for
a support object respectively as follows: Xp X X Xp.

This is a convenient shorthand for indicating the section-retract relation between sections
and restrictions, however care must be taken when calculating with these. Since we are not
labelling the triangles, we should only pair inclusions and restrictions corresponding to the
same states; the characterising equations only hold for such pairs. However in practice it is
difficult to naturally arrive at a situation where this caveat can be an issue, so this is less of
a shortcoming that it might seem.

We have strict equality of inclusions followed by restrictions, but in the converse we have
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▶ Lemma 25. Restriction is almost inverse to inclusion:

X
r−→ Xp

i−→ X ≃p X
id−→ X.

Proof. Note that i ◦ r ◦ i = i so by the quotienting property of (−) ◦ i we have i ◦ r ≃p id. ◀

▶ Proposition 26. Fix kernels f : X → Y and p : I → X, and support objects Xp and Yfp.
Then inverses-with-support of f at p are in bijection with ≃fp-equivalence classes of ordinary
Bayesian inverses.
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Proof. We first exhibit a map Ψ from inverses-with-support to ordinary inverses. Let
g : Yfp → Xp be a Bayesian inverse with support of f at p. By the definition of inverses with
support this means that Ψ(g) := ⟨g⟩ is an ordinary Bayesian inverse.

Conversely if h : Y → X is an ordinary Bayesian inverse to f at p, we want to define an
inverse with support Ψ̃(h) : Yfp → Xp. As a first guess we might try the restriction h|fp but
we see that the codomain of this kernel does not match. Namely we have h|fp : Yfp → Xhfp

but require a codomain of Xp. In fact we can verify that hfp = p: since h is a Bayesian
inverse of f at p we have that

p f

h X

=
f

p

X

and so by the naturality of the delete map:

p f

h X
=

p

X
.

So it is well defined to set Ψ̃(h) := h|fp. We can see that this is an inverse-with-support: to
show this we must show that ⟨h|fp⟩ is an ordinary Bayesian inverse. i.e. that

fp

h
=

f

p

X

Y

.

But this is follows straightforwardly by two applications of Lemma 25 and the fact that h is
a Bayesian inverse.

We finally have that Ψ(−) is inverse to Ψ̃ when viewed as maps to/from equivalence
classes:

Ψ(Ψ̃(h)) = ip ◦ rp ◦ h ◦ ifp ◦ rfp

≃fp ip ◦ rp ◦ h

≃fp h

where the final equivalence uses the fact that h is a Bayesian inverse to move it out of the
way, similarly to the previous chain of equalities. ◀

Noting that all Bayesian inverses to f at p must be (f ◦ p)-almost equal we obtain
Theorem 20 as a corollary, that Bayesian inverses with support are unique.

▶ Theorem 20 (Unique Bayesian Inversion). Fix kernels f : X → Y and p : I → X, and
support objects Xp and Yf◦p. If f has an ordinary Bayesian inverse at p, then there is a
unique inverse-with-support to f at p.
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1 Introduction

The area of fixed-parameter algorithms, sprung from the seminal work of Downey and Fellows
(see e.g. their monograph [11]), has produced an enormous amount of tools and techniques
to facilitate the design of algorithms that can solve NP-hard problems in running times
of the form f(k) · poly(n), where n is the input size and k is some parameter that can be
interpreted to quantify the difficulty of the instance at hand.

Two prominent and highly successful techniques contributing to this toolbox are, on
the one hand, of algebraic nature, focusing on formulations of combinatorial problems
in the language of polynomials, and then employing mathematical means to solve these
reformulations. On the other hand, one of the earliest approaches known to produce fixed-
parameter algorithms is the combinatorial method of representative families, with their first
algorithmic applications dating back at least to work of Monien [25].
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Both the algebraic as well as the representative-family based approach have received a
considerable amount of attention in recent years, often focusing on the same application
problems. This has resulted in a flurry of competing results on variants of e.g., the notorious
longest path problem, subgraph isomorphism, set packing, network design as well as matroid
problems, to name a few.

An important variation on the basic combinatorial problems studied in these lines of
research concerns colored variants of the problems. One of the most well-studied problems
of this kind is the graph motif problem, which was originally motivated from the analysis
of biological networks, and has since been the subject of many parameterized algorithmic
studies. As with the uncolored variants of these problems, the colored counterparts attracted
attention from researchers from both the perspective of representative families, as well as
the algebraic point of view, with both techniques contributing methods that have remained
the state-of-the-art within their respective regime. A possibly sweeping generalization of the
results that together form this body of work might perhaps conclude that algebraic methods
seem more adapted to produce fast randomized algorithms, whereas the representative
families tend to yield record bounds for deterministic algorithms.

On the side of algebraic algorithms, in the uncolored regime, a common technique for all
of the combinatorial problems above is to formulate them as so-called multilinear monomial
detection problems. In these problems, one is given an arithmetic circuit computing a
polynomial, and the task is to decide whether this polynomial contains a product of k variables
that are all pairwise distinct, and k is the parameter. Similarly, in the colored variants, these
detection problems are generalized to so-called constrained multilinear monomial detection,
where additional coloring constraints are imposed on the products of variables to be detected.
This is also the technique that is considered in the present article.

1.1 Related Work
For general background on fixed-parameter algorithms, we refer the reader to the snapshot
of the state-of-the-art of the field as captured by e.g. the textbook of Cygan et al. [9], in
particular Chapters 10 and 12, where diverse applications of the tools mentioned above are
developed.

Algebraic Algorithms

One of the seminal works for algebraic methods in parameterized and exact algorithms is
the work by Björklund et al. [2] on fast subset convolutions and its application for the
parameterized Steiner tree problem. More specifically, for the problems considered in this
article, the algorithms by Koutis and Williams on multilinear detection were highly influential
[20, 22, 29]. These methods were first transported to the setting of constrained multilinear
detection by Guillemot and Sikora [17] and subsequently improved by Koutis [21] as well
as Björklund, Kowalik and Kaski [4, 5]. It is important to note that all their methods are
inherently randomized, because they resort to a use of the DeMillo-Lipton-Schwartz-Zippel
Lemma, which makes it seem hard to derandomize them in a black-box manner.

Graph Problems

These randomized algebraic methods allow to design the state-of-the-art algorithms for
e.g. the maximum graph motif problem, running time 2k · poly(n) [4, 5]. On the side of
deterministic algorithms, which is the focus of this article, the relevant techniques are more
combinatorial in nature. Indeed, the method of representative families was first considered
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explicitly in the context of fixed-parameter algorithms by Marx [24] and has since been
extended into a most intricate machinery, in particular in the works of Fomin et al. [15, 16].
These methods were then refined by Pinter, Shachnai and Zehavi and applied to design the
state-of-the-art deterministic algorithms for the graph motif problem [26], running in time
2ωk · poly(n).

Matroid Problems

Another area in which representative-families based methods have proven fruitful is the realm
of matroid problems. In this article, we consider the problem of matroid intersection: Given
q (representations of) matroids of rank k, decide whether they share a single common basis.
This is a classic problem in combinatorial optimization, and the polynomial-time solvable
special case of intersecting q = 2 matroids is famously treated by Edmonds [13]. More
generally, intersecting q > 2 matroids becomes NP -hard, and fixed-parameter algorithms for
this problem were given first (without using this term) by Barvinok [1]. In a later development,
Marx [24] revived the interest in this problem by giving the first single-exponential (in q and
k) algorithm using representative families, which was superseded by the work of Fomin et
al. [15]. The current state-of-the-art is 4qk [8]. A recent manuscript of Eiben, Koana and
Wahlström [14] shows that this can be improved to 4(q−2)k using different algebraic methods.

Our Contribution
The contribution of this paper is three-fold. First, we show how to extend the (deterministic)
algebraic machinery of Brand and Pratt to the colored, that is, constrained-multilinear
setting. This is noteworthy insofar as until now, the only known algebraic tools for this
task were inherently randomized, and the only deterministic algorithms for the respective
combinatorial application problems were of decidedly combinatorial nature.

Secondly, we show how to use these adapted methods to, on the one hand, reproduce the
deterministic state-of-the-art for the graph motif problem without any additional problem-
specific adaptation as a generic application of the algebraic methodology laid out here.
In addition, we provide examples of natural colorful extensions of several combinatorial
problems, involving e.g. spanning trees and planar perfect matchings, that are not known to
admit deterministic algorithms by using only the known combinatorial techniques.

Finally, we improve the state-of-the-art for matroid intersection in the case q ≤ 4 by
giving specialized polynomial formulations of these cases. It is worth noting that the speedup
over the generic state-of-the-art technique is by a factor of 16 (or 4 with respect to [14]) in
the exponential base.

Organization

We continue with a formal introduction of notation and all problems considered in the
article. We then prove our main theorem about constrained multilinear detection and give
our applications for graph problems. We then conclude with the improved algorithms for
matroid problems.

2 Preliminaries

Generally, we denote the set of integers {1, . . . , t} by [t], and use [t]0 as a shorthand for
[t] ∪ {0}. We denote by N the set of natural numbers excluding zero, and by Q the set of
rational numbers.
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Matrices and Matroids

Let A be a matrix with row set X and column set Y , and let X0 and Y0 be subsets of X

and Y correspondingly. We denote by A[X0, Y0] the submatrix of A restricted to the rows in
X0 and the columns in Y0 (while in A[Y0] the restriction is applied to columns alone). In
particular, A[X, Y ] = A[Y ] = A. For two matrices A and B, we denote their direct sum by
A ⊕ B. For an arbitrary sequence r1, . . . , rN ∈ Q, we write Vandk(r1, . . . , rN ) for the k × N

Vandermonde matrix defined through

Vandk(r1, . . . , rN )l,j = rl
j , l ∈ [k − 1]0, j ∈ [N ].

By convention, we let 00 = 1 in this definition, and we say Vandk(r1, . . . , rN ) is the Vander-
monde matrix of the sequence r1, . . . , rN .

A finite matroid M is a pair (E, I), where E is a finite set (called the ground set) and I
is a family of subsets of E (called the independent sets) satisfying so-called independence
axioms. In this article we only work with finite matroids that can be represented by matrices
as follows. Any matrix M with entries in Q gives rise to a matroid M with the ground set
being its set of columns. The independent sets of the matroid are those subsets of columns
that are linearly independent as vectors. In particular, size of any base (i.e., maximal with
respect to inclusion independent set) of M is equal to the rank of M . We say that such a
matroid M is represented by M .

Polynomials

Let R be a commutative ring, and let x1, . . . , xn be formal indeterminates. Then R[x1, . . . , xn]
is the ring of polynomials in x1, . . . , xn with coefficients in R, and we call the latter the
coefficient ring of the polynomial ring.

Every polynomial f can be represented uniquely as a weighted, finite sum of monomials,
that is, products of variables. We may therefore write

f =
∑

a1,...,an∈N
ca1,...,an

xa1
1 · · · xan

n ,

where only finitely many of the coefficients ca1,...,an
∈ R are non-zero. When all monomials

appearing in fM are of degree k, we call f itself homogeneous of degree k. Furthermore,
if for some choice of a1, . . . , an ≤ 1 there is a coefficient ca1,...,an ≠ 0, we say that f has a
multilinear monomial xa1

1 · · · xan
n .

Our algorithms are based on the algebraic techniques found in [8]. In this approach, as
with similar algebraic methods [20], the combinatorial objects (matroid bases, subgraphs,
subsets, and so on) over a universe of size n are modeled using (rational) multivariate
polynomials over the indeterminates x1, . . . , xn. The crux of the approach in [8] is then to
write down a polynomial whose coefficients encode some information about the combinatorial
problem at hand, and evaluate algebraically some linear functional over this polynomial that
reveals some sought-after combinatorial answers.

This functional is defined via the following inner product: Let f and g be any two such
polynomials that are homogeneous of degree k, and say that f is as above and

g =
∑

a1,...,an∈N
da1,...,anxa1

1 · · · xan
n .
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Then we define their apolar inner product ⟨f, g⟩ in an almost entirely straightforward way, by

⟨f, g⟩ =
∑

a1,...,an∈N
a1! · a2! · · · an! · ca1,...,an

· da1,...,an
. (1)

Including the product of factorials serves the purpose of normalization, which allows to
connect ⟨f, g⟩ with the partial derivatives of f and g.

As an inner product, this mapping can be intuitively interpreted as a measure of similarity
between f and g. In particular, when fixing g (or, equivalently, f) to, for example, the k-th
elementary symmetric polynomial

ek(x1, . . . , xn) =
∑

S⊆[n]
|S|=k

∏
s∈S

xs,

which has all, and only, multilinear monomials with coefficient one, it is easy to see that
f 7→ ⟨f, ek⟩ is a linear functional that yields the sum of coefficients of multilinear monomials
of degree k of f . If f maps to a non-zero value under this functional, we may conclude that
f has a multilinear monomial. As shown in [8], the complexity of evaluating this functional
depends on certain algebraic properties of f and ek (or g, in general).

Arithmetic Circuits

Even before these algebraic properties, the complexity of this evaluation depends on the
encoding of f and g. Indeed, if f and g are given by their list of coefficients, then all
questions treated in this article become trivial. However, this would imply inputs that
are of exponential size in n, making this sparse encoding a poor choice for polynomials
enumerating e.g. combinatorial objects, as an algebraic analog to brute-force search. Instead,
polynomials are encoded using arithmetic circuits, which are directed acyclic graphs with a
single sink, labeled as follows: Every vertex of in-degree zero (inputs) is labeled with either an
indeterminate or a constant from the coefficient ring. Every vertex with non-zero in-degree
is labeled either + or ×. The labeled nodes of the arithmetic circuit are referred to as gates.
An arithmetic circuit computes a polynomial in the obvious inductive manner. Finally, we
call an arithmetic circuit skew if every ×-gate has at most one edge coming from a non-input
gate.

Constrained Monomials

In the context of this article, mutlilinear monomials that are not only multilinear, but satisfy
additional constraints are relevant. More precisely, suppose C = {1, . . . , q} is a set of q

colors with multiplicities µ1, . . . , µq ∈ N, and χ : [n] → C is a coloring of [n]. A multilinear
monomial xa1

1 · · · xan
n is called well-colored if

∑
i:χ(i)=c ai ≤ µc for all colors c ∈ C, that is,

every color appears at most µc times in the monomial.

Problem Statements

Let us now formally introduce the problems studied in this article. The most prominent
one, which will be used to reduce the combinatorial application problems to, is the following
algebraic problem.
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Constrained k-Multilinear Detection
Input: A number k, an arithmetic circuit computing a polynomial f , a coloring of the

variables of f , together with multiplicity constraints on each color.
Question: Does f have a well-colored multilinear monomial of degree k?

In our algorithms, we will encounter the restriction that the computed polynomial f (but
not necessarily the circuit itself) have non-negative coefficients in order to make them
deterministic. This is a natural restriction when dealing with combinatorial problems in
many cases.

Graph Problems

In analogy to the definition of well-colored monomials, the notion of a vertex or edge coloring
includes those mappings that are not necessarily proper colorings, that is, two neighboring
vertices in a graph, or two edges sharing a vertex, may very well receive the same color. To
be precise, given a coloring χ : V (G) → {1, . . . , q}, or analogously χ : E(G) → {1, . . . , q},
and multiplicites µ1, . . . , µq, we call a set S of vertices (or edges, respectively) well-colored
if χ−1(i) ∩ S ≤ µi for all i = 1, . . . , q. With this in mind, the following problems can be
defined:

Maximum Graph Motif
Input: A vertex-colored undirected graph G together with multiplicity constraints on each

color.
Question: Does G have a well-colored set of k vertices that induce a connected subgraph of

G?

In algebraic terms, Maximum Graph Motif, while amenable to our techniques, doesn’t
showcase their full strength, for reasons explained in the article. In contrast, the following
problems share the important property that they can be expressed succinctly by computations
of certain determinants, which allows us to give the first fixed-parameter algorithms for them
that are probably hard to come by using other approaches. These are made in analogy to
the non-well-colored graph problems studied by Gutin et al. [18].

Well-Colored Spanning Tree
Input: A number k and an edge-colored directed graph G together with multiplicity

constraints on each color.
Question: Does G have a well-colored subset of k edges that can be extended to a directed

spanning tree of G?

Well-Colored Planar Perfect Matching
Input: A number k and an edge-colored planar graph G together with multiplicity con-

straints on each color.
Question: Does G have a well-colored subset of k edges that can be extended to a perfect

matching?

Internally Well-Colored Spanning Tree
Input: A number k and a vertex-colored planar graph G together with multiplicity con-

straints on each color.
Question: Does G have a spanning tree such that its internal vertices contain a well-colored

subset of at least k vertices?
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3 Constrained Multilinear Detection

For any multiplicities µ = (µ1, . . . , µq) and natural numbers n, k, consider the polynomial
ring Q[y1,1, . . . , y1,n, . . . , yq,1, . . . , yq,n] in nq variables. Following the nomenclature from
randomized algebraic methods by Björklund, Kaski and Kowalik [4, 5], we refer to the
variables yi,1, . . . , yi,n as the shades of the color i. We call a multilinear monomial of degree
k in y-variables well-colored if for every color i, at most µi shades of the color i appear in
the monomial. Furthermore, we associate with every subset M of [nq] of size k a multilinear
monomial yM of degree k in the obvious manner.

▶ Lemma 1. There is an algorithm that, given µ, constructs in time poly(n, k, q) a skew
arithmetic circuit computing a polynomial χµ =

∑
M⊆[nq], |M |=k cM yM such that cM ≥ 0 for

all M , and strict inequality holds if and only if yM is well-colored.

Proof. For every i ∈ [q], let

µ≤i =
i∑

j=1
µj

be the i-th partial sum of µ. We set µ≤0 = 0. Then, we define a matrix S ∈ Qk×nq as follows:
S = (S1|S2| . . . |Sq) is the concatenation of q blocks S1, . . . , Sq ∈ Qk×n, one for each color.
Each block Si is in turn defined as Si = Ui · Vi, where Ui ∈ Qk×µi is the a Vandermonde
matrix of dimension k × µi, and Vi ∈ Qµi×n is a Vandermonde matrix of dimension µi × n,
namely

Ui = Vandk(µ≤i−1 + 1, µ≤i−1 + 2, . . . , µ≤i),
Vi = Vandµi(1, . . . , n).

For a subset M ⊆ [nq] of size k, let σM = det(S[M ]). We claim that σM ≥ 0 holds, which
can be seen as follows. Let m = µ≤q, and consider the auxiliary matrices

U = (U1|U2| . . . |Uq) = Vandk(1, . . . , m) ∈ Qk×m,

V = V1 ⊕ . . . ⊕ Vq ∈ Qm×nq.

Then per definition, we have S = UV , and moreover S[M ] = U · V [M ]. Therefore, by the
Cauchy-Binet formula,

σM =
∑

L⊆[m]
|L|=k

det(U [L]) · det(V [L, M ]). (2)

Note now that U [L] is a Vandermonde matrix of an increasing sequence, hence det(U [L]) is
strictly positive, as witnessed by the well-known formula for the Vandermonde determinant:

det(Vandk(r1, . . . , rN )) =
∏

1≤i<j≤N

(rj − ri).

On the other hand, we observe that V [L, M ] is either a direct sum of submatrices of
Vandermonde matrices of positive increasing sequences, or has determinant zero. In the
former case, det(V [L, M ]) is the product of the determinants of these submatrices. It is also
well-known that Vandermonde matrices of positive, increasing sequences are totally positive,
that is, all their minors, not just maximal minors, are positive. Hence, the determinant of
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each submatrix is positive, and so is their product, i.e., det(V [L, M ]) > 0. Consequently, since
we already argued that det(U [L]) > 0 holds, we have shown that det(V [L, M ]) ·det(U [L]) ≥ 0
holds for all L in (2), and thus in particular σM ≥ 0.

Furthermore, if M contains more than µi indices that belong to the i-th block of S, then
σM = 0: The i-th block of S is defined as Si = UiVi with Ui ∈ Qk×µi and Vi ∈ Qµi×n.
Hence, Si is of rank at most µi, and any set of more than µi columns from Si will necessarily
be linearly dependent. Conversely, if M contains ρi ≤ µi indices belonging to the i-th block
of S for each i, pick arbitrary subset L of rows of V containing precisely ρi rows from each Vi.
Then V [L, M ] is a direct sum of square submatrices of Vandermonde matrices of increasing
sequences, which makes the corresponding term det(U [L]) det(V [L, M ]) strictly positive.
Since we have just argued that all summands in (2) are non-negative, this proves that in this
case, σM > 0.

Overall, we have shown that σM ̸= 0 if and only if M contains no more than µi indices
from the same block of S, which is equivalent to the corresponding monomial yM being
well-colored. Another application of Cauchy-Binet then provides us with the saught circuit:
Letting Y be the matrix with diagonal entries y1,1, y1,2, . . . , yn,q, we observe that

det(S · Y · ST ) =
∑

M⊆[nq], |M |=k

σ2
M · yM .

By the preceding argument, this polynomial has the desired properties demanded in the
statement, and the witnessing skew circuit can be written down in polynomial time, using
the known constructions for skew determinant circuits [23]. ◀

▶ Remark 2. The proof of the preceding Lemma can also be seen as constructing an explicit
representation of the k-truncation of the partition matroid corresponding to µ.

▶ Theorem 3. There is a deterministic algorithm that, given an n-variate homogeneous
polynomial f of degree k with non-negative coefficients, represented as an arithmetic circuit of
size s, as well as multiplicities µ, decides in time 2ωk · poly(n, k, s) whether or not f contains
a multilinear monomial that is well-colored with respect to µ. Here ω < 2.373 denotes the
exponent of matrix multiplication. This running time can be reduced to 4k · poly(n, k, s) if
the circuit computing f is skew.

Proof. We invoke [8, Theorem 25] with f and χµ to compute ⟨f, χµ⟩. Since both f (by
assumption) and χµ (by Lemma 1) have non-negative coefficients, this inner product is zero
if and only if no well-colored multilinear monomial exists in f , and positive otherwise. The
claim on the improved running time follows from [8, Theorem 7] and the fact that χµ is a
determinant polynomial. ◀

4 Graph Problems

This theorem allows us to recover the best known bounds for deterministic detection of
maximum graph motifs using an entirely different approach.

▶ Corollary 4 ([26]). There is a deterministic algorithm for Maximum Graph Motif
running in time 2ωkpoly(n, k).

Proof. All that is needed is a polynomial representation of the set of all k-vertex connected
subgraphs of the input graph. This is possible due to a construction first employed by
Guillemot and Sikora [17] on so-called branching walks. Consider the following sequence of
polynomials: Pi,0 = 1 for all i, and
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Pi,s = xi

∑
j∈NG(i)

∑
t1+t2=s−1

Pi,t1 · Pj,t2 .

The multilinear monomials in βk =
∑

i∈V Pi,k can be shown to correspond bijectively to
k-vertex connected subgraphs, and clearly all coefficients are non-negative. Hence, given a
coloring χ : [n] → C, it suffices to evaluate βk with xj = yc,j for all j such that χ(j) = c, for
all colors c ∈ C. Invoking Theorem 3 then answers whether or not there is a graph motif as
sought. ◀

▶ Remark 5. If one were able to design a skew circuit computing βk, the running time in
the preceding theorem would drop immediately to 4k. From the perspective of algebraic
complexity, it is an interesting problem whether such skew circuits for βk exist, or whether
one can rule out their existence under common complexity-theoretic assumptions. The latter
could be accomplished e.g. by a completeness proof of βk for the algebraic complexity class
V P . However, despite heavy research efforts in the past (see e.g. [12] and references therein),
very few natural V P -complete polynomials are known, and the family βk is not among them.
One conspicuous property of the polynomial βk is that its computation is monotone, that is,
no cancellations can arise during its computation. However, the method desribed here is able
to deal also with such cases where cancellations due to negations occur (but the resulting final
coefficients are still non-negative). Indeed, this distinction is subtle but crucial: for instance,
the determinant can only be computed without using cancellations by circuits of exponential
size [19], whereas it is well-known to admit general arithmetic circuits with cancellations of
polynomial size. A large number of polynomials that enumerate combinatorial objects can
be expressed as determinants, which makes this situation particularly relevant. Moreover,
determinants are the prototypical example for polynomials computable by skew circuits,
which allows to use the faster running time mentioned in Theorem 3. For instance, this
allows us to solve e.g. the following problems in deterministic time O∗(4k):

▶ Theorem 6. There are deterministic algorithms running in time 4k · poly(n, k) for each
of the following problems:

Well-Colored Spanning Tree,
Well-Colored Planar Perfect Matching, and
Internally Well-Colored Spanning Tree.

Proof. The algorithms for these three problems all follow the same basic principle and build
upon the algorithms for the variants where well-colored monomials are replaced by monomials
with at least k distinct colors, which is the special case of having multiplicities µi = 1 for all
i. The core idea is to make use of determinantal generating functions for the sought objects
in each case. These generating functions are provided by the directed Matrix-Tree theorem
and the Pfaffian of planar graphs. Details on these formulations can be found in [6] and [3].
Once these generating functions are available, all that remains to check is that by a standard
trick of substituting xi 7→ (1 + xi) for every variable, these become generating functions for
all subsets of solutions (that is, all subsets of edges of spanning trees, all subsets of perfects
matching, etc.), and the claim follows by applying Theorem 3. ◀

5 Intersecting Four Matroids

The general method for intersecting q matroids shown in [8] exploits a well-known connection
to matroid parity, and solves the latter problem instead. Indeed, given q matroids each of
rank k represented by matrices with entries in Q, the algorithm in [8] runs in randomized
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time O∗(4kq). In particular, for the cases q = 3, 4, this specializes to algorithms running in
time O∗(64k) and O∗(256k), respectively, and [14] improve this to O∗(4k) and O∗(16k) (and
O∗(4k(q−2)) in general). We will now show how to obtain a running time of O∗(4k) in both
cases, and examine the conditions under which the algorithms can be made deterministic.
First, we define an extension of the apolar inner product to tensor products of polynomial rings,
that is, polynomial rings that have themselves as a coefficient rings another ring of polynomials.
For instance, consider f ∈ Q[x1, . . . , xn] ⊗ Q[y1, . . . , yn] ∼= Q[x1, . . . , xn][y1, . . . , yn]. In
general, f has the form

f =
∑

a1,...,an∈N

∑
b1,...,bn∈N

cb1,...,bn
a1,...,an

· xa1
1 · · · xan

n · yb1
1 · · · ybn

n ,

with only finitely many of the cb1,...,bn
a1,...,an

non-zero. Moreover, for fixed a1, . . . , an, we can
collect all the corresponding terms into a single polynomial ĉa1,...,an ∈ Q[y1, . . . , yn] via

ĉa1,...,an =
∑

b1,...,bn∈N
cb1,...,bn

a1,...,an
· yb1

1 · · · ybn
n ,

and then recover the familiar

f =
∑

a1,...,an∈N
ĉa1,...,an

xa1
1 · · · xan

n .

While it is true that

Q[x1, . . . , xn][y1, . . . , yn] ∼= Q[x1, . . . , xn, y1, . . . , yn],

it is important that we distinguish these two ways of looking at f . In particular, there is
nothing new to say about the inner product on the latter polynomial ring, which is well-defined
already through Eq. (1). However, for our purposes, we extend the definition Eq. (1) to
f, g ∈ Q[x1, . . . , xn][y1, . . . , yn], where f is as above and g =

∑
a1,...,an∈N d̂a1,...,an

xa1
1 · · · xan

n ,
with d̂a1...,an

∈ Q[y1, . . . , yn] defined analogously to ĉa1,...,an
. Then, we set

α(f, g) :=
∑

a1,...,an∈N
a1! · a2! · · · an! · ĉa1,...,an

· d̂a1,...,an
∈ Q[y1, . . . , yn].

Note that such a mapping cannot possibly be an inner product anymore (after all, its
codomain is not the field Q, but Q[y1, . . . , yn]), and thus the need for a separate treatment
arises. In particular, the algorithms for computing the apolar inner product from [8] do not
extend, at least not within the same running time bound, to the case where ⟨·, ·⟩ is replaced
by α. However, we can use their results to obtain the following:

▶ Lemma 7. Let f = det(M1) and g = det(M2), where Mi for i = 1, 2 are matrices
of dimension k × k having bilinear polynomials in x1, . . . , xn and y1, . . . , yn as entries.
Then, there is an algorithm that, given ȳ1, . . . , ȳn ∈ Q, evaluates the polynomial α(f, g) ∈
Q[y1, . . . , yn] at ȳ1, . . . , ȳn in O∗(4k) arithmetic operations over Q. Moreover, if the evaluation
points ȳ1, . . . , ȳn can be encoded using O∗(1) bits, then α(f, g) can be evaluated in time O∗(4k).

Proof. By substituting ȳ1, . . . , ȳn into M1 and M2 and using the fact that evaluation of
polynomials at a fixed point is a homomorphism, we find that ⟨f(ȳ1, . . . , ȳn), g(ȳ1, . . . , ȳn)⟩ =
α(f, g)(ȳ1, . . . , ȳn) for all ȳ1, . . . , ȳn. Since the determinant is well-known to have skew cir-
cuits [23], we are in position to apply [8, Theorem 7] to evaluate ⟨f(ȳ1, . . . , ȳn), g(ȳ1, . . . , ȳn)⟩
in the required time bound. ◀
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▶ Theorem 8. Let M1, M2, M3, M4 be four matroids over a common ground set E of size
n, each represented by a matrix Ri ∈ Qk×n. Then, we can decide in randomized time O∗(4k)
whether these four matroids share a common basis.

Proof. First, let us assume that E = [n] without loss of generality. We then begin by
introducing n fresh indeterminates y1, . . . , yn. Let then Y be the diagonal matrix of dimension
n×n having yi in its i-th diagonal entry. Observe that R̂i := RiY is the matrix Ri where the
i-th column was scaled by a factor of yi. Moreover, for any set S ⊂ [n] of k column indices,
the maximal minor of R̂i corresponding to S, that is, the determinant of the matrix R̂i[S]
obtained from R̂i by restricting to the columns in S, is a polynomial in y1, . . . , yn. Indeed,
since the determinant is a multilinear functional in its columns, we have

det(R̂i[S]) =
∏
s∈S

ys · det(Ri[S]). (3)

In analogy to Y , let X be the diagonal matrix having xi in its i-th diagonal entry. Now,
the Cauchy-Binet formula gives the following expression for the determinant of the product
R̂i · X · RT

j , with a similar reasoning as in Eq. (3):

det(R̂i · X · RT
j ) =∑

S⊆[n],|S|=k

det(R̂i[S]) · det(Rj [S]) ·
∏
s∈S

xs =

∑
S⊆[n],|S|=k

(∏
s∈S

ys · det(Ri[S]) · det(Rj [S])
)

·
∏
s∈S

xs.

In the last line, we grouped the products in order to highlight that we consider this expression
foremost as a polynomial in the variables xi, that is, an element of Q[y1, . . . , yn][x1, . . . , xn].
Of course, the analogous expression holds for det(Ri · X · RT

j ) (note the missing hat on Ri),
namely

det(Ri · X · RT
j ) =

∑
S⊆[n],|S|=k

det(Ri[S]) · det(Rj [S]) ·
∏
s∈S

xs,

which is a polynomial from Q[x1, . . . , xn] ⊂ Q[y1, . . . , yn][x1, . . . , xn].
Since by assumption, det(Ri[S]) ̸= 0 if and only if S is a basis of Mi, it follows from the

definition of α(·, ·) (and noting that all the xi have exponent zero or one) that

α(det(R̂1 · X · RT
2 ), det(R3 · X · RT

4 )) = (4)∑
S⊆[n],|S|=k

(det(R1[S]) · det(R2[S])) ·

(∏
s∈S

ys · det(R3[S]) · det(R4[S])
)

= (5)

∑
S basis of
M1,...,M4

det(R1[S]R2[S]R3[S]R4[S])︸ ︷︷ ︸
̸=0

·
∏
s∈S

ys. (6)

As witnessed in the last line of the preceding calculation, α(det(R̂1 ·X ·RT
2 ), det(R3 ·X ·RT

4 ))
is the zero polynomial if and only if the four input matroids share no common basis. Therefore,
all that remains is to test the polynomial α(det(R̂1 · X · RT

2 ), det(R3 · X · RT
4 )) for zero,

using the DeMillo–Lipton–Schwartz–Zippel Lemma [10, 30, 28] in combination with Lemma
7, we obtain the desired randomized algorithm: Choosing random evaluation points, we
can ensure that α(det(R̂1 · X · RT

2 ), det(R3 · X · RT
4 )) evaluates to a non-zero value, in case
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it truly is non-zero, with constant probability. Of course, if the polynomial is identically
zero, so is every evaluation, and the algorithm will always correctly recognize this. As usual,
repeating this procedure a polynomial number of times allows us to decrease the one-sided
error probability exponentially. ◀

▶ Corollary 9. Given three matroids M1, M2, M3 as in Theorem 8, we can decide in
randomized time O∗(4k) whether they share a common basis.

Proof. This follows from choosing M1 = M2 in Theorem 8. ◀

▶ Remark 1. During the preparation of the present article, a manuscript by Eiben, Koana
and Wahlström [14] appeared, where they give a different algebraic approach to some of the
matroid problems considered here. In particular, their Theorem 4.6 coincides with Corollary
9, and they show how to use this as a base case to obtain an algorithm for intersecting
q rank-k matroids, running in time 4k(q−2) · poly(n). It would be interesting to see if our
Theorem 8 can be expedited in a similar manner to obtain a running time of 4k(q−3) · poly(n).
Their techniques are based on exterior algebra, which is related to the methods used in this
article through a general algebraic connection [7].

5.1 Intersecting Positroids
Using the same strategy as for general matroids, we obtain deterministic algorithms for the
following important class of matroids:
▶ Definition 10. Let k ≤ n, and let M be a matroid over a ground set of size n of rank k.
Suppose M is represented by a matrix M such that for each submatrix M [S] with S ⊂ [n]
and |S| = k it holds that the corresponding maximal minor satisfies det(M [S]) ≥ 0. In this
case, M is called a positroid.
It is worth pointing out that while these objects seem not to have made any significant
algorithmic appearances so far, they are of great importance in geometry, where they
correspond to the so-called totally non-negative Graßmannian. They have many desirable
properties that general matroids are lacking, most notably a beautiful combinatorial
correspondence with certain planar bicolored (or plabic) graphs. We refer the reader to
Postnikov’s groundbreaking work on the subject [27].1

Let us furthermore remark that the following results will only apply to the situation where
the input matroids are promised to be positroids, since there doesn’t seem to be a way to
decide efficiently whether a given matroid representation does indeed only have non-negative
minors. While the aforementioned correspondence with plabic graphs does in principle allow
for a full-fledged decision problem (by taking as an input not the matrix of the positroid,
but its corresponding plabic graph, and then computing a representation from this graph),
this is beyond the scope of the present article.

▶ Theorem 11. Let M1, M2, M3, M4 be four positroids over a common ground set E of
size n, each represented by a matrix Ri ∈ Qk×n with non-negative minors. Then, we can
decide in deterministic time O∗(4k) whether these four matroids share a common basis.

Proof. The proof relies on the fact that all determinants in Eq. (6) are not only non-zero, but
in fact positive. Therefore, it is not necessary to include the variables yi in the calculation,
and a direct application of [8, Theorem 7] to ⟨det(R1 · X · RT

2 ), det(R3 · X · RT
4 ) is already

enough. The resulting value is non-zero if and only if the four positroids share a common
basis, and the running time bound follows directly from [8]. ◀

1 This particular manuscript, despite being cited hundreds of times, didn’t appear in a journal.
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Abstract
We study a natural problem about rational behaviors in multiplayer non-zero-sum sequential infinite
duration games played on graphs: rational verification, that consists in deciding whether all the
rational answers to a given strategy satisfy some specification. We give the complexities of that
problem for two major concepts of rationality: Nash equilibria and subgame-perfect equilibria, and
for three major classes of payoff functions: energy, discounted-sum, and mean-payoff.
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1 Introduction

Formal methods are essential to guarantee the correctness of safety critical computer systems.
Techniques like model-checking [13] or automated theorem proving [15] are now routinely used
to develop systematically hardware pieces as well as embedded control systems. Nevertheless,
there are contexts in which formal methods have not yet been applied successfully large-scale:
that is the case of multi-agent systems, which still represent a challenge for formal verification
techniques, because they are usually composed of heterogeneous components, ranging from
traditional pieces of reactive code to wholly autonomous robots or human users. Producing
operational model abstractions for this diversity of sub-systems is often challenging.

While it may be inconvenient, to say the least, to produce an operational model of the
behavior of a human or a complex autonomous robot, identifying the high level objectives
of those components may be easier. Taking into account those objectives is often key for
reasoning about the correctness of a system that interacts with those components. Indeed, a
system is usually not supposed to be correct in all circumstances, but only when agents in its
environment behave in a way that concurs with their own objectives. In rational verification
(RV), a system needs to enforce some property, not in all possible executions, but only in
those in which the environment agents behave rationally with regards to their own objectives.

Rationality is the focus point of game theory, and can be formalized in several ways: for
instance, with the notion of Nash equilibrium (NE) [24]. NEs have been used in a few promising
contributions, like in verification of non-repudiation and fair exchange protocols [12,20,21],
or planning of self-driving cars interacting with human drivers [26], etc. Nevertheless, those
works do not propose a general framework for RV and their contributions are rather specific
to their application domains. There is thus a need for more systematic study of formal
frameworks for RV. Such a study has been started recently: for instance, the authors of [18]
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study the automatic verification of an LTL specification in multi-agent systems that behave
according to an NE, and in [11], the authors study a setting in which the environment has
multiple objectives and only produces behaviors that are Pareto-optimal with regards to
them. This work contributes to that line of research by considering a notion of rationality
formalized by subgame-perfect equilibria (SPEs), a refinement of NEs that is better suited to
formalize rationality in sequential games, in which NEs suffer from non-credible threats [25].

More precisely, we consider here the rational verification problem, which takes as inputs:
(𝑖) a multiplayer game graph with a designated player called Leader, (𝑖𝑖) a finite state
description of a (potentially infinite) set of strategies for Leader, (𝑖𝑖𝑖) a description of the
objective for Leader, and (𝑖𝑣) a description of the objectives of all the other players. It asks
whether for all possible fixed strategies 𝜎L of Leader (defined by the finite state description),
for all possible rational responses of the other agents, the generated outcome satisfies Leader’s
objective. That problem is well-suited to formalize the verification of correctness of a
controller interacting with an environment composed of rational agents.

Contributions. To solve the RV problems, we provide a general construction, called the
product game (Definition 5): we show that, given a game and a finite-state description of a set
of Leader’s strategies, one can incorporate the memory states of that finite-state description
in the arena of the game in a way that Leader is implicitly forced to follow some strategy in
the set. Thus, we show that the RV problem reduces in polynomial time to the universal
threshold problem, a problem that is easier to study algorithmically: given a game, does every
equilibrium satisfy a given specification? Also, some game classes we analyze have been
addressed with slightly different definitions in previous literature. Interestingly, we provide a
reduction in the opposite direction as well (Cor. 6).

We use that tool to prove the undecidability of RV in energy games (Th. 9 and 10); in
the case of subgame-perfect RV, we show that undecidability holds even when Leader plays
against only two players. We show that Nash RV is co-recursively enumerable in those games,
and leave that question open for subgame-perfect RV – but contrary to the Nash setting,
SPEs may require infinite memory to reach some payoffs (Prop. 11). In discounted-sum
(DS) games, we show that the RV problems are at least as hard as the target discounted-sum
problem (Th. 13), whose decidability is an open question. However, we prove that those
problems are recursively enumerable (Th. 14). In the case of mean-payoff (MP) games,
Cor. 8, combined with older results, entails that the RV problems are coNP-complete. But
that case highlights a subtlety in the definition of RV: if one wants to check that a strategy
is such that every rational response satisfies the specification, then when no such response
exists, the strategy will be accepted. In the case of MP games, that leads to results that can
be considered as counter-intuitive. We thus propose a stronger definition of the RV problem,
called achaotic RV, to avoid that weakness: it consists in deciding whether a strategy satisfies
the specification against every response that is as rational as it can be, using the notions
of 𝜀-NE and 𝜀-SPE, that are quantitative relaxations of NE and SPE. We show that such
a problem is PNP-complete in MP games (Th. 19), and that in every other setting (Nash
or subgame-perfect RV in the two other game classes), it coincides with RV, since rational
responses always exist (Prop. 17). A synopsis of those results can be found in Table 1.

Related works. During the last decade, multiplayer games and their applications to reactive
synthesis have raised a growing attention: the reader may refer to [3, 9, 10,16,22], and their
references. The concept of rational verification appears in [19], where Gutierrez, Najib,
Perelli, and Wooldridge give the complexity of several related problems. They use a definition
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Table 1 Synopsis of our results.

Nash RV Ach. Nash RV SP RV Ach. SP RV
Energy undecidable, co-RE undecidable

DS TDS-hard, RE TDS-hard, RE
MP coNP-complete coNP-complete PNP-complete

that is slightly different from ours: their problem consists in deciding, given a game and a
specification, whether all NEs (or one of them) in that game satisfy the specification, without
any player representing the system (Leader in our setting). Still, as we show with Cor. 8,
that problem is strongly related to ours. In [27], they also study if 𝜔-regular properties are
enforced by NEs induced by mean-payoff objectives. The objectives considered in those papers
are only 𝜔-regular objectives. Moreover, both in [19] and in [27] only NEs are considered,
while our main contributions are about SPEs, that are arguably better suited for reasoning
about sequential games [25], but also require substantially more complex techniques. In [14],
Filiot, Gentilini, and Raskin study Stackelberg values of mean-payoff and discounted-sum
two-player non-zero sum games, i.e. the payoff that Leader gets when the other player,
Follower, plays the best response that is available with regards to his own objective. This is
a synthesis problem while we consider a verification problem. They consider only one player
in the environment while we consider the more general case of 𝑛 players.

In [28], and later in [29], Ummels studies SPEs in parity games. He proves that they
always exist, and that deciding whether there exists an SPE in a given parity game that
generates a payoff vector between two given thresholds (the constrained existence problem,
very close to the universal threshold problem studied in this paper) is EXPTIME-easy and
NP-hard. In [8], Brihaye, Bruyère, Goeminne, Raskin, and van den Bogaard, study the same
problem in quantitative reachability games, and prove that it is PSPACE-complete.

In [17], Flesch and Predtetchinski give a general procedure to characterize SPEs. In [4],
Brice, Raskin, and van den Bogaard introduce the negotiation function, a tool that turns
Flesch and Predtetchinski’s procedure into effective algorithms for a large class of games.
In [6], they use it to close the gap left by Ummels, proving that the constrained existence
problem is NP-complete in parity games, with methods that they use later in [5] to prove that
the same problem is also NP-complete in mean-payoff games. An alternative procedure to
solve such SPE problems is proposed in [23], where Meunier constructs a two-player zero-sum
game in which one player has a winning strategy if and only if there exists an SPE satisfying
the desired constraint in the input game. That technique is nevertheless often costly, because
the size of the constructed game is proportional to the number of possible payoff vectors;
and for the same reason, it cannot be applied to games with infinite payoff spaces.

Energy objectives have also been widely studied, in connection with the study of vector
additions systems with states and Petri nets, but almost always in a two-player zero-sum
setting: see for instance [2, 22, 30]. As for discounted-sum objectives, they are defined for
instance by Zwick and Paterson in [31], again in a two-player zero-sum setting. They are
strongly related to the target discounted-sum problem, which is a long-standing open problem,
as shown in [1] by Boker, Henzinger, and Otop. To the best of our knowledge, no algorithmic
results are known for those classes of objectives in a multiplayer non-zero sum setting.

Structure of the paper. In Sec. 2, we introduce the necessary background. In Sec. 3, we
present the product game. In Sec. 4, we exploit it to study energy games; in Sec. 5, DS
games; and in Sec. 6, MP games. The complete proofs of our results, and additional results,
are given in the complete version of this paper [7].

MFCS 2023
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2 Background

Graphs, games and strategies. We call graph a finite directed graph, i.e. a pair (𝑉, 𝐸)
where 𝑉 is a finite set of vertices and 𝐸 ⊆ 𝑉 ×𝑉 is a set of edges. The edge (𝑢, 𝑣), written 𝑢𝑣,
is an outgoing edge of 𝑢. A path in (𝑉, 𝐸) is a finite or infinite sequence 𝛼 = 𝛼0𝛼1 · · · ∈ 𝑉∗∪𝑉𝜔

such that for every index 𝑘, we have 𝛼𝑘𝛼𝑘+1 ∈ 𝐸 . We write Occ(𝛼) (resp. Inf (𝛼)) for the set
of vertices that occur (resp. that occur infinitely often) in 𝛼. For a given index 𝑘, we write
𝛼≤𝑘 = 𝛼<𝑘+1 = 𝛼0 . . . 𝛼𝑘 , and 𝛼≥𝑘 = 𝛼>𝑘−1 = 𝛼𝑘𝛼𝑘+1 . . . A cycle is a finite path 𝑐 = 𝑐0 . . . 𝑐𝑛
with 𝑐𝑛𝑐0 ∈ 𝐸 . A finite path 𝛼 is simple if for every two indices 𝑘 ≠ ℓ, we have 𝛼𝑘 ≠ 𝛼ℓ .

We call non-initialized game a tuple G = (Π, 𝑉, (𝑉𝑖)𝑖∈Π , 𝐸, 𝜇), where:
Π is a finite set of players;
(𝑉, 𝐸) is a graph, in which every vertex has at least one outgoing edge;
(𝑉𝑖)𝑖∈Π is a partition of 𝑉 , in which 𝑉𝑖 is the set of vertices controlled by player 𝑖;
a play (resp. history) in the game G is an infinite (resp. finite) path in the graph (𝑉, 𝐸),
and the set of plays (resp. histories) in G is denoted by PlaysG (resp. HistG);
the payoff function 𝜇 : PlaysG → R Π maps each play 𝜋 to the tuple 𝜇(𝜋) = (𝜇𝑖 (𝜋))𝑖∈Π.

Given a set of players 𝑃 ⊆ Π, we often write 𝑉𝑃 =
⋃

𝑖∈𝑃 𝑉𝑖. When 𝑖 is a player and when
the context is clear, we write −𝑖 for the set Π \ {𝑖}. We often assume that a special player,
called Leader and denoted by the symbol L , belongs to the set Π. An initialized game is
a pair (G, 𝑣0), often written G↾𝑣0 , where G is a non-initialized game and 𝑣0 ∈ 𝑉 is a vertex
called initial vertex. When the context is clear, we use the word game for both initialized
and non-initialized games. A play (resp. history) in the initialized game G↾𝑣0 is a play (resp.
history) that has 𝑣0 as first vertex. The set of plays (resp. histories) in G↾𝑣0 is denoted by
PlaysG↾𝑣0 (resp. HistG↾𝑣0). We also write Hist𝑖G (resp. Hist𝑖G↾𝑣0) for the set of histories in
G (resp. G↾𝑣0) whose last vertex is controlled by player 𝑖.

A strategy for player 𝑖 in the initialized game G↾𝑣0 is a mapping 𝜎𝑖 : Hist𝑖G↾𝑣0 → 𝑉 , such
that 𝑣𝜎𝑖 (ℎ𝑣) is an edge of (𝑉, 𝐸) for every ℎ𝑣. A history ℎ is compatible with a strategy 𝜎𝑖 if
and only if ℎ𝑘+1 = 𝜎𝑖 (ℎ0 . . . ℎ𝑘) for all 𝑘 such that ℎ𝑘 ∈ 𝑉𝑖. This definition naturally extends
to plays. A strategy profile for 𝑃 ⊆ Π is a tuple �̄�𝑃 = (𝜎𝑖)𝑖∈𝑃, where each 𝜎𝑖 is a strategy for
player 𝑖 in G↾𝑣0 . A play, or a history, is compatible with �̄�𝑃 if it is compatible with every
𝜎𝑖 for 𝑖 ∈ 𝑃. Since the 𝜎𝑖’s domains are pairwise disjoint, we sometimes consider �̄�𝑃 as one
function: for ℎ𝑣 ∈ HistG↾𝑣0 such that 𝑣 ∈ ⋃

𝑖∈𝑃 𝑉𝑖, we liberally write �̄�𝑃 (ℎ𝑣) for 𝜎𝑖 (ℎ𝑣) with 𝑖

such that 𝑣 ∈ 𝑉𝑖. A complete strategy profile, usually written �̄�, is a strategy profile for Π.
Exactly one play is compatible with the strategy profile �̄�: we call it its outcome and write
⟨�̄�⟩ for it. When 𝜏𝑃 and 𝜏′

𝑄
are two strategy profiles with 𝑃 ∩𝑄 = ∅, we write (𝜏𝑃 , 𝜏′𝑄) for

the strategy profile �̄�𝑃∪𝑄 such that 𝜎𝑖 = 𝜏𝑖 for 𝑖 ∈ 𝑃, and 𝜎𝑖 = 𝜏′
𝑖

for 𝑖 ∈ 𝑄.

Notable classes of games. Here, we will focus on three game classes. In those classes, each
player 𝑖’s payoff is based on a reward mapping 𝑟𝑖 : 𝐸 → Q. Intuitively, the reward mapping
gives the (positive or negative) reward that player 𝑖 gets for each action. The first class,
energy games, is a class of Boolean games, i.e. games in which all payoffs are equal either to
0 or to 1. For such games, we say that player 𝑖 loses the play 𝜋 when 𝜇𝑖 (𝜋) = 0, and wins it
when 𝜇𝑖 (𝜋) = 1. The other games are called quantitative. In energy games, the players seek
to keep the aggregated sum of those rewards, their energy level, always nonnegative. That
quantity symbolizes any resource that an agent could have to store: fuel, money, . . .
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Figure 1 An example of mean-payoff game.

▶ Definition 1 (Energy). In a graph (𝑉, 𝐸), we associate to each reward mapping 𝑟 the energy
level function EL𝑟 : HistG → N ∪ {⊥} defined by:

EL𝑟 (ℎ0) = 0;
EL𝑟 (ℎ≤𝑛+1) = EL𝑟 (ℎ≤𝑛) + 𝑟 (ℎ𝑛ℎ𝑛+1) if EL𝑟 (ℎ≤𝑛) ≠ ⊥, and EL𝑟 (ℎ≤𝑛) + 𝑟 (ℎ𝑛ℎ𝑛+1) ≥ 0;
EL𝑟 (ℎ≤𝑛+1) = ⊥ otherwise.

The game G is an energy game if there exists a tuple (𝑟𝑖)𝑖∈Π of reward mappings such
that for each 𝑖 and every 𝜋, we have 𝜇𝑖 (𝜋) = 0 if EL𝑟𝑖 (𝜋≤𝑛) = ⊥ for some 𝑛, and 𝜇𝑖 (𝜋) = 1
otherwise. When the context is clear, we write EL𝑖 for EL𝑟𝑖 .

In discounted-sum games, each player’s payoff is obtained by summing the rewards that
the player obtains with some discount factor applied as the play goes along.

▶ Definition 2 (Discounted-sum). In a graph (𝑉, 𝐸), we define for each reward mapping 𝑟

and each discount factor 𝜆 ∈ (0, 1) the discounted sum function DS𝜆
𝑟 : ℎ ↦→ ∑

𝑘 𝜆
𝑘𝑟 (ℎ𝑘ℎ𝑘+1).

Then, we write DS𝜆
𝑟 (𝜋) = lim𝑛 DS𝜆

𝑟 (𝜋≤𝑛). The game G is a discounted-sum game (or DS
game for short) if there exists a discount factor 𝜆 ∈ (0, 1) ∩ Q and a tuple (𝑟𝑖)𝑖∈Π of reward
mappings such that for each 𝑖 and every 𝜋, we have 𝜇𝑖 (𝜋) = DS𝜆

𝑟𝑖
(𝜋). When the context is

clear, we write DS𝑖 for DS𝜆
𝑟𝑖

.

In mean-payoff games, a players’ payoff is equal to their asymptotic average reward.

▶ Definition 3 (Mean-payoff). In a graph (𝑉, 𝐸), we define for each reward mapping 𝑟

the mean-payoff function MP𝑟 : ℎ0 . . . ℎ𝑛 ↦→ 1
𝑛

∑
𝑘 𝑟 (ℎ𝑘ℎ𝑘+1). Then, we write MP𝑟 (𝜋) =

lim inf𝑛 MP𝑟 (𝜋≤𝑛). The game G is a mean-payoff game (or MP game for short) if there exists
a tuple (𝑟𝑖)𝑖∈Π of reward mappings, such that for each player 𝑖, we have 𝜇𝑖 = MP𝑟𝑖

. When
the context is clear, we write MP𝑖 for MP𝑟𝑖 , and MP𝑖 for MP𝑟𝑖

.

Every game G from one of those three classes can be encoded with a finite number of
bits. We write ∥G∥ for that number.

An example of MP game is given in Figure 1, with two players: player #, who controls
the vertices 𝑎 and 𝑐, and player 2, who controls the vertex 𝑏. The initial vertex is 𝑣0 = 𝑎.
We wrote above each edge the rewards that both players get when that edge is taken. Three
types of plays are possible in that game: the one that loops on the vertex 𝑎 gives both players
the payoff 0; the ones that loop on the vertex 𝑏 give both players the payoff 1; and the ones
that loop on the vertex 𝑐 give both players the payoff 0.

Equilibria and rational responses. In this paper, we study rational behaviors of players:
we have, therefore, to define our rationality concepts. Let us start with the most classical
one: Nash equilibrium. The strategy profile �̄� is a Nash equilibrium (resp. L -fixed Nash
equilibrium) – or (L -fixed) NE for short – in G↾𝑣0 if for each player 𝑖 (resp. each player 𝑖 ≠ L )
and every strategy 𝜎′

𝑖
, called deviation of 𝜎𝑖, we have 𝜇𝑖

(
⟨𝜎′

𝑖
, �̄�−𝑖⟩

)
≤ 𝜇𝑖 (⟨�̄�⟩). When it is

not the case, we call profitable deviations the deviations that do not satisfy that inequality.
As an example, in the game given in Figure 1, two types of NEs can be found: those that

eventually loop on the vertex 𝑏, and give both players the payoff 1; and those that loop on 𝑎,
but in which player # has no profitable deviation, because if she goes to the vertex 𝑏, player
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2 threatens to go to the vertex 𝑐 (and player 2 has no profitable deviation, because he does
never make any choice). However, player 2’s threat is not credible, since going to the vertex
𝑐 would give him the payoff 0, while he could stay on the vertex 𝑏 and get the payoff 1. A
stronger rationality concept, that avoids that phenomenon, is the one of subgame-perfection.

Let ℎ𝑣 be a history in the game G. The subgame of G after ℎ𝑣 is the game G↾ℎ𝑣 =(
Π, 𝑉, (𝑉𝑖)𝑖 , 𝐸, 𝜇↾ℎ𝑣

)
↾𝑣, where 𝜇↾ℎ𝑣 maps each play 𝜋 to its payoff in G, assuming that the

history ℎ𝑣 has already been played, i.e. to the payoff 𝜇↾ℎ𝑣 (𝜋) = 𝜇(ℎ𝜋). If 𝜎𝑖 is a strategy in
G↾𝑣0 , its substrategy after ℎ𝑣 is the strategy 𝜎𝑖↾ℎ𝑣 : ℎ′ ↦→ 𝜎𝑖 (ℎℎ′) in the game G↾ℎ𝑣.

The strategy profile �̄� is a (L -fixed) subgame-perfect equilibrium – or (L -fixed) SPE for
short – in G↾𝑣0 if and only if for every history ℎ in G↾𝑣0 (resp. every history ℎ compatible
with 𝜎L ), the strategy profile �̄�↾ℎ is a (L -fixed) Nash equilibrium in the subgame G↾ℎ.

NEs and SPEs entail two notions of rationality for the environment’s responses to a
strategy 𝜎L of Leader. A strategy profile �̄�−L is a Nash response to 𝜎L if the strategy profile
�̄� = (𝜎L , �̄�−L ) is an L -fixed NE, and a subgame-perfect response if it is an L -fixed SPE. The
set of Nash (resp. subgame-perfect) responses to 𝜎L is written NR(𝜎L ) (resp. SPR(𝜎L )).

Finally, let 𝜌 ∈ {Nash, subgame-perfect}. We call 𝜌-equilibria the NEs if 𝜌 = Nash, and
the SPEs if 𝜌 = subgame-perfect. We will similarly talk about L -fixed 𝜌-equilibria, and
𝜌-responses. We write 𝜌R(𝜎L ) for the set of 𝜌-responses to a strategy 𝜎L .

Mealy machines. A Mealy machine for player 𝑖 on a game G is a tuple M = (𝑄, 𝑞0,Δ),
where 𝑄 is a finite set of states, where 𝑞0 ∈ 𝑄 is the initial state, and where Δ ⊆ (𝑄 ×𝑉−𝑖 ×
𝑄) ∪ (𝑄 × 𝑉𝑖 × 𝑄 × 𝑉) is a finite set of transitions, such that for every (𝑝, 𝑢, 𝑞, 𝑣) ∈ Δ, we
have 𝑢𝑣 ∈ 𝐸, and such that for every 𝑝 ∈ 𝑄 and 𝑢 ∈ 𝑉 , there exists a transition (𝑝, 𝑢, 𝑞) or
(𝑝, 𝑢, 𝑞, 𝑣) ∈ Δ. Specialist readers will have noted that this definition is more general than the
classical one, in which it is often assumed that for each 𝑝 and 𝑢, there exists exactly one such
transition: hereafter, such a machine will be called deterministic. Results about deterministic
Mealy machines can be applied to programs, which are supposed to run deterministically; we
chose to take a more general definition to capture also protocols, which may be given to an
agent who would still have some room for manoeuvre in how they apply it.

A strategy 𝜎𝑖 in G↾𝑣0 is compatible with M if there exists a mapping ℎ ↦→ 𝑞ℎ that maps
every history ℎ in G↾𝑣0 to a state 𝑞ℎ ∈ 𝑄, such that for every ℎ𝑣 ∈ Hist−𝑖G↾𝑣0 , we have
(𝑞ℎ, 𝑣, 𝑞ℎ𝑣) ∈ Δ, and for every ℎ𝑣 ∈ Hist𝑖G↾𝑣0 , we have (𝑞ℎ, 𝑣, 𝑞ℎ𝑣 , 𝜎𝑖 (ℎ𝑣)) ∈ Δ. The set of
strategies in G↾𝑣0 compatible with M is written Comp↾𝑣0 (M). If M is deterministic, then
there is exactly one strategy compatible with M; we call it a finite-memory strategy.

Note that one can define analogously Mealy machines that capture a set of strategy
profiles for several players, and even for the whole set Π. Note also that every Mealy machine
M can be encoded with a finite number of bits: we write ∥M∥ for that number.

Figure 2 depicts a Mealy machine on the game of Figure 1. Each arrow from a state 𝑝 to
a state 𝑞 labeled 𝑢 |𝑣 denotes the existence of a transition (𝑝, 𝑢, 𝑞, 𝑣) (from the state 𝑝, the
machine reads the vertex 𝑢, switches to the state 𝑞 and outputs the vertex 𝑣). Each arrow
from a state 𝑝 to a state 𝑞 labeled 𝑢 denotes the existence of a transition (𝑝, 𝑢, 𝑞) (from 𝑝,
the machine reads 𝑢, switches to 𝑞 and outputs nothing). It is a machine for player 2, that
is not deterministic: from the state 𝑞0, reading the vertex 𝑏, the machine stays in 𝑞0 but
it can output either 𝑏 or 𝑐. The strategies that are compatible with it can be described as
follows: when player 2 has to play, if the vertex 𝑎 was seen an odd number of times, then he
stays in 𝑏; in the opposite case, he can either stay in 𝑏 or eventually go to 𝑐.
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Figure 2 A non-deterministic one-player Mealy machine.

𝑏, 𝑞1 𝑎, 𝑞0, 𝑞1

𝑎, 𝑞0𝑏, 𝑞1, 𝑞1

𝑎, 𝑞1

𝑎, 𝑞1, 𝑞0

𝑏, 𝑞0, 𝑞0

𝑏, 𝑞0

𝑐, 𝑞0

𝑐, 𝑞0, 𝑞0

#
1

2
1

#
1

2
1

#
1

2
1

#
1

2
1

Figure 3 A product game.

Decision problem. Let us now define rational verification (RV). We define it for each
game class C, for each 𝜌 ∈ {Nash, subgame-perfect}, and in both the deterministic and the
non-deterministic setting.

▶ Problem 4 ((Deterministic) 𝜌-rational verification problem in the class C). Given a game
G↾𝑣0 ∈ C, a threshold 𝑡 ∈ Q and a (deterministic) Mealy machine M on G, is every L -fixed
𝜌-equilibrium �̄� with 𝜎L ∈ Comp↾𝑣0 (M) such that 𝜇L (⟨�̄�⟩) > 𝑡?

3 The product game

Although very intuitive, the RV problems are quite hard to study as they are. Indeed, their
instances include two graph structures: a game and a Mealy machine. However, responding
rationally to Leader’s strategies that are compatible with M amounts to play rationally in a
larger game, in which the machine M has been incorporated.

▶ Definition 5 (Product game). Let G↾𝑣0 be a game, and let M be a Mealy machine for
Leader in G. Their product game is the game G↾𝑣0 ⊗ M = (Π ∪ {D}, 𝑉 ′, (𝑉 ′

𝑖
)𝑖 , 𝐸 ′, 𝜇′)↾(𝑣0 ,𝑞0 )

where the player D, called Demon, chooses how the machine M will run. Formally:
𝑉 ′ = (𝑉 ×𝑄) ∪ (𝑉 ×𝑄 ×𝑄);
𝑉 ′
L = ∅, 𝑉 ′

𝑖
= 𝑉𝑖 ×𝑄 ×𝑄 for every 𝑖 ∈ Π \ {L }, and 𝑉 ′

D = (𝑉 ×𝑄) ∪ (𝑉L ×𝑄 ×𝑄);
the set 𝐸 ′ contains:

the edge (𝑢, 𝑝) (𝑢, 𝑝, 𝑞) for each (𝑝, 𝑢, 𝑞) ∈ Δ (if 𝑢 ∉ 𝑉L ), or (𝑝, 𝑢, 𝑞, 𝑣) ∈ Δ (if 𝑢 ∈ 𝑉L );
the edge (𝑢, 𝑝, 𝑞) (𝑣, 𝑞) for each (𝑝, 𝑢, 𝑞, 𝑣) ∈ Δ (if 𝑢 ∈ 𝑉L );
the edge (𝑢, 𝑝, 𝑞) (𝑣, 𝑞) for each (𝑝, 𝑢, 𝑞) ∈ Δ, and each 𝑢𝑣 ∈ 𝐸 (if 𝑢 ∉ 𝑉L );

each payoff function 𝜇′
𝑖

maps every play (𝜋0, 𝑞0) (𝜋0, 𝑞0, 𝑞1) (𝜋1, 𝑞1) . . . to the payoff
𝜇𝑖 (𝜋0𝜋1 . . . ) if 𝑖 ≠ D, and to the payoff 0 if 𝑖 = D.

Figure 3 depicts the game G↾𝑣0 ⊗ M, when G↾𝑣0 is the game of Figure 1 and M the
machine of Figure 2. Leader is then assimilated to player 2, and Demon’s vertices are
represented by dotted boxes. The unreachable vertices have been omitted, and we have
given only the non-zero rewards. Since, from the vertex (𝑎, 𝑞0, 𝑞1), player # has always the
possibility to go to the vertex (𝑏, 𝑞1) and to get the payoff 1, it can be shown that every NE
and every SPE in that game gives player 2 the payoff 1. As we will see now, that means that
the strategies compatible with the machine M guarantee the payoff 1 to player 2 against
Nash-rational or subgame-perfect rational responses, i.e. that G↾𝑣0 , 1 − 𝜀, and M, for every
𝜀 > 0, form a positive instance of the Nash and subgame-perfect RV problems.
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▶ Theorem 6. Let 𝜌 ∈ {Nash, subgame-perfect}. Let G↾𝑣0 be a game, let M be a Mealy
machine for Leader in G, and let 𝑡 ∈ Q. Then, every 𝜌-response �̄�−L to every strategy
𝜎L ∈ Comp↾𝑣0 (M) satisfies 𝜇L (⟨�̄�⟩) > 𝑡 if and only if every 𝜌-equilibrium 𝜏 in the game
G↾𝑣0 ⊗ M satisfies 𝜇′L (⟨𝜏⟩) > 𝑡.

Thus, solving the 𝜌-RV problem in the game G↾𝑣0 amounts to solve the 𝜌-universal
threshold problem (𝜌-UT problem) in G↾𝑣0 ⊗ M.

▶ Problem 7 (𝜌-universal threshold problem in the class C). Given a game G↾𝑣0 ∈ C, a player
𝑖 ∈ Π, and a threshold 𝑡 ∈ Q, is every 𝜌-equilibrium �̄� in G↾𝑣0 such that 𝜇𝑖 (⟨�̄�⟩) > 𝑡?

Moreover, the size of the product game is bounded by a polynomial function of ∥G∥ and
∥M∥; and when the game G belongs to a class C among the three classes defined in Section 2,
then all product games constructed from it also belong to C. Hence the following.

▶ Corollary 8. Let C be a game class among energy games, DS games, and MP games.
Then, in the class C, for a given 𝜌 ∈ {Nash, subgame-perfect}, the 𝜌-UT problem, the 𝜌-RV
problem, and the deterministic 𝜌-RV problem are reducible to each other in polynomial time.

Proof.
The deterministic 𝜌-RV problem reduces to the 𝜌-RV problem, because a non-deterministic
Mealy machine is a Mealy machine.
The 𝜌-UT problem reduces to the deterministic 𝜌-RV problem.
Let G↾𝑣0 , 𝑖 and 𝑡 form an instance of the 𝜌-UT problem. We define the game G′

↾𝑣0
as equal

to the game G↾𝑣0 , where Leader has been added to the player set, but controls no vertex.
We define 𝜇L = 𝜇𝑖. If G belongs to the class C, so does G′. Let M be the one-state
deterministic Mealy machine on G′ that never outputs anything. Then, a strategy profile
�̄� in G′

↾𝑣0
is an L -fixed 𝜌-equilibrium, if and only if it is an L -fixed 𝜌-equilibrium with

𝜎L ∈ Comp↾𝑣0 (M), if and only if the strategy profile �̄�−L is a 𝜌-equilibrium in the game
G↾𝑣0 . As a consequence G↾𝑣0 , 𝑖, and 𝑡 form a positive instance of the 𝜌-UT problem, if
and only if G′

↾𝑣0
, M, and 𝑡 form a positive instance of the deterministic 𝜌-RV problem.

Moreover, the latter can be constructed from the former in polynomial time.
The 𝜌-RV problem reduces to the 𝜌-UT problem, by Th. 6, and since the product game
G↾𝑣0 ⊗ M can be constructed from G↾𝑣0 and M in polynomial time. ◀

4 Energy games

Let us now apply that result to our game classes: first, energy objectives.

Nash rational verification. RV problems are undecidable in this class, as we will show by
reduction from the halting problem of two-counter machines (the reader who is not familiar
with those machines may refer to [7]). However, Nash RV is co-recursively enumerable.

▶ Theorem 9. In energy games, the Nash RV problem, deterministic or not, is undecidable
and co-recursively enumerable.

Proof sketch. We prove here that the Nash UT problem is undecidable and co-recursively
enumerable. The theorem will follow by Cor. 8.

Undecidability. We show undecidability by reduction from the halting problem of a
two-counter machine. Let K be a two-counter machine. We define an energy game G↾𝑞1

0
with five players – players 𝐶⊤

1 , 𝐶⊥
1 , 𝐶⊤

2 , 𝐶⊥
2 , and W, called Witness – by assembling the
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Figure 4 Gadgets.

gadgets presented in Figure 4 – the rewards that are not presented are equal to 0, and
the players controlling relevant vertices are written in blue. Then, a play in G↾𝑣0 that
does not reach the vertex ▲ simulates a sequence of transitions of K, that can be a valid
run or not: at each step, the counter 𝐶𝑖 is captured by the energy level of player 𝐶⊤

𝑖
,

always equal to the energy level of player 𝐶⊥
𝑖

. For each counter 𝐶𝑖, the player 𝐶⊥
𝑖

will
have a profitable deviation if that play fakes a test to 0, by going to the vertex ▲; and the
player 𝐶⊤

𝑖
will lose, and therefore have a profitable deviation by staying in 𝑞𝑖0 if it fakes a

positive test. Thus, as shown in the complete version of this proof, every NE outcome
in the game G↾𝑞1

0
is won by Witness if and only if the machine K does not terminate.

As a consequence, the halting problem of two-counter machines reduces to the Nash UT
problem in energy games, which is therefore undecidable.
Co-recursive enumerability. As shown in the complete version of this proof, in an energy
game G↾𝑣0 , if there exists an NE that makes some player 𝑖 lose, then there exists a
finite-memory one. Thus, a semi-algorithm that recognizes the negative instances of the
UT problem consists in enumerating the finite-memory complete strategy profiles on G↾𝑣0 ,
and for each of them, to check (by diagonalization):

whether it is an NE: that is decidable (in polynomial time), by [7];
whether it makes player 𝑖 lose: that is recursively enumerable, by constructing step by
step its outcome and computing the energy levels on the fly.

We have a negative instance of the UT problem if and only if at least one finite-memory
strategy profile satisfies those two conditions. The Nash UT problem is therefore co-
recursively enumerable. ◀

Subgame-perfect rational verification. In the subgame-perfect setting, the previous con-
struction could also prove undecidability. But we choose to present a refinement of it, that
proves a stronger result.

▶ Theorem 10. In energy games, the subgame-perfect RV problem, deterministic or not, is
undecidable, even when Leader plays against only two players.

Again, the proof shows that, in particular, that problem is not recursively enumerable in
energy games. It might still be the case that it is co-recursively enumerable. That would in
particular be the case if finite memory was sufficient for an SPE to make any player 𝑖 lose,
when that is possible, as in the case of NEs. Unfortunately, one cannot follow this approach,
because that statement is false: in order to be able to punish some player, without making
another player lose, an SPE may have to memorize their energy levels, and therefore require
infinite memory, as it will be the case in the example that follows. We leave therefore the
question open.

▶ Proposition 11. In the energy game presented in Figure 5, there exists an SPE that makes
player 2 lose, but no finite memory SPE can achieve that result.

MFCS 2023



26:10 Rational Verification for Nash and Subgame-Perfect Equilibria in Graph Games

𝑎

𝑏

𝑐

𝑑 𝑒

#
1
2
1
3
1

#
1
2
1
3
1

#
1

#
1

#
−1

2
−1

3
−1

Figure 5 A game where infinite memory is necessary to make player 2 lose.
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Figure 6 A game constructed from an instance of TDS.

5 Discounted-sum games

We will now move to DS objectives. First, let us define the following decision problem.

▶ Problem 12 (Target discounted-sum problem). Given four quantities 𝜆, 𝑎, 𝑏, 𝑡 ∈ Q with
0 < 𝜆 < 1, is there a sequence (𝑢𝑛)𝑛∈N ∈ {𝑎, 𝑏}𝜔 such that

∑
𝑛∈N 𝑢𝑛𝜆

𝑛 = 𝑡?

Although it is a quite natural problem that appears in many different fields, the target
discounted-sum (TDS) problem turns out to be surprisingly hard to solve, and its decidability
status is still open. The interested reader may refer to [1] for more details. The following
theorem shows that RV problems are at least as difficult.

▶ Theorem 13. The TDS problem reduces to the complements of the (deterministic) Nash
rational and subgame-perfect RV problems in discounted-sum games.

Proof. We present here a reduction to the complements of the Nash universal and subgame-
perfect UT problems; the result follows by Cor. 8. Let 𝑎, 𝑏, 𝑡 ∈ Q, let 𝜆 ∈ Q ∩ (0, 1), and let
G↾𝑣0 be the DS game of Figure 6, with discount factor 𝜆. In that game, there exists an NE
�̄� with 𝜇# (⟨�̄�⟩) < 0, if and only if there exists an SPE �̄� with 𝜇# (⟨�̄�⟩) < 0, if and only if
𝑎, 𝑏, 𝑡, and 𝜆 form a positive instance of the TDS problem.

Indeed, if such an NE or SPE exists, it necessarily reaches the vertex 𝑎. But then, player
2 must get at least the payoff 𝜇2 (𝑣0𝑣

𝜔
1 ) = 𝑡𝜆2, and player 3 the payoff 𝜇3 (𝑣0𝑣2𝑣

𝜔
3 ) = −𝑡𝜆2,

otherwise they would have a profitable deviation. If such a play exists, then we have a
positive instance of the TDS problem. Conversely, from such a positive instance, one can
construct a play from 𝑣0 in which player # gets the payoff 𝜆2

1−𝜆 , player 2 the payoff 𝑡𝜆2, and
player 3 the payoff −𝑡𝜆2, and none of them has a profitable deviation in any subgame. ◀

The previous theorem suggests that finding algorithms solving those problems is a very
ambitious objective. However, in the sequel, we will show that like the TDS problem, the
RV problems are recursively enumerable. The key idea is the following: a property of DS
objectives is that when a play gives to some player a payoff that is strictly smaller than some
threshold, that can be seen on finite prefixes of those plays. Therefore, although strategy
profiles are in general infinite objects that exist in uncountable number, profitable deviations
can be found by analyzing their behaviors on a finite (but unbounded) number of histories.

▶ Theorem 14. In DS games, the Nash rational and the subgame-perfect RV problems,
deterministic or not, are recursively enumerable.
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Figure 7 The temptation of chaos: an illustration.

6 Mean-payoff games

Classical rational verification. Let us now end with MP games. The reduction from RV
problems to UT problems enables us to apply results and methods that already exist in the
literature.

▶ Theorem 15. In the class of MP games, the Nash rational and the subgame-perfect RV
problems, deterministic or not, are coNP-complete.

The temptation of chaos. It is now worth noting that the definition we gave of RV
entails, in the case of MP games, results that may be considered as counter-intuitive. For
instance, consider the game of Figure 7, where Leader owns no vertex, and consider the
only (vacuous) strategy available for Leader. Does that strategy guarantee a payoff greater
than 1? Intuitively, it does not, since Leader always receives the payoff 0. But still, that
strategy, that game, and that threshold form a positive instance of subgame-perfect RV,
because no L -fixed SPE exists in that game (see [4]). More generally, the definition we give
of RV considers that a good strategy for Leader is a strategy such that for every response of
the environment that is rational, the generated outcome observes some specification. But a
strategy is then good, in that sense, if no rational response of the environment exists: that is
the phenomenon that we can call temptation of chaos. While that case does never occur in
energy and DS games, where rational responses are always guaranteed to exist (as we will
see below), it must be considered in MP games.

Achaotic rational verification. To avoid such phenomena, we introduce an alternative
definition of RV, achaotic RV : a good strategy for Leader will be a strategy that guarantees
the given threshold against every response that is as rational as possible. To define that
problem, we need quantitative relaxations to the notions of NEs and SPEs. Let G↾𝑣0 be
a game. Let 𝜀 ≥ 0. The strategy profile �̄� is an 𝜀-NE (resp. L -fixed 𝜀-NE) in G↾𝑣0 if
and only if for each 𝑖 ∈ Π (resp. Π \ {L }) and every deviation 𝜎′

𝑖
of 𝜎𝑖, the inequality

𝜇𝑖
(
⟨𝜎′

𝑖
, �̄�−𝑖⟩

)
≤ 𝜇𝑖 (⟨�̄�⟩) + 𝜀 holds: no deviation is profitable by more than 𝜀. Note that

0-NEs coincide with NEs. We derive from that notion, as expected, the notions of (L -fixed)
𝜀-SPEs, 𝜀-Nash and 𝜀-subgame-perfect responses, and the notations 𝜀NR(𝜎L ), 𝜀SPR(𝜎L ),
and 𝜀𝜌R(𝜎L ). We can now define our decision problem.

▶ Problem 16 (Achaotic (deterministic) 𝜌-RV in the class C). Given a game G↾𝑣0 ∈ C, a
threshold 𝑡 ∈ Q, and a Mealy machine (resp. a deterministic Mealy machine) M on G, does
there exist 𝜀 ≥ 0 satisfying:

𝜀𝜌R(𝜎L ) ≠ ∅ for some strategy 𝜎L ∈ Comp↾𝑣0 (M);
and 𝜇L (⟨𝜎L , �̄�−L ⟩) > 𝑡 for every 𝜎L ∈ Comp↾𝑣0 (M), and every �̄�−L ∈ 𝜀𝜌R(𝜎L )?

We will prove below that in mean-payoff games, there exists a least quantity 𝜀min such
that 𝜀min𝜌-responses to a given strategy 𝜎L exist. For instance, in the example depicted by
Figure 7, we have 𝜀min = 1. Thus, we can rephrase the achaotic RV problems as follows:
given a game G↾𝑣0 , a threshold 𝑡 ∈ Q and a Mealy machine M, do we have 𝜇L (⟨𝜎L , �̄�−L ⟩) > 𝑡

for every 𝜎L ∈ Comp↾𝑣0 (M) and every �̄�−L ∈ 𝜀min𝜌R(𝜎L )?

MFCS 2023
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Among the problems we study here, this new definition is relevant in only one case:
subgame-perfect RV in MP games. In all other cases, the RV problems are equivalent to
their achaotic versions, because Nash and subgame-perfect responses are guaranteed to exist.

▶ Proposition 17. Let C be a class of games, among the classes of energy games and DS
games. Let 𝜌 ∈ {Nash, subgame-perfect}. Then, the positive instances of the achaotic 𝜌-RV
problem in C are exactly the positive instances of the 𝜌-RV problem. Similarly, the positive
instances of the achaotic Nash-RV problem in MP games are exactly the positive instances of
the 𝜌-RV problem.

Now, an optimal algorithm for that problem in MP games requires the following lemma:
in each game, there exists a least 𝜀 such that 𝜀-SPEs exist, and it can be written with a
polynomially bounded number of bits. To prove that, we need to use the notion of negotiation
function, defined in [4]: a function from vertex labellings to vertex labellings whose least
𝜀-fixed point (i.e., the least vertex labelling 𝜆 that is a fixed point of that function up to
𝜀) characterizes 𝜀-SPEs. Our result can be obtained by revisiting a proof of [5], that was
designed to bound the number of bits required to write that least 𝜀-fixed point, for a fixed 𝜀.
Hereafter, we write ∥𝜀∥ for the number of bits required to write 𝜀 in a usual encoding.

▶ Lemma 18. There exists a polynomial 𝑃1 such that in every mean-payoff game G↾𝑣0 , there
exists 𝜀min with ∥𝜀min∥ ≤ 𝑃1 (∥G∥) such that 𝜀min-SPEs exist in G↾𝑣0 , and 𝜀-SPEs, for every
𝜀 < 𝜀min, do not.

We are now equipped to prove the following theorem.

▶ Theorem 19. In the class of mean-payoff games, the achaotic subgame-perfect RV problem,
deterministic or not, is PNP-complete.

Proof sketch. Using Lem. 18 and the same arguments as in the proof of Th. 6, those two
problems are interreducible with the following one: given G↾𝑣0 and a 𝑡 ∈ Q, does every
𝜀min-SPE �̄� in G↾𝑣0 satisfy 𝜇L (⟨�̄�⟩) > 𝑡? Let us prove PNP-completeness for that problem.

Easiness. By [5], there is an NP algorithm deciding, given 𝜀 and G↾𝑣0 , whether there
is an 𝜀-SPE in G↾𝑣0 , i.e. whether 𝜀 ≥ 𝜀min. Using Lem. 18 and the inequality 𝜀min ≤
2 max𝑖,𝑢𝑣 |𝑟𝑖 (𝑢𝑣) |, a dichotomous search can thus compute 𝜀min using polynomially many
calls to that algorithm. Then, one last call can decide whether there exists an 𝜀min-SPE
�̄� such that 𝜇𝑖 (⟨�̄�⟩) ≤ 𝑡.
Hardness. We proceed by reduction from the following PNP-complete problem: given a
Boolean formula 𝜑 in conjunctive normal form over the ordered variables 𝑥1, . . . , 𝑥𝑛, is
the lexicographically first valuation 𝜈min satisfying 𝜑 such that 𝜈min (𝑥𝑛) = 1? (and in
particular, does such a valuation exist?) Let us write 𝜑 =

∧𝑝

𝑗=1 𝐶 𝑗 . We construct a game
G↾𝑎, with a player called Witness and written W, in which there exists an 𝜀min-SPE
�̄� such that 𝜇W(⟨�̄�⟩) ≤ 0 if and only if 𝜑 is satisfiable and 𝜈min (𝑥𝑛) = 1. That game,
depicted in Figure 8 (unmentioned rewards are equal to 0, and we write 𝑚 = 2𝑛 + 𝑝), has
2𝑛 + 𝑝 + 4 players: the literal players 𝑥1,¬𝑥1, . . . , 𝑥𝑛,¬𝑥𝑛; the clause players 𝐶1, . . . , 𝐶𝑝;
the player Solver, written S; the player Witness, written W; the player Alice, written A ;
and the player Bob, written B.
This game is based on the classical example of MP game in which SPEs do not exist,
already presented in Section 6. In the latter, from the vertex 𝑎, Alice can access a
sink vertex, where Bob and her both get the payoff 1. Here, they access instead to a
region where the choices of Solver define a valuation of 𝑥1, . . . , 𝑥𝑛 – unless one of the
literal players chooses to go to the sink vertex ▼, which will be a profitable deviation if
Solver makes inconsistent choices (one literal and, later, its negation). That valuation 𝜈
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Figure 8 The game G↾𝑎.

defines Alice’s payoff 𝜇A (𝜋) = 2 −∑𝑛
𝑖=1

𝜈 (𝑥𝑖 )
2𝑖 , and therefore defines how much deviating

and reaching 𝑐 is profitable for her. Consequently, as we show in the complete version of
this proof, the valuation 𝜈min is the binary encoding of the quantity 𝜀min, and there is
an 𝜀min-SPE in which Witness gets the payoff 0 or less if and only if 𝜈min (𝑥𝑛) = 1. ◀
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On Property Testing of the Binary Rank
Nader H. Bshouty #

Technion, Haifa, Israel

Abstract
Let M be an n × m (0, 1)-matrix. We define the s-binary rank, denoted as brs(M), of M as the
minimum integer d such that there exist d monochromatic rectangles covering all the 1-entries in the
matrix, with each 1-entry being covered by at most s rectangles. When s = 1, this corresponds to
the binary rank, denoted as br(M), which is well-known in the literature and has many applications.

Let R(M) and C(M) denote the sets of rows and columns of M , respectively. Using the result
of Sgall [10], we establish that if M has an s-binary rank at most d, then |R(M)| · |C(M)| ≤

(
d

≤s

)
2d,

where
(

d
≤s

)
=
∑s

i=0

(
d
i

)
. This bound is tight, meaning that there exists a matrix M ′ with an s-binary

rank of d, for which |R(M ′)| · |C(M ′)| =
(

d
≤s

)
2d.

Using this result, we present novel one-sided adaptive and non-adaptive testers for (0, 1)-
matrices with an s-binary rank at most d (and exactly d). These testers require Õ

((
d

≤s

)
2d/ϵ

)
and

Õ
((

d
≤s

)
2d/ϵ2) queries, respectively.

For a fixed s, this improves upon the query complexity of the tester proposed by Parnas et al.
in [9] by a factor of Θ̃(2d).
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1 Introduction

Let M be an n × m (0, 1)-matrix. We define the s-binary rank, denoted as brs(M), of
M as the minimum integer d such that there exist d sets (rectangles) Ik × Jk, where
Ik ⊆ [n] := {1, . . . , n} and Jk ⊂ [m] for k ∈ [d] that satisfy the conditions: for every
(i, j) ∈ [n]× [m] where M [i, j] = 1, there is at least one and at most s integer t ∈ [d] such that
(i, j) ∈ It × Jt (each 1-entry in M is covered by at least one and at most s monochromatic
rectangles). Additionally, M [i, j] = 1 for all (i, j) ∈ Ik × Jk for k ∈ [d] (monochromatic
rectangles).

When s = 1, the s-binary rank br1(M) is known as the binary rank, denoted as br(M).
When s =∞, the s-binary rank br∞(M) is referred to as the Boolean rank. Both of these
concepts are well-known in the literature. You can explore many applications of these
concepts by referring to notable sources such as Amilhastre and Vigneron [1], Chalermsook
et al. [3], and Gregory et al. [5]. These references, along with the internal citations, provide
an extensive collection of related works with additional applications.

The binary rank can also be defined as follows: the binary rank of an n×m (0, 1)-matrix
M is equal to the minimum d such that there exist an n× d (0, 1)-matrix N and a d×m

(0, 1)-matrix L satisfying M = NL. The binary rank can also be interpreted as the minimum
number of bipartite cliques required to partition all the edges of a bipartite graph with
adjacency matrix M . Similarly, the s-binary rank of M is the minimum number of bipartite
cliques needed to cover all the edges of a bipartite graph with adjacency matrix M , with
each edge being covered by at most s bipartite cliques. In [3], Chalermsook et al, show that
approximating the binary rank within a factor of n1−δ for any given δ is NP-hard.

A property-testing algorithm, also known as a tester, for the s-binary rank [9], takes as
input 0 < ϵ < 1, integers d, n, and m, and has query access to the entries of an n × m

(0, 1)-matrix M . If M has an s-binary rank at most d (or exactly d), the tester accepts with
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probability at least 2/3. If M is ϵ-far from having an s-binary rank at most d (or exactly d),
meaning that modifying more than an ϵ-fraction of the entries of M is required to obtain a
matrix with an s-binary rank at most d (or exactly d), then the tester rejects with probability
at least 2/3. If the tester accepts matrices with an s-binary rank at most d (or exactly d)
with probability 1, it is referred to as a one-sided error tester. In adaptive testing, the queries
can depend on the answers to previous queries, while in non-adaptive testing, all queries are
predetermined by the tester in advance. The objective is to construct a tester that makes
the fewest number of queries possible.

The testability of the s-binary rank at most d of (0, 1)-matrices was studied in [8, 9].
In [8], Nakar and Ron presented a non-adaptive one-sided error tester for s = 1 that makes
Õ(24d/ϵ4) queries. In [9], Parnas et al. gave non-adaptive and adaptive one-sided error testers
for s = 1 that makes O(22d/ϵ2) and O(22d/ϵ) queries, respectively. The results presented
in [9] also hold to the s-binary rank at most d.

In this paper, we establish the following theorems for the testability of the s-binary rank
at most d (or exactly d):

▶ Theorem 1. There exists an adaptive one-sided error tester for s-binary rank of n×m

(0, 1)-matrices that makes Õ
((

d
≤s

)
2d/ϵ

)
queries.

▶ Theorem 2. There exists a non-adaptive one-sided error tester for s-binary rank of n×m

(0, 1)-matrices that makes Õ
((

d
≤s

)
2d/ϵ2

)
queries.

For fixed s, this improves the query complexity of Parnas et al. in [9] by a factor of Õ(2d).

1.1 Our Approach
The tester of Parnas et al. [9] uses the fact that if M ′ is a k × k sub-matrix of M and M ′ is
of s-binary rank at most d, then the following properties hold:
1. M ′ has at most 2d distinct rows and at most 2d distinct columns.
2. If M is ϵ-far from having s-binary rank at most d, then extending M ′ by one more

uniformly at random row and column from M yields a (k + 1)× (k + 1) sub-matrix M ′′

of M that, with probability at least Ω(ϵ), satisfies: either the number of distinct rows in
M ′′ is greater by one than the number of distinct rows in M ′, or the number of distinct
columns in M ′′ is greater by one than the number of distinct columns in M ′.

So, their adaptive tester starts from an empty matrix M ′ = ( ) and then runs O(2d/ϵ)
iterations. At every iteration, if M ′ is of size (2d + 1) × (2d + 1) it rejects. Otherwise, it
extends M ′ by uniformly at random one row and one column. Let M ′′ be the resulting
sub-matrix. If the s-binary rank of M ′′ is greater than d, the tester rejects. If the number
of distinct rows or columns in M ′′ is greater than the number in M ′, then it continues to
the next iteration with M ′ ←M ′′. Otherwise, it continues to the next iteration with M ′. If,
after O(2d/ϵ) iterations, M ′ has s-binary rank at most d, the tester accepts.

If the s-binary rank of M is at most d, then every sub-matrix of M has an s-binary
rank at most d, and the tester accepts. If M is ϵ-far from having s-binary rank at most d,
then: since, at each iteration, with probability at least Ω(ϵ), the number of distinct rows or
columns of M ′ is increased by one, and since matrices of s-binary rank d have at most 2d

distinct rows and at most 2d distinct columns, with high probability, we either obtain M ′

with an s-binary rank greater than d, or M ′ reaches to the dimension of (2d + 1)× (2d + 1).
In both cases, the tester rejects. The query complexity of the tester is O(22d/ϵ), which is the
worst-case number of the entries of the matrix M ′, O(22d), times the number of trials O(1/ϵ)
for extending M ′ by one row and one column.



N. H. Bshouty 27:3

We now give our approach. Call a sub-matrix M ′ of M perfect if it has distinct rows and
distinct columns. Our adaptive tester uses the fact that if M ′ is a perfect k × k′ sub-matrix
of M of s-binary rank d, then
1. kk′ ≤

(
d

≤s

)
2d.

2. If M is ϵ-far from having s-binary rank at most d, then at least one of the following
occurs1

a. With probability at least Ω(ϵ), extending M ′ by one uniformly at random column of
M , gives a perfect k × (k′ + 1) sub-matrix M ′′ of M .

b. With probability at least Ω(ϵ), extending M ′ by one uniformly at random row of M ,
gives a perfect (k + 1)× k′ sub-matrix M ′′ of M .

c. With probability at least Ω(ϵ), extending M ′ by one uniformly at random column and
one uniformly at random row of M , gives a perfect2 (k + 1)× (k′ + 1) sub-matrix M ′′

of M .
Item 1 follows from Sgall’s result in [10] (See Section 3), and item 2 is Claim 10 in Parnas
et al [9]. Now, the tester’s strategy is as follows. If k ≤ k′, the tester first tries to extend
M ′ with a new column. If it succeeds, it moves to the next iteration. Otherwise, it tries
to extend M ′ with a new row. If it succeeds, it moves to the next iteration. Otherwise, it
tries to extend M ′ with a new row and a new column. If it succeeds, it moves to the next
iteration. If it fails, it accepts. If k′ < k, it starts with the row, then the column, and then
both.

Using this strategy, we show that the query complexity will be, at most, the order of the
size kk′ ≤

(
d

≤s

)
2d of M ′ times the number of trials, Õ(1/ϵ), to find the new row, column, or

both. This achieves the query complexity in Theorem 1.
For the non-adaptive tester, the tester, uniformly at random, chooses t = Õ

((
d

≤s

)
2d/ϵ2

)
rows r1, . . . , rt ∈ [n] and t columns c1, . . . , ct ∈ [m] and queries all M [ri, cj ] for all i ·j ≤ t and
puts them in a table. Then it runs the above non-adaptive tester. When the non-adaptive
tester asks for uniformly at random row or column, it provides the next element ri or cj ,
respectively. The queries are then answered from the table. We show that the adaptive
algorithm does not need to make queries that are not in the table before it halts. This
achieves the query complexity in Theorem 2.

1.2 Other Rank Problems

The real rank of a n×m-matrix M over any field F is the minimal d, such that there is a
n× d matrix N over F and a d×m matrix L over F such that M = NL. The testability of
the real rank was studied in [2, 6, 7]. In [2], Balcan et al. gave a non-adaptive tester for the
real rank that makes Õ(d2/ϵ) queries. They also show that this query complexity is optimal.

The Boolean rank (∞-binary rank) was studied in [8, 9]. Parnas et al. in [9] gave a
non-adaptive tester for the Boolean rank that makes Õ(d4/ϵ4) queries3.

1 Note that what we have in a-c is not precisely what we use in the algorithm and its proof of correctness.
For the exact statement, please refer to Claim 13. It can be observed that both statements are equivalent,
allowing for a change in the constant within the Ω notation.

2 It may happen that events (a) and (b) do not occur and (c) does
3 The query complexity in [9] is Õ(d4/ϵ6). We’ve noticed that Lemma 3 in [9] is also true when we replace

(ϵ2/64)n2 with (ϵ/4)n2. To prove that, in the proof of Lemma 3, replace Modification rules 1 and 2
with the following modification: Modify to 0 all beneficial entries. This gives the result stated here, [4].

MFCS 2023
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2 Definitions and Preliminary Results

Let M be a n × m (0, 1)-matrix. We denote by R(M) and C(M) the set of rows and
columns of M , respectively. The number of distinct rows and columns of M are denoted
by r(M) = |R(M)| and, c(M) = |C(M)|, respectively. The binary rank of a n×m-matrix
M , br(M), is equal to the minimal d, where there is a n× d (0, 1)-matrix N and a d×m

(0, 1)-matrix L such that M = NL.
We define the s-binary rank, brs(M), of M to be the minimal integer d such that there are

d sets (rectangles) Ik×Jk where Ik ⊆ [n] := {1, . . . , n}, Jk ⊂ [m], k ∈ [d] such that M [i, j] = 1
for all (i, j) ∈ Ik × Jk, k ∈ [d] (monochromatic rectangles) and for every (i, j) ∈ [n] × [m]
where M [i, j] = 1 there are at least one and at most s integers t ∈ [d] such that (i, j) ∈ It×Jt

(each 1-entry in M is covered by at least one and at most s monochromatic rectangles).
We now prove.

▶ Lemma 3. Let M be a n×m (0, 1)-matrix. The s-binary rank of M , brs(M), is equal to
the minimal integer d, where there is a n× d (0, 1)-matrix N and a d×m (0, 1)-matrix L

such that: For P = NL,
1. For every (i, j) ∈ [n]× [m], M [i, j] = 0 if and only if P [i, j] = 0.
2. For every (i, j) ∈ [n]× [m], P [i, j] ≤ s.

Proof. If M is of s-binary rank d, then there are rectangles {Ik × Jk}k∈[d], Ik ⊆ [n], Jk ⊂
[m], k ∈ [d] such that M [i, j] = 1 for all (i, j) ∈ Ik×Jk, k ∈ [d] and for every (i, j) ∈ [n]× [m]
where M [i, j] = 1 there are at least one and at most s integers t ∈ [d] such that (i, j) ∈ It×Jt.
Define row vectors a(k) ∈ {0, 1}n and b(k) ∈ {0, 1}m where a

(k)
i = 1 iff (if and only if) i ∈ Ik,

and b
(k)
j = 1 iff j ∈ Jk. Then define4 P = a(1)′

b(1) + · · · + a(d)′
b(d). It is easy to see that

(a(k)′
b(k))[i, j] = 1 iff (i, j) ∈ Ik × Jk. Therefore, P [i, j] = 0 iff M [i, j] = 0 and P [i, j] ≤ s for

all (i, j) ∈ [n] × [m]. Define the n × d matrix N =
[
a(1)′| · · · |a(d)′] and the d ×m matrix

L =
[
b(1)′| · · · |b(d)′]′

. It is again easy to see that P = NL.
The other direction can be easily seen by tracing backward in the above proof. ◀

We now prove the following,

▶ Lemma 4. Let P be a n × m matrix. Let N and L be n × d (0, 1)-matrix and d × m

(0, 1)-matrix, respectively, such that P = NL. Then r(P ) ≤ r(N) and c(P ) ≤ c(L).

Proof. We prove the result for r. The proof for c is similar. Let r1, . . . , rn be the rows of N

and p1, . . . , pn be the rows of P . Then pi = riL. Therefore, if ri = rj , then pi = pj . Thus,
r(P ) ≤ r(N). ◀

Let M be a n × m matrix. For x ∈ X ⊆ [n], y ∈ Y ⊆ [m], we denote by M [X, Y ]
the |X| × |Y | sub-matrix of M , (M [x′, y′])x′∈X,y′∈Y . Denote by M [X, y] the column vector
(M [x′, y])x′∈X and by M [x, Y ] the row vector (M [x, y′])y′∈Y .

For x ∈ [n] (resp. y ∈ [m]) we say that M [X, y] is a new column (resp. M [x, Y ] is a new
row) to M [X, Y ] if it is not equal to any of the columns (resp. rows) of M [X, Y ].

▶ Lemma 5. Let M be a n ×m matrix, x ∈ [n], X ⊆ [n], y ∈ [m], and Y ⊆ [m]. Suppose
M [x, Y ] is not a new row to M [X, Y ], and M [X, y] is not a new column to M [X, Y ]. Then
M [x, Y ∪ {y}] is not a new row to M [X, Y ∪ {y}] if and only if M [X ∪ {x}, y] is not a new
column to M [X ∪ {x}, Y ].

4 Here x′ is the transpose of x.
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Proof. If M [x, Y ∪ {y}] is not a new row to M [X, Y ∪ {y}], then there is x′ ∈ X such
that M [x, Y ∪ {y}] = M [x′, Y ∪ {y}]. Since M [X, y] is not a new column to M [X, Y ],
there is y′ ∈ Y such that M [X, y] = M [X, y′]. Since M [x, Y ∪ {y}] = M [x′, Y ∪ {y}],
we have M [x′, y′] = M [x, y′] and M [x, y] = M [x′, y]. Since M [X, y] = M [X, y′], we have
M [x′, y] = M [x′, y′]. Therefore, M [x, y] = M [x, y′] and M [X ∪ {x}, y] = M [X ∪ {x}, y′].
Thus, M [X ∪ {x}, y] is not a new column to M [X ∪ {x}, Y ].

Similarly, the other direction follows. ◀

3 Matrices of s-Binary Rank d

In this section, we prove the following two Lemmas.

▶ Lemma 6. For any n×m (0, 1)-matrix M of s-binary rank at most d, we have

r(M) · c(M) ≤
(

d

≤ s

)
2d.

▶ Lemma 7. There is a (0, 1)-matrix M ′ of s-binary rank d that satisfies r(M ′) · c(M ′) =(
d

≤s

)
2d.

To prove Lemma 6, we use the following Sgall’s lemma.

▶ Lemma 8. [10]. Let A,B ⊆ 2[d] be such that for every A ∈ A and B ∈ B, |A ∩ B| ≤ s.
Then |A| · |B| ≤

(
d

≤s

)
2d.

We now prove Lemma 6.

Proof. Since the s-binary rank of M is at most d, by Lemma 3, there is a n× d (0, 1)-matrix
N and a d×m (0, 1)-matrix L such that, for P = NL

1. For every (i, j) ∈ [n]× [m], M [i, j] = 0 if and only if P [i, j] = 0.
2. For every (i, j) ∈ [n]× [m], P [i, j] ≤ s.

Obviously, r(M) ≤ r(P ) and c(M) ≤ c(P ). Consider A = {A1, . . . , An} ⊆ 2[d] and
B = {B1, . . . , Bm} ⊆ 2[d], where Ai = {j|Ni,j = 1} and Bk = {j|Lj,k = 1}. Since the entries
of P = NL are at most s, for every i ∈ [n] and k ∈ [m], |Ai ∩Bk| ≤ s.

By Lemma 4 and 8,

r(M) · c(M) ≤ r(P ) · c(P ) ≤ r(N) · c(L) = |A| · |B| ≤
(

d

≤ s

)
2d. ◀

We now prove Lemma 7.

Proof of Lemma 7. Let N be a 2d × d (0, 1)-matrix where its rows contain all the vectors
in {0, 1}d. Let L be a d×

(
d

≤s

)
matrix where its columns contain all the vectors in {0, 1}d of

weight at most s. Obviously, P = NL is 2d ×
(

d
≤s

)
with entries that are less than or equal to

s. Define a 2d ×
(

d
≤s

)
(0, 1)-matrix M ′ where M ′[i, j] = 0 if and only if P [i, j] = 0. Then, by

Lemma 3, M ′ is of s-binary rank at most d. We now show that r(M ′) · c(M ′) =
(

d
≤s

)
2d.

Since the identity d × d matrix Id is a sub-matrix of L, we have that NId = N is
(0, 1)-matrix and a sub-matrix of P and therefore of M ′. Therefore, r(M ′) ≥ r(N) = 2d.
Since Id is a sub-matrix of N , by the same argument, c(M ′) ≥ c(L) =

(
d

≤s

)
. Therefore

r(M ′) · c(M ′) ≥
(

d
≤s

)
2d. Thus, r(M ′) · c(M ′) =

(
d

≤s

)
2d.

We now show that M ′ has s-binary rank d. Suppose the contrary, i.e., M ′ has binary
rank d′ < d. Then there are 2d × d′ (0, 1)-matrix N and d′ ×

(
d

≤s

)
(0, 1)-matrix L such that

P = NL and M ′[i, j] = 0 iff P [i, j] = 0. Now by Lemma 4, r(M ′) ≤ r(P ) ≤ r(N) ≤ 2d′
< 2d,

which gives a contradiction. ◀

MFCS 2023
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4 Testing The s-Binary Rank

In this section, we present the adaptive and non-adaptive testing algorithms for s-binary
rank at most d. We first give the adaptive algorithm and prove Theorem 1.

4.1 The Adaptive Tester

Adaptive-Test-Rank(d, s, M, n, m, ϵ)
Input: Oracle that accesses the entries of n×m (0, 1)-matrix M .
Output: Either “Accept” or “Reject”

1. X ← {1}; Y ← {1}; t = 9d/ϵ.
2. While |X| · |Y | ≤

(
d

≤s

)
2d do

3. If the s-binary rank of M [X, Y ] is greater than d, then Reject.
4. F inish← False; X ′ ← ∅; Y ′ ← ∅. /∗ X ′ and Y ′ are multi-sets.
5. If |X| ≥ |Y | then
6. While (NOT Finish) AND |X ′| < t

7. Draw uniformly at random x ∈ [n]\X; X ′ ← X ′ ∪ {x};
8. If M [x, Y ] is a new row to M [X, Y ]

then X ← X ∪ {x}; Finish← True.

9. If (NOT Finish) then
10. While (NOT Finish) AND |Y ′| < t

11. Draw uniformly at random y ∈ [m]\Y ; Y ′ ← Y ′ ∪ {y}.
12. If M [X, y] is new column to M [X, Y ]

then Y ← Y ∪ {y}; Finish← True.

13. Else (|X| < |Y |)
14. While (NOT Finish) AND |Y ′| < t

15. Draw uniformly at random y ∈ [m]\Y ; Y ′ ← Y ′ ∪ {y};
16. If M [X, y] is a new column to M [X, Y ]

then Y ← Y ∪ {y}; Finish← True.

17. If (NOT Finish) then
18. While (NOT Finish) AND |X ′| < t

19. Draw uniformly at random x ∈ [n]\X; X ′ ← X ′ ∪ {x}
20. If M [x, Y ] is a new row to M [X, Y ]

then X ← X ∪ {x}; Finish← True.

21. While (NOT Finish) AND X ′ ̸= ∅ do
22. Draw uniformly at random x ∈ X ′ and y ∈ Y ′

23. If M [x, Y ∪ {y}] is a new row to M [X, Y ∪ {y}] OR, equivalently,
24. M [X ∪ {x}, y] is a new column to M [X ∪ {x}, Y ]
25. then X ← X ∪ {x}; Y ← Y ∪ {y}; Finish← True.
26. else X ′ ← X ′\{x}; Y ′ ← Y ′\{y}.
27. If (NOT Finish) then Accept
28.Reject

Figure 1 An adaptive tester for s-binary rank at most d.

In this section, we prove Theorem 1.
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Consider the tester Adaptive-Test-Rank in Figure 1. The tester, at every iteration
of the main While-loop (step 2) has a set X of rows of M and a set Y of columns of M . If
|X| ≥ |Y | (step 5), the tester first tries to extend M [X, Y ] with a new column (steps 6-8). If
it succeeds, it moves to the next iteration. Otherwise, it tries to extend M [X, Y ] with a new
row (steps 9-12). If it succeeds, it moves to the next iteration. Otherwise, it tries to extend
M [X, Y ] with a new row and a new column (steps 21-26). If it succeeds, it moves to the
next iteration. If it fails, it accepts (step 27). If |X| < |Y | (step 13), it starts with the row
of M [X, Y ] (steps 14-16), then the column (steps 18-20), and then both (steps 21-26). If it
fails, it accepts (step 27).

If |X| · |Y | >
(

d
≤s

)
2d (step 2 and then step 28) or the s-binary rank of M [X, Y ] is greater

than d (step 3), then it rejects.
We first prove

▶ Lemma 9. Let t = 9d/ϵ. Tester Adaptive-Test-Rank makes at most 2
(

d
≤s

)
2dt =

Õ
((

d
≤s

)
2d
)

/ϵ queries.

Proof. We prove by induction that at every iteration of the main While-loop (step 2), the
tester knows the entries of M [X, Y ], and the total number of queries, qX,Y , is at most
2|X||Y |t. Since the While-loop condition is |X||Y | ≤

(
d

≤s

)
2d, the result follows.

At the beginning of the algorithm, no queries are made, and |X| = |Y | = 1. Then
2|X||Y |t = 2t > 0 = qX,Y . Suppose, at the kth iteration, the tester knows the entries of
M [X, Y ] and qX,Y ≤ 2|X||Y |t. We prove the result for the (k + 1)th iteration.

We have the following cases (at the (k + 1)th iteration)
Case I. |X| ≥ |Y | (step 5) and, for some x, M [x, Y ] is a new row to M [X, Y ] (step 8).

In that case, Finish becomes true, and no other sub-while-loop is executed. Therefore,
the number of queries made at this iteration is at most |Y |t (to find all M [x, Y ]), and one
element x is added to X. Then, the tester knows all the entries of M [X ∪ {x}, Y ] and

qX∪{x},Y = qX,Y + |Y |t ≤ 2|X||Y |t + |Y |t ≤ 2|X ∪ {x}| · |Y |t,

and the result follows.
Case II. |X| ≥ |Y | (step 5), for all x′ ∈ X ′, M [x′, Y ] is not a new row to M [X, Y ] (step 8),

and for some y, M [X, y] is a new column to M [X, Y ] (step 12).
In that case, Finish becomes true, and no other sub-while-loop is executed after the
second sub-while-loop (step 10).
Therefore, in this case, the number of queries made at this iteration is at most |Y |t + |X|t.
|X|t queries in the first sub-while-loop (to find M [x, Y ] for all x ∈ X ′), and at most |Y |t
queries in the second sub-while-loop (to find M [X, y′] for all y′ ∈ Y ′). Then one element
y is added to Y . Therefore, the tester knows the entries of M [X, Y ∪ {y}] and, since
|Y | ≤ |X|,

qX,Y ∪{y} = qX,Y + |X|t + |Y |t ≤ 2|X||Y |t + 2|X|t = 2|X| · |Y ∪ {y}|t,

and the result follows.
Case III. |X| ≥ |Y |, for all x′ ∈ X ′, M [x′, Y ] is not a new row to M [X, Y ], for all y′ ∈ Y ′,

M [X, y′] is not a new column to M [X, Y ], and for some x ∈ X ′, y ∈ Y ′, M [x, Y ∪ {y}] is
a new row to M [X, Y ∪ {y}] (step 23).
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In this case, |X ′| = |Y ′| = t, the number of queries is |X|t + |Y |t + t. Exactly |X|t queries
in the first sub-while-loop, |Y |t queries in the second sub-while-loop, and at most5 t

queries in the sub-while-loop in step 21. Then one element x is added to X, and one
element y is added to Y . Then the tester knows the entries of M [X ∪ {x}, Y ∪ {y}] and

qX∪{x},Y ∪{y} = qX,Y +|X|t+|Y |t+t ≤ 2|X|·|Y |t+|X|t+|Y |t+t ≤ 2|X∪{x}|·|Y ∪{y}|t.

Case IV. |X| ≥ |Y |, for all x′ ∈ X ′, M [x′, Y ] is not a new row to M [X, Y ], for all y′ ∈ Y ′,
M [X, y′] is not a new column to M [X, Y ], and for all the drawn pairs x ∈ X ′, y ∈ Y ′,
M [x, Y ∪ {y}] is not a new row to M [X, Y ∪ {y}] (step 23).
In this case, Finish will have value False, and the tester accepts in step 27.
The analysis of the case when |X| < |Y | is similar to the above analysis. ◀

We now prove the completeness of the tester.

▶ Lemma 10. If M is a n ×m (0, 1)-matrix of s-binary rank at most d, then the tester
Adaptive-Test-Rank accepts with probability 1.

Proof. The tester rejects if and only if one of the following occurs,
1. M [X, Y ] has s-binary rank greater than d.
2. |X| · |Y | >

(
d

≤s

)
2d.

If M [X, Y ] has s-binary rank greater than d, then M has s-binary rank greater than d. This
is because, if M = NL, then M [X, Y ] = N [X, [d]] · L[[d], Y ]. So item 1 cannot occur.

Before we show that item 2 cannot occur, we prove the following:

▷ Claim 11. The rows (resp. columns) of M [X, Y ] are distinct.

Proof. The steps in the tester where we add rows or columns are steps 8, 12 16, 20, and 23.
In steps 8, 12 16, 20 it is clear that a row (resp. column) is added only if it is a new row
(resp. column) to M [X, Y ]. Consider step 23 and suppose, w.l.o.g |X| ≥ |Y |. This step is
executed only when Finish = False. This happens when |X ′| = |Y ′| = t, for every x ∈ X ′,
M [x, Y ] is not a new row to M [X, Y ], and for every y ∈ Y ′, M [X, y] is not a new column to
M [X, Y ]. Then x and y are added to X and Y , respectively, if M [x, Y ∪ {y}] is a new row
to M [X, Y ∪{y}]. Then, by Lemma 5, M [X ∪{x}, y] is a new column to M [X ∪{x}, Y ]. So,
the rows (and columns) in M [X ∪ {x}, Y ∪ {y}] are distinct. This implies the result. ◁

Suppose, to the contrary, |X| · |Y | >
(

d
≤s

)
2d. Since M ′ = M [X, Y ] satisfies r(M ′)c(M ′) =

|X| · |Y | >
(

d
≤s

)
2d, by Lemma 6, the s-binary rank of M ′, and therefore of M , is greater

than d. A contradiction. ◀

We now prove the soundness of the tester.
We first prove the following.

▷ Claim 12. Let M be a n×m (0, 1)-matrix, X ⊆ [n], and Y ⊆ [m]. Suppose there are two
functions, ′ : [n]→ X and ′′ : [m]→ Y , such that
1. For every x ∈ [n], M [x, Y ] = M [x′, Y ].
2. For every y ∈ [m], M [X, y] = M [X, y′′].
3. For every x ∈ [n] and y ∈ [m], M [x, y] = M [x′, y′′].
Then M has at most |X| distinct rows and |Y | distinct columns, and its s-binary rank is the
s-binary rank of M [X, Y ].

5 This is because, for x ∈ X ′, y ∈ Y ′, the tester already knows M [x, Y ] and M [X, y] from the first and
second sub-while-loop and only needs to query M [x, y].
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Proof. Let x ∈ [n]\X. For every y, M [x, y] = M [x′, y′′] = M [x′, y]. Therefore, row x in M

is equal to row x′. Similarly, column y in M is equal to column y′′.
Since adding equal columns and rows to a matrix does not change the s-binary rank6, we

have brs(M [X, Y ]) = brs(M [X, [m]]) = brs(M). ◁

The following Claim is proved in [9] (Claim 10). Here, we give the proof for completeness.

▷ Claim 13. Let M be a (0, 1)-matrix that is ϵ-far from having s-binary rank at most d.
Let X ⊆ [n] and Y ⊆ [m], such that brs(M [X, Y ]) ≤ d, the columns of M [X, Y ] are distinct,
and the rows of M [X, Y ] are distinct. Then one of the following must hold:
1. The number of rows x ∈ [n] where M [x, Y ] is a new row to M [X, Y ] is at least nϵ/3.
2. The number of columns y ∈ [m] where M [X, y] is a new column to M [X, Y ] is at least

mϵ/3.
3. The number pairs (x, y), x ̸∈ X, y ̸∈ Y , where, M [x, Y ] = M [x′, Y ] for some x′ ∈ X,

M [X, y] = M [X, y′′] for some y′′ ∈ Y , and M [x, y] ̸= M [x′, y′′], is at least mnϵ/3.

Proof. Assume, to the contrary, that none of the above statements holds. Change every
row x in M where M [x, Y ] is a new row to M [X, Y ] to a zero row. Let X ′ be the set of
such rows. Change every column y in M where M [X, y] is a new row to M [X, Y ] to a zero
column. Let Y ′ be the set of such columns. For every other entry (x, y), x ̸∈ X, y ̸∈ Y that
is not changed to zero and M [x, y] ̸= M [x′, y′′], change M [x, y] to M [x′, y′′]. Let M ′ be the
matrix obtained from the above changes.

The number of entries (x, y) where M [x, y] ̸= M ′[x, y] is less than (nϵ/3)m + (mϵ/3)n +
mnϵ/3 = ϵmn. Therefore, M ′ is ϵ-close to M . By claim 13, brs(M ′) = brs(M [[n]\X ′, [m]\Y ′])
= brs(M [X, Y ]) ≤ d. A contradiction. ◁
We now prove the soundness of the tester.

▶ Lemma 14. If M is ϵ-far from having s-binary rank d, then with probability at least 2/3,
Adaptive-Test-Rank rejects.

Proof. Consider the while-loop in step 2 at some iteration i. If brs(M [X, Y ]) > d, then the
tester rejects in step 3. We will now show that if brs(M [X, Y ]) ≤ d, then, with probability
at most 3e−2d, the tester accepts at iteration i.

To this end, let brs(M [X, Y ]) ≤ d. Then, by Claim 13, one of the following holds.
1. The number of rows x ∈ [n] where M [x, Y ] is a new row to M [X, Y ] is at least nϵ/3.
2. The number of columns y ∈ [m] where M [X, y] is a new column to M [X, Y ] is at least

mϵ/3.
3. The number pairs (x, y), x ̸∈ X, y ̸∈ Y , where, M [x, Y ] = M [x′, Y ] for some x′ ∈ X,

M [X, y] = M [X, y′′] for some y′′ ∈ Y , and M [x, y] ̸= M [x′, y′′], is at least mnϵ/3.
Now at the ith iteration, suppose w.l.o.g, |X| ≥ |Y | (the other case |Y | < |X| is similar). If
item 1 occurs, then with probability at least p = 1− (1− ϵ/3)t ≥ 1− e−2d, the tester finds
a new row to M [X, Y ] and does not accept at iteration i. If item 2 occurs, then if it does
not find a new row to M [X, Y ], with probability at least p, the tester finds a new column to
M [X, Y ] and does not accept. If item 3 occurs, and it does not find a new row or column to
M [X, Y ], then with probability at least p, it finds such a pair and does not accept. Therefore,
with probability at most 3(1− p) ≤ 3e−2d, the tester accepts at iteration i.

6 If we add a column to a matrix that is equal to column y, then the rectangles that cover column y can
be extended to cover the added column.
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Since the while-loop runs at most |X| + |Y | ≤ 2|X||Y | ≤ 2
(

d
≤s

)
2d ≤ 22d+1 iterations,

with probability at most 3e−2d22d+1 ≤ 1/3, the tester accepts in while-loop. Therefore, with
probability at least 2/3, the tester does not accept in the while-loop. Thus, it either rejects
because brs(M [X, Y ]) > d or rejects in step 28. ◀

4.2 The Non-Adaptive Tester
In this section, we prove Theorem 2.

Non-Adaptive-Test-Rank(d, s, M, n, m, ϵ)
Input: Oracle that accesses the entries of (0, 1)-matrix M .
Output: Either “Accept” or “Reject”.

1. T ← 324·d2( d
≤s)2d

ϵ2 .
2. Draw uniformly at random x(1), . . . , x(T ) ∈ [n].
3. Draw uniformly at random y(1), . . . , y(T ) ∈ [m].
4. For every i ∈ [T ] and j ∈ [T ] such that i · j ≤ T

5. D[i, j]← Query M [x(i), y(j)]
6. u = 1; w = 1.

7. Run Adaptive-Test-Rank(d, s, M, n, m, ϵ)
When the tester asks for a uniform at random x - return x(u); u← u + 1
When the tester asks for a uniform at random y - return y(w); w ← w + 1
When the tester makes the Query M [x(i), y(j)] - return D[i, j]

Figure 2 A non-adaptive tester for s-binary rank at most d.

First, consider Adaptive-Test-Rank in Figure 1. Consider steps 7,11,15, and 19, where
it draws a new column or row. We prove.

▶ Lemma 15. Let t = 9d/ϵ. At each iteration of Adaptive-Test-Rank, the total number
of uniformly at random rows x ∈ [n] drawn is at most (|X|+ min(|X|, |Y | − 1))t, and the
number of uniformly at random rows y ∈ [m] drawn is at most (|Y |+ min(|X|, |Y |))t.

Proof. We prove by induction that at every iteration of the main While-loop (step 2), the
total number of random rows drawn by the tester, nX,Y , is at most (|X|+min(|X|, |Y |−1))t,
and the total number of random columns drawn, mX,Y , is at most (|Y |+ min(|X|, |Y |))t.

At the beginning, |X| = |Y | = 1, and the number of columns and rows is 1. In that case,7,
nX,Y = 1 ≤ t and mX,Y = 1 ≤ 2t. Suppose, at the kth iteration, the induction statement is
true. We prove the result for the (k + 1)th iteration.

At the (k + 1)th iteration, we have the following cases.
Case I. |X| ≥ |Y | (step 5) and, for some x, M [x, Y ] is a new row to M [X, Y ] (step 8).

In that case, Finish becomes true, and no other sub-while-loop is executed. Therefore,
the number of rows drawn at this iteration is at most t, and one element x is added to X.
No columns are drawn. Then,

nX∪{x},Y ≤ nX,Y +t ≤ (|X|+min(|X|, |Y |−1)+1)t ≤ (|X∪{x}|+min(|X∪{x}|, |Y |−1))t,

7 We assume that the first column/row drawn is column/row one
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and

mX∪{x},Y = mX,Y ≤ (|Y |+ min(|X|, |Y |))t ≤ (|Y |+ min(|X ∪ {x}|, |Y |))t.

Thus, the result follows for this case.
Case II. |X| ≥ |Y | (step 5), for all x′ ∈ X ′, M [x′, Y ] is not a new row to M [X, Y ] (step 8),

and for some y, M [X, y] is a new column to M [X, Y ] (step 12).
In that case, Finish becomes true, and no other sub-while-loop is executed after the
second sub-while-loop (step 10).
Therefore, in this case, the number of rows drawn at this iteration is t, one element y is
added to Y , and the number of columns drawn is at most t. Then

nX,Y ∪{y} = nX,Y + t ≤ (|X|+ min(|X|, |Y | − 1) + 1)t
= (|X|+ |Y |)t = (|X|+ min(|X|, |Y ∪ {y}| − 1))t,

and

mX,Y ∪{y} ≤ mX,Y + t ≤ (|Y |+min(|X|, |Y |)+1)t ≤ (|Y ∪{y}|+min(|X|, |Y ∪{y}|))t.

Thus, the result follows for this case.
Case III. |X| < |Y | (step 13), and for some y, M [X, y] is a new column to M [X, Y ] (step 16).

In that case, Finish becomes true, and no other sub-while-loop is executed. Therefore,
the number of columns drawn at this iteration is at most t, and one element y is added
to Y . No rows are drawn. Then,

nX,Y ∪{y} = nX,Y ≤ (|X|+ min(|X|, |Y | − 1))t ≤ (|X|+ min(|X|, |Y ∪ {y}| − 1))t,

and

mX,Y ∪{y} ≤ mX,Y + t ≤ (|Y |+min(|X|, |Y |)+1)t = (|Y ∪{y}|+min(|X|, |Y ∪{y}|))t.

Thus, the result follows for this case.
Case IV. |X| < |Y | (step 13), for all y′ ∈ Y ′, M [X, y′] is not a new row to M [X, Y ], and for

some x, M [x, Y ] is a new column to M [X, Y ] (step 20). In that case, Finish becomes
true, and no other sub-while-loop is executed after the fourth sub-while-loop (step 18).
In this case, the number of rows drawn at this iteration is t, one element x is added to X,
and the number of columns drawn is at most t. Then

nX∪{x},Y = nX,Y + t ≤ (|X|+ min(|X|, |Y | − 1) + 1)t
≤ (|X ∪ {x}|+ min(|X ∪ {x}|, |Y | − 1))t

mX∪{x},Y ≤ mX,Y + t ≤ (|Y |+ min(|X|, |Y |) + 1)t = (|Y |+ min(|X ∪ {x}|, |Y |))t.

Thus, the result follows for this case.
Case V. For all x′ ∈ X ′, M [x′, Y ] is not a new row to M [X, Y ], for all y′ ∈ Y ′, M [X, y′] is

not a new column to M [X, Y ], and for some x ∈ X ′, y ∈ Y ′, M [x, Y ∪ {y}] is a new row
to M [X, Y ∪ {y}] (step 23).
In this case, the number of rows drawn at this iteration is t, the number of columns
drawn is t, one element x is added to X, and one element y is added to Y . Then

nX∪{x},Y ∪{y} = nX,Y + t ≤ (|X|+ min(|X|, |Y | − 1) + 1)t
≤ (|X ∪ {x}|+ min(|X ∪ {x}|, |Y ∪ {y}| − 1))t.

mX∪{x},Y ∪{y} = mX,Y + t ≤ (|Y |+ min(|X|, |Y |) + 1)t
≤ (|Y ∪ {y}|+ min(|X ∪ {x}|, |Y ∪ {y}|))t. ◀
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We are now ready to prove Theorem 2.

Proof. By Lemma 15, the total number of rows and columns drawn in Adaptive-Test-
Rank up to iteration t is at most n′ := 9(|X| + min(|X|, |Y | − 1))d/ϵ ≤ 18|X|d/ϵ and
m′ := 9(|Y |+ min(|X|, |Y |)d/ϵ ≤ 18|Y |d/ϵ, respectively. We also have |X| · |Y | ≤

(
d

≤s

)
2d. So

n′ ·m′ ≤ 324|X||Y |d2/ϵ2 ≤ T :=
324 · d2( d

≤s

)
2d

ϵ2 .

Consider the tester Non-Adaptive-Test-Rank in Figure 2. The tester draws T rows
x(1), . . . , x(T ) ∈ [n], and columns y(1), . . . , y(T ) ∈ [m] and queries all M [x(i), y(j)] where
ij ≤ T and puts the result in the table D. Then it runs Adaptive-Test-Random using the
above-drawn rows and columns. We now show that all the queries that Adaptive-Test-
Random makes can be fetched from the table D.

At any iteration, the number of rows drawn is at most n′, and the number of rows
drawn is at most m′. Therefore, the tester needs to know (in the worst case) all the entries
M [x(i), y(j)] where i ≤ n′ and j ≤ m′. Since ij ≤ n′m′ ≤ T , the result follows.

The number of queries that the tester makes is

T∑
i=1

T

i
= O(T ln T ) = Õ

((
d

≤s

)
2d

ϵ2

)
. ◀

5 Testing the Exact s-Binary Rank

We first prove the following.

▶ Lemma 16. Let M and M ′ be n×m (0, 1)-matrices that differ in one row (or column).
Then |brs(M)− brs(M ′)| ≤ 1.

Proof. Suppose brs(M) = d and M ′ differ from M in row k. Let N and L be n× d (0, 1)-
matrix and d×m (0, 1)-matrix, respectively, such that P = NL, for every (i, j) ∈ [n]× [m],
P [i, j] ≤ s, and P [i, j] = 0 if and only if M [i, j] = 0. Add to N a column (as a (d + 1)th
column) that all its entries are zero except the k-th entry, which equals 1. Then change
N [k, j] to zero for all j ∈ [d]. Let N ′ be the resulting matrix. Add to L another row (as a
(d + 1)th row) equal to the k-th row of M ′. Let L′ be the resulting matrix. Let P ′ = N ′L′.
It is easy to see that P ′[i, j] = P [i, j] for all i ̸= k and j, and the kth row of P ′ is equal
to the kth row of M ′. Then, for every (i, j) ∈ [n] × [m], P ′[i, j] ≤ s, and P ′[i, j] = 0 if
and only if M ′[i, j] = 0. Therefore, brs(M ′) ≤ d + 1 = brs(M) + 1. In the same way,
brs(M) ≤ brs(M ′) + 1. ◀

▶ Lemma 17. Let η = d2/(nm). Let M be n×m (0, 1)-matrix. If M is ϵ-close to having
s-binary rank at most d, then M is (ϵ + η)-close to having s-binary rank d.

Proof. We will show that for every n×m (0, 1)-matrix H of s-binary rank at most d− 1,
there is a n×m (0, 1)-matrix G of s-binary rank d that is η-close to H. Therefore, if M is
ϵ-close to having s-binary rank at most d, then it is (ϵ + η)-close to having s-binary rank d.

Define the n × m (0, 1)-matrices Gk, k ∈ [d] ∪ {0}, where G0 = H and for k ≥ 1,
Gk[i, j] = H[i, j] if j > k or i > d, and Gk[[d], [k]] = Id[[d], [k]] where Id is the d× d identity
matrix. Since Gd[[d], [d]] = Id, we have brs(Gd) ≥ d. It is clear that for every k ∈ [d] ∪ {0},
Gk is (d2/nm)-close to H. If brs(Gd) = d, then take G = Gd, and we are done. Otherwise,
suppose brs(Gd) > d.
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Now consider a sequence H = G0, G1, G2, . . . , Gd. By Lemma 16, we have brs(Gi−1)−1 ≤
brs(Gi) ≤ brs(Gi−1) + 1. Now since brs(G0) = brs(H) ≤ d − 1 and brs(Gd) > d, by the
discrete intermediate value theorem, there must be k ∈ [d] such that brs(Gk) = d. Then take
G = Gk, and we are done. ◀

Now, the tester for testing the s-binary rank d runs as follows. If mn < 2d2/ϵ, then find
all the entries of M with mn < 2d2/ϵ queries. If brs(M) = d, then accept. Otherwise, reject.
If mn ≥ 2d2/ϵ, then run Adaptive-Test-Rank(d, s, M, n, m, ϵ/2) (for the non-adaptive, we
run Non-Adaptive-Test-Rank(d, s, M, n, m, ϵ/2)) and output its answer.

We now show the correctness of this algorithm. If M is of s-binary rank d, then it is of
s-binary rank at most d, and the tester accepts.

Now, suppose f is ϵ-far from having s-binary rank d. If mn < 2d2/ϵ, the tester rejects. If
mn ≥ 2d2/ϵ, then, by Lemma 17, f is (ϵ− η)-far from having s-binary rank at most d, where
η = d2/(nm). Since η = d2/(nm) ≤ ϵ/2, the function f is (ϵ/2)-far from having s-binary
rank at most d, and therefore the tester, with probability at least 2/3, rejects.

6 Concluson and Open Problems

In this work, we introduced the notion of s-binary rank for (0, 1)-matrices, extending the
concept of binary rank. We established a tight upper bound on the size of matrices with
s-binary rank at most d, and showed the existence of matrices achieving this bound. Using
this result, we presented novel one-sided adaptive and non-adaptive testers for (0, 1)-matrices
with s-binary rank at most d, significantly improving the query complexity compared to
prior work. The adaptive tester requires Õ

((
d

≤s

)
2d/ϵ

)
queries, while the non-adaptive tester

requires Õ
((

d
≤s

)
2d/ϵ2

)
queries.

The following are open problems that are worth investigating:
Tighter Bounds on Query Complexity: Investigate whether the query complexity of the

testers for (0, 1)-matrices with s-binary rank at most d can be further improved. Specifically,
explore alternative approaches or refinements that can reduce the dependence on

(
d

≤s

)
and

2d in the query complexity bounds.
Generalization Beyond (0, 1)-Matrices: Extend the concept of s-binary rank to other types

of matrices, such as integer-valued matrices or matrices with entries from a larger alphabet.
Study the properties, computational aspects, and property testing of these generalizations.

Addressing these open problems will lead to a more profound understanding of the
s-binary rank, provide further insights into the structure of matrices, and potentially lead to
improved algorithmic techniques and applications in various fields.
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A first-order formula is called primitive positive (pp) if it only admits the use of existential quantifiers
and conjunction. Pp-formulas are a central concept in (fixed-template) constraint satisfaction
since CSP(Γ) can be viewed as the problem of deciding the primitive positive theory of Γ, and
pp-definability captures gadget reductions between CSPs.

An important class of tractable constraint languages Γ is characterized by having few subpowers,
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1 Introduction

Constraint satisfaction is a unifying framework for expressing a wide range of computational
tasks coming from a smorgasbord of real-life applications and theoretical contexts. In a CSP
instance, the goal is to assign values to variables subject to a list of constraints to be satisfied.
In the most general setting, a constraint consists of a tuple of variables (its scope) and a list
of admissible evaluations of the scope (i.e., tuples of values, forming the constraint relation).
Usually, the set of variables, the sets of admissible values for every variable (its domain), and
the list of input constraints are all finite. This simple formulation strikes a “perfect balance
between generality and structure” [3].

In this general formulation, the CSP is an NP-complete problem: for example, SAT
or graph 3-colorability are easily expressible in this framework. However, many problems
subsumed by it are tractable, e.g., 2-SAT, Horn-SAT, or checking the consistency of a system
of linear equations over Zp. A natural way to explore the complex landscape of the CSP,
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justified by applications as well as theory [13], is to fix a finite domain A and a finite set
of relations Γ on A that are allowed to appear as constraints (a constraint language) [25];
such fragment of the CSP is usually denoted by CSP(Γ). (Sometimes, constraint languages
on infinite domains, or with infinitely many relations are considered. But for simplicity,
following, e.g., [3], we keep the two standard finiteness assumptions throughout the paper.)

The CSP dichotomy theorem [10, 27, 28] states that for every constraint language Γ,
CSP(Γ) is in P or NP-complete. To tame the vast landscape of constraint languages, it was
immensely helpful to realize that various ad hoc “gadget” complexity reductions share a
common explanation using the notion of primitive positive (pp-) definability (i.e., the usual
first-order logic definability restricted to {∃,∧,=}-formulas) [19, 18] and the more general
notions of pp-interpretability and pp-constructibility [4]. In fact, the CSP dichotomy theorem
implies that CSP(Γ) is NP-complete if and only if Γ pp-constructs every finite constraint
language. Moreover, pp-definability and its generalizations have an external characterization
via so-called polymorphisms (“multivariate homomorphisms”) [15, 7, 17]. For an introduction
to the area, see [3].

Constraint languages Γ for which CSP(Γ) is solvable by a certain algorithmic approach
involving computing with compact representations of solution sets (generalizing bases of
vector spaces or strong generating sets from the Schreier-Sims algorithm for permutation
groups [26]) were characterized in [6, 16] as those that have few subpowers, that is, the
number of n-ary relations pp-definable from Γ is bounded by 2p(n) for some polynomial p(n).
This property, also called polynomial expressiveness [12], is equivalent to having either of the
following two properties where small means of size bounded by a polynomial in the arity n:

small generating sets, i.e., every relation pp-definable from Γ has a small subset that is
not contained in any proper pp-definable subset,
small independent sets, i.e., sets of tuples such that every tuple can be separated from
the remaining tuples by a pp-formula, are small.

The equivalence of those properties was established in [6, Proposition 1.4].
In this paper, we study another measure of “smallness” of a constraint language, that

we call short pp-definitions: every n-ary relation pp-definable from Γ is definable by some
primitive positive formula of polynomial length. Examples include constraint languages
encoding 2-SAT, or the consistency of linear systems over Zp.

A simple cardinality argument shows that a constraint language with short pp-definitions
must have few subpowers. We conjecture that the converse is also true and thus the two
properties are equivalent.

▶ Conjecture 1. A constraint language has short pp-definitions, if and only if it has few
subpowers.

We remark that exponential-length pp-definitions are needed for constraint languages
without few subpowers (cf. [6, Theorem 3.12]).

In Section 2 we give a formal definition of short pp-definitions, examples, and an exposition
of related properties. An equivalent condition (definability by pp-formulas with polynomially
many existential quantifiers) was studied in [23] for Boolean constraint languages (i.e.,
constraint languages on a two-element domain) under the name polynomial closedness. It can
be easily seen that Conjecture 1 is true in the Boolean case, as stated in [23, Corollary 1].

In Section 4 we prove Theorem 21, the main result of our paper, which confirms the
conjecture for a substantial class of constraint languages, namely those whose polymorphism
algebra generates a residually finite variety. This, in particular, implies that Conjecture 1
also holds for constraint languages on three-element domains (Corollary 23). The proof
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proceeds by first reducing to the case of critical relations (see [29]), and then employing
structural theorems from universal algebra, in a similar fashion as in [9]. We explain some
necessary background from universal algebra in Section 3.

Apart from being a natural property in constraint satisfaction, in Section 5 we argue
that short pp-definitions have further applications in the study of the subpower membership
problem SMP(A) over an algebraic structure A (see [21, 24, 9]), i.e., the problem of deciding
whether a given list of tuples over A generates another tuple over A. For algebras A with
few subpowers, compact representations provide a natural certificate for “Yes”-instances; this
was used to show that SMP(A) ∈ NP [20]. We argue that short pp-definitions can serve
as a natural certificate for “No”-instances. In particular, we show how short pp-definitions
impose an upper complexity bound of co-NP on the subpower membership problem. Thus,
Conjecture 1 would imply that SMP(A) ∈ NP ∩ co-NP, for all algebras A with few subpowers.

2 Preliminaries

Let A be a finite set. An n-ary relation R on A is any subset of n-tuples R ⊆ An. By a
constraint language on A (its domain) we mean any finite set Γ = {R1, . . . , Rm} of relations
on A of arbitrary, but finite arities.

A relation R is primitive positive definable (or pp-definable for short) from Γ, if it is
definable in first-order logic by a formula using only the relations from Γ, the equality relation,
conjunction, and existential quantification. Equivalently, in prenex normal form:

R(x1, . . . , xn) ↔ ∃y1∃y2 . . . ∃yk

∧
i∈{1,...,C}

Si(zi
1, . . . , z

i
ri

)

where Si is an ri-ary relational symbol representing a relation from Γ ∪ {=A} and zi
j ∈

{x1, . . . , xn, y1, . . . , yk}. We remark that CSP(Γ) can be defined as the problem of deciding
the primitive positive fragment of the first-order theory of Γ.

The set of all relations pp-definable from Γ, denoted by ⟨Γ⟩, forms a relational clone,
i.e., a set of relations on A containing the identity relation and closed under intersections,
direct products, projections, and permutations of coordinates. Any constraint language Γ
that generates a relational clone R = ⟨Γ⟩ is called a relational basis of R. Let us denote by
⟨Γ⟩n the set of all n-ary relations pp-definable from Γ.

The usefulness of pp-definability for the CSPs is summarized in the following theorem
going back to [19]. For a modern exposition as well as generalizations see [3] and [4].

▶ Theorem 2. If Γ and ∆ are constraint languages such that ∆ ⊆ ⟨Γ⟩, then there is a
logspace reduction from CSP(∆) to CSP(Γ).

In order to put Conjecture 1 on a firm footing, let us next formally define the notion of
few subpowers [6, 16] and the central concept of the present paper, short pp-definitions.

▶ Definition 3. A constraint language Γ has few subpowers, if there exists a polynomial p(n)
such that |⟨Γ⟩n| ≤ 2p(n) for all n > 0.

▶ Definition 4. Let Γ be a constraint language. We say that Γ has:
pp-definitions of length [at most] f(n), if for every n > 0 and every R ∈ ⟨Γ⟩n, R is
definable from Γ by a primitive positive formula ϕ of length |ϕ| ≤ f(n).
short pp-definitions if Γ has pp-definitions of length p(n) for some polynomial p(n).

Here we consider the length |ϕ| to be simply the number of symbols in some syntactical
representation of the formula. In the definition of short pp-definitions, one could alternatively
bound the number of atomic formulas in ϕ, or the number k of existentially quantified
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variables by a polynomial p(n). (The latter option was used in [23] in the notion of polynomial
closedness of ⟨Γ⟩.) Note that, since Γ is fixed and finite, these three possible definitions
coincide.

Clearly, having few subpowers is a property of the relational clone ⟨Γ⟩, independent of
the choice of the relational basis Γ. We observe that the same is true for short pp-definitions.
In fact, up to multiplication by a scalar, this is true for any bound f(n) on the length of
pp-definitions:

▶ Lemma 5. Let Γ and ∆ be constraint languages such that ⟨Γ⟩ = ⟨∆⟩. If Γ has pp-
definitions of length f(n), then ∆ has pp-definitions of length O(f(n)). In particular, Γ has
short pp-definitions if and only if ∆ does.

Proof. Let R ∈ ⟨∆⟩n = ⟨Γ⟩n. By assumption, R has a pp-definition ϕR from Γ of length
at most f(n). Since Γ ⊆ ⟨Γ⟩ = ⟨∆⟩, every relation S ∈ Γ can be defined from ∆ by some
pp-formula ψS . Let c = max{|ψS | : S ∈ Γ}. If we replace every atomic formula Si(zi

1, . . . , z
i
ri

)
in ϕR by a suitable variant of the formula ψSi , we obtain a pp-definition of R from ∆ of
length at most c · f(n). ◀

Central to the algebraic approach to the CSP is the idea that constraint languages up
to pp-definability (that is, relational clones) can be characterized by their polymorphisms.
Following the terminology from [3], a k-ary operation f : Ak → A is compatible with an n-ary
relation R ⊆ An, and R is invariant under f , if f applied coordinate-wise to any k n-tuples
from R yields an n-tuple that is also in R. A polymorphism of a constraint language Γ is
then any function on the domain that is compatible with all relations from Γ. As is usual,
we write Pol(Γ) to denote the set of all polymorphisms of Γ and, similarly, Inv(F) for the set
of all relations on the domain A invariant under a set of operations F . The key connection
between polymorphisms and pp-definability can be summarized in the following lemma.

▶ Lemma 6 ([15, 7, 17]). For any constraint language Γ, ⟨Γ⟩ = Inv(Pol(Γ)).

Few subpowers can be characterized by the existence of an edge polymorphism, that is, a
polymorphism satisfying certain algebraic identities (under all evaluations of variables in the
domain). Such characterizations are typical in the algebraic approach to the CSP.

▶ Theorem 7 ([6, 16]). A constraint language Γ has few subpowers, if and only if for some
k ≥ 2 there exists a k-edge polymorphism e ∈ Pol(Γ), that is, a (k + 1)-ary operation
e : Ak+1 → A satisfying the following identities:

e(y, y, x, x, x, . . . , x) ≈ x

e(y, x, y, x, x, . . . , x) ≈ x

e(x, x, x, y, x, . . . , x) ≈ x

e(x, x, x, x, y, . . . , x) ≈ x

...
e(x, x, x, x, x, . . . , y) ≈ x

In this case CSP(Γ) ∈ P.

The following two special cases were important intermediate steps towards Theorem 7 (as well
as the CSP dichotomy theorem) and, in particular, cover all Boolean (i.e., where A = {0, 1})
constraint languages with few subpowers:
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A Mal’tsev operation is a ternary operation m : A3 → A satisfying the identities
m(x, x, y) ≈ m(y, x, x) ≈ y. If m is a Mal’tsev operation, then e(x1, x2, x3) =
m(x2, x1, x3) is a 2-edge term.
A near-unanimity operation (of arity k ≥ 3) is an operation t satisfying the following
identities:

x ≈ t(y, x, . . . , x) ≈ t(x, y, x, . . . , x) ≈ t(x, . . . , x, y, x) ≈ t(x, . . . , x, y)

Then e(x1, x2, . . . , xk+1) = t(x2, . . . , xk+1) is a k-edge term. A ternary near-unanimity is
called a majority.

Let us now give two examples of constraint languages with short pp-definitions; Example 8
is invariant under a Mal’tsev operation, while Example 11 has a majority polymorphism.

▶ Example 8. The problem of checking consistency of a linear system over Z2 can be encoded
as CSP(Γ) for Γ = {RLin, C0, C1} where RLin = {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)} encodes
“x1 + x2 = x3”, C0 = {0}, and C1 = {1}. Indeed, any linear equation x1 + x2 + · · · + xn = b

can be encoded using auxiliary variables y1, . . . , yn−1 and three-variable equations

x1 + x2 = y1, y1 + x3 = y2, . . . , yn−2 + xn = yn−1, yn−1 = b

thus providing a pp-definition:

∃y1 . . . ∃yn−1 (RLin(x1, x2, y1) ∧ · · · ∧RLin(yn−2, xn, yn−1) ∧ Cb(yn−1))

The relational clone ⟨Γ⟩ then consists of all affine subspaces of Zn
2 , for any n > 0. The

relations from the relational basis Γ are all affine and it is easy to see that relations pp-
definable from affine subspaces are also affine subspaces. On the other hand, an affine
subspace R of Zn

2 can be described by at most n linear equations and the conjunction of
the corresponding pp-formulas clearly defines R. The length of this conjunction is in O(n2)
and therefore Γ has not only few subpowers but also short (quadratic) pp-definitions. Γ is
arguably one of the easiest examples of a constraint language with a Malt’sev polymorphism;
in fact ⟨Γ⟩ = Pol({m}) for the Mal’tsev operation m(x, y, z) = x+ y + z mod 2.

While Conjecture 1 is open even under the presence of a Mal’tsev polymorphism, the
above example can be generalized to a central Mal’tsev polymorphism, that is, one which
is compatible with its own function graph, i.e., the 4-ary relation R = {(x, y, z,m(x, y, z)) |
x, y, z ∈ A}. (The reason is that the polymorphism algebra is then affine, i.e., polynomially
equivalent to a module.)

For the second example, we need the following characterization of relations invariant
under near-unanimity operations:

▶ Theorem 9 ([2]). If a relation R ⊆ An is invariant under a (k + 1)-ary near-unanimity
operation t, then it is pp-definable from its projections to at most k-ary subsets of coordinates
by the following formula:

R(x1, . . . , xn) ↔
∧

I={i1,...,il}
I⊆[n],|I|≤k

projI R(xi1 , . . . , xil
)

Here, for a relation R ⊆ An and a subset of coordinates I ⊆ {1, 2, . . . , n}, the projection
of R to I = {i1, i2, . . . , ik} (where i1 < i2 < · · · < ik) is the k-ary relation projI R =
{(ai1 , . . . , aik

) | (a1, . . . , an) ∈ R} ∈ ⟨Γ⟩. Thus, if a constraint language Γ has a (k + 1)-
ary near-unanimity polymorphism t, then every relation R ∈ ⟨Γ⟩n can be written as the
conjunction of

(
n
k

)
relations of arity k (for n ≥ k). As a direct corollary of Theorem 9 we

obtain:

MFCS 2023
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▶ Corollary 10. Let Γ be a constraint language with a (k + 1)-ary near-unanimity polymor-
phism. Then Γ has pp-definitions of length O(nk).

▶ Example 11. Corollary 10 can be exemplified by 2-SAT. The standard way to encode
2-SAT as a CSP is by using the constraint language Γ2-SAT = {R00, R01, R10, R11} where
Rij = {0, 1}2 \ {(i, j)} represent each clause type (see [3, Example 2.2]). It is well known
that the relations pp-definable from Γ2-SAT are exactly those invariant under the majority
operation, i.e., the unique 3-ary near-unanimity operation on {0, 1}. By Corollary 10, Γ2-SAT
has quadratic pp-definitions.

▶ Theorem 12 (see [23, Corollary 1]). Let Γ be a Boolean constraint language with few
subpowers, then Γ has quadratic pp-definitions. Thus Conjecture 1 holds for constraint
languages Γ over Boolean domains.

Proof. By the classification of Post’s lattice, every Boolean constraint language with few
subpowers has either the Mal’tsev polymorphism x+ y + z mod 2 or the (unique) majority
polymorphism (this was observed, e.g., in [12]). In both cases, we obtain quadratic pp-
definitions, as in Examples 8 and 11. ◀

We remark that, in general, the situation is much more complicated than in Theorem 12:
Already in the 3-element case there are constraint languages that have few subpowers, but
neither a Mal’tsev, nor a near-unanimity polymorphism (e.g. [8, Examples 2.1.1 and 2.1.2]).

3 Universal Algebra

In the following, we are going to introduce some basic notions from universal algebra that
will allow us to state our main result (Theorem 21) in its full generality. In Section 3.1
we furthermore discuss how short pp-definitions behave with respect to basic algebraic
constructions. For more background in universal algebra we refer to the textbooks [5, 11].

An algebra A = (A; (fi)A
i∈I) is a first-order structure in a purely functional language

(fi)i∈I (where each symbol fi has an associated arity). We say A is finite if its domain A

is finite. A subalgebra B = (B; (fi)B
i∈I) of an algebra A = (A; (fi)A

i∈I) (denoted B ≤ A) is
an algebra obtained by restricting all basic operations fA

i to an invariant subset B ⊆ A.
The product

∏
i∈I Ai of a family of algebras (Ai)i∈I in the same language is defined as

the algebra with domain
∏

i∈I Ai, whose basic operations are defined coordinate-wise. A
homomorphism h : A → B between algebras is defined as a map that preserves all basic
operations, i.e., h(fA

i (a1, . . . , an)) = fB
i (h(a1), . . . , h(an)) for all i ∈ I. The kernel of every

homomorphism (i.e., the relation defined by (x, y) ∈ θ ↔ h(x) = h(y)) is a congruence, that
is, an equivalence relation invariant under A. Conversely, for every congruence α of A, it is
easy to see, that one can construct a quotient algebra A/α, as the homomorphic image of
the quotient mapping x 7→ x/α. Under the inclusion order, the set of all congruence of an
algebra A forms the congruence lattice Con(A). The minimal element of this lattice is always
the trivial congruence 0A = {(x, x) | x ∈ A}. An algebra A is called subdirectly irreducible if
0A has a unique cover in Con(A), i.e., there is a unique minimal non-trivial congruence.

By H, S, and P we denote the closure of a set of algebras under homomorphic images,
subalgebras, and products respectively. It is well-known that the closure of any set of algebras
under HSP is a variety, i.e., a class of algebras defined by a set of identities (by Birkhoff’s
theorem, see, e.g., [5]). A variety is called residually finite if (up to isomorphism) it only
contains finitely many subdirectly irreducible algebras, all of which are finite.
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3.1 Algebras with short pp-definitions
If we assign a function symbol to every element of Pol(Γ), for a constraint language Γ, then
we can also regard Pol(Γ) as an algebra (the polymorphism algebra of Γ). On the other hand,
for every algebra A, its invariant relations Inv(A) form a relational clone. Thus, it makes
sense to say that a finite algebra A has few subpowers if Inv(A) has few subpowers.

Note that a relation R is invariant under A if and only if R ≤ An for some n, i.e., R is a
subalgebra of some power of A (such R is also called a subpower of A, which motivates the
notion of having “few subpowers”).

By a (non-constructive) proof of Aichinger, Mayr and McKenzie [1], for every algebra
A with few subpowers there exists a finite relational basis Γ of Inv(A), i.e., a constraint
language, such that Inv(A) = ⟨Γ⟩ (for general algebras A this is not the case). Thus, it
makes sense to define the following:

▶ Definition 13. An algebra A has pp-definitions of length f(n), if there exists a constraint
language Γ such that Inv(A) = ⟨Γ⟩, and Γ has pp-definitions of length f(n). An algebra A
has short pp-definitions, if it has pp-definitions of length p(n), for some polynomial p.

Note that, by Lemma 5, having short pp-definitions is independent of the choice of the
relational basis Γ. By the following lemma, having short pp-definitions is also preserved under
forming finite powers of algebras. The proof is provided in Section A.1 in the Appendix.

▶ Lemma 14. Let A be an algebra and B = Ak for some k > 1. Then B has pp-definitions
of length O(f(n)) if and only if A has pp-definitions of length O(f(⌈ n

k ⌉)).

In the following, we will also work with multi-sorted relations, as this provides a natural
framework for our proof in Section 4. More specifically, if A is a finite set of finite algebras
of the same language, then it still makes to study the set of all invariant relations R ≤
A1 × . . .× An for A1, . . . ,An ∈ A. In particular, the set of all such relations will still form
a relational clone (where variables have possibly different domains Ai). If, furthermore,
all elements of A have few subpowers, the finite relational basis result of Aichinger, Mayr
and McKenzie [1] still applies, and it makes sense to define the property of having short
pp-definitions for A (we refrain from giving technical details here). We remark that studying
constraint languages in which the variables can come from different domains is a fairly
standard viewpoint in CSP; it was, for example, used in the proof of the CSP dichotomy
theorem by Zhuk [28].

This multisorted approach allows us to consider relations over the closure HS(A) of A
under homomorphic images and subalgebras instead of only A itself. This is justified by the
following lemma; the proof is provided in Section A.2 of the Appendix.

▶ Lemma 15. An algebra A has pp-definitions of length O(f(n)), if and only if the family
of algebras HS(A) has (multisorted) pp-definitions of length O(f(n)).

In particular, Lemma 15 implies that A has short pp-definitions, if and only if HS(A)
has (multisorted) short pp-definitions. We remark that Lemma 15 does not imply that any
single algebra B ∈ HS(A) has short pp-definitions if A does. In fact, we do not know if this
is true (see Question 25 in the Discussion section).

4 Main result

In this section, we prove the main result of our paper. We first need to introduce some
standard definitions that found prominent use in the universal algebraic approach to constraint
satisfaction before (see, e.g., [8, Chapter 2]).
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A relation R ≤ A1 × . . . × An is called critical if it is ∧-irreducible, i.e., it cannot be
written as the intersection of strictly bigger relations Q ≤ A1 × . . . × An, and it has no
dummy variables, i.e., it depends on all of its inputs.

A binary relation R ⊆ A × B has the parallelogram property if (a, c), (a, d), (b, c) ∈ R

implies (b, d) ∈ R. An n-ary relation R ⊆ A1 ×A2 × . . .×An has the parallelogram property,
if for all subsets I ⊂ {1, 2, . . . , n} it has the parallelogram property when considered as a
binary relation R ⊆ (

∏
i∈I Ai) × (

∏
j /∈I Aj). The signature of R is the following set of triples:

Sig(R) = {(i, a, b) ∈ [n]×A2
i | ∃x̄, ȳ ∈ R with xj = yj for j = 1, . . . , i−1 and xi = a, yi = b}

In the proof of Lemma 17 below, we will need the following straightforward observation.

▶ Observation 16. If R has the parallelogram property, R ⊆ S, and Sig(R) = Sig(S), then
R = S.

Using these notions, we can reduce the problem of finding short pp-definitions to critical
relations with the parallelogram property:

▶ Lemma 17. Let A be an algebra with a k-edge term. If all the critical relations R ≤ An with
parallelogram property have pp-definitions of length at most f(n), then A has pp-definitions
of length O(nk + n · f(n)).

Proof. Clearly, every relation R ≤ An is the intersection of the ∧-irreducible relations above
it (in the inclusion order), thus it can be written as a conjunction of critical relations. Hence
we only need to give an upper bound on the number of such critical relations.

By [20, Theorem 3.6], the presence of a k-edge term implies that every critical relation
is either of arity ≤ k, or has the parallelogram property. This further implies (see, e.g., [8,
Corollary 2.3.5.]) that R = R′∧

∧
I⊆[n],|I|≤k projI(R), where R′ ≤ An is the minimal invariant

relation containing R and having the parallelogram property. Clearly,
∧

I⊆[n],|I|≤k projI(R)
can be written as the conjunction of at most c · nk many critical relations, for some c > 0.

The relation R′, if not already ∧-irreducible itself, is given by the intersection of all
∧-irreducible relations S > R′ that have the parallelogram property. Denote by S the set
of all such relations. For every (i, a, b) /∈ Sig(R′) where a ∈ proji R′ choose S(i,a,b) ∈ S such
that (i, a, b) /∈ Sig(S(i,a,b)). Then by Observation 16, R′ =

⋂
(i,a,b)/∈Sig(R′) S(i,a,b) which is an

intersection of at most n · |A|2 ∧-irreducible relations. (To see that such S(i,a,b) exists, let
x̄ ∈ R′ be such that xi = a and let ȳ be such that yi = b, yj = xj for j ̸= i. We can choose
S(i,a,b) to be a maximal relation containing R but omitting ȳ.)

Consequently, R′ can be defined as a conjunction of at most n · |A|2 many critical relations
with the parallelogram property which concludes the proof. ◀

We remark that an analogous statement to Lemma 17 also holds for multisorted relations
R ≤ A1 × · · · × An, such that the sorts Ai come from a finite set of algebras that have a
common k-edge term. In particular, this is the case for Ai ∈ HS(A), if A has a k-edge term
(cf. Lemma 15).

When dealing with multisorted relations R over HS(A), we can furthermore always
restrict the domain Ai of the i-th variable of a relation R to its projection proji(R) ≤ Ai.
So, without loss of generality, we can assume that R ≤sd A1 × . . .× An is subdirect, i.e., its
projection to every coordinate i is the full domain Ai.

For a subdirect relation R ≤sd B × C with the parallelogram property, let us define the
linkedness congruence θB on B by (x, y) ∈ θB ↔ (∃c ∈ C)(R(x, c) ∧R(y, c)). For a general
relation R ≤sd A1 × . . .× An with the parallelogram property, and any proper subset I ⊂ [n]
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of coordinates, we define the linkedness congruence θI on projI(R) analogously, where we
consider R as a binary relation between projI(R) and proj[n]\I(R) (we write θi instead of
θ{i}). It follows from the parallelogram property that θI is indeed a congruence of projI(R).
A subdirect relation R ≤sd A1 × . . .× An is called reduced if every tuple (a1, . . . , an) ∈ R

is already uniquely determined by (a1, . . . , ai−1, ai+1, . . . , an), for any coordinate i; in other
words, θi is trivial, for every i = 1, . . . , n. By the following lemma, we can reduce the quest for
short pp-definitions to reduced, subdirect, critical relations with the parallelogram property:

▶ Lemma 18. Let A be an algebra with a k-edge term. Assume that all relations R ≤sd

A1 ×· · ·×An with Ai ∈ HS(A) that are reduced, critical, and have the parallelogram property,
have (multisorted) pp-definitions of length at most f(n). Then A has pp-definitions of length
O(nk + n · f(n)).

Proof. We first prove that we can pp-define all critical relations R ≤sd A1 × . . . × An

with Ai ∈ HS(A) that have the parallelogram property (but are not necessarily reduced),
by pp-definitions of length at most O(f(n)). Given such a relation, let us consider the
linkedness congruence θi ∈ Con(Ai) for every coordinate i. Then let us define the quotient
R′ = R/(θ1, . . . , θn). It is not hard to see that R′ ≤sd A1/θ1 × · · · × An/θn, is also critical,
and has the parallelogram property. Furthermore, by definition of θi, R′ is reduced.

Since R has the parallelogram property, it is equal to the full preimage of R′ under the
quotient map (x1, . . . , xn) 7→ (x1/θ1, . . . , xn/θn). Thus, every pp-definition ϕ′(x1, . . . , xn)
of R′ gives rise to the pp-definition ∃y1, . . . , yn (

∧n
i=1(xi/θi = yi) ∧ ϕ′(y1, . . . , yn)) of length

O(f(n)) which defines R; this proves our claim. The statement of the lemma then follows
directly from (the multi-sorted version of) Lemma 17, and Lemma 15. ◀

Any relation R ≤sd A1 × . . .× An as in Lemma 18 comes with several nice properties
(in algebraic terms, it is a graph of a joint similarity between the algebras Ai, cf. [8,
Section 2.3.1]). We are mainly going to need the following property in Lemma 19, respectively
its generalization in Lemma 20:

▶ Lemma 19 ([20, Lemma 2.4]). Let A1, . . . ,An be algebras with few subpowers, and let
R ≤sd A1 × . . .× An be a reduced, critical relation with the parallelogram property. Then
every Ai is subdirectly irreducible.

▶ Lemma 20. Let A1, . . . ,An be algebras with few subpowers, and let R ≤sd A1 × . . .× An

be a critical relation with the parallelogram property. For I ⊂ [n], let θI be the linkedness
congruence on projI(R) with respect to R. Then θI is ∧-irreducible.

Proof. Since R is ∧-irreducible, there is a unique cover R∗ > R in the lattice of all subalgebras
of A1×. . .×An. A tuple ā = (a1, . . . , an) ∈ R∗\R is called a key tuple of R (cf. [29]). It follows
from the criticality of R that for every j = 1, . . . , n, there is a tuple (a1, . . . bj , . . . , an) ∈ R

that only differs from ā at position j.
For simplicity, let us assume that I = {1, 2, . . . , i} with i < n. Then, the linkedness-

congruence θI has an equivalence class containing all elements of the form (a1, . . . bj , . . . , ai)
for j = 1, . . . , i. Note that (a1, a2, . . . , ai) ∈ projI(R) is not an element of this class.

To prove that θI is ∧-irreducible, let θ′ be a congruence strictly above θI . We claim
that then θ′ must also contains the pair ((a1, a2, . . . , ai), (b1, a2, . . . , ai)). To prove the
claim, let us define R′(x̄) = ∃ȳI

(
θ′(x̄I , ȳI) ∧R(ȳI , x̄[n]\I)

)
. As R′ properly contains R,

it also must contain its cover R∗, and thus the key tuple (a1, a2, . . . , an). Moreover, the
linkedness congruence of R′ on coordinates I is equal to θ′, thus θ′ must contain the
pair ((a1, a2, . . . , ai), (b1, a2, . . . , ai)). So θI has a unique cover θ∗

I , which is the congruence
generated by θI ∪ {((a1, a2, . . . , ai), (b1, a2, . . . , ai))}; this finishes the proof. ◀
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We are now ready to prove our main result:

▶ Theorem 21. Let A be an algebra with a k-edge term, and assume that HSP(A) is
residually finite. Then A has pp-definitions of length O(nk).

Proof. Let VSI consist of all subdirectly irreducible elements of HSP(A). Since HSP(A) is
residually finite, VSI contains up to isomorphism only finitely many algebras, all of which
are finite. In particular VSI is a subset of HS(Al), for some finite power l.

By Lemma 14, it is enough to prove pp-definitions of length O(nk) for Al. By Lemma 18,
it suffices to prove that every reduced, critical relation R ≤sd A1 × . . .×An with Ai ∈ HS(Al)
that has the parallelogram property, has a (multisorted) pp-definition of linear length.

Let Γ be the set of all at most ternary invariant relations over HS(Al). We construct a
pp-definition of R from Γ of length linear in n, by induction on n. For n ≤ 3, R itself is in Γ.

For general R ≤sd A1 × . . .× An with the parallelogram property, recall the definition
of the linkedness congruence θI . We then define the algebra A1,2 = proj{1,2}(R)/θ{1,2},
and the relations Q = {(x1, x2, y1,2) ∈ A1 × A2 × A1,2 | y1,2 = (x1, x2)/θ1,2} and R′ =
{(y1,2, x3, . . . , xn) | ∃x1, x2 (Q(x1, x2, y1,2) ∧R(x1, x2, x3, . . . , xn))}. Note that Q ≤ A1 ×
A2 × A1,2, and R′ ≤ A1,2 × A3 × · · · × An. Since R has the parallelogram property, R can
be defined by the pp-formula (∃y1,2 ∈ A1,2) (Q(x1, x2, y1,2) ∧R′(y1,2, x3, . . . , xn)).

By Lemma 20, θ{1,2} is ∧-irreducible. This implies that A1,2 is subdirectly irreducible
and hence an element of VSI ⊆ HS(Al). In particular, this means that Q is a relation from
our relational basis Γ. The relation R′ is of arity n− 1, and thus, by induction assumption,
has a pp-definition of linear length. This finishes our proof. ◀

Note that, although in the proof of Theorem 21 we found a ternary constraint language Γ
defining the reduced critical relations R ≤sd A1 × . . .× An with parallelogram property, the
same may not be true for the original algebra A. An explicit bound on the maximal required
arity is given by 3l, where l is such that all subdirectly irreducible elements of HSP(A) are
contained in HS(Al). We are not aware of any better bound than the double exponential
l ≤ |A||A||A|+1+1 [14] (see also [8, Theorem A.5.27.]).

As an immediate consequence of Theorem 21 we get that every 3-element algebra with
few subpowers has short pp-definitions, confirming Conjecture 1 for the 3-element case. It is
well known that few subpowers imply congruence modularity [6, Theorem 4.2]; thus we can
use the following fact:

▶ Theorem 22 ([8, Corollary A.5.31.]). Let A be an algebra on a 3-element set, such that
HSP(A) is congruence modular. Then HSP(A) is residually finite.

▶ Corollary 23. Let Γ be a constraint language on a 3-element domain. Then Γ has short
pp-definitions if and only if Γ has few subpowers. More precisely, Γ has pp-definitions of
length O(nk), where k is the minimal number such that Γ has a k-edge polymorphism.

Proof. Let us assume that Γ is a constraint language with a k-edge polymorphism, and let
A = Pol(Γ) be its polymorphism algebra. Since the existence of an edge operation implies
that HSP(A) is congruence modular [6, Theorem 4.2], by Theorem 22, HSP(A) is residually
finite. By Theorem 21, A, and thus also Γ, has pp-definitions of length O(nk).

If Γ has few subpowers, then by Theorem 7, it has a k-edge polymorphism for some k.
Thus Γ has short pp-definitions if it has few subpowers. ◀
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5 The Subpower Membership Problem

The Subpower Membership Problem SMP(A) of a finite algebra A is the computational
problem in which the input consists of a list of tuples b̄, ā1, . . . , āk ∈ An, for arbitrary n ≥ 1,
and one needs to decide whether b̄ lies in the subalgebra SgAn(ā1, . . . , āk) generated by
ā1, . . . , āk, i.e., in the smallest R ≤ An that contains ā1, . . . , āk.

The existence of an efficient algorithm for SMP(A) implies that it is feasible to represent
the relations in Inv(A) by some generating set of tuples. In particular, in the context of
constraint satisfaction, it was remarked by several authors (see, e.g., [9]) that a polynomial-
time algorithm for SMP(A) would allow us to define constraint satisfaction problems over
infinite constraint languages Γ ⊆ Inv(A), where the constraint relations in Γ are encoded by
generating tuples. In [16], any algebra A with SMP(A) in P was referred to as polynomially
evaluable.

While there are algebras for which SMP(A) is EXPTIME-complete [22], it was asked in
[16, Question 3] whether all algebras with few subpowers are polynomially evaluable. An
affirmative answer was given for several special cases [24, 9], but the question still remains
open in general. The best general upper bound on the complexity of SMP(A) for algebras
with few subpowers is NP [9]. This bound is based on the fact that membership of an element
in a relation R ≤ An can always be witnessed by a compact representation of R, i.e., a small,
canonical generating set. The difficulty in finding deterministic polynomial algorithms lies in
efficiently computing such compact representations of R from an arbitrary generating set.

Note that for an algebra A with Inv(A) = ⟨Γ⟩, the non-membership of a tuple b̄ in a
relation SgAn(ā1, . . . , āk) can be witnessed by a pp-formula ϕ(x̄) over Γ, such that ϕ holds
for all tuples ā1, . . . , āk, but not for b̄.

If Γ has short pp-definitions, we can guess such a certificate ϕ for “No”-instances of
SMP(A), and verify it in polynomial time. As a direct consequence of this (and the fact that
short pp-definitions imply few subpowers), we obtain the following:

▶ Theorem 24. Let A be an algebra with short pp-definitions. Then SMP(A) ∈ NP ∩ co-NP.

In particular, Conjecture 1 would imply that SMP(A) ∈ NP ∩ co-NP for every algebra A
with few subpowers. Note, however, that in the setting of our main result (Theorem 21),
this does not provide any progress on the subpower membership problem, since it was shown
in [9] that SMP(A) is even in P for every algebra A with few subpowers that generates a
residually finite variety.

6 Discussion

By Theorem 21, constraint languages Γ with few subpowers, whose polymorphism algebra
generates a residually finite variety, have short pp-definitions. While this confirms Conjecture 1
for a large subclass of constraint languages, much work remains to prove the conjecture in
full generality.

The condition of residual finiteness does not bear much importance in constraint sat-
isfaction, it is mainly used in purely algebraic contexts. Important steps to connect short
pp-definitions closer to the theory of constraint satisfaction would be to extend our results
to specific tractability classes (such as constraint languages with Mal’tsev polymorphisms),
and to show invariance under pp-interpretations:

▶ Question 25. Let Γ and ∆ be two constraint languages, such that ∆ is pp-interpretable in
Γ and Γ has short pp-definitions. Then, does ∆ also have short pp-definitions?
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Pp-interpretations are a generalization of pp-definitions, that describe certain gadget
reductions between constraint languages on different domains. All standard tractability classes
(including few subpowers, Mal’tsev, near-unanimity) are closed under pp-interpretations,
which motivates Question 25 (note that Conjecture 1 implies a positive answer). We remark
that we do not know the answer to this question even for ∆ being pp-definable in Γ (as
Lemma 5 assumes pp-interdefinability). In the special case of pp bi-interpretable structures,
Question 25 has a positive answer by a straigthforward generalization of the proof of Lemma
5, we thank the anonymous reviewer for this observation. In algebraic terms, Question 25
asks whether for A with short pp-definitions, it is the case that also every extension of
every algebra B ∈ HSPfin(A) has short pp-definitions; for finite powers Pfin, we verified the
statement in Lemma 14.

As discussed in Section 5, it is also essential for progress on the Subpower Membership
Problem to extend our results to algebras A that do not generate residually finite varieties.
While we did not present any results on this in this paper, we are aware of singular examples
of such algebras with short pp-definitions (such as the 4-element algebra, described by Brady
in [8, Example 2.3.2.]; short pp-definitions follow directly from his analysis).

In order to improve the complexity result of Theorem 24 and put SMP(A) in the class
P, we would need an explicit method of efficiently computing a short pp-definition for a
relation R = SgAn(ā1, . . . , āk) given by its generators ā1, . . . , āk. This motivates the following
question:

▶ Question 26. Let Γ be a constraint language with short pp-definitions. Is there a polynomial-
time algorithm that computes a (short) pp-definition of a relation R ≤ ⟨Γ⟩n, given by a set
of generators ā1, . . . , āk?

We remark that over Boolean domains, Question 26 has a positive answer (see Examples
8 and 11).

Finally, recall that the bound from Theorem 21 is a polynomial of degree k if Γ has a
k-edge polymorphism. It is therefore tempting to conjecture that the same degree could be
enough in general for Conjecture 1. Note that the number of n-ary pp-definable relations,
for Γ with a k-edge polymorphism, is known to be in 2O(nk) [16, Theorem 3.4].
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A Omitted proofs of technical lemmata

A.1 Proof of Lemma 14
Proof. It is straightforward to see that any relation R ⊆ Bn is invariant under B if and only
if it is invariant under A, when interpreted as an kn-ary relation on A.

We are first going to prove the “only if” direction. Let ∆ be a relational basis of Inv(B).
By interpreting every m-ary relation Q ∈ ∆ as a km-ary relation Q′ ≤ Akm, we obtain a
relational basis ∆′ = {Q′ | Q ∈ ∆} of Inv(A).

Let R ≤ An. By adding dummy variables, we can assume without loss of generality that
n = kℓ for ℓ = ⌈ n

k ⌉. Then by assumption, R considered as an ℓ-ary relation over B has a
pp-definition ϕ(x1, . . . , xℓ) from ∆ of length in O(f(ℓ)). If we substitute each (B-valued)
variable in ϕ by a k-tuple of (A-valued) variables, and each ∆-predicate Q in ϕ by the
corresponding ∆′-predicate Q′, then we obtain a pp-definition ϕ′ of R of length at most
k · f(l) = k · f(⌈ n

k ⌉). Note further that existentially quantifying all the additionally added
dummy variables adds only constantly many symbols. Thus A has pp-definitions of length
O(k · f(⌈ n

k ⌉)) = O(f(⌈ n
k ⌉)).

Now let us prove the “if” direction. Let Γ be a relational basis of Inv(A). Let e : A →
Ak be the map x 7→ (x, . . . , x). For every Q ∈ Γ, we define Q′ = {(e(x1), . . . , e(xm)) |
(x1, . . . , xm) ∈ Q} ≤ Bm, and we define the binary relations Pi = {((x1, . . . , xk), e(xi)) |
(x1, . . . , xk) ∈ B} ≤ B2, for i = 1, . . . , k. We construct the relational basis of Inv(B) as
Γ′ = {Q′ | Q ∈ Γ} ∪ {P1, . . . , Pk}.

Let R′ ≤ Bn and let R ≤ Akn be the relation R′ considered as a kn-ary relation over A.
By assumption, there exists a pp-definition ϕ(x1, . . . , xnk) of R ≤ Akn over Γ of length
in O(f(⌈ kn

k ⌉)) = O(f(n)). Let z1, . . . , zℓ be its existentially quantified variables. Let us
then define ϕ′(y1, y2, . . . , yn) as a pp-formula over Γ′ with existentially quantified variables
x′

1, . . . , x
′
nk, z

′
1, . . . , z

′
ℓ and predicates Pi(yj , x

′
(j−1)(k+i)) for all i ∈ [k], j ∈ [n], as well as

Q′(u′
1, . . . , u

′
m) for every predicate Q(u1, . . . , um) in ϕ with ui ∈ {x1, . . . , xnk, z1, . . . , zℓ}. It

is easy to check that ϕ′ defines R′ ≤ Bn over Γ′. Clearly, the length of ϕ′ is in O(f(n)). ◀

A.2 Proof of Lemma 15
Proof. Let Γ be a relational basis of Inv(A), and let R ≤ A1 × . . .× An with Ai ∈ HS(A).
So Ai = hi(Si) for a subalgebra Si ≤ A and a homomorphism hi : Si → Ai. Note that the
graph of this homomorphism Ghi = {(a, hi(a)) : a ∈ Si} ≤ Si × Ai is an invariant relation.
We define Γ′ to be the union of Γ and all binary relations Gh. It is not hard to see that
R′ = {(a1, . . . , an) ∈ S1 × · · · × Sn | (h1(a1), . . . , hn(an)) ∈ R} is invariant under A. By
assumption, R′ has a pp-definition ϕ′(x1, . . . , xn) of length in O(f(n)). The relation R

can then be defined by the pp-formula ∃y1, . . . , yn (
∧n

i=1 Ghi
(yi, xi) ∧ ϕ(y1, . . . , yn)), whose

length is also in O(f(n)).
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For the converse, let us consider relations R ≤ A1 × . . . × An with Ai ∈ HS(A) from
any relational basis Γ of Inv(HS(A)). Then Ai = hi(Si), for a subalgebra Si ≤ A and a
homomorphism hi : Si → Ai. As above, R′ = {(a1, . . . , an) ∈ An | (h1(a1), . . . , hn(an)) ∈ R}
is invariant under A. It is not hard to see that Γ′ = {R′ | R ∈ Γ} is a relational basis of
Inv(A), and for any pp-definition ϕ of a relation Q ≤ An over Γ, the formula ϕ′ obtained by
replacing every occurrence of the symbol R by R′ defines Q over Γ′. ◀
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Abstract
In the online simple knapsack problem, a knapsack of unit size 1 is given and an algorithm is tasked
to fill it using a set of items that are revealed one after another. Each item must be accepted or
rejected at the time they are presented, and these decisions are irrevocable. No prior knowledge
about the set and sequence of items is given. The goal is then to maximize the sum of the sizes of
all packed items compared to an optimal packing of all items of the sequence.

In this paper, we combine two existing variants of the problem that each extend the range of
possible actions for a newly presented item by a new option. The first is removability, in which
an item that was previously packed into the knapsack may be finally discarded at any point. The
second is reservations, which allows the algorithm to delay the decision on accepting or rejecting a
new item indefinitely for a proportional fee relative to the size of the given item.

If both removability and reservations are permitted, we show that the competitive ratio of the
online simple knapsack problem rises depending on the relative reservation costs. As soon as any
nonzero fee has to be paid for a reservation, no online algorithm can be better than 1.5-competitive.
With rising reservation costs, this competitive ratio increases up to the golden ratio (ϕ ≈ 1.618) that
is reached for relative reservation costs of 1 −

√
5

3 ≈ 0.254. We provide a matching upper and lower
bound for relative reservation costs up to this value. From this point onward, the tight bound by
Iwama and Taketomi for the removable knapsack problem is the best possible competitive ratio, not
using any reservations.
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1 Introduction

Online problems model situations where an algorithm receives an input piece-wise. The
analysis of online problems does not revolve around how much time and space is used when
solving the problem, but how good the solution provided by an online algorithm is with
respect to an optimal offline counterpart. In classical online models, an online algorithm
receives a piece of input or request and must output some irrevocable part of the solution
before the next request arrives, without room for changing the output later on.
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The simple knapsack problem is, as the name suggests, a simplification of the classical
knapsack problem: Given a set of items I, a size function w : I → R and a gain function
g : I → R, the task is to find a subset of items S ⊆ I such that

∑
i∈S w(i) ≤ 1 and

∑
i∈S g(i)

is maximized. In the simple knapsack problem, w : I → [0, 1] and w(i) = g(i) for all items
i ∈ I. The offline knapsack problem is a classical hard optimization problem and has been
shown to be NP-complete [14]. Both the knapsack problem and the simple knapsack problem
admit fully polynomial time approximation schemes [11].

In this work we study the online simple knapsack problem. Given a knapsack with
capacity 1, an algorithm receives a request sequence S = {x1, . . . , xn} consisting of items of
size smaller than or equal to 1, and must decide at each step whether to take such an item or
reject it. The length of the sequence is initially unknown to the algorithm and the decision
on each item must be made before the next item arrives. The decisions are irrevocable, and
once an item has been packed or rejected, the decision cannot be reversed in later steps.

Competitive analysis was introduced by Sleator and Tarjan [19] as a way to analyze the
performance of online algorithms. The strict competitive ratio of an online algorithm for
an online maximization problem, such as the online simple knapsack problem, is the ratio
between the gain obtained by an optimal offline algorithm and the gain obtained by the
online algorithm in the worst-case instance. For an introduction to online analysis, we refer
the reader to the standard book by Borodin and El-Yaniv [4].

Several variants of online models have been introduced to discern which problems are
truly complex, or have a high information content, and which problems are simple in general
but contain some rare worst-case instances yielding large competitive ratios. Some of these
approaches, such as randomized algorithms [1], advice complexity [7, 10, 15], randomization
of the adversary [6, 16, 18], etc. have been applied to various online problems, including the
online simple knapsack problem, with some success.

In the general online setting, it is well-known [17] that there cannot be an algorithm
for the online simple knapsack problem – and thus also for the online knapsack problem –
with a bounded competitive ratio. Thus, most research so far has been focused on analyzing
some variants of the problem or of the online model. Iwama and Taketomi [12] introduced
a variant that adds the possibility to remove previously packed items from the knapsack,
without any additional costs. This can be done at any point during the run of an algorithm.
They showed a tight competitive ratio of the golden ratio ϕ ≈ 1.618 for this model.

Recently Böckenhauer et al. [2] introduced a model for the online simple knapsack that
adds the possibility to reserve items for a fee proportional to their size. In this model, if
an item is reserved, the decision whether the item should be added to the knapsack can be
postponed to a later point. However, if an algorithm decides to reserve an item, it has to pay
some reservation cost c = xα that depends on a given parameter α between 0 and 1, and
the item size x. Surprisingly, in this case, even for arbitrarily small values of the reservation
parameter α, the competitive ratio is not better than 2.

In this paper, we consider a variant of the online simple knapsack problem where an
algorithm is allowed to reserve items (reservation) or alternatively to remove items previously
placed into the knapsack (removability). Both of these alternatives allow an algorithm to
postpone or alter decisions on whether to pack an object. Our reason to choose this variant
is that it is a variant of the online simple knapsack with bounded competitive ratio below
2, the best ratio that the reservation model allowed. Some of the questions we wanted to
answer is whether the reservations would help at all, and if so, if it is possible to achieve a
competitive ratio approaching 1 for low reservation costs. We also want to know if the model
behaves similarly to the secretary problem with reservation [5], where for large reservation
costs the competitive ratio is the same as without reservations.
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Figure 1 A schematic plot of the competitive ratio with respect to the reservation costs α for the
online simple knapsack problem with reservation and removability.

Other variants of the knapsack problem include the work by Böckenhauer et al. [3], who
studied the online simple knapsack problem with advice and randomization, and concluded
that with one single advice or random bit the problem becomes 2-competitive, whereas
further additional random bits do not improve the competitive ratio. Iwama and Zhang [13]
looked at the problem with resource augmentation, which means that the size of the knapsack
for the online problem is slightly larger than the knapsack size of the offline algorithm. Han,
Kawase and Makino [8] considered a version where the items may be removed from the
knapsack at the cost of a factor of the item size, and showed that if the factor is smaller than
1/2, the competitive ratio is 2, and otherwise it is a function depending on the factor itself.
This is different from the variant we consider, as in this case one pays to remove items from
the knapsack, whereas in our version the algorithm pays to reserve items, but not to remove
them. Another variant of the problem allows for a buffer of constant size, in which items
may be intermediately stored. Han et al. [9] studied the case where the buffer has at least as
much capacity as the knapsack itself; the items presented may be allocated into the buffer or
irrevocably rejected and only in the last step are the items selected for placement into the
knapsack. The reservation model has also been recently applied to the secretary problem [5],
where one can achieve a competitive ratio as close to 1 as possible with diminishing values of
the reservation cost. For large reservation costs, the competitive ratio is the same as in the
model without reservation.

For the online simple knapsack problem with both removability and reservation, we
provide tight upper and lower bounds of 3−1.5α

2−1.5α for 0 < α ≤ 1 −
√

5/3 ≈ 0.2546, which goes
from 1.5 to ϕ. For larger values of α, the competitive ratio stays constant at ϕ. These bounds
are depicted in Figure 1. This means that, even if the reservation costs are arbitrarily small
the competitive ratio is worse than 1.5, and for any α > 0.2546 the best achievable competitive
ratio is the one that can be achieved without reserving any items. This is in contrast to the
behavior of the competitive ratio for the reservation model without removability, where the
competitive ratio is constant at value 2 on the small range, and grows until being unbounded
for large values of α.

1.1 Problem Definition
We now formally define the online simple knapsack problem with reservation and removability.

Just as in the standard online simple knapsack problem, defined in the introduction, an
algorithm solving the problem with reservation and removability is given a knapsack with
capacity 1, and receives a request sequence S = {x1, . . . , xn} of items. Every item xi of the
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request sequence only has one parameter, the size, thus it is possible to refer to the size of
each item as xi while keeping the context clear. At the beginning of the request sequence,
the algorithm is also is given a parameter 0 ≤ α ≤ 1 for the reservation costs. After receiving
an item of size x the algorithm has three options. It can either decide to pack this item –
assuming the total size of already packed items together with the new item is smaller than 1
– , reserve this item at cost αx, or reject this item. Moreover, the algorithm can also decide
to remove and reject any item currently in the knapsack at any point. The decision to reject
an item is irrevocable.

Once the whole request sequence S has been processed, an algorithm A can decide to
pack any reserved items, removing any items in the knapsack accordingly if necessary, as long
as they fit into the knapsack. The goal of an algorithm is to maximize its total size of items
packed in the knapsack after the whole instance has been processed minus the reservation
costs, that is,

gainS(A, α) =
∑

xi packed
xi −

∑
xi reserved

αxi .

The performance of an algorithm is measured against the optimal solution in a worst-case
manner. Thus, the competitive ratio of an algorithm A is the highest ratio between the size
of an optimal solution OPT and the gain of A, over all instances

c(A, α) = sup
S

{
gainS(OPT, α)

gainS(A, α)

}
.

We now present matching upper and lower bounds for the competitive ratio of any
algorithm solving the online simple knapsack problem with reservation and removability.

2 Lower Bound

First note that no algorithm can be better than optimal, in particular we have a lower bound
of 1 for α = 0.

In this section we show that no algorithm can reach a competitive ratio smaller than
min{ 3−1.5α

2−1.5α , ϕ} for all 0 < α < 1. The ratio 3−1.5α
2−1.5α is equal to ϕ at α = 1 −

√
5

3 ≈ 0.2546.
For any larger values of α, we prove that it is not possible to construct an algorithm that
performs better than the strategy of Iwama and Taketomi for the knapsack with removability
and without reservation [12].

▶ Theorem 1. Given a parameter 0 < α ≤ 1 −
√

5
3 , there exists no algorithm for online

simple knapsack with reservation and removability achieving a competitive ratio better than
3−1.5α
2−1.5α .

Proof. We present an adversarial strategy to show that no algorithm can reach a competitive
ratio of 3−1.5α

2−1.5α − ε for any given ε > 0. For the following analysis, we will abbreviate 2−1.5α
3−1.5α

with k. Consider the following set of adversarial instances with 0 < δ ≪ ε:
The adversary starts by presenting the first item x1 of size 1 − k + δ. In this situation an

arbitrary algorithm A can choose between the following options:
Case 1, Pack x1. A packs the first item of size 1 − k + δ into the knapsack. The adversary

next presents the second item x2 of size k + δ that barely does not fit together with the
first item.
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Case 1.1, Remove x1 and pack x2. A discards the item of size 1 − k + δ and packs x2.
The adversary then presents an item of size 1 − x1 = k − δ. This would perfectly fit
together with the discarded item x1, so OPT has a solution of size 1. Since this item
does not fit together with x2, A only holds x2 as the larger one of the two items, which
results in the desired competitive ratio.

Case 1.2, Reserve x2. A reserves the item of size k + δ. The adversary presents the
item x3 of size k + δ2.
Case 1.2.1, Remove x1 and pack x3. Assuming A discards the first item that is still

held in its knapsack to pack the item of size k+δ2. Similar to Case 1.1, the adversary
then presents the counterpart to the discarded item of size 1 − x1 = k − δ. A cannot
pack its reserved item together with the newly packed item, since k − δ + k + δ2 > 1
for all α ∈ (0, 1 −

√
5

3 ). The gain of A is even smaller than in Case 1.1, due to the
costs of reserving an item.

Case 1.2.2, Reserve x3. A reserves the item of size k + δ2. The adversary presents
x4 of size k + δ3 and will continue to present items xj+1 of size k + δj as long as A

reserves those items. At some point A must stop reserving these items due to the
accumulating reservation costs exceeding any possible gain. As soon as A rejects an
item, or discards the item in its knapsack to pack an item, the case can be handled
analogously to 1.2.1 or 1.2.3. The gain of the algorithm will be lower than in these
cases due to the added reservation costs.

Case 1.2.3, Reject x3. The algorithm does not pack the item of size k + δ2. The
adversary presents an item of size 1 − x3. So while OPT reaches 1, A can at the
most pack x1 and the item of size 1 − x3. Together, with subtracted reservation
costs, the algorithm then has a gain of 2 − 4−3α

3−1.5α − αk. A simple analysis shows
that this yields a ratio higher than 3−1.5α

2−1.5α .
Case 1.3, Reject x2. A does not pack or reserve the item of size k + δ. No further items

are presented. The algorithm thus only holds x1, while an optimal solution would be
to pack the item x2. The ratio of k to 1 − k is worse than ϕ for every α < 1 −

√
5

3 and
therefore, in particular, larger than the desired ratio.

Case 2, Reserve x1. A reserves the first item of size 1 − k + δ. The adversary presents the
item x′

2 of size 2
3 + 2δ.

Case 2.1 Pack x′
2. The algorithm packs the item of size 2

3 + 2δ. The next item is x′
3 of

size 1
3 + 2δ.

Case 2.1.1 Remove x′
2 and pack x′

3. The algorithm discards the item of size 2
3 + 2δ

from its knapsack and instead packs the item of size 1
3 + 2δ. The adversary next

presents an item of size 1 − x′
2. OPT then has a solution of size 1. A can at most

reach a gain of x1 + x′
3 − αx1 = 1

3 + 1 − k + 3δ − α(1 − k) = k.
Case 2.1.2 Reserve x′

3. A reserves the item of size 1
3 + 2δ. The adversary continues

to present items x′
j+1 of size 1

3 + δ + δj−1, as long as A reserves those items. As
soon as A rejects an item or discards the item already in its knapsack to pack an
item, these cases can be handled analogously to 2.1.1 or 2.1.3. The gain of the
algorithm will be lower than in these cases due to the added reservation costs.

Case 2.1.3 Reject x′
3. The algorithm does not pack the item of size 1

3 + 2δ. The
adversary then presents an item of size 1 − x′

3. Since x′
3 was the smallest item of

all that have been presented so far, the counterpart will not fit together with any
other item of A. Therefore OPT has a gain of 1, whereas the largest packing of A

consists of the item x′
2 which is of smaller size than k.
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Case 2.2 Reserve x′
2. A reserves the item of size 2

3 + 2δ. The adversary presents x′′
2 of

size 2
3 + δ + δ2.

Case 2.2.1 Pack x′′
2 . A packs the item of size 2

3 + δ + δ2 into the knapsack. The next
item is x′

3 of size 1
3 + 2δ.

Case 2.2.1.1 Remove x′′
2 and pack x′

3. The algorithm discards the item of size
2
3 + δ + δ2 from its knapsack and instead packs the item of size 1

3 + 2δ. The
adversary next presents an item of size 1 − x′′

2 . OPT then has a solution of size
1. A can at most reach a gain of x1 + x′

3 − αx1 = 1
3 + 1 − k + 3δ − α(1 − k) = k.

Case 2.2.1.2 Reserve x′
3. A reserves the item of size 1

3 + 2δ. The adversary con-
tinues to present items x′

j+1 of the size 1
3 + δ + δj−1, as long as A reserves those.

As soon as A rejects an item or discards the item already in its knapsack to pack
an item, these cases can be handled analogously to 2.2.1.1 or 2.2.1.3. The gain
of the algorithm will be lower than in these cases due to the added reservation
costs.

Case 2.2.1.3 Reject x′
3. The algorithm does not pack the item of size 1

3 + 2δ. The
adversary then presents an item of size 1 − x′

3. Since x′
3 was the smallest item of

all that have been presented so far, the counterpart will not fit together with any
other item of A. Therefore OPT has a gain of 1, whereas the largest packing of
A consists of the item x′

2 < k.
Case 2.2.2 Reserve x′′

2 . The algorithm reserves the item of size 2
3 + δ + δ2. The

adversary continues to present items x′′
j of the size 2

3 + δ + δj , as long as A reserves
these items. As soon as A rejects an item or discards the item already in its knapsack
to pack an item, these cases can be handled analogously to 2.2.1 or 2.2.3. The gain
of the algorithm will be lower than in these cases due to the added reservation costs.

Case 2.2.3 Reject x′′
2 . A does not pack the item of size 2

3 + δ + δ2. The adversary
then presents an item of size 1 − x′′

2 . The gain of OPT is then 1. The maximum
gain of A is then x1 + 1 − x′′

2 − α(x1 + x′
2) = 1 − k + 1

3 − δ − δ2 − α(1 − k + 1
3 − δ − δ2)

which is slightly smaller than the gain of A in Case 2.1.1 due to increased reservation
costs and thus especially smaller than k.

Case 2.3 Reject x′
2. The algorithm does not pack the item of size 2

3 + 2δ. No further
items are presented. Similarly to Case 1.3, the algorithm only holds x1, while an
optimal packing would be x′

2. Since even x′
2 > x2, the same argumentation from Case

1.3 concludes this case.
Case 3, Reject x1. No further items are presented. Therefore the optimal solution is

exactly the item x1 = 1 − k, while A has packed no items. The competitive ratio is then
unbounded. ◀

It is not surprising that for increasing reservation costs, the competitive ratio is increasing,
too. In particular, it is easy to see that the competitive ratio cannot decrease if the reservation
costs increase.

▶ Corollary 2. For α > 1 −
√

5
3 , no algorithm can be better than ϕ-competitive for the online

simple knapsack problem with reservation and removability.

Proof. The competitive ratio of Theorem 1 reaches ϕ at α = 1 −
√

5
3 . For every α > 1 −

√
5

3
it is possible to present the lower bound with exactly the same items as in Theorem 1 for
α = 1 −

√
5

3 . The only difference are the higher costs for every reservation. Thus, in every
case, the gain of an optimal offline solution stays the same, while the algorithm gets at most
the gain of the case α = 1 −

√
5

3 . ◀
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3 Upper Bound

If α = 0, then the problem becomes an offline problem, since an algorithm can reserve every
item for free. Thus a competitive ratio of 1 is achievable. Trivially, this matches the lower
bound.

However, as we will see now, as soon as the value of α is positive, the best achievable
competitive ratio is worse than 1.5-competitive.

To handle the range of 0 < α ≤ 1 −
√

5
3 , we present Algorithm 1 with a competitive ratio

of 3−1.5α
2−1.5α , matching the lower bound established in the previous subsection.
Algorithm 1, analyzed in this section, can be split in three phases. All of the phases work

similarly: First, if small items arrive, they are packed since they will not cause harm (we can
throw them out at any time).

Then there are two kind of interesting ranges for medium-sized items: A large-medium
range, where the algorithm tries to keep the smallest items to maintain the possibility to get
fitting counterparts (similar to [12]). And a small-medium range, where an item gets reserved,
because otherwise the ratio between large and small items in the large-medium range, where
only the smallest items are kept, gets too large by itself. After the first reservation, the
algorithm continues in the second phase; after the second reservation in the third phase.

Finally, very large items, which are sufficiently large to guarantee the desired competitive
ratio by themselves, are the easiest case since the algorithm can just pack these items to
achieve the desired competitive ratio immediately.

The main difference between the three phases is, that the ranges for the different actions
are shifted – due to the ability to use the reserved items, but also due to the paid reservation
costs that need to be compensated. Due to these shifts, in the third phase there is no
small-medium range, and there is no need to reserve any more items, thus Algorithm 1
reserves at most two items.

▶ Theorem 3. For 0 < α ≤ 1 −
√

5
3 , there exists an algorithm solving the online simple

knapsack problem with reservation and removability that is not worse than 3−1.5α
2−1.5α competitive.

Proof. We prove that Algorithm 1 achieves the competitive ratio on the statment. For ease
of notation, we define c := 3−1.5α

2−1.5α . If Algorithm 1 is at any point able to pack a knapsack
such that, even when paying the reservation costs, the desired competitive ratio is reached,
it stops afterwards. This is the case in lines 4, 9 and 16.

Depending on the instance, Algorithm 1 reserves zero, one or two items. In the following,
we show that the algorithm yields the desired competitive ratio in those three cases.
Case 1: Algorithm 1 ends in line 4 or 22, before the first reservation is made. When
presented with a new item, the algorithm first checks if this item together with a subset of
its packed items already yields a packing of size 1

c . In the following analysis, assume that
this is not the case, since if this were the case, the algorithm would have achieved the desired
competitive ratio anyways.

Items that are smaller than 1 − 1
c are packed by the algorithm in line 5. Items with sizes

between 1 − 1
c and 1

c2 will be reserved in line 7, if the condition in line 4 does not hold: We
investigate this case as Case 2.

The first item of size between 1
c2 and 1

c is packed. If further items in this range arrive,
only the smallest item of this range is packed (or kept) in the knapsack and the other items
from this range are discarded. If an item xk in this range, which should be kept in the
knapsack according to line 6, does not fit, it must be due to the items already in the knapsack,
which are each smaller than 1 − 1

c . Thus, in this case, it is possible to combine this item xk

with a subset of the small items in the knapsack to get a packing of size at least 1
c , triggering

the end of the packing in line 4.

MFCS 2023
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Algorithm 1 Upper bound Algorithm for 0 < α ≤ 1 −
√

5
3 . OPT(S) denotes the size of the

optimal packing of the set S, c := 3−1.5α
2−1.5α

.

1: K := ∅; R := ∅
2: for k = 1, . . . , n do
3: if |R| = 0 then
4: if OPT(K ∪ {xk}) ≥ 1

c then Pack OPT(K ∪ {xk}) END
5: else if xk ≤ 1 − 1

c then K := K ∪ {xk};
6: else if xk ≥ 1

c2 then Keep only smallest x′
k ∈ K ∪ xk with x′

k ∈ [ 1
c2 , 1

c ];
7: else(1 − 1

c < xk < 1
c2 ) R := R ∪ xk, xf := xk;

8: else if |R| = 1 then
9: if OPT(K ∪ {xf , xk}) ≥ 1

c + αxf then Pack OPT(K ∪ {xf , xk}) END
10: else if 1 − 1

c − αxf < xk ≤ 1
3 then R := R ∪ xk, g := k;

11: else if xk ≤ 1 − 1
c − αxf then K := K ∪ {xk};

12: else Keep only smallest x′
k ∈ K ∪ xk with x′

k ∈ [1 − xf , 1
c + αxf ];

13: else
14: M := ∅; L := ∅
15: if OPT(K ∪ {xf , xg, xk}) ≥ 1

c + α(xf + xg) then
16: Pack OPT(K ∪ {xf , xg, xk}) END
17: else if xk ≤ 1 − 1

c + α(xf + xg) then K := K ∪ {xk};
18: else if 1 − xg − xf < xk < 1

c + α(xg + xf ) − xf then
19: Keep xk if xk + xg < min(xl ∈ L) ∧ xk < min(xm ∈ M); M := M ∪ xk;
20: else if 1 − xg < xk < 1

c + α(xf + xg) then
21: Keep xk if xk + xg < min(xm ∈ M) ∧ xk < min(xl ∈ L); L := L ∪ xk;
22: Pack OPT (K ∪ R)

On the other hand, if the instance ends before reserving the first item, the only possible
difference between an optimal solution and a solution of the algorithm is that the algorithm
only has the smallest item in the range between 1

c2 and 1
c , while the optimal solution might

have a different item in this range. Since the smallest item in this range is at least of size 1
c2

and the largest item is at most of size 1
c , the ratio is smaller than 1/c

1/c2 = c. Additional small
items can be part of both the optimal solution and the solution provided by the algorithm,
which only makes the ratio smaller.

Note that an optimal solution cannot contain two items in the range between 1
c2 and 1

c ,
since the algorithm would also be able to combine the two items in this range. The algorithm
always keeps the smallest possible item within the range, a second item within the range
that could fit into the knapsack would trigger the condition in line 4, since two items of size
at least 1

c2 are sufficient to reach 1
c ( 2

c2 ≥ 1
c for c ≤ 2).

Case 2: Algorithm ends in line 9 or 22 with one reserved item. Assume one item xf

in the range 1 − 1
c to 1

c2 was reserved. The reservation costs for this item are αxf . Thus,
the algorithm needs to pack at least 1

c + αxf to guarantee the desired competitive ratio
independently to the gain achieved by an optimal solution.

For items smaller than 1 − 1
c − αxf the same argument for the small items in Case 1

holds: These items can be packed in a greedy manner until the threshold 1
c + αxf is reached.

An item of size between 1 − 1
c − αxf and 1

3 will be reserved in line 10, if the algorithm cannot
pack a knapsack of size 1

c + αxf at this point. This case is discussed in the next part of the
proof, as Case 3.
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0 1
t

1 − xg

1 − xf

t − xg

t − xf

1 − xf − xg

Figure 2 A schematic plot of the size ranges in the algorithm when two items have already been
reserved. The targeted size for the items is t = 1

c
+ α(xg + xf ).

Note that it is sufficient to combine the first reserved item with a single item of size at
least 1

3 to reach the desired competitive ratio, even after paying the reservation costs, as

1
3 + (1 − α)xf ≥ 1

3 + (1 − α)
(

1 − 1
c

)
= 1

c
,

in the considered range of α. In addition, any item that reaches 1
c + αxf either by its own or

together with small items is sufficient as well. Thus, with every item between 1
3 and 1 − xf ,

or larger than 1
c + αxf , the threshold is reached already and the algorithm stops in line 9.

We are left to consider items of sizes between 1 − xf and 1
c + αxf , which will reach

line 12 in the algorithm. With the items in this range, we follow the same strategy as for the
large-medium items before the first reservation: The smallest of those items will be kept in
the knapsack. This works for the same reasons as in Case 1, as explained below.

Assume the instance stops here and the algorithm was not able to reach 1
c + αxf : The

only difference between the solution of the algorithm and an optimal solution is that the
algorithm sticks to the smallest item in the range between 1 − xf and 1

c + αxf , which gives us
the worst possible case. Note that no item of size smaller than 1 − xf can be rejected before
the first reservation, since it otherwise would have been packed in combination with f . The
ratio between 1

c + αxf and 1 − xf is less than c, since xf is at most 1
c2 . Again, additional

small items can be added to both the optimal solution and the solution provided by the
algorithm, only decreasing the ratio.
Case 3: Algorithm ends in line 16 or 22 with two reservations made. Assume two items
were reserved, the first item xf of size between 1 − 1

c and 1
c2 , and the second item xg of

size between 1 − 1
c − αxf and 1

3 . Therefore, the algorithm has already paid α(xg + xf ) as
reservation costs, and now needs a packing of size 1

c +α(xg +xf ) to guarantee the competitive
ratio of c independent of any optimal solution size.

First note that, an item or a subset of items is sufficient to reach 1
c + α(xf + xg) in three

cases: it either reaches the threshold by its own, reaches the threshold together with one of
the reserved items, or with the two reserved items combined.

To reach the threshold with one of the reserved items, a subset of items must have a
size between 1

c + α(xf + xg) − xf and 1 − xf , or between 1
c + α(xf + xg) − xg and 1 − xg

(depending on which of the reserved items will be used to combine this subset with). The
subsets sizes, that combined with xf are sufficient to reach the necessary threshold can
obviously be smaller than the subsets that can be combined with xg, since xg < 1

3 and
xf > 1

3 . With simple analysis, it can be shown that for any α between 0 and 1 −
√

5
3 and for

every choice of xg and xf in the given ranges, 1 − xg must be larger than 1
c + α(xf + xg) − xf .

Therefore these intervals overlap, as displayed in Figure 2.
It follows that there are three intervals in which an item can be presented and the

algorithm might not stop immediately:
1. Items smaller than 1

c + α(xg + xf ) − xg − xf are too small to reach the necessary
size in combination with both of the reserved items. Note that those are smaller than
1 − 1

c − α(xg + xf ), thus they can be packed greedily. As soon as the knapsack is overfull
due to those items a subset of the small items can be selected to reach 1

c + α(xg + xf ).
This argumentation is analogous to the small items argument in the two previous cases.
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2. Items between 1 − xg − xf and 1
c + α(xg + xf ) − xf , which are too large to fit together

with both reserved items, but too small to reach the threshold in combination with the
largest reserved item. We will call those items mid-sized.

3. Items that cannot be combined any of the reserved items but also do not reach the
threshold by themselves, i.e., items between 1 − xg > 2

3 and 1
c + α(xf + xg). Those items

will be called large.
As we have already justified, the small items in 1. are not a concern. We argue now that
the desired competitive ratio is also achieved when mid-sized and large items appear in the
request sequence after reserving two items.

The algorithm keeps either the smallest large item, or the smallest mid-sized item. This
is dependent on the situation, as detailed in lines 18 to 21: If the smallest large item is
smaller than the smallest mid-sized item in combination with xg, the algorithm keeps the
smallest large item. On the other hand, if the smallest mid-sized item in combination with
xg is smaller than the smallest large item, the algorithm keeps the smallest mid-sized item.
Note that we can assume that every large item is larger than 2

3 , since otherwise it can be
combined with xg, reaching the threshold 1

c + α(xg + xf ).
Therefore the following crucial observation holds: If the algorithm is able to pack either

one large item together with xf , xg or a mid-sized item, or the algorithm is able to pack
three items among xf , xg and mid-sized items, the algorithm will also reach the desired
threshold and competitive ratio.

To see this, first note that every mid-sized item of size smaller than or equal to 1
3 will be

packed into the knapsack and will never be replaced by a large item. This is the case because
every large item must be larger than 2

3 , and an item of size smaller than 1
3 in combination

with xg must be smaller or equal than 2
3 .

Assume that, at some point, an arbitrary algorithm is about to pack the last item of
a combination of one large and one mid-sized or reserved item, or a combination of three
mid-sized or reserved items. Due to the construction and the selection of items before, we
are able to do so as well:

If the last item is a large item, the algorithm is able to pack such a combination, since the
smallest mid-sized item is in the knapsack if it is smaller than the reserved xg. Otherwise
the reserved xg is available for a combination.
If the last item is a mid-sized one, it fits together with the current combination of items
selected by Algorithm 1 (either two mid-sized or one large item), since it is the smallest
possible combination by construction.

A simple calculation then shows that every such combination of items (one large and one
mid-sized/reserved item, or three mid-sized/reserved items) is of size at least 1

c + α(xg + xf ),
even if chosen as small as possible.

The only thing left to prove is that even if there is no such combination, the algorithm
still reaches the designated competitive ratio:

First note that large items are only rejected or removed from the knapsack in the first
two phases. Those items had at most size 1

c + αxf . Items that remained in the knapsack can
be considered as either small items that can be packed in a greedy manner, or as large items.
If there were an item that is not in the allowed range for large or small items in this phase, it
would have been used to reach the threshold for a guaranteed competitive ratio immediately,
just like it would have been possible if the item was presented in the third phase.

By using mid-sized and large items together with the reserved ones, every optimal solution
can only reach 1

c + α(xg + xf ), while Algorithm 1 cannot be worse than xg + xf on any
instance. An easy calculation shows that even for smallest possible sizes of xg and xf , their
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combination is sufficient to reach the competitive ratio of c, since an optimal solution cannot
be better than 1

c + α(xg + xf ). Since Algorithm 1 can use small items in the same manner
as an optimal solution, the appearence of small items cannot worsen the ratio. ◀

This concludes the analysis for an upper bound that matches the lower bound for values
of α smaller than α ≥ 1 −

√
5/3.

For any α ≥ 1 −
√

5/3, note that the algorithm for knapsack with removable objects
(without reservation) presented by Iwama and Taketomi [12] achieves a competitive ratio of
ϕ, thus matching our lower bound as well.

4 Concluding Remarks

The upper and lower bounds for the competitive ratio of the online simple knapsack with
reservation and removability show that, as long as the value of α is positive the competitive
ratio is above 1.5. For large values of α the competitive ratio stays the same as in the
removability model without reservation, which is somehow intuitive, showing that at some
point reserving items is not worth the costs. More surprising are the results for small values
of α. The algorithm with reservation that achieves the desired upper bound rarely makes use
of the reservation, even in the case with very small α only two items are reserved in total.
This behavior is similar to that of online simple knapsack with reservations but without
removability for small values of α.

For future research, a natural variation of the problem would be to allow items to be
reserved after they were added to the knapsack, i.e. to allow removing items from the knapsack
and reserve them instead of only having the option to discard them (like we considered here).

It is known that the classic general online knapsack does not yield a finite competitive
ratio and also the option to remove items of the knapsack does not help. Thus, it remains an
interesting question if the reservation model changes the situation. We think that, at least
for small reservation costs, it should be possible to achieve a constant competitive ratio, but
this is still open and could also be a topic for further research.
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Abstract
Counting abilities in finite automata are traditionally provided by two orthogonal extensions: adding
a single counter that can be tested for zeroness at any point, or adding Z-valued counters that are
tested for equality only at the end of runs. In this paper, finite automata extended with both types
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1 Introduction

Extensions of finite automata abound in the literature, with a traditional common goal:
To find computational models with good expressiveness for which relevant problems are
decidable. The impetus lies in formal verification: Can I express my process using that new
model, then formally check that it does not have “bad” behaviors? Typically, processes are
thus implemented with expressive models, while bad behaviors can be represented using a
regular language. To answer the verification question, the key computational problem is then
inclusion in a regular language (are all the executions of my process not bad?).

A common approach to extending finite automata is to equip them with counters or some
sort of counting abilities. The literature crystallizes around two main extensions:

Adding a single counter which can be tested for zeroness throughout the run. A typical
language that such an extension can recognize is L1 = {anbn | n ≥ 0}∗ (mind the star!).
Adding any constant number of counters, but they can only be tested for zeroness or
equality a bounded number of times (during the run or at the end only, these variants
being equivalent for nondeterministic machines). This includes reversal-bounded counter
machines [14, 6] and Parikh automata [16, 4, 5], which, incidentally, are equally expressive.
A typical language in these extensions is L2 = {anbncn | n ≥ 0}.
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30:2 Parikh One-Counter Automata

Unsurprisingly, L1 cannot be recognized using the second extension, while L2 cannot be
recognized with the first. A natural extension is, thus, to combine these two approaches
to counting into a single model, prompting the questions: 1. Is the expressiveness of the
combined model more interesting than just the union of the two original models; and 2. Are
the good decidability properties of the original models retained in the combined one?

Here, we report on this extension. The model, called Parikh One-Counter Automata
(POCA), consists in a finite automaton with one counter which can be tested for zeroness and
any number of Z-valued counters that are checked at the end of the run using a Presburger
formula (an arithmetic formula of first-order logic with addition).1 We contribute:

A (de)pumping lemma allowing for the study of the limits of the expressiveness of POCA.
Pumping in one-counter automata is fairly simple, as it follows standard arguments for
pushdown automata. In Parikh automata (i.e., POCA without the unbounded counter),
any cycle taken twice can be moved around without changing membership. However,
combining these two properties for POCA proves to be a great technical challenge.
A complete picture of the relationships between POCA, one-counter automata, and Parikh
automata, in their nondeterministic and deterministic variants. In addition to separation
of the classes of languages under consideration, we observe that some languages that are
only nondeterministic for both Parikh automata and one-counter automata turn out to be
deterministic for POCA. This is of special interest in the context of verification since many
problems are undecidable for nondeterministic machines but decidable for deterministic
ones. We also study how the base models of Parikh automata and one-counter automata
are “embedded” in POCA (Theorem 15, the statement of which should be clear at this
point of the Introduction).
A study of the decision problems for POCA and its deterministic variant. Strikingly,
emptiness and inclusion in a regular language are no more complex than with Parikh
automata: coNP-complete. We also study parametric POCA, in which parameters
x, y, . . . can be used in the counter updates (as +x, −y, for instance), and show that it is
undecidable whether, for all parameter values, the language of the POCA is nonempty.
We relate this problem to considerations on arithmetic theories since it is one of the main
motivations behind the study of parametric models [1].

∪ ∩ · h h−1 L ̸= ∅ L = Σ∗ L1 ⊆ L2 L1 = L2

DetPA Y Y Y N N Y NP-c coNP-c coNP-c coNP-c
DetOCA N N Y N N Y NL-c NL-c Undec NL-c

DetPOCA N N Y N N Y NP-c coNP-c Undec ?

PA Y Y N Y Y Y NP-c Undec Undec Undec
OCA Y N N Y Y Y NL-c Undec Undec Undec

POCA Y N N Y Y Y NP-c Undec Undec Undec

Thm. 18 Thm. 20

Thm. 19 Thm. 21 Cor. 22Thm. 23

Figure 1 Closure properties and complexity results. Results about Parikh automata (PA) and
one-counter automata (OCA) are from the literature [7, 16, 5, 17, 21, 2]. The left side of the table
lists closure properties; h and h−1 mean closure under morphisms and inverse morphisms.

1 We rely on a slightly different but equivalent definition, in which the Presburger formula actually
specifies a relation on the number of times each transition is taken in the run. This explains the use
of Rohit Parikh’s name: a run is accepting if its Parikh image is accepted by the Presburger formula.
Formal definitions appear in Section 2.
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DetOCA

OCA
DetPOCA

POCA

NL

DetPA

PA
Lab ∪ Lbc

L∗
ab ∪ L∗

bc

Σ∗Lab
LabcL∗

ab

LabcL∗
ab

L∗
abc

Figure 2 Separations among deterministic and nondeterministic variants of PA, OCA & POCA.
The arrows denote the strict subclass relation, e.g., DetPA ⊊ PA. All the classes not having a
sequence of arrows between them are incomparable. The language in between classes belongs to the
higher class but not to the lower.

Organization of the paper. We recall some classical notions and introduce our models
in Section 2 then present some examples of POCA in Section 3. In Section 4, we state
our (de)pumping lemma for POCA and rely on it to show that some languages are not
expressible. We study the relationships between our classes of languages in Section 5, the
closure properties of our models in Section 6, and the complexity of decision problems in
Section 7.

2 Preliminaries

We assume the reader to be familiar with elementary automata theory.

Sets. We write N = {0, 1, 2, . . .} and N>0 = {1, 2, . . .}. Let d ∈ N>0. A set E ⊆ Zd is
said to be linear if there exist vectors v0, v1, . . . , vk ∈ Zd such that E = {v0 +

∑k
i=1 xivi |

x1, . . . , xk ∈ N}. A set is semilinear if it is a finite union of linear sets. Equivalently, a set
E ⊆ Zd is semilinear if it can be represented as the set of vectors satisfying a Presburger
formula with d free variables, that is, a first-order formula over (N, +).

Words, languages. We usually use Σ for alphabets, write ε for the empty word, and let
Σε be Σ ∪ {ε}, with the understanding that ε /∈ Σ. Any alphabet in this paper is implicitly
totally ordered, so that we can speak of the i-th letter of the alphabet. This is only useful
in defining the Parikh image Φ(w) of a word w ∈ Σ∗: this is the vector in N|Σ| whose i-th
component is the number of times the i-th letter of Σ appears in w.

Given two alphabets Σ, Γ, any function Σ → Γ∗ can be uniquely extended to a function
h : Σ∗ → Γ∗, called a morphism, in such a way that h(ε) = ε and h(u · v) = h(u) · h(v). For
a language L ⊆ Σ∗, we write h(L) for {h(w) | w ∈ L}.

Given a language L ⊆ Σ∗, two words u, v ∈ Σ∗ are Myhill-Nerode equivalent if for any
w ∈ Σ∗, uw ∈ L ⇔ vw ∈ L. This is an equivalence relation, and we write [u]L for the set
of words Myhill-Nerode equivalent to u. We will be mostly interested in [ε]L, the set of
words that can be erased from or inserted at the beginning of any word without changing its
membership to L.

Parikh one-counter automata. A Parikh One-Counter Automaton (POCA) A is a tuple
(Q, q0, Σ, ∆0, ∆+, F, φ) where:

Q is a finite set of states and q0 ∈ Q is the initial state,
Σ is an alphabet,

MFCS 2023



30:4 Parikh One-Counter Automata

∆0 ⊆ Q × Σε × {0, 1} × Q is a zero-value transition relation,
∆+ ⊆ Q × Σε × {−1, 0, 1} × Q is a positive transition relation,
F ⊆ Q is a set of final states, and
φ is an existential Presburger formula with (|∆0| + |∆+|) free variables.

A run in A is a sequence of transitions:

ρ = (q1, ℓ1, b1, q2)(q2, ℓ2, b2, q3) · · · (qn−1, ℓn−1, bn−1, qn) ∈ (∆0 ⊎ ∆+)∗.

We say that ρ starts in q1 and ends in qn. Its trace is the sequence of partial sums of the bi,
representing the current value of the counter:

trace(ρ) =
(∑

i<1
bi,

∑
i<2

bi, . . . ,
∑
i<n

bi

)
,

with the understanding that the first term of that sequence is zero. The i-th element of the
trace is simply written trace(ρ)i. The run ρ is:

counter-correct if for all i, trace(ρ)i = 0 → ρi ∈ ∆0 and trace(ρ)i ̸= 0 → ρi ∈ ∆+. In
other words, a transition from ∆0 is taken if the current value of the counter is 0 and one
from ∆+ if the counter is nonzero.
initial if it starts in q0, final if it ends in a state in F .
constraint-correct if Φ(ρ) satisfies φ.
accepting if it is initial, final, counter-correct, and constraint-correct.

The label of the run ρ is the concatenation of all the ℓi and a word w is accepted by A if
it is the label of an accepting run. Finally, the language recognized by the POCA A is the
set L(A) of words accepted by it.

A POCA A is said to be deterministic (DetPOCA) if for all states q and for both
∆ ∈ {∆0, ∆+}:

There are no two transitions in ∆ from q having the same label; and
If there is a transition in ∆ from q labeled ε, there is no other transition from q in ∆.

Parikh Automata & One-Counter Automata. These two models are restrictions of POCA:
A Parikh Automaton (PA) is a POCA in which ∆0 ⊆ Q × Σε × {0} × Q. In this case, ∆+
is not useful, so we simply omit it from the tuple representation and do not write the 0
update of ∆0. We use DetPA for the deterministic variant.
A One-Counter Automaton (OCA) is a POCA in which φ is a tautology; we then omit it
from the tuple representation. We use DetOCA for the deterministic variant.

3 Examples

We start with a few examples of POCA languages, which will help in clarifying the relationship
of POCA with PA and OCA.

▶ Example 1. Let T = {anbn | n > 0} and define:

L = {u1u2 · · · umcm | m > 0 ∧ u1, u2, . . . , um ∈ T}.

This language can be shown to be unrecognizable by PA or OCA. Intuitively, it is not a PA
language since it has unbounded sequences of words from T , each of which necessitating an
equality check, and it is not an OCA language since m and n, respectively the number of c
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and the number of a, b, require two separate counters. However, L is recognizable using a
POCA. Indeed, the counter can be used to check that each subword in a+b+ is in T and
the semilinear constraint can be used to check that the number of words ui is exactly the
number of c. In fact, this process is deterministic, hence L is a DetPOCA language.

▶ Example 2. Let again T = {anbn# | n > 0} and K = {anbncn# | n > 0} and define:

LT = {a, b, #}∗T{a, b, #}∗ and LK = {a, b, c, #}∗K{a, b, c, #}∗.

Using a single counter, LT can be deterministically recognized: every time we switch from b

to a, we can reset the counter in search for a subword in T . Thus LT is a DetOCA (hence
DetPOCA) language. However, it can be shown that LT is a PA language, but not a DetPA
language with tools from [4]. As for LK , since K cannot be recognized by an OCA, we need
to use the semilinear constraint to recognize it: a PA for LK would simply guess the position
of the word in K, read the next a+b+c+ using a separate part of the automaton, then check
that there were as many a, b, and c in this subword using the semilinear constraint. Thus
LK is a PA (hence POCA) language. We can show, however, that it is not a DetPOCA
language.

▶ Example 3. The previous example seems to indicate that a language that is expressible
with both PA and OCA can only be deterministic if it is expressible with a DetPA or DetOCA.
This is not the case. Take for instance B = {aibjcj | i ̸= j ∨ j ̸= k} and define:

L = {an#u1#u2# · · · #um | m > n > 0 ∧ u1, u2, . . . , um ∈ a∗b∗c∗ ∧ un ∈ B},

in words, the number of a at the beginning indicates where to find a block in B. This
language is in OCA and PA but in neither DetOCA nor DetPA. It is, however, in DetPOCA:
one would use the counter to find un (with n the number of a at the beginning), and check
that un ∈ B using the semilinear constraint.

4 Pumping lemmas: Statements and Applications

Although pumping lemmas abound for context-free languages, and thus for OCA, there
is no known technique in the PA world that takes any PA language L and a long enough
word in L, and creates a word of different length in L. As mentioned in the introduction,
the main expressiveness lemma for PA relies on the fact that any cycle taken twice can be
moved around without changing membership. Relying on this and by carefully analyzing
the behavior of the counter on long enough runs, we can show an expressiveness lemma
reminiscent of a pumping property:

▶ Lemma 4 (Depumping lemma). Let L ⊆ Σ∗ be a POCA (resp. DetPOCA) language.
For any infinite language K ⊆ [ε]L and N ∈ N, there are words u, (ui)i≤n, v, (vj)j≤m, with
m, n ≥ N , such that all of the following hold:
1. x = (u1u)(u2u) · · · (unu) · (v1v)(v2v) · · · (vm−1v)vm is in K,
2. uv ̸= ε,
3. There exist w1, w2 ∈ Σ∗ such that, letting x′ = u1 · · · unv1 · · · vm, it holds that w1x′w2 is

in L (resp. in [ε]L).

Proof sketch. Let A be a POCA recognizing L. Now, let {x1, x2, . . . } ⊆ [ε]L be an infinite
set of words such that length(xi+1) > length(xi) > i for all i ≥ 1. Since xi ∈ [ε]L, for all
i ≥ 1, we know that for any k, there is a run ρk of A on x1 · · · xk which can be extended to
an accepting run. Write ρk as π1 · · · πk with each πi being the subrun corresponding to the
subword xi. (Note that πi may be different for each value of k.)

MFCS 2023



30:6 Parikh One-Counter Automata

For a word w, we say a (sub)run of A on w that starts and ends in the same state is
a w-cycle. Since the xi are increasing in length, so are the πi. If we take a large enough
k ∈ N, the pigeonhole principle will ensure the existence of a nonempty word u and an index
i ∈ N such that u-cycles appear more than N times in πi. Note that it would suffice to
argue that we can shift these u-cycles to the other subruns πj with j ̸= i while preserving
the validity of the run. (The reason we want to shift cycles rather than just remove them is
because we want to preserve the Parikh image.) In this case, w1 and w2 would be the words
labelling the runs π′

1 · · · π′
i−1 and π′

i+1 · · · π′
pσ where: p is the maximal index j such that we

shift some u-cycle to πj , π′
j is the run we get from πj after shifting the u-cycles, and σ is

any run such that π1π2 · · · πpσ is accepting. The only obstruction in doing this is that, while
shifting the u-cycles, we might invalidate the run by making the counter value nonzero at a
zero-value transition. This is why we have to take a (possibly) larger k ∈ N so that, again
by the pigeonhole principle, we are ensured of the existence of another word v such that
v-cycles can be shifted along with u-cycles to guarantee that the above does not happen.
The technical aspect of the proof lies in formalising this idea. ◀

▶ Remark 5. Lemma 4 is a depumping lemma: it removes portions of the word x that appear
often. We forego the statement for the pumping lemma as we will not need it, but the same
proof shows that we can swap the roles of x and x′ in the lemma, thus creating a longer
word.
▶ Remark 6. The proof allows for some slightly stronger variations of this statement. For
instance, we can assume that K∗ is a set of prefixes of words in L instead of assuming
that K ⊆ [ε]L. In this case, the conclusion in the POCA case would not change and, for
DetPOCA, the third conclusion would state that w1x′w2 is Myhill-Nerode equivalent to
some word in K.

We now turn to examples of languages that we will show to be outside of DetPOCA
and POCA. For the rest of this section, let Σ = {a, b, c, #}. Our examples will rely on the
following languages:

Lab = {#an#bn#cm# | n, m ∈ N},
Lbc = {#an#bm#cm# | n, m ∈ N},
Labc = {#an#bn#cn# | n ∈ N} = Lab ∩ Lbc.

▶ Proposition 7. L∗
ab ∪ L∗

bc is not recognizable by a DetPOCA.

Proof. We rely on Lemma 4. Assume that it is recognizable by a DetPOCA, pick Labc as
the language K in Lemma 4, and set N = 4. Note that we have indeed that any word of
Labc is Myhill-Nerode equivalent to ε in L∗

ab ∪ L∗
bc. Using the notations of the lemma, we see

that neither u nor v can contain #, since they are both repeated at least 4 times in x. Thus,
removing the repetitions of u and v from x, we obtain that x′ is of the shape #ai#bj#ck#
but outside of Labc; note that x′ has at least one letter from {a, b, c}. Assume that i ̸= j

(the case j ̸= k is similar), and let z = #a#b#cc#, a word in L. For any words w1, w2, the
word w1x′w2z cannot be in L, since x /∈ Lab and z /∈ Lbc. This shows that w1x′w2 is not
Myhill-Nerode equivalent to ε, a contradiction. ◀

▶ Proposition 8. Let B = {#ai#bj#ck# | i ̸= j ∨ j ̸= k} and C = (#a∗#b∗#c∗#)∗. The
language C · B · C is not expressible with a DetPOCA.

Proof. Note that Labc ⊆ [ε]CBC : indeed, a word in Labc is in C \ B. We can thus follow the
proof of Proposition 7 and stop at the point where x′ is seen to be of the shape #ai#bj#ck#
but not in Labc. In fact, x′ ∈ B. The conclusion of the pumping lemma now tells us that
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there are words w1, w2 such that w1x′w2 ∈ [ε]CBC . Since ε · x′ ∈ CBC, we have that
w1x′w2x′ ∈ CBC, so certainly w1x′w2 ∈ C (recall that B ⊆ C). But since x′ ∈ B, we have
that w1x′w2 ∈ CBC too, and thus that ε ∈ CBC, a contradiction. ◀

▶ Remark 9. The two previous languages happen to be expressible with POCA; let us
investigate where the proof of inexpressibility breaks down when we rely on the conclusion
in the POCA case of Lemma 4. In Proposition 7, we have the luxury of picking a z: this is
not allowed in the POCA case, which simply guarantees that there are words w1, w2 such
that w1x′w2 ∈ L. And indeed, we only know that x′ has an unbalanced number of a, b, c,

leaving the possibility, that x′ ∈ Lab ∪ Lbc, so w1 = w2 = ε would satisfy the conclusion of
the Lemma. Similarly, in Lemma 4, there is no contradiction to be gained from x′ ∈ B on
its own, which is the case when w1 = w2 = ε in the Lemma.

▶ Proposition 10. L∗
abc = L∗

ab ∩ L∗
bc is not recognizable by a POCA.

Proof. This follows the same process as the proof of Proposition 7, up to the point where x′

is seen to be of the shape #ai#bj#ck# but not in Labc. Certainly, then, whichever words
were to be put at the beginning and end of this word, we cannot reach a word in L. ◀

5 Expressiveness

5.1 Normal forms and inclusion in logarithmic space
We first note that cycles of ε-transitions, in which a POCA would guess a large number, are
not needed. Additionally, we can complete the underlying automaton of a POCA so that:

▶ Theorem 11. For any (Det)POCA language L, there is a (Det)POCA A with language
L and a constant c ∈ N such that any word w ∈ L is accepted by A with a run of length at
most c|w| that reads the whole input. In particular, all cycles of ε-transitions in A decrease
the counter.

We will assume henceforth that all of our POCA are of the above type. From this, and
noting that the Parikh constraint of a POCA can be made quantifier-free by adding “equality
modulo m” predicates, we immediately get:

▶ Corollary 12. Any DetPOCA language is in the class L. Any POCA language is in the
class NL.

5.2 Separations
We compare the expressiveness of POCA with PA and OCA, in both their deterministic and
nondeterministic variants; we obtain the following separations:

▶ Theorem 13. DetPA and DetOCA are strictly less expressive than DetPOCA;
PA and OCA are strictly less expressive than POCA;
The expressive power of DetPOCA is incomparable with that of PA and OCA.

Proof. The inclusions in the first two statements are immediate and strictness was mentioned
in Example 1. This example also shows that DetPOCA is not included in either PA or OCA.

What is left to show is that there are PA and OCA languages that are not in DetPOCA.
The language CBC of Proposition 8 is such a language: it is not in DetPOCA, but it can be
expressed with both a PA and an OCA (one simply guesses when the B word occurs and,
within this word, guesses and checks which of the options i ̸= j or j ̸= k holds). ◀
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In addition, we have exhibited (Propositions 7 and 8) languages expressible with POCA
but not DetPOCA. Hence:

▶ Theorem 14. DetPOCA are strictly less expressive than POCA.

5.3 Rendering the OCA or Parikh part useless in a POCA
The wide disparity of expressive power between POCA and its base models OCA and Parikh
automata stands in sharp contrast with the intuition that the two counting features of POCA
are orthogonal. In this section, we explore how we can essentially “saturate” the abilities of
one of the base models, in such a way that it cannot contribute meaningfully to recognizing
a language. This is reminiscent of the work of [18], in which it is shown that if the shuffle of
a nonregular context-free language and another language T is still context-free, then T has
to be regular. In other words, the nonregular context-free language “saturates” the stack.
See also [15] for a related notion of simplest nonregular context-free language.

Recall that the shuffle of two words u v is the set {u1v1 · · · ukvk | ui, vi ∈ Σ∗ ∧ u =
u1 · · · uk ∧ v = v1 · · · vk}. The shuffle of two languages is the set of shuffles of words from
each language.

▶ Theorem 15 (One-counter-stripping). Let L′ ⊆ Σ∗ and a, b /∈ Σ. If L′ {anbn | n ≥ 0}∗ is
a (Det)POCA language, then L′ is a (Det)PA language. The converse holds.

Proof sketch. Let the POCA accepting L be A. To prove the theorem above, we give a
procedure of producing the intended Parikh automaton A′ accepting L′, using A as a black
box. The main idea is that A′ simulates A, but along the accepting runs in A′, the counter
is only used in a bounded way that can be encoded in the state space; hence we can get rid
of the counter while accepting L′. We formalize this idea as follows:

Let C, Cε be the number of simple cycles with nonempty underlying word, and simple ε-
cycles in A. Let C ′ = C +Cε +1. Define a function pad : Σ∗ → (Σ⊎{a, b})∗ such that for any
word w = c1 · · · cn ∈ Σ∗, pad(w) is of the form pad(w) = c1 ·

(
a|Q|b|Q|)C′

· · · cn ·
(
a|Q|b|Q|)C′

.
Note that, if w ∈ L′, then pad(w) ∈ L. We extend the function on the language L′ naturally:
pad(L) = {pad(x) | x ∈ L} ⊂ L′. The following lemma then holds.

▶ Lemma 16. Let Reach = {n | ∃(x · y) ∈ pad(L′), and qf ∈ F, (q0, 0) x−→ (q, n) y−→ qf } be
the set of all counter values appearing in any accepting run in A on reading a word from
pad(L′). The set Reach is bounded, i.e., there exists a bound B ∈ N such that, for every
n ∈ Reach, n ≤ B.

Using the above lemma, we can already outline the procedure to construct the desired
PA A′ such that L(A′) = L′. Let the POCA A be of the form (Q, q0, Σ ⊎ {a, b}, ∆, F, φ).
Then the PA A′ is of the form (Q′, q′

0, Σ, ∆′, F ′, φ′) such that,
Q′ = Q × {0, 1, . . . , B}) ⊎ {r},
q′

0 = (q0, 0) and F ′ = F × {0, 1, . . . , B},

for every run of the form (q, i)
l·(a|Q|b|Q|)C′

−−−−−−−−−→ (q′, j) ∈ ∆∗, where l ∈ Σ, q, q′ ∈ Q, and
i ≤ B

(i). if j ≤ B, then
(

(q, i) l−→ (q′, j)
)

∈ ∆′

(ii). otherwise
(

(q, i) l−→ r
)

∈ ∆′ .
Note that, for every configuration (q, i) in A and l ∈ Σ, the number of runs on the word
l ·
(
a|Q|b|Q|)C′

is finite as A does not contain any nonnegative ε-cycle.
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The construction of ∆′ from ∆ imposes a linear function f : Z∆′ → Z∆. Let the Parikh
constraint for A be φ with |∆| free variables. Then we define φ′ with |∆′| free variables
such that, a vector v ∈ Z∆′ |= φ′ if and only if f(v) |= φ.

It is easy to check that A′ accept w if and only if A accepts pad(w). This implies A′

recognises L′. The above procedure also preserves determinacy, i.e., if A is deterministic,
then A′ is also deterministic. ◀

Similarly, we expect that some operation would render the Parikh constraint useless.
Specifically, assume that for some language L, the language (L#)∗ is recognized by a POCA
A. Consider a long word w in L#; in the accepting run for it, we could move (pairs of)
cycles after the # symbol. Repeating this, we obtain a subword of w of constant length,
appearing before #, which must also be in L. Hence to recognize L, one only needs to
simulate A for a counter-correct run and find the subword of constant length to check for
constraint-correctness. The Parikh constraint can thus be hardcoded, and we thus conjecture:

▶ Conjecture 17. Let L ⊆ Σ∗ be a language and # /∈ L. If (L#)∗ is a POCA (resp.
DetPOCA) language, then L is an OCA (resp. DetOCA) language.

6 Closure Properties

We study in this section the closure properties of the POCA classes. We start with positive
closure properties and then move to nonclosure claims. The results of this section are
summarized in Figure 1, in the Introduction.

6.1 Positive closure properties
▶ Theorem 18. The class of languages recognized by DetPOCA is closed under complement,
inverse morphisms, and intersection/union with regular languages.

Proof.

Complement. When there is no counter, i.e., in the DetPA case, this is fairly straightforward:
the complement of a DetPA is the union of
1. the complement of the language of the underlying automaton; and
2. the language of the DetPA with the semilinear constraint negated.
For DetPOCA, this approach has multiple caveats: as we will see, DetPOCA is not closed
under union, moreover, we need to take the complement of the underlying DetOCA which
is slightly more technical. Let us sketch how to overcome these limitations. Consider a
DetPOCA A. We follow the standard first steps for complementing deterministic pushdown
automata (e.g., [13, Chapter 10.2]):
1. Ensure that the automaton reads the input word in its entirety;
2. Mark as final any state that can reach a final state following only ε-transitions (possibly

zeroing the counter along the way).
The language of A is unchanged and a word is rejected iff after reading it, we reach a nonfinal
state. Call F the set of final states at this point. Next, note that given the Parikh image of
a run starting in the initial state, one can find, in first-order logic, which state is the last
one in the run (this is the one state that has more incoming transitions taken than outgoing
ones). Let us define a DetPOCA B as A, but with all states final. In addition, the constraint
formula of B accepts if either the last state of the run is not in F or if it is and the constraint
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formula of A rejected the Parikh image. A word is accepted by B if either the underlying
DetOCA of A rejected it or if it did accept it but the constraint set of A was rejecting it.
This is precisely the complement of L(A), concluding this proof.

Intersection/union with regular languages, inverse morphism. These are standard. ◀

▶ Theorem 19. The class of languages recognized by POCA is closed under union, concate-
nation, morphisms, inverse morphisms, and intersection with regular languages.

Proof.

Concatenation. This follows the classical construction for regular languages. The only
complication is that the counter has to be reset after the jump (and the Parikh constraint
has to undergo variable renaming as they speak about disjoint sets of variables arising from
the original automata). This can be achieved using ε-transitions with decrements on the
counter.

Other closures. These follow standard arguments. ◀

6.2 Nonclosure properties
▶ Theorem 20. The class of languages recognized by DetPOCA is not closed under union,
intersection, concatenation with regular languages, and morphisms.

Proof.

Union, intersection, concatenation with regular languages. This is covered by Proposi-
tions 7, 8, and 10, respectively, noting that L∗

ab, L∗
bc, B, and C (using the notation therein)

are all expressible using DetPOCA.

Morphisms. This is immediate from nonclosure under union. Indeed, take any two Det-
POCA languages L1, L2 over the same alphabet Σ and let Γ be a disjoint alphabet of the
same size as Σ. Let h : Γ∗ → Σ∗ be any bijective morphism. Certainly, T = L1 ∪ h−1(L2)
is recognizable with a DetPOCA, since one can decide which language to test for by read-
ing the first letter. Extending h so that it is the identity over Σ, we have, however, that
h(T ) = L1 ∪ L2. Thus if DetPOCA were closed under morphism, it would be closed under
union, a contradiction. ◀

▶ Theorem 21. The class of languages recognized by POCA is not closed under intersection
and complement.

Proof. For intersection, this is the contents of Proposition 10. Nonclosure under complement
is immediate from closure under union but not under intersection. ◀

7 Decision Problems

7.1 Classical decision problems
In this section, we study the computational complexity of some classical decision problems
for automata: given one or two automata A and B, nonemptiness asks whether L(A) ̸= ∅,
universality whether L(A) = Σ∗, inclusion whether L(A) ⊆ L(B), and equivalence whether
L(A) = L(B). From the known results listed in Figure 1, we immediately get:

▶ Corollary 22. Universality, inclusion, and equivalence are undecidable for POCA. Inclusion
is undecidable for DetPOCA.
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▶ Theorem 23. Nonemptiness is NP-complete for DetPOCA and POCA. Universality is
coNP-complete for DetPOCA.

Proof. For nonemptiness, hardness comes from the same property for DetPA and PA. In [7,
Proposition III.2], this is shown by encoding instances of the SubsetSum problem into
an instance of the nonemptiness problem for DetPA. NP-membership for nonemptiness for
POCA can be shown in a way similar to [7, Proposition III.2]: we can construct an existential
Presburger formula φρ whose models form the set of Parikh images of accepting runs of the
underlying OCA of a given POCA. The formula φρ can be obtained in polynomial time using
a construction from [22, Theorem 4].2 We can then check whether φ ∧ φρ is satisfiable, which
is the case if and only if the language of the given POCA is nonempty. Since satisfiability of
existential Presburger formulas is in NP (see, e.g., [10] and references therein), this concludes
the proof.

For universality of DetPOCA, this is a direct consequence of the (effective!) closure of
DetPOCA under complement (Theorem 18) and the previous discussion. ◀

▶ Remark 24. NP-hardness of nonemptiness has only little to do with the hardness of solving
the constraint formula itself or from encoding numbers in that formula in binary. Indeed, the
constraint formula obtained in the reduction from SubsetSum can be made quantifier-free
and without constants besides 1, in which case checking that a tuple satisfies the formula is
easy (in L). Let us make this reduction more explicit to see this. We build a partial PA (the
counter is not needed) that either “takes” a number from the instance set or does not, in the
sense that for each number n in the set, there will be a transition t that is either taken n

times or 0 times. We present the construction through an example: The following partial PA
will select whether n = 13 gets into the candidate subset:

t1 t2 t3 t4

t×

The constraint formula would assert (writing ti for the number of times ti is taken):

t× = 1 ∨ ((t1 = 1) ∧ (t2 = t1 + t1 + 1) ∧ (t3 = t2 + t2) ∧ (t4 = t3 + t3 + 1)) ,

corresponding to the binary encoding of 13, that is, 1101. Transition t4 is thus taken exactly
13 times or not at all, and the reduction is concluded by summing these selection transitions
and checking if they are unequal to the target value.

▶ Corollary 25. It is coNP-complete to decide, given a POCA A and a regular language R

as an NFA, whether L(A) ⊆ R.

▶ Open Question 26. Is equivalence decidable for DetPOCA? We conjecture that it is.

7.2 Parametric decision problems
In the field of formal verification, computational models represent so-called reactive systems
that communicate with and evolve based on their surrounding environment. To formalize
the varying conditions provided by the environment, the models receive parameters, usually

2 See [12] for a construction that fixes a small mistake in the proof of that theorem.
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integer valued variables [1]. In [3], it is shown that reachability in parametric timed automata
with two clocks correspond to parametric emptiness problem for certain classes of one-counter
machines. In [8] and [19], the authors showed that parametric emptiness for OCA (“for any
parameter value, the OCA is nonempty”) is decidable, where the parameters may appear on
the updates of the counter. We study that problem for POCA; there are two natural places
where parameters could appear: the counter updates and within the constraint formula.

▶ Definition 27. A parametric POCA is a tuple A = (Q, q0, Σ, X, ∆0, ∆+, F, φ) where:
Q, q0, Σ, and F are as in POCA,
X = {x1, . . . , xn} is a finite set of parameters that will take integer values,
∆0 and ∆+ are as in POCA but can also include tuples of the form (p, a, +x, q) and
(p, a, −x, q) with a ∈ Σε and x ∈ X,
φ has d + n free variables, where d = |∆0| + |∆+|, corresponding to the Parikh image of
the run and the valuation of the parameters in X.

Given a valuation µ : X → N, A induces a POCA Aµ with well-defined runs, language, etc. A
POCA with parametric updates is a parametric POCA in which φ does not have occurrence
of the parameters and a POCA with parametric constraint is a parametric POCA in which
∆0 and ∆+ only have nonparametric transitions.

Given a parametric POCA A with parameter set X, the parametric universal nonemptiness
problem, Pune for short, asks whether it holds that, for all µ : X → N, we have L(Aµ) ̸= ∅.

▶ Theorem 28. The Pune problem for POCA with parametric updates is undecidable. It is
decidable and complete for coNEXPEXP for POCA with parametric constraint.

Proof.
Parametric updates. We present a reduction from Hilbert’s tenth Problem to the Pune
problem. Recall that Hilbert’s Tenth Problem asks, given a polynomial with integer coeffi-
cients, if it has a positive integer solution.

Let P (x1, . . . , xn) be such a polynomial and write P = c1M1 + · · · + ckMk with each ci

in Z and each Mi a monomial with coefficient 1 (e.g., x1x2
2). We construct a POCA A with

parametric updates over the parameter set {x1, . . . , xn} that evaluates P . This is in the
following sense: there are transitions t1, . . . , tk of A such that for any valuation µ of the
parameters, there is a unique accepting run ρ in Aµ, and, writing |ρ|ti

for the number of
times ti occurs in ρ:

c1|ρ|t1 + · · · + ck|ρ|tk
= P (µ(x1), . . . , µ(xn)) .

We start with the simplest case: P = xi. Consider the following OCA (the labels are not
important, so we assume that each transition has a unique label and do not write it):

+xi

−1

= 0

Here, our transition t that evaluates to P (µ(xi)) is simply the self-loop: if the run is counter-
correct, this loop must have been taken µ(xi) times. Note that accepting runs end with a
counter value of zero and that this POCA has a single final state – these are properties we
will keep throughout this construction.

Next, assume P = Mxi with M a monomial with coefficient 1. We assume that we have
built a POCA AM with a transition tM that is taken M(x1, . . . , xn) times on accepting runs.
We then build the following POCA for P :
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AM

tM

+xi −1

= 0

As constraint, we combine the Parikh constraint of AM with the statement that the +xi

loop should be taken the same number of times as tM ; consequently, for any accepting
run ρ of this POCA with valuation µ, the −1 loop is taken |ρ|tM

µ(xi) times, which is
M(µ(x1), . . . , µ(xn))µ(xi) by hypothesis. This −1 loop is thus the transition that evaluates
to P (µ(x1), . . . , µ(xn)).

For the general case, we can chain together our POCA for each monomial one after the
other, and obtain our claimed POCA for any polynomial. The constraint formula can then
compute the exact value of P (µ(x1), . . . , µ(xn)) and accept if it is nonzero. Thus, there is no
positive integer solution to P iff for any valuation µ, Aµ has a nonempty language.
Parametric constraint. This follows the same proof as decidability in the nonparametric
case, but results in a formula of Presburger arithmetic with one alternation starting with ∀.
Validity of such sentences is complete for the class mentioned in the statement of the
theorem [9]. ◀

8 Conclusion

In the long tradition of combining computational means to obtain expressive models (e.g., [20]),
we have equipped one-counter automata with a mechanism to count events globally. This
mechanism, namely constraining the Parikh image of runs to fall within a semilinear set, always
enables recognizing non-context-free languages (e.g., {anbncn | n > 0}) while still preserving
the decidability of emptiness for models with effective semilinear Parikh images. However,
studying the expressiveness of the combined model is surprisingly difficult: techniques that
apply to the original model usually do not preserve satisfaction of the semilinear constraint.

Here, we have obtained expressiveness lemmas that allowed us to study the closure
properties and the class relationships of the models at play. In particular, we have shown that
there are languages expressible with a combination of deterministic one-counter automata
and semilinear constraint that cannot be obtained by any of the underlying mechanisms: the
whole is greater than the sum of its parts.

We underline research directions stemming from this work:
We left open two main questions: 1. Is equivalence decidable for DetPOCA? We conjecture
that a refinement of the algorithms for DetOCA ([21, 2]) will lead to a positive answer.
2. Is it true that if L′ = (L#)∗ is a POCA language, then L′ doesn’t use the semilinear
constraint in any meaningful way, so that L is an OCA language?
The undecidability of the parametric universality nonemptiness problem (Theorem 28)
is rather unfortunate. Indeed, we had originally expected that this problem would be a
natural automata counterpart of the validity of sentences in a fragment of Presburger
arithmetic with divisibility called BIL (see [19, Conclusion]). Such sentences are naturally
translated to POCA with parametric updates in such a way that validity corresponds
to parametric nonemptiness, but alas, validity of the BIL fragment is decidable while
the Pune problem for POCA with parametric updates is not. For context, an elegant
connection between another fragment of Presburger arithmetic with divisibility and
OCA with parametric updates was established in [11]: the validity problem of the
former is interreducible with the nonemptiness problem of the latter via nondeterministic
polynomial-time reductions. This leaves open the problem of finding such a correspondence
for BIL.
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A reviewer asked the following relevant question: Can a POCA for an OCA language be
more succinct than the equivalent OCA (and similarly for a POCA for a PA language)?
Some examples come to mind: {w ∈ {a, b}∗ | |w|a = 18|w|b} requires an OCA with at
least 18 states, but can be done with a PA with one state. A more interesting class of
languages to study this trade-off is that of languages expressible with an OCA but not
by a PA, or conversely.
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Abstract
We present a 9k · nO(1)-time algorithm for the proper circular-arc vertex deletion problem, resolving
an open problem of van ’t Hof and Villanger [Algorithmica 2013] and Crespelle et al. [Computer
Science Review 2023]. Our structural study also implies parameterized algorithms for modification
problems toward proper Helly circular-arc graphs.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

Keywords and phrases proper (Helly) circular-arc graph, graph modification problem

Digital Object Identifier 10.4230/LIPIcs.MFCS.2023.31

Related Version Full Version: https://arxiv.org/abs/2202.00854

Funding Supported in part by the Hong Kong Research Grants Council (RGC) under grant 15221420
and the National Natural Science Foundation of China (NSFC) under grant 61972330.

1 Introduction

A graph is a circular-arc graph if its vertices can be assigned to arcs on a circle such that
there is an edge between two vertices if and only if their corresponding arcs intersect. If
none of the arcs properly contains another, then the graph is a proper circular-arc graph.
See Figure 1 for two examples of proper circular-arc graphs. Proper circular-arc graphs
“form an important subclass of the class of all claw-free graphs,” and their study has been
an important step towards finding “a structural characterization of all claw-free graphs” [6].
The structures and recognition of proper circular-arc graphs have been well studied and well
understood [19, 8].

Another and earlier motivation for studying (proper) circular-arc graphs is from their
relation with (proper) interval graphs, i.e., intersection graphs of intervals on the real line.
The intersection graph of a family of sets has a vertex for each set and an edge between two
vertices if and only if their the sets they represent have a nonempty intersection. It is easy
to see that each (proper) interval graph is a (proper) circular-arc graph, and the connection
of these classes has been used in both structural and algorithmic studies of these classes.
Indeed, the first linear-time recognition algorithm for proper circular-arc graphs is based on a
general observation of both proper circular-arc graphs and proper interval graphs [8]. Neither
graph in Figure 1 is a proper interval graph, but removing any vertex from Figure 1(a), or
any vertex but v5 from Figure 1(b) leaves a proper interval graph.

Let G be a hereditary (closed under taking induced subgraphs) graph class. Given a graph
G and an integer k, the G vertex deletion problem asks whether we can remove k vertices
from G to make a graph in G. It is known that the G vertex deletion problem is NP-hard
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Figure 1 Two proper circular-arc graphs and their arc models.

when G is nontrivial (i.e., having infinite members and infinite non-members) [15]. These
problems have been intensively studied in the framework of parameterized computation.
Suppose that the input graph has n vertices and m edges. We say that a graph problem
is fixed-parameter tractable (FPT) if there is an algorithm solving it in time f(k) · nO(1),
where f is a computable function depending only on k [9]. For example, it is well known
that the proper interval vertex deletion problem is FPT[20, 3]. In the algorithm of van ’t
Hof and Villanger [20], the kinship between proper circular-arc graphs and proper interval
graphs plays a crucial role. They showed that it suffices to destroy all the small forbidden
induced subgraphs, and then the graph is already a proper circular-arc graph, on which the
proper interval vertex deletion problem can be solved in linear time. They asked whether
the proper circular-arc vertex deletion problem is FPT as well, and this open problem was
recently raised again by Crespelle et al. [7]. We answer this question affirmatively.

▶ Theorem 1. The proper circular-arc vertex deletion problem can be solved in time 9k ·nO(1).

A major difference between the class of proper interval graphs and the class of proper
circular-arc graphs is that the later class is not closed under disjoint union. This can be easily
observed from their models: while we can always put intervals for two different components
side by side, no such accommodation is possible for two sets of arcs if one set of them covers
the whole circle. As a matter of fact, if a proper circular-arc graph is not connected, it has
to be a proper interval graph. (The same remark applies to the relation between circular-arc
graphs and interval graphs.)

If a proper circular-arc graph contains a hole of length at least five, then its property
is quite similar to a proper interval graph. What is difficult is when a few arcs cover
the whole circle in an arc model. For such a graph, it is more convenient to study its
complement. Indeed, when characterizing proper circular-arc graphs, Tucker [19] actually
listed the forbidden induced subgraphs of the complement class. He also observed that if
the complement G of a proper circular-arc graph G is not connected, then G is bipartite.
Permutation graphs are the intersection graphs of line segments between two parallel lines,
and bipartite permutation graphs are those permutation graphs that are bipartite. Bipartite
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permutation graphs are also known as proper interval bigraphs and unit interval bigraphs [14].
It is well known that a co-bipartite graph H is a proper circular-arc graph if and only if H is
a bipartite permutation graph.

Let (G, k) be an instance to the proper circular-arc vertex deletion problem, and let V−
be a solution. If G − V− is not connected, then it is a proper interval graph; if G− V− is
not co-connected, then it is the complement of a bipartite permutation graph. We can call
the algorithm of Cao [3] and the algorithm of Bożyk et al. [1] to check whether such a set
V− exists, and we are done if it does. In the rest, we may assume that G− V− is neither a
proper interval graph nor the complement of a bipartite graph, hence both connected and co-
connected. For this purpose we may assume that G itself is both connected and co-connected;
otherwise, there is a unique component C of G or G such that V (G) \ V (C) ⊆ V−. Either
the instance is trivially FPT, when n = O(k), or it suffices to consider the largest component
of G or G.

The algorithm proceeds as follows. We can destroy all forbidden induced subgraphs of
order at most seven by branching. Now G is free of small forbidden induced subgraphs and
is both connected and co-connected. Our key observation is that if G is not already a proper
circular-arc graph, then G must be bipartite. Note that any induced subgraph of a bipartite
graph is bipartite, but we have assumed that G− V− is not the complement of a bipartite
graph. Therefore, we are ready to directly return “yes” or “no.”

Since the parameterized algorithm branches on a small set of vertices that intersects every
solution, we can easily turn it into an approximation algorithm for the maximum proper
circular-arc induced subgraph problem.

▶ Theorem 2. There is a polynomial-time approximation algorithm of approximation ratio 9
for the minimization version of the proper circular-arc vertex deletion problem.

Proper circular-arc graphs also arise naturally when we consider the clique graph (the
intersection graph of maximal cliques of a host graph) of a circular-arc graph. The complicated
structures of circular-arc graphs are mainly due to the lack of the so-called Helly property:
every set of pairwise intersecting arcs has a common intersection. For example, neither
model in Figure 1 is Helly: the set {v1, v2, v3} in (a) and the set {v3, v4, v5} in (b) violate
the Helly property. A graph is a Helly circular-arc graph if it admits an arc model that is
Helly. Since every interval model is Helly, all interval graphs are Helly circular-arc graphs. It
is well known that the clique graph of an interval graph, with at most n maximal cliques, is
a proper interval graph [13]. The same upper bound holds for the number of maximal cliques
in a Helly circular-arc graph, and the clique graph of a Helly circular-arc graph is always
a proper circular-arc graph [10]. Let us remark parenthetically that a circular-arc graph
may have an exponential number of maximal cliques, e.g., the complement of the union of p

disjoint edges, which has 2p vertices, each of degree 2p− 2.
The class of proper Helly circular-arc graphs is sandwiched between proper circular-arc

graphs and proper interval graphs. This observation has been crucial for the algorithms
for modification problems toward proper interval graphs [3]. A graph is a proper Helly
circular-arc graph if it has an arc model that is both proper and Helly. A word of caution is
worth on the definition of proper Helly circular-arc graphs. One graph might admit two arc
models, one being proper and the other Helly, but no arc model that is both proper and Helly.
For example, both models in Figure 1 are proper but neither is Helly, and it is not difficult
to make Helly arc models for S3 and W4, but, as the reader may easily verify, neither of
them admits an arc model that is both proper and Helly. Therefore, the class of proper Helly
circular-arc graphs does not contain all those graphs being both proper circular-arc graphs
and Helly circular-arc graphs, but a proper subclass of it. Indeed, a proper circular-arc
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graph is a proper Helly circular-arc graph if and only if it is {S3, W4}-free [16]. Another
characterization of proper Helly circular-arc graphs is that they are precisely those graphs
whose clique matrices have the circular-ones property for both rows and columns [17].

We then consider modification problems toward proper Helly circular-arc graphs. For
this class we also consider the edge deletion and completion problems (a proof of their
NP-completeness was provided in the full version). The edge deletion (resp., completion)
problem asks whether we can delete (resp., add) at most k edges to a graph to make it satisfy
certain properties. Again, we start by destroying all small forbidden induced subgraphs, up
to six vertices. We show that a connected graph free of such induced subgraphs is already a
proper Helly circular-arc graph. For the vertex deletion problem, either we remove all but
one component, or we remove vertices to get a proper interval graph. The edge deletion
problem is even simpler: if the graph is not connected, we cannot make it connected by
deleting edges. Thus, depending on whether the graph is connected, either we are already
done, or we are solving the proper interval edge deletion problem. This idea can even solve
the general deletion problem that allows k1 vertex deletions and k2 edge deletions. The
situation is quite different for the completion problem. We are happy if we can add at
most k edges to make the input graph a proper interval graph. Otherwise, we have to
make a connected proper Helly circular-arc graph. After we have dealt with all the small
forbidden induced subgraphs, the only nontrivial case is when there is a large component,
which contains a long hole H, and several small components. We need to “attach” these
small components to vertices on H. Since these operations are local, we can find a solution
by dynamic programming. Thus, all three problems are FPT, and they can be done in linear
FPT time. Again, the parameterized algorithm for the vertex deletion problem can be easily
turned into an approximation algorithm.

▶ Theorem 3. For modification problems toward proper Helly circular-arc graphs, there are
an O(6k · (m + n))-time algorithm for the vertex deletion problem;
an O(8k · (m + n))-time algorithm for the edge deletion problem;
an O(14k1+k2 · (m + n))-time algorithm for the deletion problem; and
a kO(k) · (m + n)-time algorithm for the completion problem.

Moreover, there is an O(nm + n2)-time approximation algorithm of approximation ratio 6
for the minimization version of the proper Helly circular-arc vertex deletion problem.

Somewhat surprisingly, modification problems toward circular-arc graphs and its sub-
classes have not received sufficient attention. We hope our work will inspire more study in
this direction. Apart from the two classes in the present paper, the next interesting class
is the class of normal Helly circular-arc graphs, a super class of proper Helly circular-arc
graphs. They have played crucial roles in solving modification problems to interval graphs
[5, 2]. Also related and probably simpler are the modification problems toward unit (Helly)
circular-arc graphs. It is well known that a graph is a proper interval graph if and only if it
is a unit interval graph. However, there are proper (Helly) circular-arc graphs that are not
unit (Helly) circular-arc graphs, e.g., the graph obtained from an even hole of length at least
eight by adding edges to connect consecutive even-numbered vertices.

2 Preliminaries

All graphs discussed in this paper are undirected, simple, and finite. The vertex set and
edge set of a graph G is denoted by, respectively, V (G) and E(G). Let n = |V (G)| and
m = |E(G)|. A walk in a graph G is a sequence of vertices and edges in the form of v0,
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v0v1, v1, v1v2, . . ., vℓ. Since the edges are determined by the vertices, such a walk can be
denoted by v0v1 . . . vℓ unambiguously. We say that this walk connects v0 and vℓ, which are
the ends of this walk, and refer to it as a v0–vℓ walk. The length of a walk is the number of
occurrences of edges it contains, and ℓ in the previous example. A walk is closed if ℓ > 1 and
v0 = vℓ. A walk is a path if all its vertices are distinct. A path is nontrivial if it contains at
least three vertices. A closed walk of length ℓ is a cycle if it visits precisely ℓ vertices; i.e.,
no repeated vertices except the two ends. The length of a cycle C is denoted as |C|. For
simplicity, we denote a cycle of length ℓ as v1v2 · · · vℓ instead of v1v2 · · · vℓv1. The indices
are understood to be modulo ℓ; e.g., v0 = vℓ and h−1 = hℓ−1. A hole is an induced cycle
of length at least four. A walk, path, cycle, or hole is odd (resp., even) if its length is odd
(resp., even). For ℓ ≥ 3, we use Cℓ to denote an induced cycle on ℓ vertices; if we add a new
vertex to a Cℓ and make it adjacent to no or all vertices on the cycle, then we end with a C∗

ℓ

or Wℓ, respectively.
The complement graph G of a graph G is defined on the same vertex set V (G), where a

pair of vertices u and v is adjacent in G if and only if uv ̸∈ E(G); e.g., C∗
5 is W5. The graph

C∗
3 is also called a claw. A graph G is connected if every pair of vertices is connected by a

path, and co-connected if G is connected.
A circular-arc graph is the intersection graph of a set of arcs on a circle. The set of arcs

is called an arc model of this graph. In this paper, all arcs are closed. An arc model is proper
if no arc in it properly contains another arc. A graph is a proper circular-arc graph if it has
a proper arc model. In case there is a point of the circle avoided by all the arcs in an arc
model, we can cut the circle and straighten all the arcs into line segments. Such a graph
is an interval graph, i.e., the intersection graph of a set of closed intervals on the real line,
and the set of intervals is an interval model of this graph. Proper interval graphs are defined
analogously. Clearly, any (proper) interval model can be viewed as a (proper) arc model
leaving some point uncovered, and hence all (proper) interval graphs are always (proper)
circular-arc graphs.

(a) S3 (tent). (b) S3 (net). (c) F1 (long claw). (d) F2. (e) F3. (f) F4.

Figure 2 Some small forbidden induced graphs.

Let F be a fixed graph. We say that a graph G is F -free if G does not contain F as an
induced subgraph. For a set F of graphs, a graph G is F-free if G is F -free for every F ∈ F .
If every F ∈ F is minimal, i.e., not containing any F ′ ∈ F as a proper induced subgraph,
then F comprises the (minimal) forbidden induced subgraphs of this class. See Figure 2 for
some of the forbidden induced subgraphs considered in the present paper. We use S∗

3 to
denote the graph obtained by adding an isolated vertex to S3.

▶ Theorem 4 ([19]). A graph is a proper circular-arc graph if and only if it is free of S∗
3 , C∗

ℓ

with ℓ ≥ 4, as well as the complements of S3, F1, F2, F3, F4, C2ℓ+2, and C∗
2ℓ−1 with ℓ ≥ 2.

Neither the class of circular-arc graphs nor the class of proper circular-arc graphs is closed
under taking disjoint unions. Indeed, if a (proper) circular-arc graph G is not a (proper)
interval graph, then in any model of G, the union of the arcs covers the whole circle. Such a
graph is necessarily connected.
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▶ Proposition 5 (Folklore). If a proper circular-arc graph G is not connected, then G is a
proper interval graph.

Proper circular-arc graphs have three infinite families of forbidden induced subgraphs,
namely, {C∗

ℓ | ℓ ≥ 4}, {C2ℓ+2 | ℓ ≥ 2}, and {C∗
2ℓ−1 | ℓ ≥ 2} by Theorem 4. The first of them

can be ignored for connected graphs.

▶ Lemma 6. Let G be a connected graph. If G does not contain the complement of C∗
3 or

the complement of S3, then G is {C∗
ℓ | ℓ ≥ 5}-free.

Proof. Suppose for contradiction that there exist an induced cycle C and a vertex v in G

with |C| ≥ 5 and V (C) ∩ N(v) = ∅. Since G is connected, we can find a shortest path
from v to C. Let the last three vertices on this path be x, y, and z; note that z is on C

and x is nonadjacent to any vertex on C. We may number the vertices on C such that
C = v1v2 · · · v|C| and z = v2. If y is adjacent to only v2 on C, then {v1, v2, v3, y} induces
a claw. If y is also adjacent to both v1 and v3, then {v1, v3, x, y} induces a claw, and it is
similar if y is adjacent to any three consecutive vertices on C. Otherwise, y is adjacent to
precisely one of v1 and v3. Without loss of generality, assume that y is adjacent to v3 but
not v1. Note that y is not adjacent to v4 either, and then {v1, v2, v3, v4, x, y} induces a copy
of the complement of S3. ◀

An arc model is Helly if every set of pairwise intersecting arcs has a nonempty common
intersection. A circular-arc graph is proper Helly if it has an arc model that is both proper
and Helly.

▶ Theorem 7 ([17]). A proper circular-arc graph is a proper Helly circular-arc graph if and
only if it contains no W4 or S3.

Note that S∗
3 contains S3, while all the complements of F1, F2, F3, F4, and {C2ℓ, C∗

2ℓ−1 |
ℓ ≥ 4} contain W4. The following corollaries follow from Theorem 7, together with Theorem 4
and Lemma 6, respectively.

▶ Corollary 8 ([17]). A graph is a proper Helly circular-arc graph if and only if it contains
no C∗

3 , S3, S3, W4, W5, C6, or C∗
ℓ for ℓ ≥ 4.

▶ Corollary 9. Let G be a connected graph. If G does not contain C∗
3 , C∗

4 , S3, S3, W4, W5,
or C6, then G is a proper Helly circular-arc graph.

Recall that proper interval graphs are precisely {C∗
3 , S3, S3, Cℓ | ℓ ≥ 4}-free graphs [18, 21].

▶ Corollary 10. Let G be a proper Helly circular-arc graph. Then G is a proper interval
graph if and only if G does not contain any holes.

The following can be viewed as a constructive version of Corollary 9.1

▶ Proposition 11 (⋆). Let G be a connected graph. In O(m + n) time we can either detect
an induced subgraph in {C∗

3 , C∗
4 , S3, S3, W4, W5, C6}, or build a proper and Helly arc model

for G.

A graph is a permutation graph if its vertices can be assigned to line segments between two
parallel lines such that there is an edge between two vertices if and only if their corresponding
segments intersect. The class of permutation graphs has a large number of forbidden induced
subgraphs [11]. Fortunately, most of them contain an odd cycle, and thus the structures of
forbidden induced subgraphs of bipartite permutation graphs are far simpler.

1 Proofs of statements marked with ⋆ are given in the full version (attached).
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▶ Theorem 12 ([11]). A graph is a bipartite permutation graph if and only if it is free of F1,
F2, F3, C3, and Cℓ with ℓ ≥ 5.

We correlate proper circular-arc graphs and bipartite permutation graphs.

▶ Theorem 13 (Folklore). The following are equivalent on a graph G:
i) G is a proper circular-arc graph and G is bipartite; and
ii) G is a bipartite permutation graph.

The following is complement to Proposition 5 in a sense. Note that (proper) circular-arc
graphs that are co-bipartite have played crucial roles in understanding these graph classes [19].

▶ Proposition 14 (⋆). Let G be a proper circular-arc graph. If G is not connected, then G

is a bipartite permutation graph.

3 Deletions to proper Helly circular-arc graphs

We first study the proper Helly circular-arc vertex deletion problem. We may assume without
loss of generality that the input graph cannot be made a proper interval graph by removing
k vertices. Therefore, the resulting graph after removing any k-solution is connected by
Proposition 5. An FPT algorithm is immediate from Corollary 9: after destroying all the
copies of C∗

3 , C∗
4 , S3, S3, W4, W5, and C6 in G by standard branching, we return all vertices

except those in a maximum-order component. A similar (and simpler) approach works for
the proper Helly circular-arc edge deletion problem. The focus of the following proof is thus
on efficient implementations.

▶ Theorem 15. The proper Helly circular-arc vertex deletion problem and the proper Helly
circular-arc edge deletion problem can be solved in time O(6k · (m + n)) and O(10k · (m + n)),
respectively.

Proof. Let (G, k) be an instance of proper Helly circular-arc vertex deletion. Our algorithm
proceeds as follows. We start by calling the algorithm of Cao [3] to check whether there is a
set V− of at most k vertices such that G− V− is a proper interval graph. If the set is found,
then we return “yes.” In the rest, we look for a solution V− such that G− V− is not a proper
interval graph. By Proposition 5, (note that a proper Helly circular-arc graph is a proper
circular-arc graph,) G− V− is connected.

For the general case, the algorithm solves the problem by making recursive calls to itself;
we return “no” directly for a recursive call in which k < 0. For each component C of G, we
call the algorithm of Proposition 11. If a subgraph induced by F ⊆ V (G) is found, then the
algorithm calls itself |F | times, each with a new instance (G− v, k− 1) for some v ∈ F . Since
we need to delete at least one vertex from F , the original instance (G, k) is a yes-instance
if and only if at least one of the instances (G − v, k − 1) is a yes-instance. Now that G is
free of C∗

3 , C∗
4 , S3, S3, W4, W5, and C6, every component of G is a proper Helly circular-arc

subgraph (Corollary 9). We find a component C of G that has the maximum order. We
return “yes” if |V (C)| ≥ n− k, when V (G) \ V (C) is a solution, or “no” otherwise. Since
each of C∗

3 , C∗
4 , S3, S3, W4, W5, and C6 has at most 6 vertices, at most 6 recursive calls are

made, all with parameter value k − 1. By Proposition 11, each recursive call can be made in
O(m + n) time. Therefore, the total running time is O(6k · (m + n)).

The algorithm for the edge deletion problem is even simpler. Again, we start by calling
the algorithm for proper interval edge deletion problem [3], which takes time O(4k · (m + n)).
We proceed only when the answer is “no.” In the recursive calls for the general case, we always
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return “no” whenever k is negative or G becomes disconnected; note that a disconnected
graph cannot be made connected by edge deletions. We call the algorithm of Proposition 11,
and return “yes” if G is already a proper Helly circular-arc graph. Otherwise, an induced
subgraph F is found. The algorithm calls itself |E(F )| times, each with a new instance
(G− uv, k− 1) for some edge uv in G[F ]. By Proposition 11, each recursive call can be made
in O(m + n) time. Therefore, the total running time is O(10k · (m + n)), where 10 is the
number of edges in a W5. ◀

It is straightforward to adapt an approximation algorithm for the proper Helly circular-arc
vertex deletion problem from the parameterized algorithm in Theorem 15. From Theorem 15
we can easily derive an FPT algorithm for the combined deletion problem toward proper
Helly circular-arc graphs, which allows k1 vertex deletions and k2 edge deletions. We can fill
in the gap between the constants in Theorems 15 and 3. Only S3, W5, and C6 have more
that eight edges. For an S3, either we delete one edge between two degree-four vertices, or
we have to delete both edges incident to a degree-2 vertex. For the other two cases, the ideas
are similar. The details are deferred to the full version.

4 Proper Helly circular-arc completion

Compared to the deletion problems, the completion problem toward proper Helly circular-arc
graphs is significantly more difficult. For all the deletion problems, we can always assume
that the graph is connected, and then by Corollary 9, we are only concerned with small
forbidden induced subgraphs. Since adding edges may make a graph connected, we cannot
assume connected input graphs for the completion problem.

Every hole in a proper Helly circular-arc graph is a dominating set of the graph, and we
can be more specific on the intersection between a hole and the neighborhood of any vertex.

▶ Proposition 16 (⋆). Let H be a hole in a proper Helly circular-arc graph. Every vertex in
this graph has at least two neighbors on H.

It is well known that the maximal cliques of an interval graph can be arranged as a path.
Gavril [12] showed that the maximal cliques of a Helly circular-arc graph can be arranged as
a circle. This implies that a Helly circular-arc graph has a linear number of maximal cliques.

▶ Theorem 17 ([12]). A graph G is a Helly circular-arc graph if and only if its maximal
cliques can be arranged as a circle so that for every vertex v in G, the maximal cliques
containing v are consecutive.

We use a clique cycle to denote the circular arrangement of maximal cliques specified
in Theorem 17, and a clique path is defined analogously. In a clique path, we call the first
and the last cliques end cliques. Note that a clique path can always be viewed as a clique
cycle, while if two consecutive cliques of a clique cycle are disjoint, then it can be viewed as
a clique path.

Proper interval graphs are precisely claw-free interval graphs, which can be restated as a
graph is a proper interval graph if and only if it is claw-free and has a clique path. One may
thus expect that a graph is a proper Helly circular-arc graph if and only if it is claw-free
and has a clique cycle. As we have mentioned, however, S3 is a Helly circular-arc graph
and hence has a clique cycle, but it is not a proper Helly circular-arc graph even though
it is claw-free. The following statement can be directly observed from forbidden induced
subgraphs of the class of proper Helly circular-arc graphs and of the class of normal Helly
circular-arc graphs; see also Lin et al. [17, Theorem 9].2

2 An arc model is known to be normal and Helly if no set of three or fewer arcs covers the circle [12, 4].
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▶ Lemma 18 ([17]). A graph is a proper Helly circular-arc graph if and only if it is claw-free
and it has an arc model in which no set of three or fewer arcs covers the circle.

If a proper Helly circular-arc graph G is not an interval graph, then it has a hole
(Corollary 10). The structure of every local part of G is very like a proper interval graph
when the hole is long enough (the length at least six). With the removal of two maximal
cliques with no edge in between from G, the hole is separated into two sub-paths. Since
every remaining vertex is adjacent to one of the two sub-paths, the remaining graph has
precisely two components.

▶ Lemma 19 (⋆). Let G be a proper Helly circular-arc graph that is not an interval graph.
Let A1 and A2 be two maximal cliques of G with no edge between them, and let B1 and B2 be
the vertex sets of the two components of G− (A1 ∪A2). Let G1 be any proper interval graph
on B1 ∪A1 ∪A2 in which A1 and A2 are the end cliques, and NG1(Ai) ∩B1 = NG(Ai) ∩B1
for i = 1, 2. Replacing G[B1∪A1∪A2] with G1 gives another proper Helly circular-arc graph.

For the completion problem, we may again assume that the input graph G is free of C∗
3 ,

C∗
4 , S3, S3, W4, W5, and C6. We are done if G is already a proper Helly circular-arc graph.

In particular, this is the case when G is a proper interval graph or when G is connected
(Corollary 9). Thus, we may assume that G is not connected and it is not a proper interval
graph. There must be a hole in G (Corollary 10), and we add either a chord of this hole, or
an edge between this hole and every vertex in other components. If there is a hole of length
of no more than 16k + 16, then there are only O(k2) such choices, and we can branch on
adding one of them. In the rest, every hole is longer than 16k + 16 (hence at least half of
the vertices on H have no neighbors incident to a k-solution). Let H be such a hole, and
let G0 be the component of G that contains H. Note that G0 is a proper Helly circular-arc
graph (Corollary 9). After adding k or fewer edges, if the resulting graph is a proper Helly
circular-arc graph, then there must be a hole of length greater than k in the subgraph
induced by V (H). Thus, for every vertex x in V (G) \ V (G0), at least two edges must be
added between x and H (Proposition 16). We can return “no” if |V (G0)| < n− k

2 . Other
components have fewer than k vertices while any hole is longer than 16k + 16, and thus they
are already proper interval subgraphs. They are accordingly called small components.

We say that a vertex x is touched by a solution E+ if x is an endpoint of an edge in
E+, and a set X of vertices is touched if at least one vertex in X is touched. All vertices in
V (G) \ V (G0) are touched, and we are more concerned with touched vertices in G0.

▶ Proposition 20 (⋆). Let E+ be a solution to G. If a maximal clique K of G is untouched
by E+, then K is a maximal clique of G + E+.

Recall that a clique cycle of a proper Helly circular-arc graph can be found in linear time
[4]. We may fix a clique cycle ⟨K1, K2, . . . , Kℓ⟩ of G0, denoted by K, and assume that H

and K are numbered such that no neighbor of v1 or v|H| is touched, and {v1, v|H|} ⊆ K1,
which is untouched. Note that G0 has at least |H| maximal cliques. Since H is longer than
16k + 16, few of them are touched by a k-solution E+. By Lemma 19 and Proposition 20,
these untouched maximal cliques serve as “isolators” of the modifications.

We can guess another untouched maximal clique Kp of G0 that is disjoint from and
nonadjacent to K1. By Proposition 20, K1 and Kp are both maximal cliques of a proper
Helly circular-arc graph G + E+. Since Kp is disjoint from and nonadjacent to K1, it follows
that G+E+− (K1∪Kp) is not connected. Then H is broken into two paths in G− (K1∪Kp).
Recall that every vertex in V (G) \ V (G0) needs to be connected to a vertex on H. When
the graph G + E+ is not a proper interval graph, every small component is connected to
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exactly one of the two sub-paths of H. But then the resulting graph remains connected
after all vertices in K1 ∪Kp removed, a contradiction. We can guess in 2k time to which
side each small component is attached. Then we need to add edges to make two proper
interval graphs. However, we cannot call the proper interval completion problem to solve this
task. For example, the subgraph induced by

⋃p
i=1 Ki together with the small components is

already a proper interval graph. The trouble is how to make them connected while keeping
K1 and Kp the end cliques of the final clique path. The same holds for the other part of the
problem.

For each i with 1 < i < |H|, let the maximal cliques containing vi be Kfrom(i), . . ., Kto(i);
i.e., from(i) and to(i) are the smallest and, respectively, the largest indices. We define Kto(1)
and Kfrom(|H|) analogously. Let r be the number of small components, denoted as C1, . . . , Cr.
For each pair p, q of indices with 1 ≤ p < q ≤ |H|, and each subset S of [1..r], we check
whether it is possible to add at most k edges to make G[

⋃from(q)
i=to(p) Ki ∪

⋃
j∈S Cj ] a proper

interval graph, under the condition that Kto(p) and Kfrom(q) are the end cliques and remain
untouched. Let β(S, p, q) denote the minimum cost if it is at most k, or ∞. We define
β(S, p, q) to be ∞ when Kto(p) and Kfrom(q) are not disjoint. Then β([1..r], 1, |H|) is the
value we need, which can be calculated as follows.

▶ Proposition 21. The value of β([1..r], 1, |H|) can be computed in kO(k)(n + m) time.

Proof. First, for a and b with a < b ≤ a + 8k and S ⊆ [1..r], we calculate β(S, a, b) as
follows. From each component Cj with j ∈ S, we take a vertex x, guess a vertex vi with
a < i < b, and add the edge xvi. After that, the subgraph induced by

⋃from(b)
i=to(a) Ki ∪

⋃
j∈S Cj

is connected. It will remain connected after adding edges. We then branch on adding
edges to destroy induced subgraphs in {C∗

3 , S3, S3} and holes in the subgraph induced by⋃from(b)
i=to(a) Ki ∪

⋃
j∈S Cj , without adding any edges incident to Kto(a) or Kfrom(b).

Since G0 is a proper Helly circular-arc graph, a vertex is adjacent to at most four vertices
on H (there is a claw otherwise). A solution is incident to at most 2k vertices, and thus
at most 8k vertices on H have touched neighbors. If vb−1 has a touched neighbor, then for
some i with 2 ≤ i ≤ 8k + 2, the vertex vb−i has no touched neighbor. For b − a > 8k, by
Lemma 19, we have

β(S, a, b) = min
1≤i≤8k+1

S′⊆S

(β(S \ S′, a, b− i) + β(S′, b− i, b)) . (1)

We can then use dynamic programming to calculate β([1..r], 1, |H|) with (1). ◀

We are now ready to summarize the algorithm in Figure 3. The analysis is left to the full
version.

5 Proper circular-arc vertex deletion

Since we will use properties of both the graph G and its complement, we beg the reader’s
attentiveness in reading this section. There are algorithms for the vertex deletion problem
toward proper interval graphs and toward bipartite permutation graphs. We are henceforth
focused on graphs that are both connected and co-connected. As usual, we can get rid of
small forbidden induced subgraphs easily.

▶ Definition 22. A graph is reduced if it is both connected and co-connected, and it contains
no C∗

3 , C∗
5 , C∗

4 , C6, S3, S∗
3 , F1, F2, F3, or F4.
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1. if there exists an induced subgraph X in {C∗
3 , C∗

4 , S3, S3, W4, W5, C6} then
branch on adding missing edges of X; \\ returns “no” if k becomes negative.

2. if G is a proper Helly circular-arc graph then return “yes”;
3. find a hole H of G and let G0 be the component of G that contains H;
4. if |H| ≤ 16k + 16 then

branch on adding chords of H or edges between H and other components;
5. if |V (G0)| < n− k

2 then return “no”;
6. if β([1..r], 1, |H|) ≤ k then return “yes”;

else return “no.”

Figure 3 The outline of the algorithm for the proper Helly circular-arc completion problem.

Similar to Proposition 11, one can make an algorithm for finding one of the subgraphs
listed above when the input graph is not reduced. We omit details since it does not improve
our main algorithm. The next lemma is complement and similar to Lemma 6.

▶ Lemma 23. A reduced graph is {C∗
ℓ | ℓ ≥ 7}-free.

Proof. Let R be a reduced graph. Suppose for contradiction that there exist a hole H

of length at least seven and a vertex that is nonadjacent to any vertex on H. Since R is
connected, we can find a vertex x adjacent to H, and another vertex y that is adjacent to
x but not to H. Let H = v1v2 · · · v|H|. We argue first that x cannot be adjacent to two
consecutive vertices on H. Suppose for contradiction that x is adjacent to both v1 and v2.
Then v1, v2, and x form a triangle. Since R is free of C∗

3 , it follows that x is adjacent to both
v4 and v5. But then v1, v2, v4, v5, and x induce a C∗

4 (note that v5 and v1 are nonadjacent
because ℓ ≥ 7).

Assume without loss of generality that x is adjacent to v3. Note that x is adjacent
to neither v2 nor v4. If x is adjacent to v5 as well, then x is nonadjacent to v6, and
{v2, . . . , v6, x, y} induces an F2. By symmetry, x cannot be adjacent to v1 either. But then
{v1, . . . , v5, x, y} induces an F1. ◀

By definition, a reduced graph is C∗
3 - and C∗

5 -free.

▶ Corollary 24. A reduced graph is {C∗
2ℓ+1 | ℓ ≥ 1}-free.

By Theorem 4, the definition of reduced graphs, and Lemma 6, a reduced graph is the
complement of a proper circular-arc graph if and only if it does not contain any even hole of
length at least eight. We will therefore be focused on long even holes. The main structural
statement characterizes reduced graphs that contain long even holes.

▶ Lemma 25. If a reduced graph contains an even hole of length at least eight, then it is
bipartite.

Proof (sketch). Let v1v2 · · · vℓ be an even hole with ℓ ≥ 8 of a reduced graph R, and denote
it by B. We prove the lemma with a sequence of claims.
1. No vertex on B participates in any triangle.
2. If some odd hole of R intersects B, then there exists an odd hole of R whose intersection

with B is a nonempty sub-path of B.
3. If V (C) ∩ V (B) is consecutive for an odd induced cycle C, then |V (C) ∩ V (B)| ≤ 4.
4. No odd induced cycle can intersect B (no vertex on B is contained in any odd induced

cycle).
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Finally, we show that R does not contain any odd cycle at all. Let C be an odd induced
cycle that is disjoint from B. First assume C = x1x2x3. Since R is C∗

3 -free, every vertex
on B is adjacent to at least one vertex on C. Assume without loss of generality that x1
has the largest number of neighbors on B, and let their indices be i1, i2, . . ., ip, sorted
increasingly. Note that all of them have the same parity by the first claim. Since R is
C6-free, ij+1 − ij is either two or at least six for all j = 1, . . . , p − 1. Since p ≥ ⌈ ℓ

3⌉, there
must be three consecutive ones with differences two; assume without loss of generality, that
they are v1, v3, and v5. If ℓ = 8, then x1v5v6 · · · v8v1 has length six, and hence x1 must be
adjacent to v7 as well; otherwise, x1 has another neighbor on B because p ≥ ⌈ ℓ

3⌉ ≥ 4. This
neighbor forms an F3 with {x1, v1, v2, . . . , v5}. Now that |C| ≥ 5; let it be x1x2 · · ·x|C|. We
take vi ∈ N(x1) ∩ V (B) and vj ∈ N(x3) ∩ V (B). The sub-path vivi+1 · · · vj forms an odd
cycle with either x1x2x3 (when j − i is odd) or x3x4 · · ·x|C|x1 (when j − i is even). From
this odd cycle we can retrieve an induced odd cycle, which has to intersect both B and C

(because both B and C themselves are induced cycles). This contradicts the fourth claim,
and concludes the proof of this lemma. ◀

The following is immediate from Theorem 4, Lemma 6, and Lemma 25.

▶ Corollary 26. If a reduced graph R is not bipartite, then R is the complement of a proper
circular-arc graph.

We are now ready to present the algorithm for the proper circular-arc vertex deletion
problem in Figure 4. Let (G, k) be an instance to the problem, and we may assume without
loss of generality that G does not contain any small forbidden induced subgraphs on at most
seven vertices. If there is a set V− of k vertices such that G− V− is a proper interval graph
or G − V− is a bipartite permutation graph, then we are done. Hence, we will look for a
solution V− such that G− V− is both connected and co-connected (Propositions 5 and 14).

For this purpose we may assume that G itself is connected and co-connected: if G is not
connected, we can work on the components of G one by one, and it is similar for G. Thus,
G is a reduced graph. If G is not bipartite, then G is already a proper circular-arc graph
(Corollary 26). Otherwise, G is bipartite, of which any induced subgraph of it is bipartite.
In other words, if there exists a solution V−, then G− V− is a bipartite permutation graph,
and this has been handled already.

1. if (G, k) is a yes-instance of proper interval vertex deletion then
return “yes”;

2. if (G, k) is a yes-instance of bipartite permutation vertex deletion then
return “yes”;

\\ We’re looking for a solution V− with both G− V− and G− V− connected.
3. branch on deleting vertices of small forbidden induced subgraphs;
4. C ← maximal vertex sets that are connected and co-connected;
5. if G[C] is co-bipartite for all C ∈ C then return “no”;
6. C ← a maximum set from C with G[C] not co-bipartite;
7. if |V (G) \ V (C)| ≤ k then return “yes”;

else return “no.”

Figure 4 The outline of the algorithm for proper circular-arc vertex deletion.

Again, it is quite straightforward to turn this algorithm into an approximation algorithm,
and the proofs for Theorems 1 and 2 are left to the full version.
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Abstract
A set S of isometric paths of a graph G is “v-rooted”, where v is a vertex of G, if v is one of the
end-vertices of all the isometric paths in S. The isometric path complexity of a graph G, denoted by
ipco (G), is the minimum integer k such that there exists a vertex v ∈ V (G) satisfying the following
property: the vertices of any isometric path P of G can be covered by k many v-rooted isometric
paths.

First, we provide an O(n2m)-time algorithm to compute the isometric path complexity of a
graph with n vertices and m edges. Then we show that the isometric path complexity remains
bounded for graphs in three seemingly unrelated graph classes, namely, hyperbolic graphs, (theta,
prism, pyramid)-free graphs, and outerstring graphs. Hyperbolic graphs are extensively studied in
Metric Graph Theory. The class of (theta, prism, pyramid)-free graphs are extensively studied in
Structural Graph Theory, e.g. in the context of the Strong Perfect Graph Theorem. The class of
outerstring graphs is studied in Geometric Graph Theory and Computational Geometry. Our results
also show that the distance functions of these (structurally) different graph classes are more similar
than previously thought.

There is a direct algorithmic consequence of having small isometric path complexity. Specifically,
using a result of Chakraborty et al. [ISAAC 2022], we show that if the isometric path complexity
of a graph G is bounded by a constant k, then there exists a k-factor approximation algorithm for
Isometric Path Cover, whose objective is to cover all vertices of a graph with a minimum number
of isometric paths.
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1 Introduction

A path is isometric if it is a shortest path between its endpoints. An isometric path cover of
a graph G is a set of isometric paths such that each vertex of G belongs to at least one of
the paths. The isometric path number of G is the smallest size of an isometric path cover of
G. Given a graph G and an integer k, the objective of the algorithmic problem Isometric
Path Cover is to decide if there exists an isometric path cover of cardinality at most k.
Isometric Path Cover has been introduced and studied in the context of pursuit-evasion
games [2, 3]. However, until recently the algorithmic aspects of Isometric Path Cover
remained unexplored. After proving that Isometric Path Cover remains NP-hard on
chordal graphs (graphs without any induced cycle of length at least 4), Chakraborty et al. [7]
provided constant-factor approximation algorithms for many graph classes, including interval
graphs, chordal graphs, and more generally, graphs with bounded treelength. To prove the
approximation ratio of their algorithm, the authors introduced a parameter called isometric
path antichain cover number of a graph G, denoted as ipacc (G) (see Definition 6), and
proved (i) when ipacc (G) is bounded by a constant, Isometric Path Cover admits a
constant-factor approximation algorithm on G; and (ii) the isometric path antichain cover
number of graphs with bounded treelength is bounded.

The objectives of this paper are three fold: (A) provide a more intuitive definition of
isometric path antichain cover number; (B) provide a polynomial-time algorithm to compute
ipacc (G); and (C) prove that it remains bounded for seemingly unrelated graph classes.
Along the way, we also extend the horizon of approximability of Isometric Path Cover.
To achieve (A) we introduce the following new metric graph parameter, that we will show
to be always equal to the isometric path antichain cover number, and whose definition is
simpler.

▶ Definition 1. Given a graph G and a vertex v of G, a set S of isometric paths of G is
v-rooted if v is one of the end-vertices of all the isometric paths in S. The isometric path
complexity of a graph G, denoted by ipco (G), is the minimum integer k such that there
exists a vertex v ∈ V (G) satisfying the following property: the vertices of any isometric path
P of G can be covered by k many v-rooted isometric paths.

A consequence of Dilworth’s theorem is that for any graph G, ipacc (G) = ipco (G) (see
Lemma 7). We will give a polynomial-time algorithm to compute ipco (G), and therefore
ipacc (G) for an arbitrary undirected graph G. This achieves (B). Finally, to achieve (C), we
consider the following three seemingly unrelated graph classes, namely, δ-hyperbolic graphs,
(theta, prism, pyramid)-free graphs and outerstring graphs, and show that their isometric
path complexity is bounded by a constant.

δ-hyperbolic graphs. A graph G is said to be δ-hyperbolic [20] if for any four vertices
u, v, x, y, the two larger of the three distance sums d (u, v) + d (x, y), d (u, x) + d (v, y) and
d (u, y) + d (v, x) differ by at most 2δ. A graph class G is hyperbolic if there exists a constant
δ such that every graph G ∈ G is δ-hyperbolic. This parameter comes from geometric group
theory and was first introduced by Gromov [20] in order to study groups via their Cayley
graphs. The hyperbolicity of a tree is 0, and in general, the hyperbolicity measures how much
the distance function of a graph deviates from a tree metric. Many structurally defined graph
classes like chordal graphs, cocomparability graphs [13], asteroidal-triple free graphs [14],
graphs with bounded chordality or treelength are hyperbolic [8, 22]. Moreover, hyperbolicity
has been found to capture important properties of several large practical graphs such as
the Internet graph [25] or database relation graphs [30]. Due to its importance in discrete
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Bounded isometric path
complexity

bounded hyperbolicity * (t-theta, t-prism, t-pyramid)-free *

Outerstring *

circle *

(theta,prism,pyramid)-
free *

Universally signable *

bounded tree-length

bounded chordalitybounded diameter

chordalAT-free

Interval

circular arc *

Permutation

Figure 1 Inclusion diagram for graph classes. If a class A has an upward path to class B, then A

is included in B. Constant bounds for the isometric path complexity on graph classes marked with *
are contributions of this paper.

mathematics, algorithms, metric graph theory, researchers have studied various algorithmic
aspects of hyperbolic graphs [8, 15, 10, 16]. Note that graphs with diameter 2 are hyperbolic,
which may contain any graph as an induced subgraph.

(theta, prism, pyramid)-free graphs. A theta is a graph made of three vertex-disjoint
induced paths P1 = a . . . b, P2 = a . . . b, P3 = a . . . b of lengths at least 2, and such that
no edges exist between the paths except the three edges incident to a and the three edges
incident to b. A pyramid is a graph made of three induced paths P1 = a . . . b1, P2 = a . . . b2,
P3 = a . . . b3, two of which have lengths at least 2, vertex-disjoint except at a, and such that
b1b2b3 is a triangle and no edges exist between the paths except those of the triangle and
the three edges incident to a. A prism is a graph made of three vertex-disjoint induced
paths P1 = a1 . . . b1, P2 = a2 . . . b2, P3 = a3 . . . b3 of lengths at least 1, such that a1a2a3 and
b1b2b3 are triangles and no edges exist between the paths except those of the two triangles.
A graph G is (theta, pyramid, prism)-free if G does not contain any induced subgraph
isomorphic to a theta, pyramid or prism. A graph is a 3-path configuration if it is a theta,
pyramid or prism. The study of 3-path configurations dates back to the works of Watkins
and Meisner [31] in 1967 and plays “special roles” in the proof of the celebrated Strong
Perfect Graph Theorem [11, 18, 27, 29]. Important graph classes like chordal graphs, circular
arc graphs, universally-signable graphs [12] exclude all 3-path configurations. Popular graph
classes like perfect graphs, even hole-free graphs exclude some of the 3-path configurations.
Note that, (theta, prism, pyramid)-free graphs are not hyperbolic. To see this, consider a
cycle C of order n. Clearly, C excludes all 3-path configurations and has hyperbolicity Ω(n).

Outerstring graphs. A set S of simple curves on the plane is grounded if there exists a
horizontal line containing one endpoint of each of the curves in S. A graph G is an outerstring
graph if there is a collection C of grounded simple curves and a bijection between V (G) and C

such that two curves in S intersect if and only if the corresponding vertices are adjacent in G.
The term “outerstring graph” was first used in the early 90’s [23] in the context of studying
intersection graphs of simple curves on the plane. Many well-known graph classes like chordal
graphs, circular arc graphs [19], circle graphs (intersection graphs of chords of a circle [17]), or
cocomparability graphs [13] are also outerstring graphs and thus, motivated researchers from
the geometric graph theory and computational geometry communities to study algorithmic
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and structural aspects of outerstring graphs and its subclasses [4, 5, 6, 21, 24]. Note that, in
general, outerstring graphs may contain a prism, pyramid or theta as an induced subgraph.
Moreover, cycles of arbitrary order are outerstring graphs, implying that outerstring graphs
are not hyperbolic.

It is clear from the above discussion that the classes of hyperbolic graphs, (theta, prism,
pyramid)-free graphs, and outerstring graphs are pairwise incomparable (with respect to the
containment relationship). We show that the isometric path complexities of all the above
graph classes are small.

1.1 Our contributions
The main technical contributions of this paper are as follows. First we prove that the
isometric path complexity can be computed in polynomial time.

▶ Theorem 2. Given a graph G with n vertices and m edges, it is possible to compute
ipco (G) in O(n2m) time.

Recall that, the above theorem and Lemma 7 imply that for any undirected graph G,
ipacc (G) can be computed in polynomial time. Then we show that the isometric path
complexity remains bounded on hyperbolic graphs, (theta, pyramid, prism)-free graphs, and
outerstring graphs. Specifically, we prove the following theorem.

▶ Theorem 3. Let G be a graph.
(a) If the hyperbolictiy of G is at most δ, then ipco (G) ≤ 4δ + 3.
(b) If G is a (theta, pyramid, prism)-free graph, then ipco (G) ≤ 71.
(c) If G is an outerstring graph, then ipco (G) ≤ 95.

To the best of our knowledge, the isometric path complexity being bounded (by con-
stant(s)) is the only known non-trivial property shared by any two or all three of these
graph classes. Theorem 3 shows that isometric path complexity (equivalently isometric path
antichain cover number), as recently introduced graph parameters, are general enough to
unite these three graph classes by their metric properties. We hope that this definition
will be useful for the field of metric graph theory, for example by enabling us to study
(theta,prism,pyramid)-free graphs and outerstring graphs from the perspective of metric
graph theory.

We provide a unified proof for Theorem 3b and 3c by proving that the isometric path
complexity of (t-theta, t-pyramid, t-prism)-free graphs [28] (see Section 4 for a definition) is
bounded by a linear function of t. Due to the above theorems, we also have as corollaries
that there is a polynomial-time approximation algorithm for Isometric Path Cover with
approximation ratio
(a) 4δ + 3 on δ-hyperbolic graphs,
(b) 73 on (theta, prism, pyramid)-free graphs,
(c) 95 on outerstring graphs, and
(d) 8t + 63 on (t-theta, t-pyramid, t-prism)-free graphs.

To contrast with Theorem 3, we construct highly structured graphs with small treewidth
and large isometric path complexity. A wheel consists of an induced cycle C of order at least 4
and a vertex w /∈ V (C) adjacent to at least three vertices of C. The three path configurations
introduced earlier and the wheel together are called Truemper configurations [29] and they
are important objects of study in structural and algorithmic graph theory [1, 18].
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▶ Theorem 4. For every k ≥ 1,
(a) there exists a (pyramid, prism, wheel)-free graph G with tree-width 2, hyperbolicity at

least ⌈ k
2 ⌉ − 1 and ipco (G) ≥ k.

(b) there exists a (theta, prism, wheel)-free graph G with tree-width at most 3, hyperbolicity
at least ⌈ k

2 ⌉ − 1 and ipco (G) ≥ k.
(c) there exists a (theta, pyramid, wheel)-free graph G with hyperbolicity at least ⌈ k

2 ⌉ − 1 and
ipco (G) ≥ k.

Organisation. In Section 2, we recall some definitions and some results. In Section 3,
we present an algorithm to compute the isometric path complexity of a graph and prove
Theorem 2. In Section 4, we prove Theorem 3. In Section 5, we prove Theorem 4. We
conclude in Section 6. Proofs of lemma and observations marked with (*) are provided in
the main version of the paper.

2 Definitions and preliminary observations

In this section, we recall some definitions and some related observations. A sequence of
distinct vertices forms a path P if any two consecutive vertices are adjacent. Whenever we fix
a path P of G, we shall refer to the subgraph formed by the edges between the consecutive
vertices of P . The length of a path P , denoted by |P |, is the number of its vertices minus
one. A path is induced if there are no graph edges joining non-consecutive vertices. A path
is isometric if it is a shortest path between its endpoints. For two vertices u, v of a graph G,
d (u, v) denotes the length of an isometric path between u and v.

In a directed graph, a directed path is a path in which all arcs are oriented in the
same direction. For a path P of a graph G between two vertices u and v, the vertices
V (P ) \ {u, v} are internal vertices of P . A path between two vertices u and v is called a
(u, v)-path. Similarly, we have the notions of isometric (u, v)-path and induced (u, v)-path.
The interval I(u, v) between two vertices u and v consists of all vertices that belong to an
isometric (u, v)-path. For a vertex r of G and a set S of vertices of G, the distance of S

from r, denoted as d (r, S), is the minimum of the distance between any vertex of S and
r. For a subgraph H of G, the distance of H w.r.t. r is d (r, V (H)). Formally, we have
d (r, S) = min{d (r, v) : v ∈ S} and d (r, H) = d (r, V (H)).

For a graph G and a vertex r ∈ V (G), consider the following operations on G. First,
remove all edges xy from G such that d (r, x) = d (r, y). Let G′

r be the resulting graph. Then,
for each edge e = xy ∈ E(G′

r) with d (r, x) = d (r, y) − 1, orient e from y to x. Let −→
Gr be

the directed acyclic graph formed after applying the above operation on G′. Note that this
digraph can easily be computed in linear time using a Breadth-First Search (BFS) traversal
with starting vertex r. The following definition is inspired by the terminology of posets (as
the graph −→

Gr can be seen as the Hasse diagram of a poset).

▶ Definition 5. For a graph G and a vertex r ∈ V (G), two vertices x, y ∈ V (G) are antichain
vertices if there are no directed paths from x to y or from y to x in −→

Gr. A set X of vertices
of G is an antichain set if any two vertices in X are antichain vertices.

▶ Definition 6 ([7]). Let r be a vertex of a graph G. For a subgraph H, Ar (H) shall denote
the maximum antichain set of H in −→

Gr. The isometric path antichain cover number of −→
Gr,

denoted by ipacc
(−→

Gr

)
, is defined as follows:

ipacc
(−→

Gr

)
= max {|Ar (P ) | : P is an isometric path} .
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The isometric path antichain cover number of graph G, denoted as ipacc (G), is defined as
the minimum over all possible antichain covers of its associated directed acyclic graphs:

ipacc (G) = min
{

ipacc
(−→

Gr

)
: r ∈ V (G)

}
.

For technical purposes, we also introduce the following definition. For a graph G and a
vertex r of G, let ipco

(−→
Gr

)
denote the minimum integer k such that any isometric path P

of G can be covered by k r-rooted isometric paths (The notation reflects that it is a dual
notion of ipacc

(−→
Gr

)
). Using Dilworth’s Theorem we prove the following important lemma.

▶ Lemma 7. For any graph G and vertex r, ipco
(−→

Gr

)
= ipacc

(−→
Gr

)
. Therefore, ipco (G) =

ipacc (G).

Proof. Let r be a vertex of G such that any isometric path of G can be covered by ipco
(−→

Gr

)
r-rooted isometric paths. Let P be an arbitrary isometric path of G. Since two vertices of an
antichain of −→

Gr cannot be covered by a single r-rooted path and P is covered by ipco
(−→

Gr

)
r-rooted path, we deduce |Ar (P ) | ≤ ipco

(−→
Gr

)
. This is true for any isometric path P of G.

Hence, ipacc
(−→

Gr

)
≤ ipco

(−→
Gr

)
. Conversely, consider a vertex r ∈ V (G). By definition of

ipco
(−→

Gr

)
, there is an isometric path P that cannot be covered by (ipco

(−→
Gr

)
− 1) r-rooted

isometric paths. By Dilworth theorem, P contains an antichain of −→
Gr of size ipco

(−→
Gr

)
.

Hence |Ar(P )| ≥ ipco
(−→

Gr

)
and ipacc

(−→
Gr

)
≥ ipco

(−→
Gr

)
. The second part of the lemma

follows immediately. ◀

We also recall the following theorem and proposition from [7].

▶ Theorem 8 ([7]). For a graph G, if ipacc (G) ≤ c, then Isometric Path Cover admits
a polynomial-time c-approximation algorithm on G.

▶ Proposition 9 ([7]). Let G be a graph and r, an arbitrary vertex of G. Consider the
directed acyclic graph −→

Gr, and let P be an isometric path between two vertices x and y in G.
Then |P | ≥ |d (r, x) − d (r, y) | + |Ar (P ) | − 1.

Proof. Orient the edges of P from y to x in G. First, observe that P must contain a set E1 of
oriented edges such that |E1| = |d (r, y) − d (r, x) | and for any

−→
ab ∈ E1, d (r, a) = d (r, b) + 1.

Let the vertices of the largest antichain set of P in −→
Gr, i.e., Ar (P ), be ordered as a1, a2, . . . , at

according to their occurrence while traversing P from y to x. For i ∈ [2, t], let Pi be the
subpath of P between ai−1 and ai. Observe that for any i ∈ [2, t], since ai and ai−1

are antichain vertices, there must exist an oriented edge
−→
bici ∈ E(Pi) such that either

d (r, bi) = d (r, ci) or d (r, bi) = d (r, ci) − 1. Let E2 = {bici}i∈[2,t]. Observe that E1 ∩ E2 = ∅
and therefore |P | ≥ |E1| + |E2| = |d (r, y) − d (r, x) | + |Ar (P ) | − 1. ◀

3 Proof of Theorem 2

In this section we provide a polynomial-time algorithm to compute the isometric path
complexity of a graph. Let G be a graph. In the following lemma, we provide a necessary and
sufficient condition for two vertices of an isometric path to be covered by the same isometric
r-rooted path in −→

Gr for some vertex r ∈ V (G).
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▶ Lemma 10. Let r be a vertex of G. If P = (u = v0, . . . , vk = v) is an isometric (u, v)-path
with d (r, u) ≤ d (r, v) then there exists an isometric r-rooted path containing u, v in −→

Gr(P )
if and only if d (vi+1, r) = d (vi, r) + 1 for all i ∈ {0, . . . , k − 1}.

Proof. If d (vi+1, r) = d (vi, r) + 1 for every i ∈ {0, . . . , k − 1} then the path obtained by
concatenating an isometric (r, u)-path and the path P is an isometric r-rooted (r, v)-path
containing u, v in −→

Gr(P ). Now suppose that there exists an isometric r-rooted path containing
u, v in −→

Gr(P ), i.e., d (r, v) − d (r, u) = d (u, v) . Then, along any path from u to v, we need
to traverse at least d (u, v) edges increasing the distance to r. Since P is an isometric
(u, v)-path, it contains exactly d (u, v) edges. Hence, d (r, vi+1) = d (r, vi) + 1 for every
i ∈ {0, . . . , k − 1}. ◀

3.1 Notations and preliminary observations
We now introduce some notations that will be used to describe the algorithm and prove its
correctness. Consider three vertices r, x, v of G such that x ̸= v. Let Pr

↘ (x, v) denote the
set of all isometric (x, v)-paths P containing a vertex u that is adjacent to v and satisfies
d (r, u) = d (r, v) − 1. Analogously, let Pr

→ (x, v) denote the set of all isometric (x, v)-paths
P containing a vertex u that is adjacent to v and satisfies d (r, u) = d (r, v) and let Pr

↗ (x, v)
denote the set of all isometric (x, v)-paths P containing a vertex u that is adjacent to v

and satisfies d (r, u) = d (r, v) + 1. Observe that the set of isometric (x, v)-paths is precisely
Pr

↘ (x, v) ∪ Pr
→ (x, v) ∪ Pr

↗ (x, v) and that some of these sets may be empty.
Given a path P , we denote by |Sr (P ) | the minimum size of a set of isometric r-rooted

paths covering the vertices of P . We denote by γr
↘(x, v) and βr

↘(x, v) respectively the
minimum of |Sr (P ) | and |Sr (P − {v}) | over all paths P ∈ Pr

↘ (x, v). More formally,

γr
↘(x, v) = max

{
|Sr (P ) | : P ∈ Pr

↘ (x, v)
}

,

βr
↘(x, v) = max

{
|Sr (P − {v}) | : P ∈ Pr

↘ (x, v)
}

.

Note that if Pr
↘ (x, v) is empty, we have γr

↘(x, v) = βr
↘(x, v) = 0. We define similarly

γr
↗(x, v), βr

↗(x, v), and γr
→(x, v):

γr
↗(x, v) = max

{
|Sr (P ) | : P ∈ Pr

↗ (x, v)
}

,

βr
↗(x, v) = max

{
|Sr (P − {v}) | : P ∈ Pr

↗ (x, v)
}

,

γr
→(x, v) = max {|Sr (P ) | : P ∈ Pr

→ (x, v)} .

Finally, let γr(x, v) = max
{

γr
↘(x, v), γr

→(x, v), γr
↗(x, v)

}
be the maximum of |Sr(P )| over all

isometric (x, v)-paths P . In our algorithm, we will need also to consider the case where v = x

as an initial case. For practical reasons, we let γr(x, x) = γr
↘(x, x) = γr

→(x, x) = γr
↗(x, x) = 1

and βr
↘(x, x) = βr

↗(x, x) = 0. Based on the above notations and Lemma 7, we have the
following observation.

▶ Observation 11. For any graph G and any vertex r of G, we have ipco
(−→

Gr

)
=

ipacc
(−→

Gr

)
= maxx,v γr(x, v) and ipco (G) = ipacc (G) = minr maxx,v γr(x, v).

Observation 11 implies that to compute the isometric path complexity of a graph it is
enough to compute the parameter γr(x, v) for all r, x, v ∈ V (G) in polynomial time. In the
next section, we focus on achieving this goal without computing explicitly any of the sets
Pr

↘ (x, v), Pr
→ (x, v) or Pr

↗ (x, v). (Note that the size of these sets could be exponential in
the number of vertices of the graph).
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3.2 An algorithm to compute γr(x, v)
Throughout this section, let r and x be two fixed vertices of G. We shall call r as the “root”
and x as the “source” vertex. The objective of this section is to compute the parameter
γr(x, v) for all vertices v ∈ V (G).

In the sequel, since we always refer to a fixed root r and source x, we omit r and x

and use the shorthand γ(v) for γr(x, v). We do the same with the notations γ↗(v), γ→(v),
γ↘(v), β↗(v), and β↘(v) that also refer to fixed vertices r and x In the following lemmas,
we shall provide explicit (recursive) formulas to compute γ↗(v), γ→(v), γ↘(v), β↗(v), and
β↘(v). Using these formulas, we will show how to compute γ(v) for all v ∈ V (G) in a total
of O(|E(G)|)-time.

▶ Observation 12. If r is the root vertex, x the source vertex, and v is distinct from x, then

β↘(v) = max{γ(u) : u ∈ I(x, v) ∩ N(v); d (r, u) = d (r, v) − 1},

β↗(v) = max{γ(u) : u ∈ I(x, v) ∩ N(v); d (r, u) = d (r, v) + 1}.

▶ Lemma 13 (*). If r is the root vertex, x the source vertex, and v is distinct from x, then
γ→(v) = max{1 + γ(u) : u ∈ I(x, v) ∩ N(v); d (r, u) = d (r, v)}.

▶ Lemma 14 (*). If r is the root vertex, x the source vertex, and v is a vertex distinct from x,
then γ↘(v) = max{max{γ↘(u), γ→(u), β↗(u)+1} : u ∈ I(x, v)∩N(v); d (r, u) = d (r, v)−1}

▶ Lemma 15 (*). If r is the root vertex, x the source vertex, and v is a vertex distinct from x,
then γ↗(v) = max{max{γ↗(u), γ→(u), β↘(u)+1} : u ∈ I(x, v)∩N(v); d (r, u) = d (r, v)+1}.

Now we provide a BFS based algorithm to compute the above parameters. Let r

and x be fixed root and source vertices of G, respectively. For a vertex u ∈ V (G), let
D(u) = {γ(u), γ↗(u), γ→(u), γ↘(u), β↗(u), β↘(u)}. Clearly, the set D(x) can be computed
in constant time. Now let Xi be the set of vertices at distance i from x. Clearly, the sets Xi

can be computed in O(|E(G)|)-time (using a BFS) and X0 = {x}. Let i ≥ 1 be an integer
and assume that for all vertices u ∈

⋃i−1
j=0 Xj , the set D(u) is already computed. Let v ∈ Xi

be a vertex. Then due to the formulas given in Observation 12 and Lemmas 13–15, the set
D(v) can be computed by observing only the sets D(u), u ∈ N(v) ∩ Xi−1. Hence, for all
vertices v ∈ V (G), the sets D(v) can be computed in a total of O(|E(G)|) time. Hence, we
have the following lemma.

▶ Lemma 16. For a root vertex r and source vertex x, for all vertices v ∈ V (G), the value
γr(x, v) can be computed in O(|E(G)|) time.

We can now finish the proof of Theorem 2. Let G be a graph with n vertices and m

edges. For a root vertex r, by applying Lemma 16, for every source x ∈ V (G), it is possible
to compute ipco

(−→
Gr

)
= maxx,v γr(x, v) in O(nm) time. By repeating this for every root

r ∈ V (G), it is possible to compute ipco (G) = minr ipco
(−→

Gr

)
in O(n2m) time.

4 Proof of Theorem 3

First we prove Theorem 3a. We recall the definition of Gromov products [20] and its
relation with hyperbolicity. For three vertices r, x, y of a graph G, the Gromov product of
x, y with respect to r is defined as (x|y)r = 1

2 (d (x, r) + d (y, r) − d (x, y)). Then, a graph
G is δ-hyperbolic [9, 20] if and only if for any four vertices x, y, z, r, we have (x|y)r ≥
min {(x|z)r , (y|z)r} − δ.



D. Chakraborty, J. Chalopin, F. Foucaud, and Y. Vaxès 32:9

u v

c

c′

Figure 2 An example of a 4-fat turtle. Let C be the cycle induced by the black vertices, P be
the path induced by the white vertices. Then the tuple (4, C, P, c, c′) defines a 4-fat turtle.

Let G be a graph with hyperbolicity at most δ. Due to Lemma 7, in order to prove
Theorem 3a, it is enough to show that ipacc (G) ≤ 4δ + 3. Aiming for a contradiction,
let r be a vertex of G and P be an isometric path such that |Ar (P ) | ≥ 4δ + 4. Let
a1, a2, . . . , a2δ+2, . . . , a4δ+4 be the vertices of Ar (P ) ordered as they are encountered while
traversing P from one end-vertex to the other. Let x = a1, z = a2δ+2, y = a4δ+4. Let Q

denote the (y, z)-subpath of P . Observe that, |Ar (Q) | ≥ 2δ + 2. Then we have (x|y)r ≥
min {(x|z)r , (y|z)r} − δ. Without loss of generality, assume that (x|z)r ≤ (y|z)r. Hence,

(x|y)r ≥ (x|z)r − δ

d (x, r) + d (y, r) − d (x, y) ≥ d (x, r) + d (z, r) − d (x, z) − 2δ

d (y, r) − d (x, y) ≥ d (z, r) − d (x, z) − 2δ

d (y, r) − d (z, r) + 2δ ≥ d (x, y) − d (x, z)
d (y, r) − d (z, r) + 2δ ≥ d (y, z)

d (y, z) ≤ |d (y, r) − d (z, r)| + 2δ.

But this directly contradicts Proposition 9, which implies that d (y, z) ≥
|d (y, r) − d (z, r)| + |Ar (Q)| − 1 ≥ |d (y, r) − d (z, r)| + 2δ + 1. This completes the proof of
Theorem 3a.

Now, we shall prove Theorems 3b and 3c. First, we shall define the notions of t-theta,
t-prism, and t-pyramid [28]. For an integer t ≥ 1, a t-prism is a graph made of three
vertex-disjoint induced paths P1 = a1 . . . b1, P2 = a2 . . . b2, P3 = a3 . . . b3 of lengths at least t,
such that a1a2a3 and b1b2b3 are triangles and no edges exist between the paths except those
of the two triangles. For an integer t ≥ 1, a t-pyramid is a graph made of three induced
paths P1 = a . . . b1, P2 = a . . . b2, P3 = a . . . b3 of lengths at least t, two of which have lengths
at least t + 1, they are pairwise vertex-disjoint except at a, such that b1b2b3 is a triangle and
no edges exist between the paths except those of the triangle and the three edges incident to
a. For an integer t ≥ 1, a t-theta is a graph made of three internally vertex-disjoint induced
paths P1 = a . . . b, P2 = a . . . b, P3 = a . . . b of lengths at least t + 1, and such that no edges
exist between the paths except the three edges incident to a and the three edges incident to b.
A graph G is (t-theta, t-pyramid, t-prism)-free if G does not contain any induced subgraph
isomorphic to a t-theta, t-pyramid or t-prism. When t = 1, (t-theta, t-pyramid, t-prism)-free
graphs are exactly (theta, prism, pyramid)-free graphs.

Now, we shall show that the isometric path antichain cover number of (t-theta, t-pyramid,
t-prism)-free graphs are bounded above by a linear function on t. We shall show that, when
the isometric path antichain cover number of a graph is large, the existence of a structure
called “t-fat turtle” (defined below) as an induced subgraph is forced, which cannot be present
in a ((t − 1)-theta, (t − 1)-pyramid, (t − 1)-prism)-free graph.

▶ Definition 17. For an integer t ≥ 1, a “t-fat turtle” consists of a cycle C and an induced
(u, v)-path P of length at least t such that all of the following hold:
(a) V (P ) ∩ V (C) = ∅,
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r

z2 w2

u
z

z1

w b

w1

c

(= a2t+13)
x

c1

a

c2

T (c1, c2)≥ t

≥ t≥ t

Q (r, b)
Q (r, u)

Figure 3 Illustration of the notations used in the proof of Lemma 20.

(b) For any vertex w ∈ (V (P ) \ {u, v}), N(w) ∩ V (C) = ∅ and both u and v have at least
one neighbour in C,

(c) For any vertex w ∈ N(u) ∩ V (C) and w′ ∈ N(v) ∩ V (C), the distance between w and w′

in C is at least t,
(d) There exist two vertices {c, c′} ⊂ V (C) and two distinct components Cu, Cv of C − {c, c′}

such that N(u) ∩ V (C) ⊆ V (Cu) and N(v) ∩ V (C) ⊆ V (Cv).

The tuple (t, C, P, c, c′) defines the t-fat turtle. See Figure 2 for an example.

In the following observation, we show that any (t-theta, t-pyramid,t-prism)-free graph
cannot contain a (t + 1)-fat turtle as an induced subgraph.

▶ Lemma 18 (*). For some integer t ≥ 1, let G be a graph containing a (t + 1)-fat turtle as
an induced subgraph. Then G is not (t-theta, t-pyramid, t-prism)-free.

In the remainder of this section, we shall prove that there exists a linear function f(t)
such that if the isometric path antichain cover number of a graph is more than f(t), then G

is forced to contain a (t + 1)-fat turtle as an induced subgraph, and therefore is not (t-theta,
t-pyramid,t-prism)-free. We shall use the following observation.

▶ Observation 19 (*). Let G be a graph, r be an arbitrary vertex, P be an isometric (u, v)-
path in G and Q be a subpath of an isometric (v, r)-path in G such that one endpoint of
Q is v. Let P ′ be the maximum (u, w)-subpath of P such that no internal vertex of P ′ is a
neighbour of some vertex of Q. We have that |Ar (P ′) | ≥ |Ar (P ) | − 3.

▶ Lemma 20. For an integer t ≥ 1, let G be a graph with ipacc (G) ≥ 8t + 64. Then G has
a (t + 1)-fat turtle as an induced subgraph.

Proof. Let r be a vertex of G such that ipacc
(−→

Gr

)
is at least 8t + 64. Then there exists

an isometric path P such that |Ar (P ) | ≥ 8t + 64. Let the two endpoints of P be a and
b. (See Figure 3.) Let u be a vertex of P such that d (r, u) = d (r, P ). Let P (a, u) be
the (a, u)-subpath of P and P (b, u) be the (b, u)-subpath of P . Both P (a, u) and P (b, u)
are isometric paths and observe that either |Ar (P (a, u)) | ≥ 4t + 32 or |Ar (P (b, u)) | ≥
4t + 32. Without loss of generality, assume that |Ar (P (b, u)) | ≥ 4t + 32. Let Q (r, b) be
an isometric (b, r)-path in G. First observe that u is not adjacent to any vertex of Q (r, b).
Otherwise, d (u, b) ≤ 2 + d (r, b) − d (r, u), which contradicts Proposition 9. Let P (u, w)
be the maximum (u, w)-subpath of P (b, u) such that no internal vertex of P (u, w) is a
neighbour of Q (r, b). Note that P (u, w) is an isometric path and w has a neighbour in
Q (r, b). Applying Observation 19, we have the following:
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▷ Claim 21. |Ar (P (u, w)) | ≥ 4t + 29.

Let Q (r, u) be any isometric (u, r)-path of G. Observe that w is not adjacent to any
vertex of Q (r, u). Otherwise, d (u, w) ≤ 2+d (r, u)−d (r, w), which contradicts Proposition 9.
Let P (z, w) be the maximum (z, w)-subpath of P (u, w) such that no internal vertex of
P (z, w) has a neighbour in Q (r, u). Observe that P (z, w) is an isometric path, and z has a
neighbour in Q (r, u). Again applying Observation 19, we have the following:

▷ Claim 22. |Ar (P (z, w)) | ≥ 4t + 26.

Let a1, a2, . . . , ak be the vertices of Ar (P (z, w)) ordered according to their appearance
while traversing P (z, w) from z to w. Due to Claim 22, we have that k ≥ 4t + 26. Let
c = a2t+13 and Q (r, c) denote an isometric (c, r)-path. Let T (r, c1) be the maximum subpath
of Q (r, c) such that no internal vertex of T (r, c1) is adjacent to any vertex of P (z, w).
Observe that neither z nor w can be adjacent to c1 (due to Proposition 9). Morevoer, if c1 is
a vertex of P (z, w) then we must have c1 = c.

▷ Claim 23 (*). Let x be a neighbour of c1 in P (z, w), X be the (x, b)-subpath of P (u, b)
and Y be the (x, u)-subpath of P (u, b). Then |Ar (X) | ≥ 2t + 11 and |Ar (Y ) | ≥ 2t + 11.

Let T (c1, c2) be the maximum (c1, c2)-subpath of T (c1, r) such that no internal vertex of
T (c1, c2) is adjacent to a vertex of Q (r, b) or Q (r, u). We have the following claim.

▷ Claim 24 (*). The length of T (c1, c2) is at least t + 3.

The path T (c1, c2) forms the first ingredient to extract a (t + 1)-fat turtle. Let z1 be the
neighbour of z in Q (r, u) and w1 be the neighbour of w in Q (r, b). We have the following
claim.

▷ Claim 25 (*). The vertices w1 and z1 are non adjacent.

Now we shall construct a (w1, z1)-path as follows: Consider the maximum (w1, w2)-
subpath, say T (w1, w2), of Q (r, b) such that no internal vertex of T (w1, w2) has a neighbour
in Q (r, u). Similarly, consider the maximum (z1, z2)-subpath, say T (z1, z2), of Q (r, u) such
that no internal vertex of T (z1, z2) is a neighbour of w2. (Note that it is possible that
z2 = w2 = r.) Let T be the path obtained by taking the union of T (w1, w2) and T (z1, z2).
Observe that z2 must be a neighbour of w2 and T is an induced (w1, z1)-path. The definitions
of T and P (z, w) imply that their union induces a cycle Z. Here we have the second and
final ingredient to extract the (t + 1)-fat turtle.

Suppose that c2 has a neighbour in T . Let T ′ be the maximum subpath of T (c1, c2) which
is vertex-disjoint from Z. (Note that if c1 = c or c2 ∈ {w2, z2} (e.g. when c2 = w2 = z2 = r),
T (c1, c2) may share vertices with Z.) Due to Claim 24, the length of T ′ is at least t + 1. Let
e1 and e2 be the end-vertices of T ′. Observe the following.

Each of e1 and e2 has at least one neighbour in Z.
Z−{z, w} contains two distinct components C1, C2 such that for i ∈ {1, 2}, N(ei)∩V (Z) ⊆
V (Ci).
For a vertex e′

1 ∈ N(e1) ∩ V (Z) and e′
2 ∈ N(e2) ∩ V (Z), the distance between e′

1 and e′
2

is at least t + 1. This statement follows from Claim 23.

Hence, we have that the tuple (t + 1, Z, T ′, z, w) defines a (t + 1)-fat turtle. Now consider
the case when c2 does not have a neighbour in T . By definition, c2 has at least one neighbour
in Q (r, u) or Q (r, b). Without loss of generality, assume that c2 has a neighbour c3 in
Q (r, u) such that the (z2, c3)-subpath, say, T ′′ of Q (r, u) has no neighbour of c2 other than
c3. Observe that the path T ∗ = (T ′ ∪ (T ′′ − {z2})) is vertex-disjoint from Z and has length
at least t + 1. Let e1, e2 be the two end-vertices of T ∗. Observe the following.
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Each of e1 and e2 has at least one neighbour in Z.
Z−{z, w} contains two distinct components C1, C2 such that for i ∈ {1, 2}, N(ei)∩V (Z) ⊆
V (Ci).
For a vertex e′

1 ∈ N(e1) ∩ V (Z) and e′
2 ∈ N(e2) ∩ V (Z), the distance between e′

1 and e′
2

is at least t + 1. This statement follows from Claim 23.

Hence, (t + 1, Z, T ∗, z, w) is a (t + 1)-fat turtle. ◀

Proof of Theorem 3b. Lemma 7, 18 and 20 together imply Theorem 3b.

▶ Lemma 26 (*). Any outerstring graph is (4-theta, 4-prism, 4-pyramid)-free.

Proof of Theorem 3c. Lemma 7, 18, 20, and 26 together imply Theorem 3c.

5 Proof of Theorem 4

We shall provide a construction for every k ≥ 4, this implies the statement of Theorem 4
for any k ≥ 1. First we shall prove Theorem 4a. For a fixed integer k ≥ 4, first we describe
the construction of a graph Xk as follows. Consider k + 1 paths P1, P2, . . . , Pk+1 each of
length k and having a common endvertex a. For i ∈ [k + 1], let the other endvertex of Pi be
denoted as bi. Moreover, for i ∈ [k + 1], let the neighbours of a and bi in Pi be denoted as a′

i

and b′
i, respectively. For i ∈ [k], introduce an edge between bi and bi+1. The resulting graph

is denoted Xk and the special vertex a is the apex of Xk. See Figure 4(a). For a fixed integer
k ≥ 4, consider the graph Xk and for each i ∈ [k], introduce an edge between bi and b′

i+1.
Let Yk denote the resulting graph and the special vertex a is the apex of Yk. See Figure 4(b).
For a fixed integer k ≥ 4, consider the graph Yk and for each {i, j} ⊆ [k], introduce an edge
between a′

i and a′
j . Let Zk denote the resulting graph and the special vertex a is the apex of

Zk. See Figure 4(c). We prove the following lemmas.

▶ Lemma 27 (*). For k ≥ 4, let G be the graph constructed by taking two distinct copies
of Xk and identifying the two apex vertices. Then G is a wheel-free, (pyramid, prism)-free
graph with treewidth 2, hyperbolicity at least ⌈ k

2 ⌉ − 1 and ipacc (G) ≥ k.

▶ Lemma 28 (*). For k ≥ 4, let G be the graph constructed by taking two distinct copies of
Yk and identifying the two apex vertices. Then G is a wheel-free, (theta, prism)-free graph
with treewidth 3, hyperbolicity at least ⌈ k

2 ⌉ − 1, and ipacc (G) ≥ k.

▶ Lemma 29 (*). For k ≥ 4, let G be the graph constructed by taking two distinct copies of
Zk and identifying the two apex vertices. Then G is a wheel-free, (theta, pyramid)-free graph
with hyperbolicity at least ⌈ k

2 ⌉ − 1 and ipacc (G) ≥ k.

Lemma 7, 27, 28, 29 imply Theorem 4.
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6 Conclusion

In this paper, we have introduced the new graph parameter isometric path complexity. We
have shown that the isometric path complexity of a graph with n vertices and m edges can be
computed in O(n2m)-time. It would be interesting to provide a faster algorithm to compute
the isometric path complexity of a graph. We have derived upper bounds on the isometric path
complexity of three seemingly (structurally) different classes of graphs, namely hyperbolic
graphs, (theta,pyramid,prism)-free graphs and outerstring graphs. An interesting direction
of research is to generalise the properties of hyperbolic graphs or (theta,pyramid,prism)-free
graphs to graphs with bounded isometric path complexity.

Note that, in our proofs we essentially show that, for any graph G that belongs to one
of the above graph classes, any vertex v of G, and any isometric path P of G, the path P

can be covered by a small number of v-rooted isometric paths. This implies our “choice of
the root” is arbitrary. This motivates the following definition. The strong isometric path
complexity of a graph Gis the minimum integer k such that for each vertex v ∈ V (G) we have
that the vertices of any isometric path P of G can be covered by k many v-rooted isometric
paths. Our proofs imply that the strong isometric path complexity of graphs from all the
graph classes addressed in this paper are bounded. We also wonder whether one can find
other interesting graph classes with small (strong) isometric path complexity.

Our results imply a constant-factor approximation algorithm for Isometric Path Cover
on hyperbolic graphs, (theta, pyramid, prism)-free graphs and outerstring graphs. However,
the existence of a constant-factor approximation algorithm for Isometric Path Cover on
general graphs is not known (an O(log n)-factor approximation algorithm is designed in [26]).
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Abstract
We consider the problem of estimating the support size of a distribution D. Our investigations are
pursued through the lens of distribution testing and seek to understand the power of conditional
sampling (denoted as COND), wherein one is allowed to query the given distribution conditioned
on an arbitrary subset S. The primary contribution of this work is to introduce a new approach to
lower bounds for the COND model that relies on using powerful tools from information theory and
communication complexity.

Our approach allows us to obtain surprisingly strong lower bounds for the COND model and its
extensions.

We bridge the longstanding gap between the upper bound O
(
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)
and the lower bound

Ω
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log log n
)

for the COND model by providing a nearly matching lower bound. Surprisingly,
we show that even if we get to know the actual probabilities along with COND samples, still
Ω

(
log log n + 1

ϵ2 log(1/ϵ)

)
queries are necessary.

We obtain the first non-trivial lower bound for the COND equipped with an additional oracle
that reveals the actual as well as the conditional probabilities of the samples (to the best of our
knowledge, this subsumes all of the models previously studied): in particular, we demonstrate
that Ω

(
log log log n + 1

ϵ2 log(1/ϵ)

)
queries are necessary.
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1 Introduction

We consider the problem of estimating the support size of a distribution D over a domain Ω
(of size n), which is defined as follows:

supp(D) := {x | D(x) > 0}.

We are interested in (ϵ, δ)-approximation1 of the size of supp(D) (i.e., |supp(D)|). For
simplicity in exposition, throughout this paper, we consider δ to be a small constant (more
specifically, 1/3, which can be reduced to any arbitrary small constant.). The support size
estimation is a fundamental problem in data science and finds a myriad of applications
ranging from database management, biology, ecology, genetics, linguistics, neuroscience, and
physics (see [30] and the references therein). Naturally, the distribution is not specified
explicitly, and therefore, the complexity of the problem depends on the queries that one is
allowed to the distribution. As such, the primary objective is to minimize the number of
queries (aka query complexity).

Along with support size estimation, several other properties of distributions have attracted
investigations over the past three decades (see [9]). As such, several query models have been
considered by the research community. The simplest model SAMP only allows drawing
independent and identically distributed samples from D. Valiant and Valiant [30] showed
that to get an estimation up to an additive factor of ϵn (for any ϵ > 0), O(n/ϵ2 log n) samples
suffice, which was subsequently improved to O( n

log n log2(1/ϵ)) by Wu and Yang [31]. Further,
Wu and Yang proved that Ω( n

log n log2(1/ϵ)) samples are also necessary to get an estimate
up to an additive error of ϵn. A natural extension to SAMP is called probability-revealing
sample or PR-SAMP, due to Onak and Sun [27], wherein instead of just returning an
independent sample x from D (as in SAMP), the oracle provides a pair (x, D(x)) (i.e., a
sample along with the probability assigned on it by D). Onak and Sun showed that to
estimate the support size up to an additive error of ϵn, Θ(1/ϵ2) samples are necessary and
sufficient in the PR-SAMP model. The same upper bound for the PR-SAMP model was
also implicit in the work by Canonne and Rubinfeld [8].

As we seek to explore more powerful models than PR-SAMP, a model of interest is
DUAL [2, 22, 8] wherein we have access to two oracles: One is SAMP that provides a
sample from D, and another is EVAL that given any x ∈ Ω, outputs the value of D(x). In
the DUAL model, for any ϵ1, ϵ2 ∈ (0, 1], distinguishing between whether the support size
of D is at most ϵ1n or at least ϵ2n requires Θ(1/(ϵ2 − ϵ1)2) queries [8]. An extension of
EVAL is CEVAL wherein for totally ordered domains, given x, CEVAL outputs

∑
y≼x D(x).

Similarly, CDUAL is an extension of DUAL where we have access to oracles SAMP and
CEVAL. Caferov, Kaya, O’Donnell, and Say [7] showed that Ω( 1

ϵ2 ) queries are needed in the
CDUAL model to estimate the support size up to an additive factor of ϵn. However, to the
best of our knowledge, no non-trivial result is known for the support size estimation problem
with (1 + ϵ) multiplicative error in the above models.

While SAMP, PR-SAMP, and DUAL are natural models, they are limiting in theory
and practice as they fail to capture several scenarios wherein one is allowed more powerful
access to the distribution under consideration. Accordingly, CFGM [13] and CRS [11]

1 We want to estimate |supp(D)| by ŝ such that |supp(D)|
(1+ϵ) ≤ ŝ ≤ (1 + ϵ)|supp(D)| with the success

probability at least 1 − δ. This version is also referred to as (1 + ϵ)-multiplicative factor estimation.
Another interesting version to consider is the additive ϵn-estimation (where n denotes the size of the
domain) which asks to output a ŝ such that |supp(D)| − ϵn ≤ ŝ ≤ |supp(D)| + ϵn with the success
probability at least 1 − δ. Unless otherwise stated explicitly, we consider the multiplicative variant.
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initiated the study of a more general sampling model COND, where we are allowed to
draw samples conditioning on any arbitrary subsets of the domain Ω. More specifically, the
sampling oracle takes a subset S ⊆ Ω chosen by the algorithm and returns an element x ∈ S

with probability D(x)/D(S) if D(S) > 0. The models proposed by CFGM and CRS differ in
their behavior for the case when D(S) = 0. The model proposed by CFGM [13] allows the
oracle to return a uniformly random element from S when D(S) = 0. On the other hand,
the COND model defined in CRS [11] assumes that the oracle (and hence the algorithm)
returns “failure” and terminates if D(S) = 02. Note that the COND model of CRS is more
powerful than that of CFGM since, when D(S) = 0, in the former case, we get to know that
D(S) = 0, whereas in the latter case, we get a uniformly random element of S.

The relative power of the COND model of CRS over that of CFGM is also exhibited
in the context of support size estimation. Acharya, Canonne, and Kamath [1] designed an
algorithm with query complexity Õ(log log n/ϵ3) in the COND model of CFGM to estimate
the support size up to (1 + ϵ) multiplicative factor under the assumption that the probability
of each element is at least Ω(1/n). They also note that the assumption of a lower bound
on the probability of each element is required for their techniques to work. It is worth
highlighting that for the problem of support size estimation in the SAMP model, one needs
a lower bound of Ω(1/n) on the minimum probability assigned to any element in the support.
Otherwise, one can assign a negligible probability to certain elements which will never be
observed. In the COND model, such an assumption is not necessary. Indeed, a result of
Falahatgar, Jafarpour, Orlitsky, Pichapati, and Suresh [18] implies that O

(
log log n + 1

ϵ2

)
queries are sufficient in the COND model of CRS for any arbitrary probability distribution,
i.e., there is no requirement for the assumption of lower bound on the probability of each
element. The key idea behind this result is that it is possible to decide whether the support
size is > 2t or ≤ t for any integer t ≥ 0 (for any arbitrary probability distributions) with
high probability using only O(1) queries, even with weaker oracle access in which, given any
S ⊆ Ω, it can be determined whether S ∩ supp(D) = ∅ or not. On the lower bound side, we
only know that at least Ω(

√
log log n) COND queries are necessary [13].

The two models were introduced in the context of uniformity testing, wherein the choice
of how to handle the case of D(S) = 0 did not make any significant differences. We would
like to emphasize that CRS’s model is more powerful than that of CFGM, and thus any lower
bound shown in the first one also provides the same in the latter one. Moreover, the model
of CRS closely approximates the behavior of modern probabilistic programming systems [21].
Therefore, throughout this paper, we consider the COND model of CRS.

Since its introduction, the COND model has attained significant attention both in theory
and practice. From a theoretical perspective, various other distribution testing problems have
been studied under the COND model [17, 24, 26] and its variant like subcube conditioning
model [3, 10, 15]. Apart from that, the COND model and its variants find real-world
applications in the areas like formal methods and machine learning (e.g., [14, 25, 20]). Also,
the modern probabilistic programming systems extend classical programs with the addition
of sampling and observe, where the semantics of the observe match that of CRS’s COND
model [21].

2 Note that analyzing each step of the algorithm makes it possible to determine the set, conditioning
on which caused the algorithm to output “failure” and terminate. The rest of the algorithm can then
execute with the information that D(S) = 0 for the above set S. Therefore, for the simplicity of
exposition, we will assume that the COND model defined in CRS returns “failure” when D(S) = 0, but
the algorithm does not terminate.
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It is worth remarking that the COND model is incomparable with PR-SAMP. Therefore,
it is quite natural, both from a theory and practical perspective, to consider a sampling
model that inherits power from both COND and PR-SAMP. We consider a model where
we are allowed to condition on any arbitrary subset S ⊆ Ω, and if D(S) > 0, we receive a
sample x ∈ S with probability D(x)/D(S) (as in COND) along with the probability assigned
on it by D (i.e., D(x)); “failure” otherwise. We refer to this model as probability-revealing
conditional sample3 or in short COND-PR. To the best of our knowledge, Golia, Juba, and
Meel [20] were the first ones to initiate the study of the COND-PR model. Their work
focused on the multiplicative estimation of entropy on the COND-PR model. Golia et al.
were primarily motivated to investigate the COND-PR model upon the observation that
the usage of the model counter and a sampler can simulate the COND-PR model wherein
a circuit specifies the distribution. Also, implicit in their study is that the availability of
model counter and samplers [16] allows one to simulate generalization of COND-PR model
wherein for a given input D and S in addition to D(x) for a sampled item x ∈ S, the oracle
also returns the value of D(x)/D(S) (the conditional probability of x given S). We refer to
this model as conditional sampling evaluation model4, or in short COND-EVAL. To the
best of our knowledge, the COND-EVAL subsumes all the previously studied variants of
the COND model (see Figure 1).

SAMP

PR-SAMP

EVAL

DUALCOND CEVAL

CDUALCOND-PR

COND-EVAL

Figure 1 Relative power of different models: An edge u → v means the model v is more powerful
than the model u.

To summarize, there has been a long line of research that has relied on the usage of the
COND model and its variants, resulting in significant improvements in the query complexity
for several problems in distribution testing. While there has been a multitude of techniques
for obtaining upper bounds for the COND model and its variants, such has not been the
case for lower bounds. In particular, the prior techniques developed in the context of support
size estimation for COND model have primarily relied on the observation that an algorithm
A that makes q COND queries can be simulated by a decision tree of O(q2q2) nodes.
Accordingly, the foregoing observation allows one to obtain Ω(

√
log log n) lower bound for

3 The name is motivated from the PR-SAMP model [27].
4 The name is motivated from the standard evaluation model EVAL [28] where given any x ∈ Ω, we get

the value of the probability density function of D at x.
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COND, which leaves open a major gap with respect to the upper bound of O(log log n + 1
ϵ2 ).

The situation is even direr when considering models that augment COND with powerful
oracles such as EVAL since the approach based on a decision tree fails due to additional
information supplied by oracles such as EVAL, and accordingly, no non-trivial lower bounds
are known for models such as CDUAL, COND-EVAL, and the like. Therefore, there is a
desperate need for new lower bound techniques to fully understand the power of the COND
model and its natural extensions.

1.1 Our Contribution
One of our primary contributions is to provide a seemingly new approach to proving lower
bounds in the COND model and its more powerful variants. Our approach is based on
information theory and reductions to problems in communication complexity. We note that
the communication complexity-based approaches to lower bounds have been explored in
prior work; such approaches are only limited to weaker models such as the SAMP and the
PAIRCOND models [6, 5]. While we demonstrate the application of our approach in the
context of support size estimation for different variants of COND, we believe our approach
is of general interest and can be applied to other distribution testing problems.

For ease of exposition, here we situate the discussion in the context of the most general
model, COND-EVAL. One of the inherent difficulties in proving any non-trivial lower bound
for the COND-EVAL model arises from the fact that the different sets for conditioning can
overlap in an arbitrary manner (and unlike in PAIRCOND model, these sets are of arbitrary
size) and further be chosen in an adaptive way. The adaptivity and arbitrary size of sets make
it extremely difficult to upper bound the conditional entropy at any step of the algorithm.
Furthermore, the power of revealing the probability mass (on any set) by a COND-EVAL
query risks licking “a lot of” information which makes it even more challenging. The key
departure from earlier work is the choice of an infinite family of distributions, so the range
of outcomes of an algorithm is continuous and so cannot be encoded with any finite (or even
infinite) length message. To this end, we rely on Fano’s inequality, a fundamental tool in
information theory, to show lower bounds for statistical estimation. In order to apply Fano’s
inequality, we need to upper bound the information gain at every step of the algorithm. Our
approach proceeds by relying on a restricted model of conditioning where the queried sets are
laminar, i.e., either they do not intersect or are subsets/supersets of each other. Accordingly,
we first obtain lower bounds for the restricted model and lift to the lower bounds for the
COND-EVAL model.

Our approach is compelling enough to provide non-trivial lower bounds in the most potent
COND-EVAL model, for which no lower bound was known before. However, before providing
the usefulness of the general framework, let us demonstrate how a special instantiation of
our approach can be applied to obtain strong lower bounds in the context of support size
estimation for the COND model and its (simpler) variants. Our first result bridges the
long-standing gap between the upper bound of O(log log n + 1

ϵ2 ) and the lower bound of
Ω(

√
log log n) in case of COND model. In particular, we obtain an Ω(log log n + 1

ϵ2 log(1/ϵ) )
lower bound on the query complexity in the COND-PR model, which in turn provides the
same lower bound for the PR-SAMP, DUAL, and COND model.

▶ Theorem 1. Every algorithm that, given COND-PR access to a distribution D on [n]
and ϵ ∈ (0, 1], estimates the support size |supp(D)| within a multiplicative (1 + ϵ)-factor with
probability at least 2

3 , must make Ω
(

log log n + 1
ϵ2 log(1/ϵ)

)
queries to the COND-PR oracle.
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Recall the best-known upper bound for the support size estimation in COND is
O(log log n + 1

ε2 ) and therefore, the above theorem achieves a near-matching lower bound
in the context of COND and COND-PR. It is rather surprising that the combination of
PR-SAMP and COND does not yield power in the context of the support size estimation.
It is worth mentioning that we already know of a lower bound of Ω(1/ϵ2) for the PR-SAMP
and DUAL model due to [8]. Hence, our result along with [8] provides a lower bound of
Ω(log log n + 1

ϵ2 ) for these two models (i.e., we can get rid of the annoying log(1/ϵ) factor
from the lower bound term of Theorem 1).

Our primary result is to establish the first non-trivial lower bound in the context of
COND-EVAL, which in turn provides the first-known lower bound for many other previously
studied models, such as CDUAL.

▶ Theorem 2. Any algorithm that, given COND-EVAL access to a distribution D on [n]
approximates the support size |supp(D)| within a multiplicative (1 + ϵ)-factor with probability
at least 2/3, must make Ω

(
log log log n + 1

ϵ2 log(1/ϵ)

)
queries.

Since COND-EVAL subsumes COND-PR, we have the upper bound of O(log log n+ 1
ϵ2 ),

and the ensuing gap leaves open an interesting question. It is worth remarking that it is not
hard to see (by extending the proof of Theorem 1) that the upper bound is nearly tight if
one were to replace COND-EVAL with approximate-COND-EVAL wherein, for a given
D and S, the oracle essentially provides an estimate of D(S) up to a small multiplicative
error (see the discussion in the full version). We conjecture that the upper bound is tight for
COND-EVAL.

▶ Conjecture 3. Any algorithm that, given COND-EVAL access to a distribution D on [n]
approximates the support size |supp(D)| within a multiplicative (1 + ϵ)-factor with probability
at least 2/3, must make Ω

(
log log n + 1

ϵ2 log(1/ϵ)

)
queries.

The validity of the above conjecture would establish the significant power of the COND
model in the context of support size estimation as COND-EVAL and COND-PR, despite
being augmented with powerful oracles in addition to conditioning, do not yield better
algorithms.

2 Preliminaries

Notations

We use the notation [n] to denote the set of integers {1, 2, · · · , n}. For any probability
distribution D defined over [n], for any i ∈ [n], let D(i) denote the probability of choosing i

when sampling according to D. For any subset S ⊆ [n], we use D(S) to denote the probability
mass assigned on S by the distribution D, i.e., D(S) :=

∑
i∈S D(i).

Different access models

Let D be a distribution over [n]. Below we formally define the query models that we consider
in this paper.

▶ Definition 4 (COND Query Model). A conditional (in short, COND) oracle for D takes
as input a set S ⊆ [n], and if D(S) > 0, returns an element j ∈ S with probability D(j)/D(S).
If D(S) = 0, then the oracle returns “failure”.
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▶ Definition 5 (COND-PR Query Model). A probability-revealing conditional sampling
(in short, COND-PR) oracle for D takes as input a set S ⊆ [n], and if D(S) > 0, returns
a pair (j, D(j)) (where j ∈ S) with probability D(j)/D(S). If D(S) = 0, then the oracle
returns “failure”.

▶ Definition 6 (COND-EVAL Query Model). A conditional evaluation (in short, COND-
EVAL) oracle for D takes as input a set S ⊆ [n], and if D(S) > 0, returns a tuple
(j, D(j), D(j)/D(S)) (where j ∈ S) with probability D(j)/D(S). If D(S) = 0, then the oracle
returns “failure”.

▶ Definition 7 (SET-EVAL Query Model). A set evaluation (in short, SET-EVAL) oracle
for D takes as input a set S ⊆ [n], and returns the value D(S).

It is straightforward to observe that the COND-EVAL is at least as powerful as the
COND-PR oracle which in turn is at least as powerful as the COND oracle. Further, the
COND-EVAL oracle is at least as powerful as the SET-EVAL oracle.5

Shannon entropy and source coding theorem

The entropy of a discrete random variable X taking values in X is defined as H(X) :=∑
x∈X p(x) log 1

p(x) where p(x) = Pr[X = x].
The seminal work of Shannon [29] establishes a connection between the entropy and the

expected length of an optimal code that encodes a random variable.

▶ Theorem 8 (Shannon’s Source Coding Theorem [29]). Let X be a discrete random variable
over domain X . Then for every uniquely decodable code C : X → {0, 1}∗, E(|C(X)|) ≥ H(X).
Moreover, there exists a uniquely decodable code C : X → {0, 1}∗ such that E(|C(X)|) ≤
H(X) + 1.

3 Technical Overview

Lower bound for COND-PR

We start with deriving the lower bound of Theorem 1. It consists of two parts – an Ω(log log n)
lower bound for a multiplicative 4/3-factor estimation algorithm and an Ω( 1

ϵ2 log 1
ϵ

) lower
bound for an additive ϵn-factor algorithm. We first show an Ω(log log n) lower bound for a
multiplicative 4/3-factor algorithm. For that purpose, we consider an integer-guessing game
between Alice and Bob, where Alice uniformly at random chooses an integer x ∈ [log n]. Then
sends a message (binary string) to Bob. Upon receiving the message, Bob’s task is to guess
x correctly (with high probability). Since the entropy of the chosen integer is log log n, by
Shannon’s source coding theorem, the length of the message, on average, must be Ω(log log n).
We show that if there exists an algorithm T that makes t COND-PR queries, then it suffices
for Alice to send a message of length O(t), and hence t = Ω(log log n).

To show the same, for each x ∈ [log n], Alice considers a distribution Dx with support [2x].
The probability Dx(j) of an element j ∈ [2x] in Dx decreases exponentially as j increases.
Alice runs the algorithm T on the distribution Dx and would like to send an encoding of
the run (i.e., the sampled element along with its probability for each step). Using a trivial

5 Since on input S, the COND-EVAL oracle returns a tuple (j, D(j), D(j)/D(S)) where j ∈ S, one can
compute the value of D(S) whenever D(S) > 0; otherwise (when D(S) = 0) the COND-EVAL oracle
returns “failure”, from which one can infer that D(S) = 0.
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encoding, even to send a sampled element, requires Θ(log n) bits, which is already more
than the Shannon entropy and thus would not give any lower bound. So Alice needs to
use a slightly clever encoding. Roughly speaking, since the probabilities are exponentially
decreasing, the conditional sampling from any set S ⊆ [n] returns an element from the first
“few” smallest elements of S (with high probability). Thus even though |S| can be large, the
sampled element (at each step) can be specified by only constantly many bits. Alice sends
this encoding of the sampled element (along with its probability value which can again be
encoded with constantly many bits due to the construction of Dx’s) at each of t steps to Bob.
Hence Bob knows the complete run and thus can determine the index x using the algorithm
T . We provide detailed proof in the full version.

Next, we turn our attention to showing the dependency of ϵ in the lower bound. We
show an Ω

(
1

ϵ2 log 1
ϵ

)
lower bound for an additive ϵn-factor algorithm. Since a multiplicative

(1 + ϵ)-factor algorithm also provides an additive ϵn-factor estimation, the above lower
bound also works for (1 + ϵ)-factor algorithms. We prove this bound by showing a reduction
from a well-studied communication complexity problem, namely the Gap-Hamming distance
problem, and then applying the known lower bound for the Gap-Hamming distance [12].
The proof argument (and the dependence on ϵ) also holds true for COND-EVAL model.

Lower bound for COND-EVAL

The approach used to get an Ω(log log n) lower bound in the COND-PR model cannot be
used to show the same for the COND-EVAL model. One of the powers of COND-EVAL
model (over the COND-PR) comes from its ability to compute D(S) :=

∑
j∈S D(j) for any

set S ⊆ [n].
Recall the hard instance Dx’s used in the Ω(log log n) lower bound proof for the COND-

PR model. Let X∗ := {2x | x ∈ [log n]}. It is easy to verify that Dx(X∗) ̸= Dx′(X∗) for any
x ≠ x′ ∈ [log n]. So, the value of x (and hence the support of Dx) can be determined using
only one COND-EVAL query with the set X∗. Thus our lower bound argument fails in this
model. For the sake of intuition about how we overcome the above issue, we want to point out
that the above argument does not fail if we have an approximate COND-EVAL query instead
of COND-EVAL query, i.e., if the oracle gives the estimate of D(S) up to a small additive
error say 3

2n0.1 . This is because for x, x′ ∈ [ log n
10 , log n], we have |Dx(X∗) − Dx′(X∗)| ≤ 2

2n0.1 .
Hence, given that x, x′ ∈ [ log n

10 , log n], we can not distinguish between x and x′ as the estimate
could be the same for both x and x′.

To mitigate the above issue (for COND-EVAL), we construct a new set of hard distribu-
tions. Our objective is that for any set X∗, if the value of Dx(X∗) is in (0, 1), then value of
Dx(X∗) should not give information about x. One plausible approach could be to replace
each distribution Dx with a finite set of distributions such that for any set S ⊆ [n], there
are many distributions in the instance with the same value of D(S). Unfortunately, we do
not know how to get such a set of distributions preserving other useful properties needed
for our proof. Our key high-level idea is to replace the distribution Dx (for each x ∈ [log n])
with a distribution over an infinite number of distributions. This way, the value of Dx(X∗)
cannot be used to determine the value of chosen x (as there can be infinite values of x having
the same value D(X∗)). However, one immediate issue that arises is if our instance has an
infinite domain (here distributions), then how do we even get a distribution over an infinite
space? Further, like before, we still want the probabilities to exponentially decrease so that
the sampled element is always among the first few smallest elements of the conditioning
set S. Fortunately, in statistics and compositional data analysis, there has been a study of
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probability distributions on the set of all (infinite) distributions. Based on requirements, our
choice is the well-studied Dirichlet distribution that satisfies a strong independence property
which is necessary for our analysis.

A Dirichlet distribution on support [K] with parameters α1, · · · , αK > 0 has a probability

density function given by f(p1, . . . , pK) =
∏

i∈[K]
p

αi−1
i

B(α1,··· ,αK ) where {pi}i∈K belongs to the standard
K−1 simplex, i.e.,

∑
i∈[K] pi = 1 and pi ≥ 0 for all i ∈ [K] and B(α1, · · · , αK) is a normalizing

constant. When α1 = · · · = αK = 1, the Dirichlet distribution is just the uniform distribution
on K − 1 simplex. The higher the value of parameter αi, the higher the (expected) value of
pi. Since we want the probability value to be exponentially decreasing, we set the values
of α1, · · · , αn exponentially decreasing. Then for each index x chosen uniformly at random
from [log n], we sample a distribution Dx with support [2x] from the Dirichlet distribution
with parameters α1, · · · , α2x . By the standard Yao’s principle, it suffices to show a high error
probability of any deterministic algorithm that correctly estimates the support size (and
hence determines the index x) of the distribution sampled as above. Note that the entropy
of the index is still log log n, but the previous communication framework (between Alice and
Bob) will not be useful here. This is because the range of the outcomes of the algorithm
(the actual and the conditional probabilities) is continuous, and so cannot be encoded with
any finite (or even infinite) length message. Instead, we apply Fano’s inequality, a tool from
information theory.

Roughly speaking, we show that the information gain (about the index) by the query’s
outcome at every step is O(1). Since the initial entropy of the index is log log n, at least
log log n steps of the algorithm are needed. The main technical challenge is to upper bound
the information gain at every step. It is particularly challenging as it requires calculating
the explicit density function (for the outcome) corresponding to each index. These density
functions are conditioned on the previous outcomes and thus change at every step. Further,
the set queried by the algorithms can be adaptive, which makes our task even more difficult.
To ease our analysis, we first assume that the queried sets by the algorithm are laminar,
i.e., either they do not intersect or are subsets/supersets of each other. Our Ω(log log n)
lower bound holds for COND-EVAL model for all the algorithms satisfying this laminar
condition. It is not hard to observe that any algorithm that makes t general queries can
be simulated by an algorithm that queries the laminar family of sets and makes at most
2t queries. This observation gives us Ω(log log log n) lower bound for the general case. We
believe that Ω(log log n) is the correct lower bound for the general case, but (perhaps it is an
artifact of our analysis that) the laminar structure is necessary for applying the independence
properties of Dirichlet distribution which leads to only an Ω(log log log n) lower bound. For
the sake of simplicity, we first prove the lower bound for a weaker model called, SET-EVAL,
and then extend to the general COND-EVAL model. We refer to the oracle that, given any
S ⊆ [n], just outputs the value of D(S), as SET-EVAL oracle. Since using a COND-EVAL
query, we can simulate a SET-EVAL query, the COND-EVAL model is at least as powerful
as SET-EVAL. We now describe the proof of the lower bound for the SET-EVAL model in
more detail.

For an index x chosen uniformly at random from [log n], we sample a distribution Dx

with support [2x] from the Dirichlet distribution with parameters α1, · · · , α2x (αj = 1
2j for all

j ∈ [x]). By the standard Yao’s principle, it suffices for us to show a high error probability of
any deterministic algorithm that correctly estimates the support size (and hence determines
the index x) of the distribution sampled as above. Let T be any such deterministic algorithm
that queries a laminar family of sets. We need to show that T must make Ω(log log n) queries.
The main technical ingredient in the proof is to show that the information gain (about
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the index x) by the outcome of any query of the algorithm is O(1). This implies that the
total information gain is O(t), where t is the number of queries. Then Fano’s inequality
immediately implies that t ≥ Ω(log log n). Let the i-th query (i ∈ [t]) be denoted by set Ai,
and the outcome of the i-th query (sum of probabilities of elements in the set Ai) be denoted
by Zi. The information gain (about the index x) by the i-th query (for any i ∈ [t]) is the
conditional mutual information I(X; Zi|Zi−1) where Zi is the random variable denoting the
outcome of i-th query, Zi−1 = (Z1, . . . , Zi−1) is the random variable denoting the vector
of previous outcomes and X is the random variable denoting the uniformly chosen index
x from [log n]. By definition, the conditional mutual information I(A; B|C) for random
variables A, B, C is equal to the expectation (over C) of the KL divergence between the joint
distribution Q(A,B)|C and the product distribution QA|C ×QB|C . The technical difficulty is to
upper bound the conditional mutual information I(X; Zi|Zi−1) by O(1). This is particularly
challenging since the joint and the product distributions are not explicitly given, and queries
are adaptive. To overcome this difficulty, at any step i ∈ [t] (after (i − 1)-th query), we
first partition the [log n] into four groups denoted by Li

0, Li
1, Li

2, Li
3 such that for the first

three groups, the outcome of the algorithm (i.e., Zi) is (deterministically) determined by
the previous outcomes of the algorithm (i.e., Zi−1 = (Z1, . . . , Zi−1)) whereas for any x in
the fourth group Li

3, the outcome is not fixed (given previous outcomes) but comes from a
distribution (which we show to be also Dirichlet). Let this distribution be denoted by Qx

for x ∈ Li
3. The information gain by the i-th query is log 3 (because there are three groups

for which outcome is deterministically determined) plus the information gain corresponding
to the last group Li

3. This term can be upper bounded by the maximum KL divergence
between distributions Qx and Qx′ for any x, x′ ∈ Li

3. Thus our goal is to show that KL
divergence between Qx and Qx′ for any x, x′ ∈ Li

3 is O(1). Using the independence property
of Dirichlet distributions and the laminar structure of query sets, we show that the KL
divergence between the distributions Qx and Qx′ is equal to the KL divergence between two
beta distributions with different parameters (beta distributions are a special case of Dirichlet
distributions). The explicit formula for KL divergence between two beta distributions is
well-known (e.g., see [23]), and we use this formula to upper bound the KL divergence by
O(1).
▶ Remark 9. Technically, the above lower bound for SET-EVAL (and COND-EVAL) does
not hold if it is promised that the probabilities in the given distribution are rational numbers.
This is because, in the lower bound instances above, the probability of an element can be
any arbitrary real number in (0, 1). However, we can use the following standard fact to show
that the lower bound holds even with the rational probabilities.

A Polya urn is an urn containing αi balls of color i, for each i ∈ [K]. The urn evolves at
each discrete time step – a ball is sampled uniformly at random. The ball’s color is observed,
and two balls of the observed color are returned to the urn. Let Xi,m be the number of
balls of color i (for each i ∈ [K]) added after m time steps. Clearly Dm = ( X1,m

m , · · · ,
XK,m

m )
is a probability distribution over [K]. It can be shown that the distributions D1, · · · , Dm

converges to a Dirichlet distribution with parameters α1, . . . , αK when m tends to ∞ [4].
Instead of using Dirichlet distribution in our lower bound proof, we can use the distribution

Dm for sufficiently large m. Since for any m, the probabilities in Dm are rational numbers,
we can get the lower bound even when the probabilities are rationals.

The power of COND-EVAL

We further demonstrate the power of the COND-EVAL model by showing an algorithm
with constant query complexity for a number of distribution testing problems for which
there are strong lower bounds known for the COND-PR and COND model. Our first
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example is the well-studied Equivalence testing problem. Here, given two distributions
D and D′, the goal is to accept if D = D′ and reject if their total variation distance
||D − D′||T V =

∑
i∈[n] |D(i) − D′(i)| > ϵ (both with high probability). It is known that

Ω(
√

log log n) queries are necessary in the COND model [1]. On the other hand, Ω(1/ϵ)
queries are required in the COND-PR model. (Consider a uniform distribution U on [n].
Now randomly choose i, j ∈ [n]. We modify U to construct another distribution U ′ by setting
U ′(i) = 2/n, U ′(j) = 0, and no changes in the probability mass of other elements. Note
that ϵ = ||U − U ′||T V = 2/n. It is easy to see that Ω(n) = Ω( 1

ϵ ) queries are required to
distinguish U and U ′ in the COND-PR model.) We show that Equivalence testing can be
done in just two COND-EVAL queries. The above upper bound result extends to another
unrelated problem for the COND-EVAL model – the problem of testing whether the given
distribution is m-grained, i.e., the probability of each element is an integer multiple of 1/m.
Finally, we show that the multiplicative (1 + ϵ)-approximation of square of the L2 norm
(
∑

j∈[n] D(j)2) of a distribution D can be computed using O( 1
ϵ2 ) queries of COND-EVAL.

To the best of our knowledge, this problem has been studied previously only in the SAMP
model [19], wherein it was shown that Ω(

√
n

ϵ2 ) queries are required.

The power of bounded-set conditioning

We further study the support size estimation problem when we allow SAMP oracle access
and conditioning on sets of size at most k. We show a lower bound of Ω(n/k) and an
upper bound of O( n log log n

k ) for constant factor approximation in this model. The upper
bound holds for the COND oracle model, while our lower bound holds for the stronger
COND-EVAL oracle model.

Both the upper and lower bounds are not difficult to establish. Falahatgar et al. [18]
showed that O(log log n) queries are sufficient (with no restriction on the size of the set for
conditioning) to get a constant approximation for oracle access which, given any S ⊆ [n],
returns whether S ∩ supp(D) = ∅ or not. Oracle access to a set of size s can be simulated by
s/k oracle access when conditioning on at most k-sized sets is allowed. This gives an upper
bound of O( n log log n

k ). Interestingly, the hard instance for the bounded-set conditioning to
estimate the support size is when the support size is constant. We refer the readers to the
full version for all the detailed proofs.

4 Conclusion

We investigate the power of conditioning for estimating the support size up to a multiplicative
(1 + ϵ)-factor. To date, there is a gap between the upper bound of O(log log n + 1/ϵ2) and
the lower bound of Ω(

√
log log n) in the standard COND model. In this paper, we close this

gap by providing a lower bound of Ω(log log n + 1
ϵ2 log 1

ϵ

). We actually show the lower bound
in even a more powerful model, namely COND-PR, where in addition to the conditioning,
one is also allowed to get the actual probability of the sampled elements (i.e., a combination
of COND and PR-SAMP). In the dependency of ϵ, there is a small gap of log(1/ϵ) factor,
and we want to leave the problem of removing this factor from the lower bound term as an
open problem.

It is quite surprising that the combination of COND and PR-SAMP does not yield more
power compared to only the COND model in the context of the support size estimation. We
thus continue our investigation by appending the algorithms with an even more powerful
oracle that could also get the conditional probabilities of the sampled elements (not just
the actual probabilities). We call this model COND-EVAL. This model turns out to be
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more powerful in the context of several other important distribution testing problems. For
the support size estimation, we show a lower bound of Ω(log log log n + 1

ϵ2 log 1
ϵ

) in this
COND-EVAL model. On the technical side, this paper introduces many new ideas, such as
using continuous distribution (Dirichlet distribution) for constructing hard instances and
applying information theory and communication complexity tools to conditional sampling
models. We hope that such techniques could be useful for showing non-trivial lower bounds
for other distribution testing problems as well.

For the support size estimation problem in the COND-EVAL model, currently, we
only know of an O(log log n) upper bound, whereas we could only show a lower bound of
Ω(log log log n). We would like to pose the problem of closing this gap as an interesting open
problem. Another interesting open problem is to determine if an upper bound of o(log log n)
is possible in the COND-PR and COND-EVAL models, assuming a certain lower bound on
the probability mass of each element in the support size (e.g., the probability of any element
is either 0 or at least 1/n).
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Abstract
We relate various complexity measures like sensitivity, block sensitivity, certificate complexity for
multi-output functions to the query complexities of such functions. Using these relations, we
provide the following improvements upon the known relationship between pseudo-deterministic and
deterministic query complexity for total search problems:

We show that deterministic query complexity is at most the third power of its pseudo-deterministic
query complexity. Previously, a fourth-power relation was shown by Goldreich, Goldwasser and
Ron (ITCS’13).
We improve the known separation between pseudo-deterministic and randomized decision tree
size for total search problems in two ways: (1) we exhibit an exp(Ω̃(n1/4)) separation for the
SearchCNF relation for random k-CNFs. This seems to be the first exponential lower bound
on the pseudo-deterministic size complexity of SearchCNF associated with random k-CNFs.
(2) we exhibit an exp(Ω(n)) separation for the ApproxHamWt relation. The previous best
known separation for any relation was exp(Ω(n1/2)).

We also separate pseudo-determinism from randomness in And and (And, Or) decision trees, and
determinism from pseudo-determinism in Parity decision trees. For a hypercube colouring problem,
that was introduced by Goldwasswer, Impagliazzo, Pitassi and Santhanam (CCC’21) to analyze
the pseudo-deterministic complexity of a complete problem in TFNPdt, we prove that either the
monotone block-sensitivity or the anti-monotone block sensitivity is Ω(n1/3); Goldwasser et al.
showed an Ω(n1/2) bound for general block-sensitivity.
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1 Introduction

The question of whether randomness adds computational power over determinism, and if
so, how much, has been a question of great interest that is still not completely understood.
Naturally, the answer depends on the computational model under consideration, but it also
depends on the type of problems one hopes to solve. One may wish to compute some function
of the input, a special case being decision problems where the function has just two possible
values. There are also search problems, where for some fixed relation R ⊆ X × Y and an
input x ∈ X, one wishes to find a y ∈ Y that is related to x; i.e. (x, y) ∈ R. If every
x ∈ X has at least one such y, we have a total search problem defined by R, the R-search
problem. In the context of (total) search problems, a nuanced usage of randomness led
to the beautiful notion of pseudo-determinism; see [7]. A function f solves the R-search
problem if for every x, (x, f(x)) ∈ R. A randomized algorithm which computes such an f
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with high probability is said to be a pseudo-deterministic algorithm solving the R-search
problem. Thus a pseudo-deterministic algorithm uses randomness to solve a search problem
and almost always provides a canonical solution per input.

The original papers introducing pseudo-determinism examined both polynomial-time
algorithms and sublinear-time algorithms; in the latter case, the computational resource
measure is query complexity. In [8], a maximal separation was established between pseudo-
deterministic and randomized query algorithms; Ω(n) vs O(1). Very recently, in [9], this
separation was revisited. The separating problems in [8] do not lie in the query-complexity
analogue of NP (nondeterministic polylog query complexity, or polylog query complexity to
deterministically verify a solution, TFNPdt). This is a very natural class of search problems,
and in [9], an almost-maximal separation between randomized and pseudo-deterministic
search is established for a problem in this class. The problem in question is SearchCNF:
given an assignment to the variables of a highly unsatisfiable k-CNF formula, to search
for a falsified clause; this problem is very easy for randomized search (O(1) queries), and
solutions are easily verifiable. Theorem 7 of [9] establishes that for unsatisfiable k-CNF
formulas on n variables with sufficiently strong expansion in the clause-variable incidence
graph (in particular, for most random k-CNF formulas), the corresponding search problem
has pseudo-deterministic complexity Ω(

√
n), even in the quantum query setting. In [9], the

size measure of decision trees in the pseudo-deterministic setting was also studied. Lifting
the query separation using a small gadget, a strong separation between randomized size and
pseudo-deterministic size was obtained: SearchCNF problem on random k-CNFs lifted with
2-bit Xor has randomized size O(1) but require pseudo-deterministic size exp(Ω(

√
n)).

Taking this study further, Theorem 3 of [9] shows that the promise problem
PromiseFIND1, of finding a 1 in an n-bit string with Hamming weight at least n/2,
is in a sense complete for the class of search problems that are in TFNPdt and have efficient
randomized query algorithms. By relating this search problem to a certain combinatorial prob-
lem concerning colourings of the hypercube, and by using the lower bound for SearchCNF,
a lower bound of Ω(

√
n) on the pseudo-deterministic complexity of PromiseFIND1 is ob-

tained (Theorem 14 and subsequent remark in [9]). The colouring problem on hypercubes
states that any proper coloring of the hypercube contains a point with many 1s and with high
block sensitivity. In [9], a point with block sensitivity Ω(

√
n) is proven to exist (Theorem 14),

and a point with block sensitivity Ω(n) is conjectured to exist (Conjecture 16).

Our contributions

(1) We improve upon the known relationship between pseudo-deterministic query complexity
and deterministic query complexity for total search problems: We show that deterministic
query complexity is at most the third power of its pseudo-deterministic query complexity.
(Previously a fourth-power relation was shown in [8].)

(2) We improve the known separations between pseudo-deterministic and randomized decision
tree size in two ways: (1) an exp(Ω̃(n1/4)) separation for the SearchCNF relation for
random k-CNFs (the exp(Ω(n1/2)) separation in [9] is only for the lifted formulas k-CNF
composed with Xor), and (2) an exp(Ω(n)) separation for the ApproxHamWt relation
(the previous best separation for any relation was exp(Ω(n1/2))).

(3) We separate pseudo-deterministic and randomized query complexity in And and
(And, Or) decision trees, and show that deterministic and pseudo-deterministic com-
plexity are polynomially related in these models, upto polylogn factors. In the Parity
decision tree model, we observe that deterministic and pseudo-deterministic query com-
plexities are well separated.
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(4) For the hypercube colouring problem posed in [9], we prove that either the monotone
block-sensitivity or the anti-monotone block sensitivity is Ω(n1/3); previously an Ω(n1/2)
bound was known but only for general block-sensitivity.

Significance, context, and techniques

We now describe each of our contributions, with surrounding context, in more detail.
For Boolean functions, randomized and deterministic query complexities are known to

be polynomially related by the classic result of Nisan [14]. Since deterministic query lower
bounds are often easy to obtain using some kind of adversary argument, this provides a route
to randomized query lower bounds for Boolean functions. For search problems, however, there
is no such polynomial relation. Note that separating pseudo-determinism from randomness
requires a lower bound against randomized query algorithms that provide canonical solutions.
Such algorithms compute multi-output functions (following nomenclature from [9]) as opposed
to Boolean functions. Thus what is required is randomized query lower bounds for multi-
output functions. For such functions, too, lower bounds for deterministic querying are often
relatively easy to obtain. And again, as for Boolean functions, deterministic and randomized
query complexity for multi-output functions are known to be polynomially related; in [8]
(Theorem 4.1(3)), the authors show that the deterministic query complexity is bounded above
by the fourth power (as opposed to cubic power for Boolean functions) of the randomized
complexity. They also show that it is bounded above by the cubic power times a factor
that depends on the size of the search problem’s range. We revisit these relations, and
further tighten them to a cubic power relation. Thus for search problems, deterministic query
complexity is bounded above by the cubic power of its pseudo-deterministic query complexity;
Theorem 3.2. We show this by relating various complexity measures like sensitivity, block
sensitivity, certificate complexity for multi-output functions to their query complexities;
Theorem 3.1.

Using the recent result from [4] that derandomized the size measures for total Boolean
functions, we establish a polynomial relationship between the log of pseudo-deterministic size
and the log of deterministic size, ignoring polylog factors in the input dimension; Theorem 4.3.
This gives us another way to separate randomized size from pseudo-deterministic size: any
total search problem which is easy with randomization but difficult for deterministic search
will lead to a separation between pseudo-deterministic size and randomized size; one such
problem is SearchCNF on suitably expanding k-CNF formulas. In [9], it was shown
that SearchCNF for such formulas lifted by small gadgets like XOR, has large pseudo-
deterministic size complexity. There are known situations where the complexity of a formula
and its lift by small gadgets widely vary in search problems. For instance, it was known that
proving the unsatisfiability of formulas corresponding to Tseitin lifted by a small gadget should
be hard in cutting planes proof system [6]. The popular belief was that such hardness extends
to even unlifted Tseitin formulas. In a breakthrough work [5], this belief was proven false!
However, we are able to obtain an exp(Ω̃(n1/4)) lower bound on the pseudo-deterministic
size complexity for SearchCNF with unlifted random k-CNF formulas, in contrast to
the bounds from [9]. As far as we know, this is the first exponential lower bound on the
pseudo-deterministic size complexity of SearchCNF for random k-CNF formulas. Like
Tseitin formulas, determining the complexity of random k-CNF formulas in various models
remains an important theme of current research.

We also show, see Theorem 4.5, that any completion of the promise-problem ApproxMaj
by a total Boolean function, requires large randomized decision tree size. Observing that
this promise-problem is “embedded” in the ApproxHamWt search problem, we obtain an
exp(Ω(n)) separation between the pseudo-deterministic and randomized size complexity of
ApproxHamWt, in Theorem 4.6.

MFCS 2023
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The more general query models we consider are those of And (Or) decision trees,
abbreviated as ADT’s (ODT’s), where each query is a conjunction of variables, (And, Or)
decision trees, where each query is either a conjunction or a disjunction of variables, and
Parity decision trees, where each query reports the parity of some subset of variables. These
models obviously generalize decision trees, and are more powerful in the deterministic setting,
appear naturally in contexts like combinatorial group testing and other contexts. More
recently, they have been advocated by [11] as a meaningful intermediate model between
query and communication complexity. For And and (And, Or) decision trees, we show
that pseudo-determinism is still separated from randomness; Theorems 5.3 and 5.6. To
show the former, we relate randomized query complexity for multi-output functions in this
model to monotone block sensitivity. To show the latter, we note that a recently proved
result from [4] relating depth in (And, Or) trees and size in ordinary trees for Boolean
functions, also holds for multi-output functions. Furthermore, using other results from [4]
that derandomized the And and (And, Or) decision trees for total Boolean functions, we
observe that pseudo-determinism and determinism are polynomially related in these settings,
ignoring polylogn factors; Theorems 5.4 and 5.7. For Parity decision trees, in contrast, we
observe that determinism is separated from pseudo-determinism; Theorem 5.8. There is no
polynomial relation between these two complexity measures. In this setting, we do not know
whether pseudo-determinism is separated from randomness.

Finally, we revisit the hypercube coloring problem from [9]. There, the existence of
a point with large Hamming weight and block-sensitivity Ω(

√
n) is established, using the

previously established lower bound for SearchCNF. We give a completely combinatorial and
constructive argument to show that a point with large Hamming weight and block-sensitivity
Ω(n1/3) exists, Theorem 6.3. While we seemingly sacrifice stronger bounds in the quest
for simplicity, our algorithm actually proves something that is stronger in a different way,
and hence our result is perhaps incomparable with that of [9]. The difference is that we
identify many sensitive blocks that are all 1’s, or many sensitive blocks that are all 0’s. In
other words, we show that the monotone (or anti-monotone) block sensitivity is Ω(n1/3).
Monotone block sensitivity was used recently, first by [12] and then by [4], to prove query
complexity lower bounds for ADT’s. In particular, our result implies that every function
that solves PromiseFIND1, requires large depth to be implemented by either randomized
ADT’s or by randomized ODT’s. We believe that this could be strengthened to show that
such solutions are always hard for randomized ADTs 1. Proving such a result is an interesting
open problem.

Related work

For Boolean functions, the relations between many complexity measures and query complexity
has been studied extensively in the literature. A consolidation of many known results appears
in [2] as well as in [10].

Organisation of the paper

In Section 3 we establish the relationships between various measures for multi-output func-
tions, and establish the polynomial relation between pseudo-deterministic and deterministic
query complexity for search problems. In Section 4 we establish relations between pseudo-
deterministic size and deterministic size. Section 5 discusses the complexity of search problems

1 Note that there are solutions that are easy for ODTs, even deterministically. For instance, a binary
search can be implemented to find efficiently the first occurrence of a 1.
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in And, (And, Or), and Parity decision trees. Section 6 discusses the hypercube coloring
problem. We refer the reader to the full version of our paper [3] for proofs omitted due to
space constraints.

2 Preliminaries

We use standard notation and terminology in the paper, which we briefly explain here. For
detailed definitions, we refer the reader to the full version of our paper [3]. For x ∈ {0, 1}∗,
and b ∈ {0, 1}, |x| is the length of x and |x|b is the number of occurrences of b in x. We also
write wt(x) for |x|1. To sample uniformly from a set S, we write ∼u S. For B ⊆ [n] and
b ∈ {0, 1}, bB is the n-bit string that equals b at positions in B and 1− b elsewhere.

For a multi-output function f : {0, 1}n → [m] and input x ∈ {0, 1}n, we use the following
measures, which are natural extensions from the Boolean case, to capture different aspects of
its complexity: s(f, x) counts the number of input bits at x that can be flipped to change the
output of f(x); bs(f, x) is the maximum integer r for which there exist r disjoint sensitive
blocks of f at x (where f is sensitive to block B on input x if f(x) ̸= f(x⊕1B)); C(f, x) is the
minimum number of input bits required to uniquely identify the output of f(x). Maximizing
over all inputs gives s(f), bs(f), and C(f), the sensitivity, block sensitivity, and certificate
complexity of f , respectively. We also use sensitivity and block sensitivity measures that
only allow flipping either 0s or 1s. A set B ⊆ [n] is a sensitive b-block of f at input x if
xi = b for each i ∈ B, and f(x) ̸= f(x ⊕ 1B). The b-block sensitivity of f at x, denoted
bsb(f, x), is the maximum integer r for which there exist r disjoint sensitive b-blocks of f at
x. The b-sensitivity of f at x, sb(f, x), is the number of sensitive b-bits of x. Maximizing over
all inputs gives sb(f), and bsb(f), the b-sensitivity and b-block sensitivity of f , respectively.
Note that s0(f) and bs0(f) are the same as the monotone sensitivity and monotone block
sensitivity used in [12] to study And-decision trees.

For a search problem S, a (deterministic) decision tree T computing S is a binary tree
with internal nodes labelled by the variables and the leaves labelled by y ∈ Y. It evaluates
an unknown input x by traversing the tree based on variable queries. The label of the leaf
reached must belong to S(x). The depth of a decision tree T is the length of the longest
root-to-leaf path, and its size is the number of leaves. The deterministic query/size complexity
of S, denoted by Ddt(S)/DSizedt(S), is defined to be the minimum depth/size of a decision
tree that computes S.

A randomized query algorithm/decision tree A is defined by a distribution DA over
deterministic decision trees. It evaluates an input x by randomly selecting a tree T from
DA and outputting the label of the leaf reached by T on x. The algorithm is considered to
compute S with error at most ϵ if, for every x, the probability that A(x) belongs to S(x) is at
least 1− ϵ. The depth/size complexity of the randomized decision tree is determined by the
maximum depth/size among all decision trees in the distribution’s support. The randomized
query/size complexity of S with error ϵ, denoted by Rdt

ϵ (S)/RSizedt
ϵ (S), is the minimum

depth/size of a randomized decision tree that computes S with error ϵ. For a probability
distribution D over the domain of S, the (D, ϵ)-distributional query/size complexity of S,
denoted by Ddt

D,ϵ(S)/DSizedt
D,ϵ(S), is the minimum depth/size of a deterministic decision tree

that gives a correct answer on 1− ϵ fraction of inputs weighted by D. When we drop ϵ from
the subscript of a randomized/distributional query measures, we assume ϵ = 1/3.

A multi-output function f : {0, 1}n → [m] solves S, denoted by f ∈s S, if for every
x ∈ {0, 1}n, (x, f(x)) ∈ S. A pseudo-deterministic query algorithm for a search problem
S, with error 1/3, is a randomized decision tree that computes some multi-output function
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34:6 Query Complexity of Search Problems

f that solves S with error at most 1/3. The pseudo-deterministic query complexity of S,
denoted by psDdt(S), is equal to minf∈sS Rdt(f), and pseudo-deterministic size complexity
of S, denoted by psDSizedt(S), is equal to minf∈sS RSizedt(f). Note that randomized query
algorithms for S do not necessarily output a canonical value with high probability, only a
value y such that (x, y) ∈ S with high probability.

Known results that we use

▶ Proposition 2.1 ([15]). For a search relation S,
Rdt

ϵ (S) = maxD Ddt
D,ϵ(S) and RSizedt

ϵ (S) = maxD DSizedt
D,ϵ(S).

▶ Proposition 2.2 ([14, 10, 2]). For any Boolean function f : {0, 1}n → {0, 1},
1. s(f) ≤ bs(f) ≤ C(f) ≤ s(f)bs(f).
2. s(f) ≤ bs(f) ≤ 3Rdt

1/3.
3. C(f) ≤ Ddt(f) ≤ C(f)2.
4. Ddt(f) ≤ C(f)bs(f).
5. Ddt(f) = O((Rdt(f))3).

▶ Proposition 2.3 (restated from [8]). For a search relation S,
1. Ddt(S) ≤

(
psDdt(S)

)4
. [Restated from Theorem 4.1(3) in [8]]

2. Ddt(S) ≤
(

psDdt(S)
)3

ℓS(n), where ℓS(n) is the number of bits required to represent the
range of S. [Restated from Theorem 4.1(3) in [8]]

▶ Proposition 2.4.
1. (Corollary 4.2 in [8]) For the relation

ApproxHamWt = {(x, v) : |wt(x)− v| ≤ n/10},
psDdt(ApproxHamWt) ∈ Ω(n) and Rdt(ApproxHamWt) = O(1).

2. (Theorem 4 in [9]) For the relation PromiseFIND1 = {(x, i) : wt(x) ≥ |x|/2 ∧ xi = 1},
psDdt(PromiseFIND1) ∈ Ω(

√
n) and Rdt(PromiseFIND1) = O(1).

▶ Proposition 2.5. For F a random 3-CNF formula on n variables with m = Θ(n) clauses
sampled from F3,n

m , with probability 1− o(1), F is unsatisfiable and furthermore,
1. Rdt(SearchCNF(F )) = O(1).
2. Ddt(SearchCNF(F )) = Ω(n). (From [13, 1])
3. DSizedt(SearchCNF(F )) = exp(Ω(n)). (From [1])

3 Relating measures for multi-output functions

We show the analogs of Proposition 2.2 for multi-output functions. The idea is to do the
necessary modifications to the analogous results in the Boolean function case. For the proof,
we refer the reader to the full version of our paper [3].

▶ Theorem 3.1. For a function f : {0, 1}n → [m], the following relations hold.
1. C(f) ≤ s(f)bs(f).
2. s(f) ≤ bs(f) ≤ 3Rdt

1/3(f)
3. C(f) ≤ Ddt(f) ≤ C(f)2.
4. Ddt(f) ≤ 2C(f)bs(f).
5. Ddt(f) = O((Rdt(f))3).

Using the above, we can now improve the bounds from Proposition 2.3 for search problems.
One psDdt(S) factor from item 1 there can be removed, as also the ℓS(n) factor in item 2.
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▶ Theorem 3.2. For any total search problem S, Ddt(S) = O((psDdt(S))3).

Proof. For total search problem S, let f̃ be a function solving S, with psDdt(S) = Rdt(f̃).
Then, using Theorem 3.1(5), we obtain
Ddt(S) = minf∈sS Ddt(f) ≤ Ddt(f̃) ≤ O((Rdt

1/3(f̃)3) = O(psDdt(S)3). ◀

4 Pseudo-deterministic size vs deterministic size

In this section, we establish a polynomial relationship, up to polylog n factors, between the
logarithm of pseudo-deterministic size and the logarithm of deterministic size for total search
problems, Theorem 4.3. We also improve the separation between pseudo-deterministic and
randomized size, Theorem 4.6.

Before showing these results, we first examine an argument for extending results on Boolean
functions to multi-output functions. We note that a relationship between randomized and
deterministic complexity in a query model for Boolean functions yields an almost identical
relationship between pseudo-deterministic complexity and deterministic complexity for search
problems. The result follows from a straightforward application of a binary search argument
and also appears in the work of [8] for making a similar claim for the ordinary query model.
We give a proof sketch, for details refer to the full version of our paper [3].

▶ Proposition 4.1. In a query model M , let DM (DSizeM), RM (RSizeM) and psDM

(psDSizeM) denote the query complexity (size complexity, respectively) in the deterministic,
randomized and pseudo-deterministic settings. Then,
1. If for some monotonic function q : N × N → N and every total Boolean function f :
{0, 1}n → {0, 1}, DM(f) ≤ q(RM(f), n), then for any total search problem S ⊆ {0, 1}n ×
[m], DM(S) = O(q(psDM(S), n) ·min(log m, psDM(S))).

2. If for some monotonic function q : R × N → N and every total Boolean func-
tion f : {0, 1}n → {0, 1}, log DSizeM(f) ≤ q(log RSizeM(f), n), then for any
total search problem S ⊆ {0, 1}n × [m], log DSizeM(S) = O(q(log psDSizeM(S), n) ·
min(log m, log psDSizeM(S))).

Proof Sketch. We give a proof sketch for the second statement. For search problem S with
psDSizeM(S) = s, let function f̃ solve S with RSizeM(f̃) = s witnessed by a randomized tree
T . For k = ⌈log m⌉, define the Boolean functions f1, f2, . . . , fk where fi(x) extracts the ith
bit in the k-bit representation of f̃(x). Then for each i ∈ [k], RSizeM(fi) ≤ RSizeM(f̃) = s;
simply relabel the leaves of T appropriately. By the hypothesised relation for Boolean
functions, for each i ∈ [⌈log m⌉], log DSizeM(fi) ≤ q(log RSizeM(fi), n) ≤ q(log s, n). Let Ti

be a deterministic tree achieving this size bound. By composing the trees T1, T2, . . . , Tk and
suitably relabelling the leaves with elements from [m], we obtain a deterministic tree for f̃ of
size (2q(log s,n))k. With careful analysis, we can get min(log m, log psDSizeM(S) in place of k

in the exponent. ◀

Recently it was shown in [4] that for total Boolean functions, the logarithms of deterministic
and randomized size are polynomially related, ignoring a polylog factor in input size.

▶ Proposition 4.2 ([4, Theorem 3.1(b)]). For a total Boolean function f : {0, 1}n → {0, 1},

log DSizedt(f) = O((log RSizedt(f))4 log3(n)).

Using the relation from Proposition 4.2 as the “hypothesised function” in Proposi-
tion 4.1(2), we obtain the following result, relating the log of deterministic size and the log
of pseudo-deterministic size for search problems.
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▶ Theorem 4.3. For a total search problem S ⊆ {0, 1}n × [m], we have

log DSizedt(S) = O(log4 psDSizedt(S) · log3(n) ·min(log m, log psDSizedt(S))).

In [9] (Theorem 22), a separation was established between pseudo-deterministic and
randomized size for a SearchCNF problem, defined on suitably expanding kCNF formulas
lifted with 2-bit Xor gadgets. It was shown that the randomized size complexity of this
problem is O(1), while the pseudo-deterministic size complexity is exp(Ω(

√
n)). We obtain a

similar (but weaker) separation for the SearchCNF problem without any lifting, by putting
together Proposition 2.5(Item 3) and Theorem 4.3.

▶ Corollary 4.4. For F a random 3-CNF formula on n variables with m = cn clauses
sampled from F3,n

m , with probability 1− o(1), F is unsatisfiable and

psDSizedt(SearchCNF(F )) = exp(Ω(n1/4/ log n)).

Since RSizedt of SearchCNF on random 3-CNF formulas is O(1) w.h.p (see Proposi-
tion 2.5(Item 1)), we get a separation between RSizedt and psDSizedt, albeit not as strong
as [9]. However, Theorem 4.3 allows us to conclude that any total search problem separating
randomized and deterministic size will yield a separation between RSizedt and psDSizedt.

We now improve the separation between randomized and pseudo-deterministic sizes, from
O(1) vs exp(Ω

√
n) as shown in [9], to O(1) vs exp(Ω(n)). To achieve this, we focus on the

ApproxHamWt problem. For this problem, a linear depth separation between randomized
and pseudo-deterministic algorithms is already known from [8] (see Proposition 2.4). By
using a 1-bit indexing gadget, we can lift the depth separation in ApproxHamWt to an
exponential size separation, as was done in [9, Theorem 22]. (The 1-bit indexing gadget
replaces each variable x by the function Sel(xa, xb, xc) = if xa = 1 then xb else xc.) In the
rest of this section, we show that the exponential size separation between randomized and
pseudo-deterministic algorithms can also be achieved using ApproxHamWt itself without
the lift. It is easy to see that the randomized size of ApproxHamWt is O(1). We show
that its pseudo-deterministic size is exp(Ω(n)). To this end, we establish that every solution
to ApproxHamWt embeds a hard boolean function whose randomized decision tree size is
exponential in the input size. This hard function is a completion of the promise problem
Approximate Majority, ApproxMaj.

ApproxMaj is a promise problem (i.e. partial Boolean functions; certain bit strings
are promised to never appear as inputs) where the task is to compute the majority of the
given bit string. The promise is that the fraction of bits set to 1 in the input is either at
least 3/4 or at most 1/2. A completion of ApproxMaj is a total Boolean function that
extends ApproxMaj arbitrarily on the non-promised inputs. We show that every solution
to ApproxHamWt embeds some completion of ApproxMaj, and that the randomized
decision tree size of every completion of ApproxMaj is exponential in the input size.

▶ Theorem 4.5. For the promise problem (partial boolean function) ApproxMaj,

ApproxMaj(x) =
{

0 if |x| ≤ n/2
1 if |x| ≥ 3n/4 ,

every completion f of ApproxMaj has RSizedt(f) = exp(Ω(n)).

The proof of Theorem 4.5 is based on a corruption argument and follows the template for
proving randomized decision tree size lower bounds in [4, Theorem A.7]. This argument is
essentially due to Swagato Sanyal, and we thank him for allowing us to include it here. Before
we see its proof, let us use it to establish an exponential separation between randomized and
pseudo-deterministic size forApproxHamWt.
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▶ Theorem 4.6. Let S be the search problem ApproxHamWt = {(x, v) ∈ {0, 1}n ×
{0, 1, ..., n} : |wt(x) − v| ≤ n/10}, where wt(x) is the Hamming weight of x. Then
RSizedt(S) = O(1), while psDSizedt(S) = exp (Ω(n)).

Proof. The Hamming weight of a string can be estimated within a small (θ(n)) additive
error by querying a constant number of variables uniformly at random and outputting the
scaled-up fraction of 1’s seen in the queried bits. Thus RSizedt(S) = O(1).

To show a pseudo-deterministic size lower bound, we need to show that any function that
solves the ApproxHamWt problem must have randomized decision tree of size exp(Ω(n)).
Let f be any function solving the ApproxHamWt problem. The total Boolean function
f̄ : {0, 1}n → {0, 1} defined as f̄(x) = 1 iff f(x) > 6n/10 is a completion of ApproxMaj.
Given a randomized decision tree that computes f , we can relabel the leaves appropriately
to obtain a randomized decision tree that computes f̄ . Using Theorem 4.5, we conclude that
RSizedt(f) ≥ RSizedt(f̄) = exp(Ω(n)). ◀

Proof of Theorem 4.5. Let f be any completion of ApproxMaj. Our strategy is to con-
struct a hard distribution D on the inputs {0, 1}n such that DSizedt

D,1/3(f) = exp(Ω(n)),
and then use Yao’s minmax principle (see Proposition 2.1) to conclude that RSizedt(f) =
exp(Ω(n)). To define the hard distribution, we start by introducing some terminology. For
an input x ∈ {0, 1}n, let S1

x = {i : xi = 1} and S0
x = [n] \ S1

x. We say that x is 0-sensitive if
all the 0s in x are sensitive with respect to f . For x ∈ {0, 1}n, we define the set of extreme
upward neighbors of x as EUN(x) = {y : S1

x ⊆ S1
y , f(x) = f(y) and y is 0-sensitive}. With

this terminology in place, we can define the hard distribution as follows:
1. Let rep : {0, 1}n → {0, 1}n be a function which maps x ∈ {0, 1}n to an arbitrary input

from EUN(x). Define µ0 , a distribution over f−1(0) as follows: Sample an x of Hamming
weight n/2 uniformly at random, and output rep(x).

2. Define µ1, a distribution over f−1(1), as follows: Sample an x according to µ0, an index
i uniformly at random from S0

x, and return x⊕ 1{i}.
3. Our hard distribution D is (µ0 + µ1)/2 i.e. with probability 1/2 return a sample from µ0,

and with probability 1/2 return a sample from µ1.
We show below that DSizedt

D,1/10(f) = exp(Ω(n)). Let T be a deterministic decision tree
computing f correctly on at least 9/10-probability mass when the input is sampled according
to D. Since D samples with probability 1/2 from µ0 and with probability 1/2 from µ1, T

must be correct on at least 4/5-th mass of µ0 as well as at least 4/5 mass of µ1. Let L0 be
set of all 0-labelled leaves(0-leaves) in T . Let ρ0 and ρ1 be the µ0 and µ1 mass captured by
0-leaves respectively; i.e.,

ρ0 =
∑

v∈L0

Pr
x∼µ0

[x reaches v]; ρ1 =
∑

v∈L0

Pr
x∼µ1

[x reaches v].

As discussed above above, ρ0 ≥ 4/5 and ρ1 ≤ 1/5.
For a leaf v, let Zv denote the set of indices of variables fixed to zero on the path leading

to v and Ev(x) denote the event that the input x reaches leaf v. We will show that 0-paths
with small |Zv| together capture at most 2/5 of the µ0 mass, and 0-paths with large |Zv|
individually capture exponentially small µ0 mass. Thus to ensure that ρ0 is large enough,
there must be many 0-leaves.

1. (0-paths with few 0’s). Firstly, we show that 0-paths which see less than ⌈n/8⌉ 0’s must
capture no more than 2/5-th mass of µ0, i.e.,

ρ0
0 =

∑
v∈L0

|Zv|<⌈n/8⌉

Pr
x∼µ0

[x reaches v] ≤ 2/5.
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This follows from the sensitivity property of µ0. Specifically, each y in the support of
µ0 has a Hamming weight less than 3n/4, and since all the 0s in y are sensitive, each
y in the support of µ0 has 0-sensitivity of at least n/4. Therefore, if a 0-path has not
observed many 0s, the corresponding leaf will also capture a significant amount of µ1
mass. Formally, consider a subcube Q corresponding to a 0-leaf with less than ⌈n/8⌉
variables fixed to 0. Due to the sensitivity property of µ0, each x supported by µ0 has at
least n/4 sensitive 0s. Hence, any x supported by µ0 that lies in Q has at least half of its
total 0s unfixed. By flipping any of these 0s, we obtain an input supported by µ1 that
still lies in Q. Therefore,

1/5 ≥ ρ1 ≥
∑

v∈L0
|v|0<⌈n/8⌉

Pr
x∼µ1

[Ev(x)] =
∑

v∈L0
|v|0<⌈n/8⌉

Pr
x∼µ0
i∼uS0

x

[Ev(x⊕ 1{i})]

≥
∑

v∈L0
|v|0<⌈n/8⌉

Pr
x∼µ0
i∼uS0

x

[Ev(x) and i ̸∈ Zv] =
∑

v∈L0
|v|0<⌈n/8⌉

Pr
x∼µ0

[Ev(x)] Pr
x∼µ0
i∼uS0

x

[i ̸∈ Zv|Ev(x)]

≥
∑

v∈L0
|v|0<⌈n/8⌉

Pr
x∼µ0

[Ev(x)] ·
(
|S0

x| − n/8
|S0

x|

)
≥ 1

2 ·

 ∑
v∈L0

|v|0<⌈n/8⌉

Pr
x∼µ0

[Ev(x)]

 = 1
2ρ0

0.

(In the last inequality, we use the fact that |S0
x| > n/4.) Hence ρ0

0 ≤ 2/5.
2. (0-paths with lots of 0’s). Secondly, we show that a 0-path which sees more than ⌈n/8⌉

0’s can capture at most κ = exp(−Ω(n)) of µ0 mass. Consider a leaf v labelled 0 such
that the path leading to v fixes t ≥ ⌈n/8⌉ variables to 0; |Zv| = t ≥ n/8. Let Sn/2 be all
strings of Hamming weight n/2. We have

κ = Pr
y∼µ0

[y reaches v] = Pr
x∼uSn/2

[rep(x) reaches v]

≤ Pr
x∼uSn/2

[S1
rep(x) ∩ Zv = ∅] ≤ Pr

x∼uSn/2
[S1

x ∩ Zv = ∅] (because S1
x ⊆ S1

rep(x))

≤

(
n−t
n/2

)(
n

n/2
) ≤ (7n/8

n/2
)(

n
n/2

) =
n/2−1∏

i=0

7n/8− i

n− i
≤

(
7
8

)n/2
= 2−Ω(n).

With these two observations, we can now obtain the desired lower bound.

4/5 ≤ ρ0 =
∑

v∈L0

Pr
x∼µ0

[Ev(x)] =
∑

v∈L0
|Zv|<⌈n/8⌉

Pr
x∼µ0

[Ev(x)] +
∑

v∈L0
|Zv|≥⌈n/8⌉

Pr
x∼µ0

[Ev(x)]

≤ 2/5 + κ× (number of 0-leaves).

Hence the number of 0-leaves is at least 2/(5κ) = exp(Ω(n)). ◀

5 More general decision trees

A variable is queried at each node of a decision tree. Generalising the class of permitted
queries gives rise to many variants of decision trees that have been considered in different
contexts. In this section, we consider three such classes.

And-decision trees (ADT): queries are restricted to And of non-negated variables.
(And, Or)-decision trees: queries are restricted to And or Or of variables.
Parity-decision trees (PDT): queries are restricted to Parity of variables.
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We denote the deterministic, pseudo-deterministic and randomized query complexity in
each of these types of trees as (D∧-dt, psD∧-dt, R∧-dt), (D(∧,∨)-dt, psD(∧,∨)-dt, R(∧,∨)-dt), and
(D⊕-dt, psD⊕-dt, R⊕-dt), respectively.

And, Or and Parity are the most basic Boolean functions. It is thus natural to study the
relationship between determinism, pseudo-determinism and randomization in these settings.
We will use the following recently-proved results from [4].

▶ Proposition 5.1 ([4]). For every total Boolean function f : {0, 1}n → {0, 1},
1. D∧-dt(f) = O(R∧-dt(f)3 log4(n)). ([4, Theorem 4.5])
2. log DSizedt(f)/(2 log n) ≤ D(∧,∨)-dt(f) ≤ 4 log DSizedt(f). ([4, Lemma 4.2])
3. log RSizedt(f)/(2 log n) ≤ R(∧,∨)-dt(f) ≤ 4 log RSizedt(f). ([4, Lemma 4.2])
4. D(∧,∨)-dt(f) = O(R(∧,∨)-dt(f)4 log7(n)). ([4, Theorem 4.1])

And-decision trees

Pseudo-determinism can be separated from randomness in And decision trees. To establish
the separation, we first give a technique to prove a pseudo-deterministic lower bound using
0-block sensitivity. The following theorem generalizes Theorem 3.1(2) to And decision
trees. The same relation is proved for Boolean functions in [12], by reduction to a hard
communication problem; We give a more direct proof in the full version of our paper [3]
for multi-output functions by constructing a hard distribution and using Yao’s minimax
principle.

▶ Theorem 5.2. For a multi-output function f , R∧-dt
1/3 (f) ≥ bs0(f)/3.

For a total search problem S, psD∧-dt
1/3 (S) ≥ minf∈sS bs0(f)/3.

Using this result, we can now separate randomized and pseudo-deterministic complexity.

▶ Theorem 5.3. Let S be the search problem ApproxHamWt = {(x, v) : |wt(x) − v| ≤
n/10}. Then R∧-dt(S) = Rdt(S) = O(1), while psD∧-dt(S) = Ω(n).

Proof. It is easy to see, and already noted in Corollary 4.2 of [8], that Rdt(S) = O(1).
To show psD∧-dt(S) = Ω(n), we will show that any f solving S must have 0-sensitivity of
at least 4n/5. This too follows the proof outline from Corollary 4.2 of [8], where a lower
bound on psDdt was obtained. But using Theorem 5.2, we draw the stronger conclusion that
psD∧-dt(S) ≥ 4n/5. Suppose that for some f solving S, s0(f) < 4n/5. We start with x0 = 0n

and create a sequence of inputs ⟨xi⟩ such that wt(xi) = i and f(xi) = f(0n). Because f

solves ApproxHamWt, n/10 ≥ f(0n) = f(x1) = f(x2) = . . . = f(xl) ≥ l − n/10. Thus if
we are able to create such a sequence of length at least l = n/5 + 1, then we already have a
contradiction. The only thing left is to create the sequence xi. For 0 ≤ i ≤ n/5, given xi

with f(xi) = f(0n), we need to find a suitable xi+1. Note that xi has exactly n − i 0-bit
positions, of which at most s0(f) are sensitive, so at least s = n− i− s0(f) 0-bit positions
are not sensitive. Since s0(f) < 4n/5 and i ≤ n/5, s > 0, so xi has at least one non-sensitive
0-bit position. Pick any such position, say j, and define xi+1 = xi ⊕ 1{j}. Note that xi+1

satisfies the desired properties i.e. f(xi+1) = f(xi) = f(0n) and wt(xi+1) = i + 1. ◀

On the other hand, using Proposition 5.1(1) with Proposition 4.1, we get a polynomial
relationship between psD∧-dt and D∧-dt.

▶ Theorem 5.4. For a total search problem S ⊆ {0, 1}n × [m], we have

D∧-dt(S) = O(psD∧-dt(S)3 · log4(n) ·min(log m, psD∧-dt(S))).
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(AND, OR)-decision trees

The results of Proposition 5.1(2),(3) are proved in [4] only for total Boolean functions.
However, the proof there is based on a syntactic argument, where the upper bound relies
on a tree-balancing argument and the lower bound is obtained by opening up And and
Or queries. Since the proof is syntactic, it naturally extends to multi-output functions
and search problems as well. Using this exension to multi-output functions, we obtain the
following relationship between psDSizedt and psD(∧,∨)-dt.

▶ Lemma 5.5. For a total search problem S ⊆ {0, 1}n × [m], we have

log psDSizedt(S)/(2 log n) ≤ psD(∧,∨)-dt(S) ≤ 4 log psDSizedt(S).

Proof. For S, let f and g be multi-output function solving S, with
psDSizedt(S) = RSizedt(f) and psD(∧,∨)-dt(S) = R(∧,∨)-dt(g) respectively. Then

4 log psDSizedt(S) = 4 log RSizedt(f)
(∗)
≥ R(∧,∨)-dt(f) ≥ psD(∧,∨)-dt(S)

= R(∧,∨)-dt(g)
(∗)
≥ log RSizedt(g)/(2 log n) ≥ log psDSizedt(S)/(2 log n).

The inequalities marked (*) holds because of Proposition 5.1(3). ◀

This, along with the size separation from Theorem 4.6, gives us a separation between
randomized and pseudo-deterministic query complexity in (And, Or)-decision trees.

▶ Theorem 5.6. Let S be the search problem ApproxHamWt. Then R(∧,∨)-dt(S) = O(1)
and psD(∧,∨)-dt(S) = Ω(n/ log n).

On the other hand, using Proposition 5.1(4) along with Proposition 4.1 gives a polynomial
relation between pseudo-determinism and determinism, upto polylogn factors.

▶ Theorem 5.7. For a total search problem S ⊆ {0, 1}n × [m], we have

D(∧,∨)-dt(S) = O(psD(∧,∨)-dt(S)4 · log7(n) ·min(log m, psD(∧,∨)-dt(S))).

PARITY-decision trees

For Parity decision trees, for total Boolean functions, the randomized and deterministic
Parity query complexities are linearly separated: for the And and Or functions, the
deterministic PDT complexity is Ω(n), whereas the randomized PDT complexity is O(1).
The search analogue of the Or function gives an almost linear separation between determinism
and pseudo-determinism in the PDT model. See the full version of our paper [3] for details.

▶ Theorem 5.8. Let S be the search problem SearchOR = {(x, v) : (xv = 1) or (x =
0n ∧ v = n + 1)}. Then D⊕-dt(S) = n whereas psD⊕-dt(S) = O(log n log log n).

Establishing a super-polynomial separation between randomness and pseudo-determinism
remains open for Parity decision trees.

6 A combinatorial proof of a combinatorial problem

In [9], the authors studied the pseudo-deterministic query complexity of a promise problem
(PromiseFIND1). Here the input bit string has 1s in at least half the positions, and the task
is to find a 1. They observed that PromiseFIND1 is a complete problem for easily-verifiable
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search problems with randomized query algorithms (see Theorem 3 in [9]), and proved a
Ω(
√

n) lower bound on its pseudo-deterministic query complexity. They conjectured that
the pseudo-deterministic query lower bound for PromiseFIND1 can be improved to Ω(n).
Towards understanding the PromiseFIND1 problem better, they introduced a natural
colouring problem on hypercubes which states that any proper coloring of the hypercube
contains a point with many 1s and with high block sensitivity.

▶ Definition 6.1. A proper coloring of the n-dimensional hypercube Hn is any function
ϕ : {0, 1}n − {0n} −→ [n] such that for all β ∈ {0, 1}n − {0n}, βϕ(β) = 1.

We say a proper coloring ϕ is d-sensitive if there exists a β ∈ {0, 1}n such that |β|1 ≥ n/2
and β has block sensitivity at least d with respect to ϕ. That is, there are d disjoint blocks
of inputs, B1, ..., Bd such that for all i ∈ [d], ϕ(β) ̸= ϕ(β ⊕ 1Bi). The hypercube coloring
problem is about proving lower bound on the (block) sensitivity of every proper coloring. In
[9] it was shown that every proper coloring is Ω(

√
n)-sensitive.

▶ Proposition 6.2 (Theorem 14 [9]). Every proper coloring of Hn is Ω(
√

n)-sensitive.

The hypercube coloring problem is closely related to the pseduodeterministic query complexity
of PromiseFIND1. It is a straightforward observation that showing every proper coloring
is d-sensitive implies a lower bound of d on the pseudo-deterministic query complexity
of PromiseFIND1. To prove Proposition 6.2 in [9], the sensitivity lower bound for the
search problem associated with a random unsat k-XOR formula was converted into a block
sensitivity lower bound for the hypercube coloring problem.

We give a self-contained combinatorial solution to the coloring problem. Our solution
shows that every proper coloring of hypercube has a β ∈ {0, 1}n with Hamming weight
≥ n/2 and with block sensitivity Ω(n1/3). In fact, either the 1-block sensitivity or the 0-block
sensitivity (or both) is Ω(n1/3). Thus this appears incomparable with the bound from [9]. Our
solution is constructive: Algorithm 1 finds the required high-weight, high-block-sensitivity
point, by querying ϕ at various points.

▶ Theorem 6.3. Every proper coloring ϕ of the Boolean hypercube has a β ∈ {0, 1}n with
|β| ≥ n/2 satisfying bs0(ϕ, β) = Ω(n1/3) or bs1(ϕ, β) = Ω(n1/3).

Proof. In Algorithm 1, we describe a procedure to find the required point β. To prove
that the algorithm is correct, we need to prove that if it returns β ∈ {0, 1}n and blocks
D1, D2, . . . , Dr, then
1. β ∈ X (i.e. β has Hamming weight at least n/2),
2. D1, D2, . . . , Dr are disjoint sensitive blocks of ϕ at β, and
3. either all these blocks are 1-blocks of β or all these blocks are 0-blocks.
4. r = Ω(n1/3),

Observe that by construction, for each i ∈ [t+1] where βi is constructed by the algorithm,
βi has 0s in Bj for j < i and 1s in Bi (in fact, 1s elsewhere); hence the blocks B1, . . . , Bi−1
are disjoint.

Further, by construction, each complete iteration of the for loop adds fewer than t2

positions to C: there are fewer than t blocks (otherwise the algorithm would terminate
at line 9) and each block has size less than t (otherwise the algorithm would terminate at
line 13). Thus, since |C0| = 0, if the algorithm reaches line 15 in iteration i, then Ci has size
less than i · t2. Hence βi+1 has hamming weight n−|Ci| > n− it2 ≥ n− t3 > n−n/2 ≥ n/2
and is in X .

MFCS 2023



34:14 Query Complexity of Search Problems

Algorithm 1 Algorithm to find the sensitive point.

Require: A proper coloring ϕ. i.e. For X = {x ∈ {0, 1}n |
∑

i xi ≥ n/2}, ϕ : X → [n]
satisfying ∀x ∈ X , xϕ(x) = 1.

1: t← ⌊(n/2)1/3⌋; C0 ← ∅
2: for i from 1 to t do
3: βi ← 0Ci−1 ▷ Reference input to find t

sensitive 1-blocks.
4: ℓ← ϕ(βi); s← bs1(ϕ, βi) ▷ {ℓ} is a 1-sensitive

block of βi, so s ≥ 1
5: Bi,1, Bi,2, ..., Bi,s: disjoint, minimally-sensitive
6: 1-blocks achieving the 1-block sensitivity s.
7: Bi ← ∪s

j=1Bi,j ▷ ℓ ∈ Bi

8: if s ≥ t then
9: return βi and {Bi,1, Bi,2, ..., Bi,s} ▷ bs1(ϕ, βi) ≥ t

10: end if
11: if maxj∈[s] |Bi,j | ≥ t then
12: Pick any such j ∈ [s] with |Bi,j | ≥ t.
13: return βi ⊕ 1Bi,j and {{k} | k ∈ Bi,j} ▷ s0(ϕ, βi ⊕ 1Bi,j ) ≥ t

14: end if
15: Ci ← Ci−1 ∪Bi ▷ We show: Ci forms a

ϕ-certificate for βi

16: end for
17: βt+1 ← 0Ct

18: return βt+1 and {B1, B2, ..., Bt} ▷ bs0(ϕ, βt+1) ≥ t

If the algorithm terminates at line 9 in the ith iteration of the for loop, then by the choice
in line 6 the returned blocks are disjoint 1-sensitive blocks of β = βi, and there are at least t

of them. Similarly, if the algorithm terminates at line 13 in the ith iteration of the for loop,
then by minimality of the sensitive block Bi,j chosen in line 12, each position in Bi,j is a
0-sensitive location in β = βi ⊕ 1Bi,j

, and there are at least t of them.
If the algorithm terminates at line 18, then each Bi is a 0-block of β = βt+1 and there

are t such blocks. It remains to prove that each Bi is sensitive for β = βt+1. To show this,
we will first show that each Ci is a certificate for βi, and then show that this implies each Bi

is sensitive for β.
For the first part, suppose for some i ∈ [t], Ci is not a certificate for βi. Then there exists

an α ∈ X such that ∀j ∈ Ci, αj = βi
j , but ϕ(α) ̸= ϕ(βi). Let B be the set of positions where

α and βi differ i.e. α = βi ⊕ 1B. Since α and βi agree on Ci, B must be disjoint from Ci.
Since ϕ(βi) ̸= ϕ(α) = ϕ(βi ⊕ 1B), B is a 1-sensitive block of ϕ at βi. By the choice in line 6
at the ith iteration, βi has no 1-sensitive blocks disjoint from the blocks Bi,1, . . . , Bi,s. But
Bi is precisely the union of the these blocks, and is contained in Ci, so B is disjoint from Bi,
a contradiction. Hence Ci is indeed a ϕ-certificate for βi.

For the second part, note that for each i ∈ [t], β and βi agree on Ci−1 and β ⊕ Bi and
βi agree on Ci. Since Ci is a certificate for βi, ϕ(β ⊕ Bi) = ϕ(βi) = ℓ, say. By the definition
of proper coloring, {ℓ} is a 1-sensitive block of βi, and since the blocks chosen in line 6 are
the maximum possible 1-sensitive blocks, ℓ ∈ Bi. But ϕ(β) ̸= ℓ because β = 0Ct

and has
only 0s in Bi. Thus ϕ(β) ̸= ϕ(β ⊕ Bi), and hence Bi is a 0-sensitive block for β.

Finally, by choice of t, we see that r = Ω(n1/3). This concludes the correctness proof. ◀



A. Chattopadhyay, Y. Dahiya, and M. Mahajan 34:15

References
1 Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow – Resolution made simple. J.

ACM, 48(2):149–169, 2001. doi:10.1145/375827.375835.
2 Harry Buhrman and Ronald De Wolf. Complexity measures and decision tree complexity: a

survey. Theoretical Computer Science, 288(1):21–43, 2002.
3 Arkadev Chattopadhyay, Yogesh Dahiya, and Meena Mahajan. Query complexity of search

problems. Electron. Colloquium Comput. Complex., TR23-039, 2023. URL: https://eccc.
weizmann.ac.il/report/2023/039/.

4 Arkadev Chattopadhyay, Yogesh Dahiya, Nikhil S Mande, Jaikumar Radhakrishnan, and
Swagato Sanyal. Randomized versus deterministic decision tree size. In Proceedings of the
55th Annual ACM Symposium on Theory of Computing, pages 867–880, 2023.

5 Daniel Dadush and Samarth Tiwari. On the Complexity of Branching Proofs. In Shubhangi
Saraf, editor, 35th Computational Complexity Conference (CCC 2020), volume 169 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 34:1–34:35, Dagstuhl, Germany, 2020.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.CCC.2020.34.

6 Ankit Garg, Mika Göös, Pritish Kamath, and Dmitry Sokolov. Monotone circuit lower bounds
from resolution. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of
Computing, pages 902–911, 2018.

7 Eran Gat and Shafi Goldwasser. Probabilistic search algorithms with unique answers and
their cryptographic applications. Electron. Colloquium Comput. Complex., page 136, 2011.

8 Oded Goldreich, Shafi Goldwasser, and Dana Ron. On the possibilities and limitations of
pseudodeterministic algorithms. In Robert D. Kleinberg, editor, Innovations in Theoretical
Computer Science ITCS, pages 127–138. ACM, 2013. See also ECCC Vol. 19, T.R. 12-101,
2012.

9 Shafi Goldwasser, Russell Impagliazzo, Toniann Pitassi, and Rahul Santhanam. On the
pseudo-deterministic query complexity of NP search problems. In Valentine Kabanets, editor,
36th Computational Complexity Conference CCC, volume 200 of LIPIcs, pages 36:1–36:22.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

10 Stasys Jukna. Boolean Function Complexity – Advances and Frontiers, volume 27 of Algorithms
and Combinatorics. Springer, 2012. doi:10.1007/978-3-642-24508-4.

11 Alexander Knop, Shachar Lovett, Sam McGuire, and Weiqiang Yuan. Guest column: Models
of computation between decision trees and communication. ACM SIGACT News, 52(2):46–70,
2021.

12 Alexander Knop, Shachar Lovett, Sam McGuire, and Weiqiang Yuan. Log-rank and lifting for
and-functions. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing, pages 197–208, 2021.

13 László Lovász, Moni Naor, Ilan Newman, and Avi Wigderson. Search problems in the decision
tree model. SIAM Journal on Discrete Mathematics, 8(1):119–132, 1995.

14 Noam Nisan. Crew prams and decision trees. In Proceedings of the twenty-first annual ACM
symposium on Theory of computing, pages 327–335, 1989.

15 Andrew Chi-Chih Yao. Lower bounds by probabilistic arguments (extended abstract). In
24th Annual Symposium on Foundations of Computer Science FOCS, pages 420–428. IEEE
Computer Society, 1983.

MFCS 2023

https://doi.org/10.1145/375827.375835
https://eccc.weizmann.ac.il/report/2023/039/
https://eccc.weizmann.ac.il/report/2023/039/
https://doi.org/10.4230/LIPIcs.CCC.2020.34
https://doi.org/10.1007/978-3-642-24508-4




Tight Algorithmic Applications of Clique-Width
Generalizations
Vera Chekan #

Humboldt-Universität zu Berlin, Germany

Stefan Kratsch #

Humboldt-Universität zu Berlin, Germany

Abstract
In this work, we study two natural generalizations of clique-width introduced by Martin Fürer.
Multi-clique-width (mcw) allows every vertex to hold multiple labels [ITCS 2017], while for fusion-
width (fw) we have a possibility to merge all vertices of a certain label [LATIN 2014]. Fürer has
shown that both parameters are upper-bounded by treewidth thus making them more appealing
from an algorithmic perspective than clique-width and asked for applications of these parameters
for problem solving. First, we determine the relation between these two parameters by showing that
mcw ≤ fw +1. Then we show that when parameterized by multi-clique-width, many problems (e.g.,
Connected Dominating Set) admit algorithms with the same running time as for clique-width
despite the exponential gap between these two parameters. For some problems (e.g., Hamiltonian
Cycle) we show an analogous result for fusion-width: For this we present an alternative view on
fusion-width by introducing so-called glue-expressions which might be interesting on their own. All
algorithms obtained in this work are tight up to (Strong) Exponential Time Hypothesis.
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1 Introduction

In parameterized complexity apart from the input size we consider a so-called parameter and
study the complexity of problems depending on both the input size and the parameter where
the allowed dependency on the input size is polynomial. In a more fine-grained setting one is
interested in the best possible dependency on the parameter under reasonable conjectures. A
broad line of research is devoted to so-called structural parameters measuring how simple
the graph structure is: different parameters quantify various notions of possibly useful
input structure. Probably the most prominent structural parameter is treewidth, which
reflects how well a graph can be decomposed using small vertex separators. For a variety
of problems, the tight complexity parameterized by treewidth (or its path-like analogue
pathwidth) has been determined under the so-called Strong Exponential Time Hypothesis
(e.g., [33, 24, 32, 11, 28, 12, 16]). However, the main drawback of treewidth is that it is only
bounded in sparse graphs: a graph on n vertices of treewidth k has no more than nk edges.

To capture the structure of dense graphs, several parameters have been introduced and
considered. One of the most studied is clique-width. The clique-width of a graph is at most k

if it can be constructed using the following four operations on k-labeled graphs: create
a vertex with some label from 1, . . . , k; form a disjoint union of two already constructed
graphs; give all vertices with label i label j instead; or create all edges between vertices
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with labels i and j. It is known that if a graph has treewidth k, then it has clique-width
at most 3 · 2k−1 and it is also known that an exponential dependence in this bound is
necessary [9]. Conversely, cliques have clique-width at most 2 and unbounded treewidth. So
on the one hand, clique-width is strictly more expressive than treewidth in the sense that if
we can solve a problem efficiently on classes of graphs of bounded clique-width, then this is
also true for classes of graphs of bounded treewidth. On the other hand, the exponential gap
has the effect that as the price of solving the problem for larger graph classes we potentially
obtain worse running times for some graph families.

Fürer introduced and studied two natural generalizations of clique-width, namely fusion-
width (fw) [19] and multi-clique-width (mcw) [20]. For fusion-width, additionally to the
clique-width operations, he allows an operator that fuses (i.e., merges) all vertices of la-
bel i. Originally, fusion-width (under a different name) was introduced by Courcelle and
Makowsky [10]. However, they did not suggested studying it as a new width parameter since
it is parametrically (i.e., up to some function) equivalent to clique-width. For multi-clique-
width, the operations remain roughly the same as for clique-width but now every vertex is
allowed to have multiple labels. For these parameters, Fürer showed the following relations
to clique-width (cw) and treewidth (tw):

fw ≤ cw ≤ fw ·2fw mcw ≤ cw ≤ 2mcw fw ≤ tw +2 mcw ≤ tw +2 (1)

Fürer also observed that the exponential gaps between clique-width and both fusion- and
multi-clique-width are necessary. As our first result, we determine the relation between
fusion-width and multi-clique-width:

▶ Theorem 1. For every graph G, it holds that mcw(G) ≤ fw(G) + 1. Moreover, given a
fuse-k-expression ϕ of G, a multi-clique-width-(k + 1)-expression of G can be created in time
polynomial in |ϕ| and k.

The relations in (1) imply that a problem is FPT parameterized by fusion-width resp.
multi-clique-width if and only if this is the case for clique-width. However, the running times
of such algorithms might strongly differ. Fürer initiated a fine-grained study of problem
complexities relative to multi-clique-width, starting with the Independent Set problem. He
showed that this problem can be solved in O∗(2mcw) where O∗ hides factors polynomial in the
input size. On the other hand, Lokshtanov et al. proved that under SETH no algorithm can
solve this problem in O∗((2 − ε)pw) where pw denotes the parameter called pathwidth [28].
Clique-width of a graph is at most its pathwidth plus two [15] so the same lower bound holds
for clique-width and hence, multi-clique-width as well. Therefore, the tight dependence on
both clique-width and multi-clique-width is the same, namely O∗(2k). We show that this is
the case for many further problems.

▶ Theorem 2. Let G be a graph given together with a multi-k-expression of G. Then:
Dominating Set can be solved in time O∗(4k);
q-Coloring can be solved in time O∗((2q − 2)k);
Connected Vertex Cover can be solved in time O∗(6k);
Connected Dominating Set can be solved in time O∗(5k).

And these results are tight under SETH.
Further, Chromatic Number can be solved in time f(k) · n2O(k) and this is tight

under ETH.

We prove this by providing algorithms for multi-clique-width with the same running time as
the known tight algorithms for clique-width. The lower bounds for clique-width known from
the literature then apply to multi-clique-width as well proving the tightness of our results.
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By Theorem 1, these results also apply to fusion-width. For the following three problems we
obtain similar tight bounds relative to fusion-width as for clique-width, but it remains open
whether the same is true relative to multi-clique-width:

▶ Theorem 3. Let G be a graph given together with a fuse-k-expression of G. Then:
Max Cut can be solved in time f(k) · nO(k);
Edge Dominating Set can be solved in time f(k) · nO(k);
Hamiltonian Cycle can be solved in time f(k) · nO(k).

And these results are tight under ETH.

To prove these upper bounds, we provide an alternative view on fuse-expressions, called glue-
expressions, interesting on its own. We show that a fuse-k-expression can be transformed into
a glue-k-expression in polynomial time and then present dynamic-programming algorithms
on glue-expressions. Due to the exponential gap between clique-width and both fusion- and
multi-clique-width, our results provide exponentially faster algorithms on graphs witnessing
these gaps.

Related Work. Two parameters related to both treewidth and clique-width are modular
treewidth (mtw) [3, 22] and twinclass-treewidth [29, 31, 27] (unfortunately, sometimes also
referred to as modular treewidth). It is known that mcw ≤ mtw +3 (personal communication
with Falko Hegerfeld). Further dense parameters have been widely studied in the literature.
Rank-width (rw) was introduced by Oum and Seymour and it reflects the F2-rank of the
adjacency matrices in the so-called branch decompositions. Originally, it was defined to
obtain a fixed-parameter approximation of clique-width [30] by showing that rw ≤ cw ≤
2rw +1 −1. Later, Bui-Xuan et al. started the study of algorithmic properties of rank-width [5].
Recently, Bergougnoux et al. proved the tightness of first ETH-tight lower bounds for this
parameterization [2]. Another parameter defined via branch-decompositions and reflecting the
number of different neighborhoods across certain cuts is boolean-width (boolw), introduced
by Bui-Xuan et al. [6, 7]. Fürer [20] showed that boolw ≤ mcw ≤ 2boolw. Recently, Eiben
et al. presented a framework unifying the definitions and algorithms for computation of many
graph parameters [13].

Organization. We start with some required definitions and notations in Section 2. In
Section 3 we prove the relation between fusion-width and multi-clique-width from Theorem 1.
After that, in Section 4 we introduce glue-k-expressions and show how to obtain such an
expression given a fuse-k-expression of a graph. Then in Section 5 we employ these expressions
to obtain algorithms parameterized by fusion-width. In Section 6 we present algorithms
parameterized by multi-clique-width. We conclude with some open questions in Section 7.
In this work some technical details have been omitted due to space constraints. We refer to
the full version of the paper for all proofs [8].

2 Preliminaries

For k ∈ N0, we denote by [k] the set {1, . . . , k} and we denote by [k]0 the set [k] ∪ {0}.
We use standard graph-theoretic notation. Our graphs are simple and undirected if not

explicitly stated otherwise. For a graph H and a partition (V1, V2) of V (H), by EH(V1, V2) =
{{v1, v2} | v1 ∈ V1, v2 ∈ V2} we denote the set of edges between V1 and V2. For a set S of
edges in a graph H, by V (S) we denote the set of vertices incident with the edges in S.

MFCS 2023
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A k-labeled graph is a pair (H, labH) where labH : V (H) → [k] is a labeling function of H .
Sometimes to simplify the notation in our proofs we will allow the labeling function to map
to some set of cardinality k instead of the set [k]. In the following, if the number k of labels
does not matter, or it is clear from the context, we omit k from the notions (e.g., a labeled
graph instead of a k-labeled graph). Also, if the labeling function is clear from the context,
then we simply call H a labeled graph as well. Also we sometimes omit the subscript H of
the labeling function labH for simplicity. For i ∈ [k], by UH

i = lab−1
H (i) we denote the set of

vertices of H with label i. We consider the following four operations on k-labeled graphs.
1. Introduce: For i ∈ [k], the operator v⟨i⟩ creates a graph with a single vertex v that has

label i. We call v the title of the vertex.
2. Union: The operator ⊕ takes two vertex-disjoint k-labeled graphs and creates their

disjoint union. The labels are preserved.
3. Join: For i ̸= j ∈ [k], the operator ηi,j takes a k-labeled graph H and creates the

supergraph H ′ on the same vertex set with E(H ′) = E(H) ∪ {{u, v} | labH(u) =
i, labH(v) = j}. The labels are preserved.

4. Relabel: For i ̸= j, the operator ρi→j takes a k-labeled graph H and creates the same
k-labeled graph H ′ apart from the fact that every vertex that with label i in H instead
has label j in H ′.

A well-formed sequence of such operations is called a k-expression or a clique-expression.
With a k-expression ϕ one can associate a rooted tree such that every node corresponds
to an operator, this tree is called a parse tree of ϕ. With a slight abuse of notation, we
denote it by ϕ as well. By Gϕ we denote the labeled graph arising in ϕ. And for a node t

of ϕ by Gϕ
t we denote the labeled graph arising in the subtree (sometimes also called a

sub-expression) rooted at t, this subtree is denoted by ϕt. The graph Gϕ
t is then a subgraph

of Gϕ. A graph H has clique-width of at most k if there is a labeling function labH of H

and a k-expression ϕ such that Gϕ is equal to (H, labH). By cw(H) we denote the smallest
integer k such that H has clique-width at most k. Fürer has studied two generalizations of
k-expressions [19, 20].

Fuse: For i ∈ [k], the operator θi takes a k-labeled graph H with lab−1
H (i) ̸= ∅ and fuses

the vertices with label i, i.e., the arising graph H ′ has vertex set (V (H) − lab−1
H (i))∪̇{v},

the edge relation in V (H) − lab−1
H (i) is preserved, and NH′(v) = NH(lab−1

H (i)). The labels
of vertices in V (H ′) − v are preserved, and vertex v has label i. A fuse-k-expression is a
well-formed expression that additionally to the above four operations is allowed to use fuses.
We adopt the above notations from k-expressions to fuse-k-expressions. Let us only remark
that for a node t of a fuse-k-expression ϕ, the graph Gϕ

t is not necessarily a subgraph of Gϕ

since some vertices of Gϕ
t might be fused later in ϕ.

▶ Remark 4. Originally, Fürer allows that a single introduce-node creates multiple, say q,
vertices with the same label. However, we can eliminate such operations from a fuse-
expression ϕ as follows. If the vertices introduced at some node participate in some fuse later
in the expression, then it suffices to introduce only one of them. Otherwise, we can replace
this introduce-node by q nodes introducing single vertices combined using union-nodes. These
vertices are then also the vertices of Gϕ. So in total, replacing all such introduce-nodes
would increase the number of nodes of the parse tree by at most O(|V (Gϕ)|), which is not a
problem for our algorithmic applications.

Another generalization of clique-width introduced by Fürer [20] is multi-clique-width
(mcw). A multi-k-labeled graph is a pair (H, labH) where labH : V (H) → 2[k] is a multi-
labeling function. We consider the following four operations of multi-k-labeled graphs.
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1. Introduce: For q ∈ [k] and i1, . . . iq ∈ [k], the operator v⟨i1, . . . , iq⟩ creates a multi-k-
labeled graph with a single vertex that has label set {i1, . . . , iq}.

2. Union: The operator ⊕ takes two vertex-disjoint multi-k-labeled graphs and creates their
disjoint union. The labels are preserved.

3. Join: For i ̸= j ∈ [k], the operator ηi,j takes a multi-k-labeled graph H and creates its
supergraph H ′ on the same vertex set with E(H ′) = E(H) ∪ {{u, v} | i ∈ labH(u), j ∈
labH(v)}. This operation is only allowed when there is no vertex in H with labels i and j

simultaneously, i.e., for every vertex v of H we have {i, j} ̸⊆ labH(v). The labels are
preserved.

4. Relabel: For i ∈ [k] and S ⊆ [k], the operator ρi→S takes a multi-k-labeled graph H and
creates the same multi-labeled graph apart from the fact that every vertex with label
set L ⊆ [k] such that i ∈ L in H instead has label set (L \ {i}) ∪ S in H ′. Note that S = ∅
is allowed.

A well-formed sequence of these four operations is called a multi-k-expression. As for fuse-
expressions, Fürer allows introduce-nodes to create multiple vertices but we can eliminate
this by increasing the number of nodes in the expression by at most O(|V (Gϕ)|). We adopt
the analogous notations from k-expressions to multi-k-expressions.

Complexity. To the best of our knowledge, the only known way to approximate multi-
clique-width and fusion-width is via clique-width, i.e., to employ the relation (1). The only
known way to approximate clique-width is, in turn, via rank-width. This way we obtain
a 22k -approximation of multi-clique-width and fusion-width running in FPT time. For this
reason, to obtain tight running times in our algorithms we always assume that a fuse- or
multi-k-expression is provided. Let us emphasize that this is also the case for all tight results
for clique-width in the literature (see e.g., [1, 27]). In this work, we will show that if a
graph admits a multi-k-expression resp. a fuse-k-expression, then it also admits one whose
size is polynomial in the size of the graph. Moreover, such a “compression” can be carried
out in time polynomial in the size of the original expression. Therefore, we delegate this
compression to a black-box algorithm computing or approximating multi-clique-width or
fusion-width and assume that provided expressions have size polynomial in the graph size.

(Strong) Exponential Time Hypothesis. The algorithms in this work are tight under one
of the following conjectures formulated by Impagliazzo et al. [23]. The Exponential Time
Hypothesis (ETH) states that there is 0 < ε < 1 such that 3-Sat with n variables and m

clauses cannot be solved in time O∗(2εn). The Strong Exponential Time Hypothesis (SETH)
states that for every 0 < ε < 1 there is an integer q such that q-Sat cannot be solved in
time O∗(2εn). In this work, O∗ hides factors polynomial in the input size.

Simplifications. If the graph is clear from the context, by n we denote the number of its
vertices. If not stated otherwise, the number of labels is denoted by k and a label is a number
from [k].

3 Relation Between Fusion-Width and Multi-Clique-Width

In this section, we show that the multi-clique-width of a graph is at most as large as its
fusion-width plus one. Fürer [20] has proven the following relation:

▶ Theorem 5 ([20]). For every graph H, it holds that cw(H) ≤ fw(H) · 2fw(H).

MFCS 2023
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The proof is constructive: given a fuse-k-expression it creates a k · 2k-expression of the same
graph. We use ideas from this proof to prove our result.
▶ Theorem 6. For every graph H, it holds that mcw(H) ≤ fw(H) + 1. Moreover, given a
fuse-k-expression ϕ of H, a multi-(k + 1)-expression of H can be created in time polynomial
in |ϕ| and k.
Proof. Here we sketch the intuition behind the proof and for all formalities we refer to the
full version. We start by showing that mcw(H) ≤ 2 · fw(H) holds. To prove this, we will
consider a fuse-k-expression of H and from it, we will construct a multi-2k-expression of H

using labels {1, . . . , k, 1̂, . . . , k̂}. For simplicity, let [̂k] = {1̂, . . . , k̂}. For this first step, we
follow the construction of Fürer in his proof of Theorem 5. There he uses k ·2k labels from the
set [k]×2[k] so the second component of such a label is a subset of [k]. Multi-expressions allow
vertices to hold multiple labels and we model the second component of a label via subsets
of [̂k]. After that, we show that the labels i and î can be almost unified for every i ∈ [k].
Using just one additional label ⋆, we then obtain a multi-(k + 1)-expression of H.

For simplicity of representation, in this proof sketch we assume that our fuse-expression
contains no relabel-nodes (we refer to the full version for the complete proof). We may
assume that our fuse-expression does not contain nodes that do not change the arising
labeled graph. Also if a vertex arising in some fuse-operation participates in some later
fuse-operation, then the earlier fuse can be removed. Now we assume that any vertex arising
in a fuse-operation does not participate in later fuses. We say that v is a fuse-vertex at a
node x of the expression if v participates in some fuse-operation above x. For the label i

of v we then also say that i is a fuse-label at x. Instead of first creating the fuse-vertices via
introduce-nodes and then fusing them, we will introduce only one vertex representing the
result of the fusion. The creation of the edges incident with such a new vertex (originally
incident with fuse-vertices) then needs to be postponed until the moment where this vertex is
introduced. To remember that some vertex v is missing an edge to a new vertex with label i,
we will add a label î to the label set of v. After the creation of this vertex, the edge will be
reconstructed using a corresponding join.

Now we provide more details. First, we cut off every leaf of the expression introducing a
fuse-vertex. Second, we replace every fuse-node θi by a new introduce-node 1⟨i⟩. Since for
every fuse-vertex we have kept only the latest fuse-node it participates in, the vertex set of
the graph arising in the current expression is V (H), and the edges incident with new vertices
need to be created. For this, let x be a ηi,j-node. If both i and j are not fuse-labels at x,
no additional work needs to be done. Next, assume that exactly one of the labels i and j,
say i, is a fuse-label at x. The information about the created edges is stored in vertices of
label j: for this, we replace this join with a relabel ρ

j→{j,̂i}. Now assume that both i and j

are fuse-labels at x. Then x creates only one edge of H since all vertices of label i (resp. j)
are fused into one vertex later. We may assume that in the original expression, the fuse
of vertices with label j happens before the fuse of label i. We store the information about
the postponed edge in j as follows. Let xj be the new introduce-node that replaced the
fuse-node for label j. And let S denote the set of labels of the new vertex created in this
node: in the beginning, S consists of j only but after processing some join-nodes, it might
contain further labels from [̂k]. Then we replace xj with a 1⟨S ∪ {̂i}⟩-node. Finally, we create
the remembered edges as follows. Let x be a new 1⟨S⟩-node for some set S of labels. By
construction, there exists a unique i ∈ S ∩ [k]: this is the label of vertices originally fused at
this node while S \ i ⊆ [̂k] remembers the edges to be created later in the expression. So
right after x, we first add a η

i,̂i
-node and second, a ρ̂

i→∅-node to reflect that the missing
edges have been created.
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This concludes the construction of a multi-2k-expression of H . The crucial observation is
that the labels i and î are almost never used at the same time. Indeed, if label î occurs in
some vertex created by some sub-expression, then all leaves introducing the vertices of label i

have been cut off from this sub-expression. So there are no vertices with label i now. The
only moment to which both labels i and î occur simultaneously is right after a new 1⟨S⟩-node
with i ∈ S: now the label î is used to create the postponed edges incident with the new
vertex and then î is removed. So apart from these two operations, we can unify i and î:
one additional label ⋆ suffices to distinguish them during these operations. This results in a
multi-(k + 1)-expression of H. ◀

4 Reduced Glue-Expressions

▶ Definition 7. A glue-k-expression is a well-formed expression constructed from introduce-,
join-, relabel-, and glue-operations on k-labeled graphs. A glue-operation takes as input
two k-labeled graphs (H1, lab1) and (H2, lab2) satisfying the following two properties:

For every v ∈ V (H1) ∩ V (H2), the vertex v has the same label in H1 and H2, i.e., we
have lab1(v) = lab2(v).
For every v ∈ V (H1) ∩ V (H2) and every j ∈ [2], the vertex v is the unique vertex with its
label in Hj, i.e., we have | lab−1

1 (lab1(v))| = | lab−1
2 (lab2(v))| = 1.

In this case, we call the graphs H1 and H2 glueable. The output of this operation is then
the graph H1 ⊔ H2 with V (H1 ⊔ H2) = V (H1) ∪ V (H2) and E(H1 ⊔ H2) = E(H1) ∪ E(H2)
where the labels are preserved. The vertices in V (H1) ∩ V (H2) are called glue-vertices.

Note that if H1 and H2 satisfy these properties, then the gluing is equivalent to a union
followed by a sequence of fuses θi where i is a label of a vertex shared by H1 and H2.

▶ Definition 8. A glue-k-expression ξ is called reduced if the following properties hold:
1. Let i, j ∈ [k], let t be a ηi,j-node in ξ, and let t′ be the child of t in ξ. Then Gξ

t′ contains
no edge {v, w} with labξ

t′(v) = i and labξ
t′(w) = j.

2. Let t be a glue-node in ξ and let t1 and t2 be its children. Then the graphs Gξ
t1

and Gξ
t2

are edge-disjoint.
3. Let t be a glue-node in ξ, let t1 and t2 be its children, and let v be a glue-vertex. Then

for every j ∈ [2], the vertex v has an incident edge in Gξ
tj

.
As we will see in Section 5, such expressions are very useful for algorithmic applications.

In this section we sketch how to transform a fuse-k-expression into a reduced glue-k-
expression of the same graph in polynomial time. Although the idea behind the construction
of such expressions is quite natural, the realization is rather technical. For this reason, here
we only provide a high-level idea of the required steps and refer to the full version for the
extensive description.

In the first phase, we transform a fuse-k-expression into a (not necessarily reduced)
glue-k-expression as follows. As the first step, we want to achieve that every fuse-node t is
right above some union-node, i.e., there are only fuse-nodes on the path between t and the
topmost union-node below t. For this, we shift every fuse-node down to the closest union-node
(see Figure 1 (a)). We emphasize that this cannot be achieved simply by repetitive swapping
of the fuse-node with its child: e.g., swapping θi with ρj→i would change the arising graph.
In the second step, we want to achieve that every fuse-node t fuses exactly two vertices and
these vertices come from different sides of the union right below it. In other words, we want
that any two vertices, that are ever fused, are fused as early as possible. So if there is a
node t fusing at least two vertices coming from the same side of the topmost union-node t⊕
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Figure 1 The steps to transform a fuse-expression into a glue-expression. (a) Shifting fuse-nodes
to union-nodes. (b) Creating copies of fuse-nodes to fuse vertices as early as possible. (c) Shifting
the copied fuse-nodes to union-nodes.

below it, these vertices can actually be fused before t⊕ already. To accomplish this, we add
a new fuse-node t′ below t⊕ (see Figure 1 (b)). After that, t′ is shifted down to the next
union-node as in the first step (see Figure 1 (c)). In this second step, one needs to be careful
in order to ensure that the process terminates at all and that it takes only polynomial time.
For this, we choose an appropriate order for processing the fuse-nodes. After these two
steps, we replace every sequence consisting of a union-node and following fuse-nodes with a
glue-node to obtain a glue-expression.

In the second phase, we make our glue-expression reduced as follows (see Definition 8).
First, given two join-nodes creating the same edge, we can show that at least of them can be
safely removed. Second, if a glue-vertex of two glued graphs has no incident edge in one of
them, then we can remove this vertex from that graph without changing the result of the
gluing. We refer to the full version for details. Altogether, we prove the following:

▶ Theorem 9. Let ϕ be a fuse-k-expression of a graph H on n vertices and m edges. Then
in time polynomial in |ϕ| and k we can compute a reduced glue-k-expression ζ of H such that
the parse tree of ζ contains O(k2(m + n)) nodes.

Let us remark, that unlike clique-expressions (whose leaves are in bijection with the vertices
of the arising graph), the number of leaves in a fuse-expression can be unbounded in general.
This is due to fuse-nodes reducing the number of vertices in the constructed graph. So
Theorem 9 in particular shows that a polynomial number of introduce-nodes suffices.

5 Algorithms Parameterized by Fusion-Width

In this section we show how to employ reduced glue-expressions to obtain algorithms
parameterized by fusion-width (given a fuse-expression of corresponding width). In the
previous section, we showed that every fuse-k-expression can be transformed into a reduced
glue-k-expression of small size in polynomial time. So for the remainder of this section we
assume that a glue-k-expression ϕ of an input graph G is given. Recall that in particular,
two graphs glued at any glue-node of ϕ are edge-disjoint.

All algorithms in this section have running time f(fw)nO(fw). For each of the problems
considered here, in the literature there is a lower bound stating that under ETH, the problem
cannot be solved in time f(cw)no(cw) even if a clique-expression of corresponding width is
provided [17, 18]. Since fusion-width is at most as large as clique-width, these lower bounds
hold for fusion-width as well implying the tightness of our results. Fürer observed that
there exist graphs whose clique-width is exponential in their fusion-width [19]. Therefore,
in addition to solving these problems for a larger class of graphs, we obtain an exponential
improvement in the running time for some families of graphs. The only difference between
glue- and clique-expressions is the possibility of using glue-nodes so it will suffice to extend
existing dynamic-programming algorithms from the literature to glue-nodes.
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5.1 Max Cut
In this problem, given a graph G = (V, E) we are asked about the maximum cardinality
of EG(V1, V2) over all partitions (V1, V2) of V . Fomin et al. have developed an nO(cw)

algorithm [17], which we now extend to reduced glue-expressions by showing how to deal with
glue-nodes. Before this, a small remark: the correctness of their algorithm for a join-node t

requires that none of edges created by t is already present in the graph. A reduced glue-
expression satisfies this property so the procedures for all node types other than glue-nodes
can indeed be adopted.

Their dynamic-programming tables are defined as follows. For a graph H, the table TH

contains all vectors h = (s1, . . . , sk, r) with 0 ≤ si ≤ |UH
i | for every i ∈ [k] and 0 ≤ r ≤ |E(H)|

for which there exists a partition (V1, V2) of V (H) such that |V1 ∩ UH
i | = si for every i ∈ [k]

and there are at least r edges between V1 and V2 in H. We say that the partition (V1, V2)
witnesses the vector h. Then the output of the algorithm is the largest integer r such that TG

contains an entry (s1, . . . , sk, r) for some s1, . . . , sk ∈ N0. Processing a fuse-operation θi

applied to some subgraph H seems to be problematic in this setting for the following reason.
Some vertices of label i might have common neighbors so after the application of the fuse-
operator, multiple edges fall together. Given the table TH only we cannot deduce how many
of those edges were running across the partition and it is unclear how to update the table
correctly. To avoid such issues, we replace fuse-nodes with glue-nodes.

Now we provide a way to compute the table TH if H = H1 ⊔ H2 for two glue-
able edge-disjoint k-labeled graphs H1 and H2 if the tables TH1 and TH2 are provided.
Let {v1, . . . , vq} = V (H1)∩V (H2) for some q ∈ N0 and let i1, . . . , iq be the labels of v1, . . . , vq

in H1, respectively. Glueability implies that for every j ∈ [q], it holds that |UH1

ij
| = |UH2

ij
| = 1.

Hence, for every entry (s1, . . . , sk, r) of TH1 and every j ∈ [q], it also holds that sij ∈ {0, 1}
with sij

= 1 if and only if vj is put into V1 in the partition witnessing this entry. The same
holds for the entries in TH2 . This gives the following way to compute the table TH . We initial-
ize this table to be empty. Then we iterate through all pairs of vectors h1 = (s1

1, . . . , s1
k, r1)

from TH1 and h2 = (s2
1, . . . , s2

k, r2) from TH2 . If there is an index j ∈ [q] such that s1
ij

̸= s2
ij

,
then we skip this pair. Otherwise, for every 0 ≤ r ≤ r1 + r2, we add to TH the vec-
tor h = (s1, . . . , sk, r) where for all i ∈ [k]

si =
{

s1
i + s2

i i /∈ {i1, . . . , iq}
s1

i · s2
i i ∈ {i1, . . . , iq}

.

Note that for i ∈ {i1, . . . , iq}, the above definition simply states that we have si = 1 iff
both s1

i and s2
i are equal to 1, and si = 0 iff both s1

i and s2
i are equal to 0. It is not difficult

to verify the correctness of this procedure. If there are no glue-vertices, then our approach
coincides with the one for union-nodes by Fomin et al. If there is a glue-vertex, say v, then
we consider partitions (V 1

1 , V 1
2 ) and (V 2

1 , V 2
2 ) of H1 and H2, respectively, putting v on the

same side. Then a partition of H naturally arises as a union (V 1
1 ∪ V 2

1 , V 2
1 ∪ V 2

2 ). Since
the graphs are edge-disjoint, every edge crossing this partition crosses exactly one of the
partitions (V 1

1 , V 1
2 ) and (V 2

1 , V 2
2 ) implying that the choice of r is correct. We refer to the

full version for a formal proof.
Recall that every graph constructed from any sub-expression of ϕ is a subgraph of G so

the tables for graphs H1 and H2 contain nO(k) entries. Thus, the procedure for glue-nodes
runs in time nO(k). By Theorem 9 we may assume that ϕ contains a polynomial number
of nodes. Altogether, we obtain an algorithm solving Max Cut in time nO(fw). Fomin
et al. have also proven that under ETH, it cannot be solved in time f(cw)no(cw) for any
computable function f (see [17] Theorem 4.1) so our result is tight.

MFCS 2023



35:10 Tight Algorithmic Applications of Clique-Width Generalizations

5.2 Edge Dominating Set
In this problem, given a graph G = (V, E) we are asked about the cardinality of a minimum
set X ⊆ E such that every edge in E either belongs to X itself or it has an incident edge
in X. Fomin et al. have developed an nO(cw) algorithm solving this problem [17], which
we now extend to reduced glue-expressions. As for Max Cut, the algorithm requires that
for any join-node, the edges created by this node are not yet present in the graph. A
reduced glue-expression satisfies this property so their procedures for introduce-, join-, and
relabel-nodes can be adopted.

For a k-labeled graph H, the table TH contains all vectors (s1, . . . , sk, r1, . . . , rk, ℓ) of
non-negative integers such that there exists a set S ⊆ E(H) and a set R ⊆ V (H) \ V (S)
with the following properties:

|S| ≤ ℓ ≤ |E(H)|;
for every i ∈ [k], exactly si vertices of UH

i are incident with edges in S;
for every i ∈ [k], we have |R ∩ UH

i | = ri;
every edge of H undominated by S has an end-vertex in R.

We say that the pair (S, R) witnesses the vector (s1, . . . , sk, r1, . . . , rk, ℓ) in H. The last
property reflects that it is possible to attach a pendant edge to every vertex in R so that the
set S together with these pendant edges dominates all edges of H. The size of the minimum
edge dominating set of G is then the smallest integer ℓ such that the table TG contains an
entry (s1, . . . , sk, 0, . . . , 0, ℓ) for some s1, . . . , sk ∈ N0.

To complete the algorithm for the fusion-width parameterization, we provide a way to
compute the table TH if H = H1 ⊔ H2 for two glueable edge-disjoint k-labeled graphs H1

and H2 if the tables TH1 and TH2 are provided. Let {v1, . . . , vq} = V (H1) ∩ V (H2) for
some q ∈ N0 and let i1, . . . , iq be the labels of v1, . . . , vq in H1, respectively. Then for
every j ∈ [q], it holds that |UH1

ij
| = |UH2

ij
| = 1. Hence, for every entry (s1, . . . , sk, r1, . . . , rk, ℓ)

of TH1 and every j ∈ [q], it holds that sij
+ rij

≤ 1. The same holds for the entries in TH2 .
This motivates the following way to compute the table TH . We initialize this table to be
empty. Then we iterate through all pairs of vectors h1 = (s1

1, . . . , s1
k, r1

1, . . . , r1
k, ℓ1) from TH1

and h2 = (s2
1, . . . , s2

k, r2
1, . . . , r2

k, ℓ2) from TH2 and for every ℓ1+ℓ2 ≤ ℓ ≤ |E(H)|, we add to TH

the vector h = (s1, . . . , sk, r1, . . . , rk, ℓ) defined as follows. For every i ∈ [k] \ {i1, . . . , iq}, it
holds that si = s1

i +s2
i and ri = r1

i +r2
i . And for every i ∈ {i1, . . . , iq}, it holds that si = s1

i ∨s2
i

and ri = ¬s1
i ∧ ¬s2

i ∧ (r1
i ∨ r2

i ).
To argue the correctness, we sketch only one direction here. The other is similar and for

all details refer to the full version. We now show that if h1 and h2 belong to TH1 and TH2 ,
respectively, then the vector h indeed belongs to TH . So let (S1, R1) witness h1 in H1 and
let (S2, R2) witness h2 in H2. Then we set S = S1 ∪ S2 and construct R from R1 ∪ R2

by removing all vertices incident with S. Recall that every vertex in R1 has no incident
edge in S1. So a vertex v ∈ R1 \ R must have an incident edge in S2 by construction and
therefore, the vertex v must be a glue-vertex. The analogous is true for R2 \ R. With this,
one can verify that R complies with r1, . . . , rk. Also it is straight-forward to verify that
this is true for S and s1, . . . , sk. The bound ℓ1 + ℓ2 ≤ ℓ implies that the size of S is at
most ℓ (when proving the other direction, we use that H1 and H2 are edge-disjoint). So
it remains to show that every edge of H undominated by S has an end-point in R. Recall
that E(H) = E(H1) ∪ E(H2). Let e be an edge of E(H1) undominated by S = S1 ∪ S2.
Since it is not dominated by S1, it has an end-point, say v, in R1. By construction of R,
either v still belongs to R or it has an incident edge in S2. We have assumed that e is not
dominated by S1 ∪ S2 so v belongs to R as desired. A symmetric argument applies to edges
of H2. This concludes the proof that h is an entry of TH .
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As in the previous subsection, for any subgraph H of G constructed in some sub-
expression of ϕ, the table TH contains nO(k) entries and we obtain an algorithm solving
Edge Dominating Set in time nO(fw). Fomin et al. have also proven that under ETH, it
cannot be solved in time f(cw)no(cw) for any computable function f (see [17] Theorem 5.1)
so our result is tight.

5.3 Hamiltonian Cycle
In this problem, given a graph G = (V, E) we are asked about the existence of a cycle visiting
each vertex exactly once. Our algorithm relies on the algorithm by Bergougnoux et al. [1]
running in time f(cw)nO(cw). A partial solution for this problem is usually a path packing,
that is, a set of paths containing every vertex of the graph (constructed by the current
sub-expression) exactly once. The earlier f(cw)nO(cw2) algorithm by Espelage et al. stores
for every pair of labels i and j, the number of paths in the path packing between a vertex
with label i and a vertex with label j [14]. This naturally defines a graph on k vertices in
which there is an edge for every path in the path packing. Bergougnoux et al. [1] show that
instead of keeping track of all edges, it suffices to remember the degree sequence and the set
of connected components of this graph. To obtain an algorithm relying on this idea they
employ the technique of so-called representative sets: they define what does it mean for a set
of partial solutions to be representative and then show that their procedures for nodes of a
clique-expression maintain representativity.

To extend this algorithm to the parameterization by fusion-width, we describe how to
handle glue-nodes. Let H1 and H2 be two edge-disjoint glueable graphs and let P1 and P2
be path packings of H1 and H2, respectively. Then a natural combination of these partial
solutions is the gluing P := P1 ⊔ P2 (a subgraph of H1 ⊔ H2). Unlike a union-node (as
handled in [1]), the subgraph P is not necessarily a path packing: first, glue-vertices might
have degree larger than 2 in P and second, cycles might occur (e.g., if two paths with the
same end-vertices are glued). We can show that if we iterate over all P1 and P2 and filter out
combinations P1 ⊔ P2 that are not path packings, then we obtain exactly the set of all partial
solutions of H1 ⊔ H2. After that, we show that this approach maintains representativity.
This part is very technical and we refer to the full version for all details. Let us remark that
although we follow the idea by Bergougnoux et al. [1], our proof of correctness gets more
involved than the one for union-nodes from their work: when gluing two graphs, the partial
solutions are combined in a less trivial way than when forming a disjoint union of two graphs.
The tightness is implied by [18].

6 Algorithms Parameterized by Multi-Clique-Width

In this section, we consider algorithms for problems parameterized by multi-clique-width.
For all of these problems, SETH-tight (and for Chromatic Number even an ETH-tight)
algorithms for clique-width are known, we refer to [18, 25, 27, 21] for the corresponding lower
bounds. We show that algorithms with the same running time exist relative to multi-clique-
width. The clique-width lower bounds then transfer and imply the tightness of our results.
As for fusion-width, Fürer observed that there exist graphs whose clique-width is exponential
in their multi-clique-width [20]. So we obtain exponentially faster algorithms for some graph
classes.

For our results, we rely on existing algorithms for the parameterization by clique-width
and show that these (almost) do not use the fact that every vertex holds exactly one
label: Some of the algorithms use clique-expressions with certain properties (e.g., so-called
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irredundancy) though, so we need to either show that such a property holds for multi-clique-
width expressions or provide an alternative way to keep the algorithm correct. Now we
will sketch for each of the problems what changes need to be carried out and refer to the
full version of the paper for all details. Using simple transformations we may assume that
every introduce-node has form 1⟨i⟩ and every relabel-node has form ρi→∅ or ρi→{i,j} for
some i ̸= j ∈ [k]. Also we may assume that a multi-k-expression contains at most O(k2n)
nodes.

For Dominating Set, the algorithm by Bodlaender et al. runs in time O∗(4cw) [4] and
never uses the fact that every vertex holds exactly one label. So using a straight-forward
procedure to handle new relabel-nodes (of form ρi→∅ and ρi→{i,j}) we obtain a O∗(4mcw)
algorithm for this problem.

The situation is similar for the Chromatic Number algorithm by Kobler and Rotics [26].
The only minor thing one needs to handle is that the algorithm assumes that every color
used by a graph coloring appears on some label: in a multi-expression, it might occur that
all labels are removed from a vertex. To avoid this issue, we increase the number of labels in
the expression by 1 and ensure that every vertex holds the new label at all times. Also we
provide a procedure for the new relabel-nodes. Apart from that, the algorithm remains the
same.

In his work, Fürer presents an algorithm for q-Coloring parameterized by multi-clique-
width but it is not tight yet. For the q-Coloring problem, a naive O∗((2q)cw) algorithm
tracks for every label the set of colors used on this label. Lampis improves this running time
to O∗((2q − 2)cw) by observing that the empty set of colors can only be used by an empty
label, while all colors can only occur if the label does not participate in any join later (such
a label is called dead): otherwise, a monochromatic edge would occur [27]. Hegerfeld and
Kratsch employ the same idea to obtain an O∗(6cw) algorithm for Connected Vertex
Cover [21]. To define dead labels, they rely on the existence of so-called irredundant
clique-expression whose existence is unknown for multi-clique-width. We show that one
can still make these two algorithms work for multi-clique-width by using a slightly different
definition of dead and their counterpart, namely active, labels. Finally, for Connected
Dominating Set, to extend the O∗(5cw) algorithm by Hegerfeld and Kratsch [21], there
slightly more work is needed to adapt their inclusion-exclusion technique to a multi-label
setting.

7 Conclusion

In this work, we studied two generalizations of clique-width, namely fusion-width and multi-
clique-width, both introduced by Fürer [19, 20]. First, we showed that the fusion-width of a
graph is an upper bound for its multi-clique-width. For the other direction, the best upper
bound we are aware of is fw ≤ 2mcw and we leave open whether this is tight. By extending
existing algorithms for clique-width, we have obtained tight algorithms parameterized by
multi-clique-width for Dominating Set, Chromatic Number, q-Coloring, Connected
Vertex Cover, and Connected Dominating Set. The running times are the same as
for (S)ETH-optimal algorithms parameterized by clique-width.

For Hamiltonian Cycle, MaxCut, and Edge Dominating Set, we were not able to
achieve analogous results and these complexities remain open. Instead, we have introduced
glue-expressions equivalent to fuse-expressions and then we employed them for these three
problems to obtain tight algorithms parameterized by fusion-width with the same running
times as ETH-optimal algorithms for clique-width.
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Finally, in all algorithms we assume that a multi-k-expression / fuse-k-expression is
provided. However, the complexity of computing these parameters is unknown. To the best
of our knowledge, the best approximation would proceed via clique-width, have FPT running
time, and a double-exponential approximation ratio.
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Abstract
For three decades binary decision diagrams, a data structure efficiently representing Boolean
functions, have been widely used in many distinct contexts like model verification, machine learning,
cryptography and also resolution of combinatorial problems. The most famous variant, called reduced
ordered binary decision diagram (robdd for short), can be viewed as the result of a compaction
procedure on the full decision tree. A useful property is that once an order over the Boolean
variables is fixed, each Boolean function is represented by exactly one robdd. In this paper we aim
at computing the exact distribution of the Boolean functions in k variables according to the robdd
size, where the robdd size is equal to the number of decision nodes of the underlying directed
acyclic graph (dag) structure. Recall the number of Boolean functions with k variables is equal
to 22k

, which is of double exponential growth with respect to the number of variables. The maximal
size of a robdd with k variables is Mk ≈ 2k/k. Apart from the natural combinatorial explosion
observed, another difficulty for computing the distribution according to size is to take into account
dependencies within the dag structure of robdds. In this paper, we develop the first polynomial
algorithm to derive the distribution of Boolean functions over k variables with respect to robdd size
denoted by n. The algorithm computes the (enumerative) generating function of robdds with k

variables up to size n. It performs O(k n4) arithmetical operations on integers and necessitates
storing O((k +n)n2) integers with bit length O(n log n). Our new approach relies on a decomposition
of robdds layer by layer and on an inclusion-exclusion argument.
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1 Introduction

Three decades ago a central data structure in computer science, designed to represent
Boolean functions, emerged under the name of Binary Decision Diagrams (or bdds) [1].
Their algorithmic paradigm gives great advantages: it is based on a divide-and-conquer
approach combined with a compaction process. Their benefits compared to other Boolean
representations are so obvious that several dozens of bdd variants have been developed
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in recent years. In his monograph [16], Wegener presents several ones like robdds [2],
okfbdds [5], qobdds [15], zbdds [10], and others. While most of these data structures
are used in the context of verification [16], they also appear, for example, in the context of
cryptography [9] or knowledge compilation [4]. Also, the size of the structure, depending on
the compaction of a decision tree, allows improving classification in the context of machine
learning [11]. Finally, some specific bdds are relevant to strategies for the resolution of
combinatorial problems, cf. [8, vol. 4], like the classical satisfiability count problem.

The classical way to represent the different diagrams consists in their embedding as
directed acyclic graphs (or dags). In the following we are interested in the original form of
decision diagrams that are robdds, for Reduced Ordered Binary Decision Diagrams. One of
their fundamental properties relies on the single, thus canonical, representative property for
each Boolean function (with a given order over the Boolean variables). In his book [8] Knuth
recalls and proves several combinatorial results for robdds. He is, for example, interested in
the profile of a typical robdd, or in the way to combine two structures to represent a more
complex Boolean function. However, thirty years after the takeoff of robdds, the study
of the distribution of Boolean functions with respect to the size, defined as the number of
decision nodes (see Figure 2), of the dag structure is not totally understood. The main
problem is that no recursive characterization describing the structure of robdds is known,
as opposed, for instance, to the recursive decomposition of binary trees which is the core
approach in their combinatorial studies (profile, width, depth).

Related work. An important step in the comprehension of the distribution of the Boolean
functions according to their robdd size has been achieved by Wegener [15] and improved by
Gröpl et al. [7]. These authors proved that almost all functions have the same robdd size
up to a factor of 1 + o(1) when the number of variables k tends to infinity, exhibiting the
Shannon effect (strong or weak depending on the value of k). The strong (respectively weak)
Shannon effect states that almost all functions have the same robdd size as the largest
robdds up to a factor of 1 + f(k) with f(k) = o(1) (resp. f(k) = Ω(1)) as k tends to infinity
(see also [14]). The reader may find an illustration of this phenomenon in Figure 1 with the
plot of the exact distribution for k = 13 variables. A consequence of these first analyses is
that picking uniformly at random a Boolean function whose robdd is small is not an easy
task, although in practice robdds are often not of exponential size (with respect to k).

In [12], the authors study, experimentally, numerically, and theoretically, the size of
robdds when the number k of variables is increasing. However, their main approach relies
on an exhaustive enumeration of the decision trees of all Boolean functions, that are in a
second step compressed into robdds. The doubly exponential growth of Boolean functions
over k variables, equal to 22k , allows only to compute the first values for k = 1, . . . , 4. Then
the authors extrapolate the distributions by sampling decision trees (uniformly at random).

Later in the paper [3] we obtain similar combinatorial results. Using a new approach
based on a partial recursive decomposition, we partition the robdds according to their
profile (which describes the number of nodes per level in the dag). Another key feature
of [3] is that we can restrict ourselves to a maximal size n for robdds, as opposed to the
exhaustive-oriented approach of [12]. Although more efficient, still algorithms with this
approach are bound to be at least of complexity Ω(n k3/2·k2/ log k), while using a huge amount
of extra memory. However, after a lengthy computation we obtain the exact distributions
of the size of robdds up to k = 9, thus partitioning the set of 2512 Boolean functions into
robdds of sizes ranging from 0 to 141.
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Main results. In this paper, we describe an algorithm that calculates the exact distribution
for robdds up to size n in time complexity O(k n4) using O((n+k)n2) extra storage memory
for integers. To the best of our knowledge, this is the first polynomial complexity algorithm
computing the distribution of the robdd size for Boolean functions. Our combinatorial
approach is based on an iteration process instead of a recursive approach.

We improve drastically on previous work and all the extrapolated results presented
in [12] for Boolean functions up to 13 variables are now fully and exactly described. Using a
personal computer, in a couple of minutes we obtain an exhaustive counting of the robdds
representing functions over 11 variables. With a computer with several hundreds gigabytes
of ram we compute the distribution over 13 variables in about a day. Indeed, we partition
the 28192 Boolean functions according to their robdds size (which ranges from 0 to 1277).

In Figure 1 the exact distribution is depicted in two ways of presentation: a red point (x, y)
states that 2y functions have a robdd size x, in logarithmic scale; the blue curve is the
probability distribution.

Figure 1 The robdd size distribution of Boolean functions in 13 variables. The exact distribution
is depicted in two ways of presentation: the red curve is the logarithmic scale of the distribution;
the blue curve is the probability distribution.

Organization of the paper. In Section 2 we present the formal notions and objects necessary
for the description of our counting approach. Section 3 presents the iterative process for
computing the number of robdds having a given profile (the profile describes the number
of decision nodes labelled with each variable). Section 3 also states the main result of this
paper which is a formula for computing the number of robdds involving linear maps over
a polynomial ring. Finally, Section 4 presents the algorithmic context for computing the
complete distribution (under the form of the enumerative generating function [6] of robdds).

2 Preliminaries

A Boolean function in k variables is a function from the set {0, 1}k into the set {0, 1}. The
set of functions is denoted by Bk and its cardinality is 22k . Furthermore, for the rest of this
paper, we choose an ordering of the sequence of variables that corresponds to x1, x2, . . . , xk.
Any other ordering could be chosen, but one must be fixed.
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2.1 Boolean functions representation
Figure 2 shows a decision tree representing a 4-variable Boolean function and its associated
robdd. In both structures, traversing a path from the root to a leaf allows to evaluate the
function for a given assignment. Being in a node labelled by xi and going to its low child
(using the dotted edge) corresponds with evaluating xi to 0; going to its high child (using
the solid edge) corresponds with evaluating xi to 1.
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x4
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x3

x4

x3

x4
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x2 x2
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⊥ ⊥⊥⊤ ⊥⊤
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Figure 2 (left) A decision tree and (right) its associated robdd.

▶ Definition 1 (dag representation). Let f ∈ Bk be a Boolean function in variables x1, . . . , xk.
The function f can be represented as a rooted directed acyclic graph (dag for short) composed
of internal decision nodes, labelled by variables and two terminal nodes labelled by {⊥, ⊤}
representing respectively the constants 0 and 1. Each decision node labelled by xi has two
children, the low child (resp. high child) such that traversing the edge to the low child (resp.
high child) corresponds to assign xi to 0 (resp. to 1). The size of a dag is its number of
decision nodes.

▶ Definition 2 (obdd). Let f ∈ Bk and pick one of its dag representation. The dag is
called an Ordered Binary Decision Diagram for f (obdd for short) when all paths from the
root to a terminal node traverse decision nodes with index in increasing order.

By taking an obdd for a function with a pointed decision node ν labelled by xi, and
extracting the sub-dag rooted in ν by taking all its descendants, we obtain an obdd
representing a Boolean function in the variables xi, xi+1, . . . , xk.

▶ Definition 3 (robdd). Let f ∈ Bk and let B be one of its obdd. If all sub-dags of B are
representing distinct Boolean functions, then B is called Reduced Ordered Binary Decision
Diagram (robdd).

Figure 3 shows the forbidden configurations in robdd and the operations used to compress
the structure.

ν

ν0

ν1

ν ′

ν0

ν1

ν ν

ν0 ν0

Figure 3 The two forbidden configurations in robdds and the resulting operations when com-
pressing: (left) ν and ν′ are merged; (right) ν is deleted (from [7]).
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▶ Fact. Let f ∈ Bk, there exists a single robdd representing f .

The data structure of robdds is especially famous due to this property of canonicity1. The
reader may read Knuth [8] for the proof of uniqueness and several other properties satisfied
by robdds.

For the rest of the paper we are only dealing with robdds. Furthermore, we take the point
of view of layered robdd by studying and representing robdds layer by layer: each layer
contains all decision nodes labelled by the same variable. This layer-by-layer decomposition
is natural since the variables are ordered. Thus, a robdd for a function in k variables is
composed of k layers (plus a layer for the two terminal nodes). Note that a layer could
be empty (which means the Boolean function does not depend on the particular variable
associated to this layer).

▶ Definition 4 (robdd’s profile). Let f ∈ Bk and let B be its robdd. Using the layer-by-layer
point of view, we define the profile B to be the non-negative integer sequence [p1, p2, . . . , pk]
such that pi is the number of nodes labelled by xi in B, i.e. the size of the layer corresponding
to xi, for all i ∈ {1, . . . , k}.

2.2 Combinatorial description
In our previous paper [3] we proposed a kind of recursive decomposition of a robdd based
on the low and high children of the root. Here we propose a new and simpler point of view,
based on a layer-by-layer description, which is much more efficient for the counting problem
(also for the generating problem). We need to introduce a generalization of a robdd, called
multientry robdds, which corresponds exactly to the structure obtained by removing some
upper layers in a standard robdd (see Figure 4 for an example).

Informally a multientry robdd is a structure obtained by cutting off a certain number of
the top layers of a robdd. The resulting structure is still a dag, but with several sources.
We also keep track of where the half-edges from the top layers were pointing. In Figure 4 a
robdd and multientry robdd obtained by removing the 3 top layers are depicted.

▶ Definition 5 (Multientry robdd). A multientry robdd M with at most k ≥ 0 variables
and size n ≥ 0 is a couple (M,E). The structure M is a layered dag structure with n decision
nodes Q distributed on k layers and two constant nodes {⊤, ⊥} such that any two subgraphs
are non-identical (as in robdds). The multiset E has its elements in Q ∪ {⊤, ⊥} and is
such that any source node in M (i.e., having in-degree 0), must appear at least once. The
nodes in E are called distinguished (and correspond with destination nodes of red half-edges
in Figure 4).

As a special case, a robdd is a multientry robdd having one source (the root) and a
multiset E reduced to the root (with multiplicity 1).

In the multientry robdd in Figure 4, by numbering the nodes from top to bottom and
from left to right, i.e. the leftmost x4 is number 1, the second x4 is 2, the rightmost x4 is
3, the rightmost x5 is 4, . . . , x6 is 7 and ⊥ and ⊤ are respectively 8 and 9, we obtain the
multiset E = {1, 2, 2, 3, 4, 4, 5}. We note that our definition of multientry robdd is similar
(but not exactly identical) to the one of shared-BDDs presented by Knuth [8] to represent
several Boolean functions in the same decision diagram.

Furthermore, remark that the same multientry robdd can be exhibited by cutting off
top layers (not even the same number) of different robdds.

1 Uniqueness of the robdd for f is ensured when a variable ordering is fixed.
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Figure 4 A robdd of size 13 (not counting the constant nodes {⊥ and ⊤}), with 6 variables
and profile p = [1, 2, 3, 3, 3, 1]. (left) A dag representation of the robdd; (right) Cutting off top
three layers, we obtain the multientry robdd keeping track with red half edges of nodes which were
disconnected.

3 Full iterative counting formula

In the following we describe an approach to counting the number of robdds with a given
profile p. We use a powerful algebraic representation to encapsulate a kind of inclusion-
exclusion principle. This motivates the definition of a linear application on polynomials using
substitutions. The linearity property of the applications is crucial for achieving our algorithm
polynomial complexity. We consider the polynomial ring Z[X] and linear endomorphisms
over Z[X] (i.e., linear maps between Z[X] and Z[X]). Thus, for a linear map g : Z[X] → Z[X]
and two polynomials P and Q in Z[X], g[P + Q] = g[P ] + g[Q], and for any scalar λ ∈ Z
and polynomial P ∈ Z[X] we have g[λP ] = λg[P ].

In the following theorem, we state the main result of the paper which gives access to the
number of multientry robdds for a given profile.

▶ Theorem 6 (Multientry robdds counting formula). For the family of linear maps (ϕr)r≥0,
each mapping ϕr : Z[X] → Z[X] is defined with respect to the canonical basis (Xm)m≥0 by

ϕr[Xm] =
(

r−1∏
i=0

(
X2 − X − i

))
·

m−r∑
j=0

(
m

j

){
m − j

r

}
Xj

 . (1)

Let M(p, m) be the number of multientry robdds with profile p = [p1, . . . , pk] and m incoming
half edges. We have, for k ≥ 0,

M(p, m) = (ϕp[Xm])X=2 , (2)

where
ϕp is the composition product ϕpk

◦ ϕpk−1 ◦ · · · ◦ ϕp1 ;
for a polynomial P ∈ Z[X], (P )X=2 is the evaluation of P at X = 2.

In the theorem,
(

m
j

)
stands for the binomial coefficient and

{
n
k

}
is the Stirling number of

the second kind counting the number ways to partition a set of n objects into k non-empty
subsets.
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▶ Remark 7. This is actually a stronger result that what we need for counting robdds, since
the number of robdds corresponds to the special case where p = [p1 = 1, p2, . . . , pk] and
m = 1 (meaning there is one source node in the top layer). However, the fact that we are
able to compute ϕp on the basis (Xm)m≥0 is key to our approach.
The detailed the proof of Theorem 6 is deferred to after an example of such a computation.
▶ Example. Let us consider a profile p = [1, 2, 4, 2] for 4 variables x1, x2, x3, x4 and choos-
ing m = 1 in (2). Then, for 1 ≤ i ≤ 4, we compute iteratively ϕpi

◦ · · · ◦ ϕp1(X):

X
ϕ17−−→ X2 −X

ϕ27−−→ X4 − 2X3 + X

ϕ47−−→ X8 − 4X7 + 14X5 − 6X4 − 16X3 + 5X2 + 6X

ϕ27−−→ 28X10 + 28X9 − 98X8 − 112X7 + 76X6 + 92X5 − 12X4 − 8X3 + 6X2.

Evaluating the last polynomial at X = 2, we get that there are 11 160 robdds with pro-
file [1, 2, 4, 2]. The power of our approach is that we could have stopped at any iteration,
and still get the number of robdds for the considered truncated profile. On the particular
example this yields

p ϕp (ϕp)X=2

[ ] X 2
[1] X2 −X 2
[1, 2] X4 − 2X3 + X 2
[1, 2, 4] X8 − 4X7 + 14X5 − 6X4 − 16X3 + 5X2 + 6X 0
[1, 2, 4, 2] 28X10 + 28X9 − 98X8 − 112X7 + 76X6 + 92X5 − 12X4 − 8X3 + 6X2 11 160

The number 0 when considering [1, 2, 4] may seem counterintuitive at first, but indeed a robdd
can only have up to 2 nodes on its last layer, otherwise one node has to be a duplicate of
another.

Proof of Theorem 6. (Multientry robdds counting formula). The proof is obtained by
induction on the number k ≥ 0 of layers with decision nodes.

Base case. When k = 0 and n ≥ 0. The number of multientry robdds is M([ ], m) = 2m,
i.e., Xm evaluated at X = 2, as we must map the m half edges to either one of the two
constants. Note that if m = 0 then M([ ], m) = 1 corresponding to the void function (which
is a special case).

Induction step. Now suppose Theorem 6 is true for k ≥ 0.
Let us consider a profile of length k + 1 as [r] · p with r ≥ 0 and p a profile of length k.
If r = 0, a simple computation shows that ϕ0 is the identity. Hence, the empty layer can
in fact be omitted since

ϕp ◦ ϕ0 [Xm] = ϕp [Xm] , so that M([0] · p, m) = M(p, m). (3)

From now on let us suppose 0 < r ≤ m. The set of m half edges pointing at the first
layer can be decomposed in two subsets for j ∈ {0, . . . , m − r}: j entries will go to layers
below the first one, and m − j entries will be mapped to the r nodes of the first layer. A
Stirling number of the second kind

{
n
k

}
counts the number of ways to partition a set of n

objects into k non-empty subsets. So there are
(

m
j

)
·
{

m−j
r

}
such partitions. We write

M([r] · p, m) =
m−r∑
j=0

(
m

j

){
m − j

r

}
f (r)

p (j), (4)

MFCS 2023



36:8 An Iterative Approach for Counting ROBDDs

where f
(r)
p (j) denotes the number of multientry robdds with j free half edges and r pairs

of half edges (the ones resulting from the r nodes of the first layer). These 2r half edges
must thus obey the following constraints:

in each pair, the two half edges must be distinct, i.e., point to different nodes;
all r pairs of half edges must be distinct with one another (as pairs).

Our goal now is to get rid of the constraints coming from these r nodes and express all
quantities in terms of free half edges.
The following equation translates the previous constraints on the pair of adjacent half
edges coming from the first of the r nodes

f (r)
p (j) = f (r−1)

p (j + 2) − f (r−1)
p (j + 1) − (r − 1)f (r−1)

p (j). (5)

Indeed, the first term f
(r−1)
p (j + 2) corresponds in adding 2 free half edges, and results

in overcounting. Then following an inclusion-exclusion principle, firstly we subtract
f

(r−1)
p (j + 1) which would count the number of configurations if the two half edges in this

pair were merged. Finally, we subtract (r − 1)f (r−1)
p (j) in (5). This last quantity counts

the number of configurations if the pair of half edges was merged with one of the r − 1
remaining ones (hence r − 1 choices). Note that no additional free half edge is added
because of this merge. This yields (5).
Solving the simple recurrence (5) with respect to r yields

f (r)
p (j) =

2r∑
i=0

aif
(0)
p (i + j), (6)

where coefficients (ai) are obtained by identifying P (X) =
∏r−1

i=0 (X2−X−i) =
∑2r

i=0 aiX
i.

At this point, we remark the equality true for m ≥ 0

M(p, m) = f (0)
p (m), (7)

which reflects the fact that in M(p, m), all m half edges are unconstrained. Then (4)
rewrites

M([r] · p, m) =
m−r∑
j=0

(
m

j

){
m − j

r

} 2r∑
i=0

aiM(p, i + j) =
m+r∑
i=0

ciM(p, i),

with coefficients ci obtained by identifying
∑m+r

i=0 ciX
i = ϕr(Xm) from (1).

By induction hypothesis on the length k of p we have for 0 ≤ i ≤ m + r

M(p, i) =
(
ϕp

[
Xi
])

X=2 . (8)

By linearity

m+r∑
i=0

ciϕp

[
Xi
]

= ϕp

[
m+r∑
i=0

ciX
i

]
= ϕp [ϕr[Xm]] = ϕp ◦ ϕr[Xm],

and finally

M([r] · p, m) =
m+r∑
i=0

ciM(p, i) =
m+r∑
i=0

ci

(
ϕp

[
Xi
])

X=2 = (ϕp ◦ ϕr[Xm])X=2

This ends the proof. ◀
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4 Counting algorithms

In this section, we present an algorithm for counting robdds of size n.
The time and space complexities are measured respectively in terms of arithmetical opera-

tions on Z and memory space used to store integers in Z. When considering robdds of size
upper bounded by n, all integers in Z involved can be checked to be of bit length O(n log n) =
O(log n!).

The reader can find an implementation of the following algorithms at https://github.
com/agenitrini/BDDgen.

4.1 Linear maps: precomputation step
A first step is to pre-compute a representation of linear maps (ϕr)r≥0. For a robdd of size n

we know that the maximal number of half edges is n + 1, and the maximal number of nodes
on a layer is also loosely upper bound by n. Hence, it is sufficient to compute ϕr[Xm] in Z[X]
for 0 ≤ r ≤ n and 0 ≤ m ≤ n + 1. In the form of (1), ϕr[Xm] is equal to Pr(X)Qr,m(X)
with

Pr(X) =
r−1∏
i=0

(X2 − X − i), and Qr,m(X) =
m−r∑
j=0

(
m

j

){
m − j

r

}
Xj .

So the first step is to compute coefficients of Pr(X) and Qr,m(X). Concerning binomial
coefficient and Stirling numbers of the second kind, both tables can be computed by a
naive algorithm (for binomials, it is the famous Pascal’s triangle) in space O(n2) with O(n2)
arithmetic operations on integers.

Once these coefficients are available, we compute the products ϕr[Xm] = Pr(X)Qr,m(X).
Computing Pr from Pr−1 necessitates O(n) arithmetical operations on integers, yielding a
total O(n2) number of arithmetical operations for the whole family (Pr)r≤n. Each polyno-
mial (Qr,m) necessitates O(n) arithmetical operations per polynomial (supposing binomial
coefficients and Stirling number of the second kind are precomputed). Finally, ϕr[Xm] is
computed with O(n2) arithmetical operations (by a naive product of two polynomials). There
are O(n2) such polynomials to compute. Hence, we get a total O(n4) of arithmetic operations
using O(n3) storage memory space for coefficients. We thus get the next lemma.

▶ Lemma 8 (Precomputing step: linear maps). The precomputation step for the representation
of linear maps by computing ϕr[Xm] for 0 ≤ r ≤ n and 0 ≤ m ≤ n + 1 necessitates O(n4)
arithmetical operations on integers and uses memory space for O(n3) coefficients in Z.

4.2 Basic counting
The basic block in our approach is to be able to compute ϕr[P ] for r ≥ 0. This is done
by Algorithm 1 which is a direct translation of Theorem 6 using the linearity of the linear
maps (ϕr)r.

▶ Proposition 9 (Complexity of basic step). Let P be a polynomial of degree d. Algorithm 1
computes ϕr[P ] and performs O(rd + d2) arithmetical operations over Z to compute ϕr[P ],
using O(d2) memory space2.

2 Recall in Proposition 9 we do not take into account the precomputation step of the family (ϕr[Xm])r.
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Algorithm 1 Computing ϕr[P ].

Input: an integer r ≥ 0, a
polynomial P (X) =∑d

m=0 pmXm ∈ Z[X]
Output: ϕr[P ] ∈ Z[X]
Q← 0
for m from r to d do

Q← Q + pmϕr[Xm]
return Q

Algorithm 2 Computing (ϕp[X])X=2.
Input: a profile p = [p1, . . . , pk]
Output: the number of robdds with profile p
P ← X
for i from 1 to k do

P ← ϕpi [P ]
return P (2)

Proof. Each polynomial ϕr[Xm] is of degree r + m = O(r + d). Thus, the number of
operations needed on coefficients is O(rd + d2) if r > 0 (or O(1) if r = 0 since ϕ0 is the
identity). ◀

By Remark 7 and applying Theorem 6, it is straightforward to compute the number of
robdds with profile p = [p1, . . . , pk] (using m = 1). The pseudocode is given in Algorithm 2.
We have the following proposition.

▶ Proposition 10. Algorithm 2 computes the number of robdds of size n with k variables
and given profile p. It performs O(k n2) arithmetical operations over Z and uses O(n) extra
memory space to store integers.

Proof. The number of robdds is (ϕp[X])X=2. The polynomial ϕp[X] is computed by
iterating k times a linear map of type ϕr starting from an initial polynomial X. By
Proposition 9, the algorithm performs O(n2) operations for each iteration since polynomials
have O(n) coefficients. The total computation thus performs O(k n2) arithmetical operations
over Z and use O(n) memory space to store coefficients. Evaluating (ϕp[Xm])X=2 at X = 2
can be done in time complexity O(n) (by Horner’s method for instance). ◀

4.3 Generating function for ROBDD size
The main goal of this section is compute the distribution of Boolean functions in k variables
according to the robdd size. For f ∈ Bk a Boolean function, we let λ(f) be the size of its
robdd, i.e., its number of decision nodes. A convenient way to represent the distribution of
the size λ on Bk consists in computing the generating function [6]

Fk(u) =
∑

f∈Bk

uλ(f) =
∑
i≥0

fiu
i,

where u is a formal variable marking the size. Then for i ≥ 0, the coefficient fi = [ui]Fk(u)
is the number of robdds of size i with k variables, i.e. the notation [ui]Fk(u) corresponds
to the coefficient-extraction of the monomial ui. We also introduce the truncation F ≤n

k (u) =∑
0≤i≤n fiu

i as the generating functions of robdds of size less than or equal to n.
We first extend the formalism introduced in Section 3 and define a linear map φ :

Z[u, X] → Z[u, X].

▶ Definition 11. The linear map φ : Z[u, X] → Z[u, X] is defined via its action on the
basis (urXm)r,m≥0 as

φ : urXm 7→ φ[urXm] =
m+1∑
i=0

ur+iϕi[Xm]. (9)
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With this notation we have the following proposition.

▶ Proposition 12 (Generating function for robdd size). The generating function enumerating
Boolean functions by considering the robdd size is given by

Fk(u) =
(
φk[X]

)
X=2 , where φk denotes the composition product φ ◦ · · · ◦ φ︸ ︷︷ ︸

k times

.

Proof. Each application of φ corresponds with adding a layer. The formal variable u marks
the number of decision nodes added on the current layer. ◀

We remark that in practice we can truncate polynomials, keeping only the terms useful along
the computation. The key point here is that if we consider robdds with size bounded by n,
we should make all computation modulo un+1. Indeed, the formal variable u marks the
number of nodes (which is bounded by n). Sections A.1 and A.2 int the appendix illustrate
this point.

Algorithm 3 computes the bivariate polynomial φ[Xm] for m ≥ 0. Algorithm 4, computes
recursively the iterated (univariate) version

(
φℓ[Xm]

)
X=2 (that is the evaluation at X = 2).

Algorithm 3 Computing φ[Xm].

Input: An integer m ≥ 0
Output: Returns φ[Xm] ∈ Z[u, X]
Q← 0 ▷ Q ∈ Z[u]
for r from 0 to m do

Q← Q + urϕr[Xm]
return Q

Algorithm 4 Computing
(
φℓ[Xm]

)
X=2

.

Input: Two integers ℓ, m

Output: Returns
(
φℓ[Xm]

)
X=2

∈ Z[u]
▷ N.B.: Computations done modulo un+1

where n is the maximal size for robdds
if ℓ = 0 then return 2m ▷ base case
Q← 0 ▷ Q ∈ Z[u]
R← φ(Xm) ▷ Call Alg. 3
for j from 0 to degX(R) do

M ←
(
φℓ−1[Xj ]

)
X=2

▷ Call Alg. 4

N ← [Xj ] R(u, X) ▷ N ∈ Z[u]
Q← Q + M ·N

return Q

▶ Lemma 13. Algorithm 3 computes φ[Xm] ∈ Z[X, u], which has O(n2) integer coefficients.
It performs O(n2) arithmetical operations over Z.

Algorithm 4 computes
(
φℓ[Xm]

)
X=2 ∈ Z[u], which has O(n) coefficients. If we omit re-

cursive calls, it performs O(n3) arithmetical operations over Z, using memoization techniques
with O((n + k)n2) extra memory storage.

Proof. For Algorithm 3, we perform m = O(n) additions of polynomials in Z[X, u] with O(n)
terms, yielding O(n2) arithmetical operations over Z. The result is a bivariate polynomial of
bounded degree (n for the variable u, 2n for the variable X) yielding O(n2) coefficients. We
suppose Algorithm 3 has access to polynomials ϕr[Xm] ∈ Z[X] from a precomputation step.

For Algorithm 4, two ingredients are essential. Firstly we have to truncate polynomials
modulo un+1 so that operations on univariate polynomials have complexity O(n) for addition
and O(n2) for multiplication (using the naive multiplication on polynomials). Secondly we
also use memoization techniques (meaning we compute in lazy manner intermediate results
only once and keep it for further reference, at the expense of memory storage). That means
that we consider that at the time we compute

(
φℓ[Xm]

)
X=2, the polynomials

(
φℓ−1[Xj ]

)
X=2

are available (i.e., their complexity is taken into account independently). By an amortizing
argument, the complexity of computing the complete family of polynomials

(
φℓ[Xm]

)
X=2

MFCS 2023
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(0 ≤ ℓ ≤ k and 0 ≤ m ≤ n + 1) is still O(n3) arithmetical coefficients per polynomial. We
need to store O(kn2) integer coefficients for memoization of all intermediate polynomials.
We also suppose Algorithm 4 has access to bivariate polynomials (φ[Xm] ∈ Z[u, X])0≤m≤n+1
from a precomputation step which requires O(n3) memory space for integer coefficients. A
subtle point is to understand that we can truncate polynomials at each step in Algorithm 4
and still get the correct result: this can be proved by recurrence on ℓ (see also Section A.2 of
the appendix for an example). ◀

Algorithm 4 also computes the generating function of robdds for size up to n since
posing ℓ = k and m = 1 we have

F ≤n
k (u) =

(
φℓ[X]

)
X=2 mod un+1.

▶ Theorem 14 (Algorithm for computing the exact distribution). We compute the generating
function F ≤n

k (u) of Boolean functions in Bk for robdds of size less than or equal to n

using O(k n4) arithmetical operations in Z and O((k + n) n2) for memory space storing
integers.

Proof. From Lemmas 13 and 8, the overall complexity is dominated by the computation of the
family (ϕr[Xm])r,m and the calls to Algorithm 4. By Lemma 13, each polynomial

(
φℓ[Xj ]

)
X=2

is computed with O(n3) arithmetic operations on integer coefficients and there are O(k n)
such polynomials. Hence, the total number operations over Z is O(k n4). Furthermore, we
store O(k n2) coefficients in Z for memoization. We also store O(n3) coefficients for the
family (ϕr[Xm])m,r ∈ Z[X]. This yields the claimed complexity. ◀

To evaluate the complete size distribution we need to consider the size of largest robdds
with k variables.

▶ Theorem 15 (Maximal size of robdds). Let k ≥ 1 be an integer, the maximal number of
nodes in a robdd with at most k variables is

Mk = 2k−θ − 3 + 22θ

, with θ = ⌊log2 (k − ⌊log2 (k)⌋)⌋.

The generating function Fk(u) of Boolean functions in Bk according to the robdd size can
be computed with O(24k/k3) arithmetical operations in Z and uses O(22k/k) space.

Proof. Note that this formula is equivalent to the one given without proof by Pontus von
Brömssen [13]. The existence of θ is proved in [12] and from there we can derive the explicit
expression of θ (details omitted here). Then substituting n = Mk in Theorem 14, and noting
that Mk ≈ 2k/k yields the compitational complexity result. ◀

Note this is the polynomial with respect to the maximal size of a robdd for k variables,
hence a huge improvement compared to exponential brute force algorithms enumerating
all 22k Boolean functions and computing their robdd size obtained after a compaction
process. With a careful implementation, we can achieve the computation of Fk(u) for k up
to 11 variables on a personal computer, and, on a high-performance computer with 512 GB
RAM memory, for k = 12 in less than 1 hour 30 minutes, and even for k = 13 in less than 30
hours using the PyPy implementation of Python.
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5 Conclusion

As an application of the counting approach of this paper we are able sample at random
robdds. More precisely, we can efficiently and uniformly pick robdds either according to
a given size, or even a given profile or a given spine. This is a great improvement when
comparing to the classical uniform random generation over the set of Boolean functions,
like in [12], that is drastically biased to the largest robdds due to the Shannon effect. For
instance with 12 variables, the probability of drawing uniformly a Boolean function giving a
robdd of (quadratic in k) size 144 = 122 is approximately 1.212 · 10−957.

In practice, several classical functions have robdds of small size. For example the
symmetrical functions in k variables are associated with robdds of quadratic size in k

(see [8]). Hence, the approach described in this paper leads the way to provide (polynomial)
uniform random generator for robdds of small size (i.e., of size less than exponential).

An interesting future work consists in enumerating the bdd structures where our counting
and sampling methods can be applied such as (non-reduced) obdd, or zdd which generally
used to represent sets.

Finally, another research direction consists in noting that the generating function of
robdds with both size and number of variables can be specified thanks to an iterative process
as in Theorem 12. It would be interesting to see if the machinery of analytic combinatorics [6]
is amenable to this kind of specification.
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A Appendix

A.1 Iterating φ (an example)

In this section, we illustrate how φ can be iterated to count the distribution of robdds
up to 4 variables. Let us consider the set of Boolean function Bk for k ∈ {1, 2, 3} and
pose Hk(u, X) = φk[X].

H1(u, X) = φ[X] = (ϕ0(X) + uϕ1(X)) =
(
X2 − X

)
u + X2. We can verify that sub-

stituting X = 2 we get F1(u) = H1(u, 2) = 2 u + 2. Indeed, B1 = {⊥, x1, x1, ⊤}, with
respective truth tables {00, 01, 10, 11} leading to 2 robdds of size 1 and 2 robdds of
size 0, i.e., with no decision node.
Adding a second layer, we get H2(u, X) = φ(H1(u, X)) = φ2[X], yielding

H2(u, X) =
(
X4 − 2 X3 + X

)
u3 + 2

(
X3 − X2)u2 + 2

(
X2 − X

)
u + X.

We get F2(u) = 2 u3 + 8 u2 + 4 u + 2, hence there are 2, 8, 4, 2 robdds of respective
sizes 3, 2, 1 and 0 for 16 Boolean functions on 2 variables.
Iterating with a third layer, we get H3(u, X) = φ(H1(u, X)) = φ3[X] which has 34 terms
and gives

F3(u) = 74 u5 + 88 u4 + 62 u3 + 24 u2 + 6 u + 2.

Hence, there are respectively 74, 88, 62, 24, 6 and 2 robdds of size 5, 4, 3, 2, 1 and 0.
Adding a fourth layer yields for H4(u, X) = φk[X] a polynomial with 134 terms and

F4(u) = 11160 u9+23280 u8+17666 u7+8928 u6+3248 u5+960 u4+236 u3+48 u2+8 u+2.

There are 11160 robdds with 4 variables of size 9, 23280 robdds of size 8, etc.
Of course, we can check that Fk(1) = 22k , which is the number of Boolean functions on k

variables.

A.2 Truncating polynomials (an example)

In this subsection, we illustrate on an example the computational effect of truncating
polynomials.

Let us consider that the generating function F ≤3
3 (u) of robdd with k = 3 variables and

with less or equal to n = 3 decision nodes. The maximal size of a robdd for k = 3 variables
is M3 = 7 (7 decision nodes). Then φ3[X] is a polynomial with 34 terms. We can write
(terms who would disappear modulo un+1 = u4 are grayed)
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φ3[X] =
(
X8 − 4 X7 + 14 X5 − 6 X4 − 16 X3 + 5 X2 + 6 X

)
u7

+4
(
X7 − 2 X6 − 3 X5 + 5 X4 + 4 X3 − 3 X2 − 2 X

)
u6

+
(
8 X6 − 12 X5 − 11 X4 + 14 X3 + 4 X2 − 3 X

)
u5

+2
(
5 X5 − 6 X4 − 5 X3 + 4 X2 + 2 X

)
u4

+
(
9 X4 − 10 X3 − 2 X2 + 3 X

)
u3

+ 6
(
X3 −X2)u2

+ 3
(
X2 −X

)
u

+ X

Truncating modulo u4 and substituting X = 2 yields the polynomial

F ≤4
3 (u) = 62 u3 + 24 u2 + 6 u + 2.

The problem of computing all the terms before truncating the result is that there are O( 22k

k2 )
terms (since Mk ≈ 2k/k), hence a combinatorial explosion.

In contrast, Algorithm 4 works in a recursive manner and truncate polynomials along the
way so that we have a polynomial number of terms. In the following, we describe with some
details how to compute (φ3(X))X=2.

First, Algorithm 4 decomposes (φ3(X))X=2 as (φ2 ◦ φ[X]))X=2. In general, φ[Xm] is
a polynomial of respective degree m and 2m in variables u and X and has O(m2) integer
coefficients. We compute (collecting terms with respect to variable X)

φ[X] = (X2 − X)u + X = X2u + X(1 − u). (10)

Denoting B
(2)
m (u) = (φ2[Xm])X=2, our algorithm computes recursively for the basis (1, X, X2)

(removed monomials modulo u4 ar grayed)

B
(2)
0 (u) = 1

B
(2)
1 (u) = 2 u3 + 8 u2 + 4 u + 2

B
(2)
2 (u) = 74 u4 + 90 u3 + 68 u2 + 20 u + 4

Then since φ is linear, we compute (still modulo u4) using Equation (10)

(φ3(X))X=2 = B2(u)u + B1(u)(1 − u)
= u(90 u3 + 68 u2 + 20 u + 4) + (1 − u)(2 u3 + 8 u2 + 4 u + 2)
= 88 u4 + 62 u3 + 24 u2 + 6 u + 2.

In summary, computing modulo un+1 along the process allows us to control the degree O(n)
of polynomials involved, which in turn ensures that the computation stays of polynomial
complexity (with respect ti arithmetical operations on integers).

Observing such curves for k from 1 to 13, we notice the exponential growth of the
largest robdds when the number k of variables increases. Indeed, in Theorem 15 we
define Mk to be the size of the largest robdds with k variables. The sequence starts as
(Mk)k=1,...,13 = (1, 3, 5, 9, 17, 29, 45, 77, 141, 269, 509, 765, 1277).
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1 Introduction

The continuity principle is a cornerstone in intuitionistic theories which is generally accepted
by constructivists but contradicts classical mathematics. In essence, the principle states
that functions on the Baire space (i.e., B :≡ Nat → Nat) only need finite inputs, i.e.,
initial segments of points of the Baire space, to produce outputs. Different variants of the
continuity principle have been developed to capture different levels of strictness in the notion
of continuity and different computational aspects. Perhaps the most common continuity
principle is the continuity principle for numbers, sometimes referred to as the weak continuity
principle (WCP) [24, 15, 4, 7, 36]. WCP states that given a function F ∈ B → Nat and an
point α of the Baire space B, F (α) can only depend on an initial segment of α, and the
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length of the smallest such segment is the modulus of continuity of F at α. This is standardly
formalized as follows, where Bn :≡ {x : Nat | x < n} → Nat is the set of finite sequences of
length n:

WCP :≡ ΠF :B → Nat.Πα:B.∥Σn:Nat.Πβ:B.(α=β∈Bn) → (F (α)=F (β)∈Nat)∥

However, as shown, e.g., by Kreisel [25, p.154], Troelstra [38, Thm.IIA], and Escardó and
Xu [18, 40], continuity is not an extensional property in the sense that two (extensionally)
equal functions might have different moduli of continuity. Therefore, to computationally
realize continuity, the existence of a modulus of continuity has to be truncated as explained,
e.g., in [18, 40, 32, 33], which is what the ∥_∥ operator achieves in WCP’s definition above.

Brouwer used WCP, along with a consequence of Bar Induction called the Fan Theorem, to
derive the following uniform continuity principle (UCP) [7, p.113], which he then used to prove
that all real-valued function on the unit interval are uniformly continuous [24, 15, 4, 7, 36],
where C :≡ Nat → Bool is the Cantor space and Cn :≡ {x : Nat | x < n} → Bool:

UCP :≡ ΠF :C → Nat.Σn:Nat.Πα, β:C.(α=β∈Cn) → (F (α)=F (β)∈Nat)

Note that UCP does not need to be truncated as shown for example in [18].
Another version of the continuity principle, which originates from the completeness of

Brouwer’s bar thesis and implies both WCP and UCP, has been recently studied [20, 22, 21, 19].
This principle, referred to here as the Inductive Continuity Principle (ICP), relies on a notion
of dialogue trees related to Brouwer trees [36] and reminiscent of Kleene trees [23]. This
tree-based technique of capturing continuity information, pioneered in [20, 22, 21, 19], and
reused for example in [9, 35, 3], consists in computing a tree that, given a function F from a
subset of B to numbers, contains the values of F at its leaves, and such that the amount
of information needed to compute these values, i.e., the modulus of continuity of F at each
point, is given by its branches. This can be formalized as follows where BSNat :≡ Nat → SNat
for SNat a subtype of Nat (Bt and follow(d, α) are made formal in Sec. 3.2).1

ICP :≡ ΠF :BSNat → Nat.∥Σd:Bt.Πα:BSNat.follow(d, α)=F (α)∈Nat∥

A number of theories have been shown to satisfy Brouwer’s continuity principle, or uniform
variants, such as N-HAω by Troelstra [37, p.158], MLTT by Coquand and Jaber [12, 13],
System T by Escardó [19], MLTT by Xu [40], CTT by Rahli and Bickford [32], BTT by
Baillon, Mahboubi and Pedrot [3], among others (see Sec. 6 for details). These proofs often
rely on a semantic forcing-based approach [12, 13], where the forcing conditions capture the
amount of information needed when applying a function to a sequence in the Baire space, or
through suitable models that internalize (C-Spaces in [41]) or exhibit continuous behavior
(e.g., dialogue trees in [19, 3]).

Not only can functions on the Baire space be proved to be continuous, but using effectful
computations one can in fact compute their modulus of continuity [28]. The TT□

C family
of effectful extensional type theories, recalled in Sec. 2, was shown to be consistent with a
version of WCP using a family of realizability models that allow validating this principle using
effectful computations, and in particular using reference cells [11]. Building on this result, in
this paper we identify a family of effectful type theories that are consistent with a variant
of ICP, and prove this consistency result using effectful computations, namely references.

1 We use here Brouwer trees, which are equivalent to dialogue trees for functions on the Baire space [17].
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v ∈ Value ::= vt (type) | λx.t (lambda) | ⋆ (constant)
| n (number) | inl(t) (left injection) | δ (choice name)
| ⟨t1, t2⟩ (pair) | inr(t) (right injection)

vt ∈ Type ::= Πx:t1.t2 (product) | {x : t1 | t2} (set) | t1+t2 (disjoint union)
| Σx:t1.t2 (sum) | t1=t2∈t (equality) | ∥t∥ (truncation)
| Ui (universe) | Nat (numbers) | pure (pure)
| t1 ∩ t2 (intersection)

t ∈ Term ::= x (variable) | !t (read) | t1 <? t2 (less than)
| v (value) | νx.t (fresh) | t1 =? t2 (equality)
| t1 t2 (application) | t1 ··= t2 (write) | let x = t1 in t2 (call-by-value)
| fix(t) (fixpoint) | t1 + t2 (addition) | let x, y = t1 in t2 (pair destructor)
| case t of inl(x) ⇒ t1 | inr(y) ⇒ t2 (injection destructor)

(λx.t) u w 7→w t[x\u]
fix(v) w 7→w v fix(v)
let x = v in t2 w 7→w t2[x\v]
let x, y = ⟨t1, t2⟩ in t w 7→w t[x\t1; y\t2]

n <? m w 7→w inl(⋆), if n < m
n <? m w 7→w inr(⋆), if n ̸< m
n =? m w 7→w inl(⋆), if n = m
n =? m w 7→w inr(⋆), if n ̸= m
n + m w 7→w n + m

!δ w 7→w read(w, δ)
δ ··= t w 7→write(w,δ,t) ⋆
νx.t w 7→startνC(w) t[x\νC(w)]

case inl(t) of inl(x) ⇒ t1 | inr(y) ⇒ t2 w 7→w t1[x\t]
case inr(t) of inl(x) ⇒ t1 | inr(y) ⇒ t2 w 7→w t2[y\t]

Figure 1 Core syntax (above) and small-step operational semantics (below).

Importantly, in addition to validating the continuity of TT□
C functions using dialogue

trees, our work provides the first internalization of the principle into a computational system
in the sense that we extend TT□

C with a variant of ICP in Sec. 3, and exhibit in Sec. 5 an
effectful TT□

C program that realizes this axiom. The most challenging aspect of internalizing
this dialogue-based technique is in proving termination of the computation of such trees.
We further show in Sec. 4 that ICP encompasses both weak and uniform continuity. It is
however still unknown whether ICP is in fact strictly stronger than the other principles.

2 Background

This section reviews TT□
C [10] – a family of extensional type theories parameterized by a

choice operator C and a metatheoretical modality □, which allows typing the choice operators.

2.1 Metatheory
Our metatheory is Agda’s type theory [2]. The results presented in this paper have been
formalized in Agda: https://github.com/vrahli/opentt/. We use ∀, ∃, ∧, ∨, →, ¬ in place
of Agda’s logical connectives in this paper, and use ⊤ for True and ⊥ for False. Agda
provides a hierarchy of types annotated with universe labels which we omit for simplicity.
Following Agda’s terminology, we refer to an Agda type as a set, and reserve the term type
for TT□

C ’s types. We use P as the type of sets that denote propositions; N for the set of
natural numbers; and B for the set of Booleans true and false. We use induction-recursion to
define the forcing interpretation in Sec. 2.3, where we use function extensionality to interpret
universes. We also use classical reasoning twice in the proof presented in Sec. 5.

2.2 TT□
C ’s Syntax and Operational Semantics

Fig. 1 recalls TT□
C ’s syntax and operational semantics, where the blue boxes highlight the

effecful components, and where x belongs to a set of variables Var. For simplicity, numbers
are considered to be primitive and the constant ⋆ is used in place of a term when the
particular term used is irrelevant. We use all letters as metavariables for terms and denote
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by t[x\u] the capture-avoiding substitution of all the free occurrences of x in t by u. We
write if t1 then t2 else t3 for case t1 of inl(x) ⇒ t2 | inr(x) ⇒ t3, where x does not
occur in t2 or t3, and t1;t2 for let x = t1 in t2 where x does not occur free in t2.

Types are syntactic forms that are given semantics in Sec. 2.3 via a forcing interpretation.
The type system contains standard types such as dependent products of the form Πx:t1.t2
and dependent sums of the form Σx:t1.t2. We write t1 → t2 for the non-dependent Π type;
Unit for 0=0∈Nat; Void for 0=1∈Nat; ¬T for (T → Void); and Bool for Unit+Unit.

To capture the time progression notion which underlines choice operators, TT□
C is

parameterized by a Kripke frame [26, 27], consisting of a set of worlds W equipped with a
reflexive and transitive binary relation ⊑. Let w range over W . We sometimes write w′ ⊒ w
for w ⊑ w′. Let Pw be the collection of predicates on world extensions, i.e., functions in
∀w′ ⊒ w.P. Due to ⊑’s transitivity, if P ∈ Pw then for every w′ ⊒ w it naturally extends to
a predicate in Pw′ . Let ∀⊑

w (P ) stand for the fact that P ∈ Pw is true for all extensions of w,
i.e., P w′ holds for all w′ ⊒ w. We sometime write ∀⊑

w (w′.P ) instead of ∀⊑
w (λw′.P ).

Fig. 1’s lower part presents TT□
C ’s small-step call-by-name operational semantics, where

t1 w1 7→w2 t2 expresses that t1 reduces to t2 in one step of computation from the world w1 and
potentially updating it so that the resulting world is w2. We omit the congruence rules such
as: if t1 w1 7→w2 t2 then t1(u) w1 7→w2 t2(u). We denote by 7→∗ the reflexive transitive closure
of 7→, i.e., a w1 7→∗

w2
b states that a computes to b in 0 or more steps. We write a 7→∗

w b for
∃(w′ : W).a w 7→∗

w′ b, and a Z⇒w b for ∀⊑
w (w′.a 7→∗

w′ b).
TT□

C includes effecful notions that rely on worlds to record choices and provides operators
to access and update choices. In this paper, for conciseness of presentation, we focus on
one instance of choice operators as mutable references to natural numbers. Reference cells,
which allow a program to indirectly access a particular object, are choice operators since
they can point to different objects over their lifetime. See [10] for the general notion of choice
operators. To define references to numbers2, we let the set of choices C ⊆ Term to be N. A
choice stored in a reference cell is referred to through the reference’s name. To this end,
TT□

C ’s computation system is parameterized by a set N of choice names, ranged over by δ,
equipped with a decidable equality, and an operator that given a list of names, returns a
name not in the list (N :≡ N for simplicity). This can be given by nominal sets [30]. We take
worlds to be lists of cells, where a cell is a pair of a choice name and a choice, and ⊑ is the
reflexive transitive closure of two operations that allow creating and updating reference cells.

As shown in Fig. 1, a choice name δ can be used in a computation to access choices
from a world using !δ w 7→w read(w, δ), where the partial function read ∈ W → N → C
accesses the content of the δ-cell in w if that cell exists.3 Choices can be made using
(δ ··= t) w 7→write(w,δ,t) ⋆, where write(w, δ, t) updates the reference δ with the choice t if δ

occurs in w, and otherwise returns w, and therefore w ⊑ write(w, δ, t). The computation
returns ⋆, which is reminiscent of reference updates in OCaml for example, which are of
type unit. Finally, new choice names can be generated using νx.t w 7→startνC(w) t[x\νC(w)],
where νC(w) returns a “fresh” name not occurring in the list w, which x gets replaced
with in the expression above, and startνC(w) returns the list w extended with the pair
⟨νC(w), 0⟩, where 0 is the default value with which reference cells are filled, and therefore
∀(w : W).w ⊑ startνC(w).4

2 Only relevant components of the choice operator are discussed. See worldInstanceRef.lagda for details.
3 In general, read, νC, startνC, and write are all parameters of TT□

C , as described in [10]. Here they too
are instantiated with references to numbers.

4 TT□
C also contains a quotienting type operator « used to assign types to computations that can compute

to different values in different worlds, such as choices !δ [11]. For readability, we elide it here.

https://github.com/vrahli/opentt/blob/master/worldInstanceRef.lagda
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Numbers: w ⊨ Nat≡Nat ⇐⇒ True
w ⊨ t≡t′∈Nat ⇐⇒ □w(w′.∃(n : N).t Z⇒w′ n ∧ t′ Z⇒w′ n)

Products: w ⊨ Πx:A1.B1≡Πx:A2.B2 ⇐⇒ Famw(A1, A2, λx.B1, λx.B2)
w ⊨ f≡g∈Πx:A.B ⇐⇒ □w(w′.∀(a1, a2 : Term).w′ ⊨ a1≡a2∈A → w′ ⊨ f a1≡g a2∈B[x\a1])

Sums: w ⊨ Σx:A1.B1≡Σx:A2.B2 ⇐⇒ Famw(A1, A2, λx.B1, λx.B2)
w ⊨ p1≡p2∈Σx:A.B ⇐⇒ □w(w′.∃(a1, a2, b1, b2 : Term).w′ ⊨ a1≡a2∈A ∧ w′ ⊨
b1≡b2∈B[x\a1] ∧ p1 Z⇒w′ ⟨a1, b1⟩ ∧ p2 Z⇒w′ ⟨a2, b2⟩)

Sets: w ⊨ {x : A1 | B1}≡{x : A2 | B2} ⇐⇒ Famw(A1, A2, λx.B1, λx.B2)
w ⊨ a1≡a2∈{x : A | B} ⇐⇒ □w(w′.∃(b1, b2 : Term).w′ ⊨ a1≡a2∈A ∧ w′ ⊨ b1≡b2∈B[x\a1])

Disjoint unions: w ⊨ A1+B1≡A2+B2 ⇐⇒ w ⊨ A1≡A2 ∧ w ⊨ B1≡B2

w ⊨ a1≡a2∈A+B ⇐⇒ □w(w′.∃(u, v : Term).(a1 Z⇒w′ inl(u) ∧ a2 Z⇒w′ inl(v) ∧ w′ ⊨
u≡v∈A) ∨ (a1 Z⇒w′ inr(u) ∧ a2 Z⇒w′ inr(v) ∧ w′ ⊨ u≡v∈B))

Equalities: w ⊨ (a1=b1∈A)≡(a2=b2∈B) ⇐⇒ w ⊨ A≡B ∧ w ⊨ a1≡a2∈A ∧ w ⊨ b1≡b2∈B

w ⊨ a1≡a2∈(a=b∈A) ⇐⇒ □w(w′.w′ ⊨ a≡b∈A)
Subsingletons: w ⊨ ∥A∥≡∥B∥ ⇐⇒ w ⊨ A≡B

w ⊨ a≡b∈∥A∥ ⇐⇒ □w(w′.w′ ⊨ a≡a∈A ∧ w′ ⊨ b≡b∈A)
Purity: w ⊨ pure≡pure ⇐⇒ ⊤

w ⊨ a1≡a2∈pure ⇐⇒ namefree(a1) ∧ namefree(a2)
Binary intersections: w ⊨ A1 ∩ B1≡A2 ∩ B2 ⇐⇒ w ⊨ A1≡A2 ∧ w ⊨ B1≡B2

w ⊨ a1≡a2∈A ∩ B ⇐⇒ □w(w′.w′ ⊨ a1≡a2∈A ∧ w′ ⊨ a1≡a2∈B)
Modality closure: w ⊨ T1≡T2 ⇐⇒ □w(w′.∃(T ′

1, T ′
2 : Term).T1 Z⇒w′ T ′

1 ∧T2 Z⇒w′ T ′
2 ∧w′ ⊨ T ′

1≡T ′
2)

w ⊨ t1≡t2∈T ⇐⇒ □w(w′.∃(T ′ : Term).T Z⇒w′ T ′ ∧ w′ ⊨ t1≡t2∈T ′)

Figure 2 Forcing Interpretation.

2.3 Forcing Interpretation
TT□

C ’s semantics is similar to the one presented in [10], which we recall and extend in Fig. 2.
Types are interpreted via a forcing interpretation defined using induction-recursion [16]
as follows, where the forcing conditions are worlds: (1) the inductive relation w ⊨ T1≡T2
expresses type equality in the world w; (2) the recursive function w ⊨ t1≡t2∈T expresses
equality in a type. We also define a Z⇒!w b as ∀⊑

w (w′.a w′ 7→∗
w′ b), capturing the fact that the

computation can read using !δ but not write, and therefore does not change the initial world
(this is used in Thm. 1). Fig. 2 defines in particular the semantics of pure, which is inhabited by
name-free terms, where namefree(t) is defined recursively over t and returns false iff t contains
a choice name δ or a fresh operator of the form νx.t. We also write Famw(A1, A2, B1, B2) for
w ⊨ A1≡A2 ∧ ∀⊑

w (w′.∀(a1, a2 : Term).w′ ⊨ a1≡a2∈A1 → w′ ⊨ B1(a1)≡B2(a2)). This forcing
interpretation is parameterized by a family of abstract modalities □, which we sometimes
refer to simply as a modality, which is a function that takes a world w to its modality
□w ∈ Pw → P. We often write □w(w′.P ) for □wλw′.P . To guarantee that this interpretation
yields a type system in the sense of Thm. 1, we require that the modalities satisfy certain
properties detailed in [10] and reminiscent of standard modal axiom schemata [14].

▶ Theorem 1 ([10]). TT□
C is a standard type system in the sense that its forcing interpreta-

tion induced by □ satisfies the following properties (free variables are universally quantified):

transitivity: w ⊨ T1≡T2 → w ⊨ T2≡T3 → w ⊨ T1≡T3 w ⊨ t1≡t2∈T → w ⊨ t2≡t3∈T → w ⊨ t1≡t3∈T
symmetry: w ⊨ T1≡T2 → w ⊨ T2≡T1 w ⊨ t1≡t2∈T → w ⊨ t2≡t1∈T
computation: w ⊨ T ≡T → T Z⇒!w T ′ → w ⊨ T ≡T ′ w ⊨ t≡t∈T → t Z⇒!w t′ → w ⊨ t≡t′∈T
monotonicity: w ⊨ T1≡T2 → w ⊑ w′ → w′ ⊨ T1≡T2 w ⊨ t1≡t2∈T → w ⊑ w′ → w′ ⊨ t1≡t2∈T
locality: □w(w′.w′ ⊨ T1≡T2) → w ⊨ T1≡T2 □w(w′.w′ ⊨ t1≡t2∈T ) → w ⊨ t1≡t2∈T
consistency: ¬w ⊨ t≡t∈Void

MFCS 2023
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Note that due to effects, types are not closed under all computations. For example, when
T :≡ Nat, t′ Z⇒w n does not necessarily follow from t Z⇒w t′ and t Z⇒w n. An example is
t :≡ (δ ··= 1;if !δ < 1 then 0 else 1), which reduces to t′ :≡ (if !δ < 1 then 0 else 1)
and also to 1 in all worlds, but t′ does not reduce to 1 in all worlds, because δ could be
initialized differently in different worlds. However, the following holds by transitivity of Z⇒w:
t′ Z⇒w t → w ⊨ t≡t∈Nat → w ⊨ t≡t′∈Nat. Similarly, the following also holds by transitivity
of Z⇒w: w ⊨ T ≡T → T ′ Z⇒w T → w ⊨ T ≡T ′. Finally, note that, as indicated in Thm. 1, this
semantics is closed under β-reduction, as β-reduction does not modify the current world.

2.4 TT□
C ’s Inference Rules

TT□
C ’s inference rules are standard and they reflect the semantics of the types, which is

given meaning through a forcing interpretation presented in Sec. 2.3. Concetely, sequents in
TT□

C are of the form h1, . . . , hn ⊢ t : T . Such a sequent denotes that, assuming h1, . . . , hn, T

is a type inhabited by t. An hypothesis h is of the form x:A, where the variable x stands
for the name of the hypothesis and A its type. We write a∈A for a=a∈A. To illustrate
the naturality of the typing rules and their correspondence to the forcing interpretation,
we provide examples of TT□

C ’s inference rules for Π types. The following rules are the
standard Π-elimination, Π-introduction, type equality for Π types, and λ-introduction rules,
respectively.

H , f :Πx:A.B, J ⊢ a∈A H , f :Πx:A.B, J, z:f(a)∈B[x\a] ⊢ e : C

H , f :Πx:A.B, J ⊢ e[z\⋆] : C

H , z:A ⊢ b : B[x\z] H ⊢ A∈Ui

H ⊢ λz.b : Πx:A.B

H ⊢ A1=A2∈Ui H , y:A1 ⊢ B1[x1\y]=B2[x2\y]∈Ui

H ⊢ Πx1:A1.B1=Πx2:A2.B2∈Ui

H , z:A ⊢ t1[x1\z]=t2[x2\z]∈B[x\z] H ⊢ A∈Ui

H ⊢ λx1.t1=λx2.t2∈Πx:A.B

The following rules are the standard function extensionality and β-reduction rules, resp.:

H , z:A ⊢ f1(z)=f2(z)∈B[x\z] H ⊢ A∈Ui

H ⊢ f1=f2∈Πx:A.B

H ⊢ t[x\s]=u∈T

H ⊢ (λx.t) s=u∈T

3 Inductive Continuity via Brouwer Trees

This section states a dialogue tree-based continuity principle, referred to as the inductive
continuity principle, since it relies on trees to capture functions. As we show in Sec. 4, it
implies both Brouwer’s continuity principle for numbers and his uniform continuity principle
on the Cantor space. Furthermore, it is still unknown whether the inductive continuity
principle is strictly stronger than Brouwer’s continuity principle for numbers. Sec. 5 internally
validates this inductive principle. In particular, Thm. 4 shows that, given a pure function
F ∈ B → Nat, TT□

C provides a computation, introduced in Sec. 5.1, that builds a dialogue
tree capturing F ’s continuity.

As mentioned above, we rely here on Brouwer trees, which are a simple form of dialogue
trees. Let us provide an example of how dialogue and Brouwer trees work. Consider the
function F :≡ λα.α(2) ∈ B → Nat. Fig. 3 (left) shows its dialogue tree, where the internal
(root) node is labeled with the value α is applied to, and the leaves contain the values of
F for all possible inputs. For example if F is applied to α :≡ λx.x, then starting from the
root, we apply α to the node’s value, i.e., 2, which gives us 2, and we therefore follow the
2nd path, which leads to the leaf labeled 2, the value of F (α). If α :≡ λx.0, then α(2) is
now 0, and following the 0th path leads to the leaf labeled 0, which is the value of F (α).
Fig. 3 (right) shows F ’s Brouwer tree, where as opposed to dialogue trees, internal nodes are
not labeled, and as for dialogue trees, the leaves contain the values of F for all inputs. For
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Figure 3 Examples of dialogue (left) and Brouwer (right) trees for λα.α(2).

example if F is applied to α :≡ λx.x, because α(0) is 0, we first follow the 0the branch; then
because α(1) is 1, we follow the 1st branch, and finally because α(2) is 2, we follow the 2nd
branch, leading to a leaf labeled 2 (following the green path in Fig. 3). If α :≡ λx.0, then we
instead always follow the 0th branch, leading to a leaf labeled with 0.

In the dialogue tree, the modulus of continuity of F at some point α is given by the
maximum value of the internal nodes followed using α, while in the Brouwer tree, the modulus
is the length of the branch followed using α. Note that, in general, the values of the internal
nodes of a dialogue tree of a function F ∈ B → Nat are used to “ask questions” to an
argument α ∈ B to decide what branch to take in the tree (by applying α to those values),
while in a Brouwer tree, “dialogues” happen by asking all the values of an initial segment
of α.

3.1 Extending TT□
C with (Co-)W Types and Infinite Sequences

In order to state the inductive continuity principle, we make use of the notion of a Brouwer tree,
which we define in TT□

C using W types [1, Sec.5.2], which is a standard way of representing
inductive types. Additionally, we use co-W types (also called M types) [1, Sec.5.2], the dual
notion to that of a W type, to prove the validity of the principle. Thus, we add W and
M types to TT□

C , using sup as a W type and M type constructor and wrec as a W type
recursor.

vt ∈ Type ::= · · · | W (t1, t2) | M(t1, t2)
t ∈ Term ::= · · · | sup(t1, t2) | wrec(t1, t2)
v ∈ Value ::= · · · | ⌈s⌋, where s is a metatheoretical function in N → N

where wrec(t1, t2) and ⌈s⌋ compute as follows:

wrec(sup(a, f), g) w 7→w g a f (λb.wrec(f(b), g)) ⌈s⌋ n w 7→w s(n)

In addition, the application operator is modified so that it evaluates its argument whenever
the function is of the form ⌈s⌋, i.e., ⌈s⌋ a reduces to ⌈s⌋ b when a reduces to b. Hence,
for any metatheoretical function s in N → N, ⌈s⌋ inhabits B. These sequences are used in
Sec. 5.5 to prove that the computation of Brouwer trees provided in Sec. 5.1 terminates.
They are similar to the sequences of the form λλx.Mx in [5], where the infinite sequence of
terms M1, M2, . . . does not have a computational purpose, but is used to prove termination
in their proof that some bar recursion operator realizes the negative translation of the axiom
of choice. Similar sequences have been used in [31] to validate versions of the axiom of choice,
and in [34] to validate variants of Brouwer’s Bar Induction principle [24].

W and M types are interpreted in a standard way:

MFCS 2023



37:8 Inductive Continuity via Brouwer Trees

W types: w ⊨ W (A1, B1)≡W (A2, B2) ⇐⇒ Famw(A1, A2, B1, B2)
w ⊨ s1≡s2∈W (A, B) ⇐⇒ □w(w′.µ(R.∃(a1, a2, f1, f2 : Term).w′ ⊨ a1≡a2∈A ∧
(∀(b1, b2 : Term).w′ ⊨ b1≡b2∈B(a1) → R f1(b1) f2(b2)) ∧ s1 Z⇒w′ sup(a1, f1) ∧ s2 Z⇒w′

sup(a2, f2)) s1 s2)
M types: w ⊨ M(A1, B1)≡M(A2, B2) ⇐⇒ Famw(A1, A2, B1, B2)

w ⊨ s1≡s2∈M(A, B) ⇐⇒ □w(w′.ν(R.∃(a1, a2, f1, f2 : Term).w′ ⊨ a1≡a2∈A ∧
(∀(b1, b2 : Term).w′ ⊨ b1≡b2∈B(a1) → R f1(b1) f2(b2)) ∧ s1 Z⇒w′ sup(a1, f1) ∧ s2 Z⇒w′

sup(a2, f2)) s1 s2)

Therefore, W (A, B) and M(A, B) are types in Ui whenever A ∈ Ui and B ∈ A → Ui.
Given a ∈ A and f ∈ B[a] → W (A, B), sup(a, f) ∈ W (A, B) is a W type constructor, and if
f ∈ B[a] → M(A, B) then sup(a, f) ∈ M(A, B) is an M type constructor. Given t ∈ W (A, B)
and g ∈ Πa:A.(B(a) → W (A, B)) → (B(a) → C) → C, wrec(t, g) ∈ C is a W type recursor.

▶ Example 2. Given A ∈ Ui and B ∈ A → Ui, W (A, B) denotes the type of inductive
definitions with inhabitants of A representing the constructors (as well as their non-inductive
parameters), and B(a) representing the indices of inductive parameters at a given con-
structor a. For example, the natural numbers have two constructors: zero and succ, the
latter having one inductive parameter. Therefore, natural numbers are encoded as:

W (Bool, λx.case x of inl(_) ⇒ Void | inr(_) ⇒ Unit),

where Void captures the lack of inductive parameters for zero and Unit captures succ’s single
inductive parameter. The constructors zero and succ are then be encoded as:

zero :≡ sup(inl(⋆), λx.⋆) and succ :≡ λn.sup(inr(⋆), λx.n)

3.2 Brouwer Tree-Based Inductive Continuity Principle
We can now state the inductive continuity principle that captures the moduli of continuity
of functions in BSNat → Nat using Brouwer trees, where BSNat :≡ Nat → SNat for SNat a
subtype of Nat (this principle is therefore a family of principles for all such SNats). This
continuity result, as well as the ones recalled in Sec. 4, are stated for pure functions only
using the following quantification: Πpa:A.B :≡ Πa:(A ∩ pure).B, which quantifies over pure
members of A. We also write Ap for A ∩ pure and A +p B for (A+B) ∩ pure. It remains to
be determined whether some effectful computations can be proved to be continuous.

We first define Brouwer trees (a class of dialogue trees where internal nodes are not
labeled) using W types as follows.

▶ Definition 3 (Brouwer Trees). A Brouwer tree is a member of Bt :≡ W (BtA, BtB), where
BtA :≡ Nat +p Unit and BtB :≡ λa.if a then Void else SNatp. Such trees have two
constructors: η(i) :≡ sup(inl(i), λx.⋆), which builds a leaf node with value i ∈ Nat; and
𭟋(f) :≡ sup(inr(⋆), f), which builds an internal node from a function f ∈ SNatp → Bt.

Using this definition, the Brouwer tree depicted in Fig. 3 is 𭟋(λi.𭟋(λj.𭟋(λk.η(k)))).

▶ Theorem 4 (Inductive Continuity Principle). The following continuity principle, referred to
as ICPp, is valid in TT□

C
5(see contDiagVal in barContP10.lagda for details):

ΠpF :BSNat → Nat.∥Σd:Bt.Πpα:BSNat.follow(d, α)=F (α)∈Nat∥ (ICPp)

where follow(d, α) extracts the value of the leaf encountered when following α in d as follows:

follow(d, α) :≡ wrec(d, λa.λf.λr.λk.case a of inl(i) ⇒ i | inr(_) ⇒ r (α k) (k + 1)) 0

5 “Valid in TT□
C ” here means that the principle is realizable in TT□

C , thus it is consistent with the theory.

https://github.com/vrahli/opentt/blob/master/barContP10.lagda
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At a high-level, the proof goes as follows (the full proof is carried out in Sec. 5).
Step 1: Given a function in BSNat → Nat, we first build by coinduction a possibly infinite

co-Brouwer tree as an M type. This co-Brouwer tree contains the result of F applied to
the finite sequence s at the leaf ending the path following s whenever s contains enough
information to compute the result of F .

Step 2: Classically, this co-Brouwer tree is either finite or contains an infinite branch.
Step 3: If the co-Brouwer tree is finite, it is a Brouwere tree.
Step 4: If the co-Brouwer tree contains an infinite branch, then the branch gives rise to an

infinite sequence α, and since F is continuous, the path must be finite. As discussed in
Sec. 5.5, this step relies on a continuity argument similar to the one used to validate the
weak continuity principle WCPp recalled in Sec. 4.1.

Step 5: Finally, the obtained Brouwer tree is shown to contain the values of F at its leaves.

4 Relation with Other Continuity Principles

This section demonstrates that inductive continuity implies both Brouwer’s continuity
principle for numbers (referred to as weak continuity here) and uniform continuity.

4.1 Weak Continuity
TT□

C was shown to satisfy the following version of Brouwer’s continuity principle for numbers,
also called the weak continuity principle, which therefore can be added as an axiom [11].

ΠpF :B → Nat.Πpα:B.∥Σn:Nat.Πpβ:B.(α=β∈Bn) → (F (α)=F (β)∈Nat)∥ (WCPp)

WCPp is realized in every world by the term λF.λα.⟨mod(F, α), λβ.λe.⋆⟩, where mod(F, α)
computes the modulus of continuity of the function F ∈ B → Nat at α ∈ B. Roughly
speaking, mod(F, α) generates a reference cell δ initialized with 0, applies F to a modified
version of α (namely upd(δ, α)) that keeps track using δ of the highest number α gets applied
to, and then returns the value held by δ (plus one). Formally:

mod(F, α) :≡ νx.(x ··= 0;F (upd(x, α));!x + 1)
upd(δ, α) :≡ λx.(let y = x in ((if !δ < y then δ ··= y else ⋆);α(y)))

Note that the truncation in WCPp is necessary. It has been shown that a non-truncated
version of WCP is inconsistent with MLTT [18, 40], and the same applies to WCPp and TT□

C .
The main reason for this is the semantics of dependent functions given by TT□

C ’s realizability
model (see Fig. 2). Under this semantics, f ∈ Πx:A.B if f maps equal terms a1=a2∈A

to equal terms f(a1)=f(a2)∈B[x\a1]. As continuity is a non-extensional property [25],
extensionally equal functions in B might have different moduli of continuity, so WCPp’s
realizer cannot inhabit a non-truncated version of WCPp. However, when B is of the form ∥C∥,
it suffices that f(a1) and f(a2) are both members of C[x\a1], allowing WCPp’s validation.

▶ Theorem 5. WCPp is derivable from ICPp in TT□
C when SNat :≡ Nat.

Proof outline. Let F ∈ B → Nat a pure function and let α ∈ B. It follows from ICPp that:
∥Σd:Bt.Πpα:B.follow(d, α)=F (α)∈Nat∥. Because both principles are truncated, we can
assume the existence of a tree d ∈ Bt such that: Πpα:B.follow(d, α)=F (α)∈Nat. Because d

encodes the modulus of continuity of each sequence α ∈ B, as the length of the branch in d

that “follows” α, we instantiate the conclusion with: n :≡ lenBranch(d, α) ∈ Nat, where:

lenBranch(d, α) :≡ wrec(d, λa.λf.λr.λk.case a of inl(i) ⇒ k | inr(_) ⇒ r (α k) (k+1)) 0
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It now remains to prove that F (α)=F (β)∈Nat, for any pure function β ∈ B such that
α=β∈Bn. From ICPp, we know that follow(d, α)=F (α)∈Nat and follow(d, β)=F (β)∈Nat.
Therefore, it is enough to prove follow(d, α)=follow(d, β)∈Nat, which follows from the
following fact: Πα, β:B.α=β∈BlenBranch(d,α) → follow(d, α)=follow(d, β)∈Nat. ◀

4.2 Uniform Continuity

The uniform continuity principle states that all functions on the Cantor space (C :≡ Nat →
Bool) are uniformly continuous, meaning that all points α ∈ C have the same modulus of
continuity. We consider here the following version:

ΠpF :C → Nat.∥Σn:Nat.Πpα, β:C.(α=β∈Cn) → (F (α)=F (β)∈Nat)∥ (UCPp)

Brouwer proved that all real-valued functions on the unit interval are uniformly continuous [8,
Thm.3] using WCP and the Fan Theorem [36, 15], which he derived from Bar Induction. While
it was shown that in the case of uniform continuity the truncation can be removed [18, 40],
we leave formalizing this in TT□

C for future work.

▶ Theorem 6. UCPp is derivable from ICPp in TT□
C when SNat :≡ {x : Nat | x < 2} or

equivalently SNat :≡ Bool (and therefore BSNat is C).

Proof outline. Let F ∈ C → Nat be a pure function. Because both principles are truncated,
we can assume the existence of a tree d ∈ Bt such that: Πpα:C.follow(d, α)=F (α)∈Nat. As
d is finitely branching and encodes the modulus of continuity of each α ∈ C as the length of
the branch in d that “follows” α, we compute the uniform modulus of continuity of F as d’s
depth as follows, where max(i, j) returns the maximum among the numbers i and j:

depth(d) :≡ wrec(d, λa.λf.λr.case a of inl(i) ⇒ 1 | inr(_) ⇒ max(r(0), r(1)) + 1)

We then instantiate our conclusion with n :≡ depth(d) ∈ Nat, and have to prove that
F (α)=F (β)∈Nat, for all pure functions α, β ∈ C such that α=β∈Cn. From ICPp, we know
that follow(d, α)=F (α)∈Nat and follow(d, β)=F (β)∈Nat. Therefore, it is enough to prove
follow(d, α)=follow(d, β)∈Nat, which follows from the following fact, which can be proved
by induction on d: Πα, β:C.α=β∈Cdepth(d) → follow(d, α)=follow(d, β)∈Nat. ◀

5 Validity of the Inductive Continuity Principle

This section sketches the proof of Thm. 4, which has been formalized in Agda. For simplicity
we focus here on functions in B → Nat, but as mentioned in Sec. 3, the principle holds for
all functions in BSNat → Nat where SNat is a subtype of Nat.

To validate ICPp we assume that TT□
C ’s □ modality is a Kripke-like modality, i.e.,

∀(w : W).□wf → ∀⊑
w(f). This is used to derive a co-Brouwer tree from an F ∈ B → Nat. In

short, when building a co-Brouwer tree in Step 1 by extending a node with branches for all
n ∈ Nat, if n does not compute to a number in the current world w (which a Kripke modality
enforces), it is unclear how this can result in a co-tree in w. It was proved in [10] that TT□

C
is inconsistent with classical logic when □ is a Kripke modality and C is instantiated using
references, which is expected because continuity contradicts classical logic [36, 39].
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5.1 Computing Brouwer Trees
To show that ICPp is valid, we must exhibit a TT□

C computation that can compute a Brouwer
tree from a pure function in B → Nat. This computation is similar to the one provided
in [35, Sec.1.3], and proceeds as follows: given F ∈ B → Nat, loop(F ) 0 α0 builds a tree in
Bt satisfying the condition in Thm. 4, where α0 :≡ λ_.0, and loop is defined as follows:

loop(F ) :≡ fix(λR.λk.λα.νx.(x ··= 0);let i = F (upd(x, α)) in cases(x, R, k, α, i))
cases(δ, R, k, α, i) :≡ if !δ < k then η(i) else 𭟋(λx.R (k + 1) append(k, α, x))

The goal of this computation is to recursively build a Brouwer tree from the root, by
applying F to a finite sequence (essentially, the pair ⟨k, α⟩), which corresponds to a path in
the tree, and which is extended as long as it does not contain enough information for F to
compute a value, i.e., as long as F makes use of more than k values from α.

Note that a finite sequence, or a list, of elements of type A is encoded here as a pair of its
length k and a function in Nat → A where only its initial segment of length k is relevant. Given
a list l given by the pair k and f , the operator append(k, f, a) :≡ λx.if x = k then a else f(x)
returns a list of length k + 1 that appends a to l. Lists are defined like this instead of using
a W type because loop(F ) applies F to a function with initial segment the list given as
argument. Therefore, instead of using an additional operator to turn an element of such a
W type into a function, with this encoding lists directly provide such functions.

The computation in [35] uses exceptions to test whether F requires more values than
the ones provided in the current finite sequence, while we use here references as in [11].
Exceptions are well-suited to test whether the modulus of continuity is reached, but not
to directly compute moduli of continuity. For example, the computation in [32] relies on
exceptions and a loop, while the computation in [11] makes use of references and does
not require an additional loop because a reference cell can be used to store the moduli of
continuity. Instead of using a reference to a Boolean, which would be similar to using an
exception, we use here a reference δ that points to a number, and apply F to upd(δ, α), as in
WCPp’s realizer, as it allows us to reuse some of the results used in [11] to validate WCPp.

5.2 Step 1: Building a co-W
First, we prove that from a function F ∈ B → Nat, we get loop(F ) 0 α0 ∈ CoDiag, where
CoDiag :≡ M(Nat +p Unit, λa.if a then Void else Natp). We prove this by coinduction,
and by inspecting the computation of loop(F ) (see coSem in barContP2.lagda). Given k ∈ Natp

and α ∈ B, (loop(F ) k α) first evaluates F (upd(δ, α)) to i for some “fresh” δ, and then
returns η(i) if !δ < k, and otherwise returns 𭟋(λx.loop(F ) (k + 1) append(k, α, x)). We now
prove loop(F ) k α ∈ CoDiag by cases. If !δ < k then it remains to prove that η(i) ∈ CoDiag,
which is straightforward because F (upd(δ, α)) ∈ Nat, and therefore i too. If !δ ̸< k then it
remains to prove 𭟋(λx.loop(F ) (k + 1) append(k, α, x)) ∈ CoDiag, which follows from the
fact that λx.loop(F ) (k + 1) append(k, α, x) ∈ Natp → CoDiag, which follows by coinduction.

5.3 Step 2: Case analysis
Using classical logic we analyze two cases: given t ∈ M(A, B), either t’s branches are all
finite or there exists an infinite branch, where the type of branches w.r.t. the world w, type A,
and family B is defined as follows, a right injection capturing the termination of a branch:

Branch :≡ ∀(n : N).(∃(a, b : Term).w ⊨ a≡a∈A ∧ w ⊨ b≡b∈B(a)) ∨ ⊤

MFCS 2023
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Note that a branch can either be finite if it returns an element of the right disjunct (i.e., ⊤)
for some n ∈ N, or infinite if it always returns an element of the left disjunct for all n ∈ N.
Branches are defined w.r.t. a term t in W (A, B) or in M(A, B), and we say that a branch
p ∈ Branch is a branch of a term t if: ∀(n : N).p ∈n t, where p ∈n t is defined recursively as
follows (for shift(p) :≡ λk.p(k + 1)):

p ∈0 t :≡ ⊤ p ∈n+1 t :≡


∃(f : Term).t Z⇒w sup(a, f) ∧ shift(p) ∈n f b,

when p(0) is a left injection of (a, b, _, _)
⊤, otherwise

The tree t ∈ M(A, B) is loop(F ) 0 α0. In case t’s branches are all finite, we show that
t ∈ W (A, B) (Sec. 5.4). In case t has an infinite branch, we derive a contradiction using an
argument similar to one used to validate weak continuity in [11] (Sec. 5.5).

5.4 Step 3: Building a W type
In case t’s branches are all finite, we prove that if t ∈ M(A, B) then t ∈ W (A, B). Again,
we use classical logic: assuming t ̸∈ W (A, B) and deriving a contradiction. Given that
t ∈ M(A, B) and t ̸∈ W (A, B), we extract, by coinduction, an infinite co-branch u from t,
where the type of co-branches u w.r.t. the world w, type A, and family B, is coinductively
defined as follows (see m2mb in barContP.lagda):

ν(R.∃(a, f, b : Term).u Z⇒w sup(a, f) ∧ w ⊨ b≡b∈B(a) ∧ R f(b))

In particular, such a co-branch provides a sequence of Bs. From this co-branch u, we build
an infinite branch p ∈ Branch (see mb2path in barContP.lagda), which is a function from
n ∈ N to (left injections of) Bs along with their corresponding As, derived by induction on n.
From the assumption that t’s branches are all finite we obtain that p must also be finite,
from which we derive a contradiction (see m2w in barContP.lagda).

5.5 Step 4: Termination
In case t, which is here loop(F ) 0 α0, contains an infinite branch p, we derive a contradiction
from F ’s continuity. Because p is infinite, i.e., only returns left injections, we obtain a
metatheoretical function of the following type, which follows the branch p of loop(F ) 0 α0:

N → ∃(a, b : Term).w ⊨ a≡a∈BtA ∧ w ⊨ b≡b∈BtB(a)

Therefore, for each n ∈ N, there are two cases: either (w ⊨ a≡a∈Nat and w ⊨ b≡b∈Void)
or (w ⊨ a≡a∈Unit and w ⊨ b≡b∈Natp). Since Void is not inhabited, it must be that
w ⊨ a≡a∈Unit and w ⊨ b≡b∈Natp. Hence, from this function, we obtain a metatheoretical
function of the following type, which follows the branch p of loop(F ) 0 α0:

N → ∃(b : Term).w ⊨ b≡b∈Natp

From this function, since □ is a Kripke-like modality, we obtain a metatheoretical function
s ∈ N → N, which given n ∈ N returns the path taken in the nth 𭟋 along the branch p

following the computation loop(F ) 0 α0. As explained in Sec. 3.1, TT□
C ’s calculus includes all

metatheoretical functions from N to N, which inhabit B. These sequences do not have any
computational purpose here, and are only used to prove termination. We have ⌈s⌋ ∈ B, so by
continuity of F we know that there is a k ∈ N such that the kth iteration of loop(F ) 0 α0 runs
F (upd(δ, ⌈s⌋)) for some “fresh” δ such that δ’s value stays under k during the computation
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of F (upd(δ, ⌈s⌋)). This result makes use of steps-sat-isHighestN in continuity3.lagda, which
was used to prove WCPp in [11], and in particular to prove that F (upd(δ, ⌈s⌋)) keeps track
in δ of the highest number that s is applied to in the computation it performs. The modulus
of continuity k of F at upd(δ, ⌈s⌋) is then the value stored by δ at the end of this computation.

Therefore, because the kth iteration of loop(F ) 0 α0 runs F (upd(δ, ⌈s⌋)) such that δ’s
value stays under k, it returns η(i) for some i, which contradicts the assumption that the
branch is infinite, i.e., contains only 𭟋s (see noInfPath in barContP6.lagda for details).

Note that the kth iteration of loop(F ) 0 α0 does not quite run F (upd(δ, ⌈s⌋)), but instead
F (upd(δ, α)), where as indicated in Sec. 5.1, α is built starting from α0 using the append
function, and therefore is equal to ⌈s⌋ up to k. We can interchangeably use F (upd(δ, ⌈s⌋))
or F (upd(δ, α)) thanks to Lem. 8 below (see updSeq-steps-NUM in barContP6.lagda).

▶ Definition 7. The simulation relation t1 ≈δ,s,n t2 holds iff

(t1 = upd(δ, s) ∧ t2 = upd(δ, s2l(s, n))) ∨ (t1 = upd(δ, s2l(s, n)) ∧ t2 = upd(δ, s))
∨ (t1 = x ∧ t2 = x) ∨ (t1 = n ∧ t2 = n) ∨ (t1 = λx.a ∧ t2 = λx.b ∧ a ≈δ,s,n b)
∨ (t1 = (a1 b1) ∧ t2 = (a2 b2) ∧ a1 ≈δ,s,n b1 ∧ a2 ≈δ,s,n b2) ∨ . . .

where s2l(s, 0) :≡ α0 and s2l(s, n + 1) :≡ append(n, s2l(s, n), s(n + 1)).

Most cases are omitted in this definition as they are similar to the ones presented above.
Crucially terms of the form δ or νx.t are not related, and those are the only expressions not
related, thereby ruling out names except when occurring inside upd through the first clause.

▶ Lemma 8. If a ≈δ,s,n b and a w1 7→∗
w2

k such that n is higher than any value held by δ

throughout this computation, then b w1 7→∗
w2

k.

5.6 Step 5: The Continuity Property
It now remains to prove that given F ∈ B → Nat, the tree d :≡ (loop(F ) 0 α0) ∈ Bt satisfies
the property Πpα:B.follow(d, α)=F (α)∈Nat (see semCond in barContP9.lagda). For this
we need to prove that follow(d, α) computes to the same number that F (α) computes to,
and this for any pure sequence α ∈ B and tree d :≡ loop(F ) k αk, where αk agrees with α

up to k (see follow-NUM in barContP9.lagda). We prove this by induction on d. Either d is
an η(i), which we discuss below, or a 𭟋(f), in which case we conclude by induction. In case d

is η(i), we must prove that F (α) computes to i. In that case, d runs F (upd(δ, αk)) for some
“fresh” δ, which computes to i for some αk that agrees with α up to k. Here αk is s2l(s, k),
for some s equal to α in B. We use again here a metatheoretical sequence s, which does not
have any computational purpose. We can then prove that F (α) and F (s) compute to the
same number, and appealing to Lem. 8, we prove that F (s) and F (upd(δ, αk)) compute to
the same number, and therefore that F (α) computes to i, which concludes our proof.

6 Conclusion and Related Works

The paper presents the first internalization of the inductive dialogue-based continuity principle
in a dependent type theory, namely TT□

C , which has been formalized in Agda. For this, we
construct Brouwer trees via effectful computations that use references. Proving the inductive
continuity principle internally entails new challenges, such as the termination proof which
requires maintaining a strict connection between a meta-theoretical generic element and
an internal computation. More generally, the class of effectful intuitionistic theories TT□

C ,
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https://github.com/vrahli/opentt/blob/master/continuity3.lagda
https://github.com/vrahli/opentt/blob/master/barContP6.lagda
https://github.com/vrahli/opentt/blob/master/barContP6.lagda
https://github.com/vrahli/opentt/blob/master/barContP9.lagda
https://github.com/vrahli/opentt/blob/master/barContP9.lagda


37:14 Inductive Continuity via Brouwer Trees

which now internalizes several continuity principles, provides a computational framework for
further studying the relationship between these principles. WCP and ICP have been shown
to coincide in the presence of Bar Induction (under certain restrictions), or assuming classical
reasoning [6, 22, 9]. Bar Induction was shown to be consistent with a subsystem of TT□

C [34].
Thus, it seems that TT□

C provides an ideal framework in which one can formally verify
this implication internally, as well as produce a corresponding computation. An immediate
related question we leave for further study is then to establish the relation between the
two principles in a general setting, without assuming Bar Induction or resorting to classical
reasoning.

The technique of using dialogue trees to compute moduli of continuity originated in [20,
22, 21, 19], while the idea of recording the interaction of a function with an oracle to compute
continuity goes back to Longley [28], where exceptions and references were used as a probing
mechanism to compute moduli of continuity. In [19], Escardó defined a model of System T
where N is interpreted as the type of dialogue trees and function types as functions between
the interprations of the source and target types. This model contains a generic element of
type N → N, a function from dialogue trees to dialogue trees, that records queries to it in
the structure of the resulting dialogue tree. Then, a dialogue tree is built using this generic
element, from which the modulus of continuity can be calculated. Sterling [35] extended the
effectful forcing technique to prove that System T validates the realizable bar thesis, which
is equivalent to the inductive continuity principle considered here. System T was given a
call-by-name interpretation, where types are interpreted as algebras over a dialogue tree
monad. Although the carrier sets of this interpretation agree with those of Escardó, the
actions of the algebras allow for a compositional interpretation of the recursor on numbers.

In [3], the authors prove that all BTT [29] functions are continuous by generalizing the
method of [19]. However, their method does not allow internalizing the continuity principle,
which is the goal of the present work. As they work in the metatheory, they can induct
on the syntax of the F ∈ B → Nat when constructing the dialogue trees, allowing for a
constructive proof of continuity. In this work, we construct a program computing such trees
in the theory itself, where recursion on syntax of terms is not available. As a result we resort
to classical logic to prove finiteness of the computed trees and termination of this program.
It remains to be seen if this can also be done internally, without resorting to classical logic.
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Abstract
We consider simple stochastic games G with energy-parity objectives, a combination of quantitative
rewards with a qualitative parity condition. The Maximizer tries to avoid running out of energy
while simultaneously satisfying a parity condition.

We present an algorithm to approximate the value of a given configuration in 2-NEXPTIME.
Moreover, ε-optimal strategies for either player require at most O

(
2-EXP (|G|) · log

(
1
ε

))
memory

modes.
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1 Introduction

Background. Simple stochastic games (SSGs) are 2-player turn-based perfect information
stochastic games played on finite graphs. They are also called competitive Markov decision
processes [20], or 2 1

2 -player games [13, 12]. Introduced by Shapley [36] in 1953, they have
since played a central role in the solution of many problems, e.g., synthesis of reactive
systems [35, 34] and formal specification and verification [17, 18, 1]. Every state either
belongs to one of the players (Maximizer or Minimizer) or is a random state. In each round of
the game the player who owns the current state gets to choose the successor state along the
game graph. For random states the successor is chosen according to a predefined distribution.
Given a start state and strategies of Maximizer and Minimizer, this yields a distribution over
induced infinite plays. We consider objectives O that are measurable subsets of the set of
possible plays, and the players try to maximize (resp. minimize) the probability of O.

Many different objectives for SSGs have been studied in the literature. Here we focus on
parity, mean-payoff and energy objectives. We assign numeric rewards to transitions and
priorities (aka colors), encoded by bounded non-negative numbers, to states. A play satisfies
the (min-even) parity objective iff the minimal priority that appears infinitely often in a
play is even. It subsumes all ω-regular objectives, and in particular safety, liveness, fairness,
etc. On finite SSGs, the parity objective can be seen as a special case of the mean-payoff
objective which requires the limit average reward per transition along a play to be positive (or
non-negative). Mean-payoff objectives in SSGs go back to a 1957 paper by Gillette [21] and
have been widely studied, due to their relevance for efficient control. The energy objective [6]
requires that the accumulated reward at any time in a play stays above some finite threshold.
The intuition is that a controlled system has some finite initial energy level that must never
become depleted. Since the accumulated reward is not bounded a-priori, this essentially
turns a finite-state game into an infinite-state one.
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Energy-parity. We consider SSGs with energy-parity objectives, where plays need to satisfy
both an energy and a parity objective. The parity objective specifies functional correctness,
while the energy condition can encode efficiency or risk considerations, e.g., the system should
not run out of energy since manually recharging would be costly or risky.

Previous work. Much work on combined objectives for stochastic systems is restricted to
Markov decision processes (MDPs) [8, 9, 4, 28].

For (stochastic) games, the computational complexity of single objectives is often in
NP ∩ coNP, e.g., for parity or mean-payoff objectives [25]. Multi-objective games can be
harder, e.g., satisfying two different parity objectives leads to coNP completeness [11].

Stochastic mean-payoff parity games can be solved in NP ∩ coNP [10]. However, this does
not imply a solution for stochastic energy-parity games, since, unlike in the non-stochastic
case [7], there is no known reduction from energy-parity to mean-payoff parity in stochastic
games. The reduction in [7] relies on the fact that Maximizer has a winning finite-memory
strategy for energy-parity, which does not generally hold for stochastic games, or even
MDPs [28]. For the same reason, the direct reduction from stochastic energy-parity to
ordinary energy games proposed in [8, 9] does not work for general energy-parity but only
for energy-Büchi; cf. [28].

Non-stochastic energy-parity games can be solved in NP ∩ coNP (and even in pseudo-
quasi-polynomial time [16]) and Maximizer strategies require only finite (but exponential)
memory [7].

Stochastic energy-parity games have been studied in [29], where it was shown that the
almost-sure problem is decidable and in NP ∩ coNP. That is, given an initial configuration
(control-state plus current energy level), does Maximizer have a strategy to ensure that
energy-parity is satisfied with probability 1 against any Minimizer strategy? Unlike in
many single-objective games, such an almost-surely winning Maximizer strategy (if it exists)
requires infinite memory in general. This holds even in MDPs and for energy-coBüchi
objectives [28].

However, [29] did not address quantitative questions about energy-parity objectives, such
as computing/approximating the value of a given configuration, or the decidability of exact
questions like “Is the value of this configuration ≥ k ?” for some constant k (e.g., k = 1/2).

The decidability of the latter type of exact question about the energy-parity value is
open, but there are strong indications that it is very hard. In fact, even simpler subproblems
are already at least as hard as the positivity problem for linear recurrence sequences, which
in turn is at least as hard as the Skolem problem [19]. (The decidability of these problems
has been open for decades; see [30] for an overview.) Given an SSG with an energy-parity
objective, suppose we remove the parity condition (assume it is always true) and also suppose
that Maximizer is passive (does not get to make any decisions). Then we obtain an MDP
where the only active player (the Minimizer in the SSG) has a termination objective, i.e.,
to reach a configuration where the energy level is ≤ 0. Exact questions about the value of
the termination objective in MDPs are already at least as hard as the positivity problem
[31, Section 5.2.3] (see also [32, 33]). Thus exact questions about the energy-parity value in
SSGs are also at least as hard as the positivity problem.

Our contributions. Since exact questions about the energy-parity value in SSGs are
positivity-hard, we consider the problem of computing approximations of the value. We
present an algorithm that, given an SSG G and error ε, computes ε-close approximations of
the energy-parity value of any given configuration in 2-NEXPTIME. Moreover, we show that
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ε-optimal Maximizer (resp. Minimizer) strategies can be chosen as deterministic and using
only finite memory with O

(
2-EXP (|G|) · log

( 1
ε

))
memory modes. One can understand the

idea as a constructive upper bound on the accuracy with which the players need to remember
the current energy level in the game. (This is in contrast to the result in [28] that almost-
surely winning Maximizer strategies require infinite memory in general.) Once the upper
bound on Maximizer’s memory for ε-optimal strategies is established, one might attempt a
reduction from energy-parity to mean-payoff parity, along similar lines as for non-stochastic
games in [7]. However, instead we use a more direct reduction from energy-parity to parity
in a derived SSG for our approximation algorithm.

2 Preliminaries

A probability distribution over a countable set S is a function f : S → [0, 1] with
∑

s∈S f(s) = 1.
supp(f) def= {s| f(s) > 0} denotes the support of f and D(S) is the set of all probability
distributions over S. Given an alphabet Σ, let Σω and Σ∗ (Σ+) denote the set of infinite and
finite (non-empty) sequences over Σ, respectively. Elements of Σω or Σ∗ are called words.

Games, MDPs and Markov chains. A Simple Stochastic Game (SSG) is a finite-state 2-
player turn-based perfect-information stochastic game G = (S, (S2, S3, S#), E, P ) where the
finite set of states S is partitioned into the states S2 of the player 2 (Maximizer), states S3

of player 3 (Minimizer), and chance vertices (aka random states) S#. Let E ⊆ S × S be the
transition relation. We write s−→s′ if (s, s′) ∈ E and assume that Succ(s) def= {s′ | sEs′} ≠ ∅
for every state s. The probability function P assigns each random state s ∈ S# a distribution
over its successor states, i.e., P (s) ∈ D(Succ(s)). For ease of presentation, we extend the
domain of P to S∗S# by P (ρs) def= P (s) for all ρs ∈ S+S#. An MDP is a game where one of
the two players does not control any states. An MDP is maximizing (resp. minimizing) iff
S3 = ∅ (resp. S2 = ∅). A Markov chain is a game with only random states, i.e., S2 = S3 = ∅.

Strategies. A play is an infinite sequence s0s1 . . . ∈ Sω such that si−→si+1 for all i ≥ 0.
A path is a finite prefix of a play. Let Plays (G) def=

{
ρ = (qi)i∈N |qi−→qi+1

}
denote the

set of all possible plays. A strategy of the player 2 (3) is a function σ : S∗S2 → D(S)
(π : S∗S3 → D(S)) that assigns to every path ws ∈ S∗S2 (∈ S∗S3) a probability distribution
over the successors of s. If these distributions are always Dirac then the strategy is called
deterministic (aka pure), otherwise it is called randomized (aka mixed). The set of all
strategies of player 2 and 3 in G is denoted by ΣG and ΠG , respectively. A play/path s0s1 . . .

is compatible with a pair of strategies (σ, π) if si+1 ∈ supp(σ(s0 . . . si)) whenever si ∈ S2

and si+1 ∈ supp(π(s0 . . . si)) whenever si ∈ S3.
Finite-memory deterministic (FD) strategies are a subclass of strategies described by

deterministic transducers T = (M, m0, upd, nxt) where M is a finite set of memory modes with
initial mode m0, upd : M × E 7→ M updates the memory mode upon observing a transition
and nxt : M × S⊙ 7→ S chooses the successor state based on the current memory mode and
state. FD strategies without memory (|M| = 1) are called memoryless deterministic (MD).
For deterministic strategies, there is no difference between public memory (observable by the
other player) and private memory.

Measure. A game G with initial state s0 and strategies (σ, π) yields a probability space
(s0Sω, Fs0 , PG

σ,π,s0
) where Fs0 is the σ-algebra generated by the cylinder sets s0s1 . . . snSω

for n ≥ 0. The probability measure PG
σ,π,s0

is first defined on the cylinder sets. For
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38:4 Approximating the Value of Energy-Parity Games

ρ = s0 . . . sn, let PG
σ,π,s0

(ρ) def= 0 if ρ is not compatible with σ, π and otherwise PG
σ,π,s0

(ρSω) def=∏n−1
i=0 τ(s0 . . . si)(si+1) where τ is σ or π or P depending on whether si ∈ S2 or S3 or S#,

respectively. By Carathéodory’s extension theorem [2], this defines a unique probability
measure on the σ-algebra.

Objectives and Payoff functions. General objectives are defined by real-valued measurable
functions. However, we only consider indicator functions of measurable sets. Hence our
objectives can be described by measurable subsets O ⊆ Sω of plays. The payoff, under
strategies (σ, π), is the probability that plays belong to O.

We use the syntax and semantics of the LTL operators [14] F (eventually), G (always)
and X (next) to specify some conditions on plays.

Reachability & Safety. A reachability objective is defined by a set of target states T ⊆ S.
A play ρ = s0s1 . . . belongs to F T iff ∃i ∈ N si ∈ T . Similarly, ρ belongs to F≤nT (resp.
F≥nT ) iff ∃i ≤ n (resp. i ≥ n) such that si ∈ T . Dually, the safety objective G T consists of
all plays which never leave T . We have G T = ¬F¬T .

Parity. A parity objective is defined via bounded function Col : S → N that assigns
non-negative priorities (aka colors) to states. Given an infinite play ρ = s0s1 . . ., let Inf(ρ)
denote the set of numbers that occur infinitely often in the sequence Col(s0)Col(s1) . . .. A
play ρ satisfies even parity w.r.t. Col iff the minimum of Inf(ρ) is even. Otherwise, ρ satisfies
odd parity. The objective even parity is denoted by EPAR(Col) and odd parity is denoted by
OPAR(Col). Most of the time, we implicitly assume that the coloring function is known and
just write EPAR and OPAR. Observe that, given any coloring Col, we have EPAR = OPAR and
OPAR(Col) = EPAR(Col + 1) where Col + 1 is the function which adds 1 to the color of every
state. This justifies to consider only one of the even/odd parity objectives, but, for the sake
of clarity, we distinguish these objectives wherever necessary.

Energy/Reward/Counter based objectives. Let r : E → {−R, . . . , 0, . . . , R} be a bounded
function that assigns weights to transitions. Depending on context, the sum of these weights
in a path can be viewed as energy, cost/reward or a counter. If s−→s′ and r((s, s′)) = c, we
write s

c−→ s′. Let ρ = s0
c0−→ s1

c1−→ . . . be a play. We say that ρ satisfies
1. the k-energy objective EN(k) iff

(
k +

∑n−1
i=0 ci

)
> 0 for all n ≥ 0.

2. the l-storage condition if l +
∑n−1

i=m ci ≥ 0 holds for every infix sm
cm−→ sm+1 . . . sn of the

play. Let ST(k, l) denote the set of plays that satisfy both the k-energy and the l-storage
condition. Let ST(k) def=

⋃
l ST(k, l). Clearly, ST(k) ⊆ EN(k).

3. k-Termination Term(k) iff there exists n ≥ 0 such that
(

k +
∑n−1

i=0 ci

)
≤ 0.

4. Limit objective LimInf(�z) iff
(

lim infn→∞
∑n−1

i=0 ci

)
� z for � ∈ {<, ≤, =, ≥, >} and

z ∈ R ∪ {∞, −∞} and similarly for LimSup(�z).

5. Mean payoff MP(� c) for some constant c ∈ R iff
(

lim infn→∞
1
n

∑n−1
i=0 ci

)
� c.

Observe that the objectives k-energy and k-termination are mutually exclusive and cover all
of the plays. A different way to consider these objectives is to encode the energy level (the
sum of the transition weights so far) into the state space and then consider the obtained
infinite-state game with safety/reachability objective, respectively.

An objective O is called shift-invariant iff for all finite paths ρ and plays ρ′ ∈ Sω, we have
ρρ′ ∈ O ⇐⇒ ρ′ ∈ O. Parity and mean payoff objectives are shift-invariant, but energy and
termination objectives are not. Objective O is called submixing iff for all sequences of finite non-
empty words u0, v0, u1, v1 . . . we have u0v0u1v1 . . . ∈ O =⇒ ((u0u1 . . . ∈ O) ∨ (v0v1 . . . ∈ O)).
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Determinacy. Given an objective O and a game G, state s has value (w.r.t to O) iff

sup
σ∈ΣG

inf
π∈ΠG

PG
σ,π,s(O) = inf

π∈ΠG
sup

σ∈ΣG

PG
σ,π,s(O).

If s has value then valG
O (s) denotes the value of s defined by the above equality. A game

with an objective is called weakly determined if every state has value. Stochastic games with
Borel objectives are weakly determined [26, 27]. Our objectives above are Borel, hence any
boolean combination of them is also weakly determined. For ε > 0 and state s, a strategy
1. σ ∈ ΣG is ε-optimal (maximizing) iff PG

σ,π,s(O) ≥ valG
O (s) − ε for all π ∈ ΠG .

2. π ∈ ΠG is ε-optimal (minimizing) iff PG
σ,π,s(O) ≤ valG

O (s) + ε for all σ ∈ ΣG .
A 0-optimal strategy is called optimal. An MD strategy is called uniformly ε-optimal (resp.
uniformly optimal) if it is so from every start state. An optimal strategy for player 2 from
state s is almost surely winning if valG

O (s) = 1. By AS (O) we denote the set of states that
have an almost surely winning strategy for objective O. For ease of presentation, we drop
subscripts and superscripts wherever possible if they are clear from the context.

Energy-parity. We are concerned with approximating the value for the combined energy-
parity objective EN(k) ∩ EPAR and building ε-optimal strategies.

In our constructions we use some auxiliary objectives. Following [29], these are defined
as Gain def= LimInf(> −∞) ∩ EPAR and Loss def= Gain = LimInf(= −∞) ∪ OPAR.

▶ Remark 1. For finite-state SSGs and the following objectives there exist optimal MD
strategies for both players. Moreover, if the SSG is just a maximizing MDP then the set of
states that are almost surely winning for Maximizer can be computed in polynomial time.
1. F T [15]
2. LimInf(� − ∞), LimInf(�∞), LimSup(� − ∞), LimSup(�∞), MP(> 0) [5, Prop. 1]
3. EPAR [37]

3 The Main Result

The following theorem states our main result.

▶ Theorem 2. Let G = (S, (S2, S3, S#), E, P ) be an SSG with transition rewards in unary
assigned by function r and colors assigned to states by function Col. For every state s ∈ S,
initial energy level i ≥ 0 and error margin ε > 0, one can compute
1. a rational number v′ such that 0 ≤ v′ − valG

EN(i) ∩EPAR (s) ≤ ε in 2-NEXPTIME. 1

2. ε-optimal FD strategies σε and πε for Maximizer and Minimizer, resp., in 2-NEXPTIME.
These strategies use O

(
2-EXP (|G|) · log

( 1
ε

))
memory modes.

For rewards in binary, the bounds above increase by one exponential.

We outline the main steps of the proof; details in the following sections. We begin
with the observation that EN(i) ⊆ EN(j) for i ≤ j, and thus for all states s we have
valG

EN(i) ∩ EPAR (s) ≤ valG
EN(j) ∩ EPAR (s) ≤ 1. So limn→∞ valG

EN(n) ∩ EPAR (s) exists. We define

LvalG (s) def= lim
n→∞

valG
EN(n) ∩ EPAR (s). (1)

1 We write “computing a number v′ in 2-NEXPTIME” as a shorthand for the property that questions like
v′ ≤ c for constants c are decidable in 2-NEXPTIME.
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38:6 Approximating the Value of Energy-Parity Games

We will see that LvalG (s) and valG
Gain (s) are in fact equal (a consequence of Lemma 9) and

valG
Gain (s) can be computed in nondeterministic polynomial time (Theorem 5). Intuitively,

for high energy levels, the precise energy level does not matter much for the value.
The main steps of the approximation algorithm are as follows.

1. Compute FD strategies σ∗(s) that are optimal maximizing for the objective Gain starting
from state s in G. Compute an MD strategy π∗ that is uniformly optimal minimizing for
the objective Gain. Compute the value valG

Gain (s) for every s ∈ S. See Section 4.
2. Compute a natural number N such that for all s ∈ S and all i ≥ N we have

0 ≤ valG
Gain (s) − valG

EN(i) ∩ EPAR (s) ≤ ε.

N will be doubly exponential. See Section 5.
3. Consider the finite-state parity game G′ derived from G by encoding the energy level up-to

N into the states, i.e., the states of G′ are of the form (s, k) for s ∈ S and 0 ≤ k ≤ N ,
and colors are inherited from s. Moreover, we add gadgets that ensure that states (s, N)
at the upper end win with probability valG

Gain (s) and states (s, 0) at the lower end lose.
By the previous item, valG

Gain (s) is ε-close to valG
EN(N) ∩ EPAR (s). Thus, for k < N we can

ε-approximate the value v = valG
EN(k) ∩ EPAR (s) by v′ def= valG′

EPAR ((s, k)). If k ≥ N we can
ε-approximate v by v′ def= valG

Gain (s).
Moreover, we obtain ε-optimal FD strategies σε for Maximizer (resp. πε for Minimizer)
for EN(k) ∩ EPAR in G. Let σ̂ (resp. π̂) be optimal MD strategies for Maximizer (resp.
Minimizer) for the objective EPAR in G′. Then σε plays as follows. While the current
energy level j (k plus the sum of the rewards so far) stays < N , then, at any state s′,
play like σ̂ at state (s′, j) in G′. Once the energy level reaches a value ≥ N at some state
s′ for the first time, then play like σ∗(s′) forever. Similarly, πε plays as follows. While
the current energy level j (k plus the sum of the rewards so far) stays < N , then, at any
state s′, play like π̂ at state (s′, j) in G′. Once the energy level reaches a value ≥ N (at
any state) for the first time, then play like π∗ forever. See Section 6.

As a technical tool, we sometimes consider the dual of a game G (resp. the dual max-
imizing MDP of some minimizing MDP). Consider Gd def=

(
S′, (S′

2, S′
3, S′

#), E′, P ′) with the
complement objective EN(k) ∩ EPAR = Term(k) ∪ OPAR, where Gd is simply the game with
the roles of Maximizer and Minimizer reversed, i.e.,

S′ = S S′
2 = S3 S′

3 = S2 S′
# = S# E′ = E P ′ = P

Hence ΣGd = ΠG and ΠGd = ΣG . It is easy to see that for any objective O and start state s

1. valG
O (s) + valGd

O
(s) = 1.

2. σ is ε-optimal maximizing for O in G iff it is ε-optimal minimizing for O in Gd.
3. π is ε-optimal minimizing for O in G iff it is ε-optimal maximizing for O in Gd.
So approximating the value of EN(k) ∩ EPAR in G can be reduced in linear time to approxim-
ating the value of Term(k) ∪ OPAR in Gd.

4 Computing valG
Gain (s)

Given an SSG G = (S, (S2, S3, S#), E, P ) and a start state s, we will show how to compute
valG

Gain (s) and the optimal strategies for both players.
We start with the case of maximizing MDPs. The following lemma summarizes some

previous results ([29, Lemmas 30,16], [28, Lemma 26], [24, Proposition 4]).
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▶ Lemma 3. Let M be a maximizing MDP.
1. LvalM (s) = valM

Gain (s) for all states s ∈ S.
2. Optimal strategies for Gain in M exist and can be chosen FD, with O(exp(|M|O(1)))

memory modes, and exponential memory is also necessary.
3. For any state s ∈ S, LvalM (s) is rational and can be computed in O(|M|8) deterministic

polynomial time if rewards are in unary, and in NP and coNP if rewards are in binary.

Proof. Item 1 holds by [29, Lemma 30].
Towards Item 2, we follow the proof of [29, Lemma 16]. Since Gain = LimInf(> −∞) ∩

EPAR is shift-invariant, there exist optimal strategies by [22]. By [28, Theorem 18] and Item 1,
an optimal strategy for Gain can be constructed as follows. Let A

def=
⋃

k∈N AS (ST(k) ∩ EPAR)
and B

def= AS (LimInf(= ∞) ∩ EPAR) be the subsets of states from which there exist almost
surely winning strategies for the objectives ST(k)∩EPAR and LimInf(= ∞)∩EPAR, respectively.
By [28, Theorem 8], we can restrict the values k in the definition of A by some k′ = O(|S| ·R),
i.e., A =

⋃
k≤k′ AS (ST(k) ∩ EPAR). An optimal strategy σ for Gain works in two phases. First

it plays an optimal strategy σR towards reaching the set A ∪ B, where σR can be chosen MD
by Remark 1. Then, upon reaching A (resp. B), it plays an almost surely winning strategy
σA for the objective ST(k) ∩ EPAR (resp. σB for the objective LimInf(= ∞) ∩ EPAR). By [28,
Theorem 8], the strategy σA requires O(k · |S|) memory modes for a given k and thus at most
O(|S|2 · R), since we can assume that k ≤ k′. Towards the strategy σB , we first observe that
in finite MDPs a strategy is almost-surely winning for LimInf(= ∞) ∩ EPAR iff it is almost-
surely winning for MP(> 0) ∩ EPAR. By [24, Proposition 4], there exist optimal deterministic
strategies for MP(> 0) ∩ EPAR that use exponential memory, i.e., O(exp(|M|O(1))) memory
modes. The memory required for σB exceeds that of σR and σA (even when R is given in
binary), and the one extra memory mode to record the switch from σR to σA (resp. σB)
is negligible in comparison. Thus we can conclude that σ uses O(exp(|M|O(1))) memory
modes. [24, Fig. 1 and Prop. 4] shows that exponential memory is necessary.

Towards Item 3, let d
def= |Col(S)| be the number of priorities in the parity condition. By

[28, Lemma 26], for each s ∈ S, LvalM (s) is rational and can be computed in deterministic
time Õ(|E| · d · |S|4 · R + d · |S|3.5 · (|P | + |r|)2) (and still in NP and coNP if R is given in
binary). So LvalM (s) can be computed in O(|M|8) deterministic polynomial time if weights
are given in unary, and in NP and coNP if weights are given in binary. ◀

In order to extend Lemma 3 from MDPs to games, we need the notion of derived MDPs,
obtained by fixing the choices of one player according to some FD strategy. Given an SSG
G = (S, (S2, S3, S#), E, P ) and a finite memory deterministic (FD) strategy π for Minimizer
(resp. σ for Maximizer) from a state s, described by (M, m0, upd, nxt), let Gπ (resp. Gσ) be the
maximizing (resp. minimizing) MDP with state space M × S obtained by fixing Minimizer’s
(resp. Maximizer’s) choices according to π (resp. σ).

▶ Lemma 4. For every SSG G, objective O and Minimizer (resp. Maximizer) FD strategy π =
(M, m0, upd, nxt) (resp. σ), from state s we get valGσ

O ((m0, s)) ≤ valG
O (s) ≤ valGπ

O ((m0, s))
and equality holds if π (resp. σ) is optimal from state s.

▶ Theorem 5. Consider an SSG G = (S, (S2, S3, S#), E, P ) with the Gain objective.
1. Optimal Minimizer strategies exist and can be chosen uniform MD.
2. valG

Gain (s) is rational and questions about it, i.e., valG
Gain (s) ≤ c for constants c, are

decidable in NP.
3. Optimal Maximizer strategies exist and can be chosen FD, with O(exp(|G|O(1))) memory

modes. Moreover, exponential memory is also necessary.
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Proof. Towards Item 1, observe that since both the objectives LimInf(= −∞) and OPAR are
shift-invariant and submixing, so is their union, i.e., Gain is shift-invariant and submixing.
Hence, by [23, Theorem 1.1], an optimal MD strategy π∗

s for Minimizer exists from any state
s ∈ S. Since S is finite and Gain is shift-invariant, we can also obtain a uniformly optimal
MD strategy π∗, i.e., π∗ is optimal from every state.

Towards Item 2, consider the maximizing MDP Gπ∗ obtained from G by fixing π∗. Since
π∗ is MD, the states of Gπ∗ are the same as the states as G. Since π∗ is optimal for Minimizer
from every state s, we obtain that valG

Gain (s) = valGπ∗
Gain (s) for every state s by Lemma 4.

By Lemma 3, the latter is rational and can be computed in polynomial time for weights in
unary (resp. in NP and coNP for weights in binary). Thus, by guessing π∗, we can decide
questions valG

Gain (s) ≤ c in NP.
Towards Item 3, we again use the property that Gain is shift-invariant and submixing

(see above). By [29, Theorem 6, Def. 24], optimal FD Maximizer strategies for Gain in an
SSG require only |S3| · ⌈log(|E|)⌉ many extra bits of memory above the memory required
for optimal Maximizer strategies in any derived MDP M where Minimizer’s choices are
fixed. Hence, by Lemma 3, one can obtain optimal FD Maximizer strategies in G that use at
most 2|S3|·⌈log(|E|)⌉ · O(exp(|M|O(1))) = O(exp(|G|O(1))) memory modes. The corresponding
exponential lower bound on the memory holds already for MDPs by Lemma 3. ◀

5 Computing the Upper Bound N

We show how to compute the upper bound N , up-to which Maximizer needs to remember
the energy level, for any given error margin ε > 0. Similarly as in Section 4, we first solve
the problem for maximizing MDPs and then extend the solution to SSGs.

5.1 Computing N for maximizing MDPs
Given a maximizing MDP M = (S, S2, S#, E, P ) and ε > 0, we will compute an N ∈ N such
that for all s ∈ S and all j ≥ N

0 ≤ valM
Term(j) ∪ OPAR (s) − valM

Loss (s) ≤ ε.

Recall that Loss = LimInf(= −∞) ∪ OPAR. We now define the sets of states W0
def= AS (Loss),

W1
def= AS (LimInf(= −∞)) and W2

def= AS (OPAR). By Remark 1, there exist optimal MD
strategies for LimInf(= −∞) and OPAR. Since Loss is shift-invariant and submixing, there
exists an optimal MD strategy for it by [23, Theorem 1.1].

▶ Lemma 6. For every state s in the MDP M we have
1. W1 ∪ W2 ⊆ W0
2. valF W0

(s) ≤ valLoss (s)
3. val

OPAR ∩ F W2
(s) = 0

4. for every initial energy level j ≥ 0

val(Term(j) ∪ OPAR) ∩ F W0
(s) = valF W0

(s) (2)

valLoss (s) ≤ valTerm(j) ∪ OPAR (s) ≤ valLoss (s) + sup
σ

Pσ,s

(
Term(j) ∩ F W1

)
(3)

Proof.
1. This follows directly from the definitions of W0, W1, W2.
2. Let σ′ be an optimal MD strategy for F W0 from s and σ′′ be an almost surely winning

MD strategy for Loss from any state in W0. Let σ be the strategy that plays σ′ until
reaching W0 and then switches to σ′′. We have valLoss (s) ≥ Pσ,s(Loss) ≥ Pσ′,s(F W0) =
valF W0

(s).
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3. For s ∈ W2 the statement is obvious. So let s /∈ W2 and consider the modified MDP
M′ =

(
S′, S′

2, S′
#, E′, P ′) where all states in W2 are collapsed into a losing sink. I.e.,

S′ def= (S \ W2) ⊎ {trap}, with trap a new random sink state having color 0 (thus losing
for objective OPAR), E′ contains all of (E ∩ {(S \ W2) × (S \ W2)} ∪ (trap, trap)) and all
transitions to W2 are redirected to trap and P ′ is derived accordingly from P . Then
valM′

OPAR (ŝ) = valM
OPAR ∩ FW2

(ŝ) for all states ŝ ∈ S \ W2. Towards a contradiction, assume
that valM

OPAR ∩ FW2
(s) > 0. Hence valM′

OPAR (s) > 0. Then, by [22, Theorem 3.2], there
exists a state s′ ∈ S′ such that valM′

OPAR (s′) = 1, and it is easy to see that s′ ̸= trap and
thus s′ ∈ S \ W2. But this implies that valM

OPAR (s′) = 1 and thus s′ ∈ W2, a contradiction.
4. Let O def= Term(j) ∪ OPAR. For Equation (2), the first inequality valO ∩ FW0

(s) ≤ valFW0
(s)

is trivial, since O ∩ F W0 ⊆ FW0. To show the reverse inequality, consider the strategy σ

that first plays like an optimal MD strategy σ′ for the objective F W0 and after reaching
W0 switches to an almost surely winning MD strategy σ′′ for the objective Loss. Then
valO ∩ FW0

(s) ≥ Pσ,s(O ∩ F W0) ≥ Pσ,s(Loss ∩ F W0) = Pσ′,s(F W0) = valFW0
(s), where

the second inequality is due to LimInf(= −∞) ⊆ Term(j).
For Equation (3), the first inequality is again due to the fact that LimInf(= −∞) ⊆
Term(j) for all j ≥ 0. Towards the second inequality of Equation (3) we have

valO (s)
= sup

σ
Pσ,s(O)

= sup
σ

(
Pσ,s (O ∩ F W0) + Pσ,s

(
O ∩ F W0

))
(Law of total probability)

≤ sup
σ

Pσ,s (O ∩ F W0) + sup
σ

Pσ,s

(
O ∩ F W0

)
(sup (f + g) ≤ sup f + sup g)

= sup
σ

Pσ,s (F W0) + sup
σ

Pσ,s

(
O ∩ F W0

)
(Equation (2))

≤ valLoss (s) + sup
σ

Pσ,s

(
O ∩ F W0

)
(Item 2)

We can upper-bound the second summand above as follows.

sup
σ

Pσ,s(O ∩ F W0)

= sup
σ

Pσ,s

(
(Term(j) ∪ OPAR) ∩ F W0

)
≤ sup

σ
Pσ,s

(
Term(j) ∩ F W0

)
+ sup

σ
Pσ,s

(
OPAR ∩ F W0

)
(Union bound)

≤ sup
σ

Pσ,s

(
Term(j) ∩ F W1

)
+ sup

σ
Pσ,s

(
OPAR ∩ F W2

)
(Item 1)

= sup
σ

Pσ,s

(
Term(j) ∩ F W1

)
(Item 3) ◀

We show that the term supσ Pσ,s

(
Term(j) ∩ F W1

)
in Equation (3) can be made arbit-

rarily small for large j. To this end, we use [3, Lemma 3.9] (adapted to our notation).

▶ Lemma 7 ([3, Lemma 3.9 and Claim 6]). Let M = (S, S2, S#, E, P ) be a maximizing
finite MDP with rewards in unary and W1

def= AS (LimInf(= −∞)). One can compute, in
polynomial time, a rational constant c < 1, and an integer h ≥ 0 such that for all j ≥ h and
s ∈ S

sup
σ

Pσ,s

(
Term(j) ∩ F W1

)
≤ cj

1 − c
.

Moreover, 1/(1 − c) ∈ O
(
exp(|M|O(1))

)
and h ∈ O(exp

(
|M|O(1))).
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▶ Lemma 8. Consider a maximizing MDP M = (S, S2, S#, E, P ), ε > 0 and the con-
stants c, h from Lemma 7. For rewards in unary and i ≥ N we have valM

Term(i) ∪ OPAR (s) −
valM

Loss (s) ≤ ε where N
def= max (h, ⌈logc (ε · (1 − c))⌉) ∈ O

(
exp(|M|O(1)) · log (1/ε)

)
.

For rewards in binary we have N ∈ O
(
exp(exp(|M|O(1))) · log (1/ε)

)
, i.e., the size of N

increases by one exponential.

Proof sketch. For rewards in unary, the result follows from Lemma 6(Equation (3)) and
Lemma 7. For rewards in binary, the constants increase by one exponential via encoding
binary rewards into unary rewards in a modified MDP. ◀

5.2 Computing N for SSGs
In order to compute the bound N for an SSG G, we first consider bounds N(s) for individual
states s and then take their maximum. Given a state s, we can use Theorem 5(Item 3) to ob-
tain an optimal FD strategy (with O(exp(|G|O(1))) memory modes) σ∗(s) = (M, m0, upd, nxt)
for Maximizer from state s w.r.t. the Gain objective. Theorem 5(Item 1) yields a uniform
MD strategy π∗ that is optimal for Minimizer from all states s w.r.t. the Gain objective.

▶ Lemma 9. Given an SSG G = (S, (S2, S3, S#), E, P ) and ε > 0, we can compute a number
N ∈ N such that for all i ≥ N and states s ∈ S we have

valG
EN(i) ∩ EPAR (s)−ε ≤ valG

Gain (s)−ε ≤ inf
π

PG
σ∗(s),π,s (EN(i) ∩ EPAR) ≤ valG

EN(i) ∩ EPAR (s) (4)

i.e., σ∗(s) is ε-optimal for Maximizer for EN(i) ∩ EPAR for all i ≥ N . In particular,
0 ≤ valG

Gain (s) − valG
EN(i) ∩ EPAR (s) ≤ ε.

Moreover, π∗ is ε-optimal for Minimizer from any state s for i ≥ N .

sup
σ

PG
σ,π∗,s (EN(i) ∩ EPAR) ≤ sup

σ
PG

σ,π∗,s (Gain) = valG
Gain (s) ≤ valG

EN(i) ∩ EPAR (s) + ε (5)

For rewards in unary, N is doubly exponential, i.e., N ∈ O
(
exp(exp(|G|O(1))) · log (1/ε)

)
and it can be computed in exponential time. For rewards in binary, the size of N and its
computation time increase by one exponential, respectively.

Proof. Assume that rewards are in unary. The first inequality of (4) holds because EN(i) ∩
EPAR ⊆ Gain for any i. The third inequality of (4) follows from the definition of the value.
Towards the second inequality of (4), we consider the minimizing MDP M(s) def= Gσ∗(s)

obtained by fixing the Maximizer strategy σ∗(s). Since σ∗(s) is optimal for Maximizer from
state s wrt. the objective Gain, Lemma 4 yields that

valG
Gain (s) = valM(s)

Gain ((m0, s)). (6)

Since σ∗(s) has O(exp(|G|O(1))) memory modes, the size of M(s) is exponential in |G| and
M(s) can be computed in exponential time.

Now we consider the dual maximizing MDP M(s)d and the objectives Term(i) ∪ OPAR
and Loss. (Note that M(s)d has the same size as M(s).) From Lemma 8, we obtain a
bound N(s) ∈ N such that for all i ≥ N(s)

0 ≤ valM(s)d

Term(i) ∪ OPAR ((m0, s)) − valM(s)d

Loss ((m0, s)) ≤ ε. (7)

By Lemma 8 and Lemma 7, N(s) is exponential in |M(s)d| and thus doubly exponential
in |G|, i.e., N(s) ∈ O

(
exp(exp(|G|O(1))) · log (1/ε)

)
. Moreover, N(s) can be computed in

time polynomial in |M(s)d| and thus in time exponential in |G|. By duality, we can rewrite
Equation (7) for M(s) as follows. For all i ≥ N(s)
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0 ≤ valM(s)
Gain ((m0, s)) − valM(s)

EN(i) ∩ EPAR ((m0, s)) ≤ ε. (8)

In order to get a uniform upper bound that holds for all states, let N
def= maxs∈S N(s). Since

|S| is linear, we still have N ∈ O
(
exp(exp(|G|O(1))) · log (1/ε)

)
and it can be computed in

exponential time in |G|. Finally, we can show the second inequality of (4).

inf
π

PG
σ∗(s),π,s (EN(i) ∩ EPAR)

= inf
π

PM(s)
π,(m0,s) (EN(i) ∩ EPAR)

= valM(s)
EN(i) ∩ EPAR ((m0, s))

≥ valM(s)
Gain ((m0, s)) − ε by i ≥ N ≥ N(s) and Equation (8)

= valG
Gain (s) − ε by (6)

The first inequality of (5) holds because EN(i) ∩ EPAR ⊆ Gain for any i. The equality in
(5) holds by the optimality of π∗. The second inequality of (5) follows from the previously
stated consequence of (4).

For rewards in binary, the sizes of the numbers N(s) (and hence N) and the time to
compute it increase by one exponential by Lemma 8. ◀

6 Unfolding the Game to Energy Level N

Given an SSG G = (S, (S2, S3, S#), E, P ) and error tolerance ε > 0, for each state s ∈ S

and energy level i ≥ 0, we want to compute a rational number v′ which satisfies 0 ≤
v′−valG

EN(i) ∩ EPAR (s) ≤ ε, and ε-optimal FD strategies σε and πε for Maximizer and Minimizer,
resp. We achieve this by constructing a finite-state parity game G′ that closely approximates
the original game G, as described in Section 3(Item 3).

For clarity, we explain the construction in two steps. In the first step, we consider a
finite-state parity game G [N ]. (Unlike G′, the game G [N ] is not actually constructed. It just
serves as a part of the correctness proof.) G [N ] encodes the energy level up-to N + R (where
R is the maximal transition reward) into the states, i.e., it has states of the form (s, k) with
k ≤ N + R. It imitates the original game G till energy level N + R, but at any state (s, i)
with energy level i ≥ N it jumps to a winning state with probability valG

EN(i) ∩ EPAR (s) and
to a losing state with probability 1 − valG

EN(i) ∩ EPAR (s). (We need the margin up-to N + R,
because transitions can have rewards > 1, so the level N might not be hit exactly.) Similarly,
at states (s, 0) with energy level 0, we jump to a losing state. The coloring function in the
new game G [N ] derives its colors from the colors in the original game G, i.e., all states (s, i)
have the same color as s in G.

By construction of G [N ], for i ≤ N , the EPAR value of (s, i) in G [N ] coincides with
valG

EN(i) ∩ EPAR (s).
In the second step, since we do not know the exact values valG

EN(i) ∩ EPAR (s) for N + R ≥
i > N , we approximate these by the slightly larger valG

Gain (s). I.e., we modify G [N ] by
replacing the probability values valG

EN(i) ∩ EPAR (s) for the jumps to the winning state by
valG

Gain (s). Let G′ be the resulting finite-state parity game. It follows from Lemma 9 that
0 ≤ valG

Gain (s) − valG
EN(i) ∩ EPAR (s) ≤ ε for i ≥ N and LvalG

EN ∩ EPAR (s) = valG
Gain (s). Thus G′

ε-over-approximates G [N ] and G, and we obtain the following lemma.
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▶ Lemma 10. For all states s and all 0 ≤ i ≤ N

valG[N ]
EPAR ((s, i)) = valG

EN(i) ∩ EPAR (s), and

0 ≤ valG′

EPAR ((s, i)) − valG[N ]
EPAR ((s, i)) ≤ ε.

Now we are ready to prove the main theorem.

▶ Theorem 2. Let G = (S, (S2, S3, S#), E, P ) be an SSG with transition rewards in unary
assigned by function r and colors assigned to states by function Col. For every state s ∈ S,
initial energy level i ≥ 0 and error margin ε > 0, one can compute
1. a rational number v′ such that 0 ≤ v′ − valG

EN(i) ∩EPAR (s) ≤ ε in 2-NEXPTIME. 2

2. ε-optimal FD strategies σε and πε for Maximizer and Minimizer, resp., in 2-NEXPTIME.
These strategies use O

(
2-EXP (|G|) · log

( 1
ε

))
memory modes.

For rewards in binary, the bounds above increase by one exponential.

Proof. For i > N we output v′ = valG
Gain (s), which satisfies the condition by Lemma 9.

For i ≤ N we output v′ = valG′

EPAR ((s, i)), which satisfies the condition by Lemma 10. By
Theorem 5, the values valG

Gain (s) are rational for all states s. Therefore all probability values
in G′ are rational and thus the EPAR values of all states in G′ are rational. Hence our numbers
v′ are always rational.

By Theorem 5, the values valG
Gain (s) for all states s ∈ S can be computed in exponential

time. By Lemma 9, N ∈ O
(
exp(exp(|G|O(1))) · log (1/ε)

)
is doubly exponential. Therefore,

we can construct G′ in O
(
exp(exp(|G|O(1))) · log (1/ε)

)
time and space. Questions about the

parity values of states in G′ can be decided in nondeterministic time polynomial in |G′|. Thus
the numbers v′ are computed in 2-NEXPTIME.

Towards Item 2, we construct ε-optimal FD strategies σε for Maximizer (resp. πε for
Minimizer) for EN(i) ∩ EPAR in G. Let σ̂ (resp. π̂) be optimal MD strategies for Maximizer
(resp. Minimizer) for the objective EPAR in G′, which exist by Remark 1. Since these strategies
are MD, they can be guessed in nondeterministic time polynomial in the size |G′|, and thus
in O

(
exp(exp(|G|O(1))) · log (1/ε)

)
nondeterministic time.

Then σε plays as follows. While the current energy level j (i plus the sum of the rewards
so far) stays < N , then, at any state s′, play like σ̂ at state (s′, j) in G′. Once the energy level
reaches a value ≥ N at some state s′ for the first time, then play like σ∗(s′) forever. (Recall
that σ∗(s′) is the optimal FD Maximizer strategy for Gain from state s′ from Section 5.2.) σε

is ε-optimal by Lemma 10 and Lemma 9. It needs to remember the energy level up-to N while
simulating σ̂. Moreover, σ∗(s′) needs O(exp(|G|O(1))) memory modes by Theorem 5. Finally,
it needs to remember the switch from σ̂ to σ∗(s′). Since N ∈ O

(
exp(exp(|G|O(1))) · log (1/ε)

)
dominates the rest, σε uses O

(
exp(exp(|G|O(1))) · log (1/ε)

)
memory modes.

Similarly, πε plays as follows. While the current energy level j stays < N , at any state s′,
play like π̂ at state (s′, j) in G′. Once the energy level reaches a value ≥ N (at any state)
for the first time, then play like π∗ forever (where π∗ is the uniform optimal MD Minimizer
strategy for Gain from Section 5.2.) πε is ε-optimal by Lemma 10 and Lemma 9. While π∗

is MD and does not use any memory, πε still needs to remember the energy level up-to N

while simulating π̂, and thus it uses O
(
exp(exp(|G|O(1))) · log (1/ε)

)
memory modes.

For rewards in binary, all bounds increase by one exponential via an encoding of G into
an exponentially larger but equivalent game with rewards in unary. ◀

2 We write “computing a number v′ in 2-NEXPTIME” as a shorthand for the property that questions like
v′ ≤ c for constants c are decidable in 2-NEXPTIME.
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No nontrivial lower bounds are known on the computational complexity of approximating
valG

EN(i) ∩EPAR (s). However, even without the parity part, the problem appears to be hard.
The best known algorithm for approximating the value of the energy objective (resp. the
dual termination objective) runs in NEXPTIME for SSGs with rewards in unary [3].

As for lower bounds on the strategy complexity, ε-optimal Maximizer strategies need
at least an exponential number of memory modes (for any 0 < ε < 1) even in maximizing
MDPs. This can easily be shown by extending the example in Lemma 3(Item 2) and [24,
Fig. 1 and Prop. 4] that shows the lower bound for the Gain objective. First loop in a state
with an unfavorable color to accumulate a sufficiently large reward (depending on ε) and
then switch to the MDP in [24, Fig. 1 and Prop. 4] to play for Gain (since EN(i) ∩ EPAR
will be very close to Gain then). Even the latter part requires exponentially many memory
modes.

7 Conclusion & Extensions

We gave a procedure to compute ε-approximations of the value of combined energy-parity
objectives in SSGs. The decidability of questions about the exact values is open, but the
problem is at least as hard as the positivity problem for linear recurrence sequences [31,
Section 5.2.3]. Unlike almost surely winning Maximizer strategies which require infinite
memory in general [28, 29], ε-optimal strategies for either player require only finite memory
with at most doubly exponentially many memory modes.

An interesting topic for further study is whether these results can be extended to other
combined objectives where the parity part is replaced by something else, i.e., energy-X for
some objective X (e.g., some other color-based condition like Rabin/Streett, or a quantitative
objective about multi-dimensional transition rewards). While our proofs are not completely
specific to parity, they do use many strong properties that parity satisfies.

Shift-invariance of EPAR is used in several places, e.g. in Lemma 6 (and thus its con-
sequences) and for the correctness of the constructions in Section 6.
We use the fact that EPAR goes well together with LimInf(> −∞), i.e., the objective
Gain = LimInf(> −∞) ∩ EPAR allows optimal FD strategies for Maximizer in MDPs;
cf. Lemma 3.
The submixing property of OPAR = EPAR is used in Theorem 5 to lift Lemma 3 from
MDPs to SSGs.
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Abstract
Planar Embedding is a drawing of a graph on the plane such that the edges do not intersect each
other except at the vertices. We know that testing the planarity of a graph and computing its
embedding (if it exists), can efficiently be computed, both sequentially [24] and in parallel [33], when
the entire graph is presented as input.

In the dynamic setting, the input graph changes one edge at a time through insertion and
deletions and planarity testing/embedding has to be updated after every change. By storing
auxilliary information we can improve the complexity of dynamic planarity testing/embedding
over the obvious recomputation from scratch. In the sequential dynamic setting, there has been a
series of works [17, 25, 20, 22], culminating in the breakthrough result of polylog(n) sequential time
(amortized) planarity testing algorithm of Holm and Rotenberg [21].

In this paper we study planar embedding through the lens of DynFO, a parallel dynamic complexity
class introduced by Patnaik et al [31] (also [16]). We show that it is possible to dynamically maintain
whether an edge can be inserted to a planar graph without causing non-planarity in DynFO. We
extend this to show how to maintain an embedding of a planar graph under both edge insertions
and deletions, while rejecting edge insertions that violate planarity.

Our main idea is to maintain embeddings of only the triconnected components and a special
two-colouring of separating pairs that enables us to side-step cascading flips when embedding of a
biconnected planar graph changes, a major issue for sequential dynamic algorithms [22, 21].
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1 Introduction

Planar graphs are graphs for which there exists an embedding of vertices on the plane such
that the edges can be drawn without intersecting with each other, except at their endpoints.
The notion of planar graphs is fundamental to graph theory as underlined by the Kuratowski
theorem [26]. The planarity testing problem is to determine if the encoded graph is planar
and the planar embedding problem is to construct such an embedding. These are equally
fundamental questions to computer science and their importance has been recognized from the
early 1970s in the linear time algorithm by Hopcroft and Tarjan [24]. Since then there have
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been a plethora of algorithmic solutions presented for the planarity testing and embedding
problems such as [28, 4, 18] that culminated in an alternative linear-time algorithm [18],
a work efficient parallel algorithm running in O(log n) time [33], a deterministic logspace
algorithm [1, 13], and many more.

All of the above algorithms are static i.e., the input is presented at once and we need
to answer the planarity testing query and produce an embedding only once. However, in
many real-life scenarios, the input is itself dynamic and evolves by insertion and deletion
of edges. The same query can be asked at any instance and even the embedding may be
required. Rather than recomputing the result from scratch after every update to the input
in many scenarios, it is advantageous to preserve some auxiliary data such that each testing
or embedding query can be answered much faster than recomputation from scratch. The
notion of “fast” can be quantified via the sequential time required to handle the updates and
queries which can be achieved in polylogarithmic time as in the recent breakthrough works of
[22, 21]. These in turn built upon the previous work that dealt with only a partially dynamic
model of computation – insertion only [32, 3, 34] or, deletion only [25] or the fully dynamic
model (that supports both insertions and deletions) but with polynomial time updates [17].

Our metric for evaluating updates is somewhat different and determined according to
the Dynamic Complexity framework of Immerman and Patnaik [31], and is closely related
to the setting of Dong, Su, and Topor [16]. In it, a dynamic problem is characterised by
the smallest complexity class in which it is possible to place the updates to the auxiliary
database and still be able to answer the queries (notice that if the number of possible queries
is polynomial we can just maintain the answers of all queries in the auxiliary database).

Notable amongst these has been the first-order logic formulas or equivalently, the descript-
ive complexity class FO. Thus we obtain the class DynFO of dynamic problems for which
the updates to the auxiliary data structure are in FO given the input structure and stored
auxiliary data structures. The motivation to use first-order logic as the update method has
connections to other areas as well e.g., it implies that such queries are highly parallelisable,
i.e., can be updated by polynomial-size circuits in constant-time due to the correspondence
between FO and uniform AC0 circuits [2]. From the perspective of database theory, such a
program can be translated into equivalent SQL queries.

A particular recent success story of dynamic complexity has been that directed graph
reachability (which is provably not in FO) can be maintained in DynFO [8] resolving a
conjecture from Immerman and Patnaik [31], open since the inception of the field. Since then,
progress has been made in terms of the size of batch updates (i.e., multiple simultaneous
insertions and deletions) that can be handled for reachability, distance, and maximum
matching [12, 30]. Later, improved bounds have been achieved for these problems in various
special graph classes, including in planar graphs [9, 5]. Problems in planar graphs have been
studied in the area of dynamic complexity starting much earlier e.g., before the reachability
conjecture was resolved, it was shown in [6] that reachability in embedded planar graphs is
in DynFO. Also, in [29] it was shown that 3-connected planar graph isomorphism too is in
DynFO with some precomputation. However, despite these works the dynamic complexity
of the planarity testing problem itself is not yet resolved, let alone maintaining a planar
embedding efficiently.

Our contribution. In this paper, we build on past work in dynamic complexity to show
that a planar embedding can be maintained efficiently, where we test for planarity at every
step. Here, by planar embedding we mean a cyclic order on the neighbours of every vertex
in some drawing of the graph on the plane (also known as combinatorial embedding [15]).
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▶ Theorem 1. Given a dynamic graph undergoing insertion and deletion of edges we can
maintain a planar embedding of the graph in DynFO (while never allowing insertion of edges
that cause the graph to become non-planar).

Organization. We start with preliminaries concerning graph theory and dynamic complexity
in Section 2. We present a technical overview of our work in Section 3. In Section 4 we
develop the graph theoretic machinery we need for our algorithm. Next, we describe the
dynamic planar embedding algorithm in Section 5. For the implementation details please
refer to the full version of this paper [7].

2 Preliminaries

We start with some notations followed by graph theoretic preliminaries related to connectivity
and planarity – see [14, Chapters 3, 4] for a thorough introduction. Then we reproduce some
essentials of Dynamic Complexity from [9, 12].

Given a graph G = (V, E), we write V (G) and E(G) to denote the sets of vertices and
edges of G, respectively. For a set of edges S ⊆ E(G) we denote by G − S, the graph with
the edges in S deleted. Similarly for S ⊆ V (G) × V (G) we denote by G + S the graph to
which new edges in S have been added. For a set of vertices T ⊆ V (G), by G − T we refer to
the induced graph G[V (G) \ T ]. An undirected path between u and v is denoted by u ↭ v.

Biconnected and Triconnected Decomposition. We assume familiarity with common
connectivity related terminology including 2-vertex connectivity, 3-vertex connectivity and
the related separating sets viz. cut vertices, separating pairs and the notion of virtual edges
in the triconnected decomposition [23]. Please see the definitions of these terms in the full
version [7, Section 2.1]. The following are two data structures that help in representing tree
decompositions associated with biconnectivity and 3-connectivity respectively.

1. BC-tree or block-cut tree of a connected component of the graph, say H, denoted by
T2(H). The nodes of the tree are the biconnected components (block nodes) and the cut
vertices (cut nodess) of H and the edges are only between cut and block nodes. Block
nodes are denoted by B and the cut nodes are denoted by C.

2. SPQR-tree or the triconnected decomposition tree of a biconnected component of the
graph say B, is denoted by T3(B). The nodes in the SPQR-tree are of one of four types: S

denotes a cycle component (serial node), P denotes a 3-connected separating pair (parallel
node), Q denotes that there is just a single edge in B, and R denotes the 3-connected
components or the so-called rigid nodes. There is an edge between an R-node, say Ri

and a P-node, say Pj if V (Pj) ⊂ V (Ri), and similarly, edges between S and P-nodes are
defined.

We will conflate a node in one of the two trees with the corresponding subgraph. For example,
an R-node interchangeably refers to the tree node as well the associated rigid subgraph.

Planar Embedding. A planar embedding of a graph G = (V, E) is a mapping of vertices and
edges in the plane R2 such that the vertices are mapped to distinct points in the plane and
every edge is mapped to an arc between the points corresponding to the two vertices incident
on it such that no two arcs have any point in common except at their endpoints. This
embedding is called a topological embedding. Corresponding to a given topological embedding,
the faces of the graph are the open regions in R2 \ G (plane with points corresponding to the
vertices and edges removed), call the set of faces as F . For a face f ∈ F , the set of all the
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vertices that lie on the boundary of f , is denoted by V (f). The unbounded face is called the
outer face. An embedding on the surface of a sphere is similarly defined. On the sphere, every
face is bounded. Two topological embeddings are equivalent if, for every vertex, the cyclic
order of its neighbours around the vertex is the same in both embeddings. So, the cyclic order
(or rotation scheme) around each vertex defines an equivalence on the topological embeddings.
The vertex rotation scheme around each vertex encodes the embedding equivalence class
(combinatorial embedding). We now recall two important results. The first one is due to
Whitney [35] that says that a 3-connected planar graph has unique planar embedding on the
sphere (up to reflection). The second one is due to Mac Lane [27] that shows a biconnected
graph is planar iff its triconnected components are planar.

2.1 Dynamic Complexity
The goal of a dynamic program is to answer a given query on an input structure subject
to changes that insert or delete tuples. The program may use an auxiliary data structure
represented by an auxiliary structure over the same domain. Initially, both input and auxiliary
structure are empty; and the domain is fixed during each run of the program.

For a (relational) structure I over domain D and schema σ, a change ∆I consists of sets
R+ and R− of tuples for each relation symbol R ∈ σ. The result I + ∆I of an application of
the change ∆I to I is the input structure where RI is changed to (RI ∪ R+) \ R−. The size
of ∆I is the total number of tuples in relations R+ and R− and the set of affected elements
is the (active) domain of tuples in ∆I.

Dynamic Programs and Maintenance of Queries. A dynamic program consists of a set
of update rules that specify how auxiliary relations are updated after changing the input
structure. An update rule for updating an ℓ-ary auxiliary relation T after a change is a
first-order formula φ over schema τ ∪τaux with ℓ free variables, where τaux is the schema of the
auxiliary structure. After a change ∆I, the new version of T is T := {ā | (I +∆I, A) |= φ(ā)}
where I is the old input structure and A is the current auxiliary structure. Note that a
dynamic program can choose to have access to the old input structure by storing it in its
auxiliary relations.

For a state S = (I, A) of the dynamic program P with input structure I and auxiliary
structure A, we denote by Pα(S), the state of the program after applying a change sequence
α and updating the auxiliary relations accordingly. The dynamic program maintains a q-ary
query Q under changes that affect k elements (under changes of size k, respectively) if it
has a q-ary auxiliary relation Ans that at each point stores the result of Q applied to the
current input structure. More precisely, for each non-empty sequence α of changes that
affect k elements (changes of size k, respectively), the relation Ans in Pα(S∅) and Q(α(I∅))
coincide, where I∅ is an empty input structure, S∅ is the auxiliary structure with empty
auxiliary relations over the domain of I∅, and α(I∅) is the input structure after applying α.
If a dynamic program maintains a query, we say that the query is in DynFO.

3 Technical Overview

It is well known from Whitney’s theorem [35] that 3-connected planar graphs are rigid i.e.,
they (essentially) have a unique embedding. Thus, for example, under the promise that the
graph remains 3-connected and planar it is easy to maintain an embedding in DynFO (see
for example [29]). An edge insertion occurs within a face and there are only local changes to
the embedding – restricted to a face. Deletions are exactly the reverse.



S. Datta, A. Khan, and A. Mukherjee 39:5

On the other extreme are trees, which are minimally connected. These are easy to maintain
as well because any vertex rotation scheme is realisable. However, biconnected components
are not rigid and yet not every rotation scheme for a vertex is valid (see Figure 3a for an
illustration). The real challenge is in maintaining embeddings of biconnected components.

This has been dealt with in literature by decomposing biconnected graphs into 3-connected
components (which are rigid components in the context of planar graphs). The 3-connected
components are organized into trees1 popularly called SPQR-trees [3]. The approach is to
use the rigidity of the 3-connected planar components and the flexibility of trees to maintain
a planar embedding of biconnected graphs. In order to maintain a planar embedding of
connected graphs we need a further tree decomposition into biconnected components that
yields the so-called block-cut trees or BC-trees ([14, Lemma 3.1.4], [19]). Notice that the
tree decomposition into SPQR-trees and BC-trees is Logspace hard [10] and hence not in FO.
Thus, in the parallel dynamic setting, we emulate previous sequential dynamic algorithms in
maintaining (rather than computing from scratch) SPQR-trees and BC-trees in our algorithm.

Issues with biconnected embedding. The basic problem with maintaining biconnected
planar components is their lack of rigidity (with reaching complete flexibility). Thus insertion
of an edge into a biconnected component might necessitate changing the embedding through
operations called flips and slides in literature [22, 21] (see [7, Figure 4]). We might need lots
of flips and slides for a single edge insertion – causing an exponentially large search space.
We now proceed to describe these changes in more detail.

In the simplest form consider a biconnected graph and a separating pair contained within,
separating the component into two 3-connected components. We can reflect one of the
3-connected components, that is, the vertex rotation for each vertex in the 3-connected
component is reversed. More intuitively, mirror a piece across one of its separating pairs. In
more complicated cases there may be cascading flips i.e., reflections across multiple separating
pairs in the biconnected component. We also need to deal with slides, that is changes in
ordering of the biconnected components at a separating pair. A single edge insertion might
need multiple flips and slides.

This induces the definition of flip-distance i.e., the minimum number of flips and slides to
change one embedding of the graph to another. Intuitively, the flip-distance lower bounds
the sequential time needed to transition from one embedding to another.

Thus a crucial part of previous algorithms [22] deals with maintaining an embedding of
small flip distance with every possible embedding that can arise after a single change. In [21]
this algorithm is converted to a fully dynamic algorithm that handles updates in O(log3 n)
time using a sophisticated amortization over the number of flips required to transition to
an appropriate embedding dominates the running time of their algorithm. Notice that [22]
handles changes in O(log3 n) worst case time but only in the incremental setting.

Our approach for dynamic planarity testing. We now switch to motivating our approach
in the parallel dynamic setting that is fully dynamic and does not use amortization. There
are fundamentally two issues to be resolved while inserting an edge – one is whether the
resulting graph is planar. The other is, how to update the embedding, possibly by performing
multiple flips, when the graph remains planar. Let us first focus on biconnected graphs and
the corresponding tree decomposition SPQR-tree introduced in Section 2.

1 The tree decomposition of a biconnected graph into 3-connected pieces is a usual tree decomposition
([14, Chapter 12.3]).
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To check for planarity on insertion of an edge, we introduce the notion of Pi, Pj−coherent
paths. A path between two P-nodes Pi, Pj in an SPQR-tree is said to be coherent if for every
R-node Rk on the path, all the (at most four) vertices of the two adjacent P-nodes are all
on one face of Rk (see Lemma 4). This yields a combinatorial characterisation of coherent
paths, given an embedding of each rigid component. The embedding of a rigid component
is dealt with separately, later on. The significance of coherent paths stems from a crucial
lemma (Lemma 4). This shows that an edge (a, b) is insertable in the graph preserving
planarity if and only if the “projection” of any simple a, b path in the graph2 onto the
corresponding SPQR-tree roughly corresponds to a coherent path. This yields a criterion for
testing planarity after an edge insertion which can be implemented in FO.

Insertions in biconnected components. Having filtered out non-planarity causing edges
we turn to the question of how to construct the new planar embedding of the biconnected
components after an edge insertion. The answer will lead us to investigate how to embed a
rigid component when it is synthesized from a biconnected component.

It is in this context that we introduce the notion of two-colouring of separating pairs. This
is a partial sketch of the new 3-connected component formed after an edge insertion. More
concretely, the separating pairs along the path in the SPQR-tree are no longer separating
pairs after the edge insertion and the common face (as ensured by the crucial lemma alluded
to above) on which all the endpoints of the previous separating pairs lie splits into two faces.
Since the embedding of a 3-connected planar graph is unique, after the edge insertion the
two new faces formed are also unique, i.e., do not depend on the embedding. Thus the
endpoints of each previous separating pair can be two coloured depending on which of the
two faces a separating pair belongs to. We prove in the two-colouring lemma (Lemma 5)
that no separating pair has both vertices coloured with the same colour.

Notice that when an edge is inserted such that its endpoints lie on a coherent path, all
the rigid components on the path coalesce into one large rigid component (see Figure 3c).
Two-colouring allows us to deal with flips by telling us the correct orientation of the coalescing
rigid components on edge insertion. This, in turn, allows us to obtain the face-vertex rotation
scheme of the modified component. In addition, it helps us to maintain the vertex rotation
scheme in some corner cases (when two or more separating pairs share a vertex).

Face-vertex rotation scheme. The sceptical reader might question the necessity of main-
taining the face-vertex rotation scheme for a 3-connected component. This is necessary
for two reasons – first, to apply the planarity test we need to determine the existence of
a common face containing a 4-tuple (or 3-tuple) of vertices. The presence of a face-vertex
rotation scheme directly shows that this part is in FO. Second and more crucially, we need it
to check if a particular triconnected component needs to be reflected after cascaded flips.
Maintaining the vertex rotation scheme for biconnected components is now simple – we just
need to collate the vertex rotation schemes for individual rigid components into one for the
entire graph.

Handling deletions. On deleting edges while it’s not necessary to perform additional flips,
the rest of the updates is roughly the reverse of insertion. On deleting an edge from a
rigid component, we infer two-colourings from the embedding of erstwhile rigid components

2 which satisfies a minimality condition – it does not pass through both vertices of a separating pair
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that decompose into pieces. Further, we have to update the coherent paths since possibly
more edges are insertable preserving planarity. Notice that when an edge is deleted from a
biconnected component this might lead to many simultaneous virtual edge deletions that
might in turn cause triconnected components to decompose. Many (O(n)) invocations of the
above triconnected edge deletion will be needed, but they can be handled in constant parallel
time because they independent of each other as far as the updates required are concerned
(see Figure 2).

Extension to the entire embedding. BC-trees for connected components have blocks and
cut vertices as their nodes. We can maintain an embedding for the graph corresponding to
a block or B-node as above. Since a non-cut vertex belongs to precisely one block, we can
inherit the rotation scheme for such vertices from that of the blocks. For cut vertices, we
need to splice together the vertex rotation scheme from each block that the cut vertex is
incident on as long as the order respects the ordering provided by individual blocks.

Low level details of the information maintained. We maintain BC-tree for each connected
component and SPQR-trees for each biconnected component thereof. In each of these trees
we maintain betweenness information, i.e., for any three nodes X1, X2 and X3 whether X2
occurs on the tree path between X1 and X3. We also maintain a two-colouring of separating
pairs for each Pi, Pj-coherent path in every SPQR-tree. For each rigid component Ri and
each cycle component Sj we maintain their extended planar embedding. Specifically, we
maintain the vertex rotation scheme in the following form. For every vertex v, we maintain
triplet(s) (vi, vj , vk) of neighbours of v that occur in the clockwise order though not necessarily
consecutively. This enables us to insert and delete an arbitrarily large number of neighbours
in FO making it crucial for the planar embedding procedure. This would not be possible
if we were to handle individual insertions and deletions separately. See [7, Figure 6] for an
example. We use a similar representation for the face-vertex rotation scheme.

For biconnected components, we maintain only a planar embedding (not the extended
version) since the face-vertex rotation scheme is not necessary.

Comparison with existing literature. The main idea behind recent algorithms for planar
embedding in the sequential dynamic setting has been optimizing the number of flips
necessitated by the insertion of an edge. This uses either a purely incremental algorithm
or alternatively, a fully dynamic but amortized algorithm. Since our model of computation
is fully dynamic and does not allow for amortization, each change must be handled (i.e.,
finding out the correct cascading flips) in worst case O(1)-time on CRCW-PRAM. We note
that filtering out edges that violate planarity in dynamic sequential t(n) time (a test-and-
reject model) implies an amortized planarity testing algorithm with O(t(n)) time (i.e., a
promise-free model). In contrast, although we have a test-and-reject model we are unable to
relax the model to promise-free because of lack of amortization.

There are weaker promise models such as the one adopted in [11] where for maintaining
a bounded tree-width decomposition it is assumed that the graph has tree-width at most
k without validating the promise at every step. In contrast our algorithm can verify the
promise that no non-planarity-causing edge is added.

In terms of query model support, most previous algorithms [22, 21, 25] only maintain the
vertex rotation scheme in terms of clockwise next neighbour, in fact, [22, 21] need O(log n)
time to figure out the next neighbour. In contrast, we maintain more information in terms of
arbitrary triplets of neighbours in (not necessarily consecutive) clockwise order. This allows
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us to sidestep following arbitrarily many pointers, which is not in FO. Finally, in terms of
parallel time our algorithm (since it uses O(1) time per query/update on CRCW-PRAMs)
is optimal in our chosen model. In contrast, the algorithm of [21] comes close but fails to
achieve the lower bound (of Ω(log n)) in the sequential model of dynamic algorithms.

4 Graph Theoretic Machinery

In this section, we present some graph theoretic results which will be crucial for our mainten-
ance algorithm. We begin with a simple observation and go on to present some criteria for
the planarity of the graph on edge insertion based on the type of the inserted edge.

▶ Observation 2. For a 3-connected planar graph G, two planar embeddings E1 and E2 in the
plane have the same vertex rotation scheme if between the two embeddings only the clockwise
order of vertices on the boundary of the outer faces of the two embeddings are reverse if each
other and all the clockwise order of vertices on the boundary of internal faces is same.

Notice that due to the above fact, given a planar embedding with its outer face F0 and an
internal face F1 specified, we can modify it to make F1 the outer face while keeping the
vertex rotation scheme unchanged by just reversing the orientation of the faces F0 and F1.

Next, we present some criteria to determine if an edge to be inserted in a planar graph
causes it to become non-planar.

▶ Lemma 3. For any 3-connected planar graph G, G + {{a, b}} is planar if and only if a

and b lie on the boundary of a common face.

Next, let us consider the case where the vertices a and b are in the same block, say Bi,
of a connected component of the graph. Let Ra, Rb ∈ V (T3(Bi)) be two R-nodes in the
SPQR-tree of Bi such that a ∈ V (Ra) and b ∈ V (Rb). Consider the path between Ra and Rb

nodes in T3(Bi), Ra, P1, R1, P2, . . . , Rk, Pk+1, Rb, where Ri and Pi are R-nodes and S-nodes
in T3(Bi) respectively, that appear on the path between Ra, Rb (see Figure 3). We have the
following lemma (see the full version [7, Section 8] for the proof).

▶ Lemma 4. G + {{a, b}} is planar if and only if
(a) all vertices in {a} ∪ V (P1) lie on a common face boundary in the embedding of Ra

(b) all vertices in V (Pk+1) ∪ {b} lie on a common face boundary in the embedding of Rb, and
(c) for each i ∈ [k] all vertices in V (Pi) ∪ V (Pi+1) lie on a common face in the embedding

of Ri. Equivalently Ra ↭ Rb tree path is a coherent path.
Consider the case in which [2 +−→ 3] edge {a, b} can be inserted into G preserving planarity.

Notice that the 3-connected components Ra, R1, . . . , Rk, Rb coalesce into one 3-connected
component after the insertion of the edge. Let this coalesced 3-connected component be
Rab. Obviously, {a, b} would be at the boundary of exactly two faces of Rab, say F0, F1. We
claim that the separating pair vertices in

⋃
i∈[k+1] V (Pi) all lie either on the boundary of F0

or F1. See Figure 1. We provide the proof of the following lemma in the full version of this
paper [7, Section 8].

▶ Lemma 5. The faces F0 and F1 define a partition into two parts on the set of vertices
in the separating pairs

⋃
i∈[k+1] V (Pi) such that, for all i ∈ [k + 1] the two vertices in V (Pi)

belong to different blocks of the partition.
Finally, if the vertices a and b are in the same connected component but not in the same

biconnected component then we use the following lemma to test for edge insertion validity.
Let the vertices a, b lie in a connected component Ci. Let Ba, Bb ∈ N(T2(Ci)) be two block
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Figure 1 Two-colouring of P-node vertices.

nodes in the BC-Tree of the connected component Ci such that a ∈ V (Ba) and b ∈ V (Bb).
Consider the following path between Ba and Bb in T2(Ci), Ba, c1, B1, c2, . . . , ck, Bk, ck+1, Bb

where Bi and ci are block and cut nodes respectively, in T2(Ci) that appear on the path
between Ba and Bb (see Figure 2). We abuse the names of cut nodes to also denote the cut
vertex’s name. Insertion of such an edge, i.e, [1 +−→ 2] leads to the blocks Ba, B1, . . . , Bk, Bb

coalescing into one block, call it Bab. In the triconnected decomposition of Bab a new cycle
component is introduced that consists of the edge {a, b} and virtual edges between the
consecutive cut vertices ci, ci+1, i ∈ [k]. See Figure 2d. We provide the proof of the following
lemma in the full version of this paper [7, Section 8].

▶ Lemma 6. G + {{a, b}} is planar if and only if (a) G[V (Ba)] + {{a, c1}} is planar, (b)
G[V (Bb)] + {{ck+1, b}} is planar, and (c) for each i ∈ [k], G[V (Bi)] + {{ci, ci+1}} is planar.

5 Dynamic Planar Embedding

Our idea is to maintain planar embeddings of all triconnected components (S and R-nodes) of
the graph and use those to find the embedding of the entire graph. Insertions and deletions of
edges change the triconnected components of the graph, i.e., a triconnected component might
decompose into multiple triconnected components or multiple triconnected components may
coalesce together to form a single one. The same is true of biconnected components, i.e., a
biconnected component might decompose into multiple biconnected components or multiple
triconnected components may coalesce together to form a single biconnected component.

We discuss here how we update the embeddings of the triconnected components under
insertions and deletions, assuming that we have the SPQR-tree and BC-tree relations available
at every step (which we show how to maintain in the full version of this paper [7, Section 6]).

Some of the edge insertions/deletions are easier to describe, for example if the edge is
being inserted in a rigid component then only the embedding of that rigid component has to
change to reflect the presence of the new edge and introduction of two new faces. Thus, we
first establish some notation to differentiate between classes of edges for ease of exposition.

▶ Definition 7. A graph is actually i-connected if it is i-connected but is not i + 1-connected
for i ∈ {0, 1, 2}. For i = 3, a graph is actually i-connected if the graph is 3-connected.

▶ Definition 8. The type of an edge is [i σ−→ j] where i, j ∈ {0, 1, 2, 3} and σ ∈ {+, −} such
that

σ = + if the edge is being inserted into G. σ = − if the edge is being deleted.
both the endpoints are in a common actually i-connected component before the change
and in a common actually j-connected component after the change.
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In the next two subsections we outline the updates in the triconnected planar embedding
relations as well as the two-colouring relations which are described in complete detail in the
full version of this paper [7, Section 10 and 11].
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Figure 2 [1 +−→ 2] edge {a, b} insertion. (2a) To-be-inserted edge is highlighted in red. (2b)
The path between block nodes Ba and Bb is highlighted in the BC-tree. (2c) The BC-tree of the
connected component CCi. Ba ↭ Bb path has shrunk to a single node Bab in the BC-tree. (2d)
The SPQR-tree of the block Bab contains a cycle component Sab made of the inserted edge and the
new virtual edges that are introduced after its insertion.

5.1 Edge insertion
Find the type [i +−→ j] of the inserted edge {a, b} (where i, j ∈ {0, 1, 2, 3}). This can be done
using [7, Lemma 10 and 11]. Depending on the type we branch to one of the following
options:
(a) [0 +−→ 1] This case affects only the BC-tree and SPQR-tree relations. Embedding and

colouring relations remain unaffected.
(b) [1 +−→ 2]: In this case, both the endpoints a, b are in the same connected component C

but not in the same biconnected component Ba, Bb (see Figure 2a). On this insertion,
the BC-tree of the connected component changes. All the biconnected components on the
Ba ↭ Bb path in the BC-tree of C coalesce into one biconnected component Bab (see
Figure 2c). In the BC-tree of the connected component, for each pair of consecutive cut-
vertices on the Ba ↭ Bb path, a virtual edge is inserted in the biconnected component
shared by the cut-vertex pair. This edge is a [2 +−→ 3] or [3 +−→ 3] edge and is handled
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below. Since the biconnected components involved are distinct, all these edges can be
simultaneously inserted. In addition, a cycle component is introduced for which the
face-vertex rotation scheme is computed via the betweenness relation in the BC-tree
(see Figure 2d). The two-colouring relation is updated by extending the colouring of old
biconnected components across the new cycle component (in Figure 2d, a coherent path
from a P-node in T3(B′

a) to a P-node in T3(B′
2) will have to go via an S-node Sab).

(c) [2 +−→ 3]: Both a, b are in the same biconnected component, say Bi, but not in the same
rigid component. Let a ∈ V (Ra) and b ∈ Rb, where Ra and Rb are two R-nodes in
the SPQR-tree of Bi. The SPQR-tree of the biconnected component changes after the
insertion as follows. All the rigid components on the Ra ↭ Rb SPQR-tree path coalesce
into one rigid component (see Figures 3a, 3b). The embedding of the coalesced rigid
component is obtained by combining the embeddings of the old triconnected components
that are on the Ra ↭ Rb path, with their correct orientation computed from the
two-colouring of the separating pairs for the corresponding coherent path. To update the
two-colouring of the separating pair vertices, first we discard those old coherent paths
and their two-colouring, that are no longer coherent as result of the insertion of {a, b}.
While for the subpaths of the old coherent paths that remain coherent we obtain their
two-colouring from that of the old path by ignoring colourings of old P-nodes on the
Ra ↭ Rb path.

(d) [3 +−→ 3]: In this case, both the vertices are in the same 3-connected component. Due to
this insertion, connectivity relations do not change. We identify the unique common face
in the embedding of the 3-connected component that the two vertices lie on. We split
the face into two new faces with the new edge being their common edge, i.e, the face
vertex rotation scheme of the old face is split across the new edge. In the vertex rotation
scheme of the two vertices, we insert the new edge in an appropriate order.

5.2 Edge deletion
Find the type of the edge {a, b} that is being deleted. Depending on the type we branch to
one of the following options:
(a) [1 −−→ 0]: This case occurs when both a, b are in the same connected component but

not in the same biconnected component. The edge is a cut edge and only BC-tree and
SPQR-tree relations are affected.

(b) [2 −−→ 1]: In this case, both vertices are in the same biconnected component but not in
the same 3-connected component before the change. This is the inverse of the insertion
operation of an edge of the type [1 +−→ 2]. The biconnectivity of the old biconnected com-
ponent changes and it unfurls into a path consisting of multiple biconnected components
that are connected via new cut vertices (in Figure 2c if the edge {a, b} is deleted, the
block Bab will unfurl into the highlighted path in Figure 2b). Old virtual edges that are
still present in the new biconnected components are deleted. These virtual edge deletions
are of type [3 −−→ 3] or [3 −−→ 2] which we describe how to handle in the following cases.

(c) [3 −−→ 2]: In this case a, b are in the same rigid component Rab (see Figure 3c) before
the change. But after the deletion of {a, b}, Rab decomposes into smaller triconnected
components that are unfurled into a path in the SPQR-tree (see Figure 3b). We compute
an embedding of the triconnected fragments of Rab using the embedding of Rab. From
the updated embedding of Rab, we compute the two-colouring of the separating pair
vertices pertaining to the unfurled path on an SPQR-tree. We compose the obtained
colouring with the rest of Bab. The two-colouring of the elongated coherent paths is
made consistent by flipping the colouring of the P-nodes of one subpath, if necessary.
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(d) [3 −−→ 3]: In this case both a, b are in the same 3-connected component before and after
the deletion of {a, b}. Connectivity relations (connectedness, bi/tri-connectivity) remain
unchanged. The two faces in the embedding of the 3-connected component that are
adjacent to each other via the to-be-deleted edge are merged together to form a new
face. From the vertex rotation schemes of the two vertices, the edge is omitted. Pairs
of coherent paths that merge due to the merging of two faces have to be consistently
two-coloured.

Notice that we do not describe changes of types [0 +−→ 2], [0 +−→ 3], [1 +−→ 3], [3 −−→ 0], [3 −−→ 1],
[2 −−→ 0], since edge insertion or deletion only changes the number of disjoint paths between
any two vertices at most by one and thus these type of edge change are not possible. Also,
we omit the changes of type [2 +−→ 2] and [2 −−→ 2] (related to S-nodes) as they are corner
cases that we discuss in the full version of this paper [7, Section 11.4].

a1

b1

a2

b2

a3

b3

a bRa RbR1 R2 R3

R4

R5

a4

b4

a5

b5

a6 b6

(a)

R4

P5

Ra

P1

P2

P4

P3

R2

P6

R5

Rb

R3R1

(b)

R4

P5

P4

P6

R5

R3

a b

Rab

(c)

Figure 3 A [2 +−→ 3] edge {a, b} insertion. (3a) To-be-inserted edge is highlighted in red. (3b)
The SPQR-tree of block Bi before insertion. The path between R-nodes Ra and Rb is highlighted.
(3c) SPQR-tree of Bi after insertion. The Ra ↭ Rb path has shrunk to a single node Rab.

5.3 Embedding the biconnected components
For each biconnected component, we maintain an embedding in the form of the vertex rotation
scheme for its vertices. Note that we do not need to maintain the face-vertex rotation scheme
for the biconnected components. The relevant updates for maintaining the biconnected
components embedding are edge changes of type [1 +−→ 2], [2 +−→ 3], [3 +−→ 3], [3 −−→ 3], [3 −−→ 2],
and [2 −−→ 1]. For a [2 +−→ 3] change, the part of the block that becomes triconnected, after the
insertion of the edge, we patch together its vertex rotation scheme with unchanged fragments
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of the existing vertex rotation scheme in the affected block. For example, in Figure 3, after
the insertion of edge {a, b}, R-nodes Ra, R1, R2 and Rb coalesce together to form Rab (part
of the block that has become triconnected). The embedding of the unchanged fragments
of the block, viz., R3, R4 and R5 is patched together at the appropriate P-nodes with the
updated embedding of Rab to update the embedding of the entire block. In a [1 +−→ 2] change,
multiple biconnected components coalesce together. First, we update the vertex rotation
scheme of each block by inserting a required virtual edge and then patch together the vertex
rotation schemes at the old cut vertices. For a [3 −−→ 2] change, we splice in new virtual edges,
that arise as a result of the change, in appropriate places in the vertex rotation scheme of
the affected block. Details of the updates required in all types of edge changes are described
in the full version of this paper [7, Section 12.1].

5.4 Embedding the entire graph
Assuming that we have planar embedding (in terms of the vertex rotation scheme) of each
biconnected component of the graph we can compute a planar embedding of the whole graph
as follows. For the vertices that are not cut vertices, their vertex rotation scheme is the
same as their vertex rotation scheme in the embedding of their respective blocks that they
belong to. For a cut vertex v, we join together its vertex rotation schemes from each block v

belongs to. We only need to take care that in the combined vertex rotation scheme of v, its
neighbours in each block appear together and are not interspersed.

We now complete the proof of the main theorem. We provide the complete details in the
full version of this paper [7, Section 10, 11 and 12].

▶ Lemma 9. The extended planar embeddings of all cycle, rigid components and a planar
embedding for each biconnected component of the graph can be updated in DynFO under edge
changes of type: [1 +−→ 2], [2 +−→ 3], [3 +−→ 3], [2 +−→ 2], [2 −−→ 2], [2 −−→ 1], [3 −−→ 2], [3 −−→ 3].

The above lemma combined with the implementation details provided in the full version [7,
Section 12] allows us to prove the main theorem:

▶ Theorem 1. Given a dynamic graph undergoing insertion and deletion of edges we can
maintain a planar embedding of the graph in DynFO (while never allowing insertion of edges
that cause the graph to become non-planar).

Proof. If an edge insertion is within a 3-connected component the criterion in Lemma 3
tells us when the resulting component becomes non-planar. Analogously, Lemma 4 informs
us when a 2-connected component is non-planar on an edge insertion within it (but across
different 3-connected components). Similarly Lemma 6 allows us to determine if an edge
added within a connected component but between two different 2-connected components
causes non-planarity. An invocation of Lemma 9 shows how ot update the planar embedding
for biconnected graphs. Moving on to connected graphs, vertex rotation schemes of the
cut-vertices is obtained by combining their vertex rotation schemes in each block in any
non-interspersed order, using FO primitive merge vertex rotation schemes (see [7, Section 9]).
Remaining vertices inherit their vertex rotation scheme from the unique block they belong
to. This completes the proof. ◀

6 Conclusion

We show that planarity testing and embedding is in DynFO where we are able to ensure that
an edge is inserted if and only if it does not cause the graph to become non-planar. This is
potentially an important step in the direction of solving problems like distance and matching
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where only an upper bound of DynFO[⊕] (where FO[⊕] is FO with parity quantifiers) was
known in planar graphs. This is because we might be able to improve the known bound
making use of planar duality which presupposes a planar embedding. It might also make
problems like max flow, graph isomorphism, and counting perfect matchings which are all
statically parallelisable when restricted to planar graphs, accessible to a DynFO bound.
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Abstract
The universality problem asks whether a given finite state automaton accepts all the input words.
For quantitative models of automata, where input words are mapped to real values, this is naturally
extended to ask whether all the words are mapped to values above (or below) a given threshold.
This is known to be undecidable for commonly studied examples such as weighted automata over
the positive rational (plus-times) or the integer tropical (min-plus) semirings, or equivalently cost
register automata (CRAs) over these semirings. In this paper, we prove that when restricted to
CRAs with only three registers, the universality problem is still undecidable, even with additional
restrictions for the CRAs to be copyless linear with resets.

In contrast, we show that, assuming the unary encoding of updates, the ∀-exact problem (does the
CRA output zero on all the words?) for integer min-plus linear CRAs can be decided in polynomial
time if the number of registers is constant. Without the restriction on the number of registers this
problem is known to be PSPACE-complete.
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1 Introduction

Cost register automata (CRAs), introduced by Alur et al. [3], are an extension of finite state
automata. Instead of just accepting or rejecting words, they assign each word a value, usually
from some semiring. This allows to reason about quantitative properties of systems, such as
costs, probabilities, or durations. A CRA is a deterministic finite automaton equipped with a
finite set of write-only registers which store values from a semiring, and which are combined
using the operations of this semiring. The transitions that a CRA takes thus depend only
on the input word, and not on the values of the registers, which makes them different to
automata with counters (such as Minsky machines), and allows more of their properties to
be decidable.

CRAs are tightly related to weighted automata (WAs), a classical computational model
which maps words to values from a fixed semiring. In general, WAs are less expressive than
CRAs [3]. However, WAs are equally expressive to linear CRAs, which are CRAs where the
updates of the registers are restricted to linear transformations. Hence linear CRAs can be
seen as a deterministic model for WAs. Transforming a linear CRA into an equivalent WA
and vice versa can be done in polynomial time.
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WAs extend automata to a quantitative setting and have been extensively studied since
their introduction by Schützenberger in [21], see also surveys [11, 12]. Two widely studied
models are WAs over the tropical (or min-plus) semiring and probabilistic WAs, a restricted
case of WAs over the semiring of rational numbers with usual addition and multiplication
(plus-times semiring). They find their applications in such areas as language and speech
processing [19], verification [6], image processing [7], and analysis of on-line algorithms [4]
and probabilistic systems [23].

Most applications are algorithmic in their nature, that is, require checking some property
of the automaton which models a given system. Often these are classical automata-theoretic
properties such as universality, emptiness, boundedness, equivalence, etc., generalised to
the quantitative setting. For example, the universality problem for non-deterministic finite
state automata asks whether all the input words are accepted. It is PSPACE-complete
and is solvable in polynomial time for deterministic finite automata [22]. A natural way to
generalise this problem to the quantitative setting is to ask whether all the input words are
mapped to a value above (or below, depending on the semiring) a certain threshold. For the
min-plus semiring (Z∪ {+∞},min, +) (are all the values strictly below 0?), and the plus-times
semiring (Q, +,×) (are all the values strictly above 1?) this problem is undecidable, see [16, 1]
and [20] respectively.

It is thus important to try to find subclasses where this problem becomes decidable. A
WA is called linearly ambiguous (respectively, finitely ambiguous) if there is a constant 𝐶

such that for every word 𝑤 the number of accepting runs labelled by 𝑤 is bounded by 𝐶 |𝑤 |
(respectively, by 𝐶). In both cases (min-plus and plus-times), undecidability is retained even
for linearly ambiguous WAs, see [16, 1] and [9] respectively. For finitely ambiguous min-plus
WAs universality becomes decidable [24, 13].

Some syntactic restrictions on CRAs allow to introduce subclasses whose expressiveness
is incomparable to known classes of WAs. One natural restriction is to bound the number of
registers: there exist CRAs with only two registers that compute functions which cannot be
computed by a finitely ambiguous WA (Example 2 provides one such CRA). This means
that if universality is decidable for CRAs with only two registers, that would allow to decide
it for more WAs than it was possible before. We show that for three registers this is not the
case, even when restricted further to copyless linear CRAs with resets (see next section for a
formal definition), leaving the two-register case as the only remaining option. Undecidability
for five registers in the min-plus case follows from a construction in [2], which we use as a
starting idea in Subsection 3.1. We note that no characterisation of CRAs with bounded
number of registers (or any of its subclasses) in terms of WAs is known, so our results do not
follow from any results about WAs.

Informally, a CRA is called copyless if the value of each its registers can only be used
once for each transition. In [3], Alur et al. conjectured that universality is decidable for the
class of copyless CRAs over the min-plus semiring. In [2], Almagor et al. disproved this
conjecture and showed that universality is still undecidable for them. It is natural to ask the
same question for the plus-times semiring, but no such results have been known so far. In
this paper we show that this conjecture is not true for the plus-times case as well.

CRAs with a bounded number of registers were also studied in the context of register
complexity. The register complexity of a function is the minimum number of registers of
a CRA that computes it. The problem of computing the register complexity is known to
be decidable for unambiguous WA [10], but is open and highly challenging in general. This
problem can be seen as a generalisation of the classical determinisation problem, asking if
for a given WA there exists an equivalent deterministic one, which amounts to ask whether
there exists an equivalent linear CRA with one register [15, 14, 8].
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Our contributions. In this paper we prove that for CRAs which are linear with resets,
copyless and have only 3 registers universality is still undecidable, both for the min-plus and
the plus-times semirings. Our approach gives in fact a more general result, encompassing
both semirings at the same time, and proves undecidability of universality under some specific
conditions on the semiring. This is an additional advantage of our technique, since usually
the proofs for the two mentioned semirings are very different.

Another natural decision problem we consider is the ∀-exact problem, which asks for a
given CRA or WA if it outputs zero on all the words. It is known to be PSPACE-complete
for WAs (and hence for linear CRAs) over the min-plus semiring [1]. It was also investigated
for polynomial automata, which can be seen as a generalisation of WAs over a field [5]. We
prove that for this problem bounding the number of registers does help: namely, the ∀-exact
problem is solvable in polynomial time for a linear CRA over the min-plus semiring when
the number of its registers is a constant, and the updates of registers are given in the unary
encoding.

Organisation of the paper. In Section 2, we introduce the model under consideration,
namely copyless linear cost-register automata with resets, and the decision problems we
study, the universality and the ∀-exact problems. In Sections 3 and 4, we give the proof
of undecidability for the universality problem. To make the content more understandable,
we do it in two steps: first we explain the main ideas on a specific sub-problem and on a
particular semiring in Section 3, and then extend these ideas to give the general proof in
Section 4.

2 Cost register automata and decision problems

2.1 Cost register automata
Cost register automata (CRAs) are defined in a general way as deterministic finite automata
equipped with so-called registers that can store values (numbers, words...) and be combined
with operations (addition, multiplication, minimum, discounted sum, concatenation...). In
this paper, we consider a quite restrictive class of CRAs. The undecidability results we
obtain for this specific class are then applicable to larger classes and CRAs in general.

▶ Definition 1. A linear cost register automaton with resets with 𝑘 registers over
a semiring (K, ⊕, ⊗) is a deterministic finite automaton (𝑄, Σ, 𝛿, 𝑠) equipped with registers
𝑟1, . . . , 𝑟𝑘 taking values in K, where 𝑄 is a finite set of states and 𝑠 the unique initial
state, Σ the alphabet and 𝛿 the transition function. The initial values of the registers
are specified by a vector 𝜆 ∈ K𝑘 and the output function at a state 𝑞 is specified as
(a linear transformation) ⊕𝑘

𝑗=1 (𝑚
(𝑞)
𝑗
⊗ 𝑟 𝑗 ) or (a constant) 𝑚 (𝑞) , where 𝑚

(𝑞)
1 , . . . , 𝑚

(𝑞)
𝑘

, 𝑚 (𝑞)

are elements of K. Finally, each transition of 𝛿 is equipped with 𝑘 transformations, one for
every register, each of one of the two forms:

𝑟𝑖 ←
𝑘⊕
𝑗=1

𝑚𝑖, 𝑗 ⊗ 𝑟 𝑗 (a linear transformation),

𝑟𝑖 ← 𝑚𝑖,𝑘+1 (a reset to a constant)

with 𝑚𝑖, 𝑗 ∈ K for all 1 ≤ 𝑖 ≤ 𝑘, 1 ≤ 𝑗 ≤ 𝑘 + 1.
The semantics of a CRA is defined by means of valuations of the registers. A valuation 𝜎

of the registers is a function {𝑟1, . . . , 𝑟𝑘} → K. A run on a word 𝑎1𝑎2 . . . 𝑎𝑛, where 𝑎𝑖 ∈ Σ
for all 𝑖, is a sequence: 𝜌 = (𝑞1, 𝜎1)

𝑎1−−→ (𝑞2, 𝜎2)
𝑎2−−→ . . .

𝑎𝑛−−→ (𝑞𝑛+1, 𝜎𝑛+1) where 𝑞1
𝑎1−−→ 𝑞2

𝑎2−−→
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𝑝 𝑞

0min{𝑥, 𝑦}

𝑎 :
{
𝑥 ← 𝑥 + 1
𝑦 ← 𝑦

# :
{
𝑥 ← 0
𝑦 ←min{𝑥, 𝑦}

𝑎 :
{
𝑥 ← 𝑥 + 1
𝑦 ← 𝑦

# :
{
𝑥 ← 0
𝑦 ←min{𝑥, 𝑦}

Figure 1 An example of CRA on the semiring (Z ∪ {+∞},min, +).

. . .
𝑎𝑛−−→ 𝑞𝑛+1 is a run in the underlying deterministic finite automaton, and the valuations

of the registers 𝜎1, . . . , 𝜎𝑛+1 are updated according to the transitions: for all 1 ≤ ℓ ≤ 𝑛,
𝜎ℓ+1 (𝑟𝑖) =

⊕𝑘

𝑗=1 𝑚𝑖, 𝑗 ⊗ 𝜎ℓ (𝑟 𝑗 ) if the transition update is given by a linear transformation and
𝜎ℓ+1 (𝑟𝑖) = 𝑚𝑖,𝑘+1 if it is given by a reset to a constant.

The run is accepting if additionally 𝑞1 = 𝑠 and 𝜎1 (𝑟𝑖) = 𝜆𝑖 for all 𝑖, and the output on
𝑎1𝑎2 . . . 𝑎𝑛 is given by the output function at state 𝑞𝑛+1, i.e. ⊕𝑘

𝑗=1𝑚
(𝑞𝑛+1 )
𝑗

⊗ 𝜎𝑛+1 (𝑟 𝑗 ) if this is
given by a linear transformation and 𝑚 (𝑞𝑛+1 ) if this is given by a constant. Finally, a CRA
is called copyless if for each transition, every register appears at most once on the right
hand-side of the updates: for all 𝑗 , 𝑚𝑖, 𝑗 is the zero of K, except for at most one 𝑖.

All CRAs considered in this paper are from this restrictive class of copyless linear CRAs
with resets, so unless specified otherwise by CRAs we mean CRAs from this class. Given a
CRA A, we will use A to denote both the CRA itself and the function Σ∗ → K it computes.

▶ Example 2. In Figure 1, we give an example of a CRA over the semiring (Z∪{+∞},min, +)
and alphabet {𝑎,#}. It has two states 𝑝 (which is initial) and 𝑞, and two registers 𝑥 and 𝑦.
The output function at state 𝑝 (words ending with 𝑎 and the empty word) is min{𝑥, 𝑦} and
at state 𝑞 (words ending with #) is 0. Both registers are initialised with value 0.

If the input word ends with # or is empty, this CRA outputs 0. If it ends with 𝑎, the
CRA outputs the length of the shortest maximal blocks of consecutive 𝑎’s. Register 𝑥 stores
the number of 𝑎’s read in the current block, and 𝑦 stores the minimum length of the blocks
read so far. This CRA is copyless linear with resets.

For any semiring, copyless linear CRAs with resets are at most as expressive as linearly
ambiguous WAs, strictly less expressive than polynomially ambiguous WAs, and are incom-
parable to unambiguous WAs [8]. For the min-plus semiring specifically, they are strictly
less expressive than linearly ambiguous WAs [2], incomparable to unambiguous WAs [2] and,
at the same time, there exists a copyless CRA (but not linear with resets) with 3 registers
which is not equivalent to any polynomially ambiguous WA [17].

2.2 Decision problems
We are mainly interested in two classes of CRAs: CRAs over (Z ∪ {+∞},min, +), called
min-plus CRAs, and over (Q, +,×), called plus-times CRAs in this paper. Our main result is
that the universality problem for these two classes, where the number of registers is restricted
to 3, is undecidable. We define this problem as follows:

Universality problem for 3-register CRAs
Input: A min-plus (respectively, plus-times) CRA A with 3 registers.
Output: Yes if and only if for all words 𝑤, we have A(𝑤) < 0 (respectively, A(𝑤) > 1).
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▶ Theorem 3. The universality problem for 3-register CRAs is undecidable both for min-plus
CRAs and for plus-times CRAs.

To prove this result we give a reduction from the halting problem for Minsky machines
with 2 counters, which is known to be undecidable. This leads us to prove a slightly more
general result, encompassing both the min-plus and plus-times cases at the same time.

To simulate the behaviour of a Minsky machine with a CRA, we encode the run of the
Minsky machine into a specific word and use the CRA to check that a given word corresponds
to a correct encoding of the halting run. This boils down to checking some regular properties
and verifying that the counters are updated accordingly to the transitions. To explain our
approach of this later part, we start by looking at a simpler problem in Section 3: checking
that 𝑛1 = 𝑛2 = . . . = 𝑛𝑝 for a word of the shape 𝑎𝑛1♯𝑎𝑛2♯ . . . ♯𝑎𝑛𝑝−1♯♯𝑎𝑛𝑝 . We explain how to
do this with only 3 registers in the min-plus case. In Section 4, we give the full proof of
Theorem 3 in a more general setting, allowing us to apply it to both min-plus and plus-times.

On the other hand, we also give a more positive result in the min-plus case: the ∀-
exact problem, as defined below, is known to be PSPACE-complete for linear CRAs with
a non-restricted number of registers [1, Theorem 6.13]. We show that it becomes solvable
in polynomial time when the number of registers is fixed (and is not a part of the input).
For a fixed number of registers, we assume that the size of a CRA is given by its number of
states plus the largest absolute value of an integer appearing in an update of a transition or
in the output function at a state. Hence, we assume the unary encoding of the numbers in
the input. Without the restriction on the number of registers the ∀-exact problem remains
PSPACE-complete in this case [1]. Note that for this results, and for this result only, we
consider the class of linear CRAs instead of the class of copyless linear CRAs with resets.

The ∀-exact problem for 𝑘-register min-plus linear CRAs
Input: A min-plus linear CRA A with 𝑘 registers.
Output: Yes if and only if for all words 𝑤, we have A(𝑤) = 0.

▶ Theorem 4. For a fixed 𝑘, the ∀-exact problem is decidable in polynomial time for 𝑘-register
min-plus linear CRAs, assuming that the numbers in the transformations are given in the
unary encoding.

This result comes from a variation of a pumping argument, showing that for all words to
have value 0, the (useful) values of the registers have to be bounded (below and above) by a
constant that is polynomial in the size of the CRA. One can then just keep track of these
values. The full proof of this result can be found in the full version of the paper.

Variants. The proofs given in this paper can be easily adapted to obtain the undecidability
of other variants of the universality problem: for plus-times, whether A(𝑤) > 𝑐 or A(𝑤) < 𝑐,
and for min-plus, whether A(𝑤) < 𝑐 for any constant 𝑐, and the polynomial-time complexity
of variants of the ∀-exact problem: for min-plus, whether A(𝑤) = 𝑐 for any given constant
𝑐. Note that in some cases (for min-plus), a direct translation between these problems is
possible and preserves the number of registers. In others (plus-times), the natural translation
between these problems would increase the number of registers by 1, but an adaptation of
the proofs given in this paper would maintain this number to 3.
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3 Recognising equal-length blocks

To explain our approach, we first look at a simpler problem: given a word

𝑤 = 𝑎𝑛1♯𝑎𝑛2♯ . . . ♯𝑎𝑛𝑝−1♯𝑎𝑛𝑝 ,

check with a min-plus CRA if all 𝑛𝑖 are equal. We assume that the CRA knows that it is
going to read the last block of 𝑎’s. For example, that can be done by duplicating the last ♯

symbol in the word, but we omit this technical detail for now. More precisely:

▶ Proposition 5. There exist a min-plus CRA A over the alphabet {𝑎, ♯} with 3 registers
such that A(𝑤) ≤ 0 for all words 𝑤, and A(𝑤) = 0 if and only if 𝑤 = (𝑎𝑛♯)𝑚♯𝑎𝑛 for some
integers 𝑛, 𝑚.

We describe the solution to this problem in an incremental way, starting from a CRA
with 5 registers and then using more and more complex ideas to get to 4 and then finally to
only 3 registers. We call a maximal subword of consecutive 𝑎’s a block. For 1 ≤ 𝑖 ≤ 𝑝 − 1,
define 𝑤𝑖 = 𝑎𝑛𝑖 ♯𝑎𝑛𝑖+1 .

3.1 Five registers

a a a a a # a a a a a # a a a a a # a a a a a # a a a a a

x1

x2

y1

y2

w1 w3

w2 w4

Figure 2 The computations of two pairs of registers processing 𝑤𝑖 , 1 ≤ 𝑖 ≤ 4. An increasing line
means that the register is incremented by 1 for each letter and a decreasing line that the register is
decremented by 1 for each letter.

The case of five registers is easy and uses the idea described in [2]. To test if for a word
𝑤𝑖 = 𝑎𝑛𝑖 ♯𝑎𝑛𝑖+1 we have 𝑛𝑖 = 𝑛𝑖+1, we use two registers, call them 𝑥1 and 𝑥2, initialised to
zero. While reading the first of two blocks, 𝑥1 is incremented by one, and 𝑥2 is decremented
by one. While reading the second block, they do the opposite. Thus, after reading 𝑤𝑖, the
value of 𝑥1 is 𝑛𝑖 − 𝑛𝑖+1, and the value of 𝑥2 is −𝑛𝑖 + 𝑛𝑖+1. Observe that 𝑛𝑖 = 𝑛𝑖+1 if and only
if min{𝑛𝑖 − 𝑛𝑖+1,−𝑛𝑖 + 𝑛𝑖+1} = 0. Moreover, min{𝑛𝑖 − 𝑛𝑖+1,−𝑛𝑖 + 𝑛𝑖+1} is always non-positive.
We introduce a new special register 𝑧. After reading 𝑤𝑖, we set 𝑧 ← min{𝑧, 𝑥1, 𝑥2} and reset
𝑥1 and 𝑥2 to zero. Hence the value of 𝑧 is then the minimum of its previous value and
min{𝑛𝑖 − 𝑛𝑖+1,−𝑛𝑖 + 𝑛𝑖+1}.

After doing that, we have already read the second block of 𝑤𝑖, so we cannot do the same
for 𝑤𝑖+1 using the same registers. However, we can cover all words 𝑤𝑖 by using two pairs
of registers: one pair 𝑥1, 𝑥2 for 𝑤𝑖 with 𝑖 odd, and another pair 𝑦1, 𝑦2 for 𝑖 even, because
each pair is reset to zero at the end of reading 𝑤𝑖+1, and hence can be used for processing
𝑤𝑖+2. Register 𝑧 is shared between these two pairs. Figure 2 illustrates the computations
performed by the pairs 𝑥1, 𝑥2 and 𝑦1, 𝑦2.
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The register 𝑧 is initialised with zero at the beginning, and changes its value as described
above. The output of the CRA is then defined as min{𝑧, 𝑥1, 𝑥2} if 𝑖 is odd, and min{𝑧, 𝑦1, 𝑦2}
if 𝑖 is even. This value is the minimum of the values {𝑛𝑖 − 𝑛𝑖+1,−𝑛𝑖 + 𝑛𝑖+1 | 1 ≤ 𝑖 ≤ 𝑝 − 1}. It
is equal to zero if and only if all 𝑛𝑖 are equal, for 1 ≤ 𝑖 ≤ 𝑝, otherwise it is strictly negative.

3.2 Four registers
The case of four registers is handled similarly, but now we want to get rid of the register 𝑧,
and accumulate the non-positive value min{𝑛𝑖 − 𝑛𝑖+1,−𝑛𝑖 + 𝑛𝑖+1} in one of the registers that
we use for its computation.

Once again, we use two pairs 𝑥1, 𝑥2 and 𝑦1, 𝑦2 of registers to separately process 𝑤𝑖 for
odd and even values of 𝑖, and before reading the input we initialise them all with zeros.
Assume that 𝑖 is odd, and hence we use 𝑥1, 𝑥2 to process the word 𝑤𝑖 = 𝑎𝑛𝑖 ♯𝑎𝑛𝑖+1 . When
processing 𝑤𝑖, the registers 𝑥1 and 𝑥2 perform the same computations as in the case of five
registers, thus computing 𝑛𝑖 − 𝑛𝑖+1 and −𝑛𝑖 + 𝑛𝑖+1 respectively. However, after that, instead of
sending these values to 𝑧 and resetting both registers to zero, we reset to zero only 𝑥1, and set
𝑥2 ← min{𝑥1, 𝑥2}. Let 𝑚𝑖 be the value of 𝑥2 after processing 𝑤𝑖 if 𝑖 ≥ 1, and zero otherwise.
We can show by induction that 𝑚𝑖 is always non-positive and 0 if and only if 𝑛 𝑗 = 𝑛 𝑗+1 for all
odd 𝑗 < 𝑖. Indeed, after processing 𝑤𝑖 the value of 𝑥2 is min{𝑛𝑖−𝑛𝑖+1,−𝑛𝑖+𝑛𝑖+1+𝑚𝑖−2}. By the
induction hypothesis, it is always non-positive, and is 0 if and only if 𝑛𝑖 − 𝑛𝑖+1 = −𝑛𝑖 + 𝑛𝑖+1 = 0
and 𝑚𝑖−2 = 0, which concludes the argument. For even 𝑖, we do similarly for 𝑦1, 𝑦2.

After reading 𝑤, the CRA then outputs the value min{𝑥1, 𝑥2, 𝑦1, 𝑦2}. As explained above,
this value is zero if and only if for all 𝑖 we have 𝑛𝑖 = 𝑛𝑖+1, which means that all blocks have
the same length. Otherwise this value is strictly negative.

3.3 Three registers
Idea. For the case of three registers we use the idea described for four registers, but now
we only leave the first register of each pair (call these registers 𝑥 and 𝑦), and use the third
register (call it 𝑧) to act simultaneously as the second register from both pairs. Since in the
case of four registers the computations performed by two pairs overlap, this will require some
adjustments for the behaviour of 𝑥 and 𝑦 to deal with the overlapping parts.

We use register 𝑥 to process 𝑤𝑖 = 𝑎𝑛𝑖 ♯𝑎𝑛𝑖+1 for odd values of 𝑖, and 𝑦 for even values of
𝑖. Assume for example that 𝑖 is odd. The idea remains the same: we want 𝑥 to compute
𝑛𝑖 − 𝑛𝑖+1, and 𝑧 to compute −𝑛𝑖 + 𝑛𝑖+1. However, if we want 𝑧 to perform such computations
for all 𝑤𝑖, then 𝑧 is also involved first in processing 𝑤𝑖−1 and then in processing 𝑤𝑖+1. The
solution is to consider this unwanted change for 𝑧 and to make the same change to 𝑥, which
then allows to meaningfully compare the values of 𝑥 and 𝑧 despite the overlaps. Refer to
Figure 3 for the symbolic depiction of these computations. The dashed lines illustrate the
additional decrements made by 𝑥 and 𝑦 to adjust for overlap with 𝑦 and 𝑥 respectively. After
processing each 𝑤𝑖, we set 𝑧 ← min{𝑧, 𝑥} if 𝑖 is odd, and 𝑧 ← min{𝑧, 𝑦} if 𝑖 is even.

The output of the CRA after reading 𝑤 is min{𝑧, 𝑥} if 𝑖 is odd, and min{𝑧, 𝑦} if 𝑖 is even.
Below we show how to construct the CRA implementing this idea.

Implementation. As mentioned above, we separate the cases of odd and even 𝑖, and process
each 𝑤𝑖 with only one register. At the beginning all registers are initialised with zeros.
When processing 𝑤𝑖, 1 ≤ 𝑖 ≤ 𝑝 − 2, we compute the value 𝑛𝑖 − 2𝑛𝑖+1 by incrementing the
corresponding register by one when reading each letter of 𝑎𝑛𝑖 , and decrementing it by two
when reading each letter of 𝑎𝑛𝑖+1 . After processing 𝑤𝑖, we set 𝑧 ← min{𝑧, 𝑥} if 𝑖 is odd, and
𝑧 ← min{𝑧, 𝑦} if 𝑖 is even. We reset to zero the corresponding used register 𝑥 or 𝑦. When
processing 𝑤𝑝−1 by 𝑥 or 𝑦, we compute the value 𝑛𝑝−1 − 𝑛𝑝 instead.
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a a a a a # a a a a a # a a a a a # a a a a a # a a a a a

x

y

z

w1 w3

w2 w4

Figure 3 The computations of the registers processing 𝑤𝑖 , 1 ≤ 𝑖 ≤ 4. An increasing line means
that the register is incremented by 1 for each letter and a decreasing line – whether plain or dash
– that the register is decremented by 1 for each letter. When both a plain and a dashed line are
present it means that the increment/decrement is by 2. The two last lines are for register 𝑧, and
hence 𝑧 is only incremented/decremented in the first and last block – the increasing and decreasing
lines cancel each other but we show them to explain the idea used for the general construction. Note
that additionally after reading each block the value of the register 𝑧 is changed (not shown in the
picture). The dotted sides of the boxes represent that the corresponding boxes from Figure 2 were
cut in halves and reassigned to different registers.

The description of the computation is almost done. While reading 𝑎𝑛1 , we decrement 𝑧

by one for each letter 𝑎, and while reading 𝑎𝑛𝑝 we increment it by one for each reading of 𝑎
(we use here the fact that we know in advance when we are going to read the last block).
The output of the CRA is defined as the minimum of the values of the register processing
𝑤𝑝−1 (which has the value 𝑛𝑝−1 − 𝑛𝑝 at the end) and 𝑧. Figure 4 illustrates the computations
of thus constructed CRA.

a a a a a # a a a a a # a a a a a # a a a a a # a a a a a

x← x+ 1
y ← y
z ← z − 1

x← x− 2
y ← y + 1
z ← z

x← x+ 1
y ← y − 2
z ← z

x← x− 2
y ← y + 1
z ← z

x← x
y ← y − 1
z ← z + 1

x← x
y ← y
z ← z

x← 0
y ← y
z ← min{x, z}

x← x
y ← 0
z ← min{y, z}

x← 0
y ← y
z ← min{x, z}

Figure 4 The output value is min{𝑦, 𝑧}.

▶ Lemma 6. The output of thus constructed CRA is zero if and only if all blocks of 𝑤 have
the same length, otherwise it is strictly negative.

Proof. After processing 𝑤1, register 𝑥 has value 𝑛1 − 2𝑛2, and register 𝑧 has value −𝑛1. Then
𝑥 is reset to 0, and its value is passed to 𝑧, hence the value of 𝑧 is min{−𝑛1, 𝑛1 − 2𝑛2} =
−𝑛2 +min{−𝑛1 + 𝑛2, 𝑛1 − 𝑛2} = −𝑛2 + 𝐶1, where we define 𝐶1 = min{𝑛1 − 𝑛2,−𝑛1 + 𝑛2}.
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For 2 ≤ 𝑖 ≤ 𝑝 − 2, define 𝐶𝑖 = min{𝑛𝑖 − 𝑛𝑖+1,−𝑛𝑖 + 𝑛𝑖+1 + 𝐶𝑖−1}. Then inductively after
reading 𝑎𝑛𝑖+1 for 2 ≤ 𝑖 ≤ 𝑝 − 2 the corresponding register finishes processing 𝑤𝑖 and passes its
value to 𝑧, which then has value

min{𝑛𝑖 − 2𝑛𝑖+1,−𝑛𝑖 + 𝐶𝑖−1} = −𝑛𝑖+1 +min{𝑛𝑖 − 𝑛𝑖+1,−𝑛𝑖 + 𝑛𝑖+1 + 𝐶𝑖−1} = −𝑛𝑖+1 + 𝐶𝑖 .

Moreover, after reading 𝑎𝑛𝑝 the output of the CRA is min{𝑛𝑝−1 − 𝑛𝑝 ,−𝑛𝑝−1 + 𝑛𝑝 +𝐶𝑝−2},
which we accordingly denote by 𝐶𝑝−1. Note that even though the shape of the formula for
𝐶𝑝−1 is the same as for 𝐶𝑖 with 𝑖 ≤ 𝑝 − 2, the way this value is computed by the CRA is
different, since while reading 𝑎𝑛𝑝 both 𝑧 and the register processing 𝑤𝑝−1 behave differently
than before.

To show that the constructed CRA satisfies the requirements, we inductively analyse
the values 𝐶1, . . . , 𝐶𝑝−1. As noted above, 𝐶1 = 0 if and only if 𝑛1 = 𝑛2, otherwise 𝐶1 < 0.
Moreover, 𝐶𝑖 = 0 if and only if 𝑛𝑖 = 𝑛𝑖+1 and 𝐶𝑖−1 = 0, otherwise 𝐶𝑖 < 0. Hence the output
𝐶𝑝−1 = 0 if and only if all blocks have the same length, and 𝐶𝑝−1 < 0 otherwise. ◀

With a similar proof, we can show that the same result applies to plus-times CRA (see
end of Section 4 for a general scheme).

4 Simulating a Minsky machine with a CRA with 3 registers

In this section, we show how to, given a Minsky machine M with two counters, construct
a CRA A with three registers which simulates M. For min-plus, this will mean that A
outputs 0 on the (unique) word encoding the halting run of M if it exists, and outputs a
strictly negative value for all other words. For plus-times, A outputs 1 on the (unique) word
encoding the halting run of M if it exists, and outputs a value strictly greater than 1 for all
other words. This will prove Theorem 3 as the halting problem for Minsky machine with
two counters is undecidable. We will in fact prove a more general result, extending both the
min-plus and the plus-times cases. This result is given in Theorem 8.

4.1 Minsky machines
Let 𝑃 = ∪1≤𝑖≤2{inc𝑖 , dec𝑖 , test𝑖} be a set of operations (increments, decrements and tests
for zero of the 𝑖th counter) on two counters. A Minsky machine M with 2 counters is a
deterministic finite automaton over the alphabet 𝑃, such that there is a designated initial
state, and the transitions satisfy the following restrictions: for each state 𝑞, exactly one of
the following holds

𝑞 has exactly one outgoing transition, which is then labelled by inc𝑖 for some 𝑖 ∈ {1, 2},
𝑞 has exactly two outgoing transitions, which are then labelled respectively by dec𝑖 , test𝑖
for the same 𝑖 ∈ {1, 2},
𝑞 has no outgoing transition, in which case it is a unique state called the halting state.

Let M be a Minsky machine with 2 counters. Consider an alternating sequence

𝜌 = (𝑞1, v1)
𝑡1−→ (𝑞2, v2)

𝑡2−→ . . .
𝑡𝑝−1−−−→ (𝑞𝑝 , v𝑝)

of pairs (𝑞𝑖 , v𝑖), where each 𝑞𝑖 is a state and each v𝑖 is a pair of non-negative integers, and of
operations 𝑡𝑖 ∈ 𝑃. The pairs v𝑖 represent the values of the two counters, and we denote by v𝑖 [ 𝑗]
its 𝑗th component. Such sequence 𝜌 is called a halting run ofM if 𝑞1

𝑡1−→ 𝑞2
𝑡2−→ . . .

𝑡𝑝−1−−−→ 𝑞𝑝 is
a run in the underlying DFA of M, 𝑞1 is the initial state, 𝑞𝑝 is the halting state, v1 = (0, 0),
and for each 𝑖, 1 ≤ 𝑖 ≤ 𝑝 − 1, we have the following (where e1 = (1, 0) and e2 = (0, 1)):
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if 𝑡𝑖 = inc 𝑗 , then v𝑖+1 = v𝑖 + e 𝑗 ;
if 𝑡𝑖 = test 𝑗 , then v𝑖 [ 𝑗] = 0 and v𝑖+1 = v𝑖;
if 𝑡𝑖 = dec 𝑗 , then v𝑖 [ 𝑗] is positive and v𝑖+1 = v𝑖 − e 𝑗 .

▶ Theorem 7 ([18], Theorem 14.1-1). The problem whether a given Minsky machine with
two counters has a halting run is undecidable.

4.2 Encoding a run of a Minsky machine

To construct a CRA simulating a given Minsky machine with two counters, we first specify
how to represent a run of a Minsky machine by a finite word. For now on, fix a Minsky
machine M.

Encoding the values of two counters as one number. If v is a vector of two components
which are non-negative integer numbers, define 𝜈(v) = 2v[1] ×3v[2] . We use 𝜈(v) to encode the
values of two counters of M in a given moment of time. Note that since 2 and 3 are coprime,
there is at most one vector 𝜈−1 (𝑥) for a natural number 𝑥, so this encoding is injective.

Encoding the runs. Given a halting run 𝜌 = (𝑞1, v1)
𝑡1−→ . . .

𝑡𝑝−1−−−→ (𝑞𝑝 , v𝑝) of M, we
construct the word 𝑊 (𝜌) over the alphabet Σ = 𝑃 ∪ {𝑎, ♯}, where

𝑊 (𝜌) = 𝑡1𝑎
𝜈 (v1 ) 𝑡2𝑎

𝜈 (v2 ) 𝑡3 . . . 𝑡𝑝−1𝑎
𝜈 (v𝑝−1 )♯𝑎𝜈 (v𝑝 )

We say that the word 𝑊 (𝜌) encodes the halting run 𝜌. Note that each letter 𝑡𝑖 appears
before the blocks encoding the values of v𝑖 (the argument of 𝑡𝑖) and v𝑖+1 (the result of 𝑡𝑖), so
that the CRA knows which operation to expect before starting to check that this operation
was applied correctly. Note also that the new symbol ♯ announces the last block of 𝑎’s. We
call the word 𝑤 over Σ encoding the halting run of M the run word.

Regular tests for run words. To test if a given word 𝑤 over Σ is a run word, we first check
if this word has shape

𝑡1𝑎
𝑛1 𝑡2𝑎

𝑛2 𝑡3 . . . 𝑡𝑝−1𝑎
𝑛𝑝−1♯𝑎𝑛𝑝

for some positive integers 𝑝, 𝑛1, . . . , 𝑛𝑝, and for some 𝑡1, 𝑡2, . . . , 𝑡𝑝−1 in 𝑃. We then check that
there exist states 𝑞1, 𝑞2, . . . , 𝑞𝑝 of M such that for each 1 ≤ 𝑖 ≤ 𝑝 − 1 there is a transition
𝑞𝑖

𝑡𝑖−→ 𝑞𝑖+1 in M, and also that 𝑞1 is the initial and 𝑞𝑝 is the halting state of M.
Next, we check that if 𝑡𝑖 = testℓ for ℓ ∈ {1, 2}, we have that the ℓth component of 𝜈−1 (𝑎𝑛𝑖 )

is 0. To do so, we simply check that 𝑛𝑖, the length of 𝑎𝑛𝑖 , is not divisible by 2 (respectively, 3)
if ℓ = 1 (respectively, ℓ = 2). Finally, to test that the values of the counters in the beginning
are 0, we simply check that 𝑛1 = 1.

It is easy to see all these checks are regular, hence they can be performed by the underlying
deterministic finite automaton of a CRA, that is, without using any registers. We call a
word satisfying these regular properties a pre-run word.

What remains to check is that the values of the counters (encoded by 𝜈) change according
to the corresponding operations ofM. This check is the main challenge if we want to perform
it by a CRA with a small number of registers. The next section describes how to deal with it.
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4.3 Handling operations
LetM be a Minsky machine, and 𝑤 be a pre-run word. We now describe how to construct a
CRA A with three registers which checks that 𝑤 is a run word. The idea of this construction
is similar to the idea described in Section 3. The main difference is that now instead of
testing that all blocks of 𝑎’s have the same length, we need to test that these lengths are
changed according to the corresponding operations.

We give a general construction, that we will be able to apply later on to min-plus and
plus-times CRAs and prove the following result, where all the notions will be introduced in
due course:

▶ Theorem 8. Let M be a Minsky machine and let (K, ⊕, ⊗, ≼) be an ordered semiring with
a multiplicative group, such that:

there exists a linear transformation which is a 1-peak (where 1 is the identity element
of ⊗), and
there exists an element with no finite order.

Then one can construct a CRA A over (K, ⊕, ⊗) such that:
A(𝑤) ≼ 1 for all words 𝑤, and
A(𝑤) = 1 if and only if 𝑤 encodes the halting run of M.

We consider a semiring (K, ⊕, ⊗). It is said to have a multiplicative group if (K − {0}, ⊗)
is a group, where 0 is the identity element of ⊕. We denote by 1 the identity element of this
group. We also denote, for an element 𝑑 of the group and some positive integer ℓ, by 𝑑ℓ the
product of 𝑑 by itself ℓ times, and by 𝑑−ℓ its inverse. By convention 𝑑0 = 1. We also fix a
linear transformation 𝜑 : K2 → K, i.e. 𝜑(𝑥, 𝑦) = (𝑐 ⊗ 𝑥) ⊕ (𝑑 ⊗ 𝑦) for some 𝑐, 𝑑 in K, and we
fix an element 𝛼 of K.

We will now construct a CRA over the semiring (K, ⊕, ⊗) using 𝛼 and 𝜑.
Let 𝑤 = 𝑡1𝑎

𝑛1 𝑡2𝑎
𝑛2 𝑡3 . . . 𝑡𝑝−1𝑎

𝑛𝑝−1♯𝑎𝑛𝑝 be a pre-run input word. For convenience of the
presentation, we denote 𝑡𝑝 = ♯. As before, we call a maximal continuous subword of 𝑤

consisting of 𝑎’s a block. Denote 𝑤𝑖 = 𝑡𝑖𝑎
𝑛𝑖 𝑡𝑖+1𝑎𝑛𝑖+1 . Call 𝑥, 𝑦, 𝑧 the three registers of A. We

process 𝑤𝑖 with 𝑥 for odd values of 𝑖, and with 𝑦 for even values of 𝑖, and send the results
to 𝑧.

First we describe what A does when reading 𝑎𝑛𝑖 for 1 < 𝑖 < 𝑝. The word 𝑎𝑛𝑖 is the
second block in 𝑤𝑖−1 and the first block in 𝑤𝑖. Assume without loss of generality that 𝑖 is odd
(otherwise switch 𝑥 and 𝑦 in the further description). Then 𝑤𝑖 is processed by 𝑥, and 𝑤𝑖−1 is
processed by 𝑦. The computations performed by 𝑥 depend only on 𝑡𝑖: for each occurrence
of 𝑎, we set

𝑥 ← 𝑥 ⊗ 𝛼 if 𝑡𝑖 ∈ {testℓ , decℓ } for ℓ ∈ {1, 2},
𝑥 ← 𝑥 ⊗ 𝛼2 if 𝑡𝑖 = inc1,
𝑥 ← 𝑥 ⊗ 𝛼3 if 𝑡𝑖 = inc2.

The computations performed by 𝑦 depend on both 𝑡𝑖−1 and 𝑡𝑖. Let 𝑐 be the value (1, 2
or 3) used above in the transformation 𝑥 ← 𝑥 ⊗ 𝛼𝑐 depending on 𝑡𝑖. Then for each occurrence
of 𝑎 we set:

𝑦 ← 𝑦 ⊗ 𝛼−1 ⊗ 𝛼−𝑐 if 𝑡𝑖−1 ∈ {testℓ , incℓ } for ℓ ∈ {1, 2},
𝑦 ← 𝑦 ⊗ 𝛼−2 ⊗ 𝛼−𝑐 if 𝑡𝑖−1 = dec1,
𝑦 ← 𝑦 ⊗ 𝛼−3 ⊗ 𝛼−𝑐 if 𝑡𝑖−1 = dec2.

Furthermore, if, for each letter of 𝑎𝑛𝑖 , register 𝑥 is multiplied by 𝛼𝑐 and 𝑦 is multiplied
by 𝛼−𝑑 ⊗ 𝛼−𝑐, then we set 𝑧 ← 𝑧 ⊗ 𝛼−𝑐 ⊗ 𝛼𝑑 for each letter of 𝑎𝑛𝑖 . After reading 𝑡𝑖+2, the
next letter after 𝑎𝑛𝑖 , we set 𝑧 ← 𝜑(𝑦, 𝑧), and reset 𝑦 to 1.
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It remains to describe the transformations of the registers for 𝑎𝑛1 and 𝑎𝑛𝑝 . For each letter
of 𝑎𝑛1 , 𝑥 performs the same update as described above, and 𝑧 is updated by the inverse of
that value. Assume without loss of generality that 𝑝 − 1 is even (otherwise use 𝑥 instead of 𝑦
in the further description). Then 𝑤𝑝−1 is processed by 𝑦. For each letter in 𝑎𝑛𝑝 we set

𝑦 ← 𝑦 ⊗ 𝛼−1, 𝑧 ← 𝑧 ⊗ 𝛼 if 𝑡𝑝−1 ∈ {testℓ , incℓ } for ℓ ∈ {1, 2},
𝑦 ← 𝑦 ⊗ 𝛼−2, 𝑧 ← 𝑧 ⊗ 𝛼2 if 𝑡𝑝−1 = dec1,
𝑦 ← 𝑦 ⊗ 𝛼−3, 𝑧 ← 𝑧 ⊗ 𝛼3 if 𝑡𝑝−1 = dec2.

Finally, we set the output of A to be 𝜑(𝑦, 𝑧). Note that in this construction, the CRA is
linear with resets and copyless.

▶ Example 9. Consider the following halting run:

𝜌 = (𝑞1, (0, 0))
inc2−−−→ (𝑞1, (0, 1))

inc1−−−→ (𝑞1, (1, 1))
dec1−−−−→ (𝑞1, (0, 1))

test1−−−−→ (𝑞1, (0, 1))

We abbreviate by 𝑡1, 𝑡2, 𝑡3, 𝑡4 the operations along this run and by 𝑡5 the ♯ symbol
indicating that we are going to read the last block. Note again that in 𝑤 the operation is
written before its argument, hence for example 𝑡1 = inc2 is applied to the first block, and its
result is the second block. The computations of A for the word encoding 𝜌 are shown in
Figure 5. The CRA outputs 𝜑(𝑦, 𝑧) in this example.

t1 a t2 a a a t3 a a a a a a t4 a a a t5 a a a

x← x⊗ α3

y ← y
z ← z ⊗ α−3

x← x⊗ α−3

y ← y ⊗ α2

z ← z ⊗ α−1

x← x⊗ α
y ← y ⊗ α−2

z ← z

x← x⊗ α−3

y ← y ⊗ α
z ← z ⊗ α

x← x
y ← y ⊗ α−1

z ← z ⊗ α

x← x
y ← y
z ← z

x← 1
y ← y
z ← φ(x, z)

x← x
y ← 1
z ← φ(y, z)

x← 1
y ← y
z ← φ(x, z)

Figure 5 The computations of A on the word encoding the halting run 𝜌.

Suppose now that K is equipped with a linear order ≼, and denote by ≺ the associated
strict order (we call such K an ordered semiring). We say that 𝛼 has no finite order if 𝛼ℓ = 1
implies ℓ = 0 and that 𝜑 is a 1-peak if, for all 𝑑, 𝑒 in K such that 𝑑 ⊗ 𝑒 ≼ 1, we have 𝜑(𝑑, 𝑒) = 1
if and only if 𝑑 = 𝑒 = 1, and otherwise 𝜑(𝑑, 𝑒) ≺ 1.

▶ Lemma 10. Suppose that 𝜑 is a 1-peak and that 𝛼 has no finite order. Then, for a pre-run
word 𝑤, we have A(𝑤) = 1 if and only if 𝑤 is a run word, otherwise A(𝑤) ≺ 1.

Proof. We adapt the proof of Lemma 6. Define 𝐶0 = 1 and for 1 ≤ 𝑖 ≤ 𝑝 − 1 define

𝐶𝑖 =



𝜑(𝛼𝑛𝑖−𝑛𝑖+1 , 𝛼−𝑛𝑖+𝑛𝑖+1 ⊗ 𝐶𝑖−1} if 𝑡𝑖 = testℓ for ℓ = 1, 2
𝜑(𝛼2𝑛𝑖−𝑛𝑖+1 , 𝛼−2𝑛𝑖+𝑛𝑖+1 ⊗ 𝐶𝑖−1} if 𝑡𝑖 = inc1

𝜑(𝛼3𝑛𝑖−𝑛𝑖+1 , 𝛼−3𝑛𝑖+𝑛𝑖+1 ⊗ 𝐶𝑖−1} if 𝑡𝑖 = inc2

𝜑(𝛼𝑛𝑖−2𝑛𝑖+1 , 𝛼−𝑛𝑖+2𝑛𝑖+1 ⊗ 𝐶𝑖−1} if 𝑡𝑖 = dec1

𝜑(𝛼𝑛𝑖−3𝑛𝑖+1 , 𝛼−𝑛𝑖+3𝑛𝑖+1 ⊗ 𝐶𝑖−1} if 𝑡𝑖 = dec2
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Observe that by construction after a register (𝑥 or 𝑦) processes 𝑤𝑖, 1 ≤ 𝑖 ≤ 𝑝 − 2, and
passes its value to 𝑧, the value of 𝑧 is

𝛼−𝑛𝑖+1 ⊗ 𝐶𝑖 if 𝑡𝑖+1 = testℓ or 𝑡𝑖+1 = incℓ for ℓ ∈ {1, 2}
𝛼−2𝑛𝑖+1 ⊗ 𝐶𝑖 if 𝑡𝑖+1 = dec1

𝛼−3𝑛𝑖+1 ⊗ 𝐶𝑖 if 𝑡𝑖+1 = dec2

Moreover, the output of A equals 𝐶𝑝−1.
Observe that using the definition of 𝐶𝑖 and by induction, one can prove that 𝐶𝑖 = 1 if and

only if 𝑡𝑖 is performed correctly (that is, the result of 𝑡𝑖 on the pair 𝜈−1 (𝑎𝑛𝑖 ) is 𝜈−1 (𝑎𝑛𝑖+1 ))
and 𝐶𝑖−1 = 1, otherwise 𝐶𝑖 ≺ 1, since 𝜑 is 1-peak and 𝛼 has no finite order. Hence the output
𝐶𝑝−1 equals 1 if and only if the input is a run word, otherwise it is ≺ 1. ◀

By combining this proposition with the checks for pre-run words described in Section 4.2,
we get a CRA which outputs 1 if and only if the input encodes a halting run of M. Indeed,
if a word is not a pre-run word (which is checked by the underlying DFA of the CRA), the
run labelled by it will end in a state which outputs a constant value 𝑓 ≺ 1. All runs ending
in other states are thus labelled by pre-run words, and for each such word the computations
described in this section output the desired value depending on whether this word encodes
a halting run or not. This means that all runs in the CRA are considered, concluding the
proof of Theorem 8.

Min-plus and plus-times cases. To finish the proof of Theorem 3, it is enough to instantiate
(K, ⊕, ⊗, ≼), 𝛼 and 𝜑 to suitable elements. For min-plus, we take (K, ⊕, ⊗, ≼) = (Z ∪
{+∞},min, +, ≤), 𝛼 = 1 and 𝜑 = min. For plus-times, we take (K, ⊕, ⊗, ≼) = (Q+, +,×, ≥),
𝛼 = 2 and 𝜑(𝑐, 𝑑) = 2−1 (𝑐 + 𝑑), where Q+ is the set of positive rational numbers. It is easy to
check that in both cases, 𝜑 is 1-peak and 𝛼 has no finite order.

5 Conclusions

In this paper, we prove the undecidability of the universality problem for models of CRAs
where the number of registers is limited to 3. Our main result holds for min-plus and
plus-times CRAs, but we give a slightly more general construction and it would be interesting
to see if our techniques can be applied to other cases, and in particular to see its link to
infinitary groups that have already been studied in conjunction to the register complexity [10].

The main open question that remains is whether this is still true when considering CRAs
with only 2 registers. Our proof cannot be adapted easily to the 2-register case. One approach
is to understand whether with only 2 registers, one can recognise the language with equal
length blocks as defined in Section 3. Even this is difficult.

Finally, we proved that the ∀-exact problem is solvable in polynomial time when the
number of registers of a min-plus linear CRA is fixed. The same question can be asked
for the boundedness problem over the (N ∪ {+∞},min, +) semiring, which is known to be
PSPACE-complete for WAs (and hence linear CRAs) [1].

References
1 Shaull Almagor, Udi Boker, and Orna Kupferman. What’s decidable about weighted automata?

Information and Computation, 282:104651, 2022. doi:10.1016/j.ic.2020.104651.
2 Shaull Almagor, Michaël Cadilhac, Filip Mazowiecki, and Guillermo A. Pérez. Weak cost

register automata are still powerful. International Journal of Foundations of Computer Science,
31(6):689–709, 2020. doi:10.1142/S0129054120410026.

MFCS 2023

https://doi.org/10.1016/j.ic.2020.104651
https://doi.org/10.1142/S0129054120410026


40:14 Universality and Forall-Exactness of Cost Register Automata with Few Registers

3 Rajeev Alur, Loris D’Antoni, Jyotirmoy Deshmukh, Mukund Raghothaman, and Yifei Yuan.
Regular functions and cost register automata. In 28th Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS 2013), pages 13–22, 2013. doi:10.1109/LICS.2013.65.

4 Benjamin Aminof, Orna Kupferman, and Robby Lampert. Reasoning about online algorithms
with weighted automata. ACM Transactions on Algorithms, 6(2):28:1–28:36, 2010. doi:
10.1145/1721837.1721844.

5 Michael Benedikt, Timothy Duff, Aditya Sharad, and James Worrell. Polynomial automata:
Zeroness and applications. In 32nd Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS 2017), pages 1–12, 2017. doi:10.1109/LICS.2017.8005101.

6 Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Quantitative languages.
ACM Transactions on Computational Logic, 11(4):23:1–23:38, 2010. doi:10.1145/1805950.
1805953.

7 Karel Culík and Jarkko Kari. Digital images and formal languages. In Grzegorz Rozenberg
and Arto Salomaa, editors, Handbook of Formal Languages, Volume 3: Beyond Words, pages
599–616. Springer, 1997. doi:10.1007/978-3-642-59126-6_10.

8 Laure Daviaud. Register complexity and determinisation of max-plus automata. ACM SIGLOG
News, 7(2):4–14, 2020. doi:10.1145/3397619.3397621.

9 Laure Daviaud, Marcin Jurdzinski, Ranko Lazic, Filip Mazowiecki, Guillermo A. Pérez, and
James Worrell. When are emptiness and containment decidable for probabilistic automata?
Journal of Computer and System Sciences, 119:78–96, 2021. doi:10.1016/j.jcss.2021.01.
006.

10 Laure Daviaud, Pierre-Alain Reynier, and Jean-Marc Talbot. A generalised twinning property
for minimisation of cost register automata. In 31st Annual ACM/IEEE Symposium on Logic
in Computer Science, (LICS 2016), pages 857–866, 2016. doi:10.1145/2933575.2934549.

11 Manfred Droste, Werner Kuich, and Heiko Vogler. Handbook of Weighted Automata. Springer
Berlin, Heidelberg, 1st edition, 2009. doi:10.1007/978-3-642-01492-5.

12 Manfred Droste and Dietrich Kuske. Weighted automata. In Jean-Éric Pin, editor, Handbook
of Automata Theory, pages 113–150. European Mathematical Society Publishing House, Zürich,
Switzerland, 2021. doi:10.4171/Automata-1/4.

13 Kosaburo Hashiguchi, Kenichi Ishiguro, and Shuji Jimbo. Decisability of the equivalence
problem for finitely ambiguous automata. International Journal of Algebra and Computation,
12(03):445–461, 2002. doi:10.1142/S0218196702000845.

14 Daniel Kirsten and Sylvain Lombardy. Deciding Unambiguity and Sequentiality of Polynomially
Ambiguous Min-Plus Automata. In 26th International Symposium on Theoretical Aspects of
Computer Science (STACS 2009), volume 3 of LIPIcs, pages 589–600, 2009. doi:10.4230/
LIPIcs.STACS.2009.1850.

15 Ines Klimann, Sylvain Lombardy, Jean Mairesse, and Christophe Prieur. Deciding unambiguity
and sequentiality from a finitely ambiguous max-plus automaton. Theoretical Computer Science,
327(3):349–373, 2004. doi:10.1016/j.tcs.2004.02.049.

16 Daniel Krob. The equality problem for rational series with multiplicities in the tropical
semiring is undecidable. International Journal of Algebra and Computation, 4(3):405–426,
1994. doi:10.1142/S0218196794000063.

17 Filip Mazowiecki and Cristian Riveros. Copyless cost-register automata: Structure, express-
iveness, and closure properties. Journal of Computer and System Sciences, 100:1–29, 2019.
doi:10.1016/j.jcss.2018.07.002.

18 Marvin L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, USA, 1967.
19 Mehryar Mohri. Finite-state transducers in language and speech processing. Computational

Linguistics, 23(2):269–311, 1997. URL: https://aclanthology.org/J97-2003.
20 Azaria Paz. Introduction to probabilistic automata. Academic Press, 1971.
21 Marcel-Paul Schützenberger. On the definition of a family of automata. Information and

Control, 4(2):245–270, 1961. doi:10.1016/S0019-9958(61)80020-X.

https://doi.org/10.1109/LICS.2013.65
https://doi.org/10.1145/1721837.1721844
https://doi.org/10.1145/1721837.1721844
https://doi.org/10.1109/LICS.2017.8005101
https://doi.org/10.1145/1805950.1805953
https://doi.org/10.1145/1805950.1805953
https://doi.org/10.1007/978-3-642-59126-6_10
https://doi.org/10.1145/3397619.3397621
https://doi.org/10.1016/j.jcss.2021.01.006
https://doi.org/10.1016/j.jcss.2021.01.006
https://doi.org/10.1145/2933575.2934549
https://doi.org/10.1007/978-3-642-01492-5
https://doi.org/10.4171/Automata-1/4
https://doi.org/10.1142/S0218196702000845
https://doi.org/10.4230/LIPIcs.STACS.2009.1850
https://doi.org/10.4230/LIPIcs.STACS.2009.1850
https://doi.org/10.1016/j.tcs.2004.02.049
https://doi.org/10.1142/S0218196794000063
https://doi.org/10.1016/j.jcss.2018.07.002
https://aclanthology.org/J97-2003
https://doi.org/10.1016/S0019-9958(61)80020-X


L. Daviaud and A. Ryzhikov 40:15

22 Larry J. Stockmeyer and Albert R. Meyer. Word problems requiring exponential time:
Preliminary report. In 5th Annual ACM Symposium on Theory of Computing (STOC 1973),
pages 1–9, 1973. doi:10.1145/800125.804029.

23 Moshe Y. Vardi. Automatic verification of probabilistic concurrent finite-state programs. In
26th Annual Symposium on Foundations of Computer Science (FOCS 1985), pages 327–338,
1985. doi:10.1109/SFCS.1985.12.

24 Andreas Weber. Finite-valued distance automata. Theoretical Computer Science, 134(1):225–
251, 1994. doi:10.1016/0304-3975(94)90287-9.

MFCS 2023

https://doi.org/10.1145/800125.804029
https://doi.org/10.1109/SFCS.1985.12
https://doi.org/10.1016/0304-3975(94)90287-9




Relaxed Core Stability for Hedonic Games with
Size-Dependent Utilities
Tom Demeulemeester #

KU Leuven, Belgium

Jannik Peters #

TU Berlin, Germany

Abstract
We study relationships between different relaxed notions of core stability in hedonic games. In
particular, we study (i) q-size core stable outcomes in which no deviating coalition of size at most q

exists and (ii) k-improvement core stable outcomes in which no coalition can improve by a factor
of more than k. For a large class of hedonic games, including fractional and additively separable
hedonic games, we derive upper bounds on the maximum factor by which a coalition of a certain
size can improve in a q-size core stable outcome. We further provide asymptotically tight lower
bounds for a large class of hedonic games. Finally, our bounds allow us to confirm two conjectures
by Fanelli et al. [20][IJCAI’21] for symmetric fractional hedonic games (S-FHGs): (i) every q-size
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1 Introduction

Coalition formation is one of the core topics of multiagent systems and algorithmic game
theory. Hedonic games ([19]) constitute the most popular subcase of coalition formation.
In a hedonic game, the goal is to divide a set of agents into disjoint coalitions, respecting
the preferences of the agents. Over the years, multiple different ways of representing the
agents’ preferences and multiple different solution concepts emerged. Among the strongest
solution concepts is core stability ([9]): a coalition structure is core stable, if no subset of
agents could together form a new coalition in which they are all better off than in the original
coalition structure. While being a seemingly natural concept, it has been shown that even
for very simple preference structures, core stable outcomes may not exist ([2, 3]). Further, in
these structures, it is also often computationally intractable to decide whether a core stable
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outcome exists.1 These results led Fanelli et al. [20] to introduce two natural weakenings of
core stability: (i) q-size (core) stability, which requires that no blocking coalitions of size at
most q exist, (ii) k-improvement (core) stability, which requires that no blocking coalition
exists in which every agent improves by a factor of more than k. For the example of fractional
hedonic games ([2]), [20] showed that a 2-size stable outcome and a 2-improvement stable
outcome always exist. Further, they also studied the relationship between these two notions
and were able to show that a 2-size stable outcome is indeed also always 2-improvement
stable.

In this paper, we contribute to this literature in two ways. First, we propose a new class
of hedonic games, called α-hedonic games, in which the utility an agent receives from being
in a coalition of size m is equal to the sum of the cardinal utilities it ascribes to the other
agents in that coalition, multiplied by a factor αm which depends on the size of that coalition.
Several well-studied classes of hedonic games, such as fractional hedonic games [2], modified
fractional hedonic games [27], and additively separable hedonic games [9] are a special case
of α-hedonic games.

Second, we further study the two weakenings of core stability that were introduced by
Fanelli et al. [20]. Our main result quantifies, for any α-hedonic game and for any q-size
stable outcome, the maximum factor with which the agents can improve their utility by
forming a blocking coalition of size m ≥ q + 1. As a corollary, this allows us to prove two
conjectures by Fanelli et al. [20]: (i) every q-size stable outcome is q

q−1 -improvement stable
for fractional hedonic games and (ii) the q-size core price of anarchy (i.e., the worst-case
approximation to the social welfare of any q-size core stable outcome) is exactly 2q

q−1 for
fractional hedonic games.

Related Work

Since its inception hedonic games have been a widely studied topic in algorithmic game
theory, with several works studying axiomatic or computational properties of hedonic games.
For an overview on earlier developments, we refer the reader to the book chapter by Aziz and
Savani [1]. In recent years, several new models and optimality notions for hedonic games were
introduced and analyzed. Among the most popular of these notions are the aforementioned
fractional hedonic games, introduced by Aziz et al. [2] and studied in various forms by, e.g.,
Bilò et al. [5], Aziz et al. [4], or Carosi et al. [15]. Fractional hedonic games are also related
to the model of hedonic diversity games [13, 8, 21] in which agents possess types and derive
utility based on the fraction of agents of their own type in their coalition.

The paper closest to ours is the work by Fanelli et al. [20], who introduced the afore-
mentioned notions of q-size and k-improvement core stability for fractional hedonic games.
Alternative simplifications of core stability were introduced by Carosi et al. [15], who studied
a local variant of core stability for simple fractional hedonic games, i.e., hedonic games in
which all utility values are either 0 or 1. In their local variant of core stability, the agents
deviating are required to form a clique. For this weakened notion, they show that core stable
outcomes always exist and can be computed via improving response dynamics.

Finally, some very recent works on hedonic games include [7, 12, 11] who study various
aspects of dynamics, i.e., decentralized processes in which agents perform beneficial changes
until a stable outcome is reached, the study of coalition formation with (almost) fixed

1 For some preference structures, it can even be hard to find a coalition structure in the core, even if it is
guaranteed to exist, see Bullinger and Kober [14].
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coalition sizes [18, 6, 25, 24], or studies of the complexity of various hedonic games variants
[17, 16, 22, 10]. Another interesting direction are the models of altruistic [23] and loyal [14]
hedonic games, in which the utilities of agents do not only depend on their own utility, but
also on the utility of their friends/agents they are loyal to.

2 Preliminaries

For any n ∈ N+ and α : [n] → R+ an α-hedonic game (αHG) consists of a set of agents
A = {a1, . . . , an} with a utility function u : A × A → R. We restrict ourselves to symmetric
α-hedonic games (S-αHGs) in this paper, and require that u(i, j) = u(j, i) for all i, j ∈ A. A
coalition is a subset of A and a coalition structure is a partition of A into coalitions. The
utility of an agent i in a coalition C is ui(C) :=

∑
j∈C α(|C|) · u(i, j). We assume that

u(i, i) = 0. For a coalition structure C the utility ui(C) of the coalition structure for agent i

is the utility of the coalition agent i belongs to. To simplify notation, for agents ai and aj

and C ⊆ A we also write ui(aj) := u(ai, aj) and ui(C) := uai
(C).

The class of α-hedonic games generalizes multiple previously studied hedonic game classes,
e.g.,

Symmetric additively separable hedonic games (S-ASHGs) with α(m) = 1 for any m ∈ N.
Symmetric fractional hedonic games (S-FHGs) with α(m) = 1

m for any m ∈ N.
Symmetric modified fractional hedonic games (S-MFHGs) with α(m) = 1

m−1 for any
m ∈ N+ and α(1) = 0.

A given coalition structure C is
core stable if for any coalition C it holds that ui(C) ≤ ui(C) for at least one i ∈ C;
q-size core stable if for any coalition C with |C| ≤ q it holds that ui(C) ≤ ui(C) for at
least one i ∈ C;
k-improvement core stable if for any coalition C it holds that ui(C) ≤ kui(C) for at least
one i ∈ C;
(q, k)-core stable if for any coalition C with |C| = q it holds that ui(C) ≤ kui(C) for at
least one i ∈ C.

If there is a coalition witnessing a violation to one of these criteria, for instance a coalition C

with ui(C) > ui(C) for all i ∈ C, we say that C is a blocking coalition. In further parts of the
paper, we shorten α(m) to αm to increase readability. Moreover, denote by 1 : N → {0, 1}
the indicator function such that for any i ∈ N

1(i) =
{

0 if i = 0,

1 else.

Lastly, every S-αHG can be represented by a graph G(A, E, w), where A represents the set
of agents, and E contains an undirected edge {i, j} between agents i and j with weight
wij = u(i, j) = u(j, i) if u(i, j) > 0. Alternatively, given a coalition C ⊆ A, we denote the
subgraph of G(A, E, w) that is induced by only considering the agents in C by G(C).

Before turning to our result, we present two simple examples, with the second example
motivating why we exclusively focus on symmetric instances.

▶ Example 1. First, consider the hedonic game induced by the graph on the left of Figure 1,
with utilities as indicated by the edges and omitted edges indicating a utility of 0. Here,
consider the coalition structure {{a1, a2}, {a3, a4}}. In an S-ASHG, the utility of every agent
would be 3, and the coalition structure would be 2-size core stable, but not 3-size core stable,
since, for instance, {a1, a2, a3} would block. Further, the coalition structure is (3, 5

3 )- and

MFCS 2023
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a4

a3 a2

a1

3

3

3

3

2

a3 a2

a1

M

M

M

0
0

0

u3(C) = 1 u2(C) = 1

u1(C) = 1

Figure 1 Example of a symmetric hedonic game on the left and of a blocking coalition for an
asymmetric game on the left, for which the improvement ratio is unbounded.

(4, 2)-core stable and thus also 2-improvement core stable. In an S-FHG, on the other hand,
the utility of every agent would be 3

2 and the coalition {a1, a2, a3} would still block. The
coalition consisting of all agents, however, would no longer be blocking, since the utility of
agent a2 would be 6

4 = 3
2 , which was their utility in the original coalition structure. Finally,

in an S-MFHG, the utility of every agent would be 3 and the coalition structure would be
core stable. Even the coalition {a1, a2, a3} would no longer block, since the utility of agent
a1 would be 5

2 < 3.
Secondly, to motivate the choice of symmetric hedonic games, consider the (asymmetric)

hedonic game depicted on the right of Figure 1 with all three agents originally being in
a coalition structure C in which they experience utility 1. This coalition structure would
be 2-size core stable. However, there is no upper bound on the improvement ratio for the
coalition consisting of all three agents, as M goes to infinity. We note that this behaviour
can be observed independently of the considered α function.

2.1 Our results
Fanelli et al. [20] conjectured that for fractional hedonic games, every q-size core stable
coalition structure is also q

q−1 -improvement core stable. We refine this conjecture and show
that every q-size core stable coalition structure ism, 1 +

⌊
1

q−1 (m − 2)
⌋

m

 -core stable (1)

for any m ≥ q + 1. As 1 + ⌊ 1
q−1 (m−2)⌋

m ≤ q
q−1 for any m this implies the conjecture of Fanelli

et al. [20]. Further, this result together with the results of Fanelli et al. [20] also allows us to
confirm their second conjecture that the price of anarchy of q-size stability is exactly 2q

q−1 .
To gain a better intuition of this quite unhandy term, we refer the reader to Table 1 and

Figure 2.
In fact, our proof does not only apply to S-FHGs, but to all symmetric α-hedonic games.

The more general result that we are able to show is that every q-size core stable outcome in
an S-αHG is (m, f(q, m))-core stable with

f(q, m) = max
(

1,

⌊
m − 1
q − 1

⌋
αm

αq
+ 1 ((m − 1) mod (q − 1)) αm

α ((m − 1) mod (q − 1) + 1)

)
.

As we discuss in Section 3, this bound is equivalent to Equation (1) for S-FHGs. For S-ASHGs
this implies a bound of f(q, m) = 1 +

⌊
m−2
q−1

⌋
.
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Table 1 For the given combinations of q and m, the table contains the value f(q, m) derived
from Equation (1), such that a q-size core stable is (m, f(q, m))-stable in S-FHGs.

q

m 3 4 5 6 7 8 9 . . . q
q−1

2 4
3

6
4

8
5

10
6

12
7

14
8

16
9 2

3 \ 5
4

6
5

8
6

9
7

11
8

12
9 . . . 3

2

4 \ \ 6
5

7
6

8
7

10
8

11
9

4
3

5 10 15 20
1.1

1.2

1.3

1.4

1.5

m

q = 3 (S-FHG)

f(3, m)
LB Th. 8

q
q−1

5 10 15 20
1.1

1.2

1.3

1.4

1.5

m

q = 4 (S-FHG)

f(4, m)
LB Th. 8

q
q−1

5 10 15 20

1.2

1.4

1.6

1.8

2

m

Values of f(q, m) (S-FHG)

q = 2
q = 3
q = 4
q = 5

Figure 2 Plotted values of f(q, m) for S-FHGs such that every q-size core stable coalition structure
is (m, f(q, m))-core stable. In the two leftmost figures, LB indicates the lower bound obtained in
Theorem 8, while the black line indicates q

q−1 , the limit of the upper bound.

Further, in Section 4 we derive lower bounds on these values as well, and show tightness
for various combinations of (q, m), and for various types of hedonic games. A summary of
our results can be found in Table 3.

3 Main result

We begin with our main result, which quantifies the relationship between the two considered
relaxed notions of core stability in symmetric α-hedonic games. As the general proof for
symmetric α-hedonic games is quite notationally heavy, we defer the full proof to the
supplementary material and only give the proof for symmetric fractional hedonic games here.

▶ Theorem 2. Any q-size core stable coalition structure C in an S-αHG is (m, f(q, m))-core
stable, for any integers m, q with m ≥ q + 1, and f(q, m) =

max
(

1,

⌊
m − 1
q − 1

⌋
αm

αq
+ 1 ((m − 1) mod (q − 1)) αm

α ((m − 1) mod (q − 1) + 1)

)
.

For fractional hedonic games, this reduces to:

MFCS 2023
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▶ Corollary 3. For S-FHGs, every q-size core stable coalition structure C is(
m, 1 + ⌊ 1

q−1 (m−2)⌋
m

)
-core stable for any m ≥ q + 1.

Proof. Consider a q-size core stable coalition structure C and a coalition C of size m ≥ q + 1.
For a given coalition C ′ ⊆ C we let w(C ′) =

∑
ai∈C′

(
ui(C ′) − 2 q

q−1 ui(C)
)

denote the
modified social welfare of coalition C ′. Let Cq−1 be the set of coalitions of size q − 1 and
consider the weighted hypergraph (C, Cq−1, w). Let M = {C1, . . . , C⌊ m−1

q−1 ⌋} be any maximum
weight, with regard to w, hypergraph matching, i.e., selection of non-overlapping sets from
Cq−1, of size ⌊ m−1

q−1 ⌋ in this hypergraph. We note that a maximum weight hypergraph
matching not of size ⌊ m−1

q−1 ⌋ might have a larger weight, due to w being potentially negative.
Let C0 be the set of unmatched agents by this hypergraph matching. The goal of our proof
is now to show that there must be an unmatched agent who can only improve by a factor
of at most 1 + ⌊ 1

q−1 (m−2)⌋
m . The set C0 contains exactly (m − 1) mod (q − 1) + 1 agents

that are unmatched by M . Let a0 ∈ C0. For any i ∈ [⌊ m−1
q−1 ⌋] we know that the coalition

{a0} ∪ Ci is not q-size blocking. Thus, either one of the following two conditions has to hold:
(i)

∑
aj∈Ci

u0(aj) ≤ qu0(C),
(ii)

∑
aj∈Ci

u0(aj) > qu0(C) and there is an aℓ ∈ Ci with
∑

aj∈Ci∪{a0} uℓ(aj) ≤ quℓ(C)
If we assume the latter scenario, we first notice that∑

aj∈Ci

uℓ(aj)
q − 1 − 2 q

q − 1uℓ(C) ≤
∑

aj∈Ci

uℓ(aj)
q − 1 − 2

∑
aj∈Ci∪{a0}

uℓ(aj)
q − 1

= 2
∑

aj∈Ci

uℓ(aj)
q − 1 − 2

∑
aj∈Ci

uℓ(aj)
q − 1 − 2u0(aℓ)

q − 1 −
∑

aj∈Ci

uℓ(aj)
q − 1

= −2u0(aℓ)
q − 1 −

∑
aj∈Ci

uℓ(aj)
q − 1 = 2

∑
aj∈Ci\{aℓ}

u0(aj)
q − 1 − 2

∑
aj∈Ci

u0(aj)
q − 1 −

∑
aj∈Ci

uℓ(aj)
q − 1

< 2
∑

aj∈Ci\{aℓ}

u0(aj)
q − 1 − 2 q

q − 1u0(C) −
∑

aj∈Ci

uℓ(aj)
q − 1

= 2
∑

aj∈Ci\{aℓ}

(
u0(aj)
q − 1

)
− 2 q

q − 1u0(C) −
∑

aj∈Ci\{aℓ}

(
uj(aℓ)
q − 1

)
.

For the first inequality, we used the second part of the assumption, while in the second-to-last
line we used the first part of the assumption. Further, in the last equality, we used the
symmetry of the utilities and the fact that uℓ(aℓ) = 0. Using this inequality, we can now
obtain

w((Ci ∪ {a0}) \ {aℓ})

=
∑

aj∈Ci\{aℓ}

(
uj(Ci ∪ {a0} \ {aℓ}) − 2 q

q − 1uj(C)
)

+
∑

aj∈Ci\{aℓ}

(
u0(aj)
q − 1

)
− 2 q

q − 1u0(C)

=
∑

aj∈Ci\{aℓ}

(
uj(Ci) + uj(a0)

q − 1 − uj(aℓ)
q − 1 − 2 q

q − 1uj(C)
)

+
∑

aj∈Ci\{aℓ}

(
u0(aj)
q − 1

)
− 2 q

q − 1u0(C)
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=
∑

aj∈Ci\{aℓ}

(
uj(Ci) − 2 q

q − 1uj(C)
)

+ 2
∑

aj∈Ci\{aℓ}

(
u0(aj)
q − 1

)
− 2 q

q − 1u0(C) −
∑

aj∈Ci\{aℓ}

(
uj(aℓ)
q − 1

)

>
∑

aj∈Ci\{aℓ}

(
uj(Ci) − 2 q

q − 1uj(C)
)

+
∑

aj∈Ci

uℓ(aj)
q − 1 − 2 q

q − 1uℓ(C) = w(Ci).

Hence, we get that w(Ci ∪ {a0} \ {aℓ}) > w(Ci) and thus the hypergraph matching was
not of maximum weight. Therefore,

∑
aj∈Ci

u0(aj) ≤ qu0(C) has to hold for every Ci and
every a0 ∈ C0.

Next, if |C0| = 1 we know that (m − 1) must be divisible by (q − 1) and thus we can
reformulate our bound as

1 +

⌊
1

q−1 (m − 2)
⌋

m
= 1 +

1
q−1 (m − q)

m
= q(m − 1)

m(q − 1) .

Hence, by applying the previously calculated bound and by using the observation that
|M | = m−1

q−1 in the case, we obtain

∑
aj∈C

u0(aj)
m

≤
∑

Ci∈M

q

m
u0(C) = u0(C)q(m − 1)

m(q − 1) ,

which implies the result in case |C0| = 1.
If |C0| > 1, there has to be at least one agent a0 in C0 with

∑
ai∈C0

u0(ai) ≤ |C0|u0(C) =
((m − 1) mod (q − 1) + 1)u0(C), since the set C0 of unmatched agents is non-blocking. Hence,
we obtain that∑

aj∈C

u0(aj)
m

=
∑

Ci∈M

∑
aj∈Ci

u0(aj)
m

+
∑

ai∈C0

u0(ai)
m

≤
∑

Ci∈M

q

m
u0(C) + (m − 1) mod (q − 1) + 1

m
u0(C)

=
⌊

m − 1
q − 1

⌋
q

m
u0(C) + (m − 1) mod (q − 1) + 1

m
u0(C)

= u0(C)
m

(⌊
m − 1
q − 1

⌋
q + (m − 1) mod (q − 1) + 1

)
= u0(C)

m

(
(m − 1) − (m − 1) mod (q − 1)

q − 1 (q − 1)

+ (m − 1) − (m − 1) mod (q − 1)
q − 1 + (m − 1) mod (q − 1) + 1

)
= u0(C)

m

(
m + (m − 1) − (m − 1) mod (q − 1)

q − 1

)
= u0(C)

m

(
m +

⌊
m − 2
q − 1

⌋)
.

The last step holds since (m − 1) mod (q − 1) > 0. Thus, every q-size core stable coalition
structure C ism, 1 +

⌊
1

q−1 (m − 2)
⌋

m

 -core stable.

MFCS 2023
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Finally, to see that this is equivalent to the bound in Theorem 2 we see that if (m −
1) mod (q − 1) = 0 it holds that

⌊
m − 1
q − 1

⌋
αm

αq
+ 1 ((m − 1) mod (q − 1)) αm

α ((m − 1) mod (q − 1) + 1) = m − 1
q − 1

q

m
= 1 +

⌊
1

q−1 (m − 2)
⌋

m

and if (m − 1) mod (q − 1) ̸= 0⌊
m − 1
q − 1

⌋
αm

αq
+ 1 ((m − 1) mod (q − 1)) αm

α ((m − 1) mod (q − 1) + 1) =
⌊

m − 1
q − 1

⌋
q

m
+ (m − 1) mod (q − 1) + 1

m

= 1 +

⌊
1

q−1 (m − 2)
⌋

m
. ◀

As a corollary we obtain an answer to the conjecture of [20], by confirming that every q-size
core stable outcome is also q

q−1 -improvement stable.

▶ Corollary 4. For S-FHGs, every q-size core stable coalition structure C is q
q−1 -improvement

stable.

Proof. This result follows from the observation that

1 +

⌊
1

q−1 (m − 2)
⌋

m
≤ 1 +

1
q−1 (m − 2)

m
≤ 1 + 1

q − 1 = q

q − 1

holds for all m. Thus, there is no coalition of size m > q in which every agent improves by a
factor of more than q

q−1 . ◀

If we restrict ourselves to the case of simple fractional hedonic games (SS-FHG), i.e.,
S-FHGs with binary utilities, we can show that this bound is not tight. This proof further
provides a strengthening of Theorem 2 by [20].

▶ Theorem 5. For every simple symmetric fractional hedonic game, any 3-size core stable
coalition structure C is(

m,
3
2

(m − 1)
m

)
-core stable,

for any integer m ≥ 4.

Proof. We only prove the result for even values of m, as the result for odd m follows from
the general result of Corollary 3. Consider a 3-size core stable coalition structure C and a
blocking coalition C of size m ≥ 4. Further, we assume that every agent in C improves by
more than a factor of k. Because all agents experience a strict improvement by forming C,
each agent should be adjacent to at least one edge in the related graph G(C). Since 3-size
core stability implies 2-size core stability, there should be at least one agent ai ∈ C for whom
ui(C) ≥ 1

2 . Since ai improves by more than a factor of k it holds that∑
aℓ∈C\{ai}

u(i, ℓ) > k · m · ui(C) ≥ m

2 , (2)

which implies that ai should be adjacent to at least m
2 + 1 edges in G(C). Denote the set of

agents that are connected to ai through these edges by C ′ ⊂ C. For any triplet of agents
{ai, aj , ak} with {aj , ak} ⊂ C ′, the 3-size core stability of C implies that either ui(C) ≥ 2

3 ,
uj(C) ≥ 1

2 , or uk(C) ≥ 1
2 must hold. If ui(C) ≥ 2

3 holds, then because ai improves in C by a
factor of more than k we get that
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2
3k ≤ k · ui(C) <

1
m

∑
aℓ∈C\{ai}

u(i, ℓ) ≤ m − 1
m

. (3)

Thus, we get that k < 3
2

m−1
m in this case. Alternatively, assume without loss of generality

that uj(C) ≥ 1
2 . Following the logic from Equation (2), aj should be adjacent to at least

m
2 + 1 edges in G(C). This implies that there exists an agent aℓ ∈ C ′ such that the agents
{ai, aj , aℓ} form a triangle, and hence at least one of these three agents should experience a
utility of at least 2

3 in C. Thus, Equation (3) holds for this agent and the result follows. ◀

Finally, as a second corollary of Theorem 2, we also obtain a bound for s-ASHGs.

▶ Corollary 6. For S-ASHGs, every q-size core stable coalition structure C is
(

m, 1 +
⌊

m−2
q−1

⌋)
-

core stable for any m > q.

4 Lower Bounds

Next, we focus on proving lower bounds for our setting. We first show a lower bound for the
following subclass of S-αHGs, which includes S-FHGs, S-MFHGs, and S-ASHGs.

▶ Definition 7. A function α : [n] → R is hospitable if αq

αq−1
≥ q−2

q−1 for all integers q ≥ 2.
Accordingly, an S-αHG is hospitable if α is hospitable.

The intuition behind hospitable S-αHGs is that the utility of an agent in a coalition of size
q − 1 will never decrease with more than a factor q−2

q−1 when an additional agent is added to
that coalition. This class includes ASHGs, FHGs, and MFHGs. First, we can show that the
bound derived in Theorem 2 is tight for hospitable S-αHGs when (m − 1) mod (q − 1) = 0.

▶ Theorem 8. For any hospitable α, there exists an instance of an S-αHG that contains a
q-size core stable coalition structure C which is not (m, δ)-core stable for any δ < αm(m−1)

αq(q−1) ,
with q, m ∈ N and m ≥ q + 1.

Proof. We construct an instance of an S-αHG that is q-size core stable, but which allows
for a blocking coalition of size m ≥ q + 1 in which all agents improve with at least a factor(

αm(m−1)
αq(q−1)

)
. Given a coalition structure C in which ui(C) = 1 for all agents i, and a blocking

coalition C of size m, let u(i, j) = 1
αq(q−1) for all agent pairs {i, j} ⊂ C. The resulting S-αHG

is q-size core stable, since for any coalition C ′ of size at most q the utility of agent i in C ′ is
at most

(|C′|−1)α|C′|
αq(q−1) ≤ αq(q−1)

αq(q−1) = 1, where the inequality is implied by recursively applying the
definition of a hospitable S-αHG. As ui(C) = 1 and since the utility of agent i in C is αm(m−1)

αq(q−1)
for all agents i ∈ C, this implies that the coalition structure C is not (m, δ)-core stable for
any δ < αm(m−1)

αq(q−1) . ◀

Since if (m−1) mod (q−1) = 0 it holds that ⌊ m−1
q−1 ⌋ = m−1

q−1 and 1 ((m − 1) mod (q − 1)) αm =
0, this implies that the bound obtained in Corollary 3 is tight for (m − 1) mod (q − 1) = 0
and thus also for q = 2. Figure 2 illustrates the tightness of this lower bound for S-FHGs.
Further, we show tightness of the bound in Theorem 2 for hospitable S-αHGs when q = 3.

▶ Theorem 9. For any hospitable α, there exists an instance of an S-αHG that contains a
3-size core stable coalition structure C which is not (m, δ)-core stable for any δ < f(3, m),
with q, m ∈ N and m ≥ 4.

MFCS 2023
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Proof. Note that when f(3, m) = 1, the result follows directly. Moreover, when m is odd, so
(m−1) mod 2 = 0, the result follows from Theorem 8. When m is even and when f(3, m) > 1,
we first observe that

f(3, m) =
⌊

m − 1
2

⌋
αm

α3
+ 1 ((m − 1) mod 2) αm

α ((m − 1) mod 2 + 1) = m − 2
2

αm

α3
+ αm

α2
.

Now we assume that we are given m agents c1, . . . , cm with ui(C) = 1 for each ci. We
partition the agents into two sets C1, C2 with C1 = {c1, . . . , c m

2
} and C2 = {c m

2 +1, . . . , cm}.
If two agents ci and cj are in the same set, we define u(i, j) = 1

α3
− 1

α2
. Otherwise, we set

u(i, j) = 1
α2

.
For any two agents {ci, cj} it thus holds that ui({ci, cj}) ≤ α2 max( 1

α3
− 1

α2
, 1

α2
) =

max( α2
α3

−1, 1) ≤ 1 and, therefore, these two agents do not form a blocking coalition. Further,
for any three agents {ci, cj , ck} we have two cases: (i) either all three agents come from the
same set, then we get that ui({ci, cj , ck}) = 2α3

α3
− 2α3

α2
= 2 − 2α3

α2
≤ 2 − α3

α3
= 1; (ii) one agent

(without loss of generality ck) has to be from a different partition than the other two; then it
holds that ui({ci, cj , ck}) = α3

α3
− α3

α2
+ α3

α2
= 1. Hence, this coalition is 3-stable.

Finally, we get that

ui({c1, . . . , cm}) = αm

(
m − 2

2

(
1

α3
− 1

α2

)
+ m

2
1

α2

)
= m − 2

2
αm

α3
+ αm

α2
= f(3, m). ◀

Lastly, we provide additional tightness results of the bound in Theorem 2 for S-FHGs and
S-ASHGs. We defer the proofs of Theorems 11 and 12 to the supplementary material.

▶ Theorem 10. There exists a q-size core stable coalition structure C in an S-FHG which is
not (q + 1, δ)-core stable for any δ < q+2

q+1 .

Proof. Assume we are given q + 1 agents a1, . . . , aq+1 with ui(C) = 1. Let the edge weights
be such that the edges with weight two form a cycle and all other edges have weight one,
i.e., let u(i, j) = 2 for all (i, j) ⊂ C for which j = i + 1, let u(n, 1) = 2, and let u(k, l) = 1 for
all other edges. Note that in each subset C ⊂ C with |C| < q + 1 there is at least one agent
who is adjacent to at most one edge of weight two to the other agents in C, because the
edges with weight two form a cycle over all q + 1 agents. Hence, for each subset C ⊂ C with
|C| < q + 1 there is at least one agent with a utility of at most 2+|C|−2

|C| = 1, which implies
that C is q-size core stable. Furthermore, the coalition of all q + 1 agents offers a utility of
2·2+q−2

q+1 = q+2
q+1 . As a result, C is not

(
q + 1, q+2

q+1 − ε
)

-core stable for any ε > 0. ◀

▶ Theorem 11. There exists a 4-size core stable coalition structure C in an S-FHG which is
not (m, δ)-core stable, for any δ < 1 + ⌊ 1

3 (m−2)⌋
m , and for any integer m ≥ 5.

▶ Theorem 12. There exists a 4-size core stable coalition structure C in an S-ASHG which
is not (m, δ)-core stable, for any δ < 1 +

⌊
m−2

3
⌋
, and for any integer m ≥ 5.

While we were not able to show the tightness of Theorem 2 for other values of α, q, and
m than the ones described in this section, we found some examples to show the tightness of
the result for additional values of (q, m) that are not covered by Theorems 8-12 through the
use of the integer linear programming approach described in the supplementary material, as
shown in Table 2. A summary of our results can be found in Table 3.
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Table 2 Additional values of (q, m) for which we found instances proving the tightness of the bound
in Theorem 2 by using the integer linear programming approach described in the supplementary
material.

S-FHG
(5, m ≤ 8), (6, m ≤ 10), (7, m ≤ 10),
(8, m ≤ 11)

S-ASHG
(5, m ≤ 8), (6, m ≤ 10), (7, m ≤ 12),
(8, m ≤ 13), (9, m ≤ 13), (10, m ≤ 13),
(11, m ≤ 13), (12, 13)

Table 3 Summary and tightness results for the values of f(q, m) such that every q-size core stable
coalition structure is (q, f(q, m))-stable, with m ≥ q + 1, for various types of hedonic games. A ✓
indicates that we were able to show tightness of f(q, m) for this type of hedonic game, while a ✗

indicates that this tightness is still open.

Tightness proof for. . .
Hedonic Game f(q, m) (q − 1) | (m − 1) q = 3 q = 4 Other values of (q, m)

S-αHG see Theorem 2 ✗ ✗ ✗ ∅
Hospitable S-αHG see Theorem 2 ✓ ✓ ✗ ∅
S-FHG 1 + 1

m

⌊
m−2
q−1

⌋
✓ ✓ ✓ (q, q + 1) & Table 2

S-MFHG 1 ✓ ✓ ✓ all combinations
S-ASHG 1 + ⌊ m−2

q−1 ⌋ ✓ ✓ ✓ Table 2

5 Efficiency

In this section, we study the price of anarchy for core-relaxations of symmetric α-hedonic
games. Using the same notation as Fanelli et al. [20], we denote the social welfare of a
coalition structure C by SW(C) =

∑
i∈A ui(C), which is simply the sum of the agents’ utilities.

Moreover, let G = (α, A, u) represent an instance of an S-αHG. Given an S-αHG G, let
q-size Core(G) be the set of q-size core stable coalition structures, and let k-impr Core(G)
be the set of k-improvement core stable coalition structures. We define the q-size core price
of anarchy of an S-αHG G as the ratio between the social welfare of the coalition structure
C∗(G) that maximizes social welfare, and that of the q-size core stable coalition struc-
ture with the worst social welfare, i.e., q-size CPoA(G) = maxC∈q-size Core(G)

SW (C∗(G))
SW (C) .

Similarly, we define the k-improvement core price of anarchy as k-impr CPoA(G) =
maxC∈k-impr Core(G)

SW (C∗(G))
SW (C) .

Using Corollary 3, we can extend the results by Fanelli et al. [20] about the q-size core
price of anarchy for S-FHGs.

▶ Corollary 13. For any S-FHG G, it holds that q-size CPoA(G) ≤ 2q
q−1 , for any integer

q ≥ 2, and this bound is tight.

Proof. By Corollary 4, we know that the social welfare of the worst q-size core stable coalition
structure is at least the social welfare of the worst q

q−1 -improvement core stable coalition
structure. Moreover, by Theorem 8 by [20], we know that the k-improvement CPoA of an
S-FHG is upper bounded by 2k, for any k ≥ 1. The tightness of the bound follows from
Theorem 9 by [20]. ◀

Next, we show upper bounds on the q-size CPoA(G) and the k-impr CPoA(G) for the
following subclass of S-αHGs.

MFCS 2023
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▶ Definition 14. A function α : [n] → R is decreasing if αq ≥ αq+1 for all integers q ≥ 1.
Accordingly, an S-αHG is decreasing if α is decreasing.

The class of decreasing S-αHGs is distinct from the class of hospitable S-αHGs defined in
Definition 7, but it also contains S-FHGs, S-ASHGs, and S-MFHGs. When restricting our
focus to the subclass of decreasing S-αHGs, we can generalize Theorem 8 by [20] to obtain
the same upper bound on the k-improvement core price of anarchy.

▶ Theorem 15. For any decreasing S-αHG G and for every k ≥ 1, k-impr CPoA(G) ≤ 2k.

Proof. The proof is identical to the proof of Theorem 8 by [20]. Using their notation, with
the adapted definition that µ>

i (C) = α(|C|) · δ>
C (i), the only required alteration to their proof

is that equation (2) in their proof should be replaced by:

µit(C∗
t ) = α(|C∗

t |) · δ>
C∗(it) ≥ α(|C∗|) · δ>

C∗(it) = µ>
it

(C∗),

which holds, by definition, because we are only considering decreasing S-αHGs. ◀

Lastly, we can use a similar reasoning as in the proof of Corollary 13 and use the bounds
from Theorems 3 and 15 to obtain a general upper bound on the q-size core price of anarchy
for decreasing S-αHGs.

▶ Theorem 16. For any decreasing S-αHG G, q-size CPoA(G) ≤ 2 · maxm≥q+1 f(m, q).

Note that this result implies a core price of anarchy of 2 for S-MFHGs, where the core price
of anarchy of an S-αHG G is simply defined as maxq q-size CPoA(G). As such, we answered
an open question by [26], who found a lower bound on the core price of stability of 2 and an
upper bound for the core price of anarchy of 4 in S-MFHGs.

▶ Corollary 17. For any S-MFHG, the core price of anarchy is upper bounded by 2.

6 Conclusion and Outlook

In our paper, we studied hedonic games and the relationship between different relaxed notions
of core stability. Most importantly, for a large class of hedonic games, we obtained a general
upper bound f(q, m) such that every q-size core stable outcome is (m, f(q, m))-core stable.
That is, a coalition of size m can deviate at most by a factor of f(q, m). Our bound also
allows us to answer a conjecture by [20] that every q-size core stable outcome in symmetric
fractional hedonic games is q

q−1 -improvement core stable. Finally, we also obtain some lower
bounds. However, even for fractional and additively separable hedonic games, our bounds are
not tight yet. For both, we were only able to show the tightness up to q = 4. The smallest
case which is unknown (both for fractional and additively separable hedonic games) is the
tightness for q = 5 and m = 10, see Table 2 and Theorem 8. For both kinds of hedonic
games, our integer linear programming approach was not able to construct a counterexample,
nor show that no counterexample exists. Thus, improving our lower bounds seems like a
challenging and interesting venue for future work. Further, it would be interesting to see if
the generalization of α-hedonic games, could see application in other areas of hedonic games
as well. For instance, it might be interesting to classify for which α-hedonic games certain
dynamics converge (see for instance Boehmer et al. [7].)
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Abstract
The Hunters and Rabbit game is played on a graph G where the Hunter player shoots at k

vertices in every round while the Rabbit player occupies an unknown vertex and, if it is not shot,
must move to a neighbouring vertex after each round. The Rabbit player wins if it can ensure
that its position is never shot. The Hunter player wins otherwise. The hunter number h(G) of a
graph G is the minimum integer k such that the Hunter player has a winning strategy (i.e., allowing
him to win whatever be the strategy of the Rabbit player). This game has been studied in several
graph classes, in particular in bipartite graphs (grids, trees, hypercubes...), but the computational
complexity of computing h(G) remains open in general graphs and even in more restricted graph
classes such as trees. To progress further in this study, we propose a notion of monotonicity (a
well-studied and useful property in classical pursuit-evasion games such as Graph Searching games)
for the Hunters and Rabbit game imposing that, roughly, a vertex that has already been shot
“must not host the rabbit anymore”. This allows us to obtain new results in various graph classes.

More precisely, let the monotone hunter number mh(G) of a graph G be the minimum integer k

such that the Hunter player has a monotone winning strategy. We show that pw(G) ≤ mh(G) ≤
pw(G) + 1 for any graph G with pathwidth pw(G), which implies that computing mh(G), or even
approximating mh(G) up to an additive constant, is NP-hard. Then, we show that mh(G) can be
computed in polynomial time in split graphs, interval graphs, cographs and trees. These results go
through structural characterisations which allow us to relate the monotone hunter number with the
pathwidth in some of these graph classes. In all cases, this allows us to specify the hunter number or
to show that there may be an arbitrary gap between h and mh, i.e., that monotonicity does not help.
In particular, we show that, for every k ≥ 3, there exists a tree T with h(T ) = 2 and mh(T ) = k.
We conclude by proving that computing h (resp., mh) is FPT parameterised by the minimum size of
a vertex cover.
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1 Introduction

The Hunters and Rabbit game is played on a graph G and with a positive integer k (the
number of hunters), where the Hunter player shoots at k vertices in every round while the
Rabbit player occupies an unknown vertex and, if it is not shot, must move to a neighbouring
vertex after each round. The Rabbit player wins if he can ensure that its position is never shot.
The Hunter player wins otherwise. The Hunters and Rabbit game was first introduced
in [7], in the case k = 1, where it was shown that the Hunter player wins in a tree T if
and only if T does not contain as subgraph any tree obtained from a star with 3 leaves by
subdividing each edges twice. This result was also observed in [19], where the authors also
consider the minimum number of rounds needed for the Hunter player to win. The version
where k > 1 was first considered in [1]. Observe that, if k = |V (G)| − 1, the Hunter player
can win in any graph G (in two rounds) by shooting twice a subset of k vertices of G. Hence,
let the hunter number of G, denoted by h(G), be the minimum integer k such that k hunters
can win in G whatever be the rabbit strategy.

In [1], it is shown that the hunter number is closed under taking subgraphs. Moreover,
this result trivially extends to the case when the starting positions of the rabbit are restricted.
The exact value of h(G) has been determined for several specific families of graphs G. For
any n ≥ 2, h(Pn) = 1 where Pn is the path with n vertices [7] (because the rabbit is forced
to move at every round, h(P1) = 0). For any n ≥ 3, h(Cn) = 2 and h(Kn) = n − 1, where
Cn and Kn are the cycle and complete graph on n vertices respectively [1]. Moreover,
h(Gn×m) = ⌊ min{n,m}

2 ⌋ + 1 [1] and h(Qn) = 1 + Σn−2
i=0

(
i

⌊i/2⌋
)

[5], where Gn×m is the n × m

grid and Qn is the hypercube with dimension n. The case of bipartite graphs has been
particularly studied because it was proved in [1] that we may constrain the rabbit to start in
a fixed part of the bipartition, without decreasing the hunter number. By taking advantage
of the bipartiteness of trees, it was proved that, for any tree T , h(T ) ≤ ⌈ 1

2 log2(|V (T )|)⌉ [17].
Surprisingly, the computational complexity of the problem that takes a graph G and an
integer k as inputs and aims at deciding whether h(G) ≤ k is still open, even if G is restricted
to be a tree.

In this paper, we progress further in this research direction by exhibiting new classes of
graphs G where h(G) can be determined in polynomial time.

Graph Searching games. The Hunters and Rabbit game takes place in the larger class
of Graph Searching games initially introduced in [6, 26]. In these pursuit-evasion games,
one player plays with a team of searchers (or hunters, etc.) that must track a fugitive (or
robber, rabbit, etc.) moving in a graph. Multiple games fall under this framework, each one
specifying its own rules on, for example, the available moves of the searchers, the speed of
the fugitive, whether the fugitive is visible or not, etc. Several variations of Graph Searching
games have been studied in the literature due to their numerous applications in artificial
intelligence [21], robot motion planning [9], constraint satisfaction problems and database
theory [16], and distributed computing [25]. The study of such games also leads to significant
implications in graph theory and algorithms. Indeed, many variants of these games provide
algorithmic interpretations of width measures of graphs like treewidth [27], pathwidth [26],
tree-depth [15], hypertree-width [2], cycle-rank [15], and directed tree-width [22]. Central
to the connection between Graph Searching games and such structural parameters is the
notion of monotonicity [3, 27, 24, 20]. In short, a searchers’ strategy is monotone if it
ensures that the fugitive can never “recontaminate” a vertex, i.e., it can never access a vertex
that has already been “visited” by a searcher. The main question is then, given a game,
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whether “recontamination does not help in this game” [23], i.e., whether there always exists,
in this game, an optimal (in terms of number of searchers) monotone winning strategy for the
searchers. In particular, the monotonicity played a central role in the proof that the minimum
number of searchers to capture an invisible (resp., visible) fugitive in the node-searching
game played in a graph G equals its pathwidth plus one [3] (resp., treewidth plus one [27]).

Unsurprisingly, the Hunters and Rabbit game also has a close relationship with the
pathwidth of graphs. Precisely, the hunter number of any graph is at most its pathwidth
plus one [1]. In this paper, we investigate further this relationship and, for this purpose, we
define, and study, a notion of monotonicity adapted to the Hunters and Rabbit game.

Our contribution. In Section 2, we give the main notations used throughout this paper.
In Section 3, we introduce the notion of monotonicity for the Hunters and Rabbit game
which is not straightforward; let mh(G) denote the monotone hunter number of G. Then,
we prove that mh(G) ∈ {pw(G), pw(G) + 1} in any graph G. Along with implying that it is
NP-complete to compute mh(G) for a graph G, this result also implies that it is NP-hard to
approximate mh(G) up to an additive error of |V (G)|ε, for 0 < ε < 1. On the positive side, in
Section 4, we give polynomial time algorithms to determine h(G) and/or mh(G) in cographs,
split and interval graphs. In Section 5, we adapt the Parsons’ Lemma [26] to the case of
the monotone Hunters and Rabbit game which leads to a polynomial time algorithm
that computes mh(T ) for any tree T . Then, we investigate the monotonicity property in
the case of the “bipartite” variant of the Hunters and Rabbit game (see [1, 17]) in trees.
In particular, we show that, for any k ∈ N, there exist trees T such that h(T ) = 2 and
mh(T ) ≥ k. That is, “recontamination helps a lot” in the Hunters and Rabbit game.
Finally, in Section 6, we show as a general positive result that the problem of deciding
if h(G) ≤ k or mh(G) ≤ k, for some given integer k, is in FPT when parameterized by
the vertex cover number of G. This is done through kernelization. We close our study by
providing directions for further research in Section 7.

2 Preliminaries

Unless mentioned otherwise, in this paper we will always deal with graphs G = (V, E) that
are non empty, finite, undirected, connected and simple. For any two adjacent vertices
x, y ∈ V , let xy ∈ E denote the edge between x and y. Given a set S ⊆ V , let G[S] denote
the subgraph of G induced by (the vertices in) S and let G \ S denote the subgraph G[V \ S].
For any v ∈ V and X ⊆ V , let NX(v) = {u ∈ X | uv ∈ E} be the open neighbourhood of v

in X and let the closed neighbourhood of v in X be NX [v] = (NX(v) ∪ {v}) ∩ X. If X = V ,
we simply write N(v) and N [v] respectively. For any S ⊆ V , let N(S) =

⋃
v∈S N(v) \ S

and N [S] = N(S) ∪ S. The degree d(v) = |N(v)| is the number of neighbours of v and let
δ(G) = min

v∈V
d(v). An independent set of a graph G = (V, E) is a subset I of V such that,

for every u, v ∈ I, uv /∈ E. A graph is bipartite if its vertex-set can be partitioned into two
independent sets.

Hunters and Rabbit game. The Hunters and Rabbit game is played between two
players, Hunter and Rabbit, on a graph. Let k ∈ N∗. The Hunter player controls k hunters
and the Rabbit player controls a single rabbit. First, the Rabbit player places the rabbit at
a vertex r0 ∈ V . The rabbit is invisible, i.e., the position of the rabbit is not known to the
hunters. Then, the game proceeds in rounds. In each round i ≥ 1, first, the Hunter player
selects a non empty subset Si ⊆ V of at most k vertices of G (we say that the vertices in Si
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42:4 Recontamination Helps a Lot to Hunt a Rabbit

are shot at round i). If the current position ri−1 of the rabbit is shot, i.e., if ri−1 ∈ Si (we
say that the rabbit is shot), then the Hunter player wins, and the game stops. Otherwise,
the rabbit must move from its current position ri−1 to a vertex ri ∈ N(ri−1), and the next
round starts. The Rabbit player wins if the rabbit avoids being shot forever.

A hunter strategy in G = (V, E) is a finite sequence S = (S1, . . . , Sℓ) of non empty subsets
of vertices of G. Let h(S) := max1≤i≤ℓ |Si| and let us say that S uses h(S) hunters. A
rabbit trajectory in G starting from W ⊆ V (W will always be assumed non empty) is any
walk (r0, . . . , rℓ) such that r0 ∈ W and ri ∈ N(ri−1) for every 1 ≤ i ≤ ℓ. A hunter strategy
is winning with respect to W if, for every rabbit trajectory (r0, . . . , rℓ) starting from W ,
there exists 0 ≤ j < ℓ such that rj ∈ Sj+1, i.e, the rabbit is eventually shot whatever be its
trajectory starting from W . Given a hunter strategy S = (S1, . . . , Sℓ), a rabbit trajectory
(r0, . . . , rℓ) starting from W is winning against S if ri /∈ Si+1 for every 0 ≤ i < ℓ. A winning
hunter strategy is any winning hunter strategy with respect to V and a rabbit trajectory is
any rabbit trajectory starting from V .

The hunter number of G = (V, E) with respect to W ⊆ V , denoted by hW (G), is the
minimum integer k such that there exists a winning hunter strategy with respect to W and
using k hunters. Let h(G) = hV (G) be the hunter number of G. The Rabbit player has a
strategy R starting from W ⊆ V against k ≥ 1 hunters if, for every hunter strategy S using
k hunters, there exists a rabbit trajectory R(S) that is winning against S. If such a strategy
R exists, then hW (G) > k.

For any hunter strategy S = (S1, . . . , Sℓ), it will be convenient to identify the potential
positions of a rabbit (starting in W ⊆ V ) after each round. Precisely, let ZW (S) =
(ZW

0 (S), . . . , ZW
ℓ (S)) be defined as follows. Let ZW

0 (S) = W and, for every 0 < i ≤ ℓ, let
ZW

i (S) be the set of vertices v such that there exists a rabbit trajectory (r0, r1, . . . , ri = v)
such that r0 ∈ W and, for every 0 ≤ j < i, rj /∈ Sj+1. Formally, for any 1 ≤ i ≤ ℓ, let
ZW

i (S) = {x ∈ V (G) | ∃y ∈ (ZW
i−1(S) \ Si) ∧ (xy ∈ E(G))}. Intuitively, ZW

i (S) is the set
of vertices that the rabbit (starting from some vertex in W ) can have reached at the end
of the ith round without having been shot. We will refer to the vertices in ZW

i (S) as the
contaminated vertices after round i. Note that, if S is winning, then ZW

ℓ (S) = ∅. In what
follows, we write Zi (resp., Zi(S)) instead of ZW

i (S) when S and W (resp., when W ) are
clear from the context.

To reduce the search space for the possible hunter strategies, we establish that we can
have winning hunter strategies that shoot only on a subset of contaminated vertices in each
round, without increasing the number of hunters required. More precisely, a hunter strategy
S = (S1, . . . , Sℓ) is said to be parsimonious if, for every 1 ≤ i ≤ ℓ, Si ⊆ Zi−1(S).

3 Monotonicity

In classical graph pursuit-evasion games, an important notion is that of monotonicity. On a
high level, a strategy is monotone if the area reachable by the fugitive never increases. In
the particular case of Graph Searching games, a strategy is monotone if, once a searcher is
removed from some vertex, it is never necessary to occupy this vertex during a subsequent
round. Monotone strategies have been widely studied [3, 29, 24] because it is generally easier
to design them and because they have length polynomial in the size of the graph and, so,
corresponding decision problems can be proven to be in NP.

It is clear that such a definition is not suitable to the Hunters and Rabbit game. Indeed,
consider the graph that consists of a single edge uv: the hunter must shoot at some vertex,
say u, and, if the rabbit was at v, it will move to u, i.e., the vertex u is “recontaminated”.
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(a) Z0 = {a, c, e, g}.
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(b) S1 = {c},
Z1 = {b, d, f}.

a

b

c

d

e

f

g

✗

(c) S2 = {d},
Z2 = {a, c, g}.
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(d) S3 = {c},
Z3 = {b, f}.
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(e) S4 = {f},
Z4 = {c, a}.
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(f) S5 = {c},
Z5 = {b}.

a

b

c

d

e

f

g

✗

(g) S6 = {b},
Z6 = ∅.

Figure 1 Example of a bipartite graph (where Vr = {a, c, e, g} corresponds to the red part of the
bipartition, illustrated by the red vertices in the figures) and of a parsimonious winning strategy with
respect to Vr, such that no vertex in {a, e, g} is ever shot. Each subfigure depicts the situation at
the end of the corresponding round. The cross indicates the shot of the hunter, and all the possible
positions of the rabbit are shown by a rabbit next to the corresponding vertex.

Therefore, we propose to define monotonicity in the Hunters and Rabbit game as follows
(see the formal definition below): once a vertex has been “cleared”, if the rabbit can access it
in a subsequent round, then the vertex must be shot immediately.

In classical Graph Searching games, a vertex being cleared at some round means that
the searcher’s strategy ensures that the fugitive cannot occupy this vertex at this round.
A recontaminated vertex can be intuitively defined as a vertex that can be reached by the
fugitive while having been cleared in a previous round. This intuitive definition does not
make any sense in the Hunters and Rabbit game. For example, it is shown in [1] that,
in bipartite graphs, h(G) = hVr (G) = hVw (G), where (Vr, Vw) denotes the bipartition of V .
In other words, it is sufficient to consider winning hunter strategies with respect to one of
the independent sets of the bipartition; we call this the red variant of the game. In this
case, every vertex of Vr is cleared at every odd round (since the rabbit can only occupy
vertices of Vw at odd rounds) and so looking for a strategy without recontamination would
be meaningless.

A related difficulty comes from the fact that, contrary to classical Graph Searching
games, a vertex may be “cleared” without having been shot during the game. As a concrete
example, consider a star with three leaves whose edges have been subdivided once each.
Then, assuming that the leaves and the centre are red, in the red variant, it is possible for one
hunter to win without shooting any of the leaves. Indeed, consider the strategy illustrated in
Figure 1.

To overcome these difficulties, we propose to define the clearing of a vertex at some round
by the fact that the actions of the hunters ensure that this vertex cannot be occupied by
the rabbit at this round. Precisely, two actions of the hunters may clear a vertex: either a
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42:6 Recontamination Helps a Lot to Hunt a Rabbit

hunter shoots a vertex v at round i and does not shoot the rabbit (meaning that v ≠ ri−1),
or the hunters shoot on every contaminated vertex in the neighbourhood of v. In this case,
either v was occupied and the rabbit has to leave v, or v was not occupied and cannot be
occupied after the move of the rabbit. In both cases, v /∈ Zi. This discussion motivates the
following definition for the monotonicity of hunter strategies.

▶ Definition 1 (Monotone strategy). Let G be a graph and S be a winning hunter strategy
with respect to W ⊆ V (G). We say that a vertex v is cleared at round i if either v ∈ Si or,
N(v) ∩ Zi−1 ̸= ∅ and N(v) ∩ Zi−1 ⊆ Si. A strategy S = (S1, . . . , Sℓ) is monotone if, for
every vertex v ∈ V , if there exists an i such that v is cleared at round i, then for every j > i

such that v ∈ Zj, the strategy ensures that v ∈ Sj+1. A vertex v is recontaminated at round
j if there exists i ≤ j such that v is cleared at round i and v ∈ Zj \ Sj+1.

The monotone hunter number of a graph G with respect to W ⊆ V (G), denoted by mhW (G),
is the minimum number k such that k hunters have a monotone winning hunter strategy in
G with respect to W . Let us denote the monotone hunter number mhV (G) of G by mh(G).
Note that, by definition, hW (G) ≤ mhW (G) ≤ mh(G).

We can prove that monotone strategies have many interesting properties that are used
in most of the proofs of our results. The proofs of these properties, which are omitted due
to lack of space, are not trivial. The most intuitive one, is that, when the hunters follow a
monotone strategy S, the set of possible positions of the rabbit cannot increase. That is,
Zℓ(S) ⊆ · · · ⊆ Z1(S). Moreover, mh(G) is closed under taking subgraphs. A crucial property
is that there exists an optimal (using mh(G) hunter) parsimonious monotone strategy in any
graph G. Finally, in any monotone strategy, once a vertex is shot, it has to be continuously
shot until the rabbit can no longer reach it. In particular, this last property is used in the
proof of upcoming Theorem 2 and it implies that the problem of computing mh is in NP.

3.1 Monotone hunter number and pathwidth
Here, we relate the monotone hunter number of a graph to its pathwidth. Our result might
be surprising since the pathwidth of a graph G is equivalent to the number of searchers
required to (monotonously) capture an arbitrary fast invisible fugitive [3] while, in our case,
the invisible rabbit seems much weaker than the fugitive: the rabbit is “slow” (it moves only
to neighbours) and constrained to move at every round. In this view, one might guess that
the monotone hunter number of a graph could be arbitrary smaller than its pathwidth. On
the contrary, we show that these parameters differ by at most one.

A path-decomposition of a graph G = (V, E) is a sequence P = (X1, . . . , Xp) of subsets
of vertices, called bags, such that (1)

⋃
i≤p Xi = V ; (2) for every uv ∈ E, there exists i ≤ p

with {u, v} ⊆ Xi; and (3): for every 1 ≤ i ≤ j ≤ q ≤ p, Xi ∩ Xq ⊆ Xj . The width w(P ) of
P is the size of a largest bag of P minus one, i.e., w(P ) = maxi≤p |Xi| − 1. The pathwidth
pw(G) of G is the minimum width of its path-decompositions. A path-decomposition of G

of width pw(G) is said to be optimal.

▶ Theorem 2. For any graph G = (V, E), pw(G) ≤ mh(G) ≤ pw(G) + 1.

Sketch of proof. Let P = (X1, . . . , Xℓ) be a path-decomposition of G with width k. Then,
P is a monotone hunter strategy in G using k + 1 hunters.

To show the other inequality, let S = (S1, . . . , Sℓ) be a parsimonious winning monotone
hunter strategy in G using at most k ≥ mh(G) hunters. Observe that S is almost a path-
decomposition due to the fact that it is parsimonious and monotone. Indeed, any vertex v

that is shot by S, will be shot during some consecutive rounds (will belong to consecutive
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bags of the decomposition). It remains to take care of unshot vertices. Such vertices are
cleared by shooting at all of their neighbours during a round of S. So, starting from S, we
build a path-decomposition P of G as follows: we start with a bag Bi corresponding to Si,
for each i. Then, for each vertex u that has never been shot, all the neighbours of which are
shot during the round i + 1 for the first time, we create an intermediate bag, between Bi

and Bi+1, containing all the vertices of Bi and the vertex u. ◀

Theorem 2 has important consequences, following from the inapproximability of the
pathwidth of a graph [4]. Moreover, using a result in [17], this implies that recontamination
may help in the Hunters and Rabbit game.

▶ Corollary 3. Given an n-node graph G and k ∈ N, it is NP-complete to decide whether
mh(G) ≤ k. Moreover, it is NP-hard to approximate mh(G) up to an additive error of nε,
for 0 < ε < 1.

▶ Corollary 4. There exists ε > 0 such that, for any k ∈ N, there exists a tree T with
h(T ) ≥ k and mh(T ) ≥ (1 + ε)h(T ).

4 (Monotone) hunter number of some graph classes

In this section, we characterise the (monotone) hunter number of several graph classes such
as cographs, split and interval graphs. In all these cases, our results lead to a polynomial
time algorithm to compute the monotone hunter number.

4.1 Split and interval graphs
A graph G = (V, E) is a split graph if V = C ∪ I can be partitioned into two sets C and I,
inducing an inclusion-maximal clique and an independent set, respectively. Given a split
graph G, a partition (C, I) of V (G) can be computed in linear time [18]. The following
theorem fully characterises the hunter number of split graphs. It also allows us to show that
the hunter number and the pathwidth of split graphs coincide.

▶ Theorem 5. Let G = (C ∪ I, E) be a split graph. Then, h(G) = |C| if and only if for
every two distinct vertices x, y ∈ C, there exists a vertex z ∈ NI(x) ∩ NI(y). Otherwise,
h(G) = |C| − 1.

Sketch of proof. If every two vertices of C have a common neighbour in I, there exists
a rabbit strategy against |C| − 1 hunters. The idea is to take advantage of the fact that
not all the vertices of C can be shot during a same round. Thus, the rabbit will remain
as much as possible on C, and if it is unable to do so, it will go to I and then return to
C, which is possible due to the hypothesis. For the reverse direction, let x and y be two
vertices of C without common neighbour in I. The strategy S = (S1, S2, S3, S4, S5), where
S1 = S2 = S5 = C \ {y} and S3 = S4 = C \ {x}, is a winning hunter strategy using |C| − 1
hunters. ◀

Recall that a vertex in a graph G is simplicial if its neighbourhood induces a clique.
Recall also that an interval graph is the intersection graph of a set of intervals in the real
line. Let ω(G) denote the maximum size of a clique of G.

▶ Theorem 6. Let G be a interval (resp. split) graph. Then, h(G) = mh(G) = ω(G) − 1
(resp. mh(G) = ω(G) − 1) if every maximum clique has a simplicial vertex. Otherwise,
mh(G) = ω(G).
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42:8 Recontamination Helps a Lot to Hunt a Rabbit

Sketch of proof. For the first direction, in case G = (C ∪ I, E) is a split graph with v being
a simplicial vertex of C, S = (C \ v, C \ v) is a monotone winning hunter strategy using
|C| − 1 hunters. In case G is an interval graph, recall that pw(G) = ω(G) − 1 and G admits
an optimal path-decomposition where each bag induces a complete graph. We adapt such an
optimal path-decomposition, to a hunter strategy using ω(G) − 1 hunters, by removing a
simplicial vertex from each bag containing a maximum clique and shooting twice at each of
these bags.

For the reverse direction, let C be any maximum clique of G without simplicial vertex.
Assume that there exists a monotone hunter strategy S using |C| − 1 hunters. Then there
exists at least one round such that C hunters shoot on vertices of C (otherwise the rabbit
can survive by staying on C). Consider the first such round and let u be the vertex of C

that is not shot. Using the fact that C has no simplicial vertex, we prove that there exists
w ∈ N(u)\C such that both u and w have never been shot until this round. Thus, the rabbit
can oscillate between u and w either until the end, or until the first round where at least one
of u or w is shot, where it recontaminates a vertex of C. This is a contradiction. ◀

From the above, we can show that there exist split and interval graphs G for which
mh(G) ̸= h(G), i.e., recontamination helps in these graph families. Note also that, even
knowing that ω(G) − 1 ≤ h(G) ≤ ω(G) for interval graphs, computing h(G) when some
maximum clique has no simplicial vertex is challenging.

4.2 Cographs

The class of cographs can be defined recursively as follows [10]. One vertex is a cograph.
Given two cographs A and B, their disjoint union A ∪ B is a cograph, and their join A ⋊⋉ B

(where all edges between A and B are added) is a cograph. A decomposition of a cograph
(i.e., a building sequence of unions and joins performed from single vertices) can be computed
in linear time [10].

▶ Theorem 7. mh(G) can be computed in linear time in the class of cographs.

Sketch of proof. It suffices to calculate mh(G) in the case where G = A ⋊⋉ B. It is easy
to see that mh(A ⋊⋉ B) ≤ m = min(mh(A) + |V (B)|, |V (A)| + mh(B)). Assume that there
exists a winning monotone hunter strategy S = (S1, . . . , Sℓ) using at most m − 1 hunters.
Let v be the first vertex that is no longer available for the rabbit and assume, w.l.o.g., that
v ∈ V (A). Then, all the vertices in NB(v) = V (B) were shot. Thus, V (B) must be shot
during every subsequent round. This means that S can clear A using m−|V (B)|−1 < mh(A)
hunters, a contradiction. ◀

Once again, the case of the hunter number seems more challenging. In particular, the
following lemma shows that recontamination may help in cographs.

▶ Lemma 8. For every k ≥ 1, there exists a cograph G such that h(G) ≥ k and mh(G) ≥
3
2 h(G) − 1.

Sketch of proof. Let A and B be two (isomorphic) cographs consisting of the disjoint union
of a complete graph with a ≥ 3 vertices and a independent vertices. The graph G = A ⋊⋉ B

verifies that mh(G) = 3a − 1 and h(G) = 2a. ◀
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5 (Monotone) hunter number of trees

This section is devoted to showing that mh can be computed in polynomial-time in the class
of trees. Then, we show that recontamination helps a lot in trees.

5.1 Monotone hunter number in trees

Let T be a tree and v ∈ V (T ). A branch at v is any connected component of T − v. A
star is any tree with at least two vertices and at most one vertex with degree at least three.
Roughly, Parsons’ Lemma [26] states that, for any tree T and k ∈ N, pw(T ) ≥ k + 1 if and
only if there exists a vertex v such that at least three branches at v have pathwidth at least
k. Here, we adapt this lemma in the case of the monotone hunter number of trees.

▶ Lemma 9 (Parsons’ like lemma). Let T = (V, E) be any tree.
mh(T ) = 0 if and only if |V | = 1;
mh(T ) = 1 if and only if T is a star;
mh(T ) = 2 if and only if T is not a star and contains a path P such that T \ P is a forest
of stars and isolated vertices;
For every k ≥ 3, mh(T ) ≥ k if and only if there exists a vertex v ∈ V such that at least
three branches at v have monotone hunter number at least k − 1.

Taking advantage of Lemma 9, we design a dynamic programming algorithm to compute
mh(T ) of a given tree T . Our algorithm is heavily inspired by the polynomial time algorithm
computing the pathwidth of T [13].

▶ Theorem 10. For a tree T , mh(T ) can be computed in polynomial time.

5.2 Monotone hunter number in the red variant in trees

So far, we have investigated the monotone Hunters and Rabbit, since monotone strategies
are often easier to deal with. Previous works on the Hunters and Rabbit game in bipartite
graphs G = (Vr ∪ Vw, E) have shown that studying the red variant of the Hunters and
Rabbit game, i.e., when the rabbit is constrained to start in a vertex in Vr, could be very
fruitful. For instance, h(G) = hVr

(G) holds for every bipartite graph G = (Vr ∪ Vw, E),
which helped to get many results on the Hunters and Rabbit game [1, 5, 17]. Therefore,
it is interesting to consider the monotonicity constraint when restricted to the red variant
of the Hunters and Rabbit game. We now focus on investigating the difference between
hVr

(T ) and mhVr
(T ), for any tree T . Thankfully, all the useful properties we observed for

the monotone version can be adapted for the monotone red variant as well.
By Corollary 4, there exists ε > 0 such that, for any k ∈ N, there exists a tree T with

h(T ) ≥ k and mh(T ) ≥ (1 + ε)h(T ). In the following theorem we improve this, by showing
that there exists an infinite family of trees T such that the difference between mh(T ) and
h(T ) is arbitrarily large. This follows from the next theorem since hVr

(T ) = h(T ) and
mh(T ) ≥ mhVr

(T ) for any tree T . Its proof follows from Lemmas 12 and 13, presented
below.

▶ Theorem 11. For every i ≥ 3, there exists a tree T such that mhVr
(T ) ≥ i and hVr

(T ) = 2.

MFCS 2023
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c1
i−1

c2
i−1

c3
i−1

c4
i−1

c5
i−1

c6
i−1

ci

p1
i = 2

p2
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Figure 2 The graph Ti,6. The labels on the edges are used to represent their respective lengths.
In particular, for every 2 ≤ j ≤ 6, we have that pj

i >
∑

1≤k≤j−1 pk
i + ℓi−1, where p1

i = 2 and ℓi−1 is
equal to the number of turns needed to clear any copy of the Ti−1,6 graph.

The construction of the tree Ti,q. Let Sk,q be the rooted tree obtained from q ≥ 6 paths
of length k ≥ 3 (with k edges) by identifying an endpoint of each path into a common vertex
called the root of Sk,q and denoted by c. From now on, let (Vr, Vw) be the bipartition of V (Sk,q)
and assume that c ∈ Vr. Let S1 be a winning hunter strategy such that mhVr

(S3,q) = 2 [7],
and let ℓ1 be the smallest even integer greater or equal to the length of S1.

For every i ≥ 2 and q ≥ 6, let Ti,q be the tree recursively built as follows (see Figure 2).
First, T1,q = S3,q. Then, for i > 1, we assume that Ti−1,q has been defined recursively and
that there exists a winning hunter strategy, of length ℓi−1, using 2 hunters in the red variant
in Ti−1,q. Ti,q is obtained from q vertex disjoint copies T 1

i , . . . , T q
i of Ti−1,q and from a vertex

ci, the root of Ti,q. Then, for every 1 ≤ j ≤ q, add a path P j
i of length pj

i between the root
cj

i of T j
i and ci (that is, ci and cj

i are at distance pi
j in Ti,q). The lengths pj

i are defined
recursively as follows. Let p1

i = 2 and, for every 1 < j ≤ q, let pj
i be the minimum even

integer greater or equal to ℓi−1 +
∑

1≤k<j pk
i . Finally, let us assume that ci ∈ Vr and note

that, since pj
i is even, this implies that ci, c1

i , . . . , cq
i all belong to Vr.

▶ Lemma 12. For any i ∈ N∗ and q ≥ 6, hVr
(Ti,q) = 2.

Sketch of proof. It suffices to give a winning hunter strategy using 2 hunters. The strategy
Si is defined recursively, and consists of q phases. During the jth phase, for 1 ≤ j ≤ q, one
hunter shoots at ci, while the other “pushes” the rabbit toward the subtrees T q

i , then T q−1
i ,

and so on, until T j
i . Then, the two hunters clear the subtree T j

i , following the strategy Si−1

(without the rabbit being able to leave T j
i if it was there). The lengths of the paths linking

the roots of the subtrees to ci guarantee that the rabbit cannot reach ci before T j
i has been

cleared. ◀

As a consequence, the hunter number is not closed under taking a minor.

▶ Lemma 13. For i ≥ 3 and q ≥ 2i, mhVr
(T2i,q) ≥ i.
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Figure 3 A representation of the tree T2i,d. Wiggly edges represent paths whose internal vertices
have degree 2.

Sketch of proof. Let γ2i denote the root of T2i,q (see Figure 3) and assume that
mhVr

(T2i,q) ≤ i − 1. Let B2i
1 , . . . , B2i

q denote the branches of γ2i. The main ingredient
of our proof is that q is large enough so that when, say during round j2i, the first branch
of γ2i, say B2i

1 , is definitively cleared according to any monotone hunter strategy (i.e. the
hunters will never shoot a vertex in B2i

1 for the remaining of the game), then there are at
least two other branches of γ2i, say B2i

2 and B2i
3 , whose vertices have never been shot. Note

that γ2i must be shot during the round j2i or j2i + 1. Then, the same arguments can be
stated recursively on the tree T2i−1,q, contained in the first branch among B2i

2 and B2i
3 that

will be definitively cleared. In addition, we prove that j2i < · · · < j1 and every γq (or some
vertex of Bq

2 or Bq
3), for 1 ≤ q ≤ 2i, must be shot during the round j1 or j1 + 1. Thus, we

obtain that at least i vertices are shot during the round j1 or j1 + 1, a contradiction. ◀

6 Kernelization by vertex cover

Two instances I and I ′ are equivalent when I is a Yes-instance if and only if I ′ is a Yes-
instance. A kernelization algorithm of a parameterized problem Π is a polynomial time
algorithm that maps each instance (I, k) of Π to an equivalent instance (I ′, k′) of Π such
that the size of (I ′, k′) is bounded by g(k) for some computable function g(·). Here, (I ′, k′)
is said to be a kernel. It is well-known that a parameterized problem Π is FPT if and only
if it admits a kernel. We refer to the book [11] for details on parameterized complexity.
We remark that similar techniques were used to obtain kernelization algorithms for several
variants of Cops and Robber game parameterized by vc(G) [14].

Recall that a set U is a vertex cover of a graph G = (V, E) if G[V \ U ] is an independent
set. For the rest of this section, let U be a vertex cover of size t and I be the independent
set G[V \ U ]. If no such vertex cover is given, we can compute a vertex cover using a
2-approximation algorithm [28].

MFCS 2023
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▶ Theorem 14. Let G be a graph having a vertex cover U of size t, and let k ∈ N. Deciding
whether h(G) ≤ k (resp., mh(G) ≤ k) is FPT parameterized by t. More specifically, these
problems admit a kernel with at most 4t(t + 1) + 2t vertices.

Sketch of proof. First, observe that mh(G) ≤ t since the hunters have a monotone winning
strategy by shooting the vertices of U twice. Second, we argue that the standard rule of
removing twins from I leads to an exponential kernel for these questions. More specifically,
we have the following reduction rule along with the rule that if k ≤ t, return a Yes-instance:
If there is some I ′ ⊂ I such that |I ′| > k + 1 and for any two vertices x, y ∈ I ′, N(x) = N(y),
then delete an arbitrary vertex, say v, from I ′ to get G′ and let k′ = k. It is not difficult to
see that this will give us a kernel with at most 2t(t + 1) + t vertices.

Next, we give an intuition regarding the safeness of our reduction rule. It is easy to see
that if (G, k) is a Yes-instance, then (G′, k) is also a Yes-instance as both h(G) and mh(G)
are closed under taking subgraphs. For the reverse direction, and towards a contradiction,
we will assume that (G, k) is a no-instance but (G′, k) is a yes-instance. Since (G′, k) is a
yes instance, there exists a winning hunter strategy S ′ using at most k hunters in G′. Since
(G, k) is a no-instance, there exists a rabbit strategy R winning against S ′ in G. From R, we
can design R′, an equivalent rabbit strategy winning against S ′ in G′, contradicting that
(G′, k) was a yes-instance. ◀

7 Some Future Directions

In this paper, we studied the Hunters and Rabbit game by defining the notion of
monotonicity for this game. Using this notion of monotonicity, we characterised the monotone
hunter number for various classes of graphs. Moreover, we established that, unlike several
Graph Searching games, the monotonicity helps in this game, i.e., h(G) can be arbitrary
smaller than mh(G).

There are still several challenging open questions in this area. The most important among
them is the computational complexity of Hunters and Rabbit. Although our results estab-
lish that computing mh(G) is NP-hard, the computational complexity of computing/deciding
h(G) remains open, even if G is restricted to be a tree.

We also established that both Hunters and Rabbit, as well as its monotone variant,
are FPT parameterised by vc(G) by designing exponential kernels. It is not difficult to see
that both of these variants admit AND Composition parameterised by the solution size
(by taking the disjoint union of the instances). Thus, since computing mh(G) is NP-hard
and pw(G) ≤ mh(G) ≤ pw(G) + 1, it is unlikely for Monotone Hunters and Rabbit
parameterized by k + pw(G) to admit a polynomial compression. Note that the same cannot
be argued about Hunters and Rabbit since it is not yet proved to be NP-hard. Moreover,
since mh(G) is closely related to pw(G) and pathwidth admits a polynomial kernel with
respect to vc(G) [8], it might be interesting to see if deciding mh(G) ≤ k (resp., h(G) ≤ k)
also admits a polynomial kernel when parameterised by vc(G). Moreover, another interesting
research direction is to study the parameterised complexity of both these games by considering
parameters such as solution size, treewidth, and pathwidth.

Finally, we propose some open questions concerning the computation of h(G) for various
graph classes including trees, cographs, and interval graphs. Specifically, it will be interesting
to design a polynomial time algorithm to compute h(T ) for a tree T , a challenge that was
already proposed in [1]. The natural way that one could tackle this question is through
the notion of monotonicity, which we defined and studied in this paper. Unfortunately,
Theorem 11 implies that such an approach will not work. This means that a positive answer
to this question (if any) would require the introduction of new tools and techniques. Moreover,
it would be interesting to know the monotone hunter number of grids.
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distributed alphabets. We introduce symmetric monoidal automata, which define the class of regular
symmetric monoidal languages. Furthermore, we prove that Zielonka’s asynchronous automata
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1 Introduction

Monoidal languages [12] generalize formal languages of words to formal languages of string
diagrams. String diagrams [16, 29] are a graphical representation of morphisms in monoidal
categories. Monoidal categories can be considered 2-dimensional monoids [6]: just as monoids
are categories with one object, whose morphisms are elements of the monoid, (strict) monoidal
categories can be defined as 2-categories with one object. Accordingly, monoidal languages
are subsets of morphisms in free monoidal categories, just as word languages are subsets
of free monoids. Regular monoidal languages are those specifiable by finitary grammars or
automata. Our paper [12] introduced these devices and examined properties of languages
in single-sorted, planar monoidal categories. These include regular languages of words and
trees, but also languages of planar string diagrams that are neither linear nor tree-like.

In this paper, motivated by concurrency theory, we extend this theory to coloured props:
multi-sorted monoidal categories with symmetries (Section 2). The resulting theory of
symmetric monoidal languages (Section 3) captures languages of diagrams having multiple
colours of string and in which strings may cross, permitting non-planar diagrams. In terms
of concurrency, colours represent different runtimes, or threads of execution.

Indeed, in Section 4 we show that Mazurkiewicz trace languages [21] are exactly symmetric
monoidal languages over alphabets of a particular shape called monoidal distributed alphabets.
In Section 5 we introduce automata for symmetric monoidal languages, defining the class of
regular symmetric monoidal languages. Then, in Section 6 we show that these are exactly
the asynchronous automata of Zielonka [32] when instantiated over monoidal distributed
alphabets. Finally, in Section 7 we use the algebra of symmetric premonoidal categories to
show how serialization of traces can be treated string-diagrammatically.
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Related work

Our previous work [12] introduced monoidal languages in the planar, single-sorted case;
that is, languages of morphisms in free pros. Similar languages of graphs were studied by
Bossut [5], but their underlying algebra was not made explicit. Here, we again leverage the
algebraic perspective, extending our theory to symmetric multi-sorted monoidal categories
(props).

In the introduction to Joyal & Street’s foundational work on string diagrams for monoidal
categories [16], it is suggested that string diagrams have a connection to the heaps of
Viennot [30]. Heaps are known to be equivalent to Mazurkiewicz trace monoids (also known
as partially commutative monoids) [17], but a precise formulation of the suggested relation
with string diagrams has not appeared in the literature until now.

The notion of dependence graph [13] has also been used to give a topological presentation
of Mazurkiewicz traces. Our use of the algebra of monoidal categories, rather than graphs, has
various advantages. For example, we can apply our language theory for monoidal categories
to traces, and we see notions such as asynchronous automata arise naturally from this. It
also suggests generalizations of trace languages, in particular going beyond the case of atomic
actions (Remark 23). Finally, it brings our work into proximity with the semantics of Petri
nets and other formalisms for concurrency based on monoidal categories [2, 24].

2 Monoidal Graphs, Props and their String Diagrams

In this section we recall the basic definitions used in the following, including the specific
flavour of monoidal categories known as props [20], along with their string diagrams [16, 29].
Just as a category can be presented by a directed graph, (strict) monoidal categories can be
presented by monoidal graphs, a kind of multi-input, multi-output directed graph.

▶ Definition 1. A monoidal graph G is a set BG of boxes, a set SG of sorts, and functions
s, t : BG ⇒ SG

∗ to the free monoid over SG, giving source and target boundaries of each box.

The alphabets of monoidal languages will be finite monoidal graphs: those in which BG
and SG are both finite sets. In fact, since we are interested in finite state machines over
finite alphabets, we will work exclusively with finite monoidal graphs. Diagrammatically,
a (finite) monoidal graph can be pictured as a collection of boxes, labelled by elements of
BG with strings entering on the left and exiting on the right, labelled by sorts given by the
source and target functions. For example, the following depicts the monoidal graph G with
BG = {γ, γ′}, SG = {A, B}, s(γ) = AB, t(γ) = ABA, s(γ′) = A, t(γ′) = BB:

γ γ'A
B A

B
A

A
B
B

Sorts of a monoidal graph are sometimes called colours, since we could equally use
different colours of string to represent different sorts, and we shall do so in places below.
For a box γ ∈ BG we call s(γ) and t(γ) the arity and coarity of γ, respectively, and write
γ : s(γ) → t(γ). We will also call γ considered together with its arity and coarity a generator.

Monoidal graphs are generating data for monoidal categories. Recall that a strict monoidal
category is a category C, equipped with a functor ⊗ : C × C → C (the monoidal product) and
a unit object I ∈ C, such that ⊗ is associative and unital. A strict monoidal category is
symmetric if there is a natural family of symmetry morphisms σA,B : A ⊗ B → B ⊗ A, for
each pair of sorts, satisfying σB,A ◦ σA,B = 1A⊗B. The monoidal product turns the sets of
objects and morphisms in C into monoids. A prop is a symmetric strict monoidal category
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whose monoid of objects is a free monoid.1 While the above data can be intimidating to the
non-expert, the free prop F G on a monoidal graph G can be described in an intuitive and
straightforward way: its arrows are the string diagrams generated by G.

▶ Definition 2. The free prop F G on a monoidal graph G has monoid of objects S∗
G and

morphisms string diagrams inductively defined as follows: Left to right: the empty diagram

(  ,  )∈S𝒢 ∈S𝒢 α ∈ B𝒢

...... α

...... d1
... ...d3

... d1
...d3

... d2

......... d1

...... d1

... d2

...

is a diagram; for every sort, the string on that sort is a diagram; for every pair of sorts,
the symmetric braiding is a diagram; the diagram for every generator α is a diagram; for
any two diagrams their vertical juxtaposition is a diagram; and for any two diagrams with
matching right and left boundaries, the diagram obtained by joining the matching wires is a
diagram (their composition). The monoidal product is given on objects by concatenation, on
diagrams by juxtaposition, and the unit is the empty word.

The idea is simple: we treat generators like circuit components, and we have a supply of
wires (identity morphisms). We also have the ability to cross wires, without tangling them;
we do not distinguish over-crossings from under-crossings. A string diagram is then just any
(open) circuit that we can build. This notation is sound and complete: an equation between
morphisms of strict monoidal categories follows from their axioms if and only if it holds
between string diagrams up to planar isotopy [16]. Working with string diagrams rather than
the usual term syntax for morphisms is more intuitive, and leads to shorter proofs as the
structural equations hold automatically: for example, interchange of morphisms (Figure 1,
left), unbraiding of symmetries (centre), and sliding of morphisms past symmetries (right).

α

β

α

β
= = =

α

α

Figure 1 These pairs of string diagrams are equal, reflecting the functoriality of ⊗ (interchange),
inverses of symmetries, and naturality of symmetries, respectively.

▶ Definition 3. A morphism of monoidal graphs φ : H → G is given by functions Bφ : BH →
BG and Sφ : SH → SG compatible with source and target functions: S∗

φ ◦ s = s ◦ Bφ and
S∗

φ ◦ t = t ◦ Bφ, where S∗
φ is the unique monoid homomorphism determined by Sφ.

Morphisms of monoidal graphs freely generate morphisms of props: strict monoidal
functors preserving sorts. Every prop has an underlying monoidal graph whose boxes are all
the morphisms of the prop. This extends to an adjunction F ⊣ U between the categories
of monoidal graphs and props, where U takes the underlying monoidal graph of a prop [16].

Monoidal categories have been applied to the study of both computing and physical
processes [8, 9, 18, 25]. In these contexts, the monoidal product represents parallel composition
of processes, and interchange reflects the independence of processes running in parallel. This
is the main feature of monoidal categories that we will leverage in our representation of traces
(Section 4). The use of multi-sorted props will allow fine-grained control of interchange.

1 Some literature takes prop to mean that the monoid of objects is generated by a single object (and so
isomorphic to N), using the term coloured prop for the general case above.
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3 Symmetric Monoidal Languages

Our paper [12] treated the case of languages, grammars and automata over single-sorted pros
(strict monoidal categories without symmetries), corresponding to languages of planar string
diagrams with one string colour. In this section we introduce the multi-sorted (or “coloured”)
symmetric monoidal languages, which will be needed in the following to extend monoidal
language theory to trace theory. In Section 5 we introduce the corresponding automata.

Just as a classical formal language is a subset of a free monoid, a symmetric monoidal
language is a subset of morphisms in a free prop:

▶ Definition 4. Let Γ be a finite monoidal graph. A symmetric monoidal language over Γ is
a set of morphisms in the free prop F Γ over Γ.

A morphism of finite directed graphs G → Σ, where Σ is a graph with one vertex, amounts
to a labelling of the edges of G by edges of Σ. This is the starting point of Walters’ definition
of regular grammar [31], which inspires the following definition:

▶ Definition 5. A regular monoidal grammar is a morphism of finite monoidal graphs.

For a regular monoidal grammar M
φ→ Γ, the monoidal graph Γ is the alphabet, and the

generators of M , with their labelling by φ, correspond to production rules: see Example 7.
In the classical setting of word languages, a morphism of finite directed graphs G → Σ

determines a regular language over Σ once we specify initial and final state vertices in G.
In a regular monoidal grammar M → Γ, the “vertices” of M are words over SM , leading to
various natural choices of boundary condition (Remark 8). In this paper, we will take initial
and final words over S∗

M . Specifying these words defines the symmetric monoidal language
of the grammar (Definition 9), and we define the languages arising in this way to be the
regular symmetric monoidal languages.

We illustrate these definitions with some pedagogical toy examples. In the remaining
sections of this paper, we turn to our extended application in concurrency, and we shall see
that Mazurkiewicz trace languages are a natural example of symmetric monoidal languages.

▶ Example 6. Let φ : M → Γ be the regular monoidal grammar where M and Γ have a
single sort (•) and no boxes, with Sφ(•) = •, and initial and final states n ∈ S∗

M
∼= N. Then

the symmetric monoidal language of this grammar is the set of permutations of n wires:
morphisms consisting only of symmetries and identities.

Props have been used to give syntax and semantics for various kinds of signal flow graph
and circuit diagrams [1, 3, 4]. Intuitively, props are well suited for this purpose since wires
may freely cross in a circuit.

▶ Example 7. We give a regular monoidal grammar for the syntax of (open) circuits with
n ⩾ 0 capacitors in series with a single voltage source (Figure 2). The alphabet Γ has a
single sort, and boxes four circuit components (Figure 2, left). The monoidal graph M has
four sorts {S, A, B, C} and four boxes s : S → AB, c : A → A, v : B → C, s′ : AC → S. Sφ

maps the four sorts to the single sort of Γ, and Bφ maps each box to a circuit component.
We can draw the grammar φ : M → Γ in a single diagram by drawing the graph for M but
replacing each box b with its image under the grammar morphism Bφ(b) (Figure 2, centre).
The initial and final languages are the single state {S}. Intuitively, the symmetric monoidal
language determined by the grammar is all of the string diagrams S → S that can be built
using the “sorted” boxes of Γ, then forgetting the sorts.



M. Earnshaw and P. Sobociński 43:5

A

B

A

CB C

A A

S S

Figure 2 (Left) The alphabet Γ, giving syntax for circuits. (Centre) A regular monoidal grammar
over Γ. (Right) An element of the regular symmetric monoidal language determined by this grammar.

▶ Remark 8. As mentioned above, there are various possible choices for the “initial and final
states” of a monoidal grammar. In our previous paper [12], we took the empty word, giving
languages of scalar string diagrams (i.e. no “dangling wires”): this neatly generalizes tree
grammars. More generally, one can take initial and final regular languages of states over SM ,
as considered by Bossut [5].

The free prop construction can be used to concisely describe the symmetric monoidal
language of a regular monoidal grammar, defining the class of regular symmetric monoidal
languages:

▶ Definition 9. Let (φ : M → Γ, I, F ) be a regular monoidal grammar equipped with regular
languages I, F ⊆ S∗

M . This determines a symmetric monoidal language by taking the image
of the set of morphisms

⋃
i∈I,f∈F F M(i, f) under F φ, giving a set of morphisms in F Γ.

The languages arising in this way are defined to be the regular symmetric monoidal languages.

In this paper, we will only need the case where I, F consist of single words. The slogan
for the general case is that 2-dimensional regular languages have 1-dimensional regular
boundaries. In Section 5, we will see that regular symmetric monoidal languages may
equivalently be specified by non-deterministic monoidal automata.

▶ Remark 10. A regular monoidal grammar determines not only a regular symmetric monoidal
language, but also a language in any algebraic structure generated by monoidal graphs,
including planar monoidal categories (treated in [12]), and premonoidal categories (which
we will use in Section 7). This is analogous to the way in which a finite labelled directed
graph may generate both a subset of a free monoid, but also a subset of a free group, by
freely adding inverses to the graph. Moreover, many properties of planar regular monoidal
languages such as their closure properties proved in [12] only use grammars, and hence the
same proofs work for languages in these other algebras.

4 Mazurkiewicz Trace Languages as Symmetric Monoidal Languages

The theory of Mazurkiewicz traces [10, 21, 23] provides a simple but powerful model of
concurrent systems. Traces are a generalization of words in which specified pairs of letters
can commute. If we think of letters as corresponding to atomic actions, then commuting
letters reflect the independence of those particular actions and so their possible concurrent
execution: ab is observationally indistinguishable from ba if a and b are independent.

In this section, we show that trace languages are symmetric monoidal languages over
monoidal graphs of a particular form that we call monoidal distributed alphabets. In Section
5 we introduce symmetric monoidal automata, which operationally characterize the regular
symmetric monoidal languages. In Section 6 we turn to asynchronous automata [32], a
well-known model accepting exactly the recognizable trace languages, and show that these
automata are precisely symmetric monoidal automata over monoidal distributed alphabets.

MFCS 2023
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4.1 Independence and distribution
We recall some definitions from Mazurkiewicz trace theory, before recasting them in terms of
monoidal languages. Fix a finite set Σ, an alphabet thought of as a set of atomic actions.

▶ Definition 11. An independence relation on Σ is a symmetric, irreflexive relation I. The
induced dependence relation, DI is the complement of I.

▶ Definition 12. For I an independence relation, let ≡I be the least congruence on Σ∗ such
that ∀a, b: (a, b) ∈ I =⇒ ab ≡I ba. The quotient monoid T (Σ, I) := Σ∗/≡I is the trace
monoid.

▶ Definition 13. A (Mazurkiewicz) trace language over (Σ, I) is a subset of the trace monoid
T (Σ, I).

An element of T (Σ, I) or trace over (Σ, I) is thus an equivalence class of words up to
commutation of independent letters. A trace language may be thought of as the set of
possible observations of a concurrent system’s behaviour, in which independent letters stand
for actions which may occur concurrently. Independence relations correspond to distributions:

▶ Definition 14 ([23]). A distribution of an alphabet Σ is a finite tuple of non-empty alphabets
(Σ1, ..., Σk) such that

⋃k
i=1 Σi = Σ.

▶ Proposition 15 ([23]). A distribution of Σ corresponds to a function loc : Σ →
P+({1, ..., k}) : σ 7→ {i | σ ∈ Σi}.

Such a function gives the set of “locations” of each action σ ∈ Σ. In terms of concurrency,
we can consider this to be a set of memory locations, threads of execution, or runtimes in
which σ participates. In particular, every action has a non-empty set of locations.

A well-known construction [23] allows us to move between independence relations and
distributions: locations correspond to maximal cliques in the graph of the dependency relation.
We recall this construction in the proof of Proposition 16, which refines this correspondence.

Let IndΣ be the poset of independence relations on Σ, with order the inclusion of relations.
Similarly, define a preorder DistΣ on distributions by (Σ1, ..., Σp) ⩽ (Σ′

1, ..., Σ′
q) iff for each

pair of distinct elements a, b ∈ Σ, if there exists 1 ⩽ j ⩽ q such that Σ′
j contains both a and

b, then there exists an Σi containing both a and b. Finally, quotient this preorder by taking
distributions to be equal up to permutation.

▶ Proposition 16. There is a Galois insertion IndΣ ↪→ DistΣ.

Proof. We construct an injective monotone function i : IndΣ → DistΣ. Let an independence
relation I over Σ be given, with induced dependence relation DI . Construct the undirected
dependency graph: vertices are elements of Σ and there is an edge (a, b) for every (a, b) ∈ DI .
Choose an ordering of maximal cliques of DI , and define a distributed alphabet by taking
Σi to be the elements of Σ in the maximal clique i. Different orderings give the same
distribution up to permutation, and so the same element of DistΣ. This is injective since
distinct independence relations induce distinct dependency graphs. It is monotone since if
I ⊆ I ′ then the dependency graph DI is at least as connected as DI′ , so if a, b both belong
to a maximal clique of DI′ then they will both belong to a maximal clique of DI .

We construct a monotone function r : DistΣ → IndΣ. Let (Σ1, ..., Σk) be a distribution.
Define a relation I by (a, b) ∈ I ⇐⇒ loc(a) ∩ loc(b) = ∅. This is irreflexive and symmetric,
and so an independence relation. r is also clearly well-defined and monotone. Finally it is
easy to check that r ◦ i : IndΣ → IndΣ is the identity. ◀
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Put otherwise, though the same independence relation may be induced by many different
distributions, independence relations correspond bijectively with the distributions in the
image of i ◦ r, that is, the distributions obtained via the maximal clique construction.

4.2 Symmetric monoidal languages over monoidal distributed alphabets
We now turn to the interpretation of these notions in terms of symmetric monoidal languages.
A distribution can be seen as a monoidal graph in which sorts are the locations (runtimes).

▶ Definition 17. A monoidal distributed alphabet is a finite monoidal graph Γ with the
following properties:

Γ has set of sorts a finite ordinal SΓ = {1 < 2 < ... < k} for k ⩾ 1,
sorts i ∈ SΓ appear in order in the sources and targets of each generator γ ∈ BΓ,
each sort i ∈ SΓ appears at most once in each source and target,
for each generator γ ∈ BΓ, the sources and targets are non-empty and equal: s(γ) = t(γ).

In brief, every generator in the alphabet is equipped with some set of runtimes, which
serve as its source and target, and the runtimes are conserved. Figure 3 gives an example.

γ ε
β

δ

α

Figure 3 An example of a monoidal distributed alphabet. For example, δ and β are independent
but γ and α are not. We use colours for clarity, here blue = 1 < red = 2 < green = 3.

This gives us a way of representing distributions as monoidal graphs and vice-versa, if the
graph is a monoidal distributed alphabet. Following Proposition 15, we will use loc( ... γ ...)
to mean the arity (= coarity) of a generator ... γ .... Since we choose a finite ordinal for the
sorts, we have that:

▶ Proposition 18. Distributed alphabets are in bijection with monoidal distributed alphabets.

Since the ordering of the runtimes is ultimately not relevant to the structure of a trace,
we should allow them to freely cross each other in our string diagrams: this is precisely what
is enabled by taking the symmetric monoidal languages over these alphabets. We also need
each runtime to appear once in each element of these languages, so we take the boundaries
to be 1 ⊗ ... ⊗ n, which we will write as 1...

n
.

▶ Definition 19. A monoidal trace language is a symmetric monoidal language of the form
L ⊆ F Γ

(1...
n
,

1...
n

)
where Γ is a monoidal distributed alphabet.

Figure 4 gives an example of an element in a monoidal trace language over the monoidal
distributed alphabet in Figure 3. We call such morphisms monoidal traces, and indeed we
shall see below that they are exactly Mazurkiewicz traces. The corresponding string diagram
gives an intuitive representation of traces as topological objects.

We now show that monoidal trace languages correspond precisely to Mazurkiewicz trace
languages (Theorem 22), by establishing an isomorphism of monoids between trace monoids
and monoids of string diagrams generated by monoidal distributed alphabets. Fix a monoidal
distributed alphabet Γ. Recall that endomorphism hom-sets in a category are monoids under
composition, and that the hom-set F Γ

(1...
n
,

1...
n

)
has elements string diagrams 1...

n
→ 1...

n
over Γ.
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α
δ

ε

β

γ

Figure 4 An example of a monoidal trace. β is independent of α and γ, but not δ or ϵ. Thus
αγβδε and βαγδε are two possible serializations of this trace, corresponding to sliding β past α and
γ in the string diagram. We use colours for sorts, blue = 1 < red = 2 < green = 3.

▶ Lemma 20. The hom-set F Γ
(1...

n
,

1...
n

)
admits the following presentation as a monoid:

Generators: For each ... γ ... ∈ Γ, the string diagram N(γ) : 1 ⊗ ... ⊗ n → 1 ⊗ ... ⊗ n

built from symmetries, followed by ... γ ... tensored with identities, followed by the inverse
symmetry. See Figure 5 for an example.
Equations: N(α) # N(β) = N(β) # N(α) ⇐⇒ loc( ... α ...) ∩ loc( ... β ...) = ∅, where #
denotes composition of string diagrams in diagrammatic (left-to-right) order.

Proof. We construct an isomorphism between the monoids. Let s ∈ F Γ
(1...

n
,

1...
n

)
be a string

diagram. We can use interchange (Figure 1) to impose a linear order of generators from
left to right in the diagram, e.g. ... γ1 ..., ..., ... γn

.... This is called putting s in general
position, by perturbing generators at the same horizontal position [16]. We then split the
string diagram into a sequence of slices, each containing one generator. For a slice with
right (or left) boundary

k1...
kn

, we can use the permutation
k1...
kn

→ 1...
n

followed by its inverse (or
vice-versa) to finally obtain s as a sequence N(γ1) # ... # N(γn). Any other possible sequence
of generators is obtainable by repeatedly interchanging generators: this is possible if and
only if their locations are disjoint. Consequently, this defines a function from F Γ

(1...
n
,

1...
n

)
to

the monoid presented above. Given that, as argued above, the slicing construction is unique
up to interchanging independent generators, this defines a homomorphism. Conversely, given
a generator N(γ) in the presentation, we map this to the same string diagram in F Γ

(1...
n
,

1...
n

)
.

Again, it follows from interchange that this extends to a homomorphism, inverse to that
above. ◀

γ
1

2

3

4

5

1

2

3

4

5

1 1

4

5

4

5

2

3

2

3

Figure 5 An example of a generator N(γ) as in Lemma 20.

We now show that trace monoids are isomorphic to the endomorphism monoids F Γ
(1...

n
,

1...
n

)
.

▶ Lemma 21. Let I be an independence relation on an alphabet Σ, and Γ the monoidal
distributed alphabet induced by the corresponding distribution (Proposition 18). Then there is
an isomorphism of monoids T (Σ, I) ∼= F Γ

(1...
n
,

1...
n

)
.

Proof. We use the presentation of the endomorphism monoid given in Lemma 20. Define
a homomorphism α : F Γ

(1...
n
,

1...
n

)
→ T (Σ, I) by mapping generators N(γ) 7→ [γ]. Let

N(γ) # N(γ′) = N(γ′) # N(γ), then it follows [γγ′] = [γ′γ] in T (Σ, I), since the former holds
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iff loc(γ) ∩ loc(γ′) = ∅, and so this extends to a homomorphism. Define a homomorphism
β : T (Σ, I) → F Γ

(1...
n
,

1...
n

)
by mapping generators [γ] 7→ N(γ). [γγ′] = [γ′γ] holds iff

loc(γ) ∩ loc(γ′) = ∅, iff loc( ... γ ...) ∩ loc( ... γ′ ...) = ∅, iff N(γ) # N(γ′) = N(γ′) # N(γ).
Finally it is clear that α and β are inverses, and so witness an isomorphism of monoids. ◀

The following theorem is now immediate: given a monoidal trace language L ⊆ F Γ
(1...

n
,

1...
n

)
we obtain a trace language L′ ⊆ T (Σ, I) using the isomorphism, and vice-versa:

▶ Theorem 22. Monoidal trace languages are exactly Mazurkiewicz trace languages.

Lemma 21 also shows that composition of traces corresponds simply to concatenation
of the corresponding monoidal traces. Diagrams like Figure 4 are commonplace in the
trace literature [11, 32]. Theorem 22 gives a formal basis for these diagrams as elements of
symmetric monoidal languages.

▶ Remark 23. The idea of monoidal categories with a runtime is made precise by string
diagrams for the effectful categories of Román [28]. Free props over monoidal distributed
alphabets, considered as monoidal categories with multiple runtimes suggest a further
generalization of effectful categories, sketched as a setting for concurrency by Jeffrey [14,
Section 9.4]. We return to this in Section 7, where effectful (premonoidal) categories will be
used to equip a trace language with a new runtime that enforces a strict ordering of events.

5 Symmetric Monoidal Automata

Monoidal automata give an alternative specification of the class of regular monoidal languages:
they are analogues of finite-state automata in which transitions have multiple inputs and
multiple outputs. Our paper [12] introduced monoidal automata for single-sorted, planar
monoidal languages. However, the same data specifies an acceptor for single-sorted symmetric
monoidal languages, if we inductively extend to props, rather than planar monoidal categories.

In this section we introduce monoidal automata over multi-sorted monoidal graphs and
show how these recognize (multi-sorted) symmetric monoidal languages. In Section 6, we
will see that the asynchronous automata of Zielonka [32] are a natural class of symmetric
monoidal automata: those over monoidal distributed alphabets.

▶ Definition 24. A non-deterministic monoidal semi-automaton is:
an input alphabet, given by a finite monoidal graph Γ,
an family of non-empty, finite state sets {Qc}c∈SΓ indexed by the sorts of Γ,
for each γ : c1...cn → c′

1...c′
m in Γ, a transition function ∆γ :

∏n
i=0 Qci → P(

∏m
j=0 Qc′

j
).

As noted in Section 3, there are several candidates for a notion of initial/final state. In
the following, we take initial and final words i, f over

∏
Qc. A monoidal semi-automaton

equipped with initial and final words turns it into a (non-deterministic) monoidal automaton.
For classical NFAs, the assignment a 7→ ∆a extends uniquely to a functor Σ∗ → Rel, the

inductive extension of the transition structure from letters to words. We can similarly extend
monoidal automata to string diagrams. First, we define the codomain prop, RelΓ,Q:

▶ Definition 25. For a family of sets {Qc}c∈SΓ indexed by the sorts of Γ then RelΓ,Q is the
prop with:

set of objects S∗
Γ,

morphisms c1...cn → c′
1...c′

m functions
∏n

i=1 Qci
→ P(

∏m
j=1 Qcj

),
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composition is the usual composition of relations, i.e. f ◦ g := µ ◦ P(g) ◦ f , where µ is
the canonical map from sets of subsets to subsets,
⊗ is given on objects by concatenation,
and on morphisms f :

⊗
i ci →

⊗
j c′

j and g :
⊗

k dk →
⊗

l d′
l by f ⊗ g := ∇ ◦ (f × g),

where ∇ sends pairs of subsets to their cartesian product,
symmetries σ : c1c2 → c2c1 are functions Qc1 × Qc2 → P(Qc2 × Qc1) : (q, q′) 7→ {(q′, q)}.

Note that a non-deterministic monoidal semi-automaton amounts to a morphism of
monoidal graphs Γ → U RelΓ,Q. The adjunction F ⊣ U implies that there is a unique
extension to a strict monoidal functor F Γ → RelΓ,Q, which we call a non-deterministic
symmetric monoidal semi-automaton. This functor maps a string diagram to a relation.
When this relation relates the initial word to the final word, the string diagram is accepted:

▶ Definition 26. Let ∆ : F Γ → RelΓ,Q be a non-deterministic monoidal automaton with
initial and final states i, f ∈ S∗

Γ. Then the symmetric monoidal language accepted by ∆ is
the set of morphisms L (∆) := {α ∈ F Γ | f ∈ ∆(α)(i)}.

Intuitively, a run of a symmetric monoidal automaton starts with a word of states, whose
subwords are modified by transitions corresponding to generators. Identity wires do not
modify the states, and symmetries permute adjacent states.

▶ Observation 27. There is an evident correspondence between non-deterministic monoidal
automata and regular monoidal grammars. The graphical representation of a grammar (such
as Figure 2) makes this most clear: it can also be thought of as the “transition graph” of a
non-deterministic monoidal automaton.

▶ Remark 28. We can further abstract our definition of monoidal automaton by noting that
RelΓ,Q is a sub-prop of the Kleisli category of the powerset monad P, and that this monad
could be replaced by another commutative monad [27, Corollary 4.3]. For example, replacing
P with the maybe monad, we obtain deterministic monoidal automata.

6 Asynchronous Automata as Symmetric Monoidal Automata

Asynchronous automata were introduced by Zielonka [32] as a true-concurrent operational
model of recognizable trace languages, a well-behaved subclass of trace languages analogous
to regular languages. In this section we show they are precisely symmetric monoidal automata
over monoidal distributed alphabets, which leads to the following theorem:

▶ Theorem 29. Recognizable trace languages are exactly regular symmetric monoidal lan-
guages over monoidal distributed alphabets.

We recall the definition of asynchronous automata, before turning to monoidal automata.

▶ Definition 30 (Asynchronous automaton [32]). Let (Σ1, ..., Σk) be a distribution of an
alphabet Σ. For each 1 ⩽ i ⩽ k, let Qi be a non-empty finite set of states, and for each
σ ∈ Σ take a transition relation ∆σ :

∏
i∈loc(σ) Qi → P(

∏
i∈loc(σ) Qi). This defines a global

transition relation on the set Q :=
∏k

i=1 Qi as follows:
(q1, ..., qk) σ−→ (q′

1, ...q′
k) ⇐⇒ qi = q′

i for i /∈ loc(σ) and (q′
i1

, ..., q′
ij

) ∈ ∆σ(qi1 , ..., qij )
where {i1, ..., ij} ∈ loc(σ). Finally let −→

i ∈ Q, F ⊆ Q be initial and final words of states.

The global transition relation for σ leaves unchanged those states at locations in the
complement of loc(σ), and otherwise acts according to the local transition ∆σ. An asyn-
chronous automaton has a language over Σ given by the extension of the transition relation
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to words. Moreover, asynchronous automata have a language of Mazurkiewicz traces over
the distribution of Σ: a trace in T (Σ, I) is accepted when all of its serializations are accepted,
which happens when one of its serializations is accepted [32, p. 109]. Recognizable trace
languages are defined algebraically as those whose syntactic congruence is of finite index [32].
Zielonka’s theorem says that they also have an operational characterization:

▶ Theorem 31 (Zielonka [32]). Asynchronous automata accept precisely the recognizable
trace languages.

Definition 30 closely resembles that of symmetric monoidal automata. Indeed, asyn-
chronous automata are precisely symmetric monoidal automata over monoidal distributed
alphabets:

▶ Proposition 32. For an asynchronous automaton A, there is a symmetric monoidal
automaton over a monoidal distributed alphabet with the same trace language, and vice-versa.

Proof. An asynchronous automaton with multiple final state words can be normalized to a
single final state word in the usual way by introducing a new final state word and modifying
transitions appropriately. Then a symmetric monoidal automaton can be constructed by
taking the monoidal distributed alphabet associated to the distribution of Σ (Proposition 18),
the same transition relations, initial and final state words. We show that the languages
coincide. Let w ∈ L (A), and consider the corresponding trace [w]. Using Lemma 21, we
can produce the corresponding monoidal trace. By construction, this is accepted by the
symmetric monoidal automaton defined above. The converse is analogous. ◀

As a corollary, we can invoke Theorem 31 to obtain Theorem 29. In contrast to asyn-
chronous automata, the constructed symmetric monoidal automaton directly accepts traces
qua string diagrams, rather than a language of words corresponding to a trace language.

▶ Observation 33. Jesi, Pighizzini, and Sabadini [15] introduced probabilistic asynchronous
automata. Initial and final states, and transition relations are replaced by initial and final
distributions, and stochastic transitions. These are precisely what are obtained if the powerset
monad in our definition of non-deterministic monoidal automaton (Remark 28) is replaced
with the distribution monad [26], whose Kleisli category has morphisms stochastic matrices.

7 Serialization via Premonoidal Categories

Trace theorists often consider trace languages to be word languages with the property of trace-
closure with respect to an independence relation [19]: if u ∈ L and u ≡I v then v ∈ L. These
languages arise as preimages of trace languages along the quotient map qΣ,I : Σ∗ → T (Σ, I).
For L ⊆ T (Σ, I) a trace language, q−1

Σ,I(L) ⊆ Σ∗ is its flattening or serialization.
In this section we show that the serialization of monoidal trace languages can be carried

out using the algebra and string diagrams of symmetric premonoidal categories. Premonoidal
categories are like monoidal categories, except interchange (Figure 1) does not hold in general.
The free (symmetric) premonoidal category on a monoidal graph was described using string
diagrams by Román [28]. The idea is simple: the string diagrams are the same as for props,
but an extra string (the “runtime”) threads through each generator, preventing interchange.
Figure 6 shows two premonoidal morphisms • ⊗ • → • ⊗ • that are not equal:

In Appendix A, we explain in more detail the construction of the free symmetric premon-
oidal category FpΓ on a monoidal graph Γ using string diagrams. In particular, the runtime
string appears only once in each string diagram, reflecting that premonoidal categories do
not have a tensor product on morphisms. The endomorphism monoid FpΓ

(1...
n
,

1...
n

)
is now the

free monoid over the boxes of Γ, since the runtime prevents interchange:
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≠
α

β

α

β

Figure 6 In the free premonoidal category over a monoidal graph, generators are augmented by
a string on a new object called the runtime (dashed red). This prevents interchange (cf. Figure 1).

▶ Proposition 34. Let Γ be a monoidal distributed alphabet. Then FpΓ
(1...

n
,

1...
n

)
∼= B∗

Γ, where
BΓ is the set of boxes of Γ.

Proof (Sketch). By augmenting the generators of Γ with a new runtime, we create a
monoidal distributed alphabet in which every generator depends on every other, that is, the
independence relation is empty. Thus the corresponding trace monoid is simply B∗

Γ. From
here, we can follow the idea of Lemma 21. ◀

We can define a morphism of monoids qΓ : FpΓ
(1...

n
,

1...
n

)
→ F Γ

(1...
n
,

1...
n

)
by presenting

FpΓ
(1...

n
,

1...
n

)
as in Lemma 20, and defining qΓ on generators by erasing the runtime string.

Theorem 35 then follows immediately from the definitions along with Lemma 21 and Propos-
ition 34:

▶ Theorem 35. For every alphabet BΓ, the following square of monoid homomorphisms
commutes, where q is the quotient monoid homomorphism.

B∗
Γ τ(BΓ, I)

FpΓ
(1...

n
,

1...
n

)
F Γ

(1...
n
,

1...
n

)∼=

q

∼=

qΓ

As a result, the preimage of a monoidal trace language under the morphism qΓ corresponds
to the serialization of that language.

8 Conclusion

There are several directions in which our theory could be developed. A semi-independence
relation drops symmetry from an independence relation: it is simply an irreflexive relation.
This gives rise to the theory of semicommutations [7], in which directed commutations may
occur e.g. ab → ba, but not vice-versa. This allows for a more fine-grained specification
of concurrency. In terms of monoidal languages, it suggests consideration of monoidal
distributed alphabets in which the sources and targets of generators may differ.

As noted in Remark 23, our treatment of trace languages suggests a generalization of the
notion of effectful category [28] (which include premonoidal categories), in which there are
multiple runtimes. This would enable a semantics for concurrent systems in which we can
consider not only atomic actions, but also actions with input and output types. We plan to
pursue this axiomatically in future work.

Mazurkiewicz originally introduced traces to give semantics to Petri nets, and showed
that this semantics is compositional with respect to synchronization of traces [21]. Petri nets
have been given semantics in monoidal categories [2, 22], and so the precise relationship of
our monoidal formulation of traces to Petri nets remains to be worked out. In particular,
this would involve understanding trace synchronization in terms of monoidal categories.
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Finally, proofs of Zielonka’s theorem (Theorem 31, see [32] for details) remain highly
technical, despite several simplifications since Zielonka’s version. Investigation of whether the
algebra of monoidal categories might yield further simplifications is an intriguing direction.
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A Symmetric Strict Premonoidal Categories and Functors

We recall the definitions of (symmetric) strict premonoidal categories and their functors. For
more details, see the papers [27, 28].

▶ Definition 36. A strict premonoidal category is a category C equipped with:
for each pair of objects A, B ∈ C an object A ⊗ B,
for each object A ∈ C a functor A ◁ − whose action on objects sends B to A ⊗ B,
for each object A ∈ C a functor − ▷ A whose action on objects sends B to B ⊗ A, and
a unit object I,

such that,
for each A ∈ C, strict unitality I ⊗ A = A = A ⊗ I holds, and
for each triple A, B, C ∈ C, strict associativity A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C holds.

The families of functors A◁−, −▷A are called the whiskerings with A: in a premonoidal
category we do not have a tensor product of morphisms in general, but we can put an identity
on either side of a morphism. A morphism f : A → B ∈ C is central if for every morphism
g : C → D, (B◁g)◦ (f ▷C) = (f ▷C)◦ (A◁g), in other words, f is central if it interchanges
with every other morphism g.
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▶ Definition 37. A strict premonoidal category is symmetric if it is further equipped with
a natural isomorphism whose components cA,B : A ⊗ B → B ⊗ A are central and such that
cB,A ◦ cA,B = 1A⊗B.

▶ Definition 38. A strict premonoidal functor F : C → D is a functor sending central
morphisms to central morphisms and such that F (IC) = ID, F (X ⊗ Y ) = F (X) ⊗ F (Y ).

A.1 String Diagrams for Premonoidal Categories
We recall the construction of the free symmetric strict premonoidal category over a monoidal
graph. This is a special case of the construction of free effectful categories in [28, Section 2.3].

We first define the runtime monoidal graph over a monoidal graph, which augments the
generators with a new wire:

▶ Definition 39. Let G be a monoidal graph. Let R be a sort disjoint from SG. The runtime
monoidal graph GR has sorts SG + {R} and for each generator γ : S1...Sn → S′

1...S′
m in G a

generator γ : RS1...Sn → RS′
1...S′

m.

Graphically we can depict GR as in Figure 7 (right):

α β α β

Figure 7 Left: A monoidal graph G. Right: the associated runtime monoidal graph GR, where
the new sort R is drawn as a dashed string.

▶ Definition 40. The symmetric runtime monoidal category is the free prop F GR on GR.

▶ Theorem 41. The free symmetric strict premonoidal category FpG on a monoidal graph
G has set of objects SG and a morphism S1 ⊗ ... ⊗ Sn → S′

1 ⊗ ... ⊗ S′
m is a morphism

R ⊗ S1 ⊗ ... ⊗ Sn → R ⊗ S′
1 ⊗ ... ⊗ S′

m in the symmetric runtime monoidal category.

Proof. The proof follows [28, Theorem 2.14], in the case where V is empty, and taking
instead the free symmetric strict monoidal category. ◀

In particular note that we no longer have a tensor product of morphisms in FpG, since
the runtime must appear only once in each domain and codomain, but we do have whiskerings
for each object.

Consequently the string diagrams for morphisms A → B in FpG are just morphisms
R ⊗ A → R ⊗ B in the symmetric runtime monoidal category [28, Corollary 2.15].
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Abstract
We study the existence of optimal and p-optimal proof systems for classes in the Boolean hierarchy
over NP. Our main results concern DP, i.e., the second level of this hierarchy:

If all sets in DP have p-optimal proof systems, then all sets in coDP have p-optimal proof
systems.
The analogous implication for optimal proof systems fails relative to an oracle.

As a consequence, we clarify such implications for all classes C and D in the Boolean hierarchy over
NP: either we can prove the implication or show that it fails relative to an oracle.

Furthermore, we show that the sets SAT and TAUT have p-optimal proof systems, if and
only if all sets in the Boolean hierarchy over NP have p-optimal proof systems which is a new
characterization of a conjecture studied by Pudlák.
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1 Introduction

This paper contributes to the study of proof systems initiated by Cook and Reckhow [11].
A proof system for a set L is a polynomial-time computable function f whose range is L.
Cook and Reckhow motivate the study of proof systems with the NP = coNP question: they
consider propositional proof systems (pps), i.e., proof systems for the set of propositional
tautologies (TAUT). They show that there exists a pps with polynomially bounded proofs
if and only if NP = coNP. This approach to the NP = coNP question is called the Cook-
Reckhow program [9]. To obtain NP ̸= coNP one can either show that optimal pps (i.e., pps
with at most polynomially longer proofs than any other pps) do not exist or show that a
specific pps is optimal and has a non-polynomial lower bound on the length of proofs. This
connection led to the investigation of upper and lower bounds for different pps [20] as well as
the existence of optimal and p-optimal1 proof systems for general sets.

1 A stronger notion of optimal. We write (p-)optimal when the statement holds using optimal as well as
p-optimal.
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The latter question was explicitly posed by Krajíček and Pudlák [21] in the context of
finite consistency. They revealed the following connection between both concepts: optimal
pps exist if and only if there is a finitely axiomatized theory S that proves for every finitely
axiomatized theory T the statement “T has no proof of contradiction of length n” by a
proof of polynomial length in n. If optimal pps exist, then a weak version of Hilbert’s
program is possible, i.e., proving the “consistency up to some feasible length of proofs” of
all mathematical theories [24]. We refer to Krajíček [19] and Pudlák [26] for details on the
relationship between proof systems and bounded arithmetic. More recently, Pudlák [25]
draws new connections of (p-)optimal proof systems and statements about incompleteness in
the finite domain.

Furthermore, proof systems have shown to be tightly connected to promise classes,
especially pps to the class of disjoint NP-pairs, called DisjNP. Initiated by Razborov [27],
who showed that the existence of p-optimal pps implies the existence of complete sets in
DisjNP, many further connections were investigated. More generally, Köbler, Messner and
Torán [18] show that the existence of p-optimal proof systems for sets of the polynomial-time
hierarchy imply complete sets for promise classes like UP, NP ∩ coNP, and BPP. Beyersdorff,
Köbler, and Messner [7] and Pudlák [25] connect proof systems to function classes by showing
that p-optimal proof systems for SAT imply complete sets for TFNP. Questions regarding
non-deterministic function classes can be characterized by questions about proof systems [7].
Beyersdorff [3, 4, 5, 6], Beyersdorff and Sadowski [8] and Glaßer, Selman, and Zhang [13, 14]
show further connections between pps and disjoint NP-pairs.

The above connections to important questions of complexity theory, bounded arithmetic,
and promise classes motivate the investigation of the question “which sets do have optimal
proof systems” posed by Messner [22]. Krajíček and Pudlák [21] were the first to study
sufficient conditions for pps by proving that NE = coNE implies the existence of optimal
pps and E = NE implies the existence of p-optimal pps. Köbler, Messner, and Torán [18]
improve this result to NEE = coNEE for optimal pps and EE = NEE for p-optimal pps.
Sadowski [28] shows different characterizations for the existence of optimal pps, e.g., the
uniformly enumerability of the class of all easy subsets of TAUT. In certain settings one
can prove the existence of optimal proof systems for different classes: e.g., by allowing one
bit of advice [10], considering randomized proof systems [16, 15], or using a weak notion of
simulation [29].

Messner [22] shows that all nonempty2 sets in P but not all sets in E have p-optimal
proof systems. Similarly, all sets in NP but not all sets in coNE have optimal proof systems.
Therefore, when going from smaller to larger complexity classes, there has to be a tipping
point such that all sets contained in classes below this point have (p-)optimal proof systems,
but some set contained in all classes above this point has no (p-)optimal proof systems.
Unfortunately, oracle constructions tell us that for many classes between P and E (resp., NP
and coNE) the following holds: with relativizable proofs one can neither prove nor refute
that p-optimal (resp., optimal) proof systems exist (e.g. coNP [1, 21] and PSPACE [1, 12]).
Thus, with the currently available means it is not possible to precisely locate this tipping
point, but we can rule out certain regions for its location. For this, we investigate how the
existence of (p-)optimal proof system for all sets of the class C “translate upwards” to all
sets of a class D with C ⊆ D. This rules out tipping points between C and D.

2 By our definition, FP-functions are total, thus the empty set has no proof system. For the rest of this
paper, we omit the word “nonempty” when referring to proof systems for all sets of a class, since this is
only a technicality.
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Our Contribution. Motivated by Messner’s general question, we study the existence of
(p-)optimal proof systems for classes inside the Boolean hierarchy over NP. We use the
expression “the class C has (p-)optimal proof systems” for “all sets of a class C have (p-)optimal
proof systems”. We say that two classes C and D are equivalent with respect to (p-)optimal
proof systems if C has (p-)optimal proof systems if and only if D has (p-)optimal proof
systems.

For the classes of the Boolean hierarchy over NP, denoted by BH, we identify three
equivalence classes for p-optimal proof systems and three other classes for optimal proof
systems. We also show that the classes of the bounded query hierarchy over NP are all
equivalent for p-optimal proof systems and we identify two equivalence classes for optimal
proof systems. Moreover, we show that relativizable techniques cannot prove all identified
equivalence classes to coincide. These results follow from our main theorems:

(i) If DP has p-optimal proof systems, then coDP has p-optimal proof systems.
(ii) There exists an oracle relative to which coNP has p-optimal proof systems and coDP

does not have optimal proof systems.
Using the result by Köbler, Messner, and Torán that (p-)optimality is closed under inter-
section [18] and two oracles by Khaniki [17], we obtain the equivalence classes visualized in
Figure 1, which cannot be proved to coincide with relativizable proofs.

NP coNP

DP coDP

coBH3BH3

BH4 coBH4

PNP[1]

PNP[2]

NP ∪ coNP

NP coNP

DP coDP

coBH3BH3

BH4 coBH4

PNP[1]

PNP[2]

NP ∪ coNP

NP coNP

DP coDP

coBH3BH3

BH4 coBH4

PNP[1]

PNP[2]

NP ∪ coNP

p-optimal optimal

Figure 1 Equivalence classes for p-optimal proof systems (left) and optimal proof systems (right)
in the Boolean hierarchy over NP and the bounded query hierarchy over NP.

This clarifies all questions regarding relativizably provable translations of (p-)optimal
proof systems for classes in the Boolean hierarchy over NP and the bounded query hierarchy
over NP. We cannot expect to prove any further translations with the currently available
means, because for every such translation there is an oracle against it. So we are dealing with
an interesting situation: while p-optimal proof systems for DP relativizably imply p-optimal
proof systems for coDP, this does not hold for optimal proof systems. Similarly, all classes
of the bounded query hierarchy over NP are equivalent with respect to p-optimal proof
systems, but PNP[1] and PNP[2] cannot be shown to be equivalent with respect to optimal
proof systems by a relativizable proof. The result drastically limits the potential locations of
a tipping point in the BH and the bounded query hierarchy over NP. They can only occur
between two classes belonging to two different equivalence classes.

Furthermore, our results provide a new perspective on an hypothesis related to feasible
versions of Gödel’s incompleteness theorem: Pudlák [25] studies several conjectures about
incompleteness in the finite domain by investigating the (un)provability of sentences of some
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specific form in weak theories. These conjectures can also be expressed as the non-existence
of complete sets in promise classes or non-existence of (p-)optimal proof systems for sets.
Pudlák considers the conjecture CON ∨ SAT stating that TAUT does not have p-optimal
proof systems or SAT does not have p-optimal proof systems. Khaniki [17] proves this
conjecture to be equivalent to RFN1, which is another conjecture considered by Pudlák. Our
results show that both conjectures are equivalent to the statement that BH does not have
p-optimal proof systems.

2 Preliminaries

Let Σ = {0, 1} be the default alphabet and Σ∗ be the set of finite words over Σ. We call
subsets of Σ∗ languages and sets of languages classes. We denote the length of a word
w ∈ Σ∗ by |w|. The i-th letter of a word w for 0 ≤ i < |w| is denoted as w(i), i.e.,
w = w(0)w(1) · · · w(|w| − 1).

The set of all (positive) natural numbers is denoted as N (N+). We write the empty set as
∅. We identify Σ∗ with N through the polynomial time computable and invertible bijection
Σ∗ → N; w 7→

∑
i<|w|(1 + w(i))2i. This is a variant of the dyadic representation. Thus, we

can treat words from Σ∗ as numbers from N and vice versa, which allows us to use notations,
relations and operations of words for numbers and vice versa (e.g. we can define the length
of a number by this). We resolve the ambiguity of 0i and 1i by always interpreting them as
words from Σ∗. The cardinality of a set A is denoted as |A|c. For ◦ ∈ {<, ≤, =, ≥, >}, a set
A ⊆ Σ∗ and a number n ∈ N we define A◦n = {w ∈ A | |w| ◦ n}. For a clearer notation we
use Σ◦n as Σ∗◦n and Σn for Σ=n. The operators ∪, ∩, and \ denote the union, intersection
and set-difference. We denote the complement of a set A relative to Σ∗ as A = Σ∗ \ A.

The image of a function f is denoted as img(f). Let ⟨·⟩ :
⋃

i≥0 Ni → N be an injective
polynomial time computable and invertible pairing function such that |⟨u1, . . . , un⟩| =
2(|u1| + · · · + |un| + n). The logarithm to the base 2 is denoted as log. Furthermore, we
define polynomial functions pi : N → N for i ∈ N+ by pi(x) = xi + i.

We use the default model of a Turing machine in the deterministic as well as in the
non-deterministic variation, abbreviated by DTM and NTM respectively. The language
decided by a Turing machine M is denoted as L(M). For a number s ∈ N the language
of words that are accepted by a Turing machine M in s computation steps is denoted as
Ls(M). We use Turing transducer to compute functions. For a Turing transducer F we write
F (x) = y when on input x the transducer outputs y. A Turing transducer F computes a total
function and we sometimes refer to the function computed by F as “the function F”. Let
{Fi}i∈N and {Gi}i∈N be standard enumerations of polynomial time Turing transducers. Let
{Ni}i∈N be a standard enumeration of non-deterministic polynomial time Turing machines
with the special property that N0 is the machine that always rejects and N1 is the machine
that always accepts, that is L(N0) = ∅ and L(N1) = N. The runtime of Fi, Gi and Ni is
bounded by pi.

▶ Proposition 1. There is a Turing machine M and a Turing transducer F such that for all
i, s, x ∈ N the following properties hold:

⟨i, x, 0s⟩ ∈ L(M) ⇔ x ∈ Ls(Ni)

F (⟨i, x, 0s⟩) =
{

⟨1, Fi(x)⟩ if Fi(x) stops within s steps
⟨0, 0⟩ else

Both machines run in time O(|i|s log s).



F. Egidy, C. Glaßer, and M. Herold 44:5

FP, P, and NP denote standard complexity classes [23]. For a class C define coC = {A ⊆
Σ∗ | A ∈ C}. We define the Boolean hierarchy over NP inductively. Let C and D be arbitrary
complexity classes. First, we define boolean operators on classes:

C ∧ D = {A ∩ B | A ∈ C ∧ B ∈ D}
C ∨ D = {A ∪ B | A ∈ C ∨ B ∈ D}

Then BH1 = NP, BH2k = coNP ∧ BH2k−1, BH2k+1 = NP ∨ BH2k, and BH =
⋃

k≥1 BHk

where BH2 is called DP and BH is called Boolean hierarchy over NP. We want to emphasize
that DP = NP ∧ coNP and coDP = NP ∨ coNP. Wagner [30] showed that BHk ⊆ BHk+1
and BHk ⊆ coBHk+1. The classes PNP[k] for k ∈ N+ contain all sets that can be accepted
by a polynomial time Turing machine that queries at most k elements from an NP-set. The
resulting hierarchy PNP[1], PNP[2], . . . is called bounded query hierarchy over NP. Beigel [2]
shows that BH2k−1 ∪ coBH2k−1 ⊆ PNP[k] ⊆ BH2k ∩ coBH2k .

We use the common polynomial time many-one reducibility for sets A, B ⊆ Σ∗, i.e.,
A ≤p

m B if there exists an f ∈ FP such that x ∈ A ⇔ f(x) ∈ B. For a class C and some
problem A, we say that A is hard for C if for all B ∈ C it holds B ≤p

m A. The set A is called
complete for C if A ∈ C and A is hard for C. We define the following complete problems for
NP and DP.

C = {⟨0i, x, 0p⟩ | i ∈ N, x ∈ Σ∗ and x ∈ Lp(Ni)}

D = {⟨0i, 0j , x, 0p⟩ | i, j ∈ N, x ∈ Σ∗ and x ∈ Lp(Ni) ∩ Lp(Nj)}
D′ = D ∪ {w | ∄i, j ∈ N, x ∈ Σ∗ : ⟨0i, 0j , x, 0p⟩ = w}

It is easy to see that C is NP-complete and D and D′ are DP-complete. Furthermore, their
complements are complete for coNP and coDP respectively. The purpose of D′ is that D′

consists only of words of the form ⟨0i, 0j , x, 0p⟩, which simplifies some arguments in section
3. Let NC denote the polynomial time machine with L(NC) = C.

We use proof systems for sets defined by Cook and Reckhow [11]. They define a function
f ∈ FP to be a proof system for img(f). Furthermore:

A proof system g is (p-)simulated by a proof system f , denoted by g ≤ f (resp., g ≤p f), if
there exists a total function π (resp., π ∈ FP) and a polynomial p such that |π(x)| ≤ p(|x|)
and f(π(x)) = g(x) for all x ∈ Σ∗. In this context the function π is called simulation
function. Note that g ≤p f implies g ≤ f .
A proof system f is (p-)optimal for img(f), if g ≤ f (resp., g ≤p f) for all g ∈ FP with
img(g) = img(f).
A complexity class C has (p-)optimal proof systems, if every A ∈ C with A ̸= ∅ has a
(p-)optimal proof system.
We say that (p-)optimal proof systems translate from a class C to D if the existence of
(p-)optimal proof systems for C implies their existence for D.

By the following result of Köbler, Messner and Torán [18], we can prove or refute the existence
of (p-)optimal proof systems for a class C by proving or refuting the existence of such proof
systems for a complete set of C.

▶ Proposition 2 ([18]). If A ⊆ Σ∗ has a (p-)optimal proof system and ∅ ≠ B ≤p
m A, then B

has a (p-)optimal proof system.

▶ Corollary 3. If A ⊆ Σ∗ is a hard set for some class C and A has a (p-)optimal proof
system, then C has (p-)optimal proof systems.
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Furthermore, it was shown by Köbler, Messner, and Torán [18] that the class of sets having
(p-)optimal proof systems is closed under intersection. This result can easily be extended to
the operator ∧ for complexity classes.

▶ Proposition 4 ([18]). If A, B ⊆ Σ∗, A ∩ B ̸= ∅ and both sets have a (p-)optimal proof
system, then A ∩ B has a (p-)optimal proof system.

▶ Corollary 5. If two classes C and D have (p-)optimal proof systems, then C ∧ D has
(p-)optimal proof systems.

Finally, every (p-)optimal proof system can be transformed into a (p-)optimal proof system
that runs in linear time by polynomially padding the proofs.

▶ Proposition 6. If f is a (p-)optimal proof system for A ⊆ Σ, then there is a (p-)optimal
proof system g for A that runs in linear time.

3 Translation of P-Optimal Proof Systems from DP to coDP

In this chapter we show that p-optimal proof systems for DP imply p-optimal proof systems
for coDP. This proof is based on machine simulation which is a relativizable proof technique.
Thus, the following theorem also holds in the presence of an arbitrary oracle O.

▶ Theorem 7. If there exists a p-optimal proof system for D, then there exists a p-optimal
proof system for D′.

We start by sketching the key idea used in the proof. Our approach needs some technique
to verify that a given instance is in D′. There is no known way to decide D′ in polynomial
time, but we can use the p-optimal proof system for D for this verification. We define a
function f ′ : N×N → N such that there is a polynomial-time-computable encoding c : N → N
with f ′(a, c(x)) ∈ D if and only if Fa(x) ∈ D′ for all a ∈ N and x ∈ N. Furthermore, f ′(a, x)
can be computed in time |x|O(a). We derive a class of functions {f ′

a}a∈N from f ′ by fixing
the first input to a. Note that f ′

a runs in polynomial time for a fixed a ∈ N and that f ′
a is

a proof system for D if and only if Fa is a proof system for D′. Now, we define a machine
that uses an additional input to verify Fa(x) ∈ D′. The inputs of the machine are a, x, b

and it accepts if and only if f(Fb(x)) = f ′
a(x) for a p-optimal proof system f of D. So, if Fa

is a proof system for D′, we know f ′
a is a proof system for D. Thus, by the fact that f is

p-optimal, there is a b ∈ N such that f(Fb(x)) = f ′
a(x) for all x ∈ N. Thus, when knowing

the value b, the machine can verify Fa(x) ∈ D′ for all x ∈ N for a proof system Fa(x) for D′

by accepting f(Fb(c(x)) = f ′
a(c(x)). On the other hand if Fa(x) /∈ D′ there is no b such that

f(Fb(c(x))) = f ′
a(c(x)) because f ′

a(c(x)) /∈ D = img(f).

Proof. We start by defining an NTM A that checks for given a, y′ whether Fa(y′) =
⟨i, j, x′, 0p⟩ ∈ D′. Since a deterministic polynomial-time computation cannot check every
possible path of a coNP machine Nj , A gets a path y of Nj as an additional input and has
the property that it accepts for all possible paths y if and only if Fa(y′) ∈ D′. Arguing over
all y′ this means if Fa is a proof system for D′, then for all y′ and all corresponding paths y

the machine A accepts on input a, y′, y.
Let f be a p-optimal proof system for D. Without loss of generality we assume f(x) can

be computed in O(|x|) time by Proposition 6. We define A on input x as follows.
(i) Check whether x = ⟨a, y, y′⟩ for some a ∈ N and y, y′ ∈ Σ∗, otherwise reject.
(ii) Check whether Fa(y′) = ⟨i, j, x′, 0p⟩ with i, j, p ∈ N and x′ ∈ Σ∗ and whether y ∈ Σp,

otherwise reject.
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(iii) Accept if Ni(x′) does not accept on path y within p steps.
(iv) Simulate the first p steps of Nj(x′).
(v) Accept if the simulation of Nj(x′) accepted within the first p steps, otherwise reject.

▶ Observation 8. A(x) runs in time O(|x|3a) for x = ⟨a, y, y′⟩.

Proof. Checking whether x has the required format is possible in linear time. By Propositon 1,
Fa(y′) can be computed in time

O(|a| · (|y′|a + a) log(|y′|a + a)) ⊆ O(|a| · (|y′|a + a)2) ⊆ O((|x|a + a)3)
⊆ O(|x|3a + a3) ⊆ O(|x|3a).

The first p steps of the path y of Ni(x′) can be simulated in time

O(|i| · p log p) ⊆ O(|Fa(y′)| · |Fa(y′)|2) ⊆ O(|x|3a)

for all a ∈ N. The computation Nj(x′) can be simulated in O(|j| · p log p) ⊆ O(|x|3a) time
for all a ∈ N. ◀

▷ Claim 9. Let Fa(y′) = ⟨i, j, x′, 0p⟩. Then Fa(y′) ∈ D′ ⇔ ∀y ∈ Σp : ⟨a, y, y′⟩ ∈ L(A).

Proof. First we show ”⇒“. We consider two cases:
Suppose x′ ∈ Lp(Ni). By ⟨i, j, x′, 0p⟩ ∈ D′, it holds x′ ∈ Lp(Nj). The machine A on input
⟨a, y, y′⟩ with Fa(y′) = ⟨i, j, x′, 0p⟩ ∈ D′ and y ∈ Σp rejects only, if the non-deterministic
check in step (iv) fails. But this is impossible since x′ ∈ Lp(Nj).
Suppose x′ /∈ Lp(Ni). In this case Ni(x′) does not accept within p steps for all paths
y ∈ Σp. Thus, the machine accepts in step (iii).

Now, we show ”⇐“. Again, we distinguish two cases:
Suppose A(⟨a, y, y′⟩) accepts in step (iii) for all y ∈ Σp. This implies that x′ /∈ Lp(Ni).
Thus, ⟨i, j, x′, 0p⟩ ∈ D′.
If A accepts but not in step (iii), we conclude it accepts in step (v). Hence, it holds
x′ ∈ Lp(Nj) and ⟨i, j, x′, 0p⟩ ∈ D′. ◀

We want to define functions fa in such a way that fa is a proof system for D if Fa is a
proof system for D′. For this, we can exploit the relationship of A to proof systems of D′

shown in Claim 9. Specifically, fa trusts that A(⟨a, y, y′⟩) accepts for specific y and y′ (note
that the accepting behavior of A has influence on D), which is equivalent to Fa being a proof
system for D′.

Choose a1 ∈ N such that Na1 = A. Let kA ∈ N+ be a constant such that A(x) runs in
time kA|x|3a + kA. Recall that N0 always rejects. We define a function f∗ : N → N:

f∗(x) =


⟨a1, 0, ⟨a, y, y′⟩, 0kA|x|3a+kA⟩ if x = ⟨a, y, y′⟩0 ∧ Fa(y′) = ⟨i, j, x′, 0p⟩

∧ y ∈ Σp

f(x′) if x = x′1
f(0) else

▶ Observation 10. f∗(x) runs in O(|x|3a) time for x = ⟨a, y, y′⟩0.

Proof. The case distinction for the first case is possible in O(|x|3a) time because computing
Fa(y′) is possible in that time. The output of the first case with exception of the unary
runtime parameter 0kA·(|x|3a)+kA is possible in linear time. The unary runtime parameter can
be computed in O(|x|3a) time. The output of the other cases is possible in linear time. ◀
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We define a function fa that is obtained from f∗ by fixing an index a ∈ N of a polynomial-
time function Fa.

fa(x) =


f∗(⟨a, y, y′⟩0) if x = ⟨a, y, y′⟩0
f(x′) if x = x′1
f(0) else

▶ Observation 11. For a ∈ N and y, y′ ∈ Σ∗ it holds that fa(⟨a, y, y′⟩0) = f∗(⟨a, y, y′⟩0).

▶ Observation 12. For a fixed a ∈ N the function fa(x) can be computed in polynomial time.

Proof. This follows from Observation 10 and the linear runtime of f . ◀

▷ Claim 13. Let a ∈ N and y′ ∈ Σ∗ such that Fa(y′) = ⟨i, j, x′, 0p⟩ /∈ D′. Then there is a
y ∈ Σp, such that fa(⟨a, y, y′⟩0) /∈ D.

Proof. By Claim 9 we conclude the existence of a y ∈ Σp such that A(⟨a, y, y′⟩) rejects. This
implies fa(⟨a, y, y′⟩0) = ⟨a1, 0, ⟨a, y, y′⟩, 0kA|x|3a+kA⟩ /∈ D. ◁

▷ Claim 14. Let a ∈ N. Then img(Fa) ⊆ D′ ⇔ img(fa) = D.

Proof. First we show ”⇒“. D ⊆ img(fa) holds because img(f) ⊆ img(fa) and f is a proof
system for D. Let x ∈ Σ∗. In the bottom two cases of fa and f∗ it is easy to see fa(x) ∈ D
and f∗(x) ∈ D. So we can assume x = ⟨a, y, y′⟩0 with Fa(y′) = ⟨i, j, x′, 0p⟩ and y ∈ Σp.
Since img(Fa) ⊆ D′, it holds ⟨i, j, x′, 0p⟩ ∈ D′. By Claim 9 we obtain that ⟨a, y, y′⟩ ∈ L(A)
for all y ∈ Σp. Thus, fa(x) = f∗(⟨a, y, y′⟩0) = ⟨a1, 0, ⟨a, y, y′⟩, 0kA|x|3a+kA⟩ ∈ D since for all
y ∈ Σp, Na1(⟨a, y, y′⟩) accepts, N0(⟨a, y, y′⟩) rejects and |⟨a, y, y′⟩| ≤ |x|.

”⇐“ follows directly as the contraposition of Claim 13. ◁

We want to define another NTM B that checks for given a, y′ whether Fa(y′) ∈ D′. To
achieve this we use Claims 13 and 14. B checks for all y ∈ Σp whether f(Fb(⟨a, y, y′⟩0)) =
fa(⟨a, y, y′⟩0) on input a, b, y′. So if Fa is a proof system for D′, then there is a b such that
B(a, b, y′) rejects for all y′. Furthermore, if Fa(y′) /∈ D′, then B(a, b, y′) accepts for all b.
B(x) operates as follows.

(i) Check whether x = ⟨a, b, y′⟩ for some a, b ∈ N and y′ ∈ Σ∗, otherwise reject.
(ii) Check whether Fa(y′) = ⟨i, j, x′, 0p⟩ for some i, j, p ∈ N and x′ ∈ Σ∗, otherwise reject.
(iii) Branch non-deterministically every y ∈ Σp.
(iv) Accept if f(Fb(⟨a, y, y′⟩0)) ̸= fa(⟨a, y, y′⟩0).
(v) Reject.

▶ Observation 15. B(x) runs in time O(|x|9a2b) for x = ⟨a, b, y′⟩.

Proof. Checking whether the input is formatted correctly is possible in linear time. Fa(y′)
can be computed in O(|a| · (|y′|a + a) log(|y′|a + a)) ⊆ O(|x|3a) time. We also observe that
|Fa(y′)| ≤ |y′|a + a. In line (iv) it holds that |Fa(y′)| ≥ 2p ≥ 2|y| and in line 1 it holds that
2|a| + 2|y′| + 8 ≤ |x|, and therefore,

|⟨a, y, y′⟩0| = 2(|a| + |y| + |y′| + 3) + 1 ≤ |Fa(y′)| + |x| ≤ |x|a + a + |x| ≤ |x|a+1 + a.

Thus, by Observation 10, computing fa(⟨a, y, y′⟩0) is possible in time

O((|x|a+1 + a)3a) ⊆ O((|x|a+2)3a) ⊆ O(|x|3a2+6a) ⊆ O(|x|9a2
).
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The value Fb(⟨a, y, y′⟩0) can be computed in time

O(|b| · ((|x|a+1 + a)b + b) log((|x|a+1 + a)b + b)) ⊆ O(|b| · ((|x|a+2)b + b)
· log((|x|a+2)b + b))

⊆ O(|b| · (|x|ab+2b + b) log(|x|ab+2b + b))
⊆ O(|b| · (|x|ab+2b+1) log(|x|ab+2b+1))
⊆ O(|b| · |x|2ab+4b+1) ⊆ O(|x|2ab+4b+2).

In particular |Fb(⟨a, y, y′⟩0)| ∈ O(|x|2ab+4b+2) and hence the computation of f(Fb(⟨a, y, y′⟩0))
is possible in time O(|x|2ab+4b+2). We simplify the sum of these runtimes.

O(|x|3a + |x|9a2
+ |x|2ab+4b+2) ⊆ O(|x|9a2b) ◀

▷ Claim 16. Let a ∈ N and y′ ∈ Σ∗, such that Fa(y′) = ⟨i, j, x′, 0p⟩ /∈ D′. Then for all b ∈ N
it holds that ⟨a, b, y′⟩ ∈ L(B).

Proof. By Claim 13 there is a y ∈ Σp such that fa(⟨a, y, y′⟩0) /∈ D = img(f). Thus, B

accepts in step (iv), because img(f) = D. ◁

▷ Claim 17. Let a ∈ N, such that img(Fa) ⊆ D′. Then, there is some b ∈ N, such that for
all y′ ∈ Σ∗ it holds that ⟨a, b, y′⟩ /∈ L(B).

Proof. By Claim 14 and Observation 12, we know that fa is a proof system for D. Since
f is a p-optimal proof system for D, there exists some b ∈ N, such that for all x̂ ∈ Σ∗ it
holds that fa(x̂) = f(Fb(x̂)). Thus, the computation B(⟨a, b, y′⟩) cannot accept in step (iv)
independent of y′. Hence, the machine rejects. ◁

Now, we define a function ga,b for every pair of possible proof system Fa and possible
simulation function Fb. Similarly to fa, the function ga,b trusts that B(⟨a, b, y′⟩) accepts for
all y′ (note that the accepting behavior of B has influence on D). If Fa is a proof system
for D′, then there is a b ∈ N such that ga,b is a proof system for D because the machine B

accepts on input a, b, y′ for all y′ ∈ Σ∗. For Fa(y′) /∈ D′, we know there is no b ∈ N such that
B accepts on input a, b, y′. Hence, the corresponding output of ga,b is not in D.

Let b1 be the index of the NTM B, that is Nb1 = B. Furthermore, let kB ∈ N+ be a
constant such that B(x) runs in time kB |x|9a2b + kB for all x ∈ Σ∗. Recall that N1 always
accepts. We define a function g : N → N whose input consists of two indices a, b ∈ N of
polynomial-time functions Fa, Fb and a proof y′ ∈ Σ∗.

g(x) =


⟨1, b1, ⟨a, b, y′⟩, 0kB |x|9a2b+kB ⟩ if x = ⟨a, b, y′⟩0
f(x′) if x = x′1
f(0) else

▶ Observation 18. g(x) runs in O(|x|9a2b) time for x = ⟨a, b, y′⟩0.

Proof. Checking whether the input is formatted correctly is possible in linear time. Further-
more, the output with exception of the last entry of the list can be computed in linear time.
The string 0kB |x|9a2b+kB can be computed in O(|x|9a2b) time. ◀
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We define a function ga,b : N → N that is obtained from g by fixing two indices a, b ∈ N
of polynomial-time functions Fa, Fb.

ga,b(x) =


g(⟨a, b, y′⟩0) if x = ⟨a, b, y′⟩0
f(x′) if x = x′1
f(0) else

▶ Observation 19. For x = ⟨a, b, y′⟩0 it holds that g(x) = ga,b(x).

▶ Observation 20. For fixed a, b ∈ N the function ga,b(x) can be computed in polynomial
time.

Proof. This follows directly from Observation 18 and the linear runtime of f . ◀

▷ Claim 21. Let a ∈ N and y′ ∈ Σ∗ such that Fa(y′) = ⟨i, j, x′, 0p⟩ /∈ D′. Then for all b ∈ N
it holds that ga,b(⟨a, b, y′⟩0) /∈ D.

Proof. By Claim 16 we know that for all b ∈ N the computation B(⟨a, b, y′⟩) accepts. This
implies ga,b(⟨a, b, y′⟩0) = ⟨1, b1, ⟨a, b, y′⟩, 0kB |x|9a2b+kB ⟩ /∈ D. ◁

▷ Claim 22. Let a ∈ N such that img(Fa) ⊆ D′. Then there is some b ∈ N with img(ga,b) = D.

Proof. Choose b ∈ N according to Claim 17. Then D = img(f) ⊆ img(ga,b) because f is a
proof system for D. Let x ∈ Σ∗. In the bottom two cases of ga,b and g we have ga,b(x) ∈ D
and g(x) ∈ D. So we can assume x = ⟨a, b, y′⟩0 and ga,b(x) = ⟨1, b1, ⟨a, b, y′⟩, 0kB |x|9a2b+kB ⟩.
By the choice of b, it holds ⟨a, b, y′⟩ /∈ L(B). By Observation 15 and the choice
of kB, B(⟨a, b, y′⟩) runs in time kB |⟨a, b, y′⟩|9a2b + kB ≤ kB |x|9a2b + kB. Therefore,
⟨1, b1, ⟨a, b, y′⟩, 0kB |x|9a2b+kB ⟩ ∈ D and hence ga,b(x) ∈ D. This shows img(ga,b) ⊆ D. ◁

Finally, we define the p-optimal proof system h for D′. The key difficulty is that h wants
to output Fa(y′) for all a and y′ using a short proof only when Fa is a proof system for D′.
To do this h must be able to check this property efficiently. We can do this as follows: if
f(Fc(⟨a, b, y′⟩)) = ga,b(⟨a, b, y′⟩), then we output Fa(y) and otherwise some arbitrary word
from D′. If Fa(y′) /∈ D′, we know that there is no b ∈ N such that the corresponding output
of ga,b is in D and the check correctly fails and Fa(y′) is not outputted. By contraposition we
observe that we output Fa(y′) only if it is in D′. Hence, h is a proof system for D′. Lastly,
we show that h p-simulates all proof systems for D′. Let Fa be an arbitrary proof system for
D′. Then there is a b ∈ N such that ga,b is a proof system for D. Let c ∈ N be such that f

p-simulates ga,b with the function Fc. So, for all y′ ∈ N the function h outputs Fa(y′) for
the input to h corresponding to a, b, c, y′. Also this input is short in a, b, c, y′ and can be
computed in polynomial time in these parameters.

Let h′ : N → N be a linear time proof system for D′. We define a function h : N → N.

h(x) =



⟨i, j, x′, 0p⟩ if x = ⟨a, b, c, ⟨a, b, y′⟩0, 0kB ·|⟨a,b,y′⟩0|9a2b+kB , 0|c|·(|⟨a,b,y′⟩0|c+c)2⟩0∧
f(Fc(⟨a, b, y′⟩0)) = ga,b(⟨a, b, y′⟩0)∧
Fa(y′) = ⟨i, j, x′, 0p⟩

h′(x′) if x = x′1
h′(0) else

▶ Observation 23. h(x) runs in time O(|x|).
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Proof. The bottom two cases are trivial. For the first case we observe that checking, whether
the input is formatted correctly, can be done in linear time. The part 0kB |⟨a,b,y′⟩0|9a2b+kB

can be checked in linear time by iterated multiplication. The computation Fa(y′) can be
simulated in O(|a| ·(|y′|a +a) log(|y′|a +a)) ⊆ O((|y′|a +a)3) ⊆ O(|y′|3a)) ⊆ O(|x|) time. The
computation f(Fc(⟨a, b, y′⟩0)) can be simulated in O(|c| · (|⟨a, b, y′⟩0|c + c) log(|⟨a, b, y′⟩0|c +
c)) ⊆ O(|x|) time and ga,b(⟨a, b, y′⟩0) can be simulated in O(|⟨a, b, y′⟩0|9a2b) ⊆ O(|x|) time
by Observation 18. The output ⟨i, j, x′, 0p⟩ can be computed in O(|x|) time because all of its
elements have been computed in the steps analyzed above. ◀

▷ Claim 24. h is a proof system for D′.

Proof. We have h ∈ FP by Observation 23. D′ ⊆ img(h), since img(h′) ⊆ img(h) and
h′ is a proof system for D′. We show img(h) ⊆ D′ by contradiction. Assume that there
exists x ∈ Σ∗ such that h(x) /∈ D′. The last two cases in the definition of h give values
obviously in D′. Thus, we only look at the first case. In particular Fa(y′) = ⟨i, j, x′, 0p⟩ and
ga,b(⟨a, b, y′⟩0) = f(Fc(⟨a, b, y′⟩0)). The second implies directly ga,b(⟨a, b, y′⟩0)) ∈ img(f) =
D′. Since h(x) = Fa(y′) in this case, by assumption Fa(y′) /∈ D′. By Claim 21 we conclude
the contradiction ga,b(⟨a, b, y′⟩0) /∈ D′. ◁

▷ Claim 25. Let a ∈ N with img(Fa) ⊆ D′. Then there exist b, c ∈ N, such that
∀y′ ∈ Σ∗ : Fa(y′) = ⟨i, j, x′, 0p⟩ = h(⟨a, b, c, ⟨a, b, y′⟩0, 0kB ·|y′0|9a2b+kB , 0|c|·(|⟨a,b,y′⟩0|c+c)2⟩0)

Proof. Claim 22 shows that there is some b ∈ N such that img(ga,b) = D. By Observation 20
this ga,b is a proof system for D. Since f is p-optimal, there exists c ∈ N such that f(Fc(x)) =
ga,b(x) for all x ∈ Σ∗. Let y′ ∈ Σ∗. From img(Fa) ⊆ D′ it follows Fa(y′) = ⟨i, j, x′, 0p⟩ for
suitable i, j, x′, p. Hence, in Claim 25 we are always in the first case of h. It follows

h(⟨a, b, c, ⟨a, b, y′⟩0, 0kB ·|⟨a,b,y′⟩0|9a2b+kB , 0|c|·(|⟨a,b,y′⟩0|c+c)2
⟩0) = ⟨i, j, x′, 0p⟩.

This shows Claim 25. ◁

Let a ∈ N be arbitrary such that Fa is a proof system for D′. Choose b, c according to
Claim 25. Then the following z : N → N shows Fa ≤p h.

z(y′) = ⟨a, b, c, ⟨a, b, y′⟩0, 0kB ·|y′0|9a2b+kB , 0|c|·(|⟨a,b,y′⟩0|c+c)2
⟩0

By Claim 25 it holds Fa(y′) = h(z(y′)). The function z can be computed in polynomial time,
because a, b, c ∈ N and kB ∈ N+ are constant values for a fixed Fa. This proves that h is a
p-optimal proof system for D′ ◀

▶ Corollary 26. If DP has p-optimal proof systems, coDP has p-optimal proof systems.

Proof. Since D ∈ DP, we obtain that there is a p-optimal proof system for D. Theorem 7
shows that it follows that there is a p-optimal proof system for D′. The language D′ is
≤p

m-hard for coDP. By Corollary 3, there are p-optimal proof systems for coDP. ◀

4 Oracle Construction

Corollary 26 naturally leads to the question of whether optimal proof systems for DP translate
to optimal proof systems for coDP. We show that a proof for this translation cannot be
relativizable, i.e., we cannot expect to show this translation with the currently available
means. This result is a consequence of the following theorem:

MFCS 2023
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▶ Theorem 27. There exists an oracle O with the following properties:
1. CO has p-optimal proof systems (implying p-optimal proof systems for coNP).
2. DO has no optimal proof systems (ruling out optimal proof systems for coDP).

Sketch of the construction. Work towards 1 (coding): For all a ∈ N, the construction tries
to achieve that img(F O

a ) ̸= CO and thus, F O
a is no proof system for CO. If this is not possible,

we start to encode the mappings of Fa (i.e., on which input it gives which output) into the
oracle. For the coding, we define code words of the form c(a, x, y) := ⟨0a, 04(|x|a+a+|y|), x, y⟩
for a ∈ N, x, y ∈ Σ∗. The purpose of a code word c(a, x, y) is to encode the computation
Fa(x) = y. Thus, the final oracle O will contain the encoded mappings of all proof systems
for CO. The crucial point is that such a code word lets us recognize that Fa is a proof system
for CO and y ∈ CO. This allows us to define a p-optimal proof system h which is able to
simulate every proof system for CO using oracle queries.

Work towards 2 (diagonalization): For all b ∈ N, the construction tries to achieve that
img(GO

b ) ̸= DO and thus, GO
b is no proof system for DO. If this is not possible, we define

some proof system zO
b for DO and show that zO

b cannot be simulated by GO
b . The latter is

achieved by diagonalizing against every simulation function π, i.e., we make sure that GO
b

does not simulate zO
b via π.

We call the functions zO
b witness proof systems. The intuition behind their definition and

behind the whole diagonalization is as follows: independent of the oracle each function zO
b

has short proofs for all elements of some polynomial-time-decidable set. But our construction
offers the freedom to choose whether or not this set is a subset of DO. The latter depends
on the following language

AO = {x ∈ Σ∗ | |O=|x||c ≥ 2} ∪ {x ∈ Σ∗ | |O=|x||c = 0}

= {x ∈ Σ∗ | |O=|x||c ̸= 1},

which lies inside coDPO and thus has influence on DO. Let y be a word whose membership
to DO is influenced by the question of whether 0n ∈ AO. Observe that 0n ∈ AO if and only
if |O|=n

c ̸= 1. Thus, we can control the membership of y to DO by adding none, one or
more words of length n to O. There are 2n such words. Let GO

b be some proof system for
DO. During the construction of O, we initially have no word of length n inside O and thus
y ∈ DO and GO

b must have a proof for y. Case 1: All GO
b -proofs for y are long. When GO

b is
given such a proof it can determine by exhaustive search the number of words of length n in
O. However, GO

b does not simulate zO
b , because zO

b has short proofs for y, but GO
b has not.

Case 2: GO
b has a short proof x for y. In this case, GO

b (x) cannot query all 2n words and
hence cannot determine whether y ∈ DO. We can exploit this to create a situation where
GO

b (x) outputs an element outside DO and hence is no proof system for this set. So GO
b can

either simulate zO
b or be a proof system for DO, but not both at once.

The main challenge of the oracle construction is to combine the work for 1 and 2, because
the code words interact with the diagonalization. Indeed, in the example above GO

b cannot
query all 2n words when having a short proof x for y, but there are many code words that
can be queried by GO

b (x) whose memberships together can depend on all 2n words of length
n. We capture these dependencies in a graph data structure, where nodes are words from Σ∗

and edges are oracle queries of underlying FP-computations of code words, i.e., for a code
word c(a, x, y) the computation F O

a (x). This helps to identify words of length n that are
independent of the computation GO

b (x) and all queried code words.
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5 Conclusion

We summarize all results to obtain the equivalence classes from Figure 1. First observe that
(p-)optimal proof systems always translate from a class C to D when C ⊆ D (respective solid
arrows are omitted in Figure 2). We start with the equivalence classes for p-optimal proof
systems (see Figure 2, left, solid arrows). P-optimal proof systems translate as follows:

from NP ∪ coNP to DP by NP ∪ coNP ⊇ NP, NP ∪ coNP ⊇ coNP, NP ∧ coNP = DP,
and Corollary 5 following from Köbler, Messner, and Torán [18].
from DP to coDP by Corollary 26.
from coBHk to coBHk+1 for k ≥ 2 by Corollary 5 following from Köbler, Messner, and
Torán [18] and the following inclusions:

coBHk ∧ coBHk ⊇ coDP ∧ coBHk = (NP ∨ coNP) ∧ coBHk

⊇

{
coNP ∧ coBHk = coBHk+1 if k is even
NP ∨ coBHk = coBHk+1 else

Next, we derive the equivalence classes for optimal proof systems (see Figure 2, right, solid
arrows). Optimal proof systems translate as follows:

from coNP to NP ∪ coNP by the fact that NP has optimal proof systems.
from NP ∪ coNP to DP by Corollary 5 following from Köbler, Messner, and Torán [18].
from coBHk to coBHk+1 for k ≥ 2 by the same argument used for p-optimal proof
systems.

The resulting equivalence classes for (p-)optimal proof systems are different (see Figure 2,
left and right, dashed arrows) relative to oracles A, B, O with the following properties:

NPA has p-optimal proof systems and coNPA has no optimal proof systems [17].
coNPB has p-optimal proof systems and NPB has no p-optimal proof systems [17].
coNPO has p-optimal proof systems and coDPO has no optimal proof systems (Thm. 27).

NP coNP

DP coDP

coBH3BH3

BH4 coBH4

PNP[1]

PNP[2]

NP ∪ coNP

NP coNP

DP coDP

coBH3BH3

BH4 coBH4

NP ∪ coNP

NP coNP

DP coDP

coBH3BH3

BH4 coBH4

PNP[1]

PNP[2]

NP ∪ coNP

p-optimal optimal

[18]

[18]

[18]

[17]

Thm. 27

[18]

[18]

[18]

[17]

Cor. 26Cor. 26

Figure 2 Equivalence classes for p-optimal proof systems (left) and optimal proof systems (right)
in the Boolean hierarchy over NP and the bounded query hierarchy over NP. Green solid arrows
from A to B mean that (p-)optimal proof systems for A imply (p-)optimal proof systems for B. Red
dashed arrows from A to B mean that there exists an oracle Q relative to which AQ has (p-)optimal
proof systems and BQ has no (p-)optimal proof systems. Note that green solid arrows pointing
downwards are omitted, since those are trivial and only the minimum number of required red dashed
arrows to separate all equivalence classes are drawn.
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Oracle A rules out translations from NP to any other class in Figure 2 for optimal and
p-optimal proof systems. Oracle B rules out translations from coNP to NP and thus also to
NP ∪ coNP for p-optimal proof systems. Oracle O rules out translations from coNP to coDP
for optimal proof systems.

We obtain the following connection to a conjecture studied by Pudlák [25].

▶ Corollary 28. The following statements are equivalent:
BH has no p-optimal proof system.
TAUT has no p-optimal proof systems or SAT has no p-optimal proof systems (i.e.,
CON ∨ SAT in Pudlák’s notation).

Proof. Figure 2 shows that NP ∪ coNP and BH are equivalent with respect to p-optimal
proof systems. Hence, BH has no p-optimal proof systems if and only if NP ∪ coNP has
no p-optimal proof systems. The latter holds if and only if TAUT has no p-optimal proof
systems or SAT has no p-optimal proof systems. ◀
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Abstract
Given a (connected) undirected graph G, a set X ⊆ V (G) and integers k and p, the Steiner
Subgraph Extension problem asks whether there exists a set S ⊇ X of at most k vertices such that
G[S] is a p-edge-connected subgraph. This problem is a natural generalization of the well-studied
Steiner Tree problem (set p = 1 and X to be the terminals). In this paper, we initiate the study
of Steiner Subgraph Extension from the perspective of parameterized complexity and give a
fixed-parameter algorithm (i.e., FPT algorithm) parameterized by k and p on graphs of bounded
degeneracy (removing the assumption of bounded degeneracy results in W-hardness).

Besides being an independent advance on the parameterized complexity of network design
problems, our result has natural applications. In particular, we use our result to obtain new single-
exponential FPT algorithms for several vertex-deletion problems studied in the literature, where the
goal is to delete a smallest set of vertices such that: (i) the resulting graph belongs to a specified
hereditary graph class, and (ii) the deleted set of vertices induces a p-edge-connected subgraph of
the input graph.
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1 Introduction

Given a simple undirected graph G = (V, E) and a set T ⊆ V (G), called terminals, the
Steiner Tree problem asks if there are at most k edges F ⊆ E(G) such that there is
a path between every pair of vertices of T in G′ = (V, F ). Steiner Tree is one of the
fundamental problems in network design and is a well-studied problem in parameterized
complexity ([14, 9, 7, 3, 21]). We refer to Section 2 for definitions related to parameterized
complexity and graph theory. In this paper, we study the Steiner Subgraph Extension
problem, which is formally defined below.

Steiner Subgraph Extension
Input: A simple undirected graph G = (V, E), X ⊆ V (G) and integers k, p ∈ N.
Parameter: k + p

Goal: Is there S ⊇ X of size at most k such that G[S] is p-edge-connected?
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Observe that this is a natural generalization of Steiner Tree problem. To the best of
our knowledge, the parameterized complexity status of Steiner Subgraph Extension is
unexplored even for arbitrary fixed constant p. When p = 2, Steiner Subgraph Extension
is closely related to a special variant of Edge-Connected Survivable Network Design
(defined by Feldman et al. [15]) problem. The goal of Edge-Connected Survivable
Network Design is to find a collection of “at most k edges” so that there are two edge-
disjoint paths between every pair of vertices in the terminal set. Abhinav et al. [1] studied
the above problem when p = n − k, with k as the parameter. Moreover, they aim to find an
(n − k)-edge-connected steiner subgraph with exactly ℓ vertices. In our problem, observe that
p ≤ k−1 as any graph with k vertices can be (k−1)-edge-connected and not p-edge-connected
for p ≥ k. If we set p = k − 1, then our problem becomes precisely the Clique problem,
where we want to decide if a graph has a clique with exactly k vertices, a W[1]-hard problem.
Hence, one must place further restrictions on the input when aiming for fixed-parameter
tractability. In this paper, we consider the Steiner Subgraph Extension problem when η

is the degeneracy of the input graph G and η is a fixed-constant. Note that many well-known
sparse graph classes are subclasses of graphs of bounded degeneracy. For instance, planar
graphs are 5-degenerate, graphs with treewidth (or treedepth or pathwidth) at most η are
(η + 1)-degenerate.

Our Contributions. The input to our problem Steiner Subgraph Extension is a simple
undirected graph with n vertices and η is a fixed constant. Recall that the parameter is k + p.
The first part of our paper proves that Steiner Subgraph Extension is FPT when the
input graph has constant degeneracy. In particular, we give an FPT algorithm with running
time 2O(pk+η)nO(1)-time for Steiner Subgraph Extension when the input graph G is
η-degenerate. The formal statement of the theorem is given below.

▶ Theorem 1. Steiner Subgraph Extension can be solved in time 2O(pk+η)nO(1), where
η is the degeneracy of the input graph.

In particular, on graphs of constant degeneracy and for constant p, the above result gives
a 2O(k)nO(1)-time algorithm, which is useful in several applications as we show in this paper.

The above result crucially relies on the use of the out-partition matroid, its linear
representability in deterministic polynomial-time, and a dynamic programming subroutine
using the notion of representative sets. We would like to highlight that Einarson et al.
[13] have studied the same problem when X is a vertex cover. Our dynamic programming
algorithm over representative sets has some similarities with the algorithm of Einarson et
al. [13] but X is not necessarily a vertex cover of G for Steiner Subgraph Extension.
Despite the fact that G is a bounded degenerate graph, designing an algorithm for Steiner
Subgraph Extension needs careful adjustment to the subproblem definitions and some
additional conditions have to be incorporated while constructing the collection of sets in the
DP formulation. Furthermore, our algorithm in Theorem 1 does not depend on η in the
exponent of n.

The second part of our paper describes some applications of our main result (Theorem 1)
to some natural problems in graph theory with connectivity constraints. Einarson et al. [13]
have initiated the study of p-Edge-Connected Vertex Cover with stronger connectivity
constraints. Being motivated by their results, we illustrate how Theorem 1 lays us a
foundation to design efficient deterministic parameterized singly exponential-time algorithms
for Bounded Degree Deletion Set, η-Treedepth Deletion Set, Pathwidth-One
Deletion Set and η-Path Vertex Cover with p-edge-connectivity constraints. Each of
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these problems are well-studied without the connectivity constraints (see [18, 5, 6] for more
details). We state the problem definitions below. Given an undirected graph G = (V, E), the
following questions are asked by these problems.

p-Edge-Connected η-Degree Deletion Set (p-Edge-Con-BDDS) asks if there
is S ⊆ V (G) such that G − S is a graph of maximum degree at most η and G[S] is
p-edge-connected.
p-Edge-Connected η-Treedepth Deletion Set (p-Edge-Con-η-TDDS) asks if
there is S ⊆ V (G) such that G − S has treedepth at most η and G[S] is p-edge-connected.
p-Edge Connected Pathwidth-1 Vertex Deletion (p-Edge-Con-PW1DS) asks if
there is S ⊆ V (G) such that G−S has pathwidth at most 1 and G[S] is p-edge-connected.
p-Edge-Connected η-Path Vertex Cover (p-Edge-Con-η-PVC) asks if there is
S ⊆ V (G) such that G − S has no Pη as subgraph and G[S] is p-edge-connected.

Applications to each of the above mentioned problems crucially rely on a property. The
property is that all minimal vertex-deletion sets that must be part of any optimal solution
can be enumerated in 2O(k)nO(1)-time for some fixed constant η. Since a graph of maximum
degree η is also an η-degenerate graph, we have the following result as a direct application of
our main result.

▶ Corollary 2. p-Edge-Con-BDDS admits a 2O(pk+kη)nO(1)-time algorithm.

Our second application is p-Edge-Con-PW1DS problem. The graphs of pathwidth at
most one are also 2-degenerate. But it is not straightforward to enumerate all the minimal
pathwidth one vertex deletion sets. So we use some additional characterizations of graphs of
pathwidth one and exploit some problem specific structures to prove our next result.

▶ Theorem 3. p-Edge-Con-PW1DS admits an algorithm that runs in 2O(pk)nO(1)-time.

Note that the algorithm for the above result does not directly invoke the subroutine from
Theorem 1. Instead, it uses some dynamic programming ideas that are closely similar to that
of Theorem 1 proof but also makes careful local adjustments to take care of some additional
constraints. Finally, our last two applications are p-Edge-Connected η-Treedepth
Deletion Set and p-Edge-Con-η-PVC problems and we have the following two results.

▶ Theorem 4. p-Edge-Con-η-TDDS admits an algorithm that runs in 222η
+O((p+η)k)n22η

-
time.

▶ Theorem 5. p-Edge-Con-η-PVC admits an algorithm that runs in 2O((p+η)k)nO(1)-time.

Organization of our paper. We organize the paper as follows. Initially in Section 2, we
introduce the basic notations related to graph theory, parameterized complexity and matroids.
Then, in Section 3, we prove our main result, i.e. Theorem 1. Then, in Section 4, we illustrate
the applications of our main result to design singly exponential-time algorithms for p-Edge-
Con-BDDS, p-Edge-Con-PW1DS, p-Edge-Con-η-TDDS and p-Edge-Con-η-PVC.

Related Work. Heggernes et al. [19] studied the parameterized comlexity of p-Connected
Steiner Subgraph that is the vertex-connectivity counterpart of our problem. The authors
in their paper have proved that when parameterized by k, the above mentioned problem is
FPT for p = 2 and W[1]-hard when p = 3. Nutov [23] has studied a variant of p-Connected
Steiner Subgraph problem in which they have studied Vertex Connectivity Aug-
mentation problem. Given an undirected graph G, a p-connected subgraph G[S], the

MFCS 2023
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Vertex Connectivity Augmentation problem asks if at most k additional edges can be
added to G[S] to make the subgraph (p + 1)-connected. In particular, Nutov [23] provided a
parameterized algorithm for the above mentioned problem. Feldman et al. [15] have studied
parameterized complexity of Vertex/Edge-Connected Survivable Network Design
Problem where given fixed constant p, they want to compute a subgraph that has minimum
number of edges and provides p-vertex/edge-connectivity between every pair of vertices in
the terminals.

2 Preliminaries

Sets, numbers and graph theory. We use N to denote the set of all natural numbers. For
r ∈ N, we use [r] to denote the set {1, . . . , r}. Given a set S and an integer k, we use

(
S

≤k

)
and

(
S
k

)
to denote the collection of all subsets of S of size at most k and of size exactly

k respectively. We use standard graph theoretic notations from Diestel’s book [10] for all
notations of undirected and directed graphs. For undirected graphs, we use uv ∈ E(G) to
denote that there is an edge between u and v. On the other hand for directed graphs, we
are more explicit. We use (u, v) to represent that the edge is directed from u to v. For
the directed graphs, the directed edges are also called arcs. We use the term arc and edge
interchangeably. In an undirected graph G, we use degG(v) to denote the degree of v in G.
When the graph is clear from the context, we drop this subscript and simply use deg(v). An
undirected graph G is called a degree-η-graph if every vertex of G has degree at most η. We
use ∆(G) to denote the max{degG(v) : v ∈ V (G)}, i.e. the maximum degree of any vertex
in G. It is clear from the definition that if a graph G is a degree-η-graph then ∆(G) ≤ η.
When we consider directed graphs, we have in-degree and out-degree for all the vertices. For
a vertex v, the in-degree of v is the number of arcs of the form (v, u) ∈ A and the out-degree
of v is the number of arcs of the form (u, v) ∈ A. A connected undirected graph G = (V, E)
is said to be p-edge-connected if at least two vertices and G − Y remains connected after
deleting at most p − 1 edges. Due to the Menger’s Theorem, a connected graph is said
to be p-edge-connected if and only if there are p edge-disjoint paths between every pair of
vertices. Given an undirected graph, a set S ⊆ V (G) is said to be a p-segment of G if for
every u, v ∈ S, there are p edge-disjoint paths from u to v in G. An undirected graph is said
to be an η-degenerate graph if every subgraph has a vertex of degree at most η. Given an
undirected η-degenerate graph G = (V, E), a sequence of vertices ρG = (v1, . . . , vn) is said
to be an η-degeneracy sequence if for every 2 ≤ i ≤ n, vi has at most η neighbors from the
vertices {v1, . . . , vi−1}. For an ℓ ∈ N, we use Pℓ to denote a path containing ℓ vertices and
Cℓ to denote a cycle containing ℓ vertices. A graph is said to be a degree-η-graph if every
vertex has degree at most η. It follows from the definition that every degree-η-graph is an
η-degenerate graph, but the converse does not hold true. An undirected graph is said to be
a caterpillar graph if every connected component is an induced path with hairs attached to
each of its pendant vertices. Given a directed graph D = (V, A), we define an outbranching
of D rooted at v ∈ V (D) is a subset A′ ⊆ A such that v has in-degree 0 and every other
vertex has in-degree exactly one in D′ = (V, A′).

We define the following two graph parameters treedepth and pathwidth that we use in
our paper.

▶ Definition 6 (Treedepth). Given an undirected graph G = (V, E), td(G), i.e. the treedepth
of G is defined as follows. If |V (G)| = 1, then td(G) = 1. If G is connected, then
td(G) = 1 + minu∈V (G) td(G − {u}). Finally, if G1, . . . , Gr are the connected components of
G, then td(G) = maxr

i=1 td(Gi).
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Informally, a treedepth decomposition of an undirected graph G can be considered as a
rooted forest Y with vertex set V such that for each uv ∈ E(G), either u is an ancestor of
v or v is an ancestor of u in Y . The context of treedepth is also sometimes referred to as
elimination tree of G. It follows from the (recursive) definition above that treedepth of a
graph is referred to as the minimum depth of a treedepth decomposition of G, where depth
is defined as the maximum number of vertices in a root to leaf path.

▶ Definition 7 (Path Decomposition). A path decomposition of an undirected graph G = (V, E)
is a sequence (X1, . . . , Xr) of bags Xi ⊆ V (G) such that (i) every vertex belongs to at least
one bag, (ii) for every edge uv ∈ E(G), there is Xi such that u, v ∈ Xi, and (iii) for every
vertex v, the bags containing v forms a contiguous subsequence, i.e. (Xi, Xi+1, . . . , Xj). The
width of a decomposition is maxi∈[r] |Xi| − 1.

The pathwidth of a graph is defined as the smallest number η such that there exists a
path decomposition of width η. Informally, pathwidth is a measure how much a graph is
close to a path (or a linear forest). We use pw(G) to denote the pathwidth of G.

Given a class of graphs G, we say that G is polynomial-time recognizable, if given a graph
G, there is a polynomial-time algorithm that can correctly check if G ∈ G. A graph class is
said to be hereditary if it is closed under induced subgraphs.

Parameterized Complexity and W-hardness. A parameterized problem L is a subset
of Σ∗ × N for some finite alphabet Σ. An instance of a parameterized problem is a pair
(x, k) where x ∈ Σ∗ is the input and k is the parameter. A parameterized problem L ⊆
Σ∗ × N is said to be fixed-parameter tractable if there exists an algorithm A that given
(x, k) ∈ Σ∗ × N, the algorithm A runs in f(k)|x|c-time for some constant c independent of n

and k and correctly decides L. The algorithm A that runs in f(k)|x|O(1)-time is called a
fixed-parameter algorithm (or FPT algorithm). A fixex-parameter algorithm is said to be
a singly exponential FPT algorithm if it runs in ck|x|O(1)-time for some fixed constant c

independent of |x| and k. There is a hardness theory in parameterized complexity that is
associated with the notion of parameterized reduction and the hierarchy of parameterized
complexity classes. Broadly, the W-hierarchy (of parameterized complexity classes) is denoted
by FPT ⊆ W[1] ⊆ W[2] ⊆ . . . ⊆ XP. Given two distinct parameterized problems L1 and L2,
there is a parameterized reduction from L1 to L2 if given an instance (x, k) of L1, an
algorithm A runs in g(k)|x|O(1)-time and outputs an equivalent instance (x′, k′) of L2 such
that k′ = f(k) for some function depending only on k. For more details on parameterized
complexity and its associated hardness theory, we refer to the books [8, 22, 11].

Matroids and Representative Families. We use the following definitions and results related
to matroid theory to design our algorithms.

▶ Definition 8. Given a universe U and a subfamily I ⊆ 2U , a set system M = (U, I) is
said to be a matroid if (i) ∅ ∈ I, (ii) if A ∈ I, then for all A′ ⊆ A, A′ ∈ I (hereditary
property), and (iii) if there exists A, B ∈ I such that |B| > |A|, then there is x ∈ B \ A such
that A ∪ {x} ∈ I (exchange property). The set U is called ground set of M and a set A ∈ I
is called an independent set of matroid M.

It follows from the definition that all maximal independent sets are of the same size. A
maximal independent set is called a basis. Let U be a universe with n elements and I =

(
U

≤r

)
.

The set system (U, I) is called a uniform matroid. Let G = (V, E) be an undirected graph
and I = {F ⊆ E(G) | G′ = (V, F ) is a forest }. The set system (E(G), I) is called a graphic
matroid. Let U be partitioned as U1 ⊎ · · · ⊎ Ur and I = {A ⊆ U : |A ∩ Ui| ≤ 1 for all i ∈ [r]}.

MFCS 2023



45:6 Finding a Highly Connected Steiner Subgraph and its Applications

We say that (U, I) is a partition matroid. A matroid M is said to be representable over a
field F if there is a matrix A over F and a bijection f : U → Col(A) where Col(A) is the set
of columns of A such that B ⊆ U is an independent set of U if and only if the set of columns
{f(b) | b ∈ B} are linearly independent. A matroid representable over a field F is called a
linear matroid.

Given two matroids M1 = (U1, I1) and M2 = (U2, I2), the direct sum M = M1 ⊕ M2 is
the matroid (U1 ⊎ U2, I) such that I ∈ I if and only if I ∩ U1 ∈ I1 and I ∩ U2 ∈ I2. If M1
and M2 are represented by matrices A1 and A2 respectively then M = M1 ⊕ M2 also admits
a matrix representation.

Given a matroid M , a truncation of M to rank r is the matroid M ′ = (U, I ′) where a set
A ⊆ U is independent in M ′ if and only if A ∈ I and |A| ≤ r. Given a matroid M with its
representation (in matrix-form), the truncation of M can be computed in polynomial-time.
Let M = (U, I) be a matroid and X, Y ⊆ U . We say that X extends Y in M if X ∩ Y = ∅
and X ∪ Y ∈ I. Moreover, let S ⊆ 2U be a family. A subfamily Ŝ ⊆ S is a q-representative
of S if the following holds: for every set Y ⊆ U with |Y | ≤ q, there is a set X ∈ S such that
X extends Y if and only if there is a set X̂ ∈ Ŝ such that X̂ extends Y . We use Ŝ ⊆q

rep S to
denote that Ŝ is a q-representative family of S. The following result holds true due to Fomin
et al. [17, 20].

▶ Proposition 9. Let M = (U, I) be a linear matroid of rank n and p, q ≤ n over a field
F and let S = {S1, . . . , St} ⊆ I each having cardinality p. Then, there exists an algorithm
that computes a q-representative subfamily Ŝ ⊆q

rep S consisting of at most
(

p+q
q

)
sets using

O(
(

p+q
p

)2
tp3n2 + t

(
p+q

q

)ω
np) + (n + |U |)O(1) field operations over F. Here ω < 2.37 is the

matrix multiplication exponent.

Let G = (V, E) be an undirected graph and DG = (V, AE) is defined as follows. For
every uv ∈ E(G), we add (u, v) and (v, u) into AE and fix vr ∈ V . Since the definition
of DG is based on G = (V, E), we call the pair (DG, vr) an equivalent digraph of G with
root vr. Then, an out-partition matroid with root vr for DG is the partition matroid with
ground set AE where arcs are partitioned according to their heads and arcs (u, vr) are
dependent. Equivalently, what it means is that a set of arcs F ⊆ AE is an independent
in the out-partition matroid with root vr if and only if vr has in-degree 0 in F and every
other vertex has in-degree at most 1 in F . The graphic matroid in the ground set AE is
the graphic matroid for G where every arc is represented by its underlying undirected edge
and the antiparallel arcs (u, v), (v, u) represent distinct copies of uv. Then, {(u, v), (v, u)}
becomes a dependent set. The following two propositions are proved by Agrawal et al. [2]
and Einarson et al. [13] respectively.

▶ Proposition 10 (Agrawal et al. [2])). Let G = (V, E) be an undirected graph, vr ∈ V

and DG = (V, AE) as defined above. Then, G is p-edge-connected if and only if DG has p

pairwise arc-disjoint out-branchings rooted at vr.

▶ Proposition 11 (Einarson et al. [13]). Let G = (V, E) be an undirected graph, vr ∈ V and
DG = (V, AE) as defined above. Then, F is the arc set of an out-branching rooted at vr if
and only if |F | = |V (G)| − 1 and F is independent both in the out-partition matroid for DG

with root vr and the graphic matroid for G with ground set AE.

Let G be an undirected graph, X ⊆ V (G) and p be an integer. It is not immediate
whether in polynomial-time we can check whether there exists a feasible solution, that is,
a set S ⊇ X such that G[S] is p-edge-connected. The following lemma illustrates that the
above can be achieved in polynomial-time. In fact, in this case the input graph does not
have to be a bounded degenerate graph.
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▶ Lemma 12 (⋆).2 Let G = (V, E) be a connected undirected graph and X ⊆ V (G). Then, we
can check in polynomial-time if there exists a set S ⊇ X such that G[S] is a p-edge-connected
subgraph.

We refer to Oxley [24] for more details on matroid theory and a survey by Panolan and
Saurabh [25] for more information on use of matroids in FPT algorithms.

3 Algorithm for STEINER SUBGRAPH EXTENSION

This section is devoted to the proof of the main contribution of our paper. We first provide
a singly exponential algorithm for Steiner Subgraph Extension (we restate below) when
the input graph has bounded degeneracy. We assume that a fixed constant η is the degeneracy
of G. We restate the problem definition.

Steiner Subgraph Extension
Input: An undirected graph G = (V, E), X ⊆ V (G) and integers k, p ∈ N.
Parameter: k + p

Goal: Is there S ⊇ X of size at most k such that G[S] is p-edge-connected?

Let (G, X, k) be given as an input instance and σ be a degeneracy sequence for the
vertices of G − X witnessing that G − X is also an η-degenerate graph. Note that one can
compute a degeneracy sequence easily in polynomial time by iteratively picking the minimum
degree vertex, hence, we assume an ordering σ = (u1, . . . , u′

n) of the vertices of G − X is
given along with the input. Due to Lemma 12, we can check if there exists a feasible solution
S ⊇ X (not necessarily of size at most k) such that G[S] is p-edge-connected subgraph. So,
we can assume without loss of generality that a feasible solution actually exists. We first
state a proposition that we use later in the proof of our result.

▶ Proposition 13 ([13]). Let G = (V, E) be an undirected graph, vr ∈ V , and DG = (V, AE)
such that (DG, vr) is an equivalent digraph with root vr. We also assume that M is a direct
sum M1 ⊕ · · · ⊕ M2p+1 as follows. The matroids M1, M3, . . . , M2p−1 are the copies of graphic
matroid of G on ground set E, the matroids M2, M4, . . . , M2p are the copies of out-partition
matroids with ground set AE with root vr, and the matroid M2p+1 is a uniform matroid over
AE with rank p(k − 1). Furthermore, suppose that F ⊆ AE, then the followings two are
equivalent.

(i) F is the set of p pairwise arc-disjoint out-branchings rooted at vr in DG[S] for some
S ∈

(
V (G)

k

)
and vr ∈ S.

(ii) |V (F )| = k, |F | = p(k − 1), vr ∈ V (F ), and there is an independent set I in M such
that every arc a ∈ F occurs in I precisely in its copies in matroids M2i−1, M2i and
M2p+1 for some i ∈ {1, . . . , p}.

In addition, a linear representation of M and the truncation of M to M̂ of rank 3p(k − 1)
can be computed in deterministic polynomial-time.

Our algorithm for Steiner Subgraph Extension works as follows. There are two
cases. If X = ∅, then we choose an arbitrary vertex u ∈ V (G) and set X = {u}. There are
n = |V (G)| possible choices of X. For each such choice we assign vr = u ∈ X. Otherwise, it is
already the case that X ̸= ∅. Therefore, we can assume without loss of generality that X ̸= ∅.

2 Due to lack of space, the lemmas marked ⋆ and the other omitted proofs can be found in the full version.
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On the other hand, if X ̸= ∅ and G[X] is p-edge-connected, then we can trivially output
yes-instance since |X| ≤ k. So, we are in the situation that G[X] is not p-edge-connected
and |X| < k. In the algorithm, we use the above characterization and representative sets
framework to check if X can be extended to a p-edge-connected subgraph G[S] with at most
k vertices. We fix an arbitrary vertex vr ∈ X. Due to Proposition 13, there is an independent
set I such that (i) X ⊂ V (I) and |V (I)| = k, (ii) |I| = 3p(k − 1), and (iii) every arc that is
in I is represented precisely in three matroids M2i−1, M2i and M2p+1 for some i ∈ [p].

We will build the set I via dynamic programming procedure. Since X is already included
in V (I) it allows us to replace the first condition with |V (I) \ X| = k − |X|. The purpose of
this dynamic programming is to construct a table that keeps track of |V (I) \ X| and |I|. Let
{v1, . . . , vn′} be a degeneracy sequence of the vertices of G − X and X = {Ai | Ai = N(vi) ∩
{v1, . . . , vi−1} \ X}. Each entry of the dynamic programming table T [((i, j, q, Y ), (Z, ℓ))]
will contain a collection of independents sets of M that is a (3p(k − 1) − q))-representative
family of all the independent sets I of M such that |V (I) \ X| = i, |I| = q, Y = Aj ∩ V (I),
the largest index of V (G) − X that occurs in V (I) is j and Z = Aℓ ∩ V (I) for some ℓ > j.
Informally, it means that every independent set |I| has size q in M , V (I) intersects Aj

exactly in Y , and V (I) spans i vertices from G − X, vj ∈ V (I), and V (I) has no vertex from
{vj+1, . . . , vn′}. Furthermore, for every 1 ≤ j < n′, V (I) intersects Aℓ exactly in Z for some
ℓ > j. Observe that for j = n′, there is no index ℓ > j. Then we denote ℓ = n′ + 1 and Z = ∅
to keep the DP-states well-defined. We prove the following lemma that illustrates how a
dynamic programming algorithm can construct all the entries of a table T [((i, j, q, Y ), (Z, ℓ))]
for i ≤ k − |X|, j ≤ n′, q ≤ 3p(k − 1), Y ⊆ Aj , Z ⊆ Aℓ and ℓ > j. Indeed, if j = n′, then
ℓ = n′ + 1 and Z = ∅. Observe that there are at most 2ηn possible choices of Y and 2ηn

possible choices for (Z, ℓ) in the DP table T . The following lemma illustrates how we compute
the DP-table entries.

▶ Lemma 14. Given matroid M of rank r = 3p(k − 1) as described above, the entries of the
table T [((i, j, q, Y ), (Z, ℓ))] for i ≤ k − |X|, j ≤ n′, j < ℓ, q ≤ 3p(k − 1), Y ⊆ Aj and Z ⊆ Aℓ

can be computed in 2O(pk+η)nO(1)-time.

Proof. We describe a procedure Construct(T [((i, j, q, Y ), (Z, ℓ))]) for i ≤ k − |X|, j ≤ n′ and
q ≤ 3p(k − 1) as follows. Observe that every arc of I occurs in three copies, one in M2i−1,
one in M2i and the other in M2p+1. Given an arc a ∈ AE , we use Fa,i to denote the set that
contains the copies of a in M2i−1, M2i and M2p+1. In the first part, we describe constructing
the table entries T [((0, 0, q, Y ), (Z, ℓ))] as follows.

➢ (i) For all 1 ≤ ℓ ≤ n′, we initialize T [((0, 0, 0, ∅), (∅, ℓ))] = {∅}.
➢ (ii) Consider the set of all the arcs in DG[X]. We construct T [((0, 0, q + 3, ∅), (∅, ℓ))]

from T [((0, 0, q, ∅), (∅, ℓ))] as follows. For every I ∈ T [((0, 0, q, ∅), (∅, ℓ))], for every arc
a ∈ DG[X], (1 ≤ j ≤ m), and i ∈ {1, . . . , p}, we add I ∪ Fa,i such that Fa,i extends I.

➢ (iii) Finally, we invoke Proposition 9 to reduce T [((0, 0, q + 3, ∅), (∅, ℓ))] into a (3p(k −
1) − q − 3)-representative family of size 2O(pk+η)nO(1).

When we consider the table entries T [((i, j, q + 3, Y ), (Z, ℓ))] such that j = 0, observe that
Y = Z = ∅. The reason is that for any I ∈ T [((i, j, q + 3, Y ), (Z, ℓ))] with the assumption of
j = 0 implies that i = 0 and no vertex from G − X is part of V (I). Since Y, Z ⊆ V (G) \ X,
it must be that Y = Z = ∅. So, we consider only those entries in this first phase.

We analyze the running-time of the above process. Given T [((0, 0, q, ∅), (∅, ℓ))], computing
T [((0, 0, q + 3, ∅), (∅, ℓ))] requires polynomial in the size of |T [((0, 0, q, ∅), (∅, ℓ))]|. Then,
computing a (3p(k − 1) − q − 3)-representative family requires 2O(pk)-time.

The process of computing table entries for T [((i, j, q, Y ), (Z, ℓ))] for Y ⊆ Aj and Z ⊆ Aℓ

for ℓ > j is more complex and needs more careful approach. We consider a lexicographic
ordering of the indices ((i, j, q, Y ), (Z, ℓ)) and consider one by one as follows. For every
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i ≥ 1, we compute the collection of independent sets in T [((i, j, q, Y ), (Z, ℓ))] using the
collection of independent sets of T [((i′, j′, q′, Y ′), (Z ′, ℓ′))] for j′ < j, j′ < ℓ′, i = i′ + 1,
and q′ < q as follows. We want to include vj into V (I) such that |V (I) \ X| = i. We
look at all the previous subproblems in the lexicographic ordering one by one. Suppose
that I ′ ∈ T [((i′, j′, q′, Y ′), (Z ′, ℓ′))]. By definition, it holds true that Y ′ = V (I ′) ∩ Aj′ and
Z ′ = Aℓ′ ∩ V (I ′). We say that I ′ is extendable to a set I ∈ T [((i, j, q, Y ), (Z, ℓ))] if i = i′ + 1,
Z ′ = Y , and ℓ′ = j. Observe that by definition V (I) and V (I ′) both intersect Aj exactly
in Y , i.e. V (I) ∩ Aj = Y and V (I ′) ∩ Aj = Y . Moreover, j is the next larger index vertex
included in V (I) after vj′ .

We construct the table entries of T [((i, j, q, Y ), (Z, ℓ))] using the table entries of
T [((i′, j′, q′, Y ′), (Z ′, ℓ′))] as follows.

Let d be the number of arcs that are incident to vj such that either the other endpoints
have lower indices or the other endpoint is in X. Formally, we consider the arcs that are
either of the form (vj′ , vj), (vj , vj′) ∈ AE such that j′ < j or of the form (u, vj), (vj , u) for
some u ∈ X. Since G is an η-degenerate graph, observe that d ≤ 2η + 2|X| ≤ 2(k + η).
We create a set F of arcs as follows. For every arc a incident to vj , we consider the sets
Fa,h for every h ∈ [p]. We either add Fa,h into F for some h ∈ [p], or do not add Fa,h into
F . This ensures that there are (p + 1)d ≤ (p + 1)2η+2k possible collections of arc-sets. For
every nonempty such arc-set F and for every I ′ ∈ T [((i′, j′, q′, Y ′), (Z ′, ℓ))] satisfying Y = Z ′,
i = i′ + 1 and ℓ′ = j (in other words I ′ that is extendable to a set in T [((i, j, q, Y ), (Z, ℓ))]),
we add I ′ ∪ F into T [((i, j, q′ + |F |, Y ), (Z, ℓ))] when F extends I ′ and q = q′ + |F |. Finally,
invoke Proposition 9 to reduce T [((i, j, q, Y ), (Z, ℓ))] into its (3p(k − 1) − q)-representative
family containing at most 23p(k−1) sets.

Observe that for every set I ′ ∈ T [((i′, j′, q′, Y ′), (Z ′, ℓ′))], there are at most (p + 1)2η sets
I = I ′ ∪ F that are added to the slot T [((i, j, q, Y ), (Z, ℓ))]. Hence we have that

|T [((i, j, q, Y ), (Z, ℓ))]| ≤ (p + 1)2|X|+2η23pk(p + k + η)O(1)

Since the number of indices is 4ηn2, the above implies that computing all the table entries
can be performed in 2O(pk+η)nO(1)-time. This completes the proof of the lemma. ◀

Our next lemma ensures that the vertices of any independent set of size 3p(k−1) computed
by the above lemma induces a p-edge-connected subgraph.

▶ Lemma 15. There is a set I ∈ T [((k − |X|, j, 3p(k − 1), Y ), (Z, ℓ))] for some Y ⊆ Aj and
Z ⊆ Aℓ if and only if there exists S ⊃ X such that G[S] is a p-edge-connected subgraph of G

with k vertices.

Proof (Sketch). 3 First part of the proof is forward direction (⇒). Let I ∈ T [((k −
|X|, j, 3p(k − 1), Y ), (Z, ℓ))] be an independent set for some j ∈ [n′], Y = Aj ∩ V (I) and
Z = V (I)∩Aℓ. Let S = V (I) and it follows that |S \X| = k −|X|. Note that |I| = 3p(k −1).
Due to Proposition 13, every arc of DG occurs precisely in three copies. Recall that I was
constructed by adding arcs Fa,i for some i ∈ [p] when the arc a incident to v ∈ V (G) \ X

was added. But, Fa,i contains a copy of arc a in M2p+1. Therefore, the construction of
I ensures that no two distinct sets Fa,i and Fa,i′ both are added. Hence DG[V (I)] has p

pairwise arc-disjoint out-branchings rooted at vr and it follows from Proposition 10 that
G[S] is p-edge-connected.

The other part of the proof is the backward direction (⇐). Let G[S] be p-edge-connected
with |S| = k, such that X ⊆ S and vj is the vertex with highest index from {v1, . . . , v′

n} =
V (G)\X. It follows from Proposition 10 that there are p pairwise arc-disjoint out-branchings

3 A complete detailed proof can be found in the full version.
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in DG[S] rooted at vr. Then, by Proposition 13, there is an independent set I such that
V (I) = S containing the the set of arcs F ⊆ AE such that |F | = p(k − 1) and |I| = 3p(k − 1).
We complete our proof by justifying that I is a candidate independent set of M for the slot
T [((k −|X|, j, 3p(k − 1), Y ), (Z, ℓ))] for some Z = V (I) ∩Aℓ and ℓ > j. If we prove that there
is Y ⊆ N(vj) ∩ {v1, . . . , vj−1} such that T [((k − |X|, j, 3p(k − 1), Y ), (Z, ℓ))] ̸= ∅, then we
are done. We can give a proof of this claim by induction on i, j, q that T [((k − |X|, j, 3p(k −
1), Y ), (Z, ℓ))] ̸= ∅. ◀

Using Lemma 14 and Lemma 15, we are ready to prove our theorem statement of our
main result, i.e. Theorem 1 (we restate below).

▶ Theorem 1. Steiner Subgraph Extension can be solved in time 2O(pk+η)nO(1), where
η is the degeneracy of the input graph.

Proof. We assume without loss of generality that X ̸= ∅ and G[X] is not p-edge-connected.
Also, we use (G, X, k, p) to denote the input instance. Let {v1, . . . , vn′} be a degeneracy
sequence of the vertices of G − X and consider an arbitrary vertex vr ∈ X. The first step
is to invoke Proposition 13 and construct a matroid M . We can also assume without loss
of generality that (G, X, k − 1, p) is a no-instance. Our next step is to invoke Lemma 14
and compute the table entries T [((i, j, q, Y ), (Z, ℓ))] for all i ∈ {1, . . . , k − |X|}, j ∈ [n′],
q ≤ 3p(k − 1), Y ⊆ Aj , Z ⊆ Aℓ and ℓ > j. It follows from Lemma 14 that all the table
entries can be computed in 2O(pk+η)nO(1)-time. Moreover, it follows from the Lemma 15 that
for any I ∈ T [((k − |X|, j, 3p(k − 1), Y ), (Z, ℓ)], it holds that G[V (I)] is a p-edge-connected
subgraph. This completes the correctness proof of our algorithm. We finally output S = V (I)
as the solution to the input instance. ◀

4 Applications of STEINER SUBGRAPH EXTENSION to some Graph
Theoretic Problems

In this section, we describe some applications of our main result (Theorem 1) in parameterized
algorithms. But before that, we prove the following lemma (proof is similar to the proof of
Lemma 12).

▶ Lemma 16 (⋆). Let G be an input graph, p be a fixed constant, and G be a polynomial-time
recognizable hereditary graph class. Then, there exists a polynomial-time algorithm that can
check if there is a set S ⊆ V (G) such that G − S ∈ G and G[S] is p-edge-connected.

The above lemma implies that for any polynomial-time recognizable (hereditary) graph
class G, we can test in polynomial-time if a feasible p-edge-connected vertex subset exists
whose deletion results in a graph of class G. Note that the class of all pathwidth-one graphs
is a polynomial-time recognizable graph class. Moreover, for every fixed constant η, the class
of all degree-η-graphs, or the class of all η-treedepth graphs, or the class of all graphs with
no Pη as subgraphs are all polynomial-time recognizable graph classes. So, we can test the
existence of feasible solutions for all our problems in polynomial-time.

Singly Exponential Algorithm for p-EDGE-CONNECTED-η-DEGREE DELETION SET. Now,
we explain how Theorem 1 implies a singly exponential algorithm for p-Edge-Connected
η-Degree Deletion Set problem. We formally state the problem below.
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T2

C5 with hairs attached.

Figure 1 An illustration of T2 and a cycle with hairs attached.

p-Edge-Connected η-Degree Deletion Set (p-Edge-Con-BDDS)
Input: An undirected graph G = (V, E) and an integer k.
Parameter: k

Goal: Is there S ⊆ V (G) such that ∆(G − S) ≤ η and G[S] is p-edge-connected?

The following is the first application of our main result (Theorem 1). As we have a
guarantee from Lemma 16 that we can test if an input graph has a feasible solution to our
problems, we assume without loss of generality that the input graph actually has a feasible
solution. We use this assumption for all our subsequent problems.

▶ Corollary 2. p-Edge-Con-BDDS admits a 2O(pk+kη)nO(1)-time algorithm.

The first part of the algorithm4 for the above result uses enumeration of all minimal
vertex subsets the removal of which results in a graph of maximum degree at most η and
then it invokes Theorem 1.

Singly Exponential Algorithm for p-EDGE-CON-PW1DS. Now, we describe a singly
exponential time algorithm for p-Edge Connected Pathwidth-1 Vertex Deletion
problem using Theorem 1. We formally define the problem as follows.

p-Edge-Con-PW1DS
Input: An undirected graph G = (V, E) and an integer k.
Parameter: k

Goal: Is there S ⊆ V (G) such that G[S] is p-edge-connected and pw(G − S) ≤ 1?

We use the following characterization that are related to pathwidth one graphs.

▶ Proposition 17 ([16, 4]). A graph G has pathwidth at most one if and only if it does not
contain a cycle or T2 as a subgraph.

▶ Proposition 18 ([26]). If G is a graph that does not contain any T2, C3, C4 as subgraphs,
then each connected component of G is either a tree, or a cycle with zero or more pendant
vertices (“hairs”) attached to it. (See Figure 1 for an illustration)

Observe that the graphs of pathwidth one do not have T2, C3, C4 as subgraphs. We prove
the following lemma now.

▶ Lemma 19 (⋆). Let G be an undirected graph that does not have any T2, C3, C4 as subgraphs.
Then, a 2-degeneracy sequence of G can be constructed in polynomial-time. Moreover, for
every connected component D of G, a partition D = C⊎P can be computed in polynomial-time
such that C is an induced path (or cycle) and P is the set of pendant vertices attached to C.

4 We refer to the full version for the proof
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It follows from Proposition 17 and Proposition 18 that any pathwidth one vertex deletion
set must intersect all the subgraphs T2, C3, C4 of a graph. But, once we have a set X such
that G − X has no T2, C3, C4 as subgraphs, then there are some connected components of
G − X that can have cycles. In particular, due to Proposition 18, it holds that if a connected
component of G − X has a cycle, then it must be a cycle with some (possibly empty set
of) pendant hairs attached to it. Then, we would need to find S ⊃ X such that G[S] is
p-edge-connected and S contains at least one vertex from each of these cycles. This requires
us to design an algorithm that uses the ideas similar to Lemma 14 and Lemma 15 but also
has to satisfy an additional condition. We state the following lemma and give a proof for
completeness.

▶ Lemma 20 (⋆). Let G = (V, E) be an undirected graph and X ⊆ V (G) such that G − X

has no T2, C3, C4 as subgraphs. Then, there exists an algorithm that runs in 2O(pk)nO(1)-time
and computes S ⊇ X of size at most k such that G − S has pathwidth at most one and G[S]
is a p-edge-connected subgraph.

Using the above lemma, we provide an 2O(pk)nO(1)-time algorithm for p-Edge Con-
nected Pathwidth-1 Vertex Deletion problem as follows.

▶ Theorem 3. p-Edge-Con-PW1DS admits an algorithm that runs in 2O(pk)nO(1)-time.

Proof. Let (G, k) be an instance of p-Edge Connected Pathwidth-1 Vertex Deletion
problem. First we enumerate all minimal vertex subsets X of size at most k such that G − X

has no T2, C3, C4 as subgraphs. Since T2 has 7 vertices, C3 has 3 vertices and C4 has 4
vertices, it takes O∗(7k)-time to enumerate all such subsets the deletion of which results in a
graph that has no C3, C4, T2 as subgraphs. Let X be one such set such that G − X has no
C3, C4, T2 as subgraphs. Due to Propositions 17 and 18, if D is a connected component of
G − X, then either D is a caterpillar, or a cycle with hairs attached to it. It follows from
Lemma 19 that there is a polynomial-time algorithm that gives a 2-degeneracy sequence ρ of
the vertices of G − X. Moreover, if D is a connected component of G − X, then ρ provides a
partition of D = C ⊎ P such that C is a cycle and P is the set of hairs attached to C. In
particular, the vertices of C are put first, followed by the vertices of P in ρ. Furthermore,
putting the vertices of C first followed by the vertices of P gives a 2-degeneracy ordering
of D. For each such subset X, we invoke Lemma 20 to give an algorithm that runs in
2O(pk)nO(1)-time and outputs S such that X ⊆ S and G − S has pathwidth at most one.
The correctness of this algorithm also follows from the proof of Lemma 20. This completes
the proof of this theorem. ◀

Singly Exponential Time Algorithms for p-EDGE-CON-η-TDDS and p-EDGE-CON-η-PVC.
Finally, we describe how we can get 2O(pk)nO(1)-time algorithm for p-Edge-Connected
η-Treedepth Deletion Set and p-Edge-Connected η-Path Vertex Cover problems.
Note that both p and η are fixed constants. We restate the problem definitions below.

p-Edge-Connected η-Treedepth Deletion Set (p-Edge-Con-η-TDDS)
Input: An undirected graph G = (V, E) and an integer k.
Parameter: k

Goal: Is there S ⊆ V (G) such that G[S] is p-edge-connected and td(G − S) ≤ η.



E. Eiben, D. Majumdar, and M. S. Ramanujan 45:13

p-Edge-Connected η-Path Vertex Cover
Input: An undirected graph G = (V, E) and an integer k.
Parameter: k

Goal: Is there an S ⊆ V (G) with at most k vertices such that G − S has no Pη as
subgraphs and G[S] is p-edge-connected?

It is clear from the problem definition that a set S is called an η-path vertex cover of G if
G − S has no Pη as subgraph. The following proposition holds true for graphs of treedepth
at most η.

▶ Proposition 21 ([12]). If a graph G has treedepth at least η + 1, then it has a connected
subgraph H such that td(H) > η and |V (H)| ≤ 22η .

The above proposition implies that η-Treedepth Deletion Set problem can be
characterized as H-Hitting Set problem where H contains only subgraphs of bounded
size. It follows from the definition that p-Edge-Con-η-PVC can be formulated in p-edge-
connected H-Hitting Set problem. It means that every minimal p-edge-connected
η-treedepth deletion set contains a minimal η-treedepth deletion set and every minimal every
minimal p-edge connected η-path vertex cover contains a minimal η-path vertex cover. We
prove the following lemma that explains how we can construct a collection of all the minimal
such solutions of size at most k.

▶ Lemma 22 (⋆). Given a (connected) undirected graph G = (V, E) and an integer k, the
collection of all minimal η-treedepth deletion sets and the collection of all minimal η-path
vertex covers can be obtained in 22ηknO(1)-time and ηknO(1)-time respectively.

The above lemma implies the next two results5 as other applications of our main result.

▶ Theorem 4. p-Edge-Con-η-TDDS admits an algorithm that runs in 222η
+O((p+η)k)n22η

-
time.

Observe that a graph with no Pη as subgraph has treedepth at most η + 1. It means that
such a graph also has bounded degeneracy. So, we have the following theorem.

▶ Theorem 5. p-Edge-Con-η-PVC admits an algorithm that runs in 2O((p+η)k)nO(1)-time.

5 Conclusions and Future Work

There are several possible directions of future work. Our main result proves that Steiner
Subgraph Extension is FPT when the removal of terminals results in a bounded degenerate
graph. If is unclear if Steiner Subgraph Extension is FPT even when G − X is an
arbitrary graph class and p is a fixed constant. Proving such a (positive or negative) result
Steiner Subgraph Extension remains an interesting future work. If p = 2, then finding
p-vertex/edge-connected steiner subgraph admits kO(k)nO(1)-time algorithm [19, 15]. It
remains open if a 2-vertex-connected steiner subgraph can be obtained in 2O(k)nO(1)-time
even when the set of terminals is a vertex cover of the input graph. On the perspective of
applications of Theorem 1, we have been successful in designing singly exponential-time FPT
algorithms for p-Edge-Con-BDDS, p-Edge-Con-η-TDDS, p-Edge-Con-PW1DS and p-
Edge-Con-η-PVC. But, our results do not capture several other graph classes. For instance,

5 The proofs of the next two theorems can be found in the full version.
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the above algorithm crucially relies that all minimal vertex deletion sets without connectivity
requirements can be enumerated in 2O(k)nO(1)-time and that a bounded degeneracy sequence
can be computed in polynomial-time. Therefore, obtaining an FPT algorithm with singly
exponential running time for each of Feedback Vertex Set, Cluster Vertex Deletion,
Cograph Vertex Deletion with p-edge-connectivity constraints (even with p = 2) also
remain interesting open problems.
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Abstract
We study the α-Fixed Cardinality Graph Partitioning (α-FCGP) problem, the generic local
graph partitioning problem introduced by Bonnet et al. [Algorithmica 2015]. In this problem, we
are given a graph G, two numbers k, p and 0 ≤ α ≤ 1, the question is whether there is a set S ⊆ V

of size k with a specified coverage function covα(S) at least p (or at most p for the minimization
version). The coverage function covα(·) counts edges with exactly one endpoint in S with weight α

and edges with both endpoints in S with weight 1−α. α-FCGP generalizes a number of fundamental
graph problems such as Densest k-Subgraph, Max k-Vertex Cover, and Max (k, n − k)-Cut.

A natural question in the study of α-FCGP is whether the algorithmic results known for its
special cases, like Max k-Vertex Cover, could be extended to more general settings. One of the
simple but powerful methods for obtaining parameterized approximation [Manurangsi, SOSA 2019]
and subexponential algorithms [Fomin et al. IPL 2011] for Max k-Vertex Cover is based on the
greedy vertex degree orderings. The main insight of our work is that the idea of greed vertex degree
ordering could be used to design fixed-parameter approximation schemes (FPT-AS) for α > 0 and
the subexponential-time algorithms for the problem on apex-minor free graphs for maximization
with α > 1/3 and minimization with α < 1/3.
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1 Introduction

In this work, we study a broad class of problems called α-Fixed Cardinality Graph
Partitioning (α-FCGP), originally introduced by Bonnet et al. [2] 1. The input is a graph
G = (V, E), two non-negative integers k, p, and a real number 0 ≤ α ≤ 1. The question
is whether there is a set S ⊆ V of size exactly k with covα(S) ≥ p (covα(S) ≤ p for the
minimization variant), where

1 Bonnet et al. [2] called the problem “local graph partitioning problem”, however we adopt the nomen-
clature from Koana et al. [19].
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covα(S) := (1 − α) · m(S) + α · m(S, V \ S).

Here, m(S) is the number of edges with both endpoints in S, and m(S, V \ S) is the number
of edges with one endpoint in S and other in V \ S. We will call the maximization and
minimization problems Max α-FCGP and Min α-FCGP, respectively. This problem
generalizes many problems, namely, Densest k-Subgraph (for α = 0), Max k-Vertex
Cover2 (for α = 1/2), Max (k, n−k)-Cut (for α = 1), and their minimization counterparts.

Although there are plethora of publications that study these special cases, the general
α-FCGP has not received much attention, except for the work of Bonnet et al. [2], Koana
et al. [19], and Schachnai and Zehavi [23]. In this paper, we aim to demonstrate the wider
potential of the existing algorithms designed for specific cases, such as Max k-Vertex
Cover, by presenting an algorithm that can handle the more general problem of α-FCGP.
Algorithms for these specific cases often rely on greedy vertex degree orderings. For instance,
Manurangsi [20], showing that a (1−ε)-approximate solution can be found in the set of O(k/ε)
vertices with the largest degrees, gave a (1 − ε)-approximation algorithm for Max k-Vertex
Cover that runs in time (1/ε)O(k) · nO(1). Fomin et al. [14] gave a 2O(

√
k) · nO(1)-time

algorithm for Max k-Vertex Cover on apex-minor graphs via bidimensionality arguments,
by showing that an optimal solution S is adjacent to every vertex of degree at least d + 1,
where d is the minimum degree over vertices in S. In this work, we will give approximation
algorithms as well as subexponential-time algorithms for apex-minor free graphs exploiting
the greedy vertex ordering.

For approximation algorithms, we will show that both Max α-FCGP and Min α-FCGP
admit FPT Approximation Schemes (FPT-AS) for α > 0, i.e., there is an algorithm running
in time f(k, α, ε) · nO(1) that finds a set S of size k with covα(S) ≥ (1 − ε) · OPT (or
covα(S) ≤ (1 + ε) · OPT for the minimization variant), where OPT denotes the optimal value
of p. Previously, the special cases were known to admit FPT approximation schemes; see
[22, 16, 17, 20] for α = 1/2 and [2] for α = 1. In particular, the state-of-the-art running time
for α = 1/2 is the aforementioned algorithm of Manurangsi that runs in time (1/ε)O(k) · nO(1)

for maximization (also for the minimization variant). For α = 0, the situation is more negative;
Max α-FCGP (namely, Densest k-Subgraph) does not admit any o(k)-approximation
algorithm with running time f(k) · nO(1) under the Strongish Planted Clique Hypothesis [21].
Min α-FCGP is also hard to approximate when α = 0 since it encompasses Independent
Set as a special case for p = 0.

Next, we discuss the regime of subexponential-time algorithms. Amini et al. [1] showed
that Max k-Vertex Cover is FPT on graphs of bounded degeneracy, including planar
graphs, giving a kO(k) · nO(1)-time algorithm. They left it open whether it can be solved in
time 2o(k) · nO(1). This was answered in the affirmative by Fomin et al. [14], who showed
that Max k-Vertex Cover on apex-minor free graphs can be solved in time 2O(

√
k) · nO(1)

time. Generalizing this result, we give a 2O(
√

k) · nO(1)-time algorithm for Max α-FCGP
with α > 1/3 and Min α-FCGP with α < 1/3. The complexity landscape of Max α-FCGP
with α < 1/3 (and Min α-FCGP with α > 1/3) is not well understood. It is a long-standing
open question whether Densest k-Subgraph on planar graphs is NP-hard [4]. Note that
the special case Clique is trivially polynomial-time solvable on planar graphs because a
clique on 5 vertices does not admit a planar embedding.

2 This is problem is also referred to as Partial Vertex Cover.
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Further related work

As mentioned, special cases of α-FCGP when α ∈ {0, 1/2, 1} have been extensively studied.
For instance, the W[1]-hardness for the parameter k has been long known for these special
cases [3, 11, 15]. Both Max α-FCGP and Min α-FCGP are actually W[1]-hard for every
α ∈ [0, 1] with the exception α ̸= 1/3, as can be seen from a parameterized reduction
from Clique and Independent Set on regular graphs. Note that α-Fixed Cardinality
Graph Partitioning becomes trivial when α = 1/3 because covα(S) = 1

3 ·
∑

v∈S d(v) for
any S ⊆ V where d(v) is the degree of v.

Bonnet et al. [2] gave a (∆k)2k · nO(1)-time algorithm for α-FCGP where ∆ is the
maximum degree. They also gave an algorithm with running time ∆k · nO(1) for Max
α-FCGP with α > 1/3 and Min α-FCGP with α < 1/3. This result was strengthened by
Schachnai and Zehavi [23]; they gave a 4k+o(k)∆k · nO(1)-time algorithm for any value of α.
Koana et al. [19] showed that Max α-FCGP admits polynomial kernels on sparse families of
graphs when α > 1/3. For instance, Max α-FCGP admits a kO(d)-sized kernel where d is
the degeneracy of the input graph. They also showed analogous results for Min α-FCGP
with α < 1/3.

Preliminaries

For an integer n, let [n] denote the set {1, · · · , n}.
We use the standard graph-theoretic notation and refer to the textbook of Diestel [10]

for undefined notions. In this work, we assume that all graphs are simple and undirected.
For a graph G and a vertex set S, let G[S] be the subgraph of G induced by X. For a vertex
v in G, let d(v) be its degree, i.e., the number of its neighbors. For vertex sets X, Y , let
m(X) := |{uv ∈ E | u, v ∈ X}| and m(X, Y ) := |{uv ∈ E | u ∈ X, v ∈ Y }|. In this work,
an optimal solution for Max α-FCGP (and Min α-FCGP) is a vertex set S of size k such
that covα(S) ≥ covα(S′) (resp., covα(S) ≤ covα(S′)) for every vertex set of size k. A graph
H is a minor of G if a graph isomorphic to H can be obtained from G by vertex and edge
removals and edge contractions. Given a graph H , a family of graph H is said to be H-minor
free if there is no G ∈ H having H as a minor. A graph H is an apex graph if H can be
made planar by the removal of a single vertex.

We refer to the textbook of Cygan et al. [5] for an introduction to Parameterized
Complexity and we refer to the paper of Marx [22] for an introduction to the area of
parameterized approximation.

2 FPT Approximation Algorithms

In this section, we design an FPT Approximation Scheme for Max α-FCGP as well as
Min α-FCGP parameterized by k and α, assuming α > 0. More specifically, we prove the
following theorem.

▶ Theorem 1. For any 0 < α ≤ 1 and 0 < ϵ ≤ 1, Max α-FCGP and Min α-FCGP each
admits an FPT-AS parameterized by k, ϵ and α. More specifically, given a graph G = (V, E)
and an integer k, there exists an algorithm that runs in time f(k, α, ϵ) · nO(1), and finds a set
S ⊆ V such that covα(S) ≥ (1−ϵ)·covα(O) for Max α-FCGP and covα(S) ≤ (1+ε)·covα(O)
for Min α-FCGP, where O ⊆ V is an optimal solution.

For the case that OPT := covα(O) is large, the following greedy argument will be helpful.
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▶ Lemma 2. For Max α-FCGP, let S be the set of k vertices with the largest degrees. Then,
covα(S) ≥ OPT − 2k2. For Min α-FCGP, let S be the set of k vertices with the smallest
degrees. Then, covα(S) ≤ OPT + 2k2.

Proof. Without loss of generality, we assume that O ̸= S. Let S \ O = {y1, y2, . . . , yt}, and
O \ S = {w1, w2, . . . , wt}, where 1 ≤ t ≤ k. Here, we index the vertices so that d(yi) ≥ d(yj)
and d(wi) ≥ d(wj) (for Min α-FCGP, d(yi) ≤ d(yj) and d(wi) ≤ d(wj)) for i < j. Note
that due to the choice of S, it holds that d(yi) ≥ d(wi) (d(yi) ≤ d(wi) for Min α-FCGP) for
each 1 ≤ i ≤ t.

Now we define a sequence of solutions O0, O1, . . . , Ot, where O0 = O, and for each
1 ≤ i ≤ t, Oi := (Oi−1 \ {wi}) ∪ {yi}. Note that Ot = S. We claim that for each 1 ≤ i ≤ t,
covα(Oi) ≥ covα(Oi−1) − 2k for Max α-FCGP and covα(Oi) ≤ covα(Oi−1) + 2k for Min
α-FCGP. To this end, we note that Oi is obtained from Oi−1 by removing wi and adding yi.
Thus, covα(Oi) = covα(Oi−1) − (αm1 + ((1 − α) − α) · m2) + αm3 + ((1 − α) − α) · m4, where

m1 := m({wi} , V \ Oi−1), m2 := m({wi} , Oi−1 \ {wi}),
m3 := m({yi} , V \ Oi), m4 := m({yi} , Oi \ {wi}).

Observe that d(wi) − k ≤ m1 ≤ d(wi), d(yi) − k ≤ m3 ≤ d(yi), and 0 ≤ m2, m4 ≤ k. We
consider Max α-FCGP first. We have that

covα(Oi) = covα(Oi−1) + α(m3 − m1) + (1 − 2α)(m4 − m2)
≥ covα(Oi−1) + α(m3 − m1) − |(1 − 2α)(m4 − m2)|.

Since m3 − m1 ≥ d(yi) − d(wi) − k ≥ −k and |(1 − 2α)(m4 − m2)| ≤ k, we obtain covα(Oi) ≥
covα(Oi−1) − 2k, regardless of the value of α. We consider Min α-FCGP next. It holds that

covα(Oi) = covα(Oi−1) + α(m3 − m1) + (1 − 2α)(m4 − m2)
≤ covα(Oi−1) + α(m3 − m1) + |(1 − 2α)(m4 − m2)|.

Since m3 − m1 ≤ d(yi) − d(wi) + k ≤ k and |(1 − 2α)(m4 − m2)| ≤ k, we obtain covα(Oi) ≤
covα(Oi−1) + 2k, regardless of the value of α.

Therefore, covα(Ot) ≥ covα(O0) − 2kt ≥ OPT − 2k2 for Max α-FCGP and covα(Ot) ≤
covα(O0) + 2kt ≤ OPT + 2k2 for Min α-FCGP. ◀

Lemma 2 allows us to find an approximate solution when OPT is sufficiently large. The
case that OPT is small remains. We use different approaches for Max α-FCGP and Min
α-FCGP.

Algorithm for MAX α-FCGP

Let v1 be a vertex with the largest degree. Our algorithm considers two cases depending on
whether d(v1) > ∆ := 2k2

ϵα + k. If d(v1) > ∆, we can argue that the set S from Lemma 2 a
(1 − ϵ)-approximate solution. To that end, we make the following observation.

▶ Observation 3. If d(v1) > ∆, then 2k2 ≤ ϵ · covα(S).

Proof. Note that m(S, V \ S) =
∑

u∈S m({u} , V \ S) ≥ m({v1}, V \ S) ≥ d(v1) − k, where
the inequality follows from the fact that at most k edges incident to v1 can have the other
endpoint in S. This implies that

covα(S) ≥ α · m(S, V \ S) ≥ α · (d(v1) − k) ≥ 2k2

ϵ
.

Where we use the assumptions that 0 < α ≤ 1 and d(v1) ≥ ∆. ◀
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Thus, for d(v1) > ∆, we have OPT ≤ covα(S) + 2k2 ≤ (1 + ε) · covα(S), and thus covα(S) ≥
(1 − ε) · OPT.

So assume that d(v1) < ∆. In this case, the maximum degree of the graph is bounded
by ∆. Let O ⊆ V be an optimal solution. Then the total number of edges contributing
to covα(O) is bounded by k∆ = O(k3/αϵ). Let Q be the set of vertices in V \ O that
have a neighbor in O, and note that |Q| = O(k3/αϵ). Let z = |O| + |Q|, and note that
z = O(k3/αϵ).

We first guess the structure of the subgraph G′ = (O ∪ Q, E′), where E′ consists of all
edges with at least one endpoint in O. For each guess for G′, we check whether there exists
a subgraph in G that is isomorphic to G′. Over all guesses where we find an isomorphic
subgraph, we return the solution maximizing the covα(·) value. Note that the number of
guesses is bounded by 2z2 = g(k, α, ϵ). Since the maximum degree of G is bounded by
∆, and the number of vertices in the subgraph corresponding to each guess is z, we can
solve each instance of Subgraph Isomophism in time 2O(z∆)z! · nO(1) = g′(k, α, ϵ) · nO(1)

using random separation, e.g., Theorem 5.7 in [5]. Thus, overall, the running time of the
algorithm is bounded by some f(k, α, ϵ) · nO(1). Combining both cases, we conclude the proof
of Theorem 1.

Algorithm for MIN α-FCGP

For Min α-FCGP, our algorithm considers two cases depending on the value of OPT. If
OPT ≥ 2k2

ε , then our algorithm returns the set S from Lemma 2. Note that covα(S) ≤
OPT + 2k2 ≤ (1 + ε) · OPT.

Now suppose that OPT < 2k2

ε . In this case, we know that O cannot contain a vertex
of degree larger than ∆ = 2k2

αϵ + k, for otherwise, covα(O) > α(∆ − k) ≥ OPT, which is a
contradiction.

In this case, we can guess the structure of G′ = (O ∪ N(O), E′), where E′ consists of
all edges with at least one endpoint in E′. Then, we can find a subgraph isomorphic to G′

using an FPT algorithm (we can delete the edges between all vertices whose degree is larger
than ∆). This takes FPT time.

Since the value of OPT is unknown to us, we cannot directly conclude which case is
applicable. So we find a solution for each case and return a better one.

3 Subexponential FPT Algorithm for MAX α-FCGP on Apex-Minor
Free Graphs

Fomin et al. [14] showed that Partial Vertex Cover on apex-minor free graphs can
be solved in time 2O(

√
k) · nO(1). In this section, we will prove its generalization to Max

α-FCGP as well as Min α-FCGP:

▶ Theorem 4. For an apex graph H, let H be a family of H-minor free graphs.
For any α ≥ 1/3, Max α-FCGP for H can be solved in 2O(

√
k) · nO(1) time.

For any α ≤ 1/3, Min α-FCGP for H can be solved in 2O(
√

k) · nO(1) time.

We will give a proof for the maximization variant. The minimization variant follows
analogously. Let σ = v1, v2, . . . , vn be an ordering of vertices of V in the non-increasing order
of degrees, with ties broken arbitrarily. That is, d(v1) ≥ d(v2) ≥ . . . ≥ d(vn−1) ≥ d(vn). We
will denote the graph by G = (Vσ, E) to emphasize the fact that the vertex set is ordered
w.r.t. σ. We also let V j

σ = {v1, . . . , vj}. We first prove the following lemma.
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▶ Lemma 5. Let G = (Vσ, E) be a yes-instance for Max α-FCGP, where 1/3 ≤ α ≤ 1.
Let C = {ui1 , ui2 , . . . , uik

} be the lexicographically smallest solution for Max α-FCGP and
uik

= vj for some j. Then C is a dominating set of size k for G[V j
σ ].

Proof. Suppose for the contradiction that C is not a dominating set for G[V j
σ ]. Then, there

exists a vertex vi with 1 ≤ i < j such that N [vi] ∩ C = ∅. Set C ′ = (C \ {vj}) ∪ {vi}. Note
that d(vi) ≥ d(vj). Define the following:

m1 = m({vj} , V \ C),
m2 = m({vj} , C \ {vj}),
m3 = m({vi} , (V \ C) ∪ {vj}) = d(vi),
m4 = m({vi} , C \ {vj}) = 0.

We will show that C ′ is another solution for the Max α-FCGP instance. Since C ′ \ {vi} =
C \ {vj}, it suffices to show that

covα(C ′) − covα(C) = (covα(C ′) − covα(C ′ \ {vi})) − (covα(C) − covα(C \ {vj}))

is nonnegative. By definition,

covα(C ′) − covα(C ′ \ {vi}) = α · m3 + ((1 − α) − α) · m4 = α · d(vi) and
covα(C) − covα(C \ {vj}) = α · m1 + ((1 − α) − α) · m2 ≤ α · (m1 + m2) = α · d(vj),

(1)

where the inequality is due to the assumption that α ≥ 1/3. Therefore,

covα(C ′) − covα(C) = α · (d(vi) − d(vj)) ≥ 0,

which is a contradiction to the assumption that C is the lexicographically smallest solution
for Max α-FCGP. ◀

In view of Lemma 5, we can use the following approach to search for the lexicographically
smallest solution C. First, we guess the last vertex vj of C in the ordering σ, i.e., we search
for a solution C such that vj ∈ C and C ⊆ V j

σ . If G[V j
σ ] has no dominating set of size at most,

say 2k, then we reject. This can be done in polynomial time, since Dominating Set admits
a PTAS on apex-minor free graphs [7]. We thus may assume that there is a dominating set
of size 2k in G[V j

σ ]. It is known that an apex-minor free graph with a dominating set of size
κ has treewidth O(

√
κ), where O hides a factor depending on the apex graph whose minors

are excluded [6, 9, 12]. We can use a constant-factor approximation algorithm of Demaine
[8] to find a tree decomposition T of width w ∈ O(

√
k). Finally, we solve the problem via

dynamic programming over the tree decomposition. Bonnet et al. [2] gave a O∗(2w)-time
algorithm that solves Max α-FCGP with a tree decomposition of width w given. We need
to solve a slightly more general problem because T is the tree decomposition is over V j

σ .
To remove V \ V j

σ , we introduce a weight ω : V j
σ → N defined by ω(v) = |N(v) ∩ (V \ V j

σ )|.
The objective is then to maximize covα(C) + α

∑
v∈C ω(C). The dynamic programming

algorithm of Bonnet et al. can be adapted to solve this weighted variant in the same running
time. Thus, we obtain a 2O(

√
k) · nO(1)-time algorithm for Max α-FCGP.

For Min α-FCGP, we can show the following lemma whose proof is omitted because it
is almost analogous to the previous one. The only change is that, Vσ refers to the vertices in
the non-decreasing order of degrees. Also, we consider the regime where 0 ≤ α ≤ 1/3, which
implies α ≤ 1 − 2α, which would give the reverse inequality in (1).
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▶ Lemma 6. Let G = (Vσ, E) be a yes-instance for Max α-FCGP, where 0 ≤ α ≤ 1/3.
Let C = {ui1 , ui2 , . . . , uik

} be the lexicographically smallest solution for Max α-FCGP and
uik

= vj for some j. Then C is a dominating set of size k for G[V j
σ ].

With this lemma at hand, an analogous algorithm solves Min α-FCGP in 2O(
√

k) · nO(1)

time, thereby proving Theorem 4.

4 Conclusion

In this paper, we demonstrated that the algorithms exploiting the “degree-sequence” that have
been successful for designing algorithms for Max k-Vertex Cover naturally generalize to
Max/Min α-FCGP. Specifically, we designed FPT approximations for Max/Min α-FCGP
parameterized by k, α, and ϵ, for any α ∈ (0, 1]. For Max α-FCGP, this result is tight
since, when α = 0, the problem is equivalent to Densest k-Subgraph, which is hard to
approximate in FPT time [21]. We also designed subexponential FPT algorithms for Max
α-FCGP (resp. Min α-FCGP) for the range α ≥ 1/3 (resp. α ≤ 1/3) on any apex-minor
closed family of graphs. It is a natural open question whether one can obtain subexponential
FPT algorithms for Max/Min α-FCGP for the entire range α ∈ [0, 1]. A notable special
case is that of Densest k-Subgraph on planar graphs. In this case, the problem is
not even known to be NP-hard, if the subgraph is allowed to be disconnected. For the
Densest Connected k-Subgraph problem, it was shown by Keil and Brecht [18] that
the problem is NP-complete on planar graphs. From the other side, it can be shown that
Densest Connected k-Subgraph admits a subexponential in k randomized algorithm
on apex-minor free graphs using the general results of Fomin et al. [13]. Thus, dealing with
disconnected dense subgraphs is difficult for both algorithms and lower bounds.
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Abstract
Graph connectivity is a fundamental combinatorial optimization problem that arises in many practical
applications, where usually a spanning subgraph of a network is used for its operation. However, in
the real world, links may fail unexpectedly deeming the networks non-operational, while checking
whether a link is damaged is costly and possibly erroneous. After an event that has damaged an
arbitrary subset of the edges, the network operator must find a spanning tree of the network using
non-damaged edges by making as few checks as possible.

Motivated by such questions, we study the problem of finding a spanning tree in a network,
when we only have access to noisy queries of the form “Does edge e exist?”. We design efficient
algorithms, even when edges fail adversarially, for all possible error regimes; 2-sided error (where
any answer might be erroneous), false positives (where “no” answers are always correct) and false
negatives (where “yes” answers are always correct). In the first two regimes we provide efficient
algorithms and give matching lower bounds for general graphs. In the False Negative case we design
efficient algorithms for large interesting families of graphs (e.g. bounded treewidth, sparse). Using
the previous results, we provide tight algorithms for the practically useful family of planar graphs in
all error regimes.
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operational. Worse still, detecting faulty connections is not always that simple; our tools may
be unreliable, resulting in untrustworthy indications. Can we efficiently find an operational
spanning tree, when we cannot obtain reliable signals on the operation of edges?

In this work we study the problem of finding a spanning tree using noisy
queries on the existence of edges. Specifically, given a moldgraph G, where some
subgraph H of G is realized, we have access to an oracle that answers questions of the form
“Does edge e exist in H?”. The answers the oracle gives are inconsistent: for a specific edge
e, the answer might differ every time. Queries to the oracle are costly, therefore our goal
is to find a spanning tree asking as few queries as possible. We design efficient algorithms
that achieve this goal, in all 3 different error regimes; 2-sided (where any answer might be
erroneous), 1-sided false positives (where “no” answers are always correct) and 1-sided false
negatives (where “yes” answers are always correct).

1.1 Our Contribution
As a warm-up, we begin by solving the simpler problem of learning whether the tree is
connected (Theorem 7). Following that, we proceed to our main problem, which is finding a
realized spanning tree in three different error regimes. In the 2-sided error case, we give an
algorithm performing O(m log m) queries and show that no algorithm can perform better,
even on special cases like sparse graphs. In the 1-sided False Negative error regime, we design
an algorithm that is optimal on planar graphs and yields efficient guarantees for other special
families like graphs with treewidth k or degeneracy k (O(km) queries) and graphs with
Hadwiger number k (O(k

√
log km) queries). The same algorithm can be used for general

graphs, and outside the aforementioned families, its performance gracefully degrades to that
of the naive strategy (that is O(m log n) queries). It is noteworthy that this is the only
algorithm that breaks the O(m log m) barrier and it achieves it by employing an adaptive
strategy.

In the False-Positive error case, our algorithm obtains tight guarantees for general
graphs (Theorem 19), while in the special case where the realized graph is acyclic and the
moldgraph is planar, the query complexity becomes linear. Both in the False-Negative and
the False-Positive case, our algorithms do not need to know whether the graph has any special
properties (sparsity, acyclic realized subgraph etc), they can simply run a unified algorithm
that achieves the best guarantee according to each case.

Our results, imply tight algorithms for planar graphs, which is a family of graphs that is fre-
quently encountered in road/railway networks, electrical circuits, image processing/computer
vision [15, 14].

1.2 Related Work
Variations of this problem have been studied in literature, however they differ from our setting.
A crucial assumption in all of the previous works, is that each edge has an independent
probability of existence, which however, does not always bear out in practice. For example,
a power outage may deem several local network links non-operational. In our work, we allow
the existence of different edges to be arbitrarily correlated.

Feige et al. in [4] first studied the evaluation of boolean decision trees where the nodes
are noisy and the goal is to find the correct leaf within a tolerance parameter Q. In [6, 5] the
authors study finding spanning trees in Erdos-Renyi graphs, a special class of random graphs
where each edge exists independently with some probability. In their setting each edge has a
query cost, and the goal is to find a spanning tree using the least number of queries. However,
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contrary to their setting, we handle both adversarially selected realized graphs and noisy
answers to existence queries. More recently, Lyu et al. in [11] also studied the problem of
finding a MST when the edges can fail with some probability. The work of Hoffmann et al.
[7] and Erlebach and Hoffmann [3] considers verifying spanning trees where each edge has a
weight inside an uncertainty region and the algorithm can ask the edge to reveal it. The goal
is to find a small weight spanning tree without asking all the edges for their weight. None of
these settings account for inconsistent queries, like in our setting.

In Bhaskara at al. [1] they studied the problem of finding a shortest path in a graph
where there are ML-generated hints on the edge lengths, and also costly access to a zero-error
oracle. The goal is to find a good enough shortest path, without asking the oracle too many
times.

On a different problem in Mazumdar and Saha [12], the authors study clustering in a
similar setting to ours where they have access to queries of the form “is u and v in the same
cluster?”. However in their model, the oracle gives consistent answers on each query.

2 Preliminaries

In graph connectivity with noisy queries we are given a graph G = (V, E), with edge
set E and node set V called the moldgraph, then an adversary selects a connected subgraph
G′ of G to be realized. The goal of the algorithm is to find a spanning tree in the subgraph
G′ spending as little time as possible gathering information. The algorithm does not directly
observe the subgraph that is realized, but only has access to an oracle that answers questions
of the form “Is edge e ∈ E realized?”. Each call to this oracle costs 1, therefore our goal is
to find a realized spanning tree, with constant probability using the minimum number of
queries to the oracle.

This oracle, however, is noisy and inconsistent; it might not give the correct answer and
when asked multiple times on the same edge, it may give different answers. More formally,
the oracle is a function O : E → {Yes, No}, that given an edge e ∈ E answers either Yes or
No, indicating whether the edge is realized or not. We study all the possible error types for
the oracle, outlined below.

2-sided error. the oracle’s answer is wrong (ie. with “No” for realized edges and “Yes” for
non-realized) with constant error probability p < 1/2.

1-sided error, False Negative (FN). if the edge is not realized then the response is always
“No”. If it is realized then the response is “No” with constant error probability p < 1/2, and
“Yes” with probability (1− p). Thus, when the oracle responds “Yes” then it is certain that
this edge is realized, but when it responds “No” then the edge may or may not be realized,
hence the False Negative responses.

1-sided error, False Positive (FP). if the edge is realized then the response is always “Yes”.
If it is not realized then the response is “Yes” with constant error probability p < 1/2, and
“No” with probability (1− p). Thus, when the oracle responds “No” then it is certain that
this edge is not realized, but when it responds “Yes” then the edge may or may not be
realized, hence the False Positive responses.

MFCS 2023
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2.1 Graphs notation
We present some useful definitions for concepts we use throughout the paper. We begin by
our definition of sparsity. Another possible name for the ρ parameter in the literature is
“average degree” of the graph.

▶ Definition 1 (ρ-sparse Graphs). A graph G with m edges and n vertices is called ρ-sparse
if m ≤ ρn.

It is noteworthy that our definition of ρ-sparsity for graphs is weaker than the usual
definitions of graph sparsity, in the sense that it can be easily satisfied without requiring
local sparsity properties. This means that constructing efficient algorithms for this property,
directly translates to efficient algorithms for other usual sparsity parameters. For example,
using our definition, k-degenerate graphs are k-sparse [9], k-treewidth graphs are also k-
sparse [13], and graphs with Hadwiger number k are O(k

√
log k)-sparse [8, 2].

▶ Definition 2 (Edge Contraction). The edge contraction operation on an edge e = {u, v} of
a graph G results in a new graph G′ wherein u and v are replaced by a new vertex uv which
is connected to all vertices of G that were incident to either u or v.

▶ Definition 3 (Graph minor [10]). A graph H is called a minor of a graph G, if H can occur
after applying a series of edge deletions, vertex deletions, and edge contractions.

▶ Definition 4 (Minor-closed Graph Family). A set F of graphs is called a minor-closed graph
family if for any G ∈ F all minors of G also belong to F .

The algorithms that we present for FN and FP queries produce and handle multigraphs
during intermediate steps. Here, we present and define some of the main concepts we are
using from multigraphs.

An edge e = {u, v} in a multigraph is a link connecting u and v. There might be other
parallel edges between u and v, and each one is distinct. Sometimes we will need to work
with the set of all parallel edges between u and v. We call this set a super-edge between u

and v. For simplicity, we consider simple edges to be super-edges with size 1.

▶ Definition 5 (Neighborhood). For a vertex v ∈ V , we denote by N(v) its neighborhood,
which is the set of all super-edges with v as one of the endpoints.

▶ Definition 6 (Degree). For a node v ∈ V , degree deg(v) of v is the size of N(v).

Finally, we note that whenever an algorithm performs an edge-contraction operation on
edge e of a multigraph, then we delete all the other parallel edges to e as well, leaving no
self-loops in the graph. Moreover, if any parallel super-edges result after the contraction,
they are replaced by a larger super-edge, their union.

3 Verifying Connectivity

As a warm-up, before attempting to find a realized spanning tree of the graph, we begin by
presenting an algorithm for verifying the connectivity of a tree. Specifically, given a tree,
which could be the operating spanning tree of a network, we want to verify whether it is
connected or not, that is whether all of its edges are realized.

Naively verifying this property (ie. performing a fixed number of queries on every edge)
needs O(n log n) queries to yield a constant probability guarantee. However, we show that it is
possible to verify the connectivity of the tree using only O(n) queries, which is asymptotically
the same as if our oracle had no noise.
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Algorithm 1 V erify(T ): A verification protocol for tree connectivity with 2-sided error.

Input: Tree T of n edges, Parameters: ε, δ, p

Output: True iff T is connected

1: threshold ← ⌈log 1−p
p

( 1
δ

)
⌉

2: budget ← ⌈ 1
ϵ ·

1
1−2p⌉ · threshold · n

3: for e ∈ E(T ) do
4: counter ← 0
5: while (counter < threshold) & (budget > 0) do
6: q ← Query edge e

7: budget ← budget −1
8: if q is “Yes” then
9: counter ← counter +1

10: else
11: counter ← counter −1
12: end if
13: end while
14: if budget = 0 then
15: return False
16: end if
17: end for
18: return True

Our algorithm (Algorithm 1) has a predetermined budget of queries that depends on
the requested guarantees. It fixes an ordering of the edges, and for each edge it performs
queries until it receives c more positive answers than negative ones (where c is also fixed
and depends on the requested guarantees). For realized edges, since p < 1/2, the expected
number of queries until they reach c is polynomial in c. On the other hand, the probability
to never yield c more positive answers than negative ones, within the budget, is exponentially
small in c. Using a global budget instead of a fixed per-edge number of queries, allows us to
dynamically allocate it based on need. We save up queries from realized edges that reach the
threshold quickly and spend it on other edges that are slow to reach the threshold. On the
other hand, the probability that a non-realized edge reaches c is exponentially small in c. As
a result, if a non-realized edge exists in the tree, the algorithm will consume all of its budget
on this edge before reaching the threshold. Using this approach, Algorithm 1 achieves the
following guarantees.

▶ Theorem 7. Algorithm 1 correctly classifies connected trees with probability 1 − ε and
disconnected trees with probability 1− δ, while performing at most O

( 1
ε n log 1

δ

)
queries.

The proof is deferred to the full version. As a Corollary of Theorem 7, we get that, for
constant probability guarantees, Algorithm 1 requires O(n) queries.

▶ Corollary 8. Algorithm 1 correctly classifies connected trees with probability .99 and
disconnected trees with probability .99, using O(n) queries.

MFCS 2023
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4 Two-sided error oracle

Moving on to our main result, we show how to find a realized spanning tree in the 2-sided
error oracle. Recall that in this case, the oracle may give false responses either when the
edge is realized or when it is non-realized. The main result for this regime is the following
theorem.

▶ Theorem 9. In the 2-sided error regime, there exists an algorithm that finds a realized
spanning tree with high probability, using O(m log m) queries in a moldgraph of m edges.
Moreover, no algorithm can do better than Ω(m log m).

To show this theorem, we separately show the upper and lower bounds in Lemmas 10
and 12. Combining them we immediately get the theorem.

4.1 Upper Bound
In order to show the upper bound (Lemma 10), we describe an algorithm that achieves this
query complexity and prove its correctness in Lemma 11

▶ Lemma 10. In the 2-sided error regime, there exists an algorithm that finds a realized
spanning tree with high probability, using O(m log m) queries in a moldgraph of m edges.

Our algorithm, described below, uses the same idea as the naive algorithm for the
connectivity verification problem.

Naive algorithm

The algorithm is as follows. First, query each edge of the moldgraph O(log m) times. Second,
by treating all edges with more “Yes” than “No” responses as realized, compute a spanning
tree on the discovered realized subgraph. If the graph is disconnected, output any spanning
tree of the moldgraph.

The algorithm performs O(m log m) queries in total. The following lemma shows the
correctness of the algorithm, and its proof is deferred to the full version.

▶ Lemma 11. The Naive algorithm finds a realized spanning tree with high probability.

4.2 Lower Bound
Switching gears towards the lower bound, we give an instance showing that we cannot hope
for anything better than the O(m log m) upper bound shown in the previous section. As we
expected, this is a strictly harder problem than verifying the connectivity of a tree, since in
this case we have to identify a realized edge in each independent cut of the moldgraph.

▶ Lemma 12. In the 2-sided error regime, there exists a graph where any algorithm requires
Ω(m log m) queries to discover a spanning tree with constant failure probability.

Proof of Lemma 12. We consider the graph in Figure 1 which has n + 1 vertices and 2n

edges. Between any two consecutive vertices there exist 2 parallel edges, one of which
is realized and the other is not. Note that this moldgraph is a multigraph for simplicity
of presentation. But the arguments hold analogously for a 2-by-n grid moldgraph, if we
additionally give our algorithms the extra information that all vertical edges are realized.
This only makes an algorithm more powerful as, in the worst-case, it can choose to ignore this
information and execute independently. Then, we show that even with this extra knowledge,
no algorithm can achieve a better query complexity than the desired bound.
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(a) The moldgraph used for the proof of Lemma 12.

(b) A realized graph from the family mentioned in the proof of Lemma 12. The dotted lines are non-realized
edges and by the edges lie the answers of the 2-sided noisy oracle.

Figure 1

Any algorithm on this graph will have to treat each edge-pair independently of the others,
because uncovering a realized edge in one pair does not give any information on the solution
to other pairs. Moreover, the optimal strategy for any algorithm is to query both edges in a
pair an equal number of times and then pick the one with the majority of positive responses.
Otherwise, picking the one with the least positive responses gives us smaller probability of
success.

Let us suppose that the algorithm performs k queries on a specific edge-pair. If more than
k/2 of them give false responses then the wrong edge will be picked as realized. Consequently,
the algorithm will have to perform more than k queries on this edge-pair to discover the
correct edge. We set k = Θ(log(n/ log n)) = Θ(log n) and call such a faulty edge-pair
a “bad” pair. Then, by the fact that false queries follow a binomial distribution, we get
Pr [bad] > pk/2 > log n/n. Thus the probability that at least one such “bad pair” exists is

Pr [bad exists] = 1−Pr [all good] ≥ 1−
(

1− log n

n

)n

≥ 1− 1
n

.

Assuming that there exists such a “bad pair” then the algorithm will have to perform Ω(log n)
queries on it. However, there is no way to know from the beginning which pair it will be.
This means that any algorithm in this case will have to pick an α-fraction of edge-pairs on
which to perform these many queries, for some (not necessarily constant) α. Define Qb to be
the event that the algorithm performs Ω(log n) queries on the “bad pair”. Then, Pr [Qb] = α

and the probability of failure for the algorithm when a bad pair exists is

Pr [fail|bad exists] = αPr [fail|Qb] + (1− α) ≥ (1− α)

Thus, the total probability of failure to discover a spanning tree will be

Pr [fail] ≥ Pr [fail|bad exists] Pr [bad exists] ≥ (1− α)
(

1− 1
n

)
If we want the failure probability to be constant then it must hold that α = 1 − o(1).

Consequently, we perform Ω(log n) queries on αn = Θ(n) edges, giving us an Ω(n log n)
lower bound for this graph instance. The desired lower bound comes from the fact that any
algorithm performing better than Ω(m log m) queries would perform better than Ω(n log n)
in this instance, as it has m = O(n). ◀

MFCS 2023
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5 One-sided error oracle: False Negatives

Moving on to the one-sided error regime, we first consider the case of False Negative errors
in the oracle. Our main contribution is an algorithm for the case of sparse and minor-closed
graph families. We also show how we can obtain an algorithm for general graphs, that still
performs well on ρ-sparse graphs, even when this property is unknown to us.

Finally, we show how to combine these results to obtain an algorithm for planar graphs
that uses O(m) queries to find a spanning tree, while no algorithm can do better (Corol-
lary 17). This also implies better guarantees for other special families of graphs, as shown in
Corollary 18.

▶ Theorem 13. In the 1-sided False Negative regime, given a moldgraph of m edges and n

nodes, there exists an algorithm that finds a realized spanning tree using O(m log n) queries
in expectation. If the moldgraph belongs to a ρ-sparse and minor-closed family, the algorithm
uses O(ρm) queries in expectation.

Proof of Theorem 13. To create such an algorithm, we can run in parallel both the Naive
Algorithm presented in the next subsection (Lemma 14) and Algorithm 3 for sparse minor-
closed graph families. In particular, it suffices to let the two algorithms perform their queries
alternately and independently of each other.

If the moldgraph belongs in a ρ-sparse and minor-closed family, then by Lemma 15,
Algorithm 3 will perform O(ρm) queries in expectation before finding a spanning tree. For
each one of these queries, we have just performed one extra query for the naive algorithm.
Thus, eventually the combined algorithm will find the spanning tree in the same query
complexity.

Otherwise, in general graphs, by using Lemma 14 for the Naive Algorithm and a similar
argument as before, we get O(m log n) queries in expectation. ◀

5.1 Warm-up: naive algorithm
We start by describing the naive algorithm used for general graphs, that obtains the O(m log n)
guarantee. The algorithm proceeds in rounds, where in each round it performs one query
on all m edges of the moldgraph. It repeats this process until n− 1 realized edges forming
a spanning tree are discovered. Note that in the case of FN queries we can be completely
certain when a realized edge is discovered. The proof is deferred to the full version.

▶ Lemma 14. The Naive Algorithm finds a spanning tree while performing O(m log n) queries
on expectation.

5.2 An Algorithm for ρ-sparse graphs
We present the algorithm used to obtain better guarantees for the family of ρ-sparse and
minor closed graphs. The algorithm is presented in Algorithm 3 and the guarantees in
Lemma 15.

▶ Lemma 15. Given a moldgraph of m edges, belonging to a ρ-sparse and minor-closed
family of graphs, Algorithm 3 performs O(ρm) queries in expectation and uncovers a realized
spanning tree with probability 1.

The basic primitive that our algorithm uses is a DISCOVER subroutine that cleverly orders
queries in a way that it allows it to explore multiple edge sets in parallel. The subroutine is
presented in more detail in Algorithm 2 and the Lemma that follows.



D. Fotakis, E. Gergatsouli, C. Pipis, M. Stouras, and C. Tzamos 47:9

Algorithm 2 DISCOVER(S): Discovers an edge in a collection S of edge sets.

Input: Set S = {E1, E2, . . . , Ek}
Output: Realized edge e

1: while no edge is found do
2: for i = 1 to k do
3: Let e be the next edge in the cyclic order of Ei

4: q ← Query edge e

5: if q is “Yes” then
6: return e

7: end if
8: end for
9: end while

Algorithm 3 SolveSparseFN(G): Solves the problem in sparse moldgraphs using an 1-sided error
oracle with False Negatives.

Input: Graph G

Output: A realized spanning tree

1: if G is a single node then
2: return ∅
3: end if
4: u = argmin{deg(v)}
5: e = DISCOVER(N(u)) // Let G′ be the resulting graph after contracting edge e.
6: return SolveSparseFN(G′) ∪ {e}

▶ Lemma 16. Let S be a collection of k sets of edges. Assume as well that there exists at
least one set in S containing some realized edge, then Algorithm 2 finds and returns such an
edge using at most 2k|Ef | queries in expectation, where Ef is the set containing the found
edge.

The proof is deferred to the full version. We are now ready to prove the main result of
the section, Lemma 15.

Proof of Lemma 15. We use induction on the number n of vertices of G to prove that
Algorithm 3 performs at most 4ρm queries in expectation. Throughout this proof we denote
by m the total number of simple edges of the graph, and by ms the number of super-edges.

The base case of induction for n = 1 holds trivially, as the algorithm needs no queries.
Now assume that it holds for all graphs of at most n− 1 vertices. We will prove that it also
holds for graphs of n vertices.

By using the sparsity property that ms ≤ ρn, we can see that there always exists at least
one vertex u with degree deg(u) ≤ 2ρ. Otherwise, the number of super-edges would be

ms = 1
2

∑
v∈V

deg(v) > ρn

which leads to the graph not being ρ-sparse, a contradiction.

MFCS 2023
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The algorithm uses Algorithm 2 as a basic subroutine, passing as input the neighborhood
N(u) of the least-degree vertex u. This is allowed because N(u) is a cut of the moldgraph
and thus satisfies the assumption of Lemma 16 that at least one edge-set contains a realized
edge.

The DISCOVER subroutine will find a realized edge inside a super-edge Ef , spending in
expectation at most 2 · deg(u)|Ef | ≤ 4ρ|Ef | queries.

After contracting the super-edge Ef that contains the realized edge found by the sub-
routine, the algorithm will continue on the contracted graph G′ that has n− 1 vertices. It is
important to note here that the graph G′ will still be ρ-sparse, because of our assumption
that graphs belong in a minor-closed family. By the induction hypothesis, the algorithm
will find a realized spanning tree of G′, by performing at most 4ρ (m − |Ef |) queries in
expectation. Therefore, the total number of queries performed will be at most

4ρ|Ef |+ 4ρ (m− |Ef |) = 4ρm

in expectation, and thus gives us the desired O(ρm) upper bound. ◀

▶ Corollary 17. If the moldgraph is planar, then Algorithm 3 performs O(m) queries in
expectation and succeeds in finding a realized spanning tree with probability 1. Moreover, this
is tight and no better algorithm exists for this case.

Proof of Corollary 17. The upper bound follows directly by Lemma 15 and the fact that
planar graphs are a minor-closed and 3-sparse family, as m ≤ 3n− 6.

To argue that the algorithm is tight, we remind that in all cases the realized spanning
subgraph is chosen arbitrarily, and even in an adversarial way. This means that any algorithm
aiming to find a realized spanning tree has to perform at least n− 1 queries, for the n− 1
realized edges of the spanning tree that it discovers. As planar graphs have m = Θ(n) the
desired lower bound follows. ◀

Apart from planar graphs, as we hinted when defining ρ-sparsity, an efficient algorithm
for ρ-sparse graphs immediately gives us efficient algorithms for minor-closed families of
graphs that are sparse with respect to other widely-used parameters. Based on [13, 8], we
can see that the parameters of treewidth and Hadwiger Number define minor-closed graph
families. Moreover, k-treewidth graphs have sparsity k, while graphs with Hadwiger number
k are O(k

√
log k)-sparse. Hence, applying Lemma 15 we get the following Corollary.

▶ Corollary 18. Algorithm 3 performs O(km) queries for graphs with treewidth k and
O(k
√

log km) queries for graphs with Hadwiger number k.

6 One-sided error oracle: False Positives

In the 1-sided, False-Positive error case, we initially present an O(m log m) algorithm for
general graphs, while dropping the complexity to linear when the realized graph is a tree.
Each of these guarantees are tight for their respective case. We also show how using one
algorithm, we can capture both cases, without actually knowing the structure of the realized
graph, and obtain the tight guarantees for each case. Our formal guarantees are formally
stated in Theorem 19.

▶ Theorem 19. In the 1-sided error FP regime, there exists an algorithm that performs
O(m log m) queries in the general case and finds a realized spanning tree with high probability.
Moreover, if the realized subgraph is a tree, the algorithm performs O(m) queries in expectation
and succeeds to find the spanning tree with high probability. These complexities are tight for
their respective cases.
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Proof of Theorem 19. Similarly to the case of False Negative oracle errors (Lemma 13) we
can combine the Naive Algortihm with Algorithm 4, letting them perform queries alternately.
When any of the two algorithms halts, the process ends.

Consider the case of general graphs. By Lemma 20 the naive algorithm succeeds in finding
a realized spanning tree with high probability by performing O(m log m) queries. Thus, the
combined algorithm also succeeds with at most O(m log m) queries.

Now, we look at the special case where the moldgraph is planar and the realized subgraph
is a tree. By Lemma 23, Algorithm 4 performs at most O(m) queries in expectation. Let X

be the random variable denoting the number of queries performed by Algorithm 4, and let
E = {X > m log2(m2)} be the event that X is more than the queries of the naive algorithm.
Using Markov’s inequality we get

Pr [E] ≤ E [X]
m log2(m2) ≤ O

(
1

log m

)
Thus, the number Q of queries performed before the combined algorithm terminates for this
case is

E [Q] = E [Q|¬E] Pr [¬E] + E [Q|E] Pr [E] ≤ E [X] + (m log2(m2))O
(

1
log m

)
≤ O(m)

When the algorithm has terminated, there still exists some probability of failure, in the
case that both event E happens and the naive algorithm fails to find a realized spanning tree.
By using the failure probability from Lemma 20 and the previously calculated probability of
event E happening, we get

Pr [E ∧ naive algo fails] = O

(
1

m log m

)
Thus, the combined algorithm succeeds in this case with high probability as well, and the

proof is concluded. ◀

6.1 Upper & Lower Bounds
We start by showing, similar to the previous section, how to obtain the upper bound in the
case of general graphs. The proof is deferred to the full version.

▶ Lemma 20. In the 1-sided error FP regime, there exists an algorithm that performs
O(m log m) queries in the general case and finds a realized spanning tree with high probability.

Furthermore, we show the lower bound for the general case graphs, stated formally below.
Observe that from the construction of this lower bound, no algorithm can do better in planar
or sparse graphs. The proof is deferred to the full version.

▶ Lemma 21. In the regime of 1-sided FP errors, there exists a realized graph with cycles,
for which any algorithm requires Ω(m log m) queries to discover a spanning tree with constant
failure probability.

6.2 Special Case: Acyclic Realized Graphs
In this section we focus on the special case where the realized subgraph is a tree.This
property implies that for each cycle in the moldgraph, at least one edge of the cycle must
be non-realized. Since our oracle only commits False Positive errors, the negative answers
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Algorithm 4 SolvePlanarFP(G): Discovers a realized spanning tree in planar moldgraphs using
an 1-sided error oracle with False Positives.

Input: Planar Graph G(V, E)
Output: A realized spanning tree

1: // Construct the dual graph of G

2: G′ ← dual(G)
3: // Inverse all the oracle answers and use SolveSparseFN
4: return E(G) \ SolveSparseFN(G′)

are definitive, meaning that we can completely remove the edges which have yielded such
answers. We design an algorithm (Algorithm 4) that utilizes this fact and progressively
removes non-realized edges until it is left with a tree which will also be the realized subgraph.
This result is stated formally in the theorem below.

▶ Theorem 22. In the regime of 1-sided FP errors, if the moldgraph G is a planar graph and
the realized subgraph is a tree, Algorithm 4 recovers the realized spanning tree with probability
1 while performing at most O(m) queries in expectation.

Our main observation is that the FP setting is very similar, and in fact can be reduced to,
the FN setting. In the FN setting, we know that at least one realized edge lies in every cut
of the moldgraph and we repeatedly query the edges of a cut in order to unveil the realized
edge. In a similar manner, in the FP setting, we can repeatedly query the edges of the cycle
in order to discover the non-realized edge in every cycle. Hence, the question that arises is:
how can one decide a sequence of cycles to query such that the expected number of queries is
minimized? Algorithm 4 does so by utilizing the planarity of the moldgraph to consistently
find small cycles to query.

Description of Algorithm 4

Our algorithm reduces the FP setting of this special case to solving an FN instance on the
dual graph of the moldgraph. The dual of a planar graph has one node for each face of
the planar graph, as illustrated in a Figure found in the full version. Two face nodes are
connected by an edge in the dual graph if and only if they share an edge in the planar
graph. With this transformation we can now focus on cuts of the dual graph which directly
correspond to cycles of the moldgraph. Notice that removing an edge in the moldgraph
(after identifying it as non-realized) is the same as contracting it in the dual graph. As a
result, removing all the non-realized edges until we are left with a tree in the moldgraph is
exactly equivalent to contracting the same edges in the dual until we are left with one node
(Lemma 23). For this reason, Algorithm 4 constructs the dual graph of the moldgraph and
calls Algorithm 3 to retrieve a non-realized spanning tree of the dual graph. Note that we
reverse all the oracle’s answers before we hand them out to Algorithm 3, since by design
it contracts the edges for which we get positive answers but in the FP setting we want to
contract the edges of the dual graph whose corresponding edges yielded negative answers.

We will now prove the correctness of Algorithm 4 and bound its query complexity.

▶ Lemma 23. Let G be a planar moldgraph, T be the realized tree of G and G′ be a dual
graph of G. The induced subgraph of G′ containing all the edges corresponding to non-realized
edges of G, is a spanning tree of G′.
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The proof of Lemma 23 is deferred to the full version.

Proof of Theorem 22. Algorithm 4 constructs the dual graph of G and uses Algorithm 3 to
find a spanning tree of G′ consisting of non-realized edges. From Lemma 23 we know that
by removing these edges, we are left with the realized tree T of G. All the queries performed
during this process are made through Algorithm 3. Therefore, from Lemma 15, the total
number of queries conducted is O(m). ◀
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1 Introduction

Automata over infinite alphabets provide a simple computational model for reasoning about
structures involving data such as nonces [21], URLs [3], or values in XML documents [25].
Consider, for instance, the (infinite) set A of admissible user IDs for a server. The sequence
of all user logins within a given time period then forms a finite word a1 · · · an ∈ A

⋆ over the
infinite alphabet A, and behaviour patterns may be modelled as data languages over A, e.g.

L0 = { a1 · · · an ∈ A
⋆ | ai ̸= an for all i < n } (“last user has not logged in before”),

L1 = { a1 · · · an ∈ A
⋆ | ai = aj for some i ̸= j } (“some user has logged in twice”).

Both L0 and L1 involve assertions about equality, or inequality, of data values (here, user
IDs). However, asserting inequality is sometimes considered problematic and thus undesired.
For example, since users may have multiple IDs, a logfile a1 . . . an ∈ L0 does not actually
guarantee that the last user has not logged in before. In contrast, if a1 . . . an ∈ L1, then it is
guaranteed that some user has indeed logged in twice. The structural difference between the
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Positive RA

MSO∼,+ ∩ NOFAFSUBA

Positive ∩ NOFA NOFRA

Super-finitary SetF-aut.

Thm. 3.2

Rem. 3.3 Thm. 4.4

Thm. 2.9

Thm. 7.7

Figure 1 Equivalent characterizations of positive NOFA-recognizable languages.

two languages is that L1 is closed under arbitrary renamings ρ : A → A (i.e. a1 · · · an ∈ L1
implies ρ(a1) · · · ρ(an) ∈ L1), taking into account possible identification of data values,
while L0 is only closed under injective (equivalently bijective) renamings. We refer to
languages with the former, stronger closure property as positive data languages. Intuitively,
such languages model properties of data words expressible by positive statements about
equality of data values. It is one of the goals of our paper to turn this into a theorem.

For that purpose, we build on the abstract account of data languages and their automata
based on the theory of nominal sets [13, 27], initiated by the work of Bojańczyk, Klin,
and Lasota [6]. Specifically, we investigate nondeterministic orbit-finite nominal automata
(NOFA), the nominal version of classical nondeterministic finite automata. We approach the
class of positive NOFA-recognizable data languages from several different perspectives, ranging
from concrete to more abstract and conceptual, and establish the equivalent characterizations
summarized in Figure 1. In more detail, our main contributions are as follows.

Register automata. NOFAs are known to be expressively equivalent to register automata
[17,19], i.e. finite automata that can memorize data values using a fixed number of registers
and test the input for (in)equality with previously stored values. Restricting transitions to
positive equality tests leads to positive register automata, which correspond to finite-state
unification-based automata (FSUBA) [18, 32] and are shown to capture precisely positive
NOFA-recognizable languages (Theorem 3.2 and Remark 3.3). On the way, we isolate a
remarkable property of this language class: while NOFAs generally require the ability to
guess data values during the computation to reach their full expressive strength, guessing
and non-guessing NOFA are equivalent for positive data languages (Theorem 2.17).

Monadic second-order logic. As illustrated above, positive data languages model (only)
positive assertions about the equality of data values. To substantiate this intuition, we
employ monadic second-order logic (MSO∼) over data words [4,9,25], an extension of classical
MSO with equality tests for data values, and consider its restriction MSO∼,+ to positive
equality tests. While this logic is more expressive than NOFA, we show that within the class
of NOFA-recognizable languages it models exactly the positive languages (Theorem 4.4).

Categorical perspective. The classical notion of nondeterministic finite automata can
be categorified by replacing the finite set of states with a finitely presentable object of
a category C . For example, NOFAs are precisely nondeterministic C -automata for C =
nominal sets. Apart from the latter category, several other toposes have been proposed
as abstract foundations for reasoning about names (data values), most prominently the
category of nominal renaming sets [12], the category SetI of presheaves over finite sets
and injective maps [31], and the category SetF of presheaves over finite sets and all maps
(equivalently, finitary set functors) [10]. It is thus natural to study nondeterministic automata
in the latter three categories, viz. nondeterministic orbit-finite renaming automata (NOFRA),
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nondeterministic super-finitary SetI-automata and nondeterministic super-finitary SetF-
automata. Our final contribution is a classification of their expressive power: we show that
SetI-automata are equivalent to NOFAs, while both NOFRAs and SetF-automata capture
positive NOFA-recognizable languages (Theorems 2.9 and 7.7). Hence, both nominal and
presheaf-based automata are able to recognize positive and all NOFA-recognizable languages,
respectively.

2 Nominal Automata and Positive Data Languages

For the remainder of the article, we fix a countably infinite set A of data values, a.k.a. names
or atoms. The goal is to study positive data languages, that is, languages of finite words
over A closed under arbitrary renamings. This is achieved via the framework of nominal
(renaming) sets [12,13,27].

2.1 Nominal Sets and Nominal Renaming Sets
A renaming is a finite map ρ : A → A, that is, ρ(a) = a for all but finitely many a ∈ A.
We let Fin(A) denote the monoid of renamings, with multiplication given by composition,
and Perm(A) its subgroup given by finite permutations, i.e. bijective renamings. For M ∈
{ Perm(A),Fin(A) } an M-set is a set X equipped with a monoid action M × X → X,
denoted (ρ, x) 7→ ρ · x. A subset S ⊆ A is a support of x ∈ X if for every ρ, σ ∈ M such
that ρ|S = σ|S one has ρ · x = σ · x. Informally, consider X as a set of syntactic objects
(e.g. words, trees, λ-terms) whose description may involve free names from S. A nominal
M-set is an M -set where every element x has a finite support. This implies that x has a
least finite support suppx ⊆ A. A name a ∈ A is fresh for x, denoted a# x, if a /∈ suppx.

Nominal Perm(A)-sets are called nominal sets, and nominal Fin(A)-sets are called nominal
renaming sets. A nominal renaming set X can be regarded as a nominal set by restricting
its Fin(A)-action to a Perm(A)-action. The least supports of an element x ∈ X w.r.t. both
actions coincide [11, Thm. 4.8], so the notation suppx is unambiguous.

A subset X of a nominal M -set Y is M-equivariant if ρ · x ∈ X for all x ∈ X and
ρ ∈ M . More generally, a map f : X → Y between nominal M -sets is M-equivariant if
f(ρ · x) = ρ · f(x) for all x ∈ X and ρ ∈ M . This implies supp f(x) ⊆ suppx for all x ∈ X.

We write X × Y for the cartesian product of nominal M -sets with componentwise action,
and

∐
i∈I Xi for the coproduct (disjoint union) with action inherited from the summands.

Given a nominal set X, the orbit of an element x ∈ X is the set {π · x : π ∈ Perm(A)}.
The orbits form a partition of X. A nominal set is orbit-finite if it has only finitely many
orbits. A nominal renaming set is orbit-finite if it is orbit-finite as a nominal set.

▶ Example 2.1. The set A with the Fin(A)-action ρ · a = ρ(a) is a nominal renaming set,
as is the set A⋆ of finite words over A with ρ · w = ρ⋆(w) = ρ(a1) · · · ρ(an) for w = a1 · · · an.
The least support of a1 · · · an ∈ A

⋆ is the set {a1, . . . , an}. The set A
⋆ has infinitely many

orbits; its equivariant subsets An (words of a fixed length n) are orbit-finite. For instance, A2

has the two orbits {aa : a ∈ A} and {ab : a ̸= b ∈ A}. An example of a nominal set that is
not a renaming set is A#n = { a1 . . . an : ai ̸= aj for i ̸= j } with pointwise Perm(A)-action.

A nominal set X is strong if, for every x ∈ X and π ∈ Perm(A), one has π · x = x if and
only if π fixes every element of supp(x). (The “if” statement holds in every nominal set.) For
instance, the nominal sets A#n, An and A

⋆ are strong. Up to isomorphism, (orbit-finite)
strong nominal sets are precisely (finite) coproducts

∐
i∈I A

#ni where ni ∈ N. For every
orbit-finite nominal set X, there exists a surjective Perm(A)-equivariant map e : Y ↠ X for
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some orbit-finite strong nominal set Y (see e.g. [23, Cor. B.27]). In fact, if o is the number
of orbits of X, one may take Y = J × A#n where J = {1, . . . , o} and n = maxx∈X |suppx|.
We refer the reader to [14, Sec. 4.1] and [6, Thm. 10.9] for more details on representing
orbit-finite nominal sets.

2.2 Nominal Automata and Nominal Renaming Automata
The object of interest in this paper is data languages L ⊆ A

⋆ closed under renamings:

▶ Definition 2.2.
1. A data language L ⊆ A

⋆ is positive if it is Fin(A)-equivariant.
2. The positive closure of L ⊆ A

⋆ is given by L = { ρ⋆(w) : w ∈ L, ρ ∈ Fin(A) }.

A natural automata model for data languages is given by nondeterministic orbit-finite
automata [6] over nominal sets and their restriction to nominal renaming sets:

▶ Definition 2.3. Let M ∈ { Perm(A),Fin(A) }.
1. A nondeterministic orbit-finite M -automaton A = (Q, δ, I, F ) consists of an orbit-finite

nominal M -set Q of states, an M -equivariant transition relation δ ⊆ Q × A × Q, and
M -equivariant subsets I, F ⊆ Q of initial and final states. Nominal orbit-finite M -
automata are called nondeterministic orbit-finite automata (NOFA) for M = Perm(A)
and nondeterministic orbit-finite renaming automata (NOFRA) for M = Fin(A).

2. Given a nominal orbit-finite M -automaton A, we write q a−−→ q′ if q′ ∈ δ(q, a). A run of
A on input w = a1 · · · an ∈ A

⋆ is a sequence (q0, a1, q1, a2, . . . , an, qn) such that q0 ∈ I

and qr
ar+1−−−−→ qr+1 for 0 ≤ r < n. The run is accepting if qn ∈ F . The automaton A

accepts the word w if A admits an accepting run on input w. The accepted language
L(A) ⊆ A

⋆ is the set of all accepted words. A data language is NOF(R)A-recognizable if
some NOF(R)A accepts it.

For example, the languages L0 and L1 from the Introduction are NOFA-recognizable.

▶ Remark 2.4.
1. The restriction to the input alphabet A is for simplicity: all our results extend to alphabets

Σ = Σ0 × A for a finite set Σ0, i.e. finite coproducts of copies of A.
2. Another use of nominal renaming sets in automata theory appears in the work by Moerman

and Rot [24] on deterministic nominal automata with outputs. The restrictions of their
model make it unsuitable for language recognition [24, Rem. 4.1] but allow for a succinct
representation of computed maps via separating automata.

To relate the expressive power of NOFA and NOFRA, we start with a simple observation:

▶ Proposition 2.5. Every NOFRA accepts a positive language.

The converse (Theorem 2.9) needs an automata-theoretic construction of the closure of a
language. To this end, we first turn the states of a NOFA into a sort of normal form.

▶ Remark 2.6 (cf. [6]). Every NOFA A = (Q, δ, I, F ) is equivalent to one whose nominal set
of states is of the form J × A#m for some finite set J and m ∈ N. Indeed, choose a nominal
set Q′ = J × A#m and an equivariant surjection e : Q′ ↠ Q (see Section 2.1), and consider
the NOFA A′ = (Q′, δ′, I ′, F ′) whose structure is given by the preimages

δ′ = (e× idA ×e)−1[δ], I ′ = e−1[I], F ′ = e−1[F ].
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It is not difficult to verify that L(A′) = L(A); see also Proposition 6.9. Note that in a
NOFA with states J × A#m, the equivariant sets of initial and final states are of the form
I = JI × A#m and F = JF × A#m for some JI , JF ⊆ J .

▶ Construction 2.7 (Positive Closure of a NOFA). Let A = (Q, δ, I, F ) be a NOFA with
states Q = J × A#m (cf. Remark 2.6). The NOFRA A = (Q, δ, I, F ) is given by the states
Q = J × Am, initial states I = JI × Am, final states F = JF × Am, and transitions

δ = { (j, ρ⋆p) ρa−−−→ (j′, ρ⋆p′) : (j, p) a−−→ (j′, p′) in A and ρ ∈ Fin(A) }.

▶ Proposition 2.8. The NOFRA A accepts the positive closure of the language of A.

The proof of L(A) ⊆ L(A) is slightly subtle since the transitions of a run in A may be induced
by different ρ’s; some bookkeeping and sensible choice of fresh names ensures compatibility.

Now we come to our first characterization of positive NOFA-recognizable languages:

▶ Theorem 2.9. A language is positive and NOFA-recognizable iff it is NOFRA-recognizable.

Indeed, the “if” direction holds due to Proposition 2.5 and because every NOFRA is a NOFA.
The “only if” direction follows from Proposition 2.8, using that L = L for positive L.

▶ Remark 2.10. A NOF(R)A is deterministic, and hence called a DOF(R)A, if it admits
a single initial state and its transition relation is a function δ : Q × A → Q. In contrast
to classical finite automata, DOFAs are less expressive that NOFAs [6]. We leave it as an
open problem whether Theorem 2.9 restricts to DOF(R)As. In this regard, observe that
Construction 2.7 produces a nondeterministic automaton A even if the given automaton A is
deterministic. Computing the positive closure of a DOFA-recognizable language necessarily
requires the introduction of nondeterminism, as illustrated by the following example due
to Bartek Klin (personal communication). Consider the language L consisting of all words
whose last letter appears immediately before the last occurrence of a repeated letter; that is,
words of the form vabbwa where (i) v, w ∈ A

⋆ and a, b ∈ A, (ii) any two consecutive letters
in w are distinct, (iii) the first letter of w is distinct from b and (iv) the last letter of w is
distinct from a. This language is recognizable by a DOFA, in fact by an orbit-finite nominal
monoid [4]. Its positive closure L consists of all words whose last letter appears immediately
before some occurrence of a repeated letter, which is not DOFA-recognizable.

2.3 Abstract Transitions and Runs
Sections 3 and 4 will relate positive NOFA-recognizable languages to register automata and
monadic second-order logic. This relies on a presentation of transitions of A in terms of
abstract transitions, given by equations involving register entries and input values.

▶ Definition 2.11. Let A = (Q, δ, I, F ) and A = (Q, δ, I, F ) be as in Construction 2.7.
1. An equation is an expression of the form k = •, • = k or k = k, where k, k ∈ {1, . . . ,m}.
2. An abstract transition is a triple (j, E, j′) where j, j′ ∈ J and E is a set of equations.
3. Every triple ((j, p), a, (j′, p′)) ∈ Q×A×Q induces an abstract transition (j, E, j′) defined

as follows for k, k ∈ {1, . . . ,m} (we write (−)i for the i-th letter of a word):

k = • ∈ E ⇐⇒ pk = a, • = k ∈ E ⇐⇒ a = p′
k, k = k ∈ E ⇐⇒ pk = p′

k
.

We let abs(δ) denote the set of abstract transitions induced by transitions in δ, and we
write j E−−→ j′ for (j, E, j′) ∈ abs(δ).
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4. A triple ((j, q), b, (j′, q′)) ∈ Q× A ×Q is consistent with the abstract transition (j, E, j′)
if for every k, k ∈ {1, . . . ,m} the following conditions hold:

k = • ∈ E =⇒ qk = b, • = k ∈ E =⇒ b = q′
k, k = k ∈ E =⇒ qk = q′

k
.

▶ Proposition 2.12. For every triple ((j, q), b, (j′, q′)) ∈ Q× A ×Q, we have

(j, q) b−−→ (j′, q′) in A iff ((j, q), b, (j′, q′)) is consistent with some (j, E, j′) ∈ abs(δ).

▶ Definition 2.13. An abstract run in A is a sequence (j0, E1, j1, E2, j2, . . . , En, jn) such
that j0 ∈ JI and jr−1

Er−−−→ jr for r = 1, . . . , n. It is accepting if jn ∈ JF .

▶ Notation 2.14. Given an abstract run (j0, E1, j1, E2, j2, . . . , En, jn), we inductively define
the predicates Eq(i)

k (i ∈ {1, . . . , n}, k ∈ {1, . . . ,m}) on the set {1, . . . , n}:
1. if • = k in Ei then Eq(i)

k (i);
2. if r < n and k = k in Er+1 and Eq(i)

k (r) then Eq(i)
k

(r + 1).
Informally, Eq(i)

k (r) asserts that 1 ≤ i ≤ r ≤ n and that in every run in A of length r whose
transitions are consistent with E1, . . . , Er, the i-th input letter equals the content of register
k after r steps. The accepted language may be characterized using these predicates:

▶ Proposition 2.15. The NOFRA A accepts the word b1 · · · bn ∈ A
⋆ iff there exists an

accepting abstract run of length n (with induced predicates Eq(i)
k ) such that for i, r ∈ {1, . . . , n},

r < n and k = • in Er+1 and Eq(i)
k (r) for some k =⇒ bi = br+1. (2.1)

As a first application of this result, we identify an important difference between NOFA and
NOFRA concerning the power of guessing data values during the computation:

▶ Definition 2.16. A NOFA/NOFRA is non-guessing if each initial state has empty support
and for each transition q

a−−→ q′ one has supp q′ ⊆ supp q ∪ {a}.

The NOFA-recognizable language L0 from the Introduction is not recognizable by any non-
guessing NOFA [17, Ex. 1]. Note that L0 is not positive; in fact, it is necessarily so, since for
positive languages guessing does not add to the expressive power of automata:

▶ Theorem 2.17. Every positive NOFA-recognizable language is accepted by some non-
guessing NOFRA, hence by some non-guessing NOFA.

To make a NOFRA non-guessing, one keeps track (via the state) of those registers containing
data values forced by abstract transitions. The other registers then may be modified
arbitrarily, which allows the elimination of guessing transitions.

3 Positive Register Automata

We now relate positive NOFA-recognizable languages to register automata, a.k.a. finite-
memory automata, originally introduced by Kaminski and Francez [17]; we follow the
equivalent presentation by Bojańczyk et al. [6]. A register automaton is a quintuple A =
(C,m, δ, I, F ) where C is a finite set of control states, m ∈ N is the number of registers
(numbered from 1 to m), I, F ⊆ C are sets of initial and final states, and δ ⊆ C×Bool(Φ)×C
is the set of transitions. Here, Bool(Φ) denotes the set of boolean formulas over the atoms
Φ = ( {1, . . . ,m} × {before} ∪ {•} ∪ {1, . . . ,m} × {after} )2. Elements of Φ are called
equations; we write x = y for (x, y) ∈ Φ. Moreover, we denote (c, φ, c′) ∈ δ by c φ−−→ c′. A
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configuration of A is a pair (c, r) of a state c ∈ C and a word r ∈ (A ∪ {⊥})m corresponding
to a partial assignment of data values to the registers. The initial configurations are (c,⊥m)
for c ∈ I. Given an input a ∈ A and configurations (c, r), (c′, r′) we write (c, r) a−−→ (c′, r′) if
this move is consistent with some transition c φ−−→ c′, that is, the formula φ is true under the
assignment making an atom x = y ∈ Φ true iff the corresponding data values are defined and
equal. For instance, (k, before) = • is true iff rk ̸= ⊥ and rk = a, and (k, before) = (k, after)
is true iff rk, r

′
k

̸= ⊥ and rk = r′
k
. A word w = a1 . . . an ∈ A

⋆ is accepted by A if it admits
an accepting run, viz. a sequence of moves (c0, r0) a1−−−→ (c1, r1) a2−−−→ · · · an−−−→ (cn, rn) where
(c0, r0) is initial and cn ∈ F . The accepted language L(A) ⊆ A

⋆ is the set of accepted words.
As shown by Bojańczyk et al. [6], register automata accept the same languages as NOFAs.

To capture positive languages, we restrict to register automata with positive transitions:

▶ Definition 3.1. A register automaton is positive if for each transition c φ−−→ c′ the formula φ
is positive: φ = true or φ uses the boolean operations ∨ and ∧ only.

▶ Theorem 3.2. A data language is positive and NOFA-recognizable iff it is accepted by
some positive register automaton.

Here, the approach is to regard a configuration of a positive register automaton as a state
of a NOFRA. Conversely, an abstract transition j

E−−→ j′ of a NOFA can be transformed
into a transition j φ−−→ j′ of a register automaton for the conjunction φ of all equations in E,
identifying k = •, • = k, k = k with (k, before) = •, • = (k, after), (k, before) = (k, after). A
tweak of the initial states accounts for the requirement that registers are initially empty.

▶ Remark 3.3. Just like register automata are equivalent to finite-memory automata,
positive register automata correspond to a restricted version of finite-memory automata
called finite-state unification-based automata (FSUBA) [18,32]. The original definition of the
latter involves a fixed initial register assignment, which enables acceptance of non-positive
languages. However, FSUBA with empty initial registers are equivalent to positive register
automata; see the full paper for details. This implies in particular that positive register
automata admit a decidable inclusion problem, in contrast to the case of unrestricted register
automata [25]. Indeed, FSUBA translate into a more general model called RNNA [29, Sec. 6],
for which inclusion is decidable. Tal [32] has given a direct decidability proof for FSUBA.

4 Monadic Second-Order Logic with Positive Equality Tests

As motivated in the Introduction, positive data languages are considered as expressing
properties of data words involving positive statements about equality of data values. In the
following we make this idea precise. For this purpose, we employ monadic second-order logic
with equality tests, abbreviated MSO∼ [4, 9, 25]. Its formulae are given by the grammar

φ,ψ := x < y | x ∼ y | X(x) | ¬φ | φ ∨ ψ | φ ∧ ψ | ∃x. φ | ∃X.φ | ∀x. φ | ∀X.φ,

where x, y range over first-order variables and X over monadic second-order variables. A
formula is interpreted over a fixed data word w = a1 . . . an ∈ A

⋆. First-order variables
represent positions, i.e. elements of the set {1, . . . , n}, and second-order variables represent
subsets of {1, . . . , n}. The atomic formula x < y means “position x comes before position y”,
and x ∼ y means “the same data value occurs at positions x and y”. The interpretation of the
remaining constructs is standard. A sentence is a formula without free variables. We write
L(φ) ⊆ A

⋆ for the set of data words satisfying the sentence φ. For example, the languages
L0 and L1 from the Introduction are defined by φ0 = ∀y. last(y) ⇒ (∀x. x < y ⇒ ¬(x ∼ y)),
where last(y) = ¬∃z. y < z and ψ ⇒ ξ = ¬ψ ∨ ξ, and by φ1 = ∃x. ∃y. x < y ∧ x ∼ y.
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Recall that by standard rules of negation, every formula is equivalent to one in negation
normal form (NNF), where for each subformula ¬φ the formula φ is atomic.

▶ Definition 4.1. An MSO∼ formula lies in MSO∼,+ (monadic second-order logic with
positive equality tests) if it admits an NNF containing no subformula of the form ¬(x ∼ y).
A data language is MSO∼,+-definable if it is of the form L(φ) for an MSO∼,+ sentence φ.

The above sentence φ1 lies in MSO∼,+ but φ0 does not. The following is immediate:

▶ Proposition 4.2. Every MSO∼,+-definable language is positive.

▶ Remark 4.3. The logic MSO∼ is more expressive than NOFAs [25], and the same holds for
MSO∼,+: the language defined by the MSO∼,+ sentence φ = ∀x. ∃y. (x < y ∨ y < x) ∧ x ∼ y

(“no data value occurs only once”) is not NOFA-recognizable. However, within the class of
NOFA-recognizable languages, positive and MSO∼,+-definable languages coincide:

▶ Theorem 4.4. A NOFA-recognizable language is positive iff it is MSO∼,+-definable.

Indeed, one can express the abstract acceptance condition of Proposition 2.15 in MSO∼,+.

5 Toposes for Names

In the remainder, we investigate positive data languages and their automata from a more
conceptual perspective. Some familiarity with basic category theory (functors, natural trans-
formations, (co-)limits, adjunctions) is required; see Mac Lane [22] for a gentle introduction.

Nominal sets and nominal renamings sets (Section 2.1) were initially introduced as a
convenient abstract framework for reasoning about names, and related issues such as freshness,
binding, and substitution. An alternative, and more general, approach uses the presheaf
categories SetI [31] and SetF [10]. The intuition behind each of these categories C is very
similar: one thinks of X ∈ C as a collection of finitely supported objects, equipped with a
renaming operation that extends renamings ρ : A → A to the level of elements of X. The
difference between the four categories lies in whether elements admit a least support, or just
some finite support, and in whether renamings ρ are injective or arbitrary maps; see Figure 2.
The last column classifies the respective finitely presentable objects, which underly automata.
We now recall the latter concept and describe the categories in more detail.

Finitely presentable objects. A diagram D : I → C in a category C is directed if its
scheme I is a directed poset: every finite subset of I has an upper bound. A directed colimit
is a colimit of a directed diagram. An object X of C is finitely presentable if its hom-functor
C (X,−) : C → Set to the category of sets and functions preserves directed colimits. In many
categories, finitely presentable objects correspond to the objects with a finite description.
For example, the finitely presentable objects of Set are precisely finite sets, and if C is a
variety of algebras (e.g. monoids, groups, rings), an algebra is a finitely presentable object of
C iff it is presentable by finitely many generators and relations [2, Thm. 3.12].

Nominal (renaming) sets. We let Nom denote the category of nominal sets and Perm(A)-
equivariant maps, and RnNom the category of nominal renaming sets and Fin(A)-equivariant
maps. Both categories are toposes, that is, they are finitely complete (with limits formed
as in Set), cartesian closed, and admit a subobject classifier. Note that Nom is a boolean
topos (its subobject classifier is 2 = {0, 1} with the trivial group action), which is not true for
RnNom [12, Sec. 5]. The next proposition provides a categorical description of orbit-finite
nominal (renaming) sets; for nominal sets this result is well-known, see [26, Prop. 2.3.7]
or [27, Thm. 5.16], and the statement for nominal renaming sets may be deduced from it.
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Category Objects Least supp. Renamings Finitely pres. objects
Nom nominal sets yes injective orbit-finite sets
RnNom nominal renaming sets yes arbitrary orbit-finite sets
SetI presheaves over I no injective super-finitary presheaves
SetF presheaves over F no arbitrary super-finitary presheaves

Figure 2 Toposes that model sets of finitely supported objects.

▶ Proposition 5.1. A nominal (renaming) set is orbit-finite iff it is a finitely presentable
object of Nom or RnNom, respectively.

The forgetful functor U : RnNom → Nom given by restricting the Fin(A)- to a Perm(A)-
action has a left adjoint F : Nom → RnNom [24, Thm. 2.6]. We refer to op. cit. for its
explicit description, but remark that F (A#n) = An for every n ∈ N [24, Thm. 3.7].

Presheaves. A (covariant) presheaf over a small category C is a functor P : C → Set.
We write SetC for the category of presheaves and natural transformations. We specifically
consider presheaves over F and I, the categories whose objects are finite subsets S ⊆f A and
whose morphisms ρ : S → T are functions or injective functions, respectively. The categories
Nom and RnNom form full reflective subcategories of SetI and SetF via embeddings

I⋆ : Nom ↣ SetI and J⋆ : RnNom ↣ SetF.

Here, I⋆ is given for X ∈ Nom, S ⊆f A, ρ : S → T in I and f : X → Y in Nom by

(I⋆X)S = {x ∈ X : suppx ⊆ S }, (I⋆X)ρ(x) = ρ · x, (I⋆f)S(x) = f(x),

where ρ ∈ Perm(A) is any permutation extending the injective map ρ. The embedding J⋆ is
defined analogously. In both cases, the essential image of the embedding consists precisely of
the presheaves preserving pullbacks of injective maps, see [27, Thm. 6.8] and [12, Thm. 38].
Informally, a presheaf P ∈ SetC , where C ∈ {I,F}, specifies a set PS of S-supported objects
for every S ⊆f A, and the pullback preservation property asserts precisely that every object
admits a least support. A presheaf P ∈ SetC is super-finitary if there exists S ⊆f A such
that (i) PS′ is a finite set for all S′ ⊆ S, and (ii) for every T ⊆f A and x ∈ PT , there exists
S′ ⊆ S and ρ ∈ C (S′, T ) such that x ∈ Pρ[PS′]. (This implies that PT is finite.) Such an S
is called a generating set for P . The next proposition shows that super-finitary presheaves
are the analogue of orbit-finite sets; see [1, Cor. 3.34] for the case C = F:

▶ Proposition 5.2. For C ∈ {I,F} and P ∈ SetC , the following are equivalent: (i) P is super-
finitary; (ii) P is finitely presentable; (iii) there exists an epimorphism (a componentwise
surjective natural transformation)

∐
i∈I C (Si,−) ↠ P with I finite and Si ⊆f A. Moreover,

super-finitary presheaves are closed under sub-presheaves and finite products.

To relate the two presheaf categories SetI and SetF, recall that every functor E : C → D

between small categories induces an adjunction (5.1), where the right adjoint E⋆ is given
by E⋆(P ) = P ◦ E, and the left adjoint sends a presheaf P ∈ SetC to its left Kan extension
LanEP . For the inclusion functor E : I ↪→ F, we obtain the commutative diagram (5.2) of
adjunctions. Here, I⋆ and J⋆ are the reflectors, i.e. the left adjoints of I⋆ and J⋆.

SetC SetD⊤
LanE

E⋆

(5.1)
SetI SetF

Nom RnNom

⊤
LanE

I⋆⊢

E⋆

J⋆I⋆

F

U

⊥

⊣ J⋆
(5.2)
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▶ Proposition 5.3. All functors in (5.2) preserve finitely presentable objects.

Hence, the adjunctions (5.2) restrict to the full subcategories of finitely presentable objects.

6 Nondeterministic Automata in a Category

Our aim is to investigate nondeterministic automata and their languages in the toposes of
Figure 2, and to compare their expressive power. To this end, we first introduce the required
automata-theoretic concepts uniformly at the level of abstract categories.

▶ Assumptions 6.1. Fix a category C with finite limits and (strong epi, mono)-factorizations.
We assume that strong epimorphisms are stable under finite products (that is, e × e′ is a
strong epimorphism whenever e and e′ are) and pullbacks (that is, in every pullback square
e ◦ f = f ◦ e, the morphism e is a strong epimorphism whenever e is).

The (strong epi, mono)-factorization f = (A I Be m ) of a morphism f : A → B

in C is its image factorization, and the subobject represented by m is the image of f .

▶ Example 6.2. Every topos satisfies Assumptions 6.1, including Set, Nom, RnNom, SetI

and SetF. Note that in a topos all epimorphisms are strong. In the five categories above,
epi- and monomorphisms are the (componentwise) surjective and injective morphisms, resp.
Pullbacks and finite products are formed (componentwise) at the level of underlying sets.

▶ Definition 6.3. A language over Σ ∈ C is a family of subobjects of Σn for each n ∈ N:

L = (m(L)
n : L(n) ↣ Σn )n∈N.

We write L ≤ L′ iff L(n) ≤ L′(n) for all n, using the partial order ≤ on subobjects of Σn.

▶ Remark 6.4. If C is countably extensive (e.g. a topos with countable coproducts), languages
correspond bijectively to subobjects of Σ⋆ =

∐
n∈N Σn. Indeed, every language L yields the

subobject
∐

n m
(L)
n :

∐
n L

(n) ↣ Σ⋆, and conversely every subobject of Σ⋆ is of this form. In
particular, this holds in the categories of Example 6.2.

▶ Definition 6.5. A nondeterministic C -automaton is a quintuple A = (Q,Σ, δ, I, F ) con-
sisting of an object Q ∈ C of states, an input alphabet Σ ∈ C , and subobjects

mδ : δ ↣ Q× Σ ×Q, mI : I ↣ Q, mF : F ↣ Q,

representing transitions, initial states, and final states, respectively. A morphism h : A′ → A

of nondeterministic C -automata is given by a pair of morphisms hs : Q′ → Q and ha : Σ′ → Σ
of C that restrict as shown below (note that ht, hi and hf are uniquely determined):

δ′ δ

Q′ × Σ′ ×Q′ Q× Σ ×Q

ht

mδ′ mδ

hs×ha×hs

I ′ I

Q′ Q

hi

mI′ mI

hs

F ′ F

Q′ Q

hf

mF ′ mF

hs

(6.1)

We write NAut(C ) for the category of nondeterministic automata in C and their morphisms,
and NAutfp(C ) for its full subcategory given by nondeterministic fp-automata, viz. automata
where Q, Σ, δ, I, F are finitely presentable objects of C .

▶ Definition 6.6. For every nondeterministic C -automaton A = (Q,Σ, δ, I, F ), its accepted
language is the language L(A) over Σ given as follows:
1. m(0)

L(A) : L(0)(A) ↣ 1 = Σ0 is the image of the unique morphism I ∩ F
!−→ 1, where 1 is

the terminal object of C and I ∩ F is the intersection (pullback) of mI and mF .
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2. For n > 0, the subobject m(n)
L(A) : L(n)(A) ↣ Σn is defined via the commutative diagram

L(n)(A) AccRun(n)
A δn

Σn I × (Σ ×Q)n−1 × Σ × F (Q× Σ ×Q)n

m
(n)
L(A)

en,A dn,A

m
(n)
δ

mn
δ

pn,A dn,A

Here, letting ∆: Q↣ Q×Q denote the diagonal, dn,A is the monomorphism

I×(Σ×Q)n−1×Σ×F mI ×(id ×∆)n−1×id ×mF−−−−−−−−−−−−−−−−−→ Q×(Σ×Q×Q)n−1×Σ×Q ∼= (Q×Σ×Q)n,

the morphisms dn,A and m
(n)
δ form the pullback of dn,A and mn

δ , the morphism pn,A is
the projection, and en,A and m

(n)
L(A) form the image factorization of pn,A ◦m(n)

δ .

▶ Example 6.7.
1. A nondeterministic fp-automaton in Set is a classical nondeterministic finite automaton.

The pullback AccRun(n)
A is the set of accepting runs of length n, hence L(A) is the usual

accepted language: the set of words with an accepting run.
2. A nondeterministic fp-automaton in Nom or RnNom with alphabet Σ = A is a NOFA

or NOFRA, respectively. The two notions of accepted language in Definition 2.3 and
Definition 6.6 match, that is, L(A) is the set of words with an accepting run.

3. In the next section, we will also look into nondeterministic SetI- and SetF-automata.

▶ Remark 6.8. Readers familiar with coalgebras [28] may note that if C is a topos, the
final states and transitions of a nondeterministic C -automaton correspond to a coalgebra
γ : Q → Ω × (PQ)Σ where Ω is the subobject classifier and P : C → C is the covariant power
object functor [16, Sec. A.2.3]. We expect our above definition of accepted language to match
the one given by coalgebraic trace semantics [15, 30], with the required arguments relying on
the internal logic of the topos C . Details are left for future work; we have found that the
present relational approach to automata leads to shorter and more direct proofs.

▶ Proposition 6.9. Let h : A′ → A be an NAut(C )-morphism where Σ′ = Σ and ha = idΣ.
1. The accepted language of A′ is contained in that of A, that is, L(A′) ≤ L(A).
2. If hs is strongly epic in C and the squares (6.1) are pullbacks, then L(A′) = L(A).

Hence, the construction A 7→ A′ of Remark 2.6 indeed yields an equivalent NOFA.

▶ Proposition 6.10. Let C and D be categories satisfying the Assumptions 6.1.
1. Every functor G : C → D lifts to a functor G : NAut(C ) → NAut(D) defined by

G(Q,Σ, δ, I, F ) = (GQ,GΣ, Gδ,GI,GF ) and Gf = Gf.

Here, Gδ, GI, GF are the images of the morphisms shown below, with can denoting the
canonical morphism induced by the product projections:

Gδ
Gmδ−−−−→ G(Q×Σ×Q) can−−−→ GQ×GΣ×GQ, GI

GmI−−−−→ GQ, GF
GmF−−−−−→ GQ.

2. Every adjunction L ⊣ R : C → D lifts to an adjunction L ⊣ R : NAut(C ) → NAut(D).
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In particular, the adjunctions (5.2) lift to adjunctions between the respective categories
of nondeterministic automata, which in turn restrict to fp-automata by Proposition 5.3:

NAutfp(SetI) NAutfp(SetF)

NAutfp(Nom) NAutfp(RnNom)

⊤
LanE

I
⋆⊢

E
⋆

J
⋆

I⋆

F

U

⊥

⊣ J⋆
(6.2)

The positive closure A 7→ A of Construction 2.7, which is key to our results in Sections 2
through 4, is an instance of the proposition since A = FA for the left adjoint F : Nom →
RnNom.

7 Nondeterministic Presheaf Automata

We proceed to relate the expressive power of the four automata models in (6.2). Specifically,
for C ∈ {I,F} we consider nondeterministic SetC -automata A = (Q,Σ, δ, I, F ) with a super-
finitary (= finitely presentable) presheaf Q of states and input alphabet Σ = VC ∈ SetC ,
for the inclusion functor VC (S) = S. (This implies that δ, I and F are super-finitary
by Proposition 5.2.) Note that VC corresponds to the input alphabet A used for NOF(R)As:

VI = I⋆(A) and VF = J⋆(A) = LanE(VI).

A language in SetC is a sub-presheaf L ⊆ V ⋆
C , or equivalently a family of sub-presheaves

L(n) ⊆ V n
C for n ∈ N (Definition 6.3 and Remark 6.4). Here, V ⋆

C (S) = S⋆, the set of words
over the finite alphabet S ⊆f A, and V n

C (S) = Sn, the subset of words of length n.

▶ Remark 7.1. For the sake of distinction, we refer to languages in SetC as presheaf
languages, and to subsets of A⋆ as word languages. Both concepts are closely related: Every
presheaf language L ⊆ V ⋆

I in SetI induces a Perm(A)-equivariant word language W(L) ⊆ A
⋆

given by W(L) =
⋃

S⊆fA
L(S), and, conversely, every Perm(A)-equivariant word language

K ⊆ A
⋆ induces a presheaf language P(K) ⊆ V ⋆

I given by [P(K)]S = K ∩ S⋆ for S ⊆f A.
Analogously for presheaf languages in SetF and Fin(A)-equivariant word languages. In both
cases, these translations almost yield a bijective correspondence: one has K = W(P(K)), but
generally only L ⊆ P(W(L)). For instance, for L ⊆ V ⋆

F given by L(∅) = ∅ and L(S) = {ε}
for S ̸= ∅ one has [P(W(L))]∅ = {ε}, so L ⊊ P(W(L)). The equality L = P(W(L)) holds iff
L is downwards closed, that is, L(S′) = L(S) ∩ (S′)⋆ for all S′ ⊆ S ⊆f A.

The presheaf version of positive word languages and positive closures is as follows:

▶ Definition 7.2. Let L ⊆ V ⋆
I be a presheaf language in SetI.

1. The language L is positive if L = KE for some (unique) language K ⊆ V ⋆
F in SetF.

2. A positive closure of L is a language L in SetF such that L ⊆ LE and L is minimal with
that property, that is, L ⊆ K for every language K ⊆ V ⋆

F in SetF such that L ⊆ KE.

A positive closure is clearly unique; its existence is ensured by the next proposition, which
is proved using the universal property of left Kan extensions.

▶ Proposition 7.3. The positive closure of L ⊆ V ∗
I is given by the image of the morphism

φ : LanE(L) LanE(ι)−−−−−−→ LanE(V ∗
I ) ∼=

∐
k

LanE(V k
I )

∐
k

cank

−−−−−−−→
∐

k

LanE(VI)k =
∐

k

V k
F = V ∗

F

where ι : L ↪→ V ∗
I is the inclusion, the isomorphism witnesses preservation of coproducts by

the left adjoint LanE, and cank is the canonical map induced by the product projections.
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▶ Remark 7.4. A presheaf P ∈ SetI is strong if P = I⋆(X) for a strong nominal set X.
Since I⋆ preserves coproducts, (super-finitary) strong presheaves are exactly (finite) cop-
roducts

∐
j∈J I(Sj ,−) of representable presheaves. By Proposition 5.2 and Proposition 6.9,

every super-finitary SetI-automaton is equivalent to one whose presheaf of states is strong.
Given such an automaton A with states Q =

∐
j∈J I(Sj ,−), applying the lifted left adjoint

LanE yields a super-finitary SetF-automaton A with states LanE(Q) =
∐

j∈J F(Sj ,−), using
that LanE preserves coproducts and representables (see e.g. [22, Ex. X.3.2]). This is the
analogue of Construction 2.7 for presheaf automata. Similar to Proposition 2.8, we have

▶ Proposition 7.5. For every super-finitary nondeterministic SetI-automaton A with a
strong presheaf of states, the SetF-automaton A = LanE(A) accepts the language L(A).

While by definition nondeterministic presheaf automata accept presheaf languages, using
Remark 7.1 we can also naturally associate a word language semantics to them:

▶ Definition 7.6.
1. The word language accepted by a nondeterministic SetC -automaton A is W(L(A)) ⊆ A

⋆,
the word language induced by the presheaf language of A.

2. A word language L ⊆ A
⋆ is SetC -recognizable if there exists a super-finitary nondetermi-

nistic SetC -automaton accepting it.

This enables a classification of the expressive power of nondeterministic SetC -automata:

▶ Theorem 7.7.
1. A word language is NOFA-recognizable iff it is SetI-recognizable.
2. A word language is positive and NOFA-recognizable iff it is SetF-recognizable.

For item 1 one shows that the functors I⋆ and I
⋆ of (6.2) preserve the accepted word

languages of automata. For item 2 one uses Proposition 7.5 and the observation that every
nondeterministic SetF-automaton accepts a positive word language.

This shows that the theory of data languages can be based on presheaves rather than
nominal sets [6]. In particular, the conceptual difference between the two approaches (viz. ex-
istence of least supports) is largely inessential from the perspective of automata theory.

8 Conclusions and Future Work

We have characterized positive data languages recognizable by NOFAs in terms of register
automata, logic, and category theory; see Figure 1 for a summary of our contributions.
Our results underline the phenomenon that weak classes of data languages tend to have a
rich theory and admit many equivalent perspectives, paralleling classical regular languages
over finite alphabets. For example, a similar observation has been made for data languages
recognizable by orbit-finite nominal monoids [4, 8, 9].

The logic MSO∼,+ defines positive data languages, but is more expressive than NOFAs.
Identifying a suitable syntactic fragment of MSO∼,+ that captures precisely the positive
NOFA-recognizable languages remains an open problem. The same holds for the decidability
of the satisfiability problem for MSO∼,+, which is known to be undecidable for MSO∼ [20].
On a related note, it might be interesting to characterize the expressive power of full MSO∼,+.
Specifically, does it capture precisely the MSO∼-definable positive languages?

Finally, besides register automata, a number of further automata models for data languages
have been proposed, most notably pebble automata [25] and data automata [5,7]. In general,
these models differ in their expressive power. However, it is conceivable that some or all of
them may become equivalent when restricted to positive data languages.

MFCS 2023



48:14 Positive Data Languages

References
1 Jiří Adámek, Stefan Milius, Lurdes Sousa, and Thorsten Wißmann. On finitary functors.

Theory Appl. Categ., 34(37):1134–1164, 2019.
2 Jiří Adámek and Jiří Rosický. Locally Presentable and Accessible Categories. London Mathem-

atical Society Lecture Note Series. Cambridge University Press, 1994.
3 Michał Bielecki, Jan Hidders, Jan Paredaens, Jerzy Tyszkiewicz, and Jan Van den Bussche.

Navigating with a browser. In Proc. 29th International Colloquium on Automata, Languages
and Programming (ICALP 2002), volume 2380 of Lect. Notes Comput. Sci., pages 764–775.
Springer, 2002.

4 Mikołaj Bojańczyk. Nominal monoids. Theory Comput. Syst., 53(2):194–222, 2013. doi:
10.1007/s00224-013-9464-1.

5 Mikołaj Bojańczyk, Claire David, Anca Muscholl, Thomas Schwentick, and Luc Segoufin.
Two-variable logic on data trees and XML reasoning. In Proc. 25th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems (PODS 2006), pages 10–19. ACM,
2006.

6 Mikołaj Bojańczyk, Bartek Klin, and Sławomir Lasota. Automata theory in nominal sets. Log.
Methods Comput. Sci., 10(3), 2014. doi:10.2168/LMCS-10(3:4)2014.

7 Mikołaj Bojańczyk, Anca Muscholl, Thomas Schwentick, Luc Segoufin, and Claire David.
Two-variable logic on words with data. In Proc. 21th IEEE Symposium on Logic in Computer
Science (LICS 2006), pages 7–16. IEEE Computer Society, 2006.

8 Mikołaj Bojańczyk and Rafał Stefański. Single-use automata and transducers for infinite
alphabets. In Proc. 47th International Colloquium on Automata, Languages, and Programming
(ICALP 2020), volume 168 of LIPIcs, pages 113:1–113:14. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2020. doi:10.4230/LIPIcs.ICALP.2020.113.

9 Thomas Colcombet, Clemens Ley, and Gabriele Puppis. Logics with rigidly guarded data
tests. Log. Methods Comput. Sci., 11(3), 2015.

10 Marcelo P. Fiore, Gordon D. Plotkin, and Daniele Turi. Abstract syntax and variable binding.
In Proc. 14th Annual IEEE Symposium on Logic in Computer Science (LICS 1999), pages
193–202. IEEE Computer Society, 1999.

11 Murdoch J. Gabbay. Nominal renaming sets (technical report), 2007. URL: http://gabbay.
org.uk/papers/nomrs-tr.pdf.

12 Murdoch J. Gabbay and Martin Hofmann. Nominal renaming sets. In Proc. 15th International
Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2008),
pages 158–173. Springer, 2008.

13 Murdoch J. Gabbay and Andrew M. Pitts. A new approach to abstract syntax involving
binders. In Proc. 14th Annual IEEE Symposium on Logic in Computer Science (LICS 1999),
pages 214–224. IEEE Computer Society, 1999.

14 Fabio Gadducci, Marino Miculan, and Ugo Montanari. About permutation algebras,
(pre)sheaves and named sets. High. Order Symb. Comput., 19(2-3):283–304, 2006.

15 Ichiro Hasuo, Bart Jacobs, and Ana Sokolova. Generic trace semantics via coinduction.
Log. Methods Comput. Sci., 3(4:11):1–36, 2007.

16 Peter T. Johnstone. Sketches of an Elephant: A Topos Theory Compendium. Oxford Logic
Guides. Oxford Univ. Press, 2002.

17 Michael Kaminski and Nissim Francez. Finite-memory automata. Theor. Comput. Sci.,
134(2):329–363, 1994. doi:10.1016/0304-3975(94)90242-9.

18 Michael Kaminski and Tony Tan. Regular expressions for languages over infinite alphabets.
Fundam. Informaticae, 69(3):301–318, 2006.

19 Michael Kaminski and Daniel Zeitlin. Finite-memory automata with non-deterministic reas-
signment. Int. J. Found. Comput. Sci., 21(5):741–760, 2010.

20 Bartek Klin, Sławomir Lasota, and Szymon Torunczyk. Nondeterministic and co-
nondeterministic implies deterministic, for data languages. In Proc. 24th International
Conference on Foundations of Software Science and Computation Structures (FOSSACS
2021), volume 12650 of Lect. Notes Comput. Sci., pages 365–384. Springer, 2021.

https://doi.org/10.1007/s00224-013-9464-1
https://doi.org/10.1007/s00224-013-9464-1
https://doi.org/10.2168/LMCS-10(3:4)2014
https://doi.org/10.4230/LIPIcs.ICALP.2020.113
http://gabbay.org.uk/papers/nomrs-tr.pdf
http://gabbay.org.uk/papers/nomrs-tr.pdf
https://doi.org/10.1016/0304-3975(94)90242-9


F. Frank, S. Milius, and H. Urbat 48:15

21 Klaas Kürtz, Ralf Küsters, and Thomas Wilke. Selecting theories and nonce generation for
recursive protocols. In Proc. 2007 ACM Workshop on Formal Methods in Security Engineering
(FMSE 2007), pages 61–70. ACM, 2007.

22 Saunders Mac Lane. Categories for the Working Mathematician. Springer, 1971.
23 Stefan Milius and Henning Urbat. Equational axiomatization of algebras with structure. In

Proc. 22nd International Conference on Foundations of Software Science and Computation
Structures (FOSSACS 2019), volume 11425 of Lect. Notes Comput. Sci., pages 400–417.
Springer, 2019. doi:10.1007/978-3-030-17127-8_23.

24 Joshua Moerman and Jurriaan Rot. Separation and Renaming in Nominal Sets. In Proc. 28th
EACSL Annual Conference on Computer Science Logic (CSL 2020), volume 152 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 31:1–31:17. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2020.

25 Frank Neven, Thomas Schwentick, and Victor Vianu. Finite state machines for strings over
infinite alphabets. ACM Trans. Comput. Logic, 5(3):403–435, 2004.

26 Daniela Petrişan. Investigations into Algebra and Topology over Nominal Sets. PhD thesis,
University of Leicester, 2012.

27 Andrew M. Pitts. Nominal Sets: Names and Symmetry in Computer Science, volume 57 of
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 2013.

28 Jan J. M. M. Rutten. Universal coalgebra: A theory of systems. Theor. Comput. Sci.,
249(1):3–80, 2000.

29 Lutz Schröder, Dexter Kozen, Stefan Milius, and Thorsten Wißmann. Nominal automata with
name binding. In Proc. 20th International Conference on Foundations of Software Science
and Computation Structures, (FOSSACS 2017), volume 10203 of Lect. Notes Comput. Sci.,
pages 124–142, 2017.

30 Alexandra Silva, Filippo Bonchi, Marcello M. Bonsangue, and Jan J. M. M. Rutten. Gen-
eralizing determinization from automata to coalgebras. Log. Methods Comput. Sci., 9(1:9),
2013.

31 Ian Stark. Categorical models for local names. LISP Symb. Comput., 9(1):77–107, 1996.
32 A. Tal. Decidability of inclusion for unification based automata. Master’s thesis, Department

of Computer Science, Technion – Israel Institute of Technology, 1999.

MFCS 2023

https://doi.org/10.1007/978-3-030-17127-8_23




Parameterized Analysis of the Cops and Robber
Game
Harmender Gahlawat # Ñ

Ben-Gurion University of the Negev, Beersheba, Israel

Meirav Zehavi # Ñ

Ben-Gurion University of the Negev, Beersheba, Israel

Abstract
Pursuit-evasion games have been intensively studied for several decades due to their numerous
applications in artificial intelligence, robot motion planning, database theory, distributed computing,
and algorithmic theory. Cops and Robber (CnR) is one of the most well-known pursuit-evasion
games played on graphs, where multiple cops pursue a single robber. The aim is to compute the cop
number of a graph, k, which is the minimum number of cops that ensures the capture of the robber.

From the viewpoint of parameterized complexity, CnR is W[2]-hard parameterized by k [Fomin et
al., TCS, 2010]. Thus, we study structural parameters of the input graph. We begin with the vertex
cover number (vcn). First, we establish that k ≤ vcn

3 + 1. Second, we prove that CnR parameterized
by vcn is FPT by designing an exponential kernel. We complement this result by showing that
it is unlikely for CnR parameterized by vcn to admit a polynomial compression. We extend our
exponential kernels to the parameters cluster vertex deletion number and deletion to stars number,
and design a linear vertex kernel for neighborhood diversity. Additionally, we extend all of our results
to several well-studied variations of CnR.
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1 Introduction

In pursuit-evasion, a set of agents, called pursuers, plan to catch one or multiple evaders.
Classically, pursuit-evasion games were played on geometric setups, where pursuers and
evaders move on the plane [35, 49]. Parsons [48] formulated pursuit-evasion on graphs to model
the search for a person trapped in caves, giving rise to the field of graph searching. Since then,
pursuit-evasion has been studied extensively, having applications in artificial intelligence [36],
robot motion planning [16, 40], constraint satisfaction and database theory [31, 32, 33],
distributed computing [4, 18] and network decontamination [45], and significant implications
in graph theory and algorithms [1, 25, 30, 54].

Cops and Robber (CnR) is one of the most intensively studied pursuit-evasion games
on graphs, where a set of cops pursue a single robber. Players move in discrete time steps
alternately, starting with the cops. In each move, a player can move to an adjacent vertex,
and the cops win by capturing the robber (i.e., if a cop and the robber occupy the same
vertex). The goal is to compute the cop number of a graph G, denoted c(G), which is the
minimum number of cops required to win in G. We define the game formally in Section 2.
CnR is well studied in the artificial intelligence literature under the name Moving Target
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Pursuit (MTP) [37], where we consider sub-optimal but faster strategies from an applicative
point of view. The results have found numerous applications in game design, police chasing,
path planning, and robot motion planning [5, 44, 56].

Determining the parameterized complexity of games is a well-studied research topic [10,
11, 52]. Most pursuit-evasion games are AW[*]-hard [53]. In particular, CnR is W[2]-
hard parameterized by c(G) [27]. Thus, we consider structural parameterizations, focusing
on kernelization, polynomial-time preprocessing with a parametric guarantee. Due to its
profound impact, kernelization was termed “the lost continent of polynomial time” [26]. We
begin with the most studied structural parameter: the vertex cover number (vcn) of the
input graph. We bound c(G) in terms of vcn, as well as achieve both positive and negative
results concerning the kernelization complexity of CnR parameterized by vcn. We generalize
our kernelization results to the smaller parameters cluster vertex deletion number (cvd)
and deletion to stars number (dts), as well as to the parameter neighborhood diversity (nd).
Furthermore, we extend all our results to several well-studied variants of CnR.

The choice of vcn to study pursuit-evasion games is natural due to various scenarios where
vcn is significantly smaller than the graph size. For example, this includes scenarios where
we model the existence of one or few (possibly interconnected) central hubs – for illustration,
suppose an intruder is hiding in a system of buildings where we have only few corridors but
a large number of rooms, or suppose we have few virtual servers with many stations (e.g., of
private users) that can communicate only with the servers. Furthermore, vcn is one of the
most efficiently computable parameters from both approximation [55] and parameterized [17]
points of view, making it fit from an applicative perspective even when a vertex cover is not
given along with the input. Moreover, vcn is the best choice for proving negative results –
indeed, our negative result on the kernelization complexity of CnR for vcn implies the same
for many other well-known smaller parameters such as treewidth, treedepth and feedback
vertex set [28]. One shortcoming of vcn as a parameter is that it is large for some simple (and
easy to resolve) dense graphs like cliques. However, we generalize our kernel to cvd, which
is small for these dense graphs, and to dts. Furthermore, we design a linear kernel for the
well-studied parameter nd. We further discuss the utility of our kernels in the Conclusion.

Brief Survey. CnR was independently introduced by Quilliot [51] and Nowakowski and
Winkler [46] with exactly one cop.1 Aigner and Fromme [2] generalized CnR to multiple
cops and defined the cop number of a graph. We refer to the book [9] for details.

The computational complexity of CnR is a challenging research subject. On the positive
side, Berarducci and Intrigila [6] gave a backtracking algorithm to decide if G is k-copwin
in O(n2k+1) time. On the negative side, Fomin et al. [27] proved that CnR is NP-hard,
and W[2]-hard parameterized by k. Moreover, Mamino [43] showed that CnR is PSPACE-
hard, and later, Kinnersley [39] proved that CnR is, in fact, EXPTIME-complete. Recently,
Brandt et al. [14] proved that, conditioned on (Strong) Exponential Time Hypothesis, the time
complexity of any algorithm for CnR is (Ω(nk−o(1))) 2Ω(

√
n). Since CnR admits an XP-time

algorithm, it is sensible to bound the cop number for various graph classes or by structural
parameters. Nowadays, we know that the cop number is at most 3 for toroidal graphs [41], 9
for unit-disk graphs [7], 13 for string graphs [20], and bounded for bounded genus graphs [12]
and minor-free graphs [3]. Moreover, c(G) ≤ tw(G)

2 + 1 [38] and c(G) ≤ cw(G) [27], where
tw(G) and cw(G) are the treewidth and the cliquewidth of G, respectively.

1 In fact, a specific instance of CnR was given as a puzzle in the book [24] already in 1917.
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Our Contribution. We conduct a comprehensive analysis of CnR parameterized by vcn.
Due to space constraints, the proofs of the claims marked by (∗) and the claims for which we
only provide a proof sketch are deferred to the full version [29].

We start by bounding the cop number of a graph:

▶ Theorem 1. For a graph G, c(G) ≤ vcn
3 + 1.

The proof is based on the application of three reduction rules. Each of our rules controls
its own cop, which guards at least three vertices from the vertex cover. Once our rules are no
longer applicable, we exhibit that the remaining unguarded part of the graph is of a special
form, and the usage of only two additional cops suffices. We complement Theorem 1 with an
argument that it might be difficult to improve this bound further using techniques similar to
ours.

Second, we prove that CnR parameterized by vcn is FPT by designing a kernelization
algorithm:

▶ Theorem 2. CnR parameterized by vcn admits a kernel with at most vcn + 2vcn
√

vcn vertices.

Our kernel is also based on the application of reduction rules. However, these rules are
very different than those used for the proof of Theorem 1. While our main rule is quite
standard in kernelization (involving the removal of false twins), the proof of its correctness is
(arguably) not. Theorem 2, Theorem 1, and the XP-algorithm (Proposition 12) yield the
following corollary:

▶ Corollary 3. CnR is FPT parameterized by vcn, and solvable in
(
vcn + 2vcn

√
vcn

)vcn
3 +2 · nO(1)

time.

We complement our kernel by showing that it is unlikely for CnR to admit polynomial
compression, by providing a polynomial parameter transformation from Red-Blue Domin-
ating Set. Our reduction makes non-trivial use of a known construction of a special graph
having high girth and high minimum degree.

▶ Theorem 4. CnR parameterized by vcn does not admit polynomial compression, unless
NP ⊆ coNP/poly.

We also present a linear vertex kernel parameterized by nd for CnR, Lazy CnR, and
Cops and Attacking Robber, and a quadratic vertex kernel for Cops and Fast Robber
and Fully Active CnR:

▶ Theorem 5 (∗). CnR, Lazy CnR, and Cops and Attacking Robber parameterized
by nd admits a kernel with at most nd vertices. Moreover, Cops and Fast Robber and
Fully Active CnR parameterized by nd admit a kernel with at most nd2 vertices.

On the positive side, we extend our exponential kernel to smaller parameters, cvd and
dts:

▶ Theorem 6. CnR parameterized by cvd admits a kernel with at most 22cvd+
√

cvd vertices.
Moroever, CnR parameterized by dts admits a kernel with at most 22dts+dts1.5 vertices.

Several variants of CnR have been studied due to their copious applications. We extend
our results, parameterized by vcn, to some of the most well-studied ones. We define these
variants (and used notations) in Section 2. We first bound the cop number of these variants
by vcn:

MFCS 2023
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▶ Theorem 7 (∗). For a graph G: (1) clazy ≤ vcn
2 + 1; (2) cattack ≤ vcn

2 + 1; (3) cactive(G) ≤
vcn; (4) csurround(G) ≤ vcn; (5) cs(G) ≤ vcn (for any value of s); (6) for a strongly connected
orientation −→

G of G, c(−→G) ≤ vcn.

We also extend our exponential kernel to these variants:

▶ Theorem 8. Cops and Attacking Robber and Lazy CnR parameterized by vcn admit
a kernel with at most vcn + 2vcn

√
vcn vertices. Moreover, CnR on strongly connected directed

graphs admits a kernel with at most 3vcn + vcn vertices.

Then, we present a slightly more general kernelization that works for most variants of
the game:

▶ Theorem 9. Fully Active CnR, Cops and Fast Robber, and Surrounding CnR
parameterized by vcn admit a kernel with at most vcn + vcn · 2vcn vertices.

We complement our exponential kernels for these variants by arguing about their com-
pressibility:

▶ Theorem 10 (∗). Lazy CnR, Cops and Attacking Robber, Cops and Fast Rob-
ber, Fully Active CnR, and CnR on strongly connected directed and oriented graphs
parameterized by vcn do not admit a polynomial compression, unless NP ⊆ coNP/poly.

2 Preliminaries

For ℓ ∈ N, let [ℓ] = {1, . . . , ℓ}. Whenever we mention a
b , we mean ⌈ a

b ⌉.

Graph Theory. We only consider finite, connected2, and simple graphs. For a graph G, we
denote |V (G)| by n. Let v ∈ V (G). Then, N(v) = {u | uv ∈ E(G)} and N [v] = N(v) ∪ {v}.
For X ⊆ V (G), let NX(v) = N(v) ∩ X and NX [v] = N [v] ∩ X. We say that v dominates
u if u ∈ N [v]. The girth of G is the length of a shortest cycle contained in G. A u, v-path
is a path with endpoints u and v. A path is isometric if it is a shortest path between its
endpoints. For a directed graph −→

G , let N+(u) and N−(u) denote the set of out-neighbors
and in-neighbors of u, respectively.

Let G be a graph and U ⊆ V (G). Then, G[U ] denotes the subgraph of G induced by
U . A set U ⊆ V (G) is a vertex cover if G[V (G) \ U ] is an independent set. The minimum
cardinality of a vertex cover of G is its vertex cover number (vcn). Moreover, U is a cluster
vertex deletion set if G[V (G) \ U ] is a disjoint union of cliques. The minimum size of a cluster
vertex deletion set of a graph is its cluster vertex deletion number (cvd). Additionally, U is a
deletion to stars set if G[V (G) \ U ] is a disjoint union of star graphs. The minimum size of a
deletion to stars set of a graph is its deletion to stars number (dts). Two vertices u, v ∈ V (G)
have the same type if and only if N(v) \ {u} = N(u) \ {v}. A graph G has neighborhood
diversity at most w if there exists a partition of V (G) into at most w sets, such that all the
vertices in each set have the same type.

2 The cop number of a disconnected graph is the sum of the cop numbers of its components; hence, we
assume connectedness.
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CnR. CnR is a two-player perfect information pursuit-evasion game played on a graph.
One player is referred as cop player and controls a set of cops, and the other player is referred
as robber player and controls a single robber. The game starts with the cop player placing
each cop on some vertex of the graph, and multiple cops may simultaneously occupy the
same vertex. Then, the robber player places the robber on a vertex. Afterwards, the cop
player and the robber player make alternate moves, starting with the cop player. In the cop
player move, the cop player, for each cop, either moves it to an adjacent vertex (along an
edge) or keeps it on the same vertex. In the robber player move, the robber player does the
same for the robber. For simplicity, we will say that the cops (resp., robber) move in a cop
(resp., robber) move instead of saying that the cop (resp., robber) player moves the cops
(resp., robber). Throughout, we denote the robber by R.

A situation where one of the cops, say, C, occupies the same vertex as R is a capture.
The cops win if they have a strategy to capture R, and R wins if it has a strategy to evade
a capture indefinitely. A graph G is k-copwin if k cops have a winning strategy in G. The
cop number of G, denoted c(G), is the minimum k such that G is k-copwin. For brevity, G is
said to be copwin if it is 1-copwin (i.e. c(G) = 1). Given a graph G and k ∈ N, CnR asks
whether G is k-copwin.

If a cop C occupies a vertex v, then C attacks N [v]. A vertex u is safe if it is not being
attacked by any cop. If R is on a vertex that is not safe, then R is under attack. We say
that some cops guard a subgraph H of G if R cannot enter H without getting captured by
one of these cops in the next cop move. We shall use the following result:

▶ Proposition 11 ([2]). One cop can guard an isometric path P after a finite number of cop
moves.

Currently, the best known algorithm to decide whether G is k-copwin is by Petr et al. [50]:

▶ Proposition 12 ([50]). CnR is solvable in O(knk+2) time.

Variations of CnR. Several variations of CnR have been studied in the literature, differing
mainly in the rules of movements of agents, the definition of the capture, and the capabilities
of the agents. We provide below the definitions of the games considered in this paper here.
A detailed overview of these games is provided in the full version [29].

Lazy CnR. In Lazy CnR [47], the cops are lazy, i.e., at most one cop can move during the
cops’ turn. The cop number in this game is denoted by clazy(G).

Cops and Attacking Robber. In Cops and Attacking Robber [8], if on a robber’s turn,
there is a cop in its neighborhood, then R can attack the cop and eliminate it from the
game. However, if more than one cop occupy a vertex and R attacks them, then only one of
the cops gets eliminated, and R gets captured by one of the remaining cops. Here, the cop
number is denoted by cattack(G).

Fully Active CnR. In Fully Active CnR [34], in a cop/robber move, each cop/robber
must move to an adjacent vertex. Here, the cop number is denoted by cactive(G).

Surrounding CnR. Surrounding CnR [15] differs in the definition of capture. Here, a cop
and R can occupy the same vertex during the game, but R cannot end its turn by remaining
at a vertex occupied by some cop. The cops win by surrounding R, i.e., if R occupies a
vertex v, then there is a cop at each vertex u ∈ N(v). The surrounding cop number for G is
denoted as csurround(G).
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Cops and Fast Robber. In Cops and Fast Robber [27], R can move faster than the
cops. If R has speed s, then it can move along a path with at most s edges not containing
any cop. The minimum number of cops that ensures capture of a fast robber with speed
s in a graph G is denoted by cs(G). For s ≥ 2, deciding whether cs(G) ≤ k is W[2]-hard
parameterized by k even when input graph G is restricted to be a split graph [27].

CnR on Directed Graphs. In the game of CnR on directed graphs [42, 13, 21], the players
can only move along the orientation of the arcs.

An XP Algorithm for Variants. For graph searching, there is a standard technique to get
an nO(k) time XP algorithm. This technique involves generating a game graph where each
vertex represents a possible placement of all the agents (game states) on the vertices of G.
Petr et al. [50] implemented this algorithm for CnR in O(knk+2) time. It is not difficult to
see that this algorithm can be made to work for all the variants we discussed (by changing the
rules to navigate between game states). We discuss these extensions in the full version [29].

▶ Proposition 13. Any variant of CnR considered in this paper is solvable in O(knk+2)
time.

Parameterized Complexity. In the framework of parameterized complexity, each problem
instance is associated with a non-negative integer, called a parameter. A parametrized
problem Π is fixed-parameter tractable (FPT) if there is an algorithm that, given an instance
(I, k) of Π, solves it in time f(k) · |I|O(1) for some computable function f(·). Two instances
I and I ′ are equivalent when I is a Yes-instance if and only if I ′ is a Yes-instance. A
compression of a parameterized problem Π1 into a (possibly non-parameterized) problem Π2
is a polynomial-time algorithm that maps each instance (I, k) of Π1 to an equivalent instance
I ′ of Π2 such that size of I ′ is bounded by g(k) for some computable function g(·). If g(·) is
polynomial, then the problem is said to admit a polynomial compression. A kernelization
algorithm is a compression where Π1 = Π2. Here, the output instance is called a kernel.
Let Π1 and Π2 be two parameterized problems. A polynomial parameter transformation
from Π1 to Π2 is a polynomial-time algorithm that, given an instance (I, k) of Π1, generates
an equivalent instance (I ′, k′) of Π2 such that k′ ≤ p(k), for some polynomial p(·). It is
well-known that if Π1 does not admit a polynomial compression, then Π2 does not admit
a polynomial compression [17]. We refer to the books [17, 28] for details on parameterized
complexity.

3 Bounding the Cop Number

We will use the following lemma to derive upper bounds on c(G) for several graph parameters.

▶ Lemma 14 (∗). Let G be a graph and let U ⊆ V (G) be a set of vertices such that for each
connected component H of G[V (G) \ U ], c(H) ≤ ℓ. Then, c(G) ≤ |U |

2 + ℓ.

Since star graphs and complete graphs are copwin, Lemma 14 implies the following
theorem.

▶ Theorem 15. Let G be a graph and t = min{cvd, dts}. Then, c(G) ≤ t
2 + 1.

Bounding Cop Number by vcn. Let U be a vertex cover of size t in G and I be the
independent set V (G) \ U . Lemma 14 implies that c(G) ≤ ⌈ t

2 ⌉ + 1. In this section, we
improve this bound. First, we provide the following reduction rules.
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▶ Reduction Rule 1 (RR1). If there is a vertex v ∈ I such that |N(v)| ≥ 3, then place a cop
at v and delete N [v].

▶ Reduction Rule 2 (RR2). If there is a vertex v ∈ U such that |N [v] ∩ U | ≥ 3, then place a
cop at v and delete N [v].

▶ Reduction Rule 3 (RR3). If there is an isometric path P such that P contains at least
three vertices from U , then guard P using one cop and delete V (P ) (see Proposition 11).

We note the following.
▶ Note 16. In the application of RR1-RR3, whenever a set of vertices X ⊆ V (G) is deleted
by the application of RR1-RR3, it implies that each vertex x ∈ X is being guarded by some
cop, and hence, is not accessible to R. We do not actually delete the vertices, and this
deletion part is just for the sake of analysis. Hence, from the cop player’s perspective, the
graph remains connected.

Next, we argue that, after an exhaustive application of RR1-RR3 on G, each connected
component has a special structure and is 2-copwin.

▶ Lemma 17 (∗). Once we cannot apply RR1-RR3 anymore, let R be in a connected
component H of G. Then, c(H) ≤ 2.

Finally, we have the following theorem.

▶ Theorem 1. For a graph G, c(G) ≤ vcn
3 + 1.

Proof Sketch. The proof follows from Lemma 17 and the fact that in each application of
RR1-RR3, we use one cop to remove (or guard) at least three new vertices from U . ◀

We note that a similar technique will fail if we try to “remove” four vertices in each
reduction rule [29].

4 Exponential Kernels

Exponential Kernel by vcn. Let G be a graph where a vertex cover U of size t is given. If
no such vertex cover is given, then we can compute a vertex cover U of size t ≤ 2 · vcn using
a polynomial-time approximation algorithm [55]. Let I be the independent set V (G) \ U .
Our kernelization algorithm is based on the exhaustive application of the following reduction
rules.

▶ Reduction Rule 4 (RR4). If k > t
3 , then answer positively.

▶ Reduction Rule 5 (RR5). If k = 1, then apply an O(n3) time algorithm (Proposition 12)
to check whether G is copwin.

▶ Reduction Rule 6 (RR6). If there are two distinct vertices u, v ∈ I such that N(u) ⊆ N(v),
then delete u.

The safeness of RR4 follows from Theorem 1. The following lemma proves the safeness
of RR6. We note that Lemma 18 can also be derived from [6, Corollary 3.3], but we give a
self-contained proof for the sake of completeness.

▶ Lemma 18. Let u and v be two distinct vertices of G such that N(u) ⊆ N(v). Consider
the subgraph H of G induced by V (G) \ {u}. Let k ≥ 2. Then, G is k-copwin if and only if
H is k-copwin.
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G

H

u C1

N(u)

N(v)

v

C2

R

Figure 1 Illustration for Lemma 18. Here, R is at vertex u and C1 is at vertex v.

Proof. First, let G be k-copwin. Then, for the graph H, the k cops borrow the winning
strategy that they have for G, with the only difference that whenever a cop has to move to
the vertex u in G, it moves to v (in H) instead. Since N(u) ⊆ N(v), the cop can make the
next move as it does in the winning cop strategy for G. Note that using this strategy, the
cops can capture R if R is restricted to V (H) in G. Therefore, using this strategy, k cops
will capture R in H as well.

Second, we show that if H is k-copwin, then G is is k-copwin. Here, for each vertex x ̸= u

of G, we define I(x) = x, and for u, we define I(u) = v. Observe that for each x ∈ V (G),
I(x) is restricted to H and if xy ∈ E(G), then I(x)I(y) ∈ E(H). Therefore, every valid
move of a player from a vertex x to y in G can be translated to a valid move from I(x) to
I(y) in H . Now, the cops have the following strategy. If the robber is on a vertex x, the cops
consider the image of the robber on the vertex I(x). Since the robber’s image is restricted
to H, the cops can use the winning strategy for H to capture the image of the robber in
G. Once the image is captured, if the robber is not on the vertex u, then the robber is also
captured. Otherwise, the robber is on the vertex u, and at least one cop is on v. See Figure 1
for an illustration. So, one cop, say C1, stays on v and this prevents the robber from ever
leaving u. Indeed this follows because N(u) ⊆ N(v), and so, if R ever leaves u, it will be
captured by C1 in the next cop move. Finally, since k > 1, some other cop, say C2, can use a
finite number of moves to reach u and capture the robber. ◀

Note that the requirement for k ≥ 2 in Lemma 18 is crucial. Otherwise, we can get an H

such that c(H) = 1, but c(G) > 1. For example, consider C4, where any two non-adjacent
vertices satisfy the property in RR6, and if we remove one of them, the cop number reduces
from 2 to 1. However, this does not harm our algorithm because if we are given k = 1, then
RR5 is applied (before RR6).

Two sets A and B are incomparable if neither A ⊆ B nor B ⊆ A. We shall use the
following proposition that follows from Sperner’s Theorem and Stirling’s approximation.

▶ Proposition 19. Let X be a set of cardinality N. Moreover, let Y be a set of subsets of X

such that for each a, b ∈ Y , a and b are incomparable. Then, |Y | ≤ 2N
√

N
.

Once we cannot apply RR4-RR6 anymore, we claim that the size of the reduced graph
G′ is bounded by a function of t. Let U ′ = U ∩ V (G′) and I ′ = I ∩ V (G′). Clearly, |U ′| ≤ t.
Now, each vertex u ∈ I ′ is associated with a neighborhood N(u) such that N(u) ⊆ U ′.
Moreover, for any two vertices u, v ∈ I ′, the sets N(u) and N(v) are incomparable. Hence,
due to Proposition 19, |I ′| ≤ 2t

√
t
, and therefore, |V (G′)| ≤ t + 2t

√
t
, which proves the following

theorem.
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▶ Theorem 2. CnR parameterized by vcn admits a kernel with at most vcn + 2vcn
√

vcn vertices.

The details for exponential kernels for other parameters and variants can be found in [29].
Here, we present only our reduction rules and the essential claims that lead to our results.

Kernel by cvd. Let U be a cluster vertex deletion set of size t. Let S = V (G) \ U , and
C1, . . . , Cℓ be the set of disjoint cliques in G[S]. We have the following reduction rules along
with RR 5.

▶ Reduction Rule 7 (RR7). If k > t
2 , then answer positively.

▶ Reduction Rule 8 (RR8). Let u and v be vertices of some clique C ∈ G[S] such that
N [u] ⊆ N [v]. Then, delete u.

▶ Reduction Rule 9 (RR9). Let Ci and Cj be two cliques in G[S] such that for each vertex
u ∈ V (Ci), there exists a vertex v ∈ V (Cj) such that NU (u) ⊆ NU (v). Then, delete V (Ci).

RR7 is safe due to Theorem 15. The safeness of RR8 is proved by the following Lemma,
whose proof is similar to the proof of Lemma 18.

▶ Lemma 20 (∗). Let u and v be vertices of some clique C of G[S]. If NU (u) ⊆ NU (v),
then c(G) = c(G[V (G) \ {u}]).

The safeness of RR9 is proved by the following Lemma.

▶ Lemma 21 (∗). Let Ci and Cj be two cliques in G[S] such that for each vertex u ∈ V (Ci),
there exists a vertex v ∈ V (Cj) such that NU (u) ⊆ NU (v). Then, for k > 1, G is k-copwin if
and only if G[V (G) \ V (Ci)] is k-copwin.

Finally, we use the following lemma to bound the size of the desired kernel from Theorem 6.

▶ Lemma 22 (∗). After an exhaustive application of RR7-RR9, the size of the reduced graph
is at most 22t+

√
t.

Kernel by dts. Using similar ideas, we can also get a kernel for CnR parameterized by dts.
Let U be a deletion to stars vertex set of size t. Also, let S = V (G) \ U , and let X1, . . . Xℓ

be the stars in the graph G[S]. Specifically, we have the following reduction rules along with
RR7.

▶ Reduction Rule 10 (RR10). Let u and v be two leaves of a star X in G[S] such that
NU (u) ⊆ NU (v). Then, delete u.

▶ Reduction Rule 11 (RR11). Let X and Y be two stars in G[S] such that V (X) =
x, x1, . . . , xp and V (Y ) = y, y1, . . . , yq, where x and y are center vertices of X and Y ,
respectively. If NU (x) ⊆ NU (y) and for each vertex xi (for i ∈ [p]), there is a vertex yj (for
j ∈ [q]) such that NU (xi) ⊆ NU (yj), then delete X.

The following lemma establishes that RR10 and RR11 are safe. (RR7 is safe due to
Theorem 15.)

▶ Lemma 23 (∗). Assuming k > 1, RR10 and RR11 are safe.

Using calculations similar to ones used in our previous kernels and Proposition 19, we
can establish that (see [29]), once we cannot apply RR10 and RR11 anymore, the size of the
reduced graph can be at most 22t

√
2t

· 2t · ( 2t
√

t
+ 1), giving us the desired kernel from Theorem 6.
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Kernels for Different Variants
Lazy CnR and Cops and Attacking Robber. For these variants, we have the following
reduction rules along with RR6, which we apply before applying RR6.

▶ Reduction Rule 12 (RR12). If k ≥ t
2 + 1, then answer positively (Theorem 7).

▶ Reduction Rule 13 (RR13). If k = 1, then apply the O(n3) time algorithm from Proposi-
tion 13.

The next lemma proves safeness of RR6 for both variants.

▶ Lemma 24 (∗). Let u and v be two distinct vertices of G such that N(u) ⊆ N(v). Consider
the graph H induced by V (G) \ {u}. Then for k > 1 and for x ∈ {lazy, attack}, cx(G) ≤ k

if and only if cx(H) ≤ k.

The size of the kernel, by using these reduction rules, is dependent on RR6. Therefore,
we get the desired kernels for these variants as claimed in Theorem 8.

CnR on Directed Graphs. Next, we consider the game of CnR on directed graphs. We
have the following lemma.

▶ Lemma 25 (∗). Let u and v be two distinct vertices of a strongly connected directed
graph −→

G such that N+(u) ⊆ N+(v) and N−(u) ⊆ N−(v). Let −→
H be the graph induced by

V (−→G) \ {u}. Then, for k > 1, −→
H is k-copwin if and only if −→

G is k-copwin.

Let G be a graph with a vertex cover U of size t, and let I = V (G) \ U . Let −→
G be a

strongly connected orientation of G. We apply the following reduction rules.

▶ Reduction Rule 14 (RR14). If k ≥ t, then answer positively.

▶ Reduction Rule 15 (RR15). If k = 1, then apply the O(n3) time algorithm (Proposition 13)
to check if −→

G is copwin.

▶ Reduction Rule 16 (RR16). If u and v are two distinct vertices in I such that N+(u) ⊆
N+(v) and N−(u) ⊆ N−(v), then delete u.

Safeness of RR14 and RR16 follow from Theorem 7 and Lemma 25, respectively. Once
we cannot apply RR16, observe that each vertex u ∈ I has a unique neighborhood (N+(u) ∪
N−(u)), and there are three choices for a vertex v ∈ U to appear in the neighborhood of
u, i.e., either v ∈ N+(u), or v ∈ N−(u), or v /∈ N+(u) ∪ N−(u). Thus, |I| ≤ 3t, giving the
desired kernel as claimed in Theorem 8.

General Kernelization. Here, we provide a general reduction rule that works for most
variants of CnR parameterized by vcn. Let U be a vertex cover of size t in G and I be the
independent set V (G) \ U . For each subset S ⊆ U , we define the following equivalence class:
CS = {v ∈ I : N(v) = S}. We have the following reduction rule along with RR14.

▶ Reduction Rule 17 (RR17). If there is an equivalence class CS such that |CS | > k + 1,
then keep only k + 1 arbitrary vertices from CS in G, and delete the rest.

The following lemma proves the safeness of RR17.
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▶ Lemma 26 (∗). Let G be a graph with a vertex cover U of size t. Let CS (for S ⊆ U) be
an equivalence class such that |CS | = ℓ > k + 1. Moreover, let H be a subgraph formed by
deleting ℓ − k − 1 arbitrary vertices of CS from G. Then,
1. cactive(H) ≤ k if and only if cactive(G) ≤ k.
2. cs(H) ≤ k if and only if cs(G) ≤ k, for any s ≥ 1.
3. csurround(H) ≤ k if and only if csurround(G) ≤ k.

Proof Sketch. Here, we present a sketch of the proof for (3). Let CS = {v1, . . . , vℓ}. WLOG,
let the vertices v1, . . . vk+1 belong to the graph H and vertices vk+2, . . . , vℓ are deleted. Note
that R cannot be surrounded at a vertex in S in G since each vertex in S has at least k + 1
neighbours.

The proof of csurround(H) ≤ csurround(G) is similar to the proof of Lemma 18.
For the other direction, let csurround(H) ≤ k. Since we have only k cops, at any time,

there is at least one vertex in {v1, . . . , vk+1} that is not occupied by any cop. Let us call
this vertex a free vertex (there might be multiple free vertices). For each vertex x ∈ V (G), if
x ∈ V (H), then we define I(x) = x; else, if x ∈ {vk+1, . . . vℓ}, then we define I(x) = y, where
y is a free vertex at that instance. Whenever R moves to a vertex x ∈ V (G), we say that
the image of the robber, denoted IR, moves to I(x). Recall that, in this variant, although
some cop and R can be at the same vertex, R cannot end its move at the same vertex as
one of the cops. Cops use this capability to force R to move from a vertex. Therefore,
we also have to argue that whenever cops force R to move, they force IR to move as well.
To this end, observe that IR and R are on different vertices only if R is on some vertex
x ∈ {vk+1, . . . , vℓ} and IR is on a free vertex, say, y. Notice that if, in the strategy for H, R
was occupying y and the cop player wants to force R to move out of y, then it does so by
moving a cop, say, C, from a vertex w ∈ N(y) to y. Cop player adapts this strategy in G

by moving C form w to x instead of w to y (it is possible because N(x) = N(y)). Thus, R,
as well as IR, are forced to move as they would have been forced to move in the winning
strategy of k cops in H.

Hence, IR is restricted to V (H) in G. Thus, cops will surround IR in a finite number
of rounds. The only thing to observe now is that if IR is surrounded in V (H), then R is
surrounded in G. ◀

Lemma 26 and the following lemma imply Theorem 9.

▶ Lemma 27 (∗). Let G be a graph with a vertex cover U of size t. After an exhaustive
application of RR14 and RR17, the reduced graph has at most t + t · 2t vertices.

5 Incompressibility

In this section, we show that it is unlikely for CnR parameterized by vcn to admit a
polynomial compression. For this purpose, we first define the following problem. In Red-Blue
Dominating Set, we are given a bipartite graph G with a vertex bipartition V (G) = T ∪ N

and a non-negative integer k. A set of vertices N ′ ⊆ N is said to be an RBDS if each vertex
in T has a neighbor in N ′. The aim of Red-Blue Dominating Set is to decide whether
there exists an RBDS of size at most k in G. We shall use the following result.

▶ Proposition 28 ([23]). Red-Blue Dominating Set parameterized by |T | + k does not
admit a polynomial compression, unless NP ⊆ coNP/poly.

We show that CnR parameterized by vcn does not have a polynomial compression
by developing a polynomial parameter transformation from Red-Blue Dominating Set
parameterized by |T | + k to CnR parameterized by vcn.
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Bipartite Graphs with Large Degree and Girth. For our reduction, we borrow a construction
by Fomin at al. [27] of bipartite graphs having high girth and high minimum degree, which
they used to prove NP-hardness (and W [2]-hardness for the solution size k) of CnR. For
positive integers p, q, and r, we can construct a bipartite graph H(p, q, r) with rqp2 edges
and a bipartition (X, Y ), with |X| = |Y | = pq. The set X is partitioned into sets U1, . . . , Up,
and the set Y is partitioned into sets W1, . . . Wp, with |Ui| = |Wi| = q. By Hi,j we denote
the subgraph of H(p, q, r) induced by Ui ∪ Wj , and by degi,j(z) we denote the degree of
vertex z in Hi,j . Fomin et al. [27] provided the following construction:

▶ Proposition 29 ([27]). Let q ≥ 2p(r + 1) (p(r+1)−1)6−1
(p(r+1)−1)2−1 . Then, we can construct H(p, q, r)

in time O(r · q · p2) with the following properties.
1. The girth of H(p, q, r) is at least 6.
2. For every vertex z ∈ V (Hi,j) and every i, j ∈ [p], we have r − 1 ≤ degi,j(z) ≤ r + 1.

Polynomial Parameter Transformation. Let (G, k) be an instance of Red-Blue Domin-
ating Set with V (G) = T ∪ N . First, we construct a graph G′ with V (G′) = T ′ ∪ N ′ from
G by introducing two new vertices, x and y, such that T ′ = T ∪ {x} and N ′ = N ∪ {y}, and
E(G′) = E(G) ∪ {xy}. We have the following observation.

▶ Observation 30. G has an RBDS of size at most k if and only if G′ has an RBDS of size
at most k + 1. Moreover, any RBDS of G′ contains y.

Now, we present the main construction for our reduction. Denote the vertex set V (T ′)
by {v1, v2, . . . , vp′ , x}. Moreover, let p = p′ + 1, ℓ = k + 1, r = ℓ + 2, and q = ⌈2p(r +
1) (p(r+1)−1)6−1

(p(r+1)−1)2−1 ⌉.
We construct H(p, q, r) such that each of Ui and Wi, for 0 < i ≤ p′, contains q copies of

vertex vi, and each of Up and Wp contains q copies of vertex x. Now, we obtain a graph G′′

by adding one more set of vertices P to H(p, q, r) such that V (P ) = V (N ′). Moreover, if
there is an edge between a vertex u ∈ N ′ and a vertex vi ∈ T ′, then we add an edge between
u and every vertex of Ui, and also between u and every vertex of Wi. Similarly, we add an
edge between y and every vertex of Up, and between y and every vertex of Wp. Finally, we
make the vertex y adjacent to every vertex of P . See Figure 2 for reference. For correctness,
we have the following lemma.

▶ Lemma 31. G′ has an RBDS of size at most ℓ if and only if G′′ is ℓ-copwin.

Proof. First, we show that if G′ has an RBDS of size ℓ, then ℓ cops have a winning strategy
in G′′. Let S ⊆ N ′ be an RBDS in G′ of size at most ℓ. The cops begin by choosing
the vertices corresponding to S in P . Observe that the vertex y has to be present in S.
Since vertex y dominates each vertex in P , the robber cannot safely enter a vertex in P .
Additionally, due to the construction of G′′, the vertices of S dominate each vertex in H.
Hence, the robber cannot safely enter a vertex in H. Therefore, the robber will be captured
in the first move of the cops.

Next, we show that if there is no RBDS of size ℓ in G′, then ℓ cops do not have a winning
strategy. We prove this by giving a winning strategy for the robber. First, we show that the
robber can safely enter the graph. In the beginning, let there be ℓ1 ≤ ℓ cops in P and ℓ2 ≤ ℓ

cops in H. Since there is no RBDS of size ℓ in G′, for every placement of at most ℓ cops in
P , there exists at least one pair of Ui and Wi such that no vertex of Ui and Wi is dominated
by the cops from P . Let Ui and Wi be one such pair of sets such that no vertex of Ui and
Wi is dominated by the cops from P . Moreover, since each vertex of H can dominate at
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H(p, q, r)

Up Wp

Figure 2 Illustration for H(p, q, r) and P . If a vertex u is connected to vj in G, then u is
connected to every vertex of Wj ∪ Uj . Moreover, for every i, j, each vertex in Ui has at least r − 1
neighbors in Uj .

most p(r + 1) vertices in H, ℓ2 cops can dominate at most ℓ · p(r + 1) vertices. Since Ui

(and Wi also) contains q vertices, and q > ℓ · p(r + 1), the ℓ2 cops in H cannot dominate all
vertices of Ui, and hence the robber can safely enter a vertex of Ui.

Now, whenever the robber is under attack, it does the following. Without loss of generality,
let us assume that the robber is in Ui (the case of Wi is symmetric). Since there are at most
ℓ cops in P , there is always a Wj such that no vertex of Wj is dominated by cops from P .
Since each vertex in Ui has at least r − 1 = ℓ + 1 neighbours in Wj , the robber can move
to at least ℓ + 1 vertices of Wj . Since the girth of H is at least 6, no vertex from H can
dominate two vertices of Wj that are adjacent to the robber; else, we get a cycle on four
vertices. Hence, at most ℓ cops from H can dominate at most ℓ neighbors of the robber in
Wj , and the robber has at least ℓ + 1 neighbors in Wj . Hence, the robber can move to a safe
vertex in Wj . Since the graph H is symmetric, the robber can move safely from Wj′ to Wi′

also. The robber follows this strategy to avoid capture forever. ◀

Next, we have the following observation to show that there exists a vertex cover U of G′′

such that |U | = poly(|T |, k).

▶ Observation 32. V (H) ∪ {y} is a vertex cover of G′′. Therefore, the vertex cover number
of G′′ is at most 2 · p · q + 1 = 1 + 2p · ⌈2p(k + 3) (p(k+3)−1)6−1

(p(k+3)−1)2−1 ⌉, where p = |T | + 1.

This completes the proof of the argument that CnR parameterized by vcn is unlikely
to admit a polynomial compression. Thus, we have the following theorem as a result of
Lemma 31, Observation 32 and Proposition 28.

▶ Theorem 4. CnR parameterized by vcn does not admit polynomial compression, unless
NP ⊆ coNP/poly.

6 Conclusion and Future Directions

To achieve our kernelization results, the rules we used concerned removing (false or true)
twins from the graph. These rules are easy to implement and hence can be used to reduce
the complexity of the input graph, even when the input graph is far from the considered
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parameters. For example, for cographs and grids, none of the considered parameters is
constant/bounded, but cographs and grids can be reduced to a single vertex with the
operation of removing twins, and hence, our reduction rules give an alternate proof that the
cop number of cographs and grids is at most two [38, 19] for several variants. Moreover,
MTP is well-studied with the motivation of designing computer games. Some examples of
these variants include: multiple targets and multiple pursuer search [56] with applications in
controlling non-player characters in video games; MTP from the robber’s perspective with
faster cops [44] where the strategies were tested on Baldur’s Gate; MTP modeled with edge
weights and different speeds of agents [36] with the specific examples of Company of Heroes
and Supreme Commander. Moreover, the PACMAN game’s movement can be considered as
an instance of Fully Active CnR on a partial grid. One of the key aspects of designing
these games is to come up with scenarios that are solvable but look complex and challenging.
Our reduction rule can there. One can begin with an easy-to-resolve instance of CnR, and
then keep adding twins to this instance (recursively) to get an instance that looks sufficiently
complex but has the same complexity.

Finally, we define (formally defined in the full version [29]) a new variant of CnR, named
Generalized CnR, that generalizes many well-studied variants of CnR. Here the input
is (G, C1, . . . , Ck, R) where each cop Ci has speed si and R has speed sR. Moreover, each
cop can be either forced to be active (have to move in each turn), lazy (at most one lazy
cop moves in each turn), or flexible. Furthermore, each cop Ci can have reach λi. (Think
of Ci having a gun with range λi, and if R is ever at a vertex that is at a distance at most
λi from Ci, it gets shot.) In the full version [29], we show that RR17 provides a kernel for
Generalized CnR as well. This gives hope that RR17 can be used to get kernels for many
practical variants not explicitly studied in this paper. Also, RR17 has been used to provide
kernelization algorithm for Hunter and Rabbit game parameterized by vcn [22].

Still, many questions on the parameterized complexity of CnR remain open. We list
some of these questions below.

▶ Question 33. Does there exist an FPT algorithm for CnR parameterized by vcn with
running time 2O(vcn) · nO(1)?

▶ Question 34. Does there exist a better bound for the cop number with respect to vcn? In
particular, is c(G) = o(vcn)?

▶ Question 35. Does CnR parameterized by vcn admit a polynomial α-approximate kernel?

▶ Question 36. Study CnR with respect to the following parameters: (1) feedback vertex set
(2) treewidth (3) treedepth. In particular, is CnR FPT parameterized by treewidth?
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Abstract
The minimum branch vertices spanning tree problem consists in finding a spanning tree T of an input
graph G having the minimum number of branch vertices, that is, vertices of degree at least three in T .
This NP -hard problem has been widely studied in the literature and has many important applications
in network design and optimization. Algorithmic and combinatorial aspects of the problem have
been extensively studied and its fixed parameter tractability has been recently considered. In this
paper we focus on modular-width and show that the problem of finding a spanning tree with the
minimum number of branch vertices is FPT with respect to this parameter.
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1 Introduction

Let G = (V, E) be an undirected graph where V is the set of vertices and E is the set of
edges. Given a spanning tree T of G, a branch vertex is a vertex having degree at least three
in T . If G is a connected graph, we denote by b(G) the smallest number of branch vertices
in any spanning tree of G. We study the following problem:

Minimum Branch Vertices (MBV)
Instance: A connected graph G = (V, E).
Goal: Find a spanning tree of G having b(G) branch vertices.

Notice that a spanning tree of G without branch vertices is a Hamilton path, that is, b(G) = 0
if and only if G admits a Hamilton path.

The problem of determining a spanning tree with a bounded number of branch vertices,
while a natural theoretical question, was introduced to solve a problem related to wavelength-
division multiplexing technology in optical networks, where one wants to minimize the
number of light-splitting switches in a light-tree [11]. Also for Cognitive Radio Networks
other than for 5G technologies, that operate with a wide range of frequencies, bounding the
switching costs due to the switching between different service providers has high importance
both in terms of delay and energy consumption [16, 24]. MBV has been then widely studied,
both from the algorithmic and the graph-theoretic point of view. Gargano et al. [12] proved
that it is NP-complete to decide whether a graph G admits a spanning tree with at most k

branch vertices, for given G and k, even in cubic graphs. Salamon [23] proved the existence
of an algorithm that finds a spanning tree with O(log |V (G)|) branch vertices whenever the
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degree of each vertex of the input graph is Ω(n); moreover, an approximation factor better
than O(log |V (G)|) would imply that NP ⊆ DTIME(nO(log log n)). Sufficient conditions for
a connected claw-free graph to have a spanning tree with k branch vertices are given in [20].
Integer linear formulations of MBV and some variants are presented in [5–7], together with
different relaxations of them; the authors also provide numerical result comparison of the
considered relaxations. In [26] hybrid integer linear programs for MB are considered and
solved with branch-and-cut algorithms. In [18, 21, 22] decomposition methods of graphs
are used to solve the MBV problem. Other heuristics are presented in [19, 25, 27]. In [8]
a complementary formulation of MBV is investigated. It is called maximum path-node
spanning tree (MPN), where the goal is to find a spanning tree that maximizes the number
of vertices with degree at most two; the authors prove that MPN is APX-hard and present
an approximation algorithm with ratio 6/11. Related gathering processes are considered
in [2–4,13,14].

1.1 Parameterized Complexity
Parameterized complexity is a refinement to classical complexity theory in which one takes
into account not only the input size, but also other aspects of the problem given by a
parameter p. A problem with input size n and parameter p is called fixed parameter tractable
(FPT) if it can be solved in time f(p) · nc, where f is a computable function only depending
on p and c is a constant.

In this paper we are interested in assessing the complexity of MBV when parameterized
by modular-width. It was recently proven that MBV is FPT when parameterized either
by treewidth [1] or by neighborhood diversity [15]. On the other hand, it was shown in [9]
that the problem is W [1]-hard when parameterized by clique-width. Specifically, in [9]
it was proven that the (MBV special case) hamiltonian path problem is W [1]-hard when
parameterized by clique-width. See Figure 1 for a relation among the above parameters.

cw(G)

nd(G)

mw(G)

tw(G)

vc(G)

Figure 1 A summary of the relations holding among some popular parameters. We use mw(G),
tw(G), cw(G), nd(G), and vc(G) to denote modular-width, treewidth, cliquewidth, neighborhood
diversity, and minimum vertex cover of a graph G, respectively. Solid arrows denote generalization,
e.g., modular-width generalizes neighborhood diversity. Dashed arrows denote that the generalization
may exponentially increase the parameter.

1.2 Modular-width
Modular-width was introduced in [10] as graph parameter which could cover dense graphs
but still allows FPT algorithms for the problems lost to clique-width.



L. Gargano and A. A. Rescigno 50:3

▶ Definition 1 (Modular-width [10]). Consider graphs that can be obtained from an algebraic
expression that uses the following operations:

(O1) Create an isolated vertex;
(O2) the disjoint union of 2 graphs denoted by G1 ⊕ G2, i.e., G1 ⊕ G2 is the graph with
vertex set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2);
(O3) the complete join of 2 graphs denoted by G1⊗G2, i.e., G1⊗G2 is the graph with vertex
set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2) ∪ {{v, w} : v ∈ V (G1) and w ∈ V (G2)};
(O4) the substitution operation with respect to some graph G with vertex set {1, 2, . . . , n}
i.e., for graphs G1, . . . , Gn the substitution of the vertices of G by the graphs G1, . . . , Gn,
denoted by G(G1, . . . , Gn), is the graph with vertex set

⋃n
i=1 V (Gi) and edge set

⋃n
i=1 E(Gi)

∪{{u, v} | u ∈ V (Gi), v ∈ V (Gj), {i, j} ∈ E(G)}. Hence, G(G1, . . . , Gn) is obtained from
G by substituting every vertex i ∈ V (G) with the graph Gi and adding all edges between
the vertices of a graph Gi and the vertices of a graph Gj whenever {i, j} ∈ E(G).

Let A be an algebraic expression that uses only the operations (O1)–(O4). The width of
A is the maximum number of operands used by any occurrence of the operation (O4) in A.
The modular-width of a graph H, denoted mw(H), is the least integer m such that H can be
obtained from such an algebraic expression of width at most m.

We recall that an algebraic expression of width mw(G) can be constructed in linear time [28].

Given a graph H = G(G1, . . . , Gn), we will refer to the graphs G1, . . . , Gn also as the
modules of H . Notice that given the graph H = G(G1, . . . , Gn), by the operations O(1)-(O4),
one has that all the vertices of Gi share the same neighborhood outside Gi; indeed,

{{u, v} | u ∈ V (Gi), v ∈ V (Gj)} ⊆ E(H) if {i, j} ∈ E(G)
{{u, v} | u ∈ V (Gi), v ∈ V (Gj)} ∩ E(H) = ∅ if {i, j} /∈ E(G) (1)

for each i, j = 1, . . . , n with i ̸= j.

1.3 Graph Partitioning
A spider is a tree with at most one branch vertex. The center of the spider is the branch
vertex, if it exists, and is any vertex otherwise. A path-spider cover of a graph G is a set
composed by one spider and some paths that are pair-wise (vertex-)disjoint and whose union
contains every vertex of G. We denote by spi(G) the least integer p such that G has a
path-spider cover with p − 1 paths.

In order to solve MBV, we define and study the following problem that can be of its own
interest:

Path-Spider Cover (PSC)
Instance: A graph G = (V, E).
Goal: Find a path-spider cover of G with spi(G) − 1 paths.

Moreover, we will need the following Partitioning into Paths problem that was proven to be
FPT with respect to modular-width in [10]. A partition of a graph G into paths is a set of
(vertex-)disjoint paths of G whose union contains every vertex of G. We denote by ham(G)
the least integer p such that G has a partition into p paths. Notice that spi(G) ≤ ham(G).

Partitioning into Paths (PP)
Instance: A graph G = (V, E).
Goal: Find a partition of G into ham(G) paths.

As originally defined in [10], the Partitioning into Paths problem only asks for the value
ham(G), while we ask for the actual path partitioning of G.
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In the following we will denote by Pham(G) a partition of G into ham(G) paths, and by
Pspi(G) a path-spider cover of G with spi(G) − 1 paths.

Given a path P in G, we will denote by f(P ) and s(P ) the two end-points of P ; we will
distinguish them as the first and the second end-point of P , respectively. Furthermore, if P

denotes a spider in G then we will equally use either f(P ) or s(P ) to denote the center of P .

2 Our Results

We present an FPT algorithm for MBV parameterized by modular-width. To this aim, we
also design a FPT algorithm for PSC parameterized by modular-width.

Let H be the input graph. Consider the parse-tree of an algebraic expression describing H ,
according to the rules (O1)-(O4) in Section 1.3. We take a look at the operation corresponding
to the root: Operation (O1) is trivial and (O2) yields a disconnected graph, therefore we
suppose the last operation is either (O3) or (O4). Hence, we can see the input graph as
H = G(G1, . . . , Gn) where G is a graph with n ≤ mw(H) vertices and G1, . . . , Gn are graphs.

The algorithm that finds a spanning tree of an input graph H with b(H) branch vertices
goes through the following steps 1) and 2).
1) An FPT algorithm for PSC and PP parameterized by the modular-width of the input

graph H. Namely, for each vertex Ĥ = Ĝ(Ĝ1, . . . , Ĝn̂) of the parse-tree of H, we show
how to compute the triple

(ham(Ĥ), spi(Ĥ), |V (Ĥ)|) together with Pham(Ĥ) and Pspi(Ĥ),

where Pham(Ĥ) is a partition of Ĥ into ham(Ĥ) paths and Pspi(Ĥ) is a path-spider cover
of Ĥ with spi(Ĥ) − 1 paths.

2) Compute a spanning tree of H = G(G1, . . . , Gn) with b(H) branch vertices by using the
values, computed at step 1), for the graphs G1, . . . , Gn, that is,

(ham(Gi), spi(Gi), |V (Gi)|), Pham(Gi), and Pspi(Gi),

for i = 1, . . . , n,
The computation in step 2) is only done once, i.e., for the root vertex of the parse tree,
corresponding to the input graph H = G(G1, . . . , Gn). It is shown in Section 3, which is
devoted to prove the following theorem.

▶ Theorem 2. Minimum Branch Vertices parameterized by modular-width is fixed-
parameter tractable.

The computation in step 1) is presented in Section 4. Following [10], we use a bottom-up
dynamic programming approach along the parse-tree to compute for every vertex a record of
data, using those already computed for its children. Since the operations of type (O1)-(O3)
can be replaced by one operation of type (O4) that uses at most 2 operands, we only focus
on the computation (and the time it requires) of a record of data for a vertex of type (O4) in
the parse-tree. Namely, in Section 4 we prove the following theorem.

▶ Theorem 3. Path-Spider Cover parameterized by modular-width is fixed-parameter
tractable.



L. Gargano and A. A. Rescigno 50:5

3 The MBV algorithm

In this section we give an algorithm that finds a spanning tree of graph H with b(H) branch
vertices. We assume here that for each vertex Ĥ = Ĝ(Ĝ1, . . . , Ĝn) of the parse-tree of H , we
already have

the triple (ham(Ĥ), spi(Ĥ), |V (Ĥ)|) together with Pham(Ĥ) and Pspi(Ĥ).

We start by giving a characterization of a spanning tree with the minimum number of branch
vertices in terms of the modular decomposition of H.

▶ Lemma 4. Let H = G(G1, . . . , Gn) be a connected graph. There exists a spanning tree of
H with b(H) branch vertices that has at most one branch vertex belonging to Gi for each
i = 1, . . . , n. Hence, b(H) ≤ n ≤ mw(H).

Proof. Let T be a spanning tree of H with b(H) branch vertices. Denote by B the set of
vertices of H that are branch vertices in T and by NT (v) the set of neighbors of v in T ,
for any vertex v. Assume that |V (Gi) ∩ B| ≥ 2 for some i ∈ {1, . . . , n}. We show how to
transform T so to satisfy the lemma. The transformation consists of two phases.

Phase 1. For each i = 1, . . . , n, we denote by Bi the set of branch vertices in V (Gi) that
have in T at least two neighbors outside V (Gi), that is,

Bi = {v | v ∈ V (Gi) ∩ B and |NT (v) ∩ (∪j ̸=iV (Gj))| ≥ 2}.

In this phase we transform T so that |Bi| ≤ 1, for each i. We proceed as follows.
For each i such that |Bi| ≥ 2,

let v be any node in Bi;
for each w ∈ Bi with w ̸= v, consider the path connecting v and w in T , say
v, . . . , w′, w, and modify T as follows: For any x ∈ (NT (w) − V (Gi)) − {w′},
substitute in T the edge {w, x} by the edge {v, x}.
(Notice that this is possible by (1) and implies Bi = {v}).

Phase 2. We know that each Gi contains at most one branch vertex with at least two
neighbors outside V (Gi), that is now |Bi| ≤ 1 for each i.
If there exists i such that Gi contains at least 2 branch vertices, we modify the spanning
tree so that only one remains. We proceed as follows.

While there exists i such that |V (Gi) ∩ B| ≥ 2.
Choose any j ̸= i such that {i, j} ∈ E(G) and let

w ∈


Bj if Bj = {w},
V (Gj) ∩ B if Bj = ∅ and V (Gj) ∩ B ̸= ∅
V (Gj) otherwise.

For each branch vertex v ∈ V (Gi) ∩ B with v ̸= w, perform the following step.
∗ Consider the path connecting v and w in T , say v, v′, . . . w, and modify T

as follows: For any x ∈ NT (v) ∩ V (Gi) and x ̸= v′, substitute in T the edge
{v, x} by the edge {w, x}.
(This is possible by (1). Moreover, even if now w becomes a new branch vertex,
we know that |V (Gj) ∩ B| = 1; finally, |Bj | ≤ 1, |V (Gi) ∩ B| ≤ 1), and the
number of branch vertices does not increase.

By iterating the above steps, one can obtain the desired spanning tree of H with at most
one branch vertex in each V (Gi). ◀
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In the remaining part of this section, we present an algorithm that computes a spanning
tree of H = G(G1, . . . , Gn) with b(H) branch vertices, if b(H) > 0. In Section 4.2 we deal
with the case b(H) = 0, that is, we show how to find a Hamiltonian path of H, if any exists.

By exploiting Lemma 4, the algorithm proceeds by considering all the subsets BG ⊆
{1, . . . , n} with |BG| ≥ 1, ordered by size, and checking whether there exists a spanning tree
of H with |BG| branch vertices, so that exactly one branch vertex belongs to each V (Gi)
with i ∈ BG and none to each V (Gi) with i ̸∈ BG.

The identification of the spanning tree of H goes through the solution of an Integer
Linear Program that uses the values ham(Gi), spi(Gi), |V (Gi)|, for i = 1, . . . , n, and exploits
property (1). Namely, if the ILP does not admit a solution for BG, then the set is discarded;
if for BG the ILP admits a solution, we will show how to use the partition of Gi given in
Pham(Gi) and Pspi(Gi) to construct a spanning tree of H having exactly |BG| branch vertices
(recall that the sets BG are considered by increasing size). The optimal spanning tree will be
indeed shown to correspond to the smallest BG for which the ILP admits a solution.

3.1 The Integer Linear Program
Let BG ⊆ {1, . . . , n}, with |BG| ≥ 1. Construct a digraph

GBG
= ({1, . . . , n} ∪ {s}, ABG

),

where s ̸∈ V (H) is an additional vertex that will be called the source. GBG
is obtained from

G by replacing each edge {i, j} ∈ E(G) by the two directed arcs (i, j) and (j, i), and then
adding a directed arc (s, r) where r is an arbitrary vertex in BG. Formally,

ABG
= {(s, r)} ∪ {(i, j), (j, i) | there exists an edge between i and j in E(G)}.

For sake of clearness, we will refer to the vertices of G as module indices and reserve the
term vertex to those in H.

We use the solution of the following Integer Linear Programming (ILP) to select arcs of
GBG

that will help to construct the desired spanning tree in H.

xsr = 1 (2)∑
j:(j,i)∈ABG

xji ≤ |V (Gi)| ∀i ∈ {1, . . . , n} (3)

∑
j:(j,i)∈ABG

xji ≥ spi(Gi) ∀i ∈ BG (4)

∑
j:(j,i)∈ABG

xji ≥ ham(Gi) ∀i ∈ {1, . . . , n} − BG (5)

∑
ℓ:(i,ℓ)∈ABG

xiℓ −
∑

j:(j,i)∈ABG

xji ≤ 0 ∀i ∈ {1, . . . , n} − BG (6)

ysr = n (7)∑
j:(j,i)∈ABG

yji −
∑

ℓ:(i,ℓ)∈ABG

yiℓ = 1 ∀i ∈ {1, . . . , n} (8)

yij ≤ n xij ∀(i, j) ∈ ABG
(9)

yij , xij ∈ N ∀(i, j) ∈ ABG
(10)
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For each arc (i, j) ∈ ABG
, the non negative decision variable xij represents the load to

be put on (i, j). The load of the arc (s, r) is set to 1. The total incoming load at module
index i ∈ {1, . . . , n} has to be at most |V (Gi)| and at least spi(Gi) in case i ∈ BG (to be
sure that the spider and all the spi(Gi) − 1 paths in Gi are reached) and at least ham(Gi)
in case i ̸∈ BG (to be sure that all the ham(Gi) paths in Gi are reached). Constraints (3),
(4) and (5) correspond to this requirement.
Constraint (6) binds the relation between the total incoming and outgoing loads at any
i ̸∈ BG, namely i must have an outgoing load upper bounded by its incoming load.
Constraints (7) and (8) use a single commodity flow in which s is used as the source and
the other module indices are demand vertices. For each arc (i, j) ∈ ABG

, the non negative
decision variable yij represents the quantity of flow from i to j.
Each i ∈ {1, . . . , n} has demand of one unit; therefore, the difference between the inflow and
the outflow must be exactly one. Meanwhile, the supply quantity at the source s has to be
exactly n, in order to reach each of the module index in {1, . . . , n}.
Constraint (9) stresses variable yij = 0 whenever xij = 0; thus if no load is put on (i, j) then
j cannot be reached trough i.

Given an integer solution (y, x), if any, to the above ILP, the values of variables y imply
that each module index i ∈ {1, . . . , n} − {r} is reached from the source s. Then, by the
construction of the digraph GBG

, each module index i ∈ {1, . . . , n} is reached from module
index r. Furthermore, by the relation between variables x and y (constraint (9)), we know
that each module index i ∈ {1, . . . , n} gets incoming load from at least one of its neighbors.

▷ Claim 5. The subgraph Gx of GBG
with vertex set {1, . . . , n} and arc set {(i, j)| xij ≥ 1}

contains a directed path from r to any other module index .

We stress that the constraints involving variables y only assure that a spanning tree in Gx

exists. A more sophisticate approach is necessary to find a spanning tree of H with branch
vertices in BG only.

3.2 The spanning tree construction
Our algorithm constructs a spanning tree T of H with |BG| branch vertices, one in each
V (Gi) with i ∈ BG. To this aim, it uses the values of variables x and the path-spider cover
Pspi(Gi) for i ∈ BG and the partition into disjoint paths Pham(Gi) for i ̸∈ BG.

Denote by In(i) the set of the module indices for which there exist arcs in Gx toward i,
that is, In(i) = {j |xji ≥ 1}, and by

αi =
∑

j:j∈In(i)

xji (11)

the number of vertices of V (Gi) whose parent in T is a vertex outside V (Gi).
Let Pi = {P i

1, P i
2, . . . , P i

αi
} be

the path-spider cover of Gi obtained from those in Pspi(Gi) by removing αi − spi(Gi)
arbitrary edges in case i ∈ BG (notice that by constraint (4), it holds αi ≥ spi(Gi)), or
the partition of Gi into disjoint paths obtained from those in Pspi(Gi) by removing
αi − ham(Gi) arbitrary edges in case i ̸∈ BG (notice that by (4), it holds αi ≥ ham(Gi)).

Furthermore, denote by

f(Pi) = {f(P i
1), f(P i

2), . . . , f(P i
αi

)}

the sets of the first end-points in the partition Pi and by

s(Pi) = {s(P i
1), s(P i

2), . . . , s(P i
αi

)}
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the sets of the second end-points in Pi. In case i ∈ BG, we assume that P i
1 ∈ Pi is the spider

and f(P i
1) = s(P i

1) is the center in P i
1.

We also denote by

βi =
{∑

ℓ:i∈In(ℓ) xiℓ if i ̸∈ BG

1 if i ∈ BG

(12)

the number of vertices of V (Gi), that will be the parent of some vertex in
⋃

ℓ:i∈In(ℓ) V (Gℓ).
Our algorithm ensures that the αi vertices in f(Pi) are the vertices in Gi whose parent

in T is outside V (Gi), and that βi vertices among those in s(Pi) are chosen to be parents of
vertices outside V (Gi). Notice that by Claim 5 (αi ≥ 1) and constraint (6), it follows that
αi ≥ βi for each i ∈ {1, . . . , n}.

Figure 2 shows the partition of graph Gi (whose vertices are grouped in the dotted circle)
into αi disjoint paths if i ̸∈ BG and into a spider plus αi − 1 disjoint paths if i ∈ BG.

P i
1 P i

j P i
αi P i

1 P i
j P i

αii ∈ BGi �∈ BG

Gi

Figure 2 The vertices of graph Gi, grouped in the dotted circle, as partitioned in αi disjoint
paths if i ̸∈ BG and in a spider plus αi − 1 disjoint paths if i ∈ BG. Vertex f(P i

j ) is the only vertex
in P i

j whose parent in T is outside Gi and vertex s(P i
j ) is the only vertex in P i

j that can have a
children in T outside Gi.

The algorithm TREE constructs a spanning tree of H = G(G1, . . . , Gn) iteratively by
exploring unexplored vertices of H, until possible, and maintains a main subtree T and a
forest whose roots are progressively connected to T to assemble the spanning tree. The
process stops when all the vertices of H are explored. A similar idea was used in [15] in the
special case in which each graph Gi is either a clique or an independent set.

The algorithm uses a queue Q to enqueue the explored vertices and maintains a set R of
the roots of trees of explored vertices that wait to be connected to the main tree T . The
forest structure is described through the parent function π.

At the beginning the set R is empty. The exploration starts with the center f(P r
1 ) of the

spider in the path-spider cover of Gr (recall that by construction r ∈ BG); the procedure
EXPLORE(f(P r

1 )) carries out the construction of the main tree T rooted at f(P r
1 ) and

marks as explored all the reached vertices (adding them to the set Ex). Clearly, for each
explored vertex v there is a path in T joining f(P r

1 ) to v.
However, it can occur that some of the vertices have not been explored (i.e., V (H)−Ex ≠

∅). In such a case an explored vertex w ∈ f(Pj) ∩ Ex is chosen so that it belongs to some
V (Gj) which also contains at least a unexplored vertex u ∈ (f(Pj) − Ex) − R which is able
to explore at least one unexplored neighbour outside Gj , that is, βj ≥ 1 (the existence of
such a set V (Gj) is assured by Lemma 7). By using (1) and knowing that the parents of
vertices in f(Pj) are outside V (Gj), the algorithm makes:

the parent of w (recall that w is explored) become the parent of u, and
w (the root of a subtree of explored vertices) is added to R and removed from Ex (this
allows to later explore w and add it, together with its subtree, to the main tree T ), and
EXPLORE(u) is called to start a new exploration from u.
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Notice that the algorithm modifies the forest by assigning to u the parent of w and only later
(after adding u and some descendants of u) adding again the subtree rooted in w to the main
tree T . This allows connecting new vertices in V (H) − Ex to the main tree T ; the particular
choice of u and w will be shown to avoid the possibility that the algorithm fails, due to the
fact that no arc can be added to T without forming a cycle or creating an extra branch
vertex. The process is iterated as long as there are unexplored vertices, i.e. V (H) − Ex ̸= ∅.

The procedure EXPLORE(u) starts exploring u = f(P j
k ) together with the whole P j

k
∗,

then putting in Q only the vertex s(P j
k ) and successively padding the main tree T (recall

that (unless u = f(P r
1 )) the parent of u is a vertex already in T , thus we construct a

subtree rooted at u spanning on all the newly explored vertices). EXPLORE(u) uses for
each module index i the values of αi and βi that are initially defined as in (11) and (12), and
the partition Pi = {P i

1, P i
2, . . . , P i

αi
} of Gi. The value αi =

∑
j:j∈In(i) xji counts the number

of vertices of V (Gi) that must be assigned a parent outside V (Gi), they are the vertices in
f(Pi) = {f(P i

1), f(P i
2), . . . , f(P i

αi
)}; in particular, xji vertices of f(Pi) have to be explored

by vertices in V (Gj), for j ∈ In(i). The value βi counts the number of vertices of V (Gi)
that have to explore other vertices in some other V (Gℓ), for ℓ : i ∈ In(ℓ); in particular,

if i ∈ BG then exactly βi = 1 vertex in V (Gi), that is s(P i
1) (i.e., the center of the spider

P i
1), becomes a branch vertex in T : it is set as the parent of xiℓ unexplored vertices in

f(Pℓ) for each ℓ such that xiℓ ≥ 1 (i.e., i ∈ In(ℓ)), and
if i ̸∈ BG then βi =

∑
ℓ:i∈In(ℓ) xiℓ vertices in s(Pi) = {s(P i

1), s(P i
2), . . . , s(P i

αi
)} are

chosen and each one becomes the parent of one unexplored vertex in f(Pℓ).
Recall that, by the ILP constraints, we know that αi ≥ βi.

The vertices in s(Pi) for i ∈ {1, . . . , n} are the only one to be enqueued in Q. When a
vertex v ∈ s(Pi) is dequeued from Q in EXPLORE(u) then the value of βi is decreased by
one if v explores (i.e., if βi ≥ 1). In this case, for each explored vertex f(P ℓ

h), with i ∈ In(ℓ),
the whole P ℓ

h is also explored. Furthermore, the value αℓ is decreased by the number of
vertices in s(Pℓ) that v explores, for i ∈ In(ℓ). Hence, at the beginning of each iteration of
the while loop in EXPLORE(u) the values of αi represents the number of vertices in f(Pi)
that remain to be explored while βi is the number of vertices in s(Pi) that already have
to explore. Note that when a vertex v ∈ s(Pi) is dequeued from Q in EXPLORE(u), with
u ̸= f(P r

1 ), and βi ≥ 1, the algorithm checks if the neighbour v′ ∈ f(Pℓ), that v explores, is
in R (i.e., v′ is a root of a tree in the forest). In this case v′, with the tree rooted at it, is
connected to the main tree T (since it was already explored in the past).

▶ Lemma 6. At the end of EXPLORE(f(P r
1 )) the function π describes a tree, rooted at

f(P r
1 ), spanning the set Ex ⊆ V (H) of explored vertices. The vertices in B ∩ Ex are the

branch vertices.

Proof. When EXPLORE(f(P r
1 )) is called, the whole spider P r

1 is explored (i.e. Ex = Ex∪P r
1

and so added to T ) and its center s(P r
1 ) is enqueued in Q. After that, each time a vertex

v ∈ s(Pi) is dequeued from Q (recall, v ∈ Ex, i.e., it is an explored vertex), the algorithm
can either stop its exploration (i.e., βi = 0) or explore one o more unexplored neighbor of v

together with the path/spider it belongs. Indeed, we can prove that v has the needed number
of unexplored neighbors. If βi = 0 then v is a leaf in T ; hence, we only have to consider the
case βi ≥ 1. If i ̸∈ BG then v has βi ≥ 1 unexplored neighbors and one of them, say f(P ℓ

h)

∗ Assume that when in the algorithm P ∈ Pj is explored, that is Ex = Ex ∪ P , then the parent function
π is set going through all the vertices in P from f(P ) to s(P ) in case P is a path, and from the center
f(P ) = s(P ) to the leaves in case P is a spider.
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Algorithm 1 TREE(H, G1, . . . , Gn, r, BG).

1: R = ∅, B = ∅, Ex = ∅
2: π(u) = nhil for each u ∈ V (H)
3: EXPLORE(f(P r

1 ))
4: while V (H) − Ex ̸= ∅ do
5: - Let Gj be any graph s.t. ((f(Pj) − Ex) − R ̸= ∅ ̸= f(Pj) ∩ Ex) and βj ≥ 1
6: - Let w ∈ f(Pj) ∩ Ex and u ∈ (f(Pj) − Ex) − R

7: - Set π(u) = π(w), Ex = Ex − {w}, R = R ∪ {w}
8: - EXPLORE(u)
9: end while

10: return π, B

for i ∈ In(ℓ), can be added to T as child of v . If i ∈ BG then v is the first vertex of V (Gi)
that explores and xiℓ vertices in f(Pℓ) are unexplored and can be added to T as children of
v, for each ℓ such that xiℓ ≥ 1. Hence v becomes a branch vertex in T and is put in B. Since
R = ∅ (i.e, no tree is in the forest), each time a neighbor of v is explored, say f(P ℓ

h), then the
whole path/spider P ℓ

h is added to T and s(P ℓ
h) is enqueued in Q. Hence, any explored vertex

has f(P r
1 ) has ancestor, i.e., the function π describes a path joining any explored vertex to

f(P r
1 ). Noticing that no vertex can be enqueued twice in Q (since any enqueued vertex is

also marked as explored), we have that the function π does not create cycles. ◀

We can also prove the following result.

▶ Lemma 7. Let Ex be the set of explored vertices at the beginning of any iteration of the
while loop in algorithm TREE. If V (H) − Ex ≠ ∅ then there exists a module index j such
that (f(Pj) − Ex) − R ̸= ∅ ̸= f(Pj) ∩ Ex and βj ≥ 1.

▶ Lemma 8. After each call of EXPLORE(u) the function π describes a forest spanning the
vertices in Ex ∪ R of explored vertices and consisting of |R| + 1 trees respectively rooted at
f(P r

1 ) and at the vertices in R. The vertices in B are the only branch vertices in the forest.

Proof. When EXPLORE(u) is called, the function π describes a forest, spanning the current
set Ex ∪ R, whose roots are the vertices in {f(P r

1 )} ∪ R and where R ⊂ V (H) − Ex. We
notice that by Lemma 6, this is true the first time EXPLORE is called, that is, after the call
to EXPLORE(f(P r

1 )) (at that time R = ∅).
We prove that the claim is also true at the end of each call to EXPLORE(u). When

EXPLORE(u) is called, Q is empty; vertex u is explored (i.e. it is added to Ex) and enqueued
in Q. Then EXPLORE(u) proceeds, exactly as in EXPLORE(f(P r

1 )), dequeueing vertices
from Q and exploring their unexplored neighbors, so constructing a subtree of the main tree
T rooted at u described by function π. The only difference with EXPLORE(f(P r

1 )) is when
one of the vertices explored is v′ ∈ R. Vertex v′ ∈ R is removed from R (see lines 11, 22)
and connected to the main tree T through the function π and marked as explored exactly as
any other explored vertex. However v′ is not enqueued in Q since it has already explored its
neighbors; hence, v′ is connected to T together with its subtree of explored vertices. ◀

We are now able to prove the following result.

▶ Lemma 9. The algorithm TREE returns a spanning tree of H, described by function π,
with branch vertex set B.

Proof. By using Lemma 6 we know that algorithm TREE constructs, through procedure
EXPLORE(f(P r

1 )), a main tree T , described by π. In case T does not span all the vertices
in V (H) then, Lemma 7 assures that the algorithm finds a graph Gj with an explored vertex
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Algorithm 2 EXPLORE(u).

1: Let Q be an empty queue
2: Let u = f(P j

k )
3: Ex = Ex ∪ P j

k

4: Q.enqueue(s(P j
k ))

5: while Q ̸= ∅ do
6: v = Q.dequeue

7: Let v ∈ s(Pi)
8: if i /∈ BG and βi ≥ 1 then
9: - Let f(P ℓ

h) ∈ f(Pℓ) − Ex for some ℓ s.t. i ∈ In(ℓ)
10: - π(f(P ℓ

h)) = v

11: if f(P ℓ
h) ̸∈ R then

12: - Ex = Ex ∪ P ℓ
h

13: - Q.enqueue(s(P ℓ
h))

14: else R = R − {f(P ℓ
h)}

15: end if
16: - αℓ = αℓ − 1
17: - βi = βi − 1
18: else if i ∈ BG and βi = 1 then
19: - B = B ∪ {v}
20: for each ℓ s.t. i ∈ In(ℓ) do
21: - Let Aiℓ ⊆ f(Pℓ) − Ex s.t. |Aiℓ| = xiℓ

22: - αℓ = αℓ − xiℓ,
23: for each f(P ℓ

h) ∈ Aiℓ do
24: - π(f(P ℓ

h)) = v

25: if f(P ℓ
h) ̸∈ R then

26: -Ex = Ex ∪ P ℓ
h

27: -Q.enqueue(s(P ℓ
h))

28: else R = R − {f(P ℓ
h)}

29: end if
30: end for
31: end for
32: - βi = βi − 1
33: end if
34: end while

w ∈ f(Pj) ∩ Ex and an unexplored vertex u ∈ (f(Pj) − Ex) − R. Disconnecting w (together
with its subtree) from the main tree T , the algorithm let w become one of the roots of trees
in R. Furthermore, since the parent of w in T is a vertex outside V (Gj) and, since u and w

share the same neighborhood outside Gj (by (1)), the algorithm let u be connected to the
vertex that was the parent of w in T (thus, connecting u to T ). Considering that u ̸∈ R and
βj ≥ 1, the algorithm starts a new exploration from u (recall that u ∈ f(Pj) − Ex) calling
EXPLORE(u). By Lemma 8, this allows padding T with the subtree rooted a u. The lemma
follows by iterating the above procedure until no unexplored vertex exists in V (H). ◀
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3.3 The algorithm complexity
Summarizing, given the triple (ham(Gi), spi(Gi), |V (Gi)|) together with Pham(Gi) and
Pspi(Gi), for each i ∈ {1, . . . , n}, the proposed method to construct the spanning tree
of H = G(G1, . . . , Gn) works as follows.
For each BG ⊆ {1, . . . , n} with |BG| ≥ 1, selected in order of increasing size, the algorithm
executes the following steps:

solve the corresponding ILP
if a solution exists for the current set BG, use algorithm TREE to construct a spanning
tree of H = G(G1, . . . , Gn) with |BG| branch vertices.

Jansen and Rohwedderb [17] have recently showed that the time needed to find a feasible
solution of an ILP with p integer variables and q constraints is O(√q∆)(1+o(1))q + O(qp),
where ∆ is the largest absolute value of any coefficient in the ILP. Denoted by m the number
of edges of G, our ILP has q = 3n + 2m + 1 constraints, p = 2(m + 1) variables and ∆ = n.
Hence the time to solve it is O(n

√
n + m)(1+o(1))(3n+2m+1) +O(n(n+m)). Using the solution

(y, x) of the ILP, the algorithm TREE returns the spanning tree of H in time O(|V (H)|2).
Overall, the algorithm requires time

2n[O(n
√

n + m)(1+o(1))(3n+2m+1) + O(n(n + m))] + O(|V (H)|2).

Recall that n ≤ mw, and therefore m ≤ mw2.

3.4 Optimality
It is possible to show that if no set BG ⊆ {1, . . . , n}, of size k exists for which the ILP
admits a solution then any spanning tree of H = G(G1, . . . , Gn) has b(H) ≥ k + 1 branch
vertices. This allows to say that the optimal spanning tree in H corresponds to the smallest
set BG ⊆ {1, . . . , n} for which the ILP admits a solution, if any. Namely, we can prove the
following result.

▶ Lemma 10. Given the graphs G1, . . . , Gn and ham(Gi), spi(Gi), |V (Gi)| for each i =
1, . . . , n, if there exists a spanning tree in H = G(G1, . . . , Gn) with k ≥ 1 branch vertices
then there exist a set BG ⊆ {1, . . . , n} with |BG| = k, for which ILP admits a solution (x, y).

4 The triple and partition computation

In this section we show how to compute the record of data for any vertex Ĥ = Ĝ(Ĝ1, . . . , Ĝn̂)
of the parse-tree. Namely, given the triple (ham(Ĝi), spi(Ĝi), |V (Ĝi)|), Pham(Ĝi) and Pspi(Ĝi),
for each i = 1, . . . , n̂, we have to compute

the triple (ham(Ĥ), spi(Ĥ), |V (Ĥ)|) together with Pham(Ĥ) and Pspi(Ĥ),

Clearly, |V (Ĥ)| =
∑n̂

i=1 |V (Ĝi)|. We show below how to compute spi(Ĥ) and Pspi(Ĥ),
and also ham(Ĥ) and Pham(Ĥ),

For a graph Ĥ and an integer ℓ, we denote by Ĥ ⊗ ℓ the graph obtained from Ĥ by
adding ℓ vertices and connecting them to every vertex in Ĥ; formally, Ĥ ⊗ ℓ has vertex set
V (Ĥ) ∪ {v1, . . . , vℓ} and edge set E(Ĥ) ∪ {{u, vj} | u ∈ V (Ĥ), 1 ≤ j ≤ ℓ}. We notice that,
since Ĥ = Ĝ(Ĝ1, . . . , Ĝn̂) then the graph Ĥ ⊗ ℓ, for each 2 ≤ ℓ ≤ |V (Ĥ)|, is equal to the
graph Ĝ′(Ĝ1, . . . , Ĝn̂, Iℓ) where Ĝ′ is the graph obtained from Ĝ by adding the vertex n̂ + 1
(i.e., V (Ĝ′) = {1, . . . , n̂, n̂ + 1}) and making it adjacent to all the other vertices of Ĝ (i.e.,
E(Ĝ′) = {(i, n̂ + 1) | 1 ≤ i ≤ n̂}), and Iℓ is the independent set with ℓ vertices {v1, . . . , vℓ}.
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4.1 Computing spi(Ĥ) and Pspi(Ĥ)

In order to compute the values spi(Ĥ) and Pspi(Ĥ), we first need a preliminary result.

▶ Proposition 11. Let Ĥ be a graph and

s(Ĥ) = min{ℓ | Ĥ ⊗ (ℓ − 1) has a spanning spider with center in Ĥ}.

Then spi(Ĥ) = s(Ĥ).

Proof. We first show that s(Ĥ) ≤ spi(Ĥ). Let P1, P2, . . . , Pspi(Ĥ) be the path-spider cover
of Ĥ and let f(P1) be the center of spider P1 and, f(Pi) be the first end-point of path Pi for
i = 2, . . . , spi(Ĥ). Hence, the graph Ĥ ⊗ (spi(Ĥ) − 1) contains the spider with center f(P1)
obtained connecting f(P1) to the vertex i and then connecting vertex i to f(Pi) for each for
i = 1, . . . , spi(Ĥ)−1. Now, we prove that spi(Ĥ) ≤ s(Ĥ). Let S be a spider in Ĥ ⊗(s(Ĥ)−1)
with the center u ∈ V (Ĥ). Then, removing from S the vertices in {1, . . . , s(Ĥ) − 1} we have
a path-spider cover with center u and s(Ĥ) − 1 path pairwise disjoint. ◀

Recall that the graph Ĥ ⊗ (ℓ − 1) is equal to Ĝ′(Ĝ1, . . . , Ĝn, Iℓ−1) and notice that

ham(Iℓ−1) = spi(Iℓ−1) = ℓ − 1 and Pham(Iℓ−1) = Pspi(Iℓ−1) = Iℓ−1.

We can then take into account the values ham(Ĝi), spi(Ĝi), |V (Ĝi)|, and the sets
Pham(Ĝi) and Pspi(Ĝi), for all i ∈ {1, . . . , n̂}. For each BĜ′ = {j}, for j = 1, . . . , n̂, we can
follow the lines of Section 3.1 to verify whether the corresponding ILP is feasible. In the
positive case, following the construction given in Section 3.2, one can obtain a spider of
Ĥ ⊗ (ℓ − 1) centered in V (Ĝi)

The minimum ℓ for which the above occurs, gives spi(Ĥ) as well as the spider T covering
Ĥ ⊗ (spi(Ĥ) − 1) with center in V (Ĥ). The arguments used in Section 2.3 allows to obtain
the time complexity of this computation (here, m̂ represents the number of edges of Ĝ)

spi(Ĥ) n̂ [O(n̂
√

n̂ + m̂)(1+o(1))(3n̂+2m̂+1) + O(n̂(n̂ + m̂))] + O(|V (Ĥ)|2).

Clearly, the subgraph of T induced by V (Ĥ) returns the path-spider cover Pspi(Ĥ) of Ĥ,
thus concluding the proof of Theorem 3.

4.2 Computing ham(Ĥ) and Pham(Ĥ)

Using an approach similar to the one in the proof of Proposition 11, we can prove the
following result.

▶ Proposition 12. Let Ĥ be a graph and

h(Ĥ) = min{ℓ | Ĥ ⊗ ℓ has a hamiltonian path with an end-point in {v1, . . . , vℓ}}.

Then ham(Ĥ) = h(Ĥ).

By Proposition 12, the value ham(Ĥ) is equal to the minimum positive integer ℓ with
1 ≤ ℓ ≤ |V (Ĥ)| such that the graph

Ĥ ⊗ ℓ has a hamiltonian path with an end-point not in {v1, . . . , vℓ}. (13)

To verify if graph Ĥ ⊗ ℓ has a hamiltonian path and eventually find it, we can proceed
as in Section 3. Indeed, considering that Ĥ ⊗ ℓ = Ĝ′(Ĝ1, . . . , Ĝn̂, Iℓ), and that ham(Iℓ) = ℓ

and Pham(Iℓ) = Iℓ, then given the values ham(Ĝi), |V (Ĝi)| and the set Pham(Ĝi), for each
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i ∈ {1, . . . , n̂}, we can consider the corresponding ILP as in Section 3.1 choosing BĜ′ = ∅ and
r = n̂ + 1 (i.e., Ĝr = Iℓ). If the ILP admits a solution, we can construct the hamiltonian path
P of Ĥ ⊗ ℓ = Ĝ′(Ĝ1, . . . , Ĝn̂, Iℓ) following the construction in Section 3.2 choosing any vertex
in Ĝr = Iℓ as end-point (i.e., root). Finally, we notice that everything was proved in Section
3.2 holds also in this case (i.e., Ĝ′(Ĝ1, . . . , Ĝn̂, Iℓ), BĜ′ = ∅ and Ĝr = Iℓ) and that, as in
Section 3.4, it can be proved that if there exists a hamiltonian path of Ĝ′(Ĝ1, . . . , Ĝn̂, Iℓ) with
an end-point in Iℓ then exists a solution (x, y) of the corresponding ILP (the same arguments
used in the proof of Lemma 10 holds rooting the hamiltonian path at the end-point in Iℓ).

The minimum ℓ for which (13) occurs, gives ham(Ĥ) and also the hamiltonian path P of
Ĥ ⊗ ham(Ĥ) with one end-point in Iham(Ĥ). The arguments used in Section 2.3 allows to
have the time complexity of this computation

ham(Ĥ) [O(n̂
√

n̂ + m̂)(1+o(1))(3n̂+2m̂+1) + O(n̂(n̂ + m̂))] + O(|V (Ĥ)|2).

Obviously, the subgraph of P induced by V (Ĥ) will return the partition in ham(Ĥ)
disjoint paths of Ĥ, Pham(Ĥ).

We stress that ham(Ĥ) = 1 iff the graph Ĥ has a hamiltonian path.
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Abstract
What is the Σ2

3-circuit complexity (depth 3, bottom-fanin 2) of the 2n-bit inner product function?
The complexity is known to be exponential 2αnn for some αn = Ω(1). We show that the limiting
constant α := lim sup αn satisfies

0.847... ≤ α ≤ 0.965... .

Determining α is one of the seemingly-simplest open problems about depth-3 circuits. The question
was recently raised by Golovnev, Kulikov, and Williams (ITCS 2021) and Frankl, Gryaznov, and
Talebanfard (ITCS 2022), who observed that α ∈ [0.5, 1]. To obtain our improved bounds, we
analyse a covering LP that captures the Σ2

3-complexity up to polynomial factors. In particular, our
lower bound is proved by constructing a feasible solution to the dual LP.
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1 Introduction

A Σ3-circuit is an unbounded-fanin depth-3 boolean circuit with an ∨-gate at the top. That
is, the circuit computes an OR of CNFs. A foremost open problem in circuit complexity is
to prove a lower bound of 2ω(

√
n) on the Σ3-circuit complexity of an explicit n-bit boolean

function. Current techniques can prove at best a bound of 2Ω(
√

n) [7, §11].
For the more restricted class of Σk

3-circuits that have fanin k at the bottom (that is, ORs
of k-CNFs), we can hope for improved bounds. For example, the famous satisfiability coding
lemma [14] implies that the n-bit parity function has Σk

3-circuit complexity at least 2n/k

and this is tight up to polynomial factors (for constant k). Even stronger, for k = 2, Paturi,
Saks, and Zane [12] exhibit a function with near-maximal Σ2

3-complexity 2n−o(n). No such
near-maximal lower bounds are currently known for k = 3.

Inner product. A natural function whose Σk
3-complexity remains unknown (up to poly(n)

factors) is the inner product function IPn, defined on 2n-bit inputs (x, y) ∈ ({0, 1}n)2 by

IPn(x, y) := ⟨x, y⟩ mod 2.

Recently, Golovnev, Kulikov, and Williams [2] asked to determine the Σk
3-complexity of IPn

in case k = 3. Curiously enough, Frankl, Gryaznov, and Talebanfard [1] point out that
the problem is nontrivial already in case k = 2, and they obtained partial results towards
resolving it. It has been known that the Σ2

3-complexity of IPn is between 2n/2 and 2n [14, 2].
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1.1 Our result
Our main result is to prove improved upper and lower bounds for inner product.

▶ Theorem 1 (Main result). Write the Σ2
3-complexity of IPn as 2αnn for some αn ≥ 0. Then

α := lim supαn ∈ [0.847..., 0.965...].

It remains an intriguing problem to determine α precisely. It is surprising (for us, at least)
that neither of the previous bounds α ∈ [0.5, 1] were tight, especially because the problem is
seemingly one of the simplest open questions about depth-3 circuits.

Studying exact exponents of Σk
3-circuit complexities is a relatively unexplored research

direction, and we believe it could foster the development of new lower bound techniques.
In particular, a major motivation for this comes from depth reduction results. For ex-
ample, in case k = 16, Golovnev, Kulikov, and Williams [2] have shown that proving near-
maximal 2n−o(n) bounds for Σ16

3 -circuits would already yield new improved lower bounds for
unrestricted (unbounded depth) circuits. Their result extends classical connections discovered
by Valiant [15]; see also the monograph [16, §3].

1.2 Overview of techniques
To obtain our improved bounds on α in Theorem 1 – both upper and lower bounds – we
study a fractional covering problem, formulated as a linear program (LP), that captures
the Σ2

3-circuit complexity up to poly(n) factors.
To our knowledge, LPs have not been widely employed in analysing depth-3 circuits. They

are, however, routinely used to prove strong lower bounds in the related area of communication
complexity [9]. Many such LP-based methods are catalogued by Jain and Klauck [6]. Moreover,
Lee and Shraibman [10] give a monograph-length treatment on how to use LP duality to
prove communication lower bounds. In one of the earliest examples, Karchmer, Kushilevitz,
and Nisan [8] characterised nondeterministic communication complexity via a fractional
covering problem. The formulation we use is a straightforward adaptation of this for depth-3
circuits. A similar formulation also appeared in the work of Hirahara [4] that connects
depth-3 complexity with one-sided CNF approximations.

Covering LP. The size of a Σ2
3-circuit is determined (up to O(n2) factors) by the fanin of

the top ∨-gate. Suppose a circuit with top-fanin m computes a function f : {0, 1}n → {0, 1}.
We can view the circuit as expressing the set of 1-inputs f−1(1) as a union of m sets,

f−1(1) =
⋃

i∈[m]

ϕ−1
i (1), (1)

where each ϕ−1
i (1) is the set of inputs accepted by a 2-CNF formula ϕi. The least top-fanin

needed to compute f is then captured by the optimal integer solutions to the following
covering LP. In this LP, we assign a fractional weight wϕ ∈ [0, 1] for each 2-CNF ϕ that is
consistent with f , meaning that ϕ(x) ≤ f(x) for every input x ∈ {0, 1}n. We let Φ denote
the set of all 2-CNFs consistent with f .

min
∑

ϕ∈Φ wϕ

subject to
∑

ϕ∈Φ wϕϕ(x) ≥ 1, ∀x ∈ f−1(1)
wϕ ∈ [0, 1], ∀ϕ ∈ Φ

(LP)
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A classic result of Lovász [11] says that the integrality gap of a covering LP is small.

▶ Lemma 2 (Lovász [11]). Let Opt and OptZ denote the value of (LP) optimised over
fractional solutions (wϕ ∈ [0, 1]) and integral solutions (wϕ ∈ {0, 1}), respectively. Then

Opt ≤ OptZ ≤ O(n) · Opt.

Consequently, to determine the Σ2
3-complexity of f = IPn we only need to solve the

fractional (LP). We will use the (LP) in Section 2 to construct circuits for IPn that
witness the upper bound α ≤ 0.965....

Dual LP. A common method to prove a depth-3 lower bound is to estimate the number of
accepting inputs for any consistent CNF, say, by maxϕ∈Φ |ϕ−1(1)| ≤ C, and then conclude
that the top-fanin must be at least |f−1(1)|/C. Such arguments are standard in the top-down
circuit lower bound literature [3, 14, 12, 13, 5].

An important generalisation of this method is to first choose a hard distribution D over
the 1-inputs f−1(1) and then measure the size of ϕ−1(1) relative to D. If we can show
maxϕ∈Φ Prx∼D[ϕ(x) = 1] ≤ p, then the top-fanin must be at least 1/p. Indeed, the following
optimisation problem captures the best lower bound provable with this method.

max 1/p
subject to

∑
x∈f−1(1) D(x)ϕ(x) ≤ p, ∀ϕ ∈ Φ∑
x∈f−1(1) D(x) = 1,

D(x) ∈ [0, 1], ∀x ∈ f−1(1)

(Dual LP)

This program is not written in standard LP format as we are seemingly optimising
a nonlinear function. However, it is equivalent1 to max

∑
x A(x) s.t.

∑
x A(x)ϕ(x) ≤ 1

and A(x) ≥ 0, which is the canonical dual to (LP). Hence, by strong duality, we can always
prove a tight lower bound (up to polynomial factors) on depth-3 complexity by finding the
right hard distribution D.

Hard distribution for IP. What hard distribution D should we choose to prove a strong
lower bound for IPn? If we choose D to be the uniform distribution over IP−1

n (1), then prior
work [1, Thm 28] showed that this only yields the bound α ≥ log 4

3 = 0.415.... If we choose D
by sampling a pair (x, 1n) where x is uniform random in {0, 1}n, then we have effectively
reduced IPn to n-bit parity and we obtain α ≥ 0.5 [2], which is tight for parity.

To get our improved lower bound on α, we analyse a more general distribution.

(Section 3) We consider a distribution where the 2n input bits are iid, that is, D is the
binomial distribution with some parameter p ∈ (0, 1). (Note that while D is not supported
on IP−1

n (1) it does place a constant probability mass on it.) We prove a structure lemma
for consistent 2-CNFs and characterise those that have the highest acceptance probability
under D. Optimising the choice of p, we will obtain α ≥ log 9

5 = 0.847....

1 If D, p is feasible for (Dual LP), then A(x) := D(x)/p is feasible and has the same objective function
value in the other program. In the other direction, set p := 1/

∑
y

A(y) and D(x) := p · A(x).
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1.3 Discussion and open problems

The challenge in proving a better lower bound in Theorem 1 is that our techniques rely
heavily on the hard distribution having independence between the n coordinates. One way
we could try to improve the lower bound is to consider a slightly more general coordinate-wise
iid distribution. That is, we choose a distribution µ over one coordinate pair (xi, yi) ∈ {0, 1}2

and then define a product distribution by D := µn := µ × · · · × µ. We carried out this
approach (using computer-aided calculations) only to find out that we get no improvement
this way: the hardest D is still the bit-wise iid that we consider in Section 3. A candidate for
the absolute hardest distribution (not necessarily coordinate-wise iid) is merely a symmetric
distribution that is invariant under permuting the n coordinates. We leave it as an open
problem to analyse such non-iid distributions.

Another open problem that could be amenable to an LP-based attack is to determine
the Σk

3-circuit complexity of inner product in case k = 3, as was originally asked by Golovnev,
Kulikov, and Williams [2]. The best lower bound known is 2n/3 [14], and one could hope
to show an improved lower bound even relative to an iid distribution. Here the obvious
challenge is that 3-CNFs are notoriously much more difficult (even NP-hard) to analyse than
2-CNFs. Our overall approach in this paper is still applicable even for k > 2. Namely, one
needs to “merely” prove an analogue of our structure lemma (Lemma 7) for k-CNFs.

2 Upper bound

In this section, we prove the upper bound α ≤ 0.965... as claimed in Theorem 1. The circuit
will be constructed in two parts. To explain this, we denote, for an input (x, y) ∈ {0, 1}2n

and a 2-bit pattern s ∈ {0, 1}2, the fraction of occurrences of this pattern by

ps(x, y) := 1
n |{i ∈ [n] : (xi, yi) = s}| .

We use one Σ2
3-circuit to accept every input (x, y) ∈ IP−1

n (1) with p11(x, y) ≤ p where p is a
carefully chosen threshold, and another Σ2

3-circuit to accept those inputs with p11(x, y) ≥ p.
The following two lemmas (proved in Sections 2.1 and 2.2) record the two types of circuits

we will construct. To state these lemmas, recall that a circuit C is consistent with IPn

if C(x, y) ≤ IPn(x, y) for all inputs (x, y). We let H(p) := −p log p− (1 − p) log(1 − p) denote
the binary entropy function. Moreover, we let H(X) denote the usual Shannon entropy of a
random variable X. Finally, for p ∈ [0, 1], we define a random variable Xp ∈ {0, 1}2 such
that Pr[Xp = 11] = p and Pr[Xp = s] = (1 − p)/3 for s ∈ {00, 01, 10}.

▶ Lemma 3. For every p ∈ [0, 1
2 ] there exists a Σ2

3-circuit of size 2nH(p)+o(n) that is consistent
with IPn and that accepts all (x, y) ∈ IP−1(1) with p11(x, y) ≤ p.

▶ Lemma 4. For every p ∈ [ 1
4 , 1] there exists a Σ2

3-circuit of size 2 1
2 nH(Xp)+o(n) that is

consistent with IPn and that accepts all (x, y) ∈ IP−1(1) with p11(x, y) ≥ p.

The final Σ2
3-circuit for IPn is the OR of the two Σ2

3-circuits above. It is easy to see that
using any constant p ∈ ( 1

4 ,
1
2 ) we get a circuit of size 2βn with β < 1. We can further optimise

the choice of p by equating the two circuit size expressions, solving for p numerically (using
any numerical computation software), which comes to p := 0.3909..., and then plugging this
value of p into the size expressions to get a circuit of size 20.965...·n+o(n), as desired.

It remains to prove Lemmas 3 and 4, which we do in the rest of this section.
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2.1 Proof of Lemma 3
In this lemma we focus on finding efficient Σ2

3-circuits accepting inputs (x, y) ∈ IP−1(1) with
a small value of p11(x, y) ≤ p ≤ 1/2. Given a subset I ⊆ [n], define the brute-force CNF by

ϕ
(I)
BF :=

∧
i∈I

(xi ∧ yi) ∧
∧

i∈[n]\I

(¬xi ∨ ¬yi).

Note that ϕ(I)
BF accepts an input (x, y) iff I equals the set of all i such that (xi, yi) = (1, 1).

Hence, to accept every input with p11(x, y) ≤ p, our Σ2
3-circuit will consider all suitable I:

C :=
∨

I⊆[n]
|I|≤pn
|I| odd

ϕ
(I)
BF . (2)

The size of C is at most
(

n
≤pn

)
·O(n) where

(
n

≤pn

)
:=

∑pn
i=0

(
n
i

)
can be estimated from above

via Stirling’s approximation by 2nH(p)+o(n) for all p ≤ 1/2. Finally, it is clear from the
construction that C is consistent with IPn. This concludes the proof of Lemma 3. ◀

2.2 Proof of Lemma 4
In this lemma we focus on finding efficient Σ2

3-circuits accepting inputs (x, y) ∈ IP−1
n (1) with

a large value of p11(x, y) ≥ p ≥ 1/4. To illustrate our idea, we first construct a circuit for a
simpler related function, and then explain how to modify it to get circuits for IPn.

Simple warm-up circuit. We first describe a circuit that computes the following partial
function (which is consistent with ¬IPn, but we will address this later):

fn(x, y) :=


0 if n · p11(x, y) is odd,
1 if n · ps(x, y) is even for all s ∈ {0, 1}2, and p11(x, y) ≥ p,

∗ otherwise.

The interesting case here is when n is even, as otherwise fn(x, y) ∈ {0, ∗} for all (x, y). Let
M ⊆

([n]
2

)
:= {e ⊆ [n] : |e| = 2} be a perfect matching of [n] (that is, partition of [n] into

pairs). We define the collision CNF associated with M by

ϕ
(M)
Coll :=

∧
{i,j}∈M

(xi ↔ xj) ∧ (yi ↔ yj).

This is a 2-CNF since we can write an equivalence as a ↔ b ≡ (a ∨ ¬b) ∧ (¬a ∨ b). Note that
a collision CNF accepts iff for every pair {i, j} ∈ M we have (xi, yi) = (xj , yj). Hence it only
accepts inputs where n · ps(x, y) is even for all s ∈ {0, 1}2. Thus ϕ(M)

Coll is consistent with fn.
To construct a Σ2

3-circuit for fn, it is enough, as discussed in Section 1.2, to design a
feasible solution to the (LP) associated with fn. (We note that the (LP) formulation works
equally well for partial functions.) To this end, we calculate in the following claim (proved in
Section 2.3) the probability that a random collision CNF accepts a fixed 1-input of fn.

▷ Claim 5. Let (x, y) ∈ f−1
n (1). For a uniformly chosen perfect matching M ⊆

([n]
2

)
,

Pr
M

[
ϕ

(M)
Coll(x, y) = 1

]
≥ 2− 1

2 nH(Xp)−o(n) =: L(p).
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We now construct a feasible solution to (LP) for fn. Let ΦColl denote the set of all collision
CNFs, one for each perfect matching of [n]. Consider the weight assignment corresponding
to the uniform distribution over ΦColl; namely, set wϕ := 1/|ΦColl| for every ϕ ∈ ΦColl
and wϕ := 0 for all the rest. Note that the objective function value is

∑
ϕ wϕ = 1. However,

the assignment may not be feasible: for a covering constraint indexed by (x, y) ∈ f−1
n (1), we

are only guaranteed a weak lower bound (much smaller than 1):∑
ϕ wϕϕ(x, y) = PrM

[
ϕ

(M)
Coll(x, y) = 1

]
≥ L(p).

We can, however, transform this weight assignment into a feasible one by scaling all the
weights up by a factor of 1/L(p) (and truncating any resulting weight > 1 to 1). In the scaled
assignment, the objective function value is at most 1/L(p). We conclude (using Lemma 2)
that fn has a circuit of size O(n)/L(p) = 2 1

2 nH(Xp)+o(n).
It remains to explain how a circuit of this size can also be constructed for IPn.

Actual circuit for IP. To prove Lemma 4, we would like to use the Σ2
3-circuit we constructed

above for fn to design a circuit for the partial function

IP(p)
n (x, y) :=


0 if n · p11(x, y) is even,
1 if n · p11(x, y) is odd, and p11(x, y) ≥ p,

∗ otherwise.

Consider the following nondeterministic algorithm for IP(p)
n . On input (x, y) ∈ {0, 1}2n:

1. Nondeterministically guess a subset S ⊆ {0, 1}2 where 11 ∈ S. The intention is that
patterns in S should appear in (x, y) an odd number of times.

2. For each s ∈ S, guess a coordinate i(s) ∈ [n].
3. For each s ∈ S, check that (xi(s), yi(s)) = s. If not, reject.
4. Output the same as the function fn−|S| on input (xi, yi)i∈[n]\i(S).

It is straightforward to check that this computes IP(p)
n correctly. (A minor technical

detail is that when computing fn−|S|, the p11 value may slightly drop because we remove one
occurrence of the 11-pattern. However, this is not really a problem since the slight drop will not
affect the asymptotics of the circuit size.) The question remains: How can it be implemented
as a Σ2

3-circuit? We do it as follows. Consider any guess outcome O := (S, (i(s))s∈S). We
can modify the circuit C for fn−|S| (applied to the input bits (xi, yi)i∈[n]\i(S)) to perform the
check in Item 3 by adding to each 2-CNF in C the singleton terms (xi(s) = s1) and (yi(s) = s2)
for all s = (s1, s2) ∈ S. Call the resulting circuit CO. Our final Σ2

3-circuit computes the OR
of all circuits CO. Since there are only O(n4) many different guess outcomes, the resulting
circuit is only a factor O(n4) larger than our circuit for fn. This concludes the proof of
Lemma 4. ◀

2.3 Proof of Claim 5
Proof. Write n!! :=

∏⌊n/2⌋
i=0 (n− 2i) for the double factorial. The number of perfect matchings

on [n] is well-known to be given by (n− 1)!! when n is even. Therefore, (nps − 1)!! gives the
number of ways to match the coordinates with pattern s. We have

Pr
M

[
ϕ

(M)
Coll(x, y) = 1

]
=

∏
s∈{0,1}2(nps − 1)!!

(n− 1)!! . (3)
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Taking logarithms and using Stirling’s approximation (log n!! = 1
2n log n− 1

2n± o(n)) we get

log Pr
M

[
ϕ

(M)
Coll(x, y) = 1

]
= 1

2
∑

s nps log(nps) − 1
2n log n± o(n)

= 1
2n ·

∑
s ps log ps ± o(n)

= − 1
2n · H(P ) ± o(n).

Here P ∈ {0, 1}2 is the random variable defined by Pr[P = s] = ps. We ask: which random
variable X ∈ {0, 1}2 maximises the entropy H(X) subject to the constraint Pr[X = 11] = p∗?
By the concavity of H and symmetry (we can relabel outcomes without affecting the entropy),
it is the random variable Xp∗ such that

Pr[Xp∗ = 11] = p∗, Pr[Xp∗ = 00] = Pr[Xp∗ = 10] = Pr[Xp∗ = 01] = (1 − p∗)/3.

The univariate map p∗ 7→ H(Xp∗) is also concave. It is maximised at p∗ = 1/4 (when Xp∗

is uniform), and decreasing for p∗ > 1/4. This means that, since 1/4 ≤ p ≤ p11, we have
that H(Xp) ≥ H(Xp11) ≥ H(P ). Hence we obtain the claimed lower bound:

log Pr
M

[
ϕ

(M)
Coll(x, y) = 1

]
≥ − 1

2n · H(Xp) − o(n). ◁

3 Lower bound

In this section, we prove the lower bound α ≥ log 9
5 = 0.847... as claimed in Theorem 1. We

will follow the Dual LP strategy discussed in Section 1.2. Namely, we will choose a hard
distribution over IP−1

n (1) and then bound the acceptance probability of any 2-CNF consistent
with IPn. In fact, it is convenient to prove a slightly stronger statement and bound the
acceptance probability of any 2-CNF consistent with IPn or ¬IPn. Indeed, we let Φn denote
the set of 2-CNFs consistent with IPn or ¬IPn.

Hard distribution. As the hard distribution, we consider the binomial distribution Dp with
parameter p ∈ (0, 1), whose choice we will optimise later. That is, (X,Y ) ∼ Dp is such that all
bits are iid: they are independent and have identical distribution, Pr[Xi = 1] = Pr[Yi = 1] = p.
Note that Dp is not in fact supported on IP−1

n (1), but it still places Ω(1) probability mass on
this set. Consequently, any Σ2

3-circuit will have to cover Ω(1) fraction of Dp with its CNFs,
so we can still use Dp for proving a lower bound.

Max-probability formulas. Our goal will be to argue that any ϕ ∈ Φn has an acceptance
probability dominated by one of two “maximum probability formulas” (max-formulas, for
short). Namely, our first max-formula is the collision CNF (used in our upper bound
in Section 2.2 and specialised here for one matching) and our second formula has a NAND
constraint for each coordinate.

1st max-formula: ϕ
(n)
Coll :=

∧
i∈[n/2]

(x2i−1 ↔ x2i) ∧ (y2i−1 ↔ y2i) where n is even,

2nd max-formula: ϕ
(n)
Nand :=

∧
i∈[n]

(¬xi ∨ ¬yi).

Writing PrD[ϕ] := Pr(X,Y )∼D[ϕ(X,Y ) = 1] for short, it is straightforward to see that

Pr
Dp

[ϕ(n)
Coll] = (p2 + (1 − p)2)n and Pr

Dp

[ϕ(n)
Nand] = (1 − p2)n. (4)

MFCS 2023
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Equating these probabilities and solving for p yields our optimal choice p = p∗ := 2/3. The
following lemma states that these formulas have, for p = p∗, higher acceptance probabilities
than any 2-CNF consistent with IPn (or ¬IPn).

▶ Lemma 6. PrDp∗ [ϕ] ≤ M
(n)
p∗ := max

{
PrDp∗ [ϕ(n)

Coll], PrDp∗ [ϕ(n)
Nand]

}
for any ϕ ∈ Φn.

Using Lemma 6 it is easy to complete our proof. We get for any ϕ ∈ Φn,

Pr
Dp∗

[ϕ] ≤ M
(n)
2/3 = (1 − (2/3)2)n = 2− log(9/5)·n = 2−0.847...·n.

As per Dual LP, the reciprocal of this probability yields the claimed circuit lower bound.
It remains to prove Lemma 6, which we do in the rest of this section.

3.1 Proof of Lemma 6
To help us analyse acceptance probabilities, we first prove a structure lemma for any consistent
2-CNF formula ϕ. This lemma will find some “structured” formula ϕ′ that is (semantically)
implied by ϕ, denoted ϕ |= ϕ′ (that is, ϕ−1(1) ⊆ ϕ′−1(1)). The formula ϕ′ comes from a set of
structured formulas Sn, which we will carefully define in Section 3.2. For now, it suffices for
us to know that each structured formula ϕ(k) ∈ Sn only mentions variables among (xi, yi)i∈I

for some subset I ⊆ [n] of size |I| = k (possibly k ≪ n).

▶ Lemma 7 (Structure lemma). Let ϕ ∈ Φn be a 2-CNF consistent with IPn or ¬IPn. Then
there is some structured 2-CNF formula ϕ(k) ∈ Sn such that ϕ |= ϕ(k).

We can now formulate a “localised” version of Lemma 6 for structured formulas. It
allows us to locally compare the acceptance probability of ϕ(k) with our max-formulas ϕ(k)

Coll
and ϕ

(k)
Nand, now defined naturally over k many coordinates. Our original definition of ϕ(n)

Coll
was actually assuming n is even. For technical convenience, for odd n, we define ϕ(n)

Coll :=
ϕ

(n−1)
Coll ∧ (xn ↔ yn). The bounds in (4) continue to hold for this extended definition.

▶ Lemma 8. PrDp∗ [ϕ(k)] ≤ M
(k)
p∗ := max

{
PrDp∗ [ϕ(k)

Coll], PrDp∗ [ϕ(k)
Nand]

}
for any ϕ(k) ∈ Sn.

Using Lemmas 7 and 8 (proved below) it is now easy to prove Lemma 6:

Proof of Lemma 6. We prove this by induction on n. The base case n = 0 is vacuously
true under the convention that Pr[ϕ⊥] = M

(0)
p∗ = 1 for the empty formula ϕ⊥. For the

inductive case n ≥ 1, let ϕ ∈ Φn be arbitrary. Apply the structure lemma (Lemma 7) to find
some ϕ(k) ∈ Sn such that ϕ |= ϕ(k). Suppose for notational convenience ϕ(k) involves the
first k ≤ n coordinates. Let D(k)

p∗ denote our binomial distribution over {0, 1}2k. Then

Pr
D(n)

p∗

[ϕ] ≤
∑

a,b∈{0,1}k

ϕ(k)(a,b)=1

Pr
D(k)

p∗

[(a, b)] · Pr
D(n−k)

p∗

[ϕ|a,b],

where ϕ|a,b is obtained from ϕ by restricting the first k coordinates to values (a, b). We note
that restricting values in a formula consistent with IPn might yield a formula consistent
with ¬IPn−k (and vice versa). We now apply Lemma 6 inductively for ϕ|a,b to conclude

Pr
D(n)

p∗

[ϕ] ≤ M
(n−k)
p∗ ·

∑
a,b

Pr
D(k)

p∗

[(a, b)] = M
(n−k)
p∗ · Pr

D(k)
p∗

[ϕ(k)] ≤ M
(n−k)
p∗ M

(k)
p∗ = M

(n)
p∗ ,

where the last inequality is Lemma 8 and the final equality follows from (4). ◀

The rest of this section is organised as follows. We first define our family of structured
formulas Sn in Section 3.2. Then we will prove Lemmas 7 and 8 in Sections 3.3 and 3.4.
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3.2 Structured formulas in Sn

We now proceed to define our family of structured formulas Sn. The family will be closed
under symmetries of IPn, as we now explain. The value of inner product IPn remains
unchanged if we permute its n coordinates (e.g., swap (xi, yi) with (xj , yj)) or transpose
two variables inside a single coordinate (i.e., swap (xi, yi) with (yi, xi)). These permutations
generate the group of symmetries of IPn. We say that two CNFs ϕ and ϕ′ are isomorphic if
there is some symmetry π of IPn that, when applied to ϕ to yield ϕπ, makes the two formulas
equivalent, ϕπ ≡ ϕ′, that is, to accept the same set of inputs.

Structured family Sn. To define Sn, we list below its various members. Each formula
is defined over some k ≤ n pairs of literals Lk := {x̃1, ỹ1, . . . , x̃k, ỹk} where x̃i ∈ {xi,¬xi}
and ỹi ∈ {yi,¬yi}. Each item defines a type of 2-CNF with the understanding that each of
its isomorphic copies is included in Sn. See Figure 1 for illustrations. We start with two
cases corresponding to our max-formulas.
1. Nand is ϕ(1)

Nand = (¬x1 ∨ ¬y1). This is case n = 1 of our second max-formula.
2. Matching is defined relative to a perfect matching M ⊆

(
Lk

2
)

by

ϕ
(k)
Match =

∧
{ℓ,ℓ′}∈M (ℓ ↔ ℓ′).

Note that this is a generalisation of our first max-formula (where the literals are positive
and the perfect matching is more structured).

The final type of formula will be an extension of the following “ladder” formula

ψ(k) =
∧k−1

i=1 (ỹi ↔ x̃i+1) where k ≥ 2.

We also define two types of “terminal” constraints (where ℓ, ℓ′ ∈ Lk),

Back-edge: ψleft
B = (x̃1 ↔ ℓ), ψright

B = (ỹk ↔ ℓ′) where ℓ ̸= x̃1 and ℓ′ ̸= ỹk,

Positive: ψleft
P = (y1 → x1), ψright

P = (xk → yk).

3. Ladder is given by choosing terminal types (L,R) ∈ {B,P}2 and defining

ϕ
(k)
LR = ψ(k) ∧ ψleft

L ∧ ψright
R .

▶ Remark 9. It can be shown that this list is irredundant in that, for each type, there is a
formula ϕ(k) ∈ Sn of that type and ϕ ∈ Φn such that ϕ |= ϕ(k) but ϕ ̸|= ϕ′ for every ϕ′ ∈ Sn

of type different than ϕ(k). This means that we need all three types for our structure lemma.

3.3 Proof of Structure lemma (Lemma 7)
In the proof of Lemma 7, we use the standard notion of an implication graph of a 2-CNF.

Implication graphs. Given a 2-CNF ϕ over k variables {x1, y1, . . . , xk, yk}, its implication
graph Gϕ = (V,E) is the directed graph given by

V := {x1,¬x1, y1,¬y1, . . . , xk,¬xk, yk,¬yk},
E := {(u, v) ∈ V 2 : u ̸= v and ϕ |= (u → v)}.
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ϕ
(4)
Match ϕ

(5)
Match

ỹ1 ỹ2

x̃2

ỹ3 ỹ4

x̃4x̃3x̃1

ỹ1 ỹ2

x̃2

ỹ3 ỹ4

x̃4x̃3

ỹ5

x̃5x̃1

ψ(4) ϕ
(5)
BB

ỹ1 ỹ2

x̃2

ỹ3 ỹ4

x̃4x̃3x̃1

ỹ1 ỹ2

x̃2

ỹ3 ỹ4

x̃4x̃3

ỹ5

x̃5x̃1

Figure 1 Examples of Matching and Ladder CNFs.

We note that implication graphs are sometimes defined more syntactically: For each
clause (u ∨ v) of ϕ, include the edges (¬u, v) and (¬v, u) in Gϕ, and moreover, for each
singleton clause (u) of ϕ, include the edges (v, u) in Gϕ for all v. Taking the transitive closure
(add edge (u, v) if there is a directed path from u to v) of this graph yields the graph in our
(semantic) definition above.

We call a strongly connected component of Gϕ a strong-component for short. We say that
a variable xi is fixed by ϕ if there is some b ∈ {0, 1} such that for every (x, y) ∈ ϕ−1(1) we
have xi = b. The following lemma will be used several times.

▶ Lemma 10. Let ϕ ∈ Φn and suppose y1 lies in a strong-component of size 1 in Gϕ. Then
we have ϕ |= x1 → ỹ1 for some ỹ1 ∈ {y1,¬y1}.

Proof. We may assume that y1 is not fixed by ϕ, as otherwise the lemma is trivially true. We
assume that ϕ ̸|= x1 → ¬y1 and hope to show ϕ |= x1 → y1. Thus, there is some satisfying
assignment (x′, y′) ∈ ϕ−1(1) such that (x′

1, y
′
1) = (1, 1). Denote by Nin ⊆ V the in-neighbours

of y1, that is, all the literals from which there exists an edge (equivalently, directed path,
as Gϕ is transitively closed) to y1. Note that {ℓ,¬ℓ} ̸⊆ Nin for every literal ℓ, as otherwise
one of ℓ or ¬ℓ would always be set to 1, forcing y1 to always be 1, contradicting that y1 is
not fixed. Modify (x′, y′) by setting literals in Nin to 0. By the properties listed above, it
follows that the new assignment, call it (x′′, y′′), still satisfies ϕ. Moreover, (x′′, y′′) has the
property that we may flip the value of all the literals in the strong-component of y1 – which
is just y1 itself – and still remain a satisfying assignment. Since we can flip y1 in isolation,
we must have that x′′

1 = 0 (otherwise we would change the parity of the 11 pattern, which
contradicts ϕ ∈ Φn). But since x′

1 = 1 we must have that x1 ∈ Nin, meaning that (x1, y1) is
an edge, and hence ϕ |= x1 → y1, as desired. ◀

We now proceed to prove Lemma 7 in two cases by considering Gϕ for ϕ ∈ Φn.
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Case 1. Every strong-component is of size 1. Applying Lemma 10 twice, the second
time with roles of x1 and y1 swapped, we learn that ϕ |= x1 → ỹ1 and ϕ |= y1 → x̃1. If
ϕ |= x1 → ¬y1 or ϕ |= y1 → ¬x1 holds then we have ϕ |= ϕ

(1)
Nand, as desired. In the remaining

case, both ϕ |= x1 → y1 and ϕ |= y1 → x1 hold, which implies ϕ |= ϕ
(1)
Match.

Case 2. There exists a strong-component of size at least 2. Suppose by symmetry that y1
lies in a strong-component of size at least 2. If y1 is bidirectionally connected to x̃1, that
is, ϕ |= (y1 ↔ x̃1), then this means that ϕ |= ϕ

(1)
Match and we are done.

Assume henceforth that y1 is bidirectionally connected to some literal other than x̃1, say
by symmetry y1 ↔ x̃2. Consider y2: is it bidirectionally connected to a literal in coordinate
greater than 2? If yes, say by symmetry y2 ↔ x̃3. Consider y3, etc. By this “unravelling”
process, we are exposing the bidirectional edges of a ladder formula ψ(k). This process must
eventually end at step k ≤ n in one of the following two cases.

Subcase 2-1: yk is bidirectionally connected to some literal ℓ′ in coordinate ≤ k. Here
we have ϕ |= (yk ↔ ℓ′) = ψright

B .
Subcase 2-2: yk lies in a singleton strong-component. In this case, we apply Lemma 10
to learn that ϕ |= xk → ỹk. If |= xk → ¬yk, then we would have found a copy of ϕ(1)

Nand
in coordinate k and we are done. Otherwise ϕ |= xk → yk, which means ϕ |= ψright

P .
That is, in both cases (if we did not outright prove the lemma) we found either ϕ |= ψright

B
or ϕ |= ψright

P . By a similar argument, we can start unravelling edges starting at x1 to find
either ϕ |= ψleft

B or ϕ |= ψleft
P . This will allow us to terminate the left side of the ladder, which

completes the proof that ϕ |= ϕ
(k)
LR.

3.4 Proof of Lemma 8
We show the inequalities for every ϕ ∈ Sn.

ϕ
(1)
Nand: This is true by definition of M (1)

p .
ϕ

(k)
Match: First note that the structure of the perfect matching for ϕ(k)

Match will not change
the acceptance probability because all input bits are iid. Moreover, when both ℓ and ℓ′ are
positive, Pr[ℓ ↔ ℓ′] = p2 +(1−p)2; otherwise, Pr[ℓ ↔ ℓ′] = max{2p(1−p), p2 +(1−p)2} ≤
p2 + (1 − p)2 for all p ∈ [0, 1]. Therefore, we have that PrDp

[ϕ(k)
Match] ≤ PrDp

[ϕ(k)
Coll].

ϕ
(k)
BB: We show in the above that Pr[ℓ ↔ ℓ′] ≤ p2 + (1 − p)2 for any literals ℓ and ℓ′; we

can similarly show that, for any literals ℓ, ℓ′ and ℓ′′, Pr[ℓ ↔ ℓ′, ℓ ↔ ℓ′′] ≤ p3 + (1 − p)3.
Replacing all literals in ϕ

(k)
BB by their positive analogues to get a new CNF ϕ, we have

that PrDp
[ϕ(k)

BB] ≤ PrDp
[ϕ]. Let M be the perfect matching associated with ϕ. Define

M ′ := M ∪ {(x1, yk)}. Observe that M ′ is a perfect matching for all 2k literals. Let ϕ′

be the matching CNF constructed from M ′. Let P be the acceptance probability of ϕ.
We know that PrDp

[ϕ′] = P · [(1−p)2+p2]3

[(1−p)3+p3]2 ≥ P since [(1−p)2+p2]3

[(1−p)3+p3]2 ≥ 1 for p ∈ [0, 1].

ϕ
(k)
P P : Similarly, we can replace all literals in ϕ

(k)
P P with their positive analogues and get

ϕ. Let M be the perfect matching associated with ϕ. Define M ′ := M ∪ {(x1, yk)}.
Observe that M ′ is a perfect matching for all 2k literals. Let ϕ′ be the matching CNF
constructed from M ′. Let P be the acceptance probability of ϕ. If k = 2 then we have
that P = (1 − p)2 + p4 = [(1 − p)2 + p2]2 = PrDp

[ϕ′] for p = 2
3 . If k > 2, we know that

PrDp
[ϕ′] = P · ((1−p)2+p2)3

((1−p)2+p3)2 > P since ((1−p)2+p2)3

((1−p)2+p3)2 > 1 for p = 2
3 .

ϕ
(k)
BP : As we have seen before, we can replace all literals in ϕ

(k)
BP with their positive

analogues and get ϕ. Let M be the perfect matching associated with ϕ. Define M ′ :=
M ∪ {(x1, yk)}. Observe that M ′ is a perfect matching for all 2k literals. Let ϕ′ be the
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matching CNF constructed from M ′. Let P be the acceptance probability of ϕ. If k = 2
then we have that P = (1 − p)3 + p4 < [(1 − p)2 + p2]2 = PrDp

[ϕ′] for p = 2
3 . If k > 2, we

know that PrDp [ϕ′] = P · ((1−p)2+p2)3

((1−p)2+p3)[(1−p)3+p3] > P since ((1−p)2+p2)3

((1−p)2+p3)[(1−p)3+p3] > 1 for
p = 2

3 .
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Abstract
This paper introduces a generic framework that provides sufficient conditions for guaranteeing
polynomial-time decidability of fixed-negation fragments of first-order theories that adhere to
certain fixed-parameter tractability requirements. It enables deciding sentences of such theories
with arbitrary existential quantification, conjunction and a fixed number of negation symbols in
polynomial time. It was recently shown by Nguyen and Pak [SIAM J. Comput. 51(2): 1–31 (2022)]
that an even more restricted such fragment of Presburger arithmetic (the first-order theory of the
integers with addition and order) is NP-hard. In contrast, by application of our framework, we show
that the fixed negation fragment of weak Presburger arithmetic, which drops the order relation from
Presburger arithmetic in favour of equality, is decidable in polynomial time.
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1 Introduction

It is well-known that even the simplest first-order theories are computationally difficult to
decide [12]. In particular, it follows from a result of Stockmeyer that every theory with a
non-trivial predicate such as equality is PSPACE-hard to decide [24]. Even when restricting
to existential fragments or fragments with a fixed number of quantifier alternations, deciding
such fragments is NP-hard at best. There are two further kinds of restrictions that may lead
to tractability. First, restricting the Boolean structure of the matrix of formulae in prenex
form yields tractable fragments of, e.g., the Boolean satisfiability problem. For instance,
the Horn and XOR-fragments of propositional logic are decidable in polynomial time, and
this even applies to quantified Boolean Horn formulae, see e.g. [7]. Second, restricting the
number of variables can also lead to tractable fragments of a first-order theory, especially
for structures over infinite domains such as Presburger arithmetic, the first-order theory
of the structure (Z, 0, 1, +,≤). While the existential fragment of Presburger arithmetic is
NP-complete in general [5,25], it becomes polynomial-time decidable when additionally fixing
the number of variables [22]; this is a consequence of polynomial-time decidability of integer
programming when the dimension is fixed [18]. Already when moving to an ∃∀ quantifier
prefix, Presburger arithmetic becomes NP-hard [23]. On the first sight, this result seems
to preclude any possibility of further restrictions that may lead to tractable fragments of
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Presburger arithmetic. However, another tractable fragment was identified in the context
of investigating the complexity of the classical Frobenius problem. Given positive integers
a1, . . . , an ∈ N, this problem is to determine the largest integer that cannot be obtained as a
non-negative linear combination of the ai, which is called the Frobenius number. For any fixed
n > 0, deciding whether the Frobenius number exceeds a given threshold can be reduced to
the so-called short fragment of Presburger arithmetic, a highly restricted fragment in which
everything, the number of atomic formulae and the number of variables (and a fortiori the
number of quantifier alternations), is fixed – except for the coefficients of variables appearing
in linear terms of atomic inequalities. Kannan [15] showed that the ∀k∃ℓ-fragment of short
Presburger arithmetic is decidable in polynomial time for all fixed k, ℓ, which implies that
the decision version of the Frobenius problem is in polynomial time for fixed n. However,
in a recent breakthrough, Nguyen and Pak showed that there are fixed k, ℓ, m such that
the ∃k∀ℓ∃m-fragment of short Presburger arithmetic is NP-hard, and adding further (fixed)
quantifier alternations allows the logic to climb the polynomial hierarchy [20].

The main contribution of this paper is to develop an algorithmic framework that enables
us to show that fixed negation fragments of certain first-order theories are decidable in
polynomial time. Formulae in this fragment are generated by the following grammar, where
Ψ are atomic formulae of the underlying first-order theory, and an arbitrary but a priori
fixed number of negation symbols is allowed to occur:

Φ ::= ∃x Φ | ¬Φ | Φ ∧ Φ | Ψ .

We give sufficient conditions for the fixed negation fragment of a first-order theory to be
decidable in polynomial time. Observe that this fragment is more permissive than the “short
fragments” of Kannan, as it allows for an unbounded number of quantified variables and an
unbounded number of conjunctions. However, it implicitly fixes the number of quantifier
alternations as well as the number of disjunctions.

As a main application of our framework, we show that, unlike full Presburger arithmetic,
the fixed negation fragment of weak Presburger arithmetic (weak PA) is polynomial-time
decidable. Weak PA is the strictly less expressive substructure (Z, 0, 1, +, =) (which is, in
fact, the structure Presburger studied in his seminal article [21]). It was recently shown
that weak PA has the same complexity as Presburger arithmetic [9]. Bodirsky et al. showed
that the weak PA fragment of (an unbounded number of) existential linear Horn equations∧

i∈I(Ai · x = bi)→ (Ci · x = di) over Z can be decided in PTIME [4]. It follows from the
generic results in this paper that the quantified versions of those formulae with the number
of quantifier alternations and |I| fixed is also polynomial-time decidable. This is the best
possible such result, since one can show that, for I unbounded, the ∃∀ fragment of linear
Horn equations in 2 variables is NP-hard (a proof of this is given in Appendix A). Our
framework not only allows for deciding satisfiability (and validity) of fixed negation formulae
of Weak PA in PTIME, but also to compute a representation of the set of solutions of a
given formula.

Our algorithmic framework is parametric on a concrete representation of the sets definable
within the first-order theory T under consideration and only requires a sensible representation
of solution sets for conjunctions of atomic formulae. From this representation, the framework
guides us to the definition of a companion structure R for the theory T in which function
symbols and relations in R are interpreted as reductions from parametrised complexity
theory, e.g. UXP reductions, see e.g. [11, Chapter 15]. By requiring mild conditions on the
types of reductions and parameters that the functions and relations in R must have, we
are able to give a general theorem for the tractability of the fixed negation satisfiability
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and entailment problems for T . One technical issue we show how to overcome in a general
way is how to treat negation, which is especially challenging when the initial representation
provided to the framework is not closed under complementation (as it is the case in our
treatment of weak PA). We resolve this issue by reducing it to the problem of completing a
prelattice under relative complement, which we analyse computationally. Our main source of
inspiration here is the notion of the so-called difference normal form of propositional logic, a
rather unorthodox normal form introduced by Hausdorff [13, Ch. 1§5].

2 Preliminaries

We assume familiarity with basic concepts from first-order logic, set theory and abstract
algebra. This section focuses on notation and simple definitions that might be non-standard
to some readers.

Sets and functions. We write seq(A) for the set of all finite tuples over a set A, and denote
by () the empty tuple. This definition corresponds to the standard notion of Kleene star A∗

of a set A. The discrepancy in notation is introduced to avoid writing (Σ∗)∗ for the domain
of all tuples of finite words over an alphabet Σ, as in formal languages the Kleene star comes
equipped with the axiom (Σ∗)∗ = Σ∗. We denote this domain by seq(Σ∗).

We write f :⊆X → Y (resp. f : X → Y ) to denote a partial (resp. total) function from
X to Y . The domain of f is denoted with dom(f). We write idA : A→ A for the identity
function on A. Given f :⊆A→ B, g :⊆B → C and h:⊆D → E, we denote by (g◦f):⊆A→ C

and (f × h) :⊆A×D → B × E the composition and the Cartesian product of functions.

Structures with indexed families of functions. We consider an expansion to the traditional
definition of structure from universal algebra that accommodate for a potentially infinite
number of functions. As usual, a structure A = (A, σ, I) consists of a domain A (a set), a
signature σ, and an interpretation function I; however in our case the signature is a quadruple
σ = (F ,G,R, ar) containing not only a set of function symbols F , a set of relation symbols R,
and the arity function ar : F ⊎R⊎G → N, but also a set of (indexed) families of function
symbols G. Each element of G is a pair (g, X) where g is a function symbol and X is a
countable set of indices. The interpretation function I associates to every f ∈ F a map
fA : Aar(f) → A, to every (g, X) ∈ G a map gA : X × Aar(g) → A, and to every R ∈ R a
relation RA ⊆ Aar(R) which we often see as a function RA : Aar(R) → {⊤,⊥}.

The standard notions of homomorphism, embedding and isomorphism of structures,
as well as the notions of congruence for a structure and quotient structure extend in a
natural way to structures having families of functions. For instance, a homomorphism
from A = (A, σ, I) into B = (B, σ, J) is a map h : A→ B that preserves all functions,
families of functions and relations; so in particular given (g, X) ∈ G, the map h satisfies
gB(x, h(a1), . . . , h(aar(g))) = h(gA(x, a1, . . . , aar(g))) for every x ∈ X and a1, . . . , aar(g) ∈ A.

We denote structures in calligraphic letters A,B, . . . and their domains in capital let-
ters A, B, . . . . When the arity function ar and the interpretation I are clear from the context,
we write (A, fA

1 , ..., fA
j , (gA

1 , X1), ..., (gA
ℓ , Xℓ), RA

1 , ..., RA
k ), and often drop the superscript A,

for a structure A = (A, σ, I) with σ = ({f1, ..., fj}, {(g1, X1), ..., (gℓ, Xℓ)}, {R1, ..., Rk}, ar).
A structure A = (A, σ, I) is said to be an algebra of sets whenever A is a family of sets and
the symbols in σ are taken from {∅,∪,∩, \,⊆, =} and interpreted as the canonical operations
on sets. Since A is a structure, the set A is closed under all set operations in σ.
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▶ Example 1. To understand the notion of families of function, consider the structure
A = (Z, (mul,N)). Here, the family of functions (mul,N), interpreted as mulA(n, x) = n · x
for all n ∈ N and x ∈ Z, uniformly define multiplication by a non-negative constant n.

First-order theories (finite tuples semantics). The first-order (FO) language of the signature
σ = (F ,G,R, ar) is the set of formulae Φ, Ψ, . . . built from the grammar

Φ, Ψ := r(t1, . . . , tar(r)) | ¬Φ | Φ ∧Ψ | ∃x.Φ, t := x | f(t1, . . . , tar(f)) | g(i, t1, . . . , tar(g)),

where x ∈ V is a first-order variable, r ∈ R, f ∈ F , (g, X) ∈ G and i ∈ X (more precisely, i

belongs to a representation of X, see Section 3). Lexemes of the form r(t1, . . . , tar(r)) are
the atomic formulae of the language. Throughout the paper, we implicitly assume an order
on the variables in V, and write xj for the j-th variable (indexed from 1).

For our purposes it comes handy to define the FO theory of a structure A = (A, σ, I)
using tuples instead of the more standard approach of having maps from variables to values.
The two definitions are equivalent. Given an atomic formula r(t1, . . . , tar(r)) having xn

as the largest appearing variable, we write [[r(t1, ..., tar(r))]]A ⊆ An for the set of n-tuples,
corresponding to values of the first n variables, that makes r(t1, ..., tar(r)) true under the
given interpretation I. Let I := {(i1, ..., ik) ∈ seq(N) : i1, ..., ik all distinct}. The first-order
theory of A is the structure FO(A) := ([[A]]FO,⊥,⊤,∨,∧,−, (π, I), (π∀, I),≤), where:
1. [[A]]FO is the least set that contains [[r(t1, ..., tar(r))]]A, for each formula r(t1, ..., tar(r)),

and that is closed under the functions ⊥,⊤,∨,∧,−, (π, I) and (π∀, I), defined below;
2. ⊥ is interpreted as ∅, ⊤ is interpreted as {()}, and given S ⊆ An and T ⊆ Am,

S ∨ T := {(a1, . . . , amax(n,m)) : (a1, . . . , an) ∈ S or (a1, . . . , am) ∈ T},
S ∧ T := {(a1, . . . , amax(n,m)) : (a1, . . . , an) ∈ S and (a1, . . . , am) ∈ T},
S − T := {(a1, . . . , amax(n,m)) : (a1, . . . , an) ∈ S and (a1, . . . , am) ̸∈ T},
π((i1, ..., ik), X) := {γ ∈ An : there is a ∈ Ak such that γ[(i1, . . . , ik)← a] ∈ X},
π∀((i1, ..., ik), X) := {γ ∈ An : for every a ∈ Ak, γ[(i1, . . . , ik)← a] ∈ X},
S ≤ T if and only if S ×Am ⊆ T ×An,

where γ[(i1, . . . , ik)← a] is the tuple obtained from the n-tuple γ by replacing its ij-th
component with the j-th component of a, for every j ∈ [1, min(k, n)].

The semantics [[.]]A of the first-order language of σ is extended to non-atomic formulae
via FO(A). As usual, for negation, conjunction and existential quantification, we have
[[¬Φ]]A := ⊤ − [[Φ]]A, [[Φ ∧Ψ]]A := [[Φ]]A ∧ [[Φ]]A, and [[∃xi.Φ]]A := π((i), [[Φ]]A). We remark
that FO(A) contains operators whose syntactic counterpart is absent from the FO language
of σ, such as the universal projection π∀. This is done for algorithmic purposes, as the
framework we introduce in Section 4 treats these operators as first-class citizens.

We let AC(σ) be the set of all conjunctions of atomic formulae in the FO language of σ.

Fixed negation fragments. Fix k ∈ N. The k-negations fragment of the FO language of
a signature σ is the set of all formulae having at most k negations ¬. Note that, following
the grammar of FO languages provided above, this restriction also bounds the number of
disjunctions and alternations between existential and universal quantifiers that formulae can
have. Given a structure A = (A, σ, I), we are interested in the following problem:

k negations satisfiability: given a formula Φ with at most k negations, decide [[Φ]]A ̸= ∅.
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3 Representations and parametrised complexity of signatures

Per se, a structure A cannot be analysed algorithmically, in particular because the elements of
A do not have a notion of size. A standard way to resolve this issue is defining computability
via the notion of representations (as it is done for instance in computable analysis [26]).

Representations. A representation for a set A is a surjective partial map ρ :⊆ Σ∗ → A,
where Σ is a finite alphabet. Words w ∈ Σ∗ are naturally equipped with a notion of size, i.e.,
their length, denoted by |w|. Not all words are valid representations for elements of A (ρ is
partial) and each element from A can be represented in several ways (ρ is not assumed to be
injective). Given a representation ρ :⊆Σ∗ → A, we write (≈ρ) ⊆ Σ∗ ×Σ∗ for the equivalence
relation {(w1, w2) : w1, w2 ∈ dom(ρ) and ρ(w1) = ρ(w2)} and define hρ : dom(ρ)/≈ρ → A to
be the bijection satisfying hρ([w]≈ρ

) = ρ(w), for every w ∈ dom(ρ). Here, dom(ρ)/≈ρ
is the

set of all equivalence classes [w]≈ρ
of words w ∈ dom(ρ).

It is often more practical to represent elements of A by objects that are more sophisticated
than words in Σ∗, such as tuples, automata, graphs, etc. Taking these representations does
not change the notion of computability or complexity, because they can be easily encoded
as words (over a bigger alphabet, if necessary). In our setting, of particular interest are
representations as tuples of words. The notion of size for words trivially extends to tuples:
|(w1, . . . , wn)| := n +

∑n
i=1 |wi|. Given representations ρ :⊆ Σ∗ → A and ρ′ :⊆Π∗ → A′, we

rely on the following operations on representations:
The Cartesian product ρ× ρ′ of representations, defined as in Section 2.
The representation seq(ρ) :⊆ seq(Σ∗) → seq(A) returning (ρ(w1), . . . , ρ(wn)) on tuples
(w1, . . . , wn) ∈ dom(ρ)n, for every n ∈ N.
Given a map ⊕ : S×S → S with S ⊇ A, the representation fold[⊕](ρ) recursively defined
as fold[⊕](ρ)(()) := ∅, and fold[⊕](ρ)((w1, . . . , wn)) := ρ(w1)⊕ fold[⊕](ρ)((w2, . . . , wn)).

We also require representations for basic objects such as N, Z and so on. Specifically, we
assume to have canonical representations νX for the following countable domains X:

X = N or X = Z, so that νX denote a representation of N or Z, respectively.
X is any finite set, e.g., we assume to have a representation νB for the Booleans B = {⊤,⊥},
X = Σ∗ where Σ is any finite alphabet. In this case, νΣ∗ := idΣ∗ .

Implementations and computability. Let ρ :⊆Π∗ → A and ρ1, . . . , ρn be representations,
with ρi :⊆ Σ∗

i → Ai. A function f : A1 × · · · × An → A is said to be (ρ1 × · · · × ρn, ρ)-
computable if there is a computable function (in the usual sense of Turing machines)
F : dom(ρ1)× · · · × dom(ρn)→ dom(ρ) such that ρ(F (w1, . . . , wn)) = f(ρ1(w1), . . . , ρn(wn))
for all wi ∈ dom(ρi), i ∈ [1, n]. The function F is said to be a (ρ1×. . .×ρn, ρ)-implementation
of f . It is convenient to avoid mentioning the representations of a computable function
when it operates on canonical types. Given sets A, A1, . . . , An admitting canonical rep-
resentations, a function f : A1 × · · · × An → A is said to be computable whenever it is
(νA1 × . . .× νAn

, νA)-computable (νAi
and νA are the canonical representations of Ai and A).

Let A = (A, σ, I) be a structure and ρ :⊆ Σ∗→A be a representation. Let M :=
(dom(ρ), σ, J) be a structure where the interpretation function J associates computable
functions to each function, family of functions and relations in σ, and makes ≈ρ a congruence
forM. The structureM is said to be a ρ-implementation of A whenever ρ is a homomorphism
between M and A. We highlight the fact that, compared to a standard homomorphism
between structures, an implementation is always surjective (since ρ is surjective) and forces J

to give an interpretation to functions and relations in σ in terms of computable functions.
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▶ Example 2. The addition function +: Z2 → Z is (ν2
Z, νZ)-computable. Since νZ is the

canonical representation of Z, we simply say that + is computable. This is the standard
notion of computability over Z. The structure (dom(νZ), +) is a νZ-implementation of (Z, +).

Parametrised complexity of signatures. The framework we define in the next section
requires the introduction of a notion of parametrised complexity for the signature of a
structure (which we call a UXP signature) which we now formulate. First, let us recall the
standard notion of UXP reduction from parametrised complexity theory [11, Chapter 15].
Let Γ and Π be two finite alphabets, and D ⊆ Γ∗. A parameter function is a map η : Γ∗ → N
such that η(w) ≥ 1 for every w ∈ Γ∗. A computable function F : D → Π∗ is said to be a
uniform slicewise polynomial reduction for two parameter functions η and θ, or (η, θ)-UXP
reduction in short, whenever there is an increasing map G : N → N such that for every
w ∈ Γ∗, F (w) runs in time |w|G(η(w)) (w.l.o.g. assume |w| ≥ 2) and θ(F (w)) ≤ G(η(w)).

As usual in computability theory, functions F with multiple arguments are handled by
introducing a special symbol to the alphabet Γ, say #, to separate the arguments, thus
seeing F as a function in one input. For instance, an operator ⊕ : Σ∗

1 × Σ∗
2 → Σ∗ can be

interpreted by a computable function taking as inputs words w1#w2 with (w1, w2) ∈ Σ∗
1 × Σ∗

2.
The product (η1 · η2)(w1#w2) := η1(w1) · η2(w2) of parameter functions η1 : Σ∗

1 → N and
η2 : Σ∗

2 → N can be used to refine the complexity analysis of ⊕ to each of its two arguments.
We write 1 for the trivial parameter function defined as 1(w) := 1 for all w ∈ Σ∗.

Let A = (A, σ, I) be a structure, σ = (F ,G,R, ar), ρ :⊆Σ∗ → A be a representation, and
η : Σ∗ → N be a parameter function. We say that A has a (ρ, η)-UXP signature whenever
there is an interpretation function J such that (i) (dom(ρ), σ, J) is a ρ-implementation
of A and (ii) J associates a (ηar(f), η)-UXP reduction to every f ∈ F , a (1 · ηar(g), η)-UXP
reduction to every (g, X) ∈ G, and a (ηar(R), 1)-UXP reduction to every R ∈ R.

▶ Example 3. Consider the structure (L,∪,∩, (·)c) where L is the set of all regular languages
over a finite alphabet Σ and ∪, ∩, and (·)c are the canonical operations of union, intersection
and complementation of languages, respectively. This structure has a tractable signature
for the representation of regular languages as deterministic finite automata (DFAs), as all
operations can be implemented in PTIME on DFAs. However, it does not have a tractable
signature for the representation of regular languages as non-deterministic finite automata
(NFAs), because computing (·)c on NFAs requires first to determinise the automaton.

As in the case of representations, it is often more practical to have parameter functions from
objects that are more sophisticated than words. Given a parameter function θ : Σ∗ → N, in
this paper we consider the following operations len(θ) : seq(Σ∗)→ N, max(θ) : seq(Σ∗)→ N
and depth(θ) : seq(seq(Σ∗))→ N on parameter functions (below, w = (w1, . . . , wn)):

len(θ)(w) :=
∑n

i=1 θ(wi), max(θ)(w) := maxn
i=1 θ(wi), depth(θ) := len(len(θ)).

4 A framework for the fixed negation fragment of first-order theories

Fix a structure A = (A, σ, I) and consider FO(A) := ([[A]]FO,⊥,⊤,∨,∧,−, (π, I), (π∀, I),≤).
In this section, we describe a framework that can be employed to show that the k negation
satisfiability problem for FO(A) is in PTIME. Part of our framework is generic, i.e., applies
to any first-order theory, while other parts are necessarily specific to the theory under study.
This section covers the former part and highlights the latters.

To understand the framework it is helpful to take a moment to consider how we can
exploit the fact that we only consider formulae with a fixed number of negations. For
simplicity, let us focus for the time being on quantified Boolean formulae (QBF) in prenex
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form. A first key question is whether bringing the quantifier-free part Φ of a QBF formula in
a particular normal form can be computationally beneficial. Of course, due to our restrictions,
Φ can be brought into DNF in PTIME. However, because of quantifier alternation together
with the unbounded number of conjunctions, choosing this normal form comes with several
intricacies. Another option we might try is to put Φ into a form where all but a fixed amount
of constraints are in Horn form, and then try to rely on the algorithm to solve quantified
Horn Boolean satisfiability in PTIME [17]. This works for the Boolean case, but not for an
arbitrary theory. For instance, the quantified Horn satisfiability problem for the FO theory
of Z = (Z, 0, 1, +, =), i.e. weak Presburger arithmetic, is already NP-hard for the alternation
prefix ∃∀ and 2 variables, as we briefly sketch in Appendix A, and NEXPTIME-hard in
general [9]. It turns out that a suitable normal form for Φ is given by formulae of the form
Φ1 − (Φ2 − (· · · − (Φk−1 − Φk))), where each Φi is a negation-free formula in DNF, and
Ψ1−Ψ2 is the relative complementation Ψ1∧¬Ψ2. As we will see in this section, this atypical
normal form (introduced by Hausdorff in [13] and called difference normal form in [14]) not
only fully makes use of our restriction on the number of negations, but also exhibits nice
properties in relation to quantification.

A second key question is what representation of [[A]]FO works best for our purposes,
as formulae might not be the right “data structure”. Though the difference normal form
already sets how to treat disjunctions and negations, we have the flexibility to vary the
representation of conjunctions of atomic formulae. Let us be a bit more precise. Consider
a domain D ⊆ [[A]]FO containing at least the sets [[Ψ]]A, for all Ψ ∈ AC(σ). We define
un(D) to be the closure of D under the disjunction ∨, and diffnf(D) to be the smallest set
containing un(D) and being closed under relative complements X − Y , with X ∈ un(D)
and Y ∈ diffnf(D). From the notion of difference normal form we conclude that {[[Φ]]A :
Φ quantifier free} ⊆ diffnf(D). Now, given a representation ρ :⊆ Σ∗ → D, the partial
functions un(ρ) :⊆ seq(Σ∗)→ un(D) and diffnf(ρ) :⊆ seq(seq(Σ∗))→ diffnf(D), defined as
un(ρ) := fold[∨](D) and diffnf(ρ) := fold[−](un(ρ)) are representations of un(D) and diffnf(D),
respectively. When ρ is a representation encoding D as conjunctions of atomic formulae,
then diffnf(ρ) is encoding diffnf(D) in the difference normal from [13]. The key point is
that the representation ρ can be selected so that D is encoded as something other than
formulae. For instance, for linear arithmetic theories, alternative encodings are given by
automata [6] or geometrical objects [10]. In Section 6 we will use the latter. Of course, selecting
representations other than formulae requires an efficient way of changing representation, as
stressed in the forthcoming Proposition 4 (see the map F ). One last observation: above,
we introduced D so that it could include sets beyond [[Ψ]]A, where Ψ ∈ AC(σ). Further
sets might be required in order to make diffnf(D) closed under (universal) projection. For
instance, in weak integer arithmetic, the formula ∃y : x = 2 · y, stating that x is even, cannot
be expressed with a quantifier-free formula, hence [[∃y : x = 2 · y]]Z must be added to D.

The following proposition formalises the observations done in the last two paragraphs.
We recall that an algorithm is said to be in χ-UXP, for a parameter χ : Σ∗ → N, if it runs
in time |w|G(χ(w)) for every w ∈ Σ∗, for some function G : N → N not depending on w. A
decision problem is in χ-UXP whenever there is a χ-UXP algorithm solving that problem.
▶ Proposition 4. Fix k ∈ N. Assume the following objects to be defined:

a representation ρ of D :=
⋃

n∈N Dn, where, for all n ∈ N, Dn ⊆ P(An) is such that
[[Ψ]]A ∈ Dn for every Ψ ∈ AC(σ) having maximum variable xn,
a (ξ, θ)-UXP reduction F : AC(σ)→ dom(ρ) s.t. (ρ ◦ F )(Ψ) = [[Ψ]]A for all Ψ ∈ AC(σ).

If D = (diffnf(D),⊥,⊤,∨,∧,−, (π, I), (π∀, I),≤) has (diffnf(ρ), depth(θ))-UXP signature,
the k negations satisfiability problem for FO(A) is in ξ-UXP (PTIME, if ξ = 1), and
there is a ξ-UXP (PTIME, if ξ = 1) algorithm that, given a formula Φ of FO(A) having
at most k negations, returns X in dom(diffnf(ρ)) such that diffnf(ρ)(X) = [[Φ]]A.
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By virtue of what we said above, Proposition 4 should not be surprising: the reduction F

enables an efficient conversion from AC(σ) to elements in dom(ρ), and (since D is a structure)
diffnf(D) is closed under all the operations in the signature and thus it is equal to [[A]]FO.
Consequently, FO(A) has a (diffnf(ρ), depth(θ))-UXP signature, and one can efficiently use
diffnf(ρ) as a data structure to carry out the algorithm to decide satisfiability, by simply
invoking the various UXP reductions implementing the functions and relations in D. We
remark that the sole purpose of the parameter θ is to factor in the parameter ξ, and can be
thought as θ := 1 in the case of ξ := 1 (i.e., the case yielding PTIME algorithms).

Whereas the choice of D and F highly depends on the FO theory at hand, we show that a
significant portion of the work required to prove that D has the desired UXP signature can be
treated in a general way, thanks to the notion of difference normal form. This “automation”
can be seen as the core of our framework, which provides a minimal set of subproblems that
are sufficient to conclude that D has a (diffnf(ρ), depth(θ))-UXP signature. Below, we divide
those subproblems into two steps, one for Boolean connectives and one for quantification.
One significant result in this context is that negation can be treated in a general way.

▶ Step 1 (Boolean connectives).
1. Show that the structure (D,∧,≤) has a (ρ, θ)-UXP signature.
2. Show that the structure (un(D),≤) has a (un(ρ), len(θ))-UXP signature.

Step 1 asks to provide algorithms for solving typical computational problems that are highly
domain-specific: Item 1 considers the intersection and inclusion problems for elements of D,
with respect to the representation ρ, whereas Item 2 deals with the inclusion problem for
unions of elements in D, with respect to the representation un(ρ). In the case of unions, we
highlight the parameter len(θ) which fixes the length of the union.

Once Step 1 is established, we are able to show that the full Boolean algebra (including
relative complementation) of diffnf(D) has a UXP signature that is suitable for Proposition 4.

▶ Lemma 5. Under the assumption that Step 1 is established, (diffnf(D),⊥,⊤,∨,∧,−,≤)
has a (diffnf(ρ), depth(θ))-UXP signature.

The proof of this lemma boils down to the definition of suitable UXP reductions implementing
the binary operations ∧, ∨ and −. We will give further insights on how this is achieved
in Section 5, where we study algorithmic aspects of the difference normal form.

Moving forward, we now consider projection and universal projection. Again, the goal is
to minimise the efforts needed to add support for these operations. In this sense, the decision
to adopt the difference normal becomes now crucial. First, we need to introduce a variant of
the universal projection which we call relative universal projection. Given Z ⊆ Am, X ⊆ An

and i = (i1, . . . , ik) ∈ I, the relative universal projection π∀
Z(i, X) of X with respect to Z is

defined as follows (where M := max(m, n)):

π∀
Z(i, X) := {(a1, . . . , aM ) ∈ AM : a := (a1, . . . , am) ∈ π(i, Z) and for all b ∈ Ak

if a[i← b] ∈ Z then (a1, . . . , an)[i← b] ∈ X}.

Informally speaking, π∀
Z(i, X) acts as a universal projection for the part of X that lies inside

Z. Note that one can retrieve the universal projection as π∀(i, X) = π∀
⊤(i, X).

The lemma below outlines a key “mutual distribution” property of projection and relative
universal projection over relative complement. In the context of the difference normal form,
this property allows us to disregard complementation when adding support for quantification.

▶ Lemma 6. We have π(i, X−Y ) = π(i, X)−π∀
X(i, Y ) and π∀

Z(i, X−Y ) = π∀
Z(i, X)−π(i, Y ),

for every X ⊆ An, Y ⊆ Am, Z ⊆ Ar, and i ∈ I.

For instance, π(i, W − (X − (Y − Z))) = π(i, W )− (π∀
W (i, X)− (π(i, Y )− π∀

Y (i, Z))).
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Below, let us write π̇ for the restriction of the projection operator π on inputs (i, X) where
X ∈ D, and write π̇∀

_ for the restriction of the relativised universal projection π∀
_ on inputs

(Z, i, X) where Z ∈ D and X ∈ un(D). Thanks to Lemma 6, adding to Step 1 the following
step is sufficient to conclude that D has the UXP signature required by Proposition 4.

▶ Step 2 (Projection and universal projection).
1. Show that π̇(i, X) ∈ diffnf(D), for every X ∈ D and i ∈ I.
2. Show that π̇∀

Z(i, X) ∈ diffnf(D), for every Z ∈ D, i ∈ I and X ∈ un(D).
3. Show a (1 · θ, depth(θ))-UXP reduction that (νI × ρ, diffnf(ρ))-implements π̇.
4. Show a (θ·1·len(θ), depth(θ))-UXP reduction that (ρ×νI×un(ρ), diffnf(ρ))-implements π̇∀

_.

▶ Lemma 7. Under the assumption that Steps 1 and 2 are established, the structure D
from Proposition 4 has a (diffnf(ρ), depth(θ))-UXP signature.

5 Closing prelattices under relative complement

Let us go back to the notion of difference normal form, which again are formulae of the form
Φ1 − (Φ2 − (· · · − Φk)), where each Φi is negation-free and in DNF. Our framework is based
on the idea of using these syntactic chains of relative complementations, let us call them
decreasing sequences, as a way of closing a structure (not just formulae) under complement.
Doing this allows the domain D to not be necessarily closed under complement. Then, one
natural question to ask is under which assumptions do structures admit a computable notion
of decreasing sequences. We give an answer to this question by showing that any prelattice A
that is well-founded or distributive has a well-defined algebra over decreasing sequences
(SDS algebra). We study computational aspects of SDS algebras that allows us to establish
Lemma 5. When A is both well-founded and distributive, we also show that the SDS algebra
act as a completion of A under relative complement (this result is not required for Lemma 5).

Prelattices. We assume familiarity with the order theoretic definition of a lattice. A structure
A = (A,∨,∧,≤) is said to be a prelattice whenever ≤ is a preorder, and the quotient structure
A /≈ := (A/≈,∨/≈,∧/≈,≤/≈) of A under the congruence (≈) := (≤ ∩≤−1) is a lattice.
Roughly speaking, a prelattice is a lattice that may not satisfy antisymmetry, i.e., distinct
elements of A are allowed to be equal under ≤. If ≤/≈ has a least element L, we often add to
the signature of A a constant symbol ⊥ interpreted as an element a ∈ A such that [a]≈ = L.
As usual, A is well-founded if there are no infinite sequences of elements that are strictly
decreasing with respect to ≤, and it is distributive whenever a ∧ (b ∨ c) ≈ (a ∧ b) ∨ (a ∧ c),
for every a, b, c ∈ A. A (pre)lattice (L,≤) is said to be closed under relative complement
whenever, for every x, y ∈ L there is an element [x \ y] ∈ L satisfying y ∧ [x \ y] = ⊥ and
x ≤ y ∨ [x \ y]. (Pre)lattices may not be closed under relative complement, see for example
the three elements lattice ({⊥, p,⊤},≤) with ⊥ < p < ⊤.

Decreasing sequences and SDS algebras. Fix a prelattice A = (A,⊥,∨,∧,≤) that is
well-founded or distributive. Let ≈ and < be the equivalence relation and strict partial order
induced by ≤, respectively. We write SDS(A) for the set of all strictly decreasing sequences
(SDS) over A, i.e., those (possibly empty) finite tuples (a1, . . . , an) ∈ seq(A) satisfying
ai+1 < ai for every i ∈ [1, n− 1]. Let X := (a1, . . . , an), Y := (b1, . . . , bm) ∈ SDS(A). Given
a ∈ A and X ′ ∈ SDS(A), we write X = ⟨a; X ′⟩ whenever a = a1 and X ′ = (a2, . . . , an). We
write X ≈̇Y whenever n = m and ai ≈ bi for all i ∈ [1, n], or X, Y ∈ {(), a : a ∈ A and a ≈ ⊥}.
We recursively define the cons operator (:) : A× SDS(A)→ SDS(A) as follows:
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a : X :=



a if X ∈ {(), b : b ∈ A and b ≈ ⊥}
(a, a1, . . . , an) else if a1 < a

a :
(
(a ∧ a1) : (a2, . . . , an)

)
else if a ∧ a1 < a

⊥ else if n = 1 (here, a ≤ a1)
(a ∧ a2) : (a3, . . . , an) otherwise

Intuitively, on input (a, X), (:) returns an SDS that represents the relative complement of a

and X. With a simple induction on the length of X one can show that (:) is well-defined.
The SDS algebra of A is the structure (SDS(A),∅,⋎,⋏,−,⪯). In this structure, ∅

is the constant function returning ⊥A from A ⊆ SDS(A), the (inclusion) ⪯ is defined as
X ⪯ Y

def⇔ (X − Y ) ≈̇∅, and the functions ⋎ (union), ⋏ (intersection) and − (difference),
having arity two, are interpreted following the mutually recursive definitions (where, whenever
their length is non-zero, we assume X = ⟨a; X ′⟩ and Y = ⟨b; Y ′⟩):

X ⋏Y :=
{
∅ if X ≈̇∅ or Y ≈̇∅,

(a ∧ b) : (X ′ ⋎Y ′) else

X −Y :=
{

X if X ≈̇∅ or Y ≈̇∅,

a : (X ′ ⋎Y ) else

X ⋎Y :=


Y if X ≈̇∅,

X else if Y ≈̇∅,

a : (X ′−Y ) else if b ≤ a,

(a∨b) :
(
(X ′⋎Y ′)− ((a∧b) : (X ′⋏Y ′))

)
else.

The definitions of ⋏, ⋎ and − observe validities of elementary set theories, and follow the
idea that ⟨a; X ′⟩ should represent the element a − X ′. For instance, the last line in the
definition of X −Y , where X = ⟨a; X ′⟩, relies on the set validity (E−F )−G = E− (F ∪G).

▶ Lemma 8. Suppose that A is well-founded or distributive. Then, the functions ⋎,⋏,− :
SDS(A)× SDS(A)→ SDS(A) and ⪯ : SDS(A)× SDS(A)→ B are well-defined.

For A well-founded, this lemma is proven by induction on the lexicographic ordering built
from ≤A and the total ordering on N. For A distributive, one notes that the closure C of a
finite set of elements {⊥, a1, . . . , an} ⊆ A under ∨ and ∧ is a prelattice that is finite up to ≈,
making ≤A/≈ a well-founded relation when restricted to elements in C. These elements are
the only ones computed by ⋎, ⋏ and −. The lemma then follows as in the well-founded case.

The following proposition clarifies the intention behind SDS algebras.

▶ Proposition 9. Any well-founded and distributive lattice A embeds in (SDS(A),∅,⋎,⋏,⪯),
which is a well-founded distributive prelattice closed under relative complement.

Showing that A embeds in (SDS(A),∅,⋎,⋏,⪯) is simple. To show that the latter structure
is closed under relative complement we rely on Birkhoff’s representation theorem, a theorem
that allows to construct set algebras isomorphic to A. Birkhoff’s representation theorem is
usually given for finite distributive lattices. However, an inspection of its proof shows that
finiteness can be replaced with well-foundedness in a simple way.

▶ Theorem 10 ([3]). Let A = (A,⊥,∨,∧,≤) be a well-founded distributive lattice. There is
an algebra of sets B = (B, ∅,∪,∩,⊆) that is isomorphic to A.

Let N = (N, ∅,∪,∩, \,⊆) be the algebra of sets obtained by closing the structure B
above under the set difference \. Thanks to Theorem 10, to show the closure under relative
complement required by Proposition 9 it suffices providing a surjective homomorphism from
the SDS algebra of B to the structure N . The map h : SDS(B)→ N defined as h(X) := ∅
for X ≈̇∅, and otherwise as h(X) := a \ h(X ′) for X = ⟨a; X ′⟩, is such a homomorphism.
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UXP signatures for SDS algebras. We move to the computational aspects of SDS algebras.
Let A = (A,⊥,∨,∧,≤) be a distributive (not necessarily well-founded) prelattice and
ρ :⊆ Σ∗ → A be a representation. Let SDS(ρ) :⊆ seq(Σ∗)→ SDS(A) be the representation
of SDS(A) defined as SDS(ρ)(w1, . . . , wn) := ρ(w1) :

(
· · · : (ρ(wn))

)
for every n ∈ N and

w1, . . . , wn ∈ dom(ρ), and undefined otherwise. Below, len(η) is defined as in Section 3.

▶ Theorem 11. Let A = (A,⊥,∨,∧,≤) be a distributive prelattice with a (ρ, η)-UXP
signature. The SDS algebra of A has a (SDS(ρ), len(η))-UXP signature.

For the proof of this theorem, one considers the ρ-implementation R of A in which the
functions ∨ and ∧ are (η · η, η)-UXP reductions and the relation ≤ is a (η · η, 1)-UXP
reduction. The structure R is a distributive prelattice, hence it has a well-defined SDS
algebra (SDS(R),∅,⋎,⋏,−,⪯). By following the above definitions of ⋎,⋏,− and ⪯, one
can provide (len(η)2, len(η))-UXP and (len(η) · len(η), 1)-UXP reductions for the functions
and relations of the structure S = (dom(SDS(ρ)),∅,⋎,⋏,−,⪯) that SDS(ρ)-implements the
SDS algebra of A.

Theorem 11 gives us what we need to prove Lemma 5. Step 1 of the framework implies
that U = (un(D),⊥,∨,∧,≤) is a distributive prelattice with a (un(ρ), len(θ))-UXP signature.
By Theorem 11, the SDS algebra of U has a (SDS(un(ρ)), depth(θ))-UXP signature. So,
Lemma 5 follows as one provides a surjective homomorphism from the SDS algebra of U to
(diffnf(D),⊥,⊤,∨,∧,−,≤). This surjective homorphism is obtained by updating map h used
in the proof of Proposition 9 so that it uses the operator − instead of the set difference \.

6 Weak linear integer arithmetic

In this section, we briefly discuss how to instantiate the framework of Section 4 to weak
Presburger arithmetic (weak PA), i.e. the FO theory of the structure Z = (Z, 0, 1, +, =).

Setup. According to Proposition 4, instantiating the framework requires first to define the
domain D, its representation ρ and the change of representation F : AC(σ)→ dom(ρ). In
weak PA, conjunctions of atomic formulae are systems of affine equations, which over Z
define shifted integer lattices (SL), which are not necessarily fully dimensional. We let Dn

be the set of all shifted (integer) lattices of Zn, so that D is the set of all shifted lattices
of Zn for some n. We represent elements in D with the standard representation of a SL as
a base point and an independent periodic set. Recall that we write νZn for the canonical
representation of Zn (see Section 3). Formally, for every n ∈ N, if v0 represents a vector in
Zn, and v1, . . . , vk represent linearly independent vectors in Zn, then we let

ρSL(n, v0, · · ·, vk) := νZn(v0) + spanZ{νZn(v1), · · ·, νZn(vk)}.

A PTIME function F allowing to change representation from conjunctions of atomic formulae
to elements in dom(ρSL) can be obtained thanks to the following well-known algorithm.

▶ Proposition 12 ([16]). There is a PTIME algorithm to compute the Hermite normal form,
along with the transformation matrices, of a given matrix with integer entries.

Since F runs in PTIME, the parameter ξ in Proposition 4 equals 1, and we need to show
that D has a (diffnf(ρSL), depth(θ))-UXP signature for θ := 1, by establishing Steps 1 and 2.
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Step 1. Both the problems of computing intersections and testing inclusions for two shifted
lattices represented as in ρSL reduces to solving systems of linear equations over Z, which
can be done in PTIME again thanks to Proposition 12. This establishes Item 1 of Step 1.

Item 2 asks for an algorithm to solve inclusion between union of shifted lattices. This is
a computationally expensive operation. Roughly speaking, one first notices that it suffices to
be able to test Z ≤ X where Z ⊆ Zk is a SL and X :=

∨
i∈I Xi ⊆ Zk, where all Xi are SL.

This inclusion testing can be performed by checking that |Z ∩ [0, d)k| = |(Z ∧X) ∩ [0, d)k|
for a well-chosen value of d ∈ N. Hence, inclusion reduces to a counting problem for lattice
points in a box, which in turn reduces to computing lattice determinants:

▶ Lemma 13. Let L ⊆ Zk be a lattice and d > 0 such that dZk ⊆ L, then |L∩[0, d)k| = dk

det(L) .

To extend the above lemma to union of shifted lattices, we rely on an inclusion-exclusion
formula which requires the algorithm to consider all possible 2|I| intersections between the Xi.
This leads to a procedure that is exponential in the number of elements in the union, which
is however sufficient to establish Item 2, since it asks for an algorithm that runs in PTIME
when the length of the union is fixed; see the parameter len(θ).

▶ Lemma 14. There is an algorithm that given z ∈ dom(ρSL) and x ∈ dom(un(ρSL)) decides
ρSL(z) ≤ un(ρSL)(x) in time 2len(1)(x)poly(|x|, |z|). In particular, Item 2 of Step 1 holds.

Step 2. Establishing Items 1 and 3 is simple: thanks to our choice of representation, i.e. ρSL,
given X ∈ dom(ρSL) and i ∈ I, π(i, X) can be computed by simply crossing out the entries
of all vectors of X corresponding to the indices in i. On the contrary, the algorithm for
universal projections π∀

ZX required by Items 2 and 4 turns out to be challenging to compute.
Intuitively, similarly to inclusion testing, we need to count points in unions of SL but in a
parametric way. This means that given X =

∨
ℓ∈L Xℓ, where all Xℓ are SL, every intersection∧

j∈J Xj (J ⊆ L) in the inclusion-exclusion formula may or may not need to be counted,
depending on the value of a parameter f belonging of a certain set of parameters F (see
lemma below). The algorithm therefore considers all possible ways in which intersections may
or may not be taken, which is roughly 22|L| . This allows us to conclude a rather surprising
fact: the relative universal projection can be expressed as a complex combination of unions,
intersections, projections and relative complementations that are exclusively applied to the
initial sets in input. The number of these operations only depend on the length |L|.

▶ Lemma 15. Consider X =
∨

ℓ∈L Xℓ, where Xℓ ∈ D for all ℓ ∈ L, and let Z ∈ D and i ∈ I.
Then, there is a set of parameters F ⊆ (2L → {0, 1}) such that

π∀
Z(i, X) =

∨
f∈F

(( ∧
J:f(J)=1

∧
j∈J

π(i, Xj ∧ Z)
)
−

( ∨
J:f(J)=0

∧
j∈J

π(i, Xj ∧ Z)
))

.

Given z, (xℓ)ℓ∈L ∈ dom(ρSL) s.t. ρSL(z) = Z and ρSL(xℓ) = Xℓ, the set F can be computed
in time poly(|z|, maxℓ∈L(|xℓ|), 22|L|+|L|). In particular, Items 2 and 4 of Step 2 hold.

To clarify, since the parameter len(θ) in Item 4 fixes the length |L|, the right-hand side of the
above equation only has a fixed number of operations, and can thus be evaluate efficiently
thanks to the other steps of the framework. Then, by Lemma 7 and Proposition 4, we get:

▶ Theorem 16. Fix k ∈ N. The k negations satisfiability problems for weak PA is in PTIME.

By Proposition 4 we also conclude that there is a PTIME procedure that given a formula Φ
from FO(Z) with k negations returns an element of dom(diff(un(ρSL))) representing [[Φ]]Z .
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7 Final remarks

We developed a framework to establish polynomial-time decidability of fixed negation
sentences of first-order theories whose signatures enjoy certain (parametrised) complexity
properties. A key feature of the framework is that it treats complementation in a general
way, and considers universal projection as a first-class citizen. Note that, a priori, the latter
operation might be easier than the former to decide, as shown for instance in [8].

We instantiated our framework to show that the fixed negation fragment of weak PA is
in PTIME, in sharp contrast with (standard) PA [20]. Due to space constrains, we did not
provide further instantiation of our framework. We know that it can be used to show that
the fixed negation fragment of weak linear real arithmetic is in PTIME. We believe that the
framework provides a sensible approach to study fixed negation fragments of FO extensions of,
e.g., certain abstract domains. While the framework obviously works for interval arithmetic,
the case of linear octagon arithmetic [19], whose full FO theory is PSPACE-complete [2],
seems already non-trivial. More generally, since the various steps required to instantiate the
framework only consider natural computational problems (inclusions and projections), our
hope is to also tackle theories outside the world of arithmetic.
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A Hardness of quantified weak PA Horn formulas

In this appendix, we complement the tractability result for the k-negation fragment of weak
PA established in Section 6 with an NP lower bound for (quantified) weak PA Horn formulas.
This lower bound only requires two variables x and y, where x is quantified existentially and
y is quantified universally. The matrix of such a 2-variable formula is of the form∧

1≤i≤n

(
ai · x + bi · y = ci → a′

i · x + b′
i · y = c′

i

)
.

We show this result by a reduction from the problem of deciding a univariate system of
non-congruences

∧k
i=1 x ̸≡ ri (mod mi), where mi ≥ 2 and ri ∈ [0, mi−1] for every i ∈ [1, k].

This problem is shown NP-hard in [1, Theorem 5.5.7]. The reduction directly follows from
the following equivalence: for every x ∈ Z,

k∧
i=1

x ̸≡ ri (mod mi) ⇐⇒ ∀y :
k∧

i=1

(
x− ri = mi · y → y = 3 · x + 1

)
.

First, consider x ∈ Z satisfying the left-hand side. Pick y ∈ Z. We have x−ri ̸= mi ·y for every
i ∈ [1, k]. So, every antecedent of the implications in

∧k
i=1

(
x− ri = mi · y → y = 3 · x + 1

)
is false, showing the right-hand side. For the other direction, consider an x ∈ Z satisfying
the right-hand side. It suffices to show that, for every i ∈ [1, k] and y ∈ Z, if x− ri = mi · y
then y ̸= 3 · x + 1. This implies that, for the right-hand side to hold, it must be the
case that x − ri ̸= mi · y for every i ∈ [1, k] and y ∈ Z; proving the left-hand side. Ad
absurdum, suppose that x− ri = mi · y and y = 3 · x + 1 hold. Then, x = − ri+mi

3·mi−1 . However,
0 < ri+mi

3·mi−1 ≤
2·mi−1
3·mi−1 < 1, as mi ≥ 2 and ri ∈ [0, mi − 1], contradicting that x is an integer.

▶ Proposition 17. Deciding ∃∀ weak PA Horn sentences in two variables is NP-hard.
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Abstract
In this paper, we consider the k-Covering Canadian Traveller Problem (k-CCTP), which can be
seen as a variant of the Travelling Salesperson Problem. The goal of k-CCTP is finding the shortest
tour for a traveller to visit a set of locations in a given graph and return to the origin. Crucially,
unknown to the traveller, up to k edges of the graph are blocked and the traveller only discovers
blocked edges online at one of their respective endpoints. The currently best known upper bound for
k-CCTP is O(

√
k) which was shown in [Huang and Liao, ISAAC ’12]. We improve this polynomial

bound to a logarithmic one by presenting a deterministic O(log k)-competitive algorithm that runs
in polynomial time. Further, we demonstrate the tightness of our analysis by giving a lower bound
instance for our algorithm.
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1 Introduction

The Canadian Traveller Problem (CTP) was introduced in 1991 by Papadimitriou and
Yannakakis [26] as an extension of the Shortest Path Problem and has applications in online
route planning in road networks. The goal of the problem is to find a shortest path between a
source and a destination in an unreliable graph, in which some edges may become unavailable.
This can only be observed in an online manner, i.e., when reaching one of the endpoints of
such an edge. More specifically, consider a connected, undirected graph G = (V, E) with a
source node s ∈ V , a destination node t ∈ V and a non-negative cost function c : E → R+

representing the cost to traverse each edge. A traveller seeks to find a path with minimum
cost from s to t. However, one or more edges might be blocked, and thus cannot be traversed.
The traveller only learns that an edge is blocked when reaching one of its endpoints. When
the number of blocked edges is bounded by k, the variant is called k-Canadian Traveller
Problem or k-CTP [6].

This work studies a generalization of CTP, defined in [22], which is called the Covering
Canadian Traveller Problem (CCTP). In CCTP, one attempts to develop an efficient tour
for a traveller that visits all vertices in a graph and returns to the origin (source) under the
same uncertainty as that of CTP. When the number of blocked edges is bounded by k, the
problem is called k-CCTP, analogous to the k-CTP variant of CTP.
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We make two assumptions on the underlying graph model, similar to [22]. First, we
assume that the graph remains connected even if all blocked edges are removed. Second, the
state of an edge, i.e., whether it is blocked or not, does not change after the traveller learns
about it. The problem has practical uses in dynamic routing systems that prioritize efficient
travel routes and aim to avoid traffic congestion. Since Huang and Liao introduced CCTP [22],
there has been a notable amount of work on similar problems in the literature [1, 30, 36, 37].
For example, Zhang et al. [35] studied the Steiner Travelling Salesperson Problem in which
the salesperson instantly learns about new blocked edges. Shiri et al. [29] focused on how to
allocate and route search-and-rescue teams to areas with trapped victims, considering the
uncertainty about road conditions which may delay the operations.

The motivation behind CCTP stems from other similar optimization problems, such as
dynamic TSP and online TSP. Dynamic TSP has been studied for various different types
of dynamic change, such as the addition or removal of locations, and changing pairwise
distances between locations in the underlying space [21, 32]. On the other hand, Ausiello et
al. [4] introduced the online TSP in which the input arrives over time, i.e., during the travel
new requests (locations) appear that have to be visited by the algorithm. The problem has
many practical applications, e.g., in logistics and robotics [2, 27]. Since its introduction, a
series of papers has been published on the subject [3, 10, 19].

As is usual in the literature on online problems, we measure the performance of our
algorithm by its competitive ratio [11]. This means that its performance is compared to the
performance of an algorithm for the corresponding offline problem. In our setting, this would
be an algorithm which knows the complete graph structure, including all blocked edges.

Our Contribution

In this paper, we focus on k-CCTP. Currently, the best known deterministic algorithm for
k-CCTP is the Cyclic Routing algorithm by Huang and Liao [22] with competitive ratio
O(
√

k). We improve this bound to O(log k) by making a connection with the Online Graph
Exploration problem. In the Online Graph Exploration problem, a searcher starts from a
source vertex and aims to visit all vertices of an unknown but fixed graph. Upon reaching a
new vertex, the server learns all incident edges and their costs. The reduction we give allows
us to get a polynomial time algorithm for k-CCTP using an algorithm for the Exploration
problem. Finally, we show that our analysis of the O(log k)-competitive algorithm is tight.

2 Related Work

Online Graph Exploration Problem

In the Online Graph Exploration problem, defined in [20], an agent has to explore an unknown
graph by starting at a given vertex, visiting all other vertices, and returning to the starting
one. The agent can only move along the edges of the graph and has to pay a cost for each
traversed edge.

A simple and fast algorithm that solves the problem is the Nearest Neighbor (NN)
algorithm. The algorithm selects an unexplored vertex that is cheapest to reach from
the current one and visits it, repeating this process until all vertices are visited. This
algorithm has been shown to have a competitive ratio of Θ(log n) for arbitrary graphs in the
Online Graph Exploration Problem [28], which is a tight bound even on planar unit-weight
graphs [15, 18]. Note that although the analysis in [28] deals with the offline problem, the
nearest neighbor can always be identified even in the online scenario and the same analysis
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applies. The second algorithm that achieves the Θ(log n) bound, which is the best known
upper bound for arbitrary graphs, is the hierarchical Depth First Search algorithm (hDFS)
in [23].

On the other hand, obtaining constant-competitive tours is known only for special cases
of graphs, such as graphs with k distinct weights, graphs with bounded genus, cycles, tadpole
graphs and cactus graphs [12, 15, 20, 23, 24]. Conversely, the best known lower bound on
the competitive ratio of an online algorithm is just 10/3 [9], and despite efforts, it is still
unclear whether there exists an o(log n) or even O(1)-competitive exploration algorithm for
general graphs.

Canadian Traveller Problem

CTP has been proven to be PSPACE-complete [26]. For the k-CTP variant, Bar-Noy
and Schieber proposed a polynomial time algorithm that minimizes the maximum travel
length [6]. Westphal developed a simple deterministic online algorithm for k-CTP that is
(2k + 1)-competitive and proved that no deterministic online algorithm can have a (strictly)
better competitive ratio [33]. Furthermore, he showed a lower bound of k + 1 for any
randomized algorithm, even if all s − t paths are node disjoint. Xu et al. [34] proposed a
deterministic algorithm that is also (2k +1)-competitive for k-CTP and proved that a natural
greedy strategy based on the available blockage information is exponential in k. On graphs
where all s− t paths are node-disjoint, a (k + 1)-competitive randomized online algorithm is
known [7, 31]. Demaine et al. [14] proposed a polynomial time randomized algorithm that
improves the deterministic lower bound of 2k + 1 by an o(1) factor for arbitrary graphs.
They also showed that the competitive ratio is even better if the randomized algorithm runs
in pseudo-polynomial time. Recently, Bergé et al. [8] proved that the competitive ratio of
any randomized algorithm using a specific set of strategies called memoryless cannot be
better than 2k + O(1). Over the last few years, various other variants of CTP have been
investigated [5, 17, 25].

Covering Canadian Traveller Problem

The best known algorithm for k-CCTP is the one proposed in [22] with a competitive ratio
of O(

√
k). The algorithm, called Cyclic Routing, decomposes the entire route into several

rounds. In each round, the traveller attempts to visit as many vertices as possible in the
graph following the visiting order (or the reverse order) of the tour derived by Christofides’
algorithm [13].

3 Preliminaries

In this section, we give some basic definitions. We start by giving a formal definition of the
problem we study, before defining the Online Graph Exploration Problem, the performance
measure and restating Christophides’ algorithm for completeness. In what follows, we will
denote by G = (V, E) a weighted, undirected graph. We will interchangeably use the notion
of “cost” and “length” for the weight of an edge. For example, a shortest tour is a tour of
minimum cost.

Definition of k-CCTP

The formal definition of CCTP is as follows. Given a complete metric graph G = (V, E)
with a source vertex s ∈ V , a traveller aims, beginning from s, to visit every other vertex
in V at least once and return to s with as little cost as possible. However, the traveller

MFCS 2023
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discovers online that some edges are blocked once reaching one of their endpoints. Moreover,
as mentioned earlier, two assumptions are made. First, the blocked edges cannot isolate
vertices of G, i.e., G remains connected, and second, edges remain in their state (i.e., whether
they are blocked or not) forever. In this paper, we consider its variant k-CCTP where the
number of blocked edges is bounded by k.

Definition of the Online Graph Exploration Problem

The problem can be formalized as follows. Let G = (V, E) be a weighted, undirected graph
with |V | = n vertices. The agent starts at a vertex s ∈ V and has to visit every vertex in the
graph and return to s. Note that the agent can visit a vertex more than once. At each step,
the agent is located at a vertex u and can choose to move to any of the neighboring vertices
of u. The agent incurs a cost equal to the cost of the edge traversed. Upon arriving at a
vertex v, the agent learns all the edges incident to v and their costs.

Competitive Ratio

A deterministic online algorithm ALG for k-CCTP is c-competitive if the total cost |ALG(σ)|
accrued by ALG for input σ is at most c · |OPT (σ)|. Here, |OPT (σ)| is the total cost of an
optimal tour for σ which is computed by an offline algorithm that already knows all blocked
edges.

Christophides’ algorithm

We also remind the reader how Christophides’ algorithm works. Christophides’ algorithm on
a complete metric graph G can be described as follows [16]:
1. Create a minimum spanning tree T of G.
2. Find a minimum-weight perfect matching M in the subgraph of G that is induced by the

vertices with odd degrees in T .
3. Combine the edges of M and T to form a connected multigraph H.
4. Form a Eulerian cycle in H.
5. Make the circuit found in the previous step into a Hamiltonian cycle by skipping repeated

vertices.

4 Solving k-CCTP via Graph Exploration

In this section, we present the results of our work. First, we show a connection between
CCTP and the Online Graph Exploration problem (Theorem 1). This is the crucial step to
improve the upper bound of O(

√
k).

The idea behind our reduction is that CCTP can be solved by an algorithm that solves
the Online Graph Exploration Problem. This is possible since at every step, the traveller
locally learns the real edges in both problems. The challenge here is that the algorithms for
the Online Graph Exploration for arbitrary graphs have competitive ratios depending on the
number of vertices n.

So, how can we reduce the size of the graph in which we run an algorithm for Graph
Exploration to something of size O(k)? First, we try to follow an approximately optimal
TSP tour, skipping vertices when edges are discovered to be blocked. Similar to the idea
in Cyclic Routing of [22], we use a function ShortCut to achieve this. After that, we
return to the starting vertex. This way, we visit at least n− k vertices of G. Since they do
not have to be visited again, we can then use the information gathered to reduce the number
of vertices in the graph on which we will run the algorithm for Graph Exploration to O(k).
Formally, we have the following theorem.
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▶ Theorem 1. If there exists an f(k)-competitive algorithm for the Online Graph Exploration
problem on graphs with at most k + 1 nodes and an α-approximation algorithm for metric
TSP, then there exists an (f(k) + 2α)-competitive algorithm for k-CCTP.

Proof. Suppose that we have AlgoExploration, an f(k)-competitive algorithm for the
Online Graph Exploration problem on arbitrary graphs with at most k + 1 nodes, and
AlgoTSP, an α-approximation algorithm for metric TSP. Then, we will prove that the al-
gorithm CompressAndExplore that uses these algorithms as subroutines has a competitive
ratio of at most f(k) + 2α for k-CCTP (for pseudocode, see Algorithm 1).

First, the algorithm runs AlgoTSP on the input graph G to compute a TSP tour P .
For simplicity, we relabel the vertices with respect to the tour, i.e., we assume that the tour
P has the order s = v1 → v2 → · · · → vn → v1. If an edge {vi, vj} is blocked, the traveller
tries to go to the next vertex in the order determined by P , i.e., vj+1, or v1 for j = n

(for pseudocode of this subroutine, see Function ShortCut on page 8). This procedure is
possible since the original graph is complete. By the triangle inequality, the cost of the tour
is upper bounded by the cost of tour P . If the traveller reaches vertex s, then ShortCut
terminates. If s is not reachable directly because of a blocked edge, the traveller returns to s

by retracing their steps. Since cost(P ) is an α-approximation for metric TSP, we have that
cost(ShortCut) ≤ 2 · cost(P ) ≤ 2α · |OPT |, where OPT is an optimal offline TSP tour on
graph G.

The traveller learns about all blocked edges which are adjacent to the vertices that are
visited during ShortCut. In the procedure, all edges that are discovered to be blocked are
collected in the set Eb. Thus, the traveller knows the whole graph (with all blocks) except for
the induced (complete) subgraph formed by the unvisited vertices U . Let κ be the number of
vertices which remain unvisited by ALG after ShortCut, i.e., the size of the set U . Then,
the traveller has discovered at least κ blocked edges, i.e., |Eb| ≥ κ.

Next, the traveller, being at s, has to visit the vertices in U . Since the true edges of the
graph except for those of the induced subgraph formed by vertices in U are known, it suffices
to consider only the vertices in the set Us = U ∪{s}. While the vertices in V \Us themselves
are not required, a shortest path between two vertices x, y ∈ Us might include vertices from
the set V \Us as intermediate nodes. This can occur when currently unknown edges between
unvisited nodes are blocked. More specifically, the algorithm runs the function Compress
(for pseudocode, see Function Compress on page 9). For every pair of vertices x, y ∈ Us, the
function creates a new edge Px,y representing a shortest path between x and y such that the
path consists only of edges that are known not to be blocked, i.e., edges in which at least one
node has already been visited before – if such a shortest path exists. Note that this phase of
the algorithm does not incur any cost in terms of competitive ratio. Thus, the procedure
creates a multigraph G′ which consists of vertex set Us, the initial edges that connect these
vertices and the “shortest-path” edges as described above. To better explain the steps of
the algorithm we present an example of an execution of algorithm CompressAndExplore
below (see Example 1).

Finally, the algorithm runs AlgoExploration on G′ and visits the remaining vertices.1
Every time the traveller visits a vertex, they learn all incident edges. This includes the newly
added “shortest-path” edges, of which we know that they are feasible. If the traveller uses

1 AlgoExploration solves the Exploration problem on arbitrary graphs, but G′ is a multigraph with at
most two edges per pair of vertices. However, this does not cause a problem, since the algorithm can
always select a shortest edge out of the two and the optimal solution can be computed while keeping
only one edge per pair.
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such a “shortest-path” edge, then in the final computed tour in the original graph we expand
it, meaning that we use the real path that corresponds to this edge. The cost of an optimal
TSP tour OPTG′ on multigraph G′ is at most the cost of an optimal TSP tour OPTG(Us)
that only has to visit the vertex set Us, i.e., the vertices that are also in G′, but inside the
input graph G. To see that this holds, consider an optimal tour OPTG(Us). Assume that
it visits the vertices in Us in the order s = x1 → x2 → · · · → x|Us| → x1. Between any
vertices xi, xi+1 ∈ Us for i ∈ {1, . . . , |Us| − 1} (or x|Us|, x1) that are visited one after the
other, OPTG(Us) uses a shortest path. Each of these shortest paths starts in Us. If it then
uses an edge to another vertex in Us, this edge will also be in G′ as each direct edge between
two vertices of Us will either be blocked in both G and G′ or not be blocked in both. Hence,
we can assume that an edge {u, v} from u ∈ Us to a vertex v /∈ Us is taken. This is an
already discovered edge, as v has already been visited during ShortCut. Eventually, the
path will re-enter into the set Us by using another already discovered edge {v′, u′} for some
v′ /∈ Us and u′ ∈ Us. In between leaving and re-entering, all edges that were taken are also
already discovered and this partial path has exactly the same length as the shortest-path
edge Pu,u′ between u, u′ ∈ Us.2 Continuing this argument, eventually the target vertex in Us

is reached. All intermediate partial paths are inside G′, either since they are regular edges
that also exist in G, or since they have been added as shortest-path edges during ShortCut.

The multigraph G′ has κ + 1 vertices and at least κ blocks have already been discovered.
The number of blocked edges is at most k, and thus there are at most k + 1 vertices in G′. So,
from the hypothesis the cost incurred by AlgoExploration on G′ is at most f(k) · |OPTG′ |.
Since an optimal solution for visiting a subset of vertices OPTG(Us) has cost at most |OPT |,
we get the following

cost(AlgoExploration) ≤ f(k) · |OPTG′ | ≤ f(k) · |OPTG(Us)| ≤ f(k) · |OPT | .

Overall, the algorithm has a total cost for the traveller of

cost(CompressAndExplore) = cost(ShortCut) + cost(AlgoExploration)
≤ (f(k) + 2α) · |OPT | .

Consequently, CompressAndExplore is an (f(k) + 2α)-competitive algorithm for k-CCTP.
Note that the knowledge of k does not affect the performance of the algorithm. ◀

▶ Remark. In the proof, we allow k ≥ n− 1 as long as the resulting graph remains connected.
The analysis of the competitive ratio of O(

√
k) in [22] requires k < n− 1.

▶ Example 1. Fig. 1 shows an example of CompressAndExplore. The traveller begins at
vertex s = v1 and moves in a counterclockwise direction. The given TSP tour by AlgoTSP
here is v1 → v2 → · · · → v16 → v1. The solid lines represent the tour that the traveller follows
during ShortCut due to the discovered blocked edges (red dashed lines). The traveller follows
the shortcut path v1 → v2 → v4 → v5 → v9 → v10 → v11 → v14 → v16 and after visiting
vertex v16, they return back to s following the same path backwards. Next, the algorithm
runs Compress and gets G′. Multigraph G′ contains s, the remaining unvisited vertices and
at most two edges between each pair of these vertices. Between vi and vj there is the edge
{vi, vj} (which may be blocked) and possibly the “shortest-path” edge Pi,j. The cost of Pi,j

2 There might be several shortest paths with the same length, which is why the shortest path chosen for
Pu,u′ and the described shortest path might differ. Still, their lengths are equal by definition.
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Algorithm 1 CompressAndExplore(AlgoTSP, AlgoExploration).

Input : A complete metric graph G = (V, E) with n vertices; a starting vertex
s ∈ V ;

Output : A tour that visits every vertex in V ;
Parameter : AlgoTSP(G1): An algorithm that returns a TSP tour on a metric

graph G1; The tour has the form s = v1 → v2 → · · · → vn → v1;
AlgoExploration(G2): An algorithm that solves the Online Graph
Exploration problem on an arbitrary graph G2 and returns a tour;

1 P ← AlgoTSP(G);
2 G∗, U, P1 ← ShortCut(G, P );
3 G′ ← Compress(G∗, U, G);
4 P2 ← AlgoExploration(G′);
5 P ′ ← (P1 → P2);

/* Concatenate P1 and P2, i.e., visit the vertices according to P1,
then according to P2. */

6 return P ′;

v1 = s

v2

v3
v4v5

v6

v7

v8

v9

v10

v11 v12
v13

v14

v15

v16 G′

v1 = s

v2

v3
v4v5

v6

v7

v8

v9

v10

v11 v12
v13

v14

v15

v16

P1,3

Figure 1 An example of algorithm CompressAndExplore.

is the cost of the shortest path from vi to vj in which each edge has at least one endpoint
outside of G′. In the example, a possible case for i = 1 and j = 3 is shown on the right with
P1,3 being the path v1 → v4 → v3.

Finally, the algorithm runs AlgoExploration on G′. The traveller visits all remaining
vertices, returns to s and the algorithm terminates.

Now, we can use CompressAndExplore with Christophides’ algorithm for metric TSP
and the Nearest Neighbor for the Online Graph Exploration problem. Since this algorithm
uses Christophides’ algorithm and then Nearest Neighbor, we refer to it by CNN.

▶ Corollary 2. CNN has a competitive ratio of O(log k) for k-CCTP.

Proof. Christophides’ algorithm gives a 3/2-approximation for metric TSP. On the other
hand, NN yields a competitive ratio of O(log n) for the Graph Exploration problem in an
arbitrary graph, where n is the number of vertices in the graph. Thus, from Theorem 1 we
get that CNN has a competitive ratio of 3 + O(log(k + 1)) = O(log k). ◀

MFCS 2023
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1 Function ShortCut(G, P):
/* G is the input graph and P a TSP tour. */
/* P has the form s = v1 → v2 → · · · → vn → v1. */

2 i← 1; j ← 2;
3 Us ← {s}; Eb ← ∅; P ′ ← {s};

/* Path P ′ which the traveller follows is built. */
4 while j ≤ n do
5 Add all newly discovered blocked edges {vi, x}, with x ∈ V \ {vi}, to Eb;
6 if {vi, vj} is not blocked then
7 P ′ ← (P ′ → vj); // Append vj to P ′

8 i← j;
9 else

10 Us ← Us ∪ {vj};
11 end
12 j ← j + 1;
13 end
14 if {vi, v1} is blocked then
15 Return to s following P ′ backwards;
16 P ′ ← Concatenate the path P ′ and the reverse of P ′ to return to s;
17 else
18 P ′ ← (P ′ → v1);
19 end
20 G∗ ← (V, E \ Eb);
21 return G∗, Us, P ′;
22 end Function

To demonstrate that the above analysis is tight, the following theorem presents a family
of instances that achieves a competitive ratio of Ω(log k) and therefore proves the analysis to
be tight.

▶ Theorem 3. There exists a family of instances for which CNN has a competitive ratio of
the Ω(log k).

Proof. We will use the graph presented in [18] to lower bound the competitive ratio of the
Nearest Neighbor algorithm. For an integer p ≥ 1, the graph Gp = (Vp, Ep) consists of a
chain of 2p − 1 triangles. Gp has 2p vertices in its lower level, and 2p − 1 vertices in its upper
level. The left-most vertex in the lower level is denoted by lp, the right-most by rp and the
central vertex in the upper level is denoted by mp. All edges in Gp have an equal cost of 1.

For our instance, we slightly modify the graph by adding another vertex u to the left of
lp with an edge {u, lp} of cost 1. We also set s = lp as the starting vertex. Since the input
for k-CCTP is a complete graph, we also need to add some more edges. All edges from u to
the other vertices have a cost of 1, and all other new edges have a cost of 2. All these edges
will be blocked edges. We call this new graph G+

p .
The resulting graph has k = Θ(n2) blocked edges and clearly satisfies the triangle

inequality. We illustrate the non-blocked part of G+
p for p = 3 in Fig. 2.

In the first step of Christophides’ algorithm, a minimal spanning tree is constructed. One
possible MST T is a path from u to rp. The nodes with uneven degree in T are the nodes u

and rp, so for the matching, the edge between u and rp is added. This results in a simple
cycle of all nodes. The MST and the matching edge are illustrated in Fig. 3.
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1 Function Compress(G∗, Us, G):
/* G∗ is the graph without the discovered blocked edges and Us the

set of the remaining unvisited vertices in the graph together
with the starting vertex s. */

2 E′ ← {{x, y} ∈ E | x, y ∈ Us};
/* E′ is the subset of edges with unknown state, i.e., of {x, y}

with x, y ∈ Us. */
3 G′ ← (Us, E′);
4 H ← (V, E \ E′);

/* H includes all edges with a known state, since in every edge at
least one vertex has already been visited. */

5 Let Us = {v′
1, v′

2, . . . , v′
|Us|};

6 for i← 1 to |Us| do
7 for j ← i + 1 to |Us| do
8 Find a shortest path Pi,j from v′

i to v′
j in H;

9 ci,j ← total cost of Pi,j ;
10 Add an edge {v′

i, v′
j} with cost ci,j to G′;

11 end
12 end
13 return G′;
14 end Function

u l3

m3

r3

Figure 2 Graph G+
p (for p = 3). G+

p is used to show tightness of the O(log k)-competitive ratio.

The TSP-tour can then be chosen to be s = l3 → u→ r3 → · · · → l3. This means that in
ShortCut, only node u would be visited besides lp as the direct edges from u to any other
node (besides lp) are blocked. At the end of ShortCut, the traveller returns to lp.

After ShortCut, the remaining graph would thus be the original graph Gp from [18].
We use the following lemma to prove that there exists a TSP-tour in Gp which starts (and
ends) in lp which is found by NN that has a length of (p + 4) · 2p−1 − 2. We will prove the
lemma below.

▶ Lemma 4 (Based on [18, Lemma 1]). There exists a NN-based TSP tour on Gp which
starts in lp and visits mp as final vertex before returning back to lp. The tour has length
(p + 4) · 2p−1 − 2.

Using this result, the total cost of the described TSP-tour is (p + 4)2p−1, whereas an
optimal TSP-tour has cost 2 + 3(2p − 1), namely visiting u and optimally visiting Gp by
going in a zig-zag motion from left to right (as shown in the MST in Fig. 3) and returning
using the lower edges of the triangle, thereby using each edge of the triangles exactly once.

MFCS 2023
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u l3

m3

r3

Figure 3 The MST and the matching edge (dashed line) in G+
3 .

This gives us a ratio of

(p + 4) · 2p−1

2 + 3 · (2p − 1) = (p + 4) · 2p−1

6 · 2p−1 − 1 ≥
p + 4

6 = Ω(p) = Ω(log n) . ◀

Proof of Lemma 4. We split the tour into two parts. In the first part, all vertices are visited,
and in the second part, the traveller returns to lp.

The second part has length 1 + 2p−1 − 1 = 2p−1. This is true because the whole graph
has been discovered and the traveller can take the shortest path from mp to lp, which is
going down to the left point of the middle triangle and then traversing the 2p−1 − 1 many
triangles on the left side to reach lp.

Hence, to show the Lemma, it remains to show that there exists a NN-route to visit all
vertices in Gp which has length (p + 3) · 2p−1 − 2 = (p + 4) · 2p−1 − 2− 2p−1, starting at lp
and ending at mp. We prove this by induction. For p = 1, Gp consists of a single triangle,
and the route l1 → r1 → m1 has length 2 = (1 + 3) · 21−1 − 2.

For the inductive step, we observe that Gp can be constructed from two copies of Gp−1

and an additional vertex mp (and three additional edges). Let G
(l)
p−1 be the left copy and

G
(r)
p−1 be the right copy. Then, the new edges are {r(l)

p−1, l
(r)
p−1}, {r

(l)
p−1, mp} and {l(r)

p−1, mp}.
This is illustrated in Fig. 4. By the induction hypothesis, there exists an NN-route in G

(l)
p−1

starting in lp = l
(l)
p−1 and ending in m

(l)
p−1 with length (p−1 + 3) ·2p−1−1−2. The two nearest

unvisited neighbors to m
(l)
p−1 are mp and l

(r)
p−1 with equal distance 2p−2 + 1. By going to l

(r)
p−1,

the sub-route from l
(r)
p−1 to m

(r)
p−1 of length (p + 2) · 2p−2 − 2 can then be found by NN. Note

that throughout this route, mp will never be closer to the current vertex than any other
unvisited vertex in the current sub-route and thus will not be visited before m

(r)
p−1. Finally,

mp needs to be visited, which requires an additional cost of 2p−2 + 1. Overall, there exists
an NN-route from lp to mp with length

2 · ((p + 2) · 2p−2 − 2) + 2 · (2p−2 + 1) = (p + 2) · 2p−1 − 4 + 2p−1 + 2 = (p + 3) · 2p−1 − 2 .

This concludes the proof. ◀

Finally, we remark that CNN takes polynomial time. The procedures ShortCut and
Compress run in polynomial time as the required shortest paths can be computed in
polynomial time. Since Christophides’ algorithm and Nearest Neighbor also have polynomial
time complexity, so does CNN.

5 Concluding Remarks

In this work, we considered the Covering Canadian Traveller Problem with up to k blocked
edges. We improved the upper bound to O(log k) by drawing an interesting connection to
the Online Graph Exploration problem. Further, we showed the tightness of our analysis.
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l
(l)
2

m
(l)
2

r
(l)
2

m3

l
(r)
2

m
(r)
2

r
(r)
2

Figure 4 Graph Gp (for p = 3) constructed from two copies of Gp−1, with the joining edges
denoted by the dashed lines.

Our reduction implies immediate consequences of future work on the respective other
problem. For one, it allows an improvement of the lower bound on the Graph Exploration
problem using a general lower bound on k-CCTP. Currently, the best known bound for the
Graph Exploration problem is 10/3. Tightening this gap would be a very interesting result.
Second, an improved algorithm for the Graph Exploration problem immediately gives rise to
a better algorithm and upper bound on k-CCTP.

Nevertheless, already an improved algorithm for k-CCTP or a lower bound on the Graph
Exploration problem would be of independent interest without exploiting our reduction and
thus provides another challenging direction of future research.
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Abstract
We initiate a study of the complexity of MSM-Median, the problem of computing a median of a
set of k real-valued time series under the move-split-merge distance. This distance measure is based
on three operations: moves, which may shift a data point in a time series; splits, which replace one
data point in a time series by two consecutive data points of the same value; and merges, which
replace two consecutive data points of equal value by a single data point of the same value. The
cost of a move operation is the difference of the data point value before and after the operation, the
cost of split and merge operations is defined via a given constant c.

Our main results are as follows. First, we show that MSM-Median is NP-hard and W[1]-
hard with respect to k for time series with at most three distinct values. Under the Exponential
Time Hypothesis (ETH) our reduction implies that a previous dynamic programming algorithm
with running time |I|O(k) [Holznigenkemper et al., Data Min. Knowl. Discov. ’23] is essentially
optimal. Here, |I| denotes the total input size. Second, we show that MSM-Median can be solved
in 2O(d/c) · |I|O(1) time where d is the total distance of the median to the input time series.
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1 Introduction

Computing an exact or approximate consensus of a set of real-valued time series is a
critical task in many applications like nearest-neighbor classification and clustering of time
series [1, 8, 10]. The algorithmic task in this problem is to compute for a given set X of
time series some time series x which has a small distance to the members of X. Naturally,
the quality of the computed consensus time series for the above-mentioned applications and
the difficulty of computing such a consensus depend highly on the underlying time series
distance function.

The best results in terms of quality and robustness of the computed distances is achieved
by elastic distance measures [11]. Informally, when computing an elastic distance measure
for two time series, each time series may be stretched or compressed. This ensures that the
best-fitting parts are aligned. Elastic distance measures allow for comparison of time series
of different lengths, are translation invariant and robust to temporal misalignment [9]. The
high quality of elastic measures however comes at a high running time cost [11].
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Consider for example the most popular elastic measure, the dynamic time warping
(DTW) distance. The DTW distance of two time series of length n and m can be computed
in O(nm) time by a simple dynamic programming (DP) algorithm. Under the SETH, a fairly
common complexity-theoretic assumption, this cannot be improved to O(n2−ϵ) time even
when both time series have length n [3]. DTW-Mean, the problem of computing a mean
under the DTW distance measure, that is, a time series that minimizes the sum of squared
DTW distances to the input time series, can be solved in O(n2k+12kk) time [2]. Here, n is
the maximum time series length and k is the number of input time series. While this running
time is polynomial for a constant number of strings, it grows rapidly with k making the
algorithm impractical for k ≥ 4. DTW-Mean is NP-hard [4], so a polynomial-time algorithm
cannot be expected. Moreover, DTW-Mean is W[1]-hard with respect to k and thus an
FPT algorithm for k, that is, an algorithm with running time f(k) · nO(1) is presumably
impossible [4]. Altogether, the complexity of distance and mean computation under the
DTW measure are fairly well-understood by now.

DTW is by far not the only elastic distance measure. In this work, we study the Move-
Split-Merge (MSM) distance [12]. Here, one time series is transformed into another using
three types of operations. A move shifts one value in a time series, a split replaces one
point of a time series by two subsequent points of the same value and a merge replaces
two subsequent points of the same value by a single point of the same value. In contrast
to DTW, the MSM distance fulfills the properties of a metric. Moreover, it achieves high
accuracy in 1-NN classification tasks [9, 11]. This highly motivates an algorithmic study of
distance computation and median finding problems. Initially, the distance computation for
the MSM metric was found to be much slower than for DTW [11]. Recent progress showed
that, on the practical side, the MSM distance computation can be improved so that it is
competitive with state-of-the-art algorithms for DTW [5]. For MSM-Median, the problem
of computing a time series that minimizes the sum of the MSM-distances to a given set X

of time series, the running times are even better than for DTW-Mean1: There is a DP
algorithm that solves MSM-Median in O(nk+32kk3) time [6].2 As in the DTW-Mean
algorithm, this is a polynomial running time for fixed number of input sequences but the
running time dependence on k is better. This running time advantage was also confirmed
in an experimental evaluation [6]. Given the high quality of MSM-based classifications,
it would be very desirable to push this running time advantage even further by finding
better algorithms for MSM-Median. At this point, it should be noted that apart from
the above-mentioned DP, nothing is known about the complexity of MSM-Median. This
work aims at filling this gap. In particular, we study whether there is hope for substantial
improvements over the current DP algorithm.

Our Results. We present two main results. First, we show that MSM-Median is NP-
hard, W[1]-hard when parameterized by k, and cannot be solved in f(k) · |I|o(k) time for
any computable function f , unless the ETH fails. Here, |I| denotes the total input size of
MSM-Median. These hardness results hold even if the total number of distinct values in the
input time series is three. This implies that the previous DP algorithm for MSM-Median [6]

1 It may seem inappropriate to directly compare a mean finding problem with a median finding problem.
However, in the DTW-Mean problem, the DTW distance measure is defined as a square root of a
warping past cost [2]. Consequently, the DTW mean minimizes the sum of warping path costs and is
thus in fact a median for this distance measure.

2 Previously, the problem was called MSM-Mean. Following a reviewer suggestion, we now use the name
MSM-Median since the aim is to minimize the sum of distances instead of the sum of squared distances.
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is close to optimal. Second, we show that MSM-Median can be solved in 2O(d/c) ·|I|O(1) time
where c is the constant cost for a merge or split operation and d is a bound on the total
distance of the median x∗ to the input time series in X. Due to space constraints, proofs of
statements marked with (*) are deferred to a full version.

2 Preliminaries

A time series of length n is a sequence x = (x[1], . . . , x[n]), where each data point, in short
point, x[i] is a real number. For i ∈ [1, n] and j ∈ [i, n], we denote by x[i, j] the contiguous
subsequence of x starting at i and ending at j. A contiguous subsequence x[i, j] is an α-run
if x[ℓ] = α for each ℓ ∈ [i, j]. Similarly, we call x[i, j] a binary run if x[ℓ] ∈ {0, 1} for each
ℓ ∈ [i, j]. For a set of time series X = {x1, . . . , xk}, the ith point of the jth time series of X

is denoted by xj [i]; V (X) = {x[i] | x ∈ X, i ∈ [1, |x|]} denotes the set of all values of points
in the time series of X.

Move-Split-Merge Operations. We now define the MSM metric, following the notation of
Stefan et al. [12], and the MSM-Median problem. The MSM metric allows three types of
operations to transfer one time series into another: move, split, and merge. For time series
x = (x[1], . . . , x[n]), a move transforms a point x[i] into x[i] + w for some w ∈ R, that is,
Movei,w(x) := (x[1], . . . , x[i−1], x[i] + w, x[i+1], . . . , x[n]), with cost Cost(Movei,w) = |w|.
Informally, we say that there is a move at point x[i] to another point x[i] + w. The split
operation splits the ith element of x into two consecutive points. A split at point x[i] is
defined as Spliti(x) := (x[1], . . . , x[i − 1], x[i], x[i], x[i + 1], . . . , x[n]). A merge operation may
be applied to two consecutive points of equal value. For x[i] = x[i + 1], it is given by
Mergei(x) := (x[1], . . . , x[i − 1], x[i + 1], . . . , x[n]). We say that x[i] and x[i + 1] merge.
Split and merge operations are inverse operations. Their costs are assumed to be equal and
determined by a given nonnegative constant c =: Cost(Spliti) = Cost(Mergei).

A transformation sequence S is a tuple (S1, . . . , Ss) with Sj ∈ {Moveij ,wj
, Splitij

, Mergeij
}.

A transformation T(x, S) of a time series x for a given transformation sequence S is defined
recursively via T(x, S) := T(S1(x), (S2, . . . , Ss)) and T(x, ∅) := x. We say that S transforms
x to y if T(x, S) = y. The cost of a transformation sequence S is the sum of all individual
operation costs, that is, Cost(S) :=

∑
S∈S Cost(S). A transformation is optimal if it has

minimal cost. The MSM distance dMSM(c)(x, y) between two time series x and y is the cost
of an optimal transformation. If c is clear from context, we may only write dMSM. We let
DMSM(c)(X, y) :=

∑
x∈X dMSM(x, y) denote the distance of a sequence X of time series to a

time series y. A median x∗ of a set of time series X is a time series with minimum distance
to X. The decision problem of computing a median is defined as follows.

MSM-Median
Input: A constant c > 0, a sequence X := (x1, . . . , xk) of time series, and an integer d.
Question: Is there a time series x∗ such that DMSM(c)(X, x∗) ≤ d?

Transformations Graphs. We further recall the concept of transformation graphs to describe
the structure of a transformation between time series x and x∗ [6, 12]. The transformation
graph of T(x, S) = x∗ is a directed acyclic graph GS(x, x∗) with source nodes N(x) =
{u[1], . . . , u[m]} and sink nodes N(x∗) = {u∗[1], . . . , u∗[n]}, where a node u[i] represents the
point x[i] and a node u∗[j] represents the point x∗[j]. The nodes which are neither source nor
sink nodes are called intermediate nodes. All nodes have in-degree and out-degree at most 2.
If there is a directed path from one node α to another node β, we say that α is aligned
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Figure 1 An optimal transformation graph between x := (4, 5, 5, 10) and y := (10, 7, 8) with
c = 0.1. Move edges are red. There are two merge operations, one split operation, and move
operations of total cost 8. Hence, d(x, y) = 8.3.

to β. The nodes of N(x) that align to the same node α correspond to consecutive points
in x. Each node in the node set V of GS(x, x∗) is associated with a value given by a function
val : V → R. For source and sink nodes we have val(u[i]) = x[i] and val(u∗[j]) = x∗[j]. Each
intermediate node is also associated with a value. The edges represent the transformation
operations of S. To create a transformation graph, for each operation in S, a respective
move edge or two split edges, or two merge edges are added to the graph. If a node α has
outdegree 2 and is connected to a node β by a split edge and β is a child of α, then there
exists a node γ ≠ β to which α is connected by a split edge and which is a child of α. If
the nodes α and β are connected by a merge edge, α is a parent of β, and β has indegree 2,
then there exists a node γ ≠ α which is connected to β by a merge edge and is a parent
of β. Moreover, for the split and the merge case, it holds that val(α) = val(β) = val(γ). A
move edge can be further specified as an increasing (inc-) or decreasing (dec-) edge if the
move operation adds a (not necessarily strictly) positive or negative value to the value of the
parent node, respectively.

A transformation path, in short path, in GS(x, x∗) is a directed path from a source
node u[i] ∈ N(x) to a sink node u∗[j] ∈ N(x∗). A transformation path is monotonic if
the move edges on this path are only inc- or only dec-edges. A transformation graph is
optimal if it belongs to an optimal transformation. There exists an optimal transformation
graph GS(x, x∗) which can be decomposed into a sequence of distinct trees (T1, . . . , Tt) with
the following properties [6]: 1) The sink and source nodes of each tree Ti form a contiguous
subsequence of x and y, respectively. 2) For all i ∈ [1, t − 1], the source and sink nodes of Ti

precede the source and sink nodes of Ti+1, respectively. 3) Each path in each Ti is monotonic.
For i ∈ [1, n] and j ∈ [i, n], we denote by u[i, j] a contiguous subsequence of nodes of x.

The cost of a tree T is the sum of the cost of the tree edges and denoted by Costc(T ).
If the merge/split cost c is clear from the context, we may omit the subscript. If a tree
contains two nodes α and β, its cost are at least |α − β|. If a tree contains a split or merge
edge, its cost are at least c. We call an optimal transformation graph decomposed into a
sequence of trees as an optimal transformation forest. Figure 1 shows an example where the
transformation graph consists of two trees.

▶ Observation 1 (*). Let X be a set of time series, let x∗ be a time series, and let i ∈
[1, |x∗| − 1]. If for each time series x ∈ X, there is some optimal transformation graph
containing a tree Tx such that both u∗[i] and u∗[i + 1] are sinks of Tx, then there is a time
series y∗ such that for each time series x ∈ X, dMSM(c)(x, x∗) > dMSM(c)(x, y∗).

Let x and y be time series of the same length. We define dMove(x, y) :=
∑|x|

i=1 |x[i]−y[i]| as
the move distance between x and y. The move distance describes the cost of a transformation
forest between x and y that only uses move operations. Hence, dMove(x, y) = dMSM(c)(x, y)
if and only if some optimal transformation between x and y uses only move operations.
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Circular Consensus String. Our negative results are obtained by a reduction from Binary
Circular Consensus String [4]. Let s be a string of length n and let δ ∈ [1, n]. The circular
shift of s by δ is the string s←δ of length n with s←δ[i] := s[1 + (i − 1 + δ) mod n] for
each i ∈ [1, n]. We denote the Hamming distance of strings s1 and s2 by dHam(s1, s2).

Binary Circular Consensus String
Input: A set S := {s1, . . . , sk} of binary strings of length n and an integer d.
Question: Is there a binary string s∗ of length n and a k-tuple (δ1, . . . , δk) ∈ [0, n−1]k
such that

∑
i∈[1,k] dHam(si

←δi , s∗) ≤ d?

The Exponential Time Hypothesis (ETH) [7] implies that 3-SAT cannot be solved
in 2o(|F |) time where F is the input formula. Assuming the ETH, Binary Circular
Consensus String cannot be solved in f(k) · no(k) time for any computable function f [4].

3 Finding an MSM-Median is Hard

In this section we prove our main hardness results for MSM-Median.

▶ Theorem 2. For c = 1, MSM-Median is NP-hard, W[1]-hard when parameterized by k,
and cannot be solved in f(k) · |I|o(k) time for any computable function f , unless the ETH
fails. This holds even if |V (X)| = 3.

To show the hardness results, we present a reduction from the Binary Circular
Consensus String-problem which is NP-hard, W[1]-hard when parameterized by k, and
cannot be solved in f(k) · no(k) time for any computable function f , unless the ETH fails [4].

Let I := (S, d) be an instance of Binary Circular Consensus String and let n denote
the length of each binary strings of S := {s1, . . . , sk} with k := |S|. If d ≥ n · k, then I is a
trivial yes-instance. Hence, we assume that d ≤ n · k. We can assume that k ≤ n as otherwise
I can be solved in FPT-time for k. We now describe how to construct in polynomial
time an equivalent instance I ′ := (c = 1, X, d′) of MSM-Median such that |X| = |S|
and |I ′| ∈ nO(1). Each point in each time series of X has value either 0, 1, or A := 2d + 3.
Let g : {0, 1}∗ → {0, 1, A}∗ be the function where g(0) := (0, A) and g(1) := (1, A), and for
any binary string y of length at least 2 we have g(y) := g(y[1]) ◦ . . . ◦ g(y[|y|]).

For each i ∈ [1, k], we define a time series x′i := g(si). Let R := k · (n · (A + 2) + 1). We
set X := (x1, . . . , xk), where for each i ∈ [1, k], xi is the concatenation of R copies of x′i, that
is, xi := (x′i)R = (g(si))R = g((si)R). Finally, we set d′ := (R − 1) · d + k · (n · (A + 2) + 1) =
(R − 1) · d + k · (n · (2d + 5) + 1). This completes the construction of I ′.

Note that |X| = k and that |I ′| ∈ |I|O(1) ⊆ nO(1) since we assumed that k ≤ n

and d ≤ n · k. Hence, to show the statement, it remains to show that I is a yes-instance
of Binary Circular Consensus String if and only if I ′ is a yes-instance of MSM-Median.

I′ is a yes-instance if I is a yes-instance. Let s∗ be a binary string of length n and
let (δ1, . . . , δk) ∈ [0, n − 1]k be a k-tuple such that

∑
i∈[1,k] dHam(si

←δi , s∗) ≤ d. We define a
time series x′ as x′ := g(s∗). Let x∗ be the concatenation of R − 1 copies of x′, that is,

x∗ := (x′)R−1 = (g(s∗))R−1 = g((s∗)R−1).

We show that DMSM(X, x∗) ≤ d′. More precisely, we show that dMSM(xi, x∗) ≤ (R −
1) · dHam(si

←δi , s∗) + n · (A + 2) + 1 for each i ∈ [1, k]. Since
∑

si∈S dHam(si
←δi , s∗) ≤ d

and DMSM(X, x∗) =
∑

xi∈X dMSM(xi, x∗), this then implies that DMSM(X, x∗) ≤ (R − 1) ·
d + k · (n · (A + 2) + 1) = d′. Informally, we obtain the bound on dMSM(xi, x∗) via the
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s1
←3 11011101

s2
←0 11101110

s3
←2 00110011

s∗←2 11100011

x1 1A1A0A1A1A1A0A1A · · · 1A1A0A1A1A1A0A1A
x2 1A1A1A0A1A1A1A0A · · · 1A1A1A0A1A1A1A0A
x3 0A0A1A1A0A0A1A1A · · · 0A0A1A1A0A0A1A1A

x∗ 1A1A1A0A1A1A1A0A · · · 1A1A1A0A1A1A1A0A

Figure 2 Left: An instance of CCS for three strings s1, s2, s3 with the consensus string s∗. Red
rectangles show the shift δi, i ∈ [1, 3]. Right: Corresponding MSM-Median problem with input
time series x1, x2, and x3 and the median x∗. Blue parts in the input time series align via merge-
and move edges to x∗. Red parts align via move edges from the input time series to x∗.

following transformation: For the middle (R − 1) · 2 · n points of xi, only move operations
are applied. All other points at the beginning and end of each time series in X merge to the
first or last point in x∗, respectively. Figure 2 shows an example.

The above-mentioned set of middle points of xi is defined as follows. The string (si)R

contains the substring (si
←δi)R−1 starting at index δi + 1. Hence, xi = g((si)R) contains the

substring x̃i := g((si
←δi)R−1) = g(si

←δi)R−1 starting at index 2 · δi + 1. The time series x̃i

comprises exactly these middle points. We now bound the distance of xi to x̃i and the
distance of x̃i to x∗.

First, we show that dMSM(xi, x̃i) ≤ n·(A+2)+1. To this end, we describe a transformation
graph Gi between xi and x̃i that consists of (R − 1) · 2 · n trees. The first tree T1 contains
the first 2 · δi + 1 points of xi as source nodes and the first point of x̃i as the unique sink
node. Similarly, the last tree T(R−1)·2·n contains the last 2 · (n − δi) + 1 points of xi as source
nodes and the last point of x̃i as the unique sink node. For each ℓ ∈ [2, (R − 1) · 2 · n − 1],
the tree Tℓ consists of a single edge from the source ui[2 · δi + ℓ] to the sink ũi[ℓ]. Since xi

contains the substring x̃i starting at index 2 · δi + 1, for each ℓ ∈ [2, (R − 1) · 2 · n − 1],
we have xi[2 · δi + ℓ] = x̃i[ℓ] which implies Cost(Tℓ) = 0. Hence, it remains to show
that Cost(T1) + Cost(T(R−1)·2·n) ≤ n · (A + 2) + 1. The following lemma upper-bounds the
costs of these trees independent of the concrete binary values of their respective sources and
sinks. For each α ∈ {0, 1, A}, we use α as shortcut for the length-one time series (α).

▶ Lemma 3 (*). Let y be a binary string. It holds that
dMSM(A ◦ g(y), A) ≤ |y| · (A + 2) and
for each α1 ∈ {0, 1} and each α2 ∈ {0, 1}, dMSM(g(y) ◦ α1, α2) ≤ |y| · (A + 2) + 1.

Recall that sink nodes of T1 are nodes in x∗. Since the unique sink node of T1 has value
either 0 or 1, Lemma 3 implies Cost(T1) ≤ (δi) · (A + 2) + 1. Moreover, since the unique
sink node of T(R−1)·2·n has value A, Lemma 3 implies Cost(T(R−1)·2·n) ≤ (n − δi) · (A + 2).
Hence, dMSM(xi, x̃i) ≤ Cost(T1) + Cost(T(R−1)·2·n) ≤ n · (A + 2) + 1.

Second, we show that dMSM(x̃i, x∗) ≤ (R − 1) · dHam(si
←δi , s∗). Recall that x̃i and x∗

have the same length ((R − 1) · 2 · n). Hence, it is sufficient to show that dMove(x̃i, x∗) ≤
(R − 1) · dHam(si

←δi , s∗). Since x̃i[ℓ] = x∗i [ℓ] = A for each even ℓ ∈ [1, |x∗|], we conclude

dMove(x̃i, x∗) =
∑

odd ℓ∈[1,|x∗|]

|x̃i[ℓ] − x∗[ℓ]| =
∑

ℓ∈[1,(R−1)·n]

|x̃i[2ℓ − 1] − x∗[2ℓ − 1]|

= (R − 1) ·
∑

ℓ∈[1,n]

|x̃i[2ℓ − 1] − x∗[2ℓ − 1]|

= (R − 1) ·
∑

ℓ∈[1,n]

dHam(x̃i[2ℓ − 1], x∗[2ℓ − 1])
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= (R − 1) ·
∑

ℓ∈[1,n]

dHam(si
←δi [ℓ], s∗[ℓ])

= (R − 1) · dHam(si
←δi , s∗).

Recall that x̃i = (g(si
←δi))R−1 and x∗ = (g(s∗))R−1. The second to last equation holds since

by definition of g, for each j ∈ [1, n], g(si
←δi)[2j − 1] = si

←δi [j] and g(s∗)[2j − 1] = s∗[j].
Hence, dMSM(x̃i, x∗) ≤ dMove(x̃i, x∗) = (R − 1) · dHam(si

←δi , s∗).
Since dMSM is a metric, we obtain

dMSM(xi, x∗) ≤ dMSM(xi, x̃i) + dMSM(x̃i, x∗) ≤ (R − 1) · dHam(si
←δi , s∗) + n · (A + 2) + 1.

Hence, dMSM(xi, x∗) ≤ (R−1) ·dHam(si
←δi , s∗)+n ·(A+2)+1 for each time series xi ∈ X

and thus DMSM(X, x∗) ≤ d′. Consequently, I ′ is a yes-instance of MSM-Median.

I′ is a no-instance if I is a no-instance. If I is a no-instance, then for each binary string s∗

of length n and each k-tuple (δ1, . . . , δk) ∈ [0, n−1]k,
∑

i∈[1,k] dHam(si
←δi , s∗) ≥ d+1. Let x∗

be a time series that minimizes DMSM(X, x∗). We show that DMSM(X, x∗) ≥ R · (d + 1) =
d′+d > d. We can assume that x∗ uses only values of V (X) = {0, 1, A} [6]. For each i ∈ [1, k],
let GSi(xi, x∗) be an optimal transformation graph between xi and x∗. Moreover, let Ti be
the collection of all trees of GSi

(xi, x∗). We can assume that each value in each such tree is
from V (X) = {0, 1, A} [6]. For a collection of trees T, we denote Cost(T) :=

∑
T∈T Cost(T ).

To show that DMSM(X, x∗) > d′, we first introduce some notation.
We say that a move edge (u1, u2) of any tree is heavy if | val(u1)−val(u2)| > 1. Analogously,

we call path P in any tree heavy if at least one move edge of P is heavy. Since each node
of each tree between X and x∗ has a value from {0, 1, A}, a tree T contains a heavy path
if and only if T contains at least one node with value A and at least one node with value
either 0 or 1. In other words, if a tree T contains no heavy path, then a) the value of each
node in T is A or b) the value of each node in T is from {0, 1}. Since A = 2d + 3, the cost of
a tree with a heavy path is at least A − 1 = 2(d + 1).

In the following, we take the time series x1 ∈ X as a pivot and regard the partial
alignment of a prefix of x1 to a prefix of x∗. Then, we analyze the cost of all other time
series x ∈ X \ {x1} aligning to this prefix of x∗.

For each i ∈ [0, R], let bi be the largest number of [0, |x∗|] such that u∗[bi] is the sink
of a tree of T1 containing no source nodes of u1[2ni + 1, 2nR]. Note that b0 = 0 and that
if the tree of T1 that has u1[1] as a source node also has a source node u1[2ni + 1] for
some i ∈ [1, R − 1], then bj = 0 for each j ∈ [0, i]. For each i ∈ [0, R] let Bi be set of trees
between any time series x of X and x∗ containing only sinks of u∗[1, bi]. Figure 3 depicts
examples of trees belonging to Bi and a tree not belonging to Bi. For i ∈ [1, R], the ith
block is defined as Qi = Bi \ Bi−1. That is, each tree T in a block Qi contains only sinks
of u∗[1, bi] and at least one sink of u∗[bi−1 + 1, bi]. The ith block Qi is a cut if Qi ∩ T1
has exactly the set of source nodes u1[2n(i − 1) + 1, 2ni]. Figure 4 depicts two examples

bi−1 + 1 bi

xj

x∗

xℓ

T ′

T ′′
T ′′′

Figure 3 Two time series xj and xℓ with a median x∗ of X; T ′ is not in Bi, T ′′ and T ′′′ are in Bi.
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2(i− 1)n + 1 2in 2(i− 1)n + 1 2in 2(i− 1)n + 1 2in

bi−1 + 1 bi bi−1 + 1 bi bi−1 + 1 bi

x1

x∗

T T T ′ T ′′

Figure 4 The upper time series shows x1, the lower time series shows the median x∗. The first
example is not a cut since the tree T has source nodes u1[j] with j > 2in. The second example is
not a cut since the tree T has source nodes u1[j] with j ≤ 2(i − 1)n. The third example is a cut.

of blocks not being cuts and one example of a cut. The idea behind the definitions of cuts
is as follows: If a block Qi is not a cut, then some tree T ∈ T1 with at least two sources
contains u1[2n(i − 1)] or u1[2ni + 1] as a source. We say that Qi is a light cut if for each
tree T ∈ Qi ∩ T1, T contains no heavy path. Hence, if Qi is a light cut, then for each source
node û in u1[2n(i − 1) + 1, 2ni], the tree of T1 containing û contains no heavy path. Note
that a light cut Qi may still contain trees with heavy paths but these trees are not contained
in T1.

We further describe the structure of a light cut. By construction, every copy of x1 starts
with a binary value followed by an A, followed by a binary value and so on. All paths in
trees of a light cut Qi are light. That is, an A in x1 aligns to one or multiple A in x∗ and
a binary number in x1 aligns to one or multiple binary numbers in x∗. That is, we have n

non-empty binary runs (r1
bin, . . . , rn

bin) and n non-empty A-runs (r1
A, . . . , rn

A) such that

x∗[bi−1 + 1, bi] = (r1
bin ◦ r1

A ◦ r2
bin ◦ r2

A ◦ . . . ◦ rn
bin ◦ rn

A).

We now show that each block Qi has amortized cost at least d + 1. This implies that the
total cost of the transformation forest exceeds d′ < R · (d + 1) and thus I ′ is a no-instance of
MSM-Median. Let i ∈ [1, R]. We say that a set J ⊆ [i, R] with i ∈ J is right-dominated by
a set J ′ ⊆ [i, R] if J ⊆ J ′ and [max(J), max(J ′)] ⊆ J ′.

▶ Lemma 4 (*). Let i ∈ [1, R] such that the block Qi is not a light cut. Moreover, let J ⊆ [i, R]
such that i ∈ J and for each j ∈ J , the block Qj is not a light cut. Then, there is
some J ′ ⊆ [i, R] such that J is right-dominated by J ′ and Cost(∪j∈J′Qj ∩ T1) ≥ |J ′| · (d + 1).

▶ Lemma 5. Let I be a no-instance of Binary Circular Consensus String and let i ∈
[0, R − 1]. If Cost(Bi) ≥ i · (d + 1), then there is some j > i such that Cost(Bj) ≥ j · (d + 1).

Proof. Considering the next block Qi+1, we distinguish whether Qi+1 is a light cut.
Case 1: Block Qi+1 is not a light cut. Let J = {i + 1}. By Lemma 4, there is some

J ′ ⊆ [i + 1, R] with J ⊆ J ′ and [max(J), max(J ′)] = [i + 1, max(J ′)] ⊆ J ′ such
that Cost(∪j′∈J′Qj′ ∩ T1) ≥ |J ′| · (d + 1). For j = max(J ′) we have Cost(Bj \ Bi) ≥
Cost(∪j′∈J′Qj′ ∩ T1) ≥ |J ′| · (d + 1) = (j − i) · (d + 1). We get

Cost(Bj) = Cost((Bj \ Bi) ∪ Bi) = Cost(Bj \ Bi) + Cost(Bi)
≥ (j − i) · (d + 1) + i · (d + 1) = j · (d + 1).

Hence, the statement holds for j.
Case 2: Block Qi+1 is a light cut. Recall that since Qi+1 is a light cut, there are n non-

empty binary runs (r1
bin, . . . , rn

bin) and n non-empty A-runs (r1
A, . . . , rn

A) such that

x∗[bi + 1, bi+1] = (r1
bin ◦ r1

A ◦ r2
bin ◦ r2

A ◦ . . . ◦ rn
bin ◦ rn

A).
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First, we show two properties of transformation graphs from each time series of X to x∗

which directly imply Cost(Bj) ≥ j · (d + 1) for some j ≥ i + 1. Afterward, we show that
transformation graphs without these properties then resembles circular shifts of the binary
input strings of I. Because I is a no-instance of Binary Circular Consensus String,
we then get Cost(Qi+1) ≥ d + 1 which implies Cost(Bi+1) ≥ (i + 1) · (d + 1).

▷ Claim 6 (*). Let i ∈ [0, R − 1] such that Qi+1 is a light cut. If there is some tree T

in BR \ T1 that contains at least one sink node of u∗[bi + 1, bi+1] and where any of the
following holds:
1. T is contained in Qi+1 and contains a heavy path or
2. the values of the sinks of T contain at least one A and at least one binary value,
then there is some j > i such that Cost(Bj \ Bi) ≥ (j − i) · (d + 1).

Hence, if Condition 1 or Condition 2 holds, then there is some j ≥ i+1 such that Cost(Bj \
Bi) ≥ (j − i) · (d + 1). Consequently, Cost(Bj) = Cost(Bj \ Bi) + Cost(Bi) ≥ j · (d + 1)
which implies that the statement holds for j. In the following, we thus assume that neither
Condition 1 or Condition 2 holds. This implies that

each tree of Qi+1 has only one source node (otherwise, Condition 1 holds) and
each tree with at least one sink node of x∗[bi + 1, bi+1] has either a) only sinks with binary
values or b) only sinks with value A (otherwise, Condition 2 holds).

Note that the latter implies that each tree with at least one sink node of x∗[bi + 1, bi+1] has
either a) only sinks with binary values or b) only sinks with value A. Since Condition 1 does
not hold, this further implies that each tree T of Qi+1

has only sinks with binary values, if the value of the unique source of T is binary and
has only sinks with value A, if the unique source of T has value A.

Next, we show that the statement holds for j = i+1. To this end, we show that Cost(Qi+1) ≥
d + 1. For each q ∈ [1, n], let lastq denote the index of the last binary value of rq

bin in the
median. Let s∗ be the length-n string such that s∗[q] = x∗[lastq] for each q ∈ [1, n].

▷ Claim 7. For each p ∈ [1, k], there is some even index δ′p such that for each q ∈ [1, n] there
is a tree T q

p satisfying the following properties:
(i) T q

p is contained in Qi+1 ∩ Tp,
(ii) up[δ′p + 2 · q − 1] is the unique source node of T q

p , and
(iii) u∗[lastq] is a sink node of T q

p .

Proof. Let p ∈ [1, k]. We prove this statement in an inductive way. First, we show that there
is an even index δ′p such that there is a tree T n

p satisfying Properties (i)–(iii). Afterward,
we show that if for some ℓ ∈ [2, n], there is a tree T ℓ

p satisfying Properties (i)–(iii), then the
tree T ℓ−1

p satisfies Properties (i)–(iii). This then implies the statement.
Let T n

p be the tree of Tp having u∗[lastn] as a sink node and let T ′ be the tree of Tp

having u∗[lastn + 1] as a sink node. Note that T n
p satisfies Property (iii). Since lastq is the

index of the last value of the nth binary run of Qi+1, we have x∗[lastn + 1] = A. Moreover,
since each tree containing at least one sink node in x∗[bi + 1, bi+1] has either a) only sinks
with binary values or b) only sinks with value A, T n

p and T ′ are distinct trees. Hence,
since lastn + 1 ≤ bi+1, T n

p is contained in Qi+1. This implies that T n
p satisfies Property (i).

Moreover, since no tree in Qi+1 contains a heavy path, the values of the source nodes and the
values of the sink nodes of T n

p are all binary values. Hence, since each tree of Qi+1 has only
one source node, T n

p has a unique source and this unique source has a binary value. Since xp

contains binary values only on odd positions, there is some even δ′p such that up[δ′p + 2 · n − 1]
is the unique source of T n

p . Hence, T n
p satisfies Properties (i)–(iii) for δ′p.
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Now assume by induction that the statement holds for T ℓ
p . We show that the tree T ℓ−1

p

satisfies Properties (i)–(iii) as well. Since rℓ−1
A is a non-empty A-run and each tree of Qi+1 has

either a) only sinks with binary values or b) only sinks with value A, T ℓ
p is not the first tree

of Tp. Hence, since δ′p is even, δ′p +2 ·ℓ−1 ≥ 3. Let T ′ be the tree of Tp having up[δ′p +2 ·ℓ−2]
as a source node, and let T ℓ−1

p be the tree of Tp having up[δ′p +2 ·ℓ−3] = up[δ′p +2 · (ℓ−1)−1]
as a source node. Since no tree of Qi+1 contains a heavy path, the values of all sink nodes
of T ℓ

p and T ℓ−1
p are binary and the values of all sink nodes of T ′ are A. Hence, T ℓ

p contains
exactly the ℓth binary run as sink nodes, as otherwise, T ℓ

p contains a sink with value A

or T ′ contains a sink with a binary value. Hence, T ′ contains the node of the last A of
the (ℓ − 1)th A-run as a sink node. Since T ℓ

p is contained in Qi+1, this further implies that T ′

is also contained in Qi+1. Thus, similarly to the above, T ′ contains exactly the (ℓ−1)th A-run
as sink nodes, as otherwise, T ′ contains a sink with binary value or T ℓ−1

p contains a sink
with value A. Hence, T ℓ−1

p contains the node u∗[lastℓ−1] as a sink node and thus fulfills
Property (iii). Since T ℓ

p is contained in Qi+1, this further implies that T ℓ−1
p is also contained

in Qi+1. Hence, T ℓ−1
p fulfills Property (i). By the fact that each tree in Qi+1 contains only

one source node, this then implies that up[δ′p + 2 · (ℓ − 1) − 1] is the unique source node
of T ℓ−1

p . Hence, T ℓ−1
p satisfies Properties (i)–(iii).

Moreover, the above proof also shows that δ′p + 2 · ℓ − 1 ≥ 3 for each ℓ ∈ [2, n], which
implies that δ′p ≥ 0. Additionally, the proof also shows that for each ℓ ∈ [2, n],

T ℓ
p of Tp contains exactly the ℓth binary run as sink nodes and

the tree of Tp containing up[δ′p + 2 · ℓ − 2] as unique source node, contains exactly
the (ℓ − 1)th A-run as sink nodes.3 ◁

For each p ∈ [1, k], let δ′p be the index fulfilling the properties of Claim 7. Moreover, for
each p ∈ [1, k] and for each q ∈ [1, n], let T q

p be the tree fulfilling the properties of Claim 7
with respect to δ′p. Finally, let T := {T q

p | p ∈ [1, k], q ∈ [1, n]} denote the set of these trees.
We show that Cost(T) ≥ d + 1. Due to Property (i) of Claim 7, T ⊆ Qi+1. Hence,

Cost(Bi+1) = Cost((Bi+1 \ Bi) ∪ Bi) = Cost(Qi+1) + Cost(Bi)
≥ (d + 1) + i · (d + 1) ≥ (i + 1) · (d + 1).

To show that Cost(T) ≥ d + 1, we use the fact that for each binary string ŝ of length n

and each k-tuple (δ1, . . . , δk),
∑

p∈[1,k] dHam(sp
←δp , ŝ) ≥ d+1. In particular, this holds for s∗,

the string of length n where for each index q ∈ [1, n], s∗[q] = x∗[lastq]. For each p ∈ [1, k],
we set δp := δ′

p mod (2n)
2 = δ′

p

2 mod n. Next, we show that for each p ∈ [1, k], Cost(Tp) ≥
dHam(sp

←δp , s∗), where Tp := T ∩ Tp = {T q
p | q ∈ [1, n]}.

Let p ∈ [1, k]. Recall that xp = (g(sp))R = g((sp)R). Hence, by definition of g and sp
←δp ,

for each q ∈ [1, n],

sp
←δp [q] = sp[1 + (δp + q − 1) mod n] = (sp)R[δp + q]

= xp[2 · (δp + q) − 1] = xp[2 · δp + 2 · q − 1] = xp[δ′p + 2 · q − 1].

Since for each q ∈ [1, n], T q
p contains the source up[δ′p + 2 · q − 1] of value xp[δ′p + 2 · q − 1] =

sp
←δp [q] and the sink u∗[lastq] of value s∗[q], we conclude Cost(T q

p ) ≥ |sp
←δp [q] − s∗[q]| ≥

dHam(sp
←δp [q], s∗[q]). Hence, Cost(Tp) =

∑n
q=1 Cost(T q

p ) ≥
∑n

q=1 dHam(sp
←δp [q], s∗[q]) =

dHam(sp
←δp , s∗).

Since
∑k

p=1 dHam(sp
←δp , s∗) ≥ d + 1, we conclude Cost(Qi+1) ≥ Cost(T) ≥ d + 1. This

then implies Cost(Bi+1) ≥ (i + 1) · (d + 1). Hence, the statement holds for j = i + 1. ◀

3 Recall that x∗ minimizes DMSM(X, x∗) and that for each i ∈ [1, k], Gi is a transformation graph
between xi and x∗. By Observation 1, this implies that for each ℓ ∈ [2, n], the ℓth binary run and
the (ℓ − 1)th A-run each have length 1. This then implies (x∗[last1], . . . , x∗[lastn + 1]) = g(s∗).
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Note that Cost(B0) = Cost(∅) = 0 ≥ 0 · (d + 1). Hence, due to Lemma 5, one can show
via induction that Cost(BR) ≥ R · (d + 1). Since R = k · (n · (A + 2) + 1),

R · (d + 1) = (R − 1) · d + R + d = (R − 1) · d + k · (n · (A + 2) + 1) + d = d′ + d.

Hence DMSM(X, x∗) = Cost(BR) ≥ R · (d + 1) > d′ and I ′ is a no-instance of MSM-Median.
This completes the proof of the equivalence of I and I ′ and thus the proof of Theorem 2.
With the hardness for c = 1 at hand, we may also show hardness for arbitrary values of c.

▶ Theorem 8 (*). For every constant c > 0, MSM-Median is NP-hard, W[1]-hard when
parameterized by k, and cannot be solved in f(k) · |I|o(k) time for any computable function f ,
unless the ETH fails. This holds even if |V (X)| = 3.

4 Parameterized Algorithms for MSM-Median

The algorithms presented in the following extend the DP algorithm of Holznigenkemper et
al. [6]. Given a sequence X of time series of length at most n each and some m ∈ N, this
DP computes in time O(n|X|+2 · 2|X| · |X|2 · m) a time series x∗ of length at most m that
contains only points of V (X) and has minimum distance to X among all such time series.

Allowing Weights. Let X := (x1, . . . , xk) be a sequence of time series. Moreover, let X ′ :=
{xi | 1 ≤ i ≤ k} be the set of time series of X and let ω : X ′ → N+ be the function where
for each x ∈ X ′, ω(x) is the number of occurrences of x in X. We call (X ′, ω) the weighted
equivalent of X. We denote by Dω

MSM(c)(X ′, y) :=
∑

x∈X′(ω(x) · dMSM(c)(x, y)) the weighted
MSM-distance between X ′ and y.

▶ Observation 9. Let X := (x1, . . . , xk) be a sequence of time series and let (X ′, ω) be the
weighted equivalent of X. Then, for each time series x∗, DMSM(c)(X, x∗) = Dω

MSM(c)(X ′, x∗).

▶ Lemma 10. Let X be a set of time series of length at most n each, let ω : X → N+ be a
weight function, and let m ∈ N. In time O(n|X|+2 ·2|X| ·|X|2 ·m) one can find a time series x∗

that contains only points of V (X), has length at most m, and minimizes Dω
MSM(c)(X, x∗).

Proof. We adapt the algorithm by Holznigenkemper et al. [6] by inserting the weights of the
time series as follows: We fill a (k + 2)-dimensional table D with entries D[p, ℓ, s], where
p = (p1, . . . , pk) indicates the current positions of X, the index ℓ ∈ [1, m] indicates the
current position of x∗, and s is a point in V (X). The entry D[p, ℓ, s] stores the minimal cost
needed to transform the partial time series (x1[1, p1], . . . , xk[1, pk]) to any time series x∗ of
length exactly ℓ where x∗[ℓ] = s and x∗ uses only values from V (X). Since all time series
are weighted, all partial time series are also weighted. Hence, the cost of all transformation
operations regarding the weighted partial time series also have to be weighted.

In the DP recurrence, we distinguish two cases: Merges are applied (to the last positions
of a subset of X) or splits or moves are applied (to the last positions of all time series in X).
When merges applied, the position of x∗ does not change in the recurrences, this case is
denoted by AME . When moves and splits are applied, then the position of x∗ decreases, this
case is denoted AMS . In the recurrence, we consider the best of these two cases:

D[p, ℓ, s] = min{AMS [p, ℓ, s], AME [p, ℓ, s]}.

To present the recurrence for the two cases, we use index sets IMO, ISP , and IME representing
the time series indices for which move, split, and merge operations are applied, respectively.
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All index sets are subsets of [1, k] and IMO ∪ ISP = [1, k]. For an index set I, let pI =
(p1, . . . , pk) where pi = pi − 1 for all i ∈ I and pi = pi for all i ∈ [1, k] \ I. For merge
operations, the recursive call of the function does not decrease the current position of x∗:

AME [p, ℓ, s] = min
IME

(
D[pIME

, ℓ, s] +
∑

i∈IME

(ω(xi) · C(xi[pi], xi[pi − 1], s))
)
,

where C(u, v, w) =
{

c if v ≤ u ≤ w or v ≥ u ≥ w

c + min(|u − v|, |u − w|) otherwise.

For move and split operations, the recursive call of the function decreases the current
position of x∗:

AMS [p, ℓ, s] = min
s′∈V (X)

{
min

IMO,ISP

(
D[pIMO

, ℓ − 1, s′]

+
∑

i∈IMO

(ω(xi) · |xi[pi] − s|) +
∑

i∈ISP

(ω(xi) · C(s, xi[pi], s′))
)}

.

Each single entry of AMS and AME can be computed in time 2|X| · (|X| + n + d/c + m)O(1).
For the last recursion step, the entries D[(1, . . . , 1), 1, s] are computed by D[(1, . . . , 1), 1, s] =∑k

i=1(ω(xi) · |xi[1] − s|). All entries D[p, ℓ, s] for which pi < 1 for some i ∈ [1, k] are set
to +∞. If ℓ = 1 and pi > 1 for all i ∈ [1, k], then only merge operations may be applied
since the position of x∗ can not be decreased anymore: D[p, 1, s] = AME [p, ℓ, s].

The minimum distance Dω
MSM(c)(X ′, x∗) to any time series x∗ of length at most m

that uses only points of V (X) can be computed by minℓ∈[m],s∈V (X)(D[p, ℓ, s]), where p :=
(|x1|, . . . , |xk|). Since the previous DP [6] runs in the desired running time and we only added
weights to the DP but did not change the table structure, the running time stays the same.
The corresponding time series can be found via traceback. ◀

▶ Lemma 11 (*). Let X be a set of time series of length at most n each and let ω : X → N+.
Then, each time series x∗ that minimizes DMSM(c)(X, x∗) has length at most n · |X|.

Improving the Dynamic Program with a Cost-Bound. Next, we establish an intermediate
FPT algorithm with the parameters |X| and d/c.

▶ Theorem 12. Let X be a set of time series each of length at most n, let ω : X → N+ be
a weight function, let d ∈ R, and let m ∈ N. In time 4|X| · 3d/c · (|X| + n + d/c + m)O(1)

one can find a time series x∗ that contains only points of V (X), has length at most m,
and minimizes Dω

MSM(c)(X, x∗) or correctly output that there is no such time series x∗

with Dω
MSM(c)(X, x∗) ≤ d.

The main idea is that when given a cost budget d, we may be able to limit the number of
entries in the DP-table that do not exceed a cost of d. That is, we only need to compute the
entries in the DP-table that are close to the diagonal.

▶ Lemma 13 (*). Let p = (p1, . . . , pk) ∈ Nk, let ℓ ∈ N, and let s ∈ R. If
∑k

i=1 |pi − ℓ| > d/c,
then D[p, ℓ, s] > d.

We now adapt the DP-table described in the proof of Lemma 10 as follows. The table
entries now have a slightly different interpretation: If the minimal cost needed to transform
the partial time series (x1[1, p1], . . . , xk[1, pk]) to any time series x∗ of length ℓ with x∗[ℓ] = s

that only uses points from V (X) is at most d, then the value of D[p, ℓ, s] is exactly this
number. Otherwise, D[p, ℓ, s] may hold an arbitrary value larger than d, for example d + 1.
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For each ℓ ∈ [1, m] and each s ∈ V (X), we only compute the table
entries D[(p1, . . . , pk), ℓ, s] with

∑k
i=1 |pi − ℓ| ≤ d/c. Moreover, whenever a sum required to

compute an entry of D[p′, ℓ′, s′] depends on the value of an entry D[p, ℓ, s] with
∑k

i=1 |pi−ℓ| >

d/c, then this sum is not computed but replaced by d+1 since the sum is at least D[p, ℓ, s] > d

as well. This is correct since each entry of D is obtained by minimizing sums of non-negative
numbers. Finally, we compute d∗ := minℓ∈[1,m] mins∈V (X) D[(|x1|, . . . , |xk|), ℓ, s]. If d∗ > d,
we output that there is no time series x∗ with the desired properties. Otherwise, we find
some time series x∗ with Dω

MSM(c)(X, x∗) = d∗ via traceback and output this time series.
To show that this modified algorithm has the running time promised in Theorem 12, we

bound the number of vectors (p1, . . . , pk) ∈ Nk with
∑k

i=1 |pi − ℓ| ≤ d/c.

▶ Observation 14 (*). Let q = (q1, . . . , qk) ∈ Zk be a vector and let α ∈ N. In time O(2k ·
3α · α · k), one can enumerate all vectors p = (p1, . . . , pk) ∈ Zk with

∑k
i=1 |qi − pi| ≤ α.

By setting α = d/c and qi = ℓ for each i ∈ [1, k], Observation 14 implies that we have
to compute at most 2|X| · 3d/c · (|X| + n + d/c + m)O(1) entries of D to compute d∗ :=
minℓ∈[1,m] mins∈V (X) D[(|x1|, . . . , |xk|), ℓ, s]. Since each entry can be computed in time 2|X| ·
(|X| + n + d/c + m)O(1), we obtain the stated running time. If d∗ ≤ d, the corresponding
time series can be found via traceback in the same running time. This shows Theorem 12.

An FPT-algorithm for the Distance Bound. In this section, we now obtain an FPT
algorithm for the parameter d/c, removing the running time dependence on |X|.

▶ Theorem 15. MSM-Median can be solved in time 2O(d/c) · |I|O(1). Moreover, when given
a yes-instance of MSM-Median, one can find a median in the same running time.

For a time series x, we define XClose(x) := {y ∈ X | |y| = |x| and dMSM(c)(x, y) ≤ 3 · c/2}.

▶ Lemma 16. Let X be a set of time series, let x ∈ X, and let x∗ be any time series
with dMSM(c)(x, x∗) < c/2, then

|x∗| = |x|,
for each y ∈ XClose(x), dMSM(c)(y, x∗) = dMove(y, x∗), and
for each z ∈ X \ XClose(x), dMSM(c)(z, x∗) ≥ c.

Proof. First, note that since dMSM(c)(x, x∗) < c/2, each optimal transformation forest
between x and x∗ uses only move edges. Hence, |x∗| = |x|.

Next, we show that for each y ∈ XClose(x), dMSM(c)(y, x∗) = dMove(y, x∗). By the triangle
inequality, dMSM(c)(y, x∗) ≤ dMSM(c)(y, x) + dMSM(c)(x, x∗) < 3 · c/2 + c/2 = 2c. Hence,
since |y| = |x| = |x∗|, each transformation forest between y and x∗ contains the same number
of split and merge operations. Since dMSM(c)(y, x∗) < 2c, each optimal transformation forest
between y and x∗ uses only move edges which implies that dMSM(c)(y, x∗) = dMove(y, x∗).

Finally, we show that for each z ∈ X\XClose(x), dMSM(c)(z, x∗) ≥ c. Let z ∈ X\XClose(x).
If |z| ̸= |x|, then since |x| = |x∗|, each transformation forest between z and x∗ contains at least
one split or merge operation. Consequently, dMSM(c)(z, x∗) ≥ c. Otherwise, that is, if |z| = |x|,
then 3 · c/2 < dMSM(c)(z, x) since z /∈ XClose(x). By the triangle inequality, dMSM(c)(z, x) ≤
dMSM(c)(z, x∗) + dMSM(c)(x, x∗) < dMSM(c)(z, x∗) + c/2. Hence, 3 · c/2 < dMSM(c)(z, x∗) + c/2
which implies dMSM(c)(z, x∗) > c. ◀

Proof of Theorem 15. Let I := (X ′, d) be an instance of MSM-Median where each time
series of X ′ has length at most n and let (X, ω) be the weighted equivalent of X ′. There is a
median that only uses values of V (X) [6, Lemma 10]. We describe how to find in the stated
running time a time series x∗ with this property that minimizes Dω

MSM(c)(X, x∗) or correctly
detect that no such time series exists with Dω

MSM(c)(X, x∗) ≤ d. We distinguish two cases.
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Case 1: d/c ≥ |X|/2. Hence, |X| ≤ 2 · d/c. By Lemma 11, the sought time series x∗ has
length at most n · |X|. Due to Theorem 12, we can find a time series with the desired
properties that has length at most n · |X| in time 4|X| · 3d/c · (|X| + n + d/c)O(1) ≤
42·d/c · 3d/c · (|X| + n + d/c)O(1) = 48d/c · (|X| + n + d/c)O(1) or detect that no such
time series exists with Dω

MSM(c)(X, x∗) ≤ d. Hence, if such a time series x∗ is found, we
can correctly output that I is a yes-instance of MSM-Median and return the found
time series. Otherwise, by the above, we can correctly output that I is a no-instance
of MSM-Median.

Case 2: d/c < |X|/2. The idea is as follows: If I is a yes-instance of MSM-Median,
then there is a median x∗ with Dω

MSM(c)(X, x∗) ≤ d and some time series x̃ ∈
X with dMSM(c)(x̃, x∗) ≤ d/|X| < c/2. Lemma 16 now implies: for each time
series y ∈ XClose(x̃), dMSM(c)(y, x∗) = dMove(y, x∗) and for each time series z ∈
X \ XClose(x̃), dMSM(c)(z, x∗) ≥ c. This implies that Z := X \ XClose(x̃) contains at
most d/c time series. Hence, to find a median, the main algorithmic difficulty lies in finding
a time series of length |x̃| that uses only points of V (X) and minimizes Dω

MSM(c)(X, x∗) =
Dω

MSM(c)(Z, x∗) +
∑

y∈XClose(x)(ω(y) · dMove(y, x∗)). We show that this can be done in
time 4|Z| · 3d/c · (|X| + n + d/c)O(1) by modifying the DP of Theorem 12. Essentially
the idea is that since for each time series y ∈ XClose(x̃), dMSM(c)(y, x∗) = dMove(y, x∗),
the transformation forest between y and x∗ is fixed and we do not need to store current
positions of time series in XClose(x̃) as dimensions in the DP-table.

▷ Claim 17 (*). Let Z be a set of time series of length at most nZ each, let Y be a
non-empty set of time series of length nY each, let ω : Z ∪ Y → N+, and let d ∈ R. In
time 4|Z| · 3d/c · (|Z ∪ Y | + max(nZ , nY ) + d/c)O(1) one can find a time series x∗ that

contains only points of V (Z) ∪ V (Y ), has length nY , and
minimizes dZ,Y (x∗) := Dω

MSM(c)(Z, x∗) +
∑

y∈Y (ω(y) · dMove(y, x∗))
or correctly output that there is no such time series x∗ with dZ,Y (x∗) ≤ d.

The algorithm for d/c < |X|/2 now works as follows: Branch into all possibilities
for x̃. That is, iterate over all time series x ∈ X and compute the sets Y := XClose(x)
and Z := X \ Y . If |Z| > d/c, then continue with the next time series since x is no candidate
for x̃. Otherwise, apply the algorithm behind Claim 17 for the sets Z and Y . If this algorithm
returns that there is no time series x∗ with the desired property, then x is not a candidate
for x̃ or I is a no-instance of MSM-Median. Otherwise, store the time series x∗ that
minimizes Dω

MSM(c)(Z, x∗) +
∑

y∈Y (ω(y) · dMSM(c)(y, x∗)) ≤ d. After iterating over all time
series of X, output the stored time series x∗ that minimizes Dω

MSM(X, x∗). If no such time
series was found, output that I is a no-instance of MSM-Median.

By the above, this algorithm is correct. It remains to show the running time. Since for any
two time series x and y, dMSM(c)(x, y) can be computed in O(|x|·|y|) time [12], each individual
step of this algorithm runs in |I|O(1) time. For each time series x with |X \ XClose(x)| ≤ d/c,
the algorithm behind Claim 17 can be applied in time 4|X\XClose(x)|·3d/c·|I|O(1) ≤ 12d/c·|I|O(1).
Consequently, this algorithm runs in time 12d/c · |I|O(1).

Since in both cases the running time is at most 48d/c · |I|O(1), the statement holds. ◀

Finally, let us observe that the concrete value of d need not be known in advance.

▶ Corollary 18. Let X be a sequence of time series of length at most n each, then we can find
in time 2O(d/c) · (|X| + n + d/c)O(1) a time series x∗ that minimizes DMSM(c)(X, x∗) = d.
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Abstract
Selection of a group of representatives satisfying certain fairness constraints, is a commonly occurring
scenario. Motivated by this, we initiate a systematic algorithmic study of a fair version of Hitting
Set. In the classical Hitting Set problem, the input is a universe U , a family F of subsets of
U , and a non-negative integer k. The goal is to determine whether there exists a subset S ⊆ U of
size k that hits (i.e., intersects) every set in F . Inspired by several recent works, we formulate a
fair version of this problem, as follows. The input additionally contains a family B of subsets of U ,
where each subset in B can be thought of as the group of elements of the same type. We want to
find a set S ⊆ U of size k that (i) hits all sets of F , and (ii) does not contain too many elements of
each type. We call this problem Fair Hitting Set, and chart out its tractability boundary from
both classical as well as multivariate perspective. Our results use a multitude of techniques from
parameterized complexity including classical to advanced tools, such as, methods of representative
sets for matroids, FO model checking, and a generalization of best known kernels for Hitting Set.
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1 Introduction

Imagine a scenario of selecting a committee of size k from a group of people U . We need a
committee of people with some given attributes. These kinds of “attribute hitting” scenarios
is modeled by a family F over U , where for each attribute A , we have a set F containing
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people in U who have the attribute A . As is life, not always every set of people can work
collectively. In particular, the committee cannot operate smoothly if we select more than the
desired number of people from a set B ⊆ U . These conflicts are modeled by another family,
B over U , and a function f : B → N, which says that f(B) is the maximum number of people
from a set B ∈ B that can serve on the committee. Specifically, we want a committee that is
a hitting set for attributes and has a set of people who are “conflict free”. This paper aims to
undertake a systematic study of a generalization of Hitting Set, which models such scenarios,
and study this problem in the realm of parameterized complexity.

Indeed, Hitting Set is one of the 21 problems proven to be NP-complete by [6]. Recall,
in this problem, we are given a set system (U , F), and an integer k. Here, U is a finite set of
elements known as universe and F is a family of subsets of U . The objective is to determine
whether there exists a subset S ⊆ U such that S hits all sets in F , i.e., for every Fi ∈ F ,
S ∩ Fi ̸= ∅. Hitting Set is closely related to the Set Cover problem. These two problems,
along with a particularly interesting special case thereof, namely that of Vertex Cover,
are some of the most extensively studied problems in the field of approximation algorithms
and parameterized complexity. Hitting Set problem is of a particular interest, because
many combinatorial problems can be modeled as instances of Hitting Set.

Motivated from real-life applications, there has been a growing interest on the fairness
aspect of various problems and algorithms developed. This has led to the whole new field
of algorithmic fairness. Depending on the specific application, there are numerous ways
to define the notion of fairness. One of the earliest definitions of fairness comes from [8],
who defined fair versions of edge deletion problems. This was motivated from the following
scenario. Suppose the graph models a communication network, with each edge being a link
between a pair of nodes. In order to achieve acyclicity in the network, some links need to be
disconnected. However, from the perspective of each node, it is desirable that fewest possible
links incident to it are disconnected. Thus, we wish to disconnect links in a fair or equitable
manner for the nodes.

Subsequently, this notion was extended by [11, 7] to define fair versions of vertex deletion
problems. In this model, we want to delete a subset of vertices in order to achieve a certain
graph property, such that each vertex has fewest possible neighbors deleted. As a concrete
example, in a fair version of Vertex Cover in this model, we want to find a vertex
cover S, such that each vertex outside S has fewest neighbors in S. Recently, [1] studied
a generalization of this, called Sparse Hitting Set. The input to Sparse Hitting Set
consists of (U , F , B), where U is the universe, and F and B are two families of subsets of U .
The goal is to find a hitting set S ⊆ U for F such that k := maxBi∈B |Bi ∩ S| is minimized.
Here, k is called the sparseness of the solution. Note that Sparse Hitting Set generalizes
Fair Vertex Cover as defined above. Along a similar line, [5] considered conflict-free
versions of various problems, including Hitting Set. In Conflict Free d-Hitting Set,
we are given an instance (U , F , k) of Hitting Set, and a conflict graph H = (U , E), and
the goal is to find a hitting set S ⊆ U of size at most k, such that S induces an independent
set in the conflict graph H.

Our Problem

Along the same line of work, we define a fair version of Hitting Set, which captures all of
the aforementioned problems, and much more. Formally, the problem is defined as follows.
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Fair Hitting Set
Input. An instance I = (U , F , B, f : B → N, k), where U = {u1, u2, . . . , un} is the
universe; B and F are two families of subsets of U , where F = {F1, F2, . . . , Fm}, and
B = {B1, B2, . . . , Bℓ}, and k is a positive integer.
Task. Determine whether there exists S ⊆ U , with the following properties.

|S| ≤ k,
S is a hitting set for F , i.e., for every Fi ∈ F , S ∩ Fi ̸= ∅, and
For every Bj ∈ B, |S ∩ Bj | ≤ f(Bj).

We refer to a set S ⊆ U satisfying the above properties as a fair hitting set for F , and
use |I| to denote the size of the instance I.

We note that Fair Hitting Set generalizes Sparse Hitting Set. Given an instance
(U , F , B) of Sparse Hitting Set, we iteratively solve instances Ii of Fair Hitting Set
for i = 1, 2, . . .. Here, an instance Ii of Fair Hitting Set is given by (U , F , B, fi, |U|),
where fi(Bj) = i for all Bj ∈ B. For the smallest i such that Ii is a yes-instance of Fair
Hitting Set, we stop and conclude that i is the optimal sparseness of the given instance
of Sparse Hitting Set. We note that Fair Hitting Set also generalizes the setting
considered by [5].

1.1 Our Results, Techniques, and Relation to Hitting Set

First, we observe that Fair Hitting Set is a generalization of Hitting Set, by setting
B = ∅. Thus, Fair Hitting Set inherits all lower bound results from Hitting Set, namely,
in general the problem is NP-hard as well as W[2]-hard parameterized by k, the solution
size [2]. However, note that in the hard instances of Hitting Set, the sets in F can intersect
arbitrarily. Indeed, consider an extreme case, when the sets in F are pairwise disjoint. In
this setting Hitting Set is trivial to solve – an optimal solution must contain exactly one
element from each set of F . In contrast, we show that Fair Hitting Set remains NP-hard,
as well as W[1]-hard w.r.t. k – and thus unlikely to be FPT – even in this simple setting. In
particular, we show the following lower bound results, which are proved formally in the full
version.

▶ Theorem 1. Fair Hitting Set remains NP-hard when (1) the sets in F are pairwise
disjoint, (2) each element appears in at most two distinct Bi’s in B, and (3) each Bi ∈ B
has size exactly 2. Furthermore, assuming ETH, it is not possible to solve Fair Hitting
Set in time 2o(t), where t = max{|U|, |F|, |B|}..

Fair Hitting Set is W[1]-hard when parameterized by k, even when the sets in F are
pairwise disjoint, and each Bi ∈ B has size exactly 2.

The first result is obtained via a reduction from a problem of finding a “rainbow matching”
on a path, and for the second result we give a parameter preserving reduction from k-
Multicolored Independent Set. Given these lower bound results (Theorem 1), we study
Fair Hitting Set under specific assumptions on the instance I = (U , F , B, f, k). A natural
question is: under which assumptions? To answer this we look at the known fixed-parameter
tractability results for Hitting Set.

MFCS 2023
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Hitting Set in Parameterized Complexity

Hitting Set is known to be W[2]-complete parameterized by the solution size in general.
In other words, under widely believed complexity theoretic assumptions, it does not admit
an FPT algorithm parameterized by the solution size. This motivates the study of Hitting
Set in special cases. One particularly interesting case is Vertex Cover when the size of
each set in F is exactly two. Vertex Cover is the most extensively studied problem in the
parameterized complexity with a number of results in the FPT algorithms and kernelization
in general graphs as well as special classes of graphs. Many of the techniques and results
developed for Vertex Cover also extend d-Hitting Set, where each set in F has size at
most d, for some constant d. More generally, Hitting Set is known to be FPT and admits
a polynomial kernel in the case when the incidence graph GU,F , which is the bipartite graph
on the vertex set U ⊎ F with edges denoting the set-containment, is Ki,j-free. That is, no i

sets in F contain j elements in common, where i and j are assumed to be constants. This
setting generalizes all the above settings as well as when the GU,F is d-degenerate (since
such graphs are Kd+1,d+1-free).

Our Algorithmic Results

Notably, we are able to extend almost all of the fixed-parameter tractability results for
Hitting Set mentioned in the previous paragraph, under suitable assumptions on the set
system (U , B). We give a summary of our results in Figure 1.

More specifically, we obtain our results in the following steps. Consider a special case
Fair Hitting Set, when the sets in F are pairwise disjoint, and each element appears in at
most q sets in B. Note that the first part of Theorem 1 implies that the problem is NP-hard
even when q = 2. On the other hand, when q = 1, i.e., when both F and B are families of
pairwise disjoint sets, then we observe Fair Hitting Set can be solved in polynomial time.
Thus, q = 1 to 2 is a sharp transition between the tractability of the problem. Although the
problem is NP-hard even for constant values of q, the following results are interesting in this
setting. In particular, we show that the problem is FPT, and admits a polynomial kernel
parameterized by k, if q is a constant.

▶ Theorem 2. Let (U , F , B, f : B → N, k) be an instance of Fair Hitting Set. Then, Fair
Hitting Set can be solved in time 2O(qk)nO(1) time, when every element in U appears in at
most q sets in B and any pair of sets in F are pairwise disjoint. Further, Fair Hitting
Set admits a kernel of size O(kq2(

kq
q

)
log k).

Next we generalize Theorem 2 to a scenario where every element in U appears in at most
q sets in B and at most d sets in F .

▶ Theorem 3. Let (U , F , B, f : B → N, k) be an instance of Fair Hitting Set. Then,
Fair Hitting Set can be solved in time kO(dk)2O(qk)nO(1) time, when every element in U
appears in at most q sets in B and at most d sets in F .

These results, Theorems 2 and 3, are obtained by the key observation that the problem
can be modeled as finding a hitting set for F that is also an independent set in a suitably
defined partition matroid that encodes the constraints imposed by (U , B, f). This enables
us to use the representative sets toolkit developed for matroids. This result is discussed in
Section 3.

Next we consider a generalization of the above setting, where (1) each element appears in
at most q sets in B, and (2) the GU,F is Kd,d-free. In this case, we combine the techniques
developed in Hitting Set literature in the Kd,d-free setting, as well as, the representative
sets based techniques developed in Section 3, to obtain the following result.
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▶ Theorem 4. Given an instance I = (U , F , B, f, k) of Fair Hitting Set, such that
GU,F is Kd,d-free, and the frequency of each element in B is bounded by q, one can find
an equivalent instance I ′ = (U ′, F ′, B′, f ′, k′) of Fair Hitting Set in polynomial time,
such that |U ′| = O(kd2+qddqq), |F ′| ≤ dkd, and |B′| = O(kd2+q · ddqq+1), where d and q are
assumed to be constants.

Finally, we reach our most general case, where suppose (1) the (U , B) incidence graph
is “nowhere dense” (defined formally in the full version; this class includes planar, excluded
minor, bounded degree, and bounded expansion graphs), and (2) the (U , F) incidence graph
is Kd,d-free. In this case, we obtain an FPT algorithm, parameterized by k and d. This result
is in two steps. First, we proceed as prior to the case when each element appears in f(k, d)
sets of F (cf. Theorem 4). Next, since (U , B) incidence graph is nowhere dense, we reduce
the problem of finding a Fair Hitting Set to FO model checking procedure on nowhere
dense graphs, which is known to be FPT in the size of the formula. In particular, we show
that the problem can be encoded by a variant of Induced Subgraph Isomorphism on
nowhere dense graphs, where the size of the host graph we are searching for can be bounded
by a function of k, d and the graph class.

▶ Theorem 5. Let G be a nowhere dense graph class. Let I = (U , F , B, f, k) be an instance
of Fair Hitting Set such that the incidence graph G := GU,B ∈ G, and GU,F is Kd,d-free
for some d ≥ 1. Then, one can solve Fair Hitting Set on I in time h(k, d) · |I|O(1), for
some function h(·, ·).

2 Preliminaries

For an integer ℓ ≥ 1, we use the notation [ℓ] := {1, 2, . . . , ℓ}. Let R = (U , S) be a set system,
where U is a finite set of elements (also called the ground set or the universe), and S is
a family of subsets of U . For an element u ∈ U , and any S ′ ⊆ S, we use the notation
S ′(u) := {S ∈ S ′ : u ∈ S}, i.e., S ′(u) is the sub-family of sets from S ′ that contain u. For a
subset R ⊆ U , we denote S − R := {S \ R : S ∈ S}. We use GU,S to denote the incidence
graph corresponding to the set system (U , S), i.e., GU,S is a bipartite graph with bipartition
U ⊎ S, such that there is an edge between an element e ∈ U and a set S ∈ S iff e ∈ S.

In this paper, we work with finite, simple, undirected graphs. We use the standard graph
theoretic notation and terminology, as defined in [3].

3 FPT Algorithm and Kernel Based on Representative Sets

In this section we design an algorithm and a kernel for a special case of Fair Hitting Set,
using methods based on representative sets [4, 10]. Let (U , F , B, f : B → N, k) be an instance
of Fair Hitting Set. The first special case we consider is the following: every element in
U appears in at most q sets in B and any pair of sets in F are pairwise disjoint.

Before this, however, we consider the special case of q = 1, i.e., when any pair of sets in
B, as well as that in F are disjoint. In this case, we can solve the problem in polynomial
time, by reducing it to the problem of finding maximum flow in an auxiliary directed graph,
defined as follows. The vertices of the graph are B ⊎ U ⊎ F ⊎ {s, t}. First, we add arcs (i.e.,
directed edges) from source s to each Bj ∈ B, with capacity f(Bj). Next, for every u ∈ Bj ,
we add an arc (Bj , u) of capacity 1. Similarly, for each u ∈ Fi, we add an arc (u, Fi), of
capacity 1. Finally, we add arcs (Fi, t) of capacity ∞. It is straightforward to show that
there exists a flow of value k in the graph iff there exists a fair hitting set of size k. We omit
the details.

MFCS 2023
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No. GU,B GU,F Results
1 q = 1 d = 1 Polynomial time

(B′
is are disjoint) (F ′

i s are disjoint)
2 q = 2 d = 1 NP-Hard

No sub-exp algo(full version)
3 q d = 1 2O(qk) · |I|O(1)(Theorem 2)

O(kq2(
kq
q

)
log k)(kernel)

(Theorem 12)
4 q d kO(dk)2qk|I|O(1)

(Theorem 3)
5 q Kd,d-free kO(d2+q)ddqq+1(kernel)

(Theorem 4)
6 apex-minor free Kd,d-free FPT/(k + d) (full version)
7 nowhere dense Kd,d-free FPT/(k + d) (Theorem 5)
8 K2,2-free d = 1 W [1]-Hard/k (full version)

Figure 1 An overview of different results obtained in this paper. In the second (resp. third)
column, we state the assumption on the set system (U , B) (resp. (U , F)). In rows 1-5 (resp. rows
1-4) q (resp. d) denotes the maximum frequency of an element in B (in F). In the last column, we
mention our results in the respective settings, and give corresponding references. Note that some of
the references can be found in the full version.

1

2

3

4

5

7

6

8

Figure 2 A Hasse diagram of the settings considered in Figure 1, where the number in each node
corresponds to the row in the table. An arrow from node i to node j indicates that the setting in
row i generalizes the setting in row j. Nodes colored in green, orange (resp. red) color indicate that
the setting is solvable in polynomial, FPT time (resp. is W [1]-hard).
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Note that q ≥ 2, but the sets in F are pairwise disjoint, the problem is NP-hard. In this
case, To design both our algorithm and the kernel we first embed the fairness constraints
imposed by B in a combinatorial object called a partition matroid. A partition matroid is a
set system M = (E, I), defined as follows. The ground set E is partitioned into ℓ subsets
E1 ⊎ E2 ⊎ . . . ⊎ Eℓ, such that a set S ⊆ E belongs to the family I iff for each 1 ≤ j ≤ ℓ, it
holds that |Ej ∩ S| ≤ kj , where k1, k2, . . . , kℓ are non-negative integers.

It might be observed that the definition of a partition matroid closely resembles the
fairness constraints, i.e., for each Bj , the hitting set H must satisfy |H ∩ Bi| ≤ f(Bi).
However, this idea does not quite work, since the sets Bj ∈ B are not disjoint – indeed,
otherwise we could solve the problem in polynomial time, as discussed earlier. Nevertheless,
we can salvage the situation by making q distinct copies of every element u ∈ U , and replacing
each of the occurrences of u in q distinct Bj ’s with a unique copy. The resulting set system
is a partition matroid that exactly captures the fairness constraints. Correspondingly, in
each set of F , we replace an original element with all of its q copies. Recall that we want to
find a hitting set for F ; however, in the new formulation, we must now ensure that if we pick
at least one copy of element in the solution, we pick all of its copies in the solution.

Thus, our solution is an independent set of M that (1) is a hitting set for F , and (2) picks
either 0 or q copies of every element. To find such a solution in time FPT in k and q (resp.
to reduce the size of the instance), we use a sophisticated tool developed in parameterized
complexity, called representative sets. Later, we generalize this idea to the case where very
element in U appears in at most q sets in B and at most d sets in F . In the next section, we
formally define the partition matroid, and in the subsequent sections, we apply the toolkit of
representative sets to design our FPT algorithm and the kernel.

3.1 Partition Matroid and Our Solution
In a partition matroid we have a universe Ũ , partitioned into Ũ1, · · · , Ũℓ, together with
positive integers k1, · · · , kℓ, and a family of independent sets I, such that X ⊆ Ũ is in I if
and only if |X ∩ Ũi| ≤ ki, i ∈ [ℓ].

Let (U , B) be the given set system such that each element u ∈ U appears in at most q

sets of B. For an element u ∈ U , let q(u) ≤ q denote the number of sets in B, that u appears
in. Further, for an element u ∈ U , let copies(u) = {u1, u2, . . . , uq(u)}. We define

Ũ =
⋃

u∈U
copies(u).

Next, we need to define a partition of Ũ . Towards this, we use the information about the
sets in B. We know that each element u ∈ B appears in q(u) sets and we have made q(u)
copies of u, thus we use distinct and unique copy of u in each sets in B in which u appears.
This results in B̃ = {B̃i : Bi ∈ B}, where B̃i is the set corresponding to an original set Bi,
after replacing elements with their copies. Observe that for every pair of indices i ̸= j we
have that B̃i ∩ B̃j = ∅ and ∪iB̃i = Ũ . This immediately gives a partition of Ũ . Finally, we
define ki = f(Bi). This completes the description of the partition matroid we will be using.
We will call this matroid as M = (Ũ , I)

Given a subset X ⊆ Ũ , we define a set associated with X, called projection(X) as follows.
The set projection(X) ⊆ U , contains an element u ∈ U if and only if copies(u) ∩ X ̸= ∅.
Similarly, we define a notion of embedding. For a set A ⊆ U , let embed(A) = ∪u∈Acopies(u).
This brings us to the following lemma which relates our problem and finding an independent
set in the matroid.
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▶ Lemma 6. An input (U , F , B, f : B → N, k) is a yes-instance if and only if there exists
an independent set X ∈ I of the matroid M = (Ũ , I) such that (1) |projection(X)| ≤ k, (2)
X = embed(projection(X)), and (3) projection(X) is a hitting set for F .

Proof. In the forward direction, let S ⊆ U be a solution to the original problem. Suppose
S = {s1, s2, . . . , sk}. Consider X = embed(S). Observe that by definition, S = projection(X).
So |projection(X)| = k and projection(X) is a hitting set for F . We claim that X is an
independent set because if not, there exists a part B̃i which satisfies that |X∩B̃i| > ki = f(Bi).
As S = projection(X) and for every u ∈ B̃i, Bi contains a v such that u ∈ copies(v), this
results in |S ∩ Bi| > ki implying |S ∩ Bi| > f(Bi) which contradicts that S is a valid solution
to the original problem.

In the reverse direction, let X ∈ I be an independent set satisfying both the conditions.
Let S = projection(X). We claim that, S is a solution for the original instance because if
not, there exist a part Bi which satisfies that |S ∩ Bi| > f(Bi) = ki. As X = embed(S)
and for every u ∈ Bi, an unique copy from copies(u) is contained in B̃i, which results in
|X ∩ B̃i| > ki which contradicts that X is an independent set. ◀

3.2 Computation of the Desired Independent Set
In this section we give an algorithm to compute an independent set X ∈ I of the matroid
M = (Ũ , I) such that |projection(X)| ≤ k and projection(X) is a hitting set for F (as given
by Lemma 6). We will design a dynamic programming algorithm based on representative
families to compute the desired independent set. Towards this we first give the required
definitions. We start with the definition of an ℓ-representative family.

▶ Definition 7 (ℓ-Representative Family). Given a matroid M = (E, I) and a family S of
subsets of E, we say that a subfamily Ŝ ⊆ S is ℓ-representative for S if the following holds:
for every set Y ⊆ E of size at most ℓ, if there is a set X ∈ S disjoint from Y with X ∪Y ∈ I,
then there is a set X̂ ∈ Ŝ disjoint from Y with X̂ ∪ Y ∈ I. If Ŝ ⊆ S is ℓ-representative for S
we write Ŝ ⊆ℓ

rep S.

In other words if some independent set in S can be extended to a larger independent
set by adding ℓ new elements, then there is a set in Ŝ that can be extended by the same ℓ

elements. We say that a family S = {S1, . . . , St} of sets is a p-family if each set in S is of
size p.

▶ Proposition 8 ([4, 9, Theorem 3.8, Theorem 1.3]). Let M = (E, I) be a partition matroid,
S = {S1, . . . , St} be a p-family of independent sets. Then there exists Ŝ ⊆ℓ

rep S of size
(

p+ℓ
p

)
.

Furthermore, given a representation AM of M over a field F, there is a deterministic al-
gorithm computing Ŝ ⊆ℓ

rep S of size at most
(

p+ℓ
p

)
in O

((
p+ℓ

p

)
tpω + t

(
p+ℓ

p

)ω−1 + ||AM ||O(1)
)

operations over F, where ||AM || denotes the length of AM in the input.

For the purpose of this article, it is enough to know that partition matroids are “rep-
resentable” [10, Proposition 3.5] and a “truncation” of partition matroids are computable
in deterministic polynomial time [9, Theorem 1.3]. This results in Proposition 8, which we
will use for our algorithm without giving further definitions of representation and trunca-
tion [4, 9, 10].

Let F = {F1, F2, . . . , Fm} be the subsets of U , k be a positive integer. Since, the sets in
F are pairwise disjoint, the number of sets in F is upper bounded by k. We call a set S ⊆ U ,
a potential solution, if for all j ∈ [ℓ], |S ∩ Bj | ≤ f(Bj). Let

Si := {S : S is a potential solution , |S| = i and for all j ∈ [i]|S ∩ Fj | = 1}.
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Given Si, we define Semb
i as {embed(S) | S ∈ Si}. Observe that Semb

i ⊆ I and each set has
size at most qi. Notice that, each set in S has size exactly i, but the same can not be said
about the sets in Semb

i . However, since each element occurs in at most q sets of B, we have
that each set in Semb

i has size at most qi.
Our algorithm checks whether Sk is non-empty or not. Towards that first observe that

Sk is non-empty if and only if Semb
k is non-empty. So the testing of non-emptiness of Sk boils

down to checking whether Semb
k is non-empty or not. We test whether Semb

k is non-empty by
computing Ŝemb

k ⊆0
rep Semb

k and checking whether Ŝemb
k is non-empty. To argue the correctness

of the algorithm, first we have the following observation.

▶ Observation 9. Semb
k ̸= ∅ iff Ŝemb

k ̸= ∅.

Proof. Since Ŝemb
k ⊆ Semb

k , the reverse direction is immediate. Now we argue the forward
direction. Suppose Semb

k , then it contains some set A. Note that A trivially satisfies A∩∅ = ∅.
Therefore, since Ŝemb

k ⊆0
rep Semb

k , there must exist a set Â ∈ Ŝemb
k such that Â ∩ ∅ = ∅, i.e.,

Ŝemb
k ̸= ∅. ◀

Thus, having computed the representative family Ŝemb
k all we need to do is to check whether

it is non-empty. All that remains is an algorithm that computes the representative family
Ŝemb

k .
Let Z be a family of sets and ℓ be an integer, then Z[ℓ] is a subset of Z that contains all

the sets of Z of size exactly ℓ. We describe a dynamic programming based algorithm. Let D
be an array indexed from integers in {0, 1, . . . , k}. The entry D[i] stores the following for all
j ∈ {i, . . . , qi}, Ŝemb

i [j] ⊆qk−j
rep Semb

i [j].
We fill the entries in the matrix D in the increasing order of indexes. For i = 0, D[0] = ∅.

Suppose, we have filled all the entries until the index i. Then consider the set

N i+1 = {X ′ = X ∪ embed({u}) : X ∈ D[i], u ∈ Fi+1, projection(X ′) is a potential solution}

We partition sets in N i+1 based on sizes. Let N i+1[j] denote all the sets in N i+1 of size j.

▷ Claim 10. For all j ∈ {i + 1, . . . , q(i + 1)}, N i+1[j] ⊆qk−j
rep Semb

i+1 [j].

Proof. Let S ∈ Semb
i+1 [j] and Y be a set of size at most qk − j (which is essentially an

independent set of the matroid M = (Ũ , I)) such that S ∩ Y = ∅ and S ∪ Y ∈ I. We will
show that there exists a set S′ ∈ N i+1[j] such that S′ ∩ Y = ∅ and S ∪ Y ∈ I. This will
imply the desired result. Since S ∈ Semb

i+1 [j] there exists an element u ∈ Fi+1 such that

S = (S \ embed({u})) ∪ embed({u}).

Let Si = (S \ embed({u})). Since, S is an independent set of the matroid M = (Ũ , I),
we have that Si is an independent set of the matroid M = (Ũ , I) (hereditary property).
Further, |projection(Si)| = i and projection(Si) is a hitting set for F1, . . . , Fi. This implies
that Si ∈ Semb

i . Let Yi = Y ∪ embed({u}). Notice that since S ∩ Y = ∅ and S ∪ Y ∈ I,
we have that Yi is an independent set and Si ∪ Yi = S ∪ Y ∈ I. Let |Si| = j′. Then,
we know that D[i] contains Ŝemb

i [j′] ⊆qk−j′

rep Semb
i [j′]. This implies that there exists a set

S′
i ∈ Ŝemb

i [j′] such that S′
i ∪ Yi ∈ I. This implies that S′

i ∪ embed({u}) is in N i+1. Further,
since |S| =

∑
x∈projection(S) |embed({x})|, we have that |S′

i ∪ embed({u})| = |Si| = j. This
implies that S′

i ∪ embed({u}) is in N i+1[j]. Thus, we can take S′ = S′
i ∪ embed({u}). This

completes the proof. ◁
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We fill the entry for D[i + 1] as follows. We first compute N i+1. Observe that the sets
in N i+1 have sizes ranging from i + 1 to q(i + 1). Now we apply Proposition 8 on each of
N i+1[j], j ∈ {i + 1, . . . , q(i + 1)}, and compute qk − j representative. That is, we compute
N̂ i+1[j] ⊆qk−j

rep N i+1[j]. We set

D[i + 1] =
q(i+1)⋃
j=i+1

N̂ i+1[j].

Observe that the number of sets in D[i] of size j is upper bounded by
(

q(k−i)+j
j

)
≤

(
qk
di

)
≤

2O(qk). Hence, the time taken to compute D[i] is upper bounded by 2O(qk)nO(1). Thus, the
time taken to compute D[i + 1] requires at most qk invocations of Proposition 8. This itself
takes 2O(qk)nO(1) time. This completes the proof, resulting in the following result.

▶ Theorem 2. Let (U , F , B, f : B → N, k) be an instance of Fair Hitting Set. Then, Fair
Hitting Set can be solved in time 2O(qk)nO(1) time, when every element in U appears in at
most q sets in B and any pair of sets in F are pairwise disjoint. Further, Fair Hitting
Set admits a kernel of size O(kq2(

kq
q

)
log k).

Theorem 2 can be generalized to the scenario where every element in U appears in at
most q sets in B and at most d sets in F . Observe that if each element appear in at most d

sets of F , then the total number of sets that a subset of size k of U can hit is upper bounded
by dk, else we immediately return that given instance is a NO-instance. Let S = {u1, . . . , uk}
be a hypothetical solution to our problem. Now, with the help of S, we partition F as
follows. Let Fi denote all sets in F that contain ui and none of {u1, . . . , ui−1}. Clearly,
Fi, i ∈ [k], partitions F . Now we can design a dynamic programming algorithm similar to
the one employed in Theorem 2, where in each iteration we grow our representative family
by elements that only hit sets in Fi and not in Fj , j > i. This will result in the following
theorem, whose proof can be found in the full version.

▶ Theorem 3. Let (U , F , B, f : B → N, k) be an instance of Fair Hitting Set. Then,
Fair Hitting Set can be solved in time kO(dk)2O(qk)nO(1) time, when every element in U
appears in at most q sets in B and at most d sets in F .

3.3 A Kernel for a Special Case of Fair Hitting Set using Matroids
In this section we design a polynomial kernel for the same special case of Fair Hitting
Set, that we considered in the last section. Let (U , F , B, f : B → N, k) be an instance of
Fair Hitting Set and assume that every element in U appears in at most q sets in B and
any pair of sets in F are pairwise disjoint. To design our kernel we will again use Lemma 6
that says that an input (U , F , B, f : B → N, k) is a yes-instance if and only if there exists
an independent set X ∈ I of the matroid M = (Ũ , I) such that |projection(X)| ≤ k and
projection(X) is a hitting set for F .

Let F = {F1, F2, . . . , Fm} be the subsets of U , and k be a positive integer. Since, the
sets in F are pairwise disjoint, the number of sets in F is upper bounded by k. In particular,
we assume that m = k. We define F emb

i = {embed({u}) | u ∈ Fi}. For our kernel we apply
the following reduction rules. We start with some simple reduction rules.

▶ Reduction Rule 1. Let (U , F , B, f : B → N, k) be an instance of Fair Hitting Set.
If there exists an element u ∈ U , such that u does not appear in any sets in F then delete
it from U and all the sets in B that it appears in.
If there exists a set B ∈ B such that B = ∅, then delete B, and take f as the restriction
of f on B \ {B}.
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If there exists a set B ∈ B such that f(B) = 0, then we do as follows: U := U \ {B};
delete all the elements of B from all the sets in B and F that it appears in. If some set
in F becomes empty then return a trivial No-instance. Else, take f as the restriction of
f on B \ {B} and keep the integer k unchanged.

Soundness of Reduction Rule 1 is obvious and hence omitted. The next reduction rule is
the main engine of our kernel.

▶ Reduction Rule 2. Let (U , F , B, f : B → N, k) be an instance of Fair Hitting Set.
If there exists a pair of integers i ∈ [k] and j ∈ [q] such that |F emb

i [j]| >
(

kq
j

)
, then do as

follows. Compute F̂ emb
i [j] ⊆qk−j

rep F emb
i [j]. Let F ∈ F emb

i [j] that do not appear in F̂ emb
i [j].

Then obtain a reduced instance as follows.
U := U \ projection(F )
Delete projection(F ) from all the sets in B and F that it appears in.
The function f and k remains the same.

▶ Lemma 11. Reduction Rule 2 is sound.

Proof. Let (U , F , B, f : B → N, k) be an instance of Fair Hitting Set, and let (U ′, F ′, B′, f :
B → N, k) be the reduced instance, after an application of Reduction Rule 2. It is easy to
see that a solution to the reduced instance can directly be lifted to the input instance. Thus,
we focus on forward direction.

In the forward direction, let S be a solution to (U , F , B, f : B → N, k). Then, by
Lemma 6, it implies that embed(S) ∈ I (of the matroid M = (Ũ , I)) and |S| ≤ k and
S = projection(embed(S)) is a hitting set for F . Let u = projection(F ). Then, we have that
U := U \ {u}. If u /∈ S, then S is also the solution to (U ′, F ′, B′, f : B′ → N, k). So we
assume that u ∈ S.

Observe that F = embed({u}), |F | = j, and u belongs to Fi. Further, since every set
in F are pairwise disjoint we have that the only job of u is to hit the set Fi. Consider,
Y = embed(S) \ embed({u}). Since, embed(S) ∈ I, we have that Y ∈ I (hereditary
property of the matroid), and the size of Y is upper bounded by qk − j. The last assertion
follows from the fact that for any element v ∈ U , the size of embed({v}) is upper bounded
by q and |embed(S)| =

∑
x∈S |embed({x})| ≤ qk. This implies that there exists F ′ ∈

F̂ emb
i [j] ⊆qk−j

rep F emb
i [j] such that Y ∪ {F ′} ∈ I. Since, |projection(embed(S))| ≤ k, we

have that |projection(Y )| ≤ k − 1. Thus, |projection(Y ∪ {F ′})| ≤ k. Now we need to
show that projection(Y ∪ {F ′}) is a hitting set for F . This follows from the fact that
u′ = projection(F ′) ∈ Fi. In other words, we have shown that S′ = S \ {u} ∪ {u′} is a desired
hitting set for F . This concludes the proof. ◀

Finally, we get the following kernel.

▶ Theorem 12. Let (U , F , B, f : B → N, k) be an instance of Fair Hitting Set such that
every element in U appears in at most q sets in B and any pair of sets in F are pairwise
disjoint. Then, Fair Hitting Set admits a kernel of size O(kq2(

kq
q

)
log k).

Proof. For our algorithm we apply Reduction Rules 1 and 2 exhaustively. If any application
of these rules return that the input is a No-instance, we return the same. The correctness of
the algorithm follows from the correctness of Reduction Rules 1 and 2. Further it is clear
that the algorithm runs in polynomial time. What remains to show is that the reduced
instance is upper bounded by the claimed function.

For convenience we assume that the reduced instance is also denoted by (U , F , B, f : B →
N, k). Since, Reduction Rule 2 is not applicable we have that each set Fi, i ∈ [k], is upper
bounded by

∑q
j=1

(
kq
j

)
≤ q

(
kq
q

)
. This implies that |U| ≤ kq

(
kq
q

)
. Further, since every element
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in U appears in at most q sets in B, we have that the number of non-empty sets in B is upper
bounded by q|U| ≤ kq2(

kq
q

)
. Since, Reduction Rule 1 is not applicable we have that there

are no empty-sets and hence |B| ≤ kq2(
kq
q

)
. Further, to represent the function f we need at

most O(|B| log k) ≤ O(kq2(
kq
q

)
log k) bits. This completes the proof. ◀

4 Reduction from Kd,d-free GU ,F to Bounded Frequency in F

In Section 4.1, we consider a special case of the above setting: (1) GU,F is Kd,d-free, and
(2) each element in U has frequency at most q in B. For this case, we design a polynomial
kernel. For the sake of brevity, we give a detailed, yet informal, overview of the kernelization,
and defer the formal details to the full version.

A part of the kernelization procedure can also be used to bound the frequency of an
element in F by a function of k and d. We give an alternate, self-contained proof of this
theorem in the full version. This reduction is used as the first step in some of our results,
such as Section 5.

4.1 Polynomial Kernel for Kd,d-free GU ,F and Bounded Frequency in B
Consider an input (U , F , B, f : B → N, k) of Fair Hitting Set. In this section we design a
polynomial kernel for Fair Hitting Set problem when GU,F is Kd,d-free and frequency of
each element in B is at most q. We fix d and q for the rest of the section. Without loss of
generality we assume that d ≥ 2, k ≥ 2. We also assume that we do not have multisets in F
and B.

Under these assumptions, the kernelization algorithm consists of two phases. In the first
phase we apply some reduction rules to bound the size of |F|. In the second phase, we use
the partition matroid M = (Ũ , I), as defined in Section 3.1 using B to design a reduction
rule to bound the number of elements. Now we discuss each of these phases in more detail.

Phase 1

We first define the following easy reduction rules that handle some of the easy cases
We can delete an empty set from B without affecting the instance.
We can delete an element u ∈ U that is not contained in any set in F .
If there exists a set B ∈ B with f(B) = 0, then we consider two cases.

1. If there exists some F ∈ F such that F ⊆ B, then we have a no-instance.
2. Otherwise, we can delete B from B, and delete all elements of B from the universe U

as well as the corresponding sets in F .
Each such rule can be implemented in polynomial time. We emphasize that these reduction
rules are repeatedly applied in this order, after each application of subsequent rules.

Next, we consider the following case. If there exists an element u ∈ U contained in at
least dkd−1 sets of F , then in polynomial time we can find a non-empty set X ⊆ U of size at
most d − 1 with the following properties: (1) X intersects with every fair hitting set of size
at most k, and (2) the number of sets in F that contain X as a subset is large, i.e., at least
dkd−1. This is where we crucially use the fact that GU,F is Kd,d-free. Now, we can use such
a set X to reduce the size of instance, by either finding some u ∈ U , or some Fi ∈ F that
can be deleted without affecting the instance.

Note that since we reduce the size of instance in each application of the rule, this rule is
applicable only polynomially many times. Furthermore, when the rule is not applicable, it
follows that every element of U is contained in at most dkd−1 sets of F . Here, we observe that
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we did not make any specific assumptions about the hypergraph (U , B), except that we may
delete an element of U or a set from B. Thus, the resulting hypergraph is a sub-hypergraph
of the original hypergraph (U , B). Thus, if GU,B satisfies some hereditary property Π, then
the resulting incidence graph continues to satisfy Π. Thus, phase 1 constitutes a proof of .

At this step, if the number of sets in F is larger than dkd, no subset of size k can hit all
sets in F . Thus, we simply conclude that such an instance is a no-instance of the problem.
This concludes Phase 1.

Suppose in the original instance GU,B satisfied that the frequency of every element in B
is at most q. Then, at this step, we can use an approach similar to Theorem 3 to design an
FPT algorithm that runs in time dkkkd · 2O(kq) · |I|O(1). Now, we proceed to Phase 2, where
we further reduce the size of an instance to design a kernel under the assumption when the
frequency in B is bounded by q.

Phase 2

We observe that the number of elements in U with frequency at least d in F is bounded
by

(|F|
d

)
· d. Let U ′ denote the elements that are contained in at most d − 1 sets of F . We

define equivalence classes of U ′, such that all elements in the same class belong to all the
sets of Y , where Y ⊆ F is a sub-family of size at most d − 1. Let us denote such a subset by
ExactNbr(Y).

We use the matroid-based techniques developed in the previous section, in order to reduce
the number of distinct elements in ExactNbr(Y) that we need to remember. In particular, we
show that for every Y ⊆ F , we only need to remember at most

(
kq
q

)
distinct elements, and

we may delete the rest in a careful manner.
Thus, at the end, we have the following. The number of elements with degree (i.e.,

frequency) at most d − 1 in GU,F is bounded by d ·
(|F|

d

)
·
(

kq
q

)
. Accounting for the elements

with large degree, the total number of elements in U is bounded by O(kO(d2+q)ddqq). Since
each element has degree at most q in GU,B, we can also bound the number of sets in
B. Observe that each of our reduction rules can be applied in polynomial time and only
polynomially many times. Thus, we prove the following theorem.

▶ Theorem 4. Given an instance I = (U , F , B, f, k) of Fair Hitting Set, such that
GU,F is Kd,d-free, and the frequency of each element in B is bounded by q, one can find
an equivalent instance I ′ = (U ′, F ′, B′, f ′, k′) of Fair Hitting Set in polynomial time,
such that |U ′| = O(kd2+qddqq), |F ′| ≤ dkd, and |B′| = O(kd2+q · ddqq+1), where d and q are
assumed to be constants.

5 Parameterization by k + d when GU ,B is nowhere dense and GU ,F is
Kd,d-free

We give a brief overview of the following theorem, a formal proof can be found in the full
version.

▶ Theorem 5. Let G be a nowhere dense graph class. Let I = (U , F , B, f, k) be an instance
of Fair Hitting Set such that the incidence graph G := GU,B ∈ G, and GU,F is Kd,d-free
for some d ≥ 1. Then, one can solve Fair Hitting Set on I in time h(k, d) · |I|O(1), for
some function h(·, ·).

First, we reduce the given instance, where GU,F is Kd,d-free, to an instance where the
size of |F| is bounded by d · kd. Thus, it suffices to design an FPT algorithm parameterized
by k, d and m := |F|. The rest of the section focuses on designing such an algorithm. We

MFCS 2023



55:14 Fixed-Parameter Algorithms for Fair Hitting Set Problems

prove Theorem 5 by reducing the problem to FO model checking on G. 1 Due to lack of
space, the necessary definitions and background pertaining to nowhere dense graph classes
and first-order logic is given in the full version.

We reduce the problem of deciding whether I is a yes-instance of Fair Hitting Set
to the problem of First-Order (FO) model checking. We first “guess” the structure of a
hypothetical solution (i.e., S ⊆ U such that S is a fair hitting set for F), if any. More
specifically, we guess the exact size k′ of a hypothetical solution, and the exact subset of
F that is hit by each element of the solution. Note that there are at most 2O(km) possible
guesses. For each such guess, we create a first-order logic formula that is true if and only if
such a solution is a fair hitting set, i.e., it hits all the sets in F , and for each Bj ∈ B, the
size of the intersection of Bj with the solution is at most f(Bj). We show that the size of
the formula is upper bounded by a function of k and |F|. Finally, since model checking of
first-order logic formulas can be decided in polynomial time on nowhere dense graphs, the
theorem follows.
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Abstract
Feedback Vertex Set (FVS) is one of the most studied vertex deletion problems in the field of
graph algorithms. In the decision version of the problem, given a graph G and an integer k, the
question is whether there exists a set S of at most k vertices in G such that G − S is acyclic. It is one
of the first few problems which were shown to be NP-complete, and has been extensively studied from
the viewpoint of approximation and parameterized algorithms. The best-known polynomial time
approximation algorithm for FVS is a 2-factor approximation, while the best known deterministic
and randomized FPT algorithms run in time O∗(3.460k) and O∗(2.7k) respectively.1

In this paper, we contribute to the newly established area of parameterized approximation, by
studying FVS in this paradigm. In particular, we combine the approaches of parameterized and
approximation algorithms for the study of FVS, and achieve an approximation guarantee with a factor
better than 2 in randomized FPT running time, that improves over the best known parameterized
algorithm for FVS. We give three simple randomized (1 + ϵ) approximation algorithms for FVS,

running in times O∗(2ϵk · 2.7(1−ϵ)k), O∗
(((

4
1+ϵ

)(1+ϵ) ·
(

ϵ
3

)ϵ
)k
)

, and O∗(4(1−ϵ)k) respectively for

every ϵ ∈ (0, 1). Combining these three algorithms, we obtain a factor (1 + ϵ) approximation
algorithm for FVS, which has better running time than the best-known (randomized) FPT algorithm
for every ϵ ∈ (0, 1). This is the first attempt to look at a parameterized approximation of FVS
to the best of our knowledge. Our algorithms are very simple, and they rely on some well-known
reduction rules used for arriving at FPT algorithms for FVS.
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1 Introduction

Vertex deletion problems are one of the most basic and well-studied classes of graph editing
problems. In the decision version of these problems, given a graph G and integer k, we are
asked whether we can delete at most k vertices from G such that the resulting graph satisfies
certain properties. When we want the resulting graph to be empty or acyclic, then the vertex
deletion problem corresponds to the well-known Vertex Cover and Feedback Vertex
Set problems respectively. These were two of the first few problems to be shown NP-complete
and appear in Karp’s list of 21 NP-complete problems. In this paper, we concentrate on
the Feedback Vertex Set problem, in the realm of parameterized approximation. The
problem is formally defined as follows.

Feedback Vertex Set (FVS) Parameter: k

Input: A graph G = (V, E) and a positive integer k.
Question: Does there exist a set S ⊆ V (G) such that |S| ≤ k and G− S is acyclic?

Parameterized approximation combines the fields of parameterized and approximation
algorithms, where we try to get the best of both worlds by achieving a better guarantee
than that of the best-known approximation algorithm (running in polynomial time), while
the algorithm takes FPT time, but beats the best known exact algorithm for the problem.
Such algorithms are termed “parameterized approximation” algorithms in the literature. An
even more ambitious goal can be to get a parameterized approximation scheme, where for
every ϵ ∈ (0, α− 1) (where α is the best-known approximation factor for polynomial-time
algorithms), we get a factor (1 + ϵ) approximation algorithm, that runs in FPT time and is
faster than the best known parameterized algorithm for the problem.

Probably the best example for this approach is the Min k-Cut problem (delete a minimum
number of edges to get at least k connected components), which is not expected to be FPT
when parameterized by k since it is W[1]-hard. The best-known approximation factor, that
is possible in polynomial time, for this is 2 [20]. Gupta et al. [11] showed that we can
get an approximation ratio better than 2 by allowing FPT running time, and in a recent
breakthrough result, Lokshtanov et al. [19] designed a parameterized approximation scheme
for the problem, which means that for every ϵ > 0, there is an algorithm running in FPT
time which gives a factor (1 + ϵ) approximation for Min k-Cut. There are a few of lower
bounds results in the field as well [3, 5, 6, 17], which show that this approach does not work
for certain problems.

In addition to problems that are not expected to be FPT, researchers have also studied
problems that are FPT from the lens of parameterized approximation. For these problems,
we try to get a better approximation factor (than what is known in polynomial time) by
allowing faster FPT running time (as compared to the best FPT algorithm for the problem).
This approach has been applied to many problems including Vertex Cover, d-Hitting
Set [10, 4, 15], classical cut problems like Directed-FVS, Multicut [18] etc. For a
comprehensive overview of the current state of parameterized approximation, we refer to the
recent survey by Feldmann et al. [9], as well as the surveys conducted by Kortsarz [14] and
Marx [21].

In this paper, we look at Feedback Vertex Set (FVS), which is one of the most studied
problems in the field of parameterized complexity, from the parameterized approximation
lens. For FVS, the best-known approximation factor that can be achieved in polynomial time
is 2 [1], and this is the best approximation factor that we can hope for FVS in polynomial
time under the famous Unique Games Conjecture [13]. On the other side, the fastest known
deterministic and randomized FPT algorithms for FVS run in times O∗(3.460k) [12] and
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O∗(2.7k) [16] respectively. We want to design a parameterized approximation scheme for
FVS. This turns out to be a harder task than designing such schemes for problems like
Vertex Cover. For Vertex Cover, there is a simple branching algorithm, that picks an
edge and branches on its endpoints, but no such simple algorithm exists for FVS because the
forbidden subgraph for FVS, a cycle, can be very large. For designing a good parameterized
approximation scheme for Vertex Cover or d-Hitting Set, there are two ways to achieve
it: i) pick disjoint copies of edges or sets in the solution and then run the fastest FPT
algorithm on the remaining instance, and ii) do branching for some steps, and then run an
approximation algorithm on the remaining instance. These seem difficult to achieve for FVS
because the cycles can be very big, and hence the approximation guarantee in i) and the
branching factor in ii) are not bounded. In this paper, we overcome these difficulties using
ideas from known randomized algorithms and obtain the following result.

▶ Theorem 1. There exists a randomized algorithm that, given an instance (G, k) of FVS
and ϵ ∈ (0, 1), either reports a failure or finds a feedback vertex set in G of size at most
(1 + ϵ)k in time

O∗
(

min
{

2ϵk · 2.7(1−ϵ)k,

((
4

1 + ϵ

)(1+ϵ)
·
( ϵ

3

)ϵ
)k

, 4(1−ϵ)k
})

.

Moreover, if G has a feedback vertex set of size at most k, the algorithm returns a solution
of size at most (1 + ϵ)k with probability at least 1/e.

Our methods. For proving Theorem 1, we make use of two randomized algorithms, the first
being one of the oldest algorithms for FVS that runs in time O∗(4k) [2], and the other being
the currently best known randomized algorithm for FVS running in time O∗(2.7k) [16]. We
give three different algorithms to get the running time mentioned in Theorem 1, where each
of the three algorithms outperforms the other two in some range of ϵ in the interval [0, 1].
For a clearer view, we provide a graph depicting the running times of the three algorithms
for different values of ϵ in Figure 1. We observe that for every ϵ ∈ (0, 1), the algorithm
of Theorem 1 gives a randomized (1 + ϵ) approximation and runs in time better than
O∗(2.7k). All our algorithms make use of some simple reduction rules for FVS, which have
been extensively applied to obtain FPT algorithms for the problem. The useful property of
the rules is that if none of them are applicable, then the graph has a minimum degree of at
least 3.

The first algorithm that we design uses the property that in a graph with a minimum
degree of at least 3, at least half the edges are incident on any feedback vertex set of the
graph [2]. It picks some edges randomly, adds the endpoints of the edges to the solution,
and then it runs the O∗(2.7k) time algorithm of [16] on the remaining graph. This gives an
algorithm running in time O∗(2.7(1−ϵ)k) and succeeding (giving a factor (1+ϵ) approximation
for every ϵ ∈ (0, 1)) with probability c · 2−ϵk for some c ≥ 1

2 . We repeat this algorithm 1
c · 2

ϵk

times to get a constant probability of success, and the final running time is O∗(2ϵk ·2.7(1−ϵ)k).
The second algorithm that we design also uses the same property, but it picks one

of the endpoints randomly from a randomly picked edge in the solution (instead of both
endpoints in the first algorithm). We keep doing that till we either exhaust our budget or the
graph becomes acyclic. Using the techniques of [15], we show that this algorithm succeeds

with probability
((

4
1+ϵ

)(1+ϵ)
·
(

ϵ
3
)ϵ
)−k

. Repeating this
((

4
1+ϵ

)(1+ϵ)
·
(

ϵ
3
)ϵ
)k

times, we get

constant success probability. The running time of this algorithm is better than the first
algorithm for ϵ ∈ (0.176, 1).
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Figure 1 A graph showing running times of the three algorithms, which we name RPAS1, RPAS2,
and RPAS3.

The third algorithm, instead of picking the vertices like the second algorithm does
till the budget is exhausted, picks vertices up to a certain threshold, and then applies
the 2-approximation algorithm of [1] on the remaining graph. This algorithm succeeds
with probability 4−(1−ϵ)k, which gives the running time of O∗(4(1−ϵ)k) for constant success
probability. This algorithm performs better than the first two algorithms for ϵ ∈ (0.674, 1).

The main purpose of this article is to put forward a proof of concept for designing FPT
approximation algorithms for problems for which the forbidden sets are of unbounded size.
All our algorithms are randomized, and getting a deterministic FPT approximation scheme
for FVS is an interesting open problem.

2 Preliminaries

In this section, we give the notations and definitions, along with some known results and
reduction rules which are used in the paper.
For a graph G = (V, E), we denote the set of vertices of the graph by V (G) and the set
of edges of the graph by E(G). For a set S ⊆ V (G), the subgraph of G induced by S is
denoted by G[S] and it is defined as the subgraph of G with vertex set S and edge set
{{u, v} ∈ E(G) : u, v ∈ S} and the subgraph obtained after deleting S (and the edges incident
to the vertices in S) is denoted as G− S. We say a graph G is acyclic if there is no cycle in
the graph. For ease of notation, we will use uv to denote an edge of a graph instead of {u, v}.
We denote the degree of a vertex v ∈ V (G) as d(v) and it is equal to the number of edges
incident on v. In case of a self-loop on v, the self-loop contributes 2 to d(v). The minimum
degree of a graph G is denoted as δ(G) and it is defined as δ(G) = min{d(v) : v ∈ V (G)}.
For a graph G, a set S ⊆ V (G) is called a feedback vertex set of G if G− S is acyclic. An
instance (G, k) of FVS is said to be a Yes instance if there is a feedback vertex set of size at
most k in G. Given a Yes instance (G, k) of FVS and an ϵ ∈ (0, 1) as an input, we say that
an algorithm A succeeds if it outputs a feedback vertex set of G of size at most (1 + ϵ)k. We
denote the size of a minimum-sized feedback vertex set of a graph G by fvs(G).

Let us state the following reduction rules that we will use in this paper to make the
minimum degree of the graph at least 3.
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1. [8] If there is a self-loop at a vertex v, delete v from the graph and decrease k by 1.
2. [8] If there is an edge of multiplicity larger than 2, reduce its multiplicity to 2.
3. [8] If there is a vertex v of degree at most 1, delete v.
4. [8] If there is a vertex v of degree 2, delete v and connect its two neighbors by a new edge.

If none of the above four reduction rules are applicable to a graph G then we can assume
that δ(G) ≥ 3. We will also use the following lemma to ensure that if δ(G) ≥ 3 then any
random endpoint of a random edge of the graph is part of any feedback vertex set of G with
probability at least 1

4 .

▶ Lemma 2 ([8]). Let G be a multigraph on n vertices, with minimum degree at least 3.
Then, for every feedback vertex set X of G, at least half of the edges of G have at least one
endpoint in X.

3 Algorithm I

In this section, we present the first randomized (1 + ϵ) approximation algorithm for FVS for
every ϵ ∈ (0, 1). Given an instance (G, k) of FVS, we first apply reduction rules 2-4 on the
graph. After applying the reduction rules, we pick all the vertices having a self-loop into the
set S1 and we decrease the parameter by the number of vertices picked into S1. If no vertex
has a self-loop, then we pick an edge uv uniformly at random and add both u and v into
S1 if none of the reduction rules are applicable and G− S1 is not acyclic. We decrease the
parameter by 1 in this case. We do that because with good probability that one of these
vertices belongs to any feedback vertex set of the graph, and hence we decrease fvs(G) by
one with good probability. Then we delete S1 from the graph and repeat the same process
until G − S1 becomes acyclic or the parameter decreases by at least ϵk. Next, we check
whether G− S1 is acyclic and |S1| ≤ (1 + ϵ)k. If yes, then we just return S1 as a solution.
Otherwise, we apply the randomized FPT algorithm of [16] for FVS on the graph G− S1
with the remaining parameter. If the randomized FPT algorithm of [16] returns a solution
S2, then we return S1 ∪ S2 as a solution, otherwise, we return No. We describe the algorithm
formally in Algorithm 1. Now we state the main result of this section.

▶ Theorem 3. There exists a randomized algorithm running in O∗(2ϵk · 2.7(1−ϵ)k) time such
that, given an FVS instance (G, k) and ϵ ∈ (0, 1), it either reports a failure or finds a feedback
vertex set of G of size at most (1 + ϵ)k. Moreover, if the algorithm is given a Yes-instance,
it returns a solution of size at most (1 + ϵ)k with probability at least 1/e.

Let us call the algorithm of Theorem 3 RPAS1. It is obtained by repeating Algorithm 1
multiple times to get a constant success probability. So before we give the proof of Theorem 3,
we prove a couple of lemmas about Algorithm 1.

▶ Lemma 4. If Algorithm 1 returns a set S then S is a feedback vertex set in G of size at
most (1 + ϵ)k.

Proof. The returned solution is either of the form S1 or of the form S1 ∪ S2 for some vertex
sets S1 and S2. If it consists of only S1, then by line 15 of the algorithm it is clear that
G− S1 is acyclic and |S1| ≤ (1 + ϵ)k.

Now, if the returned solution is of the form S1 ∪ S2, then by the correctness of the
randomized FPT algorithm of [16] for FVS, we can say that S2 is a feedback vertex set
of G − S1, and this implies that S = S1 ∪ S2 is a feedback vertex set of G. Also, if the
parameter is decreased by β inside the while loop when Algorithm 1 returns a solution
of the form S1 ∪ S2, then observe that |S1| ≤ β + ϵk and |S2| ≤ k − β. Thus, we get
|S| = |S1|+ |S2| ≤ β + ϵk + k − β = (1 + ϵ)k. ◀

MFCS 2023
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Algorithm 1 First randomized (1 + ϵ) approximation algorithm for FVS.

Input : An instance (G, k) of FVS and a ϵ ∈ (0, 1).
1 Fix l′ = k;
2 Fix l = (1− ϵ)k;
3 Initialize, S1 ← ∅;
4 while k > l & G− S1 is not acyclic do
5 apply reduction rules 2-4 exhaustively to G− S1;
6 if there is a self-loop then
7 S1 = S1 ∪ {v : there is a loop on v};
8 k ← k − |{v : there is a loop on v}| ;
9 else

10 pick an edge e = uv uniformly at random from E(G− S1);
11 S1 = S1 ∪ {u, v};
12 k ← k − 1;
13 end
14 end
15 if G− S1 is acyclic & |S1| ≤ (1 + ϵ)l′ then
16 return S1;
17 end
18 apply the randomized FPT algorithm of [16] for FVS on (G− S1, k) ;
19 if Above algorithm returns a solution S2 then
20 return S1 ∪ S2;
21 else
22 return No;
23 end

▶ Lemma 5. Given an Yes-instance of FVS, Algorithm 1 returns a solution of size at most
(1 + ϵ)k with probability at least c · 2−ϵk for some constant c ≥ 1

2 .

Proof. Let (G, k) be a given Yes-instance for FVS. Notice that, inside the while loop, the
parameter decreases when we pick vertices having a self-loop on them or when we choose an
edge uniformly at random and add both of its endpoints to S1. We do the latter only if none
of the reduction rules are applicable.

Now, when we pick vertices having a self-loop into the set S1, by the correctness of
reduction rule 1, there must exist a feedback vertex set F of G of size at most k (as the
given instance is a Yes-instance) containing those vertices having self-loops. Then we choose
an edge uv uniformly at random and add both its endpoints u and v to S1 only if none of
the reduction rules are applicable and thus the minimum degree of the graph is at least 3.
Then by Lemma 2, at least one of u and v is in F with probability at least 1

2 . Thus, when
the parameter decreases by one, we add at least one vertex of F to S1 with probability at
least 1

2 (the statement is true with probability 1 when we are adding the vertices having
self-loops to S1). If the parameter decreases by β (note that β ≥ ϵk) inside the while loop,
then S1 contains at least β vertices of F with probability at least 1

2ϵk (as we choose an edge
uniformly at random inside the while loop for at most ϵk steps). Also, if S1 contains at least
β vertices from F , then (G− S1, k− β) is a Yes-instance and the randomized FPT algorithm
of [16] will find feedback vertex set in G− S1 of size at most k − β with probability at least
c for some constant c ≥ 1

2 . Thus, given a Yes-instance (G, k) of FVS, Algorithm 1 returns a
feedback vertex set of size at most (1 + ϵ)k with probability at least c · 2−ϵk. ◀
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Algorithm 2 Second randomized (1 + ϵ) approximation algorithm for FVS.

Input : An instance (G, k) of FVS and ϵ ∈ (0, 1).
1 Initialize, S ← ∅;
2 while |S| < (1 + ϵ)k & G− S is not acyclic do
3 apply reduction rules 2-4 exhaustively to G− S;
4 if there is a self-loop then
5 S = S ∪ {v : there is a self-loop on v};
6 else
7 pick an edge e u.a.r from E(G− S);
8 pick a vertex v u.a.r. from the endpoints of e ;
9 S = S ∪ {v};

10 end
11 if G− S is acyclic & |S| ≤ (1 + ϵ)k then
12 return S;
13 end
14 end
15 return No;

Proof of Theorem 3. The randomized FPT algorithm of [16] for FVS runs in O∗(2.7k′) time
for an instance (G, k′) of FVS. Notice that, when Algorithm 1 calls the algorithm of [16],
the parameter is at most (1− ϵ)k. Thus Algorithm 1 takes O∗(2.7(1−ϵ)k) time when it calls
the algorithm of [16]. Except for this step, all other steps in Algorithm 1 can be done in
polynomial time. So overall Algorithm 1 runs in time O∗(2.7(1−ϵ)k). Also, due to Lemma 5,
given a Yes-instance of FVS it outputs a solution of size at most (1 + ϵ)k with probability
at least c · 2−ϵk. The algorithm of Theorem 3 (which we call RPAS1) repeats Algorithm 1 at
most 1

c · 2
ϵk times. The first time Algorithm 1 returns a solution, RPAS1 returns the same

solution and stops. Otherwise, if all the 1
c · 2

ϵk runs of Algorithm 1 return No, then RPAS1
returns No as well. This gives the running time of RPAS1 to be O∗(2ϵk · 2.7(1−ϵ)k). We have
already seen in Lemma 4 that Algorithm 1 either fails or returns a solution of size at most
(1 + ϵ)k, so this is true for RPAS1 as well. For showing the second part of Theorem 3, we
observe that RPAS1 fails if and only if each of the runs of Algorithm 1 fails. Hence, RPAS1
succeeds with probability at least 1− (1− c · 2−ϵk) 1

c ·2ϵk ≥ 1/e. This finishes the proof of the
theorem. ◀

4 Algorithm II

In this section, we present our second randomized (1 + ϵ) approximation algorithm for FVS
for every ϵ ∈ (0, 1). Given an instance (G, k) of FVS, like before, we first apply reduction
rules 2-4 on the graph. When none of the reduction rules 2-4 are applicable, we pick all the
vertices with self-loops into the set S. If no vertex has a self-loop, then we pick an edge
uniformly at random and then we pick an endpoint (say v) of this edge uniformly at random.
We add this vertex v into S. Then we delete S from the graph and repeat the same process
until G−S becomes acyclic or the size of S crosses (1 + ϵ)k. If G−S becomes acyclic before
the size of S crosses (1 + ϵ)k, then we return S as a solution, otherwise, we return No. We
describe the algorithm formally in Algorithm 2. Now we state the main result of this section.

MFCS 2023
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▶ Theorem 6. There exists a randomized algorithm running in O∗

(((
4

1+ϵ

)(1+ϵ)
·
(

ϵ
3
)ϵ
)k
)

time such that, given an FVS instance (G, k) and ϵ ∈ (0, 1), it either reports a failure or
finds a feedback vertex set of G of size at most (1 + ϵ)k. Moreover, if the algorithm is given
a Yes-instance, it returns a solution of size at most (1 + ϵ)k with probability at least 1/e.

Let us call the algorithm of Theorem 6 RPAS2. Just like RPAS1, it is obtained by
repeating Algorithm 2 multiple times to get a constant success probability. So before we
give the proof of Theorem 6, we need to show some results about the success probability of
Algorithm 2. We first make the following observation which follows directly from line 11 of
the algorithm.

▶ Observation 7. If Algorithm 2 returns a solution S for a given instance (G, k) of FVS
then S is a feedback vertex set in G of size at most (1 + ϵ)k.

Let T (b, k, n) : Z× N× N→ [0, 1] be defined as follows.

T (b, k, n) := min
G: |V (G)|≤n, fvs(G)≤k

{ρ | Algorithm 2 returns a feedback vertex set of G of

size at most b with probability ρ}

If we can show a lower bound on T (b, k, n) where b = (1 + ϵ)k, and k and ϵ are as in the input
of Algorithm 2, then that will give a lower bound for the success probability of Algorithm 2.
We first make the following observation.

▶ Observation 8. T (b, k, n) ≤ T (b, k, n− 1) and T (b, k, n) ≤ T (b, k − 1, n).

Proof. The first part of the observation follows from the fact that the set of graphs considered
for T (b, k, n− 1) while taking the minimum in the definition is a subset of the set of graphs
considered for T (b, k, n). The second part also follows by a similar reasoning on the size of
the feedback vertex set. ◀

Now, let us see what happens when Algorithm 2 adds vi to S. Let E1 denote the event
when this vi belongs to some feedback vertex set of G of size at most k, and let E2 denote the
event when vi is not part of any feedback vertex set of G of size at most k. The probability
of success of Algorithm 2 on G with parameter k and budget b is at least T (b− 1, k− 1, n− 1)
and T (b− 1, k, n− 1) respectively in case E1 or E2 happens. This gives us the following.

T (b, k, n) ≥ Pr[E1] · T (b− 1, k − 1, n− 1) + Pr[E2] · T (b− 1, k, n− 1).

Now, if we add vi to S from line 5 of Algorithm 2 and G has a feedback vertex set of size
at most k, then there must exists a feedback vertex set F of G of size at most k that contains
vi. Else, if vi is added to S from line 9, then none of the reduction rules are applicable and
by Lemma 2, we have that, Pr[E1] ≥ 1

4 . That is, Pr[E1] = 1
4 + ci for some ci ≥ 0. We also

know that Pr[E1] + Pr[E2] = 1. Hence, the recurrence relation of success probability is

T (b, k, n) ≥ (1
4 + ci) · T (b− 1, k − 1, n− 1) + (3

4 − ci) · T (b− 1, k, n− 1).

Now, using Observation 8, we can write

T (b, k, n) ≥ 1
4 · T (b− 1, k − 1, n) + 3

4 · T (b− 1, k, n). (1)
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Since n is an invariant in the above recurrence relation, we can rewrite 1 as

T (b, k) ≥ 1
4 · T (b− 1, k − 1) + 3

4 · T (b− 1, k). (2)

It can be easily seen that two trivial base cases of the recurrence 2 are the following.
i) T (b, k) = 0 when b < 0, and ii) T (b, k) = 1 when k = 0 and b ≥ 0.

4.1 Solution of recurrence relation 2 and proof of Theorem 6
To solve the recurrence 2, we make use of the results in [15]. Let, a recurrence relation define
a function p : Z× N→ [0, 1] satisfying the following equations.

p(b, k) = min{1≤j≤N |k̄j≤k}
∑rj

i=1 γ̄j
i · p

(
b− b̄j

i , k − k̄j
i

)
p(b, k) = 0 ∀b < 0, k ∈ N
p(b, 0) = 1 ∀b ≥ 0,

(3)

where N ∈ N, and for any 1 ≤ j ≤ N the following hold: b̄j ∈ Nrj

+ , k̄j ∈ Nrj and γ̄j ∈ Rrj

+
with

∑rj

i=1 γ̄j
i = 1. We say that k̄j ≤ k if k̄j

i ≤ k, ∀1 ≤ i ≤ rj . We refer to the recurrence
relation in 3 as the composite recurrence of

{(
b̄j , k̄j , γ̄j

)
| 1 ≤ j ≤ N

}
. Note that for the

recurrence to be properly defined, there must be 1 ≤ j ≤ N such that k̄j ≤ 1 (otherwise the
min operation in 3 may be taken over an empty set). Also notice that the recurrence 2 is
a composite recurrence with N = 1 (and thus j = 1), rj = r = 2, γ̄1 = 1

4 , γ̄2 = 3
4 , b̄1 = 1,

b̄2 = 1, k̄1 = 1 and k̄2 = 0. Throughout this subsection, we use the word term when referring
to triples of the form

(
b̄j , k̄j , γ̄j

)
.

We say that a vector q̄ ∈ Rr
≥0 is a distribution if

∑r
i=1 q̄i = 1 and use D(·∥·) to denote

Kullback-Leibler divergence [7] 2 3.
To state the main result of [15], we need the next definition. For short, associate the

term (b̄, k̄, γ̄) with the expression
∑r

i=1 γ̄i · p
(
b− b̄i, k − k̄i

)
.

▶ Definition 9. Let b̄ ∈ Nr
+, k̄ ∈ Nr and γ̄ ∈ Rr

≥0 with
∑r

i=1 γ̄i = 1. Then for α > 0, the α

branching number of the term (b̄, k̄, γ̄) is the optimal value M∗ of the following minimization
problem over q̄ ∈ Rr

≥0 :

M∗ = min
{

1∑r
i=1 q̄i · k̄i

D(q̄∥γ̄) |
r∑

i=1
q̄i · b̄i ≤ α

r∑
i=1

q̄i · k̄i, q̄ is a distribution
}

.

If the optimization above does not have a feasible solution then M∗ =∞.

The main result of [15] is the following.

▶ Theorem 10 ([15]). Let p be the composite recurrence of
{(

b̄j , k̄j , γ̄j
)
| 1 ≤ j ≤ N

}
,

and α > 0. Denote by Mj the α-branching number of
(
b̄j , k̄j , γ̄j

)
, and let M =

max {Mj | 1 ≤ j ≤ N}. If M <∞ then

lim
k→∞

log p(⌊αk⌋, k)
k

= −M.

2 Formally, for c̄, d̄ ∈ Rk define D(c̄||d̄) =
∑k

i=1 c̄i log c̄i

d̄i
.

3 Throughout the paper we refer by log to the natural logarithm.

MFCS 2023



56:10 Parameterized Approximation Scheme for Feedback Vertex Set

As said earlier, for the recurrence 2, we have N = 1, and thus, j will always have only
one value, so we just ignore j. Also, we have rj = r = 2, γ̄1 = 1

4 , γ̄2 = 3
4 , b̄1 = 1, b̄2 = 1,

k̄1 = 1 and k̄2 = 0. The α-branching number of (b̄, k̄, γ̄) is,

M = min
{

1∑2
i=1 q̄i · k̄i

D(q̄∥γ̄) |
2∑

i=1
q̄i · b̄i ≤ α

2∑
i=1

q̄i · k̄i, q̄ is a distribution
}

.

So, we have to minimize

1∑2
i=1

q̄i·k̄i

D(q̄∥γ̄) (4)

with respect to the constraint,∑2
i=1 q̄i · b̄i ≤ α

∑2
i=1 q̄i · k̄i (5)

Also, since q̄ is a distribution, we have

q̄1 + q̄2 = 1 (6)

So, using 6 in 5 we get,

q̄1 + q̄2 ≤ αq̄1 =⇒ q̄1 ≥ 1
α

(7)

Now, from 4, we get,

1∑2
i=1 q̄i · k̄i

D(q̄∥γ̄) = 1
q̄1

(
q̄1 log q̄1

γ̄1
+ q̄2 log q̄2

γ̄2

)
=
(

log 4q̄1 + (1− q̄1)
q̄1

log 4(1− q̄1)
3

)
.

Notice that, the above expression is a function of q̄1 only. Let us consider the function,
f : [ 1

α , 1]→ R such that,

f(x) =
(

log 4x + 1− x

x
log 4(1− x)

3

)
.

Since we want a factor (1 + ϵ) approximation for every ϵ ∈ (0, 1), we are interested for
1 < α < 2 only and in this range of α, 1

α > 1
2 . Now, to compute M , we need to minimize

f(x).
Here, derivative of f(x),

f ′(x) = − 1
x2 log 4(1− x)

3 ≥ 0, ∀x ∈
[

1
4 , 1
]

.

This implies that the function f is a monotonically increasing function on the domain of
our interest ( i.e., where 1

α > 1
2 ). Hence, f(x) is minimum at x = 1

α and this implies

M = f
(

1
α

)
= log

(
4
α

(
4

3α
(α− 1)

)(α−1)
)

.

By Theorem 10,

p(αk, k) =
(

4
α

(
4

3α
(α− 1)

)(α−1)
)−k

.

Now, from recurrence relation 2 and putting α = (1 + ϵ), we get,

T ((1 + ϵ)k, k) ≥
((

4
1 + ϵ

)(1+ϵ)
·
( ϵ

3

)ϵ
)−k

.
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Proof of Theorem 6. Showing that T (b, k, n) ≥
((

4
1+ϵ

)(1+ϵ)
·
(

ϵ
3
)ϵ
)−k

shows that

given a Yes-instance (G, k) of FVS, Algorithm 2 succeeds with probability at least((
4

1+ϵ

)(1+ϵ)
·
(

ϵ
3
)ϵ
)−k

. Now, the proof follows along the lines of the proof of Theorem 3,

and by repeating Algorithm 2
((

4
1+ϵ

)(1+ϵ)
·
(

ϵ
3
)ϵ
)k

times, we get success probability at

least 1/e. Since Algorithm 2 runs in polynomial time, the running time of RPAS2 is

O∗

(((
4

1+ϵ

)(1+ϵ)
·
(

ϵ
3
)ϵ
)k
)

. ◀

5 Algorithm III

In this section, we present the third randomized (1 + ϵ) approximation algorithm for FVS
for every ϵ ∈ (0, 1). Given an instance (G, k) of FVS, we first apply reduction rules 2-4 on
the graph. After this, we pick all the vertices with self-loops into the set S1. If no vertex
has a self-loop, then we pick an edge uniformly at random, select an endpoint v of this edge
uniformly at random, and add this vertex v into S1. Then we delete S1 from the graph
and repeat the same process until G− S1 becomes acyclic or the size of S1 crosses (1− ϵ)k.
Next, we check whether G− S1 is acyclic and |S1| ≤ (1 + ϵ)k. If yes, then we just return S1
as a solution. Otherwise, we apply a 2-approximation algorithm [1] for FVS on the graph
G− S1. If the 2-approximate solution, say S2, of G− S1 is of size at most 2(k − |S1|) then
we return S1 ∪ S2 as a solution, otherwise we return No. We describe the algorithm formally
in Algorithm 3. Now we state the main result of this section.

▶ Theorem 11. There exists a randomized algorithm running in O∗ (4(1−ϵ)k
)

time such that,
given an FVS instance (G, k) and ϵ ∈ (0, 1), it either reports a failure or finds a feedback
vertex set of G of size at most (1 + ϵ)k. Moreover, if the algorithm is given a Yes-instance,
it returns a solution of size at most (1 + ϵ)k with probability at least 1/e.

Let us call the algorithm of Theorem 6 RPAS3. Just like RPAS1 and RPAS2, it is
obtained by repeating Algorithm 3 multiple times to get a constant success probability. So
before we give the proof of Theorem 11, we need to prove some lemmas about Algorithm 3.

▶ Lemma 12. If Algorithm 3 returns a set S then S is a feedback vertex set in G of size at
most (1 + ϵ)k.

Proof. The returned solution will be either of the form S1 or of the form S1 ∪ S2 for some
vertex set S1, and S2. If it is only S1, then by the algorithm, it is clear that G−S1 is acyclic
and |S1| ≤ (1 + ϵ)k.

Now, if the returned solution is of the form S1 ∪ S2, then S2 is a 2-approximate solution
for the graph G− S1. Thus, by the correctness of 2-approximation algorithm for Feedback
Vertex Set, we can say S2 is a feedback vertex set in G−S1, and this implies, S = S1 ∪S2
is a feedback vertex set in G.

Now from Algorithm 3, we can see, |S1| ≥ (1− ϵ)k. Again, Algorithm 3 returns a solution
of the form S1 ∪ S2 only when |S2| ≤ 2(k − |S1|). Thus, we get,

|S| = |S1|+ |S2| ≤ |S1|+ 2(k − |S1|) = 2k − |S1| ≤ 2k − (1− ϵ)k = (1 + ϵ)k. ◀

▶ Lemma 13. Given an Yes-instance of FVS, Algorithm 3 returns a solution of size at most
(1 + ϵ)k with probability at least 4−(1−ϵ)k.

MFCS 2023
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Algorithm 3 Third randomized (1 + ϵ)-approximation algorithm for FVS.

Input : An instance (G, k) of FVS and ϵ ∈ (0, 1).
1 Initialize, S1 ← ∅;
2 while |S1| < (1− ϵ)k & G− S1 is not acyclic do
3 apply reduction rules 2-4 exhaustively to G− S1;
4 if there is a self-loop then
5 S1 = S1 ∪ {v : there is a self-loop on v};
6 else
7 pick an edge e u.a.r from E(G− S1);
8 pick a vertex v u.a.r. from the endpoints of e;
9 S1 = S1 ∪ {v};

10 end
11 if G− S1 is acyclic & |S1| ≤ (1 + ϵ)k then
12 return S1;
13 end
14 end
15 apply 2-approximation for FVS on G− S1;
16 Let S2 be returned solution;
17 if |S2| > 2(k − |S1|) then
18 return No;
19 else
20 return S1 ∪ S2;
21 end

Proof. Let the given instance (G, k) be a Yes instance, that is, there is a feedback vertex set
in G of size at most k. Let S1

1 and S2
1 be the set of vertices we add in S by the line number

5 and 9 of Algorithm 3, respectively. Notice that we add vertices to S1
1 only when there

are some self-loops in the graph (i.e., reduction rule 1 is applicable). By the correctness of
reduction rule 1, if (G, k) is a Yes instance, then there exists a feedback vertex set of size at
most k containing S1

1 . Now, when we add a vertex in S2
1 , from the pseudocode of Algorithm 3,

we can see none of the reduction rules are applicable and thus, we can assume the minimum
degree of the graph to be at least 3. Now if we pick an edge uniformly at random and then we
pick one of its endpoints, v uniformly at random into S2

1 then Lemma 2 says that, v is a part
of any feedback vertex set with probability at least 1

4 . Thus, for some feedback vertex set F of
size at most k, pr[S1 = S1

1 ∪ S2
1 ⊆ F ] ≥ 1

4 ·
1
4 ·

1
4 · · ·

1
4 (|S2

1 |times) = 1
4|S2

1 | . Since, Algorithm 3
adds at most one vertex to S2

1 at every execution of the while loop and the while loop runs
for at most (1− ϵ)k steps, so,|S2

1 | ≤ (1− ϵ)k. Therefore, pr[S1 = S1
1 ∪ S2

1 ⊆ F ] ≥ 1
4(1−ϵ)k . If

S1 = F , then S1 is a feedback vertex set in G and |S1| ≤ k ≤ (1 + ϵ)k and Algorithm 3 will
return a solution. Else if S1 ⊂ F then F \S1 is a feedback vertex set in G−S1 of size k−|S1|.
Hence, the size of the 2-approximate solution S2 will be at most 2(k− |S1|) and Algorithm 3
will return a solution S = S1 ∪ S2. So, if the given instance (G, k) is a yes-instance then for
some feedback vertex set F in G of size at most k, S1 ⊆ F with probability at least 1

4(1−ϵ)k

and when S1 ⊆ F , Algorithm 3 always returns a solution. Hence the proof. ◀

Proof of Theorem 11. There is a polynomial time 2-approximation algorithm for FVS
that can be found in [1]. Also, every step under the while loop in Algorithm 3 takes only
polynomial time and the while loop runs for at most (1− ϵ)k times. So, overall Algorithm 3
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runs in polynomial time. RPAS3 calls Algorithm 3 for 4(1−ϵ)k times to achieve constant
success probability, and the remainder of the proof follows from Lemma 12 and Lemma 13
along the lines of proofs of Theorem 3 and Theorem 6. ◀

6 Comparison of RPAS1, RPAS2, and RPAS3, and proof of Theorem 1

In this section we compare the running times of the algorithms in Theorem 3, Theorem 6, and
Theorem 11, which we have named RPAS1, RPAS2, and RPAS3 respectively. We observe
that each of RPAS1, RPAS2 and RPAS3 performs better than the other two when ϵ lies in
the intervals (0, 0.176), (0.176, 0.674), and (0.674, 1) respectively. For ϵ = 0.176, the running
times of RPAS1 and RPAS2 are the same, while for ϵ = 0.674, the running times of RPAS2
and RPAS3 turn out to be the same. The following table gives the running time of the three
algorithms for different values of ϵ for comparison. Now we are ready to give the proof of
Theorem 1.

No. ϵ
Approximation
factor

RPAS1
run time

RPAS2
run time

RPAS3
run time

Better
run time

1 0.05 1.05 2.66k 3.319k 3.732k 2.66k

2 0.10 1.10 2.62k 2.945k 3.482k 2.62k

3 0.15 1.15 2.581k 2.676k 3.482k 2.581k

4 0.176 1.176 2.561k 2.561k 3.134k 2.561k

5 0.20 1.20 2.543k 2.467k 3.031k 2.467k

6 0.25 1.25 2.505k 2.3k 2.828k 2.3k

7 0.30 1.30 2.468k 2.16k 2.639k 2.16k

8 0.35 1.35 2.431k 2.043k 2.462k 2.043k

9 0.40 1.40 2.395k 1.942k 2.297k 1.942k

10 0.45 1.45 2.359k 1.855k 2.144k 1.855k

11 0.50 1.50 2.324k 1.778k 2k 1.778k

12 0.55 1.55 2.289k 1.71k 1.866k 1.71k

13 0.60 1.60 2.255k 1.649k 1.741k 1.649k

14 0.65 1.65 2.222k 1.595k 1.624k 1.595k

15 0.674 1.674 2.206k 1.571k 1.571k 1.571k

16 0.70 1.70 2.188k 1.546k 1.516k 1.516k

17 0.75 1.75 2.156k 1.502k 1.414k 1.414k

18 0.80 1.80 2.124k 1.462k 1.32k 1.32k

19 0.85 1.85 2.092k 1.426k 1.231k 1.231k

20 0.9 1.90 2.061k 1.392k 1.149k 1.149k

21 0.95 1.95 2.03k 1.362k 1.072k 1.072k

Proof of Theorem 1. Given an instance (G, k) and an ϵ ∈ (0, 1), the algorithm runs one
of RPAS1, RPAS2, and RPAS3 depending upon which of them performs the best for that
value of ϵ (for ϵ = 0.176, we can choose either of RPAS1 or RPAS2 and for ϵ = 0.674, we
can choose either of RPAS2 or RPAS3). The running time and the correctness follows from
Theorem 3, Theorem 6, and Theorem 11. ◀
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Abstract
For any finite set H = {H1, . . . , Hp} of graphs, a graph is H-subgraph-free if it does not contain any
of H1, . . . , Hp as a subgraph. In recent work, meta-classifications have been studied: these show that
if graph problems satisfy certain prescribed conditions, their complexity can be classified on classes
of H-subgraph-free graphs. We continue this work and focus on problems that have polynomial-time
solutions on classes that have bounded treewidth or maximum degree at most 3 and examine their
complexity on H-subgraph-free graph classes where H is a connected graph. With this approach,
we obtain comprehensive classifications for (Independent) Feedback Vertex Set, Connected
Vertex Cover, Colouring and Matching Cut. This resolves a number of open problems.

We highlight that, to establish that Independent Feedback Vertex Set belongs to this
collection of problems, we first show that it can be solved in polynomial time on graphs of maximum
degree 3. We demonstrate that, with the exception of the complete graph on four vertices, each
graph in this class has a minimum size feedback vertex set that is also an independent set.
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1 Introduction

A graph G contains a graph H as a subgraph if H can be obtained from G by vertex deletions
and edge deletions; else G is said to be H-subgraph-free. If H can be obtained from G using
only vertex deletions, then H is an induced subgraph of G, and if not then G is H-free. There
are few studies of complexity classifications of graph problems for H-subgraph-free graphs
(compare the greater attention given to problems on H-free graphs). There are results for
Independent Set, Dominating Set and Longest Path [1], Max-Cut [13] and List
Colouring [10] (see also [11] for a shorter alternative proof of the result for Independent
Set). In these papers, complete classifications are presented giving the complexity of the
problems even for H-subgraph-free graphs, where H is any finite set of graphs (for a set of
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57:2 Complexity Framework for Forbidden Subgraphs

graphs H, a graph G is H-subgraph-free if G is H-subgraph-free for every H ∈ H). Such
classifications seem difficult to obtain. For example, for Colouring, there is only a partial
classification[11]. For this reason – and also noting that the classifications for the problems
above were all the same – a systematic approach was developed in [12] with the introduction
of a new framework which we will describe after introducing some terminology.

For an integer k ≥ 1, the k-subdivision of an edge e = uv of a graph replaces e by a
path of length k + 1 with endpoints u and v (and k new vertices). The k-subdivision of a
graph G is the graph obtained from G after k-subdividing each edge. For a graph class G
and an integer k, let Gk consist of the k-subdivisions of the graphs in G. Let Π be a graph
problem. We say that Π is NP-complete under edge subdivision of subcubic graphs if there
exists an integer k ≥ 1 such that the following holds for the class of subcubic graphs G: if
Π is NP-complete for G, then Π is NP-complete for Gkp for every integer p ≥ 1. A graph
problem Π is a C123-problem (belongs to the framework) if it satisfies the three conditions:
C1. Π is polynomial-time solvable for every graph class of bounded treewidth;
C2. Π is NP-complete for the class of subcubic graphs; and
C3. Π is NP-complete under edge subdivision of subcubic graphs.

As shown in [12], C123-problems allow for full complexity classifications for H-subgraph-free
graphs (as long as H has finite size). A subdivided claw is a graph obtained from a claw
(4-vertex star) after subdividing, separately, each of its edges zero or more times. The disjoint
union of two vertex-disjoint graphs G1 and G2 has vertex set V (G1) ∪ V (G2) and edge set
E(G1) ∪ E(G2). The set S consists of the graphs that are disjoint unions of subdivided claws
and paths. Now, let Π be a C123-problem. For a finite set H, the problem Π on H-subgraph-
free graphs is polynomial-time solvable if H contains a graph from S and NP-complete
otherwise. [12].

Examples of C123-problems include Independent Set, Dominating Set, List Colour-
ing, Odd Cycle Transversal, Max Cut and Steiner Tree; see [12] for a comprehensive
list. Thus we see the power of the framework to aid progress in deciding the complexity of
problems on H-subgraph-free graphs. But there are still many graph problems that are not
C123. In [15], results were obtained for problems that satisfy C1 and C2 but not C3. Such
problems are called C12-problems and include k-Induced Disjoint Paths, C5-Colouring,
Hamilton Cycle and Star 3-Colouring [15]. We consider the research question:

How do C13-problems – that is, problems that satisfy C1 and C3 but not C2 – behave for
H-subgraph-free graphs? Can we still classify their computational complexity?

Let us immediately note some redundancy in the definition of C13-problems: if a problem
does not satisfy C2, then C3 is implied. Nevertheless we retain the terminology to preserve the
link to the approach of [12]. To show a problem is a C13 problem there are two requirements:
that the problem is polynomial-time solvable both on classes of bounded treewidth and on
subcubic classes. In fact, the tractable cases for C123 problems rely on that the problems
satisfy C1.

▶ Theorem 1 ([12]). Let Π be a problem that satisfies C1. For a finite set H, the problem Π
on H-subgraph-free graphs is polynomial-time solvable if H contains a graph from S.

As an important step towards a full dichotomy for C13 problems, we restrict ourselves to
considering H-subgraph-free graphs where H is connected. We focus on five well-known
NP-complete problems that we will see are not C123 but C13-problems: Feedback Vertex
Set, Independent Feedback Vertex Set, Connected Vertex Cover and Matching
Cut. We introduce these problems below. With one exception, we can recognize that they
are C13 problems using known results.
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For a graph G = (V, E), a set W ⊆ V is a feedback vertex set of G if every cycle in
G contains a vertex of W . Moreover, W is an independent feedback vertex set if W is an
independent set. We note that G has a feedback vertex set of size k if and only if the
2-subdivision of G has an independent feedback vertex set of size k. A graph G might contain
no independent feedback vertex set: consider, for example, a complete graph on four or more
vertices. The (Independent) Feedback Vertex Set problem is to decide if a graph G

has an (independent) feedback vertex set of size at most k for some given integer k.
A set W ⊆ V is a connected vertex cover of G if every edge of E is incident with a

vertex of W , and moreover W induce a connected subgraph. The Connected Vertex
Cover problem is to decide if a graph G has a connected vertex cover of size at most k for a
given integer k. A k-colouring of G is a function c : V → {1, . . . , k} such that for each edge
uv ∈ E, c(u) ̸= c(v). The Colouring problem is to decide if a graph G has a k-colouring
for some given integer k. A matching cut of a connected graph is a matching (set of pairwise
non-adjacent edges) that is also an edge cut, i.e., its removal creates a disconnected graph.
The Matching Cut problem is to decide if a connected graph has a matching cut.

1.1 Our Results
Both Feedback Vertex Set and Independent Feedback Vertex Set satisfy C1 [21].
Whereas Feedback Vertex Set does have a polynomial-time algorithm on subcubic
graphs [22] and thus does not satisfy C2, a polynomial-time algorithm for Independent
Feedback Vertex Set on subcubic graphs was not previously known. In Section 2, we
prove the following result addressing this gap in the literature.

▶ Theorem 2. A minimum size independent feedback vertex set of every connected subcubic
graph G ̸= K4 is also a minimum size feedback vertex set of G. Moreover, it is possible to
find a minimum independent feedback vertex set of G in polynomial time.

Hence, both Feedback Vertex Set and Independent Feedback Vertex Set are C13.
The other problems are also C13. Namely, Connected Vertex Cover satisfies C1 [2] and
is polynomial-time solvable on subcubic graphs [22] so does not satisfy C2, while Colouring
also satisfies C1 [2] but not C2 due to Brooks’ Theorem [4]. Finally, Matching Cut satisfies
C1 [3] but not C2, due to a polynomial-time algorithm for subcubic graphs [5].

The star K1,s is the connected graph that contains a vertex of degree s whose neighbours
each have degree 1. A subdivided star is obtained from a star by subdividing one or more of
its edges.

▶ Definition 3. An Sw,x,y,z is a graph formed by subdividing each edge of a K1,4, w − 1, x −
1, y − 1, and z − 1 times. Each of the subdivided edges is called a tentacle. The vertex of
degree 4 is the centre.

In Section 3, we investigate the structure of H-subgraph-free graphs when H is a subdivided
star and use this in Section 4 to show a general approach to C13 problems that requires some
additional properties (that they can be solved componentwise after, possibly, the removal of
bridges). This is sufficient to obtain the following result.

▶ Theorem 4. Let q and r be positive integers. The following problems can be solved in
polynomial time on S1,1,q,r-subgraph-free graphs: Feedback Vertex Set, Independent
Feedback Vertex Set, Connected Vertex Cover, Colouring and Matching Cut.

In Section 5, we obtain a hardness result.

▶ Theorem 5. Feedback Vertex Set and Independent Feedback Vertex Set are
NP-complete on the class of S2,2,2,2-subgraph free graphs that have maximum degree 4.
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1.2 State-of-the-Art Summaries
We now state complexity classifications for each of the problems. These results, proved in
Section 6, combine the results above with a number of other results from [5, 7, 8, 9, 11, 14,
17, 19, 20]. None of these papers presented general results for C13 problems. However, we
note, for example, that hardness when H contains a cycle follows from past results on classes
of bounded girth which were proved separately for each problem, but often using a similar
technique. There are other results that just apply to one or two of the problems.

▶ Theorem 6. Let H be a connected graph. On H-subgraph-free graphs, Feedback Vertex
Set and Independent Feedback Vertex Set are solvable in polynomial time if H ∈
S ∪ {S1,1,q,r | q ≥ r ≥ 1}. They are NP-complete if H contains a cycle or more than one
vertex of degree at least 3 or H ∈ {K1,5, S2,2,2,2}.

▶ Theorem 7. Let H be a connected graph. On H-subgraph-free graphs, Connected
Vertex Cover is solvable in polynomial time if H ∈ S ∪ {S1,1,q,r | q ≥ r ≥ 1}. It is
NP-complete if H contains a cycle or H = K1,5.

The following result refers to trees defined in Figure 1.

▶ Theorem 8. Let H be a connected graph. On H-subgraph-free graphs, Colouring is
solvable in polynomial time if H ∈ S ∪ {S1,1,q,r | q ≥ r ≥ 1} or if H is a forest with
maximum degree 4 and at most seven vertices. It is NP-complete if H contains a cycle, or
H ∈ {K1,5, S2,2,2,2}, or if H contains a subdivision of the tree T1 as a subgraph, or H contains
as a subgraph the tree obtained from T2 after subdividing the edge st p times, 0 ≤ p ≤ 9, or
H contains one of the trees S2,2,2,2, T4, T5, T6 as a subgraph.

t

T3T2T1 T4

T5 T6

s

Figure 1 Illustration of the trees T1, . . . , T6 reproduced from [11]; note that T3 = S2,2,2,2.

▶ Theorem 9. Let H be a connected graph. On H-subgraph-free graphs, Matching Cut is
solvable in polynomial time if H ∈ S ∪ {S1,1,q,r | q ≥ r ≥ 1}. It is NP-complete if H contains
a cycle or H = K1,5.

2 Independent Feedback Vertex Sets of Subcubic Graphs

In [22], Ueno, Kajitani and Gotoh gave a polynomial-time algorithm for Feedback Vertex
Set on subcubic graphs. In this section, we prove Theorem 2 by showing that Independent
Feedback Vertex Set is also polynomial-time solvable on subcubic graphs by demon-
strating that the problems are alike as, for any subcubic graph, one can find a minimum size
feedback vertex set that is also an independent set (with a single exceptional case). As the
problems can be solved componentwise, we consider only connected graphs.
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In fact, we are going to prove a result that is an expansion of Theorem 2 that will come
in handy later. We need some definitions. A cactus is a graph in which no two cycles have an
edge in common. A cactus is nice if no two cycles have a vertex in common (every subcubic
cactus is nice since if two cycles share a vertex but not an edge, we can find a vertex of
degree at least 4). A cactus is very nice if every vertex belongs to exactly one cycle.

▶ Theorem 10. Let G ̸= K4 be a connected subcubic graph. Then a minimum size independent
feedback vertex set of G is also a minimum size feedback vertex set of G. Moreover, there is
a minimum size independent feedback vertex set of G that contains only vertices of degree 3
if and only if G is not a very nice cactus. There is a polynomial-time algorithm to find a
minimum size independent feedback vertex set and if G is not a very nice cactus it finds a
set that contains only vertices of degree 3.

We observe that the theorem fails if G = K4.

Proof. It will be seen that the proof implies a polynomial-time algorithm for finding an
independent feedback vertex set of the size no greater than a given feedback vertex set.

A feedback vertex set of K4 must contain at least two vertices and so K4 has no
independent feedback vertex set. In a very nice cactus, the minimum size of a feedback vertex
set is equal to the number of cycles and one can easily find such a set that is independent if
one permits the inclusion of degree 2 vertices. (For example, pick an arbitrary vertex v and
form an independent feedback vertex set by taking the vertex in each cycle that is farthest
from v.) If there are k (disjoint) cycles, then, considering the tree-like structure of a very
nice cactus, there are 2(k − 1) vertices of degree 3 that can be considered as k − 1 adjacent
pairs. Thus no set of k vertices of degree 3 is independent.

So suppose that G ̸= K4 is not a very nice cactus. Of course, we may also assume that G

is not a tree, else the empty set is an independent feedback vertex set. Let F be a feedback
vertex set of G. To prove the theorem, we must show that we can find an independent
feedback vertex set of G that is no larger than F . We can assume that F contains only
vertices of degree 3 since any vertex of degree 2 can be replaced by a nearest vertex of
degree 3. As G is neither a tree nor a cycle (a cycle is a very nice cactus), we know that G

has vertices of degree 3.
Let J = ∅. Our approach is to add vertices to J until it forms an independent feedback

vertex set. We make some trivial but useful statements:
1. F is a feedback vertex set containing only vertices of degree 3,
2. J ⊆ F , and
3. J is a nonseparating independent set of G; that is, no pair of vertices of J are joined by

an edge and G − J is connected.
We will repeatedly modify F and J in such a way that these three statements remain true
and the size of F does not increase and it remains a feedback vertex set. We can make the
following changes without contradicting the three statements.

We can add a vertex x ∈ F \ J to J if x has no neighbour in J and is not a cutvertex
in G − J .
If x ∈ F \ J , we can redefine F as (F \ {x}) ∪ {y} if y is a vertex that belongs to every
cycle of G − (F \ {x}) and has degree 3 (that is, y belongs to every cycle of G that
contains x but no other vertex of F ).

Our initial aim is to make changes so that G − J is a graph where no two cycles have a
vertex in common; that is, it is a nice cactus.

▷ Claim 11. We can modify F and J until G − J is a nice cactus.

MFCS 2023
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Proof. Assume G − J contains two cycles with a common vertex, and, therefore, as G is
subcubic, a common edge, else we are done. Consider a subgraph K induced by two cycles of
G − J that have a common edge (so K is 2-connected and has no cutvertex). Of course, F

must contain at least one vertex of K; let r be such a vertex.
If r has degree 3 in K, then we can add it to J since it has three neighbours in G − J (so

none in J) and is not a cutvertex in G − J since K − {r} is connected.
Otherwise r has degree 2 in K. Traversing edges of K away from r in either direction,

let p and q be the first vertices of degree 3 in K that are reached (and p ̸= q by the definition
of K). Let r′ be the first vertex of degree 3 in G reached from r on the path in K towards p.

If r has a neighbour j ∈ J , then we can redefine F as F \ {r} ∪ {r′} since every cycle
in G containing r also contains either j or r′. Suppose instead that r has no neighbour in J .
Let r′′ be the neighbour of r in G − J but not K. If r is not a cutvertex in G − J , then we
can add r to J . If r is a cutvertex in G − J , then no cycle of G − J includes the edge rr′′.
Thus, again, we can redefine F as F \ {r} ∪ {r′}.

So we either add a vertex to J or modify F by replacing a vertex with another that is
closer in K to p. By repetition, we either add a vertex to J or modify F to include p in
which case, as noted above, we can add p to J . Therefore, if G − J contains two cycles with
a common edge, we can increase the size of J and so, ultimately, we can assume that G − J

contains no such pair of cycles and is a nice cactus. This completes the proof of Claim 11.
◁

Let H = G − J . By Claim 11, the cycles of H are vertex disjoint and the graph has a
treelike structure: if one replaces each cycle by a single vertex, then a tree is obtained. As F

must contain at least one vertex of each cycle of H, if we add to J one vertex chosen from
each cycle of H (in any way), it will be no larger than F . If we can do this in such a way
that J is an independent set and each vertex has degree 3, then the proof will be complete.
Thus we must describe how to choose a degree 3 vertex from each cycle of H such that
the union of these vertices and J is an independent set, possibly after some further minor
modifications. The reasoning about these modifications will require that H is connected so
the requirement above that J be nonseparating was needed.

If H contains no cycles, then J is already an independent feedback vertex set and there
is nothing to prove. Otherwise, let C be a cycle of H. Let S(C) be the set of vertices that
contains, for each cycle C ′ of H other than C, the vertex of C ′ that is nearest to C in H . See
Figure 2. Each vertex v of S(C) has degree 3 in H since it has two neighbours in a cycle C ′

and a neighbour not in C ′ on the path from v to C. Thus no vertex of S(C) has a neighbour
in J . Moreover, clearly S(C) is an independent set. Thus J ∪ S(C) is an independent set
that covers every cycle of G except C. For a vertex v in C, let F (v) = J ∪ S(C) ∪ {v}. If we
can find a cycle C that contains a vertex v of degree 3 not adjacent to J or to another cycle
in H, then F (v) is an independent feedback vertex set and we are done.

Suppose instead that no such cycle can be found. Notice that this implies that every
vertex of H belongs to a cycle. (If there was a vertex w not in a cycle, then let v be a nearest
vertex to w in a cycle and then F (v) is an independent feedback vertex set of degree 3
vertices; again, see Figure 2.) So H is a very nice cactus and, by assumption, J ̸= ∅.

Let j be a vertex in J with neighbours v1, v2 and v3 in H . Suppose that these three vertices
are in the same cycle C of H . If C is a 3-cycle, then {j, v1, v2, v3} induces K4, a contradiction.
So we can assume that v1 and v2 are not adjacent. Then J1 = J \ {j} ∪ {v1, v2} ∪ S(C) is
an independent feedback vertex set of degree 3 vertices and |J2| = |F |. Quick check: all
cycles are covered by J1 since v1 and S(C) cover the cycles of H and every cycle containing
j includes at least one of v1 and v2; J1 is independent as v1 and v2 have degree 2 in H so no
other neighbour in J and are not adjacent to vertices, such as those of S(C), that do not
belong to C, and the vertices of S(C) have degree 3 in H so no neighbours in J .
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C
w

v

Figure 2 A nice subcubic cactus. The central 5-cycle is denoted C and the white vertices form
the set S(C). Note that w does not belong to any cycle and v is the nearest vertex to w in a cycle.
Thus S(C) ∪ {v} is an independent feedback vertex set for the graph.

Suppose instead that v1, v2 and v3 do not all belong to the same cycle. Let C be the
cycle that contains v1 and suppose that v2 and v3 do not belong to the same cycle as each
other (one might belong to C). Then J2 = J \ {j} ∪ {v1} ∪ S(C) is an independent feedback
vertex set of degree 3 vertices and |J1| = |F | − 1. Quick check: all cycles are covered by J2
since v1 and S(C) cover the cycles of H and every cycle containing j includes either v1 or
both v2 and v3 and all the paths from v2 to v3 (that do not include j) go through either a
vertex of J or a vertex of S(C) as they are in different cycles in H; J2 is independent as v1
has degree 2 in H so, as before, no other neighbour in J or S(C), and the vertices of S(C)
have degree 3 in H so no neighbours in J . ◀

3 Graphs Excluding Subdivided Stars as a Subgraph: Structure

Recall that the treedepth of a graph G is the minimum height of a forest F such that for
every pair of adjacent vertices in G, one is the ancestor of the other in F . It is well-known
that the treewidth of a graph is at most its treedepth. In this section, we aim to show
that H-subgraph-free graphs, for certain H, have bounded treedepth. Then we know that
problems that are tractable on classes of bounded treewidth are also tractable on these
classes. Before presenting our results, we need the following result from [18].

▶ Theorem 12 ([18]). Let G be a graph of treedepth at least d. Then G has a subgraph
isomorphic to a path of length at least d.

Our next two theorems consider graphs Sw,x,y,z. By Definition 3, this graph is four paths
sharing an endvertex. In a small abuse of terminology, we will use leaf to mean only a vertex
of degree 1 that is adjacent to the centre.

▶ Proposition 13. Let r be a positive integer. Then the subclass of connected S1,1,1,r-
subgraph-free graphs that are not subcubic has bounded treedepth.

Proof. Let G be a connected S1,1,1,r-subgraph-free graph that is not subcubic so contains a
vertex v0 with neighbours v1, v2, v3, v4. We will show that G has treedepth at most 2r + 2.
Suppose instead that the treedepth of G is at least 2r + 3. The graph G \ {v0, v1, v2, v3, v4}
must have treedepth at least 2r − 2 (since adding a vertex to a graph cannot increase the
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treedepth by more than one), and therefore, by Theorem 12, it must contain a path P of
length 2r − 2. Let Q be a shortest path in G between P and v0 (which must exist as G is
connected). Let z be the vertex where P and Q meet. Let P ′ be the longest subpath of P of
which z is an endvertex. As P ′ is at least half the length of P , and Q contains at least one
edge, the path P ′ ∪Q contains at least r edges. Thus there exists in G a subgraph isomorphic
to S1,1,1,r; the centre is v0, P ′ ∪ Q is the tentacle of length r, and three of v1, v2, v3, v4 are
the three leaves (since at most one of these four vertices can belong to Q and none belong
to P ′). This contradiction completes the proof. ◀

The assumption that the graphs are connected is needed: the class of all graphs that are
each a disjoint union of a path and a K1,4 is not subcubic but has unbounded treedepth.

Consider now the class of all connected graphs that are each obtained from a K1,4 after
subdividing exactly one of its edges zero or more times. This is a class of graphs that are
connected, not subcubic and S1,1,q,r-subgraph-free for all r ≥ q ≥ 2 and again has unbounded
treedepth. Thus, in the following analogue of Proposition 13, we need an additional property.
A bridge is proper if neither incident vertex has degree 1. A graph is quasi-bridgeless if it
contains no proper bridge.

▶ Theorem 14. Let q and r be positive integers. Then the subclass of connected S1,1,q,r-
subgraph-free graphs that are not subcubic and are quasi-bridgeless has bounded treedepth.

Proof. Let G be a connected quasi-bridgeless S1,1,q,r-subgraph-free graph that is not subcubic
so contains a vertex v0 with neighbours v1, v2, v3, v4. We will show that G has treedepth at
most 2(q + r + 3)2 + 6. Suppose instead that the treedepth of G is at least 2(q + r + 3)2 + 7.
The graph J = G \ {v0, v1, v2, v3, v4} must have treedepth at least 2(q + r + 3)2 + 2 and
therefore, by Theorem 12, it must contain a path P of length 2(q + r + 3)2 + 2. Let z be the
middle vertex of P . We prove the following claim.

▷ Claim 15. If there is a cycle C in G that contains z and also a vertex v ̸= z that has two
neighbours a and b not on C, then G contains a subgraph isomorphic to S1,1,q,r.

Proof. A big adorned cycle is a graph that contains a cycle with at least q + r + 1 edges
and two further vertices each joined by an edge to the same vertex on the cycle; the latter
vertex is called the centre. If we find a big adorned cycle in G we are done as it contains a
subgraph isomorphic to S1,1,q,r (the centre is the same and it is obtained by deleting one or
more edges of the cycle). Let C+ be the union of C and the vertices a and b and the edges
va and vb. If |C| ≥ q + r + 1, then C+ is a big adorned cycle.

So suppose that |C| ≤ q + r. Consider the intersections of P with V (C+). A maximal
subpath of P whose internal vertices are not in V (C+) is called an interval of P . Note
that P has at most |C+| + 1 ≤ q + r + 3 intervals. If all intervals of P have length at most
q + r − 1, then P itself has length at most (q + r + 3)(q + r − 1) < (q + r + 3)2, a contradiction.
Hence, at least one of the intervals has length at least q + r; we call such an interval long.
See Figure 3 for an illustration.

Suppose that there is a long interval L of which both endvertices x and y are in V (C+).
Then there are shortest (possibly trivial) paths S and T on C+ from v to x and y respectively
that are vertex disjoint except for v. As x and y are distinct, the union of L, S and T is a
cycle on at least q + r + 1 edges. As v has four neighbours in C+, two of them do not belong
to this cycle and considering these two neighbours (and the incident edges that join them to
v) with the cycle, we have a big adorned cycle centred at v.

Hence, there is no long interval with both endvertices in V (C+) and we can assume any
long interval has just one endvertex in V (C+). Suppose that there are two long intervals
L1 and L2 whose endvertices in C+ are x and y respectively. If x = y, then L1 and L2 are
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v
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C C C

v v

z z

P P

(a) (b) (c)

x x xy

a b a b a b

Figure 3 The cycle C and path P from the proof of Claim 15 illustrating the three cases (a)
there is a long interval with both endvertices in P , (b) there are two vertex-disjoint long intervals,
and (c) there are two long intervals that meet in a single vertex.

the only intervals and their union is P . This implies that P only intersects C+ in x and
so we must have x = z. Then there exists in G a subgraph isomorphic to an S1,1,q,r with
z as its centre, the neighbours of z on C as the leaves and subpaths of L1 and L2 as the
tentacles. If x ̸= y, then there are shortest paths S, T on C+ from v to x and y respectively
that are vertex disjoint except for v. Then there exists in G a subgraph isomorphic to an
S1,1,q,r with v as its centre, the paths S and T , possibly extended by subpaths of L1 and L2,
as the tentacles and two neighbours of v in C+ that do not belong to S or T as the leaves.

Hence, there is only one long interval L. As the other intervals are short, they have total
length at most |C+| · (q + r) < (q + r + 3)2. Hence, L has length at least (q + r + 3)2 + 2.
As L contains more than half the vertices of P , the middle vertex of P is an internal vertex
of L and so does not belong to C+. This contradicts that z is the middle vertex of P and
completes the proof of the claim. ◁

We now apply the claim. Note that v0 and z are distinct as z belongs to J but v0 does
not. Since G is quasi-bridgeless and neither v0 nor z has degree 1, it follows from Menger’s
Theorem [16] that there exist two edge-disjoint paths S, T from v0 to z. If S and T are
internally vertex-disjoint paths, then their union forms a cycle that contains z. We can
assume that each of S and T contain only one neighbour of v0 else we can find shortcuts and
redefine them. Hence, v0 has two neighbours not in the cycle and we can apply Claim 15.
If S and T are not internally vertex-disjoint, let v′ be a vertex of (V (S) ∩ V (T )) \ {z} that
is furthest from v0 on T . Consider the subpath T ′ of T from v′ to z and the subpath S′ of
S from v′ to z. Since T ′ does not intersect S by definition, S′ and T ′ are internally vertex
disjoint. Hence, their union forms a cycle that contains z. Moreover, v′ has degree at least
four, of which two neighbours are not on S′ or T ′. Hence, we can apply Claim 15. ◀

4 Graphs Excluding Subdivided Stars as a Subgraph: Algorithms

We present several applications of the structural results of the previous section.
We note that Feedback Vertex Set, Independent Feedback Vertex Set and

Colouring can be solved componentwise. In a sense, so can Connected Vertex Cover
and Matching Cut since disconnected graphs are no instances (except possibly for Con-
nected Vertex Cover instances with edgeless components but these can be ignored).

▶ Theorem 16. Let r be a positive integer. A problem Π can be solved in polynomial time
on S1,1,1,r-subgraph-free graphs if the following hold:

i) Π can be solved in polynomial time on subcubic graphs,
ii) Π can be solved in polynomial time on graphs of bounded treedepth, and
iii) Π can be solved componentwise on disconnected graphs.

MFCS 2023



57:10 Complexity Framework for Forbidden Subgraphs

Proof. Let C be a connected component of a S1,1,1,r-subgraph-free graph G. If C is subcubic,
then the problem can be solved in polynomial time. Otherwise, by Proposition 13, C has
bounded treedepth and again the problem can be solved in polynomial time. Finally, the
solutions for its connected components can be merged in polynomial time. ◀

▶ Theorem 17. Let q and r be positive integers. A problem Π can be solved in polynomial
time on S1,1,q,r-subgraph-free graphs if the following hold:

i) Π can be solved in polynomial time on subcubic graphs,
ii) Π can be solved in polynomial time on graphs of bounded treedepth, and
iii) Π can be solved on graphs with proper bridges using a polynomial-time reduction to a

family of instances on graphs that are either of bounded treedepth or subcubic.

Proof. Let H be one of the family of instances obtained from an instance G of Π. As H is
either of bounded treedepth or subcubic, the problem can be solved in polynomial time. As
we have a reduction, once solved on all the family of instances, we can solve Π on G. ◀

The simplest way to apply Theorem 17 is to show that if it is possible to solve Π on each
of the family of components obtained by deleting the proper bridges of an instance, then these
solutions combine to provide a solution for the initial instance (since the components are
quasi-bridgeless and so certainly either of bounded treedepth or subcubic by Theorem 14.)

We now use Theorem 17 to prove Theorem 4. We do not apply Theorem 16 in this
paper, as the results it would give us would just be special cases of those we have obtained
using Theorem 17. Nevertheless, there are potential applications of Theorem 16 as there
might be C13 problems that can be solved componentwise but cannot be solved by finding
the reduction required by Theorem 17. We will see, in the proof below, that to solve
Independent Feedback Vertex Set via a reduction requires an intricate argument and
the careful analysis of possible solutions on subcubic graphs that was provided by Theorem 10.

▶ Theorem 4 (restated). Let q and r be positive integers. The following problems can
be solved in polynomial time on S1,1,q,r-subgraph-free graphs: Feedback Vertex Set,
Independent Feedback Vertex Set, Connected Vertex Cover, Colouring and
Matching Cut.

Proof. To show that the result follows immediately from Theorem 17, we can show that the
problems can be solved by deleting bridges and considering the resulting graph componentwise;
this will be trivial for some problems, but for others we will need to find a different reduction.

For Feedback Vertex Set, as bridges do not belong to cycles, the problem is unchanged
when they are deleted.

For Independent Feedback Vertex Set such a straightforward approach is not
possible as if we simply delete bridges and solve the problem on the components, the merged
solution might not be independent (since we might choose both endvertices of a deleted
bridge). We must argue a little more carefully. Let G be a S1,1,q,r-subgraph-free graph and
consider the treelike structure of G when thinking of its blocks – the connected components
when the bridges are deleted. In fact, consider a subgraph of G that is a block plus all its
incident bridges. Some of these subgraphs might be subcubic; let us call these C-type. For
those that are not, we can assume, by Theorem 14, that there is a constant c such that their
treewidth is at most c; let us call these subgraphs T-type (note that this is a weaker claim
that the Theorem 14 provides, as we could assume that the treedepth was bounded). If such
a subgraph is both subcubic and has treewidth at most c, we will think of it as T-type. We
can assume c ≥ 3 so a very nice cactus (with pendant edges) is T-type. If subgraphs of
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the same type overlap (because they are joined by a bridge), we observe that their union
is also of that type (since the union is also either, respectively, subcubic or of treewidth at
most c). So, merging overlapping subgraphs of the same type as much as possible we can
consider G as being made up of C- and T-type subgraphs and bridges that each join a C-type
subgraph to a T-type subgraph. As Independent Feedback Vertex Set can be solved
in polynomial time on graphs of bounded treewidth [21] as well as on subcubic graphs by
Theorem 2, we can solve it on these subgraphs. Before we solve it on a C-type subgraph,
we can delete pendant bridges (that link to a T-type subgraph in G) so the incident vertex
now has degree at most 2. As a very nice cactus is being considered as a T-type subgraph,
we know, by Theorem 10, that the solutions we find for C-type subgraphs do not use the
vertices incident with the bridges. Thus the solutions can be merged for a solution for G

that is also independent.
For Connected Vertex Cover, let G be a S1,1,q,r-subgraph-free graph. Clearly, we

may assume G is connected, or it has no connected vertex cover. As for Independent
Feedback Vertex Set consider each subgraph J that is a block of G and also include
the bridges of G incident with the block. Observe that J is quasi-bridgeless and S1,1,q,r-
subgraph-free. Noticing that a connected vertex cover W of G must contain both vertices
incident with any proper bridge, we see that the restriction of W to the vertices of J is
a connected vertex cover of J that includes vertices incident with bridges of G. And the
construction of J means its connected vertex covers will include these vertices adjacent to
bridges in G. Thus we see that have a reduction and can solve the problem on G.

For Colouring if, for a graph G, we colour the components of the graph obtained by
deleting bridges, then we can merge these into a colouring of G. If the two endvertices of a
bridge have been coloured alike, then we just permute the colours on one of the components.
This might create new clashes, but we move to the adjacent components and permute there.
By the definition of bridge, we will never have to permute the colours on a component more
than once so the process terminates.

For Matching Cut, if a graph contains a bridge, then we have immediately that it is a
yes instance. ◀

5 Graphs Excluding Subdivided Stars as a Subgraph: Hardness

We prove Theorem 5.

▶ Theorem 5 (restated). Feedback Vertex Set and Independent Feedback Vertex
Set are NP-complete on the class of S2,2,2,2-subgraph free graphs that have maximum degree 4.

Proof. Both problems belong to NP. We shall show a reduction from the following NP-
complete problem 2P1N-3SAT [6].

2P1N-3SAT
Instance: A CNF formula Φ where each clause contains at most three literals and each

variable occurs twice positively and once negatively.
Question: Does Φ have a satisfying assignment?

Given an instance of 2P1N-3SAT with on variables {v1, . . . , vn}, we construct a graph G

as follows. For each variable vi, we construct the gadget shown in Figure 4. The triangles
xx′a and yy′b represent the positive occurrences of the variable, while the diamond zstc

represents the negative occurrence. For each clause Cj , we construct a hexagon if the clause
has size 3 and a square if the clause has size 2 (we may assume that no clause has size 1).

MFCS 2023



57:12 Complexity Framework for Forbidden Subgraphs

p q

a
b

c

x
y

z
s

t
x′

y′

variable clause

vi vj

vk

Figure 4 The variable and clause gadgets (for clauses of size 3) from the proof of Theorem 5.
The vertices x, y, and z of a variable gadget will be identified with the (labeled) vertices of clause
gadgets.

Alternate vertices of this clause gadget represent literals and are identified with a vertex x, y

or z of the corresponding variable gadget. Clearly this can be done in such a way each vertex
x and y of each variable gadget is identified with exactly one vertex from a clause gadget
that represents a positive literal, and each vertex z of each variable gadget is identified with
exactly one vertex from a clause gadget that represents a negative literal. Note that G has
maximum degree 4.

▷ Claim 18. G does not contain S2,2,2,2 as a subgraph.

Proof. Let us consider where we might find the centre vertex of a S2,2,2,2 in G. Clearly a
vertex v cannot be the centre vertex if its 2-neighbourhood in G contains a cut of size 3 (that
is, if there are 3 vertices each of distance at most 2 from v that form a cut in G). The centre
vertex cannot be the vertices p or q of a variable gadget, because the set {a, b, c} of the same
gadget forms a cut of size 3 in the 2-neighbourhood of p and q. The centre vertex cannot
be the vertices a, b, or c of a variable gadget either, because {x, p, q}, {y, p, q} and {z, p, q}
respectively form cuts of size 3 in their 2-neighbourhoods. The vertices x, y, and z cannot
be the centre vertex as in their 2-neighbourhood is a cut of size 3 that contains their two
neighbours in a clause gadget and, respectively, a, b and c. The remaining vertices of G have
degree less than 4. The claim is proved. ◁

Any feedback vertex set of a variable gadget has size at least 4, because it contains four
disjoint cycles. So any feedback vertex set of G must contain at least 4n vertices. It only
remains to show that G has an (independent) feedback vertex set of size at most 4n if and
only if Φ is satisfiable.

Assume that Φ has a satisfying assignment. We construct a feedback vertex set F of G.
If a variable is true, then the vertices x, y, p, and t of the variable gadget belong to F . If
a variable is false, then instead z, a, b, and c belong to F . Thus F is an independent set
(vertices of distinct variable gadgets are not adjacent) and its size is exactly 4n.

▷ Claim 19. F is a feedback vertex set.

Proof. Notice that if a literal of a clause is satisfied, then, in the clause gadget, the cor-
responding vertex is in F . Thus, as clause is satisfied, each cycle contained in a single
variable or clause gadget contains a vertex of F . Consider a cycle of G that is not contained
within a single gadget. It must include a non-trivial path of some variable gadget where the
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endvertices are two of {x, y, z}. If it includes x it must also include a and if it includes y

it must also include b. But F contains one of {x, a} and one of {y, b} so such a cycle also
intersects F . Thus F intersects all the cycles of G. ◁

Conversely, suppose that G has a feedback vertex set F of size at most 4n. Again, each
variable gadget contains at least four vertices of F and so contains exactly four vertices of F .
Notice that F cannot contain either {x, z} or {y, z} as, in each case, there are three disjoint
cycles of the gadget that would need to be covered by just two vertices.

Let us describe a satisfying assignment of Φ. If, for a variable gadget, either x or y belongs
to F , we let the variable be true. If z belongs to F , we let it be false. By the preceding
argument, there is no possibility that we must set a variable to be both true and false. If
none of {x, y, z} belong to F , we set the value of the variable arbitrarily. This is a satisfying
assignment as every clause gadget (which is a cycle) must have at least one vertex in F and
the corresponding variable is satisfied. ◀

6 Proofs of the Classifications

We prove Theorems 6–9. Noting that the theorems contain some analogous results, and
wishing to avoid repetition, we make a few general comments that apply to all proofs.

We state again that the five problems under consideration are C13 problems. Thus when
H ∈ S, each theorem follows from Theorem 1. When H = S1,1,q,r, we apply Theorem 4. Thus,
except for Theorem 8 on Colouring, the following proofs need only cover the NP-complete
cases.

Proof of Theorem 6. We note again that Feedback Vertex Set reduces to Independent
Feedback Vertex Set after subdividing each edge so here we consider only the former.

By Poljak’s construction [19], for every integer g ≥ 3, Feedback Vertex Set is NP-
complete for graphs of girth at least g (the girth of a graph is the length of its shortest
cycle). Thus Feedback Vertex Set is NP-complete for H-subgraph-free graphs whenever
H contains a cycle.

Suppose that H has m vertices and more than one vertex of degree at least 3. From any
graph G, if we we subdivide each edge m times, we obtain a graph J that is H-subgraph
free since the distance between any pair of vertices of degree more than 2 is at least m + 1.
In finding in a minimum size feedback vertex set of J , we may as well restrict ourselves
to selecting vertices of G. This implies that Feedback Vertex Set is NP-complete for
H-subgraph-free graphs.

The problem is NP-complete on planar graphs of maximum degree 4 [20] (so for K1,5-
subgraph-free graphs).

Theorem 5 completes the proof. ◀

Proof of Theorem 7. For every integer g ≥ 3, Connected Vertex Cover is NP-complete
for graphs of girth at least g [17], so also for H-subgraph-free graphs whenever H contains
a cycle. It is NP-complete on graphs of maximum degree 4 [8], so for K1,5-subgraph-free
graphs. ◀

Proof of Theorem 8. For every integer g ≥ 3, Colouring is NP-complete for graphs of
girth at least g [14], so also for H-subgraph-free graphs whenever H contains a cycle. In [9],
it was shown that Colouring is NP-complete on (planar) graphs of maximum degree 4,
and so too for K1,5-subgraph-free graphs. The other cases are all proved in [11] ◀
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Proof of Theorem 9. For every integer g ≥ 3, Matching Cut is NP-complete for graphs
of girth at least g [7], so also for H-subgraph-free graphs whenever H contains a cycle. It is
NP-complete on graphs of maximum degree 4 [5], so for K1,5-subgraph-free graphs. ◀

7 Conclusions

We made significant progress towards classifying the complexity of five well-known C13-
problems on H-subgraph-free graphs, extending previously known results. In particular, we
identified a gap in the literature, and provided a polynomial-time algorithm for Independent
Feedback Vertex Set for subcubic graphs.

If H is connected, then we narrowed the gap for these problems to the open case where
H = S1,p,q,r, so H is a subdivided star with one short leg and three arbitrarily long legs. To
obtain a result for connected S1,p,q,r-subgraph-free graphs similar to our previous results, we
would need the graphs to be 3-edge-connected. Indeed, the statement is false without this
assumption. Consider the class of all graphs that are each the union of a path and a K1,4
two of whose leaves are identified with distinct end-vertices of the path and whose other
two leaves are made adjacent. This is a class of graphs that are bridgeless, not subcubic
and S1,p,q,r-subgraph-free and again has unbounded treedepth. It is not yet clear whether a
suitably modified theorem statement would indeed hold. In addition, it is unclear whether
this would yield a result that could be applied in the same way as Proposition 13 and
Theorem 14 were above. We leave the case H = S1,p,q,r as future research.

Finally, we also leave determining the complexity of Connected Vertex Cover and
Matching Cut on S2,2,2,2-subgraph-free graphs as an open problem.
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Abstract
Finding a maximum cardinality common independent set in two matroids (also known as Matroid
Intersection) is a classical combinatorial optimization problem, which generalizes several well-
known problems, such as finding a maximum bipartite matching, a maximum colorful forest, and
an arborescence in directed graphs. Enumerating all maximal common independent sets in two
(or more) matroids is a classical enumeration problem. In this paper, we address an “intersection”
of these problems: Given two matroids and a threshold τ , the goal is to enumerate all maximal
common independent sets in the matroids with cardinality at least τ . We show that this problem
can be solved in polynomial delay and polynomial space. We also discuss how to enumerate all
maximal common independent sets of two matroids in non-increasing order of their cardinalities.
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1 Introduction

The bipartite matching problem is arguably one of the most famous combinatorial optimization
problems, which asks to find a maximum cardinality matching in a bipartite graph. By
polynomial-time algorithms for the maximum flow problems, this problem can be solved in
polynomial time. This problem is naturally generalized for non-bipartite graphs, which is
also solvable in polynomial time [9].

Another natural generalization of the bipartite matching problem is Matroid Inter-
section. In this problem, we are given two matroids M1 = (S, I1) and M2 = (S, I2), where
I1 ⊆ 2S and I2 ⊆ 2S are the set of independent sets of M1 and M2, respectively, and asked
to find a maximum cardinality common independent set of M1 and M2, that is, a maximum
cardinality set in I1 ∩ I2. When both M1 and M2 are partition matroids, this problem is
equivalent to the bipartite b-matching problem, which is a generalization of the bipartite
matching problem. A famous matroid intersection theorem [10] shows a min-max formula
and also gives a polynomial-time algorithm for Matroid Intersection [23].
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58:2 Enumerating Large Maximal Common Independent Sets in Two Matroids

These classical results give efficient algorithms to find a single best (bipartite) matching
in a graph or common independent set in two matroids. This type of objective serves as
the gold standard in many algorithmic and computational studies. However, such a single
best solution may not be appropriate for real-world problems due to the complex nature of
them [11].

One possible remedy to this issue is to enumerate multiple solutions instead of a single
best one. From the point of view of enumeration, the problems of enumeration maximal and
maximum (bipartite) matchings and its generalization are studied in the literature [6, 29–31].
Enumerating maximal independent sets in a graph is one of the best-studied problems in
this area and is solvable in polynomial delay and polynomial space [6, 29]. Due to the
correspondence between matchings in a graph and independent sets in its line graph, we
can enumerate all maximal matchings in polynomial delay and polynomial space as well.
Moreover, several algorithms that are specialized to (bipartite) matchings are known [30,31].

Enumeration algorithms for matroids are also frequently studied in the literature [3, 12,
16,17,22]. Lawler et al. [22] showed that all maximal common independent sets in k matroids
can be enumerated in polynomial delay when k is constant. For general k, this problem is
highly related to Dualization (or equivalently, minimal transversal enumeration, minimal
hitting set enumeration), which can be solved in output quasi-polynomial time1 [3]. Apart
from common independent sets, enumeration problems related to matroids are studied [15,17],
such as minimal multiway cuts [17] and minimal Steiner forests in graphs [15].

In this paper, we consider an “intersection” of the above two worlds, optimization and
enumeration, for Matroid Intersection. More specifically, given two matroids M1 and M2
and an integer τ , we consider the problem of enumerating all maximal common independent
sets of M1 and M2 with cardinality at least τ . We refer to this problem as Large Maximal
Common Independent Set Enumeration. By setting τ = 0, we can enumerate all
maximal common independent sets of M1 and M2, and by setting τ = opt, we can enumerate
all maximum common independent sets of M1 and M2, where opt is the optimal value of
Matroid Intersection. We would like to mention that simultaneously handling two
constraints, maximality and cardinality, would make enumeration problems more difficult
(see [18–20], for other enumeration problems). We show that Large Maximal Common
Independent Set Enumeration can be solved in polynomial delay and space. This extends
the results of enumerating maximum common independent sets due to [12] and enumerating
maximal common independent sets due to [22]. Our enumeration algorithm allows us to
enumerate several combinatorial objects with maximality and cardinality constraints, such
as bipartite b-matchings, colorful forests, and degree-constraint subdigraphs.

To prove this, we devise a reverse search algorithm [1] to enumerate all maximal common
independent sets of M1 and M2. This algorithm enumerates the solutions in a depth
first manner. To completely enumerate all the solutions without duplicates, we carefully
design its search strategy. We exploit a famous augmenting path theorem for Matroid
Intersection [23]. This enables us to design a “monotone” search strategy, yielding a
polynomial-delay and polynomial-space enumeration algorithm. A similar idea is used in [19]
for enumerating maximal matchings with cardinality at least τ but we need several nontrivial
lemmas to obtain our result.

Although our algorithm enumerates all maximal common independent sets of two matroids
with cardinality at least τ , solutions may not be generated in a sorted order, which is of great
importance in database community [8, 26]. A ranked enumeration algorithm is an algorithm

1 An enumeration algorithm runs in output quasi-polynomial time if it runs in time N (log N)c

, where c is
a constant and N is the combined size of the input and output.
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enumerates all the solutions in a non-increasing order of their cardinality (or more generally
objective value). We discuss how to convert our enumeration algorithm to the one that
enumerates in a ranked manner with a small overhead in the running time.

2 Preliminaries

Let S be a finite set. We denote the cardinality of S as n. For two sets X and Y , the
symmetric difference of X and Y is defined as X△Y := (X \Y )∪ (Y \X). A pair M = (S, I)
is called a matroid if M satisfies the following conditions:
∅ ∈ I,
if I ∈ I and J ⊆ I, then J ∈ I, and
if I, J ∈ I and |I| < |J |, then I ∪ {e} ∈ I for some e ∈ J \ I.

A subset S′ of S is called an independent set of M (or independent in M) if S′ is contained
in I and S′ is called a dependent set of M (or dependent in M) otherwise. An inclusion-wise
maximal independent set of M is called a base of M , and an inclusion-wise minimal dependent
set of M is called a circuit of M . For two distinct circuits C1 and C2 of M with C1 ∩C2 ̸= ∅
and e ∈ C1 ∩C2, there always exists a circuit C3 of M such that C3 ⊆ (C1 ∪C2) \ {e}. This
property is called the (weak) circuit elimination axiom [25]. For a matroid M = (S, I) and a
subset X ⊆ S, the pair (X,J ) is the restriction of M to X, where J = {Y ⊆ X : Y ∈ I}.
We denote it as M |X. Similarly, the pair (S \X,J ′) is the deletion of X from M , where
J ′ = {Y \X : Y ∈ I}. We denote it as M\X. Moreover, the pair (S\X,J ′′) is the contraction
of X from M , where J ′′ = {Y ⊆ S \ X : M | X has a base B such that Y ∪ B ∈ I}. We
denote it as M/X. Similarly, It is known that for a matroid M = (S, I) and X ⊆ S, M/X,
M |X, and M \X are all matroids [25]. For two matroids M1 = (S, I1) and M2 = (S, I2)
defined on the same set S, a subset T ⊆ S is a common independent set of M1 and M2 if
T ∈ I1 and T ∈ I2.

Let I1 and I2 be distinct independent sets of M . In our algorithm, we frequently consider
a matroid obtained from M by restricting to I1 ∪ I2 and then contracting I1 ∩ I2. This
matroid is defined on I1 △ I2 and has some properties shown below.

▶ Proposition 1. Let I1 and I2 be independent sets of M and let M ′ = (M |(I1∪I2))/(I1∩I2).
I ⊆ I1 △ I2 is independent in M ′ if and only if I ∪ (I1 ∩ I2) is independent in M .

Proof. Suppose that I is independent in M ′. As M ′ is a contraction of I1∩I2 from M |(I1∪I2),
I ∪ (I1 ∩ I2) is independent in M | (I1 ∪ I2) and hence in M . The converse direction is
analogous. ◀

▶ Proposition 2. Let I1 and I2 be maximal common independent sets of M1 = (S, I1) and
M2 = (S, I2). Then, both I1 \ I2 and I2 \ I1 are maximal common independent sets of two
matroids M ′

1 = (M1 | (I1 ∪ I2)) / (I1 ∩ I2) and M ′
2 = (M2 | (I1 ∪ I2)) / (I1 ∩ I2).

Proof. By symmetry, it suffices to show that I1 \ I2 is a maximal common independent set
of M ′

1 and M ′
2. By Proposition 1, (I1 \ I2) ∪ (I1 ∩ I2) = I1 is independent in M1 if and only

if I1 \ I2 is independent in M ′
1. Similarly, I1 is independent in M2 if and only if I1 \ I2 is

independent in M ′
2. Thus, I1 \ I2 is a common independent set of M ′

1 and M ′
2. To see the

maximality, suppose that there is e ∈ I2 \I1 such that (I1 \I2)∪{e} is a common independent
set of M ′

1 and M ′
2. By Proposition 1, I1 ∪ {e} is a common independent set of M1 and M2,

contradicting the maximality of I1. ◀

We next define some notations for directed graphs. In this paper, we assume that directed
graphs have no self-loops. For a directed graph D = (V, A), we say that a vertex v is
an out-neighbor of u (u is an in-neighbor of v) in D if D has an arc (u, v). The set of
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out-neighbors of v is denoted by N+(v), and the set of in-neighbors of v is denoted by N−(v).
A sequence (v1, . . . , vk) of distinct vertices is a directed path if there is an arc (vi, vi+1) for
1 ≤ i < k. A directed path (v1, . . . , vk) in D is called a directed path without shortcuts if D

has no arc from vi to vj for any 1 ≤ i < j ≤ k with i + 1 < j.
We measure the time complexity of enumeration algorithms with delay complexity [13].

The delay of an enumeration algorithm is the maximum time elapsed between two consecutive
outputs, including preprocessing and post-processing time. An enumeration algorithm is called
a polynomial-delay enumeration algorithm if its delay is upper bounded by a polynomial
of the size of an input. An enumeration algorithm is called an linear incremental-time
enumeration algorithm if, for any i ≤ N , an algorithm outputs at least i solutions in time
O(i · poly(n)), where N is the number of solutions [4].

Now, we formally define our problems. Throughout the paper, we assume that matroids
are given as independence oracles, that is, for a matroid M = (S, I), we can test whether
a subset X ⊆ S belongs to I by accessing an oracle for M . Moreover, we assume that
independence oracles can be evaluated in Q time and in Q̂ space. We say that an enumeration
algorithm runs in polynomial delay (resp. polynomial space) if the delay (resp, space) is
upper bounded by a polynomial in n + Q (resp. n + Q̂).
▶ Definition 3. Given two matroids M1 = (S, I1) and M2 = (S, I2) represented by independ-
ence oracles and an integer τ , Large Maximal Common Independent Set Enumeration
asks to enumerate all maximal common independent sets of M1 and M2 with cardinality at
least τ .
▶ Definition 4. Given two matroids M1 = (S, I1) and M2 = (S, I2) represented by inde-
pendence oracles, Ranked Maximal Common Independent Set Enumeration asks to
enumerate all maximal common independent sets of M1 and M2 in a non-increasing order
with respect to cardinality.

2.1 Overview of an algorithm for finding a maximum common
independent set

Our proposed algorithm for Large Maximal Common Independent Set Enumeration
leverages a well-known property used in an algorithm for finding a maximum common
independent set in two matroids. In this paper, we refer to a particular algorithm given by
Lawler [23].

Let M1 = (S, I1) and M2 = (S, I2) be matroids. In Lawler’s algorithm [23], we start with
an arbitrary common independent set I of M1 and M2 (e.g., I := ∅), update I to a larger
common independent set I ′ in some “greedy way”. This update procedure is based on the
following auxiliary directed graph DM1,M2(I) = (S ∪ {s, t}, A).

Let I ⊆ S be a common independent set of M1 and M2. The set A = A1 ∪A2 ∪A3 ∪A4
of arcs in DM1,M2(I) consists of the following four types of arcs. The first type of arcs is
defined as

A1 = {(e, f) : e ∈ I, f ∈ S \ I, I ∪ {f} /∈ I1, (I ∪ {f}) \ {e} ∈ I1},

that is, an arc (e, f) ∈ A1 indicates that I △ {e, f} is independent in M1. Symmetrically,
the second type of arcs is defined as

A2 = {(f, e) : e ∈ I, f ∈ S \ I, I ∪ {f} /∈ I2, (I ∪ {f}) \ {e} ∈ I2},

that is, an arc (f, e) indicates that I △ {e, f} is independent in M2. The third and fourth
types of arcs are defined as

A3 = {(s, f) : f ∈ S \ I, I ∪ {f} ∈ I1}
A4 = {(f, t) : f ∈ S \ I, I ∪ {f} ∈ I2},
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S \ I

I

s t

1 2 3

4 5 6 7

Figure 1 This figure depicts an example of the auxiliary graph DM1,M2 ({1, 2, 3}). Let M1

and M2 be matroids with the same ground set {1, . . . , 7} that defined by five bases {1, 2, 3, 4},
{1, 2, 3, 5}, {1, 3, 5, 6}, {1, 2, 5, 6}, {1, 2, 5, 7} and six bases {1, 2, 3, 6}, {1, 2, 3, 7}, {1, 2, 5, 6},
{1, 3, 5, 6}, {1, 2, 5, 7}, {2, 3, 4, 6}, respectively. In this example, DM1,M2 ({1, 2, 3}) has a direc-
ted s-t path P = (s, 5, 2, 6, t) without shortcuts and {1, 3, 5, 6} is a common independent set of M1

and M2.

respectively. Arcs (s, f) and (f, t) indicate that I ∪ {f} is independent in M1 and in M2,
respectively. We illustrate a concrete example of DM1,M2(I) in Figure 1. In the following,
we simply write D(I) to denote DM1,M2(I).

Let P be a directed path from s to t in D(I) without shortcuts. By the definition of
D(I), |V (P )∩ I| is one less than |V (P ) \ I|. Moreover, we can prove that I △ (V (P ) \ {s, t})
is a common independent set of M1 and M2 [23], meaning that the common independent set
I △ (V (P ) \ {s, t}) of M1 and M2 is strictly larger than I. It is easy to see that D(I) has a
directed path from s to t without shortcuts if and only if D(I) has a directed path from s to
t. The following lemma summarizes the above discussion and also proves that the converse
direction also holds.

▶ Lemma 5 (Corollary 3.2 in [23]). Let I be a common independent set in two matroids
M1 and M2 and D(I) be the auxiliary directed graph. Then, I is a maximum common
independent set in M1 and M2 if and only if D(I) has no directed s-t path.

Such a path P in D(I) is called an augmenting path. Lemma 5 is helpful to design an
algorithm for enumerating all large maximal common independent sets in two matroids.

3 Enumeration of maximum common independent sets

We first consider the problem of enumerating all maximum common independent sets of
two matroids, which is indeed a special case of Large Maximal Common Independent
Set Enumeration, where τ = opt.2 It is known that this problem can be solved in
amortized polynomial time using the algorithm in [12]. However, an analysis of the delay
of this algorithm is not explicitly given in their paper. In order to show an explicit delay
bound, we give a polynomial-delay algorithm for Maximum Common Independent Set
Enumeration, using a simple flashlight search technique (also known as binary partition
and backtracking) [2, 27].

In this technique, an algorithm enumerates solutions by recursively picking one element
e in S and partitioning the set of solutions into two subsets; One set consists of solutions
including e, and the other set consists of solutions excluding e. After partitioning according
to e, the algorithm repeats this partitioning process until all the elements in S are picked. It
is easy to see that each solution set obtained in this process contains at most one solution.
If a solution set contains a solution, then we just output it. To upper bound the running
time of this recursive algorithm, we need to check whether a current solution set is empty

2 By opt, we mean the maximum cardinality of a common independent set of M1 and M2.
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in the recursive partition process. We call such a subproblem an extension problem. To
enumerate maximum common independent sets of matroids, we define Maximum Common
Independent Set Extension as follows.

▶ Definition 6. Given two matroids M1 = (S, I1) and M2 = (S, I2), and two disjoint subsets
In, Ex ⊆ S. Maximum Common Independent Set Extension asks to find a maximum
common independent set I of M1 and M2 that satisfies In ⊆ I and Ex ∩ I = ∅.

In what follows, we call conditions In ⊆ I and Ex ∩ I = ∅ the inclusion condition and
exclusion condition, respectively. Note that for any matroid M , M \ Ex and M / In are
matroids. The following proposition is straightforward but essential for solving the extension
problem.

▶ Proposition 7. Let M1 = (S, I1) and M2 = (S, I2) be two matroids, and In and Ex
be disjoint subsets of S. Suppose that In is a common independent set of M1 and M2.
Let M ′

1 = (M1 / In) \ Ex and M ′
2 = (M2 / In) \ Ex. Then, there is a maximum common

independent set I of M1 and M2 that satisfies In ⊆ I and Ex ∩ I = ∅ if and only if there is
a common independent set I ′ of M ′

1 and M ′
2 with the cardinality |I| − |In|.

By the above proposition, we can solve Maximum Common Independent Set Ex-
tension in polynomial time by using a polynomial-time algorithm for finding a maximum
common independent set of two matroids [28]. Note that by using oracles for M1 and M2,
we can check whether a subset of S is independent in M ′

1 and in M ′
2 in time O(n + Q) and

space O(n + Q̂).
Now, we design a simple flashlight search algorithm, which is sketched as follows. Let

S(In, Ex) be the set of maximum common independent sets of M1 and M2 that satisfy
both the inclusion and exclusion conditions. Clearly, the set of all maximum common
independent sets of M1 and M2 corresponds to S(∅, ∅). By solving the extension problem,
we can determine whether S(In, Ex) is empty or not in polynomial time. Moreover, for
an element e ∈ S \ (In ∪ Ex), {S(In ∪ {e}, Ex),S(In, Ex ∪ {e})} is a partition of S(In, Ex).
Thus, we can enumerate all maximum common independent sets in S(In, Ex) by recursively
enumerating S(In ∪ {e}, Ex) and S(In, Ex ∪ {e}). We give a pseudo-code of our algorithm
in Algorithm 1. Finally, we consider the delay of this algorithm. Let T be a recursion tree
defined by the execution of Algorithm 1. As we output a maximum common independent
set of M1 and M2 at each leaf node in T , the delay of the algorithm is upper bounded by
the “distance” of two leaf nodes times the running time required to processing each node in
T . The distance between the root and a leaf node of T is at most n and thus, the distance
between two leaf nodes in T is upper bounded by linear in n. The time complexity of each
node in T is bounded by O(poly(n)). Hence, the delay of Algorithm 1 is polynomial in n. By
using an O(opt3/2nQ)-time and O(n2 + Q̂)-space algorithm for finding a maximum common
independent set of two matroids [7], the following theorem follows.

▶ Theorem 8. We can enumerate all maximum common independent sets of M1 and M2 in
O(opt3/2n2Q) delay and O(n2 + Q̂) space.

4 Enumeration of large maximal common independent sets

We propose a polynomial-delay and polynomial-space algorithm for enumerating maximal
common independent sets of two matroids M1 and M2 with the cardinality at least τ , namely
Large Maximal Common Independent Set Enumeration. From Theorem 8, if τ = opt,
we can enumerate all maximum common independent sets of M1 and M2 in polynomial delay
and polynomial space. Thus, in this section, we assume that τ < opt.
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Algorithm 1 A polynomial-delay and polynomial-space algorithm for enumerating all
maximum common independent sets in two matroids.

1 Procedure Maximum(M1 = (S, I1), M2 = (S, I2))
2 RecMaximum(M1, M2, ∅, ∅)
3 Procedure RecMaximum(M1, M2, In, Ex)
4 if In ∪ Ex = S then Output In, return
5 Choose an arbitrary e ∈ S \ (In ∪ Ex)
6 if there is a maximum common independent set I ′ of M1 and M2 that satisfies

both (In ∪ {e}) ⊆ I ′ and Ex ∩ I ′ = ∅ then
7 RecMaximum(M1, M2, In ∪ {e}, Ex)
8 if there is a maximum common independent set I ′ of M1 and M2 that satisfies

both In ⊆ I ′ and (Ex ∪ {e}) ∩ I ′ = ∅ then
9 RecMaximum(M1, M2, In, Ex ∪ {e})

Our proposed algorithm is based on reverse search [1], which is one of the frequently used
techniques to design efficient enumeration algorithms [14, 19, 21, 24, 29]. One may expect
that a flashlight search algorithm similar to that described in the previous section could
be designed for Large Maximal Common Independent Set Enumeration, because
finding a maximal solution is usually easier than finding a maximum solution. However,
this intuitive phenomenon does not hold for extension problems. In particular, the problem
of finding a maximal matching in a bipartite graph that satisfies an exclusion condition is
NP-complete [5, 19]. As the set of all matchings in a bipartite graph can be described as the
set of common independent sets of matroids, the extension problem for Large Maximal
Common Independent Set Enumeration is NP-complete.

Before delving into our algorithm, we briefly sketch an overview of the reverse search
technique. Let S be the set of solutions. In the reverse search technique, we define a set of
“special solutions” R ⊆ S and a rooted forest (i.e., a set of rooted trees) on S whose roots
belong to R. Suppose that we can enumerate R efficiently. Then, we can enumerate all
solutions in S by solely traversing the rooted forest from each root solution in R. To this end,
for a non-root solution X in S \ R, it suffices to define its parent par(X) in an appropriate
manner. More specifically, to define a rooted forest on S, this parent-child relation must
have no cycles. Moreover, to traverse this rooted forest, we need to efficiently enumerate the
children of each internal node in the rooted forest.

Now, we turn back to our problem. In the following, we may simply refer to maximal
common independent sets of M1 and M2 with cardinality at least τ as solutions. We
define the set of maximum common independent sets of M1 and M2 as the root solutions
R. We can efficiently enumerate R by Theorem 8. To define the parent of a solution
not in R, fix an arbitrary maximum common independent set R of M1 and M2. Let I

be a maximal common independent set of M1 and M2 with |I| < |R|. We consider two
matroids M1(R, I) := (M1 | (R ∪ I)) / (R ∩ I) and M2(R, I) := (M2 | (R ∪ I)) / (R ∩ I) as
well as the auxiliary directed graph D(R, I) := DM1(R,I),M2(R,I)(I \ R). Let us note that
the vertex set of D(R, I) is (R△ I) ∪ {s, t}. Since R and I are independent in both M1
and M2, by Proposition 1, R \ I and I \ R are independent in M1(R, I) and M2(R, I) as
well. Moreover, as |R| > |I|, we have |R \ I| > |I \ R|. Thus, by Lemma 5, D(R, I) has a
directed s-t path. Let P be a directed s-t path (v1 = s, v2, . . . , v2k+1 = t) in D(R, I) without
shortcuts. We first show that I △ {v2, v3} is a common independent set of M1 and M2.
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▶ Lemma 9. Let P = (v1 = s, . . . , v2k+1 = t) be a directed s-t path without shortcuts in
D(R, I). Then P has at least four vertices and I △ {v2, v3} is also a common independent
set of M1 and M2.

Proof. We first show that P has at least four vertices. As s is not adjacent to t in D(R, I),
P has at least three vertices. If P = (v1 = s, v2, v3 = t), then (I \ R) ∪ {v2} is a common
independent set of M1(R, I) and M2(R, I). However, by Proposition 2, I \R is a maximal
common independent set of M1(R, I) and M2(R, I), a contradiction.

We next show that I △ {v2, v3} is also a common independent set of M1 and M2. By
the definition of D(R, I), v2 ∈ R \ I and v3 ∈ I \ R. This implies that v2 /∈ I and v3 ∈ I.
Moreover, since D(R, I) has arcs (s, v2) and (v2, v3), (I \R)∪{v2} is independent in M1(R, I)
and (I \R)△{v2, v3} is independent in M2(R, I). By Proposition 1, I ∪{v2} and I△{v2, v3}
are independent in M1 and in M2, respectively. As I△{v2, v3} = (I \{v3})∪{v2} is a subset
of I ∪ {v2}, I △ {v2, v3} is a common independent set of M1 and M2. ◀

We define the parent par(I) of I as follows. To ensure the consistency of defining its
parent, we choose a path P from s to t without shortcuts in D(R, I) in a certain way, and
hence the path P is determined solely by the pair R and I. We define the parent of I (under
R) as µ(I △ {v2, v3}), where µ(X) is an arbitrary maximal common independent set of M1
and M2 containing X for a common independent set X of M1 and M2. Similarly, we choose
a maximal common independent set µ(X) in a certain way, and hence µ(X) is determined
solely by X. Therefore, by Lemmas 5 and 9, for a maximal common independent set I of M1
and M2 with |I| < |R|, the parent of I (under R) is uniquely determined and we denote it as
par(I). In the following, we claim that this parent-child relation defines a rooted forest on the
solutions whose roots belong to R. A key to this is a certain “monotonicity”, which will be
proven in Lemma 11: For any solution I with |I| < |R|, it holds that |R△ I| > |R△ par(I)|.
Given these, from any solution I with |I| < |R|, we can “reach” a maximum common
independent set of M1 and M2 (not necessarily to be R) by iteratively taking its parent at
most n times as |R△ I| ≤ n. To show this monotonicity, we give the following technical
lemma, whose proof is deferred to the end of this section.

▶ Lemma 10. Let I be a maximal common independent set of M1 and M2 with |I| < |R|
and e ∈ I and f ∈ S \ I. If D(I) has two arcs (s, f) and (f, e), then I △{e, f} is a common
independent set of M1 and M2. Moreover, |µ(I △ {e, f})| ≤ |I|+ 1.

Now, we prove the aforementioned “monotonicity”.

▶ Lemma 11. Let I be a maximal common independent set of M1 and M2 with |I| < |R|.
Then, the following three properties on par(I) are satisfied.
|I| ≤ |par(I)|,
|R△ I| > |R△ par(I)|, and
|I △ par(I)| ≤ 3.

Proof. As |R \ I| > |I \R|, by Lemma 5, there is a directed path P = (v1, . . . , v2k+1) from
s = v1 to t = v2k+1 without shortcuts in D(R, I). By Lemma 9, I ′ = I △ {v2, v3} is a
common independent set of M1 and M2. The first property |I| ≤ |par(I)| follows from

|par(I)| = |µ(I △ {v2, v3})| ≥ |I △ {v2, v3}| = |I|,

as v2 /∈ I and v3 ∈ I. Since v2 ∈ R \ I and v3 ∈ I \ R, we have |R△ I ′| = |R△ I| − 2. If
D(I) has arcs (s, v2) and (v2, v3), by Lemma 10, |µ(I ′)| ≤ |I|+ 1, which yields that

|R△ par(I)| = |R△ µ(I ′)| ≤ |R△ I ′|+ 1 = |R△ I| − 1,
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where the inequality |R △ µ(I ′)| ≤ |R △ I ′| + 1 follows from |µ(I ′)| ≤ |I| + 1 = |I ′| + 1,
meaning that µ(I ′) \ I ′ contains at most one element. This also shows that

|I △ par(I)| = |I △ µ(I ′)| ≤ |I △ I ′|+ 1 ≤ |I △ (I △ {v2, v3})|+ 1 = 3.

Thus, it suffices to show that D(I) has these arcs (v2, v3) and (s, v2). Let M1(R, I) =
(M1 | (R ∪ I)) / (R ∩ I) and M2(R, I) = (M2 | (R ∪ I)) / (R ∩ I). As D(R, I) has the arc
(v2, v3), (I \R)∪{v2} and ((I \R)∪{v2})\{v3} are dependent and independent in M2(R, I),
respectively. By Proposition 1,

((I \R) ∪ {v2}) ∪ (R ∩ I) = I ∪ {v2} and
(((I \R) ∪ {v2}) \ {v3}) ∪ (R ∩ I) = (I ∪ {v2}) \ {v3}

are dependent and independent in M2, respectively. This implies that D(I) has an arc (v2, v3).
A similar argument for (s, v2) and M1(R, I) proves that D(I) has arc (s, v2), completing the
proof of this lemma. ◀

Now, we are ready to describe our algorithm, which is also shown in Algorithm 2. We
assume that the size of a maximum common independent set of M1 and M2 is at least τ as
otherwise we do nothing. We first enumerate the set R all maximum common independent
sets of M1 and M2. This can be done in polynomial delay and polynomial space using the
algorithm in Theorem 8. We choose an arbitrary R ∈ R and for each I ∈ R, we enumerate
all solutions that belong to the component containing I in the rooted forest defined by the
parent-child relation. This is done by calling RecMaximal(M1, M2, I, R, τ). The procedure
RecMaximal(M1, M2, I, R, τ) recursively generates solutions I ′ with I = par(I ′). We would
like to emphasize that the algorithm only generates solutions I ′ with |I ′| ≥ τ .

We first claim that all the solutions are generated by this algorithm. To see this, consider
an arbitrary solution I. Define a value v(I) as

v(I) =
{

0 if |I| = |R|
|I △R| otherwise.

We prove the claim by induction on v(I). Suppose that v(I) = 0. In this case, I is a
maximum common independent set of M1 and M2, as |I△R| = 0 if and only if I = R. Then,
I is obviously generated as we call RecMaximal(M1, M2, I, R, τ) for all I ∈ R. Suppose that
v(I) > 0. Then, I is a maximal common independent set of M1 and M2 with |I| < |R|.
We assume that all the solutions I ′ with v(I ′) = |R △ I ′| < |R △ I| is generated by the
algorithm. By Lemma 11, we have |par(I)| ≥ |I| ≥ τ and |R△ par(I)| < |R△ I|, which
implies that par(I) is generated by the algorithm. By the definition of parent, we have
par(I) = µ(I △ {u, v}) and |par(I)△ I| ≥ 2 for some u, v ∈ S. Moreover, by Lemma 11,
|I △ par(I)| ≤ 3, the child I of par(I) is computed at line 7. Thus, I is generated by the
algorithm as well.

We next claim that all the solutions are generated without duplication. Since we only call
RecMaximal(M1, M2, I ′, R, τ) for I = par(I ′), it holds that v(I) < v(I ′). As v(I) ≤ n for
every solution I, by the uniqueness of the parent of non-maximum solutions, the algorithm
generates each solution exactly once. This concludes that the algorithm correctly enumerates
all maximal common independent sets of M1 and M2 of cardinality at least τ .

Finally, we discuss the running time of the algorithm. We first enumerate all maximum
common independent sets of M1 and M2. This can be done in time O(n7/2Q) delay. For
each solution I, we compute par(I) as follows. We construct the graph D(R, I) that has
n + 2 nodes and O(n2) arcs. This can be done by using O(n2Q) queries to the oracles for
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Algorithm 2 A polynomial-delay and polynomial-space algorithm for enumerating all
maximal common independent sets of M1 and M2 with the cardinality at least τ .

1 Procedure Maximal(M1 = (S, I1), M2 = (S, I2), τ)
2 Choose arbitrary R ∈ R
3 foreach I ∈ R do RecMaximal(M1, M2, I, R, τ) // Use Algorithm 1.
4 Procedure RecMaximal(M1, M2, I, R, τ)
5 Output I

6 foreach X ∈
(

S
3
)
∪

(
S
2
)

do
7 I ′ ← I △X

8 if I ′ is a maximal common independent set of M1 and M2 such that
τ ≤ |I ′| < |R| and I = par(I ′) then

9 RecMaximal(M1, M2, I ′, R, τ)

M1 and M2. To find the path P from s to t without shortcuts, we just compute a shortest
path from s to t, which can be done in O(n2) time. Thus, we can compute I △ {v2, v3} in
O(n2Q) time as well. From I △ {v2, v3}, µ(I △ {v2, v3}) can be computed in O(nQ) time.
Thus, we can compute par(I) from I in time O(n2Q).

For each call RecMaximal(M1, M2, I, R, τ), we output exactly one solution. Moreover,
the running time of computing all children of I is O(n5Q). This can be seen as there are
O(n3) candidates I ′ of children and we can check in O(n2Q) time whether a candidate I ′ is
in fact a child of I. Thus the delay of the algorithm is upper bounded by the time elapsed
between two consecutive calls. As the depth of the rooted forest defined by recursive calls is
at most n, this can be upper bounded by O(n6Q). As for the space complexity, by Theorem 8,
we can enumerate all maximum common independent sets of M1 and M2 in O(n2 + Q̂) space.
In RecMaximal, we need to store local variables I and X in each recursive call, which can be
done in space O(n). As the depth of the rooted forest is at most n, the space usage for local
variables is O(n2) in total. For each candidate I ′, we can check in O(n2 + Q̂) whether I ′ is a
maximal common independent set of M1 and M2 and whether I = par(I ′). Overall, we have
the following theorem.

▶ Theorem 12. There is an O(n6Q)-delay and O(n2 + Q̂)-space algorithm for enumerating
maximal common independent sets in two matroids with the cardinality at least τ .

4.1 Proof of Lemma 10
To complete our proof of Theorem 12, we need to show the correctness of Lemma 10. To
this end, we focus on D(I). Since I is a maximal common independent set of M1 and M2
with |I| < |R|, D(I) has a directed s-t path P = (v1 = s, v2 = f, v3 = e, . . . , v2k+1 = t). By
the definition of D(I), I △{e, f} is a common independent set of M1 and M2. We first show
that I △ {e, f} becomes dependent in M1 when we add an element f ′ in N+

D(I)(e).

▶ Lemma 13. Let I be a maximal common independent set of M1 and M2, e be an element
in I, and f1 and f2 be distinct two elements in N+

D(I)(e). Then, I ′ := (I \ {e}) ∪ {f1, f2} is
dependent in M1.

Proof. Since D(I) has arcs (e, f1) and (e, f2), both (I \ {e}) ∪ {f1} and (I \ {e}) ∪ {f2} are
independent in M1, and I ∪ {f1} and I ∪ {f2} are dependent in M1. Thus, M1 has two
circuits C1 and C2 that contain {e, f1} and {e, f2}, respectively. By the circuit elimination
axiom, there is a circuit C3 ⊆ (C1 ∪ C2) \ {e}. Since I ′ contains (C1 ∪ C2) \ {e}, it also
contains C3 and hence is dependent in M1. ◀
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▶ Lemma 14. Let I be a maximal common independent set of M1 and M2, e be an element
in I, and f1 and f2 be distinct two elements in N−

D(I)(e). Then, I ′ := (I \ {e}) ∪ {f1, f2} is
dependent in M2

Proof. Since D(I) has arcs (f1, e) and (f2, e), both I△{e, f1} and I△{e, f2} are independent
in M2 and I ∪ {f1} and I ∪ {f2} are dependent in M2. Thus, M2 has two circuits C1 and
C2 that contain {e, f1} and {e, f2}, respectively. By the circuit elimination axiom, there is a
circuit C3 ⊆ (C1 ∪C2) \ {e}. Since I ′ contains (C1 ∪C2) \ {e}, it also contains C3 and hence
is dependent in M2. ◀

We show that µ(I△{e, f}) does not contain any element in S \ (I ∪N+
D(I)(e)∪N−

D(I)(e)).

▶ Lemma 15. Let I be a maximal common independent set of M1 and M2, e be an element
in I, and f be an element in S \ (I ∪N+

D(I)(e)∪N−
D(I)(e)). Then, I △{e, f} is dependent in

at least one of M1 or in M2.

Proof. From the maximality of I, I ∪{f} is dependent in at least one of M1 or M2. Suppose
that I∪{f} is dependent on M2. Then, I∪{f} contains at least one circuit C of M2 containing
f . We show that I ∪ {f} contains only one circuit of M2. If I ∪ {f} contains another circuit
C ′ with f ∈ C ′, by the circuit elimination axiom, (C ∪ C ′) \ {f} contains a circuit, which
contradicts the fact that I is independent in M2. Thus, M2 has the unique circuit C, which is
contained in I∪{f}. Observe that N+

D(I)(f)∩I = C \{f}, since (I∪{f})\{e′} is independent
in M2 for e′ ∈ C due to the minimality of C. As f ∈ S \ (I ∪ N+

D(I)(e) ∪ N−
D(I)(e)), we

have e /∈ C. Hence, (I \ {e}) ∪ {f} contains C, that is, (I \ {e}) ∪ {f} is dependent in M2.
When I ∪ {f} is dependent in M1, (I \ {e}) ∪ {f} is also dependent in M1 from a similar
discussion. ◀

Now we are ready to prove Lemma 10.

▶ Lemma 10. Let I be a maximal common independent set of M1 and M2 with |I| < |R|
and e ∈ I and f ∈ S \ I. If D(I) has two arcs (s, f) and (f, e), then I △{e, f} is a common
independent set of M1 and M2. Moreover, |µ(I △ {e, f})| ≤ |I|+ 1.

Proof. By the definition of D(I), I△{e, f} is a common independent set since D(I) has two
arcs (s, f) and (f, e). Thus, µ(I △ {e, f}) is a maximal common independent set of M1 and
M2. We show that |µ(I △ {e, f})| ≤ |I|+ 1. Since f is contained in N−

D(I)(e), µ(I △ {e, f})
does not contain elements in N−

D(I)(e) except for f by Lemma 14. Moreover, by Lemma 13,
µ(I△{e, f}) contains at most one element in N+

D(I)(e). Finally, µ(I△{e, f}) does not contain
any element in S\(I∪N+

D(I)(e)∪N−
D(I)(e)) by Lemma 15. Therefore, µ(I△{e, f})\(I△{e, f})

contains at most one element. Since |I △ {e, f}| = |I|, |µ(I △ {e, f})| ≤ |I|+ 1. ◀

5 Ranked enumeration
In this section, we give a ranked enumeration algorithm for enumerating maximal common
independent sets of two matroids M1 = (S, I1) and M2 = (S, I2). Recall that an enumeration
algorithm is called a ranked enumeration algorithm if the algorithm enumerates solutions in
a non-increasing order of their cardinality. We do this in a slightly general manner.

In what follows, we consider the following abstract problem. Let S be a finite set and F
be a subset of 2S . Let A(τ) be an algorithm that outputs all sets in F with the cardinality
at least τ . We denote the maximum delay complexity and the space complexity from A(τ)
to A(1) as t(n) and s(n), respectively. Moreover, we denote the number of outputs of A(τ)
as #A(τ). Under this problem setting, we construct a ranked enumeration algorithm that
outputs the i-th solution in O(i · n · t(n)) time with O(s(n)) space as follows.
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Our idea is simply to execute A from A(n) to A(1). When A(k) outputs a solution with
cardinality more than k, we just ignore it. In other words, when we execute A(i), all solutions
in F with cardinality exactly i are output. Clearly, we can enumerate all solutions in F
in a non-increasing order of their cardinality. We consider the time and space complexity
of this method. It is easy to see that the space complexity of this algorithm is O(s(n))
as we just execute A in order. Thus, we estimate the running time required to output
the first i solutions for i ≤ |F|. Let j ≥ 1 be the maximum integer such that #A(j) is
less than i. Since the delay of A is bounded by t(n) and #A(j − 1) is at least i, A(j − 1)
outputs the i-th solution in O(i · t(n)) time. Since the total running time is bounded by
O((n− j + 1) ·#A(j) · t(n) + i · t(n)) = O(i · n · t(n)) time, this algorithm outputs the first i

solutions in O(i · n · t(n)) time.

▶ Theorem 16. Let S be a finite set and F be a subset of 2S. For any 1 ≤ k ≤ τ , suppose
that we have an algorithm A(k) that enumerates all sets in F with the cardinality at least k

for any 1 ≤ k ≤ τ in t(n) delay and s(n) space. Then, there is an algorithm enumerating all
subsets in I in non-increasing order of their cardinality that outputs the first i solutions in
O(i · n · t(n)) time using O(s(n)) space for i ≤ |F|.

We obtain a linear incremental-time and polynomial-space ranked enumeration algorithm
for maximal common independent sets of two matroids by combining Theorems 12 and 16.

▶ Theorem 17. There is a linear incremental-time and polynomial-space algorithm for
enumerating all maximal common independent sets in two matroids in non-increasing order.
This algorithm outputs the first i solutions in O(i · n7Q) time.

6 Applications of our algorithms

Due to an expressive power of Matroid Intersection, Theorems 12 and 17 give enumera-
tion algorithms for various combinatorial objects in a unified way. An example of such objects
is to enumerate maximal b-matchings in bipartite graphs. It is known that an intersection of
two matroids can represent all objects in the following theorem. See the appendix for details
on representing these objects by an intersection of two matroids.

▶ Theorem 18. There are polynomial delay and space enumeration algorithms for
maximal bipartite b-matchings with cardinality at least τ ,
maximal colorful forests with cardinality at least τ , and
maximal degree constrained subgraphs in digraphs with cardinality at least τ ,

Moreover, there are linear incremental-time and polynomial-space ranked enumeration al-
gorithms for the above problems.
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Abstract
We propose a framework for certified computation on hyperspaces by formalizing various higher-order
data types and operations in a constructive dependent type theory. Our approach builds on our
previous work on axiomatization of exact real computation where we formalize nondeterministic
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and elegant proofs with computational content coinciding with standard definitions in computable
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To improve extracted programs, our framework specializes the Euclidean space Rm making use of
metric properties. To define interesting operations over hyperspaces of Euclidean space, we introduce
a nondeterministic version of a continuity principle valid under the standard type-2 realizability
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interval extension operator, which often is already available in exact real computation software.

We prove that the operations on subsets preserve the encoding, and thereby define a small
calculus to built new subsets from given ones, including limits of converging sequences with regards
to the Hausdorff metric. From the proofs, we extract programs that generate drawings of subsets of
Rm with any given precision efficiently. As an application we provide a function that constructs
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1 Introduction

In exact real computation, real numbers are often presented as abstract data type hiding
tedious multi-precision computations used to eliminate rounding errors in the background from
the user. Extensionally to the user, the real numbers resemble the classical structure of real
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numbers which makes reasoning procedures more intuitive, emancipating the programmers
from tracking artificial numerical errors. The theoretical framework to study computability
of algorithms in this context is computable analysis [16, 28]. Recent developments in
implementations demonstrate the usefulness of this approach in practice [1, 20, 15].

The project cAERN [14] aims to provide an axiomatic formalization of exact real number
computations in a constructive type theory, modeling real numbers similar as observed
by users of exact real computation software; cf., [2, 25] where explicit representations are
required for computations. Instead of being constructed as sequences of approximations, real
numbers are axiomatized in a way that two reals are provably equal when they represent
the same numbers; cf., [3, 9, 26]. This can be regarded as a modification of the classical
real numbers by replacing uncomputable operations (e.g., rounding to nearest integers) and
computably invalid axioms (e.g., the law of trichotomy) with their computable variants.
As the axiomatization is representation irrelevant, reals appear similar to the classical real
numbers allowing many classical results to be transported into our setting (see [14, Section 6]).
At the same time, by allowing only computably valid axioms, it admits a program extraction
mechanism built on top of an existing exact real computation framework.

The extraction is achieved by mapping the axiomatic real type R to the abstract data
type of real numbers CReal and axioms to primitive operations in AERN, a Haskell library
for exact real number computation which is being developed by one of the authors [15].
Thus, we do not need to focus on the concrete representation of real numbers and its efficient
implementation which is challenging on its own (see e.g. [19]).

More concretely, in our system a proof of a theorem of the form

Π(x : R). MΣ(y : R). P x y

yields a nondeterministic AERN function of type CReal → CReal. Here, M : Type →
Type formalizes nondeterminism, which is an inevitable effect of identifying real numbers
extensionally [17].1

The theory formalized in cAERN is sufficient to build interesting first-order nondetermin-
istic functions [13]. Many applications in exact real computation, e.g. reachability questions
for dynamical systems, computing integrals and solving differential equations, however deal
with higher order objects such as hyperspaces of functions and subsets as primitive data
type [8]. Such applications are often safety-critical and a framework for formally proving
correctness of algorithms on such higher-order objects is thus highly desirable.

In this paper, we extend our previous axiomatic formalization towards higher-order exact
real computations. Based on the axiomatization of real numbers, partial lazy Boolean, and
nondeterminism, we define various higher-order types including Euclidean spaces, classical
subsets, open subsets, closed subsets, compact subsets and overt subsets. Furthermore, we
provide various operations on these sets, including limit operations on compact sets based
on Hausdorff distance. We further provide a rich theory of subsets of Euclidean spaces and
operations on them, encoding them in a way that lets us efficiently generate verified drawings.

An important fact in computable analysis is that every computable function is continuous.
When we operate on higher-order objects, this fact becomes computationally relevant. To
make continuity available in our system, we include an axiomatic formalization of the
continuity principle saying that any function from real numbers nondeterministically admits
a modulus of continuity function. As the goal of the project is to use axioms to model

1 Nondeterminism in this context is also called multivaluedness [28] or non-extensionality [5].
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functionality that is typically available in exact real computation, instead of assuming a
continuity principle by saying that any functional (N → N) → N is continuous and then
derive various continuity lemmas on X → Y by reasoning on specific constructions of the
types X and Y , decomposing them to the natural numbers, we formalize the continuity
principle directly on our axiomatic types in terms of an interval extension. Such an operation
is natural in exact real computation software and our continuity principle can be extracted
to a simple operation in AERN.

Using the continuity principle, we show that our efficient encoding of euclidean subsets is
computationally equivalent to a more general way to represent subsets. We further show
that it can be used to generate verified drawings of images of functions on certain subsets.

As an application we devise a general construction of fractals defined by a recurrence
relation on compact sets. The recurrence relation can be used to define the structure, which
then can be drawn exactly up to any desired resolution using the drawing operation. We
further can use the limit operator for a simple and elegant formulation of the theorem.

This paper is organized as follows. In Section 2 we briefly summarize the background
from our previous work, introduce notations used throughout the paper and explain some
extensions to the theory necessary for the current work. In Section 3 we define the continutity
principle and prove some of its consequences. We define open, closed, compact and overt
subsets in a generic setting and prove some of the properties in Section 4. We consider
subsets of Euclidean space for which we use specialized encodings in Section 5 and finally
show some applications to generate certified drawings of two-dimensional sets in Section 6.

All statements in this paper except for those in Appendix A have been implemented and
fully formally verified in the Coq proof assistant as part of the cAERN library2. We extend
the program extraction mechanism so that the newly added axioms, including the continuity
principle, are mapped to appropriate AERN functions. The constructive content of the
proofs can thus be extracted to AERN programs using Coq’s Haskell program extraction
functionality and mapping axiomatically defined operations to basic operations in AERN
providing a certified module in AERN for defining and manipulating higher-order objects.

2 Preliminaries

2.1 Type Theory and Realizability
As in [14] we assume to work in a simple type theory with basic types 0, 1, 2, N, Z, a universe
of classical propositions Prop, and a universe of types Type. We assume that the identity
types = are in Prop and that Prop is a type universe closed under →, ×, ∨, ∃, Π, containing
two types True, False : Prop which are the unit and the empty type respectively. We denote
by P ∨ Q : Prop the classical fact that P or Q holds, and by P + Q : Type the fact that there
is a computational procedure deciding if P or Q holds. Similarly, when we have a family of
classical propositions P : X → Prop, the type ∃(x : X). P x : Prop belonging to Prop denotes
the classical existence of x : X satisfying P x while the ordinary dependent pair type (also
called Σ-type), Σ(x : X). P x : Type belonging to Type denotes the constructive existence.

We assume enough axioms that make Prop indeed a universe of classical propositions and
that are valid under this interpretation. That includes the law of excluded middle

Π(P : Prop). P ∨ ¬P

2 https://github.com/holgerthies/coq-aern
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where ¬P is defined by P → False and propositional extensionality

Π(P, Q : Prop). (P → Q) → (Q → P ) → P = Q.

These axioms allow us to reason classically when we are dealing with classical statements
such as ∃(x : X). P x : Prop. Furthermore, we assume a general (dependent) function
extensionality

Π(P : X → Type). Π(f, g : Π(x : X). P x). (Π(x : X). f x = g x) → f = g.

Based on this foundational setting of a constructive type theory we axiomatically formalize
various types and operations for real number computation that are briefly introduced in the
next subsections. The soundness of the basic setting of type theory and the newly introduced
axioms are justified by extending a realizability interpretation in the category of assemblies
over Kleene’s second algebra [11, 23] by mapping each axiom to a computable operation in
computable analysis.

2.2 Kleenean and Sierpinski Spaces
One important characteristic of exact real computation, besides exact operations, is nonter-
mination. As real numbers are expressed exactly using infinite representations, comparing
real numbers is a partial operation where testing x < y does not terminate when x = y

regardless of the specific representations that are used [28, Theorem 4.1.16]. To deal with
such partiality, instead of making computations continue indefinitely when the same numbers
are compared, AERN and other exact real computation software provide a data type for
lazy Boolean {ff , tt, ⊥}, generalizing Booleans by adding a third element ⊥ as an explicit
state of divergence. The third value ⊥ is an admissible value that a variable can store whose
nontermination is delayed until it is required to test whether the value is tt or ff .

Observing that the space satisfies the algebraic structure of Kleene’s three-valued logic
where ⊥ is the third truth value for indeterminacy, the data type is also often called Kleenean.
In particular, we assume that there are three distinct constants true, false, bot : K, although
we do not assume that they are the only elements by adding an induction rule. We write ⌈k⌉
for k = true.

Later we often need to deal with infinite sequences of Kleenean expressions. This has not
yet been considered in our previous work and requires to characterize the Kleeneans further
by assuming some additional axioms. The nondeterministic countable choice principle is an
axiom of the following type:

Π(x : N → K). (∃(n : N). ⌈x n⌉ → MΣ(n : N). ⌈x n⌉) . (1)

Here, M is a nondeterminism monad such that for any type X : Type, we automatically get a
type MX : Type modelling the result of a nondeterministic computation in X. The axiom
says whenever we have a sequence of Kleenean terms x and know that there (classically) is at
least one index n such that x n is true, then we can nondeterministically find such an index.

Sometimes we only need to know if there is an element of the sequence that is true. For
this, we add the following axiom.

Π(x : N → K). Σ(k : K). (⌈k⌉ ↔ ∃(n : N). ⌈x n⌉) .

That is, we can find a k : K that is true iff any of the sequence elements is true and can be
false or bot otherwise. To see that the axiom is valid, it suffices to show that such a k is
computable which can be done by iterating over all the outputs of the realizers of x n in
parallel.
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A space similar to the Kleenean that is more commonly used in computability theory is
the Sierpinski space. Sierpinski space is the topological space {↓, ↑} whose only nontrivial
open is {↓}. In a certain way, K can be seen as an extension of Sierpinski space by adding
another decidable element false. However, as the type of Kleenean K already exists in our
system, we instead consider Sierpinski as a subtype of K by defining it as

S :≡ Σ(b : K). b ̸= false

and name ↓:≡ (true, t↓) and ↑:≡ (bot, t↑) where the t↓ is the unique proof term for true ̸= false
and t↑ is the unique proof term for ⊥ ̸= false. The uniqueness of the proof terms is due to
the Prop axioms. From the computational point of view, S can be thought of as K where it
is promised that false does not appear.

As a further axiom, we assume that the first projection proj1 : S → K admits a retraction
KtoS : K → S. Observe that the assumption can be validated by a program on the Kleenean
that on its input b : K checks if b = true or false and simply diverges when b = false.

2.3 Real Numbers and Euclidean Space
We assume real numbers by declaring that there is a type R for real numbers containing
two distinct constants 0 and 1, the standard arithmetical operators and a semi-decidable
K-valued comparison operator. From this axiomatization we can define further operations
such as max(x, y), |x|, etc. Again, the full axiomatization can be found in [14]. For any
m : N we further define the type Rm simply as an m-element list of R with maximum norm
∥ · ∥, and define the vector space operations point-wise.

We often approximate real numbers by elements of a countable dense subset. We call a
type X enumerable if there exists a map f : N → X that is surjective in the classical sense.
We define dyadic numbers by pairs D := Z × N and identify the pair (z, n) with the real
z ·2−n. It is not hard to show that D is enumerable. Similarly we write Dm for the m-element
list of D when m : N and suppose that the trivial coercion from Dm to Rm is taken implicitly.

We use dyadic numbers to approximate real numbers. In our theory, we can prove that D
is indeed dense in R in the sense that for any real number x, we can nondeterministically
find a dyadic rational approximation up to any prescribed error 2−p. More generally, we can
prove the following statement in the Euclidean space:

Π(x : Rm). Π(p : N). MΣ(d : Dm). ∥x − d∥ ≤ 2−p.

3 Continuity

Exact real computation software often internally represents real numbers by converging
sequences of intervals with dyadic rational endpoints. Thus, for any function f : R → S,
whenever (f x)↓, there is some dyadic interval containing x that made the software computing
f x return ⊤. We thus formulate continuity on an abstract level similar to the above without
referring to specific constructions of continuous types.

The Sierpinski space has two open subsets {↓} and {↓, ↑}. An interval extension of a
function f : R → S is a discrete function that indicates in which of the two open sets all values
for f lie for any dyadic interval. As there are exactly two values, we can represent {↓} and
{↓, ↑} space by the Boolean constants true and false, respectively. We can then see a map f̂ of
type D×N → B as a set-valued function from dyadic intervals: f̂ returns a subset of Sierpinski
space on its argument (d, n) : D × N representing the interval (d − 2−n, d + 2−n) ⊂ R.

MFCS 2023
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For a map f : R → S, we say that a set-valued function on dyadic intervals f̂ is an interval
extension of f when it satisfies the inclusion property:

incl f̂ :≡ Π(d : D). Π(n : N). f̂ (d, n) = true →
(
Π(x : R). |x − d| ≤ 2−n → (f x)↓

)
.

In words, whenever the interval extension f̂ of f returns true on the pair (d, n), (fx)↓ for all
x ∈ (d − 2−n, d + 2−n).

However, not all interval extensions are interesting as the inclusion property holds also
for the trivial map f̂ that returns false for all inputs. We say that a map f̂ : D × N → B seen
as an interval extension of f : R → S is tight if whenever (f x)↓, there (classically) exists an
interval containing x for which f̂ indicates that ↓ is the only valid answer on that interval:

tight f̂ :≡ Π(x : R). (f x)↓→ ∃(d : D). ∃(n : N). |x − d| < 2−n ∧ f̂ (d, n) = true

Our continuity principle is the following axiom saying that for any map f : R → S, there
nondeterministically exists an interval extension of it that is tight:

Π(f : R → S). MΣ(f̂ : D × N → bool). incl f̂ ∧ tight f̂ .

It is realized by the trivial operation that given f extracts the realizer f̂ of f assuming
that the underlying exact real computation is done via dealing real numbers by converging
sequences of intervals with dyadic rational endpoints. Since a single function admits several
different realizers, the procedure of extracting realizers is nondeterministic.

From the above, we can derive the more standard form of the continuity principle which
says that there exists a modulus function:

Π(f : R → S). Π(x : R). (f x)↓→ MΣ(n : N). Π(y : N). |x − y| < 2−n → (f y)↓ .

To derive this version of the principle, assume that we are given x with f x ↓. Due to
the continuity axiom, we further have nondeterministically a tight interval extension f̂ .
From the tightness, we then know that there (classically) exist d, n such that |d − x| < 2−n

and f̂ (d, n) = true. Though f̂ is Boolean-valued, we can post-compose the embedding
from B to S and use the nondeterministic countable choice principle in Equation (1) to
nondeterministically find such d and n. We then (again nondeterministically) choose some
m such that 2−m < 2−n − |x − d|. As for any y with |x − y| < 2−m, |y − d| < 2−n holds, it
is guaranteed that f y ↓ by the properties of the interval extension. Thus, any such m fulfills
the condition.

Further, we can derive a continuity principle for real valued functions f : R → R:

Π(x : R). Π(m : N). MΣ(n : N). Π(y : N). |x − y| < 2−n → |(f x) − (f y)| < 2−m

To prove that this continuity principle holds, take any f : R → R, x : R, and m : N, and define
a function gx,m : R → S by gx,m :≡ λ(y : R). |(f x) − (f y)| < 2−m. Here, we let (x < y) be
the embedding of the Kleenean valued comparison to Sierpinski space, i.e. such that (x < y)↓
if and only if x < y holds. The continuity principle on Sierpinski valued functions yields

|(f x) − (f x)| < 2−m → MΣ(n : N). Π(y : R). |x − y| < 2−n → |(f x) − (f y)| < 2−m .

As |(f x) − (f x)| < 2−m is trivially true, we get the desired bound.
As a last application, consider any discrete type X having decidable equality Π(x, y :

X). (x = y) + (x ̸= y). We can then prove that any f : R → X is constant: Π(x : R). Π(y :
R). f x = f y. Similarly as above, assuming x : R, we define a function gx where (gx y) is
defined if (f x) = (f y) and undefined if (f x) ̸= (f y), constructed based on the decidability
of elements of X. Again, applying the continuity principle, we get
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MΣ(n : N). Π(y : R). |x − y| < 2−n → (f x) = (f y) .

Since we can prove that any locally constant function from R is constant in the classical part
of our system, we can conclude that f is constant.

All results can be easily generalized to arbitrary Euclidean space Rm by replacing the
absolute value with the maximum norm and proofs are contained in our formal development.

4 Subsets

For any type X, we first express subsets classically as predicates X → Prop. That is, we set

csubset(X) :≡ X → Prop

and define classical operations on classical subsets such as ∈, ∪, ∩, ⊆, . . . in the obvious way.
For example, (x ∈ S) :≡ S x, S ∩ T :≡ λ(x : X). x ∈ S ∧ x ∈ T , and so on.

Our goal is to assign computational content to classically defined subsets which in turn
allows to extract programs that perform operations on these sets. In computable analysis,
computational content is given by defining representations for certain spaces of subsets [22, 8]
and perform computations on these representations. This can be done in a very general
setting without restricting to specific spaces, although the computational procedures are
usually extremely inefficient and not useful for practical applications.

While we are mostly interested in subsets of Euclidean spaces for which we can specialize
the theorems and get more efficient algorithms, the general results are still interesting
mathematically and can be used for basic facts that are not meant to be used computationally.

Classically, a subset A ⊆ X of a topological space X is open iff its characteristic function
χA : X → S is continuous. We thus identify open sets with their characteristic function:

open A :≡ Σ(f : X → S). Π(x : X). (f x)↓ ↔ x ∈ A .

Similarly, we define closed sets as their complement

closed A :≡ Σ(f : X → S). Π(x : X). (f x)↓ ↔ x ̸∈ A .

Computationally for an open set we can verify (i.e. semi-decide) if a point is contained in
the set and for a closed set we can verify if a point is outside.

We state some simple properties of open and closed sets. We omit the proofs here, but
pen and paper proofs can e.g. be found in [22] and full formal proofs can be found in our
Coq development.
1. If (Ai)i∈N are open then so is the countable union

⋃
Ai.

2. If A and B are open then so is their finite intersection A ∩ B.
3. If A and B are closed then so is their finite union A ∪ B.
4. If (Ai)i∈N are closed then so is the countable intersection

⋂
Ai.

Other classes of subsets that are often considered in computable analysis are the compact
and overt subsets. (Computably) compact subsets are those for which we can effectively
verify that an open set covers them. That is, a subset A ⊆ X is compact iff

Σ(f : open X → S). Π(U : open X). (f U)↓ ↔ A ⊆ U.

MFCS 2023
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Overtness is a dual notion to compactness. For a (computably) overt subset, we can
effectively verify if an open set touches it. That is, a subset A ⊆ X is overt iff

Σ(f : open X → S). Π(U : open X). (f U)↓ ↔ A ∩ U ̸= ∅.

The notion of overtness is less known to classical mathematicians as it does not carry any
information outside a constructive or computational context (i.e. any set is classically overt).

Another way to look at these notions is that for a compact subset A it can be verified
that a semidecidable property P holds for each point, i.e. if ∀x ∈ A, P x and for an overt
subset it can be verified that it holds for at least one point, i.e. if ∃x ∈ A, P x.

Similar as for open and closed sets, we prove several properties of compact and overt sets
in our Coq development but omit the details here for space reasons.

5 Subsets of Euclidean Space

Using basic properties of the Kleenean and Sierpinski spaces, we get short and elegant
proofs for simple properties of open sets. However, from the point of view of doing actual
computations, using Sierpinski valued functions to represent basic objects is often far from
optimal and programs extracted from the proofs are inefficient. As we are interested in
extracting exact real computation programs, our main focus is on subsets of Euclidean spaces.
Most statements in this section can be proven in a much more general setting (and our Coq
development contains some of them). However, the proofs in this section are optimized to
encode efficient algorithms by making use of particular properties of the representation.

5.1 Characterization of Euclidean Subsets
We prove the following characterization for subsets A ⊆ Rm of Euclidean space:

open A ↔ MΣ(F : N → Rm × R)).
Π(n : N). B((F n)) ⊆ A

∧ Π(x : Rm). x ∈ A → ∃(n : N). x ∈ B((F n))).

Here, B(x, r) encodes a ball with radius r around x. That is, a subset A ⊆ Rm is open iff we
can find a sequence of (possibly empty) balls, all contained in A, that eventually cover all A.

To show the equivalence let us call the statement on the right of the equivalence Euclidean
open. Thus, first assume that A is open in the sense of the previous section, that is, there
is a function f : Rm → S such that (f x)↓ iff x ∈ A. We can enumerate all possible inputs
Dd × N and define a sequence of balls by choosing B(d, 2−n) whenever (f̂ d n) = True. By
the properties of the interval extension, any such ball is contained in A and for any x ∈ A

we will find at least one ball that contains x.
Now assume A is Euclidean open. For any x, y, r, testing if x ∈ B(y, r) is semidecidable

as we only need to check if d(x, y) < r. Thus, given x : R we define a sequence s : N → S
such that (s n)↓ iff x ∈ B((F n)). Then ∃(n : N). (s n)↓↔ x ∈ A, i.e., we need to check if
there is at least one element in the sequence that is defined, which is again semidecidable.

For practical purposes, we are mostly interested in Euclidean subsets that are both
compact and overt. Such sets (and some variations) have been considered in constructive
mathematics and computable analysis under different names, sometimes using the same
terminology for slightly different concepts. In Bishop’s constructive mathematics, a set
is compact if it is closed and totally bounded [10]. Here, totally bounded means that it
can be covered by finitely many subsets of fixed size. Brattka and Weihrauch [4] define a
representation νmin−cover for compact sets based on such coverings.
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We only consider subsets of Euclidean space that are classically closed and characterize
their subsets in terms of “drawings” with arbitrary precision, meaning that for each n we
can generate a picture of A in terms of “pixels” (i.e. small boxes or closed balls) of size
2−n. It turns out that subsets for which such drawings exist are precisely those that are
both compact and overt. It can further shown that they coincide with the located subsets,
i.e., the subsets for which the distance of the set and a real number is computable (cf. [27,
§12] and [24]). We thus use the term located for these subsets. We can define a closed ball
B(c, r) ⊆ Rm with center c and radius r (w.r.t. the maximum norm) simply as the tuple
(c, r) : Rm × R. We denote the type of all such balls by B and use [B] to denote finite lists of
balls. For any b : B we further let ||b|| denote its radius. We then formally define the located
sets by

located A :≡ Π(n : N). Σ(L : [B]).

Π(b ∈ L). ||b|| ≤ 2−n (fast convergence)

∧ Π(b ∈ L). b ∩ A ̸= ∅ (intersection)

∧
⋃

b∈L b ⊇ A (cover).
Thus, a set is located if for each n we get a finite list of closed balls, each with radius at most
2−n so that their union covers the whole set A and such that each ball intersects A. Note
that we need to restrict to classically closed subsets as the coverings only define a set up
to its closure. The empty set is located as we allow closed balls to be empty (encoded by a
negative radius).

We call the set defined by the union of the elements of the n-th list of the sequence the
n-th approximation or the n-th covering of A and denote it by An.

For A ⊆ Rm and x ∈ Rm, let us write d(x, A) for infy∈A ∥x − y∥.
The Hausdorff distance dH(A, B) of two sets is defined by

dH(X, Y ) = max
{

sup
x∈X

d(x, Y ), sup
y∈Y

d(X, y)
}

.

Note that the set defined by the n-th approximation has Hausdorff distance at most 2−n to
the set that is approximated. In fact, the other direction also holds, i.e. we can show

located A ↔ Π(n : N). Σ(L : [B]). dH(A,
⋃
b∈L

b) ≤ 2−n.

To see this, assume for each n ∈ N we can get a list of balls L such that dH(A,
⋃

b∈L b) ≤ 2−n.
We take the (n + 1)-st list and double the radius of each of the balls. This guarantees that
the resulting set covers A while still being small enough.

Note that center and radius of the balls can be arbitrary real numbers, as in the context of
exact real computation it is more convenient to work with real numbers than with rationals.
However, decidable equality on balls can be useful. Restricting to only dyadic rationals for
center and radius does not make a difference as we can approximate real numbers arbitrarily
well by dyadic rationals and thus can convert any real covering to a dyadic covering.

It can be shown that a set is located if and only if it is compact and overt. Although a
formal proof of the equivalence could be used to prove that some of the subset operations
preserve locatedness, recall that the main goal of our project is to extract efficient programs
from proofs. It is thus reasonable to have different proofs using the more efficient representa-
tion, and a formal proof of the equivalence is less important. While the algorithmic content
of the proofs is rather simple, showing correctness of the procedures needs some facts from
classical analysis complicating the formalization of the proof. We therefore only give a pen
and paper proof of the equivalence in Appendix A and state the fact as a meta-theorem.

MFCS 2023
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5.2 Operations on located subsets

Let us first show that we can effectively get the distance of a point and a located set. For
any nonempty located sets we can compute the distance function. That is,

located A ∧ A ̸= ∅ → Π(x : Rm). Σ(r : R). r = d(x, A).

For any ball b = B(c, r), the distance d(b, x) is given by max{0, ∥x − c∥ − r}. We choose the
n-th approximation and take the minimum over all d(b, x). This gives a 2−n approximation
of d(A, x). Taking the limit of all the approximations for each n thus corresponds to d(A, x).

Let us next show that several standard operations on located subsets preserve locatedness.
Although the results already follow from located sets being both compact and overt, our
proofs encode more efficient algorithms, making use of the representation of located sets. The
extracted programs can be used as a small calculus to combine subsets using set operations.

The properties stated below mostly can be shown by directly applying the operations on
the coverings. We thus state them without proof.
1. For located sets A, B their union A ∪ B is located.
2. For a located set A and any λ > 0, the scaled set λA := {λx : x ∈ A} is located.
3. For a located set A and any v : Rm, the set A + v := {x + v : x ∈ A} is located.

Using the continuity principle on real numbers we can generalize the above to images of
arbitrary real functions. For any set A ⊆ Rm, and function f : Rm → Rk let us define the
image f [A] ⊆ Rk by y ∈ f [A] :↔ ∃(x : A). f(x) = y. Then we can show that the image of
located sets is again located:

Π(A ⊆ Rm). Π(f : Rm → Rk). located A → located f [A]

To show this, for each n ∈ N, we need to find a covering of f [A] with balls with radius at
most 2−n. We can use the continuity principle on real functions to define an extension f̂ that
maps balls b ⊆ Rm to balls (with possibly infinite radius) b′ ⊆ Rk such that f [b] ⊆ b′. We
can further show that the radius of f̂(b) goes to zero when the radius of b goes to zero. Thus
we generate all coverings, apply f̂ to each of the balls of the coverings and check if the radius
of each of them is bounded by 2−n which we know will eventually happen. While generating
images under arbitrary functions is very powerful, the procedure is obviously quite inefficient
and thus generating sets using the above specialized operations is preferred.

Another very useful operation that lets us easily generate more complicated sets from
simple ones is the limit operation. Here, by limit operation we mean that we are given a
sequence of located sets which converge to another set in terms of Hausdorff distance. That
is, a set K is defined to be the limit of a sequence of located sets if

isLim K :≡ Π(n : N). Σ(X : located Rm). dH(X, K) ≤ 2−n

holds. We can show that the limit of a sequence of located sets is again located, i.e.

isLim K → located K.

To see this, let Xi denote the i-th set in the sequence and Xi,j denote its j-th covering. As
dH(Xi, K) ≤ 2−i and d(Xi,j , Xi) ≤ 2−j it suffices to take Xn+1,n+1 and double the radius
of each of the balls to guarantee that the resulting set covers K.
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Figure 1 Approximations of the triangle.

6 Examples

From a proof that a set is located in our Coq implementation, we can extract an AERN
program that computes the coverings. We implemented the examples below in Coq and
extracted programs to generate for each n a finite list of real numbers, encoding the center
and radii of each ball in the n-th covering. We can then use AERN to give us arbitrarily exact
rational approximations of these real numbers, which we in turn can output and visualize by
drawing the approximate boxes.

6.1 A Simple Triangle
Let us start with a simple example. We define a triangle T ⊆ R2 by

(x, y) ∈ T ↔ x ≥ 0 ∧ y ≥ 0 ∧ x + y ≤ 1.

To show that the set is located, let bi,j,n := B(( 2i+1
2n+1 , 2j+1

2n+1 ), 2−n). We define the n-th covering
as the list L containing all bi,j,n with i + j < 2n. Figure 1 shows the coverings defined by this
procedure. All of the balls have radius 2−n by definition and each ball intersects the triangle
as i+j < 2n implies 2i+1+2j+1

2n+1 ≤ 1. Each point of the triangle is contained in one of the bi,j,n

as for any x ∈ [0, 1] and n ∈ N we can find some k ∈ N such that 2−nk ≤ x < 2−n(k + 1).
We can thus find such coordinates (i, j) for a point (x, y) ∈ T and as x + y ≤ 1 it follows
that i + j < 2−n as claimed.

6.2 Fractals
As a more interesting application, let us look at a procedure to generate certified drawing
of fractals. We consider simple self-similar fractals generated by iterated function systems
(IFPs) without rotation. For simplicity we only consider fractals that are contained in the
unit cube [0, 1]m. For a finite set of points D := (d1, d2, . . . , dk) ⊆ [0, 1]m we define a classical
subset I(D) ⊆ Rm as the smallest subset such that
1. D ⊆ I(D), and
2. Π(x : I(D)). Π(d : D). x+d

2 ∈ I(D).
Classically it can be shown that there is a unique compact subset with these properties. We
show that any set defined in this way is located. To do so, we need to define a sequence
of coverings of the set. We start with the first covering L0 being the list containing only
the unit disc. As each d ∈ D is contained in the unit disc, the intersection and covering
properties hold. We then recursively define the covering Ln+1 from the previous covering
Ln by following the construction rule, i.e., by making for each d ∈ D a copy of the previous
covering where the center of each ball is moved halfway towards d and has half the radius.

MFCS 2023
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Figure 2 Approximations of the Sierpinski triangle.

Obviously, each of the balls in Ln+1 has radius 2−(n+1). To show that this procedure
preserves the intersection property, let b ∈ Ln+1. Then there is some b′ ∈ Ln and d ∈ D such
that x ∈ b iff there is an x′ ∈ b′ with x = x′+d

2 . As Ln has the intersection property, there is
some x′ ∈ b′ with x′ ∈ I(D). By definition of I(D), then x′+d

2 ∈ I(D), i.e., b ∩ I(D) ̸= ∅.
Similarly, to show that the covering property is preserved, assume x ∈ I(D). Then by
definition either x = d for some d ∈ D or there is some x′ ∈ I(D) and some d ∈ D such that
x = x′+d

2 . Any d ∈ D is contained in Ln+1 as d ∈ Ln and d = d+d
2 . In the other case, there

is some b ∈ Ln such that x′ ∈ b as Ln is a covering. But then by definition of the procedure,
there is some b′ ∈ Ln+1 that contains x.

A more elegant way to prove the locatedness of I(D) is using the limit operation. We
can define a sequence of located sets (Ti)i∈N by letting T0 be the unit disc and then applying
the iteration given by the IFP. It is not hard to show that each Ti has Hausdorff distance at
most 2−i to the fractal and thus applying the limit operation suffices. However the extracted
program is slightly less efficient than the direct encoding as the limit uses Tn+1 to get the
n-th approximations and increases the radius leading to coverings where balls overlap.

As an application of the result, consider the Sierpinski triangle which is defined as the
two dimensional subset I(D) with D = {(−1, −1), (1, −1), (0,

√
3 − 1)}.

From the above we get a proof that the set is located, from which we can extract a Haskell
program computing the coverings. Figure 2 is a plot of the output of the extracted program
for increasing n. To generate the plot, AERN has been used to approximate the real numbers
for center and radius in the n-th approximation with error bounded by 2−n. The overlap at
the top and bottom of the boxes is due to the approximation of the real number

√
3 − 1.

7 Conclusion and future work

We considered procedures to work with different classes of subsets in a computational setting.
Currently, we only consider simple operations on subsets to build new subsets and extract
programs for certified drawings up to any desired resolution. Producing coverings yields a
representation that is easy to manipulate computationally and efficient if our goal is to draw
the whole set or do other operations that require global knowledge. However, naturally the
size of the list of coverings grows exponentially when increasing the precision. One might
argue that high precision approximations are more useful locally, i.e. instead of getting a
picture of the whole set one might want to zoom into a small part of the set and draw it
with arbitrarily high precision.

Instead of outputting the whole set, the list can be replaced by a nondeterministic test
function, that tests whether a ball is close enough to the set or not:

Π(x : Rd). Π(r : R). M
(
(d(x, A) < r) + (d(x, A) > 2r)

)
.
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That is, given a ball with center x and radius r, the function tells us if the ball intersects the
set or not, but it is allowed to slightly over-approximate the set, i.e., both answers are possible
if a ball with twice the radius intersects the set. Similar representations are often used in
complexity theory (e.g. [6, 7]). In future work, we plan to include such representations in
our development and show the equivalence to the covering representation for located sets.

More interesting operations can be achieved from computing images of arbitrary functions.
Currently, we only have a simple implementation using the continuity principle on real
numbers which is not efficient enough to be used in actual applications. Similar to the
representations of Euclidean subsets, we can think of more efficient representations for the
space of real functions. One possibility that comes to mind is using polynomial models such
as Taylor models [18]. This would also allow for extensions to more advanced operations like
integration and solution operators for ordinary differential equations [12, 21].
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A Equivalence of representations

We prove that a classically closed set is located if and only if it is both compact and overt.
Since the if part is straightforward, let us focus on the only if direction.

Let us assume that A is compact and overt and show that A is located as well. We need
to find for any natural n a finite set of balls of radius at most 2−n, each intersecting A, and
collectively covering A. We will also assume n ≥ 1 and assign to n = 0 the same set of balls
as for n = 1.

As A is computationally compact, we can find a ball containing A. Without loss of
generality, assume A ⊆ B(0, 1).

Let J be the set of all d-dimensional integer vectors j whose integer components ji satisfy
−m ≤ ji ≤ m where m = 3 · 2n−1. The points cj = j/m for j ∈ J form a uniform grid over
the (max-norm) unit ball B(0, 1). Therefore the union of balls of radius r = 1/2m around cj

covers B(0, 1) and therefore A:

A ⊆ B(0, 1) ⊂
⋃
j∈J

B(cj , r) (2)

We will apply compact A and overt A on open and closed sets, respectively, derived from
the above cover of A, except that we increase the radius to 3r = 3/2m = 2−n. This will
make the cover sufficiently redundant to compensate for potential non-termination of the
compactness and overtness applications on specific sets.
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For each j ∈ J , let

disjointj = compact A
(
A ∩ B(cj , 3r)

)
intersectsj = overt A (A ∩ B(cj , 3r))
haveinfoj = emptyj ⊔ nonemptyj

Note that as disjointj , intersectsj , haveinfoj ∈ S, their computation may not terminate.
Moreover, haveinfoj terminates iff either of the other two terminate.

We compute all haveinfoj computations in parallel until enough of them succeed to cover
A, more precisely, until for the set of terminated indices JT ⊆ J , it holds:

B(0, 1) ⊆
⋃

j∈JT

B(cj , 3r) (3)

Once Equation (3) holds, the set {B(cj , 3r) | j ∈ JT ∧ intersectsj} is the desired covering,
namely, the balls have sufficiently small radius, each of them intersects A, and their union
covers A thanks to Equation (3) and the definition of disjointj , which means that we omit
only balls that are disjoint from A.

It remains to prove that Equation (3) must hold in finite time. This will follow from
Equation (2) when we show that for each j ∈ J the ball B(cj , r) is covered by some B(ck, 3r)
such that haveinfok terminates. Note that the ball B(cj , r) is covered by B(ck, 3r) for all
k ∈ J with ||j − k|| ≤ 1, i.e., the “neighbouring” indices in addition to j itself.

Now, if haveinfoj does not terminate, i.e., if both emptyj and nonemptyj do not terminate,
the ball B(cj , 3r) is not disjoint from A but its interior is disjoint from A. This means that
there is a ∈ A with ||cj − a|| = 3r as illustrated in Figure 3.

−1 1

−1

1

cj

a
ck

Figure 3 B(cj , r) covered by B(ck, 3r); n = 1, m = 3, r = 1/6, j = (−1, −1).

Let us define the vector k component-wise as follows:

ki =


ji + 1 ai − (cj)i = 3r

ji − 1 ai − (cj)i = −3r

ji |ai − (cj)i| < 3r

(4)

Note that k is a “neighbour” of index j. Now, k ∈ J because if it was not, some component
ki would be outside the interval [−m, m], which would mean that either ai = 1 + 3r or
ai = −1 − 3r, which would contradict A ⊆ B(0, 1).

MFCS 2023
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Using the same three cases as in Equation (4), we get:

|ai − (ck)i| =


|ai − (cj)i − 1/m| = 3r − 1/m < 3r ki = ji + 1
|ai − (cj)i + 1/m| = | − 3r + 1/m| < 3r ki = ji − 1
|ai − (cj)i| < 3r ki = ji

(5)

In all three cases we have |(ck)i − ai| < 3r. Over all i, we get a ∈ B(ck, 3r).
Finally, a ∈ B(ck, r) implies that nonemptyk terminates, and therefore B(cj , r) is covered

by B(ck, 3r) in Equation (3) as illustrated in Figure 3.
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Abstract
We introduce and develop a set-based semantics for asynchronous TeamLTL. We consider two
canonical logics in this setting: the extensions of TeamLTL by the Boolean disjunction and by the
Boolean negation. We relate the new semantics with the original semantics based on multisets and
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1 Introduction

Linear temporal logic (LTL) is one of the most prominent logics for the specification and
verification of reactive and concurrent systems. The core idea in model checking, as introduced
in 1977 by Amir Pnueli [22], is to specify the correctness of a program as a set of infinite
sequences, called traces, which define the acceptable executions of the system. In LTL-model
checking one is concerned with trace sets that are definable by an LTL-formula. Ordinary
LTL and its progeny are well suited for specification and verification of trace properties.
These are properties of systems that can be checked by going through all executions of the
system in isolation. A canonical example here is termination; a system terminates if each
run of the system terminates. However not all properties of interest are trace properties.
Many properties that are of prime interest, e.g., in information flow security, require a richer
framework. The term hyperproperty was coined by Clarkson and Schneider [3] to refer to
properties which relate multiple execution traces. A canonical example is bounded termination;
one cannot check whether a system terminates in bounded time by only checking traces in
isolation. Checking hyperproperties is vital in information flow security where dependencies
between secret inputs and publicly observable outputs of a system are considered potential
security violations. Commonly known properties of that type are noninterference [24, 20] and
observational determinism [30]. Hyperproperties are not limited to the area of information
flow control; e.g., distributivity and other system properties like fault tolerance can be
expressed as hyperproperties [5].
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During the past decade, the need for being able to formally specify hyperproperties has
led to the creation of families of new logics for this purpose, since LTL and other established
temporal logics can only specify trace properties. The two main families of the new logics
are the so-called hyperlogics and logics that adopt team semantics. In the former approach
temporal logics such as LTL, computation tree logic (CTL), and quantified propositional
temporal logic (QPTL) are extended with explicit trace and path quantification, resulting
in logics like HyperLTL [2], HyperCTL∗ [2], and HyperQPTL [23, 4]. The latter approach
(which we adopt here) is to lift the semantics of temporal logics to sets of traces directly by
adopting team semantics yielding logics such as TeamLTL [15, 7] and TeamCTL [14, 7].

Krebs et al. [15] introduced two versions of LTL with team semantics: a synchronous
semantics and an asynchronous variant that differ on how the evolution of time is linked
between computation traces when temporal operators are evaluated. In the synchronous
semantics time proceeds in lock-step, while in the asynchronous variant time proceeds
independently on each trace. For example the formula “F terminate” (here F denotes the
future-operator and “terminate” is a proposition depicting that a trace has terminated)
defines the hyperproperty “bounded termination” under synchronous semantics, while it
expresses the trace property “termination” under asynchronous semantics. The elegant
definition of bounded termination exemplifies one of the main distinguishing factors of team
logics from hyperlogics; namely the ability to refer directly to unbounded number of traces.
Each hyperlogic-formula has a fixed number of trace quantifiers that delineate the traces
involved in the evaluation of the formula. Another distinguishing feature of team logics lies in
their ability to enrich the logical language with novel atomic formulae for stating properties
of teams. The most prominent of these are the dependence atom dep(x̄, ȳ) (stating that the
values of the variables x̄ functionally determine the values of ȳ) and inclusion atom x̄ ⊆ ȳ

(expressing the inclusion dependency that all the values occurring for x̄ must also occur as a
value for ȳ).

As an example, let o1, . . . , on be public observables and assume that c reveals confidential
information. The atom (o1, . . . on, c) ⊆ (o1, . . . on,¬c) expresses a form of non-inference by
stating that an observer cannot infer the value of the confidential bit from the outputs.

While HyperLTL and other hyperlogics have been studied extensively, many of the basic
properties of TeamLTL are still not well understood. Krebs et al.[15] showed that synchronous
TeamLTL and HyperLTL are incomparable in expressivity and that the asynchronous variant
collapses to LTL. Not much was known about the complexity aspects of TeamLTL until
Lück [18] showed that the complexity of satisfiability and model checking of synchronous
TeamLTL with Boolean negation ∼ is equivalent to the decision problem of third-order
arithmetic. Subsequently, Virtema et al. [29] embarked for a more fine-grained analysis of
the complexity of synchronous TeamLTL and discovered a decidable syntactic fragment (the
so-called left-flat fragment) and established that already a very weak access to the Boolean
negation suffices for undecidability. They also showed that synchronous TeamLTL and its
extensions can be translated to HyperQPTL+, which is an extension of HyperLTL by (non-
uniform) quantification of propositions. Kontinen and Sandström [12] defined translations
between extensions of TeamLTL and the three-variable fragment of first-order team logic to
utilize the better understanding of first-order team semantics. They also showed that any
logic effectively residing between synchronous TeamLTL extended with the Boolean negation
and second-order logic inherits the complexity properties of the extension of TeamLTL with
the Boolean negation. Finally, Gutsfeld et al. [7] reimagined the setting of temporal team
semantics to be able to model richer forms of (a)synchronicity by developing the notion
of time-evaluation functions. In addition to reimagining the framework, they discovered
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decidable logics which however relied on restraining time-evaluation functions to be either k-
context-bounded or k-synchronous. It is worth noting that recently asynchronous hyperlogics
have been considered also in several other articles (see, e.g., [8, 1]).

Almost all complexity theoretic results previously obtained for TeamLTL have been
negative, and the few positive results have required drastic restrictions in syntax or semantics.
In this article we take a take a fresh look at expressive extensions of asynchronous TeamLTL.
Recent works on synchronous TeamLTL have revealed that quite modest extensions of
synchronous TeamLTL are undecidable. Thus, our study of asynchronous TeamLTL partly
stems from our desire to discover decidable but expressive logics for hyperproperties. Until
now, all the papers on temporal team semantics have explicitly or implicitly adopted a
semantics based on multisets of traces. In the team semantics literature, this often carries
the name strict semantics, in contrast to lax semantics which is de-facto set-based semantics.
In database theory, it is ubiquitous that tasks that are computationally easy under set
based semantics become untractable in the multiset case. In the team semantics setting
this can be already seen in the model checking problem of propositional inclusion logic
PL(⊆) which is P-complete under lax semantics, but NP-complete under strict semantics
[10]. Our new set-based framework offers a setting that drops the accuracy that accompanies
adoption of multiset semantics in favour of better computational properties. Consider
the following formula expressing a form of strong non-inference in parallel computation:
G((o1, ..., on, c) ⊆ (o1, ..., on,¬c)), where o1, ..., on are observable outputs and c is confidential.
In the synchronous setting, the formula expresses that during a synchronous computation,
at any given time, an observer cannot infer the value of the secret c from the outputs. In
the asynchronous setting, the formula states a stronger property that the above property
holds for all computations (not only synchronous). In the multiset setting the number of
parallel computation nodes is fixed, while in the new lax semantics, we drop that restriction,
and consider an undefined number of computation nodes. The condition is stronger in lax
semantics; and intuitively easier to falsify, which makes model checking in practice easier.

Our contribution. We introduce and develop a set-based semantics for asynchronous Team-
LTL, which we name lax semantics and write TeamLTLl. We consider two canonical logics
in this setting: the extensions of TeamLTLl by the Boolean disjunction TeamLTLl(6) and
by the Boolean negation TeamLTLl(∼). By developing the basic theory of lax asynchronous
TeamLTL, we discover some fascinating connections between the strict and lax semantics. We
discover that both of the logics enjoy normal forms that can be utilised to obtain expressivity
and complexity results. Tables 1 and 2 summarise our results. For comparison, Table 3
summarises the known results on complexity of synchronous TeamLTL.

2 Preliminaries

Fix a set AP of atomic propositions. The set of formulae of LTL (over AP) is generated
by the grammar: φ ::= p | ¬p | φ ∨ φ | φ ∧ φ | φ | Gφ | φUφ, where p ∈ AP. We
adopt the convention that formulae are given in negation normal form, i.e., ¬ is allowed
only in front of atomic propositions. Note that this is an expressively complete set of
LTL-formulae. The logical constants ⊤,⊥ and the operators F and W can be defined in the
usual way: ⊥ := p ∧ ¬p, ⊤ := p ∨ ¬p, Fφ := ⊤ Uφ, and φWψ := (φUψ) ∨ Gφ. Note also
the equivalences ¬ φ ≡ ¬φ, ¬ Fφ ≡ G ¬φ, and ¬(φUψ) ≡ (¬φW(¬ψ ∧ ¬φ)).

A trace t over AP is an infinite sequence from (2AP)ω. For a natural number i ∈ N, we
denote by t[i] the (i+ 1)th letter of t and by t[i,∞] the postfix (t[j])j≥i of t. Semantics of
LTL is defined in the usual manner (see e.g., [21]). For example, t |= p iff p ∈ t[0] and t |= φ

iff t[1,∞] |= φ. The truth value of a formula φ on a trace t is denoted by JφKt ∈ {0, 1}.
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Table 1 Expressivity hierarchy of the asynchronous logics considered in the paper. Logics with
lax or strict semantics are here referred with the superscripts l and s, respectively. For the definitions
of left flatness, quasi flatness, and left downward closure, we refer to Definitions 7 and 13. †: This
follows since only TeamLTLl(6) is downward closed (cf. Theorem 8 and Definition 13). Theorem 8
implies that for TeamLTL(∼)-formulae in quasi-flat form the strict and lax semantics coincide.

TeamLTLs/l left-flat–TeamLTLs(6)
Cor.12

< TeamLTLs(6)

<

Ex. 6

≡

Thm. 8

TeamLTLl(6)
Thm. 10

≡ left-flat–TeamLTLl(6)
†
< quasi-flat–TeamLTLs/l(∼)

≡

Thm. 14

left-dc–TeamLTLl(∼)

Table 2 Complexity results of this paper. All results are completeness results if not otherwise
specified. PL(∼) refers to the propositional fragment of TeamLTL(∼) which embeds also to
left-dc-TeamLTLl(∼). †: All PSPACE-completeness results for satisfiability in strict semantics
and TeamLTLl follow directly from classical LTL by downward closure and singleton equivalence
similar to [15, Proposition 5.4]. ATIME-ALT(exp, poly) refers to alternating exponential time with
polynomially many alternations while TOWER(poly) refers to problems that can be decided by a
deterministic TM in time bounded by an exponential tower of 2’s of polynomial height.

Logic Complexity of References

(asynchronous semantics) model checking satisfiability

LTL PSPACE PSPACE [25]
PL(∼) ATIME-ALT(exp, poly) ATIME-ALT(exp, poly) [9]

TeamLTLl/s PSPACE PSPACE [15], Theorem 5
left-flat-TeamLTLs/l(6) PSPACE PSPACE Theorem 17

TeamLTLl(6) PSPACE PSPACE Theorem 17
TeamLTLs(6) ??? PSPACE †

TeamLTLs(dep) NEXPTIME-hard PSPACE [15]
left-dc-TeamLTLl(∼) in TOWER(poly) in TOWER(poly) Theorem 17

Table 3 Complexity results for synchronous strict semantics. All results are completeness results
if not otherwise specified. †: All PSPACE-completeness results for satisfiability follow directly from
classical LTL by downward closure and singleton equivalence similar to [15, Proposition 5.4].

Logic Complexity of References

(sync. strict semantics) model checking satisfiability

TeamLTL PSPACE PSPACE [15]
left-flat-TeamLTL(6) in EXPSPACE PSPACE [29]

TeamLTL(dep) NEXPTIME-hard PSPACE [15]
TeamLTL(6) ??? PSPACE †

TeamLTL(6, ⊆) Σ0
1-hard Σ0

1-hard [29]
TeamLTL(∼) third-order arithmetic third-order arithmetic [18]
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Next we present the so-called asynchronous team semantics for LTL introduced in [15].
In [15], the release operator was defined slightly erroneously; we fix the issue here by taking
G as primitive and defining R using G and U. Informally, a multiset of traces T is a collection
of traces with possible repetitions. Formally, we represent T as a set of pairs (i, t), where i is
an index (from some suitable large set) and t is a trace. We stipulate that the elements of
a multiset have distinct indices. From now on, we will always omit the index and write t
instead of (i, t). For multisets T and S, T ⊎S denotes the disjoint union of T and S (obtained
by stipulating that traces in S and T have disjoint sets of indices). Note that all the functions
f with domain T are actually of the form f((i, t)) and may map different copies of the trace
t differently. A team (multiteam, resp.) is a set (multiset, resp.) of traces. If f : T → N is a
function, we define the updated team T [f,∞] := {t[f(t),∞] | t ∈ T}, where f determines for
each trace a point in time it updates to. For functions f and f ′ as above, we write f ′ < f , if
f ′(t) < f(t) for all t ∈ T . The underlying team support(T ) := {t | (i, t) ∈ T} of a multiteam
T is called the support of T .

▶ Definition 1 (Team Semantics for LTL). Let T be a multiteam, and φ and ψ LTL-formulae.
The asynchronous team semantics of TeamLTL is defined as follows.

T |= l ⇔ t |= l for all t ∈ T, where l ∈ {p,¬p | p ∈ AP} is a literal
T |= φ ∧ ψ ⇔ T |= φ and T |= ψ

T |= φ ∨ ψ ⇔ ∃T1, T2 s.t. T1 ⊎ T2 = T and T1 |= φ and T2 |= ψ

T |= φ ⇔ T [1,∞] |= φ, where 1 is the constant function t 7→ 1
T |= Gφ ⇔ ∀f : T → N T [f,∞] |= φ

T |= φUψ ⇔ ∃f : T → N T [f,∞] |= ψ and ∀f ′ < f : T ′[f ′,∞] |= φ,

where T ′ := {t ∈ T | f(t) ̸= 0}

The synchronous variant of the semantics is obtained by allowing f to range only over
constant functions. We take the asynchronous semantics as the standard semantics and write
TeamLTL for asynchronous TeamLTL.

We also consider the Boolean disjunction 6 and Boolean negation ∼ interpreted as usual:
T |= φ6 ψ iff (T |= φ or T |= ψ), and T |= ∼ φ iff T ̸|= φ.

Next we define some important semantic properties of formulae studied in the literature.
A logic has one of the properties if every formula of the logic has the property. It is easy to
check that TeamLTL has all the properties listed [15] whereas its extension with the Boolean
disjunction has all but flatness and the extension with Boolean negation has none.
(Downward closure) If T |= φ and S ⊆ T , then S |= φ.
(Empty team property) ∅ |= φ.
(Flatness) T |= φ iff {t} |= φ for all t ∈ T .
(Singleton equivalence) {t} |= φ iff t |= φ.

We will now justify our choice of semantics. The semantic rules for literals, conjunction,
and disjunction are the standard ones in team semantics, and which have been motivated
numerous times in the literature [26]. Two important properties for the logic to have, for it to
be a conservative extension of LTL, are flatness and singleton equivalence. These properties
also motivated the original definition of asynchronous TeamLTL [15]. The given semantics
for is the only possible one that satisfies flatness. The same is true for F (i.e., ⊤ Uφ) and
G; moreover the semantics clearly capture the intuitive meanings of asynchronously in the
future and asynchronously globally, respectively. The given semantics for U preserves flatness
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and singleton equivalence, and adequately captures the intuitive meaning of asynchronous
until. The framework of asynchronous TeamLTL then allows us to define different variants
of the familiar temporal operators. E.g., φW1 ψ := Gφ ∨ φUψ and φW2 ψ := Gφ6 φUψ
define different variants of weak until; the first of which is flat, while the second is not.

T |= φW1 ψ ⇔ ∃T1, T2 s.t. T1 ⊎ T2 = T, T1 |= Gφ and T2 |= φUψ
T |= φW2 ψ ⇔ T |= Gφ or T |= φUψ

Similarly φR1 ψ := ψU((ψ ∧φ) ∨ Gψ) and φR2 ψ := ψU((ψ ∧φ) 6 Gψ) give rise to different
variants of release. Moreover, with ∼ one can define additional dual operators.

A defining feature of team semantics is the ability to enrich logics with novel atomic
statements describing properties of teams in a modular fashion. For example, de-
pendence atoms dep(φ1, . . . , φn, ψ) and inclusion atoms φ1, . . . , φn ⊆ ψ1, . . . , ψn, with
φ1, . . . , φn, ψ, ψ1, . . . , ψn being LTL-formulae, have been studied extensively in first-order
and modal team semantics. The dependence atom states that the truth value of ψ is func-
tionally determined by that of φ1, . . . , φn whereas the inclusion atom states that each value
combination of φ1, . . . , φn must also occur as a value combination for ψ1, . . . , ψn. Formally:

T |= dep(φ1, . . . , φn, ψ) iff ∀t, t′ ∈ T :
( ∧

1≤j≤n

JφjKt = JφjKt′
)

⇒ JψKt = JψKt′

T |= φ1, . . . , φn ⊆ ψ1, . . . , ψn iff ∀t ∈ T ∃t′ ∈ T :
∧

1≤j≤n

JφjKt = JψjKt′

Consider the following exemplary formula: G dep(i1, i2, o) ∨ G dep(i2, i3, o). The formula
states that the executions of the system can be decomposed into two parts; in the first part,
the output o is determined by the inputs i1 and i2, and in the second part, o is determined
by the inputs i2 and i3.

If A is a collection of atoms and connectives, TeamLTL(A) denotes the extension of
TeamLTL with the atoms and connectives in A. It is straightforward to see (in analogy
to the modal team semantics setting [11]) that any dependency such as the ones above
is determined by a finite set of n-ary Boolean relations. Let B be a set of n-ary Boolean
relations. We define the property [φ1, . . . , φn]B for an n-tuple (φ1, . . . , φn) of LTL-formulae:

T |= [φ1, . . . , φn]B iff {(Jφ1Kt, . . . , JφnKt) | t ∈ T} ∈ B.

Expressions of the form [φ1, . . . , φn]B are generalised atoms. It was shown in [29] that, in the
synchronous setting, TeamLTL(∼) is expressively complete with respect to all generalised
atoms, whereas the extension of TeamLTL(6) with the so-called flattening operator can
express any downwards closed generalised atoms. These results readily extend to the
asynchronous setting. Moreover the flattening operator renders itself unnecessary due to
flatness of asynchronous TeamLTL. The results imply, e.g, that the (downwards closed)
dependence atoms can be expressed in both of the logics TeamLTL(∼) and TeamLTL(6),
and inclusion atoms in turn are expressible in TeamLTL(∼). The proof of the following
theorem is essentially the same as the proof of [28, Proposition 17]. Below L ≡ L′ denotes
the equiexpressivity of the logics L and L′.

▶ Theorem 2. Let A, D be the sets of all generalised atoms, and all downward closed gener-
alised atoms. Then TeamLTL(D,6) ≡ TeamLTL(6) and TeamLTL(A,∼) ≡ TeamLTL(∼).
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3 Set-based semantics for TeamLTL

Next we define a relaxed version of the asynchronous semantics. We call it lax semantics
as it corresponds to the so-called lax semantics of first-order team semantics (see e.g., [6]).
From now on we refer to the semantics of Definition 1 as strict semantics. The possibility of
considering lax semantics for TeamLTL was suggested by Lück already in [19] but the full
definition was not given. Intuitively, lax semantics can always be obtained from a strict one
by checking what strict semantics would yield if multiteams were enriched with unbounded
many copies of each of its traces. One of the defining features of lax semantics is that it is
unable to distinguish multiplicities, which is formalised by Proposition 4 below.

We need some notation for the new definition. We write P(N)+ to denote P(N) \ {∅}.
For a team T and function f : T → P(N)+, we set T [f,∞] := {t[s,∞] | t ∈ T, s ∈ f(t)}. For
T ′ ⊆ T , f : T → P(N)+, and f ′ : T ′ → P(N)+, we define that f ′ < f if and only if

∀t ∈ T ′: min(f ′(t)) ≤ min(f(t)) and, if max(f(t)) exists, max(f ′(t)) < max(f(t)).

▶ Definition 3 (TeamLTLl). Let T be a team, and φ and ψ TeamLTL-formulae. The lax
semantics is defined as follows. We only list the cases that differ from the strict semantics.

T |=l φ ∨ ψ ⇔ ∃T1, T2 s.t. T1 ∪ T2 = T and T1 |= φ and T2 |= ψ

T |=l Gφ ⇔ ∀f : T → P(N)+ it holds that T [f,∞] |=l φ

T |=l φUψ ⇔ ∃f : T → P(N)+ such that T [f,∞] |=l ψ and
∀f ′ : T ′ → P(N)+s.t. f ′ < f , it holds that T ′[f ′,∞] |=l φ or T ′ = ∅,
where T ′ := {t ∈ T | max(f(t)) ̸= 0}

In the context we will be considering in this article, the subformulae φ in the definition of the
until operator U always have the empty team property and thus we disregard the possibility
that the team T ′ is empty in our proofs, as that case follows from the empty team property.

The above set-based semantics can also be viewed in terms of multisets. In that case
functions f are quantified uniformly, i.e. we restrict our consideration to functions where
f(i, t) = f(j, t). Furthermore, the semantics for disjunction is defined in a way that omits
references to multiplicities. In order to relate our new logics to the old multiteam based ones,
we extend the lax semantics to multiteams T by stipulating that T |=l φ iff support(T ) |=l φ.

The following proposition shows that TeamLTLl(∼) satisfies the so-called locality property,
see full version of this article [13] for the proof. For a trace t over AP′ and AP ⊆ AP′,
the reduction of t to AP, t↾AP, is a sequence from (2AP)ω such that p ∈ t[i] if and only if
p ∈ t↾AP[i], for all p ∈ AP and i ∈ N. For a team T over AP′ we define the reduction of T to
AP by T↾AP = {t↾AP | t ∈ T}.

▶ Proposition 4. Let T be a team and φ a TeamLTLl(∼)-formula with variables in AP.
Now T |=l φ iff T↾AP |=l φ.

The next theorem displays that lax semantics enjoys the same fundamental properties
as its strict counterpart. The proof via a straightforward induction, see full version of this
article [13] for details.

▶ Theorem 5. TeamLTLl satisfies downward closure, empty team property, singleton equi-
valence, and flatness.

The following example establishes that the new lax semantics differs from the strict
semantics, and that in the old semantics multiplicities matter. Moreover, we obtain
TeamLTLl < TeamLTLl(6) by showing that the latter is not flat.
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▶ Example 6. Let φ be the formula G(p 6 q), T1 := {t} and T2 := {(1, t), (2, t)}, where
t := {p}{q}ω. It is easy to check that T1 |= φ but T1 ̸|=l φ (which is witnessed by
T [f,∞] ̸|=l p 6 q for f(t) := {0, 1}). Likewise T2 ̸|= φ. Moreover {si} |=l φ, for i ∈ {1, 2},
but {s1, s2} ̸|=l φ, where s1 := {p}ω and s2 := {q}ω.

We will also consider the following fragments of TeamLTL(6) and TeamLTL(∼).

▶ Definition 7. A formula φ of TeamLTL(6) is called left-flat, if in all of its subformulae of
the form Gψ and ψU θ, the subformula ψ is an LTL-formula. A formula φ of TeamLTL(∼,6)
is called left-downward closed, if in all of its subformulae of the form Gψ and ψU θ, the
subformula ψ is an TeamLTL(6)-formula.

We will later show that the above syntactic restriction for flatness could be replaced by
a semantic restriction (see Corollary 11). The proof of the following theorem is in the full
version of this article [13].

▶ Theorem 8. For all φ ∈ TeamLTLl(6) the following two claims hold:
1. φ is downward closed and has the empty team property, and
2. if φ is left-flat, then T |= φ iff support(T ) |=l φ for all multiteams T .

The restriction to left-flat formulae in case (2) above is necessary by Example 6.

4 Normal Forms for TeamLTL with Boolean Disjunction and Negation

In this section we develop normal forms for our logics, which we then utilise to obtain strong
expressivity and complexity results.

▶ Definition 9. A formula φ is in 6-disjunctive normal form if it is of the form >i∈I αi,

where αi are LTL-formulae.

Every formula of TeamLTLl(6) can be transformed into an equivalent 6-disjunctive
normal form. This result is similar to the one proved in [27] for team-based modal logic
ML(6). In the following |φ| denotes the the length of the formula φ.

▶ Theorem 10. Every φ ∈ TeamLTLl(6) is logically equivalent to a formula φ∗ = >i∈I αi
in 6-disjunctive normal form, where |αi| ≤ |φ| and |I| = 2k, where k is the number of 6
in φ.

Proof. The proof proceeds by induction on the structure of formulae. Note that atomic
formulae are already in the normal form and that the case for 6 is trivial. The remaining
cases are defined as follows:

(ψ ∧ θ)∗ := >
i∈I,j∈J

(αψi ∧ αθj ) (ψ ∨ θ)∗ := >
i∈I,j∈J

(αψi ∨ αθj )

( ψ)∗ :=>
i∈I

αψi (Gψ)∗ :=>
i∈I

Gαψi

(ψU θ)∗ := >
i∈I,j∈J

(αψi Uαθj ).

where αψi and αθj are the flat formulae in the disjunctive normal forms of ψ and θ respectively,
and I and J are the respective index sets.

Suppose φ = ψ∧ θ and that ψ ≡ >i∈I α
ψ
i and θ ≡ >i∈J α

θ
j (induction hypothesis). Now

T |=l φ if and only if T |=l ψ and T |=l θ. The latter holds, if and only if T |=l αψk and
T |=l αθk′ , for some k and k′. This can be equivalently expressed as T |=l >i,j(α

ψ
i ∧ αθj ), i.e.

T |=l φ∗.
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Suppose φ = ψ∨ θ and that ψ ≡ >i∈I α
ψ
i and θ ≡ >i∈J α

θ
j . By definition T |=l φ if and

only if there exists T ′ ∪T ′′ = T such that T ′ |=l ψ and T ′′ |=l θ. By the induction hypothesis
the latter is equivalent with T ′ |=l >i∈I α

ψ
i and T ′′ |=l >j∈J α

θ
j . By definition this holds if

and only if there are k′ and k′′ such that T ′ |=l αψk′ and T ′′ |=l αθk′′ , which is equivalent with
T |=l αψk′ ∨αθk′′ for some k′ and k′′, by definition. Equivalently then T |=l >i∈I,j∈J (αψi ∨αθj ).

Suppose φ = ψ and that ψ ≡ >i∈I α
ψ
i . By definition T |=l φ is equivalent with

T [1,∞] |=l ψ. By the induction hypothesis the latter holds if and only if T [1,∞] |=l >i∈I α
ψ
i ,

which by definition is equivalent with T [1,∞] |=l αψk for some k ∈ I. The latter holds if and
only if T |=l αψk for some k ∈ I, which is equivalent with T |=l >i∈I αψi .

Suppose φ = Gψ and that ψ ≡ >i∈I α
ψ
i . Suppose that T |=l φ. By definition for

all functions f : T → P(N)+ it holds that T [f,∞] |=l ψ. By the induction hypothesis
T [f,∞] |=l >i∈I α

ψ
i for all f . Especially this holds for the total function defined for every

t ∈ T by fmax(t) := N. Thus T [fmax,∞] |=l αψk for some k. By downward closure it holds
that T [f ′,∞] |=l αψk for all f ′ : T → P(N)+. Hence T |=l Gαψk , and thus T |=l >i∈I Gαψi .
The other direction is analogous.

Suppose φ = ψU θ and that ψ ≡ >i∈I α
ψ
i and θ ≡ >j∈J α

θ
j . Suppose T |=l φ. By

definition there exists a function f : T → P(N)+ such that T [f,∞] |=l θ and for all functions
f ′ : T ′ → P(N)+ such that f ′ < f , T ′[f ′,∞] |=l ψ, where T ′ := {t ∈ T | f(t) ̸= 0}. Hence
by the induction hypothesis T [f,∞] |=l >j∈J α

θ
j , which is equivalent with T [f,∞] |=l αθk

for some k ∈ J , and, for the function fmax(t) := {n ∈ N | n < m, for some m ∈ f(t)}
(which is well-defined, as f(t) is non-empty for t ∈ T ′), it holds that T [fmax,∞] |=l >i∈I α

ψ
i ,

which in turn is equivalent with T [fmax,∞] |=l αψk′ for some k′ ∈ I. By downward closure
the latter holds for all intermediary functions, and thus T |=l αψk′ Uαθk and finally T |=l

>i∈I,j∈J(αθi Uαψj ) as wanted. The converse is analogous.
For showing the size estimates stated in the theorem, it suffices to note that our translation

to 6-disjunctive normal from can be equivalently stated: φ ≡ >i∈I α
ψ
i = >f∈F φ

f , where
F is the set of all selection functions f that select, separately for each occurrence, either
the left disjunct ψ or the right disjunct θ of each subformula of the form ψ 6 θ of φ, and
φf denotes the formula obtained from φ by substituting each occurrence of a subformula of
type (ψ 6 θ) by f(ψ 6 θ). The size estimates follow immediately from this observation. ◀

Proofs for the following two corollaries can be found in the full version of this article [13].

▶ Corollary 11. For every flat TeamLTLl(6)-formula there exists an equivalent TeamLTLl-
formula.

▶ Corollary 12. TeamLTLl(6) < TeamLTL(6).

A normal form, similar to the one in Theorem 10, can also be obtained for TeamLTL(∼).
However, since the extension is not downward closed, it only holds for a specific fragment of
the logic. The following normal form has been introduced and used in [17, 16] to analyse the
complexity of modal team logic and FO2 in the team semantics context. Below φd denotes a
formula obtained by transforming ¬φ into negation normal form in the standard way in LTL.

▶ Definition 13. A formula φ is quasi-flat if φ is of the form: >i∈I(αi∧
∧
j∈Ji

∃βi,j), where
αi and βi,j are LTL-formulae, and ∃βi,j is an abbreviation for the formula ∼ βdi,j.

Note that, for LTL-formulae α and β, we have T |=l α if and only if t |= α, for all t ∈ T .
Moreover T |=l ∃β, if and only if there exists some trace t ∈ T such that t |= β.
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▶ Theorem 14. Every left-downward closed formula φ ∈ TeamLTLl(∼,6) is logically
equivalent to a quasi-flat formula φ∗.

Proof. Proof by induction over the structure of φ. Atoms are flat, and hence are in the
normal form. The translations and the proofs of correctness for the cases of conjunction,
disjunction, and Boolean negation are analogous to the simpler modal framework of [17, 16].

Suppose φ = ψ ∧ θ and assume that ψ is equivalent to >i∈I(α
ψ
i ∧

∧
j∈Ji

∃βψi,j) and θ

to >i∈I′(αθi ∧
∧
j∈J′

i
∃βθi,j). By the distributive laws of conjunction and disjunction, φ is

clearly equivalent to

>
i∈I,k∈I′

(αψi ∧ αθk ∧
∧
j∈Ji

∃βψi,j ∧
∧
j∈J′

k

∃βθk,j).

Suppose φ = ψ ∨ θ. By the induction hypothesis and an argument analogous to the
disjunction case of the proof of Theorem 10, φ is equivalent to

>
i∈I,k∈I′

(
(αψi ∧

∧
j∈Ji

∃βψi,j) ∨ (αθk ∧
∧
j∈J′

k

∃βθk,j)
)
. (1)

The above formula expresses that T can be split into two parts: T1 in which each trace
satisfies αi and the subformulae βi,j are satisfied by some traces, and T2 in which each trace
satisfies αk and the subformulae βk,j are satisfied by some traces. But this is equivalent
to saying that T can be split into two parts: T1 in which each trace satisfies αi, and T2 in
which each trace satisfies αk; and the subformulae αi ∧ βi,j and αk ∧ βk,j are satisfied by
some traces in T , and thus the formula (1) is equivalent with

>
i∈I,k∈I′

(
(αψi ∨ αθk) ∧

∧
j∈Ji

∃(αψi ∧ βψi,j) ∧
∧
j∈J′

k

∃(αθj ∧ βθk,j)
)

that is in the normal form.
Suppose φ = ∼ψ and assume that ψ is equivalent to >i∈I(αi ∧

∧
j∈Ji

∃βi,j). Now φ is
clearly equivalent to

∧
i∈I(∃αdi 6 >j∈Ji

βdi,j). This formula can be expanded back to the
normal form with exponential blow-up using the distributivity law of propositional logic.

Suppose φ = ψ and assume that ψ is equivalent to >i∈I(αi ∧
∧
j∈Ji

∃βi,j). It is now
easy to check that φ is equivalent to >i∈I( αi ∧

∧
j∈Ji

∃ βi,j).
Suppose φ = Gψ. Since φ is left-downward closed, ψ is equivalent with a formula of the

form >i αi, which can be transformed to the normal form by Theorem 10.
Suppose φ = ψU θ. By assumption φ is left-downward closed hence ψ is equivalent

with a formula of the form >i∈I α
ψ
i (by the previous theorem) and θ is equivalent to

>k∈I′(αθk ∧
∧
j∈Jk

∃βθk,j). Now using the fact that ψ is downward closed, it is easy to see
that φ is logically equivalent with the formula:

>
i∈I,k∈I′

(
αψi U(αθk ∧

∧
j∈Jk

∃βψk,j)
)
. (2)

It now suffices to show that the disjuncts (for any i ∈ I, k ∈ I ′) of (2) can be equivalently
expressed as:(

αψi Uαθk ∧
∧
j∈Jk

∃(αψi U(αθk ∧ βψk,j)
)
. (3)

We will show the logical implication from (3) to (2). Assume

T |=l
(
αψi Uαθk ∧

∧
j∈Jk

∃(αψi U(αθk ∧ βψk,j)
)
.
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Let f be such that T [f,∞] |=l αθk and that T [g,∞] |=l αψi , for all g < f . In order to show

T |=l αψi U(αθk ∧
∧
j∈Jk

∃βψk,j), (4)

we need to make sure that traces witnessing the truth of the formulae ∃βψk,j can be found
in T [f,∞]. Here we can use the assumption that T |=l

∧
j∈Jk

∃(αψi U(αθk ∧ βψk,j)) implying
that for each j ∈ Jk there exists tj ∈ T such that tj |= αψi U(αθk ∧ βψk,j). Let now nj be such
that tj [nj ,∞] |= αθk ∧ βψk,j and that tj [l,∞] |= αψi for all l < nj . Now by the flatness of the
formulae αψi , αθk, and βψk,j , the function f ′ defined by

f ′(t) :=
{
f(t) ∪ {tj [nj ,∞]} if t = tj , for some j ∈ Jk

f(t) otherwise

witnesses (4). The converse is proved analogously. ◀

The following example indicates that the restriction to left-downward closed formulae
is necessary for the proof to work in the above theorem. An alternate proof that does not
require the restriction to left-downward closed formulae may still exist.

▶ Example 15. Let φ be the formula G(∃p1 6 ∃p2) and T := {t}, where t := ({p1}{p2})ω.
It is now easy to check that T |=l φ but T ̸|=l G ∃pi for i ∈ {1, 2}.

5 Computational Properties

In this section we analyse the computational properties of the logics studied in the previous
section. We focus on the complexity of the model checking and satisfiability problems.

For the model checking problem one has to determine whether a team of traces generated
by a given finite Kripke structure satisfies a given formula. We consider Kripke structures of
the form K := (W,R, η, w0), where W is a finite set of states, R ⊆ W 2 a left-total transition
relation, η : W → 2AP a labelling function, and w0 ∈ W an initial state of W . A path σ

through K is an infinite sequence σ ∈ Wω such that σ[0] := w0 and (σ[i], σ[i + 1]) ∈ R

for every i ≥ 0. The trace of σ is defined as t(σ) := η(σ[0])η(σ[1]) · · · ∈ (2AP)ω. A Kripke
structure K then generates the trace set Traces(K) := {t(σ) | σ is a path through K}.

▶ Definition 16. The model checking problem of a logic L is the following decision problem:
Given a formula φ ∈ L and a Kripke structure K over AP, determine whether Traces(K) |= φ,
The (countable) satisfiability problem of a logic L is the following decision problem: Given a
formula φ ∈ L, determine whether T |= φ for some (countable) T ̸= ∅.

Below we will use the fact that the model checking and satisfiability problems of LTL
are PSPACE-complete [25]. Furthermore, we use the facts that the satisfiability problem of
propositional team logic PL(∼) is ATIME-ALT(exp, poly)-complete [9], and that the com-
plexity of modal team logic is complete for the class TOWER(poly) := TIME(expnO(1)(1)),
where exp0(1) := 1 and expk+1(1) := 2expk(1) [17, 16].

▶ Theorem 17.
1. The model checking and satisfiability problems of TeamLTLl(6) are PSPACE-complete.
2. The model checking and satisfiability problems of the left-flat fragment of TeamLTL(6)

are PSPACE-complete.

MFCS 2023
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3. The model checking problem of the left-downward closed fragment of TeamLTLl(∼,6) is
PSPACE-hard and it is contained in TOWER(poly).

4. The satisfiability problem of the left-downward closed fragment of TeamLTLl(∼,6) is
ATIME-ALT(exp, poly)-hard and it is contained in TOWER(poly).

Proof. Let us first consider the proofs of claims 1 and 2. Note that PSPACE-hardness holds
already for LTL-formulae, hence it suffices to show containment in PSPACE. Furthermore,
note that 2 follows immediately from 1 and Theorem 8. Assume a formula φ ∈ TeamLTLl(6)
and a Kripke structure K is given as input. By Theorem 10, φ is logically equivalent with a
formula of the form >f∈F φ

f , where f varies over selection functions selecting, separately
for each occurrence, either the left disjunct ψ or the right disjunct θ of each subformula of
the form ψ6 θ of φ. Now, without constructing the full formula >f∈F φ

f , using polynomial
space with respect to the size of φ it is possible to check whether Traces(K) |= φf for some
f ∈ F . Hence the upper bound follows from the fact that LTL model checking is in PSPACE.
The upper bound for satisfiability follows analogously.

Let us then consider the proof of claim (4). The proof of claim (3) is analogous. For
the lower bound it suffices to note that propositional team logic PL(∼) is a fragment of
the left-downward closed fragment of TeamLTLl(∼,6) and hence its satisfiability problem
can be trivially reduced to the satisfiability problem of the left-downward closed fragment.
Therefore ATIME-ALT(exp, poly)-hardness follows by the result of [9].

For the upper bound we first transform an input formula φ into an equivalent quasi-flat
formula of the form >i∈I(αi ∧

∧
j∈Ji

∃βi,j). Analogously to [17, 16], this formula can be
computed in time TIME(expO(|φ|)(1)). It is now easy to see that the quasi-flat formula is
satisfiable iff there exists i ∈ I, such that SAT(αi ∧ βi,j) = 1 for all j ∈ Ji. Since LTL-
satisfiability checking is contained in PSPACE ⊆ TIME(2nO(1)), the overall complexity of
the above procedure is in TIME(exp(|φ|O(1))(1)). ◀

6 Conclusion

We introduced a novel set-based semantics for asynchronous TeamLTL. We showed several
results on the expressive power and complexity of the extensions of TeamLTLl by the Boolean
disjunction TeamLTLl(6) and by the Boolean negation TeamLTLl(∼). In particular, our
results show that the complexity properties of the former logic are comparable to that of LTL
and that the left-downward closed fragment of the latter has also decidable model-checking
and satisfiability problems. See Table 1 on page 4 for an overview of our expressivity results
and Table 2 for our complexity results. We obtained these results on TeamLTLl(6) and
TeamLTLl(∼) via normal forms that also allowed us to relate the expressive power of these
logics to the corresponding logics in the strict semantics. Our results show that, while the
synchronous TeamLTL can be viewed as a fragment of second-order logic, the asynchronous
TeamLTL(6) under the lax semantics is a sublogic of HyperLTL (see [2] for a definition).
Furthermore, our decidability results show, e.g, that it will probably be possible to devise a
complete proof system for the logic. The full version of this article [13] relates and applies
our results to recently defined logics whose asynchronicity is formalised via time evaluation
functions [7]. We conclude with open questions:

Does Theorem 14 extend to all formulae of TeamLTLl(∼)? Note that any quasi-flat–
TeamLTL(∼)-formula can be rewritten in HyperLTL.
Can the result (iii) of Theorem 17 be accompanied by an matching lower bound (i.e.,
TOWER(poly)-hardness result)?
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Can a syntactic characterisation (similar to Corollary 11) be obtained for the downward
closed fragment of TeamLTLl(∼)? We believe that TeamLTLl(6) is a promising candidate,
as its extensions with infinite conjunctions and disjunctions suffices for all downward
closed properties of teams.
What is the complexity of model checking for TeamLTL(6) under the strict semantics?
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Abstract
For a graph class G, we define the G-modular cardinality of a graph G as the minimum size of a vertex
partition of G into modules that each induces a graph in G. This generalizes other module-based
graph parameters such as neighborhood diversity and iterated type partition. Moreover, if G has
bounded modular-width, the W[1]-hardness of a problem in G-modular cardinality implies hardness
on modular-width, clique-width, and other related parameters. Several FPT algorithms based on
modular partitions compute a solution table in each module, then combine each table into a global
solution. This works well when each table has a succinct representation, but as we argue, when
no such representation exists, the problem is typically W[1]-hard. We illustrate these ideas on
the generic (α, β)-domination problem, which is a generalization of known domination problems
such as Bounded Degree Deletion, k-Domination, and α-Domination. We show that for
graph classes G that require arbitrarily large solution tables, these problems are W[1]-hard in the
G-modular cardinality, whereas they are fixed-parameter tractable when they admit succinct solution
tables. This leads to several new positive and negative results for many domination problems
parameterized by known and novel structural graph parameters such as clique-width, modular-width,
and cluster-modular cardinality.
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1 Introduction

Modular decompositions of graphs have played an important role in algorithms since their
inception [23]. In the world of parameterized complexity [11, 13], Gajarský et. al. [22]
proposed the notion of modular-width, or mw for short, which can be defined as the maximum
degree of a prime node in the modular decomposition tree of G. Unlike other structural
parameters such as treewidth [4], mw can be bounded on certain classes of dense graphs,
making it comparable to the clique-width (cw) parameter [10]. In fact, cw is at most mw

plus two, and mw can sometimes be arbitrarily larger than cw. It is known that several
problems that are hard in cw are fixed-parameter tractable (FPT) in mw, with popular
examples including Hamiltonian Cycle, Graph Coloring [16, 18, 22], and Metric
Dimension [2, 5]. In particular in [22], the main technique used to design such algorithms is
dynamic programming over the modular decomposition. In essence, the values of an optimal
solution are found recursively in each module of the graph G, which are then combined into
a solution for the graph itself, often using small integer linear programs based on the prime
graph of G. Another technique was recently introduced in [19], where the authors show that
the number of potential maximal cliques of a graph is at most O∗(1.73mw), a fact that can
be combined with results of [6, 20] to obtain FPT algorithms for a family of problems.
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cw mw cograph-mc stars-mc

itp

cluster-mc

nd

linear forest-mc

Figure 1 Relation among the parameters clique-width (cw), modular-width (mw), cograph-
modular cardinality (cograph-mc), iterated type partitions (itp), stars-modular cardinality (stars-
mc), cluster-modular cardinality (cluster-mc), neighborhood diversity (nd), and linear forest-
modular cardinality (linear forest-mc). Arrows indicate generalizations, e.g. modular-width(mw)
generalizes cograph-modular cardinality and thus is bounded by (a function of) cograph-modular
cardinality.

Despite these efforts, there are still several problems that are known to be hard on cw,
for instance Max-Cut [17] and Bounded Degree Deletion [3, 24], but unknown to be
hard or FPT in mw. Recently, an XP algorithm is given for k-Domination in parameter
treewidth (tw) [34], but the W-hardness for k-Domination in parameter tw, cw or mw is
unknown. Also, the authors of [22] conclude with the question of whether Edge Dominating
Set and Partition into Triangles are FPT in mw, which are 10 years-old questions
that are still unanswered. One promising direction to gain knowledge and tools for mw

algorithms is to study some of its related parameters. We consider such variants in which
the graph must be decomposed into modules that each induces a subgraph belonging to a
specific graph class. Notable examples include neighborhood diversity (nd) [31], in which
each module must induce an edgeless graph or a clique, and iterated type partition (itp) [9],
in which each module must induce a cograph. This idea was also used in [25] from which we
borrow our terminology, where a partition into modules inducing cliques is used to obtain
linear kernels for the cluster editing problem. Meanwhile, as Knop wrote in [29], ‘another
important task in this area is to understand the boundary between modular-width on one
side, and neighborhood diversity, twin-cover number, and clique-width on the other side’.

Our work resides in this boundary, as we propose to generalize the above ideas by
restricting modules to a given graph class G. That is, we define the G-modular cardinality of
a graph G, denoted G-mc(G), as the size of the smallest partition of its vertices into modules
that each induces a subgraph in G. If G has bounded modular-width (e.g. cographs), the
hardness of a problem in G-modular cardinality implies its hardness in mw (and thus cw).
On the other hand, FPT techniques for G-mc may shed light towards developing better
algorithms for mw. Also, by considering graph classes of unbounded modular-width (e.g.
paths, grids), G-mc may be incomparable with mw or even cw, leading to FPT algorithms
for novel types of graphs. To the best of our knowledge, such a generalization had not been
studied, although it is worth mentioning that in [27], the authors propose a similar concept
for treewidth, where some bags of a tree decomposition are allowed to be in some graph class.

Our contributions. We first establish that if G is hereditary and has bounded mw, then
mw(G) is at most G-mc(G) for a graph G /∈ G, allowing the transfer of hardness results. We
then show that for many graph classes, namely those that are easily mergeable, there is a
polynomial-time algorithm to compute G-mc and obtain a corresponding modular partition.

We then introduce techniques to obtain W[1]-hardness results and FPT algorithms for
the G-mc parameter. In essence, we argue that the dynamic programming technique on mw

algorithms works well when a small amount of information from each module is sufficient
to obtain a solution for the whole graph (for instance, the algorithms of [22] require only a
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Table 1 Our results for the (α, β)-Linear Degree Domination ((α, β)-LDD) on different
parameters (the mark ∗ is implied by [3, 24]). Results in boldface are those proved directly in
this paper (other entries are implied by these results). Recall that α = 0 is equivalent to the
k-Domination, α = 1 to the Bounded Degree Deletion (BDD), and α ∈ (0, 1) to the α-
Domination. Not shown in the table: BDD is FPT in parameters linear forest-mc and binary
forest-mc.

(α, β)-LDD problem α = 0 α ∈ (0, 1) α = 1 Parameters
(k-dom) (α-dom +β) (BDD)

β is in the input

W[1]-h W[1]-h W[1]-h∗ cw
W[1]-h W[1]-h W[1]-h mw
W[1]-h W[1]-h W[1]-h cograph-mc
W[1]-h W[1]-h W[1]-h itp
W[1]-h W[1]-h W[1]-h stars-mc

open open FPT cluster-mc
FPT FPT FPT nd

β is any constant

FPT W[1]-h FPT cw
FPT W[1]-h FPT mw
FPT W[1]-h FPT cograph-mc
FPT W[1]-h FPT itp
FPT W[1]-h FPT stars-mc
FPT open FPT cluster-mc
FPT FPT FPT nd

single integer from each module). Such succinct solution tables from each module can often
be combined using integer programs with few integer variables [21, 28, 33]. Conversely, when
too much information is required from each module (e.g. linear in the size of the modules)
to obtain a final solution, we are unable to use integer programming and this typically leads
to W[1]-hardness. This occurs when arbitrary solution tables are possible in each module.

We use a large class of domination problems to illustrate these techniques. Specifically,
for a real number α ∈ [0, 1] and integer β (possible negative), we introduce the (α, β)-Linear
Degree Domination problem. Given a graph G and an integer q, this problem asks for a
X ⊆ V (G) of size at most q such that, for each v ∈ V (G)\X, we have |N(v)∩X| ≥ α|N(v)|+β.
In other words, each unchosen vertex has at least a fraction α of its neighbors dominating it,
plus some number β. The problem is equivalent to the Bounded Degree Deletion (BDD)
[3, 24] if α = 1 and β ≤ 0; equivalent to the k-Domination [8, 32] if α = 0 and β ≥ 1; and
equivalent to the α-Domination [1, 12, 14, 35] if α ∈ (0, 1] and β = 0.

Table 1 illustrates the main results of this paper. The hardness results follow from a more
general result on arbitrary solution tables (Theorem 7). It is slightly technical, so we describe
its high-level implication on the case α = 1 (BDD). In this problem, a possible solution table
is a function f : [n] → N such that f(i) is the minimum maximum degree achievable in G

after deleting i vertices. The theorem states that for graph class G, if for any such f we
can construct a graph in G whose solution table is f , then BDD is W[1]-hard in G-modular
cardinality. We show that the class of disjoint stars satisfies this property, which implies
several other hardness results. On the other hand, several positive results for the BDD
make use of succinct solution tables. In essence, when f can be represented by a constant
number of linear functions, or by a convex function, then we can use integer programming
to merge these tables and obtain positive results. Finally, additional results not shown in
the table can be deduced easily from this technique. We show that BDD is FPT in linear
forest-modular cardinality and binary forest-modular cardinality as parameters, which
are of interest since they are incomparable with modular-width. Due to space constraints,
we refer the reader to the full version of this paper [30] for definitions and complete proofs.

MFCS 2023



61:4 Parameterized Complexity of Domination Problems

2 Preliminary notions

For an integer n, denote [n] = {1, . . . , n}. The maximum degree of a graph G is denoted by
∆(G). G denotes the complement graph of G. The neighborhood of v ∈ V (G) is N(v). The
set of connected components of a graph G is denoted CC(G). For X ⊆ V (G), G[X] denotes
the subgraph of G induced by X and G − X = G[V (G) \ X]. If X = {v}, we may write
G − v. Slightly abusing notation, we may also write v ∈ G instead of v ∈ V (G), |G| instead
of |V (G)|, and X ∩ G instead of X ∩ V (G).

A graph class G is a (possibly infinite) set of graphs containing at least one non-empty
graph. We say that G is hereditary if, for any G ∈ G, any induced subgraph of G is also in
G. Note that if G is hereditary, the graph consisting of an isolated vertex is in G. We say
that G is a polynomial-time recognition graph class if there is a polynomial-time algorithm
that decides whether a given graph G is in G. Some popular graph classes that we will use
throughout this paper: I is the set of all edgeless graphs; K is the set of all complete graphs;
cluster is the set of graphs in which every connected component induces a complete graph;
stars is the set of graphs in which every connected component is a star graph; cograph is
the set of cographs, where a cograph is either a single vertex, or a graph obtained by applying
either a join or a disjoint union of two cographs [7]. Observe that I ⊆ stars ⊆ cograph.

Modular parameters. For a graph G = (V, E), a module of G is a M ⊆ V such that for
every v ∈ V \ M , either M ⊆ N(v) or M ∩ N(v) = ∅. The empty set, V , and every {v} for
v ∈ V are called the trivial modules. In a prime graph, all modules are trivial. A factor is a
subgraph induced by a module. A module M is strong if for any module M ′ of G, either
M ′ ⊆ M , M ⊆ M ′, or M ∩M ′ = ∅. M is maximal if M ⊊ V and there is no module M ′ such
that M ⊊ M ′ ⊊ V . A partition M of V (G) is called a modular partition if every element
of M is a module of G. If M only contains maximal strong modules, then it is a maximal
modular partition. This partition is unique. Two modules M and M ′ are adjacent in G if
every vertex of M is adjacent to every vertex of M ′, and non-adjacent otherwise. For a
modular partition M of V , the quotient graph G/M is defined by V (G/M) = {vM : M ∈ M}
and vM1vM2 ∈ E(G/M) if and only if M1, M2 are adjacent.

We call MD(G) the modular decomposition tree of G, in which each vertex vM corresponds
to a strong module M . More specifically, each leaf v{v} of the inclusion tree corresponds
to a vertex v of G and the root vertex vV corresponds to V . Moreover, for any two strong
modules M and M ′, M ′ is a proper subset of M if and only if vM ′ is a descendant of vM

in MD(G). An internal vertex vM of MD(G) is parallel if G[M ] is disconnected, is series
if G[M ] is disconnected, and is prime otherwise. The modular-width of G is the maximum
number of children of a prime vertex in MD(G) (see [26] for more). Our variant follows.

▶ Definition 1. Let G be a graph class. For a graph G (not necessarily in G), a module M of
G is a G-module if G[M ] belongs to G. A modular partition M = {M1, . . . , Mk} of a graph
G is called a G-modular partition if each Mi is a G-module. The G-modular cardinality of
G, denoted by G-mc(G), is the minimum cardinality of a G-modular partition of G.

The neighborhood diversity (nd) is equivalent to the (K ∪ I)-modular cardinality. The
iterated type partition (itp) parameter [9] is the number of vertices of the graph obtained
through the following process: start with the smallest modular partition into cliques and
edgeless graphs; contract each module into a single vertex; repeat until no more contraction
is possible. It can be shown that the remaining vertices represent modules that are cographs.
Thus, itp(G) is not smaller than the cograph-modular cardinality of G.
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3 Properties and tractability of G-modular cardinality

In this section, we state two basic results regarding G-mc. First, mw is not larger than G-mc

for graph classes of bounded modular-width. This allows hardness results on G-mc to also
apply to mw. Second, G-mc is polynomial-time computable for “easily mergeable” graph
classes. The first is realtively easy using modular partitions and induction.

▶ Theorem 2. Let G be an hereditary graph class and define ωG := maxH∈G mw(H). Then
for any graph G, mw(G) ≤ max(G-mc(G), ωG).

Let us note that the above bound is tight, in the sense that mw(G) can be at least as large
as either G-mc(G) or ω(G). For instance, if G /∈ G is a prime graph, then mw(G) = G-mc(G),
and if G = arg maxH∈G mw(H), then mw(G) = ωG .

Let us now state the second result. A graph G is a G-join if G is disconnected and
G[C] ∈ G for each C ∈ CC(G). Likewise, G is a G-union if G is disconnected and G[C] ∈ G
for each C ∈ CC(G). If G is a G-join (resp. G-union), a G-merge is a G-modular partition
M of G such that for each C ∈ CC(G) (resp. C ∈ CC(G)), there is some M ∈ M that
contains C. We say that M is a minimum G-merge if no other G-merge has a size strictly
smaller than M. We say that a graph class G is easily mergeable if there exists a polynomial
time algorithm that, given a graph G such that G is either a G-join or a G-union, outputs a
minimum G-merge of G. We say that G is trivially mergeable if, for any G-join or G-union G,
one of {V (G)}, CC(G), or CC(G) is a minimum G-merge of G.

▶ Theorem 3. Suppose that G is a hereditary graph class. Suppose further that G is
polynomial-time recognizable and easily mergeable. Then a G-modular partition of G of
minimum size can be obtained in polynomial time.

The above implies that for G ∈ {I, K, cograph, cluster}, a G-modular partition of
minimum size of a graph G can be computed in polynomial time. It is not hard to show
that I, K, and cograph are trivially mergeable. For cluster, if G is a cluster-join, then
G ∈ cluster. If G is a cluster-union, one may show that we can merge all the connected
components of G that contain one clique into a single clique, and the other connected
components are left intact.

Note that not all graph classes are equally easy to merge. Consider the class “graphs
with at most 100 vertices”. Merging such graphs amounts to solving a bin packing problem
with a fixed capacity of 100, and current polynomial-time algorithms require time in the
order of n100. This is easily mergeable nonetheless, and it would be interesting to find graph
classes that are hereditary and polynomial-time recognizable, but not easily mergeable.

4 Hardness of domination problems with arbitrary solution tables

Let us recall our generic domination problem of interest. For α ∈ [0, 1] and β ∈ Z we define:

The (α, β)-Linear Degree Domination problem
Input: a graph G = (V, E) and a non-negative integer q;
Question: does there exist a subset X ⊆ V of size at most q such that for every v ∈ V \ X,
|N(v) ∩ X| ≥ α|N(v)| + β?

In the above, the vertex set X is called a (α, β)-linear degree dominating set of G. In
addition, for convenience, we also call X the deletion part of G. For any vertex v ∈ V (G−X),
the degree of v in X, denoted by deg(v, G, X), equals the number of vertices in X ∩ V (G)
adjacent to v. The minimum degree of G − X in X equals min{deg(v, G, X) : v ∈ G − X},
which is denoted by δ(G − X, X).
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a0

a1

a|I|−1

a|I|

x
0 c(a1) c(a2) c(a|I|−1) c(a|I|)

f(x)
a0

a1

a2

a|I|−1

a|I|

(c(a1), a1)

(c(a2), a2)

(c(a|I|−1), a|I|−1)

(c(a|I|), a|I|)

Figure 2 The degree deletion function of a (a0, I, c)-degree deletion graph. The x-axis represents
the number of vertices to delete, while the y-axis represents the minimum maximum degree achievable
by deleting x vertices. The first point of the (i+1)-th horizontal vertex set is (c(ai), ai) for 0 ≤ i ≤ |I|,
and the last point of the (i + 1)-th horizontal vertex set is (c(ai+1) − 1, ai) for 0 ≤ i ≤ |I| − 1.
Disjoint stars are used as an example here since the graph class stars admits arbitrary deletion
tables. The number of stars with ai leaves is c(ai+1) − c(ai) for 0 ≤ i ≤ |I| − 1. The degree deletion
process removes the internal vertices of stars from large to small.

Our goal is to formalize the intuition that graph classes with arbitrary solution tables
lead to W[1]-hardness in G-mc. For (α, β)-Linear Degree Domination, this takes the
form of arbitrary deletion tables for α ∈ (0, 1] and arbitrary retention tables for α = 0.

▶ Definition 4. Let (a0, I, c) be a triple with {a0} ∪ I ⊆ N and c : N → N. We call c a cost
function. We say that (a0, I, c) is decreasing valid if, by listing the elements a1, . . . , a|I| of I

in decreasing order, we have a0 > a1 > . . . > a|I| > 1, and 0 = c(a0) < c(a1) < . . . < c(a|I|).
For a decreasing valid triple (a0, I, c), we say that a graph G = (V, E) is a (a0, I, c)-degree

deletion graph if all of the following conditions hold:
1. G has maximum degree a0 and at most (a0c(a|I|))10 vertices;
2. for any ai ∈ I, there exists X ⊆ V of size c(ai) such that G − X has maximum degree ai;
3. for any ai ∈ I and any X ⊆ V of size strictly less than c(ai), G − X has maximum degree

at least ai−1.
In addition, if G ∈ stars and satisfies the above three conditions, then we say that G is a
(a0, I, c)-degree deletion star graph.

We say that a graph class G admits arbitrary degree deletion tables if, for any decreasing
valid triple (a0, I, c), one can construct in time polynomial in a0c(a|I|) a graph G ∈ G such
that G is a (a0, I, c)-degree deletion graph. Note that the size of G is only required to be
a polynomial function of a0c(a|I|), but we fix it to (a0c(a|I|))10 for convenience. For an
integer x ∈ [0, |V |], we call f(x) = min{∆(G − X) : |X| = x} the degree deletion function
of G, where X is a subset of V . Figure 2 demonstrates the degree deletion function of a
(a0, I, c)-degree deletion graph. The intuition behind degree deletion graphs is that their
deletion function has a stepwise behavior with many steps.

The above notion of an arbitrary solution table works well for α ∈ (0, 1]. For α = 0, we
need to replace “deletion” with “retention”. This is useful for the α = 0 case, where the set
X must contain at least β neighbors of each unchosen vertex. Hence, the steps of the table
describe, for each number x of vertices to include in X, the maximum possible δ(G − X, X)
that can be achieved with a subset of size x.
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▶ Definition 5. Let (a0, I, c) be a triple with {a0} ∪ I ⊆ N and c : N → N. We call c a cost
function. We say that (a0, I, c) is increasing valid if, by listing the elements a1, . . . , a|I| of I in
decreasing order, we have a0 > a1 > . . . > a|I| > 100,1 and c(a0) > c(a1) > . . . > c(a|I|) = 0.

For a increasing valid triple (a0, I, c), we say that a graph G = (V, E) is a (a0, I, c)-degree
retention graph above (p, l), where p and l are positive integers and l < 100, if all of the
following conditions hold:
1. G has maximum degree a0, at most (a0c(a0))10 vertices, and p vertices of degree less

than l;
2. for any ai ∈ {a0} ∪ I, there exists X ⊆ V of size p + c(ai) such that the minimum degree

of G − X in X is ai;
3. for any ai ∈ {a0} ∪ I and any X ⊆ V of size strictly less than p + c(ai), the minimum

degree of G − X in X is at most ai+1, where here we define a|I|+1 = l.

We say that a graph class G admits arbitrary degree retention tables if, for any increasing
valid triple (a0, I, c), there exist integers p and l such that one can construct in time polynomial
in c(a0)a0 a graph G ∈ G such that G is a (a0, I, c)-degree retention graph above (p, l). Note
that condition 2 of Definition 5 imply that p + c(a0) < |V | ≤ (c(a0)a0)10. For any integer
x ∈ [0, |V | − 1], we call f(x) = max{δ(G − X, X) : |X| = x} the degree retention function of
G, where X is a subset of V . Importantly, stars admit both types of tables.

▶ Proposition 6. The graph class stars admits arbitrary deletion tables and arbitrary
retention tables.

▶ Theorem 7. The (α, β)-Linear Degree Domination problem is W[1]-hard in the
following cases:
1. α = 0, β is in the input, and the parameter is the (G ∪ I)-modular cardinality, where G is

any graph class that admits arbitrary degree retention tables;
2. α is any fixed constant in the interval (0, 1), β is any fixed constant in Z, and the

parameter is the stars-modular cardinality;
3. α = 1, β is in the input, and the parameter is the (G ∪ I)-modular cardinality, where G is

any graph class that admits arbitrary degree deletion tables.

The proof of the Theorem 7 is quite long and can be found in [30]. The proof of the three
cases all use the same construction and the same set of claims, but most claims require an
argument for each case. The next section illustrates the main techniques on the case α = 1.
Using the relationship demonstrated in Figure 1 we have the following.

▶ Corollary 8. The (α, β)-Linear Degree Domination problem parameterized by either
clique-width, modular-width, cograph-modular cardinality, iterated type partition, and stars-
modular cardinality, is W[1]-hard in the following cases:
1. α = 0, β is in the input;
2. α is any fixed constant in the interval (0, 1), β is any fixed constant in Z;
3. α = 1, β is in the input.
In particular, Bounded Degree Deletion problem, k-Domination problem, and α-
Domination problem are W[1]-hard in all these parameters.

One can show that these problems are in XP parameterized by stars-modular cardinality.
Indeed, one can choose, for each stars module M , a number in [|M |]∪{0} of vertices to delete
in M , and apply these deletions greedily. There are at most |V (G)|G-mc(G) combinations

1 In fact, any large constant here is enough for our proof in this paper, we fix it to be 100 for convenience.
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of choices, and it suffices to try each of them. This works because the greedy strategy is
applicable to stars, and it remains to study the XP complexity for other parameters. The
next proposition is not related to the above hardness results, but allows us to fill in some of
the gaps that the above leaves in our results table. In section 6, we will also show that for
α = 1 and β in the input, the problem is FPT in cluster-modular cardinality.

▶ Proposition 9. The (α, β)-Linear Degree Domination problem is FPT in the following
cases:
1. α ∈ [0, 1], β is in the input, and the parameter is the neighborhood diversity;
2. α ∈ {0, 1}, β is a constant, and the parameter is the clique-width.

The first case requires some work, whereas the second is a simple application of Courcelle’s
theorem [10], as the problem admits a constant-length MSO1 formula.

5 (1, β)-Linear Degree Domination (BDD)

We sketch the proof of the W[1]-hardness of (1, β)-Linear Degree Domination problem,
which is enough to demonstrate the main idea of the reduction technique. Recall that we
assume that α = 1 and β < 0, which is the Bounded Degree Deletion problem. That is,
we must delete at most q vertices such that the resulting subgraph has maximum degree at
most |β|. Furthermore, in the (1, β)-Linear Degree Domination problem, we also call X,
the (1, β)-linear degree dominating set of G, the deletion part of G.

We provide a reduction from the Symmetric Multicolored Clique problem, which we
define as follows. A symmetric multicolored graph G = (V 1 ∪ V 2 . . . ∪ V k, E) is a connected
graph such that, for all distinct i, j ∈ [k],
1. V i = {vi

1, . . . , vi
n}, where n ≥ k;

2. all the vertices of V i are colored by color i;
3. if vi

rvj
s ∈ E(G), then vj

svi
r ∈ E(G) as well.

Then, for the Symmetric Multicolored Clique problem, the input is a symmetry
multicolored graph G and an integer k, and the objective is to decide whether G contains a
k-clique with vertices of all k colors. We also call vi

rvj
s and vi

svj
r symmetry edges.

The reduction in [15, Lemma 1], which proves the W[1]-hardness of the multicolored
clique problem, actually produces a symmetric multicolored graph. Hence, Symmetric
Multicolored Clique is W[1]-hard. We now sketch the following.

▶ Lemma 10. Case 3 for the W[1]-hardness results in Theorem 7 is correct.

Let (G, k) be an instance of Symmetric Multicolored Clique, where G = (V 1 ∪
V 2 ∪ . . . ∪ V k, E). Without loss of generality, suppose k ≥ 100, otherwise, the problem
can be solved in polynomial time. We will construct a corresponding instance (H, β, q) of
(1, β)-Linear Degree Domination, where H is a graph whose G-modular cardinality will
be bounded by O(k2), β = −(nk)10000, and q is the maximum allowed size of X, the desired
deletion part of H (to be specified later). Before proceeding, we will make use of a 2-sumfree-
set, which is a set of positive integers in which every couple of elements has a distinct sum.
That is, I is a 2-sumfree set if, for any (a, b), (a′, b′) ∈ I × I, a + b = a′ + b′ if and only if
{a, b} = {a′, b′} (note that a = b is possible). It is known that one can construct in time O(n3)
a 2-sumfree-set I of cardinality n in which the maximum value is n4, which can be achieved
with a greedy procedure (this is because (n + 1)4 − n4 > n3 and ai + aj − ar has at most n3

different values). We thus assume that we have built a 2-sumfree set I = {a1, . . . , an} for H,
where n4 ≥ a1 > . . . > an ≥ 1. Without loss of generality, we may multiply each ai ∈ I by an
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Ri Rj

Si Sj

Ti Tj

Uij

Rij

Figure 3 Illustration of the construction of H.

integer r, where here we choose r = 2(k −1)2k3. Then, we have that n4r ≥ a1 > . . . > an ≥ r

for the updated I. Moreover, for any distinct pair (a, b), (a′, b′) ∈ I × I, we have that the
absolute value of a + b − a′ − b′ is at least r.

For each color class V i = {vi
1, . . . , vi

n} of G, we provide a bijection fi from V i to I, such
that fi(vi

s) = as for every s ∈ [n]. Clearly, we can use f−1
i (as) to denote the unique vertex

vi
s of V i associated with as ∈ I. We have that, for all s, t ∈ [n], each pair of as, at ∈ I

has a unique sum. For distinct i, j and any u ∈ V i, w ∈ V j such that uw ∈ E(G), if
fi(u) + fj(w) = as + at, then edge uw is either vi

svj
t or vi

tv
j
s. Moreover, for any distinct color

classes V i, V j , edges vi
svj

t and vi
tv

j
s, together, are both in E(G) or both not in E(G). Hence,

by looking at a sum in I, we will be able to tell whether it is corresponding to a pair of
symmetry edges between V i and V j , or not.

Next, we define s = n10, q = ks +
(

k
2
)
s, a0 = q + 1, and an+1 = an − 1. We construct H

as in Figure 3. First, for each color class V i of G, add three factors Ri, Si, Ti to H, where:
Ri is an edgeless graph of size |β| − s.
Si is a (a0, I ∪ {an+1}, c)-degree deletion graph, where we put the costs c(aj) = s − 1

2 aj

for aj ∈ I and c(an+1) = a0.
Ti is an edgeless graph of size s.

We then make Si adjacent with Ri and Ti. Secondly, for each pair of color classes V i, V j

with i < j, we add another two factors Uij , Rij , where:
Rij is an edgeless graph of size |β| − 2s.
Uij is built as follows. Suppose integer set Iij consists of all a + b such that a, b ∈ I and
symmetry edges f−1

i (b)f−1
j (a), f−1

i (a)f−1
j (b) ∈ E(G). Let ℓij = min(Iij).

Then Uij is a (a0, Iij ∪ {ℓij − 1}, cij)-degree deletion graph, where we put the cost cij(a +
b) = s − 1

2(k−1) (a + b), and we put cij(ℓij − 1) = a0.
We then make Uij adjacent with Rij , and adjacent with Ti and Tj . To avoid cumbersome
notation, we define Uij = Uji, Rij = Rji, cij = cji, and Iij = Iji. This completes the
construction of H. It is easy to see that H can be constructed in polynomial time and the
number of factors in H is a polynomial function in k.

All that remains is to argue that the objective instance is equivalent to the original one.
The following lemma gives the forward direction. We only provide a sketch here.

▶ Lemma 11. Suppose that G contains a multicolored clique C of size k. Then there is
X ⊆ V (H) of size at most q = ks +

(
k
2
)
s such that ∆(H − X) ≤ |β|.

Proof sketch. For i ∈ [k], let f−1
i (âi) be the vertex of V i that belongs to the multicolored

clique C, where âi ∈ I is the number associated with the vertex. For any i ̸= j, we know
that vertices f−1

i (âi) and f−1
j (âj) are in C, which means that f−1

i (âi)f−1
j (âj) ∈ E(G). This
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implies that âi + âj is in the Iij list that was used to construct Uij . We then show how to
construct the vertex set X for H. The intersection of each Ri and X is empty. For each Ti,
add âi vertices to X. For each Si, add c(âi) = s − 1

2 âi vertices to X. This can be done so
that Si − X has maximum degree âi according to Definition 4. The intersection of each Rij

and X is empty. For each Uij , we can add cij(âi + âj) = s − âi+âj

2(k−1) vertices to X so that
Uij − X has maximum degree âi + âj according to Definition 4. It is not hard to verify that
X with exactly q vertices satisfies that ∆(H − X) ≤ |β|. ◀

The converse direction is much more difficult.

▶ Lemma 12. Suppose that there is X ⊆ V (H) with |X| ≤ q such that H − X has maximum
degree at most |β|. Then G contains a multicolored clique of size k.

Proof sketch. Let X ⊆ V (H) be of size at most q such that H − X has maximum degree
|β| or less. To ease notation slightly, for a factor M of H , we will write X(M) := X ∩ V (M)
and χ(M) := |X(M)|. The proof is divided into a series of claims. ◀

▷ Claim 13. For each i ∈ [k], we may assume that χ(Ri) = 0. Moreover for each distinct
i, j ∈ [k], we may assume that χ(Rij) = 0.

The rough idea is that a vertex of X(Ri) can always be replaced by a vertex of Ti \ X

if the latter is non-empty. If V (Ti) \ X is empty, then after an unavoidable at least c(a1)
vertices deletion from Si, no deletion in Ri is needed since each remaining vertex of Si in
H − X has maximum degree at most |β| − s + a1 < |β|. The idea for χ(Rij) = 0 goes the
same way.

▷ Claim 14. For any i ∈ [k], we may assume ∆(Si − X) ∈ {a1, . . . , an}, and that χ(Si) =
c(∆(Si − X)).

The rough idea is that Case 2 of Definition 4 states that we can delete c(aj) vertices
from Si to make ∆(Si − X) = aj , where 0 ≤ j ≤ n + 1. In fact, this is the smallest
maximum degree we can achieve in Si by deleting between c(aj) and c(aj+1) − 1 vertices,
because of the stepwise behavior of arbitrary deletion tables. Moreover, we already know
that χ(Ri) = 0 based on Claim 13. So, if ∆(Si − X) = a0 there is a vertex in Si − X with
degree |β| − s + a0 > |β|, and if ∆(Si − X) = an − 1 or less then c(an − 1) = a0 > q vertices
have to be deleted from Si.

▷ Claim 15. For any distinct i, j ∈ [k], we may assume that ∆(Uij − X) ∈ Iij , and that
χ(Uij) = cij(∆(Uij − X)).

The idea for proving this claim is similar to that of Claim 14. Our next step is to argue
that the degree chosen by Uij must be the sum of the degrees chosen by Si and Sj . More
specifically, for i ∈ [k], we say that Si chose aj ∈ I if ∆(Si − X) = aj and χ(Si) = c(aj).
Likewise, for distinct i, j ∈ [k], we say that Uij chose a, b ∈ I if ∆(Uij − X) = a + b and
χ(Uij) = cij(a+ b). Note that by Claim 14, each Si chooses one aj and by Claim 15, each Uij

chooses one pair a, b such that symmetry edges f−1
i (b)f−1

j (a), f−1
i (a)f−1

j (b) ∈ E(G). The
point to make is that if Si and Sj chose a and b, respectively, then Uij must have chosen a, b.

▷ Claim 16. For each i ̸= j, if Si chose a ∈ I and Sj chose b ∈ I, then Uij chose a, b.
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We sketch it as follows. For each i ∈ [k], we will denote by âi the element of I that Si

chose. We divide the Uij ’s into three groups:

U< = {Uij : Uij chose a′, b′ such that a′ + b′ < âi + âj}
U= = {Uij : Uij chose a′, b′ such that a′ + b′ = âi + âj}
U> = {Uij : Uij chose a′, b′ such that a′ + b′ > âi + âj}

To prove the claim, it suffices to show that U< and U> are empty (this is because Uij ∈ U=

is only possible if Uij chose âi, âj , since all the sum pairs are distinct). The rough idea is as
follows. If each Uij chose the correct âi, âj , then each of them will incur a deletion cost of
cij(âi + âj) = s − âi+âj

2(k−1) and end up cancelling the deletion costs of the Si and Ti factors.
If U< is non-empty, it incurs extra deletion cost with respect to cij(âi + âj) with no real
benefit. The complicated case is when U> is non-empty. In this case, Uij − X has higher
degree than if it had chosen âi, âj and incurs less deletions than cij(âi + âj). However, this
needs to be compensated with extra deletions in Ti and Tj . By using a charging argument,
we can show that the sum of extra deletions required for all the U> members outweighs the
deletions saved in the Uij ’s of U>.

We can now construct a multicolored clique. Define C = {f−1
i (âi) : i ∈

[k] and Si chose âi}. We claim that C is a clique. By Claim 14, each Si chooses some
âi and thus |C| = k. Now let f−1

i (âi), f−1
j (âj) be two vertices of C, where i < j. Then

âi, âj were chosen by Si and Sj , respectively, and by Claim 15 we know that Uij chose
âi + âj . By the construction of the Uij solution table, this is only possible if symmetry
edges f−1

i (âi)f−1
j (âj), f−1

i (âj)f−1
j (âi) ∈ E(G). Therefore, f−1

i (âi)f−1
j (âj) ∈ E(G) and C is

a clique.

6 FPT algorithms for succinct solution tables

In this section, we study the Bounded Degree Deletion problem (i.e. α = 1, β < 0)
on graph classes that admit succinct solution tables. Let G = (V, E) be a graph. Assume
Sx ⊆ 2V consists of all subsets of V with size x ∈ [0, |V |]. X ∈ Sx is called an x-deletion set
of G if ∆(G − X) = min{∆(G − Y ) : Y ∈ Sx}. An x-deletion of G is the process of deleting
all vertices of an x-deletion set from G. Clearly, the degree deletion function f(x) of G is
the maximum degree of G after an x-deletion. A piecewise linear function g : R → R is a
continuous function defined on a sequence of intervals, such that the function is linearly
restricted to each of the intervals (each such linear function is called a sub-function of g). In
addition, a constant piecewise linear function is a piecewise linear function that consists of a
constant number of linear sub-functions.

▶ Definition 17. Let G be a polynomial-time recognizable graph class. For G ∈ G, suppose
that fG(x) is the degree deletion function of G = (V, E), where x ∈ [0, |V |]. We say that G
admits a succinct solution table for Bounded Degree Deletion if, for every G ∈ G, there
exists a function gG : R → R that satisfies at least one of the following conditions:
1. gG is a constant piecewise linear function such that fG(x) = gG(x) for every integer

x ∈ [0, |V (G)|],
2. gG is a piecewise convex linear function such that fG(x) =

⌈
gG(x)

⌉
for every integer

x ∈ [0, |V (G)|].
Moreover, gG can be described and constructed in polynomial time with respect to |V (G)|.

A graph class admits a succinct solution table of type t for Bounded Degree Deletion if
we refer to the condition t, where t ∈ {1, 2}. Type 1 implies the solution table can be divided
into a constant number of blocks, each of which can be encoded into a small number of bits

MFCS 2023
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(note that for any fixed graph class, the upper bound on the constant should be fixed as
well). In type 2, the solution table could be convex, but could also be non-convex with a
larger number of blocks, but we can reduce this special non-convex function to a convex
function using ceilings (this occurs with cluster-mc). As we show, these definitions capture
the intuition of solution tables that can be merged in FPT time.

▶ Theorem 18. Let G be a graph class that admits a succinct solution table for Bounded
Degree Deletion. Assume a minimum G-modular partition is given. Then, Bounded
Degree Deletion is FPT parameterized by G-modular cardinality.

Application. Let graph class BDT include all graphs with bounded degree and treewidth.
We prove BDT and cluster admit succinct solution tables of type 1 and type 2, respectively.
Thus, Bounded Degree Deletion is FPT in parameter BDT -mc or cluster-mc. Clearly,
BDT -mc is bounded by a function of vertex cover number and is incomparable with mw

(linear forest has unbounded mw). Moreover, cluster-mc is a parameter with size at most
nd and at least mw.

▶ Theorem 19. BDT admits a succinct solution table for Bounded Degree Deletion.
Therefore, the Bounded Degree Deletion is FPT in parameter BDT -mc.

Proof sketch. For every G ∈ BDT, the degree deletion function of G can be represented by
an efficiently computable step function with a constant number of steps. ◀

▶ Lemma 20. Assume cluster graph H contains b complete graphs Ka, where Ka is the
maximum size complete graph in H. Let q ∈ [b, |V (H)|]. Suppose R is obtained from H by
deleting exactly one vertex from every Ka of H. Then, H has a q-deletion such that the
maximum degree of the remaining graph is h if and only if R has a (q − b)-deletion such that
the maximum degree of the remaining graph is h.

▶ Theorem 21. Cluster admits a succinct solution table for Bounded Degree Deletion.
Therefore, the Bounded Degree Deletion is FPT in parameter cluster-mc.

Proof sketch. Let G be a cluster graph and fG(x) be the degree deletion function of G. We
can construct a piecewise convex linear function gG based on the structure of G, and prove
that fG(x) =

⌈
gG(x)

⌉
by using the properties of the two functions and Lemma 20. ◀

Open problems. We conclude with some interesting problems.
Can we characterize graph classes are easily mergeable? For instance, is the class of
H-free graphs easily mergeable, for any fixed graph H?
Is Bounded Degree Deletion fixed-parameter tractable in parameter (K1,t-free)-
modular cardinality, where t ≥ 3 is either fixed or a parameter?
Is k-Domination FPT in parameter cluster-modular cardinality, where β is related to
the input size?
Is α-Domination FPT in parameter cluster-modular cardinality?
The Red-Blue Capacitated Dominating Set problem is W[1]-hard in cw [17]. It is
not hard to prove it to be FPT in mw using succinct solution tables. Does the same hold
for the Red-Blue Exact Saturated Capacitated Dominating Set?
Are Edge Dominating Set, Max-cut, and Partition Into Triangles FPT in
parameter cograph-modular cardinality?
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Abstract
Given a graph G and an integer k, Max Min FVS asks whether there exists a minimal set of vertices
of size at least k whose deletion destroys all cycles. We present several results that improve upon
the state of the art of the parameterized complexity of this problem with respect to both structural
and natural parameters.

Using standard DP techniques, we first present an algorithm of time twO(tw)nO(1), significantly
generalizing a recent algorithm of Gaikwad et al. of time vcO(vc)nO(1), where tw, vc denote the input
graph’s treewidth and vertex cover respectively. Subsequently, we show that both of these algorithms
are essentially optimal, since a vco(vc)nO(1) algorithm would refute the ETH.

With respect to the natural parameter k, the aforementioned recent work by Gaikwad et al.
claimed an FPT branching algorithm with complexity 10knO(1). We point out that this algorithm is
incorrect and present a branching algorithm of complexity 9.34knO(1).
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1 Introduction

We consider a MaxMin version of the well-studied feedback vertex set problem where, given
a graph G = (V, E) and a target size k, we are asked to find a set of vertices S with the
following properties: (i) every cycle of G contains a vertex of S, that is, S is a feedback
vertex set (ii) no proper subset of S is a feedback vertex set, that is, S is minimal (iii)
|S| ≥ k. Although much less studied than its minimization cousin, Max Min FVS has
recently attracted attention in the literature as part of a broader study of MaxMin versions
of standard problems, such as Max Min Vertex Cover and Upper Dominating Set.
The main motivation of this line of research is the search for a deeper understanding of the
performance of simple greedy algorithms: given an input, we would like to compute what is
the worst possible solution that would still not be improvable by a simple heuristic, such as
removing redundant vertices. Nevertheless, over recent years MaxMin problems have been
found to possess an interesting combinatorial structure of their own and have now become
an object of more widespread study (we survey some such results below).
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It is not surprising that Max Min FVS is known to be NP-complete and is in fact
significantly harder than Minimum FVS in most respects, such as its approximability or its
amenability to algorithms solving special cases. Given the problem’s hardness, in this paper
we focus on the parameterized complexity of Max Min FVS, since parameterized complexity
is one of the main tools for dealing with computational intractability1. We consider two
types of parameterizations: the natural parameter k; and the parameterization by structural
width measures, such as treewidth. In order to place our results into perspective, we first
recall the current state of the art.

Previous work. Max Min FVS was first shown to be NP-complete even on graphs of
maximum degree 9 by Mishra and Sikdar [32]. This was subsequently improved to NP-
completeness for graphs of maximum degree 6 by Dublois et al. [20], who also present an
approximation algorithm with ratio n2/3 and proved that this is optimal unless P=NP. A
consequence of the polynomial time approximation algorithm of [20] was the existence of
a kernel of order O(k3), which implied that the problem is fixed-parameter tractable with
respect to the natural parameter k. Some evidence that this kernel size may be optimal was
later given by [2]. We note also that the problem can easily be seen to be FPT parameterized
by treewidth (indeed even by clique-width) as the property that a set is a minimal feedback
vertex set is MSO1-expressible, so standard algorithmic meta-theorems apply.

Given the above, the state of the art until recently was that this problem was known
to be FPT for the two most well-studied parameterizations (by k and by treewidth), but
concrete FPT algorithms were missing. An attempt to advance this state of the art and
systematically study the parameterized complexity of the problem was recently undertaken
by Gaikwad et al. [23], who presented exact algorithms for this problem running in time
10knO(1) and vcO(vc)nO(1), where vc is the input graph’s vertex cover, which is known to be
a (much) more restrictive parameter than treewidth. Leveraging the latter algorithm, [23]
also present an FPT approximation scheme which can (1 − ε)-approximate the problem in
time 2O(vc/ε)nO(1), that is, single-exponential time with respect to vc.

Our contribution. We begin our work by considering Max Min FVS parameterized by
the most standard structural parameter, treewidth. We observe that, using standard DP
techniques, we can obtain an algorithm running in time twO(tw)nO(1), that is, slightly super-
exponential with respect to treewidth. Note that this slightly super-exponential running
time is already present in the vcO(vc)nO(1) algorithm of [23], despite the fact that vertex
cover is a much more severely restricted parameter. Hence, our algorithm generalizes the
algorithm of [23] without a significant sacrifice in the running time.

Despite the above, our main contribution with respect to structural parameters is not
our algorithm for parameter treewidth, but an answer to a question that is naturally posed
given the above: can the super-exponential dependence present in both our algorithm and
the algorithm of [23] be avoided, that is, can we obtain a 2O(tw)nO(1) algorithm? We show
that this is likely impossible, as the existence of an algorithm running in time vco(vc)nO(1) is
ruled out by the ETH (and hence also the existence of a two(tw)nO(1) algorithm). This result
is likely to be of wider interest to the parameterized complexity community, where one of
the most exciting developments of the last fifteen years has arguably been the development
of the Cut&Count technique (and its variations). One of the crowning achievements of this

1 Throughout the paper we assume that the reader is familiar with the basics of parameterized complexity,
as given in standard textbooks [16].
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technique is the design of single-exponential algorithms for connectivity problems – indeed an
algorithm running in time 3twn for Minimum FVS is given in [17]. It has therefore been of
much interest to understand which connectivity problems admit single-exponential algorithms
using such techniques (see e.g. [7] and the references within). Curiously, even though several
cousins of Minimum Feedback Vertex Set have been considered in this context (such as
Subset Feedback Vertex Set and Restricted Edge-Subset Feedback Edge Set),
for Max Min FVS, which is arguably a very natural variant, it was not known whether a
single-exponential algorithm for parameter treewidth is possible. Our work thus adds to the
literature a natural connectivity problem where Cut&Count can provably not be applied
(under standard assumptions). Interestingly, our lower bound even applies to the case of
vertex cover, which is rare, as most problems tend to become rather easy under this very
restrictive parameter.

We then move on to consider the parameterization of the problem by k, the size of the
sought solution. Observe that a kO(k)nO(1) algorithm can easily be obtained by the results
sketched above and a simple win/win argument: start with any minimal feedback vertex
set S of the given graph G: if |S| ≥ k we are done; if not, then tw(G) ≤ k and we can solve
the problem using the algorithm for treewidth. It is therefore only interesting to consider
algorithms with a single-exponential dependence on k. Such an algorithm, with complexity
10knO(1), was claimed by [23]. Unfortunately, as we explain in detail in Section 5, this
algorithm contains a significant flaw2.

Our contribution is to present a corrected version of the algorithm of [23], which also
achieves a slightly better running time of 9.34knO(1), compared to the 10knO(1) of the (flawed)
algorithm of [23]. Our algorithm follows the same general strategy of [23], branching and
placing vertices in the forest or the feedback vertex set. However, we have to rely on a more
sophisticated measure of progress, because simply counting the size of the selected set is not
sufficient. We therefore measure our progress towards a restricted special case we identify,
namely the case where the undecided part of the graph induces a linear forest. Though
this special case sounds tantalizingly simple, we show that the problem is still NP-complete
under this restriction, but obtaining an FPT algorithm is much easier. We then plug in our
algorithm to a more involved branching procedure which aims to either reduce instances into
this special case, or output a certifiable minimal feedback vertex set of the desired size.

Finally, motivated by the above we note that a blocking point in the design of algorithms
for Max Min FVS seems to be the difficulty of the extension problem: given a set S0,
decide if a minimal fvs S that extends S0 exists. As mentioned, Casel et al. [13] showed
that this problem is W[1]-hard parameterized by |S0|. Intriguingly, however, it is not even
known if this problem is in XP, that is, whether it is solvable in polynomial time for fixed
k. We show that this is perhaps not surprising, as obtaining a polynomial time algorithm
in this case would imply the existence of a polynomial time algorithm for the notorious
k-in-a-Tree problem: given k terminals in a graph, find an induced tree that contains them.
Since this problem was solved for k = 3 in a breakthrough by Chudnovsky and Seymour [15],
the complexity for fixed k ≥ 4 has remained a big open problem (for example [29] states
that “Solving it in polynomial time for constant k would be a huge result”). It is therefore
perhaps not surprising that obtaining an XP algorithm for the extension problem for minimal
feedback vertex sets of fixed size is challenging, since such an algorithm would settle another
long-standing problem.

2 Saket Saurabh, one of the authors of [23], confirmed so via private communication with Michael Lampis.
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Other relevant work. As mentioned, Max Min FVS is an example of a wider class of
MaxMin problems which have recently attracted much attention in the literature, among
the most well-studied of which are Maximum Minimal Vertex Cover [2, 11, 12, 34] and
Upper Dominating Set (which is the standard name for Maximum Minimal Dominating
Set) [1, 3, 5, 21]. Besides these problems, MaxMin or MinMax versions of cut and separations
problems [19, 26, 30], knapsack problems [22, 24], matching problems [14], and coloring
problems [6] have also been studied.

The question of which connectivity problems admit single-exponential algorithms param-
eterized by treewidth has been well-studied over the last decade. As mentioned, the main
breakthrough was the discovery of the Cut&Count technique [16], which gave randomized
2O(tw)nO(1) algorithms for many such problems, such as Steiner Tree, Hamiltonicity,
Connected Dominating Set and others. Follow-up work also provided deterministic
algorithms with complexity 2O(tw)nO(1) [8]. It is important to note that the discovery of
these techniques was considered a surprise at the time, as the conventional wisdom was that
connectivity problems probably require twO(tw) time to be solved [31]. Naturally, the topic
was taken up with much excitement, in an attempt to discover the limits of such techniques,
including problems for which they cannot work. In this vein, [33] gave a meta-theorem
capturing many tractable problems, and also an example problem that cannot be solved in
time 2o(tw2)nO(1) under the ETH. Several other examples of connectivity problems which
require slightly super-exponential time parameterized by treewidth are now known [4, 27],
with the most relevant to our work being the feedback vertex set variants studied in [7, 10],
as well as the digraph version of the minimum feedback vertex set problem (parameterized
by the treewidth of the underlying graph) [9]. The results of our paper seem to confirm the
intuition that the Cut&Count technique is rather fragile when applied to feedback vertex set
problems, since in many variations or generalizations of this problem, a super-exponential
dependence on treewidth is inevitable (assuming the ETH).

2 Preliminaries

Throughout the paper, we use standard graph notation [18]. Moreover, for vertex u ∈ V (G),
let degX(u) denote its degree in G[X ∪ {u}], where X ⊆ V (G). A multigraph G is a graph
which is permitted to have multiple edges with the same end nodes, thus, two vertices may
be connected by more than one edge. Given a (multi)graph G, where e = {u, v} ∈ E(G) is a
not necessarily unique edge connecting distinct vertices u and v, the contraction of e results
in a new graph G′ such that V (G′) = (V (G) \ {u, v}) ∪ {w}, while for each edge {u, x} or
{v, x} in E(G), there exists an edge {w, x} in E(G′). Any edge e ∈ E(G) not incident to
u, v also belongs to E(G′). If u and v were additionally connected by an edge apart from e,
then w has a self loop.

For i ∈ N, [i] denotes the set {1, . . . , i}. A feedback vertex set S of G is minimal if and
only if ∀s ∈ S, G[(V (G) \ S) ∪ {s}] contains a cycle, namely a private cycle of s [21]. Lastly,
we make use of a weaker version of ETH, which states that 3-SAT cannot be determined in
time 2o(n), where n denotes the number of the variables [28].

Finally, note that the proofs of all lemmas and theorems marked with (⋆) are present in
the full version of the paper.

3 Treewidth Algorithm

Here we will present an algorithm for Max Min FVS parameterized by the treewidth of
the input graph, arguably the most well studied structural parameter. As a corollary of the
lower bound established in Section 4, it follows that the running time of the algorithm is
essentially optimal under the ETH.
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▶ Theorem 1. (⋆) Given an instance I = (G, k) of Max Min FVS, as well as a nice tree
decomposition of G of width tw, there exists an algorithm that decides I in time twO(tw)nO(1).

Proof sketch. The main idea lies on performing standard dynamic programming on the
nodes of the nice tree decomposition. To this end, for each node, we will consider all the
partial solutions, corresponding to (not necessarily minimal) feedback vertex sets of the
subgraph induced by the vertices of the nodes of the corresponding subtree of the tree
decomposition. We will try to extend such a feedback vertex set to a minimal feedback
vertex set of G, that respects the partial solution. For each partial solution, it is imperative
to identify, apart from the vertices of the bag that belong to the feedback vertex set, the
connectivity of the rest of the vertices in the potential final forest. In order to do so, we
consider a coloring indicating that, same colored vertices of the forest of the partial solution,
should be in the same connected component of the potential final forest. Moreover, we keep
track of which vertices of the forest of the partial solution are connected via paths containing
forgotten vertices. Finally, for each vertex of the feedback vertex set of the partial solution,
we need to identify one of its private cycles. To do so, we first guess the connected component
of the potential final forest that “includes” such a private cycle, while additionally keeping
track of the number of edges between the vertex and said component. ◀

4 ETH Lower Bound

In this section we present a lower bound on the complexity of solving Max Min FVS
parameterized by vertex cover. Starting from a 3-SAT instance on n variables, we produce
an equivalent Max Min FVS instance on a graph of vertex cover O(n/ log n), hence
any algorithm solving the latter problem in time vco(vc)nO(1) would refute the ETH. As
already mentioned, vertex cover is a very restrictive structural parameter, and due to known
relationships of vertex cover with more general parameters, such as treedepth and treewidth,
analogous lower bounds follow for these parameters. We first state the main theorem.

▶ Theorem 2. There is no vco(vc)nO(1) time algorithm for Max Min FVS, where vc denotes
the size of the minimum vertex cover of the input graph, unless the ETH fails.

Before we present the details of our construction, let us give some high-level intuition.
Our goal is to “compress” an n-variable instance of 3-SAT, into an Max Min FVS instance
with vertex cover roughly n/ log n. To this end, we will construct log n choice gadgets, each
of which is supposed to represent n/ log n variables, while contributing only n/ log2 n to the
vertex cover. Hence, each vertex of each such gadget must be capable of representing roughly
log n variables.

Our choice gadget may be thought of as a variation of a bipartite graph with sets L, R, of
size roughly n/ log2 n and

√
n respectively. If one naively tries to encode information in such

a gadget by selecting which vertices of L ∪ R belong in an optimal solution, this would only
give 2 choices per vertex, which is not efficient enough. Instead, we engineer things in a way
that all vertices of L ∪ R must belong in the forest in an optimal solution, and the interesting
choice for a vertex ℓ of L is with which vertex r of R we will place ℓ in the same component.
In this sense, a vertex ℓ of L has |R| choices, which is sufficient to encode the assignment for
Ω(log n) variables. What remains, then, is to add machinery that enforces this basic setup,
and then clause checking vertices which for each clause verify that the clause is satisfied by
testing if an ℓ vertex that represents one of its literals is in the same component as an r

vertex that represents a satisfying assignment for the clause.
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4.1 Preliminary Tools
Before we present the construction that proves Theorem 2, we give a variant of 3-SAT from
which it will be more convenient to start our reduction, as well as a basic force gadget that
we will use in our construction to ensure that some vertices must be placed in the forest in
order to achieve an optimal solution.

3P3SAT. We first define a constrained version of 3-SAT, called 3-Partitioned-3-SAT
(3P3SAT for short), and establish its hardness under the ETH.

3-Partitioned-3-SAT
Input: A formula ϕ in 3-CNF form, together with a partition of the set of its variables V

into three disjoint sets V1, V2, V3, with |Vi| = n, such that no clause contains more than
one variable from each Vi.
Task: Determine whether ϕ is satisfiable.

▶ Theorem 3. (⋆) 3-Partitioned-3-SAT cannot be decided in time 2o(n), unless the ETH
fails.

Force gadgets. We now present a gadget that will ensure that a vertex u must be placed
in the forest in any solution that finds a large minimal feedback vertex set. In the remainder,
suppose that A is a sufficiently large value (we give a concrete value to A in the next section).
When we say that we attach a force gadget to a vertex u, we introduce A + 1 new vertices
ū, u1, . . . , uA to the graph such that the vertices ui form an independent set, while there
exist edges {u, ui}, {ū, ui} for all i ∈ [A], as well as the edge {u, ū}. We refer to vertex ū as
the gadget twin of u, while the rest of the vertices will be referred to as the gadget leaves of
u. Intuitively, the idea here is that if u (or ū) is contained in a minimal feedback vertex set,
then none of the A leaves of the gadget can be taken, because these vertices cannot have
private cycles. Hence, setting A to be sufficiently large will allow us to force u to be in the
forest.

u

ū

u1

u2

...

uA

Figure 1 Force gadget attached to vertex u.

4.2 Construction
Let ϕ be a 3P3SAT instance of m clauses, where |Vp| = n for p ∈ [3] and, without loss of
generality, assume that n is a power of 4 (this can be achieved by adding dummy variables
to the instance if needed). Partition each variable set Vp to log n subsets V q

p of size at most
⌈ n

log n ⌉, where p ∈ [3] and q ∈ [log n]. Let L = ⌈ n
log2 n

⌉. Moreover, partition each variable
subset V q

p into 2L subsets Vp,q
α of size as equal as possible, where α ∈ [2L]. In the following
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we will omit p and q and instead use the notation Vα, whenever p, q are clear from the
context. Define R =

√
n, A = n2 + m and k = (4AL + AR + 2LR) · 3 log n + m. We will

proceed with the construction of a graph G such that G has a minimal feedback vertex set
of size at least k if and only if ϕ is satisfiable.
For each variable subset V q

p , we define the choice gadget graph Gq
p as follows:

V (Gq
p) = {ℓi, ℓ′

i, κi, λi | i ∈ [2L]} ∪ {rj | j ∈ [R]} ∪ {mi
j | i ∈ [2L], j ∈ [R]},

all the vertices ℓi, ℓ′
i and rj have an attached force gadget,

for i ∈ [2L], N(κi) = Mi ∪ {λi} and N(λi) = Mi ∪ {κi}, where Mi = {mi
j | j ∈ [R]},

for i ∈ [2L] and j ∈ [R], mi
j has an edge with ℓi, ℓ′

i and rj .
We will refer to the set Xi = Mi ∪ {κi, λi} as the choice set i.

Intuitively, one can think of this gadget as having been constructed as follows: we start
with a complete bipartite graph that has on one side the vertices ℓi and on the other the
vertices rj ; we subdivide each edge of this graph, giving the vertices mi

j ; for each i ∈ [2L] we
add ℓ′

i, κi, λi, connect them to the same mi
j vertices that ℓi is connected to and connect κi to

λi; we attach force gadgets to all ℓi, ℓ′
i, rj . Hence, as sketched before, the idea of this gadget

is that the choice of a vertex ℓi is to pick an rj with which it will be in the same component
in the forest, and this will be expressed by picking one mi

j that will be placed in the forest.

ℓi

ℓ′
i

mi
1

mi
2

...

mi
R

r1

r2

...

rR

κi λi

(a) Part of the construction concerning Xi.

ℓ2L

ℓ′
2L

...

ℓ1

ℓ′
1

m2L
1

...

m2L
R

m1
1

...
m1

R

κ2L λ2L

κ1 λ1

r1

...

rR

(b) The whole choice gadget graph Gq
p.

Figure 2 Black vertices have a force gadget attached.

Each vertex ℓα of Gq
p is used to represent a variable subset Vp,q

α ⊆ V q
p containing at most

|Vp,q
α | ≤

⌈
|V p,q|

2L

⌉
≤

⌈
⌈ n

log n ⌉
2L

⌉
=

⌈
n

2L log n

⌉
≤

⌈
n

2 n
log2 n

log n

⌉
=

⌈
log n

2

⌉
= log n

2

variables of ϕ, where we used Theorem 3.10 of [25], for f(x) = x/2L. We fix an arbitrary
one-to-one mapping so that every vertex mα

β , where β ∈ [R], corresponds to a different
assignment for this subset, which is dictated by which element of Mα was not included in the
final feedback vertex set. Since R = 2log n/2 =

√
n, the size of Mα is sufficient to uniquely

encode all the different assignments of Vα.
Finally, introduce vertices ci, where i ∈ [m], each of which corresponds to a clause of ϕ,

and define graph G as the union of these vertices as well as all graphs Gq
p, where p ∈ [3]

and q ∈ [log n]. For a clause vertex c, add an edge to ℓα when Vα contains a variable
appearing in c, as well as to the vertices rβ for each such ℓα, such that mα

β /∈ S corresponds
to an assignment of Vα satisfying c, where S denotes a minimal feedback vertex set. Notice
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that since no clause contains multiple variables from the same variable set Vi, due to the
refinement of the partition of the variables, it holds that all the variables of a clause will be
represented by vertices appearing in distinct Gq

p.

4.3 Correctness

Having constructed the previously described instance (G, k) of Max Min FVS, it remains
to prove its equivalence with the initial 3-Partitioned-3-SAT instance.

▶ Lemma 4. (⋆) Any minimal feedback vertex set S of G of size at least k has the following
properties:

(i) S does not contain any vertex attached with a force gadget or its gadget twin,
(ii) |Mi \ S| ≤ 1, for every Gq

p and i ∈ [2L],
(iii) |S ∩ V (Gq

p)| = 4AL + AR + 2LR,
where p ∈ [3] and q ∈ [log n].

▶ Lemma 5. (⋆) If ϕ has a satisfying assignment, then G has a minimal feedback vertex set
of size at least k.

▶ Lemma 6. (⋆) If G has a minimal feedback vertex set of size at least k, then ϕ has a
satisfying assignment.

▶ Lemma 7. (⋆) It holds that vc(G) = O(n/ log n).

Using the previous lemmas, we can prove Theorem 2.

Proof of Theorem 2. Let ϕ be a 3-Partitioned-3-SAT formula. In polynomial time, we
can construct a graph G such that, due to Lemmas 5 and 6, deciding if G has a minimal
feedback vertex set of size at least k is equivalent to deciding if ϕ has a satisfying assignment.
In that case, assuming there exists a vco(vc) algorithm for Max Min FVS, one could decide
3-Partitioned-3-SAT in time

vco(vc) =
(

n

log n

)o(n/ log n)
= 2(log n−log log n)o(n/ log n) = 2o(n),

which contradicts the ETH due to Theorem 3. ◀

Since for any graph G it holds that tw(G) ≤ vc(G), the following corollary holds.

▶ Corollary 8. There is no two(tw)nO(1) time algorithm for Max Min FVS, where tw denotes
the treewidth of the input graph, unless the ETH fails.

5 Natural Parameter Algorithm

In this section we will present an FPT algorithm for Max Min FVS parameterized by the
natural parameter, i.e. the size of the maximum minimal feedback vertex set k. The main
theorem of this section is the following.

▶ Theorem 9. Max Min FVS can be solved in time 9.34knO(1).
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Structure of the Section. In Section 5.1 we define the closely related Annotated MMFVS
problem, and prove that it remains NP-hard, even on some instances of specific form, called
path restricted instances. Subsequently, we present an algorithm dealing with this kind of
instances, which either returns a minimal feedback vertex set of size at least k or concludes
that this is a No instance of Annotated MMFVS. Afterwards, in Section 5.2, we solve
Max Min FVS by producing a number of instances of Annotated MMFVS and utilizing
the previous algorithm, therefore proving Theorem 9.

Oversight of [23]. The algorithm of [23] performs a branching procedure which marks
vertices as either belonging in the feedback vertex set or the remaining forest. The flaw is
that the algorithm ceases the branching once k vertices have been identified as vertices of
the feedback vertex set. However, this is not correct, since deciding if a given set S0 can be
extended into a minimal feedback vertex set S ⊇ S0 is NP-complete and even W[1]-hard
parameterized by |S0| [13]. Hence, identifying k vertices of the solution is not, in general,
sufficient to produce a feasible solution and the algorithm of [23] is incomplete, because it does
not explain how the guessed part of the feedback vertex set can be extended into a feasible
minimal solution. Intuitively, the pitfall here is that, unlike other standard maximization
problems, such as Max Clique, Max Min FVS is not monotone, that is, a graph that
contains a feasible solution of size k is not guaranteed to contain a feasible solution of size
k − 1 (consider, for instance, a K2,n).

5.1 Annotated MMFVS and Path Restricted Instances
First, we define the following closely related problem, denoted by Annotated MMFVS for
short.

Annotated Maximum Minimal Feedback Vertex Set
Input: A graph G = (V, E), disjoint sets S, F ⊆ V where S ∪ F is a feedback vertex set
of G, as well as an integer k.
Task: Determine whether there exists a minimal feedback vertex set S′ of G of size
|S′| ≥ k such that S′ ⊇ S and S′ ∩ F = ∅.

Remarks. Notice that if F is not a forest, then the corresponding instance always has
a negative answer. For the rest of this section, let U = V (G) \ (S ∪ F ). Moreover, let
H = {s ∈ S | degF (s) ≥ 2 and degU (s) ≤ 1} denote the set of good vertices of S. An
interesting path of G[U ] is a connected component of G[U ] such that for every vertex u

belonging to said component, it holds that degF ∪U (u) = 2. If every connected component of
G[U ] is an interesting path, then this is a path restricted instance. Furthermore, given an
instance I, let ammfvs(I) be equal to 1 if it is a Yes instance and 0 otherwise.

Let I = (G, S, F, k) be a path restricted instance of Annotated MMFVS. We will
present an algorithm that either returns a minimal feedback vertex set S′ ⊆ S ∪ U of G of
size at least k or concludes that this is a No instance of Annotated MMFVS. Notice that
Annotated MMFVS remains NP-hard even on such instances, as dictated by Theorem 10.
Therefore, we should not expect to solve path restricted instances of Annotated MMFVS
in polynomial time.

▶ Theorem 10. (⋆) Annotated MMFVS is NP-hard on path restricted instances, even if
all the paths are of length 2.
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We proceed by presenting the main algorithm of this subsection, which will be essential
in proving Theorem 9.

▶ Theorem 11. (⋆) Let I = (G, S, F, k) be a path restricted instance of Annotated
MMFVS, and let g denote the number of its good vertices. There is an algorithm running in
time O(3k−gnO(1)) which either returns a minimal feedback vertex set S′ ⊆ S ∪ U of G of
size at least k or concludes that I is a No instance of Annotated MMFVS.

Proof sketch. The main idea of the algorithm lies on the fact that we can efficiently handle
instances where either k = 0 or S = ∅. Towards this, we will employ a branching strategy
that, as long as S remains non empty, new instances with reduced k are produced. Prior to
performing branching, we first observe that we can efficiently deal with the good vertices.
Afterwards, by employing said branching strategy, in every step we decide which vertex will
be counted towards the k required, thereby reducing parameter k on each iteration. If at
some point k = 0 or S = ∅, it remains to decide whether this comprises a viable solution S′.
Notice that S′ may not be a solution for the annotated instance, since even if |S′| ≥ k, it
does not necessarily hold that S′ ⊇ S. ◀

5.2 Algorithm for Max Min FVS
We start by presenting a high level sketch of the algorithm for Max Min FVS. The starting
point is a minimal feedback vertex set S0 of G. Note that such a set can be obtained
in polynomial time, while if it is of size at least k, we are done. Therefore, assume that
|S0| < k. Then, assuming there exists a minimal feedback vertex set S∗, where |S∗| ≥ k and
F ∗ = V (G)\S∗, we will guess S0∩S∗, thereby producing instances I0 = (G, S0∩S∗, S0∩F ∗, k)
of Annotated MMFVS. Subsequently, we will establish a number of safe reduction rules,
which do not affect the answer of the instances. We will present a measure of progress µ,
which guarantees that if an instance I = (G, S, F, k) of Annotated MMFVS has µ(I) ≤ 1,
then G has a minimal feedback vertex set S′ ⊆ S ∪ U of size at least k. Then, we will employ
a branching strategy which, given Ii, will produce instances I1

i+1, I2
i+1 of lesser measure of

progress, such that Ii is a Yes instance if and only if at least one of I1
i+1, I2

i+1 is also a Yes
instance. If we can no further apply our branching strategy, and the measure of progress
remains greater than 1, then it holds that I is a path restricted instance and Theorem 11
applies.

Measure of progress. Let I = (G, S, F, k) be an instance of Annotated MMFVS. We
define as µ(I) = k + cc(F ) − g − p its measure of progress, where

cc(F ) denotes the number of connected components of F ,
g denotes the number of good vertices of S,
p denotes the number of interesting paths of G[U ].

It holds that if µ(I) ≤ 1, then the underlying Max Min FVS instance has a positive answer,
which does not necessarily respect the constraints dictated by the annotated version.

▶ Lemma 12. (⋆) Let I = (G, S, F, k) be an instance of Annotated MMFVS, where
µ(I) ≤ 1. Then, G has a minimal feedback vertex set S′ ⊆ S ∪ U of size at least k.

Reduction rules. In the following, we will describe some reduction rules which do not affect
the answer of an instance of Annotated MMFVS, while not increasing its measure of
progress.
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▶ Lemma 13. (⋆) Let G = (V, E) be a (multi)graph and uv ∈ E(G). Then, G is acyclic if
and only if G/uv is acyclic.

Rule 1. Let I = (G, S, F, k) be an instance of Annotated MMFVS, u, v ∈ F and uv ∈ E.
Then, replace I with I ′ = (G′, S, F ′, k), where G′ = G/uv occurs from the contraction of u

and v into w, while F ′ = (F ∪ {w}) \ {u, v}.

Rule 2. Let I = (G, S, F, k) be an instance of Annotated MMFVS, u ∈ U and
degF ∪U (u) = 0. Then, replace I with I ′ = (G − u, S, F, k).

Rule 3. Let I = (G, S, F, k) be an instance of Annotated MMFVS, u ∈ U and
degF ∪U (u) = 1, while v ∈ N(u) ∩ (F ∪ U). Then, replace I with I ′ = (G′, S, F ′, k),
where G′ = G/uv occurs from the contraction of u and v into w, while F ′ = (F ∪ {w}) \ {v}
if v ∈ F , and F ′ = F otherwise.

▶ Lemma 14. (⋆) Applying rules 1, 2 and 3 does not change the outcome of the algorithm
and does not increase the measure of progress.

After exhaustively applying the aforementioned rules, it holds that ∀u ∈ U , degF ∪U (u) ≥
2, i.e. G[U ] is a forest containing trees, all the leaves of which have at least one edge to F .
Moreover, G[F ] comprises an independent set. We proceed with a branching strategy that
produces instances of Annotated MMFVS of reduced measure of progress. If at some
point µ ≤ 1, then Lemma 12 can be applied.

Branching strategy. Let I = (G, S, F, k) be an instance of Annotated MMFVS, on
which all of the reduction rules have been applied exhaustively, thus, it holds that a) ∀u ∈ U ,
degF ∪U (u) ≥ 2 and b) F is an independent set.

Define u ∈ U to be an interesting vertex if degF ∪U (u) ≥ 3. As already noted, G[U ] is a
forest, the leaves of which all have an edge towards F , otherwise Rule 3 could still be applied.
Consider a root for each tree of G[U ]. For some tree T , let v be an interesting vertex at
maximum distance from the corresponding root, i.e. v is an interesting vertex of maximum
height. Notice that such a tree cannot be an interesting path. We branch depending on
whether u is in the feedback vertex set or not. Towards this end, let S′ = S ∪ {v} and
F ′ = F ∪{v}, while I1 = (G, S′, F, k) and I2 = (G, S, F ′, k). It holds that I is a Yes instance
if and only if at least one of I1, I2 is a Yes instance, while if G[F ′] contains a cycle, I2 is a
No instance and we discard it. We replace I with the instances I1 and I2.

▶ Lemma 15. (⋆)The branching strategy produces instances of reduced measure of progress,
without reducing the number of good vertices. Additionally, whenever the branching places a
vertex on the feedback vertex set, this vertex is good.

Complexity. Starting from an instance (G, k) of Max Min FVS, we produce a minimal
feedback vertex set S0 of G in polynomial time. If |S0| ≥ k, we are done. Alternatively, we
produce instances of Annotated MMFVS by guessing the intersection of S0 with some
minimal feedback vertex set of G of size at least k. Let I = (G, S, F, k) be one such instance.
It holds that µ(I) ≤ k + c, where c = cc(F ), therefore the branching will perform at most
k + c steps. Notice that, at any step of the branching procedure, the number of good vertices
never decreases. Now, consider a path restricted instance I ′ = (G′, S′, F ′, k) resulting from
branching starting on I, on which branching, exactly ℓ times a vertex was placed in the
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feedback vertex set, therefore |S′| − |S| = ℓ. There are at most
(

k+c
ℓ

)
different such instances,

each of which has at least ℓ good vertices, thus Theorem 11 requires time at most 3k−ℓnO(1).
Since 0 ≤ ℓ ≤ k + c, and there are at most

(
k
c

)
different instances I, the algorithm runs in

time 9.34knO(1), since

k∑
c=0

(
k

c

) k+c∑
ℓ=0

(
k + c

ℓ

)
3k−ℓ = 3k

k∑
c=0

(
k

c

) k+c∑
ℓ=0

(
k + c

ℓ

)
3−ℓ = 3k

k∑
c=0

(
k

c

)(
4
3

)k+c

= 4k
k∑

c=0

(
k

c

)(
4
3

)c

= 4k

(
7
3

)k

≤ 9.34k.

6 The Extension Problem

In this section we consider the following extension problem:

Minimal FVS Extension
Input: A graph G = (V, E) and a set S ⊆ V .
Task: Determine whether there exists S∗ ⊇ S such that S∗ is a minimal feedback vertex
set of G.

Observe that this is a special case of Annotated MMFVS, since we essentially set
F = ∅ and do not care about the size of the produced solution, albeit with the difference that
now we will not focus on the case where V \ S is already acyclic. This extension problem
was already shown to be W[1]-hard parameterized by |S| by Casel et al. [13]. One question
that was left open, however, was whether it is solvable in polynomial time for fixed |S|, that
is, whether it belongs in the class XP. Superficially, this seems somewhat surprising, because
for the closely related Maximum Minimal Vertex Cover and Upper Dominating Set
problems, membership of the extension problem in XP is almost trivial: it suffices to guess for
each v ∈ S a private edge or vertex that is only dominated by v, remove from consideration
other vertices that dominate this private edge or vertex, and then attempt to find any feasible
solution. The reason that this strategy does not seem to work for feedback vertex set is that
for each v ∈ S we would have to guess a private cycle. Since a priori we have no bound on
the length of such a cycle, there is no obvious way to achieve this task in nf(k) time.

Though we do not settle the complexity of the extension problem for fixed k, we provide
evidence that obtaining a polynomial time algorithm would be a challenging task, because it
would imply a similar algorithm for the k-in-a-Tree problem. In the latter, we are given a
graph G and a set T of k terminals and are asked to find a set T ∗ such that T ⊆ T ∗ and
G[T ∗] is a tree [15, 29].

▶ Theorem 16. k-in-a-Tree parameterized by k is fpt-reducible to Minimal FVS Exten-
sion parameterized by the size of the given set.

Proof. Consider an instance G = (V, E) of k-in-a-Tree, with terminal set T . Let T =
{t1, . . . , tk}. We add to the graph k − 1 new vertices, s1, . . . , sk−1 and connect each si to
ti and to ti+1, for i ∈ [k − 1]. We set S = {s1, . . . , sk−1}. This completes the construction.
Clearly, this reduction preserves the value of the parameter.

To see correctness, suppose first that a tree T ∗ ⊇ T exists in G. We set S1 = S ∪ (V \ T ∗)
in the new graph. S1 is a feedback vertex set, because removing it from the graph leaves T ∗,
which is a tree. S1 contains S. Furthermore, if S1 is not minimal, we greedily remove from it
arbitrary vertices until we obtain a minimal feedback vertex set S2. We claim that S2 must
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still contain S. Indeed, each vertex si, for i ∈ [k − 1] has a private cycle, since its neighbors
ti, ti+1 ∈ T ∗. For the converse direction, if there exists in the new graph a minimal feedback
vertex set S∗ that contains S, then the remaining forest F ∗ = V \ S∗ must contain T , since
each vertex of S must have a private cycle in the forest, and vertices of S have degree 2.
Furthermore, all vertices of T must be in the same component of F ∗, because to obtain a
private cycle for si, we must have a path from ti to ti+1 in F ∗, for all i ∈ [k − 1]. Therefore,
in this case we have found an induced tree in G that contains all terminals. ◀

7 Conclusions and Open Problems

We have precisely determined the complexity of Max Min FVS with respect to structural
parameters from vertex cover to treewidth as being slightly super-exponential. One natural
question to consider would then be to examine if the same complexity can be achieved when
the problem is parameterized by clique-width. Regarding the complexity of the extension
problem for sets of fixed size k, we have shown that this is at least as hard as the well-known
(and wide open) k-in-a-Tree problem. Barring a full resolution of this question, it would
also be interesting to ask if the converse reduction also holds, which would prove that the
two problems are actually equivalent.
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The generation and verification of quantum states are fundamental tasks for quantum information
processing that have recently been investigated by Irani, Natarajan, Nirkhe, Rao and Yuen [CCC
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1 Introduction

While quantum computational complexity has so far mostly investigated the complexity
of classical problems (e.g., computing Boolean functions) in the quantum setting, recent
works [1, 16, 20, 24, 29, 35] have started investigating the complexity of quantum problems
(e.g., generating quantum states). For instance, Ji, Liu and Song [20] and Kretschmer [24]
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have investigated the concept of quantum pseudorandom states from complexity-theoretic
and cryptographic perspectives. Irani, Natarajan, Nirkhe, Rao, and Yuen [16] have made
in-depth investigations of the complexity of the state synthesis problem in a setting first
introduced by Aaronson [1] where the goal is to generate a quantum state by making queries
to a classical oracle encoding the state. Rosenthal and Yuen [35] and Metger and Yuen [29]
have considered interactive proofs for synthesizing quantum states (and also for implementing
unitaries). Here the main goal is to generate complicated quantum states (e.g., quantum
states described by an exponential-size generating quantum circuit) efficiently with the help
of an all-powerful but untrusted prover. Note that in settings where an all-powerful prover
is present, the task of quantum state synthesis is closely related to the task of quantum
state verification (since the prover can simply send the quantum state that needs to be
synthesized).

In this paper, we investigate the task of state generation and verification in the setting of
quantum distributed computing. Quantum distributed computing is a fairly recent research
topic: despite early investigations in the 2000s and the 2010s [3, 8, 9, 13, 36], it is only in
the past five years that significant advances have been done in understanding the power of
quantum distributed algorithms [2, 10, 17, 18, 25, 27, 37]. Fraigniaud, Le Gall, Nishimura,
and Paz [10], in particular, have investigated the power of distributed quantum proofs in
distributed computing, which is the natural quantum version of the concept of distributed
classical proofs (also called locally-checkable proofs [14] or proof-labeling schemes [23]): each
node of the network receives, additionally to its input, a quantum state (called a quantum
proof) from an all-powerful but untrusted party called the prover. The main result from [10]
shows that there exist classical problems that can be solved by quantum protocols using
quantum proofs of length exponentially smaller than in the classical case.

We present two main results about state generation and verification in the setting where
an all-powerful but untrusted prover helps the nodes in a non-interactive way, and apply these
results to design new quantum protocols for concrete problems studied recently in [10, 33].

1.1 First result and applications: State Generation with Distributed
Inputs

One of the main conceptual contributions of this paper is introducing the following problem:
In a network of r + 1 nodes v0, v1, . . . , vr, node v0 is given as input an n-qubit quantum
state |ψ⟩. The goal is to generate the quantum state U |ψ⟩ at node vr, where U is a unitary
matrix whose description is distributed over the nodes of the network. For concreteness, in
this paper we focus on the case where the network is a path of length r and the nodes v0, vr

are both extremities of the path.1
Here is the precise description of the problem. The parties v0, v1, . . . , vr are the nodes of

a line graph of length r: the left-end extremity is v0, the right-end extremity is vr, and nodes
vj and vj+1 are connected for j = 0, 1, . . . , r − 1. Node v0 receives as input the classical
description of an n-qubit state |ψ⟩, as a 2n-dimensional vector.2 The other nodes vj for
j = 1, 2, . . . , r receive as input the description of an n-qubit unitary transformation: each
node vj receives the description of a unitary transformation Uj acting on n qubits. In this
setting, the aim is to generate the quantum state

1 In distributed computing it is standard to first investigate the complexity of computational problems on
simple network topologies such as a path or a ring. A solution on the path can often be extended to
networks of more complex topology, or be used as a building block for solving problems on network of
arbitrary topology.

2 Our protocol actually only requires v0 to be able to generate many copies of |ψ⟩, and thus also works
when the input is a description of a quantum circuit generating |ψ⟩, or even a black box generating |ψ⟩.
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|φr⟩ := Ur · · ·U1|ψ⟩

at the right-end extremity vr. We call this problem n-qubit State Generation with Distributed
Inputs on the line of length r (n-qubit SGDIr). Without a prover, this problem is clearly not
solvable in less than r rounds of communications between neighbors (this can be seen easily
by considering the case where U1 = · · · = Ur = I).

We consider the setting where a prover (an all-powerful but untrusted party) helps the
nodes in a non-interactive way: at the very beginning of the protocol the prover sends to
node vj a quantum state ρj of at most sc qubits, for each j ∈ {0, 1, . . . , r}. Here sc is called
the certificate size of the protocol and the state ρj is called the certificate to vj . The nodes
then run a one-round3 distributed quantum algorithm (called the verification algorithm).
More precisely, the nodes first perform one round of (synchronous) communication: each
node sends one quantum message of at most sm qubits to its neighbors (sm is called the
message size of the protocol). Each node then decides to either accept or reject. Such
protocols, which have been introduced and studied in [10], are called distributed Quantum
Merlin-Arthur (dQMA) protocols (see Section 2 for details). Additionally, when considering
dQMA protocols for n-qubit SGDIr, we add the requirement that node vr outputs an n-qubit
quantum state at the end of the protocol.

Here is our main result:

▶ Theorem 1. For any constant ε > 0, there exists a dQMA protocol for n-qubit SGDIr with
certificate size O(n2r5) and message size O(nr2) satisfying the following: (completeness)
There are certificates ρ0, . . . , ρr such that all the nodes accept and node vr outputs |φr⟩ with
probability 1; (soundness) If all the nodes accept with probability at least ε, then the output
state ρ of node vr satisfies ⟨φr|ρ|φr⟩ ≥ 1 − ε.

The protocol of Theorem 1 is a dQMA protocol with perfect completeness and soundness
ε. Indeed, when receiving appropriate certificates from the prover, all nodes accept with
probability 1 and node vr outputs the state |φr⟩. On the other hand, if the state ρ is far
from |φr⟩, the soundness condition guarantees that for any certificates ρ0, . . . , ρr received
from the prover (including the case of entangled certificates), the probability that at least
one node rejects is at least 1 − ε (remember that the quantity ⟨φr|ρ|φr⟩ represents the square
root of the fidelity between |φr⟩⟨φr| and ρ).

As an application of Theorem 1, we construct a quantum protocol for a concrete computa-
tional task called Set Equality, which was introduced in Ref. [33]. Here is the formal definition
over a network of arbitrary topology (represented by an arbitrary graph G = (V,E)).

▶ Definition 1 (SetEqualityℓ,U [33]). Let ℓ be a positive integer and U be a finite set. Each
node u of a graph G = (V,E) holds two lists of ℓ elements (au,1, . . . , au,ℓ) and (bu,1, . . . , bu,ℓ) as
input, where au,i, bu,i ∈ U for all i ∈ {1, 2, . . . , ℓ}. Define A = {au,i | u ∈ V, i ∈ {1, 2, . . . , ℓ}}
and B = {bu,i | u ∈ V, i ∈ {1, 2, . . . , ℓ}}. The output of SetEqualityℓ,U is 1 (yes), if A = B

as multisets and 0 (no) otherwise.

Using Theorem 1 we obtain the following result:

3 As in almost all prior works on (classical or quantum) distributed proofs, in this paper we consider only
one-round verification algorithms.
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▶ Theorem 2. For any small enough constant ε > 0, there exists a dQMA protocol for
SetEqualityℓ,U on the line graph of length r with completeness 1 − ε and soundness ε that has
certificate size O(r5 log2(ℓr) log2 |U |) and message size O(r2 log(ℓr) log |U |).

While Ref. [33] considered the special case of SetEqualityℓ,U and showed efficient distributed
interactive protocols with small certificate and message size (see Section 1.4), no (nontrivial)
classical dMA protocol (or lower bound) is known before this paper to our best knowledge.
We complement the result in Theorem 2 by showing classical lower bounds and upper bounds
of distributed Merlin-Arthur (dMA) protocols for SetEqualityℓ,U .

▶ Theorem 3. For any dMA protocol for SetEqualityℓ,U on a line graph of length r with
certificate size sc, completeness 3/4, and soundness 1/4,

if |U | < ℓ, then sc = Ω(|U | log(ℓ/|U |));
if |U | = Ω(ℓ), then sc = Ω(ℓ);
if |U | = Ω(rℓ), then sc = Ω(rℓ).

▶ Theorem 4. There exists a dMA protocol for SetEqualityℓ,U on a line graph of length
r with completeness 1 and soundness 0 whose certificate size and message size are both
O(min{rℓ log |U |, |U | log(rℓ)}).

Although the dependence in r is worse than in the classical dMA protocol of Theorem 4, the
dependence of the dQMA protocol of Theorem 2 in ℓ (the number of elements each node
receives) and |U | (the size of the universal set) are polylogarithmic. On the other hand,
in classical case, we have linear lower bounds with respect to ℓ and |U | as in Theorem 3.
Therefore Theorem 2 gives a significant improvement for sufficiently large ℓ and |U |. This
assumption about the input parameters seems reasonable when considering applications
similar to those of the dQMA protocol for the equality problem proposed in Ref. [10]. Note
that our bounds of classical certificate size in Theorem 3 and Theorem 4 are tight up to
poly log(ℓ, |U |, r) factors when |U | < ℓ or |U | = Ω(rℓ).

1.2 Second result and applications: EPR-pairs generation and LOCC
dQMA protocols

Our second contribution is a protocol, based on a recent work by Zhu and Hayashi [41], to
create EPR-pairs between adjacent nodes of a network without quantum communication
in the same setting as above, where a prover helps the nodes in a non-interactive way.
As an application of this protocol, we prove a general result showing how to convert any
dQMA protocol on an arbitrary network into another dQMA protocol where the verification
algorithm uses only classical communication (instead as quantum communication, as allowed
in the definition of dQMA protocols and used in all dQMA protocols of Ref. [10] and
Theorems 1 and 2 above).

More precisely, we say a dQMA protocol is an LOCC (Local Operation and Classical
Communication) dQMA protocol if the verification algorithm can be implemented only by
local operations at each node and classical communication between neighboring nodes (i.e.,
no quantum communication is allowed). Our protocol for generating EPR-pairs enables us
to show the following theorem:

▶ Theorem 5. For any constants pc and ps such that 0 ≤ ps < pc ≤ 1, let P be a dQMA
protocol for some problem on a network G with completeness pc, soundness ps, certificate size
sP

c and message size sP
m. For any small enough constant γ > 0, there exists an LOCC dQMA

protocol P ′ for the same problem on G with completeness pc, soundness ps + γ, certificate
size sP

c +O(dmaxs
P
ms

P
tm), and message size O(sP

ms
P
tm), where dmax is the maximum degree of

G, and sP
tm is the total number of qubits sent in the verification stage of P.
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As an application of Theorem 5, we consider the equality problem studied in Ref. [10]. In
this problem, denoted EQt

n, a collection of n-bit strings x1, x2, . . . , xt is given as input to t
specific nodes u1, u2, . . . , ut (called terminals) of an arbitrary network G = (V,E) as follows:
node ui receives xi, for i ∈ {1, 2, . . . , t}. The goal is to check whether the t strings are equal,
i.e., whether x1 = · · · = xt. By applying Theorem 5 to the main result in Ref. [10] (a dQMA
protocol for EQt

n with certificate size O(tr2 log n) and message size O(tr2 log(n + r))), we
obtain the following corollary:

▶ Corollary 1. For any small enough constant ε > 0, there is an LOCC dQMA protocol
for EQt

n with completeness 1, soundness ε, certificate size O(dmax|V |t2r4 log2(n + r)) and
messages size O(|V |t2r4 log2(n+ r)), where r is the radius of the set of the t terminals and
|V | is the number of nodes of the network G = (V,E).

We can also apply Theorem 5 to the dQMA protocol of Theorem 2, leading to the
following corollary:

▶ Corollary 2. For any small enough constant ε > 0, there is an LOCC dQMA protocol for
SetEqualityℓ,U on the line graph of length r with completeness 1 − ε, soundness ε, certificate
size O(r5 log2(ℓr) log2 |U |) and messages size O(r5 log2(ℓr) log2 |U |).

Note that these LOCC dQMA protocols still have good dependence in the main parameters
we are interested in: the parameter n for EQt

n (for which the dependence is still exponentially
better than any classical dMA protocols) and the parameters ℓ and |U | for SetEqualityℓ,U

(for which the dependence is still exponentially better than any classical dMA protocols, due
to Theorem 3).

1.3 Overview of our proofs
To explain the proof idea of Theorem 1, we only consider the simplified case U1 = · · · = Ur = I.
The general case can be proved similarly by a slightly more complicated analysis.

The dQMA protocol to prove Theorem 1 is based on the dQMA protocol on the line of
length r by Fraigniaud et al. [10]. In the setting of Ref. [10], the left-end extremity v0 has an
n-bit string x, the right-end extremity vr has an n-bit string y, and the other intermediate
nodes have no input. The goal is to verify whether x = y. The dQMA protocol in Ref. [10]
checks whether the fingerprint state |ψ0⟩ = |ψx⟩ [5] prepared by v0 is equal to the fingerprint
state |ψr⟩ = |ψy⟩ prepared by vr (x = y), or |ψ0⟩ is almost orthogonal to |ψr⟩ (x ̸= y). For
this, node vj (2 ≤ j ≤ r − 1) receives a subsystem whose reduced state is ρj as a certificate
from the prover. At the verification stage, any node (except for vr) chooses keeping its
certificate by itself, or sending it to the right neighboring node with probability 1/2 to check
if the reduced states of the two neighboring nodes, ρj and ρj+1, are close, which can be
checked by the SWAP test [5]. If x = y, then the prover can send |ψ0⟩ (= |ψr⟩) for every
intermediate node to pass all the SWAP tests done at the verification stage, which means
accept. Otherwise, the SWAP test done at some node rejects with a reasonable probability
since |ψx⟩ is very far from |ψy⟩, and hence the distance between ρj and ρj+1 should be far at
some j.

Now the case that U1 = · · · = Ur = I (which means that all nodes except v0 have no
input) in the setting of SGDIr (then the goal state |φr⟩ at vr is the same as the state |ψ⟩ of
v0) is similar to the setting of Ref. [10], except that vr also has no input. The difficulty is
that vr has no state that can be generated by itself, and thus the analysis of Ref. [10] cannot
be used as it is.
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To overcome this difficulty, we utilize an idea from the verification of graph states [15, 32],
in particular, the idea by Morimae, Takeuchi, and Hayashi [32]. They used the following
basic idea for their protocol in order to verify an arbitrary graph state |G⟩ sent from the
prover (or prepared by a malicious party): (i) the verifier receives (m+ k + 1) subsystems,
in which each subsystem ideally contains |G⟩, from the prover; (ii) the verifier chooses m
subsystems uniformly at random, and discards them; (iii) the verifier chooses one subsystem,
and some test that |G⟩ should pass (stabilizer test) is done for each of the remaining k

subsystems; and (iv) if all the tests passed, the chosen subsystem in (iii) should be close
to |G⟩, which is proved by using a quantum de Finetti theorem with some measurement
condition [28] (exponentially better in the dimension of the subsystem than the standard
quantum de Finetti theorem [6]). Note that (ii) and (iii) are necessary since the assumption
that the total system is permutation-invariant is needed to apply the quantum de Finetti
theorem.

Our protocol applies the idea of Ref. [32] to the verification protocol of Ref. [10] explained
above. Namely, the parties v1, v2, . . . , vr first receives (m+ k + 1) subsystems, where each
subsystem ideally contains |ψ⟩⊗r, sent from the prover. For k subsystems that are randomly
chosen, we apply the verification protocol of Ref. [10]. Actually, we have a subtle problem with
the corresponding steps of (ii) and (iii) in the idea of Ref. [32], since v0, v1, . . . , vr do not have
any shared randomness, and thus those steps cannot be implemented jointly. Fortunately,
this problem can be overcome since the permutation-invariant property is satisfied by the
random permutations of (m+ k + 1) subsystems on each party.

The dQMA protocol for Theorem 2 is based on the distributed interactive protocol
by Naor, Parter, and Yogev [33] using shared randomness4. In our setting (line of length
r), the distributed interactive protocol of Ref. [33] is as follows with two polynomials
αj(x) :=

∏
i(x− aj,i) and βj(x) :=

∏
i(x− bj,i): with shared randomness s (taken from a

large field), (i) v0 prepares A0(s) := α0(s) and B0(s) := β0(s); (ii) vj (j = 1, 2, . . . , r) ideally
receives Aj(s) := α0(s) · · ·αj(s) and Bj(s) := β0(s) · · ·βj(s) from the prover; (iii) Aj(s) =
αj(s)Aj−1(s) and Bj(s) = βj(s)Bj−1(s) are checked for consistency by communication from
vj−1 to vj . We can see that when A = B, Ar(s) = Br(s) for any s, and thus this protocol
accepts with probability 1 by the ideal certificates from the prover, while when A ̸= B,
Ar(s) ̸= Br(s) for most of s, and thus some node rejects with reasonable probability.

Actually, neither interaction nor shared randomness is available in our setting. Instead,
we reduce the protocol by Naor et al. to SGDIr with |ψ⟩ = |ψA⟩ ⊗ |ψB⟩ where |ψA⟩ =∑

s |s⟩|α0(s)⟩, and |ψB⟩ =
∑

s |s⟩|β0(s)⟩, and U = Uj,A ⊗ Uj,B , where Uj,A roughly5 maps
|s⟩|t⟩ to |s⟩|αj(s)t⟩ (j = 1, 2, . . . , r) and Uj,B roughly maps |s⟩|t⟩ to |s⟩|βj(s)t⟩ (j = 1, 2, . . . , r).
Then, Theorem 1 guarantees that vr receives

∑
s |s⟩|Ar(s)⟩ and

∑
s |s⟩|Br(s)⟩ with high

fidelity as long as every node accepts with at least the probability guaranteed by Theorem 1.
The SWAP test between these at vr checks if A = B with high probability.

For the classical lower bound of SetEqualityℓ,U in Theorem 3, we utilize the lower bound
for EQ2

n of [10]. Ref. [10] showed that for any classical protocol for EQ2
n on the line graph,

at least one internal node requires a certificate of linear size. We show that EQ2
n can be

reduced to SetEqualityℓ,U in three cases depending on the size of U . Here we explain the
simplest case: |U | = Ω(ℓ). For a line graph with the left-end extremity v and the right-end
extremity v′, let x = x1x2 · · ·xn be the input of EQ2

n for v and y = y1y2 · · · yn be the input
of EQ2

n for v′. Then we consider an injection f from {0, 1}n to the set of 3ℓ-bit strings with

4 While there is no shared randomness in their setting, shared randomness can be simulated by two
interactions between the prover and the verifier.

5 We actually need some modifications for Uj,A to be unitary.
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Hamming weight ℓ such that the input list (av,1, . . . , av,ℓ) of SetEqualityℓ,U for v includes
the j-th element of the universal set U for |U | > 3ℓ if and only if f(x)j = 1, and the input
list (bv′,1, . . . , bv′,ℓ) of SetEqualityℓ,U for v′ includes the j-th element of the universal set U if
and only if f(y)j = 1. Now these two sets are identical if and only if x = y, which means a
reduction from EQ2

n to SetEqualityℓ,U for ℓ = Θ(n). We thus get a lower bound of Ω(ℓ) from
the Ω(n) lower bound of EQ2

n mentioned above.
The classical upper bound of SetEqualityℓ,U in Theorem 4 is fairly simple: the prover can

send all of inputs A and B to each node to achieve the first upper bound O(rℓ log |U |). For
the second upper bound O(|U | log(rℓ)), the node vi on the line graph {v0, . . . , vr} is given
the information of inputs of vj , j ∈ {0, . . . , i− 1} as the certificate in the form of the number
of each element of U in the corresponding inputs.

The basic proof idea of Theorem 5 is standard: we replace one qubit communicated
between any two nodes u and v by two bits using quantum teleportation [4], assuming that
they share an EPR pair |Φ+⟩ = 1√

2 (|00⟩ + |11⟩) sent from the prover. The problem is that
the prover may be malicious, and u and v should then verify that the pair sent from the
prover is |Φ+⟩. In order to obtain |Φ+⟩ with high fidelity, we actually ask the prover to send
N + 1 copies of the EPR pairs. An honest prover will send the state |Φ+⟩⊗(N+1), but a
malicious prover may naturally send an arbitrary state. Nodes u and v use N among the
N + 1 pairs for the verification. If the verification succeeds, they are guaranteed that the
remaining pair has high fidelity with |Φ+⟩.

This type of verification of |Φ+⟩ in an adversarial scenario by the malicious prover was
considered in a remarkable work by Zhu and Hayashi [41]. Extending the previous result [34]
in a less adversarial scenario, they showed that by taking N = O( 1

ε log( 1
δ )), if the verification

test succeeds with probability at least δ, the state σ of the last pair has a high fidelity with
|Φ+⟩ such that ⟨Φ+|σ|Φ+⟩ ≥ 1 − ε. Furthermore, the measurements in their verification
protocol (essentially the same as those in Ref. [34]) are local, namely, they do not need any
entangled measurement between the two qubits of each pair.

Now the proof idea of Theorem 5 uses the verification protocol of Ref. [41] in our setting.
To do so, we first observe that the amount of classical communication needed between u and
v can be upper-bounded by O(N) (which is the same as the certificate size from the prover),
by rewriting the protocol of Ref. [41] with a slight modification in our setting. Then we
replace the quantum bits sent among the nodes in the original dQMA protocol P by classical
communication. However, it needs not only a single EPR pair but a lot of EPR pairs to be
verified. Thus, we need further analysis to convert P into an LOCC dQMA protocol and to
evaluate the message size of classical communication and the certificate size.

1.4 Related work
The concept of distributed Merlin-Arthur protocols (dMA), which is very similar to the
concept of randomized proof-labeling schemes [12] was introduced by [11] as a randomized
version of locally checkable proofs (LCPs). In a dMA protocol, as in LCPs, the prover assigns
each node a short certificate. The nodes then perform a 1-round distributed algorithm, i.e.,
exchange messages with their neighbors through incident edges. The difference is that in
dMA, this algorithm can be a randomized algorithm, instead of a deterministic algorithm as
in LCPs. This randomization is helpful to reduce the size of certificates for some problems.

The recent paper [22] introduced the interactive extension of dMA, distributed interactive
proofs, in which the prover and the verifier can perform more interaction. They showed that
interaction is also useful to reduce the size of certificates. This concept has recently been
explored in depth by several studies: distributed interactive proofs that utilize quantum
certificates [26], the role of shared and private randomness [7, 30], and more efficient protocols
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for concrete problems [19, 31, 33]. In particular, [33] introduced SetEqualityℓ,U , which is
one of the problems we study in this paper, and showed efficient interactive protocols for
SetEqualityℓ,U when ℓ = |V | and |U | = O(|V |) that require two interactions between the
prover and the verifier with certificate size6 O(log |V |), and five interactions between the
prover and the verifier with certificate size O(log log |V |).

The technique we used in this paper from Refs. [32, 41] belongs to a broad and hot topic
called “state certification (state verification)” [21, 38]. One conceptual contribution of this
paper is providing the first concrete example of the effective use of these techniques for
quantum distributed verification.

2 dQMA protocols

We consider a decision problem on a connected graph (called the network) G = (V,E),
where t inputs x1, x2, . . . , xt are assigned to t nodes v1, v2, . . . , vt ∈ V . We interpret the
decision problem as a Boolean function f , where f(x1, x2, . . . , xt) = 1 is interpreted as “yes”
and f(x1, x2, . . . , xt) = 0 is interpreted as “no”.

The concept of distributed quantum Merlin-Arthur (dQMA) protocols on a graph G =
(V,E) is a quantum version of the concept of distributed Merlin-Arthur (dMA) protocols.
The aim of a dMA protocol is to verify whether f(x1, x2, . . . , xt) = 1 or not. As briefly
explained in Section 1.1, the nodes of G (which correspond to the verifier) first receive a
message from a powerful but possibly malicious party (the prover). The nodes then enter
a verification phase, in which they communicate together (but do not communicate with
the prover anymore). The communication is possible only if two nodes are connected: each
node can send one message to each of its neighbors. In the case of dQMA protocols, the only
difference is that the message from the prover and the communication among the nodes may
be quantum. Note that neither randomness nor entanglement are shared among the nodes in
advance.

Formally, in a dQMA protocol P on G = (V,E), each node u ∈ V first receives a quantum
register Mu from the prover. Then the nodes move to the verification stage, which consists of
the following steps: (i) u applies a local quantum (or classical) operation on the composite
system of Mu and its private register Vu; (ii) u sends a quantum (or classical) register Muv

to any neighboring node v, and (iii) u applies a local quantum (or classical) operation on Mu,
Vu, and ⊗v∈N(u)Mvu, and either accepts or rejects (we call this the decision of u), where N(u)
denotes the set of nodes that are neighbors of u. When local operations at each node and
communication among the nodes in the verification stage are classical, the dQMA protocol is
called LOCC (Local Operation and Classical Communication).

The two main complexity measures of P are the certificate size and the message size.
The certificate size of P, denoted as sP

c , is the maximum number of qubits that are sent to
each node from the prover, that is, sP

c := maxu∈V |Mu|, where |R| denotes the number of
qubits of R. The message size of P, denoted as sP

m, is the maximum number of qubits sent
on edges of G, namely, sP

m := max(u,v)∈E(|Muv| + |Mvu|).
A dQMA protocol P for a decision problem f on G with completeness pc and soundness

ps is defined as a dQMA protocol satisfying the following two conditions:
(completeness) If f(x1, x2, . . . , xt) = 1, there exists some quantum state |χ⟩ on M :=

⊗u∈V Mu such that Pr[all nodes accept] ≥ pc;
(soundness) If f(x1, x2, . . . , xt) = 0, for any quantum state |χ⟩ on M, Pr[all nodes accept] ≤

ps.

6 For SetEqualityℓ,U , the certificate size of their protocol can be written as O(log |U | + log(ℓ|V |)).
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In this paper, we consider the problem of generating a quantum state |φ⟩ on a network
G = (V,E). In this problem, some initially specified nodes w1, . . . , wκ not only make their
decisions (accept or reject) but also output the quantum state |φ⟩ jointly (if they accept). In
our specific problem, the n-qubit SGDIr, all nodes of the line graph with nodes v0, v1, . . . , vr

have an input (v0 has a classical description of |ψ⟩ and vj for j = 1, 2, . . . , r has a classical
description of Uj), |φ⟩ = |φr⟩ (:= Ur · · ·U1|ψ⟩), κ = 1, and w1 = vr.

In a dQMA protocol for the problem of generating |φ⟩ on G, the completeness and
soundness conditions are slightly different from the case of decision problems. For our
purpose we actually only need to discuss perfect-completeness protocols. We say that the
dQMA protocol has perfect completeness and (δ, ε)-soundness if the following completeness
and soundness are satisfied:
(completeness) There exists a quantum state |χ⟩ on M such that

Pr[all nodes accept and w1, . . . , wκ output |φ⟩ jointly] = 1;

(soundness) If all nodes accept with probability at least δ, then the output ρ̃ of w1, . . . , wκ

(under the condition that all nodes accept) satisfies

⟨φ|ρ̃|φ⟩ ≥ 1 − ε.

The soundness condition is regarded as a kind of hypothesis testing (i.e., if the verifier’s
test passes with probability greater than a threshold, then the state would be close to the
ideal one). A similar completeness-soundness condition is used for the interactive proofs for
synthesizing quantum states [35].

3 dQMA Protocol for State Generation with Distributed Inputs

In this section we present our dQMA protocol for the n-qubit State Generation with
Distributed Inputs over the line of length r (n-qubit SGDIr) and prove Theorem 1.

3.1 dQMA protocol for SGDI
The following is our dQMA protocol for n-qubit SGDIr.

Protocol PSGDI: Let k = 144cr2+η and m = 2cnk2(r + 1)1+η for any constant c > 0
and any small constant η ≥ 0.

1. v0 prepares (m+k+1) copies of |ψ⟩ in n-qubit registers R0,j (j = 1, 2, . . . ,m+k+1).
2. The prover sends each vl, where l = 1, 2, . . . , r, (m + k + 1) n-qubit registers

Rl,1,Rl,2, . . . ,Rl,m+k+1.
3. Each vl (l = 1, 2, . . . , r) permutes the (m+k+ 1) registers Rl,1,Rl,2, . . . ,Rl,m+k+1 by

a permutation π on {1, 2, . . . ,m+ k + 1} taken uniformly at random, and renames
Rl,j := Rl,π(j).

4. The parties v0, v1, . . . , vr implement the following subprotocol PSGDIV (a modification
of the verification steps in Ref. [10]) on registers R0,j ,R1,j , . . . ,Rr,j for each j =
2, 3, . . . , k + 1 in order. If some party rejects for some j, the protocol rejects.

5. vr outputs Rr,1.
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Protocol PSGDIV: Assume that v0 has |ψ⟩ on n-qubit register R0, and vl (l = 1, 2, . . . , r)
receives n-qubit register Rl.

1. For every j = 0, 1, . . . , r − 1, party vj chooses a bit bj uniformly at random, and
sends its register Rj to the right neighbor vj+1 whenever bj = 0.

2. For every j = 1, 2, . . . , r, if vj receives a register from the left neighbor vj−1, and
if bj = 1, then vj applies Uj on register Rj−1, and performs the SWAP test on the
registers (Rj−1,Rj), and accepts or rejects accordingly; Otherwise, vj accepts.

We can show the following theorem, which induces Theorem 1 by a special case with
η = 0.

▶ Theorem 6. Protocol PSGDI has perfect completeness and ( 1
(crη)1/4 ,

1
(crη)1/4 )-soundness.

The certificate size of PSGDI is O(n2r5+3η) and the message size is O(nr2+η).

3.2 Proof of Theorem 6
We can see that the certificate size of PSGDI is (m + k + 1)n = O(n2r5+3η) from step 2 of
PSGDI. Since PSGDI implements PSGDIV (k + 1) times, and the message size of PSGDI is O(n),
the message size of PSGDI is O(nk) = O(nr2+η).

The completeness clearly holds: since the prover honestly sends

|φl⟩ := Ul · · ·U1|ψ⟩

as the content of Rl,j for each j ∈ {1, 2, . . . ,m + k + 1} and then all the SWAP tests in
PSGDIV accept with probability 1.

The proof of the soundness can be found in the full version.

4 Application: dQMA Protocol for Set Equality

In this section we prove Theorem 2 by constructing a protocol for SetEqualityℓ,U based on
the protocol for SGDIr developed in Section 3.

Proof of Theorem 2. We consider SetEqualityℓ,U (Definition 1) for the line graph of length
r with nodes v0, v1, . . . , vr, where vj has aj,1, . . . , aj,ℓ and bj,1, . . . , bj,ℓ. Let αj(s) :=∏

i∈{1,2,...,ℓ}(s−aj,i) and βj(s) :=
∏

i∈{1,2,...,ℓ}(s−bj,i) for each j ∈ {0, 1, . . . , r}. We identify
au,i, bu,i as elements in a finite field F with size |F| ≥ c̃ℓ(r + 1)2log |U | for some (sufficiently
large) constant c̃ > 0. Our goal is the same as of the interactive protocol of [33] – the node vr

checks if two polynomials pA(s) :=
∏

j∈{0,1,...,r} αj(s) and pB(s) :=
∏

j∈{0,1,...,r} βj(s) take
the same value for uniform randomly chosen s ∈ F, where s is distributed by the interaction.
In order to implement this idea in a non-interactive way, we utilize the framework of SGDI
as follows: Let

|ψ⟩ := 1√
|F|

∑
s∈F

|s⟩|α0(s)⟩

be the initial state that the node v0 can locally produce. Each node vj , j ∈ {1, 2, . . . , r}
has a unitary transformation Uj which maps |s⟩|αj−1(s)⟩ to |s⟩|αj(s)⟩ (to be precise, we
also need to deal with the case where αj(s) is a zero polynomial). Using the protocol for
SGDI in Theorem 1, the node vr outputs the state |φr⟩ = Ur · · ·U1|ψ⟩, which is the uniform
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superposition of |s⟩|pA(s)⟩ over all s ∈ F. Similarly, vr also outputs the uniform superposition
of |s⟩|pB(s)⟩ over all s ∈ F. Finally, vr does the SWAP test for these states, which accepts
with high probability if and only if two polynomials are identical (i.e., A = B as multisets)
since the two polynomials pA(s) and pB(s) take different values for most s ∈ F if A ̸= B. In
the full version we complete the proof by describing the details of the protocol (which we
denote Pseteq) and analyzing it rigorously. ◀

4.1 Classical bounds for SetEqualityℓ,U

Here we prove the classical lower bounds shown in Theorem 3. The proof of Theorem 4 is
deferred to the full version.

Proof of Theorem 3. In order to prove our lower bounds for SetEqualityℓ,U , we utilize
reductions from EQ2

n to SetEqualityℓ,U , then apply the following lower bound of EQ2
n that

appears in [10].

▶ Lemma 1 (Theorem 9 of [10]). Let r ≥ 3 be a positive integer. Consider an instance
of EQ2

n where the two nodes v0 and vr on a line graph v0, . . . , vr are provided with inputs
x ∈ {0, 1}n and y ∈ {0, 1}n. Then, for any dMA protocol that solves EQ2

n for this instance
with completeness 1−p and soundness 1−2p−ε for any p, ε > 0, there exists i ∈ {1, . . . , r−1}
such that the certificate size of vi is Ω(n).

We show three different reductions depending on the size of |U |. Due to space constraints, we
only show the simplest case: |U | = Ω(ℓ). The reductions for the other two cases are deferred
to the full version.

Let P be a dMA protocol for SetEqualityℓ,U with the certificate size sc which appears in
the statement of the theorem. We consider the following instance of EQ2

n on a line graph
v0, . . . , vr of length r ≥ 3: the node v0 is provided with x, and the node vr is provided with y.
Let ℓ be the minimum integer satisfying

(3ℓ
ℓ

)
≥ 2n. Since

(3ℓ
ℓ

)
= 23ℓH(1/3)−O(log ℓ) where H(·)

is the binary entropy function, we have ℓ = Θ(n). Let S = {s ∈ {0, 1}3ℓ : |s| = ℓ} be the
set of 3ℓ-bit strings so that |S| =

(3ℓ
ℓ

)
. We arbitrarily choose one injection f : {0, 1}n → S

(this kind of injection exists since we have |S| ≥ 2n). The network constructs the following
instance of SetEqualityℓ,U for the universal set U = {0, 1, 2, . . . , 3ℓ} without communication:

The inputs x and y are converted to f(x), f(y) ∈ S. Let X = {i : f(x)i = 1} and
Y = {i : f(y)i = 1} be two sets of ℓ elements from the universal set {1, 2, . . . , 3ℓ}. X
and Y are regarded as the inputs (av0,1, . . . , av0,ℓ) and (bvr,1, . . . , bvr,ℓ) of SetEqualityℓ,U .
Furthermore, we set (bv0,1, . . . , bv0,ℓ) = (avr,1, . . . , avr,ℓ) = (0, . . . , 0).
The inputs to each internal node v1, . . . , vr−1 are set to (0, . . . , 0), (0, . . . , 0).

Now the set A and B of this instance of SetEqualityℓ,U are identical as multisets if and only
if f(x) = f(y). Since f is an injection, we have f(x) = f(y) ⇔ x = y and thus the output of
SetEqualityℓ,U on this instance is identical to that of EQ2

n on the input x and y. Now we can
use the protocol P to solve EQ2

n for n = Θ(ℓ). Thus by Lemma 1, we have sc = Ω(ℓ). ◀

5 Conversion of dQMA protocols into LOCC dQMA protocols

In this section we show how to create an EPR pair |Φ+⟩ = 1√
2 (|00⟩ + |11⟩) between two

parties without quantum communication in the setting where a prover helps the nodes in
a non-interactive way. Our protocol is based on the verification protocol of the EPR pair
in the adversarial setting proposed by Zhu and Hayashi [41] (see also [39, 40]), who showed
that a verifier V can check whether a two-qubit state sent from a (possibly malicious) prover
is |Φ+⟩.

MFCS 2023
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The following is the verification protocol given in Ref. [41].

Protocol PZH: Let R1,R2, . . . ,RN ,RN+1 be (N + 1) two-qubit registers from the
prover. Here, |+⟩ := 1√

2 (|0⟩ + |1⟩), |−⟩ := 1√
2 (|0⟩ − |1⟩), |+′⟩ := 1√

2 (|0⟩ + i|1⟩) and
|−′⟩ := 1√

2 (|0⟩ − i|1⟩).

1. Perform a random permutation π on the (N + 1) two-qubit registers, and rename
Rj := Rπ(j) for j = 1, 2, . . . , N + 1.

2. For each j = 1, 2, . . . , N , the verifier V does one of the following three POVMs on
register Rj with probability 1/3 for each:
M1 = {E1, I − E1} with E1 = |00⟩⟨00| + |11⟩⟨11|.
M2 = {E2, I − E2} with E2 = | + +⟩⟨+ + | + | − −⟩⟨− − |.
M3 = {E3, I − E3} with E3 = | +′ −′⟩⟨+′ −′ | + | −′ +′⟩⟨−′ +′ |.

3. Reject if the second components in the POVMs are obtained. Otherwise, the test
passes and outputs RN+1.

Ref. [41] describes E1 = I+Z⊗2

2 , E2 = I+X⊗2

2 and E3 = I−Y ⊗2

2 , where

X =
(

0 1
1 0

)
, Y =

(
0 −i
i 0

)
, and Z =

(
1 0
0 −1

)
,

while we rewrite them as above (which is a similar expression to the protocol in Ref. [34])
since it would be easy to see for our purpose. Importantly, step 2 implements the POVM
{Ω, I − Ω} on Rj with Ω = 2

3 |Φ+⟩⟨Φ+| + 1
3I for each j, but it is implemented by local

measurements on each qubit of Rj .
The following result was shown for the protocol PZH in Ref. [41].

▶ Theorem 7 (Zhu-Hayashi). There is a number N = O( 1
ε log( 1

δ )) such that if the test passed
with probability at least δ, then the output state σ̃ of PZH (under the condition that the test
passes) satisfies ⟨Φ+|σ̃|Φ+⟩ ≥ 1 − ε.

The protocol PZH uses only local measurements, and thus, it can be used for verifying
the sharing of an EPR pair by two parties who only use local operations and classical
communication (LOCC).

Let V1 and V2 be neighboring parties who expect to receive |Φ+⟩ jointly from the prover.
The following protocol is a simple implementation of PZH with LOCC by V1 and V2.

Protocol PZHLOCC: Let R1,1, . . . ,RN,1,RN+1,1 be (N + 1) one-qubit registers from the
prover to V1, and R1,2, . . . ,RN,2,RN+1,2 be (N + 1) one-qubit registers from the prover
to V2, respectively.

1. V1 chooses a random permutation π on {1, 2, . . . , N + 1} and sends it
to V2, and then both perform π on the (N + 1) two-qubit registers
(R1,1,R1,2), . . . , (RN,1,RN,2), (RN+1,1,RN+1,2). Rename Rj,1 := Rπ(j),1 and Rj,2 :=
Rπ(j),2.

2. V1 chooses N random numbers k1, k2, . . . , kN ∈ {1, 2, 3} and sends them to V2. For
each j = 1, 2, . . . , N , V1 and V2 implement one of the POVMs M1,M2,M3 on register
(Rj,1,Rj,2) jointly as follows.

when kj = 1, they jointly implement M1 = {E1, I − E1}; V1 and V2 measure Rj,1
and Rj,2 in the Z basis {|0⟩, |1⟩}, respectively, and V1 sends the measurement
value to V2, who rejects iff it differs from the measurement value of V2.
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when kj = 2, they jointly implement M2 = {E2, I − E2}; V1 and V2 measure Rj,1
and Rj,2 in the X basis {|+⟩, |−⟩}, respectively, and V1 sends the measurement
value to V2, who rejects iff it differs from the measurement value of V2.
when kj = 3, they jointly implement M3 = {E3, I − E3}; V1 and V2 measure Rj,1
and Rj,2 in the Y basis {|+′⟩, |−′⟩}, respectively, and V1 sends the measurement
value to V2, who rejects iff it is same as the measurement value of V2.

3. The test passes and V1 and V2 output RN+1,1 and RN+1,2, respectively.

It is easy to see that PZHLOCC simulates PZH exactly in a distributed manner. The protocol
PZHLOCC does not use any quantum communication between V1 and V2, while the amount of
classical communication used between V1 and V2 is ⌈log(N+1)!⌉+⌈log 3N ⌉+N = O(N logN).

Furthermore, we can replace a random permutation π in step 1 of PZHLOCC by switching
the jth two-qubit register (Rj,1,Rj,2) and the (N +1)th register (RN+1,1,RN+1,2) by choosing
j uniformly at random from {1, 2, . . . , N + 1} (actually, doing nothing when j = N + 1) since
the output state by such change is the same as protocol PZHLOCC. We call the protocol by
such change P+

ZHLOCC. Now the amount of classical communication used between V1 and V2
in P+

ZHLOCC is improved to ⌈log(N + 1)⌉ + ⌈log 3N ⌉ +N = O(N).
Thus the following theorem holds for P+

ZHLOCC.

▶ Theorem 8. For the same number N = O( 1
ε log( 1

δ )) as Theorem 7, if the test passed with
at least probability δ, then the two-qubit state σ̃ output by V1 and V2 in P+

ZHLOCC satisfies
⟨Φ+|σ̃|Φ+⟩ ≥ 1 − ε.

In the full version, we prove Theorem 5 by showing how to use the protocol P+
ZHLOCC.
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Abstract
The (Perfect) Matching Cut problem is to decide if a graph G has a (perfect) matching cut, i.e.,
a (perfect) matching that is also an edge cut of G. Both Matching Cut and Perfect Matching
Cut are known to be NP-complete, leading to many complexity results for both problems on
special graph classes. A perfect matching cut is also a matching cut with maximum number of
edges. To increase our understanding of the relationship between the two problems, we introduce
the Maximum Matching Cut problem. This problem is to determine a largest matching cut
in a graph. We generalize and unify known polynomial-time algorithms for Matching Cut and
Perfect Matching Cut restricted to graphs of diameter at most 2 and to (P6 + sP2)-free graphs.
We also show that the complexity of Maximum Matching Cut differs from the complexities of
Matching Cut and Perfect Matching Cut by proving NP-hardness of Maximum Matching
Cut for 2P3-free quadrangulated graphs of diameter 3 and radius 2 and for subcubic line graphs
of triangle-free graphs. In this way, we obtain full dichotomies of Maximum Matching Cut for
graphs of bounded diameter, bounded radius and H-free graphs.
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1 Introduction

A matching M (i.e., a set of pairwise disjoint edges) of a connected graph G = (V, E) is a
matching cut if V can be partitioned into a set of blue vertices B and a set of red vertices R,
such that M consists of all the edges with one end-vertex in B and the other one in R. Graphs
with matching cuts were introduced in 1970 by Graham [20] (as decomposable graphs) to
solve a problem on cube numbering. Other relevant applications include ILFI networks [13],
WDM networks [1], graph drawing [33] and surjective graph homomorphisms [18].

The decision problem is called Matching Cut: does a given connected graph have
a matching cut? In 1984, Chvátal [11] proved that it is NP-complete even for graphs
of maximum degree at most 4. Afterwards, parameterized and exact algorithms were
given [2, 8, 17, 19, 24, 25]. A variant called Disconnected Perfect Matching “does
a connected graph have a perfect matching that contains a matching cut?” has also been
studied [7, 15, 31], and the problem was generalized, for every d ≥ 1, to d-Cut “does a
connected graph have an edge cut where each vertex has at most d neighbours across the
cut?” [3, 19]. But, in particular, many results have appeared where the input for Matching
Cut was restricted to some special graph class, and this is what we do in our paper as well.
We first discuss related work, restricting ourselves mainly to those classes relevant to our
paper (see, for example, [8] for a more comprehensive overview):
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u v u v. . .
i edges

Figure 1 The graphs H∗
1 (left) and H∗

i (right).

graphs of bounded diameter;
graphs of bounded radius;
hereditary graph classes; in particular H-free graphs.

The distance between two vertices u and v in a connected graph G is the length (number of
edges) of a shortest path between u and v in G. The eccentricity of a vertex u is the maximum
distance between u and any other vertex of G. The diameter, denoted by diameter(G), and
radius, denoted by radius(G), are the maximum and minimum eccentricity, respectively, over
all vertices of G; note that radius(G) ≤ diameter(G) ≤ 2 · radius(G) for every graph G.

The Matching Cut problem is polynomial-time solvable for graphs of diameter at
most 2 [6, 26]. This result was extended to graphs of radius at most 2 [30]. In contrast, the
problem is NP-complete for graphs of diameter at most 3 [26], yielding two dichotomies:

▶ Theorem 1 ([26, 30]). For an integer d ≥ 1, Matching Cut for graphs of diameter d

and for graphs of radius d is polynomial-time solvable if d ≤ 2 and NP-complete if d ≥ 3.

A class of graphs is hereditary if it is closed under vertex deletion. Hereditary graph classes
include many well-known classes, such as those that are H-free for some graph H. A graph G

is H-free if G does not contain H as an induced subgraph, that is, G cannot be modified
into H by a sequence of vertex deletions. For a set of graphs H, a graph G is H-free if
G is H-free for every H ∈ H. If H = {H1, . . . , Hp} for some p ≥ 1, we also say that G is
(H1, . . . , Hp)-free. Note that a class of graphs G is hereditary if and only if there is a set of
graphs H, such that every graph in G is H-free. Hence, for a systematic complexity study, it
is natural to first focus on the case where H has size 1; see, e.g., [9, 10, 12, 16, 22, 35].

For an integer r ≥ 1, let Pr denote the path on r vertices, K1,r the star on r + 1 vertices,
and K1,r + e the graph obtained from K1,r by adding one edge (between two leaves). The
graph K1,3 is also known as the claw. For s ≥ 3, let Cs denote the cycle on s vertices. Let H∗

1
be the graph that looks like the letter “H”, and for i ≥ 2, let H∗

i be the graph obtained from
H∗

1 by subdividing the middle edge of H∗
1 exactly i − 1 times; see also Figure 1. We denote

the disjoint union of two graphs G1 and G2 by G1 + G2 = (V (G1) ∪ V (G2), E(G1) ∪ E(G2)).
We denote by sG the disjoint union of s copies of G, for s ≥ 1.

Polynomial-time algorithms for Matching Cut exist for subcubic graphs (graphs of
maximum degree at most 3) [11], K1,3-free graphs [5], P6-free graphs [30], (K1,4, K1,4 +e)-free
graphs [25] and quadrangulated graphs, i.e., (C5, C6, . . .)-free graphs [32]; the latter class
contains the class of chordal graphs, i.e., (C4, C5, C6, . . .)-free graphs. Moreover, if Matching
Cut is polynomial-time solvable for H-free graphs, then it is so for (H + P3)-free graphs [30].
The problem is NP-complete even for graphs of maximum degree at most 4 [11]; K1,4-free
graphs [11] (see [5, 25]); planar graphs of girth 5 [5]; K1,5-free bipartite graphs [28]; graphs of
girth at least g, for every g ≥ 3 [15]; (3P5, P15)-free graphs [31] (improving a result of [14]);
bipartite graphs where the vertices in one bipartition class all have degree exactly 2 [32] and
thus for H∗

i -free graphs for every odd i ≥ 1; and for H∗
i -free graphs for every even i ≥ 2 [15].

Even more recently, Le and Le [27] proved that Matching Cut is NP-complete even for
(3P6, 2P7, P14)-free graphs.
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The above results imply the following partial complexity classification, which leaves open
only a number of cases where H is a linear forest, that is, the disjoint union of one or more
paths. For two graphs H and H ′, we write H ⊆i H ′ if H is an induced subgraph of H ′.

▶ Theorem 2 ([5, 11, 15, 27, 31, 30, 32]). For a graph H, Matching Cut on H-free
graphs is

polynomial-time solvable if H ⊆i sP3 + K1,3 or sP3 + P6 for some s ≥ 0, and
NP-complete if H ⊇i K1,4, P14, 3P5, 2P7, Cr for some r ≥ 3 or H∗

j for some j ≥ 1.

Figure 2 The graph P6 with a matching cut of size 2 (left), another matching cut of size 2
(middle) and a perfect matching cut (right). In each figure, thick edges denote matching cut edges.

1.1 Our Focus
We already mentioned the known generalization of Matching Cut (i.e. 1-Cut) to d-Cut.
In our paper, we consider a different kind of generalization, namely Maximum Matching
Cut, which is to determine a largest matching cut of a connected graph (if a matching cut
exists). So far, this problem has only been studied for the extreme case, where the task is to
decide if a connected graph has a perfect matching cut, that is, a matching cut that saturates
every vertex; see also Figure 2. This variant was introduced as Perfect Matching Cut
by Heggernes and Telle [21], who proved it was NP-complete. We briefly discuss some very
recent results for Perfect Matching Cut on special graph classes below.

It is readily seen that the gadget in the NP-hardness reduction of Heggernes and Telle [21]
has diameter 6 and radius 3. More recently Le and Le [27] gave a reduction with a graph of
diameter 4. It is also known that Perfect Matching Cut is polynomial-time solvable for
graphs of radius (and thus also diameter) at most 2 [31]. Hence, we only obtain a partial
complexity classification for graphs of bounded diameter in this case.

▶ Theorem 3 ([21, 31]). For integers d and r, Perfect Matching Cut for graphs of
diameter d and for graphs of radius r is polynomial-time solvable if d ≤ 2 or r ≤ 2, respectively,
and NP-complete if d ≥ 4 or r ≥ 3, respectively.

For 1 ≤ h ≤ i ≤ j, the graph Sh,i,j is the tree of maximum degree 3 with exactly one vertex u

of degree 3, whose leaves are at distance h, i and j, respectively, from u; note S1,1,1 = K1,3.
It is known that Perfect Matching Cut is polynomial-time solvable for S1,2,2-free

graphs (and thus for K1,3-free graphs) [29]; P6-free graphs [31]; and for pseudo-chordal
graphs [29] (and thus for chordal graphs, i.e., (C4, C5, . . .)-free graphs). Moreover, Perfect
Matching Cut is polynomial-time solvable for (H + P4)-free graphs if it is polynomial-
time solvable for H-free graphs [31]. It is also known that Perfect Matching Cut is
NP-complete even for 3-connected cubic planar bipartite graphs [4], (3P6, 2P7, P14)-free
graphs [27], K1,4-free bipartite graphs of girth g for every g ≥ 3 [29] and for H∗

i -free graphs
for every i ≥ 1 [15]. This gives us a partial complexity classification:

▶ Theorem 4 ([15, 27, 29, 31]). For a graph H, Perfect Matching Cut on H-free
graphs is

polynomial-time solvable if H ⊆i sP4 + S1,2,2 or sP4 + P6 for some s ≥ 0, and
NP-complete if H ⊇i K1,4, P14, 3P6, 2P7, Cr for some r ≥ 3 or H∗

j for some j ≥ 1.
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From Theorem 4 it can be seen that again only cases where H is a linear forest remain open.
However, the number of open cases is smaller than for Matching Cut. So far, all known
complexities for Matching Cut and Perfect Matching Cut on special graph classes
coincide except for (sub)cubic graphs. We note that whenever Maximum Matching Cut is
polynomial-time solvable for some graph class, then so are Matching Cut and Perfect
Matching Cut. Similarly, if one of the latter two problems is NP-complete, then Maximum
Matching Cut is NP-hard. For instance, this immediately yields a complexity dichotomy
for graphs of maximum degree at most ∆. Namely, as Maximum Matching Cut is trivial
if ∆ = 2 and Perfect Matching Cut is NP-complete if ∆ = 3, we have a complexity
jump from ∆ = 2 to ∆ = 3, just like Perfect Matching Cut; recall that for Matching
Cut this jump appears from ∆ = 3 to ∆ = 4. We consider the following research question:

For which graph classes is Maximum Matching Cut harder than Matching Cut and
Perfect Matching Cut and for which graph classes do the complexities coincide?

1.2 Our Results
In Section 4 we show that Maximum Matching Cut is NP-hard for 2P3-free quadrangulated
graphs of diameter 3 and radius 2. We note that the restrictions to radius 2 and diameter 3
are not redundant: consider, for example, the P6, which is 2P3-free but which has radius 3 and
diameter 5. In the same section, we also show NP-hardness for subcubic line graphs of triangle-
free graphs, or equivalently, subcubic (K1,3, diamond)-free graphs (the diamond is obtained
from the K4 after removing an edge). These NP-hardness results are in stark contrast to the
situation for Matching Cut and Perfect Matching Cut, as evidenced by Theorems 1–4.
Recall also that Matching Cut is polynomial-time solvable for quadrangulated graphs [32].

Before proving these results, we first show in Section 3 that Maximum Matching Cut
is polynomial-time solvable for graphs of diameter 2, generalizing the known polynomial-time
algorithms for Matching Cut and Perfect Matching Cut for graphs of diameter at
most 2. Hence, all three problems have the same dichotomies for graphs of bounded diameter.

We also prove in Section 3 that Maximum Matching Cut is polynomial-time solvable
for P6-free graphs, generalizing the previous polynomial-time results for Matching Cut and
Perfect Matching Cut for P6-free graphs. Due to the hardness result for 2P3-free graphs,
we cannot show polynomial-time solvability for “+P4” (as for Perfect Matching Cut) or
“+P3” (as for Matching Cut). However, we can prove that if Maximum Matching Cut
is polynomial-time solvable for H-free graphs, then it is so for (H + P2)-free graphs; again,
see Section 3. The common proof technique for our polynomial-time results is as follows:
1. Translate the problem into a colouring problem. We pre-colour some vertices either red

or blue, and try to extend the pre-colouring to a red-blue colouring of the whole graph
via reduction rules. This technique has been used for Matching Cut and Perfect
Matching Cut, but our analysis is different. In particular, the algorithms for Matching
Cut and Perfect Matching Cut on P6-free graphs use an algorithm for graphs of
radius at most 2 as a subroutine (shortcut). We cannot do this for Maximum Matching
Cut, as we will show NP-hardness for radius 2.

2. Reduce the set of uncoloured vertices, via a number of branching steps, to an independent
set, and then translate the problem into a matching problem. This is a new proof
ingredient. The matching problem is to find a largest matching that saturates every
vertex of the independent set of uncoloured vertices. Plesník [34] gave a polynomial time
algorithm for this, which we will use as subroutine.1

1 The polynomial-time algorithm of Plesník [34] solves a more general problem. It takes as input a
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The above polynomial-time and NP-hardness results yield the following three dichotomies for
Maximum Matching Cut proven in Section 5; in particular we have obtained a complete
complexity classification of Maximum Matching Cut for H-free graphs (whereas such a
classification is only partial for the other two problems, as shown in Theorems 2 and 4).

▶ Theorem 5. For an integer d, Maximum Matching Cut on graphs of diameter d is
polynomial-time solvable if d ≤ 2, and
NP-hard if d ≥ 3.

▶ Theorem 6. For an integer r, Maximum Matching Cut on graphs of radius r is
polynomial-time solvable if r ≤ 1, and
NP-hard if r ≥ 2.

▶ Theorem 7. For a graph H, Maximum Matching Cut on H-free graphs is
polynomial-time solvable if H ⊆i sP2 + P6 for some s ≥ 0, and
NP-hard if H ⊇i K1,3, 2P3 or H ⊇i Cr for some r ≥ 3.

Finally, in Section 6 we pose a number of open problems.

2 Preliminaries

We consider finite, undirected graphs without multiple edges and self-loops. Let G = (V, E) be
a connected graph. For u ∈ V , the set N(u) = {v ∈ V (G) | uv ∈ E(G)} is the neighbourhood
of u in G, where |N(u)| is the degree of u. For S ⊆ V , the neighbourhood of S is the set
N(S) =

⋃
u∈S N(u) \ S. The graph G[S] is the subgraph of G induced by S ⊆ V (G), that

is, G[S] is the graph obtained from G after deleting the vertices not in S. We say that S

is a dominating set of G, and that G[S] dominates G if every vertex of V (G) \ S has at
least one neighbour in S. The domination number of G is the size of a smallest dominating
set of G. The set S is an independent set if no two vertices in S are adjacent and S is a
clique if every two vertices in S are adjacent. A matching M is S-saturating if every vertex
in S is an end-vertex of an edge in M . An S-saturating matching is maximum if there is no
S-saturating matching of G with more edges. We will use the following result.

▶ Theorem 8 ([34]). For a graph G and set S ⊆ V (G), it is possible in polynomial time to
find a maximum S-saturating matching or conclude that G has no S-saturating matching.

The line graph of G is the graph L(G) whose vertices are the edges of G, such that for every
two vertices e and f , there exists an edge between e and f in L(G) if and only if e and f

share an end-vertex in G. A bipartite graph with non-empty partition classes V1 and V2 is
complete if there is an edge between every vertex of V1 and every vertex of V2. If |V1| = k and
|V2| = ℓ, then we denote the complete bipartite graph by Kk,ℓ. We will need the following
theorem.

▶ Theorem 9 ([36]). A graph G on n vertices is P6-free if and only if each connected induced
subgraph of G contains a dominating induced C6 or a dominating (not necessarily induced)
complete bipartite graph. We can find such a dominating subgraph of G in O(n3) time.

A red-blue colouring of a connected graph G colours every vertex of G either red or blue.
If every vertex of a set S ⊆ V has the same colour (red or blue), then S, and also G[S], are
called monochromatic. An edge with a blue and a red end-vertex is bichromatic. A red-blue

graph G with an edge weighting w, a vertex subset S and two integers a and b. It then finds a maximum
weight matching over all matchings that saturate S and whose cardinality is between a and b.
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colouring is valid if every blue vertex has at most one red neighbour; every red vertex has at
most one blue neighbour; and both colours red and blue are used at least once. For a valid
red-blue colouring of G, we let R be the red set consisting of all vertices coloured red and B

be the blue set consisting of all vertices coloured blue (so V (G) = R ∪ B). Moreover, the
red interface is the set R′ ⊆ R consisting of all vertices in R with a (unique) blue neighbour,
and the blue interface is the set B′ ⊆ B consisting of all vertices in B with a (unique) red
neighbour in R. The value of a valid red-blue colouring is its number of bichromatic edges,
or equivalently, the size of its red (or blue) interface. A valid red-blue colouring is maximum
if there is no valid red-blue colouring of the graph with larger value. The notion of a red-blue
colouring has been used before (see e.g. [14, 30]), and the next observations are easy to see.

▶ Observation 10. For every connected graph G and integer k, it holds that G has a matching
cut with at least k edges if and only if G has a valid red-blue colouring of value at least k.

▶ Observation 11. Every complete graph Kr with r ≥ 3 and every complete bipartite
graph Kr,s with min{r, s} ≥ 2 and max{r, s} ≥ 3 is monochromatic.

We omitted the proof of our next lemma; it is very similar to the proofs of corresponding
lemmas for Matching Cut [14] and Perfect Matching Cut [31]. On an aside, the lemma
implies that Maximum Matching Cut is in XP when parameterized by the domination
number of a graph.

▶ Lemma 12. For a connected n-vertex graph G with domination number g, it is possible to
find a maximum red-blue colouring (if a red-blue colouring exists) in O(2gng+2) time.

To handle “partial” red-blue colourings that we want to extend to maximum valid red-blue
colourings, we slightly modify some terminology from [31] to work for maximum matching
cuts as well.

Let G = (V, E) be a connected graph and S, T, X, Y ⊆ V be four non-empty sets with
S ⊆ X, T ⊆ Y and X ∩ Y = ∅. A red-blue (S, T, X, Y )-colouring of G is a red-blue colouring
of the vertices in X ∪ Y , with a red set containing X; a blue set containing Y ; a red interface
containing S and a blue interface containing T . To obtain a red-blue (S, T, X, Y )-colouring,
we start with two disjoint subsets S′′ and T ′′ of V , called a starting pair, such that

(i) every vertex of S′′ is adjacent to at most one vertex of T ′′, and vice versa, and
(ii) at least one vertex in S′′ is adjacent to a vertex in T ′′.

Let S∗ consist of all vertices of S′′ with a (unique) neighbour in T ′′, and let T ∗ consist of all
vertices of T ′′ with a (unique) neighbour in S′′; so, every vertex in S∗ has a unique neighbour
in T ∗, and vice versa. We call (S∗, T ∗) the core of (S′′, T ′′). Note that |S∗| = |T ∗| ≥ 1.

We now colour every vertex in S′′ red and every vertex in T ′′ blue. Propagation rules
will try to extend S′′ to a set X, and T ′′ to a set Y , by finding new vertices whose colour
must always be either red or blue. That is, we place new red vertices in the set X, which
already contains S′′, and new blue vertices in the set Y , which already contains T ′′. If a red
and blue vertex are adjacent, then we add the red one to a set S ⊆ X and the blue one to a
set T ⊆ Y . So initially, S := S∗, T := T ∗, X := S′′ and Y := T ′′. We let Z := V \ (X ∪ Y ).

Our task is to try to extend the partial red-blue colouring on X ∪ Y to a maximum valid
red-blue (S, T, X, Y )-colouring of G, that is, a valid red-blue (S, T, X, Y )-colouring that has
largest value over all valid red-blue (S, T, X, Y )-colourings of G. In order to do this, we
present three propagation rules, which indicate necessary implications of previous choices.

We start with rules R1 and R2, which together correspond to the five rules from [26].
Rule R1 detects cases where we cannot extend the partial red-blue colouring defined on
X ∪ Y . Rule R2 tries to extend the sets S, T, X, Y as much as possible. While the sets
S, T, X, Y grow, Rule R2 ensures that we keep constructing a (maximum) valid red-blue
(S, T, X, Y )-colouring (assuming G has a valid red-blue (S, T, X, Y )-colouring).
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R1. Return no (i.e., G has no red-blue (S, T, X, Y )-colouring) if a vertex v ∈ Z is
(i) adjacent to a vertex in S and to a vertex in T , or
(ii) adjacent to a vertex in S and to two vertices in Y \ T , or
(iii) adjacent to a vertex in T and to two vertices in X \ S, or
(iv) adjacent to two vertices in X \ S and to two vertices in Y \ T .

R2. Let v ∈ Z.
(i) If v is adjacent to a vertex in S or to two vertices of X \ S, then move v from Z to

X. If v is also adjacent to a vertex w in Y , then add v to S and w to T .
(ii) If v is adjacent to a vertex in T or to two vertices of Y \ T , then move v from Z to

Y . If v is also adjacent to a vertex w in X, then add v to T and w to S.

Assume that exhaustively applying rules R1 and R2 on a starting pair (S′′, T ′′) does not lead
to a no-answer but to a tuple (S′, T ′, X ′, Y ′). Then, we call (S′, T ′, X ′, Y ′) an intermediate
tuple; see also Figure 3. A propagation rule is safe if for every integer ν the following holds:
G has a valid red-blue (S, T, X, Y )-colouring of value ν before the application of the rule
if and only if G has a valid red-blue (S, T, X, Y )-colouring of value ν after the application
of the rule. Le and Le [26] proved the following lemma, which shows that R1 and R2 can
be used safely and which is not difficult to verify. The fact that the value ν is preserved in
Lemma 13 (ii) below is implicit in their proof.

▶ Lemma 13 ([26]). Let G be a connected graph with a starting pair (S′′, T ′′) with core
(S∗, T ∗), and with an intermediate tuple (S′, T ′, X ′, Y ′). The following holds:

(i) S∗ ⊆ S′, S′′ ⊆ X ′ and T ∗ ⊆ T ′, T ′′ ⊆ Y ′ and X ′ ∩ Y ′ = ∅,
(ii) For every integer ν, G has a valid red-blue (S∗, T ∗, S′′, T ′′)-colouring of value ν if

and only if G has a valid red-blue (S′, T ′, X ′, Y ′)-colouring of value ν (note that the
backward implication holds by definition), and

(iii) every vertex in S′ (resp. T ′) has exactly one neighbour in Y ′ (resp. in X ′), which
belongs to T ′ (resp. S′); every vertex in X ′ \ S′ (resp. Y ′ \ T ′) has no neighbour in Y ′

(resp. X ′); and every vertex of V \ (X ′ ∪ Y ′) has no neighbour in S′ ∪ T ′, at most one
neighbour in X ′ \ S′, and at most one neighbour in Y ′ \ T ′.

Moreover, (S′, T ′, X ′, Y ′) is obtained in polynomial time.

Let (S′, T ′, X ′, Y ′) be an intermediate tuple of a graph G. Let Z = V \ (X ′ ∪ Y ′). A red-blue
(S′, T ′, X ′, Y ′)-colouring of G is monochromatic if all connected components of G[Z] are
monochromatic. We say that an intermediate tuple (S′, T ′, X ′, Y ′) is monochromatic if
every connected component of G[V \ (X ′ ∪ Y ′)] is monochromatic in every valid red-blue
(S′, T ′, X ′, Y ′)-colouring of G. A propagation rule is mono-safe if for every integer ν the
following holds: G has a valid monochromatic red-blue (S, T, X, Y )-colouring of value ν

before the application of the rule if and only if G has a valid monochromatic red-blue
(S, T, X, Y )-colouring of value ν after the application of the rule.

T ′

S′

Y ′

X ′

Figure 3 An example (from [31]) of a red-blue (S′, T ′, X ′, Y ′)-colouring of a graph with an
intermediate 4-tuple (S′, T ′, X ′, Y ′).
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We now present Rule R3 (used implicitly in [26]) and prove that R3 is mono-safe.

R3. If there are two distinct vertices u and v in a connected component D of G[Z] with a
common neighbour w ∈ X ∪ Y , then colour every vertex of D with the colour of w.

▶ Lemma 14. Rule R3 is mono-safe.

Proof. Say w ∈ X ∪ Y is in X, so w is red. Then, at least one of x and y must be coloured
red. Hence, as D must be monochromatic, every vertex of D must be coloured red. Note
that the value of a maximum monochromatic red-blue (S, T, X, Y )-colouring (if it exists) is
not affected. ◀

Suppose that exhaustively applying rules R1–R3 on an intermediate tuple (S′, T ′, X ′, Y ′)
does not lead to a no-answer but to a tuple (S, T, X, Y ). We call (S, T, X, Y ) the final tuple.
The following lemma can be proved by a straightforward combination of the arguments of
the proof of Lemma 13 with Lemma 14 and the observation that an application of R3 takes
polynomial time, just as a check to see if R3 can be applied.

▶ Lemma 15. Let G be a connected graph with a monochromatic intermediate tuple
(S′, T ′, X ′, Y ′) and a resulting final tuple (S, T, X, Y ). The following three statements hold:

(i) S′ ⊆ S, X ′ ⊆ X, T ′ ⊆ T , Y ′ ⊆ Y , and X ∩ Y = ∅,
(ii) For every integer ν, G has a valid (monochromatic) red-blue (S′, T ′, X ′, Y ′)-colouring

of value ν if and only if G has a valid monochromatic red-blue (S, T, X, Y )-colouring of
value ν (note that the backward implication holds by definition), and

(iii) every vertex in S (resp. T ) has exactly one neighbour in Y (resp. X), which belongs
to T (resp. S); every vertex in X \ S (resp. Y \ T ) has no neighbour in Y (resp. X)
and no two neighbours in the same connected component of G[V \ (X ∪ Y )]; and every
vertex of V \ (X ∪ Y ) has no neighbour in S ∪ T , at most one neighbour in X \ S, and
at most one neighbour in Y \ T .

Moreover, (S, T, X, Y ) is obtained in polynomial time.

3 Polynomial-Time Results

The following lemma uses Theorem 8 and is the final step in all our polynomial-time results.

X

Y
U

Z

X

Y
U

Z

Figure 4 A U -saturating matching (left) and the corresponding valid red-blue colouring (right).
Note that not every vertex in X ∪ Y belongs to W .
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▶ Lemma 16. Let G = (V, E) be a connected graph with a monochromatic intermediate tuple
(S′, T ′, X ′, Y ′) and a final tuple (S, T, X, Y ). If V \ (X ∪ Y ) is an independent set, then it is
possible to find in polynomial time either a maximum valid red-blue (S, T, X, Y )-colouring of
G or conclude that G has no such colouring.

Proof. Let Z = V \(X ∪Y ) and W = N(Z). As Z is independent, every vertex of W belongs
to (X \ S) ∪ (Y \ T ) due to Lemma 15-(iii). Let U ⊆ Z consist of all vertices of Z with a
neighbour in both X \ S and Y \ T . We claim that the set of bichromatic edges of every
valid red-blue (S, T, X, Y )-colouring is the union of a U -saturating matching in G[W ∪ Z] (if
it exists) and the set of edges with one end-vertex in S and the other one in T .

First suppose that G[W ∪ Z] has a U -saturating matching M . We colour every vertex
in X red and every vertex in Y blue. Let z ∈ Z. First assume that z is incident to an edge
zw ∈ M . If w ∈ X \ S, then colour z blue. If w ∈ Y \ T , then colour z red. Now suppose
z is not incident to an edge in M . Then z /∈ U , as M is U -saturating. Hence, either every
neighbour of z belongs to X \ S and is coloured red, in which case we colour z red, or every
neighbour of z belongs to Y \ T and is coloured blue, in which case we colour z blue. This
gives us a valid red-blue (S, T, X, Y )-colouring of G. See also Figure 4.

Now suppose that G has a valid red-blue (S, T, X, Y )-colouring. By definition, every
vertex of X is coloured red, and every vertex of Y is coloured blue. By Lemma 15-(iii), every
edge with an end-vertex in S and the other one in T is bichromatic, and there are no other
bichromatic edges in G[X ∪ Y ]. Let M be the set of other bichromatic edges. Then, every
vertex of M has one vertex in Z and the other one in W . Moreover, if z ∈ U , then z has a
red neighbour (its neighbour in X \ S) and a blue neighbour (its neighbour in Y \ T ). Hence,
no matter what colour z has itself, z is incident to a bichromatic edge of M . We conclude
that M is U -saturating, and the claim is proven.

From the above claim, it follows that all we have to do is to find a maximum U -saturating
matching in G[W ∪ Z]. By Theorem 8, this takes polynomial time. ◀

We are now ready to present our first result.

▶ Theorem 17. Maximum Matching Cut is solvable in polynomial time for P6-free graphs.

Proof. Let G = (V, E) be a connected P6-free graph. By Observation 10 it suffices to find a
maximum valid red-blue colouring of G. We know from Theorem 9 that G has a dominating
induced C6 or a dominating (not necessarily induced) complete bipartite graph Kr,s, which
can be found in polynomial time. If G has a dominating induced C6, then G has domination
number at most 6, and we apply Lemma 12. Suppose G has a dominating complete bipartite
graph F with partition classes {u1, . . . , ur} and {v1, . . . , vs}, where r ≤ s. If s ≤ 2, then G

has domination number at most 4, and we apply Lemma 12 again. So we assume that s ≥ 3.
If r ≥ 2, then V (F ) must be monochromatic in any valid red-blue colouring of G by

Observation 11. In this case we colour every vertex of V (F ) blue. If r = 1, then we may
assume without loss of generality that N(u1) = {v1, . . . , vs}. In this case we colour u1 blue,
and we branch over all O(n) options of colouring at most one vertex of N(u1) red.

So, now we consider a red-blue colouring of F . It might be that F is monochromatic (in
particular, this will be the case if r ≥ 2). If F is monochromatic, then every vertex of F is
blue. In order to get a starting pair with a non-empty core, we branch over all O(n2) options
of choosing a bichromatic edge (one end-vertex of which may belong to F ). Let D be the set
of all coloured vertices, that is, D contains V (F ) and possibly one or two other vertices. By
construction, exactly one vertex of D is coloured red, and all other vertices of D are blue.

Let S∗ = S′′ be the set containing the red vertex of D. Let T ∗ be the singleton set
containing the blue neighbour of the vertex in S∗. Let T ′′ be the set of blue vertices, so
T ∗ ⊆ T ′′. We exhaustively apply rules R1 and R2 on the starting pair (S′′, T ′′). By Lemma 13
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w3

w1 w2

z′
1 z1

Z1

z2 z′
2

Z2

w3

w1 w2

z′
1 z1

Z1

z2 z′
2

Z2

Figure 5 The situation in Claim 17.3 where two connected components Z1, Z2 of G[Z], each with
at least two vertices, are both coloured red. This will always yield an induced path on at least six
vertices, even if w1 and w2 are not adjacent, as at most one of z′

1, z′
2 is adjacent to w3.

we either find in polynomial time that G has no valid red-blue (S∗, T ∗, S′′, T ′′)-colouring,
and we discard the branch, or we obtain an intermediate tuple (S′, T ′, X ′, Y ′) of G. Suppose
the latter case holds. Let Z ′ = V \ (X ′ ∪ Y ′) be the set of uncoloured vertices.

▷ Claim 17.1. Every vertex z ∈ Z ′ has a neighbour in Y ′ \ T ′ that belongs to F .

Proof. As F is dominating, z has a neighbour in F . Since D ⊇ V (F ) contains exactly one
red vertex x, which has a blue neighbour in D, all neighbours of x in G − D are coloured red,
that is, belong to X. As z ∈ G − D belongs to Z ′, this means that x and z are non-adjacent.
So, the neighbour of z in F must belong to Y ′ \ T ′ (as else we could have applied R2). ◁

▷ Claim 17.2. The intermediate tuple (S′, T ′, X ′, Y ′) is monochromatic.

Proof. Suppose for a contradiction that there is an edge uv ∈ E(G[Z ′]) such that u is blue
and v is red. Then v has two blue neighbours by Claim 17.1, a contradiction. ◁

Since Claim 17.2 holds, we may now exhaustively apply R1–R3 to the intermediate tuple
(S′, T ′, X ′, Y ′). By Lemma 15 we either find in polynomial time that G has no valid red-blue
(S′, T ′, X ′, Y ′)-colouring, and thus no valid red-blue (S∗, T ∗, S′, T ′)-colouring, and we discard
the branch, or we obtain a final tuple (S, T, X, Y ) of G. Again, we let Z = V \ (X ∪ Y ). By
the same lemma and Claim 17.1, the following holds for every (uncoloured) vertex w ∈ Z:

w has at most one neighbour in X \ S,
w has exactly one neighbour in Y \ T , which belongs to F , and
if w′ is in the same connected component of G[Z] as w, then w and w′ do not share a
neighbour in G − Z.

▷ Claim 17.3. In any valid red-blue (S, T, X, Y )-colouring at most one red component may
have more than one vertex.

Proof. For a contradiction, assume that Z1 and Z2 are connected components of size at
least 2 that are both coloured red. For i = 1, 2, let zi and z′

i be two adjacent vertices in Zi,
and let wi be the blue neighbour of zi in F (which exists due to Claim 17.1). Note that w1 is
not adjacent to any vertex of {z′

1, z2, z′
2}, and w2 is not adjacent to any vertex of {z1, z′

1, z′
2}.

Moreover, w1 and w2 are distinct vertices, and do not have any other neighbours in Z1 ∪ Z2.
If w1 and w2 are adjacent, then z′

1z1w1w2z2z2 is an induced P6. As G is P6-free, this is not
possible. Hence, w1 and w2 are not adjacent.

We now use the fact that w1 and w2 both belong to F and that F is complete bipartite.
As w1w2 /∈ E, the latter means there is a vertex w3 ∈ V (F ) adjacent to both w1 and w2, so
w3 is blue as well. As z′

1 and z′
2 are both coloured red, at most one of z′

1, z′
2 can be adjacent
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to w3. Hence, we may assume without loss of generality that w3 is not adjacent to z′
1. As z1

and z2 have w1 and w2, respectively, as their matching partner, w3 is adjacent neither to z1
nor to z2. Now, z′

1z1w1w3w2z2 is an induced P6, a contradiction. See also Figure 5. ◁

We then exhaustively apply rules R1-R3 again. This takes polynomial time. In essence,
we merely pre-coloured some more vertices red. So, in the end we either find a new tuple
of G with the same properties as those listed in Lemma 15, or we find that G has not
such a tuple, in which case we discard the branch. Suppose we have not discarded the
branch. Now the set of uncoloured vertices form an independent set. Hence, we can apply
Lemma 16 to find in polynomial time a red-blue colouring of G that is a maximum red-blue
(S∗, T ∗, S′′, T ′′)-colouring due to Lemmas 13-(ii) and 15-(ii).

If somewhere in the above process we discarded a branch, that is, if G has no valid
red-blue (S∗, T ∗, S′′, T ′′)-colouring, we consider the next one. Else remember the value of
the maximum red-blue (S∗, T ∗, S′′, T ′′)-colouring that we found. Afterwards, we pick one
with the largest value to obtain a maximum valid red-blue colouring of G.

The correctness of our algorithm follows from its description. The running time is
polynomial: each of the in total O(n3) branches takes polynomial time to process. ◀

The proof of our next result combines Lemma 16 with arguments from the proof that
Matching Cut is polynomial-time solvable for (H + P3)-free graphs if it is so for H-free
graphs [30]. We omit the proof.

▶ Theorem 18. Let H be a graph. If Maximum Matching Cut is polynomial-time solvable
for H-free graphs, then it is so for (H + P2)-free graphs.

We now show our third polynomial-time result; we will again apply Lemma 16.

▶ Theorem 19. Maximum Matching Cut is solvable in polynomial time for graphs with
diameter at most 2.

Proof sketch. Let G = (V, E) be a graph of diameter at most 2. If G has diameter 1, then
the problem is trivial to solve. Assume that G has diameter 2. By Observation 10 it suffices
to find a maximum valid red-blue colouring of G. By definition, such a colouring has at least
one bichromatic edge (has value at least 1). We branch over all O(n2) options of choosing
the bichromatic edge.

Consider a branch, where e = uv is the bichromatic edge, say u is blue and v is red. All
other neighbours of u must be coloured blue. Let D = {u} ∪ N(u). Then D dominates G,
as G has diameter 2. Set S∗ = {u}, T ∗ = {v}, S′′ = {u} and T ′′ = N(u). This gives us a
starting pair (S′′, T ′′) with core (S∗, T ∗). We exhaustively apply R1 and R2 on (S′′, T ′′). By
Lemma 13 we either find in polynomial time that G has no valid red-blue (S∗, T ∗, S′′, T ′′)-
colouring, and we discard the branch, or we obtain an intermediate tuple (S′, T ′, X ′, Y ′).
Say the latter holds. Let Z ′ = V \ (X ′ ∪ Y ′) be the set of uncoloured vertices. We show the
following claim (proof omitted).

▷ Claim 19.1. The intermediate tuple (S′, T ′, X ′, Y ′) is monochromatic.

By Claim 19.1, we may exhaustively apply R1–R3 to the intermediate tuple (S′, T ′, X ′, Y ′).
By Lemma 15 we either find in polynomial time that G has no valid red-blue (S′, T ′, X ′, Y ′)-
colouring, and thus no valid red-blue (S∗, T ∗, S′, T ′)-colouring, and we discard the branch,
or we obtain a final tuple (S, T, X, Y ) of G. We let Z = V \ (X ∪ Y ). We show the following
claims (proofs omitted).

▷ Claim 19.2. Every vertex w ∈ Z has exactly one neighbour in X \ S.

MFCS 2023



64:12 Dichotomies for Maximum Matching Cut

G G′

Figure 6 A graph G (left) where the tick red edges form a maximum edge cut, and the graph G′

(right) from the proof of Theorem 20, where the thick red edges form a maximum matching cut.

▷ Claim 19.3. If G[Z] contains two connected components F1 and F2 of size at least 2, then
G[Z] = F1 + F2.

We use Claim 19.2 to prove Claim 19.3, from which it follows that G[Z] has at most two
components with more than one vertex, which are both monochromatic in every valid red-blue
(S, T, X, Y )-colouring of G (if such a colouring exists) due to Claim 19.1. Hence, we can
branch over all possible colourings of these connected components (there are at most four
branches).

For each branch, we propagate the obtained partial red-blue colouring by exhaustively
applying rules R1–R3. This takes polynomial time. In essence, we merely pre-coloured some
more vertices red or blue. So, in the end we either find a new tuple of G with the same
properties as those listed in Lemma 15, or we find that G has not such a tuple, in which case
we discard the branch. Suppose not. Now the set of uncoloured vertices form an independent
set. Hence, we can apply Lemma 16 to find in polynomial time a red-blue colouring of G

that is a maximum red-blue (S∗, T ∗, S′′, T ′′)-colouring due to Lemmas 13-(ii) and 15-(ii).
If we discarded a branch, that is, if G has no valid red-blue (S∗, T ∗, S′′, T ′′)-colouring,

we consider the next one. If we did not discard the branch, then we remember the value of
the maximum red-blue (S∗, T ∗, S′′, T ′′)-colouring that we found. Afterwards, we pick one
with the largest value to obtain a maximum valid red-blue colouring of G.

The correctness of our branching algorithm follows from its description. The running
time is polynomial: each of the in total O(n2) branches takes polynomial time to process. ◀

4 Hardness Results

We sketch the two hardness proofs. For the first one we reduce from Maximum Cut, which
is NP-complete even for subcubic graphs [37]: does a subcubic graph G have an edge cut of
size at least k for some integer k?

▶ Theorem 20. Maximum Matching Cut is NP-hard for subcubic line graphs of triangle-
free graphs.

Proof sketch. Let (G, k) be an instance of Maximum Cut, where G is subcubic. Build a
graph G′ as follows (see also Figure 6). Replace every vertex v ∈ V (G) by a triangle Cv. For
every edge uv ∈ E(G), add an edge between a vertex in Cv and a vertex in Cu, such that
every vertex in Cv has at most one neighbour outside Cv. This is possible, as G is subcubic.
The graph G′ is also subcubic, as every vertex in G′ has two neighbours inside a triangle
and at most one neighbour outside. Moreover, G′ is (K1,3, diamond)-free, so the line graph
of a triangle-free graph. We can show that G has an edge cut of size at least k if and only if
G′ has a maximum matching cut of size at least k. ◀
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x1 x2 x3 x4 x5 x6

x1 x2 x4 x2 x4 x5 x3 x5 x6

Figure 7 The graph G for X = {x1, . . . , x6} and S = {{x1, x2, x4} , {x2, x4, x5} , {x3, x5, x6}}.
The vertices in the rectangle form a clique. The set S ′ = {{x1, x2, x4} , {x3, x5, x6}} is an exact
3-cover of X. The thick red edges in the graph show the corresponding maximum matching cut.

An exact 3-cover of a set X is a collection C of 3-element subsets of X, such that every x ∈ X

is in exactly one 3-element subset of C. We now reduce from Exact 3-Cover, which is to
decide if a collection S of 3-element subsets of a set X with q elements has an exact 3-cover
of X (which will be of size q). This problem is NP-complete (see [23]).

▶ Theorem 21. Maximum Matching Cut is NP-hard for 2P3-free quadrangulated graphs
of radius at most 2 and diameter at most 3.

Proof sketch. Let (X, S) be an instance of Exact 3-Cover where X = {x1, . . . , x3q} and
S = {S1, . . . , Sk}, such that each Si contains exactly three elements of X. From (X, S) we
construct a graph G as follows (see also Figure 7). We first define a clique KX = {x1, . . . , x3q}.
For each S ∈ S, we do as follows. Let S = {xh, xi, xj}. We add a a triangle KS on vertices
xS

h , xS
i and xS

j . We add an edge between a vertex xi ∈ KX and a vertex u /∈ KX if and only
if u = xS

i for some S ∈ S. This completes the construction of G. Note that G is 2P3-free,
quadrangulated as well as that the radius of G is at most 2 and the diameter of G is at
most 3. We can show that S contains an exact 3-cover of X if and only if G has a matching
cut of size 3q. ◀

5 The Proofs of Theorems 5–7

We first note that Theorem 5 immediately follows from Theorems 19 and 21.
The first part of Theorem 6 follows from the fact that a graph of radius 1 has a dominating

vertex, and thus it has a matching cut if and only if it has a vertex of degree 1, which can be
checked in polynomial time. The second part of Theorem 6 follows from Theorem 21.

To prove Theorem 7, let H be a graph. If H contains a cycle, then Matching Cut,
and thus Maximum Matching Cut, is NP-hard due to Theorem 2. Now suppose H has
no cycle, so H is a forest. If H contains a vertex of degree at least 3, then the class of
H-free graphs contains the class of K1,3-free graphs. The latter class contains the class of
line graphs, and thus we apply Theorem 20. Now suppose H is a forest of maximum degree
at most 2, that is, H is a linear forest. If H ⊆i sP2 + P6 for some s ≥ 0, then we apply
Theorem 17. Else H has an induced 2P3. We apply Theorem 21. This completes the proof.

6 Conclusions

We considered the optimization version Maximum Matching Cut of the classical Matching
Cut problem after first observing that the Perfect Matching Cut problem is a special
case of the former problem. We generalized known algorithms for graphs of diameter at most 2
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and P6-free graphs from Matching Cut and Perfect Matching Cut to Maximum
Matching Cut. We also showed that the latter problem is computationally harder (assuming
P ̸= NP) than Matching Cut and Perfect Matching Cut for various graph classes. Our
results led to three new dichotomy results, including a complete computational complexity
classification of Maximum Matching Cut for H-free graphs. The latter classification is
still unsettled for the other two problems, as can be observed from Theorems 2 and 4. Below
we discuss some other open problems.

We first recall that the complexity of Perfect Matching Cut has not been fully
classified for graphs of diameter at most d. What is the complexity of Perfect Matching
Cut in the remaining open case where d = 3? We showed that Maximum Matching Cut is
NP-hard for 2P3-free quadrangulated graphs of diameter 3 and radius 2, whereas Matching
Cut is polynomial-time solvable for quadrangulated graphs [32]. We recall an interesting
open problem of Le and Telle [29] who asked, after proving polynomial-time solvability for
chordal graphs: what is the complexity of Perfect Matching Cut for quadrangulated
graphs, or more general, k-chordal graphs for k ≥ 4? Here, a graph is k-chordal for some
k ≥ 3 if it is (Ck+1, Ck+2, . . .)-free, so 3-chordal graphs are the chordal graphs.
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Abstract
Finite-state dimension, introduced early in this century as a finite-state version of classical Hausdorff
dimension, is a quantitative measure of the lower asymptotic density of information in an infinite
sequence over a finite alphabet, as perceived by finite automata. Finite-state dimension is a robust
concept that now has equivalent formulations in terms of finite-state gambling, lossless finite-state
data compression, finite-state prediction, entropy rates, and automatic Kolmogorov complexity.
The 1972 Schnorr-Stimm dichotomy theorem gave the first automata-theoretic characterization of
normal sequences, which had been studied in analytic number theory since Borel defined them in
1909. This theorem implies, in present-day terminology, that a sequence (or a real number having
this sequence as its base-b expansion) is normal if and only if it has finite-state dimension 1. One
of the most powerful classical tools for investigating normal numbers is the 1916 Weyl’s criterion,
which characterizes normality in terms of exponential sums. Such sums are well studied objects
with many connections to other aspects of analytic number theory, and this has made use of Weyl’s
criterion especially fruitful. This raises the question whether Weyl’s criterion can be generalized
from finite-state dimension 1 to arbitrary finite-state dimensions, thereby making it a quantitative
tool for studying data compression, prediction, etc. i.e., Can we characterize all compression ratios
using exponential sums?.

This paper does exactly this. We extend Weyl’s criterion from a characterization of sequences
with finite-state dimension 1 to a criterion that characterizes every finite-state dimension. This
turns out not to be a routine generalization of the original Weyl criterion. Even though exponential
sums may diverge for non-normal numbers, finite-state dimension can be characterized in terms of
the dimensions of the subsequence limits of the exponential sums. In case the exponential sums are
convergent, they converge to the Fourier coefficients of a probability measure whose dimension is
precisely the finite-state dimension of the sequence.

This new and surprising connection helps us bring Fourier analytic techniques to bear in proofs
in finite-state dimension, yielding a new perspective. We demonstrate the utility of our criterion by
substantially improving known results about preservation of finite-state dimension under arithmetic.
We strictly generalize the results by Aistleitner and Doty, Lutz and Nandakumar for finite-state
dimensions under arithmetic operations. We use the method of exponential sums and our Weyl
criterion to obtain the following new result: If y is a number having finite-state strong dimension 0,
then dimF S(x + qy) = dimF S(x) and DimF S(x + qy) = DimF S(x) for any x ∈ R and q ∈ Q. This
generalization uses recent estimates obtained in the work of Hochman [17] regarding the entropy of
convolutions of probability measures.
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1 Introduction

Finite-state compressibility [34], or equivalently, finite-state dimension [10, 2, 5] is a quantific-
ation of the information rate in data as measured by finite-state automata. This formulation,
initially motivated by practical constraints, has proved to be rich and mathematically ro-
bust, having several equivalent characterizations. In particular, the finite state-dimension
of a sequence is equal to the compression ratio of the sequence using information lossless
finite-state compressors ([10, 2]). Finite-state dimension has unexpected connections to areas
such as number theory, information theory, and convex analysis [20, 12]. Schnorr and Stimm
[28] establish a particularly significant connection by showing that a number is Borel normal
in base b (see for example, [24, 6, 8]) if and only if its base b expansion has finite-state
compressibility equal to 1, i.e., is incompressible (see also: [3, 5, 13, 15]). Equivalently, a
number x ∈ [0, 1) is normal if and only if dimF S(x), the finite-state dimension of x is equal
to 1. A celebrated characterization of Borel normality in terms of exponential sums, provided
by Weyl’s criterion [32], has proved to be remarkably effective in the study of normality.
Weyl’s criterion on uniformly distributed sequences modulo 1 yields a characterization that a
real number r is normal to base b if and only if for every integer k,

lim
n→∞

1
n

n−1∑
j=0

e2πik(bjr) = 0. (1)

This tool was used by Wall [31] in his pioneering thesis to show that normality is preserved
under certain operations like selection of subsequences along arithmetic progressions, and
multiplication with non-zero rationals. Weyl’s criterion facilitates the application of tools
from Fourier analysis in the study of Borel normality. Weyl’s criterion is used in several
important constructions of normal numbers including those given by Cassels [7], Erdös and
Davenport [11] etc. The criterion was also instrumental in obtaining the construction of
absolutely normal numbers given by Schmidt in [27].

The finite-state compression ratio/dimension of an arbitrary sequence is a quantity in
[0,1]. The classical Weyl’s criterion provides a characterization of numbers having finite-state
dimension equal to 1 in terms of exponential sums. This leads us to the natural question -
Can we characterize arbitrary compression ratios using exponential sums?. This question
turns out to be highly non-trivial. It is not easy to generalize Weyl’s criterion to study
arbitrary finite-state compression ratios/dimension. The major conceptual hurdle arises
from the fact that for non-normal numbers, the Weyl sum averages in (1) need not converge.
The Weyl averages need not converge even when the finite-state dimension and the strong
dimension of a sequence are equal.

We demonstrate this by explicitly constructing such a sequence in Lemma 19. Using a
new construction method involving the controlled concatenation of two special sequences, we
demonstrate the existence of a sequence x ∈ Σ∞ with non-convergent Weyl averages, while
having finite-state dimension and strong dimension both equal to 1

2 . The proof that this
constructed sequence satisfies the required properties uses new techniques, which might be
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of independent interest. Due to the existence of such sequences, it is unclear how to extract
the finite-state dimension of a sequence from non-convergent Weyl averages. Indeed, it was
unclear whether any generalization of the Weyl’s criterion to arbitrary finite-state dimensions
even exists.

Our paper rescues this approach and gives such a characterization of arbitrary finite-
state compressibility/dimension by introducing one important viewpoint, that turns out to
be the major theoretical insight. Even when the exponential sums diverge, the theory of
weak convergence of probability measures ([4]) enables us to consider the collection of all
probability measures having Fourier coefficients equal to the subsequence limits of the Weyl
averages. The dimensions of the measures in the set of subsequence weak limit measures
gives a generalization of Weyl’s criterion. For any x, let dimF S(x) and DimF S(x) denote
the finite-state dimension and finite-state strong dimension [2] of x respectively. We now
informally state our Weyl’s criterion for finite-state dimension.

▶ Theorem (Informal statement of Theorem 22). Let x ∈ [0, 1). If for any subsequence
⟨nm⟩∞

m=0 of natural numbers, there exist complex numbers ck such that for every k ∈ Z,
limm→∞

1
nm

∑nm−1
j=0 e2πik(bjx) = ck, then, there exists a probability measure µ on [0, 1)

such that for every k, ck =
∫

e2πikydµ. Let Wx be the collection of all such probability
measures µ on [0, 1) that can be obtained as the subsequence limits of Weyl averages. Then,
dimF S(x) = infµ∈Wx H−(µ) and DimF S(x) = supµ∈Wx

H+(µ).

The correct notion of dimensions of the subsequence weak limit measures in Wx which
yields the finite-state dimensions of x turns out to be H− and H+, the lower and upper
average entropies of µ as defined in [2] 1. Therefore, this new characterization enables us to
extract the finite-state compressibility/dimension by studying the behavior of the Weyl sum
averages, thereby extending Weyl’s criterion for normality to arbitrary finite-state dimensions.

An interesting special case of our criterion is when the exponential averages of a sequence
are convergent. In this case, the averages ⟨ck⟩k∈Z are precisely the Fourier coefficients of
a unique limiting measure, whose dimension is precisely the finite-state dimension of the
sequence. This relates two different notions of dimension to each other. We give the informal
statement of our criterion for this special case.

▶ Theorem (Informal statement of Theorem 23). Let x ∈ [0, 1). If there exist complex numbers
ck for k ∈ Z such that 1

n

∑n−1
j=0 e2πik(bjx) → ck as n → ∞, then, there exists a unique measure

µ on [0, 1) such that for every k, ck =
∫

e2πikydµ. Furthermore, dimF S(x) = DimF S(x) =
H−(µ) = H+(µ).

Our results also show that in case there is a unique weak limit measure, the exponential
sums (1) converge for every k ∈ Z. These give the first known relations between Fourier
coefficients and finite-state compressibility/dimension. The proof of Weyl’s criterion for
finite-state dimension is not a routine generalization of the available proofs of Weyl’s criterion
for normality (see [32, 14], [30]) and requires several facts from the theory of weak convergence
of probability measures and new relationships involving the exponential sums, the dimensions
of weak limit measures and the finite-state dimension of the given sequence. We overcome
certain additional technical difficulties in working with two different topologies - the topology
on the torus T where Fourier coefficients uniquely determine a measure, and another, Cantor
space, which is required for studying combinatorial properties of sequences, like normality.

1 These are analogues of the well-known Rényi upper and lower dimensions of measures as defined in [25].
See the remark following Definition 5.
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1.1 Applications of our criterion

We illustrate how this framework can be applied in sections 6. These results justify that this
framework pioneers a new, powerful, approach to data compression. It is not very surprising
that when the Weyl averages converge, our criterion has applications. Importantly, even
in situations where the Weyl averages do not converge, it is possible to derive non-trivial
consequences. We apply our techniques to substantially improve known results about the
preservation of finite-state dimension under arithmetic and combinatorial operations.

Doty, Lutz and Nandakumar [12] show that if x is any real and q is any non-zero rational,
then the finite-state dimensions and strong dimensions of x, qx and x + q are equal. When x

is normal, a generalization is obtained by Aistleitner [1], which can be described as follows.
Let y be any real such that the asymptotic density of zeroes in its expansion is one. Then,
for any rational q, we have x + qy is normal. We generalize these results by allowing both
the following conditions simultaneously,

1. x is allowed to be any real, obtaining a result for all finite-state dimensions rather than
only for normals as in Aistleitner [1] and

2. y is allowed to be any real with finite-state strong dimension 0 which satisfies a nat-
ural independence condition. This generalizes both the restrictions in Doty, Lutz and
Nandakumar [12] and Aistleitner [1],

and show that for any rational q ∈ Q, dimF S(x + qy) = dimF S(x) and DimF S(x + qy) =
DimF S(x) if x and y are independent (see Definition 30) and DimF S(y) = 0.

Using our Weyl criterion along with the results in Hochman [17], we obtain the following.
Let x and y be real numbers in T such that x and y are independent. Then for any
d, e ∈ Z, dimF S(dx+ey) ≥ max{dimF S(dx), dimF S(ey)} and dimF S(dx+ey) ≤ dimF S(dx)+
DimF S(ey). Similarly, DimF S(dx + ey) ≥ max{DimF S(dx), DimF S(ey)} and DimF S(dx +
ey) ≤ DimF S(dx) + DimF S(ey). Our main results are consequences of these inequalities.

There are several known techniques for explicit constructions of normal numbers (see [20,
6]), but constructions of those with finite-state dimension s ∈ [0, 1) follow two techniques:
first, to start with a normal sequence, and to dilute it with an appropriate fraction of
simple patterns, as we did in Section 4, and second, to start with a coin with bias p such
that −p log2 p − (1 − p) log2(1 − p) = s, and consider any typical sequence drawn from this
distribution (see also [23]). We note that our Weyl criterion along with techniques from
Mance and Madritsch [22] yields new methods for the explicit construction of numbers having
a specified finite-state dimension.

Lossless data compression is practically significant, and theoretically sophisticated. We
show how one of the major tools of modern mathematics, Fourier analysis, can be brought to
bear to study compressibility of individual data sequences. We hope that our criterion will
facilitate the application of more powerful Fourier analytic tools in future works involving
finite-state compression/dimension.

After the preliminary sections, section 3 gives Weyl’s criterion on Cantor space using
weak convergence of measures. Next, we show the necessity and the sufficiency of passing
to subsequences of sequences of measures in order to generalize Weyl’s criterion for finite-
state dimension. In section 6 we show the applications of our Weyl criterion to yield new,
general results regarding the preservation of finite-state dimension under arithmetic and
combinatorial operations.
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2 Preliminaries

For any natural number b > 1, Σb denotes the alphabet {0, 1, 2, . . . b − 1}. Throughout this
paper, we work with base 2, but our results generalize to all bases. We use Σ to denote
the binary alphabet Σ2. We denote the set of finite binary strings by Σ∗ and the set of
infinite sequences by Σ∞. For any w ∈ Σ∗, let Cw be the set of infinite sequences with w as
a prefix, called a cylinder. For any sequence x = x0x1x2 . . . in Σ∞, we denote the substring
xixi+1 . . . xj of x, by xj

i . The Borel σ-algebra generated by the set of all cylinder sets is
denoted by B(Σ∞). Let T denote the one-dimensional torus or unit circle. i.e, T is the unit
interval [0, 1) with the metric d(r, s) = min{|r − s|, 1 − |r − s|}. T is a compact metric space.
The Borel σ-algebra generated by all open sets in T is denoted by B(T). For any base b, let vb

be the evaluation map which maps any x ∈ Σ∞ to its value in T which is
∑∞

i=0
xi

bi+1 mod 1.
We use the simplified notation v to denote the base 2 evaluation map v2. Let T be the left
shift transformation T (x0x1x2 . . . ) = x1x2x3 . . . on Σ∞. For any base b and w ∈ Σ∗

b , let Ib
w

denote the interval
[
vb(w0∞), vb(w0∞) + b−|w|) in T. We use the simplified notation Iw to

refer to I2
w. Let D be the set of all dyadic rationals in T. It is easy to see that v : Σ∞ → T

has a well-defined inverse, denoted v−1, over T \ D. For any measure µ on T (or Σ∞), we
refer to the collection of complex numbers

∫
e2πikydµ where k ranges over Z as the Fourier

coefficients of measure µ. For measures over Σ∞, the function e2πiky inside the integral is
replaced with e2πikv(y). For every measure µ on T, we define the corresponding lifted measure
on Σ∞ as follows.

▶ Definition 1 (Lift µ̂ of a measure µ on T). If µ is a measure on T, then we define the lift
µ̂ of µ to be the unique measure on Σ∞ satisfying µ̂(Cw) = µ(Iw) for every string w ∈ Σ∗. 2

▶ Definition 2. Let x ∈ Σ∗ have length n. We define the sliding count probability of w ∈ Σ∗

in x denoted P (x, w), and the disjoint block probability of w in x, denoted P d(x, w), as
follows.

P (x, w) = |{i ∈ [0, n − |w|] : x
i+|w|−1
i = w}|

n − |w| + 1 and P d(x, w) =
|{i ∈ [0, n

|w| ) : x
|w|(i+1)−1
|w|i = w}|

n/|w|

Now, we define normal sequences in Σ∞ and normal numbers on T.

▶ Definition 3. A sequence x ∈ Σ∞ is normal if for every w ∈ Σ∗, limn→∞ P (xn−1
0 , w) =

2−|w|. r ∈ T is normal if and only if r ̸∈ D and v−1(r) is a normal sequence in Σ∞.

Equivalently, we can formulate normality using disjoint probabilities [20]. The following is
the block entropy characterization of finite-state dimension from [5], which we use instead of
the original formulation using s-gales (see [10],[2],[21]).

▶ Definition 4 ([10, 5]). For a given block length l, we define the sliding block entropy
over xn−1

0 as Hl(xn−1
0 ) = − 1

l

∑
w∈Σl P (xn−1

0 , w) log(P (xn−1
0 , w)). The finite-state dimen-

sion of x ∈ Σ∞, denoted dimF S(x), and finite-state strong dimension of x, denoted
DimF S(x), are defined as follows. dimF S(x) = inf l lim infn→∞ Hl(xn−1

0 ) and DimF S(x) =
inf l lim supn→∞ Hl(xn−1

0 ) 3.

2 The uniqueness of µ̂ follows from routine measure theoretic arguments
3 The fact that dimF S(x) and DimF S(x) are equivalent to the lower and upper finite-state compressibilities

of x using lossless finite-state compressors, follows immediately from the results in [34] and [10].
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Disjoint block entropy Hd
l is defined similarly by replacing P with P d. Bourke, Hitchcock

and Vinodchandran [5], based on the work of Ziv and Lempel [34], demonstrated the
entropy characterization of finite-state dimension using Hd

l instead of Hl. Kozachinskiy
and Shen ([19]) proved that the finite-state dimension of a sequence can be equivalently
defined using sliding block entropies (as in Definition 4) instead of disjoint block entropies.
It is clear from the definition that, for any x ∈ Σ∞, dimF S(x) ≤ DimF S(x). Any x with
dimF S(x) = DimF S(x) is called a regular sequence. Upper and lower average entropies were
defined in [2] for measures constructed out of infinite bias sequences. We extend these notions
to the set of all measures on Σ∞ below.

▶ Definition 5. For any probability measure µ on Σ∞, let Hn(µ) =
−

∑
w∈Σn µ(Cw) log(µ(Cw)). The upper average entropy of µ, denoted H+(µ), and

its lower average entropy, denoted H−(µ), are respectively the limit superior and the limit
inferior as n tends to ∞ of Hn(µ)/n.

Upper and lower average entropies are the Cantor space analogues of Rényi upper and lower
dimensions of measures on [0,1) which were originally defined for measures on the real line
in [25]. For any x ∈ T (or x ∈ Σ∞) , let δx denote the Dirac measure at x. i.e, δx(A) = 1 if
x ∈ A and 0 otherwise for every A ∈ B(T) (or A ∈ B(Σ∞)). Given a sequence ⟨xn⟩∞

n=0 of
numbers in T(or Σ∞), we investigate the behavior of exponential averages 1

n

∑n−1
j=0 e2πikxj

by studying the weak convergence of sequences of averages of Dirac measures.

▶ Definition 6. Given a sequence ⟨xn⟩∞
n=0 in T (or elements in Σ∞), we say that ⟨νn⟩∞

n=1
is the sequence of averages of Dirac measures over T (or over Σ∞) constructed out of the
sequence ⟨xn⟩∞

n=0 if, νn = n−1 ∑n−1
i=0 δxi for each n ∈ N.

3 Weyl’s criterion and weak convergence

Schnorr and Stimm [28] (see also [3, 5]) showed a central connection between normal numbers
and finite-state compressibility, or equivalently, finite-state dimension: a sequence x ∈ Σ∞ is
normal if and only if its finite-state dimension is 1. Any x ∈ Σ∞ has finite-state dimension
(equivalently, finite-state compressibility) between 0 and 1. In this sense, finite-state dimension
is a generalization of the notion of normality. Another celebrated characterization of
normality, in terms of exponential sums, was provided by Weyl in 1916. This characterization
has resisted attempts at generalization. In the present section, we show that the theory
of weak convergence of measures yields a generalization of Weyl’s characterization for
arbitrary dimensions. We demonstrate the utility of this new characterization to finite-state
compressibilty/finite-state dimension, in subsequent sections. Weyl criterion for normal
numbers on T is the following.

▶ Theorem 7 (Weyl’s criterion [32]). A number r ∈ T is normal if and only if for every
k ∈ Z, limn→∞

1
n

∑n−1
j=0 e2πik(2jr) = 0.

The insight in this theorem is the connection between a number x being normal, and the
concept of the collection of its shifts being uniformly distributed in the unit interval. It is
the latter concept which leads to the cancellation of the exponential sums of all orders. The
following is a formulation of this criterion on Cantor space, which we require in our work.

▶ Theorem 8 (Weyl’s criterion on Σ∞). A sequence x ∈ Σ∞ is a normal sequence if and only
if for every k ∈ Z, limn→∞

1
n

∑n−1
j=0 e2πik(v(T jx)) = 0.
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The key to generalizing Weyl’s criterion to sequences with finite-state dimension less than
1 is to characterize convergence of subsequences of exponential sums using weak convergence
of probability measures on Σ∞ (see Billingsley [4]). Over T, this equivalent characterization
is well-known (see Section 4.4 from [14]). Obtaining the same equivalence over Σ∞ involves
some technical hurdles due to the fact that continuous functions over Σ∞ need not have a
uniform approximation using trigonometric polynomials. In order to overcome these, we
need to carefully study the relationship between the convergence of Weyl averages and weak
convergence over Σ∞. We develop these relationships in the following lemmas. At the end
of this section we characterize Theorem 8 in terms of weak convergence of a sequence of
measures over Σ∞.

▶ Definition 9. A sequence ⟨νn⟩n∈N of probability measures on a metric space (X, d) converges
weakly to a probability µ on (X, d), denoted νn ⇒ µ, if for every bounded continuous function
f : X → C, we have limn→∞

∫
fdνn =

∫
fdµ.

If a sequence of measures ⟨νn⟩n∈N on a metric space (X, d) has a weak limit measure, then the
weak limit must be unique (see Theorem 1.2 from [4]). Since T and Σ∞4 are compact metric
spaces, using Prokhorov’s Theorem (see Theorem 5.1 from [4]) we get that any sequence of
measures ⟨νn⟩n∈N on T (or Σ∞), has a measure µ on T (or Σ∞) and a subsequence ⟨νnm

⟩m∈N
such that νnm ⇒ µ. We first establish a relationship between weak convergence of measures
on T and the convergence of measures of dyadic intervals in T. Since the set of all finite
unions of dyadic intervals in T is closed under finite intersections, we obtain the following
lemma using Theorem 2.2 from [4].

▶ Lemma 10. If for every dyadic interval I in T, limn→∞ νn(I) = µ(I), then νn ⇒ µ.

The Portmanteau theorem (Theorem 2.1 from [4]) gives the following partial converse.

▶ Lemma 11. Let νn ⇒ µ. Then limn→∞ νn(I) = µ(I) for dyadic interval I = [d1, d2) if
µ({d1}) = µ({d2}) = 0.

We characterize convergence of exponential sums in terms of weak convergence of probab-
ility measures, first on T and then on the Cantor space Σ∞. Unlike Theorem 7, the result on
Σ∞ does not follow immediately from that on T. On T, the following theorem holds due to
Prokhorov theorem, the fact that continuous functions on T can be approximated uniformly
using trigonometric polynomials, and that Fourier coefficients of measures over T are unique
due to Bochner’s theorem (see Theorem 4.19 from [16]).

▶ Theorem 12. Let r ∈ T and let ⟨νn⟩∞
n=1 be the sequence of averages of Dirac measures

constructed out of ⟨2nr mod 1⟩∞
n=0. Let ⟨nm⟩m∈N be any subsequence of natural numbers.

Then for every k ∈ Z, there is a ck ∈ C such that limm→∞
1

nm

∑nm−1
j=0 e2πik(2jr) = ck if and

only if there is a unique measure µ such that νnm
⇒ µ. Furthermore, if any of the above

conditions are true, then ck =
∫

e2πikydµ for every k ∈ Z and µ is the unique measure on T
having Fourier coefficients ⟨ck⟩k∈Z.

We require an analogue of this theorem for Cantor space. But the proof above cannot be
adapted because on Cantor space, there are continuous functions which cannot be approxim-
ated uniformly using trigonometric polynomials. For example, consider χC0 . Observe that
χC0(0∞) = 1 ̸= 0 = χC0(1∞). But since v(0∞) = v(1∞), every trigonometric polynomial

4 The metric on Σ∞ is d(x, y) = 2− min{i|xi ̸=yi}.
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has the same value on 0∞ and 1∞. However, we recover the analogue by handling dyadic
rational sequences and other sequences in separate cases. Since the set of all finite unions of
cylinder sets in Σ∞ is closed under finite intersections and since the characteristic functions
of cylinder sets are continuous on the Cantor space, we get the following analogue of Lemma
10 and 11 using Theorem 2.2 from [4].

▶ Lemma 13. For a sequence of measures ⟨νn⟩n∈N on Σ∞, νn ⇒ µ iff limn→∞ νn(Cw) =
µ(Cw) for every w ∈ Σ∗.

In the following theorems we relate the convergence of measures of cylinder sets to the
convergence of Weyl averages on the Cantor space using Theorem 12 and Lemma 13. We
state these theorems for convergence along any subsequence, since we require these more
general results for studying the subsequence limits of Weyl averages.

▶ Theorem 14. Let x ∈ Σ∞ and ⟨νn⟩∞
n=1 be the sequence of averages of Dirac measures

on Σ∞ constructed out of ⟨T nx⟩∞
n=0. Let ⟨nm⟩m∈N be any subsequence of natural num-

bers. If limm→∞ νnm
(Cw) = µ(Cw) for every w ∈ Σ∗, then for every k ∈ Z we have

limm→∞
1

nm

∑nm−1
j=0 e2πikv(T jx) =

∫
e2πikv(y)dµ.

Observe that n−1
m

∑nm−1
j=0 e2πikv(T jx) =

∫
e2πikv(y)dνnm . Hence, the above claim follows

from Lemma 13 and the definition of weak convergence since for every k ∈ Z, e2πikv(y) is a
continuous function on Σ∞5. While Fourier coefficients uniquely determine measures over
T, Bochner’s Theorem does not hold over Σ∞. For example let µ1 = δ0∞ and let µ2 = δ1∞ .
Then µ1 ≠ µ2, but it is easy to verify that for any k ∈ Z,

∫
e2πikv(y)dµ1 = e2πikv(0∞) = 1 =

e2πikv(1∞) =
∫

e2πikv(y)dµ2. The following lemma leads to a converse of Theorem 14.

▶ Lemma 15. Let x ∈ Σ∞ such that v(x) ̸∈ D and let ⟨ν′
n⟩∞

n=1 be the sequence of averages
of Dirac measures on T constructed out of the sequence ⟨2nv(x) mod 1⟩∞

n=0. Let d be any
non-zero dyadic rational. If ν′

nm
⇒ µ′ for some subsequence of natural numbers ⟨nm⟩m∈N,

then µ′({d}) = 0.

Using the above results we obtain the following partial converse of Theorem 14.

▶ Theorem 16. Let x ∈ Σ∞ and let ⟨nm⟩m∈N be any subsequence of natural numbers.
Let ⟨ck⟩k∈Z be complex numbers such that limm→∞

1
nm

∑nm−1
j=0 e2πikv(T jx) = ck for every

k ∈ Z. Then there exists a unique measure µ on T having Fourier coefficients ⟨ck⟩k∈Z and
limm→∞ νnm

(Cw) = µ̂(Cw) for every w ∈ Σ∗ such that w ̸= 1|w| and w ̸= 0|w|.

For any x ∈ Σ∞, let ⟨νn⟩∞
n=1 be the sequence of averages of Dirac measures on Σ∞

constructed out of the sequence ⟨T nx⟩∞
n=0. Now, for any A ∈ B(Σ∞), νn(A) is the proportion

of elements in the finite sequence x, Tx, T 2x, . . . T n−1x which falls inside the set A. From
this remark, and the definitions of νn and the sliding count probability P , the following
lemma follows easily.

▶ Lemma 17. Let w be any finite string in Σ∗ and let l = |w|. Let x be any element in
Σ∞. If ⟨νn⟩∞

n=1 is the sequence of averages of Dirac measures over Σ∞ constructed out of
the sequence ⟨T nx⟩∞

n=0. Then for any n, νn(Cw) = P (xn+l−2
0 , w).

We now give a new characterization of Weyl’s criterion on Cantor Space (Theorem 8) in
terms of weak convergence of measures.

5 This follows easily by observing that the valuation map v : Σ∞ → T is a continuous function on Σ∞.
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▶ Theorem 18 (Weyl’s criterion on Σ∞ and weak convergence). Let x ∈ Σ∞, and ⟨νn⟩∞
n=1

be the sequence of averages of Dirac measures constructed out of ⟨T nx⟩∞
n=0, and µ be the

uniform measure on Σ∞. Then the following are equivalent.
1. x is normal.
2. For every w ∈ Σ∗, the sliding block frequency P (xn−1

0 , w) → 2−|w| as n → ∞.
3. For every k ∈ Z, limn→∞

1
n

∑n−1
j=0 e2πikv(T jx) = 0.

4. νn ⇒ µ.

4 Divergence of exponential sums for non-normal numbers

Weyl’s criterion says that when dimF S(x) = DimF S(x) = 1 the averages of the exponential
sums for every k converges to 0. However for x with dimF S(x) < 1, the situation is different.
It is easy to construct a sequence a with dimF S(a) < 1 and a k ∈ Z such that the sequence
of Weyl averages with parameter k do not converge. It is natural to ask if the condition
dimF S(x) = DimF S(x) is sufficient to guarantee convergence of the exponential sum averages.
But we construct an x with dimF S(x) = DimF S(x) = 1

2 such that for some k, the sequence
⟨
∑n−1

j=0 e2πik(v(T jx))/n⟩∞
n=1 diverges. Entropy rates converging to a limit does not imply that

the empirical probability measures converge to a limiting distribution, and it is the latter
notion which is necessary for exponential sums to converge.

▶ Lemma 19. There exists x ∈ Σ∞ with dimF S(x) = DimF S(x) = 1
2 such that for some

k ∈ Z, the sequence ⟨
∑n−1

j=0 e2πik(v(T jx))/n⟩∞
n=1 is not convergent.

Generalizing the construction of diluted sequences in [10], we define an x with v(x) ∈ T\D
and dimF S(x) = DimF S(x) = 1/2, but where for some k ∈ Z, the sequences of Weyl sum
averages diverge. The idea of dilution is as follows. Let y ∈ Σ∞ be normal. Define a ∈ Σ∞ by
a2n = 0, a2n+1 = yn, n ∈ N. Then dimF S(a) = DimF S(a) = 1/2. Note that b ∈ Σ∞ defined
by b4n = b4n+3 = 0, and b4n+1 = y2n, b4n+2 = y2n+1, n ∈ N is also a regular sequence with
dimF S(b) = DimF S(b) = 1/2. But, the sliding block frequency of 01 in a is 1/4, whereas
it is 3/16 in b. We leverage the existence of such distinct sequences with equal dimension.
The disjoint blocks of x alternate between the above two patterns in a controlled manner to
satisfy the following conditions.
1. dimF S(x) = DimF S(x) = 1/2
2. There is an increasing sequence of indices ⟨ni⟩∞

i=1 such that limi→∞ P (xni−1
0 , 01) = 1/4.

3. There is an increasing sequence of indices ⟨ni⟩∞
i=1 such that limj→∞ P (xnj−1

0 , 01) = 3/16.

Let ⟨νn⟩∞
n=1 be the sequence of averages of Dirac measures constructed out of ⟨T nx⟩∞

n=0,
and ⟨ν′

n⟩∞
n=1, those from ⟨2nv(x) mod 1⟩∞

n=0. Assume that ⟨n−1 ∑n−1
j=0 e2πik(v(T jx))⟩∞

n=1 con-
verge for every k ∈ Z. Using the same steps in the proof of Theorem 16, we get that ν′

n ⇒ µ′

where µ′ is the unique measure on T having Fourier coefficients equal to the limits of the
Weyl averages. Since v(x) ∈ T \ D, Theorem 16 implies that ν(C01) is convergent. Using
Lemma 17, we infer that limn→∞ P (xn−1

0 , 01) exists. But, we know from conditions 2 and 3
that P (xn−1

0 , 01) is not convergent. Hence, we arrive at a contradiction. Therefore, for some
k ∈ Z, the Weyl averages ⟨n−1 ∑n−1

j=0 e2πik(v(T jx))⟩∞
n=1 diverge. The above construction is

easily adapted to show that for any rational number p/q ∈ (0, 1), there exists x ∈ Σ∞ with
dimF S(x) = DimF S(x) = p/q such that some Weyl average of x diverges.
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5 Weyl’s criterion for finite-state dimension

We saw in Lemma 19 that Weyl averages may diverge for x having finite-state dimension
less than 1, even if x is regular. Hence, it is necessary for us to deal with divergent Weyl
averages and obtain their relationship with the finite-state dimension of x. We know from
Theorem 18 that Weyl’s criterion for normality (Theorem 8) is equivalently expressed in
terms of weak convergence of a sequence of measures over Σ∞. In section 5.1, we generalize
the weak convergence formulation to handle arbitrary finite state dimension. Applying this,
in section 5.2, we generalize the exponential sum formulation.

5.1 Weak convergence and finite-state dimension
We know from Theorem 18 that x ∈ Σ∞ is normal (equivalently, dimF S(x) = 1) if and
only if νn → µ, where µ is the uniform distribution over Σ∞. In this subsection we give a
generalization of this formulation of Weyl’s criterion which applies for x having any finite-
state dimension. Lemma 19 and Theorem 14 together imply that νn’s need not be weakly
convergent even if x is guaranteed to be regular. However, studying the subsequence limits
of ⟨νn⟩∞

n=1 gives us the following generalization of Weyl’s criterion for arbitrary x ∈ Σ∞.

▶ Theorem 20. Let x ∈ Σ∞. Let ⟨νn⟩∞
n=1 be the sequence of averages of Dirac measures on

Σ∞ constructed out of the sequence ⟨T nx⟩∞
n=0. Let Wx be the collection of all subsequence

weak limits of ⟨νn⟩∞
n=1. i.e, Wx = {µ | ∃⟨nm⟩∞

m=0 such that νnm
⇒ µ}. Then, dimF S(x) =

infµ∈Wx H−(µ) and DimF S(x) = supµ∈Wx
H+(µ).

The following is an equivalent version of Theorem 20 which we require in section
5.2. From the definition of lower average entropy, Theorem 20 shows that, dimF S(x) =
infµ∈Wx

lim inf l→∞ Hl(µ)/l. This lim inf can be replaced by an infimum.

▶ Lemma 21. dimF S(x) = infµ∈Wx
inf l Hl(µ)/l

5.2 Weyl averages and finite-state dimension
We now obtain the main result of the paper by relating subsequence limits of Weyl averages
and finite-state dimension. In case the Weyl averages converge, we show that the sequence is
regular. In particular, when the Weyl averages converge to 0, then the regular sequence is
normal. We know from Lemma 19 that there exist regular sequences with non-convergent
Weyl averages. In the absence of limits, we investigate the subsequence limits of Weyl
averages in order to obtain a relationship with the finite-state dimension. If for some
x ∈ Σ∞, there exist a sequence of natural numbers ⟨nm⟩m∈N and constants ⟨ck⟩k∈Z such
that limm→∞

1
nm

∑nm−1
j=0 e2πik(v(T jx)) = ck. Then, using Theorem 16, we get that there

exists a measure µ on T such that ck =
∫

e2πikydµ and limm→∞ νnm
(Cw) = µ̂(Cw) for every

w ̸= 0|w| and w ̸= 1|w|. But, νnm(C0l) and νnm(C1l) need not converge. Simple examples
of such strings can be obtained by concatenating increasingly large runs of 0’s and 1’s in
an alternating stage wise manner. However, the probabilities of the strings 0l and 1l have
negligible effect on the finite-state dimension as l gets large. Using Theorem 20 we obtain
the following.

▶ Theorem 22 (Weyl’s criterion for finite-state dimension). Let x ∈ Σ∞. If for any ⟨nm⟩∞
m=0

there exist constants ck for k ∈ Z such that limm→∞
1

nm

∑nm−1
j=0 e2πik(v(T jx)) = ck, for every

k ∈ Z, then there exists a measure µ on T such that for every k, ck =
∫

e2πikydµ. Let
Ŵx be the collection of the lifted measures µ̂ on Σ∞ for all µ on T that can be obtained
as subsequence limits of Weyl averages. Then, dimF S(x) = inf{H−(µ̂) | µ̂ ∈ Ŵx} and
DimF S(x) = sup{H+(µ̂) | µ̂ ∈ Ŵx}
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Proof of Theorem 22. If v(x) is a dyadic rational in T, then it can be easily verified that
the Weyl averages are convergent to 1. The unique measure having all Fourier coefficients
equal to 1 over T is δ0. Since δ̂0 = δ0∞ , it can be easily verified that dimF S(x) = H−(δ0∞) =
H+(δ0∞) = DimF S(x) = 0. Hence, we consider the case when v(x) is not a dyadic rational.
We first define analogues of finite-state dimension by avoiding the strings 0l and 1l for all l

in calculating the sliding entropies. We define H̃l(xn−1
0 ) to be the normalized sliding entropy

over xn−1
0 as in the definition of Hl(xn−1

0 ), except that the summation is taken over Σl\{0l, 1l}
instead of Σl. Using this notion, we define d̃imF S(x) = lim inf l→∞ lim infn→∞ H̃l(xn−1

0 ) and
D̃imF S(x) = lim inf l→∞ lim supn→∞ H̃l(xn−1

0 ). Since, H̃l(xn−1
0 ) ≤ Hl(xn−1

0 ) ≤ H̃l(xn−1
0 ) +

2/l, it can be shown using routine arguments that dimF S(x) = d̃imF S(x) and DimF S(x) =
D̃imF S(x). Similarly we define H̃+ and H̃− by reducing the range of the sum in the definition
of Hl to Σl \ {0l, 1l} instead of Σl. Using a similar argument as in the case of sliding entropy,
it can be shown that H̃+ and H̃− are the same as H+ and H− for any measure on Σ∞.
Let ⟨νn⟩∞

n=1 be the sequence of averages of Dirac measures on Σ∞ constructed out of the
sequence ⟨T nx⟩∞

n=0. Let Wx be the set of all weak limits of νn as constructed in Theorem
20. Since v(x) is not a dyadic rational, using Prokhorov’s theorem for weak convergence of
T and weak convergence over Σ∞, it can be shown that, infµ∈Wx

H−(µ) = inf
µ̂∈Ŵx

H−(µ̂)
and supµ∈Wx

H+(µ) = sup
µ̂∈Ŵx

H+(µ̂). The claim now follows from Theorem 20. ◀

Hence, the finite-state dimension and finite-state strong dimension are related to the lower
and upper average entropies of the subsequence limits of the Weyl averages. Using the above
result, we get the following theorem in the case when the Weyl averages are convergent.

▶ Theorem 23 (Weyl’s criterion for convergent Weyl averages). Let x ∈ Σ∞. If there exist
ck ∈ C for k ∈ Z such that 1

n

∑n−1
j=0 e2πik(v(T jx)) → ck as n → ∞, then, there exists a

unique measure µ on T such that for every k, ck =
∫

e2πikydµ. Furthermore, dimF S(x) =
DimF S(x) = H−(µ̂) = H+(µ̂).

As a special case, we derive Weyl’s criterion for normality, i.e, for sequences x such that
dimF S(x) = DimF S(x) = 1 as a special case of Theorem 20 and Theorem 23.

▶ Theorem 24. Let x ∈ Σ∞. Then limn→∞
1
n

∑n−1
j=0 e2πik(v(T jx)) = 0 for every k ∈ Z if and

only dimF S(x) = DimF S(x) = 1.

The conclusion of Theorem 23 says that dimF S(x) = DimF S(x). i.e, x is a regular
sequence. Hence, Lemma 19 and Theorem 23 together yield the following.

▶ Corollary 25. If for each k ∈ Z, limn→∞
1
n

∑n−1
j=0 e2πik(v(T jx)) = ck for a sequence of

complex numbers ⟨ck⟩k∈Z. Then, x is a regular sequence. But there exist regular sequences
having non-convergent Weyl averages.

6 Preservation of finite-state dimension under real arithmetic

In this section, we demonstrate the utility of our framework by proving the most general
results yet regarding the preservation of finite-state dimension under arithmetic operations
like addition with reals satisfying a natural independence condition, and multiplication
with non-zero rationals. These results strictly generalize all known results regarding the
preservation of finite-state dimension including those of Doty, Lutz and Nandakumar [12] and
Aistleitner [1]. Our Weyl criterion plays a pivotal role in these extensions. We combine our
Weyl criterion along with recent estimates by Hochman [17] for the entropy of convolution
of probability measures. It is easier to analyze addition and multiplication as operations

MFCS 2023
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over T. Hence we first obtain an equivalent Weyl’s criterion for finite-state dimension
in terms of measures over T. We now define the analogues of upper and lower average
entropies for measures over T. This turns out to be the notion of Rényi dimension as
defined by Alfréd Rényi in [25]. Recall that for any m and w ∈ Σn

m, Im
w denotes the interval[

vm(w0∞), vm(w0∞) + m−|w|) in T.

▶ Definition 26 (Rényi Dimension). For any probability measure µ on T and partition factor
m, let Hm

n (µ) = −
∑

w∈Σn
m

µ(Im
w ) log(µ(Im

w )). The Rényi upper and lower dimensions (see
[25] and [33]) are defined as follows, dimm

R (µ) = lim sup
n→∞

Hm
n (µ)

n log m and dimm
R (µ) = lim inf

n→∞
Hm

n (µ)
n log m .

If dimm

R (µ) = dimm
R (µ) then the Rényi dimension of µ is dimm

R (µ) = dimm

R (µ) = dimm
R (µ).

From the above definition, it seems as if the notion of Rényi dimension is dependent
on the choice of the partition factor m. However, Rényi upper and lower dimensions are
quantities that are independent of the partition factor6. Hence, we suppress the partition
factor m in the notations dimm

R (µ), dimm
R (µ) and dimm

R (µ) and use dimR(µ), dimR(µ) and
dimR(µ) to refer to the corresponding quantities for a measure µ on T. Now, we state
an equivalent Weyl’s criterion for finite-state dimension for r ∈ T in terms of weak limit
measures over T and Rényi dimension of measures over T.

▶ Theorem 27 (Restatement of Weyl’s criterion for finite-state dimension (Theorem 22)). Let r ∈
T. If for any ⟨nm⟩∞

m=0 there exist ck for k ∈ Z such that 7 limm→∞
1

nm

∑nm−1
j=0 e2πik2jr = ck

for every k ∈ Z, then there exists a measure µ on T such that for every k, ck =
∫

e2πikydµ. Let
Wr be the collection of all µ on T that can be obtained as subsequence limits of Weyl averages.
Then, dimF S(r) = inf{dimR(µ) | µ ∈ Wr} and DimF S(r) = sup{dimR(µ) | µ ∈ Wr}.

D. D. Wall in his thesis [31] proved that if r ∈ [0, 1] and q is any non-zero rational
number, then r is a normal number if and only if qr and q + r are normal numbers. Doty,
Lutz and Nandakumar [12] generalized this result to arbitrary finite-state dimensions and
proved that the finite-state dimension and finite-state strong dimension of any number are
preserved under multiplication and addition with rational numbers.

▶ Theorem 28 ([12]). Let r ∈ T and q be any non-zero rational number. Then for any base
b, dimb

F S(r) = dimb
F S(q + r) = dimb

F S(qr) and Dimb
F S(r) = Dimb

F S(q + r) = Dimb
F S(qr).

In the above dimb and Dimb denotes the finite-state dimension and finite-state strong
dimension of the number r calculated by considering the sequence representing the base-b
expansion of r8. In the specific case of normal sequences, Wall’s result has been generalized
by Aistleitner in the following form. Let C be the set of reals y = 0.y0y1 . . . such that the
ratio P (yn−1

0 , 0) goes to 1 as n tends to ∞. Then we have the following.

▶ Theorem 29. If y ∈ C, then for any normal r ∈ T and q ∈ Q, the number r + qy is normal.

We strictly generalize all these above results by formulating a natural independence
notion between two reals. We describe the framework below. Given strings x and y in
Σ∞ and strings u, w ∈ Σℓ for some ℓ ≥ 1, we define the joint occurrence count of u and w

6 This important fact regarding Rényi dimension is a folklore result.
7 The 2j term in limit expression must be replaced with bj while investigating the above criterion in any

arbitrary base b
8 For r having multiple base b expansions, this does not cause any ambiguity since in this case the

finite-state dimensions of r are 0 with respect to any of the two possible expansions.
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in x and y up to n as, Nu,w(xn−1
0 , yn−1

0 ) = |{i ∈ [0, n − ℓ] : xi+ℓ−1
i = u and yi+ℓ−1

i = w}|.
And, then the joint occurrence probability of u and w in x and y up to n is defined as
Pu,w(xn−1

0 , yn−1
0 ) = Nu,w(xn−1

0 ,yn−1
0 )

n−ℓ+1 .
Informally, we define two infinite strings x and y to be independent if for infinitely many

lengths l, the occurrence probability distributions of l-length strings within x and y are
independent in the limit. The straightforward formulation of independence between x and
y is limn→∞ Pu,w(xn−1

0 , yn−1
0 ) = limn→∞ P (xn−1

0 , u)P (yn−1
0 , w). But these limits need not

exist for general x and y. Hence, the more admissible and useful definition is the following.

▶ Definition 30. Any two strings x and y in Σ∞ are said to be independent if for infinitely
many ℓ ≥ 1 and for every u, w ∈ Σℓ, lim

n→∞

∣∣Pu,w(xn−1
0 , yn−1

0 ) − P (xn−1
0 , u)P (yn−1

0 , w)
∣∣ = 0.

For any measures µ1 and µ2 on T, let µ1 ∗µ2 denote the convolution of these two measures
(see [26] or [16]). A basic intuition for our approach can be viewed as follows. A standard
result in probability theory (see for example, Shiryaev [29], 2nd. edition, Section II.8) is
that, if X and Y are two independent random variables, then the distribution of X + Y is
the convolution of the distributions of X and Y . Moreover, the Fourier coefficients of the
convolution is the product of the Fourier coefficients of the individual distributions. Our
result may be viewed as an analogous result using sequences. The following theorem gives an
important connection between the exponential averages of the sum of independent reals and
the exponential averages of the individual reals which is crucial in proving the main results
in this section.

▶ Theorem 31. If x and y are real numbers in T such that x and y are independent in the
sense of condition 30, then for any integers d, e and q ∈ Q,

lim
n→∞

∣∣∣∣∣∣ 1
n

n−1∑
j=0

e2πik2j(dx+ey) − 1
n

n−1∑
j=0

e2πik2jdx 1
n

n−1∑
j=0

e2πik2jey

∣∣∣∣∣∣ = 0.

The proofs of the following bounds on Rényi dimension of convolutions crucially employ
results from Hochman [17] along with the data processing inequality ([9, 18]).

▶ Lemma 32. For any measures µ1 and µ2 on T,
1. dimR(µ1 ∗ µ2) ≥ max{dimR(µ1), dimR(µ2)} and dimR(µ1 ∗ µ2) ≤ dimR(µ1) + dimR(µ2)
2. dimR(µ1 ∗ µ2) ≥ max{dimR(µ1), dimR(µ2)} and dimR(µ1 ∗ µ2) ≤ dimR(µ1) + dimR(µ2)

The following is our main result.

▶ Theorem 33. Let x and y be real numbers in T such that x and y are independent in the
sense of condition 30. Then for any d, e ∈ Z,
1. dimF S(dx + ey) ≥ max{dimF S(dx), dimF S(ey)} and dimF S(dx + ey) ≤ dimF S(dx) +

DimF S(ey).
2. DimF S(dx + ey) ≥ max{DimF S(dx), DimF S(ey)} and DimF S(dx + ey) ≤ DimF S(dx) +

DimF S(ey).

The following technical lemmas that are consequences of Theorem 31 are required for
proving Theorem 33.

▶ Lemma 34. Let x and y be real numbers in T such that x and y are independent in the
sense of condition 30 and let d, e ∈ Z. Then, for any µ ∈ Wdx+ey there exist µ1 ∈ Wdx and
µ2 ∈ Wey such that µ = µ1 ∗ µ2.
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▶ Lemma 35. If x and y are real numbers in T such that x and y are independent in
the sense of condition 30. Let d, e ∈ Z and q ∈ Q. Then, for any µ1 ∈ Wdx there exist
µ ∈ Wdx+ey and µ2 ∈ Wey such that µ = µ1 ∗ µ2.

Now we prove Theorem 33.

Proof of Theorem 33. Consider any µ ∈ Wdx+ey. Using Lemma 34 we get that there
exists µ1 ∈ Wdx and µ2 ∈ Wey such that µ = µ1 ∗ µ2. Now, it follows from Lemma 32
that dimR(µ) = dimR(µ1 ∗ µ2) ≥ dimR(µ1). On applying Theorem 27 for dx ∈ T, we get
dimR(µ) ≥ dimF S(dx). Since µ was arbitrary, applying Theorem 27 for dx + ey ∈ T, we
obtain dimF S(dx + ey) ≥ dimF S(dx). The proof of dimF S(dx + ey) ≥ dimF S(ey) is similar.
This completes the proof of the first inequality. In order to show the second inequality,
consider any µ1 ∈ Wdx. Using Lemma 35, there exist µ ∈ Wdx+ey and µ2 ∈ Wey such
that µ = µ1 ∗ µ2. Now using Lemma 32, it follows that dimR(µ) = dimR(µ1 ∗ µ2) ≤
dimR(µ1) + dimR(µ2). On applying Theorem 27 for the points dx + ey ∈ T and ey ∈ T, we
get dimF S(dx + ey) ≤ dimR(µ1) + DimF S(ey). Since µ1 was arbitrary, applying Theorem 27
for dx ∈ T, we obtain dimF S(dx + ey) ≤ dimF S(dx) + DimF S(ey). 2 follows similarly. ◀

The following is an immediate corollary of the Theorem 33.

▶ Corollary 36. If x and y are real numbers in T such that x and y are independent in the
sense of condition 30, then for any q ∈ Q,
1. dimF S(x+qy) ≥ max{dimF S(x), dimF S(y)} and dimF S(x+qy) ≤ dimF S(x)+DimF S(y).
2. DimF S(x + qy) ≥ max{DimF S(x), DimF S(y)} and DimF S(x + qy) ≤ DimF S(x) +

DimF S(y)

On considering the case when DimF S(y) = 0, we obtain the following corollaries, gen-
eralizing earlier results by Doty, Lutz, Nandakumar [12] and Aistleitner [1], regarding the
preservation of finite-state dimension under addition with an independent sequence having
zero finite-state strong dimension.

▶ Corollary 37. If x and y are real numbers in T such that x and y are independent in the
sense of condition 30 with DimF S(y) = 0, then for any q ∈ Q, dimF S(x + qy) = dimF S(x)
and DimF S(x + qy) = DimF S(x).

It is easy to verify that any string in C is independent of any other string x ∈ Σ∞. Thus
we obtain the following generalization of Aistleitner’s result to every dimension [1].

▶ Corollary 38. If y is any real number in C, then for any x ∈ T and q ∈ Q, dimF S(x+qy) =
dimF S(x) and DimF S(x + qy) = DimF S(x).
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On the Complexity Dichotomy for the Satisfiability
of Systems of Term Equations over Finite Algebras
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Abstract
For a fixed finite algebra A, we consider the decision problem SysTerm(A): does a given system
of term equations have a solution in A? This is equivalent to a constraint satisfaction problem
(CSP) for a relational structure whose relations are the graphs of the basic operations of A. From
the complexity dichotomy for CSP over fixed finite templates due to Bulatov [4] and Zhuk [18], it
follows that SysTerm(A) for a finite algebra A is in P if A has a not necessarily idempotent Taylor
polymorphism and is NP-complete otherwise. More explicitly, we show that for a finite algebra A in
a congruence modular variety (e.g. for a quasigroup), SysTerm(A) is in P if the core of A is abelian
and is NP-complete otherwise. Given A by the graphs of its basic operations, we show that this
condition for tractability can be decided in quasi-polynomial time.
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1 Introduction

How hard is it to check whether a system of term equations is solvable in an algebra? The
System of Term Equations Satisfiability Problem over a fixed algebra A is the following
decision problem:

SysTerm(A)
Input: terms s1, t1, . . . , sm, tm in the signature of A
Problem: Does s1 ≈ t1, . . . , sm ≈ tm have a solution in A?

For example, SysTerm for the ring of integers (Z, +, ·, 1) is Hilbert’s tenth problem and
undecidable by Matiyasevich’s theorem. In this note we only consider SysTerm for finite
algebras (meaning algebraic structures of finite size and finite signature), which clearly can
be solved in non-deterministic polynomial time (NP).

Obviously SysTerm(A) has always a positive answer if A has a trivial subalgebra {o}
by setting all variables to o. Hence it is trivial for most classical algebras like groups, rings
(without 1 as basic operation), lattices, and semigroups with idempotents1. This is one
reason why the related problem SysPol, the satisfiability problem for a system of polynomial
equations (allowing also constants), has received more attention in the past. Note that
SysPol can be considered as the restriction of SysTerm to algebras for which each constant

1 Rings with 1, quasigroups, more generally magmas, and G-sets are some of the few named algebras
without trivial subalgebras. However, among finite algebras with randomly chosen operations, almost
none have trivial subalgebras by a result of Murskĭı [2, Theorem 6.16].
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66:2 Satisfiability of Systems of Term Equations

is a basic operation. We will show that for any finite A there exists some algebra A′ (the
core of A) such that SysTerm(A) and SysPol(A′) are equivalent under logspace reductions
(see Lemmas 6 and 7).

Goldmann and Russell [11] showed that SysPol (which they denote as EQN∗) is in P
for abelian and NP-complete for non-abelian finite groups. Klíma, Tesson and Thérien [14]
investigated SysPol over finite semigroups and showed that it is in P for commutative
monoids that are unions of their subgroups and NP-complete for other monoids. Larose
and Zádori [15] studied SysPol over finite algebras in general and observed that they are
logspace-equivalent to constraint satisfaction problems (CSP) of a specific form. They showed
in particular that SysPol for any finite A in a congruence modular variety (including most
classical algebras like groups, modules, rings, quasigroups, lattices but not semigroups) is in
P if A is abelian (meaning the operations of A are affine functions over an abelian group)
and NP-complete otherwise. By using the universal algebraic definition of commutators
and abelianness, this generalizes the previously mentioned result of Goldmann and Russell.
Broniek [3] investigated SysPol and SysTerm for unary algebras (where all basic operations
are unary). He showed in particular that SysTerm for unary algebras of size at most 3 is in
P or NP-complete.

Our goal in this note is first to explicitly state the connections between SysTerm, SysPol
and CSP by a straightforward adaptation of the approach of Larose and Zádori in Section 3.
From the celebrated complexity dichotomy for CSP by Bulatov [4] and Zhuk [18], we then
obtain immediately that SysTerm for any finite algebra is either in P or NP-complete in
Theorem 1. For finite A in a congruence modular variety, we give an algebraic criterion for
when SysTerm(A) is tractable in Theorem 2. Finally we show that this criterion can be
decided in quasi-polynomial time for A given by the graphs of its operations in Theorem 3.

For the precise statement of our results we recall some notions that play an important
role in the classification of CSPs and algebras. For a structure C (possibly with function and
relation symbols) define polymorphisms of C as the homomorphisms from finite powers of C
to C and denote the set of polymorphisms as

Pol(C) :=
⋃

n∈N
Hom(Cn, C).

For example, the polymorphisms of a vector space A are just the linear maps from An to A
for n ∈ N.

Let f : An → A for n > 1. Then f is Taylor if it satisfies n identities in distinct variables
x, y of the form

f(. . . , x
i
, . . . ) ≈ f(. . . , y

i
, . . . ) for all i ∈ {1, . . . , n}

where the omitted variables on either side may be x or y. These identities were chosen so
that no projection map on a non-trivial domain can satisfy them.

Next f : A4 → A is Siggers if it satisfies

f(a, r, e, a) ≈ f(r, a, r, e).

For example, a binary commutative operation f is Taylor by virtue of f(x, y) ≈ f(y, x).
By adding two fictitous variables we also obtain a Siggers operation from f . Clearly every
Siggers operation is Taylor. In fact, every finite structure C has a Taylor polymorphism of
some arity iff C has a Siggers polymorphism [13, 17].

As in [1] we do not require that Taylor and Siggers operations are idempotent like in
older literature (see Lemma 8 for the relation with their idempotent version). This allows
for a convenient formulation of the dichotomy for CSP and consequently the dichotomy for
SysTerm.
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▶ Theorem 1. Let A be a finite algebra. Then SysTerm(A) is in P if A has a (not necessarily
idempotent) Taylor (equivalently Siggers) polymorphism; else SysTerm(A) is NP-complete.

We will show Theorem 1 in Section 3 by encoding SysTerm over an algebra as CSP over
a relational structure and invoking the dichotomy for CSPs.

We already observed that SysTerm for A with a trivial subalgebra {o} is trivial. Still
to put this into the context of Theorem 1, note that such an algebra has f(x, y) := o as a
Taylor polymorphism. For a less obvious example, A = (Z2, +, 0, 1) has x + y + z as Taylor
polymorphism and consequently tractable SysTerm.

Theorem 1 generalizes all the dichotomy results for SysPol in [11, 14, 15] mentioned above
and fully settles the P/NP-complete dichotomy for SysTerm. Still it would be desirable
to describe its boundary in more explicit structural terms of the algebra A than by the
existence of certain polymorphisms. We manage to do this under the assumption of additional
structural properties on A.

Here we just review the bare minimum of notions from universal algebra that we need to
state our results. For more details we refer to [2, 5, 16] and Section 2 below. A variety is a
class of algebras of fixed signature that is defined by identities. For example, groups form
a variety with a binary operation ·, a unary −1 and constant 1 satisfying the usual group
axioms. Varieties are usually classified by so-called Mal’cev conditions, essentially the term
identities they satisfy. We list the conditions which occur in this note in increasing strength.

A variety V is Taylor if it has a term t which induces an idempotent Taylor operation on
all its algebras. Here idempotent means that V satisfies t(x, . . . , x) ≈ x.
For example, semilattices form a Taylor variety with Taylor term t(x, y) := xy but
(commutative) semigroups and G-sets do not.
A variety V is congruence modular if every algebra A in V has a modular congruence
lattice.
Most classical algebras, in particular those that have (quasi)group operations, like groups,
modules, rings, loops, . . . or lattice operations, like lattices, Boolean algebras, Heyting
algebras,. . . are members of congruence modular varieties. On the other hand, semilattices
and more generally semigroups do not form congruence modular varieties.
A variety is congruence distributive if all its algebras have distributive congruence lattices.
Every algebra with lattice operations is contained in a congruence distributive variety
but non-trivial groups are not.

Since distributivity implies modularity for lattices, congruence distributive varieties are
congruence modular. Further congruence modular varieties are Taylor.

There exist various generalizations of commutators from groups to arbitrary algebras.
These may differ in general but most of them lead to the same concept of abelianess in Taylor
varieties (see [9, 12]). In particular, a finite algebra A in a Taylor variety is abelian (with
respect to the standard term condition commutator) iff all its basic operations are affine
functions of some commutative group (A, +, −, 0). Although such an abelian algebra A may
not have + or − as term operations, the ternary function x − y + z is a term operation and
is called the Mal’cev term operation of A. A group is abelian in this sense iff it is abelian in
the classical group theoretic sense. A loop is abelian iff it is an abelian group. Since for a
ring the commutator of congruences corresponds to the product of ideals, a ring is abelian iff
its multiplication is 0. For a lattice or any algebra in a congruence distributive variety, the
commutator of two congruences is just their intersection. Hence these algebras are abelian
iff they are trivial.

Next we extend some established notions and facts on relational structures to the setting
of algebras. A finite structure C (possibly with function and relational symbols) is a core if
every endomorphism of C is an embedding (equivalently, an automorphism). It is well-known
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and not hard to see that if h is an endomorphism of a finite structure C such that h(C) is
minimal with respect to inclusion among all endomorphic images of C, then h(C) is a core.
Moreover this core is unique up to isomorphism and hence called the core of C. An algebra
has trivial core iff it has a trivial subalgebra. An algebra expanded with all constants is its
own core. For a non-degenerate example, the core of the symmetric group (S3, ·, (), (1, 2))
expanded with the additional constant (1, 2) is isomorphic to (Z2, +, 0, 1).

We will prove the following generalization of a result by Larose and Zádori on the
complexity of systems of polynomial equations [15, Corollary 3.14] in Section 4.

▶ Theorem 2. Let A be a finite algebra in a congruence modular variety. Then SysTerm(A)
is in P if the core of A is abelian; else SysTerm(A) is NP-complete.

Since any non-trivial ring with 1 is non-abelian by the discussion of commutators above,
it follows that its SysTerm is NP-complete.

Also, since non-trivial algebras in congruence distributive varieties are non-abelian,
Theorem 2 yields that SysTerm(A) for such a finite A is NP-complete unless A has a trivial
subalgebra and hence trivial core, in which case SysTerm(A) is trivial.

A natural follow-up to the dichotomy results above is the metaquestion of deciding for a
given algebra A whether it has tractable SysTerm. Or, for practical purposes, how much
preprocessing is necessary on a given algebra A with abelian core such that one can solve
SysTerm for A in polynomial time in the size of the system of equations? Here and in the
following we assume that algebras are given by the graphs of their basic operations.

Recall that a finite structure has a (not necessarily idempotent) Taylor polymorphism iff
it has a (not necessarily idempotent) 4-ary Siggers polymorphism. The latter condition can
clearly be decided in NP. So the metaquestion for SysTerm, i.e., deciding whether a given
finite algebra A has a (not necessarily idempotent) Taylor polymorphism, is in NP.

Chen and Larose showed that the metaquestion for CSP, i.e., deciding whether a given
finite relational structure A has a (not necessarily idempotent) Taylor polymorphism, is
actually NP-complete [6]. Klíma, Tesson and Thérien constructed for every finite rela-
tional structure A a finite semigroup A such that CSP(A) is polynomial time equivalent
to SysPol(A) [14, Theorem 8]. Similarly, Broniek constructed for every finite relational
structure A a finite unary algebra A such that CSP(A) is polynomial time equivalent to
SysTerm(A) [3, Theorem 3.4]. However, for both these constructions, the size of the algebra
A is exponential in the size of relational structure A. Hence they do not allow to transfer
the NP-hardness of the metaquestion for CSP to the metaquestion for SysTerm. To the
best of our knowledge, it may be easier to decide for algebras whether they have a Taylor
polymorphism than for relational structures.

In particular, for an algebra in a congruence modular variety, the existence of a (not
necessarily idempotent) Taylor polymorphism can be decided in quasi-polynomial time by the
following slightly stronger result, which we will prove in Section 5. Recall that congruence
modular varieties are Taylor.

▶ Theorem 3. There exists a quasi-polynomial time algorithm that, given a finite algebra A
in a Taylor variety, decides if the core of A is abelian, in which case the core of A and the
graph of its Mal’cev term operation can also be computed in quasi-polynomial time.

Thus given a finite algebra A in a Taylor variety, we can compute its core C in quasi-
polynomial time if C is abelian. Moreover, if the core C is abelian, we can use its Mal’cev
term operation x − y + z to reduce SysTerm(A) to a linear system of equations over the
abelian group (C, +). If a system of term equations over abelian C (equivalently over A)
has a solution, then we can also find it in polynomial time in the size of the system.
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We do not know whether the quasi-polynomial time algorithms in Theorem 3 can be
improved to polynomial time.

Of course one can also ask how hard it is to check the assumptions of Theorem 3 in case
that the idempotent Taylor term operation of A is not given as part of the input. For that
Freese and Valeriote showed that deciding whether a given finite algebra A is in a Taylor
variety or whether it is in a congruence modular variety is EXPTIME-complete [10, Corollary
9.3] but that these problems are in P for idempotent A, i.e., if all basic operations f of A
satisfy f(x, . . . , x) ≈ x [10, Theorem 6.2, 6.3].

2 Preliminaries

We review the algebraic results that we will need. For standard universal algebraic background
we refer the reader to [2, 5, 9, 12, 16].

2.1 Algebras and varieties

An algebra A = (A, {fA : f ∈ F}) is a pair where A is a non-empty set (the universe of
A), F is a set of function symbols equipped with a map arity : F → N that assigns to each
function symbol its arity (the signature of A), and fA are the interpretations of the symbols
f ∈ F as operations of the corresponding arity on A (the basic operations of A). We say A is
finite if its universe and its signature are finite. An algebra is trivial if its universe has size 1.

F -terms or terms in the signature of A are constructed from function symbols F and
variables x1, x2, . . . in the usual way: every variable is an F -term, and if f ∈ F is k-ary
and t1, . . . , tk are F -terms, then f(t1, . . . , tk) is an F -term. Every F -term t in variables
x1, . . . , xk induces a k-ary term function tA : Ak → A by interpreting a variable xi as the
i-th projection from Ak onto A and interpreting function symbols f as fA.

Polynomials over A are defined like terms except that additionally for every element
a ∈ A there is a constant polynomial a. Again every polynomial p in variables x1, . . . , xk

induces a k-ary polynomial function pA : Ak → A via the interpretation of function symbols
in F on A and the interpretation of a constant a as the corresponding element a ∈ A. Two
algebras A1 = (A, F1) and A2 = (A, F2) on the same universe are polynomially equivalent if
A1 and A2 have the same set of polynomial functions of all arities.

An identity is a pair of terms (s, t), which we usually write as s ≈ t. For k-ary terms s, t,
the k-tuple (a1, . . . , ak) ∈ Ak is a solution of s(x1, . . . , xk) ≈ t(x1, . . . , xk) if sA(a1, . . . , ak) =
tA(a1, . . . , ak). An algebra A satisfies an identity s ≈ t if sA = tA.

A variety V is a class of algebras over the same fixed signature F that is defined by a set
of identities Σ, that is, V = {A : A satisfies Σ}. Birkhoff showed that the variety generated
by a class K of algebras over F consists of all homomorphic images of subalgebras of direct
powers of elements in K.

A variety V is locally finite if all its finitely generated algebras are finite. For example,
the variety generated by a finite algebra A is locally finite.

2.2 Commutators

Commutators have been generalized from normal subgroups of groups to congruences of
general algebras by Smith, Hagemann, Herrmann, Gumm, Freese, McKenzie and others.
See [9] for the history and overview of their development.
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For congruences α, β of an algebra A, let MA(α, β) be the subalgebra of A2×2 that is
generated by all elements of the form[

a a

b b

]
,

[
c d

c d

]
for aαb, cβd.

Writing quadruples as 2 × 2 tables is just a notational convenience here. The operations of
A simply apply componentwise. The commutator [α, β] is the smallest congruence γ of A
such that

∀
[
x y

z w

]
∈ MA(α, β) : xγy ⇒ zγw.

For an algebra A let 1A denote the total congruence and 0A denote the trivial congruence
(equality). Then A is abelian if [1A, 1A] = 0A.

Abelianess has strong structural consequences of an algebra. Assume A is a finite abelian
algebra in a Taylor variety. Then A is polynomially equivalent to a module by [12, 9]. More
explicitly, there exist operation +, −, 0 such that (A, +, −, 0) is an abelian group with a set
of endomorphisms R. Every k-ary basic operation fA of A can be represented in the form

fA(x1, . . . , xk) =
k∑

i=1
ri(xi) + c

for some endomorphisms r1, . . . , rk ∈ R and some constant c ∈ A. Given a term t of A
it can be rewritten iteratively as a sum of endomorphisms of (A, +, −, 0) and constants in
polynomial time as well. Hence SysTerm(A) reduces to solving a system of linear equations
over (A, +, −, 0), which is clearly in P.

2.3 Tame congruence theory
For congruence α, β of an algebra A we say α is covered by β (written α ≺ β) if α is strictly
contained in β and there is no congruence strictly between α and β.

A finite non-trivial algebra is minimal if all its unary polynomial operations are either
constant or permutations. Pálfy showed that every minimal algebra is polynomially equivalent
to an algebra of one the following five types:
1. a G-set (i.e., an algebra all of whose basic operations are permutations);
2. a vector space;
3. the Boolean algebra of size 2;
4. the lattice of size 2;
5. the semilattice of size 2.
Tame congruence theory (TCT) as developed by Hobby and McKenzie in [12] associates with
any pair of congruences α ≺ β of a finite algebra A a set of minimal algebras all of which
have the same type 1-5. The precise construction is quite technical and will not be needed
in this paper. Hence we will not discuss it beyond stating that every pair α ≺ β is labelled
with a unique type. The set of all types of pairs α ≺ β of A is denoted by typ{A}. For a
variety V the set of all types of α ≺ β of all finite algebras A in V is denoted by typ{V }.

There are deep connections between the typeset of a variety V , that is, the local behaviour
of polynomial functions on its finite members, and the identities that hold in V . For example:

[12, Theorem 9.6] A locally finite variety V is Taylor iff 1 ̸∈ typ{V }.
[12, Theorem 8.5] If a locally finite variety V is congruence modular, then typ{V } ⊆
{2, 3, 4}.
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3 SysTerm, SysPol and CSP

In this section we collect easy facts on the correspondence between systems of equations and
constraint satisfaction problems that may be known at least implicitely in one form or the
other. Still we hope it is useful to provide an explicit and consistent overview for the reader.

3.1 Reduction to CSP
First we reduce a system of equations to a particular constraint satisfaction problem. The
Constraint Satisfaction Problem over a fixed relational structure A is the decision problem:

CSP(A)
Input: a structure X in the signature of A
Problem: Is there a homomorphism from X to A?

Many classical decision problems like 3-SAT, graph coloring, solvability of linear systems. . . can
be formulated as CSP for an appropriately chosen structure A. For background on CSP on
fixed templates we refer to the survey [1] by Barto, Krokhin and Willard.

Denote the graph of a k-ary operation f : Ak → A by the k + 1-ary relation

f◦ := {(x1, . . . , xk, f(x1, . . . , xk)) : x1, . . . , xk ∈ A}.

For an algebra A = (A, F ) with universe A and basic operations F , let A◦ := (A, {f◦ : f ∈
F}) denote the relational structure with the graphs of the basic operations as relations.

Larose and Zádori observed the following correspondence between SysPol and CSP. The
proof for systems of term equations is essentially the same and added here for the convenience
of the reader.

▶ Lemma 4 ([15, cf. Theorem 2.2]). Let A be a finite algebra. Then SysTerm(A) is logspace-
equivalent to CSP(A◦).

Proof. For a CSP(A◦)-instance X, each constraint (xi1 , . . . , xik+1) ∈ f◦ can be reformulated
as f(xi1 , . . . , xik

) ≈ xik+1 in constant time. Clearly the conjunction of constraints is satisfiable
iff the system of corresponding equations is solvable in A.

Conversely, for a SysTerm(A)-instance s1 ≈ t1, . . . , sm ≈ tm, rewrite each occurring term
t = f(u1, . . . , uk) for a basic operation f of A as a sequence of constraints (yu1 , . . . , yuk

, yt) ∈
f◦ in variables y indexed by subterms and correspondingly for the subterms u1, . . . , uk. If
t = x is a variable, just write yt = x. All these constraints together with ys = yt for every
given equation s ≈ t form a CSP(A◦)-instance which is satisfiable iff the original system
of equations over A is solvable. This rewriting creates as many new variables as there are
function symbols and variables in s1, t1, . . . , sm, tm and can be done in logarithmic space. ◀

It is straightforward to check that the polymorphisms of A are the same as those of A◦.

▶ Lemma 5. Pol(A) = Pol(A◦) for every algebra A.

Proof. Let h : An → A, f : Ak → A and x1 = (x11, . . . , x1n), . . . , xk = (xk1, . . . , xkn) in An.
Then hf(x1, . . . , xk) = f(h(x1), . . . , h(xk)) with f acting on An componentwise iff

h




x11
...

xk1
f(x11, . . . , xk1)

 , . . . ,


x1n

...
xkn

f(x1n, . . . , xkn)


 ∈ f◦.

Hence h is a polymorphism of the algebra (A, f) iff h is a polymorphism of the relational
structure (A, f◦). The assertion follows. ◀
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The previous two lemmas are already enough to obtain the complexity dichotomy for
SysTerm from that for CSP.

Proof of Theorem 1. By Lemma 4 and 5 it suffices to consider CSP(A◦). Then the hardness
part only uses that 3-SAT reduces to CSP(A◦) if A◦ has no Taylor polymorphism [1,
Theorem 40].

The tractability part follows from the celebrated result by Bulatov [4] and Zhuk [18] that
CSP(A) for a finite relational structura A is in P if A has a (not necessarily idempotent)
Taylor polymorphism. ◀

3.2 Cores
As for CSP, it suffices to investigate SysTerm for cores A by the next observation.

▶ Lemma 6. SysTerm(A) = SysTerm(h(A)) for each endomorphism h of A.

Proof. Let h be an endomorphism of A. Obviously, if a system of term identities Σ has a
solution in the subalgebra h(A) of A, then also in A. Conversely, if Σ has a solution in A,
then clearly also in its homomorphic image h(A). ◀

It is well-known that a CSP over a core relational structure is equivalent to the CSP
over its expansion with singletons. Correspondingly, systems of term equations over a core
algebra A are equivalent to systems of polynomial equations over A. We give a direct proof
of this fact since it is short and makes the reduction from SysPol to SysTerm more apparent.

▶ Lemma 7. Let A be a finite algebra that is a core. Then SysPol(A) is logspace-equivalent
to SysTerm(A).

Proof. SysTerm(A) reduces trivially to SysPol(A). For the converse, the crucial observation
is that the graphs of endomorphisms of A are the solutions of a system of term equations.
By definition a map h : A → A is an endomorphism of A iff for all f ∈ F , say k-ary, and for
all a1, . . . , ak ∈ A

f(h(a1), . . . , h(ak)) = h(f(a1, . . . , ak)).

Hence {(a, h(a)) : a ∈ A} is the graph of an endomorphism of A iff ya = h(a) for a ∈ A is
a solution of the system of term equations

f(ya1 , . . . , yak
) ≈ yf(a1,...,ak) for f ∈ F (k-ary), a1, . . . , ak ∈ A. (1)

Given an instance of SysPol(A) with variables x1, . . . , xn, we introduce |A| new variables ya

for a ∈ A and replace every occurrence of a constant a in a polynomial equation by ya. To
the resulting set of term equations we also add the equations (1) to obtain an instance of
SysTerm(A). Note that the added system (1) does not depend on the original input, only
on A. Hence the new term system can be obtained from the original polynomial system in
logspace by rewriting any occuring constant a as variable ya.

If the original polynomial system has a solution, then clearly the new term system has a
solution with ya = a. Conversely, if the new system has a solution x1 = b1, . . . , xn = bn and
ya = h(a) for a ∈ A, then h is an endomorphism of A. Since A is a core by assumption, h is
in fact an automorphism. Hence x1 = h−1(b1), . . . , xn = h−1(bn) and ya = a for a ∈ A is
also a solution of the new system. Thus x1 = h−1(b1), . . . , xn = h−1(bn) is a solution of the
original polynomial system. ◀
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3.3 Polymorphisms satisfying height-1 identities
An identity has height 1 if it is of the form f(u1, . . . , uk) ≈ g(v1, . . . , vℓ) for operation symbols
f, g and not necessarily distinct variables u1, . . . , uk, v1, . . . , vℓ.

For example, commutativity of a binary operation f is expressed by a height-1 identity
but associativity is not since that requires nested applications of f .

Since the identities for a Taylor operation all have height 1, the next lemma yields that
a structure has a (not necessarily idempotent) Taylor polymorphism iff its core has the
corresponding idempotent polymorphism. For relational structures this is well-known and
the same easy proof applies to general structures.

▶ Lemma 8 ([6, cf. Lemma 6.4]). Let Σ be a set of height-1 identities. Then a finite structure
C (possibly with function and relation symbols) has polymorphisms satisfying Σ iff the core
of C has idempotent polymorphisms satisfying Σ.

Proof. Let h be an endomorphism of C such that h(C) is the core of C.
If F is a set of polymorphisms of h(C) satisfying Σ, then f ′(x1, . . . , xk) :=

f(h(x1), . . . , h(xk)) for f ∈ F (k-ary) are polymorphisms of C and still satisfy the same
height-1 identities.

Conversely, let F be polymorphisms of C satisfying Σ. For f ∈ F (k-ary), let f∗(x1, . . . , xk)
be the restriction of hf(x1, . . . , xk) to the substructure h(C). Then {f∗ : f ∈ F} is a set of
polymorphism of h(C) which still satisfies the height-1 identities of Σ. Moreover, for every f ∈
F , we have that f1(x) := f∗(x, . . . , x) is an endomorphism of h(C), hence an automorphism.
Thus f−1

1 f∗ is an idempotent polymorphism of h(C). If f∗(u1, . . . , uk) ≈ g∗(v1, . . . , vℓ) is
in Σ, then f1 = g1 and consequently f−1

1 f∗(u1, . . . , uk) ≈ g−1
1 g∗(v1, . . . , vℓ) holds on h(C).

Hence f−1
1 f∗ for f ∈ F are idempotent polymorphisms of h(C) that still satisfy Σ. ◀

4 Systems over algebras in congruence modular varieties

Larose and Zádori explicitely characterized finite algebras without congruences α ≺ β of
TCT type 5 in Taylor varieties that have idempotent Taylor polymorphisms.

▶ Theorem 9 ([15, Theorem 3.12]). Let A be a finite algebra in a Taylor variety such that
5 ̸∈ typ{A}. Then A has an idempotent Taylor polymorphism iff A is abelian.

Note that there exist non-abelian algebras with idempotent Taylor term operations that
commute with themselves, e.g., semilattices. Hence the assumption 5 ̸∈ typ{A} cannot be
omitted in Theorem 9.

Theorem 9 yields an explicit characterization of the complexity of SysTerm over cores
that parallels those of SysPol by Larose and Zádori.

▶ Corollary 10 ([15, cf. Corollary 3.13]). Let A be a finite algebra in a Taylor variety such
that 5 ̸∈ typ{A}. Then SysTerm(A) is in P if the core of A is abelian; else SysTerm(A) is
NP-complete.

Proof. If the core h(A) of A is abelian, then h(A) is polynomially equivalent to a module
with group operations +, − by [12]. Further SysTerm(h(A)) reduces to a system of linear
equations over that module. Then d(x, y, z) = x − y + z is a polymorphism of h(A) and
also of the corresponding relational structure h(A◦) by Lemma 5. Hence CSP(h(A◦)) is a
so-called general subgroup problem and can be solved in polynomial time by a result of Feder
and Vardi [8, Theorem 33]. Then SysTerm(A) is in P by Lemmas 4 and 6.
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Else if the core of A is not abelian, then it has no idempotent Taylor polymorphism
by Theorem 9. Hence SysTerm(A) is NP-complete by the hardness of CSP over structures
without Taylor polymorphisms and Lemma 6. ◀

The proof of Corollary 10 does not require the full strength of the CSP-dichotomy by
Bulatov and Zhuk but only that linear systems over modules are in P. Moreover, for an
abelian algebra A in a Taylor variety we can give a parametrization of all solutions of a
system of term equations and determine their number by linear algebra in polynomial time.
All of this applies in particular to algebras in congruence modular varieties.

Proof of Theorem 2. Let A be a finite algebra in a congruence modular variety. Then the
variety V generated by A is locally finite and congruence modular. By [12, Theorem 8.5] V

omits types 1 (i.e., V is Taylor) and 5. In particular A itself has no congruences α ≺ β of
type 5. Hence the result is a special case of Corollary 10. ◀

5 Metaquestions about the complexity dichotomy

In the following we assume that algebras (A, f1, . . . , fm) are given by the graphs of their
basic operations f1, . . . , fm. So, for n the maximum arity of f1, . . . , fm, this representation
has size at least |A|n.

We give a quasi-polynomial time algorithm to decide whether a given algebra in a Taylor
variety has abelian core.

Proof of Theorem 3. Let A be a finite algebra in a Taylor variety. First we claim that the
core of A is abelian iff there exists a homomorphism from the maximal abelian quotient
Ā := A/[1, 1] of A to A.

For the “only if”-direction, assume that the core h(A) for some endomorphism h of A is
abelian. By the Homomorphism Theorem h(A) is isomorphic to the quotient of A by the
kernel ker h := {(x, y) ∈ A2 : h(x) = h(y)} of h. In particular A/ ker h is abelian as well.
By the definition of the commutator, [1, 1] is the unique smallest congruence of A such that
A/[1, 1] is abelian. Hence [1, 1] ≤ ker h. Let x/[1, 1] denote the class of x modulo [1, 1] in Ā.
Then h̄ : Ā → A, x/[1, 1] → h(x), is a well-defined homomorphism.

Conversely, for the “if”-direction, assume we have a homomorphism h̄ : Ā → A. Then
h̄ lifts to an endomorphism h : A → A, x 7→ h̄(x/[1, 1]). Clearly the images of h and h̄ are
the same and the kernel ker h contains [1, 1]. So by the Homomorphism Theorem h(A) is
isomorphic to a quotient of Ā. Note that Ā is abelian in a Taylor variety and hence has a
Mal’cev term operation d by [12, Theorem 9.6]. Hence Ā is polynomially equivalent to a
module and all its quotients are abelian as well by [9] (We note in passing that outside of
Taylor varieties, unfortunately quotients of abelian algebras may not be abelian again). In
particular h(A) is abelian. While h(A) may not be the core of A, all images g(A) for an
endomorphism g of A that are contained in h(A) are subalgebras of an abelian algebra, thus
abelian themselves (This holds for arbitrary algebras by the definition of the commutator).
Since the core of A is isomorphic to a minimal such image g(A), it is abelian.

Hence it suffices to check whether there exists a homomorphism from Ā to A. Recall
that the commutator [1, 1] can be enumerated in polynomial time by an algorithm due to
Willard [7, Proposition 4.1]. Thus computation in Ā effectively reduces to computation in A
in the following steps.
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Using the description of the structure of abelian algebras in congruence modular varieties
from [9], we see that the subalgebra MĀ(1, 1) of Ā2×2 that is generated by all elements of
the form[

a a

b b

]
,

[
c d

c d

]
for a, b, c, d ∈ Ā

has the universe

MĀ(1, 1) =
{[

y x

z d(x, y, z)

]
: x, y, z ∈ Ā

}
.

Hence the Mal’cev term operation d on Ā is unique and its graph can be computed by
enumerating the elements in MĀ(1, 1) by a straightforward closure algorithm in polynomial
time. More specifically for any fixed element u0 ∈ Ā, the operations x + y := d(x, u0, y) and
−x := d(u0, x, u0) on Ā yield an abelian group (Ā, +, −, u0) with zero element u0. Further
d(x, y, z) = x − y + z for all x, y, z ∈ Ā. Now we can grow a generating set u1, . . . , un

of (Ā, +) with n ≤ log2 |Ā| as follows. If u0, . . . , ui are fixed and the generated subgroup
Bi := ⟨u0, . . . , ui⟩ of (Ā, +) is not all of Ā, then pick some ui+1 ∈ Ā \ Bi. Note that the
index of Bi in Bi+1 is at least 2 by Lagrange’s Theorem. So the process stops with Bn = Ā

after n ≤ log2 |Ā| steps each of which requires only polynomial time in |A|. Finally we
have obtained a generating set u0, u1, . . . , un for (Ā, x − y + z) and in particular for Ā in
polynomial time in |A|.

Clearly every homomorphism h : Ā → A is uniquely determined by its images on the
generators u0, . . . , un. For v0, . . . , vn ∈ A we can enumerate

⟨(u0, v0), . . . , (un, vn)⟩ ≤ Ā × A

in polynomial time to see whether the partial map with h(ui) := vi for i ∈ {0, . . . , n} extends
to a homomorphism from Ā to A. Checking the |A|n+1 ≤ 2(log |A|)2+log |A| potential images
of u0, . . . , un yields an algorithm that decides the existence of a homomorphism from Ā to
A in quasi-polynomial time in A.

If such a homorphism exists, then the homomorphism with smallest image maps Ā to
the abelian core of A with Mal’cev term operation induced by d on Ā. Thus the universe of
the core of A can be obtained in quasi-polynomial time as well. ◀
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Abstract
A parallel algorithm for enumerating parse trees of a given string according to a fixed context-free
grammar is defined. The algorithm computes the number of parse trees of an input string; more
generally, it applies to computing the weight of a string in a weighted grammar. The algorithm is
first implemented on an arithmetic circuit of depth O((log n)2) with O(n6) elements. Then, it is
improved using fast matrix multiplication to use only O(n5.38) elements, while preserving depth
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1 Introduction

The classical cubic-time Cocke–Kasami–Younger parsing algorithm can be adapted to solving
such problems as counting the number of parse trees of an input string, or computing the
probability of an input string in a probabilistic grammar – and, more generally, computing
the weight of a string in a weighted grammar. This is possible, because the algorithm
considers the substrings in a certain predictable order, and investigates each partition of
each substring exactly once, and hence never enumerates the same parse tree twice.

Another classical parsing algorithm discovered by Valiant [9] computes the same values
in the time of matrix multiplication O(nω), where ω < 3. In spite of quite a nontrivial order
of processing the substrings and their partitions, it maintains the same property: every
partition of every substring is considered only once, there is no double counting. Hence,
the algorithm can be applied to computing weights in any ring [2], see Okhotin [6] for an
elementary presentation.

These are the sequential parsing algorithms. Yet another classical parsing method
is a parallel algorithm discovered independently by Brent and Goldschlager [3] and by
Rytter [7]. Their algorithm, if implemented on a parallel architecture with concurrent reads
and exclusive writes, works in time O((log n)2) and uses O(n6) processors. If implemented
on a uniform family of Boolean circuits (the model of parallel computation assumed in this
paper), the algorithm by Brent, Goldschlager and Rytter uses circuits of depth O((log n)2)
with O(n6 log n) elements, that is, NC2-circuits.

What is important to know about the Brent–Goldschlager–Rytter parallel parsing al-
gorithm is that it considers the same trees multiple times, and this happens in different
branches of parallel computation: each tree is obtained in different ways by combining
different subtrees. An example of this is given in Figure 1: here the input string is a1a2a3a4,
and the algorithm obtains its single parse tree in two ways. One way is to produce a subtree
of a1a2 with root A, another tree with root S with a “hole” instead of A and with the
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Figure 1 Multiple partitions of a tree into a “tree with a hole” and a subtree.

leaves a3a4 to the right of the hole, and then to fill this hole with the former subtree, see
Figure 1(left). The other way is similar, using a subtree of a3a4 with root D to fill a hole in
another “tree with a hole”. The algorithm will construct these subtrees in different branches
of parallel computation, each time deducing the existence of a parse tree of a1a2a3a4. If the
algorithm were modified to count the number of trees, then the tree in the figure will be
counted twice, as the algorithm has no means to check whether these trees were the same or
not. Hence, the algorithm can only determine the existence of a tree, but cannot compute
a reliable count of the number of trees, as well as cannot compute the weight of the input
string in most semirings.

In a recent paper by Bakinova et al. [1], a simple variant of the Brent–Goldschlager–Rytter
algorithm for computing the number of trees modulo two was presented: the algorithm uses
a Boolean circuit of the same depth O((log n)2), whereas the number of elements is O(n7).
This algorithm considers each tree only once, and therefore it can be adapted to compute
the precise number of trees, if the Boolean circuit is replaced with an arithmetic circuit. In
the same way, one can compute the weight in any semiring. This raises a natural question:
could the number of elements in (log n)2-depth circuits solving this problem be reduced to
O(n6) or below?

This paper presents a new parallel algorithm for enumerating all parse trees of an input
string, which maintains the same circuit depth O(log2 n), and is more efficient in terms of
the number of elements. First, in Section 3, the problem is solved using a circuit with O(n6)
elements. The algorithm is formulated as computing the number of trees, and then it is
adapted to compute the weight of an input string in any semiring.

Next, in Section 4, this algorithm is improved by using fast matrix multiplication. The
algorithm elaborates the algorithm in Section 3 in the same way as Valiant’s [9] algorithm
elaborates the Cocke–Kasami–Younger algorithm: it computes the same values as the original
algorithm, but rearranges the order of computation so that the arithmetical operations are
combined into matrix multiplications. As compared to Valiant’s [9] algorithm, the proposed
algorithm has to handle trees with holes, which require a more difficult rearrangement of the
computation.

By abuse of notation, let ω ⩾ 2 be a number, such that for every n and for every ring
there is a circuit of depth O(log n) with O(nω) elements computing operations in the ring,
which multiplies any two n × n matrices. Strassen’s algorithm [8] can be implemented
on such a circuit. Also it is known that the Coppersmith–Winograd [4] algorithm can be
implemented on a logarithmic-depth circuit as well – see, e.g., Gazit and Miller [5]. Then
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the new algorithm for enumerating parse trees maintains circuit depth O(log2 n), whereas
the number of elements in it is reduced to O(nω+3), that is, does not exceed O(n5.38). The
algorithm is applicable to computing the weight of a string in any ring.

2 Definitions

▶ Definition 1. A grammar in the Chomsky normal form is a quadruple G = (Σ, N, R, S),
where Σ is a finite alphabet; N is a finite set of nonterminal symbols; R is a finite set of
grammar rules, each of the form A → BC, with A, B, C ∈ N , or A → a, with A ∈ N and
a ∈ Σ; S ∈ N is the initial symbol.

▶ Definition 2. Let G = (Σ, N, R, S) be a grammar in the Chomsky normal form. A parse
tree in G is a tree, in which the root is labelled with S, every internal vertex is labelled with
any nonterminal symbol A ∈ N , and every leaf is labelled with a symbol a ∈ Σ. Every vertex
A ∈ N may either have two sons labelled B and C, for some rule A → BC, or one son
labelled a, if there is a rule A → a. Vertices with two sons have their sons ordered, which
induces an order on the leaves. If w ∈ Σ+ is the string formed by the leaves of a tree, this is
a parse tree of w.

The language defined by the grammar, denoted by L(G) is the set of all strings w ∈ Σ+

that have at least one parse tree.

Under this definition, it is easy to generalize grammars to weighted grammars over a
semiring.

▶ Definition 3. Let G = (Σ, N, R, S) be a grammar in the Chomsky normal form, let S
be a semiring, and let Φ: R → S be a function assigning weights in S to rules. The triple
(G, S, Φ) is called a weighted grammar.

Then, the weight of a parse tree is the product of weights of all rules used in the tree. The
weight of a string w ∈ Σ∗ is the sum of weights of all parse trees of w. The grammar defines
a mapping from Σ∗ to S.

If S is the Boolean semiring and all rules have weight 1, then a weighted grammar
become an ordinary grammar, which defines the language { w | w has weight 1 }; and if S
is a two-element field, the weighted grammar becomes a GF(2)-grammar. If S is the set of
non-negative integers with addition and multiplication, and all rules have weight 1, then the
weighted grammar defines the number of parse trees in G. If S is the set of probabilities in
[0, 1] with addition and multiplication, this is a probabilistic grammar.

This paper uses arithmetic circuits as a model of parallel computation.

▶ Definition 4. An arithmetic circuit over natural numbers N = {0, 1, 2, . . .} is a directed
acyclic graph, in which all nodes with no incoming arcs are called the inputs and are labelled
with distinct input variables, and each of the rest of the nodes, called elements, has two
incoming arcs and is labelled either with addition, or with multiplication. Input variables are
natural numbers, each element computes a function of the input variables. The circuit is said
to compute the function computed in a designated output element.

An arithmetic circuit over integers Z additionally may use the subtraction operation.
Arithmetic circuits over a semiring S and over a ring R generalize these circuits by computing
values in the corresponding algebraic structures.

The depth of a circuit is the length of the longest path.

MFCS 2023
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A parsing algorithm is implemented on a circuit, which is constructed for a fixed grammar
G = (Σ, N, R, S) and a fixed length of input strings n. The circuit has |Σ| · n inputs, each
indicating whether there is a particular symbol in a particular position. The output element
gives the number of parse trees of the given string.

Since a different circuit is needed for each input length, the following standard uniformity
condition is assumed.

▶ Definition 5. A family of arithmetic circuits is uniform, if there exists a deterministic
logarithmic-space Turing machine that, for every input length n given in unary notation,
produces the circuit for input strings of length n.

3 A circuit with O(n6) elements

▶ Theorem 6. For every grammar G = (Σ, N, R, S) in the Chomsky normal form there is a
uniform family of arithmetic circuits, for each length of input strings n ⩾ 1, which computes
the number of parse trees of an input string of length n, has at most |N |2 · |R| · n6 elements
and is of depth at most 21 log2

2 n + 7 log2 n log2 |R|.

Proof. Denote w = a1 . . . an. The circuit consists of the following elements.
An element A(i, j), for all A ∈ N and i, j, with 0 ⩽ i < j ⩽ n, computes the number of
parse trees from A for the string ai+1 . . . aj ; these trees are schematically presented as in
Figure 2(left).
An example of such a tree for A(0, 2) can be seen in Figure 1(left).
An element A

D (i, k, ℓ, j), for all A, D ∈ N and 0 ⩽ i ⩽ k < ℓ ⩽ j ⩽ n, computes the
number of parse trees for the string ai+1 . . . aj from A, with a hole instead of a subtree
ak+1 . . . aℓ from D, depicted as in Figure 2(middle).
Such a “tree with a hole” for S

A (0, 0, 2, 4) can be seen in Figure 1(left).
An element A

D

∣∣
q
(i, k, ℓ, j), for all A, D ∈ N and 0 ⩽ i ⩽ k < ℓ ⩽ j ⩽ n, with (k − i) +

(j − ℓ) > 0 and q ⩾ 0, computes the number of parse trees for the string ai+1 . . . aj from
A, with a hole instead of a subtree ak+1 . . . aℓ from D, such that at the first branching
the subtree with the hole contains at most q leaves, as shown in Figure 2(right).
The tree in the earlier Figure 1(left) is too small to illustrate this, because after the first
branching the subtree with the hole is empty (that is, contains 0 leaves).
Some extra elements are used to compute the values of the named elements listed above:
e.g., each element A(i, j) is computed by a circuit that consists of O(n3) extra elements,
etc.

A

A

D

ii j jk

A

i jk
<q

D

Figure 2 (left) A(i, j); (middle) A
D

(i, k, ℓ, j); (right) A
D

∣∣
q
(i, k, ℓ, j).
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Figure 3 (left) Intermediate vertex E in a tree A(i, j); (right) Intermediate vertex E on the path
to the hole in a tree A

D
(i, k, ℓ, j).

Denote the inputs of the circuit by In(a, i), for all a ∈ Σ and 1 ⩽ i ⩽ n, where In(a, i) = 1
if the i-th symbol of an input string is equal to a and In(a, i) = 0 otherwise. Elements
of the circuit corresponding to one-symbol strings are initialized directly from the inputs
as A(i − 1, i) =

∑
A→a∈R In(a, i), for all A ∈ N and 1 ⩽ i ⩽ n. Also, trees with a hole

containing no leaves are defined for every pair of positions: A
D (i, i, j, j) = 1, for A, D ∈ N

and 0 ⩽ i < j ⩽ n.
The desired number of parse trees of w is computed by the element S(0, n).
Consider an arbitrary parse tree τ , corresponding to A(i, j) which has j − i leaves. Denote

by E the deepest vertex having more than 2
3 (j − i) leaves in its subtree. Such a vertex exists,

moreover it is unique. Denote by B and C the children of E. Suppose that the subtree of
B corresponds to leaves ak+1 . . . am, and the subtree of C corresponds to leaves am+1 . . . aℓ,
as illustrated in Figure 3(left). Taking into account that E is the deepest vertex with more
than 2

3 (j − i) leaves, both B and C may only have at most 2
3 (j − i) leaves each, in other

words, ℓ − k > 2
3 (j − i) and max(m − k, ℓ − m) ⩽ 2

3 (j − i).
Hence, the number of parse trees for A(i, j) can be calculated as

A(i, j) =
∑

E→BC∈R
k,ℓ,m:i⩽k<m<ℓ⩽j

ℓ−k> 2
3 (j−i)

max(m−k,ℓ−m)⩽ 2
3 (j−i)

A

E
(i, k, ℓ, j) · B(k, m) · C(m, ℓ)

Every parse tree τ has been taken into account, because there is such a vertex E in every
tree. Furthermore, the vertex E is unique for the given parse tree τ , therefore every τ is
taken into account only once.

The above formula for A(i, j) is implemented on a circuit as follows. For each triple
(k, ℓ, m), one extra element is used to multiply A

E (i, k, ℓ, j) by B(k, m), and another extra
element multiplies the result by C(m, ℓ). It remains to sum up the resulting products: as
there are O(n3) of them, up to O(n3) extra elements are needed, and they are organized into
a tree of logarithmic depth.

MFCS 2023
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Similar arguments allow us to deduce a formula for A
D (i, k, ℓ, j) and to implement it

on a circuit. Denote by E the deepest vertex on the path from A to D with more than
2
3 (k − i + j − ℓ) leaves in its subtree, and denote these leaves by as+1 . . . ak and sℓ+1 . . . st,
see Figure 3(right). Then

A

D
(i, k, ℓ, j) =

∑
E∈N

s:i⩽s⩽k
t:ℓ⩽t⩽j

k−s+t−ℓ> 2
3 (k−i+j−ℓ)

A

E
(i, s, t, j) · E

D

∣∣∣
2
3 (k−i+j−ℓ)

(s, k, ℓ, t)

Indeed, the intermediate positions s and t are chosen so that the subtree E has more than
2
3 (k − i + j − ℓ) leaves. On the other hand, the definition of E

D | 2
3 (k−i+j−ℓ) guarantees that

no other vertex on the path from E to D has more than 2
3 (k − i + j − ℓ) leaves. Hence, E is

indeed the deepest vertex on the path from A to D with more than 2
3 (k − i + j − ℓ) leaves.

Since such a vertex is unique for each tree, every parse tree for A
D (i, k, ℓ, j) is counted only

once.
A circuit computing A

D (i, k, ℓ, j) by the above formula uses O(n2) extra elements.
In order to compute E

D

∣∣
q
(s, k, ℓ, t), let us consider the rule used at the root E of a tree

with a hole D. Let E → BC be this rule, and let m be the position in the input such that
leaves up to am belong to subtree B, and leaves beginning with am+1 belong to subtree C.
Then E

D

∣∣
q
(s, k, ℓ, t) can be computed as follows:

E

D

∣∣∣
q
(s, k, ℓ, t) =

∑
E→BC∈R
m:s<m⩽k

k−m+t−ℓ⩽q

B(s, m) · C

D
(m, k, ℓ, t) +

∑
E→BC∈R
m:ℓ⩽m<t

k−s+m−ℓ⩽q

B

D
(s, k, ℓ, m) · C(m, t)

A circuit computing an element E
D

∣∣∣
q
(s, k, ℓ, t) by this formula uses O(n) extra elements.

The entire circuit consists of all the above elements and computes the desired values.

Number of elements in the circuit. There are O(n2) elements A(i, j) and computing each
of them takes O(n3) extra elements. Similarly, each of the O(n4) elements A

D (i, k, ℓ, j) takes
O(n2) extra elements to compute, whereas the computation of each of the O(n5) elements
E
D (s, k, ℓ, t)|q takes O(n) extra elements. This accounts for O(n6) elements in the entire
circuit; the calculation of the dependence on the grammar is omitted due to space constraints.

Depth of the circuit. The elements A(i, j) directly depend on elements, which have at
most 2

3 (j − i) leaves in their subtrees.
For each element A

D (i, k, ℓ, j), let α = k − i + j − ℓ be the number of leaves in its subtree.
Then it directly depends on elements E

D (·, ·, ·, ·) with at most 1
3 α leaves, and elements

E
D

∣∣
q
(·, ·, ·, ·) with at most α leaves, and with q ⩽ 2

3 α. The latter element depends on B(·, ·)
with at most α leaves, and on C

D (·, ·, ·, ·) with at most 2
3 α. Overall, A

D depends on elements
with at most 2

3 α leaves in three steps.
Each element E

D

∣∣
q
(s, k, ℓ, t) depends on elements A

D and B with fewer than α leaves.
Thus, for an element of every type, whether it is A(·, ·), E

D

∣∣
q
(·, ·, ·, ·) or A

D (·, ·, ·, ·), after a
quadruple application of the rules, the number of leaves is reduced at least by a factor of 3

2 .
At each level of these dependencies, a sum of multiple values is computed using a binary

tree of logarithmic depth in the number of arguments, whence overall depth O(log2 n). ◀
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The above circuit actually performs operations in the ring of natural numbers, adding
constant 1 for each parse tree accounted for. This can be generalized to compute the value
of a string in a weighted grammar over every semiring.

▶ Theorem 7. For every weighted grammar G = (Σ, N, R, S) in the Chomsky normal form,
with weights in a semiring S, there is a uniform family of arithmetic circuits computing
elements over S, for each length of input strings n ⩾ 1, which computes the value of an input
string of length n in the semiring, has O(n6) elements and is of depth O(log2 n).

4 A smaller circuit using fast matrix multiplication

In the circuit constructed in Theorem 6, all elements A(·, ·) are computed using Θ(n5)
operations in total, and computation of elements of both types A

D and A
D

∣∣
q

takes Θ(n6)
operations. Hence, in order to reduce the total number of elements in the circuit, computation
of elements A

D and A
D

∣∣
q

should be optimized. It turns out that such an optimization could
be done via fast matrix multiplication.

4.1 Matrix multiplication for A
D

Let us show how fast matrix multiplication can be used to compute the same values A
D (i, k, ℓ, j)

using fewer elements.
In the following, matrices with rows and columns indexed by substrings, that is, pairs of

two positions in the string, will be considered. Denote I = (i, j) and |I| = j − i; similarly, let
K = (k, ℓ), |K| = ℓ − k, S = (s, t), |S| = t − s. For every pair of non-terminal symbols A, D

let us define a matrix of size n(n+1)
2 × n(n+1)

2 , consisting of elements A
D [I][K] = A

D (i, k, ℓ, j)
with i ⩽ k < ℓ ⩽ j and A

D [I][K] = 0 otherwise. Then the formula for computing the value
A
D (i, k, ℓ, j) can be rewritten in the new notation as follows.

A

D
[I][K] =

∑
E∈N

S:K⊂S⊂I
|S|−|K|> 2

3 (|I|−|K|)

A

E
[I][S] · E

D

∣∣∣
2
3 (|I|−|K|)

[S][K]

In this notation, the formula resembles a matrix product, and suggests that some elements of
a matrix A

D [I][K], with rows indexed by I and columns indexed by K, could be computed as a
product of some submatrices of A

E and of E
D | 2

3 (|I|−|K|) (as long as |I| − |K| is fixed). However,
an algorithm cannot compute the product of these matrices in one step, since the elements
corresponding to the longer substrings indirectly depend on the elements corresponding to
the shorter substrings. For this reason, those matrices shall be split into several submatrices,
which shall be multiplied separately at different stages of the computation.

The matrix A
D [I][K] is split into submatrices with fixed |I| and |K|. The submatrix with

|I| = α and |K| = β, is denoted by
{

A
D [I][K]

}
|I|=α,|K|=β

, and is of size (n−α+1)×(n−β+1).
This submatrix is computed as the following sum of matrix products.{A

D
[I][K]

}
|I|=α
|K|=β

=
∑

E∈N
γ: 2

3 α+ 1
3 β<γ<α

{A

E
[I][S]

}
|I|=α
|S|=γ

·
{E

D

∣∣∣
2
3 (α−β)

[S][K]
}

|S|=γ
|K|=β

(the condition 2
3 α + 1

3 β < γ < α is obtained from the inequalities |S| − |K| > 2
3 (|I| − |K|)

and |S| < |I|)
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E

s tk

D

C

B

<q

m0

p

Figure 4 The computation of E
D

∣∣
q
(s, k, ℓ, t) in the case of branching to the left.

The submatrices being multiplied include some elements A
E [I][S] with S ⊊ I, and

E
D | 2

3 (α−β)[S][K] with K ⊊ S, which are not in the formula for A
D [I][K]; however, since these

elements are zero by the definition of the matrices, these unintended terms in the sums have
no effect on the result.

Also note that the computation of the element A
D [I][K] with α − β leaves, requires only

the elements A
E [·][·] with at most 1

3 (α − β) leaves, and the elements E
D

∣∣
q
[·][·] with at most

α − β leaves. The overall order of computation will be set accordingly, so that by the time
the product is computed, its arguments will have already been computed.

4.2 Matrix multiplication for elements E
D

∣∣∣
q

Let us now consider the elements E
D

∣∣
q
(s, k, ℓ, t). As it was mentioned above, each of these

elements can be calculated as

E

D

∣∣∣
q
(s, k, ℓ, t) =

∑
E→BC∈R
m:s<m⩽k

k−m+t−ℓ⩽q

B(s, m) · C

D
(m, k, ℓ, t) +

∑
E→BC∈R
m:ℓ⩽m<t

k−s+m−ℓ⩽q

B

D
(s, k, ℓ, m) · C(m, t)

Let us show how fast matrix multiplication can be used in order to compute the first sum.
The second sum is computed similarly.

For each element E
D

∣∣
q
(s, k, ℓ, t), define a value p, which equals p = k + t − ℓ, as it is shown

in Figure 4. The proposed order of computations is designed in a such way that elements
E
D

∣∣
q

with the same p are calculated together.
Let us fix p > 0 and consider computations of E

D

∣∣
q
(s, k, ℓ, t) with t − ℓ + k = p. Denote a

matrix Up,B of size p×p, such that for all s, m = 0, 1, . . . p−1, Up,B [s][m] = B(s, m) if s < m,
and U [s][m] = 0 otherwise. In other words, U is a top-left corner of the matrix B. Also
denote a matrix W p,q,C,D of size p × n2, where the first coordinate is m = 0, 1 . . . p − 1, and
the second is a triple of k, ℓ, t, such that k + t − ℓ = p, and W p,q,C,D[m][k, ℓ, t] = C

D (m, k, ℓ, t)
if m ⩽ k ⩽ ℓ ⩽ t and m ⩾ p − q, and W p,q,C,D[m][k, ℓ, t] = 0 otherwise.

It is claimed that the product of Up,B and W p,q,C,D contains the exact values needed for
the computation of E

D

∣∣
q
.

(Up,B · W p,q,C,D)[s][k, ℓ, t] =
p−1∑
m=0

Up,B [s][m] · W p,q,C,D[m][k, ℓ, t]
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This sum has Up,B [s][m] = 0 for m ⩽ s, and W p,q,C,D[m][k, ℓ, t] = 0 for m ⩾ k and for
m ⩽ p − q. Since p = k + t − ℓ ⩾ k, the upper limit m < p becomes redundant. Therefore,
the range of the sum can be reduced as follows.

(Up,B · W p,q,C,D)[s][k, ℓ, t] =
p−1∑
m=0

Up,B [s][m] · W p,q,C,D[m][k, ℓ, t] =

=
∑

s<m⩽k
p−q⩽m

B(s, m) · C

D
(m, k, ℓ, t)

Hence, in order to compute all elements E
D

∣∣
q
(s, k, ℓ, t) with t − ℓ + k = p, it is needed

to iterate over all pairs of non-terminals B, C, such that E → BC ∈ R, construct the
corresponding matrices Up,B and W p,q,C,D, and sum up their products. However, elements in
each of these matrices indirectly depend on each other, so it is again impossible to build and
multiply these matrices in one step. For this reason, matrices Up,B and W p,q,C,D are never
built wholly, and their products are gradually calculated by multiplying their submatrices of
various size. The higher the value of p, the later the entire product Up,B · W p,q,C,D will be
obtained. Let us also mention that both matrices Up,B and W p,q,C,D, consist of elements B,
C
D and E

D

∣∣
q

or zeros, and so does their product Up,B · W p,q,C,D. Hence, there is no need to
actually store these matrices – it is only a way to represent computations performed over the
named elements.

▶ Remark 8. From the definition of Up,B it follows that an arbitrary element Up,B [s][m] has
m − s leaves in its subtree. In other words, the elements with α leaves in their subtrees lay
on the α-th diagonal, in the numeration where the main diagonal has number 0.

▶ Remark 9. Similarly, every element W p,q,C,D[m][k, ℓ, t] has min(k − m + t − ℓ, q) =
min(p − m, q) leaves in its subtree. In other words, the elements in the α-th row from the
bottom of W p,q,C,D have min(α, q) leaves in their subtrees.

For a fixed value of p, the matrix Up,B is split into disjoint submatrices, which will be
multiplied by the algorithm. These matrices are denoted by L(t, j) and R(t, ℓ, j), where the
number t refers to a large square of size 2t × 2t, in which the corresponding submatrix is
contained. The L-matrices are in the large squares centered at the main diagonal, whereas
the R-matrices are in the large squares to the right of the main diagonal. This decomposition
is illustrated in Figure 5.

It is important to note that even though the matrices Up,B for different p are corners
of the same matrix B, the matrix Up,B is split anew for each p, and there is no relation
between the decompositions for different p.

▶ Definition 10. For all t = 0, . . . log2 p − 1 and j = 1, . . . , 2t − 1, let nj be the maximal
power of two that divides j. Denote by L(t, j) the submatrix of matrix Up,B of size nj × nj

with left bottom corner at (p − 2t − j − 1, p − 2t − j).

L(t, j) = Up,B [p − 2t − j − nj , . . . , p − 2t − j − 1][p − 2t − j, . . . , p − 2t − j + nj − 1]

Each L(t, j) is in the t-th large square, its left corner is next to the main diagonal, and j

is the number of the row within the large square, numbered from the bottom.
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L(4,9)
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L(4
,14
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R(4,2,2)
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R(4,3,1)

R(4,4,0)

R(3,3,0)
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R(4,
1,2)

R(4,
1,3)

R(4,
1,7)

R(3,
1,3)
R(3,
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R(3,2,1)

R(1,1,0)
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R(2,0,2)

R(2,1,1)

R(3,0,6)L(3,6) R(3,
1,3)

R(3,3,0)

R(3,2,1)L(3,4)

0
0

p–1

p–1

t=4

t=3

Level(α)
Row(α)

p–1–α

Figure 5 Partition of Up,B , with p = 32, and the sets Level(α) and Row(α) for α = 14.

▶ Definition 11. For all t = 0, . . . log2 p − 1, ℓ = 0, . . . t − 1 and j = 1, . . . , 2t−ℓ − 1
denote by R(t, ℓ, j) the submatrix of matrix Up,B of size 2ℓ × 2ℓ with left bottom corner in
(p − 2t − 2ℓj − 1, p − 2ℓ+1 + 1).

R(t, ℓ, j) = U [p − 2t − 2ℓ(j + 1), . . . , p − 2t − 2ℓj − 1][p − 2ℓ+1 + 1, . . . , p − 2ℓ]

Here, if j = 1, then all the entries below the main diagonal in matrix R(t, ℓ, j) are set to
zero.

In addition to that, for all t = 0, . . . log2 p − 1 denote by R(t, t, 0) the submatrix of matrix
Up,B of size 2t × 2t with left top corner at (p − 2t+1, p − 2t), where all the entries above the
main diagonal are set to zero. If 0 ⩽ a, b < 2t are the indices of this submatrix, then

R(t, t, 0)[a][b] =
{

U [p − 2t+1 + a][p − 2t + b], a ⩾ b

0, a < b

The lower triangular part of the t-th R-square is R(t, t, 0). An R-square is split into blocks
of columns, with each ℓ-th block from the right of width 2ℓ. Then, a submatrix R(t, ℓ, j) is
the j-th submatrix down in the ℓ-th block of columns. The bottom submatrix in each block
of columns (one with j = 1) is upper triangular. All these details are illustrated in the figure.
Submatrices L(·, ·) and R(·, ·, ·) form a partition of the upper triangle of matrix U , which is
the non-zero part of U .
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For each α = 0, . . . p − 1 denote by Row(α) the set of all submatrices in the partition,
which do intersect with the (p − 1 − α)-th row of Up,B (that is, the (α + 1)-th row from the
bottom). The product of each of these matrices by the corresponding stripe of W p,q,C,D is
required for the computation of (p − 1 − α)-th row of U · W .

▶ Definition 12. Let α = 2t + r with 0 ⩽ r < 2t. Let r be represented as a sequence of
binary digits as r =

∑k
i=1 2ri , where r1 < . . . < rk are the numbers of all positive bits. Then

Row(α) consists of k matrices L(t, ·) and ⌊log2 r⌋ + 2 matrices R(t, ·, ·). To be more precise,

Row(α) =
{

L

(
t,

k∑
i=s

2ri

)∣∣∣∣∣s = 1, . . . , k

}
∪
{

R
(

t, ℓ,
⌊ r

2ℓ

⌋) ∣∣∣ℓ = 0, . . . , ⌊log2 r⌋
}

∪
{

R(t, t, 0)
}

Let us now denote by Level(α) the set of all matrices from Row(α) whose bottom row
intersects with the (p−1−α)-th row of Up,B . All matrices from Level(α) are to be multiplied
by the corresponding stripes of W simulatenously at a certain level of the circuit.

▶ Definition 13. For each α = 1, . . . p − 1, let α = 2t + r with 0 ⩽ r < 2t. If r > 0, then the
set of matrices Level(α) consists of the following matrices.

Level(α) = {L (t, r)} ∪
{

R
(

t, ℓ,
r

2ℓ

) ∣∣ℓ = 0, . . . ⌊log2 r⌋, r
... 2ℓ

}
And if r = 0, then Level(α) contains only the big lower-triangular matrix R.

Level(α) = {R (t, t, 0)}

In Figure 5, the sets Row(α) and Level(α) are illustrated for α = 14.

▶ Lemma 14. Every matrix of the partition lies in exactly one set Level(α).

▶ Lemma 15. Every element of every matrix from Level(α) has at most α leaves.

▶ Lemma 16. Every matrix from Level(α) is multiplied by some elements of W , each having
at most min(α, q) leaves.

▶ Lemma 17. For every α, every matrix from Row(α) lies in set Level(β), for some β ⩽ α.

In other words, in the circuit, every matrix from the partition shall be multiplied by the
corresponding stripe of W before their product would be needed.

4.3 Circuit
The circuit is organized into 6⌈log 3

2
n⌉ levels, each of depth at most log n. At each group of

six levels numbered 6t, 6t + 1, . . . , 6t + 5, all elements with α in the range
( 3

2
)t

⩽ α <
( 3

2
)t+1

are computed. This is done in six stages, according to the following plan.
0. At the level τ = 6t, elements A(·, ·) with α leaves, where

( 3
2
)t

⩽ α <
( 3

2
)t+1 are computed

directly via summation. These elements depend on B, C and A
E with β <

( 3
2
)t leaves –

each of which was computed at a level 6t′ or 6t′ + 3, where t′ < t.
1. At the level τ = 6t + 1 for all such α that

( 3
2
)t

⩽ α <
( 3

2
)t+1 matrices from Levelp,B(α)

are multiplied by the corresponding strips of the matrix W p,q,C,D; this is done separately
for each p. As it was mentioned in Lemma 15, all elements of the matrix Up,B involved
in this computation have at most α <

( 3
2
)t+1 leaves, so these elements were computed

at levels 6t′ with t′ ⩽ t. At the same time, as it follows from Lemma 16, the elements
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of W p,q,C,D involved in the computation have at most min(q, α) <
( 3

2
)t leaves, so these

elements were computed at levels 6t′ + 3 with t′ < t. All in all, the elements computed at
level τ = 6t + 1 depend only on elements from earlier levels.

2. At the level τ = 6t + 2, elements E
D

∣∣
q
(·, ·, ·, ·) with q <

( 3
2
)t and with α leaves, where( 3

2
)t

⩽ α <
( 3

2
)t+1, are computed. For each α, the earlier computed products of matrices

from the set Rowp,B(α) by the corresponding stripes of W p,q,C,D are taken, all their α-th
rows are summed up. Next, a sum of the resulting rows is taken over all rules E → BC.
Since submatrices from Rowp,B(α) form a partition of the non-zero part of α-th row of
matrix Up,B , the sum is exactly the value of E

D

∣∣
q
. As it was proven in Lemma 17, each

matrix from Rowp,B(α) lies in one of the sets Levelp,B(β) with β ⩽ α <
( 3

2
)t+1. Hence,

the elements from level τ = 6t + 2 depend on elements from levels 6t′ + 1, with t′ ⩽ t.
3. At the level τ = 6t + 3, according to the formulas from Section 4.1, elements A

D (·, ·, ·, ·)
with α leaves are computed, where

( 3
2
)t

⩽ α <
( 3

2
)t+1.

To be more precise, for all α in this range and for all ζ = 1 . . . n − α, the following matrix
products are computed simultaneously:{A

D
[I][K]

}
|I|=ζ+α

|K|=ζ

=
∑

E∈N
γ: 2

3 α+ζ<γ<ζ+α

{A

E
[I][S]

}
|I|=ζ+α

|S|=γ

·
{E

D

∣∣∣
2
3 α

[S][K]
}

|S|=γ
|K|=ζ

In the left part of the equation there are exactly the elements A
D with α leaves. They

depend on elements A
E with at most 1

3 α <
( 3

2
)t leaves, which were computed at some

levels 6t′ + 3 with t′ < t. Also there is a dependency on elements E
D

∣∣
q

with fewer than
α <

( 3
2
)t+1 leaves, where q = 2

3 α <
( 3

2
)t. These elements were computed at levels

{6t′ + 2|t′ ⩽ t} ∪ {6t′ + 5|t′ < t}. Overall, the elements from level τ = 6t + 3 depend on
elements from levels 6t′ + 3 and 6t′ + 5 with t′ < t, as well as on elements from levels
6t′ + 2 with t′ ⩽ t.

4. At the level τ = 6t + 4, matrices from the sets Levelp,B(α), with
( 3

2
)t

⩽ α <
( 3

2
)t+1, are

multiplied by the corresponding strips of matrices W p,q,C,D, and for all q ⩾
( 3

2
)t. The

computations are the same as at level 6t + 1, with the only difference that min(q, α) <( 3
2
)t+1. So, the elements from level τ = 6t + 4 depend on elements from levels 6t′ and

6t′ + 3 with t′ ⩽ t.
5. At the level τ = 6t + 5, the elements E

D

∣∣
q

with q ⩾
( 3

2
)t are computed for all α with( 3

2
)t

⩽ α <
( 3

2
)t+1. This is done similarly to the level 6t + 2, with the computations

depending on the elements from levels 6t′ + 4 with t′ ⩽ t.

▶ Theorem 18. For every grammar G = (Σ, N, R, S) in the Chomsky normal form and for
every string length n, there exists an arithmetic circuit of depth O((log n + log |R|) log n) and
with O(|N |2 · |R| · nω+3) elements, which computes the number of parse trees of an input
string of length n. (where ω ⩾ 2 is a number, such that for every n there is a an arithmetic
circuit of depth O(log n) and with O(nω) elements that computes the product of two n × n

integer matrices)

Proof.

Depth. Since the elements at every level τ depend only on elements from earlier levels, there
are no cycles in the circuit, and the depth of the logical dependencies between elements does
not exceed the number of levels, which is 6⌈log 3

2
n⌉. At each level, each element is computed

either as a sum of at most n3|R| values, or as a part of a matrix product involving matrices of
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size at most n × n. Sums are computed in depth O(log n + log |R|) by the standard method.
Matrix products are computed in depth O(log n) using fast matrix multiplication. Hence,
the entire circuit has depth O((log n + log |R|) log n).

Number of elements. Elements B(·, ·) are computed as sums of O(|N | · |R| · n5) elements,
which is less than O(|N |2 · |R| · n3+ω).

The computations of all elements A
D (·, ·, ·, ·) are performed at levels 6t + 3, see stage 3

above. For fixed α and ζ, there are α + ζ − ( 2
3 α + ζ) = 1

3 α different of γ, and for each γ

there are |N |3 matrix multiplications corresponding to different nonterminals A, D and E,
where each matrix is not larger than n × n. Summing up over all α, ζ, A, D and E gives the
following upper bound on the number of operations.

const ·
∑

A,D,E∈N

n−1∑
ζ=1

n−ζ∑
α=1

1
3αnω = const · |N |3 · n(n2 − 1)nω = O(|N |3 · n3+ω)

It remains to prove that all matrix multiplications required to compute E
D

∣∣
q
(·, ·, ·, ·) can

be done using O(|N |2 · |R| · n3+ω) elements.
Let firstly fix the parameters p, q, the rule E → BC and the nonterminal D, and estimate

the number of elements used to compute the product of matrices Up,B · W p,q,C,D for these
p, q,

Denote the width of the matrix W p,q,C,D by M , it is O(n2). Fix t ∈ {0, . . . , log2 p} and
consider the partition of matrices Up,B [p − 2t+1, . . . , p − 2t − 1][p − 2t+1, . . . , p − 2t − 1] (the
large square of size 2t × 2t on the main diagonal in Figure 5) and Up,B [p − 2t+1, . . . , p − 2t −
1][p−2t, . . . , p−1] (the large square of size 2t×2t to the right of the main diagonal in Figure 5).
The first matrix has 2k−j−1 submatrices L(t, ·) of size 2j ×2j , and the second one has 2k−j −1
submatrices R(t, j, ·) of size 2j × 2j . So, among the matrices {L(t, ·)} ∪ { R(t, ·, k) | k > 0 }
there are 2t−j−1 + 2t−j − 1 matrices of size 2j × 2j , and each of them is multiplied by a
strip of size 2t × M of the matrix W p,q,C,D; to be more precise, this product is computed
by splitting the stripe into M

2j square matrices of size 2t × 2t each. Each product of square
matrices of size 2j × 2j is computed using O(2jω) arithmetic operations, and therefore the
total number of operations is bounded by constant times the following expression.

t−1∑
j=0

(2t−j + 2t−j−1 − 1)M

2j
2jω ≤

t−1∑
j=0

3
22t−j M

2j
2jω = 3

2M

t−1∑
j=0

2t−j2jω−j =

= 3
22tM

t−1∑
j=0

2j(ω−2) ≈ const · 2tM · 2t(ω−2) = const · 2t(ω−1)M

In addition to that, there is one more matrix R(t, t, 0) of size 2t × 2t, which is multiplied
by the strip of the matrix W p,q,C,D of size 2t × M , implemented as M

2t multiplications by a
square matrix, which gives O(2tω) · M

2t = O(M2t(ω−1)) additional operations.
All in all, O(M2t(ω−1)) elements are required for a given t. The sum of the number of

elements for t = 0, . . . , log2 p is then bounded by

const ·
log p∑
t=0

M · 2t(ω−1) ≈ const · M · 2(ω−1) log p = const · pω−1M

Hence, for a given p and q all matrices from the partition of Up,B are multiplied using
O(Mpω−1) elements, where M = O(n2). Since p ⩽ n, this value is not more than O(nω+1).
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The last step is to sum the number of elements for all p, q = 1, . . . , n and for all rules E → BC

and nonterminals D, and obtain the desired upper bound O(|N | · |R| · nω+3) on the number
of elements in the circuit. ◀

Like the simple circuit with O(n6) elements, the new circuit can also be adapted to
compute the value of a string in a weighted grammar. Since fast matrix multiplication
requires matrices over a ring, this restriction makes its way into the theorem.

▶ Theorem 19. For every weighted grammar G = (Σ, N, R, S) in the Chomsky normal form,
with weights in a ring R, there is a uniform family of arithmetic circuits computing elements
over R, for each length of input strings n ⩾ 1, which computes the value of an input string of
length n in the ring, has O(|N |2 · |R| ·nω+3) elements and is of depth O((log n+log |R|) log n).
(where ω ⩾ 2 is a number, such that for every n there is a an arithmetic circuit of depth
O(log n) and with O(nω) elements that computes the product of two n × n matrices over R)

5 Future work

The smaller of the two proposed circuits for enumerating parse trees uses O(n3+ω) elements.
On the other hand, in the Boolean case, where only the existence of a parse tree is determined,
it should be sufficient to use only O(n2ω) elements, see Brent and Goldschlager [3, Sect. 6].
Perhaps the enumeration of parse trees might also be done using asymptotically fewer than
nω+3 elements, and this looks like an interesting subject for future research.
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Abstract
We study a two-player game on a graph between an attacker and a defender. To begin with, the
defender places guards on a subset of vertices. In each move, the attacker attacks an edge. The
defender must move at least one guard across the attacked edge to defend the attack. The defender
wins if and only if the defender can defend an infinite sequence of attacks. The smallest number of
guards with which the defender has a winning strategy is called the eternal vertex cover number of a
graph G and is denoted by evc(G). It is clear that evc(G) is at least mvc(G), the size of a minimum
vertex cover of G. We say that G is Spartan if evc(G) = mvc(G). The characterization of Spartan
graphs has been largely open. In the setting of bipartite graphs on 2n vertices where every edge
belongs to a perfect matching, an easy strategy is to have n guards that always move along perfect
matchings in response to attacks. We show that these are essentially the only Spartan bipartite
graphs.
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1 Introduction

A vertex cover of a graph G is a subset S of vertices such that every edge in G has at least one
of its endpoints in S. An optimal vertex cover of a graph G is a vertex cover of the smallest
possible size and the size of this optimal vertex cover is denoted by mvc(G). A bipartite
graph G = (V,E) is a graph whose vertex set can be partitioned into two independent sets,
say V = (A ∪ B), that is every edge is between a vertex in A and one in B. Clearly, both A

and B are vertex covers of G. If a bipartite graph G = (A ∪ B,E) is connected and its only
optimal vertex covers are A and B, then we say that G is elementary. If every connected
component of a bipartite graph is elementary, then we call it essentially elementary.

Klostermeyer and Mynhardt [8] introduced the notion of the eternal vertex cover number
of a graph G. There are two players – an attacker and a defender, who are playing on a
simple, undirected graph G. In the beginning, the defender can choose to place guards on
some of the vertices of G. The attacker’s move involves choosing an edge to “attack”. The
defender is able to “defend” this attack if she can move the guards along the edges of the
graph in such a way that at least one guard moves along the attacked edge. If both the
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endpoints of the attacked edge have guards on them, the guards can simply exchange their
places and the attack is defended as well as the original configuration of guards is restored.
Note that any number of guards can move after an attack, but each guard can move only one
“step”, i.e., just along a single edge. If such a movement is not possible, then the attacker
wins. If the defender can defend the graph against an infinite sequence of attacks, then the
defender wins (see Figure 1). The minimum number of guards with which the defender has a
winning strategy is called the eternal vertex cover number of the graph G and is denoted by
evc(G).

There are two variations of this game, one where only one guard can be present per vertex
at a given time and a variant where more than one guard can be present on a vertex at a
given time. Our results apply to both the variants of the game.

(a) The intial positions of the guards are
denoted by the star-shaped vertices.

(b) The attacker’s move targets the edge to
the far-right, highlighted by a wavy red line.

(c) The defender responds to defend the at-
tack by moving a guard along the attacked
edge.

(d) Simultaneously, the defender moves an-
other guard to ensure that no edges are left
vulnerable. This is the resultant position of
the guards.

Figure 1 An attack that is defended by moving two guards.

If Sℓ is the subset of vertices that have guards on them after the defender has played
her ℓ-th move, and Sℓ is not a vertex cover of G, then the attacker can target any of the
uncovered edges to win the game. Therefore, when the defender has a winning strategy, it
implies that she can always “reconfigure” one vertex cover into another in response to any
attack, where the reconfiguration is constrained by the rules of how the guards can move
and the requirement that at least one of these guards needs to move along the attacked edge.
It follows that evc(G) ⩾ mvc(G), where mvc(G) is the size of the smallest vertex cover for
any graph G.

We call graphs G which enjoy evc(G) = mvc(G) Spartan, to indicate that these graphs
can manage attacks without using “additional” guards. Understanding Spartan graphs for
several special cases have been addressed in the literature (see, for instance, [3]). However,
the characterization of bipartite graphs that are Spartan has been left open. We show that
bipartite graphs are Spartan if and only if they are essentially elementary.

We also consider a natural extension of the eternal vertex cover problem: where the
guards are allowed to move two or more steps on each turn instead of one, without retracing.
An attack is defended only if the guard moves along the attacked edge on their first step.
We show that with just one additional step, we need either just as many guards as the size
of the smallest vertex cover or one more: so in this variant all graphs are “almost” Spartan.
We also show that the extra guard is needed only if the graph has a degree one vertex not
contained in any minimum vertex cover. Finally, we show that allowing for more than one
extra step is the same as allowing exactly one extra step.

Related Work. Among characterizations related to Spartan graphs, we have the following.
Let the graph class F denote the class of all connected graphs G for which each minimum
vertex cover of G that contains all the cut vertices of G induces a connected subgraph in G.
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(A cut vertex is a vertex whose removal disconnects the graph.) Let G(V ,E) be a graph that
belongs to F, with at least two vertices, and X ⊂ V be the set of cut vertices of G. Then
Babu et al. [2] showed that G is Spartan if and only if for every vertex v ∈ V\X, there exists
a minimum vertex cover Sv of G such that X∪ {v} ⊂ Sv. Klostermeyer and Mynhardt [7] also
study graphs for which the eternal vertex cover number coincides with the eternal domination
number, a closely related notion. This is a similar game, except that the attacks happen
on vertices and if the attacked vertex does not have a guard already, then a guard from a
neighbouring vertex must come to the attacked vertex. All other guards can stay on their
initial position or move to a neighbouring vertex. The minimum number of guards required
to protect the graph from an infinite sequence of attacks is called the eternal domination
number.

Note that twice as many vertices as the mvc(G) always suffice to defend against any
sequence of attacks – by placing guards on both endpoints of any maximum matching to
begin with and after any attack, reconfiguring the guards to obtain another maximum
matching. Using this strategy, a 2−approximation algorithm for Eternal Vertex Cover
was obtained by Fomin et al. [5]. This also implies mvc(G) ⩽ evc(G) ⩽ 2mvc(G). [8] gave a
characterization of the graphs for which the upper bound is achieved. The notion of elementary
graphs was considered by Lovász and Plummer [9] and several useful characterizations were
given by Hetyei [6]. We adapt these definitions to suit the context of bipartite graphs.

Methodology

Recall that a matching is a collection of vertex disjoint edges, and a matching which contains
one edge incident to each vertex of a graph is called a perfect matching. We say that an edge
is allowed if it is contained in some perfect matching. A graph G is said to be elementary if
and only if it is connected and every edge is allowed.

It turns out that a connected bipartite graph G = (A ∪ B,E) is elementary if and only if
its only optimal vertex covers are A and B, as we make explicit in the proposition below.

▶ Proposition 1 ([6]). The following are equivalent for any connected bipartite graph G =

(A ∪ B,E).
1. A and B are the only minimum vertex covers of G, and in particular |A| = |B|.
2. Every edge in G is allowed.

Notice that it is easy to see that for bipartite graphs, if G is elementary then it is Spartan
(see also Lemma 2 and Araki, Fujito, and Inoue [1]). Indeed, we start by placing guards on
all vertices of A. If the edge e is attacked, then we move guards to B along the edges of the
perfect matching M that contains the edge e. Future attacks can be similarly defended, so
the guards alternate between occupying A and B in response to edge attacks.

What we focus on demonstrating in this contribution is the converse, namely that if a
connected bipartite graph G does not have this structure, then it is also not Spartan: in
some sense, the trivial scenario is the only one in which we can hope to manage without
employing any “extra” guards.

Spartan =⇒ Perfect Matching. To begin with, notice that if G = (A∪B,E) is connected
and does not have a perfect matching, we already need more than mvc(G) guards (see
also Proposition 4). In particular, let M be a maximum matching in G. Recall that
|M| = mvc(G) by König’s theorem. Without loss of generality, let b ∈ B be a vertex not
incident to any edge of M. Since G is connected, b has some neighbor a ∈ A, which must
belong to any vertex cover of G. In particular, the defender is forced to position a guard on
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a in the initial configuration. If the edge ab is attacked, the guard on a is forced to move to
b. This creates a situation where |M|− 1 guards have to reposition themselves to protect all
the edges of M – which is impossible since the edges of M are disjoint.

Therefore, a necessary condition for a connected bipartite graph to be Spartan is that it
must admit a perfect matching. This is, however, evidently not sufficient: indeed, there are
connected bipartite graphs with perfect matchings that are not Spartan (see also Figure 2).

Figure 2 A graph with a perfect matching where mvc(G) many guards do not suffice. For each
choice of mvc(G) many guards at the initial configuration, attacking the dashed edge shown in the
figure leads to an indefensible position in one or two steps.

Spartan =⇒ No Degree One Vertices. We observe that a connected bipartite Spartan
graph G = (A ∪ B,E) on at least three vertices cannot have a degree one vertex (see
also Proposition 5 and Babu et al. [2]). Assume to the contrary that G has a degree one
vertex, say a ∈ A. Let b denote a’s unique neighbor in G. Since G has at least one vertex
other than a and b, and G is connected, b must have another neighbor in G: say a′. Now, if
the initial configuration has a guard on a, then attack the edge ba′; otherwise attack the
edge ab to force a guard on a and then attack ba′. Both cases lead to a scenario where both
endpoints of the edge ab have guards on them. However, since G is Spartan, it has a perfect
matching M. Further, since a is a degree one vertex, M is forced to contain the edge ab.
This in turn implies that at least |A|− 1 guards are required to defend the rest of the graph,
contradicting the assumption that G is Spartan.

Proof by Structure-Preserving Contractions. So far, we have seen that a connected
bipartite graph G = (A∪B,E) which is Spartan must have a perfect matching and no degree
one vertices. Fix an arbitrary perfect matching M, and let ab ∈ M. Let P be a maximal
walk (without repeating edges) starting at a, alternating between edges of M and E \M.
The terminal vertex of P is either a, or a vertex v which must have a neighbor on P, since G

has no degree one vertices. So from P, we can derive a cycle whose edges alternate between
M and E \M (see also Proposition 17).

At a high level (see Figure 3), our proof relies on “contracting” each such cycle to a single
matching edge and arguing that the resulting graph remains Spartan provided the original
graph was also Spartan. In particular, we show the following. If G is Spartan to begin
with, and M is a perfect matching with S is a set of endpoints of M ′ ⊆ M such that G[S] is
elementary, then “replacing” G[S] with a single edge until this operation is no longer possible;
keeps the graph Spartan (see also Lemma 13). Here it is useful that any bipartite graph
obtained by adding edges to a cycle (while preserving the bipartite-ness) is elementary, a fact
that we establish separately (see also Proposition 7) – thus we can simply keep contracting
along cycles C. The idea of the proof is then the following. Consider what happens once
we are stuck, i.e., we cannot contract any further: we either have an edge, or we have a
graph that is not an edge but must have a degree one vertex (if not, note that we would not
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G0 = G G1 · · · Gt = {e}

Figure 3 Proof idea: The sequence of forward contractions preserves “Spartan-ness” overall (i.e,
Gt is Spartan if G0 is Spartan) while the backward expansions preserve “elementary-ness”.

be stuck). But from our previous discussion, we know that a connected bipartite Spartan
graph on at least three vertices cannot have a degree one vertex. So in this situation, we
have transformed the Spartan graph we started with into one that is not Spartan, and in
particular, there is an attack that mvc(·) many guards will not be able to defend on the
“contracted” graph. It turns out that this attack can be mimicked on the graph we started
with, contradicting our assumption that the original graph is Spartan. Thus, our process
must end at a single edge.

To conclude the proof, we show that if we take an elementary bipartite graph G and
“inject” an elementary graph into it by substituting an edge with an elementary graph, then
the resulting graph is also elementary. This lets us run the contraction operations on G in
reverse, starting from the edge that we ended up with; and since an edge is elementary, we
conclude that G must have also been elementary (see also Lemma 15).

When G is not connected, the arguments we made can be made independently of every
connected component of G. This leads to our final characterization: that a biparitite graph G

is Spartan if and only if each of its components are elementary. Since it is straightforward to
check if a bipartite graph G = (A∪B,E) is elementary (for instance, by checking if G \ {u, v}
admits a perfect matching for every uv ∈ E), our result also implies a polynomial-time
recognition algorithm for bipartite Spartan graphs. We note that, in contrast to mvc(G),
determining evc(G) is known to be NP-hard even for bipartite graphs.

In Section 2, we describe the proofs of the claims mentioned in the outline here in greater
detail. Our notation largely follows conventions from Diestel [4]. The proofs for statements
marked with a (⋆) can be found in the full version of this paper.

2 Spartan Bipartite Graphs are Essentially Elementary

We begin with the (easy) forward implication, which was also observed by [1] – we provide
an explicit proof in the full version in the interest of completeness.

▶ Lemma 2 (⋆). If a bipartite graph G is essentially elementary, evc(G) = |V(G)|/2 =

mvc(G) ,i.e., G is Spartan.

It turns out that we may assume, without loss of generality, that G is connected (we refer
the reader to the full version for a more explicit explanation). Therefore, our goal amounts
to showing the following.

▶ Lemma 3 (⋆). If G is a connected bipartite graph that is Spartan, then it is elementary.

We first argue that any connected Spartan bipartite graph must have a perfect matching.

▶ Proposition 4. If G is a Spartan connected bipartite graph, it admits a perfect matching.

Proof. Let G be a connected Spartan bipartite graph with bipartition (A,B) where A =

{a1, . . . ,ap} and B = {b1, . . . ,bq} (see also Figure 4). For the sake of contradiction, assume
that G does not admit a perfect matching, i.e., without loss of generality let q > k. Let S be
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a minimum vertex cover in G of size k such that the guards are placed on S in the initial
configuration. Let M be any maximum matching. Without loss of generality, let the edges
of M be given by:

{e1 = (a1,b1), . . . , ei = (ai,bi), ei+1 = (ai+1,bi+1), . . . , ek = (ak,bk)},

where S ∩A = {a1, . . . ,ai} and S ∩ B = {bi+1, . . . ,bk}.
Since M is not a perfect matching, |V(G)| > 2k i.e. there exists a vertex in G which is

not an endpoint of any edge in M. Without loss of generality, let this vertex be bq. Since
bq is not an isolated vertex, it must have a neighbour on the A side. Since S is a vertex
cover, this neighbour must lie in S ∩A. Without loss of generality, let this neighbour be a1.
If the attacker attacks a1bq, the guard on a1 must come to bq and cannot move further.
Now there are k− 1 guards on the vertices of M to protect k matching edges. So no matter
how these guards arrange themselves, at least one edge of M must be vulnerable before the
next attack. The attacker attacks this edge in the next move and wins thus contradicting
the fact that G is Spartan. Therefore, the graph G must admit a perfect matching. ◀

a1

a2

a3

ai

ai+1

ai+2

ak

b1

b2

b3

bi

bi+1

bi+2

bk

bq

(a) A graph which does not have a perfect match-
ing and the red edge is attacked.

a1

a2

a3

ai

ai+1

ai+2

ak

b1

b2

b3

bi

bi+1

bi+2

bk

bq

(b) After defending the attack, there are only
k− 1 guards to protect k matching edges. So
an edge will remain vulnerable.

Figure 4 Demonstrating that Spartan connected bipartite graphs must have perfect matching
towards a proof of Proposition 4.
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So we now have that connected Spartan bipartite graphs G have at least one perfect
matching. From now on we denote the bipartitions of G by A = {a1,a2, . . .an} and
B = {b1,b2, . . .bn} where each ai and bi have an edge between them so that we have a
perfect matching M =

⋃n
i=1{aibi}. Since G is connected, these bipartitions are unique upto

permutations. We now show that connected bipartite graphs that are Spartan do not have
degree one vertices. This follows from known results (for example, as shown by [2]), however,
our argument is more direct and we make it explicit to make our presentation self-contained.

▶ Proposition 5 (No Degree One Vertex). Let G be a connected bipartite graph with |V(G)| > 2
and with a perfect matching. If evc(G) = mvc(G), then G has no degree one vertex.

From Lemma 2 and Proposition 5, we have the following.

▶ Corollary 6. Let G be a connected bipartite graph with more than two vertices. If G is
elementary, then G cannot have a degree one vertex.

Next, we show that a bipartite graph with a cycle that visits every vertex is elementary.

▶ Proposition 7 (Adding edges to cycles). Consider a connected bipartite graph G = (A∪B,E)
which is a cycle a1b1a2b2 . . .akbka1 (where k > 1). The graph G ′ formed after adding any
number of edges between A and B (preserving bipartiteness) will be elementary.

Proof. Let G be a connected bipartite graph G which is a cycle a1b1a2b2 . . .akbka1, where
k > 1 (see also Figure 5). Here the two sides of the bipartition are A = {a1,a2, . . . ,ak} and
B = {b1,b2, . . . ,bk}.

The graph G has two perfect matchings which are given by M = {a1b1,a2b2, . . . ,akbk}

and M ′ = {b1a2,b2a3, . . . ,bk−1ak,bka1}. It is easily seen that any edge of G lies in one of
these two perfect matchings.

Suppose we add some edges from A to B. Notice that the vertex set of the new graph
G ′ is same as the vertex set of G. In order to prove that G ′ is elementary, it is sufficient to
show that each of the newly added edges belongs to a perfect matching of G ′.

Consider a newly added edge aibj. This clearly preserves bipartiteness. Here, i ̸= j, j+ 1
because the edges aibi and aibi−1 were already in G.

First, let i > j+ 1. Consider the matching:

M1 = {aibj,biai+1,bi+1ai+2, . . . ,bk−1ak,bka1,b1a2, . . . ,bj−1aj,aj+1bj+1,aj+2bj+2, . . . ,ai−1bi−1}.

Clearly M1 is a perfect matching containing aibj.
Now let i < j. Let N1 = {aibj,biai+1,bi+1ai+2, . . . ,bj−1aj};N2 = {a1b1, . . . ,ai−1bi−1};

and N3 = {aj+1bj+1, . . . ,akbk}.
Consider the matching M2 given by N1 ∪N2 ∪N3. Clearly M2 is a perfect matching

containing aibj.
This concludes our argument showing that G ′ is elementary. ◀
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a1

b1

a2

b2a3

b3

a4

b4

(a) This figure shows a cycle with k = 4.

a1

b1

a2

b2a3

b3

a4

b4

(b) Each newly added edge is allowed: Suppose
a1b2 is the new edge, it can be combined with
the existing edges to form the perfect matching
denoted by the dashed purple lines.

Figure 5 An example of a bipartite graph with a spanning cycle.

We now introduce the terminology “special subset” to indicate that we are working with
a subset of endpoints of some edges in a perfect matching.

▶ Definition 8 (Special Subset). Let G be a connected bipartite graph with a perfect matching
M = {a1b1,a2b2, . . . ,anbn}. Consider: S = {ai1 ,bi1 ,ai2 ,bi2 , . . . ,aik ,bik } for some distinct
i1, i2, . . . , ik ∈ [n] and 2 ⩽ k ⩽ n. Then S is said to be a special subset of V(G).

A “special induced subgraph” is a subgraph induced by a special subset.

▶ Definition 9 (Special Induced Subgraph). Let G be a connected bipartite graph with a
perfect matching and S be a special subset of V(G). The subgraph G[S] induced by S is called
a special induced subgraph of G.

We now note that edges allowed in special induced subgraphs of a graph G are also
allowed in G.

▶ Proposition 10 (Allowed Edge). Let G be a connected bipartite graph with a perfect matching
M. Let S be a special subset of G and H = G[S] be the corresponding special induced subgraph.
An edge which is allowed in H is also allowed in G.

Proof. If S = V(G), we are done. Otherwise without loss of generality, let S be the set
{a1,b1,a2,b2, . . . ,ak,bk}. Consider an edge aibj which is allowed in H for some i, j ∈ [k].
Consider the matching MH which is a perfect matching of H containing aibj. Consider
M ′ = MH ∪ {ai+1bi+1, . . . ,akbk}. Clearly M ′ is a perfect matching of G containing aibj.
Thus, aibj is allowed in G. ◀

We now turn to a key definition: one of “contracting” a special elementary subset to a
single edge. We refer the reader to Figure 6 for an example of an application of this operation.

▶ Definition 11 (Matching Contraction Graph). Consider a connected bipartite graph G with
bipartition A and B and a perfect matching M. Let S and H = G[S] be a special subset of
V(G) and the corresponding special induced subgraph of G. If H is elementary, replace A ∩ S

by a new vertex α and B∩ S by a new vertex β in G. Add an edge αβ in the new graph. For
an edge ab where a ∈ A\S and b ∈ S, add an edge aβ to the new graph. Similarly for an
edge ab where a ∈ S and b ∈ B\S, add an edge αb to the new graph. Keep all the other edges
and vertices of G unchanged. If there are any parallel edges, replace them by a single edge.
The new graph GS thus obtained is called the matching contraction graph of G w.r.t. S

and the procedure of obtaining a matching contraction graph is called as contraction.
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(a) A graph G with special elementary subset S =
{a1,b1,a2,b2,a3,b3}.

a3

a4

a5

a6

a7

b3

b4

b5

b6

b7

(b) The matching contraction graph of G w.r.t.
S.

Figure 6 Demonstrating the operation of contracting a special elementary subset to a single edge.
For a more elaborate example involving a sequence of contractions, see Figure 12.

Note that if G is a connected bipartite graph and S is a special subset, then the matching
contraction graph GS is also connected and bipartite.

It can be seen that if the special subset S has size 2k, then the matching contraction
graph has 2(n− k+ 1) vertices, a perfect matching of size n− k+ 1 and thus a minimum
vertex cover of size n− k+ 1.

▶ Definition 12 (Special elementary subset). Let G be a connected bipartite graph with a perfect
matching. A special subset S such that G[S] is elementary is called a special elementary
subset.

We consider a series of contractions over a graph G. Each time we contract a special
elementary subset S of G. We rename each vertex in the new graph as the largest indexed
vertex in the original graph. We associate a label with each vertex, which carries the names
of the vertices of the original graph that were contracted to this new vertex. We keep on
repeating this procedure until we reach a graph which cannot be contracted further. We
denote this graph by GS̄. We fix a perfect matching M in G and in each contracted graph,
we get a matching given by M \ E(G[S]) ∪ {αβ} where α and β denote the newly obtained
vertices on the A and B side respectively. Whenever we say “matched partner” or “matching
edge” in the new graph, unless mentioned otherwise, we will be referring to this matching.

▶ Lemma 13 (Matching Contraction Graph Property). Suppose that G is a connected bipartite
graph with a perfect matching M. Then, if G is Spartan, then GS̄ is Spartan.

Proof. If GS̄ is a single edge, then G was elementary to begin with, as each expansion
preserves the “elementary-ness” by Lemma 15. And since a single edge is Spartan, GS̄ is
Spartan in this case.
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Consider the case where GS̄ is not a single edge. Now by Proposition 18, GS̄ must have a
degree-1 vertex. Without loss of generality, we assume that this degree-1 vertex is on the B

side and let us denote this vertex by β1 and its matched partner by α1. Also, note that GS̄

is not Spartan by Proposition 5. We show that G was also not Spartan in this case.
Let B1 be the set of vertices in G in the label of β1, i.e, which were contracted to get

β1 and similarly A1 be the set of vertices in A which were contracted to get α1 and let
|A1| = |B1| = k. Note that this contraction may not have happened in one step, but over
a series of steps. Notice that G \ {A1 ∪ B1} is non-empty, as GS̄ is not a single edge. Note
that no vertex in B1 can be adjacent to a vertex in A \A1. Suppose some vertex b ∈ B1 is
adjacent to a vertex a ∈ A \A1, this will result in an edge aβ1 in GS̄ which contradicts the
fact that β1 is a degree-1 vertex. Also, we know that after a series of contractions, G[A1 ∪B1]

got contracted to a single edge. By Lemma 15, G[A1 ∪ B1] is elementary. Therefore, any
minimum sized vertex cover of G will contain all the k vertices of A1 and no vertex from B1
or all the k vertices of B1 and no vertex from A1. Now consider any initial configuration of
guards on G with n guards. As seen above, either all the vertices of B1 have guards or all
the vertices of A1 have guards and only one of these can happen. If all the vertices of A1
are occupied by guards, the attacker attacks a matched edge aibi such that ai ∈ A1. The
guard on ai is forced to move to bi and cannot move any further. If all the guards cannot
reconfigure to form a vertex cover, then G is not Spartan and hence we are done. Otherwise,
all the guards must reconfigure in such a way that all the vertices in B1 have guards and all
the vertices in A1 do not have guards. Thus without loss of generality, we can assume that
all the vertices in B1 have guards and all the vertices in A1 do not have guards.

Now recall that no vertex in B1 has a neighbour in A \A1. Since G is connected, there
exists ap ∈ A1 and bq ∈ B \B1 such that apbq ∈ E(G). Since ap does not have a guard, bq

must have a guard as the guards are occupying a vertex cover. Now suppose the attacker
attacks the edge apbq, the guard on bq must move to ap. Since all the vertices in B1 have
guards but none of them has a neighbour in A \A1 and no vertex in A1 had a guard before
this guard just moved to ap, now no guard can move from {A1 ∪ B1} to V(G) \ A1. Thus
there will be k + 1 guards on k matching edges in G[A1 ∪ B1]. Therefore, some edge in
G[V(G) \ {A1 ∪ B1}] will be vulnerable and can be attacked in the next move. Hence, G is
not Spartan. ◀

▶ Remark. We have actually shown that any bipartite graph G which is not “essentially
elementary” can be destroyed by the attacker in at most three moves when the defender has
mvc(G) many guards.

▶ Definition 14 (Maximal Contraction Graph). Let G be a connected bipartite graph with a
perfect matching and there does not exist any special elementary subset S of V(G). Then G

is said to be a maximal contraction graph.

Note that by definition the size of a special subset is always more than 2 and hence if
|V(G)| = 2, i.e., G is a single edge, then G is a maximal contraction graph as G has no special
subset and hence no special elementary subset. Note that the sequence of contractions above
ends in a maximal contraction graph that is in fact an edge.

▶ Lemma 15 (Maximal Contraction Graph). Let G be a connected bipartite graph with a perfect
matching M. Let S be a special elementary subset of V(G) and GS be the corresponding
matching contraction graph. Then, if GS is elementary, then G is also elementary.



N. Misra and S. G. Nanoti 68:11

Proof. Let G = (A ∪ B,E). To show that G is elementary, we show that A and B are the
only optimal vertex covers of G. We assume that the edges of the perfect matching in G are
{a1b1,a2b2, · · · ,anbn} and that the special subset S is induced by the vertices based on the
edges {a1b1, · · · ,akbk}. Let α and β denote the endpoints of the edge in GS created by the
contraction of S. Finally, let (A′,B′) denote the partition of GS.

Note that G[S] is assumed to be elementary. If X is an optimal vertex cover for G, then
X ∩ S is a vertex cover for G[S] of size k, since G \ S has a matching of size (n− k). Observe
that:

either X ∩A = {a1, · · · ,ak} and X ∩ B = ∅, or
X ∩A = ∅ and X ∩ B = {b1, · · · ,bk},

because any other subset of k vertices that forms a valid vertex cover for G[S] would contradict
the assumption that G[S] is elementary.

Now assume that G has a vertex cover X such that X ̸= A and X ̸= B. Without loss of
generality, assume that X ∩A = {a1, · · · ,ak} (the argument for the other case is symmetric).
We let XA := X ∩ {ak+1, · · · ,an} and XB = X ∩ {bk+1, · · · ,bn}. Note that XB ̸= ∅ because
X ̸= A.

We now claim that X′ := XA ∪ XB ∪ {α} is an optimal vertex cover in GS that is different
from both A′ and B′. It is clear that |X′| = (n − k + 1), thus the size of X′ is mvc(GS).
Further, since α ∈ A′ and XB ̸= ∅, X′ ̸= A′ and X′ ̸= B′. It remains to be shown that X′

covers all edges in GS.
Note that if any edge aibj in GS[{ak+1, · · · ,an} ∪ {bk+1, · · · ,bn}] is not covered by X′,

then the aibj is also not covered by X in G. All edges incident on α are also covered. Now
suppose an edge of the form βaℓ is not covered by X′ for some ℓ ∈ {ak+1, · · · ,an}. Note that
for this edge to be present in GS, by the definition of the contraction operation, there must
have been an edge of the form biaℓ, for some i ∈ [k]. Note that if βaℓ is not covered by X′

then biaℓ is not covered by X in G either, which contradicts our assumption that X was a
vertex cover in G.

This shows that GS has an optimal vertex cover different from both A′ and B′, but this
contradicts our assumption that GS was elementary to begin with. Therefore it must be the
case that G is also elementary. ◀

▶ Definition 16 (Alternating cycle). Let G be a connected bipartite graph with no de-
gree 1 vertex and a perfect matching M = {a1b1,a2b2, . . .anbn}. We define a cycle
ai1bi1ai2bi2 . . .bikaikai1 in G as an alternating cycle where i1, i2, . . . , ik ∈ [n] and
2 ⩽ k ⩽ n.

▶ Proposition 17 (No alternating cycle). Let G be a maximal contraction graph. Then G

cannot contain any alternating cycle.

Proof. Let G be a maximal contraction graph. It is clear that G is a connected bipartite
graph with a perfect matching. Let M = {a1b1,a2b2, . . . ,anbn} be a perfect matching of G.
If n = 1, G cannot contain any cycle and hence cannot contain any alternating cycle. Let
n ⩾ 2 and let C = ai1bi1ai2bi2 . . .bikaikai1 be an alternating cycle in G. Let S = V(C).
Clearly S is a special subset of V(G) and by Proposition 7 and Proposition 10, S is a special
elementary subset of V(G). This contradicts the fact that G is a maximal contraction graph.
Thus G cannot have an alternating cycle. ◀

▶ Proposition 18 (Structure of the Maximal Contraction). Let G be a maximal contraction
graph. Then G must have a degree 1 vertex.
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Proof. Let G be a maximal contraction graph. It is clear that G is a connected bipartite
graph with a perfect matching. Let M = {a1b1,a2b2, . . . ,anbn} be a perfect matching of
G. If n = 1, then G is a single edge and thus G has a degree 1 vertex. Now let n ⩾ 2 and
assume that G has no degree 1 vertices. Consider the set S = {a1,b1}. Since b1 is not a
degree 1 vertex, we are done. So there exits ai1 ̸= a1 which is a neighbor of b1. Add ai1

and bi1 to S. Now for each bip for p = 1, 2, . . ., there exists ap+1 which is a neighbor of bip

because G has no degree 1 vertex or alternating cycle. Add ap+1 and bp+1 to S. Thus S

will be an infinite set. But S ⊂ V(G) which is finite. Hence we have a contradiction. Thus G

must have a degree 1 vertex. ◀

To sum up the proof of Lemma 3: consider any connected bipartite graph G. First we
have shown that if G is Spartan, it must have a perfect matching and no degree one vertices.
Therefore, a maximal contraction graph derived from G must be an edge. But note that
an edge is elementary, and running the contractions in reverse to recover G preserves the
property of the graph being elementary, and we have the desired conclusion. We remark that
our proof shows that every connected bipartite graph with a Hamiltnonian cycle is Spartan.
However, it turns out that the converse is not true in the sense that there exist connected
bipartite graphs that are Spartan but do not have Hamiltonian cycles: for instance, Figure 7
presents an example of a connected bipartite Spartan graph that is not Hamiltonian.

b1

a2

b2

a3b3

a1

b4

a4

Figure 7 An example of an elementary bipartite graph where the two independent sets are A =

{a1,a2,a3,a4} and B = {b1,b2,b3,b4} and all the edges belong to one of the three perfect matchings:
M1 = {a1b1,a2b2,a3b3,a4b4},M2 = {a1b3,a3b2,a2b1,a4b4} or M3 = {a1b1,a2b4,a4b3,a3b2}. It
can be verified that this graph does not have a Hamiltonian cycle.

3 EVC with Extra Steps

Almost all of the proofs in the previous sections rely crucially on the fact that a guard can
only move one step after each attack. This gives rise to the question that what happens if
multiple moves are allowed? If retracing of steps is allowed, then any guard can clean up
an attack and come back to their original position. Thus this problem will the same as the
vertex cover problem and hence it is not so interesting.

We define a variant of the Eternal Vertex Cover problem that we call New Eternal
Vertex Cover. Again we have a two player game with one player as “the attacker” and
the other player as “the defender”. Just like the Eternal Vertex Cover problem, the
defender initially places the guards on some of the vertices of the graph (of his choice). The
attacker attacks an edge. In response to the attack, the defender can move each guards for at
most two steps without retracing. The constraint is however that the defense of the attacked
edge must happen in the first move itself, i.e., after the attack, at least one guard who was
present on one of the endpoints of the graph must move across the attacked edge. If such a
movement is not possible after a finite sequence of attacks, the attacker wins; otherwise, if
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the defender has a strategy to defend the graph G against an infinite sequence of attacks,
the defender wins. There can only be one guard per vertex in the configuration before the
attack and the configuration after the attack is defended. However, more than one guard
can cross a vertex during the reconfiguration.

We define the New Eternal Vertex Cover Number of a graph G as the smallest number of
guards required in this new setting such that the defender has a winning strategy. We denote
this number by nevc(G). It is clear that since the defense must happen in the first step of
a guard, if the vertices occupied by guards do not form a vertex cover, the attacker wins.
Therefore, we have mvc(G) ⩽ nevc(G) for any graph G. Also, since evc(G) many guards
can defend an infinite sequence of attacks on a graph G with each guard moving just one
step after each attack, it can be seen that for any graph G, we have nevc(G) ⩽ evc(G).

▶ Remark. These two inequalities imply that for any Spartan graph G, we have mvc(G) =

nevc(G) = evc(G). However, there are graph classes where these inequalities are not strict.

We show that computing the New Eternal Vertex Cover number for a given graph G is
NP-hard in the next lemma. We use a reduction from the Vertex Cover problem. Given
an input instance (G, k) (where |V(G)| = n and k < n − 1) of the Vertex Cover problem,
we construct an equivalent instance of the New Eternal Vertex Cover problem by adding a
global vertex ⋆ to the graph G, i.e., make the new vertex ⋆ adjacent to every other vertex in
G. It turns out that G has a vertex cover of size k if and only if the defender has a winning
strategy in the new setting using k+ 1 guards. The proof of equivalence is deferred to the
full version due to lack of space.

▶ Lemma 19 (⋆). The New Eternal Vertex Cover problem is NP-hard.

▶ Lemma 20. For any connected graph G, the defender has a winning strategy using
mvc(G) + 1 guards, i.e., nevc(G) ⩽ mvc(G) + 1 for any graph G.

Proof. For any graph G, we give a winning strategy for the defender in the new setting
using mvc(G) + 1 guards.

Let mvc(G) = k and let C1,C2, . . . ,Cq be the connected components of the subgraph
induced by the vertices of a k-sized vertex cover of G. Place one guard on each of these
vertices of this vertex cover (say S) and one guard in the independent set (say on the
vertex w).

Now suppose some edge is attacked such that both its endpoints have guards, then the
guards can exchange places and the configuration is restored.

Suppose some edge uv is attacked such that u ∈ S and v ∈ V(G) \ S. Then the guard
on u moves to v. Suppose w is adjacent to some vertex which lies in the same connected
component of S as w, then the guards can each move one step along a path from w to u such
that there is a guard on u and all the vertices of S at the end of this movement and now no
guard on w. But we still have all the vertices of S with one guard each and one guard in the
independent set (now on v). Thus we have a configuration just like the initial configuration
and each strategy can be implemented here accordingly.

Suppose u and any neighbour of w do not lie in the same connected component of S. As
G is connected, there is a path from w to u in G and this path contains some vertices of
V(G) \ S. Let this path be w = u1u2 . . .uℓ = u. We trigger a movement of guards along
this path as follows: If uℓ−1 has a guard, this guard moves to u, otherwise uℓ−2 must have a
guard because S is a vertex cover. This guard moves to uℓ−1 and then to u. Similarly for
each ui ∈ S where i ∈ {ℓ− 2, ℓ− 3, . . . , 2}, if ui−1 has a guard, the guard on ui−1 moves to
ui. Otherwise ui−2 must have a guard (because S is a vertex cover) which moves to ui−1
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and then to ui. It can be observed that at the end of this movement, all vertices in S have a
guard and v has a guard and w does not have a guard. Therefore, we have the same situation
as before where all the vertices in the vertex cover have a guard and one guard outside the
vertex cover. Thus we have shown that mvc(G) + 1 many guards are sufficient to defend G

against any sequence of attacks in this new setting. ◀

▶ Lemma 21. If G is any graph without a degree-1 vertex, then nevc(G) = mvc(G).

Proof. It is sufficient to show that nevc(G) ⩽ mvc(G), i.e., the defender has a winning
strategy using mvc(G) many guards. Also it is sufficient to only look at connected graphs.

Let mvc(G) = k and let S be a minimum sized vertex cover of G. The defender places
one guard on each vertex of S. If any edge with both endpoints in S is attacked, then the
guards exchange their positions and we are back to the same configuration.

Suppose any edge uv such that u ∈ S and v /∈ S is attacked. The guard on u moves to
v. Since v is not a degree 1 vertex, it must have a neighbour w other than u. Depending
on whether w and u lie in the same connected component in G[S] or not, we can trigger a
movement of guards just like the proof of Lemma 20 such that each guard moves at most
two steps and there is no guard on v at the end of this movement and there is a guard on
u. Thus the vertex cover S is restored and we have a winning strategy using mvc(G) many
guards. ◀

▶ Lemma 22. For any graph G, nevc(G) = mvc(G) if and only if for each degree-1 vertex
v of G, there exists a minimum sized vertex cover Sv of G which contains v.

Proof. Let G be a graph such that mvc(G) = k and there exists a degree-1 vertex v such
that no k−sized vertex cover of G contains v. Let u be the neighbour of v, then any minimum
sized vertex cover of G must contain u. Therefore, in the initial configuration there must
be a guard on u and no guard on v. If the attacker attacks the edge uv, then the defender
must move the guard on u to v. Since v has no other neighbour than u and retracing is not
allowed, the guard on v cannot move anywhere else. Now since there is no vertex cover of
size k which contains v, the guards cannot reconfigure to form a vertex cover, no matter how
the other guards arrange themselves. Thus mvc(G) many guards are not sufficient to protect
G and thus nevc(G) ̸= mvc(G).

Now suppose that for every degree-1 vertex v of G, there exists a minimum sized vertex
cover Sv of G which contains v. Let the size of the minimum sized vertex cover of G be k.
We now describe a strategy to defend an attack on G with k guards. Place each guard on a
vertex of a minimum sized vertex cover (say S) of G. Without loss of generality, we assume
that some edge uv such that u ∈ S and v /∈ S is attacked. The guard on u is forced to move
to v. If v is a vertex with degree 2 or more, then we mimic the strategy in Lemma 20 to get
all the guards back on S. If v is a degree-1 vertex, we show that it is possible to transfer the
guards from S to Sv (where Sv is the minimum sized vertex cover containing v).

Denote S∩ Sv by P and (V(G) \ S∩ Sv) \ {v} by Q. Here P are the vertices which need to
retain a guard and Q are the vertices which need to gain a guard in order to reconfigure
from S to Sv. Let |P| = p and |Q| = q. Clearly p+ q+ 1 = k, i.e., k− p = q+ 1. Therefore
|S \ P| = |Q ∪ {v}|. We show that there is a perfect matching between these two sets. Notice
that there cannot be an edge with both endpoints in S \ P because these vertices are not in
Sv and Sv is a vertex cover. Suppose there is no perfect matching between S \ P and Q ∪ {v},
then there exists a set A ∈ S \ P such that |N(A) ∩ (Q ∪ {v})| < |A|. But this is not possible
as (S \ P) \ A ∪ N(A) will be a vertex cover of G of size less than k. Thus there exists a
perfect matching between S \P and Q∪ {v} which can be used to reconfigure the guards from
S to Sv. ◀
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▶ Corollary 23 (⋆). There exists a polynomial time algorithm for finding the New Eternal
Vertex Cover number on bipartite graphs.

Note that if we allow the guards to move for an arbitrary number of steps without
retracing after each attack, Lemma 22 still holds, i.e., there are families of graphs (for
instance, star graphs) such that even allowing the guards to move for an arbitrary number of
steps does not make them “Spartan” in the new setting. Thus the power of one extra step
subsumes the power of any number of additional steps.

4 Concluding Remarks

We showed that a natural sufficient condition for when a graph is Spartan (i.e, when
evc(G) = mvc(G)) is also necessary in the context of bipartite graphs. Motivated by our
proof we extend the notion of eternal vertex cover to a variant where the guards are allowed
to move more than one step on their turn, and completely characterize the number of guards
needed in terms of mvc: indeed, we show that one extra guard suffices, and is needed only if
the graph has a degree one vertex that is not contained in any minimum vertex cover.

It would be interesting to see what happens if the defense can happen in the second
step of a guard. We also showed that while the new variant remains computationally hard,
unlike the original problem, it is in fact solvable in polynomial time on bipartite graphs.
Generalizing our structural results beyond bipartite graphs is an interesting direction for
future work.
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1 Introduction

Since the satisfiability problem of first-order logic is undecidable [8, 30] in general, (un-)
decidable classes of first-order logic are widely studied [7]; for example, the undecidability
holds even for the Kahr–Moore–Wang (KMW) class1 [∀∃∀, (0, ω)] [14], but it is decidable for
the Bernays–Schönfinkel–Ramsey (BSR) class [∃∗∀∗, all]= [3, 27]. The calculus of relations
(CoR) [28], revived by Tarski, is an algebraic system on binary relations; its expressive
power is equivalent to that of the three-variable fragment of first-order logic with equality
[28, 29], w.r.t. binary relations. The equational theory of CoR is undecidable [28, 29]2 in
general, which follows from the undecidability of the KMW class, but, for example, it is
decidable for the (existential) positive fragment [2, 26] and the existential fragment [22] of
CoR, which follows from the decidability of the BSR class. On the undecidability of CoR,
the undecidability holds even for the 1-variable fragment [16] and even for the 1-variable
fragment only with union, composition, and complement [19], where the k-variable fragment
denotes the set of terms having at most k variables.

1 Recall the notation for prefix-vocabulary classes [7, Def. 1.3.1]. E.g., [∀∃∀, (0, ω)] denotes the set of
prenex sentences φ of first-order logic without equality, function symbols, nor constants such that the
quantifier prenex of φ is ∀∃∀; φ has ω (countably infinitely many) binary relation symbols and φ does
not have 1- nor i-ary relation symbols for i ≥ 3.

2 In [29], the undecidability of the equational theory is shown for more general classes of relation algebras.
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69:2 On the Finite Variable-Occurrence Fragment of the Calculus of Relations

Then, from the undecidability result for the 1-variable fragment of CoR [16, 19] above,
the following natural question arises – Is it decidable for the k-variable-occurrence fragment
of CoR? Here, the k-variable-occurrence fragment denotes the set of terms having at most k

occurrences of variables. For example, when a, b are variables and I is a constant, the term
(a · b) · (I · (a · b)) has 4 occurrences of variables and 1 occurrence of constants; thus, this
term is in the 4-variable-occurrence fragment (cf. the term is in the 2-variable fragment since
the variables a, b occur). While one may seem that this restriction immediately implies the
decidability, the equational theory of the k-variable-occurrence fragment on some (single)
algebra is undecidable in general even when k = 0 (Remark 2).

Our contribution is to prove that the equational theory of the k-variable-occurrence
fragment is decidable for CoR with bounded dot-dagger alternation, where the dot-dagger
alternation [20, 21] is an analogy of the quantifier alternation in first-order logic. Note that
the equational theory of the k-variable fragment is undecidable in general for CoR [16, 19]
(even with bounded dot-dagger alternation (Prop. 24)).

Our strategy is to prove that the number of terms in the k-variable-occurrence fragment is
finite up to the semantic equivalence relation. To this end, (1) we decompose terms as much
as possible; and then (2) we show that each decomposed part is finite up to the semantic
equivalence relation by collecting valid equations. By the preprocessing of (1), one can see
that for (2), essentially, it suffices to prove the finiteness of some monoid (using the method
of Sect. 2). Its finiteness is not clear, as it is undecidable whether a (finitely presented)
monoid is finite in general; but, fortunately, we can prove the finiteness (Thm. 25) by finding
valid equations (Fig. 1).

The rest of this paper is structured as follows. Sect. 2 introduces the k-variable-occurrence
fragment for general algebras and gives a framework to prove the decidability from the
finiteness of a monoid. Sect. 3 recalls the syntax and semantics of CoR and the dot-dagger
alternation hierarchy. In Sect. 4, based on Sect. 2, we prove that the equational theory of
CoR with bounded dot-dagger alternation is decidable. Sect. 5 concludes this paper.

We write N for the set of all non-negative integers. For l, r ∈ N, we write [l, r] for the
set {i ∈ N | l ≤ i ≤ r}. For a set A, we write # A for the cardinality of A and ℘ (A) for
the power set of A. For a set A and an equivalence relation ∼ on A, we write A/∼ for the
quotient set of A by ∼ and [a]∼ for the equivalence class of an element a ∈ A on ∼.

2 On the k-variable-occurrence fragment

We fix Σ as a non-empty finite set of variables. We fix S as a finite algebraic signature;
S is a map from a finite domain (of functions) to N. For each ⟨f, n⟩ ∈ S, we write f (n);
it is the function symbol f with arity n. We also let S(n) =∆ {f (m) ∈ S | m = n}. The
set T of S-terms over Σ is defined as the minimal set closed under the following two rules:
a ∈ Σ =⇒ a ∈ T; (f (n) ∈ S and t1, . . . , tn ∈ T) =⇒ f(t1, . . . , tn) ∈ T.

An S-algebra A is a tuple ⟨|A|, {fA}f(n)∈S⟩, where |A| is a non-empty finite set and
fA : |A|n → |A| is an n-ary map for each f (n) ∈ S. A valuation v : Σ → |A| on an S-
algebra A is a map; we write v̂ : T → |A| for the unique homomorphism extending v.
For a class C of S-algebras, the equivalence relation ∼C on T is defined by: t ∼C s ⇐⇒∆

v̂(t) = v̂(s) for all valuations v on all algebras in C. For a set T ⊆ T, the equational theory
of T over C is the set {⟨t, s⟩ ∈ T 2 | t∼ C s}.
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▶ Definition 1 (k-variable-occurrence fragment). For an S-term t, let vo (t) be the number

of occurrences of variables in t: vo (t) =∆
{

1 (t ∈ Σ)∑n
i=1 vo (ti) (t = f(t1, . . . , tn))

. For each set

T of S-terms, the k-variable-occurrence fragment T(vo ≤k) is the set {t ∈ T | vo (t) ≤ k}.
(Similarly, let T(vo =k) =∆ {t ∈ T | vo (t) = k}.) Clearly, T =

⋃
k∈N T(vo ≤k).

▶ Remark 2. The equational theory of the k-variable-occurrence fragment is undecidable
in general, even when k = 0. It follows from the reduction from the word problem for
monoids. Let M = ⟨|M |, ◦M , IM ⟩ be a (finitely) presented monoid with finite generators
C = {c1, . . . , cl} such that the word problem for M is undecidable (by Markov [17] and
Post [25]). We define S =∆ {c(1)

1 , . . . , c
(1)
l }∪{I(0)} and the S-algebra A =∆ ⟨|A|, {fA}f(n)∈S⟩ by:

|A| = |M |; cA
i (x) = ci ◦M x for i ∈ [1, l]; IA = IM . By definition, for all two words a1 . . . an,

b1 . . . bm over C: they are equivalent in M iff a1(a2(. . . an(I) . . . ))∼ {A} b1(b2(. . . bm(I) . . . )).

In the rest of this section, we fix C as a class of S-algebras.

2.1 On the finiteness of k-variable-occurrence fragment: from 1 to k

How can we show the decidability of the equational theory of the k-variable-occurrence
fragment? We consider proving it from the finiteness up to the semantic equivalence relation:

▶ Proposition 3 (Cor. of [5, 15] for the complexity). Let T ⊆ T be a subterm-closed 3 set.
If the set T/∼ C is finite, the equational theory of T over C is decidable. Moreover, it is
decidable in DLOGTIME-uniform NC1 if the input is given as a well-bracketed string.

Proof Sketch. Because C is fixed and T/∼ C is finite, for each t ∈ T , one can calculate the
index of the equivalence class of t on ∼ C by using the (finite and possibly partial) Cayley
table of each operator; thus, the equational theory is decidable. Moreover, according to
this algorithm, if the input is given as a well-bracketed string, one can also construct a
parenthesis context-free grammar such that for all t, s ∈ T , the well-bracketed string encoding
the equation t = s is in the language iff t ∼ C s. Hence, the complexity is shown because
every language recognized by a parenthesis context-free grammar is in ALOGTIME [5, 6]
(ALOGTIME is equivalent to DLOGTIME-uniform NC1 [18]). ◀

For the k-variable-occurrence fragment, the finiteness of T(vo ≤1) (with Prop. 3) can imply
the decidability of the equational theory of T(vo ≤k) (Lem. 6) by the following decomposition
lemma. Here, we write t[s/a] for the term t in which each a has been replaced with s.

▶ Lemma 4. Let T ⊆ T be a subterm-closed set. Let k ≥ 2, a ∈ Σ. Then, for all t ∈ T(vo =k),
there are t0 ∈ T(vo ≤1), f (n) ∈ S, t1, . . . , tn ∈ T(vo ≤k−1) such that t = t0[f(t1, . . . , tn)/a].

Proof. By induction on t. Since k ≥ 2, there are g(m) ∈ S, s1, . . . , sm ∈ T s.t. t =
g(s1, . . . , sm) and

∑m
i=1 vo (si) = k. Case vo (si) ≤ k − 1 for all i: By letting t0 =∆ a, we

have t = t0[g(s1, . . . , sm)/a]. Otherwise: Let i be s.t. vo (si) = k. Since si ∈ T(vo =k), let
u ∈ T(vo ≤1), f (n) ∈ S, t1, . . . , tn ∈ T(vo ≤k−1) be the ones obtained by IH w.r.t. si, so that
si = u[f(t1, . . . , tn)/a]. By letting t0 =∆ g(s1, . . . , si−1, u, si+1, . . . , sm), we have:

3 A set T ⊆ T is subterm-closed if for every t ∈ T , if s a subterm of t, then s ∈ T .

MFCS 2023



69:4 On the Finite Variable-Occurrence Fragment of the Calculus of Relations

t0[f(t1, . . . , tn)/a] = g(s1, . . . , si−1, u, si+1, . . . , sm)[f(t1, . . . , tn)/a]
= g(s1, . . . , si−1, u[f(t1, . . . , tn)/a], si+1, . . . , sm) (vo (sj) = 0 if j ̸= i)
= g(s1, . . . , si−1, si, si+1, . . . , sm) = t. (si = u[f(t1, . . . , tn)/a])

Hence, this completes the proof. ◀

▶ Example 5 (of Lem. 4). If S = {◦(2), I(0)} and a, b, c ∈ Σ, the term t = I ◦ ((a ◦ (b ◦ c)) ◦ I) ∈
T(vo ≤3) has the following decomposition: t = (I◦(a◦ I))[a◦(b◦c)/a]. Then I◦(a◦ I) ∈ T(vo ≤1)
and a, (b ◦ c) ∈ T(vo ≤2). The following is an illustration of the decomposition, where the
number written in each subterm s denotes vo (s):

◦

I ◦

◦

a ◦

b c

I

3

0 3

3

1 2

1 1

0 =


◦

I ◦

a I

1




◦

a ◦

b c

1 2 / a

 .

Using this decomposition iteratively, we have the following:

▶ Lemma 6. Let T ⊆ T be a subterm-closed set. Assume that T(vo ≤1)/∼ C is finite. Then,
for each k ∈ N, the set T(vo ≤k)/∼ C is finite.

Proof. It suffices to prove: for all k ≥ 2, T(vo =k)/∼ C is finite. By induction on k. We have:

# (T(vo =k)/∼ C)

≤ # ({t0[f(t1, . . . , tn)/a] | f (n) ∈ S, t1, . . . , tn ∈ T(vo ≤k−1), t0 ∈ T(vo ≤1)}/∼ C) (Lem. 4)

≤
∑

f(n)∈S

# ({t0[f(t1, . . . , tn)/a] | t1, . . . , tn ∈ T(vo ≤k−1), t0 ∈ T(vo ≤1)}/∼ C).

Then the set {t0[f(t1, . . . , tn)/a] | t1, . . . , tn ∈ T(vo ≤k−1), t0 ∈ T(vo ≤1)}/∼ C is finite because
T(vo ≤k−1)/∼ C is finite (by IH) and ∼ C satisfies the congruence law. Thus, the last term
above is finite since S is finite. Hence T(vo =k)/∼ C is finite. ◀

2.2 The monoid of the 1-variable-occurrence fragment

Thanks to Lem. 6, we can focus on the 1-variable-occurrence fragment. For the 1-variable-
occurrence fragment, it suffices to consider a monoid. For a set A of characters, we write
A∗ for the set of all words (i.e., finite sequences) over the alphabet A. We write wv for the
concatenation of words w and v and write ε for the empty word. We write ∥w∥ for the length
of a word w.

▶ Definition 7. Let Σ̇ be the (possibly infinite) set of characters defined by:

Σ̇ =∆
⋃

f(n)∈S,i∈[1,n]

{f(t1, . . . , ti−1, _, ti+1, . . . , tn) | ∀j ∈ [1, n] \ {i}, tj ∈ T(vo ≤0)}.

(_ denotes “blank”.) For a word w ∈ Σ̇∗ and a term t ∈ T, let w[t] be the term defied by:

w[t] =∆
{

f(t1, . . . , ti−1, w′[t], ti+1, . . . , tn) (w = f(t1, . . . , ti−1, _, ti+1, . . . , tn)w′)
t (w = ε)

.
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▶ Example 8 (of Def. 7). If S = {◦(2), I(0)}, then Σ̇ = {(I ◦ _), ((I ◦ I) ◦ _), . . . (_ ◦ I), . . .}.
For example, if w = ((I ◦ I) ◦_)(_ ◦ I)(I ◦_), we have:

w[a] = (((I ◦ I) ◦_)(_ ◦ I)(I ◦_)[a]) = (I ◦ I) ◦ ((_ ◦ I)(I ◦_)[a])
= (I ◦ I) ◦ (((I ◦_)[a]) ◦ I)
= (I ◦ I) ◦ ((I ◦ ε[a]) ◦ I) = (I ◦ I) ◦ ((I ◦ a) ◦ I).

▶ Proposition 9. For all t ∈ T(vo ≤1), there are w ∈ Σ̇∗ and s ∈ S(0) ∪ Σ s.t. t = w[s].

Proof. By easy induction on t. ◀

▶ Definition 10. Let ∼̇C be the equivalence relation on Σ̇∗ defined by:

w ∼̇C v ⇐⇒∆ w[a]∼ C v[a] where a ∈ Σ is any variable.

▶ Lemma 11. If Σ̇∗/∼̇C is finite, then T(vo ≤1)/∼ C is finite.

Proof. By Prop. 9 (and that the set S(0) ∪ Σ is finite). ◀

Moreover, if T(vo ≤0)/∼ C is finite, it suffices to consider a finite subset of Σ̇, as follows:

▶ Lemma 12. Assume that T(vo ≤0)/∼ C is finite. Let T0 = {t1, . . . , tn} ⊆ T(vo ≤0) be such
that T(vo ≤0)/∼ C = {[t1]∼C , . . . , [tn]∼C}. Let Σ̇0 ⊆ Σ̇ be the finite set defined by:

Σ̇0 =∆
⋃

f(n)∈S,i∈[1,n]

{f(t1, . . . , ti−1, _, ti+1, . . . , tn) | ∀j ∈ [1, n] \ {i}, tj ∈ T0}.

Then Σ̇∗
0/∼̇C is finite =⇒ Σ̇∗/∼̇C is finite.

Proof. For every a ∈ Σ̇, there is b ∈ Σ̇0 s.t. a ∼̇C b. By the congruence law of ∼̇C , for every
w ∈ Σ̇∗, there is some v ∈ Σ̇∗

0 s.t. v ∼̇C w. Since Σ̇∗/∼̇C is finite, this completes the proof. ◀

▶ Example 13 (of Lem. 12). If S = {◦(2), I(0)} (so, Σ̇ = {(I◦_), ((I◦I)◦_), . . . (_◦I), . . .}) and C
is the class of all monoids, we have: T(vo ≤0)/∼ C = {[I]∼C}. Thus the set Σ̇0 = {(I◦_), (_◦I)}
is sufficient for considering the finiteness of Σ̇∗/∼̇C .

Thus, to prove the finiteness of T(vo ≤k)/∼ C , it suffices to prove that both T(vo ≤0)/∼ C and
Σ̇∗

0/∼̇C are finite:

▶ Lemma 14. If T(vo ≤0)/∼ C and Σ̇∗
0/∼̇C are finite, then for each k ∈ N, the set T(vo ≤k)/∼ C

is finite (hence, the equational theory of T(vo ≤k) over C is decidable).

Proof. We have: T(vo ≤0)/∼ C and Σ̇∗
0/∼̇C are finite =⇒ Σ̇∗/∼̇C is finite (by Lem. 12) =⇒

T(vo ≤1)/∼ C is finite (by Lem. 11) =⇒ T(vo ≤k)/∼ C is finite (by Lem. 6). (The decidability
is obtained from Prop. 3.) ◀

MFCS 2023



69:6 On the Finite Variable-Occurrence Fragment of the Calculus of Relations

2.3 Finiteness from finding equations

For languages L, K, we write LK for the concatenation of L and K: LK = {wv | w ∈ L, v ∈
K}. For words wi (i ∈ I), we write

⋃
i∈I wi for the language {wi | i ∈ I}.

For the finiteness of Σ̇∗
0/∼̇C , we consider finding equations {⟨wi, vi⟩ | i ∈ I} and then

applying the following:

▶ Lemma 15. Let Σ̇0 ⊆ Σ̇ be a finite set. Let (<) ⊆ (Σ̇∗
0)2 be a well-founded relation s.t.

< satisfies the congruence law (i.e., v < v′ =⇒ wvw′ < wv′w′);
< has no infinite antichains.4

Then, the following are equivalent:

1. There is a finite set {⟨wi, vi⟩ | i ∈ I} ⊆ (<) ∩ (∼̇C) such that the language Σ̇∗
0(

⋃
i∈I vi)Σ̇∗

0
over the alphabet Σ̇0 is cofinite.5

2. Σ̇∗
0/∼̇C is finite.

Proof. 1=⇒2: By induction on the well-founded relation <, we prove: For every w ∈ Σ̇∗
0,

there is some v ∈ Σ̇∗
0 \ (Σ̇∗

0(
⋃

i∈I vi)Σ̇∗
0) such that w ∼̇C v. If w ∈ Σ̇∗

0 \ (Σ̇∗
0(

⋃
i∈I vi)Σ̇∗

0),
by letting v = w. Otherwise, since w ∈ Σ̇∗

0(
⋃

i∈I vi)Σ̇∗
0, there are i ∈ I and w′, w′′ ∈ Σ̇∗

0
such that w = w′viw

′′. By w′wiw
′′ < w′viw

′′ (the congruence law of <) and IH, there is
v ∈ Σ̇∗

0 \ (Σ̇∗
0(

⋃
i∈I vi)Σ̇∗

0) s.t. w′wiw
′′ ∼̇C v. We also have w′viw

′′ ∼̇C w′wiw
′′ (by vi ∼̇C wi

with the congruence law of ∼̇C). Thus w′viw
′′ ∼̇C v (by transitivity of ∼̇C).

2=⇒1: Let W =∆
⋃

X∈Σ̇∗
0/∼̇C
{w ∈ X | w is minimal w.r.t. (<) ∩X2}. Let Subw(W ) be

the subword closure of W (i.e., the minimal set W ′ ⊇ W s.t. w′ww′′ ∈ W ′ =⇒ w ∈ W ′).
Let V =∆ (Subw(W )Σ̇0) \ Subw(W ). Then (Σ̇∗

0V Σ̇∗
0) = Σ̇∗

0 \ Subw(W ) holds, as follows. For
⊆: Let w ∈ Σ̇∗

0, v ∈ V , w′ ∈ Σ̇∗
0. If we assume wvw′ ∈ Subw(W ), then v ∈ Subw(W ),

but this contradicts v ∈ V ; thus, wvw′ ̸∈ Subw(W ). For ⊇: By induction on the length
of w ∈ Σ̇∗

0 \ Subw(W ). If w ∈ V , clear. If w ̸∈ V , let w = w′a (note that w ≠ ε,
because ε ∈ Subw(W ) always by that W is not empty). Then, w′ ∈ Σ̇∗

0 \ Subw(W ) (if not,
since w′ ∈ Subw(W ) and w ̸∈ Subw(W ), w ∈ V , reaching a contradiction). Thus by IH,
w′ ∈ Σ̇∗

0V Σ̇∗
0; thus w ∈ Σ̇∗

0V Σ̇∗
0. Hence, we have Σ̇∗

0 \ (Σ̇∗
0V Σ̇∗

0) = Subw(W ). Now, the set W

is finite because Σ̇∗
0/∼̇C is finite and for each X ∈ Σ̇∗

0/∼̇C , the number of minimal elements
w is finite (because < has no infinite antichains); thus Subw(W ) is finite; thus V is finite.
Let V = {v1, . . . , vn}. For every i ∈ [1, n], there is wi ∈W ∩ [vi]∼̇C s.t. wi < vi, because vi is
not minimal w.r.t. (<) ∩ [vi]2∼̇C

. Hence, {⟨wi, vi⟩ | i ∈ [1, n]} is the desired set. ◀

The shortlex order (aka length-lexicographical order) is an example of < in Lem. 15 (because
it is a well-ordering [4, Def. 2.2.3] and it satisfies the congruence raw).

▶ Example 16 (toy example of Lem. 15 (1=⇒2)). Let S = {◦(2), I(0),−(1)} and C be the class
of groups. Let Σ̇0 = {(I ◦_), (_ ◦ I), _−}. Then, we have the following 3 equations:

ε ∼̇C (I ◦_) ε ∼̇C (_ ◦ I) ε ∼̇C (_−)(_−).

(This is because a ∼ C (I ◦ a), a ∼ C (a ◦ I), and a ∼ C (a−)− hold, respectively.) Then, the
language (Σ̇∗

0(
⋃

i∈I vi)Σ̇∗
0) = Σ̇∗

0 \ {ε, _−} is cofinite. Thus, from the 3 equations, we have
that Σ̇∗

0/∼̇C is finite. (Use a shortlex order as < in Lem. 15.)

4 This assumption is used only in the direction of 2=⇒1.
5 A language L over an alphabet A is cofinite if its complemented language A∗ \ L is finite.
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While it is undecidable whether a given (finitely presented) monoid Σ̇∗
0/∼̇C is finite [17] (see

also [4, Thm. 7.3.7 with Def. 7.3.2(b)]) in general (cf. 2 of Lem. 15), it is decidable (in linear
time) whether the language of a given regular expression of the form Σ̇∗

0(
⋃

i∈I vi)Σ̇∗
0 is cofinite

(cf. 1 of Lem. 15):

▶ Proposition 17. The following is decidable in linear time (more precisely, O(n) time on a
random-access machine for n the number of symbols in the given regular expression): Given
a regular expression of the form Σ̇∗

0(
⋃

i∈I vi)Σ̇∗
0 over the alphabet Σ̇0, is its language cofinite?

Proof Sketch. By the Aho-Corasick algorithm, we can construct a deterministic finite
automaton (DFA) from a given regular expression of the form Σ̇∗

0(
⋃

i∈I vi)Σ̇∗
0 in linear time

[1, Sect. 8]. By taking the complemented language of the DFA, it suffices to show that the
following problem is in O(n) time: given a DFA with n states, is its language finite? Then
we can give the following algorithm: From the graph induced by the DFA, remove all the
states not reachable from the starting state and remove all the states not reachable to any
accepting states by using the depth-first search; check whether there exists some cycle in the
graph by the depth-first search. ◀

Thus, thanks to 1=⇒2 of Lem. 15, we can focus on finding a finite set of equations. While it
is undecidable in general whether there exists such a set, we give a possibly non-terminating
pseudo-code in Algorithm 1, which can help to find equations (e.g., Fig. 1).6

Algorithm 1 Possibly non-terminating pseudo-code for ensuring the finiteness of Σ̇∗
0/∼̇C .

Require: Given S, Σ, ∼̇C , Σ̇0. ▷ Σ̇0 is a finite alphabet of Lem. 12.
Ensure: Is Σ̇∗

0/∼̇C finite?
1: Γ ← ∅ ▷ We use I, wi, vi to denote Γ = {⟨wi, vi⟩ | i ∈ I}.
2: while the language Σ̇∗

0(
⋃

i∈I vi)Σ̇∗
0 over Σ̇0 is not cofinite do

3: ⟨w, v⟩ ← a fresh pair in Σ̇∗
0 × Σ̇∗

0 ▷ < is a binary relation in (Lem. 15).
4: if w < v and w ∼̇C v then Γ ← Γ ∪ {⟨w, v⟩}
5: end if
6: end while
7: return True

▶ Remark 18. If “given w, v, does w ∼̇C v hold” is decidable, then Algorithm 1 is a semi-
algorithm (i.e., if Σ̇∗

0/∼̇C is finite, it is terminated and returns True; otherwise, not terminated).
This is because 2=⇒1 of Lem. 15 also holds.

3 The calculus of relations with bounded dot-dagger alternation

In the remaining part of this paper, as a case study of the k-variable-occurrence fragment
presented in Sect. 2, we consider the calculus of relations with bounded dot-dagger alternation.
In this section, we recall the definitions of the calculus of relations (CoR) and the dot-dagger
alternation hierarchy.

6 Usually, to calculate ∼̇C is a bottleneck. For relaxing this problem, for example, hashing words by using
some algebras in C is practically useful for reducing the number of ∼̇C calls (since if the hash of two
words w, v are different, then we immediately have that w, v are not equivalent w.r.t. ∼̇C).
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3.1 CoR: syntax and semantics

We fix Σ as a non-empty finite set of variables. Consider the finite algebraic signature
SCoR =∆ {⊥(0),⊤(0),−(1),∪(2),∩(2), I(0), D(0), ·(2), †(2)} ∪ {π(1) | π is a map in [1, 2][1,2]} (we
consider algebras of binary relations and each π is used for a projection of binary relations).
The set TCoR of CoR terms is defined as follows:

TCoR ∋ t, s, u ::= a | ⊥ | ⊤ | s ∪ u | s ∩ u | s−

| I | D | s · u | s † u | sπ (a ∈ Σ, π ∈ [1, 2][1,2]).

Additionally, for a term t, we use t⌣ to denote the term t⌣ =∆ t{17→2,27→1}. Here, we use
the infix notation for binary operators, the superscript notation for unary operators, and
parenthesis in ambiguous situations, as usual.

For binary relations R, S on a set W , the identity relation IW on W , the difference relation
DW on W , the (relational) composition (relative product) R · S, the dagger (relative sum)
R † S, and the projection Rπ are defined by:

IW =∆ {⟨x, y⟩ ∈W 2 | x = y} (identity)
DW =∆ {⟨x, y⟩ ∈W 2 | x ̸= y} (difference)

R · S =∆ {⟨x, y⟩ ∈W 2 | ∃z ∈W, ⟨x, z⟩ ∈ R ∧ ⟨z, y⟩ ∈ S} (relative product)
R † S =∆ {⟨x, y⟩ ∈W 2 | ∀z ∈W, ⟨x, z⟩ ∈ R ∨ ⟨z, y⟩ ∈ S} (relative sum)

Rπ =∆ {⟨x1, x2⟩ ∈W 2 | ⟨xπ(1), xπ(2)⟩ ∈ R} (projection).

A structure A is a tuple ⟨|A|, {aA}a∈Σ⟩, where |A| is a non-empty set and aA ⊆ |A|2 is a binary
relation for each a ∈ Σ. For a structure A, the binary relation map J_KA : TCoR → ℘ (|A|2)
is the unique homomorphism extending JaKA = aA w.r.t. the set-theoretic operators and the
aforementioned binary relation operators; i.e., JtKA is defined as follows:

JaKA =∆ aA (a ∈ Σ) J⊥KA =∆ ∅ J⊤KA =∆ |A|2 JIKA =∆ I|A| JDKA =∆ D|A|

Jt ∪ sKA =∆ JtKA ∪ JsKA Jt ∩ sKA =∆ JtKA ∩ JsKA Jt−KA =∆ |A|2 \ JtKA
Jt · sKA =∆ JtKA · JsKA Jt † sKA =∆ JtKA † JsKA JtπKA =∆ JtKπ

A.

It is well-known that w.r.t. binary relations, CoR has the same expressive power as the
three-variable fragment of first-order logic with equality:7

▶ Proposition 19 ([28, 29, 11]). W.r.t. binary relations, the expressive power of TCoR is
equivalent to that of the three-variable fragment of first-order logic with equality.

Let REL be the class of all structures. Let REL≥m (resp. REL≤m) be the class of structures
A of # |A| ≥ m (resp. # |A| ≤ m). For C ⊆ REL, the equivalence relation ∼C on TCoR is
defined by: t∼C s ⇐⇒∆ JtKA = JsKA for every A ∈ C. For T ⊆ TCoR, the equational theory
of T over C is the set {⟨t, s⟩ ∈ T 2 | t∼ C s}. We mainly consider ∼ REL: the equational theory
over REL. The following are some instances w.r.t. ∼ REL:

a · (b · c)∼ REL (a · b) · c a ∩ (b ∪ c)∼ REL (a ∩ b) ∪ (a ∩ c) (a⌣)⌣ ∼ REL a

a · a⌣ ̸∼REL a⌣ · a a · (b † c) ̸∼REL (a · b) † c a{17→1,27→1} ∼ REL (a ∩ I) · ⊤.

7 Namely, for every formula φ with two distinct free variables z1, z2 in the three-variable fragment of
first-order logic with equality, there is t ∈ TCoR such that for all A, Jλz1z2.φKA = JtKA. Conversely, for
every t ∈ TCoR, there is φ such that for all A, JtKA = Jλz1z2.φKA. Here, Jλz1z2.φKA =∆ {⟨x, y⟩ ∈ |A|2 |
φ is true on A if z1, z2 are mapped to x, y, respectively}.
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The following propositions hold because for each m ∈ N, the number of structures A of
# |A| ≤ m is finite up to isomorphism and each structure is finite.

▶ Proposition 20. For each m ∈ N, TCoR/∼ REL≤m
is finite.

▶ Proposition 21. Let T ⊆ TCoR be a subterm-closed set and m ≥ 1. Then, T/∼ REL
is finite ⇐⇒ T/∼ REL≥m

is finite. Additionally, the equational theory of T over REL is
decidable ⇐⇒ the equational theory of T over REL≥m is decidable.

Proof. Because t ∼ REL s ⇐⇒ t ∼ REL≤m−1 s ∧ t ∼ REL≥m
s. By Prop. 20 with Prop. 3,

T/∼ REL≤m−1 is finite and the equational theory of T over REL≤m−1 is decidable. ◀

3.2 The dot-dagger alternation hierarchy

▶ Definition 22 (the dot-dagger alternation hierarchy [21]). The sets, {ΣCoR
n , ΠCoR

n }n∈N, are
the minimal sets satisfying the following:

ΣCoR
0 = ΠCoR

0 = {t ∈ TCoR | t does not contain · nor †};
For n ≥ 0, ΣCoR

n ∪ΠCoR
n ⊆ ΣCoR

n+1 ∩ΠCoR
n+1 ;

For n ≥ 1, if s, u ∈ ΣCoR
n , then s ∪ u, s ∩ u, s · u, sπ ∈ ΣCoR

n and s † u ∈ ΠCoR
n+1 ;

For n ≥ 1, if s, u ∈ ΠCoR
n , then s ∪ u, s ∩ u, s † u, sπ ∈ ΠCoR

n and s · u ∈ ΣCoR
n+1 .

For example, a · b ∈ ΣCoR
1 and a · (b † c) ∈ ΣCoR

2 (the term a · b means that for some z, a(x, z)
and b(z, y). The term a · (b † c) means that for some z, for every w, a(x, z) and (b(z, w) or
c(w, y)). Here, x and y indicate the source and the target, respectively, and each a′(x′, y′)
denotes that there is an a′-labelled edge from x′ to y′). The dot-dagger alternation hierarchy
is an analogy of the quantifier alternation hierarchy in first-order logic (by viewing · as ∃
and † as ∀). This provides a fine-grained analogy of Prop. 19 w.r.t. the number of quantifier
alternations, as follows:

▶ Proposition 23 ([21, Cor. 3.14]; cf. Prop. 19). W.r.t. binary relations, the expressive
power of ΣCoR

n (resp. ΠCoR
n ) is equivalent to that of the level Σn (resp. Πn) in the quantifier

alternation hierarchy of the three-variable fragment of first-order logic with equality.

Because there are recursive translations for Prop. 23 [21], the following (un-)decidability
results follow from those in first-order logic.

▶ Proposition 24. The equational theory of ΣCoR
n (resp. ΠCoR

n ) is decidable if n ≤ 1 and is
undecidable if n ≥ 2.

Proof Sketch. When Σ is a countably infinite set, they follow from the BSR class [∃∗∀∗, all]=
[3, 27] and the reduction class [∀∃ ∧ ∀3, (ω, 1)] [7, Cor. 3.1.19]. We can strengthen this result
even if # Σ = 1 by using a variant of the translation in [19, Lem. 11] for encoding countably
infinitely many variables by one variable. (See [23] for more details.) ◀

4 On the k-variable-occurence fragment of ΣCoR
n

We now consider (ΣCoR
n )(vo ≤k): the k-variable-occurrence fragment of the level ΣCoR

n in the
dot-dagger alternation hierarchy. Clearly, ΣCoR

n =
⋃

k∈N(ΣCoR
n )(vo ≤k). While the equational

theory of ΣCoR
n is undecidable in general (Prop. 24), we show that the equational theory of

(ΣCoR
n )(vo ≤k) is decidable (Cor. 26). Our goal in this section is to show the following:
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▶ Theorem 25. For each n, k ∈ N, (ΣCoR
n )(vo ≤k)/∼ REL is finite.

Combining with Prop. 3 yields the following decidability and complexity upper bound. The
complexity lower bound is because the equational theory can encode the boolean sentence
value problem [5] (even if n = k = 0), as a given boolean sentence φ is true iff t ∼REL ⊤,
where t is the term obtained from φ by replacing ∧,∨, T, F with ∩,∪,⊤,⊥, respectively.

▶ Corollary 26. For n, k ∈ N, the equational theory of (ΣCoR
n )(vo ≤k) over REL is decidable.

Moreover, it is complete for DLOGTIME-uniform NC1 under DLOGTIME reductions if the
input is given as a well-bracketed string.

To prove Thm. 25, we consider the finiteness of TCoR
(vo ≤0)/∼ REL in Sect. 4.1 and the finiteness

of a monoid for (ΣCoR
n )(vo ≤k)/∼ REL in Sect. 4.2, respectively (cf. Lem. 14).

4.1 On the finiteness of TCoR
(vo ≤0)

For the finiteness of TCoR
(vo ≤0)/∼ REL, by Prop. 21, it suffices to show the following:

▶ Lemma 27. TCoR
(vo ≤0)/∼ REL≥3 = {[⊥]∼REL≥3

, [⊤]∼REL≥3
, [I]∼REL≥3

, [D]∼REL≥3
}.

Proof. W.r.t. ∼ REL≥3 , we prove that the four elements are closed under each operator. For
the operators ∩,−, ·, ⌣, this is shown by the following Cayley tables:

∩ ⊤ ⊥ I D

⊤ ⊤ ⊥ I D
⊥ ⊥ ⊥ ⊥ ⊥
I I ⊥ I ⊥
D D ⊥ ⊥ D

−

⊤ ⊥
⊥ ⊤
I D
D I

· ⊤ ⊥ I D

⊤ ⊤ ⊥ ⊤ ⊤
⊥ ⊥ ⊥ ⊥ ⊥
I ⊤ ⊥ I D
D ⊤ ⊥ D ⊤

⌣

⊤ ⊤
⊥ ⊥
I I
D D

Note that D ·D∼ REL≥3⊤ holds thanks to “≥ 3”. When # (|A|) ≥ 3, we have: ⟨x, y⟩ ∈ JD ·DKA
iff (∃z ∈ |A|, z ≠ x ∧ z ̸= y) iff |A| \ {x, y} ≠ ∅ iff True (cf. Remark 28). (Similarly for
D ·⊤∼ REL≥2⊤.) For the other operators (∪, †, π), they can be expressed by using ∩,−, ·, ⌣ as
follows: t∪s∼ REL(t−∩s−)−, t†s∼ REL(t− ·s−)−, t{17→1,27→2}∼ RELt, t{17→1,27→1}∼ REL(t∩I)·⊤,
t{17→2,27→2} ∼ REL ⊤ · (t ∩ I), and t{17→2,27→1} = t⌣. Hence, this completes the proof. ◀

▶ Remark 28. D · D ̸∼REL ⊤, whereas D · D ∼ REL≥3 ⊤. For example when # |A| = 1, since
JDKA = J⊥KA, we have JD · DKA = ∅ ≠ |A| = J⊤KA. (D · D is not equivalent to neither one of
the four constants w.r.t. ∼ REL; thus, there are many constants w.r.t. ∼ REL.)

4.2 Monoid for (ΣCoR
n )(vo ≤k)

Next, we decompose terms, and then we reduce the finiteness of (ΣCoR
n )(vo ≤k)/∼ REL to that

of a monoid (cf. Sect. 2.2).

▶ Lemma 29. For each n, k ∈ N, if (ΣCoR
n )(vo ≤1)/∼ REL is finite, (ΣCoR

n )(vo ≤k)/∼ REL is
finite.

Proof. By specializing T with (ΣCoR
n )(vo ≤k) and C with REL, in Prop. 3 and Lem. 6. ◀
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▶ Lemma 30. For each n, k ∈ N, (ΣCoR
n )(vo ≤k)/∼ REL is finite iff (ΠCoR

n )(vo ≤k)/∼ REL is
finite.

Proof. ⇐=: For every term t in (ΠCoR
n )(vo ≤k), there is some s in (ΣCoR

n )(vo ≤k) such that
t∼ REL s−. Such s can be obtained from the term t− by taking the complement normal form
using the following equations:

⊤− ∼REL ⊥ ⊥− ∼REL ⊤ I− ∼REL D D− ∼REL I
(s ∪ u)− ∼REL s− ∩ u− (s ∩ u)− ∼REL s− ∪ u− (s−)− ∼REL s (sπ)− ∼REL (s−)π.

=⇒: As with ⇐=. ◀

▶ Lemma 31 (cf. Lem. 4). Let a ∈ Σ. For all n ≥ 2, t ∈ (ΣCoR
n )(vo ≤1), there are

t0 ∈ (ΣCoR
1 )(vo ≤1) and t1 ∈ (ΠCoR

n−1)(vo ≤1) such that t∼ REL≥3 t0[t1/a].

Proof. By induction on the pair of n and t. We distinguish the following cases. Case
t ∈ (ΣCoR

n−1)(vo ≤1): Clear, by IH (∵ ΠCoR
n−2 ⊆ ΠCoR

n−1). Case t ∈ (ΠCoR
n−1)(vo ≤1): By letting

t0 = a and t1 = t. Case t = s ∪ u: By vo (t) = 1, vo (s) = 0 or vo (u) = 0 holds. Sub-
case vo (s) = 0: By Lem. 27, let s′ ∈ {⊥,⊤, I, D} be s.t. s ∼ REL≥3 s′. By IH w.r.t. u, let
u0 ∈ (ΣCoR

1 )(vo ≤1), u1 ∈ (ΠCoR
n−1)(vo ≤1) be s.t. u∼ REL≥3 u0[u1/a]. By letting t0 = s′ ∪ u0 and

t1 = u1, we have t∼ REL≥3 t0[t1/a]. Sub-case vo (u) = 0: As with Sub-case vo (s) = 0. Case
t = s ∩ u, s · u, sπ: As with Case t = s ∪ u. ◀

The following is an illustrative example of the decomposition of Lem. 31:

·

D † D ·

†

D · D †
·

D a

D · D

D · D

ΣCoR
3

∼ REL≥3

·

D ·

†

⊤ †
·

D a

⊤

⊤

ΣCoR
3

ΣCoR
3

ΠCoR
2

=


·

D ·

a ⊤

ΣCoR
1




†

⊤ †
·

D a

⊤

ΠCoR
2

/ a



▶ Lemma 32. For each n ∈ N, if (ΣCoR
1 )(vo ≤1)/∼ REL is finite, (ΣCoR

n )(vo ≤1)/∼ REL is finite.

Proof. By induction on n. Case n ≤ 1: By the assumption (note that (ΣCoR
0 )(vo ≤1) ⊆

(ΣCoR
1 )(vo ≤1)). Case n ≥ 2: By the assumption, (ΣCoR

1 )(vo ≤1)/∼ REL is finite. By IH with
Lem. 30, (ΠCoR

n−1)(vo ≤1)/∼ REL is finite. Combining them with Lem. 31 (and Prop. 21 for
changing ∼ REL and ∼ REL≥3 mutually) yields that (ΣCoR

n )(vo ≤1)/∼ REL is finite. ◀

For S ⊆ SCoR, let TS ⊆ TCoR be the set of all terms over the signature S. Then we have:

▶ Lemma 33. If T{∩,·,I,D}
(vo ≤1) /∼ REL is finite, then (ΣCoR

1 )(vo ≤1)/∼ REL is finite.

Proof sketch. Note that t, s ∈ ΣCoR
1 ::= u | t ∪ s | t ∩ s | t · s | tπ (where u ∈ ΣCoR

0 ,
π ∈ [1, 2][1,2]) and u, u′ ∈ ΣCoR

0 ::= a | u ∪ u′ | u ∩ u′ | u− | ⊤ | ⊥ | uπ (where a ∈ Σ,
π ∈ [1, 2][1,2]). By taking the complement (−) and projection (π) normal form and replacing
⊥ with I∩D and ⊤ with I∪D, for each t ∈ (ΣCoR

1 )(vo ≤1) and a ∈ Σ, there are t0 ∈ T{∪,∩,·,I,D}
(vo ≤1)

and t1 ∈ T{−}∪{π|π∈[1,2][1,2]}
(vo ≤1) such that t ∼ REL t0[t1/a]. Moreover, by the distributive law

of ∪ w.r.t. · and ∩, for each t ∈ T{∪,∩,·,I,D}
(vo ≤1) , there are n ∈ N and t1, . . . , tn ∈ T{∩,·,I,D}

(vo ≤1)

such that t ∼ REL t1 ∪ · · · ∪ tn. Because T{∩,·,I,D}
(vo ≤1) /∼ REL is finite (by the assumption) and

T{−}∪{π|π∈[1,2][1,2]}
(vo ≤1) /∼ REL is clearly finite, (ΣCoR

1 )(vo ≤1)/∼ REL is finite. Hence, this completes
the proof. (See [23] for more details of the proof.) ◀
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Combining Lems. 29, 32, and 33 yields that to prove that (ΣCoR
n )(vo ≤k)/∼ REL is finite, it

suffices to prove that T{∩,·,I,D}
(vo ≤1) /∼ REL is finite.

Let Σ̇ be the set of characters of Def. 7 from the signature {∩(2), ·(2), I(0), D(0), ⌣(1)}.
That is, Σ̇ =∆ {(_∩ t), (t∩_), (_ · t), (t ·_) | t ∈ (T{∩,·,I,D,⌣})(vo ≤0)} ∪ {⌣}. (While ⌣ does
not occur in T{∩,·,I,D}, we introduce ⌣ for replacing the primitive character (D · _) with
⌣ (_ · D). This is not essential but is useful for reducing the number of equations and for
simplifying the notation (Def. 35).) Let ∼̇REL≥5 be the equivalence relation on Σ̇∗ defined by:
w ∼̇REL≥5 v ⇐⇒∆ w[a]∼ REL≥5 v[a] where a ∈ Σ is any variable (recall Def. 10).8

▶ Lemma 34. If Σ̇∗/∼̇REL≥5 is finite, then T{∩,·,I,D}
(vo ≤1) /∼ REL is finite.

Proof. Since Σ̇∗/∼̇REL≥5 is finite, we have that T{∩,·,I,D,⌣}
(vo ≤1) /∼ REL≥5 is finite (Lem. 11); thus,

T{∩,·,I,D}
(vo ≤1) /∼ REL≥5 is finite. Hence by Prop. 21, this completes the proof. ◀

We consider the following finite subset Σ̇0 of Σ̇ (cf. Lem. 12):

▶ Definition 35. Let Σ̇0 ⊆ Σ̇ be the finite set {∩I,∩D, ·D, ⌣ }, where ∩I, ∩D, ·D are
abbreviations of (_ ∩ I), (_ ∩ D), (_ · D), respectively.

▶ Lemma 36. If Σ̇∗
0/∼̇REL≥5 is finite, then Σ̇∗/∼̇REL≥5 is finite.

Proof. It suffices to prove the following: for every a ∈ Σ̇, there is w ∈ Σ̇∗
0 such that a∼̇REL≥5 w.

Case a = (_∩ t), (_ · t): Since vo (t) = 0, by using Lem. 27, they are shown by distinguishing
the following four sub-cases, as follows:

t ∼ REL≥3 ⊥ t ∼ REL≥3 ⊤ t ∼ REL≥3 I t ∼ REL≥3 D

a = (_ ∩ t) ∩I ∩D ε ∩I ∩D

a = (_ · t) ∩I ∩D ·D ·D ε ·D

Case a = (t ∩ _), (t · _): By (t ∩ _) =⌣ (_ ∩ t) and applying the above case analysis for
(− ∩ t), this case can be proved (similarly for (t ·_)). Case a =⌣ : Since ⌣ ∈ Σ̇0. ◀

Thus, our goal is to prove that Σ̇∗
0/∼̇REL≥5 is finite.

4.3 On the finiteness of the monoid

For the finiteness of Σ̇∗
0/∼̇REL≥5 (cf. Lem. 15), we present the 21 equations in Fig. 1.9 For

i ∈ [1, 21], let wi, vi be words such that wi = vi denotes the i-th equation.

▶ Lemma 37 (soundness). For each i ∈ [1, 21], wi ∼̇REL≥5 vi.

Proof Sketch. We prove wi[a]∼ REL≥5 vi[a], where a is any variable. This equation can be
translated to the validity of a first-order sentence via the standard translation [28]. Here, we
add the formula ∃x1, . . . , x5,∧i,j∈[1,5];i̸=jxi ̸= xj as an axiom, for forcing ∼̇REL≥5 . Thanks to
this encoding, each of them can also be tested by using ATP/SMT systems. Nevertheless, in

8 The condition “≥ 5” is needed for some equations in Fig. 1.
9 The most technical part of the paper is to collect these equations. They are obtained by running a

program based on Algorithm 1 using ATP/SMT systems.
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∩I = ∩I ∩I (1)
∩D = ∩D ∩D (2)
∩I = ∩I ⌣ (3)
∩I =⌣ ∩I (4)

∩I ∩D = ∩D ∩I (5)
∩D ⌣ =⌣ ∩D (6)

ε =⌣ ⌣ (7)
∩D ∩I = ·D ∩I ∩D (8)
∩D ∩I = ∩I ·D ∩I (9)
∩I ·D = ∩I ·D ∩D (10)
·D ∩I = ∩D ·D ∩I (11)
·D ·D = ·D ∩D ·D (12)

·D ·D = ·D ·D ·D (13)
·D ·D ∩D = ·D ·D ∩I ·D (14)
∩D ·D ·D = ·D ∩I ·D ·D (15)
⌣ ·D ∩I = ∩D ⌣ ·D ∩I (16)

·D ⌣ ·D ⌣ =⌣ ·D ⌣ ·D (17)
⌣ ·D ∩I ·D = ∩D ⌣ ·D ·D ∩D (18)

·D ⌣ ·D ·D ⌣ =⌣ ·D ·D ⌣ ·D (19)

·D ∩D ⌣ ·D ∩D ⌣ ·D ∩D ⌣ ·D ∩D ⌣ ·D ∩D =⌣ ·D ∩D ⌣ ·D ∩D ⌣ ·D ∩D ⌣ ·D ∩D ⌣ ·D ∩D ⌣ (20)
·D ∩I ·D ⌣ ·D ∩I ·D ⌣ ·D =⌣ ·D ∩I ·D ⌣ ·D ∩I ·D ⌣ ·D (21)

Figure 1 Equations for the finiteness.

the following, as an example, we give explicit proof for Equation (13). By using the standard
translation, Equation (13) is translated into the following formula in first-order logic, where
x0, y0 are free variables:

(∃y1, (∃y2, a(x0, y2) ∧ y2 ̸= y1) ∧ y1 ̸= y0)
↔ (∃y1, (∃y2, (∃y3, a(x0, y3) ∧ y3 ̸= y2) ∧ y2 ̸= y1) ∧ y1 ̸= y0).

This formula is valid under REL≥5, which can be shown by using the axiom above (notice
that under REL≥5, y1 on the left and y1, y2 on the right always exist, by taking a vertex not
assigned by any variable occurring in each formula; thus, both formulas are equivalent to the
formula ∃y, a(x0, y)). Even without the encoding to first-order logic, this equation can also
be shown as follows:

(·D ·D )[a] = (a · D) · D = a · (D · D) (associativity law)
= a · ⊤ (⊤∼ REL≥3 D · D)
= a · (D · D · D) (⊤∼ REL≥3 ⊤ · D and ⊤∼ REL≥3 D · D)
= ((a · D) · D) · D = (·D ·D ·D )[a]. (associativity law)

See [23, 24] for all the equations. ◀

▶ Lemma 38. The language
⋃

i∈[1,21] Σ̇∗
0viΣ̇∗

0 over Σ̇0 is cofinite.

Proof Sketch. It suffices to prove that for some n ∈ N, the following hold: there is no word
w ∈ Σ̇∗

0 \ (
⋃

i∈[1,21] Σ̇∗
0viΣ̇∗

0) such that ∥w∥ ≥ n (since the set {w ∈ Σ̇∗
0 | ∥w∥ ≤ n − 1} is

finite). This holds when n ≥ 29, which can be tested by using Z3 (an ATP/SMT system) [9]
and can be checked by drawing its DFA (see [23, 24], for more details). ◀

Thus, we have obtained the following:

▶ Lemma 39. Σ̇∗/∼̇REL≥5 is finite.

Proof. By Lems. 37 and 38, we can apply Lem. 15, where < is the shortlex order on Σ̇∗
0

induced by: ∩I < ∩D < ·D <⌣ . By the form, wi < vi is clear for each i ∈ [1, 21]. ◀

Finally, Thm. 25 is obtained as follows:

MFCS 2023



69:14 On the Finite Variable-Occurrence Fragment of the Calculus of Relations

Proof of Thm. 25. We have: Σ̇∗
0/∼̇REL≥5 is finite (Lem. 39) =⇒ Σ̇∗/∼̇REL≥5 is finite (Lem. 36)

=⇒ T{∩,·,I,D}
(vo ≤1) /∼ REL is finite (Lem. 34) =⇒ (ΣCoR

1 )(vo ≤1)/∼ REL is finite (Lem. 33) =⇒
(ΣCoR

n )(vo ≤1)/∼ REL is finite (Lem. 32) =⇒ (ΣCoR
n )(vo ≤k)/∼ REL is finite (Lem. 29). ◀

▶ Remark 40. The finite axiomatizability of the equational theory of (ΣCoR
n )(vo ≤k) over REL

immediately follows from the finiteness of (ΣCoR
n )(vo ≤k)/∼ REL.

5 Conclusion

We have introduced the k-variable-occurrence fragment and presented an approach for
showing the decidability of the equational theory from the finiteness. As a case study, we
have proved that the equational theory of (ΣCoR

n )(vo ≤k) is decidable, whereas that of ΣCoR
n

is undecidable in general. We leave the decidability open for the equational theory of CoR
with full dot-dagger alternation (i.e., TCoR

(vo ≤k), in this paper). Our approach may apply to
some other algebras/logics. It would be interesting to consider the finite variable-occurrence
fragment for other systems (e.g., CoR with antidomain [13, 10], dynamic logics [12], relation
algebras). It would also be interesting to extend our result to first-order logic with equality
(cf. Prop. 19) – for example, is the k-atomic-predicate-occurrence fragment of the m-variable
fragment of first-order logic with equality decidable?
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Abstract
We establish that constructive continued fraction dimension originally defined using s-gales [20]
is robust, but surprisingly, that the effective continued fraction dimension and effective (base-b)
Hausdorff dimension of the same real can be unequal in general.

We initially provide an equivalent characterization of continued fraction dimension using
Kolmogorov complexity. In the process, we construct an optimal lower semi-computable s-gale for
continued fractions. We also prove new bounds on the Lebesgue measure of continued fraction
cylinders, which may be of independent interest.

We apply these bounds to reveal an unexpected behavior of continued fraction dimension. It is
known that feasible dimension is invariant with respect to base conversion [8]. We also know that
Martin-Löf randomness and computable randomness are invariant not only with respect to base
conversion, but also with respect to the continued fraction representation [20]. In contrast, for any
0 < ε < 0.5, we prove the existence of a real whose effective Hausdorff dimension is less than ε, but
whose effective continued fraction dimension is greater than or equal to 0.5. This phenomenon is
related to the “non-faithfulness” of certain families of covers, investigated by Peres and Torbin [22]
and by Albeverio, Ivanenko, Lebid and Torbin [1].

We also establish that for any real, the constructive Hausdorff dimension is at most its effective
continued fraction dimension.
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1 Introduction

The concept of an individual random sequence, first defined by Martin-Löf using constructive
measure [15], is well-established and mathematically robust - very different approaches towards
the definition identify precisely the same sequences as random. These include Kolmogorov
incompressibility (Levin [10], Chaitin [3]) and unpredictability by martingales [24]. While
the theory of Martin-Löf randomness classifies sequences into random and non-random, it
does not quantify the information rate in a non-random sequence. Lutz effectivized the
classical notions of Hausdorff and packing dimensions [12], surprisingly extending it to
individual infinite binary sequences [13], yielding a notion of information density in sequences.
This definition also has several equivalent definitions in terms of Kolmogorov compression
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70:2 Effective Continued Fraction Dimension

rates [16], unpredictability by s-gales, and using covers [12, 13]. These definitions have led
to a rich variety of applications in various domains of computability and complexity theory
(see for example, Downey and Hirschfeldt [5], Nies [21]).

Recently, settings more general than the Cantor space of infinite binary (or in general,
infinite sequences from a finite alphabet) have been studied by Lutz and Mayordomo [14],
and Mayordomo [17, 18]. Prominent among them is Mayordomo’s definition of effective
Hausdorff dimension for a very general class of metric spaces [17, 18]. Nandakumar and
Vishnoi [20] and Vishnoi [28] define the notion of effective dimension of continued fractions,
which involves a countably infinite alphabet, and is thus a setting which cannot be studied
using Mayordomo’s framework. This latter setting is interesting topologically since the space
of continued fractions is non-compact, and interesting measure-theoretically since the natural
shift invariant measure, the Gauss measure, is a non-product measure.

Nandakumar and Vishnoi [20] use the notion of an s-gale on the space of continued
fractions to define effective dimension. Vishnoi [28] introduced the notion of Kolmogorov
complexity of finite continued fraction strings using a one to one binary encoding. Vishnoi
[28] also shows that the notion of Kolmogorov complexity is invariant under computable 1-1
encodings, upto an additive constant.

In this work, we first establish the mathematical robustness of the notion of effective
dimension, by proving an equivalent characterization using Kolmogorov complexity of con-
tinued fractions. The characterization achieves the necessary equivalence by choosing a
binary encoding of continued fractions which has a compelling geometric intuition, and
then applying Mayordomo’s characterization of effective (binary) Hausdorff dimension using
Kolmogorov complexity [16] . In the process, analogous to the notion of an optimal con-
structive supergale on the Cantor space defined by Lutz [13], we provide the construction
of a lower semi-computable s-gale that is optimal for continued fractions. We also prove
new bounds on the Lebesgue measure of continued fraction cylinders using the digits of the
continued fraction expansion, a result which may be of independent interest.

The topological and measure-theoretic intricacies involved in this setting imply that
some, but not all, “natural” properties of randomness and dimension carry over from the
binary setting. For example, while Martin-Löf and computable randomness are invariant
with respect to the conversion between the base-b and continued fraction expansion of the
same real [19, 20], Vandehey [26] and Scheerer [23] show that other notions of randomness
like absolute normality and normality for continued fractions are not identical.

Staiger [25] showed that the Kolmogorov complexity of a base b expansion of a real
α, 0 ≤ α ≤ 1, is independent of the chosen base b. Aligning with this, Hitchcock and
Mayordomo [8] establish that feasible dimension of a real is the same when converting
between one base to another. Hitherto, it was unknown whether effective dimension is
invariant with respect to conversion between base-b and continued fraction representations.
Since we can convert between the representations efficiently, it is possible that these are
equal. We show this is true in one direction, that the effective base b dimension is a lower
bound for effective continued fraction dimension.

However, using the technique of diagonalization against the optimal lower semicomputable
continued fraction s-gale and using set covering techniques used in recent works by Peres and
Torbin [22], Albeverio, Ivanenko, Lebid and Torbin [1] and Albeverio, Kondratiev, Nikiforov
and Torbin [2] to show the “non-faithfulness” of certain families of covers, we show that
the reverse direction does not hold, in general. We prove the following result: for every
0 < ε < 0.5, there is a real whose effective (binary) Hausdorff dimension is less than ε while
its effective continued fraction dimension is at least 0.5. By the result of Hitchcock and
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Mayordomo [8], this also implies that the effective base-b dimension of this real is less than ε

in every base-b, b ≥ 2. Thus, surprisingly, there is a sharp gap between the effective (base-b)
dimension of a real and its effective continued fraction dimension, highlighting another
significant difference in this setting.

2 Preliminaries

We denote the binary alphabet by Σ. The set of strings of a particular length n is denoted
Σn. The set of all finite binary strings is denoted Σ∗ and infinite binary sequences is denoted
Σ∞. For a binary string v ∈ Σn \ {0n ∪ 1n}, v − 1 denotes the string occurring just before v

lexicographically, and v + 1 the string occurring just after v lexicographically. We use N to
denote the set of positive integers. The set of finite continued fractions is denoted N∗ and
the set of all infinite continued fractions, as N∞.

We adopt the notation [a1, a2, . . . ] for the continued fraction

1

a1 +
1

a2 + · · ·

and similarly, [a1, a2, . . . , an] for finite continued fractions.
If a finite binary string x is a prefix of a finite string z or an infinite binary sequence

Z, then we denote this by x ⊑ z or x ⊑ Z respectively. If x is a proper prefix of a finite
string z, we denote it by x ⊏ z. We adopt the same notation for denoting that a finite
continued fraction v is a prefix of another continued fraction. For a v ∈ N∗, the cylinder
set of v, denoted Cv, is defined by Cv = {Y ∈ N∞ | v ⊏ Y }. For a w ∈ Σ∗, Cw is defined
similarly. For a continued fraction string v = [a1 . . . an], P (v) denotes the string [a1, . . . an−1].
λ denotes the empty string and we define P (λ) = λ.

For v ∈ N∗, µ(v) refers to the Lebesgue measure of the continued fraction cylinder
Cv. γ(v) refers to the Gauss measure of the continued fraction cylinder Cv, defined by
γ(v) =

∫
Cv

1
1+x dx. We use the same notation for a binary cylinder w ∈ Σ∗. It is well-known

that the Gauss measure is absolutely continuous with respect to the Lebesgue measure,
and is invariant with respect to the left-shift transformation on continued fractions (see for
example, [4], or [6]). Wherever there is no scope for confusion, for a v ∈ N∗, we use µ(v) and
γ(v) to represent µ(Cv) and γ(Cv) respectively. The same holds for a v ∈ Σ∗. We also use
the notation µs(v) and γs(v) to denote (µ(v))s and (γ(v))s respectively. For a continued
fraction string v = [a1, . . . , an], we call n as the rank of v, and we denote it using rank(v).
[v, i] denotes the continued fraction [a1, . . . an, i]. For an infinite continued fraction string
Y = [a1, a2, . . . ], Y ↿ n denotes the continued fraction string corresponding to the first n
entries of Y , that is Y ↿ n = [a1, a2 . . . an]. For k ∈ N, N≤k refers to the set of continued
fraction strings having rank less than or equal to k. All logarithms in the work have base 2,
unless specified otherwise. For any sets A and B, A∆B denotes the symmetric set difference
operator, defined by (A \ B) ∪ (B \ A). In this work, for ease of notation, Y ∈ N∗ denotes an
infinite continued fraction and X ∈ Σ∞ denotes an infinite binary sequence.

2.1 Constructive dimension of binary sequences
Lutz [13] defines the notion of effective (equivalently, constructive) dimension of an individual
infinite binary sequence using the notion of the success of s-gales.

MFCS 2023
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▶ Definition 1 (Lutz [13]). For s ∈ [0, ∞), a binary s-gale is a function d : Σ∗ → [0, ∞) such
that d(λ) < ∞ and for all w ∈ Σ∗, d(w)[µ(Cw)]s =

∑
i∈{0,1} d(wi)[µ(Cwi)]s.

The success set of d is S∞(d) =
{

X ∈ N∞ | lim sup
n→∞

d(X ↾ n) = ∞
}

.

For F ⊆ [0, 1], G(F) denotes the set of all s ∈ [0, ∞) such that there exists a lower
semicomputable binary s-gale d with F ⊆ S∞(d).

The constructive dimension or effective Hausdorff dimension of F ⊆ [0, 1] is cdim(F) =
inf G(F) and the constructive dimension of a sequence X ∈ Σ∞ is cdim(X) = cdim({X}).

3 Effective Continued Fraction Dimension using s-gales

Nandakumar and Vishnoi [20] formulate the notion of effective dimension of continued
fractions using the notion of lower semicomputable continued fraction s-gales. Whereas a
binary s-gale bets on the digits of the binary expansion of a number, a continued fraction
s-gales places bets on the digits of its continued fraction expansion.

▶ Definition 2 (Nandakumar, Vishnoi [20]). For s ∈ [0, ∞), a continued fraction s-gale is a
function d : N∗ → [0, ∞) such that d(λ) < ∞ and for all w ∈ N∗, the following holds.

d(w)[γ(Cw)]s =
∑
i∈N

d(wi)[γ(Cwi)]s.

The success set of d is S∞(d) =
{

Y ∈ N∞ | lim sup
n→∞

d(Y ↾ n) = ∞
}

.

In this paper, we deal with the notion of effective or equivalently, constructive dimension.
In order to effectivize the notion of s-gales, we require them to be lower semicomputable.

▶ Definition 3. A function d : N∗ −→ [0, ∞) is called lower semicomputable if there exists a
total computable function d̂ : N∗ × N −→ Q ∩ [0, ∞) such that the following two conditions
hold.

Monotonicity: For all w ∈ N∗ and for all n ∈ N, we have d̂(w, n) ≤ d̂(w, n + 1) ≤ d(w).
Convergence: For all w ∈ N∗, lim

n→∞
d̂(w, n) = d(w).

For F ⊆ [0, 1], GCF (F) denotes the set of all s ∈ [0, ∞) such that there exists a lower
semicomputable continued fraction s-gale d with F ⊆ S∞(d).

▶ Definition 4 (Nandakumar, Vishnoi [20]). The effective continued fraction dimension of
F ⊆ [0, 1] is

cdimCF (F) = inf GCF (F).

The effective continued fraction dimension of a sequence Y ∈ N∞ is defined by cdimCF ({Y }),
the effective continued fraction dimension of the singleton set containing Y .

3.1 Conversion of binary s-gales into continued fraction s-gales
In this subsection, from a continued fraction s′-gale d : N∗ → [0, ∞), for any s > s′, we
construct a binary s-gale h : Σ∗ → [0, ∞) which succeeds on all the reals on which d succeeds.
The construction proceeds in multiple steps. We first mention some technical lemmas which
we use in the proof.

The following lemma is an easy consequence of the fact that the Gauss measure is
absolutely continuous with respect to the Lebesgue measure (see for example, Nandakumar
and Vishnoi [20]).
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▶ Lemma 5. For any interval B ⊆ (0, 1), we have

1
2 ln 2µ(B) ≤ γ(B) ≤ 1

ln 2µ(B).

In the construction that follows, we formulate betting strategies on binary cylinders based
on continued fraction cylinders. In order to do this conversion, we require the following
bounds on the relationships between the lengths of continued fraction cylinders and binary
cylinders.

▶ Lemma 6 (Nandakumar, Vishnoi [20]). For any 0 ≤ a < b ≤ 1, let
[

m
2k , m+1

2k

)
, where

0 ≤ m ≤ 2k − 1 be one of the largest dyadic intervals which is a subset of [a, b), then
1

2k ≥ 1
4 (b − a).

▶ Lemma 7 (Falconer [7]). For any 0 ≤ a < b ≤ 1, let
[

m
2k , m+1

2k

)
,
[

m+1
2k , m+2

2k

)
, where

0 ≤ m ≤ 2k − 2, be the smallest consecutive dyadic intervals whose union covers [a, b). Then
1

2k ≤ 2(b − a).

The following lemma is a generalization of the Kolmogorov inequality for continued
fraction martingales (Vishnoi [27]) to s-gales. The lemma states that an equality holds in
the case of decompositions using prefix-free subcylinder sets upto a finite depth.

▶ Lemma 8. Let d : N∗ → [0, ∞) be a continued fraction s-gale. Let v ∈ N∗ and for some
k ∈ N, let A be a prefix free set of elements in N≤k such that ∪w∈ACw = Cv. Then, we have
d(v)γs(v) =

∑
w∈A d(w)γs(w).

In the construction of a binary s-gale from continued fraction gales, The first step is
the following decomposition of a binary cylinder into a set of prefix free continued fraction
cylinders.

▶ Lemma 9 (Vishnoi [27]). For every w ∈ Σ∗, there exists a set I(w) ⊆ N∗ and a constant
k ∈ N such that,
1. y ∈ N≤k for every y ∈ I(w).
2. (∪y∈I(w)Cy)∆Cw ⊆ {inf(Cw), sup(Cw)}
3. I(w0) ∪ I(w1) = I(w)
4. I(w0) ∩ I(w1) = ϕ

Moreover, given w ∈ Σ∗, Vishnoi [27] gives a division algorithm to compute I(w). It is
also clear from the division algorithm that for all w ∈ Σ∗, there exists a u ∈ I(w) such that
for all v ∈ (I(w0) ∪ I(w1)) \ I(w), we have u ⊏ v. This u ∈ I(w) is the continued fraction
cylinder for which the mid point of w, m(w) is an interior point in Cu and therefore gets
divided.

From a continued fraction martingale, Vishnoi [27] uses the decomposition I(w) to
construct a binary martingale that places the same aggregate bets on an interval. We
generalize this construction to the setting of s-gales. Given a continued fraction s′-gale
d : N∗ → [0, ∞), using the decomposition I(w), we construct a binary s′-gale Hd from d.

▶ Definition 10. Given any continued fraction s′-gale d : N∗ → [0, ∞), define the Propor-
tional binary s′-gale of d, Hd : Σ∗ → [0, ∞) as follows:

Hd(w) =
∑

y∈I(w)

d(y)
(

γ(y)
µ(w)

)s′

.
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For a w ∈ Σ∗, let I ′(w) = I(w0) ∪ I(w1). Then we have,

Hd(w0) + Hd(w1) = 2s′ ∑
y∈I′(w)

d(y)
( γ(y)

µ(w)

)s′

.

Let u ∈ I(w) such that for all v ∈ I ′(w) \ I(w), u ⊏ v. Hence, by Lemma 8, it follows that∑
y∈I′(w) d(y)γs′(y) =

∑
y∈I(w) d(y)γs′(y). Therefore, we have Hd(w0)+Hd(w1) = 2s′

Hd(w),
so Hd is an s′-gale. Also as γ(λ) = 1, we have that Hd(λ) = d(λ).

As I(w) is computably enumerable, it follows that Hd is lower semicomputable if d is
lower semicomputable.

The construction by Vishnoi [27] proceeds using the savings-account trick for martingales.
In the setting of s-gales, however, the concept of a savings account does not work directly.
Therefore, we require additional constructions in this setting.

Using ideas from the construction given in Lemma 3.1 in Hitchcock and Mayordomo [8],
we construct a “smoothed” s-gale Hh : Σ∗ → [0, ∞) from the proportional s′-gale constructed
in Definition 10.

▶ Definition 11. For a w ∈ Σ∗, and an n > |w|, we define

Fn(w) = {u ∈ {0n ∪ 1n} | w ⊑ u} ∪ {u ∈ Σn \ {0n ∪ 1n} | w ⊑ u + 1 and w ⊑ u − 1},

Hn(w) = {u ∈ Σn | w ⊑ u or w ⊑ u + 1 or w ⊑ u − 1} \ Fn.

▶ Definition 12. Given an s′-gale h : Σ∗ → [0, ∞), for any s > s′ and for each n ∈ N,
define:

hn(w) =


2s|w|

( ∑
u∈Hn(w)

1
2 h(u) +

∑
u∈Fn(w)

h(u)
)

if |w| < n

2(s−1)(|w|−n+1) hn(w[0 . . . n − 2]) otherwise.

Define Sh : Σ∗ → [0, ∞) by

Sh(w) =
∞∑

n=0
2−sn hn(w).

We call Sh as the smoothed s-gale of h.

Consider a string w ∈ Σn other than 0n and 1n. In hn, a factor of half the capital of w

gets assigned to it’s immediate parent w′. The other half is assigned to the neighbor of w′ to
which w is adjacent to.

It is straightforward to verify that each hn is an s-gale. Sh is a combination of s-gales,
and hence is a valid s-gale. Note that hn(λ) =

∑
u∈Σn h(u) = 2s′n. Therefore as s > s′,

Sh(λ) =
∑

n∈N 2(s′−s)n is finite. If h is lower semicomputable, it follows that Sh is lower
semicomputable.

Combining the constructions given in the section, for any s > s′, we show the construction
of a binary s-gale from a continued fraction s′-gale, satisfying certain bounds on the capital
acquired.

This construction helps to establish a lower bound on effective continued fraction dimension
using effective binary dimension. It is also central in formulating a Kolmogorov complexity
characterization for continued fraction dimension.
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▶ Lemma 13. For s′ ∈ (0, ∞), let d : N∗ → [0, ∞) be a continued fraction s′- gale. Then,
for any s > s′, there exists a binary s-gale h : Σ∗ → [0, ∞) such that for any v ∈ N∗ and for
any b ∈ Σ∗ such that Cb ∩ Cv ̸= ϕ and 1

16 µ(v) ≤ µ(b) ≤ 2µ(v), we have

h(b) ≥ csd(v),

where cs is a constant that depends on s. Moreover, if d is lower semicomputable, then h is
lower semicomputable.

4 Kolmogorov Complexity characterization of Continued Fraction
Dimension

Mayordomo [16] extended the result by Lutz [11] to show that effective dimension of a binary
sequence X ∈ Σ∞ can be characterized in terms of the Kolmogorov complexity of the finite
prefixes of X.

▶ Theorem 14 (Mayordomo [16] and Lutz [11]). For every X ∈ Σ∞,

cdim(X) = lim inf
n→∞

K(X ↾ n)
n

.

We provide a similar characterization for effective continued fraction dimension. To
obtain the Kolmogorov complexity of a continued fraction string, we use the Kolmogorov
complexity of one of its binary encodings.

The idea of encoding a finite continued fraction using a 1-1 binary encoding is present
in Vishnoi [28]. The author presents an invariance theorem stating that every computable
binary 1-1 encoding of continued fractions defines the same Kolmogorov complexity, up to an
additive constant. Hence in this work, we use a new binary encoding to define Kolmogorov
complexity of continued fractions, which helps us establish the characterization of effective
dimension of continued fractions in a fairly simple manner while having intuitive geometric
meaning.

▶ Definition 15 (Many-one binary encoding). For a continued fraction string v ∈ N∗, let bv

be the leftmost maximal binary cylinder which is enclosed by Cv. We define E(v) = bv.

▶ Lemma 16. For any b ∈ Σ∗, there exists at most three v ∈ N∗ such that E(v) = b.

Therefore for any b ∈ Σ∗, at most three continued fraction cylinders, say [v], [v, i] and
[v, i, j] get mapped to b. Therefore we pad two additional bits of information to E(v), say
b1(v).b2(v) to identify the continued fraction cylinder that E(v) corresponds to.

▶ Definition 17 (One-one binary encoding). For v ∈ N∗, let E(v) = E(v).b1(v).b2(v). This
forms a one to one binary encoding of v.

We define Kolmogorov complexity of continued fraction string v ∈ N∗ as the Kolmogorov
complexity of E(v).

▶ Definition 18 (Kolmogorov complexity of continued fraction strings). For any v ∈ N∗, define
KE(v) = K(E(v)).

MFCS 2023



70:8 Effective Continued Fraction Dimension

Notation. By the invariance theorem of Vishnoi [28], for any v ∈ Σ∗, KE is at most an
additive constant more than the complexity of v as defined in [28]. Hence, we drop the suffix
and denote the above complexity as K(v).

In the proof of Theorem 14, Mayordomo [16] provides the construction of an s-gale that
succeeds on all X for which s > s′ > lim infn→∞

K(X↾n)
n . We extend the construction to the

setting of continued fractions.
Additionally, we take a convex combination of gales to remove the dependence of the s-gale

on the parameter s′. Due to this, we obtain the notion of an optimal lower semicomputable
continued fraction s-gale. This notion is crucial in the proofs we use in the upcoming sections.

▶ Definition 19. Given 0 < s′ < s ≤ 1 let

Gs′ = {w ∈ N∗ | K(w) ≤ −s′ log(µ(w))}.

Consider the following function ds′ : N∗ → [0, ∞) defined by

ds′(v) = 1
γs(v)

 ∑
w∈Gs′ ;v⊑w

γs′
(w) +

∑
w∈Gs′ ;w⊏v

γs′
(w) γ(v)

γ(w)

 .

Now for each i ∈ N, let si = s(1 − 2−i). Finally, define d∗ : N∗ → [0, ∞) by

d∗(v) =
∞∑

i=1
2−idsi

(v).

We now go on to show that the function d∗ given in Definition 19 is a lower semicomput-
able s-gale. Additionally, it succeeds on all continued fraction sequences Y for which the
Kolmogorov complexity of its prefixes, K(Y ↾ n) dips below s × − log(µ(Y ↿ n)) infinitely
often.

▶ Lemma 20. For any 0 < s ≤ 1, there exists a lower semicomputable continued fraction
s-gale d∗ : N∗ → [0, ∞) that succeeds on all Y ∈ N∞ such that lim inf

n→∞
K(Y ↿n)

− log(µ(Y ↿n)) < s.

We refer to Downey and Hirschfeldt’s (Theorem 13.3.4 [5]) proof of the lower bound
on constructive dimension using Kolmogorov complexity. The proof fundamentally uses
properties of the universal lower semicomputable super-martingale.

For any real having continued fraction dimension less than s, we obtain a lower semicom-
putable binary s-gale that succeeds on it from Lemma 13. We use the success of this binary
s-gale along with the same properties of the universal lower semicomputable super-martingale,
to prove the following lemma.

▶ Lemma 21. For any Y ∈ N∞ and any s > cdimCF (Y ), we have lim inf
n→∞

K(Y ↿n)
− log(µ(Y ↿n)) ≤ s.

Therefore, we have the following Kolmogorov complexity based characterization of effective
continued fraction dimension.

▶ Theorem 22. For any Y ∈ N∞,

dimCF (Y ) = lim inf
n→∞

K(Y ↿ n)
− log(µ(Y ↿ n)) .

Proof. For any Y ∈ N∞, let s∗ = lim inf
n→∞

K(Y ↿n)
− log(µ(Y ↿n)) .

For any s > s∗, from Lemma 20, it follows that there exists a lower semicomputable
s-gale D that succeeds on Y . Hence dimCF (Y ) ≤ s∗.

For any s > dimCF (Y ), from Lemma 21, we have that s∗ ≤ s. Therefore, we have
s∗ ≤ dimCF (Y ). ◀
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4.1 Optimal gales and effective continued fraction dimension of a set
Lutz [13] utilizes the notion of the optimal constructive subprobability supermeasure M on
the Cantor space [29] to provide a notion of an optimal constructive supergale.

We note that using Theorem 22, the gale that we obtain from Lemma 20 leads to an
analogous notion in the continued fraction setting. We call the continued fraction s-gale d∗

thus obtained as the optimal lower semicomputable continued fraction s-gale.

▶ Lemma 23. For any s > 0, there exists a lower semicomputable continued fraction s-gale
d∗ : N∗ → [0, ∞) such that for all Y ∈ N∞ with cdimCF (Y ) < s, d∗ succeeds on Y .

Proof. For all Y ∈ N∗ such that cdimCF (Y ) < s, from Theorem 22, it follows that
lim inf
n→∞

K(Y ↿n)
− log(µ(Y ↿n)) < s. Now applying Lemma 20, we see that the given lemma holds. ◀

Lutz (Theorem 4.1 in [13]) shows that the effective dimension of a set is precisely the
supremum of effective dimensions of individual elements in the set, that is for all X ⊆ [0, 1],
cdim(X) = supS∈X cdim(S). Using the notion of the optimal lower semicomputable continued
fraction s-gale from Lemma 23, we extend this result to continued fraction dimension.

▶ Theorem 24. For all F ⊆ [0, 1], cdimCF (F) = supY ∈F cdimCF (Y ).

Proof. For any s > cdimCF (F), for all Y ∈ F there exists a lower semicomputable continued
fraction s-gale that succeeds on Y . Thus we have supY ∈F cdimCF (Y ) ≤ s.

Take any any s > supY ∈F cdimCF (Y ). It follows that for all Y ∈ F , cdimCF (Y ) < s.
Therefore from Lemma 23, we have that there exists a lower semicomputable continued
fraction s-gale d∗ : N∗ → [0, ∞) that succeeds on all Y ∈ F . Therefore, cdimCF (F) ≤ s. ◀

5 Reals with unequal Effective Dimension and Effective Continued
Fraction Dimension

In this section, we show that for any set of reals F ⊆ [0, 1], the effective Hausdorff effective
dimension of F cannot exceed its effective continued fraction dimension. We show that this
cannot be improved to an equality. Hence, this inequality is strict in general. We show
this by proving the existence of a real such that its effective continued fraction dimension is
strictly greater its effective dimension.

5.1 Effective Hausdorff dimension is at most the effective continued
fraction dimension

▶ Theorem 25. For any F ⊆ [0, 1], cdim(F) ≤ cdimCF (F).

Proof. Let s > s′ > cdimCF (F). By definition, there exists a lower semicomputable
continued fraction s′-gale d : N∗ → [0, ∞) such that F ⊆ S∞[d].

Take any Y ∈ S∞[d]. Let X ∈ Σ∞ be the corresponding binary representation of Y . By
definition, for any m ∈ N, there exists an n ∈ N such that d(Y ↾ n) > m. Let v = Y ↾ n.

Using Lemma 7, we get two binary cylinders w1 and w2 such that Cv ⊆ Cw1 ∪ Cw2 such
that µ(w1) = µ(w2) ≤ 2µ(v). We have that since v ⊑ Y , w1 ⊑ X or w2 ⊑ X. Without loss
of generality assume that w1 ⊑ X.

From Lemma 13, we obtain a lower semicomputable s-gale h such that h(w1) ≥ cs.d(v) ≥
cs.m for some positive constant cs.

Since m is arbitrary, we see that h succeeds on X. ◀
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5.2 Reals with unequal effective Hausdorff and effective continued
fraction dimensions

We now provide the main construction of the paper, utilizing the results we show in previous
sections.

We first require some technical lemmas about the estimation of Lebesgue measure of a
continued fraction cylinder in terms of digits of the continued fraction. Some of the bounds
derived in this section may be of independent interest.

In combinatorial arguments, the Gauss measure is often difficult to deal with directly,
and it is convenient to use the Lebesgue measure, and derive inequalities.

The following equation, Proposition 1.2.7 in Kraaikamp and Iosifescu [9], is extremely
useful in deriving an estimate for the Lebesgue measure of continued fraction cylinders. We
derive consequences of this Lemma below, and these are crucial in estimating the dimension
of the continued fraction we construct in Section 5. Note that the bounds for Gauss measure
are not simple to derive directly.

▶ Lemma 26 (Kraaikamp, Iosifescu [9]). For any v = [a1, . . . an] and i ∈ N,

µ([v, i])
µ([v]) = sn + 1

(sn + i)(sn + i + 1)

where sn = [an, . . . a1] is the rational corresponding to the reverse of string v.

The lemma given above gives the following bounds on the Lebesgue measure of a continued
fraction cylinder in terms of the digits of the continued fraction.

▶ Lemma 27. For any v = [a1, . . . ak] ∈ Nk we have

k∏
i=1

1
(ai + 1)(ai + 2) ≤ µ(v) ≤

k∏
i=1

2
ai (ai + 1)

▶ Lemma 28. Let v = [a1 . . . ak] ∈ N∗. Then for any a, b ∈ N such that b > a,

µ

(
b⋃

i=a

[v, i]
)

≤ 2
a

k∏
i=1

2
ai (ai + 1)

The following lemma is a direct constructive extension of the proof by Lutz [12]. Using
this technique, we convert a set of computably enumerable prefix free binary covers into a
lower semicomputable binary s-gale.

▶ Lemma 29 (Lutz [12]). For all n ∈ N, and F ⊆ [0, 1], if there is a computably enumerable
prefix free binary cover {Bn

i } of F , such that
∑

i |Bn
i |s < 2−n, then there exists a lower

semicomputable binary s-gale that succeeds on F .

We now proceed to show the construction of the set F . The definition uses a parameter
s. We later go on to show that for all such F , there exists an element Y ∈ F such that the
effective continued fraction dimension of Y is greater than 0.5. We also go on to show that
cdim(F ) ≤ s.

We first provide the stage-wise construction of a set Fk ⊆ [0, 1], such that for each k ∈ N
Fk+1 ⊆ Fk. We then define the set F using an infinite intersection of the sets Fk.
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▶ Definition 30. Let 0 < s < 0.5. Define a1 = 1. For any k ∈ N, such that k > 1, define ak

inductively as:

ak = 2
(

k
k−1∏
i=1

100ai

)1/s

.

For any k ∈ N, define bk = 50.ak. Take F0 = λ.
Let Fk = {[v1 . . . vk] ∈ Nk such that vi ∈ [ai, bi] for i ∈ 1 to k}. Finally define

F =
∞⋂

k=1
Fk.

We use the bounds obtained from Lemma 26, along with basic properties of harmonic
numbers to prove the following property of measures of continued fraction sub cylinders.

▶ Lemma 31. For any x ∈ N∗ , s ≤ 0.5 and ak, bk ∈ N such that bk = 50.ak,
bk∑

i=ak

γs([x, i]) > cγs([x]) for some c > 1.

Using the bound derived above, we show that for s = 0.5, the optimal s-gale d∗ formulated
in Section 4.1 does not succeed on some sequence in Y ∈ F . Using this we establish that
cdimCF (Y ) ≥ 0.5.

▶ Lemma 32. There exists a Y ∈ F such that cdimCF (Y ) ≥ 0.5.

Proof. Let s = 0.5. Consider the continued fraction s-gale d∗ from Lemma 23. It follows
that for all Y ∈ N∗, if d∗ does not succeed on any Y ∈ N∗, then cdimCF (Y ) ≥ s.

Consider any v ∈ N∗, let rank(v) = k. From lemma 31, we have that for some c > 1,
bk∑

i=ak

γs([v, i]) > c.γs([v]).

Now if ∀i ∈ [ak, bk], d∗([v, i]) ≥ 1
c .d∗(v), from the s-gale condition it follows that

d∗(v)γs(v) ≥ d∗(v)
c

bk∑
i=ak

γs([v, i]) > d∗(v)γs(v), which is a contradiction.

Therefore, it follows that for all v ∈ N∗, there exists some nv ∈ [ak, bk] such that
d∗([v, i]) < 1

c .d∗([v]).
Let v0 = λ, for each i ∈ N, we define vi = [vi−1, nvi−1 ]. Take Y = ∩∞

i=1Cvi
, it follows that

Y ∈ F . Taking d∗(λ) = k we get d∗(Y ↾ n) < k
cn . Therefore the continued fraction s-gale d∗

does not succeed on Y . Hence cdimCF (Y ) ≥ 0.5. ◀

From this, it follows that the constructive dimension of the entire set F is also greater
than or equal to 0.5.

▶ Lemma 33. cdimCF (F) ≥ 0.5.

Proof. From Theorem 24, we get that cdimCF (F) = supY ∈F cdimCF (Y ). From Lemma 32,
it follows that there exists a Y ∈ F such that cdimCF (Y ) ≥ 0.5. Combining these two, we
get that cdimCF (F) ≥ 0.5. ◀

Now we show that the effective Hausdorff dimension of all points in the set F is less than
s. Using ideas from [2], we devise a set of covers Sk for F , by combining adjacent continued
fraction cylinders into a single cover.

Using the bounds derived on Lebesgue measure of continued fraction cylinders, we show
that for the set of covers Sk for F , the s-dimensional Hausdorff measure shrinks arbitrarily
small.
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▶ Lemma 34. For k ∈ N, let Sk = {
bk⋃

i=ak

[v, i] for v ∈ Fk−1}. Then,
∑

S∈Sk

µs(S) ≤ 1/k.

Proof. The largest element in Sk is I = [(a1 . . . ak−1, ak), [(a1 . . . ak−1, bk)]. The number of
elements in Sk equals

∏k−1
i=1 (bi − ai). Additionally, we have bi = 50ai for all i ∈ N. Therefore,

∑
S∈Sk

µs(S) ≤ µs(I)
k−1∏
i=1

50ai.

From Lemma 28, it follows that µ(I) ≤ 2
ak

k−1∏
i=1

2
ai (ai+1) . Therefore,

∑
S∈Sk

µs(S) ≤
( 2

ak

k−1∏
i=1

2
a2

i

)s k−1∏
i=1

(50ai)

≤ 2s

as
k

k−1∏
i=1

100ai

Since ak = 2(k
k−1∏
i=1

100ai)1/s, this value is less than 1/k. ◀

To show that the constructive dimension of F is less than s, we construct a lower
semicomputable binary s-gale that succeeds on F . Using standard techniques, we first
convert the covers obtained in Lemma 34 to a set of binary covers of F . Finally applying
Lemma 29, we convert the binary covers into a semicomputable s-gale that succeeds on F .

▶ Lemma 35. cdim(F) ≤ s.

Proof. Given k ∈ N, from Lemma 34, we have that for Sk = {
⋃bk

i=ak
[v, i] for v ∈ Fk−1},∑

S∈Sk
µs(S) ≤ 1/k. For each S ∈ Sk, using Lemma 7, we get that for the two smallest

consecutive binary cylinders say b1(S) and b2(S) that cover S, we have that µ(b1) = µ(b2) ≤
2µ(C).

Hence the set Bk = {{b1(S)} ∪ {b2(S)} such that S ∈ Sk} forms a binary cover of Sk.
Also from Lemma 7, we have that

∑
b∈Bk

µs(b) ≤ 21+s∑
S∈Sk

µs(S) ≤ 21+s/k.
Note that the set Sk is computable as ak and bk are computable for all k. Given any

interval S, b1(S) and b2(S) are also computable. Hence the set Bk is computable.
Since Bk is a finite set, we can remove all v ∈ Bk such that u ⊏ v for some u ∈ Bk, to

make Bk prefix free.
For an n ∈ N, taking k = ⌈21+s.2n⌉, the set Bk forms a computably enumerable prefix

free binary cover of F such that
∑

b∈Bk
µs(b) ≤ 2−n.

Applying Lemma 29, we get that there exists a lower semicomputable s-gale that succeeds
on F . Hence the lemma holds. ◀

We sum up the results from Lemma 32 and Lemma 35 into the following theorem.

▶ Theorem 36. Given any 0 < ε < 0.5, there exists a Y ∈ N∗ such that cdimCF (Y ) ≥ 0.5
and cdim(Y ) ≤ ε.

Proof. Given 0 < ε < 0.5, taking s = ε, construct the set F given in Definition 30.
From Lemma 32, it follows that there exists a Y ∈ F such that cdimCF (Y ) ≥ 0.5.
From Lemma 35, it follows that for all X ∈ F , cdim(X) ≤ ε. Hence cdim(Y ) ≤ ε. ◀
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A Appendix

A.1 Proof of Lemma 13
Proof. Given an s′-gale d : N∗ → [0, ∞), let h′ = Hd, the proportional binary s′-gale of d

given in Definition 10.
For a v ∈ N∗, consider the smallest w1, w2 ∈ Σ∗ such that Cv ⊆ Cw1 ∪ Cw2 . Also we can

see that there exists a S ⊆ I(w1) ∪ I(w2) such that Cv = ∪u∈SCu.
Therefore from Lemma 8, we get h′(w1) + h′(w2) ≥ d(v) γs′

(v)
µs′ (w1) . From Lemma 7, we

get that µ(w1) = µ(w2) ≤ 2µ(v). Also from Lemma 5, we have that γ(v) ≤ (ln2)−1µ(v).
Therefore, h′(w1) + h′(w2) ≥ (2ln2)−s′

d(v). Now for any s > s′, we have that h′(w1) +
h′(w2) ≥ c1.d(v), where c1 = 1/(2ln2)s.

Now for any s > s′, consider the smoothed s-gale h = SHd
of the s′-gale Hd given in

Definition 11.
Let |w1| = n , and let W1 = P (P (w1)) be the parent cylinder of parent of w1. Similarly

let W2 = P (P (w2)). We see that for any W ∈ {W1, W2}, hn(W ) ≥ 2s(n−2) h′(w1)+h′(w2)
2 ≥

c2.2sn.d(v), where c2 = 2−(2s+1)c1.
Take any any b ∈ Σ∗ such that Cb ∩ Cv ̸= ϕ and 2.µ(v) ≥ µ(b) ≥ 1

16 µ(v). Since
µ(b) ≤ 2µ(v) and µ(v) ≤ 2.µ(w1), it follows that for some W ∈ {W1, W2}, W ⊑ b. Also since
µ(b) ≥ 1

16 µ(v), we have that, µ(b) ≥ 1
32 µ(w1).

Therefore, we have that hn(b) ≥ 25(s−1)hn(W ) ≥ c3.2sn.d(v), where c3 = c2.25(s−1).
Since h(b) ≥ 2−snhn(b), we have that h(b) ≥ c3.d(v). ◀

A.2 Proof of Lemma 31
Proof. From Lemma 26, it follows that

bk∑
an

µs([x, i])
µs([x]) =

bk∑
an

(
sk + 1

(sk + i)(sk + i + 1)

)s

≥
bk∑
ak

(
1

(i + 1)(i + 2)

)s

The second inequality follows from the fact that sk ∈ [0, 1].
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Using Lemma 5, we get that

bk∑
an

γs([x, i])
γs([x]) ≥

bk∑
ak

(
1

2(i + 1)(i + 2)

)s

Putting bk = 50ak and s ≤ 0.5, we get

bk∑
an

γs([x, i])
γs([x]) ≥ 1

2

50ak∑
ak

1
i + 2

= 0.5(H(50ak + 2) − H(ak + 1)).

where Hn is the nth Harmonic number. From the fact that ln n ≤ Hn ≤ ln n + 1, we have

H(50ak + 2) − H(ak + 1) ≥ ln(50.ak) − ln(2.ak) − 1
= ln(25) − 1.

The lemma holds as 0.5(ln 25 − 1) is greater than 1. ◀
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Abstract
A rewb is a regular expression extended with a feature called backreference. It is broadly known
that backreference is a practical extension of regular expressions, and is supported by most modern
regular expression engines, such as those in the standard libraries of Java, Python, and more.
Meanwhile, indexed languages are the languages generated by indexed grammars, a formal grammar
class proposed by A.V.Aho. We show that these two models’ expressive powers are related in the
following way: every language described by a rewb is an indexed language. As the smallest formal
grammar class previously known to contain rewbs is the class of context sensitive languages, our
result strictly improves the known upper-bound. Moreover, we prove the following two claims: there
exists a rewb whose language does not belong to the class of stack languages, which is a proper
subclass of indexed languages, and the language described by a rewb without a captured reference is
in the class of nonerasing stack languages, which is a proper subclass of stack languages. Finally, we
show that the hierarchy investigated in a prior study, which separates the expressive power of rewbs
by the notion of nested levels, is within the class of nonerasing stack languages.
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1 Introduction

A rewb is a regular expression empowered with a certain extension, called backreference, that
allows preceding substrings to be used later. It is closer to practical regular expressions
than the pure ones, and supported by the standard libraries of most modern programming
languages. A typical example of a rewb follows:

▶ Example 1. Let Σ be the alphabet {a, b}. The language L(α) described by the rewb
α = (1(a + b)∗)1 \1 is {ww | w ∈ Σ∗}. Intuitively, α first captures a preceding string w ∈
L((a + b)∗) by (1 )1, and second references that w by following \1. Therefore, α matches
ww. Because this L(α) is a textbook example of a non-context-free language (and therefore
non-regular), the expressive power of rewbs exceeds that of the pure ones.

In 1968, A.V.Aho discovered indexed languages with characterizations by two equiv-
alent models: indexed grammars and (one-way1 nondeterministic, or 1N) nested stack
automata (NSA) [1, 2]. The class of indexed languages is a proper superclass of context free
languages (CFL), and a proper subclass of context sensitive languages (CSL) [1].

1 “One-way” means that the input cursor will not move back to left. The antonym is “two-way.”
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Berglund and van der Merwe [4], and Câmpeanu et al. [5] have shown that the class of
rewbs is incomparable with the class of CFLs and is a proper subclass of CSLs. As the
first main contribution of this paper, we prove that the language described by a rewb is an
indexed language. Since the class of CSLs was the previously known best upper-bound of
rewbs, our result gives a novel and strictly tighter upper-bound.

Meanwhile, there is a class of the languages called stack languages [8, 7]. This class
corresponds to the model (1N) stack automata (SA), a restriction of NSA. Hence, it trivially
follows that the class of stack languages is a subclass of indexed languages. Actually, this
containment is known to be proper [2]. Furthermore, a model called nonerasing stack
automata (NESA) has been studied in papers such as [8, 11, 14], and its language class is
known to be a proper subclass of stack languages [14].

In this paper, we show that every rewb without a captured reference (that is, one in which
no reference \i appears as a subexpression of an expression of the form (jα)j) describes a
nonerasing stack language. Given our result, the following question is natural: does every
rewb describe a (nonerasing) stack language? We show that the answer is no. Namely, we
show a rewb that describes a non-stack language. Finally, Larsen [12] has proposed a notion
called nested levels of a rewb and showed that they give rise to a concrete increasing hierarchy
of expressive powers of rewbs by exhibiting, for each nested level i ∈ N, a language Li that is
expressible by a rewb at level i but not at any levels below i. We show that this hierarchy is
within the class of nonerasing stack languages, that is, there exists an NESA Ai recognizing
Li for every nested level i. Below, we summarize the main contributions of the paper.
(a) Every rewb describes an indexed language. (Section 4, Corollary 16)
(b) Every rewb without a captured reference describes a nonerasing stack language.

(Section 4, Corollary 17)
(c) There exists a rewb that describes a non-stack language. (Section 5, Theorem 18)
(d) The hierarchy given by Larsen [12] is within the class of nonerasing stack languages.

(Section 6, Theorem 20)
Note that by (b) and (c), it follows that there is a rewb that needs capturing of references
(Section 5, Corollary 19). See also Figure 2 for a summary of the results.

The rest of the paper is organized as follows. Section 2 discusses related work. Section 3
defines preliminary notions used in the paper such as the syntax and semantics of rewb, SA,
NESA, and NSA. Sections 4, 5, and 6 formally state and prove the paper’s main contributions
listed above. Section 7 concludes the paper with a discussion on future work. For space, the
proofs are in the full paper [13].

2 Related Work

First, we discuss related work on rewbs. There are several variants of the syntax and
semantics of rewbs since they first appeared in the seminal work by Aho [3]. A recent study
by Berglund and van der Merwe [4] summarizes the variants and the relations between
them. In sum, there are two variants of the syntax, whether or not a same label may
appear as the index of more than one capture (“may repeat labels”, “no label repetitions”),
and two variants of the semantics, whether an unbound reference is interpreted as the
empty string or an undefined factor (ε-semantics, ∅-semantics). As shown in [4], there is
no difference in the expressive powers between these two semantics under the “may repeat
labels” syntax (therefore, there are three classes with different expressive powers, namely
“no label repetitions” with ∅-semantics, “no label repetitions” with ε-semantics, and “may
repeat labels”). In this paper, we focus on the “may repeat labels” formalization, which has
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the highest expressive power of the three and is often studied in formal language theory. We
adopt the ε-semantics as the semantics of rewbs. Note that the pioneering formalization of
rewbs given by Aho [3] has the equivalent expressive power as this class. The rewbs with
“may repeat labels” with ε-semantics was recently proposed by Schmid with the notion of
ref-words and dereferences [15]. Simultaneously, he proposed a class of automata called
memory automata (MFA), and showed that its expressive power is equivalent to that of
rewbs. Freydenberger and Schmid extended MFA to MFA with trap-state [6]. Berglund and
van der Merwe [4] showed that the class of Schmid’s rewbs is a proper subclass of CSLs,
and is incomparable with the class of CFLs. Note that there is a pumping lemma for the
formalization given by Câmpeanu et al. [5] but it is known not to work for Schmid’s rewbs.
As mentioned above, Larsen introduced the notion of nested levels and showed that increase
in the levels increases the expressive powers of rewbs [12].

Next, we discuss related work on the three automata used throughout the paper, namely
SA, NESA, and NSA. Ginsburg et al. introduced SA as a mathematical model that is more
powerful than pushdown automaton (PDA), and NESA as a restricted version of SA [8].
Hopcroft and Ullman discovered a type of Turing machine corresponding to the class of
two-way NESA [11]. Ogden proposed a pumping lemma for stack languages and nonerasing
stack languages [14]. Aho proposed NSA with a proof of the fact that (1N) NSA and indexed
grammars given by himself in [1] are equivalent in their expressive powers, and recognized
PDA and SA as special cases of NSA [2]. Aho also showed that the class of indexed languages
is a proper superclass of CFLs, and a proper subclass of CSLs [1]. Hayashi proposed a
pumping lemma for indexed languages [9].

3 Preliminaries

In this section, we formalize the syntax and the semantics of rewbs following the formalization
given in [6]. We begin with the syntax. Let Σε = Σ ⊎ {ε} and [k] = {1, 2, . . . , k}, where the
symbol ⊎ denotes a disjoint union.

▶ Definition 2. For each natural number k ≥ 1, the set of k-rewbs over Σ, written REWBk,
and the mapping var : REWBk → P([k]) are defined as follows, where a ∈ Σε and i ∈ [k]:

(α, var(α)) ::=(a, ∅) | (\i, {i}) | (α0α1, var(α0) ∪ var(α1)) | (α0 + α1, var(α0) ∪ var(α1))
| (α∗

0, var(α0)) | ((jα0)j , var(α0) ⊎ {j}) where j ∈ [k]\ var(α0).

We also write REWB0 for the set REG of regular expressions over Σ, and REWB for the set
of all rewbs, namely

⋃
k≥0 REWBk.

▶ Example 3. For example, ε, a, \1, a∗\1, (1a∗)1, ((1a∗)1)∗, (2a∗)2\2, (1a∗)1(2b∗)2(\1 + \2),
(2(1(a + b)∗)1\1)2 \2 (2\1)2

∗, ((1\4 a)1 (2\3)2 (3\2 a)3 (4\1\3)4)∗ are rewbs. On the other
hand, (1(1a∗)1)1, (1a∗ \1)1, (1(2(1a∗)1)2)1 are not rewbs.

Note that this syntax allows multiple occurrences of captures with the same label, that
is, we adopt the “may repeat labels” convention. Next, we define the semantics.

▶ Definition 4. Let Bk = { [i, ]i | i ∈ [k]}. The mapping Rk : REWBk → P((Σ ⊎ Bk ⊎ [k])∗)
is defined as follows, where a ∈ Σε and i ∈ [k]:

Rk(a) = {a} , Rk(\i) = {i} , Rk(α0α1) = Rk(α0)Rk(α1),
Rk(α0 + α1) = Rk(α0) ∪ Rk(α1), Rk(α∗) = Rk(α)∗, Rk((iα)i) = {[i} Rk(α) {]i} .

We let Σ[∗]
k denote

⋃
α∈REWBk

Rk(α).

MFCS 2023
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▶ Example 5. Rk((1(a + b)∗)1\1) = {[1} {a, b}∗ {]1} {1} =
{

[1 w ]1 1
∣∣ w ∈ {a, b}∗}

.

That is, we first regard a rewb α over Σ as a regular expression over Σ⊎Bk ⊎ [k], deducing
the language Rk(α). The second step, described next, is to apply the dereferencing (partial)
function Dk : (Σ ⊎ Bk ⊎ [k])∗ ⇀ Σ∗ to each of its element.

We give an intuitive description of Dk. First, Dk scans its input string from the beginning
toward the end, seeking i ∈ [k]. If such i is found, Dk replaces this i with the substring
obtained by removing the brackets in v that comes from the preceding [i v ]i if [i exists (if
this [i has no corresponding ]i, Dk becomes undefined). Otherwise, Dk replaces this i with ε.
The dereferencing function Dk repeats this procedure until all elements of [k] appearing in
the string are exhausted, then removes all remaining brackets. We let v[r] denote the string
which Dk scans at the rth number nr ∈ [k] at the rth loop (see the full version [13] for the
formal definitions of Dk and v[r]).
1. [1a [2b]2 2 ]1 1. In this example, Dk encounters n1 = 2 first, and this 2 corresponds

the preceding [2b]2, therefore this 2 is replaced with v[1] = b. As a result, the input
string becomes [1a [2b]2 b ]1 1. Dk repeats this process again. Now, Dk locates n2 = 1
corresponding the preceding [1a [2b]2 b ]1, so this 1 is replaced with v[2] = a[2b]2b but with
the brackets erased. Therefore we gain [1a [2b]2 b ]1 abb. Finally, Dk removes all remaining
brackets and produces abbabb. Here is the diagram: [1a [2b]2 2 ]1 1 → [1a [2b]2 b ]1 1 →
[1a [2b]2 b ]1 abb → abbabb.

2. [1a]1 1 [1bb]1 1. In this example, n1 = n2 = 1, v[1] = a, v[2] = bb, and

[1a]1 1 [1bb]1 1 → [1a]1 a [1bb]1 1 → [1a]1 a [1bb]1 bb → aabbbb.

3. abc 1 2. In this example, n1 = n2 = 1, v[1] = v[2] = ε, and abc 1 2 → abc 2 → abc.

Note that an unbound reference is replaced with the empty string ε, that is, we adopt
the ε-semantics. However, as mentioned in Section 2, this semantics’ expressive power is
equivalent to that of the ∅-semantics under the “may repeat labels” convention (see [4]
for the proof). We define the language L(α) denoted by a k-rewb α ∈ REWBk to be
Dk(Rk(α)) = {Dk(v) | v ∈ Rk(α)} (Lemmas 6 and 8 ensure that L(α) is well-defined).

Let g : (Σ ⊎ Bk)∗ → Σ∗ denote the free monoid homomorphism where g(x) is x for each
x ∈ Σ, and ε for each x ∈ Bk. Every v ∈ (Σ ⊎ Bk ⊎ [k])∗ can be written uniquely in the form
v = v0n1v1 · · · nmvm, where m ≥ 0 (denoted by cnt v), and vr ∈ (Σ ⊎ Bk)∗ and nr ∈ [k] for
each r ∈ {0, . . . , m}. Here, let y0 ≜ v0 and for each r ∈ {1, . . . , m}, yr ≜ v0n1v1 · · · nrvr. A
string v = v0n1v1 · · · nmvm over Σ ⊎ Bk ⊎ [k] is said to be matching if

∀r ∈ {1, . . . , m} . ∀x1, x2. yr−1 = x1[nr
x2 =⇒ (∃x′

2, x3.x2 = x′
2]nr

x3 ∧ x′
2 /∋ [nr

, ]nr
)

holds. Intuitively, a string v being matching means that for all nr ∈ [k] in v, if there exists
a left bracket [nr

in the string immediately before nr, then there is a right bracket ]nr
in

between this [nr
and nr. The following three lemmas follow.

▶ Lemma 6. Given a matching string v, Dk(v) = g(v0) g(v[1]) g(v1) · · · g(v[m]) g(vm).

▶ Lemma 7. A prefix of a matching string is matching. That is, if we decompose a string v

into v = xy, x is matching. Moreover, x[r] = v[r] holds for each r = 1, . . . , cnt x (≤ cnt v).

▶ Lemma 8. Every v ∈ Σ[∗]
k is matching.

Next, we recall the notions of SA, NESA, and NSA. In this paper, we unify their definitions
based on [2, 7] to clarify the different capabilities of these models. First, we review NFA.
Here is the definition in the textbook by Hopcroft et al. [10]:
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▶ Definition 9 ([10], p.57). A nondeterministic finite automaton N is a 5-tuple (Q, Σ, δ, q0, F ),
where Q is a finite set of states, Σ a finite set of input symbols (also called alphabet), q0 ∈ Q

a start state, F ⊆ Q a set of final states, and δ : Q × Σ → P(Q) a transition function.

As well known, the transition function δ can be extended to δ̂ : Q × Σ∗ → P(Q) where
δ̂(q, w) represents the set of all states reachable from q via w. Let q

a−→
N

q′ denote q′ ∈ δ(q, a),

and q
w=⇒
N

q′ denote q′ ∈ δ̂(q, w). With this notation, the language of an NFA N can be

written as follows: L(N) =
{

w ∈ Σ∗
∣∣∣ ∃qf ∈ F. q0

w=⇒
N

qf

}
.

A pushdown automaton (PDA) is an NFA equipped with a stack such that the PDA may
write and read its stack top with a transition. A stack automaton (SA) is “an extended PDA”,
which can reference not only the top but inner content of the stack. That is, while the stack
pointer of a PDA is fixed to the top, an SA allows its pointer to move left and right and read
a stack symbol pointed to by the pointer. However, the only place on the stack that can be
rewritten is the top, as in PDA. Formally, a (1N) SA A is a 9-tuple (Q, Σ, Γ, δ, q0, Z0, #, $, F )
satisfying the following conditions: the components Q, Σ, q0 and F are the same as those of
NFA. Γ ( ̸= ∅) is a finite set of stack symbols, and Z0 ∈ Γ is an initial stack symbol. The stack
symbol # /∈ Σ ∪ Γ (resp. $ /∈ Σ ∪ Γ) is always and only written at the leftmost (bottom)
(resp. the right most (top)) of the stack.2 The transition function δ has the following two
modes, where L, S, R /∈ (Σ ∪ Γ) ⊎ {#, $}, ∆i ≜ {S, R}, and ∆s ≜ {L, S, R}:

(i) (pushdown mode) Q × Σ × Γ$ → P(Q × ∆i × Γ∗$),
(ii) (stack reading mode) (a) Q×Σ×Γ$ → P(Q×∆i×{L}), (b) Q×Σ×Γ → P(Q×∆i×∆s),

(c) Q × Σ × {#} → P(Q × ∆i × {R}).

Intuitively, δ works as follows (Definition 10 provides the formal semantics). (i) The
statement (q′, d, w$) ∈ δ(q, a, Z$) says that whenever the current state is q, the input symbol
is a, and the pointer references the top symbol Z, the machine can move to the state q′,
move the input cursor along d, and replace Z with the string w. (ii) The statement (b)
(q′, d, e) ∈ δ(q, a, Z) says that whenever the current state is q, the input symbol is a, and
the pointer references the symbol Z, the machine can move to the state q′, move the input
cursor along d, and move the pointer along e. The statements (a) and (c) are similar to (b)
except that the direction in which the pointer can move is restricted lest the pointer go out
of the stack. In particular, an SA that cannot erase a symbol once written on the stack is
called a nonerasing stack automaton (NESA). That is, a (1N) nonerasing stack automaton
is an SA whose transition function δ satisfies the condition that, in (i) (pushdown mode),
(q′, d, w$) ∈ δ(q, a, Z$) implies w ∈ ZΓ∗. To formally describe how SA works, we define a
tuple called instantaneous description (ID), which consists of a state, an input string, and a
string representation of the stack, and define the binary relation ⊢A over the set of these
tuples. Let L = −1, S = 0, and R = 1.

▶ Definition 10. Let A be an SA (Q, Σ, Γ, δ, q0, #, $, F ). An element of the set I =
Q × Σ∗ × {#} (Γ ⊎ {↿})∗ {$} is called instantaneous description, where the stack symbol
↿ /∈ Γ stands for the position of stack pointer. Moreover, let ⊢A (or ⊢ when A is clear) be the
smallest binary relation over I satisfying the following conditions:

2 These special symbols #, $ representing “bottom” and “top” of the stack respectively do not appear
in [7] and are introduced anew in this paper to define NESA and NSA, which will be defined later, in
the style of [2]. In fact, SA defined in [7] is not capable of directly discerning whether the stack pointer
is at the top or not. Although it is not difficult to see that directly adding the ability does not increase
the expressive power of SA, the ability is directly in NESA as seen in [11, 14]. Therefore, to make it
easy to see that NESA is a restriction of SA, we define SA to also directly have the ability.
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(i) (q, ai · · · ak, #yZ ↿$) ⊢A (q′, ai+d · · · ak, #yw ↿$) if (q′, d, w$) ∈ δ(q, ai, Z$).3
(ii) (a) (q, ai · · · ak, #yZ ↿$) ⊢A (q′, ai+d · · · ak, #y ↿Z$) if (q′, d, L) ∈ δ(q, ai, Z$).

(b) if (q′, d, e) ∈ δ(q, ai, Z) and Z = Zj , 1 ≤ j < n, then
(q, ai · · · ak, #Z1 · · · Zj ↿ · · · Zn$) ⊢A (q′, ai+d · · · ak, #Z1 · · · Zj+e ↿ · · · Zn$).

(c) (q, ai · · · ak, #↿Zy $) ⊢A (q′, ai+d · · · ak, #Z ↿y $) if (q′, d, R) ∈ δ(q, ai, #).

Note that L /∈ ∆i, which means the input cursor will not move back to left. We say
that A accepts w ∈ Σ∗ if there exist y1, y2 ∈ Γ∗, and qf ∈ F such that (q0, w, #Z0 ↿$) ⊢∗

A

(qf , ε, #y1 ↿y2 $). Let L(A) denote the set of all strings accepted by A.

We next define nested stack automaton (NSA) which is SA extended with the capability
to create and remove substacks. For instance, suppose that the stack is #a1a2 ↿a3$ and we
are to create a new substack containing b1b2:

#a1¢ b1b2 ↿$ a2a3$. (1)

Note that the new substack ¢ b1b2 $ is embedded below the symbol a2 indicated by the
stack pointer, and the pointer moves to the top of the created substack. The creation of the
inner substack narrows the range within which the stack pointer can move as indicated by
the underlined part #a1¢ b1b2 ↿$. While the bottom of the entire stack is always fixed by
the leftmost symbol #, the top of the embedded substack is regarded as the top of the entire
stack. The inner substacks are allowed to be embedded endlessly and everywhere, whereas
the writing in the pushdown mode is still restricted to the top of the stack:

#a1¢ b1b2 ↿$ a2a3$ L→ #a1¢ b1 ↿b2 $ a2a3$ create−→ #a1¢ ¢ c1c2 ↿$ b1b2$ a2a3$, (2)

#a1¢↿b1b2 $ a2a3$ L→ #a1 ↿¢ b1b2 $ a2a3$ create−→ #¢ c1c2 ↿$ a1¢ b1b2 $ a2a3$. (3)

We must empty the inner substack and then remove itself in advance whenever we want to
reference the right side of the inner substack such as a2, a3. For example, let us empty the
inner substack by popping twice from (1) and then removing it:

#a1¢ b1b2 ↿$ a2a3$ pop→ #a1¢ b1 ↿$ a2a3$ pop→ #a1¢↿$ a2a3$ destruct−→ #a1a2 ↿a3$. (4)

Notice that the stack pointer moves to the right after removing the inner substack. We now de-
fine NSA formally. A (1N) nested stack automaton A is a 10-tuple (Q, Σ, Γ, δ, q0, Z0, #, ¢, $, F )
satisfying the following conditions: the components Q, Σ, Γ, q0, Z0, #, $ and F are the
same as those of SA. The stack symbol ¢ /∈ Σ ∪ Γ represents the bottom of a substack.4 The
transition function δ has the following four modes, where Γ′ ≜ Γ ⊎ {¢}:

(i) (pushdown mode) Q × Σ × Γ$ → P(Q × ∆i × Γ∗$).
(ii) (stack reading mode) (a) Q×Σ×Γ′$ → P(Q×∆i×{L}), (b) Q×Σ×Γ′ → P(Q×∆i×∆s),

(c) Q × Σ × {#} → P(Q × ∆i × {R}).
(iii) (stack creation mode) Q × Σ × (Γ′ ⊎ Γ′$) → P(Q × ∆i × {¢} Γ∗$).
(iv) (stack destruction mode) Q × Σ × {¢} $ → P(Q × ∆i).

Moreover, we define how NSA works with ID and ⊢ in the same manner as SA. Given
an NSA A = (Q, Σ, Γ, δ, q0, Z0, #, ¢, $, F ), we define ID, ⊢A, and L(A) in the same way as
Definition 10 (however, we let I be Q × Σ∗ × {#} (Γ ⊎ {¢, $, ↿})∗ {$}). Here, we only give
the rules corresponding to (iii) and (iv) in the definition of δ (the others are essentially the
same as those of SA):

3 We regard ak+1 · · · ak as ε.
4 Note that the bottom of the entire stack is always represented by # and not ¢, as mentioned above.
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(iii) if (q′, d, ¢w$) ∈ δ(q, ai, Z) and Z = Zj , 1 ≤ j < n, then
(q, ai · · · ak, #Z1 · · · Zj ↿ · · · Zn$) ⊢A (q′, ai+d · · · ak, #Z1 · · · ¢w ↿$Zj · · · Zn$),

and (q, ai · · · ak, #yZ ↿$) ⊢A (q′, ai+d · · · ak, #y ¢w ↿$Z$) if (q′, d, ¢w$) ∈ δ(q, ai, Z$).
(iv) (q, ai · · · ak, #y1¢↿$Zy2$) ⊢A (q′, ai+d · · · ak, #y1Z ↿y2$) if (q′, d) ∈ δ(q, ai, ¢$).

4 Every rewb describes an indexed language

As described above, to obtain the language L(α) described by a k-rewb α, we derive the
regular language Rk(α) over the alphabet Σ ⊎ Bk ⊎ [k] first, then apply the dereferencing
function Dk to every element of Rk(α). Using this observation, we construct an NSA Aα

recognizing the language L(α) as follows.
The NSA Aα is based on an NFA N recognizing the language Rk(α), in the sense that

each transition in Aα comes from a corresponding transition of N . The NFA N has the
alphabet Σ ⊎ Bk ⊎ [k], and so handles three types of characters. For each transition q

a−→
N

q′

with a ∈ Σ, i.e., moving from q to q′ by an input symbol a, Aα also has the same transition
except pushing a to the stack, denoted by q

a/$→a$−→ q′. For each transition q
b−→
N

q′ with
b ∈ Bk, i.e., moving by a bracket b, Aα has the transition pushing b without consuming
input symbols, denoted by q

ε/$→b$−→ q′.5 For each transition q
i−→

N
q′ with i ∈ [k], Aα has a

large “transition” that consists of several transitions. In this “transition,” Aα first seeks the
left bracket [i of the bracketed string [i v]i within the stack, and checks if the input from
the cursor position matches v character by character while consuming the input, and finally
moves to q′ if all characters of v matched.

A difficult yet interesting point is that NSA cannot check v against the stack and push v

onto the stack at the same time, that is, after checking a character c of v, if Aα wants to
push c to the stack, Aα must leave from v, climb up the stack toward the top, and write c.
However, after the push, Aα becomes lost by not knowing where to go back to. How about
marking the place where Aα should return in advance? Unfortunately, that does not work;
NSA can insert such marks anywhere by creating substacks, but due to the restriction of
NSA, it cannot go above the position of the mark, much less climb up to the top. Therefore,
NSA cannot directly push the result of a dereference onto the stack.

We cope with this problem as follows. We allow j ∈ [k] to appear in v, and for each
appearance of j in the checking of v, Aα pauses the checking and puts a substack containing
the current state as a marker at the stack pointer position. Then, Aα searches down the
stack for the corresponding bracketed string [jv′]j , and begins checking v′ if it is found. By
repeating this process, Aα eventually reaches a string v′′ ∈ (Σ⊎Bk)∗ containing no characters
of [k]. Once done with the check of v′′, Aα climbs up toward the stack top, finds a marker p

denoting the state to return to, and resumes from p after deleting the substack containing
the marker. By repeating this, if Aα returns to the position where it initially found j, it has
successfully consumed the substring of the input string corresponding to the dereference of j.
The following lemma is immediate.

▶ Lemma 11. Let k ≥ 1 and α ∈ REWBk. There exists an NFA (Q, Σ ⊎ Bk ⊎ [k], δ, q0, F )
over Σ ⊎ Bk ⊎ [k] recognizing Rk(α) all of whose states can reach some final state, that is,
∀q ∈ Q. ∃w ∈ (Σ ⊎ Bk ⊎ [k])∗. ∃qf ∈ F. q

w=⇒
N

qf .

5 Strictly speaking, our NFA (cf. Definition 9) does not allow consuming the empty string ε. However, we
can realize the transition q

ε/$→b$−→ q′ alternatively by adding q
c/$→b$,S−→ q′ for each c ∈ Σ, i.e., moving

by c with the input cursor fixed.
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▶ Corollary 12. Let N be the NFA in Lemma 11. For all q ∈ Q and for all w ∈ (Σ⊎Bk ⊎[k])∗,
if q0

w=⇒
N

q then w is matching (see the full version [13] for the proof).

We show the main theorem (the proof sketch is coming later):

▶ Theorem 13. For every rewb α ∈ REWB, there exists an NSA that recognizes L(α).

The claim obviously holds when α is a pure regular expression (i.e., α ∈ REWB0).
Suppose that α ∈ REWBk with k ≥ 1. By Lemma 11, there is an NFA N = (QN , Σ ⊎
Bk ⊎ [k], δN , q0, F ) that recognizes Rk(α) and satisfies Corollary 12. We construct an
NSA Aα = (Q, Σ, Γ, δ, q0, Z0, #, ¢, $, F ) as follows. Let Q ≜ QN ⊎ {ci, ei, ri | i ∈ [k]} ⊎
{Wq | q ∈ QN } ⊎ {Ep,i, Lp,i | p ∈ QN ⊎ {ei | i ∈ [k]} , i ∈ [k]}, Γ ≜ Σ ⊎ Bk ⊎ [k] ⊎ Q ⊎ {Z0},
and let δ be the smallest relation that, for all a ∈ Σ, b ∈ Bk, c ∈ Σ, i, j ∈ [k], q, q′ ∈ QN ,
Z ∈ Γ and p ∈ QN ⊎ {ei | i ∈ [k]}, satisfies the following conditions:

(1) δN (q, a) ∋ q′ =⇒ δ(q, a, Z$) ∋ (q′, R, Za$)
(2) δN (q, b) ∋ q′ =⇒ δ(q, c, Z$) ∋ (q′, S, Zb$)
(3) δN (q, i) ∋ q′ =⇒ δ(q, c, Z$) ∋ (Wq′ , S, Zi$)
(4) δ(Wq, c, i$) = {(ci, S, ¢q$)}
(5) δ(ci, c, p$) = {(ci, S, L)}
(6) δ(ci, c, Z) = {(ci, S, L)} where Z ̸= [i, Z0
(7) δ(ci, c, Z0) = {(ri, S, R)}
(8) δ(ci, c, [i) = {(ei, S, R)}
(9) δ(ei, a, a) = {(ei, R, R)}

(10) δ(ei, c, [j) = {(ei, S, R)} where i ̸= j

(11) δ(ei, c, ]j) =
{

{(ri, S, R)} (i = j)
{(ei, S, R)} (i ̸= j)

(12) δ(ei, c, j) = {(cj , S, ¢ei$)} where i ̸= j

(13) δ(ri, c, Z) = {(ri, S, R)}
(14) δ(ri, c, p$) = {(Ep,i, S, $)}
(15) δ(Ep,i, c, ¢$) = {(Lp,i, S)}
(16) δ(Lej ,i, c, i) = {(ej , S, R)}
(17) δ(Lq,i, c, i$) = {(q, S, S)}

Rule (1) translates q
a−→
N

q′ into q
a/$→a$−→ q′, (2) translates q

b−→
N

q′ into q
ε/$→b$−→ q′,

and rules (3)–(17) translate q
i−→

N
q′ into a large “transition” to consume the string that

corresponds to the dereference of i. The details of the “transition” are as follows. By looking
at the underlying N with rule (3), Aα finds a state q′ that it should go back to after going
throughout the “transition,” and goes to the state Wq′ by pushing i to the stack. At Wq′ , by
rule (4), Aα inserts ¢q′$ just below i, and goes to the state ci. The state ci represents the
call mode in which Aα looks for the left-nearest [i by rules (5) and (6) and proceeds to the
state ei (execution mode) by (8) if it finds [i. Otherwise (i.e., the case when Aα arrives at
the bottom of the stack), it proceeds to the state ri (return mode) by rule (7). At ei, Aα

consumes input symbols by checking them against the symbols on the stack (rules (9)–(12)).
In particular, rule (9) handles the case when the symbols match. Rules (10) and (11) handle
the cases when brackets are read from the stack. The first case of (11) handles the case
when the right bracket ]i is read, and the rules handle the other brackets (i.e., [j or ]j with
i ≠ j) by simply skipping them (note that [j= [i cannot happen since we started from the
left-nearest [i). Reading j ∈ [k], by rule (12), Aα inserts ¢ei$ just below j and goes to cj

to locate the corresponding [j (here, j ̸= i holds by the definition of the syntax). At ri, Aα

proceeds to return to the state p that passed the control to ci (rules (13)–(17)). Since this p

was pushed at the stack top, Aα first climbs up to the stack top by rule (13), transits to the
state Ep,i popping p by (14), then goes to Lp,i removing the embedded substack by (15),
and finally goes back to p by (16) and (17). A subtle point in the last step is that where the
stack pointer should be placed depends on whether p is a state ej (for some j ∈ [k]) or in
QN . In the former case, after (15) removes the embedded substack ¢ej$ that was created
just below the call to i, the stack pointer points to i. However, the stack pointer should shift
one more to the right, lest Aα begins to repeat the call reading i again by (12). Therefore,
(16) correctly handles the case by doing the shift. In the latter case, as stipulated by (17),
the stack pointer should point to the stack top symbol i since p is the state stored at (3).
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We state two lemmas used to prove Theorem 13. Let ⊢(n) denote the subrelation of ⊢
derived from the rule (n). The following lemma is immediate from the definition of ⊢(n).

▶ Lemma 14. For all q, q′ ∈ QN , w, w′ ∈ Σ∗, γ, γ′ ∈ Γ∗,
(a) 1. for each a ∈ Σ, (q, aw, #Z0γ ↿$) ⊢(1) (q′, w, #Z0γa↿$) if q

a−→
N

q′,

2. ∃a ∈ Σ. q
a−→
N

q′ ∧ w = aw′ ∧ β = Z0γa↿ if (q, w, #Z0γ ↿$) ⊢(1) (q′, w′, #β$),

(b) 1. for each b ∈ Bk, (q, w, #Z0γ ↿$) ⊢(2) (q′, w, #Z0γb↿$) if q
b−→
N

q′,

2. ∃b ∈ Bk. q
b−→
N

q′ ∧ w = w′ ∧ β = Z0γb↿ if (q, w, #Z0γ ↿$) ⊢(2) (q′, w′, #β$).
In particular, letting ⊢(1),(2) = ⊢(1) ⊎ ⊢(2), we obtain the following statement by repeating
(a)1 and (b)1 zero or more times: For all v ∈ (Σ ⊎ Bk)∗, (q, g(v) w, #Z0γ ↿ $) ⊢∗

(1),(2)

(q′, w, #Z0γv ↿$) if q
v=⇒
N

q′.

▶ Lemma 15. Suppose that q
i−→

N
q′, and γi is matching. Let m = cnt (γi). For all p ∈ QN ,

w, w′ ∈ Σ∗ and β ∈ (Γ ⊎ {¢, $, ↿})∗, the following (a) and (b) are equivalent (see Appendix A
for the proof):
(a) p = q′, w = g((γi)[m]) w′, and β = Z0γi↿.
(b) (q, w, #Z0γ ↿$) ⊢(3) (Wq′ , w, #Z0γi ↿$) ⊢ · · · ⊢ (p, w′, #β$), where no ID with a state

in QN appears in the calculation · · · .

Proof of Theorem 13 (sketch). For proving L(α) ⊆ L(Aα), we take w ∈ L(α) and v ∈
Rk(α) such that w = Dk(v). Decomposing v into v0n1v1 · · · nmvm (where m = cnt v),
we obtain a transition sequence in the underlying NFA N , denoted by q0

v0=⇒
N

q(0)
n1v1=⇒

N

q(1)
n2v2=⇒

N
· · · nmvm=⇒

N
q(m) ∈ F . We prove by induction on r = 0, . . . , m that Aα can reach

q(r) while consuming zr = g(v0) g(v[1]) g(v1) · · · g(v[r]) g(vr) from the input and pushing
yr = v0n1v1 · · · nrvr to the stack. Conversely, we suppose a calculation in Aα, denoted
by C(1) = (q0, w, #Z0 ↿ $) ⊢ · · · ⊢ C(r) ⊢ · · · ⊢ C(m) = (pm, ε, #βm$), where pm ∈ F

and C(r) = (pr, wr, #βr$) for each r ∈ {1, . . . , m}. By induction on r = 1, . . . , m, we
extract an underlying transition q0

γr=⇒
N

pr step by step while maintaining the invariants
γr ∈ (Σ ⊎ Bk ⊎ [k])∗ and w = Dk(γr) wr, as long as pr ∈ QN (the formal proof is available in
the full version [13]). ◀

▶ Corollary 16. Every rewb describes an indexed language, but not vice versa.

Proof. The first half follows by Theorem 13 since 1N NSA and indexed grammars are
equivalent [2]. The second half also follows since the class of CFLs is a subclass of indexed
languages [1], and the class of rewbs and that of CFLs are incomparable [4]. ◀

In the case of a rewb α without a captured reference (that is, one in which no reference \i

appears as a subexpression of an expression of the form (j . . . )j), we can transform Aα into
an NESA A′′

α recognizing L(α), i.e., one that neither uses substacks nor pops its stack. First,
we transform Aα to an NSA without substacks (i.e., SA) A′

α. Inspecting how substacks are
used in Aα, we can drop rules (12) and (16) in A′

α because there is no captured reference in
α. We also remove the uses of substacks from rules (3) and (4), which correspond to calling,
and rules (14), (15) and (17), which correspond to returning. Namely, while Aα, upon a call,
stores the substack ¢q′$ that consists of just the state q′ where the control should return,
A′

α simply pushes q′ to the stack top. That is, we remove (4), (15) and (17), and change (3)
and (14) to the following (3’) and (14’), respectively:

(3’) δN (q, i) ∋ q′ =⇒ δ(q, c, Z$) ∋ (ci, S, Ziq′$), (14’) δ(ri, c, q$) = {(q, S, $)} .
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Furthermore, we transform A′
α to an SA without stack popping (i.e., NESA) A′′

α. Observe
that A′

α pops only when returning via (14’) and popping a state that was pushed in a
preceding call. Thus, A′′

α, rather than popping q′, leaves it on the stack, and has the modes
ci, ei and ri skip all state symbols on the stack except the ones at the top. Here, we only
need to modify ei since Aα already skips them at ci and ri (rules (6) and (13)). In short, we
add the new rule (9*) and change (14’) to (14”), as follows:

(9*) δ(ei, c, q) = {(ei, S, R)} , (14”) δ(ri, c, q$) = {(q, S, q$)} .

This NESA A′′
α whose transition function consists of the rules (1),(2),(3’),(5)–(9),(9*),(10),

(11), (13) and (14”) recognizes L(α). Therefore,

▶ Corollary 17. Every rewb without a captured reference describes a nonerasing stack language,
but not vice versa.6

Note that the converse of Corollary 17 fails to hold. In other words, there is a rewb with
a captured reference that describes a nonerasing stack language. The rewb (1a)1(2\1)2\2
is a simple counterexample. In addition, as shown later in Section 6, NESA can recognize
nontrivial language (hierarchy) with a captured reference such as Larsen’s hierarchy [12].

5 A rewb that describes a non-stack language

We just showed that every rewb describes an indexed language and in particular every rewb
without a captured reference describes a nonerasing stack language. So, a natural question is
whether every rewb describes a (nonerasing) stack language. We show that the answer is no.
That is, there is a rewb that describes a non-stack language.

Ogden has proposed a pumping lemma for stack languages and shown that the language{
an3

∣∣∣ n ∈ N
}

is a non-stack language as an application (see [14], Theorem 2). A key point
in the proof is that the exponential n3 of a is a cubic polynomial, and we can show that for
every cubic polynomial f : N → N, the language

{
af(n) ∣∣ n ∈ N

}
is also a non-stack language

by the same proof. Thus, a rewb that describes a language in this form is a counterexample.
We borrow the technique in [6] (Example 1) which shows that the rewb α = ((1\2)1(2\1a)2)∗

describes L(α) =
{

an2
∣∣∣ n ∈ N

}
. This follows since Dk(([12]1 [21 a]2)n) = an2 holds by

recording the iteration count of the Kleene star, n, in the capture (2 )2 as an, and extending
the length by 2n + 1, as shown below:

Dk(([12]1 [21 a]2)n+1) = Dk(([12]1 [21 a]2)n[12]1 [21 a]2) = Dk(· · · [2an]2 [12]1 [21 a]2)

= Dk(· · · [2an]2 [1an]1 [21 a]2) = Dk(· · · [2an]2 [1an]1 [2an+1]2) = an2
a2n+1 = a(n+1)2

.

The rewb ((1\4 a)1 (2\3)2 (3\2 a)3 (4\1\3)4)∗ describes
{

an(n+7)(2n+1)/6 ∣∣ n ∈ N
}

and extends
the length by a quadratic in n instead (see the full version [13] for the calculation). Thus,

▶ Theorem 18. There exists a rewb that describes a non-stack language.

From this and Corollary 17, this rewb needs a captured reference, in the sense that:

▶ Corollary 19. There exists a rewb that describes a language that no rewb without a captured
reference can describe.

6 For the latter part, we can take the language { anbn | n ∈ N} that can be described by an NESA (see
the full version [13]) but not by any rewb [4].
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6 Larsen’s hierarchy is within the class of nonerasing stack language

In this section, we construct an NESA Ai that describes L(xi), where the rewb xi over
the alphabet Σ =

{
al

0, am
0 , ar

0, al
1, am

1 , ar
1, . . .

}
is given by Larsen [12] and defined as follows:

x0 ≜ (al
0am

0 ar
0)∗, xi+1 ≜ (al

i+1(i xi )i am
i+1\i ar

i+1)∗ (i ≥ 0). Our result implies that Larsen’s
hierarchy is within the class of nonerasing stack languages. Since Larsen showed that no
rewb with its nested level less than i can describe L(xi) [12], it also implies that for every
i ∈ N, there is a nonerasing stack language that needs a rewb of nested level at least i.7

q0
0

al
0am

0 ar
0/$→al

0am
0 ar

0$

q1
0

q0
0 c1

0 r1
0

e1
0

al
1/$→al

1$

$→ [0$

al
0am

0 ar
0/$→al

0am
0 ar

0$

$→ ]0$

am
1 /$→am

1 $

$→0$

ar
1/$→ar

1$

[0, R

¬[0, R

0$, S

¬0, R

a/a, R

]0, R

q2
0

q1
0

q0
0

c2
1 r2

1

c1
0 r1

0

e2
1

e1
0

c2
0 r2

0

e2
0

al
2/$→al

2$

$→ [1$ $→ ]1$

al
1/$→al

1$

am
2 /$→am

2 $

$→1$

ar
2/$→ar

2$

$→ [0$

al
0am

0 ar
0/$→al

0am
0 ar

0$

$→ ]0$

am
1 /$→am

1 $

$→0$

ar
1/$→ar

1$

[1, R

¬[1, L

1$, S

¬1, R

[0, R

¬[0, R

0$, S

¬0, R

0, L

]1, R

a/a, R {[0, ]0} , R

a/a, R

]0, R [0, R

¬[0, L
0, R

¬0, R

]0, R

a/a, R

Figure 1 A0 (upper left), A1 (upper right), A2 (lower).

The NESA Ai has the start state qi
0 which is also its only final state. Figure 1 depicts

A0, A1, and A2. A0 is easy. A1 is obtained by connecting the eight states to q0
0 and making

q1
0 the start/final state, as shown in the figure. The five states on the right handle the

dereference of \0 in x1. That is, at c1
0, A1 first seeks the left-nearest [0, passes the control to

e1
0, checks the input string against the stack at e1

0, passes the control to r1
0, and at r1

0, finally
goes back to the right-nearest 0 which must be written on the stack top. In much the same
way, A2 is obtained from A1 but we must be sensitive to the handling of the dereference
of \1 because A2 must handle the dereference of not only \1 but also \0 that appears in a
string captured by [1]1 whereas no backreference appears in a string captured by [0]0 in the
case of A1. To deal with this issue, we connect the three new states c2

0, e2
0 and r2

0 to e2
1. At

e2
1, if A2 encounters 0 in a checking, A2 suspends the checking and first goes to c2

0 to seek
[0, goes to e2

0 to check the input against the stack by reading out a ]0 (no number appears

7 Technically, Larsen [12] adopts a syntax that excludes unbound references, and so this implied result
applies only to rewbs with no unbound references.
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in this checking), and finally goes to r2
0 to go back to 0 which passed the control to c2

0. We
repeat this modification until Ai is obtained. (Thus, Ai has such states ci

j , ei
j , ri

j for each
j ∈ {0, . . . , i − 1}.) Therefore,

▶ Theorem 20. There exists an NESA Ai that recognizes L(xi).

7 Conclusions

REG CFL SL IL CSL

NESL

rewb without
a captured reference rewb

Larsen’s hierarchy [12]

[2] [1]

[14]

Corollary
17

/
Corollary 19

/

/
Theorem

18
Corollary

16
[4, 5]

/ [4]

Theorem 20

Figure 2 The inclusion relations between the classes.

In this paper, we have shown the following five results: (1) that every rewb describes
an indexed language (Corollary 16), (2) in particular that every rewb without a captured
reference describes a nonerasing stack language (Corollary 17), (3) however that there exists
a rewb that describes a non-stack language (Theorem 18), (4) therefore that there exists a
rewb that needs a captured reference (Corollary 19), and (5) finally that Larsen’s hierarchy
{L(xi) | i ∈ N} given in [12] is within the class of nonerasing stack languages (Theorem 20).
We have obtained the results by using three automata models, namely NESA, SA, and NSA,
and using the semantics of rewbs given in [15, 6] that treats a rewb as a regular expression
allowing us to obtain the underlying NFA. Figure 2 depicts the inclusion relations between
the classes mentioned in the paper. Here, A → B stands for A ⊆ B, A ↠ B for A ⊊ B, and
A ↛ B for A ⊈ B, respectively. A label on an arrow refers to the evidence. A red dashed
arrow indicates a novel result proved in this paper, where for a strict inclusion, we show for
the first time the inclusion itself in addition to the fact that it is strict.

As future work, we would like to investigate the use of the pumping lemma for rewbs
without a captured reference that can be derived from the contraposition of our Corollary 17
and a pumping lemma for NESA [14]. We expect it to be a useful tool for discerning which
rewbs need captured references. Additionally, we suspect that our construction of NESA in
Theorem 20 is useful for not just xi of [12] but also for more general rewbs that have only
one \i for each (i )i, and we would like to investigate further uses of the construction.
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A Proof of Lemma 15

First, we recall the notation v[r] (cf. Section 3) and explain a new notation v(r) informally
(see the full version [13] for the formal definitions of v[r] and v(r)). Let k be a positive
integer and v = v0n1v1 . . . nmvm (m = cnt v) a matching string over Σ ⊎ Bk ⊎ [k]. For each
r = 1, 2, . . . , the notation v[r] denotes the string which Dk scans at the rth number nr and
v(r) the string immediately after the rth replacement (also we let v(0) = v). For example, in
the case of v = [1a [2b]2 2 ]1 1, Dk processes v as follows, therefore v[1] = b and v[2] = a[2b]2b:
v(0) = [1a [2b]2 2 ]1 1 → v(1) = [1a [2b]2 b ]1 1 → v(2) = [1a [2b]2 b ]1 abb → abbabb. We can
easily prove the following claim (see also the full version [13]): For each r ∈ {0, 1, . . . , m},

v(r) = v0 g(v[1]) v1 · · · g(v[r]) vrnr+1vr+1 · · · nmvm. (∗)

We prepare some more notations for the proof. Let Σ∗
⊥ ≜ Σ∗ ⊎ {⊥} and for every w ∈ Σ∗

⊥
and s ∈ Σ∗, let w/s denote the string w but with the suffix s erased if w ends with s, and
otherwise ⊥. To use this notation, we expand the set of all IDs I = Q × Σ∗ × {#} (Γ ⊎
{¢, $, ↿})∗ {$} to I⊥ ≜ Q × Σ∗

⊥ × {#} (Γ ⊎ {¢, $,↿})∗ {$}, and we let C(w) denote an ID
C = (·, w, · · · ) and ⊢′

(n) denote the following binary relation over I⊥:

⊢′
(n) ≜

{
(C(w), C ′(w/(ai · · · ai+d−1)))

∣∣∣ C(ai · · · ak) ⊢(n) C ′(ai+d · · · ak), w ∈ Σ∗
⊥

}
.

In addition, we define ⊢′ ≜
⋃

n ⊢′
(n). Then, ⊢ ⊆ ⊢′ is immediate and we show that the converse

partially holds, in the sense that:

▶ Lemma 21. For every string w ∈ Σ∗ and w′ ∈ Σ∗, C(w) ⊢′ C ′(w′) implies C(w) ⊢ C ′(w′).

Proof. By the definition of ⊢′, there is (C(ai · · · ak), C ′(ai+d · · · ak)) ∈ ⊢ such that w′ =
w/(ai · · · ai+d−1). By the definition of ⊢, C(w) = C(ai · · · ai+d−1w′) ⊢ C ′(w′) holds. ◀
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▶ Definition 22. Given C, C ′ ∈ I⊥, we write C |=(n) C ′ if C ⊢′
(n) C ′ and ∀j, C ′′.C ⊢′

(j)
C ′′ =⇒ j = n ∧ C ′′ = C ′. We often omit the subscript (n) and simply write C |= C ′. Note
that C |= C ′ implies not only C ⊢′ C ′ but also determinism: ∀C ′′ ∈ I⊥. C ⊢′ C ′′ =⇒ C ′ = C ′′.

▶ Lemma 23. Suppose that γ ∈ (Σ ⊎ Bk ⊎ [k])∗, i ∈ [k], w ∈ Σ∗, β ∈ (Γ ⊎ {¢, $})∗ and
p ∈ QN ⊎ {ei | i ∈ [k]}. Let m = cnt (γi) (≥ 1). If γi is matching,

(ci, w, #Z0γ¢p↿$iβ$) |= · · · |= (ri, w/g((γi)[m]), #Z0γ¢p↿$iβ$)

holds, where no ID with a state in QN appears in the calculation · · · .

Proof. In this proof, we sometimes write the stack representation # · · · Z ↿ · · · $ as # · · · ↾
Z · · · $ with the head-reversed arrow ↾. First, if γ /∋ [i, it holds that

(ci, w, #Z0γ¢p↿$iβ$) |=∗ (ci, w, #Z0 ↿γ¢p$iβ$)
|= (ri, w, #Z0 ↾ γ¢p$iβ$) |=∗ (ri, w, #Z0γ¢p↿$iβ$),

and by (γi)[m] = ε, we have w = w/g((γi)[m]), as required. Henceforth, we assume that
γ ∋ [i and the decomposition γ = γ0[iγ1 (γ1 /∋ [i). Moreover, we can further decompose
γ1 = γ2]iγ3 (γ2 /∋ [i, ]i, γ3 /∋ [i) because γi is matching. We prove by induction on m.

Case m = 1: By cnt γ = 0, γ2 ∈ (Σ ⊎ Bk)∗ follows. Letting w′ ≜ w/g(γ2), we have

(ci, w, #Z0γ0[iγ1¢p↿$iβ$) |=∗ (ci, w, #Z0γ0[i ↿γ1¢p$iβ$) |= (ei, w, #Z0γ0[i↾γ1¢p$iβ$)
|=∗ (ei, w′, #Z0γ0[iγ2]i ↿γ3¢p$iβ$) |= (ri, w′, #Z0γ0[iγ2]i ↾γ3¢p$iβ$)
|=∗ (ri, w′, #Z0γ0[iγ2]iγ3¢p↿$iβ$).

Therefore, the claim holds since no ID with a state in QN appears in this calculation and
γ2 = (γi)[m] follows from (γi)(0) = γi = γ0[iγ2]iγ3i, γ3 /∋ [i.

Case {1, . . . , m} =⇒ m + 1: Let m0 ≜ cnt γ0 and l ≜ cnt γ2 (≥ 0). Now, m0 +
l ≤ m = cnt γ holds and we write γ2 = λ0nm0+1λ1 · · · nm0+lλl. We also define ηr ≜
γ0[iλ0nm0+1 · · · λr−1nm0+r for each r ∈ {1, . . . , l}. By ηr being a prefix of γi and Lemma 7,
ηr is matching and (ηr)[m0+r] = (γi)[m0+r], r ∈ {1, . . . , l} holds. In particular, it follows that
nm0+r ̸= i for every r (if there is r such that nm0+r = i, γ2 ⊇ λ0nm0+1 · · · λr−1 ∋ ]i holds but
this contradicts γ2 /∋ ]i). Thus, letting w0 ≜ w, w′

r ≜ wr−1/g(λr−1), wr ≜ w′
r/g((ηr)[m0+r])

and w′ = wl/g(λl), we have

(ci, w, #Z0γ¢p↿$iβ$)
|=∗ (ci, w, #Z0γ0[i ↿λ0nm0+1λ1 · · · nm0+lλl]iγ3¢p$iβ$)
|= (ei, w0, #Z0γ0[i↾λ0nm0+1λ1 · · · nm0+lλl]iγ3¢p$iβ$)
|=∗ (ei, w′

1, #Z0γ0[iλ0nm0+1 ↿ λ1 · · · nm0+lλl]iγ3¢p$iβ$)
|= (cnm0+1 , w′

1, #Z0γ0[iλ0¢ri ↿$nm0+1λ1 · · · nm0+lλl]iγ3¢p$iβ$)
|=∗ (rnm0+1 , w1, #Z0γ0[iλ0¢ri ↿$nm0+1λ1 · · · nm0+lλl]iγ3¢p$iβ$)

(by η1 being matching and induction hypothesis)
|= (Eei,nm0+1 , w1, #Z0γ0[iλ0¢↿$nm0+1λ1 · · · nm0+lλl]iγ3¢p$iβ$)
|= (Lei,nm0+1 , w1, #Z0γ0[iλ0nm0+1 ↿λ1 · · · nm0+lλl]iγ3¢p$iβ$)
|= (ei, w1, #Z0γ0[iλ0nm0+1 ↾λ1 · · · nm0+lλl]iγ3¢p$iβ$)

|=∗ · · · |=∗ (ei, wl, #Z0γ0[iλ0nm0+1λ1 · · · nm0+l ↾λl]iγ3¢p$iβ$)
(by similar calculation and induction hypothesis)
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|=∗ (ei, w′, #Z0γ0[iλ0nm0+1λ1 · · · nm0+lλl]i ↿γ3¢p$iβ$)
|= (ri, w′, #Z0γ0[iλ0nm0+1λ1 · · · nm0+lλl]i ↾γ3¢p$iβ$)
|=∗ (ri, w′, #Z0γ0[iλ0nm0+1λ1 · · · nm0+lλl]iγ3¢p↿$iβ$),

and

w′ = w/g(λ0) g((η1)[m0+1]) g(λ1) · · · g((ηl)[m0+l]) g(λl)
= w/g(λ0) g((γi)[m0+1]) g(λ1) · · · g((γi)[m0+l]) g(λl),

where no ID with a state in QN appears in this calculation. Here, we write

γ = γ0[iλ0nm0+1λ1 · · · nm0+lλl]iγ3 = v0n1v1 · · · nmvm

and decompose its substrings as

vm0 = χ0[iλ0, vm0+l = λl]iχ1, and γ3 = χ1nm0+l+1vm0+l+1 · · · nmvm.

Then, by equation (∗), we can write (γi)(m) as

v0 · · · ︸ ︷︷ ︸
vm0

χ0[i

=(γi)[m+1]︷ ︸︸ ︷
λ0 g((γi)[m0+1]) vm0+1 · · · g((γi)[m0+l]) ︸ ︷︷ ︸

vm0+l

λl]i

γ′
3≜︷ ︸︸ ︷

χ1 g((γi)[m0+l+1])vm0+l+1 · · · g((γi)[m]) vm i.

That is, it holds that γ′
3 ≜ χ1 g((γi)[m0+l+1])vm0+l+1 · · · g((γi)[m]) vm /∋ [i by γ3 /∋ [i, and

we obtain (γi)[m+1] = λ0 g((γi)[m0+1]) λ1 · · · g((γi)[m0+l]) λl, as shown above. Therefore, the
claim holds for m + 1 since w′ = w/g((γi)[m+1]). ◀

Proof of Lemma 15. For arbitrary w ∈ Σ∗, by Lemma 23,

(q, w, #Z0γ ↿$) ⊢(3) (Wq′ , w, #Z0γi↿$) |=(4) (ci, w, #Z0γ¢q′ ↿$i$)
|=∗ (ri, w/g((γi)[m]), #Z0γ¢q′ ↿$i$) |=(14) (Eq′,i, w/g((γi)[m]), #Z0γ¢↿$i$)
|=(15) (Lq′,i, w/g((γi)[m]), #Z0γi↿$) |=(17) (q′, w/g((γi)[m]), #Z0γi↿$) (∗∗)

holds. Assuming (a), we can replace |= in equation (∗∗) with ⊢ by Lemma 21 because
w/g((γi)[m]) = w′ ∈ Σ∗ holds, and therefore, (b) follows. Supposing (b) conversely, we have
(q, w, #Z0γ ↿$) ⊢(3) (Wq′ , w, #Z0γi ↿$) ⊢′ · · · ⊢′ (p, w′, #β$), where no ID with a state in
QN appears in either this calculation or (∗∗) except in their leftmost and rightmost IDs.
Therefore, their two calculations coincide by the determinism of |=. In particular, we obtain
p = q′, w′ = w/g((γi)[m]) and β = Z0γi ↿ by the equality of their rightmost IDs, and thus,
(a) follows because w′ ∈ Σ∗. ◀
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OBDD(Join) Proofs Cannot Be Balanced
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Abstract
We study OBDD-based propositional proof systems introduced in 2004 by Atserias, Kolaitis, and
Vardi that prove the unsatisfiability of a CNF formula by deduction of an identically false OBDD
from OBDDs representing clauses of the initial formula. We consider a proof system OBDD(∧) that
uses only the conjunction (join) rule and a proof system OBDD(∧, reordering) (introduced in 2017
by Itsykson, Knop, Romashchenko, and Sokolov) that uses the conjunction (join) rule and the rule
that allows changing the order of variables in OBDD.

We study whether these systems can be balanced i.e. every refutation of size S can be reassembled
into a refutation of depth O(log S) with at most a polynomial-size increase. We construct a family
of unsatisfiable CNF formulas Fn such that Fn has a polynomial-size tree-like OBDD(∧) refutation
of depth poly(n) and for arbitrary OBDD(∧, reordering) refutation Π of Fn for every α ∈ (0, 1) the
following trade-off holds: either the size of Π is 2Ω(nα) or the depth of Π is Ω(n1−α). As a corollary
of the trade-offs, we get that OBDD(∧) and OBDD(∧, reordering) proofs cannot be balanced.
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1 Introduction

The paper devotes to propositional proof complexity theory. Propositional proof systems are
used for certifying that a given CNF formula is unsatisfiable. Investigation of propositional
proof systems is highly connected with the construction of solvers for the Boolean satisfiability
problem (SAT-solvers). The execution protocol of a SAT solver running on an unsatisfiable
formula may be considered as a certificate of unsatisfiability. Every SAT solver is based on
some proof system. For example, CDCL solvers are based on Resolution [3], Pseudo Boolean
solvers are based on Cutting Planes [8], OBDD-solvers are based on OBDD-based proof
systems [2].

The minimal refutation size of a formula is a natural lower bound on the running time of
the corresponding SAT-Solvers. In this paper, we also study the depth of refutations, i.e.
the length of the longest path from a clause of a refuted formula to a contradiction. The
depth is a very natural but not a much-studied measure of the proofs. The minimal depth of
a refutation is a lower bound on the parallel running time of the corresponding solver.

Balancing proof systems

We consider only refutational proof systems. Each refutational proof system Π operates
with proof lines, and each proof line is a Boolean predicate represented in some fixed way.
Initially, all clauses of refuted formulas are represented by proof lines and new proof lines
may be derived using a finite set of inference rules. The goal is to derive an identically false
proof line. Every refutational proof system is defined by the type of predicates that may be
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used as proof lines and by the list of inference rules. For example, in Resolution proof lines
are clauses, in Cutting Planes [10] proof lines are linear inequalities with integer coefficients
and Boolean variables, in Frege proof systems proof lines are propositional formulas, etc.

The size of a refutation is the total size of representations of all used proof lines.
Every refutation can be represented as a directed acyclic graph with one source corres-

ponding to a contradiction and sinks corresponding to clauses of a refuted formula, and
every proof line is obtained by the descendants using the inference rule. The depth of the
refutation is the depth of the corresponding graph i.e. the length of the longest path from
the source to a sink.

We say that proofs in some proof system can be balanced if it is always possible to
reassemble each refutation in such a way that its depth becomes logarithmic in its size
(perhaps with a polynomial-size increase).

The question of whether Resolution proofs can be balanced is trivial. Indeed, consider
the formula (x1 ∨ . . . ∨ xn) ∧ (¬x1) ∧ . . . ∧ (¬xn). It is easy to see that every refutation of
this formula must have the depth at least n, therefore, Resolution refutations cannot be
balanced in the general case. Urquhart [16] studied if refutations of O(1)-CNF formulas can
be balanced for which the question is less trivial. It was proven that there exists a family of
3-CNF formulas Fni with ni variables having a Resolution refutation of polynomial size but
every its refutation must have depth Ω(ni/ log ni). Therefore Resolution refutations cannot
be balanced even for O(1)-CNF formulas.

Atserias, Bonet, and Levy [1] proved that Cutting Planes proofs cannot be balanced
either. However, it is known that refutations in Frege systems can be balanced (see, for
instance, [15]).

OBDD-based proof systems

In 1986 Bryant [6] proposed an important way to represent a Boolean function. Every such
function can be represented as a branching program with two sinks so that variables on
every path from the source to a sink appear in the same order π. Such representation is
called Ordered Binary Decision Diagram (OBDD or π-OBDD if we need to specify that
the variables are ordered according to π). The restriction on a variables order allows us to
perform many useful operations with OBDD efficiently e.g. check satisfiability, compute the
conjunction of two OBDDs (given they use the same variable order), etc [13].

Atserias, Kolaitis, and Vardi [2] introduced an OBDD-based refutational proof system.
Among them, we are most interested in OBDD(∧). OBDD(∧) represents clauses of an
unsatisfiable formula as π-OBDDs for some order π and the only refutation rule allows
deriving the conjunction of two OBDDs which were derived earlier. The size of the refutation
is the total size of the OBDDs in it.

Itsykson, Knop, Romashchenko, Sokolov [12] proposed the OBDD(∧, reordering) proof
system. OBDD(∧, reordering) is obtained from OBDD(∧) by adding the reordering derivation
rule that allows changing variables order of the derived OBDDs. While now OBDDs in
the refutation may use different variable orders, the conjunction rule can be only applied
to OBDDs that use the same variable order (otherwise it would be NP-hard to verify the
correctness of such rule, see [14], Lemma 8.14).

Notice that the formula (x1 ∨ . . . ∨ xn) ∧ (¬x1) ∧ . . . ∧ (¬xn) that we considered above
has a tree-like OBDD(∧) refutation of polynomial size and logarithmic depth.

For both the Resolution and the Cutting Planes proof systems there exist a family of
formulas for which a refutation of small depth does not exist at all. We emphasize that it is
not the case for OBDD-based proof systems. Indeed, every CNF formula with m clauses has
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a tree-like OBDD(∧) refutation of the depth log(m); the graph of this refutation is a full
binary tree with m leaves. Note that the size of this proof can differ dramatically from the
size of the minimum refutation. Hence in the notion of balancing we require that the size of
the balanced proof should be bounded by a polynomial from the size of the initial proof.

Our contribution

In Theorem 12 we construct a family of unsatisfiable formulas Fn having poly(n) size tree-like
OBDD(∧) refutations such that the following size vs depth trade-offs holds. For every
α ∈ (0, 1), any OBDD(∧, reordering) refutation of Fn of depth O(n1−α) requires size at least
2Ω(nα). Hence we prove that dag-like and tree-like OBDD(∧), OBDD(∧, reordering) proofs
cannot be balanced.

Formulas for which the trade-offs hold are the Pebbling formulas based on the grid graphs
Peb(Gridn). Pebbling formulas are a well-studied family of formulas ([5], [16], [4]). Moreover,
they were used for proving Resolution depth lower bounds in [16]. However, usually, they
are used together with Pebbling games and Pebbling numbers of graphs. This is not the
case for our result since we rely significantly on the structure of the grid graphs (including
self-similarity and expansion) by themselves and do not use Pebbling games.

In Section 2 we define the main notions. In Subsection 3.1 we prove the OBDD size
lower bounds for some set of hard Peb(Gridn) subformulas. In Subsection 3.2 we prove the
mentioned size vs depth trade-offs.

Open question

It would be interesting to study the similar questions for OBDD(∧, weakening) proof system
which is obtained from OBDD(∧) by adding the weakening rule. The weakening rule allows
deriving from an OBDD any its semantical implication represented by OBDD in the same
order.

2 Preliminaries

▶ Definition 1 (Branching Program). Let X = {x1, . . . , xn} be a set of Boolean variables. A
branching program is a directed acyclic graph with one node with indegree 0 (source) several
inner nodes with outdegree 2 and two nodes with outdegree 0 (sinks). Every node except sinks
is labeled with some variable from X, one of its outgoing edges is labeled with 0 and the other
one is labeled with 1. One sink is labeled with 0 and the other one is labeled with 1.

Every branching program represents some Boolean function of n variables. To compute a
value of the function on input x1 = a1, . . . xi = ai, . . . xn = an we start a path from the
source, and for every vertex labeled with variable xi we continue the path along the edge
labeled with ai, such a path reaches a sink and the label of this sink is the value of the
function.

▶ Definition 2 (Ordered Binary Decision Diagram(OBDD)). A branching program is called
OBDD if variables on every path from the source to sinks appear according to some fixed
order of variables.

Sometimes we write π-OBDD instead of OBDD to emphasize that variables appear
according to the order of variables π.
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The order restriction in OBDDs allows to perform many useful operations on OBDDs
efficiently e.g. minimize, check satisfiability, compute the conjunction of two OBDDs given
they have a same order of variables, etc. [13].

Let us define a propositional proof system OBDD(∧, reordering).

▶ Definition 3 (OBDD(∧, reordering)). Let φ =
∧
i

Ci be an unsatisfiable CNF formula. A

refutation of φ is a sequence of OBDDs D1, D2, . . . , Dt such that Dt is the constant false
OBDD and for all 1 ≤ i ≤ t the diagram Di either represents a clause of φ or obtained from
the previous Dj’s by one of the following derivation rules.

Conjunction (or join) rule allows deriving an π-OBDD for D1 ∧ D2 from π-OBDDs
D1 and D2. We emphasize here that the conjunction rule can be only applied to OBDDs
with the same order of variables.
Reordering rule allows deriving an OBDD B from an equivalent OBDD A (note that A

and B may use different variable orders).

The size of a refutation is the sum of the sizes of the OBDDs from it.
Every OBDD(∧, reordering) refutation can be represented as a directed acyclic graph

(DAG) in which nodes are labeled with OBDDs from the refutation such that each sink is
labeled with a OBDD for some clause of φ, the source is labeled with the constant false
OBDD, and an OBDD in every inner node is the result of the application of some derivation
rule to the OBDDs from the descendants.

A refutation is called tree-like if every node except the source has indegree one.
The depth of a refutation is the length of the longest path from the source to a sink.
We call a refutation a π-OBDD(∧) refutation if all OBDDs have the same order (i.e. no

reordering rule was applied).

Note, that in order to call OBDD(∧, reordering) a proof system (in the sense of Cook-
Reckhow [9]) we need to be able to efficiently check if some OBDD is the result of an
application of the derivation rules to some others OBDDs. Fortunately, the restriction on a
variable order allows us to do that, as we mentioned before (for the details see [12]).

▶ Definition 4 (Pebbling formulas (see for instance [16])). Let G = (E, V ) be a directed acyclic
graph. We associate with each node of G a distinct Boolean variable x; we will identify nodes
and the associated variables. The Peb(G) formula is the conjunction of the following clauses:

(¬u1 ∨ . . . ∨ ¬un ∨ v), where v ∈ V and {u1, . . . , un} is the set of all nodes such that edge
(ui, v) ∈ E. We denote this clause by (u1, . . . , un → v). Note that if v is a source of the
graph then n = 0. We call such clauses first type clauses.
(¬v), where v is a sink. We call such clauses second type clauses.

Note that for every directed acyclic graph G the formula Peb(G) is unsatisfiable.

Main goal of out work is to prove that OBDD(∧) and OBDD(∧, reordering) refutations
cannot be balanced. In order to do it we construct a family of CNF formulas such that the
formulas have small OBDD(∧) refutations but they do not have refutations with small size
and depth simultaneously.

▶ Lemma 5 ([7]). For every directed acyclic graph G and for every order of variables π

formula Peb(G) has tree-like π-OBDD(∧) refutation of size O(|V |2) and depth O(|V |).

Proof. See Appendix A. ◀
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▶ Definition 6 (Graph Gridn). Let Gridn be a graph of the (n − 1) × (n − 1) grid, with edges
directed top to bottom and left to right.

In other words, the set of vertices is

Vn = {(i, j), i, j ∈ [n]}

and the set of edges is

En = {((i, j), (i + 1, j))| i ∈ [n − 1], j ∈ [n]} ∪ {((i, j), (i, j + 1))| i ∈ [n], j ∈ [n − 1]}

▶ Corollary 7. Formula Peb(Gridn) has π-OBDD(∧) refutation of the size O(n4) and of the
depth O(n2) for every variable ordering π.

Proof. Follows from Lemma 5. ◀

Now, in order to prove that OBDD(join) proofs cannot be balanced, it is sufficient to
prove size vs. depth trade-offs for refutations of Peb(Gridn). We prove such trade-offs in
Theorem 12 but we still need several auxiliary lemmas.

▶ Lemma 8 (Folklore). Let G be a directed acyclic graph with only one sink. Then Peb(G)
minimal unsatisfiable i.e. a conjunction of every proper subset of its set of clauses is satisfiable.

Proof. See Appendix B. ◀

▶ Notation 9. For a graph G(V, E) (directed or undirected) and for two disjoint sets A, B ⊂ V

denote by E(A, B) the set of edges with one end in A and the other one in B.
Note that for directed graphs we include in E(A, B) both the edges directed from A to B

and the edges directed from B to A.

▶ Definition 10 (Graph expansion [5]). Expansion of the graph G(V, E) is the minimum value
of |E(U, V \ U)| among all subsets U ⊂ V such that |V |

3 ≤ |U | ≤ 2|V |
3 .

▶ Lemma 11 (Folklore). e(Gridn) ≥ 1
4 n.

Proof. Consider an arbitrary subset U ⊂ V such that 1
3 |V | ≤ |U | ≤ 2

3 |V |.
Assume that there are at least n

4 columns of the grid containing nodes from both U and
V \ U . Then there is at least one pair of incident nodes in every such column with one node
in U and the other one in V \ U . Then the edges between the vertices from such pairs lie in
E(U, V \ U). Thus, |E(U, V \ U)| ≥ n

4 .
Now assume that there are at least 3n

4 columns lying completely in U or in V \ U . Since
|V |
3 ≤ |U | ≤ 2|V |

3 , there is at least one column completely lying in U and there is at least one
column completely lying in V \U . Therefore, in each row, there is at least one pair of incident
nodes with one node in U and the other one in V \ U . In this case |E(U, V \ U)| ≥ n. ◀

We want to point out that Gridn graphs are not expanders in the conventional sense (see
for example [11]) since Gridn graph has n2 nodes but e(Gridn) = Θ(n) (Lemma 11 shows
only that e(Gridn) = Ω(n) but upper bounds for e(Gridn) are trivial).

3 Depth vs size trade-offs

In this section we prove our main result.

▶ Theorem 12. For every α ∈ (0, 1) and for every OBDD(∧, reordering) refutation of
Peb(Gridn) at least one of the following holds:

the depth of the refutation is Ω(nα);
the size of the refutation is 2Ω(n(1−α)).
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1 8 9 13
1

8
9

13

Figure 1 Possible partition for n = 15, m = 13, k = 5.

By a configuration we mean a conjunction of a subset of the set of Peb(Gridn) clauses.
In Subsection 3.1 we will show that some hard configurations cannot be represented by a
small OBDD (see Lemma 13). Loosely speaking we are interested in configurations in which
at least one clause from the top left part of the grid is missing and that contain many clauses
from the bottom right part.

In Subsection 3.2 we finish the proof of Theorem 12 using Lemma 13. Namely, we show
that either it is possible to find a hard configuration in the proof graph or the depth of the
proof is large.

3.1 Configurations that are hard for OBDDs
Consider an arbitrary order π of variables of the formula Peb(Gridn).

Let {x0, y0, x1, y1} ⊂ [n]. We denote by [x0, x1] × [y0, y1] the induced subgraph on the
vertices set {(x, y) | x0 ≤ x ≤ x1 y0 ≤ y ≤ y1}.

Let m ∈ [n − 1]. We divide the nodes of the subgraph [1, m] × [1, m] into the four parts:
[1, m − k] × [1, m − k],
[m − k + 1, m] × [m − k + 1, m],
[1, m − k] × [m − k + 1, m],
[m − k + 1, m] × [1, m − k],

where k ∈ [m] (see Fig. 1).
We divide variables associated with the vertices of [m − k + 1, m] × [m − k + 1, m] into

two equal (or differing by at most 1) parts in such a way that each variable from the first
part appears in the order π before each variable of the second part. We denote the first part
by Aπ and the second by Bπ. Recall that we identify each variable with the associated node
and assume that Aπ, Bπ ⊂ V (Gridn).

Subgraph [m − k + 1, m] × [m − k + 1, m] is isomorphic to the Gridk and (|Aπ| − |Bπ|) ≤
1, |Aπ| + |Bπ| = k2, hence |E(Aπ, Bπ)| ≥ k

4 by Lemma 11.
Since the graph is directed, each edge in E(Aπ, Bπ) is directed from Aπ to Bπ or from

Bπ to Aπ. Let us consider the direction with the majority of the edges. We denote the set of
the corresponding edges by E0,π, |E0,π| ≥ |E(Aπ, Bπ)|/2 ≥ k

8 . All edges in E0,π are directed
from Aπ to Bπ or Bπ to Aπ. This gives us two cases that we consider later.
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Using the following procedure we remove some of the edges from E0,π to form a matching
(that we will denote by E1,π).

While E0,π is not empty:
Choose an arbitrary edge e ∈ E0,π, add it to E1,π, remove it from E0,π.
If E0,π still contains edges adjacent to e then we remove them. Since every node in Gridn

has degree at most 4 then we remove at most 6 edges per step.
We obtain matching E1,π ⊂ E0,π and |E1,π| ≥ |E0,π|

7 ≥ k
56 .

We call a node special if it is an head of some edge from E1,π. There are |E1,π| special
nodes since E1,π is a matching.

Using the following procedure we choose a subset Wπ of the set of all special nodes such
that the distance between any two nodes from Wπ is at least 7.

While there are special nodes:
Choose an arbitrary special node v that is not removed at the previous steps and add it
to Wπ.
Remove all special nodes at the distance at most 6 from v. We removed at most
(6 + 1 + 6)2 = 169 nodes, since all removed nodes are in the square of the size 13 × 13
and with the center in v.

Since at each step we remove at most 169 special nodes and add one to Wπ, |Wπ| ≥
|E1,π|/169 ≥ k/9464.

For a node v = (i0, j0) ∈ V (Gridn) we denote by B(v) the set {(i, j) ∈ V (Gridn) | |i−i0| ≤
1, |j − j0| ≤ 1} (i.e. the ball in the l∞ metric). We refer to B(v) as a ball although it is not
a ball in the graph distance sense.

For every node w ∈ Wπ there is a unique edge in E1,π with an endpoint w. Let us denote
the set of start-points of such edges by Uπ.

▶ Lemma 13. Let φ be a conjunction of some subset of Peb(Gridn) clauses. Suppose at
least one clause of first type associated with a variable from the [1, m − k − 1] × [1, m − k − 1]
is not included in φ. Also, suppose that φ contains exactly d clauses associated with variables
from Wπ. Then the minimum size of an π-OBDD for φ is at least 2d.

Proof. To prove that the size of any π-OBDD representation of φ is at least 2d it is sufficient
to split π into two consequent parts and define 2d substitutions into the variables of the first
part such that applications of them to φ lead to 2d different Boolean functions. To show
that two substitutions ρ0 and ρ1 lead to two different functions we just define a substitution
ρ into the second part of variables such that φ|ρ0◦ρ ̸= φ|ρ1◦ρ.

We have already divided the variables of [m − k + 1, m] × [m − k + 1, m] into two parts
Aπ and Bπ according to π. Let us fix a partition of π into two parts such that Aπ lies in the
first and Bπ in the second.

Let W ′
π be the nodes from Wπ whose associated clauses are in φ. Let U ′

π be the nodes
from Uπ connected with W ′

π. Let W ′
π = {w1, . . . , wd} and U ′

π = {u1, . . . , ud}.
Substitutions we are defining differ only on a small set of nodes. To every variable outside

this set each substitution assigns a fixed value (values may differ for different variables); we
now define these values. Let z = (x0, y0) be an arbitrary node from [1, m−k−1]×[1, m−k−1]
whose first type clause is missing from φ (see Fig. 2).

Assignment to the variables in [1, n] × [1, n] \ [x0, n] × [y0, n]:
To the variables whose corresponding nodes are strictly to the left or strictly at the top
from z all substitutions assign 1. Note that all first-type clauses corresponding to the
nodes in which we substitute 1 are satisfied (follows trivially from the definition of the
Gridn clauses).
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1 8 9 13
1

8
9

13

x0

y0

Figure 2 Balls B(wi) are shown with light blue; their centers lie in [m − k + 1, m] × [m − k + 1, m]
(blue rectangle). Black bold point is (x0, y0), it lies in [1, m − k − 1] × [1, m − k − 1] (pink rectangle).

Assignment to the variables in [x0, n] × [y0, n] \
⋃

i B(wi):
Consider the rectangle [x0, n] × [y0, n]. It contains square [m − k, n] × [m − k, n] and,
therefore, all balls B(wi) for i ∈ [d] (their centers lie in [m − k + 1, m] × [m − k + 1, m]).
Let L = [x0, n] × [y0, n] \

⋃
i B(wi).

▷ Claim 14. For every node v ∈ L there exists a directed path from z to v that lies
completely in L.

Proof. Let us first note that for every i ∈ [d] and for every (x, y) ∈ B(wi) it holds
that x > x0, y > y0. Indeed, wi ∈ [m − k + 1, m] × [m − k + 1, m] hence (x, y) ∈
[m − k, m] × [m − k, m] but z = (x0, y0) ∈ [1, m − k − 1] × [1, m − k − 1].
It is sufficient to prove that for every x ∈ L\{z} at least one of its immediate predecessors
lies in L. If we prove it we can build a desired path by induction. Suppose that there is a
node x ∈ L \ {z} such that its immediate predecessors lie outside of L. Hence each of
them lies either in

⋃
i B(wi) or in V (Gridn) \ [x0, n] × [y0, n].

Firstly, consider the case in which one of the predecessors lies outside the [x0, n] × [y0, n].
Then coordinates of x look like (x0, ∗) or (∗, y0). Without loss of generality assume that
x = (x0, h) for some h ≥ y0. Then there is the following path: z = (x0, y0), (x0, y0 +
1), . . . , (x0, h) = x between z and x. All its nodes lie in [x0, n] × [y0, n] and none of them
lie in

⋃
i B(wi) due to the restriction on the coordinates of vertices from the balls that

we mentioned earlier. Hence, this case is impossible.
Therefore its predecessors lie in

⋃
i B(wi). But one of its predecessors is above x and the

other is to the left of x. Hence they lie in different balls (otherwise x would also lie in the
ball, and this contradicts the assumption x ∈ L). Hence the distance between the balls is
at most 2 which contradicts the construction from the beginning of the subsection. This
concludes the proof of the claim. ◁
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All the substitutions assign 0 to the variables in L. Now we check that no first-type
clause from φ is falsified after that. There is no z’s clause in φ. For every other node
z′ ∈ L there is a path from z to z′ in L. We assign 0 to the nodes on the path hence we
assign 0 to some immediate predecessor of z′ hence its clause is satisfied (again, by the
definition of the clause).
We have already defined the substitutions into all variables except

⋃
i B(wi). Fix j ∈ [d].

There are two nodes with edges going from them to wj . One of them is uj . We denote
the other one by rj . Note that {uj , rj} ⊂ B(wj). Every substitution will assign 1 to
rj . Hence its first-type clause is always satisfied. To the nodes B(wj) \ {uj , wj , rj} we
always substitute 0. We need to check that it will not falsify their clauses. It is easy to
see that each node from B(wj) \ {uj , wj , rj} has at least one immediate predecessor in
L \ {wi, ui, ri|i ∈ [d]} (see Fig. 3). But we assign zeros to the variables from this set.
Hence clauses corresponding to the B(wj) \ {uj , wj , rj} are always satisfied (see Fig. 3).

Note that we substitute 0 to the sink. Indeed, if the sink does not lie in any ball, then
it lies in L. Hence we substitute 0 to it. Otherwise, the sink lies in some ball; denote the
center of this ball by (x1, y1). Then x1 ≤ n − 1 and y1 ≤ n − 1. But then the sink is the
most right bottom variable of the ball, hence it is substituted with 0.

Therefore, the second-type clause corresponding to the sink is satisfied.
At this point, we have defined substitutions on the set where their values coincide. Now

we define substitutions to the remaining nodes i.e. {wi, ui | i ∈ [d]}. We need to consider to
cases: whether {uj | j ∈ [d]} or {wj | j ∈ [d]} lie in the first part of the variable order.

Case 1: Suppose that {uj | j ∈ [d]} lies in the first part of the variable order. Consider
all possible substitutions of zeros and ones into the {uj | j ∈ [d]}. There are 2d such
substitutions. Note that every node from {uj | j ∈ [d]} has an immediate predecessor from
L \ {uj , wj , rj | j ∈ [d]} hence its clause is satisfied.

We show that we can separate any two such substitutions ρ0 ̸= ρ1 by some substitution
ρ with support W ′. There exists j0 ∈ [d] such that ρ0(uj0) ̸= ρ1(uj0). Without loss of
generality suppose that ρ0(uj0) = 0 then ρ1(uj0) = 1. We define a substitution ρ as follows:
ρ(wj) = ρ0(uj).

On the one hand substitution ρ0 ◦ ρ does not falsify φ since the only clauses that can
be falsified are clauses associated with {wj | j ∈ [d]} (we have already checked that the
other clauses are satisfied). But the clause corresponding to the node wj for {j ∈ [d]} is
falsified iff 0 is substituted into wj and 1 are substituted to all its immediate predecessors.
But if ρ(wj) = 0 then ρ0(uj) = 0. Hence φ|ρ◦ρ0 = 1.
On the other hand, ρ(wj0) = 0. The node wj0 has two immediate predecessors: the node
rj0 , into which we always assign 1, and uj0 such that ρ1(uj0) = 1. Hence (uj0 , rj0 →
wj0)|ρ◦ρ1 = 0 and φ|ρ◦ρ1 = 0.

Case 2: Suppose that {uj | j ∈ [d]} lies in the second part of the variable order.
Similarly to the Case 1, we define 2d substitutions into the variables {wj | j ∈ [d]}. We

need to show that substitutions ρ0 and ρ1 lead to different Boolean functions. Again we find
j0 ∈ [d] such that ρ0(wj0) = 0 and ρ1(wj0) = 1. In this case we define ρ(uj) = ρ1(wj).

Similarly to the Case 1, ρ satisfies clauses for nodes from {uj | j ∈ [d]}. Also ρ ◦ ρ1 satisfy
clauses for nodes from {wj | j ∈ [d]} (we just copy ρ1 from {wj | j ∈ [d]} to {uj | j ∈ [d]}).
At the same time ρ(uj0) = 1, rj0 is always substituted with 1 and ρ0(wj0) = 0. Hence
(uj0 , rj0 → wj0)|ρ◦ρo

= 0 and φ|ρ◦ρ0 = 0. ◀
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Figure 3 An example of a substitution to a ball’s variables.

3.2 Proof of Theorem 12
Proof of Theorem 12. Let us fix α ∈ (0, 1).

Now we show that for every OBDD(∧, reordering) refutation of Peb(Gridn) its depth is
at least n1−α/2 or its size is at least 2nα/18928.

Suppose there exists a refutation with depth less than n1−α/2 and size less than 2nα/18928.
Every refutation can be represented as directed acyclic graph such that:

Each node is labeled with some OBDD from the refutation. Note that every such OBDD
is equivalent to the conjunction of a subset of Peb(Gridn) clauses. For every node, we
add the conjunction to the label for clarity.
Its only source is labeled with the constant false OBDD.
Each sink is labeled with OBDD for some clause of Peb(Gridn).
If an OBDD in a node is obtained by the conjunction rule then the node has outdegree 2
and the OBDD in the node is a conjunction of the OBDDs in the descendants.
If an OBDD in a node is obtained by the reordering rule then the node has outdegree 1
and the OBDD in the node is the result of the reordering rule applied to the OBDD in
the node’s descendant.

Let us divide the subgrid [1, n − 1] × [1, n − 1] into [1, n − nα] × [1, n − nα], [n − nα +
1, n − 1] × [n − nα + 1, n − 1], [n − nα + 1, n − 1] × [1, n − nα], [1, n − nα] × [n − nα + 1, n − 1]
as in Subsection 3.1 (set m = n − 1 and k = nα).

Let φ be a CNF formula and let S be a subset of its clauses. We denote φS =
∧

C∈S C.
Consider an arbitrary OBDD(∧, reordering) refutation of Peb(Gridn). Consider its source.

Since by Lemma 8, Peb(Gridn) is minimal unsatisfiable, the source is labeled with the
conjunction of all clauses (i.e. Peb(Gridn) itself). In particular, all clauses for vertices from
[1, m] × [1, m] lie there. We start a path at the source of the refutation. If the current
node (initially the current node is the source) has only one immediate descendant then
we move into the descendant until the current node has two of them. Assume that the
current node is labeled with π-OBDD for some order of the variables π. By the definition of
the conjunction rule the current node’s descendants are also labeled with π-OBDDs. For
this order π and parameters m and k find sets Uπ, Wπ as was described in Subsection 3.1.
Suppose one of the descendants is labeled with formula φS1 and the other with φS2 . Then
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[1, m] × [1, m] ⊂ S1 ∪ S2. Hence |S1 ∩ Wπ| ≥ |Wπ|/2 or |S2 ∩ Wπ| ≥ |Wπ|/2. Without loss of
generality |S1 ∩ Wπ| ≥ |Wπ|/2. Recall that |Wπ| ≥ k/9464 so |S1 ∩ Wπ| ≥ k/18928. Consider
two cases: whether [1, n−nα −1]× [1, n−nα −1] ̸⊂ S1 or [1, n−nα −1]× [1, n−nα −1] ⊂ S1.

Case 1: [1, n − nα − 1] × [1, n − nα − 1] ̸⊂ S1. In this case we can apply Lemma 13 with d

= |S1 ∩ Wπ| ≥ k/18928 = nα/18928 and variable order π. Hence the size of π-OBDD for
φS1 from the current node is at least 2nα/18928. Therefore the size of the refutation is at
least 2nα/18928. Hence this case is impossible.

Case 2: [1, n − nα − 1] × [1, n − nα − 1] ⊂ S1. All clauses from [1, n − nα − 1] × [1, n − nα − 1]
are still in the conjunction.

We divide this square into 4 subsquares, same as we did with [1, n−1]× [1, n−1]. Now we
set m = n − nα − 1, k = nα and repeat the actions for new values of m and k. Again we can
move down at least one time in the refutation’s graph so that at the current node there will
be all clauses from the top left subsquare (this time it is [1, n − 2nα − 2] × [1, n − 2nα − 2]).

Again, we divide this subsquare into 4 subsubsquares (m = n − 2nα − 2, k = nα) and so
on. Case 1 is always impossible since k is always equal to nα and we assumed that the size
of the refutation is less than 2nα/18928. We can repeat the process n

nα+1 ≥ n1−α/2 times.
Every time we move down in the refutation’s graph at least once, therefore its depth is at
least n1−α/2. ◀

▶ Corollary 15. Dag-like and tree-like OBDD(∧) and OBDD(∧, reordering) proofs cannot
be balanced i.e. there is no polynomial p such that for every unsatisfiable formula φ and
for every its refutation w (dag-like or tree-like) of the size S, there exists a refutation w′

(dag-like or tree-like respectively) of the size p(S) and of the depth O(log(S)).

Proof. By Lemma 5 Formula Peb(Gridn) has tree-like OBDD(∧) refutation of the size O(n4).
But Peb(Gridn) cannot have OBDD(∧, reordering) a refutation of the size poly(n) and of
the depth O(log poly(n)) = O(log n) due to Theorem 12. Hence the proof systems are not
balanced. ◀
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A Proof of Lemma 5

▶ Proposition 16. Let X = {x1, . . . , xn} be a set of Boolean variables and let Y ⊂ X. Let
φ =

∧
y∈Y

y. Then there exists π-OBDD for φ of the size O(|Y |) for every order of variables π.

Proof. We enumerate Y according to the order π: Y = {y1, . . . , y|Y |}. We define π-OBDD
for φ as follows: there is the unique node yi for every i ∈ [|Y |]. We identify node and its
label. The node y1 is the source. For every i ∈ [|Y |], yi’s outgoing edge labeled with 0 goes
to the sink labeled with 0. If i < |Y | then yi’s outgoing edge labeled with 1 goes to yi+1
otherwise it goes to the sink labeled with 1. It is easy to see that there is a unique path
between the source and the sink, labeled with 1, and that all edges on the path are labeled
with 1. Hence the π-OBDD we have defined represents φ. ◀

▶ Lemma 5 ([7]). For every directed acyclic graph G and for every order of variables π

formula Peb(G) has tree-like π-OBDD(∧) refutation of size O(|V |2) and depth O(|V |).

Proof. Let {A1, . . . , An1} be the first-type clauses in topological sort order. Let B be
an arbitrary second-type clause. Consider the following sequence of the CNF formulas:
A1, A1 ∧A2, . . . ,

∧n1
i=1 Ai, (

∧n1
i=1 Ai)∧B. Represent each of this formulas as π-OBDD. Then

it is easy to see that the sequence of OBDDs is a tree-like π-OBDD(∧) refutation. We now
prove that the refutation has the size O(|V |2). It consists of |V | + 1 formulas. It is sufficient
to prove that each formula has the size O(|V |). We consider two cases:
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Case 1: The formula is A1 ∧ . . . ∧ Ai for some i ∈ [n1]. We prove by the induction on i

that A1 ∧ . . . ∧ Ai ≡ v1 ∧ . . . ∧ vi, where ≡ stands for logical equivalence. Base: i = 1
so v1 is a source and the corresponding clause is (v1). Induction step: Assume that
A1 ∧ . . . ∧ Ai ≡ v1 ∧ . . . ∧ vi then A1 ∧ . . . ∧ Ai ∧ Ai+1 ≡ v1 ∧ . . . ∧ vi ∧ Ai+1. Let
Ai+1 = (u1, . . . , uk → vi+1) where u1, . . . , uk is the set of all immediate predecessors
of vi+1. Since the clauses {Ai | i ∈ [n1]} appear in the topological sort order then the
first-type clauses that correspond to the variables {u1, . . . , uk} lie in {A1, . . . , Ai}. Then
it is easy to see that v1 ∧ . . . ∧ vi ∧ (u1, . . . , uk → vi+1) ≡ v1 ∧ . . . ∧ vi ∧ vi+1.
Proposition 16 implies that such formulas have OBDD representation of the size O(|V |).

Case 2: The formula is (
∧n1

i=1 Ai) ∧ B. We already have proved that (
∧n1

i=1 Ai) ≡
∧

j vj is
the conjunction of the all nodes. This conjunction implies that the values of variables
of all nodes equal 1. At the same time the clause B implies that the variable of the
corresponding sink equals 0. Hence the formula is unsatisfiable and the corresponding
OBDD is constant false. ◀

B Proof of Lemma 8

▶ Lemma 8 (Folklore). Let G be a directed acyclic graph with only one sink. Then Peb(G)
minimal unsatisfiable i.e. a conjunction of every proper subset of its set of clauses is satisfiable.

Proof. Fix some proper subset S of the set of all clauses of Peb(G). We now prove that∧
C∈S C is satisfiable.

Consider two cases:
Case 1: There is no second type clause in S. Then each clause from S contains literal

without negation. Then the assigment of all 1 is satisfiable.
Case 2: There is no first-type clause in S. Denote the corresponding variable by v. Denote

by t the unique sink of the graph. Note that there is a path from v to t (otherwise there
are at least two sinks in the graph). Then the assignment of 0 to the path’s variables
and 1 to the other variables is satisfiable. Indeed, the first-type clauses corresponding to
the variables substituted with 1 are always satisfied. The second-type clause is satisfied
since the sink is substituted with 0. The other variables substituted with 0 have at least
one immediate predecessor substituted with 0, hence their first type clauses are also
satisfied. ◀

MFCS 2023





Lower Bounds for Choiceless Polynomial Time via
Symmetric XOR-Circuits
Benedikt Pago #

Mathematical Foundations of Computer Science, RWTH Aachen University, Germany

Abstract
Choiceless Polynomial Time (CPT) is one of the few remaining candidate logics for capturing Ptime.
In this paper, we make progress towards separating CPT from polynomial time by firstly establishing
a connection between the expressive power of CPT and the existence of certain symmetric circuit
families, and secondly, proving lower bounds against these circuits. We focus on the isomorphism
problem of unordered Cai-Fürer-Immerman-graphs (the CFI-query) as a potential candidate for
separating CPT from Ptime. Results by Dawar, Richerby and Rossman, and subsequently by
Pakusa, Schalthöfer and Selman show that the CFI-query is CPT-definable on linearly ordered and
preordered base graphs with small colour classes. We define a class of CPT-algorithms, that we call
“CFI-symmetric algorithms”, which generalises all the known ones, and show that such algorithms
can only define the CFI-query on a given class of base graphs if there exists a family of symmetric
XOR-circuits with certain properties. These properties include that the circuits have the same
symmetries as the base graphs, are of polynomial size, and satisfy certain fan-in restrictions. Then
we prove that such circuits with slightly strengthened requirements (i.e. stronger symmetry and
fan-in and fan-out restrictions) do not exist for the n-dimensional hypercubes as base graphs. This
almost separates the CFI-symmetric algorithms from Ptime – up to the gap that remains between
the circuits whose existence we can currently disprove and the circuits whose existence is necessary
for the definability of the CFI-query by a CFI-symmetric algorithm.
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1 Introduction

A central open question in finite model theory is whether there exists a logic that captures
the complexity class polynomial time. It was first raised by Chandra and Harel in 1980 [5]
and later made precise by Gurevich [20]. According to his definition, the term “logic” refers
to any computation model that operates on finite structures and is isomorphism-invariant, i.e.
yields the same output on isomorphic input structures. The question for a logic for Ptime
thus asks whether there exists some isomorphism-invariant computation model which can
decide exactly the same classes of structures that can be decided by “classical” polynomial
time algorithms (i.e. Turing machines). The latter are not isomorphism-invariant because
every structure, for example a graph, has multiple different representations as a binary string
(e.g. depending on the vertex order that is used for the adjacency list/matrix). The result of a
classical computation depends on this string representation and not on the isomorphism-type
of the graph, which is undesirable for a logic. Another way of phrasing the question is whether
the time and space cost of ensuring symmetry-invariance in computations is necessarily
super-polynomial or not. Gurevich himself conjectured that no logic for Ptime exists, and if
we had a proof for this, it would immediately separate P and NP: It is long known by Fagin’s
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theorem [14] that NP is captured by existential second order logic. In fact, many candidate
logics that have been proposed in an attempt to capture Ptime have been proven to be only
a strict fragment of it. For a survey on this topic (excluding the results from recent years),
see [18].

One prominent logic for which research on lower bounds has not been so successful yet
is Choiceless Polynomial Time (CPT). It was introduced in 1999 by Blass, Gurevich and
Shelah [3] as a symmetry-invariant machine model. It has been open since then whether
CPT (with counting) does capture Ptime or not. For more background information on CPT,
see for example [17, 28, 32]. CPT can also be viewed as an extension of fixed-point logic
with counting [6] with hereditarily finite sets as data structures. Other (perhaps less studied)
candidates that have not been separated from Ptime so far are logics with witnessed choice
constructs (a concept first introduced in [15]). These include fixed-point logic with witnessed
symmetric choice and interpretations [23] and CPT extended with witnessed symmetric
choice [24]. Prior to Lichter’s breakthrough [22], which separates rank logic from Ptime
using a variation of the famous Cai-Fürer-Immerman (CFI) construction [4], logics with
linear-algebraic operators [7] were also considered reasonable candidates. However, as outlined
in [8], the results from [22] and [7] together imply that no set of isomorphism-invariant linear
algebraic operators can be used to define a logic capturing Ptime. Thus, an important next
step in this program would be to also rule out CPT as a logic for Ptime. In this article, we
make progress towards this goal and propose an approach that allows to infer CPT lower
bounds from lower bounds against certain symmetric Boolean circuit families. Thereby, the
problem is narrowed down to the study of concrete combinatorial objects, for which we can
present a first lower bound.

It should be remarked that the power of CPT is also of interest in another research
context, namely with regards to the graph isomorphism problem: One can roughly divide the
most important graph isomorphism algorithms into group-theoretic and combinatorial ones;
the latter term refers to generalisations of the well-known Weisfeiler-Leman (WL) method,
and these are choiceless. It is in a sense possible to characterise CPT as the class of all
polynomial-time combinatorial graph isomorphism algorithms. A precise description of these
has been given with the Deep Weisfeiler-Leman computation model [19], which was shown
to be equivalent to CPT. Hence, lower bounds against CPT would also imply limitations for
all combinatorial graph isomorphism algorithms.

Concerning CPT lower bounds, only relatively little is known. There is a non-definability
result for a functional problem in Ptime, namely, it is impossible to define the dual of a given
finite vector space in CPT [30]. What we would like to have is, however, the inexpressibility
of a polynomial-time decision problem. We focus on a standard benchmark from finite model
theory, namely the CFI-query [4]. Instances of this query are obtained by applying the
so-called CFI construction to any connected undirected base graph, yielding either an “even”
or an “odd” CFI-graph (see Section 3). The query asks to determine the parity of a given
CFI-graph and it can be seen as a variant of the graph isomorphism problem or as the
problem of solving a certain linear equation system over the finite field F2. Its descriptive
complexity depends highly on the choice of base graphs and whether these come with a
built-in linear order or not. The CFI-query is decidable in polynomial time but not in
fixed-point logic with counting [4]. It is open whether it is CPT-definable on unordered base
graphs, and our goal is to eventually answer this question in the negative. Our approach
starts off from positive results: There do exist CPT-algorithms for linearly ordered and
preordered versions of the CFI-query [9, 29] and also CFI-graphs over base graphs of linear
degree [29]. In [26] it was shown that there exist unordered CFI-graphs (over n-dimensional
hypercubes) whose degree is not linear and which cannot be preordered in CPT in such a
way that the preorder-based algorithm from [29] (or the total-order-based one from [9]) could
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be applied. This shows that these known choiceless algorithms for preordered versions of
the CFI-query do not generalise to the unordered case because the necessary combinatorial
objects (said preorders) are not symmetric enough. In the present paper, we define a general
class of CPT-algorithms for the CFI-query, which encompasses all the known ones mentioned
above, and show that their expressiveness depends on the existence of certain symmetric
combinatorial objects, namely circuits with Boolean XOR-gates. We show that the CFI-query
over a given class K of base graphs is only definable by an algorithm from that class if there
exists a family of polynomial-size symmetric XOR-circuits with the properties in Theorem
1. This means that the non-definability of the CFI-query over K can be shown by proving
the non-existence of such circuits. In Theorem 2, we almost achieve this goal: If we take
as K the family of n-dimensional hypercubes and make the circuit properties slightly more
restrictive than required by our Theorem 1, then we succeed in showing that such circuits
cannot exist. Thus, we come close to showing that the CFI-query over unordered hypercubes
is undefinable by any CPT-algorithm from the class we are considering.

Following [9], we denote a CFI-graph over a base graph G or H as GS or HS (where S

denotes the set of vertices whose CFI-gadget is odd). We consider circuits whose internal
gates are XOR-gates and whose input gates are labelled with edges of the associated CFI
base graph G. Therefore, the automorphism group of G has a natural action on the circuits
as well. A circuit is said to be sensitive to a certain input bit if flipping just that bit changes
the output. The other circuit properties will be explained in Section 5.

▶ Theorem 1 (Main Theorem; see Theorem 31 in the full version for more details). Let
(Gn = (Vn, En))n∈N be a sequence of connected base graphs. Let GS

n be a CFI-graph over
Gn, and let twn denote the treewidth of Gn. If there exists a CPT-program Π that is
super-symmetric and CFI-symmetric and decides the CFI-query on all GS

n, then there also
exists a family (Cn)n∈N of XOR-circuits such that
1. The number of gates in Cn is polynomial in |GS

n |.
2. The Aut(Gn)-orbit of the circuit has size polynomial in |GS

n |.
3. Cn is sensitive to Ω(twn) input bits.
4. The fan-in dimension of Cn is O(log |GS

n |).
The terms super-symmetric and CFI-symmetric refer to the properties of a hereditarily finite
set that is constructed by the program Π in order to decide the CFI-query. Super-symmetry is
a property of h.f. sets that goes back to [9] (see Definition 5). CFI-symmetry is a concept that
we define in this paper and which describes the internal structure and “local symmetries” of
a h.f. set (see Section 4). The CFI-algorithms from [9] and [29] are based on super-symmetric
and CFI-symmetric h.f. sets, and arguably, both these properties are crucial for the success
of all these algorithms.

Our second main result shows that if we choose the n-dimensional hypercubes as the
family of base graphs, and impose slightly stronger conditions on the circuits, then it is not
possible to satisfy all of them together.

▶ Theorem 2. Let (Hn)n∈N be the family of n-dimensional hypercubes and let twn denote
the treewidth of Hn. There exists no family of symmetric XOR-circuits (Cn)n∈N such that:
1. The number of gates in Cn is polynomial in |HS

n |.
2. The Aut(Hn)-orbit of the circuit has size exactly one.
3. Cn is sensitive to Ω(twn) input bits.
4. For any two gates g, h in Cn such that h is a parent of g, it holds |Orbit(h)(g)| ∈

O(log |HS
n |) and |Orbit(g)(h)| ∈ O(log |HS

n |).
Here, Orbit(h)(g) denotes the orbit of the gate g with respect to the subgroup of Aut(Hn)
that fixes the gate h (and vice versa for Orbit(g)(h)).
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If the four circuit properties were the same as in Theorem 1, then this would separate
the class of super- and CFI-symmetric choiceless algorithms from Ptime. The difference
between the two theorems is that here, the circuit has orbit size one, i.e. it is stabilised by
the whole group Aut(Hn), whereas in Theorem 1, the orbit of the circuit is only required to
be polynomial. Moreover, here, we have a logarithmic bound on the parents and children
(per orbit) of every gate, whereas in Theorem 1, the logarithmic bound is on the fan-in
dimension of the gates. We define this notion in Section 5; we do not know if logarithmic
fan-in dimension implies the orbit-wise logarithmic bound on the number of children (or
vice versa), and probably, it does not imply the bound on the number of parents. So the
gap between our two main results concerns how symmetric the circuits have to be and how
restricted the connectivity between two consecutive circuit layers is. It remains a problem
for future work to close this gap. This paper is thus a first step of a potentially longer
programme towards showing CPT ̸= Ptime via circuit lower bounds.

Related work. Lower bounds for symmetric circuits are studied in different contexts in
the literature. For example, families of highly symmetric Boolean circuits with threshold
gates characterise the power of fixed-point logic with counting [1], and certain more general
circuits capture rank logic [11]. Our results are different in the sense that the XOR-circuits
do not characterise CPT; they only represent the relevant structure of the h.f. sets that
CPT uses to decide the CFI-query. Another line of research focuses on lower bounds for
symmetric arithmetic circuits for the determinant and permanent polynomials, with the aim
of making progress towards separating VP from VNP [10, 12]. Other examples of symmetric
circuit lower bounds concern Boolean circuits for the parity function [31] and for computing
products of permutation matrices [21]. The technical methods we employ in the proof of
Theorem 2 might be applicable to the study of symmetric circuits in other contexts as well
but we have not investigated this yet.

2 Choiceless Polynomial Time

Hereditarily finite sets. Let A be a finite set of atoms. The set of hereditarily finite
objects over A, HF(A), is defined as

⋃
i∈N HFi(A), where HF0(A) := A ∪ {∅}, HFi+1(A) :=

HFi(A) ∪ 2HFi(A). The size of a h.f. set x ∈ HF(a) is measured in terms of its transitive
closure tc(x): The set tc(x) is the least transitive set such that x ∈ tc(x). Transitivity means
that for every a ∈ tc(x), a ⊆ tc(x). Intuitively, one can view tc(x) as the set of all sets that
appear as elements at some nesting depth within x.

Choiceless Polynomial Time. By CPT we always mean Choiceless Polynomial Time with
counting. For details and various ways to define CPT formally, we refer to the literature: A
concise survey can be found in [17]. The work by Blass, Gurevich and Shelah in which CPT
was originally introduced as an abstract state machine model is [3]; later, more “logic-like”
presentations of CPT were invented, such as Polynomial Interpretation Logic (see [16, 32])
and BGS-logic [30]. In short, CPT is like fixed-point logic with counting [6] plus a mechanism
to construct isomorphism-invariant hereditarily finite sets of polynomial size. When a CPT-
sentence (also called program) Π is evaluated in a finite structure A, then Π may augment A

with hereditarily finite sets over its universe. The total number of distinct sets appearing in
them (i.e. the sum over the sizes of the transitive closures of the h.f. sets) and the number of
computation steps is bounded by p(|A|), where p(n) is a polynomial that is explicitly part of
the sentence Π. The run of Π on A is formally a sequence of computation stages, each of
which is a h.f. set.
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The h.f. sets that appear in the run of a program Π on a structure A are called the sets
that are activated by Π on input A. Formally, the set of active objects is the union over the
transitive closures of all the computation stages of the run of Π on A. The precise definition
is not important for the purposes of this article and there exist multiple slightly varying
definitions in the literature [9, 30, 32] which all essentially describe the same concept. The
main limitation of CPT is that the set of objects activated by Π on A is closed under the
automorphisms of A and at the same time of polynomial size in |A|. Thus, objects with
super-polynomially large orbits cannot be activated by a CPT-program. It may be worth
noting that while the whole set of activated objects has an orbit of size one, each activated
object itself need not be fixed by every automorphism – as long as its orbit is only polynomial.

3 Unordered Cai-Fürer-Immerman graphs

Fix an undirected connected graph G = (V, E) as the base graph for the CFI-construction
(whenever we speak of base graphs throughout the paper, we mean connected graphs). We
turn G into a CFI-graph by replacing the edges with certain edge-gadgets and the vertices
with vertex-gadgets. There are two types of vertex-gadgets, called odd and even. To construct
a concrete CFI-graph over G, we have to fix a set S ⊆ V of vertices which are replaced by the
odd gadget. The vertices in V \S will be turned into the even gadget. We denote the resulting
CFI-graph by GS . The precise definition is as follows: Let Ê := {e0, e1 | e ∈ E}. These are the
vertices that will form the edge-gadgets of GS , so there are two vertices per edge-gadget. To
define the vertices in vertex-gadgets, we let, for each v ∈ V , v∗

S := {vX | X ⊆ E(v), |X| even }
if v /∈ S, and otherwise, v∗

S := {vX | X ⊆ E(v), |X| odd }. Here, E(v) ⊆ E are the edges
incident to v in G. The vertices in v∗

S form the vertex-gadget of v. In total, we let
V̂S :=

⋃
v∈V v∗

S . Then the vertex-set of GS is V (GS) := V̂S ∪ Ê. The edges of the CFI-graph
are given by

E(GS) := {{vX , ei} | vX ∈ V̂S , ei ∈ Ê, |X ∩ {e}| = i} ∪ {{e0, e1} | e ∈ E}.

In other words, for every v ∈ V , we connect each vX ∈ v∗
S with the edge-gadgets of all edges

e ∈ E(v) in such a way that vX is connected with e0 if e /∈ X, and otherwise with e1. Also,
we connect e0 and e1 to ensure that no automorphism of GS can tear apart the edge-gadgets.
Our CFI-graphs are unordered, so the only relation of the structure GS is the edge relation
E. The CFI-query asks for the parity of |S|, given a CFI-graph GS . This is essentially the

e0

e1

v∅

v{e,f}

v{e,g} v{f,g}

w{e}

w{h}

w{i}w{e,h,i}

Figure 1 Gadgets v∗
S , w∗

S for v /∈ S, w ∈ S, connected by the gadget for the edge e.

same question as the graph isomorphism problem for CFI-graphs:

▶ Theorem 3 ([4, 9]). For two given CFI-graphs over the same base graph, it holds GS ∼=
GR if and only if |S| ≡ |R| mod 2.

Alternatively, deciding the parity of |S| can be phrased as a linear equation system over F2
in the variables Ê [2]. Since the reduction to a linear equation system is easily computable
from the given CFI-graph GS , and linear equation systems can be efficiently solved using,
for example, Gaussian elimination, the CFI-query is decidable in polynomial time.

MFCS 2023
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For logics that lack the ability to create higher-order objects, such as bounded-variable
counting logic Ck (and hence fixed-point logic with counting), it is provably impossible to
distinguish non-isomorphic CFI-graphs, provided that the treewidth of the base graphs is
super-constant:

▶ Theorem 4 ([4, 2]). Let G = (V, E) be an undirected connected graph with treewidth t.
Then for any two sets S, S′ ⊆ V , it holds GS ≡Ct GS′

, even if GS ̸∼= GS′ .

3.1 Automorphisms of unordered CFI-graphs
For a CFI-graph GS over an unordered base graph G = (V, E), two different kinds of
automorphisms play a role: Firstly, there are what we call “CFI-automorphisms”. These
are induced by swapping e0 and e1 in some edge-gadgets (this is called “flipping the edge”).
Secondly, there are the automorphisms of the underlying graph G itself.

To speak about the CFI-automorphisms, we use the terminology from [9]: For a given
base graph G, we consider not only a concrete CFI-instance with odd and even vertex gadgets,
but we can also construct the “full” CFI-graph G, in which every vertex gadget is both even
and odd. Formally, for v ∈ V , let v∗ := v∗

∅ ∪ v∗
{v} = {vX | X ⊆ E(v)}, and V̂ :=

⋃
v∈V v∗.

The vertex-set of G is V̂ ∪ Ê, and the edge-set is

E(G) := {{vX , ei} | vX ∈ V̂ , ei ∈ Ê, |X ∩ {e}| = i} ∪ {{e0, e1} | e ∈ E}.

Every CFI-instance GS is an induced subgraph of G. Some of the CFI-automorphisms
of G are also automorphisms of GS , but not all of them are. The other automorphisms
of G induce isomorphisms from GS into another isomorphic CFI-graph. For each edge
e = {v, w} ∈ E, let ρe denote the automorphism of G induced by flipping the edge e.
Formally, ρe(e0) = e1, ρe(e1) = e0, and ρe(vX) = vX△{e}, ρe(wX) = wX△{e} for all
vX , wX ∈ v∗ ∪ w∗. All other vertices in V̂ are fixed by ρe. One can check that this is indeed
an automorphism of G; furthermore, ρe is an isomorphism from any CFI-instance GS to
GS△{v,w} (see also [9]). It is easy to see that these edge-flip automorphisms commute, so
for F = {e1, ..., em} ⊆ E we may write ρF for ρe1 ◦ ρe2 ◦ ... ◦ ρem . So in total, for every
F ⊆ E, ρF is an automorphism of G. If every v ∈ V is incident to an even number of
edges in F , then ρF is also an automorphism of GS , not only of G. To sum up, we have
the following groups of CFI-automorphisms of G and GS : AutCFI(G) := {ρF | F ⊆ E}.

This group is isomorphic to the Boolean vector space FE
2 : Each F ⊆ E is identified with

its characteristic vector χ(F ) ∈ FE
2 . It holds ρF ◦ ρF ′ = ρF △F ′ , and this corresponds to

the vector χ(F ) + χ(F ′) ∈ FE
2 . As already said, for a CFI-instance GS , i.e. an induced

subgraph of G, we have that AutCFI(GS) is isomorphic to a subspace of FE
2 . In addition to

the CFI-automorphisms, we also have to consider Aut(G) ≤ Sym(V ), i.e. the automorphism
group of the unordered base graph. In total, the automorphism group of the full CFI-graph
G is isomorphic to the following semi-direct product: Aut(G) ∼= AutCFI(G) ⋊ Aut(G) =
{(ρF , π) | ρF ∈ AutCFI(G), π ∈ Aut(G)}. The automorphism group Aut(GS) of a concrete
CFI-instance is AutCFI(GS) ⋊ Aut(G) ≤ Aut(G).
Sets that are CPT-definable in GS only have to be symmetric with respect to the latter, but
nonetheless, we also consider the full group Aut(G) because it simplifies the analysis. The
sets we call super-symmetric (see below) are also Aut(G)-symmetric.

3.2 Symmetries and supports of hereditarily finite sets over CFI-graphs
Let GS be a CFI-graph over G = (V, E) and x ∈ HF(Ê). All the groups from the previous
section act on Ê and therefore also on HF(Ê). The action of any permutation π on a
set x ∈ HF(Ê) is given by π(x) = {π(y) | y ∈ x}. If x is an atom ei, with i ∈ {0, 1},
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e = {u, v} ∈ E, and π ∈ Aut(G), then π(x) = π(e)i, where π(e) = {π(u), π(v)} ∈ E. If
π = ρF ∈ AutCFI(G), then π(ei) = ej , where j = i + |F ∩ {e}| mod 2. A permutation
π stabilises an object x ∈ HF(Ê), if π(x) = x. As already said, Aut(GS) is composed
of edge flips and automorphisms of the base graph. We separate the effect of these two
subgroups on the elements of HF(Ê) and consider the following orbits and stabilisers for
x ∈ HF(Ê). The different orbits we consider are OrbE(x) := {ρF (x) | ρF ∈ AutCFI(G)},
OrbG(x) := {π(x) | π ∈ Aut(G)}, and the corresponding stabilisers are StabE(x) =
{χ(F ) | ρF ∈ AutCFI(G), ρF (x) = x} and StabG(x) = {π ∈ Aut(G) | π(x) = x}. We
always view StabE(x) as a subspace of the Boolean vector space FE

2 . Furthermore, let
maxOrbE(x) := maxy∈tc(x) |OrbE(y)|.

In [9], the term super-symmetry was introduced for h.f. sets which are fixed by all
automorphisms in AutCFI(G). Here, we use a slightly relaxed notion:

▶ Definition 5 (Super-symmetric objects). Fix a family of CFI-graphs (GS
n)n∈N and a µn ∈

HF(Ên) for every n. The objects µn are super-symmetric if there exists a polynomial p such
that |OrbE(µn)| ≤ p(|GS

n |).

Supports for CFI-automorphisms

Generally, a support of a permutation group Γ ≤ Sym(A) is a subset S ⊆ A such that the
pointwise stabiliser of S in Sym(A) is a subgroup of Γ. A support of a h.f. set is a support of
its stabiliser group. For subgroups of AutCFI(G), we will use a different notion, that we call
CFI-support. The reason why we need a specific type of support for these groups is because
otherwise, the group AutCFI(G) does not admit unique minimum supports.

▶ Definition 6 (CFI-support). A CFI-support of an object x ∈ HF(Ê) is a subset S ⊆ E

such that every ρF ∈ AutCFI(G) with F ∩ S = ∅ fixes x.

For the proof of the next lemma, we refer to the long version; it is not very difficult and
similar to the proof of Lemma 26 in [3]. The lemma entails that every x ∈ HF(Ê) has a
unique smallest CFI-support.

▶ Lemma 7. Let x ∈ HF(Ê). Let A1, A2 ⊆ E be CFI-supports of x. Then A1 ∩ A2 is also a
CFI-support of x.

▶ Definition 8 (Minimal CFI-support). For x ∈ HF(Ê), supCFI(x) ⊆ E denotes the unique
minimal subset of E that is a CFI-support of x.

4 CFI-symmetric hereditarily finite sets and algorithms

The CFI-query is definable in CPT on instances that arise from linearly ordered base graphs,
base graphs that come with a preorder with colour classes of logarithmic size, and base
graphs of linear degree [9, 29]. All these CPT-algorithms depend on the construction of
a particular super-symmetric h.f. set µ ∈ HF(Ê) that encodes the parity of |S|, given an
instance GS . We isolate another property of these h.f. sets, besides super-symmetry, which
is responsible for their small orbit size and suitability for encoding parities. We call this
CFI-symmetry. Intuitively, a set µ ∈ HF(Ê) is CFI-symmetric if its “building blocks” behave
similarly as CFI-gadgets in CFI-graphs, in the sense that they are “flipped” whenever an even
number of “incident gadgets” is flipped. These building blocks are the connected components
of sets. To define these, let a CFI-graph GS and a set µ ∈ HF(Ê) be fixed, and let ∼E be the
following equivalence relation on the elements x ∈ tc(µ): For x, x′ ∈ tc(µ), we write x ∼E x′
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iff there exists an edge-flip ρF ∈ AutCFI(G) such that x′ = ρF (x). The ∼E-equivalence class
in tc(µ) of an object x ∈ tc(µ) is denoted [x]. The relation ∼E induces a partition C(x) on
each x ∈ tc(µ), namely C(x) := {([y] ∩ x) | y ∈ x}. In [9], the elements of C(x) are called
the connected components of x. Now in a CFI-symmetric object, each connected component
γ ∈ C(x), for each x ∈ tc(µ), behaves like a CFI-gadget. That is, the component has exactly
two images under AutCFI(G), namely itself and its “flip”. Consider the following example of
a small “parity-tracking” h.f. set that is constructed similarly as in the algorithms from [9]
and [29].

▶ Example 9. Here is an example h.f. set µ{e,f,g} ∈ HF(Ê) with E = {e, f, g}. It tracks
the parity of edge-flips for the edges e, f, g. For better readability, the set is printed in a
structured form, so the sets µ{f,g} and µ̃{f,g} are shown in the level below. Each of the

µ{e,f,g} =
{

{µ{f,g}, e0}, {µ̃{f,g}, e1}
}

{{f0, g0}, {f1, g1}} {{f0, g1}, {f1, g0}}

µ-objects has only one connected component that consists of two sets which are related by
∼E . For example, the set µ{e,f,g} is stabilised setwise whenever an even number of edges is
flipped. The two elements of µ{e,f,g} themselves have two connected components: Clearly,
e0 and µ{f,g} cannot be mapped to each other by any edge-flip. The same goes for example
for f0 and g0. They form distinct components of the set {f0, g0}, while {{f0, g0}, {f1, g1}}
again only has one component that is stabilised if and only if an even number of edges in
{f, g} is flipped. This pattern of alternation between sets with two components and sets
with one component is typical of the super-symmetric objects constructed by the known
CFI-algorithms.

▶ Definition 10 (CFI-symmetric components and objects). Let µ ∈ HF(Ê), x ∈ tc(µ), and
γ ⊆ x be a connected component of x. Then we say that γ is CFI-symmetric if |OrbE(γ)| = 2,
and for each ρF ∈ AutCFI(G), it holds that ρF (γ) = γ iff for one/every y ∈ γ, the number
of flipped components of y, that is |{γ′ ∈ C(y) | ρF (γ′) ̸= γ′}|, is even.

The set µ is CFI-symmetric if the following two conditions are satisfied:
1. For each ρF ∈ AutCFI(G), it holds that ρF (µ) = µ iff the number of flipped components

of µ, that is, |{γ ∈ C(µ) | ρF (γ) ̸= γ}|, is even.
2. For every x ∈ tc(µ), every connected component γ ∈ C(x) is CFI-symmetric.
In the full version, we show that the formulation “one/every” in the above definition is
indeed justified. We call a CPT-program Π that decides the CFI-query on a class K of base
graphs CFI-symmetric if it activates a CFI-symmetric h.f. set µ ∈ HF(Ê) on every input
GS over every base graph G ∈ K. To be precise, µ must also have sufficient support size in
order to enable the program to decide the CFI-query. This support lower bound is stated in
Theorem 16. Similarly, we say that Π is super-symmetric if it activates a super-symmetric
object of sufficient support.

5 Translating hereditarily finite sets to XOR-circuits

An XOR-circuit is a connected directed acyclic graph C = (VC , EC) with a unique designated
root r. Its internal nodes are understood as XOR-gates and its leaves correspond to the
input gates of the circuit. If (g, h) ∈ EC , then the output of gate h is an input of gate
g. Every XOR-circuit computes the Boolean XOR-function over a subset of its input bits.
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We say that an XOR-circuit C is a circuit over a graph G = (V, E), if the input gates of
C are labelled with the edges in E. More precisely, let L ⊆ VC be the leaves of C. There
is an injective labelling function ℓ : L −→ E that relates the input gates with edges of
G. To speak about the semantics of the circuit, we introduce a set of formal propositional
variables V(G) := {Xe | e ∈ E}. Every input gate g ∈ L is associated with the formal
variable Xℓ(g). Since every internal gate is an XOR-gate, the function computed by it is
the XOR over a subset of V(G). For our purposes, this variable set (or actually the set of
associated edges) is the main interesting property of a gate, and we call it X (g). Formally, if
g ∈ L, then X (g) := {ℓ(g)} ⊆ E. If g is an internal gate, then X (g) :=

a
h∈gEC

X (h), that
is, the symmetric difference over the X (h) for all children of g. In other words, X (g) ⊆ E

is precisely the set of edges in E such that g computes the Boolean function
⊕

e∈X (g) Xe.
Thus, a gate g is sensitive to an input bit Xe if and only if e ∈ X (g). The function computed
by the circuit C is the XOR over X (r) ⊆ E, where r is the root of C.

5.1 Symmetries of circuits

A circuit C over a graph G is subject to the action of the automorphism group Aut(G) ≤
Sym(V ). Any π ∈ Aut(G) changes the labels of the input gates in L. So let g ∈ L with
ℓ(g) = e ∈ E. Then π(g) is an input gate with ℓ(π(g)) = π(e). The circuit π(C) is just C

with the input labels modified accordingly. We say that π extends to an automorphism of C

if there exists a bijection σ : VC −→ VC that is an automorphism of the graph (VC , EC) and
satisfies for each input gate g ∈ VC : ℓ(σ(g)) = π(ℓ(g)). We write StabG(C) = {π ∈ Aut(G) |
π extends to an automorphism of C} ≤ Aut(G), and OrbG(C) = {π(C) | π ∈ Aut(G)}.

5.2 The parameter fan-in dimension

The XOR-circuits we will construct from CFI-symmetric h.f. sets will satisfy a certain fan-in
bound on the gates. However, this bound will not be – as it is more common – on the number
of incoming wires of a gate but rather, on the “linear algebraic complexity of incoming
information”, so to say. The subsets of E form a Boolean vector space together with the
symmetric difference operation. This space is isomorphic to FE

2 .
For each gate g of an XOR-circuit C = (VC , EC), gEC denotes the set of its children

and ECg the set of parents. With each internal gate g of an XOR-circuit C over a graph
G = (V, E), we can associate a Boolean matrix M(g) ∈ FgEC ×E

2 , that we call the gate matrix :
The row at index h ∈ gEC is defined as the characteristic vector of X (h) ⊆ E, transposed,
i.e. M(g)h− = χ(X (h))T . Here and in what follows, we write χ for the bijection from
P(E) to FE

2 that associates with each subset of E its characteristic Boolean vector. If g

is an input gate, then we define M(g) ∈ F[1]×E
2 as the one-row matrix whose only row is

χ(X (g)))T = χ({ℓ(g)})T .
The fan-in dimension of a gate g is the dimension of the row-space of M(g); this is the

subspace of FE
2 that is spanned by the characteristic vectors χ(X (h)) ∈ FE

2 , for all children h

of g. Equivalently, the fan-in dimension of g is rk(M(g)). The fan-in dimension of the circuit
C is the maximum fan-in dimension of any of its gates. The notion of fan-in dimension is
unusual but as we will show, it nicely captures the orbit size of the original h.f. set with
respect to the group of edge flips AutCFI(G). The Aut(G)-symmetries of the h.f. set will be
reflected in the symmetries of the circuit.
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5.3 The circuit construction
▶ Theorem 11. Fix a family (Gn)n∈N of base graphs. For every n ∈ N, let GS

n be a CFI-graph
over Gn = (Vn, En) and let µn ∈ HF(Ên) be a CFI-symmetric h.f. set that is activated by
a CPT-program on input GS

n (by the same CPT-program for the whole family of graphs).
Then for every n ∈ N, there exists an XOR-circuit C(µn) = (VC , EC) over the edges of Gn

which satisfies:
1. The size of the circuit, i.e. |VC |, is polynomial in |GS

n |.
2. The orbit-size |OrbG(C(µn))| of the circuit is polynomial in |GS

n |.
3. C(µn) is sensitive to an edge e ∈ En if and only if e ∈ supCFI(µn).
4. The fan-in dimension of C(µ) is O(log(maxOrbE(µ))). Recall that maxOrbE(µ) =

maxy∈tc(x) |OrbE(y)|.
For the proof, we fix µ ∈ HF(Ê) and denote by C(µ) = (VC , EC) the corresponding XOR-
circuit that we are going to define. The circuit is simply the factorised DAG-structure
(tc(µ), ∈)/∼E

: The gates of the circuit are the ∼E-equivalence classes (i.e. AutCFI(G)-
orbits) of the objects in tc(µ). Note that these orbits need not be subsets of tc(µ), so
whenever we write [x], we formally mean the orbit restricted to tc(µ): [x] = {ρF (x) | ρF ∈
AutCFI(G) such that ρF (x) ∈ tc(µ)}. The circuit C(µ) is defined as follows:

VC := tc(µ)/∼E
= {[x] | x ∈ tc(µ)}.

EC := {([x], [y]) | there exists y′ ∈ [y] such that y′ ∈ x}.
By definition, the leaves of C(µ) correspond to ∼E-classes of atoms in tc(µ). The set
of atoms is Ê, so any leaf of C has the form [ei], for some e ∈ E, i ∈ {0, 1}. We let
ℓ([ei]) := e.
The root r of C(µ) is [µ].

One can prove that the set of edges EC can indeed be defined in this way: Whether or not
there is an EC-edge between [x] and [y] is independent of the choice of the representative
of [x] in the definition. This is because all members of [x] are symmetric to each other in
the DAG-structure (tc(µ), ∈). Now we verify that the circuit has the desired properties. We
start with the Aut(G)-symmetry.

▶ Lemma 12. Every π ∈ StabG(µ) ≤ Sym(V ) extends to an automorphism of the circuit
C(µ), that is: StabG(µ) ≤ StabG(C(µ)).

Proof sketch. Let π ∈ StabG(µ) ≤ Aut(G). That is, π extends to an automorphism
σ : tc(µ) −→ tc(µ) of (tc(µ), ∈). We define σ′ : VC −→ VC by letting σ′([x]) = [σ(x)]. This
is well-defined because x ∼E x′ if and only if σ(x) ∼E σ(x′) (σ is an automorphism of µ).
One can verify that σ′ is an automorphism of C(µ) that π extends to. ◀

▶ Corollary 13. |OrbG(C(µ))| ≤ |OrbG(µ)|.

Proof. Follows from Lemma 12 together with the Orbit-Stabiliser Theorem, which says that
|OrbG(C(µ))| = |Aut(G)|/|StabG(C(µ))| and |OrbG(µ)| = |Aut(G)|/|StabG(µ)|. ◀

Next, we would like to analyse the fan-in dimension of C(µ), and the connection between
C(µ) and supCFI(µ). The key for this is to establish a connection between the stabilisers
StabE(x), for all x ∈ tc(µ), and the kernels of the corresponding gate matrices. For the
definition of these matrices, we refer back to Section 5.2.

▶ Lemma 14. For every gate [x] ∈ VC and its gate matrix M [x] ∈ F[x]EC ×E
2 , it holds:

Ker(M [x]) = StabE(x) = StabE(x′) for every x′ ∈ [x].
For every row M [x][y]−, for every [y] ∈ [x]EC , it holds:

Ker(M [x][y]−) = StabE([y] ∩ x) (⋆)
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Proof. It holds StabE(x) = StabE(x′), for every x′ ∈ [x] and also StabE([y] ∩ x) =
StabE([y] ∩ x′), for every x′ ∈ [x] (because AutCFI(G) is Abelian). Therefore, equation
(⋆) does not depend on the choice of representatives. From (⋆) it immediately follows that
Ker(M [x]) = StabE(x), because: The stabiliser of x is the intersection of the stabilisers
of all connected components of x, and the kernel of M [x] is the intersection of the kernels
of the individual rows of the matrix. We now prove (⋆) via induction from the input gates
to the root. If [x] = [e0] is an input gate, then M [x] has just one row, which is χ(e)T .
The kernel of χ(e)T is the set of all vectors in FE

2 which are zero at index e. This is
precisely StabE(e0) = StabE(e1), as desired. Now suppose [x] is an internal gate, i.e. x is
a non-atomic h.f. set in tc(µ). Each row of M [x] ∈ F[x]EC ×E

2 is the characteristic vector of
X [y] ⊆ E, for a [y] ∈ [x]EC . Now fix such a child y of x. We have X [y] =

a
[w]∈[y]EC

X [w].
In matrix-vector notation, we can write this as:

M [x][y]− = χ(X ([y]))T =
∑

[w]∈[y]EC

(M [y][w]−)T = (1 1 ... 1) · M [y].

Let γ ∈ C(x) be the connected component such that γ = [y] ∩ x. The equation above means
that Ker(M [x][y]−) = Ey, where Ey denotes the set of all vectors in FE

2 whose image under
M [y] has even Hamming weight. Thus we have to show that Ey = StabE(γ). Each row
M [y][w]− corresponds to a connected component γ′ ∈ C(y) with w ∈ γ′.
By the induction hypothesis, we have for each row M [y][w]− and each v ∈ FE

2 that
M [y][w]− · v = 1 iff v /∈ StabE([w] ∩ y). So M [y] · v has even Hamming weight iff ρχ−1(v) ∈
AutCFI(G) flips an even number of connected components of y. This is true iff ρχ−1(v) flips an
even number of components in every y′ ∈ γ. By definition of CFI-symmetry (Definition 10),
this is the case iff v ∈ StabE(γ), because µ is CFI-symmetric, and thus, γ is a CFI-symmetric
component. In total, we have shown that v ∈ Ey iff v ∈ StabE(γ). This proves (⋆) for every
row of M [x]. ◀

As a consequence of this correspondence between kernels and stabilisers, we can bound
the fan-in dimension of C(µ). This proves Property 4 from Theorem 11.

▶ Lemma 15. The fan-in dimension of C(µ) is log(maxOrbE(µ)).

Proof. Let x ∈ tc(µ). From the Orbit-Stabiliser Theorem and the fact that |AutCFI(G)| =
2|E|, it follows that OrbE(x) = 2|E|

|StabE(x)| ≤ maxOrbE(µ). By Lemma 14, StabE(x) =
Ker(M [x]). Applying the Rank Theorem to M [x], we get: rk(M [x]) = |E|−dim StabE(x) ≤
log(maxOrbE(µ)). Since there is an object x ∈ tc(µ) where maxOrbE(µ) is attained,
rk(M [x]) = log(maxOrbE(µ)) is indeed the maximum rank of any gate matrix of C(µ). ◀

Proof of Theorem 11. First of all, since µ is by assumption activated by a CPT-sentence
in the structure GS , the size |tc(µ)| and the orbit |OrbAut(GS)(µ)| are polynomial in |GS |.
Therefore, Property 1 from Theorem 11 clearly holds for C(µ), because |VC | ≤ |tc(µ)|.
Property 2 follows from the bound on |OrbAut(GS)(µ)| together with Corollary 13, and
the fact that |OrbG(µ)| ≤ |OrbAut(GS)(µ)|. Property 4 is proven in Lemma 15. Finally,
Property 3 can be seen as follows: Suppose C(µ) is sensitive to an edge e ∈ E. This means
that e ∈ X (r), for the root r = [µ] of C(µ). This is the case iff e ∈ X [y] for an odd number of
children [y] ∈ [µ]EC . This is the same as saying that the column M [µ]−e has odd Hamming
weight. By equation (⋆) from Lemma 14, this holds if and only if χ(e) /∈ StabE([y] ∩ x) for
an odd number of children [y] ∈ [µ]EC . Since µ is CFI-symmetric, by Definition 10 this is
the case if and only if ρe(µ) ̸= µ. And this holds iff e ∈ supCFI(µ) (because supCFI(µ) is the
smallest possible CFI-support of µ). ◀
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5.4 Proving the main theorem

So far, we have a translation of CFI-symmetric h.f. sets in HF(Ê) into XOR-circuits with
the properties mentioned in Theorem 11. In order to conclude Theorem 1 from this, we
additionally need the following: Any CPT-algorithm which is both super-symmetric and
CFI-symmetric and decides the CFI-query must construct a h.f. set whose properties translate
into the circuit properties from Theorem 1. Fortunately, a result to this effect exists already.
The following support lower bound for general CPT-programs deciding the CFI-query is due
to Dawar, Richerby, and Rossman [9].

▶ Theorem 16 (implicit in the proof of Theorem 40 in [9]). Let (Gn)n∈N be a family of
base graphs and let twn denote the treewidth of Gn. Let G0

n,G1
n denote the even and odd

CFI-structures over Gn. Assume that G0
n and G1

n are Ctwn-homogeneous.
Then any CPT-program that distinguishes G0

n and G1
n for all n ∈ N must activate on input

Gi
n a h.f. set µn whose smallest support has size at least Ω(twn).

A structure GS
n is Cf(n)-homogeneous if whenever two tuples a and b satisfy exactly the

same Cf(n)-formulas in GS
n , then there is an automorphism of GS

n that maps a to b. In
particular, this condition is satisfied by certain ordered CFI-graphs, as stated in [9], and one
can also show that the unordered CFI-graphs over hypercubes, which we use for the lower
bound in Theorem 2, satisfy it. There are other details which must be taken into account
when connecting Theorem 16 with Theorem 11 in order to prove Theorem 1, e.g. one has to
reconcile the different notions of support that these theorems talk about. We gloss over these
things in this extended abstract and refer to Theorem 31 in the long version, which is the
more precise formulation of Theorem 1. For our application to hypercube CFI-structures, it
is shown in the long version that Theorem 1 really holds in this shortened formulation. The
reason why Theorem 1 requires the object to be super-symmetric is that this allows us to
infer that O(log maxOrbE(µ)) ≤ O(log |GS

n |). This is needed to translate Property 4 from
Theorem 11 into Property 4 from Theorem 1. Super-symmetry together with the fact that
|tc(µ)| is polynomial guarantees that maxOrbE(µ) is polynomially bounded in |GS

n | (see
Definition 5).

6 A lower bound for symmetric XOR-circuits

The detailed proof of Theorem 2 is too long for this extended abstract but here is an
outline: The theorem states that no family of XOR-circuits exists which are stabilised by all
automorphisms of the n-dimensional hypercube, are sensitive to sufficiently many input bits,
of polynomial size, and satisfy certain logarithmic bounds on the orbit-wise number of parents
and children of each gate. What the proof concretely shows is that the sensitivity requirement
(condition 3 in Theorem 2) contradicts the other three conditions: Any sufficiently symmetric
circuit C is so highly connected that most input bits cancel themselves out because the
number of distinct (not necessarily vertex-disjoint) paths from the root r to the input is even,
and every operation is XOR. To prove that this self-cancellation effect takes place for an
input gate g, we partition the set of paths between g and r in C into their orbits. Then we
show that each orbit contains an even number of paths. To achieve this, it suffices to look at
one path P in each orbit and to show the existence of an edge (h′, h) in this path such that
Orbit(h)(h′) := {π(h′) | π ∈ Stab(h)} has even size. Then we can conclude that P splits
into an even number of “alternative routes” towards the root at gate h. Thus, the goal is to
show that such an edge (h′, h) exists on every path between r and g.
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We do this by maintaining fine-grained information about the stabiliser groups Stab(hi)
of the gates (h1 = g, h2, h3, ..., r) along a given path (the path here is presented in the reverse
direction of the edges). The automorphism group of the n-dimensional hypercube contains
as a subgroup the symmetric group Symn acting on the n positions of the binary words
{0, 1}n, which form the vertex set of the hypercube. Thus, each Stab(hi) can be seen as
a subgroup of Symn. Such subgroups can be approximated by what we call their coarsest
alternating supporting partition SPA(Stab(hi)) (inspired by a similar concept used in [1]).
This is the coarsest partition P of [n] such that for each P ∈ P, every even permutation
of P is a member of Stab(hi). We know what SPA(Stab(g)) looks like for every input
gate g: This depends on the edge of the hypercube that g is labelled with. For a large
proportion of the hypercube edges, this is a partition of [n] into two parts of size Θ(n).
We also know for the root that SPA(Stab(r)) = {[n]} because the circuit is stabilised by
every permutation in Symn. The bounds on the orbit-wise fan-in and fan-out degree that
we assume in Theorem 2 allow us to prove that when we pass from any hi to hi+1, then
SPA(Stab(hi)) ≈ SPA(Stab(hi+1)), i.e. the supporting partitions hardly change (because
if they did change more, then one would find that there must be more parent/child gates
per orbit than allowed). Since SPA(Stab(g)) differs quite substantially from SPA(Stab(r))
but SPA(Stab(hi)) ≈ SPA(Stab(hi+1)) for every i, we can infer that all “intermediate
partitions” between SPA(Stab(g)) and SPA(Stab(r)) appear for the gate stabilisers along
the path. Then we show that one of these “intermediate partitions” which must appear
as SPA(Stab(hi)) for some i has properties which entail what we wanted, namely that
Orbit(hi)(hi+1) has even size. Thus, the edge (hi+1, hi) on the path satisfies what we were
looking for. So in short, the proof works because: Firstly, in order to show that a path has
an even number of automorphic images, it suffices to find one gate on the path where the
number of symmetric predecessors is even. Secondly, whether or not this happens can be
inferred from the supporting partition of the gate. Thirdly, the fan-in and fan-out bounds
enable us to track very precisely how the supporting partitions along the path look like.
With these arguments, we can show for a sufficient number of input gates g, that they do
not contribute to the result of the XOR-computation because they have an even number of
paths to r – thus, circuit property 3 in Theorem 2 is not satisfied when the other conditions
are. Carrying out this proof sketch requires quite some work that we have swept under the
carpet here; for example, one needs certain group-theoretic arguments similar to the proof of
Theorem 5.2 B in [13] in order to be able to describe the stabiliser groups appropriately with
alternating supporting partitions.

7 Conclusion and future research

We have shown that the definability of the CFI-query on a class K of base graphs by means
of a CFI-symmetric algorithm presupposes the existence of symmetric XOR-circuits with the
properties from Theorem 1. We come close to proving the non-existence of these circuits for
K being the family of n-dimensional hypercubes. It remains as a problem for future research
to improve this lower bound and close the gap between the circuit properties in Theorems 1
and 2 in order to separate the class of CFI-symmetric algorithms from Ptime. Once that is
achieved, the next step would be to lift this circuit approach to all CPT-algorithms for the
CFI-query, not just the CFI-symmetric ones. This is a potential route to eventually solve the
extremely difficult problem of separating CPT from Ptime. In the full version of the paper,
we also provide a generalised circuit construction which works for a larger class of h.f. sets than
CFI-symmetric ones. These are sets whose AutCFI(G)-symmetries and Aut(G)-symmetries
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go well together in the sense that the Boolean vector spaces describing the AutCFI(G)-
stabilisers admit Aut(G)-symmetric bases. However, one can prove that, unfortunately, the
class of h.f. sets with this property is still not the full class of all CPT-definable sets.

A different approach towards CPT lower bounds could be to study the isomorphism
problem of multipedes [25] instead of CFI-graphs. Such structures have been used to obtain
lower bounds against individualization-refinement graph isomorphism algorithms. Multipedes
differ from CFI-graphs in so far as they have no non-trivial automorphisms. Their inherent
symmetries are rather given by counting-logic types (two tuples in a structure have the same
k-type if they satisfy the same Ck-formulas). It could be that the circuit construction is
adaptable to this kind of symmetry. This would be of particular interest in case that the
(unordered) CFI-query turns out to be in fact CPT-definable; then, multipedes might still
provide an example to separate CPT from Ptime.
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Abstract
We show a quadratic separation between resolution and cut-free sequent calculus width. We use this
gap to get, for the first time, first, a super-polynomial separation between resolution and cut-free
sequent calculus for refuting CNF formulas, and secondly, a quadratic separation between resolution
width and monomial space in polynomial calculus with resolution. Our super-polynomial separation
between resolution and cut-free sequent calculus only applies when clauses are seen as disjunctions
of unbounded arity; our examples have linear size cut-free sequent calculus proofs writing, in a
particular way, their clauses using binary disjunctions. Interestingly, this shows that the complexity
of sequent calculus depends on how disjunctions are represented.
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1 Introduction

Whether cut-free sequent calculus can polynomially simulate resolution for refuting CNF
formulas is a question existing since the beginnings of proof complexity. It was first raised
in [13] and iterated e.g. in [25]. Cook and Reckhow [13] show that in the tree-like case,
there are examples where resolution can have exponentially smaller proofs. Arai, Pitassi and
Urquhart [3] point out that the answer may heavily depend on how clauses are represented.
A clause consisting of the literals, say ℓ1, ℓ2, ℓ3, ℓ4, can be seen as either a single disjunction of
arity four, or as a series of applications of binary disjunctions, for example (ℓ1 ∨ ℓ2) ∨ (ℓ3 ∨ ℓ4),
and this can have a profound impact on the complexity of sequent calculus proofs. The result
of Cook and Reckhow above applies in the case where clauses are seen as single disjunctions
of unbounded arity, or the case where the order in which the binary disjunctions are applied
is fixed. If we are free to choose the order, then tree-like cut-free sequent calculus can
quasi-polynomially simulate tree-like resolution, and this is optimal [3]. In the DAG-like case,
and if we are free to choose the order in which binary disjunctions are applied, Reckhow [21]
shows that cut-free sequent calculus can polynomially simulate regular resolution, and Arai [2]
shows that it can polynomially simulate resolution for refuting k-CNF formulas F , where k

grows at most logarithmically as a function of the size of the shortest resolution refutation of
F . However, the general question has remained unresolved.

We define the width of a sequent calculus proof as the maximum number of formulas
occurring in a sequent of the proof. This definition extends in a natural way the concept
of the width of a resolution proof to stronger proof systems. Furthermore, it allows for a
simple, abstract characterization of sequent calculus width generalizing the characterization
of Atserias and Dalmau for resolution width [4]. Using this characterization, we show a
quadratic gap between resolution width and cut-free sequent calculus width. Resolution is a
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sequent calculus system that has only atomic cuts, so this says that including atomic cuts in
cut-free sequent calculus can shorten the width of proofs. Utilizing then this gap, we show a
super-polynomial separation between cut-free sequent calculus and resolution size. To put it
in other words, atomic cuts can super-polynomially decrease the size of proofs. This result
applies only when clauses are seen as disjunctions of unbounded arity. There is a way to
write the clauses in our examples using binary disjunctions, so that the resulting formulas
have linear size cut-free sequent calculus refutations. Thus, as it was already known for the
tree-like case, the complexity of sequent calculus proofs can depend on how disjunctions are
represented.

Several notions of width have been used to show space lower bounds in different proof
systems, demonstrating a close relationship between the two measures [5, 14, 4, 11, 12, 10,
9, 17, 20]. We note that our characterization of cut-free sequent calculus width for refuting
CNF formulas coincides with the concept of dynamic satisfiability, introduced by Esteban,
Galesi and Messner [14] as a tool for proving space lower bounds in resolution and k-DNF
resolution. It is easily seen that dynamic satisfiability is a weakened version of resolution
width. How much weaker however is a question that has not been addressed. We show
that it is strictly weaker, the quadratic gap between resolution and cut-free sequent calculus
width being a quadratic gap between the two. Furthermore, our basic construction extends
to stronger versions of dynamic satisfiability used to prove monomial space lower bounds in
algebraic proof systems [11, 12], allowing us to make progress towards separating resolution
width from monomial space.

To put things into perspective, Atserias and Dalmau [4] show that for a k-CNF formula
F , W (F ⊢ ⊥), the minimum width, and CSpace(F ⊢ ⊥), the minimum clause space needed
to refute F in resolution satisfy

W (F ⊢ ⊥) ≤ CSpace(F ⊢ ⊥) + k, (1.1)

and Galesi, Kołodziejczyk and Thapen [17] show a similar relation between resolution width
and the minimum monomial space needed to refute F in polynomial calculus with resolution:

W (F ⊢ ⊥) ≤ O
(

(MSpace(F ⊢ ⊥))2
)

+ k. (1.2)

Ben-Sasson and Nordström [6, 7] give for every n, a formula F of size n such that W (F ⊢
⊥) = O(1) and CSpace(F ⊢ ⊥) = Ω(n/ log n), rendering a relation between resolution
width and clause space in the opposite direction impossible. Whether clause space can
be meaningfully bounded in terms of monomial space is unknown, but the two measures
are related in a more indirect way: they coincide up to polynomial and log n factors once
regularized, meaning that a super-polynomial separation of them would imply a strong
trade-off between monomial space and size [20]. Despite however this close relationship, no
separation between width and monomial space is currently known – the techniques of [6, 7]
in particular fail to generalize to the case of monomial space. Our result shows a quadratic
separation between the two.

2 Sequent calculus

The sequent calculus was introduced by Gentzen to formulate and prove his famous cut-
elimination theorem. Many authors describe it as the most elegant proof system, and indeed,
it illustrates the symmetries of logic at the level of syntax, like no other system.
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Sequent calculus’s version for classical logic is often denoted by LK. We shall use LK to
denote its propositional part. LK operates with sequents. A sequent is a tuple of the form
(Γ, ∆), where Γ and ∆ are finite sets of formulas. Traditionally, a sequent (Γ, ∆) is written
as Γ → ∆. This is to remind us its semantic interpretation: Γ → ∆ is to be read as “if all
formulas in Γ are true, then at least one formula in ∆ is true”.

Let us present the rules of the system. In what follows, A, B represent arbitrary formulas,
and Γ, ∆, Γ′, ∆′ represent finite sets of formulas. Sets are written in a quite plain manner:
We write Γ, A instead of Γ ∪ {A}, A instead of {A}, A, B instead of {A, B} and so on. The
axioms of LK are all sequents of the form A → A. Of the inference rules, first we have a rule,
which allows us to add formulas to the left or right part of a sequent. This rule is called the
thinning or weakening rule and has the form

Γ → ∆
Γ′ → ∆′ ,

i.e., from Γ → ∆ derive Γ′ → ∆′, where Γ ⊆ Γ′ and ∆ ⊆ ∆′. Next, we have rules for each
connective. These come in pairs; a connective is treated differently according to which side
of its sequent it appears. The rules for the connectives ∧, ∨ and ¬ are shown in Table 1.

Table 1 The analytic LK rules.

¬L :
Γ, ¬A → ∆, A

Γ, ¬A → ∆
¬R :

Γ, A → ∆, ¬A

Γ → ∆, ¬A

∧L1 :
Γ, A ∧ B, A → ∆

Γ, A ∧ B → ∆

∧L2 :
Γ, A ∧ B, B → ∆

Γ, A ∧ B → ∆

∧R :
Γ → ∆, A ∧ B, A Γ → ∆, A ∧ B, B

Γ → ∆, A ∧ B

∨R1 :
Γ → ∆, A ∨ B, A

Γ → ∆, A ∨ B

∨R2 :
Γ → ∆, A ∨ B, B

Γ → ∆, A ∨ B

∨L :
Γ, A ∨ B, A → ∆ Γ, A ∨ B, B → ∆

Γ, A ∨ B → ∆

These rules are called analytic, and they already form a complete proof system for proving
tautologies; we shall call this system cut-free LK or LK−. Finally, there is the cut rule:

Γ, A → ∆ Γ → ∆, A

Γ → ∆
. (2.1)

So, already having a proof of, say → B, we may use it to prove → A: → A can be derived
from B → A and → B via the cut rule, and now to prove → A, we need to prove the weaker
formula B → A. B can be anything. It doesn’t need to have any intuitive relation to A, but
even as such, it might be the case that a proof of B → A is much shorter than a proof of
→ A. Gentzen’s cut elimination theorem says that there is always an effective procedure of
eliminating all applications of the cut rule from a proof, making it purely analytic. We refer
to the formula A in applications of rule (2.1) as the formula being cut, or as the cut formula.

An LK proof of a sequent σ is a derivation of σ starting with the axioms and applying
the rules of LK. We imagine starting with the axioms at the bottom, and going to the top by
applying the LK rules. More formally, an LK proof of σ is a sequence consisting of sequents
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that ends with σ, in which every sequent is either an axiom, or results from previous sequents
by one of the LK rules. An LK− proof is an LK proof that never uses the cut rule. We may
view proofs as DAGs, by drawing edges from premises to conclusions in applications of the
inference rules. If the DAG corresponding to a proof is a tree, we shall refer to the proof as
being tree-like.

3 Sequent calculus as a satisfiability algorithm

It will be particularly convenient to consider the following view of LK. Following Smullyan [23],
let us write a sequent A1, . . . , Ak → B1, . . . , Bℓ as T A1, . . . , T Ak, F B1, . . . , F Bℓ. That is, we
annotate the formulas appearing on the left side of a sequent by T , the formulas appearining
on its right side by F , and conjoin the two sides to form a single set. T and F stand for true
and false respectively – T A should be thought of as asserting that A is true and F A as
asserting that A is false.

Annotated formulas that are not annotated variables are naturally divided into two
groups: those of a conjunctive and those of a disjunctive type. Formulas of the form T A ∧ B,
F A∨B, T ¬A or F ¬A belong to the former group, and those of the form T A∨B or F A∧B

to the latter. We use the letter “α” to stand for an arbitrary annotated formula of conjunctive
type, and the letter “β” to stand for an arbitrary annotated formula of disjunctive type. We
define the components αi of a formula α and the components βi of a formula β as shown in
Table 2.

Table 2 Smullyan’s notation.

α α1 α2 β β1 β2

T A ∧ B T A T B F A ∧ B F A F B

F A ∨ B F A F B T A ∨ B T A T B

T ¬A F A

F ¬A T A

These provisions allow on the one hand for an extremely concise description of the rules
of Table 1; they can be written as:

S, α, α1

S, α
,

S, α, α2

S, α
,

S, β, β1 S, β, β2

S, β
.

More importantly, they reveal an algorithmic interpretation of LK. An LK proof, seen
from the top to the bottom, i.e. from the sequent σ := A1, . . . , Ak → B1, . . . , Bℓ it is
proving to the axioms, describes the execution of an algorithm that tries to find a truth
assignment (or more generally a model) that falsifies σ. The algorithm begins with σ written
as T A1, . . . , T Ak, F B1, . . . , F Bℓ, asserting that there is an assignment that makes all Ai

true and all Bi false, or equivalently, an assignment that falsifies σ. Then it keeps expanding
this set, by applying the LK rules in reverse, that is from the conclusion to the premises.
This expansion takes the form of a tree (or a DAG if we identify nodes labelled by the same
set). At any point, we may choose a leaf labelled by S, α and add to it a single child labelled
by S, α, αi, as any assignment satisfying α must also satisfy every αi. Or we may choose a
leaf labelled by S, β and add to it two children, one labelled by S, β, β1 and the other by
S, β, β2, as any assignment satisfying β must either satisfy β1 or β2. The thinning rule allows
the algorithm to forget information: We may add to a leaf labelled by S, a child labelled by
a subset of S. Finally, the cut rule allows us to add to a leaf labelled by S, two children,
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one labelled by S, T A and the other by S, F A for any formula A, as every assignment must
satisfy either A or ¬A. This may greatly facilitate the search procedure. If at any point a set
of the form T A, F A is reached, then the search process may terminate at that particular
branch, as no assignment can set A to both true and false. Notice that the contradiction
T A, F A corresponds to the axiom A → A. A tree (or DAG) constructed this way, every
branch of which ends with a leaf labelled by a set of the form T A, F A, is an LK proof of σ.

A depth-first implementation of the algorithm described above is shown as Algorithm 1
below. Algorithm 1 is called on a sequent represented as a set of annotated formulas. It

Algorithm 1 The LK algorithm.

procedure LK(S)
if S contains both T A and F A for some formula A then

return false
if for every α ∈ S, all αi ∈ S and for every β ∈ S, there is a βi ∈ S then

return true
go to either 1, 2 or 3
1. select an S′ ⊆ S and return LK(S′)
2. select an arbitrary formula A and return LK(S, T A) or LK(S, F A)
3. select an A ∈ S

if A = α then
select a component αi and return LK(S, αi)

if A = β then
return LK(S, β1) or LK(S, βk)

chooses at each recursive call non-deterministically what rule to apply and which formula to
apply it to. If false is returned then there is an LK proof of our initial sequent; if no such
proof exists, then there is an assignment that falsifies our initial sequent and Algorithm 1
is able to find it, returning true. As presented, line 1, corresponding to the thinning rule,
is redundant. However, incorporating memoization, that is the ability to stop the search
when a set S has already been encountered in a previous recursive call that has returned,
effectively identifying nodes labelled by the same set, this line makes it possible to greatly
prune the search for a falsifying assignment. In terms of proofs, DAG-like proofs may be
shorter than tree-like proofs. The key point in analyzing the correctness of Algorithm 1 (or
equivalently the completeness of LK), is that when at the base case true is returned, we can
create an assignment consistent with S by setting for each formula A, A to true if T A ∈ S,
and false otherwise.

4 The width of sequent calculus proofs

We define the width of a sequent as the number of formulas it contains, and the width of a
sequent calculus proof as the maximum of the widths of the sequents it contains. It is not
hard to see that for any provable sequent S0, there is an LK proof of S0 of width a constant
plus the width of S0. The concept of the minimum width needed to prove a sequent becomes
non-trivial only if we restrict the class of cut formulas we are allowed to use. We shall be
mainly interested in the minimum width over all LK− proofs of S0, which we denote by
WLK−(⊢ S0).

We are going to give a characterization of WLK−(⊢ S0) in terms of the definition below. In
what follows, sequents are viewed as in the above section, viz. as sets of annotated formulas.
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▶ Definition 4.1. Following the terminology of [23], let us call a sequent S0 analytically
k-consistent if there is a set of sequents S containing S0 and such that for each S ∈ S:
1. for any formula A, S does not contain both T A and F A;
2. S′ ⊆ S =⇒ S′ ∈ S;
3. |S| < k & α ∈ S =⇒ S, αi ∈ S for every component αi of α;
4. |S| < k & β ∈ S =⇒ S, βi ∈ S for some component βi of β.
If the following condition is also satisfied, then we call S0 synthetically k-consistent with
respect to the set C:
5. |S| < k =⇒ S, T A ∈ S or S, F A ∈ S for any formula A ∈ C.

It is often helpful to see definitions such as the above, as describing a strategy for the
adversary, in a game between a prover and an adversary played on a formula/sequent/set of
formulas. In this case, the game is as follows: The configurations of the game are sequents.
The initial configuration is S0. In every round, the prover either deletes some formulas in the
current sequent S, or selects an α-formula in S and adds a component of it to S, or selects
a β formula, in which case the adversary adds a component of it to S. Allowing condition
5, the prover may choose an arbitrary formula A ∈ C and the adversary must respond by
adding either T A or F A to S. The game ends with prover winning once S contains T A

and F A for some formula A. The prover can always win provided that S0 is provable. The
question is: given a bound k, can she win always maintaining that the width of S is at most
k? Definition 4.1 describes a strategy for the adversary, permitting the prover from winning
when she maintains that bound.

▶ Theorem 4.1. Suppose that |S0| ≤ k. Then S0 is analytically k-consistent if and only if
WLK−(⊢ S0) > k. It is synthetically k-consistent with respect to C if and only if every LK
proof of S0 in which every cut formula belongs to C has width more than k.

Proof. Let us only show the former sentence. Suppose first that S0 is analytically k-consistent,
and let S be the set of sequents witnessing this. We will show that in every tree-like LK−

derivation (not necessarily beginning with axioms) τ of S0, of width at most k, there is an
initial sequent (i.e. one appearing as a leaf) in S. From the first condition of Definition 4.1
that sequent is not an axiom, thus τ is not a proof. It is enough to show this for tree-like
derivations, since a DAG-like derivation can be transformed into a tree-like one without
increasing the width.
Base case. If τ contains just S0, then we are done since S0 ∈ S.
Inductive step. Take some initial sequents S1, . . . , Sr from which a sequent S is derived

via an inference rule ρ, and remove them to get the derivation τ ′. From the induction
hypothesis, there is an initial sequent in τ ′ that belongs to S. If that sequent is not
S, then it also appears in τ and we are done. Otherwise, we have the following cases
according to what rule ρ is:
Case 1. If it is the weakening rule, and thus r = 1 and S1 ⊆ S, then from the second

condition of Definition 4.1, S1 ∈ S.
Case 2. If ρ is the α-rule, and thus r = 1, α ∈ S and S1 = S, αi for some αi, then since

τ has width at most k, |S| < k, and hence from the third condition of Definition 4.1,
S1 ∈ S.

Case 3. If ρ is the β-rule, and thus β ∈ S and each Si is of the form S, βi, then again
|S| < k, and from the fourth condition of Definition 4.1, some Si belongs to S.

Now suppose that WLK−(⊢ S0) > k. Set

S := {S | |S| ≤ k & WLK−(⊢ S) > k}.
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Clearly S0 ∈ S. We will show that S satisfies the conditions 1–4 of Definition 4.1. For each
S ∈ S, first S cannot contain T A and F A for some A. This is so, because such a sequent is
a weakening of an axiom, and having size at most k, it has a proof of width at most k. For
the closure under subsets, if S′ ⊆ S, then WLK−(⊢ S′) > k, for otherwise WLK−(⊢ S) ≤ k

since S follows from S′ via the weakening rule. For the α condition, if α ∈ S and |S| < k,
then for each αi it must be that S, αi ∈ S, for otherwise WLK−(⊢ S) ≤ k since S follows
from S, αi via the α-rule. Finally, if β ∈ S and |S| < k, then there must be a βi such that
S, βi ∈ S, otherwise WLK−(⊢ S) ≤ k, since S follows from all S, βi via the β-rule. ◀

5 LK− for refuting CNF formulas and resolution

A literal is a propositional variable x, or the negation of propositional variable ¬x. We let
x

def= ¬x and ¬x
def= x. A clause is a disjunction (possibly empty) of literals, and a CNF

formula is a conjunction of clauses. The ordering of literals in a clause does not matter, so
that the clause x ∨ y is considered to be the same as y ∨ x. The width, W (F ), of a CNF
formula F is the number of literals in the largest clause of F . A CNF formula of width at
most k is called a k-CNF formula.

Refuting a CNF formula F = C1 ∧ · · · ∧ Cm means proving that the clauses Ci cannot
be simultanesouly satisfied, that is, it means proving C1, . . . , Cm →. LK− for proving such
sequents has the following form. Of the rules in Table 1, the only one that is relevant is ∨L,
which now, seeing clauses as disjunctions of unbounded arity, has as many premises as the
number of literals in the clause it is deriving. Moreover, there is no reason to always carry
the clauses Ci in sequents. We may as well delete them from every sequent, but keep in our
mind that they are implicitly there. What remains are sequents of the form ℓ1, . . . , ℓr →,
where the ℓi’s are literals, and such sequents are nothing other than clauses. To be explicit,
the axioms of the resulting system are clauses of the form x ∨ ¬x, and the inference rules are
the weakening rule, from C infer C ∨ D, and

C ∨ ℓ1 · · · C ∨ ℓr

C
, (5.1)

where C and D are clauses and ℓ1 ∨· · ·∨ ℓr is a clause of the formula we are refuting. A proof
of C1, . . . , Cm →, in other words a refutation of F = C1 ∧ · · · ∧ Cm, in LK−, is a derivation
of the empty clause using the above rules. The size of such a derivation is the number of
clauses it contains, and its width is the size of the largest clause occurring in it. We shall
denote by SLK−(F ⊢ ⊥) and WLK−(F ⊢ ⊥) and the minimum size and the minimum width
respectively over all LK− refutations of F .

Resolution is the system we get by adding to the above system the cut rule (2.1), where
the cut formula A is restricted to be a propositional variable:

C ∨ x C ∨ ¬x

C
. (5.2)

We may make a proof in this system “cut-only”, by pushing all applications of the rule (5.1)
at the bottom levels. Namely, we can simulate rule (5.1) by (5.2) as follows: Start with
ℓ1 ∨ · · · ∨ ℓr, derive from it and C ∨ ℓ1, C ∨ ℓ2 ∨ · · · ∨ ℓr, then derive from C ∨ ℓ2 ∨ · · · ∨ ℓr

and C ∨ ℓ2, C ∨ ℓ3 ∨ · · · ∨ ℓr, and so on, until C is derived. Now the leaves containing clauses
of F and these can be derived from axioms by (5.1). Deleting all axioms, and incorporating
the weakening rule into (5.2), writing it as
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C ∨ x D ∨ ¬x

C ∨ D
, (5.3)

we get the usual presentation of resolution, where, instead of deriving F →, the empty clause
is derived taking the clauses of F as axioms: A resolution refutation of a CNF formula F is
a derivation of the empty clause from the clauses of F , using only the rule (5.3). We shall
denote by WR(F ⊢ ⊥) and SR(F ⊢ ⊥) the minimum width and minimum size respectively,
over all resolution refutations of F , and by STR(F ⊢ ⊥) the minimum size, over all tree-like
resolution refutations of F .

6 Dynamic satisfiability

Adapting Definition 4.1 for resolution we get the characterization of [4] for resolution width.
Adapting it for LK− restricted to refuting CNF formulas, we get the definition of dynamic
satisfiability from [14]. Namely, let us call sets of literals that do not contain contradictory
literals partial assignments. We think of the assignment, say {x, ¬y, z}, as making x true, y

false and z true. A partial assignment satisfies a clause C, if it contains a literal of C. It
falsifies C if it contains ℓ for every ℓ in C. We get:

▶ Definition 6.1 [14]. Let F be a CNF formula, and let k be a natural number. F is said
to be k-dynamically satisfiable is there is a non-empty set A of partial assignments to its
variables such that for every assignment α ∈ A,
1. if α′ ⊆ α then α′ ∈ A;
2. if |α| < k and C is a clause of F , then there is an α′ ⊇ α in A that satisfies C.

Theorem 4.1 in particular, becomes:

▶ Theorem 6.1. A CNF F is k-dynamically satisfiable if and only if WLK−(F ⊢ ⊥) > k.

In the game corresponding to Definition 6.1, prover chooses in each round a clause of F ,
and the adversary responds by choosing a literal in that clause, which adds to the current
assignment. Again, the closure under subsets condition corresponds to the ability of the
prover to delete at any round literals from the current assignment. The prover wins once the
current assignment falsifies a clause of F .

We get a characterization of resolution width by having the prover selecting variables
instead of clauses, and the adversary responding by giving values to them. More specifically,
in every round the prover selects a variable x of F . Then the adversary selects either x or
¬x, and the prover updates the current assignment α by deleting (if she wants) literals and
adding the choice of the adversary. Again the prover wins once α falsifies a clause of F . She
can win always maintaining |α| < k if and only if WR(F ⊢ ⊥) ≤ k [4].

Notice that, if W (F ) is small, the prover in the second game is more powerful. Namely,
we have WR(F ⊢ ⊥) ≤ WLK−(F ⊢ ⊥) + W (F ) − 1. We already saw this when we explained
how the resolution rule can simulate (5.1). In terms of games, the argument goes as follows:
When the prover in the first game selects a clause C, the prover in the second game can
start selecting, one by one the variables of C. If the game does not end, then the current
assignment satisfies C, and then the prover can delete literals to match the assignments in
the two games.

Definition 6.1 was introduced in [14] as a tool for proving space lower bounds in resolution
and k-DNF resolution. The following definition is from [15, 1]. A memory configuration in
resolution, is a set of clauses. A resolution refutation of a CNF formula F , in configurational
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form, is a sequence M1, . . . , Mt of configurations where M1 is empty, Mt contains the
empty clause and for i > 1, Mi is obtained from Mi−1 by one of the following rules:
Axiom download: Mi = Mi−1 ∪ {C}, where C is a clause of F .
Inference: Mi = Mi−1 ∪ {C}, where C is derived from clauses in Mi−1 by the resolution

rule.
Erasure: Mi ⊆ Mi−1.
The clause space of such a refutation is max1≤i≤t |Mi|. The clause space of a CNF formula
F , denoted by CSpace(F ⊢ ⊥), is the minimum clause space, over all refutations, in
configurational form, of F .

▶ Theorem 6.2 [14]. If F is k-dynamically satisfiable, then CSpace(F ⊢ ⊥) ≥ k.

We thus have

WR(F ⊢ ⊥) − W (F ) + 1 ≤ WLK−(F ⊢ ⊥) ≤ CSpace(F ⊢ ⊥). (6.1)

It is shown in [6] that there are 6-CNF formulas F of size O(n) such that WR(F ⊢ ⊥) = O(1)
and CSpace(F ⊢ ⊥) = Ω(n/ log n). It is easy to show that WLK−(F ⊢ ⊥) = O(1), thus these
formulas in fact provide a gap between WLK−(F ⊢ ⊥) and CSpace(F ⊢ ⊥). The question of
whether there is a gap between WR(F ⊢ ⊥) and WLK−(F ⊢ ⊥) has not been addressed, and
it is what we will deal with next.

7 A quadratic gap between LK− and resolution width

Let F =
∧s

i=1 Ci and G =
∧t

i=1 Di be unsatisfiable CNF formulas. We define

F × G
def=

s∧
i=1

t∧
j=1

(Ci ∨ Dj).

F × G is the CNF expansion of the formula F ∨ G, which is also unsatisfiable.
Remarkably, LK− width and resolution width exhibit a different behavior with respect

to this construction. This disparity ultimately relies on the fact that the cut rule gives us
the ability to combine given proofs into a more complicated proof.

On one hand, we have:

▶ Lemma 7.1. If F and G are over disjoint sets of variables, then

WLK−(F × G ⊢ ⊥) ≥ WLK−(F ⊢ ⊥) + WLK−(G ⊢ ⊥) − 1.

Proof. Suppose that F is k-dynamically satisfiable, G is ℓ-dynamically satisfiable, and let A
and B respectively be sets witnessing this. We need to show that F ×G is (k + ℓ)-dynamically
satisfiable, that is we need to find a set satisfying the conditions of Definition 6.1 for the
parameter k + ℓ. We claim that

C := {α ∪ β | α ∈ A & β ∈ B}

is such a set. Closure under subsets immediately follows from the fact that A and B are
closed under subsets. For the second condition, suppose that γ ∈ C, |γ| < k + ℓ, and let
Ci ∨ Dj be a clause of F × G, where Ci is a clause of F and Dj is a clause of G. Since γ ∈ C,
there is an α ∈ A and a β ∈ B such that γ = α ∪ β. Moreover, since |γ| < k and F and
G do not share variables, either |α| < k or |β| < ℓ. In the first case there is an α′ ⊇ α in
A satisfying Ci, and thus α′ ∪ β is an assignment in C satisfying Ci ∨ Dj . In the second
case there is a β′ ⊇ β in B satisfying Dj , and thus α ∪ β′ is an assignment in C satisfying
Ci ∨ Dj . ◀
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For resolution on the other hand, we have:

▶ Lemma 7.2. WR(F × G ⊢ ⊥) ≤ max{WR(F ⊢ ⊥) + W (G), WR(G ⊢ ⊥)}.

Proof. Let π and ρ be resolution refutations of F and G respectively, both of minimum
width. Replacing every clause C in π with C ∨ Di we get a resolution proof πi of Di from
F × G. πi has width at most WR(F ⊢ ⊥) + W (F ). Replacing then every clause Di in ρ with
πi we get a resolution refutation of F × G with the stated width. ◀

Choosing an appropriate seed and iterating, we get our result.

▶ Theorem 7.1. There are CNF formulas G with n2 variables, size O(n)n, and such that
WR(G ⊢ ⊥) = O(n) and WLK−(G ⊢ ⊥) = Ω(n2).

Proof. Let F be a CNF formula with n variables, width O(1), size Θ(n), and such that
WR(F ⊢ ⊥) = Θ(n). Such formulas exist from e.g. [8]. Consider the formula F n :=
F1 × · · · × Fn, where the Fi’s are copies of F over mutually disjoint sets of variables. From
Lemma 7.2, WR(F n ⊢ ⊥) = O(n). On the other hand WLK−(F ⊢ ⊥) = Ω(n) from (6.1), and
hence from Lemma 7.1, WLK−(F n ⊢ ⊥) = Ω(n2). ◀

8 Separating resolution width from monomial space

Monomial space is a generalized version of clause space. While configurations in the case of
clause space are sets of clauses, for monomial space, arbitrary linear combinations, over a field
F, of clauses are allowed as the contents of a configuration, where such a linear combination
P is interpreted as the asserting that P = 0. As a matter of fact, all known lower bounds
for monomial space even hold in the case where arbitrary Boolean functions of clauses are
allowed. The term monomial space comes from the fact that this concept captures space in
proof systems employing algebraic reasoning.

Namely, seeing clauses as monomials – a clause ℓ1 ∨ · · · ∨ ℓr is seen as the monomial
ℓ1 . . . ℓr – the question of whether a set of clauses over the variables x1, . . . , xn is unsatisfiable,
becomes the question of whether the polynomial 1 belongs to the ideal generated by those
clauses and the clauses x2

i − xi and xi + xi − 1 in F[x1, . . . , xn, x1, . . . , xn]. A systematic
way of generating this ideal, in a space oriented model, is the following [1]. Configurations
are sets of polynomials over F[x1, . . . , xn, x1, . . . , xn]. A refutation of a CNF formula F , in
configurational form, is a sequence M1, . . . , Mt of configurations where M1 is empty, Mt

contains the empty clause and for i > 1, Mi is obtained from Mi−1 by one of the following
rules:
Axiom download: Mi = Mi−1 ∪ {C}, where C is either a clause of F , x2

i − x, or xi + xi − 1.
Inference: Mi = Mi−1 ∪ {P}, where P is either a linear combination of polynomials in

Mi−1 or a literal multiplied by some polynomial in Mi−1.
Erasure: Mi ⊆ Mi−1.
The monomial space of such a refutation is the maximum number of distinct monomials
occurring in a configuration. The monomial space, MSpace(F ⊢ ⊥), of F , is the mimimum
monomial space over all refutations of F .

The gap shown in the previous section can be extended to stronger versions of dynamic
satisfiability that have been used to show monomial space lower bounds, thus showing a
gap between resolution width and monomial space. The configurations in those are not
assignments as in Definition 6.1, but sets of assignments. They will not be arbitrary sets
however; they will have a certain structure. Namely, we call a set H of assignments admissible,
if it is of the form
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H = H1 × · · · × Hr
def= {α1 ∪ · · · ∪ αr | αi ∈ Hi},

where each Hi is a non-empty set of non-empty assignments, for any two assignments αi ∈ Hi

and αj ∈ Hj for i ̸= j, the domains of αi and αj do not intersect, and moreover, if an
assignment α ∈ Hi gives the value ϵ to a variable x, then there is also an assignment α′ ∈ Hi

giving to x the value 1 − ϵ. The Hi’s are called the factors of H; we write ∥H∥ for their
number. We write H ′ ⊑ H if every factor of H ′ is a factor of H.

▶ Definition 8.1 [11, 12]. Let F be a CNF formula and let k be a natural number. We say
that F is k-extendible if there is a non-empty set of admissible configurations H such that
for each H ∈ H,
1. if H ′ ⊑ H, then H ′ ∈ H;
2. if ∥H∥ < k and C is a clause of F , then there is an H ′ ⊒ H in H, such that every α ∈ H ′

satisfies C.

▶ Theorem 8.1 [11, 12]. If F is k-extendible, then MSpace(F ⊢ ⊥) ≥ ⌊k/4⌋.

Lemma 7.1 with the same proof applies here as well.

▶ Lemma 8.1. Let F and G be CNF formulas over disjoint sets of variables. If F is
k-extendible and G is ℓ-extendible, then F × G is (k + ℓ)-extendible.

Proof. Let H and I be sets of admissible configurations witnessing the k and ℓ-extendibility
of F and G. Since F and G are over disjoint sets of variables, we may assume that the
domains for any of two assignments in H and I do not intersect. Set

J := {H × I | H ∈ H & I ∈ I}.

Clearly, J is a set of admissible configurations. We claim that it satisfies the conditions of
Definition 8.1 for the parameter k + ℓ. Closure under ⊑ immediately follows from the fact
that H and I are closed under ⊑. For the second condition, suppose that J = H × I ∈ J ,
∥J∥ < k +ℓ, and let Ci ∨Dj be a clause of F ×G, where Ci is a clause of F and Dj is a clause
of G. Since ∥J∥ < k + ℓ, either ∥H∥ < k or ∥I∥ < ℓ. In the first case, there is an H ′ ⊒ H in
H such that all assignments in H ′ satisfy Ci. Then H ′ × I is an admissible configuration in
J such that all assignments in it satisfy Ci ∨ Dj . The second case is analogous. ◀

Therefore, we get:

▶ Theorem 8.2. There are CNF formulas G with n2 variables, size O(n)n, and such that
WR(G ⊢ ⊥) = O(n) and MSpace(G ⊢ ⊥) = Ω(n2).

Proof. Again, let F be a CNF formula with n variables, width O(1) and size Θ(n), that is
Ω(n)-extendible. Such formulas exist, see [11, 16, 12, 9]. The formulas F n := F1 × · · · × Fn,

where the Fi’s are copies of F over mutually disjoint sets of variables, have resolution width
O(n), and from Lemma 8.1 they are Ω(n2)-extendible, thus from Theorem 8.1 require Ω(n2)
monomial space. ◀
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9 A super-polynomial separation between resolution and LK− size

Many of the relations in resolution involving width, can be as well stated for LK−. In fact, they
seem to be better suited for LK−; there, the additive W (F ) factor that naturally comes with
resolution width disappears. We have already seen that WLK−(F ⊢ ⊥) ≤ CSpace(F ⊢ ⊥),
refining the relation between clause space and width of [4]. But let us give an alternative,
constructive proof, here. For sets S and T of formulas, we write S |= T if every total
assignment satisfying every formula in S, also satisfies every formula in T .

▶ Theorem 9.1. For any unsatisfiable CNF formula F , WLK−(F ⊢ ⊥) ≤ CSpace(F ⊢ ⊥).

Proof. Let M1, . . . , Mt be a refutation of F , of clause space s. We shall construct a sequence
T1, . . . , Tt of trees, the vertices of which are labelled by sets of literals, such that for every
set S labelling a leaf of Ti, S |= Mi and |S| ≤ |Mi|.

We set T1 to be a tree with one vertex labelled by the empty set. Now, suppose we have
constructed Ti−1. If Mi results from Mi−1 via an inference step, we set Ti := Ti−1. If
Mi ⊆ Mi−1, then we add to every leaf of Ti−1 labelled by a satisfiable set S, a child labelled
by a subset S′ ⊆ S such that |S′| ≤ |Mi| and S′ |= Mi. Finally, if Mi = Mi−1 ∪ {C}, for a
clause C = ℓ1 ∨ · · · ∨ ℓr of F , we add to every child of Ti labelled by a satisfiable set S, r

children labelled by the sets S ∪ {ℓj}.
Replacing each set {ℓ1, . . . , ℓk} occurring in Tt, by the clause ℓ1 ∨ · · · ∨ ℓk, we get an LK−

refutation of F of width at most s. It is clear from the construction of Tt that every clause
has width at most s and every clause not at a leaf, results from the clauses at its children
via either the weakening or the ∨L rule. Moreover, since Mt is unsatisfiable, no set labelling
a leaf of Ti is satisfiable, that is sets at the leaves become weakenings of axioms. ◀

Next, we have the size-width relations of [8]. Here the proofs are the same as those in [8].

▶ Theorem 9.2. For any unsatisfiable CNF formula F , WLK−(F ⊢ ⊥) ≤ log STR(F ⊢ ⊥)+1.

Proof. This is in fact a weakened version of Theorem 9.1, as CSpace(F ⊢ ⊥) ≤ log STR(F ⊢
⊥) + 1 [15]. But let us give a direct construction instead. We shall construct, by induction
on s, for every tree-like resolution refutation T of F of size s, an LK− refutation of F of
width at most log s + 1.

If T has size 1, then it has width 0; if it has size 3 then it has width 2. For the inductive
step, suppose that T has size s > 3. Let T1 and T2 be the subproofs of T, deriving ¬x and
x respectively, for some variable x. One of T1 and T2, say T1, must have size at most s/2.
T1|x is a refutation of F |x of size at most s/2, and T2|x is a refutation of F |x of size less
than s. From the induction hypothesis, there are LK− refutations π1 and π2 of F |x and F |x
of width log s and log s + 1 respectively. Start with π2. To every application of Rule (5.1),
add the extra premise C ∨ x. But x can be derived from π1, and hence all those C ∨ x can
be derived via the weakening rule from x: We can do the same to π1, now adding C ∨ x as
the extra premise, and moreover add to every clause the variable x. The refutation obtained
when we combine π1 and π2 is a valid LK− refutation of F of width at most log s + 1. ◀

▶ Theorem 9.3. For any unsatisfiable CNF formula F over n variables, WLK−(F ⊢ ⊥) =
O

(√
n log SLK−(F ⊢ ⊥)

)
.

Proof. The construction will be the same as that of Theorem 9.2. The problem here is that
it is not clear what variable to choose to recurse on. The trick is to choose the variable that
appears more often in the clauses of the proof.
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For an LK− refutation π of a CNF and a d ≥ 0, let π∗ be the set of clauses in π of width
greater than d. We call the clauses in π∗ the fat clauses of π. We show, by induction on n,
that for any CNF F in n variables, any LK− refutation π of F and any integers d, b ≥ 0,

|π∗| < ab =⇒ WLK−(F ⊢ ⊥) ≤ d + b,

where a = (1 − d/(2n))−1
. The theorem follows taking π to be of minimum size and

d :=
⌈√

n log S(π)
⌉
.

If n = 1, then there is an LK− refutation of F of width 2, and in the case that b + d < 2
the implication becomes trivially true. For the inductive step, suppose that n > 1, let
d, b ≥ 0, and let π be an LK− refutation of F with |π∗| < ab. If b = 0, then π itself is a
refutation of width at most d + b. Suppose b > 0. There are 2n literals, so there must be
some literal, say the variable x, appearing in at least d|π∗|/(2n) clauses in π∗. π|x is an
LK− refutation of F |x with at most |π∗| (1 − d/(2n)) < ab−1 fat clauses, so by the induction
hypothesis (notice that a is a decreasing function of n), there is an LK− refutation π′ of F |x
of width at most d + b − 1. Furthermore, π|x is an LK− refutation of F |x with less than ab

clauses, so by the induction hypothesis, there is an LK− refutation π′′ of F |x of width at
most d + b. Combining π′ and π′′ as in the proof of Theorem 9.2, we get an LK− refutation
of F of width at most d + b. ◀

Notice that in Theorem 9.2 and the relation WLK−(F ⊢ ⊥) ≤ CSpace(F ⊢ ⊥), we have
LK− in the left hand side and resolution in the right hand side. That is to say, cuts are
eliminated when constructing the small width proofs. It is tempting to speculate on whether
the same is also true for Theorem 9.3, that is whether we can replace SLK−(F ⊢ ⊥) with
SR(F ⊢ ⊥). After all, the only place in the proof of Theorem 9.3 where we need LK− in the
right hand side is the case b = 0. Theorem 7.1 says that this cannot be true. In fact, the
formulas of Theorem 7.1 give the main theorem of this section, which is:

▶ Theorem 9.4. There is a CNF formula F with n2 variables and size O(n)n, such that
SR(F ⊢ ⊥) = O(n)n but SLK−(F ⊢ ⊥) ≥ exp(Ω(n2)).

Proof. The formulas of Theorem 7.1 are such. The upper bound SR(F ⊢ ⊥) = O(n)n

follows from the construction of Lemma 7.2. The lower bound follows from the fact that
WLK−(F ⊢ ⊥) = Ω(n2) and Theorem 9.3. Namely, Theorem 9.3 gives

SLK−(F ⊢ ⊥) ≥ exp
(

Ω
(

(WLK−(F ⊢ ⊥))2

n2

))
= exp

(
Ω

(
n2))

. ◀

It is important to note that the exp
(
Ω

(
n2))

lower bound in Theorem 9.4 holds for the
version of LK− operating on clauses, where the clauses of the CNF formula F to be refuted
are viewed as disjunctions of unbounded arity. It does not hold when the clauses of F are
made up from binary disjunctions and moreover we are free to choose the order in which they
are applied. If ∨ in the definition of of F × G, is seen as a binary disjunction, then having
derived C1, . . . , Cn → and D1, . . . , Dt →, it is easy to see that we may derive from these
sequents C1 ∨ D1, . . . , C1 ∨ Dt, . . . , Cs ∨ D1, . . . , Cs ∨ Dt → in s · t steps, and in this case F n

in Theorem 9.4 has an LK− refutation of size nO(n). An analogous situation occurs between
the tree-like versions of LK− and resolution [3]. But let us notice, concluding, that with
binary disjunctions, LK− cannot be seen as a system operating on clauses, and it becomes
rather unnatural to compare it with resolution – it is not even clear, in this case, whether
resolution can polynomially simulate LK−. LK− for clauses consisting of binary disjunctions
is closer to resolution with limited extension, in which case resolution does polynomially
simulate it [24].
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10 Conclusion

We showed a quadratic gap between resolution and cut-free sequent calculus width. In terms
of the sequent calculus, this says that atomic cuts can shorten the width of proofs. It is well
known that cuts can make proofs exponentially shorter. Allowing arbitrary cuts we get a
system polynomially equivalent with any Frege system. These are very powerful; proving
non-trivial lower bounds for them is completely out of reach of current methods. But even
allowing cuts of depth d + 1 in an LK system that has cuts of depth d for any constant
d ≥ 0, gives exponentially shorter proofs [19]. And this goes lower: For any constant k ≥ 0,
allowing as cut formulas conjunctions and disjunctions of arity k + 1 in an LK system that
has as cuts conjunctions and disjunctions of arity at most k, again gives exponentially shorter
proofs [22]. We show in this paper that even allowing propositional variables as cuts, gives
super-polynomially shorter proofs.

Cut-free sequent width for refuting CNF formulas naturally compares to well studied
complexity measures related to resolution: it sits between resolution width and clause space.
Our quadratic gap in particular, provides a separation between resolution width and clause
space. Stronger such separations are known [6, 7]. Nontheless, our basic construction extends
to provide a quadratic gap between resolution width and monomial space. This is to be seen
in conjunction with relation (1.2) showing that monomial space provides an upper bound to
resolution width.

Several questions remain open:
1. Can cut-free sequent calculus width for refuting CNF formulas be bounded in terms of

resolution width? Given the similarity between the two measures, the combination of
Lemmas 7.1 and 7.2 giving a quadratic separation might come as a surprise. Can this
separation be improved? A strong separation in particular, would give an exponential
separation between resolution and cut-free sequent calculus.

2. Our super-polynomial separation of resolution and cut-free sequent calculus on the one
hand applies only when clauses are seen as disjunctions of unbounded arity. On the other
hand, it involves formulas whose size grows exponentially. Can there be a separation
independent of the representation of clauses? Can there be a separation for formulas
whose size grows polynomially?

3. Cut-free sequent calculus width is bounded by clause space. Can it be bounded in terms
of monomial space in a relation similar to (1.2)? This is a good point to also mention
that whether (1.2) can be improved to a linear inequality or there are examples where it
is tight is unknown as well, and there do not seem to be strong indications for which case
is true.

4. We show that resolution width and monomial space cannot coincide. Whether they
coincide up to polynomial factors however remains open, although it is speculated
(cf. [18]) that this is not the case, and moreover, as it is the case for resolution width and
clause space [6, 7], there is an O(1) vs Ω(n/ log n) separation.
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Abstract
Subshifts are sets of colourings – or tilings – of the plane, defined by local constraints. Historically
introduced as discretizations of continuous dynamical systems, they are also heavily related to
computability theory. In this article, we study a conjugacy invariant for subshifts, known as the
projective fundamental group. It is defined via paths inside and between configurations. We show
that any finitely presented group can be realized as a projective fundamental group of some SFT.
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1 Introduction

A d-dimensional subshift is a set of colourings of Zd by a finite number of colours which avoid
some family of forbidden patterns. If the family is finite, it is called a subshift of finite type
(SFT). Most problems concerning subshifts in dimension d ≥ 2 are undecidable [6, 20, 19],
due to the fact that sets of Wang tilings are SFTs.

Together with the shift action σ, a subshift forms a dynamical system. Interesting dynam-
ical aspects are usually invariant by conjugacy, which is the isomorphism notion for subshifts.
Most conjugacy invariants of subshifts in dimensions d ≥ 2 are linked to computability
theory or complexity theory. Historically, the first example was the characterization of the
topological entropies of multi-dimensional SFTs as the upper semi-computable numbers [25].
Afterwards, many other computational characterizations of conjugacy invariants have been
obtained: growth-type invariants [30], subactions [23, 4, 14] and so on.

Links between groups and subshifts have recently seen a surge in interest with several
different approaches: subshifts can be defined on groups instead of Zd [1, 3] and some
properties of the group are linked to decidability questions on the subshifts on it [26, 2, 15].
Analogies between groups and subshifts have allowed new characterizations to be proved for
subshifts [27].

Another avenue is to associate a group to a subshift in order to construct conjugacy
invariants in several ways [29, 22, 17]. The most well-known such group is the automorphism
group, which is still not very well understood: for instance, while it is known that SFTs
with positive entropy have very complex automorphism groups [24] or that SFTs whose
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automorphism group has undecidable word problem can be constructed [18], it is still not
known whether the automorphism groups of the full shifts on 2 and 3 symbols are the same.
Apart from the low complexity setting [13, 12] not much is understood about it.

In this article, we study another group-related conjugacy invariant called the projective
fundamental group introduced by Geller and Propp [17]. Fundamental groups are an
object of interest in several fields of theoretical computer science, in particular graph
reconfigurations [37], which bear links with a particular class of subshifts called hom-shifts [10]
which are defined with a graph of allowed adjacency of colours. These are subshifts with a
computable language that still exhibit interesting behavior [16]. An essential tool in their
study is their universal cover, a graph which has strong ties to their projective fundamental
group. Fundamental groups are also of interest when studying the “defects” in tilings [33, 5],
or obstruction to the tileability of finite, untiled “holes” in tilings [11, 36]. In particular,
provided that an SFT satisfies some mixing-like hypothesis, there is an explicit link between
its fundamental cocycles [35, 34] and its projective fundamental group.

In the usual topological setting (see for example [21]), the fundamental group π1 (X) of
a space X is a topological invariant which describes the number of holes and the general
shape of X. It is defined as the group of equivalence classes of loops through continuous
deformation, together with the composition operation. In this setting, the fundamental group
is well-defined only when X is path-connected.

When viewed as subspaces of the Cantor space, subshifts are totally disconnected.
Nevertheless, one can still define a notion of projective fundamental group using paths
and deformations (see Subsection 3.1 for details). As in the classical setting, this notion
is only well-defined in the case of projectively connected subshifts, the appropriate notion
of path-connectedness. This property resembles mixing properties (see for instance [9]
or [32]), but it is not known whether any of the mixing properties defined in [9] imply
projective connectedness of an SFT, although some partial results exist [33, 35]. Projective
connectedness is undecidable but we do not know how hard: it is open whether it belongs to
the arithmetical hierarchy.

As a conjugacy invariant, the fundamental group allows one to distinguish between some
subshifts which share the same entropy and periodicity data. It is also better understood
than the automorphism group in the sense that the authors in [17] explicitly compute it for
several well-known subshifts: the full shifts on any alphabet always have trivial fundamental
group, the square-ice has Z and k-to-1 factors of full shifts – i.e. in which every point has
exactly k preimages by the factor map – always have a fundamental group with finite order
k. They also prove that any group of finite order is realizable as a fundamental group of
some SFT.

The main result of this article is that any finitely presented group can be the fundamental
group of an SFT:

▶ Theorem 1. Let G = ⟨S|R⟩ be a finitely presented group. Then, there is a subshift of
finite type X satisfying:

X is projectively connected,
the projective fundamental group of X is isomorphic to G.
We do not think that this constitutes a characterization of projective fundamental groups

of SFTs, as we do not have a matching upper bound on the hardness its word problem.
However, this theorem implies that the hardness of the word problem of the fundamental
group – i.e. given a SFT, decide the word problem of its fundamental group – can be
any recursively enumerable degree [8], and in particular that its upper bound is at least
Σ0

1-hard [31, 7]. It also implies that any undecidable property on finitely presented groups is
undecidable for projective fundamental groups.
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The main construction of the paper is quite different from other constructions used in
undecidability results on tilings and subshifts: it does not use an aperiodic subshift.

The paper is organized as follows. After recalling the symbolic dynamics background in
Section 2, we introduce the projective fundamental group in Subsection 3.1, some examples
in Subsection 3.2 and finally in Section 4 we prove Theorem 1.

2 Definitions

A d-dimensional full shift on some finite alphabet Σ is the set ΣZd , together with the
shift-actions σu : ΣZd → ΣZd defined for u ∈ Zd by σu(x)(v) = x(u + v) = xu+v. The
underlying topology is the one induced by the Cantor distance, defined on ΣZd by

d(x, y) = 2− min{∥u∥∞ | xu ̸=yu},.

Two configurations are close in this topology if they agree on a large central square. A
subshift is a closed, shift-invariant subset of some full shift. We call configurations of a
subshift X the points of X.

Alternatively, subshifts can be defined using forbidden patterns. We call pattern any
element P ∈ ΣU where U ⊂ Zd is finite and is the support of P , denoted by supp(P ). For
a configuration x, we say that P appears in x if there exists u ∈ Zd such that σu(x)|U = P .
Let F be a collection (finite or not) of patterns. Then the set

XF =
{

x ∈ ΣZd
∣∣∣ ∀P ∈ F , P does not appear in x

}
is a subshift. In fact, for any subshift X, there exists a family of patterns F such that
X = XF . A subshift X is a subshift of finite type (SFT) if there exists a finite F such
that X = XF .

For a given subshift X defined by a fixed family of forbidden patterns F , a pattern
P ∈ ΣU is locally admissible if it contains no forbidden patterns F ∈ F . It is globally
admissible or extensible if it appears in some configuration x ∈ X.

3 Projective Fundamental Group

3.1 Intuitions and definitions
The Projective Fundamental Group, introduced by Geller and Propp [17], resembles the
usual fundamental group construction in the topological setting: it is defined through paths,
loops, and a homotopy notion. However, instead of directly considering paths between points
of the subshift, they are defined between finite patterns with the same support. By doing so,
one actually constructs a family of – potentially different – fundamental groups, for each
finite support B ⊂ Z2. In order to obtain a single group, the projective fundamental group,
one takes their inverse (also known as projective) limit. We will construct a subshift by
defining a set T of tiles. A configuration will then be a mapping x : Z2 → T associating a tile
to each point of the plane and which verifies some adjacency rules depending on T . Contrary
to the usual convention, we will consider that when embedding such a configuration in the
Euclidean plane R2, the tile in position (i, j) is a unit square whose bottom-left corner is
placed on (i, j), as opposed to its center. This is merely a discussion about conventions, but
it will make some definitions substantially simpler.

Fix a support B ⊂ Z2. In what follows B will be called an aperture window. Most
of the time, we will restrict ourselves to the windows Bn = J−n, n − 1K2. We choose
this asymmetrical window to simplify some definitions, but also for consistency with the
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aforementioned convention. In any configuration x, the tile x(0,0) in position (0, 0) will
therefore be seen as the square whose bottom-left (resp. top-right) corner is (0, 0) (resp.
(1, 1)).

Consider P, P ′ two extensible patterns of support B and two points of the grid v, v′ ∈ Z2.
A path between (P, v) and (P ′, v′) is a sequence of pairs of patterns and of points of Z2 (or
equivalently, two sequences of the same length). The sequence of points represents an actual,
“geometric” path, called its trajectory, that is to say a sequence of vertices of Z2 starting
at v and ending at v′, where consecutive vertices are at euclidean distance exactly 1. The
sequence of patterns associates with each one of those vertices vt a pattern Pt, that needs to
be coherent with the path: when moving to the next vertex vt+1 on the trajectory, the next
pattern Pt+1 needs to be coherent with Pt, that is to say, they should be equal where their
supports overlap (see Definition 2 for a precise statement). For example, in the full shift over
two symbols {0, 1}, and for B = B1, take the following patterns:

P1 =
(

0 0
00

, (0, 0)
)

, P2 =
(

0 1
10

, (1, 0)
)

, P3 =
(

1 1
11

, (1, 0)
)

The tile in position (0, 0) is represented in red. The sequence (P1, P2) is a valid path, as the
overlapping parts of the support are equal in both patterns, but (P1, P3) is not because the
point (0, 0) is tiled by 0 in the first pattern but by 1 in the second one. Moreover, the pattern
obtained by “merging” two consecutive patterns also needs to be an extensible pattern.

▶ Definition 2 (Path). Let B ⊂ Z2 be a finite set, a path of aperture window B is a finite
sequence (Pt, vt)0≤t≤N such that for any t with 0 ≤ t ≤ N :

Pt is an extensible pattern of X of support B + vt,
vt is adjacent to vt+1, i.e., dt = vt+1 − vt has euclidean norm exactly 1,
Pt(u) = Pt+1(u) for any u ∈ B ∩ σdt(B), i.e., consecutive patterns overlap,
the pattern Pt ∪ Pt+1 obtained by merging Pt and Pt+1 is extensible in X.

The first and last element of the sequence are respectively called the starting point and
the ending point of the path. If they are equal, the path is called a loop. The path
(PN−t, vN−t)0≤t≤N is called its inverse path. If p is a path, its inverse will be denoted
by p−1

The sequence (vt)0≤t≤N is called the trajectory of the path.

Two paths may be composed when the first one ends where the second one starts:

▶ Definition 3 (Path composition). Given p = (Pt, vt)0≤t≤N and p′ = (P ′
t , v′

t)0≤t≤N ′ two
paths such that (PN , vN) = (P ′

0, v′
0) we denote by p ∗ p′ the path

p ∗ p′ = (P0, v0) . . . (PN , vN)(P ′
1, v′

1) . . . (P ′
N ′ , v′

N′).

▶ Definition 4 (Coherent path). A path p = (Pi, vi)i≤N is coherent if all its patterns are equal
on the points where their supports overlap, and furthermore, the pattern obtained by merging
all the Pi is globally admissible in X. In that case, for any x ∈ X containing

⋃
i≤N Pi, we

say that p can be traced in x.

▶ Definition 5 (Coherent path decomposition). A coherent decomposition of a path p is a
sequence p1, . . . , pL of coherent paths such that p = p1 ∗ p2 . . . ∗ pL, and L is called the length
of the decomposition.

One can now define a corresponding homotopy notion: let p = p1 ∗ p2 ∗ p3 be a path and
suppose that p2 can be traced in a single configuration x ∈ X. Then, for any p′

2 traced in x

with the same starting and ending point as p2, the path p1 ∗ p′
2 ∗ p3 is called an elementary

deformation of p. As paths might consist of a single point, they can be deformed by
inserting or removing loops traced in a single configuration at any step.
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▶ Definition 6 (Homotopy). Two paths p, p′ are said to be homotopic if there exists a
finite sequence of elementary deformations from p to p′. This defines an equivalence relation
between paths, and we denote by [p] the equivalence class of p. If p and p′ are paths with an
aperture window B ⊂ Z2, we denote by p ∼B p′ the fact that they are homotopic.

▶ Remark 7. When two paths are homotopic, they necessarily have the same starting and
ending points. When B is clear from the context, we will simply write p ∼ p′.

With this definition of a path and of homotopy, we can define a fundamental group for
each possible aperture window B ⊂ Z2.

▶ Definition 8 (Fundamental Group). Let X be a SFT, B ⊂ Z2 an aperture window, x0 ∈ X

and v ∈ Z2. The fundamental group of X based at (x0, v) for the aperture window B,
denoted by πB

1 (X, (x0, v)), is the group of all the equivalence classes of loops starting and
ending at (x0|B , v) for the homotopy equivalence relation, along with the ∗ operation.

Although our paths follow the Z2 grid and seem to be discrete and combinatorial objects,
it is legitimate to refer to those objects as homotopy and deformations, which usually suppose
some kind of continuity. In fact, this simplification does not entail any loss of generality,
compared to paths drawn in R2, and subshifts seen as Z2-invariants subsets of ΣR2 (see [17,
Subshifts and albums] for more details). In order to obtain a single object associated with
the subshift, we get rid of this reference to an aperture window by considering the projective
limit of those groups to define the Projective Fundamental Group of the subshift.

▶ Definition 9 (Restriction maps). For any B′ ⊆ B ⊂ Z2, the map

restrB,B′ : ΣB → ΣB′

P 7→ (i ∈ B′ 7→ P (i))

is called the canonical restriction map from B to B′. We can naturally extend it to⋃
v∈Z2

ΣB+v so that supp(P ) = B + v =⇒ supp(restrB,B′(P )) = B′ + v.

Intuitively, these maps simply “forget” some parts of the pattern. We also extend these
maps to paths: if B′ ⊆ B, the image of a path p with aperture window B is a path with the
same trajectory with aperture window B′, obtained by mapping restrB,B′ element-wise on p.

▶ Definition 10 (Projective path class). Let x, x′ ∈ X and v, v′ ∈ Z2. A projective path
class between (x, v) and (x′, v′) is a sequence ([pn])n>0 along with the canonical restriction
maps, such that pn is a path of aperture window Bn between (xBn , v) and (x′

Bn
, v′), and for

each n > n′ > 0, restrBn,Bn′ (pn) ∼Bn′ pn′ .
In the case where (x, v) = (x′, v′), we instead say that ([pn])n>0 is a projective loop class

based at (x, v).

▶ Definition 11 (Projectively connected subshift). A subshift X is projectively connected
if for any two points x, x′ ∈ X, there exists a projective path class between (x, (0, 0)) and
(x′, (0, 0)).

As before, projective loop classes based at the same (x, v) can be concatenated component-
wise, to obtain another projective loop class.

▶ Definition 12 (Projective Fundamental Group). The projective fundamental group based
at the point (x0, v) ∈ X × Z2 of a subshift X is the group of projective loop classes based at
(x0, v), with the group operation being the component-wise concatenation of projective loop
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classes, and is denoted by πproj
1 (X, (x0, v)). If X is projectively connected, then its projective

fundamental group does not depend on the chosen basepoint (x0, v), and we denote it by
πproj

1 (X).

This is a usual construction of what is called a projective (or inverse) limit in category
theory. However, we do not use general properties of inverse limits in the rest of the article.

3.2 First example
We slightly modify an example of [17]. Consider the two-dimensional subshift X on the
alphabet {0, 1} of all the configurations containing at most one 1. We show how some paths
can be deformed to the trivial path. It is then easy to show that all paths are homotopic to
the trivial path. Take an aperture window of size 1, i.e., only one cell is visible at a time.
Consider the following path p, starting at (0, (0, 0)) (we see a 0 at the origin of the Z2 plane).
The path then moves in the Z2 grid while only seeing 0’s, and comes back to the origin where
it now sees a 1. Then it moves away from the origin while only seeing 0’s, and finally comes
back to (0, 0) with a 0 in the window. For simplicity, we also suppose that the path does
not pass through the origin at any other time. To sum up, the path is a loop, starting and
ending at (0, (0, 0)), which only sees 0 along the way except at one time (t2 on the figure)
where it sees a 1 at the origin. This is illustrated in Figure 1a.

0
t0 and t4

0 t1

1
t2

0t3

all 0’s

all 0’s

all 0’s

all 0’s

(a) Example of a path that cannot be traced in
a single configuration.

0
t0 and t4

0 t1

1
t2

0t3

all 0’s

all 0’s

all 0’sall 0’s

(b) A homotopic deformation to a path that can
entirely be traced in the all-0 configuration.

Figure 1 Example of a path and of a deformation of this path. Notice that the central 0 and 1
windows at t0 and t2 are actually located at the same point of the plane, although the figure depicts
them on top of each other for the sake of clarity. Red wires can be traced in x0, and blue wires in
x1. The wire of alternating colours can be traced within both, and so it is both homotopic to the
initial path, and to the trivial path.

Let x0, x1 respectively be the all-zero configuration, and the configuration containing a
1 at the origin. The path p can be homotopically deformed in the following way: between
the times t1 and t3, it can be considered to be entirely in x1. It can thus be deformed
in this configuration by completely avoiding the origin, and joining the same points, as in
Figure 1b. By definition of x1, this new path will now see only 0’s. The resulting loop then
also sees 0’s at any point, and so it can be homotopically contracted to the trivial path in
the configuration x0. This proof can be extended to make any 1 on a path “disappear”, and
so any path can be contracted. In this case, this shows that πproj

1 (X, (x0, (0, 0))) = {e} is
trivial, as the same argument works for arbitrary large Bn.

4 Realization of projective fundamental groups

We are now going to prove our main result: any finitely presented group is the fundamental
projective group of some SFT.

▶ Theorem 1. Let G = ⟨S|R⟩ be a finitely presented group. Then, there is a subshift of
finite type X satisfying:

X is projectively connected,
the projective fundamental group of X is isomorphic to G.
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4.1 The construction
The subshift X that we construct will informally consist of oriented wires, drawn on an
empty background, each wire corresponding to a generator s ∈ S of the group G = ⟨S|R⟩.
We only authorize the wires to go up, perhaps in some kind of “zigzag” manner, but never
down or horizontally. More precisely, we define the following tiles: first of all, a tile that we
call empty, visually represented by , and we denote by Tempty the singleton containing
this tile. We denote by x□ ∈ X the configuration which only contains empty tiles, and its
patterns are called empty patterns. Then, for each element s ∈ S̄ = S ∪ {s−1|s ∈ S}, we
also consider the set Ts of the 5 following tiles:

If s ̸= s′, then Ts ∩ Ts′ = ∅. Distinct Ts will be represented by wires of different colours in
the figures. These tiles will, intuitively, be used to represent generators of the group in valid
configurations of X. Finally, we use some other tiles that will play the role of representing
the group relations. We can always assume that R contains the trivial relators ss−1 and s−1s
for all s ∈ S. Now, for each relator r = r1r2 . . . rn ∈ R, we let Tr be the tiles described by
Figure 2.

r1

r1

(a) Start.

Ri−1 Ri

ri

(b) For 2 ≤ i < n.

Rn−1

rn

(c) End.

Figure 2 The relation tiles.

The wire exiting from the right side of the tile Figure 2a does not have the same colour
as the one exiting from the top. The former colour is denoted by r1, to differentiate it from
the actual r1 wires. In the other tiles, Ri = r1r2 . . . ri. Hence, for each relator r1 . . . rn, we
have one tile of type Figure 2a and one of type Figure 2c, and n − 2 tiles of type Figure 2b.
Tiles belonging to some Tr are called relation tiles. Note that if u ∈ R is such that it is the
prefix of two different relators, i.e., there exists v, v′ ∈ S̄∗ such that uv ∈ R, uv′ ∈ R then the
colours u are shared by the tiles used to represent those relators and so Tuv ∩ Tuv′ ̸= ∅. X

is the subshift generated by the tileset T = Tempty ∪
⋃

s∈S̄

Ts ∪
⋃

r∈R

Tr along with the obvious

adjacency rules: any wire must be extended, by a wire with the same orientation given by
the arrows – e.g., and are forbidden patterns, but is allowed (assuming the two
tiles contain a wire of the same colour).

We now formalize what we really mean by a wire.

▶ Definition 13 (Wire). A wire is a sequence U = (Tt, vt)t∈I , I ⊆ Z a non-necessarily finite
interval, of pairs of non-empty tiles and Z2 points, such that

∥vt+1 − vt∥1 = 1,
The tile Tt+1 in position vt+1 extends the wire of tile Tt in position vt: placing a tile

above or below another tile does extend it, while placing it on its right or left side
does not, although they are valid patterns of X.
U does not contain two consecutive relation tiles.

▶ Remark 14. We do not prevent a wire from moving back and forth: it is possible to have
(Tt, vt) = (Tt+2, vt+2).
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▶ Definition 15 (Coherent wire). We say that a wire is coherent if there exists a configuration
x ∈ X such that for any tile (Ti, vi) of the wire, xvi = Ti.

▶ Remark 16. Valid configurations of X can contain non-intersecting infinite wires, and
possibly some relation tiles with wires originating from them. Any relation tile belongs to
one horizontal line of k relation tiles, corresponding to a valid relator r1 . . . rk.

One important concept associated to paths on this subshift is the idea that paths can
cross wires. Informally, this is what happens when the window, and in particular, its center,
moves from one side to the other of a given wire in a path.

▶ Definition 17 (Crossing a wire tile). Let n > 0, and let v, v′ ∈ Z2 be two adjacent points,
and P, P ′ two patterns of respective support v + Bn, v′ + Bn such that (P, v), (P ′, v′) is a
valid path. For (i, j) ∈ Bn, let T(i,j) be the tile whose bottom-left corner is on (i, j) in P . We
say that this path crosses a wire tile if

v′ − v = e0 = (1, 0) (resp. −e0) and the tile Tv (resp. Tv−e0) was of one of the following
forms:

v′ − v = e1 = (0, 1) (resp. −e1) at the next step t + 1 and the tile Tv (resp. Tv−e1) was
of one of the following form:

In the following, we let Bn = {−n, . . . , n − 1}2. Unless stated otherwise, all the aperture
windows considered will be of this form.

▶ Definition 18 (Seeing a wire). A path p = (Pi, vi)i≤N sees a wire U if there exists a
timestep i ≤ N , and (Tj , vj) ∈ U such that the tile in position vj in Pi is Tj.

▶ Definition 19 (Crossing a wire). A path crosses a wire if it crosses one of its tiles.

4.2 Only Crossed Wires Matter
Our final goal is to prove that the projective fundamental group of this subshift X is the
group G = ⟨S|R⟩. To do so, the idea will be to associate an element of the group to each
path, according to the wires that it crosses. The following lemmas can be seen as a procedure
to put paths in some kind of normal form via homotopies, depending only the sequence of
crossed wires, regardless of the underlying geometry of the path. All the lemmas consider
paths that both start and end in empty patterns, but this is not really a restriction as we
will later prove that the subshift X is projectively connected, and so we will only consider
loops based at x□. Unless stated otherwise, all the considered paths are using some Bn as
aperture window. We start with some easy statements about patterns of support Bn, and
the wires they may contain.

▶ Lemma 20 (Wire Order Lemma). Let x ∈ X, and let U , V be two infinite wires in x.
Suppose that U , V do not contain relation tiles.

For all z ∈ Z, there exists between one and two z0
U ∈ Z such that U passes through

the position (z0
U , z). If there are two such z0

U , then they are necessarily adjacent, e.g.,
side-by-side.

Let z ∈ Z, and z0
U , z0

V ∈ Z as in the previous point respectively for U and V. If z0
U < z0

V ,
then for all zU , zV , z ∈ Z such that (zU , z) ∈ U , (zV , z) ∈ V, we have zU < zV . Intuitively,
this means that wires can globally be ordered from left to right.

If U or V contains a relation tile, then the previous claims are true only for z large enough.
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▶ Remark 21. Note that the previous lemma is true because we consider wires U , V belonging
to some configuration. It is clearly false for arbitrary wires.

▶ Lemma 22. Let P be a globally admissible pattern of support Bn for some n > 0. Let U
be a wire in P without relation tiles. Suppose that U passes to the right (resp. left) of (0, 0)
in P . Then, U neither enters nor exits P on its left (resp. right) edge.

Proof. This directly follows from the fact that no tile contains a horizontal wire, and that
Bn is a square. ◀

▶ Corollary 23. If P is a globally admissible pattern that sees a wire U with no relation tiles,
and x ∈ X is such that x|Bn

= P , then σ4n
(0,1)(x)|Bn

and σ−4n
(0,1)(x)|Bn

do not see U .

In order to show that the homotopy class of a path p is indeed only determined by the
wires it crosses, we will need several lemmas in which the proof will always be similar: an
induction on the length L of a Coherent path decomposition of p:

for L = 1 (i.e. p is coherent), we explicitly show how to deform p to obtain the required
property.
for L = 2 we use the Path Co-extensibility Lemma to “normalize” both coherent subpaths
of p using the base case L = 1.
In general, if p = p1 ∗ . . . ∗ pN , we can deform both p1 and p2 so that p ∼ p′

1 ∗ p′
2 ∗ . . . ∗ pN ,

in such a way that we can apply the base case to p′
1, and the induction case to p′

2 ∗ . . .∗pN .
The key step is therefore to properly show how to deal with the case L = 2; this is the
purpose of the Path Co-extensibility Lemma that we now show, after some preliminary
results.

▶ Lemma 24 (Finite Extension Lemma). Let P be an extensible finite pattern of X, there
exists x ∈ X containing P , such that x contains a finite number of wires.

▶ Definition 25 (Cone). For n ∈ N, we define the cones

C−
n = {(i, j) | j ≤ 0, −|j| − n ≤ i < |j| + n} C+

n = {(i, j) | j ≥ 0, −j − n ≤ i < j + n}

We denote ∂Cn = Cn ∩ ((Cn + e0) ∪ (Cn + e1)) the border of a cone.

▶ Lemma 26 (Extensibility Lemma). Let n > 0. There exists k > 0 such that for any x ∈ X,
there exists x′ ∈ X with:

x′
|C±

n
= x|C±

n

x′
|σ(0,k)(C∓

n ) = x
□|σ(0,k)(C∓

n )

Proof. We prove the case where x′ is empty in a cone above the y = 0 line, and equal to x

below it, the other case being similar. Let r be the length of the longest relator in the finite
presentation of G = ⟨S|R⟩. Let W ⊂ Z2 be the set of positions of tiles that are part of a
wire of x that:

either passes by C−
n

or originates from a relation tile which is itself part of a relator intersecting C−
n .

Now, construct x′ as follows:
for (i, j) ∈ C−

n+r ∩ W , set x′
(i,j) = x(i,j). The other tiles of C−

n+r are empty.
for (i, j) ∈ ∂C−

n+r ∩ W and j < 0, extend the wire above (i, j) using only tiles and if
i < 0, or and if i > 0.
each wire of W passing by (i, 0) with |i| ≤ n + r is extended by n − |i| + r tiles , and
then by tiles of the form and if i < 0, or and if i ≥ 0.
all the other tiles are empty.
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Then, x′ is a valid configuration of X and:
By definition of W , x′, x coincide on C−

n .
∂C−

n+r contains no relation tile, by definition of W and r.
(0, n + r + 1) + C+

n is empty. See for example Figure 3.

C−
n

x□

r

C−
n

C−
n+r

ke1 + C+
n

Figure 3 Construction of x′ (on the right) from x (on the left). In both figures, the central dot is
the origin (0, 0).

◀

▶ Corollary 27 (Path Co-extensibility Lemma). Let p = ((Pt, ut))t≤Np
and q = ((Qt, vt))t≤Nq

be two paths with the same aperture window Bn, satisfying:
Both p and q are coherent paths
(PNp

, uNp
) = (Q0, v0) (equivalently, p ∗ q is well-defined)

u1
0 = v1

Nq
(i.e. q ends at the same height as p starts)

Then, there exists p′, q′, r paths such that:
r ends on an empty pattern
p′ ∗ r and r−1 ∗ q′ are well-defined and are both coherent paths.
p ∼ p′ and q ∼ q′

Proof. We may assume that u1
0 ≤ u1

Np
, i.e. the ending point of p is higher than its starting

point, the other case being similar. We can also assume that u1
Np

is the highest point in the
entire trajectory of both p and q (we can always homotopically deform p and q so that this is
true), and up to some shift, we can assume that uNp

= (0, 0). Consider now P ⊂ Z2 so that
P contains all the Pt and Qt. Let xp, xq be configurations in which p, q can respectively be
traced. Take N large enough so that P ⊂ C−

N . Then, applying the Extensibility Lemma to
xp, N on one hand, xq, N on the other hand, gives two configurations x′

p, x′
q ∈ X. Let r be

the path obtained by moving up for 2N + 1 steps in either x′
p or x′

q, starting from the origin,
which is the same path in both cases. Then r satisfies the conditions of Path Co-extensibility
Lemma. ◀

We are now ready to prove the main lemmas needed to show Theorem 1.

▶ Lemma 28 (No Relation Tile Lemma). Let p be a path starting and ending on an empty
pattern. Then there exists p′ ∼ p that does not contain any relation tile.

Proof. As explained above, the proof is by induction on the length of a coherent path
decomposition of p. The base case when p is a coherent path is illustrated in Figure 4. See
the appendix of the full version for the full proof. ◀

▶ Lemma 29 (Single Wire Lemma). Let p = (Pi, vi)0≤i≤N be a path starting and ending
with empty patterns. There exists a path p′, homotopic to p, such that the union of any two
consecutive patterns in p′ contains at most a single wire.
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p p′

(a) Deformation of p into an L-shaped path p′.

p′′

p′

(b) Deformation of p′ into p′′ to pass above
relation tiles.

Figure 4 A coherent path deformed so as not to see relation tiles.

Initial path p

p′

Uk U0

2n

4n

Figure 5 Deformation of p into p′ in a single configuration to see only one wire per pattern.

Proof. As for the No Relation Tile Lemma, we illustrate in Figure 5 the case where p is
itself coherent. For the full proof, see the appendix of the full version. ◀

▶ Lemma 30 (No Uncrossed Wire Lemma). Let p be a path starting and ending with empty
patterns, and U some wire seen but not crossed by p. There exists a path p′, homotopic to p,
which does not see U .

Proof. The idea is that using the previous Single Wire Lemma, we can deal with each wire
independently. In particular, the uncrossed wire U is the only wire seen by some subpath p′

of p, and is not seen by p neither before nor after p′. Hence, it suffices to show the result for
paths seeing a single wire overall. In that case, one observes that U has to stay in the same
“side” of the aperture window along p′, that can therefore be deformed without crossing U by
moving sufficiently far in the opposite direction. For more details, see the appendix of the
full version. ◀

▶ Lemma 31 (Cross Anywhere Lemma). Let p be a path starting and ending with empty
patterns. If p sees no relation tiles, but sees and crosses a single wire U exactly once, then
for all v = (v0, v1) ∈ Z2, p is homotopic to a path p′ which crosses U exactly on v.

Proof. The idea is that if U exits the aperture window Bn of p in position (i, j) ∈ Z2, it
can be extended using tiles and , or and , to pass anywhere inside (i, j) + C−

n or
(i, j) + C+

n . The path p can then be deformed to cross it anywhere in those two cones. Using
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several such deformations, we can deform p so that it crossed U anywhere in the plane. Note
that even if p is initially coherent, it might happen that p′ is not, depending on v and where
p initially crossed U . See the appendix of the full version for the complete proof. ◀

4.3 Projective connectedness
▶ Lemma 32 (Projective connectedness). X is projectively connected.

Proof. The proof relies on the Extensibility Lemma. The idea is that starting from any
configuration x, there always exists a configuration x′ containing a infinite cone (see Defini-
tion 25) of x□, and an infinite cone of x. We can then use this configuration to construct for
n > 0 a path pn with aperture window Bn that first moves sufficiently far into the latter
cone in x, then to the former cone in the configuration x′, and finally comes back to the
origin in x□. See the appendix of the full version for the precise proof. ◀

4.4 Computing the projective fundamental group
We can now compute πproj

1 (X), which is independent of the basepoint since X is projectively
connected. Hence, unless stated otherwise, all the loops in this proof are based at (x□, (0, 0)).
With any such loop p, we associate a word JpK on the alphabet S̄ in the following way:

If p does not cross any wire, we associate the empty word with it, JpK = ε.
If p crosses a single wire U , then:

If U is not a horizontal wire found on a relation tile, and s ∈ S̄ is the generator
corresponding to U (see Subsection 4.1)
∗ if p crosses it from left to right, or from top to bottom on a tile shaped as , or

from bottom to top on a tile , then JpK = s ∈ S̄.
∗ if p crosses it in any other direction, we set JpK = s−1 ∈ S̄

Otherwise, U is a horizontal wire on a relation tile. Let Ri = r0 . . . ri be its colour.
∗ If it is crossed from top to bottom, then JpK = r−1

i . . . r−1
0 ∈ S̄∗

∗ Otherwise, JpK = Ri = r0 . . . ri
If p = p1 ∗ p2, then JpK = Jp1K · Jp2K ∈ S̄∗ where · represents the concatenation in S̄∗.

Some examples are given in Figure 6a and Figure 6b.

a b c
(a) The word associated with this loop is
bb−1a−1abcc−1b−1 =G 1G.

a ab

(1)
(2)

(3)

(4)

Relation tiles
(b) Widget for the relator abc = 1G. From top to bottom,
the words associated with the paths (1) to (4) are respect-
ively abc = 1G, aa−1(ab)c = 1G, (ab)c = 1G and 1G. For
clarity, the relation tiles are not adjacent on the figure.

Figure 6 Some examples of words and group elements associated with coherent paths.

For any two words w, w′ on S̄, we write w ≡ w′ if they are equal as words on this alphabet,
and w =G w′ if they represent the same element of the group G. Let ↔R be be the relation
defined as the symmetric closure of

{
(uwv, uv) | w ∈ R and u, v ∈

(
S̄

)∗}
, corresponding to

the operation of inserting and removing relators to words. We can always suppose that it is
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reflexive by adding the empty word ε to the relators. We denote ↔∗
R its transitive closure.

By definition, w ↔∗
R w′ ⇐⇒ w =G w′ (see e.g., [28, Theorem 1.1]). For example, if we take

a ∈ S, we have aa−1 =G 1G, but aa−1 ̸≡ ε.
In order to prove that the projective fundamental group of this subshift is G, we will

prove that the operation JpK entirely characterizes a loop up to homotopy, in the sense that
loops associated with the same element of G are exactly a projective loop-class:

▶ Lemma 33 (Homotopic Implies Equal). For any window Bn and for any pair of loops pn,
p′

n starting at (x□|Bn
, (0, 0)), pn ∼Bn

p′
n =⇒ JpnK =G Jp′

nK.

▶ Lemma 34 (Equal Implies Homotopic). For any window Bn and for any pair of loops pn,
p′

n starting at (x□|Bn
, (0, 0)), JpnK =G Jp′

nK =⇒ pn ∼Bn
p′

n.

The full proofs can be found in the appendix of the full version.

▶ Theorem 35. πproj
1 (X) = G

Proof. Let n > 0 and let Φn : p ∈ πBn
1 (X, (x□, (0, 0))) 7→ JpK ∈ G be the function which

associates with a loop-class with aperture window Bn the corresponding element of G. The
Homotopic Implies Equal and Equal Implies Homotopic show that it is well-defined and
injective. Let [p] , [p′] be two loop-classes based at (x□|Bn

, (0, 0)). We have shown that
[p] ∼Bn [p′] ⇐⇒ Φn([p]) =G Φn([p′]). Now notice that Φn([p ∗ p′]) =G Φn(p) ·G Φn(p′),
i.e., Φn is a group morphism. To show that it is surjective, let g ∈ G any element, and
u1 . . . un ∈ S̄∗ such that u1 . . . uℓ =G g. Let xg the following configuration:

For 1 ≤ i ≤ ℓ and j ∈ Z, xg(i, j) is a tile of type and of colour ui

Otherwise, xg
(i,j) =

Now, consider the following loop: define pn as the loop based at (x□|Bn
, (0, 0)), which:

moves left for n steps in x□

moves right for 2n + ℓ steps in xg – at this point, it sees an empty pattern, after having
crossed all the wires of xg

comes back to (0, 0) in x□.
By definition, JpnK ≡ u1 . . . un =G g.

Furthermore, notice that for any loop-class [pn+1] based at (x□|Bn+1 , (0, 0)), if pn+1

projects down to p then Φn+1([pn+1]) =G Φn([p]). This shows that πproj
1 (X, (x□, (0, 0))) is

isomorphic to G, and the final result follows from the fact that X is projectively connected. ◀
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The notion of a real-valued function is central to mathematics, computer science, and many other
scientific fields. Despite this importance, there are hardly any positive results on decision procedures
for predicate logical theories that reason about real-valued functions. This paper defines a first-order
predicate language for reasoning about multi-dimensional smooth real-valued functions and their
derivatives, and demonstrates that – despite the obvious undecidability barriers – certain positive
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1 Introduction

Predicate logical decision procedures have become a major workhorse in computer science, for
example, as the basic reasoning engines in SAT modulo theory (SMT) solvers [3]. Common
decision procedures support theories such as uninterpreted function symbols, arrays, linear
integer arithmetic, and real arithmetic. However, many areas of computer science (e.g.,
computer aided design, formal verification of physical systems, machine learning) use as
their basic data structure not only real numbers but real-valued functions, for example, to
represent solid objects [13], correctness certificates [30, 29] or neural networks [1]. Moreover,
due to their fundamental role as a basic mathematical object, real-valued functions are
used as a basic modeling tool throughout many further scientific areas. But unfortunately,
real-valued functions have been left almost completely untouched by research on predicate
logical decision procedures. The goal of this paper is to take a first step to fill this gap.

More concretely, the paper provides the following contributions:
We formalize a first-order language of real-valued functions that allows reasoning about
both real numbers and multi-dimensional real-valued smooth functions based on the usual
arithmetical operations, function evaluation and differentiation.
We prove that a quantifier-free fragment of the language that restricts arithmetic to
addition and multiplication of real numbers, but still provides function evaluation and
differentiation, is decidable.
We prove that for a fragment of the language that keeps the restriction of arithmetic
to addition and multiplication of real numbers but allows arbitrary quantification on
real-valued variables (but not on function-valued variables), there is an algorithm that
can detect satisfiability for all input formulas that are robustly satisfiable in the sense
that there is a satisfying assignment that stays satisfying under small perturbations of
the values of function-valued variables.
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We neither claim theoretical nor practical efficiency of the resulting decision procedures.
Instead, our goal is to overcome scientific fragmentation by developing a framework that can
be instantiated to more efficient techniques for specific applications.

The paper has the following structure: In the next section, we discuss related work.
In Section 3, we define the syntax and semantics of the mentioned predicate language
for reasoning about smooth real-valued functions. In Section 4 we prove decidability of
the quantifier-free case. In Section 5 we discuss decidability of the case with arbitrary
quantification on real-valued variables. In Section 6 we conclude the paper.

2 Related Work

Reasoning about real-valued functions – that we also simply call real functions – will, of
course, be usually based on reasoning about real numbers. This is facilitated by the fact
that unlike the case of the integers, in the case of the real numbers, its non-linear theory
(i.e., the theory of real closed fields) is decidable [38]. The decidability of the case with
the exponential function is still unknown, but is decidable provided Schanuel’s conjecture
holds [25]. Inclusion of the sine function makes the problem undecidable since – as a periodic
function – it is able to encode the integers. This makes any theory that allows reasoning
about systems of linear ordinary differential equations (ODEs) undecidable, since the sine
function appears as the solution of the linear ODE ẋ = −y, ẏ = x.

In mathematical analysis, real functions are often abstracted to elements of abstract
function spaces such as Banach spaces and Hilbert spaces [24]. However, with one notable
exception [37] we are aware of, corresponding predicate logical decision problems have been
largely ignored by computer science.

An important occurrence of real functions is in the role of solutions of ordinary differential
equations (ODEs) and hybrid dynamical systems. Formal verification of such systems has
been an active research topic over many years [10], with a plethora of decidability and
undecidability results [16, 8, 23, 4, 5]. Deductive verification bases formal verification on
automated reasoning frameworks such as hybrid dynamic logic [29], or proof assistants such as
Isabelle/HOL [15]. Reasoning with functions as the solution of ODEs has been included into
SAT solvers without formulation as a first-order decision problem [12, 18]. ODEs have also
played a role as objects in constraint programming [21]. In contrast to the work mentioned
in this paragraph, in this paper, we introduce a general logical language with variables and
predicate and function symbols ranging over real-valued functions. Especially, we allow
multi-dimensional functions and partial differentiation, whereas ODEs and hybrid systems
are defined using one-dimensional functions, only (the single dimension being time).

Computation in function spaces plays a major role in numerical analysis, where it is
mostly restricted to representing solutions to certain specific computation problems, especially,
solving ordinary or partial differential equations. There are also some general approaches
to computing with functions [11, 9]. However, the basic assumption in numerical analysis
is that the solution to the given problem exists and is unique, and the goal is to compute
an approximation of this solution, whereas in this paper we consider satisfiability questions,
where a proof of existence is the goal, not an assumption.

Computer algebra [41] studies computation with symbolic objects, especially polynomials,
that can be interpreted as representations of real functions. Unlike that, in this paper we
are interested in solving problems of reasoning about functions that are independent from a
certain representation.
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The proof of decidability of the quantifier-free case will be based on abstracting function
variables to uninterpreted function symbols. Abstraction to uninterpreted function symbols is
a classical technique in formal verification [6] that has also been applied to real functions [7],
but with the goal of modeling specific function symbols, while in this paper we are interested
in general reasoning about smooth real functions and their derivatives.

For quite some time, robustness has been recognized as tool for characterizing solvable
cases of undecidable decision problems. It was used for dynamical systems [16, 2] and for
decision procedures for the real numbers [32, 17]. However, all of those results do not allow
a general language for reasoning about real functions.

3 Formal Syntax and Semantics

In this section, we define the syntax and semantics of the first-order language for reasoning
about real functions that we will want to decide. As a first example, consider the formula

∃X ∀u, v . app(∂1X, u, v) = 1 ∧ app(∂2X, u, v) ≤ u2,

that asks the question whether there exists a smooth function in R2 → R whose partial
derivative in its first argument is one everywhere, and whose partial dervative in its second
argument is less or equal the square of its first argument. The reader will find more examples
at the beginning of each of the two following sections.

The language will be sorted, allowing variables that range over real numbers and variables
that range over real functions. We denote the sort ranging over real numbers, that we also
call the scalar sort, by R, and the sorts ranging over real-valued functions, that we also call
the function sorts, by Fn, where n ∈ N refers to the number of arguments (i.e., dimension
of the domain). We will also use the symbol F to stand for any sort Fi, i ∈ N. For each of
those sorts, we assume a corresponding set of variables V = VR ∪ VF1 ∪ VF2 . . . . We will
write the elements of VR using lower-case letters and the elements of VF1 ∪ VF2 . . . using
upper case letters. We will also use the symbol VF to denote the set of all function variables
VF1 ∪ VF2 . . . .

We will build formulas based on the usual syntax of many-sorted first-order logic. Here, we
allow rational constants, arithmetical function symbols such as +, ×, exp, sin, and predicate
symbols =, ≤, ≥, <, > that have the usual arity. For every n ∈ N, we allow the function
symbols app : Fn × Rn → R and ∂i : Fn → Fn, i ∈ {1, . . . , n} that we call app-operator
and differentiation operator, respectively. As usual, we will often write the differentiation
operator without parenthesis, and for X ∈ F1, we also write Ẋ instead of ∂1X. We will also
call a term whose outermost symbol is the function symbol app, an app-term.

We will call formulas whose function symbols are restricted to {+, ×, app} ∪ {∂i | i ∈ N},
and hence avoiding transcendental function symbols, function-algebraic. As already mentioned
in the introduction, in this paper, we concentrate on this case.

We define the semantics of formulas by defining a structure R giving the usual real-
valued semantics to all function and predicate symbols. This allows us to avoid questions
of axiomatization and, at the same time, ensures compatibility with the common intuition.
Clearly, satisfiability of a formula based on classical mathematical semantics, implies its
satisfiability wrt. an arbitrary axiomatization compatible with classical mathematics.

In more detail, the structure R will be many-sorted, where the sort R ranges over the
real numbers R and the sorts Fn, n ∈ N range over the set of smooth (i.e., infinitely often
differentiable) functions in Rn → R. We will use the notation that for any smooth function
F : Rn → R, and tuple (β1, . . . , βn) ∈ Nn

0 , D(β1,...,βn)F denotes the function that is the result
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of differentiating for every i ∈ {1, . . . , n} the function F βi-times wrt. its i-th component.
The semantics of function and predicate symbols on the real numbers will be as usual. The
app-operator and differentiation operator are defined as follows:

For every n ∈ N, for all X ∈ Fn, R(app)(X, x1, . . . , xn) = X(x1, . . . , xn) (i.e., function
application in its usual mathematical sense)
For every n ∈ N, i ∈ {1, . . . , n}, for every X ∈ Fn, R(∂i)(X) = DdX, where d ∈ Nn

0 with
d(i) = 1 and for every k ̸= i, d(k) = 0 (i.e., the result of taking the derivative of X wrt.
its i-th argument).

We will denote the set of variable assignments assigning to each variable an element of
its respective domain, by ℵ. Given an assignment α ∈ ℵ we can now assign semantics to
formulas in the usual way, writing α |= ϕ iff the interpretation given by structure R and
assignment α satisfies ϕ. We call a formula ϕ satisfiable iff there is an assignment α ∈ ℵ such
that α |= ϕ. In such a case we will also say that ϕ is F-satisfiable. By abuse of notation,
we will use the symbol F to not only denote the function sorts, but also the theory F of
F -satisfiable formulas.

4 Quantifier-Free Case

In this section, we consider formulas that are quantifier-free and function-algebraic. Here are
some examples:

app(X, t) ≥ 1 ∧ app(X, t + 1)2 ≤ 1: This formula restricts the value of the function X at
two different points t and t + 1. Since these points are different, for checking satisfiability
of the formula, it suffices check satisfiability of the algebraic inequalities r ≥ 1 ∧ s2 ≤ 1.
Based on a satisfying assignment for this formula, we get a satisfying assignment for
the original formula by assigning to X a function interpolating between the values for r

and s.
app(X, 0) = 0 ∧ app(Ẋ, 1) = app(X, 1)2. This formula not only restricts values for the
function X, but also states a relationship between the value of X and its derivative. The
formula is satisfiable since the identity function satisfies the properties stated by the
formula.
app(∂1X, t) = 1 ∧ app(∂2X, t) = 1. This formula states a relationship between two partial
derivatives of X at the same value t. This holds, for example, for the function X with
X(u, v) = u + v.

The basic idea for deciding such formulas is, that quantifier-free formulas constrain the
values of function variables only at a finite (but not fixed) subset of their domain which will
allow us to treat them as uninterpreted function symbols. To do so, we have to get rid of the
app- and differentiation operators. For this, observe that the only syntactic elements that
result in terms of function sort are function variables and differentiation operators. Hence,
differentiation operators can only occur in the form of terms of the form ∂i1∂i2 . . . ∂in

V . So
we let τ∂(ϕ) be the formula resulting from replacing every maximal term of this form (i.e.,
every term of this form that is not an argument of a differentiation operator) by a fresh
function variable Vi1,...,in

. For example,

τ∂(app(∂1X, t) + app(∂2X, t) = 1) ≡ app(X1, t) + app(X2, t) = 1.

The next step is to get rid of the app operator. For this, we denote, for every quantifier-
free formula ϕ, by τ(ϕ) the result of replacing every app-term app(X, t1, . . . , tk) of τ∂(ϕ) by
X(t1, . . . , tk) where in the resulting formula, we now consider X a k-ary function symbol.
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Continuing the example, we get

τ(app(∂1X, t) + app(∂2X, t) = 1) ≡ X1(t) + X2(t) = 1.

The resulting formula is a formula in the language defined by the combination of the
signature of the theory of real-closed fields and the signature of the theory of uninterpreted
function symbols. The combination of these two theories, that we will denote by RU , is
decidable: The signatures of the theory of uninterpreted function symbols and the theory
of real-closed fields only share equality, and both are stably infinite1, hence the decision
procedures for the individual procedures can be combined to a decision procedure for
the combined theory by the Nelson-Oppen theory combination procedure [27, 6]. As a
consequence, we can algorithmically decide RU-satisfiability of translated formulas τ(ϕ).
Moreover, the translation preserves satisfiability:

▶ Theorem 1. A conjunctive formula ϕ is F-satisfiable if and only if τ(ϕ) is RU-satisfiable.

For proving this theorem, we have to bridge two differences between F- and RU-
satisfiability: First, the semantics of F -satisfiability restricts the domain of function variables
to specific functions, more concretely, to smooth real function. And second, the theories of
real closed fields and uninterpreted function symbols are defined using axioms, unlike our
theory F that we defined semantically, by fixing a certain structure. Before going into the
details of the proof, we state a few lemmas. The first one extracts the non-algorithmic core
of the Nelson-Oppen method [27, 39, 6]:

▶ Lemma 2. Let T1 and T2 be two stably infinite theories of respective signatures Σ1 and Σ2,
having only equality in common. Let ϕ1 be a conjunctive Σ1-formula, and ϕ2 a conjunctive
Σ2-formula. Then ϕ1 ∧ ϕ2 is (T1 ∪ T2)-satisfiable iff there is an equivalence relation E on the
common variables V := var(ϕ1) ∩ var(ϕ2) s.t. ϕ1 ∧ ρ(V, E) is T1-satisfiable and ρ(V, E) ∧ ϕ2
is T2-satisfiable, where ρ(V, E) is the formula∧

u,v∈V . uEv

u = v ∧
∧

u,v∈V . ¬(uEv)

u ̸= v.

Every (Σ1 ∪ Σ2)-formula ϕ can be brought into an equi-satisfiable formula of the form
ϕ1 ∧ ϕ2, where ϕ1 is a Σ1-formula, and ϕ2 is a Σ2-formula using the so-called variable
abstraction phase of the Nelson-Oppen method. In our case, T1 is the theory of real closed
fields, and T2 the theory of uninterpreted function symbols. For the result

X(t) ≥ 1 ∧ X(t + 1)2 ≤ 1,

of translating the first example from the beginnning of the section, the result of the variable
abstraction phase is the equi-satisfiable formula

v1 ≥ 1 ∧ v2 = t + 1 ∧ v2
3 ≤ 1 ∧ v1 = X(t) ∧ v3 = X(v2).

The common variables are {v1, v2, v3, t}, and the equivalence relation induced by the set of
equivalence classes {{v1, v3}, {v2}, {t}} illustrates Lemma 2, since

v1 ≥ 1 ∧ v2 = t + 1 ∧ v2
3 ≤ 1 ∧ v1 = v3 ∧ v1 ̸= v2 ∧ v3 ̸= v2

1 A theory T with signature Σ is called stably infinite iff for every quantifier-free Σ-formula ϕ, if F is
T -satisfiable, then there exists some T -interpretation that satisfies F and has a domain of infinite
cardinality [27, 6].

MFCS 2023



76:6 Deciding Predicate Logical Theories of Real-Valued Functions

is satisfiable in the theory of real-closed fields, and

v1 = X(t) ∧ v3 = X(v2) ∧ v1 = v3 ∧ v1 ̸= v2 ∧ v3 ̸= v2

is satisfiable in the theory of uninterpreted function symbols.
The second lemma states a Hermite-like interpolation property whose proof follows from

standard techniques in mathematical analysis.

▶ Lemma 3. Let p be a function from a finite subset P of Rn × Nn
0 to R. Then there exists

a smooth function F : Rn → R s.t. for every (x, d) ∈ P , (DdF )(x) = p(x, d).

Proof. Let X be the set {x | (x, d) ∈ P}. This set if finite, and hence the elements of X are
isolated. For each c ∈ X, construct a smooth function fc which for all d with (c, d) ∈ P ,
(Ddfc)(c) = p(c, d). Let F : Rn → R be such that for all x ∈ Rn, F (x) =

∑
c∈X Bc(fc(x)),

where Bc is a smooth function that is equal to the identity function in a sufficiently small
neighborhood of c, and zero around all other elements of X (i.e., a so-called bump function).
Then F satisfies the desired property. ◀

Now we return to the proof of Theorem 1:

Proof. To prove the ⇒ direction, we assume a variable assignment α that F-satisfies ϕ

and construct an interpretation that satisfies both the axioms of RU and the formula τ(ϕ).
The interpretation is based on the structure of the real numbers, interprets the symbols
{0, 1, +, ×, ≤, <, ≥, >} in the usual mathematical way, interprets the function symbols
introduced by the translation τ as the corresponding smooth real-valued functions given by
α and their respective derivatives, and assigns to the variables of τ(ϕ) the corresponding real
values given by α. The result satisfies the formula ϕ by construction and satisfies the axioms
of RU since the real numbers are an instance of the theory of real closed fields,

We are left with proving the ⇐ direction. For this, we assume that τ(ϕ) is RU -satisfiable,
and build an assignment that satisfies ϕ, assigning to each variable of ϕ an element of the
domain of its respective sort (i.e., either a real number and or a smooth real function).

Observe that both the theory of real closed fields and the theory of uninterpreted function
symbols are stably infinite. Hence we can apply the Nelson-Oppen method. Let the formulas
πR and πU be the result of applying the variable abstraction phase of the Nelson-Oppen
method to τ(ϕ). Hence, πR is a formula in the language of real closed fields, and πU a formula
in the language of uninterpreted function symbols s.t. πR ∧ πU is RU-equi-satisfiable with
τ(ϕ). Let V be the common variables of πR and πU , and let E be the equivalence relation
on V ensured by Lemma 2. Then πR ∧ ρ(V, E) is satisfiable in the theory of real closed fields
and ρ(V, E) ∧ πU in the theory of uninterpreted function symbols. Note that those theories
are defined axiomatically, and hence satisfying interpretations do not necessarily have to be
based on real numbers.

The theory of real closed fields is complete, and hence all its models are elementary
equivalent. As a consequence, there is an interpretation IR that satisfies πR ∧ ρ(V, E) and
assigns real numbers to all variables.

Also ρ(V, E) ∧ πU has a satisfying interpretation. However, since the theory of uninter-
preted symbols is not complete, we need a more involved construction to come up with an
interpretation assigning real numbers and real-valued functions.

We observe that for a formula that is satisfiable in the theory of uninterpreted function
symbols, the congruence closure algorithm [28] constructs a satisfying interpretation. Its
domain is formed by equivalence classes T∼ of the set of sub-terms T of the given formula.
This domain is finite since the set T is finite. Moreover, each equivalence class contains only
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finitely many terms. Let IU be such an interpretation satisfying the formula ρ(V, E) ∧ πU .
Observe that the arrangement ρ(V, E) ensures that all variables shared by πR and πU and
belonging to the same equivalence class, must have the same value in IR.

We will combine the interpretations IR and IU into an interpretation I that satisfies τ(ϕ)
and, in addition, uses the real numbers as its domain. Hence, we will translate the elements
in the domain of IU to real numbers, and extend them to real-valued functions corresponding
to the uninterpreted function symbols.

We will now define a function r assigning to each equivalence class in T∼ a distinct real
number. Let this function r be such that it assigns to each equivalence class containing a
variable shared by πR and πU the value of this variable in IR (as we have observed, this
is unique over all such variables belonging to the same equivalence class), and to all other
equivalence classes a further, distinct real number. Let r′ : T → R s.t. for every term t ∈ T ,
r′(t) is the real number that r assigns to the equivalence class containing t.

Based on this, let I be the following interpretation which assigns real numbers to all
variables in τ(ϕ) and partial real functions to the function symbols in τ(ϕ):

for every variable x occurring in πR, I(x) := IR(x),
for every variable x occurring in πU , I(x) := r′(x),
for every function symbol X of arity k, let I(X) be the partial function such that for
every term of the form X(t1, . . . , tk) in T , I(X)(r′(t1), . . . , r′(tk)) := r′(X(t1, . . . , tk)),
and I(X) is undefined for all other values.

The two following observations make this definition well-formed:
The first two items overlap. This is no problem since for shared variables, I(x) and r′(x)
coincide.
The definition in the third item is unique since due to the congruence axioms of the theory
of free function symbols, for all t1, . . . , tk, t′

1 . . . , t′
k ∈ T , r′(t1) = r′(t′

1), . . . , r′(tk) = r′(t′
k)

implies r′(X(t1, . . . , tk)) = r′(X(t′
1, . . . , t′

k)).

We will now build a variable assignment α from I such that α |= ϕ. For every scalar
variable x, α(x) := I(x). For every function variable V , α(V ) will be a smooth real-valued
function whose values coincide with the values of the partial function I(V ) on all points
where this partial function has a defined value, and whose derivatives coincides with the
values of the corresponding partial function I(Vi1,...,in) on all points where the latter has a
defined value. Such a function exists due to Lemma 3, and it satisfies the formula ϕ. ◀

To illustrate the theorem, we continue with the example from above. The real part of
the formula is satisfiable, for example by {v1 7→ 1, v2 7→ 7, v3 7→ 1, t 7→ 6}. Applying the
congruence closure algorithm to the part with uninterpreted function symbols, we work
with the set of sub-terms T = {v1, v2, v3, t, X(t), X(v2)}. The result of the congruence
closure algorithm is the equivalence relation {{v1, v3, X(v2), X(t)}, {t}, {v2}}. Hence r′ is
{v1 7→ 1, v3 7→ 1, X(v2) 7→ 1, X(t) 7→ 1, t 7→ 6, v2 7→ 7}. Since every variable in πU also
occurs in πR, the interpretation I can simply agree with r′ on the scalar variables. Moreover,
it assigns to the function variable X the partial function {7 7→ 1, 6 7→ 1}. The corresponding
assignment α assigns to the scalar variables the same real values as I, and assigns to X a
smooth interpolation of the partial function {7 7→ 1, 6 7→ 1}. For example, this could be the
constant function that has the value 1, everywhere.

Since a disjunction of formulas is satisfiable, if one of the constituting disjuncts is
satisfiable, we get:

▶ Corollary 4. The quantifier free, function-algebraic theory of real functions is decidable.
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The proof of Theorem 1 also shows how to compute satisfying assignments: After checking
the satisfiability of τ(ϕ) using the congruence closure algorithm and the Nelson-Oppen
combination procedure, construct the variable assignment α defined in the proof.

Note that the concluding building block of the proof of Theorem 1 is Lemma 3. Any
analogous lemma that ensures stronger properties of the constructed functions results in
a corresponding strengthening of Theorem 1. For example, we could also be interested in
constructing functions that generalize the constraints given by the input formula as much as
possible, maximizing certain regularity properties [14].

5 Scalar Quantification

We will now allow arbitrary quantification on scalar variables. We will still require formulas
to be function-algebraic and do not allow quantification on function variables. An example is

∀t ∈ [0, 10] ∃t′ ∈ [0, 10] . app(X, t, 2t)2 + 1 ≥ app(∂2X, t′, t′),

where X ∈ F2 and the interval bounds on variables represent the obvious abbreviations.
Many problems resulting from the synthesis of correctness certificates for continuous systems
(e.g., Lyapunov function [22], barrier certificates [30] and their generalizations [29, 20]),
belong to this class.

In Subsection 5.1, we will introduce a method for checking satisfiability under the
condition that the functional variables are instantiated to fixed, user-provided polynomials.
In Subsection 5.2, we will introduce a robustness property of formulas that will allow us to
characterize solvability of formulas. In Subsection 5.3, we will introduce a systematic method
for applying the satisfiability check from Subsection 5.1 and ensuring that it will succeed
for all formulas satisfying the robustness property. In Subsection 5.4, we will discuss the
relevance of the method for practical computation.

5.1 Check Satisfiability Under Polynomial Instantations
The method for checking satisfiability of a formula that we introduce in this sub-section
depends on an instantation of its functional variables to polynomials with rational coefficients.
This will allow us to rewrite the formula into a formula in the language of the theory of
real-closed fields which is decidable. In this sub-section, we still assume these polynomials to
be given (e.g., chosen by the user), and drop this assumption later.

▶ Definition 5. We call a function π that assigns to every function variable of sort Fn

a polynomial with rational coefficients in the variables t1, . . . , tn a polynomial assignment.
Moreover, we call a pair consisting of a formula and a polynomial assignment an instantiated
formula.

The intuition is that the polynomial assignment π in an instantiated formula (ϕ, π)
instantiates each function variable in ϕ to the respective polynomial assigned by π. Let us
define the following rules on instantiated formulas (ϕ, π):

varsep: Rename multiple occurrences of the same function variable in ϕ by fresh function
variables, and extend π to the new variables in such a way that it assigns the same
polynomial to each new variable as to its original one.
∂-elim: Replace a sub-term of ϕ of the form ∂iX, where X is a function variable,
by X and π by π′ that is identical to π except that it assigns the result of symbolic
differentiation of the polynomial π(X) in its i-th argument to the function variable X.
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Table 1 Polynomial Instantiation.

rule formula polynomial assignment
∀p∀q . app(X, q) + p2app(∂1X, r)app(Y, q) ≥ 0 {X 7→ t2 + 1, Y 7→ t}

varsep ∀p∀q . app(X, q) + p2app(∂1X ′, r)app(Y, q) ≥ 0 {X 7→ t2 + 1, X ′ 7→ t2 + 1, Y 7→ t}
∂-elim ∀p∀q . app(X, q) + p2app(X ′, r)app(Y, q) ≥ 0 {X 7→ t2 + 1, X ′ 7→ 2t, Y 7→ t}
app-elim ∀p∀q . q2 + 1 + 2p2rq ≥ 0 {X 7→ t2 + 1, X ′ 7→ 2t, Y 7→ t}

app-elim: Replace a sub-term of ϕ of the form app(X, t̂1, . . . , t̂n), where X is a function
variable, and the terms t̂1, . . . , t̂n do not contain any app-operator, by the result of
evaluating the polynomial π(X) using the values t̂1, . . . , t̂n for the respective variables
t1, . . . , tn.

Now apply first the rule varsep, and then iterate applying the elimination rules until
they cannot be applied any more. This process must terminate since every application of
an elimination rule decreases the total number of ∂- and app-operators by one. Moreover,
the result must be unique since the only possible alternative choices of the rules relate to
independent sub-formulas. So denote by Ππ(ϕ) the formula ϕ′ where (ϕ′, π′) is the final
result of the described rule-application process.

Table 1 shows the results of the individual steps of the process of forming Ππ(ϕ) for an
example of an instantiated formula with X, Y ∈ F1, p, q, r ∈ R, where the result Ππ(ϕ) can
be seen at the bottom of the column “formula”.

Polynomial evaluation completely eliminates any function variables or operators:

▶ Lemma 6. For every instantiated formula (ϕ, π), Ππ(ϕ) does not contain any function
variable, and hence it also does not contain any app- or diff-operator.

Proof. Function variables can only occur as arguments to diff and app operators. In such a
situation, the rules ∂-elim and app-elim are applicable, and hence, such a formula cannot be
the result of Ππ(ϕ). ◀

Therefore, if ϕ is function-algebraic, Ππ(ϕ) is a formula in the language of real-closed
fields, which is decidable [38]. Moreover, instantiated formulas can be used for proving
satisfiability:

▶ Theorem 7. For every instantiated formula (ϕ, π), Ππ(ϕ) is satisfiable iff π |= ∃Rϕ, where
∃R denotes the existential closure of the formula wrt. the scalar variables.

Proof. For an instantiated formula (ϕ, π), let ρ(ϕ, π) be the formula

∃R ϕ ∧
∧

X∈VF

∀t1, . . . , tn . app(X, t1, . . . , tn) = π(X).

Observe that π |= ∃Rϕ iff ρ(ϕ, π) is satisfiable. Moreover, every element of the sequence
ρ(ϕ1, π1), . . . , ρ(ϕn, πn) with (ϕ1, π1) = (ϕ, π), ϕn = Ππ(ϕ), and each (ϕi, πi), i ∈ {2, . . . , n}
being the result of the application of a rewrite rule to (ϕi−1, πi−1), is equi-satisfiable. Finally
ρ(ϕn, πn) and ϕn = Ππ(ϕ) are equi-satisfiable since Ππ(ϕ) does not contain any function
variable. ◀

So we have reduced the satisfiability checking problem to the problem of finding a
polynomial assignment π for which Ππ(ϕ) is satisfiable. However, for some satisfiable
formulas, the search for such a polynomial assignment is bound to fail. This can be easily
seen on the simple initial value problem
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app(X, 0) = 1 ∧ ∀t . t ≥ 0 ⇒ app(Ẋ, t) = app(X, t)

that is satisfiable, but not by any polynomial assignment (the only solution of the given
initial value problem is the exponential function).

5.2 Robust Satisfiability
Even though differential equations such as ẋ = x (in our notation: ∀t . app(Ẋ, t) = app(X, t))
are ubiquitous in mathematics, they are highly idealized objects: In practice, no real physical
system will satisfy such an equation precisely, and concrete differential equations can only be
used in applications after introducing many simplifying assumptions that are part of the daily
bread of practical engineering. However, this also makes it necessary for engineers to assess the
consequences of such simplifications. Despite the existence of powerful deductive verification
techniques [29, 15], in practice, differential equations are still solved by algorithms [19]
that produce approximation errors both due to discretization and due to floating point
computation. The reliability of the whole process depends essentially on the fact that the
error made by the solver does not dominate the error made by simplifying assumptions.
This is a major complication, that could be avoided if solvers could conservatively bound
the produced errors. For the concrete example ẋ = x, it would be very useful, if a solver
could – instead of solving the differential equation approximately – guarantee the solution
of x − ϵ ≤ ẋ ≤ x + ϵ within a compact set, for a small constant ϵ > 0. In this section, we
will formally characterize such situations and show that in such cases, a formally correct
satisfiability check is not only possible, but that we can even guarantee its success.

For being able to measure the distance between variable assignments, we will adjoin
metrics to the set of variable assignments ℵ, making the pair (ℵ, d) a metric space. These
metrics will be parametric in a family of compact sets Kn ⊆ Rn, n ∈ N which we will call
domain of interest. We will denote this dependence on the domain of interest by an index,
writing dK for the metric associated to domain of interest K. We will call such a metric on
ℵ a variable assignment metric.

▶ Definition 8. A formula ϕ is semantically robustly satisfiable wrt. a variable assignment
metric d iff there is a variable assignment α ∈ ℵ and an ε > 0 (that we call the robustness
margin) such that for every α′ with dK(α, α′) < ε, α′ |= ϕ.

Note that unlike similar definitions [17, 33], this definition only depends on the semantics of
a given formula, but not on its syntax, and hence is invariant wrt. equivalence transformations.
We will later see that this is made possible by the fact that we restrict ourselves to operations
on real numbers allowed by the decidable theory of real closed fields.

We will usually use metrics induced by some norm, and so we will call a formula robustly
satisfiable wrt. a norm ||·||K iff it is robustly satisfiable wrt. the metric dK(x, x′) = ||x−x′||K .
Given metrics dT on T , where T ∈ {R, F1, . . . }, we define their extension to variable
assignments element-wise. So, for α, α′ ∈ ℵ,

dK(α, α′) := max
T ∈{R,F1,... }

max
v∈VT

dT
K(α(v), α′(v)).

Here, we will usually use a family of metrics on function variables of all dimensions. If dR is
a metric on R and dF such a family of metrics on smooth functions Ri → R, i ∈ N, then we
will denote this extension to variable assignments by dR × dF .

On real-numbers we will use the discrete metric d=(x, y) :=
{

1, if x ̸= y,

0, if x = y.
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The metric on functions will be based on a norm measuring the size of a given function
and of its derivatives. For a function F : Rn → R, at least k-times differentiable, let

||F ||kK := max
|β|≤k

inf
x∈Kn

|(DβF )(x)|.

We denote the metric induced by this norm || · ||kK by dk
K . Here are some examples:

∀t ∈ [0, 1] . app(X, t) − 0.1 ≤ app(Ẋ, t) ∧ app(Ẋ, t) ≤ app(X, t) + 0.1, with x ∈ F1 is
not robustly satisfiable wrt. the norm || · ||0[0,1], since that norm does not constrain any
derivative of x. However, it is robustly satisfiable wrt. || · ||1[0,1] since, for example, every
function with maximal distance 0.01 from the exponential function wrt. || · ||1[0,1] satisfies
the formula.
∀t ∈ [0, 1] . app(Ẋ, t) = app(X, 0) is not robustly satisfiable wrt. || · ||0[0,1], since for every
function satisfying the formula adding the term ϵt to the function results in a function
not satisfying it.
The formula ∀t . app(X, t) ≥ 0, while satisfiable, is not robustly satisfiable wrt. the norm
|| · ||0[0,1], since this norm only restricts the value of functions in the domain of interest [0, 1].
Due to this, for every variable assignment α satisfying the formula, there is an α′ with
d(α, α′) = 0 that does not satisfy the formula: Simply choose an α′ that is identical to
α on [0, 1] but reaches a negative value outside of this interval. In contrast to that, the
formula ∀t ∈ [0, 1] . app(X, t) ≥ 0, is robustly satisfiable which explains the importance
of bounds on quantified variables for ensuring robustness.

5.3 Robust Completeness
We will now introduce a systematic method that checks satisfiability using the test from
Subsection 5.1 and that will succeed for all formulas satisfying the robustness property from
Subsection 5.2. We will use the fact that one can approximate smooth functions on compact
domains arbitrarily closely by polynomials. For this, recall that a subset X ′ of a metric space
(X, d) is dense in (X, d) iff for every x ∈ X and ε > 0 there is an x′ ∈ X ′ with d(x, x′) < ε.

▶ Lemma 9. Let ϕ be a formula, d a variable assignment metric and ℵ′ ⊆ ℵ s.t. ℵ′ is dense
in (ℵ, d). Then every formula that is semantically robustly satisfiable wrt. the metric d has a
satisfying assignment from ℵ′.

Proof. Assume that ϕ is semantically robustly satisfiable wrt. d. Then there is a variable
assignment α ∈ ℵ and an ε > 0 such that for every α′ with d(α, α′) < ε, α′ |= ϕ. Since ℵ′

is dense in (ℵ, d), there is an α′ ∈ ℵ′ with d(α, α′) < ε. Hence α′ is within the robustness
margin of α, and hence α′ |= ϕ. ◀

Now we observe:

▶ Lemma 10. For every k ∈ N0, compact K ⊆ Rn, the set of n-dimension polynomial
functions with rational coefficients is dense in the set of n-dimensional polynomial functions
with real coefficients wrt. the metric dk

K .

Proof. Let P be a polynomial function with real coefficients and ε > 0. We will prove
that there is a polynomial P ′ with rational coefficients such that dk

K(P, P ′) < ε, that is
max|β|≤k infx∈K |(DβP )(x) − (DβP ′)(x)| < ε. During this, we will separate any given
polynomial P into its vectors of coefficients CP and monomials MP . Hence P = CT

P MP .
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Let m = max|β|≤k infx∈K ||MDβP (x)|| with || · || denoting the Euclidean metric. The
value m is finite since K is compact. Let P ′ be a polynomial with rational coefficients s.t.
MP (x) = MP ′(x) and s.t. max|β|≤k ||CDβP − CDβP ′ || < ε

m . Now, due to Cauchy-Schwarz,

max
|β|≤k

inf
x∈K

|(DβP )(x) − (DβP ′)(x)| = max
|β|≤k

inf
x∈K

|(CDβP − CDβP ′)T MDβP (x)| ≤

max
|β|≤k

inf
x∈K

||CDβP − CDβP ′ || ||MDβP (x)|| <
ε

m
m = ε ◀

Moreover, the classical Stone-Weierstrass theorem generalizes to dk
K , that is, the polyno-

mials with real coefficients P (R) are dense in the set of Ck-real functions on any compact
set K wrt. dk

K [40, 26]. This allows us to conclude:

▶ Lemma 11. For every k ∈ N0 and compact K ⊆ Rn, the set of n-dimensional polynomial
functions with rational coefficients is dense in the metric space (ℵ, dk

K).

Putting everything together, we get :

▶ Theorem 12. For every k ∈ N0 and and family of compact sets Kn ⊆ Rn, n ∈ N, there
is an algorithm for checking satisfiability of function-algebraic formulas that terminates for
every input formula that is semantically robustly satisfiable wrt. the metric d= × dk

K .

Proof. Assume a semantically robustly satisfiable function-algebraic formula ϕ. Since by
Lemma 11, the set of variable assignments assigning real values to scalar variables and
polynomials with rational coefficients to function variables is dense in the metric space
(ℵ, d= × dk

K), by Lemma 9, there is an assignment α ∈ ℵ that assigns polynomials with
rational coefficients to function variables and that satisfies ϕ. The restriction of α to a
polynomial assignment απ satisfies ∃Rϕ.

Due to Theorem 7 we can algorithmically check whether for a given polynomial assign-
ment π, π |= ∃Rϕ. Moreover, the set of polynomial assignments is recursively enumerable
. Hence, an algorithm that enumerates its elements, checking for each element π whether
Ππ(ϕ) is satisfiable in the theory of real closed fields, will eventually find απ, and hence
terminate proving that ϕ is satisfiable. ◀

Note however, that we do not know how to check a given formula for robustness. Hence,
for a given formula we do not know a-priori whether the enumeration algorithm from the
proof of Theorem 12 will terminate. We just know that it will terminate under the assumption
that the formula is robust.

5.4 Practical Computation – Templates
Of course, the algorithm from the proof of Theorem 12 is hopelessly inefficient in practice.
Still, our approach may provide useful practical insight. In practice, problems of the kind
studied here are solved in many, often distant areas [36, 31, 34, 35]. A common approach is
to restrict the set of potential solutions to a fixed class of functions given by a parameterized
expression (sometimes also called a template), and then searching for values for the parameters
such that the result of instantiating the parameters by those values represents a solution to
the problem.

There are two main classes of templates that are often used here. The first class are
templates given by complex expressions, often called neural networks. The second class
are polynomials whose coefficients are parameters which allows many methods to exploit
the fact that polynomials are linear in their coefficients. If the given template polynomial
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does not represent a solution, one can increase the degree of the polynomial. The resulting
loop amounts to an enumeration of all polynomials with real coefficients. Our approach (1)
formally justifies such algorithms showing that such a loop must terminate for all robust
inputs, and (2) generalizes such algorithms to all formulas belonging to the language used in
this paper.

6 Conclusion

We have developed a framework for decision procedures for a predicate logical theory
formalizing a notion that is central to mathematics, computer science, and many other
scientific fields – real-valued functions. Our long-term vision is to replace the need for
research on application-specific automated reasoning techniques for smooth real-valued
functions by a common framework that results in tools that can be used out-of-the-box in
a similar way as decision procedure for common first-order theories in the frame of SMT
solvers [3].
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Abstract
We study the partial search order problem (PSOP) proposed recently by Scheffler [WG 2022]. Given
a graph G together with a partial order on the set of vertices of G, this problem determines if there
is an S-ordering that is consistent with the given partial order, where S is a graph search paradigm
like BFS, DFS, etc. This problem naturally generalizes the end-vertex problem which has received
much attention over the past few years. It also generalizes the so-called F-tree recognition problem
which has just been studied in the literature recently. Our main contribution is a polynomial-time
dynamic programming algorithm for the PSOP of the maximum cardinality search (MCS) restricted
to chordal graphs. This resolves one of the most intriguing open questions left in the work of Scheffler
[WG 2022]. To obtain our result, we propose the notion of layer structure and study numerous
related structural properties which might be of independent interest.
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1 Introduction

Graph search paradigms are pervasive in algorithms for innumerable graph problems. In
addition to the most popular paradigms breadth-first search (BFS) and depth-first search
(DFS), several other prevalent graph search paradigms – including, for instance, lexicographic
breadth-first search (LBFS), lexicographic depth-first search (LDFS), maximum cardinality
search (MCS), maximal neighborhood search (MNS) – have also been extensively studied in
the literature [10, 25, 28, 29]. These graph search paradigms have proved to be exclusively
useful in dealing with a variety of graph problems [6, 8, 9, 22]. For instance, MCS has
been successfully used in the recognition of special graphs [29], the computation of minimal
separators [22], the computation of minimal triangulation of graphs [3], determining lower
bounds of treewidth [5, 21], etc. In several of these algorithmic applications, last vertices
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visited in graphs are crucial for the correctness of the algorithms. Last visited vertices
also exhibit some nice structural properties. For instance, for a cocomparability graph
that is Hamiltonian, if a vertex is last visited by LDFS, then there is a Hamiltonian path
starting from this vertex [1, 8]. For more concrete examples on this issue, we refer to [1, 11].
These specialities of last visited vertices inspired Corneil, Köhler, and Lanlignel [11] to put
forward the end-vertex problem, in which we are given a graph and a particular vertex v,
and are asked whether v can be the last visited one according to a certain graph search
paradigm. Thenceforth, investigation on the end-vertex problem has flourished, resulting
in the complexity of the problem for both general graphs and many special graphs such
as chordal graphs, split graphs, interval graphs, bipartite graphs, etc., being substantially
established [1, 24, 32]. For a comprehensive summary of the recent progress, we refer to [16].

A closely related problem is the search tree recognition problem which has a relatively
longer history [17, 18, 20]. This problem determines if a given spanning tree of a graph can
be obtained via a traversal of the graph by a certain search paradigm. This problem comes
natural for some search paradigms like BFS and DFS, since they not only output an ordering
but also generate a spanning tree during the search. However, it is ill-defined for some other
search paradigms like MCS and MNS. Aiming at overcoming the plight, Beisegel et al. [2]
introduced the notions of F-tree and L-tree (F and L respectively stand for “first” and
“last”). Particularly, given an ordering σ of the vertices of a graph, the F -tree (respectively,
L-tree) is a spanning tree of the graph so that every vertex v other than the first one in σ

is adjacent to its first (respectively, last) neighbor appearing before v in σ. BFS-trees and
DFS-trees are F-trees and L-trees of BFS and DFS, respectively. Having these notions,
Beisegel et al. [2] studied the complexity of the F-tree recognition problem and the L-tree
recognition problem of the above-mentioned search paradigms for both general graphs and
many special graph classes. Very recently, Scheffler [27] complemented these results by
showing that the L-tree recognition problem of BFS restricted to bipartite graphs, and the
F -tree recognition problem of DFS restricted to chordal graphs and chordal bipartite graphs
are NP-hard, standing in a strong contrast to the polynomial-time solvability of the F -tree
recognition problem of BFS and the L-tree recognition problem of DFS in general [18, 20].

From the known results, Scheffler [26] discerned that the complexity of the end-vertex
problem and the complexity of the F-tree recognition problem seemed to be somewhat
connected. For instance, for LBFS, MCS, and MNS, both problems are NP-hard on weakly
chordal graphs and are linear-time solvable on split graphs. Additionally, for MNS and
MCS, both problems are polynomial-time solvable when restricted to chordal graphs [2, 24].
Towards a comprehensive understanding of the connection, Scheffler [26] introduced the
partial search order problem (PSOP) which generalizes both the end-vertex problem and
the F-tree recognition problem. Given a graph G and a partial order R on the set of
vertices of G, the PSOP of a search paradigm S determines if G admits an S-ordering which
linearly extends R. Scheffler [26] derived a polynomial-time algorithm for the PSOP of LBFS
restricted to chordal bipartite graphs, and a polynomial-time algorithm for the PSOP of
MCS restricted to split graphs. However, whether the PSOP of MCS restricted to chordal
graphs, arguably the most intriguing case, is polynomial-time solvable is unknown prior to
our current work. We resolve this open question in the affirmative. To this end, we propose
the notion of layer structure and study a number of structural properties which might be
of independent interest. At a high level, based on the properties studied, we iteratively
decompose the clique graph of a given chordal graph into what we call layer structures,
handle the components (which we call units) of each layer structure separately, and utilize
dynamic programming techniques to merge local solutions into a whole one.
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2 Preliminaries

For an integer i, [i] denotes the set of positive integers no greater than i.

2.1 Graphs
We follow standard notions in graph theory. For notions used but not defined in the paper,
we refer to [31]. The graphs we consider are finite, undirected, and simple. Let G be a graph.
The vertex set and edge set of G are denoted by V (G) and E(G), respectively. For a vertex
v ∈ V (G), its neighborhood in G, denoted NG(v), is the set of vertices adjacent to v in G. A
clique of G is a subset of pairwise adjacent vertices in G. We call a clique of G containing
a vertex v ∈ V (G) a v-clique. Analogously, a clique of G containing a subset X ⊆ V (G) is
called an X-clique. The subgraph of G induced by X ⊆ V (G) is denoted by G[X].

A path P of length t is a graph with a sequence of t + 1 distinct vertices v1, v2, . . . , vt+1
and with the edge set {vivi+1 | i ∈ [t]}. We say that P is a path between v1 and vt, or simply
call it a v1-vt path. Two vertices in G are connected if there is a path between them in G.
For u, v ∈ V (G), a u-v separator is a subset X ⊆ V (G) so that u and v are disconnected
after deleting all vertices in X from G. A u-v separator X is minimal if there are no other
u-v separators X ′ such that X ′ ⊊ X. The length of a cycle is the number of edges it contains.
A hole is an induced cycle of length greater than three. A graph is chordal if it does not
contain any holes as induced subgraphs.

2.2 The Partial Search Order Problem
A partial order on a set X is a reflexive, antisymmetric, and transitive binary relation on X.
For ease of exposition, for a partial order R, we sometimes use x <R y to denote (x, y) ∈ R.
A linear order is a partial order that is complete. We usually write a linear order R in the
format of (x1, x2, . . . , xm) which means that (xi, xj) ∈ R for all i, j ∈ [m] such that i < j. A
linear order R extends a partial order R′ if for every (x, y) ∈ R′ it holds that (x, y) ∈ R. We
also call R a (linear) extension of R′. For a binary relation R on a set X, and for X ′ ⊆ X,
we use R|X′ to denote R restricted to X ′. For a graph search paradigm S and a graph G, an
S-ordering of G is an ordering of V (G) that can be generated from an S search on G. The
partial search order problem of S, denoted PSOP-S, is defined as follows.

PSOP-S
Given: A connected graph G and a partial order R on V (G).
Question: Is there an S-ordering of G that extends R?

This paper focuses on PSOP-MCS restricted to connected chordal graphs.

2.3 Clique Graphs
It has long been known that chordal graphs admit a characterization in terms of their clique
trees. Precisely, a connected graph G is chordal if and only if there exists a tree T whose
vertices one-to-one correspond to maximal cliques of G so that for every vertex v ∈ V (G) the
vertices of T corresponding to all maximal v-cliques of G induce a subtree of T [4, 7, 15, 29].
Such a tree T is referred to as a clique tree of G [7, 15, 30]. It is a folklore that every chordal
graph G has at most |V (G)| maximal cliques [13], and hence every clique tree of G contains
at most |V (G)| vertices.

Another relevant notion is clique graph, first introduced by Galinier, Habib, and Paul [14].
Precisely, the clique graph of a connected chordal graph G, denoted C(G), is the graph
whose vertex set is exactly the set of all maximal cliques of G, and two vertices K and K ′ in
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Figure 1 A connected chordal graph (left) and its clique graph (right). In the clique graph, all
omitted edge weights are 1.

the clique graph are adjacent if and only if K ∩K ′ is a minimal u-v separator of G for all
u ∈ K \K ′ and all v ∈ K ′ \K. Each edge KK ′ in the clique graph C(G) is associated with
the label K ∩K ′ and with the weight |K ∩K ′|.

For clarity, hereinafter we call vertices in a clique tree or a clique graph nodes.

▶ Lemma 1 ([14]). Let G be a connected chordal graph G, and let K and K ′ be two maximal
cliques in G. Then, K and K ′ are adjacent in C(G) if and only if they are adjacent in some
clique tree of G.

In effect, Lemma 1 asserts that the clique graph of a connected chordal graph is the union
of all clique trees of the same graph.

For a label S of some edge in C(G), we use C(G) ⊖ S to denote the graph obtained
from C(G) by deleting all edges with the label S. For example, for the chordal graph G in
Figure 1, C(G)⊖ {f} is the graph shown in Figure 2.

a, e b, e, f c, f, g d, g

e, u, v e, f, v f, g, x g, h, y

2 2

2

Figure 2 C(G) ⊖ {f} where G is the connected chordal graph in Figure 1.

▶ Lemma 2 ([24]). Let G be a connected chordal graph, and let S be the label of an edge
in C(G) with the minimum weight. Then,

(i) for every v ∈ V (G)\S, all maximal v-cliques of G are in the same connected component
of C(G)⊖ S; and

(ii) for every u, v ∈ V (G) \S, S is a u-v separator in G if and only if any maximal u-clique
and any maximal v-clique of G are in different connected components of C(G)⊖ S.

2.4 Graph Search Paradigms
Now we give definitions of three graph search paradigms, namely, MCS, generic search, and
Prim search. Each search paradigm regulates how the vertices of a graph are visited one after
another without repeating. Our focus is PSOP-MCS, but our algorithm for PSOP-MCS
resorts to Prim search of clique graphs and generic search of layer structures (defined in
Section 3) of clique graphs.

Both MCS and generic search arbitrarily select one vertex to visit first. Then, MCS picks
an unvisited vertex having the maximum number of visited neighbors as the next to visit [29],
while the generic search picks an unvisited vertex having at least one visited neighbor as the
next to visit [28].
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Prim’s algorithm is one of the most famous algorithms for finding minimum spanning
trees [12, 19, 23]. In a nutshell, starting from a tree consisting of an edge with the minimum
weight, the algorithm grows the tree by adding edges, one-by-one, of minimum possible
weights without destroying the tree structure, until the tree becomes a spanning tree. By
turning “minimum” to “maximum” in the algorithm, it instead returns a maximum spanning
tree. Algorithm 1 delineates the Prim search modified from Prim’s algorithm [24]. Generally
speaking, starting from any arbitrary vertex, it picks as the next one to be visited a so far
unvisited vertex incident to an edge with the maximum weight among all edges between
visited vertices and unvisited vertices.

Algorithm 1 Prim Search.

Input: A connected graph G of n vertices where every edge has a weight.
Output: An ordering π of V (G).
1: π(v)← 1, where v is an arbitrary vertex of G; /* the first visited vertex */
2: S ← {v};
3: for i = 2, 3, . . . , n do
4: let v be a vertex in V (G) \ S incident to an edge with the maximum weight among

all edges between S and V (G) \ S;
5: π(v)← i; /* visit v */
6: S ← S ∪ {v};
7: return π;

Following [24], we call an ordering obtained from applying Algorithm 1 to a graph G a
Prim ordering of G. Prim orderings of the clique graph of a chordal graph have an appealing
property in respect of their clique graphs, as stated in the following lemma.

▶ Lemma 3 ([24]). Let G be a connected chordal graph, and let (K1, K2, . . . , Kt) be a Prim
ordering of C(G). For every i ∈ [t], the subgraph of C(G) induced by {K1, K2, . . . , Ki} is the
clique graph of the subgraph of G induced by

⋃
j∈[i] Kj.

Let σ be an ordering of V (G), and let π be an ordering of the maximal cliques of G.
For v ∈ V (G), we use Kv

π to denote the first v-clique in π. We say that σ is a generation
of π (or π generates σ) if for all x, y ∈ V (G) it holds that Kx

π <π Ky
π implies x <σ y.

Precisely, for an ordering π = (K1, K2, . . . , Kt) of maximal cliques of G and i ∈ [t− 1], let
V (π, i) =

⋃
j∈[i] Kj be the set of vertices of G contained in at least one of the first i cliques

from π. For i ∈ [t] \ {1}, let K(π, i) = Ki \ V (π, i− 1) be the set of vertices of G contained
in Ki but not in any other cliques before Ki in π. Besides, let K(π, 1) = K1. Then, σ is
a generation of π if and only if it is of the form (

−−−−−→
K(π, 1),

−−−−−→
K(π, 2), . . . ,

−−−−→
K(π, t)), where for a

set X, −→X can be any ordering of X.

▶ Lemma 4 ([24]). Let G be a connected chordal graph. Then, an ordering of V (G) is an
MCS ordering of G if and only if it is a generation of some Prim ordering of C(G).

3 Layer Structures of Clique Graphs

In this section, we introduce the notion of layer structure, and explore a number of structural
properties pertinent to this notion. Throughout this section, let G be a connected chordal
graph, and let K⋆ be a maximal clique of G.

Let U be the set of connected components of C(G) after the deletion of all edges with
the minimum weight. For the sake of readability, let us call each U ∈ U a unit. If a maximal
clique K of G is a node in a unit, we say that K is contained in this unit. We use UK to

MFCS 2023
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denote the unit containing K. Besides, we use K(U) to denote the set of maximal cliques
of G contained in a unit U , and use V(U) to denote the set of vertices of G contained in
nodes of U , i.e., V(U) =

⋃
K∈K(U) K. We say that an edge in C(G) crosses two units if the

two endpoints of the edge are respectively from the two units.
The layer structure we shall study is a refinement of the clique graph C(G). The following

two lemmas pinpoint where the refinement lies.

▶ Lemma 5. The weights of edges of C(G) whose both endpoints are contained in the same
unit are greater than the minimum weight of edges of C(G).

Proof. Let KK ′ be an edge with the minimum weight in C(G), and let S = K ∩ K ′.
Therefore, S is a u-v separator for all u ∈ K \ S and v ∈ K ′ \ S. Then, by Lemma 2 (ii), K

and K ′ are in different connected components of C(G) ⊖ S, implying that K and K ′ are
contained in different units. ◀

Lemma 5 equivalently asserts that every unit U is exactly the subgraph of C(G) induced
by K(U). To put it another way, an edge in C(G) crosses two units if and only if it has the
minimum weight in C(G).

▶ Lemma 6. Let U and U ′ be two units from U so that there are edges in C(G) crossing U

and U ′. Then, all edges in C(G) crossing U and U ′ have the same label.

Proof. Towards a contradiction, assume that C(G) contains two distinct edges K1K2
and K3K4 crossing U and U ′ with different labels. Let S = K1 ∩K2 and let S′ = K3 ∩K4.
So, S ≠ S′. Obviously, U and U ′ both remain connected in C(G) ⊖ S. Moreover, since
the edge K3K4 is present in C(G)⊖ S, U and U ′ are in the same connected component of
C(G)⊖ S. This means that K1 and K2 are in the same connected component of C(G)⊖ S.
However, this contradicts Lemma 2 (ii). ◀

Now we are ready to define the layer structure.

▶ Definition 7 (Layer Structure). The layer structure of C(G) rooted by K⋆ is a graph with
the vertex set U so that there is an edge between two units in U if and only if there exists
at least one edge in C(G) crossing the two units. The label and the weight of an edge UU ′

in the layer structure are respectively K ∩ K ′ and |K ∩ K ′|, where KK ′ can be any edge
in C(G) crossing U and U ′. The unit UK⋆ is called the root of the layer structure. A unit is
in the i-th layer if it is at a distance i from the root, where the distance between two units is
defined as the length of a shortest path between them in the layer structure.

See Figure 3 for an illustration of Definition 7. By Lemma 6, the labels and the weights
of edges in the layer structure are well-defined. Let Li be the set of all units in the i-th
layer, and let L≤i =

⋃
j∈[i]∪{0} Lj . Obviously, L0 = {UK⋆}. In addition, if two units from

respectively two layers Li and Lj are adjacent, it holds that |i − j| ≤ 1. Recall that G is
connected. Hence, C(G) and the layer structure are connected too. As a result, every unit
in U is in some layer.

In the following, we explore numerous properties of the layer structure.

▶ Property 1. Let UU ′ be an edge in the layer structure. Then, every path between U and U ′

in the layer structure contains an edge with the same label as UU ′.

Proof. Let KK ′ be an edge in C(G) crossing the two units U and U ′. Let S = K ∩K ′. It
is clear that S is both the label of KK ′ and the label of UU ′. By Lemma 2 (ii), K and K ′

are disconnected in C(G) ⊖ S. It follows that every K-K ′ path in C(G) contains at least
one edge with the label S. Then, by Lemma 5, we know that every U -U ′ path in the layer
structure contains at least one edge with the label S. ◀
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K2—K6—K5

K1 K3—K7

K4 K8

L0

L1

L2

Figure 3 The layer structure of the chordal graph in Figure 1 rooted by K2 (or K5, K6).

▶ Property 2. Let U1U2 and U3U4 be two distinct edges of the layer structure with the
same label S. Then, the units in the set {U1, U2, U3, U4} are pairwise adjacent in the layer
structure, and all edges among them have the same label S.

Proof. Let K1K2 and K3K4 be two distinct edges of C(G) both with the label S, where
Ki ∈ K(Ui) for every i ∈ [4]. We first show that U1, U2, U3, and U4 are pairwise adjacent
in the layer structure. Assume, for the sake of contradiction, that one from {U1, U2} is not
adjacent to one from {U3, U4}. By symmetry, suppose that U1 ̸= U3, and U1 is not adjacent
to U3 in the layer structure.

We claim that K1 and K3 are disconnected in C(G) ⊖ S. Assume for contradiction
that K1 and K3 are connected in C(G)⊖S. Let C ′ be the connected component of C(G)⊖S

containing K1 and K3, and let V ′ be the set of vertices of G contained in nodes of C ′. By
the minimality of |S|, there exists a Prim ordering of C(G) so that all maximal cliques of G

contained in C ′ are visited before all the other maximal cliques of G. Additionally, in light of
Lemma 2 (ii), the subgraph of C(G) induced by the nodes in C ′ does not contain any edge
with the label S. Then, by Lemma 3, C ′ is the clique graph of G[V ′]. Obviously, S ⊊ V ′. By
Lemma 1, C ′ contains all clique trees of G[V ′] as subgraphs. We fix a clique tree of G[V ′].
There is a unique K1-K3 path in the clique tree, and by the definition of clique trees, all
nodes on this path are S-cliques. Obviously, this path is also present in C(G) ⊖ S. The
label of each edge on this path cannot be S, since such edges are absent in C(G)⊖ S. So,
the labels of all edges on this path properly contain S. This indicates that K1 and K3 are
contained in the same unit in the layer structure. However, this contradicts that U1 ̸= U3.

So, it holds that K1 and K3 are disconnected in C(G) ⊖ S. Then, according to
Lemma 2 (ii), S is a u-v separator for all u ∈ K1 \ S and all v ∈ K3 \ S. By the minimality
of |S| and the definition of clique graphs, K1K3 is an edge of C(G) with the label S. As a
result, U1U3 is an edge of the layer structure, contradicting that U1 and U3 are nonadjacent
in the layer structure.

Now we can conclude that the units in {U1, U2, U3, U4} are pairwise adjacent in the layer
structure. Then, from Property 1 and the fact that both U1U2 and U3U4 have the label S, it
follows that the labels of the edges among U1, U2, U3, and U4 are all S. ◀

Note that in Property 2 it may be that {U1, U2} ∩ {U3, U4} ̸= ∅.

▶ Property 3. Every unit U in the i-th layer Li where i ≥ 1 is adjacent to exactly one unit
from the layer Li−1.

Proof. Let U be a unit from the i-th layer. The statement holds trivially for i = 1. Consider
now the case where i ≥ 2. Assume, for the sake of contradiction, that there are two distinct
units U1 and U2 in the layer Li−1 both adjacent to U in the layer structure. Let S1 and S2
be the labels of UU1 and UU2, respectively. By Definition 7, there is a path from the root
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to U1, and a path from the root to U2 in the layer structure. Then, as i ≥ 2, there exists a
U1-U2 path P of length at least two in the layer structure such that all inner units of P are
from L≤i−2. Our proof proceeds by distinguishing between the following two cases.

Case 1: S1 = S2.
By Property 2, U1U2 is an edge with the label S1 in the layer structure. By Property 1,
there exists an edge in P with the label S1. By Property 2, U is adjacent to the two
endpoints of this edge, which is impossible since U is from the i-th layer but at least one
of the two endpoints of the edge is from L≤i−2.

Case 2: S1 ̸= S2.
By Property 1, there exists an edge in E(P ) ∪ {UU2} with the label S1. As S1 ̸= S2,
this edge belongs to P . By Property 2, U is adjacent to the two endpoints of this edge.
However, analogous to the discussion in Case 1, we know that this is impossible.

As both cases lead to some contradictions, we know that U is adjacent to exactly one unit
from Li−1. ◀

Now for each unit U from a layer Li where i ≥ 1, we call the only unit from the layer Li−1
adjacent to U the parent of U , and use parent(U) to denote it. Correspondingly, we say
that U is a child of parent(U). Furthermore, for a unit U from a layer Li and a unit U ′

from a layer Lj such that i < j, we say that U ′ is a descendant of U if there is a path from
the root to U ′ through U (i.e., U is also on the path) in the layer structure. For a unit U ,
let dst(U) be the set of all descendants of U , and let dst[U ] = dst(U) ∪ {U}.

▶ Property 4. Let U1 and U2 be two units in the same layer Li where i ≥ 1. Then, the
following statements are equivalent:
(1) U1 and U2 are adjacent.
(2) parent(U1) = parent(U2), and the label of the edge between U1 and its parent equals that

between U2 and its parent.

Proof. From Property 2, we know that Statement (2) implies Statement (1). In the following,
we show that Statement (1) implies Statement (2).

Assume that U1 and U2 are adjacent, and let S be the label of the edge between them.
Let U3 = parent(U1) and let U4 = parent(U2). We first prove that U1 and U2 have the same
parent, i.e., U3 = U4. Assume, for contradiction, that U3 ̸= U4. By Properties 2 and 3,
this implies that neither the label of U1U3 nor the label of U2U4 is S. In addition, it also
holds that i > 1, implying that there exists a U3-U4 path P of length at least two in the
layer structure whose inner units are all from L≤i−2 (cf. the proof of Property 3). Then, by
Property 1, there exists an edge in P with the label S. By Property 2, the two endpoints
of this edge are adjacent to U1 in the layer structure. However, this is impossible since at
least one endpoint of this edge is from L≤i−2 but U1 is from the layer Li. This completes
the proof for that U3 = U4. Having U3 = U4, from Properties 1 and 2, it follows that the
labels of U1U3 and U2U4 are both S. ◀

Property 4 implies that if a subset of units in the same layer Li are connected in the
layer structure restricted to Li, then they are pairwise adjacent. For ease of exposition, we
group units in the same layer into bags so that two units are in the same bag if they are
adjacent. By Property 3, if we ignore edges inside all bags in the layer structure, we obtain a
tree rooted at UK⋆ . As an important consequence, every path connecting two units from the
same layer Li is completely contained in L≤i.

In addition, Property 3 indicates that every nonroot unit U in a layer Li is adjacent to
exactly one unit in L≤i−1, and this unit is its parent in Li−1. Property 4 further strengthens
that parent(U) indeed separates all descendants of parent(U) from all the other units. In other
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words, {parent(U)} is a U ′-U ′′ separator in the layer structure for all U ′ ∈ dst(parent(U)) and
all U ′′ ∈ U \ dst[parent(U)]. An important consequence is that every generic search ordering
of the layer structure starting from the root visits every nonroot unit after (not necessarily
consecutive) its parent.

The next property identifies labels of edges between adjacent units.

▶ Property 5. The label of every edge UU ′ in the layer structure is V(U) ∩ V(U ′).

Proof. Let U and U ′ be two adjacent units in the layer structure. Let S = V(U) ∩ V(U ′),
and let S′ be the label of the edge between U and U ′ in the layer structure. Clearly, S′ ⊆ S.
Therefore, to complete the proof, it needs only to show that every v ∈ S is contained in S′.
In light of Properties 3 and 4, only the two cases described below may occur.
Case 1: one of U and U ′ is the parent of the other.

For the sake of contradiction, assume that there exists v ∈ S \ S′. By Lemma 6, all edges
between K(U) and K(U ′) in C(G) have the same label S′. By the definition of the layer
structure, |S′| is a minimum edge weight in C(G). Then, by Properties 3 and 4, U and U ′

are disconnected in the layer structure after removing all edges with the label S′. This is
equivalent to every K ∈ K(U) and every K ′ ∈ K(U ′) being disconnected in C(G)⊖ S′.
However, as v ∈ V(U) ∩ V(U ′), this violates Lemma 2 (i).

Case 2: U and U ′ are in the same bag.
By Property 4, U and U ′ have the same parent, say Û , and the labels of edges among
units in the same bag as U and their parent Û are S′. Then, similar to Case 1, it is easy
to see that U and U ′ are disconnected in the layer structure after removing all edges with
the label S′, which violates Lemma 2 (i) too.

As both cases violate Lemma 2, we know that Property 5 holds. ◀

▶ Property 6. Let v be a vertex in G. Let i be the minimum integer such that Li contains a
maximal v-clique. Then, all maximal v-cliques of G contained in Li are in one unit.

Proof. Let v and i be as stipulated in the statement of Property 6. Assume for contradiction
that there exist two maximal v-cliques K and K ′ respectively from two different units U

and U ′ in the layer Li. Our proof is completed by considering the following two cases.
Case 1: U and U ′ are adjacent in the layer structure.

By Property 5, v is in the label of the edge UU ′. By Property 4, U and U ′ have the
same parent, say, Û . Moreover, by Properties 2 and 4, the edges UÛ and U ′Û have the
same label as the edge UU ′. It follows that Û contains some v-clique. However, this
contradicts that i is the minimum integer with Li containing a maximal v-clique.

Case 2: U and U ′ are not adjacent in the layer structure.
Note that in this case i ≥ 1. As the subgraph of C(G) induced by the set of maximal
v-cliques is connected, there is a K-K ′ path P in C(G) so that v is in the label of every
edge on the path. By Properties 3 and 4, this path contains at least one maximal clique
of G contained in parent(U). However, similar to Case 1, this is in contradiction with the
definition of i.

As each of the above two cases leads to a certain contradiction, Property 6 holds. ◀

Property 6 shows that for every vertex v in G, there is a unique unit that contains a
maximal v-clique and is at the least distance to the root in the layer structure. Let Uv be
such a unique unit for v.

▶ Property 7. For each v ∈ V (G), every unit containing a maximal v-clique of G is
from dst[Uv].
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Proof. Assume, for the sake of contradiction, there exists v ∈ V (G) and a unit U such
that v ∈ V(U) and U ̸∈ dst[Uv]. By Property 6, U and Uv cannot be in the same layer.
Then, as U ̸∈ dst[Uv], every Uv-U path in the layer structure contains the parent of Uv.
As all maximal v-cliques are connected in C(G), and v ∈ V(U) ∩ V(Uv), we know that
v ∈ V(parent(Uv)). However, this contradicts the definition of Uv. ◀

▶ Property 8. Let U and U ′ be two units from the same bag, and let Û be their parent. Then,
for every edge KK ′ in C(G) so that K ∈ K(U) and K ′ ∈ K(U ′), there exists K̂ ∈ K(Û)
which is adjacent to both K and K ′ in C(G).

Proof. Let K ∈ K(U) and K ′ ∈ K(U ′) be as stipulated in Property 8. Let S = K ∩ K ′.
As U and U ′ are in the same bag, they are adjacent in the layer structure. By Lemma 6 and
Definition 7, the label of the edge UU ′ is S. This means that |S| is the minimum weight of
edges in C(G). By Properties 2 and 4, the labels of the edges UÛ and U ′Û are also S. As
a result, there exists K̂ ∈ K(Û) so that S ⊆ K̂. By Properties 3 and 4, K̂ is disconnected
from K in C(G) ⊖ S. Then, according to Lemma 2 (ii) and the minimality of |S|, S is a
minimal u-v separator in G for all u ∈ K \ K̂ and all v ∈ K̂ \K. Therefore, K̂ and K are
adjacent in C(G). Similarly, K̂ is also adjacent to K ′ in C(G). ◀

Now we study two lemmas which provide insight into connections among MCS orderings
of G, Prim orderings of C(G), and generic search orderings of the layer structure. We say
that a Prim ordering π of the clique graph C(G) respects a partial order R on V (G) if for
every (x, y) ∈ R it holds that Kx

π <π Ky
π or Kx

π = Ky
π . By saying that an ordering starts with

elements in a subset, we mean the elements in the subset are before all the other elements in
the ordering.

▶ Lemma 8. Let R be a partial order on V (G). There is an MCS ordering of G extending R

if and only if there is a Prim ordering of C(G) respecting R. Moreover, given a Prim ordering
of C(G) which starts with some node K and respects R, we can construct an MCS ordering
of G starting with the vertices in K and extending R in polynomial time.

Proof. We start the proof with the first statement. For the forward direction, let σ be an
MCS ordering of G extending R. By Lemma 4, there exists a Prim ordering π of C(G) that
generates σ. For every (x, y) ∈ R, since σ extends R, it holds that x <σ y. As π generates σ,
it holds that Kx

π <π Ky
π or Kx

π = Ky
π . For the backward direction, let π = (K1, K2, . . . , Kt)

be a Prim ordering of C(G) so that for all (x, y) ∈ R it holds that either Kx
π <π Ky

π or
Kx

π = Ky
π. Let σ be a generation of π so that for every i ∈ [t] it holds that σ restricted

to K(π, i) extends R restricted to K(π, i), i.e., σ|K(π,i) is a linear extension of R|K(π,i). As
for every i, j ∈ [t] such that i ̸= j, K(π, i) and K(π, j) are disjoint, σ is well-defined. By
Lemma 4, σ is an MCS ordering of G. To complete the proof for the first statement, it
suffices to show that σ is a linear extension of R. Let (x, y) ∈ R. If Kx

π = Ky
π , i.e., x and y

are contained in some K(π, i) where i ∈ [t], as σ|K(π,i) extends R|K(π,i), it holds that x <σ y.
Otherwise, Kx

π <π Ky
π holds. Then, as σ is a generation of π, x <σ y holds too. This

completes the proof that σ extends R.
Concerning the second statement, observe that the above proof for the backward direction

is constructive, and the polynomial-time solvability follows from the fact that computing a
linear extension of a partial order can be done in polynomial time. ◀

By Property 6, each partial order R on V (G) specifies a partial order on the units:
QR = {(Ux, Uy) | (x, y) ∈ R}.
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▶ Lemma 9. Let R be a partial order on V (G). Then, if there is an MCS ordering of G

that starts with vertices from K⋆ and extends R, there is a generic search ordering of the
layer structure rooted by K⋆ that starts with UK⋆ and extends QR.

Proof. Let σ be an MCS ordering of G that starts with the vertices from K⋆ and extends R.
By Lemma 4, there is a Prim ordering π of C(G) that generates σ. Obviously, K⋆ is the first
node in π. Then, by Algorithm 1, Lemma 5, and Definition 7, we know that for every unit U ,
the nodes in U are consecutive in π. Moreover, in view of Properties 3 and 4, for every
nonroot unit U , all nodes from parent(U) are before all nodes from U in π. Consequently,
there is a linear order π′ = (U1, U2, . . . , Ut) of the units in the layer structure so that
(1) U1 = UK⋆ ;
(2) for every nonroot unit U , parent(U) is before U in π′; and
(3) for every i ∈ [t], all nodes of Ui are consecutive in the Prim ordering π.
Conditions (1) and (2) mean that π′ is a generic search ordering of the layer structure starting
with the root. It remains to show that π′ extends QR. For this purpose, let (x, y) ∈ R such
that Ux ̸= Uy. As σ extends R, x is before y in σ. As π generates σ, either Kx

π = Ky
π

holds or Kx
π <π Ky

π holds. Condition (2) given above and Property 7 imply that Kv
π is

contained in Uv for all v ∈ V (G). Then, as Ux ̸= Uy, it must be that Kx
π <π Ky

π. Finally,
by Condition (3) given above, we know that Ux is before Uy in π′. This completes the proof
that π′ extends QR. ◀

4 A Dynamic Programming Algorithm for PSOP

In this section, we present a polynomial-time dynamic programming algorithm for PSOP-
MCS restricted to chordal graphs.

For an ordering π of units in a layer structure, and an ordering σ of nodes contained
in a unit U , realizing π by σ is the operation of replacing U in π with σ. For instance, for
π = (U1, U2, U3, U4) and σ = (K1, K2, K3) where {K1, K2, K3} is the set of nodes contained
in U2, realizing π by σ results in the linear order (U1, K1, K2, K3, U3, U4).

▶ Theorem 10. PSOP-MCS restricted to chordal graphs is polynomial-time solvable.

Proof. Let I = (G, R) be an instance of PSOP-MCS where G is a connected chordal graph
of n vertices. Our algorithm consists of the following steps.
Step 1 We sort the weights of edges in the clique graph C(G) of G in increasing order. Let

(w(1), w(2), . . . , w(t)) be this order, where t is the number of different weights of edges
in C(G). Hence w(1) < w(2) < · · · < w(t) holds. Notice that t = O(n) since edges
of C(G) may have at most n− 2 different weights.

Step 2 For each i ∈ [t], let Ci(G) be the graph obtained from C(G) by removing edges
whose weights are from {w(1), w(2), . . . , w(i)}. Let C0(G) = C(G). Clearly, every Ci(G),
where i ∈ [t], is obtained from Ci−1(G) by deleting all edges with the minimum weight.

Step 3 We maintain a binary dynamic programming table D(i, H, K), where i ∈ [t]∪{0}, H

is a connected component of Ci(G), and K is a node in H . (Note that for i = 0, we have
that H = C(G).) As t = O(n), every chordal graph of n vertices has at most n maximal
cliques, and K is a node in H, the table has O(n2) entries.
For each connected component H of some Ci(G), let V(H) be the subset of vertices of G

contained in nodes of H. We define D(i, H, K) to be 1 if there is a Prim ordering of H

which starts with K and respects R|V(H), and define D(i, H, K) to be 0 otherwise. (We
elaborate on how to compute the table later.)
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Step 4 After the table is computed, if D(0, C(G), K) = 0 for all maximal cliques K of G,
by the definition of the table there is no Prim ordering of C(G) respecting R, and by
Lemma 8, the given instance I is a No-instance. Otherwise, there exists a maximal
clique K of G such that D(0, C(G), K) = 1. By the definition of the table and by
Lemma 8, there is an MCS ordering of G extending R. Therefore, in this case, we
conclude that I is a Yes-instance.

Computing the table defined above lies at the core of the algorithm, which is the main
focus of the remainder of the proof. To this end, we first show that each graph H used in
Step 3 is a clique graph of a connected chordal graph.

▷ Claim 11. For every i ∈ [t] ∪ {0}, every connected component H of Ci(G) is the clique
graph of the subgraph of G induced by V(H).

Proof of Claim 11. We prove the claim by induction on i. The statement is clearly true
for i = 0. Now let i ∈ [t], and let H be a connected component of Ci(G). Let H ′ be
the connected component of Ci−1(G) containing H. By induction, H ′ is the clique graph
of G[V(H ′)] which is a connected chordal graph. Obviously, H is a connected component
of H ′ after removing all edges with the minimum weight in H ′. As a consequence, there is a
Prim ordering of H ′ which starts with a node from H and consecutively visits nodes in H.
Then, by Lemma 3, H is the clique graph of the subgraph of G[V(H ′)] induced by V(H)
which is exactly G[V(H)]. This completes the proof for the claim. ◁

By Claim 11, each H in Step 3 is the clique graph of a connected chordal graph. Therefore,
all properties and lemmas studied in the previous section apply to H and each of its layer
structures.

Now we show how to compute the table defined in Step 3. We fill the entries D(i, H, K)
in a decreasing order of the values of i.

filling the base entries
As Ct(G) consists of pairwise nonadjacent nodes corresponding to maximal cliques of G,
by the definition of the table, we set D(t, H, K) = 1 for all base entries.
updating the table
Now we delineate how to update other entries D(i, H, K), assuming all entries D(i +
1, H ′, K ′) have been computed. To compute the entry D(i, H, K), we first compute the
layer structure of H rooted by K. Let LS be the layer structure. By Definition 7, LS can
be computed in polynomial time. Note that each unit in LS is a connected component
of Ci+1(G). For each vertex x in V(H), let Ux be the unit in LS which contains x and is
at the least distance from the root of LS. By Property 6, such a unit is unique. Besides,
for each node K ′ of H, let UK′ be the unit in LS containing K ′. Let R′ = R|V(H) be R

restricted to V(H). Let QR′ = {(Ux, Uy) | (x, y) ∈ R′}. Now we determine if there
is a generic search ordering of LS which starts with the root and extends QR′ . This
can be done in polynomial time [26, Theorem 6]1. If this is not the case, by Claim 11
and Lemma 9, there is no MCS ordering of G[V(H)] that starts with vertices from K

and extends R′, and by Claim 11 and Lemma 8 there is no Prim ordering of H which
starts with K and respects R′. So in this case, we set D(i, H, K) = 0. Otherwise, let
π = (U0, U1, . . . , Up) be a generic search ordering of LS extending QR′ so that U0 = UK .
Then, we let D(i, H, K) = 1 if and only if

1 Scheffler [26] showed that the rooted version of the PSOP for the generic search can be solved in
polynomial time. In this version, we are given a graph G, a partial order on V (G), and a vertex v ∈ V (G),
and the question is whether G admits a generic search ordering which starts with v and extends the
partial order.
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(1) D(i + 1, UK , K) = 1, and
(2) for every Uj , j ∈ [p], there exists a node Kj contained in Uj such that in H the

node Kj is adjacent to at least one node from the parent of Uj in LS and, moreover,
D(i + 1, Uj , Kj) = 1.

We show the correctness of this step as follows. Observe that in every generic search
ordering of LS starting from the root, every unit is visited before all its children.
We first prove the “if” direction. Assuming Conditions (1) and (2), let π′ be the ordering
obtained from π by

(a) realizing the first unit UK by a Prim ordering of UK which starts with K and
respects R′ restricted to UK (guaranteed by D(i + 1, UK , K) = 1), and

(b) realizing every Uj , where j ∈ [p], by a Prim ordering of Uj which starts with Kj and
respects R′ restricted to Uj (guaranteed by D(i + 1, Uj , Kj) = 1).

The remainder of the proof for the “if” direction comprises the two claims below.

▷ Claim 12. π′ is a Prim ordering of H with the first node being K.

Proof of Claim 12. By Condition (1) and Operation (a), we know that the first node
in π′ is K. Besides, from Condition (2) and Operation (b), for every Uj where j ∈ [p] the
first node of π′ restricted to Uj is Kj . By the definition of Prim ordering (Algorithm 1)
and the definition of π′, it suffices now to show that for every Uj , j ∈ [p] , the following
condition holds: Kj is adjacent to at least one node in H which is before Kj in π′ and is
from a different unit adjacent to Uj . This is the case as by Condition (2), Kj is adjacent
to at least one node from the parent of Uj in LS, and as π is a generic search ordering
of LS with the root being the first unit, by Properties 3 and 4, the parent of Uj is
before Uj in π, implying that all nodes in the parent of Uj are before all nodes of Uj

in π′. ◁

▷ Claim 13. π′ respects R′.

Proof of Claim 13. To verify that π′ respects R′, let (x, y) ∈ R′. Due to Properties 3, 4, 7,
and that π is a generic search ordering of the layer structure starting with the root, we know
that for every v ∈ V (G) the first node in π′ containing v is from Uv, i.e., Kv

π′ ∈ K(Uv).
Our proof proceeds by distinguishing between the following two cases. If Ux = Uy = U ,
then as π has been realized by a Prim ordering of U respecting R′ restricted to U in π′,
it holds that Kx

π′ <π′ Ky
π′ or Kx

π′ = Ky
π′ . Otherwise, as π extends QR′ , Ux is before Uy

in π. By the definition of π′, maximal x-cliques in Ux are before maximal y-cliques in Uy.
By Properties 3, 4, and 7, none of any units containing a maximal y-clique is before Uy

in π. Then, from Kx
π′ ∈ K(Ux) and Ky

π′ ∈ K(Uy), it follows Kx
π′ <π′ Ky

π′ . ◁

Now we give the proof for the “only if” direction. To this end, assume that D(i, H, K) = 1,
i.e., H admits at least one Prim ordering, say π′, which starts with K and respects R′. As π′

respects R′, for each unit U in the layer structure, π′ restricted to U , i.e., π′|U , is a Prim
ordering of U respecting R′ restricted to U . Consequently, D(i + 1, U, K ′) = 1 where K ′ is
the first node in π′|U . This immediately implies that Condition (1) holds. We show below
that Condition (2) also holds. Let Uj , j ∈ [p], be a unit in LS. Let K ′ be the first node
in π′|Uj

. We claim that K ′ is adjacent in H to some node from the parent of Uj in LS.
As π′ is a Prim ordering of H and K ′ is not the first node in π′, K ′ is adjacent to at least
one node, say K̂, before K ′ in π′ and, moreover, as K ′ is the first node in π′|Uj , K̂ is from a
different unit, say Û . If Û is the parent of Uj in LS, we are done. Otherwise, by Lemma 5
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and Definition 7, we know that nodes in each unit are consecutive in π′. As K is the first
node of π′ and K is contained in the root of LS, by Properties 3 and 4, none of the nodes
contained in any descendant of Uj is visited before K ′ in π′. It follows that Û is in the same
bag as Uj . Then, by Property 8, there is a node from the parent of Uj adjacent to K ′ in H.

The algorithm runs in polynomial time since the table has at most O(n2) entries, and
computing the value of each entry can be done in polynomial time as described above. ◀
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Abstract
A probabilistic variant of input-driven pushdown automata (IDPDA), also known as visibly pushdown
automata, is introduced. It is proved that these automata can be determinized: an n-state
probabilistic IDPDA that accepts each string with probability at least λ + δ or at most λ − δ is
transformed to a deterministic IDPDA with at most (1+ 1

δ
)n2−n states recognizing the same language.

An asymptotically close lower bound is provided: for infinitely many n, there is a probabilistic
IDPDA with 4n + 1 states and δ = 1

270n
, such that every equivalent deterministic IDPDA needs at

least 7n2/14 states. A few special cases of automata with reduced determinization complexity are
identified.
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1 Introduction

In probabilistic models of computation, there are several options for every step of the
computation, each with a specified probability. Probabilistic finite automata (PFA) were
introduced by Rabin [23] in 1963. Assuming the two-sided bounded-error condition, that
is, that every string is accepted either with probability at most λ − δ, or with probability
at least λ + δ, for some λ and δ with 0 < λ − δ < λ + δ < 1, Rabin proved that every
such automaton with n states can be transformed to a deterministic automaton (DFA) with
at most (1 + 1

δ )n−1 states. The lower bound on the determinization complexity has been
refined several times: in 1982, Freivalds [11] proved that in the worst case 2Ω(

√
n) states are

necessary, in 1996, Ambainis [4] improved this lower bound to Ω(2n log log n
log n ). Finally, in 2008,

Freivalds [12] established the first exponential lower bound of the order 7n/14, improved to
2n/4 under Artin’s conjecture from number theory.

A probabilistic version of pushdown automata (PDA) was studied by Freivalds [10], who
proved that they can recognize a language not recognized by any nondeterministic PDA.
Later, Hromkovič and Schnitger [13] showed that these two models are incomparable in
power, whereas probabilistic PDA with one-sided error are weaker than both models, yet
stronger than deterministic PDA.

The concept of input-driven pushdown automata (IDPDA) was introduced by Mehl-
horn [16] in 1980. This is a special case of pushdown automata, in which the operations
performed on the stack are determined by the input symbols. Nondeterministic IDPDA were
first defined by von Braunmühl and Verbeek [25], who proved that they can be determinized,
with an n-state nondeterministic automaton transformed to a deterministic one with 2n2

states and O(2n2) stack symbols. In 2004, Alur and Madhusudan [2] have reintroduced the
model under the name of visibly pushdown automata, and obtained some important new
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results: in particular, they proved that determinization requires 2Ω(n2) states in the worst
case, established the closure of the family under all basic language operations, and determined
the computational complexity of the inclusion and universality problems for IDPDA. Their
paper motivated further research in this area. In particular, several related models were
investigated, such as alternating [7], unambiguous [21] and timed input-driven pushdown
automata [24, 8, 19], input-driven pushdown automata on infinite strings [3, 15, 22]. This
research has also inspired some further models, such as pushdown automata driven by finite
transducers [14].

In this paper we introduce and study the probabilistic version of IDPDA, with two-sided
bounded-error condition, similar to the classical PFA [23] and probabilistic PDA [10]. Even
though input-driven pushdown automata with randomized transitions appeared in several
papers on automata on infinite strings and their verification [5, 9, 26], the cited papers were
not concerned with language recognition, making their models much different from what is
studied in this paper.

The first result of this paper is that probabilistic IDPDA with bounded error define the
same class of languages as deterministic IDPDA. To be precise, if a language is recognized
by bounded-error n-state PIDPDA with δ-cutpoint, then the same language is recognized by
a DIDPDA with (1 + 1

δ )n2−n states and const · (1 + 1
δ )n2−n stack symbols. This is done via

considering transition matrices on well-nested strings, and proving that if two matrices are
close enough with respect to a certain norm, then they are equivalent under an equivalence
relation defined by Alur et al. [1]. This in turn implies that the language is recognizable by
an IDPDA.

In Section 5 we also give a lower bound. To do so we essentially find a way to lift lower
bounds for PFAs to lower bounds for PIDPDAs. Then we apply the best known lower bound
for PFAs – the one due to Freivalds [12].

Finally, in Section 6 we study the special case of automata operating on strings nesting
depth one. Three cases of automata with reduced determinization complexity are identified.
First, there is an analog of unary languages, in which every substring enclosed in brackets
is unary, for which determinization requires fewer states than in the general case: only
O((1 + 1

δ )n). We also prove that the same bound holds for automata with Σ0 = {a, b} if the
transitions by a and b commute. The latter condition means that the automaton “counts”
the number of as and bs. Lastly, we show that if the transitions by every symbol in Σ0
are deterministic, then the upper bound can also be significantly reduced to nn, under no
restrictions on the size of Σ0.

2 Deterministic Input-driven Pushdown Automata

A deterministic input-driven pushdown automaton (DIDPDA) [3, 16] is a special case of a
deterministic pushdown automaton, in which the input alphabet Σ is split into three disjoint
sets of left brackets Σ+1, right brackets Σ−1 and neutral symbols Σ0. The type of the input
symbol determines the type of the operation with the stack: on a left bracket from Σ+1,
then the automaton always pushes one symbol onto the stack; on a right bracket from Σ−1,
the automaton must pop one symbol; finally, on a neutral symbol in Σ0, the automaton may
not use the stack. In this paper, symbols from Σ+1 and Σ−1 are denoted by left and right
angled brackets, respectively (<, >), whereas lower-case Latin letters from the beginning of
the alphabet (a, b, c, . . .) are used for symbols from Σ0.

▶ Definition 1. A deterministic input-driven pushdown automaton (DIDPDA) is a 6-tuple
A = (Σ, Q, Γ, q0, [δa]a∈Σ, F ), where

Σ = Σ+1 ∪ Σ0 ∪ Σ−1 is an input alphabet split into three disjoint classes;
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Q is a finite set of states of the automaton, with an initial state q0 ∈ Q and with a subset
of accepting states F ⊆ Q;
Γ is a finite set of stack symbols,
the transition function by each left bracket symbol < ∈ Σ+1 is a function δ< : Q → Q × Γ,
which, for a given current state, provides the next state and the symbol to be pushed onto
the stack;
for every right bracket symbol > ∈ Σ−1, a function δ> : Q × Γ → Q specifies the next
state, assuming that the given symbol is popped from the stack;
for a neutral symbol c ∈ Σ0, a function δc : Q → Q provides the next state.

For a string w = a1 . . . aℓ, with a1, . . . , aℓ ∈ Σ, the computation on w starting in a state
r0 with stack contents γ0 ∈ Γ∗ is the sequence {(ri, γi)}ℓ

i=0 ∈ Q × Γ∗, defined as follows.
If ai ∈ Σ+1, then δai(ri−1) = (ri, s) and γi = γi−1s,
If ai ∈ Σ−1, then γi−1 = γis, for some s ∈ Γ, and ri = δai

(ri−1, s).
If ai ∈ Σ0, then γi = γi−1 and ri = δai

(ri−1).
If w is well-nested, then this computation is always defined, and ends in the configuration
(rℓ, γℓ), with γℓ = γ0.

A well-nested string w is accepted if the computation on w starting in q0 with the empty
stack ends in a configuration (q, ε) with q ∈ F . The set of all accepted strings is denoted by
L(A).

One can notice that each word w defines a function fw : Q → Q, such that if A is in state
q, it will be in state fw(q) after reading w. Then L(A) = { w | w is well-nested and fw(q0) ∈
F }.

For every language L, we define the following equivalence relation on the set of all
well-nested strings.

▶ Definition 2. Let L be a set of well-nested strings. Let w1 and w2 be well-nested. The
relation ≈L on the set of well-nested strings is defined by w1 ≈L w2 if, for every two strings
u, v with uv well-nested, the string uw1v is in L if and only if uw2v is in L.

If the language L is understood from the context, the relation ≈L is denoted by ≈.

▶ Lemma 3 (Alur et al. [1]). L is recognized by an IDPDA if and only if there is only a finite
number of the equivalence classes with respect to this equivalence relation.

Moreover, DIDPDA can be chosen such that it has m states and |Σ+1| · m stack symbols,
where m is the number of the equivalence classes. Also, if L is recognized by an IDPDA with
n states, then the number of equivalence classes is not more than nn.

3 Probabilistic Input-driven Automata

Unlike DIDPDAs, probabilistic input-driven pushdown automata may have multiple available
transitions, with a probability of making each of them. Nevertheless, whether the automaton
pushes, pops or leaves the stack intact, is still determined by the current input symbol. In
the end, the input string is accepted if and only if the probability of reaching an accepting
state after reading the string is sufficiently large.

▶ Definition 4. Let S be a countable or a finite set. Let D(S) denote the set of probability
distributions on S, that is, D(S) = { p : S → [0, 1] |

∑
x∈S p(x) = 1 }.

▶ Definition 5. A probabilistic input-driven pushdown automaton (PIDPDA) is a 6-tuple
A = (Σ, Q, Γ, q0, [δa]a∈Σ, F ), where

MFCS 2023
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Σ = Σ+1 ⊔ Σ0 ⊔ Σ−1 is an input alphabet split into three disjoint classes;
Q is a finite set of states of the automaton, with an initial state q0 ∈ D(Q) and with a
subset of accepting states F ⊆ Q;
Γ is a finite set of stack symbols,
the transition function by each left bracket symbol < ∈ Σ+1 is a function δ< : Q →
D(Q × Γ), which, for a given current state p ∈ Q, assigns a probability to each pair (q, s),
that is, the probability of pushing s onto the stack and entering the state q;
for every right bracket symbol > ∈ Σ−1, a function δ> : Q × Γ → D(Q) specifies the
probabilities of entering each state, assuming that the given symbol is popped from the
stack;
for a neutral symbol c ∈ Σ0, a function δc : Q → D(Q) provides the probabilities of the
next state.

For a string w = a1 . . . aℓ, with a1, . . . , aℓ ∈ Σ, a computation sequence on w is a sequence
{(ri, γi)}ℓ

i=0 ∈ Q × Γ∗, which satisfies the following conditions.
if ai ∈ Σ+1, then γi = γi−1s, for some s ∈ Γ, and the probability of this step is defined by
pi = δai

(ri−1)(ri, s),
if ai ∈ Σ−1, then γi−1 = γis, for some s ∈ Γ, and the probability of this step is
pi = δai

(ri−1, s)(ri).
if ai ∈ Σ0, then γi = γi−1 and the probability is δai

(ri−1)(ri).
The probability of such a sequence is the product p1 · . . . · pℓ of probabilities of individual steps.

The probability of going from configuration (q, γ) to configuration (q′, γ′) by reading a
string w is the sum of probabilities of all computation sequences on w that start with (q, γ)
and end with (q′, γ′).

The probability of accepting a well-nested string w is the probability of going from its
initial configuration to any accepting configuration.

Pr(A accepts w) =
∑
q∈F

Pr(A goes from (q0, ε) to (q, ε) by reading w)

▶ Definition 6. A probabilistic input-driven pushdown automaton A is said to have a δ-cut-
point λ, with δ > 0 and λ ∈ [0, 1], if, for every well-nested w, either Pr(A accepts w) ⩾ λ + δ

or Pr(A accepts w) ⩽ λ − δ.

▶ Definition 7. The language L(A) recognized by an automaton A with a δ-cut-point λ is
the set of all well-nested strings w for which Pr(A accepts w) ⩾ λ + δ.

Similarly to the deterministic case, each well-nested word w defines a stochastic matrix
P w of order |Q| × |Q|, where P w

q,r = Pr(A goes into q from r after reading w). This is a
generalization of functions fw for deterministic IDPDAs.

4 Determinization and Upper Bound

▶ Theorem 8. Let A be a probabilistic IDPDA with a δ-cut-point λ and n states. Then there
exists a deterministic IDPDA that recognizes the same language and has at most (1 + 1

δ )n2−n

states and at most |Σ+1| · (1 + 1
δ )n2−n stack symbols.

To compare, Rabin’s [23] transformation of a PFA to a DFA uses only (1 + 1
δ )n−1 states.

Rabin’s argument estimates the number of Myhill–Nerode equivalence classes, which is
sufficient to describe the computation of a finite automaton. The computations of input-
driven pushdown automata are harder to simulate, and require more involved equivalence
classes of Alur et al. (≈, see Definition 2).
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The main idea of the proof is that if, for two well-nested strings, w and w′, the corres-
ponding stochastic matrices P w and P w′ are close under a certain metric, then they must be
equivalent in the sense of Definition 2, that is, replacing any substring w with w′ does not
change the acceptance status of a string.

We shall use the following lemma which provides an upper bound on the maximum
number of stochastic matrices at least 2δ apart in the metric given by the norm ||ξ|| =
max1⩽k⩽n

∑n
ℓ=1 |ξkℓ|. The proof uses Rabin’s idea involving volumes.

▶ Lemma 9. Let ξ(1), . . . , ξ(m) be stochastic matrices of order n, such that ||ξ(ℓ) − ξ(k)|| ⩾ 2δ

for ℓ ̸= k. Then m ⩽ (1 + 1
δ )n2−n.

Proof. We view n × n matrices as points in Rn2 . Let Mn(R⩾0) denote the set of such
matrices with non-negative elements. For r > 0 let us define

S(r) =
{

t ∈ Mn(R⩾0)
∣∣ ∑

1⩽j⩽n

tij = r for 1 ⩽ i ⩽ n
}

In particular, it follows from the definition that S(1) is the set of stochastic matrices.

▷ Claim 10. If r < δ, then ξ(k) + S(r) and ξ(ℓ) + S(r) are disjoint for k ̸= ℓ.

Proof. Suppose (ξ(k) + S(r)) ∩ (ξ(ℓ) + S(r)) ̸= ∅. Then there exist x, y ∈ S(r) such that
ξ(k) + x = ξ(ℓ) + y. By definition, the norm of every element in S(r) is equal to r, therefore
||ξ(ℓ) − ξ(k)|| = ||x − y|| ⩽ ||x|| + ||y|| = 2r < 2δ, which contradicts the assumption that
||ξ(ℓ) − ξ(k)|| ⩾ 2δ. ◁

Clearly, ξ(1), . . . , ξ(m) ∈ S(1) because they are stochastic. Thus, ξ(1) +S(r), . . . , ξ(m) +S(r) ⊆
S(1) + S(r) = S(1 + r), where the latter equality follows from the definition of S(r). By the
claim, the sets ξ(1) + S(r), . . . , ξ(m) + S(r) are pairwise disjoint, and all of them are contained
in S(r + 1).

Now the plan is to use volumes of the sets ξ(k) + S(r) to prove that only a limited number
of such sets may fit into S(1 + r). Since the n2-dimensional volume of S(r) is 0, the first step
is determine the right dimension. Let d be the dimension of S(r), which is the same as the
dimension of S(1), since these sets are the same up to scaling. It is claimed that d = n2 − n.
The set S(1) is contained in the (n2 − n)-dimensional (affine) subspace H defined by the
equations ti1 + . . . + tin = 1, i = 1, . . . , n, so d ⩽ n2 − n. On the other hand, S(1) contains a
(n2 − n)-dimensional ball of small radius, confirming that d = n2 − n.

Let Vd denote the d-dimensional volume. The sum of the volumes of the disjoint sets
ξ(k) + S(r) does not exceed the volume of the set S(r + 1) they are contained in.

Vd(S(r+1)) ⩾ Vd((ξ(1) +S(r))∪· · ·∪(ξ(m) +S(r))) = Vd(ξ(1) +S(r))+ · · ·+Vd(ξ(m) +S(r))

Notice that Vd(ξ(1) + S(r)) = Vd(S(r)) because ξ(k) + S(r) is a translation of S(r). Hence,
the last inequality yields mVd(S(r)) ⩽ Vd(S(r + 1)).

The linear transformation t 7→ r+1
r t maps S(r) onto S(r + 1) (because if

∑
1⩽j⩽n tij = r,

then
∑

1⩽j⩽n
r+1

r tij = r+1
r r = r + 1), therefore Vd(S(r + 1)) = ( r+1

r )dVd(S(r)). But we
have already established that Vd(S(r + 1)) ⩾ mVd(S(r)), thus (1 + 1

r )dVd(S(r)) ⩾ mVd(S(r))
and therefore m ⩽ (1 + 1

r )d for 0 < r < δ. Passing to the limit as r tends to δ, we obtain
m ⩽ (1 + 1

δ )d = (1 + 1
δ )n2−n. ◀

The next lemma provides a connection between the matrices P w and the equivalence
classes.

MFCS 2023
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▶ Lemma 11. If ||P w1 − P w2 || < 2δ then w1 ≈ w2.

Proof. Consider any well-nested strings w and uv. Note that because w is well-nested, after
reading uw the stack will be exactly the same as after reading u. Let h be the nesting depth
of u.

Then Pr(A accepts uwv) is expressed as the following sum over all possible stack contents
after reading u and states before and after reading w.∑
γ∈Γh

∑
1⩽i⩽n
1⩽j⩽n

Pr(A goes to (i, γ) after reading u)·P w
ij ·Pr(A accepts from (j, γ) after reading v)

For brevity, denote the probabilities of parts of this computation by

qi(γ) := Pr(A goes into (i, γ) after reading u),
rj(γ) := Pr(A accepts from (j, γ) after reading v),

so that the above probability is expressed as follows.

Pr(A accepts uwv) =
∑

γ∈Γh

∑
1⩽i,j⩽n

qi(γ) · P w
ij · rj(γ)

Then the probability qi(γ) depends only on i, γ and u; the probability rj(γ) depends
only on j, γ and v; and

∑
1⩽i⩽n

∑
γ∈Γh qi(γ) = 1.

Therefore, the difference between the probabilities of accepting uw1v and uw2v is estimated
as∣∣Pr(A accepts uw1v) − Pr(A accepts uw2v)

∣∣ =
∣∣∣∣ ∑

γ∈Γ∗

∑
1⩽i,j⩽n

qi(γ)(P w1
ij − P w2

ij )rj(γ)
∣∣∣∣ ⩽

⩽
∑

γ∈Γ∗

∑
1⩽i,j⩽n

qi(γ) · |P w1
ij − P w2

ij | · rj(γ) ⩽

⩽
∑

γ∈Γ∗

∑
1⩽i,j⩽n

qi(γ) · |P w1
ij − P w2

ij | =

=
∑

1⩽i⩽n

∑
γ∈Γ∗

qi(γ)
∑

1⩽j⩽n

|P w1
ij − P w2

ij | ⩽

⩽

( ∑
1⩽i⩽n

∑
γ∈Γ∗

qi(γ)
)

· max
1⩽i⩽n

∑
1⩽j⩽n

|P w1
ij − P w2

ij | =

= max
1⩽i⩽n

∑
1⩽j⩽n

|P w1
ij − P w2

ij | < 2δ

Since every well-nested string is accepted with the probability of either at least λ + δ or at
most λ − δ, w1 and w2 are accepted or rejected simultaneously, which proves the claim. ◀

Now we are ready to prove the theorem.

Proof of Theorem 8. The proof is by bounding the number of equivalence classes under
≈. Suppose there are at least m equivalence classes, then we can take w1, . . . , wm to be
the representatives of these classes. This yields m points P w1 , . . . , P wm in [0, 1]n2 . Due to
Lemma 11, for k ̸= ℓ, the inequality ||P wℓ

ij − P wk
ij || ⩾ 2δ holds because wk ̸≈ wℓ. Then,

Lemma 9 implies m ⩽ (1 + 1
δ )n2−n. By Lemma 3, there is a DIDPDA with m states and

|Σ+1| · m stack symbols accepting the same language. ◀
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5 Lower bounds

The first exponential lower bounds on the complexity of determinizing an n-state PFA were
constructed by Freivalds [12]. His lower bound exists in two versions, both of the form cn,
but with different values of c: one bound holds unconditionally, whereas the other, with a
greater base c, relies on Artin’s conjecture from number theory. The second bound also uses
PFAs with a smaller error probability.

▶ Theorem 12 (Freivalds [12]). For infinitely many numbers n, there exists a PFA with
n states with a δ0-cutpoint λ0 = 1

2 , such that any equivalent DFA needs at least cn states,
where c = 7 1

14 and δ0 = 1
270 . If Artin’s conjecture is true, then the estimate holds for

c = 2 1
4 , δ0 = 1

36 .

We will use this result to construct a lower bound in our setting.

▶ Theorem 13. For infinitely many numbers n, there exists a PIDPDA with 4n + 1 states
and a δ(n) = δ0

n -cutpoint λ(n) = 1
2n , such that every equivalent DIDPDA needs at least cn2

states, where c = 7 1
14 and δ0 = 1

270 . If Artin’s conjecture is true, then the estimate holds for
c = 2 1

4 , δ0 = 1
36 .

Proof. For infinitely many numbers n, Freivalds constructed a language Kn such that:
it can be recognized by a PFA A with a δ0-cutpoint λ0 = 1

2 and n states,
any DFA recognizing Kn requires at least cn states.

The latter means that there exists a set { ui | 1 ⩽ i ⩽ ⌈cn⌉ } of at least cn strings such
that for every two strings from this set, ui1 and ui2 with i1 ̸= i2, there exists a separating
string v with one of the concatenations ui1v, ui2v in Kn and the other not in Kn. Let
{ vj | 1 ⩽ j ⩽ m } be a finite set of such separating strings, so that for all i1 and i2 with
i1 ̸= i2 there exists j ∈ {1, . . . , m} with ui1vj ∈ Kn if and only if ui2vj /∈ Kn.

In the PFA defined by Freivalds, let Q be its set of states, and consider the probability
distribution on the set of states after reading each string ui from the initial state, as well as
the probability of accepting each string vj from each state, and denote them by the following
vectors pi ∈ Rn and rj ∈ Rn.

(pi)q = Pr(A goes into q after reading ui)
(rj)q = Pr(A accepts from q after reading vj)

Then the probability of accepting each concatenation uivj is a scalar product ⟨pi, rj⟩, and
since this is a bounded-error PFA with δ0-cutpoint λ0 = 1

2 , the following two properties must
hold.
(i) For every i, j either ⟨pi, rj⟩ ⩾ λ0 + δ0 or ⟨pi, rj⟩ ⩽ λ0 − δ0.
(ii) For every i1 ≠ i2 there exists j such that ⟨pi1 , rj⟩ ⩾ λ0 + δ0 and ⟨pi2 , rj⟩ ⩽ λ0 − δ0 (or

⟨pi2 , rj⟩ ⩾ λ0 + δ0 and ⟨pi1 , rj⟩ ⩽ λ0 − δ0).
Now these strings ui and vj , along with the PFA, are used to construct the desired probabilistic
input-driven automaton. It is constructed over an alphabet with a single left bracket,

Σ+1 = {<},

with a large set of neutral symbols each encoding an n-tuple of strings ui,

Σ0 = { ai1,...,in | 1 ⩽ i1, . . . , in ⩽ ⌈cn⌉ },
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and with right brackets representing separating strings applied to one particular component
of an n-tuple.

Σ−1 = { >k,j | k ∈ {1, 2, . . . , n}; 0 ⩽ j ⩽ m }

Define the new language as Ln = { <ai1,...,in>k,j | uik
vj ∈ Kn }. Then, in order to test the

membership of a concatenation uik
vj in Kn, a deterministic IDPDA will have to remember

the entire n-tuple of strings, whereas a probabilistic automaton can randomly choose k in
the beginning, and then simulate Freivalds’ automaton on the k-th component of the tuple.

▷ Claim 14. There exists a PIDPDA B with 4n + 1 states and a δ(n)-cutpoint λ(n)
recognizing Ln.

Proof. An n-state PIDPDA, which assumes three-symbol input strings of the form
<ai1,...,in>k,j , is constructed first; later it will be extended to check the form of the string.

The automaton operating on well-formed strings uses the same set of states Q as Freivalds’
automaton. Assume that the states are numbers: Q = {1, . . . , n}, and let n be the only
accepting state. The same set Q is also used as the stack alphabet.

In the initial state, the automaton reads the left bracket < and equiprobably chooses the
next state s and pushes s onto the stack. Next, it encounters a symbol ai1,...,in in the state s,
and simply replicates the probability distribution of Freivalds’ automaton on the string uis

.

δ′
ai1,...,in

(s)(t) = (pis
)t

Finally, upon reading a right bracket >k,j in a state t, the automaton should decide whether
to enter the accepting state n. It pops the number s from the stack, and if it does not
match k, the automaton rejects (by entering n with probability 0). If s equals k, then the
automaton accepts with the same probability (rj)t, with which Freivalds’ automaton accepts
the string vj from the state t.

δ′
>k,j

(t, s)(n) =
{

0, if k ̸= s

(rj)t, if k = s

δ′
>k,j

(t, s)(1) = 1 − δ′
>k,j

(t, s)(n)

δ′
>k,j

(t, s)(ℓ) = 0 (2 ⩽ ℓ ⩽ n − 1)

It is claimed that this automaton accepts a string <ai1,...in
>k,j with probability 1

n ⟨pik
, rj⟩.

Indeed, the randomly chosen number s matches k with probability 1
n , and, provided that it

happened, the probability of acceptance is∑
q∈Q

(
Pr(B goes from k to q after reading ai1,...,in

)·

· Pr(B accepts from q upon reading >k,j with k in the stack)
)

=

=
∑
q∈Q

(pik
)q · (rj)q = ⟨pik

, qj⟩

By (ii), the scalar product ⟨pik
, qj⟩ is either at least λ0 + δ0 (if uik

vj ∈ Kn), or at most
λ0 − δ0 (if uik

vj ̸∈ Kn). Therefore, the overall probability is either at least λ0
n + δ0

n , or at
most λ0

n − δ0
n .

The construction above works for words in <Σ0Σ−1, other words may violate the δ-
cutpoint condition. To eliminate them we can take a 4-state partial DFA that verifies that
the input string is indeed of the form <Σ0Σ−1, and take the direct product of the automaton
above and this DFA. One extra dead state is added for ill-formed strings. ◁
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▷ Claim 15. Any DIDPDA recognizing Ln has at least |Σ0| ⩾ cn2 states.

Proof. Since all well-formed strings begin with the same left bracket <, a deterministic
automaton cannot store any information on the stack: it always pushes the same stack
symbol. Consider the state of the DIDPDA after reading <ai1,...,in

. it is claimed that this
state must be different for different symbols.

Suppose the contrary, that for some two symbols ai1,...,in
̸= ai′

1,...,i′
n
, the state after

reading them is the same state q. Let k be such that ik ≠ i′
k, and let vj be the separating

string for uik
and ui′

k
with respect to Freivalds’ automaton, that is, exactly one of the strings

uik
vj , ui′

k
vj is in Kn. Then, by the definition of Ln, exactly one of the strings <ai1,...,in>k,j

and <ai′
1,...,i′

n
>k,j is in Ln. However, since the IDPDA is in the same configuration before

reading >k,j on either string, it either accepts both strings or rejects both of them. The
contradiction obtained shows that the number of states in the DIDPDA is at least |Σ0|. ◁

The theorem follows from the two claims. ◀

The upper bound on the size of the constructed automaton gives (1+ 1
δ(n) )(4n+1)2−(4n+1) =

(1 + n
δ0

)16n2+4n ⩽ ( n+1
δ0

)16n2+4n = c(16n2+4n) logc
n+1

δ0 = c(16n2+4n)(logc(n+1)−logc δ0) =
c(16+o(1))n2 logc n = c(16 logc 2+o(1))n2 log2 n. We see that the exponent differs from the one
in the lower bound by an O(log n) factor.

6 Sharper Upper Bounds in Special Cases

For probabilistic finite automata, the case of a unary alphabet is much different from the
general case. The first lower bound on the determinization complexity in the unary case was
given by Freivalds [11]. Milani and Pighizzini [18] proved that the worst-case determinization
blowup in the unary case is of the order of Landau’s function, that is, e(1+o(1))

√
n ln n. Later

Mereghetti et al. [17] and Bianchi et al. [6] investigated more details of the complexity of
unary PFAs.

For input-driven pushdown automata, there is no unary case in the strict sense: as long
as there is a pair of matching brackets, one can use them to encode any alphabet. In order
to obtain a variant of the unary case, the use of brackets should be somehow restricted. The
following condition of nesting depth one still allows encoding a binary alphabet by abusing
the brackets, but this can be done only outside the brackets; if |Σ0| = 1, then inside the
brackets the string is truly unary.

▶ Definition 16. A well-nested language L is called a depth-one language if for every w ∈ L

the maximal nesting depth of w is one, i.e., L ⊆ Σ∗
0(Σ+1Σ∗

0Σ−1Σ∗
0)∗.

For depth-one languages, it is natural to consider the classical Myhill–Nerode relation
operating on the outer level of brackets and restricted to well-nested strings.

▶ Definition 17. For a language of well-nested strings L, define a relation ∼L on the set of
well-nested strings by u ∼L u′ if and only if, for every well-nested string v, the string uv is
in L if and only if u′v is in L. When the language L is clear from the context, the relation
∼L shall be denoted by ∼.

Denote by [u] the equivalence class of a string u under ∼.

Later it will be shown that if a depth-one language uses unary strings inside the brackets,
then the determinization complexity is reduced. More generally, assume that the string
inside each pair of brackets belongs to a regular set S ⊆ Σ∗

0.
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▶ Definition 18. Let S ⊆ Σ∗
0 be a regular prefix-closed language, that is, if w1w2 ∈ S, then

w1 ∈ S. A depth-one language L is called S-nice if, for every string x ∈ L and for every
partition x = u<w>v, with w ∈ Σ∗

0, the string w is in S.

For an S-nice language L, consider the equivalence relation from Definition 2, defined by
w ≈ w′ if and only if, for all x, y with xy well-nested, xwy ∈ L if and only if xw′y ∈ L. The
following notation is introduced for equivalence classes restricted to elements of S.

▶ Definition 19. For u ∈ S, let [[u]]S ⊆ S be the set of all strings in S equivalent to u under
the relation ≈.

For S-nice languages, there is an automaton of size proportional to the number of these
equivalence classes (cf. Lemma 3 for the general case).

▶ Lemma 20. Let L be an S-nice language, and let n1 be the number of equivalence classes
under ∼, and let n2 be the number of equivalence classes under ≈ restricted to S. Then there
exists a DIDPDA recognizing L with n1 + O(n2) states and n1 · |Σ+1| stack symbols.

Equivalence classes under ∼ become states used outside brackets. Whenever a bracket
is encountered, these states are pushed onto the stack along with the bracket. Equivalence
classes under ≈ are used as states inside brackets. The details are omitted for brevity.

Thus, in order to obtain upper bounds on the size of DIDPDA recognizing various
languages of restricted form, it is sufficient to estimate the number of equivalence classes
under both relations ∼ and ≈.

The first observation is that the number of Myhill–Nerode classes on the outer level of
brackets can be estimated using Rabin’s [23] argument for finite automata.

▶ Lemma 21. Let a language L be recognized by a PIDPDA A with n states and a δ-cutpoint
λ. Then L has at most (1 + 1

δ )n−1 equivalence classes under ∼.

Sketch of a proof. Rabin’s [23, Thm. 3] argument works, because it never refers to actual
transitions of a probabilistic automaton, and uses only probabilities of computations over
prefixes and suffixes. If these prefixes and suffixes contain any brackets, this does not affect
the argument.

For well-nested u and v we introduce the vectors p(u), r(v) ∈ Rn with

p(u)i = Pr(A goes into qi after reading u),
r(v)i = Pr(A accepts from qi after reading v).

Then the probability that A accepts uv is equal to
n∑

i=1
Pr(A goes into qi after reading u)·Pr(A accepts from qi after reading v) = ⟨p(u), r(v)⟩.

Again, for well-nested u and u′ it turns out that
∑n

i=1 |p(u)i − p(u′)i| < 2δ implies u ∼ u′,
because for any well-nested v the following inequality holds.

|Pr(A accepts uv) − Pr(A accepts u′v)| = |⟨p(u), r(v)⟩ − ⟨p(u′), r(v)⟩| =

= |⟨p(u) − p(u′), r(v)⟩| =
∣∣∣ n∑

i=1
(p(u)i − p(u′)i)r(v)i

∣∣∣ ≤

≤
n∑

i=1
|p(u)i − p(u′)i| · r(v)i ≤

n∑
i=1

|p(u)i − p(u′)i| < 2δ

Therefore, pairwise inequivalent strings u1, . . . , um yield vectors p(u1), . . . , p(um) with∑n
i=1 |p(uk)i − p(ul)i| > 2δ, and, as Rabin showed, in this case m ≤ (1 + 1

δ )m. ◀
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In some special cases of languages, the number of equivalence classes under ≈ restricted
to S is fairly small, leading to upper bounds on the size of DIDPDA. The first such case is
when the probabilistic automaton behaves deterministically inside the brackets.

▶ Theorem 22. Let A be a PIDPDA with n states and a δ-cutpoint λ that recognizes a
depth-one language, and assume that all transitions by symbols in Σ0 are deterministic. Then
there is an equivalent DIDPDA with O(nn) states.

Proof. By Lemma 21, the number of equivalence classes under ∼ for L is at most (1 + 1
δ )n−1.

The language is S-nice with S = Σ∗
0. Recall that if P w1 = P w2 , the words w1 and w2 are

equivalent under ≈. Since all matrices P w for w ∈ S = Σ∗
0 are deterministic, they correspond

to functions from Q to Q and, hence, the number of such matrices is not greater than nn.
Thus, there are at most nn equivalence classes under ≈ restricted to S.

Finally, by Lemma 20, there is a DIDPDA with O
(
(1 + 1

δ )n−1 + nn
)

= O(nn) states. ◀

The theorem implies that it is impossible to achieve the Ω(cn2) lower bound with a depth-one
language using probabilistic transitions only for the brackets.

The special case of automata in Theorem 22 had the transition matrices inside the
brackets generate a finite set of size nn. In other special cases of automata with reduced
determinization complexity, defined below, transition matrices inside the brackets generate
infinite subspaces, yet the dimension of those subspaces is bounded. The following lemma
allows a small DIDPDA to be constructed in such cases.

▶ Lemma 23. Let L be an S-nice language recognized by a PIDPDA with n states. Let
W be the subspace of Mn(R) generated by { P w | w ∈ S }. Then there is a DIDPDA with
O((1 + 1

δ )max{n−1,dim W }) states recognizing L.

The proof of Lemma 23 relies on the following geometric property.

▶ Lemma 24. Let ξ(1), . . . , ξ(m) be stochastic matrices of order n, such that ||ξ(k) −ξ(ℓ)|| ⩾ 2δ

for k ̸= ℓ. Assume that there exists a linear subspace W ⩽ Mn(R), such that for every i the
matrix ξ(i) lies in W . Then m ⩽ (1 + 1

δ )min{n2−n,dim W }.

Lemma 24 is proved generally similarly to Lemma 9, but requires a more careful choice of
S(r); the proof is omitted due to space constraints.

Proof of Lemma 23. Indeed, the number of equivalence classes under ≈ is bounded by
(1 + 1

δ )max{n−1,dim W }: if we have m equivalence classes under ≈, then they yield m pairwise
inequivalent strings w1, . . . , wm. That, in turn, by Lemma 11, gives rise to m matrices
P w1 , . . . , P wm with ||P wk − P wℓ || ⩾ 2δ for k ̸= ℓ. By Lemma 24, m ≤ (1 + 1

δ )max{n−1,dim W }.
Furthermore, the number of equivalence classes under ∼ is bounded by (1 + 1

δ )n−1 by
Lemma 21. Combining these two observations and using Lemma 20, we obtain the desired
result. ◀

The first class of languages with an improved bound on the dimension of the subspace
generated by transition matrices inside the brackets is the following variant of unary languages.

▶ Theorem 25. If L is an S-nice language, and S = a∗
1 ∪ . . . ∪ a∗

k for some a1, . . . , ak ∈ Σ∗
0,

then there is a DIDPDA recognizing L with O((1 + 1
δ )kn) states.

Proof. For every word w in S the matrix P w is of the form (P ai)m for some m ∈ N0
and 1 ⩽ i ⩽ k. By Cayley–Hamilton theorem, for each ai the space Wi generated by
{ (P ai)m | m ≥ 0 } has the dimension of at most n; therefore, all such matrices lie in a vector
space W = W1 + . . . + Wn such that dim W ⩽

∑n
i=1 dim Wi ⩽ kn. It remains to apply

Lemma 23. ◀
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▶ Corollary 26. If S = a∗, then there is a DIDPDA recognizing L with O((1 + 1
δ )n) states.

In particular, the theorem shows that we would not be able to prove the lower bound
from Section 5 using a “unary” depth-one language. For instance, the determinization of
the automaton that reads <an> and verifies that n belongs to some fixed subset yields at
most exponential growth in the number of states. This is somewhat similar to the case of
probabilistic finite automata, where the state complexity of the determinization in the unary
case is also reduced.

The last special case with improved determinization is the case of automata that use
strings over an alphabet {a, b} inside the brackets, and the transitions by a commute with
transitions by b, that is, P aP b = P bP a. In other words, such automata only count the
number of as and bs inside the brackets. In this case, there is the following known result on
the dimension of the subspace they generate.

▶ Theorem 27 (Gerstenhaber, 1961). Let A, B ∈ Mn(R) be a pair of commuting matrices.
Then the dimension of the subalgebra generated by {A, B} is at most n.

▶ Theorem 28. If S = {a, b}∗ and P a and P b commute, then there exists an equivalent
DIDPDA with O((1 + 1

δ )n) states.

Proof. If w ∈ S, then P w = (P a)|w|a(P b)|w|b lies in the subalgebra generated by {P a, P b},
whose dimension is at most n. Now we can use Lemma 23 to get the desired upper bound. ◀

7 Conclusion

It would be interesting to refine the results on the complexity of determinization for the
new model by proving a lower bound on both the number of states and the number of
stack symbols. Such a lower bound is known for the determinization of nondeterministic
input-driven pushdown automata [20] and of their event-clock real-time extension [19]. The
method employed in these papers uses strings of arbitrarily large nesting depth, and the
automaton makes non-deterministic choices at each nesting level; however, if the same
approach were used in our case, then the probability of error would tend to 1 as the nesting
depth goes to infinity. Apparently, a new method would be necessary to prove such a bound
in the probabilistic case.

Another interesting direction to pursue is improving the bound with respect to δ. Our
current upper bound is polynomial in 1

δ . However, it seems possible that there is room for
improvement: either a trade-off between the number of states and the probability of error,
or perhaps an upper bound that does not depend on δ at all.
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Abstract
We introduce the 2-sorted counting logic GCk and its restriction RGCk that express properties of
hypergraphs. These logics have available k variables to address hyperedges, an unbounded number
of variables to address vertices of a hypergraph, and atomic formulas E(e, v) to express that a
vertex v is contained in a hyperedge e. We show that two hypergraphs H, H ′ satisfy the same
sentences of the logic RGCk if, and only if, they are homomorphism indistinguishable over the class
of hypergraphs of generalised hypertree width at most k. Here, H, H ′ are called homomorphism
indistinguishable over a class C if for every hypergraph G ∈ C the number of homomorphisms from
G to H equals the number of homomorphisms from G to H ′. This result can be viewed as a lifting
(from graphs to hypergraphs) of a result by Dvořák (2010) stating that any two (undirected, simple,
finite) graphs H, H ′ are indistinguishable by the k+1-variable counting logic Ck+1 if, and only if,
they are homomorphism indistinguishable over the class of graphs of tree-width at most k.
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1 Introduction

Counting homomorphisms from a given class C of graphs induces a similarity measure between
graphs: Consider an arbitrary graph H. The results of the homomorphism counts for all
G ∈ C in H can be represented by a mapping (or, “vector”) HOMC(H) that associates with
every G ∈ C the number hom(G,H) of homomorphisms from G to H. A similarity measure
for the mappings HOMC(H) and HOMC(H ′) can then be viewed as a similarity measure of
two given graphs H,H ′. An overview of this approach, its relations to graph neural networks,
and its usability as a similarity measure of graphs can be found in Grohe’s survey [17].

Two graphs H,H ′ are viewed as “equivalent” (or, indistinguishable) over C if HOMC(H) =
HOMC(H ′), i.e., for every graph G in C the number of homomorphisms from G to H equals
the number of homomorphisms from G to H ′. A classical result by Lovász [19] shows that
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two graphs H,H ′ are indistinguishable over the class of all graphs if, and only if, they
are isomorphic. This inspired a lot of research in recent years, examining the notion of
homomorphism indistinguishability over a class C for various classes C [11, 10, 6, 5, 7, 16, 21].
In particular, Grohe [16] proved that two graphs are homomorphism indistinguishable over
the class of graphs of tree-depth ⩽ k if, and only if, they are indistinguishable by sentences
of first-order counting logic C of quantifier-rank ⩽ k (C is the extension of first-order logic
with counting quantifiers of the form ∃⩾nx meaning “there exist at least n elements x”). A
decade earlier, Dvořák [11] proved that two graphs are homomorphism indistinguishable over
the class of graphs of tree-width ⩽ k if, and only if, they are indistinguishable by sentences
of the k+1-variable fragment Ck+1 of C. From Cai, Fürer, Immerman [8] we know that this
precisely coincides with indistinguishability by the k-dimensional Weisfeiler-Leman algorithm.

An obvious question is if and how these results can be lifted from graphs to hypergraphs.
A first answer was given by Böker in [7]: He introduces a new version of a color refinement
algorithm on hypergraphs and proves that two hypergraphs H,H ′ cannot be distinguished
by this algorithm if, and only if, they are homomorphism indistinguishable over the class
of Berge-acyclic hypergraphs. This is a lifting – from graphs to hypergraphs – of the result
of [11, 8] for the case k = 1 (i.e., trees) to “tree-like” hypergraphs. Note that there are
different concepts of “tree-likeness” for hypergraphs. Berge-acyclicity is a rather restricted
one; it is subsumed by the more general concept of α-acyclic hypergraphs, which coincides
with the hypergraphs of generalised hypertree width 1 (cf., [13, 14, 12]).

This paper gives a further answer to the above question: For arbitrary k ⩾ 1 let GHWk be
the class of hypergraphs of generalised hypertree width ⩽ k. Our main result provides a logical
characterisation of homomorphism indistinguishability over the class GHWk. We introduce
a new logic called GCk and a restriction RGCk of GCk and show that two hypergraphs are
homomorphism indistinguishable over GHWk if, and only if, they are indistinguishable by
sentences of the logic RGCk.

GCk is a 2-sorted counting logic for expressing properties of hypergraphs. It has available
k “blue” variables to address edges, and an unbounded number of “red” variables to address
vertices of a hypergraph, and atomic formulas E(e, v) to express that vertex v is contained in
edge e, as well as atomic formulas e = e′ and v = v′ for expressing equality of edge or vertex
variables. Counting quantifiers are of the form ∃⩾nz where z = (z1, . . . , zℓ) is either a tuple
of edge variables or a tuple of vertex variables; and their meaning is “there exist at least n
tuples z”. In the logic GCk, each vertex variable v has to be guarded by an edge variable e
and an atomic statement E(e, v) (meaning that vertex v is included in edge e); the use of
quantifiers is restricted in a way to ensure that guards are always present. Our design of the
logic GCk is somewhat inspired by the guarded fragment of first-order logic (cf., [4, 15, 14]).
RGCk imposes certain restrictions on the way guards of red variables can change between
quantifications in a formula.

Our main result can be viewed as a lifting – from graphs to hypergraphs – of Dvořák’s [11]
result: Dvořák proves that two graphs are homomorphism indistinguishable over the class
TWk of graphs of tree-width ⩽ k iff they are indistinguishable by the logic Ck+1. We
prove that two hypergraphs are homomorphism indistinguishable over the class GHWk of
hypergraphs of generalised hypertree width ⩽ k iff they are indistinguishable by the logic
RGCk. This is analogous (although not tightly related) to the following classical results:
Kolaitis and Vardi [18] proved that the conjunctive queries of tree-width ⩽ k are precisely
the queries expressible in the k+1-variable fragment of a certain subclass L of first-order
logic. Gottlob et al. [14] proved that the conjunctive queries of hypertree width ⩽ k are
precisely the ones expressible in the k-guarded fragment of L. This is somehow parallel to
our result lifting Dvořák’s characterisation; it is what initially gave us the confidence to work
on our hypothesis.



B. Scheidt and N. Schweikardt 79:3

The proof of our theorem is at its core very similar to Dvořák’s proof – but it is far from
straightforward. Before being able to follow along the lines of Dvořák’s proof, we first have
to perform a number of reduction steps and build the necessary machinery. The first step is
to move over from homomorphisms on hypergraphs to homomorphisms on incidence graphs.
Fortunately, Böker [7] already implicitly achieved what is needed in our setting. The result
is: Two hypergraphs H,H ′ are homomorphism indistinguishable over the class GHWk iff
their incidence graphs I, I ′ are homomorphism indistinguishable over the class IGHWk of
incidence graphs of generalised hypertree width ⩽ k; see Section 3.

Next, for an inductive proof in the spirit of Dvořák, we would need an inductive char-
acterisation of the class IGHWk in the spirit of [9]. Unfortunately, generalised hypertree
decompositions seem to be unsuitable for such a characterisation. That is why we work
with severely restricted decompositions that we call entangled hypertree decompositions
(ehds). In Section 4 we prove that homomorphism indistinguishability over the class IGHWk

coincides with homomorphism indistinguishability over the class IEHWk of incidence graphs
of entangled hypertree width ⩽ k. In our opinion this is interesting on its own, since the
requirements of ehds are quite harsh and IEHWk ⊊ IGHWk for arbitrarily large k.

In Section 6 we introduce the logic GCk and its restriction RGCk. The inductive charac-
terisation of IEHWk follows in Section 7, where we also provide the machinery of quantum
incidence graphs as an analogue of the quantum graphs used in Dvořák’s proof, tailored to-
wards our setting. In Section 8 we prove that two incidence graphs I, I ′ are indistinguishable
by the logic RGCk if, and only if, they are homomorphism indistinguishable over the class
IEHWk. This is achieved by two inductive proofs: We use the inductive characterisation
of IEHWk to show that for every incidence graph J in IEHWk and every m ∈ N there
exists an RGCk-sentence that is satisfied by an incidence graph I iff there are precisely m

homomorphisms from J to I. For the opposite direction, we proceed by induction on the
definition of RGCk and construct for every sentence χ in RGCk and certain size parameters
m, d ∈ N a quantum incidence graph Q in IEHWk satisfying the following: for all incidence
graphs I that match the size parameters m, d, the number hom(Q, I) of homomorphisms
from Q to I is either 0 or 1, and it is 1 if and only if I satisfies the sentence χ. Both proofs
are quite intricate, and the details of the syntax definition of RGCk had to be tweaked right
in order to enable proving both directions.

Plugging together the results achieved in the previous sections yields our main theorem,
provided in Section 9: Two hypergraphs are homomorphism indistinguishable over the class
GHWk of hypergraphs of generalised hypertree width ⩽ k iff they are indistinguishable by
the logic RGCk.

Due to space limitations, many proof details had to be deferred to the paper’s extended
version [22].

2 Preliminaries

This section provides basic notions concerning hypergraphs, incidence graphs, hypertree
decompositions, and homomorphisms. We write R for the set of reals, N for the set of
non-negative integers, and we let N⩾1 := N \ {0} and [n] := {1, . . . , n} for all n ∈ N⩾1.

Hypergraphs. The hypergraphs considered in this paper are generalisations of ordinary
undirected graphs, where each edge can consist of an arbitrary number of vertices. For our
proofs it will be necessary to deal with hypergraphs in which the same edge can have multiple
occurrences. Furthermore, it will be convenient to assume that every vertex belongs to at
least one edge. This is provided by the following definition that is basically taken from [7].

MFCS 2023
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A hypergraph H := (V (H), E(H), fH) consists of disjoint finite sets V (H) of vertices
and E(H) of edges, and an incidence function fH associating with every e ∈ E(H) the set
fH(e) ⊆ V (H) of vertices incident with edge e, such that V (H) =

⋃
e∈E(H) fH(e). A simple

hypergraph is a hypergraph H where the function fH is injective. We can identify the edges
of a hypergraph H with the multiset MH := {{fH(e) : e ∈ E(H)}}; the number of occurrences
of a set s ⊆ V (H) in this multiset then is the number of occurrences of “edge s” in H. The
simple hypergraphs are the hypergraphs in which every “edge s” has only one occurrence.

Every hypergraph H = (V (H), E(H), fH) can be represented by an ordinary, bipartite
graph IH in the following way: The vertices v ∈ V (H) occur as red nodes of IH , i.e.,
R(IH) := V (H). The edges e ∈ E(H) occur as blue nodes of IH , i.e., B(IH) := E(H).
And there is an edge from each blue node e to all red nodes v ∈ fH(e). I.e., E(IH) :=
{(e, v) ∈ B(IH) × R(IH) : v ∈ fH(e)}. The condition V (H) =

⋃
e∈E(H) fH(e) implies that

every red node is adjacent to at least one blue node. It is straighforward to see that the
mapping H 7→ IH provides a bijection between the class of all hypergraphs and the class of
all incidence graphs, where the notion of incidence graphs is as follows.

An incidence graph I = (R(I), B(I), E(I)) consists of disjoint finite sets R(I) and B(I)
of red nodes and blue nodes, resp., and a set of edges E(I) ⊆ B(I) ×R(I), such that each
red node is adjacent to at least one blue node. As usual for graphs, the neighbourhood of a
node v is the set NI(v) of all nodes adjacent to v. Thus, if I is the incidence graph IH of
a hypergraph H, the neighbourhood of every blue node e is NI(e) = fH(e), i.e., the set of
all vertices of H that are incident with edge e. The neighbourhood of every red node v is
NI(v) = {e ∈ E(H) : v ∈ fH(e)}, i.e., the set of all edges of H that are incident with vertex v.
Two incidence graphs I, I ′ are isomorphic (I ∼= I ′, for short) if there exists an isomorphism
π = (πR, πB) from I to I ′, i.e, bijections πR : R(I) → R(I ′) and πB : B(I) → B(I ′) such
that for all (e, v) ∈ B(I) × R(I) we have: (e, v) ∈ E(I) ⇐⇒ (πB(e), πR(v)) ∈ E(I ′). We
sometimes drop the subscript and write π(e) and π(v) instead of πB(e) and πR(v).

Generalised Hypertree Decompositions. We use the same notation as [12] for decomposi-
tions of hypergraphs, but we write bag(t) and cover(t) instead of χ(t) and λ(t), respectively,
and we formalise them with respect to incidence graphs rather than hypergraphs.

▶ Definition 2.1. A complete generalised hypertree decomposition (ghd, for short) of an
incidence graph I is a tuple D := (T, bag, cover), where T := (V (T ), E(T )) is a finite
undirected tree, and bag and cover are mappings that associate with every tree-node t ∈ V (T )
a set bag(t) ⊆ R(I) of red nodes of I and a set cover(t) ⊆ B(I) of blue nodes of I, having
the following properties:
1. Completeness: For each e ∈ B(I) there is a t ∈ V (T ) with NI(e) ⊆ bag(t) and e ∈ cover(t).
2. Connectedness for red nodes: For every v ∈ R(I) the subgraph Tv of T induced on

Vv := {t ∈ V (T ) : v ∈ bag(t)} is a tree.
3. Covering of Bags: For every t ∈ V (T ) we have bag(t) ⊆

⋃
e∈cover(t) NI(e).

It is straightforward to see that this notion of a ghd of an incidence graph I coincides
with the classical notion (cf., [13, 12]) of a complete generalised hypertree decomposition of a
hypergraph H where IH = I. The width w(D) of a ghd D is defined as the maximum number
of blue nodes in the cover of a tree-node, i.e., w(D) := max{|cover(t)| : t ∈ V (T )}. We write
ghds(I) to denote the class of all ghds of an incidence graph I. The generalised hypertree
width of an incidence graph I is ghw(I) := min{w(D) : D ∈ ghds(I)}. By IGHWk we denote
the class of all incidence graphs of generalised hypertree width ⩽ k. It is straightforward to
see that ghw(IH) coincides with the classical notion (cf., [12]) of generalised hypertree width
of a hypergraph H, and IGHWk is the class of incidence graphs IH of all hypergraphs H of
generalised hypertree width ⩽ k.
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For our proofs we need ghds with specific further properties, defined as follows; we are
not aware of any related work that studies this particular kind of decompositions. Hypertree
decompositions satisfying condition 4 (but not necessarily condition 5) of Definition 2.2 are
known as strong decompositions [14].

▶ Definition 2.2. An entangled hypertree decomposition (ehd, for short) of an incidence
graph I is a ghd D of I that additionally satisfies the following requirements:
4. Precise coverage of bags: For all tree-nodes t ∈ V (T ) we have

⋃
e∈cover(t) NI(e) = bag(t).

5. Connectedness for blue nodes: For every e ∈ B(I) the subgraph Te of T induced on
Ve := {t ∈ V (T ) : e ∈ cover(t)} is a tree.

We write ehds(I) to denote the class of all ehds of an incidence graph I.

The entangled hypertree width of an incidence graph I is ehw(I) := min{w(D) : D ∈
ehds(I)}. For a hypergraph H we let ehw(H) := ehw(IH). By IEHWk we denote the class
of all incidence graphs of entangled hypertree width ⩽ k.

Applying results from [2, 1, 3] shows that there exist arbitrarily large k such that IEHWk

is a strict subclass of IGHWk. More precisely:

▶ Theorem 2.3. IEHWk ⊆ IGHWk, for every k ∈ N⩾1. Furthermore, IEHW1 = IGHW1,
but IEHWk ⊊ IGHWk for each k ∈ {2, 3}. Moreover, for every n ∈ N there exists a k ∈ N⩾1

such that IGHWk ̸⊆ IEHWk+n (and hence, IEHWk+n ⊊ IGHWk+n).

Proof. IEHWk ⊆ IGHWk holds because every ehd also is a ghd. IEHW1 = IGHW1 holds
because ghds of width 1 are known to be equivalent to so-called join trees, and these can
easily be translated into ehds of width 1. For the remaining statements, we use elaborate
results from [2, 1, 3] that relate the hypertree width hw(H) (cf., [13, 14]) of a hypergraph to
its generalised hypertree width ghw(H):

From [2, Proposition 3.3.2] (cf. also [3, Example 3]) and [1, Claim 6.1] we obtain for each
k ∈ {2, 3} a simple hypergraph Hk such that ghw(Hk) = k and hw(Hk) = k+1. Furthermore,
[2, Fact 3.3.1] and [1, Theorem 4.1] provide for every n ∈ N⩾1 a simple hypergraph Hn such
that hw(Hn) = ghw(Hn)+n.1

It is straightforward to verify that every ehd also is a complete hypertree decomposition
in the sense of [13, 14]. Consequently, for every hypergraph H we have hw(H) ⩽ ehw(H).
Therefore, for each k ∈ {2, 3}, the incidence graph of Hk witnesses that IEHWk ⊊ IGHWk.

To address the theorem’s next statement, consider an arbitrary n ∈ N. Let H := Hn+1

and let k := ghw(H). Then, ehw(H) ⩾ hw(H) = k+n+1. Thus, the incidence graph of H
belongs to IGHWk but not to IEHWk+n. ◀

Homomorphisms. We use the classical notions for hypergraphs and incidence graphs:
A homomorphism from a hypergraph F to a hypergraph H is a pair (hV , hE) of mappings
hV : V (F ) → V (H) and hE : E(F ) → E(H) such that for all e ∈ E(F ) we have fH(hE(e)) =
{hV (v) : v ∈ fF (e)}. We write Hom(F,H) for the set of all homomorphisms from F to H,
and hom(F,H) := | Hom(F,H)| is the number of homomorphisms from F to H.

A homomorphism from an incidence graph J to an incidence graph I is a pair h = (hR, hB)
of mappings hR : R(J) → R(I) and hB : B(J) → B(I) such that for all (e, v) ∈ E(J) we have
(hB(e), hR(v)) ∈ E(I). We sometimes drop the subscript and write h(e) and h(v) instead of
hB(e) and hR(v). By Hom(J, I) we denote the set of all homomorphisms from J to I, and
we let hom(J, I) := | Hom(J, I)| be the number of homomorphisms from J to I.

1 Note that the notions cH - hw(H) and cH - ghw(H) in [2] correspond to hw(H) and ghw(H) for all
hypergraphs H according to [2, Example 2.1.10].

MFCS 2023
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As pointed out in [7], every homomorphism from a hypergraph F to a hypergraph
H also is a homomorphism from the incidence graph IF to the incidence graph IH ; but
there exist homomorphisms from IF to IH that do not correspond to any homomorphism
from F to H. In fact, every homomorphism (hR, hB) from IF to IH is a pair of mappings
(hV , hE) := (hR, hB) with hV : V (F ) → V (H) and hE : E(F ) → E(H) such that for every
e ∈ E(F ) we have fH(hE(e)) ⊇ {hV (v) : v ∈ fF (e)} – i.e., the condition “=” of the definition
of hypergraph-homomorphisms is relaxed into the condition “⊇”.

3 Homomorphism Indistinguishability

Let (B,B′, C) be either two incidence graphs and a class of incidence graphs or two hyper-
graphs and a class of hypergraphs. By HOMC(B) we denote the function α : C → N that
associates with every A ∈ C the number hom(A,B) of homomorphisms from A to B. We say
that B and B′ are homomorphism indistinguishable over C if HOMC(B) = HOMC(B′). Note
that HOMC(B) ̸= HOMC(B′) means that there exists an A ∈ C that distinguishes between B
and B′ in the sense that hom(A,B) ̸= hom(A,B′).

Recall from Section 2 that IGHWk is the class of incidence graphs of generalised hypertree
width ⩽ k. We write GHWk for the class of all hypergraphs of generalised hypertree width
⩽ k (i.e., all hypergraphs H for which IH ∈ IGHWk), and sGHWk for the subclass consisting
of all simple hypergraphs (i.e., hypergraphs where each edge has multiplicity 1) in GHWk.

▶ Theorem 3.1 (implicit in [7]). Let H,H ′ be hypergraphs.
(a) If H and H ′ are simple hypergraphs, then

HOMGHWk
(H) = HOMGHWk

(H ′) ⇐⇒ HOMsGHWk
(H) = HOMsGHWk

(H ′).
(b) HOMGHWk

(H) = HOMGHWk
(H ′) ⇐⇒ HOMIGHWk

(IH) = HOMIGHWk
(IH′).

Böker [7] proved the analogous statement for BA, IBA instead of GHWk, IGHWk, where
BA is the class of all Berge-acyclic hypergraphs and IBA is the class of all incidence graphs
of hypergraphs in BA. Böker’s proof, however, works for all classes C of hypergraphs and
the associated class IC of all incidence graphs of hypergraphs in C, provided that C satisfies
some mild closure properties, which GHWk satisfies.

4 Relating IGHWk to IEHWk

Recall from Section 2 that IEHWk ⊆ IGHWk, for the class IEHWk of incidence graphs of
entangled hypertree width ⩽ k. By Theorem 2.3 there exist arbitrarily large k such that
IEHWk is a strict subclass of IGHWk. This section’s main result is that, nevertheless:

▶ Theorem 4.1. For all incidence graphs I and I ′ we have
HOMIGHWk

(I) = HOMIGHWk
(I ′) ⇐⇒ HOMIEHWk

(I) = HOMIEHWk
(I ′).

Proof sketch. The proof heavily relies on our following technical main lemma, which uses
the following notation: For an arbitrary incidence graph J , for s ⊆ R(J), and for n ∈ N we
write J + n·s to denote the incidence graph J ′ obtained from J by inserting n new blue
nodes ê1, . . . , ên and edges (êi, v) for all i ∈ [n] and all v ∈ s – i.e., NJ′(êi) = s.

▶ Lemma 4.2. Let J, I, I ′ be incidence graphs with hom(J, I) ̸= hom(J, I ′), let e ∈ B(J),
and let s ⊆ NJ (e). For every m ∈ N there exists an n ∈ N with n ⩾ m such that Jn := J+n·s
satisfies hom(Jn, I) ̸= hom(Jn, I

′).

The (combinatorially quite involved) proof of Lemma 4.2 can be found in the paper’s extended
version [22].
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The direction “=⇒” of Theorem 4.1 is trivial. For the direction “⇐=” it suffices to prove
the following: If there is a J ∈ IGHWk with hom(J, I) ̸= hom(J, I ′), then there also exists a
J ′ ∈ IEHWk with hom(J ′, I) ̸= hom(J ′, I ′). We construct such a J ′ in a 2-step process. We
start with a ghd D = (T, bag, cover) of J with w(D) ⩽ k. First, we transform D into a ghd
D1 of an incidence graph J1 such that w(D1) ⩽ w(D) and hom(J1, I) ̸= hom(J1, I ′) and D1

satisfies condition 4 of Definition 2.2 (but condition 5 might still be violated). Afterwards,
we transform D1 into a ghd D2 of an incidence graph J2 such that w(D2) = w(D1) and
hom(J2, I) ̸= hom(J2, I ′) and D2 satisfies conditions 4 and 5 of Definition 2.2 and hence is
an ehd. Letting J ′ := J2 then completes the proof.

For the construction of D1, J1 we consider all those t ∈ V (T ) and e ∈ cover(t) where
NJ (e) ̸⊆ bag(t) and let s := NJ (e) ∩ bag(t). We use Lemma 4.2 to choose a suitable number
ns ⩾ 1 and replace J by J+ns·s (let us write e′

1, . . . e
′
ns

for the ns newly inserted blue nodes).
In D we replace e with e′

1 in cover(t), and we add new leaves tj for j ∈ {2, . . . , ns} adjacent
to t with cover(tj) = {e′

j} and bag(tj) = s. After having done this for all combinations of t
and e, we end up with the desired incidence graph J1 and ghd D1 = (T 1, bag1, cover1).

For the construction of D2, J2, for each e ∈ B(J1) we let me be the number of connected
components of the subgraph T 1

e , i.e., the subgraph of T 1 induced on Ve := {t ∈ V (T 1) : e ∈
cover1(t)}. Let Ve,0, . . . , Ve,me−1 be the sets of tree-nodes (i.e., nodes in V (T 1)) of these
connected components. We consider all those e ∈ B(J1) where me ⩾ 2 and let s := NJ1(e).
We use Lemma 4.2 to choose a suitable number ne ⩾ me−1 and replace J with J + ne·s
(let us write e′

1, . . . , e
′
ne

for the ne newly inserted blue nodes). In D1 we consider for every
i ∈ {1, . . . ,me−1} all t ∈ Ve,i and replace e with e′

i in cover1(t). Furthermore, we pick an
arbitrary t ∈ Ve,0, and for each i ∈ [ne] with i ⩾ me, we insert into T 1 a new leaf te,i adjacent
to t and let bag1(te,i) := s and cover1(te,i) := {e′

e,i}. After having done this for all e ∈ B(J1)
with me ⩾ 2, we end up with the desired incidence graph J2 and ehd D2. This completes
the proof sketch of Theorem 4.1. ◀

5 Notation for Partial Functions

We introduce some further notation that will be convenient for the remaining parts of the
paper. We write f : A ⇀ B to indicate that f is a partial function from A to B. By dom(f)
we denote the domain of f , i.e., the set of all a ∈ A on which f(a) is defined. By img(f) we
denote the image of f , i.e., img(f) = {f(a) : a ∈ dom(f)}. Two partial functions f : A ⇀ B

and g : A ⇀ B are called compatible if f(a) = g(a) holds for all a ∈ dom(f) ∩ dom(g).
We identify a partial function f with the set {(a, f(a)) : a ∈ dom(f)}. This allows us to

compare and combine partial functions via standard notation from set theory. E.g., f ⊆ g

indicates that dom(f) ⊆ dom(g) and f(a) = g(a) for all a ∈ dom(f). And f ∪ g denotes the
partial function h with dom(h) = dom(f) ∪ dom(g) and h(a) = f(a) for all a ∈ dom(f) and
h(a) = g(a) for all a ∈ dom(g) \ dom(f); note that f has precedence over g in case that f
and g are not compatible. For a set S we write f − S to denote the partial function g with
g ⊆ f and dom(g) = dom(f) \ S.

6 2-Sorted Counting Logic with Guards: GCk and RGCk

This section provides the syntax and semantics of our 2-sorted logics GCk and RGCk. Formulas
of these logics are evaluated on incidence graphs (cf. Section 2). We fix a k ∈ N⩾1.

To address blue nodes (i.e., edges of a hypergraph), we have available k blue variables
e1, . . . , ek. To address red nodes (i.e., vertices of a hypergraph), we have available countably
many red variables v1, v2, v3, . . . . An atomic formula E(ej , vi) states that a hypergraph’s
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vertex vi is included in the hypergraph’s edge ej . Let VarB := {e1, . . . , ek}, VarR := {vi : i ∈
N⩾1}, and Var := VarB ∪ VarR. An interpretation I = (I, β) consists of an incidence graph
I = (R(I), B(I), E(I)) and an assignment β in I, i.e., a mapping β : Var → R(I) ∪B(I) with
β(ej) ∈ B(I) for all ej ∈ VarB and β(vi) ∈ R(I) for all vi ∈ VarR. In the formulas of our
logics, red variables vi have to be guarded by a blue variable ej in the sense that E(ej , vi) holds.
This is formalised by a guard function, i.e., a partial function g : N⩾1 ⇀ [k] with finite domain
dom(g). Every guard function g corresponds to the formula ∆g :=

∧
i∈dom(g) E(eg(i), vi) ,

and for the special case where dom(g) = ∅ we let ∆g := ⊤ where ⊤ is a special atomic
formula satisfied by every interpretation I. We let free(∆g) be the set of all (red or blue)
variables that occur in ∆g. An interpretation I = (I, β) satisfies a guard function g (in
symbols: I |= ∆g) if for all i ∈ dom(g) we have: (β(eg(i)), β(vi)) ∈ E(I). I.e., for every
i ∈ dom(g), the red variable vi is guarded by the blue variable eg(i) in the sense that it is
connected to it by an edge of the incidence graph.

For any formula χ we write ifreeB(χ) for the set of all indices j ∈ [k] such that the
blue variable ej belongs to free(χ). Accordingly, ifreeR(χ) := {i ∈ N⩾1 : vi ∈ free(χ)}. The
definition of the syntax of GCk is inductively given as follows.

Base cases: The atomic formulas in GCk are of the form ⊤, E(ej , vi), ej=ej′ , and vi=vi′

for j, j′ ∈ [k] and i, i′ ∈ N⩾1.
Inductive cases:
1. If ψ ∈ GCk, then ¬ψ ∈ GCk.
2. If ψ1, ψ2 ∈ GCk, then (ψ1 ∧ ψ2) ∈ GCk.
3. If ψ ∈ GCk and g is a guard function with dom(g) = ifreeR(ψ) and n, ℓ ∈ N⩾1 and, for

χ := (∆g ∧ ψ) and i1 < · · · < iℓ with
(a) i1, . . . , iℓ ∈ ifreeR(χ), then φ ∈ GCk for φ := ∃⩾n(vi1 , . . . , viℓ

).(∆g ∧ ψ);
(b) i1, . . . , iℓ ∈ ifreeB(χ), then φ ∈ GCk for φ := ∃⩾n(ei1 , . . . , eiℓ

).(∆g ∧ ψ).

The semantics are defined as expected. In particular, an interpretation I = (I, β) satisfies
the formula φ := ∃⩾n(vi1 , . . . , viℓ

).(∆g ∧ψ) iff there are at least n tuples (vi1 , . . . , viℓ
) ∈ R(I)ℓ

such that I ′ = (I, β′) satisfies (∆g ∧ ψ), where β′(vij
) = vij

for all j ∈ [ℓ] and β′(x) = β(x)
for all x ∈ Var\{vi1 , . . . , viℓ

}. Similarly, I = (I, β) satisfies φ := ∃⩾n(ei1 , . . . , eiℓ
).(∆g ∧ψ) iff

there are at least n tuples (ei1 , . . . , eiℓ
) ∈ B(I)ℓ such that I ′ = (I, β′) satisfies (∆g ∧ψ), where

β′(eij ) = eij for all j ∈ [ℓ] and β′(x) = β(x) for all x ∈ Var \ {ei1 , . . . , eiℓ
}. Obviously we can

emulate the ∀-quantifier (and disjunction) using ∃⩾1 and ¬ (and ∧ and ¬, respectively).
We write I |= χ to indicate that I satisfies the formula χ; and I ̸|= χ indicates that

I does not satisfy χ. Sentences of GCk are formulas χ ∈ GCk with free(χ) = ∅. For an
incidence graph I and a sentence χ ∈ GCk we write I |= χ to indicate that I |= χ where
I = (I, β) for any assignment β in I (since χ has no free variable, the assignment does not
matter). For a hypergraph H and a sentence χ ∈ GCk we write H |= χ to indicate that
IH |= χ. For two incidence graphs I and I ′ we write I ≡GCk I ′ and say that I and I ′ are
indistinguishable by the logic GCk if for all sentences χ ∈ GCk we have: I |= χ ⇐⇒ I ′ |= χ.

Let us now introduce a restriction of GCk that we call RGCk. Every formula of RGCk will
be of the form (∆g ∧ ψ), where g is a guard function whose domain dom(g) consists of all
indices i ∈ N⩾1 such that the red variable vi is a free variable of ψ. We let free((∆g ∧ ψ)) :=
free(∆g) ∪ free(ψ) denote the set of free variables of the formula. The definition of the syntax
of RGCk is inductively given as follows.

Base cases: (∆g ∧ ψ) ∈ RGCk for all ψ and all g : N⩾1 ⇀ [k] matching one of the following:
1. ψ is E(ej , vi) and dom(g) = {i} and j ∈ [k] (note that g(i) ∈ [k] can be chosen arbitrarily);
2. ψ is ej=ej′ with dom(g) = ∅ and j, j′ ∈ [k];
3. ψ is vi=vi′ with dom(g) = {i, i′}.
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Inductive cases:
4. If (∆g ∧ ψ) ∈ RGCk, then (∆g ∧ ¬ψ) ∈ RGCk;
5. If (∆gi

∧ ψi) ∈ RGCk for i ∈ [2] and g1 and g2 are compatible (i.e., they agree on
dom(g1) ∩ dom(g2)), then (∆g ∧ φ) ∈ RGCk for g := g1 ∪ g2 and φ := (ψ1 ∧ ψ2);

6. If (∆g ∧ ψ) ∈ RGCk and n, ℓ ∈ N⩾1, and i1, . . . , iℓ ∈ dom(g) with i1 < · · · < iℓ, then
(∆g̃ ∧φ) ∈ RGCk for φ := ∃⩾n(vi1 , . . . , viℓ

).(∆g ∧ψ) and g̃ := g− {i1, . . . , iℓ} (note that
free(φ) = free((∆g ∧ ψ)) \ {vi1 , . . . , viℓ

});
7. If (∆g ∧ ψ) ∈ RGCk and n, ℓ ∈ N⩾1, and S := {i1, . . . , iℓ} ⊆ ifreeB(χ) for χ := (∆g ∧ ψ)

with i1 < · · · < iℓ, and if g̃ : N⩾1 ⇀ [k] with dom(g̃) = dom(g) such that all i ∈ dom(g)
satisfy

g̃(i) = g(i) or g̃(i) ∈ S or g̃(i) ̸∈ img(g) , then (1)

(∆g̃∧φ) ∈ RGCk for φ := ∃⩾n(ei1 , . . . , eiℓ
).(∆g∧ψ) (here, free(φ) = free(χ)\{ei1 , . . . , eiℓ

}).

Let us have a closer look at rule 7): The formula φ has exactly the same free red variables as
the formula χ. But the guard of red variable vi in χ̃ := (∆g̃ ∧φ) is j′ := g̃(i), whereas in χ it
is j := g(i). Condition (1) is equivalent to the following: the guard remains unchanged (i.e.,
j′=j), or the new guard j′ has become “available” by the quantification (i.e., j′ ∈ S) or it
has not been used as a guard by g (i.e., j′ ̸∈ img(g)).

Note that RGCk ⊆ GCk. Furthermore, for all χ := (∆g ∧ ψ) ∈ RGCk we have dom(g) =
{i ∈ N⩾1 : vi ∈ free(χ)}. Sentences of RGCk are formulas χ := (∆g ∧ ψ) in RGCk with
free(χ) = ∅. Since dom(g) = {i ∈ N⩾1 : vi ∈ free(χ)}, this implies that dom(g) = ∅, i.e.,
g = g∅ where g∅ is the uniquely defined partial mapping with empty domain; recall that
∆g∅ = ⊤. For two incidence graphs I and I ′ we write I ≡RGCk I ′ and say that I and I ′ are
indistinguishable by the logic RGCk if for all sentences χ ∈ RGCk we have: I |= χ ⇐⇒ I ′ |= χ.
The subsequent sections of this paper are devoted to proving the following theorem, stating
that indistinguishability by the logic RGCk coincides with homomorphism indistinguishability
over the class IEHWk of incidence graphs of entangled hypertree width at most k.

▶ Theorem 6.1. For all incidence graphs I, I ′ and all k ∈ N⩾1 we have:
I ≡RGCk I ′ ⇐⇒ HOMIEHWk

(I) = HOMIEHWk
(I ′).

This result can be viewed as a lifting of Dvořák’s theorem [11] stating that any two
graphs G,G′ are indistinguishable by the k+1-variable logic Ck+1 if, and only if, they are
homomorphism indistinguishable over the class TWk of graphs of tree-width ⩽ k. Our
proof of Theorem 6.1 is heavily inspired by Dvořák’s proof. But in order to proceed along a
similar construction, we first have to provide a suitable inductive characterisation of the class
IEHWk. This is presented in Section 7, where we also provide the machinery of quantum
incidence graphs as an analogue of the quantum graphs used in Dvořák’s proof. Section 8 is
devoted to the proof of Theorem 6.1.

Before we close this section, let us have a look at some examples. Let k = 2. Consider
the following formula ψ1 ∈ GCk:

ψ1 := ∃⩾1(v1).
(
E(e1, v1) ∧ E(e2, v1)

)
.

ψ1 expresses that the hyperedges e1 and e2 share at least one vertex v1, i.e. they intersect.
Since we quantify over v1, the definition of GCk requires us to insert a guard ranging over
the set of free red variables, i.e. over {v1}. We chose E(e1, v1) as the guard but note that
E(e2, v1) would have been a valid choice as well. Next, consider the formula ψ2 ∈ GCk:

ψ2 :=
∧

j∈{1,2}

∃⩾3(v1).
(
E(ej , v1) ∧ E(ej , v1)

)
.
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ψ2 expresses that each of the hyperedges e1, e2 contains at least three vertices. Again, we
have to insert a guard after the quantifier, which is why E(ej , v1) appears twice in ψ2 – as a
guard and as our “actual” subformula.

Finally, we use the formulas ψ1, ψ2 to construct a sentence φ ∈ GCk:

φ := ¬ ∃⩾1(e1, e2).
(
⊤ ∧ ( (ψ1 ∧ ψ2) ∧ ¬ e1=e2 )

)
.

φ expresses that there is no pair of non-equal hyperedges (e1, e2) that intersect and that
both contain at least 3 vertices. I.e., φ expresses that all hyperedges that contain at least 3
vertices are pairwise disjoint. Once again, the quantification requires us to insert a guard;
since there are no free red variables, we insert ⊤ as the guard. Note that (⊤ ∧ φ) ∈ RGCk.
For more examples of formulas in GCk and RGCk, consult the paper’s extended version [22].

7 An Inductive Characterisation of IEHWk

In this section we give an inductive definition of what we call guarded k-labeled incidence
graphs (GLIk), and we show that these are equivalent to the incidence graphs in IEHWk.
Throughout this section, we fix an arbitrary number k ∈ N⩾1.

k-Labeled Incidence Graphs and the Class GLIk. We enrich an incidence graph I by
labeling some of its blue (red) nodes with labels in [k] (in N⩾1), and by providing, for every
i ∈ N⩾1 that is used as a label for a red node, a “blue label” g(i) ∈ [k] that should be regarded
as “the guard” of i. Each label can only be used once, not all labels have to be used, not
all vertices have to be labeled, one vertex may have multiple labels, and “guards” can be
chosen arbitrarily. This is formalised as follows: A k-labeled incidence graph L = (I, r, b, g)
consists of an incidence graph I and partial mappings r : N⩾1 ⇀ R(I), b : [k] ⇀ B(I), and
g : N⩾1 ⇀ [k] such that dom(g) = dom(r) is finite. We write IL, rL, bL, gL to address L’s
components I, r, b, g. Let L = (I, r, b, g) be a k-labeled incidence graph. If j ∈ dom(b), the
blue node b(j) of I is labeled with the number j. If i ∈ dom(r), the red node r(i) of I is
labeled with the number i, and g(i) = j indicates that the blue node labeled with the number
j (if it exists) should be regarded as “the guard” of the red node labeled with the number i.

We say that L has real guards if for every i ∈ dom(r) the red node v labeled i is “guarded”
by the blue node e labeled j := g(i) in the sense that I contains an edge from e to v. This is
formalised as follows: A k-labeled incidence graph L = (I, r, b, g) is said to have real guards
w.r.t. f for a partial function f : N⩾1 ⇀ [k] if dom(f) ⊆ dom(r) and for all i ∈ dom(f) we
have f(i) ∈ dom(b) and (b(f(i)), r(i)) ∈ E(I). We say that L has real guards if it has real
guards w.r.t. g. Particularly simple examples of k-labeled incidence graphs with real guards
are provided by the following definition.

▶ Definition 7.1. Let f : N⩾1 ⇀ [k] with finite dom(f) ̸= ∅. The k-labeled incidence graph
Mf defined by f is the k-labeled incidence graph L = (I, r, b, g) with g := f , where I consists
of a red node vi for every i ∈ dom(f), a blue node ej for every j ∈ img(f), and an edge
(ef(i), vi) for every i ∈ dom(f), and where dom(r) = dom(f) and r(i) = vi for all i ∈ dom(r),
and dom(b) = img(f) and b(j) = ej for all j ∈ dom(b). Note that Mf has real guards.

We introduce a number of operations on k-labeled incidence graphs. The first kind of
operations provides ways to modify the labels (the latter two of these do not necessarily
preserve real guards). Let L = (I, r, b, g) be a k-labeled incidence graph. Let Xr ⊆ N⩾1 be
finite, and let Xb ⊆ [k].
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1. Removing from the red nodes all the labels in Xr is achieved by the operation
L[Xr→•] := (I, r′, b, g′) with r′ := r −Xr and g′ := g −Xr.

2. Removing from the blue nodes all the labels in Xb is achieved by the operation
L⟨Xb→•⟩ := (I, r, b′, g) with b′ := b−Xb

3. Let Xr = {i1, . . . , iℓ} for ℓ := |Xr| and i1 < · · · < iℓ. For every v = (v1, . . . , vℓ) ∈ R(I)ℓ

we let L[Xr→v] := (I, r′, b, g) with dom(r′) = dom(r) ∪Xr and r′(ij) = vj for all j ∈ [ℓ]
and r′(i) = r(i) for all i ∈ dom(r) \ Xr (i.e., for each j ∈ [ℓ], the red label ij is moved
onto the red node vj , and all other labels remain unchanged).

4. Let Xb = {i1, . . . , iℓ} for ℓ := |Xb| and i1 < · · · < iℓ. For every e = (e1, . . . , eℓ) ∈ B(I)ℓ

we let L⟨Xb→e⟩ := (I, r, b′, g) with dom(b′) = dom(b) ∪Xb and b′(ij) = ej for all j ∈ [ℓ]
and b′(i) = b(i) for all i ∈ dom(b) \Xb (i.e., for each j ∈ [ℓ], the blue label ij is moved
onto the blue node ej , and all other labels remain unchanged).

The next operation enables us to glue two k-labeled incidence graphs L1 and L2. This
is achieved by first taking the disjoint union of L1 and L2 and then merging all red (blue)
nodes that carry the same label into a single red (blue) node that inherits all neighbours
of the merged nodes. We write (L1 · L2) to denote the resulting k-labeled incidence graph.
We need one further operation on k-labeled incidence graphs, namely, one that admits us to
change its guard function:

▶ Definition 7.2 (Applying a transition). Consider a partial function g : N⩾1 ⇀ [k].
(a) A transition for g is a partial function f : N⩾1 ⇀ [k] with ∅ ̸= dom(f) ⊆ dom(g)

satisfying the following: for every i ∈ dom(g) with g(i) ∈ img(f) we have i ∈ dom(f).
(b) Let L = (I, r, b, g) be a k-labeled incidence graph, and let f be a transition for g. Applying

the transition f to L yields the k-labeled incidence graph L[⇝f ] := (Mf · L⟨Xb→•⟩ ) ,
where Xb := img(g) ∩ img(f) ∩ dom(b), and Mf is provided by Definition 7.1.

The idea of applying a transition f to a k-labeled incidence graph L = (I, r, b, g) is to
assign new guards to a set of labeled red vertices (i.e. the domain of f). These new guards
should by newly inserted nodes, and they should be real guards. To this end, for every
j ∈ img(f) we add a new blue node e′

j labeled j; and in case that the label j had already
been used by a blue node e of L (i.e., j ∈ dom(b)) and served as a guard according to g (i.e.,
j ∈ img(g)), we remove this label from e. For each i ∈ dom(f) with f(i) = j we add an edge
from the red node of L labeled i to the new blue node e′

j .
The formal definition L[⇝f ] := (Mf · L⟨Xb→•⟩) achieves this as follows: By L⟨Xb→•⟩

we release from L all blue labels j that are present in L and that we want to assign to newly
created nodes. This is achieved by letting Xb = img(g) ∩ img(f) ∩ dom(b). Afterwards,
adding the edges from the nodes of L that carry a red label i ∈ dom(f) to the new blue node
e′

f(i) is achieved by glueing Mf to L⟨Xb→•⟩. Note that releasing from L all blue labels in
Xb might be problematic: Consider a red node v labeled i that was originally guarded by the
blue node e of L that carried the label j := g(i). Releasing the label j from node e means
that v loses its guard in case that i ̸∈ dom(f). Therefore, for f to be a transition for g, we
require in Definition 7.2 that it assigns a new guard to all the affected labeled red vertices,
i.e. we require i ∈ dom(f), if g(i) ∈ img(f). Finally, we are ready to define the class GLIk:

▶ Definition 7.3 (GLIk). The class GLIk of guarded k-labeled incidence graphs is inductively
defined as follows:
Base case: Any k-labeled incidence graph L = (I, r, b, g) with R(I) = img(r), B(I) = img(b),
and with real guards belongs to GLIk.
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Inductive cases: Let L = (I, r, b, g) ∈ GLIk.
1. L[Xr→•] ∈ GLIk for every Xr ⊆ dom(r).
2. L⟨Xb→•⟩ ∈ GLIk for every Xb ⊆ dom(b) \ img(g).
3. L[⇝f ] ∈ GLIk for every transition f for g.
4. (L · L′) ∈ GLIk for every L′ = (I ′, r′, b′, g′) ∈ GLIk such that g and g′ are compatible.

An easy inductive proof shows that every L ∈ GLIk has real guards.
A k-labeled incidence graph L is called label-free if dom(rL) = dom(bL) = dom(gL) = ∅. We
are now ready for this section’s technical main result, which states that, essentially, GLIk

provides an inductive characterisaton of IEHWk:

▶ Theorem 7.4.
(a) The incidence graph IL of every L ∈ GLIk is in IEHWk.
(b) For every I ∈ IEHWk there exists a label-free L ∈ GLIk such that I ∼= IL.

The proof of (a) proceeds by induction on the definition of GLIk and explicitly constructs
an ehd of width ⩽ k for each L ∈ GLIk; for this it utilises that L has real guards. The
proof of (b) starts with an ehd of I of width ⩽ k, chooses a suitable root node of the ehd’s
tree and performs a bottom-up traversal of this tree to associate each tree-node t with a
corresponding k-labeled incidence graph Lt. This construction’s details have to be carried
out with care to ensure that Lt ∈ GLIk.

Homomorphisms on k-Labeled Incidence Graphs and their Quantum Analogues. We
define the notion of homomorphisms of k-labeled incidence graphs in such a way that it
respects labels, but ignores the guard function: Let L = (I, r, b, g) and L′ = (I ′, r′, b′, g′) be
k-labeled incidence graphs. If dom(r) ̸⊆ dom(r′) or dom(b) ̸⊆ dom(b′), then there exists no
homomorphism from L to L′. Otherwise, a homomorphism from L to L′ is a homomorphism
h = (hR, hB) from I to I ′ satisfying the following condition: h(r(i)) = r′(i) for all i ∈ dom(r)
and h(b(j)) = b′(j) for all j ∈ dom(b). By Hom(L,L′) we denote the set of all homomorphisms
from L to L′, and we let hom(L,L′) := | Hom(L,L′)| be the number of homomorphisms from
L to L′. In particular, if L is label-free, then hom(L,L′) = hom(IL, IL′).

In order to enable us to “aggregate” homomorphism counts, we proceed in a similar way
as Dvořák [11]: we use a variant of the quantum graphs of Lovász and Szegedy [20], tailored
towards our setting. We say that k-labeled incidence graphs L1, . . . , Ld are compatible if
their labeling functions all have the same domain and they all have the same guard function,
i.e., dom(rL1) = dom(rLi

), dom(bL1) = dom(bLi
), and gL1 = gLi

for all i ∈ [d].
A k-labeled quantum incidence graph Q is a formal finite non-empty linear combination

with real coefficients of compatible k-labeled incidence graphs. We represent a k-labeled
quantum incidence graph Q as

∑d
i=1 αi Li, where d ∈ N⩾1, αi ∈ R, and Li is a k-labeled

incidence graph for i ∈ [d]. We let drQ := dom(rL1) = · · · = dom(rLd
), dbQ := dom(bL1) =

· · · = dom(bLd
), and gQ := gL1 = · · · = gLd

. The αi’s and Li’s are called the coefficients and
components, respectively, and d is called the degree of Q. Note that a k-labeled incidence
graph is a k-labeled quantum incidence graph with degree 1 and coefficient 1. For a k-labeled
quantum incidence graph Q =

∑d
i=1 αiLi and an arbitrary k-labeled incidence graph L′ we

let hom(Q,L′) :=
∑d

i=1 αi· hom(Li, L
′) ∈ R.

We adapt the operations for k-labeled incidence graphs to their quantum equivalent in
the expected way: Q[Xr→•] :=

∑d
i=1 Li[Xr→•], Q⟨Xb→•⟩ :=

∑d
i=1 Li⟨Xb→•⟩, Q[⇝f ] :=∑d

i=1 αiLi[⇝f ]. Glueing two k-labeled quantum incidence graphs Q =
∑d

i=1 αi Li and
Q′ =

∑d′

j=1 α
′
j L

′
j is achieved by pairwise glueing of their components and multiplication of

their respective coefficients, i.e. (Q ·Q′) :=
∑

i∈[d]
j∈[d′]

(αi·α′
j) (Li · L′

j).
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The following can easily be proved for the case where Q,Q′ have degree 1 and coefficient
1 (i.e., Q,Q′ are k-labeled incidence graphs), and then be generalised to quantum incidence
graphs by simple linear arguments.

▶ Lemma 7.5. For all k-labeled quantum incidence graphs Q,Q′ and all k-labeled incidence
graphs L we have:
1. hom((Q ·Q′), L) = hom(Q,L) · hom(Q′, L).
2. hom(Q[Xr→•], L) =

∑
v∈R(IL)ℓ hom(Q,L[Xr→v]), for all Xr ⊆ drQ and ℓ := |Xr|.

3. hom(Q⟨Xb→•⟩, L) =
∑

e∈B(IL)ℓ hom(Q,L⟨Xb→e⟩), for all Xb ⊆ dbQ and ℓ := |Xb|.
4. hom(Q[⇝f ], L) = hom(Mf , L) ·

∑
e∈B(IL)ℓ hom(Q,L⟨Xb→e⟩), for all transitions f for

gQ, for Xb := dbQ ∩ img(f) ∩ img(g) and ℓ := |Xb|. Note that hom(Mf , L) ∈ {0, 1}.

The class QGLIk of guarded k-labeled quantum incidence graphs consists of those k-labeled
quantum incidence graphs where all components belong to GLIk. The following lemma
was provided for series-parallel quantum graphs by Lovász and Szegedy [20] and for labeled
quantum graphs of tree-width ⩽ k by Dvořák [11]; their proof also works for QGLIk.

▶ Lemma 7.6. Let X,Y ⊆ N be disjoint and finite, and let Q ∈ QGLIk. There exists a
Q[X,Y ] ∈ QGLIk with the same parameters drQ, dbQ, gQ as Q, such that for all k-labeled
incidence graphs L with real guards w.r.t. gQ we have:
1. If hom(Q,L) ∈ X then hom(Q[X,Y ], L) = 0.
2. If hom(Q,L) ∈ Y then hom(Q[X,Y ], L) = 1.

8 Proof of Theorem 6.1

Finally, we have available all the machinery so that, from a high-level point of view, our
proof of Theorem 6.1 can follow a similar approach as Dvořák’s proof in [11]. Analogously
to the two main lemmas in [11], we provide a key lemma for each of the directions “⇐=”
and “=⇒” of Theorem 6.1. These lemmas use the following notion: The interpretation IL′

associated with a k-labeled incidence graph L′ is an interpretation (I, β) with I := IL′ and
β(vi) := rL′(i) for all i ∈ dom(rL′) and β(ej) := bL′(j) for all j ∈ dom(bL′).

▶ Lemma 8.1. Let L = (I, b, r, g) ∈ GLIk. For every m ∈ N there is a formula φL,m with
(∆g ∧φL,m) ∈ RGCk and free((∆g ∧φL,m)) = {vi : i ∈ dom(r)}∪{ej : j ∈ dom(b)} such that
for every k-labeled incidence graph L′ with dom(bL′) ⊇ dom(b), dom(rL′) ⊇ dom(r), and
with real guards w.r.t. g we have: IL′ |= ∆g , and hom(L,L′) = m ⇐⇒ IL′ |= φL,m.

▶ Lemma 8.2. Let χ := (∆g ∧ ψ) ∈ RGCk and let m, d ∈ N with m ⩾ 1. There exists a
Q := Qχ,m,d ∈ QGLIk with gQ = g, dbQ = ifreeB(χ), drQ = dom(g) = ifreeR(χ) such that
for all k-labeled incidence graphs L′ = (I ′, b′, r′, g′) with |B(I ′)| = m and max{|NI′(e)| : e ∈
B(I ′)} ⩽ d and dom(b′) ⊇ dbQ, dom(r′) ⊇ drQ, g′ ⊇ g, and with real guards w.r.t. g we
have: IL′ |= ∆g , and hom(Q,L′) = 1 if IL′ |= χ , and hom(Q,L′) = 0 if IL′ ̸|= χ.

The proofs of both lemmas are technically quite intricate because the concept of generalised
hypertree width (as well as the classes IEHWk and GLIk) is much more complicated than
the concept of tree-width. For Lemma 8.1 we proceed by induction based on Definition 7.3;
for Lemma 8.2 we proceed by induction on the construction of χ. Finally, the proof of
Theorem 6.1 can easily be achieved by using Theorem 7.4 and the Lemmas 8.1 (for direction
“⇐=”) and 8.2 (for direction “=⇒”).
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9 Conclusion

Combining the Theorems 3.1, 4.1, 6.1 yields:

▶ Theorem 9.1 (Main Theorem). Let H,H ′ be hypergraphs.
(a) IH ≡RGCk IH′ ⇐⇒ HOMGHWk

(H) = HOMGHWk
(H ′).

(b) If H and H ′ are simple, then: IH ≡RGCk IH′ ⇐⇒ HOMsGHWk
(H) = HOMsGHWk

(H ′).

An obvious question is whether RGCk-sentences have the same expressive power as GCk-
sentences. Since the submission of this paper, we were able to prove that this is indeed the
case, i.e., any sentence of the logic GCk can be transformed into an equivalent sentence in
RGCk. This implies that IH ≡RGCk IH′ ⇐⇒ IH ≡GCk IH′ . Details are provided in the
paper’s extended version [22].

For our proofs it was crucial to consider ehds instead of generalised hypertree decomposi-
tions. To the best of our knowledge, ehds have not been studied before. From Theorem 2.3
we know that there exist arbitrarily large k such that IEHWk is a strict subclass of IGHWk;
but nevertheless, according to Theorem 4.1 homomorphism indistinguishability coincides
for both classes. Many other questions remain open, in particular: How hard is it, given
a hypergraph H and a number k, to determine whether ehw(H) ⩽ k? For C := IEHWk:
how hard is it to compute the function (or, “vector”) HOMC(H) for a given hypergraph H?
Which properties does it have? What is the expressive power of the logic GCk? How does
a suitable pebble game for GCk look like? Our result lifts Dvořák’s result for tree-width
⩽ k [11] from graphs to hypergraphs. Does there also exist a lifting of Grohe’s result for
tree-depth ⩽ k [16] from graphs to hypergraphs? Seeing that Dvořák’s result lifted nicely to
hypergraphs, we believe that there should also be a lifting of Cai, Fürer and Immerman’s
result [8], i.e., a hypergraph-variant of the Weisfeiler-Leman algorithm, whose distinguishing
power matches precisely the logic GCk. We plan to study this in future work.
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Abstract
The paper proposes dynamic parallel algorithms for connectivity and bipartiteness of undirected
graphs that require constant time and O(n1/2+ϵ) work on the CRCW PRAM model. The work
of these algorithms almost matches the work of the O(log n) time algorithm for connectivity by
Kopelowitz et al. (2018) on the EREW PRAM model and the time of the sequential algorithm for
bipartiteness by Eppstein et al. (1997). In particular, we show that the sparsification technique,
which has been used in both mentioned papers, can in principle also be used for constant time
algorithms in the CRCW PRAM model, despite the logarithmic depth of sparsification trees.
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1 Introduction

There has been a lot of research on dynamic algorithms for graph problems.1 Usually, the
setting is that graphs can be changed by edge insertions or deletions and that there are query
operations that allow to check whether the graph has certain properties. Most of this research
has been about sequential algorithms and the goal has been to find algorithms that are as
fast as possible. Some algorithms use randomisation, others are deterministic, sometimes the
time bounds are worst-case bounds per change or query operation and sometimes they are
amortised bounds.

There has been also some research on dynamic parallel graph algorithms. Many of these
algorithms use the EREW PRAM model2 and try to achieve logarithmic or polylogarithmic
running time, while being work-efficient or even work-optimal. That is, the overall work of
all processors should be (almost) the same as for the best sequential algorithm.3

There is an entirely separate line of work that studied the maintenance of graph (and
other) properties in a setting that was inspired by Database Theory. It is often called
Dynamic Complexity in Database Theory. In the setting of Dynamic Complexity, dynamic
algorithms are called dynamic programs and they are not specified in an “algorithmic fashion”

1 Below we will give pointers to literature. For the beginning of the introduction, we try to keep the story
simple.

2 In an EREW PRAM, parallel processors can use shared memory, but at each moment, each memory
cell can be accessed by only one processor. EREW stands for exclusive-read/exclusive-write.

3 We note that in our context of constant-time parallel algorithms work is within a constant factor of the
number of processors.
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but rather by logical formulas. As a classical example from [13], to maintain reachability
information between pairs of nodes in a directed acyclic graph, a dynamic program can use
an auxiliary relation T that is intended to store the transitive closure of the graph. The
program can then be specified by two formulas that specify how the new version T ′ of T is
defined after the insertion or deletion of an edge (u, v):
Insertion: T ′(x, y) def= T (x, y) ∨

(
T (x, u) ∧ T (v, y)

)
. After inserting (u, v) there is a path

from x to y if such a path already existed or if there was a path from x to u and from v

to y.

Deletion: T ′(x, y) def= T (x, y) ∧
(

E(x, y) ∨ ¬T (x, u) ∨ ¬T (v, y) ∨

∃u′, v′
(

(u′ ̸= u ∨ v′ ̸= v) ∧ T (x, u′) ∧ E(u′, v′) ∧ T (v′, y) ∧ T (u′, u) ∧ ¬T (v′, u)
))

.

This formula is slightly more complicated. In the main case, the nodes u′, v′ are chosen
such that neither the path from x to u′ nor the path from v′ to y relies on the edge (u, v).
In the former case this is thanks to T (u′, u) (since if T (x, u′) involved (u, v), the graph
were not be acyclic) and in the latter case it is thanks to ¬T (v′, u).

As in the example, the underlying logic is usually first-order logic, since it corresponds
to the main (theoretical) query language for relational databases, the relational algebra,
which in turn corresponds to the core of SQL. The class of problems or queries that can be
maintained in this way is usually called DynFO.

Dynamic Complexity has existed quite separated from the world of dynamic algorithms,
but there is a direct link that connects the two areas: it follows from a fundamental result4

from Immerman [8, Theorem 1.1] that dynamic programs can be translated into parallel
programs that run in constant time on suitable versions of CRCW PRAMs5 with polynomially
many processors. And vice versa.

Dynamic Complexity has focussed on the question whether a graph property can be
maintained at all by first-order logic (or fragments thereof), but did not care about the
work efficiency of the parallel algorithms that are obtained from translating the update
formulas. It turns out that this automatic translation often does not yield very efficient
parallel algorithms.

As an example, the parallel dynamic algorithm that is obtained by direct translation of
the above formulas, has work O(n4) for deletions, since it would consist of two nested loops
for x and y and two more for u and v. This is far from being work-efficient.6 The translation
of the dynamic program for Connectivity in undirected graphs from [13] even yields a work
bound of O(n5). We will show that this work bound can be improved considerably.

This paper is part of an effort to bridge the gap between Dynamic Complexity and
(parallel) Dynamic Algorithms by developing algorithms that run in constant time on CRCW
PRAMs and are as work efficient as possible. It presents constant-time dynamic parallel
algorithms for Connectivity and Bipartiteness in undirected graphs. In the arbitrary CRCW
model, the algorithms require work at most n

1
2 polylog(n). In the common CRCW model,

the algorithms can be instantiated, for each constant ϵ > 0, such that they obey a work
bound of O(n 1

2 +ϵ), where n is the number of nodes in the graph.

4 Immerman’s result is not about dynamic programs, but each formula of a dynamic program can be
translated separately.

5 In a CRCW PRAM more than one processor can read a memory cell, at the same time. Even more
than one processor can write into the same cell, but there has to be a strategy that deals with conflicts.
This will be explained later in the text.

6 We have to admit that this paper does not present a better algorithm for directed reachability. We
chose that problem only as an example, since its formulas are relatively easy to understand.
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The algorithm for Connectivity follows the parallel EREW PRAM algorithm of Kopelowitz
et al. [12], which in turn was based on a sequential algorithm by Fredrickson [5] and its
sparsification by Eppstein et al. [4]. Thus, the work of our algorithm almost matches the work
bound O(n 1

2 ) of the parallel algorithm of [12] and the worst-case runtime of [4]. However, it
does not match the runtime of the recent breakthrough algorithm by Chuzhoy et al. [1].

The main technical challenge here is to make the sparsification and the tree-like data
structure of [12] work in constant time, despite their use of trees of logarithmic depth. For
sparsification, this means updating all logarithmically many nodes along the path from the
changed leave to the root of a tree of logarithmic height in parallel constant time although
in classical sparsification the change in the leave is propagated from one node to the other
along the path. For handling the tree-like data structure of [12] in constant parallel time,
data is stored differently by switching from lists to arrays and it is shown (in full version
of this paper) that balanced search trees ((a, b)-trees to be precise) of logarithmic height
are maintainable in constant parallel time. In the classical algorithm for, e.g., splitting an
(a, b)-tree tree into two separate trees, the tree is first split into logarithmically many smaller
trees and then the two new trees are built by merging logarithmically many of those smaller
trees back together. Both steps are done sequentially in O(log n) time by splitting one of
those smaller trees at a time and merging only two of the smaller trees at a time, but for our
purpose have to be done in constant parallel time.

The algorithm for bipartiteness almost matches the runtime of the bipartiteness algorithm
of Eppstein et al. [4]. It is based on the observation that a graph is bipartite if and only
if its distance-2 graph has twice as many connected components as the graph itself. The
algorithm therefore basically maintains two spanning trees, for the graph and its distance-2
graph. Here, the main technical challenge is to show that the same sparsification approach
as for connectivity also works for bipartiteness.

Structure of the paper. We introduce some basic concepts about CRCW PRAMs in
Section 2. The algorithm for connectivity is presented in Section 3. The algorithm for
bipartiteness is given in Section 4.

Related work. Some related work has already been mentioned above. Dynamic Complexity
has started by the work of Patnaik and Immerman [13] and Dong and Su [3]. For a recent
survey on the dynamic complexity of Reachability in directed and undirected graphs, we
refer to [14]. For a recent survey on dynamic graph algorithms, we refer to [6].

Of course, the PRAM model is not the only parallel computation model for parallel
algorithms. Parallel dynamic algorithms for the MPC model can be found, e.g., in [9].

2 Preliminaries

For natural numbers i ≤ j, we write [i, j] for the set {i, . . . , j}. We only deal with undirected
graphs and denote an undirected edge between two vertices u and v by (u, v).

Dynamic algorithmic problems. In this paper, we view a dynamic (algorithmic) problem
basically as the interface of a data type: that is, there is a collection of operations by which
some object can be initialised, changed, and queried. A dynamic algorithm is then a collection
of algorithms, one for each operation. We consider two main dynamic problems in this paper,
Connectivity and Bipartiteness.

The algorithmic problem Connectivity maintains an undirected graph G and has the
following operations.
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Init(G, n) yields an initial graph G with n nodes, that are initially deactivated but
without edges;
ActivateNode(G, v) yields an identifier for a new node of G;
DeactivateNode(G, v) deactivates the node v from G. The node u must be isolated;
InsertEdge(G, u, v) inserts edge (u, v) to G;
DeleteEdge(G, u, v) deletes edge (u, v) from G;
Connected(G, u, v) returns true if u and v are in the same connected component, otherwise
false.
#Components(G) yields the number of connected components of G on the activated
nodes.

Bipartiteness has almost the same operations, but instead of Connected and
#Components it has a query operation Bipartite(G) which yields true if the graph G

is bipartite.
Throughout this paper we only consider the effort for change and query operations, but

disregard the effort for the initialisation of a graph. We also note that the number n of nodes
can not grow. The nodes are represented by numbers in {1, . . . , n}.

Parallel Random Access Machines (PRAMs). A parallel random access machine (PRAM)
consists of a number of processors that work in parallel and use a shared memory.7 The
memory is comprised of memory cells which can be accessed by a processor in O(1) time.
Furthermore, we assume that simple arithmetic and bitwise operations, including addition,
can be done in O(1) time by a processor. The work of a PRAM computation is the sum
of the number of all computation steps of all processors made during the computation. We
define the space s required by a PRAM computation as the maximal index of any memory
cell accessed during the computation.

We use the Concurrent-Read Concurrent-Write model (CRCW PRAM), i.e., processors
are allowed to read and write concurrently from and to the same memory location. More
precisely, we will consider two different versions of CRCW PRAMs.

In the arbitrary model, if multiple processors concurrently write to the same memory
location, one of them, “arbitrarily”, succeeds;
In the slightly weaker common model, concurrent write into the same memory location,
is only allowed if all processors write the same value.

The two models will yield slightly different work bounds for our dynamic algorithms for
Connectivity and Bipartiteness: in the arbitrary model, the work will be at most Õ(n 1

2 ),
whereas in the common model, we will have algorithms with work O(n 1

2 +ϵ), for every ϵ > 0.
Here, Õ(f(n)) allows an additional polylogarithmic factor with f(n).

We refer to [10] for more details on PRAMs and to [15, Section 2.2.3] for a discussion of
alternative space measures.

For simplicity, we assume that even if the number n of nodes of the input graph grows, a
number in the range [0, n] can still be stored in one memory cell. This assumption is justified,
since addition of larger numbers N can still be done in constant time and polylogarithmic
work on a CRCW PRAM.

The following lemma exhibits a simple CRCW PRAM algorithm in the common model
that will be used as a sub-algorithm. It also illustrates the frequent use of arrays in PRAM
algorithms. It will mainly be used as a tie-breaker, if one of several objects has to be chosen,
and it will therefore not be needed in the context of the arbitrary model. The lemma was
shown in a slightly more general form in [11, Proposition 5.4].

7 Some content of this paragraph is copied from [11].
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▶ Lemma 2.1 ([11, Proposition 5.4]). Let A be an array of size n over a finite alphabet Σ.
The minimum/maximum value of A can be computed in constant parallel time on a common
CRCW PRAM with work O(n1+ϵ) for any ϵ > 0.

Proof sketch. We only describe how the minimum can be computed, since finding the
maximum value is completely analogous. A naïve approach is to assign one processor to each
pair i, j of positions in the array. Whenever A[i] < A[j] or A[i] = A[j] and i < j, then a 1 is
written into B[j], where B is an auxiliary array of size n, in which all entries are initially set
to zero. Afterwards, one processor is assigned to each cell of B and the processor assigned
to the only cell B[i] with value 0 outputs A[i] as the minimum. However, this algorithm
requires O(n2) work. The (standard) idea to reduce the work to O(n1+ϵ) is to first compute
the minimum of subarrays of A of size nϵ. This requires time O(n2ϵ), for each of the n1−ϵ

subarrays, resulting in work O(n1+ϵ). The minimal values of the sub-arrays can then be
stored in an array of size n1−ϵ whose minimum can be computed recursively. Since the
number of recursion rounds is bounded by the constant ⌈ 1

ϵ ⌉, the overall work is O(n1+ϵ). ◀

3 Connectivity

In this section, we present the main result of this paper and (most of) its proof.

▶ Theorem 3.1. There are dynamic parallel constant-time algorithms for Connectivity
with the following work bounds per change or query operation.

Õ(n 1
2 ) work on the arbitrary CRCW PRAM model.

O(n 1
2 +ϵ) work on the common CRCW PRAM model, for every ϵ > 0.

As usual, the algorithm basically maintains a spanning forest and the graph G is connected
if and only if #Components(G) yields 1.

In fact, we will consider the data type SpanningForest as an extension of
Connectivity with the following additional operation.

TreeEdge(G, u, v) returns true if (u, v) is a tree edge, otherwise false.

The proof is along the lines of [12] and is split into the same three main steps. For each
step, we need to show that it can be done in constant parallel time on a CRCW PRAM,
as opposed to O(log n) on an EREW PRAM. This strengthening comes with an additional
work factor of polylog(m) or polylog(n) on an arbitrary CRCW PRAM and mϵ or nϵ on a
common CRCW PRAM.

We first show that, for graphs of maximum degree 3, SpanningForest can be maintained
with work Õ(m 1

2 ) and O(m 1
2 +ϵ) per operation, depending on the PRAM model. Then we

show that the case of graphs of unbounded degree can be reduced to the case of graphs with
degree bound three. Finally, we show that, with the help of sparsification, both bounds from
above are translatable to be in n instead of m.

More precisely, we show the following three results.

▶ Proposition 3.2. There are dynamic parallel constant time algorithms for the special
case of SpanningForest, where the maximum degree of the graph never exceeds 3 with the
following work bounds per change or query operation.

Õ(m 1
2 ) on the arbitrary CRCW PRAM model.

O(m 1
2 +ϵ) on the common CRCW PRAM model, for every ϵ > 0.

▶ Proposition 3.3. If SpanningForest can be maintained in parallel constant time on a
CRCW PRAM with the work bounds of Proposition 3.2 per change or query operation, for
any ϵ > 0, for graphs with maximum degree 3, it can be maintained with the same bounds
for general graphs with the provision that they never have more than cn edges, for some
constant c.

MFCS 2023



80:6 Dynamic Constant Time Parallel Graph Algorithms with Sub-Linear Work

▶ Proposition 3.4. If SpanningForest can be maintained in parallel constant time on a
CRCW PRAM with the work bounds of Proposition 3.2 per change or query operation, then
it can also be maintained with Õ(n 1

2 ) work per change or query operation on the common
CRCW model and with O(n 1

2 +ϵ) work per change or query operation on the arbitrary CRCW
model.

Proposition 3.2 will be shown in the next two subsections. Proposition 3.3 and Proposi-
tion 3.4 will be shown in Subsection 3.2.

3.1 Maintaining a spanning forest for bounded degree graphs
As mentioned before, our algorithm closely follows [12] and therefore uses a similar data
structure. Some modifications are required though, to achieve constant parallel update and
query time while keeping almost the same amount of work. The data structure maintains
an Euler tour, for each spanning tree in a spanning forest of the graph. More precisely, it
maintains, for each spanning tree, a cyclic list of tree edges that visits each tree edge once in
either direction.

We first concentrate on the change operations InsertEdge(G, u, v) and
DeleteEdge(G, u, v) and the query operations.

The algorithm does not need to change the Euler tour, if a new edge is inserted which
connects two nodes of the same spanning tree or if a non-tree edge is deleted. If an edge e

between two different spanning trees is inserted, the algorithm can just merge the two Euler
tours. If an edge e of a spanning tree is deleted, the algorithm first splits the Euler tour
at both occurrences of e and then tries to find a replacement edge that connects the two
sub-trees resulting from the deletion. The search for a replacement edge is actually the most
critical part of the algorithm, since trying out all edges of the graph would yield linear work.

Towards a more efficient algorithm, we follow the same two-tiered approach as [12]: each
Euler tour is chopped into chunks of about

√
m edges, which are represented as arrays of

edges. The underlying idea is that after a change operation the necessary updates can be
divided into low-level manipulations inside only a few chunks and high-level manipulations
on the level of sequences of chunks. Each kind of manipulation should cause not much more
than O(

√
m) work.

Furthermore, it will maintain information about non-tree edges between different chunks,
ultimately allowing to find a replacement edge with work close to O(

√
m).

We fix a number K that will be roughly
√

m later on and enforce that chunks contain
between K

2 and K edges, with the exception of at most one chunk per spanning tree. We
denote the number of chunks by J which is in O( m

K ).
For the lower tier, i.e., creating and removing chunks and changing their content and

additional information, the edge arrays representing the chunks are stored together in one
master array M with O(

√
m) slots of sub-arrays of length K. The slots will contain some

additional information to be specified later. The order of chunks in M can be arbitrary
and M might contain empty slots from deleted chunks. By M(i) we refer to the chunk
that is stored in the i-th slot of the master array. Some entries in M might be unused or
deactivated. For a chunk C, we refer by C also to the entry in M for this chunk.

We say that two chunks C and C ′ are linked, if there is a non-tree edge (u, v) in G such
that u occurs in C and v in C ′. With each chunk C of edges, we associate a link vector BC ,
which is a bit array of length J that reflects which chunks are linked with C. More precisely,
BC(i) = 1 if C and M(i) are linked. Here all slots in M are relevant, even the unused or
deactivated ones (but they will inevitably yield the bit 0).
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The higher tier, which is responsible for maintaining the order of the chunks and inform-
ation about sequences of chunks, maintains, for each Euler tour a chunk array: this is an
array of pointers to chunks such that the concatenation of all edge lists in the order induced
by the array represents the Euler tour. Furthermore, it maintains information about links
between sequences of chunks in a sufficiently work-efficient way.

The algorithm uses a data type ChunkArrays whose operations can be split into two
groups. The first group consists of the following operations, which only access chunks and
their link arrays, but do not directly refer to chunk arrays. In both groups of operations, i, j

and k are always indices, C, C1 and C2 are chunk (pointers), A, A1 and A2 are (pointers to)
chunk arrays, B is a bit vector and E is an edge array.

SetChunk(i, C, E) activates a new chunk C in M(i) and stores the edge array E in C;
Deactivate(C) deactivates chunk C in M;
Link(C1, C2) and Unlink(C1, C2) allow to mark chunks C1 and C2 as linked or unlinked;
BulkSetLinks(C, B) replaces the link vector of chunk C by the bit vector B and changes
the bit that refers to C in all other chunks C ′ according to B. More precisely, if C = M(i)
then, for each j, the i-th bit in the link vector of M(j) is set to B(j).

We note that SetChunk and Deactivate do not automatically change any link vectors.
The operations of the other group are as follows. They explicitly refer to chunk arrays.
InsertChunk(A, i, C) inserts (a pointer to) chunk C at position i of chunk array A,
moving each entry, from i on, by one to the right;
DeleteChunk(A, i) deletes the chunk pointer at position i of chunk array A, moving each
entry, from i + 1 on, one to the left;
Concatenate(A1, A2) concatenates the chunk array A2 to the end of A1;
Split(A, i) splits A into two arrays A1 and A2 getting intervals [1, i] and [i + 1, max(A)]
and yields (pointers to) A1 and A2;
Reorder(A, i, j, k) moves the chunks of positions j, . . . , k to position i < j. That is, the
chunks are ordered as 1, . . . , i − 1, j, . . . , k, i + 1, . . . , j − 1, k + 1, . . . , m, where m is the
size of A;
Query(A, i, j, k, ℓ) yields an arbitrary pair (C, C ′) of linked chunks where C is from [i, j]
and C ′ is from [k, ℓ].

The algorithm will maintain the invariant that each chunk that is present in M occurs in at
most one chunk array. Each chunk in the master array contains a back pointer to its chunk
pointer in its chunk array, and these entries are maintained by the above operations.

The following lemma is shown in the full version of this paper.

▶ Lemma 3.5. There is a dynamic parallel constant-time algorithm for ChunkArrays on
an arbitrary CRCW PRAM that supports all operations with O(J polylog J) work.

Furthermore, for each ϵ > 0, there is a parallel constant-time dynamic algorithm for
ChunkArrays on a common CRCW PRAM that supports Query with O(J1+ϵ) work and
all other operations with O(J polylog J) work.

The implementation of ChunkArrays uses (a, b)-trees [7], which are trees of logarithmic
height in which inner nodes have between a and b children, and support insertion and deletion
of leaves as well as split and join of trees. In the ChunkArrays for each chunk array A

one (2, 6)-tree is maintained, that has the link arrays of the chunks of A at its leaves, in the
order of A. The inner vertices of the tree store link arrays that are the bitwise disjunction of
the link arrays of the leaves below them.
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Given Lemma 3.5, we can now show Proposition 3.2, stating that SpanningForest can
be maintained in parallel constant time with Õ(m 1

2 ) work per operation on an arbitrary
CRCW PRAM and, for every ϵ > 0, with work O(m 1

2 +ϵ) work per operation, on a common
CRCW PRAM, if the maximum degree of the graph never exceeds 3. The degree bound
mainly helps by bounding the number of edges incident to one chunk by O(K).

Proof (of Proposition 3.2). We first describe the data structure and then how it is main-
tained for the different change operations.

The algorithm maintains a master array and a chunk array as described above. It
uses them to maintain a spanning tree and a corresponding Euler tour for each connected
component of the graph. It uses K = J =

√
m.

Furthermore, the algorithm maintains an array with all nodes of the graph, and three
additional entries for the up to three neighbours of each node, representing the edges.
Additionally, there are pointers to the at most six appearances of a node in edges of Euler
tours in the master array. The algorithm thereby implicitly maintains pointers from each
edge to its at most two appearances in the Euler tours. Finally, a counter for the number of
connected components is maintained.

The two query operations Connected and #Components can be answered in constant
sequential time using the pointers from each node to occurences in an Euler tour or the
maintained counter, respectively.

For the change operation InsertEdge(u, v), we consider two different cases: (1) the
insertion of a new edge (u, v) where u and v are in the same connected component and (2)
the insertion of a new edge (u, v) where u and v are in different connected components.

The algorithm first identifies through the master array two chunk arrays Au and Av in
which u and v reside. If Au = Av, we are in case (1) and it suffices to mark Cu and Cv as
linked by Link(Cu, Cv) for all Cu and Cv that contain u and v respectively. All those chunks
can be found using the maintained pointers from nodes to their appearances in chunks.

If Au and Av are different, we are in case (2) and (u, v) newly connects the two spanning
trees Tu and Tv, yielding a new spanning tree T . To this end, the two Euler tours represented
by Au and Av need to be joined. Let the tour of Au consist of two paths P1, P2, where P1
ends in u and P2 starts in u. Note that the last node of P2 is the same as the first node
of P1. Let the two paths Q1, Q2 be defined analogously for Av and v. Then the combined
Euler tour will be P1, (u, v), Q2, Q1, (v, u), P2.

The algorithm first joins the two chunk arrays by Concatenate(Au, Av). It splits the
edge sequence of Cu into a sequence E1

u that ends in u and the remaining sequence E2
u that

starts in u. The position where Cu needs to be split can be found using the maintained edge
pointers. E1

u remains in Cu and for E2
u a new chunk C ′

u is reserved in M and inserted in Au,
next to Cu. Similarly, the content of Cv is split into Cv and a new chunk C ′

v. Then (u, v) is
added to Cu and (v, u) to Cv.

The algorithm then restructures Au by copying the sub-arrays corresponding to Q2 and
(Q1, (v, u)) to their correct places by two calls to Reorder. This also moves P2 to its right
place. If any of the four modified chunks has fewer than K

2 edges, it is combined with a
neighbour chunk in Au: if possible, the two chunks are joined or otherwise each gets at least
K
2 edges to fulfil the invariant. This completes the restructuring of Au.

It remains to update the link information between chunks. To this end, the algorithm
first computes the link vectors for Cu, C ′

u, Cv and C ′
v. This can be done by initializing the

vector with 0⃗ and then scanning all at most 3K edges of the respective chunk. The four
resulting link vectors are then set by BulkSetLinks. The operation BulkSetLinks takes
also care of the modifications in the link vectors of all other chunks. Finally, the connected
component counter is decreased by 1.
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For the change operation DeleteEdge(u, v), we consider again two different cases: (1) the
deletion of an edge (u, v) that is not in any spanning tree and (2) the deletion of a spanning
tree edge (u, v). If there is no pointer from (u, v) to an occurence in any Euler tour, we are
in case (1) and (u, v) was not a spanning tree edge. The algorithm then checks whether
the chunk pairs linked by (u, v) are still linked without (u, v) by scanning all, thanks to the
degree bound at most 3K many edges of one of the two chunks per pair. If not, it marks the
two chunks as unlinked with Unlink.

If there are pointers from (u, v) to occurences in an Euler tour, we are in case (2) and
(u, v) was a spanning tree edge. Let P1, (u, v), P2, (v, u), P3 be the decomposition of the Euler
tour of its tree T . By two applications of Query the algorithm checks whether there are any
links between P1 and P2 or P3 and P2, respectively.

If there are no such edges then it first reorders the chunk array, so that P1 and P3 are
consecutive, moving P2 towards the end, and then splits it into the two parts P1, P3 and P2.

If there is such an edge, let us assume there are chunks C1 in P1 and C2 in P2 that are
linked. The algorithm inspects all edges in C1 in parallel and tests, whether their partner
edge is in C2. It then either picks an arbitrary edge (if the PRAM model supports that) or
computes the minimum edge with this property. Let the chosen replacement edge be (w1, w2).
Decomposing P1 into P ′

1, P ′′
1 , separated at w1, and P2 into P ′

2, P ′′
2 , separated at w2, the new

Euler cycle is P ′
1, (w1, w2), P ′′

2 , P ′
2, (w2, w1), P ′′

1 , P3. It can be constructed in T by splitting
C1 and C2 into two chunks, with the help of two newly inserted chunks, reordering the array,
and repairing small chunks, similarly to the above case of inserting a new tree edge.

The work of the algorithm is dominated by finding a replacement edge. It requires two
initial calls to Query of the ChunkArrays data type requiring O(J polylog J) or O(J1+ϵ)
work, depending on the PRAM model. Then it requires work O(K) to identify all at most 3K

possible replacement edges. In the arbitrary model the choice of the actual edge is immediate.
In the common model, it might take work O(K1+ϵ). Apart from that, the algorithm applies
a constant number of calls to operations of ChunkArrays that all require O(J polylog J)
work. By Lemma 3.5 and the choice of J and K we get the desired work bounds.

The operations ActivateNode and DeactivateNode can be easily implemented in constant
sequential time. ◀

3.2 From bounded to unbounded degree and from m to n

We first show Proposition 3.3 which alllows us to conclude that Proposition 3.2 can be lifted
to graphs without a degree restriction.

Proof sketch (of Proposition 3.3). Like for [12] our algorithm uses the well known graph
reduction already used by [5]. To maintain connectivity for an unrestricted graph G, the
algorithm maintains a graph G′ of degree at most 3, which is connected if and only if G

is connected. The number of nodes of this graph is initialised as cn, where c is as in the
statement of the proposition. The idea of the reduction is to replace each node v of G of
degree d > 3 in G′ by a cycle of length d and to connect each node of the cycle to one node
adjacent to v.

More formally, G′ has two nodes, denoted as n(u, v) and n(v, u), for each (undirected)
edge (u, v) of G and one node, denoted v, for each isolated node v of G.

For each non-isolated node u of G, the nodes of the form n(u, v) are connected in some
cyclic order. To this end, the algorithm maintains a doubly linked list of nodes of G′, for
each node u of G.

MFCS 2023



80:10 Dynamic Constant Time Parallel Graph Algorithms with Sub-Linear Work

An insertion of a new edge (u, v) into G translates into activating two new nodes n(u, v)
and n(v, u) in G′, to connect them with each other and to insert them at an arbitrary position
into the cycle of u and v respectively. Together, this yields 2 node additions, 2 edge deletions
and 5 edge insertions.

A deletion of an edge (u, v) boils down to the reverse operations: 5 edge deletions, 2 edge
insertions and 2 node deactivations.

And obviously, a connectivity query towards G can just be translated into a connectivity
query towards G′.

Altogether, each operation for G can be translated into a constant number of operations
for G′. The number of nodes of G′ is linear in the number of edges plus the number of
(isolated) nodes of G. Therefore, the work bounds Õ(m 1

2 ) and O(m 1
2 +ϵ) for G′ translates

into a work bound Õ(m 1
2 ) and O(m 1

2 +ϵ) for G. ◀

The final step towards Theorem 3.1 is to show that the work bounds Õ(m 1
2 ) and O(m 1

2 +ϵ)
for maintaining SpanningForest can be replaced by Õ(n 1

2 ) and O(n 1
2 +ϵ), thus showing

Proposition 3.4. We use the sparsification technique of [4] which has also been used in [12]
to maintain Connectivity in a parallel setting.

In a nutshell, the approach is to maintain a so-called sparsification tree S, that is a rooted
tree of logarithmic depth in n, each node u of which represents a certain subgraph Gu of G

and carries additional structure. The root represents the whole graph, each leaf represents
a subgraph consisting of (at most) one edge, and the graph of each inner node is basically
the union of the edge sets of the graphs of its children. The crucial idea is that S has an
additional base graph Bu, for each tree node, which has a subset of the edges of Gu of linear
size, and has the same connected components (viewed as sets of nodes) as Gu. Furthermore,
the algorithm maintains a spanning forest Fu of Bu (and thus for Gu), for each tree node u,
using the algorithm with work bound Õ(n 1

2 ) or O(m 1
2 +ϵ) depending on the PRAM model.

It has the invariant that, for each inner node u, Bu consists of all edges of the spanning
forests Fv, for all children v of u. As this number will be a constant (in fact: 4), the invariant
guarantees the linear number of edges of Bu.

We will see that each change operation can be basically handled by triggering change
operations along one path of the tree. Since the base graph of a node at level i has
at most cn

2i many edges, for some constant c, and, the overall work can be bounded by
Õ(n 1

2 log n) = Õ(n 1
2 ) and O(n 1

2 +ϵ′ log n) = O(n 1
2 +ϵ), if ϵ′ is chosen appropriately.8

We next describe the underlying tree structure of S in more detail. It relies9 on a node
partition tree N (G): it is a binary tree, in which each node is a set U of nodes of G. The
root is the set V of all nodes and, for each inner node U with children U1, U2, U is the
disjoint union of U1 and U2 and the sizes of U1 and U2 differ by at most 1. The leaves are
the singleton sets. Clearly this tree has depth at most log(n) + 1. We emphasise that the
partitions are independent of the edge set of G, they do not need to partition the graph into
meaningful clusters.

The edge set of G and N (G) determine the structure of the sparsification tree S and its
graphs Gu as follows. For each level i of N (G), S has one node Gu, for each pair (V1, V2)
of nodes of N (G) of level i. Here, V1 = V2 is allowed. The node set of Gu is V1 ∪ V2 and

8 In fact, using the sizes of the base graphs along a path and the “well-behavedness” of n
1
2 +ϵ, one actually

gets a O(n
1
2 +ϵ) bound, directly.

9 We remark that for our algorithm it is actually not important how the (potential) edges of the graph G
are exactly partitioned in the sparsification tree, as long as it has constant branching, logarithmic depth
and the correspondence between edge sets of nodes and of their children. The definition with the help
of the node partition tree is just one concrete way of doing it.
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the edges are the edges of G that connect a node from V1 with a node from V2. If V1 = V2,
then Gu is thus just the subgraph of G induced by V1. If U1 is the parent of V1 and U2 the
parent of V2 in N (G), then the node corresponding to (U1, U2) is the parent of (V1, V2) in S.
For a leaf u, Gu either has one edge or has no edges, if the edge for the pair (x, y) of nodes
corresponding to u is not present in G.

The base graphs Bu and the spanning forests Fu can be chosen in any way that is
consistent with the invariant that, for each inner node u, Bu consists of all edges of the
spanning forests Fv, for all children v of u.

Although our presentation slightly differs from [4, 12], the node partition tree and the
sparsification tree are basically the same as there.

Before we present the proof of Proposition 3.4, we state some helpful observations about S.
(1) Each edge (x, y) of G occurs exactly in the graphs Gu along the paths from the leaf with

(x, y) to the root.
(2) If two nodes x, y are in the same connected component in Gu, this also holds in all Gv,

where v is an ancestor of u.
(3) If an edge (x, y) occurs in some spanning forest Fu, then it occurs in all spanning forests

Fv on the path from u to the leaf containing (x, y).

Proof sketch (of Proposition 3.4). The algorithm maintains a sparsification tree S for the
graph G. For each node u of S it maintains a spanning forest Fu for Bu (and implicitly, for
Gu) with the help of the algorithm for SpanningForest from Proposition 3.3, with c = 4.

If an edge (x, y) is inserted to G, the algorithm checks, for each node u on the path π

from the leaf for (x, y) to the root, whether x and y are in the same connected component of
Tu. From Observation (2) it follows that the nodes u, for which this is not the case constitute
some initial segment of π. For all these nodes u, (x, y) is added to Bu and Tu. Furthermore,
it is added to Bv of the parent v of the last node of π.

The deletion of an edge (x, y) is slightly more complicated. For all nodes u on the path
from the leaf v with (x, y) to the root, the algorithm tests in parallel, whether (x, y) occurs
in Fu. Thanks to Observation (3), the nodes v, for which this test is positive form an
initial segment π′ of π up to some node w. For each of these nodes, the algorithm computes
a replacement edge for (x, y), if such exists. Thanks to Observation (2), a replacement
edge that works for some Fv is also a replacement edge for all nodes on π′ above v. In
particular, all edges v, for which Fv has a replacement edge form an upper segment of π′

and the replacement edge for the lowest Fv can be used for all of them. Therefore, after
doing the initial test and computing a replacement edge for each forest, constant time and
work O((log n)2) suffice to determine the lowest node w and its replacement edge e. Since
(log n)2 = O(polylog n) and (log n)2 = O(nϵ), for each ϵ > 0, this work can be neglected.
Afterwards, for each node u of π′ above w, (x, y) is deleted from Bu and Fu and instead e is
added. In the base graph of the parent of w, edge (x, y) is deleted and e added.

As already explained above, the algorithm applies at most a logarithmic (in n) number
of times an operation of the algorithm underlying Proposition 3.3, for a base graph, i.e., a
graph with O(n) edges. The desired work bound Õ(n 1

2 ) for arbitrary CRCW PRAMs is
thus immediate and by choosing in Proposition 3.3, any ϵ′ < ϵ instead of the given ϵ, we can
establish the desired work bound O(n 1

2 +ϵ) for common CRCW PRAMs. ◀

4 Bipartiteness

In this section, we show that the work bound established for Connectivity in Section 3 also
holds for Bipartiteness. In fact, the algorithm will rely on the algorithm of Proposition 3.3.
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▶ Theorem 4.1. There are dynamic parallel constant-time algorithms for Bipartiteness
with the following work bounds per change or query operation.

Õ(n 1
2 ) work on the arbitrary CRCW PRAM model.

O(n 1
2 +ϵ) work on the common CRCW PRAM model, for every ϵ > 0.

The result follows from an analogous series of statements, as for Connectivity (or
SpanningForest, for that matter).

▶ Proposition 4.2. There are dynamic parallel constant time algorithms for the special case
of Bipartiteness, where the maximum degree of the graph never exceeds 3 with the following
work bounds per change or query operation.

Õ(m 1
2 ) on the arbitrary CRCW PRAM model.

O(m 1
2 +ϵ) on the common CRCW PRAM model, for every ϵ > 0.

▶ Proposition 4.3. If Bipartiteness can be maintained in parallel constant time on a
CRCW PRAM with the work bounds of Proposition 4.2 per change or query operation, for
any ϵ > 0, for graphs with maximum degree 3, it can be maintained with the same bounds
for general graphs with the provision that they never have more than cn edges, for some
constant c.

▶ Proposition 4.4. If Bipartiteness can be maintained in parallel constant time on a
CRCW PRAM with the work bounds of Proposition 4.2 per change or query operation, then
it can also be maintained with Õ(n 1

2 ) work per change or query operation on the common
CRCW model and with O(n 1

2 +ϵ) work per change or query operation on the arbitrary CRCW
model.

For an undirected graph G = (V, E), we write G(2) for the graph10 (V, E(2)), where a
pair (u, v) of nodes is in E(2), if they are connected by a path of length exactly 2 in G.

Bipartiteness of a graph G can be characterised in the following way by the numbers of
connected components of G and G(2).

▶ Lemma 4.5. An undirected graph G is bipartite, if and only if the number of connected
components of G(2) is twice the number of connected components of G.

Proof. It suffices to show that a connected graph G is bipartite if and only if G(2) has 2
connected components.

Let us assume first that G is bipartite and let the nodes of G be coloured with black or
yellow such that no two nodes of the same color are connected by an edge. Clearly, each pair
of nodes of the same color is connected by a path of even length in G and is therefore in the
same connected component in G(2).

Towards a contradiction, let us assume that G(2) is connected. Then there must be a
yellow node u and a black node v that are connected by an edge in G(2). Therefore, there
must be a node w, such that (u, w) and (w, v) are edges in G. But w can neither be black
nor yellow, the desired contradiction.

Let us now assume that G is not bipartite and let C be a cycle of G of odd length. Then
all pairs of nodes of C are connected by paths of even length and therefore all nodes of C are
in the same connected component of G(2). But clearly, each other node of G is connected by
a path of even length to some node of C and thus G(2) is connected. ◀

10 G(2) should not be confused with the square G2 of G, where edges are induced by paths of length at
most 2.
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With the help of Lemma 4.5, it is now easy to find an algorithm for Bipartiteness for
graphs of degree at most 3.

Proof (of Proposition 4.2). To maintain bipartiteness for a graph G of maximum degree 3,
the algorithm maintains two instances of SpanningForest, one for G, and one for G(2). It
answers that G is bipartite, whenever the number of connected components of G(2) is twice
the number of connected components of G.

An edge insertion in G results in at most 6 edge insertions in G(2), and likewise for edge
deletions. Furthermore, the number of edges of G(2) is at most 3m, if m is the number of
edges of G. Therefore, Bipartiteness can be maintained in parallel constant time with
work Õ(m 1

2 ) or rather O(m 1
2 +ϵ), thanks to Proposition 3.3. ◀

Next we lift the bound to graphs of unbounded degree with the help of a bipartiteness
preserving reduction.

Proof (of Proposition 4.3). To maintain bipartiteness of graph G, the algorithm again
maintains bipartiteness for a graph G′ of maximal degree 3, such that G is bipartite if and
only if G′ is bipartite. The graph G′ results from G by applying the following replacement
step, consecutively to all (original) nodes of G.

A node u of degree d > 1 is replaced by a cycle u1, u′
1, u2, · · · , u′

d, u1 with 2d nodes. Each
node ui is connected to a neighbour of u by an edge. It is easy to see that any path that
connects two neighbours of u and uses intermediate nodes of the new cycle has even length.
The construction therefore preserves bipartiteness. Furthermore, each node in G′ has degree
at most 3 and the number of edges of G′ is at most 6 times the number of edges of G. Finally,
each edge insertion or deletion in G triggers at most 5 edge insertions or deletions in G′. ◀

The final step from work Õ(m 1
2 ) to Õ(n 1

2 ) and work O(m 1
2 +ϵ) to O(n 1

2 +ϵ) again uses
sparsification. In fact, it uses the same kind of sparsification tree as the proof of Proposition 3.4.
The crucial observation is that if a graph G is not bipartite, it has a base graph in its
sparsification tree that is not bipartite.

▶ Lemma 4.6. Let G be an undirected graph and S a sparsification tree for G. Then G is
bipartite if and only if all base graphs in S are bipartite.

Proof. Since each base graph of S is a subgraph of G, the “only if” implication is trivial.
To show the “if” implication, let G be a non-bipartite graph. Since the graph Gr for the

root r of S is non-bipartite, but all graphs Gv for leaves v of S are bipartite, there must be
a node u, such that Gu is non-bipartite, but all graphs Gw, for children w of u, are bipartite.
We claim that the base graph Bu is non-bipartite.

Indeed, let C be some cycle of odd length in Gu. By construction of S, each edge (x, y)
of C occurs in some graph Gw, where w is a child of u. Therefore, x and y are in the same
connected component of Gw and there must be a path between x and y in the spanning
forest Fw. Since Gw is bipartite and there is an edge between x and y, the length of this
path must be odd. By definition, all edges of this path are in Bu. Since this holds for every
edge of C, there exists a closed path in Bu, consisting of an odd number of paths of odd
length. This implies that Bu has a cycle of odd length and is therefore not bipartite. ◀

Now we are prepared to give the proof of Proposition 4.4 and thus complete the proof of
Theorem 4.1.

MFCS 2023
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Proof (of Proposition 4.4). Just like for Proposition 3.4, the algorithm maintains a sparsi-
fication tree S for the graph G. For each node u of S it maintains whether Bu is bipartite
with the algorithm resulting from Proposition 4.2 and Proposition 4.3. This is possible with
work bounds Õ(n 1

2 ) and O(n 1
2 +ϵ) per change operation, just as for Proposition 3.4.

On top of that, the algorithm maintains, for each node u of S, a flag, signalling whether
all base graphs in the tree induced by u are bipartite. These flags can be maintained in
a straightforward fashion with work O(log n). The bipartiteness status of G can then be
inferred from the flag of the root of S, thanks to Lemma 4.6. ◀

5 Conclusion

This paper was motivated by the goal to find graph problems whose sublinear sequential
dynamic complexity carries over to sublinear work of a dynamic parallel constant time
algorithm. In future work it has to be seen whether the faster algorithm from [1] can
be translated equally well. Another challenge is to find a dynamic parallel constant time
algorithm for the reachability problem in directed graphs. The upper work bound of the
algorithm stemming from [2] is roughly O(n12). Another interesting question is whether
the algorithm for Bipartiteness can be adapted so that it also yields a 2-colouring of the
graph.
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Abstract
Previous work on Dynamic Complexity has established that there exist dynamic constant-time
parallel algorithms for regular tree languages and context-free languages under label or symbol
changes. However, these algorithms were not developed with the goal to minimise work (or,
equivalently, the number of processors). In fact, their inspection yields the work bounds O(n2) and
O(n7) per change operation, respectively.

In this paper, dynamic algorithms for regular tree languages are proposed that generalise the
previous algorithms in that they allow unbounded node rank and leaf insertions, while improving
the work bound from O(n2) to O(nϵ), for arbitrary ϵ > 0.

For context-free languages, algorithms with better work bounds (compared with O(n7)) for
restricted classes are proposed: for every ϵ > 0 there are such algorithms for deterministic context-free
languages with work bound O(n3+ϵ) and for visibly pushdown languages with work bound O(n2+ϵ).
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1 Introduction

It has been known for many years that regular and context-free string languages and regular
tree languages are maintainable under symbol changes by means of dynamic algorithms that
are specified by formulas of first-order logic, that is, in the dynamic class DynFO [10, 7]. It
is also well-known that such specifications can be turned into parallel algorithms for the
CRCW PRAM model that require only constant time [8] and polynomially many processors.

However, an “automatic” translation of a “dynamic program” of the DynFO setting usually
yields a parallel algorithm with large work, i.e., overall number of operations performed by
all processors.1 In the case of regular languages, the dynamic program sketched in [10] has a
polynomial work bound, in which the exponent of the polynomial depends on the number of
states of a DFA for the language at hand. The dynamic program given in [7] has quadratic
work.

1 We note that in the context of constant-time parallel algorithms work is within a constant factor of the
number of processors.
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Only recently a line of research has started that tries to determine, how efficient such
constant-time dynamic algorithms can be made with respect to their work. It turned out
that regular languages can be maintained with work O(nϵ), for every ϵ > 0 [11], even
under polylogarithmic numbers of changes [12], and even with logarithmic work for star-
free languages under single changes [11] and polylogarithmic work under polylogarithmic
changes [12].

For context-free languages the situation is much less clear. The dynamic algorithms
resulting from [7] have an O(n7) upper work bound. In [11] it was shown that the Dyck-1
language, i.e., the set of well-bracketed strings with one bracket type, can be maintained
with work O((log n)3) and that Dyck-k languages can be maintained with work O(n log n).
Here, the factor n is due to the problem to test equality of two substrings of a string.

Most of these results also hold for the query that asks for membership of a substring in
the given language. For Dyck languages the upper bounds for substring queries are worse
than the bounds for membership queries: for every ϵ > 0 there exist algorithms for Dyck-1
and Dyck-k languages with work bounds O(nϵ) and O(n1+ϵ), respectively.

It was also shown in [11] that there is some context-free language that can be maintained
in constant time with work O(nω−1−ϵ), for any ϵ > 0, only if the k-Clique conjecture [1] fails.
Here, ω is the matrix multiplication exponent, which is known to be smaller than 2.373 and
conjectured by some to be exactly two according to [14].

In this paper, we pursue two natural research directions.

Regular tree languages. We first extend the results on regular string languages to regular
tree languages. On one hand, this requires to adapt techniques from strings to trees. On the
other hand, trees offer additional types of change operations beyond label changes that might
change the structure of the tree. More concretely, besides label changes we study insertions
of new leaves and show that the favourable bounds of [11] for regular string languages still
hold. This is the main contribution of this paper. Our algorithms rely on a hierarchical
partition of the tree of constant depth. The main technical challenge is to maintain such a
partition hierarchy under insertion2 of leaves.

Subclasses of context-free languages. We tried to improve on the O(n7) upper work
bound for context-free languages, but did not succeed yet. The other goal of this paper is thus
to find better bounds for important subclasses of the context-free languages: deterministic
context-free languages and visibly pushdown languages. We show that, for each ϵ > 0, there
are constant-time dynamic algorithms with work O(n3+ϵ) for deterministic context-free
languages and O(n2+ϵ) for visibly pushdown languages. Here, the main challenge is to
carefully apply the technique from [11] that allows to store information for only O(nϵ) as
opposed to n different values for some parameters. For more restricted change operations,
the algorithm for regular tree languages yields an O(nϵ) work algorithm for visibly pushdown
languages.

Structure of the paper. We explain the framework in Section 2, and present the results on
regular tree languages and context-free string languages in Sections 3 and 4, respectively.
Almost all proofs are delegated to the full version of this paper.

2 For simplicity, we only consider insertions of leaves, but deletions can be handled in a straightforward
manner, as discussed in Section 2.
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Related work. In [12], parallel dynamic algorithms for regular string languages under
bulk changes were studied. It was shown that membership in a regular language can be
maintained, for every ϵ > 0, in constant time with work O(nϵ), even if a polylogarithmic
number of changes can be applied in one change operation. If the language is star-free,
polylogarithmic work suffices. The paper also shows that for regular languages that are not
star-free, polylogarithmic work does not suffice.

Maintaining regular languages of trees under label changes has also been studied in
the context of enumeration algorithms (for non-Boolean queries) [3]. The dynamic parallel
algorithms of [11] partially rely on dynamic sequential algorithms, especially [6].

2 Preliminaries

Trees and regular tree languages. We consider ordered, unranked trees t, which we represent
as tuples (V, r, c, label), where V is a finite set of nodes, r ∈ V is the root, c : V × N → V is
a function, such that c(u, i) yields the i-th child of u, and label : V → Σ is a function that
assigns a label to every node.

We denote the set of unranked trees over an alphabet Σ as T (Σ). The terms subtree,
subforest, sibling, ancestor, descendant, depth and height of nodes are defined as usual. A
node that has no child is called a leaf. A forest is a sequence of trees.

Let ⪯ denote the order on siblings, i.e., u ≺ v denotes that u is a sibling to the left of v.
We write u ⪯ v if u ≺ v or u = v holds.

By tv we denote the subtree of t induced by node v. For sibling nodes u ≺ v, we write
utv for the subforest of the tree t, induced by the sequence u, . . . , v. If w is a node in tv,
then tv

w denotes the subtree consisting of tv without tw. Analogously, for utv
w.

Our definition of tree automata is inspired from hedge automata in the TaTa book [5],
slightly adapted for our needs.

▶ Definition 2.1. A deterministic finite (bottom-up) tree automaton (DTA) over an alphabet
Σ is a tuple B = (QB, Σ, Qf , δ, A) where QB is a finite set of states, Qf ⊆ QB is a set
of final states, A = (QA, QB, δA, s) is a DFA over alphabet QB (without final states) and
δ : QA × Σ → QB maps pairs (p, σ), where p is a state of A and σ ∈ Σ, to states of B.

We refer to states from QB as B-states and typically denote them by the letter q. Likewise
states from QA are called A-states and denoted by p. We note that we do not need a set of
accepting states for A, since its final states are fed into δ.

The semantics of DTAs is defined as follows.
For each tree t ∈ T (Σ), there is a unique run of B on t, that is, a unary function ρt

that assigns a B-state to each node in V . It can be defined in a bottom-up fashion, as
follows. For each node v ∈ V with label σ and children u1, . . . , uℓ, ρt(v) is the B-state
δ(δ∗

A(s, ρt(u1) · · · ρt(uℓ)), σ). That is, the state of a node v with label σ is determined by
δ(p, σ), where p is the final A-state that A assumes when reading the sequence of states of
v’s children, starting from the initial state s. In particular, if v is a leaf with label σ, its
B-state is δ(s, σ).

A tree t is accepted by the DTA B if ρt(r) ∈ Qf holds for the root r of t. We denote the
language of all trees accepted by B as L(B). We call the languages decided by DTAs regular.

Strings and context-free languages. Strings w are finite sequences of symbols from an
alphabet Σ. By w[i] we denote the i-th symbol of w and by w[i, j] we denote the substring
from position i to j. We denote the empty string by λ, since ϵ has a different purpose in this
paper. We use standard notation for context-free languages and pushdown automata, to be
found in the full version of this paper.

MFCS 2023
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Dynamic algorithmic problems. In this paper, we view a dynamic (algorithmic) problem
basically as the interface of a data type: that is, there is a collection of operations by which
some object can be initialised, changed, and queried. A dynamic algorithm is then a collection
of algorithms, one for each operation. We consider two main dynamic problems in this paper,
for regular tree languages and context-free languages.

For each regular tree language L, the algorithmic problem RegTree(L) maintains a
labelled tree T and has the following operations.

Init(T, r, σ) yields an initial labelled tree object T and returns in r a node id for its root,
which is labelled by σ;
Relabel(T, u, σ) changes the label of node u in T into σ;
AddChild(T, u, v, σ) adds a new child with label σ behind the last child of node u and
returns its id in v;
Query(T, v) returns true if and only if the subtree of T rooted at v is in L.

We refer to the restricted problem without the operation AddChild as RegTree−. For this
data type, we assume that the computation starts from an initial non-trivial tree and that
the auxiliary data for that tree is given initially.

For each context-free language L, the algorithmic problem CFL(L) maintains a string w

and has the following operations.
Init(w) yields an initial string object w with an empty string;
Relabel(w, i, σ) changes the label at position i of w into σ;
InsertPositionBefore(w, i, σ) and InsertPositionAfter(w, i, σ) insert a new position
with symbol σ before or after the current position i, respectively;
Query(w, i, j) returns true if and only if the substring w[i, j] is in L.

Readers may wonder, why these dynamic problems do not have operations that delete
nodes of a tree or positions in a string. This is partially to keep the setting simple and
partially because node labels and symbols offer easy ways to simulate deletion by extending
the alphabet with a symbol ⊔ that indicates an object that should be ignored. E.g., if
δA(p, ⊔) = p, for every state p of the horizontal DFA of a DTA, then the label ⊔ at a node u

effectively deletes the whole subtree induced by u for the purpose of membership in L(B).
Similarly, a CFL might have a neutral symbol or even a pair (⊔, )⊔ of “erasing” brackets that
make the PDA ignore the substring between (⊔ and )⊔.

For RegTree(L) and CFL(L), the Init operation is possible in constant sequential
time and will not be considered in detail.

Throughout this paper, n will denote an upper bound of the size of the structure at hand
(number of nodes of a tree or positions of a string) that is linear in that size, but changes
only infrequently. More precisely, the number of nodes of a tree or the length of the string
will always be between 1

4 n and n. Whenever the size of the structure grows beyond 1
2 n, the

data structure will be prepared for structures of size up to 2n and, once this is done, n will
be doubled. Since the size of the structure is always θ(n) all bounds in n also hold with
respect to the size of the structure.

Parallel Random Access Machines (PRAMs). A parallel random access machine (PRAM)
consists of a number of processors that work in parallel and use a shared memory. The
memory is comprised of memory cells which can be accessed by a processor in O(1) time.
Furthermore, we assume that simple arithmetic and bitwise operations, including addition,
can be done in O(1) time by a processor. We mostly use the Concurrent-Read Concurrent-
Write model (CRCW PRAM), i.e. processors are allowed to read and write concurrently from
and to the same memory location. More precisely, we assume the common PRAM model:
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several processors can concurrently write into the same memory location, only if all of them
write the same value. We also mention the Exclusive-Read Exclusive-Write model (EREW
PRAM), where concurrent access is not allowed. The work of a PRAM computation is the
sum of the number of all computation steps of all processors made during the computation.
We define the space s required by a PRAM computation as the maximal index of any memory
cell accessed during the computation. We refer to [9] for more details on PRAMs and to [13,
Section 2.2.3] for a discussion of alternative space measures.

The main feature of the common CRCW model relevant for our algorithms that separates
it from the EREW model is that it allows to compute the minimum or maximum value of an
array of size n in constant time (with work O(n1+ϵ)) which is shown in another paper at
MFCS 2023.3

For simplicity, we assume that even if the size bound n grows, a number in the range [0, n]
can still be stored in one memory cell. This assumption is justified, since addition of larger
numbers N can still be done in constant time and polylogarithmic work on a CRCW PRAM.
Additionally, we assume that the number of processors always depends on the current size
bound n. Hence, the number of processors increases with growing n which allows us to use
the PRAM model with growing structures.

We describe our PRAM algorithms on an abstract level and do not exactly specify how
processors are assigned to data. Whenever an algorithm does something in parallel for a
set of objects, these objects can be assigned to a bunch of processors with the help of some
underlying array. This is relatively straightforward for strings and substrings and the data
structures used in Section 4. In Section 3, it is usually based on zone records and their
underlying partition records.

3 Maintaining regular tree languages

In this section, we present our results on maintaining regular tree languages under various
change operations. We will first consider only operations that change node labels, but do
not change the shape of the given tree. A very simple dynamic algorithm with work O(n2)
is presented in the full version of this paper. We sketch its main idea and how it can be
improved to O(nϵ) work per change operation by using a partition hierarchy in Subsection 3.1.
These algorithms even work on the EREW PRAM model.

Afterwards, in Subsection 3.2, we also consider an operation that can change the tree
structure: adding a leaf to the tree. Here, the challenge is to maintain the hierarchical
structure that we used before to achieve work O(nϵ) per change operation. It turns out
that maintaining this structure is possible without a significant increase of work, that is,
maintaining membership under these additional operations is still possible with work O(nϵ)
per change operation.

3.1 Label changes: a work-efficient dynamic program

In this section, we describe how membership in a regular tree language can be maintained
under label changes, in a work efficient way.

3 Jonas Schmidt, Thomas Schwentick. Dynamic constant time parallel graph algorithms with sub-linear
work.
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▶ Proposition 3.1. For each ϵ > 0 and each regular tree language L, there is a parallel
constant time dynamic algorithm for RegTree−(L) with work O(nϵ) on an EREW PRAM.
The Query operation can actually be answered with constant work.

We start by briefly sketching the O(n2) work algorithm that is given in the full version
of this paper. The algorithm basically combines the dynamic programs for regular string
languages and binary regular tree languages from [7]. For regular string languages, the
program from [7] stores the behaviour of a DFA for the input word w by maintaining
information of the form “if the run of the DFA starts at position i of w and state p, then it
reaches state q at position j” for all states p, q and substrings w[i, j]. After a label change at
a position ℓ, this information can be constructed by combining the behaviour of the DFA
on the intervals w[i, ℓ − 1] and w[ℓ + 1, j] with the transitions induced by the new label at
position ℓ.

The dynamic program for (binary) regular tree languages from [7] follows a similar idea
and stores the behaviour of a (binary) bottom-up tree automaton by maintaining information
of the form “if v gets assigned state q, then u gets assigned state p by the tree automaton”
for all states p, q and all nodes v, u, where v is a descendant of u.

Both programs induce algorithms with O(n2) work bounds. Towards a O(n2) work
algorithm for unranked tree languages, the two dynamic programs can be combined into
an algorithm that mainly stores the following automata functions for a fixed DTA B =
(QB, Σ, Qf , δ, A) for L, with DFA A = (QA, QB, δA, s):

The ternary function Bt : QB × V × V 7→ QB maps each triple (q, u, v) of a state q ∈ QB
and nodes of t, where u is a proper ancestor of v, to the state that the run of B on tu

v

takes at u, with the provision that the state at v is q.
The ternary function At : QA × V × V 7→ QA maps each triple (p, u, v) of a state p ∈ QA
and nodes of t, where u ≺ v are siblings, to the state that the run of A on u, . . . , v,
starting from state p, takes after v.

Every single function value can be updated in constant sequential time, as stated in the
following lemma. This leads to a quadratic work bound since there are quadratically many
tuples to be updated in parallel.

▶ Lemma 3.2. After a Relabel operation, single values At(p, u, x) and Bt(q, u, x) can be
updated by a sequential algorithm in constant time.

Some information about the shape of the tree is required, which we refer to as basic tree
functions. For more details we refer to the full version of this paper. However, as label
changes cannot change the shape of the tree, this information does not need to be updated
und can be assumed as precomputed.

To lower the work bound the basic idea now is to store the automata functions not for all
possible arguments, but for a small subset of special arguments that allow the computation
of function values for arbitrary arguments in constant time with constant work.

In [11], this idea was applied to the O(n2) work program for regular string languages. A
constant-depth hierarchy of intervals was defined by repeatedly partitioning intervals into
O(nθ) subintervals, for some θ > 0. This hierarchy allowed to define special intervals such
that any update only affects O(nϵ) intervals and function values of arbitrary intervals can be
computed in constant time with constant work.

We transfer this idea to the case of unranked tree languages by partitioning the tree into
O(nθ) zones, each of which is partitioned into further O(nθ) zones and so on until, after a
constant number of refinements, we arrive at zones of size O(nθ). Here, θ > 0 is a constant
that will be chosen later. It will always be chosen such that h = 1

θ is an integer.
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Figure 1 Example of a (1, 1
3 )-bounded partition hierarchy.

Before we define this partition hierarchy more precisely, we first define zones and show
that they can always be partitioned in a way that guarantees certain number and size
constraints.

▶ Definition 3.3. A zone is a set S of nodes with the following properties:
S is a proper subforest of t,
for every v ∈ S it holds that either no or all children are in S, and
there exists at most one node vS in S, whose children are not in S. The node vS is called
the vertical connection node of S.

We call a zone a tree zone if it consists of only one sub-tree of t and a non-tree zone otherwise.
We call a zone incomplete if it has a vertical connection node and complete, otherwise. There
are thus four different types of zones which can be written, with the notation introduced in
Section 2, as follows: complete tree zones tv, complete non-tree zones utv, incomplete tree
zones tv

w, and incomplete non-tree zones utv
w. Depending on the type, zones can therefore be

represented by one to three “important nodes”. The overall tree can be seen as the zone tr,
where r is its root.

From now on, we always assume that n is as in Section 2, some θ > 0 is fixed, and that
h = 1

θ is an integer.
We call a zone of t with at most nθℓ nodes an ℓ-zone. The tree t itself constitutes a

h-zone, to which we will refer to as the overall zone.
We next define partition hierarchies formally. More precisely, for every ℓ ≥ 2, we define

partition hierarchies of height ℓ for ℓ-zones as follows. If S is a 2-zone and S1, . . . , Sk are
1-zones that constitute a partition of S, then (S, {S1, . . . , Sk}) is a partition hierarchy of
height 2 for S. If S is an (ℓ + 1)-zone, {S1, . . . , Sk} is a partition of S into ℓ-zones, and for
each j, Hj is a partition hierarchy of height i for Sj , then (S, {H1, . . . , Hk}) is a partition
hierarchy of height ℓ + 1 for S. A partition hierarchy of height h of the zone consisting of t

is called a partition hierarchy of t.
An example of a (1, 1

3 )-bounded partition hierarchy is given in Figure 1.
We often call a zone S′ that occurs at some level i < ℓ within the partition hierarchy of a

zone S of some level ℓ a component zone. If S′ has level ℓ − 1 we also call it a sub-zone of S.
We call a partition hierarchy H (c, θ)-bounded, constants c and θ > 0, if each partition of

a zone consists of at most cnθ nodes.
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Our next aim is to prove that (10, θ)-bounded partition hierarchies actually exist. To
this end, we prove the following lemma. It is similar to [4, Lemma 3], but adapted to our
context, which requires a hierarchy of constant depth and a certain homogeneity regarding
children of vertical connection nodes.

▶ Lemma 3.4. Let m ≥ 2 be a number and S a zone with more than m nodes. Then S can
be partitioned into at most five zones, one of which has at least 1

2 m and at most m nodes.

This lemma immediately yields the existence of (10, θ)-bounded partition hierarchies.

▶ Proposition 3.5. For each θ > 0, each tree t has some (10, θ)-bounded partition hierarchy.

We now explain in more detail, which information about the behaviour of A and B is
stored by the work-efficient algorithm.

Function values for the ternary functions are stored only for so-called special pairs of
nodes, which we define next. Special pairs of nodes are always defined in the context of some
zone S of a partition hierarchy. In the following, we denote, for a zone S of a level ℓ ≥ 2 its
set of sub-zones of level ℓ − 1 by T .

Any pair of siblings u ≺ v in a zone S of level 1 is a special horizontal pair. A pair
of siblings u ≺ v in a complete zone S of level ℓ ≥ 2 is a special horizontal pair, if
u is a left boundary of some zone in T and v is a right boundary of some zone in T .
However, if S is incomplete and there is an ancestor w′ of the lower boundary w with
u ⪯ w′ ⪯ v, then, instead of (u, v), there are two special pairs: (u, left-sibling(w′))
and (right-sibling(w′), v).
Any pair of nodes u, v in some zone S of level 1 is a special vertical pair, if v is an ancestor
of u. A pair of nodes u, v in some zone S of level ℓ ≥ 2 is a special vertical pair, if v is
an ancestor of u, v is an upper or lower boundary of some zone in T and u is a lower
boundary of some zone in T . However, if S is incomplete with lower boundary w and
w′ := lca(w, u) is strictly above u and below or equal to v, then, instead of (u, v), there
are two special pairs: (u, anc-child(w′, u)) and (w′, v). Here lca determines the least
common ancestor and anc-child the child of w′ that is an ancestor of u.

The algorithm stores At(p, u, v) for each state p of A and each special horizontal pair u, v.
Furthermore, it stores Bt(q, u, v), for each state q of B and each special vertical pair u, v.

We note, that in all cases At(p, u, v) and Bt(q, u, v) only depend on the labels of the
nodes in the zone, for which (u, v) is special.

▶ Lemma 3.6. From the stored values for functions At and Bt for special pairs, it is possible
to compute ρt(v), for arbitrary nodes v, At(p, u, u′) for arbitrary pairs u ≺ u′ of siblings of t

and Bt(q, u, u′) for arbitrary pairs u, u′ of nodes, where u′ is an ancestor of u, sequentially
in constant time.

This enables us to show the O(nϵ) work bound for label changes.

Proof of Proposition 3.1. To achieve the stated bound, we use the above algorithm with
work parameter θ = ϵ

2 . The algorithm uses a (θ, 10)-bounded partition hierarchy, which
exists thanks to Proposition 3.5.

As indicated before, the algorithm stores At(·, u, v) and Bt(·, u, v), for all special pairs
(u, v). As already observed before, these values only depend on the labels of the nodes of
the zone relative to which (u, v) is special. Therefore, if a node label is changed for some
node x, values At(·, u, v) and Bt(·, u, v) need only be updated for special pairs of zones in
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which x occurs. Since each node occurs in exactly h zones and each zone has O(n2θ) = O(nϵ)
special pairs, h · O(nϵ) processors can be used, where every processor updates a single value
in constant time and work, as is possible thanks to Lemma 3.2 and Lemma 3.6. Since the
shape of the tree does not change we can assume a mapping from the updated node and the
processor number to the special tuple that the respective processor recomputes. ◀

3.2 Structural Changes
In Proposition 3.1 only label changes were allowed, so the structure of the underlying tree
did not change. In particular, there was no need to update any of the basic tree functions.

In this subsection, we consider structural changes of the tree. We show that the work
bounds of Proposition 3.1 can still be met for the full data types RegTree(L).

▶ Theorem 3.7. For each regular tree language L and each ϵ > 0, there is a dynamic constant
time parallel algorithm for RegTree(L) that handles change operations with work O(nϵ)
and answers query operations with constant work.

In the next subsection, we describe the general strategy of the algorithm, define some
notions that will be used and present its proof. Then, in a second subsection, we give some
more detailed information about the data that is stored and how it can be maintained.

3.2.1 High-level description of the dynamic algorithm
Our approach generalises the algorithm of Subsection 3.1. It makes sure that, at any point
in time, there is a valid partition hierarchy together with corresponding tree and automata
functions. The general strategy of the dynamic algorithm is to add new leaves to their
nearest zone. In principle, this is not hard to handle – unless it leads to a violation of a size
constraint of some zone. As soon as zones exceed a certain size bound the affected parts of
the hierarchy will thus be recomputed to ensure the size constraints.

For reasons that will become clearer below, we need to slightly modify the definition
of partition hierarchies, basically by omitting the lowest two levels. To this end, we define
3-pruned partition hierarchies just like we defined partition hierarchies, but the lowest level
is at height 3. More precisely, a 3-pruned partition hierarchy of height 3 is just a 3-zone,
and 3-pruned partition hierarchies of height ℓ > 3 are inductively defined just like partition
hierarchies of height ℓ. It is clear that a 3-pruned partition hierarchy exists for each tree
by ommiting the two lowest levels in the partition hierarchy computed in Proposition 3.5.
Moreover, using a 3-pruned partition hierarchy as basis for our efficient label change approach
still ensures the sequential constant time computation of arbitrary automaton function values
from the stored values for special pairs. However, zones on the lowest level have size O(n3θ)
leading to a work bound of O(n6θ) per change operation.

To ensure that at each point in time, a usable partition hierarchy is available, the general
strategy is as follows: the algorithm starts from a strong partition hierarchy in which zones
at level ℓ have size at most 1

4 nℓθ, well below the maximum allowed size of such a zone of
nℓθ. As soon as the size of a zone S at level ℓ reaches its warning limit 1

2 nℓθ, the algorithm
starts to compute a new partition hierarchy for the parent zone S′ of S at level ℓ + 1. This
computation is orchestrated in a way that makes sure that the new partition hierarchy for
S′ is ready (together with all required function values) before S reaches its size limit nℓθ, at
which point the old partition hierarchy for S′ becomes useless.

Since a partition hierarchy of the whole tree together with the required function values
has size Ω(n), its computation inherently requires that amount of work and it can probably
not be done in constant time. Furthermore, since we aim at work O(nϵ) per operation, the
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algorithm cannot afford to do the re-computation “as fast as possible” but rather needs
to stretch over at least n1−ϵ steps. However, the fact that the tree can change during a
re-computation poses a challenge: if many change operations happen with respect to a
particular zone in a low level of the new partition hierarchy, this new zone might reach its
warning limit and then its hard limit, before the overall re-computation of the hierarchy has
finished. This challenge can be met by a careful orchestration of the re-computation.

We will next describe the data structure that the dynamic algorithm uses to orchestrate
re-computations of partition hierarchies. As mentioned before, there will always be a valid
partition hierarchy. However, for some zones, re-computations might be underway. The
algorithm will always manage to complete the re-computation of a partition hierarchy for a
zone of level ℓ, before any of the subzones of level (ℓ − 1) of the new partition reaches its
warning limit. Therefore, for each zone within the data structure, there is always at most one
partition hierarchy under construction, and therefore each zone has at any time at most two
partition records. If a zone actually has two partition records, one of them contains a usable
partition hierarchy. We formalise usability of a partition hierarchy by the term operable and
tie the whole data structure together through the following notion of zone records. It is
defined in an inductive fashion, together with the concept of partition records.

▶ Definition 3.8. A zone record of level 3 is a 3-zone. A zone record of level ℓ > 3 consists
of an ℓ-zone S and up to two partition records P1, P2 of level ℓ for S. If it has two partition
records then P1 is complete and P2 is incomplete.

A partition record (Z, M) of level ℓ > 3 for an ℓ-zone S consists of a set Z of zone records
of level ℓ − 1 and a set M of zones, such that the zones from Z and the zones from M

together constitute a partition of S. A partition record Z of level ℓ is valid, if all zones of its
zone records are actual (ℓ − 1)-zones.

A zone record of level 3 is operable.
A partition record at level ℓ > 3 is operable, if it is valid and all its zone records are

operable. A zone record of level ℓ > 3 is operable, if its first partition record is operable.

We refer to the hierarchical structure constituting the overall zone record as the extended
partition hierarchy. Within the extended partition hierarchy, we are particularly interested in
“operable substructures”. To this end, we associate with an operable zone record, the primary
partition hierarchy that results from recursively picking the operable partition record from
each zone record.

Altogether, the algorithm maintains an extended partition hierarchy for t.
Before we describe how the algorithm stores the extended partition hierarchy, we need two

more concepts. For each zone record R of a level ℓ there is a sequence Rh, . . . , Rℓ = R of zone
records such that, for each i ≥ ℓ, Ri is a zone record that occurs in a partition record of Ri+1.
This sequence can be viewed as the address of R in the extended partition hierarchy. Fur-
thermore, this address induces a finger print for R: the sequence status(Rh), . . . , status(Rℓ),
where status(Ri) is either operable or in progress. It is a simple but useful observation that
if a tree node v occurs in two zones with zone records R ̸= R′ within the extended partition
hierarchy, then the finger prints of R and R′ are different. Consequently a tree node occurs
in at most 2h and thus, a constant number of zones in the extended partition hierarchy.

Now we can describe, how the algorithm stores t and the extended partition hierarchy.
A zone record of level 3 is represented as an array of O(nθ) nodes.
A zone record of a level ℓ > 3 consists of up to four boundary nodes and up to two
pointers to partition records. The operable partition record is flagged.
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Each zone record of level ℓ ≥ 3 with finger print pa, also stores a pointer to its zone on
level ℓ + 1 with finger print p, and three pointers to the zone records of its parent, first
child and right sibling zones.
A partition record (Z, M) is represented as an array of zone records (some of which may
be zones of M). The zones records from Z are flagged.
The nodes of t are stored in an array (in no particular order) together with pointers for
the functions parent, left-sibling, right-sibling, first-child, and last-child.
For each node v, and each possible finger print p, a pointer Zp(v) to its zone with finger
print p.

Now we are prepared to outline the proof of Theorem 3.7.

Proof (of Theorem 3.7). Let B be a DTA for the regular tree language L and let θ = ϵ
7 .

The dynamic algorithm stores t and an extended partition hierarchy as described above. It
also stores some additional function values, including values for the automata functions, that
will be specified in Subsubsection 3.2.2.

Some functions are independent from zones and are stored for all nodes. Some other
functions are independent from zones but are only stored for particular node tuples that are
induced from zones (like it was already the case for the automata functions in Subsection 3.1)
and some functions are actually defined for (tuples of) zones.

After each change operation, the algorithm updates function values, pursues re-
computations of hierarchies and computes function values that are needed for newly estab-
lished zones. It starts a re-computation for a zone S, whenever one of its subzones reaches
its warning limit. It starts a re-computation of the overall zone, whenever the number of
nodes of t reaches 1

2 n.
The algorithm has one thread for each zone with an ongoing re-computation, that is, for

each zone whose zone record is not yet operable.
A re-computation for a zone at level ℓ requires the computation of O(nθ) zones of level

ℓ − 1, each of which yields re-computations of O(nθ) zones of level ℓ − 2 and so forth, down to
level 3. It is easy to see that the overall number of zones that needs to be computed during
a re-computation of a zone at level ℓ is bounded by O(n(ℓ−3)θ). The re-computation of the
overall zone requires the computation of at most O(n1−3θ) zones. We show in Lemma 3.9
that, in the presence of a primary partition hierarchy for the overall zone, the computation
of a new zone is possible in constant time with work O(n6θ).

The thread for the re-computation of a zone at level ℓ thus (first) consists of O(n(ℓ−3)θ)
computations of component zones, each of which is carried out in constant time with work
O(n6θ). We refer to such a re-computation as a round. A thread thus consists of O(n(ℓ−3)θ)
rounds of zone computations. The thread follows a breadth-first strategy, that is, it first
computes all zones of level ℓ − 1 then the sub-zones of those zones at level ℓ − 2 and so
forth. Once the zone record of a zone S is operable, the thread computes in its second phase
all function values associated to S. This can be done in constant time with work O(n7θ)
per sub-zone of S, as is shown in the full version of this paper. That is, it requires at most
O(n(ℓ−3)θ) additional rounds.

We note that it does not matter if the primary partition hierarchy H required for
Lemma 3.9 changes during the computation of a thread, since H is only used to make the
identification of a new zone more efficient.

To address the above mentioned challenge, the algorithm starts a separate thread for
each zone that is newly created during this process. That is, for each zone at level ℓ − 1, an
additional re-computation thread is started, as soon as the zone is created.
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Now we can state the orchestration strategy for re-computations. This strategy is actually
very simple:

Re-computation strategy: After each change operation affecting some node
v, the algorithm performs one computation round, for all threads of zones S, at any
level, with v ∈ S.

That is, thanks to the above observation, after a change operation, there are at most
2h threads for which one computation round is performed. Since 2h is a constant, these
computations together require work at most O(n7θ).

On the other hand, the whole re-computation for a zone S at level ℓ, including the
computation of the relevant function values, is finished after at most O(n(ℓ−3)θ) change
operations that affect S. Since 1

2 n(ℓ−1)θ leaf additions are needed to let a sub-zone S′

grow from the warning limit 1
2 n(ℓ−1)θ to the hard limit n(ℓ−1)θ, it is guaranteed that the

re-computation thread for S is completed, before S′ grows too large. In fact, this is exactly,
why partition hierarchies are 3-pruned. When a re-computation of the overall zone was
triggered by the size of t, n is doubled as soon as this re-computation is completed.

Thanks to Lemma 3.11 the overall work to update the stored function values for all
affected zones (in constant time) after a change operation is O(n3θ).

Altogether, the statement of the theorem follows by choosing θ = ϵ
7 . ◀

We state the lemma about the computation of new zones next. The partition hierarchy
is used as a means to assign evenly distributed nodes to processors and to do parallel search
for nodes with a particular property regarding the number of their descendants.

▶ Lemma 3.9. Given a tree t, a 3-pruned partition hierarchy H of t, and a zone S with at
least m nodes, S can be partitioned into at most five zones, one of which has at least 1

2 m

and at most m nodes, in constant time with work O(n6θ).

3.2.2 Maintaining functions
In Subsection 3.1, the tree functions were static and given by the initialisation. Only the
automata functions needed to be updated. However, if leaf insertions are allowed, the tree
functions can change. To keep the algorithm efficient, the special pairs need to be adapted
to the evolution of the partition hierarchy, and tree functions can no longer be stored for all
possible arguments. Furthermore, additional tree functions and functions defined for zones
will be used.

The stored information suffices to compute all required functions in constant time, and
almost all of them with constant work.

▶ Lemma 3.10. Given a tree t, a 3-pruned partition hierarchy H of t, and the stored
information as described above, for each θ > 0, the child function can be evaluated in O(1)
time with work O(nθ). All other functions can be evaluated for all tuples with constant work.

Furthermore, all stored information can be efficiently updated, with the help of and in
accordance with the current primary partition hierarchy.

▶ Lemma 3.11. Let θ > 0 and H be a 3-pruned partition hierarchy of t with automata and
tree functions. The stored information described above can be maintained after each Relabel
and AddChild operation in constant time with O(n6θ) work per operation.
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4 Maintaining context-free languages

As mentioned in the introduction, an analysis of the dynamic program that was used in [7]
to show that context-free languages can be maintained in DynFO yields the following result.

▶ Theorem 4.1 ([7, Proposition 5.3]). For each context-free language L, there is a dynamic
constant-time parallel algorithm on a CRCW PRAM for CFL(L) with O(n7) work.

There is a huge gap between this upper bound and the conditional lower bound of O(nω−1−ϵ),
for any ϵ > 0, derived from the k-Clique conjecture [1], where ω < 2.373 [11]. Our attempts
to make this gap significantly smaller, have not been successful yet. However, for realtime
deterministic context-free languages and visibly pushdown languages, more efficient dynamic
algorithms are possible, as shown in the following two subsections.

4.1 Deterministic context-free languages
Realtime deterministic context-free languages are decided by deterministic PDAs without
λ-transitions (RDPDAs).

▶ Theorem 4.2. For each realtime deterministic context-free language L and each ϵ > 0,
there is a dynamic constant-time parallel algorithm on a CRCW PRAM for CFL(L) with
O(n3+ϵ) work.

Given an RDPDA A for L, a configuration C = (p, u, s) consists of a state p, a string
u that is supposed to be read by A and a string s, the initial stack content. We use the
following functions δstate, δstack, and δempty to describe the behaviour of A on configurations.

δstate(C) yields the last state of run(C).
δstack(C) yields the stack content at the end of run(C).
δempty(C) is the position in u, after which run(C) empties its stack. It is zero, if this
does not happen at all.

The algorithm maintains the following information, for each simple configuration C = (p, u, τ ),
where u = w[i, j], for some i ≤ j, for each suffix v = w[m, n] of w, where j < m, each state
q, and some k ≤ n.

δ̂(C) defined as the tuple (δstate(C), |δstack(C)|, top1(δstack(C)), δempty(C), ), consisting of
the state, the height of the stack, the top symbol of the stack, at the end of the run on C

and the position where the run ends. If the run empties the stack prematurely or at the
end of u, then top1(δstack(C)) is undefined;
push-pos(C, k), defined as the length of the longest prefix x of u, such that
|δstack(p, x, τ)| = k. Informally this is the position of u at which the k-th symbol
of δstack(C), counted from the bottom, is written;
pop-pos(C, q, v, k), defined as the pair (o, r), where o is the length of the prefix v′ of v,
for which run(q, v, topk(δstack(C))) empties its stack at the last symbol of v′, and r is the
state it enters.

However, tuples for push-pos and pop-pos are only stored for values k of the form anbθ, for
integers b < 1

θ and a ≤ nθ, for some fixed θ > 0. A more detailed account is given in the full
version of this paper.

4.2 Visibly pushdown languages
Visibly pushdown languages are a subclass of realtime deterministic CFLs. They use pushdown
alphabets of the form Σ̃ = (Σc, Σr, Σint) and deterministic PDA that always push a symbol
when reading a symbol from Σc, pop a symbol when reading a symbol from Σr and leave the
stack unchanged otherwise. We refer to [2] for more information.
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There is a correspondence between wellformed strings over a pushdown alphabet and
labelled trees, where each matching pair (a, b) of a call symbol from Σc and a return symbol
from Σr is represented by an inner node with label (a, b) and each other symbol by a leaf.
From Theorem 3.7 and this correspondence the following can be concluded.

▶ Proposition 4.3. For each visibly pushdown language L and each ϵ > 0, there is a dynamic
constant-time parallel algorithm on a CRCW PRAM for VPL−(L) with O(nϵ) work.

Here, VPL−(L) only allows the following change operations:
Replacement of a symbol by a symbol of the same type;
Insertion of an internal symbol from Σint before a return symbol;
Replacement of an internal symbol by two symbols ab, where a ∈ Σc and b ∈ Σr.

For arbitrary symbol replacements and insertions, there is a much less work-efficient
algorithm which, however, is still considerably more efficient than the algorithm for DCFLs.

▶ Theorem 4.4. For each visibly pushdown language L and each ϵ > 0, there is a dynamic
constant-time parallel algorithm on a CRCW PRAM for VPL(L) with O(n2+ϵ) work.

The work improvement mainly relies on the fact that how the height of the stack evolves
during a computation only depends on the types of symbols.

5 Conclusion

We have shown that the good work bounds for regular string languages from [11] carry over
to regular tree languages, even under some structural changes of the tree. In turn they
also hold for visibly pushdown languages under limited change operations. For realtime
deterministic context-free languages and visibly pushdown languages under more general
change operations better work bounds than for context-free languages could be shown.

There are plenty of questions for further research, including the following: are there other
relevant change operations for trees that can be handled with work O(nϵ)? What are good
bounds for further operations? Can the bounds for context-free languages be improved?
Can the O(n3+ϵ) be shown for arbitrary (not necessarily realtime) DCFLs? And the most
challenging: are there further lower bound results that complement our upper bounds?
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Logical Equivalences, Homomorphism
Indistinguishability, and Forbidden Minors
Tim Seppelt #
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Abstract
Two graphs G and H are homomorphism indistinguishable over a class of graphs F if for all graphs
F ∈ F the number of homomorphisms from F to G is equal to the number of homomorphisms
from F to H. Many natural equivalence relations comparing graphs such as (quantum) isomorphism,
spectral, and logical equivalences can be characterised as homomorphism indistinguishability relations
over certain graph classes.

Abstracting from the wealth of such instances, we show in this paper that equivalences w.r.t.
any self-complementarity logic admitting a characterisation as homomorphism indistinguishability
relation can be characterised by homomorphism indistinguishability over a minor-closed graph class.
Self-complementarity is a mild property satisfied by most well-studied logics. This result follows
from a correspondence between closure properties of a graph class and preservation properties of its
homomorphism indistinguishability relation.

Furthermore, we classify all graph classes which are in a sense finite (essentially profinite) and
satisfy the maximality condition of being homomorphism distinguishing closed, i.e. adding any
graph to the class strictly refines its homomorphism indistinguishability relation. Thereby, we
answer various questions raised by Roberson (2022) on general properties of the homomorphism
distinguishing closure.
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1 Introduction

In 1967, Lovász [23] proved that two graphs G and H are isomorphic if and only if they
are homomorphism indistinguishable over all graphs, i.e. for every graph F , the number
of homomorphisms from F to G is equal to the number of homomorphisms from F to H.
Since then, homomorphism indistinguishability over restricted graph classes has emerged as
a powerful framework for capturing a wide range of equivalence relations comparing graphs.
For example, two graphs have cospectral adjacency matrices iff they are homomorphism indis-
tinguishable over all cycles, cf. [13]. They are quantum isomorphic iff they are homomorphism
indistinguishable over all planar graphs [25].

Most notably, equivalences with respect to many logic fragments can be characterised
as homomorphism indistinguishability relations over certain graph classes [19, 12, 27, 31].
For example, two graphs satisfy the same sentences of k-variable counting logic iff they are
homomorphism indistinguishable over graphs of treewidth less than k [14]. All graph classes
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Table 1 Overview of results on equivalent properties of a homomorphism distinguishing closed
graph class F and of its homomorphism indistinguishability relation ≡F .

Closure property of F Preservation property of ≡F Theorem
taking minors complements Theorem 9
taking summands disjoint unions Theorem 5
taking subgraphs full complements Theorem 6
taking induced subgraphs left lexicographic products Theorem 12
contracting edges right lexicographic products Theorem 13

featured in such characterisations are minor-closed and hence of a particularly enjoyable
structure. The main result of this paper asserts that this is not a mere coincidence: In fact,
logical equivalences and homomorphism indistinguishability over minor-closed graph classes
are intimately related.

To make this statement precise, the term “logic” has to be formalised. Following [15],
a logic on graphs is a pair (L, |=) of a class L of sentences and an isomorphism-invariant1

model relation |= between graphs and sentences. Two graphs G and H are L-equivalent
if G |= φ iff H |= φ for all φ ∈ L. One may think of a logic on graphs as a collection of
isomorphism-invariant graph properties. A logic is called self-complementary if for every
φ ∈ L there is an element φ ∈ L such that G |= φ if and only if G |= φ. Here, G denotes the
complement graph of G. Roughly speaking, a fragment/extension L of first-order logic is
self-complementary if expressions of the form Exy can be replaced by ¬Exy ∧ (x ̸= y) in
every formula while remaining in L. This lax requirement is satisfied by many logics including
first-order logic, counting logic, second-order logic, fixed-point logics, and bounded variable,
quantifier depth, or quantifier prefix fragments of these. All these examples are subject to
the following result:

▶ Theorem 1. Let (L, |=) be a self-complementary logic on graphs for which there exists a
graph class F such that two graphs G and H are homomorphism indistinguishable over F
if and only if they are L-equivalent. Then there exists a minor-closed graph class F ′ whose
homomorphism indistinguishability relation coincides with L-equivalence.

Theorem 1 can be used to rule out that a given logic has a homomorphism indistin-
guishability characterisation (Corollary 17). Furthermore, it allows to use the deep results of
graph minor theory to study the expressive power of logics on graphs (Theorem 22).

Theorem 1 is product of a more fundamental study of the properties of homomorphism
indistinguishability relations. In several instances, it is shown that closure properties of a
graph class F correspond to preservation properties of its homomorphism indistinguishability
relation ≡F . These efforts yield answers to several open questions from [32]. A prototypical
result is Theorem 2, from which Theorem 1 follows. For further results in the same vein
concerning other closure properties, e.g. under taking subgraphs, see Table 1.

▶ Theorem 2. Let F be a homomorphism distinguishing closed graph class. Then F is
minor-closed if and only if ≡F is preserved under taking complements, i.e. for all simple
graphs G and H it holds that G ≡F H if and only if G ≡F H.

Here, the graph class F is homomorphism distinguishing closed [32] if for every K ̸∈ F
there exist graphs G and H which are homomorphism indistinguishable over F but differ in
the number of homomorphisms from K. In other words, adding even a single graph to F
would change its homomorphism indistinguishability relation.

1 For all φ ∈ L and graphs G and H such that G ∼= H, it holds that G |= φ iff H |= φ.
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Proving that a graph class is homomorphism distinguishing closed is a pathway to
separating equivalence relations comparing graphs [33]. However, establishing this property is
a notoriously hard task. Thus, a general result establishing the homomorphism distinguishing
closedness of a wide range of graph classes would be desirable. In [32], Roberson conjectured
that every graph class closed under taking minors and disjoint unions is homomorphism
distinguishing closed. At present, this conjecture has only been verified for few graph
classes [32, 28].

Our final result confirms Roberson’s conjecture for all graph classes which are in a certain
sense finite. The expressive power of homomorphism counts from finitely many graphs is
of particular importance in practice. Applications include the design of graph kernels [21],
motif counting [2, 26], or machine learning on graphs [6, 30, 20]. A theoretical interest stems
for example from database theory where homomorphism counts correspond to results of
queries under bag-semantics [8, 22], see also [9].

Since every homomorphism distinguishing closed graph class is closed under taking disjoint
unions, infinite graph classes arise inevitably when studying homomorphism indistinguishab-
ility over finite graph classes. We introduce the notions of essentially finite and essentially
profinite graph classes (Definition 23) in order to capture the nevertheless limited behaviour
of graph classes arising from the finite. Examples for essentially profinite graph classes include
the class of all minors of a fixed graph and the class of cluster graphs, i.e. disjoint unions
of arbitrarily large cliques. In Theorem 24, the essentially profinite graph classes which are
homomorphism distinguishing closed are fully classified. Thereby, the realm of available
examples of homomorphism distinguishing closed graph classes is drastically enlarged. This
classification has the following readily-stated corollary:

▶ Theorem 3. Every essentially profinite union-closed graph class F which is closed un-
der taking summands2 is homomorphism distinguishing closed. In particular, Roberson’s
conjecture holds for all essentially profinite graph classes.

2 Preliminaries

All graphs in this article are finite, undirected, and without multiple edges. A simple
graph is a graph without loops. A homomorphism from a graph F to a graph G is a
map h : V (F ) → V (G) such that h(u)h(v) ∈ E(G) whenever uv ∈ E(F ) and vertices
carrying loops are mapped to vertices carrying loops. Write hom(F,G) for the number of
homomorphisms from F to G. For a class of graphs F and graphs G and H, write G ≡F H

if hom(F,G) = hom(F,H) for all F ∈ F , i.e. G and H are homomorphism indistinguishable
over F . With the exception of Section 3.2, the graphs in F , G and H will be simple. Following
[32], the homomorphism distinguishing closure of F is

cl(F) := {K simple graph | ∀ simple graphs G,H. G ≡F H ⇒ hom(K,G) = hom(K,H)}.

Intuitively, cl(F) is the ‘largest’ graph class whose homomorphism indistinguishability relation
coincides with the one of F . A graph class F is homomorphism distinguishing closed if
cl(F) = F . Note that cl is a closure operator in the sense that cl(F) ⊆ cl(F ′) if F ⊆ F ′ and
cl(cl(F)) = cl(F) for all graph classes F and F ′.

For graphs G and H , write G+H for their disjoint union and G×H for their categorical
product, i.e. V (G×H) := V (G)×V (H) and gh and g′h′ are adjacent in G×H iff gg′ ∈ E(G)
and hh′ ∈ E(H). The lexicographic product G · H is defined as the graph with vertex set

2 A graph class F is closed under taking summands if for all F ∈ F which is the disjoint union of two
graphs F1 + F2 = F also F1, F2 ∈ F .

MFCS 2023
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V (G) × V (H) and edges between gh and g′h′ iff g = g′ and hh′ ∈ E(H) or gg′ ∈ E(G). It is
well-known, cf. e.g. [24, (5.28)–(5.30)], that for all graphs F1, F2, G1, G2, and all connected
graphs K,

hom(F1 + F2, G) = hom(F1, G) hom(F2, G), (1)
hom(F,G1 ×G2) = hom(F,G1) hom(F,G2), and (2)
hom(K,G1 +G2) = hom(K,G1) + hom(K,G2). (3)

The complement of a simple graph F is the simple graph F with V (F ) = V (F ) and
E(F ) =

(
V (F )

2
)

\ E(F ). Observe that F = F for all simple graphs F . The full complement
of a graph G is the graph Ĝ obtained from G by replacing every edge with a non-edge and
every loop with a non-loop, and vice-versa.

The quotient F/P of a simple graph F by a partition P of V (F ) is the simple graph with
vertex set P and edges PQ for P ̸= Q iff there exist vertices p ∈ P and q ∈ Q such that
pq ∈ E(F ). For a set X, write Π(X) for the set of all partitions of X. We do not include
loops in order to state Theorem 14 succinctly.

A graph F ′ can be obtained from a simple graph F by contracting edges if there is a
partition P ∈ Π(V (F )) such that F [P ] is connected for all P ∈ P and F ′ ∼= F/P .

For a graph F and a set P ⊆ V (F ), write F [P ] for the subgraph induced by P , i.e. the
graph with vertex set P and edges uv if u, v ∈ P and uv ∈ E(F ). A graph F ′ is a subgraph
of F , in symbols F ′ ⊆ F if V (F ′) ⊆ V (F ) and E(F ′) ⊆ E(F ). A minor of a simple graph F
is a subgraph of a graph which can be obtained from F by contracting edges.

3 Closure Properties Correspond to Preservation Properties

This section is concerned with the interplay of closure properties of a graph class F and
preservation properties of its homomorphism indistinguishability relation ≡F . The central
results of this section are Theorem 2 and the other results listed in Table 1.

The relevance of the results is twofold: On the one hand, they yield that if a graph
class F has a certain closure property then so does cl(F). In the case of minor-closed graph
families, this provides evidence for Roberson’s conjecture [32]. On the other hand, they
establish that equivalence relations comparing graphs which are preserved under certain
operations coincide with the homomorphism indistinguishability relation over a graph class
with a certain closure property, if they are homomorphism indistinguishability relations at
all. Further consequences are discussed in Sections 3.5 and 4. Essential to all proofs is the
following lemma:

▶ Lemma 4. Let F and L be classes of simple graphs. Suppose L is finite and that its
elements are pairwise non-isomorphic. Let α : L → R \ {0}. If for all simple graphs G and H

G ≡F H =⇒
∑
L∈L

αL hom(L,G) =
∑
L∈L

αL hom(L,H)

then L ⊆ cl(F).

Proof. The following argument is due to [11, Lemma 3.6]. Let n be an upper bound on
the number of vertices of graphs in L and let L′ denote the class of all graphs on at most
n vertices. By classical arguments [23], the matrix M := (hom(K,L))K,L∈L′ is invertible.
Extend α to a function α′ : L′ → R by setting α′(L) := α(L) for all L ∈ L and α′(L′) := 0 for
all L′ ∈ L′ \ L. If G ≡F H then G×K ≡F H ×K for all graphs K. Hence, by Equation (2),
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minors
edge deletion subgraphs induced subgraphs

summands
edge contractions

Figure 1 Relationship between closure properties of homomorphism distinguishing closed graph
classes. The non-obvious implications (dashed) are proven in Lemmas 8 and 16.

∑
L∈L′

hom(L,K)αL hom(L,G) =
∑

L∈L′

hom(L,K)αL hom(L,H).

Both sides can be read as the product of the matrix MT with a vector of the form
(αL hom(L,−))L∈L′ . By multiplying from the left with the inverse of MT , it follows that
αL hom(L,G) = αL hom(L,H) for all L ∈ L′ which in turn implies that hom(L,G) =
hom(L,H) for all L ∈ L. Thus, L ⊆ cl(F). ◀

In the setting of Lemma 4, we say that the relation ≡F determines the linear combination∑
L∈L αL hom(L,−). Note that it is essential for the argument to carry through that the

elements of L are pairwise non-isomorphic and that αL ̸= 0 for all L. Efforts will be
undertaken to establish this property for certain linear combinations in the subsequent
sections.

3.1 Taking Summands and Preservation under Disjoint Unions
In this section, the strategy yielding the results in Table 1 is presented for the rather simple
case of Theorem 5. This theorem relates the property of a graph class F to be closed under
taking summands to the property of ≡F to be preserved under disjoint unions. This closure
property is often assumed in the context of homomorphism indistinguishability [1, 32] and
fairly mild. It is the most general property among those studied here, cf. Figure 1. Theorem 5
answers a question from [32, p. 7] affirmatively: Is it true that if ≡F is preserved under
disjoint unions then cl(F) is closed under taking summands?

▶ Theorem 5. For a graph class F and the assertions
(i) F is closed under taking summands, i.e. if F1 + F2 ∈ F then F1, F2 ∈ F ,
(ii) ≡F is preserved under disjoint unions, i.e. for all simple graphs G, G′, H, and H ′, if

G ≡F G′ and H ≡F H ′ then G+H ≡F G′ +H ′,
(iii) cl(F) is closed under taking summands.

the implications i ⇒ ii ⇔ iii hold.

Proof. The central idea is to write, given graphs F , G, and H, the quantity hom(F,G+H)
as expression in hom(F ′, G) and hom(F ′, H) where the F ′ range over summands of F . To
this end, write F = C1 + · · · + Cr as disjoint union of its connected components. Then,

hom(F,G+H) (1)=
r∏

i=1
hom(Ci, G+H) (3)=

r∏
i=1

(hom(Ci, G) + hom(Ci, H))

(1)=
∑

I⊆[r]

hom(
∑
i∈I

Ci, G) hom(
∑

i∈[r]\I

Ci, H). (4)

In particular, if F is closed under taking summands then
∑

i∈I Ci ∈ F for all I ⊆ [r]. Thus,
i implies ii.

MFCS 2023
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Assume ii and let F ∈ cl(F). Write as above F = C1 + · · · + Cr as disjoint union of
its connected components. By the assumption that ≡F is preserved under disjoint unions,
for all graphs G and G′, if G ≡F G′ then G + F ≡F G′ + F and hence hom(F,G + F ) =
hom(F,G′ + F ). By Equation (4) with H = F , the relation ≡F determines the linear
combination

∑
I⊆[r] hom(

∑
i∈I Ci,−) hom(

∑
i∈[r]\I Ci, F ). Note that it might be the case

that
∑

i∈I Ci
∼=

∑
j∈J Cj for some I ̸= J . Grouping such summands together and adding

their coefficients yields a linear combination satisfying the assumptions of Lemma 4 since
hom(Ci, F ) > 0 for all i ∈ [r]. Hence,

∑
i∈I Ci ∈ cl(F) for all I ⊆ [r] and iii follows.

The implication iii ⇒ ii follows from i ⇒ ii for cl(F) since ≡F and ≡cl(F) coincide. ◀

The proofs of the other results in Table 1 are conceptually similar to the just completed
proof. The general idea can be briefly described as follows:
1. Derive a linear expression similar to Equation (4) for the number of homomorphisms

from F into the graph constructed using the assumed preservation property of ≡F , e.g.
the graph G+H in the case of Theorem 5. These linear combinations typically involve
sums over subsets U of vertices or edges of F , each contributing a summand of the
form αU hom(FU ,−) where αU is some coefficient and FU is a graph constructed from F

using U . Hence, if F is closed under the construction transforming F to FU then ≡F has
the desired preservation property.

2. In general, it can be that FU and FU ′ are isomorphic even though U ̸= U ′, e.g. in
Equation (4) if F contains two isomorphic connected components. In order to apply
Lemma 4, one must group the summands αU hom(FU ,−) by the isomorphism type F ′

of the FU . The coefficient of hom(F ′,−) in the new linear combination ranging over
pairwise non-isomorphic graphs is the sum of αU over all U such that FU

∼= F ′. Once it
is established that this coefficient is non-zero, it follows that if ≡F has the preservation
property then cl(F) has the desired closure property.

3.2 Taking Subgraphs and Preservation under Full Complements
The strategy which yielded Theorem 5 can be extended to obtain the following Theorem 6
relating the property of a graph class F to be closed under taking subgraphs to the property
of ≡F to be preserved under taking full complements.

Since our definition of the homomorphism distinguishing closure involves only simple
graph in order to be aligned with [32], Theorem 6 deviates slightly from the other results in
Table 1. This is because the relations ≡F and ≡cl(F) a priori coincide only on simple graphs
and not necessarily on all graphs, a crucial point raised by a reviewer.

▶ Theorem 6. For a graph class F and the assertions
(i) F is closed under deleting edges,
(ii) ≡F is preserved under taking full complements, i.e. for all simple graphs G and H it

holds that G ≡F H if and only if Ĝ ≡F Ĥ,
(iii) cl(F) is closed under deleting edges,
(iv) cl(F) is closed under taking subgraphs, i.e. it is closed under deleting edges and vertices,
(v) ≡cl(F) is preserved under taking full complements,

the implications i ⇒ ii ⇒ iii ⇔ iv ⇔ v hold.

The linear expression required by Lemma 4 is provided by the following Lemma 7 based
on the Inclusion–Exclusion principle. That iii implies iv follows from the Lemma 8. The
proofs are deferred to the full version [35].

▶ Lemma 7 ([24, Equation (5.23)]). For every simple graph F and graph G,

hom(F, Ĝ) =
∑

F ′⊆F s.t. V (F ′)=V (F )

(−1)|E(F ′)| hom(F ′, G).
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▶ Lemma 8. If a homomorphism distinguishing closed graph class F is closed under deleting
edges then it is closed under taking subgraphs.

3.3 Taking Minors and Preservation under Complements
The insights gained in the previous sections are now orchestrated to prove Theorem 9, which
implies Theorem 2. This answers a question of Roberson [32, Question 8] affirmatively: Is
it true that if F is such that ≡F is preserved under taking complements then there exist a
minor-closed F ′ such that ≡F and ≡F ′ coincide.

Theorem 9 is among the first results substantiating Roberson’s conjecture not only for
example classes but in full generality. In particular, as noted in [32, p. 2], there was little
reason to believe that minor-closed graph families should play a distinct role in the theory of
homomorphism indistinguishability. Theorem 9 indicates that this might be the case. Indeed,
while Roberson’s conjecture asserts that cl(F) coincides with F for a minor-closed and
union-closed graph class F , Theorem 9 yields unconditionally that cl(F) is a minor-closed
graph class itself.

▶ Theorem 9. For a graph class F and the assertions
(i) F is closed under edge contraction and deletion,
(ii) ≡F is preserved under taking complements, i.e. for all simple graphs G and H it holds

that G ≡F H if and only if G ≡F H,
(iii) cl(F) is minor-closed,

the implications i ⇒ ii ⇔ iii hold.

Again, the strategy is to write hom(F,G) as a linear combination of hom(F ′, G) for
minors F ′ of F . For a simple graph G, write G◦ for the graph obtained from G by adding a
loop to every vertex. In light of Lemma 7, which concerns hom(F, Ĝ), noting that Ĝ◦ ∼= G for
every simple graph G, it suffices to write hom(F,G◦) as a linear combination of hom(F ′, G)
for minors F ′ of F . To that end, we consider a particular type of quotient graphs.

For a simple graph F and a set of edges L ⊆ E(F ), define the contraction relation ∼L on
V (F ) by declaring v ∼L w if v and w lie in the same connected component of the subgraph
of F with vertex set V (F ) and edge set L. Write [v]L for the classes of v ∈ V (F ) under the
equivalence relation ∼L.

The contraction quotient F ⊘ L is the graph whose vertex set is the set of equivalence
classes under ∼L and with an edge between [v]L and [w]L if and only if there is an edge
xy ∈ E(F ) \ L such that x ∼L v and y ∼L w. In general, F ⊘ L may contain loops, cf.
Example 11. However, if it is simple then it is equal to F/P where P is the partition of
V (F ) into equivalence classes under ∼L, i.e. P := {[v]L | v ∈ V (F )}. In this case, F ⊘ L is a
graph obtained from F by edge contractions.

With this notation, the quantity hom(F,G◦) can be succinctly written as linear com-
bination. Using Proposition 10 and Lemma 7, Theorem 9 can be proven by the strategy
described in Section 3.1. The proofs are deferred to [35].

▶ Proposition 10. Let F and G be simple graphs. Then

hom(F,G◦) =
∑

L⊆E(F )

hom(F ⊘ L,G).

▶ Example 11. Let K3 denote the clique with vertex set {1, 2, 3}. Then K3 ⊘ ∅ ∼= K3,
K3 ⊘{12} ∼= K2, K3 ⊘{12, 23} ∼= K◦

1 , and K3 ⊘{12, 23, 13} ∼= K1. For every simple graph G,
hom(K3, G

◦) = hom(K3, G) + 3 hom(K2, G) + hom(K1, G) since hom(K◦
1 , G) = 0.

MFCS 2023
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3.4 Taking Induced Subgraphs, Contracting Edges, and Lexicographic
Products

In this section, it is shown that a homomorphism distinguishing closed graph class is
closed under taking induced subgraphs (contracting edges) if and only if its homomorphism
indistinguishability relation is preserved under lexicographic products with a fixed graph
from the left (from the right).

Examples for equivalence relations preserved under lexicographic products related to
chromatic graph parameters are listed in Corollary 18. Further examples are of model-
theoretic nature and stem from winning strategies of the Duplicator player in bijective pebble
games [35].

▶ Theorem 12. For a graph class F and the assertions
(i) F is closed under taking induced subgraphs,
(ii) ≡F is such that for all simple graphs G, H, H ′, if H ≡F H ′ then G ·H ≡F G ·H ′,
(iii) cl(F) is closed under taking induced subgraphs.

the implications i ⇒ ii ⇔ iii hold.

An example for a lexicographic product from the right is the n-blow-up G·Kn of a graph G.
It can be seen [24] that every homomorphism indistinguishability relation is preserved under
blow-ups. Preservation under arbitrary lexicographic products from the right, however, is
a non-trivial property corresponding to the associated graph class being closed under edge
contractions:

▶ Theorem 13. For a graph class F and the assertions
(i) F is closed under edge contractions,
(ii) ≡F is such that for all simple graphs G, G′, H, if G ≡F G′ then G ·H ≡F G′ ·H,
(iii) cl(F) is closed under edge contractions.

the implications i ⇒ ii ⇔ iii hold.

For the proofs, homomorphism counts hom(F,G ·H) are written as linear combinations
of homomorphism counts hom(F ′, H) where F ′ ranges over induced subgraphs of F in the
case of Theorem 12 and over graphs obtained from F ′ by contracting edges in the case of
Theorem 13. The following succinct formula for counts of homomorphisms into a lexicographic
product is derived in the full version [35]. It may be of independent interest.

▶ Theorem 14. Let F , G, and H be simple graphs. Then

hom(F,G ·H) =
∑
R

hom(F/R, G) hom(
∑
R∈R

F [R], H)

where the outer sum ranges over all R ∈ Π(V (F )) such that F [R] is connected for all R ∈ R.

Theorem 14 yields Theorems 12 and 13, which in turn imply together the following
Corollary 15. The proofs are deferred to the full version [35].

▶ Corollary 15. For a graph class F and the assertions
(i) F is closed under taking induced subgraphs and edge contractions,
(ii) ≡F is such that for all simple graphs G, G′, H, and H ′, if G ≡F G′ and H ≡F H ′

then G ·H ≡F G′ ·H ′,
(iii) cl(F) is closed under taking induced subgraphs and edge contractions.

the implications i ⇒ ii ⇔ iii hold.
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As a final observation, the following Lemma 16 relates the property of being closed under
edge contractions to the other closure properties in Table 1.

▶ Lemma 16. If a homomorphism distinguishing closed graph class F is closed under
contracting edges then it is closed under taking summands.

3.5 Applications

As applications of Theorems 6, 9, 12, and 13, we conclude, in the spirit of [3], that certain
equivalence relations on graphs cannot be homomorphism distinguishing relations.

▶ Corollary 17. Let F be a non-empty graph class such that one of the following holds:
≡F is preserved under complements, cf. Theorem 9,
≡F is preserved under full complements, cf. Theorem 6,
≡F is preserved under left lexicographic products, cf. Theorem 12, or
≡F is preserved under right lexicographic products, cf. Theorem 13.

Then G ≡F H implies that |V (G)| = |V (H)| for all graphs G and H.

Proof. By Theorems 6, 9, 12, and 13, F can be chosen to be closed under taking minors,
subgraphs, induced subgraphs, or contracting edges. In any case, K1 ∈ F as F is non-empty
and hence |V (G)| = hom(K1, G) = hom(K1, H) = |V (H)|. ◀

As concrete examples, consider the following relations.

▶ Corollary 18. There is no graph class F satisfying any of the following assertions for all
graphs G and H:

(i) G ≡F H iff a(G) = a(H) where a denotes the order of the automorphism group,
(ii) G ≡F H iff α(G) = α(H) where α denotes the size of the largest independent set,
(iii) G ≡F H iff ω(G) = ω(H) where ω denotes the size of the largest clique,
(iv) G ≡F H iff χ(G) = χ(H) where χ denotes the chromatic number.

Proof. The relation in Item i is preserved under taking complements. By [17, Theorem 1,
Corollary p. 90], the relations in Items ii and iv are preserved under left lexicographic
products. For Item iii, the same follows from [17, Theorem 1] observing that G ·H = G ·H
and ω(G) = α(G). In each case, it is easy to exhibit a pair of graphs G and H in the same
equivalence class with different number of vertices. By Corollary 17, none of the equivalence
relations is a homomorphism indistinguishability relation. ◀

4 Equivalences over Self-Complementary Logics

In this section, Theorem 1 is derived from Theorem 9. The theorem applies to self-
complementary logics, of which examples are given subsequently. Finally, a result from graph
minor theory is used to relate logics on graphs to quantum isomorphism.

▶ Theorem 1. Let (L, |=) be a self-complementary logic on graphs for which there exists a
graph class F such that two graphs G and H are homomorphism indistinguishable over F
if and only if they are L-equivalent. Then there exists a minor-closed graph class F ′ whose
homomorphism indistinguishability relation coincides with L-equivalence.

MFCS 2023
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Proof. It is shown that ≡F is preserved under taking complements in the sense of Theorem 9.
Suppose G ≡F H. By assumption, for all φ ∈ L it holds that G |= φ iff H |= φ and hence,
by self-complementarity,

G |= φ ⇐⇒ G |= φ ⇐⇒ H |= φ ⇐⇒ H |= φ ⇐⇒ H |= φ.

Here, the penultimate equivalence holds since H |= φ if and only if H |= φ for all φ and
H by the definition of self-complementarity observing that H ∼= H. Thus, G ≡F H. By
Theorem 9, F ′ := cl(F) is minor-closed. ◀

In particular, by Corollary 17, all L-equivalent graphs G and H must have the same
number of vertices unless L is trivial in the sense that all graphs G and H are L-equivalent.

A first example of a self-complementarity logic is first-order logic FO over the signature
of graphs {E}. In order to establish this property, a formula φ ∈ FO has to be constructed
for every φ ∈ FO such that G |= φ iff G |= φ for all graphs G. Only subformulae Exy require
non-trivial treatment:

▶ Definition 19. For every φ ∈ FO, define φ ∈ FO inductively as follows:
1. if φ = Exy then φ := ¬Exy ∧ (x ̸= y),
2. if φ = ⊥ or φ = ⊤ then φ := φ, if φ = (x = y) then φ := φ, if φ = ¬ψ then φ := ¬ψ, if

φ = ψ ∧ χ then φ := ψ ∧ χ, if φ = ψ ∨ χ then φ := ψ ∨ χ, if φ = ∃x. ψ then φ := ∃x. ψ,
and if φ = ∀x. ψ then φ := ∀x. ψ.

▶ Lemma 20. Let φ ∈ FO be a formula with k ≥ 0 free variables. Then for all simple
graphs G with v ∈ V (G)k it holds that

G,v |= φ ⇐⇒ G,v |= φ.

In particular, FO is self-complementary.

Proof. The proof is by induction on the structure of φ. If φ is Exy, observe that v1v2 ∈ E(G)
if and only if v1v2 ̸∈ E(G) and v1 ̸= v2. In all other cases, the claim is purely syntactical. ◀

Lemma 20 gives a purely syntactical criterion for a fragment L ⊆ FO to be self-
complementary. Indeed, if φ ∈ L as defined in Definition 19 for all φ ∈ L then L is
self-complementary. Note that the operation in Definition 19 increases neither the number of
variables nor affects the quantifiers in the formula. Thus, Lemma 20 automatically extends to
fragments of FO defined by restricting the number of variables, order or number of quantifiers.
For extensions of FO, Definition 19 can be easily extended, cf. [35]. This yields a rich realm
of self-complementary logics, of which the following Example 21 lists only a selection.

▶ Example 21. The following logics on graphs are self-complementary. For every k, d ≥ 0,
the k-variable and quantifier-depth-d fragments FOk and FOd of FO,
first-order logic with counting quantifiers C and its k-variable and quantifier-depth-d
fragments Ck and Cd,
inflationary fixed-point logic IFP, cf. [18],
second-order logic SO and its fragments monadic second-order logic MSO1, existential
second-order logic ESO, cf. [10, 16].

Corollary 17 readily gives an alternative proof of [3, Propositions 1 and 2], which assert
that neither FOk-equivalence nor FOd-equivalence are characterised by homomorphism
indistinguishability relations. The logic fragments Ck and Cd are however characterised by
homomorphism indistinguishability relations [14, 19].
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The final result of this section demonstrates how graph minor theory can yield insights
into the expressive power of logics via Theorem 1. Subject to it are self-complementary
logics which have a homomorphism indistinguishability characterisation and are stronger
than Ck for every k, e.g. they are capable of distinguishing CFI-graphs [7]. It is shown
that equivalence w.r.t. any such logic is a sufficient condition for quantum isomorphism, an
undecidable equivalence comparing graphs [4].

▶ Theorem 22. Let (L, |=) be a self-complementary logic on graphs for which there exists a
graph class F such that two graphs G and H are homomorphism indistinguishable over F
if and only if they are L-equivalent. Suppose that for all k ∈ N there exist graphs G and H
such that G ≡Ck H and G ̸≡L H. Then all L-equivalent graphs are quantum isomorphic.

Proof. Contrapositively, it is shown that if there exist non-quantum-isomorphic L-equivalent
graphs then there exists a k ∈ N such thatG ≡Ck H =⇒ G ≡L H for allG andH . By [25, 14],
this statement can be rephrased in the language of homomorphism indistinguishability as
P ̸⊆ cl(F) =⇒ ∃k ∈ N. F ⊆ cl(T Wk) where P denotes the class of all planar graphs
and T Wk the class of all graphs of treewidth at most k. By Theorem 9, cl(F) is a minor-
closed graph class. By [34, (2.1)], cf. [29, Theorem 3.8], if cl(F) does not contain all
planar graphs then it is of bounded treewidth. Hence, there exists a k ∈ N such that
F ⊆ cl(F) ⊆ T Wk ⊆ cl(T Wk). ◀

5 Classification of Homomorphism Distinguishing Closed Essentially
Profinite Graph Classes

The central result of this section is a classification of the homomorphism distinguishing
closed graph classes which are in a sense finite. Since every homomorphism distinguishing
closed graph class is closed under disjoint unions, infinite graph classes arise naturally when
studying the semantic properties of the homomorphism indistinguishability relations of finite
graph classes. Nevertheless, the infinite graph classes arising in this way are essentially finite,
i.e. they exhibit only finitely many distinct connected components. One may generalise this
definition slightly by observing that all graphs F admitting a homomorphism into some fixed
graph G have chromatic number bounded by the chromatic number of G. Thus, in order
to make a graph class F behave much like an essentially finite class, it suffices to impose a
finiteness condition, for every graph K, on the subfamily of all K-colourable graphs in F .

Formally, for a graph F , write Γ(F ) for the set of connected components of F . For a
graph class F , define Γ(F) as the union of the Γ(F ) where F ∈ F . For a graph class F and
a graph K, define FK := {F ∈ F | hom(F,K) > 0}, the set of K-colourable graphs in F .

▶ Definition 23. A graph class F is essentially finite if Γ(F) is finite. It is essentially
profinite if FK is essentially finite for all graphs K.

Clearly, every finite graph class is essentially finite and hence essentially profinite. Other
examples for essentially profinite classes are the class of all cliques. They represent a special
case of the following construction from [32, Theorem 6.16]: For every S ⊆ N, the family

KS := {Kn1 + · · · +Knr | r ∈ N, {n1, . . . , nr} ⊆ S} (5)

is essentially profinite. In particular, there are uncountably many such families of graphs. Note
that one may replace the sequence of cliques (Kn)n∈N in Equation (5) by any other sequence
of connected graphs (Fn)n∈N such that the sequence of chromatic numbers (χ(Fn))n∈N takes
every value only finitely often.

MFCS 2023
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Every graph F of an essentially finite family F can be represented uniquely as vector
F⃗ ∈ RΓ(F) whose C-th entry for C ∈ Γ(F) is the number of times the graph C appears as a
connected component in F . The classification of the homomorphism distinguishing closed
essentially profinite graph classes can now be stated as follows. The proof, deferred to the
full version [35], is based on a generalisation of a result by Kwiecień, Marcinkowski, and
Ostropolski-Nalewaja [22].

▶ Theorem 24. For an essentially profinite graph class F , the following are equivalent:
(i) F is homomorphism distinguishing closed,
(ii) For every graph K, if K⃗ ∈ span{F⃗ ∈ RΓ(FK ∪{K}) | F ∈ FK} then K ∈ F ,
(iii) FK is homomorphism distinguishing closed for every graph K.

Theorem 24 directly implies Theorem 3. Indeed, if F is union-closed and closed under
summands then Γ(F) ⊆ F and every graph K such that Γ(K) ⊆ Γ(F) is itself in F . In
particular, Theorem 24 implies that all essentially profinite union-closed minor-closed graph
classes are homomorphism distinguishing closed. For example, for every graph G, the
union-closure of the class of minors of G is homomorphism distinguishing closed.

To demonstrate the inner workings of condition ii in Theorem 24, we consider the
following examples. The first example shows that not even the weakest closure property from
Figure 1 is shared by all homomorphism distinguishing closed families. The second example
answers a question from [32, p. 29] negatively: Is the disjoint union closure of the union of
homomorphism distinguishing closed families homomorphism distinguishing closed?

▶ Example 25. Let F1, F2 be connected non-isomorphic graphs such that hom(F1, F2) > 0.
1. The class F1 := {n(F1 + F2) | n ≥ 1} is homomorphism distinguishing closed and not

closed under taking summands.
2. For the homomorphism distinguishing closed F2 := {nF1 | n ≥ 1}, the disjoint union

closure of F1 ∪ F2 is not homomorphism distinguishing closed.

Some further enjoyable properties of essentially (pro)finite graph classes merit being
commented on. Statements and proofs are deferred to the full version [35]. Firstly, the
homomorphism indistinguishability relation of no essentially profinite graph class is as fine
as the isomorphism relation ∼=. This is because the homomorphism distinguishing closure
of an essentially profinite graph class is essentially profinite. Secondly, the complexity-
theoretic landscape of the problem HomInd(F) of deciding whether two graphs G and H

are homomorphism indistinguishable over an essentially profinite class F is rather diverse.
For essentially finite F , HomInd(F) is in polynomial time. For essentially profinite F , the
problem can be arbitrarily hard.

6 Conclusion

The main technical contribution of this work is a characterisation of closure properties of
graph classes F in terms of preservation properties of their homomorphism indistinguishability
relations ≡F , cf. Table 1. In consequence, a surprising connection between logical equivalences
and homomorphism indistinguishability over minor-closed graph classes is established. In
this way, results from graph minor theory are made available to the study of the expressive
power of logics on graphs. Finally, a full classification of the homomorphism distinguishing
closed graph classes which are essentially profinite is given. Various open questions of [32] are
answered by results clarifying the properties of homomorphism indistinguishability relations
and of the homomorphism distinguishing closure.
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It is tempting to view the results in Table 1 as instances of a potentially richer connection
between graph-theoretic properties of F and polymorphisms of ≡F , i.e. isomorphism-invariant
maps f sending tuples of graphs to graphs such that f(G1, . . . , Gk) ≡F f(H1, . . . ,Hk) whenever
Gi ≡F Hi for all i ∈ [k]. Recalling the algebraic approach to CSPs, cf. [5], one may ask
what structural insights into F can be gained by considering polymorphisms of ≡F . More
concretely, can bounded treewidth or closure under topological minors be characterised in
terms of some polymorphism?
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Abstract
The paper completely characterizes the primality of acyclic DFAs, where a DFA A is prime if there
do not exist DFAs A1, . . . , At with L(A) =

⋂t

i=1 L(Ai) such that each Ai has strictly less states
than the minimal DFA recognizing the same language as A. A regular language is prime if its
minimal DFA is prime. Thus, this result also characterizes the primality of finite languages.

Further, the NL-completeness of the corresponding decision problem Prime-DFAfin is proven.
The paper also characterizes the primality of acyclic DFAs under two different notions of composi-
tionality, union and union-intersection compositionality.

Additionally, the paper introduces the notion of S-primality, where a DFA A is S-prime if there
do not exist DFAs A1, . . . , At with L(A) =

⋂t

i=1 L(Ai) such that each Ai has strictly less states
than A itself. It is proven that the problem of deciding S-primality for a given DFA is NL-hard. To
do so, the NL-completeness of 2Minimal-DFA, the basic problem of deciding minimality for a DFA
with at most two letters, is proven.
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1 Introduction

Under intersection compositionality a deterministic finite automaton (DFA) A is composite if
there exist DFAs A1, . . . ,At with L(A) =

⋂t
i=1 L(Ai) such that the size of each Ai is smaller

than the index of A. Otherwise, A is prime [10]. The index of A is the size of the minimal
DFA recognizing the same language as A. Prime-DFA denotes the problem of deciding
primality for a given DFA. Prime-DFAfin denotes the restriction of Prime-DFA to DFAs
recognizing a finite language.

Compositionality in general is a key concept in both practical and theoretical computer
science [3, 16]. The intersection decomposition of finite automata can be motivated by LTL
model checking as well as automaton identification. Both will be briefly discussed below.

The notion of intersection compositionality of finite automata was introduced in [10],
while a limitation of this notion was already studied in [5]. Surprisingly, [10] found even the
complexity of the basic problem Prime-DFA to be open. They proved that Prime-DFA is
in ExpSpace and is NL-hard. So far, this doubly exponential gap has not been closed.

Given the difficulties in tackling the general problem, it has proven fruitful to characterize
the intersection compositionality of fragments of the regular languages [10, 8, 9]. Our study
joins this line of research by completely characterizing the intersection compositionality of
acyclic DFAs (ADFA) and thereby of finite languages. Further, we prove the NL-completeness
of Prime-DFAfin and characterize the compositionality of finite languages under two different
notions of compositionality suggested in [10], union and union-intersection compositionality.
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Additionally, we present a proof of the NL-completeness of the basic problem 2Minimal-
DFA, the problem of deciding minimality for a DFA with at most two letters. For arbitrary
alphabets, the NL-hardness is a folklore result that seemingly has not been explicitly published
but follows from the constructions in [2], while the NL-hardness of 2Minimal-DFA appears
to be new [4]. We use this result to establish complexity boundaries for S-Prime-DFA, a
modification of Prime-DFA using the size of the given DFA, not its index.

Related Work. The notion of intersection compositionality was introduced in [10], where the
aforementioned complexity boundaries were established. They already considered language
fragments, analyzing safety DFAs and permutation DFAs. This line of research was followed
up in [8, 9], which focused on unary DFAs and permutation DFAs, respectively.

The intersection decomposition of automata can be motivated by LTL model checking,
where the validity of a specification, given as an LTL formula, is checked for a system. The
automata-based approach entails translating the specification into a finite automaton [17].
Since the LTL model checking problem is PSpace-complete in the size of the LTL formula [1],
it is desirable to decompose the formula into a conjunction of subformulas. This can also be
understood as decomposing the finite automaton corresponding to the formula.

Another application of intersection decomposition arises in the field of automaton identi-
fication. The basic task here is, given a set of labeled words, to construct a finite automaton
conforming to this set [6]. An interesting approach is to construct multiple automata instead
of one, which can lead to smaller and more intuitive solutions [11].

An alternative notion of compositionality uses concatenation. Here, a language L is
composite if there exist two non-trivial languages L1, L2 with L = L1L2. The concatenation
primality problem for regular languages is PSpace-complete [12]. The restriction to finite
languages is known to be NP-hard [15], while the conjectured NP-completeness of this
restriction remains open [14, 13, 18].

Contributions. In Section 3 we completely characterize the intersection compositionality of
ADFAs and thereby of finite languages. We expand on this by proving the NL-completeness
of Prime-DFAfin in Section 4, thus showing that finite languages are significantly easier to
handle under intersection compositionality than under concatenation compositionality. We
characterize the union and union-intersection compositionality of finite languages in Section 5,
where we also prove the existence of languages that are union-intersection composite but
both union prime and intersection prime.

In Section 6 we introduce the problem S-Prime-DFA, which is analogous to Prime-DFA
but uses the size for the definition of compositionality, not the index. We prove that S-Prime-
DFA is in ExpSpace and is NL-hard. We also prove these boundaries for 2Prime-DFA
and 2S-Prime-DFA, the restrictions of the respective problems to DFAs with at most two
letters. To establish these boundaries we prove the NL-completeness of 2Minimal-DFA.

Detailed proofs of these results are provided in the appendix.

2 Preliminaries

A deterministic finite automaton (DFA) is a 5-tuple A = (Q, Σ, qI , δ, F ), where Q is a finite
set of states, Σ is a finite non-empty alphabet, qI ∈ Q is an initial state, δ : Q× Σ→ Q is a
transition function, and F ⊆ Q is a set of accepting states. As usual, we extend δ to words:
δ : Q× Σ∗ → Q with δ(q, ε) = q and δ(q, σ1 . . . σn) = δ(δ(q, σ1 . . . σn−1), σn). For q ∈ Q, the
DFA Aq is constructed out of A by setting q as the initial state, thus Aq = (Q, Σ, q, δ, F ).

The run of A on a word w = σ1 . . . σn starting in state q is the sequence
q0, σ1, q1, . . . , σn, qn with q0 = q and qi = δ(qi−1, σi) for each i ∈ {1, . . . , n}. The ini-
tial run of A on w is the run of A on w starting in qI . The run of A on w starting in q
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is accepting if qn ∈ F , otherwise it is rejecting. The DFA A accepts w if the initial run of
A on w is accepting. Otherwise, it rejects w. The language L(A) of A is the set of words
accepted by A. We say that A recognizes L(A). A language is regular if there exists a DFA
recognizing it. Since we only consider regular languages, we use the terms language and
regular language interchangeably.

The size |A| of A is the number of states in Q. The DFA A is minimal if L(A) ̸= L(B)
holds for every DFA B with |B| < |A|. It is well known that for every regular language L

there exists a canonical minimal DFA recognizing L. The index ind(L) of L is the size of
this canonical minimal DFA. The index of A is the index of the language recognized by A,
thus ind(A) = ind(L(A)). Note that A is minimal iff |A| = ind(A).

We borrow a few terms from graph theory. Let q0, σ1, q1, . . . , σn, qn be the run of A on
w = σ1 . . . σn starting in q0. Then q0, . . . , qn is a path in A from q0 to qn. The length of this
path is n. Thus, for two states q, q′ there exists a path from q to q′ in A of length n iff there
exists a w ∈ Σn with δ(q, w) = q′. The state q′ is reachable from q if there exists a path from
q to q′. Otherwise, q′ is unreachable from q. Obviously, if q′ is reachable from q then there
exists a path from q to q′ of a length strictly smaller than |A|. We say that q′ is reachable if
it is reachable from qI . Otherwise, it is unreachable. A cycle in A is a path q0, . . . , qn in A
where q0 = qn and n ∈ N≥1. The DFA A is acyclic (ADFA) if every cycle in A begins in a
rejecting sink. Clearly, a DFA recognizes a finite language iff its minimal DFA is acyclic.

We call a DFA A = (Q, Σ, qI , δ, F ) linear if for every q, q′ ∈ Q with q ̸= q′ either q′ is
reachable from q or q is reachable from q′, but not both. Thus, in a linear DFA reachability
induces a linear order over the states. Obviously, every linear DFA has exactly one sink.
Furthermore, a minimal ADFA A is linear iff |A| = n + 2, where n is the length of the longest
word in L(A).

Consider a word w = σ1 . . . σn ∈ Σn. A word wv with v ∈ Σ+ is an extension of w. A
word σ1 . . . σiσi+l . . . σn with i ∈ {0, . . . , n− 2}, l ∈ {2, . . . , n− i} is a compression of w. An
ADFA A has the compression-extension-property (CEP) if for every w ∈ L(A) with |w| = n,
where n is the length of the longest word in L(A), there exists a compression w′ of w such
that every extension of w′ is rejected by A.

We introduce a type of DFA already inspected in [10]. A regular language L ⊆ Σ∗ is a
safety language if w /∈ L implies wy /∈ L for every y ∈ Σ∗. A DFA A is a safety DFA if L(A)
is a safety language. A regular language L ⊆ Σ∗ is a co-safety language if the complement
language L of L is a safety language. A DFA A is a co-safety DFA if L(A) is a co-safety
language. Clearly, every non-trivial minimal safety DFA has exactly one rejecting state, and
this state is a sink. Conversely, every non-trivial minimal co-safety DFA has exactly one
accepting state, and this state is a sink.

We introduce the notions of intersection compositionality and primality of DFAs and
languages, following the definitions in [10]:

▶ Definition 2.1. For k ∈ N≥1, a DFA A is k-decomposable if there exist DFAs A1, . . . ,At

with L(A) =
⋂t

i=1 L(Ai) and |Ai| ≤ k for each i ∈ {1, . . . , t}, where t ∈ N≥1. We call such
DFAs A1, . . . ,At a k-decomposition of A. We call A composite if A is k-decomposable for a
k < ind(A), that is, if it is (ind(A)− 1)-decomposable. Otherwise, we call A prime. ⌟

We use compositionality or ∩-compositionality when referring to intersection compositionality.
When analyzing the compositionality of a given DFA A, it is sufficient to consider minimal

DFAs B strictly smaller than the minimal DFA of A with L(A) ⊆ L(B). Thus, we define
α(A) = {B | B is a minimal DFA with ind(B) < ind(A) and L(A) ⊆ L(B)}. Obviously,
the DFA A is composite iff L(A) =

⋂
B∈α(A) L(B). We call a word w ∈ (

⋂
B∈α(A) L(B))\L(A)

a primality witness of A. Clearly, the DFA A is composite iff A has no primality witness.

MFCS 2023
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We extend the notions of k-decompositions, compositionality, primality and primality
witnesses to regular languages by identifying a regular language with its minimal DFA.

We denote the problem of deciding primality for a given DFA with Prime-DFA. We denote
the restriction of Prime-DFA to DFAs recognizing finite languages with Prime-DFAfin.
Prime-DFA is in ExpSpace and is NL-hard [10].

We denote the connectivity problem in directed graphs, which is NL-complete [7], with
STCON. We denote the restriction of STCON to graphs with a maximum outdegree of
two with 2STCON. Clearly, 2STCON is NL-complete as well. We denote the problem
of deciding minimality for a given DFA with Minimal-DFA. For k ∈ N≥2, the problem
kMinimal-DFA is the restriction of Minimal-DFA to DFAs with at most k letters. As
mentioned in Section 1, the NL-completeness of kMinimal-DFA for k ∈ N≥3 is folklore,
while the NL-hardness of 2Minimal-DFA appears to be open.

3 Compositionality of Finite Languages

We characterize the compositionality of ADFAs and thereby of finite languages by proving:

▶ Theorem 3.1. Consider a minimal ADFA A = (Q, Σ, qI , δ, F ) recognizing a non-empty
language. Then A is prime iff A is linear and:

(i) σn ∈ L(A) for some σ ∈ Σ, where n ∈ N is the length of the longest word in L(A), or
(ii) A is a safety DFA and A does not have the CEP. ⌟

To prove Theorem 3.1 we will consider five cases in turn.
First, if the ADFA A is not linear we essentially have a surplus of states, allowing us to

construct one DFA rejecting overlong words and one specific DFA for each of the remaining
words also rejected by A. This approach fails with linear ADFAs. Nevertheless, we will come
back to the idea of excluding words longer than a threshold value and tailoring a DFA for
each word shorter than the threshold value which has to be rejected as well.

Second, if A is linear and σn ∈ L(A) holds the DFAs in α(A) do not possess enough states
to differentiate the words σ0, . . . , σn but have to accept σn, which implies cyclic behavior on
the words in {σ}∗ from which primality follows.

Third, if there is no σ ∈ Σ with σn ∈ L(A) and A is not a safety DFA we can return
to the idea of excluding words longer than a threshold value. For each of the words left to
reject, it is possible to construct a DFA similar to A but without the rejecting sink, which
circles back to the rejecting non-sink.

Fourth, if there is no σ ∈ Σ with σn ∈ L(A) and A has the CEP we can utilize DFAs
similar to A possessing a rejecting sink, since the CEP allows us to skip over one state.

Fifth and finally, if A is linear and A is a safety DFA and does not have the CEP both of
the above approaches fail. There is no state to circle back to, and for the word breaching the
CEP skipping over states is not possible either, which implies primality.

Formalizing these five cases, we get:

▷ Claim 3.2. Consider a minimal ADFA A = (Q, Σ, qI , δ, F ) recognizing a non-empty
language. Let n ∈ N be the length of the longest word in L(A). The following assertions
hold:
(a) A is composite if A is not linear.
(b) A is prime if A is linear and σn ∈ L(A) holds for some σ ∈ Σ.
(c) A is composite if there is no σ ∈ Σ with σn ∈ L(A) and A is not a safety DFA.
(d) A is composite if there is no σ ∈ Σ with σn ∈ L(A) and A has the CEP.
(e) A is prime if A is linear and A is a safety DFA and A does not have the CEP. ⌟
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Formalizing the intuition given above for (a) and (b) is not too complex. Assertions
(c)–(e) prove to be much harder. Thus, we commence by discussing (c) in Section 3.1 and
(d) and (e) in Section 3.2. Henceforth, we consider a minimal ADFA A = (Q, Σ, qI , δ, F )
recognizing the non-empty language L with σn /∈ L for each σ ∈ Σ, where n ∈ N is the length
of the longest word in L. W.l.o.g. we assume Q = {q0, . . . , qn+1} with qj being reachable
from qi for all i < j, which implies qI = q0 and qn ∈ F with qn+1 being the rejecting sink.
Finally, we define Σi,j = {σ ∈ Σ | δ(qi, σ) = qj}.

3.1 Linear non-safety ADFAs
We consider Claim 3.2 (c). Therefore, we assume that A is not a safety DFA, which implies
{qn} ⊆ F ⊂ Q \ {qn+1}. Let d ∈ {0, . . . , n− 1} with qd /∈ F .

We show the compositionality of A by specifying an (n + 1)-decomposition of A. First,
we construct DFAs rejecting words not in L that are not extensions of words u ∈ L, |u| = n.
Afterwards, we turn to such extensions, whose handling poses the main difficulty. Here, we
first construct DFAs rejecting such extensions that are longer than a certain threshold value.
For the remaining extensions we employ the idea of circling back to qd.

We begin by considering words not in L which are not extensions of words u ∈ L, |u| = n.
We introduce three DFA types handling these words.

First, let A0 be the DFA constructed out of A by removing qn, redirecting every transition
q → qn to q0, and including q0 into the acceptance set. Clearly, A0 ∈ α(A) and A0 rejects
every w /∈ L on which A enters the rejecting sink prematurely, that is, without entering qn.

Second, let Âd be the DFA constructed out of A by removing qn+1, redirecting every
transition qi → qn+1 with i < n to qn and every transition qn → qn+1 to qd. Clearly,
Âd ∈ α(A) and Âd rejects every w /∈ L on which A does not enter the rejecting sink.

Third, we construct DFAs rejecting extensions of words w ∈ L, |w| < n with δ(q0, w) = qn.
Let I = {0, . . . , n}. For each m ∈ {1, . . . , n − 1} let Im = {(i0, . . . , im) ∈ Im+1 | 0 = i0 <

· · · < im = n}. For each i ∈ Im define Ai as in Figures 1a and 1b. It is easy to confirm that
each Ai is in α(A) and rejects extensions of words on which A visits the states qi0 , . . . , qim .

Lemma 3.3 formalizes the results concerning A0, Âd and Ai:

▶ Lemma 3.3. The following assertions hold:
(i) A0, Âd,Ai ∈ α(A), where i ∈

⋃n−1
m=1 Im.

(ii) Consider a word w /∈ L, where w is not an extension of a word u ∈ L, |u| = n. Then
w /∈ L(A0) ∩ L(Âd) ∩

⋂n−1
m=1

⋂
i∈Im

L(Ai) holds. ⌟

Next, we turn to the extensions of words u ∈ L, |u| = n. We begin by constructing DFAs
that taken together reject every word strictly longer than n + (n− 2). Then we turn to the
remaining extensions one by one, of which only a finite number are left to reject.

Let σ ∈ Σ. Since σn /∈ L, there exists a value i ∈ {1, . . . , n} with σ /∈ Σi−1,i. Define Aσ,i

as in Figure 1c. First, note that Aσ,i ∈ α(A) because a word rejected by Aσ,i is strictly longer
n or is of length n with letter σ at position i. Next, consider a word w = σ1 . . . σm ∈ Σm

such that σj = σ for a j ∈ {1, . . . , m} with j ≥ i and m ≥ j + (n − i). After reading the
prefix σ1 . . . σj−1 the DFA Aσ,i is at least in state qi−1. Thus, after reading σ1 . . . σj it is at
least in state qi and will reject after reading n− i more letters. Since m ≥ j + (n− i), we
have w /∈ L(Aσ,i). Lemma 3.4 formalizes this result:

▶ Lemma 3.4. Let σ ∈ Σ and i ∈ {1, . . . , n} with σ /∈ Σi−1,i. The following assertions hold:
(i) Aσ,i ∈ α(A).
(ii) Let m ∈ N. Let w ∈ σ1 . . . σm ∈ Σm such that σj = σ for a j ∈ {1, . . . , m} with j ≥ i

and m ≥ j + (n− i). Then w is rejected by Aσ,i. ⌟

MFCS 2023
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q0 qi1 qim−1 qn qn+1

q+

Σ0,i1

Σ0,i1 Σi1,i2

Σim−1,n

Σim−1,n

Σ
Σ

Σ

(a) Ai if m < n − 1.

q0 qj−1 qj+1 qn qn+1

Σ0,1

Σj−1,j+1

Σj−1,j+1 Σj+1,j+2

Σ

Σ

(b) Ai if m = n − 1, where i = (0, . . . , j − 1, j + 1, . . . , n).

q0 q1 qi−1 qi qn−1 qn
Σ Σ

Σ \ {σ}

σ Σ Σ

Σ

(c) Aσ,i.

Figure 1 DFA Ai for i ∈ Im with m ∈ {1, . . . , n − 1} and DFA Aσ,i for σ ∈ Σ, i ∈ {1, . . . , n}.

Now consider a word w = σ1 . . . σm ∈ Σm with m ≥ n + (n− 1) and σ1 . . . σn ∈ L. Note
that Lemma 3.4 implies w /∈ L(Aσn,i) where i ∈ {1, . . . , n} with σn /∈ Σi−1,i. With this
limitation of length, we only need DFAs to reject the extensions of words u ∈ L, |u| = n with
a maximum length of n + (n− 2). Consider such an extension w = σ1 . . . σm ∈ Σm. That is,
n + 1 ≤ m ≤ n + (n− 2) and σ1 . . . σn ∈ L. This implies σi ∈ Σi−1,i for each i ∈ {1, . . . , n}
but provides no information about the σi with i ∈ {n + 1, . . . , m}. Therefore, we construct
DFAs rejecting every such extension not confirming to a certain structure. This structure
will be key to the further DFA constructions.

For a word w ∈ Σ∗, let A!
w be the DFA rejecting exactly the words containing w as a

subsequence. Clearly, the following holds:

▶ Lemma 3.5. Let w /∈ L, |w| = n. Then A!
w ∈ α(A) holds. ⌟

With the DFAs A!
w for every w /∈ L, |w| = n in hand, we only have to consider extensions

of words u ∈ L, |u| = n with a maximum length of n + (n− 2) for which every subsequence
of length n is in L.

Let w = σ1 . . . σm be an extension satisfying these conditions. We construct a DFA
Ãw ∈ α(A) rejecting w. We utilize the rejecting state qd and define Ãw = (Q̃w, Σ, q0, δ̃w, F̃w)
with Q̃ = {q0, . . . , qn}, F̃w = Q̃w \ {qd} and δ̃w(q0, w) = qd. Further, we have δ̃w(q0, v) = qd

for a v ∈ Σ∗ only if δ(q0, v) ∈ {qd, qn+1}, ensuring Ãw ∈ α(A). In order to utilize qd in this
manner, the DFA Ãw simulates the behavior of A for the states q0, . . . , qd−1. The task then
is to select the transitions of states qd, . . . , qn.

If |σd+1 . . . σm|σm
≤ n− d the DFA Ãw can simply advance for occurrences of σm and

the first n− d− |σd+1 . . . σm−1|σm
occurrences of letters unequal to σm. Thus, we only have

to consider the case |σd+1 . . . σm|σm
> n− d.
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If σn+1 ̸= σm the DFA Ãw can advance for each letter in Σ, ensuring δ̃w(qd, σd+1 . . . σn) =
qn. Further, we can define δ̃w(qn, σn+1) = qn−[(m−1)−(n+2)+1] and δ̃w(qn, σm) = qd. Note
that |σn+2 . . . σm−1| = (m− 1)− (n + 2) + 1. Since every subsequence of w of length n is in
L, we have δ̃w(qn−[(m−1)−(n+2)+1], σn+2 . . . σm−1) = qn.

The case σn+1 = σm is more complex and needs a further case distinction, but the idea
used above of circling back after reading an appropriate prefix can be employed again.

Lemma 3.6 summarizes these ideas:

▶ Lemma 3.6. Let w ∈ Σ∗ with |w| > n such that w ∈ L(A!
v) for each v /∈ L, |v| = n and

w ∈
⋂

σ∈Σ L(Aσ,iσ ), where for each σ ∈ Σ it is iσ = max({i ∈ {1, . . . , n} | σ /∈ Σi−1,i}).
Then there exists a DFA Ãw ∈ α(A) rejecting w. ⌟

Lemmas 3.3–3.6 imply Claim 3.2 (c). To be more precise, we have L(A) = L(A0) ∩
L(Âd) ∩

⋂n−1
m=1

⋂
i∈Im

L(Ai) ∩
⋂

σ∈Σ L(Aσ,iσ
) ∩

⋂
w∈X! L(A!

w) ∩
⋂

w∈X̃ L(Ãw), where X ! =
{w ∈ Σn | w /∈ L} and X̃ is the set of all extensions w of words u ∈ L, |u| = n with
|w| ≤ n + (n − 2) for which every subsequence of length n is in L. This proves the
compositionality of A and thereby Claim 3.2 (c).

3.2 Linear safety ADFAs
Next, we consider Claim 3.2 (d) and (e). For (d) we argue that A is composite if it has the
CEP, even if A is a safety DFA, which makes circling back impossible. For (e) we argue that
A is prime if it is a safety DFA and it does not have the CEP.

First, we consider (d). We assume that A has the CEP and argue that this implies
compositionality. Note that we can reuse the DFAs A0 and Ai, while Âd is not needed. This
again leaves the task of rejecting the extensions of words w ∈ L, |w| = n. But, since for
every such word w = σ1 . . . σn there now exist i ∈ {0, . . . , n− 2}, l ∈ {2, . . . , n− i} such that
δ(q0, σ1 . . . σiσi+l . . . σn) ∈ {qn, qn+1}, we can construct a DFA Ai,l ∈ α(A) rejecting every
extension of w.

The DFA Ai,l possesses states q0, . . . , qi+l−2, qi+l, . . . , qn+1. It simulates the behavior
of A for states q0, . . . , qi−1, redirecting transitions qj → qi+l−1 to qi. From qi it directly
advances to qi+l if a letter in

⋃n+1
j=i+l Σi,j is read, otherwise it advances to qi+1. The states

qi, . . . , qi+l−2 form a loop. For states qi+l, . . . , qn, every transition leads to the direct successor
state. The state qn+1 is a rejecting sink.

It is shown in the appendix that every extension of w is rejected by Ai,l, where i is
the largest possible value belonging to w, and that Ai,l ∈ α(A). Thus, L(A) = L(A0) ∩⋂n−1

m=1
⋂

i∈Im
L(Ai) ∩

⋂n−2
i=0

⋂n−i
l=2 Ai,l holds, proving the compositionality of A and thus (d).

Next, we consider (e) and assume that A is a safety DFA and does not have the CEP.
Thus, there is a w = σ1 . . . σn such that δ(q0, σ1 . . . σiσi+l . . . σn) /∈ {qn, qn+1} holds for every
i ∈ {0, . . . , n− 2}, l ∈ {2, . . . , n− i}. This implies the existence of a letter σ ∈ Σn−1,n with
σ /∈ Σj,n+1 for every j ∈ {0, . . . , n − 1}. We show in the appendix that wσ is a primality
witness of A, thus proving the primality of A and thereby (e).

This completes our discussion of Claim 3.2 (a)-(e). Since they imply Theorem 3.1, we
have characterized the compositionality of ADFAs and thereby of finite languages.

4 Complexity of Prime-DFAfin

After characterizing the compositionality of ADFAs and thereby of finite languages in
Section 3, we now analyze the complexity of Prime-DFAfin. We argue:

▶ Theorem 4.1. The problem Prime-DFAfin is NL-complete. The NL-completeness holds
true even when restricting Prime-DFAfin to DFAs with at most two letters. ⌟

MFCS 2023
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Algorithm 1 NL-algorithm for Prime-DFAfin.

Require: DFA A = (Q, Σ, q0, δ, F ) with Q = {q0, . . . , qm} recognizing a finite language L.
Ensure: The DFA A is prime.

1: Accept if L = ∅.
2: c← 0
3: for all i ∈ {0, . . . , m} do
4: if qi is unreachable then
5: c← c + 1
6: else
7: j ← 0, b← true
8: while j ≤ i− 1 and b do
9: if qj is reachable and L(Aqi) = L(Aqj ) then

10: c← c + 1
11: b← false
12: end if
13: j ← j + 1
14: end while
15: end if
16: end for
17: n← (m + 1)− c− 2
18: Choose nondeterministically a word w ∈ Σn. Reject if w /∈ L.
19: Choose nondeterministically a letter σ ∈ Σ. Accept if σn ∈ L.
20: for all i ∈ {0, . . . , m} where qi is not unreachable do
21: Reject if qi /∈ F and L(Aqi) ̸= ∅.
22: end for
23: for all x ∈ {1, . . . , n} do
24: Choose nondeterministically a word w = σ1 . . . σn ∈ Σn. Reject if w /∈ L.
25: for all i ∈ {0, . . . , n− 2}, l ∈ {2, . . . , n− i} with i + l = x do
26: Choose nondeterministically a word w′ = σ′

1 . . . σ′
n ∈ Σn with σ′

i+l = σx and a word
v ∈ Σ+. Reject if w′ /∈ L or if σ′

1 . . . σ′
iσ

′
i+l . . . σ′

nv /∈ L.
27: end for
28: end for
29: Accept.

We begin by arguing that Prime-DFAfin is in NL, providing an NL-algorithm for
Prime-DFAfin with Algorithm 1. The algorithm accepts in line 1 if the given DFA A
recognizes the empty language. Then lines 2-18 ensure that the minimal DFA belonging to
A is linear. Lines 19-22 ensure that A is accepted if a letter σ ∈ Σ with σn ∈ L exists or else
that A is rejected if it is not a safety DFA. Finally, in lines 23-29 the CEP is checked for A.

The NL-hardness of Prime-DFAfin can be proven by L-reducing STCONDAG to
Prime-DFAfin, where STCONDAG is the restriction of STCON to acyclic graphs. The
L-reduction is similar to the L-reduction of STCON to the emptiness problem for DFAs.

5 Finite Languages under Different Notions of Compositionality

So far, we have only considered ∩-compositionality. Now we will define two further notions of
compositionality and characterize the compositionality of finite languages for these notions.
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▶ Definition 5.1. For k ∈ N≥1, a DFA A is k-∪-decomposable (k-DNF-decomposable) if
there exist DFAs A1, . . . ,At (A1,1, . . . ,A1,t1 , . . . ,As,1, . . . ,As,ts

) with L(A) =
⋃t

i=1 L(Ai)
(L(A) =

⋃s
i=1

⋂ti

j=1 L(Ai,j)) and |Ai| < k for every i (|Ai,j | < k for every pair i, j). The
further concepts introduced in Definition 2.1 are defined analogously. ⌟

In [10], it is correctly remarked that many results for ∩-compositionality can be trivially
transferred to ∪-compositionality. For example, the complexity boundaries for Prime-DFA
established in [10] also hold for ∪-compositionality. This does not hold true for results
concerning language fragments that are not closed under complement. In particular, the
complement language of a finite language is not finite, but co-finite. Thus, characterizing the
∪-compositionality of finite languages is equivalent to characterizing ∩-compositionality of
co-finite languages.

Also in [10], the notion of compositionality allowing both union and intersection is
suggested. Note that DNF-compositionality enforces a structure similar to a disjunctive
normal from, but is as strong as unrestricted union-intersection compositionality. It is correctly
remarked in [10] that union-intersection compositionality - and thus, DNF-compositionality
- is strictly stronger than ∩-compositionality. Obviously, it is also strictly stronger than
∪-compositionality. It is less obvious whether languages exist that are DNF-composite, but
are neither ∩- nor ∪-composite. We will see that there are finite languages witnessing this.

The following result characterizes the ∪- and DNF-compositionality of finite languages:

▶ Theorem 5.2. Consider a minimal ADFA A = (Q, Σ, qI , δ, F ) recognizing a non-empty
language. Let n ∈ N be the length of the longest word in L(A). The following assertions hold:

(i) A is ∪-prime iff A is linear.
(ii) A is DNF-prime iff A is linear and there exists a σ ∈ Σ with σn ∈ L(A). ⌟

These conditions are similar to the conditions in Theorem 3.1, but much simpler. Let A
and n be as required. It is easy to show ∪- and DNF-compositionality if A is not linear.

The proof of ∪-primality if A is linear relies on the observation that every minimal DFA
B with L(B) ⊆ L(A) and ind(B) < ind(A) has to have a rejecting sink. From this follows
that no such DFA B can accept a word w ∈ L(A), |w| = n. Thus, A is ∪-prime.

If A is linear and there exists no σ ∈ Σ with σn ∈ L(A) the DNF-compositionality of A
follows from [10, Example 3.2]. On the other hand, if A is linear and there exists a σ ∈ Σ
with σn ∈ L(A) DNF-primality can be shown by adapting the proof of Claim 3.2 (b).

As mentioned, Theorems 3.1 and 5.2 immediately imply:

▶ Theorem 5.3. There exists a finite language that is DNF-composite but ∩- and ∪-prime. ⌟

To summarize, Theorems 3.1 and 5.2 characterize the ∩-, ∪- and DNF-compositionality
of ADFAs and thus of finite languages. Obviously, this characterizes the ∩-, ∪- and DNF-
compositionality of co-finite languages as well. The results further imply the existence of
languages that are DNF-composite but ∩- and ∪-prime.

6 2Minimal-DFA and S-Prime-DFA

We defined compositionality using the index of the given DFA. Thus, the compositionality of
a DFA A is a characteristic of L(A). Slightly changing the definition, using the size instead
of the index, turns compositionality of A into a characteristic of A itself. It is interesting to
analyze the effects of this change, which results in the notion of S-compositionality.

Many results known for compositionality hold for S-compositionality as well. The
characterization of finite languages in Section 3 and other results concerning language
fragments [10, 8, 9] are valid with only minor technical modifications. In fact, [8, 9]
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already implicitly used S-compositionality instead of compositionality without discussing the
differences. The upper complexity boundary of Prime-DFA holds for S-Prime-DFA as well.
But the known lower boundary, the NL-hardness of Prime-DFA, cannot simply be adapted
for S-Prime-DFA. The lower boundary for S-Prime-DFA is connected to Minimal-DFA,
since non-minimal DFAs are trivially S-composite. Note that Prime-DFA is connected to
the emptiness problem for DFAs in a similar manner [10].

We begin by discussing Minimal-DFA, proving the NL-hardness of 2Minimal-DFA.
Then we formally introduce S-compositionality and prove the NL-hardness of the restriction
2S-Prime-DFA and thereby of S-Prime-DFA as well. We also prove the NL-hardness of
the restriction 2Prime-DFA, so far only known for the unrestricted problem Prime-DFA.

6.1 NL-hardness of 2Minimal-DFA
As mentioned, the NL-hardness and thus NL-completeness of kMinimal-DFA for k ∈ N≥3
is folklore, while the NL-hardness of 2Minimal-DFA appears to be open. We prove:

▶ Theorem 6.1. The problem 2Minimal-DFA is NL-hard and thus NL-complete. ⌟

The NL-hardness of 3Minimal-DFA can be proven by L-reducing 2STCON to
3Minimal-DFA. This known reduction uses an additional letter and cannot be used to prove
the NL-hardness of 2Minimal-DFA. We give an L-reduction of 2STCON not using an
additional letter, proving the NL-hardness and thus the NL-completeness of 2Minimal-DFA.

Let (G, s, t) be an input for 2STCON. That is, G = (V, E) is a graph with a maximum
outdegree of two and s, t ∈ V are nodes of G. We construct a DFA A = (Q, Σ, qI , δ, F ) with
Σ = {0, 1}, which is minimal iff there exists a path in G from s to t. If s = t such a path
exists trivially and we can construct the minimal DFA for the empty language. Thus, we only
have to consider the case s ̸= t. W.l.o.g. we assume V = {0, . . . , n− 1} and s = 0, t = n− 1.

Let A′ = (Q′, Σ, 0, δ′, F ′) be the DFA constructed out of G in the usual manner, that is,
by turning nodes into states, edges into transitions, setting the state 0 as the initial state
and n − 1 as the only accepting state. For A, we introduce the new states p0, . . . , pn−1,
called p-states, the new states q0, . . . , qn−1 and q′

0, called q-states, and for each i ∈ Q′ the
states i′

0, i′
1, i0, i1. We call the states i, i′

0, i′
1, i0, i1 for i ∈ Q′ v-states. We say that states

pi, qi, i, i′
0, i′

1, i0, i1 for an i ∈ Q′ are located on the same layer. Figure 2 specifies the DFA A
constructed for the L-reduction. We now discuss the key ideas of this construction.

First, note that the idea of the p- and q-states is similar to the known L-reduction of
2STCON to 3Minimal-DFA. The p-states are used to access every state in Q, thus avoiding
unreachable states. The q-states are used to allow the return to 0 from every state.

Second, we cannot use an additional letter to switch from pi to i to qi. Thus, letter 1 is
used to leave the p-states and to exit q0 to state 0. Letter 0 is used to advance to the next
layer in both the p- and q-states. To allow switching from the v-states to the q-states, we
introduce for each i ∈ Q′ a component consisting of i and the two branches i′

0, i0 and i′
1, i1.

The states i′
0, i′

1 are waiting states used to prove the non-equivalence of q- and v-states. The
states i0, i1 implement on the one hand the original transitions in A′, that is, δ(ij , j) = δ′(i, j),
and on the other hand the transitions into the q-states, that is, δ(ij , 1− j) = qi.

Third, an extra q-state q′
0 is introduced, which is only directly accessible from q0. Without

q′
0 the situation δ(11, 1) = 0 = δ(q0, 1) and δ(11, 0) = q1 = δ(q0, 0) would be possible,

immediately implying the non-minimality of A. The introduction of q′
0 solves this problem.

Note that there is a path from 0 to n− 1 in A iff there is such a path in G. Using this it
follows that A is minimal iff there exists a path from 0 to n− 1 in G. Since A can obviously
be constructed in logarithmic space, the given construction is indeed an L-reduction of
2STCON to 2Minimal-DFA. Consequently, 2Minimal-DFA is NL-hard.
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Figure 2 DFA A constructed for the L-reduction of 2STCON to 2Minimal-DFA. The j-
transitions exiting states of the form ij are only indicated.

6.2 Complexity of S-Prime-DFA
We end our discussion by using the construction presented in Section 6.1 to establish
complexity boundaries for S-Prime-DFA. First, we define the notion of S-compositionality.

▶ Definition 6.2. A DFA A is S-composite if there is a k ∈ N≥1, k < |A| such that A is
k-decomposable. Otherwise, A is S-prime. ⌟
We denote the problem of deciding S-primality for a given DFA with S-Prime-DFA and the
restriction of S-Prime-DFA to DFAs with at most k ∈ N≥2 letters with kS-Prime-DFA.

Note that the proof used in [10] to show that Prime-DFA is in ExpSpace is applicable
for S-Prime-DFA with only slight modifications. Next, note that the L-reduction of the
emptiness problem for DFAs to Prime-DFA used in [10] to prove the NL-hardness of Prime-
DFA relies on the fact that every DFA recognizing the empty language is prime. Thus, it
is not easily adaptable for S-Prime-DFA. Instead, the NL-hardness of 2S-Prime-DFA
is shown by using a reduction from 2STCON, which adapts the construction outlined in
Section 6.1. We get:

▶ Theorem 6.3. The problems S-Prime-DFA and kS-Prime-DFA for k ∈ N≥2 are in
ExpSpace and they are NL-hard. ⌟
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Further, we denote with kPrime-DFA the restriction of Prime-DFA to DFAs with at
most k ∈ N≥2 letters and remark that the results presented in [10] can be expanded to:

▶ Theorem 6.4. The problems Prime-DFA and kPrime-DFA for k ∈ N≥2 are in ExpSpace
and they are NL-hard. ⌟

This ends our discussion of the complexity of S-Prime-DFA and its restrictions, in which
we have applied the construction outlined in Section 6.1 to prove NL-hardness.

7 Discussion

We studied the intersection compositionality, also denoted with ∩-compositionality, of reg-
ular languages. We added to the existing line of research focusing on fragments of the
regular languages by analyzing the ∩-compositionality of ADFAs and thereby of finite lan-
guages. This research was in part motivated by existing results concerning the concatenation
compositionality of finite languages.

We completely characterized the ∩-compositionality of ADFAs and thus finite languages.
Using this characterization we proved the NL-completeness of Prime-DFAfin. Thus, finite
languages are significantly easier to handle under ∩-compositionality than under concatenation
compositionality, where the respective primality problem for finite languages is NP-hard [15].

With notions of compositionality using union and both union and intersection already
suggested in [10], we formally introduced the notions of ∪- and DNF-compositionality. We
characterized the ∪- and DNF-compositionality of finite languages, which proved to be
far simpler than the characterization of ∩-compositionality. These results also imply the
characterization of the ∩-, ∪- and DNF-compositionality of co-finite languages.

This suggests that the key feature of finite languages regarding compositionality is not the
finiteness of the languages per se, but rather the existence of only finitely many meaningfully
different runs of the respective DFAs, a feature finite languages have in common not only
with co-finite languages, but also with languages whose minimal DFAs allow for cycles in both
accepting and rejecting sinks. A logical next step would therefore be the characterization of
the compositionality of these DFAs.

We also note that in our proofs we employed ∩-compositionality results concerning a
different language fragment, namely co-safety DFAs, studied in [10]. This suggests the
possibility of employing the results concerning finite languages in future analyses and stresses
the usefulness of working with language fragments. We provided one application of the
results concerning finite languages by using them to prove the existence of a language that is
DNF-composite but ∩- and ∪-prime.

Furthermore, we presented a proof of the NL-hardness and thereby NL-completeness of
the basic problem 2Minimal-DFA. While the NL-hardness of kMinimal-DFA for k ∈ N≥3
is folklore, this result appears to be new.

We utilized this result to establish the known complexity boundaries of Prime-DFA
for the here newly introduced problem S-Prime-DFA. We extended these results to the
restrictions kPrime-DFA and kS-Prime-DFA for k ∈ N≥2.

While it is interesting that a slight variation in the definition of ∩-compositionality, which
does not touch the validity of most results, requires a whole new approach to establish the
known lower complexity boundary, the big task of closing the doubly exponential complexity
gap for Prime-DFA still remains. And now, this gap exists for S-Prime-DFA as well.

Therefore, with the analysis of language fragments, further notions of compositionality,
and the complexity gaps for Prime-DFA and S-Prime-DFA, there is still need for further
research.
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Abstract
Specialized hereditary systems, e.g., matroids, are known to have many applications in algorithm
design. We define a new notion called d-polynomoid as a hereditary system (E, F ⊆ 2E) so that
every two maximal sets in F have less than d elements in common. We study the problem that,
given a d-polynomoid (E, F), asks if the ground set E contains ℓ disjoint k-subsets that are not in F ,
and obtain a complexity trichotomy result for all pairs of k ≥ 1 and d ≥ 0. Our algorithmic result
yields a sufficient and necessary condition that decides whether each hypergraph in some classes of
r-uniform hypergraphs has a perfect matching, which has a number of algorithmic applications.
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1 Introduction

Finding the conditions that decide whether an r-uniform hypergraph H contains a perfect
matching has received much attention. Some conditions are based on the minimum degree
of a vertex in H [14, 34, 35], and some are based on the minimum degree of a set of r − 1
vertices in H [38]. More conditions are known for bipartite hypergraphs, such as Hall’s [24],
Aharoni’s [1, 3], and Haxell’s [27], and multipartite hypergraphs [11, 2]. Because finding a
maximum matching for r-uniform hypergraphs with r ≥ 3 is APX-complete [32, 29], any
computationally efficient conditions to decide whether an r-uniform hypergraph with r ≥ 3
contains a perfect matching cannot be both sufficient and necessary unless P = NP. Indeed,
all the conditions above except Hall’s are sufficient but not necessary. In the literature, a
number of polynomial-time algorithms to compute perfect matchings for dense r-uniform
hypergraphs are known [33, 26, 25].

In this paper, we give a sufficient and necessary condition that, for any pair of integers
k > d ≥ 0, the k-uniform hypergraph

H =
(

V, E =
{

e ∈
(

V

k

)
: e ̸⊂ Si for all i ∈ [m]

})
has a perfect matching, where

(
V
k

)
denotes the collection of all k-subsets of V and

S1, S2, . . . , Sm are subsets of V with |Si ∩ Sj | < d for all i ≠ j ∈ [m] := {1, 2, . . . , m}.
We prove also the hardness of finding a maximum matching for such hypergraphs when k ≤ d.
Combining the above, we obtain a complexity trichotomy for our problem for all pairs of k

and d, detailed in Theorem 2.
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84:2 Dependent k-Set Packing on Polynomoids

To better understand the structure of the hypergraphs defined above and compare our
results with related work, we restate finding a maximum matching for such hypergraphs as
the dependent k-set packing on a kind of hereditary systems that we call polynomoids,
defined in Definition 1. Our notation for hereditary systems follows West [42].

▶ Definition 1 (d-Polynomoid). Let d ≥ 0 be an integer. Let (E,F) be a tuple where E is a
finite set and F ⊆ 2E is a non-empty collection of some subsets of E. The sets in F are
called independent sets, and the other subsets of E are dependent sets. We say that
P = (E,F) is a d-polynomoid if P satisfies the following two properties:

Hereditary Property: For every B ∈ F , if A ⊆ B then A ∈ F .
Join Property: For every A, B ∈ F , if |A ∩B| ≥ d then A ∪B ∈ F .

If the join property is removed, then P = (E,F) is a hereditary system [42]; if the join
property is replaced with the exchange property, then P is a matroid [37].

Given a d-polynomoid P = (E,F) and integers k ≥ 1, ℓ ≥ 0, the dependent k-set
packing for P asks if there exist ℓ pairwise disjoint k-sets not in F , where a set is called
k-set if it consists of k elements. If the ℓ disjoint k-sets exist, then output them. Our main
result is a complexity trichotomy for the dependent k-set packing problem on polynomoids,
stated formally in Theorem 2. An illustration is depicted in Figure 1.

▶ Theorem 2. The time complexities of the dependent k-set packing on d-polynomoids for
all pairs of integers k ≥ 1, d ≥ 0 can be classified into the following three categories:
1. If k ≤ d and k ≥ 3, there exists a d-polynomoid P so that the dependent k-set packing for

P is APX-complete.
2. If k ≤ d and k ≤ 2, then:

for k = 2, there exists a d-polynomoid P so that the dependent k-set packing for P is
as hard as the matching problem on ordinary graphs (i.e. 2-uniform hypergraphs);
for k = 1, this is a degenerate case solvable in O(|E|q(1)) time, where q is a function
defined below.

3. Otherwise k > d, for any d-polynomoid P = (E,F),

E contains ⌊|E|/k⌋ disjoint dependent k-sets if and only if r(E) ≤ (1− 1/k)|E|,

where r(E) is the size of a maximum independent subset of E. The dependent k-set
packing can be found in O (k|E|q(2k)) time, where q(t)1 denotes a monotone function
that upper-bounds the running time to test whether a t-subset of E is independent.

It may be worth noting that for some polynomoids computing r(E) requires quadratic
time unless the 3SUM conjecture fails, as shown in Section 2.2. To obtain Theorem 2,
it suffices to test r(E) ≤ (1 − 1/k)|E| without computing the exact value of r(E), which
can be tested in deterministic linear time (Section 4.1). In addition, greedily grouping the
elements in a largest independent set with those from other independent sets in general
cannot work correctly because the condition r(E) ≤ (1 − 1/k)|E| may be violated in the
residual polynomoid obtained from the initial polynomoid with a greedy removal of the
elements in a largest independent set and the corresponding grouped elements from other
independent sets.

In addition to the complexity trichotomy result, Theorem 2 can also be used to yield a
sufficient and necessary condition for each polynomoid when a perfect packing exists, such as
Corollary 3 (also follows from [14]), Corollary 4, Corollary 22, and Corollary 24 (also proven
in [7]).

1 Indeed, it has to be written as qP (t) because it varies among different polynomoids. We suppress the
subscript P when the context is clear.
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Figure 1 A complexity trichotomy for the dependent k-set packing.

▶ Corollary 3. Let G be a 3-uniform hypergraph with at least four vertices. If the number of
vertices in G is a multiple of 3 and every two hyperedges in G have at most one vertex in
common, then the complement of G has a perfect matching.

Proof. Let P = (E,F) where E is the set of vertices in G and F is the set of hyperedges in
G. By definition, P is a 2-polynomoid. By setting (k, d) = (3, 2) and applying Theorem 2 on
P , we are done. ◀

We remark that a number of related works discuss the independent set partition for
hereditary systems [20, 43], and the minimal dependent set packing [39] and partition [17, 41,
31, 13, 21] for matroids. Note that partition problems can be reduced to packing problems.

1.1 Example Polynomoids
There are a number of structures that satisfy the requirements of polynomoids. We list three
of them below, and more can be found in Appendix B.

1. Let E be a finite set of points in R2 and

F = {E′ ⊆ E : all points in E′ are colinear}.

P = (E,F) is a 2-polynomoid because:
Hereditary Property: Let S be a point set in R2. If all points in S are colinear, then
all points in any subset of S also are colinear.
Join Property: Let S1, S2 be two point sets in R2. If all points in each of S1 and S2
are colinear and |S1 ∩ S2| ≥ 2, then all points in S1 ∪ S2 are colinear.

The dependent k-set packing problem for P asks if E contains ℓ disjoint k-sets so that
the points in each k-set are not colinear. In particular, for k = 3, the points in each k-set
are on a circle with a finite radius, as depicted in Figure 2a. By Theorem 2, this problem
can be solved in O(|E|) time as k, q(2k) = O(1).
▶ Remark. More generally, the above example can be generalized to any set of degree-d
univariate polynomials for any d ≥ 1. Let E denote a finite set of distinct points in
R2. We may need a rotation of axes to ensure that no two points in E have the same
x-coordinate. Let L denote a collection of polynomials with degree d. Let F denote the
collection of all the subsets E′ of E that some polynomial in L passes through all points
in E′. It is not hard to check that such an (E,F) is a d-polynomoid. This motivates us
to call the hereditary systems defined in Definition 1 polynomoids.

MFCS 2023
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2. Let G = (V, E) be an undirected simple graph and

F = {E′ ⊆ E : all edges in E′ have a vertex in common}.

Hence, for any A ∈ F , the subgraph of G induced by the edges in A is a star graph.
P = (E,F) is a 2-polynomoid because:

Hereditary Property: Any subgraph of a star graph also is a star.
Join Property: If two star subgraphs have at least two edges in common, then their
union also is a star.

The dependent k-set packing problem for P asks if E contains ℓ disjoint k-sets so that the
edges in each k-set do not form a star graph. In particular, for k = 3, the edges in each
k-set edge-induce a triangle or a linear forest, i.e. each component in the forest is a
path, as depicted in Figure 2b. Because the union of the edges in a triangle and those in
any 3-edge non-star graph can be partitioned into two 3-edge linear forests (Lemma 25),
the problem of partitioning the edges in a graph into 3-edge linear forests is linear-time
reducible to the dependent k-set packing for P . By Theorem 2, both problems can be
solved in O(|E|) time as k, q(2k) = O(1).
▶ Remark. It is shown in [9, 6, 4] that an m-edge undirected simple graphs with maximum
degree ∆, except for a finite number of exceptions, can be edge-partitioned into 3P2s, i.e.,
three vertex-disjoint edges if and only if m is a multiple of 3 and ∆ ≤ m/3. By Theorem 2
and the above discussion, we obtain an analogous result that:
▶ Corollary 4. An m-edge undirected simple graph with maximum degree ∆ can be edge-
partitioned into 3-edge linear forests if and only if m is a multiple of 3 and ∆ ≤ 2m/3.
Let {H1, H2, . . . , Ht}-decomposition be the problem that, given an undireted simple
graph G = (V, E), decide whether E can partitioned into subsets so that each subset
edge-induce a subgraph isomorphic to Hi for some i ∈ [t]. It is conjectured in [40]
that {H1, H2, . . . , Ht}-decomposition is NP-complete if and only if {Hi}-decomposition
is NP-complete for all i ∈ [t]. Let Pℓ be a path of ℓ nodes. Let Pi ∪ Pj be the union
of vertex-disjoint Pi and Pj and let kPi be the union of k vertex-disjoint Pis. By the
above conjecture and the fact that P4-decomposition is NP-complete [28, 15] but P3 ∪P2-
decomposition [18, 10] and 3P2-decomposition [9, 6, 4] are polynomial-time solvable,
partitioning the edge set of an undirected simple graph into 3-edge linear forests shall
(assuming the conjecture holds) be solvable in polynomial time. Our above linear-time
algorithm gives an example that supports the conjecture.

3. Let G = (V, A) be an edge-weighted directed graph and

F∆ = {V ′ ⊆ V : a minimum st-cut in G has weight at least ∆ for every s ̸= t ∈ V ′},

where an st-cut is a partition of V into two disjoint sets S and T with s ∈ S, t ∈ T and
the weight of an st-cut is defined to be the sum of weights on the directed edges from
S to T . Note that by definition F∆ contains ∅ and all singleton sets. P = (V,F∆) is a
1-polynomoid because:

Hereditary Property: If a minimum st-cut in G has weight at least ∆ for all pairs of
s ̸= t ∈ V ′, then it also applies for all pairs of vertices in a subset of V ′.
Join Property: Let A, B ∈ F∆ and z be a vertex that A, B have in common. For any
pair of s ∈ A, t ∈ B, a minimum st-cut (S, T ) that separates s, t has either z ∈ S or
z ∈ T . We assume w.l.o.g. that z ∈ S. Since a minimum tz-cut and a minimum zt-cut
both have weights at least ∆, the (S, T )-cut also has weight at least ∆.
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The dependent k-set packing problem for P asks if V contains ℓ disjoint k-sets so that
for each k-set there is a cut in G of weight less than ∆ that separates the vertices in it,
as depicted in Figure 2c. By Theorem 2, this problem can be solved in O(k|V |k2f(G))
time as q(2k) = O(k2f(G)) where f(G) denotes the running time of exact maxflow
computation between two distinct nodes s and t on G.
▶ Remark. A naive approach for this problem needs to compute the minimum st-cuts for
all pairs of s, t ∈ V , but ours needs only O(k3V ) = O(V ) pairs. For undirected graphs,
by Gomory-Hu trees [23] the number of the minimum st-cuts that are needed to compute
is also O(V ). For unweighted directed graphs, the running time also can be reduced by
the approach in [12]. For weighted directed graphs, to the best of our knowledge, our
algorithm is the first one with running time matching the current best algorithm for
weighted undirected graphs.

A
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1 9

Figure 2 (a) The figure to the left: a partition of the given points into 3-sets so that the points
in each 3-set are on a circle with a finite radius. (b) The figure in the middle: a partition of the
edges into 3-sets so that the edges in each 3-set induces a linear forest. (c) The figure to the right: a
partition of the vertices into 2-sets so that for each 2-set there is a cut in G has weight less than 7
that separates vertices in it.

1.2 Sharpness of Our Result
The two properties of polynomoids are essential to make the dependent k-set packing for
polynomoids solvable in linear time for k > d.

Case I: if the hereditary property is removed from the Definition 1, then we have an
example problem for k > d that cannot be solved in polynomial time unless P = NP.
Let G be an undirected graph. Let (E,F) be a set system where E denotes the vertex
set of G and F consists of all the subsets E′ of E so that the subgraph of G induced by
the vertices in E′ are connected. Note that, for any E1, E2 ∈ F , if |E1 ∩ E2| ≥ 1, then
E1 ∪ E2 ∈ F . Thus, this set system corresponds to the case d = 1.
Set k = 3, so k > d. To find a dependent k-set packing for (E,F), it is equivalent
to asking whether E contains ℓ disjoint k-sets so that the subgraph in G induced by
the vertices in each k-subset is disconnected. For k = 3, this problem is equivalent to
asking whether E contains ℓ disjoint k-sets so that the subgraph in Ḡ (the complement
graph of G) induced by the vertices in each k-set is connected, which is known to be
NP-complete [16].
Case II: if the join property is removed from the Definition 1, then the parameter d

is removed. So the complexity trichotomy in Figure 1 collapses. For k ≥ 3, then it is
APX-complete; for k = 2, then it is as hard as matching [36]. It is not known how to
solve either case in linear time.

MFCS 2023
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1.3 Paper Organization
In Section 2, we devise a polynomial-time algorithm to find a maximum independent set for
any polynomoid P , assuming that the independence oracle can be queried in polynomial
time, and prove that no algorithms can solve this problem in truly subquadratic time
unless the 3SUM conjecture fails. Then, in Section 3, we relate the problem of finding a
maximum independent set and that of finding a largest dependent k-set packing for any
d-polynomoids with k > d. Because finding a maximum independent set for polynomoids is
3SUM-hard in general, we devise a deterministic linear-time algorithm without involving the
exact computation of the maximum independent sets in Section 4. We prove the hardness
for the case of k ≤ d in Appendix A. Finally, we present more applications of our results
in Appendix B and place omitted proofs in Appendix C.

2 Maximum Independent Sets

For any matroid, finding a maximum independent set can be done greedily because all
maximal independent sets have equal size. Since maximal independent sets of a polynomoid
may have different sizes, the greedy approach for matroids cannot be applied to polynomoids.
In what follows, we devise a polynomial-time algorithm to find a maximum independent
set for any polynomoid, assuming that testing whether a set is independent can be done in
polynomial time. In addition, we prove that this problem cannot be solved by any truly
subquadratic-time algorithm even if the independence oracle can be decided in time linear in
the input size unless the 3SUM conjecture fails.

2.1 A Polynomial-Time Algorithm
Our polynomial-time algorithm for finding a maximum independent set is mainly based on
the following key lemma.

▶ Lemma 5. Let P = (E,F) be a d-polynomoid for some d ≥ 0. For any d-subset C of E,
precisely one of the following two statements holds:

No maximal independent sets in P contain C.
Exactly one maximal independent set in P contains C.

Proof. If C is dependent, then no independent set contains C due to the hereditary property
of P . If C is independent and there exist two distinct maximal independent sets M1, M2 of
P that contain C as a subset, then

|M1 ∩M2| ≥ |C| = d.

By the join property of P , M1 ∪M2 is independent. Since M1 ̸= M2 and they are maximal,
we have

|M1 ∪M2| ≥ max{|M1|, |M2|}+ 1,

contradicting the maximality of M1 and M2. Therefore, precisely one maximal independent
set contains C. Each of the above two cases corresponds to one of the claimed statements. ◀

Lemma 5 yields an efficient algorithm that, for any independent set C of a d-polynomoid
with size at least d, finds “the” maximal independent set containing C as a subset. Formally,
we state it in Corollary 6.
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▶ Corollary 6. Let P = (E,F) be a d-polynomoid for some d ≥ 0. For any C ∈ F with size
at least d, finding the maximal independent set MC that contains C as a subset can be done
in O(|E|q(d + 1)) time.

Proof. By Lemma 5, there is a unique independent set MC that contains any d-subset Cd

of C as a subset. Hence, for any x ∈ E, if Cd ∪ {x} ∈ F , then x ∈ MC . Testing whether
Cd ∪ {x} ∈ F for all x ∈ E can be realized by invoking the independence oracle of P on
(d + 1)-subsets of E O(|E|) times. Thus, the total running time is O(|E|q(d + 1)). ◀

Lemma 5 and Corollary 6 imply that for any polynomoid P = (E,F) finding a maximum
independent set can be done in O(|E|d+1q(d + 1)) time. This can be seen from the following
two cases.
1. If the size s of maximum independent sets in P is at most d, then they can be found by

invoking the independence oracle once for each subset of E that has size ≤ d. Hence, the
running time is

d∑
i=0

(
|E|
i

)
q(i) = O(|E|dq(d)) for |E| ≥ 2 or O(q(1)) for |E| ≤ 1.

2. Otherwise, there is a maximum independent set M that has size > d. Because |M | > d

and the hereditary property of P , M contains a subset Md of size d in F . By Lemma 5,
exactly one maximal independent set W contains Md, so W = M . By Corollary 6,
W = Md ∪ {e ∈ E : Md ∪ {e} ∈ F}, which can be found in O(|E|q(d + 1)) time. Hence,
the total running time is at most

|E|q(d + 1) ·
(
|E|
d

)
= O(|E|d+1q(d + 1)).

The implementations of the above two cases can be unified as in the following pseudocode.

Algorithm 1 Finding a maximum independent set for polynomoids.

input : a d-polynomoid P = (E,F)
output : a maximum independent set of P

A← ∅;
foreach S ∈ {E′ ⊆ E : |E′| ≤ d} do

if S ∈ F then
M ← a maximal independent set in F that contains S;
if |M | > |A| then

A←M ;
return A;

As a consequence, we have:

▶ Theorem 7. For any d-polynomoid P = (E,F), given an independence oracle Oind : 2E →
{0, 1} that tests whether a t-subset of E is contained in F in q(t) time where q is a monotone
function, then finding an independent set in F that has the largest cardinality can be done in
O(|E|d+1q(d + 1)) time.

2.2 3SUM-Hardness
We show in Theorem 8 that, unless the 3SUM conjecture fails, there exists some polynomoid
P = (E,F) so that any algorithm that finds a maximum independent set for P requires
Ω(|E|2−ε) time for any constant ε > 0.

MFCS 2023
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▶ Theorem 8. There exists some polynomoid P whose independence oracle can be decided in
time linear in the input size so that finding a maximum independent set of P is 3SUM-hard.

Proof. Let P = (E,F) be a polynomoid where E is a finite set of distinct points in R2

and F =
{

E/ ⊆ E | all points in E/ are colinear
}

. It is clear that P is a 2-polynomoid. A
maximum independent set of P corresponds to a line in R2 that passes through the most
number of points in E. Hence, it suffices to answer whether there exist three points in E

that are colinear, which is known to be 3SUM-hard [19]. ◀

3 Dependent k-Set Packing

In this section, we will present a reduction from the dependent k-set packing to the maximum
independent set.

For each polynomoid P = (E,F), we define a rank function r : 2E → {0, 1, . . . , |E|}
so that r(S) denotes the cardinality of a largest subset of S that is contained in F . In
particular, r(E) equals the size of a maximum independent set of P , which can be computed
in polynomial time by Theorem 7. More generally, for every S ⊆ E, r(S) equals the size of a
maximum independent set of the polynomoid Q = (S, 2S ∩ F). Hence, the rank function
r for any subset of E is computable in polynomial time, assuming that the independence
oracle of P can be decided in polynomial time. Let ρk(E) denote the maximum number of
disjoint dependent k-subsets that E contains. We claim that r(E) and ρk(E) can be related
as follows, so ρk(E) can be computed no slower than finding r(E).

▶ Theorem 9. Let k, d be two integers with k > d ≥ 0. For any d-polynomoid P = (E,F),

ρk(E) =
{
|E| − r(E) if r(E) > (1− 1/k)|E|
⌊|E|/k⌋ otherwise

It suffices to prove Theorem 9 for k = d+1 because of the observation that a d-polynomoid
is also a t-polynomoid for every t > d.

3.1 Case I: r(E) > (1 − 1/k)|E|
We prove the first case of Theorem 9 by the following lemma.

▶ Lemma 10. Let d ≥ 0 and k = d + 1 be two integers. For any d-polynomoid P = (E,F),
if r(E) > (1− 1/k)|E|, then ρk(E) = |E| − r(E).

Proof. The proof for d = 0 is clear because any 0-polynomoid has F = 2S for some S ⊆ E.
Hence we assume that d ≥ 1, so k ≥ 2. Let M be a maximum independent set of P . By
definition, |M | = r(E). For each element x in E \M , we remove k− 1 distinct elements from
M and let Ax be the set containing x and the k − 1 removed elements.

▷ Claim 11. Ax is dependent.

Proof. Suppose for contradiction that Ax ∈ F , the intersection of Ax and M is k− 1 = d, so
Ax ∪M ∈ F by the join property of P . This violates the maximality of M . Hence, Ax is
dependent. ◁

Since r(E) > (1− 1/k)|E|, we have r(E) > (k − 1)(|E| − r(E)). So the above grouping
procedure can iterate until E \M is exhausted. Hence, we obtain a collection of |E| − r(E)
dependent k-sets (not necessarily the largest one), so ρk(E) ≥ |E| − r(E). Note that, if
ρk(E) > |E| − r(E), by the pigeonhole principle, at least one of the ρk(E) k-sets contains
elements only from M . By the hereditary property of P , such a k-set must be independent
because it is a subset of M , a contradiction. As a result, ρk(E) = |E| − r(E). ◀
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3.2 Case II: r(E) ≤ (1 − 1/k)|E|
We prove the second case of Theorem 9 by the following lemmas. We will show that, if
r(E) ≤ (1− 1/k)|E|, let Z1, Z2, . . . , Zℓ be k-sets of E and W = E \

⋃
i∈[ℓ] Zi with |W | < k,

then either Zis are all dependent, or there exist two sets in {Zi : i ∈ [ℓ]} ∪W whose elements
can be exchanged so as to increase the number of dependent sets in {Zi : i ∈ [ℓ]}.

We begin with a helper lemma.

▶ Lemma 12. Let d ≥ 0 and k = d + 1 be two integers. Let P = (E,F) be a d-polynomoid.
For any two disjoint k-subsets X, Y ⊆ E, if r(X ∪ Y ) ≤ 2d, then X ∪ Y can be partitioned
into two disjoint dependent k-subsets of E. This partition can be done in O(d2q(d + 1)) time.

Proof. We begin with the proofs of the following claims.

▷ Claim 13. If X has a subset Z ∈ F with |Z| ≥ d, then Z ∪ {y} /∈ F for some y ∈ Y .

Proof. If such a y does not exist, then Z ∪ {y} ∈ F for every y ∈ Y . By Lemma 5, there
is exactly one maximal independent set that contains Z. The above two facts imply that
Z ∪ Y ∈ F . This yields r(Z ∪ Y ) ≥ 2d + 1 > r(X ∪ Y ), a contradiction. ◁

▷ Claim 14. If X ∈ F , there exists y ∈ Y , for every d-subset Z of X, Z ∪ {y} /∈ F .

Proof. By Claim 13, X ∪ {y} /∈ F for some y ∈ Y . If X has a d-subset Z with Z ∪ {y} ∈ F ,
since X ∩ (Z ∪ {y}) = Z, by the join property of P we have X ∪ (Z ∪ {y}) = X ∪ {y} ∈ F , a
contradiction. ◁

We are ready to give a proof. If both X and Y are dependent, then we are done.
Otherwise, we assume w.l.o.g. that X ∈ F . By Claim 14, there exists an y∗ ∈ Y , for
every x ∈ X, X \ {x} ∪ {y∗} /∈ F . If Y \ {y∗} ∈ F , then by Claim 13 there exists some
x∗ ∈ X so that Y \ {y∗} ∪ {x∗} /∈ F . Otherwise Y \ {y∗} /∈ F , then for any x ∈ X we have
Y \ {y∗} ∪ {x} /∈ F . As a result, X \ {x∗} ∪ {y∗} and Y \ {y∗} ∪ {x∗} both are not in F and
together partition X ∪ Y . By enumerating all possible x∗, y∗, it yields the time bound. ◀

We are ready to prove that the swapping procedure can iterate until no sets in {Zi : i ∈ [ℓ]}
are independent.

▶ Lemma 15. Let d ≥ 0, k = d+1, and ℓ ≥ 1 be integers. Let P = (E,F) be a d-polynomoid.
For any subset S of E, if |S| = ℓk + t and r(S) ≤ ℓd + t for some t ≥ 0, then S contains ℓ

disjoint dependent k-subsets of E.

Proof. Initially, we partition S arbitrarily into ℓ k-sets Z1, Z2, . . . , Zℓ and one t-set W . If none
of Zi for i ∈ [ℓ] is independent, then we are done. Otherwise, Zi ∈ F for some i ∈ [ℓ]. Since
Zi ∈ F and |Zi| = k ≥ d, by Lemma 5 there is exactly one maximal independent set M(Zi)
that contains Zi. Hence, there are at least |S|− |M(Zi)| elements x ∈ S so that Zi∪{x} /∈ F .
We color these elements blue. By the maximality of r(S), |M(Zi)| ≤ r(S) ≤ ℓd + t. Hence,
|S| − |M(Zi)| ≥ ℓk + t− ℓd− t = ℓ. There are two cases to discuss.
1. W contains a blue element b. By the definition of blue elements, Zi ∪ {b} /∈ F . Let y be

an arbitrary element in Zi. Then, (Zi \ {y}) ∪ {b} /∈ F ; otherwise, by the join property
of P

{y} ∪ (Zi \ {y}) ∈ F and (Zi \ {y}) ∪ {b} ∈ F together imply Zi ∪ {b} ∈ F ,

a contradiction. If we set (Zi, W )→ (Zi \ {y} ∪ {b}, W \ {b} ∪ {y}) , then the number of
independent sets in {Z1, Z2, . . . , Zℓ} is reduced by one.
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2. W contains no blue elements. Because Zi also contains no blue elements, the ≥ ℓ blue
elements are distributed among {Z1, Z2, . . . , Zℓ} \ {Zi}. By the pigeonhole principle,
some Zj contains at least 2 blue elements. We claim that r(Zi ∪ Zj) ≤ 2d. Thus, by
Lemma 12 we can partition Zi ∪ Zj into two dependent k-sets. Hence, the number of
independent sets in {Z1, Z2, . . . , Zℓ} is reduced by at least one.
We prove the claim as follows. Suppose for contradiction that r(Zi∪Zj) ≥ 2d+1. Because
|Zi|+ |Zj | = 2(d + 1), there exists one element x so that Zi ∪Zj \ {x} ∈ F . Because there
are two blue elements b1, b2 ∈ Zj and any independent superset of Zi contains no blue
elements, x /∈ Zj and thus x ∈ Zi. By the hereditary property of P , Zi \ {x} ∪ {b1} ∈ F .
By the join property of P , {x} ∪ (Zi \ {x}) ∈ F and (Zi \ {x}) ∪ {b1} ∈ F imply that
Zi ∪ {b1} ∈ F , a contradiction.

For each case, we can reduce the number of independent sets in {Z1, Z2, . . . , Zℓ} by at least
one. Since ℓ is finite, one can always obtain a feasible packing. ◀

Let |E| = ℓk + t for some t ∈ [0, k). Thus ⌊|E|/k⌋ = ℓ. Since r(E) ≤ (1− 1/k)(ℓk + t) ≤
ℓd + t, by Lemma 15 we complete the proof of the second case.

4 Finding a Largest Dependent k-Set Packing in Deterministic Linear
Time

In Theorem 8, we have shown that computing r(E) in general requires Ω(|E|2−ε) time for
any constant ε > 0 unless the 3SUM conjecture fails. Hence, to compute the k-set packing
in O(E) time, one cannot directly compute r(E) to distinguish which case in Theorem 9
applies.

4.1 The Deterministic Linear-Time Algorithm
In this section, we devise a deterministic linear-time algorithm for finding a largest dependent
set packing for any d-polynomoid P = (E,F). Let d, k be two integers with k = d + 1. Recall
that we have to consider only the case of k = d + 1. Let |E| = ℓk + t for some t ∈ [0, k).
Initially, we partition E arbitrarily into Z1, Z2, . . . , Zℓ and W so that |Zi| = k for i ∈ [ℓ] and
|W | = t. Then we apply the following five steps to find a largest dependent k-set packing D.

1. Set A = {Z1, Z2, . . . , Zℓ}. Set D = ∅.
2. If some Zi ∈ A is dependent, remove Zi from A and set D = D ∪ {Zi}. Otherwise,

proceed to the next step.
▶ Remark. This step takes O(q(k)|E|/k) time.

3. If there exist Zi, Zj ∈ A that Zi ∪ Zj is dependent, remove Zi and Zj from A and set
D = D ∪ {Z ′

i, Z ′
j} where Z ′

i and Z ′
j are dependent k-sets and they partition Zi ∪ Zj .

Otherwise, proceed to the next step.
▶ Remark. The existence of Z ′

i and Z ′
j is shown in Section 4.2. Because |Zi| ≥ d and

|Zj | ≥ d, Zi ∪ Zj is independent iff Zi and Zj belong to the same maximal set. So if
Zi ∪ Zj ∈ F but Zi ∪ Zk /∈ F , then Zj ∪ Zk /∈ F . Hence, we can keep a list of Zs so that
their pairwise unions are independent sets. For each unpaired Y outside the pool, pick any
Z in the pool, if Z ∪ Y ∈ F , then Z ′ ∪ Y ∈ F for any Z ′ in the pool, so expand the pool
by adding Y ; otherwise, pair Y, Z and throw out Y, Z. Indeed, this is a generalization of
the majority voting [8]. This step takes O((q(2k) + k2q(k))|E|/k) time.

4. If A = ∅, return D and stop. Otherwise, find a maximal independent set MA of P that
contains all elements in A as subsets.
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▶ Remark. If A = ∅, then D is largest possible, so it is a largest dependent k-set packing.
The existence of MA is shown in Section 4.2. To find MA, let Z be some element in A
and find the maximal independent set that contains Z as a subset in O(|E|q(k)) time by
Corollary 6. Since |Z| = k ≥ d and Z ∈ F , we known that MA = MZ by Lemma 5.

5. This final step is reached only if |A| ≥ 1.
Case 1: r(E) > (1− 1/k)|E|. By Lemma 18, MA is a maximum independent set of P .
Since MA is given, one can simulate Lemma 10 in O(|E|) time.
Case 2: r(E) ≤ (1− 1/k)|E|. By Lemma 17, MA contains all elements in A. One can
simulate Lemma 15 efficiently as follows.
For each Z ∈ A, to implement Lemma 15, we need to find a set Z ′ ∈ {Zi : i ∈ [ℓ]}∪{W}
that contains a sufficient number of elements in E \MA (aka “blue elements” in the
proof of Lemma 15). Given MA, we compute E \MA in O(|E|) time and maintain
the locations of these “blue elements” so that for each Z ∈ A we can find the Z ′ in
O(1) time.
Hence, the number of swapping steps is O(|E|/k) and each takes O(k2q(k)) time
(Lemma 12). So this step needs O(k|E|q(k)) time.

As a consequence, the total running time of all steps is bounded by O(k|E|q(2k)). This
completes the proof of Theorem 2 for k > d.

4.2 The Existence Proofs
We will prove the existence proofs required by the algorithm in Section 4.1. In Step 3,
Zi, Zj ∈ F and Zi ∪Zj /∈ F , so r(Zi ∪Zj) ≤ 2d by Lemma 16. Hence, by Lemma 12, Zi ∪Zj

can be partitioned into two disjoint dependent sets of size k. The existence of MA required
by Step 4 is shown in Lemma 17. Finally, we prove in Lemma 18 that MA is a maximum
independent set of P if r(E) ≥ (1− 1/k)|E| and |A| ≥ 1.

▶ Lemma 16. For any k-subsets X, Y of E, if X, Y ∈ F but X∪Y /∈ F , then r(X∪Y ) ≤ 2d.

Proof. Let S be any subset of X ∪ Y with |S| = r(X ∪ Y ). If |S| > 2d, then there exists
z ∈ X ∪ Y so that (X ∪ Y ) \ {z} ∈ F . We assume w.l.o.g. that z ∈ X and Y ⊆ S. Let M be
a maximal independent set of P that contains S as a subset. Because |M ∩X| ≥ |S ∩X| ≥ d,
by the join property of P we have M ∪ X ∈ F . By the maximality of M , X ⊆ M , so
X ∪ Y ⊆M . By the hereditary property of P , M ∈ F implies X ∪ Y ∈ F . This violates the
setting. Therefore, r(X ∪ Y ) ≤ 2d. ◀

▶ Lemma 17. In Step 4, such a maximal independent set MA of P always exists.

Proof. The construction of A yields that, for any X, Y ∈ A, X ∪ Y ∈ F . By Lemma 5,
there is a unique maximal independent set MX (resp. MX∪Y ) that contains X (resp. X ∪Y )
as a subset. The uniqueness of MX and MX∪Y implies that MX = MX∪Y . Similarly,
MY = MX∪Y . Hence, MX = MY . Because this fact applies to every pair of elements in A,
there is a maximal independent set MA that contains every element in A as a subset. ◀

▶ Lemma 18. In Step 4, if r(E) > (1 − 1/k)|E| and |A| ≥ 1, then MA is a maximum
independent set of P .

Proof. We begin with the proofs that, for any maximal independent set M of P , each
removed Zi in Steps 2 and 3 contains at least one element outside M on average.
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▷ Claim 19. Let M be any maximal independent set of P . In Step 2, for each removed Zi,
Zi contains at least one element in E \M .

Proof. Because Zi /∈ F and M ∈ F , by the hereditary property of P , Zi is not a subset of
M . Hence, Zi contains at least one element outside E \M . ◁

▷ Claim 20. Let M be any maximal independent set of P . In Step 3, for each pair of
removed Zi and Zj , Zi ∪ Zj contains at least two elements in E \M .

Proof. By Lemma 16, we know that r(Zi∪Zj) ≤ 2d. If M ∩(Zi∪Zj) > 2d, then r(Zi∪Zj) >

2d, a contradiction. Hence, M ∩ (Zi ∪ Zj) ≤ 2d, as desired. ◁

We are ready to give a proof. Let S be a subset of E with |S| = r(E), and let

UA = W ∪
⋃

Z∈A
Z and UB = E \ UA.

By Claims 19 and 20, we have

|S ∩ UB |
|UB |

≤ k − 1
k

. (1)

By restating r(E) > (1− 1/k)|E|, we get

|S ∩ E|
|E|

>
k − 1

k
. (2)

Combining (1), (2), and the average argument, it yields that

|S ∩ UA|
|UA|

>
k − 1

k
. (3)

To satisfy the inequality (3), if |A| ≥ 1, either S contains UA \W as a subset or S does not
contain UA \W as a subset. The former implies that S = MA due to the uniqueness of MA
(Lemma 5), as desired. Note that |S ∩ (UA \W ) ≤ k− 2|; otherwise, S ∪MA ∈ F due to the
join property of P and thus S = MA by the maximality of S and MA. The latter cannot
hold because |S ∩ (UA \W )| ≤ k − 2 and 0 ≤ |W | ≤ k − 1 implies that

k − 1
k

<
|S ∩ UA|
|UA|

= |S ∩W |+ |S ∩ (UA \W )|
|W |+ |UA \W |

≤ |W |+ k − 2
|W |+ k|A|

≤ 2k − 3
2k − 1 ,

which cannot hold for positive k. ◀

5 Conclusion

We obtain a complexity trichotomy result for the dependent k-set packing problem on
d-polynomoids. For each of the three categories, our algorithm is optimal. It may worth
noting that the running time of the algorithm for the case of k > d can be reduced by a factor
of k by group testing [30, 22], which will be introduced in the full version of this manuscript.
Though this yields a constant-factor improvement, it may affact the performance of real
applications.
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A Hardness Reduction

In this section, we prove that the dependent k-set packing for d-polynomoids with d ≥ k is
as hard as hypergraph matchings in general. We reduce the matching problem for k-uniform
hypergraphs to the dependent k-set packing problem on d-polynomoids with d ≥ k in
Theorem 21. The other direction is clear because the latter problem is a special case of the
former one. This completes the proof of Theorem 2 for k ≤ d.

▶ Theorem 21. For any integers d ≥ k ≥ 1, there exists a d-polynomoid P = (E,F) so that
dependent k-set packing on P is as hard as matchings on k-uniform hypergraphs.

Proof. We prove this lemma by showing a reduction from the perfect matching for k-uniform
graphs to the dependent k-set packing for P . Let G = (V, E) be a k-uniform hypergraph.
Let P = (V,F) be a d-polynomoid where F = {all subsets of V with size at most k} \ E .

We now show that P is a d-polynomoid. Note that each set in F has size at most k. By the
definition of F , all subsets of V with size at most k− 1 are in F so P satisfies the hereditary
property. When k = d, two sets A, B in F have |A ∩ B| ≥ d if and only if A = B. When
k < d, two sets A, B in F have |A ∩ B| ≥ d cannot happen. Hence, P satisfies the join
property. Observe that a hyperedge is in G if and only if it is a dependent set of P . Hence,
finding a dependent k-set packing for P is equivalent to finding a matching for G. ◀
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B More Applications

In this section, we present more applications of our results that are not covered in Section 1.1.

1. Let G = (V, E) be an m-edge undirected simple graph. Let P = (E,F) so that F =
{A ⊆ E : there exists a triangle in G that contains all edges in A} . One may verify that
P is a 2-polynomoid. By Theorem 2, we obtain a deterministic linear-time algorithm for
the dependent k-set packing for P , which is equivalent to partitioning the edge set of
G into subsets, each of which edge-induces a 3-edge forest. In addition, we obtain the
following sufficient and necessary condition:
▶ Corollary 22. An m-edge undirected simple graph G can be edge-partitioned into 3-edge
forests if and only if m is a multiple of 3 and G is not a triangle.
In [5], they give a sufficient and necessary condition to partition the edge set of the given
graph into a designated four-edge tree for highly-edge-connected graphs.

2. Let G = (V, E) be a complete multipartite graph. Let P = (V,F) so that F =
{A ⊆ V : all vertices in A are from the same partite set} . One may verify that P is a
1-polynomoid. By Theorem 2, we obtain the following sufficient and necessary condition:
▶ Corollary 23. An n-vertex undirected simple complete multipartite graph G has a perfect
matching if and only if n is a multiple of 2 and the number of vertices in a largest partite
set is at most n/2.
By an argument in [7], Corollary 23 suffices to prove:
▶ Corollary 24. Given a set of points in R2 in general position where each point has a
color in [c], one can group the points into pairs so that the line segment joining the points
in a pair does not cross that of another pair and the points in each pair have different
colors if and only if n is a multiple of 2 and for each color i ∈ [c] the number of points of
color i is at most n/2.

C Omitted Proofs

▶ Lemma 25. Let G = (V, E) be an undirected simple graph consisting of six edges. If E can
be partitioned into E1, E2 so that E1 edge-induces a triangle and E2 edge-induces a non-star
graph, then E can also be partitioned into two subsets so that each subset edge-induces a
3-edge linear forest.

Proof. By definition, E2 edge-induces either a triangle or a 3-edge linear forest. Suppose
that E2 edge-induces a triangle. For any E′ ⊆ E, let V (E′) denote the set of the end-vertices
of edges in E′. Since G is simple, V (E1) and V (E2) have at most one vertex in common.
Hence, there exist e1 ∈ E1, e2 ∈ E2 so that V ({e1}) ∩ V (E2) = ∅ and V ({e2}) ∩ V (E1) = ∅.
This yields that E1 ∪ {e2} \ {e1} and E2 ∪ {e1} \ {e2} both edge-induce P3 ∪ P2, i.e., two
vertex-disjoint paths of 3 verices and 2 vertices.

Suppose that E2 edge-induces a 3-edge linear forest. Let e2 be an edge in E2 so that
E2 \ {e2} = 2P2, i.e., two edges with no end-vertices in common. Since G is simple and E1
edge-induces a complete graph, |V ({e2}) ∩ V (E1)| ≤ 1. Hence, E1 ∪ {e2} has at most one
vertex of degree ≥ 3 and e2 is not an edge in any cycle of E1 ∪ {e2}. Let e1 be any edge in
E1 incident with the maximum degree vertex in E1 ∪ {e2}. Thus, E1 ∪ {e2} \ {e1} has max
degree ≤ 2 and contains no cycle, i.e., a linear forest. On the other hand, because the union
of 2P2 and any other edge also has max degree ≤ 2 and contains no cycle, E2 ∪ {e1} \ {e2}
also is a linear forest. ◀

MFCS 2023





Exponential Lower Bounds for Threshold Circuits
of Sub-Linear Depth and Energy
Kei Uchizawa #

Graduate School of Science and Engineering, Yamagata University, Yonezawa-shi Yamagata, Japan

Haruki Abe
Graduate School of Science and Engineering, Yamagata University, Yonezawa-shi Yamagata, Japan

Abstract
In this paper, we investigate computational power of threshold circuits and other theoretical models
of neural networks in terms of the following four complexity measures: size (the number of gates),
depth, weight and energy. Here, the energy of a circuit measures sparsity of their computation, and
is defined as the maximum number of gates outputting non-zero values taken over all the input
assignments.

As our main result, we prove that any threshold circuit C of size s, depth d, energy e and weight
w satisfies log(rk(MC)) ≤ ed(log s + log w + log n), where rk(MC) is the rank of the communication
matrix MC of a 2n-variable Boolean function that C computes. Thus, such a threshold circuit C is
able to compute only a Boolean function of which communication matrix has rank bounded by a
product of logarithmic factors of s, w and linear factors of d, e. This implies an exponential lower
bound on the size of even sublinear-depth and sublinear-energy threshold circuit. For example, we
can obtain an exponential lower bound s = 2Ω(n1/3) for threshold circuits of depth n1/3, energy n1/3

and weight 2o(n1/3). We also show that the inequality is tight up to a constant factor when the
depth d and energy e satisfies ed = o(n/ log n).

For other models of neural networks such as a discretized ReLU circuits and descretized sigmoid
circuits, we define energy as the maximum number of gates outputting non-zero values. We then prove
that a similar inequality also holds for a discretized circuit C: rk(MC) = O(ed(log s+log w+log n)3).
Thus, if we consider the number gates outputting non-zero values as a measure for sparse activity of
a neural network, our results suggest that larger depth linearly helps neural networks to acquire
sparse activity.

2012 ACM Subject Classification Theory of computation → Models of computation

Keywords and phrases Circuit complexity, disjointness function, equality function, neural networks,
threshold circuits, ReLU cicuits, sigmoid circuits, sparse activity

Digital Object Identifier 10.4230/LIPIcs.MFCS.2023.85

Related Version Full Version: https://arxiv.org/abs/2107.00223

Funding Kei Uchizawa: This work was supported by JSPS KAKENHI Grant Number JP22K11897.

Acknowledgements We thank the anonymous reviewers for their careful reading and helpful com-
ments.

1 Introduction

Background. DiCarlo and Cox argued that constructing good internal representations
is crucial to perform visual information processing, such as object recognition, for neural
networks in the brain [5]. Here, an internal representation is described by a vector in a
very high dimensional space, where each axis is one neuron’s activity and the dimensionality
equals to the number (e.g., ∼1 million) of neurons in a feedforward neural network. They
call a representation good if, for a given pair of two images that are hard to distinguish at
the input space, there exist representations for them that are easy to separate by simple
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classifiers such as a linear classifier. While such internal representations are likely to play
fundamental role in information processing in the brain, it is also known that a neuron needs
relatively high energy to be active [18, 27], and hence neural networks are forced to acquire
representations supported by only a small number of active neurons [7]. These observations
pose a question: for what information processing can neural networks construct good internal
representations?

In the paper [42], Uchizawa et al. address the question from the viewpoint of circuit
complexity. More formally, they employed threshold circuits as a model of neural networks [23,
24, 28, 31, 34, 35, 36], and introduced a complexity measure, called energy complexity, for
sparsity of their internal representations. A threshold circuit is a feedforward logic circuit
whose basic computational element computes a linear threshold function, and energy of a
circuit is defined as the maximum number of internal gates outputting ones over all the input
assignments. (See also [6, 16, 33, 37, 45] for studies on energy complexity of other types
of logic circuits). Uchizawa et al. then show that the energy complexity is closely related
to the rank of linear decision trees. In particular, they prove that any linear decision tree
of l leaves can be simulated by a threshold circuit of size O(l) and energy O(log l). Thus,
even logarithmic-energy threshold circuits have certain computational power: any linear
decision tree of polynomial number of leaves can be simulated by a polynomial-size and
logarithmic-energy threshold circuit.

Following the paper [42], a sequence of papers show relations among other major complex-
ity measures such as size (the number of gates), depth, weight and fan-in [22, 38, 39, 43, 41, 40,
44]. In particular, Uchizawa and Takimoto [43] showed that any threshold circuit C of depth
d and energy e requires size s = 2Ω(n/ed) if C computes a high bounded-error communication
complexity function such as Inner-Product function. Even for low communication complexity
functions, an exponential lower bound on the size is known for constant-depth threshold
circuits: any threshold circuit C of depth d and energy e requires size s = 2Ω(n/e2e+d loge n)

if C computes the parity function [41]. These results provide exponential lower bounds
if the depth is constant and energy is sub-linear [43] or sub-logarithmic [41], while both
Inner-Product function and Parity function are computable by linear-size, constant-depth,
and linear-energy threshold circuits. Thus these results imply that the energy complexity
strongly related to representational power of threshold circuits. However these lower bounds
break down when we consider threshold circuits of larger depth and energy, say, non-constant
depth and sub-linear energy.

Our Results for Threshold Circuits. In this paper, we prove that simple Boolean functions
are hard even for sub-linear depth and sub-linear energy threshold circuits. Let C be a
threshold circuit with Boolean input variables x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn).
A communication matrix MC of C is a 2n × 2n matrix where each row (resp., each column) is
indexed by an assignment a ∈ {0, 1}n to x (resp., b ∈ {0, 1}n to y), and the value MC [a, b]
is defined to be the output of C given a and b. We denote by rk(MC) the rank of MC over
F2. Our main result is the following relation among size, depth energy and weight.

▶ Theorem 1. Let s, d, e and w be integers satisfying 2 ≤ s, d, 10 ≤ e, 1 ≤ w. If a threshold
circuit C computes a Boolean function of 2n variables, and has size s, depth d, energy e and
weight w, then it holds that

log(rk(MC)) ≤ ed(log s + log w + log n). (1)
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The theorem implies exponential lower bounds for sub-linear depth and sub-linear energy
threshold circuits. As an example, let us consider a Boolean function CDn defined as follows:
For a 2n input variables x1, . . . , xn and y1, . . . , yn,

CDn(x, y) =
n∨

i=1
xi ∧ yi.

We note that CDn is a biologically motivated Boolean function: Maass [21] defined CDn to
model coincidence detection or a pattern matching, and Lynch and Musco [19] introduced
a related problem, called Filter problem, for studying theoretical aspect of spiking neural
networks. Since CDn is the complement of the disjointness function and has rank 2n, the
theorem implies that

n ≤ ed(log s + log w + log n) (2)

holds if a threshold circuit C computes CDn. Arranging Eq. (2), we can obtain a lower
bound 2n/(ed)/(wn) ≤ s which is exponential in n if both d and e are sub-linear and w is
sub-exponential. For example, we can obtain an exponential lower bound s = 2Ω(n1/3) even
for threshold circuits of depth n1/3, energy n1/3 and weight 2o(n1/3). We can obtain similar
lower bounds for the Inner-Product function and the equality function, since they have linear
rank.

Comparing the lower bound s = 2Ω(n/ed) given in [43] to ours, our lower bound is
meaningful only for sub-exponential weight, but improves on it in two-fold: the lower bound
is exponential even if d is sub-linear, and provide a nontrivial lower bound for Boolean
functions with much weaker condition: Threshold circuits need exponential size even for
Boolean functions of the standard rank Ω(n).

Threshold circuits have received considerable attention in circuit complexity, and a number
of lower bound arguments have developed for threshold circuits under some restrictions
on computational resources including size, depth, energy and weight [1, 2, 3, 9, 10, 13, 15,
22, 26, 30, 32, 41, 43, 44]. However, the arguments for lower bounds are designated for
constant-depth threshold circuits, and hence cannot provide meaningful ones when the depth
is not constant. In particular, CDn is computable by a depth-2 and linear-size threshold
circuit. Thus, directly applying known techniques are unlikely to yield an exponential lower
bound for CDn.

To complement Theorem 1, we also show that the lower bound is tight up to a constant
factor if the product of e and d are small:

▶ Theorem 2. For any integers e and d such that 2 ≤ e and 2 ≤ d, CDn is computable by a
threshold circuit of size

s ≤ (e − 1)(d − 1) · 2
n

(e−1)(d−1) .

depth d, energy e and weight

w ≤
(

n

(e − 1)(d − 1)

)2
.

Substituting s, d, e and w of a threshold circuit given in Theorem 2 to the right hand side of
Eq. (2), we have

ed(log s + log w + log n)

≤ ed

(
n

(e − 1)(d − 1) +log(e − 1)(d − 1)+log
(

n

(e − 1)(d − 1)

)2
+log n

)
≤ 4n + O(ed log n),
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which almost matches the left hand side of Eq. (2) if ed = o(n/ log n). Thus, Theorem 1
neatly captures the computational aspect of threshold circuits computing CDn. Recall that
any linear decision tree of polynomial number of leaves can be simulated by a polynomial-size
and logarithmic-energy threshold circuit [42]. Also, it is known that any Boolean function
is computable by a threshold circuit of depth two and energy one if an exponential size is
allowed [22]. Thus, we believe that the situation ed = o(n/ log n) is not too restrictive. We
also show that the lower bound is also tight for the equality function.

Our Result for Discretized Circuits. Besides threshold circuits, we consider other well-
studied models of neural network, where an activation function and weights of an com-
putational element are discretized (such as, discretized sigmoid or ReLU circuits). The
size, depth, energy and weight are important parameters also for artificial neural networks.
The size and depth are major topics on success of deep learning. The energy is related to
important techniques for deep learning method such as regularization, sparse coding, or
sparse autoencoder [11, 17, 25]. The weight resolution is closely related to chip resources in
neuromorphic hardware systems [29], and quantization schemes received attention [4, 12].

We define energy for a discretized circuit as the maximum number of gates outputting
non-zero values, and show that any discretized circuit can be simulated by a threshold circuit
with a moderate increase in size, depth, energy, and weight. Consequently, combining with
Theorem 1, we can show that its rank is bounded by a product of the polylogarithmic factors
of s, w and linear factors of d, e for discretized circuits. For example, we can obtain the
following proposition for discretized sigmoid circuits:

▶ Theorem 3. If a discretized sigmoid circuit C of size s, depth d, energy e, and weight w

computes a Boolean function f , then it holds that

log(rk(MC)) = O(ed(log s + log w + log n)3).

Maass, Schnitger and Sontag [20] showed that a sigmoid circuit could be simulated by
a threshold circuit, but their simulation was optimized to be depth-efficient and did not
consider energy. Thus, their result does not fit into our purpose.

Theorems 1 and 3 imply that a threshold circuit or discretized circuit are able to compute
a Boolean function of bounded rank. Thus, we can consider these theorems as bounds on
corresponding concept classes. According to the bound, c times larger depth is comparable
to 2c times larger size. Thus, large depth could enormously help neural networks to increase
its expressive power. Also, the bound suggests that increasing depth could also help a neural
network to acquire sparse activity when we have hardware constraints on both the number
of neurons and the weight resolution. These observations may shed some light on the reason
for the success of deep learning.

Organization. The rest of the paper is organized as follows. In Section 2, we define terms
needed for analysis. In Section 3, we present our main lower bound result. In Section 4, we
show the tightness of the lower bound. In Section 5, we show a bound for discretized circuits.
In Section 6, we conclude with some remarks.

2 Preliminaries

For an integer n, we denote by [n] a set {1, 2, . . . n}. The base of the logarithm is two unless
stated otherwise. In Section 2.1, we define terms on threshold circuits and discretized circuits.
In Section 2.2, we define communication matrix, and give some known facts.
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2.1 Circuit Model
In Sections 2.1.1 and 2.1.2, we give definitions of threshold and discritized circuits, respectively.

2.1.1 Threshold Circuits
Let k be a positive integer. A threshold gate g with k input variables ξ1, ξ2, . . . , ξk has weights
w1, w2, . . . , wk, and a threshold t. We define the output g(ξ1, ξ2, . . . , ξk) of g as

g(ξ1, ξ2, . . . , ξk) = sign
(

k∑
i=1

wiξi − t

)
=
{

1 if t ≤
∑k

i=1 wiξi;
0 otherwise

To evaluate the weight resolution, we assume single synaptic weight to be discrete, and that
w1, w2, . . . , wn are integers. The weight wg of g is defined as the maximum of the absolute
values of w1, w2, . . . , wk. In other words, we assume that w1, w2, . . . , wk are O(log wg)-bit
coded discrete values. Throughout the paper, we allow a gate to have both positive and
negative weights, although biological neurons are either excitatory (all the weights are
positive) or inhibitory (all the weights are negative). As mentioned in [21], this relaxation
has basically no impact on circuit complexity investigations, unless one cares about constant
blowup in computational resources.

A threshold circuit C is a combinatorial circuit consisting of threshold gates, and is
expressed by a directed acyclic graph. The nodes of in-degree 0 correspond to input variables,
and the other nodes correspond to gates. Let G be a set of the gates in C. For each gate
g ∈ G, the level of g, denoted by lev(g), is defined as the length of a longest path from an
input variable to g on the underlying graph of C. For each l ∈ [d], we define Gl as a set of
gates in the lth level: Gl = {g ∈ G | lev(g) = l}.

In this paper, we consider a threshold circuit C for a Boolean function f : {0, 1}2n → {0, 1}.
Thus, C has 2n Boolean input variables x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn),
and a unique output gate, denoted by gclf , which is a linear classifier separating internal
representations given by the gates in the lower levels (possibly together with input variables).
Consider a gate g in C. Let wx

1 , wx
2 , . . . , wx

n (resp., wy
1 , wy

2 , . . . , wy
n) be the weights for

x1, x2, . . . , xn (resp., y1, y2, . . . , yn), and tg be threshold of g. For each gate h directed to g,
let wh,g be a weight of g for the output of h. Then the output g(x, y) of g is defined as

g(x, y) = sign (pg(x, y) − tg)

where pg(x, y) denotes a potentials of g invoked by the input variables and gates:

p(x, y) =
n∑

i=1
wx

i xi +
n∑

i=1
wy

i yi +
lev(g)−1∑

l=1

∑
h∈Gl

wh,gh(x, y).

We sometimes write px
g(x) (resp., py

g(y)) for the potential invoked by x (resp., y):

px
g(x) =

n∑
i=1

wx
i xi and py

g(y) =
n∑

i=1
wy

i yi.

Although the inputs to g are not only x and y but the outputs of gates in the lower levels,
we write g(x, y) for the output of g, because x and y inductively decide the output of g. We
say that C computes a Boolean function f : {0, 1}2n → {0, 1} if gclf(a, b) = f(a, b) for every
(a, b) ∈ {0, 1}2n.
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Let C be a threshold circuit. We define size s of C as the number of the gates in C, and
depth d of C as the level of gclf . We define the energy e of C as

e = max
(a,b)∈{0,1}2n

∑
g∈G

g(a, b).

We define weight w of C as the maximum of the weights of the gates in C: w = maxg∈G wg.

2.1.2 Discretized Circuits
Let φ be an activation function. Let δ be a discretizer that maps a real number to a
number representable by a bitwidth b. We define a discretized activation function δ ◦ φ as
a composition of φ and δ, that is, δ ◦ φ(x) = δ(φ(x)) for any number x. We say that δ ◦ φ

has silent range for an interval I if δ ◦ φ(x) = 0 if x ∈ I, and δ ◦ φ(x) ̸= 0, otherwise. For
example, if we use the ReLU function as the activation function φ, then δ ◦ φ has silent
range for I = (−∞, 0] for any discretizer δ. If we use the sigmoid function as the activation
function φ and linear partition as discretizer δ, then δ ◦ φ has silent range for I = (−∞, tmax]
where tmax = ln(1/(2b − 1)) where ln is the natural logarithm.

Let δ ◦ φ be a discretized activation function with silent range. A (δ ◦ φ)-gate g with k

input variables ξ1, ξ2, . . . , ξk has weights w1, w2, . . . , wk and a threshold t, where each of the
weights and threshold are discretized by δ. The output g(ξ1, ξ2, . . . , ξk) of g is then defined
as

g(ξ1, ξ2, . . . , ξk) = δ ◦ φ

(
k∑

i=1
wiξi − t

)
.

A (δ ◦ φ)-circuit is a combinatorial circuit consisting of (δ ◦ φ)-gates except that the top gate
gclf is a threshold gate, that is, a linear classifier. We define size and depth of a (δ ◦ φ)-circuit
same as the ones for a threshold circuit. We define energy e of a (δ ◦ φ)-circuit as the
maximum number of gates outputting non-zero values in the circuit:

e = max
(a,b)∈{0,1}2n

∑
g∈G

Jg(a, b) ̸= 0K

where JPK for a statement P denote a notation of the function which outputs one if P is true,
and zero otherwise. We define weight w of C as w = 22b, where 2b is the bitwidth possibly
needed to represent a potential value invoked by a single input of a gate in C.

2.2 Communication Matrix and its Rank
Let Z ⊆ {0, 1}n. For a Boolean function f : Z × Z → {0, 1}, we define a communication
matrix Mf over Z as a |Z| × |Z| matrix where each row and column are indexed by a ∈ Z

and b ∈ Z, respectively, and each entry is defined as Mf (a, b) = f(a, b). We denote by
rk(Mf ) the rank of Mf over F2. If a circuit C computes f , we may write MC instead of Mf .
If a Boolean function f does not have an obvious separation of the input variables to x and
y, we may assume a separation so that rk(Mf ) is maximized.

Let k and n be natural numbers such that k ≤ n. Let

Zk = {a ∈ {0, 1}n | The number of ones in a is at most k}.

A k-disjointness function DISJn,k over Zk is defines as follows:

DISJn,k(x, y) =
n∧

i=1
xi ∨ yi

where the input assignments are chosen from Zk. The book [14] contains a simple proof
showing that DISJn,k has full rank [14].
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▶ Theorem 4. rk(MDISJn,k
) =

∑k
i=0
(

n
i

)
. In particular, rk(MDISJn,n

) = 2n.

CDn is the complement of DISJn,n. We can obtain the same bound for CDn, as follows:

▶ Corollary 5. rk(MCDn
) = 2n.

We also use well-known facts on the rank. Let A and B be two matrices of same
dimensions. We denote by A + B the summation of A and B, and by A ◦ B the Hadamard
product of A and B.

▶ Fact 1. For two matrices A and B of same dimensions, we have
(i) rk(A + B) ≤ rk(A) + rk(B);
(ii) rk(A ◦ B) ≤ rk(A) · rk(B).

3 Lower Bound for Threshold Circuits

In this section, we give the inequality relating the rank of the communication matrix to the
size, depth, energy and weight.

▶ Theorem 6 (Theorem 1 restated). Let s, d, e and w be integers satisfying 2 ≤ s, d, 10 ≤ e,
1 ≤ w. Suppose a threshold circuit C computes a Boolean function of 2n variables, and has
size s, depth d, energy e, and weight w. Then it holds that

log(rk(MC)) ≤ ed(log s + log w + log n).

We prove the theorem by showing that MC is a sum of matrices each of which corresponds
to an internal representation that arises in C. Since C has bounded energy, the number of
internal representations is also bounded. We then show by the inclusion-exclusion principle
that each matrix corresponding to an internal representation has bounded rank. Thus, Fact
1 implies the theorem.

Proof. Let C be a threshold circuit that computes a Boolean function of 2n variables, and
has size s, depth d, energy e and weight w. Let G be a set of the gates in C. For l ∈ [d],
let Gl be a set of the gates in l-th level of C. Without loss of generality, we assume that
Gd = {gclf}. We evaluate the rank of MC , and prove that

rk(MC) ≤
(

c · s

e − 1

)e−1
·

((
c · s

e − 1

)e−1
· (2nw + 1)e−1

)d−1

· (2nw + 1) (3)

where c < 3. Equation (3) implies that

rk(MC) ≤
(

c · s

e − 1 · (2nw + 1)
)(e−1)d

≤ (snw)ed
,

where the last inequality holds if e ≥ 10. Taking the logarithm of the inequality, we obtain
the theorem.

Below we verify that Eq. (3) holds. Let P = (P1, P2, . . . , Pd), where Pl is a subset of Gl

for each l ∈ [d]. Given an input (a, b) ∈ {0, 1}2n, we say that an internal representation P
arises for (a, b) if, for every l ∈ [d], g(a, b) = 1 for every g ∈ Pl, and g(a, b) = 0 for every
g ̸∈ Pl. We denote by P∗(a, b) the internal representation that arises for (a, b) ∈ {0, 1}2n.
We then define P1 as a set of the internal representations that arise for (a, b) such that
gclf(a, b) = 1:

P1 = {P∗(a, b) | gclf(a, b) = 1}.
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Note that, for any P = (P1, P2, . . . , Pd) ∈ P1, we have |P1| + |P2| + · · · + |Pd−1| ≤ e − 1 and
|Pd| = 1. Thus a standard upper bound on a sum of binomial coefficients implies that

|P1| ≤
e−1∑
k=0

(
s

k

)
≤
(

c · s

e − 1

)e−1
. (4)

For each P ∈ P1, let MP be a 2n × 2n matrix such that, for every (a, b) ∈ {0, 1}2n,

MP(a, b) =
{

1 if P = P∗(a, b);
0 if P ̸= P∗(a, b).

By the definitions of P1 and MP, we have

MC =
∑

P∈P1

MP,

and hence Fact 1(i) implies that

rk(MC) ≤
∑

P∈P1

rk(MP).

Thus Eq. (4) implies that

rk(MC) ≤
(

c · s

e − 1

)e−1
· max

P∈P1
rk(MP).

We complete the proof by showing that, for any P ∈ P1(C), it holds that

rk(MP) ≤

((
c · s

e − 1

)e−1
· (2nw + 1)e−1

)d−1

· (2nw + 1).

In the following argument, we consider an arbitrary fixed internal representation P =
(P1, P2, . . . , Pd) in P1. We call a gate a threshold function if the inputs of the gate consists
of only x and y. For each g ∈ G, we denote by τ [g, P] a threshold function defined as

τ [g, P](x, y) = sign
(
px

g(x) + py
g(y) + tg[P]

)
.

where tg[P] is a threshold of g, being assumed that the internal representation P arises:

tg[P] =
lev(g)−1∑

l=1

∑
h∈Pl

wh,g − tg.

For each l ∈ [d], we define a set Tl of threshold functions as Tl = {τ [g, P] | g ∈ Gl}. Since
every gate in G1 is a threshold function, T1 is identical to G1.

For any set T of threshold functions, we denote by M [T ] a 2n × 2n matrix such that, for
every (a, b) ∈ {0, 1}2n,

M [T ](a, b) =
{

1 if ∀τ ∈ T, τ(a, b) = 1;
0 if ∃τ ∈ T, τ(a, b) = 0.

It is well-known that the rank of M [T ] is bounded [8, 9], as follows. We give a proof for
completeness.

▷ Claim 7. rk(M [T ]) ≤ (2nw + 1)|T |.
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Proof. Let z = |T |, and τ1, τ2, . . . , τz be an arbitrary order of threshold functions in T . For
each k ∈ [z], we define

Rk = {px
τk

(a) | a ∈ {0, 1}n}.

Since a threshold function receives a value between −w and w from a single input, we have
|Rk| ≤ 2nw + 1. For r = (r1, r2, . . . , rz) ∈ R1 × R2 × · · · × Rz, we define R(r) = X(r) × Y (r)
as a combinatorial rectangle where

X(r) = {x | ∀k ∈ [z], pτk
(x) = rk}

and

Y (r) = {y | ∀k ∈ [z], tτk
≤ rk + py

τk
(y)}.

Clearly, all the rectangles are disjoint, and hence M [T ] can be expressed as a sum of rank-1
matrices given by R(r)’s taken over all the r’s. Thus Fact 1(i) implies that its rank is at
most |R1 × R2 × · · · × Rz| ≤ (2nw + 1)z. ◁

For each l ∈ [d], based on Pl in P, we define a set Ql of threshold functions as

Ql = {τ [g, P] | g ∈ Pl} ⊆ Tl

and a family T (Ql) of sets T of threshold functions as

T (Ql) = {T ⊆ Tl | Ql ⊆ T and |T | ≤ e − 1}.

Following the inclusion-exclusion principle, we define a 2n × 2n matrix

H[Ql] =
∑

T ∈T (Ql)

(−1)|T |−|Ql|M [T ].

We can show that MP is expressed as the Hadamard product of H[Q1], H[Q2], . . . , H [Qd]:

▷ Claim 8. MP = H[Q1] ◦ H[Q2] ◦ · · · ◦ H[Qd].

Proof. Consider an arbitrary fixed assignment (a, b) ∈ {0, 1}2n. We show that

H[Q1](a, b) ◦ H[Q2](a, b) ◦ · · · ◦ H[Qd](a, b) = 0,

if MP(a, b) = 0, and

H[Q1](a, b) ◦ H[Q2](a, b) ◦ · · · ◦ H[Qd](a, b) = 1,

if MP(a, b) = 1. We write P∗ = (P ∗
1 , P ∗

2 , . . . , P ∗
d ) to denote P∗(a, b) for a simpler notation.

Suppose MP(a, b) = 0. In this case, we have P ̸= P∗, and hence there exists a level
l ∈ [d] such that Pl ̸= P ∗

l while Pl′ = P ∗
l′ for every l′ ∈ [l − 1]. For such l, it holds that

τ [g, P∗](a, b) = τ [g, P](a, b) (5)

for every g ∈ Gl. We show that H[Ql](a, b) = 0 by considering two cases: Pl\P ∗
l ≠ ∅ and

Pl ⊂ P ∗
l .

Consider the case where Pl\P ∗
l ̸= ∅, then there exists g ∈ Pl\P ∗

l . Since g ̸∈ P ∗
l , we have

τ [g, P∗](a, b) = 0. Thus, Eq. (5) implies that τ [g, P](a, b) = 0, and hence M [T ](a, b) = 0
for every T such that Ql ⊆ T . Therefore, for every T ∈ T (Ql), we have M [T ](a, b) = 0, and
hence

H[Ql](a, b) =
∑

T ∈T (Ql)

M [T ](a, b) = 0.
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Consider the other case where Pl ⊂ P ∗
l . Let Q∗

l = {τ [g, P∗] | g ∈ P ∗
l }. Equation (5)

implies that M [T ](a, b) = 1 if T satisfies Ql ⊆ T ⊆ Q∗
l , and M [T ](a, b) = 0, otherwise.

Thus,

H[Ql](a, b) =
∑

T ∈T (Ql)

(−1)|T |−|Ql|M [T ] =
∑

Ql⊆T ⊆Q∗
l

(−1)|T |−|Ql|

Therefore, by the binomial theorem,

H[Ql](a, b) =
|Q∗

l |−|Ql|∑
k=0

(
|Q∗

l | − |Ql|
k

)
(−1)k = (1 − 1)|Q∗

l |−|Ql| = 0.

Suppose MP(a, b) = 1. In this case, we have P = P∗. Thus, for every l ∈ [d], Eq. (5)
implies that M [T ](a, b) = 1 if T = Ql, and M [T ](a, b) = 0, otherwise. Therefore,

H[Ql](a, b) =
∑

T ∈T (Ql)

(−1)|T |−|Ql|M [T ](a, b) = (−1)|Ql|−|Ql| = 1.

Consequently, H[Q1](a, b) ◦ H[Q2](a, b) ◦ · · · ◦ H[Qd](a, b) = 1, as desired. ◁

We finally evaluate rk(MP). Claim 8 and Fact 1(ii) imply that

rk(MP) = rk (H[Q1] ◦ H[Q2] ◦ · · · ◦ H[Qd]) ≤
d∏

l=1
rk(H[Ql]). (6)

Since

|T (Ql)| ≤
(

c · s

e − 1

)e−1

Fact 1(i) and Claim 7 imply that

rk(H[Ql]) ≤
∑

T ∈T (Ql)

rk(M [T ])

≤
(

c · s

e − 1

)e−1
· (2nw + 1)e−1 (7)

for every l ∈ [d − 1], and

rk(H[Qd]) ≤ 2nw + 1. (8)

Equations (6)-(8) imply that

rk(MP) ≤

((
c · s

e − 1

)e−1
· (2nw + 1)e−1

)d−1

· (2nw + 1)

as desired. We thus have verified Eq. (3). ◀

Combining Corollary 5 and Theorem 6, we obtain the following corollary:

▶ Corollary 9. Let s, d, e and w be integers satisfying 2 ≤ s, d, 10 ≤ e, 1 ≤ w. Suppose a
threshold circuit C of size s, depth d, energy e, and weight w computes CDn. Then it holds
that

n ≤ ed(log s + log w + log n).

Equivalently, we have 2n/(ed)/(nw) ≤ s.
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Theorem 6 implies lower bounds for other Boolean functions with linear rank. For
example, consider another Boolean function EQn asking if x = y:

EQn(x, y) =
n∧

i=1
xi ⊕ yi

Since MEQn
is the identity matrix with full rank, we have the same lower bound.

▶ Corollary 10. Let s, d, e and w be integers satisfying 2 ≤ s, d, 10 ≤ e, 1 ≤ w. Suppose a
threshold circuit C of size s, depth d, energy e, and weight w computes EQn. Then it holds
that

n ≤ ed(log s + log w + log n).

Equivalently, we have 2n/(ed)/(nw) ≤ s.

4 Tightness of the Lower Bound

In this section, we show that the lower bound given in Theorem 6 is tight if the depth and
energy are small.

4.1 Definitions
Let z be a positive integer, and f be a Boolean function of 2n variables. We say that f is
z-piecewise with f1, f2, . . . , fz if the following conditions are satisfied: Let

Bj = {i ∈ [n] | xi or yi are fed into fj},

then
(i) B1, B2, . . . , Bz compose a partition of [n];
(ii) |Bj | ≤ ⌈n/z⌉ for every j ∈ [z];
(iii)

f(x, y) =
z∨

j=1
fj(x, y) or f(x, y) =

z∨
j=1

fj(x, y).

We say that a set of threshold gates sharing input variables is a neural set, and a neural
set is selective if at most one of the gates in the set outputs one for any input assignment. A
selective neural set S computes a Boolean function f if for every assignment in f−1(0), no
gates in S outputs one, while for every assignment in f−1(1), exactly one gate in S outputs
one. We define the size and weight of S as |S| and maxg∈S wg, respectively.

By a DNF-like construction, we can obtain a selective neural set of exponential size that
computes f for any Boolean function f .

▶ Theorem 11. For any Boolean function f of n variables, there exists a selective neural set
of size 2n and weight one that computes f .

4.2 Upper Bounds
The following proposition shows that we can construct threshold circuits of small energy for
piecewise functions.

MFCS 2023
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▶ Lemma 12. Let e and d be integers satisfying 2 ≤ e and 2 ≤ d, and z be an integer.
Suppose f : {0, 1}2n → {0, 1} is a z-piecewise function with f1, f2, . . . , fz. If fj is computable
by a selective neural set of size at most s′ and weight w′ for every j ∈ [z], f is computable by
a threshold circuit of size

s ≤ z · s′ + 1,

depth d, energy e and weight

w ≤ 2n

z
· w′.

Clearly, CDn is a piecewise function, and so the lemma gives our upper bound for CDn.

▶ Theorem 13 (Theorem 2 restated). For any integers e and d such that 2 ≤ e and 2 ≤ d,
CDn is computable by a threshold circuit of size

s ≤ (e − 1)(d − 1) · 2
n

(e−1)(d−1) .

depth d, energy e and weight

w ≤
(

n

(e − 1)(d − 1)

)2
.

We can also obtain a similar proposition for EQn.

▶ Theorem 14. For any integers e and d such that 2 ≤ e and 2 ≤ d, EQn is computable by
a threshold circuit of size

s ≤ (e − 1)(d − 1) · 2
2n

(e−1)(d−1) .

depth d, energy e and weight

w ≤ n

(e − 1)(d − 1) .

5 Simulating Discretized Circuits

In this section, we show that any discretized circuit can be simulated using a threshold circuit
with a moderate increase in size, depth, energy, and weight. Thus, a similar inequality holds
for discretized circuits, as follows.

▶ Theorem 15. Let δ be a discretizer and φ be an activation function such that δ ◦ φ has
a silent range. If a (δ ◦ φ)-circuit C of size s, depth d, energy e, and weight w computes a
Boolean function f , then it holds that

log(rk(MC)) = O(ed(log s + log w + log n)3).

We prove the theorem by showing that, given a (δ ◦ φ)-circuit C, we can safely replace
any (δ ◦ φ)-gate g in C by a set of threshold gates that simulate g. Our simulation is based
on a binary search of the potentials of a discretized gate, and employ a conversion technique
from a linear decision tree to a threshold circuit given in [42]. We omit our proof of the
theorem due to the page limitation.
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6 Conclusions

In this paper, we prove that a threshold circuit is able to compute only a Boolean function
of which communication matrix has rank bounded by a product of logarithmic factors of size
and weight, and linear factors of depth and energy. This bound implies that any threshold
circuit of sub-linear depth, sub-linear energy and sub-exponential weight needs exponential
size to compute CDn, EQn, and the Inner-Product function. We show that the bounds
are tight up to a constant factor. We also prove that a similar bound holds for discretized
circuits. Thus, increasing depth could help a neural network to acquire sparse activity. This
observation may shed some light on the reason for the success of deep learning.
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Abstract
We study routing problems of a convoy in a graph, generalizing the shortest path problem (SPP),
the travelling salesperson problem (TSP), and the Chinese postman problem (CPP) which are all
well-studied in the classical (non-convoy) setting. We assume that each edge in the graph has a
length and a speed at which it can be traversed and that our convoy has a given length. While
the convoy moves through the graph, parts of it can be located on different edges. For safety
requirements, at all time the whole convoy needs to travel at the same speed which is dictated by
the slowest edge on which currently a part of the convoy is located. For Convoy-SPP, we give a
strongly polynomial time exact algorithm. For Convoy-TSP, we provide an O(log n)-approximation
algorithm and an O(1)-approximation algorithm for trees. Both results carry over to Convoy-CPP
which – maybe surprisingly – we prove to be NP-hard in the convoy setting. This contrasts the
non-convoy setting in which the problem is polynomial time solvable.
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1 Introduction

A fundamental setting within combinatorial optimization is to compute a route within a
given graph, e.g., for a car in a street network. Well-studied problems in this area include
the shortest path problem (SPP), the traveling salesperson problem (TSP), and the Chinese
postman problem (CPP). For a single car, they model very well the problems of finding a
route from one point to another, finding a tour that visits all given cities, or finding a tour
that traverses all given edges, respectively.

However, this changes when instead we have a convoy that consists of several vehicles.
Different streets in a network may allow different speeds. Because of safety considerations,
the vehicles in the convoy need to adhere a constant inter-vehicle distance. Therefore, all
the vehicles in the convoy need to travel at the same speed at any point in time. Hence, the
whole convoy must move at the speed of the vehicle that is currently on the slowest edge
(among all vehicles), see Figure 1. Thus, the classical algorithms for shortest path, TSP,
and CPP cannot be used to find the fastest route for a convoy for these respective settings
and they do not even yield approximation algorithms with any non-trivial approximation
guarantee. Even more, shortest path and CPP are solvable in polynomial time in the usual
setting, but it is not clear whether this is also the case for a convoy. Therefore, in this
paper we investigate shortest path, TSP, and CPP in the convoy setting, present the first
algorithms for these problems, and settle their complexity.
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80 40 100 60 80

Figure 1 Five snapshots of a convoy moving along a path. The numbers along the edges denote
the corresponding speeds. In the first snapshot, the convoy is entirely on an edge with speed 80, so
it will move at speed 80. In the second snapshot, the front of the convoy is on an edge with speed 40,
so the entire convoy will move at speed 40. In the third snapshot, the convoy still moves at speed
40. Note that in this example the convoy will never move at speed 100. In the fourth snapshot, the
back of the convoy is on an edge with speed 60, so the convoy will move at speed 60. Finally, in the
last snapshot, the convoy moves at speed 80.

Formally, we assume that we are given a directed graph G = (V, E), where each edge
e ∈ E has a length ℓ(e) ≥ 0 and a speed q(e) > 0, and a length of the convoy L ≥ 0. In
Convoy-SPP we are given additionally two special vertices s, t ∈ V and the goal is to find a
path from s to t that minimizes the time between the moment that the head of the convoy
leaves s until the moment that the tail arrives in t. Figuratively, we assume that at the
beginning all vehicles of the convoy are located in s. Therefore, when the head of the convoy
leaves s, we assume that the parts of the convoy not having left s do not restrict the speed of
the convoy. We make a symmetric assumption when the convoy enters t. In Convoy-TSP we
are given a special vertex r ∈ V in which the convoy needs to start and end and we seek a
tour for the convoy that visits every vertex v ∈ V at least once, minimizing the time between
the moment that the head of the convoy leaves r until the moment that the tail arrives in
r again (making the same assumptions when leaving and entering r as above for s and t).
Note that both problems can also be defined for undirected graphs, by simply replacing every
undirected edge by two directed edges for both directions, with the same length and speed.
Finally, in Convoy-CPP we assume that our graph G is undirected (as it is common when
studying the Chinese postman problem in the classical setting, e.g., [3]) but again each edge
e ∈ E has a length ℓ(e) ≥ 0 and a speed q(e) > 0. Also, like in Convoy-TSP we are given a
special vertex r ∈ V in which the convoy starts and ends. The goal is to find a tour that
traverses every edge at least once, minimizing the time between the moment that the head
of the convoy leaves r until the moment that the tail arrives in r again. In all problems, we
assume without loss of generality that mine∈E q(e) = 1.

Convoy-SPP is the most basic routing problem for a convoy and it is motivated by any
movement of a convoy from one point to another in a street network. The problem was
introduced in [8] where the authors give an exponential time exact algorithm and argue that
this “hints” that the problem is NP-hard. The Convoy-TSP problem arises for example when
relief supplies need to be delivered to several locations, e.g., to several villages or cities, after a
natural disaster or in unsecure territory. In these cases, moving in a convoy may be necessary
so that the vehicles can support each other when roads are interrupted, or for protection.
Similarly, Convoy-CPP arises when instead the convoy needs to visit all edges, e.g., because
several villages are located on roads connecting the major cities. We are not aware of prior
results for Convoy-TSP or Convoy-CPP. The setting of a convoy moving through a network
can be considered as a variant of dynamic flows or flows over time, see [12].
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1.1 Our contributions
We give an exact algorithm for Convoy-SPP that runs in strongly polynomial time. Note
that this contrasts the argumentation mentioned above in [8]. A natural approach for
Convoy-SPP would be to generalize algorithms for the usual shortest path problem, like
Dijkstra’s algorithm or Bellman-Ford. However, it is not clear how to do this. In both
algorithms, we compute a value for each vertex v that indicates the distance of a shortest
path from s to v (in the case of Bellman-Ford, we have one such value for each possible
number of edges on this path). However, for continuing this path from v to t, it is crucial to
know the speeds of the edges in which the convoy is located when reaching v. For example,
there can be a long path from s to v such that the whole convoy is located on very fast edges
when reaching v, and a short path such that the whole convoy is located on very slow edges
when reaching v, and many other Pareto-optimal possibilities in between. We cannot afford
to compute each of these possibilities. Instead, we use a very different approach. We guess
the slowest edge (u, v) on the optimal path from s to t. The remaining problem splits into
two independent subproblems: finding the optimal path from s to u and finding the optimal
path from v to t. For each of these subproblems, we can assume that no edge slower than
(u, v) is used. This leads to a polynomial number of possible subproblems which we solve via
dynamic programming. Here, let n and m denote the number of vertices and edges in the
graph, respectively.

▶ Theorem 1. There is an algorithm for the Convoy-SPP with a running time of O(nm2).

For usual TSP and asymmetric TSP there are polynomial time approximation algorithms
known, e.g., [6, 14, 15]. However, it is not clear how to generalize them to Convoy-TSP, even
if the graph were undirected. A natural attempt would be to define the cost of an edge e to
be ℓ(e)/q(e), i.e., the time that it takes for an infinitesimally small convoy to traverse only
this edge. However, the actual convoy of length L might be much slower than this on e if a
part of it is located on a slower edge. In particular, even one single edge e can slow down the
convoy for L/q(e) time units which might be much larger than ℓ(e)/q(e). On the other hand,
we cannot add this value L/q(e) as a penalty to the cost of e, since if the convoy traverses
many edges of speed q(e), this penalty would overcount the slowdown by an arbitrarily large
amount. Also, it is not obvious how to compute good lower bounds on the optimal solution:
the strongest lower bound used in the known results for (asymmetric) TSP is the Held-Karp
LP-relaxation [5] which does not take the convoy feature into account. It is not clear how to
add this aspect to the LP.

Instead, we use a reduction to group-TSP (in the usual setting, not in the convoy setting).
The intuition is the following. Suppose that v1, v2, ..., vn is the order in which the vertices
are visited for the first time in the optimal solution. We identify that a key question is to
determine for each vertex vj the minimum speed at which the convoy travels while going
from vj−1 to vj . Therefore, in our reduction to group-TSP we introduce a copy of vj for each
possible speed and assign all these copies into the same group, i.e., only one of these copies
needs to be visited. We introduce edges between these copies, corresponding to paths that
use only edges with the respective minimum speeds, using our algorithm for Convoy-SPP as
a subroutine. We show that our reduction loses only a constant factor in the approximation
guarantee. By scaling the speeds to powers of 2, we ensure that there are intuitively only
O(log n) different speeds, and thus each group for some vertex vj has at most O(log n) copies
of vj . For such instances of group-TSP there is an O(log n)-approximation [13] which we
invoke as a subroutine.

We give a simple reduction from Convoy-CPP to Convoy-TSP which yields an O(log n)-
approximation algorithm for Convoy-CPP as well.
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▶ Theorem 2. There is a polynomial time O(log n)-approximation algorithm for Convoy-TSP.
▶ Theorem 3. There is a polynomial time O(log n)-approximation algorithm for Convoy-
CPP.

Maybe surprisingly, we prove that Convoy-CPP is NP-hard, which contrasts the fact that
the usual Chinese postman problem is solvable in polynomial time [3].

▶ Theorem 4. The Convoy-CPP is NP-hard, both for directed and undirected graphs, even
when all edge lengths are equal to 1 and L = 2.

Finally, we give an O(1)-approximation algorithm for Convoy-TSP in undirected trees.
While for normal TSP in trees, a simple depth-first-search (DFS) is optimal, this is not the
case for Convoy-TSP. In fact, DFS can yield a very bad solution, already on stars in which
the edges have all length 1 and only two different speeds: assume that r is the center of
the star, then the optimal solution visits first all slow edges and then all fast edges (or vice
versa) while in a DFS solution this order can be arbitrary and the convoy could travel all
the time with the low speed, which can be much slower than the optimal solution. While
this particular example has an obvious optimal solution, it is not clear how to generalize it
to arbitrary trees. Instead, we use a recursive approach. It is useful to imagine that our goal
is to solve Convoy-CPP, which is equivalent to Convoy-TSP on trees, and hence we want
to compute a tour that traverses all edges. We round the speeds to powers of 2 and form
clusters of the edges with the lowest speed such that, intuitively, the edges in each cluster
are close together and any two different clusters are far apart (at least L units). For each
cluster we compute a DFS tour and argue that the optimal solution cannot be much faster
when it traverses the edges of the cluster. Then, we remove all edges of the lowest speed and
recurse on each connected component.

▶ Theorem 5. There is a polynomial time O(1)-approximation algorithm for Convoy-TSP
and Convoy-CPP on undirected trees.

We defer the proof of this theorem to the full version of the paper. Our O(1)-approximation
for trees is non-trivial and, although the analysis leaves room for a modest improvement
of the constant 13, getting a ratio close to 1 needs a substantially different approach. In
fact, an exact algorithm may still be possible. Also, it remains an open problem whether an
O(1)-approximation for Convoy-TSP in arbitrary graphs exists.

1.2 Related work
The authors of [8] actually refer to our Convoy-SPP as the convoy quickest path problem.
This is because there are some similarities between Convoy-SPP and the quickest path
problem (QPP) [7]. In the QPP, we are given a directed graph G = (V, E), where each edge
e ∈ E has a time value d(e) ≥ 0, and a capacity c(e) ≥ 0. The capacity is an upper bound
on the number of units per time unit that can pass through an edge. Here, we are also given
two special vertices s, t ∈ V , and a length of a transmission σ ≥ 0. The goal in QPP is to
find a path from s to t minimizing the total time spent on the path plus the delay caused
by the edge capacities. Note that this is different from our model in which the edges have
speeds. Several polynomial time exact algorithms have been developed for QPP, we refer
to [10] for a survey.

Another related problem is the convoy movement problem as studied in [1]. It is concerned
with routing multiple convoys simultaneously such that there is no moment in time in which
two convoys cross paths. Also in the variable speed convoy movement problem, studied
in [11], the goal is to route several convoys to their respective destinations such that their
paths do not cross.
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1.3 Outline
The rest of the paper is organized as follows. In Section 2 we will present a dynamic
programming algorithm that solves Convoy-SPP to optimality in polynomial time. Then in
Section 3 we consider Convoy-TSP on arbitrary directed graphs, and we give an O(log n)-
approximation, where n is the number of vertices. In Section 4, we will show that Convoy-CPP
is NP-hard, and show how the results for Convoy-TSP can be used to obtain similar results
for Convoy-CPP.

2 Convoy-Shortest Path Problem

In this section we present an algorithm for Convoy-SPP with a running time of O(nm2), i.e.,
we prove Theorem 1. Without loss of generality we assume that the edges are indexed in
non-increasing order of their speed, i.e., such that q(e1) ≥ q(e2) ≥ . . . ≥ q(em) = 1. First,
we show that we can restrict ourselves to instances of the form described in the statement
of the following lemma. This will simplify our algorithm since it eliminates certain special
cases, e.g., when the distance between s and t is shorter than L.

▶ Lemma 6. Without loss of generality we can assume that s has exactly one outgoing edge
e with q(e) = 1 and ℓ(e) = L, and t has exactly one incoming edge e′ with q(e′) = 1 and
ℓ(e′) = L.

Proof. Consider an instance I of the convoy-shortest path problem on a graph G = (V, E)
with speeds q(e1) ≥ . . . ≥ q(em) = 1. Create an instance I ′ on the graph G′ = (V ′, E′) with
V ′ = V ∪ {s′, s′′, t′, t′′}, where E′ includes all edges of E, but all edges connected to s and t

are now connected to s′′ and t′′ respectively. We also add the new edges (s, s′), (s′, s′′), (t′′, t′)
and (t′, t) to E′ with speeds q((s, s′)) = q((t′, t)) = 1 and q((s′, s′′)) = q((t′′, t′)) = q(e1), all
of length L.

Any path in I can be transformed into a corresponding path in I ′ in which the convoy first
traverses the edges (s, s′) and (s′, s′′), then takes the corresponding edge from s′′ followed by
the same edges as in I, and finishes its path with the corresponding edge to t′′ and finally
edges (t′′, t′) and (t′, t). The time of the path in I ′ is exactly 4L longer than the time of the
path in I. We can transform any path in I ′ similarly into a corresponding path in I that is
4L shorter.

Since the solution values in I and I ′ differ only by a global constant that is independent
of the respective solution, we can make this transformation for any instance I without loss
of generality, solve the solution on the modified instance I ′, and transform its solution back
to a solution for I. ◀

From now on we denote with I ′ a given instance that satisfies the properties of Lemma 6.
Our algorithm is a dynamic program (DP) that uses a divide and conquer strategy. Intuitively,
we first guess the edge ei = (v, w) with the largest index i on the path of the optimal solution;
hence, no edge is slower on this path. This splits this path into three parts: a path from s to
v, the edge (v, w), and a path from w to t. Note that the first and the last part use only
edges that have a smaller index than i, i.e., that are at least as fast as (v, w). We recurse in
order to find these two subpaths, i.e., we will ensure that there is a DP-cell for each of these
subproblems. These two subproblems are independent, since while a part of the convoy is
located on the edge (v, w), that edge defines the speed of the convoy.

Formally, our DP-table has a cell CSP (u, (v, w)) for combinations of a vertex u ∈ V and
an edge ei = (v, w) ∈ E. This cell encodes the following subproblem. First, place the convoy
in the graph such that its tail is located on u, in any way you like. Then, we need to find a
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path such that beginning with this starting position, the head of the convoy reaches v as fast
as possible, while we are only allowed to use edges in the set E(v,w) = {e1, . . . , ei−1} (i.e.,
edges with index lower than the index of (v, w) and which are hence at least as fast as (v, w)).
In this cell CSP (u, (v, w)) we store the time the convoy needs to traverse this path; we also
store the path itself in order to determine later the optimal path and not only its time. Note
that the edges on which we place the convoy in the first step are part of the computed path
but there is no cost involved in this placement. Also note that it is sufficient that the head
of the convoy reaches v but it does not need to traverse the edge (v, w). We include (v, w)
in the description of the cell CSP (u, (v, w)) because it determines E(v,w), the subset of the
edges that the convoy is allowed to use in its path. We introduce a cell CSP (u, (v, w)) for
each combination of a vertex u ∈ V and an edge ei = (v, w) ∈ E such that the shortest path
from u to v using only edges in E(v,w) has a length of more than L. We will see later that if
the shortest path from u to v has length at most L, then we do not need to recurse on that
subproblem but we can simply take the shortest path from u to v in E(v,w).

Suppose that we are given a CSP (u, (v, w)). Let ei′ = (v′, w′) ∈ E(v,w) be the edge with
largest index i′ in the path P ∗ of the optimal solution corresponding to the cell CSP (u, (v, w)).
Suppose that the part of P ∗ between u and v′ has a length of at least L and that the same
holds for the part of P ∗ between w′ and v. Then the former part is the optimal solution
to the DP-cell CSP (u, (v′, w′)) and after that the convoy needs (ℓ(ei′) + L)/q(ei′) time
units for traversing ei′ . The last part of P ∗ would be the optimal solution to the DP-cell
CSP (v, (w′, v′)) if the edges of G were all reversed, so if each edge (û, v̂) were replaced by
the edge (v̂, û) with the same length and speed as (û, v̂). Therefore, we define a “reversed”
auxiliary graph GR = (V, ER) with ER = {(v, u) | (u, v) ∈ E} where every reversed edge
eR ∈ ER has the same speed and length as its original e ∈ E. Also, we define the same DP-
cells as above for the same subproblems for GR, i.e., we define a cell CSP R(û, (ŵ, v̂)) for each
combination of a vertex û ∈ V and an edge (ŵ, v̂) ∈ ER (so (v̂, ŵ) ∈ E) such that the shortest
path from û to ŵ in GR has a length of more than L. Thus, we can split P ∗ into the optimal
solution for CSP (u, (v′, w′)), the edge (v′, w′), and the optimal solution to CSP R(v, (w′, v′)),
and it takes the convoy a total time of CSP (u, (v′, w′))+(ℓ(ei′)+L)/q(ei′)+CSP R(v, (w′, v′))
to traverse P ∗.

If the part of P ∗ from u to v′ has length at most L, then one can show that it coincides
simply with the shortest path from u to v using only edges in E(v′,w′) (since the edge (v′, w′)
determines the speed of the convoy anyway), and a similar statement holds for the part of
P ∗ from w′ to v. Thus, when we want to compute the entry of the cell CSP (u, (v, w)), we
guess the edge ei′ = (v′, w′), i.e., we try each edge in E(v,w), we compute the lengths of the
shortest paths from u to v′ and from w′ to v using only edges in E(v′,w′), and depending
on their lengths look up the DP-cells CSP (u, (v′, w′)) and CSP R(v, (w′, v′)) or take these
shortest paths directly.

This yields the following recursive formula, where for each combination of a vertex u and
an edge (v, w) ∈ E we denote by SP (u, (v, w)) the shortest path in G from u to v that uses
only edges in E(v,w); we define SP R(u, (v, w)) similarly for GR.

CSP (u, (v, w)) = min
{

min
e∈E(v,w):

SP (u,e)>L,

SP R(v,eR)>L

{
CSP (u, e) + ℓ(e) + L

q(e) + CSP R(v, eR)
}

, (1)

min
e∈E(v,w):

SP (u,e)≤L,

SP R(v,eR)>L

{
SP (u, e) + ℓ(e)

q(e) + CSP R(v, eR)
}

,
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min
e∈E(v,w):

SP (u,e)>L,

SP R(v,eR)≤L

{
CSP (u, e)) + ℓ(e) + SP R(v, eR)

q(e)

}
,

min
e∈E(v,w):

SP (u,e)≤L,

SP R(v,eR)≤L

{
SP (u, e) + ℓ(e) + SP R(v, eR) − L

q(e)

} }
.

Note that we need not define base cases for this dynamic program. All cells where both
subpaths are shorter than L are computed using SP . In the first cell where we recurse on a
previously computed cell C of the DP, the length of the path corresponding to C is larger
than L, but cell C has already been computed at that point because its value will be attained
because of the fourth term of the recursion using SP .

We could compute all shortest paths in the graph restricted to E(v,w) for each (v, w) ∈ E

with any shortest path algorithm, e.g., with Dijkstra’s algorithm. However, in order to
improve the running time slightly, we use another DP which is analogous to the DP above.
We initialize SP (v, (v, w)) = 0 for all (v, w) ∈ E, SP R(v, (v, w)) = 0 for all (v, w) ∈ ER, and
we use the recurrence

SP (u, (v, w)) = min
e∈E(v,w)

{
SP (u, e) + ℓ(e) + SP R(v, eR)

}
,

for each cell SP (u, (v, w)) with u ̸= v and a symmetric recurrence for each entry SP R(u, (v, w))
for which u ̸= v.

Finally, we output the path stored in CSP (s, (t′, t)). Note that the time stored in that
cell corresponds to the time that the convoy, starting with its tail in s, needs such that
its head reaches t′. The convoy needs an additional L time units in order to leave s, an
additional L time units to reach t, and an additional L time units to enter t completely. This
yields our solution to the transformed instance I ′, which we can transform back to a solution
to the original instance I using Lemma 6.

▶ Theorem 1. There is an algorithm for the Convoy-SPP with a running time of O(nm2).

Proof. First we prove correctness and then we prove the running time.
Consider a cell CSP (u, (v, w)) for which we want to compute the optimal solution, which

is a path P from u to v that minimizes the convoy travel time. We guess the slowest edge
in P , let this be e∗ = (u∗, v∗). Let P1 and P2 be the subpaths of P before and after e∗

respectively (both excluding e∗).
First consider the case where both P1 and P2 are strictly larger than L. Then we can

subdivide the problem encoded in this cell of the DP by using edge e∗. The total time it
takes for the convoy to travel along P is the time to travel along P1 plus the time to travel
along e∗ plus the time to travel along P2. Since both P1 and P2 are larger than L and they
do not contain this new bottleneck edge e∗, their travel time is equal to CSP (u, e∗) and
CSP R(v, e∗) respectively. Note that these terms indeed do not contain the travel time along
e∗, as the first term is the travel time until the head of the convoy reaches e∗ and the second
term is the travel time from the point in time onward when the tail leaves e∗. Finally, the
travel time along e∗ that is missing is the time it takes for the convoy to completely traverse
the edge e∗ from head to tail. This equals (ℓ(e∗) + L)/q(e∗), since this bottleneck edge
determines the speed of the convoy for all these time units. Together, this gives us the first
term of Equation (1).
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Now observe that if SP (u, e∗) ≤ L, there exists a path from u to u∗ such that the tail
of the convoy has just left u and some part of the convoy has reached u∗. Thus, edge
e∗ is the edge that determines the speed of the convoy while it is moving along P1 and
along e∗. Since it travels a distance of SP (u, e∗) + ℓ(e∗) there at speed q(e∗), this takes
(SP (u, e∗) + ℓ(e∗))/q(e∗) time units. Then, if the second part of the path is longer than L

(i.e., if SP R(v, e∗) > L), P2 is the path corresponding to the solution CSP R(v, e∗) and we
retrieve the second term of Equation (1).

Similarly, if SP R(v, e∗) ≤ L, then P2 = SP R(v, e∗), and by the same arguments as above
we see that the third term of Equation (1) is correct.

Finally, if both SP (u, e∗) ≤ L and SP R(v, e∗) ≤ L, then this total path is traversed at
speed e∗. The total length of the path that the convoy needs to cover between u and v is
therefore SP (u, e∗) + ℓ(e∗) + SP R(v, e∗). Since we measure the time it takes for the tail
to leave u and the head to reach v, we need to subtract L from this distance to get the
distance that the convoy traverses. Note that the distance SP (u, e∗)+ ℓ(e∗)+SP R(v, e∗)−L

must be positive because we only introduce this cell whenever SP (u, (v, w)) > L. Dividing
by the speed q(e∗) at which the convoy traverses this distance, we obtain the last term of
Equation (1). This finishes the proof of correctness of the algorithm.

Using these observations, the entry of the cell CSP (u, (v, w)) can be computed using
only previously computed entries of cells of shorter paths. There are O(nm) cells in each of
the dynamic programs. In each computation there are O(m) terms that need to be compared
for the minimum value, since we recurse on one of the edges of the path. Therefore, the total
running time of each of the dynamic programs is bounded by O(nm2). ◀

3 Convoy-TSP in general graphs

In this section we present our O(log n)-approximation algorithm for Convoy-TSP in general
graphs. First, we do some guesses and preprocessing in order to simplify our problem, while
losing only a constant factor in our approximation guarantee.

▶ Lemma 7. By losing a factor of 2 in the approximation ratio, we can assume that
ℓ(e) ≥ L/nm for each edge e.

Proof. Let ϵ = L/nm. First, increase the length of any edge with length smaller than ϵ to ϵ.
It follows that the optimal value of the modified instance cannot be smaller than the optimal
value of the original instance. Now, consider the optimal solution of the original instance.
Let e∗ be the slowest edge with length less than ϵ that is traversed by the optimal solution.
We know that the optimal value of the original instance is at least L/q(e∗). If we follow the
same tour in the modified instance, we have to spend at most ϵ/q(e∗) time additionally for
each modified edge. This is true since staying longer on an edge will not decrease the speed
of the convoy. In total, we spend at most nmϵ/q(e∗) = L/q(e∗) time units extra, so we lose
at most a factor 2. ◀

From now on we assume that all edges have length at least L/nm. We say that an edge
e is short if ℓ(e) ≤ 2L and long otherwise. Intuitively, the long edges are easy to deal with:
if the convoy traverses a long edge e, then the whole convoy will be on e while traversing a
distance of at least L, which takes at least L/q(e) time. Potentially, for some time only a
part of the convoy is on e and then e slows the convoy down. However, this time is at most
2L/q(e) which can be charged to the previous time of L/q(e). In particular, if we had only
long edges then we could reduce the problem to (normal) TSP by losing only a factor O(1)
by simply giving each (long) edge length (ℓ(e) + L)/q(e).
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u(v, 1)

...

u(v, i)

...

u(v,K)

u(v,K + 1)

u(v′, 1)

...

u(v′, i)

...

u(v′,K)

u(v′,K + 1)

SP (v′, v, i)

SP (v, v′,K)
L/q̄(K)

L/q̄(i)

L/q̄(1)

L/q̄(K)

L/q̄(i)

L/q̄(1)

Figure 2 Illustration of constructed instance of group-TSP. Note that there is an edge between
any pair of the form u(v, i) and u(v, j). From the set of vertices enclosed by both the blue and red
rectangle, at least one vertex has to be visited.

Thus, the core difficulty of the problem stems from the short edges. We want to modify
the instance such that the short edges have only O(log n) different speeds.

▶ Lemma 8. By losing a factor of 6 in the approximation ratio, we will assume that the
short edges have only O(log n) different speeds and that they are all powers of 2.

Proof. We guess the short edge with the lowest speed that is used in OPT. Let e∗ be this
edge. First, we remove each short edge that is slower than e∗. Then, if a short edge e is
faster than n2m2 · q(e∗), we round its speed down to n2m2 · q(e∗). Since these edges are
short, and any tour uses at most nm edges, this rounding will incur at most an additional

nm · 2L

n2m2q(e∗) = 2L

nmq(e∗) ≤ 2ℓ(e∗)
q(e∗) ≤ 2OPT

time units, where the first inequality follows from Lemma 7. Hence, we lose at most a factor
3 in the approximation ratio. Finally, we round all speeds of the short edges down to powers
of 2, which loses us another factor 2, to obtain O(log n2m2) = O(log n) different speeds for
the short edges. ◀

Let q̄(1) < q̄(2) < . . . < q̄(K) denote the different speeds of the short edges, and by
Lemma 8 we have that K = O(log n). We guess the speed of the slowest short edge used in
OPT and remove all slower short edges. Hence, we assume w.l.o.g. that OPT uses a short
edge of speed q̄(1).

We define now an instance of asymmetric group-TSP to which we reduce our given
instance of Convoy-TSP. In group-TSP, the input consists of a directed graph G′ = (V ′, E′),
a weight w(e) for each e ∈ E′ and a set of of groups V ′

1, ..., V ′
s ⊆ V ′. Intuitively, the edge

weights denote the lengths of the edges E′, but we call them weights here in order to
distinguish them better from the lengths ℓ(e) of the edges e ∈ E. The goal is to compute a
minimum weight tour that visits at least one vertex from each group V ′

i.
For each input vertex v ∈ V we define a group of K + 1 vertices {u(v, 1), ..., u(v, K + 1)}

(see Figure 2), i.e., the tour needs to visit at least one of these vertices. Intuitively, for each
i ∈ {1, ..., K} the vertex u(v, i) corresponds to arriving at the vertex v at speed q̄(i), while
the vertex u(v, K + 1) corresponds to arriving at v after traversing a long edge e (and then
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the speed does not matter much since any slowdown due to e can be charged to the time
the convoy spends on e). For any pair of vertices v, v′ ∈ V and each i ∈ {1, ..., K + 1} we
introduce a directed edge e = (u(v, i), u(v′, i)) and we define the weight w(e) to be the time
of the quickest path from v to v′ such that

at the beginning the head of the convoy is on v and the convoy travels at speed at most
q̄(i) until the tail of the convoy has left v,
at the end the head of the convoy is at v′,
the convoy is allowed to use only short edges of speed at least q̄(i) and long edges (of any
speed); if i = K + 1 it is only allowed to use long edges.

We denote by SP (v, v′, i) the corresponding path. We can compute SP (v, v′, i) with our
algorithm from Section 2.

▶ Lemma 9. For each v, v′ ∈ V and each i ∈ {1, ..., K + 1} we can compute SP (v, v′, i) in
time O(nm2).

Proof. From graph G, create an auxiliary graph Ḡ with a new vertex v̄ and an edge ē = (v̄, v)
with speed q̄(i) and length L. Moreover, delete all short edges from E′ with a speed slower
than q̄(i). Indeed, the solution to that instance gives us exactly SP (v, v′, i) as requested,
which can be solved using the algorithm from Theorem 1. ◀

Also, for each vertex v and any i, i′ ∈ {1, ...., K + 1} we introduce the edge e =
(u(v, i), u(v, i′)), and define its weight w(e) := L/ min{q̄(i), q̄(i′)}. Intuitively, this mod-
els that if the convoy traverses some edge of speed q̄(i) and after that edges of a higher
speed q̄(i′), then the edge of speed q̄(i) slows down the convoy for L/q̄(i) more time units. To
streamline our argumentation, we introduce this edge with this cost also if q̄(i′) < q̄(i).

We solve our instance of group-TSP with an adaptation of the algorithm in [13] which
yields an O(K)-approximate tour T ′. We translate T ′ to a tour T of our given instance
of Convoy-TSP as follows. We define T by adding to it step by step the edges that the
convoy needs to traverse. We know that T ′ must visit at least one vertex u(r, i) of the
group corresponding to the initial vertex r ∈ V of the convoy. Starting in u(r, i), we
follow T ′. Whenever T ′ uses an edge e = (u(v, i), u(v′, i)) for two vertices v, v′ and an
i ∈ {1, ..., K + 1} then we add to T the edges in SP (v, v′, i). When the convoy travels along
an edge e = (u(v, i), u(v, i′)) for a vertex v and i, i′ ∈ {1, ..., K + 1} we do not add edges to T

(such an edge e ensures only that the time of our convoy in tour T is comparable to w(T ′)).

▶ Lemma 10. The convoy needs time O(w(T ′)) to traverse the tour T .

Proof. Suppose that when the convoy traverses T it does this during the time interval I.
Let I1 denote the union of all subintervals of I during which the speed of the convoy is
determined by a long edge e. Consider one such edge e. Then there are two vertices v, v′

and an i ∈ {1, ..., K + 1} such that (u(v, i), u(v′, i)) ∈ T ′ and e ∈ SP (v, v′, i). Thus, the time
during I in which e determines the speed of the convoy is at most L+ℓ(e)

q(e) , while e contributes

at least ℓ(e)
q(e) = Ω

(
L+ℓ(e)

q(e)

)
to w((u(v, i), u(v′, i))). Therefore, |I1| ∈ O(w(T ′)).

Let I2 := I \ I1, i.e., the union of the time intervals in I during which the speed of the
convoy is determined by a short edge. We want to bound |I2|. To this end, take T ′ and
consider all connected components of edges of the form e = (u(v, i), u(v′, i)) for two vertices
v, v′ and an i ∈ {1, ..., K + 1}. Let C = {e1, e2, ...} be such a component. Then there exists
an i ∈ {1, ..., K + 1} such that for each edge ej ∈ C there are two vertices vj , v′

j ∈ V such
that ej = (u(vj , i), u(v′

j , i)) and the convoy traverses the path SP (vj , v′
j , i). The total time

that the convoy traverses the paths
{

SP (vj , v′
j , i)

}
j:ej∈C

such that the speed of the convoy
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is determined by a short edge of speed at least q̄(i) is bounded by
∑

j:ej∈C w(ej) (note that
w(ej) might over-estimate the time needed by the convoy to traverse the edges of SP (vj , v′

j , i)
since we assume that the convoy travels at speed at most q̄(i) when leaving vj). It remains
to bound the time that the convoy traverses the paths

{
SP (vj , v′

j , i)
}

j:ej∈C
such that the

speed of the convoy is determined by a short edge of some speed that is strictly slower than
q̄(i); we denote by t̂ this amount of time. Let q̄(i∗) be the smallest such speed. In particular,
this implies that t̂ ≤ L/q̄(i∗).

Let C ′ denote the connected component of the edges of the form e = (u(v, i), u(v, i′)) for
a vertex v ∈ V and i, i′ ∈ {1, ..., K + 1} that is traversed in T ′ right before C. If t̂ > 0, then
C ′ must contain an edge e∗ = (u(v, i∗), u(v, î)) with q̄(i∗) < q̄(̂i) and thus w(e∗) = L/q̄(i∗) ≥ t̂.
Hence, the total time that the convoy traverses C is bounded by w(e∗) +

∑
j:ej∈C w(ej).

Applying this argumentation to all components C yields that |I2| ∈ O(w(T ′)) and thus
|I| = |I1| + |I2| ∈ O(w(T ′)). ◀

Abusing notation, we denote by OPT the time that it takes to traverse OPT. It remains
to show that w(T ′) = O(log n · OPT). To this end, we show that we can construct a tour
T ∗ for our instance of group-TSP for which w(T ∗) = O(OPT) holds. This implies that
w(T ′) = O(K · w(T ∗)) = O(log n · OPT). Note that hence our reduction to group-TSP loses
only a factor O(1) (and we lose the factor O(log n) because we can solve the instance of
group-TSP only approximately).

Based on OPT, we describe now how we construct T ∗ such that w(T ∗) = O(OPT).
Assume w.l.o.g. that V = {v1, ..., vn} such that v1 = r (i.e., the initial vertex) and for each
j ∈ {1, ..., n − 1} we have that vj is visited in OPT for the first time before vj+1 is visited in
OPT for the first time (note that OPT might visit a vertex several times). For convenience,
we define that vn+1 = v1. For each j ∈ {1, ..., n} we do the following: let Pj denote the path
that the convoy takes between visiting vj and vj+1 for the first time. If Pj contains a short
edge, we add (u(vj , i), u(vj+1, i)) to T where q̄(i) is the minimum speed at which the convoy
travels in OPT while the head of the convoy is on an edge in Pj . If Pj does not contain a
short edge, then we add (u(vj , K + 1), u(vj+1, K + 1)) to T .

It can happen that for some vertex vj we added two edges (u(vj−1, i), u(vj , i)),
(u(vj , i′), u(vj+1, i′)) with i ̸= i′. In this case we add the edge (u(vj , i), u(vj , i′)). Let
T ∗ be the resulting tour.

▶ Lemma 11. The group-TSP solution T ∗ has total weight w(T ∗) = O(OPT).

Proof. Suppose that we change OPT to a new tour OPT′ by slowing down the convoy even
though it would not be necessary. We do this such that OPT′ can be traversed in at most
time O(OPT). Let ℓ(OPT) denote the total length that the head of the convoy travels in
OPT. Here, we assume w.l.o.g. that the head keeps traveling after reaching r for a distance
of L using edges of unbounded speed. Now, consider the interval I = [0, ℓ(OPT)). For each
point d ∈ I denote by qOPT(d) the speed that the convoy travels in OPT when the head of
the convoy has already traveled a distance of d. Let I ′ = [a, b) ⊆ I denote a maximally large
subinterval of I such that qOPT(d) = q̄(1) for each d ∈ I ′. Let a′ denote the largest value
x ≤ a such that after travelling a distance of x in OPT the head of the convoy visits a vertex
v ∈ V for the first time. We define a new speed function q′ for the head of the convoy for
which we define for each d ∈ [a′, min{a′ + L, b}) that q′(d) := q̄(1).

Similarly, let b′ denote the smallest value y ≥ b such that after travelling a distance of y

in OPT the head of the convoy visits a vertex v ∈ V for the first time. We define q′ such
that for each d ∈ [max{b′ − L, a}, b′) we define the speed q′(d) := q̄(1) for the head of the
convoy. We define that the interval [a′, b′) is clean. We do this operation for each interval
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I ′ ⊆ I such that qOPT(d) = q̄(1) for each d ∈ I ′. Let I2 denote the union of subintervals of I

that we obtain if we remove from I each clean interval I ′ = [a′, b′). Inductively, we do the
same transformation for each maximally large interval I ′ of I2 such that qOPT(d) = q̄(2) for
each d ∈ I ′, obtaining a set I3. We continue for each k′ ∈ {3, 4, ..., K}.

If for a value d ∈ [0, ℓ(OPT)) we did not define a value q′(d), then we define q′(d) :=
qOPT(d). Let OPT′ denote a tour in which we traverse the edges of OPT at the speeds
given by q′. Observe that q′(d) ≤ qOPT(d) for each d ∈ [0, ℓ(OPT)). Using that the speeds
are powers of 2 and geometric sum arguments, one can show that OPT′ ∈ O(OPT), see
Lemma 13 in the appendix.

We want to argue that w(T ∗) ∈ O(OPT′). Consider first the edges e ∈ T ∗ of the form
e = (u(v, i), u(v′, i)) for two vertices v, v′ and an i ∈ {1, ..., K + 1}. Let T ∗

1 denote the set of
all these edges and let T ∗

2 := T ∗ \ T ∗
1 . We first want to show that w(T ∗

1 ) ∈ O(OPT′). Let
C = {e1, e2, ...} be a connected component of T ∗

1 . Then there exists an i ∈ {1, ..., K +1} such
that for each edge ej ∈ C there are two vertices vj , v′

j ∈ V such that ej = (u(vj , i), u(v′
j , i)).

By definition of OPT′ and w(ej), we have that w(ej) is at most the time that in OPT′ the
head of the convoy needs to move from vj to v′

j . Repeating this argumentation for each edge
ej ∈ T ∗

1 , this implies that w(T ∗
1 ) ∈ O(OPT′).

It remains to argue that w(T ∗
2 ) ∈ O(OPT′). Assume that V = {v1, ..., vn}. For each

vertex vj ∈ V , denote by dj the distance traveled by the head of the convoy when it reaches
vj for the first time. Assume w.l.o.g. that the vertices are ordered such that dj < dj′ for
each j, j′ with j < j′. This partitions the [0, ℓ(OPT′)) into intervals of the form [dj , dj+1)
with j ∈ {1, ..., n}, where for convenience we define dn+1 := ℓ(OPT′). Consider an edge
e ∈ T ∗

2 . By definition of T ∗, there are vertices vj , vj+1, vj+2 and speeds q̄(i), q̄(i′) such that
e = (u(vj+1, i), u(vj+1, i′)) and at some point during the interval [dj , dj+1) or at some point
during the interval [dj+1, dj+2) (measured in the total distance that the head of the convoy
has traveled) the convoy travels at speed min{q̄(i), q̄(i′)} due to some edge e′. We charge
w(e) = L/ min{q̄(i), q̄(i′)} to the slow-down of the convoy due to e′. The remainder of the
argumentation follows via geometric sum arguments, addressing the case when we charge
two edges of different speeds that are traversed (partially) at the same time by the convoy in
OPT′.

To this end, for each speed q̄(i) we define I(i) to be the family of maximal intervals
I of interval [0, ℓ(OPT′)) during which the convoy travels at speed q̄(i) or slower (again,
measured in the total distance that the head of the convoy has traveled). For each speed
q̄(i) we define |I(i)| to be the total length of the intervals in I(i) and we observe that
|I(i)|/q̄(i) ≤ OPT′. Since the speeds are powers of 2, via a geometric sum argument we also
obtain that

∑
i |I(i)|/q̄(i) ≤ O(OPT′). We argue now how to charge w(T ∗

2 ) to
∑

i |I(i)|/q̄(i).
Consider an edge e = (u(vj+1, i), u(vj+1, i′)) ∈ T ∗

2 as defined above and corresponding
speeds q̄(i), q̄(i′). Let i∗ be such that q̄(i∗) = min{q̄(i), q̄(i′)}. Then there is an interval
I = [a, b) ∈ I(i∗) such that a ∈ [dj , dj+2) or b ∈ [dj , dj+2). We have that w(e) ≤ (b − a)/q̄(i∗).
Thus, we charge w(e) to I. In this way, each interval I in each set I(i) is charged at most
twice, and we obtain that hence the total charge of all edges in T ∗

2 amounts to w(T ∗
2 ) =∑

e∈T ∗
2

w(e) ≤ 2
∑

i |I(i)|/q̄(i) ≤ O(OPT′). Thus, w(T ∗) = w(T ∗
1 ) + w(T ∗

2 ) ∈ O(OPT′). ◀

We conclude that the time the convoy needs to traverse our computed tour T is bounded
by O(w(T ′)) = O(K · w(T ∗)) = O(log n · OPT). This yields our O(log n)-approximation
algorithm for the Convoy-TSP problem.

▶ Theorem 2. There is a polynomial time O(log n)-approximation algorithm for Convoy-TSP.
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4 Convoy-Chinese Postman Problem

In this section we discuss Convoy-CPP, which is defined on undirected graphs. First we show
that Convoy-CPP is NP-hard, also for directed graphs. Note that CPP can be solved to
optimality in polynomial time for both undirected [2] and directed graphs [3]. For mixed
graphs, CPP is already NP-hard [9].

▶ Theorem 4. The Convoy-CPP is NP-hard, both for directed and undirected graphs, even
when all edge lengths are equal to 1 and L = 2.

Proof. To show NP-hardness for undirected graphs we use a reduction from the Hamiltonian
path problem [4]. In this problem we are given a graph G = (V, E) and the question is
whether there exists a Hamiltonian path, i.e., a path visiting all vertices exactly once, in G.

Let I be an instance of the Hamiltonian path problem. We create graph G′ by copying
the graph G of I. Each edge in G′ has a length of 1 and a speed of M = 4m + 1, where
m is the number of edges in G. We also pick an arbitrary vertex from this graph as the
special vertex r. Now we create a new vertex in G′ for every vertex in G, and connect it to
its corresponding vertex. Each new edge has length 1 and speed 1. Further, we set L equal
to 2. We will show that there is a solution in which the convoy needs less than 3n + 2 time
units to traverse all edges if and only if the original graph has a Hamiltonian path.

Suppose that G contains a Hamiltonian path. The convoy can first visit all edges with
speed M spending at most 2m/M time units. It can then move to one of the endpoints of
the Hamiltonian path, spending at most m/M time units. The convoy can now follow the
Hamiltonian path, where it visits the edges with speed 1 upon arrival at a vertex. Since this
will decrease the speed to 1, the head of the convoy will arrive at the other endpoint of the
Hamiltonian path after 3n − 1 more time units. While the head of the convoy heads back to
r, the convoy will travel at speed 1 for L = 2 more time units. After that, the tail of the
convoy still needs to travel a distance of at most m, while the convoy is at speed M . In total,
the time spent by the convoy is at most

2m

M
+ m

M
+ 3n − 1 + L + m

M
= 4m

M
+ 3n − 1 + L < 3n + 2.

On the other hand, suppose that G does not contain a Hamiltonian path. In any solution,
traversing the edges of speed 1 takes 2n time units. After the last visit to an edge with speed
1, the convoy moves at speed 1 for another L = 2 time units. The convoy also travels at
speed 1 for at least one time unit between consecutive visits of speed 1 edges, since none
of these edges are adjacent. Moreover, since G does not contain a Hamiltonian path, there
needs to be at least one pair of speed 1 edges that are visited consecutively for which the
convoy travels at speed 1 for at least two time units. In total, the time spent in any solution
is at least 2n + n + L = 3n + 2. To show NP-hardness for directed graphs we reduce from
the directed Hamiltonian path problem [4] and perform a similar reduction. ◀

Next, we will relate the approximability of Convoy-CPP and Convoy-TSP. As a corollary,
we also obtain an O(log n)-approximation for Convoy-CPP on general graphs.

▶ Lemma 12. For a given instance of Convoy-CPP whose optimal solution has value α, we
can construct in polynomial time an instance of Convoy-TSP whose optimal solution has
value β such that β ≤ α ≤ 2β.

Proof. First, replace each edge (u, v) ∈ E with edges (u, w), (w, u), (w, v), and (v, w), where
each of these edges gets length ℓ((u, v))/2, and speed q((u, v)). The optimal solution to the
given instance of Convoy-CPP is also feasible for the constructed instance of Convoy-TSP,
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and thus β ≤ α. On the other hand, consider an optimal solution for the created Convoy-TSP
instance with value β. If the resulting tour turns at w for some edge (u, v), we can adjust
this tour to one that visits the original edge (u, v) fully at once, by moving back and forth
between u and v when we visit w. Since this will not slow down the convoy, and the distance
traveled along (u, v) is doubled, the total time spent will increase with at most a factor 2.
This implies that α ≤ 2β. ◀

Together with our algorithm from Section 3, this yields our O(log n)-approximation
algorithm for Convoy-CPP.

▶ Theorem 3. There is a polynomial time O(log n)-approximation algorithm for Convoy-
CPP.

We remark that with similar arguments one can obtain an O(log n)-approximation
algorithm for Convoy-CPP on directed or on mixed graphs.
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A Details for the proof of Lemma 11

▶ Lemma 13. We have that OPT′ ∈ O(OPT).

Proof. Let I ′ = [a, b) ⊆ I denote a maximally large subinterval of I such that qOPT(d) = q̄(1)

for each d ∈ I ′. We have that |I ′| ≥ L since q̄(1) is the lowest speed. Due to I ′ we defined
for each d ∈ [a′, min{a′ + L, b}) and for each d ∈ [max{b′ − L, a}, b′) that q′(d) := q̄(1). We
charge the time traveled with speed q̄(1) on [a′, min{a′ + L, b}) ∪ [max{b′ − L, a}, b′) to I ′.
For our charging scheme, we say that the clean interval [a′, b′) gives 4L/q̄(1) credits to each
adjacent maximally large non-clean interval, and we charge this to [a′, b′). We do the same
argumentation and charging for each interval that became clean in this iteration.

Suppose by induction that we have given as input a maximally large non-clean interval
Ĩ such that, for some k, qOPT(d) ≥ q̄(k) for each d ∈ Ĩ that received 4L/q̄(k−1) credits
from the previous iterations. Let I ′ = [a, b) ⊆ Ĩ denote a maximally large subinterval of
Ĩ such that qOPT(d) = q̄(k) for each d ∈ I ′. Suppose that due to I ′ we define for each
d ∈ [a′, min{a′ + L, b}) and for each d ∈ [max{b′ − L, a}, b′) that q′(d) := q̄(k).

First, if |I ′| ≥ L then we charge the times traveled with speed q̄(k) on [a′, min{a′ +L, b})∪
[max{b′ − L, a}, b′) to I ′. Also, we charge I ′ in order to give 4L/q̄(k) credits to each adjacent
maximally large non-clean interval that is adjacent to [a′, b′).

Second, if |I ′| < L then I ′ must be at the left or the right end of Ĩ. In that case we
charge those times to 2L/q̄(k−1) of the 4L/q̄(k−1) credits that we received from the previous
iteration. We use the remaining 2L/q̄(k−1) = 4L/q̄(k) credits to give 4L/q̄(k) credits to each
maximally large non-clean interval that is adjacent to [a′, b′). Together, this implies the
lemma. ◀
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Abstract
Well-partial orders, and the ordinal invariants used to measure them, are relevant in set theory,
program verification, proof theory and many other areas of computer science and mathematics. In
this article we focus on a common data structure in programming, finite multisets of some well
partial order. There are two natural orders one can define on the set of finite multisets of a partial
order: the multiset embedding and the multiset ordering. Though the maximal order type of these
orders is already known, other ordinal invariants remain mostly unknown. Our main contributions
are expressions to compute compositionally the width of the multiset embedding and the height of
the multiset ordering. Furthermore, we provide a new ordinal invariant useful for characterizing the
width of the multiset ordering.
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Introduction

Measuring partial orders is useful in many domains, from set theory to proof theory,
including infinitary combinatorics, program verification, rewriting theory, proof automation
and many more.

There are intuitive notions of measure for a partial order when it is finite: its cardinal
obviously, but also its height (the length of a maximal chain) or its width (the length of
a maximal antichain). Similar notions exist for infinite partial orders, as long as they are
well partial orders (wpo), i.e., well-founded partial orders with no infinite antichains [10, 12].
Two such notions are the ordinal height, which is the order type of a maximal chain, and
the maximal order type (mot), which is the order type of a maximal linearisation, a notion
introduced by De Jongh and Parikh in order to measure hierarchies of functions [6]. These
are transfinite measures, hence we call them ordinal invariants. Kříž and Thomas introduced
alternative characterizations for mot and ordinal height, which naturally led to the definition
of a third ordinal invariant, ordinal width [11]. Less studied than its counterparts, the width
of a wpo relates to its antichains, even though it cannot be defined as the order type of a
maximal antichain. While exploring techniques for program termination, Blass and Gurevich
rediscovered these characterizations with a game-theoretical point of view [4].

Ordinal invariants of wpos have also been used to prove complexity bounds. In the last
decade there has been a flurry of complexity results for the verification of well-structured
transition systems (wsts), i.e., transition systems whose set of configurations is a wpo and
whose transitions respect this ordering [5]. When a wsts is based on a wpo X of maximal
order type ωα, one can expect the complexity of coverability to be in Hωα in the Hardy
hierarchy, or in Fα in the fast-growing hierarchy [9]. This bound can be refined by looking
at controlled antichains instead of controlled bad sequences [14], thus bounding complexity
with width instead of maximal order type.
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Computing ordinal invariants compositionally. Many wpos underlying wsts are built from
classical operations on simpler wpos whose invariants are known. This has spurred new
interest in measuring the ordinal invariants of various well-ordered data structures: De Jongh
and Parikh computed the mot of the disjoint sum and the Cartesian product of wpos [6].
Schmidt then computed the mot of word embedding and homeomorphic tree embedding on
a wpo [13]. Abraham and Bonnet pursued this line of study by computing the height of
Cartesian product, but also the width of disjoint sum and lexicographic product [1]. For
a complete survey of these results see [8], where Džamonja et al. computed the ordinal
invariants of the lexicographic product, but also the height of the multiset word and tree
embeddings.

Finite multisets. In this article, we study the ordinal invariants of the set of finite multisets.
Multisets, also called “bags”, a common data structure in computer science. Informally, a
finite multiset over a set X is a finite subset of X where an element can appear finitely many
times. For instance, ⟨a, a, b⟩ denote the multiset where a appears twice and b once. One can
see the set of finite multisets on a wpo as the set of finite words quotiented by the equivalence
relation “equality up to some permutation”. It comes down to describing a multiset as a word
where the order of terms is irrelevant. A finite multiset can be represented by a function
from X to N with finite support, which associates its multiplicity with each element.

Two orderings are classically defined on the finite multisets of any ordered set. The first
one is the multiset ordering, which often appears in rewriting theory and automation of
termination proofs [7]. The other, less-known, ordering is the multiset embedding, or term
ordering as it is called in [15]. It was presented by Aschenbrenner and Pong as a natural
extension of the embedding order over finite words [3].

Some invariants of these two orderings have already been measured: Van der Meeren,
Rathjen, and Weiermann [15] built on [17] to compute the mot of the set of finite multisets
on a wpo X ordered with the multiset ordering, and provided a new proof for the expression
of the mot of the multiset embedding computed in [18]. Džamonja et al. [8] proved that
the height of the multiset embedding is equal to the height of the set of finite words ordered
with word embedding. It is noteworthy that these three results give expressions that are
functional in (i.e., can be expressed as a function of) the mot and height of X. However, the
height of the multiset ordering still needs to be determined, and the width remains unstudied
for both orderings.

Our contributions. In this article, we provide functional expressions for the width of the
multiset embedding (Theorem 2.1) and the height of the multiset ordering (Theorem 3.1).

We further show that the width of the multiset ordering cannot be expressed as a function
of the three ordinal invariants (Example 3.2). Nonetheless, we get around this issue by
introducing a fourth ordinal invariant, the friendly order type (Definition 3.3), in which the
width of the multiset ordering is functional (Theorem 3.4). We then proceed to investigate
and compute this new ordinal invariant.

1 Definitions and state of the art

1.1 Width, height and maximal order type
A sequence x1, . . . , xn, . . . on a partial order (X, ≤X) is good when there exist i < j such
that xi ≤X xj , otherwise it is a bad sequence. An antichain is a sequence whose elements
are pairwise incomparable.
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A well partial order (wpo) is a partial order that has no infinite bad sequences. Equival-
ently, a wpo is a partial order that is both well-founded (i.e. no infinite strictly decreasing
sequences) and has no infinite antichains.

Let (X, ≤X) be a wpo. We often write just X when ≤X is understood. The trees Bad(X),
Dec(X) and Ant(X) are defined as the sets of bad sequences, strictly decreasing sequences,
and antichains of X, respectively, ordered by inverse prefix order (a sequence is smaller than
its prefixes) ([11, 8]). The finiteness of bad sequences, strictly decreasing sequences and
antichains in a wpo implies that these trees are well-founded. Therefore, one can define a
notion of rank on these trees: a sequence has rank 0 when it cannot be extended; otherwise
its rank is the smallest ordinal strictly larger than the ranks of its extensions. The rank of a
tree is the rank of the empty sequence (which is the root of the tree).

The maximal order type (or mot) of X, denoted by o(X), is defined as the rank of Bad(X).
Similarly, the height h(X) and the width w(X) of X are defined as the ranks of Dec(X)
and Ant(X), respectively. Together, o(X), h(X) and w(X) are called the ordinal invariants
of X.

For any wpo X, Dec(X) and Ant(X) are subtrees of Bad(X). Thus h(X) ≤ o(X) and
w(X) ≤ o(X).

Let x ⊥ y denote that x and y are incomparable. For a relation ∗ among { ̸≥, <, ⊥ }, we
define the residual X∗x as { y ∈ X : y ∗ x }. This definition can be extended to subsets
S ⊆ X: X∗S

def= { y ∈ X : ∀x ∈ S, y ∗ x }.

▶ Example 1.1. In Figure 1, you can see the residuals at x = (4, 6) of N × N ordered
component-wise.

N2
̸≥x

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

x

N2
<x

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

x

N2
⊥x

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

x

Figure 1 Residuals of N2 at (4, 6).

Since the rank of the empty sequence is the smallest ordinal strictly larger than the ranks
of the sequences of length 1, the definitions of mot, height and width can be reformulated
inductively through the following residual equations:

o(X) = sup
x∈X

(o(X ̸≥x) + 1) (Res-o)

h(X) = sup
x∈X

(h(X<x) + 1) (Res-h)

w(X) = sup
x∈X

(w(X⊥x) + 1) (Res-w)

With these equations we can compute easily the ordinal invariants of N2. For instance,
observe that (N2

<x) is finite for any x ∈ N2, so its height is finite but can be arbitrarily big.
Hence h(N2) = ω.
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1.2 Ordinal arithmetic
We suppose well-known the notions of sum, product, subtraction, natural sum, natural
product on ordinals, denoted with +, ·, −, ⊕, ⊗ [2]. However, let us recall some definitions
and notations that might be less familiar to the reader.

An ordinal α is indecomposable iff for any δ, γ < α, we have δ ⊕ γ < α. Equivalently, α

is indecomposable when there is an ordinal β such that α = ωβ . α is an ϵ-number when
α = ωα.

The Hessenberg-based product α ⊙ β is defined inductively as follows [1]:

α ⊙ 0 = 0 , α ⊙ (β + 1) = (α ⊙ β) ⊕ α , α ⊙ β = sup{ α ⊙ γ : γ < β } for limit β.

This definition ensures that α · β ≤ α ⊙ β ≤ α ⊗ β.
For any ordinal α = ωα1 + · · · + ωαn , let α̂

def= ωα′
1 + · · · + ωα′

n , where α′
i is αi + 1 when

αi is the sum of an ϵ-number and a finite ordinal, otherwise α′
i = αi.

For any ordinals α, β, let α ⊕̂ β
def= sup{ α′ ⊕ β′ : α′ < α, β′ < β }.

1.3 Ordinal invariants of basic data structures
For any wpos P, Q, the disjoint sum P ⊔ Q is the disjoint union of P and Q ordered such
that elements of P and Q cannot be compared together, whereas the direct sum P + Q is
the disjoint union of P and Q ordered such that for all p ∈ P, q ∈ Q, p ≤ q. For a family of
wpos (Ai)i<α, let Σi<αAi denote the direct sum of the Ais along the ordinal α.

The Cartesian product P ×Q is the set of pairs (p, q) ∈ P ×Q where elements are compared
component-wise. The lexicographic product of P along Q, written P ·Q, has the same support
as P × Q, with a different ordering: (p, q) ≤P ·Q (p′, q′) iff q <Q q′ , or q = q′ and p ≤P p′.

Sums and products are the most basic operations on wpos one can find. Their ordinal
invariants are easy to compute compositionally (see Table 1), with the notable exception of
the width of the Cartesian product which cannot be expressed as a function of the ordinal
invariants its factors [16].

Table 1 How to compute ordinal invariants compositionally, [8]. See Section 1.2 for definitions of
⊕̂ and ⊙.

Space X M.O.T. o(X) Height h(X) Width w(X)

A ⊔ B o(A) ⊕ o(B) max(h(A), h(B)) w(A) ⊕ w(B)

A + B o(A) + o(B) h(A) + h(B) max(w(A), w(B))

A × B o(A) ⊗ o(B) h(A) ⊕̂ h(B) (Not functional)

A · B o(A) · o(B) h(A) · h(B) w(A) ⊙ w(B)

1.4 Comparing wpos
A widely-used and intuitive relation between wpos is the reflection relation. A mapping
between wpos f : (A, ≤A) → (B, ≤B) is a reflection if f(x) ≤B f(y) implies x ≤A y, i.e. it
is a morphism from (A, ̸≤A) to (B, ̸≤B) Let A↪→B denote that there is a reflection from A

to B.
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However, in this article, we prefer to use the stronger notions of augmentations and
substructures.

▶ Definition 1.2 (Substructure, augmentation). A wpo (A, ≤A) is a substructure of a wpo
(B, ≤B) whenever A ⊆ B and ≤A is the restriction of ≤B to A. This relation is written
A ≤st B. Similarly (A, ≤A) is an augmentation of (B, ≤B) whenever A = B and ≤B ⊆ ≤A.
We write this relation A ≥aug B.

Obviously, A ≤st B or A ≥aug B imply A↪→B.
We often abuse these notations and write A ≤st B (resp. B ≤aug A) to mean that A is

isomorphic to a substructure (resp. an augmentation) of B.
We denote by A ≡ B that (A, ≤A) is isomorphic to (B, ≤B).
In this article, when we consider a subset Y of a wpo X, it is understood that Y ≤st X,

i.e. Y is ordered with ≤X restricted to the subset.
These notions of augmentations and substructures allow us to compare the ordinal

invariants of wpos.

▶ Lemma 1.3. Let A and B be wpos.
If A ≤st B then i(A) ≤ i(B) for i ∈ { o, h, w }.
If A ≥aug B then o(A) ≤ o(B) and w(A) ≤ w(B). However h(A) ≥ h(B).

The substructure and augmentation relations are monotonous through most operations
on wpos. For instance, if A ≤st A′, then A × B ≤st A′ × B.

An ordinal, as defined by Von Neumann, is the linear wpo that contains all smaller
ordinals. Thus augmentations and substructures relations can also be used to compare
directly ordinals to wpos. The following result is well-known:

▶ Proposition 1.4. For any wpo X, h(X) and o(X) are the largest ordinals such that
h(X) ≤st X and o(X) ≥aug X.

1.5 Orderings on the set of finite multisets
We assume familiarity with finite multisets and the associated operations as used in [17]:
union, intersection and subtraction, denoted by ∪, ∩ and \, respectively. Let ⟨x1, . . . , xn⟩
denote the finite multiset that contains the elements x1, . . . , xn (they do not have to be
distinct). For any k ∈ N, m×k means the union of k copies of m. Let |m| denote the number
of elements of a multiset m.

There are two main orderings classically defined on the set of finite multisets M(X) of a
partial order X:

▶ Definition 1.5 (Multiset embedding [18]). The multiset embedding on M(X), also known
as the term ordering, is defined as:

m ≤⋄ m′ iff there exists f : m → m′ injective such that for any x ∈ m, x ≤ f(x).

▶ Definition 1.6 (Multiset ordering [17]). The multiset ordering on M(X) is defined as:

m ≤r m′ ⇐⇒ m = m′ or ∀x ∈ m \ (m ∩ m′), ∃y ∈ m′ \ (m ∩ m′), x < y .

We write M⋄(X) for (M(X), ≤⋄) and Mr(X) for (M(X), ≤r).
The multiset ordering and the multiset embedding are both augmentations of the word

embedding on X∗ the set of finite words on X. Therefore, according to Higman’s lemma [10],
M⋄(X) and Mr(X) are wpos when X is. Moreover M⋄(X) ≤aug Mr(X), as was observed
by Aschenbrenner and Pong [3].
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Observe that if X is a linear ordering, then Mr(X) is linear, while M⋄(X) is not as long
as X has more than two elements.

▶ Proposition 1.7 (Transformation equations). For any wpos A and B,

M∗(A ⊔ B) ≡ M∗(A) × M∗(B) for ∗ ∈ {⋄, r} , (Trans-1)
Mr(A + B) ≡ Mr(A) · Mr(B) , (Trans-2)
M⋄(A + B) ≤aug M⋄(A) · M⋄(B) . (Trans-3)

▶ Lemma 1.8 (Width of M(X) on Γk). For any k < ω, we denote by Γk the wpo that
contains k incomparable elements. Then w(M⋄(Γk)) = w(Mr(Γk)) = ωk−1.

Proof. Since M⋄(Γ1) ≡ Mr(Γ1) ≡ ω, Equation (Trans-1) tells us that M⋄(Γk) and Mr(Γk)
are both isomorphic to the k-fold Cartesian product ω × · · · × ω. This special case of the
width of a Cartesian product is known [16]: w(ω × · · · × ω) = ωk−1 . ◀

The augmentation and substructure relations are monotone with respect to the multiset
ordering and multiset embedding:

▶ Proposition 1.9. Let A, B be two wpos. Then A ≤st B implies M⋄(A) ≤st M⋄(B) and
Mr(A) ≤st Mr(B). Moreover, A ≥aug B implies that M⋄(A) ≥aug M⋄(B) and Mr(A) ≥aug
Mr(B).

Ordinal invariants of the set of finite multisets

Van der Meeren, Rathjen and Weiermann computed the mot of M⋄(X) and Mr(X).

▶ Theorem 1.10 (Mot of multiset embedding [15, 18]). For any wpo X, o(M⋄(X)) = ωô(X).

▶ Theorem 1.11 (Mot of multiset ordering [15, 17]). For any wpo X, o(Mr(X)) = ωo(X).

Observe that ωo(X) ≤ ωô(X), as one would expect since Mr(X) ≥aug M⋄(X). Further-
more, we expect that w(Mr(X)) ≤ w(M⋄(X)), while h(Mr(X)) ≥ h(M⋄(X)).

▶ Theorem 1.12 (Height of the multiset embedding [8]). Let X be a wpo.
Then h(M⋄(X)) = h∗(X), where

h∗(X) def=
{

h(X) if h(X) is infinite and indecomposable,
h(X) · ω otherwise.

1.6 A tool to compute the width: Quasi-incomparable subsets
Of all three ordinal invariants, the width is the less studied, since it has been introduced
more recently, and also the hardest invariant to study for lack of tools.

A powerful tool to analyse the width of a wpo is the notion of quasi-incomparable subsets
of a wpo, which was first introduced in [16] for the Cartesian product of several ordinals.

For any subsets Y, Z of X, let Y ⊥ Z denote that for every y ∈ Y, z ∈ Z, y ⊥ z.

▶ Definition 1.13. Let A be a wpo, and A1, . . . , An be n subsets of A. Then (Ai)1≤i≤n is a
quasi-incomparable family of subsets of A iff for any i < n, for any finite Y ⊆ A1 ∪ · · · ∪ Ai,
there exists A′

i+1 ⊆ Ai+1 such that A′
i+1 ⊥ Y and A′

i+1 ≡ Ai+1.
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This definition is slightly more restrictive than the one in [16], which only required that
w(A′

i+1) = w(Ai+1).
The idea behind these quasi-incomparable subsets is that sometimes one can slice a wpo

A into simpler subsets A1, . . . , An whose width is known, such that Ant(An) + · · · + Ant(A1)
is embedded in Ant(A). Intuitively, it means that one can combine antichains of A1, . . . , An

into one antichain of A.
This entails a practical relation between the widths of A and its subsets:

▶ Lemma 1.14 ([16]). Let (Ai)i≤n be a quasi-incomparable family of subsets of A. Then
w(A) ≥ w(An) + · · · + w(A1).

2 Ordinal width of the multiset embedding

In this section we compute the width of M⋄(X) for any wpo X, which happens to be
functional in the width of X:

▶ Theorem 2.1 (Width of the multiset embedding). For any wpo X, w(M⋄(X)) = ωô(X)−1.
(See Section 1.2 for the definition of α̂.)

It is already known that, in some cases, the width of the multiset embedding reaches its
mot.

▶ Lemma 2.2 ([8]). If o(X) is infinite and indecomposable, w(M⋄(X)) = o(M⋄(X)).

We focus for now on the set of finite multisets on a linear wpo, i.e., an ordinal. Let us
treat first the case of successor ordinals.

▶ Lemma 2.3. For any successor ordinal α = β + 1, w(M⋄(α)) ≥ w(M⋄(β)) · ω.

Proof. We denote with M⋄
>k(X) the subset { m ∈ M⋄(X) : |m| > k } for any k ∈ N of

M⋄(X) for any wpo X, for any k < ω.
Let mn

def= ⟨β⟩ × n for any n ∈ N. According to Equation (Res-w),

w(M⋄(α)) = sup{ w(M⋄(α)⊥m) + 1 : m ∈ M⋄(α) }
≥ sup{ w(M⋄(α)⊥mn

) + 1 : n ∈ N } .

Let Mk
def= { ⟨β⟩ × (n − k) ∪ m : m ∈ M⋄

>k(β) } for k ∈ [1, n]. These subsets of M⋄(α) are
actually subsets of M⋄(α)⊥mn : for all m ∈ Mk, m ⊥ mn since |m| > |mn|. Observe also that
for any k ∈ [1, n], Mk ≡ M⋄(β).

Moreover, (Mk)k∈[1,n] is a quasi-incomparable family of subsets of M⋄(α)⊥mn
: for any

i < n, for any finite Y ⊂ M1 ∪ · · · ∪ Mi, let s(Y ) = max{|m|, m ∈ Y }. Observe that Mi+1
contains Mi+1 ∩ M⋄

>s(Y )(β) which is incomparable to Y , and isomorphic to Mi+1.
Therefore, w(M⋄(α)⊥mn) ≥ w(Mn) + · · · + w(M1) = w(M⋄(β)) · n according to

Lemma 1.14. Thus w(M⋄(α)) ≥ sup{ w(M⋄(β) · n + 1 : n ∈ N } = w(M⋄(β)) · ω. ◀

▶ Lemma 2.4. For any infinite ordinal α, w(M⋄(α)) = o(M⋄(α)).

Proof. We already know that w(M⋄(α)) ≤ o(M⋄(α)). We prove the lower bound by
induction on α:

If α is indecomposable, see Lemma 2.2.
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If α = β + 1 , then according to Lemma 2.3,

w(M⋄(α)) ≥ w(M⋄(β)) · ω

= o(M⋄(β)) · ω by induction hypothesis,

= ωβ̂+1 = ωβ̂+1 = o(M⋄(α)) according to Theorem 1.10.

If α = β + ωρ with β, ωρ < α and ρ > 0, then according to the transformation equation
Trans-3, M⋄(α) ≤aug M⋄(β) · M⋄(ωρ). Hence according to Lemma 1.3 and Table 1,

w(M⋄(α)) ≥ w(M⋄(β)) ⊙ w(M⋄(ωρ))
= o(M⋄(β)) ⊙ o(M⋄(ωρ)) by induction hypothesis,

= ωβ̂ ⊙ ωω̂ρ = ωα̂

= o(M⋄(α)) according to Theorem 1.10. ◀

We can now prove that Lemma 2.4 generalizes to non-linear wpos.

▶ Lemma 2.5. If o(X) is infinite then w(M⋄(X)) = o(M⋄(X)).

Proof. Let α = o(X). Then X ≤aug α from Proposition 1.4, hence M⋄(X) ≤aug M⋄(α)
according to Lemma 1.3 and Proposition 1.9. Thus

w(M⋄(α)) ≤ w(M⋄(X)) ≤ o(M⋄(X)) .

Now o(M⋄(X)) = ωα̂ = o(M⋄(α)) according to Theorem 1.10. Now with Lemma 2.4
w(M⋄(α)) = o(M⋄(α)), hence w(M⋄(X)) = o(M⋄(X)). ◀

We can also compute the width of M⋄(X) when X is a finite wpo:

▶ Lemma 2.6. If o(X) is finite, then w(M⋄(X)) = ωo(X)−1.

Proof. Let k = o(X). Then Γk ≤aug X ≤aug k, hence w(M⋄(Γk)) ≥ w(M⋄(X)) ≥
w(M⋄(k)) thanks to Lemma 1.3. According to Lemma 1.8, w(M⋄(Γk)) = ωk−1, and
according to Lemma 2.3 applied (k − 1) times, w(M⋄(k)) ≥ w(M⋄(1)) · ωk−1 = ωk−1.
Therefore w(M⋄(X)) = ωk−1 = ωo(X)−1. ◀

This section’s main result follows directly from Lemmas 2.5 and 2.6.

Proof of Theorem 2.1. If o(X) is finite, then ô(X) − 1 = o(X) − 1. On the other hand, if
o(X) is infinite, then ô(X) − 1 = ô(X). ◀

3 Ordinal height and width of the multiset ordering

For the height of Mr(X), we obtain a result similar to Theorem 1.11.

▶ Theorem 3.1 (Height of the multiset ordering). Let X be a wpo.
Then h(Mr(X)) = ωh(X).

Proof. Observe that the multiset ordering of any linear ordering is also linear. Thus, for
any ordinal α, Mr(α) is isomorphic to ωα (the function ⟨x1, . . . , xn⟩ 7→ ωx1 ⊕ · · · ⊕ ωxn is
an isomorphism).

According to Proposition 1.4, X ≥st h(X), and thus Mr(X) ≥st Mr(h(X)) ≡ ωh(X)

(Proposition 1.9). Therefore h(Mr(X)) ≥ ωh(X) according to Lemma 1.3. See the proof of
the upper bound in Appendix A. ◀
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The width of the multiset ordering is harder to compute, as w(Mr(X)) is not functional
in the ordinal invariants of X. The following example exhibits two wpos X1 and X2, with
identical ordinal invariants, such that w(Mr(X1)) ̸= w(Mr(X2)).

▶ Example 3.2. Let H
def= Σn<ωΓn. An interesting property of H is that w(H) = h(H) =

o(H) = ω. Since Mr(H) ≥st Mr(Γn), then ωn−1 ≤ w(Mr(H)) ≤ o(Mr(H)) = ωω for all
n < ω according to Lemma 1.8 and Theorem 1.11. Hence w(Mr(H)) = ωω.

Consider X1 = H + H and X2 = H + ω, two wpos with the same ordinal invariants:
o(Xi) = h(Xi) = ω · 2 and w(Xi) = ω for i ∈ { 1, 2 }. According to Equation (Trans-2)
and Table 1, w(Mr(X1)) = w(Mr(H)) ⊙ w(Mr(H)) = ωω ⊙ ωω = ωω·2 and w(Mr(X2)) =
w(Mr(H)) ⊙ w(Mr(ω)) = ωω ⊙ 1 = ωω.

Fortunately, we uncovered a new ordinal invariant, defined similarly to the usual invariants,
in which the width of the multiset ordering is functional.

▶ Definition 3.3 (Friendly order type). A bad sequence is open-ended if it is empty or of the
form sx where s is an open-ended sequence and x has a “friend” 1 in the residual X ̸≥s, i.e.,
an element incomparable to x. For any wpo X, let Bad⊥(X) be the subtree of Bad(X) which
contains all open-ended bad sequences. As Bad⊥(X) is a substructure of Bad(X), it has a
rank that we denote by o⊥(X) the friendly order type of X (or fot).

This definition can be expressed as the following residual equation:

o⊥(X) = sup
x∈X,X⊥x ̸=∅

(o⊥(X ̸≥x) + 1) (Res-f)

▶ Theorem 3.4. For any wpo X, w(Mr(X)) = ωo⊥(X)

Proof. See Appendix B. The proof of Theorem 3.4 is quite technical, and relies on the notion
of quasi-incomparable subsets. ◀

4 Computing the friendly order type

Like the usual ordinal invariants, the fot can be computed compositionally for some basic
operations on wpos:

▶ Proposition 4.1. For any non empty wpo A, B,
1. o⊥(A + B) = o⊥(A) + o⊥(B),
2. o⊥(A ⊔ B) = 1 + (o(A) − 1) ⊕ (o(B) − 1),

Proof.
1. For any sequences sA, sB in Bad⊥(A), Bad⊥(B), the concatenation sBsA is a sequence of

Bad⊥(A + B). Furthermore, any sequence of Bad⊥(A + B) is of this form.
2. For any two sequences s1, s2, let s1 ⊔⊔ s2 denote the set of sequences obtained through

shuffling s1, s2 together (e.g. abcad ∈ aba⊔⊔cd). Let xA, xB be two minimal elements of A

and B. For any sequences sA, sB in Bad(A\{xA}), Bad(B\{xB}), for any s ∈ sA ⊔⊔sB , we
know that s and sxA and sxB are in Bad⊥(A⊔B). Reciprocally, from any s ∈ Bad⊥(A⊔B),
there is a partition sA ∈ Bad(A), sB ∈ Bad(B) such that s ∈ sA ⊔⊔ sB. Furthermore,
the natural sum of the ranks of sA in Bad(A) and sB in Bad(B) is strictly positive.

1 Can one be friend with one’s superior or inferior? No. Your true friends are those you cannot (and do
not have to) compare yourselves with.
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Suppose for contradiction sake that sA and sB have rank 0 in Bad(A) and Bad(B). Let
s = s′x. Then (A ⊔ B) ̸≥s = ∅ and in particular x has no friend in (A ⊔ B) ̸≥s′ . Thus
s ̸∈ Bad⊥(A ⊔ B), contradiction. ◀

Observe how friendly order type behaves similarly to mot. It is not unusual to have fot
coincides with mot, for instance o⊥(ω ⊔ ω) = o(ω ⊔ ω) (Proposition 4.1).

To bring this new ordinal invariant closer to familiar grounds, we bound the fot of a wpo
X with the mot of a special subset of X, the stripped subset.

▶ Definition 4.2 (Stripped subset). The stripped subset of a wpo X, denoted by str(X), is
X without its friendless elements:

str(X) def= { x ∈ X : X⊥x ̸= ∅ } .

Since Bad⊥(X) is a subtree of Bad(str(X)), we know that o⊥(X) ≤ o(str(X)). Here is
an example where this inequality is strict:

▶ Example 4.3. Let X = ω ⊔ {♣}. Here str(X) = X, so o(str(X)) = ω + 1. However,
in Bad⊥(X), the singleton ♣ has rank 0, and the singleton n for any n ∈ ω has rank n.
Therefore o⊥(X) = ω < o(str(X)).

Let us show that o(str(X)) also appears in a lower bound on o⊥(X), by introducing an
alternative characterisation of fot as the mot of a specific subset.

A maximal linearisation is a monotonic function from a wpo X onto o(X).

▶ Definition 4.4 (Friendly subset). A subset X ′ of X is friendly if there exist a maximal
linearisation ℓ : X ′ → o(X ′) such that for any bad sequence s = x1, . . . xn in X ′ verifying
ℓ(x1) > · · · > ℓ(xn), s is open-ended. We say that ℓ witnesses the friendly condition.

Observe that every friendly subset of X is a substructure of str(X).
For any ordinal α, let

δ(α) def=
{

α if α is limit,
γ + ⌊n/2⌋ if α = γ + n with γ limit and n < ω.

▶ Theorem 4.5 (Alternative characterisation of o⊥(X)). Let X be a wpo. There exists
a friendly subset X ′ of X which maximizes o(X ′), and o⊥(X) = o(X ′). Furthermore,
δ(o(str(X))) ≤ o⊥(X) ≤ o(str(X)).

Proof. See proof in Appendix C. ◀

▶ Example 4.6 (Following on Example 3.2). Remember that H
def= Σn<ωΓn. Thus str(H) =

Σ2≤n<ωΓn, and o(str(H)) = o(H) = ω. Consider X1 = H+H and X2 = H+ω. Observe that
str(X1) = str(H) + str(H) whereas str(X2) = str(H). Therefore, according to Theorem 4.5,
o⊥(X1) = ω · 2 and o⊥(X2) = ω.

▶ Corollary 4.7. For any wpo X, if o(X) is limit and o(str(X)) = o(X), then o⊥(X) = o(X).

The conditions in Corollary 4.7 are often satisfied:

▶ Proposition 4.8. For any wpo non-empty X, o⊥(M⋄(X)) = o(M⋄(X)).

Proof. Observe that M⋄(X) = M⋄(X) \ {∅}. Thus o(str(M⋄(X))) = o(M⋄(X)) − 1 =
o(M⋄(X)) (Theorem 1.10). We conclude with Corollary 4.7. ◀
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Conclusion

Table 2 sums up this article’s contributions (in the gray cases) amidst the former state of
the art.

Table 2 Ordinal invariants of the set of finite multisets.

Invariants Multiset embedding of X Multiset ordering of X

Mot o ωô(X) ωo(X)

Height h h∗(X) ωh(X)

Width w ωô(X)−1 ωo⊥(X)

These results are part of a more general research program (see [8, 16]) aimed at measuring
more precisely and more effectively the complexity of wpos used in well-structured systems,
termination proofs, and other algorithmic applications.

Investigating the friendly order type is a subject for further research: How does it relate
to other concepts? Can it be computed compositionally for more operations? Can we define
a class of wpos where friendly order type always coincides with mot?
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A Proof of Theorem 3.1

We write m
̸∩

≤r m′ (resp. m
̸∩
< m′, m

̸∩
⊥ m′) when m ∩ m′ ≠ ∅ and m ≤r m′ (resp m < m′,

m ⊥ m′). With these new notations, the multiset ordering can be reformulated as follows

▶ Definition A.1 (Multiset ordering (reformulated)). Mr(X) = (M(X), ≤r) is ordered with the
multiset ordering: m ≤r m′ iff there exists m1, m′

1, m2 such that m = m1∪m2, m′ = m′
1∪m2,

and m1
̸∩
< m′

1.

▶ Lemma A.2. Let A = ∪i≤nAi a set partitioned in n subsets, for some n ∈ N. Let ≤A a
well-partial ordering on A, and ≤Ai

the same ordering restricted to the subset Ai for i ≤ n.
Then

h(A, ≤A) ≤
⊕
i≤n

h(Ai, ≤Ai
) .

Proof. From any decreasing sequence s on A, one can extract a decreasing sequence si by
restricting s to Ai for any i ≤ n. By induction on the rank of s in Dec(A), one shows that
rk(s) ≤

⊕
i≤n rk(si). ◀

Proof of Theorem 3.1. We prove the upper bound by induction on h(X).
If h(X) = 0 then X = ∅ and h(Mr(∅)) = 1 = ω0.
Suppose that X is not empty. For any non-empty multiset m ∈ Mr(X), the residual

Mr(X)<m can be partitioned as follows:

Mr(X)<m =
⋃

m1+m2=m,m1 ̸=∅

{ m′ + m2 : m′ ̸∩
< m1 } .

Note that this union is a partition of the support of Mr(X)<m, it does not say anything on
the order between the elements of the subsets in the union.
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For any non-empty multiset m, we define Sm
def= (∩x∈mX ̸≥x) ∩ (∪x∈mX<x) a subset of

X. Thus for any multiset m′ in Mr(X), m′ ̸∩
< m iff m′ ∈ Mr(Sm). Therefore:

Mr(X)<m =
⋃

m1+m2=m,m1 ̸=∅

{ m′ + m2 : m′ ∈ Mr(Sm1) } .

Observe that h(Sm1) < h(X) by definition of Sm1 . Hence by induction hypothesis
h(Mr(Sm1)) ≤ ωh(Sm1 ) < ωh(X). Moreover, ωh(X) is indecomposable. Hence according to
Lemma A.2:

h(Mr(X)<m) ≤
⊕

m1+m2=m,m1 ̸=∅

h(Mr(∪x∈m1X<x)) < ωh(X) .

Therefore h(Mr(X)) ≤ ωh(X) according to Equation (Res-h). ◀

B Proof of Theorem 3.4

First we prove intermediary lower and upper bounds on the width of the multiset ordering.

▶ Lemma B.1. Let X be a wpo. Then

w(Mr(X)) ≥ sup
x∈X,n<ω

w(Mr(X)⊥⟨x⟩) · n + 1

Proof. This proof follows the same structure as the proof of Lemma 2.3: We study the
residual of Mr(X) which contains every element incomparable to some multiset of the form
⟨x⟩ × n, and slice this residual into a family of quasi-incomparable subsets.

According to Equation (Res-w),

w(Mr(X)) = sup
m∈Mr(X)

w(Mr(X)⊥m) + 1

≥ sup
x∈X,n<ω

w(Mr(X)⊥⟨x⟩×n) + 1 .

For all k ∈ [1, n], let Mk = { ⟨x⟩ × (n − k) ∪ m : m ∈ Mr(X)⊥⟨x⟩ }. Observe that
Mk ≡ Mr(X)⊥⟨x⟩ for any k ∈ [1, n], and for all m ∈ Mk, m ⊥ ⟨x⟩ × n. We claim that
(Mk)k∈[1,n] is a quasi-incomparable family of subsets of Mr(X)⊥(⟨x⟩×n): Let i < n and Y a
finite subset of M1 ∪ · · · ∪ Mi. We define mY and M ′

i+1 as

mY
def=

⋃
j≤i

⋃
m∈(Mj∩Y )

(m \ (⟨x⟩ × (n − j))) ,

M ′
i+1

def= { ⟨x⟩ × (n − i − 1) ∪ mY ∪ m : m ∈ Mr(X)⊥⟨x⟩ } .

Observe that M ′
i+1 is an isomorphic subset of Mi+1, and Y ⊥ M ′

i+1.
Therefore according to Lemma 1.14, w(Mr(X)⊥(⟨x⟩×n)) ≥ w(Mr(X)⊥⟨x⟩) · n. ◀

▶ Lemma B.2. Let X be a wpo. Then

w(Mr(X)) ≤ sup
x∈X,n<ω

w(Mr(X)⊥⟨x⟩) ⊗ n + 1

MFCS 2023
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Proof. By definition, for any multisets m, m′ ∈ Mr(X), m ⊥ m′ means that m ̸= m′ and

there exists m1, m′
1, m2 such that m = m1 ∪ m2, m′ = m′

1 ∪ m2 and m1
̸∩
⊥ m′

1.
Therefore, the residual Mr(X)⊥m can be partitioned as an augmentation of a disjoint

union:

Mr(X)⊥m ≥aug
⊔

m1+m2=m,m1 ̸=∅

{ m′
1 + m2 : m′ ∈ Mr(X), m′

1
̸∩
⊥ m1 } ,

which can be reformulated into

Mr(X)⊥m ≥aug
⊔

m1⊆m,m1 ̸=∅

Mr(X) ̸∩
⊥m1

where Mr(X) ̸∩
⊥m1

is the residual { m′ ∈ Mr(X) : m′
̸∩
⊥ m1 }.

Let us observe this residual: m′
̸∩
⊥ m1 means that m′ and m1 are disjoint and there exists

x ∈ m1 such that for all y′ ∈ m′, x ̸≤ y′, and there exists x′ ∈ m′ such that for all y ∈ m1,

x′ ̸≤ y. In particular x′ ̸≤ x. Hence m′
̸∩
⊥ m1 implies there exists x ∈ m1 such that ⟨x⟩

̸∩
⊥ m′,

which is equivalent to ⟨x⟩ ⊥ m′. Therefore the support of Mr(X) ̸∩
⊥m1

is included in a union

on x ∈ m1 of residuals Mr(X)⊥⟨x⟩. With an augmentation we get a disjoint union:

Mr(X) ̸∩
⊥m1

≤st≥aug
⊔

x∈m1

Mr(X)⊥⟨x⟩ .

Hence according to Table 1, Mr(X)⊥m ≤
⊕

m1⊆m,m1 ̸=∅

⊕
x∈m1

w(Mr(X)⊥⟨x⟩) .

Let x ∈ m such that w(Mr(X)⊥⟨x⟩) is maximal. Then w(Mr(X)⊥m) ≤ w(Mr(X)⊥⟨x⟩)⊗
n for some n < ω. Hence according to Equation (Res-w),

w(Mr(X)) = sup
m∈Mr(X)

w(Mr(X)⊥m) + 1 ≤ sup
x∈X,n<ω

w(Mr(X)⊥⟨x⟩) ⊗ n + 1 . ◀

The bounds provided in Lemmas B.1 and B.2 actually match. Furthermore, they can be
reformulated in such a way that the residual on Mr(X) boils down to a residual on X:

▶ Lemma B.3. For any non-linear wpo X,

w(Mr(X)) = sup{ w(Mr(X ̸≥x)) · ω : x ∈ X, X⊥x ̸= ∅ } . (W)

Proof. For any ordinal α, supn<ω(α · n + 1) = supn<ω(α ⊗ n + 1) = α · ω. Hence according
to Lemmas B.1 and B.2, w(Mr(X)) = supx∈X(w(Mr(X)⊥⟨x⟩) · ω).

Let x ∈ X. If X⊥x = ∅, then Mr(X)⊥⟨x⟩ = ∅. Otherwise let y ∈ X⊥x. Observe that, for
any m ∈ Mr(X ̸≥x), m ∪ ⟨y⟩ ⊥ ⟨x⟩. Hence

{ ⟨y⟩ ∪ m : m ∈ Mr(X ̸≥x) } ≤st Mr(X)⊥⟨x⟩ ≤st Mr(X ̸≥x) .

Therefore w(Mr(X)⊥⟨x⟩) = w(Mr(X ̸≥x)) if X⊥x ̸= ∅, otherwise w(Mr(X)⊥⟨x⟩) = 0. ◀

Proof of Theorem 3.4. If X is linear, Bad⊥(X) only contains the empty sequence, hence
o⊥(X) = 0 and w(Mulr(X) = 1. Otherwise, observe that Equation (W) is quite similar
to Equation (Res-f) in its structure. Thus w(Mr(X)) = ωo⊥(X) follows directly from
Equation (W). ◀
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C Proof of Theorem 4.5

▶ Lemma C.1. For any wpo X, for any maximal linearisation ℓ : str(X) → o(str(X)), there
exists a friendly subset X ′ such that ℓ restricted to X ′ verifies the friendly condition, and
o(X ′) ≥ δ(o(str(X))).

Proof. We claim that for any β ≤ o(str(X)), there exists Xβ ⊆ ℓ−1({ γ : γ < β }) a friendly
subset of X where ℓ restricted to Xβ verifies the friendly condition, such that o(Xβ) ≥ δ(β).
In this proof, when we say that a subset is friendly, it is always implied that ℓ restricted to
this subset witnesses the friendly condition.

We build the subsets (Xβ)β≤o(str(X)) as follows:
X0 = ∅,
For γ limit, Xγ =

⋃
β<γ Xβ ,

For any β, Xβ+1 = Xβ ∪ ℓ−1(β) if friendly, otherwise Xβ+1 = Xβ .

First observe that Xβ is friendly for any β ≤ o(str(X)). Indeed, X0 is friendly, and since
for any β < β′, Xβ ⊆ Xβ′ , then the union

⋃
β<γ Xβ for γ limit is friendly by induction.

Let us prove the claim o(Xβ) ≥ δ(β), by showing that for any β + 2 ≤ o(str(X)), we
have o(Xβ+2) > o(Xβ). Let x = ℓ−1(β′) and x′ = ℓ−1(β′ + 1). Assume for the sake of
contradiction that Xβ+2 = Xβ . This means that neither Xβ ∪ {x} nor Xβ ∪ {x′} are friendly.
Hence there exists y, y′ ∈ Xβ such that for any z ∈ X, we have z ⊥ y =⇒ z ≥ x and
z ⊥ y′ =⇒ z ≥ x. Now because of ℓ we know that x ̸≥ x′ and y, y′ ̸≥ x, x′. Since
y, y′ ∈ str(X), then X⊥y and X⊥y′ are both non-empty, so actually x ⊥ y and x′ ⊥ y′. And
since x ̸≥ x′, we know y′ < x. Therefore x ⊥ x′, hence y < x′. Which leads to a contradiction
on the relationship between y and y′. ◀

For any friendly subset X ′, o(X ′) ≤ o(str(X)), and there exist X ′ such that o(X ′) ≥
δ(o(str(X))). Therefore there exists a friendly subset X ′ which maximizes o(X ′).

Proof of Theorem 4.5. We say that a bad sequence x1, . . . xn respects a maximal linear-
isation ℓ when ℓ(x1) > · · · > ℓ(xn). Let X ′ be a friendly subset of X and ℓ a maximal
linearisation of X ′ that verifies the friendly condition. Observe that Bad(X ′) restricted
to sequences that respect ℓ has for rank o(X ′), and is embedded in Bad⊥(X). Hence
o⊥(X) ≥ o(X ′).

We prove the upper bound by induction on o⊥(X). If o⊥(X) = 0 then the only friendly
subset of X is the empty set. Now suppose that o⊥(X) > 0. For any x ∈ str(X), by
induction hypothesis on X ̸≥x, there exists a friendly subset X ′ of X ̸≥x, with a maximal
linearisation ℓ which verifies the friendly condition, such that o(X ′) ≥ o⊥(X ̸≥x). We extend
ℓ to the subset X ′ ∪ {x} of X, such that ℓ(x) = o(X ′). Now ℓ is a maximal linearisation
of X ′ ∪ {x} which verifies the friendly condition, therefore o(X ′ ∪ {x}) is a friendly subset
of X and o(X ′ ∪ {x}) > o⊥(X ̸≥x). Let X ′ be a friendly subset of X which maximizes
o(X ′). Then for any x ∈ str(X), o⊥(X ̸≥x) < o(X ′). Therefore o⊥(X) ≤ o(X ′) according to
Equation (Res-f). ◀
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Abstract
We consider the verification of distributed systems composed of an arbitrary number of asynchronous
processes. Processes are identical finite-state machines that communicate by reading from and writing
to a shared memory. Beyond the standard model with finitely many registers, we tackle round-based
shared-memory systems with fresh registers at each round. In the latter model, both the number of
processes and the number of registers are unbounded, making verification particularly challenging.
The properties studied are generic presence reachability objectives, which subsume classical questions
such as safety or synchronization by expressing the presence or absence of processes in some states.
In the more general round-based setting, we establish that the parameterized verification of presence
reachability properties is PSPACE-complete. Moreover, for the roundless model with finitely many
registers, we prove that the complexity drops down to NP-complete and we provide several natural
restrictions that make the problem solvable in polynomial time.
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1 Introduction

Parameterized verification. Distributed systems consist of multiple processes running in
parallel. Verification of such systems is a major topic of modern verification, because of
how common these systems are and how difficult their verification has proven to be. Indeed,
when multiple processes run asynchronously, the number of relevant interleavings to consider
quickly becomes large. An intuitive approach for their verification is to fix the number of
processes involved and try to apply classical verification techniques. Another approach is
that of parameterized verification, where one aims to prove the more general statement that
the property of interest holds for any number of participants. The interest of this approach
is threefold. First, it allows to prove that the system is correct regardless of the number
of processes. Second, the efficiency of parameterized techniques does not depend on the
number of participants, which makes them more suitable for large systems for which classical
techniques scale poorly. Third, parameterized verification often yields decidability or better
computational complexity for problems that are hard to solve with classical techniques; see
for example [14] for a problem that becomes decidable in the parameterized case. In their
seminal work [13], German and Sistla consider systems consisting of a leader and arbitrarily
many contributors, all of which are finite-state machines communicating via rendez-vous.
In this setting, the safety verification problem is EXPSPACE-complete and the complexity
drops down to polynomial time when the leader is removed. Since then, many similar models
have been studied, with variations on the expressiveness of the processes and the means of
communication in order to capture the large variety of existing distributed algorithms [10, 7].
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Contributions. We study parameterized verification of systems where all processes are
identical and anonymous finite-state machines that communicate via reading from and writing
to a shared memory. The read and write actions are performed non-atomically, meaning that
no process may perform a read-write combination while preventing all other processes from
acting. Our registers are initialized with a special symbol; this assumption is common in
parameterized verification of shared-memory systems [8, 1], since some algorithms require
initialized registers, e.g. [2]. First, we study a model with finitely many registers. This model
is inspired by [11] where registers were uninitialized and the verification is restricted to safety
properties. In contrast, we study the more general presence reachability problems, in which
one asks whether one may reach a configuration that satisfies a property. This property takes
the form of a Boolean combination of constraints expressing whether there is at least one
process in a given state of the finite-state machine. We prove that this problem is NP-complete
and we provide several natural restrictions on the process description and on the property
that make the problem solvable in polynomial time. We then work on the more general
setting of round-based shared-memory systems [6], which are designed to model round-based
shared-memory algorithms present in the literature, see e.g. [2, 15]. In this model, the
processes proceed in asynchronous rounds, each round having its own fresh set of registers.
The source of infinity is twofold, as the number of processes and the number of registers are
both unbounded, making round-based systems particularly challenging to verify. The safety
problem was proved to be PSPACE-complete in round-based shared-memory systems [6]. In
this article, we go beyond safety by considering a round-based, richer version of the presence
reachability problem where the property may quantify existentially and universally over the
rounds. Nonetheless, we establish that the round-based presence reachability problem is
PSPACE-complete.

Related work. Similar models and problems have been studied in the literature. In the
shared-memory model (without rounds and without register initialization), the safety problem
has been studied extensively with variations on the expressiveness given to the leader and
the contributors [11]; in particular, when processes are finite-state machines, the safety
problem is shown to be coNP-complete and to decrease to PTIME when the leader is removed.
However, this result does not hold when registers are initialized or when the property is more
general than safety. A model that has perhaps been more studied is that of reconfigurable
broadcast networks (RBN), where processes communicate via broadcasting messages that can
be received by any of the other processes. This model has similarities with shared-memory
systems , although broadcast tends to be simpler (messages disappear after being sent, while
written values remain in the registers). A source of inspiration for the first part of our article
is the study of reachability problems in RBN [9], where it is shown that the cardinality
reachability problem, where one wants to reach a configuration that satisfies cardinality
constraints, is PSPACE-complete. When the constraints cannot count processes, this problem
is analogous to our presence reachability problem; for RBN, it is shown to be NP-complete,
a complexity that we also obtain in our setting. Finally, this complexity drops down to
PTIME in RBN when considering the special case of safety. This tractability result no longer
holds in the shared-memory world unless we make further assumptions about the number
of registers or their initialization. The cube reachability problem is a generalization of the
cardinality constraint problem where the initial configuration is also subject to cardinality
constraints; this problem is PSPACE-complete both in RBN and in (roundless) asynchronous
shared-memory systems [9, 5, 4], although it is unknown whether this remains true when
allowing the Pre∗ and Post∗ operators in the description of the cubes [4, 3]. While it is
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interesting to compare results on RBN with our results on shared-memory systems without
rounds, such a comparison is not possible with the more expressive model of round-based
shared-memory systems, in particular because the unboundedness in the number of registers
has no equivalent in broadcast networks.

Due to space constraints, some details are omitted. These details can be found in the full
version of this paper.

2 Roundless Register Protocols

In this section, we introduce register protocols, a model inspired by [11]. We call these systems
roundless to distinguish them from round-based systems introduced later in this article.

2.1 Definitions
▶ Definition 1 (Roundless register protocols). A roundless register protocol is a tuple
P = ⟨Q,Q0, dim,D, d0,∆⟩ where

Q is a finite set of states with a distinguished subset of initial states Q0 ⊆ Q;
dim ∈ N is the number of shared registers;
D is a finite data alphabet containing the initial symbol d0;
∆ ⊆ Q × A × Q is the set of transitions, where A := {readα(d) | α ∈ [1, dim], d ∈
D} ∪ {writeα(d) | α ∈ [1, dim], d ∈ D \ {d0}} is the set of actions.

Roundless register protocols are executed on multiple processes that behave asynchronously
and can only communicate via reading from and writing to the shared registers. The behavior
of a process is described by a finite-state machine. The possible actions of the transitions are
reading a symbol from and writing a symbol to one of the dim shared registers; d ∈ D denotes
the symbol and α indicates the register on which the action is performed. Each register
stores one symbol from the finite set D at a time. Read-write combinations are performed
non-atomically, i.e., no process can perform a read-write combination while excluding all
other processes. The size of the protocol P is defined as |P| := |Q| + |D| + |∆| + dim. For
all α ∈ [1, dim], we write rg[α] for the register of index α. We also write Reg for the set
{rg[α] | α ∈ [1, dim]} of all registers.

Processes are assumed to have no identifiers so they are identical anonymous agents.
Therefore, a configuration is a pair γ = ⟨µ, d⃗⟩ ∈ NQ×DReg such that 0 <

∑
q∈Q µ(q) < ∞. Let

st(γ) := µ which indicates the number of processes in each state, and data(γ) := d⃗ mapping to
each register its symbol: for all r ∈ Reg, data(γ)(r) is the symbol contained in register r in γ.
Let Γ := NQ ×DReg denote the set of all configurations. Let supp(γ) := {q ∈ Q | st(γ)(q) > 0}
denote the support of the multiset st(γ). We write ⊕ and ⊖ the operations on multisets that
add and remove elements, respectively. A configuration is initial if all processes are in states
from Q0 while all registers have value d0. We denote by Initc the set of initial configurations
(the letter c stands for “concrete” as opposed to “abstract” configurations defined later).
Formally, Initc := {γ | st(γ) ⊆ Q0, data(γ) = dReg

0 }.
Given γ, γ′ ∈ Γ, γ′ is a successor of γ when there exists δ = (q, a, q′) ∈ ∆ such that

st(γ)(q) > 0, st(γ′) = (st(γ) ⊖ {q}) ⊕ {q′} and:
if a = readα(d) then data(γ)(rg[α]) = d and data(γ′) = data(γ),
if a = writeα(d) then data(γ′)(rg[α]) = d and ∀α′ ̸= α, data(γ′)(rg[α′]) = data(γ)(rg[α′]).

In that case, we write γ δ−→ γ′ or simply γ −→ γ′, which is called a step. . A concrete execution
is a sequence π = γ0, δ1, γ1, . . . , γl−1, δl, γl such that for all i, γi

δi+1−−−→ γi+1. We write γ0
∗−→ γl
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q0

B

A

C

qf
read(d0)

write(c)

read(d0)

read(c)

read(a)

write(b)

read(b)

write(a)

read(c) write(a)

Figure 1 An example of a protocol.

for the existence of such an execution. γ′ is reachable from γ when γ ∗−→ γ′. Given a set C of
configurations, we write Reachc(C) := {γ′ | ∃γ ∈ C, γ

∗−→ γ′}. A configuration is reachable
when it is in Reachc(Initc).

▶ Example 2. Figure 1 provides an example of a roundless register protocol P with D =
{d0, a, b, c}, Q0 = {q0} and dim = 1, hence read and write actions are implicitly on register
α = 1. The red and blue labels are to be ignored for now.

The set of initial configurations is Initc := {⟨qn
0 , d0⟩ | n ≥ 1}. The following execution

with two processes witnesses that ⟨qf ⊕ C, a⟩ ∈ Reachc(Initc):
⟨q2

0 , d0⟩ (q0,read(d0),B)−−−−−−−−−→ ⟨q0 ⊕B, d0⟩ (B,read(d0),C)−−−−−−−−−→ ⟨q0 ⊕ C, d0⟩ (q0,write(c),A)−−−−−−−−−→

⟨A⊕ C, c⟩ (C,write(a),C)−−−−−−−−−→ ⟨A⊕ C, a⟩ (A,read(a),qf )−−−−−−−−−→ ⟨qf ⊕ C, a⟩. ⌟

2.2 Reachability Problems
Our first problem of interest is the coverability problem (COVER):

COVER for roundless register protocols
Input: A roundless register protocol P, qf ∈ Q

Question: Does there exist γ ∈ Reachc(Initc) such that st(γ)(qf ) > 0?

Note that, because the model is parameterized, a witness execution of COVER may
have an arbitrarily large number of processes. The dual is the safety problem, the answer to
which is yes when an error state cannot be covered regardless of the number of processes. A
similar problem is the target problem (TARGET) where processes must synchronize at qf :

TARGET for roundless register protocols
Input: A roundless register protocol P, qf ∈ Q

Question: Does there exist γ ∈ Reachc(Initc) s.t. for all q ̸= qf , st(γ)(q) = 0?

▶ Remark 3. TARGET is harder than COVER: consider the reduction in which one adds a
loop on qf writing a joker symbol which, from any state, may be read to reach qf .

Presence constraints are Boolean combinations (with ∧, ∨ and ¬) of atomic propositions
of the form “q populated” with q ∈ Q, or of the form “r contains d” with r ∈ Reg and d ∈ D.
A presence constraint is interpreted over a configuration γ by interpreting “q populated” as
true if and only if st(γ)(q) > 0 and “r contains d” as true if and only if data(γ)(r) = d. Note
that presence constraints cannot refer to how many processes are on a given state. We write
γ |= ϕ when configuration γ satisfies presence constraint ϕ.

▶ Example 4. If Q = {q1, q2, q3}, dim = 2, D = {d0, a, b} and ϕ := (q1 populated) ∨
((q2 populated)∧(rg[1] contains a)) then ⟨q1 ⊕q3, d2

0⟩ |= ϕ, ⟨q2
2 , (a, b)⟩ |= ϕ but ⟨q2

2 , b
2⟩ ̸|= ϕ. ⌟
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The Presence Reachability Problem (PRP) generalizes both COVER and TARGET. It
corresponds to the cardinality reachability problem for cardinality constraints restricted to
CC[≥ 1,= 0] studied for broadcast protocols [9].

PRP for roundless register protocols
Input: A roundless register protocol P, a presence constraint ϕ
Question: Does there exist γ ∈ Reachc(Initc) such that γ |= ϕ?

The formula ϕ automatically makes PRP NP-hard, since one can encode the SAT problem.
Therefore, we also consider the DNF Presence Reachability Problem (DNF-PRP), in which
ϕ is in disjunctive normal form. COVER and TARGET are special cases of DNF-PRP,
with ϕ = (qf populated) for COVER and ϕ =

∧
q ̸=qf

¬(q populated) for TARGET.

▶ Example 5. Consider again the protocol P defined in Figure 1. (P, qf ) is a positive
instance of COVER, as proved in Example 2. Let Pblue be the protocol obtained from P by
changing to read(c) the label of the transition from q0 to B (in blue in Figure 1). (Pblue, qf )
is a negative instance of COVER. In fact, a process can only get to B if c has been written
to the register, and then d0 can no longer be read so no process may go to state C, a cannot
be written and no process may go from A to qf .

(P, qf ) is a negative instance of TARGET: to leave A, one needs to read a, hence must
have a process on state C, and to leave C, one must read b which would force us to send a
process to A. Let Pred be the protocol obtained from P by changing to write(a) the label of
the transition from C to A (in red in Figure 1). (Pred, qf ) is a positive instance of TARGET:
⟨q2

0 , d0⟩ (q0,read(d0),B)−−−−−−−−−→ ⟨q0 ⊕B, d0⟩ (B,read(d0),C)−−−−−−−−−→ ⟨q0 ⊕ C, d0⟩ (q0,write(c),A)−−−−−−−−−→
⟨A⊕ C, c⟩ (C,write(a),A)−−−−−−−−−→ ⟨A2, a⟩ (A,read(a),qf )−−−−−−−−−→ ⟨A⊕ qf , a⟩ (A,read(a),qf )−−−−−−−−−→ ⟨q2

f , a⟩.
Let ϕ := ¬(C populated) ∧ ((rg contains a) ∨ [(rg contains b) ∧ ¬(A populated)]). ϕ is a
presence constraint and (P, ϕ) is a negative instance of PRP. Indeed, if a is in the register,
then C must be populated and if b is in the register, then A must be populated. ⌟

2.3 Abstract Semantics
In this subsection, we define an abstraction of the semantics that is sound and complete with
respect to PRP. The intuition of this abstraction is that the exact number of processes in
a given state is not relevant. Indeed, register protocols, thanks to non-atomicity, enjoy a
classical monotonicity property named copycat property.

▶ Lemma 6 (Copycat). Consider γ1, γ2, q2 such that γ1
∗−→ γ2, q2 ∈ supp(γ2). There exists

q1 ∈ supp(γ1) s.t. ⟨st(γ1) ⊕ q1, data(γ1)⟩ ∗−→ ⟨st(γ2) ⊕ q2, data(γ2)⟩.

An abstract configuration is a pair σ = ⟨st(σ), data(σ)⟩ ∈ 2Q × DReg such that st(σ) ̸= ∅.
The set of initial configurations is Inita := {⟨S, ddim

0 ⟩ | S ⊆ Q0}. Given a concrete configuration
γ, the projection abst(γ) is the abstract configuration ⟨supp(γ), data(γ)⟩. Let Σ := 2Q × DReg

denote the set of abstract configurations. For σ, σ′ ∈ Σ, σ′ is the successor of σ when
there exists δ = (q, a, q′) ∈ ∆ such that q ∈ st(γ), either st(γ′) = st(γ) ∪ {q′} or st(γ′) =
(st(γ) \ {q}) ∪ {q′}, and: if a = readα(d) then data(γ)(rg[α]) = d and data(σ) = data(σ′), and
if a = writeα(d) then data(σ′)(rg[α]) = d and for all α′ ̸= α, data(σ′)(rg[α′]) = data(σ)(rg[α′]).
Again, we denote such a step by σ

δ−→ σ′ or σ −→ σ′. Note that one could equivalently
define σ δ−→ σ′ by: σ δ−→ σ′ ⇐⇒ ∃γ, γ′ ∈ Γ, γ δ−→ γ′ and abst(γ) = σ, abst(γ′) = σ′. This
notion of abstraction is classical in parameterized verification of systems with identical
anonymous agents that enjoy monotonicity properties. Note, however, that this semantics is

MFCS 2023
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non-deterministic: one could have σ′′ ̸= σ′ such that σ δ−→ σ′ and σ
δ−→ σ′′. This alternative

corresponds to whether all processes in q take the transition (st(γ′) = (st(γ) \ {q}) ∪ {q′}) or
only some (st(γ′) = st(γ) ∪ {q′}). We define abstract executions similarly to concrete ones,
and denote them using ρ. We also define the reachability set Reacha(A) and the notion of
coverability as in the concrete case. This abstraction is sound and complete for PRP:

▶ Proposition 7 (Soundness and completeness of the abstraction). For all S ⊆ Q, d⃗ ∈ DReg :

(∃γ ∈ Reachc(Initc) : supp(γ)=S, data(γ)=d⃗) ⇐⇒ (∃σ ∈ Reacha(Inita) : st(σ)=S, data(σ)=d⃗).

The intuition of the proof is the following: any concrete configuration can easily be lifted
into an abstract one. Conversely, any abstract execution may be simulated in the concrete
semantics for a sufficiently large number of processes by using the copycat property.

Given a presence constraint ϕ and σ ∈ Σ, we define whether σ satisfies ϕ, written σ |= ϕ,
in a natural way. Given a concrete configuration γ, one has γ |= ϕ if and only if abst(γ) |= ϕ.
Indeed, γ and abst(γ) have the same populated states and register values. Therefore, there
exists γ ∈ Reachc(Initc) such that γ |= ϕ if and only if there exists σ ∈ Reacha(Inita) such
that σ |= ϕ: one can consider PRP directly in the abstract semantics.

3 Complexity Results for Roundless Register Protocols

In this section, we provide complexity results for the presence reachability problems defined
above in the general case and in some restricted cases. Throughout the rest of the section,
all configurations and executions are implicitly abstract.

3.1 NP-Completeness of the General Case
First, all problems defined in the previous section are NP-complete.

▶ Proposition 8. COVER, TARGET, DNF-PRP and PRP for roundless register protocols
are all NP-complete.

Proof. First, we prove that all four problems are in NP. It suffices to prove it for PRP, as
the three other problems reduce to it.

Let ρ : σ0
∗−→ σ an abstract execution, we simply prove the existence of ρ′ : σ0

∗−→ σ of
length at most 4|Q|. To obtain ρ′ from ρ, we iteratively:

remove any read step that is non-deserting and does not cover a new location,
remove any write step that is non-deserting, does not populate a new state and whose
written symbol is never read,
make non-deserting any deserting step whose source state is populated again later in ρ.

In ρ′, at most |Q| steps populate a new state and at most |Q| steps are deserting. This implies
that there are at most 2|Q| read steps, therefore, at most 2|Q| write steps whose written
value is actually read. In total, this bounds the number of steps by 4|Q|. In particular,
for PRP, we can look for an execution of length less than 4|Q| which can be guessed in
polynomial time.

We prove NP-hardness of COVER, as it reduces to the three other problems.
The proof is by a reduction from 3-SAT. Consider a 3-CNF formula ϕ =

∧m
i=1 li,1∨li,2∨li,3

over n variables x1, . . . , xn where, for all i ∈ [1,m], for all k ∈ [1, 3], li,k ∈ {xj ,¬xj | j ∈ [1, n]}.
We define a roundless register protocol PSAT(ϕ) with a distinguished state qf which is coverable
if and only if ϕ is satisfiable. In PSAT(ϕ), one has D = {d0,T} and dim = 2n, there are two
registers for each variable xi, rg(xi) and rg(¬xi). The protocol is represented on Figure 2.
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q0 C1? C2? . . . Cm? qf

Test(l1,1)

Test(l1,2)

Test(l1,3)

Test(lm,1)

Test(lm,2)

Test(lm,3)

Test(l) :=

∀j ∈ [1, n]
writerg(xj )(T)

writerg(¬xj )(T)
∀j ∈ [1, n]

readrg(l)(T) readrg(¬l)(d0)

Figure 2 The protocol PSAT(ϕ) for NP-hardness of COVER.

While any register may be set to T thanks to the loops on q0, a register set to T can
never be set back to d0. l is considered true if rg(l) is set to T while rg(¬l) still has value d0.
Suppose that the instance of 3-SAT is positive, i.e., ϕ is satisfiable by some assignment ν.
Consider an execution that writes T exactly to all rg(l) with l true in ν. For each clause,
one of the three literals is true in ν. Therefore the execution may cover Ci? for all i so it
may cover qf and the instance of COVER is positive. Conversely, if the instance COVER
is positive, there exists an execution ρ : σ0

∗−→ σ with σ0 ∈ Inita and qf ∈ st(σ). Consider
ν that assigns to each variable x value true if rg(x) is written before rg(¬x) in ρ and false
otherwise. Given a litteral l, ρ may only go through Test(l) if ν(l) is true; because ρ covers
qf , this proves that ν |= ϕ. ◀

▶ Remark 9. In [11], the authors prove NP-completeness of COVER in a similar model, but
with a leader: in the NP-hardness reduction, the leader make non-determinstic decisions
about the values of the variable. This argument does not hold in the leaderless case.

3.2 Interesting Restrictions

Although all the problems defined above are NP-complete, they are sometimes tractable
under appropriate restrictions on the protocols. We will consider two restrictions on the
protocols. The first one is having dim = 1, i.e., a single register. The second restriction is
the uninitialized case where processes are not allowed to read the initial value d0 from the
registers. Formally, a protocol P is uninitialized if its set of transitions ∆ does not contain an
action reading symbol d0: in uninitialized protocols, it is structurally impossible to read from
an unwritten register. One might object that forbidding transitions that read d0 contradicts
the intuition that, when a process reads from a register, it does not know whether the value
is initial or not; one could settle the issue by considering that reading d0 sends processes
to a sink state. The uninitialized setting tends to yield better complexity than the general,
initialized case, see for example [1, Section 7].

Of course, for PRP, the formula itself always makes the problem NP-hard.

▶ Proposition 10. PRP for roundless register protocols is NP-hard even with dim = 1 and
the register uninitialized.

MFCS 2023



88:8 Checking PRP on Parameterized Shared-Memory Systems

3.3 Tractability of COVER and DNF-PRP under Restrictions
In this subsection, we prove that COVER is solvable in PTIME when the protocol is
uninitialized or when dim is fixed and that DNF-PRP is solvable is PTIME when dim = 1.

In [11, Theorem 9.2], uninitialized COVER is proved to be PTIME-complete; their
approach, based on languages, is quite different from the one presented here. Our approach,
similar to the one presented in [9, Algorithm 1] in the setting of reconfigurable broadcast
networks, is to compute the set of coverable states using a simple saturation technique, a
fixed-point computation over the set of states.

When registers are initialized, the saturation technique breaks down as it may be that
some states are coverable but not in the same execution, as they require registers to lose their
initial value in different orders (see the notion of first-write order developed in [6] for more
development on this in a round-based setting). However, in the initialized case with a fixed
number of registers, one can iterate over every such order and COVER is tractable as well.

▶ Proposition 11. COVER for roundless register protocols is PTIME-complete either when
the registers are uninitialized or when dim is fixed.

For DNF-PRP, we provide a PTIME algorithm in the more restrictive case of dim = 1.

▶ Proposition 12. DNF-PRP for roundless register protocols with dim = 1 is in PTIME.

Proof sketch. We give here the proof for TARGET. Our algorithm shares similarities with
[12, page 41] for broadcast protocols, although it is more complex because of the persistence
of symbols in the register.

First, we have a polynomial reduction from initialized TARGET with dim = 1 to
uninitialized TARGET with dim = 1. It proceeds as follows. Consider the graph G = (Q,E)
when (q1, q2) ∈ E when there exists (q1, read(d0), q2) ∈ ∆. Let I ⊆ Q the set of states that
are reachable in G from Q0. The reduction simply replaces Q0 by I as set of initial states.

Any (abstract) execution ρ : σ0
∗−→ ⟨qf , df⟩, called synchronizing execution, can be

rearranged into ρ+ : σ0
∗−→ ⟨S, d⟩ and ρ− : ⟨S, d⟩ ∗−→ ⟨qf , df⟩ where S contains all states that

appear in ρ. Additionally, we can make ρ− start with a write action (there is a transition in
ρ that writes d). To obtain the decomposition, ρ+ mimics ρ but does not empty any state,
and ρ− mimics ρ but from a configuration with more states. We compute the maximum such
set S by iteratively deleting states that cannot appear in any synchronizing execution. Let

C(P) := max{S ⊆ Q | ∃d ∈ D, ∃σ0 ∈ Inita, σ0
∗−→ ⟨S, d⟩}

BC(P) := max{S ⊆ Q | ∀d ∈ D, ∃df ∈ D, ⟨S, d⟩ ∗−→ ⟨qf , df⟩}

Both maxima exist as the sets are non-empty (Q0 is included in the first set and qf is in
the second set) and they are stable by union (concatenate the corresponding executions).
Intuitively, C(P) corresponds to the set of coverable sets, and BC(P) to the set of backward
coverable states. In the decomposition ρ+ : σ0

∗−→ ⟨S, d⟩, ρ− : ⟨S, d⟩ ∗−→ ⟨qf , df⟩, ρ+ is a
witness that S ⊆ C(P) and ρ− that S ⊆ BC(P) (because ρ− starts with a write action, for
every d′ ∈ D one has ⟨S, d′⟩ ∗−→ ⟨qf , df⟩).

C(P) and BC(P) can be computed in polynomial time. For C(P), we use a saturation
technique. For BC(P), we work backwards: a symbol is read before it is written. We start
with S := {qf }. Until a fixpoint for S is reached, we do the following. We iterate on D,
trying to pick the symbol that was in the register before S could be reached. For each d ∈ D,
we saturate S with backward transitions reading d, then check if d can be written by a
transition ending in S. If not, we backtrack by removing states that were just added.
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The algorithm iteratively removes from P states that are not in C(P) ∩ BC(P). Indeed,
states that are not in C(P) ∩ BC(P) cannot appear in any synchronizing execution. If it ends
up with Q(P) = ∅, then there is no synchronizing execution and the algorithm rejects. If it
ends up with C(P) = BC(P) = Q(P) ̸= ∅, then applying the definitions of C(P) and BC(P)
gives a synchronizing execution, and the algorithm accepts. ◀

It is unknown whether the previous result still holds when dim is fixed to a value greater
than 1. The case dim = 1 is particularly easy because writing to the register completely
erases its content.

Unlike COVER, TARGET and therefore DNF-PRP are not tractable under the
uninitialized hypothesis. For TARGET, one cannot add fresh processes at no cost, since the
fresh processes would eventually have to get to qf . For example, if a register r can only be
written from a given state q, the last process to leave q will fix the value in register r.

▶ Proposition 13. TARGET for uninitialized roundless register protocols is NP-hard.

COVER TARGET DNF-PRP PRP

General case NP-complete NP-complete NP-complete NP-complete
(Prop. 8 ) (Prop. 8 ) (Prop. 8 ) (Prop. 8)

Uninitialized PTIME-complete NP-complete NP-complete NP-complete
(Prop. 11) (Prop. 8 & 13) (Prop. 8 & 13) (Prop. 8 & 10)

dim = 1 (one register) PTIME-complete PTIME-complete PTIME-complete NP-complete
(Prop. 11) (Prop. 12 & 11) (Prop. 12 & 11) (Prop. 8 & 10)

Figure 3 Summary of complexity results for roundless register protocols.

4 Round-based Register Protocols

We now extend the previous model to a round-based setting. The model and semantics are
the same as in [6], however we consider a more general problem than COVER. Thus, the
abstract semantics developed here differs from [6].

4.1 Definitions
In round-based settings, there is a fresh set of dim registers at each round, and each process
has its own private round value that starts at 0 and never decreases. Processes may only
read from and write to registers of nearby rounds.

▶ Definition 14 (Round-based register protocols). A round-based register protocol is a tuple
P = ⟨Q,Q0, dim,D, d0, v,∆⟩ where

Q is a finite set of states with a distinguished subset of initial states Q0 ⊆ Q;
dim ∈ N is the number of shared registers per round;
D is a finite data alphabet with an initial symbol d0;
v is the visibility range;
∆ ⊆ Q× A × Q is the set of transitions, where A = {read−i

α (d) | i ∈ [0, v], α ∈ [1, dim],
d ∈ D} ∪ {writeα(d) | α ∈ [1, dim], d ∈ D \ {d0}} ∪ {Inc} is the set of actions.

Read actions specify the round of the register: read−i
α (d) means, for a process at round k,

“read d from register α of round k−i”. A process at round k may only write to the registers
of round k. The Inc action increments the round of a process.
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q0ABC D E qf

Inc

write(a)read−1(d0)read−1(a)

write(b)

read−1(b) read0(d0) read0(b)

Figure 4 An example of round-based register protocol.

Let rgk[α] denote the register α of round k. The set of registers of round k is written
Regk, and we let Reg =

⋃
k∈N Regk. The size of a protocol is |P| = |Q| + |D| + |∆| + v + dim.

A given process is described by its state and round, formalized by a pair (q, k) ∈ Q×N called
location. Let Loc := Q× N denote the set of locations. A concrete configuration describes
the number of processes in each location along with the value of each register. Formally, a
concrete configuration is a pair ⟨µ, d⃗⟩ with µ ∈ NLoc such that 0 <

∑
(q,k)∈Loc µ(q, k) < ∞

and d⃗ ∈ DReg . For γ = ⟨µ, d⃗⟩, we write loc(γ) := µ and data(γ) := d⃗. Again, we write Γ
for the set of concrete configurations. The set of initial configurations is Initc := {γ ∈ Γ |
data(γ) = dReg

0 and ∀(q, k) /∈ Q0 × {0}, loc(γ)(q, k) = 0}.
A move is a pair θ ∈ ∆ × N: move (δ, k) expresses that transition δ is taken by a process

at round k; we write Moves := ∆ × N for the set of all moves. A move θ has effect on round
k when θ is at round k or θ is an increment at round k−1. We define a step as follows: for
θ = ((q, a, q′), k) ∈ Moves, γ θ−→ γ′ when (q, k) ∈ loc(γ) and:

if a = read−i
α (d), loc(γ′) = (loc(γ) ⊖ {(q, k)}) ⊕ {(q′, k)}, data(γ)(rgk−i[α]) = d and

data(γ′) = data(γ);
if a = writeα(d), loc(γ′) = (loc(γ) ⊖ {(q, k)}) ⊕ {(q′, k)}, data(γ′)(rgk[α]) = d and for all
r ̸= rgk[α], data(γ′)(r) = data(γ)(r);
if a = Inc, loc(γ′) = (loc(γ) ⊖ {(q, k)}) ⊕ {(q′, k+1)} and data(γ′) = data(γ).

A step is at round k when the corresponding move is of the form (δ, k). Note that
action read−i

α (d) is only possible for processes at rounds k ≥ i. The notions of execution, of
reachability and of coverability are defined as in the roundless case.

▶ Example 15. Consider the round-based protocol P from Figure 4, with dim = 1, v = 1,
Q0 = {q0} and D = {d0, a, b}. In this protocol, state qf cannot be covered. By contradiction,
consider an execution π : γ0

∗−→ γ with γ0 ∈ Initc and loc(γ)(qf , k) > 0 fo some k ∈ N. We
have that, at some point in π, (E, k) is populated and b is in rg[k]. Therefore, some process
went from (A, k) to (B, k), which implies that rg[k] lost value d0 before rg[k−1]; this in turn
implies that π does not send any process to (E, k) which is a contradiction. ⌟

Since round-based register protocols enjoy the same monotonicity properties as roundless
register protocols, we define the same non-counting abstraction. Note that this abstraction
differs from the one in [6] which was designed specifically for COVER. The set of abstract
configurations is Σ := 2Loc × DReg ; the abstract semantics are defined as in Subsection 2.3.
Again, σ δ−→ σ if and only if there exist γ, γ′ ∈ Γ, γ δ−→ γ′ and abst(γ) = σ, abst(γ′) = σ′. All
the properties of Subsection 2.3 apply to round-based abstract semantics. In particular, we
have the soundness and completeness of the abstraction:

▶ Proposition 16 (Soundness and completeness of the abstraction). For all L ⊆ Loc, d⃗ ∈ DReg :

(∃γ ∈ Reachc(Initc) : supp(γ)=L, data(γ)=d⃗) ⇐⇒ (∃σ ∈ Reacha(Inita) : loc(σ)=L, data(σ)=d⃗).
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4.2 Presence Reachability Problem
COVER is extended to round-based protocols by asking whether some reachable configuration
has a process on qf on some round k, and TARGET by asking whether some reachable
configuration has no process on states q ̸= qf on any round k. Formally, one asks whether
there exists γ ∈ Reachc(Initc) such that γ |= ψ where ψ =“∃k ∈ N, (q, k) ∈ loc(γ)” for
COVER and ψ =“∀k ∈ N, ∀q ̸= qf , (q, k) /∈ loc(γ)” for TARGET. We will now extend
roundless PRP to round-based PRP, where the formula is allowed to have non-nested
quantification over rounds.

Presence constraints are first-order formulas (quantifying over the rounds) without any
nested quantifiers. Formally:

a term is of the form m or k+m with m ∈ N and k a free variable;
an atomic proposition is either of the form “(q, t) populated” with t a term and q ∈ Q or
of the form “rgt[α] contains d” with t a term, α ∈ [1, dim] and d ∈ D;
a literal is either an atomic proposition or the negation of an atomic proposition;
a proposition is a Boolean combination of atomic propositions that has at most one free
variable;
an atomic presence constraint is either a closed proposition (no free variables), or of the
form “∃k ϕ” or “∀k ϕ” where ϕ is a proposition with k as a free variable.

Finally, a presence constraint is a Boolean combination of atomic presence constraints.

▶ Example 17. “(∃k (q2, k) populated) ∨ (∀k ((q0, k+2) populated) ∧ rg1[1] contains a)” is an
example of presence constraint.
Let γ := ((q0, 0) ⊕ (q1, 1), dReg

0 ) with q0 ̸= q1, dim = 1. One has γ |= (rg0[1] contains d0) ∧
(∃k (q1, k+1) populated) but γ ̸|= ∀k (((q0, k) populated) ∨ ¬((q1, k) populated)). ⌟

We define the round-based presence reachability problem (round-based PRP):

Round-based PRP
Input: A round-based register protocol P, a presence constraint ψ
Question: Does there exist γ ∈ Reachc(Initc) such that γ |= ψ?

▶ Example 18. Consider P from Example 15. If ψ := ∃k, (qf , k) populated, then (P, ψ) is a
negative instance of round-based PRP. If ψ′ := ∃k, ((E, k) populated)∧ ((E, k+1) populated),
then (P, ψ′) is also negative. However, if ψ′′ := ((E, 2) populated) ∧ [∀k, (rg[k + 1] contains
b) ∨ (rg[k + 1] contains d0)], then (P, ψ′′) is positive: a witness execution sends a process to
(B, 1), writes a to rg[0] then b to rg[1] and finally sends a process from (q0, 2) to (E, 2). ⌟

COVER and TARGET for round-based register protocols are special cases of PRP.
The following lower bound hence applies to all these problems:

▶ Proposition 19 ([6, Theorem 23]). COVER for round-based register protocols is PSPACE-
hard, even in the uninitialized case with v = 0 and dim = 1.

Note that, in the round-based setting, dim = 1 means one register per round, therefore
still an unbounded number of registers. v = 0 means that a process can only interact with
registers of its current round. The previous proposition implies that all problems considered
in Figure 3 are PSPACE-hard when working with round-based protocols. In [6], COVER for
round-based register protocols is shown to be PSPACE-complete. In the rest of this paper,
we establish that the more general round-based PRP lies in the same complexity class:

▶ Theorem 20. Round-based PRP is PSPACE-complete.

MFCS 2023



88:12 Checking PRP on Parameterized Shared-Memory Systems

5 A Polynomial-Space Algorithm for Round-Based PRP

In this section, we provide a polynomial-space algorithm for round-based PRP. Thanks to
Savitch’s theorem, it suffices to find a non-deterministic polynomial-space algorithm. To
do so, one wants to guess an execution that reaches a configuration satisfying the presence
constraint. However, as shown in [6, Proposition 13], one may need, at a given point along
such an execution, the number of active rounds to be exponential (an active round being
informally a round on which something has already happened and something else is yet to
happen). Thus, storing the execution step by step in polynomial space seems hard; instead,
our algorithm will guess the execution round by round. To do this, we define the notion of
footprint, which represents the projection of an execution onto a narrow window of rounds.

Thanks to Proposition 7, round-based PRP can be studied directly in the abstraction.
In the rest of the paper, all configurations and executions are implicitly abstract.

5.1 Footprints
Let j ≤ k. We write Loc[j, k] for the set of locations at rounds max(j, 0) to k; similarly,
we write Reg[j, k] for the set of registers of rounds max(j, 0) to k. A local configuration on
(rounds) [j, k] is an element of 2Loc[j,k] × DReg[j,k]. The set of local configurations on [j, k] is
written Σ[j, k]. Given σ ∈ Σ, the local configuration local[j, k](σ) is obtained by removing
from σ all information that is not about rounds j to k. Note that local configurations are
local with respect to the rounds, and not with respect to processes.

Given λ, λ′ ∈ Σ[j, k] and a move θ, we write λ θ−→ λ′ when there exist two configurations
σ and σ′ such that σ θ−→ σ′, local[j, k](σ) = λ and local[j, k](σ′) = λ′. In practice:

if θ is a move with no effect on rounds j to k, then λ
θ−→ λ′ if λ = λ′;

if θ = ((q, Inc, q′), j−1) then λ θ−→ λ′ holds with no condition that (q, j−1) is populated in
λ, since j−1 is outside of [j, k];
if θ = ((q, read−b

α (d)), l) with l−b < j (read from register of round < j), there is no
condition on the content of the register.

A footprint on (rounds) [j, k] corresponds to the projection of an execution on rounds
[j, k]. Formally, it is an alternating sequence λ0, θ0, λ1, . . . , θm−1, λm where for all i ∈ [0,m],
λi ∈ Σ[j, k] and for all i ≤ m− 1, λi

θi−→ λi+1 and λi ̸= λi+1.
Let ρ = σ0, θ0, σ1, . . . , θm−1, σm be an execution. The footprint of ρ on (rounds) [j, k],

written footprint[j, k](ρ), is the footprint on [j, k] obtained from ρ by replacing σi by λi =
local[j, k](σi) and then removing all useless steps λi

θ−→ λi+1 with λi = λi+1 (by merging
λi and λi+1, so footprint[j, k](ρ) can be shorter than ρ). Similarly, for [j′, k′] ⊇ [j, k] and
τ a footprint on [j′, k′], define the projection footprint[j, k](τ) by the footprint obtained by
replacing each local configuration in τ by its projection on [j, k] and removing useless steps.

The following result provides a sufficient condition for a sequence of footprints to be seen
as projections of a single common execution.

▶ Lemma 21. Let K ∈ N, (τk)k≤K and (Tk)k≤K−1 such that:
for all k ≤ K, τk is a footprint on [k−v+1, k],
for all k ≤ K−1, Tk is a footprint on [k−v+1, k+1],
for all k ≤ K−1, footprint[k−v+1, k](Tk) = τk,
for all k ≤ K−1, footprint[k−v+2, k+1](Tk) = τk+1.

There exists an execution ρ such that, for all k ≤ K, footprint[k−v+1, k](ρ) = τk.
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5.2 A Polynomial-Space Algorithm for Round-Based PRP
The algorithms guesses the witness execution footprint by footprint, and stops when the
presence constraint is satisfied. Algorithm 1 provides the skeleton of this procedure. For the
sake of simplicity, we suppose that v ≥ 1. If v = 0, we artificially increase v to 1.

Algorithm 1 Non-deterministic algorithm for round-based PRP.

1 Input: A PRP instance (P, ψ)
2 E,U,C � ∅ ;
3 τ � ϵ ; // dummy footprint on rounds [−v,−1]
4 Guess the initial set I ⊆ Q0 of populated states at round 0 ;
5 NDInit(E,U,C) ;
6 for k from 0 to +∞ do
7 Guess T a footprint on [k−v, k] such that footprint[k−v, k−1](T ) = τ ;
8 Check that T is consistent with the initial configuration ;
9 λ � last configuration in T ;

10 NDComputeIteration(E,U,C, λ) ;
11 if TestPresenceConstraint(E,U,C, λ) then Accept ;
12 τ � footprint[k−v+1, k](T ) ;

For all k ∈ N, let τk be the value of τ at the end of iteration k and Tk the value of T
guessed at iteration k+1. Thanks to Lemma 21, if the algorithm reaches the end of iteration
K then there exists an execution ρ whose projection on [k−v, k − 1] is τk for every k ≤ K.

Handling the round-based presence constraint is technical, so we hide it in functions
NDInit, NDComputeIteration and TestPresenceConstraint, whose pseudocode can be
found in Algorithm 2. We guess why ψ is true by guessing satisfied atomic propositions of
three types: existentially quantified on the round (i.e., of the form “∃k ϕ” where ϕ has no
quantifiers and only k as free variable) which we put in E; universally quantified on the
round (i.e., of the form “∀k ϕ” where ϕ has no quantifiers and only k as free variable) which
we put in U ; with no quantifier (i.e., of the form “ϕ” where ϕ has no quantifiers and no
free variables) which we put in C. Formulas in C refer to constant rounds and are checked
at these rounds only. Formulas in U are checked at every round. For formulas in E, the
algorithm guesses at which round the formula is true. See Appendix B.3 of the full version
for more detailed explainations. Our algorithm is correct with respect to round-based PRP:

▶ Proposition 22. (P, ψ) is a positive instance of round-based PRP if and only if there
exists an accepting computation of Algorithm 1 on (P, ψ).

The integer constants in the presence constraint ψ are encoded in unary, like the visibility
range v. These two hypotheses are reasonable since practical examples typically use constants
of small value (e.g., 1). Under these hypotheses, we obtain a polynomial spatial bound on
the size of footprints of a well-chosen witness execution, which in turn gives a polynomial
spatial bound for the algorithm:

▶ Proposition 23. Algorithm 1 works in space O(|ψ|3 + |Q|2 (v+1)2 log(dim |D|)).

Finally, we need to discuss the termination of the algorithm. According to the pigeonhole
principle, after an exponential number of iterations, the elements stored in memory repeat
from a previous iteration and we can stop the computation. One can thus use a counter,
encoded in polynomial space, to count iterations and return a decision when the counter
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reaches its largest value. Thanks to the space bounds from Proposition 23, correctness
from Proposition 22 and the stopping criterion, our algorithm decides round-based PRP in
non-deterministic polynomial space, proving Theorem 20.

Algorithm 2 The functions at Line 5, Line 10 and Line 11 of Algorithm 1.

1 Function NDInit(E,U,C) :
/* Sets containing what needs to be checked: U and E contain

respectively universally and existentially quantified atomic
presence constraints, C contains closed literals */

2 Guess X ⊆ PosOrNeg(APC(ψ)) s.t. ψ is true when all APCs in X are true ;
3 for P in X do
4 for ϕ closed atomic proposition in P do

/* ϕ refers to constant rounds only */
5 if ϕ guessed to be true then Add ϕ to C ; Replace ϕ by true in P ;
6 else Add ¬ϕ to C ; Replace ϕ by false in P ;
7 if P is a closed proposition then
8 Check that P is true with guessed values of atomic propositions ;
9 if P universal then Add P to U ;

10 if P existential then Add P to E ;
11 Function NDComputeIteration(E,U,C, λ) :
12 for “∀l ϕ” in U do
13 Guess L ⊆ PosOrNeg(AP(ϕ[l � k])) s.t. ϕ[l � k] is true when all literals in L

are true ;
14 Add all literals in L to C ;
15 for “∃l ϕ” in E do
16 if ϕ[l � k] guessed to be true then
17 Guess L ⊆ PosOrNeg(AP(ϕ[l � k])) s.t. ϕ[l � k] is true when all literals in

L are true ;
18 Add all literals in L to C ; Remove “∃l ϕ” from E ;
19 for ϕ in C about round k do

// ϕ is of the form (negation of) “(q, k) populated”, or (negation
of) “rgk[α] contains d”

20 Check that ϕ is satisfied in λ ; Remove ϕ from C ;
21 Function TestPresenceConstraint(E,U,C, λ) :
22 if E ̸= ∅ then return false ;
23 for ϕ ∈ C or “∀l ϕ” in U do
24 if ⟨∅, dReg

0 ⟩ ̸|= ϕ then
25 return false ; // Execution cannot stop at round k

26 return true ;
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