
Query Complexity of Search Problems
Arkadev Chattopadhyay #

Tata Institute of Fundamental Research, Mumbai, India

Yogesh Dahiya #

The Institute of Mathematical Sciences (a CI of Homi Bhabha National Institute), Chennai, India

Meena Mahajan #

The Institute of Mathematical Sciences (a CI of Homi Bhabha National Institute), Chennai, India

Abstract
We relate various complexity measures like sensitivity, block sensitivity, certificate complexity for
multi-output functions to the query complexities of such functions. Using these relations, we
provide the following improvements upon the known relationship between pseudo-deterministic and
deterministic query complexity for total search problems:

We show that deterministic query complexity is at most the third power of its pseudo-deterministic
query complexity. Previously, a fourth-power relation was shown by Goldreich, Goldwasser and
Ron (ITCS’13).
We improve the known separation between pseudo-deterministic and randomized decision tree
size for total search problems in two ways: (1) we exhibit an exp(Ω̃(n1/4)) separation for the
SearchCNF relation for random k-CNFs. This seems to be the first exponential lower bound
on the pseudo-deterministic size complexity of SearchCNF associated with random k-CNFs.
(2) we exhibit an exp(Ω(n)) separation for the ApproxHamWt relation. The previous best
known separation for any relation was exp(Ω(n1/2)).

We also separate pseudo-determinism from randomness in And and (And, Or) decision trees, and
determinism from pseudo-determinism in Parity decision trees. For a hypercube colouring problem,
that was introduced by Goldwasswer, Impagliazzo, Pitassi and Santhanam (CCC’21) to analyze
the pseudo-deterministic complexity of a complete problem in TFNPdt, we prove that either the
monotone block-sensitivity or the anti-monotone block sensitivity is Ω(n1/3); Goldwasser et al.
showed an Ω(n1/2) bound for general block-sensitivity.

2012 ACM Subject Classification Theory of computation → Oracles and decision trees; Theory of
computation → Models of computation

Keywords and phrases Decision trees, Search problems, Pseudo-determinism, Randomness

Digital Object Identifier 10.4230/LIPIcs.MFCS.2023.34

Related Version Full Version: https://eccc.weizmann.ac.il/report/2023/039/ [3]

1 Introduction

The question of whether randomness adds computational power over determinism, and if
so, how much, has been a question of great interest that is still not completely understood.
Naturally, the answer depends on the computational model under consideration, but it also
depends on the type of problems one hopes to solve. One may wish to compute some function
of the input, a special case being decision problems where the function has just two possible
values. There are also search problems, where for some fixed relation R ⊆ X × Y and an
input x ∈ X, one wishes to find a y ∈ Y that is related to x; i.e. (x, y) ∈ R. If every
x ∈ X has at least one such y, we have a total search problem defined by R, the R-search
problem. In the context of (total) search problems, a nuanced usage of randomness led
to the beautiful notion of pseudo-determinism; see [7]. A function f solves the R-search
problem if for every x, (x, f(x)) ∈ R. A randomized algorithm which computes such an f

© Arkadev Chattopadhyay, Yogesh Dahiya, and Meena Mahajan;
licensed under Creative Commons License CC-BY 4.0

48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023).
Editors: Jérôme Leroux, Sylvain Lombardy, and David Peleg; Article No. 34; pp. 34:1–34:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:arkadev.c@tifr.res.in
https://orcid.org/0009-0005-3110-3584
mailto:yogeshdahiya@imsc.res.in
https://orcid.org/0000-0001-7338-1762
mailto:meena@imsc.res.in
https://orcid.org/0000-0002-9116-4398
https://doi.org/10.4230/LIPIcs.MFCS.2023.34
https://eccc.weizmann.ac.il/report/2023/039/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2 Query Complexity of Search Problems

with high probability is said to be a pseudo-deterministic algorithm solving the R-search
problem. Thus a pseudo-deterministic algorithm uses randomness to solve a search problem
and almost always provides a canonical solution per input.

The original papers introducing pseudo-determinism examined both polynomial-time
algorithms and sublinear-time algorithms; in the latter case, the computational resource
measure is query complexity. In [8], a maximal separation was established between pseudo-
deterministic and randomized query algorithms; Ω(n) vs O(1). Very recently, in [9], this
separation was revisited. The separating problems in [8] do not lie in the query-complexity
analogue of NP (nondeterministic polylog query complexity, or polylog query complexity to
deterministically verify a solution, TFNPdt). This is a very natural class of search problems,
and in [9], an almost-maximal separation between randomized and pseudo-deterministic
search is established for a problem in this class. The problem in question is SearchCNF:
given an assignment to the variables of a highly unsatisfiable k-CNF formula, to search
for a falsified clause; this problem is very easy for randomized search (O(1) queries), and
solutions are easily verifiable. Theorem 7 of [9] establishes that for unsatisfiable k-CNF
formulas on n variables with sufficiently strong expansion in the clause-variable incidence
graph (in particular, for most random k-CNF formulas), the corresponding search problem
has pseudo-deterministic complexity Ω(

√
n), even in the quantum query setting. In [9], the

size measure of decision trees in the pseudo-deterministic setting was also studied. Lifting
the query separation using a small gadget, a strong separation between randomized size and
pseudo-deterministic size was obtained: SearchCNF problem on random k-CNFs lifted with
2-bit Xor has randomized size O(1) but require pseudo-deterministic size exp(Ω(

√
n)).

Taking this study further, Theorem 3 of [9] shows that the promise problem
PromiseFIND1, of finding a 1 in an n-bit string with Hamming weight at least n/2,
is in a sense complete for the class of search problems that are in TFNPdt and have efficient
randomized query algorithms. By relating this search problem to a certain combinatorial prob-
lem concerning colourings of the hypercube, and by using the lower bound for SearchCNF,
a lower bound of Ω(

√
n) on the pseudo-deterministic complexity of PromiseFIND1 is ob-

tained (Theorem 14 and subsequent remark in [9]). The colouring problem on hypercubes
states that any proper coloring of the hypercube contains a point with many 1s and with high
block sensitivity. In [9], a point with block sensitivity Ω(

√
n) is proven to exist (Theorem 14),

and a point with block sensitivity Ω(n) is conjectured to exist (Conjecture 16).

Our contributions

(1) We improve upon the known relationship between pseudo-deterministic query complexity
and deterministic query complexity for total search problems: We show that deterministic
query complexity is at most the third power of its pseudo-deterministic query complexity.
(Previously a fourth-power relation was shown in [8].)

(2) We improve the known separations between pseudo-deterministic and randomized decision
tree size in two ways: (1) an exp(Ω̃(n1/4)) separation for the SearchCNF relation for
random k-CNFs (the exp(Ω(n1/2)) separation in [9] is only for the lifted formulas k-CNF
composed with Xor), and (2) an exp(Ω(n)) separation for the ApproxHamWt relation
(the previous best separation for any relation was exp(Ω(n1/2))).

(3) We separate pseudo-deterministic and randomized query complexity in And and
(And, Or) decision trees, and show that deterministic and pseudo-deterministic com-
plexity are polynomially related in these models, upto polylogn factors. In the Parity
decision tree model, we observe that deterministic and pseudo-deterministic query com-
plexities are well separated.

A. Chattopadhyay, Y. Dahiya, and M. Mahajan 34:3

(4) For the hypercube colouring problem posed in [9], we prove that either the monotone
block-sensitivity or the anti-monotone block sensitivity is Ω(n1/3); previously an Ω(n1/2)
bound was known but only for general block-sensitivity.

Significance, context, and techniques

We now describe each of our contributions, with surrounding context, in more detail.
For Boolean functions, randomized and deterministic query complexities are known to

be polynomially related by the classic result of Nisan [14]. Since deterministic query lower
bounds are often easy to obtain using some kind of adversary argument, this provides a route
to randomized query lower bounds for Boolean functions. For search problems, however, there
is no such polynomial relation. Note that separating pseudo-determinism from randomness
requires a lower bound against randomized query algorithms that provide canonical solutions.
Such algorithms compute multi-output functions (following nomenclature from [9]) as opposed
to Boolean functions. Thus what is required is randomized query lower bounds for multi-
output functions. For such functions, too, lower bounds for deterministic querying are often
relatively easy to obtain. And again, as for Boolean functions, deterministic and randomized
query complexity for multi-output functions are known to be polynomially related; in [8]
(Theorem 4.1(3)), the authors show that the deterministic query complexity is bounded above
by the fourth power (as opposed to cubic power for Boolean functions) of the randomized
complexity. They also show that it is bounded above by the cubic power times a factor
that depends on the size of the search problem’s range. We revisit these relations, and
further tighten them to a cubic power relation. Thus for search problems, deterministic query
complexity is bounded above by the cubic power of its pseudo-deterministic query complexity;
Theorem 3.2. We show this by relating various complexity measures like sensitivity, block
sensitivity, certificate complexity for multi-output functions to their query complexities;
Theorem 3.1.

Using the recent result from [4] that derandomized the size measures for total Boolean
functions, we establish a polynomial relationship between the log of pseudo-deterministic size
and the log of deterministic size, ignoring polylog factors in the input dimension; Theorem 4.3.
This gives us another way to separate randomized size from pseudo-deterministic size: any
total search problem which is easy with randomization but difficult for deterministic search
will lead to a separation between pseudo-deterministic size and randomized size; one such
problem is SearchCNF on suitably expanding k-CNF formulas. In [9], it was shown
that SearchCNF for such formulas lifted by small gadgets like XOR, has large pseudo-
deterministic size complexity. There are known situations where the complexity of a formula
and its lift by small gadgets widely vary in search problems. For instance, it was known that
proving the unsatisfiability of formulas corresponding to Tseitin lifted by a small gadget should
be hard in cutting planes proof system [6]. The popular belief was that such hardness extends
to even unlifted Tseitin formulas. In a breakthrough work [5], this belief was proven false!
However, we are able to obtain an exp(Ω̃(n1/4)) lower bound on the pseudo-deterministic
size complexity for SearchCNF with unlifted random k-CNF formulas, in contrast to
the bounds from [9]. As far as we know, this is the first exponential lower bound on the
pseudo-deterministic size complexity of SearchCNF for random k-CNF formulas. Like
Tseitin formulas, determining the complexity of random k-CNF formulas in various models
remains an important theme of current research.

We also show, see Theorem 4.5, that any completion of the promise-problem ApproxMaj
by a total Boolean function, requires large randomized decision tree size. Observing that
this promise-problem is “embedded” in the ApproxHamWt search problem, we obtain an
exp(Ω(n)) separation between the pseudo-deterministic and randomized size complexity of
ApproxHamWt, in Theorem 4.6.

MFCS 2023

34:4 Query Complexity of Search Problems

The more general query models we consider are those of And (Or) decision trees,
abbreviated as ADT’s (ODT’s), where each query is a conjunction of variables, (And, Or)
decision trees, where each query is either a conjunction or a disjunction of variables, and
Parity decision trees, where each query reports the parity of some subset of variables. These
models obviously generalize decision trees, and are more powerful in the deterministic setting,
appear naturally in contexts like combinatorial group testing and other contexts. More
recently, they have been advocated by [11] as a meaningful intermediate model between
query and communication complexity. For And and (And, Or) decision trees, we show
that pseudo-determinism is still separated from randomness; Theorems 5.3 and 5.6. To
show the former, we relate randomized query complexity for multi-output functions in this
model to monotone block sensitivity. To show the latter, we note that a recently proved
result from [4] relating depth in (And, Or) trees and size in ordinary trees for Boolean
functions, also holds for multi-output functions. Furthermore, using other results from [4]
that derandomized the And and (And, Or) decision trees for total Boolean functions, we
observe that pseudo-determinism and determinism are polynomially related in these settings,
ignoring polylogn factors; Theorems 5.4 and 5.7. For Parity decision trees, in contrast, we
observe that determinism is separated from pseudo-determinism; Theorem 5.8. There is no
polynomial relation between these two complexity measures. In this setting, we do not know
whether pseudo-determinism is separated from randomness.

Finally, we revisit the hypercube coloring problem from [9]. There, the existence of
a point with large Hamming weight and block-sensitivity Ω(

√
n) is established, using the

previously established lower bound for SearchCNF. We give a completely combinatorial and
constructive argument to show that a point with large Hamming weight and block-sensitivity
Ω(n1/3) exists, Theorem 6.3. While we seemingly sacrifice stronger bounds in the quest
for simplicity, our algorithm actually proves something that is stronger in a different way,
and hence our result is perhaps incomparable with that of [9]. The difference is that we
identify many sensitive blocks that are all 1’s, or many sensitive blocks that are all 0’s. In
other words, we show that the monotone (or anti-monotone) block sensitivity is Ω(n1/3).
Monotone block sensitivity was used recently, first by [12] and then by [4], to prove query
complexity lower bounds for ADT’s. In particular, our result implies that every function
that solves PromiseFIND1, requires large depth to be implemented by either randomized
ADT’s or by randomized ODT’s. We believe that this could be strengthened to show that
such solutions are always hard for randomized ADTs 1. Proving such a result is an interesting
open problem.

Related work

For Boolean functions, the relations between many complexity measures and query complexity
has been studied extensively in the literature. A consolidation of many known results appears
in [2] as well as in [10].

Organisation of the paper

In Section 3 we establish the relationships between various measures for multi-output func-
tions, and establish the polynomial relation between pseudo-deterministic and deterministic
query complexity for search problems. In Section 4 we establish relations between pseudo-
deterministic size and deterministic size. Section 5 discusses the complexity of search problems

1 Note that there are solutions that are easy for ODTs, even deterministically. For instance, a binary
search can be implemented to find efficiently the first occurrence of a 1.

A. Chattopadhyay, Y. Dahiya, and M. Mahajan 34:5

in And, (And, Or), and Parity decision trees. Section 6 discusses the hypercube coloring
problem. We refer the reader to the full version of our paper [3] for proofs omitted due to
space constraints.

2 Preliminaries

We use standard notation and terminology in the paper, which we briefly explain here. For
detailed definitions, we refer the reader to the full version of our paper [3]. For x ∈ {0, 1}∗,
and b ∈ {0, 1}, |x| is the length of x and |x|b is the number of occurrences of b in x. We also
write wt(x) for |x|1. To sample uniformly from a set S, we write ∼u S. For B ⊆ [n] and
b ∈ {0, 1}, bB is the n-bit string that equals b at positions in B and 1− b elsewhere.

For a multi-output function f : {0, 1}n → [m] and input x ∈ {0, 1}n, we use the following
measures, which are natural extensions from the Boolean case, to capture different aspects of
its complexity: s(f, x) counts the number of input bits at x that can be flipped to change the
output of f(x); bs(f, x) is the maximum integer r for which there exist r disjoint sensitive
blocks of f at x (where f is sensitive to block B on input x if f(x) ̸= f(x⊕1B)); C(f, x) is the
minimum number of input bits required to uniquely identify the output of f(x). Maximizing
over all inputs gives s(f), bs(f), and C(f), the sensitivity, block sensitivity, and certificate
complexity of f , respectively. We also use sensitivity and block sensitivity measures that
only allow flipping either 0s or 1s. A set B ⊆ [n] is a sensitive b-block of f at input x if
xi = b for each i ∈ B, and f(x) ̸= f(x ⊕ 1B). The b-block sensitivity of f at x, denoted
bsb(f, x), is the maximum integer r for which there exist r disjoint sensitive b-blocks of f at
x. The b-sensitivity of f at x, sb(f, x), is the number of sensitive b-bits of x. Maximizing over
all inputs gives sb(f), and bsb(f), the b-sensitivity and b-block sensitivity of f , respectively.
Note that s0(f) and bs0(f) are the same as the monotone sensitivity and monotone block
sensitivity used in [12] to study And-decision trees.

For a search problem S, a (deterministic) decision tree T computing S is a binary tree
with internal nodes labelled by the variables and the leaves labelled by y ∈ Y. It evaluates
an unknown input x by traversing the tree based on variable queries. The label of the leaf
reached must belong to S(x). The depth of a decision tree T is the length of the longest
root-to-leaf path, and its size is the number of leaves. The deterministic query/size complexity
of S, denoted by Ddt(S)/DSizedt(S), is defined to be the minimum depth/size of a decision
tree that computes S.

A randomized query algorithm/decision tree A is defined by a distribution DA over
deterministic decision trees. It evaluates an input x by randomly selecting a tree T from
DA and outputting the label of the leaf reached by T on x. The algorithm is considered to
compute S with error at most ϵ if, for every x, the probability that A(x) belongs to S(x) is at
least 1− ϵ. The depth/size complexity of the randomized decision tree is determined by the
maximum depth/size among all decision trees in the distribution’s support. The randomized
query/size complexity of S with error ϵ, denoted by Rdt

ϵ (S)/RSizedt
ϵ (S), is the minimum

depth/size of a randomized decision tree that computes S with error ϵ. For a probability
distribution D over the domain of S, the (D, ϵ)-distributional query/size complexity of S,
denoted by Ddt

D,ϵ(S)/DSizedt
D,ϵ(S), is the minimum depth/size of a deterministic decision tree

that gives a correct answer on 1− ϵ fraction of inputs weighted by D. When we drop ϵ from
the subscript of a randomized/distributional query measures, we assume ϵ = 1/3.

A multi-output function f : {0, 1}n → [m] solves S, denoted by f ∈s S, if for every
x ∈ {0, 1}n, (x, f(x)) ∈ S. A pseudo-deterministic query algorithm for a search problem
S, with error 1/3, is a randomized decision tree that computes some multi-output function

MFCS 2023

34:6 Query Complexity of Search Problems

f that solves S with error at most 1/3. The pseudo-deterministic query complexity of S,
denoted by psDdt(S), is equal to minf∈sS Rdt(f), and pseudo-deterministic size complexity
of S, denoted by psDSizedt(S), is equal to minf∈sS RSizedt(f). Note that randomized query
algorithms for S do not necessarily output a canonical value with high probability, only a
value y such that (x, y) ∈ S with high probability.

Known results that we use

▶ Proposition 2.1 ([15]). For a search relation S,
Rdt

ϵ (S) = maxD Ddt
D,ϵ(S) and RSizedt

ϵ (S) = maxD DSizedt
D,ϵ(S).

▶ Proposition 2.2 ([14, 10, 2]). For any Boolean function f : {0, 1}n → {0, 1},
1. s(f) ≤ bs(f) ≤ C(f) ≤ s(f)bs(f).
2. s(f) ≤ bs(f) ≤ 3Rdt

1/3.
3. C(f) ≤ Ddt(f) ≤ C(f)2.
4. Ddt(f) ≤ C(f)bs(f).
5. Ddt(f) = O((Rdt(f))3).

▶ Proposition 2.3 (restated from [8]). For a search relation S,
1. Ddt(S) ≤

(
psDdt(S)

)4
. [Restated from Theorem 4.1(3) in [8]]

2. Ddt(S) ≤
(

psDdt(S)
)3

ℓS(n), where ℓS(n) is the number of bits required to represent the
range of S. [Restated from Theorem 4.1(3) in [8]]

▶ Proposition 2.4.
1. (Corollary 4.2 in [8]) For the relation

ApproxHamWt = {(x, v) : |wt(x)− v| ≤ n/10},
psDdt(ApproxHamWt) ∈ Ω(n) and Rdt(ApproxHamWt) = O(1).

2. (Theorem 4 in [9]) For the relation PromiseFIND1 = {(x, i) : wt(x) ≥ |x|/2 ∧ xi = 1},
psDdt(PromiseFIND1) ∈ Ω(

√
n) and Rdt(PromiseFIND1) = O(1).

▶ Proposition 2.5. For F a random 3-CNF formula on n variables with m = Θ(n) clauses
sampled from F3,n

m , with probability 1− o(1), F is unsatisfiable and furthermore,
1. Rdt(SearchCNF(F)) = O(1).
2. Ddt(SearchCNF(F)) = Ω(n). (From [13, 1])
3. DSizedt(SearchCNF(F)) = exp(Ω(n)). (From [1])

3 Relating measures for multi-output functions

We show the analogs of Proposition 2.2 for multi-output functions. The idea is to do the
necessary modifications to the analogous results in the Boolean function case. For the proof,
we refer the reader to the full version of our paper [3].

▶ Theorem 3.1. For a function f : {0, 1}n → [m], the following relations hold.
1. C(f) ≤ s(f)bs(f).
2. s(f) ≤ bs(f) ≤ 3Rdt

1/3(f)
3. C(f) ≤ Ddt(f) ≤ C(f)2.
4. Ddt(f) ≤ 2C(f)bs(f).
5. Ddt(f) = O((Rdt(f))3).

Using the above, we can now improve the bounds from Proposition 2.3 for search problems.
One psDdt(S) factor from item 1 there can be removed, as also the ℓS(n) factor in item 2.

A. Chattopadhyay, Y. Dahiya, and M. Mahajan 34:7

▶ Theorem 3.2. For any total search problem S, Ddt(S) = O((psDdt(S))3).

Proof. For total search problem S, let f̃ be a function solving S, with psDdt(S) = Rdt(f̃).
Then, using Theorem 3.1(5), we obtain
Ddt(S) = minf∈sS Ddt(f) ≤ Ddt(f̃) ≤ O((Rdt

1/3(f̃)3) = O(psDdt(S)3). ◀

4 Pseudo-deterministic size vs deterministic size

In this section, we establish a polynomial relationship, up to polylog n factors, between the
logarithm of pseudo-deterministic size and the logarithm of deterministic size for total search
problems, Theorem 4.3. We also improve the separation between pseudo-deterministic and
randomized size, Theorem 4.6.

Before showing these results, we first examine an argument for extending results on Boolean
functions to multi-output functions. We note that a relationship between randomized and
deterministic complexity in a query model for Boolean functions yields an almost identical
relationship between pseudo-deterministic complexity and deterministic complexity for search
problems. The result follows from a straightforward application of a binary search argument
and also appears in the work of [8] for making a similar claim for the ordinary query model.
We give a proof sketch, for details refer to the full version of our paper [3].

▶ Proposition 4.1. In a query model M , let DM (DSizeM), RM (RSizeM) and psDM

(psDSizeM) denote the query complexity (size complexity, respectively) in the deterministic,
randomized and pseudo-deterministic settings. Then,
1. If for some monotonic function q : N × N → N and every total Boolean function f :
{0, 1}n → {0, 1}, DM(f) ≤ q(RM(f), n), then for any total search problem S ⊆ {0, 1}n ×
[m], DM(S) = O(q(psDM(S), n) ·min(log m, psDM(S))).

2. If for some monotonic function q : R × N → N and every total Boolean func-
tion f : {0, 1}n → {0, 1}, log DSizeM(f) ≤ q(log RSizeM(f), n), then for any
total search problem S ⊆ {0, 1}n × [m], log DSizeM(S) = O(q(log psDSizeM(S), n) ·
min(log m, log psDSizeM(S))).

Proof Sketch. We give a proof sketch for the second statement. For search problem S with
psDSizeM(S) = s, let function f̃ solve S with RSizeM(f̃) = s witnessed by a randomized tree
T . For k = ⌈log m⌉, define the Boolean functions f1, f2, . . . , fk where fi(x) extracts the ith
bit in the k-bit representation of f̃(x). Then for each i ∈ [k], RSizeM(fi) ≤ RSizeM(f̃) = s;
simply relabel the leaves of T appropriately. By the hypothesised relation for Boolean
functions, for each i ∈ [⌈log m⌉], log DSizeM(fi) ≤ q(log RSizeM(fi), n) ≤ q(log s, n). Let Ti

be a deterministic tree achieving this size bound. By composing the trees T1, T2, . . . , Tk and
suitably relabelling the leaves with elements from [m], we obtain a deterministic tree for f̃ of
size (2q(log s,n))k. With careful analysis, we can get min(log m, log psDSizeM(S) in place of k

in the exponent. ◀

Recently it was shown in [4] that for total Boolean functions, the logarithms of deterministic
and randomized size are polynomially related, ignoring a polylog factor in input size.

▶ Proposition 4.2 ([4, Theorem 3.1(b)]). For a total Boolean function f : {0, 1}n → {0, 1},

log DSizedt(f) = O((log RSizedt(f))4 log3(n)).

Using the relation from Proposition 4.2 as the “hypothesised function” in Proposi-
tion 4.1(2), we obtain the following result, relating the log of deterministic size and the log
of pseudo-deterministic size for search problems.

MFCS 2023

34:8 Query Complexity of Search Problems

▶ Theorem 4.3. For a total search problem S ⊆ {0, 1}n × [m], we have

log DSizedt(S) = O(log4 psDSizedt(S) · log3(n) ·min(log m, log psDSizedt(S))).

In [9] (Theorem 22), a separation was established between pseudo-deterministic and
randomized size for a SearchCNF problem, defined on suitably expanding kCNF formulas
lifted with 2-bit Xor gadgets. It was shown that the randomized size complexity of this
problem is O(1), while the pseudo-deterministic size complexity is exp(Ω(

√
n)). We obtain a

similar (but weaker) separation for the SearchCNF problem without any lifting, by putting
together Proposition 2.5(Item 3) and Theorem 4.3.

▶ Corollary 4.4. For F a random 3-CNF formula on n variables with m = cn clauses
sampled from F3,n

m , with probability 1− o(1), F is unsatisfiable and

psDSizedt(SearchCNF(F)) = exp(Ω(n1/4/ log n)).

Since RSizedt of SearchCNF on random 3-CNF formulas is O(1) w.h.p (see Proposi-
tion 2.5(Item 1)), we get a separation between RSizedt and psDSizedt, albeit not as strong
as [9]. However, Theorem 4.3 allows us to conclude that any total search problem separating
randomized and deterministic size will yield a separation between RSizedt and psDSizedt.

We now improve the separation between randomized and pseudo-deterministic sizes, from
O(1) vs exp(Ω

√
n) as shown in [9], to O(1) vs exp(Ω(n)). To achieve this, we focus on the

ApproxHamWt problem. For this problem, a linear depth separation between randomized
and pseudo-deterministic algorithms is already known from [8] (see Proposition 2.4). By
using a 1-bit indexing gadget, we can lift the depth separation in ApproxHamWt to an
exponential size separation, as was done in [9, Theorem 22]. (The 1-bit indexing gadget
replaces each variable x by the function Sel(xa, xb, xc) = if xa = 1 then xb else xc.) In the
rest of this section, we show that the exponential size separation between randomized and
pseudo-deterministic algorithms can also be achieved using ApproxHamWt itself without
the lift. It is easy to see that the randomized size of ApproxHamWt is O(1). We show
that its pseudo-deterministic size is exp(Ω(n)). To this end, we establish that every solution
to ApproxHamWt embeds a hard boolean function whose randomized decision tree size is
exponential in the input size. This hard function is a completion of the promise problem
Approximate Majority, ApproxMaj.

ApproxMaj is a promise problem (i.e. partial Boolean functions; certain bit strings
are promised to never appear as inputs) where the task is to compute the majority of the
given bit string. The promise is that the fraction of bits set to 1 in the input is either at
least 3/4 or at most 1/2. A completion of ApproxMaj is a total Boolean function that
extends ApproxMaj arbitrarily on the non-promised inputs. We show that every solution
to ApproxHamWt embeds some completion of ApproxMaj, and that the randomized
decision tree size of every completion of ApproxMaj is exponential in the input size.

▶ Theorem 4.5. For the promise problem (partial boolean function) ApproxMaj,

ApproxMaj(x) =
{

0 if |x| ≤ n/2
1 if |x| ≥ 3n/4 ,

every completion f of ApproxMaj has RSizedt(f) = exp(Ω(n)).

The proof of Theorem 4.5 is based on a corruption argument and follows the template for
proving randomized decision tree size lower bounds in [4, Theorem A.7]. This argument is
essentially due to Swagato Sanyal, and we thank him for allowing us to include it here. Before
we see its proof, let us use it to establish an exponential separation between randomized and
pseudo-deterministic size forApproxHamWt.

A. Chattopadhyay, Y. Dahiya, and M. Mahajan 34:9

▶ Theorem 4.6. Let S be the search problem ApproxHamWt = {(x, v) ∈ {0, 1}n ×
{0, 1, ..., n} : |wt(x) − v| ≤ n/10}, where wt(x) is the Hamming weight of x. Then
RSizedt(S) = O(1), while psDSizedt(S) = exp (Ω(n)).

Proof. The Hamming weight of a string can be estimated within a small (θ(n)) additive
error by querying a constant number of variables uniformly at random and outputting the
scaled-up fraction of 1’s seen in the queried bits. Thus RSizedt(S) = O(1).

To show a pseudo-deterministic size lower bound, we need to show that any function that
solves the ApproxHamWt problem must have randomized decision tree of size exp(Ω(n)).
Let f be any function solving the ApproxHamWt problem. The total Boolean function
f̄ : {0, 1}n → {0, 1} defined as f̄(x) = 1 iff f(x) > 6n/10 is a completion of ApproxMaj.
Given a randomized decision tree that computes f , we can relabel the leaves appropriately
to obtain a randomized decision tree that computes f̄ . Using Theorem 4.5, we conclude that
RSizedt(f) ≥ RSizedt(f̄) = exp(Ω(n)). ◀

Proof of Theorem 4.5. Let f be any completion of ApproxMaj. Our strategy is to con-
struct a hard distribution D on the inputs {0, 1}n such that DSizedt

D,1/3(f) = exp(Ω(n)),
and then use Yao’s minmax principle (see Proposition 2.1) to conclude that RSizedt(f) =
exp(Ω(n)). To define the hard distribution, we start by introducing some terminology. For
an input x ∈ {0, 1}n, let S1

x = {i : xi = 1} and S0
x = [n] \ S1

x. We say that x is 0-sensitive if
all the 0s in x are sensitive with respect to f . For x ∈ {0, 1}n, we define the set of extreme
upward neighbors of x as EUN(x) = {y : S1

x ⊆ S1
y , f(x) = f(y) and y is 0-sensitive}. With

this terminology in place, we can define the hard distribution as follows:
1. Let rep : {0, 1}n → {0, 1}n be a function which maps x ∈ {0, 1}n to an arbitrary input

from EUN(x). Define µ0 , a distribution over f−1(0) as follows: Sample an x of Hamming
weight n/2 uniformly at random, and output rep(x).

2. Define µ1, a distribution over f−1(1), as follows: Sample an x according to µ0, an index
i uniformly at random from S0

x, and return x⊕ 1{i}.
3. Our hard distribution D is (µ0 + µ1)/2 i.e. with probability 1/2 return a sample from µ0,

and with probability 1/2 return a sample from µ1.
We show below that DSizedt

D,1/10(f) = exp(Ω(n)). Let T be a deterministic decision tree
computing f correctly on at least 9/10-probability mass when the input is sampled according
to D. Since D samples with probability 1/2 from µ0 and with probability 1/2 from µ1, T

must be correct on at least 4/5-th mass of µ0 as well as at least 4/5 mass of µ1. Let L0 be
set of all 0-labelled leaves(0-leaves) in T . Let ρ0 and ρ1 be the µ0 and µ1 mass captured by
0-leaves respectively; i.e.,

ρ0 =
∑

v∈L0

Pr
x∼µ0

[x reaches v]; ρ1 =
∑

v∈L0

Pr
x∼µ1

[x reaches v].

As discussed above above, ρ0 ≥ 4/5 and ρ1 ≤ 1/5.
For a leaf v, let Zv denote the set of indices of variables fixed to zero on the path leading

to v and Ev(x) denote the event that the input x reaches leaf v. We will show that 0-paths
with small |Zv| together capture at most 2/5 of the µ0 mass, and 0-paths with large |Zv|
individually capture exponentially small µ0 mass. Thus to ensure that ρ0 is large enough,
there must be many 0-leaves.

1. (0-paths with few 0’s). Firstly, we show that 0-paths which see less than ⌈n/8⌉ 0’s must
capture no more than 2/5-th mass of µ0, i.e.,

ρ0
0 =

∑
v∈L0

|Zv|<⌈n/8⌉

Pr
x∼µ0

[x reaches v] ≤ 2/5.

MFCS 2023

34:10 Query Complexity of Search Problems

This follows from the sensitivity property of µ0. Specifically, each y in the support of
µ0 has a Hamming weight less than 3n/4, and since all the 0s in y are sensitive, each
y in the support of µ0 has 0-sensitivity of at least n/4. Therefore, if a 0-path has not
observed many 0s, the corresponding leaf will also capture a significant amount of µ1
mass. Formally, consider a subcube Q corresponding to a 0-leaf with less than ⌈n/8⌉
variables fixed to 0. Due to the sensitivity property of µ0, each x supported by µ0 has at
least n/4 sensitive 0s. Hence, any x supported by µ0 that lies in Q has at least half of its
total 0s unfixed. By flipping any of these 0s, we obtain an input supported by µ1 that
still lies in Q. Therefore,

1/5 ≥ ρ1 ≥
∑

v∈L0
|v|0<⌈n/8⌉

Pr
x∼µ1

[Ev(x)] =
∑

v∈L0
|v|0<⌈n/8⌉

Pr
x∼µ0
i∼uS0

x

[Ev(x⊕ 1{i})]

≥
∑

v∈L0
|v|0<⌈n/8⌉

Pr
x∼µ0
i∼uS0

x

[Ev(x) and i ̸∈ Zv] =
∑

v∈L0
|v|0<⌈n/8⌉

Pr
x∼µ0

[Ev(x)] Pr
x∼µ0
i∼uS0

x

[i ̸∈ Zv|Ev(x)]

≥
∑

v∈L0
|v|0<⌈n/8⌉

Pr
x∼µ0

[Ev(x)] ·
(
|S0

x| − n/8
|S0

x|

)
≥ 1

2 ·

 ∑
v∈L0

|v|0<⌈n/8⌉

Pr
x∼µ0

[Ev(x)]

 = 1
2ρ0

0.

(In the last inequality, we use the fact that |S0
x| > n/4.) Hence ρ0

0 ≤ 2/5.
2. (0-paths with lots of 0’s). Secondly, we show that a 0-path which sees more than ⌈n/8⌉

0’s can capture at most κ = exp(−Ω(n)) of µ0 mass. Consider a leaf v labelled 0 such
that the path leading to v fixes t ≥ ⌈n/8⌉ variables to 0; |Zv| = t ≥ n/8. Let Sn/2 be all
strings of Hamming weight n/2. We have

κ = Pr
y∼µ0

[y reaches v] = Pr
x∼uSn/2

[rep(x) reaches v]

≤ Pr
x∼uSn/2

[S1
rep(x) ∩ Zv = ∅] ≤ Pr

x∼uSn/2
[S1

x ∩ Zv = ∅] (because S1
x ⊆ S1

rep(x))

≤

(
n−t
n/2

)(
n

n/2
) ≤ (7n/8

n/2
)(

n
n/2

) =
n/2−1∏

i=0

7n/8− i

n− i
≤

(
7
8

)n/2
= 2−Ω(n).

With these two observations, we can now obtain the desired lower bound.

4/5 ≤ ρ0 =
∑

v∈L0

Pr
x∼µ0

[Ev(x)] =
∑

v∈L0
|Zv|<⌈n/8⌉

Pr
x∼µ0

[Ev(x)] +
∑

v∈L0
|Zv|≥⌈n/8⌉

Pr
x∼µ0

[Ev(x)]

≤ 2/5 + κ× (number of 0-leaves).

Hence the number of 0-leaves is at least 2/(5κ) = exp(Ω(n)). ◀

5 More general decision trees

A variable is queried at each node of a decision tree. Generalising the class of permitted
queries gives rise to many variants of decision trees that have been considered in different
contexts. In this section, we consider three such classes.

And-decision trees (ADT): queries are restricted to And of non-negated variables.
(And, Or)-decision trees: queries are restricted to And or Or of variables.
Parity-decision trees (PDT): queries are restricted to Parity of variables.

A. Chattopadhyay, Y. Dahiya, and M. Mahajan 34:11

We denote the deterministic, pseudo-deterministic and randomized query complexity in
each of these types of trees as (D∧-dt, psD∧-dt, R∧-dt), (D(∧,∨)-dt, psD(∧,∨)-dt, R(∧,∨)-dt), and
(D⊕-dt, psD⊕-dt, R⊕-dt), respectively.

And, Or and Parity are the most basic Boolean functions. It is thus natural to study the
relationship between determinism, pseudo-determinism and randomization in these settings.
We will use the following recently-proved results from [4].

▶ Proposition 5.1 ([4]). For every total Boolean function f : {0, 1}n → {0, 1},
1. D∧-dt(f) = O(R∧-dt(f)3 log4(n)). ([4, Theorem 4.5])
2. log DSizedt(f)/(2 log n) ≤ D(∧,∨)-dt(f) ≤ 4 log DSizedt(f). ([4, Lemma 4.2])
3. log RSizedt(f)/(2 log n) ≤ R(∧,∨)-dt(f) ≤ 4 log RSizedt(f). ([4, Lemma 4.2])
4. D(∧,∨)-dt(f) = O(R(∧,∨)-dt(f)4 log7(n)). ([4, Theorem 4.1])

And-decision trees

Pseudo-determinism can be separated from randomness in And decision trees. To establish
the separation, we first give a technique to prove a pseudo-deterministic lower bound using
0-block sensitivity. The following theorem generalizes Theorem 3.1(2) to And decision
trees. The same relation is proved for Boolean functions in [12], by reduction to a hard
communication problem; We give a more direct proof in the full version of our paper [3]
for multi-output functions by constructing a hard distribution and using Yao’s minimax
principle.

▶ Theorem 5.2. For a multi-output function f , R∧-dt
1/3 (f) ≥ bs0(f)/3.

For a total search problem S, psD∧-dt
1/3 (S) ≥ minf∈sS bs0(f)/3.

Using this result, we can now separate randomized and pseudo-deterministic complexity.

▶ Theorem 5.3. Let S be the search problem ApproxHamWt = {(x, v) : |wt(x) − v| ≤
n/10}. Then R∧-dt(S) = Rdt(S) = O(1), while psD∧-dt(S) = Ω(n).

Proof. It is easy to see, and already noted in Corollary 4.2 of [8], that Rdt(S) = O(1).
To show psD∧-dt(S) = Ω(n), we will show that any f solving S must have 0-sensitivity of
at least 4n/5. This too follows the proof outline from Corollary 4.2 of [8], where a lower
bound on psDdt was obtained. But using Theorem 5.2, we draw the stronger conclusion that
psD∧-dt(S) ≥ 4n/5. Suppose that for some f solving S, s0(f) < 4n/5. We start with x0 = 0n

and create a sequence of inputs ⟨xi⟩ such that wt(xi) = i and f(xi) = f(0n). Because f

solves ApproxHamWt, n/10 ≥ f(0n) = f(x1) = f(x2) = . . . = f(xl) ≥ l − n/10. Thus if
we are able to create such a sequence of length at least l = n/5 + 1, then we already have a
contradiction. The only thing left is to create the sequence xi. For 0 ≤ i ≤ n/5, given xi

with f(xi) = f(0n), we need to find a suitable xi+1. Note that xi has exactly n − i 0-bit
positions, of which at most s0(f) are sensitive, so at least s = n− i− s0(f) 0-bit positions
are not sensitive. Since s0(f) < 4n/5 and i ≤ n/5, s > 0, so xi has at least one non-sensitive
0-bit position. Pick any such position, say j, and define xi+1 = xi ⊕ 1{j}. Note that xi+1

satisfies the desired properties i.e. f(xi+1) = f(xi) = f(0n) and wt(xi+1) = i + 1. ◀

On the other hand, using Proposition 5.1(1) with Proposition 4.1, we get a polynomial
relationship between psD∧-dt and D∧-dt.

▶ Theorem 5.4. For a total search problem S ⊆ {0, 1}n × [m], we have

D∧-dt(S) = O(psD∧-dt(S)3 · log4(n) ·min(log m, psD∧-dt(S))).

MFCS 2023

34:12 Query Complexity of Search Problems

(AND, OR)-decision trees

The results of Proposition 5.1(2),(3) are proved in [4] only for total Boolean functions.
However, the proof there is based on a syntactic argument, where the upper bound relies
on a tree-balancing argument and the lower bound is obtained by opening up And and
Or queries. Since the proof is syntactic, it naturally extends to multi-output functions
and search problems as well. Using this exension to multi-output functions, we obtain the
following relationship between psDSizedt and psD(∧,∨)-dt.

▶ Lemma 5.5. For a total search problem S ⊆ {0, 1}n × [m], we have

log psDSizedt(S)/(2 log n) ≤ psD(∧,∨)-dt(S) ≤ 4 log psDSizedt(S).

Proof. For S, let f and g be multi-output function solving S, with
psDSizedt(S) = RSizedt(f) and psD(∧,∨)-dt(S) = R(∧,∨)-dt(g) respectively. Then

4 log psDSizedt(S) = 4 log RSizedt(f)
(∗)
≥ R(∧,∨)-dt(f) ≥ psD(∧,∨)-dt(S)

= R(∧,∨)-dt(g)
(∗)
≥ log RSizedt(g)/(2 log n) ≥ log psDSizedt(S)/(2 log n).

The inequalities marked (*) holds because of Proposition 5.1(3). ◀

This, along with the size separation from Theorem 4.6, gives us a separation between
randomized and pseudo-deterministic query complexity in (And, Or)-decision trees.

▶ Theorem 5.6. Let S be the search problem ApproxHamWt. Then R(∧,∨)-dt(S) = O(1)
and psD(∧,∨)-dt(S) = Ω(n/ log n).

On the other hand, using Proposition 5.1(4) along with Proposition 4.1 gives a polynomial
relation between pseudo-determinism and determinism, upto polylogn factors.

▶ Theorem 5.7. For a total search problem S ⊆ {0, 1}n × [m], we have

D(∧,∨)-dt(S) = O(psD(∧,∨)-dt(S)4 · log7(n) ·min(log m, psD(∧,∨)-dt(S))).

PARITY-decision trees

For Parity decision trees, for total Boolean functions, the randomized and deterministic
Parity query complexities are linearly separated: for the And and Or functions, the
deterministic PDT complexity is Ω(n), whereas the randomized PDT complexity is O(1).
The search analogue of the Or function gives an almost linear separation between determinism
and pseudo-determinism in the PDT model. See the full version of our paper [3] for details.

▶ Theorem 5.8. Let S be the search problem SearchOR = {(x, v) : (xv = 1) or (x =
0n ∧ v = n + 1)}. Then D⊕-dt(S) = n whereas psD⊕-dt(S) = O(log n log log n).

Establishing a super-polynomial separation between randomness and pseudo-determinism
remains open for Parity decision trees.

6 A combinatorial proof of a combinatorial problem

In [9], the authors studied the pseudo-deterministic query complexity of a promise problem
(PromiseFIND1). Here the input bit string has 1s in at least half the positions, and the task
is to find a 1. They observed that PromiseFIND1 is a complete problem for easily-verifiable

A. Chattopadhyay, Y. Dahiya, and M. Mahajan 34:13

search problems with randomized query algorithms (see Theorem 3 in [9]), and proved a
Ω(
√

n) lower bound on its pseudo-deterministic query complexity. They conjectured that
the pseudo-deterministic query lower bound for PromiseFIND1 can be improved to Ω(n).
Towards understanding the PromiseFIND1 problem better, they introduced a natural
colouring problem on hypercubes which states that any proper coloring of the hypercube
contains a point with many 1s and with high block sensitivity.

▶ Definition 6.1. A proper coloring of the n-dimensional hypercube Hn is any function
ϕ : {0, 1}n − {0n} −→ [n] such that for all β ∈ {0, 1}n − {0n}, βϕ(β) = 1.

We say a proper coloring ϕ is d-sensitive if there exists a β ∈ {0, 1}n such that |β|1 ≥ n/2
and β has block sensitivity at least d with respect to ϕ. That is, there are d disjoint blocks
of inputs, B1, ..., Bd such that for all i ∈ [d], ϕ(β) ̸= ϕ(β ⊕ 1Bi). The hypercube coloring
problem is about proving lower bound on the (block) sensitivity of every proper coloring. In
[9] it was shown that every proper coloring is Ω(

√
n)-sensitive.

▶ Proposition 6.2 (Theorem 14 [9]). Every proper coloring of Hn is Ω(
√

n)-sensitive.

The hypercube coloring problem is closely related to the pseduodeterministic query complexity
of PromiseFIND1. It is a straightforward observation that showing every proper coloring
is d-sensitive implies a lower bound of d on the pseudo-deterministic query complexity
of PromiseFIND1. To prove Proposition 6.2 in [9], the sensitivity lower bound for the
search problem associated with a random unsat k-XOR formula was converted into a block
sensitivity lower bound for the hypercube coloring problem.

We give a self-contained combinatorial solution to the coloring problem. Our solution
shows that every proper coloring of hypercube has a β ∈ {0, 1}n with Hamming weight
≥ n/2 and with block sensitivity Ω(n1/3). In fact, either the 1-block sensitivity or the 0-block
sensitivity (or both) is Ω(n1/3). Thus this appears incomparable with the bound from [9]. Our
solution is constructive: Algorithm 1 finds the required high-weight, high-block-sensitivity
point, by querying ϕ at various points.

▶ Theorem 6.3. Every proper coloring ϕ of the Boolean hypercube has a β ∈ {0, 1}n with
|β| ≥ n/2 satisfying bs0(ϕ, β) = Ω(n1/3) or bs1(ϕ, β) = Ω(n1/3).

Proof. In Algorithm 1, we describe a procedure to find the required point β. To prove
that the algorithm is correct, we need to prove that if it returns β ∈ {0, 1}n and blocks
D1, D2, . . . , Dr, then
1. β ∈ X (i.e. β has Hamming weight at least n/2),
2. D1, D2, . . . , Dr are disjoint sensitive blocks of ϕ at β, and
3. either all these blocks are 1-blocks of β or all these blocks are 0-blocks.
4. r = Ω(n1/3),

Observe that by construction, for each i ∈ [t+1] where βi is constructed by the algorithm,
βi has 0s in Bj for j < i and 1s in Bi (in fact, 1s elsewhere); hence the blocks B1, . . . , Bi−1
are disjoint.

Further, by construction, each complete iteration of the for loop adds fewer than t2

positions to C: there are fewer than t blocks (otherwise the algorithm would terminate
at line 9) and each block has size less than t (otherwise the algorithm would terminate at
line 13). Thus, since |C0| = 0, if the algorithm reaches line 15 in iteration i, then Ci has size
less than i · t2. Hence βi+1 has hamming weight n−|Ci| > n− it2 ≥ n− t3 > n−n/2 ≥ n/2
and is in X .

MFCS 2023

34:14 Query Complexity of Search Problems

Algorithm 1 Algorithm to find the sensitive point.

Require: A proper coloring ϕ. i.e. For X = {x ∈ {0, 1}n |
∑

i xi ≥ n/2}, ϕ : X → [n]
satisfying ∀x ∈ X , xϕ(x) = 1.

1: t← ⌊(n/2)1/3⌋; C0 ← ∅
2: for i from 1 to t do
3: βi ← 0Ci−1 ▷ Reference input to find t

sensitive 1-blocks.
4: ℓ← ϕ(βi); s← bs1(ϕ, βi) ▷ {ℓ} is a 1-sensitive

block of βi, so s ≥ 1
5: Bi,1, Bi,2, ..., Bi,s: disjoint, minimally-sensitive
6: 1-blocks achieving the 1-block sensitivity s.
7: Bi ← ∪s

j=1Bi,j ▷ ℓ ∈ Bi

8: if s ≥ t then
9: return βi and {Bi,1, Bi,2, ..., Bi,s} ▷ bs1(ϕ, βi) ≥ t

10: end if
11: if maxj∈[s] |Bi,j | ≥ t then
12: Pick any such j ∈ [s] with |Bi,j | ≥ t.
13: return βi ⊕ 1Bi,j and {{k} | k ∈ Bi,j} ▷ s0(ϕ, βi ⊕ 1Bi,j) ≥ t

14: end if
15: Ci ← Ci−1 ∪Bi ▷ We show: Ci forms a

ϕ-certificate for βi

16: end for
17: βt+1 ← 0Ct

18: return βt+1 and {B1, B2, ..., Bt} ▷ bs0(ϕ, βt+1) ≥ t

If the algorithm terminates at line 9 in the ith iteration of the for loop, then by the choice
in line 6 the returned blocks are disjoint 1-sensitive blocks of β = βi, and there are at least t

of them. Similarly, if the algorithm terminates at line 13 in the ith iteration of the for loop,
then by minimality of the sensitive block Bi,j chosen in line 12, each position in Bi,j is a
0-sensitive location in β = βi ⊕ 1Bi,j

, and there are at least t of them.
If the algorithm terminates at line 18, then each Bi is a 0-block of β = βt+1 and there

are t such blocks. It remains to prove that each Bi is sensitive for β = βt+1. To show this,
we will first show that each Ci is a certificate for βi, and then show that this implies each Bi

is sensitive for β.
For the first part, suppose for some i ∈ [t], Ci is not a certificate for βi. Then there exists

an α ∈ X such that ∀j ∈ Ci, αj = βi
j , but ϕ(α) ̸= ϕ(βi). Let B be the set of positions where

α and βi differ i.e. α = βi ⊕ 1B. Since α and βi agree on Ci, B must be disjoint from Ci.
Since ϕ(βi) ̸= ϕ(α) = ϕ(βi ⊕ 1B), B is a 1-sensitive block of ϕ at βi. By the choice in line 6
at the ith iteration, βi has no 1-sensitive blocks disjoint from the blocks Bi,1, . . . , Bi,s. But
Bi is precisely the union of the these blocks, and is contained in Ci, so B is disjoint from Bi,
a contradiction. Hence Ci is indeed a ϕ-certificate for βi.

For the second part, note that for each i ∈ [t], β and βi agree on Ci−1 and β ⊕ Bi and
βi agree on Ci. Since Ci is a certificate for βi, ϕ(β ⊕ Bi) = ϕ(βi) = ℓ, say. By the definition
of proper coloring, {ℓ} is a 1-sensitive block of βi, and since the blocks chosen in line 6 are
the maximum possible 1-sensitive blocks, ℓ ∈ Bi. But ϕ(β) ̸= ℓ because β = 0Ct

and has
only 0s in Bi. Thus ϕ(β) ̸= ϕ(β ⊕ Bi), and hence Bi is a 0-sensitive block for β.

Finally, by choice of t, we see that r = Ω(n1/3). This concludes the correctness proof. ◀

A. Chattopadhyay, Y. Dahiya, and M. Mahajan 34:15

References
1 Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow – Resolution made simple. J.

ACM, 48(2):149–169, 2001. doi:10.1145/375827.375835.
2 Harry Buhrman and Ronald De Wolf. Complexity measures and decision tree complexity: a

survey. Theoretical Computer Science, 288(1):21–43, 2002.
3 Arkadev Chattopadhyay, Yogesh Dahiya, and Meena Mahajan. Query complexity of search

problems. Electron. Colloquium Comput. Complex., TR23-039, 2023. URL: https://eccc.
weizmann.ac.il/report/2023/039/.

4 Arkadev Chattopadhyay, Yogesh Dahiya, Nikhil S Mande, Jaikumar Radhakrishnan, and
Swagato Sanyal. Randomized versus deterministic decision tree size. In Proceedings of the
55th Annual ACM Symposium on Theory of Computing, pages 867–880, 2023.

5 Daniel Dadush and Samarth Tiwari. On the Complexity of Branching Proofs. In Shubhangi
Saraf, editor, 35th Computational Complexity Conference (CCC 2020), volume 169 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 34:1–34:35, Dagstuhl, Germany, 2020.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.CCC.2020.34.

6 Ankit Garg, Mika Göös, Pritish Kamath, and Dmitry Sokolov. Monotone circuit lower bounds
from resolution. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of
Computing, pages 902–911, 2018.

7 Eran Gat and Shafi Goldwasser. Probabilistic search algorithms with unique answers and
their cryptographic applications. Electron. Colloquium Comput. Complex., page 136, 2011.

8 Oded Goldreich, Shafi Goldwasser, and Dana Ron. On the possibilities and limitations of
pseudodeterministic algorithms. In Robert D. Kleinberg, editor, Innovations in Theoretical
Computer Science ITCS, pages 127–138. ACM, 2013. See also ECCC Vol. 19, T.R. 12-101,
2012.

9 Shafi Goldwasser, Russell Impagliazzo, Toniann Pitassi, and Rahul Santhanam. On the
pseudo-deterministic query complexity of NP search problems. In Valentine Kabanets, editor,
36th Computational Complexity Conference CCC, volume 200 of LIPIcs, pages 36:1–36:22.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

10 Stasys Jukna. Boolean Function Complexity – Advances and Frontiers, volume 27 of Algorithms
and Combinatorics. Springer, 2012. doi:10.1007/978-3-642-24508-4.

11 Alexander Knop, Shachar Lovett, Sam McGuire, and Weiqiang Yuan. Guest column: Models
of computation between decision trees and communication. ACM SIGACT News, 52(2):46–70,
2021.

12 Alexander Knop, Shachar Lovett, Sam McGuire, and Weiqiang Yuan. Log-rank and lifting for
and-functions. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing, pages 197–208, 2021.

13 László Lovász, Moni Naor, Ilan Newman, and Avi Wigderson. Search problems in the decision
tree model. SIAM Journal on Discrete Mathematics, 8(1):119–132, 1995.

14 Noam Nisan. Crew prams and decision trees. In Proceedings of the twenty-first annual ACM
symposium on Theory of computing, pages 327–335, 1989.

15 Andrew Chi-Chih Yao. Lower bounds by probabilistic arguments (extended abstract). In
24th Annual Symposium on Foundations of Computer Science FOCS, pages 420–428. IEEE
Computer Society, 1983.

MFCS 2023

https://doi.org/10.1145/375827.375835
https://eccc.weizmann.ac.il/report/2023/039/
https://eccc.weizmann.ac.il/report/2023/039/
https://doi.org/10.4230/LIPIcs.CCC.2020.34
https://doi.org/10.1007/978-3-642-24508-4

	1 Introduction
	2 Preliminaries
	3 Relating measures for multi-output functions
	4 Pseudo-deterministic size vs deterministic size
	5 More general decision trees
	6 A combinatorial proof of a combinatorial problem

