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—— Abstract

We study a natural problem about rational behaviors in multiplayer non-zero-sum sequential infinite
duration games played on graphs: rational verification, that consists in deciding whether all the
rational answers to a given strategy satisfy some specification. We give the complexities of that
problem for two major concepts of rationality: Nash equilibria and subgame-perfect equilibria, and
for three major classes of payoff functions: energy, discounted-sum, and mean-payoff.
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1 Introduction

Formal methods are essential to guarantee the correctness of safety critical computer systems.
Techniques like model-checking [13] or automated theorem proving [15] are now routinely used
to develop systematically hardware pieces as well as embedded control systems. Nevertheless,
there are contexts in which formal methods have not yet been applied successfully large-scale:
that is the case of multi-agent systems, which still represent a challenge for formal verification
techniques, because they are usually composed of heterogeneous components, ranging from
traditional pieces of reactive code to wholly autonomous robots or human users. Producing
operational model abstractions for this diversity of sub-systems is often challenging.

While it may be inconvenient, to say the least, to produce an operational model of the
behavior of a human or a complex autonomous robot, identifying the high level objectives
of those components may be easier. Taking into account those objectives is often key for
reasoning about the correctness of a system that interacts with those components. Indeed, a
system is usually not supposed to be correct in all circumstances, but only when agents in its
environment behave in a way that concurs with their own objectives. In rational verification
(RV), a system needs to enforce some property, not in all possible executions, but only in
those in which the environment agents behave rationally with regards to their own objectives.

Rationality is the focus point of game theory, and can be formalized in several ways: for
instance, with the notion of Nash equilibrium (NE) [24]. NEs have been used in a few promising
contributions, like in verification of non-repudiation and fair exchange protocols [12,20,21],
or planning of self-driving cars interacting with human drivers [26], etc. Nevertheless, those
works do not propose a general framework for RV and their contributions are rather specific
to their application domains. There is thus a need for more systematic study of formal
frameworks for RV. Such a study has been started recently: for instance, the authors of [18]
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study the automatic verification of an LTL specification in multi-agent systems that behave
according to an NE, and in [11], the authors study a setting in which the environment has
multiple objectives and only produces behaviors that are Pareto-optimal with regards to
them. This work contributes to that line of research by considering a notion of rationality
formalized by subgame-perfect equilibria (SPEs), a refinement of NEs that is better suited to
formalize rationality in sequential games, in which NEs suffer from non-credible threats [25].

More precisely, we consider here the rational verification problem, which takes as inputs:
(/) a multiplayer game graph with a designated player called Leader, (ii) a finite state
description of a (potentially infinite) set of strategies for Leader, (iii) a description of the
objective for Leader, and (iv) a description of the objectives of all the other players. It asks
whether for all possible fixed strategies oy, of Leader (defined by the finite state description),
for all possible rational responses of the other agents, the generated outcome satisfies Leader’s
objective. That problem is well-suited to formalize the verification of correctness of a
controller interacting with an environment composed of rational agents.

Contributions. To solve the RV problems, we provide a general construction, called the
product game (Definition 5): we show that, given a game and a finite-state description of a set
of Leader’s strategies, one can incorporate the memory states of that finite-state description
in the arena of the game in a way that Leader is implicitly forced to follow some strategy in
the set. Thus, we show that the RV problem reduces in polynomial time to the universal
threshold problem, a problem that is easier to study algorithmically: given a game, does every
equilibrium satisfy a given specification? Also, some game classes we analyze have been
addressed with slightly different definitions in previous literature. Interestingly, we provide a
reduction in the opposite direction as well (Cor. 6).

We use that tool to prove the undecidability of RV in energy games (Th. 9 and 10); in
the case of subgame-perfect RV, we show that undecidability holds even when Leader plays
against only two players. We show that Nash RV is co-recursively enumerable in those games,
and leave that question open for subgame-perfect RV — but contrary to the Nash setting,
SPEs may require infinite memory to reach some payoffs (Prop. 11). In discounted-sum
(DS) games, we show that the RV problems are at least as hard as the target discounted-sum
problem (Th. 13), whose decidability is an open question. However, we prove that those
problems are recursively enumerable (Th. 14). In the case of mean-payoff (MP) games,
Cor. 8, combined with older results, entails that the RV problems are coNP-complete. But
that case highlights a subtlety in the definition of RV: if one wants to check that a strategy
is such that every rational response satisfies the specification, then when no such response
exists, the strategy will be accepted. In the case of MP games, that leads to results that can
be considered as counter-intuitive. We thus propose a stronger definition of the RV problem,
called achaotic RV, to avoid that weakness: it consists in deciding whether a strategy satisfies
the specification against every response that is as rational as it can be, using the notions
of e-NE and &-SPE, that are quantitative relaxations of NE and SPE. We show that such
a problem is PNP-complete in MP games (Th. 19), and that in every other setting (Nash
or subgame-perfect RV in the two other game classes), it coincides with RV, since rational
responses always exist (Prop. 17). A synopsis of those results can be found in Table 1.

Related works. During the last decade, multiplayer games and their applications to reactive
synthesis have raised a growing attention: the reader may refer to [3,9,10,16,22], and their
references. The concept of rational verification appears in [19], where Gutierrez, Najib,
Perelli, and Wooldridge give the complexity of several related problems. They use a definition
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Table 1 Synopsis of our results.

Nash RV | Ach. Nash RV SPRV | Ach. SP RV
Energy undecidable, co-RE undecidable
DS TDS-hard, RE TDS-hard, RE
MP coNP-complete coNP-complete ‘ PNP_complete

that is slightly different from ours: their problem consists in deciding, given a game and a
specification, whether all NEs (or one of them) in that game satisfy the specification, without
any player representing the system (Leader in our setting). Still, as we show with Cor. 8,
that problem is strongly related to ours. In [27], they also study if w-regular properties are
enforced by NEs induced by mean-payoff objectives. The objectives considered in those papers
are only w-regular objectives. Moreover, both in [19] and in [27] only NEs are considered,
while our main contributions are about SPEs, that are arguably better suited for reasoning
about sequential games [25], but also require substantially more complex techniques. In [14],
Filiot, Gentilini, and Raskin study Stackelberg values of mean-payoff and discounted-sum
two-player non-zero sum games, i.e. the payoff that Leader gets when the other player,
Follower, plays the best response that is available with regards to his own objective. This is
a synthesis problem while we consider a verification problem. They consider only one player
in the environment while we consider the more general case of n players.

In [28], and later in [29], Ummels studies SPEs in parity games. He proves that they
always exist, and that deciding whether there exists an SPE in a given parity game that
generates a payoff vector between two given thresholds (the constrained existence problem,
very close to the universal threshold problem studied in this paper) is EXPTIME-easy and
NP-hard. In [8], Brihaye, Bruyére, Goeminne, Raskin, and van den Bogaard, study the same
problem in quantitative reachability games, and prove that it is PSPACE-complete.

In [17], Flesch and Predtetchinski give a general procedure to characterize SPEs. In [4],
Brice, Raskin, and van den Bogaard introduce the negotiation function, a tool that turns
Flesch and Predtetchinski’s procedure into effective algorithms for a large class of games.
In [6], they use it to close the gap left by Ummels, proving that the constrained existence
problem is NP-complete in parity games, with methods that they use later in [5] to prove that
the same problem is also NP-complete in mean-payoff games. An alternative procedure to
solve such SPE problems is proposed in [23], where Meunier constructs a two-player zero-sum
game in which one player has a winning strategy if and only if there exists an SPE satisfying
the desired constraint in the input game. That technique is nevertheless often costly, because
the size of the constructed game is proportional to the number of possible payoff vectors;
and for the same reason, it cannot be applied to games with infinite payoff spaces.

Energy objectives have also been widely studied, in connection with the study of vector
additions systems with states and Petri nets, but almost always in a two-player zero-sum
setting: see for instance [2,22,30]. As for discounted-sum objectives, they are defined for
instance by Zwick and Paterson in [31], again in a two-player zero-sum setting. They are
strongly related to the target discounted-sum problem, which is a long-standing open problem,
as shown in [1] by Boker, Henzinger, and Otop. To the best of our knowledge, no algorithmic
results are known for those classes of objectives in a multiplayer non-zero sum setting.

Structure of the paper. In Sec. 2, we introduce the necessary background. In Sec. 3, we
present the product game. In Sec. 4, we exploit it to study energy games; in Sec. 5, DS
games; and in Sec. 6, MP games. The complete proofs of our results, and additional results,
are given in the complete version of this paper [7].
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2 Background

Graphs, games and strategies. We call graph a finite directed graph, i.e. a pair (V,E)
where V is a finite set of vertices and E CV XV is a set of edges. The edge (u,v), written uv,
is an outgoing edge of u. A path in (V, E) is a finite or infinite sequence a = agay --- € VUV
such that for every index k, we have arari1 € E. We write Occ(@) (resp. Inf(@)) for the set
of vertices that occur (resp. that occur infinitely often) in @. For a given index k, we write
A<k = Acfr] = Q0 ... Ak, and sk = Asp—1 = Arps1 - .. A cycle is a finite path ¢ =c¢g...cp
with c,co € E. A finite path @ is simple if for every two indices k # €, we have ay # ay.

We call non-initialized game a tuple G = (IL,V, (Vi)ien, E, u), where:

I1 is a finite set of players;

(V,E) is a graph, in which every vertex has at least one outgoing edge;

(Vi)ien is a partition of V, in which V; is the set of vertices controlled by player i;

a play (resp. history) in the game G is an infinite (resp. finite) path in the graph (V, E),
and the set of plays (resp. histories) in G is denoted by PlaysG (resp. HistG);

the payoff function u : PlaysG — R maps each play n to the tuple u(m) = (u;(7))ien.

Given a set of players P C I1, we often write Vp = (J;cp Vi. When i is a player and when
the context is clear, we write —i for the set IT\ {i}. We often assume that a special player,
called Leader and denoted by the symbol L, belongs to the set II. An initialized game is
a pair (G, vp), often written G),,, where G is a non-initialized game and vy € V is a vertex
called initial vertex. When the context is clear, we use the word game for both initialized
and non-initialized games. A play (resp. history) in the initialized game Gy, is a play (resp.
history) that has v as first vertex. The set of plays (resp. histories) in G}y, is denoted by
PlaysGyv, (resp. HistGy,). We also write Hist;G (resp. Hist;G}.,) for the set of histories in
G (resp. Gv,) whose last vertex is controlled by player i.

A strategy for player i in the initialized game G}, is a mapping o5 : Hist; G, — V, such
that vo;(hv) is an edge of (V, E) for every hv. A history h is compatible with a strategy o7 if
and only if hgy1 = 0y (hg ... hy) for all k such that hy € V;. This definition naturally extends
to plays. A strategy profile for P C 11 is a tuple op = (07);ep, where each oy is a strategy for
player i in G,,. A play, or a history, is compatible with op if it is compatible with every
o; for i € P. Since the o;’s domains are pairwise disjoint, we sometimes consider op as one
function: for hv € HistG,,, such that v € ;cp Vi, we liberally write op(hv) for oy(hv) with i
such that v € V;. A complete strategy profile, usually written o, is a strategy profile for IT.
Exactly one play is compatible with the strategy profile o: we call it its outcome and write
(o) for it. When 7p and ‘F'Q are two strategy profiles with P N Q = 0, we write (7p, f’Q) for
the strategy profile Gpyg such that oy = 7; fori € P, and o; = 7/ for i € Q.

Notable classes of games. Here, we will focus on three game classes. In those classes, each
player i’s payoff is based on a reward mapping r; : E — Q. Intuitively, the reward mapping
gives the (positive or negative) reward that player i gets for each action. The first class,
energy games, is a class of Boolean games, i.e. games in which all payoffs are equal either to
0 or to 1. For such games, we say that player i loses the play n when w;(7r) =0, and wins it
when y; () = 1. The other games are called quantitative. In energy games, the players seek
to keep the aggregated sum of those rewards, their energy level, always nonnegative. That
quantity symbolizes any resource that an agent could have to store: fuel, money, ...
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Figure 1 An example of mean-payoff game.

» Definition 1 (Energy). In a graph (V, E), we associate to each reward mapping r the energy
level function EL, : HistG — N U {L} defined by:

ELr(hO) =0;

EL; (h<n+1) = ELy (h<n) + 7 (hnhns1) if ELy(h<n) # L, and ELy (h<n) +1r(hphner) 2 0;

EL, (h<p+1) = L otherwise.

The game G is an energy game if there exists a tuple (r;)ient of reward mappings such
that for each i and every n, we have u;(m) =0 if EL,,(n<,) = L for some n, and p;(n) =1
otherwise. When the context is clear, we write EL; for EL,,.

In discounted-sum games, each player’s payoff is obtained by summing the rewards that
the player obtains with some discount factor applied as the play goes along.

» Definition 2 (Discounted-sum). In a graph (V,E), we define for each reward mapping r
and each discount factor A € (0,1) the discounted sum function DS? : h + 3, A%r (hghisr).
Then, we write DS} () = lim, DS*(n<,). The game G is a discounted-sum game (or DS
game for short) if there exists a discount factor A € (0,1) NQ and a tuple (r;)ien of reward
mappings such that for each i and every m, we have p;(n) = DSf’_ (). When the context is
clear, we write DS; for DSf,_.

In mean-payoff games, a players’ payoff is equal to their asymptotic average reward.

» Definition 3 (Mean-payoff). In a graph (V,E), we define for each reward mapping r
the mean-payoff function MP,. : hg...h, — %Zkr(hkhkﬂ). Then, we write MP, (m) =
liminf, MP,(7<,). The game G is a mean-payoff game (or MP game for short) if there exists
a tuple (ri)ien of reward mappings, such that for each player i, we have p; = MP, . When
the context is clear, we write MP; for MP,,, and MP; for MP .

Every game G from one of those three classes can be encoded with a finite number of
bits. We write ||G|| for that number.
An example of MP game is given in Figure 1, with two players: player O, who controls

the vertices a and ¢, and player O, who controls the vertex b. The initial vertex is vo = a.

We wrote above each edge the rewards that both players get when that edge is taken. Three
types of plays are possible in that game: the one that loops on the vertex a gives both players
the payoff 0; the ones that loop on the vertex b give both players the payoff 1; and the ones
that loop on the vertex ¢ give both players the payoff 0.

Equilibria and rational responses. In this paper, we study rational behaviors of players:
we have, therefore, to define our rationality concepts. Let us start with the most classical
one: Nash equilibrium. The strategy profile o is a Nash equilibrium (resp. L-fized Nash
equilibrium) — or (L-fixed) NE for short — in Gy, if for each player i (resp. each player i # L)
and every strategy o/, called deviation of oy, we have y; ((crt.’, (_r_,-)) < ui ({(0)). When it is
not the case, we call profitable deviations the deviations that do not satisfy that inequality.

As an example, in the game given in Figure 1, two types of NEs can be found: those that
eventually loop on the vertex b, and give both players the payoff 1; and those that loop on a,
but in which player O has no profitable deviation, because if she goes to the vertex b, player
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O threatens to go to the vertex ¢ (and player O has no profitable deviation, because he does
never make any choice). However, player O’s threat is not credible, since going to the vertex
¢ would give him the payoff 0, while he could stay on the vertex b and get the payoff 1. A
stronger rationality concept, that avoids that phenomenon, is the one of subgame-perfection.

Let hv be a history in the game G. The subgame of G after hv is the game Gyn, =
(H, v, (Vi)i,E,/Jrhv) - where pn, maps each play « to its payoff in G, assuming that the
history Av has already been played, i.e. to the payoff up, () = u(hn). If oy is a strategy in
Gy, its substrategy after hv is the strategy ojny @ h' — o (hh’) in the game Gpy .

The strategy profile o is a (L -fized) subgame-perfect equilibrium — or (L -fized) SPE for
short — in Gy, if and only if for every history % in Gy, (resp. every history & compatible
with o7,), the strategy profile o, is a (L-fixed) Nash equilibrium in the subgame Gy,.

NEs and SPEs entail two notions of rationality for the environment’s responses to a
strategy oy, of Leader. A strategy profile o_r, is a Nash response to oy, if the strategy profile
o = (o1,0-1) is an L-fixed NE, and a subgame-perfect response if it is an L-fixed SPE. The
set of Nash (resp. subgame-perfect) responses to o, is written NR(o1,) (resp. SPR(o1.)).

Finally, let p € {Nash, subgame-perfect}. We call p-equilibria the NEs if p = Nash, and
the SPEs if p = subgame-perfect. We will similarly talk about L -fized p-equilibria, and
p-responses. We write pR(oy,) for the set of p-responses to a strategy oy .

Mealy machines. A Mealy machine for player i on a game G is a tuple M = (Q, qg,A),
where Q is a finite set of states, where gg € Q is the initial state, and where A C (Q X V_; X
Q)U (QxXV; xQ xV)is a finite set of transitions, such that for every (p,u,q,v) € A, we
have uv € E, and such that for every p € Q and u € V, there exists a transition (p,u, g) or
(p,u,q,v) € A. Specialist readers will have noted that this definition is more general than the
classical one, in which it is often assumed that for each p and u, there exists exactly one such
transition: hereafter, such a machine will be called deterministic. Results about deterministic
Mealy machines can be applied to programs, which are supposed to run deterministically; we
chose to take a more general definition to capture also protocols, which may be given to an
agent who would still have some room for manoeuvre in how they apply it.

A strategy oy in Gy, is compatible with M if there exists a mapping & — g, that maps
every history h in G, to a state g5 € Q, such that for every hv € Hist_;Gy,,, we have
(qn,v,qnv) € A, and for every hv € Hist;G}y,, we have (gpn,V, gnyv,0i(hv)) € A. The set of
strategies in G}, compatible with M is written Comp,,,(M). If M is deterministic, then
there is exactly one strategy compatible with M; we call it a finite-memory strategy.

Note that one can define analogously Mealy machines that capture a set of strategy
profiles for several players, and even for the whole set I1. Note also that every Mealy machine
M can be encoded with a finite number of bits: we write || M]|| for that number.

Figure 2 depicts a Mealy machine on the game of Figure 1. Each arrow from a state p to
a state g labeled u|v denotes the existence of a transition (p,u,q,v) (from the state p, the
machine reads the vertex u, switches to the state ¢ and outputs the vertex v). Each arrow
from a state p to a state g labeled u denotes the existence of a transition (p,u, ¢) (from p,
the machine reads u, switches to ¢ and outputs nothing). It is a machine for player O, that
is not deterministic: from the state gg, reading the vertex b, the machine stays in gg but
it can output either b or ¢. The strategies that are compatible with it can be described as
follows: when player O has to play, if the vertex a was seen an odd number of times, then he
stays in b; in the opposite case, he can either stay in b or eventually go to c.
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Figure 2 A non-deterministic one-player Mealy machine.
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Figure 3 A product game.
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Decision problem. Let us now define rational verification (RV). We define it for each
game class C, for each p € {Nash, subgame-perfect}, and in both the deterministic and the
non-deterministic setting.

» Problem 4 ((Deterministic) p-rational verification problem in the class C). Given a game
Giv, € C, a threshold t € Q and a (deterministic) Mealy machine M on G, is every L-fized
p-equilibrium o with oy, € Compy, (M) such that up ({a)) > 17

3 The product game

Although very intuitive, the RV problems are quite hard to study as they are. Indeed, their
instances include two graph structures: a game and a Mealy machine. However, responding
rationally to Leader’s strategies that are compatible with M amounts to play rationally in a
larger game, in which the machine M has been incorporated.

» Definition 5 (Product game). Let Gy, be a game, and let M be a Mealy machine for
Leader in G. Their product game is the game Gy, ® M = (ITU{D}, V', (V))i, E', ') 1(vo,q0)
where the player D, called Demon, chooses how the machine M will run. Formally:
V=(WVxQ)U(Vx0xQ0);
Vi =0,V =V;xQXQ for everyi e 1\ {L}, and V[, = (VxQ)U (VL X Q X Q);
the set E’ contains:
the edge (u, p)(u, p,q) for each (p,u,q) € A (ifu¢ Vi), or (p,u,q,v) €A (ifueVy);
the edge (u, p,q)(v,q) for each (p,u,q,v) € A (ifu € V. );
the edge (u, p,q)(v,q) for each (p,u,q) € A, and each uv € E (ifu ¢ V1, );
each payoff function u; maps every play (7o, qo)(7o,q0,91)(71,91) ... to the payoff
pi(momy...) if i # D, and to the payoff 0 if i =D.

Figure 3 depicts the game G,, ® M, when G),, is the game of Figure 1 and M the
machine of Figure 2. Leader is then assimilated to player 0O, and Demon’s vertices are
represented by dotted boxes. The unreachable vertices have been omitted, and we have
given only the non-zero rewards. Since, from the vertex (a, go, q1), player O has always the
possibility to go to the vertex (b, g1) and to get the payoff 1, it can be shown that every NE
and every SPE in that game gives player O the payoff 1. As we will see now, that means that
the strategies compatible with the machine M guarantee the payoff 1 to player O against
Nash-rational or subgame-perfect rational responses, i.e. that G,,,1 — &, and M, for every
& > 0, form a positive instance of the Nash and subgame-perfect RV problems.
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» Theorem 6. Let p € {Nash, subgame-perfect}. Let Gy, be a game, let M be a Mealy
machine for Leader in G, and let t € Q. Then, every p-response o_, to every strategy
or € Compy, (M) satisfies up, ((0)) > t if and only if every p-equilibrium T in the game
Grvo ® M satisfies uj ((1)) > t.

Thus, solving the p-RV problem in the game G),, amounts to solve the p-universal
threshold problem (p-UT problem) in Gy, ® M.

» Problem 7 (p-universal threshold problem in the class C). Given a game Gy, € C, a player
i €11, and a threshold t € Q, is every p-equilibrium & in Gy, such that y; (o)) > t?

Moreover, the size of the product game is bounded by a polynomial function of |G| and
|IM||; and when the game G belongs to a class C among the three classes defined in Section 2,
then all product games constructed from it also belong to C. Hence the following.

» Corollary 8. Let C be a game class among energy games, DS games, and MP games.
Then, in the class C, for a given p € {Nash, subgame-perfect}, the p-UT problem, the p-RV
problem, and the deterministic p-RV problem are reducible to each other in polynomial time.

Proof.
The deterministic p-RV problem reduces to the p-RV problem, because a non-deterministic
Mealy machine is a Mealy machine.
The p-UT problem reduces to the deterministic p-RV problem.
Let Gvy, i and ¢ form an instance of the p-UT problem. We define the game Q’WO as equal
to the game G),,, where Leader has been added to the player set, but controls no vertex.
We define yp, = y;. If G belongs to the class C, so does G’. Let M be the one-state
deterministic Mealy machine on G’ that never outputs anything. Then, a strategy profile
o in g;v is an L-fixed p-equilibrium, if and only if it is an L-fixed p-equilibrium with
or € Compy,, (M), if and only if the strategy profile oy, is a p-equilibrium in the game
Giv,- As a consequence Gy, i, and t form a positive instance of the p-UT problem, if
and only if QFVO, M, and t form a positive instance of the deterministic p-RV problem.
Moreover, the latter can be constructed from the former in polynomial time.
The p-RV problem reduces to the p-UT problem, by Th. 6, and since the product game
Grvo ® M can be constructed from G}y, and M in polynomial time. <

4 Energy games

Let us now apply that result to our game classes: first, energy objectives.

Nash rational verification. RV problems are undecidable in this class, as we will show by
reduction from the halting problem of two-counter machines (the reader who is not familiar
with those machines may refer to [7]). However, Nash RV is co-recursively enumerable.

» Theorem 9. In energy games, the Nash RV problem, deterministic or not, is undecidable
and co-recursively enumerable.

Proof sketch. We prove here that the Nash UT problem is undecidable and co-recursively
enumerable. The theorem will follow by Cor. 8.

Undecidability. We show undecidability by reduction from the halting problem of a
two-counter machine. Let K be a two-counter machine. We define an energy game G, 4
with five players — players C{, Cy, Cy, C5, and W, called Witness — by assembling the
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Figure 4 Gadgets.

gadgets presented in Figure 4 — the rewards that are not presented are equal to 0, and
the players controlling relevant vertices are written in blue. Then, a play in G}, that
does not reach the vertex A simulates a sequence of transitions of K, that can be a valid
run or not: at each step, the counter C; is captured by the energy level of player C;,
always equal to the energy level of player C;*. For each counter C;, the player C;- will
have a profitable deviation if that play fakes a test to 0, by going to the vertex a; and the
player C;” will lose, and therefore have a profitable deviation by staying in qf) if it fakes a
positive test. Thus, as shown in the complete version of this proof, every NE outcome
in the game qué is won by Witness if and only if the machine K does not terminate.
As a consequence, the halting problem of two-counter machines reduces to the Nash UT
problem in energy games, which is therefore undecidable.
Co-recursive enumerability. As shown in the complete version of this proof, in an energy
game G),,, if there exists an NE that makes some player i lose, then there exists a
finite-memory one. Thus, a semi-algorithm that recognizes the negative instances of the
UT problem consists in enumerating the finite-memory complete strategy profiles on Gy,
and for each of them, to check (by diagonalization):

whether it is an NE: that is decidable (in polynomial time), by [7];

whether it makes player i lose: that is recursively enumerable, by constructing step by

step its outcome and computing the energy levels on the fly.
We have a negative instance of the UT problem if and only if at least one finite-memory
strategy profile satisfies those two conditions. The Nash UT problem is therefore co-
recursively enumerable. |

Subgame-perfect rational verification. In the subgame-perfect setting, the previous con-
struction could also prove undecidability. But we choose to present a refinement of it, that
proves a stronger result.

» Theorem 10. In energy games, the subgame-perfect RV problem, deterministic or not, is
undecidable, even when Leader plays against only two players.

Again, the proof shows that, in particular, that problem is not recursively enumerable in
energy games. It might still be the case that it is co-recursively enumerable. That would in
particular be the case if finite memory was sufficient for an SPE to make any player i lose,
when that is possible, as in the case of NEs. Unfortunately, one cannot follow this approach,
because that statement is false: in order to be able to punish some player, without making
another player lose, an SPE may have to memorize their energy levels, and therefore require
infinite memory, as it will be the case in the example that follows. We leave therefore the
question open.

» Proposition 11. In the energy game presented in Figure 5, there exists an SPE that makes
player O lose, but no finite memory SPE can achieve that result.
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Figure 6 A game constructed from an instance of TDS.

5 Discounted-sum games

We will now move to DS objectives. First, let us define the following decision problem.

» Problem 12 (Target discounted-sum problem). Given four quantities A,a,b,t € Q with
0 <A <1, is there a sequence (uy)nen € {a, b} such that 3, ey upd™ =17

Although it is a quite natural problem that appears in many different fields, the target
discounted-sum (TDS) problem turns out to be surprisingly hard to solve, and its decidability
status is still open. The interested reader may refer to [1] for more details. The following
theorem shows that RV problems are at least as difficult.

» Theorem 13. The TDS problem reduces to the complements of the (deterministic) Nash
rational and subgame-perfect RV problems in discounted-sum games.

Proof. We present here a reduction to the complements of the Nash universal and subgame-
perfect UT problems; the result follows by Cor. 8. Let a,b,t € Q, let 1 € Q N (0,1), and let
Gv, be the DS game of Figure 6, with discount factor A. In that game, there exists an NE
o with un({o)) < 0, if and only if there exists an SPE ¢ with us({c)) < 0, if and only if
a,b,t, and A form a positive instance of the TDS problem.

Indeed, if such an NE or SPE exists, it necessarily reaches the vertex a. But then, player
O must get at least the payoff ug(vov{’) = tA2, and player < the payoff Ho(vovavy) = —tA?,
otherwise they would have a profitable deviation. If such a play exists, then we have a
positive instance of the TDS problem. Conversely, from such a positive instance, one can
construct a play from vg in which player o gets the payoff %, player O the payoff 12, and
player ¢ the payoff —t4%, and none of them has a profitable deviation in any subgame. <«

The previous theorem suggests that finding algorithms solving those problems is a very
ambitious objective. However, in the sequel, we will show that like the TDS problem, the
RV problems are recursively enumerable. The key idea is the following: a property of DS
objectives is that when a play gives to some player a payoff that is strictly smaller than some
threshold, that can be seen on finite prefixes of those plays. Therefore, although strategy
profiles are in general infinite objects that exist in uncountable number, profitable deviations
can be found by analyzing their behaviors on a finite (but unbounded) number of histories.

» Theorem 14. In DS games, the Nash rational and the subgame-perfect RV problems,
deterministic or not, are recursively enumerable.
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6 Mean-payoff games

Classical rational verification. Let us now end with MP games. The reduction from RV
problems to UT problems enables us to apply results and methods that already exist in the
literature.

» Theorem 15. In the class of MP games, the Nash rational and the subgame-perfect RV
problems, deterministic or not, are coNP-complete.

The temptation of chaos. It is now worth noting that the definition we gave of RV
entails, in the case of MP games, results that may be considered as counter-intuitive. For
instance, consider the game of Figure 7, where Leader owns no vertex, and consider the
only (vacuous) strategy available for Leader. Does that strategy guarantee a payoff greater
than 17 Intuitively, it does not, since Leader always receives the payoff 0. But still, that
strategy, that game, and that threshold form a positive instance of subgame-perfect RV,
because no L-fixed SPE exists in that game (see [4]). More generally, the definition we give
of RV considers that a good strategy for Leader is a strategy such that for every response of
the environment that is rational, the generated outcome observes some specification. But a
strategy is then good, in that sense, if no rational response of the environment exists: that is
the phenomenon that we can call temptation of chaos. While that case does never occur in
energy and DS games, where rational responses are always guaranteed to exist (as we will
see below), it must be considered in MP games.

Achaotic rational verification. To avoid such phenomena, we introduce an alternative
definition of RV, achaotic RV: a good strategy for Leader will be a strategy that guarantees
the given threshold against every response that is as rational as possible. To define that
problem, we need quantitative relaxations to the notions of NEs and SPEs. Let G}y, be
a game. Let & > 0. The strategy profile o is an &-NE (resp. L-fized e-NE) in Gy, if
and only if for each i € IT (resp. IT\ {L}) and every deviation o7 of oy, the inequality
wi ({0}, 0—:)) < p; ((5)) + & holds: no deviation is profitable by more than &. Note that
0-NEs coincide with NEs. We derive from that notion, as expected, the notions of (L-fixed)
&-SPEs, e-Nash and e-subgame-perfect responses, and the notations eNR(o1,), eSPR(oL),
and epR(o1). We can now define our decision problem.

» Problem 16 (Achaotic (deterministic) p-RV in the class C). Given a game G}y, € C, a
threshold t € Q, and a Mealy machine (resp. a deterministic Mealy machine) M on G, does
there exist € > 0 satisfying:

epR(oL) # 0 for some strategy o1, € Compy,,, (M);

and pg, ({ow,0-1)) >t for every o1, € Comp,, (M), and every o1, € epR(ov)?

We will prove below that in mean-payoff games, there exists a least quantity &, such
that epinp-responses to a given strategy oy, exist. For instance, in the example depicted by
Figure 7, we have eyj, = 1. Thus, we can rephrase the achaotic RV problems as follows:
given a game Gyy,, a threshold ¢ € Q and a Mealy machine M, do we have ug, (¢or.,0-1)) >t
for every oy, € Comp,,, (M) and every o_1, € eminpR(o1)?
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Among the problems we study here, this new definition is relevant in only one case:
subgame-perfect RV in MP games. In all other cases, the RV problems are equivalent to
their achaotic versions, because Nash and subgame-perfect responses are guaranteed to exist.

» Proposition 17. Let C be a class of games, among the classes of energy games and DS
games. Let p € {Nash, subgame-perfect}. Then, the positive instances of the achaotic p-RV
problem in C are exactly the positive instances of the p-RV problem. Similarly, the positive
instances of the achaotic Nash-RV problem in MP games are exactly the positive instances of
the p-RV problem.

Now, an optimal algorithm for that problem in MP games requires the following lemma:
in each game, there exists a least & such that e-SPEs exist, and it can be written with a
polynomially bounded number of bits. To prove that, we need to use the notion of negotiation
function, defined in [4]: a function from vertex labellings to vertex labellings whose least
e-fixed point (i.e., the least vertex labelling A4 that is a fixed point of that function up to
) characterizes e-SPEs. Our result can be obtained by revisiting a proof of [5], that was
designed to bound the number of bits required to write that least e-fixed point, for a fixed .
Hereafter, we write ||¢|| for the number of bits required to write & in a usual encoding.

» Lemma 18. There exists a polynomial Py such that in every mean-payoff game Gy, , there
exists emin With ||eminl|l < P1(||G) such that emin-SPEs exist in Gy, and e-SPEs, for every
€ < Emin, do not.

We are now equipped to prove the following theorem.

» Theorem 19. In the class of mean-payoff games, the achaotic subgame-perfect RV problem,
deterministic or not, is PNP-complete.

Proof sketch. Using Lem. 18 and the same arguments as in the proof of Th. 6, those two
problems are interreducible with the following one: given G;,, and a t € Q, does every
emin-SPE 0 in Gy, satisfy ur, ((o7)) > t7 Let us prove PNP_completeness for that problem.

Easiness. By [5], there is an NP algorithm deciding, given ¢ and G}y,, whether there
is an &-SPE in G),,, i.e. whether € > gp;,. Using Lem. 18 and the inequality epmin <
2max; yy |ri(uv)|, a dichotomous search can thus compute enin using polynomially many
calls to that algorithm. Then, one last call can decide whether there exists an eyin-SPE
o such that u; ({)) <r.

Hardness. We proceed by reduction from the following PNP-complete problem: given a
Boolean formula ¢ in conjunctive normal form over the ordered variables x1,...,x,, is
the lexicographically first valuation vy satisfying ¢ such that viin(x,) = 17 (and in
particular, does such a valuation exist?) Let us write ¢ = /\j.’:1 C;. We construct a game
Gha, with a player called Witness and written W, in which there exists an enin-SPE
o such that uw({c)) < 0 if and only if ¢ is satisfiable and vy (x,) = 1. That game,
depicted in Figure 8 (unmentioned rewards are equal to 0, and we write m = 2n + p), has
2n + p + 4 players: the literal players x1, -x1,...,X,, 7x,; the clause players Ci,...,Cp;
the player Solver, written S; the player Witness, written W; the player Alice, written A ;
and the player Bob, written B.

This game is based on the classical example of MP game in which SPEs do not exist,
already presented in Section 6. In the latter, from the vertex a, Alice can access a
sink vertex, where Bob and her both get the payoff 1. Here, they access instead to a
region where the choices of Solver define a valuation of x1,...,x, — unless one of the
literal players chooses to go to the sink vertex v, which will be a profitable deviation if
Solver makes inconsistent choices (one literal and, later, its negation). That valuation v
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