Introduction

A d-dimensional subshift is a set of colourings of \mathbb{Z}^d by a finite number of colours which avoid some family of forbidden patterns. If the family is finite, it is called a subshift of finite type (SFT). Most problems concerning subshifts in dimension $d \geq 2$ are undecidable [6, 20, 19], due to the fact that sets of Wang tilings are SFTs.

Together with the shift action σ, a subshift forms a dynamical system. Interesting dynamical aspects are usually invariant by conjugacy, which is the isomorphism notion for subshifts. Most conjugacy invariants of subshifts in dimensions $d \geq 2$ are linked to computability theory or complexity theory. Historically, the first example was the characterization of the topological entropies of multi-dimensional SFTs as the upper semi-computable numbers [25]. Afterwards, many other computational characterizations of conjugacy invariants have been obtained: growth-type invariants [30], subactions [23, 4, 14] and so on.

Links between groups and subshifts have recently seen a surge in interest with several different approaches: subshifts can be defined on groups instead of \mathbb{Z}^d [1, 3] and some properties of the group are linked to decidability questions on the subshifts on it [26, 2, 15]. Analogies between groups and subshifts have allowed new characterizations to be proved for subshifts [27].

Another avenue is to associate a group to a subshift in order to construct conjugacy invariants in several ways [29, 22, 17]. The most well-known such group is the automorphism group, which is still not very well understood: for instance, while it is known that SFTs with positive entropy have very complex automorphism groups [24] or that SFTs whose
automorphism group has undecidable word problem can be constructed [18], it is still not known whether the automorphism groups of the full shifts on 2 and 3 symbols are the same. Apart from the low complexity setting [13, 12] not much is understood about it.

In this article, we study another group-related conjugacy invariant called the projective fundamental group introduced by Geller and Propp [17]. Fundamental groups are an object of interest in several fields of theoretical computer science, in particular graph reconfigurations [37], which bear links with a particular class of subshifts called hom-shifts [10] which are defined with a graph of allowed adjacency of colours. These are subshifts with a computable language that still exhibit interesting behavior [16]. An essential tool in their study is their universal cover, a graph which has strong ties to their projective fundamental group. Fundamental groups are also of interest when studying the “defects” in tilings [33, 5], or obstruction to the tileability of finite, untiled “holes” in tilings [11, 36]. In particular, provided that an SFT satisfies some mixing-like hypothesis, there is an explicit link between its fundamental cocycles [35, 34] and its projective fundamental group.

In the usual topological setting (see for example [21]), the fundamental group $\pi_1(X)$ of a space X is a topological invariant which describes the number of holes and the general shape of X. It is defined as the group of equivalence classes of loops through continuous deformation, together with the composition operation. In this setting, the fundamental group is well-defined only when X is path-connected.

When viewed as subspaces of the Cantor space, subshifts are totally disconnected. Nevertheless, one can still define a notion of projective fundamental group using paths and deformations (see Subsection 3.1 for details). As in the classical setting, this notion is only well-defined in the case of projectively connected subshifts, the appropriate notion of path-connectedness. This property resembles mixing properties (see for instance [9] or [32]), but it is not known whether any of the mixing properties defined in [9] imply projective connectedness of an SFT, although some partial results exist [33, 35]. Projective connectedness is undecidable but we do not know how hard: it is open whether it belongs to the arithmetical hierarchy.

As a conjugacy invariant, the fundamental group allows one to distinguish between some subshifts which share the same entropy and periodicity data. It is also better understood than the automorphism group in the sense that the authors in [17] explicitly compute it for several well-known subshifts: the full shifts on any alphabet always have trivial fundamental group, the square-ice has \mathbb{Z} and k-to-1 factors of full shifts – i.e. in which every point has exactly k preimages by the factor map – always have a fundamental group with finite order k. They also prove that any group of finite order is realizable as a fundamental group of some SFT.

The main result of this article is that any finitely presented group can be the fundamental group of an SFT:

Theorem 1. Let $G = \langle S | R \rangle$ be a finitely presented group. Then, there is a subshift of finite type X satisfying:

- X is projectively connected,
- the projective fundamental group of X is isomorphic to G.

We do not think that this constitutes a characterization of projective fundamental groups of SFTs, as we do not have a matching upper bound on the hardness its word problem. However, this theorem implies that the hardness of the word problem of the fundamental group – i.e. given a SFT, decide the word problem of its fundamental group – can be any recursively enumerable degree [8], and in particular that its upper bound is at least Σ_1^0-hard [31, 7]. It also implies that any undecidable property on finitely presented groups is undecidable for projective fundamental groups.
The main construction of the paper is quite different from other constructions used in undecidability results on tilings and subshifts: it does not use an aperiodic subshift.

The paper is organized as follows. After recalling the symbolic dynamics background in Section 2, we introduce the projective fundamental group in Subsection 3.1, some examples in Subsection 3.2 and finally in Section 4 we prove Theorem 1.

2 Definitions

A \(d\)-dimensional full shift on some finite alphabet \(\Sigma\) is the set \(\Sigma^{\mathbb{Z}^d}\), together with the shift-actions \(\sigma_u : \Sigma^{\mathbb{Z}^d} \to \Sigma^{\mathbb{Z}^d}\) defined for \(u \in \mathbb{Z}^d\) by \(\sigma_u(x) = x|_{u+v}\). The underlying topology is the one induced by the Cantor distance, defined on \(\Sigma^{\mathbb{Z}^d}\) by

\[
d(x, y) = 2^{-\min\{||u||_\infty \mid x_u \neq y_u\}},
\]

Two configurations are close in this topology if they agree on a large central square. A subshift is a closed, shift-invariant subset of some full shift. We call configurations of a subshift \(X\) the points of \(X\). Alternatively, subshifts can be defined using forbidden patterns. We call pattern any element \(P \in \Sigma^U\) where \(U \subset \mathbb{Z}^d\) is finite and is the support of \(P\), denoted by \(\text{supp}(P)\). For a configuration \(x\), we say that \(P\) appears in \(x\) if there exists \(u \in \mathbb{Z}^d\) such that \(\sigma_u(x)|_U = P\).

Let \(F\) be a collection (finite or not) of patterns. Then the set

\[
X_F = \left\{ x \in \Sigma^{\mathbb{Z}^d} \mid \forall P \in F, P \text{ does not appear in } x \right\}
\]

is a subshift. In fact, for any subshift \(X\), there exists a family of patterns \(F\) such that \(X = X_F\). A subshift \(X\) is a subshift of finite type (SFT) if there exists a finite \(F\) such that \(X = X_F\).

For a given subshift \(X\) defined by a fixed family of forbidden patterns \(F\), a pattern \(P \in \Sigma^U\) is locally admissible if it contains no forbidden patterns \(F\) \(\in F\). It is globally admissible or extensible if it appears in some configuration \(x \in X\).

3 Projective Fundamental Group

3.1 Intuitions and definitions

The Projective Fundamental Group, introduced by Geller and Propp [17], resembles the usual fundamental group construction in the topological setting: it is defined through paths, loops, and a homotopy notion. However, instead of directly considering paths between points of the subshift, they are defined between finite patterns with the same support. By doing so, one actually constructs a family of - potentially different - fundamental groups, for each finite support \(B \subset \mathbb{Z}^2\). In order to obtain a single group, the projective fundamental group, one takes their inverse (also known as projective) limit. We will construct a subshift by defining a set \(T\) of tiles. A configuration will then be a mapping \(x : \mathbb{Z}^2 \to T\) associating a tile to each point of the plane and which verifies some adjacency rules depending on \(T\). Contrary to the usual convention, we will consider that when embedding such a configuration in the Euclidean plane \(\mathbb{R}^2\), the tile in position \((i,j)\) is a unit square whose bottom-left corner is placed on \((i,j)\), as opposed to its center. This is merely a discussion about conventions, but it will make some definitions substantially simpler.

Fix a support \(B \subset \mathbb{Z}^2\). In what follows \(B\) will be called an aperture window. Most of the time, we will restrict ourselves to the windows \(B_n = [-n, n-1]^2\). We choose this asymmetrical window to simplify some definitions, but also for consistency with the
finitely presented groups as fundamental groups of subshifts

Consider P, P' two extensible patterns of support B and two points of the grid $v, v' \in \mathbb{Z}^2$. A path between (P, v) and (P', v') is a sequence of pairs of patterns and of points of \mathbb{Z}^2 (or equivalently, two sequences of the same length). The sequence of points represents an actual, “geometric” path, called its trajectory, that is to say a sequence of vertices of \mathbb{Z}^2 starting at v and ending at v', where consecutive vertices are at euclidean distance exactly 1. The sequence of patterns associates with each one of those vertices v_t a pattern P_t, that needs to be coherent with the path: when moving to the next vertex v_{t+1} on the trajectory, the next pattern P_{t+1} needs to be coherent with P_t, that is to say, they should be equal where their supports overlap (see Definition 2 for a precise statement). For example, in the full shift over two symbols $\{0, 1\}$, and for $B = B_1$, take the following patterns:

$$P_1 = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} (0, 0), \quad P_2 = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} (1, 0), \quad P_3 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} (1, 0)$$

The tile in position $(0,0)$ is represented in red. The sequence (P_1, P_2) is a valid path, as the overlapping parts of the support are equal in both patterns, but (P_1, P_3) is not because the point $(0, 0)$ is tiled by 0 in the first pattern but by 1 in the second one. Moreover, the pattern obtained by “merging” two consecutive patterns also needs to be an extensible pattern.

Definition 2 (Path). Let $B \subset \mathbb{Z}^2$ be a finite set, a path of aperture window B is a finite sequence $(P_t, v_t)_{0 \leq t \leq N}$ such that for any t with $0 \leq t \leq N$:

- P_t is an extensible pattern of X of support $B + v_t$.
- v_t is adjacent to v_{t+1}, i.e., $d_t = v_{t+1} - v_t$ has euclidean norm exactly 1.
- $P_t(u) = P_{t+1}(u)$ for any $u \in B \cap \sigma_{d_t}(B)$, i.e., consecutive patterns overlap.
- the pattern $P_t \cup P_{t+1}$ obtained by merging P_t and P_{t+1} is extensible in X.

The first and last element of the sequence are respectively called the starting point and the ending point of the path. If they are equal, the path is called a loop. The path $(P_{N-1}, v_N - v_0)_{0 \leq t \leq N}$ is called its inverse path. If p is a path, its inverse will be denoted by p^{-1}.

The sequence $(v_t)_{0 \leq t \leq N}$ is called the trajectory of the path.

Two paths may be composed when the first one ends where the second one starts:

Definition 3 (Path composition). Given $p = (P_t, v_t)_{0 \leq t \leq N}$ and $p' = (P'_t, v'_t)_{0 \leq t \leq N'}$ two paths such that $(P_N, v_N) = (P'_0, v'_0)$ we denote by $p * p'$ the path

$$p * p' = (P_0, v_0) \ldots (P_N, v_N)(P'_1, v'_1) \ldots (P'_{N'}, v'_{N'}).$$

Definition 4 (Coherent path). A path $p = (P_t, v_t)_{1 \leq t \leq N}$ is coherent if all its patterns are equal on the points where their supports overlap, and furthermore, the pattern obtained by merging all the P_t is globally admissible in X. In that case, for any $x \in X$ containing $\bigcup_{t \leq t \leq N} P_t$, we say that p can be traced in x.

Definition 5 (Coherent path decomposition). A coherent decomposition of a path p is a sequence p_1, \ldots, p_L of coherent paths such that $p = p_1 * p_2 \ldots * p_L$, and L is called the length of the decomposition.

One can now define a corresponding homotopy notion: let $p = p_1 * p_2 * p_3$ be a path and suppose that p_2 can be traced in a single configuration $x \in X$. Then, for any p_2' traced in x with the same starting and ending point as p_2, the path $p_1 * p_2' * p_3$ is called an elementary deformation of p. As paths might consist of a single point, they can be deformed by inserting or removing loops traced in a single configuration at any step.
Definition 6 (Homotopy). Two paths p, p' are said to be homotopic if there exists a finite sequence of elementary deformations from p to p'. This defines an equivalence relation between paths, and we denote by $[p]$ the equivalence class of p. If p and p' are paths with an aperture window $B \subset \mathbb{Z}^2$, we denote by $p \sim_B p'$ the fact that they are homotopic.

Remark 7. When two paths are homotopic, they necessarily have the same starting and ending points. When B is clear from the context, we will simply write $p \sim p'$.

With this definition of a path and of homotopy, we can define a fundamental group for each possible aperture window $B \subset \mathbb{Z}^2$.

Definition 8 (Fundamental Group). Let X be a SFT, $B \subset \mathbb{Z}^2$ an aperture window, $x_0 \in X$ and $v \in \mathbb{Z}^2$. The fundamental group of X based at (x_0, v) for the aperture window B, denoted by $\pi_1^B(X, (x_0, v))$, is the group of all the equivalence classes of loops starting and ending at $(x_0)_B, v)$ for the homotopy equivalence relation, along with the * operation.

Although our paths follow the \mathbb{Z}^2 grid and seem to be discrete and combinatorial objects, it is legitimate to refer to those objects as homotopy and deformations, which usually suppose some kind of continuity. In fact, this simplification does not entail any loss of generality, compared to paths drawn in \mathbb{R}^2, and subshifts seen as \mathbb{Z}^2-invariants subsets of $\Sigma^{\mathbb{Z}^2}$ (see [17, Subshifts and albums] for more details). In order to obtain a single object associated with the subshift, we get rid of this reference to an aperture window by considering the projective fundamental group of the subshift.

Definition 9 (Restriction maps). For any $B' \subseteq B \subset \mathbb{Z}^2$, the map
\[
\text{restr}_{B, B'} : \Sigma^B \to \Sigma^{B'} \\
P \mapsto (i \in B' \mapsto P(i))
\]
is called the canonical restriction map from B to B'. We can naturally extend it to $\bigcup_{v \in \mathbb{Z}^2} \Sigma^{B + v}$ so that $\text{supp}(P) = B + v \Rightarrow \text{supp}(\text{restr}_{B, B'}(P)) = B' + v$.

Intuitively, these maps simply “forget” some parts of the pattern. We also extend these maps to paths: if $B' \subseteq B$, the image of a path p with aperture window B is a path with the same trajectory with aperture window B', obtained by mapping $\text{restr}_{B, B'}$ element-wise on p.

Definition 10 (Projective path class). Let $x, x' \in X$ and $v, v' \in \mathbb{Z}^2$. A projective path class between (x, v) and (x', v') is a sequence $([p_n])_{n>0}$ along with the canonical restriction maps, such that p_n is a path of aperture window B_n between (x_{B_n}, v) and (x'_{B_n}, v'), and for each $n > n' > 0$, $\text{restr}_{B_n, B_{n'}}(p_n) \sim_{B_{n'}} p_{n'}$.

In the case where $(x, v) = (x', v')$, we instead say that $([p_n])_{n>0}$ is a projective loop class based at (x, v).

Definition 11 (Projectively connected subshift). A subshift X is projectively connected if for any two points $x, x' \in X$, there exists a projective path class between $(x, (0,0))$ and $(x', (0,0))$.

As before, projective loop classes based at the same (x, v) can be concatenated component-wise, to obtain another projective loop class.

Definition 12 (Projective Fundamental Group). The projective fundamental group based at the point $(x_0, v) \in X \times \mathbb{Z}^2$ of a subshift X is the group of projective loop classes based at (x_0, v), with the group operation being the component-wise concatenation of projective loop
classes, and is denoted by $\pi^\text{proj}_1(X, (x_0, v))$. If X is projectively connected, then its projective fundamental group does not depend on the chosen basepoint (x_0, v), and we denote it by $\pi^\text{proj}_1(X)$.

This is a usual construction of what is called a projective (or inverse) limit in category theory. However, we do not use general properties of inverse limits in the rest of the article.

3.2 First example

We slightly modify an example of [17]. Consider the two-dimensional subshift X on the alphabet $\{0, 1\}$ of all the configurations containing at most one 1. We show how some paths can be deformed to the trivial path. It is then easy to show that all paths are homotopic to the trivial path. Take an aperture window of size 1, i.e., only one cell is visible at a time. Consider the following path p, starting at $(0, (0, 0))$ (we see a 0 at the origin of the \mathbb{Z}^2 plane). The path then moves in the \mathbb{Z}^2 grid while only seeing 0's, and comes back to the origin where it now sees a 1. Then it moves away from the origin while only seeing 0's, and finally comes back to $(0, 0)$ with a 0 in the window. For simplicity, we also suppose that the path does not pass through the origin at any other time. To sum up, the path is a loop, starting and ending at $(0, (0, 0))$, which only sees 0's along the way except at one time (t_2 on the figure) where it sees a 1 at the origin. This is illustrated in Figure 1a.

(\textbf{a}) Example of a path that cannot be traced in a single configuration.

(\textbf{b}) A homotopic deformation to a path that can entirely be traced in the all-0 configuration.

Figure 1 Example of a path and of a deformation of this path. Notice that the central 0 and 1 windows at t_0 and t_2 are actually located at the same point of the plane, although the figure depicts them on top of each other for the sake of clarity. Red wires can be traced in x_0, and blue wires in x_1. The wire of alternating colours can be traced within both, and so it is both homotopic to the initial path, and to the trivial path.

Let x_0, x_1 respectively be the all-zero configuration, and the configuration containing a 1 at the origin. The path p can be homotopically deformed in the following way: between the times t_1 and t_3, it can be considered to be entirely in x_1. It can thus be deformed in this configuration by completely avoiding the origin, and joining the same points, as in Figure 1b. By definition of x_1, this new path will now see only 0's. The resulting loop then also sees 0's at any point, and so it can be homotopically contracted to the trivial path in the configuration x_0. This proof can be extended to make any 1 on a path “disappear”, and so any path can be contracted. In this case, this shows that $\pi^\text{proj}_1(X, (x_0, (0, 0))) = \{e\}$ is trivial, as the same argument works for arbitrary large B_n.

4 Realization of projective fundamental groups

We are now going to prove our main result: any finitely presented group is the fundamental projective group of some SFT.

\textbf{Theorem 1.} Let $G = (S|R)$ be a finitely presented group. Then, there is a subshift of finite type X satisfying:

- X is projectively connected,
- the projective fundamental group of X is isomorphic to G.

\textbf{Theorem 1.} Let $G = (S|R)$ be a finitely presented group. Then, there is a subshift of finite type X satisfying:

- X is projectively connected,
- the projective fundamental group of X is isomorphic to G.

4.1 The construction

The subshift X that we construct will informally consist of oriented wires, drawn on an empty background, each wire corresponding to a generator $s \in S$ of the group $G = \langle S | R \rangle$. We only authorize the wires to go up, perhaps in some kind of “zigzag” manner, but never down or horizontally. More precisely, we define the following tiles: first of all, a tile that we call empty, visually represented by \square, and we denote by T_{empty} the singleton containing this tile. We denote by $\square \in X$ the configuration which only contains empty tiles, and its patterns are called empty patterns. Then, for each element $s \in \bar{S} = S \cup \{s^{-1} | s \in S \}$, we also consider the set T_s of the 5 following tiles:

If $s \neq s'$, then $T_s \cap T_{s'} = \emptyset$. Distinct T_s will be represented by wires of different colours in the figures. These tiles will, intuitively, be used to represent generators of the group in valid configurations of X. Finally, we use some other tiles that will play the role of representing the group relations. We can always assume that R contains the trivial relators ss^{-1} and $s^{-1}s$ for all $s \in S$. Now, for each relator $r = r_1r_2 \ldots r_n \in R$, we let T_r be the tiles described by Figure 2.

![Figure 2](https://example.com/figure2.png)

- (a) Start.
- (b) For $2 \leq i < n$.
- (c) End.

Figure 2 The relation tiles.

The wire exiting from the right side of the tile Figure 2a does not have the same colour as the one exiting from the top. The former colour is denoted by \square to differentiate it from the actual r_1 wires. In the other tiles, $R_i = r_1r_2 \ldots r_i$. Hence, for each relator $r_1 \ldots r_n$, we have one tile of type Figure 2a and one of type Figure 2c, and $n - 2$ tiles of type Figure 2b. Tiles belonging to some T_r are called relation tiles. Note that if $u \in R$ is such that it is the prefix of two different relators, i.e., there exists $v, v' \in \bar{S}^+$ such that $uv \in R, uv' \in R$ then the colours \square are shared by the tiles used to represent those relators and so $T_{uv} \cap T_{uv'} \neq \emptyset$. X is the subshift generated by the tileset $T = T_{\text{empty}} \cup \bigcup_{s \in S} T_s \cup \bigcup_{r \in R} T_r$ along with the obvious adjacency rules: any wire must be extended, by a wire with the same orientation given by the arrows – e.g., \square and \square are forbidden patterns, but \square is allowed (assuming the two tiles contain a wire of the same colour).

We now formalize what we really mean by a wire.

► **Definition 13** (Wire). A wire is a sequence $U = (T_i, v_t)_{t \in I}$, $I \subseteq \mathbb{Z}$ a non-necessarily finite interval, of pairs of non-empty tiles and \mathbb{Z}^2 points, such that

1. $\|v_{t+1} - v_t\|_1 = 1$,
2. The tile T_{t+1} in position v_{t+1} extends the wire of tile T_t in position v_t: placing a tile \square above or below another tile \square does extend it, while placing it on its right or left side does not, although they are valid patterns of X.
3. U does not contain two consecutive relation tiles.

► **Remark 14**. We do not prevent a wire from moving back and forth: it is possible to have $\langle T_i, v_t \rangle = \langle T_{i+2}, v_{t+2} \rangle$.

MFCS 2023
Definition 15 (Coherent wire). We say that a wire is coherent if there exists a configuration \(x \in X \) such that for any tile \((T_i, v_i)\) of the wire, \(x_{v_i} = T_i \).

Remark 16. Valid configurations of \(X \) can contain non-intersecting infinite wires, and possibly some relation tiles with wires originating from them. Any relation tile belongs to one horizontal line of \(k \) relation tiles, corresponding to a valid relator \(r_1 \ldots r_k \).

One important concept associated to paths on this subshift is the idea that paths can cross wires. Informally, this is what happens when the window, and in particular, its center, moves from one side to the other of a given wire in a path.

Definition 17 (Crossing a wire tile). Let \(n > 0 \), and let \(v, v' \in \mathbb{Z}^2 \) be two adjacent points, and \(P, P' \) two patterns of respective support \(v + B_n, v' + B_n \) such that \((P, v), (P', v')\) is a valid path. For \((i, j) \in B_n\), let \(T_{(i,j)} \) be the tile whose bottom-left corner is on \((i, j)\) in \(P \). We say that this path crosses a wire tile if

\[v' - v = e_0 = (1, 0) \quad \text{(resp. } -e_0) \quad \text{and the tile } T_v \quad \text{(resp. } T_{v-e_0}) \quad \text{was of one of the following forms:} \]

\[\square \quad \square \quad \square \quad \square \]

\[v' - v = e_1 = (0, 1) \quad \text{(resp. } -e_1) \quad \text{at the next step } t + 1 \quad \text{and the tile } T_v \quad \text{(resp. } T_{v-e_1}) \quad \text{was of one of the following form:} \]

\[\square \quad \square \quad \square \quad \square \]

In the following, we let \(B_n = \{-n, \ldots, n - 1\}^2 \). Unless stated otherwise, all the aperture windows considered will be of this form.

Definition 18 (Seeing a wire). A path \(p = (P_t, v_t)_{t \leq N} \) sees a wire \(U \) if there exists a timestep \(i \leq N \), and \((T_j, v_j) \in U \) such that the tile in position \(v_j \) in \(P_i \) is \(T_j \).

Definition 19 (Crossing a wire). A path crosses a wire if it crosses one of its tiles.

4.2 Only Crossed Wires Matter

Our final goal is to prove that the projective fundamental group of this subshift \(X \) is the group \(G = (S|R) \). To do so, the idea will be to associate an element of the group to each path, according to the wires that it crosses. The following lemmas can be seen as a procedure to put paths in some kind of normal form via homotopies, depending only the sequence of crossed wires, regardless of the underlying geometry of the path. All the lemmas consider paths that both start and end in empty patterns, but this is not really a restriction as we will later prove that the subshift \(X \) is projectively connected, and so we will only consider loops based at \(x_0 \). Unless stated otherwise, all the considered paths are using some \(B_n \) as aperture window. We start with some easy statements about patterns of support \(B_n \), and the wires they may contain.

Lemma 20 (Wire Order Lemma). Let \(x \in X \), and let \(U, V \) be two infinite wires in \(x \). Suppose that \(U, V \) do not contain relation tiles.

- For all \(z \in \mathbb{Z} \), there exists between one and two \(z_U^0, z_V^0 \in \mathbb{Z} \) such that \(U \) passes through the position \((z_U^0, z)\). If there are two such \(z_U^0 \), then they are necessarily adjacent, e.g., side-by-side.

- Let \(z \in \mathbb{Z} \), and \(z_U^0, z_V^0 \in \mathbb{Z} \) as in the previous point respectively for \(U \) and \(V \). If \(z_U^0 < z_V^0 \), then for all \(z_U, z_V, z \in \mathbb{Z} \) such that \((z_U, z) \in U, (z_V, z) \in V \), we have \(z_U < z_V \). Intuitively, this means that wires can globally be ordered from left to right.

If \(U \) or \(V \) contains a relation tile, then the previous claims are true only for \(z \) large enough.
Remark 21. Note that the previous lemma is true because we consider wires U, V belonging to some configuration. It is clearly false for arbitrary wires.

Lemma 22. Let P be a globally admissible pattern of support B_n for some $n > 0$. Let U be a wire in P without relation tiles. Suppose that U passes to the right (resp. left) of $(0,0)$ in P. Then, U neither enters nor exits P on its left (resp. right) edge.

Proof. This directly follows from the fact that no tile contains a horizontal wire, and that B_n is a square.

Corollary 23. If P is a globally admissible pattern that sees a wire U with no relation tiles, and $x \in X$ is such that $x|_{B_n} = P$, then $\sigma_{(0,1)}^{B_n}(x)|_{B_n}$ and $\sigma_{(0,1)}^{-B_n}(x)|_{B_n}$ do not see U.

In order to show that the homotopy class of a path p is indeed only determined by the wires it crosses, we will need several lemmas in which the proof will always be similar: an induction on the length L of a Coherent path decomposition of p:

- for $L = 1$ (i.e. p is coherent), we explicitly show how to deform p to obtain the required property.
- for $L = 2$ we use the Path Co-extensibility Lemma to "normalize" both coherent subpaths of p using the base case $L = 1$.
- In general, if $p = p_1 * \ldots * p_N$, we can deform both p_1 and p_2 so that $p \sim p'_1 * p'_2 * \ldots * p_N$, in such a way that we can apply the base case to p'_1, and the induction case to $p'_2 * \ldots * p_N$.

The key step is therefore to properly show how to deal with the case $L = 2$; this is the purpose of the Path Co-extensibility Lemma that we now show, after some preliminary results.

Lemma 24 (Finite Extension Lemma). Let P be an extensible finite pattern of X, there exists $x \in X$ containing P, such that x contains a finite number of wires.

Definition 25 (Cone). For $n \in \mathbb{N}$, we define the cones

$$C^-_n = \{(i,j) \mid j \leq 0, -|j| - n \leq i < |j| + n\}$$

$$C^+_n = \{(i,j) \mid j \geq 0, -j - n \leq i < j + n\}$$

We denote $\partial C_n = C_n \cap ((C^-_n + e_0) \cup (C^+_n + e_1))$ the border of a cone.

Lemma 26 (Extensibility Lemma). Let $n > 0$. There exists $k > 0$ such that for any $x \in X$, there exists $x' \in X$ with:

- $x'|_{C^+_n} = x|_{C^+_n}$
- $x'|_{\sigma(o,k)(C^-_n)} = x|_{\sigma(o,k)(C^-_n)}$

Proof. We prove the case where x' is empty in a cone above the $y = 0$ line, and equal to x below it, the other case being similar. Let r be the length of the longest relator in the finite presentation of $G = \langle S | R \rangle$. Let $W \subset \mathbb{Z}^2$ be the set of positions of tiles that are part of a wire of x that:

- either passes by C^-_n
- or originates from a relation tile which is itself part of a relator intersecting C^-_n.

Now, construct x' as follows:

- for $(i,j) \in C^-_{n+r} \cap W$, set $x'_{(i,j)} = x_{(i,j)}$. The other tiles of C^-_{n+r} are empty.
- for $(i,j) \in \partial C^-_{n+r} \cap W$ and $j < 0$, extend the wire above (i,j) using only tiles \square and \boxplus if $i < 0$, or \boxminus and \boxplus if $i > 0$.
- each wire of W passing by $(i,0)$ with $|i| \leq n + r$ is extended by $n - |i| + r$ tiles \boxplus and then by tiles of the form \square and \boxplus if $i < 0$, \boxminus and \boxplus if $i > 0$.
- all the other tiles are empty.
Then, x' is a valid configuration of X and:
- By definition of W, x', x coincide on C_n^-.
- ∂C_{n+r}^- contains no relation tile, by definition of W and r.
- $(0, n + r + 1) + C_n^+$ is empty. See for example Figure 3.

![Figure 3](image)

Corollary 27 (Path Co-extensibility Lemma). Let $p = ((P_t, u_t))_{t \leq N_p}$ and $q = ((Q_t, v_t))_{t \leq N_q}$ be two paths with the same aperture window B_n, satisfying:
- Both p and q are coherent paths
- $(P_{N_p}, u_{N_p}) = (Q_0, v_0)$ (equivalently, $p * q$ is well-defined)
- $u_1^1 = v_1^1$ (i.e. q ends at the same height as p starts)

Then, there exists p', q', r paths such that:
- r ends on an empty pattern
- $p' * r$ and $r^{-1} * q'$ are well-defined and are both coherent paths.
- $p \sim p'$ and $q \sim q'$

Proof. We may assume that $u_0^1 \leq u_{N_p}^1$, i.e. the ending point of p is higher than its starting point, the other case being similar. We can also assume that $u_{N_p}^1$ is the highest point in the entire trajectory of both p and q (we can always homotopically deform p and q so that this is true), and up to some shift, we can assume that $u_{N_p} = (0, 0)$. Consider now $P \subset \mathbb{Z}^2$ so that P contains all the P_t and Q_t. Let x_p, x_q be configurations in which p, q can respectively be traced. Take N large enough so that $P \subset C_N^-$. Then, applying the Extensibility Lemma to x_p, N on one hand, x_q, N on the other hand, gives two configurations $x'_p, x'_q \in X$. Let r be the path obtained by moving up for $2N + 1$ steps in either x'_p or x'_q, starting from the origin, which is the same path in both cases. Then r satisfies the conditions of Path Co-extensibility Lemma.

We are now ready to prove the main lemmas needed to show Theorem 1.

Lemma 28 (No Relation Tile Lemma). Let p be a path starting and ending on an empty pattern. Then there exists p' that does not contain any relation tile.

Proof. As explained above, the proof is by induction on the length of a coherent path decomposition of p. The base case when p is a coherent path is illustrated in Figure 4. See the appendix of the full version for the full proof.

Lemma 29 (Single Wire Lemma). Let $p = (P_t, v_t)_{0 \leq t \leq N}$ be a path starting and ending with empty patterns. There exists a path p', homotopic to p, such that the union of any two consecutive patterns in p' contains at most a single wire.
Figure 4 A coherent path deformed so as not to see relation tiles.

Figure 5 Deformation of p into p' in a single configuration to see only one wire per pattern.

Proof. As for the No Relation Tile Lemma, we illustrate in Figure 5 the case where p is itself coherent. For the full proof, see the appendix of the full version.

Lemma 30 (No Uncrossed Wire Lemma). Let p be a path starting and ending with empty patterns, and U some wire seen but not crossed by p. There exists a path p', homotopic to p, which does not see U.

Proof. The idea is that using the previous Single Wire Lemma, we can deal with each wire independently. In particular, the uncrossed wire U is the only wire seen by some subpath p' of p, and is not seen by p neither before nor after p'. Hence, it suffices to show the result for paths seeing a single wire overall. In that case, one observes that U has to stay in the same “side” of the aperture window along p', that can therefore be deformed without crossing U by moving sufficiently far in the opposite direction. For more details, see the appendix of the full version.

Lemma 31 (Cross Anywhere Lemma). Let p be a path starting and ending with empty patterns. If p sees no relation tiles, but sees and crosses a single wire U exactly once, then for all $v = (v^0, v^1) \in \mathbb{Z}^2$, p is homotopic to a path p' which crosses U exactly on v.

Proof. The idea is that if U exits the aperture window B_n of p in position $(i, j) \in \mathbb{Z}^2$, it can be extended using tiles \square and \blacksquare, or \blacksquare and \square, to pass anywhere inside $(i, j) + C_n$ or $(i, j) + C_n^\circ$. The path p can then be deformed to cross it anywhere in those two cones. Using
several such deformations, we can deform \(p \) so that it crossed \(\mathcal{U} \) anywhere in the plane. Note that even if \(p \) is initially coherent, it might happen that \(p' \) is not, depending on \(v \) and where \(p \) initially crossed \(\mathcal{U} \). See the appendix of the full version for the complete proof.

4.3 Projective connectedness

Lemma 32 (Projective connectedness). \(X \) is projectively connected.

Proof. The proof relies on the Extensibility Lemma. The idea is that starting from any configuration \(x \), there always exists a configuration \(x' \) containing a infinite cone (see Definition 25) of \(x_0 \), and an infinite cone of \(x \). We can then use this configuration to construct for \(n > 0 \) a path \(p_n \) with aperture window \(B_n \) that first moves sufficiently far into the latter cone in \(x \), then to the former cone in the configuration \(x' \), and finally comes back to the origin in \(x_0 \). See the appendix of the full version for the precise proof.

4.4 Computing the projective fundamental group

We can now compute \(\pi_1^{\text{proj}}(X) \), which is independent of the basepoint since \(X \) is projectively connected. Hence, unless stated otherwise, all the loops in this proof are based at \((x_0, (0,0)) \).

With any such loop \(p \), we associate a word \([p] \) on the alphabet \(\bar{S} \) in the following way:
- If \(p \) does not cross any wire, we associate the empty word with it, \([p] = \varepsilon \).
- If \(p \) crosses a single wire \(\mathcal{U} \), then:
 - If \(\mathcal{U} \) is not a horizontal wire found on a relation tile, and \(s \in \bar{S} \) is the generator corresponding to \(\mathcal{U} \) (see Subsection 4.1)
 * if \(p \) crosses it from left to right, or from top to bottom on a tile shaped as \(\square \) or from bottom to top on a tile \(\square \), then \([p] = s \in \bar{S} \).
 * if \(p \) crosses it in any other direction, we set \([p] = s^{-1} \in \bar{S} \).
 - Otherwise, \(\mathcal{U} \) is a horizontal wire on a relation tile. Let \(\overline{R_1} = r_1 \ldots r_i \) be its colour.
 * If it is crossed from top to bottom, then \([p] = r_i^{-1} \ldots r_0^{-1} \in \bar{S}^* \).
 * Otherwise, \([p] = R = r_0 \ldots r_i \).
- If \(p = p_1 \ast p_2 \), then \([p] = [p_1] \ast [p_2] \in \bar{S}^* \) where \(\ast \) represents the concatenation in \(\bar{S}^* \).

Some examples are given in Figure 6a and Figure 6b.

![Diagram](image)

(a) The word associated with this loop is \(bb^{-1}a^{-1}abc^{-1}b^{-1} =_{G} 1_G \).

(b) Widget for the relator \(abc = 1_G \). From top to bottom, the words associated with the paths (1) to (4) are respectively \(abc = 1_G, aa^{-1}(ab)c = 1_G, (ab)c = 1_G \), and \(1_G \). For clarity, the relation tiles are not adjacent on the figure.

Figure 6 Some examples of words and group elements associated with coherent paths.

For any two words \(w, w' \) on \(\bar{S} \), we write \(w \equiv w' \) if they are equal as words on this alphabet, and \(w =_G w' \) if they represent the same element of the group \(G \). Let \(\leftrightarrow_R \) be the relation defined as the symmetric closure of \(\{ (uw, uv) \mid w \in R \text{ and } u, v \in \bar{S}^* \} \), corresponding to the operation of inserting and removing relators to words. We can always suppose that it is
reflexive by adding the empty word ε to the relators. We denote \rightarrow^*_R its transitive closure. By definition, $w \leftrightarrow^*_R w' \iff w =_G w'$ (see e.g., [28, Theorem 1.1]). For example, if we take $a \in S$, we have $aa^{-1} = G 1_G$, but $aa^{-1} \neq \varepsilon$.

In order to prove that the projective fundamental group of this subshift is G, we will prove that the operation $[p]$ entirely characterizes a loop up to homotopy, in the sense that loops associated with the same element of G are exactly a projective loop-class:

- **Lemma 33 (Homotopic Implies Equal).** For any window B_n and for any pair of loops p_n, p'_n starting at $(x_{\square}B_n,(0,0))$, $p_n \sim_{B_n} p'_n \implies [p_n] =_G [p'_n]$.

- **Lemma 34 (Equal Implies Homotopic).** For any window B_n and for any pair of loops p_n, p'_n starting at $(x_{\square}B_n,(0,0))$, $[p_n] =_G [p'_n] \implies p_n \sim_{B_n} p'_n$.

The full proofs can be found in the appendix of the full version.

- **Theorem 35.** $\pi_1^{proj}(X) = G$

Proof. Let $n > 0$ and let $\Phi_n : p \in \pi_1^{B_n}(X,(x_{\square},(0,0))) \mapsto [p] \in G$ be the function which associates with a loop-class with aperture window B_n the corresponding element of G. The Homotopic Implies Equal and Equal Implies Homotopic show that it is well-defined and injective. Let $[p], [p']$ be two loop-classes based at $(x_{\square}B_n,(0,0))$. We have shown that $[p] \sim_{B_n} [p'] \iff \Phi_n([p]) = G \Phi_n([p'])$. Now notice that $\Phi_n([p+p']) = G \Phi_n(p) \cdot G \Phi_n(p')$, i.e., Φ_n is a group morphism. To show that it is surjective, let $g \in G$ any element, and $u_1 \ldots u_n \in \tilde{S}$ such that $u_1 \ldots u_n = G g$. Let x^g the following configuration:

- For $1 \leq i \leq \ell$ and $j \in \mathbb{Z}$, $x^g(i,j)$ is a tile of type \square and of colour u_i
- Otherwise, $x^g(i,j) = \blacksquare$

Now, consider the following loop: define p_n as the loop based at $(x_{\square}B_n,(0,0))$, which:

- moves left for n steps in x_{\square}
- moves right for $2n + \ell$ steps in x^g – at this point, it sees an empty pattern, after having crossed all the wires of x^g
- comes back to $(0,0)$ in x_{\square}

By definition, $[p_n] \equiv u_1 \ldots u_n =_G g$.

Furthermore, notice that for any loop-class $[p_{n+1}]$ based at $(x_{\square}B_{n+1},(0,0))$, if p_{n+1} projects down to p then $\Phi_{n+1}([p_{n+1}]) = G \Phi_n([p])$. This shows that $\pi_1^{proj}(X,(x_{\square},(0,0)))$ is isomorphic to G, and the final result follows from the fact that X is projectively connected. ▶

References

26 Emmanuel Jeandel. Translation-like Actions and Aperiodic Subshifts on Groups. working paper or preprint, August 2015. URL: https://hal.inria.fr/hal-01187069.

