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Abstract
We study the existence of optimal and p-optimal proof systems for classes in the Boolean hierarchy
over NP. Our main results concern DP, i.e., the second level of this hierarchy:

If all sets in DP have p-optimal proof systems, then all sets in coDP have p-optimal proof
systems.
The analogous implication for optimal proof systems fails relative to an oracle.

As a consequence, we clarify such implications for all classes C and D in the Boolean hierarchy over
NP: either we can prove the implication or show that it fails relative to an oracle.

Furthermore, we show that the sets SAT and TAUT have p-optimal proof systems, if and
only if all sets in the Boolean hierarchy over NP have p-optimal proof systems which is a new
characterization of a conjecture studied by Pudlák.
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1 Introduction

This paper contributes to the study of proof systems initiated by Cook and Reckhow [11].
A proof system for a set L is a polynomial-time computable function f whose range is L.
Cook and Reckhow motivate the study of proof systems with the NP = coNP question: they
consider propositional proof systems (pps), i.e., proof systems for the set of propositional
tautologies (TAUT). They show that there exists a pps with polynomially bounded proofs
if and only if NP = coNP. This approach to the NP = coNP question is called the Cook-
Reckhow program [9]. To obtain NP ̸= coNP one can either show that optimal pps (i.e., pps
with at most polynomially longer proofs than any other pps) do not exist or show that a
specific pps is optimal and has a non-polynomial lower bound on the length of proofs. This
connection led to the investigation of upper and lower bounds for different pps [20] as well as
the existence of optimal and p-optimal1 proof systems for general sets.

1 A stronger notion of optimal. We write (p-)optimal when the statement holds using optimal as well as
p-optimal.
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The latter question was explicitly posed by Krajíček and Pudlák [21] in the context of
finite consistency. They revealed the following connection between both concepts: optimal
pps exist if and only if there is a finitely axiomatized theory S that proves for every finitely
axiomatized theory T the statement “T has no proof of contradiction of length n” by a
proof of polynomial length in n. If optimal pps exist, then a weak version of Hilbert’s
program is possible, i.e., proving the “consistency up to some feasible length of proofs” of
all mathematical theories [24]. We refer to Krajíček [19] and Pudlák [26] for details on the
relationship between proof systems and bounded arithmetic. More recently, Pudlák [25]
draws new connections of (p-)optimal proof systems and statements about incompleteness in
the finite domain.

Furthermore, proof systems have shown to be tightly connected to promise classes,
especially pps to the class of disjoint NP-pairs, called DisjNP. Initiated by Razborov [27],
who showed that the existence of p-optimal pps implies the existence of complete sets in
DisjNP, many further connections were investigated. More generally, Köbler, Messner and
Torán [18] show that the existence of p-optimal proof systems for sets of the polynomial-time
hierarchy imply complete sets for promise classes like UP, NP ∩ coNP, and BPP. Beyersdorff,
Köbler, and Messner [7] and Pudlák [25] connect proof systems to function classes by showing
that p-optimal proof systems for SAT imply complete sets for TFNP. Questions regarding
non-deterministic function classes can be characterized by questions about proof systems [7].
Beyersdorff [3, 4, 5, 6], Beyersdorff and Sadowski [8] and Glaßer, Selman, and Zhang [13, 14]
show further connections between pps and disjoint NP-pairs.

The above connections to important questions of complexity theory, bounded arithmetic,
and promise classes motivate the investigation of the question “which sets do have optimal
proof systems” posed by Messner [22]. Krajíček and Pudlák [21] were the first to study
sufficient conditions for pps by proving that NE = coNE implies the existence of optimal
pps and E = NE implies the existence of p-optimal pps. Köbler, Messner, and Torán [18]
improve this result to NEE = coNEE for optimal pps and EE = NEE for p-optimal pps.
Sadowski [28] shows different characterizations for the existence of optimal pps, e.g., the
uniformly enumerability of the class of all easy subsets of TAUT. In certain settings one
can prove the existence of optimal proof systems for different classes: e.g., by allowing one
bit of advice [10], considering randomized proof systems [16, 15], or using a weak notion of
simulation [29].

Messner [22] shows that all nonempty2 sets in P but not all sets in E have p-optimal
proof systems. Similarly, all sets in NP but not all sets in coNE have optimal proof systems.
Therefore, when going from smaller to larger complexity classes, there has to be a tipping
point such that all sets contained in classes below this point have (p-)optimal proof systems,
but some set contained in all classes above this point has no (p-)optimal proof systems.
Unfortunately, oracle constructions tell us that for many classes between P and E (resp., NP
and coNE) the following holds: with relativizable proofs one can neither prove nor refute
that p-optimal (resp., optimal) proof systems exist (e.g. coNP [1, 21] and PSPACE [1, 12]).
Thus, with the currently available means it is not possible to precisely locate this tipping
point, but we can rule out certain regions for its location. For this, we investigate how the
existence of (p-)optimal proof system for all sets of the class C “translate upwards” to all
sets of a class D with C ⊆ D. This rules out tipping points between C and D.

2 By our definition, FP-functions are total, thus the empty set has no proof system. For the rest of this
paper, we omit the word “nonempty” when referring to proof systems for all sets of a class, since this is
only a technicality.
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Our Contribution. Motivated by Messner’s general question, we study the existence of
(p-)optimal proof systems for classes inside the Boolean hierarchy over NP. We use the
expression “the class C has (p-)optimal proof systems” for “all sets of a class C have (p-)optimal
proof systems”. We say that two classes C and D are equivalent with respect to (p-)optimal
proof systems if C has (p-)optimal proof systems if and only if D has (p-)optimal proof
systems.

For the classes of the Boolean hierarchy over NP, denoted by BH, we identify three
equivalence classes for p-optimal proof systems and three other classes for optimal proof
systems. We also show that the classes of the bounded query hierarchy over NP are all
equivalent for p-optimal proof systems and we identify two equivalence classes for optimal
proof systems. Moreover, we show that relativizable techniques cannot prove all identified
equivalence classes to coincide. These results follow from our main theorems:

(i) If DP has p-optimal proof systems, then coDP has p-optimal proof systems.
(ii) There exists an oracle relative to which coNP has p-optimal proof systems and coDP

does not have optimal proof systems.
Using the result by Köbler, Messner, and Torán that (p-)optimality is closed under inter-
section [18] and two oracles by Khaniki [17], we obtain the equivalence classes visualized in
Figure 1, which cannot be proved to coincide with relativizable proofs.

NP coNP

DP coDP

coBH3BH3

BH4 coBH4

PNP[1]

PNP[2]

NP ∪ coNP

NP coNP

DP coDP

coBH3BH3

BH4 coBH4

PNP[1]

PNP[2]

NP ∪ coNP

NP coNP

DP coDP

coBH3BH3

BH4 coBH4

PNP[1]

PNP[2]

NP ∪ coNP

p-optimal optimal

Figure 1 Equivalence classes for p-optimal proof systems (left) and optimal proof systems (right)
in the Boolean hierarchy over NP and the bounded query hierarchy over NP.

This clarifies all questions regarding relativizably provable translations of (p-)optimal
proof systems for classes in the Boolean hierarchy over NP and the bounded query hierarchy
over NP. We cannot expect to prove any further translations with the currently available
means, because for every such translation there is an oracle against it. So we are dealing with
an interesting situation: while p-optimal proof systems for DP relativizably imply p-optimal
proof systems for coDP, this does not hold for optimal proof systems. Similarly, all classes
of the bounded query hierarchy over NP are equivalent with respect to p-optimal proof
systems, but PNP[1] and PNP[2] cannot be shown to be equivalent with respect to optimal
proof systems by a relativizable proof. The result drastically limits the potential locations of
a tipping point in the BH and the bounded query hierarchy over NP. They can only occur
between two classes belonging to two different equivalence classes.

Furthermore, our results provide a new perspective on an hypothesis related to feasible
versions of Gödel’s incompleteness theorem: Pudlák [25] studies several conjectures about
incompleteness in the finite domain by investigating the (un)provability of sentences of some
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specific form in weak theories. These conjectures can also be expressed as the non-existence
of complete sets in promise classes or non-existence of (p-)optimal proof systems for sets.
Pudlák considers the conjecture CON ∨ SAT stating that TAUT does not have p-optimal
proof systems or SAT does not have p-optimal proof systems. Khaniki [17] proves this
conjecture to be equivalent to RFN1, which is another conjecture considered by Pudlák. Our
results show that both conjectures are equivalent to the statement that BH does not have
p-optimal proof systems.

2 Preliminaries

Let Σ = {0, 1} be the default alphabet and Σ∗ be the set of finite words over Σ. We call
subsets of Σ∗ languages and sets of languages classes. We denote the length of a word
w ∈ Σ∗ by |w|. The i-th letter of a word w for 0 ≤ i < |w| is denoted as w(i), i.e.,
w = w(0)w(1) · · · w(|w| − 1).

The set of all (positive) natural numbers is denoted as N (N+). We write the empty set as
∅. We identify Σ∗ with N through the polynomial time computable and invertible bijection
Σ∗ → N; w 7→

∑
i<|w|(1 + w(i))2i. This is a variant of the dyadic representation. Thus, we

can treat words from Σ∗ as numbers from N and vice versa, which allows us to use notations,
relations and operations of words for numbers and vice versa (e.g. we can define the length
of a number by this). We resolve the ambiguity of 0i and 1i by always interpreting them as
words from Σ∗. The cardinality of a set A is denoted as |A|c. For ◦ ∈ {<, ≤, =, ≥, >}, a set
A ⊆ Σ∗ and a number n ∈ N we define A◦n = {w ∈ A | |w| ◦ n}. For a clearer notation we
use Σ◦n as Σ∗◦n and Σn for Σ=n. The operators ∪, ∩, and \ denote the union, intersection
and set-difference. We denote the complement of a set A relative to Σ∗ as A = Σ∗ \ A.

The image of a function f is denoted as img(f). Let ⟨·⟩ :
⋃

i≥0 Ni → N be an injective
polynomial time computable and invertible pairing function such that |⟨u1, . . . , un⟩| =
2(|u1| + · · · + |un| + n). The logarithm to the base 2 is denoted as log. Furthermore, we
define polynomial functions pi : N → N for i ∈ N+ by pi(x) = xi + i.

We use the default model of a Turing machine in the deterministic as well as in the
non-deterministic variation, abbreviated by DTM and NTM respectively. The language
decided by a Turing machine M is denoted as L(M). For a number s ∈ N the language
of words that are accepted by a Turing machine M in s computation steps is denoted as
Ls(M). We use Turing transducer to compute functions. For a Turing transducer F we write
F (x) = y when on input x the transducer outputs y. A Turing transducer F computes a total
function and we sometimes refer to the function computed by F as “the function F”. Let
{Fi}i∈N and {Gi}i∈N be standard enumerations of polynomial time Turing transducers. Let
{Ni}i∈N be a standard enumeration of non-deterministic polynomial time Turing machines
with the special property that N0 is the machine that always rejects and N1 is the machine
that always accepts, that is L(N0) = ∅ and L(N1) = N. The runtime of Fi, Gi and Ni is
bounded by pi.

▶ Proposition 1. There is a Turing machine M and a Turing transducer F such that for all
i, s, x ∈ N the following properties hold:

⟨i, x, 0s⟩ ∈ L(M) ⇔ x ∈ Ls(Ni)

F (⟨i, x, 0s⟩) =
{

⟨1, Fi(x)⟩ if Fi(x) stops within s steps
⟨0, 0⟩ else

Both machines run in time O(|i|s log s).
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FP, P, and NP denote standard complexity classes [23]. For a class C define coC = {A ⊆
Σ∗ | A ∈ C}. We define the Boolean hierarchy over NP inductively. Let C and D be arbitrary
complexity classes. First, we define boolean operators on classes:

C ∧ D = {A ∩ B | A ∈ C ∧ B ∈ D}
C ∨ D = {A ∪ B | A ∈ C ∨ B ∈ D}

Then BH1 = NP, BH2k = coNP ∧ BH2k−1, BH2k+1 = NP ∨ BH2k, and BH =
⋃

k≥1 BHk

where BH2 is called DP and BH is called Boolean hierarchy over NP. We want to emphasize
that DP = NP ∧ coNP and coDP = NP ∨ coNP. Wagner [30] showed that BHk ⊆ BHk+1
and BHk ⊆ coBHk+1. The classes PNP[k] for k ∈ N+ contain all sets that can be accepted
by a polynomial time Turing machine that queries at most k elements from an NP-set. The
resulting hierarchy PNP[1], PNP[2], . . . is called bounded query hierarchy over NP. Beigel [2]
shows that BH2k−1 ∪ coBH2k−1 ⊆ PNP[k] ⊆ BH2k ∩ coBH2k .

We use the common polynomial time many-one reducibility for sets A, B ⊆ Σ∗, i.e.,
A ≤p

m B if there exists an f ∈ FP such that x ∈ A ⇔ f(x) ∈ B. For a class C and some
problem A, we say that A is hard for C if for all B ∈ C it holds B ≤p

m A. The set A is called
complete for C if A ∈ C and A is hard for C. We define the following complete problems for
NP and DP.

C = {⟨0i, x, 0p⟩ | i ∈ N, x ∈ Σ∗ and x ∈ Lp(Ni)}

D = {⟨0i, 0j , x, 0p⟩ | i, j ∈ N, x ∈ Σ∗ and x ∈ Lp(Ni) ∩ Lp(Nj)}
D′ = D ∪ {w | ∄i, j ∈ N, x ∈ Σ∗ : ⟨0i, 0j , x, 0p⟩ = w}

It is easy to see that C is NP-complete and D and D′ are DP-complete. Furthermore, their
complements are complete for coNP and coDP respectively. The purpose of D′ is that D′

consists only of words of the form ⟨0i, 0j , x, 0p⟩, which simplifies some arguments in section
3. Let NC denote the polynomial time machine with L(NC) = C.

We use proof systems for sets defined by Cook and Reckhow [11]. They define a function
f ∈ FP to be a proof system for img(f). Furthermore:

A proof system g is (p-)simulated by a proof system f , denoted by g ≤ f (resp., g ≤p f), if
there exists a total function π (resp., π ∈ FP) and a polynomial p such that |π(x)| ≤ p(|x|)
and f(π(x)) = g(x) for all x ∈ Σ∗. In this context the function π is called simulation
function. Note that g ≤p f implies g ≤ f .
A proof system f is (p-)optimal for img(f), if g ≤ f (resp., g ≤p f) for all g ∈ FP with
img(g) = img(f).
A complexity class C has (p-)optimal proof systems, if every A ∈ C with A ̸= ∅ has a
(p-)optimal proof system.
We say that (p-)optimal proof systems translate from a class C to D if the existence of
(p-)optimal proof systems for C implies their existence for D.

By the following result of Köbler, Messner and Torán [18], we can prove or refute the existence
of (p-)optimal proof systems for a class C by proving or refuting the existence of such proof
systems for a complete set of C.

▶ Proposition 2 ([18]). If A ⊆ Σ∗ has a (p-)optimal proof system and ∅ ≠ B ≤p
m A, then B

has a (p-)optimal proof system.

▶ Corollary 3. If A ⊆ Σ∗ is a hard set for some class C and A has a (p-)optimal proof
system, then C has (p-)optimal proof systems.

MFCS 2023



44:6 Upward Translation of (P-)Optimal Proof Systems in the Boolean Hierarchy over NP

Furthermore, it was shown by Köbler, Messner, and Torán [18] that the class of sets having
(p-)optimal proof systems is closed under intersection. This result can easily be extended to
the operator ∧ for complexity classes.

▶ Proposition 4 ([18]). If A, B ⊆ Σ∗, A ∩ B ̸= ∅ and both sets have a (p-)optimal proof
system, then A ∩ B has a (p-)optimal proof system.

▶ Corollary 5. If two classes C and D have (p-)optimal proof systems, then C ∧ D has
(p-)optimal proof systems.

Finally, every (p-)optimal proof system can be transformed into a (p-)optimal proof system
that runs in linear time by polynomially padding the proofs.

▶ Proposition 6. If f is a (p-)optimal proof system for A ⊆ Σ, then there is a (p-)optimal
proof system g for A that runs in linear time.

3 Translation of P-Optimal Proof Systems from DP to coDP

In this chapter we show that p-optimal proof systems for DP imply p-optimal proof systems
for coDP. This proof is based on machine simulation which is a relativizable proof technique.
Thus, the following theorem also holds in the presence of an arbitrary oracle O.

▶ Theorem 7. If there exists a p-optimal proof system for D, then there exists a p-optimal
proof system for D′.

We start by sketching the key idea used in the proof. Our approach needs some technique
to verify that a given instance is in D′. There is no known way to decide D′ in polynomial
time, but we can use the p-optimal proof system for D for this verification. We define a
function f ′ : N×N → N such that there is a polynomial-time-computable encoding c : N → N
with f ′(a, c(x)) ∈ D if and only if Fa(x) ∈ D′ for all a ∈ N and x ∈ N. Furthermore, f ′(a, x)
can be computed in time |x|O(a). We derive a class of functions {f ′

a}a∈N from f ′ by fixing
the first input to a. Note that f ′

a runs in polynomial time for a fixed a ∈ N and that f ′
a is

a proof system for D if and only if Fa is a proof system for D′. Now, we define a machine
that uses an additional input to verify Fa(x) ∈ D′. The inputs of the machine are a, x, b

and it accepts if and only if f(Fb(x)) = f ′
a(x) for a p-optimal proof system f of D. So, if Fa

is a proof system for D′, we know f ′
a is a proof system for D. Thus, by the fact that f is

p-optimal, there is a b ∈ N such that f(Fb(x)) = f ′
a(x) for all x ∈ N. Thus, when knowing

the value b, the machine can verify Fa(x) ∈ D′ for all x ∈ N for a proof system Fa(x) for D′

by accepting f(Fb(c(x)) = f ′
a(c(x)). On the other hand if Fa(x) /∈ D′ there is no b such that

f(Fb(c(x))) = f ′
a(c(x)) because f ′

a(c(x)) /∈ D = img(f).

Proof. We start by defining an NTM A that checks for given a, y′ whether Fa(y′) =
⟨i, j, x′, 0p⟩ ∈ D′. Since a deterministic polynomial-time computation cannot check every
possible path of a coNP machine Nj , A gets a path y of Nj as an additional input and has
the property that it accepts for all possible paths y if and only if Fa(y′) ∈ D′. Arguing over
all y′ this means if Fa is a proof system for D′, then for all y′ and all corresponding paths y

the machine A accepts on input a, y′, y.
Let f be a p-optimal proof system for D. Without loss of generality we assume f(x) can

be computed in O(|x|) time by Proposition 6. We define A on input x as follows.
(i) Check whether x = ⟨a, y, y′⟩ for some a ∈ N and y, y′ ∈ Σ∗, otherwise reject.
(ii) Check whether Fa(y′) = ⟨i, j, x′, 0p⟩ with i, j, p ∈ N and x′ ∈ Σ∗ and whether y ∈ Σp,

otherwise reject.
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(iii) Accept if Ni(x′) does not accept on path y within p steps.
(iv) Simulate the first p steps of Nj(x′).
(v) Accept if the simulation of Nj(x′) accepted within the first p steps, otherwise reject.

▶ Observation 8. A(x) runs in time O(|x|3a) for x = ⟨a, y, y′⟩.

Proof. Checking whether x has the required format is possible in linear time. By Propositon 1,
Fa(y′) can be computed in time

O(|a| · (|y′|a + a) log(|y′|a + a)) ⊆ O(|a| · (|y′|a + a)2) ⊆ O((|x|a + a)3)
⊆ O(|x|3a + a3) ⊆ O(|x|3a).

The first p steps of the path y of Ni(x′) can be simulated in time

O(|i| · p log p) ⊆ O(|Fa(y′)| · |Fa(y′)|2) ⊆ O(|x|3a)

for all a ∈ N. The computation Nj(x′) can be simulated in O(|j| · p log p) ⊆ O(|x|3a) time
for all a ∈ N. ◀

▷ Claim 9. Let Fa(y′) = ⟨i, j, x′, 0p⟩. Then Fa(y′) ∈ D′ ⇔ ∀y ∈ Σp : ⟨a, y, y′⟩ ∈ L(A).

Proof. First we show ”⇒“. We consider two cases:
Suppose x′ ∈ Lp(Ni). By ⟨i, j, x′, 0p⟩ ∈ D′, it holds x′ ∈ Lp(Nj). The machine A on input
⟨a, y, y′⟩ with Fa(y′) = ⟨i, j, x′, 0p⟩ ∈ D′ and y ∈ Σp rejects only, if the non-deterministic
check in step (iv) fails. But this is impossible since x′ ∈ Lp(Nj).
Suppose x′ /∈ Lp(Ni). In this case Ni(x′) does not accept within p steps for all paths
y ∈ Σp. Thus, the machine accepts in step (iii).

Now, we show ”⇐“. Again, we distinguish two cases:
Suppose A(⟨a, y, y′⟩) accepts in step (iii) for all y ∈ Σp. This implies that x′ /∈ Lp(Ni).
Thus, ⟨i, j, x′, 0p⟩ ∈ D′.
If A accepts but not in step (iii), we conclude it accepts in step (v). Hence, it holds
x′ ∈ Lp(Nj) and ⟨i, j, x′, 0p⟩ ∈ D′. ◀

We want to define functions fa in such a way that fa is a proof system for D if Fa is a
proof system for D′. For this, we can exploit the relationship of A to proof systems of D′

shown in Claim 9. Specifically, fa trusts that A(⟨a, y, y′⟩) accepts for specific y and y′ (note
that the accepting behavior of A has influence on D), which is equivalent to Fa being a proof
system for D′.

Choose a1 ∈ N such that Na1 = A. Let kA ∈ N+ be a constant such that A(x) runs in
time kA|x|3a + kA. Recall that N0 always rejects. We define a function f∗ : N → N:

f∗(x) =


⟨a1, 0, ⟨a, y, y′⟩, 0kA|x|3a+kA⟩ if x = ⟨a, y, y′⟩0 ∧ Fa(y′) = ⟨i, j, x′, 0p⟩

∧ y ∈ Σp

f(x′) if x = x′1
f(0) else

▶ Observation 10. f∗(x) runs in O(|x|3a) time for x = ⟨a, y, y′⟩0.

Proof. The case distinction for the first case is possible in O(|x|3a) time because computing
Fa(y′) is possible in that time. The output of the first case with exception of the unary
runtime parameter 0kA·(|x|3a)+kA is possible in linear time. The unary runtime parameter can
be computed in O(|x|3a) time. The output of the other cases is possible in linear time. ◀

MFCS 2023
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We define a function fa that is obtained from f∗ by fixing an index a ∈ N of a polynomial-
time function Fa.

fa(x) =


f∗(⟨a, y, y′⟩0) if x = ⟨a, y, y′⟩0
f(x′) if x = x′1
f(0) else

▶ Observation 11. For a ∈ N and y, y′ ∈ Σ∗ it holds that fa(⟨a, y, y′⟩0) = f∗(⟨a, y, y′⟩0).

▶ Observation 12. For a fixed a ∈ N the function fa(x) can be computed in polynomial time.

Proof. This follows from Observation 10 and the linear runtime of f . ◀

▷ Claim 13. Let a ∈ N and y′ ∈ Σ∗ such that Fa(y′) = ⟨i, j, x′, 0p⟩ /∈ D′. Then there is a
y ∈ Σp, such that fa(⟨a, y, y′⟩0) /∈ D.

Proof. By Claim 9 we conclude the existence of a y ∈ Σp such that A(⟨a, y, y′⟩) rejects. This
implies fa(⟨a, y, y′⟩0) = ⟨a1, 0, ⟨a, y, y′⟩, 0kA|x|3a+kA⟩ /∈ D. ◁

▷ Claim 14. Let a ∈ N. Then img(Fa) ⊆ D′ ⇔ img(fa) = D.

Proof. First we show ”⇒“. D ⊆ img(fa) holds because img(f) ⊆ img(fa) and f is a proof
system for D. Let x ∈ Σ∗. In the bottom two cases of fa and f∗ it is easy to see fa(x) ∈ D
and f∗(x) ∈ D. So we can assume x = ⟨a, y, y′⟩0 with Fa(y′) = ⟨i, j, x′, 0p⟩ and y ∈ Σp.
Since img(Fa) ⊆ D′, it holds ⟨i, j, x′, 0p⟩ ∈ D′. By Claim 9 we obtain that ⟨a, y, y′⟩ ∈ L(A)
for all y ∈ Σp. Thus, fa(x) = f∗(⟨a, y, y′⟩0) = ⟨a1, 0, ⟨a, y, y′⟩, 0kA|x|3a+kA⟩ ∈ D since for all
y ∈ Σp, Na1(⟨a, y, y′⟩) accepts, N0(⟨a, y, y′⟩) rejects and |⟨a, y, y′⟩| ≤ |x|.

”⇐“ follows directly as the contraposition of Claim 13. ◁

We want to define another NTM B that checks for given a, y′ whether Fa(y′) ∈ D′. To
achieve this we use Claims 13 and 14. B checks for all y ∈ Σp whether f(Fb(⟨a, y, y′⟩0)) =
fa(⟨a, y, y′⟩0) on input a, b, y′. So if Fa is a proof system for D′, then there is a b such that
B(a, b, y′) rejects for all y′. Furthermore, if Fa(y′) /∈ D′, then B(a, b, y′) accepts for all b.
B(x) operates as follows.

(i) Check whether x = ⟨a, b, y′⟩ for some a, b ∈ N and y′ ∈ Σ∗, otherwise reject.
(ii) Check whether Fa(y′) = ⟨i, j, x′, 0p⟩ for some i, j, p ∈ N and x′ ∈ Σ∗, otherwise reject.
(iii) Branch non-deterministically every y ∈ Σp.
(iv) Accept if f(Fb(⟨a, y, y′⟩0)) ̸= fa(⟨a, y, y′⟩0).
(v) Reject.

▶ Observation 15. B(x) runs in time O(|x|9a2b) for x = ⟨a, b, y′⟩.

Proof. Checking whether the input is formatted correctly is possible in linear time. Fa(y′)
can be computed in O(|a| · (|y′|a + a) log(|y′|a + a)) ⊆ O(|x|3a) time. We also observe that
|Fa(y′)| ≤ |y′|a + a. In line (iv) it holds that |Fa(y′)| ≥ 2p ≥ 2|y| and in line 1 it holds that
2|a| + 2|y′| + 8 ≤ |x|, and therefore,

|⟨a, y, y′⟩0| = 2(|a| + |y| + |y′| + 3) + 1 ≤ |Fa(y′)| + |x| ≤ |x|a + a + |x| ≤ |x|a+1 + a.

Thus, by Observation 10, computing fa(⟨a, y, y′⟩0) is possible in time

O((|x|a+1 + a)3a) ⊆ O((|x|a+2)3a) ⊆ O(|x|3a2+6a) ⊆ O(|x|9a2
).
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The value Fb(⟨a, y, y′⟩0) can be computed in time

O(|b| · ((|x|a+1 + a)b + b) log((|x|a+1 + a)b + b)) ⊆ O(|b| · ((|x|a+2)b + b)
· log((|x|a+2)b + b))

⊆ O(|b| · (|x|ab+2b + b) log(|x|ab+2b + b))
⊆ O(|b| · (|x|ab+2b+1) log(|x|ab+2b+1))
⊆ O(|b| · |x|2ab+4b+1) ⊆ O(|x|2ab+4b+2).

In particular |Fb(⟨a, y, y′⟩0)| ∈ O(|x|2ab+4b+2) and hence the computation of f(Fb(⟨a, y, y′⟩0))
is possible in time O(|x|2ab+4b+2). We simplify the sum of these runtimes.

O(|x|3a + |x|9a2
+ |x|2ab+4b+2) ⊆ O(|x|9a2b) ◀

▷ Claim 16. Let a ∈ N and y′ ∈ Σ∗, such that Fa(y′) = ⟨i, j, x′, 0p⟩ /∈ D′. Then for all b ∈ N
it holds that ⟨a, b, y′⟩ ∈ L(B).

Proof. By Claim 13 there is a y ∈ Σp such that fa(⟨a, y, y′⟩0) /∈ D = img(f). Thus, B

accepts in step (iv), because img(f) = D. ◁

▷ Claim 17. Let a ∈ N, such that img(Fa) ⊆ D′. Then, there is some b ∈ N, such that for
all y′ ∈ Σ∗ it holds that ⟨a, b, y′⟩ /∈ L(B).

Proof. By Claim 14 and Observation 12, we know that fa is a proof system for D. Since
f is a p-optimal proof system for D, there exists some b ∈ N, such that for all x̂ ∈ Σ∗ it
holds that fa(x̂) = f(Fb(x̂)). Thus, the computation B(⟨a, b, y′⟩) cannot accept in step (iv)
independent of y′. Hence, the machine rejects. ◁

Now, we define a function ga,b for every pair of possible proof system Fa and possible
simulation function Fb. Similarly to fa, the function ga,b trusts that B(⟨a, b, y′⟩) accepts for
all y′ (note that the accepting behavior of B has influence on D). If Fa is a proof system
for D′, then there is a b ∈ N such that ga,b is a proof system for D because the machine B

accepts on input a, b, y′ for all y′ ∈ Σ∗. For Fa(y′) /∈ D′, we know there is no b ∈ N such that
B accepts on input a, b, y′. Hence, the corresponding output of ga,b is not in D.

Let b1 be the index of the NTM B, that is Nb1 = B. Furthermore, let kB ∈ N+ be a
constant such that B(x) runs in time kB |x|9a2b + kB for all x ∈ Σ∗. Recall that N1 always
accepts. We define a function g : N → N whose input consists of two indices a, b ∈ N of
polynomial-time functions Fa, Fb and a proof y′ ∈ Σ∗.

g(x) =


⟨1, b1, ⟨a, b, y′⟩, 0kB |x|9a2b+kB ⟩ if x = ⟨a, b, y′⟩0
f(x′) if x = x′1
f(0) else

▶ Observation 18. g(x) runs in O(|x|9a2b) time for x = ⟨a, b, y′⟩0.

Proof. Checking whether the input is formatted correctly is possible in linear time. Further-
more, the output with exception of the last entry of the list can be computed in linear time.
The string 0kB |x|9a2b+kB can be computed in O(|x|9a2b) time. ◀
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We define a function ga,b : N → N that is obtained from g by fixing two indices a, b ∈ N
of polynomial-time functions Fa, Fb.

ga,b(x) =


g(⟨a, b, y′⟩0) if x = ⟨a, b, y′⟩0
f(x′) if x = x′1
f(0) else

▶ Observation 19. For x = ⟨a, b, y′⟩0 it holds that g(x) = ga,b(x).

▶ Observation 20. For fixed a, b ∈ N the function ga,b(x) can be computed in polynomial
time.

Proof. This follows directly from Observation 18 and the linear runtime of f . ◀

▷ Claim 21. Let a ∈ N and y′ ∈ Σ∗ such that Fa(y′) = ⟨i, j, x′, 0p⟩ /∈ D′. Then for all b ∈ N
it holds that ga,b(⟨a, b, y′⟩0) /∈ D.

Proof. By Claim 16 we know that for all b ∈ N the computation B(⟨a, b, y′⟩) accepts. This
implies ga,b(⟨a, b, y′⟩0) = ⟨1, b1, ⟨a, b, y′⟩, 0kB |x|9a2b+kB ⟩ /∈ D. ◁

▷ Claim 22. Let a ∈ N such that img(Fa) ⊆ D′. Then there is some b ∈ N with img(ga,b) = D.

Proof. Choose b ∈ N according to Claim 17. Then D = img(f) ⊆ img(ga,b) because f is a
proof system for D. Let x ∈ Σ∗. In the bottom two cases of ga,b and g we have ga,b(x) ∈ D
and g(x) ∈ D. So we can assume x = ⟨a, b, y′⟩0 and ga,b(x) = ⟨1, b1, ⟨a, b, y′⟩, 0kB |x|9a2b+kB ⟩.
By the choice of b, it holds ⟨a, b, y′⟩ /∈ L(B). By Observation 15 and the choice
of kB, B(⟨a, b, y′⟩) runs in time kB |⟨a, b, y′⟩|9a2b + kB ≤ kB |x|9a2b + kB. Therefore,
⟨1, b1, ⟨a, b, y′⟩, 0kB |x|9a2b+kB ⟩ ∈ D and hence ga,b(x) ∈ D. This shows img(ga,b) ⊆ D. ◁

Finally, we define the p-optimal proof system h for D′. The key difficulty is that h wants
to output Fa(y′) for all a and y′ using a short proof only when Fa is a proof system for D′.
To do this h must be able to check this property efficiently. We can do this as follows: if
f(Fc(⟨a, b, y′⟩)) = ga,b(⟨a, b, y′⟩), then we output Fa(y) and otherwise some arbitrary word
from D′. If Fa(y′) /∈ D′, we know that there is no b ∈ N such that the corresponding output
of ga,b is in D and the check correctly fails and Fa(y′) is not outputted. By contraposition we
observe that we output Fa(y′) only if it is in D′. Hence, h is a proof system for D′. Lastly,
we show that h p-simulates all proof systems for D′. Let Fa be an arbitrary proof system for
D′. Then there is a b ∈ N such that ga,b is a proof system for D. Let c ∈ N be such that f

p-simulates ga,b with the function Fc. So, for all y′ ∈ N the function h outputs Fa(y′) for
the input to h corresponding to a, b, c, y′. Also this input is short in a, b, c, y′ and can be
computed in polynomial time in these parameters.

Let h′ : N → N be a linear time proof system for D′. We define a function h : N → N.

h(x) =



⟨i, j, x′, 0p⟩ if x = ⟨a, b, c, ⟨a, b, y′⟩0, 0kB ·|⟨a,b,y′⟩0|9a2b+kB , 0|c|·(|⟨a,b,y′⟩0|c+c)2⟩0∧
f(Fc(⟨a, b, y′⟩0)) = ga,b(⟨a, b, y′⟩0)∧
Fa(y′) = ⟨i, j, x′, 0p⟩

h′(x′) if x = x′1
h′(0) else

▶ Observation 23. h(x) runs in time O(|x|).
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Proof. The bottom two cases are trivial. For the first case we observe that checking, whether
the input is formatted correctly, can be done in linear time. The part 0kB |⟨a,b,y′⟩0|9a2b+kB

can be checked in linear time by iterated multiplication. The computation Fa(y′) can be
simulated in O(|a| ·(|y′|a +a) log(|y′|a +a)) ⊆ O((|y′|a +a)3) ⊆ O(|y′|3a)) ⊆ O(|x|) time. The
computation f(Fc(⟨a, b, y′⟩0)) can be simulated in O(|c| · (|⟨a, b, y′⟩0|c + c) log(|⟨a, b, y′⟩0|c +
c)) ⊆ O(|x|) time and ga,b(⟨a, b, y′⟩0) can be simulated in O(|⟨a, b, y′⟩0|9a2b) ⊆ O(|x|) time
by Observation 18. The output ⟨i, j, x′, 0p⟩ can be computed in O(|x|) time because all of its
elements have been computed in the steps analyzed above. ◀

▷ Claim 24. h is a proof system for D′.

Proof. We have h ∈ FP by Observation 23. D′ ⊆ img(h), since img(h′) ⊆ img(h) and
h′ is a proof system for D′. We show img(h) ⊆ D′ by contradiction. Assume that there
exists x ∈ Σ∗ such that h(x) /∈ D′. The last two cases in the definition of h give values
obviously in D′. Thus, we only look at the first case. In particular Fa(y′) = ⟨i, j, x′, 0p⟩ and
ga,b(⟨a, b, y′⟩0) = f(Fc(⟨a, b, y′⟩0)). The second implies directly ga,b(⟨a, b, y′⟩0)) ∈ img(f) =
D′. Since h(x) = Fa(y′) in this case, by assumption Fa(y′) /∈ D′. By Claim 21 we conclude
the contradiction ga,b(⟨a, b, y′⟩0) /∈ D′. ◁

▷ Claim 25. Let a ∈ N with img(Fa) ⊆ D′. Then there exist b, c ∈ N, such that
∀y′ ∈ Σ∗ : Fa(y′) = ⟨i, j, x′, 0p⟩ = h(⟨a, b, c, ⟨a, b, y′⟩0, 0kB ·|y′0|9a2b+kB , 0|c|·(|⟨a,b,y′⟩0|c+c)2⟩0)

Proof. Claim 22 shows that there is some b ∈ N such that img(ga,b) = D. By Observation 20
this ga,b is a proof system for D. Since f is p-optimal, there exists c ∈ N such that f(Fc(x)) =
ga,b(x) for all x ∈ Σ∗. Let y′ ∈ Σ∗. From img(Fa) ⊆ D′ it follows Fa(y′) = ⟨i, j, x′, 0p⟩ for
suitable i, j, x′, p. Hence, in Claim 25 we are always in the first case of h. It follows

h(⟨a, b, c, ⟨a, b, y′⟩0, 0kB ·|⟨a,b,y′⟩0|9a2b+kB , 0|c|·(|⟨a,b,y′⟩0|c+c)2
⟩0) = ⟨i, j, x′, 0p⟩.

This shows Claim 25. ◁

Let a ∈ N be arbitrary such that Fa is a proof system for D′. Choose b, c according to
Claim 25. Then the following z : N → N shows Fa ≤p h.

z(y′) = ⟨a, b, c, ⟨a, b, y′⟩0, 0kB ·|y′0|9a2b+kB , 0|c|·(|⟨a,b,y′⟩0|c+c)2
⟩0

By Claim 25 it holds Fa(y′) = h(z(y′)). The function z can be computed in polynomial time,
because a, b, c ∈ N and kB ∈ N+ are constant values for a fixed Fa. This proves that h is a
p-optimal proof system for D′ ◀

▶ Corollary 26. If DP has p-optimal proof systems, coDP has p-optimal proof systems.

Proof. Since D ∈ DP, we obtain that there is a p-optimal proof system for D. Theorem 7
shows that it follows that there is a p-optimal proof system for D′. The language D′ is
≤p

m-hard for coDP. By Corollary 3, there are p-optimal proof systems for coDP. ◀

4 Oracle Construction

Corollary 26 naturally leads to the question of whether optimal proof systems for DP translate
to optimal proof systems for coDP. We show that a proof for this translation cannot be
relativizable, i.e., we cannot expect to show this translation with the currently available
means. This result is a consequence of the following theorem:
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▶ Theorem 27. There exists an oracle O with the following properties:
1. CO has p-optimal proof systems (implying p-optimal proof systems for coNP).
2. DO has no optimal proof systems (ruling out optimal proof systems for coDP).

Sketch of the construction. Work towards 1 (coding): For all a ∈ N, the construction tries
to achieve that img(F O

a ) ̸= CO and thus, F O
a is no proof system for CO. If this is not possible,

we start to encode the mappings of Fa (i.e., on which input it gives which output) into the
oracle. For the coding, we define code words of the form c(a, x, y) := ⟨0a, 04(|x|a+a+|y|), x, y⟩
for a ∈ N, x, y ∈ Σ∗. The purpose of a code word c(a, x, y) is to encode the computation
Fa(x) = y. Thus, the final oracle O will contain the encoded mappings of all proof systems
for CO. The crucial point is that such a code word lets us recognize that Fa is a proof system
for CO and y ∈ CO. This allows us to define a p-optimal proof system h which is able to
simulate every proof system for CO using oracle queries.

Work towards 2 (diagonalization): For all b ∈ N, the construction tries to achieve that
img(GO

b ) ̸= DO and thus, GO
b is no proof system for DO. If this is not possible, we define

some proof system zO
b for DO and show that zO

b cannot be simulated by GO
b . The latter is

achieved by diagonalizing against every simulation function π, i.e., we make sure that GO
b

does not simulate zO
b via π.

We call the functions zO
b witness proof systems. The intuition behind their definition and

behind the whole diagonalization is as follows: independent of the oracle each function zO
b

has short proofs for all elements of some polynomial-time-decidable set. But our construction
offers the freedom to choose whether or not this set is a subset of DO. The latter depends
on the following language

AO = {x ∈ Σ∗ | |O=|x||c ≥ 2} ∪ {x ∈ Σ∗ | |O=|x||c = 0}

= {x ∈ Σ∗ | |O=|x||c ̸= 1},

which lies inside coDPO and thus has influence on DO. Let y be a word whose membership
to DO is influenced by the question of whether 0n ∈ AO. Observe that 0n ∈ AO if and only
if |O|=n

c ̸= 1. Thus, we can control the membership of y to DO by adding none, one or
more words of length n to O. There are 2n such words. Let GO

b be some proof system for
DO. During the construction of O, we initially have no word of length n inside O and thus
y ∈ DO and GO

b must have a proof for y. Case 1: All GO
b -proofs for y are long. When GO

b is
given such a proof it can determine by exhaustive search the number of words of length n in
O. However, GO

b does not simulate zO
b , because zO

b has short proofs for y, but GO
b has not.

Case 2: GO
b has a short proof x for y. In this case, GO

b (x) cannot query all 2n words and
hence cannot determine whether y ∈ DO. We can exploit this to create a situation where
GO

b (x) outputs an element outside DO and hence is no proof system for this set. So GO
b can

either simulate zO
b or be a proof system for DO, but not both at once.

The main challenge of the oracle construction is to combine the work for 1 and 2, because
the code words interact with the diagonalization. Indeed, in the example above GO

b cannot
query all 2n words when having a short proof x for y, but there are many code words that
can be queried by GO

b (x) whose memberships together can depend on all 2n words of length
n. We capture these dependencies in a graph data structure, where nodes are words from Σ∗

and edges are oracle queries of underlying FP-computations of code words, i.e., for a code
word c(a, x, y) the computation F O

a (x). This helps to identify words of length n that are
independent of the computation GO

b (x) and all queried code words.
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5 Conclusion

We summarize all results to obtain the equivalence classes from Figure 1. First observe that
(p-)optimal proof systems always translate from a class C to D when C ⊆ D (respective solid
arrows are omitted in Figure 2). We start with the equivalence classes for p-optimal proof
systems (see Figure 2, left, solid arrows). P-optimal proof systems translate as follows:

from NP ∪ coNP to DP by NP ∪ coNP ⊇ NP, NP ∪ coNP ⊇ coNP, NP ∧ coNP = DP,
and Corollary 5 following from Köbler, Messner, and Torán [18].
from DP to coDP by Corollary 26.
from coBHk to coBHk+1 for k ≥ 2 by Corollary 5 following from Köbler, Messner, and
Torán [18] and the following inclusions:

coBHk ∧ coBHk ⊇ coDP ∧ coBHk = (NP ∨ coNP) ∧ coBHk

⊇

{
coNP ∧ coBHk = coBHk+1 if k is even
NP ∨ coBHk = coBHk+1 else

Next, we derive the equivalence classes for optimal proof systems (see Figure 2, right, solid
arrows). Optimal proof systems translate as follows:

from coNP to NP ∪ coNP by the fact that NP has optimal proof systems.
from NP ∪ coNP to DP by Corollary 5 following from Köbler, Messner, and Torán [18].
from coBHk to coBHk+1 for k ≥ 2 by the same argument used for p-optimal proof
systems.

The resulting equivalence classes for (p-)optimal proof systems are different (see Figure 2,
left and right, dashed arrows) relative to oracles A, B, O with the following properties:

NPA has p-optimal proof systems and coNPA has no optimal proof systems [17].
coNPB has p-optimal proof systems and NPB has no p-optimal proof systems [17].
coNPO has p-optimal proof systems and coDPO has no optimal proof systems (Thm. 27).

NP coNP

DP coDP

coBH3BH3

BH4 coBH4

PNP[1]

PNP[2]

NP ∪ coNP

NP coNP

DP coDP

coBH3BH3

BH4 coBH4

NP ∪ coNP

NP coNP

DP coDP

coBH3BH3

BH4 coBH4

PNP[1]

PNP[2]

NP ∪ coNP

p-optimal optimal

[18]

[18]

[18]

[17]

Thm. 27

[18]

[18]

[18]

[17]

Cor. 26Cor. 26

Figure 2 Equivalence classes for p-optimal proof systems (left) and optimal proof systems (right)
in the Boolean hierarchy over NP and the bounded query hierarchy over NP. Green solid arrows
from A to B mean that (p-)optimal proof systems for A imply (p-)optimal proof systems for B. Red
dashed arrows from A to B mean that there exists an oracle Q relative to which AQ has (p-)optimal
proof systems and BQ has no (p-)optimal proof systems. Note that green solid arrows pointing
downwards are omitted, since those are trivial and only the minimum number of required red dashed
arrows to separate all equivalence classes are drawn.
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Oracle A rules out translations from NP to any other class in Figure 2 for optimal and
p-optimal proof systems. Oracle B rules out translations from coNP to NP and thus also to
NP ∪ coNP for p-optimal proof systems. Oracle O rules out translations from coNP to coDP
for optimal proof systems.

We obtain the following connection to a conjecture studied by Pudlák [25].

▶ Corollary 28. The following statements are equivalent:
BH has no p-optimal proof system.
TAUT has no p-optimal proof systems or SAT has no p-optimal proof systems (i.e.,
CON ∨ SAT in Pudlák’s notation).

Proof. Figure 2 shows that NP ∪ coNP and BH are equivalent with respect to p-optimal
proof systems. Hence, BH has no p-optimal proof systems if and only if NP ∪ coNP has
no p-optimal proof systems. The latter holds if and only if TAUT has no p-optimal proof
systems or SAT has no p-optimal proof systems. ◀
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