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Abstract
Pursuit-evasion games have been intensively studied for several decades due to their numerous
applications in artificial intelligence, robot motion planning, database theory, distributed computing,
and algorithmic theory. Cops and Robber (CnR) is one of the most well-known pursuit-evasion
games played on graphs, where multiple cops pursue a single robber. The aim is to compute the cop
number of a graph, k, which is the minimum number of cops that ensures the capture of the robber.

From the viewpoint of parameterized complexity, CnR is W[2]-hard parameterized by k [Fomin et
al., TCS, 2010]. Thus, we study structural parameters of the input graph. We begin with the vertex
cover number (vcn). First, we establish that k ≤ vcn

3 + 1. Second, we prove that CnR parameterized
by vcn is FPT by designing an exponential kernel. We complement this result by showing that
it is unlikely for CnR parameterized by vcn to admit a polynomial compression. We extend our
exponential kernels to the parameters cluster vertex deletion number and deletion to stars number,
and design a linear vertex kernel for neighborhood diversity. Additionally, we extend all of our results
to several well-studied variations of CnR.
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1 Introduction

In pursuit-evasion, a set of agents, called pursuers, plan to catch one or multiple evaders.
Classically, pursuit-evasion games were played on geometric setups, where pursuers and
evaders move on the plane [35, 49]. Parsons [48] formulated pursuit-evasion on graphs to model
the search for a person trapped in caves, giving rise to the field of graph searching. Since then,
pursuit-evasion has been studied extensively, having applications in artificial intelligence [36],
robot motion planning [16, 40], constraint satisfaction and database theory [31, 32, 33],
distributed computing [4, 18] and network decontamination [45], and significant implications
in graph theory and algorithms [1, 25, 30, 54].

Cops and Robber (CnR) is one of the most intensively studied pursuit-evasion games
on graphs, where a set of cops pursue a single robber. Players move in discrete time steps
alternately, starting with the cops. In each move, a player can move to an adjacent vertex,
and the cops win by capturing the robber (i.e., if a cop and the robber occupy the same
vertex). The goal is to compute the cop number of a graph G, denoted c(G), which is the
minimum number of cops required to win in G. We define the game formally in Section 2.
CnR is well studied in the artificial intelligence literature under the name Moving Target
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49:2 Parameterized Analysis of the Cops and Robber Game

Pursuit (MTP) [37], where we consider sub-optimal but faster strategies from an applicative
point of view. The results have found numerous applications in game design, police chasing,
path planning, and robot motion planning [5, 44, 56].

Determining the parameterized complexity of games is a well-studied research topic [10,
11, 52]. Most pursuit-evasion games are AW[*]-hard [53]. In particular, CnR is W[2]-
hard parameterized by c(G) [27]. Thus, we consider structural parameterizations, focusing
on kernelization, polynomial-time preprocessing with a parametric guarantee. Due to its
profound impact, kernelization was termed “the lost continent of polynomial time” [26]. We
begin with the most studied structural parameter: the vertex cover number (vcn) of the
input graph. We bound c(G) in terms of vcn, as well as achieve both positive and negative
results concerning the kernelization complexity of CnR parameterized by vcn. We generalize
our kernelization results to the smaller parameters cluster vertex deletion number (cvd)
and deletion to stars number (dts), as well as to the parameter neighborhood diversity (nd).
Furthermore, we extend all our results to several well-studied variants of CnR.

The choice of vcn to study pursuit-evasion games is natural due to various scenarios where
vcn is significantly smaller than the graph size. For example, this includes scenarios where
we model the existence of one or few (possibly interconnected) central hubs – for illustration,
suppose an intruder is hiding in a system of buildings where we have only few corridors but
a large number of rooms, or suppose we have few virtual servers with many stations (e.g., of
private users) that can communicate only with the servers. Furthermore, vcn is one of the
most efficiently computable parameters from both approximation [55] and parameterized [17]
points of view, making it fit from an applicative perspective even when a vertex cover is not
given along with the input. Moreover, vcn is the best choice for proving negative results –
indeed, our negative result on the kernelization complexity of CnR for vcn implies the same
for many other well-known smaller parameters such as treewidth, treedepth and feedback
vertex set [28]. One shortcoming of vcn as a parameter is that it is large for some simple (and
easy to resolve) dense graphs like cliques. However, we generalize our kernel to cvd, which
is small for these dense graphs, and to dts. Furthermore, we design a linear kernel for the
well-studied parameter nd. We further discuss the utility of our kernels in the Conclusion.

Brief Survey. CnR was independently introduced by Quilliot [51] and Nowakowski and
Winkler [46] with exactly one cop.1 Aigner and Fromme [2] generalized CnR to multiple
cops and defined the cop number of a graph. We refer to the book [9] for details.

The computational complexity of CnR is a challenging research subject. On the positive
side, Berarducci and Intrigila [6] gave a backtracking algorithm to decide if G is k-copwin
in O(n2k+1) time. On the negative side, Fomin et al. [27] proved that CnR is NP-hard,
and W[2]-hard parameterized by k. Moreover, Mamino [43] showed that CnR is PSPACE-
hard, and later, Kinnersley [39] proved that CnR is, in fact, EXPTIME-complete. Recently,
Brandt et al. [14] proved that, conditioned on (Strong) Exponential Time Hypothesis, the time
complexity of any algorithm for CnR is (Ω(nk−o(1))) 2Ω(

√
n). Since CnR admits an XP-time

algorithm, it is sensible to bound the cop number for various graph classes or by structural
parameters. Nowadays, we know that the cop number is at most 3 for toroidal graphs [41], 9
for unit-disk graphs [7], 13 for string graphs [20], and bounded for bounded genus graphs [12]
and minor-free graphs [3]. Moreover, c(G) ≤ tw(G)

2 + 1 [38] and c(G) ≤ cw(G) [27], where
tw(G) and cw(G) are the treewidth and the cliquewidth of G, respectively.

1 In fact, a specific instance of CnR was given as a puzzle in the book [24] already in 1917.
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Our Contribution. We conduct a comprehensive analysis of CnR parameterized by vcn.
Due to space constraints, the proofs of the claims marked by (∗) and the claims for which we
only provide a proof sketch are deferred to the full version [29].

We start by bounding the cop number of a graph:

▶ Theorem 1. For a graph G, c(G) ≤ vcn
3 + 1.

The proof is based on the application of three reduction rules. Each of our rules controls
its own cop, which guards at least three vertices from the vertex cover. Once our rules are no
longer applicable, we exhibit that the remaining unguarded part of the graph is of a special
form, and the usage of only two additional cops suffices. We complement Theorem 1 with an
argument that it might be difficult to improve this bound further using techniques similar to
ours.

Second, we prove that CnR parameterized by vcn is FPT by designing a kernelization
algorithm:

▶ Theorem 2. CnR parameterized by vcn admits a kernel with at most vcn + 2vcn
√

vcn vertices.

Our kernel is also based on the application of reduction rules. However, these rules are
very different than those used for the proof of Theorem 1. While our main rule is quite
standard in kernelization (involving the removal of false twins), the proof of its correctness is
(arguably) not. Theorem 2, Theorem 1, and the XP-algorithm (Proposition 12) yield the
following corollary:

▶ Corollary 3. CnR is FPT parameterized by vcn, and solvable in
(
vcn + 2vcn

√
vcn

)vcn
3 +2 · nO(1)

time.

We complement our kernel by showing that it is unlikely for CnR to admit polynomial
compression, by providing a polynomial parameter transformation from Red-Blue Domin-
ating Set. Our reduction makes non-trivial use of a known construction of a special graph
having high girth and high minimum degree.

▶ Theorem 4. CnR parameterized by vcn does not admit polynomial compression, unless
NP ⊆ coNP/poly.

We also present a linear vertex kernel parameterized by nd for CnR, Lazy CnR, and
Cops and Attacking Robber, and a quadratic vertex kernel for Cops and Fast Robber
and Fully Active CnR:

▶ Theorem 5 (∗). CnR, Lazy CnR, and Cops and Attacking Robber parameterized
by nd admits a kernel with at most nd vertices. Moreover, Cops and Fast Robber and
Fully Active CnR parameterized by nd admit a kernel with at most nd2 vertices.

On the positive side, we extend our exponential kernel to smaller parameters, cvd and
dts:

▶ Theorem 6. CnR parameterized by cvd admits a kernel with at most 22cvd+
√

cvd vertices.
Moroever, CnR parameterized by dts admits a kernel with at most 22dts+dts1.5 vertices.

Several variants of CnR have been studied due to their copious applications. We extend
our results, parameterized by vcn, to some of the most well-studied ones. We define these
variants (and used notations) in Section 2. We first bound the cop number of these variants
by vcn:

MFCS 2023



49:4 Parameterized Analysis of the Cops and Robber Game

▶ Theorem 7 (∗). For a graph G: (1) clazy ≤ vcn
2 + 1; (2) cattack ≤ vcn

2 + 1; (3) cactive(G) ≤
vcn; (4) csurround(G) ≤ vcn; (5) cs(G) ≤ vcn (for any value of s); (6) for a strongly connected
orientation −→

G of G, c(−→G) ≤ vcn.

We also extend our exponential kernel to these variants:

▶ Theorem 8. Cops and Attacking Robber and Lazy CnR parameterized by vcn admit
a kernel with at most vcn + 2vcn

√
vcn vertices. Moreover, CnR on strongly connected directed

graphs admits a kernel with at most 3vcn + vcn vertices.

Then, we present a slightly more general kernelization that works for most variants of
the game:

▶ Theorem 9. Fully Active CnR, Cops and Fast Robber, and Surrounding CnR
parameterized by vcn admit a kernel with at most vcn + vcn · 2vcn vertices.

We complement our exponential kernels for these variants by arguing about their com-
pressibility:

▶ Theorem 10 (∗). Lazy CnR, Cops and Attacking Robber, Cops and Fast Rob-
ber, Fully Active CnR, and CnR on strongly connected directed and oriented graphs
parameterized by vcn do not admit a polynomial compression, unless NP ⊆ coNP/poly.

2 Preliminaries

For ℓ ∈ N, let [ℓ] = {1, . . . , ℓ}. Whenever we mention a
b , we mean ⌈ a

b ⌉.

Graph Theory. We only consider finite, connected2, and simple graphs. For a graph G, we
denote |V (G)| by n. Let v ∈ V (G). Then, N(v) = {u | uv ∈ E(G)} and N [v] = N(v) ∪ {v}.
For X ⊆ V (G), let NX(v) = N(v) ∩ X and NX [v] = N [v] ∩ X. We say that v dominates
u if u ∈ N [v]. The girth of G is the length of a shortest cycle contained in G. A u, v-path
is a path with endpoints u and v. A path is isometric if it is a shortest path between its
endpoints. For a directed graph −→

G , let N+(u) and N−(u) denote the set of out-neighbors
and in-neighbors of u, respectively.

Let G be a graph and U ⊆ V (G). Then, G[U ] denotes the subgraph of G induced by
U . A set U ⊆ V (G) is a vertex cover if G[V (G) \ U ] is an independent set. The minimum
cardinality of a vertex cover of G is its vertex cover number (vcn). Moreover, U is a cluster
vertex deletion set if G[V (G) \ U ] is a disjoint union of cliques. The minimum size of a cluster
vertex deletion set of a graph is its cluster vertex deletion number (cvd). Additionally, U is a
deletion to stars set if G[V (G) \ U ] is a disjoint union of star graphs. The minimum size of a
deletion to stars set of a graph is its deletion to stars number (dts). Two vertices u, v ∈ V (G)
have the same type if and only if N(v) \ {u} = N(u) \ {v}. A graph G has neighborhood
diversity at most w if there exists a partition of V (G) into at most w sets, such that all the
vertices in each set have the same type.

2 The cop number of a disconnected graph is the sum of the cop numbers of its components; hence, we
assume connectedness.
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CnR. CnR is a two-player perfect information pursuit-evasion game played on a graph.
One player is referred as cop player and controls a set of cops, and the other player is referred
as robber player and controls a single robber. The game starts with the cop player placing
each cop on some vertex of the graph, and multiple cops may simultaneously occupy the
same vertex. Then, the robber player places the robber on a vertex. Afterwards, the cop
player and the robber player make alternate moves, starting with the cop player. In the cop
player move, the cop player, for each cop, either moves it to an adjacent vertex (along an
edge) or keeps it on the same vertex. In the robber player move, the robber player does the
same for the robber. For simplicity, we will say that the cops (resp., robber) move in a cop
(resp., robber) move instead of saying that the cop (resp., robber) player moves the cops
(resp., robber). Throughout, we denote the robber by R.

A situation where one of the cops, say, C, occupies the same vertex as R is a capture.
The cops win if they have a strategy to capture R, and R wins if it has a strategy to evade
a capture indefinitely. A graph G is k-copwin if k cops have a winning strategy in G. The
cop number of G, denoted c(G), is the minimum k such that G is k-copwin. For brevity, G is
said to be copwin if it is 1-copwin (i.e. c(G) = 1). Given a graph G and k ∈ N, CnR asks
whether G is k-copwin.

If a cop C occupies a vertex v, then C attacks N [v]. A vertex u is safe if it is not being
attacked by any cop. If R is on a vertex that is not safe, then R is under attack. We say
that some cops guard a subgraph H of G if R cannot enter H without getting captured by
one of these cops in the next cop move. We shall use the following result:

▶ Proposition 11 ([2]). One cop can guard an isometric path P after a finite number of cop
moves.

Currently, the best known algorithm to decide whether G is k-copwin is by Petr et al. [50]:

▶ Proposition 12 ([50]). CnR is solvable in O(knk+2) time.

Variations of CnR. Several variations of CnR have been studied in the literature, differing
mainly in the rules of movements of agents, the definition of the capture, and the capabilities
of the agents. We provide below the definitions of the games considered in this paper here.
A detailed overview of these games is provided in the full version [29].

Lazy CnR. In Lazy CnR [47], the cops are lazy, i.e., at most one cop can move during the
cops’ turn. The cop number in this game is denoted by clazy(G).

Cops and Attacking Robber. In Cops and Attacking Robber [8], if on a robber’s turn,
there is a cop in its neighborhood, then R can attack the cop and eliminate it from the
game. However, if more than one cop occupy a vertex and R attacks them, then only one of
the cops gets eliminated, and R gets captured by one of the remaining cops. Here, the cop
number is denoted by cattack(G).

Fully Active CnR. In Fully Active CnR [34], in a cop/robber move, each cop/robber
must move to an adjacent vertex. Here, the cop number is denoted by cactive(G).

Surrounding CnR. Surrounding CnR [15] differs in the definition of capture. Here, a cop
and R can occupy the same vertex during the game, but R cannot end its turn by remaining
at a vertex occupied by some cop. The cops win by surrounding R, i.e., if R occupies a
vertex v, then there is a cop at each vertex u ∈ N(v). The surrounding cop number for G is
denoted as csurround(G).

MFCS 2023



49:6 Parameterized Analysis of the Cops and Robber Game

Cops and Fast Robber. In Cops and Fast Robber [27], R can move faster than the
cops. If R has speed s, then it can move along a path with at most s edges not containing
any cop. The minimum number of cops that ensures capture of a fast robber with speed
s in a graph G is denoted by cs(G). For s ≥ 2, deciding whether cs(G) ≤ k is W[2]-hard
parameterized by k even when input graph G is restricted to be a split graph [27].

CnR on Directed Graphs. In the game of CnR on directed graphs [42, 13, 21], the players
can only move along the orientation of the arcs.

An XP Algorithm for Variants. For graph searching, there is a standard technique to get
an nO(k) time XP algorithm. This technique involves generating a game graph where each
vertex represents a possible placement of all the agents (game states) on the vertices of G.
Petr et al. [50] implemented this algorithm for CnR in O(knk+2) time. It is not difficult to
see that this algorithm can be made to work for all the variants we discussed (by changing the
rules to navigate between game states). We discuss these extensions in the full version [29].

▶ Proposition 13. Any variant of CnR considered in this paper is solvable in O(knk+2)
time.

Parameterized Complexity. In the framework of parameterized complexity, each problem
instance is associated with a non-negative integer, called a parameter. A parametrized
problem Π is fixed-parameter tractable (FPT) if there is an algorithm that, given an instance
(I, k) of Π, solves it in time f(k) · |I|O(1) for some computable function f(·). Two instances
I and I ′ are equivalent when I is a Yes-instance if and only if I ′ is a Yes-instance. A
compression of a parameterized problem Π1 into a (possibly non-parameterized) problem Π2
is a polynomial-time algorithm that maps each instance (I, k) of Π1 to an equivalent instance
I ′ of Π2 such that size of I ′ is bounded by g(k) for some computable function g(·). If g(·) is
polynomial, then the problem is said to admit a polynomial compression. A kernelization
algorithm is a compression where Π1 = Π2. Here, the output instance is called a kernel.
Let Π1 and Π2 be two parameterized problems. A polynomial parameter transformation
from Π1 to Π2 is a polynomial-time algorithm that, given an instance (I, k) of Π1, generates
an equivalent instance (I ′, k′) of Π2 such that k′ ≤ p(k), for some polynomial p(·). It is
well-known that if Π1 does not admit a polynomial compression, then Π2 does not admit
a polynomial compression [17]. We refer to the books [17, 28] for details on parameterized
complexity.

3 Bounding the Cop Number

We will use the following lemma to derive upper bounds on c(G) for several graph parameters.

▶ Lemma 14 (∗). Let G be a graph and let U ⊆ V (G) be a set of vertices such that for each
connected component H of G[V (G) \ U ], c(H) ≤ ℓ. Then, c(G) ≤ |U |

2 + ℓ.

Since star graphs and complete graphs are copwin, Lemma 14 implies the following
theorem.

▶ Theorem 15. Let G be a graph and t = min{cvd, dts}. Then, c(G) ≤ t
2 + 1.

Bounding Cop Number by vcn. Let U be a vertex cover of size t in G and I be the
independent set V (G) \ U . Lemma 14 implies that c(G) ≤ ⌈ t

2 ⌉ + 1. In this section, we
improve this bound. First, we provide the following reduction rules.
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▶ Reduction Rule 1 (RR1). If there is a vertex v ∈ I such that |N(v)| ≥ 3, then place a cop
at v and delete N [v].

▶ Reduction Rule 2 (RR2). If there is a vertex v ∈ U such that |N [v] ∩ U | ≥ 3, then place a
cop at v and delete N [v].

▶ Reduction Rule 3 (RR3). If there is an isometric path P such that P contains at least
three vertices from U , then guard P using one cop and delete V (P ) (see Proposition 11).

We note the following.
▶ Note 16. In the application of RR1-RR3, whenever a set of vertices X ⊆ V (G) is deleted
by the application of RR1-RR3, it implies that each vertex x ∈ X is being guarded by some
cop, and hence, is not accessible to R. We do not actually delete the vertices, and this
deletion part is just for the sake of analysis. Hence, from the cop player’s perspective, the
graph remains connected.

Next, we argue that, after an exhaustive application of RR1-RR3 on G, each connected
component has a special structure and is 2-copwin.

▶ Lemma 17 (∗). Once we cannot apply RR1-RR3 anymore, let R be in a connected
component H of G. Then, c(H) ≤ 2.

Finally, we have the following theorem.

▶ Theorem 1. For a graph G, c(G) ≤ vcn
3 + 1.

Proof Sketch. The proof follows from Lemma 17 and the fact that in each application of
RR1-RR3, we use one cop to remove (or guard) at least three new vertices from U . ◀

We note that a similar technique will fail if we try to “remove” four vertices in each
reduction rule [29].

4 Exponential Kernels

Exponential Kernel by vcn. Let G be a graph where a vertex cover U of size t is given. If
no such vertex cover is given, then we can compute a vertex cover U of size t ≤ 2 · vcn using
a polynomial-time approximation algorithm [55]. Let I be the independent set V (G) \ U .
Our kernelization algorithm is based on the exhaustive application of the following reduction
rules.

▶ Reduction Rule 4 (RR4). If k > t
3 , then answer positively.

▶ Reduction Rule 5 (RR5). If k = 1, then apply an O(n3) time algorithm (Proposition 12)
to check whether G is copwin.

▶ Reduction Rule 6 (RR6). If there are two distinct vertices u, v ∈ I such that N(u) ⊆ N(v),
then delete u.

The safeness of RR4 follows from Theorem 1. The following lemma proves the safeness
of RR6. We note that Lemma 18 can also be derived from [6, Corollary 3.3], but we give a
self-contained proof for the sake of completeness.

▶ Lemma 18. Let u and v be two distinct vertices of G such that N(u) ⊆ N(v). Consider
the subgraph H of G induced by V (G) \ {u}. Let k ≥ 2. Then, G is k-copwin if and only if
H is k-copwin.

MFCS 2023
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G

H

u C1

N(u)

N(v)

v

C2

R

Figure 1 Illustration for Lemma 18. Here, R is at vertex u and C1 is at vertex v.

Proof. First, let G be k-copwin. Then, for the graph H, the k cops borrow the winning
strategy that they have for G, with the only difference that whenever a cop has to move to
the vertex u in G, it moves to v (in H) instead. Since N(u) ⊆ N(v), the cop can make the
next move as it does in the winning cop strategy for G. Note that using this strategy, the
cops can capture R if R is restricted to V (H) in G. Therefore, using this strategy, k cops
will capture R in H as well.

Second, we show that if H is k-copwin, then G is is k-copwin. Here, for each vertex x ̸= u

of G, we define I(x) = x, and for u, we define I(u) = v. Observe that for each x ∈ V (G),
I(x) is restricted to H and if xy ∈ E(G), then I(x)I(y) ∈ E(H). Therefore, every valid
move of a player from a vertex x to y in G can be translated to a valid move from I(x) to
I(y) in H. Now, the cops have the following strategy. If the robber is on a vertex x, the cops
consider the image of the robber on the vertex I(x). Since the robber’s image is restricted
to H, the cops can use the winning strategy for H to capture the image of the robber in
G. Once the image is captured, if the robber is not on the vertex u, then the robber is also
captured. Otherwise, the robber is on the vertex u, and at least one cop is on v. See Figure 1
for an illustration. So, one cop, say C1, stays on v and this prevents the robber from ever
leaving u. Indeed this follows because N(u) ⊆ N(v), and so, if R ever leaves u, it will be
captured by C1 in the next cop move. Finally, since k > 1, some other cop, say C2, can use a
finite number of moves to reach u and capture the robber. ◀

Note that the requirement for k ≥ 2 in Lemma 18 is crucial. Otherwise, we can get an H

such that c(H) = 1, but c(G) > 1. For example, consider C4, where any two non-adjacent
vertices satisfy the property in RR6, and if we remove one of them, the cop number reduces
from 2 to 1. However, this does not harm our algorithm because if we are given k = 1, then
RR5 is applied (before RR6).

Two sets A and B are incomparable if neither A ⊆ B nor B ⊆ A. We shall use the
following proposition that follows from Sperner’s Theorem and Stirling’s approximation.

▶ Proposition 19. Let X be a set of cardinality N. Moreover, let Y be a set of subsets of X

such that for each a, b ∈ Y , a and b are incomparable. Then, |Y | ≤ 2N
√

N
.

Once we cannot apply RR4-RR6 anymore, we claim that the size of the reduced graph
G′ is bounded by a function of t. Let U ′ = U ∩ V (G′) and I ′ = I ∩ V (G′). Clearly, |U ′| ≤ t.
Now, each vertex u ∈ I ′ is associated with a neighborhood N(u) such that N(u) ⊆ U ′.
Moreover, for any two vertices u, v ∈ I ′, the sets N(u) and N(v) are incomparable. Hence,
due to Proposition 19, |I ′| ≤ 2t

√
t
, and therefore, |V (G′)| ≤ t + 2t

√
t
, which proves the following

theorem.
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▶ Theorem 2. CnR parameterized by vcn admits a kernel with at most vcn + 2vcn
√

vcn vertices.

The details for exponential kernels for other parameters and variants can be found in [29].
Here, we present only our reduction rules and the essential claims that lead to our results.

Kernel by cvd. Let U be a cluster vertex deletion set of size t. Let S = V (G) \ U , and
C1, . . . , Cℓ be the set of disjoint cliques in G[S]. We have the following reduction rules along
with RR 5.

▶ Reduction Rule 7 (RR7). If k > t
2 , then answer positively.

▶ Reduction Rule 8 (RR8). Let u and v be vertices of some clique C ∈ G[S] such that
N [u] ⊆ N [v]. Then, delete u.

▶ Reduction Rule 9 (RR9). Let Ci and Cj be two cliques in G[S] such that for each vertex
u ∈ V (Ci), there exists a vertex v ∈ V (Cj) such that NU (u) ⊆ NU (v). Then, delete V (Ci).

RR7 is safe due to Theorem 15. The safeness of RR8 is proved by the following Lemma,
whose proof is similar to the proof of Lemma 18.

▶ Lemma 20 (∗). Let u and v be vertices of some clique C of G[S]. If NU (u) ⊆ NU (v),
then c(G) = c(G[V (G) \ {u}]).

The safeness of RR9 is proved by the following Lemma.

▶ Lemma 21 (∗). Let Ci and Cj be two cliques in G[S] such that for each vertex u ∈ V (Ci),
there exists a vertex v ∈ V (Cj) such that NU (u) ⊆ NU (v). Then, for k > 1, G is k-copwin if
and only if G[V (G) \ V (Ci)] is k-copwin.

Finally, we use the following lemma to bound the size of the desired kernel from Theorem 6.

▶ Lemma 22 (∗). After an exhaustive application of RR7-RR9, the size of the reduced graph
is at most 22t+

√
t.

Kernel by dts. Using similar ideas, we can also get a kernel for CnR parameterized by dts.
Let U be a deletion to stars vertex set of size t. Also, let S = V (G) \ U , and let X1, . . . Xℓ

be the stars in the graph G[S]. Specifically, we have the following reduction rules along with
RR7.

▶ Reduction Rule 10 (RR10). Let u and v be two leaves of a star X in G[S] such that
NU (u) ⊆ NU (v). Then, delete u.

▶ Reduction Rule 11 (RR11). Let X and Y be two stars in G[S] such that V (X) =
x, x1, . . . , xp and V (Y ) = y, y1, . . . , yq, where x and y are center vertices of X and Y ,
respectively. If NU (x) ⊆ NU (y) and for each vertex xi (for i ∈ [p]), there is a vertex yj (for
j ∈ [q]) such that NU (xi) ⊆ NU (yj), then delete X.

The following lemma establishes that RR10 and RR11 are safe. (RR7 is safe due to
Theorem 15.)

▶ Lemma 23 (∗). Assuming k > 1, RR10 and RR11 are safe.

Using calculations similar to ones used in our previous kernels and Proposition 19, we
can establish that (see [29]), once we cannot apply RR10 and RR11 anymore, the size of the
reduced graph can be at most 22t

√
2t

· 2t · ( 2t
√

t
+ 1), giving us the desired kernel from Theorem 6.
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Kernels for Different Variants
Lazy CnR and Cops and Attacking Robber. For these variants, we have the following
reduction rules along with RR6, which we apply before applying RR6.

▶ Reduction Rule 12 (RR12). If k ≥ t
2 + 1, then answer positively (Theorem 7).

▶ Reduction Rule 13 (RR13). If k = 1, then apply the O(n3) time algorithm from Proposi-
tion 13.

The next lemma proves safeness of RR6 for both variants.

▶ Lemma 24 (∗). Let u and v be two distinct vertices of G such that N(u) ⊆ N(v). Consider
the graph H induced by V (G) \ {u}. Then for k > 1 and for x ∈ {lazy, attack}, cx(G) ≤ k

if and only if cx(H) ≤ k.

The size of the kernel, by using these reduction rules, is dependent on RR6. Therefore,
we get the desired kernels for these variants as claimed in Theorem 8.

CnR on Directed Graphs. Next, we consider the game of CnR on directed graphs. We
have the following lemma.

▶ Lemma 25 (∗). Let u and v be two distinct vertices of a strongly connected directed
graph −→

G such that N+(u) ⊆ N+(v) and N−(u) ⊆ N−(v). Let −→
H be the graph induced by

V (−→G) \ {u}. Then, for k > 1, −→
H is k-copwin if and only if −→

G is k-copwin.

Let G be a graph with a vertex cover U of size t, and let I = V (G) \ U . Let −→
G be a

strongly connected orientation of G. We apply the following reduction rules.

▶ Reduction Rule 14 (RR14). If k ≥ t, then answer positively.

▶ Reduction Rule 15 (RR15). If k = 1, then apply the O(n3) time algorithm (Proposition 13)
to check if −→

G is copwin.

▶ Reduction Rule 16 (RR16). If u and v are two distinct vertices in I such that N+(u) ⊆
N+(v) and N−(u) ⊆ N−(v), then delete u.

Safeness of RR14 and RR16 follow from Theorem 7 and Lemma 25, respectively. Once
we cannot apply RR16, observe that each vertex u ∈ I has a unique neighborhood (N+(u) ∪
N−(u)), and there are three choices for a vertex v ∈ U to appear in the neighborhood of
u, i.e., either v ∈ N+(u), or v ∈ N−(u), or v /∈ N+(u) ∪ N−(u). Thus, |I| ≤ 3t, giving the
desired kernel as claimed in Theorem 8.

General Kernelization. Here, we provide a general reduction rule that works for most
variants of CnR parameterized by vcn. Let U be a vertex cover of size t in G and I be the
independent set V (G) \ U . For each subset S ⊆ U , we define the following equivalence class:
CS = {v ∈ I : N(v) = S}. We have the following reduction rule along with RR14.

▶ Reduction Rule 17 (RR17). If there is an equivalence class CS such that |CS | > k + 1,
then keep only k + 1 arbitrary vertices from CS in G, and delete the rest.

The following lemma proves the safeness of RR17.
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▶ Lemma 26 (∗). Let G be a graph with a vertex cover U of size t. Let CS (for S ⊆ U) be
an equivalence class such that |CS | = ℓ > k + 1. Moreover, let H be a subgraph formed by
deleting ℓ − k − 1 arbitrary vertices of CS from G. Then,
1. cactive(H) ≤ k if and only if cactive(G) ≤ k.
2. cs(H) ≤ k if and only if cs(G) ≤ k, for any s ≥ 1.
3. csurround(H) ≤ k if and only if csurround(G) ≤ k.

Proof Sketch. Here, we present a sketch of the proof for (3). Let CS = {v1, . . . , vℓ}. WLOG,
let the vertices v1, . . . vk+1 belong to the graph H and vertices vk+2, . . . , vℓ are deleted. Note
that R cannot be surrounded at a vertex in S in G since each vertex in S has at least k + 1
neighbours.

The proof of csurround(H) ≤ csurround(G) is similar to the proof of Lemma 18.
For the other direction, let csurround(H) ≤ k. Since we have only k cops, at any time,

there is at least one vertex in {v1, . . . , vk+1} that is not occupied by any cop. Let us call
this vertex a free vertex (there might be multiple free vertices). For each vertex x ∈ V (G), if
x ∈ V (H), then we define I(x) = x; else, if x ∈ {vk+1, . . . vℓ}, then we define I(x) = y, where
y is a free vertex at that instance. Whenever R moves to a vertex x ∈ V (G), we say that
the image of the robber, denoted IR, moves to I(x). Recall that, in this variant, although
some cop and R can be at the same vertex, R cannot end its move at the same vertex as
one of the cops. Cops use this capability to force R to move from a vertex. Therefore,
we also have to argue that whenever cops force R to move, they force IR to move as well.
To this end, observe that IR and R are on different vertices only if R is on some vertex
x ∈ {vk+1, . . . , vℓ} and IR is on a free vertex, say, y. Notice that if, in the strategy for H, R
was occupying y and the cop player wants to force R to move out of y, then it does so by
moving a cop, say, C, from a vertex w ∈ N(y) to y. Cop player adapts this strategy in G

by moving C form w to x instead of w to y (it is possible because N(x) = N(y)). Thus, R,
as well as IR, are forced to move as they would have been forced to move in the winning
strategy of k cops in H.

Hence, IR is restricted to V (H) in G. Thus, cops will surround IR in a finite number
of rounds. The only thing to observe now is that if IR is surrounded in V (H), then R is
surrounded in G. ◀

Lemma 26 and the following lemma imply Theorem 9.

▶ Lemma 27 (∗). Let G be a graph with a vertex cover U of size t. After an exhaustive
application of RR14 and RR17, the reduced graph has at most t + t · 2t vertices.

5 Incompressibility

In this section, we show that it is unlikely for CnR parameterized by vcn to admit a
polynomial compression. For this purpose, we first define the following problem. In Red-Blue
Dominating Set, we are given a bipartite graph G with a vertex bipartition V (G) = T ∪ N

and a non-negative integer k. A set of vertices N ′ ⊆ N is said to be an RBDS if each vertex
in T has a neighbor in N ′. The aim of Red-Blue Dominating Set is to decide whether
there exists an RBDS of size at most k in G. We shall use the following result.

▶ Proposition 28 ([23]). Red-Blue Dominating Set parameterized by |T | + k does not
admit a polynomial compression, unless NP ⊆ coNP/poly.

We show that CnR parameterized by vcn does not have a polynomial compression
by developing a polynomial parameter transformation from Red-Blue Dominating Set
parameterized by |T | + k to CnR parameterized by vcn.
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Bipartite Graphs with Large Degree and Girth. For our reduction, we borrow a construction
by Fomin at al. [27] of bipartite graphs having high girth and high minimum degree, which
they used to prove NP-hardness (and W [2]-hardness for the solution size k) of CnR. For
positive integers p, q, and r, we can construct a bipartite graph H(p, q, r) with rqp2 edges
and a bipartition (X, Y ), with |X| = |Y | = pq. The set X is partitioned into sets U1, . . . , Up,
and the set Y is partitioned into sets W1, . . . Wp, with |Ui| = |Wi| = q. By Hi,j we denote
the subgraph of H(p, q, r) induced by Ui ∪ Wj , and by degi,j(z) we denote the degree of
vertex z in Hi,j . Fomin et al. [27] provided the following construction:

▶ Proposition 29 ([27]). Let q ≥ 2p(r + 1) (p(r+1)−1)6−1
(p(r+1)−1)2−1 . Then, we can construct H(p, q, r)

in time O(r · q · p2) with the following properties.
1. The girth of H(p, q, r) is at least 6.
2. For every vertex z ∈ V (Hi,j) and every i, j ∈ [p], we have r − 1 ≤ degi,j(z) ≤ r + 1.

Polynomial Parameter Transformation. Let (G, k) be an instance of Red-Blue Domin-
ating Set with V (G) = T ∪ N . First, we construct a graph G′ with V (G′) = T ′ ∪ N ′ from
G by introducing two new vertices, x and y, such that T ′ = T ∪ {x} and N ′ = N ∪ {y}, and
E(G′) = E(G) ∪ {xy}. We have the following observation.

▶ Observation 30. G has an RBDS of size at most k if and only if G′ has an RBDS of size
at most k + 1. Moreover, any RBDS of G′ contains y.

Now, we present the main construction for our reduction. Denote the vertex set V (T ′)
by {v1, v2, . . . , vp′ , x}. Moreover, let p = p′ + 1, ℓ = k + 1, r = ℓ + 2, and q = ⌈2p(r +
1) (p(r+1)−1)6−1

(p(r+1)−1)2−1 ⌉.
We construct H(p, q, r) such that each of Ui and Wi, for 0 < i ≤ p′, contains q copies of

vertex vi, and each of Up and Wp contains q copies of vertex x. Now, we obtain a graph G′′

by adding one more set of vertices P to H(p, q, r) such that V (P ) = V (N ′). Moreover, if
there is an edge between a vertex u ∈ N ′ and a vertex vi ∈ T ′, then we add an edge between
u and every vertex of Ui, and also between u and every vertex of Wi. Similarly, we add an
edge between y and every vertex of Up, and between y and every vertex of Wp. Finally, we
make the vertex y adjacent to every vertex of P . See Figure 2 for reference. For correctness,
we have the following lemma.

▶ Lemma 31. G′ has an RBDS of size at most ℓ if and only if G′′ is ℓ-copwin.

Proof. First, we show that if G′ has an RBDS of size ℓ, then ℓ cops have a winning strategy
in G′′. Let S ⊆ N ′ be an RBDS in G′ of size at most ℓ. The cops begin by choosing
the vertices corresponding to S in P . Observe that the vertex y has to be present in S.
Since vertex y dominates each vertex in P , the robber cannot safely enter a vertex in P .
Additionally, due to the construction of G′′, the vertices of S dominate each vertex in H.
Hence, the robber cannot safely enter a vertex in H. Therefore, the robber will be captured
in the first move of the cops.

Next, we show that if there is no RBDS of size ℓ in G′, then ℓ cops do not have a winning
strategy. We prove this by giving a winning strategy for the robber. First, we show that the
robber can safely enter the graph. In the beginning, let there be ℓ1 ≤ ℓ cops in P and ℓ2 ≤ ℓ

cops in H. Since there is no RBDS of size ℓ in G′, for every placement of at most ℓ cops in
P , there exists at least one pair of Ui and Wi such that no vertex of Ui and Wi is dominated
by the cops from P . Let Ui and Wi be one such pair of sets such that no vertex of Ui and
Wi is dominated by the cops from P . Moreover, since each vertex of H can dominate at
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y u

P

U1

Ui

Uj

W1

Wi

Wj

H(p, q, r)

Up Wp

Figure 2 Illustration for H(p, q, r) and P . If a vertex u is connected to vj in G, then u is
connected to every vertex of Wj ∪ Uj . Moreover, for every i, j, each vertex in Ui has at least r − 1
neighbors in Uj .

most p(r + 1) vertices in H, ℓ2 cops can dominate at most ℓ · p(r + 1) vertices. Since Ui

(and Wi also) contains q vertices, and q > ℓ · p(r + 1), the ℓ2 cops in H cannot dominate all
vertices of Ui, and hence the robber can safely enter a vertex of Ui.

Now, whenever the robber is under attack, it does the following. Without loss of generality,
let us assume that the robber is in Ui (the case of Wi is symmetric). Since there are at most
ℓ cops in P , there is always a Wj such that no vertex of Wj is dominated by cops from P .
Since each vertex in Ui has at least r − 1 = ℓ + 1 neighbours in Wj , the robber can move
to at least ℓ + 1 vertices of Wj . Since the girth of H is at least 6, no vertex from H can
dominate two vertices of Wj that are adjacent to the robber; else, we get a cycle on four
vertices. Hence, at most ℓ cops from H can dominate at most ℓ neighbors of the robber in
Wj , and the robber has at least ℓ + 1 neighbors in Wj . Hence, the robber can move to a safe
vertex in Wj . Since the graph H is symmetric, the robber can move safely from Wj′ to Wi′

also. The robber follows this strategy to avoid capture forever. ◀

Next, we have the following observation to show that there exists a vertex cover U of G′′

such that |U | = poly(|T |, k).

▶ Observation 32. V (H) ∪ {y} is a vertex cover of G′′. Therefore, the vertex cover number
of G′′ is at most 2 · p · q + 1 = 1 + 2p · ⌈2p(k + 3) (p(k+3)−1)6−1

(p(k+3)−1)2−1 ⌉, where p = |T | + 1.

This completes the proof of the argument that CnR parameterized by vcn is unlikely
to admit a polynomial compression. Thus, we have the following theorem as a result of
Lemma 31, Observation 32 and Proposition 28.

▶ Theorem 4. CnR parameterized by vcn does not admit polynomial compression, unless
NP ⊆ coNP/poly.

6 Conclusion and Future Directions

To achieve our kernelization results, the rules we used concerned removing (false or true)
twins from the graph. These rules are easy to implement and hence can be used to reduce
the complexity of the input graph, even when the input graph is far from the considered
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parameters. For example, for cographs and grids, none of the considered parameters is
constant/bounded, but cographs and grids can be reduced to a single vertex with the
operation of removing twins, and hence, our reduction rules give an alternate proof that the
cop number of cographs and grids is at most two [38, 19] for several variants. Moreover,
MTP is well-studied with the motivation of designing computer games. Some examples of
these variants include: multiple targets and multiple pursuer search [56] with applications in
controlling non-player characters in video games; MTP from the robber’s perspective with
faster cops [44] where the strategies were tested on Baldur’s Gate; MTP modeled with edge
weights and different speeds of agents [36] with the specific examples of Company of Heroes
and Supreme Commander. Moreover, the PACMAN game’s movement can be considered as
an instance of Fully Active CnR on a partial grid. One of the key aspects of designing
these games is to come up with scenarios that are solvable but look complex and challenging.
Our reduction rule can there. One can begin with an easy-to-resolve instance of CnR, and
then keep adding twins to this instance (recursively) to get an instance that looks sufficiently
complex but has the same complexity.

Finally, we define (formally defined in the full version [29]) a new variant of CnR, named
Generalized CnR, that generalizes many well-studied variants of CnR. Here the input
is (G, C1, . . . , Ck, R) where each cop Ci has speed si and R has speed sR. Moreover, each
cop can be either forced to be active (have to move in each turn), lazy (at most one lazy
cop moves in each turn), or flexible. Furthermore, each cop Ci can have reach λi. (Think
of Ci having a gun with range λi, and if R is ever at a vertex that is at a distance at most
λi from Ci, it gets shot.) In the full version [29], we show that RR17 provides a kernel for
Generalized CnR as well. This gives hope that RR17 can be used to get kernels for many
practical variants not explicitly studied in this paper. Also, RR17 has been used to provide
kernelization algorithm for Hunter and Rabbit game parameterized by vcn [22].

Still, many questions on the parameterized complexity of CnR remain open. We list
some of these questions below.

▶ Question 33. Does there exist an FPT algorithm for CnR parameterized by vcn with
running time 2O(vcn) · nO(1)?

▶ Question 34. Does there exist a better bound for the cop number with respect to vcn? In
particular, is c(G) = o(vcn)?

▶ Question 35. Does CnR parameterized by vcn admit a polynomial α-approximate kernel?

▶ Question 36. Study CnR with respect to the following parameters: (1) feedback vertex set
(2) treewidth (3) treedepth. In particular, is CnR FPT parameterized by treewidth?
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