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Preface

This proceedings volume contains papers and abstracts presented at the 23rd Workshop on
Algorithms in Bioinformatics (WABI 2023), which was held in Houston, Texas, USA, from
September 4th to 6th, 2023.

The Workshop on Algorithms in Bioinformatics is an annual conference established in
2001 to cover all aspects of algorithmic work in bioinformatics, computational biology, and
systems biology. The conference serves as a forum for the presentation of new insights
about discrete algorithms and machine-learning methods that address important problems
in biology, particularly those based on molecular data and phenomena. These algorithms are
founded on sound models, exhibit computational efficiency, and have been implemented and
tested in simulations and on real datasets. The focus of the meeting is on recent research
results, including significant work-in-progress, as well as identifying and exploring directions
for future research. Over the 23 instances of WABI, computational biology has significantly
grown in importance. Computational analysis methods, some of which have been advanced
significantly over the years at WABI, have proven crucial for the global response to the
COVID-19 pandemic and for vaccine development.

WABI 2023 was co-located with ACM-BCB 2023. A total of 44 manuscripts were
submitted to WABI 2023, out of which 22 were selected for presentation at the conference.
Among these, 19 are included in this proceedings volume as full papers, and 3 are included
as extended abstracts. The 22 papers chosen for the conference underwent a rigorous peer
review process, involving at least three (most frequently four) independent reviewers per
submitted paper. Following this, discussions took place among the WABI Program Committee
members. The reviews were conducted by both Program Committee members and additional
reviewers who were selected based on their expertise relevant to specific papers. The selected
papers encompass a wide range of topics, including phylogenetic trees and networks, cancer
phylogenetics, sequence alignment and assembly, gene and genomic-level evolution, genome
rearrangement, sequence and genome analysis, RNA structure, pattern matching, data
compression, and more. These papers are arranged according to the conference program
within this volume. The program also featured an invited talk, two highlight talks, and a
poster session.

Extended versions of select papers have been invited for publication in a thematic series
in the journal “Algorithms for Molecular Biology” (AMB), published by BioMed Central. A
total of 16 extended papers will be submitted to this thematic series.

We extend our gratitude to all the authors of the submitted papers, whose contributions
made this conference possible. Special thanks are due to all the members of the WABI
2023 Program Committee and their sub-reviewers for their diligent efforts in reviewing the
manuscripts and engaging in comprehensive discussions. These discussions informed the
decision-making process and resulted in constructive review reports for the authors. We are
grateful to the WABI Steering Committee for their availability, assistance, and guidance. Our
thanks go out to all the conference participants, session chairs, and speakers who contributed
to a highly successful scientific program. In particular, we express our gratitude to the
conference’s keynote speaker, Teresa Przytycka (NCBI, NIH), for her presentation titled
“Algorithmic Approaches to Study Mutational Processes in Cancer”. We extend our thanks
to the highlight presentation speakers, Christina Boucher and Travis Gagie, for graciously
agreeing to speak at the conference on the topic of “The Theory and Applications of the
r-index in Bioinformatics”. Furthermore, we would like to express our special appreciation
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to the ACM-BCB 2023 Organizing Committee for their dedicated efforts and generosity
in organizing the event. The EasyChair system was utilized for handling submissions and
reviews.

Previous WABI proceedings appeared in LNCS/LNBI volumes as follows: 2149 (WABI
2001, Aarhus), 2452 (WABI 2002, Rome), 2812 (WABI 2003, Budapest), 3240 (WABI
2004, Bergen), 3692 (WABI 2005, Mallorca), 4175 (WABI 2006, Zurich), 4645 (WABI 2007,
Philadelphia), 5251 (WABI 2008, Karlsruhe), 5724 (WABI 2009, Philadelphia), 6293 (WABI
2010, Liverpool), 6833 (WABI 2011, Saarbrücken), 7534 (WABI 2012, Ljubljana), 8126
(WABI 2013, Sophia Antipolis), 8701 (WABI 2014, Wroclaw), 9289 (WABI 2015, Atlanta),
and 9838 (WABI 2016, Aarhus). Beginning in 2017, they appeared in LIPIcs volumes: 88
(WABI 2017, Boston), 113 (WABI 2018, Helsinki), 143 (WABI 2019, Boston), 172 (WABI
2020, held virtually in Pisa), 201 (WABI 2021, held virtually in Chicago), and 242 (WABI
2022, Potsdam).

Djamal Belazzougui and Aïda Ouangraoua
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Algorithmic Approaches to Study Mutational
Processes in Cancer
Teresa M. Przytycka # Ñ

National Center for Biotechnology Information, National Library of Medicine,
National Institutes of Health, Bethesda, MD, USA

Abstract
Mutations are the driving force of evolution, yet they underlie many diseases and, in particular, cancer.
They are thought to arise from a combination of stochastic errors in DNA processing, naturally
occurring DNA damage (e.g., the spontaneous deamination of methylated CpG sites), replication
errors, carcinogenic exposures or cancer related aberrations of DNA maintenance machinery. These
processes often lead to distinctive patterns of mutations, called “mutational signatures”. Starting
with the seminal work of Alexandrov at al. [1] several computational approaches have been developed
to uncover such mutational signatures. However connecting mutational signatures to mutational
processes is not always easy [3].

To gain insights into the relationships between mutational processes and computationally derived
somatic mutation patterns (mutational signatures), we developed several complementary approaches
that leverage different algorithmic techniques allowing us to link such patterns to their potential
causes. For example, to investigate the genetic aberrations associated with mutational signatures,
we took a network-based approach considering mutational signatures as phenotypes. Specifically,
our analysis aims to answer the following two complementary questions: (i) what are functional
pathways whose gene expression activities correlate with the strengths of mutational signatures, and
(ii) are there pathways whose genetic alterations might have led to specific mutational signatures? To
identify mutated pathways, we adopted an optimization method based on integer linear programming.
Analyzing a breast cancer dataset, we identified pathways associated with mutational signatures on
both expression and mutation levels. Our analysis captured important differences in the etiology
of the APOBEC related signatures and the two clock-like signatures. In particular, it revealed
that clustered and dispersed APOBEC mutations may be caused by different mutagenic processes.
In addition, our analysis elucidated differences between two age related signatures – one of the
signatures is correlated with the expression of cell cycle genes while the other has no such correlation
but shows patterns consistent with the exposure to environmental/external processes [4].

Complementing this approach, we also developed a network-based method, named GENESIGNET
that constructs an influence/information flow network connecting genes and mutational signatures
[2]. The approach leverages sparse partial correlation among other statistical techniques to uncover
dominant influence relations between the activities of network nodes. Applying GENESIGNET
to cancer data sets, we uncovered important relations between mutational signatures and several
cellular processes that can shed light on cancer-related processes. In particular, GENESIGNET
exposed a link between the SBS8 signature of unknown etiology and the Nucleotide Excision Repair
(NER) pathway.

Linking mutational signatures to molecular features can help understand the etiology and develop
personalized cancer therapy. However, due to the complex and dynamic nature of tumor evolution,
untangling the cause and effect relationship can be challenging and requires further integrated and
comprehensive analyses.
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EMMA: Adding Sequences into a Constraint
Alignment with High Accuracy and Scalability
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Abstract
Multiple sequence alignment (MSA) is a crucial precursor to many downstream biological analyses,
such as phylogeny estimation [4], RNA structure prediction [8], protein structure prediction [1], etc.
Obtaining an accurate MSA can be challenging, especially when the dataset is large (i.e., more
than 1000 sequences). A key technique for large-scale MSA estimation is to add sequences into an
existing alignment. For example, biological knowledge can be used to form a reference alignment on
a subset of the sequences, and then the remaining sequences can be added to the reference alignment.
Another case where adding sequences into an existing alignment occurs is when new sequences or
genomes are added to databases, leading to the opportunity to add the new sequences for each gene
in the genome into a growing alignment. A third case is for de novo multiple sequence alignment,
where a subset of the sequences is selected and aligned, and then the remaining sequences are added
into this “backbone alignment” [5, 6, 10, 3, 7, 11]. Thus, adding sequences into existing alignments
is a natural problem with multiple applications to biological sequence analysis.

A few methods have been developed to add sequences into an existing alignment, with MAFFT--
add [2] perhaps the most well-known. However, several multiple sequence alignment methods that
operate in two steps (first extract and align the backbone sequences and then add the remaining
sequences into this backbone alignment) also provide utilities for adding sequences into a user-
provided alignment. We present EMMA, a new approach for adding “query” sequences into an
existing “constraint” alignment. By construction, EMMA never changes the constraint alignment,
except through the introduction of additional sites to represent homologies between the query
sequences. EMMA uses a divide-and-conquer technique combined with MAFFT--add (using the
most accurate setting, MAFFT-linsi--add) to add sequences into a user-provided alignment. We
evaluate EMMA by comparing it to MAFFT-linsi--add, MAFFT--add (the default setting), and
WITCH-ng-add. We include a range of biological and simulated datasets (nucleotides and proteins)
ranging in size from 1000 to almost 200,000 sequences and evaluate alignment accuracy and scalability.
MAFFT-linsi--add was the slowest and least scalable method, only able to run on datasets with at
most 1000 sequences in this study, but had excellent accuracy (often the best) on those datasets.
We also see that EMMA has better recall than WITCH-ng-add and MAFFT--add on large datasets,
especially when the backbone alignment is small or clade-based.
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Abstract
Phylogenetic placement is the problem of placing one or more query sequences into a phylogenetic
“backbone” tree, which may be a maximum likelihood tree on a multiple sequence alignment for
a single gene, a taxonomy with leaves labeled by sequences for a single gene [7], or a species
tree [4]. When the backbone tree is a tree estimated on a single gene, the most accurate techniques
for phylogenetic placement are likelihood-based, and can be computationally intensive when the
backbone trees are large [3]. Phylogenetic placement into gene trees occurs when updating existing
gene trees with newly observed sequences, but can also be applied in the “bulk” context, where
many sequences are placed at the same time into the backbone tree. For example, phylogenetic
placement can be used to taxonomically characterize shotgun sequencing reads generated for an
environmental sample in metagenomic analysis [7, 2].

The two most well known maximum likelihood phylogenetic placement methods are pplacer [5]
and EPA-ng [2]. Of these two, EPA-ng is optimized for scaling the number of query sequences and is
capable of placing millions of sequences into phylogenetic trees of up to a few thousand sequences [2],
and achieves sublinear runtime in the number of query sequences (see Figure 2 from [1]).

Previously we introduced the SCAMPP framework [8] to enable both pplacer and EPA-ng to
perform phylogenetic placement into ultra-large backbone trees, and we demonstrated its utility for
placing into backbone trees with up to 200,000 sequences. By using maximum likelihood methods
pplacer or EPA-ng within the SCAMPP framework, the resulting placements are more accurate
than with APPLES-2 [1], with the most notable accuracy improvement for fragmentary sequences,
and are computationally similar for single query sequence placement [8]. However, SCAMPP was
designed to incrementally update a large tree, one query sequence at a time, and was not optimized
for the other uses of phylogenetic placement, where batch placement of many sequencing reads is
required.

Here we introduce BATCH-SCAMPP, a technique that improves scalability in both dimensions:
the number of query sequences being placed into the backbone tree and the size of the backbone tree.
Furthermore, BATCH-SCAMPP is specifically designed to improve EPA-ng’s scalability to large
backbone trees. Although BATCH-SCAMPP is based on SCAMPP, it uses a substantially modified
design in order to be able to take advantage of EPA-ng’s ability to place many query sequences
efficiently.

The BATCH-SCAMPP method operates by allowing the input set of query sequences to suggest
and then vote on placement subtrees, thus enabling many query sequences to select the same
placement subtree. We pair BATCH-SCAMPP with EPA-ng to explore the capability of this
approach for scaling to many query sequences. We show that this combination of techniques (which
we call BSCAMPP+EPA-ng, or BSCAMPP(e)) not only provides high accuracy and scalability to
large backbone trees, matching that of SCAMPP used with EPA-ng (i.e., SCAMPP(e)), but also
achieves the goal of scaling sublinearly in the number of query sequences. Moreover, it is much more
scalable than EPA-ng and faster than SCAMPP+EPA-ng: when placing 10,000 sequences into a
backbone tree of 50,000 leaves, EPA-ng is unable to run due to memory issues, SCAMPP+EPA-ng
requires 1421 minutes, and BSCAMPP(e) places all sequences in 7 minutes (all given the same
computational resources. Figure 1 gives an example of this performance advantage on the nt78 [6]
simulated dataset.
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Figure 1 Results on the nt78 dataset (68,132 sequences in the backbone tree, placing 10,000
query sequences). Delta error measures placement error in number of edges, and is averaged across
the query sequences. EPA-ng reported out-of-memory issues given 64 GB and 16 cores.
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Abstract
Finding a tree with the minimum total distance to a given set of trees (the median tree) is increasingly
needed in phylogenetics. Defining tree distance as the number of induced four-taxon unrooted (i.e.,
quartet) trees with different topologies, the median of a set of gene trees is a statistically consistent
estimator of the species tree under several models of gene tree species tree discordance. Because of
this, median trees defined with quartet distance are widely used in practice for species tree inference.
Nevertheless, the problem is NP-Hard and the widely-used solutions are heuristics. In this paper, we
pave the way for a new type of heuristic solution to this problem. We show that the optimal place to
add a subtree of size m onto a tree with n leaves can be found in time that grows quasi-linearly with
n and is nearly independent of m. This algorithm can be used to perform subtree prune and regraft
(SPR) moves efficiently, which in turn enables the hill-climbing heuristic search for the optimal tree.
In exploratory experiments, we show that our algorithm can improve the quartet score of trees
obtained using the existing widely-used methods.
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1 Introduction

Phylogenetic reconstruction literature has now fully embraced Maddison’s insight that gene
trees and species trees differ [16], and a plethora of methods exist for accounting for such
discordance when inferring a species tree [3]. A prominent biological cause of discordance
is incomplete lineage sorting (ILS), a process that can never be fully discounted and is
studied using the multi-species coalescent model (MSC) [23, 26]. Under the MSC model,
the species tree is the parameter of a distribution that generates true gene trees disagreeing
with the species tree due to ILS [20]. In developing methods that account for ILS, an easily
obtained result [1] has proved invaluable: Under the MSC distribution parameterized by a
four-taxon (i.e., quartet) species tree, the unrooted gene tree topology matching the species
tree unrooted topology has a higher (marginal) probability than the two alternative topologies.
This observation is what underlines many of the existing methods, including the popular
methods ASTRAL [21], SVDQuartets [7], and others [14, 29]. As a result, the decades-old
idea of inferring phylogenetic trees by dividing the dataset into quartets [9, 32, 31] has gained
increased attention in recent years.
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A naive method dividing a set of n taxa into quartets will have one of two problems:
it either has to scale with Ω(n4), which is impractical for modern datasets, or it has to
subsample quartets to an asymptotically smaller size. Neither is ideal, but also, neither
is necessary. Take the simple question of computing the fraction of

(
n
4
)

quartet topologies
shared between two trees. Naively, we list all topologies and compare them, which requires
Ω(n4) time. However, a relatively straightforward algorithm [6] can compute the score using
a post-traversal of one tree versus each node of the other tree in time that grows with Θ(n2).
But, we can do even better. As Brodal et al. have shown [4], the quartet score can be
computed in O(n log2(n)) using a complex algorithm that uses a sophisticated data structure
called Hierarchical Decomposition Tree (HDT) to represent trees. Thus, sub-quadratic (and
hence, scalable) analysis using quartets is doable.

Beyond computing quartet distance, we can seek to minimize it. For an input set of
k unrooted (gene) trees, the median quartet tree is the (species) tree that maximizes the
number of input tree quartets shared with the output tree. Several theoretical and empirical
results have shown that the median quartet tree is robust to not just ILS but also HGT [8]
or duplication and loss [19, 15, 11], making the search for this tree a fruitful optimization
objective. One of the most widely used solutions to this problem is ASTRAL [21], which
approaches this NP-Hard [13] problem using a dynamic programming algorithm capable of
precisely solving the problem; nevertheless, to achieve scalability, it restricts the search space
to the trees that can be built from a predefined set X of clusters. With this construction,
the running time of the latest version, ASTRAL-III [35], becomes O(|X |3/log3(27/4)nk), which
is O((nk)2.726) because ASTRAL-III restricts |X | = O(nk); on typical datasets, the scaling
seems to be close to n2k2 empirically. While ASTRAL is reasonably scalable, it does not
take advantage of the HDT data structure proposed by Brodal et al. [4] (referred to as B13
henceforth). Moreover, unlike most methods used in practice, ASTRAL does not use a
hill-climbing search algorithm and instead uses a dynamic programming approach pioneered
by earlier work [10, 5, 33]. This leads to a question: Is the dynamic programming algorithm
used in ASTRAL the most efficient and effective way to find the quartet distance median
tree or would hill-climbing be more efficient?

Building a hill-climbing heuristic requires the ability to make tree rearrangements. Having
computed the score of the current tree, T , computing the quartet score of Nearest Neighbour
Interchange (NNI) moves around T is relatively simple and can be done efficiently given some
pre-computations. However, NNIs are generally thought to be not enough for efficient search.
All leading phylogenetic search tools use Subtree Prune and Regraft (SPR) rearrangements
in addition. An SPR move on an unrooted query tree is defined on a node u and one of
its three neighbors u′; it prunes the subtree pending from the u ↔ u′ edge (including that
edge) and grafts back this subtree on another edge v ↔ w, creating two new edges v ↔ u

and w ↔ u. Knowing the quartet score of T , it is far from clear how to compute the score
of the tree after the SPR move. Naively, the B13 algorithm can recompute the score in
O(n log2(n)k) after each move, leading to O(n2 log2(n)k) to find the optimal SPR move for
each pruned edge u ↔ u′ and O(n3 log2(n)k) to test all possible SPR moves over a tree. This
process of finding optimal SPR moves has to happen numerous times, rendering such an
algorithm impractical. Recognizing this difficulty, all existing median quartet tree heuristics
use alternatives such as ASTRAL’s dynamic programming [21] or graph-based techniques
used in weighted quartet max-cut [2].

Recent advances have opened up the way for a hill-climbing quartet optimization approach.
Mai and Mirarab [17] showed how to prune and regraft single-taxon subtrees to their optimal
place in O(n log2(n)k) time. As we see, it is trivial to use that algorithm to prune and regraft
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a subtree of size m in O((n − m)m log(n − m) log(n)k) = O(n2 log2(n)k) time. In this paper,
we show a key result: a subtree of size m can be pruned and regrafted onto the query tree
with O((n − m) log(n − m) log(n)k) time complexity, which is nearly independent of the size
of the clade m (and is O(n log2(n)k) in the worst case). This result allows us to complete
a full round of optimal moves (i.e., testing all subtrees to find their optimal placement) in
O(n2 log2(n)k) time. This improved running time starts to make a hill-climbing strategy
viable. After describing the algorithm, which we have implemented and made available
(github.com/shayesteh99/Quartet_SPR), we present exploratory experiments showing that
using SPR moves, the quartet score obtained by existing tools (ASTER and ASTRAL-III) can
be further improved. These results provide us with all the necessary elements for developing
a full-fledged hill-climbing quartet score optimizer, a task that future work can easily tackle.

2 Materials and Methods

2.1 Problem Definition and Notations
Let T = (E, V ) be a tree rooted at rT . All leaves of T are labeled and denoted by L(T ). We
use v = p(u) to denote the parent of u and use C(u) to refer to the subtree that includes
vertex u after removing the edge (v, u) from the tree T . The placement of a subtree C(w)
on the edge e = (v, u) of T is denoted by PT (C(w), u) and is obtained by adding a degree-2
node pu to e = (v, u) to obtain (v, pu) and (pu, u), and connecting the subtree C(w) to pu

by adding the edge (pu, w). A rooting of T on e = (v, u) is denoted by Tu and is obtained by
dividing the edge e = (v, u) into two edges (r, v) and (r, u) and reversing the direction of all
edges in the path from v to rT . Note T can be multifurcating and let d be the maximum
degree among all nodes of T .

A triplet is a tree induced from any arbitrary set of three leaves in L(T ), and the least
common ancestor of these three leaves is called its anchor. Similarly, a rooted quartet is
a tree induced from any arbitrary set of four leaves in L(T ), and the anchor is the least
common ancestor (LCA) of the four leaves. An unrooted quartet is the unrooted tree induced
by the four leaves (unless otherwise specified, we use “quartet” to refer to an unrooted tree).
A triplet on the set of leaves x, y, z is called a matching or shared triplet in trees T1 and T2,
if x, y, z ∈ L(T1) ∩ L(T2) and it has the same topology in both trees. The triplet score of the
trees T1 and T2 is defined as the number of matching triplets of T1 and T2 and is denoted by
ST (T1, T2). Similarly, a quartet on the set of leaves w, x, y, z is called a matching or shared
quartet in T1 and T2, if w, x, y, z ∈ L(T1) ∩ L(T2) and it has the same unrooted topology in
both trees. The quartet score of the trees T1 and T2 is defined as the number of matching
quartets between T1 and T2 and is denoted by SQ(T1, T2).

We define the Quartet Subtree Pruning and Regrafting (Q-SPR) problem as follows:

▶ Definition 1 (Q-SPR Problem). Given a rooted query tree T ′ = (E, V ), a set of arbitrarily
rooted reference trees R = {R1, R2, ..., Rk}, and u ∈ V , find

arg max
w

k∑
i=1

SQ(PT (C(u), w), Ri)

where T is the tree induced on L(T ′) \ L(C(u)).

We let n = |T ′| and m = |C(u)|, and hence |T | = n − m. We shorten the query subtree C(u)
to C when clear by context. Note that the solution to Q-SPR is the optimal position for
regrafting subtree C after pruning it from the tree T ′, hence the name (see Figure 1 for a
demonstration of the Q-SPR problem).
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Figure 1 An overview of the Q-SPR problem. Given the query tree T ′, a set of reference
trees R, and a node u, the Q-SPR problem aims to find the optimal placement of C(u) on T by
maximizing the number of shared unrooted quartets between PT (C(u), w) and the reference trees.
An example of such quartets is highlighted in both the reference trees and the final placement.

The Q-SPR problem is an extension of the Maximum-matching Quartet Placement (MQP)
problem, which is the special case of m = 1 and is defined as follows: Given an unrooted
tree T , a single taxon q, and a set of unrooted reference trees R, find the placement of taxon
q on the tree T , denoted by Tq that maximizes

∑k
i=1 SQ(Tq, Ri). MQP is equivalent to the

Maximum Triplet Rooting (MTR) problem, defined as follows: Given an unrooted tree T

and a set of rooted reference trees R, find a rooting of T on u ∈ V (T ) denoted by Tu that
maximizes

∑k
i=1 ST (Tu, Ri). To see the equivalence of MQP and MTP [17], consider rooting

the reference tree(s) on the query taxon q and then solving the MTR problem. The best
placement of q would be at the root of the optimal rooting of the query tree T with respect
to the reference tree(s).

2.2 Related work
While the Q-SPR problem is not studied in the past to our knowledge, MQP and MTR have
been studied [25]. Most recently, tripVote [17] solved MTR and MQP by extending the B13
method for computing triplet scores. For a single reference tree R, tripVote computes the
triplet score between the alternative rooting Tu of T and the rooted reference tree R using:

ST (Tu, R) = ST (Tp(u), R) − τ i
p(u) − τ r

p(u) + τo
u + τ r

u (1)

where τ i
p(u) is the number of shared triplets between T and R that are anchored at p(u) in T ,

τ r
p(u) is the number of shared triplets between Tp(u) and R that are anchored at the root of

Tp(u), τo
u is the number of shared triplets between Tu and R that are anchored at p(u) in Tu,

and τ r
u is the number of shared triplets between Tu and R that are anchored at the root of

Tu. Clearly, given the three values τ i
u, τo

u , and τ r
u for every node u ∈ V (T ), the triplet score

of rooting at every node can be computed in O(1) using a pre-order traversal of T .
To compute these values efficiently, tripVote uses the coloring scheme of B13 for the leaf

set in T and R. Tree T is traversed in a preorder manner and at each node, we recolor the
leaves. Each degree d node u of T with children c(u) = v1, . . . , vd−1 and parent v0 = p(u)
creates d subtrees: C(v1), . . . , C(vd−1), and T − C(u). After recoloring based on u, each
leaf in the C(vi) subtree would be assigned the color i ∈ [1, d − 1], and all the leaves in the
T \ C(u) subtree would have the color 0. The leaves of R are also assigned the same colors
as T .
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This coloring method enables tripVote to compute τ i
u, τo

u , and τ r
u in a top-down traversal

of the nodes in T , where for each node the colors of the leaves in both trees are updated
accordingly. After recoloring τ i

u, τo
u , τ r

u values can then be computed using predefined
counters in the reference tree R in constant time. Colors are updated one leaf at a time by
traversing R from that leaf to the root. Thus, each leaf recoloring and updating counters,
if done naively, would require O(H(R)) operations, where H(R) is the height of R. To
prevent a quasi-quadratic total complexity, tripVote represents the reference trees using the
HDT data structure used by B13. An HDT (Hierarchical Decomposition Tree) is a balanced
binary tree data structure constructed from the nodes in the reference tree R within a time
complexity of O(n), where n represents the size of the reference tree. Each node in the HDT,
also referred to as a component, consists of several nodes in the reference tree in a way that
ensures local balance in the HDT, meaning that each component X in the HDT with m

leaves has O(log(m)) height. Thus, updating the HDT counters for each leaf recoloring will
have O(log(n)) complexity (see Table S1 for a comprehensive list of the components of the
HDT).

tripVote uses two main counters in the HDT that are defined as follows (ρX was similar
to B13 counters while πX

j was new):
ρX : The number of triplets that belong to the component X of the HDT and match the
triplets anchored at the root of the alternative rooting of the query tree Tu.
πX

j : The number of triplets that belong to the component X of the HDT and match the
triplets anchored at u in the alternative rooting of the query tree Tvj

where vj corresponds
to one of the child nodes of u (j ∈ [1, d]) or the parent node p(u) (j = 0) in the query
tree.

It immediately follows that HDT counters ρX and πX
j are equivalent to the query tree

parameters τ i
u, τo

u , and τ r
u at the root (R) of the HDT:

τ i
u = πR

0 τ r
u = ρR τo

vj
= πR

j .

tripVote, similar to B13, keeps O(d2) auxiliary counters for each HDT component to compute
ρX and πX

j efficiently using recursive functions of the colors of the leaves j ∈ [0, d]. Thus, for
updating the color of each leaf, only the counters of its ancestors need to get updated, which
can be done in O(d2 log(n)) using a bottom-up traversal of the HDT. Using a smaller-half
trick, similar to B13, tripVote ensures O(n log(n)) leaf recoloring in total. As a result, the
total complexity of the algorithm is O(d2n log2(n)) for one reference tree and O(kd2n log2(n))
for k reference trees.

The tripVote algorithm can be used to solve the Q-SPR problem. It is easy to see that
the optimal solution to Q-SPR can be obtained by placing each of the query taxa on the
tree independently, noting the change in quartet score for each query for each branch, and
choosing the branch that optimizes the total change at the end. This algorithm requires
O(kd2(n−m) log(n−m) log(n)m) time, which is O(kd2n2 log2(n)) for m = Θ(n) and becomes
impractical for large trees.

2.3 Quartet SPR Placement Algorithm
We now propose an algorithm based on tripVote to solve the Q-SPR problem in a quasi-linear
time. TripVote differentiates between the query taxon and the other taxa in the reference
tree(s) by rooting the reference tree on the query taxon. However, since the Q-SPR problem
has multiple query taxa that can be scattered in the reference tree(s), this approach is not
viable. Therefore, we devise a quartet counting method that does not rely on a specific
rooting of the reference tree(s). Instead of counting shared triplets among the query tree
and the rooted version of the reference tree, we directly count the number of shared quartets
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between the query tree and an arbitrary rooting of the reference tree. This method of
counting presents new challenges as we have to keep track of the positions of the query
taxa in the reference tree(s), and also introduce new counters for counting quartets. Below,
we describe solving Q-SPR for one reference tree R; extending the approach to multiple
reference trees follows trivially.

2.3.1 Counting Rooted Quartets
We select a new color, −1, for coloring the leaves of the query subtree C to be able to store
their information in the counters. These leaves colored −1 are going to be present only in
the reference tree, and unlike other leaves, their color is fixed throughout the algorithm.

To find the number of shared quartets between any potential placement of the subtree C

on the query tree T and the reference tree R, we only need to consider the quartets that
have a single taxon from L(C) and three taxa from L(T ). This is true because the topology
for quartets with zero or more than one taxon from L(C) does not depend on the placement
of C. We refer to the relevant quartets with one taxon from L(C) as solo quartets. For each
solo quartet, removing the sole taxon from C creates a triplet, which we will refer to as its
associated triplet.

Since the reference tree is traversed as a rooted tree, to count the number of shared solo
quartets between the query tree and the reference tree, we need to consider the rooted version
of the quartets. We define the anchor of a rooted quartet as the least common ancestor of all
the four taxa in the quartet; we count each quartet when we arrive at its anchor. We adopt
the recursion (1) from tripVote to computing the quartet score of a node u ∈ V (T ) :

SQ(PT (C, u), R) = SQ(PT (C, p(u)), R) − φi
p(u) − φr

p(u) + φo
u + φr

u (2)

where φi
u, φr

u, and φo
u are defined as follows:

φi
u: The number of shared solo quartets between the placement PT (C, u) and R, where

the associated triplet is anchored at u in T .
φr

u: The number of shared solo quartets between the placement PT (C, u) and R, where
the associated triplet is anchored at the root rTu

in the alternative rooting Tu.
φo

u: The number of shared solo quartets between the placement PT (C, u) and R, where
the associated triplet is anchored at p(u) in the alternative rooting of Tu.

To compute these variables, we first need a definition:

▶ Definition 2. A quartet q is said to belong to a HDT component X, if and only if all four
leaves of q belong to X.

We now update the definitions of the main counters ρX and πX
j associated with the HDT:

ρX : The number of solo quartets that belong to the component X of the HDT and match
the solo quartets in the placement PT (C, u) where the associated triplet is anchored at
the root of the alternative rooting Tu.
πX

j : The number of solo quartets that belong to the component X of the HDT and match
the solo quartets in the placement PT (C, u) where the associated triplet is anchored at u

in the alternative rooting of the query tree Tvj
where vj corresponds to one of the child

nodes of u (j ∈ [1, d]) or the parent node p(u) (j = 0) in the query tree.

For a particular unrooted solo quartet q in the query tree T , we consider every possible
rooted topology of q in the reference tree R in order to compute ρX and πX

j for every
component X in the HDT. Each rooted quartet is counted exactly once at the anchor of the
quartet. Same as in tripVote, the counters ρX and πX

j are associated with the query tree
parameters φi

u, φr
u, and φo

u at the HDT root R:
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φi
u = πR

0 φr
u = ρR φo

vj
= πR

j .

The ρX and πX
j counters can be computed recursively in a postorder traversal on the

HDT components, in an efficient manner:

▶ Lemma 3. The ρX and πX
j counters of the HDT component X can be updated in O(d2)

time assuming the counters for children of X are already calculated.

Proof. The recursion equation for each component depends on the type of the component
(see Table S1). For the I and L types, ρX and πX

j are set to zero as they correspond to a
single node in the reference tree R and do not contain any quartets. For a component X with
two child components, a quartet belongs to X if it belongs to one of the child components of
X or it has at least one leaf from each child component of X. Thus, for any component X of
type IG → C, CC → C, or GG → G, with child components X1 and X2, we define ρX and
πX

j as follows:

ρX = ρX1 + ρX2 + ρX
comb

πX
j = πX1

j + πX2
j + πX

combj

where ρX
comb is the number of quartets that match the criteria for ρX and have at least one

leaf from each of the child components of X, and πX
combj

is the number of quartets that
match the criteria for πX

j and have at least one leaf from each of the child components of X.
Thus, ρX

comb and πX
combj

of a IG → C component is set to zero, as an I component in the
HDT corresponds to a single internal node in the reference tree and does not contain any
leaves. For any other HDT component X, ρX

comb and πX
combj

are computed with the help of a
set of auxiliary HDT counters defined by B13. The rooted quartets counted in ρX

comb must
have either ((i, j), (−1, 0)) or ((0, 0), (−1, i)) unrooted topologies, where i, j ∈ [1, d]. The
rooted quartets counted in πX

combj
must have the unrooted topology ((i, i), (−1, k)) where

i, k ∈ [0, d] and i, k ̸= j. We provide the full set of equations for the rooted quartets with
the topologies ((i, j), (−1, 0)) and ((0, 0), (−1, i)) for ρX

comb , and ((i, i), (−1, k)) for πX
combj

in Tables S2, S3, and S4, respectively, noting that iterating through all 62 cases would be
cumbersome. Figure 2A demonstrates an example for how ρX is computed using the HDT
counters and also how φr

u is computed using ρX .
Because we only count resolved quartets and all quartets counted by our algorithm have

exactly a single −1, we have O(d2) counters (i.e., of the form (0, −1, i, j) for i, j ∈ [1, d])
per HDT component. From Tables S2–S4, it can be easily checked that the amortized cost
of updating all the counters is constant per counter (most counters are constant while a
constant number of counters need O(d2) time). ◀

To state our final results, we need one more result:

▶ Lemma 4. In a top-down traversal of the query tree, a total of (n − m) log(n − m) leaf
coloring steps are needed.

Proof. The proof follows the B13 construction. There are O(n − m) nodes in the tree.
The smaller-half trick of B13 ensures that on each node, we avoid recoloring leaves in its
largest child. This is because when we arrive at a node, the larger child already has the
right color and does not need to be updated. Thus, over the entire tree, we need at most
O((n − m)

( 1
2 + 1

2 + . . .
)
) = O((n − m) log(n − m)) leaf recoloring steps. ◀
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ρX = ρX1 + ρX2 + ρXcomb

function Q-SPR(T = (V, E), R)
R← build-HDT(R)
T ← heaviest-child-first(T )
color(root of T , 1)
for u ∈ pre-order (T ) do

if u is a leaf then
color(u,0) and continue

if u is the leftmost child then
color(u,1)

v1, v2, . . . , vdu−1 ← c(u)
∀2 ≤ i < du : color(vi, i)
update-counters (Tables S2–S4)
φi

u ← πR
0 and φr

u ← ρR

∀1 ≤ i < du : φo
vi
← πR

i

∀2 ≤ i < du : color(vi, 0)
for (v, u) in pre-order (T ) do

SQ(PT (C, u), R) =
SQ(PT (C, v), R)−φi

v−φr
v +φo

u +φr
u

u∗ = arg maxu SQ(PT (C, u), R)
return PT (C, u∗)

Figure 2 A) An example of how φr
u is computed for the node u in the query tree. φr

u

is obtained by counting the number of matching quartets resulting from taking a triplet anchored at
ru in Tu and placing one query taxon at the anchor of the triplet. To count the number of matching
unrooted quartets in the reference tree R, we consider every possible rooting of the quartet. By
definition, φr

u can be obtained by updating ρR, which is obtained from the demonstrated recursive
equation. ρX is computed for each HDT component X using the counters of its child components
as shown in the table. The computations of ρX

comb correspond to the first row of the Table S2. B)
Quasi-linear-time algorithm to solve the Q-SPR problem. color(u, i) colors all the leaves
below u with i. du is the of degree u.
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We now can state our main results.

▶ Theorem 5. The Q-SPR problem can be optimally solved using the algorithm shown in
Figure 2B in O(kd2(n − m) log(n − m) log(n)).

Proof. We perform top-down traversal of the query tree and at each node, we recolor some
leaves and update the HDT counters (see Figure 2B). Each recoloring of the HDT according
to a new node of the query tree requires recoloring the corresponding leaf components of the
HDT and updating counters of all the ancestors of those leaf components. By construction,
the HDT data structure of B13 has a height of O(log(n)). By Lemma 3, each such update
takes O(d2); thus, the total time for recoloring one leaf is O(d2 log(n)). We need a total of
O((n − m) log(n − m)) recoloring steps by Lemma 4. Thus, we need O(d2(n − m) log(n −
m) log(n)) operations in total for recoloring and updating counters. This produces variables
ρR and πR

j at the root of the HDT, which then give us φi
u, φr

u, and φo
u for each edge. We

need to repeat this for each reference tree, resulting in O(kd2(n − m) log(n − m) log(n)).
Then, the quartet score for each node u of the query tree can be trivially computed in a
second preorder traversal of the query tree using Equation (2), which takes only O((n − m)k)
time. Ultimately, the optimal placement of C can be obtained by finding the branch that
has the maximum quartet score. ◀

2.4 Tree search using quartet SPR moves

Using our method, we can perform heuristic tree searches to find the quartet median tree
with respect to the reference tree(s) R using SPR moves. At each round, we have a current
tree T ′ from the previous round. We draw (without replacement) a branch (v0, u) uniformly
at random from E(T ′), remove the subtree C(u) from the query tree, and obtain the pruned
tree T . The optimal placement of C(u) on T denoted as v∗ is obtained by solving the Q-SPR
problem. If v∗ ̸= u, we place C(u) on v∗ to obtain the improved tree T ∗ = PT (C(u), v∗). If
not, we repeat the process until edges of E(T ′) are exhausted. We then start over the process
(i.e., a new round), using T ∗ as the current tree. A tree is considered final if, in a round, the
algorithm performs SPR on every branch of the tree and cannot find an improvement in the
quartet score. Since the query tree T ′ has 2n − 1 branches, and we may have to find the
optimal placement for all subtrees, the total running time of performing one round of SPR
on every subtree of T ′ has O(kd2n2 log2(n)) complexity. For the starting tree, any tree is
valid. In particular, one can be made by inserting taxa into an empty tree with an arbitrary
order using the Q-SPR problem. This simple algorithm can be further optimized in several
ways, which we leave for discussions and future work.

2.5 Experimental setup

While we leave the development of a fully-featured software for quartet median tree search
to future work, here, we present experiments that E1) demonstrate the running time of
the tool and test its accurate implementation, and E2) show intriguing results in terms of
the effectiveness of SPR moves and the optimality of existing tools. These experiments
are based on an implementation of our method, called Q-SPR, publicly available at git-
hub.com/shayesteh99/Quartet_SPR. Our code builds on tripVote, which itself builds on the
tqDist code [28]. TqDist is a library that calculates the triplet and quartet scores between
two trees, utilizing the B13 algorithm.
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2.5.1 E1: Running time comparison
We modified tripVote to find the optimal placement of a clade C on a query tree T with respect
to the reference tree(s) R. To do so, we place each query taxon ti ∈ L(C) independently and
obtain the quartet score SQ(PT (ti, v), R) for every node v ∈ V (T ). To find the total quartet
score for the placement of C on v, we aggregate the quartet score obtained for each taxon ti

as follows:

SQ(PT (C, v), R) = C +
∑

ti∈L(C)

ST (Tv, Rti
)

where C is a constant (quartets with zero or more than one leaf from C), which we ignore. We
can then simply pick the query with optimal placement. The running time of this algorithm
is expected to grow linearly with m = |L(C)|.

For this experiment, we used an existing 10000-taxon simulated dataset [12] with 10
replicates with gene trees disagreeing with the species tree due to both ILS and Horizontal
Gene Transfer (HGT), as simulated by SimPhy [18]. We used the true species tree as the query
tree, and the estimated gene trees available from the original publication (estimated using
FastTree-II) [24] as the reference set. We randomly selected {50, 100, 200, 500, 1000, 10000}
taxa for each replicate and pruned the input trees (the query tree and the reference trees)
to only contain the selected taxa. We also subsampled the gene trees randomly to obtain
k = 100 trees per replicate. For each of the replicates, we performed one round of SPR on
every subtree of the query tree and measured the time each method took to find the optimal
placement for each subtree. However, for trees of size 1000 and 10000, we restricted these
analyses to subtrees of size at most 70 due to increased running time. In addition to the
running times, we computed the quartet score SQ(PT (C, v), R) for every node v ∈ V (T ) and
every subtree C, and compared the scores of Q-SPR to the scores of modified tripVote to
ensure the correct implementation of Q-SPR.

2.5.2 E2: Improving ASTER trees
In this experiment, we tested the optimality of two leading median tree search heuristics
currently in use. We tested ASTRAL-III and ASTER; the latter is a newer algorithm and
is shown to be better than ASTRAL-III in the face of the missing data [34]. We used the
species trees inferred from the gene trees using these methods as the starting tree to our
Q-SPR hill-climbing search. If the initial tree is an optimal tree (even a locally optimal tree),
then, no SPR move should improve the quartet score. We asked if this is true, and if not,
how much improvement in quartet score, species tree topology, species tree branch length,
and branch support can be obtained.

The experiment used an existing Simphy-simulated ILS-only 200-taxon dataset [22] that
was modified by Zhang et al. [34] to randomly remove ≈ 5% of taxa from each estimated
gene tree. For the purpose of this experiment, we focused on four different model conditions
in this dataset (tree height ∈ {5 × 105, 2 × 106} corresponding to high and medium ILS,
and k ∈ {50, 200}). Each model condition provides 50 replicates with a speciation rate
of 10−6 and 50 replicates with a speciation rate of 10−7, making a total of 100 replicates
per condition. The model condition with high ILS and k = 50 is regarded as the most
challenging model condition where Zhang et al. [34] observed the most pronounced differences
between optimization methods (ASTRAL-III vs. ASTER) [34]. For each model condition,
we ran Q-SPR on both the ASTRAL-III and the ASTER trees. To test the optimality of
the starting trees, we report the number of rounds of improvement and the quartet score
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Figure 3 Results of E1. The running time is shown versus the increasing size of (A) the query
subtree (m) or (B) the query tree (n). In (A), we fix n = 500 and in (B), we ensure 30 < m < 70.
Both axes are in log scale, making the line slope (annotated) an empirical estimate of the asymptotic
running time degree. We refer to our adoption of tripVote for Q-SPR as tripVote.

improvement at the end of all rounds. We also report the total running time of Q-SPR for
each experiment (not including starting tree inference). To measure accuracy, the Q-SPR
and the starting trees were both compared against the known true species tree based on
both normalized quartet distance and the normalized Robinson–Foulds (nRF) [27] metric.
In addition, the local posterior probability (PP) [30] and the coalescent unit length for each
internal branch was computed using ASTRAL-III. This method sets branch lengths to zero
when the frequency of the species tree quartet topology is less than 1/3 among gene tees
(unexpected under MSC); note that localPP is < 1/3 under those conditions as well. We
evaluated support and length for internal branches that matched or differed between the
starting and final Q-SPR trees, with a particular focus on the unexpected cases with zero
branch length or localPP < 1/3.

3 Results

3.1 Running time scaling

Comparing tripVote and Q-SPR, we ensured the two software produced identical results
(quartet support of the placement clade) in all cases. The gene trees here are estimated and
include polytomies. Our extensive empirical results provide validation that the complex set
of recursively defined counters used by Q-SPR (Tables S2–S4) are correct.

Testing the impact of n for subclades of limited range (30 < m < 70) on the running
time, we observe similar asymptotic behavior between tripVote and Q-SPR (Figure 3 B).
The theoretical running time of both methods increases quasi-linearly with respect to the
size of the query tree n, which matches our empirical estimate of the log-log slope to be only
slightly above 1.0. Regardless of n, for the selected range of m, Q-SPR is always faster than
tripVote by a factor of 10 to 31 (mean: 16), which is ≈ m/2.8; this empirical observation
matches the theory that Q-SPR is faster by a factor of Θ(m).
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When we fix n = 500 and vary m, we observe the asymptotic advantage of Q-SPR over
tripVote (Figure 3A). The running time of Q-SPR is nearly independent of the size of the
query subtree (m), as expected, whereas the running time of tripVote increases linearly
with m. Regardless of m, the running time of Q-SPR ranges between 9 and 16 seconds
(mean: 13.5). In these analyses, Q-SPR is faster than tripVote in most conditions. The main
exception is that tripVote is faster for subtrees of size one or two (m ≤ 2); the likely reason
is that tripVote has fewer counters to maintain than Q-SPR. At the other end, for m > 100
taxa, Q-SPR is on average 73 times faster than tripVote. The running time of Q-SPR has a
slight downward trend. The reason is that increasing m decreases the size of the tree induced
by removing the query subtree from the query tree n−m. In the SPR setting where n is fixed,
as the subtree size increases, the size of the backbone tree (n − m) decreases, which makes
Q-SPR faster. The total running time of Q-SPR in this case is O(k(n−m) log(n−m) log(n)),
while the overall running time for tripVote is O(km(n − m) log(n − m) log(n)).

3.2 Improving ASTER and ASTRAL trees
The quartet score of the starting tree with respect to the gene trees is guaranteed to remain
fixed or improve after Q-SPR moves. We saw improvements in 310 out of 800 cases we tested,
but there were wide differences depending on the model condition (Figure 4A). For example,
93% and 61% of runs starting from ASTRAL-III improved in quartet score after Q-SPR
moves for 50 and 200 genes, respectively. In the other extreme, only 5% of low ILS cases
starting from ASTER saw any improvements. The normalized quartet score improvements
were as large as 6% in extreme cases (Figure S2) but were below 0.5% in 99% of cases. The
mean improved score was 0.11% in the most difficult condition (50 genes, high ILS, starting
from ASTRAL-III) and only 0.0001% in the easiest condition (200 genes, low ILS, starting
from ASTER). Overall, 13.7% of branches across all trees changed.

The improvements in the optimization score tend to but do not always lead to improved
species trees (Figure 4B,C). Overall, only 107 or 157 out of the 310 cases with improved
quartet scores had improved accuracy compared to the true species trees in terms of nRF
or quartet distance, respectively; in contrast, 137 or 149 cases had lowered accuracy (the
rest had equal distance). However, while improving quartet score can reduce the accuracy, it
never reduces it dramatically (e.g., never more than 7.5% nRF). In contrast, in some cases,
accuracy improves dramatically after optimization (e.g., in seven cases delta nRF is 10% or
more). Reassuringly, there does seem to be a positive correlation between improved score
and improved accuracy and many cases with the largest quartet score improvement did have
high improvements in accuracy (Figs. 4B and S2). Overall, Q-SPR optimization only slightly
improved the nRF and the quartet distance between the estimated and true species trees
(e.g., nRF improved by 0.1%).

Examining individual rounds of Q-SPR showed interesting patterns (Figure 4E). First,
there is much variation from one replicate to another and from one condition to another,
with the number of rounds ranging from 1 to 242 (mean 4.8). The mean number of rounds
is as low as 1.5 for easy conditions and as high as 14 for difficult ones. Correspondingly,
there is a high level of variation in terms of running times, requiring between 11 and 208
minutes on this 200-taxon dataset (Figure S1). Interestingly, some of the runs with many
rounds of quartet score improvement had little or no impact on accuracy. Overall, it appears
that improving the quartet score when it is already high leads to very little improvement in
accuracy whereas improving the quartet score for challenging datasets with low accuracy can
dramatically improve accuracy (Figure 4E).
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Figure 4 Results for E2. A) Percentage of the replicates with improved quartet score, starting
from either ASTER or ASTRAL-III trees. B) Improvement in the quartet score of the Q-SPR
algorithm above the ASTER tree (under the High ILS model condition and k = 50) with respect to
the gene trees versus the improvement in the normalized RF or the quartet distance between the
ASTER tree and the true species tree. The number of SPR rounds performed for each replicate is
shown in colors. Restricted to high ILS, 50 genes, ASTER; see Figure S2 for all model conditions.
C) The difference between the normalized RF and the quartet distance of the Q-SPR tree and the
starting tree with respect to the true species tree for all tested conditions. Positive (negative) values
indicate an improvement (reduction) in the accuracy of the starting tree. E) The normalized quartet
score between the Q-SPR tree at the end of each SPR round and the gene trees under the High ILS
(ILS rate = 500k) model conditions. The final improvement of the Q-SPR tree with respect to the
true species tree is shown in colors.

WABI 2023



4:14 Quartet SPR

A) B)
50 200

0% 33% 67% 100% 0% 33% 67% 100%

0.00

0.25

0.50

0.75

1.00

Branch support (localPP)

E
C

D
F

Kept Changed ASTER Q−SPR+ASTER

50 200

0 1 2 0 1 2

0.00

0.25

0.50

0.75

1.00

Branch length

E
C

D
F

Kept Changed ASTER Q−SPR+ASTER

Figure 5 The results of the analysis on the branch lengths and branch supports of
the improved tree using Q-SPR and the starting ASTER tree. A) The branch supports for
the improved tree (ASTER + Q-SPR) and the starting tree (ASTER). The non-matching branches
refer to the branches that are either removed from the ASTER tree or added to the improved
tree. The branch support threshold 1/3 is shown by the dotted horizontal line. B) The empirical
cumulative density function (ECDF) of the branch lengths of the improved and the starting tree for
both the non-matching and matching branches. Shown is only ASTER starting tree with high ILS;
see Figure S3 for full results.

Comparing the branch supports of ASTER and Q-SPR trees shows that fewer branches
have unexpectedly low support (Figure 5A). Around 10% of branches before Q-SPR had
support below 1

3 and branch length 0. Species tree branches with these properties are
problematic as they would have to have less frequency than alternative topologies in the
gene trees (inconsistent with MSC). In contrast, only 0.2% of the branches after Q-SPR had
support below 1

3 or 0 branch length. While most of the branches changed by the Q-SPR
had low support, some had high support (e.g., 16% had localPP > 0.95). Interestingly, it
appears that compared to the starting trees, Q-SPR (indirectly) trades off some reduction in
the number of high support branches with having fewer very low support branches.

4 Discussion

We introduce a quasi-linear algorithm for placing a query subtree on a tree. Our algorithm
takes as input a set of reference trees that include all or some of the leaves in the query subtree
and maximizes the total quartet score between the output tree and the reference tree(s).
We demonstrated that the running time of this method improves on the state-of-the-art
(tripVote) and is indeed nearly independent of the size of the query subtree. Our algorithm,
called Q-SPR, can perform quartet-based subtree prune and regraft (SPR) on a given tree
with respect to the reference tree(s). This efficient algorithm for SPR moves provided us
with a way to enhance species tree inference starting from the output of methods such as
ASTER and ASTRAL, as we demonstrated in our experiments. We showed that for both
methods, the quartet score could be often improved. These improvements tended to eliminate
super low support branches with zero estimated length (i.e., those that do not match MSC
expectations). As such, they would make the resulting trees, and in particular support values
on those trees, more interpretable. However, the impact on the overall topological accuracy
was small to moderate, especially given enough genes. While improving the quartet score



S. Arasti and S. Mirarab 4:15

generally leads to a more precise median tree for an infinite number of gene trees, this is often
not the case when dealing with a finite set of gene trees. Thus, imperfect correlations between
the quartet score and accuracy mean that further improving the quartet score beyond what
heuristics such as ASTER and ASTRAL-III achieve has limited practical value. However,
our results indicate that perhaps a faster and better heuristic method can be designed relying
solely on hill-climbing using SPRs. This will be the subject of future work.

Our approach can be expanded in many ways. Having an efficient SPR move available,
we can now explore the best possible way to apply SPR moves on a starting tree to obtain
efficient hill climbing. Our current approach, testing all possible pruning locations at random
with no attempt at guessing the best move, can likely be improved. More ambitiously, our
theory can be extended to ask if some of the calculations performed for the optimal SPR move
of a clade can be reused for adjacent clades, hence reducing running time. Moreover, the much
faster NNI moves (which are a special case of SPR) should perhaps also be tried. The choice
of the starting tree will also need to be explored. We can, for example, use the widely-used
step-wise addition strategy, which incidentally, is also made possible by our algorithm (and
tripVote). These improvements need to all be combined with high-performance computing
features such as parallelism. Thus, while all the main algorithmic ingredients are ready, a
fully-featured heuristic hill-climbing implementation requires further engineering.
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S1 Supplementary Tables

Table S1 HDT components types. Each component in the HDT corresponds to a part of the
reference tree R, with C and G being the super-types in the HDT.

Type Subtype Description
I corresponds to an internal node in the reference tree R. Every I component is

a leaf in the HDT
G corresponds to a set of subtrees in the reference tree R where the roots of the

subtrees are siblings. A G component can be one of two types:
L corresponds to a leaf node in the reference tree R. Every L component is a leaf

in the HDT
GG→ G a component of the HDT that is the parent of two other G components

C corresponds to a connected subset of nodes in the reference tree R where
the root of one subset is a descendant of the root of the other subset. A C

component can be one of two types:
IG→ C a component of the HDT that is the parent of an I and a G component
CC → C a component of the HDT that is the parent of two C components
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Table S2 Equations for computing the HDT counter ρX
comb for component types CC →

C and GG → G. Each row shows one rooted topology of the unrooted quartet ((i, j), (−1, 0)).
ρX

comb for each component type is the sum over the equations of all the rooted topologies.
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Table S3 Equations for computing the HDT counter ρX
comb for component types

CC → C and GG → G (Cont.) Each row shows one rooted topology of the unrooted quartet
((0, 0), (−1, i)). ρX

comb for each component type is the sum over the equations of all the rooted
topologies in Table S2 and S3.
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Table S4 Equations for computing the HDT counter πX
combj

for component types
CC → C and GG → G Each row shows one rooted topology of the unrooted quartet ((i, i), (−1, k)).
πX

combj
for each component type is the sum over the equations of all the rooted topologies.

Rooted Quartet CC → C GG→ G
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1 Introduction

The last decade of phylogenetics has seen the development of many methods that leverage
constraints plus dynamic programming (CDP). The goal of CDP is to produce a phylogeny
that is optimal with respect to some objective function and that lies within a constrained
version of tree space. To our knowledge, the first method based on CDP was introduced in
2000 by Hallet and Lagergren [20] for gene tree parsimony, which seeks a species tree that
minimizes the number of events (e.g., duplications and losses) needed to explain the input
gene trees (also see the related results presented at WABI 2017 [1, 2]). Since its introduction,
CDP has been leveraged for a variety of optimization problems, including minimizing deep
coalescence [42], maximizing quartet support [6, 29] (see [44] for extensions to multi-copy
genes), and maximizing bipartition support [37] (see [32] for extensions to multi-copy genes).
All of these optimization problems take gene trees as input and seek a species tree that
minimizes the dissimilarity between it and the input gene trees or alternatively maximizes
the similarity (note that species trees depict the evolutionary history of species, whereas gene
trees depict the evolutionary history of orthologous genomic regions, referred to as genes).

That CDP is so widely utilized in phylogenetics is likely due to it being possible to
build effective constraints in practice. The constraints are effective if (nearly) optimal
solutions lie within the constrained solution space and this space is small enough to enable
efficient running times. As an example, the species tree estimation method ASTRAL solves the
bipartition-constrained maximum quartet support supertree problem [29]. The first version
of ASTRAL [29] formed the constrained solution space from the set of all bipartitions (i.e.,
branches) found in the input gene trees. The newer versions of ASTRAL [30, 43] allow extra
bipartitions to be included as constraints with the goal of improving accuracy. FASTRAL [10],
on the other hand, aggressively limits the number of bipartitions added with the goal of
improving runtime. Overall, the popularity of the ASTRAL family of methods is likely due to
their speed and accuracy on practical inputs.

Given the success of CDP thus far, we explore the use of this technique for traditional
parsimony problems where the input are binary characters, sometimes with missing values.
The remainder of this paper is organized as follows. We begin with some notation and
preliminaries in Section 2. In Section 3, we introduce the clade-constrained character
parsimony problem and present an algorithm that solves this problem in polynomial time
for the Dollo criterion score. We then show how our algorithm can easily be adapted to
Camin-Sokal parsimony but not Fitch parsimony. Dollo parsimony, in particular, is widely
used for tumor phylogenetics [3, 4, 7, 13] as well as species phylogenetics, for example analyses
of low-homoplasy retroelement insertions across the vertebrate tree of life. Prior studies have
leveraged Dollo parsimony to analyze higher-level clades of birds (e.g., Palaeognathe [8]) and
mammals (e.g., Laurasiatheria [11, 12]), in addition to clades at the family and genus levels
(e.g., rorquals [26], mouse-eared bats [23, 25], and primates [33]).

This motivated us to implement our algorithm for the Dollo criterion score in Dollo-CDP,
an open-source software package available on Github (https://github.com/molloy-lab/
Dollo-CDP). In Section 4, we describe an experimental study evaluating Dollo-CDP on real
and synthetic data sets from species phylogenetics in comparison to branch-and-bound and
heuristic search. Our results, presented in Section 5, reveal that Dollo-CDP can improve upon
heuristic search from a single starting tree, often recovering a better scoring tree. Moreover,
Dollo-CDP scales to data sets with much larger numbers of taxa than branch-and-bound
while still having an optimality guarantee, albeit a more restricted one. We conclude in
Section 6 by discussing limitations and opportunities for future research.

https://github.com/molloy-lab/Dollo-CDP
https://github.com/molloy-lab/Dollo-CDP
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2 Preliminaries and Background

Before introducing the clade-constrained Dollo parsimony problem, we review some prelimin-
aries on phylogenetic trees, characters, and parsimony approaches.

2.1 Phylogenetic Trees
A phylogenetic tree T is an acyclic graph whose leaves (i.e., vertices with degree one) are
bijectively labeled by a set S of species (note that in the context of tumor phylogenetics the
leaves may be labeled by cells in a tumor). For convenience and simplicity of notation, we
treat leaves and species as being interchangeable. We use L(T ), V (T ), and E(T ) to denote
the leaf set, vertex set, and edge set of T , respectively.

Phylogenetic trees can be either unrooted or rooted; for the former the graph is undirected
and for the latter the graph is directed, with edges orientated away from the root (a special
vertex with in-degree zero). For rooted trees, we say that vertex u is an ancestor of v (or
that v is a descendant of u) if u is on a directed path from the root to v. The lowest common
ancestor (LCA) for a set V of vertices is the vertex that is the ancestor of all vertices in V

that is farthest away from the root.
Unless otherwise noted, we will assume that all trees are binary. An unrooted tree is

binary if all non-leaf vertices (called internal vertices) have degree three, and a rooted tree
is binary if all non-leaf vertices have out-degree two (all non-root vertices have in-degree
one). For rooted trees, we use v.parent to indicate the parent of vertex v; similarly, we use
v.left and v.right to denote the left and right children of vertex v, respectively. Sometimes
it will be useful to restrict a tree T to a subset X ⊆ S of leaves, meaning that each leaf in
S \X is deleted from T and then all vertices with degree two are suppressed. There are
three additional concepts for phylogenetic trees that will also prove useful later.

▶ Definition 1 (Bipartition). Each edge e in an unrooted phylogenetic tree T induces a
bipartition, which splits the leaf set of T into two disjoint subsets whose union is the complete
leaf set S. The bipartition Bip(e) = X|Y is formed by deleting edge e but not its endpoints
from T and assigning the leaves in one of the resulting subtrees to X and the leaves in the
other to Y .

▶ Definition 2 (Clade). Each vertex v in a rooted phylogenetic tree T induces a clade, denoted
Clade(v), which is simply the set of leaves that are descendants of v. A clade is trivial if it
contains only a single element (as it must be associated with a leaf vertex) or if it contains
all leaves (as it must be associated with the root vertex).

▶ Definition 3 (Subtree bipartition [24]). Each internal vertex v in a rooted binary phylogenetic
tree T induces a subtree bipartition, which partitions the leaf set of the subtree into two
disjoint subsets whose union is Clade(v). A subtree bipartition SubBip(v) = X|Y is formed
by setting X to be the leaves that are descendants of v.left and Y to be the set of leaves that
are descendants of v.right (or vice versa).

It is well established that an unrooted phylogenetic tree t is uniquely defined by its
bipartition set Bip(t) = {Bip(e) : e ∈ E(t)} and that a rooted phylogenetic tree T is uniquely
defined by its clade set Clade(T ) = {Clade(v) : v ∈ V (T )} (see Chapters 2 and 3 in [39]).
Similarly, we define the subtree bipartition set of T as SubBip(T ) = {SubBip(v) : v ∈ V (T )}.
Note that X|Y ∈ SubBip(T ) if and only if {X, Y, X ∪ Y } ⊆ Clade(T ); thus, we can go back
and forth between clades and subtree bipartitions.

WABI 2023
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2.2 Characters and Parsimony
A character c on species set S is a function mapping species in S to a state set, which is
{0, 1} for binary characters. For biological data, the 0 and 1 might refer to some feature
of the genomic data with all species assigned the same state having the same feature. If 0
indicates the ancestral state and 1 indicates the derived (i.e., mutated) state, we say the
characters are ordered; otherwise, we say they are unordered. We describe biological data
that are encoded as ordered binary characters in Section 4. These character matrices also
include a third state ? to indicate the state assignment is ambiguous or missing (in other
words it could not be called as 0 or 1 for whatever reason).

For now, we assume that we are given a set C of binary characters with no missing
values, and our goal is to find a phylogenetic tree T that best explains our data. To explain
how character c evolves on a tree T on the same species set as c, we must assign states
to the internal vertices of T . The quality of our explanation is determined by the number
of substitutions, where a substitution is implied by any edge e = (u, v) ∈ E(T ) such that
c[u] ̸= c[v] (and c[u], c[v] are not the ambiguous state ?). This brings us to the small and
large parsimony problems.

▶ Definition 4 (Fitch Parsimony Score). Given an unrooted binary tree T and an unordered
binary character c, both on species set S, the Fitch parsimony score, denoted Fitch(T, c), is
the minimum number of substitutions needed to explain the evolution of c on T . A Fitch-
labeling for (T, c) is a function ĉ mapping vertices in V (T ) to states in {0, 1} so that ĉ[l] = c[l]
for all l ∈ L(T ) and the number of substitutions equals Fitch(T, c).

▶ Problem 5 (Large Fitch Parsimony Problem). The large Fitch parsimony problem takes as
input a set C of unordered binary characters, each on species set S; the output is an unrooted
binary tree T on S that minimizes

∑
c∈C Fitch(T, c).

Although the Fitch parsimony score can be computed in polynomial-time [18], the large
Fitch parsimony problem is NP-hard [19]. We now consider ordered characters and rooted
phylogenetic trees, which enables us to distinguish between the 0→ 1 substitution (indicating
a mutation is gained) and the 1→ 0 substitution (indicating a mutation is lost).

▶ Definition 6 (Dollo and Camin-Sokal Parsimony Score). Given a rooted binary tree T and
an ordered binary character c, both on species set S, the Dollo parsimony score, denoted
Dollo(T, c), is the minimum number of losses needed to explain the evolution of c on T when
at most one gain is allowed (note that sometimes the gains are also counted as part of the
score). The Camin-Sokal parsimony score, denoted CamSok(T, c), is the minimum number
of gains needed to explain the evolution of c on T when losses are prohibited.

Just as the Fitch parsimony score was used to define the Fitch-labeling and the large
Fitch parsimony problem, we can define similar concepts for the Dollo and Camin-Sokal
parsimony scores. The following result about Dollo-labelings is the basis of a linear-time
algorithm presented by Bouckaert et al. [5] for computing Dollo(T, c).

▶ Theorem 7 (Theorem 1 in [5]). Let T be a rooted, binary tree and let c be an ordered,
binary character with no missing values, both on the same species set. A Dollo-labeling for
(T, c) must assign state 1 to every internal vertex on a path from the LCA of all leaves
assigned state 1 (including the LCA) to any leaf assigned state 1 and assign state 0 to all
remaining vertices.
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It follows that a Dollo-labeling for (T, c) is unique and always exists if we allow the root to
be assigned state 1, in which case the gain must have occurred above the root so no gains
are allowed on T (see Figure 1A for an example).

Lastly, the large Dollo and Camin-Sokal parsimony problems are NP-hard [9]. The existing
methods for these problems, including those implemented in PAUP* [36] and Phylip [16],
are based on either heuristic searches of tree space (which have no optimality guarantees)
or branch-and-bound (which is guaranteed to find an optimal solution). We describe these
approaches further in Section 4 and refer the interested reader to [14, 15] for more information
about parsimony problems and the related methodologies.

3 The clade-constrained large Dollo parsimony problem and a
polynomial-time algorithm

We now introduce the clade-constrained large Dollo parsimony (CC-LDP) problem.

▶ Problem 8 (Clade-constrained large Dollo parsimony problem). The CC-LDP problem is
defined by the following input and output.
Input: A set S of species, a set C of ordered binary characters (each on species set S), and
a set Σ of clades (subsets of S)
Output: A rooted binary tree on species set S such that

∑
c∈C Dollo(T, c) is minimized and

Clade(T ) ⊆ Σ, if such a tree exists

The CC-LDP problem has a solution provided there exists at least one binary tree T on
S with Clade(T ) ⊆ Σ. We present approaches for constructing Σ in Section 4 and evaluate
their empirical performance in Section 5. In the remainder of this section, we assume that Σ
is constructed from C in such a way that a solution to CC-LDP always exists. To present a
polynomial-time algorithm for CC-LDP, a corollary of Theorem 7 will be useful.

▶ Corollary 9. Let c be an ordered binary character on species set S (with no missing values),
let T be a rooted binary tree on S, and let ĉ be the unique Dollo-labeling for (T, c). Then for
any internal vertex v ∈ V (T ), ĉ[v] can be determined just by having knowledge of its subtree
bipartition SubBip(v); no other information about T is needed.

Proof. Consider an arbitrary internal vertex v ∈ V (T ) that induces subtree bipartition X|Y .
Without loss of generality, let X contain the leaves that are descendants of v.left, let Y

contain the leaves that are descendants of v.right, and let Z contain all other leaves so
X|Y |Z is a partition of S. When c has no missing values, by Theorem 7, there exists a
unique Dollo-labeling ĉ for (T, c), where ĉ[v] = 1 if at least one of the following two cases
holds (otherwise ĉ[v] = 0).

Case A: Vertex v is the LCA of two leaves assigned state 1.
Case B: Vertex v is on the path from the LCA of two leaves assigned state 1 to one of
those two leaves.

Looking at subtree bipartition SubBip(v) = X|Y , case A holds if condition 1 below is true,
and case B holds if at least one of conditions 2 and 3 below is true.

Condition 1: There exists a leaf x ∈ X and a leaf y ∈ Y such that c[x] = c[y] = 1.
Condition 2: There exists a leaf x ∈ X and a leaf z ∈ Z such that c[x] = c[z] = 1.
Condition 3: There exists a leaf y ∈ Y and a leaf z ∈ Z such that c[y] = c[z] = 1.

Therefore, ĉ[v] = 1 if at least one of conditions 1–3 is true; otherwise ĉ[v] = 0. Conditions
1–3 can be evaluated so long as we know the subtree bipartition induced by v (given the
character c and its complete leaf set S). ◀

WABI 2023
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Figure 1 Let v be the internal vertex associated with the subtree bipartition X|Y , where X = {A}
and Y = {B} (note that these vertices are circled in the trees above). Subfigures A and B show
two different trees on the same species set with Dollo-labelings for the same character. The state
assignment at v only requires us to know the subtree bipartition associated with v (Corollary 9).
Vertex v is assigned state 1 because there is a leaf in Y assigned state 1 and a leaf in S \ X ∪ Y

assigned state 1. Subfigures C and D show two different trees with Camin-Sokal-labelings for the
same character. The state assignment at v only requires us to know the clade associated with v

(Corollary 16). Vertex v is assigned state 0 because there is a leaf in clade X ∪ Y assigned state 0.
Lastly, subfigures E and F show two different trees with Fitch-labelings for the same character. In
subfigure E, the assignment of state 0 or 1 to v results in a score of two or three, respectively (so
0 is better). In subfigure F, the assignment of state 0 or 1 to v results in a score of three or two,
respectively (so 1 is better). Thus, for the Fitch criterion score, the state assignment at v depends
on more than the bipartition induced by the edge incident to v.

▶ Theorem 10. Let c be an ordered binary character on species set S, and let T be a rooted
binary tree on S. If c has missing values, the Dollo-labeling for (T, c) may not be unique.
However, we can define a unique Dollo-labeling ĉ∗ for (T, c) with the property that ĉ∗[v]
can be determined for any internal vertex v ∈ V (T ) just by having knowledge of its subtree
bipartition SubBip(v); no other knowledge of T is needed.

Proof. If c is allowed to have missing values, we compute the Dollo parsimony score after
restricting T and c to the subset R of leaves that are not assigned the ambiguous state ?.
Letting T |R and c|R denote the restriction of T and c to R, respectively, we say that ĉ is a
Dollo-labeling for (T, c) if Dollo(T, c) = Dollo(T |R, c|R).

We define a unique Dollo-labeling ĉ∗ for (T, c) with the property that it can be determined
for any vertex v ∈ V (T ) with SubBip(v) = X|Y by applying conditions 1–3 (see proof of
Corollary 9) plus one additional condition:

Condition 0: For all leaves l ∈ X ∪ Y , c[l] = ?.
If condition 0 is true, we set ĉ∗[v] = ?. Otherwise, we proceed in the usual fashion, setting
ĉ∗[v] = 1 if at least one of conditions 1–3 is true and setting ĉ∗[v] = 0 otherwise.

We need to show that this procedure produces a valid Dollo-labeling for (T, c) for all
v ∈ V (T ). We begin by classifying the vertices of T into three groups based on the formation
of T |R described next.
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1. First, we identify every edge incident to the root of a maximally-sized subtree of T whose
leaves are all assigned state ?. That is, we identify every edge a 7→ b ∈ E(T ) such that
all leaves in Clade(b) are assigned state ? and at least one leaf in Clade(a) is assigned a
non-ambiguous state. Let E denote the set of edges with this property.

2. Second, we delete each edge in E but not its endpoints from T . This produces a tree T ′

with no leaves assigned state ? plus a collection P of subtrees of T whose leaves are all
assigned state ?.

3. Lastly, we form T |R by suppressing all vertices in T ′ with out-degree one.

The above procedure can be used to classify vertices in V (T ) into three groups by which
we can build a valid Dollo-labeling ĉ for (T, c) as follows.

Group 1 contains every vertex v ∈ V (T ) that maps to a vertex w ∈ V (T |R). For
each vertex v in this group, we assign ĉ[v] = ĉ|R[w], where ĉ|R is the Dollo-labeling for
(T |R, c|R). The idea is to propagate the state assignments for T |R back to T . Now we
need to assign states to the remaining vertices in T without changing the Dollo score.
Group 2 contains every vertex v ∈ V (T ) that maps to a vertex w ∈ ∪t∈PV (t), meaning
that v is in a maximally-sized subtree of T whose leaves are all assigned state ?. For
each vertex v in this group, we set ĉ[v] = ?. This state assignment does not change the
Dollo score because substitutions are not counted on edges with at least one of their two
endpoints assigned state ?.
Group 3 contains every vertex v ∈ V (T ) that does not map to any vertex in V (T |R) ∪
∪t∈PV (t), meaning that the corresponding vertex must have been suppressed in step 3.
Thus, v maps to an edge e ∈ E(T |R), and exactly one of v’s children is the root of a
maximally-sized subtree of T whose leaves are all assigned state ?. A state assignment
that does not change the Dollo score can be achieved by assigning every vertex v in this
group that maps back to the same edge e = s 7→ t ∈ E(T |R) the same state: either the
state assigned to s or the state assigned to t.

Because there can be multiple ways to assign states to vertices in group 3, a unique Dollo
labeling for (T, c) does not necessarily exist.

We previously proposed how to define a unique Dollo-labeling ĉ∗ for (T, c) with the
property that it could be determined for any internal vertex v ∈ V (T ) with SubBip(v) = X|Y .
We now verify that our procedure produces a valid Dollo-labeling by examining the outcomes
of applying conditions 0–3 to vertices in groups 1–3.

Group 2: Condition 0 will be true for vertex v if and only if v is in group 2; thus,
applying condition 0 assigns state ? correctly.
Group 1: The outcomes of applying conditions 1–3 to any vertex v in group 1 will be
the same as applying conditions 1–3 to the corresponding vertex w in V (T |R) because
SubBip(v) = SubBip(w) after we remove all leaves assigned state ? from the SubBip(v).
Group 3: Each vertex v in group 3 maps to an edge e = s 7→ t ∈ E(T |R). For each of
these vertices v, the subtree bipartition SubBip(v) = X|Y will have either all leaves in
X assigned state ? or all leaves in Y assigned state ?. Thus, for any two vertices v1 and
v2 in group 3 that map to the same edge e = s 7→ t, SubBip(v1) = SubBip(v2) after all
leaves assigned ? are removed. It follows that v1 and v2 will be assigned the state when
applying conditions 1–3. Lastly, we need to show that the state assigned v1 (call v) will
be the same as either the state assigned to s or the state assigned to t. For simplicity,
assume v induces SubBip(v) = X|Y and that all leaves in X are assigned state ?; we can
now check the outcomes of applying conditions 1–3 to v.

Condition 1 is false because there does not exist a leaf x ∈ X such that c[x] = 1.
Condition 2 is false for the same reason.
Condition 3 may be either true or false.
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∗ If condition 3 is true for v, then v is assigned state 1. Because condition 3 is true
for v, there exists a leaf y ∈ Y and a leaf z ∈ Z such that c[y] = c[z] = 1. Thus, t is
on the path from the LCA(y, z) to leaf y. It follows that t is also assigned state 1.

∗ If condition 3 is false for v, then v is assigned state 0. Because condition 3 is false
for v, at least one of the following statements is true.
· For all y ∈ Y , c[y] ̸= 1. In this case, t is also assigned state 0.
· For all z ∈ Z, c[z] ̸= 1. In this case, s is also assigned state 0.

The above logic can be applied if all leaves in Y are assigned state ? (we just swap
our arguments for conditions 2 and 3, replacing set Y with X).

This proves our claim. Note that our procedure still works when c has no missing values
because all vertices in T will be in group 1. ◀

For a set C of k characters, each on a set S of n species, the proof of Theorem 10 gives an
O(nk) algorithm for determining a unique Dollo-labeling ĉ for all characters in C at vertex v

provided we know SubBip(v). We refer to this procedure as GetState (see Algorithm 1 for
details). This relationship between the subtree bipartitions of a tree and its Dollo-labeling
brings us back to the CC-LDP problem, where the solution space is constrained by a set
of clades, which in turn constrains the subtree bipartitions of any solution and thus its
Dollo-labeling.

▶ Corollary 11. Consider the set T of all solutions to CC-LDP given species set S, character
set C, and clade set Σ. Let ST B = {X|Y : X, Y, X ∪ Y ∈ Σ} be the set of all subtree
bipartitions that can be formed from Σ, and let ST B(A) = {X|Y ∈ ST B : X ∪ Y = A} be
the subset of subtree bipartitions in ST B that are associated with clade A. Then, the unique
Dollo-labeling at internal vertex v in an arbitrary phylogenetic tree T ∈ T that induces clade
A must be in the set Lab(A) = {GetState(X|Y, S, C) : X|Y ∈ ST B(A)}. Note that if v is a
leaf, Lab(A) is simply given by the input character set C.

This easily follows from Theorem 10. We refer to Lab(A) as the allowed state assignments
for clade A and ST B(A) as the allowed subtree bipartitions for clade A. These quantities
can be precomputed or computed on the fly. Whenever this is done, we also compute the set
ST B(A, st) of subtree bipartitions X|Y such that X ∪ Y = A and GetState(X|Y, S, C) = st.

Lastly, if we know the state assignments for some vertex v as well as its children v.left

and v.right, it is possible for us to compute the number of losses that occur on the outgoing
edges of v. We simply need to count the number of times v is assigned state 1 and v.left

is assigned state 0, repeating for v.right. This can be done if O(k) time. We refer to this
procedure as CountLosses (see Algorithm 2 for details). Now we are ready to present the
dynamic programming algorithm for CC-LDP.

▶ Dynamic Programming 12. Let Dollo[A, st] be the smallest number of losses for any
pair (tA, ĉA) such that tA is a rooted binary tree on leaf set A that draws all its clades from
Σ and ĉA is an assignment of states to all vertices of tA constrained by Corollary 11 and
returning st for the root of tA (note that these requirements imply A ∈ Σ and st ∈ Lab(A)).
The quantity Dollo[A, st] can be computed with dynamic programming as follows.
Base Case: Clade A contains a single species, i.e., |A| = 1.

Dollo[A, st] := 0

Recurrence: Clade A contains multiple species, i.e., |A| > 1.

Dollo[A, st] := min
X|Y ∈ST B(A,st),StX ∈Lab(X),StY ∈Lab(Y )

Dollo[X, StX ]+

Dollo[Y, StY ]+
CountLosses(st, StX , StY )
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The Dollo score of any solution to CC-LDP equals minst∈Lab(S) Dollo[S, st], and a solution
can be recovered by backtracking.

▶ Theorem 13. The dynamic programming algorithm above correctly solves CC-LDP.

Proof.

Base case. The base case for Dollo[A, st] is trivial because when |A| = 1 there is only one
rooted, binary tree possible: a single leaf assigned the states given by the input character set
C. There are no edges and thus no losses, so Dollo[A, st] = 0.

Induction step. Now we consider the case where |A| > 1. By the induction hypothesis,
we assume that we have correctly solved Dollo[X, StX ] and Dollo[Y, StY ]. Let (tX , ĉX) be
an arbitrary solution to subproblem Dollo[X, StX ], implying that (1) tX is a rooted binary
tree on leaf set X with Clade(tX) ⊆ Σ, (2) ĉX is an assignment of states to all vertices of
tX constrained by Corollary 11 and returning StX for the root of tX , and (3) the number
of losses for (tX , ĉX) equals Dollo[X, StX ], which is the minimum number of losses for any
pair (tree and state assignment) that satisfies both (1) and (2). Similarly, let (tY , ĉY ) be an
arbitrary solution to subproblem Dollo[Y, StY ]. Note that by (1), X, Y ∈ Σ and that by (2),
StX ∈ Lab(X) and StY ∈ Lab(Y ).

Let (t, ĉ) be formed by connecting (tX , ĉX) and (tY , ĉY ) at their roots and assigning state
st to the new root. The pair (t, ĉ) is a candidate solution for subproblem Dollo[A, st] provided
that X|Y ∈ ST B(A) (so requirement 1 is satisfied) and st = State(X|Y, S, C) ∈ Lab(A) (so
requirement 2 is satisfied). These two requirements can be summarized as X|Y ∈ ST B(A, st).
For this candidate solution, the number of losses equals Dollo[X, StX ] + Dollo[Y, StY ] +
CountLosses(st, StX , StY ), where the last term gives the number of losses for the new edges.

Now we need to consider requirement 3. Specifically, we need to check whether a better
score (i.e., lower number of losses) can be obtained from any other candidate solution.
Keeping clades X and Y , other candidate solutions can be formed by all other ways of
selecting StX ∈ Lab(X) and StY ∈ Lab(Y ). Moreover, this process can be repeated for the
other allowed subtree bipartitions for clade A that produce state assignment st (i.e., all other
ways of selecting X|Y ∈ ST B(A, st)). Any other possibilities will violate (1) and/or (2), and
thus will not produce valid candidate solutions. Thus, our recurrence is correct.

Recurrence is solvable by dynamic programming. In our recurrence, Dollo[A, st] only
depends on subproblems: Dollo[X, StX ] and Dollo[Y, StY ] for all X|Y ∈ STB(A, st), StX ∈
Lab(X), and StY ∈ Lab(Y ). Since |X| and |Y | must be less than |A|, solving subproblems
in order of clade cardinality will guarantee that all trivial subproblems are solved first
(hitting the base cases) and that all subproblem dependencies are satisfied moving forward
(because there are no dependencies between subproblems corresponding to the same clade
but different state assignments at the root). Thus, we can use dynamic programming to
solve this recurrence.

Putting it all together. We compute Dollo[S, st] for all st ∈ Lab(S), recording a subproblem
for which the number of losses is minimized. Backtracking gives an arbitrary solution to this
subproblem, which is also a solution to CC-LDP by (1), (2), and (3). ◀

▶ Theorem 14. The runtime of the dynamic programming algorithm is polynomial in the
number n of species, the number k of characters, and the number of clades in Σ.

Proof. We need to show that the number of subproblems is polynomial and that each
subproblem can be solved in polynomial time.
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The dynamic programming matrix has two dimensions. The first corresponds to clade
A ∈ Σ, and the second corresponds to an allowed state assignment st ∈ Lab(A). The former
is clearly O(|Σ|). The latter is also O(|Σ|) because |Lab(A)| has an upper bound of |ST B(A)|,
which in turn has an upper bound of |Σ|. This can be seen by noting that all allowed subtree
bipartitions for A can be identified by looping over X ∈ Σ and checking whether X ⊂ A

and A \X ∈ Σ (see Algorithm 3 for details). Thus, the number of subproblems is O(|Σ|2).
Note that to perform the traceback, we also need to store pointers back to the two child
subproblems for every subproblem.

Subproblem Dollo[A, st] can be solved by considering all candidate solutions taking
X|Y ∈ ST B(A, st), StX ∈ Lab(X), and StY ∈ Lab(Y ). All of these sets are bounded
above by |Σ|, so their product is bounded. For each candidate solution, we must execute
CountLosses and sum three terms together; this can be done in O(k) time. We also do some
related bookkeeping that is polynomial time. As an example, for each subtree bipartition
X|Y ∈ ST B(A), we need to compute its state assignment st′ with GetStates and then add it
to the set ST B(A, st′); this can be done in O(nk) time. It follows that the worst-case runtime
of our algorithm is polynomial, albeit a high degree one (see Algorithm 4 for details). ◀

3.1 Extension to Camin-Sokal Parsimony
Our results for Dollo can be extended to Camin-Sokal parsimony. Specifically, we can define
the clade-constrained large Camin-Sokal parsimony (CC-LCSP) problem, in the natural way.
We can also extend our algorithm by replacing the CountLosses function (Algorithm 2) to
count gains 0→ 1 instead and by redefining the GetStates function (Algorithm 1) based on
the following result.

▶ Theorem 15. Let T be a rooted binary tree, and let c be an ordered binary character (with
no missing values), both on the same species set. A Camin-Sokal-labeling for (T, c) must
assign state 0 to every internal vertex that is an ancestor of a leaf assigned state 0 and assign
state 1 to all remaining vertices.

The assignment of state 0 can be shown to be correct by contradiction. The assignment
of state 1 to vertex v only occurs when all leaves below v are assigned state 1; thus, labeling
v with state 1 does not increase the number of gains needed to explain the data. It follows
that a Camin-Sokal-labeling for (T, c) always exists and is unique.

▶ Corollary 16. Let c be an ordered binary character on species set S, let T be an arbitrary
rooted binary tree on S, and let ĉ be the unique Camin-Sokal-labeling for (T, c). Then for
any internal vertex v in T , ĉ[v] can be determined just by having knowledge of Clade(v); no
other knowledge of T is needed. Moreover, if c is allowed to have missing values, a unique
Camin-Sokal-labeling can be found in a similar fashion.

Proof. Consider an internal vertex v in T that induces clade A. By Theorem 15, ĉ[v] = 0 if
the following case holds (otherwise ĉ[v] = 1)

Case C: Vertex v is an ancestor of at least one leaf assigned state 0.
Looking at clade Clade(v) = A, case C holds if condition 4 below is true.

Condition 4: There exists a leaf a ∈ A such that c[a] = 0.
To summarize, ĉ[v] = 0 if condition 4 is true; otherwise ĉ[v] = 1. Condition 4 can be evaluated
so long as we know the clade induced by v (given the character c and its complete leaf set
S). This proves our first claim.

We now allow for missing values as discussed in Theorem 10, except applying condition 4
instead of conditions 1–3 to vertices in groups 1 and 3 (recall that condition 0 will be true if
and only if a vertex is in group 2). Applying condition 4 to vertices in group 1 will simply
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propagate state assignments from T |R back to T . For vertices in group 3, we need to show
that every vertex v that maps to the same edge e = s 7→ t ∈ E(T |R) will be assigned the
same state: either the state assigned to s or the state assigned to t (so there may be multiple
state assignments that achieve the optimal score). For each of these vertices v, the subtree
bipartition SubBip(v) = X|Y will have either all leaves in X assigned state ? or all leaves
in Y assigned state ?. Thus, for any two vertices v1 and v2 in group 3 that map to the same
edge e = s 7→ t, Clade(v1) = Clade(v2) after all leaves assigned ? are removed. It follows
that v1 and v2 will be assigned the same state when applying condition 4. Now we just need
to check the outcomes of applying condition 4 to v1 (call v).

If condition 4 is true for v, it is true for both s and t. Thus, v, s, t are all assigned state 0.
If condition 4 is false for v, it is false for t. Thus, v and t are both assigned state 1.

This proves our second claim. Note that our procedure still works when c has no missing
values because all vertices in T will be in group 1. ◀

Although our algorithm for the large Dollo parsimony problem can be extended to Camin-
Sokal parsimony, extensions to Fitch parsimony are not so straight-forward. Recall that
the large Fitch parsimony problem takes unordered binary characters as input and seeks an
unrooted binary tree to minimize the Fitch score. Both trees in Figure 1E–F when unrooted
have an edge that induces bipartition A, B|C, D, E; however, the Fitch-labeling of the vertex
incident to this edge and adjacent to leaves A and B depends on the remainder of the tree
(or at least requires more information about the tree than a single bipartition).

4 Experimental Study

We now describe an experimental study evaluating our dynamic programming algorithm
for CC-LDP against traditional methods for parsimony: heuristic search and branch-and-
bound. All analysis scripts and data sets simulated for this study are available on Github
(https://github.com/molloy-lab/dollo-study).

4.1 Character Data Sets
We evaluate methods in the context of species tree estimation under the infinite sites plus
neutral Wright-Fisher (IS+nWF) model [17, 40]. Under the infinite sites model, characters
evolve without homoplasy, meaning parallel mutations and reversals are prohibited. Some
types of retroelement insertions, like L1 in mammals [22], are typically assumed to evolve
with little homoplasy [34]. The idea is that two insertions are unlikely to occur at exactly
the same position in the genome (so no parallel evolution) and that insertions are unlikely to
be precisely excised (so no reversals) [34]. Note that the absence/presence of an insertion
corresponds to ancestral/derived states so these characters are ordered.

Characters that evolve without homoplasy would result in a perfect phylogeny; however,
this ignores population-level processes. For sexually reproducing organisms, insertions arising
in egg or sperm cells are transmitted from parent to offspring. Thus, the mutation is
polymorphic in the population when it arises and its frequency in the population changes
randomly assuming neutral evolution (note that the population structure is governed by the
species tree). To summarize, an insertion is gained (0 → 1) exactly once but then it can be
lost (1→ 0) due to genetic drift. These rules are suitable for Dollo parsimony, and indeed,
Dollo parsimony has been used to estimate species trees from low-homoplasy retroelement
insertions in prior studies (e.g., [11, 12, 33, 26, 23, 25]). Here, we re-analyze two retroelement
presence/absence data sets; we also benchmark methods on a collection of synthetic data
sets simulated under the IS+nWF model.
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Biological Data Sets

The Myotis data set from [25] has 11 taxa and 10,595 characters. Each character represents
the presence/absence of a Ves SINE (short interspersed nuclear element) insertion at an
orthologous position across the species’ genomes. No character states are ambiguous, and all
characters are parsimony-informative, specifically there are at least two 0’s and at least two 1’s.
The original analysis of this data set included maximum parsimony using branch-and-bound
with the Dollo criterion score (Figure 2 in [25]).

The Palaeognathe data set from [8] has 13 taxa and 4,301 parsimony-informative characters
(note that over 18% of the character states in this matrix are ambiguous). Each character
represents the presence/absence of a CR1 LINE (long interspersed nuclear element) insertion
at an orthologous position across the species’ genomes. The original analysis of this data set
did not include Dollo parsimony; rather insertions were used to corroborate a species tree
estimated from (estimated) gene trees with ASTRAL and MP-EST [27].

Simulated Data Sets

All synthetic data sets used in our study were simulated under an approximation to the
IS+nWF model using ms [21]. The simulation requires a model species tree. At the high-level,
a gene genealogy is simulated within the model species tree under the coalescent and then
a mutation arises on a branch of the genealogy so all taxa that are descendants have the
mutation (all other taxa do not). This process is repeated, producing a collection of binary
characters that evolved independently within the model species tree. We only utilize the
parsimony-informative characters, varying the total number of characters given to methods
as input from 500 to 50,000.

The first collection of synthetic data sets are taken from Molloy et al. [31]. These data
sets were simulated given the Palaeognathe species tree estimated by Cloutier et al. [8]
using MP-EST. The ms simulation was repeated 25 times to produce 25 replicate data sets.
We created a second collection of synthetic data sets by taking the species trees generated
in a prior study [30]. Specifically, Mirarab et al. [30] simulated species trees with varying
numbers of taxa under the Yule model with SimPhy [28], setting the species tree height to 2
million generations and the effective population size to 200,000. This process was repeated
50 times for each number of taxa. We ran the ms simulation, described above, for the first 25
species trees with 10, 50, 100, and 200 ingroup taxa (and one outgroup taxa). This produced
25 replicate characters matrices for each number of taxa.

4.2 Methods

We evaluated four different methods for the large Dollo parsimony problem. All approaches
implemented in PAUP* [36] were executed using version 4a168_centos64 (downloaded from
https://paup.phylosolutions.com).

Branch-and-bound Implementation

Branch-and-bound performs an exhaustive search of tree space in a systematic fashion using
the parsimony score of an initial tree to rule out parts of tree space that do not need to be
searched. We used the implementation of branch-and-bound in PAUP* (see Section B.4 for
command) and saved all optimal trees.

https://paup.phylosolutions.com
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SlowH and FastH Implementations

FastH is a “fast heuristic search” that operates in two phases. First, a starting tree is
constructed via random taxon addition, meaning that taxa are put in a random order and
then iteratively added to the tree (note that each taxon is attached to an edge of the current
tree so that the criterion score is maximized). This process is repeated ten times and then
the best scoring tree is taken as the starting tree. Second, hill-climbing is performed from
the starting tree with Tree Bisection and Reconnection (TBR) edit moves. FastH was
implemented with PAUP* (see Section B.1 for the command; the reconnection limit was set
to eight branches by default). The 100 best-scoring trees found during the heuristic search
were saved for use with our dynamic programming method.

SlowH is a “slow heuristic search” that operates by performing 100 independent searches.
In each search, a starting tree is built via random taxon addition and then hill climbing
is initiated from the starting tree using TBR edit moves. SlowH was implemented with
PAUP* (see Section B.3 for the command; again the reconnection limit was set to eight
branches by default). All trees with the best criterion score found were saved.

Dollo-CDP Implementation

Dollo-CDP is an implementation of our dynamic programming algorithm for CC-LDP. This
method requires not only a character matrix but also a set of clades to use as constraints.
We evaluated two different approaches for generating the constraints, both of which rely on
ASTRAL-III [43]. The idea is to give ASTRAL-III a set of trees from which it will generate a
set of clusters (note that clusters are subsets of taxa, like clades).

Our two approaches differ in the set of trees given to ASTRAL-III as input. Our first
approach gives ASTRAL-III the 100 best-scoring trees found by FastH. Our second approach
gives ASTRAL-III the input characters reformatted as unrooted trees, as proposed by [35].
The idea is that each parsimony-informative character encodes an unrooted tree with exactly
one internal branch, indicating the transition between taxa in state 0 to taxa in state 1 or
vice versa. After the clusters are computed with ASTRAL-III, Dollo-CDP processes them,
keeping only the clusters that form clades in a tree rooted at some set O of outgroup taxa
(note that outgroups are typically available when using Dollo parsimony, as they are often
used when calling variants and coding them as ancestral or derived). A cluster C produced
by ASTRAL-III is added to the constraint (clade) set if either (1) C ⊆ O or (2) C ⊆ {S \O}.

When the outgroup is a single taxon, both of our approaches ensure a solution to CC-LDP
exists. For the first approach, all trees produced by FastH, denoted P, can be rooted at O;
therefore, Σ = {Clade(T ) : T ∈ P}. The second approach guarantees a solution by virtue of
how ASTRAL-III handles polytomies (i.e., vertices of degree greater than three). However,
this produces a large number of clades, which, in turn, makes the second approach more
computationally intensive. Consequently, we only apply it to the biological data sets.

The command for running Dollo-CDP is given in Section B.2. Users are responsible for
providing trees for building constraints if using the first approach. They are also responsible for
downloading and extracting ASTRAL-III into the src directory so that Dollo-CDP can find it.
We used ASTRAL-III version 5.7.8 from Github (https://github.com/smirarab/ASTRAL).

4.3 Evaluation Metrics
All computational experiments were run on the compute cluster for the Center for Bioin-
formatics and Computational Biology at the University of Maryland, College Park. This is a
homogenous compute cluster, with all compute nodes having dual socket AMD EPYC 7313
16-Core processors and two terabytes of memory. All methods were given access to 64 GB of
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memory, one CPU, and a maximum wallclock time of 24 hours (resources were managed by
the SLURM submission system). We recorded the total wallclock time in minutes as well
as the best Dollo parsimony score found. We added the runtime of FastH to the runtime
of Dollo-CDP, when the former was used to construct the constraint set for the latter. Our
method Dollo-CDP only counts losses and does not count gains, unlike PAUP*. To ensure
scores were comparable, we recomputed the Dollo criterion score for all trees using PAUP* (see
Section B.5 for the command).

5 Experimental Results

We now present the results of our experimental study on biological and synthetic data sets.

5.1 Results on biological data sets
For the Myotis, all methods completed in less than a second, except for Dollo-CDP when it
used the characters to construct the constraint set Σ (this analysis took 54 seconds). All
approaches recovered the same tree as branch-and-bound, which was the unique optimal
solution (Figure 2A). For the Palaeognathe data set, all methods completed in less than 3
seconds (again Dollo-CDP using characters to construct constraints was the slowest). Branch-
and-bound recovered 60 optimal trees, and the strict consensus had just three branches
(Figure 2B), all of which are in the species tree estimated by Cloutier et al. [8] using MP-EST.
All methods we ran recovered one of the 60 optimal trees. Thus, on the biological data sets,
which had up to 13 taxa, the data sets were small enough to leverage branch-and-bound and
there was not much difference between the tested methods.

A Myotis B Palaeognathae

M. davidii

M. brandtii

M. septentrionalis

M. thysanodes

M. ciliolabrum

M. austroriparius

M. velifer

M. yumanensis

M. vivesi

M. occultus

M. lucifugus

G. gallus (chicken)

S. camelus (ostrich)

T. guttatus (white-throated tinamou)

C. cinnamomeus (thicket tinamou)

N. perdicaria (Chilean tinamou)

E. elegans (elegant crested tinamou)

R. pennata (lesser rhea)

R. americana (greater rhea)

D. novaehollandiae (emu)

C. casuarius (southern cassowary)

A. rowi (Okarito brown kiwi)

A. haastii (great spotted kiwi)

A. owenii (little spotted kiwi)

Figure 2 Subfigure A shows the tree returned by Dollo-CDP for the Myotis data set [25]. This is
the same tree recovered by branch-and-bound. Subfigure B shows the tree returned by Dollo-CDP for
the Palaeognathae data set [8]. A branch-and-bound analysis recovered 60 optimal trees (the
Dollo-CDP tree is one of the 60). The three branches highlighted in red indicate the strict consensus
of the 60 equally optimal trees.

5.2 Results on simulated data sets
Similar trends to the biological data sets were observed for the first collection of synthetic
data sets, which were simulated from a Palaeognathe species tree by Molloy et al. [31]. For
all but one replicate, all methods recovered trees with the same Dollo parsimony score as
branch-and-bound (which typically recovered one or two equally optimal trees). For the
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remaining replicate, FastH returned a tree with a slightly lower score than the other methods.
Thus, Dollo-CDP slightly improved upon FastH in terms of Dollo parsimony score for one
replicate. Similar trends were observed for the second collection of simulated data sets with
10 ingroup taxa. Like the biological data sets, the analyses of synthetic data sets suggest
that as long as the number of taxa is sufficiently small, all methods will produce similar
results and compare favorably to branch-and-bound.

We were unable to run branch-and-bound on data sets with 50 or more taxa (specifically
the jobs were killed due to our maximum wallclock time of 24 hours). For these data sets,
we first looked at whether Dollo-CDP found trees with better scores than FastH (note that
Dollo-CDP cannot be worse because it is given all trees produced by FastH as constraints –
and thus is guaranteed to find a tree with at least as good of a score as the best one found
by FastH). For 50 ingroup taxa, Dollo-CDP typically improved upon FastH for about half
of the replicates (Table 1). For 100 and 200 ingroup taxa (and at least 5000 characters),
Dollo-CDP nearly always improved upon FastH. Moreover, Dollo-CDP was quite fast with
an average runtime less than 3 minutes for all data sets.

Next, we compared the performance of Dollo-CDP to SlowH. For 50 and 100 ingroup
taxa, Dollo-CDP performed as well as SlowH in terms of parsimony scores and was faster,
although SlowH still always completed in less than 16 minutes on average. For 200 ingroup
taxa, SlowH took nearly 40 minutes on average for 5000-100,000 characters and over 1.5 hours
for 100,000 characters. In contrast, Dollo-CDP always completed in less than 5 minutes. On
the other hand, SlowH did recover better scoring trees in about one third of the replicates.
To summarize, our results suggest that for larger numbers of taxa and larger numbers of
characters, Dollo-CDP improves upon FastH and is faster than SlowH.

6 Discussion and Conclusion

We have introduced the clade-constrained large Dollo parsimony problem and presented a
polynomial time algorithm that solves it. Although constraints and dynamic programming
(CDP) have been a powerful combination in phylogenetics, to our knowledge this is the first
attempt at using CDP for character parsimony. An important distinction between prior
problems and character parsimony is the assignment of states at internal vertices required to
compute the parsimony score of a tree. We found that Dollo as well as Camin-Sokal criterion
scores have nice properties that make CDP possible (they also might make heuristic search
quite effective in practice). These nice properties for state assignments did not easily extend
to Fitch parsimony, so our algorithmic approach seems less favorable in this setting.

We implemented the CDP algorithm for the Dollo criterion score in a package called
Dollo-CDP. In an experimental evaluation, we found that Dollo-CDP had good performance
(finding high scoring trees quickly), although all existing methods performed similarly when
data sets had relatively few taxa. We found, by way of a simulation study, that Dollo-CDP can
provide a benefit for larger numbers of taxa. Most notably, branch-and-bound could not
scale to data sets with 50 or more taxa, so Dollo-CDP was the only method run that
could provide some guarantee of optimality, albeit a more limited one. In practice, we found
Dollo-CDP often found higher scores trees than FastH, even though the trees from FastH were
used to form constraints for Dollo-CDP. SlowH sometimes found higher scoring trees than
Dollo-CDP but was much slower for large numbers of taxa and characters. A caveat of our
study is that all methods were run with one thread. All searches in SlowH are independent so
it would be much faster with threading. Dollo-CDP could also take advantage of threading,
using techniques from Yin et al. [41] and could be better optimized. We leave this to future
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Table 1 This table shows a comparison of the tree produced by Dollo-CDP and the best trees
found by the fast heuristic search (FastH) and the slow heuristic search (SlowH). We provide the
number of replicates for which Dollo-CDP is better (b), worse (w), or the same (s) in terms of Dollo
criterion score than the alternative method. We also provide the absolute difference in scores for
the trees estimated by the two methods averaged across these three cases. Lastly, we provide the
runtime (in minutes), averaged across all 25 replicates. The runtime of Dollo-CDP includes the time
to run FastH, the output of which is used to constrain tree space.

Dollo-CDP vs. FastH Dollo-CDP vs. SlowH

# of # of reps ∆ score # of reps ∆ score Runtime (min)
characters b/w/s b/w/s b/w/s b/w/s Dollo-CDP/SlowH

50 taxa
500 9/0/16 1.56/NA/0 0/0/25 NA/NA/0 0.03/0.14

1000 14/0/11 2.43/NA/0 0/0/25 NA/NA/0 0.04/0.19
5000 13/0/12 6.54/NA/0 0/0/25 NA/NA/0 0.05/0.45

10000 11/0/14 16.09/NA/0 0/1/24 NA/14.00/0 0.06/0.67
50000 12/0/13 53.58/NA/0 0/0/25 NA/NA/0 0.16/1.90

100 taxa
500 0/0/25 NA/NA/0 1/0/24 1.00/NA/0 0.46/0.46

1000 3/0/22 1.00/NA/0 1/0/24 3.00/NA/0 0.38/1.26
5000 25/0/0 6.40/NA/NA 0/0/25 NA/NA/0 0.16/3.44

10000 23/0/2 12.87/NA/0 0/1/24 NA/7.00/0 0.21/5.56
50000 21/0/4 42.81/NA/0 0/2/23 NA/56.00/0 0.56/15.58

200 taxa
500 0/0/25 NA/NA/0 5/1/19 1.20/1.00/0 2.19/2.20

1000 0/0/25 NA/NA/0 0/0/25 NA/NA/0 3.04/2.90
5000 19/0/6 1.63/NA/0 0/8/17 NA/3.00/0 1.28/39.29

10000 21/0/4 3.10/NA/0 0/6/19 NA/6.00/0 1.72/39.37
50000 25/0/0 26.68/NA/NA 0/8/17 NA/23.62/0 2.42/93.96

work. Even if the runtime of SlowH improves with threading, Dollo-CDP could then be run
using trees found by SlowH, in addition to the ones found by FastH, to form constraints.
The benefit here is that running Dollo-CDP is fast, strictly improves upon prior searches,
and gives a guarantee of optimality for the constrained solution space.

An issue that arose when analyzing the Palaeognathae biological data set with branch-
and-bound is that there can be many optimal trees. Dollo-CDP returns a single binary tree,
and future work should enable users to get a consensus of the optimal trees in the constrained
solution space, similar to SIESTA [38]. Lastly, we explored methods for Dollo parsimony
in the context of species tree estimation, where data are assumed to follow a population
genetics model. Dollo parsimony has also been leveraged in tumor phylogenetics [3, 4, 7, 13].
It would be interesting to explore the utility of Dollo-CDP in this application area, especially
as the number of leaves (cells instead of species) can be quite large in this setting.
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A Algorithms

Algorithm 1 GetState.
Input: Subtree bipartition X|Y , the set S of n species, and an n× k character matrix

C, with C[i, j] indicating the state assigned to leaf i for character j

Output: State assignment for subtree bipartition X|Y for each of the k characters in C
1: function GetState(X|Y, S, C)
2: states← an array of length k containing all 0’s ; A← X ∪ Y ; Z ← S \A

3: for i ∈ {0, 1, 2, . . . , k − 1} do
4: if for all x ∈ A, C[x, i] = ? then states[i]← ?
5: else
6: flag ← 0
7: if ∃x ∈ X s.t. C[x, i] = 1 then flag ← flag + 1
8: if ∃x ∈ Y s.t. C[x, i] = 1 then flag ← flag + 1
9: if ∃x ∈ Z s.t. C[x, i] = 1 then flag ← flag + 1

10: if flag ≥ 2 then states[i]← 1

11: return states
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Algorithm 2 CountLosses.
Input: Three k-vectors of state assignments: statesU , statesV , statesW

Output: Number of losses assuming that statesU are associated with a vertex u and
statesV and statesW are associated with children of u

1: function CountLosses(statesU, statesV, statesW )
2: nlosses← 0
3: for i ∈ {0, 1, 2, . . . , k − 1} do
4: if statesU [i] = 1 and statesV [i] = 0 then nlosses← nlosses + 1
5: if statesU [i] = 1 and statesW [i] = 0 then nlosses← nlosses + 1
6: return nlosses

Algorithm 3 Construct subtree bipartitions from clades.
Input: Set Σ of clades
Output: Subtree bipartitions allowed from Σ stored as a dictionary, where SubBip[A]

is a list of the allowed subtree bipartitions for clade A (note that only one side of the subtree
bipartition is stored)

1: function ConstructSubBipsFromClades(Σ)
2: Sort Σ by cardinality from least to greatest
3: for i ∈ {0, 1, . . . , |Σ| − 1} do
4: A← Σ[i]; SubBip[A]← [ ]
5: for j ∈ {0, 1, . . . , i− 1} do
6: X ← Σ[j]
7: if X ⊂ A then SubBip[A].append(X) (already have ptr to SubBip[A])
8: return SubBip
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Algorithm 4 Dynamic Programming for CC-LDP.
Input: Set Σ of clades (sorted by cardinality from least to greatest), a dictionary SubBip

of allowed subtree bipartitions previously computed from Σ, an n× k character matrix C,
with each character on species set S

Output: Fills in the dynamic programming matrix Dollo and the traceback matrix
TraceBack

1: Lab← dict()
2: SubBipByLab← dict()
3: for A ∈ Σ do
4: if |A| = 1 then
5: Do base case for leaves
6: st← C[A, :]
7: Dollo[A, st]← 0
8: Lab[A]← st

9: SubBipByLab[A][st]← ∅
10: Traceback[A][st]← NULL

11: else
12: Find state assignments for clade A and their associated subtree bipartitions
13: Lab[A]← ∅
14: SubBipByLab[A]← dict()
15: for X ∈ SubBip[A] do
16: Y ← A \X

17: st← GetState(X|Y, S, C)
18: Add st to set Lab[A]
19: Add X to set SubBipByLab[A][st] (initialize if it does not exist)
20: For each unique state assignment fill in DP matrix
21: bestDollo←∞
22: bestX, bestY, bestXState, bestY State← NULL

23: for st ∈ Lab[A] do
24: for X ∈ SubBipByLab[A][st] do
25: Y ← A \X

26: for StX ∈ Lab[X] do
27: for StY ∈ Lab[Y ] do
28: cX ← Dollo[X, StX ]
29: cY ← Dollo[Y, StY ]
30: cA← CountLosses(st, StX , StY )
31: score← cX + cY + cA

32: if bestDollo > score then
33: bestDollo← score

34: bestX ← X

35: bestXState← StX

36: bestY ← Y

37: bestY State← StY

38: Dollo[A, st]← bestDollo

39: TraceBack(A, st)← (bestX, bestXState, bestY, bestY State) (two children)
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B Software Commands

In all PAUP* commands for heuristic search, we specified seeds so that the results would be
reproducible.

B.1 PAUP* command for running the fast heuristic search (FastH)

#NEXUS
BEGIN PAUP;
set autoclose =yes warntree =no warnreset =no;
execute <character matrix nexus file >;
outgroup <outgroup name >;
ctype dollo :1-< total number of characters >;
hsearch start = stepwise addSeq = random swap=None nreps =10 rseed =55555;
hsearch start =1 swap=TBR nbest =100 rseed =12345;
rootTrees ;
savetrees File=< output file > root=yes trees=all format = newick ;
END;

B.2 Dollo-CDP command

./ dollo -cdp \
-i <character matrix nexus file > \
-g <outgroup > \
-t <best 100 trees found from fast heuristic search > \
-o <output file name >

B.3 PAUP* command for running the slow heuristic search (SlowH)

#NEXUS
BEGIN PAUP;
set autoclose =yes warntree =no warnreset =no;
execute <character matrix nexus file >;
outgroup <outgroup name >;
ctype dollo :1-< total number of characters >;
hsearch start = stepwise addSeq = random swap=TBR nreps =100 rseed =12345;
rootTrees ;
savetrees File=< output file > root=yes trees=all format = newick ;
END;

B.4 PAUP* command for running branch-and-bound

#NEXUS
BEGIN PAUP;
set autoclose =yes warntree =no warnreset =no;
execute <character matrix nexus file >;
outgroup <outgroup name >;
ctype dollo :1-< total number of characters >;
bandb;
rootTrees ;
savetrees File=< output file > root=yes trees=all format = newick ;
END;
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B.5 PAUP* command for computing the Dollo criterion score

#NEXUS
BEGIN PAUP;
set autoclose =yes warntree =no warnreset =no;
execute <character matrix nexus file >;
execute <tree nexus file file >;
set criterion = parsimony ;
ctype dollo :1-< total number of characters >;
pscores / single =var;
END;
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1 Introduction

In the field of computational biology, the use of gene families and the reconciliation model has
become increasingly popular for studying the evolution of diverse organisms. These tools have
facilitated the development of new algorithms and computational methods capable of handling
large and complex datasets and exploring various types of evolutionary events. These events
range from simple macroevolutionary processes such as gene duplications, gene losses, and
horizontal gene transfers to more complex ones such as genomic duplications, speciations, and
hybridizations. The reconciliation model has enabled researchers to reconstruct evolutionary
histories by reconciling gene trees with species trees, and identifying the evolutionary events
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the reconciliation model has also been used to detect missing gene-species assignments using
polynomial time algorithms. These developments have led to a better understanding of the
evolutionary processes.

A classical reconciliation model [10, 26] defines a mapping from every node from a gene
tree into a node in the species tree and determines if such a node is related to a speciation or
can be classified as a single gene duplication [19]. In result, an embedding of the set of gene
trees into a species tree can be interpreted as a joint evolutionary scenario [11]. The classical
least common ancestor (LCA) mapping minimizes the number of single gene duplications
and losses for one gene tree and the species tree [11].

The whole genome duplication (WGD) phenomenon incorporates additional copies of a
complete genome into the original genetic material, thus creating an opportunity to introduce
novel evolutionary traits [16, 25]. From a macro perspective, this phenomenon played a crucial
role in the divergence and formation of species and shaped the evolution of almost all major
lineages of life. In particular, many WGDs were uncovered in the evolutionary histories of
plants, especially crops. WDGs potentially enabled the successful domestication of plants [36]
and are important in the fight against famine [40]. Many traces and evidence of whole genome
duplications can be found in the genomes of yeast and other fungal species [16, 39]. From the
perspective of single cell evolution studies, WGDs are prevalent in cancer progression [18]
and can lead us to the prognosis of advanced cancer stages [3] or the creation of strategies
for targeted therapy [33].

Guigó et al. [13] proposed the first approach for detecting multiple gene duplication
episodes from a collection of rooted gene trees. They designed a heuristic that aggregates
single gene duplication events into a large gene duplication, given a collection of rooted gene
trees and a rooted species tree. This approach was formalized and improved by Page and
Cotton [27], who defined the problem of episode clustering (EC) as the task of identifying
the minimal number of locations in the species tree where all duplications from the input
gene trees can be placed. Fellows [8] applied this model in the context of the supertree
problem. Polynomial-time solutions for two types of multiple gene duplication problems
episode clustering and a more general variant of clustering called minimum episodes (ME)
were proposed in [1, 4]. Luo et al. [17] proposed linear time and space algorithms, partially
based on [22], for these problems. [29] introduced a unified approach by proposing a concept
of interval models with a linear time and space solution to a broad class of clustering problems
including EC and ME. Alternative approaches include generalization to unrooted gene trees;
however, such approaches are often computationally complex [28, 30]. Other approaches
include variants of clustering rules that depend on the maximal number of duplication
episodes placed in one path [15, 32]. A comprehensive analysis of various models is available
in [29]. Furthermore, [31] proposes an integer linear programming formulation that simplifies
the process of testing these models. Relevant computational complexity results on the ME
problem are presented in [6].

Metagenomic studies provide valuable information for analyzing entire communities of
organisms and revealing a complete picture of their functional and adaptive capacities crucial
for ecology [35] or human health [38]. Genetic material isolated in such studies can be used
to detect whole genome duplication events.

One of the steps in metagenomic analysis is called binning. The aim of this procedure is
to assign sequenced DNA fragments to the appropriate taxonomic groups. The assignment
of certain genes to species can be ambiguous due to the limitations of annotation methods.
A precise and comprehensive gene tree topology is essential for the accurate identification
of potential duplication sites. The absence or misplacement of duplications in gene trees
can, in turn, result in incorrect outcomes of methods aimed at determining whole genome
duplication events.
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To tackle the challenge of missing gene-species assignments in evolutionary studies,
previous research has introduced methods based on the reconciliation score using gene
duplication and loss events [2, 42]. In a related work, Mykowiecka et al. [24] extended this
model by including horizontal gene transfer to better analyze bacterial evolution and proposed
polynomial time algorithms for these models. These approaches utilize tree reconciliation
according to the classical scheme, in which the gene tree includes symbols representing
sequences with unclear species assignment in addition to the known gene labels. The
objective is to assign the unknown gene labels to their corresponding species by resolving
the missing labels in a gene tree while minimizing the total reconciliation score, which is
typically a weighted sum of evolutionary events such as gene duplication, gene loss, and
horizontal gene transfer.

Here, we present a novel problem, called MetaEC, which aims to infer gene-species
assignments in a collection of gene trees with missing labels by minimizing the size of episode
clustering. This problem is particularly relevant in metagenomics, where incomplete data
often poses a challenge in the accurate reconstruction of gene histories. To solve MetaEC,
we propose a dynamic programming (DP) algorithm that verifies the existence of a set of
duplication episodes from a predefined set of episode candidates. We then demonstrate
how to use DP to design an algorithm that solves MetaEC. Although the algorithm is
exponential in the worst case, we introduce a heuristic modification of the algorithm that
provides a solution with the knowledge that it is exact. To evaluate our method, we perform
two computational experiments on simulated and empirical data containing WGD events,
showing that our algorithm is able to accurately infer the corresponding events.

2 Basic Definitions

2.1 Gene trees, species trees, and the duplication cost

We begin by recalling some basic definitions from graph theory. All trees in this article are
rooted and binary, therefore we refer to them as trees. For a tree T = (V (T ), E(T )), by
root(T ) we denote the root, and by L(T ) we denote the set of all leaves. Every non-leaf node
will be called internal. A species tree is a tree whose leaves are called species. A gene tree
over a species tree S is a tree with leaves labeled by the species from S. The set of all species
present in a species tree or a gene tree T is denoted by L(T ). Note that for a species tree S,
L(S) = L(S). Also, for a gene tree G over S, L(G) ⊆ L(S).

For nodes a and b, a ⪯ b means that a and b are on the same path from the root, with b

being closer to the root than a. We write a ≺ b if a ⪯ b and a ̸= b.

For a gene tree G over a species tree S, the least common ancestor (lca) mapping between
G and S is a function MG : V (G)→ V (S) defined as follows. If v is a leaf in G then MG(v)
is the label of v. When v is an internal node in T having two children a and b, then MG(v)
is the least common ancestor of MG(a) and MG(b) in S. An internal node g ∈ V (G) is called
a duplication if MG(g) = MG(a) for a child a of g. The duplication cost, denoted by D(G, S),
is the total number of duplications in G. Each non-duplication internal node of G we call
a speciation. In the latter part of the article, a duplication g is called an s-duplication if
MG(g) = s. Similarly, we use the notation for an s-speciation and an s-leaf. An example of
tree reconciliation and the lca-mapping is depicted in the leftmost part of Figure 1.
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2.2 Episode Clustering Problems

Below we present a model of duplication episodes proposed in [29]. In short, this model
admits all evolutionary scenarios using duplication and loss events with a minimal number
of gene duplications.

Formally, the model of gene duplication episodes allows for relocating a gene duplication
from its lca-mapping node to one of its ancestors under some additional constraints required
to preserve the biological soundness of the scenario. For a gene tree G over S, a mapping
FG : V (G)→ V (S) is called valid if the following conditions are satisfied:

FG(a) ⪯ FG(b) if a ⪯ b (time consistency),
FG(a) = MG(a) for any speciation node a (fixed speciations),
FG(a) ⪰ MG(a) for any duplication node a (duplication can be raised),
FG(a) ≺ MG(b) for any speciation node b such that a ≺ b (fixed number of gene
duplications).

Note that the model of valid mappings described above is more comprehensive than the
model presented in [1].

Figure 1 provides an example of valid mappings that uniquely define an evolutionary
scenario that can be represented as a tree with an additional decoration of nodes. For more
information on the formal modeling of evolutionary scenarios, refer to [11].

We denote by DupT ⊂ V (T ), the set of all duplication nodes in T . Let G1, G2, . . . , Gn be a
collection of rooted gene trees over a species tree S. Assume that, for every i ∈ {1, 2, . . . , n}, Fi

is a valid mapping between Gi and S. Every element s ∈
⋃

i Fi[DupGi
] denotes the location

of multiple gene duplication events in S. We will refer to such locations as duplication
episodes or simply episodes. Later on, we may also use the term episode to refer to the set of
duplications that are mapped into it.

▶ Problem 1 (Episode Clustering, EC). Given a collection of rooted gene trees G1, G2, . . . , Gn

over a species tree S. Compute the minimal number of duplication episodes, denoted by
EC(G1, G2, . . . , Gn, S), in the set of all valid mappings F1, F2, . . . , Fn such that Fi : V (Gi)→
V (S).

This problem can be solved in linear time and space [17].
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Figure 1 From the left side: a gene tree G and a species tree S with the lca-mapping M shown
using arrows from the internal nodes of G to the nodes of S. There are 5 gene duplications, 2
speciation nodes in G (red bars), and 8 valid mappings depicted as embeddings of G into S [11], where
the blue lines in these embeddings correspond to the edges of G. ELCA is induced by the lca-mapping.
Here, EC(G, S) = 3 as indicated in the three rightmost scenarios with episode sets {a, b, abcd} for
E5 and {a, abc, abcd} for E6 and E7. The example trees are partially adopted from [32].



P. Górecki, N. Rutecka, A. Mykowiecka, and J. Paszek 6:5

2.3 Gene-species mappings
We present the main problem for joint reconstruction of gene-species mappings and minimizing
the set of episodes.

A partial gene tree is a rooted binary tree where each leaf is labeled by a species or has
no label. Let G be a partial gene tree over S. By ΛG : L(G)→ L(S) we denote the partial
leaf labelling function such that ΛG(g) is the label (species) of the leaf g in G if defined. Note
that any gene tree is a partial gene tree with the leaf labeling being a total function. If a
leaf in G has no label we write ΛG(g) = ⊥. We say that a gene tree G∗ over S extends a
partial gene tree G over S if G and G∗ are isomorphic as graphs (i.e., V (G) = V (G∗) and
E(G) = E(G∗)), and, ΛG∗ is a total function that extends ΛG.

2.4 Inferring labelings by minimizing episodes
Now, we present the problem of the simultaneous reconstruction of leaf labelings and
duplication episodes from collections of partial gene trees.

▶ Problem 2 (MetaEC). Given a collection of partial gene trees G1, G2, . . . , Gk over a species
tree S. Compute the minimum EC(G∗

1, G∗
2, . . . , G∗

k, S), denoted EC(G1, G2, . . . , Gk, S), in the
set of all collections of gene trees G∗

1, G∗
2, . . . , G∗

k such that G∗
i extends Gi, for each i.

For example, if (a, (⊥, (⊥,⊥))) is a single gene tree with three undefined labels and (a, (b, c))
is a species tree, then the problem is to replace all occurrences of ⊥ by a, b or c such that
the total number of duplication episodes is minimized. In this case, the optimal cost is 1,
since at least one duplication is needed when the gene tree has four leaves and there are only
three species.

3 Methods

We first solve a simpler problem in which we assume that the set of duplication episodes is
constrained to a given set of species tree nodes. Then, we show how to solve MetaEC for a
single gene tree. Section 3.3 presents the general solution.

3.1 Episode Feasibility Problem
We start with a related constrained problem. Given a partial gene tree, we are interested in
the question, of whether there is an extension of the partial gene tree such that the set of
corresponding duplication episodes is contained in a given fixed set of episode candidates.

▶ Problem 3 (Episode Feasibility). Given a partial gene tree G over a species tree S and
X ⊆ V (S). Does there exist a gene tree G∗ and a valid mapping FG∗ such that G∗ extends
G and FG∗(DupG∗) ⊆ X?

If a partial gene tree G satisfies the above property, we call G X-feasible with respect to a
species tree S. If the context is clear, we omit the reference to S.

The solution to Episode Feasibility is a dynamic programming (DP) formulation expressed
using Łukasiewicz’s Three-Valued Logic Ł3 [43] with three constants True, False, and Unknown
(representing uncertainty) and ordered linearly: False < Unknown < True. The logic has
binary operators ∨ (disjunction, max), ∧ (conjunction, min), and two unary operators L
(certainty) and M (possibility). See the interpretation in Figure 2.

WABI 2023



6:6 Simultaneous Reconstruction of Duplication Episodes and Gene-Species Mappings

∨ F U T

F F U T

U U U T

T T T T

∧ F U T

F F F F

U F U U

T F U T

L
F F

U F

T T

M
F F

U T

T T

Figure 2 Boolean operations in Three-Valued-Logic used in DP. Here F= False, U= Unknown,
and T= True.

For a node g of a gene tree G, by G|g we denote the subtree of G rooted at g. For
any non-leaf node t in a tree, by t′ and t′′, we denote the children of t. To simplify the
notation, we assume that the set X ⊆ V (S) is fixed. Then, we have the following dynamic
programming formulas that solve Episode Feasibility. Let g ∈ V (G) and s ∈ V (S).

δ(g, s) =


δ∗(g, s) g is internal and s ∈ X, (1)
δ∗(g, s) ∧ Unknown g is internal and s /∈ X, (2)
False otherwise, (3)

δ↓(g, s) =


ϵ(g, s) s is a leaf, (4)
ϵ(g, s) ∨ M δ↓(g, s′) ∨ M δ↓(g, s′′) s internal, and s ∈ X. (5)
ϵ(g, s) ∨ δ↓(g, s′) ∨ δ↓(g, s′′) otherwise, (6)

σ(g, s) =


L

(
δ↓(g′, s′) ∧ δ↓(g′′, s′′) ∨ δ↓(g′, s′′) ∧ δ↓(g′′, s′)

)
g and s are internal, (7)

True g ∈ L(G), ΛG(g) ∈ {s, ⊥}, (8)
False otherwise, (9)

where

ϵ(g, s) = σ(g, s) ∨ δ(g, s), (10)
δ∗(g, s) = ϵ(g′, s) ∧ δ↓(g′′, s) ∨ ϵ(g′′, s) ∧ δ↓(g′, s). (11)

In the next Lemma, we express properties satisfied by the above formulas.
For a partial gene tree G over S, and nodes g ∈ V (G) and s ∈ V (S), we say that a valid

mapping FT : V (G|g) → V (S|s) is feasible for (g, s, X), if and only if, T extends G|g and
FT (DupT ) ⊆ X. Feasible mappings represent episode scenarios that correspond to partial
solutions to the instance of Episode Feasibility that forces duplications from G|g to be present
in episodes from X ∩ V (S|s).

We say a duplication g in a gene tree T is upper if the path from g to the root of T

contains only duplications. The set of all upper duplications in a tree T we denote by UDupT .
We say that a valid mapping FT : V (G|g) → V (S|s) is weakly feasible for (g, s, X), if and
only if, there is no feasible mapping for (g, s, X), but there is T that extends G|g, T has at
least one upper duplication d such that FT (d) /∈ X and FT (DupT \UDupT ) ⊆ X. In contrast
to feasible mappings, in weakly feasible mappings we constrain only non-upper duplications
present in G|g. Here, the upper duplications are elements of episodes s /∈ X. This situation
is modeled by Unknown value returned from δ↓(g, s) and δ(g, s) calls, meaning that there
is at least one duplication that needs to be assigned later (if possible) to an episode from
X \ V (S|s), which eventually occurs at levels of recursion shallower than the level of (g, s).

Informally, the meaning of DP formulas can be understood as follows. Below, let T be
an extension of the subtree of G rooted at a node g. The value of δ(g, s) is True if there
exists T where g is an s-duplication and all duplications are assigned to the episodes from
X (where s ∈ X as well). Similarly, the value of σ(g, s) is True if there exists T , where g

represents an s-speciation or an s-leaf node. Next, δ(g, s) is Unknown if the condition for
δ(g, s) = True is not met. However, there still exists T , where g represents an s-duplication,
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and all non-upper duplications from T are assigned to the episodes from X, while the upper
duplications are assigned to episodes outside of X. It is important to note that in this case,
s is not an element of X. Note that σ(g, s) cannot be Unknown since speciation nodes are
fixed. Moving on, δ↓(g, s) is True if there exists T where all duplications are assigned to the
episodes from X. Lastly, δ↓(g, s) is Unknown if the condition for δ↓(g, s) = True is not met.
However, there still exists T , where all non-upper duplications from T are assigned to the
episodes from X, while the upper duplications are assigned to episodes outside of X.

While ϵ and δ∗ should be treated as “local” in the main formulas (i.e., they should not form
separate arrays in implementation), their properties can be formulated as follows. Generally,
if ϵ(g, s) is True, then there is a tree T , where g is mapped into s and all duplications are
assigned to the episodes from X. Since σ(g, s) cannot be Unknown, ϵ(g, s) is Unknown only
if σ(g, s) is False and δ(g, s) = Unknown. Again, here g is mapped to s. Now, δ∗(g, s) is True
only if there is T where g is an s-duplication, and all duplication nodes below g are assigned
to episodes from X. Importantly, at least one of the children of g must be mapped to s, which
is captured by ϵ. Furthermore, δ∗(g, s) resembles δ(g, s), but the condition that duplications
must be assigned to episodes from X only applies to the duplications (or upper-duplications)
below g if δ∗(g, s) is True (or Unknown, respectively).

The following Lemma formalizes the conditions described above.

▶ Lemma 1. Given a partial gene tree G over a species tree S and X ⊆ V (S). Let g ∈ V (G),
s ∈ V (S). Then,
P1 δ(g, s) = True if and only if there is a gene tree T and a feasible mapping FT for (g, s, X)

such that g is an s-duplication in T .
P2 δ(g, s) = Unknown if and only if there is a gene tree T and a weakly feasible mapping FT

for (g, s, X) such that g is an s-duplication in T .
P3 σ(g, s) = True if and only if there a gene tree T and a feasible mapping FT for (g, s, X)

such that and g is an s-speciation or an s-leaf in T .
P4 For any g and s, σ(g, s) ̸= Unknown.
P5 δ↓(g, s) is True if and only if there is a feasible mapping for (g, s, X).
P6 δ↓(g, s) is Unknown if and only if there is a weakly feasible mapping for (g, s, X).

To solve Episode Feasibility, we have to apply δ↓ on the roots of the input trees.

▶ Theorem 2 (Correctness). Given a partial gene tree G over a species tree S and X ⊆ V (S).
G is X-feasible if and only if δ↓

X(root(G), root(S)) is True.

Proof. The proof follows immediately from P5 of Lemma 1: δ↓
X(root(G), root(S)) is True

if and only if there is a feasible FT for (root(G), root(S), X)) such that T extends G and
FT (DupT ) ⊆ X. ◀

▶ Theorem 3 (Complexity). Given a partial gene tree G over a species tree S and X ⊆ V (S).
The time and space complexity of solving Episode Feasibility by the dynamic programming
algorithm is O(|V (G)||V (S)|).

Proof. We have three arrays δX , δ↓
X and σX (note that ϵ and δ∗ can be directly inserted in

their calls), each of size O(|V (G)||V (S)|) and every cell of an array can be computed in O(1)
time. ◀

An example of DP execution with a feasible solution is depicted in Figure 3.
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abcd T T F T
bd F F F F
d F F F F
b F F F F
ac F F F F
c F F F F
a F F F F

abcd T T F T
bd F F F F
d F F F F
b F F F F
ac F F F F
c F F F F
a F F F F

⊥→ d
abcd F T F F
bd F T F F
d F T T T
b F T T T
ac F T F F
c F T T T
a F T T T

abcd T T T T
bd U U F U
d F F F F
b U U F U
ac F F F F
c F F F F
a F F F F

b
abcd F T F F
bd F T F F
d F F F F
b F T T T
ac F F F F
c F F F F
a F F F F

abcd T T T T
bd U U F U
d U U F U
b U U F U
ac U T F U
c U U F U
a T T F T

abcd F T T T
bd F T T T
d U U F U
b U U F U
ac F T T T
c U U F U
a T T F T

⊥→ a
abcd F T F F
bd F T F F
d F T T T
b F T T T
ac F T F F
c F T T T
a F T T T

⊥→ a
abcd F T F F
bd F T F F
d F T T T
b F T T T
ac F T F F
c F T T T
a F T T T

abcd F T T T
bd F T T T
d U U F U
b U U F U
ac F T T T
c U U F U
a T T F T

⊥→ a
abcd F T F F
bd F T F F
d F T T T
b F T T T
ac F T F F
c F T T T
a F T T T

⊥→ a
abcd F T F F
bd F T F F
d F T T T
b F T T T
ac F T F F
c F T T T
a F T T T

abcd F T T T
bd F F F F
d F F F F
b F F F F
ac F F F F
c F F F F
a F F F F

d
abcd F T F F
bd F T F F
d F T T T
b F F F F
ac F F F F
c F F F F
a F F F F

abcd F T F F
bd F F F F
d F F F F
b F F F F
ac F T T T
c F F F F
a F F F F

c
abcd F T F F
bd F F F F
d F F F F
b F F F F
ac F T F F
c F T T T
a F F F F

a
abcd F T F F
bd F F F F
d F F F F
b F F F F
ac F T F F
c F F F F
a F T T T

G

d
b

a a a a

d
c a

G*

a c b d

S

Figure 3 An example of the dynamic programming algorithm (from Section 3.1) execution. The
partial gene tree is G = ((⊥, (b, ((⊥, ⊥), (⊥, ⊥)))), (d, (c, a))), which contains five missing labels.
The species tree, denoted as S, is represented as ((a, c), (b, d)). The marked nodes in S indicate
episode candidates from X: the root of S (abcd) and the leaf node a. By applying dynamic
programming, we obtain a feasible solution, depicted in the bottom-right corner. The resulting
extension of the partial gene tree G is G∗, where the valid mapping between G∗ and S is the lowest
common ancestor (LCA) mapping. In G∗, each duplication node is marked with a triangle or a
square denoting their corresponding episode in S. Each node in G is decorated with an array
that represents the values of DP formulas, where each row corresponds to a node in S, starting
from abcd, bd, and so on as indicated in the first column. The next columns have the values
of δ, δ↓, σ, and ϵ, respectively, for the gene tree node and the corresponding species tree node.
For example, considering the root of G and the root of S, the top row of the array contains the
following values: δ(root(G), root(S)) = δ↓(root(G), root(S)) = ϵ(root(G), root(S)) = True, while
σ(root(G), root(S)) = False.
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3.2 Solving MetaEC for a single partial gene tree
Here we describe the main algorithm to solve MetaEC for instances with a single gene tree.
First, we characterize an important property of episodes.

▶ Lemma 4 (Fixed Episodes). Given a partial gene tree G over a species tree S. Assume
that there are nodes g in G and s in S such that

if s is the root of S, then at least one proper subtree of G contains species (leaf-labels)
from both children of s.
otherwise, let p be the parent of s, then G|g is a gene tree, g is a p-speciation and a child
of g is an s-duplication.

Then, for any G∗ that extends G, s is an episode in every valid mapping between G∗ and S.

The nodes satisfying the above conditions we call fixed episodes (for G and S). For
example, for trees from Figure 1, there are two fixed episodes: the root of S and the leaf b,
where the duplications with fixed mappings are depicted using white marks in the exemplary
gene tree G. The set of all fixed episodes can be computed in linear time and space by
bottom-up traversal of the partial gene tree G and by using LCA-queries in the species tree
S as follows. For each node g from V (G), the algorithm computes a tuple (u, s, d), where

u ∈ {True, False} is True if and only if ⊥ is reachable from g,
s ∈ V (S) ∪ {None} is the least common ancestor of all non-⊥ labels reachable from g in
S and None if only ⊥’s are visible from g,
and d ∈ {True, False} is True if and only if u = False and g is a duplication node in a gene
tree G|g.

Then, for each g and its tuple (u, s, d), and for each child of g with a tuple (u′, s′, d′):
if s = s′ = root(S), then s (the root of S) is a fixed episode,
if u = d = False, d′ = True and the parent of s′ is s, then s′ is a fixed episode.

We omit correctness and complexity proofs for brevity. Note that the number of fixed
episodes is the lower bound of EC(G, S).

Algorithm 1 takes as input a partial gene tree G over a species tree S and outputs
EC(G, S). It first computes the set of fixed episodes F (see Lemma 4). The algorithm then
starts with an initial maximal episode number b equal to the number of nodes in S. In each
iteration of a while loop, the algorithm checks if there is a set C of size b− |F | − 1 from the
vertices of S that are not in F , such that the partial gene tree G is C ∪ F -feasible using the
dynamic programming algorithm. This step requires

(|V (S)|−|F |
b−|F |−1

)
calls of DP in the worst

case. If such a set C exists, the algorithm computes EC(G∗, S) by the linear time algorithm
from [29], where G∗ is the gene tree obtained by backtracking from the corresponding call of
DP, and updates b with the result. Note that b is not assigned the value of |C ∪ F |, since
the minimal set of episodes for G∗ and S is a subset of C ∪ F , and it is often significantly
smaller than C ∪ F in early steps of iteration. Updating b with EC(G∗, S) guarantees the
minimal number of episodes, where some elements of C may be unused. This is an important
optimization step. If such a set C does not exist, the algorithm terminates and returns the
current value of b.

The correctness of the algorithm follows from the fact that if there is no set X of size
b− 1 such that G is X-feasible, then there is no set of any size smaller than b that satisfies
the property. Since, b represents the number of episodes from some valid mapping, it is also
minimal in such a case. Therefore, when the algorithm terminates, b = EC(G, S), and the
algorithm returns the correct value.

WABI 2023
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Algorithm 1 Solution to MetaEC with a single gene tree.

Data: A partial gene tree G over a species tree S

Result: EC(G, S)
F ← the set of all fixed episodes for G and S ; // See Lemma 4
b← |V (S)| ; // the initial maximal episode number
while there is C ⊆ V (S) \ F of the size b− |F | − 1 and G is (C ∪ F )-feasible do

G∗ ← the gene tree obtained from the DP from Section 3.1 by backtracking;
b← EC(G∗, S); // O(n)-time algorithm from [29]; EC(G∗, S) ≤ |C ∪ F |.

return b;

The algorithm’s worst-case time complexity is
∑n−f

k=f

(
n−f

k

)
nm = O(nm2n), where f is

the size of the set of fixed episodes (f = |F |), n denotes the number of vertices in S, and
m denotes the number of vertices in G. Despite the exponential time complexity, in our
experiments on both simulated and empirical data, we were able to compute exact solutions
after only a few executions of the main loop.

3.2.1 Extensions
To identify the optimal solution within the main loop, enumerating all possible combinations
of size b−f −1 from the set of episode candidates V (S)\F may be time-consuming for larger
instances. To address this issue, we propose a heuristic approach that randomly samples
combinations of size b−f −1 if

(
n−f

b−f−1
)

is large (e.g., > 1000), and adds a stopping condition
based on the number of dynamic programming (DP) calls without improvement (e.g., after
100 calls). This approach not only speeds up the algorithm but also provides additional
information on whether the returned value is exact or an upper bound obtained by switching
to a heuristic mode. See Figure 6 in Section 4 for more details.

Furthermore, based on our experiments, we have observed that the solution is often close
to the set of fixed episodes. To leverage this observation, we propose a bottom-up algorithm
that explores candidate sets starting from sizes 0, 1, 2, and so on until a feasible solution is
found. In this case, the internal search has a time complexity of O(

(
n−f

i

)
), starting from

i = 0. This algorithm can be combined with the heuristic variant described earlier to improve
its effectiveness. However, the experimental evaluation did not show significant improvement
compared to the top-down method in Algorithm 1.

3.3 MetaEC in the general case
Here we show that MetaEC in a general case, can be solved using a single partial gene tree
under an additional assumption. Given a collection of partial gene trees G1, G2, . . . , Gk

over a species tree S, let ω be a new species, called outgroup, not present in S. We first
add the outgroup to every input tree. Let Sω be species tree (S, ω), Gω

1 = (G1, ω) and
Gω

i = ((Gi, ω), Gω
i−1), for i > 1. Then, by ω-MetaEC we define the problem MetaEC with a

single partial gene tree, where the extension of a partial labeling cannot introduce ω, i.e., if
ΛG1(v) = ⊥ then ΛG∗

1
(v) ̸= ω. See Figure 4 for illustration.

We have the following property.

▶ Lemma 5. Given a collection of at least two partial gene trees G1, G2, . . . , Gk over a
species tree S such that ω /∈ L(S). X ⊆ V (S) is the set of episodes that yields the solution of
MetaEC for G1, G2, . . . , Gk and S if and only if X ∪ {root(Sω)} is the set of episodes that
yields the solution to the instance Gω

k and Sω of ω-MetaEC.
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G1 G2 G3

...

Gn S

→

G1
ω

G2
ω

G3
ω

Gn
ω

Gω

S
ω

Sω

Figure 4 Converting a multiple gene tree instance to a single gene tree instance using an outgroup
ω. Red bars in Gω denote speciation nodes mapped to the root of Sω. Green squares represent new
duplications clustered at a new duplication episode in the root of Sω.

Note that the algorithms provided in the previous sections can be easily modified to solve
ω-MetaEC, by replacing case (8) with:

σ(g, s) = True if g ∈ L(G) and (ΛG(g) = s or (ΛG(g) = ⊥ and s ̸= ω)).

Then, DP will exclude extensions of ⊥ by ω.

4 Experiments

In this Section we present two computational studies based on simulated and empirical data.

4.1 Simulated Trees
Our algorithm was evaluated on five datasets consisting of simulated gene trees and a species
tree, each with one or two whole duplication events (as reported in [31]). We generated these
datasets and subsequently modified the gene trees to account for the uncertainty commonly
associated with metagenomic data.

To begin, we describe how the datasets were generated. Then, we explain the modifications
made to the gene trees to account for the uncertainty of metagenomic data. Finally, we
present the results provided by our algorithms, specifically in regard to their ability to infer
whole genome duplication events.

4.1.1 Dataset preparation
First, we briefly summarize the simulation procedure from [31]. The simulated dataset was
generated by SimPhy [20] with parameter settings used in a simulated study [23] that was
based on an empirical dataset of 16 Fungi species [34]. The species tree S of 20 taxa was
generated by SimPhy with the speciation rate parameter equal to 1.8× 10−9 and the tree
height parameter set to 1.8× 109. To simulate a whole genome duplication (WGD), a node
v in the species tree S was chosen as the location of the event. Subsequently, a modified
species tree, denoted as S′, was constructed by substituting a subtree S|v with a duplicated
version of itself. This duplication involved creating a new root connected to the original root
of S|v and the root of its copy.

For every Si one hundred gene trees were then generated from locus trees produced by
SimPhy using the modified species tree S′, with a duplication and loss rate parameter set to
2−10 events per generation per lineage. To minimize the effect of incomplete lineage sorting,
the population size parameter was set to 10. In summary, the simulated data from [31]
was partitioned into five datasets of gene trees denoted Gi = {Gi

1, Gi
2, . . . , Gi

100}, where each
dataset comprises 100 gene trees generated using the same species tree S but with a different
WGD scenario. The WGD variants used in the simulations are illustrated in Figure 5, where
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S1 represents a single recent WGD Γ, S2 represents a single ancient WGD Θ, S3 represents
two WGDs Λ and ∆, with ∆ occurring after Λ, S4 represents two close WGDs Π and Π′ at
the same branch, and S5 represents two recent independent WGDs Ψ and Φ.

In our evaluation study, for each dataset Gi from [31], we generated a set of partial
gene trees G̃k,p

i by randomly removing each leaf label from every gene tree Gi
j in Gi with

probability p. We considered values of p from 0.1 to 0.6 in increments of 0.1, and generated
10 instances of G̃k,p

i for each p value and k = 1, 2, . . . , 10. This resulted in a total of 300
instances (G̃k,p

i , S) of MetaEC, where S is the species tree used to generate Gi. In addition
to these instances, we also included the result for p = 0, which corresponds to no removal of
leaf labels.

Γ Θ Λ Δ

ΠΠ' Φ

Ψ

S1

10043.8

31.2

S2

46.4 35

96
367.9

S3

190

28.2

177.3367.7

S4

38

271

630.4

S5

100

96

47.8208.2

p

prob. of⊥

.0

.1
.2

.3

.4
.5

.6

average

episode

size
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100

200

300

400
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Figure 5 This figure presents a summary of the inferred gene-species mappings and duplication
episodes based on the simulated dataset from [31]. Locations of simulated whole-genome duplication
(WGD) events are denoted by Greek letters. For clarity, all leaf labels have been removed from the
visualization of species trees (see [31] for details). Each bar in the histograms shows the average
episode size obtained from the set of partial gene trees G̃k,p

i , where the average is computed over
10 instances of partial gene trees for fixed p and i (if p > 0). For p = 0, the bars represent the
results for the set of simulated gene trees Gi (with no ⊥’s). The key to the diagrams is present
at the bottom-right corner. The number above a single bar represents the maximum height of
a bar in its histogram. Bars with an average below 25 duplications were omitted as they were
deemed insignificant. Additionally, histograms for the root have been moved to Figure 6 (bottom
left diagram).

4.1.2 Results
The results of our algorithm on the simulated partial gene trees are depicted in Figure 5,
where we summarize the episode sizes in the form of histograms. Also, additional data is
provided in Figure 6. The evaluation took about 5 hours of a computing server with 64 cores.
In general, we observed that the runtime and the number of DP calls grow linearly with
the value of parameter p on average as indicated in the bottom-right diagram of Figure 6.
We used the heuristic variant of the algorithm, where random sampling was applied if the
number of combinations exceeded 100 trees, and with the stopping criterion equal to 50.
Out of 300 instances, 240 were completed with the exact solution (see the top-left diagram
of Figure 6). The resulting costs without exact guarantee, were more often obtained for
larger values of p. Additionally, we observed that the lower bound given by the number
of fixed episodes was a tight approximation of the inferred cost (see the top-right diagram
of Figure 6). As p increased, the number of fixed episodes decreased. Note that for p = 1
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(not included in our analysis), the solution to MetaEC is 1. In such a case the leaf labelings
are constant functions and all internal nodes of each gene tree are duplications. Then there
is just one episode, which can be placed at the root of the species tree.

Now, we briefly summarize the outcome of WGD detection. First, we present the analysis
for the root episodes in a separate diagram in the bottom-left diagram of Figure 6 since the
model overestimates the size of the root episode. This is partly due to the property that
the last node to which a duplication can be assigned via a valid mapping is the root. In
more detail, since the number of fixed episodes is a tight lower bound of the EC cost, the
algorithm more likely assigns a duplication at the nearest fixed episode and at the root in
the case where such an episode is not present.

The results for S1 in Figure 5 show that Γ WGD is supported when p ≤ .4. When p > .4,
the duplications are relocated to more ancient locations. In S2, Θ is supported only for
p ≤ .2, while for p > .2 large episodes are present at the parent of the WGD location. In S3,
∆ is well supported when p ≤ .4. The case of Λ is more complicated, since for p ≤ .2, p = .4
and p = .6 we see good support, while for the remaining values, the parent location is more
supported. The ancient double WGDs in S4 have perhaps the worst support in our study.
Here, we observe generally low supports at the WGDs node. Most of the duplications were
shifted to more ancient nodes of S4, i.e., to the root or to the parent location. In S5, the
support is for smaller values of p.
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Figure 6 Summary of simulated dataset experiments. All diagrams, except for the top-left,
display mean values with 95% confidence intervals. The top-left diagram shows histograms of exact
and heuristic solutions returned by Algorithm 1. The top-right diagram presents the EC cost and
the number of fixed episodes. The bottom-left diagram displays the sizes of root episodes in all
five WGD scenarios. The bottom-right diagram shows the runtime in seconds and the number of
executed DP calls.

4.2 Empirical evaluation
To ensure that our algorithm was properly tested, we required a dataset that would capture
the characteristics of the metagenomic data as closely as possible, while allowing us to assess
the quality and accuracy of the results obtained. For this reason, we decided to prepare

WABI 2023



6:14 Simultaneous Reconstruction of Duplication Episodes and Gene-Species Mappings

a dataset consisting of gene trees for species identified during metagenomic analysis. To
simulate potentially missing gene-species assignments, we artificially removed some of the
gene labels from the gene trees and retained information about their taxonomic origin for
further analysis of the results. Another important issue was the presence of a previously
described whole-genome duplication event that occurred in the evolutionary tree of selected
species. Given the above requirements, we decided to use proteomes belonging to yeast
species identified during metagenomic analysis of kefir [41].

4.2.1 Data preparation
The eight selected species are: Kazachstania Africana, Kazachstania naganishii, Naumo-
vozyma dairenensis, Tetrapisispora blatte, Tetrapisispora phaffi, Torulaspora delbrueckii,
Zygosaccharomyces rouxii and Saccharomyces cerevisiae. A species tree containing the listed
species, consistent with the NCBI taxonomy and many papers on yeast evolution, is shown
in Figure 7. It also shows the location of the whole-genome duplication event confirmed by
previous studies [9, 21].

The proteomes used to infer gene trees were sourced from the UniProt database [5].
Protein families were created by dividing the proteins into groups using the mcl program [37]
with parameters I = 2 and I = 5. However, since the differences between the obtained sets
were minimal, we used the set obtained for I = 2 in subsequent steps. The protein sequences
in each group were aligned with the MUSCLE algorithm [7], and unrooted gene trees were
inferred using the phyml program [14] with the default parameter setting. Rooting of the
gene trees was performed by URec program [12] using the minimal duplication-loss cost as
the rooting criterion.

We removed trees containing fewer than 3 leaves or 3 species, as well as trees with edges
of length 0 from the final set of trees. This resulted in 3430 rooted gene trees. Similar to
the first experiment, we created 10 datasets for each p ∈ {0.1, 0.2, . . . , 0.6} by randomly
removing each leaf label with the probability p. This resulted in 60 datasets plus the original
dataset representing p = 0.

4.2.2 Results
Figure 7 depicts histograms showing the results obtained for the described dataset. The
evaluation was performed on the same computing server as before and took approximately
one hour. For this evaluation, we set the sampling threshold and stopping criterion to 50,
which yielded exact solutions for all cases. The number of fixed episodes was consistent
across datasets with p < .6, at 12 (note that the number of leaves in a tree was 15). For
p = 0.6, the number of fixed episodes fell within the range of 9 to 12. The number of DP
calls ranged from 2 to 3 for p < .6 and between 2 and 11 for p = .6.

The results obtained by the algorithm for the yeast dataset are consistent with our
knowledge of the whole-genome duplication localization. For the dataset with all leaf labels
present and for p = .1, we have the highest support for the WGD event. The number of
supporting single duplications decreases gradually for successive p′s. For values of p ≥ .5,
the correct WGD localization is still supported by a significantly large number of single
duplications. It is worth noting that even for the p = .6, the right location is supported by
three times as many duplications as the second most supported location, which is in the root.
Additionally, we observed an increase in duplications at the leaves of the species tree as p

increased. Since most of the leaves are fixed episodes, the algorithm often assigned labels to
create duplications at the leaves, resulting in larger sizes of episodes at leaves.
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Figure 7 Summary of gene-species mappings and duplication episodes inference for the yeast
dataset consisting of 3430 gene trees. WGD denotes the whole genome duplication event postulated
in [9, 21]. For the description of symbols refer to Figure 5.

4.3 Software

The software package, which is partially based on the embretnet repository, has been written
in Python and is available with all datasets at https://bitbucket.org/pgor17/metaEC.

5 Conclusions and Future Outlook

In this article, we presented a novel problem that integrates gene-species mapping inference
and genomic duplication detection. We proposed efficient algorithms to solve the problem
exactly in the majority of instances, along with a heuristic modification for cases where exact
solutions are not feasible. To demonstrate the effectiveness and accuracy of our proposed
algorithm, we conducted computational experiments on both simulated and empirical data.
The results showed that our algorithm was able to accurately infer the corresponding events
when the number of missing labels was relatively small for simulated data. Moreover,
the algorithm performed even better on empirical data, demonstrating its robustness and
applicability to real-world scenarios.

However, to maximize topological similarities between a gene tree and its species tree,
speciation nodes should more frequently appear in the resulting extensions of input partial
gene trees. We observe that the optimization model tends to reconstruct leaf labels in a way
that prioritizes duplication events assigned to the nearest fixed episodes or the root, in the
absence of such episodes. This is confirmed by the property that fixed episodes are tight
approximations of the EC cost, leading to a reduction in the number of speciation events in
the final gene tree extensions. As a consequence, the model’s effectiveness may be limited in
some cases when the number of missing labels in partial gene trees is significant.

In the future, we plan to extend the analyzed model to address the importance of
speciation nodes in the EC cost formulation. Alternatively, one may limit the distance
between the lca-mapping of a gene duplication and its destination mapping in the final
scenario similarly to [31]. Additionally, there are models of genomic duplications providing a
higher level of detail than EC, such as minimum episodes (ME) [29] and RMP [15], which
can be adapted in a similar way to infer gene-species mappings and minimize the number
of duplication episodes simultaneously. These models can be further combined with more
general models of valid mappings, which allow the introduction of more duplication events
than the minimum obtained by the lca-mapping [11]. The combination of these models can
provide a more comprehensive approach to inferring gene-species mappings and identifying
the minimum number of duplication episodes.

WABI 2023
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1 Introduction

Phylogenetic trees are used to represent the evolutionary history of species. While they
are effective for illustrating speciation events through vertical descent, they are insufficient
in representing more intricate evolutionary processes. Reticulate (net-like) events such as
hybridization and horizontal gene transfer (HGT) can give rise to signals that cannot be
represented on a single tree [9, 21]. In light of this, phylogenetic networks have gained
increasing attention due to their capability in elucidating reticulate evolutionary processes.
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AspTerreus

AspOryzae

AspFlavus

AspNiger

AspNigerCbs

AspNidulans

PenChrysogenumWisconsin

NeoFischeri

AspFumigatusA1163

AspFumigatusAf293

AspClavatus

unsampled taxon

Figure 1 A network on 11 different taxa (excluding unsampled taxon) of fungi including 5
reticulations, which is part of a larger network from [18]. The directed arcs in the figure are linking
arcs, which represent gene transfer highways. In order to make all linking arcs horizontal, we require
an additional leaf (unsampled taxon) to represent the evolutionary history. To see that the network
needs the leaf unsampled taxon in order to have only horizontal linking arcs, we refer the interested
reader to Appendix A.

Phylogenetic networks are often categorized into different classes based on their topological
features. These are often motivated computationally, but some classes are also defined based
on their biological relevance [16]. Classical examples of network classes involve the tree-child
networks [3] and the tree-based networks [8]. Roughly speaking, tree-child networks are
those where every vertex has passed on a gene via vertical descent to an extant species, and
tree-based networks are those obtainable from a tree by adding so-called linking arcs between
tree arcs. Recent developments have culminated in the introduction of orchard networks,
which lie – inclusion-wise – between the two aforementioned network classes [14, 4]. The class
has shown to be both algorithmically attractive and biologically relevant; they are defined as
networks that can be reduced to a single leaf by a series of so-called cherry-picking operations,
and they were shown to be networks that can be obtained by adding horizontal arcs to trees
(where the tree is drawn with the root at the top and arcs pointing downwards) [19]. Such
horizontal arcs can be used to model HGT events, making orchard networks especially apt
in representing evolutionary scenarios where every reticulate event is a horizontal transfer.
Orchard networks have also been characterized statically based on so-called cherry covers [20].

When considering a non-orchard network, a natural question arises: how many additional
leaves are required to transform the network into one that is orchard? From a biological
standpoint, this question can be interpreted as asking how many extinct species or unsampled
taxa need to be introduced into the network to yield a scenario where every reticulation
represents an HGT event. Given that HGT is the primary driver of reticulate evolution
in bacteria [10], this is an essential inquiry. We provide a network of a few fungi species
in Figure 1, which requires one additional leaf to make it orchard. Formally speaking, the
problem of computing this leaf addition measure is as follows.

LOR-Distance (Decision)
Input: A network N on a set of taxa X and a natural number k.
Decide: Can N be made orchard with at most k leaf additions?

In related research, the leaf addition measure has been investigated for other network
classes. It has been shown that tracking down the minimum leaf additions to make a network
tree-based can be done in polynomial time [7]. In the same paper, it was shown that the leaf
addition measure was equivalent to two other proximity measures, namely those based on
spanning trees and disjoint path partitions. The same question was posed for the unrooted
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variant (where the arcs of the network are undirected), for which the problem turned out to
be NP-complete [5]. A total of eight proximity measures were introduced in this latter paper,
including those based on edge additions and rearrangement moves. Instead of considering leaf
additions, some manuscripts have even considered leaf deletions (in general, vertex deletions)
as proximity measures for the class of so-called edge-based networks [6]. Finally for orchard
networks, a recent bachelor’s thesis compared how the leaf addition proximity measure differs
in general to another proximity measure based on arc deletions [17].

In this paper, we show that the leaf addition proximity measure can be computed in
polynomial time for the class of tree-child networks, and we give a more efficient algorithm
for computing the measure for tree-based networks. We show that LOR-Distance is NP-
complete by a polynomial-time reduction from Degree-3 Vertex Cover. To model the
problem as a mixed integer linear program (MILP), we consider a reformulation of the leaf
addition measure in terms of vertex labellings. Orchard networks are known to be trees with
added horizontal arcs; roughly speaking, this means we can label the vertices of an orchard
network so that every vertex of indegree-2 has exactly one incoming arc whose end-vertices
have the same labels. The reformulated measure, called the vertical arcs proximity measure,
counts – over all possible vertex labellings (defined formally in Section 6.1) – the minimum
number of indegree-2 vertices with only non-horizontal incoming arcs. Our experimental
results are promising, as the real world cases are solved in a fraction of a second. Furthermore,
the model also scales well to larger synthetic data.

The structure of the paper is as follows. In Section 2, we provide all necessary definitions
and characterizations of orchard networks and tree-based networks. In Section 3, we formally
introduce the leaf addition measure for the classes of tree-child, orchard, and tree-based
networks. In Section 4 we show that LOR-Distance is NP-complete (Theorem 17). In
Section 5, we give a sharp upper bound for the leaf addition proximity measure. In Section 6
we give a reformulation of the leaf addition measure to describe the MILP to solve LOR-
Distance, and in Section 6.3, experimental results are shown for the MILP, applied to real
and simulated networks. In Section 7, we give a brief discussion of our results and discuss
potential future research directions. We include proofs for select results in Appendix A.

2 Preliminaries

A binary directed phylogenetic network on a non-empty set X is a directed acyclic graph with
a single root of indegree-0 and outdegree-1;
tree vertices of indegree-1 and outdegree-2;
reticulations of indegree-2 and outdegree-1;
leaves of indegree-1 and outdegree-0, that are labelled bijectively by elements of X.

For the sake of brevity, we shall refer to binary directed phylogenetic networks simply
as networks. Throughout the paper, assume that N is a network on some non-empty set X

where |X| = n, unless stated otherwise. Networks without reticulations are called trees. Tree
vertices and reticulations may sometimes collectively be referred to as internal vertices.

The arc uv of a network is a root arc if u is the root of the network. An arc uv of a
network is a reticulation arc if v is a reticulation, and a tree arc otherwise. We say that
a vertex u is a parent of another vertex v if uv is an arc of the network; in such instances
we call v a child of u. Also, we say that u and v are the tail and the head of the arc uv,
respectively. In other words, we may rewrite arcs as uv = tail(uv) head(uv). The neighbours
of v refer to the set of vertices that are parents or children of v. We also say that vertices u

and v are siblings if they share a parent.

WABI 2023
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a b c d a c d a c d a d d

(a, b) (c, a) (c, d) (a, d)N

Figure 2 An example of an orchard network N that is reduced by a sequence (a, b)(c, a)(c, d)(a, d).
The network N contains a cherry (a, b) and a reticulated cherry (c, d). Subsequent networks are
those obtained by a single cherry picking reduction from the previous network. For example, the
second network N(a, b) is obtained from N by removing the leaf b and cleaning up. Note that the
network is also tree-child.

In what follows, we shall define graph operations based on vertex and arc deletions. To
make sure resulting graphs remain networks, we follow-up every graph operation with a
cleaning up process. Formally, we clean up a network by applying the following until none is
applicable.

Suppress an indegree-1 outdegree-1 vertex (e.g., if uv and vw are arcs where v is an
indegree-1 outdegree-1 vertex, we suppress v by deleting the vertex v and adding an
arc uw).
Replace parallel arcs by a single arc (e.g., if uv is an arc twice in a network, delete one of
the arcs uv).

We observe that deleting a tree arc and cleaning up results in a graph containing two
indegree-0 vertices. On the other hand, deleting a reticulation arc and cleaning up results in
a network. Therefore, we shall use arc deletions to mean reticulation arc deletions.

2.1 Tree-Child Networks

A network is tree-child if every non-leaf vertex has a child that is a tree vertex or a leaf. We
call an internal vertex of a network an omnian if all of its children are reticulations [15]. It
follows from definition that a network is tree-child if and only if it contains no omnians.

2.2 Orchard Networks

To define orchard networks, we must first define cherries and reticulated cherries, as well
as operations to reduce them. See Figure 2 for the illustration of the following definitions.
Let N be a network. Two leaves x and y of N form a cherry if they are siblings. In such
a case, we say that N contains a cherry (x, y) or a cherry (y, x). Two leaves x and y of N

form a reticulated cherry if the parent px of x is a reticulation and the parent of y is also a
parent of px. In such a case, we say that N contains a reticulated cherry (x, y). Reducing
the cherry (x, y) from N is the process of deleting the leaf x and cleaning up. Reducing the
reticulated cherry (x, y) from N is the process of deleting the arc from the parent of y to the
parent of x and cleaning up. In both cases, we use N(x, y) to denote the resulting network.

A network N is orchard if there is a sequence S = (x1, y1)(x2, y2) . . . (xk, yk) such that NS

is a network on a single leaf yk. It has been shown that the order in which (reticulated)
cherries are reduced does not matter [4, 14]. Apart from this recursive definition, orchard
networks have been characterized based on cherry covers (arc decompositions) [20] and vertex
labellings [19]. We include both characterizations here.
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Cherry covers (see [20] for more details). A cherry shape is a subgraph on three dis-
tinct vertices x, y, p with arcs px and py. The internal vertex of a cherry shape is p, and
the endpoints are x and y. A reticulated cherry shape is a subgraph on four distinct ver-
tices x, y, px, py with arcs pxx, pypx, pyy, such that px is a reticulation in the network. The
internal vertices of a reticulated cherry shape are px and py, and the endpoints are x and y.
The middle arc of a reticulated cherry shape is pypx. We will often refer to cherry shapes
and the reticulated cherry shapes by their arcs (e.g., we would denote the above cherry
shape {pxx, pyy} and the reticulated cherry shape {pxx, pypx, pyy}). We say that an arc uv

is covered by a cherry or reticulated cherry shape B if uv ∈ B. A cherry cover of a binary
network is a set P of cherry shapes and reticulated cherry shapes, such that each arc except
for the root arc is covered exactly once by P . In general, a network can have more than one
cherry cover.

We define the cherry cover auxiliary graph G = (V, A) of a cherry cover as follows. For
all shapes B ∈ P , we have vB ∈ V . A shape B ∈ P is directly above another shape C ∈ P

if B and C contain a same vertex v, such that v is an endpoint of B and an internal vertex
of C. Then, vBvC ∈ A (adapted from [20, Definition 2.13]). We say that a cherry cover is
cyclic if its auxiliary graph has a cycle. We call it acyclic otherwise. See Figure 3 for an
illustration of a cyclic and acyclic cherry cover.

R1

R2

C

ba

(a) Network N1.

C

R1

R2

(b) Cherry cover
aux. graph of N1.

R1

C1

C2

R3

ba

c

(c) Network N2.

C1

R1

C2

R3

(d) Cherry cover aux.
graph of N2.

Figure 3 A cherry cover example. (a) A network N1 on {a, b} with a cherry cover {C, R1, R2}.
(b) The (cyclic) auxiliary graph of N1 based on the cherry cover of (a). (c) The network N2 obtained
from N1 by adding a leaf c, with a cherry cover {C1, C2, R1, R3} (d) The (acyclic) auxiliary graph
of N2 based on the cherry cover of (d).

▶ Theorem 1 (Theorem 4.3 of [20]). A network N is orchard if and only it has an acyclic
cherry cover.

Non-Temporal Labellings. Let N be a network with vertex set V (N). A non-temporal
labelling2 of N is a labelling t : V (N) → R such that

for all arcs uv, t(u) ≤ t(v) and equality is allowed only if v is a reticulation;
for each internal vertex u, there is a child v of u such that t(u) < t(v);
for each reticulation r with parents u and v, at most one of t(u) = t(r) or t(v) = t(r)
holds.

2 This is named in contrast to temporal representations of [1]. There, it was required for the endpoints of
every reticulation arc to have the same label.
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Observe that every network (orchard or not) admits a non-temporal labelling by labelling
each vertex by its longest distance from the root (assuming each arc is of weight 1).

Under non-temporal labellings, we call an arc horizontal if its endpoints have the same
label; we call an arc vertical otherwise. By definition, only reticulation arcs can be horizontal.
We say that a non-temporal labelling is an HGT-consistent labelling if every reticulation is
incident to exactly one incoming horizontal arc. We recall the following key result.

▶ Theorem 2 (Theorem 1 of [19]). A network is orchard if and only if it admits an HGT-
consistent labelling.

2.3 Tree-Based Networks

A network N is tree-based with base tree T if it can be obtained from T in the following
steps.
1. Replace some arcs of T by paths, whose internal vertices we call attachment points; each

attachment point is of indegree-1 and outdegree-1.
2. Place arcs between attachment points, called linking arcs, so that the graph contains no

vertices of total degree greater than 3, and so that it remains acyclic.
3. Clean up.

The relation between the classes of tree-child, orchard, and tree-based networks can be
stated as follows.

▶ Lemma 3 ([14] and Corollary 1 of [19]). If a network is tree-child, then it is orchard. If a
network is orchard, then it is tree-based.

We include here a static characterization of tree-based networks based on an arc partition,
called maximum zig-zag trails [11, 23]. Let N be a network. A zig-zag trail of length k is a
sequence (a1, a2, . . . , ak) of arcs where k ≥ 1, where either tail(ai) = tail(ai+1) or head(ai) =
head(ai+1) holds for i ∈ [k − 1] = {1, 2, . . . , k − 1}. We call a zig-zag trail Z maximal if there
is no zig-zag trail that contains Z as a subsequence. Depending on the nature of tail(a1)
and tail(ak), we have four possible maximal zig-zag trails.

Crowns: k ≥ 4 is even and tail(a1) = tail(ak) or head(a1) = head(ak).
M-fences: k ≥ 2 is even, it is not a crown, and tail(ai) is a tree vertex for every i ∈ [k].
N-fences: k ≥ 1 is odd and tail(a1) or tail(ak), but not both, is a reticulation. By
reordering the arcs, assume henceforth that tail(a1) is a reticulation and tail(ak) a tree
vertex.
W-fences: k ≥ 2 is even and both tail(a1) and tail(ak) are reticulations.

We call a set S of maximal zig-zag trails a zig-zag decomposition of N if the elements of S

partition all arcs, except for the root arc, of N .

▶ Lemma 4 (adapted from Corollary 4.6 of [11]). Let N be a network. Then N is tree-based
if and only if it has no W-fences.

▶ Theorem 5 (adapted from Theorem 4.2 of [11]). Any network N has a unique zig-zag
decomposition.

▶ Theorem 6 (adapted from Theorem 3.3 of [20]). Let N be a network. Then N is tree-based
if and only if it has a cherry cover.
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3 Leaf Addition Proximity Measure

Let N be a network on X. Adding a leaf x /∈ X to an arc e of N is the process of adding a
labelled vertex x, subdividing the arc e by a vertex w (if e = uv then we delete the arc uv,
add the vertex w, and add arcs uw and wv), and adding an arc wx. We denote the resulting
network by N + (e, x). When the arc e in the above is irrelevant or clear, we simply call this
process adding a leaf x to N , and denote the resulting network by N + x.

In this section, C will be used to denote a network class. In particular, we shall use T C, OR,
and T B to denote the classes of tree-child networks, orchard networks, and tree-based
networks, respectively. Let LC(N) denote the minimum number of leaf additions required to
make the network N a member of C. We first show that computing LT C(N) and LT B(N)
can be done in polynomial time.

▶ Lemma 7. Let N be a network. Then LT C(N) is equal to the number of omnians.
Moreover, N can be made tree-child by adding a leaf to exactly one outgoing arc of each
omnian.

▶ Lemma 8. Let N be a network. Then LT C(N) can be computed in O(|N |) time.

It has been shown already that LT B(N) can be computed in O(|N |3/2) time where |N | is
the number of vertices in N [7]. We show that this can in fact be computed in O(|N |) time.

▶ Lemma 9. Let N be a network. Then LT B(N) is equal to the number of W -fences.
Moreover, N is tree-based by adding a leaf to any arc in each W -fence in N .

▶ Lemma 10. Let N be a network. Then LT B(N) can be computed in O(|N |) time.

Interestingly, computing LOR(N) proves to be a difficult problem, although the leaf
addition proximity measure is easy to compute for its neighbouring network classes. We
prove the following in Section 4.

▶ Theorem 17. Let N be a network. Computing LOR(N) is NP-hard.

We also include the following theorem which states that when considering leaf addition
proximity measures for orchard networks, it suffices to consider leaf additions to reticulation
arcs. We shall henceforth assume that all leaf additions are on reticulation arcs.

▶ Theorem 11 (Theorem 4.1 of [17]). A network N is orchard if and only if the network
obtained by adding a leaf to a tree arc of N is orchard.

The rest of the paper will now focus on the problem of computing LOR(N).

4 Hardness Proof

In this section, we show that computing LOR(N) is NP-hard by reducing from degree-3
vertex cover.

Degree-3 Vertex Cover (Decision)
Input: A 3-regular graph G = (V, E) and a natural number k.
Decide: Does G have a vertex cover with at most k vertices?

LOR-Distance (Decision)
Input: A network N on a set of taxa X and a natural number k.
Decide: Can N be made orchard with at most k leaf additions?
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Figure 4 Sketch of the network NG for the case when G contains an edge uv.

We now describe the reduction from Degree-3 Vertex Cover to LOR-Distance. For a
graph G, let V (G) and E(G) be its vertex and edge sets, respectively. Given an instance (G, k)
of Degree-3 Vertex Cover, construct an instance (NG, k) of LOR-Distance as follows
(see Figure 4):
1. For each vertex v in V (G), construct a gadget Gad(v) as described below. In what follows,

vertices of the form ℓv
i are leaves, vertices rv

i are reticulations, and vertices wv
i , mv

i and
ρv are tree vertices.
The key structure in Gad(v) is an N-fence with 15 arcs, starting with the arc rv

0rv
1 ,

then followed by arcs of the form wv
i rv

i , wv
i rv

i+1 for each i ∈ [6], and finally the arcs
wv

7rv
7 , wv

7ℓv
5. This set of arcs, in bold type, is called the principal part of Gad(v). In

addition,the reticulations rv
1 , rv

2 , rv
3 , rv

4 have leaf children ℓv
1, ℓv

2, ℓv
3, ℓv

4 respectively.
Above the principal part of Gad(v), add a set of tree vertices mv

1, mv
2, mv

3, mv
4, ρv with

the following children: mv
1 has children rv

0 and wv
4 , mv

2 has children mv
1 and wv

5 , mv
3 has

children mv
2 and wv

6 , mv
4 has children mv

3 and rv
0 , and ρv has children mv

4 and wv
7 (see

Figure 4).
This completes the construction of Gad(v). Note that so far, the vertices wv

1 , wv
2 , wv

3 have
no incoming arcs, and rv

5 , rv
6 , rv

7 have no outgoing arcs. Such arcs will be added later to
connect different gadgets together.

2. Connect the vertices ρv from each Gad(v) as follows: take some ordering of the ver-
tices {v1, . . . , vg} of G. Add a vertex ρ and vertices si for i ∈ [g − 1]. Add arcs ρs1 and
also arcs from the set {sisi+1 : i ∈ [g −2]}, as well as arcs from the set {siρ

vi : i ∈ [g −1]},
and finally an arc sg−1ρvg .

3. Next add arcs between the gadgets corresponding to adjacent vertices in G, in the
following way: for every pair of adjacent vertices u, v in G, add an arc connecting one
of the vertices ru

5 , ru
6 , ru

7 in Gad(u) to one of the vertices wv
1 , wv

2 , wv
3 in Gad(v) (and,

symmetrically, an arc connecting one of rv
5 , rv

6 , rv
7 to one of wu

1 , wu
2 , wu

3 ). The exact choice
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of vertices connected by an arc does not matter, except that we should ensure each vertex
is used by such an arc exactly once. Formally: for each vertex v in G with neighbours
a, b, c, fix two (arbitrary) mappings πv : {a, b, c} → {1, 2, 3} and τv : {a, b, c} → {5, 6, 7}.
Then for each pair of adjacent vertices u, v in G, add an arc from ru

τu(v) to wv
πv(u) (and,

symmetrically, add an arc from rv
τv(u) to wu

πu(v)).
4. Finally, for each vertex v in G, label the vertices {ℓv

i : i ∈ [5]} in Gad(v) by ℓv
i .

Call the resulting graph NG; it is easy to see that NG is directed and acyclic with a single
root ρ. Therefore it is a network on the leaf-set {ℓv

i : i ∈ [5], v ∈ V (G)}. As the arcs of NG

are decomposed into M-fences and N-fences, we have the following observation.

▶ Observation 12. Let G be a 3-regular graph and let NG be the network obtained by the
reduction. Then NG is tree-based.

By Observation 12 and Theorem 6, we use freely from now on that NG has a cherry cover.
Before proving the main result, we require some notation and helper lemmas. Let N be a
network and let N̂i be an N-fence of N . In what follows, we shall write N̂i := (ai

1, ai
2, . . . , ai

ki
),

and we will let ci
2j−1 denote the child of head(ai

2j−1) for j ∈
[

ki−1
2

]
. The first lemma states

that although a tree-based network may have non-unique cherry covers, the reticulated cherry
shapes that cover arcs of N-fences are fixed.

▶ Lemma 13. Let N be a tree-based network, and let N̂1, N̂2, . . . , N̂n denote the N-fences
of N of length at least 3. Then every cherry cover of N contains the reticulated cherry
shapes {(head(ai

2j−1)ci
2j−1), ai

2j , ai
2j+1} for i ∈ [n] and j ∈

[
ki−1

2
]
.

Note that the principal part of a gadget Gad(v) for every v ∈ V (G) is an N-fence. Let
us denote the principal part of a gadget Gad(v) by (av

1, av
2, . . . , av

15) for all v ∈ V (G). By
Lemma 13, av

i for i = 2, . . . , 15 and v ∈ E(G) are covered in the same manner across all
possible cherry covers of NG. Let us denote the reticulated cherry shape that contains av

i

and av
i+1 by Rv

i/2 for even i ∈ [15]. Figures 5a and 5b show an example of the part of cherry
cover auxiliary graph containing Rv

i and Ru
i for i ∈ [7], for some edge uv in G. Note that

the cherry shapes form a cycle. The next lemma implies that in fact, such a cycle exists for
any edge uv in G.

▶ Lemma 14. Let N be a tree-based network and suppose that for two N-fences N̂u :=
(au

1 , au
2 , . . . , au

ku
) and N̂v := (av

1, av
2, . . . , av

kv
) of length at least 3, there exist directed paths in

N from head(au
h) to tail(av

i ) and from head(av
j ) to tail(au

k), for even h, i, j, k with k < h and
i < j. Then every cherry cover auxiliary graph of N contains a cycle.

In order to remove all possible cycles from a possible cherry cover, it is therefore necessary
to disrupt the principal part of either Gad(u) or Gad(v), for any edge uv in G.

▶ Lemma 15. Let G be a 3-regular graph and let NG be the network obtained by the reduction
above. Suppose that A is a set of arcs of NG, for which adding leaves to every arc in A

results in an orchard network. For every edge uv ∈ E(G), there exists an arc a ∈ A that is
an arc of the principal part of Gad(u) or Gad(v).

To complete the proof of the validity of the reduction, we show that in order to make NG

orchard by leaf additions, it is sufficient (and necessary) to add a leaf zv to an appropriate
arc of Gad(v) for every v in a vertex cover Vsol of G (see Figure 5c). The key idea is that
this splits the principal part of Gad(v) from an N-fence into an N-fence and an M-fence, and
this allows us to avoid the cycle in the cherry cover auxiliary graph (see Figure 5d).
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Figure 5 Cherry cover of Gad(v) and Gad(u). In (a), the unique cherry cover of the principal
part of Gad(v) and Gad(u) is displayed, in (b), the cherry cover auxiliary graph of (a) is given. In
(c), the leaf z /∈ X is added to the principal part of Gad(v), and one possible cherry cover of the
same part of the network is given. And in (d), the cherry cover auxiliary graph of (c) is given.

▶ Lemma 16. Let G be a 3-regular graph and let NG be the network obtained by the reduction
described above. Then G has a minimum vertex cover of size k if and only if LOR(NG) = k.

▶ Theorem 17. Let N be a network. The decision problem LOR-Distance is NP-complete.
Computing LOR(N) is NP-hard.

Proof. Suppose we are given a set of arcs Asol of NG of size at most k. Upon adding leaves
to every arc in Asol, we may check that the resulting network is orchard in polynomial
time (see Section 6 of [14]). This implies that LOR-Distance is in NP. The reduction from
Degree-3 Vertex Cover to LOR-Distance outlined at the start of the section takes
polynomial time, since we add a constant number of vertices and arcs for every vertex in
the Degree-3 Vertex Cover instance. The NP-completeness of LOR-Distance follows
from the equivalence of the two problems shown by Lemma 16. The optimization problem of
LOR-Distance, i.e., the one of computing LOR(N) is therefore NP-hard. ◀

5 Upper Bound

In the previous section we showed that computing LOR(N) is NP-hard. Here, we provide
a sharp upper bound for LOR(N). We call a reticulation highest if it has no reticulation
ancestors.

▶ Lemma 18. Let N be a network. Suppose there is a highest reticulation r such that all
other reticulations have a leaf sibling. Then N is orchard.
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a b

Figure 6 A network N on two leaves {a, b} with r(N) = 5 reticulations. Observe that LOR(N) =
r(N) − 1 = 4, since the highest reticulation cannot be reduced by cherry picking unless the
reticulations below it are first reduced. For each non-highest reticulation, we must add a leaf to one
of its incoming arcs to reduce it, which leads to LOR(N) = 4. Note that this construction can be
extended for any k reticulations.

Proof. We prove the lemma by induction on the number of reticulations k. For the base
case, observe that a network with one reticulation is tree-child since it has no omnians. A
tree-child network is orchard [14], and so this network must be orchard.

Suppose now that we have proven the lemma for all networks with fewer than k reticula-
tions, where k > 1. Let N be a network with reticulation set R where |R| = k, and suppose
there exists a highest reticulation r in N such that all other reticulations have a leaf sibling.
Let r denote the highest reticulation as specified in the statement of the lemma. Choose a
lowest reticulation r′ ∈ R \ {r}. By assumption, r′ has a leaf sibling c. Every vertex below r′

must be tree vertices and leaves. Reduce cherries until the child x of r′ is a leaf. Then (x, c)
is a reticulated cherry; the network N ′ obtained by reducing this reticulated cherry has k − 1
reticulations and has a highest reticulation r such that all other reticulations have a leaf
sibling. By induction hypothesis, N ′ must be orchard. Since a sequence of cherry reductions
can be applied to N to obtain N ′, the network N must also be orchard. ◀

▶ Theorem 19. Let N be a network, and let r(N) denote the number of reticulations.
Then LOR(N) = 0 if N is a tree, and otherwise, LOR(N) ≤ r(N) − 1, where the bound is
sharp.

Proof. If N is a tree, then it is orchard, and so LOR(N) = 0. So suppose r(N) > 0. Let
r be a highest reticulation of N , and for every other reticulation, arbitrarily choose one
incoming reticulation arc. Add a leaf to each of these reticulation arcs. By Lemma 18, the
resulting network must be orchard. We have added a leaf for all but one reticulation in N .
It follows that LOR(N) ≤ r(N) − 1. The network in Figure 6 shows that this upper bound
is sharp. ◀

6 MILP Formulation

To model the problem of computing the leaf addition proximity measure as a MILP, we
reformulate the measure in terms of non-temporal labellings.
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6.1 Vertical Arcs into Reticulations
By Theorem 2, every orchard network can be viewed as a network with a base tree where
each of the linking arcs are horizontal. Recall that in terms of non-temporal labellings,
this means that there exists a labelling wherein every reticulation has exactly one incoming
reticulation arc that is horizontal. Following this definition, we introduce a second orchard
proximity measure. Given a non-temporal labelling for a network N , let us use inrets to refer
to reticulations of N with only vertical incoming arcs. Let VOR(N) denote the minimum
number of inrets over all possible non-temporal labellings.

▶ Observation 20. Let N be a network. A network admits an HGT-consistent labelling if
and only if VOR(N) = 0. In other words, a network is orchard if and only if VOR(N) = 0.

In particular, we show a stronger result that equates the two proximity measures.

▶ Lemma 21. Let N be a network. Then LOR(N) = VOR(N).

Proof. Suppose first that we have a network N with some non-temporal labelling t : V (N) →
R which gives rise to h inrets. For every inret r with parents u and v, we add a leaf x to the
arc ur (this addition is done without loss of generality; the argument also follows by adding
the leaf to vr). Since r is an inret, we must have t(u) < t(r) and t(v) < t(r). Letting px

denote the parent of x, we label t(px) := t(r) and t(x) := t(px) + 1. This ensures that the
extension of the map t that includes x and px is a non-temporal labelling for N + x. Observe
that r is no longer an inret in N +x, since the arc pxr is horizontal. Therefore, a leaf addition
to an incoming arc of an inret can reduce the number of inrets by exactly one. By repeating
this procedure for every inret, it follows that LOR(N) ≤ VOR(N).

To show the other direction, suppose we can add ℓ leaves to N to make it orchard. By
Theorem 11, we may assume all such leaves are added to reticulation arcs in the set {e1, . . . , eℓ}.
The resulting network N ′ has an HGT-consistent labelling t : V (N ′) → R by Theorem 2.

We claim that the labelling t|V (N) restricted to N is a non-temporal labelling, and that
under t|V (N), the number of inrets is at most ℓ. Suppose that a leaf xi was added to the
reticulation arc ei = uiri. Let pi denote the parent of xi in the network N ′. By definition
of HGT-consistent labellings, we must have that t(ui) < t(ri), since uipiri is a path in N ′.
Therefore, restricting the labelling to the network obtained from N ′ by removing the leaf xi

is non-temporal. Furthermore, if vi is the parent of ri that is not ui, we have that one
of viri or piri must be horizontal in N ′. If viri was horizontal, then ri still has a horizontal
incoming arc upon removing xi, and the number of inrets does not change. On the other
hand, if piri was horizontal, then viri must have been a vertical arc. Upon deleting xi, the
reticulation ri becomes an inret as its other incoming arc uiri is also vertical. Since leaf
deletions are local operations, deleting a leaf increases the number of inrets by at most one.
By repeating this for each reticulation arc ei for i ∈ [ℓ], it follows that N contains at most ℓ

inrets, and therefore VOR(N) ≤ LOR(N). ◀

6.2 MILP Formulation
By Lemma 21 we have that LOR(N) = VOR(N). In this section, we introduce a MILP
formulation to obtain VOR(N), and therefore also LOR(N). This is done by searching for a
non-temporal labelling of networks in which the number of vertical arcs is minimized.

Let N be a given network with vertex set V and arc set A. Let R denote the set of
reticulations of N . We define the decision variable lv to be the non-temporal label of the
vertex v ∈ V . A tree arc and a vertical linking arc uv have the property that lu < lv. We
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define xa to be one if arc a ∈ A is vertical and zero otherwise. We define hv to be one if
v ∈ R is a reticulation with only incoming vertical arcs and zero otherwise. Let v ∈ V be a
vertex of N . In what follows, let Pv ⊂ V be the set of parent nodes of v, Cv ⊂ V the set
of children nodes of v, and X the set of leaves. Let ρ be the root of N . Then, the MILP
formulation is as follows:

min
x,h,l

∑
v∈R

hv

s.t.
∑

u∈Pv

xuv − 1 ≤ hv ∀v ∈ R (1)

∑
v∈Cu

xuv ≥ 1 ∀u ∈ V \ X (2)

∑
u∈Pv

xuv ≥ 1 ∀v ∈ V \ {ρ} (3)

lu ≤ lv ∀uv ∈ A (4)
lu ≤ lv − 1 ∀v ∈ V \ R, ∀u ∈ Pv (5)
lu ≤ lv − 1 + |V |(1 − xuv) ∀v ∈ R, ∀u ∈ Pv (6)
lu ≥ lv − |V |xuv ∀v ∈ R, ∀u ∈ Pv (7)
xa ∈ {0, 1} ∀a ∈ A

hv ∈ {0, 1} ∀v ∈ R

lv ∈ R+ ∀v ∈ V

With constraint (1), hv becomes one if all incoming arcs of reticulation v are vertical.
With (2) we have that all vertices must have at least one outgoing vertical arc. Then, (3)
guarantees that each reticulation has at least one incoming vertical arc. Constraint (4)
creates the non-temporal labelling in the network, where with (5) the label of u is strictly
smaller than that of v if v is not a reticulation. Then, (6) sets xuv to one if uv is vertical, for
all reticulation vertices v. Finally, with (7) the labels of u and v become equal if xuv is zero.

6.3 Experimental Results
In this section, we apply the MILP described in the previous section to a set of real binary
networks and to simulated networks, in order to assess the practical running time. The
code for these experiments is written in Python and is available at https://github.com/
estherjulien/OrchardProximity. All experiments ran on an Intel Core i7 CPU @ 1.8 GHz
with 16 GB RAM. For solving the MILP problems, we use the open-source solver SCIP [2].

The real data set consists of different binary networks found in a number of papers,
collected on http://phylnet.univ-mlv.fr/recophync/networkDraw.php. These networks
have a leaf set of size up to 39 and a number of reticulations up to 9, with one outlier that
has 32 reticulations. All the binary instances completed within one second (at most 0.072
seconds). Based on the results, we observe that only two out of the 22 binary networks
have a value of LOR(N) > 0, thus, that only two are non-orchard. The most interesting of
these is the network from [18] since its reticulations represent HGT highways. Even though
each highway represents many gene transfers, it is still natural to expect these highways
to be horizontal. However, our experimental results show that this network is not orchard
(see Appendix A for mathematical arguments) and that its LOR distance is 1. The most
interesting part of this network is redrawn in Figure 1, where we also indicate a way to draw
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Figure 7 Results of simulated networks. (a) Box plots for the runtime results (blue plot) and the
LOR(N) solutions (red plot) per number of reticulations of simulated networks N . The box plots
are drawn with respect to the median of the runtime and the leaf addition score. (b) A table with
the percentage of instances that were solved within the one-hour time limit. In the plots of (a), we
also included instances that did not complete within the one-hour time limit. For these instances,
we set their runtime to one hour.

it as a tree with horizontal linking arcs, after adding a single leaf. This added leaf represents
a hypothesised missing taxon. In general, the LOR(N) value gives a lower bound on the
number of missing taxa that needs to be added to a network to make it HGT-consistent.

The simulated data is generated using the birth-hybridization network generator of [22],
which can generate all binary network topologies [13]. Hence, even though it uses a model
with hybridization to construct networks, it can also generate, for example, networks where
reticulations represent HGT. This generator has two user-defined parameters: λ, which
regulates the speciation rate, and ν, which regulates the hybridization rate. Following [13]
we set λ = 1 and we sampled ν ∈ [0.0001, 0.4] uniformly at random. We generated
an instance group of size 50 for each pair of values (L, R), with the number of leaves
L ∈ {20, 50, 100, 150, 200} and the number of reticulations R ∈ {5, 10, 20, 30, 40, 50, 100, 200}.
In our implementation, we only defined variables xa for incoming reticulation arcs. Therefore,
the number of binary variables only depends on the number of reticulations in the network.
In Figure 7a, the runtime and LOR(N) value results for the simulated instances are shown
against the reticulation number of the networks. The time limit was set to one hour. We can
observe from these results that for networks with up to 50 reticulations, almost all instances
are solved to optimality within a second. Then for R = 100, 200 the runtime increases,
mainly because only 75.6% and 61.6% of the instances could be solved within the time limit,
respectively (see Figure 7b). The completed instances are often still solved within reasonable
time.

7 Discussion

In this paper we investigated the minimum number of leaf additions needed to make a network
orchard, as a way to measure the extent to which a network deviates from being orchard. We
showed that computing this measure is NP-hard (Theorem 17), and give a sharp upper bound
by the number of reticulations minus one (Theorem 19). The measure was reformulated to
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one in terms of minimizing the number of inrets over all possible non-temporal labellings. In
Section 6 we use this reformulation to model the problem of computing the leaf addition
measure as a MILP. Experimental results show that real-world data instances were solved
within a second and the formulation worked well also over synthetic instances, being able to
solve almost all instances up to 50 reticulations and 200 leaves within one second. For bigger
instances the runtime however increased.

In this paper we have simulated networks using the network generator of [22] in order
to analyse the running time of our MILP. Alternatively, one could simulate networks by
generating orchard networks and deleting leaves from them. Since the leaf addition score
is finite for any network by Theorem 19, it is possible to obtain any network by using this
method. The leaf addition score gives a lower bound on the number of leaves that must be
added to make the network orchard. The actual number of missing leaves could be larger,
but this value cannot be estimated from the leaf-deleted network.

Of interest is how these results can potentially be used in practice. As mentioned in
Section 1, one can consider a scenario in which it is suspected a priori that species under
consideration evolve under a network in which all reticulate events are horizontal. An example
of such scenarios can be seen for horizontal gene transfers, for instance when one considers
the evolutionary history of species in bacteria [10] and fungi [18]. If a produced network does
not admit an HGT-consistent labelling, there can in general be many reasons. For one, the
output network may not be accurate. It is also possible that certain species have gone extinct,
or that undersampling is present in the taxon set. In these latter two potential causes, our
method gives a way of quantifying the minimum number of taxa that may have gone extinct
/ been undersampled. Moreover, it can be used to find all optimal corresponding orchard
networks with added leaves. This could, for example, be used to try to identify the missing
taxa.

Our NP-hardness result is interesting when comparing it to the computational complexity
of the corresponding problem for different network classes. The problem of finding the
minimum number of leaves to add to make a network tree-based can be solved in polynomial
time [7] (Lemma 10) and we showed that the same is true for the class of tree-child networks
(Lemma 8). Interestingly, the class of tree-child networks is contained in the class of orchard
networks [14] which is in turn contained in the class of tree-based networks [12]. The reason
for such an NP-hardness sandwich can perhaps be attributed to the lack of forbidden shapes.
Leaf additions to obtain tree-child or tree-based networks target certain forbidden shapes in
the network. In the case of tree-child networks, we add a leaf to exactly one outgoing arc
of each omnian; for tree-based networks, we add a leaf to exactly one arc of each W-fence.
The problem of finding a characterization of orchard networks in terms of (local) forbidden
shapes has been elusive thus far [14] - perhaps the NP-hardness result for the orchard variant
of the problem indicates that finding such a characterization for orchard networks may not
be possible.

One can also consider the leaf addition problem for non-binary networks. Non-binary
networks generalize the networks considered in this paper by allowing vertices to have varying
indegrees and outdegrees. This generalized problem remains NP-complete since the binary
version is a specific case. It could be interesting to try to find an MILP formulation for the
nonbinary version.

Another natural research direction is to consider different proximity measures. One that
may be of particular interest is a proximity measure based on arc deletions. That is, what is
the minimum number of reticulate arc deletions needed to make a network orchard? Susanna
showed that this measure is incomparable to the leaf addition proximity measure [17], yet it
is not known if it is also NP-hard to compute.
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A Appendix

AspTerreus

AspOryzae

AspFlavus

AspNiger

AspNigerCbs

AspNidulans

PenChrysogenumWisconsin

NeoFischeri

AspFumigatusA1163

AspFumigatusAf293

AspClavatus

Figure 8 The network of Figure 1 without the added leaf. Observe that there exists no HGT-
consistent labelling for the network, by the arguments provided in Remark 22.

▶ Remark 22. We first elaborate on why we need an added leaf (unsampled taxon) in the
network of Figure 1 to ensure that the network admits an HGT-consistent labelling. We
know that a network has an HGT-consistent labelling if and only if it is orchard (Theorem 2).
Let N be the network without unsampled taxon (see Figure 8). We will show that N is
not orchard. To see this, note that the order in which cherries and reticulated cherries are
reduced does not matter [14]. This means that if N were orchard, then there would exist a
cherry picking sequence starting with

(AspNidulans, P enChrysogenumW isconsin)(P enChrysogenumW isconsin, AspNidulans).

After reducing these cherries, the distance between the leaf AspNidulans and any other leaf
remains of distance at least 4, regardless of other reductions that take place in the network.
This shows that the network cannot be orchard, and therefore the network cannot have an
HGT-consistent labelling.

▶ Lemma 7. Let N be a network. Then LT C(N) is equal to the number of omnians.
Moreover, N can be made tree-child by adding a leaf to exactly one outgoing arc of each
omnian.

Proof. By definition, a network is tree-child if and only if it contains no omnians. We show
that every leaf addition can result in a network with one omnian fewer than that of the
original network. Let uv be an arc where u is an omnian. Add a leaf x to uv. In the
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resulting network, u has a child (the parent of x) that is a tree vertex, and it is no longer
an omnian. The newly added tree vertex has a leaf child x; the parent-child combinations
remain unchanged for the rest of the network, so at most one omnian (in this case u) can
be removed per leaf addition. It follows that LT C(N) is at least the number of omnians
in N . By targeting arcs with omnian tails, we can remove at least one omnian per every
leaf addition, so that LT C(N) is at most the number of omnians in N . Therefore, LT C(N) is
exactly the number of omnians in N . ◀

▶ Lemma 8. Let N be a network. Then LT C(N) can be computed in O(|N |) time.

Proof. We first show that the number of omnians of N can be computed in O(|N |) time, by
checking, for each vertex, the indegrees of its children. A vertex is an omnian if and only
if all of its children are of indegree-2. Since the degree of every vertex is at most 3, each
search within the for loop takes constant time. The for loop iterates over the vertex set
which is of size O(N). By Lemma 7, since LT C(N) is the number of omnians in N , we can
compute LT C(N) in O(|N |) time. ◀

It has been shown already that LT B(N) can be computed in O(|N |3/2) time where |N | is
the number of vertices in N [7]. We show that this can in fact be computed in O(|N |) time.

▶ Lemma 9. Let N be a network. Then LT B(N) is equal to the number of W -fences.
Moreover, N can be made tree-based by adding a leaf to any arc in each W -fence in N .

Proof. By Lemma 4, a network is tree-based if and only if it contains no W-fences. We
show that every leaf addition can result in a network with one W-fence fewer than that
of the original network. Suppose that N contains at least one W-fence. Otherwise we
may conclude that the network is tree-based by Lemma 4. Let (a1, a2, . . . , ak) be a W-
fence in N where ai = uivi for i ∈ [k], and add a leaf x to a1; let px be the tree vertex
parent of x. In the resulting network, the arcs in {u1px, pxv1, pxx, a2, a3, a4, . . . , ak} are
decomposed into their unique maximal zig-zag trails (Theorem 5) as two N-fences (u1px)
and (ak, ak−1, . . . , a3, a2, pxv1, pxx). All other arcs remain in the same maximal zig-zag trails
as that of N . Therefore the number of W-fences has gone down by exactly one. This can be
repeated for all W-fences in the network; it follows that LT B(N) is the number of W-fences
in N .

A quick check shows that adding a leaf to any arc in the W-fence decomposes the W-fence
into two N-fences. ◀

▶ Lemma 10. Let N be a network. Then LT B(N) can be computed in O(|N |) time.

Proof. Finding the maximal zig-zag decomposition takes O(|N |) time (Proposition 5.1 of [11]).
Counting the number of W -fences in the decomposition gives LT B(N) by Lemma 9. ◀

▶ Observation 12. Let G be a 3-regular graph and let NG be the network obtained by the
reduction. Then NG is tree-based.

Proof. It is easy to check that the arcs of NG are decomposed into M-fences and N-fences
(the principal part of each gadget Gad(v) is an N-fence; each arc leaving the principal part
of a gadget Gad(v) is an N-fence of length 1; the remaining arcs decompose into M-fences of
length 2). By Lemma 4, NG must be tree-based. ◀

▶ Lemma 13. Let N be a tree-based network, and let N̂1, N̂2, . . . , N̂n denote the N-fences
of N of length at least 3. Then every cherry cover of N contains the reticulated cherry
shapes {(head(ai

2j−1)ci
2j−1), ai

2j , ai
2j+1} for i ∈ [n] and j ∈

[
ki−1

2
]
.
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Proof. Let N̂i = (ai
1, ai

2, . . . , ai
ki

) be an N-fence of length ki ≥ 3. Observe that in every
cherry cover, exactly one incoming arc of every reticulation is covered by a reticulated cherry
shape as a middle arc (since the network is binary; for non-binary networks, this is not true in
general [20]). Since head(ai

1) is a reticulation, one of ai
1 or ai

2 must be in a reticulated cherry
shape as a middle arc. But tail(ai

1) is a reticulation; therefore, ai
2 must be in a middle arc of

a reticulated cherry shape. The other two arcs of the same reticulated cherry shapes are then
fixed to be head(ai

1)ci
1 and ai

3. Repeating this argument for the reticulations head(ai
2j+1)

for j ∈
[

ki−1
2

]
gives the required claim for the N-fence N̂i; further repeating this argument

for every N-fence gives the required claim. ◀

▶ Lemma 14. Let N be a tree-based network and suppose that for two N-fences N̂u :=
(au

1 , au
2 , . . . , au

ku
) and N̂v := (av

1, av
2, . . . , av

kv
) of length at least 3, there exist directed paths in

N from head(au
h) to tail(av

i ) and from head(av
j ) to tail(au

k), for even h, i, j, k with k < h and
i < j. Then every cherry cover auxiliary graph of N contains a cycle.

Proof. Let us again denote the reticulated cherry shape that contains au
h and au

h+1 by Ru
h/2,

and similarly for Rv
i/2, Rv

j/2,and Ru
k/2. By Lemma 13, all of Ru

h/2, Rv
i/2, Rv

j/2, Ru
k/2 appear

in the cherry cover auxiliary graph. Moreover Ru
k/2 is above Ru

h/2, and Rv
i/2 is above Rv

j/2.
Now observe that for any consecutive arcs on the path from head(au

h) to tail(av
i ), either they

are part of the same reticulated cherry shape in the cherry cover, or they are part of different
cherry shapes with one cherry shape directly above the other. This implies that there is
a path from Ru

h/2 to Rv
i/2 in the cherry cover auxiliary graph. A similar argument shows

that there is a path from Rv
j/2 to Ru

k/2. But then we have that Ru
h/2 is above Rv

i/2, which is
above Rv

j/2, which is above Ru
k/2, which is above Ru

h/2 and we have a cycle. ◀

▶ Lemma 15. Let G be a 3-regular graph and let NG be the network obtained by the
reduction above. Suppose that A is a set of arcs of NG, for which adding leaves to every arc
in A results in an orchard network. For every edge uv ∈ E(G), there exists an arc a ∈ A

that is an arc of the principal part of Gad(u) or Gad(v).

Proof. We prove this lemma by contraposition. Let us assume that there is an edge uv ∈
E(G), such that no arcs of the principal part of Gad(u) or Gad(v) are in A. We shall show
that the network obtained by adding leaves to all a ∈ A in NG – which we denote NG + A –
is not orchard.

From Theorem 1 we know that NG is orchard if and only if NG has an acyclic cherry
cover. We show here that NG + A will not have an acyclic cherry cover, thereby showing
that NG + A is not orchard.

As no arcs were added to the principal part of Gad(u) or Gad(v), these principal parts
remain N-fences in NG + A. Furthermore by construction N has an arc from some head(av

h)
to tail(au

i ) for even h ≥ 10 and even i ≤ 6, and so NG + A has a path from head(av
h)

to tail(au
i ). Similarly NG + A has a path from head(au

j ) to tail(av
k) for some even j ≥ 10

and h ≤ 6. Then Lemma 14 implies that the auxiliary graph of any cherry cover of NG + A

contains a cycle. By Theorem 1, we have that NG + A is not orchard. ◀

▶ Lemma 16. Let G be a 3-regular graph and let NG be the network obtained by the reduction
described above. Then G has a minimum vertex cover of size k if and only if LOR(NG) = k.

Proof. Suppose first that Vsol is a vertex cover of G with at most k vertices. We shall show
that adding a leaf to an arc of the principal part of each Gad(v) for v ∈ Vsol makes NG

orchard. This will show that the minimum vertex cover of G is at least LOR(NG). In the
remainder of this proof, we will refer to vertices and arcs of NG as introduced above in the
reduction.
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For every v ∈ Vsol, we add a leaf zv to the arc wv
4rv

4 of Gad(v) (see Figure 5c). Let qv

be the parent of zv. The key idea is that this splits the principal part of Gad(v) from an
N-fence into an N-fence and an M-fence, and this allows us to avoid the cycle in the cherry
cover auxiliary graph (see Figure 5d).

Let us call the new network M . To formally show that M is orchard, we give an
HGT-consistent labelling t : V (M) → R.

Begin by setting t(ρ) = 0, and for any vertex in s1, . . . , sg−1 or ρv, mv
4, . . . , mv

2 for any
v in V (G), let this vertex have label equal to the label of its parent plus 1. Let h be the
maximum value assigned to a vertex so far, and now adjust t by subtracting (h + 1) from
each label. Thus, we may now assume that all vertices in ρ, s1, . . . , sg−1 or mv

4, . . . , mv
2 for

any v in V (G) have label ≤ −1. Now set t(mv
1) = 0 and t(rv

0) = 0, for each v in V (G).
It is easy to see that so far t satisfies the properties of an HGT-consistent labelling. It

remains to label the vertices in the principal part of each gadget Gad(v), and the leaves of
each gadget, and the new vertices qv and zv for v ∈ Vsol. We do this as follows.

For v ∈ Vsol, set t(rv
1) = t(wv

1) = 12, t(rv
2) = t(wv

2) = 13, t(rv
3) = t(wv

3) = 14, and t(rv
4) =

t(qv) = 15. Set t(wv
4) = 1, t(rv

5) = t(wv
5) = 2, t(rv

6) = t(wv
6) = 3, and t(rv

7) = t(wv
7) = 4.

For v /∈ Vsol, set t(rv
1) = t(wv

1) = 5, and t(rv
i ) = t(wv

i ) = i + 4 for every i up to
t(rv

7) = t(wi
7) = 11.

Finally, for each leaf ℓ with parent p set t(ℓ) = t(p) + 1.
It remains to observe that t is a non-temporal labelling of M and for every reticulation r

in M , r has exactly one parent p with t(p) = t(r). Thus t is an HGT-consistent labelling of
M , and it follows from Theorem 2 that M is orchard.

Suppose now that we have a set of arcs Asol of NG of size at most k, such that adding
leaves to the arcs in Asol makes NG orchard. By Lemma 15, for every edge uv ∈ E(G), there
exists an arc a ∈ Asol that is an arc of the principal part of Gad(u) or Gad(v). It follows
immediately that the set {v ∈ V (G) : Asol contains an arc of the principal part of Gad(v)}
is a vertex cover of G. Since this is true for any such set of arcs Asol, it follows that if there is
such an Asol of size at most k, then there must exist a vertex cover of G of size at most k. ◀
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Abstract
Cancer progression and treatment can be informed by reconstructing its evolutionary history from
tumor cells [5]. Although many methods exist to estimate evolutionary trees (called phylogenies)
from molecular sequences, traditional approaches assume the input data are error-free and the output
tree is fully resolved. These assumptions are challenged in tumor phylogenetics because single-cell
sequencing produces sparse, error-ridden data and because tumors evolve clonally [3, 12]. Here, we
study the theoretical utility of methods based on quartets (four-leaf, unrooted phylogenetic trees)
and triplets (three-leaf, rooted phylogenetic trees), in light of these barriers.

Quartets and triplets have long been used as the building blocks for reconstructing the evolutionary
history of species [14]. The reason triplet-based methods (e.g., MP-EST [6]) and quartet-based
methods (e.g., ASTRAL [7]) have garnered such success in species phylogenetics is their good
statistical properties under the Multi-Species Coalescent (MSC) model [9, 10] (see [1] and [2] for
identifiability results under the MSC model for quartets and triplets, respectively).

Inspired by these efforts, we study the utility of quartets and triplets for estimating cell lineage
trees under a popular tumor phylogenetics model [3, 11, 15, 4] with two phases. First, mutations
arise on a (highly unresolved) cell lineage tree according to the infinite sites model, and second, errors
(false positives and false negatives) and missing values are introduced to the resulting mutation data
in an unbiased fashion, mimicking data produced by single-cell sequencing protocols. This infinite
sites plus unbiased error and missingness (IS+UEM) model generates mutations (rather than gene
genealogies like the MSC model). However, a quartet (with leaves bijectively labeled by four cells)
is implied by a mutation being present in two cells and absent from two cells [8, 13]; similarly, a
triplet (on three cells) is implied by a mutation being present in two cells and absent from one cell.

Our main result is that under the IS+UEM, the most probable quartet identifies the unrooted
model cell lineage tree on four cells, with a mild assumption: the probability of false negatives and
the probability of false positives must not sum to one. Somewhat surprisingly, our identifiability
result for quartets does not extend to triplets, with more restrictive assumptions being required for
identifiability. These results motivate seeking an unrooted cell lineage tree such that the number of
quartets shared between it and the input mutations is maximized. We prove an optimal solution to
this problem is a consistent estimator of the unrooted cell lineage tree under the IS+UEM model;
this guarantee includes the case where the model tree is highly unresolved, provided that tree
error is defined as the number of false negative branches. We therefore conclude by outlining how
quartet-based methods might be employed for tumor phylogenetics given other important challenges
like copy number aberrations and doublets.
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Abstract
Not only do many biological populations undergo evolution, but population members may also
migrate from one location to another. For example, tumor cells may migrate from the primary tumor
and seed a new metastasis, and pathogens may migrate from one host to another. One may represent
a population’s migration history by labeling the vertices of a given phylogeny T with locations
such that an edge incident to vertices with distinct locations represents a migration. Additionally,
in some biological populations, taxa from distinct lineages may comigrate from one location to
another in a single event, a phenomenon known as a comigration. Here, we show that a previous
problem statement for inferring migration histories that are parsimonious in terms of migrations and
comigrations may lead to temporally inconsistent solutions. To remedy this deficiency, we introduce
precise definitions of temporal consistency of comigrations in a phylogeny, leading to three successive
problems. First, we formulate the Temporally Consistent Comigrations (TCC) problem to
check if a set of comigrations is temporally consistent and provide a linear time algorithm for solving
this problem. Second, we formulate the Parsimonious Consistent Comigration (PCC) problem,
which aims to find comigrations given a location labeling of a phylogeny. We show that PCC is
NP-hard. Third, we formulate the Parsimonious Consistent Comigration History (PCCH)
problem, which infers the migration history given a phylogeny and locations of its extant vertices
only. We show that PCCH is NP-hard as well. On the positive side, we propose integer linear
programming models to solve the PCC and PCCH problems. We apply our approach to real and
simulated data.
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1 Introduction

Throughout history, various biological populations, ranging from cells and microorganisms
to large mammals, have migrated from one place to another. The study of these migrations
holds significant importance in various areas of biology and medical science. For instance,
understanding the migration history of metastatic cancer can provide insights into the
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mechanism of metastasis and aid in the development of novel drugs [7, 11, 12, 26, 31, 33].
Similarly, investigating the transmission of pathogens can help in identifying the source of
an outbreak and tracing the patterns of disease spread [3, 10,13, 14,32]. Analyzing genomic
data is a potential approach to tracing the migration history of a biological population
since the migrated subpopulations evolve independently of their counterparts, leading to
location-specific genomic differences. One way to do this is by first constructing a rooted
phylogeny T , where each vertex v corresponds to a subpopulation with similar genetic
makeup, and then labeling each vertex v with their location of origin ℓ(v). Therefore each
edge (u, v) with distinct labels at its endpoints i.e. ℓ(u) ̸= ℓ(v) corresponds to a migration of
subpopulation u from location ℓ(u) to location ℓ(v) and further evolution to subpopulation
v. One challenge with this approach is that although it is possible to know the location of
extant subpopulations, the location of extinct subpopulations cannot accurately be known,
and so labeling internal vertices of phylogeny T is nontrivial. One parsimony based approach
proposed by Slatkin and Madisson [29] to infer internal vertex labeling is to select the labeling
that minimizes the number of migrations. Later McPherson et al. [22] used this approach to
infer the migration history of cancer cells in metastatic ovarian cancer.

In many evolutionary processes, multiple migrations between the same pair of locations
may occur as part of a single event. For instance, in cancer cells from distinct clones
may co-migrate as part of a single cluster [1,2,5,6,8,11,17,20,21,35,36]. Similarly, many
pathogens are subject to a weak transmission bottleneck, where multiple variants of the
same pathogen are co-transmitted in a single event [27, 28, 30]. MACHINA [11] was the
first method to incorporate comigrations in the analysis of metastatic cancer. Specifically,
MACHINA defined a comigration to be a set of migrations between the same pair of locations
but occurring on different lineages of the tree. In other words, two migrations (u, v) and
(u′, v′) from different lineages belong to the same comigration if ℓ(u) = ℓ(u′) and ℓ(v) = ℓ(v′).
Based on this definition, MACHINA extended Slatkin and Madisson [29]’s approach by
selecting the location labeling that minimizes the number of migrations, and subsequently the
number of comigrations. Following this, another method SharpTNI [27] to infer transmission
history was published which uses a similar notion of comigration. One key issue is that
this definition of comigration does not adequately capture temporal dependencies between
migrations. Time flows from root to leaves in a phylogeny, so if a migration (u, v) occurs
before (u′, v′) in the tree, then all migrations in the comigration containing (u, v) should occur
before all migrations in the comigration containing (u′, v′). However, the above comigration
definition does not enforce this criterion, potentially resulting in temporally inconsistent
solutions. In species phylogenetics, similar temporal restrictions arise with lateral gene
transfers. Specifically, since gene transfer occurs in co-existing entities, if a transfer occurs
from some species A to species B in a species tree, there cannot be another transfer from
an ancestor of A to a descendant of B. The temporal consistency of lateral gene transfers
has been addressed in studies involving gene tree reconciliation [9, 19, 23, 24, 34], species tree
ranking [4], and species tree inference [18].

In this work, we introduce a comigration model that accurately captures both spatial
and temporal aspects of simultaneous migrations. To that end, we formulate three new
problems. Our first problem, the Temporally Consistent Comigration (TCC) problem
aims to assign timestamps to migrations such that migrations in the same comigration have
the same timestamp and timestamps are monotonically increasing along the edges of any
root-to-leaf path of the tree (Figure 1a). We introduce a linear time algorithm to check if a
given set of comigrations is temporally consistent. Our second problem is the Parsimonious
Consistent Comigrations (PCC) where, given a rooted tree with locations assigned
to all vertices, we seek a minimum set of spatially and temporally consistent comigrations
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Figure 1 Overview of the three successive problem statements. (a) In the Temporally
Consistent Comigrations (TCC) problem, we are given a rooted tree T and a set C of comigrations
(edge colors). We seek a timestamp labeling τ that is temporally consistent with C. Here, timestamp
labeling τ for the output tree is indicated by the labels on the edges, where τ((b, c)) = τ((f, g)) = t1 <

t2 = τ((d, e)) = τ((h, i)), satisfying temporal consistency. (b) In the Parsimonious Consistent
Comigrations (PCC) problem, we are no longer given C only T and a location labeling ℓ (vertex
colors). We seek a minimum set C of comigrations that are spatially and temporally consistent with
(T, ℓ). Note that in both TCC and PCC, migrations (solid edges) and non-migrations (dashed edges)
are uniquely determined from C and ℓ, respectively. (c) Finally, in the Parsimonious Consistent
Comigration History (PCCH) problem, we are no longer given C and ℓ, so whether an edge is
a migration or not is unknown (dotted edge). Rather we are given T and a leaf location labeling
ℓ̂, seeking a location labeling ℓ inducing a minimum set |M(T, ℓ)| of migrations that subsequently
admit a smallest set C of comigrations.

(Figure 1b). We prove this problem to be NP-hard. We then formulate our third problem,
Parsimonious Consistent Comigration History (PCCH), where one is given a rooted
tree with locations assigned to only the leaves. The goal is to identify a location labeling
and comigrations that minimize the number of migrations and subsequently comigrations,
while maintaining spatial and temporal consistency (Figure 1c). We show that PCCH is also
NP-hard. We formulate integer linear programs for exactly solving PCC and PCCH. We
run our methods on real and simulated data, finding that in practice, for small trees with
non-complex migration patterns, MACHINA’s definition of comigrations is adequate and
does not lead to temporal inconsistencies.

2 Problem Statement

Let T be a tree rooted at vertex r(T ). As the tree T is rooted, its edges (u, v) are directed
such that u is closest to the root r(T ) – in this manuscript, we refer to a directed edge or
arc as an edge. We denote the vertex set of T by V (T ), the edge set by E(T ), and the leaf
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set by L(T ). We refer to root-to-leaf paths as lineages. We write u ⪯T v to indicate vertex
u is an ancestor of vertex v in tree T , i.e. there is a directed path from u to v. Note that
⪯T is reflexive, i.e. v ⪯T v for all vertices v. Additionally, we use δ(v) to denote the set of
children of any vertex v. Our goal is to augment T such it allows us to represent a migration
history. To that end, following the work of Slatkin and Maddison [29], we let Σ be the set of
all locations of origin and define the location labeling ℓ : V (T ) → Σ, mapping each vertex
with its location of origin as follows.

▶ Definition 1. A location labeling is a function ℓ : V (T )→ Σ that labels the vertices of T

with locations from Σ.

Given a location labeling ℓ of T , we define migrations as edges whose endpoints have
different labels.

▶ Definition 2. A migration is an edge (u, v) ∈ E(T ) whose endpoints u and v have different
locations, i.e. ℓ(u) ̸= ℓ(v). The set of all migrations of T induced by location labeling ℓ is
denoted by M(T, ℓ).

In many evolutionary processes, multiple migrations between the pair of locations may
occur as part of a single event. To model this, rather than considering migrations in isolation,
we wish to partition the set M(T, ℓ) of migrations into comigrations C.

▶ Definition 3. A set C of comigrations is a partition of a set M ⊆ E(T ) of migrations, i.e.
(i) each migration (u, v) ∈M occurs in exactly one part and (ii) the union of all parts C ∈ C
equals M .

Importantly, not all comigrations C are valid, as we require all the migrations in each
single comigration event to migrate between the same pair of locations at the same time. In
other words, we require spatial and temporal consistency defined as follows.

▶ Definition 4. A set C of comigrations is spatially consistent with location labeling ℓ if
for all two migrations (u, v), (u′, v′) in the same part C ∈ C it holds that ℓ(u) = ℓ(u′) and
ℓ(v) = ℓ(v′).

To model temporal consistency, we label each migration by a timestamp defined as follows.

▶ Definition 5. A timestamp labeling is a function τ : M → N that labels each migration of
M with a timestamp.

We say that comigrations C are temporally consistent if we can assign timestamps to each
migration s.t. (i) all edges in the same part occur simultaneously and (ii) time moves forward
along the directed edges of the tree.

▶ Definition 6. A set C of comigrations is temporally consistent with timestamp labeling τ

provided (i) all pairs (u, v), (u′, v′) of migrations in the same part C ∈ C have the same
timestamp, i.e. τ((u, v)) = τ((u, v′)) and (ii) τ((u, v)) < τ((u′, v′)) for any two migrations
(u, v), (u′, v′) where v ⪯T u′.

The first problem focuses on determining the chronological order of comigration events.
In other words, the goal of the first problem is to identify a timestamp labeling τ that is
temporally consistent with a given set C of comigrations. Formally we define the problem as
follows.
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▶ Problem 1 (Temporally Consistent Comigrations (TCC)). Given a rooted tree T

and comigrations C on migrations M ⊆ E(T ), find a timestamp labeling τ s.t. C is temporally
consistent with τ .

We say that comigrations C are temporally consistent if the above problem has a solution.
A variant of the problem is when we are not given the set C of comigrations but only the
location labeling ℓ. The task is to identify the comigration events, i.e. the set of migrations
that happened simultaneously. In case there are multiple possible scenarios, we seek the
most parsimonious solution, i.e. solution with the fewest comigration events. This leads to
the following problem.

▶ Problem 2 (Parsimonious Consistent Comigrations (PCC)). Given a rooted tree T

with location labeling ℓ : V (T )→ Σ, find comigrations C of migrations M(T, ℓ) s.t. (i) C is
spatially consistent with ℓ, (ii) C is temporally consistent for some timestamp labeling τ and
(iii) the number |C| of comigrations is minimized.

In practice, observing the locations of ancestral vertices from data obtained at present
is not feasible. So instead of a location labeling on all vertices, we are only given a leaf
labeling ℓ̂ : L(T )→ Σ as input, where each leaf v ∈ L(T ) is labeled with a location ℓ̂(v) from
Σ. Given the leaf labelings, we wish to infer the vertex labeling that corresponds to a most
parsimonious solution. Similarly to the problem solved by MACHINA [11], we seek to find
the solution that lexicographically minimizes the number of migrations and the number of
comigrations.

▶ Problem 3 (Parsimonious Consistent Comigration History (PCCH)). Given a rooted
tree T with location leaf labeling ℓ̂ : L(T )→ Σ, find location labeling ℓ and comigrations C
of M(T, ℓ) s.t. (i) ℓ(v) = ℓ̂(v) for all leaves v ∈ L(T ), (ii) C is spatially consistent with ℓ,
(iii) there exist timestamps τ temporally consistent with C and (iv) the number |M(T, ℓ)| of
migrations, and subsequently the number |C| of comigrations is minimized.

For any tree T with leaf labeling ℓ̂ : L(T )→ Σ, it holds that the number |C| of comigrations
is at least |Σ| − 1 for any set C of comigrations. To see why, observe that each location
is seeded at least once except the location at the root. This lower bound can be achieved
trivially by labeling all the internal nodes with the same location. Since minimizing the
number of comigrations results in each location being seeded exactly once, we minimize the
number of migrations first and then comigrations to allow more complex migration scenarios
while retaining simplicity. The key difference between the above problem and the problem
solved by MACHINA is that here we include an explicit definition of temporal consistency.
We will show in the next section that without this condition migration histories that contain
temporal inconsistencies might be inferred.

3 Combinatorial Characterization and Complexity

This section includes the theoretical results on the combinatorial characteristics and com-
plexity of the three discussed problems. Due to space constraints, proofs sketches have been
moved to Appendix A.

3.1 Combinatorial Characterization of the TCC Problem
In the TCC problem we are given a set C of comigrations, partitioning the set M of migrations
of a tree T . The task is to identify a timestamp labeling τ : M → N that is temporally
consistent with C. To solve this problem, we begin by defining the comigration graph GT,C .

WABI 2023
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Figure 2 Temporally inconsistent and consistent comigrations with comigration graphs.
Illustrated in (a), (b), and (c) are three distinct sets of comigrations within the same tree, where
solid edges indicate migrations and dashed edges indicate non-migrations. Edge colors represent the
comigrations to which the edges belong, with migrations of the same color belonging to the same
comigration. The corresponding comigration graphs for (a), (b), and (c) are shown in (c), (d), and
(e). Since the comigration graph illustrated in (d) contains a cycle, the comigrations illustrated in (a)
are not temporally consistent. Comigrations corresponding to (b) and (c) are temporally consistent,
as the corresponding comigration graphs (e) and (f) are DAG, even though (f) is disconnected.

▶ Definition 7. A comigration graph GT,C for a tree T with comigrations C = {C1, . . . , C|C|}
is a directed graph with vertices V (GT,C) = C and a directed edge (Ca, Cb) ∈ E(GT,C) if there
exist migrations (ua, va) ∈ Ca and (ub, vb) ∈ Cb s.t. va ⪯T ub and C does not contain any
other migration on the path from va to ub in T .

Intuitively, a comigration graph GT,C orders the comigrations C by the locations of their
corresponding migrations in the tree T . That is, there is an edge (Ca, Cb) in GT,C if and
only if T contains two consecutive migrations on the same lineage, first a migration from Ca

followed by a migration from Cb. Note that a comigration graph GT,C can be disconnected,
as shown in Figure 2f. Comigration graphs of sets of comigrations for migrations obtained
by a location labeling do not contain self-loops.

▶ Lemma 8. There are no self-loops in the comigration graph GT,C of any set C of comigra-
tions for migrations M(T, ℓ) induced by location labeling ℓ of a tree T .

More generally, comigrations C admit temporally consistent timestamps if and only if
the corresponding comigration GT,C is a directed acyclic graph (DAG), as we prove in the
following proposition.

▶ Theorem 9. There exists a timestamp labeling τ that is temporally consistent with comigra-
tions C of a tree T if and only if the comigration graph GT,C is a DAG.

In Section 4.1, we provide an algorithm for solving TCC in O(|E(T )|) time.

3.1.1 MACHINA’s Definition of Compatible Comigrations
As we have mentioned earlier, MACHINA [11] was the first method to incorporate comigra-
tions in their problem formulation. Our notion of comigrations is similar to the one introduced
in MACHINA [11], but there are significant distinctions. In MACHINA, comigrations C are
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considered valid if for each comigration C ∈ C, all the migrations belonging to C migrate
between the same pair of locations, and no two migrations from C are in the same lineage. In
other words, given location labeling ℓ, comigrations C are valid if they maintain compatibility
defined as follows.

▶ Definition 10 (El-Kebir et al. [11]). Comigrations C for migrations M(T, ℓ) are compatible
with location labeling ℓ provided for any two migrations (u, v), (u′, v′) in the same comigration
C ∈ C it holds that (i) ℓ(u) = ℓ(u′) and ℓ(v) = ℓ(v′), and (ii) neither v ⪯T u′ nor v′ ⪯T u.

Clearly, compatibility implies spatial consistency. As for the other direction, we have
the following lemma relating our notions of spatial and temporal consistency (Definitions 4
and 6, respectively) with compatibility as defined above.

▶ Lemma 11. Comigrations C for migrations M(T, ℓ) that are spatially and temporally
consistent with location labeling ℓ of a tree T are also compatible with ℓ.

The MACHINA paper shows that the minimum number γ(T, ℓ) of comigrations among
all comigrations C that are compatible with a fixed location labeling ℓ is as follows.

▶ Lemma 12 (El-Kebir et al. [11]). The minimum number γ(T, ℓ) of comigrations among all
comigrations compatible with ℓ equals

γ(T, ℓ) =
∑

s,t∈Σ:s̸=t

γ(T, ℓ, s, t). (1)

where γ(T, ℓ, s, t) is the maximum number of migrations between locations (s, t) on any
root-to-leaf path of T .

The above lemma combined with Lemma 11 leads to the following corollary.

▶ Corollary 13. Comigrations C that are spatially and temporally consistent with location
labeling ℓ of a tree T consist of at least |C| ≥ γ(T, ℓ) parts.

While MACHINA only computes the number γ(T, ℓ) of comigrations and does not
explicitly infer corresponding comigrations C∗ s.t. |C∗| = γ(T, ℓ), we show here that this
can be done using a simple greedy algorithm. Briefly, we initialize C∗ = {C1, . . . , C|M(T,ℓ)|}
with each comigration Ci containing migration ei for all i ∈ [|M(T, ℓ)|]. Then, iteratively,
we merge two distinct parts C and C ′ in C if their comprising migrations are between the
same pair of locations and do not occur on the same root-to-leaf path in T . We repeat
this procedure until no further merging is possible. Correctness follows from the fact that
compatibility is maintained as a loop invariant.

Importantly, while comigrations C compatible with location labeling ℓ are also spatially
consistent with ℓ, temporal consistency is not guaranteed. As an example, consider Figure 3a
defining a tree T and location labeling ℓ with locations Σ = {red, green, cyan, orange}. Tree T

and ℓ contain four migrations (ured, vgreen), (u′
red, v′

green), (ucyan, vorange) and (u′
cyan, v′

orange)
s.t. one lineage of T contains the migration (ured, vgreen) followed by (ucyan, vorange) and
another distinct lineage contains the migration (u′

cyan, v′
orange) followed by (u′

red, v′
green).

Clearly, γ(T, ℓ) = 2 as no lineage of T contains more than one migration between the
same pair of locations. There is a unique set C∗ of comigrations that is compatible with
T s.t. |C∗| = γ(T, ℓ) = 2. That is, C∗ = {C(red,green), C(cyan,orange)} where C(red,green) =
{(ured, vgreen), (u′

red, v′
green)} and C(cyan,orange) = {(ucyan, vorange), (u′

cyan, v′
orange)}. Although

C∗ is spatially consistent, it is not temporally consistent as can be seen from the cycle in
the corresponding migration graph GT,C∗ . Indeed, if we assign timestamps τ s.t. migrations

WABI 2023



9:8 Inferring Temporally Consistent Migration Histories

C(red,green)

C(cyan,orange)

ured

vgreen

u′cyan
v′orange

v′green

u′reducyan

vorange

γ(T, ℓ) = |C∗| = 2 comigrations

(a)

ti
m
es
ta
m
p
s
τ C1

(red,green)

C2
(red,green)

C(cyan,orange)

3 comigrations

(b)
3 comigrations

ti
m
es
ta
m
p
s
τ C1

(cyan,orange)

C2
(cyan,orange)

C(red,green)

(c)

Figure 3 Comigrations inferred by MACHINA [11] might not be temporally consistent.
Comigrations C∗ = {C(red,green), C(cyan,orange)} are compatible with the given location labeling ℓ

of tree T . Moreover, these comigrations achieve the smallest number γ(T, ℓ) = 2 possible for
(T, ℓ). However, the comigration graph GT,C∗ has a cycle between its two vertices C(red,green) and
C(cyan,orange). As such, by Theorem 9, C∗ is not temporally consistent. To arrive at temporally
consistent comigrations, either (b) C(red,green) or (c) C(cyan,orange) must be split.

in C(red,green) precede C(cyan,orange), we would have a violation of temporal consistency as
(u′

cyan, v′
orange) ⪯T (u′

red, v′
green) and yet τ((u′

cyan, v′
orange)) > τ((u′

red, v′
green)). A similar

violation would occur when using timestamps s.t. C(cyan,orange) precedes C(red,green). To
obtain temporally consistent comigrations, we must break up either C(red,green) (Figure 3b)
or C(cyan,orange) (Figure 3c), leading to an additional comigration in either case.

We look deeper into when compatible comigrations C are temporally consistent. We say
a location labeling ℓ results in reseeding if there exists a root-to-leaf path in T containing
two migrations (u, v), (u′, v′) labeled as ℓ(u) ̸= ℓ(v), ℓ(u′) ̸= ℓ(v′) and ℓ(u) = ℓ(v′).

▶ Proposition 14. If a location labeling ℓ of a tree T does not result in reseeding then any
set C of comigrations on M(T, ℓ) that is compatible with ℓ is also temporally consistent.

3.2 NP-Hardness of the PCC Problem
The example shown in Figure 3a and discussed in the previous section shows that not all
comigrations C are temporally consistent, and that to achieve temporal consistency more
comigrations than the polynomial-time computable lower bound γ(T, ℓ) might be needed. In
this section, we study the complexity of the PCC problem of finding the smallest set C of
temporally consistent comigrations for migrations M(T, ℓ) induced by a location labeling ℓ

of a tree T . We have the following hardness result.

▶ Theorem 15. PCC is NP-hard when |Σ| ≥ 3.

We begin by showing that PCC is NP-hard by reducing it from Shortest Common
Supersequence. In Shortest Common Supersequence (SCS) problem, the input is a
set {S1, . . . , Sn} of n sequences, where each sequence Si is an ordered list si,1si,2 . . . si,|Si| of
symbols from a finite set S. We say sequence Y is a supersequence of sequence X if there
exists a function FX,Y : {1, . . . , |X|} → {1, . . . , |Y |} s.t. FX,Y (i) = j if Xi = Yj and F is a
strictly increasing monotone function. In the SCS problem, we seek the shortest sequence S∗

s.t. S∗ is a supersequence of all input sequences S1, . . . , Sn. The SCS problem is NP-hard
when |S| ≥ 2 [25]. We describe a polynomial time reduction from SCS to PCC. To that end,
given the input sequences S1, . . . , Sn, we build a tree T with location set Σ = S ∪ {⊥} and
location labeling ℓ : V (T )→ [S ∪ {⊥}] in polynomial time. The steps are as follows.
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a1,1 a1,2 a1,3
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Figure 4 Reduction from Shortest Common Supersequence (SCS) to PCC. (a) An SCS
problem instance of n = 4 input sequences {S1, . . . , S4} with the shortest common supersequence
S∗ = s∗

1 . . . s∗
m∗ of length m∗ = |S∗| = 5. The solution can be represented as an alignment A, with

each column Ap containing pairs (i, j) indicating matched symbols si,j and s∗
p. (b) The corresponding

tree T with location labeling ℓ on Σ = {⊥, C, A, R, T } is shown. Each vertex ai,j is labeled by
location ℓ(v) = si,j , with the color matching panel (a). Vertices oi,j are labeled by locations ℓ(v) = ⊥
and are colored white. The corresponding set C of 2m∗ = 2 · 5 = 10 comigrations is shown using
gray boxes, with migrations/edges overlapping a gray box belonging to the same part of C.

1. First we add the root o to tree T . We label the root o with ℓ(o) = ⊥. For convenience,
the root o may also be denoted by oi,0 for any 1 ≤ i ≤ n.

2. For each input sequence Si, we attach to the root o the path ai,1, oi,1, . . . , ai,|Si|, oi,|Si| of
length 2|Si|. We refer to vertices ai,j as a-vertices and vertices oi,j as o-vertices. Note
that the edges in the constructed tree are either from an o-vertex to an a-vertex, or from
an a-vertex to an o-vertex. As such, we call the former o-a edges and the latter a-o edges.

3. We set ℓ(ai,j) = si,j and ℓ(oi,j) = ⊥ for each j ∈ {1, . . . , |Si|}. Since si,j ≠ ⊥ for all
i ∈ [n] and j ∈ {1, . . . , |Si|}, all the edges in the tree are migrations.

Since Σ = S ∪ {⊥} in the PCC instance corresponding to an SCS instance and SCS is
NP-hardness when |S| ≥ 2, we obtain a lower bound of |Σ| ≥ 3 in Theorem 15. We show an
example reduction in Figure 4. Given the constructed tree T with location labeling ℓ, PCC
seeks a set C∗ of comigrations that is spatially consistent with ℓ, temporally consistent, and
minimizes the number |C∗| of comigrations. We have the following definition.

▶ Definition 16. A set C of comigrations for migrations M(T, ℓ) = E(T ) is balanced if C
consists of an even number of parts, half of which comprised of only o-a edges and the other
half comprised of only a-o edges.

▶ Lemma 17. Any optimal set C∗ of comigrations that is spatially and temporally consistent
with location labeling ℓ of T is balanced.

Next, we show there is a mapping between supersequences S of length m and balanced
sets C of 2m comigrations that are spatially and temporally consistent with ℓ.

▶ Lemma 18. There exists a common supersequence S = s1 . . . sm of {S1, . . . , Sn} if and
only if there exists a balanced set C of comigrations with |C| = 2m parts that is spatially and
temporally consistent with location labeling ℓ of T .

Now we can finally prove the following lemma, from which hardness follows.

▶ Lemma 19. There exists a shortest common supersequence S∗ = s∗
1 . . . s∗

m∗ of {S1, . . . , Sn}
if and only if there exists a minimum-cardinality set C∗ of comigrations for migrations
M(T, ℓ) = E(T ) that is spatially and temporally consistent with ℓ and has |C∗| = 2m∗ parts.
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Figure 5 Reduction from PCCH to PCC. (a) An input tree T with vertex labeling ℓ. (b) The
corresponding tree T ′ with leaf labeling ℓ̂′.

3.3 NP-Hardness of the PCCH Problem
In this subsection, we prove the hardness of PCCH.

▶ Theorem 20. PCCH is NP-hard when |Σ| ≥ 3.

We prove this by reducing PCC to PCCH in polynomial time. That is, given a tree T

with location labeling ℓ, we construct another tree T ′ with leaf labeling ℓ̂′. The construction
is described below.
1. For each vertex v ∈ V (T ), add vertex v′ to V (T ′).
2. For each edge (u, v) ∈ E(T ), add the edge (u′, v′) to E(T ′).
3. For each internal vertex v ∈ V (T )\L(T ) with degree deg(v) attach deg(v) + 1 leaves
{v′

1, . . . , v′
deg(v)+1} to vertex v′ of T ′, labeling each of these leaves with ℓ(v), i.e. ℓ̂′(v′

i) =
ℓ(v) for i ∈ {1, . . . , deg(v) + 1}.

4. For each leaf v ∈ L(T ), retain its label for the corresponding vertex v′ in T ′, i.e.
ℓ̂′(v′) = ℓ(v).

Clearly, this reduction takes polynomial time. Since the reduction retains the set Σ of
locations of the PCC instance, our hardness result for PCCH has the same bound |Σ| ≥ 3
as in Theorem 15 establishing hardness for PCC. We illustrate the construction with an
example in Figure 5. Given the constructed tree T ′ with leaf labeling ℓ̂′, PCCH aims to
find the location labeling ℓ′ as well as spatially and temporally consistent comigrations C′

that result in the minimum number |M(T ′, ℓ′)| of migrations and subsequently the minimum
number |C′| of comigrations. As we show in the following lemma, the reduction ensures that
an optimal location labeling ℓ′ assigns the same locations to internal vertices of T ′ as location
labeling ℓ does to the corresponding internal vertices of T .

▶ Lemma 21. For each vertex v ∈ V (T ), an optimal location labeling ℓ′ of T ′ labels the
corresponding vertex v′ as ℓ′(v′) = ℓ(v).

The previous lemma means that the number |M(T ′, ℓ′)| of migrations is fixed for optimal
location labelings ℓ′.

▶ Corollary 22. The number |M(T ′, ℓ′)| of migrations for an optimal location labeling ℓ′ of
T ′ equals the number |M(T, ℓ)| of migrations in T with location labeling ℓ.

We now prove the main lemma from which Theorem 20 follows.
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▶ Lemma 23. Let (T, ℓ) be a PCC instance with |M(T, ℓ)| = µ and (T ′, ℓ̂′) be the corres-
ponding PCCH instance. There exists an optimal solution C for (T, ℓ) s.t. |C| = γ if and only
if there exists an optimal solution (ℓ′, C′) for (T ′, ℓ̂′) s.t. |M(T ′, ℓ′)| = µ and |C′| = γ.

4 Method

In this section, we introduce algorithms to solve the three problems we discussed.

4.1 Linear Time Algorithm for the TCC Problem
Theorem 9 describes a way of solving TCC by computing a topological ordering of the
vertices of the given comigration graph GT,C . Using Kahn’s algorithm [16], we can obtain the
topological ordering in time O(|V (GT,C)|+ |E(GT,C)|). As the number |C| of comigrations
is at most the number |M | of migrations, which in turn is at most the number |E(T )| of
edges in tree T , we have |V (GT,C)| = |C| = O(|E(T )|). We bound |E(GT,C)| in the following
lemma.

▶ Lemma 24. The number of edges in comigration graph GT,C is at most the number of
edges in T , i.e. |E(GT,C)| = O(|E(T )|).

Thus, given a comigration graph GT,C , TCC can be solved in O(|V (GT,C)|+ |E(GT,C)|) =
O(|E(T )|) time. It remains to show how to construct the comigration graph GT,C itself.
Naively, we can check each pair of migrations (u, v), (u′, v′) ∈M , and add edge (Cs, Ct) to
GT,C is (u, v) ∈ Cs, (u′, v′) ∈ Ct, v ⪯T u′ when there is no other migration on the path from
v and u′. But this approach is expensive, so we propose a new algorithm that runs in linear
time. The recursive algorithm BuildComigrationGraph(T, M, C, v) takes as input tree T ,
migration set M , and comigrations C, and a vertex v. It returns two outputs: (i) a comigration
graph denoted as GTv,C , where an edge (Cs, Ct) exists if there are two migrations (u, v) ∈ Cs

and (u′, v′) ∈ Ct in the subtree Tv rooted at v, and (ii) a subset Xv ⊆ C of comigrations s.t.
each C ∈ Xs if C includes a migration (u′, v′) that is the first migration encountered on a
path starting from v. Since Tr(T ) = T , BuildComigrationGraph(T, M, C, r(T )) infers the
comigration graph GT,C . The pseudocode is given in Algorithm 1.

▶ Theorem 25. BuildComigrationGraph(T, M, C, r(T )) returns comigration graph GT,C
in O(|E(T )|) time.

4.2 ILP for the PCC Problem
We solve PCC by formulating an integer linear program that models comigrations C and
timestamp labeling τ for a given tree T and location labeling ℓ, and minimizes over the
number of comigrations |C| while maintaining temporal consistency for some τ . Due to space
constraints, we refer the reader to Appendix B.1 for further details.

4.3 ILP for the PCCH Problem
To solve PCCH, we formulate an integer linear program (ILP) that models location labeling
ℓ given tree T with leaf labeling ℓ̂. To do so, we model (i) location labeling, (ii) comigrations
characterized by the labels of endpoints and timestamps of the member edges, (iii) assignment
of edges to parts, and (iv) additional constraints to break symmetries. We describe each step
in detail as follows.
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Algorithm 1 BuildComigrationGraph(T, M, C, u).

Input: Rooted tree T , migrations M ⊆ E(T ), comigrations C and vertex u of T

Output: Comigration graph GTu,C for the subtree Tu of T rooted at u and
comigrations C as well as set Xu comprised of parts C ∈ C containing a
migration (v, w) that is the first migration on the path from u to v

1 if u ∈ L(T ) then
2 return (GTu,C , Xu) where V (GTu,C) = C, E(GTu,C) = ∅ and Xu = ∅
3 else
4 V (GTu,C)← C
5 E(GTu,C)← ∅
6 Xu ← ∅
7 foreach child v of u do
8 (GTv,C), Xv)← BuildComigrationGraph(T, M, C, v)
9 E(GTu,C)← E(GTu,C) ∪ E(GTv,C)

10 if (u, v) ∈M then
11 Let Cs be the part of C containing (u, v)
12 for Ct ∈ Xv do
13 E(GTu,C)← E(GTu,C) ∪ {(Cs, Ct)}
14 Xu ← Xu ∪ {Cs}
15 else
16 Xu ← Xu ∪Xv

17 return (GTu,C , Xu)

Location labeling. We introduce binary variables Λ ∈ {0, 1}|V (T )|×|Σ| to model location
labeling ℓ. More specifically, we require Λv,s = 1 if ℓ(v) = s, and Λ(v, s) = 0 otherwise.∑

s∈Σ
Λv,s = 1, ∀v ∈ V (T ).

Additionally, for the leaves of T , vertex labeling ℓ should maintain the input leaf labeling ℓ̂.

Λv,ℓ̂(v) = 1, ∀v ∈ L(T ).

Timestamp labeling. To efficiently formulate the ILP, we put timestamps on non-migrations
too, and include them in comigrations. This does not change the original PCCH algorithm, as
we can ignore the timestamps on non-migrations and still get temporal consistency. Similar to
our ILP for PCC, we introduce binary variables Γ = {0, 1}|E(T )×|Σ|×|Σ|×|E(T )| s.t. Γ(u,v),s,t,e

is 1 if ℓ(u) = s, ℓ(v) = t, and τ((u, v)) = e, and Γ(u,v),s,t,e = 0 otherwise. The maximum
number of such unique timestamps is |E(T )|, occurring when each edge of the tree is in a
distinct comigration. The following three constraints enforce these described conditions.∑

t∈Σ

∑
e∈[|E(T )|]

Γ(u,v),s,t,e ≤ Λu,s, ∀(u, v) ∈ E(T ), ∀s ∈ Σ,

∑
s∈Σ

∑
e∈[|E(T )|]

Γ(u,v),s,t,e ≤ Λv,t, ∀(u, v) ∈ E(T ), ∀t ∈ Σ,

∑
s∈Σ

∑
t∈Σ

∑
e∈[|E(T )|]

Γ(u,v),s,t,e = 1, ∀(u, v) ∈ E(T ).
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To ensure temporal consistency, we require for any two consecutive edges (u, v), (v, w) ∈ E(T ),
the timestamp of (u, v) to be smaller than the timestamp of (v, w).∑

s∈Σ

∑
t∈Σ

∑
e∈[E]

Γ(u,v),s,t,e ≥
∑
s∈Σ

∑
t∈Σ

∑
e∈[E]

Γ(v,w),s,t,e ∀(u, v), (v, w) ∈ E(T ), ∀E ∈ [|E(T )|]

Comigrations. Just like our ILP model for PCC, we introduce binary variables π ∈
{0, 1}|E(T )|×|Σ|×|Σ| s.t. πe,s,t = 1 if for any migration (u, v) ∈ C, it holds that ℓ(u) = s,
ℓ(v) = t, and τ((u, v)) = e. Again, we require each comigration to have a unique timestamp
in this ILP and use the timestamps to identify a specific comigration. We have the following
constraint that ensures spatial consistency by enforcing each comigration to be associated
with a specific pair of locations.∑

s∈Σ

∑
t∈Σ

πe,s,t,≤ 1 ∀e ∈ [|E(T )|].

If there is an edge (u, v) with ℓ(u) = s, ℓ(v) = t, and τ((u, v)) = e, we force πe,s,t to be 1.

Γ(u,v),s,t,e ≤ πe,s,t, ∀(u, v) ∈ E(T ), ∀s, t ∈ Σ, ∀e ∈ [|E(T )|].

Additional constraints. Like the ILP model for PCC, we eliminate some symmetrical
solutions by forcing smaller partition numbers to fill up first.∑

s∈Σ

∑
t∈Σ

πe,s,t ≥
∑
s∈Σ

∑
t∈Σ

πe+1,s,t, ∀e ∈ [|E(T )| − 1].

Optimization function. We can compute the number of migrations from Γ by counting the
number of migrations, i.e. edges with different labels at their endpoints. Since we ignore the
comigrations with non-migrations, we only count the number of comigrations that contain
migrations from π. Thus, given a tree T with location labeling ℓ, we define the objective
function as

min
∑

(u,v)∈E(T )

∑
s,t∈Σ:s̸=t

∑
e∈[|E(T )|]

Γ(u,v),s,t,e + 1
|E(T )|

∑
e∈[|E(T )|]

∑
s,t∈Σ:s̸=t

πe,s,t.

5 Results

In this section, we present a performance comparison between MACHINA and PCCH by
running both methods on real (Section 5.1) and simulated data (Section 5.2). All experiments
were run on a server with Intel Xeon Gold 5120 dual CPUs with 14 cores each at 2.20 GHz
and 512 GB RAM. The code is available at https://github.com/elkebir-group/PCCH.

5.1 Real data
Ovarian cancer. We applied PCCH to infer the migration history of a high-grade serous
ovarian cancer dataset by McPherson et al. [22]. The available data contains the phylogenies
of seven high-grade serous metastatic ovarian cancer patients. By employing whole genome
and single nucleus sequencing, McPherson et al. [22] sequenced 68 tumor samples in total from
seven patients including samples from the ovary, omentum, fallopian tube, peritoneal sites,
and other distant metastatic sites, and inferred the migration history without considering
comigrations. The same dataset was re-analyzed by El-Kebir et al. [11], reporting simpler
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Figure 6 MACHINA and PCCH results for ovarian [22] and prostate cancer [15]
datasets. For all instances, MACHINA and PCCH inferred the same location labeling and the
same number of comigrations, meaning that the previously reported MACHINA solutions are indeed
temporally consistent. (a) PCCH is slower than MACHINA due to additionally enforcing temporal
consistency. (b) PCCH results for ovarian cancer Patient 1. Gray boxes indicate comigrations
(additionally labeled by timestamp) and vertex colors indicate location labeling.

migration patterns for some patients using the comigration criterion of MACHINA. For
instance, for Patient 7, MACHINA reported that the tumor originated in the left or the right
ovary, even though McPherson et al. claimed the right uterosacral ligament to be the primary
region. MACHINA found a simpler migration history for Patient 3 without metastasis-to-
metastasis migration or multisource seeding, unlike McPherson et al.’s prediction.

For each of the seven patients, we generated the location labeling with timestamps
by solving PCCH. We found that PCCH’s location labelings perfectly matched those of
MACHINA as well as that both methods returned the same number of comigrations, thus
showing that MACHINA’s solutions were temporally consistent. We show the running time
analysis for both PCCH and MACHINA in Figure 6a and Table S1. We found that PCCH
generally takes slightly longer to finish (median of 0.474 s vs. 0.244 s for MACHINA). This is
expected, as unlike MACHINA, PCCH includes checks for temporal consistency and returns
timestamps along with a location labeling. As an example, we show the PCCH output for
Patient 1 in Figure 6b with location and timestamp labels. Both MACHINA and PCCH
report reseeding in the migration history, which can easily be seen by observing the edges
with timestamps 1 and 7. Note that there are other possible timestamp labelings, and PCCH
returns only one single solution.

Prostate cancer. We ran PCCH on another dataset by Gundem et al. [15]. The dataset
contained matched primary and metastasis samples from five prostate cancer patients. This
is another dataset that was previously analyzed by MACHINA [11], where MACHINA could
infer alternative migration histories that were simpler and more consistent with the data
compared to those reported in the original paper. Though the dataset contained examples of
metastasis-to-metastasis spread, MACHINA did not infer reseeding in any of the patients.
As such, by Proposition 14, MACHINA’s results will be temporally consistent. Indeed, we
found that the location labeling from our results from PCCH and the number of comigrations
perfectly matched those reported by MACHINA. As shown in Figure 6a and Table S2,
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Figure 7 MACHINA and PCCH results for simulated data. We use colors to differentiate
between MACHINA and PCCH. (a) The x-axis corresponds to the number of cycles in the induced
comigration graph, where the y-axis stands for running time in seconds. (b) The x-axis represents
the number of vertices, and the y-axis stands for running time in seconds. The number of cycles in
the induced comigration graph is indicated by marker style.

we observed similar trends for running times (median of 2.795 s for PCCH vs. 0.67 s for
MACHINA), although for Patient A22, MACHINA (1702.24 s) took longer than PCCH
(185.18 s).

5.2 Simulated data
Results from real data suggest that although it is theoretically possible for MACHINA to
return temporally inconsistent solutions, this does not occur in practice. For the same reason,
realistic simulation models often fail to generate instances where MACHINA underestimates
the number of comigrations. So to assess the performance of PCCH properly, we specifically
simulated instances where MACHINA will fail to infer the correct number of comigrations.
To be more exact, we sample a comigration graph with k = {1, 2, 3} cycles first, and then
generate trees with location labeling and comigrations that lead to k cycles in the induced
comigration graph (Figure 3a shows an example with k = 1 cycle). In our simulated dataset,
the cycles in the sampled comigration graph do not share any edges, so the difference between
the number of comigrations inferred by PCCH and MACHINA equals the number of cycles.
The running time comparison is given in Figure 7 and Table S3. Strikingly, we observed
different trends here – MACHINA tends to be slower (median: 459.787 s) than PCCH
(median: 203.438 s), especially when the corresponding comigration graph has increasing
numbers of cycles (for k = 3 cycles, median of 3668.93 and 618.012 seconds for MACHINA
and PCCH, respectively).

6 Conclusion

In this paper, we addressed a flaw in the definition of comigration adopted by multiple
methods including MACHINA [11]. Specifically, we defined spatial and temporal consistency
conditions for comigrations. This led us to formulate three successive problems First,
Temporally Consistent Comigration (TCC) asks if a given comigration is temporally
consistent, and, if so, returns a certifying timestamp labeling of migrations. We showed
that TCC can be solved in linear time. Second, Parsimonious Consistent Comigration
(PCC) aims to infer the smallest set of comigrations given a location labeling of both leaf and
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internal vertices. We proved the problem is NP-hard, meaning even if we know the location
of origin of every vertex and thus every migration, it is still hard to know which migrations
occurred simultaneously under a parsimony criterion. Third, we formulated Parsimonious
Consistent Comigration History (PCCH), which takes as input a leaf labeling, and
infers the location labeling that minimizes the number of migrations, and subsequently the
number of comigrations while maintaining spatial and temporal consistency. We showed that
PCCH is NP-hard. Additionally, we discussed MACHINA’s views on comigrations and its
limitations in light of temporal consistency. We also investigated the sufficient conditions for
MACHINA to correctly compute the number of comigrations. We compared the performance
of PCCH with that of MACHINA on real and simulated data. We observed PCCH to return
the same location labeling as MACHINA for all real data instances, which tells us that
although it is theoretically possible for MACHINA to fail to compute the correct minimum
number of comigrations for some instances, it is unlikely to come across such an instance
in practice. Finally, we generated simulated instances where MACHINA fails to determine
temporally consistent comigrations.
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A Supplementary Proof Sketches

A.1 Combinatorial Characterization of the TCC Problem
▶ (Main Text) Lemma 8. There are no self-loops in the comigration graph GT,C of any set
C of comigrations for migrations M(T, ℓ) induced by location labeling ℓ of a tree T .

Proof sketch. If there were a self-loop (C, C) ∈ E(GT,C) then there would be at least one
pair (u, v), (u′, v′) ∈ C such that there is no migration edge in the path from v to u′. But
then ℓ(v) = ℓ(u′) = ℓ(u), which means (u, v) is not a migration. ◀

▶ (Main Text) Theorem 9. There exists a timestamp labeling τ that is temporally consistent
with comigrations C of a tree T if and only if the comigration graph GT,C is a DAG.

Proof sketch. If GT,C is a DAG then τ can be constructed by setting τ((u, v)) = i if (u, v)
is in the i-th comigration in the topological ordering of V (GT,C). Also, it can be shown that
if there is a cycle Ci, Ci+1, . . . , Cj , Ci in GT,C then there does not exist a timestamp labeling
τ that labels the edges present in Ci, Ci+1, . . . , Cj . ◀

A.2 MACHINA’s Definition of Compatible Comigrations
▶ (Main Text) Lemma 11. Comigrations C for migrations M(T, ℓ) that are spatially and
temporally consistent with location labeling ℓ of a tree T are also compatible with ℓ.

Proof sketch. The proof follows from the definitions of compatibility, spatial and temporal
consistency. ◀

▶ (Main Text) Proposition 15. If a location labeling ℓ of a tree T does not result in reseeding
then any set C of comigrations on M(T, ℓ) that is compatible with ℓ is also temporally
consistent.
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Proof sketch. It can be shown that there cannot be a cycle in the comigration graph if there
is no reseeding. ◀

A.3 NP-Hardness of the PCC Problem
▶ (Main Text) Lemma 19. Any optimal set C∗ of comigrations that is spatially and temporally
consistent with location labeling ℓ of T is balanced.

Proof sketch. It can be shown that if the number of comigrations containing o− a edges is
smaller than the number of comigrations containing a− o edges in set C∗, it is possible to
construct a set of comigrations C′ with twice the number of comigrations containing o− a

edges, indicating that |C′| < |C∗|, and so C∗ is not optimal. This can be achieved by assigning
edges (ai,j , oi,j+1) and (ap,q, op,q+1) to the same comigration in C′ if the corresponding o− a

edges (oi,j−1, ai,j) and (op,q−1, ap,q) belong to the same part in C. A similar argument applies
when the number of comigrations containing o − a edges is greater than the number of
comigrations containing a− o edges. ◀

▶ (Main Text) Lemma 20. There exists a common supersequence S = s1 . . . sm of
{S1, . . . , Sn} if and only if there exists a balanced set C of comigrations with |C| = 2m

parts that is spatially and temporally consistent with location labeling ℓ of T .

Proof sketch. For each supersequence S of length m, we can construct comigrations C of
size 2m, and conversely for comigrations C of size 2m, there exists a supersequence S of
length m. Figure 4 provides an illustrative example of such a relationship between S and
C. ◀

▶ (Main Text) Lemma 21. There exists a shortest common supersequence S∗ = s∗
1 . . . s∗

m∗

of {S1, . . . , Sn} if and only if there exists a minimum-cardinality set C∗ of comigrations
for migrations M(T, ℓ) = E(T ) that is spatially and temporally consistent with ℓ and has
|C∗| = 2m∗ parts.

Proof sketch. It can easily be proven using Lemma 18. ◀

A.4 NP-Hardness of the PCCH Problem
▶ (Main Text) Lemma 23. For each vertex v ∈ V (T ), an optimal location labeling ℓ′ of T ′

labels the corresponding vertex v′ as ℓ′(v′) = ℓ(v).

Proof sketch. It can be proven by showing that the number of migrations increases if
ℓ′(v′) = ℓ(v). ◀

▶ (Main Text) Lemma 25. Let (T, ℓ) be a PCC instance with |M(T, ℓ)| = µ and (T ′, ℓ̂′) be
the corresponding PCCH instance. There exists an optimal solution C for (T, ℓ) s.t. |C| = γ

if and only if there exists an optimal solution (ℓ′, C′) for (T ′, ℓ̂′) s.t. |M(T ′, ℓ′)| = µ and
|C′| = γ.

Proof sketch. From Lemma 21, it is easy to show that the number of migrations |M(T ′, ℓ′)|
for PCCH instance (T ′, ℓ′) is µ. Next to complete the proof, it suffices to show two things.
First, if C is an optimal set of comigrations for PCC instance (T, ℓ) then the set C′ of
comigrations is optimal for PCCH instance (T ′, ℓ̂′) where in C′ a pair of migrations (u′, v′)
and (p′, q′) belong to the same part if the corresponding migrations (u, v) and (p, q) belong
to the same part in C. Second, if C′ is an optimal set of comigrations for PCCH instance
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(T ′, ℓ̂′) then the set C of comigrations is optimal for PCC instance (T, ℓ) where in C a pair of
migrations (u, v) and (p, q) belong to the same part if the corresponding migrations (u′, v′)
and (p′, q′) belong to the same part in C. ◀

A.5 Linear Time Algorithm for the TCC Problem

▶ (Main Text) Lemma 26. The number of edges in comigration graph GT,C is at most the
number of edges in T , i.e. |E(GT,C)| = O(|E(T )|).

Proof sketch. It can be shown that the number of edges in GT,C is bounded by the number
of migrations, which in turn is bounded by the number of edges. ◀

▶ (Main Text) Theorem 27. BuildComigrationGraph(T, M, C, r(T )) returns comigration
graph GT,C in O(|E(T )|) time.

Proof sketch. This can be shown by structural induction, proving that the values of GTu,C
and Xu are properly calculated for each node u ∈ V (T ). ◀

B Supplementary Methods

B.1 ILP for the PCC Problem

We solve PCC by formulating an integer linear program that models comigrations C and
timestamp labeling τ for a given tree T and location labeling ℓ, and minimizes over the
number of comigrations |C| while maintaining temporal consistency for some τ .

Timestamp labeling. We introduce binary variables Γ = {0, 1}|M(T,ℓ)×|M(T,ℓ)| to model
τ : M(T, ℓ) → [N ] s.t. Γ(u,v),e is 1 if τ((u, v)) = e,and 0 otherwise. Since the number of
unique timestamps cannot exceed the number |M(T, ℓ)| of migrations, we limit the index
e corresponding to timestamps to be at most |M(T, ℓ)|. Since Γ is modeling a function τ ,
there cannot be more than one image e for each argument (u, v) ∈M(T, ℓ):

|E(T )|∑
e=1

Γ(u,v),e = 1, ∀(u, v) ∈M(T, ℓ).

To ensure temporal consistency, we require τ((u, v)) < τ((u′, v′))) for any two migrations
(u, v), (u′, v′) ∈ M(T, ℓ) where v ⪯T u′, and there is no migration in the path from v to
u′. Now if τ((u, v)) < τ((u′, v′))) then for any E ∈ {τ((u′, v′)), . . . , τ((u, v))} we have∑E

e=1 Γ(u,v),e <
∑E

e=1 Γ(u′,v′),e. Conversely, if τ((u, v)) = τ((u′, v′))) then
∑E

e=1 Γ(u,v),e =∑E
e=1 Γ(u′,v′),e. We combine these two conditions to form the following constraint.

E∑
e=1

Γ(u,v),e ≥
E∑

e=1
Γ(u′,v′),e, ∀(u, v), (u′, v′) ∈ X(T, ℓ), E ∈ [|M(T, ℓ)|],

where X(T, ℓ) consists of all ordered pairs ((u, v), (u′, v′)) of migrations s.t. (i) (u, v), (u′, v′) ∈
M(T, ℓ), (ii) v ⪯T u′ and (iii) there is no migration in the path from v to u′.
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Comigrations. For spatiotemporally consistent comigrations C, each part C ∈ C consists of
migrations between the same pair of locations indicated by ℓ and have the same timestamp
given by a timestamp labeling τ . Thus, to model comigrations, we introduce binary variables
π ∈ {0, 1}|M(T,ℓ)|×|Σ|×|Σ| , where πe,s,t = 1 if the migrations in the comigration with
timestamp 1 ≤ e ≤ |M(T, ℓ)| migrate from s ∈ Σ to t ∈ Σ. In other words, πe,s,t corresponds
to comigration C ∈ C if for any migration (u, v) ∈ C it holds that ℓ(u) = s, ℓ(v) = t, and
τ((u, v)) = e. Without loss of generality, we require each comigration to have a unique
timestamp in this formulation, which we use to identify the comigration. This is enforced by
the following constraint.∑

s∈Σ

∑
t∈Σ

πe,s,t ≤ 1, ∀e ∈ [|M(T, ℓ)|].

If there is a migration (u, v) and τ((u, v)) = e, i.e. Γ(u,v),e ≤ πe,ℓ(u),ℓ(v) = 1, then we force
πe,ℓ(u),ℓ(v) to be 1.

πe,ℓ(u),ℓ(v) ≥ Γ(u,v),e, ∀(u, v) ∈M(T, ℓ), ∀e ∈ [|M(T, ℓ)|].

Additional constraints. To increase performance, we eliminate some symmetrical solutions
by forcing smaller partition numbers to fill up first.∑

s∈Σ

∑
t∈Σ

πe,s,t ≥
∑
s∈Σ

∑
t∈Σ

πe+1,s,t, ∀e ∈ [|M(T, ℓ)| − 1].

Optimization function. Since each comigration has a unique timestamp, we can get the
total number of comigrations by counting nonzero entries in π.

min
∑

e∈[|E(T )|]

∑
s,t∈Σ:s̸=t

πe,s,t.
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Table S1 Detailed results for the ovarian cancer dataset from McPherson et al. [22].

Primary Patient
ID #vertices #migrations #comigrations

Running time (in seconds)
MACHINA PCCH

LOv Patient 1 24 13 7 0.386 1.941
Patient 3 36 27 7 9.764 10.042
Patient 4 18 7 3 0.204 0.378
Patient 7 19 12 6 0.341 0.569
Patient 9 9 4 2 0.0128 0.015

ROv Patient 1 24 13 10 0.284 1.326
Patient 2 10 2 1 0.01 0.027
Patient 3 36 27 7 11.725 12.364
Patient 4 18 6 3 0.0618 0.239
Patient 7 19 13 6 0.297 0.707
Patient 9 9 5 2 0.0165 0.0163
Patient 10 17 6 2 0.169 0.204

Table S2 Detailed results for the prostate cancer dataset from Gundem et al. [15].

Patient
ID #vertices #migrations #comigrations

Running time (in seconds)
MACHINA PCCH

A10 15 3 3 0.043 0.327
A22 58 32 14 1702.24 185.18
A29 9 1 1 0.009 0.028
A31 29 13 7 2.64 4.428
A32 27 9 4 0.67 2.795

Table S3 Detailed results for the simulated dataset.

#cycles #vertices #migrations
#comigrations Running time (in seconds)

MACHINA PCCH MACHINA PCCH
1 25 6 4 5 4.59 1.24

37 9 6 7 10.24 7.44
49 12 8 9 16.56 19.48
61 15 10 11 30.76 67.71
73 18 12 13 83.34 137.48

2 45 11 6 8 147.46 34.41
57 14 8 10 459.79 102.84
69 17 10 12 184.58 485.99
81 20 12 14 1107.75 570.13
105 26 16 18 811.93 1658.93

3 65 16 9 12 6241.98 203.44
65 16 8 11 1861.78 253.82
77 19 11 14 4959.63 618.01
77 19 10 13 3668.93 703.97
89 22 12 15 2645.30 1052.21
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Abstract
We study the problem of finding maximal exact matches (MEMs) between a query string Q and a
labeled graph G. MEMs are an important class of seeds, often used in seed-chain-extend type of
practical alignment methods because of their strong connections to classical metrics. A principled
way to speed up chaining is to limit the number of MEMs by considering only MEMs of length at
least κ (κ-MEMs). However, on arbitrary input graphs, the problem of finding MEMs cannot be
solved in truly sub-quadratic time under SETH (Equi et al., ICALP 2019) even on acyclic graphs.

In this paper we show an O(n · L · dL−1 + m + Mκ,L)-time algorithm finding all κ-MEMs between
Q and G spanning exactly L nodes in G, where n is the total length of node labels, d is the maximum
degree of a node in G, m = |Q|, and Mκ,L is the number of output MEMs. We use this algorithm to
develop a κ-MEM finding solution on indexable Elastic Founder Graphs (Equi et al., Algorithmica
2022) running in time O(nH2 + m + Mκ), where H is the maximum number of nodes in a block,
and Mκ is the total number of κ-MEMs.

Our results generalize to the analysis of multiple query strings (MEMs between G and any of the
strings). Additionally, we provide some preliminary experimental results showing that the number of
graph MEMs is an order of magnitude smaller than the number of string MEMs of the corresponding
concatenated collection.
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1 Introduction

Sequence alignment has been studied since the 1970s [34, 46] and is a fundamental problem
of computational molecular biology. Solving the classical problems of longest common
subsequence (LCS) and edit distance (ED) between two strings takes quadratic time with
simple dynamic programs, and it was recently proven that no strongly subquadratic-time
algorithms exist conditioned on the Strong Exponential Time Hypothesis (SETH) [5, 3]. To
overcome this hardness, researchers have used heuristics such as co-linear chaining [1]: by
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taking (short) matches between the input strings, known as anchors, we can take an ordered
subset of these anchors and chain them together into an alignment. Furthermore, when
using maximal exact matches (MEMs) as anchors, different co-linear chaining formulations
capture both LCS [31] and ED [24] in near-linear time. MEMs are also used in popular
seed-and-extend read aligners [25, 32]. In fact, practical tools limit the number of MEMs by
considering only κ-MEMs (MEMs of length at least κ) [36, 45].

Extending alignment between sequences to sequence-to-graph alignment is an emerging
and central challenge of computational pangenomics [10], as labeled graphs are a popular
representation of pangenomes used in recent bioinformatics tools [27, 8, 37, 26]. We assume
that a labeled graph G = (V, E, ℓ) (ℓ : V → Σ+) is the reference pangenome of interest.
Unfortunately, even finding exact occurrences of a given pattern in G does not admit strongly
subquadratic-time solutions under SETH [15], and furthermore, a graph cannot be indexed
in polynomial time to answer strongly subquadratic-time pattern matching queries [14].
To circumvent this difficulty, research efforts have concentrated on finding parameterized
solutions to (exact) pattern matching in labeled graphs [7, 12, 11, 41]. Moreover, the use of
MEMs and co-linear chaining has also been extended to graphs [27, 8, 37, 26].

In this paper, we study the problem of efficiently finding MEMs between a query string Q

and a labeled graph G, where we extend the MEM definition to capture any maximal match
between Q and the string spelled by some path of G. More precisely, our contributions are
as follows:

In Section 3.1, we adapt the MEM finding algorithm between two strings of Belazzougui
et al. [4] to find all κ-node-MEMs between Q and G = (V, E, ℓ) in O(m + n + Mκ) time,
where m = |Q|, n =

∑
v∈V |ℓ(v)| is the cumulative length of the node labels, and Mκ is

the number of κ-node-MEMs (of length at least κ and between the node labels and Q).
Next, in Section 3.2, we extend the previous algorithm to find all κ-MEMs spanning
exactly L nodes of G in time O(m + n · L · dL−1 + Mκ,L), where d is the maximum degree
of any node v ∈ V and Mκ,L are the κ-MEMs of interest. Note that MEMs spanning
less than L nodes can occur multiple times in paths spanning exactly L nodes, and our
contribution is to introduce an efficient technique to filter out these MEMs.
In Section 4, we obtain the following results:

We study κ-MEMs in indexable Elastic Founder Graphs (EFGs) [16], a subclass of
labeled acyclic graphs admitting a poly-time indexing scheme for linear-time pattern
matching. Given an indexable EFG G of height H (the maximum number of nodes in
a graph block), we develop a suffix-tree-based solution to find all κ-MEMs spanning
more than 3 nodes in G in O(nH2 + m + Mκ,4+) time, where Mκ,4+ are the number
of output MEMs.
Combined with the above results for L = 1, 2, 3, we can find κ-MEMs of an indexable
EFG G in O(nH2 + m + Mκ) time.
We note that the previous results easily generalize to the batched query setting: by
substituting Q with the concatenation of different query strings Q1, . . . , Qt of total
length m, we compute all κ-MEMs between any query string and the graph with the
same stated running time.

Finally, in Section 5 we provide some preliminary experimental results on finding MEMs
from a collection of strains of covid19. We use the bidirectional r-index [2] as the
underlying machinery. On the one hand, we build the r-index of the concatenation of the
strains and find all mκ κ-MEMs. On the other hand, we build an indexable EFG of the
strains and find an upper bound on all Mκ κ-MEMs in this case. Our results indicate
that Mκ is an order of magnitude smaller than mκ, thus confirming that graph MEMs
compactly represent all MEMs.
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2 Preliminaries

Strings

We denote integer intervals by [x..y], x and y inclusive. Let Σ = [1..σ] be an alphabet. A
string T [1..n] is a sequence of symbols from Σ, that is, T ∈ Σn where Σn denotes the set of
strings of length n over Σ. The length of a string T is denoted |T | and the empty string ε

is the string of length 0. In this paper, we assume that σ is always smaller or equal to the
length of the strings we are working with. The concatenation of strings T1 and T2 is denoted
as T1 · T2, or just T1T2. We denote by T [x..y] the substring of T made of the concatenation
of its characters from the x-th to the y-th, both inclusive; if x = y then we also use T [x] and
if y < x then T [x..y] = ε. The reverse of a string T [1..n], denoted by T , is the string T read
from right to left, that is, T = T [n]T [n − 1]..T [1]. A suffix (prefix) of string T [1..n] is T [x..n]
(T [1..y]) for 1 ≤ x ≤ n (1 ≤ y ≤ n) and we say it is proper if x > 1 (y < n). We denote by Σ∗

the set of finite strings over Σ, and also Σ+ = Σ∗ \{ε}. String Q occurs in T if Q = T [x..y] for
some interval [x..y]; in this case, we say that [x..y] is a match of Q in T . Moreover, we study
matches between substrings of Q and T : a maximal exact match (MEM) between Q and T

is a triplet (x1, x2, ℓ) such that Q[x1..x1 + ℓ − 1] = T [x2..x2 + ℓ − 1] and the match cannot
be extended to the left nor to the right, that is, x1 = 1 or x2 = 1 or Q[x1 − 1] ̸= T [x2 − 1]
(left-maximality) and x1 + ℓ = |Q| or x2 + ℓ = |T | or Q[x1 + ℓ] ̸= T [x2 + ℓ] (right-maximality).
In this case, we say that the substring Q[x1..x1 + ℓ − 1] is a MEM string between Q and T .
The lexicographic order of two strings T1 and T2 is naturally defined by the total order ≤ of
the alphabet: T1 < T2 if and only if T1 ̸= T2 and T1 is a prefix of T2 or there exists y ≥ 0
such that T1[1..y] = T2[1..y] and T1[y + 1] < T2[y + 1]. We avoid the prefix-case by adding
an end marker $ ̸∈ Σ to the strings and considering $ to be the lexicographically smaller
than any character in Σ.

Labeled graphs

Let G = (V, E, ℓ) be a labeled graph with V being the set of nodes, E being the set of edges,
and ℓ : V → Σ+ being a function giving a label to each node. A length-k path P from v1 to vk is
a sequence of nodes v1, . . . , vk connected by edges, that is, (v1, v2), (v2, v3), . . . , (vk−1, vk) ∈ E.
A node u reaches a node v if there is a path from u to v. The label ℓ(P ) := ℓ(v1) · · · ℓ(vk)
of P is the concatenation of the labels of the nodes in the path. For a node v and a path
P we use ∥·∥ to denote its string length, that is, ∥v∥ = |ℓ(v)| and ∥P∥ = |ℓ(P )|. Let Q be
a query string. We say that Q occurs in G if Q occurs in ℓ(P ) for some path P . In this
case, the exact match of Q in G can be identified by the triple (i, P = v1 . . . vk, j), where
Q = ℓ(v1)[i..] · ℓ(v2) · · · ℓ(vk−1) · ℓ(vk)[..j], with 1 ≤ i ≤ ∥v1∥ and 1 ≤ j ≤ ∥vk∥, and we call
such triple a substring of G. Given a substring (i, P, j) of G, we define its left-extension
lext(i, P, j) as the singleton {ℓ(v1)[i − 1]} if i > 1 and otherwise as the set of characters
{ℓ(u)[∥u∥] | (u, v1) ∈ E}. Symmetrically, the right-extension rext(i, P, j) is {ℓ(vk)[j + 1]} if
j < ∥vk∥ and otherwise it is {ℓ(v)[1] | (vk, v) ∈ E}. Note that the left (right) extension can
be equal to the empty set ∅, if the start (end) node of P does not have incoming (outgoing)
edges. Figure 1 illustrates these concepts.

Basic tools

A trie or keyword tree [13] of a set of strings is an ordinal tree where the outgoing edges of
each node are labeled by distinct symbols (the order of the children follows the order of the
alphabet) and there is a unique root-to-leaf path spelling each string in the set; the shared
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AGCTA

CGCTC

AGCAA

ACCGTA
GTGGAA

GTGGAT

CCAT

Figure 1 Substring ACCGTA (underlined) with left-extension {A, C} and right-extension {G}, and
substring GGAACC (underlined, bold edge) with left-extension {T} and right-extension {A}.

part of two root-to-leaf paths spells the longest common prefix of the corresponding strings.
In a compact trie [22], the maximal non-branching paths of a trie become edges labeled with
the concatenation of labels on the path. The suffix tree of T ∈ Σ∗ is the compact trie of
all suffixes of the string T ′ = T$. In this case, the edge labels are substrings of T and can
be represented in constant space as an interval of T . Such tree uses linear space and can
be constructed in linear time, assuming that σ ≤ |T |, so that when reading the root-to-leaf
paths from left to right, the suffixes are listed in their lexicographic order [44, 17]. As such,
the order spelled by the leaves of the suffix tree form the suffix array SAT [1..|T ′|], where
SAT [i] = j iff T ′[j..|T ′|] is the i-th smallest suffix in lexicographic order. When applied to a
string T , the Burrows–Wheeler transform (BWT) [6] yields another string BWTT such that
BWTT [i] = T ′[SA[i] − 1] (we assume T ′ to be a circular string, i.e. T ′[−1] = T ′[|T | + 1] = $).

Let Q[1..m] be a query string. If Q occurs in T , then the locus or implicit node of Q

in the suffix tree of T is (v, k) such that Q = XY , where X is the path spelled from the
root to the parent of v and Y is the prefix of length k of the edge from the parent of v to v.
The leaves in the subtree rooted at v, also known as the leaves covered by v, correspond to
all the suffixes sharing the common prefix Q. Such leaves form an interval in the SA and
equivalently in the BWT. Let aX and X be the strings spelled from the root of the suffix
tree to nodes v and w, respectively. Then one can store a suffix link from v to w. Suffix links
from implicit nodes are called implicit suffix links.

The bidirectional BWT [43] is a compact BWT-based index capable of solving the MEM
finding problem in linear time [4]. The algorithm simulates the traversal of the corresponding
suffix trees to find maximal occurrences in both strings: in the first step, it locates the suffix
tree nodes (intervals in the BWTs) corresponding to the maximal matches, that is, the MEM
strings, and then it uses a cross-product algorithm to extract each MEM from the BWT
intervals.

Let B[1..n] be a bitvector, that is, a string over the alphabet {0, 1}. There is a data
structure that can be constructed in time O(n) which answers r = rank(B, i) and j =
select(B, r) in constant time, where the former operation returns the number of 1s in B[1..i]
and the latter returns the position j ≤ i of the r-th 1 in B [9, 23].

Let D[1..n] be an array of integers. There is a range minimum query data structure that
can be constructed in O(n) time which answers RMQD(i, j) in constant time [19], where
RMQD(i, j) returns an index k such that D[k] is the minimum value in the subarray D[i..j].
We will use the following lemma that exploits range queries recursively.

▶ Lemma 1. Let D[1..n] be an array of integers. One can preprocess D in O(n) time so
that given a threshold ∆, one can list all elements of D such that D[i] ≤ ∆ in linear time in
the size of the output.
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Proof. We can build the range minimum query data structure on D. Consider a recursive
algorithm analogous to the one in [33] which starts with k = RMQD(1, n). If D[k] > ∆,
the algorithm stops as no element in the range is at least ∆. Otherwise, the algorithm
reports k and recursively continues with RMQD(1, k − 1) and RMQD(k + 1, n). Note that
each recursive call performs exactly one RMQ operation: if an element is reported the RMQ
is charged to this element, otherwise it is charged to its parent (in the recursion tree), and
thus the number of RMQ operations is linear in the output size. ◀

3 Finding MEMs in Labeled Graphs

Let us consider the problem of finding all maximal exact matches (MEMs) between a labeled
graph G = (V, E, ℓ), with ℓ : V → Σ+, and a query string Q ∈ Σ+.

▶ Definition 2 (MEM between a pattern and a graph). Let G = (V, E, ℓ) be a labeled graph,
with ℓ : V → Σ+, let Q ∈ Σ+ be a query string, and let κ > 0 be a threshold. Given a match
(i, P, j) of Q[x..y] in G, we say that the pair ([x..y], (i, P, j)) is left-maximal ( right-maximal)
if it cannot be extended to the left (right, respectively) in both Q and G, that is,

(LeftMax) x = 1 ∨ lext(i, P, j) = ∅ ∨ Q[x − 1] /∈ lext(i, P, j) and
(RightMax) y = |Q| ∨ rext(i, P, j) = ∅ ∨ Q[y + 1] /∈ rext(i, P, j).

We call ([x..y], (i, P, j)) a κ-MEM iff LeftMax∨|lext(i, P, j)| ≥ 2, RightMax∨|rext(i, P, j)| ≥ 2,
and y − x + 1 ≥ κ, meaning that it is of length at least κ, it is left-maximal or its left (graph)
extension is not a singleton, and it is right-maximal or its right (graph) extension is not a
singleton.

For example, with Q = CACCGTAT, κ = 0, v being the first underlined node of Figure 1,
and u being the second in-neighbor of v, then ([1..7], (5, uv, 6)) is a MEM since it is left
and right maximal. Note that pair ([2..7], (1, v, 6)) is also a MEM since it is right-maximal,
and the left extension of (1, v, 6) is not a singleton (lext(v) = {A, C}): this match is not
left-maximal but our definition includes it as there are at least two different characters to
the left.

We use this particular extension of MEMs to graphs – with the additional conditions
on non-singletons lext and rext – as it captures all MEMs between Q and ℓ(P ), where P is
a source-to-sink path in G. Moreover, this MEM formulation (with κ = 1) captures LCS
through co-linear chaining, whereas avoiding the additional conditions would fail [38].

The rest of this section is structured as follows. In Section 3.1, we show how to adapt the
MEM finding algorithm of Belazzougui et al. [4] for the case of node MEMs, which ignore the
singleton conditions of Definition 2. Then, in Section 3.2, we show how to further generalize
this approach to report all κ-MEMs spanning exactly L nodes.

3.1 MEMs in Node Labels
We say that a match ([x..y], (i, v, j)) is a node MEM if it is left and right maximal w.r.t.
ℓ(P ) only in the string sense. In other words, a node MEM is a (string) MEM between Q

and ℓ(v) (especially in the case x = 1 or y = ℓ(v)). For this, we consider the text

Tnodes =
∏
v∈V

0 · ℓ(v),

where 0 /∈ Σ is used as a delimiter to prevent MEMs spanning more than a node label.
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10:6 Finding Maximal Exact Matches in Graphs

Running the MEM finding algorithm of Belazzougui et al. [4, Theorem 7.10] on Q and
Tnodes will retrieve exactly the node MEMs we are looking for. Given such a MEM (x1, x2, ℓ),
to transform the coordinates of Tnodes[x2..x2 + ℓ − 1] into the corresponding graph substring
(i, P, j) we augment the index with a bitvector B marking the locations of 0s of Tnodes, so
that r = rank(B, x2) identifies the corresponding node of G, i = x2 − select(B, r) and
j = i + ℓ − 1.

▶ Lemma 3. Given a labeled graph G = (V, E, ℓ), with ℓ : V → Σ+, a query string Q, and
a threshold κ > 0, we can compute all node MEMs of length at least κ between Q and G

in time O(n + m + Nκ), where n is the total length of node labels, m = |Q|, and Nκ is the
number of output MEMs.

Proof. The claim follows by applying the MEM finding algorithm of Belazzougui et al. [4,
Theorem 7.10] on Tnodes and Q, and using B to extract the corresponding graph matches.
We include a brief explanation of the original algorithm (following the later adaptation of [28,
Algorithm 11.3]) as we will modify this algorithm later. In our context, the algorithm takes as
inputs the bidirectional BWT index on Tnodes$ and the bidirectional BWT index on Q$, and
produces MEM strings Q′, with |Q′| ≥ κ, and four BWT intervals [iG..jG], [i′

G..j′
G], [iQ..jQ],

and [i′
Q..j′

Q], for each such Q′. The first two BWT intervals are such that Q′ occurs in Tnodes
jG − iG +1 = j′

G − i′
G +1 times: the suffixes of Tnodes having Q′ as a prefix have lexicographic

ranks between iG and jG, and the prefixes of Tnodes having Q′ (the reverse of Q′) as a suffix
have co-lexicographic (lexicographic of the reverse) ranks between i′

G and j′
G. Analogously,

the last two BWT intervals are such that Q′ occurs in Q jQ − iQ + 1 = j′
Q − i′

Q + 1 times:
the suffixes of Q having Q′ as a prefix have lexicographic ranks between iQ and jQ, and the
prefixes of Q having Q′ as a suffix have co-lexicographic ranks between i′

Q and j′
Q. For each

of these four BWT intervals reported, the algorithm runs a cross-product routine outputting
all MEMs whose MEM string is Q′. Globally, the algorithm is linear in both the input and
output size, since the exploration of MEM strings Q′ takes linear time in the size of the input
strings, and since in total the cross-product routine runs in linear time in the number of BWT
intervals considered as well as in the number of output MEMs [4, Theorem 7.10]. To see the
linearity with respect to the input strings, let us study how the MEM strings Q′ are explored.
The algorithm starts with intervals covering all suffixes/prefixes corresponding to a match
of the empty string. It then executes recursively, so we can consider a generic step with
intervals [iG..jG], [i′

G..j′
G], [iQ..jQ], and [i′

Q..j′
Q] corresponding to a match of the string Q′.

Moreover, the algorithm maintains the invariant that the current match Q′ is right-maximal.
In the recursive step, the algorithm first checks whether the match is left-maximal, in which
case it reports the corresponding MEMs using the aforementioned cross-product algorithm.
It then extends the match to the left with every possible character extension. For each such
extension aQ′, it checks whether the extension contains a right-maximal match: if this is not
the case the suffix tree of Tnodes#Q (# ̸∈ Σ) does not have an internal node corresponding to
aQ′, as all suffixes starting with aQ′ continue with the same symbol, otherwise (the extension
contains a right-maximal match) the suffix tree has an internal node corresponding to aQ′.
This exploration is bounded by the number of implicit Weiner links in the suffix tree of
Tnodes#Q, which is linear in the input length [4, Observation 1]. ◀

3.2 MEMs Spanning Exactly L Nodes
Given a threshold κ, we want to find all κ-MEMs ([x..y], (i, P, j)) spanning exactly L nodes
in G, that is, |P | = L. Note that the MEMs obtained for L = 1 are a subset of the
ones obtained in Lemma 3: for a node MEM ([x..y], (i, v, j)) it might hold that i = 1 and
{Q[x − 1]} = lext(1, v, j), or that j = ∥v∥ and {Q[y + 1]} = rext(i, v, j).
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As per Definition 2, MEMs cannot be recognized without looking at the context of the
paths in G (sets lext and rext). With this in mind, we consider the text

TL := 0 ·
∏

(u1,...,uL)∈PL
G

(
left(u1) · ℓ(u1) · · · ℓ(uL) · right(uL) · 0

)
, (1)

where left(u) = c when lext(u) = {c} and otherwise left(u) = #, right(u) = d when
rext(u) = {d} and otherwise right(u) = #, 0 ̸= #, 0, # /∈ Σ, and

PL
G :=

{
P

∣∣∣∣ P path of G,
|P | = L

}
.

We have added the unique left- and right-extension symbols c and d to avoid reporting
exact matches that can potentially be extended to longer paths. When these extensions are
not unique (or empty), one can safely report a MEM, since there is a path diverting with a
symbol different from that of the pattern (or the path cannot be extended further). With
these left- and right-extension symbols, it suffices to modify the MEM finding algorithm of
Section 3.1 to use some extra information regarding the starting position of each suffix inside
string the ℓ(P ), as explained next.

To avoid reporting MEMs spanning less than L nodes (only if L > 1), we use an array
D[1..|TL|] such that D[k] = ∞ if the k-th suffix TL[s..|TL|] of TL in the lexicographic order
is such that TL[s + 1..|TL|] is not starting inside node u1 of a path P = u1 · · · uL, otherwise
D[k] = |ℓ(P )| − ℓ(uL) − i + 2, where suffix TL[s + 1..|TL|] starts at position i inside u1. That
is, when D[k] ̸= ∞, it tells the distance of the k-th suffix of TL in the lexicographic order
to the start of the last node of the corresponding path. With the help of Lemma 1 on D,
we can then adapt the MEM finding algorithm to output suffixes corresponding to MEMs
spanning exactly L nodes as follows.

▶ Lemma 4. Let alphabet Σ be of constant size. Given a labeled graph G = (V, E, ℓ), a
pattern Q ∈ Σm, a threshold κ ≥ 1, and an integer L ≥ 1, we can compute an encoding of all
MEMs of length at least κ and spanning exactly L nodes of G in time O(m + |TL| + Mκ,L).
Here, TL is defined as in Equation (1) and Mκ,L is the number of output MEMs.

Proof. We build the bidirectional BWT indexes for TL$ and Q$, the suffix array of TL$,
and preprocess D[1..|TL|] as in Lemma 1 in time O(|TL| + |Q|). We also preprocess, in linear
time, a bitvector B marking the locations of 0s of TL so that we can map in constant time a
position i in TL to the r-th path appended to TL for r = rank(B, i).

The only modification of [4, Theorem 7.10] required to only output MEMs spanning
exactly L nodes (and only if L > 1) is to change its very last step when considering a MEM
candidate Q′ with |Q′| ≥ κ. Namely, the cross-product routine loops over all characters
a, b, c, d ∈ Σ ∪ {#} with a ̸= c and b ≠ d, such that aQ′b is a substring of Q and cQ′d is a
substring of TL. It then computes (in constant time) the intervals [iaQ′b..jaQ′b], [i′

aQ′b..j′
aQ′b],

[icQ′d..jcQ′d], and [i′
cQ′d..j′

cQ′d], where the first two are the intervals in the bidirectional BWT
on TL corresponding to aQ′b and the latter two are the intervals in the bidirectional BWT
on Q corresponding to cQ′d. After that, it outputs a triple (k, k′, |Q′|) representing each
MEM, where k ∈ [iaQ′b..jaQ′b] and k′ ∈ [icQ′d..jcQ′d]. It suffices to modify the first iteration
using Lemma 1 to loop only over k ∈ [iaQ′b..jaQ′b] such that D[k] ≤ |Q′| + 1. Our claims are
that the running time stays linear in the input and output size on constant-size alphabet,
and that only MEMs spanning exactly L nodes are output. The latter claim follows directly
on how array D is defined and used with Lemma 1. For the former claim, the cross-product
part of the original algorithm is linear in the output size (also on non-constant-size alphabet)
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10:8 Finding Maximal Exact Matches in Graphs

since for each combination of left- and right-extension considered, the work can be charged to
the output. In our case, due to the use of Lemma 1, some combinations may lead to empty
outputs introducing an alphabet-factor (constant) multiplier on the input length. ◀

▶ Remark 5. Note that the algorithm in Lemma 4 works in time O(m + n · L · dL−1 + Mκ,L),
where n =

∑
v∈V ℓ(v) is the total label length of G and d is the maximum in- or out-degree

of a node. Indeed, TL corresponds to the concatenation of length-L paths of G: the number
of paths containing label ℓ(v) (for a node v) is at most L · dL−1.

4 MEMs in Elastic Founder Graphs

The approach of Section 3.2 is exponential on L, so we can only use it for constant L if
aiming for a poly-time MEM finding routine. For general labeled graphs, this may be the
best achievable, as we cannot find MEMs with a threshold κ between a pattern Q and G in
truly sub-quadratic time unless the Orthogonal Vectors Hypothesis (OVH) is false [15], and
exponential-time indexing is required for truly sub-quadratic MEM finding with threshold κ

unless OVH is false [14]: finding MEMs between Q and G finds matches of Q in G, and if
κ = |Q| MEM finding is exactly equivalent to matching a pattern in a labeled graph. To
have a poly-time indexing of G that can solve MEM finding in truly sub-quadratic time,
it is necessary to constrain the family of graphs in question. Therefore, we now focus on
indexable Elastic Founder Graphs (indexable EFGs), that are a subclass of labeled directed
acyclic graphs (labeled DAGs) having the feature that they support poly-time indexing for
linear-time queries [16]. We will show that the same techniques used to query if Q appears
in indexable EFG G can be extended to solve MEM finding on G with arbitrary length
threshold κ.

▶ Definition 6 (Elastic Founder Graph [16]). Consider a block graph G = (V, E, ℓ), where
ℓ : V → Σ+, V is partitioned into k blocks V1, . . . , Vk, and edges (u, v) ∈ E are such that
u ∈ Vi, v ∈ Vi+1 for some i ∈ [1..k − 1]. We say that a block graph is an indexable Elastic
Founder Graph (indexable EFG) if the semi-repeat-free property holds: for each v ∈ Vi, ℓ(v)
occurs in G only as prefix of paths starting with some w ∈ Vi.

Note that the semi-repeat-free property allows a node label to be prefix of other node
labels in the same block, whereas it forbids them to appear as a proper suffix of other node
labels nor anywhere else in the graph. Indexable EFGs can be obtained from a set of aligned
sequences, in a way such that the resulting indexable EFG spells the sequences but also
their recombination: for a gapless alignment, we can build in time linear to the size of the
alignment an optimal indexable EFG with minimum height H of a block, where the height of
block Vi is defined as |Vi|, solution generalized to the case with gaps by using an alternative
height definition [40].

Let us now consider MEM finding with threshold κ on an indexable EFG G = (V, E, ℓ).
We can use the general κ-MEM finding algorithm of Lemma 4 between Q and G spanning
exactly L nodes, with L = 1, 2, 3; then, we find κ-MEMs that span longer paths with a
solution specific to indexable EFGs. To find all MEMs between Q and G spanning more
than three nodes, we index

T ′
3 := 0 ·

∏
(u,v),(v,w)∈E

(
ℓ(u)ℓ(v)ℓ(w)0

)
where 0 /∈ Σ.

Equi et al. [16] showed that the suffix tree of T ′
3 can be used to query string Q in G, taking

time O(|Q|). We now extend this algorithm to find MEMs between Q and indexable EFG G

with threshold κ and spanning more than 3 nodes. For simplicity, we describe a solution for
case κ = 1 and later argue case κ > 1.
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First, we augment the suffix tree of T ′
3:

we mark all implicit or explicit nodes p such that the corresponding root-to-p path spells
ℓ(u)ℓ(v) for some (u, v) ∈ E, so that we can query in constant time if p is such a node;
we compute pointers from each node p to an arbitrarily chosen leaf in the subtree rooted
at p;
for each node v ∈ V of the indexable EFG we build trie Tv for the set of strings
{ℓ(u) : (u, v) ∈ E};
for each leaf, we store the corresponding path uvw and the starting position of the suffix
inside ℓ(u)ℓ(v)ℓ(w).

▶ Observation 7 ([16, Lemma 9]). Given an indexable EFG G = (V, E, ℓ), for each (v, w) ∈ E

string ℓ(v)ℓ(w) occurs only as prefix of paths starting with v. Thus, all occurrences of
some string S in G spanning at least four nodes can be decomposed as αℓ(u2) · · · ℓ(uL−1)β
such that: (i) u2 · · · uL−1 is a path in G and u2, . . . , uL−1 are unequivocally identified;
(ii) α = ℓ(u1)[i..∥u1∥] with 1 ≤ i ≤ ∥u1∥ for some (u1, u2) ∈ E; and (iii) β = ℓ(uL)
for some (uL−1, uL) ∈ E or β = ℓ(uL)(ℓ(uL+1)[1..j]) with 1 ≤ j < ∥uL+1∥ for some
(uL−1, uL), (uL, uL+1) ∈ E. Note that α, β ̸= ε and β has as prefix a full node label, whereas
α might spell any suffix of a node label.

The strategy to compute long MEMs between Q and G is to first consider, with a
left-to-right scan of Q, all MEMs ([x..y], (i, P, j)) such that:

(i) |P | > 3;
(ii) they satisfy conditions LeftMax and RightMax of Definition 2; and
(iii) are maximal with respect to substring Q[x..y], that is, there is no other MEM

([x′..y′], (i′, P ′, j′)) with x ≤ x′ ≤ y′ ≤ y.
Next, we will describe how to modify our solution to compute also all the other MEMs
spanning more than 3 nodes. Due to Observation 7, if αℓ(u2) · · · ℓ(uL−1)β is a decomposition
of Q[x..y], all MEMs ([x′..y′], (i′, P ′, j′)) with x ≤ x′ < y′ ≤ y spanning more than 3 nodes
are constrained to involve some ui with i ∈ [2..L − 1].

Consider the following modification of [16, Theorem 8] that matches Q[1..y] in G. Let p

be the suffix tree node of T ′
3 reached from the root by spelling Q[1..y] in the suffix tree until

we cannot continue with Q[y + 1]:
1. If we cannot continue with 0, Q[1..y] is part of some MEM between Q and G spanning at

most 3 nodes, so we ignore it, take the suffix link of p and consider matching Q[2..y] in G.
2. If we can continue with 0 and the occurrences of Q[1..y] span at most two nodes in

G, then we also take the suffix link of p and consider matching Q[2..y]. Thanks to the
semi-repeat-free property, we can check this condition by retrieving any leaf in the subtree
rooted at node p0, reached by reading 0 from p.

3. In the remaining case, Q[1..y] = αℓ(u2)ℓ(u3) for exactly one u2 ∈ V , with (u2, u3) ∈ E,
due to Observation 7, and we follow the suffix link walk from p until we find the marked
node q corresponding to ℓ(u2)ℓ(u3): from q we try to match Q[y + 1..] until failure,
matching Q[y + 1..y′] and reaching node r.

By repeating the suffix walk and tentative match of case 3. until we cannot read 0 from
the failing node, we find the maximal prefix Q[1..y] occurring in G and its decomposition
αℓ(u2) · · · ℓ(uL−1)β as per Observation 7. Indeed, we can find unique nodes u2, . . . , uL−1 by
analyzing the (arbitrarily chosen) leaf of the subtree rooted at q in every iteration of case 3.
Moreover, we can retrieve:

set U1 of pairs (i, u) such that (u, u2) ∈ E and α = ℓ(u)[i..∥u∥], by iterating over the
leaves of p;
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10:10 Finding Maximal Exact Matches in Graphs

unique node uL such that (uL−1, uL) ∈ E and ℓ(uL) = β, if such uL exists; and
set EL of triplets (u, u′, j) such that (uL−1, u), (u, u′) ∈ E and ℓ(u)ℓ(u′)[1..j] = β.

Then ([1..y], (i, u1 ·u2 · · · uL−1 ·u·uL+1, j)) is a MEM between Q and G for all (i, u1) ∈ U1 and
(u, uL+1, j) ∈ EL, and also ([1..y], (i, u1 ·u2 · · · uL−1 ·uL, ∥uL∥)) is a MEM for all (i, u1) ∈ U1,
if uL exists: these MEMs satisfy conditions (i), (ii), and (iii), and U1, u2 · · · uL−1, uL, and
EL form a compact representation of all MEMs spelling Q[1..y].

So far the procedure computes all MEMs spanning more than 3 nodes, satisfying LeftMax
and RightMax, and spelling maximal Q[1..y]. We can extend it to find all MEMs satisfying
the first two constraints and spelling any substring Q[x..y], with Q[x..y] maximal. Let x̂ be
the index for which we have computed MEMs spelling Q[x̂..y] (x̂ = 1 in the first iteration).
If cases 1. or 2. hold, we can start to search MEMs spelling Q[x̂ + 1..] in amortized linear
time, since we follow the suffix link of p. If case 3. holds, we can restart the algorithm
looking for MEMs spelling Q[x̂′..y], where x̂′ = x̂ + |αℓ(u2) · · · ℓ(uL−2)|. We are not missing
any MEM satisfying conditions (i), (ii), and (iii): due to the semi-repeat-free property,
any MEM ([x..y], (i′, P ′, j′)) with x̂ < x < x̂′ spanning more than 3 nodes shares substring
ℓ(uk)ℓ(uk+1) with the previously computed MEM, for some k ∈ [2..L − 3], and is such that
x̂′ < y since we assume (iii) to hold; the algorithm would have matched Q[x̂..y] with case 3.
in the previous iteration, leading to a contradiction. The time globally spent reading Q is
still O(|Q|), because each character of Q is considered at most twice.

Finally, we are ready to describe how to compute all remaining MEMs ([x..y], (i, P, j))
between Q and indexable EFG G spanning at least 4 nodes, that is, MEMs such that
condition (i) holds and at least one of (ii) and (iii) do not: it is easy to see that Q[x..y] must
be contained in the MEMs that we have already computed; also, since they span at least 4
nodes their matches must involve some of nodes u2, . . . , uL−1 of MEMs satisfying (i), (ii),
and (iii). Indeed, whenever case 3. holds and we decompose Q[x̂..y] as αℓ(u2) · · · ℓ(uL−1)β,
we can find set URT of pairs (v, j), with v ∈ V and 1 ≤ j ≤ ∥v∥, such that (v, j) ∈ URT iff
(i, P = u · u2 · · · ub−1 · v, j) is a match of Q[x̂..y′] in G, with (i, u) ∈ U1, |P | < L, y′ < y,
and Q[y′ + 1] /∈ rext(1, u, j) – verifying RightMax and describing a MEM where (iii) fails –
or |rext(1, u, j)| ≥ 2 – verifying the non-singleton condition of Definition 2 and describing
a MEM where (ii) fails. We can gather all the elements of URT during each descending
walk in the suffix tree of T ′

3, since they correspond to the leaves of subtrees of branching
nodes in the tentative match of Q[x̂..y]. Analogously, we can find set ULT of pairs (i, v),
with v ∈ V and 1 ≤ i ≤ ∥v∥, such that (i, v) ∈ ULT iff (i, v) = (1, ui) for 2 ≤ i ≤ L − 1 and
lext(ui) ≥ 2, or (i, P = v · ub · · · uL−1, ∥uL−1∥) is a match of Q[x..y − |β|] in G, with x > x̂

and Q[x − 1] /∈ lext(i, v, ∥v∥). We can compute ULT by analyzing the leaves of subtrees of
branching nodes in the walk in Tui spelling ℓ(ui), with 2 ≤ i ≤ L−1. Sets U1, u2 · · · uL−1, uL,
EL, ULT and URT are a compact representation of all MEMs spanning at least 4 nodes and
involving (any substring of) Q[x̂..y]: a cross-product-like algorithm that matches elements
of U1 or L with elements of uL, EL, or URT, joined by the relevant part of u2 · · · uL−1, can
explicitly output the MEMs spanning more than 3 nodes in linear time with respect to the
size of the output, by exploiting the fact that ULT and URT are computed and ordered block
by block.

▶ Theorem 8. Let alphabet Σ be of constant size, and let G = (V, E, ℓ) be an indexable
Elastic Founder Graph of height H, that is, the maximum number of nodes in a block of
G is H. An encoding of MEMs between query string Q ∈ Σm and G with arbitrary length
threshold κ can be reported in time O(nH2 + m + Mκ), where n =

∑
v∈V ∥v∥ and Mκ is the

number of MEMs of interest.

Proof. We can apply the algorithm of Lemma 4 to find κ-MEMs spanning L nodes, with
L = 1, 2, 3, taking time O(|Q| + |T1| + |T2| + |T3| + Mκ,1 + Mκ,2 + Mκ,3).
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Let Mκ,4+ be the number of MEMs satisfying threshold κ and spanning at least 4 nodes in
G. The suffix tree of T ′

3 can be constructed in time O(|T ′
3|) and the described modification of

a descending suffix walk on Q takes constant amortized time per step, assuming constant-size
alphabet. The time spent gathering U1, u2 · · · uL−1, EL, ULT, and URT, forming an encoding
of the MEMs involving Q[x̂..y], can be charged to Mκ,4+ because each element of U1, EL,
ULT, and URT corresponds to one or more MEMs, that could be retrieved in an explicit form
with a cross-product-like procedure. Indeed: for U1 we can retrieve all leaves of the subtree
rooted at p of the suffix tree of T ′

3; for EL and URT, we can do the same for node r reached
by the last tentative match of Q[y + 1..], and for branching nodes reached during every
tentative match; for ULT, using a compact trie and blind search [18] in the representation of
each Tu allows to compare only the branching symbols. Finally, it is easy to see that in case
3., after we decomposed |Q[x̂..y]| as αℓ(u2) · · · ℓ(uL−1)β as in Observation 7, we know the
length of strings α, ℓ(u2), . . . , ℓ(uL−1), and β, so we can postpone the computation of sets
U1, EL, ULT, and URT and avoid computing MEMs of length smaller than κ. Thus, finding
an encoding of all MEMs between Q and G with threshold κ and spanning more than 3
nodes takes O(|Q| + |T ′

3| + Mκ,4+) time.
The stated time complexity is reached due to the fact that |T3| dominates |T ′

3|, |T2|, and
|T1|, and for indexable EFGs |T3| ∈ O(nH2), since every character of every node label ℓ(u)
gets repeated at most H2 times, which is an upper bound on the number of paths of length
3 containing u. ◀

▶ Corollary 9. The results of Lemmas 3 and 4 and Theorem 8 hold when query Q[1..m] is
replaced by a set of queries of total length m. The respective algorithms can be modified to
report MEMs between the graph and each query separately.

Proof. Consider a concatenation Q = Q1$Q2$ · · · Qd of d query sequences, where $ is a
unique symbol not occurring in the queries nor in the graph. No MEM can span over such
unique separator and hence the MEMs between graph G and concatenation Q are the same
as those between G and each Qi. It is thus sufficient to feed concatenation Q as input to the
algorithms and project each resulting MEM to the corresponding query sequence. ◀

▶ Corollary 10. The algorithms of Lemmas 3 and 4, Theorem 8, and Corollary 9 can be
modified to report only MEMs that occur in text T formed by concatenating the rows (ignoring
gaps and adding separator symbols) of the input MSA of the indexable EFG. This can be
done in additional O(|T | + r log r) time and O(r log n) bits of space, and with multiplicative
factor O(log log n) added to the running times of the respective algorithms, where r is the
number of equal-letter runs in the BWT of T .

Proof. Lemma 3 does not need any modification as the node labels are automatically
substrings of T . Same applies for the edge labels, but for longer paths we need to make
sure we do not create combinations not supported by T . This can be accomplished with the
help of the r-index: with the claimed time and space one can build the run-length encoded
BWT of T [35] and the associated data structures to form the counting version of the r-index
that supports backward step in O(log log n) time [20]. As we concatenate paths consisting
of L nodes for MEM finding in Lemma 4, we can first search them using the r-index, and
only include them if they occur in T . MEMs spanning more than 3 nodes in Theorem 8
and Corollary 9 can be searched afterwards with the r-index to filter out those MEMs not
occurring in T ; these MEMs cannot mutually overlap each other in Q by more than one full
node label, so the running time of the verification can be charged on the size of the elastic
founder graph. ◀
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5 Experiments

The benefit of Corollary 10 over the mere use of r-index for MEM finding [42] is that a MEM
can occur many times in a repetitive collection while the occurrences starting at the same
column of a MSA of the collection can be represented by a small number of paths in the
indexable Elastic Founder Graph.

To test this hypothesis, we implemented the MEM finding algorithm using the bidirectional
r-index [2]. The code is available at https://github.com/algbio/br-index-mems. The
implementation works both for MEM finding between two sequences and between a sequence
and a graph. In the case of a graph, the implementation covers the algorithms of Sections 3.1
and 3.2 up to paths of length 3 nodes. If the input graph is an indexable EFG and κ is at
most the length of the shortest string spelled by an edge, the implementation outputs all
κ-MEMs, yet some longer MEMs are not fully extended and/or may be reported in several
pieces.1 With these considerations, the implementation gives an upper bound on the number
of κ-MEMs in the case of graphs, but it provides the exact number of MEMs in the case of
two sequences as input.

We performed experiments with the same multiple sequence alignment (MSA) of covid19
strains as in [29]. We first filtered out strains whose alignments had a run of gaps of
length more than 100 bases.2 Then we extracted a sub-MSA of 100 random strains from
the remaining and extracted MSAs of the first 20, 40, 60, and 80 strains from this MSA
of 100 strains. For each such dataset, we built the bidirectional r-index of the sequences
(without gaps) and the indexable EFG of the MSA. The latter were constructed using the tool
https://github.com/algbio/founderblockgraphs with parameters --elastic --gfa.

We used κ = 12 in all experiments, as this was the length of the shortest string spelled
by an edge over all indexable EFGs. For the queries, we extracted 1000 substrings of length
100 from the first 20 strains. For each query, we selected two random positions and mutated
them with equal probability for A, C, G, or T. The queries were then concatenated into a
long sequence and the bidirectional r-index was built on it as described by Corollary 9. The
MEMs were computed between the queries and the respective text/graph index.

The number of MEMs for each index is reported in Figure 2 and the number of runs
in the two Burrows–Wheeler transforms of each index is reported in Figure 3. As can be
seen from the results, the number of MEMs is greatly reduced when indexing the graph
compared to indexing the collection of strains. In this setting, almost all graph MEMs have a
counterpart in the collection: we implemented also a filtering mode analogous to Corollary 10
so that only graph MEMs occurring in the original strains are reported. The number of path
MEMs (and thus total number of MEMs) reported dropped by 92, 97, 90, 91, and 91 for the
case of indexable EFG on 20, 40, 60, 80, and 100 strains, respectively. That is, less than
2% of the reported graph MEMs were recombinants of the input strains. However, since the
implementation outputs long MEMs in pieces, this percentage may be higher for full-length
graphs MEMs.

The number of runs (the major factor affecting the space used by the indexes) for the
bidirectional r-index of the collection and that of the concatenation of node labels are
comparable. For edges and especially for paths of length 3 nodes the number of runs is

1 In an earlier version of this paper, we mistakenly set κ as the minimum length string spelled by paths
spanning 3 nodes, but we later observed that this may lead the implementation to miss some κ-MEMs.

2 We used this filter to address a current limitation of the MSA segmentation algorithms for indexable
EFG, where a long gap at the beginning or end of an MSA row hurts the effectiveness of the method.

https://github.com/algbio/br-index-mems
https://github.com/algbio/founderblockgraphs
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Figure 2 Number of MEMs with different indexes and varying number of covid19 strains. Here
sequences refers to bidirectional r-index. For indexable EFG the results are shown for nodes, edges,
and paths of length 3 nodes (these also include longer MEMs counted multiple times). Line efg-total
is the total number of EFG MEMs. Note the logarithmic scale on the y-axis.
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Figure 3 Number of BWT runs with different indexes and varying number of covid19 strains.
Here sequences refers to the bidirectional r-index, labels efg-nodes, efg-edges, efg-paths refer to the
concatenation of node labels, paths of length 2 and paths of length 3, respectively. Label efg-total is
the sum of the previous three numbers of runs.
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significantly higher. Fortunately, the growth of these metrics when more strains are added is
limited. This is not surprising, as the stains are highly similar and thus the added information
content is limited and known to be correlated with the number of BWT runs [30].

Running times correlate with the index size comparison: with 100 strains, MEM finding
using the the bidirectional r-index took 20 seconds, node MEM finding on the indexable
EFG took 31 seconds, edge MEM finding 97 seconds, and path MEM finding 217 seconds.
The running times were measured on a server with Intel Xeon 2.9 Ghz processor and exclude
index construction, which took 1 second for the patterns, 11 seconds for the bidirectional
r-index of 100 strains, and 13 seconds for the additional indexes required by the corresponding
indexable EFG. The construction of the indexable EFG on 100 strains took 10 seconds.
To speed-up MEM finding, we also tested switching the bidirectional r-index to a wavelet
tree implementation of bidirectional BWT (https://https://github.com/jnalanko/BD_
BWT_index). On the same 100 strains indexable EFG, the total time for MEM finding was
96 seconds, including index construction, which means 3.7 speed-up over the bidirectional
r-index-based implementation.

6 Discussion

An alternative strategy to achieve the same goal as in our experiments is to encode the
graph as an aggregate over the collection, apply MEM finding on the r-index, and report
the distinct aggregate values on lexicographic MEM ranges to identify MEM locations in
the graph [21]. This approach is not comparable to ours directly, as the compressibility
of the aggregates depends on the graph properties, and the indexable Elastic Founder
Graph’s size has not been analyzed with respect to r. Also, the two approaches use different
MEM definitions. Our Definition 2 is symmetric and local, while the version used in earlier
work with the r-index [42, 21] is asymmetric and semi-global: they define a MEM as a
substring of a query that occurs in the text, but its query extensions do not appear in the
text. For the purpose of chaining, only the symmetric definition yields connections to the
Longest Common Subsequence problem [38]. For completeness, our implementation (https:
//github.com/algbio/br-index-mems) also supports this asymmetric MEM definition; our
algorithms can be simplified for this case.

We did not implement the general suffix tree-based approach to handle arbitrary long
MEMs. From the experiments, we can see that already the case of paths of length 3 nodes
handled by the generic MEM finding routine causes some scalability issues, and the suffix
tree-based approach uses even more space. In our recent work [39], we have solved pattern
search in indexable EFGs using only edges, and our aim is to extend that approach to work
with MEMs, so that the whole mechanism could work on top of a plain bidirectional r-index.
Some of our results assume a constant-size alphabet. This assumption can be relaxed with
additional data structures, but also a more careful amortized analysis may lead to better
bounds.
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Abstract
The graph traversal edit distance (GTED), introduced by Ebrahimpour Boroojeny et al. (2018), is an
elegant distance measure defined as the minimum edit distance between strings reconstructed from
Eulerian trails in two edge-labeled graphs. GTED can be used to infer evolutionary relationships
between species by comparing de Bruijn graphs directly without the computationally costly and error-
prone process of genome assembly. Ebrahimpour Boroojeny et al. (2018) propose two ILP formulations
for GTED and claim that GTED is polynomially solvable because the linear programming relaxation
of one of the ILPs will always yield optimal integer solutions. The claim that GTED is polynomially
solvable is contradictory to the complexity of existing string-to-graph matching problems.

We resolve this conflict in complexity results by proving that GTED is NP-complete and showing
that the ILPs proposed by Ebrahimpour Boroojeny et al. do not solve GTED but instead solve
for a lower bound of GTED and are not solvable in polynomial time. In addition, we provide the
first two, correct ILP formulations of GTED and evaluate their empirical efficiency. These results
provide solid algorithmic foundations for comparing genome graphs and point to the direction of
heuristics that estimate GTED efficiently.
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1 Introduction

Graph traversal edit distance (GTED) [6] is an elegant measure of the similarity between
the strings represented by edge-labeled Eulerian graphs. For example, given two de Bruijn
assembly graphs [19], computing GTED between them measures the similarity between
two genomes without the computationally intensive and possibly error-prone process of
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assembling the genomes. Using an estimation of GTED between assembly graphs of Hepatitis
B viruses, Ebrahimpour Boroojeny et al. [6] group the viruses into clusters consistent with
their taxonomy. This can be extended to inferring phylogeny relationships in metagenomic
communities or comparing heterogeneous disease samples such as cancer. There are several
other methods to compute a similarity measure between strings encoded by two assembly
graphs [20, 15, 13, 8]. GTED has the advantage that it does not require prior knowledge on
the type of the genome graph or the complete sequence of the input genomes. The input to
the GTED problem is two unidirectional, edge-labeled Eulerian graphs, which are defined as:

▶ Definition 1 (Unidirectional, edge-labeled Eulerian Graph). A unidirectional, edge-labeled
Eulerian graph is a connected directed graph G = (V, E, ℓ, Σ), with node set V , edge multi-set
E, constant-size alphabet Σ, and single-character edge labels ℓ : E → Σ, such that G contains
an Eulerian trail that traverses every edge e ∈ E exactly once. The unidirectional condition
means that all edges between the same pair of nodes are in the same direction.

Such graphs arise in genome assembly problems (e.g. the de Bruijn subgraphs). Computing
GTED is the problem of computing the minimum edit distance between the two most similar
strings represented by Eulerian trails in each input graph. A trail in a graph is a walk that
contains distinct edges and may contain repeated nodes.

▶ Problem 1 (Graph Traversal Edit Distance (GTED) [6]). Given two unidirectional, edge-
labeled Eulerian graphs G1 and G2, compute

GTED(G1, G2) ≜ min
t1∈trails(G1)
t2∈trails(G2)

edit(str(t1), str(t2)). (1)

Here, trails(G) is the collection of all Eulerian trails in graph G, str(t) is a string constructed
by concatenating labels on the Eulerian trail t = (e0, e1, . . . , en), and edit(s1, s2) is the edit
distance between strings s1 and s2.

Ebrahimpour Boroojeny et al. [6] claim that GTED is polynomially solvable by proposing
an integer linear programming (ILP) formulation of GTED and arguing that the constraints of
the ILP make it polynomially solvable. This result, however, conflicts with several complexity
results on string-to-graph matching problems. Kupferman and Vardi [10] show that it is
NP-complete to determine if a string exactly matches an Eulerian tour in an edge-labeled
Eulerian graph. Additionally, Jain et al. [9] show that it is NP-complete to compute an
edit distance between a string and strings represented by a labeled graph if edit operations
are allowed on the graph. On the other hand, polynomial-time algorithms exist to solve
string-to-string alignment [17] and string-to-graph alignment [9] when edit operations on
graphs are not allowed.

We resolve the conflict among the results on complexity of graph comparisons by revisiting
the complexity of and the proposed solutions to GTED. We prove that computing GTED is
NP-complete by reducing from the Hamiltonian Path problem, reaching an agreement
with other related results on complexity. Further, we point out with a counter-example that
the optimal solution of the ILP formulation proposed by Ebrahimpour Boroojeny et al. [6]
does not solve GTED.

We give two ILP formulations for GTED. The first ILP has an exponential number of
constraints and can be solved by subtour elimination iteratively [3, 5]. The second ILP has a
polynomial number of constraints and shares a similar high-level idea of the global ordering
approach [5] in solving the Traveling Salesman problem [14].
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In Qiu and Kingsford [21], Flow-GTED (FGTED), a variant of GTED is proposed to
compare two sets of strings (instead of two strings) encoded by graphs. FGTED is equal to
the edit distance between the most similar sets of strings spelled by the decomposition of
flows between a pair of predetermined source and sink nodes. The similarity between the
sets of strings reconstructed from the flow decomposition is measured by the Earth Mover’s
Edit Distance [23, 21]. FGTED is used to compare pan-genomes, where both the frequency
and content of strings are essential to represent the population of organisms. Qiu and
Kingsford [21] reduce FGTED to GTED, and via the claimed polynomial-time algorithm
of GTED, argued that FGTED is also polynomially solvable. We show that this claim is
false by proving that FGTED is also NP-complete.

While the optimal solution to ILP proposed in Ebrahimpour Boroojeny et al. [6] does
not solve GTED, it does compute a lower bound to GTED that we call Closed-trail Cover
Traversal Edit Distance (CCTED). We characterize the cases when GTED is equal to
CCTED. In addition, we point out that solving this ILP formulation finds a minimum-cost
matching between closed-trail decompositions in the input graphs, which may be used to
compute the similarity between repeats in the genomes. Ebrahimpour Boroojeny et al. [6]
claim their proposed ILP formulation is solvable in polynomial time by arguing that the
constraint matrix of the linear relaxation of the ILP is always totally unimodular. We show
that this claim is false by proving that the constraint matrix is not always totally unimodular
and showing that there exists optimal fractional solutions to its linear relaxation.

We evaluate the efficiency of solving ILP formulations for GTED and CCTED on
simulated genomic strings and show that it is impractical to compute GTED on larger
genomes.

In summary, we revisit two important problems in genome graph comparisons: Graph
Traversal Edit Distance (GTED) and its variant FGTED. We show that both GTED and
FGTED are NP-complete, and provide the first correct ILP formulations for GTED. We also
show that the ILP formulation proposed by Ebrahimpour Boroojeny et al. [6], i.e. CCTED,
is a lower bound to GTED. We evaluate the efficiency of the ILPs for GTED and CCTED
on genomic sequences. These results provide solid algorithmic foundations for continued
algorithmic innovation on the task of comparing genome graphs and point to the direction of
heuristics that estimate GTED efficiently.

2 GTED and FGTED are NP-complete

2.1 Conflicting results on computational complexity of GTED and
string-to-graph matching

The natural decision versions of all of the computational problems described above and below
are clearly in NP. Under the assumption that P ̸= NP, the results on the computational
complexity of GTED and string-to-graph matching claimed in Ebrahimpour Boroojeny et
al. [6] and Kupferman and Vardi [10], respectively, cannot be both true.

Kupferman and Vardi [10] show that the problem of determining whether a given string
can be spelled by concatenating edge labels in an Eulerian trail in an input graph is NP-
complete. We call this problem Eulerian Trail Equaling Word. We show in Theorem 2
that we can reduce ETEW to GTED, and therefore if GTED is polynomially solvable,
then ETEW is polynomially solvable. The complete proof is in Appendix A.1.

▶ Problem 2 (Eulerian Trail Equaling Word [10]). Given a string s ∈ Σ∗, an edge-labaled
Eulerian graph G, find an Eulerian trail t of G such that str(t) = s.

WABI 2023
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▶ Theorem 2. If GTED ∈ P then ETEW ∈ P.

Proof sketch. We first convert an input instance ⟨s, G⟩ of ETEW into an input instance
⟨G1, G2⟩ of GTED by (a) creating graph G1 that only contains edges that reconstruct string s

and (b) modifying G into G2 by extending the anti-parallel edges so that G2 is unidirectional.
We show that if GTED(G1, G2) = 0, there must be an Eulerian trail in G that spells s, and
if GTED(G1, G2) > 0, G must not contain an Eulerian trail that spells s. ◀

Hence, an (assumed) polynomial-time algorithm for GTED solves ETEW in polynomial
time. This contradicts Theorem 6 of Kupferman and Vardi [10] of the NP-completeness of
ETEW (under P ̸= NP).

2.2 Reduction from Hamiltonian Path to GTED and FGTED
We resolve the contradiction by showing that GTED is NP-complete. The details of the
proof are in Appendix A.2.

▶ Theorem 3. GTED is NP-complete.

Proof sketch. We reduce from the Hamiltonian Path problem, which asks whether a
directed, simple graph G contains a path that visits every vertex exactly once. Here, simple
means no self-loops or parallel edges.

Let ⟨G = (V, E)⟩ be an instance of Hamiltonian Path, with n = |V | vertices. We first
create the Eulerian closure of G, which is defined as G′ = (V ′, E′) where

V ′ = {vin, vout : v ∈ V } ∪ {w}. (2)

Here, each vertex in V is split into vin and vout, and w is a newly added vertex. E′ is the
union of the following sets of edges and their labels:

E1 = {(vin, vout) : v ∈ V }, labeled a,
E2 = {(uout, vin) : (u, v) ∈ E}, labeled b,
E3 = {(vout, vin) : v ∈ V }, labeled c,
E4 = {(vin, uout) : (u, v) ∈ E}, labeled c,
E5 = {(uin, w) : u ∈ V }, labeled c,
E6 = {(w, uin) : u ∈ V }, labeled b.

G′ is an Eulerian graph by construction but contains anti-parallel edges. We further create
G′′ from G′ by adding dummy nodes so that each pair of antiparallel edges is split into two
parallel, length-2 paths with labels x#, where x is the original label.

We also create a graph C that has the same number of edges as G′′ and spells out a
string

q = a#(b#a#)n−1(c#)2n−1(c#b#)|E|+1. (3)

We then argue that G has a Hamiltonian path if and only if G′′ spells out the string q,
which uses the same line of arguments and graph traversals as in Kupferman and Vardi [10].
We then show that GTED(G′′, C) = 0 if and only if G′′ spells q. ◀

Following a similar argument, we show that FGTED is also NP-complete, and its proof is in
Appendix A.3.

▶ Theorem 4. FGTED is NP-complete.
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Figure 1 (a) Examples of two edge-labeled Eulerian graphs G1 (top) and G2 (bottom). (b) The
alignment graph A(G1, G2). The cycle with red edges is the path corresponding to GTED(G1, G2).
Red solid edges are matches with cost 0 and red dashed-line edge is mismatch with cost 1.

3 Revisiting the correctness of the proposed ILP solutions to GTED

We revisit two proposed ILP solutions to GTED by Ebrahimpour Boroojeny et al. [6] and
show that the optimal solution to these ILP is not always equal to GTED.

3.1 Alignment graph
The previously proposed ILP formulations for GTED are based on the alignment graph
constructed from input graphs. The high-level concept of an alignment graph is similar to
the dynamic programming matrix for the string-to-string alignment problem [17].

▶ Definition 5 (Alignment graph). Let G1, G2 be two unidirectional, edge-labeled Eulerian
graphs. The alignment graph A(G1, G2) = (V, E, δ) is a directed graph that has vertex set
V = V1 × V2 and edge multi-set E that equals the union of the following:
Vertical edges [(u1, u2), (v1, u2)] for (u1, v1) ∈ E1 and u2 ∈ V2,
Horizontal edges [(u1, u2), (u1, v2)] for u1 ∈ V1 and (u2, v2) ∈ E2,
Diagonal edges [(u1, u2), (v1, v2)] for (u1, v1) ∈ E1 and (u2, v2) ∈ E2.
Each edge is associated with a cost by the cost function δ : E → R.

Each diagonal edge e = [(u1, u2), (v1, v2)] in an alignment graph can be projected to
(u1, v1) and (u2, v2) in G1 and G2, respectively. Similarly, each vertical edge can be projected
to one edge in G1, and each horizontal edge can be projected to one edge in G2.

We define the edge projection function πi that projects an edge from the alignment graph
to an edge in the input graph Gi. If the alignment edge is a vertical or horizontal edge, it is
projected to one edge in only one input graph. We also define the path projection function Πi

that projects a trail in the alignment graph to a trail in the input graph Gi. For example, let
a trail in the alignment graph be p = (e1, e2, . . . , em), and Πi(p) = (πi(e1), πi(e2), . . . , πi(em))
is a trail in Gi.

An example of an alignment graph is shown in Figure 1(b). The horizontal edges correspond
to gaps in strings represented by G1, vertical edges correspond to gaps in strings represented
by G2, and diagonal edges correspond to the matching between edge labels from the two
graphs. In the rest of this paper, we assume that the costs for horizontal and vertical
edges are 1, and the costs for the diagonal edges are 1 if the diagonal edge represents a
mismatch and 0 if it is a match. The cost function δ can be defined to capture the cost of
matching between edge labels or inserting gaps. This definition of alignment graph is also a
generalization of the alignment graph used in string-to-graph alignment [9].

WABI 2023
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3.2 The first previously proposed ILP for GTED
Lemma 1 in Ebrahimpour Boroojeny et al. [6] provides a model for computing GTED by
finding the minimum-cost trail in the alignment graph. We reiterate it here for completeness.

▶ Lemma 6 ([6]). For any two edge-labeled Eulerian graphs G1 and G2,

GTED(G1, G2) = minimizec δ(c)
subject to c is a trail in A(G1, G2),

Πi(c) is an Eulerian trail in Gi for i = 1, 2,

(4)

where δ(c) is the total edge cost of c, and Πi(c) is the projection from c to Gi.

An example of such a minimum-cost trail is shown in Figure 1(b). Ebrahimpour Boroojeny
et al. [6] provide the following ILP formulation and claim that it is a direct translation of
Lemma 6:

minimize
x∈N|E|

∑
e∈E

xeδ(e) (5)

subject to Ax = 0 (6)∑
e∈E

xeIi(e, f) = 1 for i = 1, 2 and for all f ∈ Ei, (7)

where

Aue =


−1 if e = (u, v) ∈ E for some vertex v ∈ V

1 if e = (v, u) ∈ E for some u ∈ V

0 otherwise.

(8)

Here, E is the edge set of A(G1, G2). A is the negative incidence matrix of size |V |× |E|, and
Ii(e, f) is an indicator function that is 1 if edge e in E projects to edge f in the input graph
Gi (and 0 otherwise). We define the domain of each xe to include all non-negative integers.
However, due to constraints (7), the values of xe are limited to either 0 or 1. We describe
this ILP formulation with the assumption that both input graphs have closed Eulerian trails,
which means that each node has equal numbers of incoming and outgoing edges. We discuss
the cases when input graphs contain open Eulerian trails in Section 4.

The ILP in (5)–(8) allows the solutions to select disjoint cycles in the alignment graph,
and the projection of edges in these disjoint cycles need not correspond to a single string
represented by either of the input graphs. We show that the ILP in (5)–(8) does not solve
GTED by giving an example where the objective value of the optimal solution to the ILP
in (5)–(8) is not equal to GTED.

Construct two input graphs as shown in Figure 2(a). Specifically, G1 spells circular
permutations of TTTGAA and G2 spells circular permutations of TTTAGA. It is clear that
GTED(G1, G2) = 2 under Levenshtein edit distance. On the other hand, as shown in
Figure 2(a), an optimal solution in A(G1, G2) contains two disjoint cycles with nonzero xe

values that have a total edge cost equal to 0. This solution is a feasible solution to the ILP
in (5)–(8). It is also an optimal solution because the objective value is zero, which is the
lower bound on the ILP in (5)–(8). This optimal objective value, however, is smaller than
GTED(G1, G2). Therefore, the ILP in (5)–(8) does not solve GTED since it allows the
solution to be a set of disjoint components.
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Figure 2 (a) The subgraph in the alignment graph induced by an optimal solution to the ILP
in (5)–(8) and the ILP in (11)–(12) with input graphs on the left and top. The red and blue edges
in the alignment graph are edges matching labels in red and blue font, respectively, and are part of
the optimal solution to the ILP in (5)–(8). The cost of the red and blue edges are zero. (b) The
subgraph induced by xinit with s1 = u1 and s2 = v1 according to the ILP in (11)–(12). The rest of
the edges in the alignment graph are omitted for simplicity.

Figure 3 (a) A graph that contains an unoriented 2-simplex with three unoriented 1-simplices.
(b), (c) The same graph with two different ways of orienting the simplices and the corresponding
boundary matrices.

3.3 The second previously proposed ILP formulation of GTED

We describe the second proposed ILP formulation of GTED by Ebrahimpour Boroojeny
et al. [6]. Following Ebrahimpour Boroojeny et al. [6], we use simplices, a notion from
geometry, to generalize the notion of an edge to higher dimensions. A k-simplex is a k-
dimensional polytope which is the convex hull of its k + 1 vertices. For example, a 1-simplex
is an undirected edge, and a 2-simplex is a triangle. We use the orientation of a simplex,
which is given by the ordering of the vertex set of a simplex up to an even permutation, to
generalize the notion of the edge direction [16, p. 26]. We use square brackets [·] to denote
an oriented simplex. For example, [v0, v1] denotes a 1-simplex with orientation v0 → v1,
which is a directed edge from v0 to v1, and [v0, v1, v2] denotes a 2-simplex with orientation
corresponding to the vertex ordering v0 → v1 → v2 → v0. Each k-simplex has two possible
unique orientations, and we use the signed coefficient to connect their forms together, e.g.
[v0, v1] = −[v1, v0].

For each pair of graphs G1 and G2 and their alignment graph A(G1, G2), we define an
oriented 2-simplex set T (G1, G2) which is the union of:

[(u1, u2), (v1, u2), (v1, v2)] for all (u1, v1) ∈ E1 and (u2, v2) ∈ E2, or

[(u1, u2), (u1, v2), (v1, v2)] for all (u1, v1) ∈ E1 and (u2, v2) ∈ E2,
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We use the boundary operator [16, p. 28], denoted by ∂, to map an oriented k-simplex to
a sum of oriented (k − 1)-simplices with signed coefficients.

∂[v0, v1, . . . , vk] =
p∑

i=0
(−1)i[v0, . . . , v̂i, . . . , vk], (9)

where v̂i denotes the vertex vi is to be deleted. Intuitively, the boundary operator maps the
oriented k-simplex to a sum of oriented (k − 1)-simplices such that their vertices are in the
k-simplex and their orientations are consistent with the orientation of the k-simplex. For
example, when k = 2, we have:

∂[v0, v1, v2] = [v1, v2]− [v0, v2] + [v0, v1] = [v1, v2] + [v2, v0] + [v0, v1]. (10)

We reiterate the second ILP formulation proposed in Ebrahimpour Boroojeny et al. [6]. Given
an alignment graph A(G1, G2) = (V, E, δ) and the oriented 2-simplex set T (G1, G2),

minimize
x∈N|E|,y∈Z|T (G1,G2)|

∑
e∈E

xeδ(e)

subject to x = xinit + [∂]y
(11)

Entries in x and y correspond to 1-simplices and 2-simplices in E and T (G1, G2), respectively.
[∂] is a |E| × |T (G1, G2)| boundary matrix where each entry [∂]i,j is the signed coefficient of
the oriented 1-simplex (the directed edge) in E corresponding to xi in the boundary of the
oriented 2-simplex in T (G1, G2) corresponding to yj . The index i, j for each 1-simplex or
2-simplex is assigned based on an arbitrary ordering of the 1-simplices in E or the 2-simplices
in T (G1, G2). An example of the boundary matrix is shown in Figure 3. δ(e) is the cost of
each edge. xinit ∈ R|E| is a vector where each entry corresponds to a 1-simplex in E with
|E1|+ |E2| nonzero entries that represent one Eulerian trail in each input graph. xinit is a
feasible solution to the ILP. Let s1 be the source of the Eulerian trail in G1, and s2 be the
sink of the Eulerian trail in G2. Each entry in xinit is defined by

xinit
e =

{
1 if e = [(u1, s2), (v1, s2)] or e = [(s1, u2), (s1, v2)],
0 otherwise.

(12)

If the Eulerian trail is closed in Gi, si can be any vertex in Vi. An example of xinit is shown
in Figure 2(b).

We provide a complete proof in the extended version of this paper [22] that the ILP
in (5)–(8) is equivalent to the ILP in (11)–(12). Therefore, the example we provided in
Section 3.2 is also an optimal solution to the ILP in (11)–(12) but not a solution to GTED.
Thus, the ILP in (11)–(12) does not always solve GTED.

Ebrahimpour Boroojeny et al. [6] argue that the linear programming relaxation of the ILP
in (11)–(12) always yields integer optimal solutions by claiming that the constraint matrix of
the LP relaxation of the ILP in (11)–(12) is always totally unimodular, and therefore the ILP
in (11)–(12) can be solved in polynomial time. We provide a counterexample where the ILP
in (11)–(12) yields fractional optimal solutions with fractional variable values. Additionally,
we show that the constraint matrix of the LP relaxation of the ILP in (11)–(12) is not
totally unimodular given most non-trivial input graphs. The details of the proofs and the
counterexample are in the extended version of this paper [22] (Appendix F).
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Figure 4 Modified alignment graphs based on input types. (a) G1 has open Eulerian trails while
G2 has closed Eulerian trails. (b) Both G1 and G2 have closed Eulerian trails. (c) Both G1 and G2

have open Eulerian trails. Solid red and blue nodes are the source and sink nodes of the graphs with
open Eulerian trails. “s” and “t” are the added source and sink nodes. Colored edges are added
alignment edges directing from and to source and sink nodes, respectively.

4 New ILP solutions to GTED

To ensure that our new ILP formulations are applicable to input graphs regardless of whether
they contain an open or closed Eulerian trail, we add a source node s and a sink node t to
the alignment graph. Figure 4 illustrates three possible cases of input graphs.

1. If only one of the input graphs has closed Eulerian trails, wlog, let G1 be the input
graph with open Eulerian trails. Let a1 and b1 be the start and end of the Eulerian trail
that have odd degrees. Add edges [s, (a1, v2)] and [(b1, v2), t] to E for all nodes v2 ∈ V2
(Figure 4(a)).

2. If both input graphs have closed Eulerian trails, let a1 and a2 be two arbitrary nodes in
G1 and G2, respectively. Add edges [s, (a1, v2)], [s, (v1, a2)], [(a1, v2), t] and [(v1, a2), t]
for all nodes v1 ∈ V1 and v2 ∈ V2 to E (Figure 4(b)).

3. If both input graphs have open Eulerian trails, add edges [s, (a1, a2)] and [t, (b1, b2)], where
ai and bi are start and end nodes of the Eulerian trails in Gi, respectively (Figure 4(c)).

According to Lemma 6, we can solve GTED(G1, G2) by finding a trail in A(G1, G2) that
satisfies the projection requirements. This is equivalent to finding a s-t trail in A(G1, G2)
that satisfies constraints:

∑
(u,v)∈E

xuvIi((u, v), f) = 1 for all (u, v) ∈ E, f ∈ Gi, u ̸= s, v ̸= t, (13)

where Ii(e, f) = 1 if the alignment edge e projects to f in Gi, and xuv is the ILP variable for
edge (u, v) ∈ E. An optimal solution to GTED in the alignment graph must start and end
with the source and sink node because they are connected to all possible starts and ends of
Eulerian trails in the input graphs.

Since a trail in A(G1, G2) is a flow network, we use the following flow constraints to
enforce the equality between the number of in- and out-edges for each node in the alignment
graph except the source and sink nodes.
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∑
(s,u)∈E

xsu = 1 (14)

∑
(v,t)∈E

xvt = 1 (15)

∑
(u,v)∈E

xuv =
∑

(v,w)∈E

xvw for all v ∈ V (16)

Constraints (13) and (16) are equivalent to constraints (7) and (6), respectively. Therefore,
we rewrite the ILP in (5)–(8) in terms of the modified alignment graph.

minimize
x∈N|E|

∑
e∈E

xeδ(e)

subject to constraints (13)–(16).
(lower bound ILP)

As we show in Section 3.2, constraints (13)-(16) do not guarantee that the ILP solution
is one trail in A(G1, G2), thus allowing several disjoint covering trails to be selected in the
solution and fail to model GTED correctly. We show in Section 5 that the solution to this
ILP is a lower bound to GTED.

According to Lemma 1 in Dias et al. [5], a subgraph of a directed graph G with source
node s and sink node t is a s-t trail if and only if it is a flow network and every strongly
connected component (SCC) of the subgraph has at least one edge outgoing from it. Thus,
in order to formulate an ILP for the GTED problem, it is necessary to devise constraints
that prevent disjoint SCCs from being selected in the alignment graph. In the following, we
describe two approaches for achieving this.

4.1 Enforcing one trail in the alignment graph via constraint generation
Section 3.2 of Dias et al. [5] proposes a method to design linear constraints for eliminating
disjoint SCCs, which can be directly adapted to our problem. Let C be the collection of
all strongly connected subgraphs of the alignment graph A(G1, G2). We use the following
constraint to enforce that the selected edges form one s-t trail in the alignment graph:

If
∑

(u,v)∈E(C)

xuv = |E(C)|, then
∑

(u,v)∈ε+(C)

xuv ≥ 1 for all C ∈ C, (17)

where E(C) is the set of edges in the strongly connected subgraph C and ε+(C) is the set of
edges (u, v) such that u belongs to C and v does not belong to C.

∑
(u,v)∈E(C) xuv = |E(C)|

indicates that C is in the subgraph of A(G1, G2) constructed by all edges (u, v) with positive
xuv, and

∑
(u,v)∈ε+(C) xuv ≥ 1 guarantees that there exists an out-going edge of C that is in

the subgraph.
We use the same technique as Dias et al. [5] to linearize the “if-then” condition in (17)

by introducing a new variable β for each strongly connected component:∑
(u,v)∈E(C)

xuv ≥ |E(C)|βC for all C ∈ C (18)

∑
(u,v)∈E(C)

xuv − |E(C)|+ 1− |E(C)|βC ≤ 0 for all C ∈ C (19)

∑
(u,v)∈ε+(C)

xuv ≥ βC for all C ∈ C (20)

βC ∈ {0, 1} for all C ∈ C (21)
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To summarize, given any pair of unidirectional, edge-labeled Eulerian graphs G1 and G2
and their alignment graph A(G1, G2) = (V, E, δ), GTED(G1, G2) is equal to the optimal
solution of the following ILP formulation:

minimize
x∈{0,1}|E|

∑
e∈E

xeδ(e)

subject to constraints (13)–(16) and
constraints (18)–(21).

(exponential ILP)

This ILP has an exponential number of constraints as there is a set of constraints for every
strongly connected subgraph in the alignment graph. To solve this ILP more efficiently,
we can use the procedure similar to the iterative constraint generation procedure in Dias
et al. [5]. Initially, solve the ILP with only constraints (13)-(16). Create a subgraph, G′,
induced by edges with positive xuv. For each disjoint SCC in G′ that does not contain the
sink node, add constraints (18)-(21) for edges in the SCC and solve the new ILP. Iterate
until no disjoint SCCs are found in the solution. Algorithm 1 is the pseudo-code of this
procedure, which is similar to Algorithm 1 of Dias et al. [5].

Algorithm 1 Iterative constraint generation algorithm to solve (exponential ILP).

1: Input Two unidirectional, edge-labeled Eulerian graphs and their alignment graph
2: C ← ∅
3: while true do
4: Solve the ILP (exponential ILP) with C
5: if the ILP variables xuv induce a strongly connected component C not satisfying (17)

then
6: C = C ∪ {C}
7: else
8: return the optimal ILP value and the corresponding optimal solution x

9: end if
10: end while

4.2 A compact ILP for GTED with polynomial number of constraints

In the worst cases, the number of iterations to solve (exponential ILP) via constraint genera-
tion is exponential. As an alternative, we introduce a compact ILP with only a polynomial
number of constraints. The intuition behind this ILP is that we can impose a partially
increasing ordering on all the edges so that the selected edges forms a s-t trail in the alignment
graph. This idea is similar to the Miller-Tucker-Zemlin ILP formulation of the Travelling
Salesman problem (TSP) [14].

We add variables duv that are constrained to provide a partial ordering of the edges in
the s-t trail and set the variables duv to zero for edges that are not selected in the s-t trail.
Intuitively, there must exist an ordering of edges in a s-t trail such that for each pair of
consecutive edges (u, v) and (v, w), the difference in their order variable duv and dvw is 1.
Therefore, for each node v that is not the source or the sink, if we sum up the order variables
for the incoming edges and outgoing edges respectively, the difference between the two sums
is equal to the number of selected incoming/outgoing edges. Lastly, the order variable for
the edge starting at source is 1, and the order variable for the edge ending at sink is the
number of selected edges. This gives the ordering constraints as follows:
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If xuv = 0, then duv = 0 for all (u, v) ∈ E (22)∑
(v,w)∈E

dvw −
∑

(u,v)∈E

duv =
∑

(v,w)∈E

xvw for all v ∈ V \ {s, t} (23)

∑
(s,u)∈E

dsu = 1 (24)

∑
(v,t)∈E

dvt =
∑

(u,v)∈E

xuv (25)

We enforce that all variables xe ∈ {0, 1} and de ∈ N for all e ∈ E.
The “if-then” statement in Equation (22) can be linearized by introducing an additional

binary variable yuv for each edge [2, 5]:

−xuv − |E|yuv ≤ −1 (26)
duv − |E|(1− yuv) ≤ 0 (27)

yuv ∈ {0, 1}. (28)

Here, yuv is an indicator of whether xuv ≥ 0. The coefficient |E| is the number of edges in
the alignment graph and also an upper bound on the ordering variables. When yuv = 1,
duv ≤ 0, and yuv does not impose constraints on xuv. When yuv = 0, xuv ≥ 1, and yuv does
not impose constraints on duv. As we show in Lemma 7 , these constraints prevent finding
disjoint components, thus guaranteeing the correctness of the ILP.

▶ Lemma 7. Let xe and de be ILP variables. Let G′ be a subgraph of A(G1, G2) that is
induced by edges with xe = 1. If xe and de satisfy constraints (13)-(25) for all e ∈ E, G′ is
connected with one trail from s to t that traverses each edge in G′ exactly once.

Proof. We prove the lemma in 2 parts: (1) all nodes except s and t in G′ have an equal
number of in- and out-edges, (2) G′ contains only one connected component.

The first statement holds because the edges of G′ form a flow from s to t, and is enforced
by constraints (16).

We then show that G′ does not contain isolated subgraphs that are not reachable from
s or t. Due to constraint (16), the only possible scenario is that the isolated subgraph is
strongly connected. Suppose for contradiction that there is a strongly connected component,
C, in G′ that is not reachable from s or t.

The sum of the left hand side of constraint (23) over all vertices in C is

∑
v∈C

( ∑
(u,v)∈C

duv −
∑

(v,w)∈C

dvw

)
=

∑
v∈C

∑
(u,v)∈C

duv −
∑
v∈C

∑
(v,w)∈C

dvw (29)

=
∑

(u,v)∈E(C)

duv −
∑

(v,w)∈E(C)

dvw = 0 (30)

However, the right-hand side of the same constraints is always positive. Hence, we have a
contradiction. Therefore, G′ has only one connected component. ◀
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Due to Lemma 6 and Lemma 7, given input graphs G1 and G2 and the alignment graph
A(G1, G2), GTED(G1, G2) is equal to the optimal objective of

minimize
x∈{0,1}|E|

∑
e∈E

xeδ(e)

subject to constraints (13)–(16),
constraints (23)–(25)
and constraints (26)–(28).

(compact ILP)

5 Closed-trail Cover Traversal Edit Distance

While the (lower bound ILP) and the ILP in (11)–(12) do not solve GTED, the optimal
solution to these ILPs is a lower bound of GTED. These ILP formulations also solve an
interesting variant of GTED, which is a local similarity measure between two genome
graphs. We call this variant as Closed-trail Cover Traversal Edit Distance (CCTED). In
the following, we provide the formal definition of CCTED problem, and then show that
the (lower bound ILP) is the correct ILP formulation for solving CCTED.

We first introduce the min-cost item matching problem between two multi-sets. Let two
multi-sets of items be S1 and S2, and, wlog, let |S1| ≤ |S2|. Let c : (S1 ∪ {ϵ})× S2 → N be
the cost of matching either an empty item ϵ or an item in S1 with an item in S2. Given S1,
S2 and the cost function c, min-cost matching problem finds a matching, Mc(S1, S2), such
that each item in S1 ∪ {ϵ}|S2|−|S1| is matched with exactly one distinct item in S2 and the
total cost of the matching,

∑
(s1,s2)∈Mc(S1,S2) c(s1, s2), is minimized.

The min-cost item matching problem is similar to the Earth Mover’s Distance defined
in [18], except that only integral units of items can be matched and the cost of matching an
empty item with another item is not constant. Similar to the Earth Mover’s Distance, the
min-cost item matching problem can be computed using the ILP formulation of the min-cost
max-flow problem [23, 21]. When the cost is the edit distance, the cost to match ϵ with a
string is equal to the length of the string.

Define traversal edit distance, editt(t1, t2) as the edit distance between the strings
constructed from a pair of trails t1 and t2. In other words, editt(t1, t2) = edit(str(t1), str(t2)).
CCTED is defined as:

▶ Problem 3 (Closed-Trail Cover Traversal Edit Distance (CCTED)). Given two unidirectional,
edge-labeled Eulerian graphs G1 and G2 with closed Eulerian trails, compute

CCTED(G1, G2) ≜ min
C1∈CC(G1),
C2∈CC(G2)

∑
(t1,t2)∈Meditt (C1,C2)

edit(str(t1), str(t2)), (31)

Here, CC(G) denotes the collection of all possible sets of edge-disjoint, closed trails in G,
such that every edge in G belongs to exactly one of these trails. Each element of CC(G)
can be interpreted as a cover of G using such trails. Meditt

(C1, C2) is a min-cost matching
between two covers using the traversal edit distance as the cost.

CCTED is likely a more suitable metric comparisons between genomes that undergo
large-scale rearrangements. This analogy is to the relationship between the synteny block
comparison [20] and the string edit distance computation, where the former is more often
used in interspecies comparisons and in detecting segmental duplications [1, 24] and the
latter is more often seen in intraspecies comparisons.
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Following similar ideas as Lemma 6, we can compute CCTED by finding a set of closed
trails in the alignment graph such that the total cost of alignment edges are minimized, and
the projection of all edges in the collection of selected trails is equal to the multi-set of input
graph edges.

▶ Lemma 8. For any two edge-labeled Eulerian graphs G1 and G2,

CCTED(G1, G2) = minimize
C

∑
c∈C

δ(c) (32)

subject to C is a set of closed trails in A(G1, G2),⋃
e∈C

Πi(e) = Ei for i = 1, 2, (33)

where C is a collection of trails and δ(c) is the total cost of edges in trail c.

Proof. Given any pair of covers C1 ∈ CC(G1) and C2 ∈ CC(G2) and their min-cost matching
based on the edit distance Meditt(C1, C2), we can project each pair of matched closed trails
to a closed trail in the alignment graph. For a matching between a trail and the empty item
ϵ, we can project it to a closed trail in the alignment graph with all vertical edges if the trail
is from G1 or horizontal edges if the trail is from G2. The total cost of the projected edges
must be greater than or equal to the objective (32). On the other hand, every collection of
trails C that satisfy constraint (33) can be projected to a cover in each of the input graphs,
and

∑
c∈C δ(c) ≥ CCTED(G1, G2). Hence equality holds. ◀

We show that (lower bound ILP) solves CCTED (the proof is in Appendix B).

▶ Theorem 9. Given two input graphs G1 and G2, the optimal objective value of
(lower bound ILP) based on A(G1, G2) is equal to CCTED(G1, G2).

5.1 CCTED is a lower bound of GTED
Since the constraints for (lower bound ILP) are a subset of (exponential ILP), a feasible
solution to (exponential ILP) is always a feasible solution to (lower bound ILP). Since two
ILPs have the same objective function, CCTED(G1, G2) ≤ GTED(G1, G2) for any pair
of graphs. Moreover, when the solution to (lower bound ILP) forms only one connected
component, the optimal value of (lower bound ILP) is equal to GTED.

▶ Theorem 10. Let A′(G1, G2) be the subgraph of A(G1, G2) induced by edges (u, v) ∈ E

with xopt
uv = 1 in the optimal solution to (lower bound ILP), where xuv is the value of the

variable corresponding to edge (u, v). There exists A′(G1, G2) that has exactly one connected
component if and only if CCTED(G1, G2) = GTED(G1, G2).

Proof. We first show that if CCTED(G1, G2) = GTED(G1, G2), then there exists
A′(G1, G2) that has exactly one connected component. Since CCTED(G1, G2) =
GTED(G1, G2), an optimal solution to (exponential ILP) is also an optimal solution
to (lower bound ILP), which can induce a subgraph in the alignment graph that only
contains one connected component.

Conversely, if xopt induces a subgraph in the alignment graph with only one connec-
ted component, it satisfies constraints (18)-(21) and therefore is feasible to the ILP for
GTED (exponential ILP). Since CCTED(G1, G2) ≤ GTED(G1, G2), this solution must
also be optimal for GTED(G1, G2). ◀
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In practice, we may estimate GTED by the solution to (lower bound ILP). As we show in
Section 6, the time needed to solve (lower bound ILP) is much less than the time needed to
solve GTED. When the subgraph induced by the solution to (lower bound ILP) has only one
connected component, CCTED is exactly equal to GTED. However, in adversarial cases,
CCTED could be zero but GTED could be arbitrarily large.

6 Empirical evaluation of the ILP formulations for GTED and its lower
bound

6.1 Implementation of the ILP formulations
We implement the algorithms and ILP formulations for (exponential ILP), (compact ILP)
and (lower bound ILP). In practice, the multi-set of edges of each input graph may contain
many duplicates of edges that have the same start and end vertices due to repeats in the
strings. We reduce the number of variables and constraints in the implemented ILPs by
merging the edges that share the same start and end nodes and recording the multiplicity of
each edge. Each x variable is no longer binary but a non-negative integer that satisfies the
modified projection constraint (13):∑

(u,v)∈E

xuvIi((u, v), f) = Mi(f) for all (u, v) ∈ E, f ∈ Gi, u ̸= s, v ̸= t, (34)

where Mi(f) is the multiplicity of edge f in Gi. Let C be the strongly connected component
in the subgraph induced by positive xuv, now

∑
(u,v)∈E(C) xuv is no longer upper bounded

by |E(C)|. Therefore, the constraint (19) is changed to∑
(u,v)∈E(C)

xuv − |E(C)|+ 1−W (C)βC ≤ 0 for all C ∈ C, (35)

W (C) =
∑

(u,v)∈E(C)

max

 ∑
f∈G1

M1(f)I1((u, v), f),
∑

f∈G2

M2(f)I2((u, v), f)

 ,

where W (C) is the maximum total multiplicities of edges in the strongly connected subgraph
in each input graph that is projected from C.

Likewise, constraints (27) that set the upper bounds on the ordering variables also need
to be modified as the upper bound of the ordering variable duv for each edge no longer
represents the order of one edge but the sum of orders of copies of (u, v) that are selected,
which is at most |E|2. Therefore, constraint (27) is changed to

duv − |E|2(1− yuv) ≤ 0. (36)

The rest of the constraints remain unchanged.
We ran all our experiments on a server with 48 cores (96 threads) of Intel(R) Xeon(R)

CPU E5-2690 v3 @ 2.60GHz and 378 GB of memory. The system was running Ubuntu 18.04
with Linux kernel 4.15.0. We solve all the ILP formulations and their linear relaxations using
the Gurobi solver [7] using 32 threads.

6.2 GTED on simulated TCR sequences
We construct 20 de Bruijn graphs with k = 4 using 150-character sequences extracted from
the V genes from the IMGT database [11]. We solve (exponential ILP), (lower bound ILP)
and its linear relaxation, and the linear relaxation of (compact ILP) on all 190 pairs of
graphs. We do not show results for solving (compact ILP) for GTED on this set of graphs
as the running time exceeds 30 minutes on most pairs of graphs.
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Figure 5 (a) The distribution of wall-clock running time for constructing alignment graphs,
solving the ILP formulations for GTED and its lower bound, and their linear relaxations on the
log scale. (b) The relationship between the time to solve (lower bound ILP), (exponential ILP)
iteratively and GTED. (c) The distribution of the number of iterations to solve exponential ILP.
The box plots in each plot show the median (middle line), the first and third quantiles (upper and
lower boundaries of the box), the range of data within 1.5 inter-quantile range between Q1 and Q3
(whiskers), and the outlier data points.

To compare the time to solve the ILP formulations when GTED is equal to the optimal
objective of (lower bound ILP), we only include 168 out of 190 graphs where GTED is equal
to CCTED. On average, it takes 26 seconds wall-clock time to solve (lower bound ILP), and
71 seconds to solve (exponential ILP) using the iterative algorithm. On average, it takes 9
seconds to solve the LP relaxation of (compact ILP) and 1 second to solve the LP relaxation
of (lower bound ILP). The time to construct the alignment graph for all pairs is less than
0.2 seconds. The distribution of wall-clock running time is shown in Figure 5(a). The time
to solve (exponential ILP) and (lower bound ILP) is generally positively correlated with the
GTED values (Figure 5(b)). On average, it takes 7 iterations for the iterative algorithm to
find the optimal solution that induces one strongly connected subgraph (Figure 5(c)).

In summary, it is fastest to compute the lower bound of GTED. Computing GTED
exactly by solving the proposed ILPs on genome graphs of size 150 is already time consuming.
When the sizes of the genome graphs are fixed, the time to solve for GTED and its lower
bound increases as the GTED between the two genome graphs increases. In the case
where GTED is equal to its lower bound, the subgraph induced by some optimal solutions
of (lower bound ILP) contains more than one strongly connected component. Therefore, in
order to reconstruct the strings from each input graph that have the smallest edit distance,
we generally need to obtain the optimal solution to the ILP for GTED. In all cases, the time
to solve the (exponential ILP) is less than the time to solve the (compact ILP).

6.3 GTED on difficult cases

Repeats, such as segmental duplications and translocations [12, 4] in the genomes increase
the complexity of genome comparisons. We simulate such structures with a class of graphs
that contain n simple cycles of which n− 1 peripheral cycles are attached to the n-th central
cycle at either a node or a set of edges (Figure 6(a)). The input graphs in Figure 2 belong
to this class of graphs that contain 2 cycles. This class of graphs simulates the complex
structural variants in disease genomes or the differences between genomes of different species.

We generate pairs of 3-cycle graphs with varying sizes and randomly assign letters
from {A,T,C,G} to edges. We compute the CCTED and GTED using (lower bound ILP)
and (compact ILP), respectively. We group the generated 3-cycle graph pairs based on the
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Figure 6 (a) An example of a 3-cycle graph. Cycle 1 and 2 are attached to cycle 3. (b) The
distribution of wall-clock time to solve the compact ILP and the iterative exponential ILP on 100
pairs of 3-cycle graphs.

value of (GTED − CCTED) and select 20 pairs of graphs randomly for each (GTED −
CCTED) value ranging from 1 to 5. The maximum number of edges in all selected graphs
is 32.

We show the difficulty of computing GTED using the iterative algorithm on the 100
selected pairs of 3-cycle graphs. We terminate the ILP solver after 20 minutes. As shown
in Figure 6, as the difference between GTED and CCTED increases, the wall-clock time to
solve (exponential ILP) for GTED increases faster than the time to solve (compact ILP) for
GTED. For pairs of graphs with (GTED−CCTED) = 5, on average it takes more than
15 minutes to solve (exponential ILP) with more than 500 iterations. On the other hand, it
takes an average of 5 seconds to solve (compact ILP) for GTED and no more than 1 second
to solve for the lower bound. The average time to solve each ILP is shown in Table S1.

In summary, on the class of 3-cycle graphs introduced above, the difficulty to solve
GTED via the iterative algorithm increases rapidly as the gap between GTED and CCTED
increases. Although (exponential ILP) is solved more quickly than (compact ILP) for GTED
when the sequences are long and the GTED is equal to CCTED (Section 6.2), (compact ILP)
may be more efficient when the graphs contain overlapping cycles such that the gap between
GTED and CCTED is larger.

7 Conclusion

We point out the contradictions in the result on the complexity of labeled graph comparison
problems and resolve the contradictions by showing that GTED, as opposed to the results in
Ebrahimpour Boroojeny et al. [6], is NP-complete. On one hand, this makes GTED a less
attractive measure for comparing graphs since it is unlikely that there is an efficient algorithm
to compute the measure. On the other hand, this result better explains the difficulty of
finding a truly efficient algorithm for computing GTED exactly. In addition, we show that
the previously proposed ILP of GTED [6] does not solve GTED and give two new ILP
formulations of GTED.

We further show that the previously proposed ILP solves for a lower bound of GTED. We
characterize the LP relaxation of the ILP in (11)–(12) and show that, contrary to the results
in Ebrahimpour Boroojeny et al. [6], the LP in (11)–(12) does not always yield optimal
integer solutions.
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As shown previously [6, 21], it takes more than 4 hours to solve (lower bound ILP) for
graphs that represent viral genomes that contain ≈ 3000 bases with a multi-threaded LP solver.
Likewise, we show that computing GTED using either (exponential ILP) or (compact ILP)
is already slow on small genomes, especially on pairs of genomes that are different due to
segmental duplications and translations. The empirical results show that it is currently
impossible to solve GTED or its lower bound directly using this approach for bacterial-
or eukaryotic-sized genomes on modern hardware. The results here should increase the
theoretical interest in GTED along the directions of heuristics or approximation algorithms
as justified by the NP-hardness of finding GTED.

References
1 Guillaume Bourque, Pavel A Pevzner, and Glenn Tesler. Reconstructing the genomic architec-

ture of ancestral mammals: lessons from human, mouse, and rat genomes. Genome Research,
14(4):507–516, 2004.

2 Stephen P Bradley, Arnoldo C Hax, and Thomas L Magnanti. Applied mathematical program-
ming. Addison-Wesley, 1977.

3 George Dantzig, Ray Fulkerson, and Selmer Johnson. Solution of a large-scale traveling-
salesman problem. Journal of the Operations Research Society of America, 2(4):393–410,
1954.

4 Eva Darai-Ramqvist, Agneta Sandlund, Stefan Müller, George Klein, Stefan Imreh, and Maria
Kost-Alimova. Segmental duplications and evolutionary plasticity at tumor chromosome
break-prone regions. Genome Research, 18(3):370–379, 2008.

5 Fernando HC Dias, Lucia Williams, Brendan Mumey, and Alexandru I Tomescu. Minimum
flow decomposition in graphs with cycles using integer linear programming. arXiv preprint,
2022. arXiv:2209.00042.

6 Ali Ebrahimpour Boroojeny, Akash Shrestha, Ali Sharifi-Zarchi, Suzanne Renick Gallagher,
S. Cenk Sahinalp, and Hamidreza Chitsaz. Graph traversal edit distance and extensions.
Journal of Computational Biology, 27(3):317–329, 2020.

7 Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL: https://www.
gurobi.com.

8 Steve Huntsman and Arman Rezaee. De Bruijn entropy and string similarity. arXiv preprint,
2015. arXiv:1509.02975.

9 Chirag Jain, Haowen Zhang, Yu Gao, and Srinivas Aluru. On the complexity of sequence-to-
graph alignment. Journal of Computational Biology, 27(4):640–654, 2020.

10 Orna Kupferman and Gal Vardi. Eulerian paths with regular constraints. In Piotr Faliszewski,
Anca Muscholl, and Rolf Niedermeier, editors, 41st International Symposium on Mathematical
Foundations of Computer Science (MFCS 2016), volume 58 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 62:1–62:15, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik.

11 Marie-Paule Lefranc. IMGT, the international ImMunoGeneTics information system. Cold
Spring Harbor Protocols, 2011(6):595–603, 2011.

12 Yilong Li, Nicola D Roberts, Jeremiah A Wala, Ofer Shapira, Steven E Schumacher, Kiran
Kumar, Ekta Khurana, Sebastian Waszak, Jan O Korbel, James E Haber, et al. Patterns of
somatic structural variation in human cancer genomes. Nature, 578(7793):112–121, 2020.

13 Serghei Mangul and David Koslicki. Reference-free comparison of microbial communities via
de Bruijn graphs. In Proceedings of the 7th ACM international conference on bioinformatics,
computational biology, and health informatics, pages 68–77, 2016.

14 Clair E Miller, Albert W Tucker, and Richard A Zemlin. Integer programming formulation of
traveling salesman problems. Journal of the ACM (JACM), 7(4):326–329, 1960.

15 Ilia Minkin and Paul Medvedev. Scalable pairwise whole-genome homology mapping of long
genomes with Bubbz. IScience, 23(6):101224, 2020.

https://arxiv.org/abs/2209.00042
https://www.gurobi.com
https://www.gurobi.com
https://arxiv.org/abs/1509.02975


Y. Qiu, Y. Shen, and C. Kingsford 11:19

16 James R Munkres. Elements of algebraic topology. CRC Press, 2018.
17 Saul B Needleman and Christian D Wunsch. A general method applicable to the search

for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology,
48(3):443–453, 1970.

18 Ofir Pele and Michael Werman. A linear time histogram metric for improved sift matching.
In Computer Vision–ECCV 2008: 10th European Conference on Computer Vision, Marseille,
France, October 12-18, 2008, Proceedings, Part III 10, pages 495–508. Springer, 2008.

19 Pavel A Pevzner, Haixu Tang, and Michael S Waterman. An Eulerian path approach to DNA
fragment assembly. Proceedings of the National Academy of Sciences of USA, 98(17):9748–9753,
2001.

20 Evgeny Polevikov and Mikhail Kolmogorov. Synteny Paths for Assembly Graphs Comparison.
In Katharina T. Huber and Dan Gusfield, editors, 19th International Workshop on Algorithms
in Bioinformatics (WABI 2019), volume 143 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 24:1–24:14, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. doi:10.4230/LIPIcs.WABI.2019.24.

21 Yutong Qiu and Carl Kingsford. The effect of genome graph expressiveness on the discrepancy
between genome graph distance and string set distance. Bioinformatics, 38:i404–i412, 2022.

22 Yutong Qiu, Yihang Shen, and Carl Kingsford. Revisiting the complexity of and algorithms for
the Graph Traversal Edit Distance and Its variants. arXiv preprint, 2023. arXiv:2305.10577.

23 Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. The Earth Mover’s distance as a metric
for image retrieval. International Journal of Computer Vision, 40(2):99–121, 2000.

24 Mitchell R Vollger, Xavi Guitart, Philip C Dishuck, Ludovica Mercuri, William T Harvey,
Ariel Gershman, Mark Diekhans, Arvis Sulovari, Katherine M Munson, Alexandra P Lewis,
et al. Segmental duplications and their variation in a complete human genome. Science,
376(6588):eabj6965, 2022.

A Proofs for the NP-completeness of GTED

A.1 Reduction from ETEW to GTED
We provide below the complete proof for Theorem 2.

▶ Theorem 2. If GTED ∈ P then ETEW ∈ P.

Proof. Let ⟨s, G⟩ be an instance of ETEW. Construct a directed, acyclic graph (DAG), C,
that has only one path. Let the path in C be P = (e1, . . . , e|s|) and the edge label of ei be
s[i]. Clearly, C is a unidirectional, edge-labeled Eulerian graph, P is the only Eulerian trail
in C, and str(P ) = s.

For the graph G = (VG, EG, ℓG, Σ) from the ETEW instance, which may not be unidirec-
tional, create another graph G′ that contains all of the nodes and edges in G except the
anti-parallel edges. Let ΣG′ = Σ ∪ {ϵ}, where ϵ is a character that is not in Σ. For each pair
of anti-parallel edges (u, v) and (v, u) in G, add four edges (u, w1), (w1, v), (v, w2), (w2, u) by
introducing new vertices w1, w2 to G′. Let ℓG′(u, w1) = ℓG(u, v) and ℓG′(w2, u) = ℓG(v, u).
Let ℓG′(w1, v) = ℓG′(v, w2) = ϵ for every newly introduced vertex. G′ has at most twice the
number of edges as G and is Eulerian and unidirectional.

Define the cost of changing a character from a to b cost(a, b) for a, b ∈ Σ ∪ {−} to be 0 if
a = b and 1 otherwise. “−” is the gap character indicating an insertion or a deletion. Define
cost(a, ϵ) with a ∈ Σ to be 1. Define cost(−, ϵ) to be 0.

Use the (assumed) polynomial-time algorithm for GTED to ask whether GTED(C, G′) ≤
0 under edit distance Σ. If yes, then let (s1, s2) be the 0-cost alignment of the strings spelled
out by the trails in C and G′, respectively. The non-gap characters of s1 must spell out s

since there is only one Eulerian trail in C. Because the alignment cost is 0, any − (gap)
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characters in s1 must be aligned with ϵ characters in s2 and any non-gap characters in s1
must be aligned to the same character in s2. The trail in G′ that spells s2 can be transformed
to a trail that spells s3 by collapsing the edges with ϵ character labels, and s3 = s1.

If GTED(C, G′) > 0, G must not contain an Eulerian trail that spells s. Otherwise, such
a trail could be extended to a trail introducing some ϵ characters that could be aligned to s

with zero cost by aligning gaps with ϵ characters.
Hence, an (assumed) polynomial-time algorithm for GTED solves ETEW in polynomial

time. ◀

A.2 Reduction from Hamiltonian Path to GTED
We provide below the complete proof for Theorem 3.

▶ Theorem 3. GTED is NP-complete.

Proof. We reduce from the Hamiltonian Path problem, which asks whether a directed,
simple graph G contains a path that visits every vertex exactly once. Here simple means no
self-loops or parallel edges. Let ⟨G = (V, E)⟩ be an instance of Hamiltonian Path, with
n = |V | vertices. The reduction is almost identical to that presented in Kupferman and
Vardi [10], and from here until noted later in the proof the argument is identical except for the
technicalities introduced to force unidirectionality (and another minor change described later).
The first step is to construct the Eulerian closure of G, which is defined as G′ = (V ′, E′)
where

V ′ = {vin, vout : v ∈ V } ∪ {w}, (37)

and E′ is the union of the following sets of edges and their labels:
E1 = {(vin, vout) : v ∈ V }, labeled a,
E2 = {(uout, vin) : (u, v) ∈ E}, labeled b,
E3 = {(vout, vin) : v ∈ V }, labeled c,
E4 = {(vin, uout) : (u, v) ∈ E}, labeled c,
E5 = {(uin, w) : u ∈ V }, labeled c,
E6 = {(w, uin) : u ∈ V }, labeled b.

Since G′ is connected and every outgoing edge in G′ has a corresponding antiparallel incoming
edge, G′ is Eulerian. It is not unidirectional, so we further create G′′ from G′ by adding
dummy nodes to each pair of antiparallel edges and labelling the length-2 paths so created
with x#, where x is the original label of the split edge (a, b, or c) and # is some new symbol
(shared between all the new edges). We call these length-2 paths introduced to achieve
unidirectionality “split edges”.

We now argue that G has a Hamiltonian path iff G′′ has an Eulerian trail that spells out

q = a#(b#a#)n−1(c#)2n−1(c#b#)|E|+1. (38)

If such an Eulerian trail exists, then the trail starts with spelling the string a#(b#a#)n−1,
which corresponds to a Hamiltonian trail in G since it visits exactly n “vertex split edges”
(type E1, labeled a#) and each vertex split edge can be used only once (since it is an Eulerian
trail). Further, successively visited vertices must be connected by an edge in G since those
are the only b# split edges in G′′ (except those leaving w, but w must not be involved in
spelling out a#(b#a#)n−1, since entering w requires using a split edge labeled c#).

For the other direction, if a G has a Hamiltonian path v1, . . . , vn, then walking that
sequence of vertices in G′′ will spell out a#(b#a#)n−1. This path will cover all E1 edges and
the E2 edges that are on the Hamiltonian path. Retracing the path so far in reverse will
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use 2n− 1 split edges labeled c#, consuming the (c#)2n−1 term in q and covering all nodes’
reverse vertex edges E3 (since the path is Hamiltonian). The reverse path also covers the
E4 edges corresponding to reverse Hamiltonian path edges. Our Eulerian trail is now “at”
node vin

1 .
What remains is to complete the Eulerian walk covering (a) edges and their antiparallel

counterparts corresponding to edges in G that were not used in the Hamiltonian path, and
(b) the edges adjacent to node w. To do this, define pred(v) be the vertices u in G for which
edge (u, v) exists and u is not the predecessor of v along the Hamiltonian path. For each
u ∈ pred(v1), traverse the split edge labeled c# to uout then traverse the forward split edge
labeled b# back to vin

1 . This results in a string (c#b#)|pred(v1)|. Once the predecessors of v1
are exhausted, traverse the split edge labeled c# from vin

1 into node w and then traverse
the split edge labeled b# to vin

2 . This again generates a c#b# string. Repeat the process,
covering the edges of v2’s predecessors and returning to w to move to the next node along
the Hamiltonian path for each node v3, . . . , vn. After covering the predecessors of vin

n , go to
vin

1 through the remaining edges in E5 and E6, (vin
n , w) and (w, vin

1 ), which completes the
Eulerian tour. This covers all the edges of G′′. The word spelled out in this last section of
the Eulerian trail is a sequence of repetitions of c#b#, with one repetition for each edge that
is not in the Hamiltonian path (|E| − n + 1) and all of the edges in E5 and E6 for entering
and leaving each node (2n), with a total of |E|+ 1 repetitions, which is the final (c#b#)|E|+1

term in q.
This ends the slight modification of the proof in Kupferman and Vardi [10], where the

differences are (a) the introduction of the # characters and (b) using the exponent |E|+ 1
of the final part of q instead of |E|+ n + 1 as in Kupferman and Vardi [10] since we create
w-edges only to vin vertices. (This second change has no material effect on the proof, but
reduces the length of the string that must be matched.)

Now, given an instance ⟨G = (V, E)⟩ of Hamiltonian Path, with n = |V | vertices, we
construct G′′ as above (obtaining a unidirectional Eulerian graph) and create graph C that
only represents string q. Note that |Σ| = 4 and G′′ and C can be constructed in polynomial
time. GTED(G′′, C) = 0 if and only if an Eulerian path in G′′ spells out q, since there can
be no indels or mismatches. By the above argument, an An eulerian tour that spells out q

exists if and only if G has a Hamiltonian path. ◀

A.3 FGTED is NP-complete
▶ Problem 4 (Flow Graph Traversal Edit Distance (FGTED) [21]). Given unidirectional,
edge-labeled Eulerian graphs G1 and G2, each of which has distinguished s1, s2 source and
t1, t2 sink vertices, compute

FGTED(G1, G2) ≜ min
D1∈flow(G1,s1,t1)
D1∈flow(G2,s2,t2)

emedit(strset(D1), strset(D2)), (39)

where flow(Gi, si, ti) is the collection of all possible sets of s1-t1 trail decomposition of
saturating flow from si to ti, strset(D) is the multi-set of strings constructed from trails in D.

▶ Theorem 4. FGTED is NP-complete.

Proof. Let G = (v, E) be an instance of the Hamiltonian Cycle problem. Let n = |V | be
the number of vertices in G. Construct the Eulerian closure of G and split the anti-parallel
edges. Let the new graph be G′ = (V ′, E′). Attach a source s and a sink node t to an
arbitrary node vin

1 by adding edge (s, vin
1 ) and (vin

1 , t) with labels s and t, respectively.
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Construct a string q, such that

q = sa#(b#a#)n−1(c#)2n−1(c#b#)|E|+1t. (40)

Create a graph Q that only contains one path with labels on the edges of the path that spell
the string q. The union of the set of trails in any flow decomposition of G′ is equal to a set
of Eulerian trails, E , that starts at s and ends at t. All Eulerian trails in E are also closed
Eulerian trails of G′ \ {s, t} that starts and ends at vin

1 .
Using the same line of argument in the proof of Theorem 3, an Eulerian trail in G′ that

spells q is equivalent to a Hamiltonian cycle in G. In addition, FGTED(Q, G′) = 0 if and
only if all Eulerian trails in E spell out q. Therefore, if FGTED(Q, G′) = 0, then there is a
Hamiltonian cycle in G. Otherwise, then there must not exist a Hamiltonian cycle in G. ◀

B Correctness of the ILP formulation for CCTED

We show that the ILP in (5)–(8) proposed by Ebrahimpour Boroojeny et al. [6] solves
CCTED.

▶ Theorem 9. Given two input graphs G1 and G2, the optimal objective value of the ILP
in (5)–(8) based on A(G1, G2) is equal to CCTED(G1, G2).

Proof. As shown in the proof of Lemma 8, any pair of edge-disjoint, closed-trail covers
in the input graph can be projected to a set of closed trails in A(G1, G2), which satisfied
constraints (6)-(8). The objective of this feasible solution, which is the total cost of the
projected closed trails, equals CCTED. Therefore, CCTED(G1, G2) is greater than or equal
to the objective of the ILP in (5)–(8).

Conversely, we can transform any feasible solution of the ILP in (5)–(8) to a pair of
covers of G1 and G2. We can do this by transforming one closed trail at a time from the
subgraph of the alignment graph, A′ induced by edges with ILP variable xuv = 1. Let c

be a closed trail in A′. Let c1 = Π1(c) and c2 = Π2(c) be two closed trails in G1 and G2
that are projected from c. We can construct an alignment between str(c1) and str(c2) from c

by adding match or insertion/deletion columns for each match or insertion/deletion edges
in c accordingly. The cost of the alignment is equal to the total cost of edges in c by the
construction of the alignment graph. We can then remove edges in c from the alignment
graph and edges in c1 and c2 from the input graphs, respectively. The remaining edges in A′

and G1 and G2 still satisfy the constraints (6)-(8). Repeat this process and we get a total
cost of

∑
e∈E xeδ(e) that aligns pairs of closed trails that form covers of G1 and G2. This

total cost is greater than or equal to CCTED(G1, G2). ◀

C The average wall-clock time to solve ILPs on 3-cycle graphs

Table S1 The average wall-clock time to solve lower bound ILP, exponential ILP, compact ILP
and the number of iterations for pairs of 3-cycle graphs for each GTED − CCTED.

GTED - CCTED lower bound ILP
runtime (s)

GTED iterative
runtime (s) Iterations GTED compact

runtime (s)

1.0 0.06 0.17 3.55 0.39
2.0 0.05 0.87 13.00 0.43
3.0 0.08 25.41 67.60 1.24
4.0 0.07 205.59 179.10 1.70
5.0 0.08 943.68 502.85 5.37
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1 Introduction

Graph-based representation of genome sequences has emerged as a prominent data structure
in genomics, offering a powerful means to represent the genetic variation within a species
across multiple individuals [11, 17, 26, 49, 51, 53]. A pangenome graph can be represented
as a directed graph G(V, E) such that vertices are labeled by characters (or strings) from the
alphabet {A,C,G,T}. The topology of the graph is determined by the count and the type
of variants included in the graph. For example, inversions, duplications, or copy number
variation are best represented as cycles in a pangenome graph [8, 26, 27, 41, 49]. As a result,
the draft pangenome graphs published by the Human Pangenome Reference Consortium [26]
and the Chinese Pangenome Consortium [14] are also cyclic. Aligning reads or assembly
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12:2 Co-Linear Chaining on Pangenome Graphs

Graph

Query

(a) (b)

Figure 1 An illustration of co-linear chaining for sequence-to-graph alignment. Assume that
the vertices of the graph are labeled with nucleotide sequences. Short exact matches, i.e., anchors,
are illustrated using red blocks joined by dotted lines. In (b), the anchors corresponding to the
best-scoring chain are retained, and the rest are removed. The retained anchors are combined to
produce an alignment of the query sequence to the graph.

contigs to a directed labeled graph is a fundamental problem in computational pangenomics
[2, 7]. Aligning reads to graphs is also useful for other bioinformatics tasks such as long-read
de novo assembly [6, 15, 43] and long-read error correction [28, 47].

Formally, the sequence-to-graph alignment problem seeks a walk in the graph that spells
a sequence with minimum edit distance from the input sequence. O(|Q||E|) time alignment
algorithms for this problem are already known, where Q is the query sequence [22, 36]. The
known conditional lower bound [3] implies that an exact algorithm significantly faster than
O(|Q||E|) is unlikely. This lower bound also holds for de Bruijn graphs [18]. Therefore, fast
heuristics are used to process high-throughput sequencing data.

Seed-chain-extend is a common heuristic used by modern alignment tools [21, 23, 46].
This is a three-step process. First, the seeding stage involves computing exact seed matches,
such as k-mer matches, between a query sequence and a reference. These matches are
referred to as anchors. The presence of repetitive sequences in genomes often leads to a
large number of false positive anchors. Subsequently, the chaining stage is employed to link
the subsets of anchors in a coherent manner while optimizing specific criteria (Figure 1).
This procedure also eliminates the false positive anchors. Finally, the extend stage returns
a base-to-base alignment along the selected anchors. Efficient generalization of the three
stages to pangenome graphs is an active research topic [7]. Many sequence-to-graph aligners
already exist that differ in terms of implementing these stages [5, 9, 24, 30, 42, 49]. This
paper addresses the generalization of the chaining stage to cyclic pangenome graphs.

1.1 Related Work
Co-linear chaining is a mathematically rigorous method to filter anchors after the seeding stage.
It has been well-studied for the sequence-to-sequence alignment case [1, 12, 13, 20, 32, 35, 40].
The input to the chaining problem is a set of N weighted anchors. An anchor can be denoted
as a pair of intervals in the two sequences corresponding to the exact seed match. A chain
is an ordered subset of anchors whose intervals must appear in increasing order in both
sequences. The co-linear chaining problem seeks the chain with the highest score, where
the score of a chain is calculated by summing the weights of the anchors in the chain and
subtracting the penalty for gaps between adjacent anchors. The problem is solvable in
O(N log N) time [1].

The first effort to generalize the co-linear chaining problem to graphs was made by
Makinen et al. [33]. They addressed the co-linear chaining problem on directed acyclic
graphs (DAGs). The authors introduced a sparse dynamic programming algorithm whose
runtime complexity is parameterized in terms of the width of the DAG. The width of a DAG
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is defined as the minimum number of paths in the DAG such that each vertex is included in
at least one path. Parameterizing the complexity in terms of the width is helpful because
pangenome graphs typically have small width in practice [5, 30, 33]. An optimized version
of their algorithm requires O(KN log KN) time for chaining, where K is the width of the
DAG [30]. This formulation has been further extended to incorporate gap cost in the scoring
function [5], and for solving the longest common subsequence problem between a DAG and
a sequence [44]. However, there is limited work on formulating and solving the co-linear
chaining problem for general pangenome graphs which might contain cycles. One way to
address this was discussed in [30, Appendix section], but the proposed formulation is oblivious
to the coordinates of anchors that lie in a strongly connected component of the graph. Their
algorithm works by shrinking every strongly connected component into a single vertex and
applying the same algorithm developed for DAGs. With this approach, the high-scoring
anchor chains in cyclic regions of the graph may result in low-quality alignments.

1.2 Contributions
In this paper, we build on top of the algorithmic techniques developed for DAGs [5, 30, 33]
and propose novel formulations for cyclic pangenome graphs. Our proposed algorithm exploits
the small width of pangenome graphs similar to [33]. Our approach for defining the gap cost
between a pair of anchors is inspired by the corresponding function defined on DAGs [5].

We address the following three challenges that arise on cyclic pangenome graphs. First, the
dynamic programming-based chaining algorithms developed for DAGs exploit the topological
ordering of vertices [5, 30, 33], but such an ordering is not available in cyclic graphs.
Second, computing the width and a minimum path cover can be solved in polynomial
time for DAGs but is NP-hard for general instances [4]. Third, the walk corresponding to
the optimal sequence-to-graph alignment can traverse a vertex multiple times if there are
cycles. Accordingly, a chain of anchors should be allowed to loop through vertices. Our
proposed problem formulation and the proposed algorithm address the above challenges. Our
approach involves computing a path cover P of the input graph followed by using iterative
algorithms. Let Γc, Γl, Γd be the parameters that specify the count of iterations used in
our algorithms (formally defined later). Our chaining algorithm solves the stated objective
in O(Γc|P|N log N + |P|N log |P|N) time after a one-time preprocessing of the graph in
O((Γl + Γd + log |V |)|P||E|) time. We will show that parameters |P|, Γc, Γl, Γd are small in
practice to justify the practicality of this approach.

We implemented the proposed chaining algorithm as an open-source software PanAligner.
We designed PanAligner as an end-to-end sequence-to-graph aligner using seeding and
alignment code from Minigraph [24]. We evaluated the scalability and alignment accuracy
of PanAligner by using a cyclic human pangenome graph constructed from 94 high-quality
haplotype-resolved assemblies [26] and CHM13 human genome assembly [38]. We achieve
the highest long-read mapping accuracy 98.7% using PanAligner when compared to existing
methods Minigraph [24] (98.1%) and GraphAligner [42] (97.0%).

2 Notations and Problem Formulations

Pangenome graph G(V, E, σ) is a string labeled graph such that function σ : V → Σ+ labels
each vertex v with string σ(v) over alphabet Σ = {A, C, G, T}. Let Q be a query sequence
over Σ. Let M [1..N ] be an array of anchor tuples (v, [x..y], [c..d]) with the interpretation
that substring σ(v)[x..y] from the graph matches substring Q[c..d] in the query sequence.
Throughout this paper, all indices start at 1. We will assume that |E| ≥ |V | − 1. Function
weight assigns a user-specified weight to each anchor. For example, the weight of an anchor
could be proportional to the length of the matching substring.
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A path cover is a set P = {P1, P2, . . . , P|P|} of paths in graph G such that every vertex
in V is included in at least one of the |P| paths. We define paths(v) as {i : Pi includes v}.
If i ∈ paths(v), then let index(v, i) specify the position of vertex v on path Pi. Suppose
R−(v) is the set of vertices in V that can reach vertex v through any walk in graph G. We
will assume that the set R−(v) always includes the vertex v. The value last2reach(v, i) for
v ∈ V, i ∈ [1, |P|] represents the last vertex on path Pi that belongs to set R−(v). Note
that last2reach(v, i) does not exist if there is no vertex on path Pi that belongs to R−(v).
Let N+(v) and N−(v) be the set of outgoing and incoming neighbor vertices of vertex v,
respectively.

We need to calculate character distances between pairs of anchors in the graph while
solving the co-linear chaining problem. Assume that edge (v, u) ∈ E has length |σ(v)| > 0.
Let D(v1, v2) denote the length of the shortest path from vertex v1 to v2 in G. We set
D(v1, v2) = ∞ if there is no path from v1 to v2, whereas D(v1, v2) = 0 if v1 = v2. We use
D◦(v) to specify the length of the shortest proper cycle containing v. D◦(v) = ∞ if v is
not part of any proper cycle. If Pi includes v, let dist2begin(v, i) denote the length of the
sub-path of path Pi from the start of Pi to v.

Our algorithm will use a balanced binary search tree data structure for executing range
queries efficiently. It has the following properties.

▶ Lemma 1 (ref. [31]). Let n be the number of leaves in a tree, each storing a (key, value)
pair. The following operations can be supported in O(log n) time:

update(k, val): For the leaf w with key = k, value(w)←− max(value(w), val).
RMQ(l, r): Return max{value(w) | l < key(w) < r} such that w is a leaf. This is the
range maximum query.

Given n (key, value) pairs, the tree can be constructed in O(n log n) time and O(n) space.

Next, we define a precedence relation between a pair of anchors, which is a partial order
among the input anchors [30].

▶ Definition 2 (Precedence). Given two anchors M [i] and M [j], we define M [i] precedes (≺)
M [j] as follows. If M [i].v ̸= M [j].v, then M [i] ≺ M [j] if and only if M [i].d < M [j].c and
M [i].v reaches M [j].v. If M [i].v = M [j].v, then M [i] ≺M [j] if and only if M [i].d < M [j].c,
and M [i].y < M [j].x or the graph has a proper cycle containing M [i].v.

▶ Definition 3 (Chain). Given the set of anchors {M [1], M [2], . . . , M [N ]}, a chain is an
ordered subset of anchors S = s1s2 · · · sq of M , such that sj precedes sj+1 for all 1 ≤ j < q.

Our co-linear chaining problem formulation seeks a chain S = s1s2 · · · sq that maximizes
the chain score defined as

∑q
j=1 weight(sj)−

( ∑q−1
j=1 gapQ(sj , sj+1) +

∑q−1
j=1 gapG(sj , sj+1)

)
.

Functions gapQ and gapG specify the gap cost incurred in the query sequence and the graph,
respectively. Although we specifically focus on problem formulations where the gap cost
is calculated as the sum of gapG and gapQ, our approach can be extended to other gap
definitions such as |gapG − gapQ|, min(gapG, gapQ), or max(gapG, gapQ), similar to [5]. We
define gapQ(sj , sj+1) as sj+1.c− sj .d− 1, which can be interpreted as the count of characters
in the query sequence between the endpoints of the two anchors. Next, we will define two
versions of the co-linear chaining problem that differ in their definition of gapG. In both
versions, gapG(sj , sj+1) is calculated by looking at the count of characters spelled along a
walk in the graph from sj to sj+1. In the first version of the problem formulation, we use
the shortest path from vertex sj .v to sj+1.v to calculate gapG(sj , sj+1).
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Figure 2 An example illustrating a graph, a query sequence, and multiple anchors as input for
co-linear chaining. The sequence of anchors (M [1], M [2], M [4], M [5], M [7], M [8]) forms a valid chain
that visits vertex v4 twice due to a cycle in the graph. The coordinates associated with anchor M [8]
are also highlighted as an example.

▶ Problem 4. Given a query sequence Q, graph G(V, E, σ) and anchors M [1..N ], determine
the optimal chaining score by using the following definition of gapG:

gapG(sj , sj+1) =


sj+1.x− sj .y − 1 + D(sj .v, sj+1.v) sj+1.v ̸= sj .v

sj+1.x− sj .y − 1 sj .v = sj+1.v and sj .y < sj+1.x

sj+1.x− sj .y − 1 + D◦(sj .v) sj .v = sj+1.v and sj .y ≥ sj+1.x,

where (sj , sj+1) is a pair of anchors from M such that sj precedes sj+1.

▶ Lemma 5. Problem 4 can be solved in Θ(|V ||E|+ |V |2 log |V |+ N2) time.

Proof. Compute the shortest distance D(vi, vj) between all pairs of vertices vi, vj ∈ V in
O(|V ||E|+ |V |2 log |V |) time by using Dijkstra’s algorithm from every vertex. Next, compute
D◦(v) as minu∈N+(v) |σ(v)|+ D(u, v) in Θ(|E|) time for all v ∈ V . These computations need
to be done only once for a graph. To solve the chaining problem for a given query sequence,
sort the input anchor array M [1..N ] in non-decreasing order by the component M [·].c. Let
C[1..N ] be a one-dimensional table in which C[j] will be the optimal score of a chain ending
at anchor M [j]. Initialize C[j] as weight(M [j]) for all j ∈ [1, N ]. Subsequently, compute C

in the left-to-right order by using the recursion C[j] = maxM [i]≺M [j]{C[j], weight(M [j])−
gapQ(M [i], M [j])−gapG(M [i], M [j])}. Computing C[j] takes Θ(N) time because precedence
condition can be checked in constant time. Report maxj C[j] as the optimal chaining
score. ◀

The above algorithm is unlikely to scale to large whole-genome sequencing datasets
because it requires Θ(N2) time for the dynamic programming recursion. Motivated by [5],
we will define an alternative definition of gapG. We will approximate the distance between
a pair of vertices by using a path cover of the graph. We will later propose an efficient
algorithm for the revised problem formulation.

Suppose P = {P1, P2, . . . , P|P|} is a path cover of graph G. Consider a pair of vertices
v1, v2 ∈ V such that v1 reaches v2. For each path i ∈ paths(v1), consider the walk starting
from v1 along the edges of path Pi till vertex αi, where vertex αi = v2 if v2 also lies on path
Pi anywhere after v1, i.e., index(v2, i) ≥ index(v1, i), and αi = last2reach(v2, i) otherwise.
If αi ̸= v2, the rest of the walk till v2 is completed by using the shortest path from vertex αi

to v2. Denote DP(v1, v2) as the length of the shortest walk among such |paths(v1)| possible
walks from v1 to v2. Formally, we can write DP(v1, v2) as
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min
i∈paths(v1)

dist2begin(αi, i)− dist2begin(v1, i) + D(αi, v2). (1)

DP(v1, v2) is well defined if v2 is reachable from v1. We set DP(v1, v2) = ∞ if v2 is not
reachable from v1. Finally, if vertex v is part of a proper cycle in G, we define D◦

P(v) as the
length of a specific walk that starts and ends at v, i.e., D◦

P(v) as minu∈N+(v) |σ(v)|+DP(u, v)
for all v ∈ V . D◦

P(v) =∞ if v is not part of any proper cycle.

▶ Problem 6. Given a query sequence Q, graph G(V, E, σ) and anchors M [1..N ], determine
a path cover P of the graph, and the optimal chaining score by using the following definition
of gapG:

gapG(sj , sj+1) =


sj+1.x− sj .y − 1 + DP(sj .v, sj+1.v) sj+1.v ̸= sj .v

sj+1.x− sj .y − 1 sj .v = sj+1.v and sj .y < sj+1.x

sj+1.x− sj .y − 1 + D◦
P(sj .v) sj .v = sj+1.v and sj .y ≥ sj+1.x,

where (sj , sj+1) is a pair of anchors from M such that sj precedes sj+1.

3 Proposed Algorithms

A single experiment typically requires aligning millions of reads to a graph. Therefore, we will
do a one-time preprocessing of the graph that will help reduce the runtime of our chaining
algorithm for solving Problem 6.

3.1 Algorithms for Preprocessing the Graph
We compute the following quantities during the preprocessing stage:

A path cover P of G(V, E, σ). We require the path cover to be small (in the number
of paths). However, determining the minimum path cover in a graph with cycles is an
NP -hard problem. We will discuss an efficient heuristic for determining a small path
cover.
A bijective function rank : V → [1, |V |] that specifies a linear ordering of vertices. The
ordering should satisfy the following property: If vertex v2 occurs anywhere after v1 in a
path in P, then rank(v2) > rank(v1) for all v1, v2 ∈ V . Such an ordering may not exist
for an arbitrary path cover but it will exist for the path cover chosen by us.
last2reach(v, i), D(last2reach(v, i), v), dist2begin(v, i) and D◦

P(v) for all v ∈ V and
i ∈ [1, |P|]. These values will be frequently used by our chaining algorithm to compute
gap costs.

We propose the following heuristic for computing a small path cover of graph G(V, E, σ). We
derive a DAG G′(V, E′, σ) from G by removing a small number of edges. Next, we determine
the minimum path cover P of G′ in O(|P||E| log |V |) time by using a known algorithm [33].
Our intuition is that removing as few edges as possible will provide a close to optimal path
cover of G. One way to compute G′ is to use standard heuristic-based solvers for minimum
feedback arc set (FAS) problem, e.g., [10], but we empirically observed that this approach
could sometimes disconnect a weak component of a graph, leading to a large path cover.
Therefore, instead of using FAS heuristics, we use a simple idea where we identify all strongly
connected components [50] and perform a depth-first search within each strong component
to remove back edges. This approach provides a DAG that has the same number of weak
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components as G while removing a small number of edges in practice, thus resulting in a
small path cover. Next, we compute a function rank for all vertices ∈ V by topological
sorting of vertices in DAG G′.

SCC1 SCC2

Figure 3 An illustration of the proposed heuristic used to convert a cyclic graph into a DAG.
Red-dotted edges represent the removed back edges in each strongly connected component (SCC).

If there is no cycle in G, then last2reach(v, i) and D(last2reach(v, i), v) can be com-
puted in O(|P||E|) time by using dynamic programming algorithms that process vertices
in topological order [5, 33]. We extend these ideas to cyclic graphs by designing iterative
algorithms. We will formally prove that as the iterations proceed, the output gets closer to
the desired solution. Our approach to computing last2reach(v, i) is outlined in Algorithm 1.
If last2reach(v, i) exists, the algorithm determines it in terms of its rank. We maintain an
array L2R to save intermediate results. L2R(v, i) is initialised to rank(v) if v lies on path
Pi. In each iteration, we revise L2R(v, i) by probing L2R(u, i) for all u ∈ N−(v). In Lemma
7, we prove the correctness of this algorithm by arguing that all |P||V | values in array L2R

converge to their optimal values through label propagation in ≤ |V | iterations. Let Γl denote
the count of iterations used by the algorithm. L2R(v, i) remains 0 if last2reach(v, i) does
not exist.

Algorithm 1 O(Γl|P||E|) time algorithm to compute last2reach(v, i) for all v ∈ V and
i ∈ [1, |P|].

1 Initialize L2R(v, i) to rank(v) if i ∈ paths(v) and 0 otherwise for all v ∈ V and i ∈ [1, |P|]
2 Initialize L2Rprev(v, i) to 0 for all v ∈ V and i ∈ [1, |P|]
3 /*L2R and L2Rprev will hold the values of current and previous iteration respectively*/
4 while ∃v ∈ V, ∃i ∈ [1, |P|], L2R(v, i) ̸= L2Rprev(v, i) do
5 for i ∈ [1, |P|] do
6 for v ∈ V in the increasing order of rank(v) do
7 L2Rprev(v, i)← L2R(v, i)
8 L2R(v, i)← maxu∈N−(v)∪v L2R(u, i)
9 end

10 end
11 end

▶ Lemma 7. In Algorithm 1, L2R(v, i) converges to the rank of last2reach(v, i) in at most
|V | iterations for all v ∈ V and i ∈ [1, |P|].

Proof. A vertex v2 ∈ V is said to be reachable within k hops from vertex v1 ∈ V if there exists
a path with ≤ k edges from v1 to v2. We will prove by induction that Algorithm 1 satisfies
the following invariant: After j iterations, L2R(v, i) has converged to rank(last2reach(v, i))
if last2reach(v, i) exists and vertex v is reachable within j hops from last2reach(v, i) in G.
This argument will prove the lemma because vertex v2 ∈ V must be reachable within |V | − 1
hops from v1 ∈ V if v2 is reachable from v1. Base case (j = 0) holds due to initialisation
of L2R(v, i) in Line 1. If v lies 0-hop from last2reach(v, i), i.e., v = last2reach(v, i),
then v must lie on path Pi and rank(last2reach(v, i)) = rank(v). Next, assume that the
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invariant is true for j = n. Now consider the situation after n + 1 iterations. Suppose
v ∈ V is reachable within n + 1 hops from last2reach(v, i). Then, at least one neighbor
u ∈ N−(v) of vertex v exists which is reachable within n hops from last2reach(v, i) and
last2reach(u, i) = last2reach(v, i). Based on our assumption, L2R(u, i) must have already
converged to rank(last2reach(u, i)) before (n+1)th iteration. Therefore, Line 8 in Algorithm
1 ensures that L2R(v, i)← rank(last2reach(v, i)) after (n + 1)th iteration. ◀

It is possible to design an adversarial example where the algorithm uses Ω(|V |) iterations.
However, in practice, we expect the algorithm to converge quickly. Each iteration of Algorithm
1 requires O(|P||E|) time. Therefore, the total worst-case time of Algorithm 1 is bounded
by O(Γl|P||E|). A similar approach is applicable to compute D(last2reach(v, i), v) for all
v ∈ V and i ∈ [1, |P|] (Algorithm 2). We use Γd to denote the count of iterations needed in
Algorithm 2. Similar to parameter Γl in Algorithm 1, Γd is also upper bounded by |V |. We
will later show empirically that Γl ≪ |V | and Γd ≪ |V | in practice.

Algorithm 2 O(Γd|P||E|) time algorithm to compute D(last2reach(v, i), v) for all v ∈ V

and i ∈ [1, |P|].

1 Initialize D(last2reach(v, i), v) to 0 if last2reach(v, i) = v and ∞ otherwise
2 Initialize Dprev(last2reach(v, i), v) to ∞
3 /*Arrays D and Dprev will hold the values of current and previous iteration respectively*/
4 while ∃v ∈ V, ∃i ∈ [1, |P|], D(last2reach(v, i), v) ̸= Dprev(last2reach(v, i), v) do
5 for i ∈ [1, |P|] do
6 for v ∈ V in the increasing order of rank(v) do
7 Dprev(last2reach(v, i), v)← D(last2reach(v, i), v)
8 if last2reach(v, i) exists and last2reach(v, i) ̸= v then
9 D(last2reach(v, i), v)←

minu:u∈N−(v),last2reach(u,i)=last2reach(v,i) D(last2reach(u, i), u) + |σ(u)|
10 end
11 end
12 end
13 end

Array dist2begin is trivially precomputed in O(|P||V |) time. D◦
P(v) is computed as

minu∈N+(v) |σ(v)|+ DP(u, v) based on its definition. DP(u, v) can be calculated by using
Equation 1 for any u, v ∈ V in O(|P|) time. Accordingly, computation of D◦

P(v) for all v ∈ V

is done in O(|P||E|) time. The following lemma summarises the worst-case time complexity
of all the preprocessing steps.

▶ Lemma 8. Preprocessing of graph G(V, E, σ) requires O((Γl + Γd + log |V |)|P||E|) time.

3.2 Co-linear Chaining Algorithm
We propose an iterative chaining algorithm to address Problem 6. The proposed algorithm
builds on top of the known algorithms for DAGs [5, 33]. Similar to [33], we maintain one
search tree Ti for each path Pi ∈ P . Given anchors M [1..N ], our algorithm will return array
C[1..N ] such that C[j] corresponds to the optimal score of a chain that ends at anchor M [j].

If there are no cycles in G, then one iteration of Algorithm 3 suffices to compute the
optimal chaining scores. For a DAG, a single iteration of Algorithm 3 works equivalently to
the known algorithm for DAGs in [5]. In this case, Algorithm 3 would essentially visit the
vertices of graph G in topological order while ensuring that C[j] is optimally solved after
M [j].v is visited. To solve the chaining problem on cyclic graphs, we design an iterative
solution where chaining scores C[1..N ] get closer to optimal values in each iteration. We will
use Γc to specify the total count of iterations.
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Algorithm 3 O(ΓcN |P| log N + N |P| log N |P|) time chaining algorithm.
Input: Array of weighted anchors M [1..N ], preprocessed G(V, E, σ)
Output: Array C[1..N ] such that C[j] equals score of an optimal chain that ends at anchor M [j]

1 Initialize search tree Ti, for all i ∈ [1, |P|] using keys {M [j].d | 1 ≤ j ≤ N} and values −∞
2 Initialize C[j] as weight(M [j]) and Cprev[j]← 0, for all j ∈ [1, N ]
3 /* Create array Z that stores tuples of the form (v, pos, task, anchor, path) where v ∈ V ,

pos ∈ N, task ∈ {1, 2, 3}, anchor ∈ [1, N ] and path ∈ [1, |P|]*/
4 for j ← 1 to N do
5 for i← 1 to |P| do
6 if i ∈ paths(M [j].v) then
7 Z.push(M [j].v, M [j].x, 1, j, i)
8 Z.push(M [j].v, M [j].y, 2, j, i)
9 end

10 if last2reach(M [j].v, i) exists and last2reach(M [j].v, i) ̸= M [j].v then
11 v ← last2reach(M [j].v, i)
12 Z.push(v, |σ(v)|+ 1, 1, j, i)
13 end
14 if M [j].v is contained in a proper cycle in G and i ∈ paths(M [j].v) then
15 Z.push(v, |σ(M [j].v)|+ 1, 3, j, i)
16 end
17 end
18 end
19 while ∃j ∈ [1, N ], Cprev[j] ̸= C[j] do
20 Cprev[j]← C[j], for all j ∈ [1, N ]
21 for z ∈ Z in lexicographically ascending order based on the key (rank(v), pos, task) do
22 j ←− z.anchor, i←− z.path, v ←− z.v, wt←− weight(M [j])
23 if z.task = 1 then
24 gap←− (M [j].x + Dist2begin(v, i) + D(v, M [j].v) + M [j].c− 2)
25 C[j]←− max(C[j], wt + Ti.RMQ(0, M [j].c)− gap)
26 end
27 else if z.task = 2 then
28 Ti.update(M [j].d, C[j] + M [j].y + Dist2begin(v, i) + M [j].d)
29 end
30 else if z.task = 3 then
31 gap◦ ←− (M [j].x + Dist2begin(v, i) + D◦

P(v) + M [j].c− 2)
32 C[j]←− max(C[j], wt + Ti.RMQ(0, M [j].c)− gap◦)
33 Ti.update(M [j].d, C[j] + M [j].y + Dist2begin(v, i) + M [j].d)
34 end
35 end
36 Reset all values in search tree Ti to −∞, for all i ∈ [1, |P|]
37 end

An overview of Algorithm 3 is as follows. At the beginning of each iteration, all search
trees Tis are filled with keys {M [j].d | 1 ≤ j ≤ N} and values −∞. The values will be used
to specify the priorities of anchors based on their scores C[ ] and coordinates. Each iteration
of our algorithm processes v ∈ V in the increasing order of rank(v). While processing v,
Algorithm 3 performs three types of tasks:
1. The first type of task is to revise chaining scores {C[j] : M [j].v = v} corresponding to

the anchors that lie on vertex v. We also revise scores corresponding to those anchors
that are located on vertex u ̸= v such that v is the last vertex on a path ∈ P to reach u.
This is achieved by querying search trees Ti for all i ∈ paths(v). In all these tasks, we
use DP(v1, v2) to calculate distance from vertex v1 ∈ V to vertex v2 ∈ V .

2. Suppose score C[j] is revised by using the first category tasks. The second type of task is
to update the value of key M [j].d in search trees Ti for all i ∈ paths(v). The value gets
updated if the new value is greater than the previously stored value (Lemma 1).

3. The third type of task is to again update scores {C[j] : M [j].v = v} and search trees if v

is part of a proper cycle in G. Here we use D◦
P(v) to calculate the distance of vertex v to

itself while determining gap costs.
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Lines 4–18 in Algorithm 3 build array Z that contains up to 4N |P| tuples corresponding
to all the above type of tasks. Array Z is sorted in O(N |P| log N |P|) time to ensure that
all tasks are executed in the proper order (Line 21). Next, we start the iterative procedure.
Lines 19–33 form a single iteration of the algorithm. These tasks lead to updates on score
array C and the search trees. The arithmetic operations in Lines 24, 25, 31, 32 enable
calculation of gap cost based on our definitions of gapG and gapQ in Section 2. Each
iteration requires O(N |P| log N) time because each task corresponds to either update or
RMQ operation on a search tree of size ≤ N . In Lemma 9, we prove that array C[1..N ]
converges to optimality in at most N iterations. We will also prove that Ω(N) iterations are
required for convergence in the worst case.

▶ Lemma 9. In Algorithm 3, co-linear chaining scores C[1..N ] converge to optimality in
≤ N iterations.

Proof. C[j] always specifies the score of a chain of size ≥ 1 that ends at anchor M [j]
throughout the execution of the algorithm. Let fi(j) denote the optimal chaining score
ending at anchor M [j] over all chains of size ≤ i. We will prove by induction that before ith

iteration begins, C[j] ≥ fi(j) for all j ∈ [1, N ]. It suffices to prove this statement because
the size of a chain must be ≤ N . Base case (i = 1) holds due to the initialization step in
Line 2. Next, assume that before xth iteration begins, C[j] ≥ fx(j) holds for all j ∈ [1, N ].
We will prove that the invariant holds for iteration x + 1.

Let Cx[j] and Cx+1[j] denote the intermediate values of C[j] at the start of xth and (x+1)th

iteration, respectively. From Lines 25 and 32, we know Cx[j] ≤ Cx+1[j]. If fx+1(j) = fx(j),
then Cx+1[j] ≥ Cx[j] ≥ fx(j) = fx+1(j). Next consider the other case when fx+1(j) >

fx(j). Suppose the optimal chain corresponding to fx+1(j) is M [β1], M [β2], . . . , M [βx], M [j]
where βi ∈ [1, N ] for all i ∈ [1, x]. Accordingly, fx+1(j) = weight(M [j]) + fx(βx) −
gapQ(M [βx], M [j])−gapG(M [βx], M [j]). Based on our induction hypothesis, C[βx] ≥ fx(βx)
at the start of the xth iteration. Each iteration of Algorithm 3 processes v ∈ V by increasing
the order of rank(v). To prove that Cx+1[j] ≥ fx+1(j), we have the following four cases to
consider:

Case 1: rank(M [βx].v) < rank(M [j].v). The algorithm processes vertex M [βx].v before
vertex M [j].v. When M [βx].v is processed during the xth iteration, the value of key
M [βx].d gets updated in search trees (Line 28). C[j] gets updated later. At the end of the
xth iteration, C[j] ≥ weight(M [j]) + fx(βx)− gapQ(M [βx], M [j])− gapG(M [βx], M [j]).
Therefore, Cx+1[j] ≥ fx+1(j).
Case 2: rank(M [βx].v) > rank(M [j].v). In this case, C[j] may not meet the desired
threshold after M [j].v is processed because M [βx].v is processed later than M [j].v. How-
ever, M [j].v must be reachable from M [βx].v using walks through {last2reach(M [j].v, i) :
i ∈ paths(M [βx].v)}. Therefore, C[j] gets updated again due to tuples created in Line
12. This will ensure that Cx+1[j] ≥ fx+1(j).
Case 3: rank(M [βx].v) = rank(M [j].v) and M [βx].y < M [j].x. rank(M [βx].v) =
rank(M [j].v) implies M [βx].v = M [j].v. The ordering of tuples based on pos in Line 21
ensures that the value of key M [βx].d gets updated in search trees, and C[j] gets updated
afterward.
Case 4: rank(M [βx].v) = rank(M [j].v) and M [βx].y ≥ M [j].x. The tuples created in
Line 15 ensure that C[j] is updated again after finishing the processing of vertex M [j].v.
In this case, the gap between anchors M [βx] and M [j] is computed by considering the
distance of vertex M [j].v to itself, i.e., D◦

P(M [j].v). ◀
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Accordingly, the time complexity of Algorithm 3 is O(ΓcN |P| log N + N |P| log N |P|). In
our experiments, we will highlight that parameters Γc and |P| are small in practice. The
space complexity of the algorithm is O(N |P|+ |V ||P|) due to construction of array Z, the
sorting operation on array Z, |P| search trees and the precomputed data structures. Next,
we show that O(N) upper bound on the number of iterations is tight.

▶ Lemma 10. The count of iterations required by Algorithm 3 is Ω(N) in the worst-case.

Proof. An example where Algorithm 3 requires Ω(N) iterations is shown in Figure 4.
The graph has two vertices forming a cycle. Assume that weight of all N input an-
chors is equal and sufficiently high to outweigh the gap cost between any pair of anchors.
As M [1] ≺ M [2] ≺ M [3] . . . ≺ M [N ], the sequence of anchors in the optimal chain is
(M [1], M [2], M [3], . . . , M [N − 1], M [N ]). After the first iteration of the algorithm, the size
of the highest scoring chain computed until then will be N

2 + 1. The size will grow slowly
by one in each subsequent iteration. A step-by-step dry run of the algorithm is left for the
journal version of this paper. ◀

A T C C T T A C G........................C C A T A C A T T  

M[1]

T A G T C C A T G........................G A C T A A C A T  

A T C T A G C T T T C C A C G A T G.....................................................................C C A G A C T A C T A A A T T C A T  

M[N]M[3]
M[N-1]

M[2] M[4]
M[N-3]

M[N-2]
M[N-4]

M[N-5]
M[6]

M[5]

Figure 4 A worst-case example for Algorithm 3 where it requires Ω(N) iterations to converge.

4 Implementation

We have implemented the proposed algorithm in C++ (https://github.com/at-cg/PanAligner).
We call our software as PanAligner. PanAligner is developed as an end-to-end long-read
aligner for cyclic pangenome graphs. We borrow open-source code from Minichain [5],
Minigraph [24], and GraphChainer [30] for other necessary components besides co-linear
chaining. While using PanAligner, a user needs to provide a graph (GFA format) and a set of
reads or contigs (fasta or fastq format) as input. We use the standard data structure to
store the pangenome graph while accounting for double stranded nature of DNA sequences.
For each vertex v ∈ V , we also add another vertex v̄ whose string label is the reverse
complement of string σ(v). For each edge u→ v ∈ E, we add the complementary edge v̄ → ū.
This enables read alignment irrespective of which strand the read was sequenced from.

For the benchmark, we built pangenome graphs by using Minigraph v0.20 [24]. Minigraph
augments large insertion, deletion, and inversion variants into the graph while incrementally
aligning each input assembly. Inversion variants can introduce cycles in the graph because
Minigraph augments them by linking the vertices from opposite strands. The graph contains
multiple weakly connected components because the components corresponding to different
chromosomes are never linked during graph construction. Similar to [5, 30], we consider each
weak component independently during both the preprocessing and co-linear chaining stages
to enable efficient multithreading and memory optimization.
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We defined our problem formulation to produce an optimal chain, but we actually compute
multiple best chains, similar to [5, 23, 24]. This is because there can be multiple high-scoring
alignments of a read on the graph. PanAligner also outputs a mapping quality score between 0
to 60 to indicate the confidence score for each alignment [25]. We used seeding and extension
code from Minigraph [24]. Seeding is done by identifying minimizer matches [45] between
vertex labels of the graph and the read. The extension code produces the final base-to-base
alignment by joining the chained anchors [52]. We used code from GraphChainer [30] to
compute the minimum path cover of a DAG and range queries.

5 Experiments

Benchmark Datasets

We constructed four cyclic pangenome graphs by using subsets of publicly available 95
haplotype-resolved human genome assemblies [26, 37]. These graphs were generated using
Minigraph v0.20 [24]. We used CHM13 human genome assembly [37] as the starting sequence
during graph construction in all four graphs. We refer to these graphs as 10H, 40H, 80H,
and 95H, where the prefix integer represents the count of haplotypes in each graph. The
properties of these graphs are provided in Table 1.

Table 1 Properties of four cyclic pangenome graphs that were used for evaluation.

Graph |V| |E| No. of weak
components

No. of structural
variants

N50 length of
vertex labels (kb)

10H 283,296 406,292 30 61,523 225
40H 679,846 978,122 28 149,163 127
80H 1,106,286 1,594,980 26 244,372 85
95H 1,224,853 1,765,222 26 270,888 79

Evaluation Methodology

We simulated long reads using PBSIM2 v2.0.1 [39] from CHM13 assembly with N50 length
10 kb, 0.5× sequencing coverage and 5% error-rate to approximately mimic the properties of
long-reads. We labeled the IDs of the simulated reads with their true interval coordinates
in the CHM13 assembly for correctness evaluation. To confirm the correctness of a read
alignment, we used similar criteria from prior studies [5, 23, 24]. We require that the reported
walk corresponding to a correct alignment should only use the vertices corresponding to
the CHM13 assembly in the graph, and it should overlap with the true walk. We used
paftools [23] to automate this evaluation. By default, it requires the overlapping portion
to be at least 10% of the union of the true and the reported walk length. We executed all
experiments on a computer with AMD EPYC 7763 64-core processor and 512 GB RAM. We
ran each aligner using 32 threads to leverage the multi-threading capabilities of the tested
aligners. All aligners process reads in parallel. We used the /usr/bin/time -v command to
measure wall clock time and peak memory usage.

Size of Path Cover and Count of Iterations

Finding a suitable path cover P of the input graph such that |P| ≪ |V | is a crucial step in
our proposed framework because the scalability of our algorithms depends on this parameter.
We discussed a heuristic to compute path cover in Section 3.1 because determining minimum
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path cover in general graphs is NP -hard. Table 2 shows the sizes of path covers computed
by our heuristic in all four graphs. Recall that our algorithms process the weakly connected
components of a graph independently. In each graph, we indicate the size of the path cover
as a range because path covers vary per component. The results show that our heuristic is
effective in finding a small path cover (in the number of paths).

Table 2 All four graphs have multiple weakly connected components. Therefore, the size of the
identified path cover of each graph is presented as a range. The other columns show the statistics for
the number of anchors and the number of iterations used by our iterative algorithms (Algorithms 1,
2, 3). The statistics were gathered while aligning simulated long reads to cyclic pangenome graphs.

Graph
Size of Number of Number of iterations

path cover anchors Array last2reach Array D Chaining
(min-max) Mean Max Mean Max Mean Max Mean Max

10H 1-20 10,900 309,591 2.0 4 2.0 5 2.3 77
40H 1-36 10,850 309,603 2.0 4 2.0 5 2.4 72
80H 1-49 10,804 309,364 3.0 4 3.0 5 2.4 61
95H 1-59 10,798 309,367 3.0 4 3.0 5 2.4 64

The number of anchors N that were provided as input to the co-linear chaining algorithm
varies per read. We report the mean and maximum value in Table 2. Observe that N does
not change much with increasing haplotype count. Next, we evaluate the count of iterations
Γl, Γd used by our graph preprocessing algorithms (Algorithms 1–2) and also report them
as a range for each graph. These algorithms compute last2reach and D arrays. Observe
that the iteration count is significantly smaller in practice than the proven upper limit of |V |
(Lemma 7). This is because the worst-case situation is not observed in practice. Accordingly,
there is minimal time overhead during the preprocessing phase.

The count of iterations Γc required by our chaining algorithm (Algorithm 3) varies per
component as well as per read. We collect the iteration count statistics as follows. For a
single read, we define the iteration count as the maximum number of iterations used over
all components. Based on this definition, we report the average and the maximum count
over all reads in Table 2. Observe that the average count is < 2.5 using all four graphs. The
maximum count is < 100. These numbers are again significantly better compared to the
upper bound from Lemma 9.

Alignment of Simulated Reads to Cyclic Graphs

We assessed the performance of PanAligner against two sequence-to-graph aligners, Minigraph
v2.20 [24] and GraphAligner v1.0.17b [42], that can handle cycles. Unlike PanAligner,
Minigraph and GraphAligner use heuristics to join anchors. Minichain [5] and Graph-
Chainer [30] were excluded from this comparison because they do not support cyclic graphs.

We highlight the accuracy, runtime, and memory usage of different aligners using graphs
10H and 95H in Tables 3 and 4, respectively. Observe that PanAligner outperformed
Minigraph and GraphAligner in terms of accuracy, i.e., the fraction of correctly aligned
reads. This advantage is even more apparent if low-confidence alignments with mapping
quality < 10 are ignored. We show the comparison plots in Figure 5. Both PanAligner and
Minigraph left a small fraction of reads unaligned. This may be because (i) both methods
drop high-frequency minimizer matches, and (ii) they do not consider low-scoring chains for
the extension stage. In contrast, GraphAligner achieved higher recall by aligning all reads,
but this came at the expense of lower accuracy.
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Table 3 A comparison of the performance of long-read aligners using the 10H graph. MQ stands
for mapping quality.

PanAligner Minigraph GraphAligner
Indexing time (sec) 96 57 238
Alignment time (sec) 2924 46 4928
Memory usage (GB) 23.14 23.19 24.68
Unaligned reads 1.18% 2.17% 0%
Incorrectly Aligned reads 0.79% 1.19% 1.47%
Unaligned reads (MQ≥10) 3.51% 5.85% 0.78%
Incorrectly Aligned reads (MQ≥10) 0.20% 0.32% 0.91%

Table 4 A comparison of the performance of long-read aligners using the 95H graph. MQ stands
for mapping quality.

PanAligner Minigraph GraphAligner
Indexing time (sec) 83 61 272
Alignment time (sec) 9276 58 5170
Memory usage (GB) 43.6 24.68 26.1
Unaligned reads 1.60% 2.24% 0%
Incorrectly Aligned reads 1.28% 1.93% 2.98%
Unaligned reads (MQ≥10) 4.20% 6.21% 0.84%
Incorrectly Aligned reads (MQ≥10) 0.57% 0.85% 2.33%

Table 2 shows that the size of the path cover computed by our heuristic increases by
roughly a factor of three from 10H to 95H. We can see how this parameter proportion-
ally affects PanAligner’s runtime in Tables 3 and 4. PanAligner’s runtime is significantly
higher than Minigraph for both 10H and 95H graphs because it uses an iterative algorithm.
Runtimes of PanAligner and GraphAligner are in the same order of magnitude. PanAligner’s
computational needs are within practical limits, thus making it an effective method for
accurately aligning long reads or contigs to cyclic pangenome graphs. We observe a consistent
drop in alignment accuracy of all three aligners with increasing haplotype count (Figure 5).
This is likely because the number of combinatorial paths to which a read can align grows
exponentially with respect to the haplotype count.

(a) 10H. (b) 40H. (c) 95H.

Figure 5 The plots show the fraction of aligned reads and the accuracy obtained by using all
the aligners on graphs 10H, 40H, and 95H. These plots were generated by varying mapping quality
cutoffs from 0 to 60. X-axis in these plots uses a logarithmic scale to indicate the percentage of
incorrectly aligned reads.
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Alignment of Simulated Reads to Acyclic Graphs

We also tested PanAligner for acyclic pangenome graphs. We followed the same procedure
as [5] to generate a DAG from 95 haplotype-phased assemblies and refer to this graph
as 95H-DAG. This graph was generated by disabling inversion variants during graph
construction in Minigraph [24]. 95H-DAG has 1.2M vertices and 1.8M edges. We also include
Minichain v1.0 [5] and GraphChainer v1.0.2 [30] in this comparison. GraphChainer uses
a co-linear chaining algorithm for DAGs without penalizing gaps. For DAG inputs, the
problem formulation in PanAligner becomes equivalent to the one used in Minichain [5]. A
single iteration of our algorithms suffices for DAGs. Therefore, we simply check if the input
graph is a DAG at the preprocessing stage, and run a single iteration of Algorithms 1–3.
PanAligner achieves similar performance as Minichain in terms of speed and accuracy for
DAGs (Table 5). It compares favorably to other methods in terms of accuracy.

Table 5 A comparison of the performance of long-read aligners using the 95H-DAG graph. MQ
stands for mapping quality.

Pan- Minichain Mini- Graph- Graph-
Aligner graph Aligner Chainer

Indexing time(sec) 78 77 62 276 575
Alignment time(sec) 2406 2515 50 5136 23710
Memory usage (GB) 30.04 25.61 24.79 26.12 185.83
Unaligned reads 1.62% 1.62% 2.23% 0% 0%
Incorrectly Aligned reads 1.28% 1.29% 1.92% 3.06% 4.93%
Unaligned reads (MQ≥10) 4.75% 4.75% 6.26% 0.85% 0%
Incorrectly Aligned reads (MQ≥10) 0.53% 0.54% 0.84% 2.41% 4.93%

6 Discussion

Co-linear chaining is a fundamental technique for scalable sequence alignment. Several classes
of structural variants, such as duplications, tandem repeat polymorphism, and inversions,
are best represented as cycles in pangenome graphs [41, 26]. Existing alignment software
designed for cyclic graphs are based on heuristics to join anchors [24, 42]. We proposed
the first practical problem formulation and an efficient algorithm for co-linear chaining on
pangenome graphs with cycles. We gave a rigorous analysis of the algorithm’s time complexity.
The proposed algorithm serves as a useful generalization of the previously known ideas for
DAGs [5, 29, 30, 33]. We implemented the proposed algorithm as an open-source software
PanAligner. We demonstrated that PanAligner scales to large pangenome graphs built by
using haplotype-phased human genome assemblies. It offers superior alignment accuracy
compared to existing methods.

In our formulation, we did not allow anchors to span two or more vertices in a graph
for simplicity of notations, but the proposed ideas can be generalized. PanAligner software
borrows seeding logic from Minigraph [24], which also restricts anchors within a single vertex.
This simplification is appropriate if the graph only includes structural variants (> 50 bp).
The current version of PanAligner software may not be suitable for graphs which include
substitution and indel variants.

Future work will be directed in the following directions. First, we will test the performance
of PanAligner on pangenome graphs that are constructed by using alternative methods,
e.g., [16, 19, 26]. Second, we will explore formulations for haplotype-constrained co-linear
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chaining to control the exponential growth of combinatorial search space with the increasing
number of haplotypes [34, 48]. Third, we will generalize the proposed techniques for aligning
reads to long-read genome assembly graphs which also contain cycles. It will be interesting
to understand whether the small width assumption is appropriate for assembly graphs.
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Abstract
FM-indexes are a crucial data structure in DNA alignment, but searching with them usually takes
at least one random access per character in the query pattern. Ferragina and Fischer [6] observed in
2007 that word-based indexes often use fewer random accesses than character-based indexes, and thus
support faster searches. Since DNA lacks natural word-boundaries, however, it is necessary to parse
it somehow before applying word-based FM-indexing. Last year, Deng et al. [4] proposed parsing
genomic data by induced suffix sorting, and showed the resulting word-based FM-indexes support
faster counting queries than standard FM-indexes when patterns are a few thousand characters or
longer. In this paper we show that using prefix-free parsing – which takes parameters that let us
tune the average length of the phrases – instead of induced suffix sorting, gives a significant speedup
for patterns of only a few hundred characters. We implement our method and demonstrate it is
between 3 and 18 times faster than competing methods on queries to GRCh38. And was consistently
faster on queries made to 25,000, 50,000 and 100,000 SARS-CoV-2 genomes. Hence, it is very clear
that our method accelerates the performance of count over all state-of-the-art methods with a minor
increase in the memory.
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1 Introduction

The FM-index [5] is one of the most famous data structures in bioinformatics as it has been
applied to countless applications in the analysis of biological data. Due to the long-term
impact of this data structure, Burrows, Ferragina, and Manzini earned the 2022 ACM Paris
Kanellakis Theory and Practice Award2. It is the data structure behind important read
aligners – e.g., Bowtie [10] and BWA [11] – which take one or more reference genomes
and build the FM-index for these genomes and use the resulting index to find short exact
alignments between a set of reads and the reference(s) which then can be extended to
approximate matches [10, 11]. Briefly, the FM-index consists of a sample of the suffix array
(denoted as SA) and the Burrows–Wheeler transform (BWT) array. Given an input string S

and a query pattern Q, count queries that answer the number of times the longest match of Q

appears in S, can be efficiently supported using the BWT. To locate all of these occurrences
the SA sample is needed. Hence, together the FM-index efficiently supports both count and
locate queries. We mathematically define the SA and BWT in the next section.

There has been a plethora of research papers on reducing the size of the FM-index (see,
e.g., [13, 9, 7]) and on speeding up queries. The basic query, count, returns the number of
times a pattern Q appears in the indexed text S, but usually requires at least |Q| random
accesses to the BWT of S, which are usually much slower than the subsequent computations
we perform on the information those accesses return. More specifically, a count query for
Q use rank queries at |Q| positions in the BWT; if we answer these using a single wavelet
tree for the whole BWT, then we may use a random access for every level we descend in the
wavelet tree, or Ω(|Q| log σ) random access in all, where σ is the size of the alphabet; if we
break the BWT into blocks and use a separate wavelet tree for each block [9], we may need
only one or a few random accesses per rank query, but the total number of random accesses is
still likely to be Ω(|Q|). As far back as 2007, Ferragina and Fischer [6] addressed compressed
indexes’ reliance on random access and demonstrated that word-based indexes perform fewer
random accesses than character-based indexes: “The space reduction of the final word-based
suffix array impacts also in their query time (i.e. less random access binary-search steps!),
being faster by a factor of up to 3.”

Thus, one possibility of accelerating the random access to genomic data – where it is
widely used – is to break up the sequences into words or phrases. In light of this insight,
Deng et al. [4] in 2022 applied a grammar [18] that factorizes S into phrases based on the
leftmost S-type suffixes (LMS) [17]. Unfortunately, one round of that LMS parsing leads to
phrases that are generally too short, so they obtained speedup only when Q was thousands
of characters. The open problem was how to control the length of phrases with respect to
the input to get longer phrases that would enable larger advances in the acceleration of the
random access.

Here, we apply the concept of prefix-free parsing to the problem of accelerating count in
the FM-index. Prefix-free parsing uses a rolling hash to first select a set of strings (referred
to as trigger strings) that are used to define a parse of the input string S; i.e., the prefix-free

2 https://awards.acm.org/kanellakis

https://awards.acm.org/kanellakis
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parse is a parsing of S into phrases that begin and end at a trigger string and contain
no other trigger string. All unique phrases are lexicographically sorted and stored in the
dictionary of the prefix-free parse, which we denote as D. The prefix-free parse can be stored
as an ordered list of the phrases’ ranks in D. Hence, prefix-free parsing breaks up the input
sequence into phrases, whose size is more controllable by the selection of the trigger strings.
This leads to a more flexible acceleration than Deng et al. [4] obtained.

We assume that we have an input string S of length n. Now suppose we build an FM-index
S, an FM-index for the parse P, and a bitvector B of length n with 1’s marking characters
in the BWT of S that immediately precede phrase boundaries in S, i.e., that immediately
precede a trigger string. We note that all the 1s are bunched into at most as many runs as
there are distinct trigger strings in S. Also, as long as the ranks of the phrases are in the
same lexicographic order as the phrases themselves, we can use the bitvector to map from the
interval in the BWT of S for any pattern starting with a trigger string to the corresponding
interval in the BWT of P, and vice versa. This means that, given a query pattern Q, we can
backward search for Q character by character in the FM-index for S until we hit the left end
of the rightmost trigger string in Q, then map into the BWT of P and backward search for
Q phrase by phrase until we hit the left end of the leftmost trigger string in Q, then map
back into the BWT of S and finish backward searching character by characters again.

We implement this method, which we refer to as PFP-FM, and extensively compare against
the FM-index implementation in sdsl [8], RLCSA [19], RLFM [13, 12], and FIGISS [4] using
sets of SARS-CoV-2 genomes taken from the NCBI website, and the Genome Reference
Consortium Human Build 38 with varying query string lengths. When we compare PFP-FM
to FM-index in sdsl using 100,000 SARS-CoV-2 genomes, we witnessed that PFP-FM was
able to perform between 2.1 and 2.8 more queries. In addition, PFP-FM was between 64.38%
and 74.12%, 59.22% and 78.23%, and 49.10% and 90.70% faster than FIGISS, RLCSA, and
RLFM, respectively on 100,000 SARS-CoV-2 genomes. We evaluated the performance of
PFP-FM on the Genome Reference Consortium Human Build 38, and witnessed that it was
between 3.86 and 7.07, 2.92 and 18.07, and 10.14 and 25.46 times faster than RLCSA, RLFM,
and FIGISS, respectively. With respect to construction time, PFP-FM had the most efficient
construction time for all SARS-CoV-2 datasets and was the second fastest for Genome
Reference Consortium Human Build 38. All methods used less than 60 GB for memory for
construction on the SARS-CoV-2 datasets, making the construction feasible on any entry level
commodity server – even the build for the 100,000 SARS-CoV-2 dataset. Construction for the
Genome Reference Consortium Human Build 38 required between 26 GB and 71 GB for all
methods, with our method using the most memory. In summary, we develop and implement
a method for accelerating the FM-index, and achieve an acceleration between 2 and 25 times,
with the greatest acceleration witnessed with longer patterns. Thus, accelerated FM-index
methods – such as the one developed in this paper – are highly applicable to finding very long
matches (125 to 1,000 in length) between query sequences and reference databases. As reads
get longer and more accurate (i.e., Nanopore data), we will soon be prepared align long reads
to reference databases with efficiency that surpasses traditional FM-index based alignment
methods. The source code is publicly available at https://github.com/marco-oliva/afm.

2 Preliminaries

2.1 Basic Definitions
A string S of length n is a finite sequence of symbols S = S[0..n − 1] = S[0] · · · S[n − 1] over
an alphabet Σ = {c1, . . . , cσ}. We assume that the symbols can be unambiguously ordered.
We denote by ε the empty string, and the length of S as |S|. Given a string S, we denote
the reverse of S as rev(S), i.e., rev(S) = S[n − 1] · · · S[0].

WABI 2023
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We denote by S[i..j] the substring S[i] · · · S[j] of S starting in position i and ending in
position j, with S[i..j] = ε if i > j. For a string S and 0 ≤ i < n, S[0..i] is called the i-th
prefix of S, and S[i..n − 1] is called the i-th suffix of S. We call a prefix S[0..i] of S a proper
prefix if 0 ≤ i < n − 1. Similarly, we call a suffix S[i..n − 1] of S a proper suffix if 0 < i < n.

Given a string S, a symbol c ∈ Σ, and an integer i, we define S.rankc(i) (or simply rank if
the context is clear) as the number of occurrences of c in S[0..i−1]. We also define S.selectc(i)
as min({j − 1 | S.rankc(j) = i} ∪ {n}), i.e., the position in S of the i-th occurrence of c in
S if it exists, and n otherwise. For a bitvector B[0..n − 1], that is a string over Σ = {0, 1},
to ease the notation we will refer to B.rank1(i) and B.select1(i) as B.rank(i) and B.select(i),
respectively.

2.2 SA, BWT, and Backward Search
We denote the suffix array [14] of a given a string S[0..n − 1] as SAS , and define it to be the
permutation of {0, . . . , n − 1} such that S[SAS [i]..n − 1] is the i-th lexicographical smallest
suffix of S. We refer to SAS as SA when it is clear from the context. For technical reasons,
we assume that the last symbol of the input string is S[n − 1] = $, which does not occur
anywhere else in the string and is smaller than any other symbol.

We consider the matrix W containing all sorted rotations of S, called the BWT matrix
of S, and let F and L be the first and the last column of the matrix. The last column
defines the BWT array, i.e., BWT = L. Now let C[c] be the number of suffixes starting with
a character smaller than c. We define the LF-mapping as LF(i, c) = C[c] + BWT.rankc(i)
and LF(i) = LF(i, BWT[i]). With the LF-mapping, it is possible to reconstruct the string
S from its BWT. It is in fact sufficient to set an iterator s = 0 and S[n − 1] = $ and for
each i = n − 2, . . . , 0 do S[i] = BWT[s] and s = LF(s). The LF-mapping can also be used to
support count by performing the backward search, which we now describe.

Given a query pattern Q of length m, the backward search algorithm consists of m steps
that preserve the following invariant: at the i-th step, p stores the position of the first row of
W prefixed by Q[i, m] while q stores the position of the last row of W prefixed by Q[i, m].
To advance from i to i − 1, we use the LF-mapping on p and q, p = C[c] + BWT.rankc(p) and
q = C[c] + BWT.rankc(q + 1) − 1.

2.3 FM-index and count Queries
Given a query string Q[0..m − 1] and an input string S[0..n − 1], two fundamental queries are:
(1) count which counts the number of of occurrences of Q in S; (2) locate which finds the
location of each of these matches in S. Ferragina and Manzini [5] showed that, by combining
SA with the BWT, both count and locate can be efficiently supported. Briefly, backward
search on the BWT is used to find the lexicographical range of the occurrences of Q in S;
the size of this range is equal to count. The SA positions within this range are the positions
where these occurrences are in S.

2.4 Prefix-Free Parsing
As we previously mentioned, the Prefix-Free Parsing (PFP) takes as input a string S[0..n−1],
and positive integers w and p, and produces a parse of S (denoted as P) and a dictionary
(denoted as D) of all the unique substrings (or phrases) of the parse. We note that w defines
the length of the trigger strings and p is used in the rolling-hash. We briefly go over the
algorithm for producing this dictionary and parse. First, we assume there exists two symbols,
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say # and $, which are not contained in Σ and are lexicographically smaller than any symbol
in Σ. Next, we let T be an arbitrary set of w-length strings over Σ and call it the set of trigger
strings. As mentioned before, we assume that S[n−1] = $ and consider S to be cyclic, i.e., for
all i, S[i] = S[i mod n]. Furthermore, we assume that $S[0..w − 2] = S[n − 1..n + w − 2] ∈ T ,
i.e., the substring of length w that begins with $ is a trigger string.

We let the dictionary D = {d1, .., d∣∣D∣∣} be a (lexicographically sorted) maximum set
of substrings of S such that the following holds for each di: i) exactly one proper prefix
of di is contained in T , ii) exactly one proper suffix of di is contained in T , iii) and no
other substring of di is in T . These properties allow for the SA and BWT to be constructed
since the lexicographical placement of each rotation of the input string can be indentified
unambiguously from D and P [2, 3, 16]. An important consequence of the definition is that
D is prefix-free, i.e., for any i ̸= j, di cannot be a prefix of dj .

Since we assumed S[n − 1..n + w − 2] ∈ T , we can construct D by scanning S′ =
$S[0..n − 2]S[n − 1..n + w − 2] to find all occurrences of T and adding to D each substring of
S′ that starts and ends at a trigger string being inclusive of the starting and ending trigger
string. We can also construct the list of occurrences of D in S′, which defines the parse P.

We choose T by a Karp-Rabin fingerprint f of strings of length w. We slide a window of
length w over S′, and for each length w substring r of S′, include r in T if and only if f(r) ≡ 0
(mod p) or r = S[n − 1..n + w − 2]. Let 0 = s0 < · · · < sk−1 be the positions in S′ such that
for any 0 ≤ i < k, S′[si..si + w − 1] ∈ T . The dictionary is D = {S′[si..si+1 + w − 1] | i =
0, . . . , k − 1}, and the parse is defined to be the sequence of lexicographic ranks in D of the
substrings S′[s0..s1 + w − 1], . . . , S′[sk−2..sk−1 + w − 1].

As an example, suppose we have S′ = $AGACGACT#AGATACT#AGATTCGAGACGAC$A, where
the trigger strings are highlighted in red, blue, or green. It follows that we have D =
{$AGAC, AC$A, ACGAC, ACT#AGATAC, ACT#AGATTC, TCGAGAC} and P = 0, 2, 3, 4, 5, 2, 1.

3 Methods

As we previously mentioned, we will use prefix-free parsing to build a word-based FM-index
in a manner in which the length of the phrases can be controlled via the parameters w and p.
To explain our data structure, we first describe the various components of our data structure,
and then follow with describing how to support count queries in a manner that is more
efficient than the standard FM-index.

3.1 Data Structure Design
It is easiest to explain our two-level design with an example, so consider a text

S[0..n − 1] = TCCAGAAGAGTATCTCCTCGACATGTTGAAGACATATGAT$

of length n = 41 that is terminated by a special end-of-string character $ lexicographically
less than the rest of the alphabet. Suppose we parse S using w = 2 and a Karp-Rabin hash
function such that the normal trigger strings occurring in S are AA, CG and TA. We consider S

as cyclic, and we have $S[0..w − 2] = $T as a special trigger string, so the the dictionary D is

D[0..5] = {$TCCAGAA, AAGACATA, AAGAGTA, CGACATGTTGAA, TATCTCCTCG, TATGAT$T} ,

with the phrases sorted in lexicographic order. (Recall that phrases consecutive in S overlap
by w = 2 characters.) If we start parsing at the $, then the prefix-free parse for S is

P[0..5] = (0, 2, 4, 3, 1, 5) ,

where each element (or phrase ID) in P is the lexicographic rank of the phrase in D.

WABI 2023
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0 2 4 3 1 5
1 5 0 2 4 3
2 4 3 1 5 0
3 1 5 0 2 4
4 3 1 5 0 2
5 0 2 4 3 1

$TCCAGAAGAGTATCTCCTCGACATGTTGAAGACATATGAT
AAGACATATGAT$TCCAGAAGAGTATCTCCTCGACATGTTG
AAGAGTATCTCCTCGACATGTTGAAGACATATGAT$TCCAG
CGACATGTTGAAGACATATGAT$TCCAGAAGAGTATCTCCT
TATCTCCTCGACATGTTGAAGACATATGAT$TCCAGAAGAG
TATGAT$TCCAGAAGAGTATCTCCTCGACATGTTGAAGACA

Figure 1 The BWT matrix for our prefix-free parse P (left) and the cyclic shifts of S that start
with a trigger string (right), in lexicographic order.

Next, we consider the BWT matrix for P. Figure 1 illustrates the BWT matrix of P for
our example. We note that since there is only one $ in S, it follows that there is only one
0 in P; we can regard this 0 as the end-of-string character for (a suitable rotation of) P

corresponding to $ in S. If we take the i-th row of this matrix and replace the phrase IDs by
the phrases themselves, collapsing overlaps, then we get the lexicographically i-th cyclic shift
of S that start with a trigger string, as shown on the right of the figure. This is one of the
key insights that we will use later on.

▶ Lemma 1. The lexicographic order of rotations of P correspond to the lexicographic order
of their corresponding rotations of S.

Proof. The characters of P are the phrase IDs that act as meta-characters. Since the
meta-characters inherit the lexicographic rank of their underlying characters, and due to the
prefix-freeness of the phrases, the suffix array of P permutes the meta-characters of P in the
same way as the suffix array of S permutes the phrases of S. This means that the order of
the phrases in the BWT of S is the same as the order of the phrase IDs in P. ◀

Next, we let B[0..n − 1] be a bitvector marking these cyclic shifts’ lexicographic rank among
all cyclic shifts of S, i.e., where they are among the rows of the BWT matrix of S. Figure 2
shows the SA, BWT matrix and BWT of S, together with B; we highlight the BWT – the last
column of the matrix – and the cyclic shifts from Figure 1 in red. We note that B contains
at most one run of 1’s for each distinct trigger string in S so it is usually highly run-length
compressible in practice.

In addition to the bitvector, we store a hash function h on phrases and a map M from
the hashes of the phrases in D to those phrases’ lexicographic ranks, which are their phrase
IDs; M returns NULL when given any other key. Therefore, in total, we build the FM-index
for S, the FM-index for P, the bitvector B marking the cyclic rotations, the hash function h

on the phrases and the map M . For our example, suppose

h($TCCAGAA) = 91785
h(AAGACATA) = 34865
h(AAGAGTA) = 49428

h(CGACATGTTGAA) = 98759
h(TATCTCCTCG) = 37298

h(TATGAT$T) = 68764

M(91785) = 0
M(34865) = 1
M(49428) = 2
M(98759) = 3
M(37298) = 4
M(68764) = 5

and M(x) = NULL for any other value of x.
If we choose the range of h to be reasonably large then we can still store M in space

proportional to the number of phrases in D with a reasonably constant coefficient and
evaluate M(h(·)) in constant time with high probability, but the probability is negligible
that M(h(γ)) ̸= NULL for any particular string γ not in D. This means that in practice we
can use M(h(·)) as a membership dictionary for D, and not store D itself.
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i SA[i] B[i] T [SA[i]..(SA[i] − 1) mod n] BWT[i]
0 40 1 $TCCAGAAGAGTATCTCCTCGACATGTTGAAGACATATGAT
1 28 1 AAGACATATGAT$TCCAGAAGAGTATCTCCTCGACATGTTG
2 5 1 AAGAGTATCTCCTCGACATGTTGAAGACATATGAT$TCCAG
3 31 0 ACATATGAT$TCCAGAAGAGTATCTCCTCGACATGTTGAAG
4 20 0 ACATGTTGAAGACATATGAT$TCCAGAAGAGTATCTCCTCG
5 3 0 AGAAGAGTATCTCCTCGACATGTTGAAGACATATGAT$TCC
6 29 0 AGACATATGAT$TCCAGAAGAGTATCTCCTCGACATGTTGA
7 6 0 AGAGTATCTCCTCGACATGTTGAAGACATATGAT$TCCAGA
8 8 0 AGTATCTCCTCGACATGTTGAAGACATATGAT$TCCAGAAG
9 38 0 AT$TCCAGAAGAGTATCTCCTCGACATGTTGAAGACATATG

10 33 0 ATATGAT$TCCAGAAGAGTATCTCCTCGACATGTTGAAGAC
11 11 0 ATCTCCTCGACATGTTGAAGACATATGAT$TCCAGAAGAGT
12 35 0 ATGAT$TCCAGAAGAGTATCTCCTCGACATGTTGAAGACAT
13 22 0 ATGTTGAAGACATATGAT$TCCAGAAGAGTATCTCCTCGAC
14 2 0 CAGAAGAGTATCTCCTCGACATGTTGAAGACATATGAT$TC
15 32 0 CATATGAT$TCCAGAAGAGTATCTCCTCGACATGTTGAAGA
16 21 0 CATGTTGAAGACATATGAT$TCCAGAAGAGTATCTCCTCGA
17 1 0 CCAGAAGAGTATCTCCTCGACATGTTGAAGACATATGAT$T
18 15 0 CCTCGACATGTTGAAGACATATGAT$TCCAGAAGAGTATCT
19 18 1 CGACATGTTGAAGACATATGAT$TCCAGAAGAGTATCTCCT
20 13 0 CTCCTCGACATGTTGAAGACATATGAT$TCCAGAAGAGTAT
21 16 0 CTCGACATGTTGAAGACATATGAT$TCCAGAAGAGTATCTC
22 27 0 GAAGACATATGAT$TCCAGAAGAGTATCTCCTCGACATGTT
23 4 0 GAAGAGTATCTCCTCGACATGTTGAAGACATATGAT$TCCA
24 30 0 GACATATGAT$TCCAGAAGAGTATCTCCTCGACATGTTGAA
25 19 0 GACATGTTGAAGACATATGAT$TCCAGAAGAGTATCTCCTC
26 7 0 GAGTATCTCCTCGACATGTTGAAGACATATGAT$TCCAGAA
27 37 0 GAT$TCCAGAAGAGTATCTCCTCGACATGTTGAAGACATAT
28 9 0 GTATCTCCTCGACATGTTGAAGACATATGAT$TCCAGAAGA
29 24 0 GTTGAAGACATATGAT$TCCAGAAGAGTATCTCCTCGACAT
30 39 0 T$TCCAGAAGAGTATCTCCTCGACATGTTGAAGACATATGA
31 10 1 TATCTCCTCGACATGTTGAAGACATATGAT$TCCAGAAGAG
32 34 1 TATGAT$TCCAGAAGAGTATCTCCTCGACATGTTGAAGACA
33 0 0 TCCAGAAGAGTATCTCCTCGACATGTTGAAGACATATGAT$
34 14 0 TCCTCGACATGTTGAAGACATATGAT$TCCAGAAGAGTATC
35 17 0 TCGACATGTTGAAGACATATGAT$TCCAGAAGAGTATCTCC
36 12 0 TCTCCTCGACATGTTGAAGACATATGAT$TCCAGAAGAGTA
37 26 0 TGAAGACATATGAT$TCCAGAAGAGTATCTCCTCGACATGT
38 36 0 TGAT$TCCAGAAGAGTATCTCCTCGACATGTTGAAGACATA
39 23 0 TGTTGAAGACATATGAT$TCCAGAAGAGTATCTCCTCGACA
40 25 0 TTGAAGACATATGAT$TCCAGAAGAGTATCTCCTCGACATG

Figure 2 The SA, BWT matrix and BWT of T , together with the bitvector B in which 1s
indicate rows of the matrix starting with trigger strings. The BWT is highlighted in red, as are the
columns marked by 1s.
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3.2 Query Support
Next, given the data structure that we define above, we describe how to support count
queries for a given pattern Q. We begin by parsing Q using the same Karp-Rabin hash we
used to parse S, implying that we will have all the same trigger strings as we did before
and possibly additional ones that did not occur in S. However, we will not consider Q to be
cyclic nor assume an end-of-string symbol that would assure that Q starts and ends with a
trigger string.

If Q is a substring of S, then, since Q contains the same trigger strings as its corresponding
occurrence in S, the sequence of phrases induced by the trigger strings in Q must be a
substring of the sequence of phrases of S. Together with the prefix and suffix of Q that are a
suffix and prefix of the phrases in S to the left and right of the shared phrases, we call this
the partial encoding of Q, defined formally as follows.

▶ Definition 2 (partial encoding). Given a substring S[i..j] of S, the partial encoding of
S[i..j] is defined as follows: If no trigger string occurs in S[i..j], then the partial encoding of
S[i..j] is simply S[i..j] itself. Otherwise, the partial encoding of S[i..j] is the concatenation
of: (1) the shortest prefix α of S[i..j] that does not start with a trigger string and ends with
a trigger string, followed by (2) the sequence of phrase IDs of phrases completely contained
in S[i..j], followed by (3) the shortest suffix β of S[i..j] that begins with a trigger string and
does not end with a trigger string.

So the partial encoding partitions S[i..j] into a prefix α, a list of phrase IDs, and a suffix
β. If S[i..j] begins (respectively ends) with a trigger string, then α (respectively β) is the
empty string.

Parsing Q can be done in time linear in the length of Q.

▶ Lemma 3. We can represent M with a data structure taking space (in words) proportional
to the number of distinct phrases in D. Given a query pattern Q, this data structure returns
NULL with high probability if Q contains a complete phrase that does not occur in S.
Otherwise (complete phrases of Q occur in S), it returns the partial encoding of Q. In either
case, this query takes O(|Q|) time.

Proof. We keep the Karp-Rabin (KR) hashes of the phrases in D, with the range of the
KR hash function mapping to [1..n3] so the hashes each fit in O(log n) bits. We also keep a
constant-time map (implemented as a hash table with a hash function that’s perfect for the
phrases in D) from the KR hashes of the phrases in D to their IDs, that returns NULL given
any value that is not a KR hash of a phrase in D. We set M to be the map composed with
the KR hash function.

Given Q, we scan it to find the trigger strings in it, and convert it into a sequence of
substrings consisting of: (a) the prefix α of Q ending at the right end of the first trigger
string in Q; (b) a sequence of PFP phrases, each starting and ending with a trigger string
with no trigger string in between; and (c) the suffix β of Q starting at the left end of the last
trigger string in Q.

We apply M to every complete phrase in (b). If M returns NULL for any complete phrase
in (b), then that phrase does not occur in S, so we return NULL; otherwise, we return α,
the sequence of phrase IDs M returned for the phrases in (b), and β.

Notice that, if a phrase in Q is in S, then M will map it to its lexicographic rank in D;
otherwise, the probability the KR hash of any particular phrase in Q but not in D collides
with the KR hash of a phrase in D, is at most n/n3 = 1/n2. It follows that, if Q contains
a complete phrase that does not occur in S, then we return NULL with high probability;
otherwise, we return Q’s partial encoding. ◀
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▶ Corollary 4. If we allow O(|Q|) query time with high probability, then we can modify M

to always report NULL when Q contains a complete phrase not in S.

Proof. We augment each Karp-Rabin (KR) hash stored in the hash table with the actual
characters of its phrase such that we can check, character by character, whether a matched
phrase of Q is indeed in D. In case of a collision we recompute the KR hashes of D and
rebuild the hash table. That is possible since we are free to choose different Karp-Rabin
fingerprints for the phrases in D. ◀

Continuing from our example above where the trigger strings are AA, CG and TA, suppose
we have a query pattern Q,

Q[0..34] = CAGAAGAGTATCTCCTCGACATGTTGAAGACATAT

we can compute the parse of Q to obtain the following

CAGAA, AAGAGTA, TATCTCCTCG, CGACATGTTGAA, AAGACATA, TAT.

Next, we use M(h(·)) to map the complete phrases of this parse of Q to their phrase IDs
– which is their rank in D. If any complete phrase maps to NULL then we know Q does not
occur in T . Using our example, we have the partial encoding

CAGAA, 2, 4, 3, 1, TAT.

Next, we consider all possible cases. First, we consider the case that the last substring
β in our parse of Q ends with a trigger string, which implies that it is a complete phrase.
Here, we can immediately start backward searching for the parse of Q in the FM-index for P.
Next, if β is not a complete phrase then we backward search for β in the FM-index for S.
If this backward search for β returns nothing then we know Q does not occur in S. If the
backward search for β returns an interval in the BWT of P that is not contained in the BWT
interval for a trigger string then β does not start with a trigger string so Q = β and we are
done backward searching for Q.

Finally, we consider the case when β is a proper prefix of a phrase and the backward
search for β returns a BWTS interval contained in the BWTS interval for a trigger string.
In our example, β = TAT and our backward search for β in the FM-index for S returns the
interval BWTS [31..32], which is the interval for the trigger string TA. Next, we use B to map
the interval for β in the BWTS to the interval in the BWTP that corresponds to the cyclic
shifts of S starting with β.

▶ Lemma 5. We can store in space (in words) proportional to the number of distinct trigger
strings in S a data structure B with which,

given the lexicographic range of suffixes of S starting with a string β such that β starts
with a trigger string and contains no other trigger string, in O(log log n) time we can find
the lexicographic range of suffixes of P starting with phrases that start with β;
given a lexicographic range of suffixes of P such that the corresponding suffixes of S all
start with the same trigger string, in O(log log n) time we can find the lexicographic range
of those corresponding suffixes of S.

Proof. Let B[0..n − 1] be a bitvector with 1s marking the lexicographic ranks of suffixes
of S starting with trigger strings. There are at most as many runs of 1s in B as there are
distinct trigger strings in S, so we can store it in space proportional to that number and
support rank and select operations on it in O(log log n) time.
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If BWTS [i..j] contains the characters immediately preceding, in S, occurrences of a
string β that starts with a trigger string and contains no other trigger strings, then
BWTP[B.rank1(i)..B.rank1(j)] contains the phrase IDs immediately preceding, in P, the
IDs of phrases starting with β.

If BWTP[i..j] contains the phrase IDs immediately preceding, in P, suffixes of P such that
the corresponding suffixes of S all start with the same trigger string, then BWTS [B.select1(i+
1)..B.select1(j + 1)] contains the characters immediately preceding the corresponding suffixes
of S.

The correctness follows from Lemma 1. ◀

Continuing with our example mapping BWTS [31..32] yield the following interval:

BWTP[B.rank1(31), B.rank1(32)] = BWTP[4..5]

as shown in Figure 1. Starting from this interval in BWTP, we now backward search in the
FM-index for P for the sequence of complete phrase IDs in the parse of Q. In our example,
we have the interval BWTP[4..5] which yields the following phrase IDs: 2 4 3 1.

If this backward search in the FM-index for P returns nothing, then we know Q does not
occur in S. Otherwise, it returns the interval in BWTP corresponding to cyclic shifts of S

starting with the suffix of Q that starts with Q’s first complete phrase. In our example, if
we start with BWTP[4..5] and backward search for 2 4 3 1 then we obtain BWTP[2], which
corresponds to the cyclic shift

AAGAGTATCTCCTCGACATGTTGAAGACATATGAT$TCCAG

of S that starts with the suffix

AAGAGTATCTCCTCGACATGTTGAAGACATAT

of Q that is parsed into 2, 4, 3, 1, TAT.
To finish our search for Q, we use B to map the interval in BWTP to the corresponding

interval in the BWTS , which is the interval of rows in the BWT matrix for S which start
with the suffix of Q we have sought so far. In our example, we have that BWTP[2] maps to

BWTS [B.select1(2 + 1)] = BWTS [2].

We note that our examples contain BWT intervals with only one entry because our example
is so small, but in general they are longer. If the first substring α in our parse of Q is a
complete phrase then we are done backward searching for Q. Otherwise, we start with this
interval in BWTS and backward search for α in the FM-index for S, except that we ignore
the last w last characters of α (which we have already sought, as they are also contained in
the next phrase in the parse of Q).

In our example, α = CAGAA so, starting with BWTS [2] we backward search for CAG, which
returns the interval BWTS [14]. As shown in Figure 2,

S[SA[4]..n] = S[2..n] = CAGAAGAGTATCTCCTCGACATGTTGAAGACATATGAT$

does indeed start with

Q = CAGAAGAGTATCTCCTCGACATGTTGAAGACATAT .

This concludes our explanation of count.
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To conclude, we give some intuition as to why we expect our two-level FM-index to be
faster in practice than standard backward search. First, we note that standard backward
search takes linear time in the length of Q and usually uses at least one random access per
character in Q. Whereas, prefix-free parsing Q takes linear time but does not use random
access; backward search in the FM-index of S is the same as standard backward search but
we use it only for the first and last substrings in the parse of Q. Backward search in the
FM-index for P is likely to use about lg |D| random access for each complete phrase in the
parse of Q: the BWT of P is over an effective alphabet whose size is the number of phrases
in D. Therefore, a balanced wavelet tree to support rank on that BWT should have depth
about lg |D| and we should use at most about one random access for each level in the tree.

In summary, if we can find settings of the prefix-free parsing parameters w and p such
that

most query patterns will span several phrases,
most phrases in those patterns are fairly long,
lg |D| is significantly smaller than those phrases’ average length,

then the extra cost of parsing Q should be more than offset by using fewer random accesses.

4 Results

We implemented our algorithm and measured its performance against all known competing
methods. We ran all experiments on a server with AMD EPYC 75F3 CPU with the Red
Hat Enterprise Linux 7.7 (64bit, kernel 3.10.0). The compiler was g++ version 12.2.0. The
running time and memory usage was recorded by SnakeMake benchmark facility [15]. We
set a memory limitation of 128 GB of memory and a time limitation of 24 hours.

Datasets. We used the following datasets. First, we considered sets of SARS-CoV-2
genomes taken from the NCBI website. We used three collections of 25, 000, 50, 000, and
100, 000 SARS-CoV-2 genomes from EMBL-EBI’s COVID-19 data portal. Each collection is
a superset of the previous. We denote these as SARS-25k, and SARS-50k, SARS-100k. Next,
we considered a single human reference genome, which we denote as GRCh38, downloaded
from NCBI. We report the size of the datasets as the number of characters in each in Table
1. We denote n as the number of characters.

Implementation. We implemented our method in C++ 11 using the sdsl-lite library [8]
and extended the prefix-free parsing method of Oliva, whose source code is publicly available
here https://github.com/marco-oliva/pfp. The source code for PFP-FM is available at
https://github.com/marco-oliva/afm.

Competing methods. We compared PFP-FM against the following methods the standard
FM-index found in sdsl-lite library [8], RLCSA [19], RLFM [13, 12], and FIGISS [4]. We note
that RLCSA and FIGISS have publicly-available source codes, while RLFM is provided only as
an executable. We performed the comparison by selecting 1,000 strings from the genome file
at random of the specified length, performing the count operation on each query pattern,
and measuring the time usage for all the methods under consideration. It is worth noting
that FIGISS and RLCSA only support count queries where the string is provided in an input
text file. More specifically, the original FIGISS implementation supports counting with the
entire content of a file treated as a single pattern. To overcome this limitation, we modified
the source code to enable the processing of multiple query patterns within a single file. In
addition to the time consideration for count, we measured the time and memory required to
construct the data structure.
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Figure 3 Illustration of the impact of w, p and the length of the query pattern on the acceleration
of the FM-index. Here, we used SARS-100K dataset and varied the length of the query pattern to
be equal to 125, 250, 500, and 1000. The y-axis corresponds to p and the x-axis corresponds to w.
The heatmap illustrates the number of queries that can be performed in a CPU second with the
acceleration versus the standard FM-index from sdsl, i.e., PFP-FM / sdsl. The second value in each
block represents the average length of phrases.

4.1 Acceleration versus Baseline
In this subsection, we compare PFP-FM versus the standard FM-index in sdsl with varying
values of window size (w) and modulo value (p), and varying the length of the query pattern.
We calculated the number of count queries that were able to be performed in CPU second
with PFP-FM versus the standard FM-index. We generated heatmaps that illustrate the
number of count queries of PFP-FM verses sdsl for various lengths of query patterns, namely,
125, 250, 500, and 1,000. We performed this for each SARS-CoV-2 set of genomes. Figure 3
shows the resulting heatmaps for SARS-100K. As shown in this figure, PFP-FM was between
2.178 and 2.845 times faster than the standard FM-index with the optimal values of w and p.
In particular, an optimal performance gain of 2.6, 2.3, 2.2, and 2.9 was witnessed for pattern
lengths of 125, 250, 500, and 1,000, respectively. The (w, p) pairs that correspond to these
results are (6, 50), (6, 30), (8, 50), and (8, 50).

4.2 Results on SARS-CoV-2 Genomes
We used the optimal parameters that were obtained from the previous experiment for this
section. We constructed the index using these parameters for each SARS-CoV-2 dataset
and assessed the time consumption for performing 1,000 count queries using all competing
methods and PFP-FM. We illustrate the result of this experiment in Figure 4. It is clear
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Figure 4 Illustration of the impact of the dataset size, and the length of the query pattern on
the query time for answering count. We vary the length of the query pattern to be equal to 125,
250, 500, and 1000, and report the times for SARS-25K, SARS-50K, and SARS-100K. We illustrate the
cumulative time required to perform 1,000 count queries. The y-axis is in log scale.

from this PFP-FM consistently exhibits the lowest time consumption and a gradual, stable
trend. For the SARS-25K dataset, the time consumption of FIGISS was between 451% and
568% higher than our method. And the time consumption of RLCSA and RLFM was between
780% and 1598%, and 842% and 1705% more than PFP-FM, respectively. The performance
of FIGISS surpasses that of RLFM and RLCSA when using the SARS-25k dataset; however
for the larger datasets FIGISS and RLCSA converge in their performance .Neither method
was substantially better than the other. In addition, on the larger datasets, when the
query pattern length was 125 and 250, RLFM performed better than RLCSA and FIGISS but
was slower for the other query lengths. Hence, it is very clear that PFP-FM accelerates the
performance of count over all state-of-the-art methods.

The gap in performance between PFP-FM and the competing methods increased with the
dataset size. For SARS-50K, FIGISS, RLCSA and RLFM were between 3.65 and 13.44, 3.65 and
16.08, and 4.25 and 12.39 times slower, respectively. For SARS-100K, FIGISS, RLCSA and
RLFM were between 2.81 and 3.86, 2.45 and 4.59, and 1.96 and 10.75 times slower, respectively.

Next, we consider the time and memory required for construction; which is given in
Table 1. Our experiments revealed that all methods used less than 60 GB of memory on
all SARS-CoV-2 datasets; PFP-FM used the most memory with the peak being 54 GB on
the SARS-100K dataset. Yet, PFP-FM exhibited the most efficient construction time across
all datasets for generating the FM-index, and this gap in the time grew with the size of the
dataset. More specifically, for the SARS-100K dataset, PFP-FM used 71.04%, 65.81%, and
73.41% less time compared to other methods. In summary, PFP-FM significantly accelerated
the count time, and had the fastest construction time. All methods used less than 60 GB,
which is available on most commodity servers.

4.3 Results on Human Reference Genome

After measuring the time and memory usage required to construct the data structure across
all methods using the GRCh38 dataset, we observed that PFP-FM exhibited the second most
efficient construction time but used the most construction space (71 GB vs. 26 GB to 45
GB). More specifically, PFP-FM was able to construct the index between 1.25 and 1.6 times
faster than the FIGISS and RLFM.

Next, we compare the performance of PFP-FM against other methods by performing 1,000
count queries on, and illustrate the results in Figure 5. Our findings demonstrate that PFP-FM
consistently outperforms all other methods. Although RLCSA shows better performance than
RLFM and FIGISS when the pattern length is over 125 but is still 3.9, 6.2, 3.4, and 7.1 times

WABI 2023



13:14 Acceleration of FM-Index Queries Through Prefix-Free Parsing

Figure 5 Comparison of query times for count between the described solutions when varying the
length of the query pattern. For each pattern length equal to 125, 250, 500, and 1000, we report the
times for the GRCH38 dataset. We plot the cumulative time required to perform 1,000 count queries.
The y-axis is in log scale. PFP-FM is shown in blue, RLFM is shown in orange, RLFM is shown in red,
and FIGISS is shown in green.

slower than PFP-FM. Meanwhile, the RLFM method exhibits a steady increase in time usage,
and it is 2.9, 14.2, 12.8, and 18.07 times slower than PFP-FM. It is worth noting that the
FIGISS grammar is less efficient for non-repetitive datasets, as demonstrated in the research
by Akagi et al. [1], which explains its (worse) performance on GRCh38 versus the SARS-100K
dataset. Hence, FIGISS is 10.1, 25.5, 13.6, and 14.8 times slower than PFP-FM. These results
are inline with the performance of our previous results, and demonstrate that PFP-FM has
both competitive construction memory and time, and achieves a significant acceleration.

5 Conclusion

In this work, we presented PFP-FM that shows significant acceleration over existing state-
of-the-art methods. Hence, this work begins to resolve a relatively long-standing issue in
data structures as to how we can parse input that has no natural word boundaries in a
manner that enables acceleration of the FM-index. We note that it is possible to similarly
augment locate queries since for that we need the suffix array samples only in the final step
when matching α (or β in case that Q = β), which can be done by the usually suffix array
samplings for the FM-index. If α is empty, then we can instead match the first block of the
pattern with the FM-index on S and not on P. We leave this for future work. With respect
to practical applications, as reads are getting longer and more accurate, we will soon see
an opportunity to apply accelerations of finding patterns that have length between 125 and
1,000. Hence, a larger area that warrants future consideration is accelerating the backward
search with approaches such as PFP-FM for aligning Nanopore reads to a database. Our last
experiment shows significant acceleration with query patterns of length 1,000 to a full human
reference genome, giving proof that the research community is in the position to begin such
an endeavour.
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Table 1 Comparison of the construction performance with the construction time and memory
for all datasets. The number of characters in each dataset (denoted as n) is given in the second
column. The time is reported in seconds (s), and the memory is reported in gigabytes (GB).

Dataset n Method Construction Memory (GB) Construction Time (s)

SARS-25k 751,526,774

RLCSA 9.90 322.85
RLFM 3.47 363.74

FIGISS 4.89 378.49
PFP-FM 12.99 117.29

SARS-50k 1,503,252,577

RLCSA 19.88 679.89
RLFM 6.94 701.36

FIGISS 12.44 795.70
PFP-FM 26.12 233.04

SARS-100k 3,004,588,730

RLCSA 39.47 1690.22
RLFM 25.01 1432.16

FIGISS 25.57 1840.80
PFP-FM 53.90 489.45

GRCh38 3,189,750,467

RLCSA 45.45 924.60
RLFM 26.31 1839.25

FIGISS 34.65 1440.19
PFP-FM 71.13 1154.12
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1 Introduction

Read mapping continues to be one of the most fundamental problems in bioinformatics.
Given a read, the broad goal is to find the location(s) in the reference genome that have a
“similar sequence”. Traditionally, “similar sequence” was defined as having a high alignment
score and read mappers were viewed as heuristic solutions to this well-defined problem.
However, the last few years has seen the community embrace sketch-based mapping methods,
best exemplified by minimap2 [11] (see [16] for a survey). These read mappers work not
on the original sequences themselves but on their sketches, e.g. the minimizer sketch. As a
result, it is no longer clear which exact problem they are trying to solve, as the definition
using an alignment score is no longer directly relevant. To the best of our knowledge, there
has not been a problem formulation to capture what problem an exact sketch-based mapping
algorithm should solve.

In this work, we provide a problem formulation (Section 3) and an exact algorithm to
find all hits above a given score (Section 6). More formally, we consider the problem of
taking a sketch t of a text T and a sketch p of a query P and identifying all sub-sequences
of t that match p with a score above some threshold. A score function could for example
be the weighted Jaccard index, though we explore several others in this paper (Section 4).
We provide both a simulation-based and an analytical-based method for setting the score
threshold (Section 5). Our algorithm runs in time O(|t|+ |p|+ ℓ2) and space Θ(ℓ2), where ℓ

is the number of times that k-mers from p occur in t.
Other sketch-based mappers are heuristic: they typically find matching elements between

the reference and the read sketches (i.e. anchors) and extend these into maps using chain-
ing [16]. Our algorithm is more resource intensive than these heuristics, as is typical for exact
algorithms. However, a problem formulation and an exact algorithm gives several long-term
benefits. First, the exact algorithm could be used in place of a greedy heuristic when the
input size is not too large. Second, the formulation can spur development of exact algorithms
that are optimized for speed and could thus become competitive with heuristics. Third, the
formulation could be used to find the most effective score functions, which can then guide the
design of better heuristics. Finally, our exact algorithm can return all hits with a score above
a threshold, rather than just the best mapping(s). This is important for tasks such as the
detection of copy number variation [12] or detecting variation in multi-copy gene families [1].

We evaluate our algorithm (called eskemap), using simulated long reads from the T2T
human Y chromosome (Section 7). For the same level of precision, the recall of eskemap is
0.88, compared to 0.76 of minimap2. This illustrates the power of eskemap as a method
to recover more of the correct hits than a heuristic method. We also compare against
Winnowmap2 [10] and edlib [18], which give lower recall but higher precision than eskemap.

2 Preliminaries

Sequences. Let t be a sequence of elements (e.g. k-mers) that may contain duplicates.
We let |t| denote the length of the sequence, and we let t[i] refer to the i-th element in t,
with t[0] being the first element. For 0 ≤ i ≤ j < |t|, let t[i, j] represent the subsequence
(t[i], t[i + 1], . . . , t[j]). The set of elements in t is denoted by t, e.g. if t = (ACG, TTT, ACG) then
t = {ACG, TTT}. We let occ(x, t) represent the number of occurrences of an element x in t,
e.g. occ(ACG, t) = 2.
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Sketch. Let T be a string and let t be the sequence of k-mers appearing in T . Note that t is
a sequence of DNA sequences. For example, if T = ACGAC and k = 2, then t = (AC, CG, GA, AC).
For the purposes of this paper, a sketch of T is simply a subsequence of t, e.g. (AC, GA). This
type of sketch could for example be a minimizer sketch [15, 17], a syncmer sketch [6], or a
FracMinHash sketch [9, 7].

Scoring Scheme. A scoring scheme (sc, thr) is a pair of functions: the score function
and the threshold function. The score function sc is a function that takes as input a pair
of non-empty sketches and outputs a real number, intuitively representing the degree of
similarity. We assume it is symmetric, i.e. sc(p, s) = sc(s, p) for all sketches p and s. If the
score function has a parameter, then we write sc(s, p; θ), where θ is a vector of parameter
values. The threshold function thr takes the length of a sketch and returns a score cutoff
threshold, i.e. scores below this threshold are not considered similar. Note that the scoring
scheme is not allowed to depend on the underlying nucleotide sequences besides what is
captured in the sketch.

Miscellenous. We use Uk to denote the universe of all k-mers. Given two sequences p

and s, the weighted Jaccard is defined as
∑

x∈Uk
min(occ(x,p),occ(x,s))∑

x∈Uk
max(occ(x,p),occ(x,s))

. It is 0 when s and p

do not share any elements, 1 when s is a permutation of p, and strictly between 0 and 1
otherwise. The weighted Jaccard is a natural extension of Jaccard similarity that accounts
for multi-occurring elements.

3 Problem Definition

In this section, we first motivate and then define the Sketch Read Mapping Problem. Fix a
scoring scheme (sc, thr). Let p and t be two sketches, which we refer to as the pattern and the
text, respectively. Define a candidate mapping as a subinterval t[a, b] of t. A naive problem
definition would ask to return all candidate mappings with sc(p, t[a, b]) ≥ thr(|p|).1 How-
ever, a lower-scoring candidate mapping could contain a higher-scoring candidate mapping
as a subinterval, with both scores above the threshold. This may arise due to a large
candidate mapping containing a more conserved small candidate mapping, in which case both
candidate mappings are of interest. But it may also arise spuriously, as a candidate mapping
with a score sufficiently higher than thr(|p|) can be extended with non-shared k-mers that
decrease the score but not below the threshold.

To eliminate most of these spurious cases, we say that a candidate mapping t[a, b] is
reasonable if and only if for x ∈ {t[a], t[b]}, occ(x, t[a, b]) ≤ occ(x, p). In other words, a
reasonable candidate mapping must start and end with a k-mer that has a match in the
pattern. We also naturally do not wish to report a candidate mapping that is a subinterval
of a longer candidate mapping with a larger score. Formally, we call a candidate mapping
t[a, b] maximal if there does not exist a candidate mapping t[a′, b′], with a′ ≤ a ≤ b ≤ b′ and
sc(t[a′, b′], p) > sc(t[a, b], p). We can now formally define t[a, b] to be a final mapping if it is
both maximal and reasonable and sc(t[a, b], p) ≥ thr(|p|). The Sketch Read Mapping Problem
is then to report all final mappings. We now restate the problem in a succinct manner:

1 Notice that in this framing, the threshold is not a single parameter but can vary depending on the read
length. This gives flexibility to the scoring function, since the scores of candidate mappings of reads of
different lengths do not need to be comparable to each other. Moreover, computing the threshold value
is not a challenge since it needs to be computed just once for each read.
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Figure 1 An example of the Sketch Read Mapping Problem. We show all candidate mappings
t[a, b] for a given pattern p and a text t. Each candidate mapping is represented by its score
calculated using scℓ(p, t[a, b]; 1) (see Section 4). Reasonable candidate mappings are shown in black
(rather than gray) and final mappings are further bolded.

▶ Definition 1 (Sketch Read Mapping Problem). Given a pattern sketch p, a text sketch t, a
score function sc, and a threshold function thr, the Sketch Read Mapping Problem is to find
all 0 ≤ a ≤ b < |t| such that

sc(p, t[a, b]) ≥ thr(|p|),
occ(t[a], t[a, b]) ≤ occ(t[a], p),
occ(t[b], t[a, b]) ≤ occ(t[b], p),
there does not exist a′ ≤ a ≤ b ≤ b′ such that sc(t[a′, b′], p) > sc(t[a, b], p), i.e. t[a, b] is
maximal.

4 Score Function

In this section, we explore the design space of score functions and fix two score functions for
the rest of the paper. Let p be the sketch of the pattern and let s be a continuous subsequence
of the sketch of the text t, i.e. s = t[a, b] for some a ≤ b. For example if p = (ACT, GTA, TAC)
and t = (AAC, ACT, CCT, GTA), we could have s = t[1, 3] = (ACT, CCT, GTA). In the context
of the Sketch Read Mapping Problem, p is fixed and s varies. Therefore, while the score
function is symmetric, the threshold function sets the score threshold as a function of |p|.
Since p is fixed, the threshold is a single number in the context of a single problem instance.

In the following, we exclusively consider score functions that calculate the similarity of s

and p by ignoring the order of k-mers inside the sketches. Taking k-mer order into account
would likely make it more complex to compute scores, while not necessarily giving better
results on real data. However, score functions that do take order into account are possible
and could provide better accuracy in some cases.

A good score function should reflect the number of k-mers shared between s and p. For a
given k-mer x, we define

xmin := min(occ(x, p), occ(x, s))
xmax := max(occ(x, p), occ(x, s))
xdiff := xmax − xmin
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Intuitively, x occurs a certain number of times in p and a certain number of times in s; we
let xmin be the smaller of these two numbers and xmax be the larger of these two numbers.
Similarly, xdiff is the absolute difference between how often x occurs in p and s. We say that
the number of shared occurrences is 2xmin and the number of non-shared occurrences is xdiff.
These quantities are governed by the relationships

|s|+ |p| =
∑

x∈Uk

occ(x, p) + occ(x, s) =
∑

x∈Uk

xmin + xmax =
∑

x∈Uk

2xmin + xdiff. (1)

A good score function should be (1) increasing with respect to the number of shared
occurences and (2) decreasing with respect to the number of non-shared occurences. There
are many candidate score functions within this space. The first score function we consider is
the weighted Jaccard. Formally,

scj(s, p) :=
∑

x∈Uk
xmin∑

x∈Uk
xmax

=
∑

x xmin

|s|+ |p| −
∑

x xmin
=

∑
x xmin∑

x(xmin + xdiff) (2)

The above formula includes first the definition but then two algebraically equivalent versions
of it, derived using Eq. 1. The weighted Jaccard has the two desired properties of a score
function and is a well-known similarity score. However, it has two limitations. First, the use of
a ratio makes it challenging to analyze probabilistically, as is the case with the non-weighted
Jaccard [3]. Second, it does not offer a tuning parameter which would control the relative
benefit of a shared occurence to the cost of a non-shared occurence. We therefore consider
another score function, parameterized by a real-valued tuning parameter w > 0:

scℓ(s, p; w) :=
∑

x∈Uk

xmin − wxdiff.

It is sometimes more useful to use an equivalent formulation, obtained using Eq. 1:

scℓ(s, s′; w) =
∑

x∈Uk

(1 + 2w)xmin − w(|s|+ |s′|). (3)

As with the weighted Jaccard, scℓ has the two desired properties of a score function. But,
unlike the weighted Jaccard, it is linear and contains a tuning parameter w.

To understand how score functions relate to each other, we introduce the notion of
domination and equivalence. Informally, a score function sc1 dominates another score
function sc2 when sc1 can always recover the separation between good and bad scores that
sc2 can. In this case, the solution obtained using sc2 can always be obtained by using
sc1 instead. Formally, let sc1 and sc2 be two score functions, parameterized by θ1 and
θ2, respectively. We say that sc1 dominates sc2 if and only if for any parameterization
θ2, threshold function thr2, and pattern sketch p there exist a θ1 and thr1 such that, for
all sequences s, we have that sc2(s, p; θ2) ≥ thr2(|p|) if and only if sc1(s, p; θ1) ≥ thr1(|p|).
Furthermore, sc1 dominates sc2 strictly if and only if the opposite does not hold, i.e. sc2
does not dominate sc1. Otherwise, sc1 and sc2 are said to be equivalent, i.e. if and only if
each one dominates the other.

We can now precisely state the relationship between scℓ and scj, i.e. that scℓ strictly
dominates scj. In other words, any solution to the Sketch Read Mapping Problem that is
obtained by scj can also be obtained by scℓ, but not vice-versa. Formally,

▶ Theorem 2. scℓ stricly dominates the weighted Jaccard score function scj.
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Proof. We start by proving that scℓ dominates scj. Let p be a pattern sketch and let thrj

be the threshold function associated with scj. We will use the shorthand t = thrj(|p|). First,
consider the case that t < 1. Let w = t

1−t and let thrℓ evaluate to zero for all inputs. Let s

be any sketch. The following is a series of equivalent transformations that proves domination.

scj(s, p) ≥ t∑
x xmin∑

x xmin + xdiff
≥ t∑

x

xmin ≥
∑

x

txmin + txdiff∑
x

(1− t)xmin − txdiff ≥ 0

∑
x

xmin −
t

1− t
xdiff ≥ 0

scℓ(s, p; w) ≥ thrℓ(|p|)

Next, consider the case t > 1. In this case, for all s, scj(s, p) < t, since the weighted Jaccard
can never exceed one. Observe that scℓ(s, p; w) ≤ |p| for any non-negative w. Therefore, we
can set thrℓ(|p|) = |p|+ 1 and let w be any non-negative number, guaranteeing that for all s,
scℓ(s, p; w) < thrℓ(|p|).

Finally consider the case that t = 1. Then, scj(s, p) ≥ t if and only if s and p are
permutations of each other, i.e. xdiff = 0 for all x. Setting thrℓ(|p|) = |p| and letting w be
any strictly positive number guarantees that scℓ(s, p; w) ≥ thrℓ(|p|) if and only if s and p are
permutations of each other.

To prove that scℓ is not dominated by scj, we fix w = 1 (though any value could be
used) and give a counterexample family to show that scj cannot recover the separation
that scℓ can. Pick an integer i ≥ 1 to control the size of the counterexample. Let p be
a pattern sketch of length 4i consisting of arbitrary k-mers. We construct two sketches,
s1 and s2. The sequence s1 is an arbitrary subsequence of p of length i. Observe that∑

x∈p∪s1
xmin =

∑
x occ(x, s1) = i. The sequence s2 is p appended with arbitrary k-mers to

get a length 12i. Observe that
∑

x∈p∪s2
xmin =

∑
x occ(x, p) = 4i. Using Eq. 3 for scℓ and

Eq. 2 for scj,

scℓ(s1, p) = −2i

scℓ(s2, p) = −4i

scj(s1, p) = 1/4
scj(s2, p) = 1/3

Under scℓ, s1 has a higher score, while under scj, s2 has a higher score. If thrℓ is set to accept
s1 but not s2 (e.g. thrℓ = −3i), then it is impossible to set thrj to achieve the same effect. In
other words, since scj(s2) > scj(s1), any threshold that accepts s1 must also accept s2. ◀

Next, we show that many other natural score functions are equivalent to scℓ. Consider
the following score functions:
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scA(s, p; a1) :=
∑

x∈Uk

(a1xmin − xdiff) with a1 > 0

scB(s, p; b1, b2) :=
∑

x∈Uk

(b1xmin − b2xdiff) with b1 > 0 and b2 > 0

scC(s, p; c1, c2) :=
∑

x∈Uk

(c1xmin − c2xmax) with c1 > c2 > 0

scD(s, p; d1, d2) :=
∑

x∈Uk

(d1xmin)− d2|s| with d1 > 2d2 and d2 > 0

The conditions on the parameters are there to enforce the two desired properties of a
score function. Each of these score functions is natural in its own way, e.g. scA is similar
to scℓ but places the weight on xmin rather than on xdiff. One could also have two separate
weights, as in the score scB. One could then replace xdiff with xmax, as in scC, which is
the straightforward reformulation of the weighted Jaccard score as a difference instead of
a ratio. Or one could replace xdiff with the length of s, as in scD. The following theorem
shows that the versions turn out to be equivalent to scℓ and to each other. The proof is a
straightforward algebraic manipulation and is left for the appendix.

▶ Theorem 3. The score functions scℓ, scA, scB, scC, and scD are pairwise equivalent.

5 Choosing a Threshold

In this section, we propose two ways to set the score threshold. The first is analytical
(Section 5.1) and the second is with simulations (Section 5.2). The analytical approach gives
a closed form formula for the expected value of the score under a mutation model. However,
it only applies to the FracMinHash sketch, assumes a read has little internal homology, and
does not give a confidence interval. The simulation approach can apply to any sketch but
does not offer any analytical insight into the behavior of the score. The choice of approach
ultimately depends on the use case.

We first need to define a generative mutation model to capture both the sequencing and
evolutionary divergence process:

▶ Definition 4 (Mutation model). Let S be a circular string2 with n characters. The mutation
model produces a new string S′ by first setting S′ = S and then taking the following steps:
1. For every 0 ≤ i < n, draw an action ai ∈ {sub, del, unchanged} with probability of psub

for sub, pdel for del, and 1− psub − pdel for unchanged. Also, draw an insertion length bi

from a geometric distribution with mean pins
3.

2. Let track be a function mapping from a position in S to its corresponding position in S′.
Initially, track(i) = i, but as we delete and add characters to S′, we assume that track is
updated to keep track of the position of S[i] in S′.

3. For every i such that ai = sub, replace S′[i] with one of the three nucleotides not equal to
S[i], chosen uniformly at random.

4. For every 0 ≤ i < n, insert bi nucleotides (chosen uniformaly at random) before
S′[track(i)].

5. For every i such that ai = del, remove S′[track(i)] from S′.

2 We assume the string is circular to avoid edge cases in the analysis but, for long enough strings, this
assumption is unlikely to effect the accuracy of the results.

3 Here, a geometric distribution is the number of failures before the first success of a Bernoulli trial. This
geometric distribution has parameter 1

pins+1 .
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5.1 Analytical Analysis
To derive an expected score under the mutation model, we need to specify a sketch. We will
use the FracMinHash sketch [9], due its simpliticy of analysis [7].

▶ Definition 5 (FracMinHash). Let h be a hash function that maps a k-mer to a real number
between 0 and 1, inclusive. Let 0 < q ≤ 1 be a real-valued number called the sampling rate.
Let S be a string. Then the FracMinHash sketch of S, denoted by s, is the sequence of all
k-mers x of S, ordered as they appear in S, such that h(x) ≤ q.

Consider an example with k = 2, S = CGGACGGT, and the only k-mers hashing to a value ≤ q

being CG and GG. Then, s = (CG, GG, CG, GG).
We make an assumption, which we refer to as the mutation-distinctness assumption,

that the mutations on S never create an k-mer that is originally in S. Based on previous
work [4], we find this necessary to make the analysis mathematically tractable (for us). The
results under this assumption become increasingly inaccurate as the read sequence contains
increasingly more internal similarity. For example, reads coming from centromeres might
violate this assumption. In such cases, it may be better to choose a threshold using the
technique in Section 5.2.

We can now derive the expected value of the score under the mutation model and
FracMinHash.

▶ Theorem 6. Let S be a circular string and let S′ be generated from S under the mutation
model with the mutation-distinctness assumption and with parameters psub, pdel, and pins.
Let s and s′ be the FracMinHash sketches of S and S′, respectively, with sampling rate q.
Then, for all real-valued tuning parameters w > 0,

E[scℓ(s, s′; w)] = |s|q (α + w(2α− 2 + pdel − pins)) ,

where α = (1−pdel−psub)k

(pins+1)k−1 .

Proof. Observe that under mutation-distinctness assumption, the number of occurrences
of a k-mer that is in s can only decrease after mutation, and a k-mer that is newly created
after mutation has an xmin of 0. Therefore, applying Eq. 3,

scℓ(s, s′; w) =
∑
x∈s

(1 + 2w)(occ(x, s′)− w(|s|+ |s′|)

(Recall that s is the set of all k-mers in s.) We will first compute the score conditioned on
the hash function of the sketch being fixed. Note that when h is fixed, then the sketch s

becomes fixed and s′ becomes only a function of S′. By linearity of expectation,

E[scℓ(s, s′; w) | h] =
∑
x∈s

(1 + 2w)E[occ(x, s′) | h]− w(|s|+ E[|s′| | h]) (4)

It remains to compute E[|s′| | h] and E[occ(x, s′) | h]. Observe that the number of
elements in s′ is the number of elements in s minus the number of deletions plus the sum of
all the insertion lengths. By linearity of expectation,

E[|s′| | h] = |s| − pdel|s|+ pins|s| = |s|(1− pdel + pins)

Next, consider a k-mer x ∈ s and E[occ(x, s′)]. Recall by our mutation model that no
new occurrenes of x are introduced during the mutation process. So occ(x, s′) is equal to
the number of occurrences of x in S that remain unaffected by mutations. Consider an
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occurrence of x in s. The probability that it remains is the probability that all actions on
the k nucleotides of x were “unchanged” and the length of all insertions in-between the
nucleotides was 0. Therefore,

E[occ(x, s′) | h] = occ(x, s)(1− pdel − psub)k

(
1

pins + 1

)k−1
= αocc(x, s)

Putting it all together,

E[scℓ(s, s′; w) | h] =
∑
x∈s

(1 + 2w)E[occ(x, s′) | h]− w(|s|+ E[|s′| | h])

= α(1 + 2w)
∑
x∈s

occ(x, s)− w(|s|+ |s|(1− pdel + pins))

= α(1 + 2w)|s| − w(|s|+ |s|(1− pdel + pins))
= |s|(α(1 + 2w)− w(2− pdel + pins)))
= |s|(α + w(2α− 2 + pdel − pins))

To add the sketching step, we know from [7] that the expected size of a sketch is the size
of the original text times q. Then,

E[scℓ(s, s′; w)] = E[E[scℓ(s, s′; w) | h]]
= E[|s|(α + w(2α− 2 + pdel − pins))]
= E[|s|](α + w(2α− 2 + pdel − pins))
= |s|q(α + w(2α− 2 + pdel − pins)) ◀

5.2 Simulation-Based Analysis

First, we choose the parameters of the mutation model according to the target sequence
divergence between the reads and the reference caused by sequencing errors, but also due
to the evolutionary distance between the reference and the organism sequenced. If one is
also interested in mapping reads to homologous regions within the reference that are related
more distantly, e.g. if there exist multiple copies of a gene, the mutation parameters can be
increased further.

To generate a threshold for a given read length, we generate sequence pairs (S, S′), where
S is a uniformly random DNA sequence of the given length and S′ is mutated from S

under the above model. We then calculate the sketch of S and S′, which we call s and s′,
respectively. The sketch can for example be a minimizer sketch, a syncmer sketch, or a
FracMinHash sketch. We can then use the desired score function to calculate a score for each
pair (s, s′). For a sufficiently large number of pairs, their scores will form an estimate of the
underlying score distribution for sequences that evolved according to the used model. It is
then possible to choose a threshold such that the desired percentage of mappings would be
reported by our algorithm. For example, one could choose a threshold to cover a one sided
95% confidence interval of the score.

In order to be able to adjust thresholds according to the variable length of reads produced
from a sequencing run, the whole process may be repeated several times for different lengths
of S. Thresholds can then be interpolated dynamically for dataset reads whose lengths were
not part of the simulation.
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6 Algorithm for the Sketch Read Mapping Problem

In this section, we describe a dynamic programming algorithm for the Sketch Read Mapping
Problem under both the weighted Jaccard and the linear scores (scj and scℓ, respectively).
Let t be the sketch of the text, let p be the sketch of the pattern, let L be the sequence
of positions in t that have a k-mer that is in p, in increasing order, and let ℓ = |L|. Our
algorithm takes advantage of the fact that p is typically much shorter than t and hence the
number of elements of t that are shared with p is much smaller than |t| (i.e. ℓ ≪ |t|). In
particular, it suffices to consider only candidate mappings that begin and end in positions
listed in L, since by definition, if t[a, b] is a reasonable candidate mapping, then t[a] ∈ p and
t[b] ∈ p.

We present our algorithm as two parts. In the first part (Section 6.1), we compute a
matrix S with ℓ rows and ℓ columns so that S(i, j) =

∑
x min(occ(x, p), occ(x, t[L[i], L[j]]).

S is only defined for j ≥ i. We also mark each cell of S as being reasonable or not. In the
second part (Section 6.2), we scan through S and output the candidate mapping t[i, j] if and
only if it is maximal and has a score above the threshold.

The reason that S(i, j) is not defined to store the score of the candidate mapping
t[L[i], L[j]] is that the score can be computed from S(i, j) in constant time, for both
scj and scℓ. To see this, let xmin := min(occ(x, p), occ(x, t[L[i], L[j]]). Recall that Equa-
tion (2) allows us to express scj(t[i, j], p) as a function of

∑
xmin, |p|, and the length of the

candidate mapping, i.e. j − i + 1. Similarly, we can apply Equation (1) to express scℓ as

scℓ(t[i, j], p; w) :=
∑

x

(xmin − wxdiff) =
(∑

x

xmin

)
− w(|s|+ |p| −

∑
x

2xmin)

= (1 + 2w)
∑

x

xmin − w(j − i + 1 + |p|)

Thus, once
∑

x xmin is computed, either of the scores can be computed trivially.

6.1 Computing S

We compute S using dynamic programming. For the base case of the diagonal, i.e. for
0 ≤ i < ℓ, we can set S(i, i) = 1. Here, since we know that L[i] ∈ p, we get that the k-mer
t[L[i]] occurs at least once in p and exactly once in t[L[i], L[i]]. For the general case, i.e. for
0 ≤ i < j < ℓ, we can define S using a recursive formula:

S(i, j) = S(i, j − 1) +
{

1 if occ(t[L[j]], t[L[i], L[j − 1]]) < occ(t[L[j]], p)
0 otherwise.

(5)

To see the correctness of this formula, observe that all the elements of t[L[j−1]+1, L[j]−1]
are, by definition, not in p and hence their minimum occurrence value is 0. If the element
x = t[L[j]] helps increase min(occ(x, t[L[i], L[j−1]]), occ(x, p)), then we increase the minimum
count by one, otherwise the minimum occurrence does not increase. Furthermore, we can
mark S(i, j) as being right-reasonable anytime that the top case is used and as not being
right-reasonable otherwise.

To design an efficient algorithm based on Equation (5), we need two auxiliary data
structures. The first is a hash table Hcnt that stores, for every k-mer in p, how often it
occurs in p. A second hash table Hloc stores, for every k-mer x ∈ p, the number of locations
i such that t[L[i]] = x.
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The algorithm for computing S and the hash tables is given in Algorithm 1. As a
first step, the Hcnt hash table is constructed via a scan through p. Then, the S matrix
is filled in column-by-column using Equation (5). However, doing the check to determine
which case of Equation (5) to use (i.e. to compute occ(t[L[j]], t[L[i], L[j − 1]])) would
take non-constant time using a naive approach. In order to compute this in constant
time, let c1 = occ(x, t[0, L[i − 1]]) and let c2 = occ(x, t[0, L[j − 1]]) and observe that
occ(x, t[L[i], L[j − 1]]) = c2 − c1. We will now describe how to maintain c2 and c1 as we
process a column of S, with only constant time per cell.

To compute c2, we avoid building Hloc outright and instead build Hloc at the same time
as we are processing S, column-by-column. When processing column j with x = L[j], we
start by incrementing the count of Hloc[x] (Line 7). Let Hj

loc refer to Hloc right after making
this increment. Observe that Hj

loc is Hloc but only containing the counts of locations up to
L[j], and Hℓ

loc = Hloc. Computing c2 is trivial from Hj
loc– it is simply Hj

loc[x]− 1 (Line 9).
To compute c1, we use the fact that when computing a column of S, we are processing

all the rows starting from 0 up to ℓ− 1. We initially set c1 = 0 (Line 8) and then, for each
new row i, we increment c1 if t[L[i]] = x (Line 17).

After S has been filled, we can identify which of the candidate mappings are reasonable.
Observe that a candidate mapping t[L[i], L[j]] is reasonable if and only if S(i, j) > S(i + 1, j)
and S(i, j) > S(i, j − 1). This can be verified by a simple pass through the matrix (Lines 22–
31).

6.2 Computing Maximality

In the second step, we identify which of the candidate mappings in S are maximal. Our
algorithm is shown in Algorithm 2. We traverse S column-by-column starting with the last
column and then row-by-row, starting from the first row. While traversing S, we maintain a
list M of all maximal reasonable candidate mappings above the threshold found so far and
their scores. M has the invariant that the candidate mappings are increasingly ordered by
their start positions.

To maintain the invariant that M is sorted by start position, we maintain a pointer cur

to a location in M (Lines 7–11). At the start of a new column traversal, when the row i = 0,
cur points to the start of M . As the row is increased, we move cur forward until it hits the
first value in M with a start larger than i. When a new final mapping is added to M , we do
so at cur, which guarantees the order invariant of M (Lines 16–20).

Due to the order cells in S are processed during our traversal, a candidate mapping
t[L[i], L[j]] is maximal if and only if its score is larger than the score of all other
final mappings in M with position i′ ≤ i. For a given column, since we are processing
the candidate mappings in increasing order of i, we can simultenously maintain a running
variable maxSoFar that holds the maximum value in M up to cur (Line 8). We can then
determine if a candidate mapping is maximal by simply checking its score against maxSoFar

(Line 14).
Note that as long as we have not yet seen any final mapping up to position i′ ≤ i, a

candidate mapping is already maximal if its score equals thr(|p|). This is ensured via a
flag supMpFnd and an additional satisfiable subclause (Line 14). As soon as maxSoFar is
updated, supMpFnd is set (Line 10).
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Algorithm 1 Part 1 of eskemap Algorithm.
Input: two sketches t and p

Output: the matrix S and annotation of each upper diagonal cell as being reasonable or not

1: Construct Hcnt
2: Initialize Hloc to be an empty hash table initialized with zeros
3: Construct L array
4: S(0, 0) = 1
5: for j = 1 to ℓ− 1 do
6: x← t[L[j]]
7: Hloc[x] = Hloc[x] + 1
8: c1 ← 0 ▷ This will hold occ(x, t[0, L[i− 1]])
9: c2 ← Hloc[x]− 1 ▷ This holds occ(x, t[0, L[j − 1]])

10: for i = 0 to j − 1 do
11: if c2 − c1 < Hcnt[x] then
12: S(i, j)← S(i, j − 1) + 1
13: else
14: S(i, j)← S(i, j − 1)
15: end if
16: if t[L[i]] = x then
17: c1 ← c1 + 1
18: end if
19: end for
20: S(j, j)← 1
21: end for
22: for i = 0 to ℓ− 1 do ▷ Mark each cell as reasonable or not
23: Mark S(i, i) as reasonable
24: for j = i + 1 to ℓ− 1 do
25: if S(i, j) > S(i + 1, j) and S(i, j) > S(i, j − 1) then
26: Mark S(i, j) as reasonable
27: else
28: Mark S(i, j) as not reasonable
29: end if
30: end for
31: end for
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Algorithm 2 Part 2 of eskemap algorithm.
Input: two sketches t and p, the matrix S computed by Algorithm 1, a score function, and a
threshold function thr
Output: all final mappings that are reasonable, maximal, and have a score of at least thr(|p|)

1: Let M be an empty linked list with (i, j, s) tuples.
2: for j = ℓ− 1 down to 0 do
3: maxSoFar ← thr(|p|)
4: cur ←M.start

5: supMpFnd← false
6: for i = 0 to j do
7: while cur ̸= M.end and cur.i ≤ i do
8: maxSoFar = max(maxSoFar, cur.s)
9: cur++

10: supMpFnd← true
11: end while
12: if S(i, j) is reasonable then
13: s← score of S(i, j)
14: if s > maxSoFar or (¬supMpFnd ∧ s = thr(|p|) then
15: Output t[L[i], L[j]]
16: if cur ̸= M.start then
17: M.insertBefore(cur, (i, j, s))
18: else
19: M.insertAt(cur, (i, j, s))
20: end if
21: end if
22: end if
23: end for
24: end for

6.3 Runtime and Memory Analysis

The runtime for Algorithm 1 is Θ(ℓ2) + |t|+ |p|. Note that the Hcnt table can be constructed
in a straightforward manner in O(|p|) time, assuming a hash table with constant insertion
and lookup time; the L array is constructed in O(|t|). Algorithm 2 runs two for loops with
constant time internal operations, with the exception of the while loop to fast forward the
cur pointer. The total time for the loop is amortized to O(ℓ) for each column. Therefore,
the total time for Algorithm 2 is Θ(ℓ2). This gives the total running time for our algorithm
as O(|t|+ |p|+ ℓ2).

The total space used by the algorithm is the sum of the space used by S (i.e. Θ(ℓ2)) and
the space used by Hcnt, Hj

loc, and L. The Hcnt table stores |p| integers with values up to |p|.
However, notice that when |p| > ℓ, we can limit the table to only store k-mers that are in t,
i.e. only ℓ k-mers. We can also replace integer values greater than ℓ with ℓ, as it would not
affect the algorithm. Therefore, the Hcnt table uses O(ℓ log ℓ) space. The Hj

loc table stores at
most ℓ entries with values at most ℓ and therefore takes Θ(ℓ log ℓ) space. Thus our algorithm
uses a total of Θ(ℓ2) space.
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7 Results

We implemented the eskemap algorithm described in Section 6 using scℓ as score func-
tion and compared it to other methods in a read mapping scenario. For better compar-
ability, we implemented it with the exact same minimizer sketching approach as used
by minimap2. Source code of our implementation as well as a detailed documenta-
tion of our comparison described below including exact program calls is available from
https://github.com/medvedevgroup/eskemap.

7.1 Datasets
For our evaluation, we used the T2T reference assembly of human chromosome Y (T2T-
CHM13v2.0) [13]. The chromosome contains many ampliconic regions with duplicated genes
from several gene families. Identifying a single best hit for reads from such regions is not
helpful and instead it is necessary to find all good mappings [5]. Such a reference poses a
challenge to heuristic algorithms and presents an opportunity for an all-hits mapper like
eskemap to be worth the added compute.

We simulated a read dataset on this assembly imitating characteristics of a PacBio Hifi
sequencing run [8]. For each read, we randomly determined its length r according to a gamma
distribution with a 9000bp mean and a standard deviation of 7000bp. Afterwards, a random
integer i ∈ [1, n− r + 1] was drawn as the read’s start position, where n refers to the length
of the chromosome. Sequencing errors were simulated by introducing mutations into each
read’s sequence using the mutation model described in Definition 4 and a total mutation
rate of 0.2% distributed with a ratio of 6:50:54 between substitution/insertion/deletion, as
suggested in [14]. Aiming for a sequencing depth of 10x, we simulated 69401 reads.

The T2T assembly of the human chromosome Y contains long centromeric and telomeric
regions which consist of short tandem and higher order repeats. Mapping reads in such
regions results in thousands of hits that are meaningless for many downstream analyses and
significantly increases the runtime of mapping. Therefore, we excluded all reads from the
initially simulated set which could be aligned to more than 20 different, non-overlapping
positions using edlib (see below). After filtering, a set of 32295 reads remained.

7.2 Tools
We compared eskemap to two other sketch-based approaches and an exact alignment ap-
proach. The sketch-based approaches were minimap2 (version 2.24-r1122) and Winnowmap2
(version 2.03), run using default parameters. In order to be able to compare our results also
to an exact, alignment-based mapping approach, we used the C/C++ library of Edlib [18]
(version 1.2.7) to implement a small script that finds all non-overlapping substrings of the
reference sequence a read could be aligned to with an edit distance of at most T . We tried
values T ∈ {0.01r, 0.02r, 0.03r}, where recall that r is the read length. We refer to this script
as simply edlib.

For eskemap, we aimed to make the results as comparable as possible to minimap2.
We therefore used a minimizer sketch with the same k-mer and window size as minimap2
(k = 15, w = 10). However, we excluded minimizers that occurred > 100 times inside the
reference sketch, to limit the O(ℓ2) memory use of eskemap, even as this exclusion may
potentially hurt eskemap’s accuracy. We used the default w = 1 as the tuning parameter in
the linear score. To set the score threshold, we used the dynamic procedure described in
Section 5.2. In particular, we used five different sequence lengths for simulations and used a

https://github.com/medvedevgroup/eskemap
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Figure 2 Mapping accuracies of all tools. For edlib, the color of the cross encodes the various
edit distance thresholds (0.01, 0.02, 0.03). For eskemap, the color of the circles indicate the score
threshold used, in terms of the target confidence interval used (0.7, 0.8, 0.9, 0.95). The ground truth
is determined by combining the mappings from all tools and filtering out those with bad BLAST
scores. The most lenient thresholds for edlib and eskemap were used.

divergence of 1%. We used the same sequencing error profile as for read simulation. Four
thresholds were then chosen so at to cover the one-sided confidence interval of 70%, 80%,
90%, and 95%, respectively.

7.3 Accuracy Measure

We compared the reference substrings corresponding to each reported mapping location of
any tool to the mapped read’s sequence using BLAST [2]. If a pairwise comparison of both
sequences resulted either in a single BLAST hit with an E-value not exceeding 0.014 and
covering at least 90% of the substring or the read sequence or if a set of non-overlapping
BLAST hits was found of which none had an E-value above 0.01 and their lengths summed
up to at least 90% of either the reference substring’s or the read sequence’s length, we
considered the reference mapping location as homologous.

For each read, we combine all the homologous reference substrings found across all tools
into a ground truth set for that read. We then measure the accuracy of a mapping as follows.
We determined for each k-mer of the reference sequence’s sketch whether it is either a true
positive (TP), false positive (FP), true negative (TN) or false negative (FN). A k-mer was
considered a TP if it was covered by both a mapping and a ground truth substring. It was
considered a FP if it was covered by a mapping, but not by any ground truth substring.
Conversely, it was considered a TN if it was covered by neither a mapping nor a ground
truth substring and considered a FN if it was covered by a substring of the ground truth
exclusively. The determination was performed for each read independently and results were
accumulated per tool to calculate precision and recall measures.

4 In order to ensure robustness of results, BLAST runs were also repeated for E-value thresholds of 0.005
and 0.001 causing only neglectable differences for subsequent analyses.
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Table 1 Runtime and memory usage comparison of all sketch-based methods. The tools were
called to map 32295 simulated PacBio Hifi sequencing reads on the T2T assembly of human
chromosome Y. Runtimes are shown both as total values and normalized by the number of reported
mapping positions.

Tool User Time [s] Memory [GB]

total per mapping

eskemap 100,770 0.01 69
minimap2 26,232 0.55 4.5
Winnowmap2 9,207 0.19 7

7.4 Accuracy Results
The precision and recall of the various tools is shown in Figure 2. The most controlled
comparison can be made with respect to minimap2, since the sketch used by eskemap is a
subset of the one used by minimap2. At a score threshold corresponding to 70% recovery,
eskemap achieves the same precision (0.999) as minimap2. However, the recall of eskemap is
0.88, compared to 0.76 of minimap2. This illustrates the potential of eskemap as a method
to recover more of the correct hits than a heuristic method. More generally, eskemap
achieves a recall around 90%, while all other tools have a recall of at most 76%. However,
both edlib and Winnowmap2 achieve a slightly higher precision (by 0.001).

7.5 Time and Memory Results
We compared the runtimes and memory usage of all sketch-based methods (Table 1). Cal-
culations were performed on a virtual machine with 28 cores and 256 GB of RAM. We did
not include edlib in this alignment since, as an exact alignment-based method, it took much
longer to complete (i.e. running highly parallelized on many days on a system with many
cores). We see that both heuristics are significantly faster than our exact algorithm. However,
they also find many fewer mapping positions per read. E.g., only one mapping position is
reported for 67% and 75% of all reads by minimap2 and Winnowmap2, respectively. In
comparison, eskemap finds more than one mapping position for almost every second read
(49%). When the runtime is normalized per output mapping, eskemap is actually more
than an order of magnitude faster than the other tools.

The memory usage of eskemap is dominated by the size of S. In particular, the highest
value of ℓ was 185, 702 and a matrix with dimensions ℓ× ℓ that stores a 4-byte value in the
upper diagonal takes 69GB, which corresponds to the peak reported in Table 1. As expected,
the memory use depends on the repetitiveness of the text and on the sketching scheme used.

8 Conclusion

In this work, we formally defined the Sketch Read Mapping Problem, i.e. to find all positions
inside a reference sketch with a certain minimum similarity to a read sketch under a given
similarity score function. We also proposed an exact dynamic programming algorithm called
eskemap to solve the problem, running in O(|t| + |p| + ℓ2) time and Θ(ℓ2) space. We
evaluated eskemap’s performance by mapping a simulated long read dataset to the T2T
assembly of human chromosome Y and found it to have a superior recall for a similar level
of precision compared to minimap2, while offering precision/recall tradeoffs compared with
edlib or Winnowmap2.
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A clear drawback of eskemap remains its high memory demand for storing the dynamic
programming matrix. If many k-mers from a read’s sketch occur frequently inside the sketch
of the reference sequence, its quadratic dependence on the number of shared k-mers becomes
a bottleneck. It may be possible to modify the algorithm to store only the recently calculated
column, but that would require a novel way to perform the maximality check of Algorithm 2.

In order to further improve on eskemap’s runtime, a strategy could be to develop filters
that prune the result’s search space. This could be established, e.g., by terminating score
calculations for a column once it is clear an optimal solution would not make use of the
rest of that column. Our prototype implementation of eskemap would also benefit from
additional engineering of the code base, potentially leading to substantial improvements of
runtime and memory in practice.

Having an exact sketch-based mapping algorithm at hand also opens the door for the
exploration of novel score functions to determine sequence similarity on the level of sketches.
Using our algorithm, combinations of different sketching approaches and score functions may
be easily tested. Eventually, this may lead to a better understanding of which sketching
methods and similarity measures are most efficient considering sequences with certain
properties like high repetitiveness or evolutionary distance.
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A Proofs

Proof of Theorem 3. Observe that domination is a transitive property, i.e. if sc1 dominates
sc2 and sc2 dominates sc3, then sc1 dominates sc3. To prove equivalence, we will prove the
following circular chain of domination: scℓ ← scB ← scC ← scD ← scA ← scℓ.

First, observe that scB trivially dominates scℓ by keeping the threshold function the same
and setting b1 = 1 and b2 = w.

Next, we prove that scC dominates scB. Let p be a pattern and let t = thrB(|p|). Set
thrC = thrB and c1 = b1 + b2 and c2 = b2. Then, for all s, the following series of equivalent
transformations proves that scC dominates scB.

scB(s, p; b1, b2) ≥ t∑
x

b1xmin − b2xdiff ≥ t∑
x

b1xmin − b2(xmax − xmin) ≥ t∑
x

(b1 + b2)xmin − b2xmax ≥ t

scC(s, p; c1, c2) ≥ thrC(|p|)

Next, we prove that scD dominates scC. Let p be a pattern and let t = thrC(|p|). Set
d1 = c1 + c2, d2 = c2, and thrD(i) = thrC(i) + ic2. Then, for all s, the following series of
equivalent transformations proves that scD dominates scC.
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scC(s, p; c1, c2) ≥ thrC(|p|)∑
x

c1xmin − c2xmax ≥ t

∑
x

c1xmin − c2

(
|s|+ |p| −

∑
x

xmin

)
≥ t∑

x

(c1 + c2)xmin − c2|s| − c2|p| ≥ t∑
x

(c1 + c2)xmin − c2|s| ≥ t + c2|p|

scD(s, p; d1, d2) ≥ thrD(|p|)

Next, we prove that scA dominates scD. Let p be a pattern and let t = thrD(|p|). Set
a1 = d1

d2
− 2 and thrA(i) = thrD(i)

d2
− i. Then, for all s, the following series of equivalent

transformations proves that scD dominates scC.

scD(s, p; d1, d2) ≥ thrD(|p|)(∑
x

d1xmin

)
− d2|s| ≥ t(∑

x

d1xmin

)
− d2

(∑
x

2xmin +
∑

x

xdiff − |p|

)
≥ t∑

x

((d1 − 2d2)xmin − d2xdiff) + d2|p| ≥ t

∑
x

(
d1 − 2d2

d2
xmin − xdiff

)
+ |p| ≥ t

d2∑
x

(
(d1

d2
− 2)xmin − xdiff

)
≥ t

d2
− |p|

scA(s, p; a1) ≥ thrA(|p|)

Finally, we prove that scℓ dominates scA. Let p be a pattern and let t = thrA(|p|). Set
w = 1

a1
and thrℓ(i) = thrA(i)

a1
. Then, for all s, the following series of equivalent transformations

proves that scℓ dominates scA.

scA(s, p; a1) ≥ thrA(|p|)∑
x

(a1xmin − xdiff) ≥ t

∑
x

(xmin −
1
a1

xdiff) ≥ t

a1

scℓ(s, p; w) ≥ thrℓ(|p|) ◀
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Abstract
The exponential increase in publicly available sequencing data and genomic resources necessitates
the development of highly efficient methods for data processing and analysis. Locality-sensitive
hashing techniques have successfully transformed large datasets into smaller, more manageable
sketches while maintaining comparability using metrics such as Jaccard and containment indices.
However, fixed-size sketches encounter difficulties when applied to divergent datasets.

Scalable sketching methods, such as Sourmash, provide valuable solutions but still lack resource-
efficient, tailored indexing. Our objective is to create lighter sketches with comparable results
while enhancing efficiency. We introduce the concept of Fractional Hitting Sets, a generalization of
Universal Hitting Sets, which uniformly cover a specified fraction of the k-mer space. In theory and
practice, we demonstrate the feasibility of achieving such coverage with simple but highly efficient
schemes.

By encoding the covered k-mers as super-k-mers, we provide a space-efficient exact representation
that also enables optimized comparisons. Our novel tool, SuperSampler, implements this scheme,
and experimental results with real bacterial collections closely match our theoretical findings.

In comparison to Sourmash, SuperSampler achieves similar outcomes while utilizing an order of
magnitude less space and memory and operating several times faster. This highlights the potential
of our approach in addressing the challenges presented by the ever-expanding landscape of genomic
data.

2012 ACM Subject Classification Applied computing → Bioinformatics

Keywords and phrases k-mer, subsampling, sketching, Jaccard, containment, metagenomics

Digital Object Identifier 10.4230/LIPIcs.WABI.2023.15

Supplementary Material
Software (Source Code): https://github.com/TimRouze/supersampler

archived at swh:1:dir:fc533a18a688ebd041d716dfe50b5fa9fbbc9be7
Dataset: https://github.com/TimRouze/Expe_SPSP

1 Introduction

The field of genomics has exploded in recent years, driven by the availability of cheap and
easy sequencing data generation. The Sequence Read Archive (SRA) is a vast and to some
extent under-exploited goldmine of genomic data, containing an enormous amount of genetic
information. However, one of the biggest challenges in utilizing this data is the lack of
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efficient indexing and querying tools. The GenBank database, for example, already contains
1.2 million bacterial genomes, totaling over 5 Terabases of data. In the face of such vast
genetic information, a crucial need is to promptly and precisely determine the most similar
(or contained) known entry for a given query document (assembled or unassembled reads).
Specifically, in this work we focus on the metagenomic assessment problem, which entails
characterizing microbial communities in a specific environment using DNA sequencing data
and potentially large amounts of reference entries. The complexity and diversity of the data,
which contains sequences from multiple genomes, presents significant challenges.

In the metagenomic context, traditional alignment-based methods such as BLAST are
increasingly computationally prohibitive due to the sheer number of potential targets for
metagenome mapping. A spectrum of alignment-free techniques based on k-mer content
have emerged as a viable alternative, with different tradeoffs. On one side of the spectrum,
exact k-mer indexing offers linear query time [9, 14, 21], but may be too memory-intensive
for large-scale applications. Probabilistic structures, when applied to large queries (on the
order of kilobases), enable more scalable indexing at the expense of a random false positive
rate [15, 5].
Adequate query length allows for handling false positive noise since it remains significantly
lower than the required matching signal (e.g., 70% of queried k-mers present in the document).
For extensive queries at the Megabase level, the signal strength is sufficiently robust, elimin-
ating the need to consider all k-mers and enabling sublinear query time. On the other side of
the spectrum, fixed-size sketches like Minhash [6], Hyperloglog [16], and Hyperminhash [29]
have been effectively used for large-scale collection comparison [18, 2, 3, 30, 1]. However,
they are ill-suited for divergent documents in terms of content or size, a critical limitation
considering metagenomic samples typically comprise many organisms with amount of distinct
k-mers varying by orders of magnitude.
Scaled sketches, whose size scales linearly with input size, have demonstrated better resilience
to such issues. Sourmash [23], which implements scaledminhash [23] and Fracminhash [10],
efficiently approximates containment and Jaccard indexes even for documents with size
disparities spanning several orders of magnitude. Sourmash’s simplicity is one of its key
strengths: it stores each uniformly selected k-mer as a 32-bit integer and compares them
using a dictionary. An observation is that this technique is generic and can be applied to
any type of data. Therefore, computational and memory requirements could benefit from
customized selection techniques and index structures.

To this end, we propose capitalizing on the ability to represent overlapping k-mers with
a low number of bits per k-mer using a Spectrum Preserving String Set [25]. The challenge
we face is optimizing the overlap of chosen k-mers to achieve maximum space efficiency.
To address this, we build upon the concept of super-k-mers [12], which are sequences of
k-mers sharing a common selected m-mer called minimizer [26]. Universal Hitting Sets
(UHS [19]) methods aim to design optimized m-mer selection schemes that cover all k-mers
while minimizing the density of selected positions. However, our application does not require
complete coverage of the k-mer space. Therefore, we introduce Fractional Hitting Sets that
encompass a uniformly selected fraction of the k-mer space. We conduct a study on the
achievable density in relation to the selected fraction and present a straightforward minimizer
selection scheme that closely approaches optimal bounds. We implement this scheme in
a tool called SuperSampler. The storage of enhanced super-k-mer sequences, partitioned
by minimizers, facilitates space and time-efficient k-mer set comparisons. Our evaluation
reveals that SuperSampler significantly reduces resource usage compared to Sourmash while
maintaining similar results. Overall, this work presents a promising approach to making
large-scale genomic data more accessible and manageable.
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2 Preliminaries

This paper presents results on finite strings on the DNA alphabet Σ = {A, C, G, T}, we
use σ to denote the size of the alphabet. We consider two input multisets of strings longer
or equal to k, SA and SB. These multisets can in practice be read sets from sequencing
experiments or genome sequences. We call k-mers strings of size k over strings of the input
sets. A = {x0, x1, . . . , xn−1} is the set of distinct k-mers from SA and B = {y0, y1, . . . , yn−1}
is defined similarly for SB. Our goal is to estimate the similarity between those two sets.
Two metrics are mainly used: Jaccard index and the containment index.

Jaccard Index, containment index and estimators

For two finite, non empty sets of k-mers A and B, the Jaccard index [6] gives a measure
of the similarity A and B by comparing the relative size of the A ∩B intersection over the
A ∪B union,

0 ≤ JA,B = |A ∩B|
|A ∪B|

≤ 1.

The containment index C of the previously defined sets A and B measures the relative
size of A ∩B intersection over the size of A, i.e., the proportion of distinct k-mers of A that
are present in B,

0 ≤ CA,B = |A ∩B|
|A|

≤ 1.

In practice, comparing extremely large sets can be resource-intensive, whereas estimating
their similarity can be accomplished much more efficiently. MinHash is a locality-sensitive
hashing technique that represents each set with a list of hash values of fixed size. The fraction
of shared hash values between two lists provides an estimation of the Jaccard index for the
corresponding sets, allowing for efficient similarity measurement.

▶ Property 1 (error in MinHash’s Jaccard estimator). The error bound E of the MinHash
Jaccard estimate J̃A,B only relies on the sketch size s [24]

E = O
(

1√
s

)
.

However, the relative error, E/JA,B, increases significantly for dissimilar documents, as
maintaining the error for a decreasing Jaccard index requires a quadratic compensation in
the sketch size (refer to additional Figure S1 of [18]).

Such a property makes fixed-size sketches ill-suited for comparing dissimilar contents, in
particular in a resource-frugal context since the sketch size to reach an acceptable precision
would be too high to handle.

Happily, scaled sketches that grow linearly with the input size do not present such
drawback. Sourmash is the leading tool that implements such scheme and provides sketches
composed of k-mers represented as 32 bits hashes. To do so, k-mers are selected if their hash
is below a specific threshold calculated in regard to the desired subsampling rate. Our goal is
to improve the space efficiency of such sketch using efficient k-mer encoding dubbed SPSS [25]
exploiting the fact that k-mers share overlaps. The most convenient yet relatively space
efficient SPSS are super-k-mers and our work relies on such efficient k-mer representation
using the notion of minimizers.

WABI 2023
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Minimizers and super-k-mers

▶ Definition 2 (minimizer). Given a total order O and a k-mer u, the minimizer of u is the
smallest m-mer of u according to O. The method to select minimizers is referred to as a
minimizer scheme.

In practice, O is defined on integers by hashing m-mers using a random hash function h and
selecting the smallest hash value. We assume that the hash function is chosen such that the
hashes are independent and uniformly distributed. From now on, we use w = k −m + 1 to
denote the number of m-mers inside a k-mer.

▶ Definition 3 (super-k-mer). A super-k-mer is a maximal substring of a string s (|s| ≥ k)
in which each consecutive k-mers have the same minimizer.

Super-k-mers are an interesting SPSS because a super-k-mer containing x k-mers is
composed of k + x− 1 bases which incur a cost of 2(k+x−1)

x bits per k-mer. Therefore longer
super-k-mers provide lighter k-mer representation.

By omitting repeated minimizers inside k-mers, the first k-mer of the longest possible
super-k-mers have their minimizers as a suffix. Equally, the last k-mers of these super-k-mers
have their minimizers as a prefix.

▶ Definition 4 (maximal super-k-mer). Let s (|s| ≥ k) be a string and v a super-k-mer of s.
Let im be the first position of the minimizer on s. v is a maximal super-k-mer iff v starts
at position im + m− k in s and v ends at position im + k − 1 in s. It follows that v has a
length of 2k −m and contains w = k −m + 1 k-mers.

Examples of regular and maximal super-k-mers are shown in Figure 1. Since maximal
super-k-mer are the most space-efficient, our approach aims to rely on long super-k-mers
(ideally maximal) in order to have a compact encoding of the k-mer sketch.

CTGAAATGCACATTT
CTGAAATGC
    AATGCA
     ATGCAC
      TGCACATTT

sequence

super-k-mers

1.
2.
3.
4.

(maximal)

(maximal)

Figure 1 Super-k-mers extracted from a sequence for k = 6, m = 3. Minimizers are
shown in purple, here we use the lexicographic order instead of hashing minimizers for the
sake of the simplicity. Super-k-mers 1 and 4 are maximal (they contain respectively k-mers
{CT GAAA, T GAAAT, GAAAT G, AAAT GC} and {T GCACA, GCACAT, CACAT T, ACAT T T },
while 2 and 3 are not (and contain respectively k-mers {AAT GCA} and {AT GCAC}.

▶ Property 5 (coverage of maximal super-k-mers). In [22], authors show that maximal super-
k-mers cover approximately half of the k-mers of an input string (Proof of Theorem 3) for a
sufficiently large m.

Density and universal hitting sets

Since every minimizer corresponds to one super-k-mer, the proportion of m-mers chosen as
minimizers is exactly the inverse of the average length of super-k-mers. This proportion,
which quantifies the sparsity of a minimizer scheme, is referred to as the density.
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▶ Definition 6 (density of a minimizer scheme). The density of a minimizer scheme is the
expected number of selected minimizers divided by the total number of m-mers. The density
factor is equal to the density multiplied by w + 1.

The density of a minimizer scheme is lower bounded by 1/w since each k-mer contains w

m-mers and one of them must be selected as a minimizer. It is known that the expected
density of a minimizer scheme based on a random ordering is 2/(w + 1), and that minimizer
schemes cannot have a density below 1.5/(w + 1) [28]. More generally, m-mers selection
scheme able to cover every k-mer are called universal hitting sets.

▶ Definition 7 (universal hitting set or UHS). A set U ⊆ Σm is defined as a Universal Hitting
Set (UHS) if it includes a minimum of one element from every sequence of w consecutive
m-mers.

Note in particular that the set of all minimizers of Σk forms a UHS. Recent publications
introduced different methods based on UHS to bring the density below 2/(w + 1) and closer
to the 1.5/(w + 1) barrier [31, 20]. Thus, a question that naturally arises is: can we cross
this barrier by relaxing some constraints on the selection scheme?

3 Fractional Hitting Sets

In this section, we introduce the concept of fractional hitting sets, which are a generalization
of universal hitting sets. These sets are designed to cover a fraction f of the k-mer space.

▶ Definition 8 (fractional hitting set or FHS). A set F ⊆ Σm is a Fractional Hitting Set
(FHS) if it contains at least one element from a fraction at least f of the sequences of w

consecutive m-mers.

To avoid selection bias in practice, we aim to ensure that k-mers are selected randomly,
using a random seed as a basis, and that every k-mer has an equal chance of being chosen.

We introduce a simple way to build such fractional hitting sets by selecting minimizers
with a hash smaller than a certain threshold. We call such selected minimizers small
minimizers. Note that any method selecting a fraction of the minimizers hashes would be
suitable here.

▶ Definition 9 (small m-mer). Given a fixed threshold t ∈ J0, σmK, we say that a m-mer
is small if its hash is below t. We denote by S the set of small m-mers, and p = t

σm the
probability that a m-mer is small.

From p we can derive the proportion of covered k-mers.

▶ Property 10. The fraction of k-mers with distinct m-mers containing a small m-mer is

f = 1− (1− p)w

where w = k −m + 1 and p is the probability that a m-mer is small.

Proof. Given a k-mer with w distinct m-mers x1, . . . , xw,

P(∀i ∈ J1, wK, h(xi) ≥ t) =
w∏

i=1
P(h(xi) ≥ t) = (1− p)w

because the hashes of distinct m-mers are independent, so

f = P
(

min
i∈J1,wK

h(xi) < t

)
= 1− (1− p)w. ◀
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Conversely, if we want a given fraction f of the k-mers to be covered, the threshold should
be chosen as

t =
[
1− (1− f)1/w

]
· σm. (1)

Density of small minimizers

We showed that selecting k-mers with a small minimizer induces an FHS. By considering the
usual definition of density (from Definition 6) for this scheme (which cover a fraction f of all
k-mers), we obtain the following bound (proven in supplementary materials):

▶ Theorem 11. Assuming m > (3 + ε) logσ w, the expected density of small minimizers in a
random sequence is upper bounded by

2f

w + 1 + o(1/w).

At first glance, the results may be surprising, as the density is smaller than the lower
bound of 1/w for f < 1/2 and can approach zero. This is because some k-mers may not
contain any small minimizers and are therefore not covered, and the proportion of such
k-mers increases as f approaches 0. However, it’s worth noting that this bound does match
the 2/(w + 1) density when f = 1 (i.e., when every k-mer is covered).

To obtain a more meaningful metric, we can compute the density on the fraction of the
sequence that is covered, instead of the entire sequence. With this approach, we obtain the
following theorem, which has been proven in the supplementary materials:

▶ Theorem 12 (restricted density). If we restrict to sequences in which every k-mer contains
a small minimizer, assuming m > (3 + ε) logσ w, the expected density of small minimizers is
upper bounded by

2 · f + (1− f) ln(1− f)
f2(w + 1) + o(1/w).

Although less intuitive than the previous one, this result provides valuable insights into the
density within the covered portion of the sequence. As shown in Figure 5 (see supplementary
materials), the associated density factor ranges from 2 when f = 1 (consistent with existing
results) to 1 when f = 0. Therefore, as f approaches 0, we can approach the optimal density.

Maximal super-k-mers

Although measuring the density provides an overview of the average length of super-k-mers,
it doesn’t indicate how many of them are maximal (i.e., of length 2k −m). The following
result (proven in the supplementary materials) answers this question:

▶ Theorem 13. In a random sequence, the average proportion of maximal super-k-mers
(with respect to all super-k-mers) built from small minimizers is given by[(

1− 1
w

)
f

1 + f

]2
+ 1− f(1− 2/w)

1 + f
.

Note that this result generalizes theorem 4 from [22], which corresponds to f = 1. As shown
in figure 12b (see supplementary materials), the proportion increases towards 100% as f

approaches 0.
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Improving the density of fractional hitting sets using UHS

This effect is more pronounced for smaller values of f . This observation raises a natural
question: what is the lowest achievable density for a given f? Since universal hitting sets
(UHS) with a density lower than 2 have been proposed for f = 1, it is possible that they
may also improve the density for smaller f values by considering only the m-mers selected
by the UHS as potential minimizers.

▶ Theorem 14. Given a UHS U with density dU , assuming m > (3 + ε) logσ w, the expected
density of small minimizers selected from U (that is, S ∩ U) in a random sequence is upper
bounded by

f · dU + o(1/w).

The proof is given in supplementary materials. Note that this result generalizes theorem 11
since the UHS of minimizers selected using a random ordering has a density of 2/(w + 1) [28].

4 SuperSampler

4.1 Related work
Sketching

Sketching strategies involve building a summary, or “sketch”, of an input dataset that is
smaller than the original set. The purpose of this sketch is to approximate the similarity
between two documents based on the similarity between their respective sketches. In our
context, sketches are lists or sets of fingerprints that represent uniformly selected k-mers
from the set.

Fixed-size sketches

MinHash is a seminal method for fixed-size sketch-based set comparison. In our context, a
MinHash sketch is a list of k-mer hashes that are minimal in some sense. As these k-mers
are selected uniformly, the proportion of shared hashes between two sketches approximates
the Jaccard index of their original documents. Tools such as MASH [18] employ this principle
to efficiently compare large collections. However, two main limitations arise from this
strategy. First, hash collisions need to be addressed, as they introduce more resemblance
between two compared sets than what actually exists. Therefore, the fingerprint size must
be chosen appropriately to control such collisions. Recent approaches like [30], Dashing [2],
Dashing2 [3] and NIQKI [1] used enhanced fingerprint scheme related to Hyperloglog [7] or
to HyperMinHash [29] to get the best possible precision memory trade-off. Second, as stated
in Property 1, this approach is best suited for comparing sets of similar size and content.
When comparing sets with significant size or content differences, the accuracy of the estimate
decreases substantially.

Scaled sketches

As the problem of inaccuracy of fixed-size sketches for dissimilar datasets was pointed out
but only partially solved using MinHash schemes [17, 13], novel approaches were proposed.
Scaled sketches methods build their sketches with adapted sizes in regard to the input. The
main contribution in this direction for compositional analysis is sourmash [23], and our paper
also falls in this category. sourmash incorporates a scaled factor indicating the fraction of
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the k-mer’s input that should be included in the sketch as fingerprints. To do so they add a
fingerprint in the sketch if their integer value is a multiple of S (ScaledMinhash) or lower than
a fixed threshold (FracMinHash). The latter technique is recently described and theoretically
studied in [10, 8]. In contrast to previously presented fixed-size sketching approaches, those
approaches have the advantage of providing a more accurate comparison of uneven sized sets.
This flexibility comes at the cost of possibly large sketches. Schemes based on minimizers or
other seeds are also used for read mapping [11, 27] but are out of the scope of this paper.

4.2 SuperSampler’s sketch construction
▶ Definition 15 (SuperSampler’s sketch). Given a sequence S, each super-k-mer whose
minimizer’s hash is lower or equal to a threshold T is selected, and all its surrounding k-mers
are kept in the sketch as a super-k-mer. A supersampler sketch can therefore be represented
as a super-k-mer set.

In Sourmash, k-mers are represented as integer fingerprints through hashing (using a
default of 32-bit). This approach reduces space requirements compared to employing 2k

bits per k-mer, but it also introduces the potential for false positives due to hash collisions.
However, the false positive rate is exponentially low, depending on the fingerprint size, which
allows for efficient control.

In contrast, SuperSampler explicitly stores k-mers as super-k-mers, offering two significant
advantages over the conventional method: First, the selected k-mers are represented exactly,
eliminating false matches and enabling the output of shared k-mers when they are of interest
to users. Second, this technique enables a more space-efficient representation of k-mers,
typically requiring less than the 32-bit per k-mer space cost of Sourmash. Figure 2 illustrates
an example of sketch construction in SuperSampler. In the following sections, we propose a
model to evaluate the space efficiency of a SuperSampler sketch.

In the regular case with hashed minimizer with a density factor of 2 we can expect
(k −m + 1)/2 k-mers per super-k-mers [22]. This results in a mean super-k-mer length of
(3k−m− 1)/2 bases. We can give a lower bound of the cost in bit per k-mer to encode such
super-k-mers:

2(3k −m− 1)
k −m + 1 .

However we need to encode the length of each super-k-mer to avoid considering artefactual
k-mers created by two successive super-k-mers so we can add log2(k − m + 1) bits per
super-k-mer (encoding the number of k-mers). This leads to a bits per k-mer ratio of

2 · 3k −m− 1 + log2(k −m + 1)
k −m + 1 .

In practice we use the formula (1) to select a k-mer fraction chosen by the user. As a
side effect, since we used an FHS, selected super-k-mers are longer than those selected by
regular hashed minimizer scheme as our hitting set provides a lower density. Importantly for
low selected fraction a very large proportion of super-k-mers are maximal. This property is
of prime interest because maximal super-k-mers can be efficiently encoded for two reasons.
First they are all of the same size so we do not need to encode their respective length or any
kind of separator. Second, they represent 2k −m bases encoding for k −m + 1 k-mers, they
provide a lower bits per k-mers ratio

2(2k −m)
k −m + 1 .
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Figure 2 SuperSampler’s sketching strategy. In order to build sketches, SuperSampler computes
super-k-mers over the input sequence. Fingerprints are associated with each super-k-mer by hashing
their minimizers to an integer, hence an integer per super-k-mer. Super-k-mers associated to
sufficiently low integers are kept in the sketch. Super-k-mers are put into buckets according to their
minimizer.

4.3 Partitioned sketches
Minimizers naturally partition the super-k-mer space into O(4m) buckets. Since only a
subset of the minimizer space is selected, a smaller number of buckets are actually considered.
SuperSampler relies on the fact that super-k-mers are centered around a shared minimizer
to build a partitioned sketch. In practice, we examine all non-empty selected buckets, each
storing a minimizer with their corresponding super-k-mers independently. This strategy
offers several crucial advantages. First, when encoding maximal super-k-mers, we know the
position of the minimizer within each super-k-mer. By storing the minimizer sequence once
in the bucket, we can omit it in all maximal super-k-mers. This results in an even lower bit
per k-mer ratio:

4(k −m)
k −m + 1 .

Figure 3 shows the space cost of the different encoding: super-k-mer, maximal super-k-
mer and partitioned super-k-mer according the the minimizer size along with the actual
performances of Supersampler. While this mechanism enhances space efficiency, it also
significantly improves actual memory usage. When comparing document sketches, matching
k-mers between documents are necessarily found in the same partition, so only a given
partition is needed in memory at a time. For sufficiently large m, such partitions should
be orders of magnitude smaller than the total amount of selected k-mers, as the expected
partition size decreases exponentially with m. This partitioning technique also allows for
substantial speed-ups, notably in sketch comparison time, which are discussed later on.

4.4 Sketches comparisons
Sketches comparisons

Unlike sourmash that treats sketches in their entirety, SuperSampler focuses on small related
partitions. This allows for two distinct computational improvements. First, a partition
that is specific to a file can be skipped as we know that no k-mer present in such partition
will be found in another file so no matching k-mer can be found. Second, the size of the
buckets stored in memory being small, we expect few cache-misses when comparing partitions
unlike sourmash for which a cache-miss for each queried fingerprint can be expected. In
other words, as illustrated in Figure 4, SuperSampler concentrates exclusively on small,
relevant partitions and processes each of them only once. The efficiency benefits of this

WABI 2023
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Figure 3 Theoretical space cost of different encodings in bits per k-mer according the k-mer size
size along with practical space usage of super-sampler sketches on random sequences.

approach are magnified when comparing one or multiple documents against a large collection,
as SuperSampler processes only a specific partition of the relevant documents at a given
time. This targeted processing reduces the computational load and enhances the overall
performance of the comparison.

5 Results

All experiments were performed on a single cluster node running with Intel(R) Xeon(R) Gold
6130 CPU @ 2.10GHz and 2 64GiB DIMM DDR4 Synchronous 2666 MHz ram.

In the first section, we evaluate supersampler sketches space usage. In the second section,
we evaluate the precision and performance of SuperSampler in comparison to Sourmash, the
current state-of-the-art solution. Finally, in the last section, we demonstrate SuperSampler’s
scalability when indexing extensive collections. Every file used to perform these experiments
can be found GitHub : github.com/TimRouze/Expe_SPSP.

5.1 Space efficiency of supersampler
As previously discussed, the lower bound of memory cost for storing k-mers as super-k-mers
is given by

2 · 3k −m− 1 + log2(k −m + 1)
k −m + 1

bits per k-mer , assuming we store the size of each super-k-mer in the index. For m = 15, this
bound equates to 9.2 bits/k-mer with k = 31 and 7.1 bits/k-mer with k = 63. However, in
practice, SuperSampler exhibits lower space usage. Figure 13 in the supplementary materials
reveals that approximately 6.5 bits/k-mer and 5 bits/k-mer are achieved for k = 31 and 63,
respectively.

github.com/TimRouze/Expe_SPSP
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Figure 4 How SuperSampler and Sourmash perform their respective sketch comparison. In this
example, we discuss the comparison of one document against a collection, although other use cases
can be inferred. SuperSampler is capable of skipping certain buckets that are not relevant to the
query. By focusing on smaller sub-parts of the collection one at a time, SuperSampler effectively
improves practical performance and reduces memory usage.

These results can be attributed to the low density permitted by SuperSampler’s minimizer
selection scheme. As illustrated in Figure 5, the density factor quickly diminishes as the
subsampling rate increases, respectivey as the fraction f diminishes. When the subsampling
rate is 2, the density factor falls below 1.5, the lower bound of the minimizer scheme, and
continues to decline toward 1. In general, subsampling tools seldom apply rates below 100,
with Sourmash defaulting to a rate of 1000 i.e. f = 1/1000. Consequently, SuperSampler
consistently remains close to the lower bound for the density factor, since the density factor
for a subsampling rate of 100 is already below 1.04. This facilitates the indexing of longer
super-k-mers, which are stored more efficiently as their length increases.

To further reduce memory costs, SuperSampler offers an option to use its selection scheme
in conjunction with existing UHS-based minimizer schemes, specifically the modified double
decycling sets introduced in [20]. As depicted in Figure 6, this approach marginally improves
the bit/k-mer cost, particularly for smaller values of k.

A high proportion of maximal super-k-mers in a sketch is advantageous for SuperSampler,
as it lowers the bit/k-mer cost. Figure 7 demonstrates that the percentage of maximal
super-k-mers increases rapidly with the subsampling rate, reaching 90%, 99%, and 99.9% of
indexed super-k-mers when the subsampling rate is around 10, 100, and 1000, respectively.
This feature is particularly significant because it enables a rapid and considerable reduction
in the bit/k-mer cost by efficiently encoding maximal super-k-mers. Therefore, with the
subsampling rates commonly used in practice, which involve a very high proportion of
maximal super-k-mers, the actual bound is determined by the following formula

2(2k −m)
k −m + 1 .
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Figure 5 Measured density factor compared to the model.
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5.2 Performance Comparison

In our qualitative experiment, we compared the performance of SuperSampler with Sourmash,
which implements FracMinHash. We evaluated both tools on two distinct datasets: 1024
Salmonella genomes from GenBank and 1024 bacterial genomes from RefSeq. These collections
were chosen due to their differing containment indexes; Salmonella genomes are highly similar
to each other, while the bacterial genomes in RefSeq exhibit much greater dissimilarity
(Jaccard index close to 0).

We carried out an all-versus-all comparison of these collections using both tools and
monitored RAM and disk usage, as well as computation time during the sketch comparisons.
To assess the precision of the approximated scores, we calculated the exact Jaccard and
containment index values using Simka [4], which performs efficient k-mer counting operations
on large collections. With these scores as a reference, the precision of the approximation can
be evaluated.

RAM and computation time were measured using the benchmark flag from Snakemake,
with one run per command. Disk usage was determined by comparing the sketch sizes of
Sourmash (using the zip option for sourmash sketch) and SuperSampler, with the latter’s
sketch sizes examined through a Python script. SuperSampler sketches were stored in a tar
archive and compressed using gzip -9.

5.2.1 RAM, time, and sketch size

Figures 14 and 8 demonstrate that, for k = 31, SuperSampler generally consumes 5 times less
RAM and requires generally 16 times less space than Sourmash. Additionally, SuperSampler
performs computations 50 times faster than Sourmash when comparing highly dissimilar
genomes. However, when genomes are very similar, such as with Salmonella, comparison
times are comparable since SuperSampler’s time optimization does not apply on very similar
documents. We also note that minimizer size has little to no impact on these metrics.

Figures 15 and 16 reveal that the improvement in sketch disk size is even more significant
with larger values of k. SuperSampler uses in general 50 times less disk space than Sourmash
with k = 63, while maintaining similar differences in RAM and computation time.

5.2.2 Error

As demonstrated in Figure 9, SuperSampler’s performance is similar to Sourmash in terms
of error, although it exhibits slightly lower accuracy. This reduced accuracy results from a
clustering effect caused by SuperSampler selecting overlapping k-mers around small minim-
izers. This effect is counterbalanced by SuperSampler’s ability to index and compare more
k-mers using the same amount of memory and generally less computation time. Figure 9
shows strong variability in error for both Sourmash and SuperSampler, it is to be noted that
the error is constantly small and that small variability on already small number leads to such
fuzzy figures.

Additionally, SuperSampler stores k-mers in plain text without any loss of information,
which means that k-mers of interest can actually be retrieved. While Sourmash could rely on
invertible hash functions and larger hashes to match this ability, doing so would effectively
increase their space usage.
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(b) Computational time.
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Figure 8 Resource consumption results for 1024 bacterial genomes from RefSeq. For these results,
k = 31. For results on Salmonella genomes and k = 63, see figures 14, 16 and 15 on the appendix.
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Figure 9 Error against Simka on Containment index approximation for Sourmash (red line) and
SuperSampler with different minimizer sizes. This plot is for 1024 Salmonellas genoms with k = 63.
Other results for RefSeq and Salmonellas are available at figure 17. Jaccard index error is available
at figure 18 on the appendix.
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5.2.3 Massive collection indexing
As a scalability experiment, SuperSampler and Sourmash were monitored on their perform-
ances while analysing growing collection of RefSeq bacterial genomes. Result are displayed
in Figure 10. We can see that our tool is able to handle all versus all comparison very large
scale collection comparison effectively. For the biggest amount of files, SuperSampler took 25
CPU hours. We observe that the gap between Sourmash and Supersampler is diminishing
for larger collection as the output matrix itself become large and generate cache-miss for
every update. The sketch creation step is essentially cheap as both tools only took a couple
CPU hours the actual bottleneck being IO.
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Figure 10 Computational time for comparisons on different amounts of bacterial genomes from
RefSeq. From 100 to 128,000 genomes with k = 63, s = 1000 and m = 15 Sourmash was run up to
32,000 genomes as it was taking too much time for the 2 last experiments.

6 Conclusion

In this paper, we present both theoretical and practical results of an innovative subsampling
scheme based on super-k-mers. We introduce the fractional hitting sets framework and
propose a straightforward sketching method to highlight its benefits. This approach offers
improved density compared to other schemes and tends to select k-mers that contribute to
better space usage. Capitalizing on this scheme, we propose SuperSampler, an open-source
sketching method for metagenomic assessment.

Through comprehensive experimental evaluation, we demonstrate that SuperSampler
enables efficient and lightweight analysis of extensive genomic data sets with fewer resource
requirements compared to the state-of-the-art tool Sourmash. More generally our results
confirm the validity of our methodology from both theoretical and experimental standpoints.

We recognize several potential enhancements for our study. First, concerning Super-
Sampler’s implementation, we aim to refine the tool for increased user-friendliness and
adaptability for routine analysis while augmenting its capabilities, such as abundance track-
ing. Implementation of such improvements will lead to more thorough experiments with
existing sampling methods as well as new comparisons with Sourmash using the same amount
of disk memory in order to better show SuperSampler’s capacity with regard to both fixed-size
and scalable sketches.

Second, we plan to investigate alternative methods for sketch comparison, like sorted
fingerprints, which could potentially reduce the complexity of the comparison process. From
a theoretical perspective, delving deeper into the properties of Fractional Hitting Sets and
gaining a better understanding of density and restricted density bounds for various values of
f may lead to even more efficient and robust sketching techniques.
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A Useful Lemmas

▶ Lemma 16. Assuming p is non-increasing with respect to w, 1− (1− p)w+1 =
w→∞

f + o(1).

Proof. (1− p)w+1 = (1− p)w − p(1− p)w

if p −→
w→∞

0, p(1− p)w −→
w→∞

0
otherwise p ≥ c for some c > 0 since it is non-increasing, so p(1− p)w ≤ p(1− c)w −→

w→∞
0

Therefore, (1− p)w+1 = (1− p)w + o(1). ◀

We use Ŝ to denote the set of k-mers containing a small m-mer.

▶ Lemma 17. Given two consecutive k-mers W0 and W1, P(W0, W1 ∈ Ŝ) =
w→∞

f + o(1).

Proof.

P(W0, W1 ∈ Ŝ) = 1− P(W0 /∈ Ŝ ∨W1 /∈ Ŝ)

= 1−
[
P(W0 /∈ Ŝ) + P(W1 /∈ Ŝ)− P(W0 /∈ Ŝ ∧W1 /∈ Ŝ)

]
= 1− 2(1− p)w + (1− p)w+1 = 1− (1− p)w + o(1) (Lemma 16)
= f + o(1). ◀

▶ Lemma 18. p =
w→∞

− 1
w ln(1− f) + o(1/w)
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Proof. Because of property 10, we have p = 1− (1− f)1/w and

(1− f)1/w = exp
[

1
w

ln(1− f)
]

= 1 + 1
w

ln(1− f) + o(1/w). ◀

B Proof of Theorem 11

In order to upper bound the density, we follow the same approach as the one presented in [31]
(for the proof of theorem 7). As stated in [31], the density is equivalent to the probability
that a context c (that is, the string formed by two consecutive k-mers) is charged, i.e. the
two k-mers of c have different minimizers.

d = Pc,h(c is charged)
≤ Pc,h(c has duplicate m-mers) + Pc,h(c is charged | no duplicate m-mers)

▶ Lemma 19 (lemma 9 from [31]). Assuming m > (3 + ε) logσ w,

Pc,h(c has duplicate m-mers) = o(1/w).

If c has no duplicate m-mers, the small m-mers are all distinct and each of them has the
same probability to be minimal since h is random. Therefore,

Pc,h(c is charged | no duplicate m-mers) = Ec,h

[
Mboundary

Mtotal

]
where Mboundary denotes the number of boundary m-mers that are small and Mtotal denotes
the total number of small m-mers in c.

Let x0 denote the first m-mer of c and xw denote the last one,

Ec,h

[
Mboundary

Mtotal

]
= Ec,h

[
1x0∈S + 1xw∈S

Mtotal

]
= 2 · Ec,h

[
1x0∈S

Mtotal

]
(symmetry)

= 2 · Ec,h[1/Mtotal | x0 ∈ S] · P(x0 ∈ S).

Assuming x0 is small, we have Mtotal = 1 + X with X ∼ B(w, p), since each other m-mer
of c has a probability p to be small.

Ec,h[1/Mtotal | x0 ∈ S] = Ec,h

[
1

1 + X

]
=

w∑
i=0

1
1 + i

(
w

i

)
pi(1− p)w−i

▶ Lemma 20.
∑w

i=0
1

1+i

(
w
i

)
pi(1− p)w−i = 1−(1−p)w+1

(w+1)p

Proof.

(w + 1)p
w∑

i=0

1
1 + i

(
w

i

)
pi(1− p)w−i =

w∑
i=0

w + 1
1 + i

w!
i!(w − i)!p

i+1(1− p)w−i

=
w∑

i=0

(w + 1)!
(i + 1)!(w + 1− (i + 1))!p

i+1(1− p)w+1−(i+1) =
w+1∑
j=1

(
w + 1

j

)
pj(1− p)w+1−j

= 1− (1− p)w+1 ◀

Finally, since P(x0 ∈ S) = p, d ≤ 2 · 1−(1−p)w+1

w+1 + o(1/w) = 2f
w+1 + o(1/w) (Lemma 16)
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C Proof of Theorem 12

In this section, we assume that every k-mer we work with contains a small m-mer.
Just as for the proof of theorem 11, we still have

d ≤ Pc,h(c has duplicate m-mers) + Pc,h(c is charged | no duplicate m-mers) and

Pc,h(c is charged | no duplicate m-mers) = Ec,h

[
Mboundary

Mtotal

]
= 2 · Ec,h[1/Mtotal | x0 ∈ S] · P(x0 ∈ S | W1 ∈ Ŝ).

▶ Lemma 21. Assuming m > (3 + ε) logσ w, Pc,h(c has duplicate m-mers) = o(1/w).

Proof. This proof is similar to the proof of lemma 9 from [31]. Let i, j ∈ J0, wK with i < j,
δ = j − i.

If δ < m, P(xi = xj) = σδ

σm+δ = 1
σm = o(1/w3).

If δ ≥ m,

P(xi = xj) = P(xi = xj | xi, xj ∈ S)P(xi, xj ∈ S) + P(xi = xj | xi, xj /∈ S)P(xi, xj /∈ S)

= P(xi, xj ∈ S)
p · σm

+ P(xi, xj /∈ S)
(1− p)σm

.

Because of lemma 17, P(xi, xj ∈ S) = p2

P(W0,W1∈Ŝ)
= p2

f+o(1) ≤ p and

P(xi, xj /∈ S) ≤
(1− p)2[

1− (1− p)w−1]
P(W0, W1 ∈ Ŝ)

=
(1− p)2[

1− (1− p)w−1]
f + o(1) ≤ (1− p)2.

Therefore, P(xi = xj) ≤ p
p·σm + (1−p)2

(1−p)σm ≤ 2
σm = o(1/w3).

Thus Pc,h(c has duplicate m-mers) =
(

w
2
)
× o(1/w3) = o(1/w). ◀

Assuming x0 is small, the w next m-mers of c form a k-mer, so we know that at least
one of them is also small. Therefore,

Ec,h[1/Mtotal | x0 ∈ S] = Ec,h

[
1

1 + X
| X ≥ 1

]
= 1

P(X ≥ 1)

w∑
i=1

1
1 + i

(
w

i

)
pi(1− p)w−i

= 1
f

[
1− (1− p)w+1

(w + 1)p − (1− p)w

]
= 1

f

[
f + o(1)
(w + 1)p − (1− f)

]
. (Lemma 20 and 16)

What’s more, P(x0 ∈ S | W1 ∈ Ŝ) = P(x0∈S)
P(W1∈Ŝ)

= p
f . Hence,

d ≤ 2p

f2

[
f + o(1)
(w + 1)p − (1− f)

]
+ o(1/w) = 2

f(w + 1) −
2(1− f)p

f2 + o(1/w)

= 2
f(w + 1) + 2(1− f) ln(1− f)

f2w
+ o(1/w) (Lemma 18)

= 2 · f + (1− f) ln(1− f)
f2(w + 1) + o(1/w).

D Proof of Theorem 13

In order to compute the proportion of maximal super-k-mers, we adapt the proof of theorem 4
from [22].

First, we introduce a similar Markov chain representing the position X of the small
minimizer in the k-mer, with an extra state ∅ when there is no small minimizer.

We reuse the following notations introduced in [22]:

WABI 2023
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1 2 . . . w − 1 w

∅
1 − f p

1 − p

δ

1 − δ

f/w

Figure 11 The chain is in state i ∈ J1, wK if the small minimizer starts at position i in the k-mer,
and ∅ if there is no small minimizer. Different edge colors represent different probabilities.

Plr is the proportion of left-right-max (i.e. maximal) super-k-mers
Pl is the proportion of left-max super-k-mers
Pr is the proportion of right-max super-k-mers
Pn is the proportion of non-max super-k-mers

∀i ∈ J1, w − 1K,P(first X = i) = P(X = 1) · f
w

Plr +Pr = P(X = w) = P(first X = w) = 1−
w−1∑
i=1

P(first X = i) = 1−P(X = 1)·f ·(1−1/w)

Plr + Pl = P(last X = 1) = P(X = 1) + P(first X = 1) = P(X = 1) · (1 + f/w)

By symmetry, Pl = Pr, so 1− P(X = 1) · f · (1− 1/w) = P(X = 1) · (1 + f/w).
Therefore, P(X = 1) = 1

1+f and P(X = w) = 1− f
1+f

(
1− 1

w

)
= 1+f/w

1+f .
What’s more, 1 + Plr = Plr + Pl + Plr + Pr + Pn = 2 · P(X = w) + Pn so

Plr = Pn+2·P(X = w)−1 = Pn+1 − f(1 − 2/w)
1 + f

and Pl = Pr = P(X = w)−Plr = f(1 − 1/w)
1 + f

−Pn

Pn = P(first X ̸= w) · P(last X ̸= 1) = P(X = 1) · f · (1 − 1/w) · [1 − P(X = 1) · (1 + f/w)]

=
(

1 − 1
w

)
· f

1 + f
·
[

1 − 1 + f/w

1 + f

]
=

(
1 − 1

w

)
· f

1 + f
· f(1 − 1/w)

1 + f
=

[(
1 − 1

w

)
f

1 + f

]2

Thus Pl = Pr =
[(

1− 1
w

)
f

1+f

][
1−

(
1− 1

w

)
f

1+f

]
and Plr =

[(
1− 1

w

)
f

1+f

]2
+ 1−f(1−2/w)

1+f .

E Proof of Theorem 14

This proof generalizes the proof of theorem 11 when the minimizers are selected from a UHS
U with density dU .

First, because of independence, we have P(x0 ∈ S ∩ U) = P(x0 ∈ S) · P(x0 ∈ U) and
P(|S ∩ U ∩ c| = i) =

∑
n≥i P(|U ∩ c| = n)P(|S ∩ U ∩ c| = i | |U ∩ c| = n).
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The main change of the proof lies in the bound on the expectation:

E
[

1
|S ∩ U ∩ c| | x0 ∈ S ∩ U

]
=

w∑
i=0

1
i + 1P(|S ∩ U ∩ c| = i + 1 | x0 ∈ S ∩ U)

=
w∑

i=0

1
i + 1

w∑
n=i

P(|U ∩ c| = n + 1 | x0 ∈ U)P(|S ∩ U ∩ c| = i + 1 | |U ∩ c| = n + 1, x0 ∈ S ∩ U)

=
w∑

n=0

P(|U ∩ c| = n + 1 | x0 ∈ U)
n∑

i=0

1
i + 1P(|S ∩ U ∩ c| = i + 1 | |U ∩ c| = n + 1, x0 ∈ S ∩ U)

=
w∑

n=0

P(|U ∩ c| = n + 1 | x0 ∈ U)
n∑

i=0

1
i + 1P(|S| = i + 1 | x0 ∈ S, |W | = n)

=
w∑

n=0

P(|U ∩ c| = n + 1 | x0 ∈ U) · 1 − (1 − p)n+1

(n + 1)p (Lemma 20)

≤
w∑

n=0

P(|U ∩ c| = n + 1 | x0 ∈ U) · f + o(1)
(n + 1)p . (Lemma 16)

Therefore, using the same arguments as in the proof of theorem 11, we obtain

dS∩U ≤ 2 · P(x0 ∈ S ∩ U) · E
[

1
|S ∩ U ∩ c|

| x0 ∈ S ∩ U
]

+ o(1/w)

≤ 2 · P(x0 ∈ U) · P(x0 ∈ S)
w∑

n=0
P(|U ∩ c| = n + 1 | x0 ∈ U) · f

(n + 1)p + o(1/w)

= f · 2 · P(x0 ∈ U)
w∑

n=0

1
n + 1P(|U ∩ c| = n + 1 | x0 ∈ U) + o(1/w)

= f · dU + o(1/w).

F Additional figures and algorithms
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Figure 12 Theoretical bounds on the density factor and the proportion of maximal super-k-mers
depending on the fraction f of covered k-mers.
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Figure 13 Space cost in bits per k-mer according to the subsampling rate.
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Figure 14 Salmonellas 1K k=31.
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Figure 15 Refseq 1K k=63.
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Figure 16 Salmonellas 1K k=63.

WABI 2023



15:24 SuperSampler

2−15

2−11

2−7

24 28 212 216

Subsampling rate (log scale)

Er
ro

r c
om

pa
re

d 
to

 S
IM

K
A

(lo
g 

sc
al

e) tool
sourmash
SuperSampler_m11
SuperSampler_m13
SuperSampler_m15

(a) RefSeq k = 31.

2−13

2−9

2−5

2−1

24 28 212 216

Subsampling rate (log scale)

Er
ro

r c
om

pa
re

d 
to

 S
IM

K
A

(lo
g 

sc
al

e) tool
sourmash
SuperSampler_m11
SuperSampler_m13
SuperSampler_m15

(b) Salmonellas k = 31.

2−23

2−18

2−13

2−8

23 27 211 215

Subsampling rate (log scale)

Er
ro

r c
om

pa
re

d 
to

 S
IM

K
A

(lo
g 

sc
al

e) tool
sourmash
SuperSampler_m11
SuperSampler_m13
SuperSampler_m15

(c) RefSeq k = 63.

Figure 17 Error for containment index approximation for Sourmash (red line) and SuperSampler
on different values for minimizer sizes.
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Figure 18 Error for Jaccard index approximation for Sourmash (red line) and SuperSampler on
different values for minimizer sizes.
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Algorithm 1 Comparison of two sketches.

procedure SketchCompare(sketch1, sketch2)
for all minimizer ∈ sketch1 do

minimizer1, minimizer2← 0
minimizer1← updateMinimizer(minimizer1, sketch1)
minimizer2← updateMinimizer(minimizer2, sketch2)
if minimizer1 > minimizer2 then

▷ If query minimizer is smaller than ref, skip current query minimizer
updateMinimizer(minimizer2, sketch2)

else if minimizer1 < minimizer2 then
▷ If ref minimizer is smaller than query, skip current ref minimizer

updateMinimizer(minimizer1, sketch1)
else

▷ If both minimizers are equal, load buckets and compare every k-mer for
presence/absence.

bucket1← getBucket(sketch1, minimizer1)
bucket2← getBucket(sketch2, minimizer2)
while buckets are not empty do

kmer1← nextKmer(bucket1)
kmer2← nextKmer(bucket2)
if kmer1 == kmer2 then

▷ When equal k-mers are found, similarity score is increased.
intersection + +

end if
end while

end if
end for

end procedure
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Algorithm 2 All versus all comparison.

procedure AllVsAll(files)
currMinimizer ← smallestMinimizer(files)
Indices← findInFiles(files, currMinimizer)
if Indices > 1 then

compareBuckets(Indices, files)
incrementF iles(Indices, files)

else
incrementF iles(Indices, files)

end if
while filesarenotallempty do

currMinimizer ← smallestMinimizer(files)
Indices← findInFiles(files, currMinimizer)
if Indices > 1 then

compareBuckets(Indices, files)
incrementF iles(Indices, files)

else
incrementF iles(Indices, files)

end if
end while

end procedure
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Abstract
String indexes such as the suffix array (SA) and the closely related longest common prefix (LCP)
array are fundamental objects in bioinformatics and have a wide variety of applications. Despite
their importance in practice, few scalable parallel algorithms for constructing these are known, and
the existing algorithms can be highly non-trivial to implement and parallelize. In this paper we
present CaPS-SA, a simple and scalable parallel algorithm for constructing these string indexes
inspired by samplesort. Due to its design, CaPS-SA has excellent memory-locality and thus incurs
fewer cache misses and achieves strong performance on modern multicore systems with deep cache
hierarchies. We show that despite its simple design, CaPS-SA outperforms existing state-of-the-art
parallel SA and LCP-array construction algorithms on modern hardware. Finally, motivated by
applications in modern aligners where the query strings have bounded lengths, we introduce the
notion of a bounded-context SA and show that CaPS-SA can easily be extended to exploit this
structure to obtain further speedups.
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1 Introduction

Methods for aligning sequencing reads to reference genomes underlie some of the most
well-developed and widely-used tools in bioinformatics [2]. Modern read-to-reference aligners
typically employ an index over the reference text. A classic index for strings is the suffix
array (SA) [35], which is an array of indices of the lexicographically sorted suffixes of a
string. In alignment, the SA index is used by the popular STAR aligner [12] as well as
in other tools [48, 50]. The SA has also been used in short-read error correction [20] and
sequence clustering [19]. A related object frequently used in conjunction with the SA is
the Longest Common Prefix (LCP) array, which contains the lengths of the longest shared
prefixes between pairs of successive indices in the SA. For instance, the SA can be used
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in concert with the LCP-array (and other auxiliary tables derived from these) in a data
structure called an enhanced suffix array [1] to mimic the functionality of a suffix tree [49],
but often more efficiently and using less space. An account of the pervasiveness of the SA and
the LCP-array in computational genomics is best left to a dedicated review (see e.g. [46]).

Because of the utility of the SA (and the LCP-array) in string indexing, significant work
has been dedicated to developing practical algorithms for its construction. It is well-established
that SA and LCP-array construction can be performed sequentially in time linear to the
size of strings. However, as modern genomics pipelines produce ever more data – including
more complete reference genomes and pangenomes – there has been a concerted effort to
improve the practical efficiency and reduce the runtime of SA and LCP-array construction.
A host of efficient serial algorithms have been developed [30, 26, 29, 37, 14, 39, 33]. Likewise,
in an effort to take advantage of the increased parallelism of modern computer hardware, a
number of parallel algorithms have also been proposed; e.g. parallel DivSufSort [32], parallel
DC3 [31], and parallel divide-and-conquer based SA-construction [24]. External memory
algorithms [22, 25, 23] have also been a focus of recent research because of the memory
bottlenecks that arise when building the SA and the LCP-array on genomic datasets. Besides,
algorithms for GPU-settings [34] and distributed-memory [15, 16] have been developed. We
refer the interested reader to [43, 5, 6] for a comprehensive review. For our purposes, we note
that these increasingly advanced methods introduce new algorithmic techniques to enable
parallelism or improve the worst-case time complexity (so that it is sublinear). The trade-off,
often, is that these more complex algorithms may potentially be more difficult to implement,
optimize for modern hardware and cache layouts, and to maintain.

In this work, we address these issues by introducing CaPS-SA, a highly parallel method
for constructing the SA and the LCP-array. A core principle behind CaPS-SA is simplicity.
Our approach draws on several existing algorithms and techniques, and focuses on their
efficient combination for the problem of highly parallel SA construction. The algorithm
builds upon the parallel samplesort algorithm [17], and is easy to implement and optimize
for modern hardware.

A potential downside of our approach is that it is output-sensitive and as a result its
worst-case time complexity on adversarial inputs is quadratic. However, in practice we
find that the shared-memory implementation of CaPS-SA outperforms state-of-the-art
methods (specifically Parallel-divsufsort [32] and Parallel-DC3 [31, 3]) in terms
of runtime and scalability (although not in memory for Parallel-divsufsort). For
example, CaPS-SA can build the SA and the LCP-array for the telomere-to-telomere
human genome assembly (CHM13 v2) [40] in 141 seconds using 32 threads on a typical
shared-memory machine, whereas the leading method Parallel-divsufsort requires 199
seconds. Our experimental study demonstrates that this superior performance of CaPS-SA
can largely be attributed to two causes. First, CaPS-SA achieves better memory-locality
(fewer cache misses) than the other methods (likely thanks to its straightforward approach),
and second, the worst-case analysis of CaPS-SA does not represent a typical or real world
use case. Overall, our work demonstrates that as parallel resources increase combining
domain-specific optimizations (i.e. LCP-informed merging) with highly-efficient general
sorting strategies (i.e. samplesort [17]) can outperform more sophisticated but complex
algorithms. CaPS-SA is implemented in C++17 and is available under an open source
license at https://github.com/jamshed/CaPS-SA.

The remainder of this manuscript is organized as follows. We discuss the preliminary
concepts required for a formal treatment of the algorithm as well as the most relevant prior
work and the methods against which we compare CaPS-SA in Sec. 2. Then we discuss
CaPS-SA in Sec. 3, and provide an analysis of its asymptotic behavior. Sec. 4 describes the

https://github.com/jamshed/CaPS-SA
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experimental study for the proposed algorithm, and reports the results. We conclude with
discussion on the potential of the method and prospective future directions for building on
top of it.

2 Preliminaries

A string (or text) T = a0a1 . . . an−1 is a finite ordered sequence of n symbols drawn from
a finite ordered alphabet Σ. |T | denotes the length n of T . The half-open interval [i, j) is a
shorthand for the closed interval [i . . . j− 1]. Ti denotes the i’th symbol in T . The substring
T[i,j) of T is the sequence of characters of T on the half-open interval [i, j). We call a substring
T[i,j) with i = 0 a prefix of T . Likewise, A substring T[i,j) with j = |T | is a suffix of T , denoted
by T[i:].

The ordering of Σ induces a lexicographical ordering of all possible strings over Σ. The
Suffix Array (SA) of a string T is an array of the starting indices of all suffixes of T ordered
by the suffixes’ lexicographical order. The Longest Common Prefix LCP(T1, T2) of two
strings T1 and T2 is the largest-sized prefix P of both T1 and T2, such that if |P| = k then
for all 0 < i < k, T1i = T2i, and T1k ̸= T2k. Given the suffix array SA of a string T , its
LCP-array is the array L such that Li = LCP(T[SAi:], T[SAi−1:]). 1 For instance, given the
string T = AACTGCGGAT$ the SA and LCP array are given by following data structure:

Index 0 1 2 3 4 5 6 7 8 9 10
T A A C T G C G G A T $

SA 10 0 1 8 5 2 7 4 6 9 3
LCP array 0 0 1 1 0 1 0 1 1 0 1

The work of an algorithm is the total number of operations it performs to compute the
result. The depth (or span) of an algorithm is the longest sequence of dependent computations
in its execution. In pseudo-code, we will use (||) as an infix operator to specify the parallel
execution of statements – so f(x) || g(y) denotes the parallel execution of f(x) and g(y). We
use O

(
f(n)

)
with high probability (whp) in n to mean O

(
cf(n)

)
with probability at least

1− n−c for c ≥ 1.

Prior Work. The SA can be constructed naively in O(n2 logn) work for an n-length text.
Efficient algorithms can operate in O(n) work and O(n) space, which is the theoretical
optimum, as it is the time and space required to record the SA and LCP array themselves.
A comprehensive discussion of work on SA construction is well beyond the scope of this
manuscript. As such, we here focus on several sequential and parallel algorithms which are
of particular interest due to their speed and wide use.

The state-of-the-art sequential program for SA construction is divsufsort [37, 14].
Subsequent work has elucidated the algorithm to be an efficient implementation of some
two-stage algorithms [21, 14].

Divsufsort has been parallelized by Labeit et. al. in 2017 [32], and is considered a state-
of-the-art tool in parallel SA construction. It has recently been used in several computational
genomics tools, including the CAMMiQ method for microbial abundance quantification [51]
and the macle tool for computing match complexity [42].

Another well-known strategy for SA construction is the Difference Cover modulo 3 (DC3)
method [27], which has also been effectively parallelized [31].

1 With the special case of L0 = 0.
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Relevant String Sorting Methods. String sorting is a well-studied algorithmic problem.
The main difficulty in string sorting is that comparing two strings T1 and T2 requires
O(min(|T1|, |T2|)) comparisons, which renders many traditional sorting algorithms for atomic
objects costly. Of particular relevance to our work is the problem of merging two sorted lists
of strings. Farach-Colton used an efficient merge-routine for building suffix trees in linear
time [13] (though the space overhead of suffix trees renders them impractical for most modern
applications). Ng and Kakehi analyzed an efficient merging strategy of sorted lists of strings
with associated LCP-information [38]. They show that given random strings with uniform
distribution of symbols, an LCP-informed merge-sort algorithm has an expected running
time of O(n logn) to sort n strings. The same merge procedure was used by Bingmann and
Sanders in several samplesorting algorithms for sorting collections of strings [8].

Bingmann and Sanders propose two merge-based string sorting algorithms of particular
interest to us here: Parallel Super Scalar String Sample Sort (pS5) and Parallel Multiway
LCP-Mergesort. pS5 makes use of the merge routine in a samplesort framework, much like
CaPS-SA. The algorithms differ in their inputs (a set of strings vs a single string) as well as
their approach to partitioning the data. pS5 uses machine-word-sized pivot keys to create a
binary search tree which can fit into the cache of each core, then divides up the input set
of strings evenly across the cores and bins them accordingly. As described in Section 3.1,
CaPS-SA divides up the input into evenly sized partitions, then samples pivots using a
two-step process and places them into each partition. Parallel Multiway LCP-Mergesort
generalizes the merge-algorithm to k-way merges [7].

3 Methods

The proposed algorithm, CaPS-SA, is based on the samplesort [17] algorithm. Samplesort
is a popular generalization of quicksort that achieves excellent performance on both shared-
memory and distributed-memory architectures [44, 4]. Instead of partitioning the input
array into two parts around a single pivot as in quicksort, it chooses a number of pivots
z1, z2, . . . , zp−1 along with two sentinel pivots z0 = −∞ and zp = +∞, and partitions
the data into p partitions such that an input element xi is assigned to partition j iff
zj−1 < xi ≤ zj. It then sorts each partition using another (usually sequential) sorting
algorithm (e.g., quicksort).

For constructing a suffix array, simply applying samplesort is costly since string compar-
isons in general require super-constant time. In more detail, first each suffix needs to be
assigned to its partition by binary searching over the pivots. Secondly, sorting the suffixes in
each partition may cost substantially more than linearithmic time due to string comparisons.

CaPS-SA addresses these issues using the following key idea of jointly leveraging merge
sort and LCP-arrays. Whenever two suffixes are compared, the comparison is always done
inside the operation of merging two sorted arrays of suffixes. Each sorted array is augmented
with its LCP-array, and the merge operations avoid repeated comparisons of common
prefixes among suffixes by exploiting these LCP-arrays. This approach has previously been
used in general string sorting algorithms [38, 8, 7], but to our knowledge has not been
leveraged for SA construction. The partitioning strategy for the suffixes is modified to
make better use of the merge operation and achieve good parallelism. In particular, instead
of randomly sampling pivots at the beginning of the algorithm, CaPS-SA partitions the
suffixes uniformly into p subarrays, sorts the subarrays locally, and only then selects the
pivots using oversampling. Once pivots are placed within each partition, the p partitions are
further subdivided into p − 1 subarrays each, for a total of p(p − 1) sub-subarrays. Since
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each sub-subarray is flanked by two pivots, the partition that it should go to is known. Each
partition is thus a collection of sorted sub-subarrays, which can be merged efficiently. The
initial sorting of the uniform-sized subarrays is done using merge-sort to exploit the merge
operation. Thus CaPS-SA ends up exploiting an efficient merging procedure with associated
LCP-information to reduce expensive comparisons of suffixes, while not having to merge
large sub-arrays due to its pivoting strategy. We discuss the algorithm in more detail in the
following sections.

3.1 Parallel SA and LCP-array construction: CAPS-SA
Next, we provide a high-level overview of the CaPS-SA(T, p) algorithm. The input to the
algorithm is a string T and a partition count (or, subproblem count) p, and as output it
produces the SA and the LCP-array of T . Conceptually, the algorithm executes in four
high-level steps which we illustrate in Figure 1.

CaPS-SA(T, p).
1 SA, SA ′, L, L ′ = arrays of size |T |

// populate the suffix array with some permutation of [0,n)
2 for i ∈ [0, |T |) in parallel
3 SAi = SA ′

i = i

// sort p subarrays of uniform size
4 m = |T|/p
5 for i ∈ [0, p) in parallel
6 b = im, e = (i + 1)m // range of the i’th subarray
7 Merge-Sort(SA ′

[b:e), SA[b:e), L[b:e), L
′
[b:e), T)

// sample (p − 1) pivots from SA
8 V = Sample-Pivots(SA, L, T, p)

// locate each vj ∈ V in each sorted subarray; for two successive pivots vj−1 and vj,
// place all suffixes k in each subarray s.t. T[vj−1:] < T[k:] ≤ T[vj:]

in partition j in SA ′

9 (S, R) = Collate-Partitions(SA, SA ′, L, L ′, V, T, p)
// Sj: index of partition j in SA ′, Rj,i: position of pivot vi in partition j

// merge the p sorted subarrays in each partition
10 Par-Copy(SA ′, SA), Par-Copy(L ′, L) // Par-Copy(X, Y) copies X to Y in parallel
11 for j ∈ [0, p) in parallel
12 b = Sj, e = Sj+1

13 Merge-Partition(SA ′
[b,e), SA[b,e), p, Rj, L

′
[b:e), L[b:e), T)

// compute LCP-values at the partition boundaries
14 Compute-Boundary-LCPs(SA,p, S, L, T)

15 return (SA, L)

First, it populates an unsorted SA. Then this initial SA is broken into p subarrays of
uniform size |T |/p, and each subarray is sorted with Merge-Sort, in parallel. Next, p− 1

global pivots are sampled from the sorted subarrays together. Then in each sorted subarray,
in parallel, each pivot is located with a binary search. The locations of the p− 1 pivots thus
found in each sorted subarray break the subarray into p sorted sub-subarrays. Besides, the
position of each pivot in the final SA is now defined by its location in each of the p subarrays.
The local ordering of the suffixes in each sorted subarray and the global position of the pivots
thus define p partitions for the final SA, each of which is a collection of p sub-subarrays:
one from each of the p sorted subarrays. Then for each partition, in parallel, its p sorted
sub-subarrays are merged recursively into a fully sorted partition. Together, these sorted
partitions, in order, produce the final SA and the final LCP-array. The LCP-values for
pairs that cross partition boundaries are computed at the end.
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Merge(X, Y, LX, LY , Z, LZ, T).
// merges the sorted arrays of suffixes (of T) X
// and Y with LCP arrays LX and LY resp.,
// into Z; also constructs Z’s LCP array in LZ

1 i = j = k = 0
2 m = 0 // LCP of the last compared pair
3 lx = 0 // LCP(Xi, Xi−1)
4 while i < |X| and j < |Y|
5 lx = LXi

6 if lx > m
7 Zk = Xi, LZk = lx, m = m
8 elseif lx < m
9 Zk = Yj, LZk = m, m = lx

10 else
11 n = m + LCP(T[Xi+m:], T[Yj+m:])

12 Zk =

{
Xi if TXi+n < TYj+n

Yj otherwise

13 LZk =

{
lx if Zk = = Xi

m otherwise
14 m = n

15 if Zk = = Xi

16 i = i + 1
17 else
18 j = j + 1
19 swap(X, Y), swap(LX, LY), swap(i, j)

20 k = k + 1

21 Copy(X[i:], Z[k:]), Copy(LX[i:], LZ[k:])

22 if j < |Y|
23 Zk = Yj, LZk = m
24 Copy(Y[j+1:], Z[k+1:]),

Copy(LY [j+1:], LZ[k+1:])

Merge-Sort(X, Y, L, L ′, T).
// sorts the array X of suffixes (of T) into Y;
// constructs the LCP array of sorted X in L
// using L ′ as working space;
// a necessary precondition is X = = Y

1 n = |X|
2 if n = = 1
3 L0 = 0
4 return

5 m = n/2
6 Merge-Sort(Y[0:m), X[0:m), L

′
[0:m), L[0:m), T) ||

Merge-Sort(Y[m:n), X[m:n), L
′
[m:n), L[m:n), T)

7 Merge(X[0:m), X[m:n), L
′
[0:m), L

′
[m:n), Y, L, T)

Merge-Partition(X, Y,n, R, LX, LY , T).
// merges the collection X of n sorted subarrays
// of suffixes into Y; R contains the ranges of the
// subarrays in X; LX is the collection of the
// LCP arrays of the subarrays, and the LCP array
// of Y is constructed in LY ;
// necessary preconditions are X = = Y and LX = = LY

1 if n = = 1
2 return

3 m = n/2
4 l = Sm − R0 // #suffixes in the first m subarrays
5 Merge-Partition(Y[0:l), X[0:l),m,R[0:m),

LY [0:l), LX[0:l), T) ||
Merge-Partition(Y[l:Rn), X[l:Rn), n − m,R[m:n),

LY [l:Rn), LX[l:Rn))
6 Merge(X[0:l), X[l:Rn), LX[0:l), LX[l:Rn), Y, LY , T)

The algorithm is presented as following, and its major steps are detailed in the following
subsections. Then we analyze the asymptotic characteristics of the algorithm.

The MERGE operation. For efficient suffix comparisons, CaPS-SA utilizes the Merge
operation. A pair of suffixes is compared only when merging two sorted lists of suffixes,
with the only exception being the case when the algorithm performs a binary search using a
pivot suffix. When merging sorted suffixes, merging without any extra information about
the suffixes in its input lists can be costly due to super-constant time string comparisons. To
avoid comparing repeated prefixes of suffixes, the Merge procedure in CaPS-SA utilizes the
LCP-arrays of the input suffix lists, generated recursively in the Merge-Sort procedure.

The Merge(X, Y, LX, LY , Z, LZ, T) procedure takes two sorted arrays X and Y of suffixes,
their respective LCP-arrays LX and LY , and populates the array Z as the merged output for
X and Y. Also, the LCP-array of Z is produced in LZ. The procedure works exactly like the
classic merge routine, with the following modifications.

At a given moment, let Xi and Yj be the two suffixes being compared, and Zk be
the output of the comparison. Without loss of generality, say that Xi < Yj is found, i.e.
Zk = Xi. Let m denote the LCP-length of the the last compared pair in each step of the
merge. Then after the current step finishes comparing Xi, Yj, we have that m = LCP(Xi, Yj).
Xi < Yj implies that TXi+m < TYj+m. The next suffixes to compare are Xi+1 and Yj. Let
lx = LXi+1 = LCP(Xi+1, Xi). Xi+1 > Xi implies that TXi+1+lx > TXi+lx . There are three
possible outcomes when comparing lx and m (illustrated in Figure 2):
1. lx > m: It implies that TXi+1+m = TXi+m. Combining with TXi+m < TYj+m, we get

TXi+1+m < TYj+m. It follows that

Zk+1 = Xi+1, LZk+1 = LCP(Zk+1, Zk) = LCP(Xi+1, Xi) = lx,m = LCP(Xi+1, Yj)= m
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(

(

(

{
n /p

T a0, a1… …an−2, an−1

Step 1: partition T into p evenly sized partitions.

1. Sort the subarrays

2. Sample  pivots, select  global pivots and place in each subarraysp p − 1

Step 2:

Step 4: Merge sub-subarrays

Step 3: Collate sub-subarrays 
within each partition

Initial array of suffixes

T

Figure 1 Overview of CaPS-SA. In the first step of the algorithm the input text T is partition
evenly across n partitions. Then each partition is sorted, pivots are sampled using the sampling
routine, and located within each partition to create sub-partitions. Subsequently each sub-partition
is collated. Finally the Merge routine is used to complete the suffix and the LCP-array construction.

(((X

Case 1 : lx > m

Y

Xi Xi+1

Yj

lx = LCP(Xi+1, Xi)

m = LCP(Xi, Yj)

Case 2 : lx < m Case 3 : lx = m

Xi = AATAA…

Xi+1 = AATAC…

Yj = AATGA…

lx = 4

m = 3

Z Xi

LCP(Xi+1, Yj) = m

Xi+1

Xi = AATAA…

Xi+1 = AATCC…

Yj = AATAC…

lx = 3

m = 3

Z Xi

LCP(Xi+1, Yj) = lx

Yj

Merge step
Xi = AATAA…

Xi+1 = AATCCA…

Yj = AATCCT…

lx = 3

m = 3
n = m + LCP(T[Xi+1+m:], T[Yj+m:]) = 5

Z Xi

LCP(Xi+1, Yj) = n

Xi+1

to determine Zk+1

Figure 2 Figure illustrating the cases that can occur on the (k+ 1)’th step of the Merge routine,
which determines Zk+1. Cases 1 and 2 require O(1) work and simply compare the LCP-lengths of
the previous step and LCP(Xi+1, Xi), which are already available. Step 3 requires work proportional
to O(LCP(Xi+1, Yj) −m), since Xi+1, Yj already share a prefix of size m.

2. lx < m: It implies that TXi+lx = TYj+lx . Combining with TXi+1+lx > TXi+lx , we get
TXi+1+lx > TYj+lx . It follows that

Zk+1 = Yj, LZk+1 = LCP(Zk+1, Zk) = LCP(Yj, Xi) = m,m = LCP(Xi+1, Yj) = lx

3. lx == m: We compute n = m+ LCP(T[Xi+1+m:], T[Yj+m:]), and set the following:

Zk+1 =

{
Xi+1 if TXi+1+n < TYj+n

Yj otherwise

LZk+1 = LCP(Zk+1, Zk) =

{
LCP(Xi+1, Xi) = lx if Zk+1 == Xi+1

LCP(Yj, Xi) = m otherwise

m = LCP(Xi+1, Yj) = n

The Merge procedure continues this way through X and Y. Finally, when either of X
and Y has been depleted, the rest of the entries at the other one are copied to the end of Z
and LZ.

Local sorting. CaPS-SA starts out with some permutation of [0, |T |), and sorts its p disjoint
subarrays, each of size |T |/p, in parallel using Merge-Sort. The Merge-Sort(X, Y, L, L ′, T)

procedure takes as input an array X of suffixes, and sorts it into Y. Besides, the LCP-array
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of sorted suffixes is produced in L, using L ′ as working space. As typical Merge-Sort
implementation requires linear extra space in each invocation, CaPS-SA uses the arrays
X and Y in a back-and-forth manner to reuse the extra space in the invocations. For
such, Y needs to be equal to X before an invocation. The merge step in the sort uses the
Merge-procedure described earlier.

Pivot selection. CaPS-SA deviates from samplesort in its pivot selection strategy. In a
typical samplesort, pivots are to be sampled from the initial array and then partitioning would
be based on their intervals. Instead, in parallel, the Sample-Pivots(SA, T, p) procedure
(see Suppl.) in CaPS-SA samples s suffixes from each of the p subarrays, where s is the
sampling factor. Then these s×p sample suffixes are sorted using a sequential Merge-Sort.
Subsequently, p − 1 evenly-spaced pivots are selected from the sorted output to form the
pivot set V .

These pivots define the ranges of the samplesort partitions, and are used to split each
of the subarrays in the next collation step. We show in Theorem 1 that with a sufficient
sampling factor s, the size of each partition is within a constant factor of |T |/p with high
probability, which ensures a balanced load for processing each partition in the last step of
the algorithm.

Collating partitions. Having finalized the pivot set V, the algorithm locates each pivot
suffix v ∈ V in each sorted subarray. Each subarray is searched for the p−1 pivots in parallel.

Consider a pivot v ∈ V and some sorted subarray A. The position of v in A is the last
index where v can be inserted without breaking the sorted order of A. This index is computed
using a binary search for the suffix v in A. During a binary search suffixes are compared
without any associated LCP array, contrary to the Merge procedure. As a practical speedup,
we skip some repeated character comparisons between v and the suffixes in A using the
simple accelerant idea [18].

After placing each pivot v into A, the index i of v in A implies that all the suffixes in A[0:i)

are ≤ v. Hence the sum Cv of these indices of v across all the p sorted subarrays provides
the total suffix count in the SA that are not lexicographically larger than v – the index of
v in the final SA is Cv − 1. Along with the sentinel pivot positions C0 = 0 and Cp = |T |,
these p− 1 pivots divide the final SA into p partitions. Consider two successive pivots vj−1

and vj. In each sorted subarray A, all the suffixes k such that T[vj−1:] < T[k:] ≤ T[vj:] will be
present in the index-range [Cj−1, Cj) of the final SA. That is, all the suffixes between the
locations for vj−1 and vj belong to the (j− 1)’th partition.

Thus the pivot locations in a sorted subarray A break A into p sub-subarrays, where
the j’th sub-subarray is known to be present in the j’th partition of the final SA. After the
binary searches, CaPS-SA moves these sub-subarrays in parallel to collate all sub-subarrays
for the same partition. The LCP-arrays of these sub-subarrays are also collated together.
The Collate-Partitions(SA, SA ′, L, L ′, V, T, p) procedure (see Suppl.) describes it in more
detail.

Merging partitions. Having grouped together the corresponding sub-subarrays for every
partition, CaPS-SA merges together the sorted sub-subarrays in each partition, in parallel.
A partition consists of p sorted collections of suffixes, with all of the collections stored
contiguously. The Merge-Partition(X, Y, n, R, LX, LY , T) procedure takes this collection X

of n sorted sub-subarrays, and produces the merged output in the same contiguous region of
memory Y recursively. LX is the collection of the LCP-arrays of the sorted groups in X, and
the merged LCP-array is produced in LY . The sorted groups in X (and LX) are delineated
by R.
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The Merge-Partition procedure is same as the Merge-Sort procedure, except for
that it is more general – the sorted units where Merge-Sort bottoms out are single suffixes,
whereas Merge-Partition bottoms out earlier at sorted groups of suffixes. As noted earlier,
Merge-Partition also uses the space in X and Y back-and-forth to reuse the extra spaces
required.

3.2 Asymptotics
In this section, we analyze the computational complexity of the CaPS-SA(T, p) algorithm
executed on a text T with length n = |T |, given a subproblem-count p.

3.2.1 Work Analysis
We start by analyzing the overall work of the algorithm and providing self-contained proofs
on the total work due to symbol comparisons made by our algorithm.

Local sorting. This step executes the classic Merge-Sort on each subarray. For a subarray
A with m suffixes, this amounts to a total work of T(m) = 2T(m/2) + O(m) + C(A), where
C(A) denotes the number of symbol comparisons made in the execution in the third case of
the Merge procedure. We analyze the total amortized cost of these C(A) values across all
the recursion-trees of all the subarrays in Theorem 3. Omitting C(A) from T(m), each local
sort has n/p log n/p work.

Pivot selection. With a sampling factor s, there are s × p pivots sampled in total across
all the subarrays. CaPS-SA sorts these pivots with Merge-Sort and picks the p − 1

equidistant pivots from these as the global pivots. The Merge-Sort amounts to a total
work of O(sp log sp +

∑
Lpi), where Lp is the output LCP-array of the sort. This holds

from Theorem 3.

Collating partitions. The collation step first locates each of the p− 1 pivots in each of the
sorted subarrays using binary search. The length of a pivot suffix is O(n), and the sorted
subarrays are of size n/p. The work of each binary search is O(n+log n/p) in practice (n = |T |)
with the simple-accelerant [18] strategy. For adversarial inputs however, the work can still
be O(n log n/p) in the worst-case. Then the suffix indices are moved into their appropriate
final partitions. This step simply reorders the elements across the sorted subarrays, and thus
requires O(n) total work.

Merging partitions. The Merge-Partition procedure works similar to the Merge-Sort
procedure, except for that the recursion bottoms out at a sorted group of suffixes, instead
of at a single suffix. Unlike the Merge-Sort instances however, each of which operate on
n/p-sized subarrays, the Merge-Partition instances may work on various sizes of partitions.
Theorem 1 provides a bound on the partition sizes.

▶ Theorem 1. With a sampling factor s, every partition has size at most cn/p for some
constant c with high probability.

Proof. The algorithm samples s pivots from each subarray, for a total of sp samples. It then
picks p− 1 evenly spaced pivots (every s’th sample) from the sorted samples to use as global
pivots.
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Consider the final location of these sp samples in the final suffix array. Every s’th of
them marks the boundary of a partition. Thus, a partition has size d ≥ cn/p only if fewer
than s of the samples fall into these d suffixes. Otherwise, at least one sample would be
picked as a final pivot and would thus break this partition.

Let SA be the final suffix array, and Xi be a random variable indicating whether SAi

is one of the sp samples. Then Pr[Xi = 1] = sp/n. Thus the random variable denoting
the number of samples picked from a region of size cn/p is X =

∑cn/p
i=1 Xi. By linearity of

expectation, we get E[X] =
∑cn/p

i=1 E[Xi] = cn/pPr[Xi = 1] = cn/p · sp/n = cs. Applying the
Chernoff bound we have:

Pr[X < s] ≤ Pr[X ≤ s] = Pr
[
X ≤ 1

c
E[X]

]
= Pr

[
X ≤

(
1− (1−

1

c
)
)
E[X]

]
≤ exp

(
− 1/2(1− 1/c)2E[X]

)
= exp(−1/2(1− 1/c)2cs) (1)

With s = 32 lnn and letting c ′ = c(1− 1/c)2,

Pr[X < s] ≤ exp
(
− 1/2(1− 1/c)2c · 32 lnn

)
= exp

(
ln(n−16c(1−1/c)2)

)
= 1/n16c ′

Since the event of a partition having size ≥ cn/p implies the event X < s, we get:
Pr[a given partition has size ≥ cn/p] ≤ Pr[X < s] ≤ 1/n16c ′ .⇒ Pr[at least one partition has size ≥ cn/p] ≤

∑p
i=1

1/n16c ′
= p/n16c ′ (by union-bound).⇒ Pr[no partition has size ≥ cn/p] ≥ 1− p/n16c ′ .

Since p is at most O(n), no partition has size ≥ cn/p whp. ◀

Thus each partition has size at most cn/p for some constant c whp. Merging a partition
A with m sorted subgroups has work T(m) = 2T(m/2) + O(m) + C(A), where C(A) is the
number of symbol comparisons made in Merge. Omitting C(A) from T(m), this solves to
O(cn/p log p) = O(n/p log p) whp.

Total symbol comparisons. A subproblem in the algorithm is some subarray of the SA
that can be processed independently of the other subarrays in a given step. Let X be
some subproblem in either of the two steps: local-sorting and partition-merging. For the
local-sorting case, sorting X with Merge-Sort consists of log n/p recursion-levels. For the
partition-merging case, the Merge-Partition procedure for X executes in log p recursion-
levels. We label the bottom-most level as level 0, and count the levels upwards in the
recursion-tree.

Let x ∈ X be a suffix. At any given level i, x is present in exactly one Merge-Sort
(or Merge-Partition) instance executing on X. Let x ′

i be the suffix that immediately
precedes x in the output of that Merge-Sort (or Merge-Partition) instance, and let
Li(x) = LCP(x, x ′

i). If x is the first suffix in the output, then x ′
i is the empty suffix. We

prove the following.

▶ Theorem 2. In Merge-Sort and Merge-Partition, Li(x) ≤ Li+1(x) for a suffix x at
each recursion level i ∈ [0, d− 1), where d is the depth of the recursion-tree.

Proof. Let x be present in the Merge-Sort (or Merge-Partition) instance M at level
i+ 1, and say M spawns the two instances Ml and Mr. Ml and Mr are at level i, and x is
present in exactly one of them. Let it be Ml.

Now, x ′
i+1 is either x ′

i i.e. the same suffix preceding x in Ml, or some other suffix y from
Mr. If x ′

i+1 = xi, then Li+1(x) = Li(x), and the claim holds.
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In the other case, the output array of M has the following form: [. . . , x ′
i, . . . , y, x, . . .].

Suppose that the claim is false, i.e. Li(x) > Li+1(x). Which is, LCP(x, x ′
i) > LCP(x, y).

LCP(x, y) < LCP(x, x ′
i) implies that x ′

i and y share the same prefix of length l = LCP(x, y),
and mismatch first at index l. Let cx, cx ′

i
, and cy be the l’th symbol in x, x ′

i, and y resp. As
y > x ′

i in the output, cy > cx ′
i
. Besides, since x and y first mismatch at the l’th symbol and

x > y, cx > cy. Thus cx > cx ′
i
. LCP(x, x ′

i) > l implies that the l’th symbols in x and x ′
i

are the same, i.e. cx = cx ′
i
. Thus we get cx > cx ′

i
and cx = cx ′

i
, resulting in a contradiction.

Hence, LCP(x, y) ≤ LCP(x, x ′
i). ◀

Theorem 3 provides a bound on the number of total comparisons made across all the
Merge-Sort and Merge-Partition instances in the algorithm execution.

▶ Theorem 3. The total number of symbol comparisons made across all the Merge-Sort
and Merge-Partition instances in CaPS-SA for an n-length text is O(n logn+

∑n−1
i=1 Li

)
w.h.p, where L is the output LCP-array.

Proof. Symbol comparisons occur only as part of the Merge procedure in both Merge-
Sort and Merge-Partition. Given two sorted lists of suffixes X and Y along with their
LCP-arrays, the Merge(X, Y, LX, LY , Z, LZ, T) procedure iterates through the Xi’s and Yj’s
and fills in the Zk’s in the sorted order, along with their LCP-values in LZk. Without loss of
generality, suppose that Xi < Yj is found at some iteration. Then the next iteration compares
Xi+1 and Y. Let lx = LCP(Xi+1, Xi) and m = LCP(Xi, Yj), LCP of the last compared pair.
Symbols from the suffixes Xi+1 and Yj will only be compared iff lx = m holds. In this case,
we compute n = LCP(Xi+1, Yj) with exactly n−m+ 1 symbol comparisons. The +1 term
is due to the first mismatching symbol pair. m is set to n for the next iteration. We argue
that before the new m = n value is assigned as the LCP-value in the output LCP-array LZ
in some future iteration, it remains unchanged.

In the next iteration, if case (1), i.e. lx > m holds, then m remains unchanged. If case
(2), i.e. lx < m holds, then m is assigned at output LZk+1. In the event of case (3), either
lx or m is assigned to LZk+1, and these are equal in this case. If X has been depleted during
the merge while Y still has remaining elements, the current m is assigned as the LCP-value
for the first of the remaining elements from Y.

Thus, whenever symbol comparisons are done in case (3) of merge, it results in a new
value m ′ ≥ m for the variable m. m = m ′ persists until m ′ has been assigned as the
LCP-value for some merged output. Thus the number of matching symbol comparisons
made in case (3) accumulates in the LCP-values at the output.

All the LCP-values start out with 0 at Merge-Sort. Theorem 2 states that the LCP-
value associated to a given suffix can never decrease while winding up the recursion-trees of
Merge-Sort and Merge-Partition. Thus the sum

∑n−1
i=1 Li of the final LCP-values in the

SA is the total number of matching symbol comparisons made across all the Merge-Sort
and Merge-Partition executions.

The extra mismatching comparison in case (3) of Merge costs O(1). In the worst case,
this case occurs in each iteration of Merge. Omitting the matching symbol comparisons,
a Merge-Sort or a Merge-Partition instance working on m elements incurs T(m) =

2T(m/2) + O(m) mismatches in the worst case. This solves to p × O(n/p log n/p) and
p×O(n/p log p) whp for the p Merge-Sorts and Merge-Partitions, resp. Thus O(n logn)
mismatching symbol comparisons are made whp. ◀

Total work. Locally sorting the p subarrays cost p × O(n/p log n/p) = O(n log n/p) = work
without the symbol comparisons. Omitting the symbol comparisons in sorting the sampled
pivots, the pivot selection step has O(sp log sp) work. In the collation step, there are p(p−1)
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binary searches, costing O(p2n log n/p) work in the worst-case, and O(p2
(
n + log n/p)

)
in

practice. Merging the p partitions separately cost p× O(n/p log p) = O(n log p) whp without
the symbol comparisons.

The total number of symbol comparisons in the local-sort and the partitions-merge steps
is O(n logn+

∑n−1
i=1 Li) whp as per Theorem 3, where L is the output LCP-array. In sorting

the sampled suffixes, the number of symbol comparisons done is also bounded by this 2.
We note that the algorithm requires on the order of 4w|T | bytes of working space, where

w ∈ {4, 8} is the numerical size used to store SA and LCP values.

3.2.2 Parallelization
Our implementation fully parallelizes the work across the different partitions. Within a
partition, we perform recursive calls to Merge-Sort in parallel, but perform the Merge
procedure serially. We show the following theorem about the depth of our algorithm:

▶ Theorem 4. The overall depth of the algorithm is O
(
(n/p) logn

)
whp.

Proof. The dominant factor in the merge algorithm is the depth of the Merge routine,
which simply performs a linear number of comparisons in the input size. The depth of a
comparison is O(1) in cases 1 and 2 of Figure 2, and requires a string comparison in the final
case.

The string comparison can be parallelized work-efficiently (i.e., in the same work as a
serial character-by-character comparison) by using a simple prefix-doubling strategy. In
more detail, the comparison algorithm works in rounds comparing 2i characters in the i’th
round until a mismatch occurs. Clearly for strings of length O(n) only O(logn) rounds are
required, and thus the overall work is asymptotically the same as the serial algorithm, and
the depth is O(logn). Thus, for merging two sorted arrays in the algorithm, each of size k,
we require a depth of O(k logn).

Putting these facts together, for a single call to the Merge-Sort routine, we have a
recurrence of the form D(k) = D(k/2) + O(k logn), which is root dominated and solves to
O(k logn). Since our algorithm is parallelized across different partitions, and by Theorem 1
each partition has size at most O(n/p), the overall depth of the algorithm is O((n/p) logn)
whp. ◀

We note that the depth is not poly-logarithmic, as in the classic parallel Merge-Sort.
However, the amount of parallelism generated by our algorithm is more than enough to keep
the processors all busy in practice. Indeed, we note that many samplesort implementations
use a similar strategy in practice and use a serial sort within each partition, and thus also do
not have poly-logarithmic depth in practice. In our implementation, we exploit parallelism
using the parallel primitives and the work-stealing scheduler from ParlayLib [9].

3.2.3 Optimizations
We applied a number of optimizations into the implementation of the algorithm that provide
practical speedups. We make use of vectorization support using AVX instructions from
modern processors to speed up the computation of the LCP(X, Y) routine used in the
Merge-procedure and in the binary searches in locating pivots.

2 O(sp log sp+
∑sp

i=1 Lpi) comparisons are performed, where Lp is the LCP-array of the sorted samples.
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In the proposed Merge-Sort and the Merge-Partition procedures in the algorithm, we
have nested parallelism for their recursive invocations. This is applied in the implementation
up-to some fixed granularity, due to the associated overhead of scheduling small tasks.

In the binary searches for the sampled pivots in each sorted subarray, instead of searching
for the appropriate position of an entire pivot suffix, we look for a fixed-length prefix of the
pivot. This helps reduce the total work associated to locating the pivots, with an associated
trade-off with the final partition sizes. With sufficiently large prefix lengths, the partition
sizes do not get significantly affected in our observation.

4 Results

We performed a number of experiments to characterize the performance of the CaPS-SA
algorithm and its implementation. We evaluated its performance compared to the available
implementations of two leading methods for SA construction: Parallel-divsufsort [32]
and Parallel-DC3 [3]. We assessed its ability to construct SA and LCP-arrays on a
number of genomic datasets.

Next, we evaluated the parallel scaling of the algorithm. Then we explore the idea of
Bounded-context suffix arrays, and the performance of CaPS-SA for various prefix-context
lengths.

A varied collection of datasets has been used in the experiments. Table 1 delineates
the pertinent characteristics of the datasets. We follow [46] by removing N-repeats, which
occur when the sequence underlying a region of the assembly cannot be resolved. We verified
the correctness of the implementation by cross-checking its output against from that of
Parallel-divsufsort.

Computation system. The experiments have been performed on a server having two Intel
Xeon E5-2699 2.20 GHz CPUs with 44 cores in total and 512 GB of 2.40 GHz DDR4 RAM.
The system is run with Ubuntu 20.04.4 (GNU/Linux 5.4.0-132-generic x86_64). The SA and
LCP-array construction times and the maximum memory usages of the tools were measured
with the GNU time command. For the large datasets Axolotl genome dataset, we used
machines with two AMD EPYC 7313 CPUs with 32 cores in total and 2 TB of DDR4 RAM,
running on Red Hat Enterprise Linux 8.7 (GNU/Linux 4.18.0-425.19.2.el8_7.x86_64).

4.1 Dataset characteristics
Table 1 provides some pertinent characteristics of the datasets used. The GRCh38 dataset
is the Human Build 38 patch release 13 version of the human genome reference from the
Genome Reference Consortium3, which is a chromosome-level assembly of the full genome.
The T2T dataset is the latest T2T CHM13v2.0 Telomere-to-Telomere assembly of the CHM13
cell line with chromosome Y from NA24385, from the T2T consortium, which is a complete
genome-level assembly of the genome [40]. Together, these two human datasets represent
what we imagine may be a typical use-case for genome construction in the context of a tool
like STAR [12]. Though largely similar, the CHM13 assembly has resolved telomeric and
centromeric regions, and more complete coverage, specifically in highly-repetitive regions.
Thus, we expect it represents a more challenging problem instance for suffix array construction.

3 https://www.ncbi.nlm.nih.gov/grc
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The CdBG (Compacted de Bruijn Graph) dataset is the collection of the maximal unitigs
extracted from the de Bruijn graph (with k-mer size 27) of the human sequencing read set
NIST HG004 (SRA3440461 – 95) [52] by Cuttlefish 2 [28]. This dataset represents a
potential use-case where one may wish to build an index for the sequence stored in the CdBG
data structure. The ability to index the CdBG has proven useful in many contexts [10],
and the SA can provide one possible index for providing efficient lookup over the sequence
contained in the CdBG.

The great white shark dataset is the genome reference of Carcharodon carcharias [36] and
the axolotl dataset is the genome reference sequence of Ambystoma mexicanum [47]. These
represent large problem instances, where one may wish to build the SA on large reference
genomes.

Table 1 Dataset statistics: number of bases, mean LCP, and standard deviation (rounded to
nearest whole number) of the final LCP-array.

Dataset Size Mean LCP Std. Dev.
of LCP

Human (GRCh38) 2,945,849,068 3,807 72,678
Human (T2T) 3,117,292,071 2,518 61,987

CdBG (Human reads) 3,993,272,308 18 6
Great white shark 4,267,160,925 109 1,192

Axolotl 28,203,219,824 49 160

4.2 SA and LCP-array construction
We evaluate the performance of CaPS-SA in constructing the SA and the LCP-array
of a number of genomic datasets, compared to the SA construction performance of: 1.
Parallel-divsufsort [32] and 2. Parallel-DC3 [3]. Table 2 contains the results of the
benchmarking. As the state-of-the-art sequential benchmark, we note the performance of the
divsufsort implementation from PBBS [3].

Table 2 Time- and memory-performance results for constructing SAs (and LCP-array in case
of CaPS-SA) with 32 threads. divsufsort is shown as a serial benchmark. Time is reported in
seconds, and the memory usages are reported in GBs in parentheses. Best performances among
the parallel algorithms in each instance are highlighted. Parallel-DC3 and divsufsort could not
be run on Axolotl because we could not modify the PBBS code-base to accommodate the large
numerical size.

Dataset CaPS-SA Parallel-divsufsort Parallel-DC3 divsufsort
Human (GRCh38) 131 (47) 173 (32) 250 (110) 273 (17)

Human (T2T) 141 (50) 199 (34) 261 (115) 319 (18)
CdBG (Human reads) 138 (64) 291 (44) 323 (126) 409 (23)

Great white shark 173 (71) 278 (48) 381 (135) 438 (24)
Axolotl 900 (910) 1068 (326) - -

We note that CaPS-SA executes significantly faster than the other parallel algorithms
in all the instances, whereas Parallel-divsufsort uses the least amount of memory.
Interestingly for the smaller datasets CaPS-SA does not require much more memory than
Parallel-divsufsort despite constructing both the SA and LCP. Memory usage could
be improved by bit-packing the indexes, or through the extension to an external memory
algorithm.
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4.3 Parallel Scaling

In order to assess how sensitive runtime is to parallelism we evaluated CaPS-SA against
Parallel-DC3 and Parallel-divsufsort as the number of threads increased. We report
the results in Figure 3, which illustrated that CaPS-SA exploits parallelism better – becoming
the fastest method as the thread count becomes high despite doing more work asymptotically.
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Figure 3 Runtimes of CaPS-SA, Parallel-divsufsort, and Parallel-DC3 as thread count
increases for GRCh38, T2T, and CdBG. divsufsort runtime is in red.

On the GRCh38 and T2T datasets, CaPS-SA and Parallel-divsufsort become faster
than divsufsort at around the same number of threads, after which CaPS-SA becomes
faster. On CdBG, CaPS-SA sees gains from parallelism over the best serial program with
approximately half the number of threads. This may be because CdBG has fewer long
common-prefixes, and so CaPS-SA achieves closer to its best-case work.

4.4 Cache Performance

The samplesort-based design of CaPS-SA optimizes cache-performance. In order to evaluate
the empirical cache behavior of CaPS-SA as compared to other algorithms for SA construc-
tion, we profiled the programs on the GRCh38 and the T2T reference genomes. Because
cache-behavior can degenerate as parallelism increases, we evaluate it across 1, 16, and 32
threads. The results in Table 3 show that CaPS-SA outperforms other parallel SA indexing
programs by an order of magnitude. All measurements were taken with the Linux perf
command.

Table 3 Cache-miss rates (in %) for compared methods on GRCh38 and T2T datasets with
respect to number of threads. Reported numbers are averaged over 5 runs to obviate operating
system jitter. Lower is better, and the best result is highlighted.

Human (GRCh38) Human (T2T)
Method 1 thr 16 thr 32 thr 1 thr 16 thr 32 thr
CaPS-SA 4.83 4.92 4.99 7.34 7.61 7.81

Parallel-divsufsort 21.98 25.03 26.31 37.38 37.98 38.68
Parallel-DC3 34.75 35.91 37.43 35.04 36.23 37.66

divsufsort 0.93 – – 0.99 – –
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divsufsort is somewhat more cache-efficient than CaPS-SA, but interestingly its
parallelization in Parallel-divsufsort has significantly worse caching performance than
both divsufsort and CaPS-SA. It is possible that incorporating some of the implementation
details of divsufsort could provide further improvements to the cache-performance of
CaPS-SA.

4.5 Bounded-context SA Construction

By virtue of organizing all suffixes of the underlying text T , the suffix array provides the
powerful ability to efficiently search for query patterns of any length in the text. While this
capability arises naturally from the definition of the SA, such flexibility is rarely needed in
the SA’s most common applications in genomics. Specifically, when used to efficiently find
seed sequences from a genomic read, the maximum length of the query is often very short.
Many modern aligners use seed lengths in the range of 15–31, and even with the maximum
mappable prefix concept used by STAR [12], the query length is bounded above by the
error-free prefix length of the remainder of the read (rarely more than ∼ 100 nucleotides).

As such, indices that can provide efficient lookup and locate queries for patterns less than
some maximum length, say k, are often very useful in this context. For example, the k-BWT
data structure [45, 41, 11] builds a transform of the text that organizes character occurrences
by their bounded context (in this case, their right context of length k). This allows the index
to be built efficiently, since rotations of the text need not have their relative orders resolved
beyond their initial length k contexts, while simultaneously allowing efficient and correct
query for any pattern length ≤ k.

Here, we experiment with an analogous version of the SA– the bounded-context SA.
Specifically, the bounded-context SA of order k resolves the lexicographic order of all suffixes
of the text up to (and including) their prefixes of length k. If a pair of suffixes share a prefix of
length ≥ k, then they may appear in an arbitrary relative order within the bounded-context
SA of order k. Without any meaningful modifications to the query algorithms, this variant
of the SA allows locating all occurrences of queries of any length ≤ k in the text. Such a
variant of the SA is very straightforward to construct using CaPS-SA, as we simply declare
equal any suffixes that are equal up to (or beyond) their length k prefixes. At the same time,
this variant can be more efficient to construct using our algorithm, as the context length k

places a strict upper bound on the number of comparisons we must perform when attempting
to determine the relative order of a pair of suffixes. Specifically, it follows directly from
Theorem 3 that CaPS-SA performs at most O (n logn+ nk) character comparisons, in the
worst case, when constructing the context-bounded SA of order k. In Table 4, we report the
time required to construct the context-bounded SA of orders 64 and 256 of the GRCh38 and
CHM13 human genome assemblies compared to the time required to construct the standard
(full-context) SA. As expected, the bounded-context SA can be constructed substantially
faster than the full-context SA.

Table 4 Timings (in seconds) in constructing the bounded-context SA with various orders.

Dataset full-context 64 256
Human (GRCh38) 132 104 100

Human (T2T) 144 105 103
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5 Conclusion

In this manuscript, we introduced a new method, CaPS-SA, for parallel SA and LCP-
array construction. CaPS-SA displays very good cache performance (i.e. very low cache
miss rate), and scales well to many threads. As a result, CaPS-SA is able to outperform
existing state-of-the-art parallel SA construction algorithms like Parallel-divsufsort and
Parallel-DC3 on genomic datasets. At the same time, CaPS-SA is substantially simpler
than existing state-of-the-art algorithms. This simplicity eases implementation, and leads
to many opportunities for further future improvements. Likewise, CaPS-SA provides the
LCP-array directly as a byproduct of SA construction, and does not require a separate
algorithm to produce this useful auxiliary data structure. We hope that will prove to be
useful in utilities where parallel SA construction is a core subproblem, and also hope that the
relatively straightforward algorithm will benefit from further optimizations, enhancements,
and alternative implementations within the community.

As CaPS-SA scales well with the level of available parallelism, and performs well for
large references, we expect that it will provide a useful option for tools that seek to build the
SA in parallel environments. In addition to the time taken to construct the SA or the LCP

array, another consideration is the memory (specifically the RAM) required for construction.
One approach to improve the memory-scalability of SA construction algorithms is to develop
external-memory construction algorithms. For example, pSAscan [24] is a state-of-the-art
external-memory algorithm for SA construction. Such approaches make use of external-
memory (i.e. disk) and algorithms that access and construct the SA in a structured way are
likely amenable to external-memory variants.

We note that, though we have not explored it in this manuscript, CaPS-SA is highly-
amenable to external memory implementation. This is because the initial partitioning
generates many small subproblems that can be solved independently – i.e. some subproblem
can be paged into RAM while others remain on disk. Pivot sampling from the subproblems can
be done through a similar paging process. Likewise, after pivot selection, many approximately
equal-sized partitions will be created, and these sub-problems, which target specific output
intervals of the final suffix array, can be solved independently and in parallel with the relevant
data for only a working subset of partitions paged into RAM with the remaining partitions
residing on disk. Further, given a sufficiently fine-grained partitioning, the algorithm can likely
provide tight controls on the required working memory. As more RAM use is allowed, a larger
number of partitions will be allowed in RAM at once, and our algorithm will be able to better
make use of available parallelism. On the other hand, as the maximum allowed RAM usage is
restricted, fewer partitions will be present in memory at once, potentially limiting parallelism,
but adhering to the requested RAM constraints. In practice, we believe that, so long as
a sufficiently fine-grained partitioning is used, external-memory variants of our algorithm
will still be able to efficiently make use of many threads while still substantially reducing
the required working memory. We leave the efficient implementation of an external-memory
variant of CaPS-SA to future work.
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A Methods

Pseudo-codes for the procedures absent in the main text, Sample-Pivots, Collate-
Partitions, and Compute-Boundary-LCPs are provided in the following.
Sample-Pivots(SA, T, p).
1 s = 32 ln |T | // sampling factor
2 V,V ′,w1,w2 = arrays of size s × p

// sample pivots from each sorted subarray
3 for i ∈ [0, p) in parallel
4 b = im, e = (i + 1)m // range of the i’th subarray
5 sample s pivots from SA[b:e) into V[b:e) w/o replacement

6 V ′ = V
7 Merge-Sort(V,V ′,w1,w2, T)
8 sample (p − 1) pivots from V ′ into V
9 return V
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Collate-Partitions(SA, SA ′, L, L ′, V, T, p).
1 P = 2-D array of size p × (p + 1) // Pi,j: location of j’th pivot in i’th subarray

2 m = |T|/p // size of the subarrays
3 for i ∈ [0, p) in parallel // for each sorted subarray
4 b = im, e = (i + 1)m // range of the i’th subarr
5 Pi,0 = 0, Pi,p = m // two sentinel pivots
6 for j ∈ [0, p − 1) // for each pivot
7 Pi,j+1 = Binary-Search(SA[b:e), Vj)

8 S = array of size p
9 for j ∈ [0, p) in parallel

10 Sj =
∑p−1

i=0
(Pi,j+1 − Pi,j) // sum size of the j’th sub-subarrays

11 S = Prefix-Sum-Scan(S) // Sj: index of the j’th partition in the final SA

12 R = 2-D array of size p × (p + 1) // Rj,i: index of the i’th sub-subarray in partition j
13 for j ∈ [0, p) in parallel // for each partition
14 let Y : SA ′

[Sj:Sj+1) // location for partition j

15 Rj,0 = 0
16 for i ∈ [0, p) // for each sorted subarray
17 let A : SA[im,(i+1)m) // i’th subarray
18 let X : A[Pi,j:Pi,j+1) // j’th sub-subarray in A

19 Copy(X, Y[Rj,0:))

20 Rj,i+1 = Rj,i + |X|
21 return (S, R)

Compute-Boundary-LCPs(SA,p, S, L, T).
1 for j ∈ [1, p) in parallel
2 s = SASj

, t = SASj−1

3 LSj
= LCP(T[s:], T[t:])
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1 Introduction

Modern methods for analyzing biological sequences often reduce the input dataset to a set of
short, fixed length strings called k-mers. When working with a collection of such datasets
E = (E0, . . . , E|E|−1), it is fruitful to represent them as one union set of k-mers and, for
each k-mer, the indices of the datasets to which it belongs. The set of indices of each k-mer
is referred to as its color class, and E is referred to as a colored de Bruijn graph [13]. A
colored de Bruijn graph (cdBG) is commonly used to represent a sequence database, such as
a collection of sequencing experiments or a collection of assembled genomes. For example, it
is used by tools for inferring phylogenies [29], quantification of RNA expression [23], and
studying the evolution of antimicrobial resistance [4].

As sequence database sizes grow to petabytes [22], the cost of storing or transferring the
data (e.g. on Amazon Web Services or in-house compute infrastructure) has underscored the
need for efficient disk compression algorithms. Such costs are often prohibitive for smaller
labs and, even for larger labs, limit the scale of data that can be analyzed. Large file sizes
also hamper tool development, which relies on iterative loading/copying/modifying data, and
reproducibility efforts, which require downloading and storing the data. For example, storing
the 31-mers from 450,000 microbial genomes in compressed form takes about 12 Tb [4].
Unfortunately, there has not been a lot of work to develop methods for disk compression of
colored de Bruijn graphs.

In contrast to disk compression, indexing cdBGs have received much attention [19]. A
slew of data structures have been developed, optimizing various metrics such as index size,
construction time, or query time (see the survey [19] and its follow up [18]). Indexing data
structures exploit the structure of cdBGs and use clever tricks to compress the color classes
of similar k-mers. But they also carry a space overhead to efficiently support queries; since
this is not needed for disk compression, indexing data structures are usually not competitive
with custom made cdBG compression methods.

The simplest option for compressing a cdBG is to compress each color (i.e. dataset)
independently, using a compression tool designed for a single set of k-mers (e.g. [25]). This
approach can work well when k-mers tend to not be shared among colors. However, most
cdBGs have a large overlap between the k-mers of various colors. In such cases, independently
compressing each color does not exploit the properties of cdBGs and, as we show in this
paper, results in subpar compression ratios. There exist two tools designed specifically for
disk compression of cdBGs. The first tool is unfortunately limited to only three k-mer
sizes [16]. The second tool, called GGCAT [7] is a space efficient indexing method that,
while not originally evaluated in this regard, turns out to also be a good disk compression
method when combined with a generic post-compression step.

In this paper, we design, implement, and evaluate an algorithm ESS-color for the disk
compression of cdBGs. We build upon the idea of spectrum-preserving string sets [26, 6, 5]
and the followup compression format for a k-mer set [25], called ESS. By constructing an
ESS of the union of k-mers in E, we represent the k-mer sequences themselves compactly.
We exploit the fact that consecutive k-mers in an ESS have similar color classes in order to
efficiently compress the color vectors of each k-mer.

We evaluate ESS-color on a variety of datasets, including bacteria, fungi, human, and
including whole genome sequencing data, metagenome sequencing data, and whole assembled
genomes. ESS-color achieves better compression than all evaluated tools and on all datasets,
with all other tools using ≥ 44% more space on at least one of our datasets. On some datasets
the improvement over all other tools is quite large, e.g. for a gut metagenome, all the other
tools use at ≥ 27% more space than ESS-color. Compressing each color independently uses
between 1.2x and 6.9x more space than ESS-color. The absolute compression ratio is more
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than 26x on datasets of assembled genomes and between 1.4x and 8.7x on datasets from
sequencing experiments. The software is available at http://github.com/medvedevgroup/
ESSColor.

2 Preliminaries

In this section we give some important definitions. Please refer to Figure 1 for examples of
the introduced concepts.

Strings

A string of length k is called a k-mer. We assume k-mers are over the DNA alphabet. A
string x is canonical if it is the lexicographically smaller of x and its reverse complement.
Let K be a set of k-mers. A spectrum-preserving string set (SPSS) of K is a set of strings
S such that each string s ∈ S is at least k characters long, every k-mer that appears in S

appears exactly once, and the set of k-mers that appear in S is K [26, 6, 5]. For example,
if K = {ACG, CGT, CGA}, then {ACGT, CGA} would an SPSS of K. Note that K can
have multiple spectrum-preserving string sets. There are several efficient tools for computing
an SPSS so as to minimize the total number of characters [15, 7]. In this paper, we rely on
the implementation in [25]. Each string in the resulting SPSS is referred to as a simplitig.

Compression of a k-mer set

ESS is a disk-compression format to store a set of k-mers K. It was introduced in [25] as
the output of a compression tool, which, in this paper, we will refer to as ESS-basic. The
technical details of the format and of the tool are irrelevant for this paper and can be viewed
as black boxes. An ESS representation cannot be queried efficiently but can be decompressed
into an SPSS of K. This output gives an ordering of the k-mers of K, and therefore the
ESS compression of K induces an ordering on K. Note that because the decompression
algorithm is deterministic, by storing an ESS representation, we are implicitly storing an
SPSS representation as well.

Colored k-mer sets

Let C > 0 be an integer indicating the number of colors. Let E = {E0, . . . , EC−1} be a set
of C k-mer sets, also referred to as a colored de Bruijn graph. Let E be the set of all k-mers
in E, i.e. E = {x | ∃i s. t. x ∈ Ei}. The (color) class of a k-mer x ∈ E is the set of indices i

such that x ∈ Ei. The color vector of x is a binary vector of length C where position i is 1
iff x ∈ Ei.

Non-compressed representation of cdBGs

Assume you have an ordering of E, e.g. the one given by an ESS of E. A color matrix of E

is a file with row i containing the color vector of the ith k-mer. Storing an ESS of E together
with a color matrix of E is a lossless representation of E.

3 Methods

In this section, we describe our algorithm ESS-color for the compression of cdBGs. Let
E = {E0, . . . , EC−1} be a colored dBG over C colors. Recall that E is the set of all k-mers
in E. Let M denote the number of distinct color classes in E.
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Figure 1 An example illustrating the various definitions in Section 2 and the first step of
our compression method (Section 3.1). The input to the compression algorithm is a colored
de Bruin Graph. The top panel shows an example with three colors (i.e. C = 3), k = 5,
and a colored cdBG of E = {E0, E1, E2}. Here, E0 = {T CAAA, CAAAA, AAAAT },
E1 = {T CAAA, CAAAA, AAAAT, AAAT T, CAAAG, AAAT C, AAT CG}, and E2 =
{T CAAA, CAAAA, AAAAT, AAAT T, CAAAG}. The color class is shown next to each k-
mer, e.g. the color class of T CAAA is {0, 1, 2}. There are three distinct color classes, i.e. M = 3.
These are {0, 1, 2}, {1, 2}, and {1}. The lower left panel shows the union ESS, i.e. the ESS
representation of the set E = {T CAAA, CAAAA, AAAAT, AAAT T, CAAAG, AAAT C, AAT CG}.
This union ESS can be decomposed into an SPSS of E, shown in the figure. The third column
in bottom panel shows the color matrix, with k-mers in the order of the SPSS. To obtain the
final compressed representation the color matrix is compressed using the algorithm we describe
in Section 3.2.

ESS-color can accept input in one of two formats. First, it can accept each Ei stored in
the KFF file format [10]. Alternatively, we can take as input a collection of FASTA files,
each one assigned one of C colors, and an abundance parameter a. Ei is then implicitly
defined as the set of all canonical k-mers that appear at least a times in the FASTA files of
color i. We obtain Ei by running KMC [17] on the FASTA files of color i.

3.1 Building a color matrix of E and compressing E

In this step, we first compress E using ESS-basic [25] and then build the color matrix of E,
ordered by the ESS order. Specifically, we first compress the nucleotide sequences themselves,
i.e. we run ESS-basic [25] on all the input files jointly. We refer to this as the union ESS.
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We then decompress this file to obtain an SPSS of E, denoted by S. From S, we build an
SSHash dictionary [24] that allows us to map each k-mer in E to its rank in S. We then
build on top of the KMC API to read in the binary files representing E0, . . . , EC−1 and
output a color matrix ordered by the SSHash dictionary. At the end of this stage, we have
the union ESS, which is retained in the final compression output, and we have S and the
color matrix, which are used in later stages but not retained in the final compression output.

3.2 Compression of the color matrix
Given an SPSS S of E and a color matrix of E over the order induced by S, we now generate
a compressed representation of the matrix. Our representation consists of a global class table
and, for every simplitig of S, a few bits of metadata, a local class table and one bitvector
m. The local class table is optional, as we describe below. Figure 2 gives a schematic
representation. We now explain each of these in detail.

Global class table: For most applications, the number of distinct color vectors M is signi-
ficantly smaller than 2C . Hence, the color matrix representation, which uses C bits per
k-mer, is very inefficient. Instead, we use Huffman coding to assign a global ID to each
class, so as to minimize the number of bits that will be used to store these IDs later (this
is similar to what was done in [3]). To do this, we scan the color matrix to determine all
the distinct classes and the number of k-mers that have each class. We then use Huffman
coding to assign a global ID to each distinct class, so that more frequent global IDs tend
to use less bits. This table is then stored in two forms: one that is compressed to disk,
and the other that is stored in memory to be used during the compression algorithm.

We store the table on disk using three files: a color encoding ∆, a boundary bitvector b,
and a text file. First, we sort the color classes in increasing numerical order, interpreting
each color vector as a C-bit integer. For ∆, we write a concatenation of the M color
vectors to disk, with the first color vector being written using C bits and the following
colors being encoded as a difference with their predecessor. Specifically, if hi is the
Hamming distance between the ith and the (i − 1)st color vectors, then we use hi⌈log C⌉
bits to encode the indices where the ith color vector is different from the (i − 1)st color
vector. We also store a boundary bitvector b which is the same length as ∆ and contains
a “1” whenever ∆ starts a new color class. Finally, we store the frequencies of the color
classes in a text file. These three files are then sufficient to reconstruct the global IDs
during decompression. 1

Simultaneously, we need to be able to map a color vector to an ID during the compression
process. To do this, we create a minimal perfect hash function h (CHM [8]) that maps
from each distinct color vector to an integer between 0 and M − 1. We then maintain
an array A of size M , where for each color vector c, A(h(c)) holds the global ID of color
vector c.

After the global class table is created, we process the simplitigs of S one at time. For
each simplitig, we dynamically set two parameters: a boolean variable UseLocalID, and an
integer 0 ≤ maxDif ≤ 2. We postpone the discussion on how these are set until the end of
the section. The values of maxDif and UseLocalID are stored using 3 bits of metadata per
simplitig. If UseLocalID is set, we create a local class table:

1 For readers familiar with Mantis-MST [2], we also tried their approach for storing our global table.
Surprisingly, we found that our approach outperformed their more sophisticated approach, at least in
our datasets. Though the Mantis-MST approach resulted in a smaller ∆ vector, the overhead of storing
the tree parent vector outweighed this gain.
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Local class table: In the case that the frequencies of color classes are evenly distributed,
we need approximately log M bits to represent the global class ID of each k-mer. We
observe that sometimes a class is used at multiple locations of a simplitig, in which case
using log M bits for each occurrence can be wasteful. Let ℓ be the number of distinct
classes appearing in a simplitig. To save space on class IDs, we create a separate local
class table, which maps from ℓ integers, called local class IDs, to their respective global
IDs. Then, the encoding of k-mer classes for this simplitig can use local class IDs, which
take only log ℓ space. The local class table is written to disk, with log M bits encoding ℓ

followed by ℓ consecutive global class IDs together.

The bitvector m is constructed by scanning the simplitig from left to right and, for each
k-mer x, deciding how to encode it, and appending that encoding to m. Intuitively, the
encodings follow three basic possibilities. The first possibility is to just append m with the
k-mer’s class ID. Second, we observed in practice that simplitigs often contain runs of k-mers
with identical classes, in which case we can append m with the length of the run, rather
than writing out each class IDs (such runs are similar to the monotigs of [20]). Finally, we
often observe that a k-mer has a color vector with a small Hamming distance (i.e. 1 or 2) to
that of the previous k-mer. In this case, we append m with the indices in the color vector
that are different. Since there are three types of encoding, we will also need to prepend
each encoding with two bits denoting the type of encoding. Formally, for each k-mer in a
simplitig, we choose one of four options:

Skip: This option is invoked if x is not the first or last k-mer in its simplitig and has the
same class as the preceding and succeeding k-mer. In this option, nothing is appended
to m.

Small class difference: Let h be the Hamming distance between the color vector of x and
the color vector of the preceding k-mer in the simplitig. This option is invoked when
0 < h ≤ maxDif . First, we append m with “10” to indicate that the following encoding
will encode a class difference. If maxDif = 2, then we append m with a “1” to indicate
that h = 2 or a “0” to indicate that h = 1. If maxDif = 1, then we do not append
this extra bit, since it is implicit. Then, we append m with h log C bits which list the
colors that are different. Note that setting maxDif = 0 effectively disables this type of
encoding.

End of run: This option is invoked if x has the same class as the preceding k-mer and either
has a different class than the succeeding k-mer or is the last k-mer in the simplitig. First,
we indicate that the following encoding will encode a run length by appending m with
“11” if maxDif > 0 and “1” if maxDif = 0. This difference is due to the fact that if
maxDif = 0, then there are only two types of encodings and so we can just use one bit
for the type.

Let runLen be the number of consecutive k-mers that preceded x (not including x)
and have the same class. We encode runLen by separating it into a quotient q and
remainder r (with respect to a global parameter runDivisor), and then encoding the
quotient q in unary and the remainder r in binary. Formally, let q = ⌊ runLen

runDivisor ⌋
and r = runLen mod runDivisor. We append to m q “1”s followed by a “0”. Then,
we append to m the binary encoding of r, using log runDivisor bits. For example, if
runDivisor = 16 and runLen = 21, then q = 1 and r = 5, and m is appended with
100101. Observe that a smaller value of runDivisor results in more bits used to encode
long runs (i.e. q is larger) while a larger value of runDivisor uses more bits to encode
short runs (i.e. log runDivisor is larger). We found that a default value of 16 works best
in our experiments.
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Figure 2 Example of how we compress the color matrix (Section 3.2). The top panel shows
the compression of a simplitig ACTTTGGA and the bottom panel shows the compression of a
simplitig AAAATTAC. Other simplitigs exist but are not shown. In this example, C = 6, k = 4, and
runDivisor = 4. The figure is divided into three columns. The first column shows the information
that the algorithm has about each k-mer (i.e. its color vector and corresponding global ID). The
second column shows the metadata which holds the values of maxDif and useLocalId for the
corresponding simplitig. The third column shows the m vector. Within the m vector, the type of
encoding is shown in gray colored boxes and other values are shown in white boxes. The colors of
the values inside the white boxes correspond to the color used for the corresponding k-mers’ color
vector in the first column of the figure. Note that in the bottom simplitig, a local table is used. In
particular, there are two distinct color vectors in this simplitig, with global ID 0011 assigned to local
ID 0 and global ID 000 assigned to local ID 1.

Store the class ID: This option is invoked when none of the criteria for the other options are
satisfied. In this case, we append m with “0” to indicate the type of encoding, followed
by the class ID of x. If UseLocalID is set, we use the local class ID, otherwise we use
the global class ID.

After finishing with all simplitigs, we compress the global class table, local class tables, and
m using RRR [27] and write them to disk.

Setting the parameters UseLocalID and maxDif involves trade-offs that are difficult to
quantify in advance. For example, the cost of having to store the local class table may exceed
the benefits of using less bits to encode class IDs for a simplitig where every present class ID
is contained within a single run. Similarly, when d is too large, then writing the positions of
the color differences to m can take more space then just writing the class ID. Moreover, there
is a benefit of setting d = 0, since it enables to save one bit per run by using “1” instead of
“11” for the “end of run” encoding. All bitvectors are additionally compressed with RRR,
making it difficult to determine in advance which parameters result in the least space. We
therefore try all possibilities of maxDif ∈ {0, 1, 2} and UseLocalID ∈ {True, False}, and,
for each combination, compute the encoding. We then use the encoding that takes less space
and disregard the rest. Though this step can likely be optimized, we found that the time
taken to try all possibilities was not a large factor in the overall compression time.

The decompression algorithm for the m vector is straightforward since our color matrix
compression scheme is designed to be unambiguously decompressed. Simultaneously, we
decompress E with ESS-decompress. The result is an SPSS S of E and a color matrix of
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Table 1 Dataset characteristics. C is the number of colors and M is the number color classes.

Source type C M n. k-mers ×106

(% single color)
n. simplitigs ×106

k = 23 k = 31 k = 23 k = 31
E. coli assemblies 100 542,545 27 (30%) 31 (31%) 0.5 0.5
E. coli assemblies 10 826 13 (38%) 14 (41%) 0.2 0.2
Fungi assemblies 20 13,227 394 (93%) 409 (93%) 1.8 1.7
Gut metagenome reads 9 511 2,236 (67%) 2,477 (70%) 76 95
Human RNA-seq reads 19 9,654 120 (71%) 103 (75%) 7.2 10

E in the order of S. If the output is to be processed downstream in a streaming manner,
our decompression algorithm can trivially stream out k-mer sequence and color vectors, one
k-mer at a time.

4 Results

4.1 Evaluated tools and datasets
As far as we are aware, there are two other tools designed for compressing colored de Bruijn
graphs: KS [16] and GGCAT [7]. We refer to the first tool as KS after the authors’ last
names [16]. KS is limited to support only three k values (15, 19, and 23), so we compare
against it for k = 23 but also evaluate ESS-color on a more practical k value of k = 31. For
GGCAT, we additionally compressed its Fasta output file with MFC and its binary color
table with gzip to maximize its compression ratio. We also compare ESS-color against the
naive approach of compressing each color independently using the algorithm of [25], which
we refer to as ESS-basic.

Table 1 shows the datasets we use for evaluation and their properties. We chose five
datasets so as to cover a broad range of input types. Three of the datasets are from
assembled genomes, one is from RNA-seq reads, and one is from metagenome reads. We
used all k-mers from the three assemblies datasets and all k-mers that appear at least twice
from the two read datasets. The datasets cover various species, from Bacteria to Fungi to
Human. Concretely, we have 1) 100 arbitrarily selected E.coli strains from GenBank, 2) an
arbitrary subset of 10 of those, 3) 20 arbitrarily selected fungi sequences from RefSeq, 4) gut
microbiome read sets from nine individuals sequenced in [21], and 5) 19 paired-end, human,
bulk RNA-seq short-read experiments previously used in [2]. All accession numbers are listed
in https://github.com/medvedevgroup/ESSColor/wiki/Experiments.

Finally, all experiments were run on a server with an Intel(R) Xeon(R) CPU E5-2683 v4
@ 2.10GHz processor with 64 cores and 512 GB of memory. We ran all tools in unrestricted
memory mode. We used 8 threads for all tools and their components, whenever they
supported multi-threading.

4.2 Comparison against other disk compression tools
Table 2 shows the bits per k-mer achieved by ESS-color compared with KS, GGCAT
ESS-basic, and a p7zip compression of the original fasta file. ESS-color achieves better
compression than all evaluated tools and on all datasets. No other tool was able to consist-
ently achieve less than 44% space overhead compared to ESS-color. On some datasets the
improvement over all other tools is quite large, e.g. for Gut (k = 23), all the other tools use
at least 27% more space than ESS-color.

https://github.com/medvedevgroup/ESSColor/wiki/Experiments
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Table 2 Compression results, in bits per k-mer. ESS-color is our new tool. ESS-basic is the
non-integrative approach of compressing every color separately. KS is tool from [16], and a hyphen
indicates that it does not support k > 23. fa.p7zip is the p7zip compression of the original data. We
show bits per k-mer, which is the total compressed size divided by the number of distinct k-mer in
the input (i.e. |E|). Compression ratios can be inferred by comparing to the fa.p7zip column.

Dataset k = 23 k = 31

fa.p7zip ESS-color KS GGCAT ESS-basic fa.p7zip ESS-color KS GGCAT ESS-basic

Ecoli100 37 5.2 17.3 6.4 35.0 33 4.4 – 5.5 30.3
Ecoli10 8 2.9 5.3 3.3 7.3 7 2.6 – 3.0 6.6
Fungi20 2.4 2.2 2.5 2.3 2.3 2.3 2.2 – 2.3 2.5
Gut9 60 3.7 5.7 4.9 4.7 54 3.4 – 4.9 4.4
HumRNA19 112 5.6 8.8 7.1 10.4 131 8.9 – 10.5 12.1

The compression ratio of ESS-color relative to the original Fa.p7zip files varies (Table 2).
For the read datasets, it is more than 15x, since high-coverage FASTA files are by their
nature very redundant. For the assemblies datasets, the ratio is between 1x and 7x. We
found that a good predictor of compressibility of assemblies is the percentage of k-mers that
have exactly one color (Table 1). At one extreme, 93% of Fungi20 k-mers have exactly one
color, and ESS-color achieves little improvement over fa.p7zip. At the other extreme, only
30% of Ecoli100 k-mers have exactly one color, and the compression ratio is relatively high
at 7.1x (for k = 23). This trend makes intuitive sense since single-color k-mers do not benefit
from ESS-color’s multi-color compression algorithm.

KS is not as effective as ESS-color on our datasets, using between 1.4x and 3.3x more
space than ESS-color (Table 2). We note that even though KS is also designed to exploit
the fact that k-mers are shared across colors, it makes a different design trade-off compared
to ESS-color. Specifically, it does not allow simplitigs to extend beyond a single color class
(resulting in more space needed to store k-mers), but, in exchange, it is more efficient in
storing color information.

GGCAT is generally the closest competitor against ESS-color, using between 14 and 44%
more space on the non-Fungi datasets (note that for Fungi all tools did well). Like ESS-color,
it builds a kind of global class table, constructs an SPSS of the k-mers, and annotates each
run of single-class k-mers with their class ID. Unlike ESS-color, however, it does not use
ESS, does not encode small class differences, and does not use local class tables.

As expected, ESS-basic is not as effective as ESS-color, using up to 6.9x more space
than ESS-color (Table 2). These results are not surprising since ESS-basic does not exploit
the redundancy created by shared k-mers across samples. For the assemblies datasets, the
compression improvement of ESS-color over ESS-basic closely tracks that of ESS-color over
the original fa.p7zip. For the sequencing datasets, ESS-basic uses between 1.3 and 1.9 more
space than ESS-color.

Tables 3 and 4 show the run time and memory usage of compression, respectively. Here,
ESS-color is outperformed by other tools. In particular, if optimal compression space is not
needed, then GGCAT becomes a good alternative to ESS-color. Note that the decompression
time (Table 5) is an order of magnitude smaller compared to the compression times.
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Table 3 Time (min) used by the various compression algorithms. For the Gut9 ESS-color run
with k = 23 (marked with *), we used an unoptimized implementation of the color matrix generation
step, since SSHash was not working as expected. For GGCAT on Gut9 with k = 23 (denoted by
**), the original run crashed because of exceeding the number of open files allowed by the operating
system. We therefore re-ran GGCAT using our simplitigs as a starting point, which allowed the
run to complete. However, the time shown here does not include the time we used to construct the
simplitigs.

k = 23 k = 31
Dataset ESS-color KS GGCAT ESS-basic ESS-color GGCAT ESS-basic
Ecoli100 14.8 11.6 0.7 6.3 20.7 0.7 27
Ecoli10 2.6 7.0 0.3 0.9 2.6 0.3 2
Fungi20 59.1 7.0 3.3 7.3 76 3.3 25
Gut9 1101* 148.5 37.8** 234 611.6 92.2 341
HumRNA19 31.9 10.5 21.2 31 60.1 15.0 39

Table 4 Maximum memory (Gb) used by the various compression algorithms. The (*) and (**)
annotations are the same as in Table 3.

k = 23 k = 31
Dataset ESS-color KS GGCAT ESS-basic ESS-color GGCAT ESS-basic
Ecoli100 1.2 0.9 1.5 1.2 1.1 1.4 1
Ecoli10 0.6 3.2 0.8 1.1 0.6 0.8 1
Fungi20 5.4 3.2 4.8 5.9 4.3 3.9 6
Gut9 174.6* 50.6 87.2** 33.2 121 78.2 119
HumRNA19 26.8 6.0 8.8 9.1 12.1 10.2 7

Table 5 Time and memory for decompression of ESS-color, for k = 31.

Dataset Memory (GB) Time (min)
Ecoli100 0.5 2
Ecoli10 0.5 1
Fungi20 0.5 13
Gut9 8.5 90
HumRNA19 1.0 5

Table 6 Breakdown of the space usage (in percentage of total space) of the components of
ESS-color, for k = 31. Note that all components except union ESS are shown after compression
with RRR.

Dataset union ESS m global table
(∆ and b)

global table
(frequencies)

local tables

Ecoli100 51 23 23 2 1
Ecoli10 81 18 <0.1 <0.1 0.5
Fungi20 95 5 <0.1 <0.1 0.1
Gut9 77 22 <0.1 <0.1 1
HumRNA19 73 26 <0.1 <0.1 0.8
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Table 7 The percentage of simplitigs (k = 31) that fall into the six compression modes, i.e.
combinations of UseLocalID and maxDif .

Dataset
UseLocalID = False UseLocalID = True

maxDif
= 0

maxDif
= 1

maxDif
= 2

maxDif
= 0

maxDif
= 1

maxDif
= 2

Ecoli100 75 20 5 <0.1 <0.1 <0.1
Ecoli10 82 16 2 <0.1 <0.1 <0.1
Fungi20 99 1 0.2 <0.1 <0.1 <0.1
Gut9 80 19 2 0.2 <0.1 <0.1
HumRNA19 91 9 0.1 0.1 <0.1 <0.1

Table 8 Compression results in bits per k-mer (k = 31) of indexing approaches, compared to
ESS-color.

Dataset ESS-color RowDiff-ESS RowDiff+ Rainbow-MST
Ecoli100 4.4 14.6 8.0 34.2
Ecoli10 2.6 7.8 6.3 19.3
Fungi20 2.2 3.6 4.3 9.5
Gut9 3.4 11.2 40.6 15.6
HumRNA19 8.9 37.9 112.6 19.1

4.3 Inside the space usage of ESS-color
ESS-color’s compressed representation includes several components, with the major ones
being the union ESS, the m vector, the global table, and the local tables. Table 6 shows that
the majority of space used by ESS-color is taken by the union ESS. Except for Ecoli100, the
rest of the space is taken up almost exclusively by m. For Ecoli100, which has the largest
number of colors, the global table takes 23% of the total space.

Recall that ESS-color chooses one of six different compression modes for each simplitig,
i.e. UseLocalId ∈ {0, 1} and maxDif ∈ {0, 1, 2}. In order to access the relative contribution
of the various compression techniques, we count the frequency with which each mode occurs
(Table 7). First, we observe that the idea of a local table was rarely helpful on our data.
Local tables are only beneficial when a single color class appears in more than one run in a
simplitig, which apparently was rare. Second, the majority of simplitigs use maxDif = 0.
This mode is optimal when the simplitig has just one color class. There is also a more
complicated trade-off since setting maxDif > 0 adds one extra bit for each run encoding,
which may outweigh the benefits of encoding some k-mers with a class difference. Third, the
Gut dataset demonstrates the benefit of encoding class differences, especially compared to
GGCAT. It is the dataset with the highest percentage of simplitigs using maxDif > 0 (21%)
and, simultaneously, it is also the dataset where GGCAT uses the most space relative to
ESS-color (44%).

4.4 Comparison to indexing data structures
There exist numerous indexing data structures for cdBGs [19]. Indexing data structures are
similar to disk compression but additionally support efficient membership and color queries.
We expect this overhead to make them non-competitive with respect to disk compression
schemes. To verify this, we compared the space taken by ESS-color against three indexing
approaches. We note that since these approaches are designed for indexing, they do not
implement decompression and are thus not viable for disk compression in their current state.
We also note that GGCAT also supports indexing, but, since it is trivial to decompress, we
included it in the main analysis of Section 4.2.
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The first two approaches are ones that are shown in [9, 14] to be the most space efficient.
These are RowDiff+, which is the latest version [14] of RowDiff [9], and Rainbow-MST [9],
which is a space-improved version of Mantis-MST [2]. As a trivial improvement, we further
compress these indices using gzip. The third approach we compare to is a natural hybrid of
ESS-color and the RowDiff indexing algorithm for cdBGs [9]. We refer to this as RowDiff-ESS
and describe it in detail in the Appendix. We do not compare against other indices such as
REINDEER [20], Bifrost [12], Themisto [1], or Mantis-MST [2], because they are less space
efficient than RowDiff+, and we do not compare against Sequence Bloom Tree approaches
(e.g. [11, 28]) because they are lossy.

Table 8 shows the results. As expected, the compression ratios of these indexing tools are
not competitive against ESS-color. Even the most space efficient indexing approach for each
dataset takes 60% more space than ESS-color. We do note that GGCAT, which was shown
in Table 2, is an exception, since it implements both efficient indexing and disk compression.

5 Conclusion

Colored de Bruijn graphs are a popular way to represent sequence databases. In spite of
their ever-growing sizes, there have not been many specialized tools for compressing them to
disk. In this paper, we present a novel disk compression algorithm tailormade for cdBGs that
achieves superior space compression compared to all other tools on the evaluated datasets.

Our algorithm is a novel combination of ideas borrowed from previous work on disk
compression of k-mer sets and indexing of cdBGs. We use a spectrum-preserving string set
(SPSS) as a basis for both compressing the nucleotide sequences and for ordering the rows in
the color matrix. By using the SPSS ordering, we can avoid the costly storage of an indexed
de Bruijn graph (e.g. BOSS in [9, 14] or a counting quotient filter in [2]). We also exploit
the fact that consecutive k-mers in an SPSS likely have the same or similar color class. A
major component of our approach is that we select a different compression scheme for each
simplitig, depending on what gives the best compression on that simplitig.

The most important practical direction for future work is to improve the running time
of our algorithm. The generation of the union ESS is done by ESS-basic. ESS-basic can
be sped up by extending the latest SPSS generation tools [15, 7] to also compute an ESS.
We could even build on top of GGCAT, taking advantage of their efficient implementation
(unfortunately, GGCAT was only released once our project was near completion). Another
bottleneck is the color matrix generation step, which could be parallelized or even avoided
by using color lists.

A theoretical future direction is to derive bounds on the bits used by the compression
scheme. Unfortunately, we do not see an easy way to do this, since the choice of encoding
depends on the order of the k-mers in the SPSS and on the decomposition of the k-mers into
simplitigs. It is unclear to us how to capture these properties as a function of the input data.

Finally, we could further improve the compression algorithm by modifying the SPSS
generated by the ESS-basic algorithm. Currently, the choice of how to select from multiple
simplitig extensions is made arbitrarily. Instead, the choice could be made to use the
extension that has the most similar color class. Such a modification to the SPSS construction
algorithm would likely be computationally non-trivial, since it would require accessing the
color information.
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A Appendix

Here we describe RowDiff-ESS, the hybrid of ESS-color and the RowDiff indexing algorithm
for cdBGs [9]. Though the approach turned out to not be comptetive against ESS-color, we
describe it here for completeness. The RowDiff index is composed of two parts: BOSS, which
is an index of E, and a compressed color matrix whose labels are implicitly given by BOSS.
Because of its structural similarity to our approach, we can swap out BOSS (which supports
queries and is therefore not space efficient for disk compression) with an ESS of E. We
then feed the k-mer ordering implied by the ESS to the RowDiff color matrix compression
algorithm. The space used by this scheme is the ESS space plus the space of the RowDiff’s
color matrix, compressed with gzip.
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1 Introduction

At the core of many metagenomic and pan-genomic analyses is read-mapping, the atomic
operation that assigns observed sequence reads to putative genome(s) of origin. A wide range
of methods have been developed for mapping reads to large collections of reference genomes.
Of note, alignment-based methods, though accurate [20, 23], are relatively computationally
intensive as they must provide the ability to locate the read on each genome. A queried read
must, with low edit-distance, be matched with a sub-string of some reference genome in the
collection. For alignment, the index is also required to report the position of this match. As
a matter of fact, alignment against hundreds or even tens of thousands of reference genomes
can be impractically slow and simply require too much space in practice.

Fortunately, alignment-free techniques have become popular and widespread for metagen-
omic analyses [43, 27, 42, 35, 40, 36]. These methods generally work by avoiding alignment
altogether, and replacing it with strategies for matching (exactly or approximately) sub-
strings, signatures, or sketches between the queries and the referenced sequences. Ideally,
good matching heuristics can assign or match a query against the correct reference with
high precision while also retaining high recall (i.e., being sensitive to sequencing error or
small divergence between the query and the reference). One particular type of alignment-free
method for assigning reads to compatible references that has recently gained substantial
traction is pseudoalignment [6, 39, 37, 21]. While tremendous progress has been made in
supporting alignment-free methods for metagenomic analyses, continued development of ever
more efficient indexing methods is required for such analyses to scale to tens, even hundreds,
of thousands of bacterial reference genomes.

A practical data structure that is suitable for alignment-free matching methods is the
colored de Bruijn graph, a graph where each node corresponds to a k-mer in a reference
collection and is annotated with a color, the set of references in which it occurs. Bifrost [15]
and Metagraph [17] are two efficient approaches that index the colored de Bruijn graph and
support the k-mer-to-color query. Recently, Alanko et al. [2] developed Themisto, an index for
alignment-free matching (and specifically pseudoalignment) that substantially outperforms
these prior methods in the context of indexing and mapping against large collections of
genomes. Compared to Bifrost, Themisto uses practically the same space, but is faster to
build and query. Compared to the fastest variant of Metagraph, Themisto offers similar query
performance, but is much more space-efficient; on the other hand, Themisto is much faster to
query than Metagraph-BRWT, the most-space efficient variant of Metagraph.

1.1 Contributions
We describe how recent advancements in associative, order-preserving, k-mer dictionaries [30,
29] can be combined with a compressed inverted index to implement a fast index over the
colored compacted de Bruijn graph (ccdBG). Leveraging the order-preserving property of its
dictionary, our index takes full advantage of the fact that unitigs in this variant of the ccdBG
are monochromatic – i.e., all k-mers in a unitig have the same set of references of origin, or
“colors”. In fact, k-mers are kept in unitig order, and our index takes advantage of the ability
of our associative dictionary to store the unitigs in any order. Reordering the unitigs so that
all unitigs with the same color are adjacent in the index allows the construction of a map
from k-mers to their corresponding colors that uses only 1 + o(1) bits per unitig. Our index
combines this property with a simple but effective hybrid compression scheme for inverted
lists (colors) to require little space. By storing unitigs and keeping k-mers in unitig order,
our index also supports very fast streaming queries for consecutive k-mers in a read, and



J. Fan, N. P. Singh, J. Khan, G. E. Pibiri, and R. Patro 18:3

additionally allows efficient implementation of skipping heuristics that have previously been
suggested to speed up pseudoalignment [6]. We implemented our index in a C++17 tool
called Fulgor, which is available at https://github.com/jermp/fulgor.

Compared to Themisto [2], the prior state of the art, Fulgor indexes a heterogeneous
collection of 30,691 bacterial genomes in 3.8× less space, a collection of 150,000 Salmonella
enterica genomes in approximately 2× less space, is at least twice as fast at query time, and
even 2 − 6× faster to construct.

Perhaps unsurprisingly, the rapid development of novel indexing data structures has been
accompanied by novel and custom strategies for matching and assigning reads to colors
(i.e., reference sets) and algorithms that each make different design choices and trade-offs.
Many of these strategies can be considered as a form of pseudoalignment. Having been
iterated on since its introduction [6], the term “pseudoalignment” has come to describe a
family of efficient heuristics for read-to-color assignment, rather than a single concept or
algorithm. Prior methods have taken either exhaustive approaches that queries every k-mer
on a read (previously termed exact pseudoalignment [21, 2]) or have implemented skipping
based approaches that skip the query of “redundant” consecutive k-mers that likely map to
the same set of reference genomes [6, 13]. To our knowledge, the precise details of the types
of skipping heuristics used in the latter methods – including those adopted by the initial
pseudoalignment method – have been discussed only in passing. Complete details, instead
exist only in the source code of the corresponding tools. To shed light on these algorithms,
we provide a more structured discussion of how these algorithms are designed. Using Fulgor,
we implement two previously proposed variants and benchmark them.

2 Preliminaries

In this section, we first formalize the problem under study here. We then describe a modular
indexing layout that solves the problem using the interplay between two well-defined data
structures. Lastly we describe the properties induced by the problem and how these are
elegantly captured by the notion of colored compacted de Bruijn graph.

2.1 Problem definition
▶ Problem 1 (Colored k-mer indexing problem). Let R = {R1, . . . , RN } be a collection of
references. Each reference Ri is a string over the DNA alphabet Σ = {A, C, G, T }. We
want to build a data structure (referred to as the index) that allows us to retrieve the set
Color(x) = {i|x ∈ Ri} as efficiently as possible for any k-mer x ∈ Σk. Note that Color(x) = ∅
if x does not occur in any reference.

Hence, we call the set Color(x) the color of the k-mer x.

2.2 Modular indexing layout
In principle, Problem 1 could be solved using an old but elegant data structure: the inverted
index [45, 34]. The inverted index, say L, stores explicitly the ordered set Color(x) for each
k-mer x ∈ R. What we want is to implement the map x → Color(x) as efficiently as possible
in terms of both memory usage and query time. To this end, all the distinct k-mers of R
are stored in an associative dictionary data structure, D. Suppose the dictionary D stores n

k-mers. To implement the map x → Color(x), the operation that D is required to support
is Lookup(x) which returns ⊥ if k-mer x is not found in the dictionary or a unique integer
identifier in [n] = {1, . . . , n} if x is found. Problem 1 can then be solved using these two data
structures – D and L – thanks to the interplay between Lookup(x) and Color(x): logically, the
index stores the sets {Color(x)}x∈R in compressed format in the order given by Lookup(x).
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To our knowledge, all prior solutions proposed in the literature that fall under the
“color-aggregative” classification [22], are incarnations of this modular indexing framework
and, as such, require an efficient k-mer dictionary joint with a compressed inverted index.
For example, Themisto [2] makes use of the spectral BWT (or SBWT) data structure [1]
for its k-mer dictionary, whereas Metagraph [17] implements a general scheme to compress
metadata associated to k-mers which is, in essence, an inverted index.

2.3 The colored compacted de Bruijn graph and its properties

Problem 1 has some specific properties that one would like to exploit to implement as
efficiently as possible the modular indexing framework described in Section 2.2. First,
consecutive k-mers share (k − 1)-length overlaps; second, co-occurring k-mers have the same
color. A useful, standard, formalism that describes these properties is the colored compacted
de Bruijn graph (abbreviated “ccdBG”).

Given the collection of references R, the (node-centric) de Bruijn graph (dBG) of R is a
directed graph whose nodes are all the distinct k-mers of R and there is an edge connecting
node u to node v if the (k − 1)-length suffix of u is equal to the (k − 1)-length prefix of v.
We refer to k-mers and nodes in a (node-centric) dBG interchangeably; likewise, a path in a
dBG spells the string obtained by “glueing” together all the k-mers along the path. Thus,
unary (i.e., non-branching) paths in the graph can be collapsed into single nodes spelling
strings that are referred to as unitigs. The dBG arising from this compaction step is called
the compacted dBG (cdBG). Lastly, the colored compacted dBG is obtained by logically
annotating each k-mer x with its color, Color(x), and only collapsing non-branching paths
with nodes having the same color.

Below, we notate n to be the number of distinct k-mers of R and m to be the number of
unitigs {u1, . . . , um} of the ccdBG induced by the k-mers of R. The unitigs of the ccdBG
that we consider have the following key properties.

1. Unitigs are contiguous subsequences that spell references in R. Each distinct k-mer of R
appears once, as sub-string of some unitig of the cdBG. By construction, each reference
Ri ∈ R can be a tiling of the unitigs – a sequence of unitig occurrences that spell
out Ri [11]. Joining together k-mers into unitigs reduces their storage requirements.
In Sections 3.1 and 3.2, we show how this property can be exploited to make indexes
compact. In Section 4, we show how this property can be exploited to make queries fast.

2. Unitigs are monochromatic. The k-mers belonging to the same unitig ui all have the same
color. Thus, we shall use Color(ui) to denote the color of each k-mer x ∈ ui. We note that
this property holds only if one considers k-mers appearing at the start or end of reference
sequences to be sentinel k-mers that must terminate their containing unitig [24, 19, 18],
and that such conventions are not always adopted [15, 8].

3. Unitigs co-occur and share colors. Unitigs often have the same color (i.e., occur in the same
set of references) because they derive from conserved sequences in indexed references that
are longer than the unitigs themselves. We indicate with M the number of distinct color
sets C = {C1, . . . , CM }. Note that M ≤ m and that in practice there are dramatically
more unitigs than there are distinct colors. We use ColorID(ui) = j to indicate that unitig
ui has color Cj . As a consequence, each k-mer x ∈ ui has color Cj .

In this work our goal is to design an index that takes full advantage of these key properties.
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Figure 1 A schematic picture of the index described in Section 3, highlighting the interplay
between the k-mer dictionary D, the bit-vector B, and the inverted index L. The red arrows show
how the index is queried for a k-mer x, assuming that x occurs in unitig u6 and has color C3. The
k-mer x is first mapped by D to its unitig u6 via the query UnitigID(x) = 6. Then we compute
ColorID(u6) = Rank1(6, B) + 1 = 2 + 1 = 3 and lastly retrieve C3 from L.

3 Index description

In this section we describe a modular index that implements a colored compacted de Bruijn
graph (ccdBG) and fully exploits its properties described in Section 2.3. We adopt the
modular indexing framework from Section 2.2 – comprising a k-mer dictionary D and an
inverted index L – to work seamlessly over the unitigs of the ccdBG. We extend the ideas
from Fan et al. [11] for the modular indexing of k-mer positions to k-mer colors.

Our strategy is to first map k-mers to unitigs using a dictionary D, and then map unitigs
to their colors C = {C1, . . . , CM }. By composing these mappings, we obtain an efficient
map directly from k-mers to their associated colors. The colors themselves in C are stored
in compressed form in a inverted index L. Figure 1 offers a pictorial overview of how we
orchestrate these different components in the index. The goal of this section is to describe
how these mapping steps can be performed efficiently and in small space.

3.1 The k-mer dictionary: mapping k-mers to unitigs with SSHash
For a k-mer dictionary, we use the SSHash data structure [30, 29], which fulfills the requirement
described in Section 2.2, in that it implements the query Lookup(x) for any k-mer x efficiently
and in compact space. This is achieved by storing the unitigs explicitly (i.e., as contiguous,
2-bit encoded strings) in some prescribed order so that a k-mer x occurring in some unitig
ui can be quickly located using a minimal perfect hash function [32] built for the set of the
minimizers [38] of the k-mers. Laying out unitigs in this principled manner also enables very
efficient streaming query. That is, when querying consecutive k-mers from input reads, the
query for a given k-mer can often be answered very efficiently given the query result from its
predecessor, since it often shares the same minimizer and frequently even occupies the very
next position on the same unitig as its predecessor. We refer the interested reader to [30, 29]
for a complete overview of SSHash.
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Even more importantly for our purposes, a query into the SSHash dictionary returns,
among other quantities, UnitigID(x) = i, the ID of the unitig containing the k-mer x, as
a byproduct of Lookup(x). For any k-mer occurring in R, UnitigID(x) = i is an integer in
[1..m]. This map from k-mers to unitigs will be exploited in the subsequent sections.

3.2 Mapping unitigs to colors

Now that we have an efficient map from k-mers to unitigs, i.e., the operation UnitigID(x),
we must subsequently map unitigs to distinct colors. That is, we have to describe how to
implement the operation ColorID(ui) for each unitig ui. Since each ColorID(ui) is an integer in
[1..M ], we could implement ColorID(ui) just by storing ColorID(u1), . . . , ColorID(um) explicitly
in an array of ⌈log2(M)⌉-bit integers. We show how to do this in just 1 + o(1) bits per unitig
rather than ⌈log2(M)⌉ bits per unitig.

We do so by exploiting another key property of SSHash: the unitigs it stores internally
can be permuted in any desired order without impacting the correctness or efficiency of the
dictionary. This was already noted and exploited in [29] to compress k-mer abundances.
Similarly, here we sort the unitigs by ColorID(ui), so that all the unitigs having the same
color are stored consecutively in SSHash. To compute ColorID(ui), all that is now required is
a Rank1 query over a bit-vector B[1..m] where:

B[i] = 1 if ColorID(ui) ̸= ColorID(ui+1) and B[i] = 0 otherwise, for 1 ≤ i < m;
B[m] = 1.

It follows that B has exactly M bits set. The operation Rank1(i, B) returns the number of
ones in B[1, i) and can be implemented in O(1) time, requiring only o(m) additional bits as
overhead on top of the bit-vector [41, 31]. This means that ColorID(ui) can be computed in
O(1) as Rank1(i, B) + 1.

We illustrate this unitig to color ID mapping in Figure 1. In this toy example,
ColorID(u6) = 3 can be computed with Rank1(6, B) + 1 = 2 + 1 because there are two
bits set in B[1, 6) – each marking where previous groups of unitigs with the same color end.
Therefore, according to B, unitigs {u1, u2, u3} all have the same color as also {u5, u6, u7};
u4’s color is not shared by any other unitig instead.

3.3 Compressing the colors

The inverted index L is a collection of sorted integer sequences {C1, . . . , CM }, whose integers
are drawn from a universe of size N (the total number of references in the collection R).
There is a plethora of different methods that may be used to compress integer sequences
(see, e.g., the survey [34]). Testing the many different techniques available on genomic data
is surely an interesting benchmark study to carry out. Here, however, we choose to adopt a
simple strategy based on the widespread observation that effective compression appears to
require using different strategies based on the density of the sequence Ci to be compressed
(ratio between |Ci| and N) [34]. For example, for the colored k-mer indexing problem, Alanko
et al. also observe and report highly skewed distributions of color densities [2].

We therefore implement the following hybrid compression scheme:
1. For a sparse color set Ci where |Ci|/N < 0.25, we adopt a delta-gap encoding: the

differences between consecutive integers are computed and represented via the universal
Elias’ δ code [10].

2. For a dense color set Ci where |Ci|/N > 0.75, we first take the complementary set of Ci,
that is, the set Ci = {j ∈ [1..N ]|j /∈ Ci}, and then compress Ci as explained in 1. above.
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3. Finally, for a color set Ci, that does not fall into either above density categories, we store
a characteristic bit-vector encoding of Ci – a bit-vector b[1..N ] such that b[j] = 1 if j ∈ Ci

and b[j] = 0 otherwise.
The compressed representations of all sequences are then concatenated into a single bit-vector,
say sequences. An additional sorted sequence, offsets[1..M ], is used to record where each
sequence begins in the bit-vector sequences, so that the compressed representation of the i-th
sequence begins at the bit-position offsets[i] in sequences, 1 ≤ i ≤ M . The offsets sequence
is compressed using the Elias-Fano encoding [9, 12] and takes only a (very) small part of the
whole space of L unless the sequences are very short.

This hybrid encoding scheme is similar in spirit to the one also used in Themisto which,
in turn, draws inspiration from Roaring bitmaps [7]. However, our choice of switching to
the complementary set when |Ci| approaches N turns out to be a very effective strategy,
especially for pan-genome data, where a striking fraction of integers in L are indeed covered
by these extremely dense sets (see also Table 4 from Section 5).

3.4 Construction
Fulgor is constructed by directly processing the output of GGCAT [8], an efficient algorithm to
build ccdBGs using external memory and multiple threads. Importantly, GGCAT provides the
ability to iterate over unitigs grouped by color. Therefore, Fulgor construction just requires a
single scan of the unitigs in the order given by GGCAT. SSHash is built on the set of unitigs,
each distinct color is compressed as described in Section 3.3, and the bit-vector B is also
built during the scan.

4 Pseudoalignment algorithms

The term pseudoalignment, originally coined by Bray et al. [6] and developed in the context of
RNA-seq quantification, has been used to describe many different algorithms and approaches,
several of which do not actually comport with the original definition. Specifically, Bray et
al. [6] define a “pseudoalignment of a read to a set of transcripts, T” as “a subset, S ⊆ T ,
without specific coordinates mapping each base in the read to specific positions in each of the
transcripts in S”. The goal of such an approach then becomes to determine, for a given read,
the set of indexed reference sequences with which the read is compatible, where, in the most
basic scenario, the compatibility relation can be determined entirely by the presence/absence
of k-mers in the read in specific references.

Given any index of k-mer colors, a variety of different pseudoalignment algorithms can
be implemented that rapidly map given reads to compatible reference sequences according to
a set of heuristics. Below, we review four pseudoalignment algorithms and describe their
properties. Various existing tools implement a subset of these pseudoalignment strategies
and Fulgor implements all four. These algorithms fall into two categories: (1) exhaustive
methods that retrieves the color of every k-mer on a given read (as described in [2]), and (2)
skipping heuristics that skip or jump over k-mers during pseudoalignment that are likely to
be uninformative (i.e., to have the same color as the k-mer that was just queried).

4.1 Exhaustive methods
For a given query sequence Q, exhaustive approaches return colors with respect to a set of
k-mers of Q, K(Q), that map to a non-empty color (i.e., each k-mer x ∈ K(Q) if found in
the dictionary D).

WABI 2023



18:8 Fulgor: A Fast & Compact k-mer Index for Large-Scale Matching & Color Queries

Full-intersection. The first of the two exhaustive approaches, the full-intersection method,
simply returns the intersection between all the colors of the k-mers in K(Q). Algorithm 1
in the Appendix (page 20) shows how this query mode is implemented in Fulgor. In the
current implementation, Fulgor has a generic intersection algorithm that can work over any
compressed color sets, provided that an iterator over each color supports two primitives –
Next and NextGEQ(x), respectively returning the integer immediately after the one currently
pointed to by the iterator and the smallest integer which larger-than or equal-to x. (We
point the reader to [26] and [34] for details.)

Threshold-union. The second algorithm, which we term the threshold-union approach,
relaxes the full-intersection method to trade off precision for increased recall. Instead of
requiring a reference to be compatible with all mapped k-mers, the threshold-union method
requires a reference to be compatible with a user defined proportion of k-mers. Given a
parameter τ ∈ (0, 1], this method returns the set of references that occur in at least s · τ

returned (i.e., non-empty) k-mer colors, where s can be either chosen to be s = |K(Q)|
(the number of positive k-mers only) or s = |Q| − k + 1 (the total number of k-mers in Q).
Themisto [2] implements the variant with s = |K(Q)| (called the “hybrid” method), whereas
both Bifrost [15] and Metagraph [17] use s = |Q| − k + 1. In fact, the latter approach of
simply looking up all of the k-mers in a query, and requiring a specified fraction of them
to match, is a long-standing strategy that predates the notion of pseudoalignment [44, 43].
In the following, we assume s = |K(Q)| is used by the threshold-union algorithm, unless
otherwise specified. The pseudocode for this query mode is given in Algorithm 3 in the
Appendix (page 21).

In practice, both the aforementioned exhaustive methods are efficient to compute for two
reasons. First, intersections, thresholding, and unions are easy to compute because colors are
encoded as monotonically increasing lists of reference IDs. Second, for Fulgor in particular,
querying every k-mer for its color can be performed in a highly-optimized way via streaming
queries to SSHash. In the streaming setting, SSHash may skip comparatively slow hashing
and minimizer lookup operations because it stores unitig sequences contiguously in memory.
When sequentially querying adjacent k-mers on a read that are also likely adjacent on indexed
unitigs, it can rapidly lookup and check k-mers that are cached and adjacent in memory (we
refer the reader to [30] for more details).

4.2 Skipping heuristics
For even faster read mapping, pseudoalignment algorithms can implement heuristic skipping
approaches that avoid exhaustively querying all k-mers on a given read. These skipping
heuristics make the assumption that whenever a k-mer on a read is found to belong to a
unitig, subsequent k-mers will likely map to the same unitig and can therefore be skipped,
since they will be uninformative with respect to the final color assigned to the query (i.e.,
the intersection of the colors of the mapped k-mers).

Bray et al. [6] first described such an approach, where a successful search that returns
a unitig u triggers a skip that moves the search position forward to either the end of the
query or the implied distance to the end of u (whichever is less). Subsequent searches follow
the same approach as new unitigs are discovered and traversed in the query. Later, other
tools extended or modified the proposed skipping heuristics, and introduced “structural
constraints”, which take into account the co-linearity and spacing between matched seeds on
the query and on the references to which they map [13]. In contrast to Themisto, Fulgor has
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C. Jump and find k-mer from unexpected unitig

Next queried k-mer

Jump with expectation

Queried k-mer

Input read

B. Jump and find k-mer not in indexed references

𝑥! 𝑥"

Find next 
bookending k-mer‘Back-off’ Query next k-meror or

𝑥! 𝑥"

‘Back-off’ Query next k-meror

A. Jump and find k-mer from expected unitig

𝑥! 𝑥"

Query next k-mer

Skip k-mers

Find k-mers bookending unitig sequence

Figure 2 Some relevant design choices for pseudoalignment with skipping heuristics that jump
and skip k-mers on a given read. After k-mer x1 is queried and found to map to a “black” unitig,
an algorithm can jump to query the k-mer x2 on input read, where the number of k-mers skipped
is given by the length of the black unitig. (A) In the ideal scenario, x2 maps to the black unitig
sequence and k-mers x1 and x2 are found to bookend this unitig sequence as it appears on the read.
(B) If x2 misses the index, an algorithm can back-off to an earlier k-mer on the read to find a k-mer
bookending a shorter subsequence of the black unitig; or it may just query the next k-mer. (C) If
x2 maps to a different “red” unitig, an algorithm has an alternative, aggressive, heuristic option to
jump and find the next k-mer bookending the red unitig sequence.

rapid access to the topology of the ccdBG because its k-mer dictionary, SSHash, explicitly
maps k-mers to unitig sequences that are stored contiguously in memory. Fulgor thus permits
efficient implementation of pseudoalignment algorithms with skipping heuristics since, due
to the underlying capabilities provided by SSHash, it can rapidly find k-mers bookending
unitig substrings because SSHash can explicitly map k-mers to their offsets (positions) in
indexed unitig sequences.

In general, pseudoalignment methods that implement skipping heuristics must specify
what steps the algorithm will take in all scenarios, not just what should happen when
search proceeds as expected. In practice, implementations for resolution strategies are
complicated and difficult to describe succinctly in prose, and prior work has only discussed
these important details in passing. Here, using the depicted scenarios in Figure 2, we provide
a more structured (though certainly not exhaustive) discussion of possible design choices
that can be made. These design choices impact the performance of the pseudoalignment
algorithm, both in terms of how many k-mers it queries (and, hence, its speed), and in how
many distinct color sets it collects (and, hence, the actual compatibility assignment it makes).

Jump and find k-mer in expected unitig. Before the first matching k-mer of a read is
found, there is relatively little difference between exhaustive and heuristic pseudoalignment
approaches; subsequent k-mers are queried until the read is exhausted or some k-mer is
found in the index. At this point, however, heuristic skipping methods diverge from the
exhaustive approaches. At a high level, when a k-mer on a read is found to map to a unitig,
skipping heuristics make an assumption that said unitig appears wholly on the read. A
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pseudoalignment algorithm then jumps, on the read, to what would be the last k-mer on
the unitig sequence occurring on the given read (i.e., a bookending k-mer). Scenario A in
Figure 2 depicts when this assumption is correctly made. Moving left-to-right on a given
read, if a k-mer on the left is found to occur on the unitig depicted in black color in the figure
(referred to as the “black” unitig henceforth), an algorithm can then skip a distance given by
the length of the black unitig and jump to a k-mer to the right that also maps to the black
unitig and bookends it. Doing so, an algorithm can assume that all k-mers bookended by
these two queried k-mers map to the black unitig, avoid querying k-mers in-between, and
instead continue to query the next k-mer on the read (indicated in dashed lines in blue).

Jump and miss k-mer. In practice however, the implemented skipping heuristics are not
so simple. This is because, when skipping k-mers according to unitig lengths, the resulting
k-mer that an algorithm jumps to may not necessarily map to the unitig it expects. In
scenario B, an algorithm jumps to a k-mer on a read, expecting it to map to a black unitig,
but finds that it does not correspond to any indexed k-mer. Here, an algorithm can make
several choices, and in fact, current skipping heuristics make two distinct choices in this
scenario. It can ignore this missed k-mer and simply query the next k-mer after the position
that was jumped to (in blue). Or, it can take a more conservative approach and implement
a back-off scheme to look for another k-mer that maps to the black unitig. An algorithm
can back-off and jump a lesser distance, and such a back-off approach can happen once or
can be recursive or iterative until some termination condition is satisfied.

Jump and find k-mer in un-expected unitig. In scenario C, an algorithm that jumps to
a k-mer but finds that it maps to a different (red) unitig than expected. Here, we suggest
three choices an algorithm can make. Like in scenario B, an algorithm can back-off to find
another k-mer mapping to the black unitig or it can query the next k-mer after the jumped
position. Alternatively, it can take a new more aggressive approach and jump to a k-mer on
the read where it expects to find the end of an occurrence of the red unitig.

In this work, we have retrofit the pseudoalignment with skipping algorithms from Kallisto [6]1
and Alevin-fry [13]2 to make use of Fulgor, rather than the distinct indexes atop which
they were implemented in their original work. Using Fulgor, we compare their resulting
pseudoalignments, along with those from the full-intersection and threshold-union approaches,
in a simple simulated scenario in Section 5.4.

5 Results

In this section, we report experimental results to assess Fulgor’s construction time/space,
index size, and query speed. Throughout the section, we compare Fulgor to Themisto [2],
which has been shown to outperform other methods that build similarly capable indexes
(namely Bifrost [15] and Metagraph [17]) in terms of speed and space. We build Themisto
indexes using the fastest configuration, i.e., without sampling of k-mer colors in the SBWT
(build option -d1), as done by the authors in [2]. Not sampling k-mer colors yields slightly
larger indexes but makes Themisto faster to query. For our largest benchmarked reference
collection (150,000 genomes), potential space savings from sampling is not significant anyway

1 https://github.com/jermp/fulgor/blob/main/kallisto_psa/psa.cpp
2 https://github.com/jermp/fulgor/blob/main/piscem_psa/hit_searcher.cpp

https://github.com/jermp/fulgor/blob/main/kallisto_psa/psa.cpp
https://github.com/jermp/fulgor/blob/main/piscem_psa/hit_searcher.cpp
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Table 1 Summary statistics for the tested collections. The row “Integers in colors” reports the
total number of reference IDs that are required to encode all colors – i.e., the sum set sizes for all
colors,

∑
i
|Ci|.

Salmonella Gut Bacteria

Genomes 5,000 10,000 50,000 100,000 150,000 30,691

Distinct colors (×106) 2.69 4.24 13.92 19.36 23.61 227.80
Integers in colors (×109) 5.77 15.68 133.49 303.53 490.04 10.04
k-mers in dBG (×106) 104.69 239.88 806.23 1,018.69 1,194.44 13,936.86
Unitigs in dBG (×106) 4.95 8.24 30.64 41.16 49.60 566.39

because the space required to store distinct colors dominate the overall space. We also use
Themisto’s default color set representation (i.e., without Roaring bitmaps). For both Fulgor
and Themisto, we set the k-mer size to k = 31.

Datasets. We follow the experimental methodology of [2] and build Fulgor over subsets
of Salmonella enterica genomes (up to 150,000 genomes) from [5], to demonstrate Fulgor’s
effectiveness when indexing collections of similar reference sequences. We also consider a
heterogeneous collection of 30,691 genomes of bacterial species representative of the human
gut [14] (as also benchmarked in our previous work [11]). We report some summary statistics
for the indexed ccdBGs in Table 1.

Hardware and software. All experiments were run on a machine equipped with Intel Xeon
Platinum 8276L CPUs (clocked at 2.20GHz), 500 GB of RAM running Ubuntu 18.04.6 LTS
(GNU/Linux 4.15.0). Fulgor is available at https://github.com/jermp/fulgor. For the
experiments reported here we use v1.0.0 of the software, compiled with gcc 11.1.0. For
Themisto, we use the shipped compiled binaries (v3.1.1).

5.1 Construction time and space

Construction time and peak RAM usage is reported in Table 2 for the different datasets
evaluated. Both tools use GGCAT to build the ccdBG. However, Fulgor is 2 − 6× faster,
and typically consumes much less memory during construction. This is because Themisto
spends most of its time and memory building the color mapping. However, the analogous
component of Fulgor is just a bit vector, demarcating groups of unitigs with the same color,
that is built via a linear scan of the unitigs produced by GGCAT.

Figure 3 shows, instead, Fulgor’s construction time breakdown for some illustrative
datasets. We distinguish between three phases in the construction: (1) running GGCAT, (2)
compressing the colors and, (3) building SSHash. While GGCAT and color compression take
most of the construction time on the Salmonella pangenomes, building SSHash is the most
expensive step on the Gut Bacteria collection. This is consistent with the statistics reported
in Table 1. Here, there are far more integers to compress in the Salmonella collections whereas
the Gut Bacteria collection contains one order of magnitude more k-mers. This suggests that
one could achieve even faster construction for Fulgor if the colors are compressed in parallel
with the SSHash construction (currently, these two phases are sequential).
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Table 2 Total index construction time and GB of memory (max. RSS), as reported by /usr/
bin/time with option -v. The reported time includes the time taken by GGCAT to build the ccdBG
(using 48 processing threads) and the time to serialize the index on disk.

Genomes Fulgor Themisto

hh:mm GB hh:mm GB

Salmonella

5,000 00:04 12.91 00:11 12.97
10,000 00:09 23.60 00:25 23.58
50,000 01:13 43.76 02:32 96.00
100,000 02:56 73.54 06:25 202.42
150,000 04:36 136.94 10:00 323.10

Gut Bacteria 30,691 02:27 115.05 15:35 327.72

Figure 3 Construction time breakdown for Fulgor.

5.2 Index size

When indexing collections of Salmonella genomes, Fulgor is consistently ≈ 2× smaller than
Themisto as apparent from Table 3. For example, on the largest collection comprising 150,000
genomes, Fulgor takes 70.66GB whereas Themisto takes 133.63GB. This remarkable space
improvement is primarily due to the more effective color compression scheme adopted by
Fulgor. This leads to, for example, 48% less space to encode colors for the 150,000 collection
of Salmonella genomes. Looking at Table 4, we highlight that for all indexed Salmonella
reference collections, approximately 50% of all encoded integers in the distinct colors belong
to colors that are at least 90% dense. For such extremely dense colors, the complementary
encoding strategy described in Section 3.3 is very effective: only ≈ 0.2 bits/int (bpi) are
required to encode them in all benchmarked indexes. In fact, even for our largest collection
of 150,000 Salmonella genomes, encoding all integers in all colors requires only 1.120 bpi.

Unsurprisingly, Fulgor also uses less space than Themisto to support the ColorID operation.
We recall from Section 3.2 that Fulgor requires only 1 + o(1) bits per unitig by design. This
amounts to a negligible space usage compared to the overall index size. For example, while
Themisto requires 7.26GB to map k-mers to color IDs for 150,000 Salmonella genomes, our
strategy just takes 7.75 MB.

/usr/bin/time
/usr/bin/time
-v
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Table 3 Index space in GB, broken down by space required for indexing the k-mers in a dBG
(SSHash for Fulgor, and the SBWT for Themisto); and data structures required to encode colors and
map k-mers to colors.

Genomes Fulgor Themisto

dBG Colors Total dBG Colors Total

Salmonella

5,000 0.16 0.59 0.75 0.14 1.82 1.96
10,000 0.35 1.66 2.01 0.32 4.78 5.09
50,000 1.26 17.03 18.30 1.07 36.89 37.96
100,000 1.72 40.70 42.44 1.35 81.82 83.17
150,000 2.03 68.60 70.66 1.58 132.05 133.63

Gut Bacteria 30,691 21.23 15.45 36.77 18.33 121.08 139.41

When indexing a heterogeneous collection, e.g., the 30,691 bacterial genomes [14], with
many more unique k-mers, the space advantage Fulgor has over Themisto is even more
apparent. First, the overall size of Fulgor is 3.8× smaller (36.77GB versus 139.41GB). Second,
Fulgor’s near optimal approach of mapping unitigs to colors instead of k-mers to colors is
dramatically more efficient, requiring only 88MB compared to Themisto’s 91GB. Themisto,
by using the SBWT, organizes k-mers based on their colexicographical order and requires
⌈log2(M)⌉ bits per sampled k-mer to record the color IDs. Here, the SBWT must record
colors for each of the 13.9 billion distinct k-mers and their reverse complement. In contrast,
Fulgor uses SSHash that maintains k-mers in unitig order and requires only 1 + o(1) bits per
unitig to map all k-mers from the same unitig to a single color. Although not the default
behavior, Themisto can optionally sample k-mer colors to avoid storing one color ID per each
k-mer. Clearly, the sampling scheme reduces space usage at the expense of some overhead at
query time by requiring an implicit walk in the dBG. While this sampling strategy can be
quite effective when the underlying k-mer set induce long unitigs, allowing the sampling of
the terminal k-mers of a non-branching path [2], it is unlikely to be similarly effective in a
highly-branching and fragmented graph like the one underlying this heterogeneous dataset
where unitigs are short. On the contrary, our index does not have this issue by design and
can thus scale to more heterogenous collections using small space.

5.3 Query speed
To compare query speed, we benchmark Fulgor and Themisto using both low- and high-hit
rate read-sets, i.e., read-sets for which we have a low and high number of positive k-mers
respectively. Precisely, we use the files containing the first read of the following paired-
end libraries: SRR8966633 with 5.7 × 106 reads, SRR8012684 with 6.6 × 106 reads, and
ERR3214825 with 6.8 × 106 reads.

In Table 5 we report the result of the comparison using the full-intersection method
(Algorithm 1). We repeated the same experiment using the threshold-union method (Al-
gorithm 3) with parameter τ = 0.8 as this is the preferred query mode in Themisto. However,
we did not observe any appreciable difference compared to the full-intersection method in
terms of query speed.

3 https://www.ebi.ac.uk/ena/browser/view/SRR896663
4 https://www.ebi.ac.uk/ena/browser/view/SRR801268
5 https://www.ebi.ac.uk/ena/browser/view/ERR321482
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Table 4 Average bits/int (bpi) spent for representing colors whose density is (i × 10)% of N , for
i = 1, . . . , 10. The first two columns for each collection, “lists” and “ints”, report the percentage
of lists (i.e., colors) and integers (stored reference identifiers) that belong to all colors within a
given density. The last row, “Total bpi”, is comprehensive of the space spent for the integer lists
themselves and the space spent for the offsets delimiting the lists’ boundaries.

Density
Salmonella Gut Bacteria

N = 5,000 N = 10,000 N = 50,000 N = 100,000 N = 150,000 N = 30,691

lists ints bpi lists ints bpi lists ints bpi lists ints bpi lists ints bpi lists ints bpi

0–10% 38.88 2.00 4.66 46.15 1.81 4.64 70.96 2.62 6.00 76.52 3.14 6.16 79.23 3.27 6.32 99.99 99.99 12.05
10–20% 6.04 2.11 2.66 4.83 1.93 2.66 3.74 2.84 3.05 2.82 2.61 3.77 2.54 2.68 3.92 0.00 0.00 0.00
20–30% 4.70 2.69 2.86 4.44 2.93 2.81 2.69 3.50 3.24 2.32 3.66 3.41 2.09 3.76 3.46 0.00 0.00 0.00
30–40% 3.13 2.55 2.88 4.27 4.02 2.87 1.90 3.43 2.89 1.57 3.49 2.88 1.40 3.51 2.88 0.00 0.00 0.00
40–50% 4.05 4.25 2.23 3.32 4.04 2.22 1.81 4.25 2.22 1.44 4.14 2.23 1.29 4.19 2.23 0.00 0.00 0.00
50–60% 4.13 5.30 1.83 3.54 5.29 1.81 1.82 5.24 1.82 1.42 4.99 1.82 1.24 4.94 1.82 0.00 0.00 0.00
60–70% 3.98 6.07 1.54 4.24 7.44 1.54 2.04 6.94 1.53 1.59 6.61 1.54 1.40 6.59 1.54 0.00 0.00 0.00
70–80% 5.53 9.72 0.94 4.86 9.91 0.93 2.33 9.13 1.08 1.87 8.96 1.14 1.64 8.91 1.15 0.00 0.00 0.00
80–90% 5.80 11.52 0.47 3.71 8.57 0.47 3.03 13.43 0.56 2.49 13.65 0.63 2.09 12.95 0.66 0.00 0.00 0.00
90–100% 23.77 53.80 0.15 20.65 54.07 0.14 9.67 48.63 0.19 7.94 48.76 0.21 7.07 49.21 0.21 0.00 0.00 0.00

Total bpi 0.817 0.848 1.020 1.072 1.120 12.32

In a low-hit rate workload where a small proportion of reads map to the indexed references,
Fulgor is much faster than Themisto. In this scenario, we expect many queried k-mers to not
occur in the indexed references. When k-mers are absent from the index, no color needs to
be retrieved and only the k-mer dictionary is queried. Here, Fulgor is faster than Themisto
because its reliance on the fast streaming query capabilities of SSHash. It is worth noting here
that in any streaming setting where consecutive k-mers are queried, Fulgor can fully exploit
the monochromatic property of unitigs in ways which Themisto cannot. Queries to SSHash
have very good locality compared to the SBWT because adjacent k-mers in unitigs are stored
contiguously in memory. Further, streaming queries to SSHash can be very efficiently cached
and optimized. When looking up consecutive k-mers, SSHash can entirely avoid computing
its minimal perfect hash (a slow operation) and instead perform fast comparisons of k-mers
stored in cached positions pointing to adjacent addresses in memory.

In a high-hit rate workload, Fulgor also outperforms Themisto, but by a smaller margin,
since most of the time is now spent in performing the intersection between colors. It is
interesting to note that the workloads can be processed significantly faster (by both tools)
on the Gut Bacteria collection: this is a direct consequence of the fact that the lists being
intersected are much shorter on average for the Gut Bacteria compared to the Salmonella
collections. This is evident from Table 4: essentially all lists are just 10% dense, i.e., have
length at most ⌈30, 691/10⌉ < 3,070.

We also note that part of the slowdown seen for Themisto is due to the time spent in
loading the index from disk to RAM, which takes at least twice as Fulgor’s because of its
larger index size.

5.4 Comparison of pseudoalignment algorithms on simulated data
To analyze the accuracy of the underlying pseudoalignment algorithms, we perform additional
testing with read sets simulated using the Mason [16] simulator. To analyze how mapping
and hit rates affect query speed, we simulate a varying proportion of “positive” reads from
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Table 5 Total query time as elapsed time reported by /usr/bin/time, using 16 processing threads
for both indexes. The read-mapping output is written to /dev/null for this experiment. We also
report the mapping rate in percentage (fraction of mapped read over the total number of queried
reads). Results are relative to the full-intersection query mode. All reported timings are relative
to a second run of the experiment, when the index is loaded faster from the disk cache. For each
workload, we indicate the run accession number.

(a) low-hit, Salmonella, SRR896663

Genomes Mapping rate Fulgor Themisto

mm:ss mm:ss

5,000 1.27 00:09 00:32
10,000 13.86 00:10 00:36
50,000 32.61 00:25 01:05
100,000 34.09 00:45 01:39
150,000 34.01 01:06 05:02

(b) high-hit, Salmonella, SRR801268

Genomes Mapping rate Fulgor Themisto

mm:ss mm:ss

5,000 89.53 01:16 03:50
10,000 89.76 02:26 07:35
50,000 91.31 19:15 41:25
100,000 91.52 35:50 82:14
150,000 91.61 42:30 120:08

(c) low-hit, Gut Bacteria, SRR896663

Genomes Mapping rate Fulgor Themisto

mm:ss mm:ss

30,691 11.90 0:57 2:58

(d) high-hit, Gut Bacteria, ERR321482

Genomes Mapping rate Fulgor Themisto

mm:ss mm:ss

30,691 92.98 01:16 02:45

indexed reference sequences and generate “negative” reads from the human chromosome 19
from the CHM13 v2.0 human genome assembly [25]. We use Fulgor to compare the four
mapping algorithms described in Section 4.

From Table 6, we see that at various proportions of ground truth positive reads (simulated
reads deriving from indexed references), all mapping methods have a true positive rate (TPR),
i.e., total reads correctly mapped over the total ground truth positives, greater than 95%.
This high sensitivity for all four methods is to be expected since all methods simply check
for k-mer’s membership to references of origin and do not consider k-mer positions in
references. One main drawback of eliding positions, heuristically avoiding “locate” queries,
and entirely ignoring k-mers that are not present in the index, is also clear. All methods
incur approximately a 30% false positive rate (FPR), i.e., total reads spuriously mapped
over the total ground truth negatives. As is expected, the threshold-union method incurs a
slightly higher FPR compared to other methods (30% compared to 27% for other methods)
because of its less strict criteria only requiring references to be compatible with τ fraction of
mapped k-mers instead of all k-mers.

In these benchmarks, we find very little difference in terms of TPR and FPR between
the exhaustive methods and skipping heuristics. These results also gesture at one desirable
and one undesirable quality of these methods. First, skipping heuristics correctly assume
and successfully skip k-mers that likely occur on the same unitig and have the same color.
Likewise, they have the potential to be even more sensitive than the full-intersection method,
as they do not, in general, search for every k-mer in a query, and can thus avoid scenarios
where variation or sequencing errors in a query cause spurious matches to the index, shrinking
or eliminating the set of references appearing in the final color assigned to the query. In fact,
in a small-scale test, Alanko et al. [2] report that Kallisto’s skipping heuristic results in a
small but persistent increase of approximately 0.03% in the mapping rate. However, all four
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Table 6 Quality of pseudoalignment algorithms querying 100,000 simulated reads against 50,000
Salmonella genomes indexed with Fulgor. We vary the percentage of positive reads simulated from
indexed Salmonella genomes by diluting queried read sets with negative reads simulated from
a reference human transcriptome. We consider a mapped positive read (deriving from indexed
references) to be a true positive if the reference of origin is in the returned set of compatible references;
and a mapped negative read (deriving from human chromosome 19) to be a false positive. We denote
true and false positive rates (%) to be TPR and FPR, respectively. For the threshold-union method,
we use τ = 0.8.

% Positive Full-intersection Threshold-union Kallisto Alevin-fry

TPR FPR TPR FPR TPR FPR TPR FPR

90% 95.0 27.0 97.7 30.0 95.0 27.0 95.1 27.0
70% 95.1 27.0 97.7 30.0 95.1 27.0 95.1 27.0
25% 95.1 27.0 97.7 30.0 95.2 27.0 95.2 27.0
10% 95.5 27.0 97.8 30.0 95.5 27.0 95.5 27.0

of the pseudoalignment methods evaluated here suffer from a high FPR and low precision.
Better algorithms to lower FPR and improve precision without lowering sensitivity too much
should be investigated in future work. Such improvements may be possible by adding back
information about the reference positions where k-mers from the query match, incorporating
structural constraints [13] or other such restrictions atop the color intersection rule. Yet,
those approaches are more computationally involved, require the index to support locate
queries, and also substantially diverge from “pseudoalignment” as traditionally understood.
Regardless, we highlight here that Fulgor more easily enables implementing skipping and
unitig-based heuristics compared to other methods that do not explicitly store unitig sequences
and keep k-mers in unitig order. In fact, Fulgor implicitly maintains additional information
regarding the local structural consistency of k-mers. For example, with Fulgor, one can easily
check if consecutive k-mers are valid on an indexed unitig or check if consecutive unitigs on
a read have valid overlaps, in an attempt to reduce the FPR.

6 Conclusions and future work

We introduce Fulgor, a fast and compact index for the k-mers of a colored compacted de
Bruijn graph (ccdBG). Using, SSHash, an order-preserving k-mer dictionary, Fulgor fully
exploits the monochromatic property of unitigs in ccdBGs. Fulgor implements a very succinct
map from unitigs to colors, taking only 1 + o(1) bits per unitig. Further, Fulgor applies
an effective hybrid compression scheme to represent the set of distinct colors. Across all
benchmarked scenarios, Fulgor outperforms Themisto, the prior state-of-the-art in terms of
space and speed. There is still room for improvement in future work. We discuss some
promising directions below.

In terms of speed, we remark that when processing a high-hit workload, the overall
runtime is dominated by the time required to intersect the colors. As explained in Section 4.1,
Fulgor currently implements a generic intersection algorithm that only requires two primitive
operations, namely Next and NextGEQ (see also Appendix A). But this is not the only
paradigm available for efficient intersection. We could, for example, try approaches that
exploit different indexing paradigms, such as Roaring [7] and Slicing [28], that are explicitly
designed for fast intersections. These alternative approaches may be significantly faster
especially on the high-hit workloads.
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Another possible optimization is to implement a caching scheme for frequently occurring
and/or recently intersected colors. Caching the uncompressed or intersection-optimized
versions of frequently occurring color sets, or previously computed intersections, could speed
up query processing substantially when many reads map to the same set of colors.

In terms of space, one property that Fulgor does not yet exploit is the fact that many
unitigs in the ccdBG share similar colors – i.e., co-occur in many reference sequences. This
is so because unitigs arising from conserved genomic sequences will share similar occurrence
patterns. In a related line of research, [3] developed a method that efficiently compresses
distinct, but highly-correlated colors, through a variant of referential encoding. Specifically,
they compute a minimum spanning tree (MST) on a subgraph of the color graph induced by
the ccdBG, and encode a color by recording its differences with respect to its parent in the
MST. This vastly reduces the space required to encode the color set when many similar colors
exist, as we would expect in a pangenome, and fast query speed can be retained through
color caching. Another related approach would be to resort to clustering similar colors and
encoding all colors within a cluster with respect to a cluster representative color [33]. Likewise,
although not specifically designed to compress colors, Metagraph and its variants can exploit
similarity between colors using a general compression scheme that records differences in
stored metadata (in this case, the colors) between adjacent k-mers [17]. We note that, since
the colored k-mer indexing problem is modular (Section 2.2), novel relational compression
techniques for the set of distinct colors can be developed and optimized independently of the
other components of the index.

Finally, in our experiments with simulated data analyzing the quality of pseudoalignment
algorithms from Section 5.4, we find higher than desirable false positive rates. This suggests
that, at least for the metagenomic and pangenomic reference collections where many references
share similar k-mer content, better read-mapping heuristics and algorithms that improve
specificity (i.e., reduce the spurious mapping of reads not arising from indexed references)
without trading-off too much recall are still sorely needed. Here, it will be desirable to search
for methods that can improve specificity without the need to retain reference positions or
issue locate queries for all k-mers. We suggest that there may be several promising directions.
For example, one may consider enforcing local structural consistency among matched k-mers
to potentially reduce spurious mapping. Likewise, one may consider filtering repetitive and
low-complexity k-mers from contributing to the final pseudoalignment result. Finally, by
analogy to BLAST [4], one may consider evaluating the likelihood that a pseudoalignment
result is spurious by comparing the matching rate against against some null or background
expectation to account for the fact that, in very large reference databases, a very small
number of (potentially correlated) k-mers may be insufficient evidence to consider a query as
compatible with a subset of references.
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A Pseudocode for the algorithms from Section 4.1

Algorithm 1 The Full-Intersection algorithm for a query sequence Q. The algorithm uses the
three index components: D (the dictionary, mapping k-mers to unitigs), B (the bit-vector mapping
from unitigs to colors), and L (the inverted index storing the compressed colors). As discussed in
Section 3.1, the dictionary D can stream through the query sequence Q and collect unitig ids. The
inverted index L, instead, returns an iterator over a color set given the color id c as Iterator(c).

1: function Full-Intersection(Q)
2: if |Q| < k then return ∅
3: U = D.Stream-Through(Q) ▷ U is the set of unitig ids.
4: Deduplicate(U)
5: C = ∅ ▷ C is the set of color ids.
6: for u ∈ U do
7: c = B.Color-ID(u)
8: C.Add(c)
9: Deduplicate(C)

10: I = ∅ ▷ I is the set of iterators over colors.
11: for c ∈ C do
12: i = L.Iterator(c)
13: I.Add(i)
14: R = Intersect(I) ▷ R is the result set of reference ids.
15: return R

Algorithm 2 The Intersect algorithm for a set of iterators I = {i1, . . . , ip}. An iterator object
supports three primitive operations: Value(), returning the value currently pointed to by the
iterator; Next(), returning the value immediately after the one currently pointed to by the iterator;
Next-GEQ(x), returning the smallest value that is larger-than or equal-to x. We assume that if i

is an iterator over color Cj then calling i.Next() for more than |Cj | times will return the (invalid)
reference id N + 1.

1: function Intersect(I)
2: if I = ∅ then return ∅
3: R = ∅
4: candidate = i1.Value()
5: j = 2
6: while candidate ≤ N do
7: for ; j ≤ p; j = j + 1 do
8: ij .NextGEQ(candidate)
9: v = ij .Value()

10: if v ̸= candidate then
11: candidate = v
12: j = 1
13: break
14: if j = p + 1 then
15: R.Add(candidate)
16: i1.Next()
17: candidate = i1.Value()
18: j = 2
19: return R
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Algorithm 3 The Threshold-Union algorithm for a query sequence Q. Differently from the
Full-Intersection method (Algorithm 1), here U , C, and I, are sets of pairs. The first component
of a pair is a unitig id, a color id, or an iterator, respectively if the pair is in U , C, or U . The second
component, read by calling the method Score() in the pseudocode, is the number of positive k-mers
that have a given unitig id or have a given color. The score of iterator i is the score of the color id c

if i = L.Iterator(c). Clearly, when deduplicating the sets U and C, the scores of equal unitig or
color ids must be summed.

1: function Threshold-Union(Q, τ )
2: if |Q| < k then return ∅
3: U = D.Stream-Through(Q) ▷ U is the set of unitig ids.
4: |K(Q)| =

∑
u∈U

u.Score() ▷ |K(Q)| is the number of positive hits.
5: Deduplicate-And-Sum-Scores(U)
6: C = ∅ ▷ C is the set of color class ids.
7: for u ∈ U do
8: c = B.Color-ID(u)
9: C.Add(c)

10: Deduplicate-And-Sum-Scores(C)
11: I = ∅ ▷ I is the set of iterators over color sets.
12: for c ∈ C do
13: i = L.Iterator(c)
14: I.Add(i)
15: t = |K(Q)| × τ ▷ A reference is returned iff it contains at least t k-mers.
16: R = Union(I, t) ▷ R is the result set of reference ids.
17: return R

Algorithm 4 The Union algorithm for a set of iterators I = {i1, . . . , ip} and minimum score t.
1: function Union(I, t)
2: if I = ∅ then return ∅
3: R = ∅
4: candidate = min{i1.Value(), . . . , ip.Value()}
5: while candidate ≤ N do
6: min = N + 1
7: score = 0
8: for j = 1; j ≤ p; j = j + 1 do
9: if ij .Value() = candidate then

10: score = score + ij .Score()
11: ij .Next()
12: if ij .Value() < min then min = ij .Value()
13: if score ≥ t then R.Add(candidate)
14: candidate = min
15: return R
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Abstract

Motivation. Computational RNA secondary structure prediction by free energy minimization
is indispensable for analyzing structural RNAs and their interactions. These methods find the
structure with the minimum free energy (MFE) among exponentially many possible structures and
have a restrictive time and space complexity (O(n3) time and O(n2) space for pseudoknot-free
structures) for longer RNA sequences. Furthermore, accurate free energy calculations, including
dangles contributions can be difficult and costly to implement, particularly when optimizing for time
and space requirements.

Results. Here we introduce a fast and efficient sparsified MFE pseudoknot-free structure predic-
tion algorithm, SparseRNAFolD, that utilizes an accurate energy model that accounts for dangle
contributions. While the sparsification technique was previously employed to improve the time and
space complexity of a pseudoknot-free structure prediction method with a realistic energy model,
SparseMFEFold, it was not extended to include dangle contributions due to the complexity of
computation. This may come at the cost of prediction accuracy. In this work, we compare three
different sparsified implementations for dangles contributions and provide pros and cons of each
method. As well, we compare our algorithm to LinearFold, a linear time and space algorithm,
where we find that in practice, SparseRNAFolD has lower memory consumption across all lengths of
sequence and a faster time for lengths up to 1000 bases.

Conclusion. Our SparseRNAFolD algorithm is an MFE-based algorithm that guarantees optimality
of result and employs the most general energy model, including dangle contributions. We provide a
basis for applying dangles to sparsified recursion in a pseudoknot-free model that has the ability to
be extended to pseudoknots.
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(a) Pseudoknot-free.
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(b) Pseudoknotted.

Figure 1 An RNA structure is shown with dangles highlighted. (a) In red, we have the dangles
on the bands in the multi-loop. In blue, we have the dangle on the closing bases of the multi-loop.
In gray, we have dangles on the outer end of the RNA. (b) We include purple to show dangles
occurring in a pseudoknot. Dangles in pseudoknots can be handled differently depending on the
program.

1 Introduction

Non-coding RNAs play crucial roles in the cell, such as in transcription [3], translation [3, 16],
splicing [23, 32], catalysis [3, 36] and regulating gene expression [3, 12, 18, 23]. Since RNA’s
function heavily relies on its molecular structure, facilitated by hydrogen bonding both within
and between molecules, predicting and comprehending the structure of RNA is a dynamic
area of research. It is reasonable to assume (without further knowledge) that RNA forms the
structure with the lowest free energy [19, 24]. This is the motivation for algorithms that aim
to predict the RNA minimum free energy (MFE) structure from the pool of exponentially
many structures it can form. Such methods employ a set of energy parameters for various
loop types, called an energy model; to find the free energy of a structure, they add up the
energy of its loops. While prediction accuracy of these methods depends on the quality of
their energy models, these methods are applicable to novel RNAs with unknown families
or functions and for the prediction of the structure of interacting molecules. The large
time and space complexity of MFE-based methods (O(n3) time and O(n2) space where
n is the length of the RNA), however, restricted their applications to small RNAs. The
sparsification technique was recently utilized in existing MFE-based algorithms to reduce
their time and/or space complexity [34, 29, 22, 2, 4, 35, 15, 14] by removing redundant cases
in the complexity-limiting steps of the dynamic programming algorithms. While the majority
of these methods focused on simple energy models, some expanded sparsification techniques
to more realistic energy models [35, 15, 14]. To the best of our knowledge, no existing method
has yet incorporated dangles energy contributions into a sparsified prediction algorithm.
Dangle energies refer to the free energy contributions of unpaired nucleotides that occur at
the end of a stem-loop structure.

We show in Figure 1 the location of dangles on a pseudoknot-free structure (see Figure 1a)
and a pseudoknotted structure (see Figure 1b). The complexity of dangles in a pseudoknot
further increases as dangles have to be tracked for both bands within the pseudoknot.

Neglecting dangle energies in the prediction of RNA structure stability can lead to
inaccuracies. For instance, a stem-loop structure that includes an unpaired nucleotide at
the end may appear less stable than its actual stability if the dangle energy contribution
is ignored. Conversely, a stem-loop structure with an unpaired nucleotide that interacts
positively with another one may appear more stable than its actual stability if the dangle
energy contribution is not taken into account.

Dangles, in some form, are implemented in the majority of MFE pseudoknot-free secondary
structure prediction algorithms [9, 8]. RNAFold [9, 11, 21, 6, 17, 41, 7] is an O(n3) time
and O(n2) space algorithm which implements the dangle 0 (“no dangle”), dangle 2 (“always
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dangle”), and dangle 1 (“exclusive dangle”) model (defined in Section 2.1). It also utilizes a
dangle model that implements coaxial stacking – a type of stacking that gives a bonus to
stacks in the vicinity of each other. LinearFold [8], a sparsified O(n) space heuristic algorithm
has implemented the “no dangle” and “always dangle” model but has not implemented an
“exclusive dangle” model. Fold from the RNAstructure library [27] is an O(n3) time and
O(n2) space algorithm which implements an “exclusive dangle” model with coaxial stacking.
MFold [40, 33, 39] is an O(n3) time and O(n2) space algorithm which has implemented an
“exclusive dangle” model with coaxial stacking.

Handling dangles in pseudoknot prediction algorithms are less developed. Pknots [28], an
O(n6) time and O(n4) space pseudoknot prediction algorithm has implemented an “exclusive
dangle” model that also includes coaxial stacking. Within Pknots, a set of parameters
is defined for non-pseudoknot and pseudoknot dangles. The pseudoknot parameters are
estimated and rely on an estimated weighting parameter. Hotknots [26], a heuristic algorithm,
uses the DP09 parameters, which include pseudoknotted parameters from Dirks and Pierce [5]
and tuned by Andronescu et al. [26]; however, the energies for the pseudoknotted dangles
are the same as those for pseudoknot-free dangles, and there is no weighting parameter.

Contributions. In [35], we already discussed the sparsification of RNA secondary structure
prediction by minimizing the energy in the Turner energy model. However, in this former
work, we did not yet consider the energy contributions due to the interactions of base pairs at
helix ends with dangling bases (i.e., “dangling ends”). Here, we identify the correct handling
of dangling end energies in the context of sparsification as a non-trivial problem, characterize
the issues, and present solutions.

For this purpose, we first state precisely how dangle energies are handled by energy
minimization algorithms; to the best of our knowledge, this is elaborated here for the first
time. Consequently, we devise novel MFE prediction algorithms that include dangling energy
contributions and use sparsification techniques to significantly improve the time and space
complexity of MFE prediction.

Like the algorithm in [35], our efficient SparseRNAFolD algorithm keeps the additional
information to a minimum using garbage collection. In total, we study three different possible
implementations and compare their properties, which make them suitable for different
application scenarios. Finally, while we study the case of non-crossing structure prediction,
we discuss extensions to the more complex cases of pseudoknot and RNA–RNA interaction
prediction (such extensions being the main motivation for this work in the first place).

2 Preliminaries: sparsification without dangling ends

We restate the preliminaries and main results from our former work on sparsification of free
energy minimization without dangling ends [35].

We represent an RNA sequence of length n as a sequence S = S1, . . . , Sn over the
alphabet {A, C, G, U}; Si,j denotes the subsequence Si, . . . , Sj . A base pair of S is an
ordered pair i.j with 1 ≤ i < j ≤ n, such that ith and jth bases of S are complementary (i.e.
{Si, Sj} is one of {A, U}, {C, G}, or {G, U}). A secondary structure R for S is a set of
base pairs with at most one pair per base (i.e. for all i.j, i′.j′ ∈ R: {i, j} ∩ {i′, j′} = ∅). Base
pairs of secondary structure R partition the unpaired bases of sequence S into loops [25]
(i.e., hairpin loop, interior loop and multiloop). Hairpin loops have a minimum length of m;
consequently, j − i > m for all base pairs i.j of R. Two base pairs i.j and i′.j′ cross each
other iff i < i′ < j < j′ or i′ < i < j′ < j. A secondary structure R is pseudoknot-free if it
does not contain crossing base pairs.
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The unsparsified, original algorithm for energy minimization over pseudoknot-free second-
ary structures was stated by Zuker and Stiegler [41]. It is a dynamic programming algorithm
that, given an RNA sequence S of length n, recursively calculates the minimum free energies
(MFEs) for subsequences Si,j as W (i, j) (stored in a dynamic programming matrix). Finally,
W (1, n) is the optimal free energy. We state this algorithm in a sparsification-friendly form
following [35]. As usual, the algorithm is described by a set of recursion equations (for a
minimum hairpin loop size of m and a maximum interior loop size of M). For 1 ≤ i < j ≤ n,
i < j − m:

W (i, j) = min{ W p(i, j), V (i, j) } (1)
W p(i, j) = min{ W (i, j − 1), min

i<k<j
W (i, k − 1) + W (k, j) } (2)

V (i, j) = min{H(i, j); min
i<p<q<j

p−i+j−q−2≤M

I(i, j; p, q) + V (p, q); WM2(i + 1, j − 1) + a} (3)

WM(i, j) = min{ WMp(i, j), V (i, j) + b } (4)
WMp(i, j) = min{ WM(i + 1, j) + c, WM(i, j − 1) + c, WM2(i, j) } (5)
WM2(i, j) = min

i<k<j
WM(i, k − 1) + WM(k, j). (6)

Here, a, b, c are multi-loop initialization penalty, branch penalty, and unpaired penalty in
a multi-loop, respectively. I(i, j; p, q) refers to an interior loop between base pairs i.j and
p.q. The initialization cases are W (i, i) = 0; V (i, j) = WM(i, j) = ∞ for all j − i ≤ m and
WM2 = ∞ for all j − i ≤ 2m + 3.

In these recursions, all function values (like W (i, j) or W p(i, j)) denote minimum free
energies over certain classes of structures of subsequences Si,j . The classical Zuker/Stiegler
matrices W , V and WM are defined as: W yields the MFEs over general structures; V , over
closed structures, which contain the base pair i.j; WM , over structures that are part of a
multi-loop and contain at least one base pair.

Since sparsification is based on the idea that certain optimal structures can be decomposed
into two optimal parts, while others (namely closed structures) are non-decomposable, we
single out the partitioning cases and introduce additional function symbols W p, WMp, and
WM2.

Sparsification without dangling ends. This allows us to cleanly explain the key idea of
sparsification and consequently formalize it: to minimize over the energies of general structures
in W (i, j) – note that there is another minimization inside of multi-loops that is handled
analogously – the algorithm considers all closed structures V (i, j) and all others W p(i, j).
Optimal structures in the latter class can be decomposed into two optimal structures of
some prefix Si,k−1 and suffix Sk,j of the subsequence. Classically, the minimum is therefore
obtained by minimizing over all ways to split the subsequence. Sparsification saves time and
space since it is sufficient to consider only the splits where the optimum of the suffix Sk,j

is not further decomposable (formally, where W (k, j) < W p(k, j)). Briefly (for more detail,
see [35] or [34]), this is sufficient since otherwise there is a k′ to optimally split the suffix
further into Sk,k′−1 and Sk′,j . The split of Si,j at k cannot be better than the split at k′

and therefore does not have to be considered in the minimization; thus, it can be restricted
to a set of candidates. This is argued by the triangle inequality for W (which directly
follows from the definition of W as minimum):

W (i, j) ≤ W (i, k − 1) + W (k, j) for all 1 ≤ i < k ≤ j ≤ n.
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Consequently, sparsification improves the computation of W p, WMp and WM2. The
corresponding sparsified version are

Ŵ p(i, j) = min{ W (i, j − 1); min
[k,j] is candidate,k>i

W (i, k − 1) + V (k, j) }

ŴM
p
(i, j) = min{ WM(i, j − 1) + c; min

[k,j] is candidate,k>i
c · (k − i) + V (k, j) ; WM2(i, j)}

ŴM2(i, j) = min{ WM2(i, j − 1) + c; min
[k,j] is candidate,k>i

WM(i, k − 1) + V (k, j) }

where candidates [k, j] correspond to the not optimally decomposable subsequences Sk,j

(in either situation: general structures or structures inside of multi-loops), i.e. [i, j] is a
candidate iff V (i, j) < Ŵ p(i, j) or V (i, j) + b < ŴM

p
(i, j).

Time and space complexity of sparsified energy minimization. Will and Jabbari showed
that following the above algorithm, W (1, n) can be calculated in O(n2 + nZ) time, where
Z is the total number of candidates. While the MFE structure in the Zuker and Stiegler
algorithm can be trivially reconstructed following a traceback procedure, this is not the case
if sparsification is used for improving time and space as in the SparseMFEFold algorithm
(and our novel algorithms). To improve the space complexity, sparsification avoids storing
all entries of the energy matrix. The idea is to store the candidates and as few additional
matrix entries as possible. A specific challenge is posed by the decomposition of interior
loops (the single most significant major complication over base pair maximization, see [2]).
For this reason, Will and Jabbari introduced trace arrows for cases, where the trace cannot
be recomputed efficiently during the traceback procedure; they discussed several space
optimization techniques, such as avoiding trace arrows by rewriting the MFE recursions,
and removing trace arrows as soon as they become obsolete. Due to such techniques,
SparseMFEFold requires only linear space in addition to the space for candidates and trace
arrows; its space complexity is best described as O(n + T + Z), where T is the maximum
number of trace arrows.

2.1 Dangles
Recall that sparsification was discussed before (e.g., in SparseMFEFold) only for the simplest
and least accurate variant of the Turner model, namely the one without dangling end
contributions. Before we improve this situation, let’s look in more detail at dangling ends
and different common ways to handle them. Specifically, we discuss different dangle models
“no dangle” (model 0), “exclusive dangle” (model 1), and “always dangle” (model 2) as
implemented by RNAfold of the Vienna RNA package (and available via respective command
line options -d0, -d1, and -d2).

Dangling end contributions occur only at the ends of stems (either in multiloops or
externally) due to stacking interaction between the closing base pair of the stem and one
or both immediately adjacent unpaired bases. In contrast, dangling end terms are not
considered within (interior loops of) stems by the energy model.

We present modified DP recursions in order to reflect precisely where and how dangling
ends are taken into account. Therefore, in preparation, let’s replace V in the Equations (1)
and (4) of the free energy minimization recursions of Section 2 by a new function V d. The
dangle models differ in the exact definition of V d.

W (i, j) = min{ W p(i, j), V d(i, j) } (1’)
WM(i, j) = min{ WMp(i, j), V d(i, j) + b } (4’)
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Note that in the energy model, dangling ends can also occur at the inner ends of helices
that close a multi-loop. These dangles can be handled directly in the recurrence of V (i, j);
specifically, in the subcase where i.j closes a multi-loop.

No dangles. In the simplest model “no dangle”, dangling ends are ignored. We achieve
this by defining

V d(i, j) := V (i, j) (no dangle)

While easy to implement, it is clearly wrong to ignore dangling end contributions, and this
has a significant negative effect on the prediction accuracy compared to the other dangle
models [30, 38, 37].

Always dangle. A second relatively simple way is to apply a 53’ dangle energy at both ends
of a stem (both 5’ and 3’ ends), assuming that stem ends always dangle with their adjacent
bases. As a strong simplification, in this model, one disregards whether the bases are paired
and/or dangle with a different stem (either case would actually make them unavailable for
dangling).

This dangle model allows the dangling ends to have a thermodynamic influence while
keeping the model easy to implement as neither the conflicting adjacent nucleotides nor the
energies of single dangle have to be tracked; it only requires knowledge of the bases on the 3’
and 5’ sides of a base pair. Formally, we implement V d as

V d(i, j) := V (i, j) + dangle53(i, j) (always dangle)

Moreover, we add the appropriate dangle contribution when closing a multi-loop in Eq. (3)
in the last case of the V -recurrence of Eq. (3). The term WM2(i + 1, j − 1) + a is rewritten to

WM2(i + 1, j − 1) + a + dangle53(i + 1, j − 1) (always dangle, ML closing)

Exclusive dangling. The most complex but general secondary structure dangle model,
“exclusive dangle” considers both single and double unpaired nucleotides adjacent to a stem.
Furthermore, the model does not allow shared dangling ends i.e. no base can be used
simultaneously in two dangles (in other words, adjacent unpaired bases dangle exclusively
with a single stem end). As the restriction requires tracking of unpaired bases, V (i, j) places
the possible unpaired bases at i and j and looks at the adjacent V energies. As this requires
knowledge of energies adjacent to the current bases being looked at, this inherently causes
difficulty in sparsification.

V d(i, j) := min


V (i, j)
V (i + 1, j) + dangle5(i)
V (i, j − 1) + dangle3(j)
V (i + 1, j − 1) + dangle53(i, j)

(exclusive dangle)

Moreover, we consider dangles at the closing of a multi-loop. In this model, the case
WM2(i + 1, j − 1) + a in the minimization of Eq. (3) is replaced by (the minimum of) four
different cases:

min


WM2(i + 1, j − 1) + a

WM2(i + 2, j − 1) + a + dangle3(i)
WM2(i + 1, j − 2) + a + dangle5(j)
WM2(i + 2, j − 2) + a + dangle53(i, j)

(exclusive dangle, ML closing)
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2.2 Space-efficient sparsification with exclusive dangles is non-trivial
We approach our main motivation for this work, which is to study and solve the issues of
sparsification in the exclusive dangle model (dangle model 1). Let’s thus start by applying
the idea of sparsification (Section 2) straightforwardly to the Recursion (2) (where W and
V d are defined for exclusive dangles).
We quickly come up with the equation:

Ŵ p(i, j) = min{ W (i, j − 1); min
[k,j] is ed-candidate,k>i

W (i, k − 1) + V d(k, j) },

but we would still have to define ed-candidate (exclusive dangle candidate) to make this work.
We could define: [i,j] is an ed-candidate iff V d(i, j) < Ŵ p(i, j) , where the correctness of
sparsification holds to a sparsification-typical triangle inequality argument (Section 2).

Expanding V d shows that this is not the only possible path to sparsifying the recursion.
We could consider

Ŵ p(i, j) = min



W (i, j − 1)
min[k,j] is ed0-candidate,k>i W (i, k − 1) + V (i, j)
min[k,j] is ed5-candidate,k>i W (i, k − 1) + V (i + 1, j) + dangle5(i)
min[k,j] is ed3-candidate,k>i W (i, k − 1) + V (i, j − 1) + dangle3(j)
min[k,j] is ed53-candidate,k>i W (i, k − 1) + V (i + 1, j − 1) + dangle53(i, j)

with different sets of candidates for all four cases. However, storing all these candidate sets
(recall that there is even a second recursion that needs to be sparsified) is easily prone to
compromising any space benefits due to sparsification in practice.

The transfer of the techniques from [35] brings even more problems, since due to such
definitions, candidates [i,j] do not necessarily correspond to subsequences that have closed
optimal structures. Will and Jabbari strongly exploited this fact for their strong space
savings.

Even considering our definition of an ed-candidate, we still run into the challenge of to
tracing back to the corresponding base pair. With just the dangle energy, this poses issues
as an ed-candidate can be one of four cases.

▶ Lemma 1. In the exclusive dangle model, storing only the energy of each ed-candidate is
not sufficient to correctly trace back from the candidate.

Proof. Concretely, for the loop-based Turner 2004 energy model [20]) with exclusive dangles,
consider the following RNA sequence S of length 12 with its MFE structure:

UGGGAAAACCCC
.(((....))).

In the calculation of W (1, 12), the recurrences unfold to W (1, 12) = W (1, 1) + V d(2, 12) =
W (1, 1) + V (2, 11) + dangle3(12) = · · · = −2.9 kcal/mol, i.e. it is optimal to assume dangling
of base pair (2, 11) to the right.

In a non time- and space-sparsified algorithm, recomputing V d from V adjacent energies
would be trivial. However, due to space sparsification, the values of V are generally unavailable
in the trace-back phase. In the constructed example, recomputation would require us to
know V (2, 12), V (2, 11), V (3, 12), and V (3, 11). Thus, under the assumption of the lemma,
the optimal dangling cannot be efficiently recomputed for a candidate like [2,12]. ◀

WABI 2023



19:8 SparseRNAFolD

In our preceding work SparseMFEFold [35], trace arrows were introduced to trace back
to non-candidate values necessary to the structure within the interior loop case: V il-cand(i, j).
Trace arrows that point to candidates are not stored as they can be avoided by minimizing
over candidates as seen in Equation 7.

V il-cand(i, j) = min
i<p<q<j

p−i+j−q−2≤M
[p, q] is candidate

I(i, j; p, q) + V (p, q). (7)

Consequently, finding the inner base pair of a loop through a candidate relies on the energy
saved being V (p, q). However, as shown in Eq. (exclusive dangle, ML closing), the dangle
energy could be V (p, q), V (p+1, q), V (p, q−1), or V (p+1, q−1). Replacing the stored energy
within a candidate with V d may conflict with the interior loop calculation. Recomputation
of the V values required for Vd would negate the sparsification benefit. In summary, there is
no easy or direct way to save the V energy required for the interior loop as well as the V d

energy required for a multi-loop or external loop within the current candidate structure.

▶ Lemma 2. The minimization over inner base pairs in the recursion of V cannot be
restricted to candidates in the same way as in SparseMFEFold.

Proof. Again consider the loop-based Turner 2004 energy model. There is a sequence S and
1 ≤ i < j ≤ n, such that V d(p, q) < V (p, q), but there is no way to trace back to p and q

from i and j, namely, consider the RNA sequence S of length 19 with its MFE structure:

GGGAGGGAAAACCCCACCC
(((.(((.....))).)))

The optimal recursion case of V (3, 17) forms the interior loop closed by 3.17 with inner base
pair 5.15, because V (5, 15) = −2.4 kcal/mol and V(3,17) = I(3, 17; 5, 15) + V (5, 15) = −1.5
kcal/mol.

The space optimization of SparseMFEFold removes trace arrows to candidates since the
trace-back to candidates can be reconstructed based on candidate energies (compare Eq. (7).

In the way of SparseMFEFold, we would not store a trace arrow pointing to 5.15 from
[3, 17], since [5, 15] is a candidate. However, without a trace arrow, we would not reconstruct
the correct trace. This happens, since the optimal structure in the subsequence 5..15
GGGAAAACCCC would be (((....))). due to the 3’ dangle (V d(5, 15) = −2.9 kcal/mol).
Consequently, tracing back the optimal path from V d(5, 15) wrongly introduces a base pair
at 5.14. ◀

3 SparseRNAFolD

SparseRNAFolD combines the power of sparsification and a general energy model including
dangle energies to achieve a fast and highly accurate RNA pseudoknot-free secondary structure
prediction. To this end, we started with the sparsified dynamic programming recurrences of
SparseMFEFold (which implements the “no dangles” model), rewriting and revising them to
accommodate various dangle energies.

3.1 “always dangle” model
Recall that “always dangle” model considers both the 5’ and 3’ ends of a branch of a multi-
loop or external loop for dangle contributions. The addition of this model is trivial, with no
change necessary to the recurrences of the SparseMFEFold. Note that, as mentioned earlier,
this model ignores overlapping cases and may overcount the contributions of dangles.
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3.2 “exclusive dangle” model
As mentioned in Section 2.2, accounting for the “exclusive dangle” model is non-trivial when
dealing with candidates, as ed-candidates do not hold enough information to identify the
direction of dangles. To alleviate this problem, we provide three different strategies, as
described below. Each strategy has its pros and cons and should be selected based on the
application.

In order to handle the changes for exclusive dangles, we extend the candidate data
structure. A candidate base pair, [i, j] as implemented in SparseMFEFold, holds i, the start
position, and the energy V (i, j) as a tuple (i, V (i, j)) and is stored at the jth index of the
candidate list. Our extensions to candidate structures involves including the energy values
for W and WM in the candidate tuples as (i, V (i, j), W (i, j), WM(i, j)). The modification
reflects the need to store more information about the dangles positions and directions.

Strategy 1: Trace Arrow implementation. As the first strategy to trace an ed-candidate to
its position, we used modified trace arrows. We refer to this strategy as SparseRNAFolD-
Trace.

Recall that in SparseMFEFold, a trace arrow structures were introduced to identify
energy matrix entries that are necessary for calculating the energy of internal loops but
are not kept as candidates. Here, we define ed-trace-arrows to hold information about
dangle positions to aid with the traceback procedure from ed-candidates. In particular, in
the sparse fold reconstruction procedure of SparseRNAFolD, an ed-trace-arrow is checked for
a chosen ed-candidate within W , WM , and WM2 to adjust the energy and position of the
base pair as required. The drawback of this strategy comes from the innate inefficiencies of
the trace arrows, meaning an increase in space usage. Recall that within SparseMFEFold,
we used strategies such as garbage collection and trace arrow avoidance to save space. These
strategies are not, however, possible for SparseRNAFolD-Trace, as an ed-candidate cannot
be excluded from the optimal MFE path, and an ed-trace-arrow is therefore required for
every ed-candidate.

Bit encoding. Within the second and third strategies, as explained next, we employed bit
encoding and bit decoding to store the information about the dangle within the energy values
to reduce space usage. Currently, energy values are stored as 32-bits int data type. We note
that the maximum expected bit usage for the energy value of an RNA sequence of up to
20000 bases is about 13 bits. We employed a bit shift to store the dangle type in the first
two bits of the V entries, referred to as Venc, and represented in eq. 8.

Venc = (V ≪ 2) | dangle (8)

Bit decoding technique was used to retrieve the energy value and type/direction of dangle
contributions. Bit decoding was done in two steps. Shifting the encoded energy, Venc, two
bits forward gave back the energy, V (see eq. 9).

V = Venc ≫ 2 (9)

The dangle type is found in the first two bits; no dangle is represented with a “00” in bits; a
5’ dangle with a “01”; a 3’ dangle with a “10”; and a 53’ dangle with a “11”. The dangle type
is decoded using a bit-wise AND with “11” to only keep the first two bits of the encoded
energy, as represented in Eq. 10.

dangle = Venc && 11 (10)
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Strategy 2: Bit encoding with candidate extension. As the second strategy, we used bit
encoding within the W and WM entries of the ed-candidate data structure. We refer to this
strategy as SparseRNAFolD-standard. This implementation of bit encoding was utilized
in W and WM entries, as other loop types do not deal with dangles.

Strategy 3: Bit encoding with altered candidate. As the third strategy, we further
optimize for space by reducing the candidate size. To reduce candidate size, we stored energy
values in ed-candidates in W and WM as V d minus the dangle energy. We refer to this
strategy as SparseRNAFolD-Triplet. This strategy allows for the correct identification of
dangle types regardless of energy parameters used. Note that currently, in the Turner 2004
energy model, the parameter values for 53’ dangle for an external loop and multi-loop are
the same. These values may be further estimated and revised in future energy models. The
extra calculations to retrieve the V d value ensure the accuracy of the result in the event of
such a change.

3.3 Compared methods
To evaluate the performance of our SparseRNAFolD, we compared it to two of the best-
performing methods for prediction of pseudoknot-free RNA secondary structure, namely
RNAFold [9] and LinearFold [8].

3.3.1 RNAFold
RNAFold is part of the Vienna RNA package [9]. As discussed in Section 2.1, RNAfold is an
O(n3) time and O(n2) space algorithm. It takes an RNA sequence as input and provides the
MFE structure as output. RNAFold is well-maintained and highly optimized and is used here
as a benchmark for a fast implementation of the Zuker and Steigler-type MFE algorithm.

3.3.2 LinearFold
LinearFold [8] is a pseudoknot-free RNA secondary structure prediction algorithm that uses
heuristic techniques to run in linear time and space. As the main goal of sparsification is to
speed up the time and space complexity of MFE prediction, we set out to investigate how
our SparseRNAFolD compares in practice to LinearFold with better asymptotic complexities.

Linearfold employs two techniques to reduce its time and space complexity to O(n),
namely beam pruning and k-best parsing. Both methods aim to prune the structure
path to optimal cases only. Beam pruning works by only keeping a predetermined number
(specified by the beam width, b) of the optimal states. Within LinearFold, best sets are kept
for each possible loop type as defined in the Zuker algorithm: hairpin, multi-loop fragments,
and internal loop. Through beam pruning, time complexity is reduced to O(nb2) and the
space to O(nb) where b is the beam width. K-best parsing further reduces the time to
O(nb log(b)). We note that due to the heuristic nature of the LinearFold algorithm, it does
not guarantee finding the MFE structure for a given RNA sequence.

4 Experimental Design

We implemented SparseRNAFolD in C++. All experiments were performed using an Azure
virtual machine. The virtual machine contained 8 vCPUs with 128 GiB of memory.
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4.1 Dataset
We used the original dataset from SparseMFEFold [35]. This dataset is comprised of 3704
sequences in 6 different families selected from the RNAstrand V2.0 database [1]. The smallest
sequence is 8 nucleotides long, while the largest is 4381 nucleotides long.

4.2 Energy Model
We used the energy parameters of the Turner 2004 energy model [20, 31], as implemented in
the ViennaRNA package [9].

4.3 Accuracy Measures
The number of true positives (TP) is defined as the number of correctly predicted base
pairings within the structure. The number of false positives (FP), similarly, is the number of
predicted base pairs that do not exist in the reference structure. Any base missed in the
prediction that corresponds to a pairing in the reference structure is a false negative (FN).

We evaluate the performance of algorithms based on three measures: sensitivity, positive
predictive value (PPV), and their harmonic mean (F-measure).

Sensitivity = TP

TP + FN
(11)

PPV = TP

TP + FP
(12)

Fmeasure = 2 · PPV · Sensitivity

PPV + Sensitivity
(13)

4.4 Proof of concept with RNAFold
As a proof of concept for the correct implementation of dangle energy models (i.e., “always
dangle” and “exclusive dangle”), we assessed SparseRNAFolD against RNAFold. As the
MFE structure may not be unique, we restricted our assessment to the MFE value obtained
by each method. We found that the MFE predicted by SparseRNAFolD and RNAFold was
the same. Details of the results can be found in our repository.

5 Results

We measured runtime using user time and memory using the maximum resident set size.

5.1 Alternative Models
We start by comparing the three different implementations of SparseRNAFolD.
SparseRNAFolD-standard was found to be in the middle in terms of memory and time. The
effect of additional trace arrows in SparseRNAFolD-Trace had a 27% increase in memory
usage on the largest sequence compared to SparseRNAFolD-Standard. However, the in-
crease in computation from the bit encoding only resulted in a 5% increase in time on
the largest sequence. We find a similar effect when comparing SparseRNAFolD-standard
and SparseRNAFolD-Triplet. The altered triplet structure reduced the memory by 9% but
increased the time by 10% due to extra computation. These are highlighted in Figure 2.
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Figure 2 We plot the results of the three versions of SparseRNAFolD when given RNA sequence
only as input against each other and an “exclusive dangle” model based on the dataset. (a) Memory
Usage (maximum resident set size in KB) versus length (log-log plot) over all benchmark instances.
The solid line shows an asymptotic fit (c1 + c2nx) for sequence length n, constants c1, c2, and
exponent x for the fit. We ignored all values < 1000. (b) Run-time (s) versus length (log-log plot)
over all benchmark instances. For each tool in both plots, we report (in parenthesis) the exponent x
that we estimated from the benchmark results; it describes the observed complexity as Θ(nx).

5.2 Comparison with Linearfold and RNAFold

When comparing SparseRNAFolD-Standard with LinearFold and RNAFold, we look at the
“always dangle” model, as LinearFold does not implement the “exclusive dangle” model.

We first compared the three algorithms by their predictive accuracy (F-measure). For
comparison, we selected all sequences from our dataset whose structure was available on
RNAstrand. We further constrained it to sequences that contained hairpins greater than
3 and no pseudoknots. This resulted in 986 sequences. We found that SparseRNAFolD-
Standard had a marginally better, but not significant, average F-measure of 0.6394 compared
to 0.6391 of LinearFold. As described in section 4.4, RNAFold and SparseRNAFold-standard
are identitcal in predictive accuracy.

We then assessed their time and space usage. To increase the size of our dataset for this
testing, we included a dinucleotide shifted version of our dataset in our test data. We then
constrained the size of sequences to those > 400. The maximum time and memory used
by Linearfold on this dataset were 3.34 seconds and 118, 848 KB. The maximum time and
memory used by RNAFold were 22.26 seconds and 109136 KB. In contrast, the maximum
time and memory spent by SparseMFEFold were 10.86 seconds and 13, 000 KB, respectively.
This is illustrated in Figures 3b and 3a. The results show that SparseRNAFolD-Standard uses
far less memory on even the largest pseudoknot-free sequences in our dataset. Note that the
maximum resident set size is nine times lower than that of LinearFold and eight times lower
than that of RNAFold. RNAFold’s time remains consistent with SparseRNAFolD-Standard
until longer sequences where it fell behind. LinearFold, whose time complexity is O(nb log(b)),
where n is the length of the sequence and b is the beam width, did perform faster than
SparseRNAFolD-Standard as the length of the sequence increased. However, we did find
that SparseRNAFolD-Standard outperformed LinearFold in practice for sequences of up to
about 1000 nucleotides.
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Figure 3 We plot the results of SparseRNAFolD-Standard against two state of the art algorithms:
RNAFold and LinearFold when given RNA sequence only as input against each other and an “always
dangle” model on our dataset and the dinucleotide shuffled version of our dataset. (a) Memory Usage
(maximum resident set size in KB) versus length (log-log plot) over all benchmark instances. The
solid line shows an asymptotic fit (c1 + c2nx) for sequence length n, constants c1,c2, and exponent
x for the fit. We ignored all values < 1000. (b) Run-time (s) versus length (log-log plot) over all
benchmark instances. For each tool in both plots, we report (in parenthesis) the exponent x that we
estimated from the benchmark results; it describes the observed complexity as Θ(nx).

Table 1 We tabulate the results of the comparison between RNAFold and SparseRNAFolD-
Standard when given only sequences with length > 2500 from our dataset as input and using the
“exclusive dangle” model. We looked at time (s) and memory (maximum resident set size in KB) for
the minimum, median and maximum length sequence within the constrained dataset.

Run-time (s) Memory: resident set size (KB)
RNAfold SparseRNAFolD RNAfold SparseRNAFolD

Minimum 5.04 5.36 40148 8832
Median 7.28 7.86 51284 12592

Maximum 22.08 19.94 109040 16836

5.2.1 Highlighting RNAFold

To highlight the difference in space between RNAFold and SparseRNAFolD-Standard, we
selected 81 sequences from our dataset with size greater than or equal to 2500. The sequence
with the maximum length in the set was 4381 nucleotides long. As seen in Table 1, while
SparseRNAFolD-Standard’s runtime is comparable to RNAfold’s, its memory consumption
is about five times lower.

5.3 Candidate Comparison

In order to illustrate the effectiveness of candidates in terms of memory consumption, we
plotted the relationship between the number of candidates and trace arrows, against the
quadratic space, using the dataset that includes dinucleotide shifted elements. To emphasize
the upper limit of candidate usage when executing SparseRNAFolD-Standard, we employ
the “exclusive dangle” model.
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Figure 4 We plot the results of the number of candidates and trace arrows compared to quadratic
space. “Quadratic” shows the count within an nxn matrix as it would be given quadratic space. In
contrast, “Candidates” and “Trace arrows” show the contrasting number for the same length.

For a more meaningful comparison, we juxtapose the counts of candidates and trace arrows
with the count obtained from a single quadratic matrix. It is important to note that the
majority of algorithms employing quadratic space make use of multiple quadratic matrices.
Considering this aspect, we discovered that, on average, the disparity in count between the
number of candidates and trace arrows with quadratic space was approximately a factor of
100. Figure 4 highlights that the increase in candidates is consistent with the increase in
length.

5.4 Folding with Hard Constraints
As partial information on structure has become more available and is extensively used
for better prediction of possibly pseudoknotted structures [13, 10], we further extend our
evaluation of the SparseRNAFolD versions to cases where we are folding with a hard
constraint [17] in addition to the RNA sequence.

To do so, for each sequence, a pseudoknot-free input structure was generated. The
structure was generated by taking two random indices at a time from the sequence. If the
two bases could pair, were at least 3 bases apart, and did not form a pseudoknot with
the other base pairs, the base pair was added to the input structure. In order to avoid
overpopulating the input structure, the number of base pairs in an input structure was
capped at 0.5 × log2(length). This resulted in an average of 3-7 base pairs per sequence.
There was a noticeable decrease in time and space when an input structure was provided
in addition to an RNA sequence. Between RNA sequence only as input and sequence as
well as an input structure, SparseRNAFolD saw a 67% decrease in time and a 40% decrease
in memory. As the input structure reduced the number of candidates for a sequence, the
difference in memory was less apparent between the models. SparseRNAFolD-standard had
a 6% increase in time from SparseRNAFolD-Trace but a 15% decrease in memory on the
largest sequence. From SparseRNAFolD-standard to SparseRNAFolD-Triplet, there was
an 8% decrease in memory but a 13% increase in time. Note that even when reducing the
number of candidates, the increase in time from Standard to Triplet was greater by 3%. This
can be seen in Figure 5.
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Figure 5 We plot the results of the three versions of SparseRNAFolD when given an RNA
sequence, an “exclusive dangle” model, and a random pseudoknot-free structure as input against
each other based on our dataset. (a) Memory usage (maximum resident set size in KB) versus length
(log-log plot) over all benchmark instances. The solid line shows an asymptotic fit (c1 + c2nx) for
sequence length n, constants c1,c2, and exponent x for the fit. We ignored all values < 1000. (b)
Run-time (s) versus length (log-log plot) over all benchmark instances. For each tool in both plots,
we report (in parenthesis) the exponent x that we estimated from the benchmark results; it describes
the observed complexity as Θ(nx).

6 Conclusions

In this work, we introduced SparseRNAFolD, a sparsified MFE RNA secondary prediction
algorithm that incorporates dangles contribution to the energy calculation of a sparsified
method. We showed that while “no dangle” and “always dangle” models were easy to
incorporate into the existing algorithms, “exclusive dangle” introduces non-trivial challenges
that need calculated changes to the sparsified recursions to alleviate. We identified three
strategies to implement dangle contributions: SparseRNAFolD-Trace which utilizes additional
trace arrows; SparseRNAFolD-standard, which incorporates bit encoding as well as extension
to the definition of candidate structures; and SparseRNAFolD-Triplet, which, similar to the
SparseRNAFolD-standard, utilizes bit encoding but modifies candidate energy calculation
in anticipation of possible change in parameters in the future. Comparing these three
versions on a large dataset, we concluded that the SparseRNAFolD-Triplet implementation
is the most efficient in terms of memory, and SparseRNAFolD-Trace is the most efficient
in terms of time. These two versions showcase how space and time trade-offs can improve
performance for a specific application. The SparseRNAFolD-standard version provides a
middle ground for improvement in both time and space and has been chosen as the standard
implementation of our algorithm. While guaranteeing the MFE structure and matching the
energy of RNAFold, our SparseRNAFolD is on par with LinearFold on memory usage and
run time for sequences up to about 1000 bases. This provides a promising starting point to
bring dangles contributions to pseudoknotted MFE structure prediction methods in which
memory usage is the prohibitive factor [14].

Our results showcase the substantial difference in the number of candidates when compared
to quadratic space. This provides an illuminating perspective on the space improvement
achieved through sparsification.

WABI 2023



19:16 SparseRNAFolD

We further assessed the effect of hard structural constraints on the performance of
SparseRNAFolD, presenting significant improvements both in terms of time and space. We
believe the significant improvement in time and space due to the limitation of search space by
hard structural constraints can have a more pronounced impact on sparsified pseudoknotted
MFE prediction, which is our ultimate goal.

Finally, memory consumption becomes a bottleneck for the prediction of MFE structure
for long RNA sequences or MFE pseudoknotted structure prediction. Utilizing the power
of computational servers, such restrictions have been somewhat alleviated. Sparsification
provides improvements in both time and space requirements and can be used to bring
computations back to personal computers, providing equal access to the existing technology.
In addition, improvements in memory usage can improve use cases for computing clusters, as
the amount of memory assigned to a computing node is also limited.
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Abstract
Motivation. Recurrent substructures in RNA, known as 3D motifs, consist of networks of base
pair interactions and are critical to understanding the relationship between structure and function.
Their structure is naturally expressed as a graph which has led to many graph-based algorithms to
automatically catalog identical motifs found in 3D structures. Yet, due to the complexity of the
problem, state-of-the-art methods are often optimized to find exact matches, limiting the search to
a subset of potential solutions, or do not allow explicit control over the desired variability.

Results. We developed FuzzTree, a method able to efficiently sample approximate instances of
an RNA motif, abstracted as a subgraph within a target RNA structure. It is the first method
that allows explicit control over (1) the admissible geometric variability in the interactions; (2) the
number of missing edges; and (3) the introduction of discontinuities in the backbone given close
distances in the 3D structure. Our tool relies on a multidimensional Boltzmann sampling, having
complexity parameterized by the treewidth of the requested motif. We applied our method to the
well-known internal loop Kink-Turn motif, which can be divided into 12 subgroups. Given only the
graph representing the main Kink-Turn subgroup, FuzzTree retrieved over 3/4 of all kink-turns. We
also highlighted two occurrences of new sampled patterns. Our tool is available as free software and
can be customized for different parameters and types of graphs.
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1 Introduction

The essential regulatory and catalytic roles played by RNAs in cellular processes can largely
be attributed to the intriguing and highly versatile nature of their structures [8, 5]. The
structure of ncRNAs is inherently modular, with distinct structural domains (loops) divided
by stems of rigid canonical bonds, often responsible for their unique functions [20]. This
modular architecture has been used for advancements in structure prediction [10] and rational
design [11]. Consequently, the characterization of ncRNA structure and identification of
structural modules have become critical in the pursuit of understanding their diverse functions
and exploiting them for future applications.

Many approaches have been developed to detect and classify conserved modules. These
classifications differ in the scale adopted to detect and define a motif: RNA3DMotifsAtlas [26]
computes similarity and finds motifs at the atomic level. It can capture local similarities
omitting bulged nucleotides. A drawback of such a method is the computation time, which
restrains comparisons between loops. RNA Bricks [6] and RAG3D [34] abstract loops and
hairpins as unitary elements. At an intermediate layer, CaRNAval [27, 30] models RNA as
graphs where vertices are nucleotides, and edges are the sequence backbone phosphodiester
bonds or non-covalent interactions. These interactions can be classified following the Leontis-
Westhof (LW) annotations in 12 different geometric families [21, 31]. Such an approach
allows specific graph algorithms to discover much larger and more complex modules than by
doing atomic computations while retrieving the known structural modules. However, this
approach is not able to identify natural variations since it relies on detecting exact matches.

From the algorithmic point of view, the treewidth tw is a natural parameter to find a
match of a pattern graph GP inside a target graph GT . In 1995, Alon et al [1] proposed an
XP [9] algorithm in O

(
2|VP |ntw(GP )+1)

using the color-coding technique. It was shown more
generally that only very specific constraints on the input allow having algorithms tractable for
bounded treewidths [23]. The problem is not fixed-parameter tractable when parameterized
only by the treewidth, and it requires other parameters to become tractable. For instance,
some approaches are parameterized both by tw(GP ) and |GP |, and conversely, others are
parameterized by tw(GT ) and the maximum degree of GT [23].

However, there can be an exponential number of variants of a specific pattern so different
specialized algorithms allowing missing nodes and edges [25, 12], or requiring only labels
to be in a neighborhood [18], have been developed. Such simplifications forget about the
precise locations of interactions, which is information that we would like to preserve with
RNA structures. A recent approach specific to RNA graph fuzziness uses Relational Graph
Convolutional Network to embed the graphs in a vector space, allowing fast computation [24].
Their embedding is based on the nature of base pairs or their isostericity without taking into
account gaps or missing edges. By its nature, such a method gives no explicit control over
the sampled neighborhoods, and thresholds need to be calibrated depending on the context.

In this paper, we introduce FuzzTree, a multidimensional Boltzmann graph sampling
procedure able to sample variants of a motif in a known RNA structure. We allow weighting
and control of three key geometric features in the variants: (1) the geometric disruption of
mismatched edges, (2) missing edges still constrained by their distance in the 3D structure,
and (3) breaks in the backbone also constrained by their distance in the 3D structure. We
propose a parameterized bound on the complexity of the algorithm based on the treewidth
of the searched motif. We evaluate our method on the well-known interior loop Kink-Turn
motif [19] characterized by its sharp bend and clustered into 12 different groups in the
RNA3DMotifsAtlas [26]. We show that, from the signature representation of the main
subgroup, we sample all their known Kink-Turns in 88% of RNAs. We also retrieve two
previously un-annotated loops with a characteristic sharp bend.
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2 Method

2.1 RNA as a graph and fundamental problems
We define an RNA structure as a graph G such that its nucleotides are encoded as vertices V ,
and nucleotide interactions (canonical/non-canonical base pairs, stacking. . . ) are encoded as
directed edges E ⊂ V ×V , with labels L(e). Interactions may represent backbone connectivity
(phosphodiester bonds), or any of the 12 base-pair types defined by the Leontis-Westhof
(LW) nomenclature [31]. Each type specifies an interacting face (Watson-Crick ◦, Hoogsteen
□, Sugar ▷) for both nucleotides, along with an orientation cis (filled) or trans (empty). Note
that the geometry of the RNA structure is encoded in the edge labels, and our representation
does not depend on the sequence. In this work, we are interested in RNA 3D motifs, which
we abstract as RNA pattern graphs as depicted above. We show in Fig. 1 a Kink-Turn
motif, represented as a graph with labeled edges.

Figure 1 Kink-turn structure. On the left, the 3D structure of a Kink-Turn motif in PDB
3RW6. On the right, its representation as a pattern graph of its base pair interactions. The backbone
connections are represented as black arrowed edges.

We rewrite E, the set of edges as E = B ⊔B, composed of two distinct sets: B, the set
of edges that are backbone interactions and B, the edges involved in LW interactions.

Moreover, since vertices in both pattern and target graphs are indexed by their sequence
position, we introduce a precedence relation ≺, inducing a strict total order within the pattern
and target graphs. A valid occurrence of a pattern within a target must be monotonous, i.e.
remain consistent with the strict precedence relation ≺.

The Monotonous Subgraph Isomorphism (MSI) problem identifies an occurrence of a
pattern GP = (VP , EP ) inside a target graph GT = (VT , ET ). In the context of RNA, GP is
a (closed) motif and ≺ −Hamiltonian, i.e. the total order over VP induced by the relation
≺ represents a (Hamiltonian) path in GP , while GT represents an entire RNA structure.
Formally, the problem of searching for GP within GT can be defined as:

▶ Problem 1. Monotonous Subgraph Isomorphism Problem (MSI)
Input: Pattern graph (≺ −Hamiltonian) GP = (VP , EP ); Target graph GT = (VT , ET )
Output: Mapping M : VP → VT such that
∀(u, v) ∈ VP

2, u ≺ v ⇒M(u) ≺M(v) (monotonicity)
∀(u, v) ∈ EP , (M(u), M(v)) ∈ ET ⇒ L((u, v)) = L((M(u), M(v))) (label comp.)
∀(u, v) ∈ EP , (M(u), M(v)) ∈ ET (no missing edge)

or ∅ if no such mapping exists.

The MSI problem represents a constrained version of Subgraph Isomorphism, a well-studied
NP-complete problem [13, 23] with mildly-depressing prospects regarding parameterized
complexity. Indeed, Subgraph Isomorphism does not admit Fixed-Parameter Tractable (FPT)
or slicewise polynomial (XP) solutions for various graph parameters, including the treewidths
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tw(GP ) and tw(GT ) of the pattern and target graphs. Namely, the problem was shown [23]
to be NP-hard even when max(tw(GP ), tw(GT )) ≤ 2 (Para NP-hardness), ruling out the
existence of FPT or XP algorithms under standard hypotheses.

The MSI problem retains the classical NP-hardness of Subgraph Isomorphism since it
can be shown to generalize the NP-hard structure-sequence alignment in RNA [28]. However,
MSI can be solved in time O

(
|EP |.|VT |tw(VP )+1)

(XP algorithm) using classic dynamic
programming based on a tree decomposition of GP (see Section 2.5 and Supp. Mat. A.2.2).
Such an algorithm has polynomial complexity for any fixed value of the treewidth tw(GP ), a
parameter that remains bounded in practice (typically 2 or 3) for RNA motifs.

2.2 Capturing geometric and chemical similarities
We now extend our problem to embrace the natural diversity of RNA motifs in structures.
More precisely, we are interested in sampling graph occurrences that are in the geometric
neighborhood of a core motif. To do so, we allow the motif to be deformed by three different
biologically relevant edit operations detailed below. Each contributes additively and has
its own neighborhood threshold, and corresponding difference function, as depicted in
Table 1:

T L represents how much we allow the edge label, the type of the canonical or non-canonical
bond, to be modified. It measures the geometric difference between two interactions (see
Sec. 2.4.1).
T E corresponds to the maximum number of edges/base pairs within the pattern structure
that can be omitted (see Sec. 2.4.2).
T G is the maximum allowed distance when introducing a backbone discontinuity, a new
gap. As insertions alter the distance between bonds, T G regulates here the maximum
sum over these shifts (see Sec. 2.4.3).

We denote by GEO the geometric distance between two nucleotides u1 and u2 as

GEO(u1, u2) = min
ai∈atoms(ui)|i∈{1,2}

||a1 − a2||2,

and use it to define two additional criteria to constrain admissible solutions:
First, nucleotides mapped to the nodes of a missing edge must be closer than Dedge Å;
Second, we enforce a maximal distance Dgap between the nucleotide on both sides of
an introduced gap. These values correspond to the phosphodiester atoms’ distances
between the nucleotides. Capping these distances beyond a fixed value not only yields
more realistic outputs but also greatly improves the runtime of our algorithm.

We use the isodiscrepancy index [31] to quantify geometrically the difference between base
pair families and provide values measuring three terms: (1) the difference of intra-base pair
C1’–C1’ distances; (2) after aligning one base, the inter-base pair C1’–C1’ distance between
the C1’ atoms of the second bases of the base pairs; (3) The angle on an axis perpendicular
to the base pair plane required to superpose the second bases. This isostericity measure is
defined for pairs of base pairing families (BPF), each representing one of the 12 canonical
and non-canonical conformations and named as BPFi, ∀i ∈ J1, 12K. Inter-family variations
are frequent and therefore the average isodiscrepancy of a family to itself is not 0. To correct
for this phenomenon, we define the ISO difference between two families as:

ISO(BPFi, BPFj) = isodiscrepancy(BPFi, BPFj)− isodiscrepancy(BPFi, BPFi).

Moreover, we set the value of ISO to 0 involving undefined labels, backbones or phantom
interactions.
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We define a backbone path as a sequence of at least 2 nucleotides connected through
backbone edges.

The set P of paths associated with a target graph GT =
(
VT , ET = BT ⊔BT

)
is defined as:

P =
⋃

k∈N,k⩾2
{(p0, ..., pk) | ∀i ∈ J0, k − 1K, (pi, pi+1) ∈ BT }.

With this definition, gaps are just paths in P with specific restrictions on length and
composition.

A mapping M lying in a relevant neighborhood of a pattern graph is a solution to a
problem that we call the Fuzzy Monotonous Subgraph Isomorphism problem (FMSI),
which can be defined as:

▶ Problem 2. Fuzzy Monotonous Subgraph Isomorphism problem (FMSI)
Input: Pattern graph GP =

(
VP , EP = BP ⊔BP

)
(≺ −Hamiltonian) , target graph GT =(

VT , ET = BT ⊔BT

)
and neighborhood thresholds (T L, T E, T G, Dedge, Dgap)

Output: Mapping M : VP → VT such that:
1. ∀(u, v) ∈ VP

2, u ≺ v ⇒M(u) ≺M(v) (monotonicity)
2.

∑
(u,v)∈BP

ISO(L(u, v), L(M(u), M(v))) ⩽ T L (label compatibility)
3.

∑
(u,v)∈BP

1− 1(M(u),M(v))∈BT
⩽ T E (few missing edges)

4. ∀(u, v) ∈ BP , (M(u), M(v)) /∈ BT , GEO(M(u), M(v)) ⩽ Dedge (edge distance limit)
5.

∑
(p0,...,pk)∈P,k⩾3 GEO(p0, pk) ⩽ T G (path size limitation)

6. ∀(u, v) ∈ BP , ∃(p0, p1, p2, ..., pk) ∈ P such that (no missing backbone path)
p0 = M(u), pk = M(v) (*)
GEO(p0, pk) ⩽ Dgap (**)

or ∅ if no such mapping exists.

Intuitively, a valid mapping M has to respect the six following conditions: The mono-
tonicity condition enforces pattern nodes to map successive nodes in the target. The label
compatibility controls how much the geometric differences cumulative is allowed between
pattern and matched edges (see Sec. 2.4.1). The few missing edges constraint ensures that
pattern edges that are not mapped to an edge in the target are not numerous. (see Sec. 2.4.2)
The edge missing limit forces each couple of mapped nodes with no edges to have a
bounded geometric distance between each other. (see Sec. 2.4.2) The path size limitation
controls how large the cumulative of gaps geometric lengths can be. (see Sec. 2.4.3) The no
missing backbone path condition (as unfolded in Prob. 2) ensures that the start and
end points of a path are mapped nodes (*). It also restrained allowed geometric length of
individual path (**). (see Sec. 2.4.3) We note that due to the monotonicity condition, it
implies that no target node in p1, . . . , pk−1 can belong to the mapping.

Subsequently, we will denote by neighborhoodGP
(GT ) all the occurrences of the desired

pattern graph GP (in its geometric neighborhood) in our RNA graph target GT as defined
by the previous FMSI mapping.

In practice, RNA graphs are fully ordered but do not necessarily contain a Hamiltonian
path due to backbone disconnections, leading to a graph composed of multiple strands. We can
reconstitute a Hamiltonian path (with no complexity overhead) in the pattern graph by adding
some “phantom edges” (with a specific label) when the backbone is missing which correspond
to the set of edges {(i, i + 1) | i ∈ GP , (i, i + 1) /∈ EP ∪ L(i, j) ̸= “B53”}. Additionally, to
ensure that such edge can be mapped in the target GT in a way that will conserve the monoton-
icity of the mapping, we add in GT the set of edges {(i, j) | (i, j)∈GT , i ≺ j ∩ L(i, j) ̸=“B53”}.

WABI 2023
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Table 1 Neighborhood thresholds and differences. Each measure has a threshold over the
sum of differences over all edges in the graph pattern.

Threshold T F Difference dF Fuzzy mapping M of GP found in GT

T L Isostericity ISO
u

u'
R

A

R

A

PG TM in G

I SO (u,u') ≤ TL

T E Missing edges number
R

A

R

A

PG TM in G

missing edges number = 1≤ TE

GEO (n1
n1

,n2

n2

) ≤Dedge

T G Geometric GEO from
3D structure

PG TM in G

R

A
N

R
N

R

A

R

GEO(n1,n3) +GEO (n3,n5) ≤ TG

GEO (n1,n3) ≤Dgap

GEO (n3,n5) ≤Dgapn3

n5
n4

n2

n1

2.3 Locating alternative occurrences through sampling
Focusing on neighborhoodGP

(GT ) is not an easy task as naive methods would describe both
this set and its complementary. In the clique worst case, it consists to explore

(|GT |
|GP |

)
graphs.

Even the simple exploration of neighborhoodGP
(GT ) can be tedious, in particular, when

neighborhood thresholds are quite large, which is often the case for label and gap thresholds.
Furthermore, due to the nature of the neighborhoods, numerous instances of a few nucleotides
apart will often be found. It is relevant in terms of neighborhoods, but, from the biological
standpoint, they represent all the same RNA portion and the same underlying geometry and
should not be distinguished: a single representative will be enough. It oriented us toward
sampling, to identify sets of candidate – ideally diverse – subgraphs inside the target graph
GT that are at a reasonable “ distance” from the interesting motif GP .

This shift in paradigm builds on recent advances in Multidimensional Boltzmann distri-
butions and sampling [2, 15].

Generally, a Boltzmann distribution is such that the probability of any possible
outcome G depends on its (pseudo-)energy E:

P(G) = e−βE(G)

Z
where Z =

∑
G′

e−βE(G′) (1)

where β is a real number, akin to an inverse temperature. A Multidimensional Boltzmann
distribution (MBD) is a special type of Boltzmann distribution, where the energy is a
weighted combination over a collection of features {Fi} of interest, such that

E(G) = w1 × F1(G) + w2 × F2(G) + . . .
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where w1, w2 . . . are real-valued weights. Weights can be used to steer the sampling towards
regions of interest. They can also be learned, through convex optimization, to match
the expectations of F1, F2 . . . to user-specified values. Moreover, sampling with a pseudo-
temperature β → ∞ gracefully specializes in a uniform random generation of outcomes
achieving optimal (i.e. minimal) value for E.

In our case, an outcome is a graph G ⊂ GT , such as G is the image of mapping M and
we have 3 features, one for each neighborhood. Given a specific neighborhood threshold T F ,
its relative feature F measures how much the weight of edits DF relative to neighborhoods,
further introduced as a difference in 2.4, deviate from a given center T F∗. For instance,
T F∗ can be chosen as equal to 0 if we want to sample mostly G with no fuzziness or as
equal to T F /2 if we want to sample them with average fuzziness. More details on this choice
and about Boltzmann sampling are available at Supp. Mat. A.1. MBD is well-suited to
the sampling that we want to make: the exponential decrease of the probability with the
features gives low probabilities to the graphs that are far in terms of neighborhoods from
GP , which allows us to characterize well neighborhoodGP

(GT ). In particular, we can define
F such that it takes a value equal to +∞ when the corresponding neighborhood threshold
T F , for a mapping M , is not respected, forbidding simply M to be sampled. Additionally,
the Multidimensional character of the distribution allows us to take into account the 3
neighborhoods on labels, edges and gaps at the same time.

A general framework called InfraRed [33], initially introduced in the context of RNA
design [15], can be used to generate efficiently, in a parameterized manner, the MBD. It
automatically processes constraints and elements of the scoring into a graph, decomposes it
into a Tree Decomposition, and generates automatically the bottom-up dynamic programming
sampling procedures. More details on the Tree Decomposition and the dynamic programming
used in InfraRed can be found in Supp. Mat. A.2.

2.4 Neighborhood difference description
Our goal is to be able to retrieve from a general motif all natural occurrences and their
variability. We can observe in well-known motif families that some bases change, some can
be added or removed. For instance, the graph pattern GP on Fig. 2 is a Kink-Turn whose
occurrences in the same sub-family can have up to four missing edges. Other sub-families
of Kink-Turn motifs can have differences in bond types, additional interactions, or even
gaps induced by additional nucleotides. We will define difference functions that will be the
features in the MBD and will restrain the samples to a “reasonable” neighborhood of the
pattern GP that can be explicitly defined.

For any feature F (here F ∈ {L, E, G}, where L are label changes, E missing edges, and
G new gaps) the Neighborhood cumulative difference DF quantifies how distant a
mapping is, relatively to a given neighborhood threshold T F that cannot be exceeded.

Formally, we define a neighborhood cumulative difference DF relatively to a neighborhood
threshold T F as:

▶ Definition 1 (Neighborhood cumulative difference / neighborhood difference). Given a
pattern graph GP =

(
VP , EP = BP ⊔BP }

)
, a target graph GT =

(
VT , ET = BT ⊔BT

)
and a mapping M , a neighborhood cumulative difference is a function DF relatively to a
neighborhood threshold T F that act as a wrapper around dF

GT
:

DF (GP , GT , M) =
∑

(u,v)∈EP

dF
GT

(u, v, M)
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G
 
   P

 
   GT1

 
   GT2

Part of Part of

Figure 2 Kink-turn signature and targets. On the left, signature graph of the Kink-Turn
IL_29549.9 family and our search pattern. In the middle and on the left, mappings that were missed
during the search for the pattern. GT 1 due to the same nucleotide merging the end of a cSS and a
cWW. GT 2 due to its too large difference.

where dF
GT

(u, v, M) is the neighborhood difference relative to GT , a function that measures,
relatively to F , how “different” are the edges in the pattern ((u, v) ∈ GP ) from the edges in
the mapping ((M(u), M(v)) ∈ GT ).

How the difference is measured depends on the feature as described below.
Neighborhood cumulative differences serve in the Boltzmann distribution to quantify

each type of edit. Due to the additivity of these deformations, the neighborhood cumulative
differences are computed over all edges in the pattern and their equivalent in the mapping.
While our neighborhood cumulative differences are defined relative to the edges of GP here,
they can be easily defined on nodes should novel sequence-dependant features be included.
We will now discuss in detail the 3 sources of operations and their neighborhood cumulative
difference. A summary is shown in Table 1.

2.4.1 The label difference
The label difference, as represented in Fig. 3, accounts for the difference between base
pairs families and we use for that the isodiscrepancy [31] as introduced in part 2.2. We now
compute the label difference DL relative to the neighborhood threshold T L as a neighborhood
cumulative difference entirely defined by the sum over each pattern edge of its mapping
neighborhood difference dL

GT
equals to:

dL
GT

(u, v, M) = ISO(L(u, v), L(M(u), M(v))).

2.4.2 The edge difference
While the previous section deals with how to incorporate edges changing their type, i.e. their
interaction geometry, we must also consider that some of these base pair interactions might
simply be missing due to the noisiness of the experiments, the accuracy of the annotation, or
the flexibility of the module. A natural way to account for missing edges is to count them and
enforce an upper bound on the amount. Doing so would omit important geometric information
that we have available in the 3D structure. An interaction is missing, but we still want
to constrain the physical distance between the mapped nodes of the missing edge. Indeed,
with no limitation on that distance, the partner node of a missing edge could be virtually
anywhere in the target structure. This is undesirable since we are interested in patterns
matching the local conformations. It is also highly inefficient in terms of computation.
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DL (GP ,GT ,M ) = I SO ( , ) + I SO ( , ) +0
DL (GP ,GT ,M ) = 11.3+8.2= 19.5

Figure 3 Label difference. Computation of the label difference on a mapping between a motif
GP and an RNA target graph GT . Label difference is computed using the isostericity ISO to account
for the geometric difference between bounds as described in Stombaugh et al [31].
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GT
(5 + 

+ 
,8,M)

Figure 4 Edge difference. Computation of the edge difference on a mapping between a motif
GP and an RNA target graph GT . We assume here that Dedge >> max(GEO(1, 10), GEO(5, 8)).

Therefore, we will accept mappings of the extremities of an edge in the pattern to nodes
u, v that are at most at a set threshold distance Dedge computed from the 3D structure (i.e.
GEO(u, v) < Dedge). Setting a weight of ∞ to mappings outside the threshold allows the
sampling to simply reject such instances. We additionally use the edge difference to reject
cases where backbones are mapped to couples of nodes that are not backbones by putting a
weight ∞ in that case. The total edge difference DE relative to neighborhood threshold T E ,
is a neighborhood cumulative difference entirely defined by the sum over dE

GT
with values

defined as followed and shown in Fig. 4:

dE
GT

(u, v, M) =



0 if (u, v) ∈ BP ∩ (M(u), M(v)) ∈ BT

or (u, v) ∈ BP ∩ (M(u), M(v)) ∈ BT

1 if (u, v) ∈ BP ∩ (M(u), M(v)) /∈ BT

and GEO(M(u), M(v)) ⩽ Dedge

∞ otherwise.

2.4.3 The gap difference
A frequent type of natural variability in a motif family is the occurrence of bulging out
nucleotides in what would be a continuous sequence in the pattern. These insertions can be
of different sizes, but we require that they do not modify (too much) the local structure. To
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5'
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3'

Backbone from 5' to 3'
Labeled base pair

Backbone from 5' to 3'
Labeled base pair
Fake edge

No backbone 
connection

        Add fake edges 
  between u and v when
                               = 4 A  (u, v) < D

Figure 5 Fake edges. Addition of fake edges to account for gaps. Fake edges are added only
when distance is below Dgap and when both nucleotides are fully connected by backbone edges. For
instance here, we add no fake edge between C and A at the bottom of GT as these two nucleotides
are not connected by a full path of backbones.

take arbitrary insertions into account, we introduce fake edges between any two nucleotides
present on the same backbone that are at a distance below Dgap. An illustration of this
process is shown in Fig. 5. For convenience, these edges are added in BT to keep valid the
cases of the edge difference where backbones are wrongly mapped.

An additional difference compared to the missing interaction edges of the previous section
is how we sum the total neighborhood difference DG. We accumulate the total physical
distance (i.e. GEO) between the nodes connected through the fake edges. This allows an
arbitrarily large structure to bulge out without the need to verify or specify admissible lengths,
as long as the nucleotides around this inserted gap are close geometrically as illustrated in
Fig. 6.

Formally, the gap difference DG relative to neighborhood threshold T G is a neighborhood
cumulative difference over all edges in the matching entirely defined by the sum of the
neighborhood differences dG

GT
:

dG
GT

(u, v, M) =


GEO(M(u), M(v)) if (M(u), M(v)) is

a “Fake Edge” in ET

0 otherwise.

A limitation of this approach is that we cannot detect the deletion of nodes from the
pattern. A workaround is to remove all the nodes in the pattern graph that do not directly
participate in a base pair interaction, and reconnect the disconnected backbones. Using the
new pattern with a large gap threshold T G would allow us to retrieve the original motif
neighborhood efficiently, but introduce more spurious matches.

2.5 Algorithm and complexity
Our method is based on Infrared [15, 33], a declarative framework that automatically
generates a dynamic programming procedure for MBD sampling, based on a nice tree
decomposition (TD). The dynamic programming procedure used in Infrared is described
in Supp. Mat. A.2. It precomputes the partition function of the MBD through a bottom-
up recursion and uses local contributions to perform an exact sampling within the MBD
distribution. Within this framework, a combinatorial problem is abstracted as a set of
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DG (GP ,GT ,M ) = GEO(2,3)

Figure 6 Gap difference. Computation of gap difference on a mapping between a motif GP

and an RNA target graph GT . We recall that nucleotide labels are not taken into account.

variables {Xi}i, each assigned an integer value within a bounded domain. Assignments
must respect various constraints expressed as functions {Ci}i, each defined over a subset of
variables. Similarly, feature functions {Fj}j associate real-valued contributions to subsets of
variables, and are summed to represent the pseudo-energy of an assignment.

In this setting, we abstract each node i of the graph pattern GP as a variable Xi, taking
value in J1, nK. The value of Xi represents the mapping of node i in the graph GT = (VT , ET )
with |VP | = k and |VT | = n. Within RNA motifs, the number of partners of a position is
bounded, so we have |EP | ∈ O(k). Remark that all deviations from the pattern defined in
Sections 2.4.1 through 2.4.3, can be expressed locally as sums on the edges of the pattern
graph. It follows that the dependencies dep implied by our cumulative differences are only
binary, and restricted to pairs sharing an edge in GP : dep = {(Xi, Xj) | (i, j) ∈ EP }. The
graph of constraints is thus reducible to the input pattern graph GP , as shown in Fig. 8.

Due to the neighborhood threshold T F being a global property over the mapping, the
sampling is followed by a rejection step for samples that exceed a neighborhood threshold.
An example of such rejection is depicted in Fig. 7. Asymptotically, such rejection will at
worst induce a constant overhead with T F chosen independently from |GP | and |GT |.
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dE

T  /2E

T E
0 1 2 3

 Sampling 
probability

REJECTION 
    AREA

Figure 7 Rejection step. In the above example, rejection is depicted only for the edge
neighborhood for the sake of simplicity. Found motifs above T E thresholds are rejected afterward.
Found motifs with an edge difference close to T E

2 = 1 here have more chance to be sampled.

▶ Proposition 2. A generation of t Boltzmann-distributed (1) putative solutions to FMSI
can be performed in time O

(
n k t + k n(ϕ+1)) where ϕ is the treewidth of the pattern GP .
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Figure 8 Framework abstraction. Interfacing Infrared by considering GP as the Infrared
graph of constraints C and all nodes of GT as values that can be taken by the variables in C.

This complexity directly follows from the complexity of the algorithm [15] underlying
Infrared for a graph GP = (VP , EP ) (with |VP | = k). Restricted to binary constraints/fea-
tures associated with (a subset of) E, the computation of the partition function can be
performed in time O((|EP |+ |VP |)×∆ϕ+1), where ∆ is the size of the assignment domain for
individual variables, and ϕ is the treewidth of GP . A stochastic backtrack follows, leading to
the generation of t Boltzmann-distributed assignments in time O(|VP |∆ t). The complexity
stated above is obtained by observing that |EP | ∈ Θ(k), and that ∆ ∈ Θ(n).

We conclude by noting that preprocessing, including computations of geometrical distances
and augmentation of GT graph, can be performed once, in O(n2) time and space, leading to
a negligible overhead in comparison to the computation of the partition function. Meanwhile,
an optimal tree decomposition can be theoretically obtained in time only super polynomial
in ϕ [3].

A summary of the complexity and capacity of our FuzzTree method is depicted in Table 2.
Regarding the parameterized complexity [9], the FuzzTree method is XP in the treewidth of
the pattern graph, both in time and in space. It represents progress compared to VF2 [7],
which is indeed implemented and efficient in practice due to the profusion of lookahead rules
but has a worst-case time complexity similar to O(nn). In practice, VF2 becomes costly
with dense graphs, even in its most modern versions [4, 17]. Furthermore, we compete with
the bound from the Color-Coding [1] technique by improving it in time and space. 2O(k) is
replaced by k ⩽ n in our bounds, which allows us to get rid of k as a parameter to restrict it
simply to the treewidth in our RNA case.

In addition, our method handles at the same time multiple labels on edges, directed
graphs and can integrate node labels. The latter has not been implemented but can be
added, as with labels on edges, without complexity overhead.
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Table 2 Complexities for RNA motif search. Comparison of state-of-the-art methods for
RNA motif search. With ϕ = tw(GP ), n = |VT |, k = |VP | and t the number of samples.

Method Name Color-Coding [1] VF2 [7] VeRNAl [24] FuzzTree

Year 1995 2004 (updated up
to 2018) 2021 2022

Method Tree coloring DFS with search
space reduction

Relational Graph
Convolution Net-
work

Sampling tech-
nique

Time complexity 2O(k)nϕ+1log(n) O(deg(GT )n) Exponential O
(
knt + knϕ+1)

Space complexity 2O(k)nϕ+1 O(n) Exponential O
(
nϕ+1)

Supported graph Directed and undir-
ected Undirected Directed and undir-

ected
Directed and undir-
ected

Supported labels One label by edge One label by node
Any number of la-
bels on edges and
nodes

Any number of la-
bels on edges and
nodes

Type of found
neighborhoods None None Isostericity related

Exact bound on
isostericity, miss-
ing edge and miss-
ing gap.

Implementation? No Yes Yes Yes

3 Results

3.1 Computations
The larger target graphs (of more than 500 nucleotides) were split into overlapping voxels to
increase computational efficiency. We extracted |GT | graphs centered in each nucleotide c at
a given radius R from c. For an extracted graph G, centered on c, we have:

∀j ∈ G, R(G) = GEO(j, c) ⩽ R.

Choices of technical parameters, such as the value for R, hardware and computation times are
discussed in Supp. Mat. A.3. For the sake of efficiency, we refrained from adding “phantom
edges” described in Section 2.2. Doing so enables possible violations of the monotonicity,
leading to the detection of motif occurrences in the context of a more remote homology, but
necessitated a further round of rejection (whose impact on performances remained negligible).

3.2 Data: the Kink-Turn motifs family
All interactions in the RNA structures are provided by FR3D [29]. We also use interactions
annotated as “near”. The Kink-Turn is an important RNA structural motif common in duplex
RNA that creates a sharp axial bend, enabling crucial tertiary interactions and binding [19].
The Kink-Turn has been shown to appear in multitudes of contexts through computational
and experimental methods [16, 22]. As of January 2023, there were 72 instances of the
Kink-Turn RNA annotated in the RNA3DMotifAtlas [26]. One was omitted because it was
not annotated on the main structure but one of its symmetric alternatives. The others span
46 different RNAs and are divided into 12 different families with different lengths, between 9
and 23 nucleotides and base pair signature. Members of the same family also differ in terms
of number of nucleotides and pairing.

The Kink-Turn family IL_29549.9 in RNA3DMotifsAtlas has the most occurrences (32)
and its signature graph shown in Fig. 2 is used as the pattern graph GP for the subsequent
sampling.

WABI 2023
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Figure 9 Sensitivity and Specificity of regions corresponding to sampled graphs in
the 46 RNA structures containing Kink-Turns. Each dot represents an RNA chain, where
one or multiple Kink-Turns can be found. To keep track of them, nodes whose sensitivity is not
equal to one, are named of the graph “RNAname“_“chain”.

Empirically, RNA 3D motifs are small motifs that, despite not being tree-like, have
relatively small treewidth. It is especially the case for the Kink-Turn family, where 50
Kink-Turns pattern graphs have treewidth equal to 2 and 21 have treewidth equal to 3, which
makes our parameterization in treewidth practically quite relevant.

3.2.1 Results
We use the parameters shown in Table 3 with GP in Fig. 2 to sample at least 1000 graphs
in each of the 46 RNA structures. We also introduce a bias in the Boltzmann distribution
to favor values of neighborhood thresholds equal to T F

2 (instead of 0) to favor slightly
fuzzy mappings more often than exact mappings or extremely fuzzy ones. This choice is
motivated by the focus on the neighborhood more than on the exact mappings for which lots
of techniques already exist.

Table 3 Parameters. Used parameters and relevant range for FuzzTree computation on the
Kink-Turn group.

Parameter T L T E T G Dedge Dgap R nb_samples
Used value 20.0 4 20.0 5.0 10.0 R(GP ) + Dgap

4 1000
Relevant range [0, 50] J0, 6K [0, 50] [5, 10] [5, 20] R(GP ) + [ Dgap

4 , Dgap]

Our sampling returns sub-graphs of the target graphs GT . Using a python implementation
of VF2 [14, 7], we annotate in the 46 RNAs graphs all nucleotides in any of the mappings.
Each of the connected components in the 46 RNAs becomes a hit. The True Positives (TP)
are these covering a known Kink-Turn found by our method. The True Negative (TN) are
those that do not cover a Kink-Turn, rightly not found by our method. P designs the set of
all Kink-Turn motifs and N the set of all other motifs. We show the sensitivity (TP/P) and
specificity (TN/N) per RNA structure in Fig. 9.

In 38 out of the 46 RNAs a sensitivity of 1 is achieved, all Kink-Turns are covered in
graphs sampled by our method. The missing Kink-Turns fall into two categories. First,
too many missing edges: with only 6 Leontis-Westhof interactions in GT , allowing more
missing edges would match any interaction in the targets. Second, backbone connections
replaced by Leontis-Westhof interactions, as seen in the middle of Fig. 2, is not an allowable
transformation in our model.
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We also obtain in 33 RNAs a specificity over 75%. It indicates that even with relatively
lax parameters, not that many other instances in comparison to the amount of known
Kink-Turns are close to GT .

3.2.2 Other identified regions
An additional 198 locations in the 46 RNAs were identified. The Kink-Turn is essentially an
internal loop motif. We investigate if other internal loops sharing the same main 3D feature, a
sharp bend in an interior loop, are found. Using the python library forgi [32] we decomposed
these regions in their secondary structure elements. The majority, 125, mapped to regions
forming multiloops. A total of 33 were covering continuous double-stranded regions. The
angles of surrounding stems for each interior loop in the 46 RNAs (in blue) the identified
Kink-Turns in these RNAs (red) and the other 33 elements (in green) are shown in Fig. 10.

Figure 10 Angles in radiants. In blue for stems around every interior loop in the 46 RNAs.
In red for the Kink-Turns identified in these RNAs. In green for the additional 33 continuous
double-stranded regions.

There are 10 additional regions with angles above 1.4rad, and two of these had a sharp
turn in their structure in un-annotated region as seen in Fig. 11. We show below their graph
of interactions, with the cross-strand stackings in orange.

The first is in 5J7L chain DA and positions 78–86, 96–108. It overlaps an un-annotated
motif (IL_85931.1) that covers positions 81–85, 97–101, and 103–105. The second is located
in 7RQB, chain 1A, positions 2129–2138, 2153–2160, and is not covered or surrounded by
any annotated motif.

4 Conclusion

In this paper, we introduce FuzzTree, a multidimensional Boltzmann method for sampling a
graph pattern neighborhood in a target graph. FuzzTree defines three types of neighborhoods
based on RNA geometric diversity, LW interaction modifications, missing edges, and breaks
in the backbone. Each can be explicitly controlled. We show that our sampling method
complexity is parameterized by the treewidth of the pattern graph.

Two main limitations are inherent to our approach. Due to the intrinsic nature of
sampling, we cannot be assured that all neighboring graphs will be reported. In itself, for
large patterns, this is a feature since sampling allows uniform exploration of the exponentially

WABI 2023
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Figure 11 Other matches. 5J7L on the left and 7RQB on the right. The 3D structure on the
left has IL_85931.1 highlighted in cyan, on the right each nucleotide is colored independently. In the
graphs, red nodes are matched with the pattern. Blue edges are in the RNA structure and red ones
are in the pattern, indicating modifications and removal. Red dashed lines are introduced “Fake
edges”. Magenta dashed lines indicate stackings.

growing neighborhood. By enabling per-feature biases, FuzzTree can also be calibrated to
favor the sampling of graphs at a desired location in the neighborhood to favor specific types
of variants (e.g., isostericity of modified edges). Letting the sampling run for longer will also
mitigate the problem. More importantly, some patterns cannot be identified, particularly if
an LW interaction is replaced by a backbone connection. While such cases are rare, they do
exist, and additional improvement will be needed to capture them.

We evaluate our method on the Kink-Turn group, a well-known interior loop motif that
induces a sharp bend in the structure and is annotated in 46 different RNA structures.
The Kink-Turns are grouped in the RNA3DMotifAtlas into 12 different subgroups with
varying lengths and interactions. Using only the signature graph of one subgroup, FuzzTree
samples conformations of over 2/3 of all Kink-Turns and identifies all of them in 88% of RNA
structures. A closer examination of the other sampled patterns reveals two previously un-
annotated sub-structures, each with a characteristic G-A trans-Hoogsteen-sugar interaction
and a sharp local bend.

Future work to complement this should broaden the evaluation framework by testing
FuzzTree on diverse RNA modules. There is also a need for new techniques to overcome
pattern identification limitations and explore adaptive sampling strategies to dynamically
steer the sampled neighborhood.

While FuzzTree was developed and adapted for RNA structure modules, it highlights the
flexibility of multidimensional Boltzmann sampling and could be applied to other biological
networks such as protein-protein interaction networks or metabolic pathways. Addressing
these questions and areas for future work could lead to more comprehensive insights into
complex RNA structures and other biological networks.
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A Supplementary material

A.1 About the sampling process
Sampling from a Multidimensional distribution in our case can be written formally as below:

▶ Definition 3 (Boltzmann distribution/Partition function). In the Multidimensional
Boltzmann Distribution, the probability to sample graph G, subgraph of GT with features
F1, .... Fm (that embody neighborhoods differences of GP for mapped graph G in GT ) of
respective weights w1, ... wm (that we can write more simply w = (w1, ...wm)) is proportional
to its energy:

PGP ,GT
(G | w) =

∏m
i=1 e−βwi.Fi(G)

Zw

where β := (RT )−1, R is the Gas constant, T the temperature in Kelvin, and Zw denotes the
partition function

Zw =
∑

G⊆GT

m∏
i=1

e−βwi.Fi(G)

We can forget about the β contribution as we can rewrite the weight w′i = βwi. The weights
wi are values chosen or tuned by us.

Tuning the weights is done by fixing a mean T F∗ (and T F threshold) for each type of
neighborhood. We can then tune the weight w(Fi) to give more “importance” that will favor
value around T F∗. In practice, when a feature for a neighborhood varies greatly between
instances, it means that this neighborhood is strongly relevant to distinguish the different
matches. It gives us an incentive to modify its weight accordingly. To do so, instead of
choosing weights manually, we solve the following problem:

minw

m∑
i=1
|E[Fi|w]− F ∗i |

This problem is known to be convex. We used so convex optimization method. Further
details about this problem, including the proof of convexity, are addressed in [15].

A.2 Computation of the partition function using dynamic programming
A.2.1 Definitions
First, we introduce the formal definition of the treewidth, we also depict what is a nice
tree decomposition (NTD) as it allows a simpler search during the dynamic programming
procedure. NTD implies no additional cost because an NTD has at most a size n = |GT |.

▶ Definition 4 (Tree Decomposition (TD)). Given a graph G = (V, E), a tree decomposition
of G is a tree T , whose nodes are bags Y1...Yt such that: (definition from Bodlander et al [3])

1. V ⊂
t⋃

i=1
Yi

2. ∀(u, v) ∈ E, ∃i ∈ J1, tK, (u ∈ Yi) ∩ (v ∈ Yi)
3. ∀u ∈ V, {u|u ∈ Yi} is a subtree of T .
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▶ Definition 5 (Nice Tree Decomposition). A tree decomposition T of G = (V, E) is said
“nice” if each bags Yi has one of the three following forms:

Introduce: Node Yi has exactly one child of index c in T and Yi = Yc ∪ {v}
Forget: Node Yi has exactly one child of index c in T and Yc = Yi ∪ {v}
Join: Node Yi has exactly two children of indices c1 and c2 in T and Yi = Yc1 = Yc2

▶ Definition 6 (Treewidth). The treewidth ϕ of a graph G is defined as the biggest bag of the
“best” tree decomposition of G:

ϕ = min
tree dec. T of G

maxYi∈T |Yi| − 1.

A.2.2 Dynamic programming solution
We now address the computation of the partition function [15] from 3 through a dynamic
programming procedure on the nice tree decomposition of GT .

It is a bottom-up dynamic procedure (from leaves to the root) that relies on the following
different equations depending on the type of the node Yi in the nice tree decomposition T .
We denote:

The set of neighborhood thresholds: F =
(
T L, T E , T G

)
.

Mi, partial mapping at node Yi of T .
The separator node of Yi, sep(Yi) chosen as the first element of the set S:

S = {x ∈ Yi | x /∈ Y ′ with Y ′ a children of Yi}.

We can point out that, with a nice tree decomposition, there exists only a unique choice
for this node and the set S is reduced to a singleton.
Given a partial mapping Mi, we introduce the following Boolean condition to map each
contribution to a single bag and avoid multiple computations of it:

C(u1, u2, Yi, Mi) = (u1 = sep(Yi) ∩Mi(u2) ̸= ∅) ∪ (u2 = sep(Yi) ∩Mi(u1) ̸= ∅).

From this we introduce ∆(·) to denote the global contribution

∆(M ′
i , GT , Yi, T F ) =

{
dF

GT
(u1, u2, M ′

i) | C(u1, u2, Yi, M ′
i) is True

}
.

We fill the dynamic programming table P that stores the partial computation of the partition
function with equations:

Forget Node Yi with child Y ′:

P [Yi; Mi] = P [Y ′; Mi]

Introduction Node, creating vertex s := sep(Yi) ∈ VP having child Y ′:

P [Yi; Mi] =
∑

v∈D(s|Mi)

P [Y ′; Mi ∪ (s← v)]×
∏

T F∈F
δ∈∆(Mi∪(s←v),GT ,Yi,T F )

e−µ.w(T F ).δ

where D(v |M) denotes the set of admissible mappings for v ∈ VP , consistent with prior
assignment M , such that:

D(v |M) :=


VT if M = ∅⋂

u∈M
s.t. u≺v

{x ∈ VT |M(u) ≺ x}
⋂

u∈M
s.t. v≺u

{x ∈ VT | x ≺M(u)} otherwise.
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Join Node:

P [Yi; Mi] =
∏

Y ′∈children(Yi)

P [Y ′; Mi]

The backtracking step to retrieve the value of probability for each graph (and so the whole
Boltzmann distribution as introduced in 3) uses the same type of equations but going from
top to bottom: a number is drawn at each node to know if we have to add a value for current
mapping, given the partial partition function computed at each step of the forward procedure.
Both the forward and backward steps are currently known procedures that have been studied
and automatized in a framework named Infrared. [33], which has the advantage to be quite
permissive about the definition of the neighborhood cumulative differences.

A.3 Choice on technical parameters
For the choice of the radius R for creating slices of target graph GT , given an extracted
graph G from GT centered in nucleotide c, we first defined R(G) = minj∈GGEO(j, c). To be
exhaustive with our search, we must ensure that every G from GT is extracted with a radius
at least equals to R(GP ) + Dgap as it ensures that we have enough “space” to make GP fit
in G even if some gaps occur. It is due to these gaps that we need to add Dgap in R. It
embodies the specific case where the gap would have increased the length of the motif to
search in GT in a single direction by putting gaps one after the other. Due to the rarity of
this case, we choose, in the tests, to use a smaller radius equal to R(GP ) + Dgap

4 . The only
taken risk here is to miss some patterns, but it is more convenient to favor time convergence
as the pathological case on gaps evoked above is not one that we would like to target.

We also choose to use a timeout equal to 2000 seconds for the convergence of our algorithm
on each extracted graph. Here again, the only risk is to miss some additional patterns.
Nonetheless, all these limitations only mean that our current results can probably be slightly
better regarding expressiveness, which means that somebody with more computational
resources could use this tool and wait for even better performances.

A.4 Time results on Narval and Beluga clusters for FuzzTree
For this paper, computations were done on the Narval cluster and the Beluga cluster of the
Digital Research Alliance of Canada. Each used node on Narval is made of 64 cores with 2
CPUs AMD Rome 7532 @ 2.40 GHz. Each used node on Beluga is made of 40 cores with 2
CPUs Intel Gold 6148 Skylake @ 2.4 GHz. Multiprocessing was used simply by separating
the computations by chains of the same RNA and next, when relevant, by slices identified in
these RNA chains.

Some time results for computation of the FuzzTree method, by requesting one motif
on each RNA chain where Kink-Turns are known, are available in Fig. 12. The time
of computation is large but it is something expected with the XP theoretical complexity.
However, one can notice that in practice the treewidth of the selected pattern is equal
to 2 which allows a complexity in O

(
n3)

. No true time discrepancy appears between the
computation without near edges and the one with. On large graphs, due to the slicing, the
time of computation is reduced, but such reduction is not perfect as slicing computation is
still quite redundant: multiple graphs cover sometimes the same portion of the Kink-Turn.
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Figure 12 Time graph of the FuzzTree method on each group of studied RNA chains.
On the Beluga cluster, computations were done on 1 processor for small RNAs (less than 500
nucleotides, which corresponds to the three first graphs) and on 40 processors for large RNAs (more
than 500 nucleotides, which corresponds to the fourth graph). In that case, the depicted time is the
sum of each time consumed for each processor.
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Abstract
The problem of designing an RNA sequence v that encodes for a given target protein w plays an
important role in messenger RNA (mRNA) vaccine design. Due to codon degeneracy, there exist
exponentially many RNA sequences for a single target protein. These candidate RNA sequences
may adopt different secondary structure conformations with varying minimum free energy (MFE),
affecting their thermodynamic stability and consequently mRNA half-life. In addition, species-
specific codon usage bias, as measured by the codon adaptation index (CAI), also plays an essential
role in translation efficiency. While previous works have focused on optimizing either MFE or CAI,
more recent works have shown the merits of optimizing both objectives. Importantly, there is a
trade-off between MFE and CAI, i.e. optimizing one objective is at the expense of the other. Here, we
formulate the Pareto Optimal RNA Design problem, seeking the set of Pareto optimal solutions
for which no other solution exists that is better in terms of both MFE and CAI. We introduce
DERNA (DEsign RNA), which uses the weighted sum method to enumerate the Pareto front by
optimizing convex combinations of both objectives. DERNA uses dynamic programming to solve
each convex combination in O(|w|3) time and O(|w|2) space. Compared to a previous approach that
only optimizes MFE, we show on a benchmark dataset that DERNA obtains solutions with identical
MFE but superior CAI. Additionally, we show that DERNA matches the performance in terms of
solution quality of LinearDesign, a recent approach that similarly seeks to balance MFE and CAI.
Finally, we demonstrate our method’s potential for mRNA vaccine design using SARS-CoV-2 spike
as the target protein.
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1 Introduction

With the emergence of the COVID-19 pandemic, messenger RNA (mRNA) vaccines have
garnered significant attention due to their effectiveness in combating the disease [13, 17].
However, there remain significant challenges in the delivery [4] as well as the in vitro and
in vivo stability of mRNA-based vaccines and therapeutics [28]. Importantly, due to codon
degeneracy with 43 = 64 codons encoding for 20 distinct amino acids as well as translation
termination signals, there are exponentially many RNA sequences v for a single target
protein w. Synonymous codon choice impacts translational efficiency and mRNA stability in
two interrelated ways. First, a subset of “optimal” codons occur at a higher frequency in
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𝐰 = MYGKIIFVLLLSGIVSISASST
TGVAMHTSTSSSVTKSYISS
QTNGITLINWWAMARVIFE
VMLVVVGMIILISYCIR

DERNA
𝜆 ⋅ MFE − 1 − 𝜆 ⋅ log	CAI

PARETO OPTIMAL RNA DESIGN
𝜆 sweep

Select 
preferred 
solution

𝒂.

𝒃.

𝐯 = AUGUAUGGCAAGAUCAUCUUCGUCCUGC⋯	
⋯UAAUUCUUAUCAGCUACUGCAUUCGU

𝜆 = 10!,	
MFE = −88, CAI = 1.0

𝜆 = 0.000987,	
MFE = −118.7, CAI = 0.97

𝜆 = 0.001963,
	MFE = −131.5, CAI = 0.92

𝜆 = 0.00489,	
MFE = −135.8, CAI = 0.896

𝜆 = 1 − 10!,	
MFE = −148.7, CAI = 0.73

BALANCED RNA DESIGN
Fixed 𝜆 ∈ [0,1]

Figure 1 DERNA seeks Pareto optimal RNA sequences v for a target protein
w, balancing the minimum free energy (MFE) and codon adaptation index (CAI).
(a) For the Balanced RNA Design (BRD) problem, DERNA takes as input the parameter
λ ∈ [0, 1] and returns the RNA sequence v whose corresponding secondary structure P minimizes
λ · MFE(v, P ) − (1 − λ) · CAI(v, w). (b) For the Pareto Optimal RNA Design problem, DERNA
performs a systematic sweep on λ, solving multiple BRD instances and returning a set of Pareto
optimal solutions (v, P ).

highly-expressed genes [8] and “non-optimal” codons lead to increased ribosomal pausing and
decreased mRNA half-life [19, 29]. Second, depending on codon choice, each candidate RNA
sequence folds into a distinct secondary structure or conformation, affecting its thermodynamic
stability and consequently mRNA half-life. Recent studies have demonstrated the importance
of both factors, showing that increased secondary structure as well as optimal codon usage
lead to increased protein expression [16,24]. This leads to the following key question of this
paper. How does one identify RNA sequences that optimize both criteria?

Different organisms and even different genes within the same organism can have distinct
codon usage patterns. The codon adaptation index (CAI) is a measure that quantifies the
degree of codon usage bias in a protein coding sequence relative to a reference set of highly-
expressed genes [22]. The reference set is often chosen based on the assumption that these
genes have evolved to use codons that are mostly efficiently translated by the ribosome. Thus,
an RNA sequence with high CAI is expected to have higher rates of translation [8,19,29].
Specifically, for a reference gene set, we are given the relative frequencies g(x) of each codon
x in the gene set. Then, the CAI of an RNA sequence v is the geometric mean of the ratios
g(x)/ maxy∈S(x) g(y) of each codon x vs. the maximum relative frequency of a synonymous
codon y ∈ S(x) (see Equation (1)). RNA sequences that are composed of only optimal
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codons with maximum relative frequencies have by definition a CAI of 1. In our setting, it is
trivial to identify such an RNA sequence with CAI equal to 1 by simply choosing the codon
with maximum relative frequency for each amino acid of the target protein. However, such
an RNA sequence with optimal CAI may exhibit suboptimal amounts of secondary structure
(Figure 1).

RNA molecules adopt secondary structure and three-dimensional conformations as the
nucleotides within the RNA molecule and the surrounding solvent interact with each other.
When an RNA molecule folds into its conformation, it forms base-pairing interactions between
nucleotides that result in the lowest possible free energy [7]. This conformation is said to
have the minimum free energy (MFE). In general, an RNA molecule with a lower MFE is
more likely to be stable and maintain its integrity over time, whereas an RNA molecule
with a higher MFE is more likely to be degraded. Thermodynamic stability is an important
factor in identifying the most stable RNA sequences that are likely to be functional and
efficient in producing a target protein [16, 24]. Zuker and Stiegler [32] introduced a dynamic
programming algorithm to identify the conformation of RNA molecules with minimum free
energy from a given RNA sequence v. This approach was later extended independently by
Terai et al. [23] and Cohen and Skiena [1] to identify a RNA sequence v and corresponding
secondary structure with overall minimum MFE for a given target protein sequence w.
However, an RNA sequence with optimal MFE may have suboptimal CAI (Figure 1).

Recognizing the importance of examining both CAI and MFE, Zhang et al. [31] introduced
LinearDesign, which uses stochastic context-free grammars and deterministic finite automata
and applies a beam search heuristic to optimize MFE + λLD log CAI where λLD is a user-
specified parameter.

In this work, we model the trade-off between CAI and MFE as a multi-objective optimiz-
ation problem. That is, we introduce the Pareto Optimal RNA Design problem, seeking
the set of Pareto optimal solutions for which no other solution exists that is better in terms
of both MFE and CAI (Figure 1). We use the weighted sum method [30] to enumerate
the Pareto front by optimizing convex combinations of both objectives – leading to the
Balanced RNA Design problem (Figure 1). Our resulting algorithm, DERNA (DEsign
RNA), extends the Zuker and Stiegler dynamic programming approach [32] to solve each
convex combination in O(|w|3) time and O(|w|2) space. Unlike LinearDesign, where key
functions are closed source, DERNA is fully open source with all code and functionality
available to the user under a permissive license. We show on a benchmark dataset that
DERNA obtains solutions with identical MFE but superior CAI compared to CDSfold [23].
Additionally, we show that DERNA matches LinearDesign’s performance in terms of solution
quality. Finally, we run our method on the SARS-CoV-2 spike protein and demonstrate its
potential for mRNA vaccine design.

2 Problem Statement

A secondary structure for an RNA sequence with length n is a set of ordered base pairings
(i, j) ∈ [n] × [n] such that each base is paired with at most one other base and there are no
crossings base pairings (also known as pseudoknots). More formally, we define a secondary
structure as follows.

▶ Definition 1. A set P ⊆ [n] × [n] of base pairings is a secondary structure provided (i) for
each base pairing (i, j) ∈ P it holds that i < j, and for any two base pairings (i, j), (i′, j′) ∈ P

it holds that (ii) i = i′ if and only if j = j′ and (iii) if i < i′ < j then i < i′ < j′ < j.

WABI 2023
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Figure 2 There are five secondary structure elements. (a) Stacking. (b) Hairpin loop.
(c) Bulge loop. (d) Internal loop. (e) Multi-branch loop. Each structural element is defined by a
unique set P ′ of nucleotide indices involved in base pairings (indicated in red). In addition, each
structural element corresponds to a unique face of a planar embedding comprised of subsequences
v(P ′) (indicated in green). Nucleotides next to the base pairings (indicated in gray) are involved in
providing a free energy contribution to some structural components.

Following Zuker and Stiegler [32], a secondary structure P can be decomposed into several
secondary structure elements, such that the free energy of the secondary structure P is the
sum of the free energies contributed by each secondary structure element, defined as follows.

▶ Definition 2. A subset P ′ = {i, p1, q1, . . . , pk, qk, j} ⊆ [n] of bases is a secondary structure
element of P provided (i) i < p1 < q1 < . . . < pk < qk < j, (ii) (i, j) ∈ P , (iii) (pl, ql) ∈ P

for each l ∈ [k] and (iv) there exists no base pairing (i′, j′) ∈ P such that i < i′, j′ < p1 < j;
i < qk < i′, j′ < j; or ql < i′, j′ < pl+1 for all l ∈ {1, . . . , k − 1}.

Alternatively, each secondary structure element corresponds to a unique face of a planar
embedding of the secondary structure. Denoting the subsequence vi, . . . , vj by v[i, j], the
subsequences that make up each face or secondary structure element are defined as follows.

▶ Definition 3. A secondary structure element P ′ = {i, p1, q1, . . . , pk, qk, j} ⊆ [n] is comprised
of RNA subsequences v(P ′) = {v[i, p1], v[q1, p2], . . . , v[qk−1, pk], v[qk, j]}. For k = 0, i.e.
P ′ = {i, j}, the corresponding RNA subsequence v(P ′) equals {v[i, j]}.

Depending on the topology, we distinguish five types of secondary structure elements.
In the simplest case, base pairing (i, j) is immediately followed by the pairing (i + 1, j − 1),
which is called a stacking element.

▶ Definition 4. A secondary structure element P ′ of the form {i, i + 1, j − 1, j} is a stacking
element.

Base pairing (i, j) forms a hairpin loop if there are no other base pairings involving bases
i + 1, . . . , j − 1.

▶ Definition 5. A secondary structure element P ′ of the form {i, j} is a hairpin loop.

If base pairing (i, j) does not form a stacking element and there are other base pairings
(i′, j′) occurring between i and j then (i, j) forms an interior loop element. We distinguish
three types of interior loop elements: (i) a bulge loop, (ii) an internal loop and (iii) a
multi-branch loop. The first two types correspond to a interior loop element enclosing a
single base pairing (p1, q1), i.e. k = 1.

In a bulge loop, the enclosing base pairing is contiguous to either i or j, i.e. p1 = i + 1 or
q1 = j − 1.
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▶ Definition 6. A secondary structure element P ′ of the form {i, p1, q1, j} is a bulge loop
provided (i) (p1, q1) ̸= (i + 1, j − 1) and (ii) p1 = i + 1 or q1 = j − 1.

On the other hand, in an internal loop the enclosing base pairing is not contiguous, i.e.
p1 > i + 1 and q1 < j − 1.

▶ Definition 7. A secondary structure element P ′ of the form {i, p1, q1, j} is an internal
loop provided i + 1 < p1 < q1 < j − 1.

If the interior loop element encloses more than one base pairing, i.e. k > 1, then we call
the secondary structure element a multi-branch loop.

▶ Definition 8. A secondary structure element P ′ of the form {i, p1, q1, . . . , pk, qk, j} is a
multi-branch loop provided k > 1.

As mentioned, we define the minimum free energy MFE(v, P ) =
∑

(i,j)∈P MFE(v, P, (i, j))
of an RNA sequence v as the sum of the minimum free energies MFE(v, P, (i, j)) of the
secondary structure elements induced by each base pairing (i, j) ∈ P .

▶ Definition 9. The minimum free energy MFE(v, P ) of secondary structure P of RNA
sequence v equals

∑
(i,j)∈P MFE(v, P, (i, j)) where MFE(v, P, (i, j)) is the contribution of

the secondary structure element induced by a base pairing (i, j) ∈ P defined as

MFE(v, P, (i, j)) =



fs(v(P ′)), if P ′ = {i, i + 1, j − 1, j} is a stacking element,
fh(v(P ′)), if P ′ = {i, j} is a hairpin,
fb(v(P ′)), if P ′ = {i, p1, q1, j} is a bulge loop,
fi(v(P ′)), if P ′ = {i, p1, q1, j} is an internal loop,
fm(v(P ′)), if P ′ = {i, p1, q1, . . . , pk, qk, j} is a multi-branch loop.

The actual definitions of fs, fh, fb, fi and fm depend on the used energy model. Briefly, in
the widely used Turner energy model [26], the stacking energy value fs is computed using a
lookup table indexed by the four nucleotides comprising the base pairings (i, j), (i + 1, j − 1).
Similarly, the hairpin energy value fh is a function of the four nucleotides vi, vi+1, vj−1, vj and
the length j − i + 1 of the hairpin loop. For a bulge loop, the energy value fb is a function of
the four nucleotides in the base pairings (i, j), (p1, q1) and the number of unpaired nucleotides
in the loop v({i, p1, q1, j}). For an internal loop, the energy value fh is a function of the eight
nucleotides vi, vi+1, vp1−1, vp1 , vq1 , vq1+1, vj−1, vj surrounding the base pairings (i, j), (p1, q1)
as well as the number of unpaired nucleotides in the loop v({i, p1, q1, j}). Finally, the energy
value fm is a function of the number k of base pairings enclosed in the multi-loop, the four
nucleotides surrounding each base pairing and the number of unpaired nucleotides in the
loop v({i, p1, q1, . . . , pk, qk, j}). We refer to Appendix A.1 for more details.

The classical RNA Secondary Structure Prediction problem is defined as follows.

▶ Problem 1 (RNA Secondary Structure Prediction (RSSP)). Given an RNA
sequence v ∈ Σn

rna, find a secondary structure P such that MFE(v, P ) is minimized.

This problem can be solved in O(n3) time using the Zuker algorithm [32]. In this work we
are interested in a reverse translation variant of the problem. That is, given a protein sequence
w ∈ Σm

prot where Σprot is the set of 20 amino acids, we seek a corresponding RNA sequence
v ∈ Σ3m

rna that translates into w. To that end, we use the function S : Σprot → P(Σ3
rna) such

that S(α) is the set of codons that encode amino acid α ∈ Σprot. We define σ(a, s) = 3(a−1)+s

to indicate the RNA sequence index corresponding to protein sequence index a ∈ [m] and
codon index s ∈ {1, 2, 3}.

WABI 2023
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▶ Definition 10. RNA sequence v ∈ Σn
rna encodes for protein sequence w ∈ Σm

prot provided
(i) |v| = n = 3m = 3|w| and (ii) v[σ(a, 1), σ(a, 3)] ∈ S(wa) for all protein indices a ∈ [m].

Rather than only considering the minimum free energy MFE(v, P ), we also take species-
specific codon usage bias into account. In other words, given species-specific relative codon
frequencies g : Σ3

rna → [0, 1], we compute the codon adaptation index CAI(v, w) defined as
follows.

▶ Definition 11. The codon adaptation index CAI(v, w) of RNA sequence v that translates
into protein sequence w is defined as

CAI(v, w) = m

√√√√ m∏
a=1

g(v[σ(a, 1), σ(a, 3)])
maxx∈S(wa) g(x) (1)

where g(x) is the species-specific relative frequency of codon x ∈ Σ3
rna such that g(x) ≥ 0 for

all codons x and
∑

x∈Σ3
rna

g(x) = 1.

The CAI ranges from 0 to 1, where a value of 1 indicates that for each amino acid
wa the maximum frequency codon arg maxx∈S(wa) g(x) is used [22]. Thus, given a target
protein sequence w, there are two competing objective functions; we seek a corresponding
RNA sequence v and secondary structure P that simultaneously minimizes MFE(v, P )
and maximizes CAI(v, w). Equivalently, rather than maximizing CAI(v, w), we maximize
CAI(v, w) defined as

CAI(v, w) = m

√√√√ m∏
a=1

g(v[σ(a, 1), σ(a, 3)])
maxx∈S(wa) g(x) ∝

m∑
a=1

log g(v[σ(a, 1), σ(a, 3)])
maxx∈S(wa) g(x) = CAI(v, w). (2)

We model the trade-off between MFE and CAI by introducing a parameter λ ∈ [0, 1] and
minimizing a convex combination of MFE(v, P ) and −CAI(v, w).

▶ Problem 2 (Balanced RNA Design (BRD)). Given a protein sequence w ∈ Σm
prot and

parameter λ ∈ [0, 1], find an RNA sequence v ∈ Σ3m
rna with secondary structure P such that

(i) v encodes for w and (ii) solution (v, P ) minimizes λ · MFE(v, P ) − (1 − λ) · CAI(v, w).

We say that a solution (v, P ) is Pareto optimal if (v, P ) is better than all other feasible
solutions in at least one of the two objectives. In other words, there does not exist another
solution (v′, P ′) that is better in both objectives, or equal in one objective and better in the
other. In our final problem, we seek all Pareto optimal RNA sequences v.

▶ Problem 3 (Pareto Optimal RNA Design (PORD)). Given a protein sequence w ∈
Σm

prot, enumerate all RNA sequences v ∈ Σ3m
rna each with a secondary structure P such that

(i) v encodes for w and (ii) (v, P ) is Pareto optimal w.r.t. to MFE(v, P ) and CAI(v, w).

3 Methods

3.1 RNA Design with Fixed λ

In the Balanced RNA Design problem (Problem 2), we are given a protein sequence
w ∈ Σm

prot and parameter λ ∈ [0, 1] that models the trade-off between MFE and CAI. In
this section, we show how to solve this problem using dynamic programming. Specifically,
for protein sequence indices a, b ∈ [m], codon indices s, t ∈ {1, 2, 3}, codons x ∈ S(wa) and
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y ∈ S(wb), O[a][b][s][t][x][y] is the minimum objective value when solving a problem instance
restricted to RNA sequence v[σ(a, s), σ(b, t)] such that codons x and y are used to encode
amino acids wa and wb, respectively. Using O[a][b][s][t][x][y], we express the objective value
of an optimal solution as

min
x∈S(w1),y∈S(wm)

O[1][m][1][3][x][y]. (3)

To see why this is the case, observe that O[1][m][1][3][x][y] equals the minimum objective
value for the complete RNA sequence v[σ(1, 1), σ(m, 3)] = v[1, 3m] = v restricted to using
codons x and y for amino acid w1 and wm, respectively. Thus, the overall minimum objective
value is obtained for the codon pair (x, y) ∈ S(w1)×S(wm) that minimizes O[1][m][1][3][x][y].

Let Γ = {(A, U), (U, A), (G, C), (C, G), (G, U), (U, G)} be the set of allowed base pair-
ings in the Turner energy model [14]. To express the contribution of the CAI, we
introduce the shorthand ḡ(w, x) = log(g(x)/ maxy∈S(w) g(y)) such that CAI(v, w) =∑m

a=1 ḡ(wa, v[σ(a, 1), σ(a, 3)]). We define O[a][b][s][t][x][y] recursively as

min



−(1 − λ)ḡ(wa, x), if a = b, x = y,
∞, if a = b, x ̸= y,
O[a][b][s + 1][t][x][y], if a < b, s ∈ {1, 2},
O[a][b][s][t − 1][x][y], if a < b, t ∈ {2, 3},

min
x′∈S(wa+1)

{O[a + 1][b][1][t][x′][y]} − (1 − λ)ḡ(wa, x), if a ≤ b − 1, s = 3,

min
y′∈S(wb−1)

{O[a][b − 1][s][3][x][y′]} − (1 − λ)ḡ(wb, y), if a ≤ b − 1, t = 1,

min
a≤c<b,t′∈{1,2},x′∈S(wc)


O[a][c][s][t′][x][x′]

+E[c][b][t′ + 1][t][x′][y]
+(1 − λ)ḡ(wc, x′)

 , if a < b,

min
a≤c<b−1,y′∈S(wc),x′∈S(wc+1)

{
O[a][c][s][3][x][y′]

+E[c + 1][b][1][t][x′][y]

}
, if a < b − 1,

E[a][b][s][t][x][y], if a < b, (xs, yt) ∈ Γ.

There are two components in the objective function, the CAI and the MFE. We account
for MFE upon identifying structural elements at base pairing (σ(a, s), σ(b, t)) using the
energy functions in Definition 9. To avoid double counting, we must ensure that CAI is only
accounted for once for each codon. As such, we include a CAI contribution when crossing
codon boundaries or reaching a valid base case.

The first case in the above recurrence corresponds to the base case where a = b and
x = y. In that case, base pairing between σ(a, s) and σ(b, t) is not possible as the Turner
energy model [14] requires at least two nucleotides in between a pairing. In this base case,
we must account for the CAI contribution of codon x. The other base case occurs when
a = b and x ̸= y, which is not allowed as any one amino acid must be encoded by a single
codon – this case thus receives a value of ∞.

The next two cases correspond to, respectively, incrementing either the left index σ(a, s)
or decrementing the right index σ(b, t) without crossing any codon boundary and leaving the
corresponding nucleotide unpaired. As such, we do not have to account for CAI. However, in
the following two cases, we additionally cross the codon boundary and thus must account
for the CAI contribution of respectively codons x and y. Next, we include two cases
corresponding to bifurcating into two parts, one part is between nucleotides σ(a, s) and

WABI 2023
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…
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(1
,2)

(1
,3)

(2
,1)

(2
,2) …
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, 1
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(𝑚
, 2
)

(𝑚
, 3
)

𝑏, 𝑡 ∈ 𝑚 ×{1,2,3}

(𝑎
,𝑠
)
∈
𝑚
×
{1
,2
,3
}

𝐱
∈
𝑆(
𝑤
!
) (1, |𝑆 𝑤! |)…(1,1)

…

(|𝑆(𝑤")|, |𝑆 𝑤! |)( 𝑆 𝑤" , 1) …

…

𝐲 ∈ S(W")

𝑎. 𝑏.

Four tables:
1. 𝑂 𝑎 𝑏 𝑠 𝑡 𝐱 y
2. 𝐸 𝑎 𝑏 𝑠 𝑡 𝐱 [y]
3. 𝑀 𝑎 𝑏 𝑠 𝑡 𝐱 [y]
4. 𝑁 𝑎 𝑏 𝑠 𝑡 𝐱 [y]

Figure 3 Dynamic programming for solving the Balanced RNA Design problem.
(a) To solve this problem, we store four dynamic programming tables O, E, M and N with
identical dimensions indexed as [a][b][s][t][x][y]. Rows and columns correspond to pairs (a, s), (b, t) ∈
[m] × {1, 2, 3}, respectively, both ordered lexicographically in increasing order. With the exception
of the base cases for table O where a = b (indicated in light gray), the recurrences require a < b

(indicated in blue). The dashed lines outline the entries of the table on which the red entry depends.
(b) Each entry [(a, s)][(s, t)] expands into another codon-by-codon table, whose rows are codons
x ∈ S(wa) and columns are codons y ∈ S(wb).

σ(c, t′) and the other part is between nucleotides σ(c, t′) + 1 and σ(b, t). In the first case, the
split happens inside a codon, i.e. t′ ∈ {1, 2}. We must include a correction of +(1−λ)ḡ(wc, x′)
as both parts will include a CAI contribution of the same codon x′. On other hand, when
the split happens outside a codon, i.e. t′ = 3 then no such correction is needed.

The last case corresponds to base pairing between σ(a, s) and σ(b, t). Specific-
ally, E[a][b][s][t][x][y] denotes the optimal objective value when nucleotides vσ(a,s)
and vσ(b,t) correspond to codons x and y, respectively, and form a base pairing.
When calculating E[a][b][s][t][x][y], we consider the minimum among the five cases
corresponding the five secondary structures elements defined in Section 2. That
is, E[a][b][s][t][x][y] equals min{Es[a][b][s][t][x][y], Eh[a][b][s][t][x][y], Eb[a][b][s][t][x][y],
Ei[a][b][s][t][x][y], Em[a][b][s][t][x][y]}. The precise definitions are given in Appendix A.2. In
particular, we require two additional recurrences M [a][b][s][t][x][y] and N [a][b][s][t][x][y] for
solving the multi-branch loop case.

3.1.1 Dynamic Programming, Time and Space Complexity

We store the following four tables: (i) O[a][b][s][t][x][y], (ii) E[a][b][s][t][x][y],
(iii) M [a][b][s][t][x][y] and (iv) N [a][b][s][t][x][y], each with the same dimensions. In particular,
as each potential base pairing (σ(a, s), σ(b, t)) corresponds to exactly one of five structural
elements, we do not store the corresponding values Es[a][b][s][t][x][y], Eh[a][b][s][t][x][y],
Eb[a][b][s][t][x][y], Ei[a][b][s][t][x][y] and Em[a][b][s][t][x][y] separately, but only their min-
imum value in E[a][b][s][t][x][y]. Note that the four stored tables have the same dimensions
comprised of protein sequence indices a, b ∈ [m], codon indices s, t ∈ {1, 2, 3}, and codons
x ∈ S(wa) and y ∈ S(wb). Letting K denote the maximum number of codons associated
with a single amino acid – the amino acids leucine (L), serine (S) and arginine (R) each have
K = 6 of codons – we conclude that the space complexity is O(m2K2).

Inspection of the recurrences reveals that the computation of each entry [a][b][s][t][x][y] in
the four tables does not require access to entries [a][b][s][t][x′][y′] using other codons x′ ̸= x
and y′ ̸= y. On the other hand, we do require access to entries [a′][b′][s′][t′][x′][y′] where
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σ(a′, s′) ≥ σ(a, s), σ(b′, t′) ≤ σ(b, t) (indicated with dashed lines in Figure 3). Moreover, with
the exception of the base cases for table O, where a = b, the recurrences require a < b. This
means we can organize the four tables as two-dimensional tables where the rows correspond
to entries (a, s) and the columns correspond to entries (b, t), both sorted in increasing
lexicographical order. Each entry [(a, s)][(b, t)] corresponds to another two-dimensional
table whose rows correspond to codons x ∈ S(wa) and columns to codons y ∈ S(wb) – see
Figure 3b. We fill out the tables diagonally. More precisely, filling out the four entries
indexed by [a][b][s][t][x][y], we check if base pairing between σ(a, s) and σ(b, t) is possible,
i.e. if (xs, yt) ∈ Γ. If so, we will first fill out the entry in E followed by N and then finally
M . On the other hand, we will first fill out the entry in N , then M and finally E. After
completely filling out tables E, M and N , we fill out table O. This ordering follows from the
recurrences. We use back pointers to identify the optimal solution (v, P ) when backtracing.

For each entry O[a][b][s][t][x][y], the running time is dominated by the case to determine
E[a][b][s][t][x][y]. That is, for each entry E[a][b][s][t][x][y], it takes O(K2) time to compute a
stacking element or a hairpin loop element, O(mK2) time to compute a bulge loop element,
and worst case O(m2K6) time to determine the contribution of an internal loop element. To
remedy the worst case O(m2K6) time, we follow other secondary structure prediction methods
and employ a parameter L to bound the maximum interior loop size, including bulge loop and
internal loop [9,12]. Then, the time to determine the contribution of an internal loop element
can be reduced to O(mLK6). Since there are O(m2K2) entries to compute, the overall time
complexity of solving the dynamic program is O(m2K2) · O(mLK6) = O(m3LK8).

When disregarding CAI, i.e. λ = 1, we can adapt the recurrences such that for each entry
E[a][b][s][t][x][y], it would take O(1) time to compute a a stacking or a hairpin loop element,
O(m) time to compute a bulge loop element, and worst case O(m2) time to determine the
contribution of an internal loop element. With a similar implementation of a maximum
interior loop size L, the time to compute an internal loop element can be reduced to O(mL).
Thus, the overall time complexity drops to O(m2K2) · O(mL) = O(m3LK2) when λ = 1.

3.2 Pareto Optimal RNA Design
In the Pareto Optimal RNA Design problem (Problem 3), we are given a protein
sequence w ∈ Σm

prot and seek a set of Pareto optimal solutions (v, P ). We use the weighted
sum method [30]. In this method, distinct convex combinations of the multiple objective
functions is optimized. In our case this corresponds to solving distinct convex combinations
of the two objectives MFE (Definition 9) and CAI (Equation (2)), which correspond to
solving distinct instances of the Balanced RNA Design problem with varying values of
the parameter λ ∈ [0, 1]. The weighted sum method has several limitations: (i) multiple
λs may generate the same solution, (ii) the non-convex part of the Pareto front cannot be
recovered, and (iii) there are non-uniform sampling issues [2, 5].

We mitigate the first limitation by recursively examining λ values. More specifically, we
maintain a queue Q of intervals [λ−, λ+] as well as a hash table X such that X[λ] yields the
solution (v, P ) of the Balanced RNA Design (BRD) problem instance (w, λ). Initially,
Q contains a single interval [ϵ, 1 − ϵ] where ϵ is a small constant (the default value in our
implementation is ϵ = 10−5). Additionally, we initialize X[ϵ] and X[1 − ϵ] with the solutions
of BRD problem instances (w, ϵ) and (w, 1 − ϵ), respectively. As long as the queue Q is
not empty, we obtain an interval [λ−, λ+] from Q, and solve a new BRD instance (w, λ)
where λ = λ− + (λ+ − λ−)/2, yielding solution (v, P ). If this solution differs from X[λ−]
and X[λ+], we set X[λ] = (v, P ) and add (λ−, λ) and (λ, λ+) to the queue Q if λ − λ− > τ .
We use a default value of 10−3 for the threshold parameter τ .
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3.3 Implementation Details of DERNA
We implemented our algorithms for solving the BRD and PORD problems in C++11. The
resulting method, DERNA (short for DEsign RNA), is available at https://github.com/
elkebir-group/derna.git under the BSD 3-clause license. Usage instructions and examples
are also available on the GitHub site.

DERNA uses the same energy model [15] as CDSfold [23]. For codon usage data, DERNA
use the Homo sapiens codon usage table published in the codon usage database [18]. In
addition, DERNA accepts alternative energy models and codon usage data in CSV format.

To validate the correctness of our algorithm and its implementation, we split our recur-
rences into two separate components and utilized two separate tables to store the MFE and
the CAI separately. Using the real data instances examined in Section 4, for each solution
(v, P ) identified by DERNA, we confirmed that the MFE predicted by DERNA matched
the MFE calculated using the Zuker algorithm [32] when given DERNA’s inferred RNA
sequence v. Additionally, we recomputed the CAI of DERNA’s inferred RNA sequence v
and confirmed that the resulting value matched the CAI inferred by DERNA.

4 Results

We compare DERNA to CDSfold [23] and LinearDesign [31] on 100 protein sequences from
the UniProt database [3] (Section 4.1) as well as on a case study involving the SARS-CoV-2
spike protein (Section 4.2). While the LinearDesign paper [31] describes both an exact and
heuristic algorithm, only the heuristic algorithm was publicly available. As such, we were
only able to include the heuristic algorithm in our benchmarking. All experiments were
performed on a laptop with an Apple M1 Max 10-core CPU and 64 GB of RAM.

4.1 Benchmarking on 100 UniProt Protein Sequences
We begin by performing experiments that prioritize MFE over CAI in Section 4.1.1. In
Section 4.1.2, we focus on the Pareto Optimal RNA Design problem, seeking solutions
that collectively capture the trade-off between MFE and CAI.

4.1.1 Prioritizing MFE
The goal of this section is to assess the ability of RNA design methods to prioritize MFE
over CAI. We seek solutions that achieve the minimum MFE and, as a secondary criterion,
achieve largest CAI – i.e. among the space of solutions that achieve minimum MFE, we prefer
those solutions that have the largest CAI value. We benchmarked using the same 100 protein
sequences used in the CDSfold paper [23], which come from the UniProt database [3] and
have lengths ranging from 78 to 2828 amino acids (Figure 4a). By design, CDSfold does not
take CAI into account. Our method DERNA as well as LinearDesign support balancing MFE
and CAI. For DERNA, we set λ = 1 − ϵ = 1 − 10−5. We note that LinearDesign’s objective
function is slightly different than DERNA’s, seeking an RNA sequence v and secondary
structure P that minimize MFE(v, P ) − λLD · log CAI(v, w) for a target protein sequence w.
To similarly prioritize MFE, we set λLD = ϵ = 10−5 for LinearDesign and ran it with default
parameters.

With the exception of the longest sequence (Q9NR99) with 2828 amino acids, which
LinearDesign failed to complete within 24 hours (after which we killed the process), all
methods ran successfully on all sequences. Moreover, with the exception of protein sequence
Q9HAE3 (with 211 amino acids), all methods achieved the same minimum MFE (Figure 4b.

https://github.com/elkebir-group/derna.git
https://github.com/elkebir-group/derna.git
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Figure 4 DERNA with λ = 1 − ϵ identifies solutions that achieve optimal MFE and
largest CAI as a secondary objective. (a) We used 100 UniProt sequences, with varying lengths
as shown. (b) With one exception (discussed in the text), all methods returned solutions with
the same MFE. (c) However, the CAI values differed drastically between methods, with DERNA
(λ = 1 − ϵ) and LinearDesign outperforming CDSfold. (d) As an example, we show protein sequence
P15421 for which CDSfold (top) and DERNA (bottom) inferred the same MFE and identical
secondary structures. However, the solutions contain different codons resulting in different CAI
values. (e) Wall-clock running times.

However, the CAI values varied between methods. In particular, DERNA with λ = ϵ and
LinearDesign λLD achieved larger CAI values than CDSfold for all instances (Figure 4c
and Figure S1). This makes sense because CDSfold only optimizes MFE but not CAI. The
improved CAI values suggest that the sequences generated using our approach may exhibit
higher in vivo translational efficiency without sacrificing mRNA half-life [16].

To further illustrate this point, we highlight the results for protein sequence P15421
with 78 amino acids. Both CDSfold and DERNA achieved the same MFE value of −148.7,
yielding identical secondary structures (in terms of complementary base pairings) consisting
of mostly stacking elements that achieve the lowest MFE. CDSfold, however, identified a
different RNA sequence than DERNA resulting in a CAI of 0.707 whereas DERNA achieved
a CAI of 0.736. The two RNA sequences differ at four codons encoding four distinct amino
acids. For each such amino acid, DERNA used the codon that achieved the largest CAI value.
For example, for the first codon encoding for the amino acid lysine (K), DERNA used the
codon GUG with a relative usage frequency of 1 whereas CDSfold used the codon GUA with
a smaller relative frequency of 0.253. The other three codons differed in a similar fashion.
We note that LinearDesign identified the same RNA sequence as DERNA for this instance.

As for the CAI values inferred by LinearDesign, these largely match those inferred
by DERNA (Figure 4c and Figure S1). The only exception is protein sequence Q9HAE3
where LinearDesign performed better in terms of CAI with a value of 0.754 vs. 0.748 for
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DERNA. The solution inferred by DERNA, however, has a better MFE of −369.9 vs −369.4
for LinearDesign. Using a smaller λ = 0.062509 < 1 − ϵ, DERNA was able to recover
LinearDesign’s solution. On the other hand, we were not able to identify a λLD value for
which LinearDesign would identify DERNA’s solution that achieved better MFE. A potential
reason for this is that publicly-available version of LinearDesign is not an exact algorithm.

Finally, we consider the running times of CDSfold, LinearDesign and DERNA. Leaving
out the largest instance (for which LinearDesign failed), we found that LinearDesign was
the fastest algorithm with running times ranging from 1.80 to 1149.02 seconds, followed by
CDSfold ranging from 1.86 to 3411.91 seconds and then DERNA with running times ranging
from 16 to 21434 seconds. It is important to note that DERNA is an exact algorithm, while
the publicly-available version of LinearDesign is a heuristic utilizing beam search. Indeed, as
discussed above there was one instance were LinearDesign returned a suboptimal solution
(in terms of the lexicographical objective of prioritizing MFE first followed by CAI).

We note that the difference in running times between DERNA and CDSfold because
DERNA takes into consideration both MFE and CAI whereas CDSfold only considers MFE.
As discussed in Section 3.1.1, leaving out CAI from the objective value reduces the asymptotic
running time from O(m3LK8) to O(m3LK2) where m is the protein sequence length and K

and L are constants corresponding to the maximum number of codons per amino acid and the
maximum interior loop length, respectively. Indeed, this is also reflected in wall-clock times
when running an altered version of DERNA that only considers MFE, reducing the running
times to between 2 and 4951 seconds, closely matching those of LinearDesign (Figure 4e).
As expected, however, this comes at the expense of decreased CAI values for the inferred
RNA sequences (Figure 4c and Figure S1).

4.1.2 Balancing MFE and CAI
We now assess DERNA’s ability to identify Pareto optimal solutions. To that end, we
ran DERNA in λ-sweep mode with a termination threshold value of τ = 0.001. Note
that the number of λ values explored by DERNA depends on both the value of τ as
well as the input instance itself. Unlike our method, LinearDesign does not include an
automated way of altering their λLD parameter. As such, we manually varied λLD ∈
{10−10, 10−3, 0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 100} – we did not set λLD to the same, instance-
specific λ values examined by DERNA as the two parameters play different roles in the
corresponding objective functions of both methods. Due to an increased number of runs per
instance, we restricted our analysis to the 50 smallest instances with lengths ranging from 78
to 494 amino acids.

We begin by discussing the results for protein sequence P15421, which has 78 amino
acids. DERNA examined 27 distinct λ values, leading to 12 distinct solutions (Figure 5a).
On the other hand, the list of 14 λLD values resulted in 9 distinct solutions identified by
LinearDesign. Recall that λ = 1 prioritizes MFE for DERNA whereas λ = 0 prioritizes
CAI. Moreover, recall that each value of λ ∈ [0, 1] leads to a Pareto optimal solution. A
natural question is what is the smallest value λMFE that resulted in the optimal MFE? For
protein sequence P15421 this was λMFE = 0.0371186. Given that τ = 0.001, this means that
DERNA does not explore the part of the Pareto front that contains solutions with higher
CAI values. Indeed, for this protein sequence, the largest non-optimal CAI value identified
by DERNA equals 0.968613, obtained using λ = 0.000987, followed by a CAI of 0.923779
using λ = 0.001963. On the other hand, the largest non-optimal CAI value identified by
LinearDesign equals 0.991, which was obtained using λLD = 10, with a total of 7 solutions
that have a CAI of at least 0.923779. A downside of LinearDesign’s objective function, which
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is of the form MFE(v, P ) − λLD · log CAI(v, w), is that a non-bounded λLD = ∞ is required
to exclusively prioritize CAI as opposed to a bounded value of λ = 1 for DERNA. Here,
LinearDesign obtained this CAI-optimal solution only using λLD = 100.

We now extend these analyses to all 50 protein sequences. First, we observed that the
median value of λMFE – the smallest λ that produces an MFE optimal solution – equals
0.0546964. Second, for τ = 0.001, the median number of λs examined by DERNA is
36 (Figure S2a), yielding a median number of 17 solutions (Figure S2b). On the other
hand, the 14 λLD examined by LinearDesign yielded a median number of 13 solutions
(Figure S2c). To compare MFEs across instances, we define the MFE percentage as
(MFE(w, λ) − MFE(w, 0)/(MFE(w, 1) − MFE(w, 0)) for each protein sequence w where
MFE(w, λ) equals the MFE value of the solution obtained using λ. In other words, an
MFE percentage of 100% means that the identified solution achieved the best possible MFE
whereas an MFE percentage of 0% means that the worst MFE that favors CAI was obtained.
We define CAI percentage similarly. Matching the previous analysis, we indeed see that
DERNA favored the part of the Pareto front that prioritizes MFE (Figure 5b). Conversely,
for our choices of λLD, LinearDesign more heavily favored the part of the Pareto front that
prioritizes CAI (Figure 5c).

Finally, we delve more into the trade-off between CAI and MFE. To that end, we explored
the following two questions. First, if one is willing to accept a certain CAI percentage, what
is the best MFE that one can obtain? Second, for a specified minimum MFE percentage,
what is the best CAI that one can obtain? Among the 50 considered instances, we found that
if we accept solutions with a CAI percentage of at least 50% the corresponding best MFE
percentages for these solutions identified by DERNA range from 81.298% to 92.65% with
a median of 88.066% (Figure 5e). However, increasing the minimum CAI percentage to at
least 80%, resulted in a decrease in best MFE of solutions identified by DERNA, with MFE
percentages ranging from 55.624% to 72.965% with a median of 61.263%. Conversely, for
an MFE percentage of at least 50%, DERNA obtained solutions that have CAI percentages
ranging from 86.403% to 91.386% with a median of 87.874% (Figure 5f). Increasing the
minimum MFE percentage to at least 80%, resulted in a decrease in best CAI of solutions
identified by DERNA, with CAI percentages ranging from 54.443% to 71.362% with a
median of 61.075%. When designing an RNA sequence for a target protein it is important to
understand the trade-off between MFE and CAI, especially when trying to identify a single
solution on the Pareto front.

4.2 Case Study: SARS-CoV-2 Spike Protein
The spike (S) protein on the surface of the SARS-CoV-2 virus is responsible for recognizing
and binding to the host cell’s receptors, as well as merging itself with the host cell membrane,
without which the virus would be unable to interact with the host cells and initiate infection
[10]. The SARS-CoV-2 S protein, with its 1273 amino acids, is therefore the primary target
of the Moderna and Pfizer-BioNTech mRNA vaccines [20].

We applied LinearDesign to the S protein using a list of manually set values for λLD,
specifically λLD ∈ {10−10, 10−3, 0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 100}. LinearDesign generated 14
distinct solutions corresponding to the 14 chosen λ values. Similarly, we ran DERNA on the
S protein with termination threshold τ = 0.0001, ten times smaller than the previous analysis
in Section 4.1.2. DERNA evaluated 76 distinct λ values and generated 56 distinct solutions.
The set of solutions obtained through LinearDesign overlaps with those generated by DERNA
(Figure 6a), with 3 identical solutions identified by both LinearDesign and DERNA.
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Figure 5 DERNA models the trade-off between MFE and CAI. These analyses are
restricted to the 50 smallest UniProt sequences. (a) Solutions identified by DERNA (blue) and
LinearDesign (red) for proteins sequence P15421. The right y-axis shows the MFE whereas the left
y-axis shows the range-normalized MFE percentage. Similarly, the top x-axis shows the CAI wheres
the bottom x-axis shows the range-normalized CAI percentage. (b-d) MFE and CAI percentages
inferred by both methods across all 50 instances. (e) For each instance, we show the best MFE
percentage on the y-axis when only considering solutions that achieve the CAI percentage specified
on the x-axis. (f) For each instance, we show the best CAI percentage on the y-axis when only
considering solutions that achieve the MFE percentage specified on the x-axis.

Finally, we compared DERNA’s solutions to the Pfizer-BioNTech and Moderna mRNA
sequences. The Pfizer-BioNTech mRNA sequence has an MFE of −1217 and a CAI of 0.95
(Figure 6b). For the same CAI value, DERNA identified a solution with a better MFE of
−1955.2 (Figure 6c). On the other hand, the Moderna mRNA sequence has an MFE of
−1369.2 and a CAI of 0.98. Similarly, for the same CAI value, DERNA identified a solution
with a better MFE of −1724.8 These two alternative solutions might lead to increased mRNA
half-life without sacrificing translational efficacy [16, 24]. We note that the overall minimum
MFE equals −2486.7 with a corresponding CAI of 0.737 (Figure S3a), whereas solutions
with overall maximum CAI of 1 lead to a decreased best MFE of −1384.3 (Figure S3b).

5 Discussion

Given a target protein sequence w, we introduced the Pareto Optimal RNA Design
(PORD) problem of identifying a set of Pareto optimal solutions (v, P ) composed of an RNA
sequence v that encodes for w and its corresponding secondary structure P that together
balance the minimum free energy (MFE) and codon adaptation index (CAI). In addition, we
introduced the Balanced RNA Design (BRD) problem, where we additionally take as
input the parameter λ ∈ [0, 1] and return an RNA sequence v whose corresponding secondary
structure P minimizes λ · MFE(v, P ) − (1 − λ) · CAI(v, w). To solve both problems, we
introduced DERNA (DEsign RNA). Building on the work of Zuker and Stiegler [32], DERNA
solves the BRD problem via dynamic programming in O(|w|3) time and O(|w|2) space. In
addition, DERNA solves the PORD problem via the weighted sum method [30], enumerating
the Pareto front by solving multiple distinct instances of the BRD problem via a systematic
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Figure 6 DERNA identifies alternative sequences for the SARS-CoV-2 spike (S)
protein. (a) Solution identified by DERNA (blue) and LinearDesign (red). (b) Secondary structures
of the Pfizer-BioNTech and Moderna mRNA vaccine sequences and alternative solutions provided
by DERNA, from left to right are Pfizer-BioNTech, DERNA with λ = 1.5 · 10−3, Moderna, and
DERNA with λ = 10−4 respectively.

sweep on λ. On a benchmark dataset of 100 protein sequences, we demonstrated that
DERNA obtained solutions with identical MFE but superior CAI compared to CDSfold [23],
a previous approach that only optimizes MFE. Additionally, we showed that DERNA matched
LinearDesign’s performance in terms of solution quality, a recent approach that similarly
seeks to balance MFE and CAI. While LinearDesign demonstrated better performance in
terms of runtime, it is important to note that it employs a parameter-dependent algorithm
that produces heuristic outcomes, whereas DERNA is guaranteed to solve the problem to
optimality. In addition, key functionality of LinearDesign is closed source, whereas DERNA
is fully open source. Finally, we demonstrated our method’s potential for mRNA vaccine
design using SARS-CoV-2 spike as the target protein.

For future development, it would be beneficial to integrate additional secondary structures
beyond the five already considered in the algorithm, such as dangling ends. In particular,
dangling ends allow one to capture the importance of 5’ end in mRNA stability. That is,
several studies have shown that secondary structure near the 5’ untranslated region leads
to decreased translation initiation and therefore decreased translational efficiency [6,25,27].
It will be particularly interesting to identify RNA sequences whose best MFE secondary
structure lacks secondary structure at the 5’ – this will probably require similar techniques
as employed in traditional RNA design where one seeks an RNA sequence that folds into a
desired RNA secondary structure [9,11]. Finally, it will be valuable to investigate computing
the Pareto front through algebraic dynamic programming [21].
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A Supplementary Methods

A.1 Turner Energy Function
In this section, we give detailed definitions for fs, fh, fb, fi and fm based on the
Turner energy model [14]. Let v ∈ Σn

rna be an RNA sequence. Recall that Γ =
{(A, U), (U, A), (G, C), (C, G), (G, U), (U, G)} is the set of allowed base pairings.

We begin with fs, which takes in two base pairings (vi, vj), (vi+1, vj−1) ∈ Γ. Then, fs
computes the free energy contributed by the stacking element as

fs(vivj , vi+1, vj−1) = stacking[(vi, vj)][(vi+1, vj−1)]

where stacking : Γ × Γ → R is a lookup table with experimentally measured element energies.
For the hairpin element, fh takes in the base pairing (vi, vj) ∈ Γ, the unpaired nucleotides

vi+1, vj−1, and the length of the hairpin loop l = j − i. Then, fh yields the free energy
contributed by the hairpin loop as

WABI 2023

https://doi.org/10.1093/nar/15.3.1281
https://doi.org/10.1093/bioinformatics/btv678
https://doi.org/10.1073/pnas.0909910107
https://doi.org/10.1093/nar/gkab764
https://doi.org/10.1016/j.celrep.2016.01.043
https://doi.org/10.1109/TAC.1963.1105511
https://doi.org/10.1038/s41586-023-06127-z
https://doi.org/10.1093/nar/9.1.133


21:18 DERNA: Balancing MFE and CAI for Pareto Optimal RNA Design

fh(vi, vj , vi+1, vj−1, l) = hairpin[l]+mismatchH[(vi, vj ])][vi+1][vj−1]
+1{l = 3 ∧ (vi, vj) ∈ {(A, U), (U, A)}} · D

where hairpin : N → N and mismatchH : Γ × Σrna × Σrna → R are lookup tables with free
energies for the length of the hairpin and paired and their directly adjacent nucleotides,
respectively. Finally, D is an additional penalty term applied to AU base pairings.

For the bulge loop element, fb takes in two base pairings (vi, vj), (vp1 , vq1) ∈ Γ and the
length of the bulge loop l = max (j − i, q1 − p1). The free energy fb contributed by the bulge
loop equals

fb(vi, vj , vp1 , vq1 , l) = bulge[l]+1{(vi, vj) ∈ {(A, U), (U, A)}} · D

+1{(vp1 , vq1) ∈ {(A, U), (U, A)}} · D

where bulge : N → R is a lookup table with free energies for the length of the hairpin, and D

is an additional penalty term applied to AU base pairings.
For the internal loop element, fi takes in takes in two base pairings (vi, vj), (vp1 , vq1) ∈

Γ, the unpaired nucleotides vi+1, vj−1, vp1−1, vq1+1, and the length of the left loop
ll = j − i as well as the length of the right loop lr = q1 − p1. The free energy
fi(vi, vj , vp1 , vq1 , vi+1, vj−1, vp1−1, vq1+1, ll, lr) contributed by the internal loop equals

mismatchI[(vi, vj)][(vp1 , vq1)][vi+1][vj−1][vp1−1][vq1+1] + internal[ll + lr] + |ll − lr| · E

where internal and mismatchI are lookup tables with experimentally measured energies, and
E is a penalty applied to imbalanced loops. Note that the above equation is a simplification
– in the actual implementation the used lookup table mismatchI may vary based on ll and lr.

A.2 Recurrences for Structural Elements
Due to space constraints we omit the precise definitions of the recurrences of the various
structural elements.
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Figure S1 Comparison of CAI values for the benchmark dataset of 100 protein
sequences. We compare CDSfold, DERNA with λ = 1, DERNA with λ = 1 − ϵ and LinearDesign
with λLD = ϵ. (a) DERNA with λ = 1 performs slightly worse than CDSfold in terms of CAI.
However, neither method optimizes for CAI. (b-c) DERNA with λ = 1 − ϵ and LinearDesign achieve
better CAI values than CDSfold. (d) With the exception of one protein sequence (Q9HAE3),
discussed in the main text, LinearDesign and DERNA achieve the same CAI value. For protein
sequence Q9HAE3, LinearDesign achieves a better CAI of 0.754 vs 0.748 for DERNA, but this
comes at the expense of MFE (LinearDesign: −369.4 vs. DERNA: −369.9).

WABI 2023



21:20 DERNA: Balancing MFE and CAI for Pareto Optimal RNA Design

20 25 30 35 40 45 50 55
# unique  values

0

2

4

6

8

10

Co
un

t
a

10 15 20 25 30
# unique DERNA solutions

0

2

4

6

8

10

12

Co
un

t

b

8 9 10 11 12 13 14
# unique LinearDesign solutions

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Co
un

t

c
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solutions by DERNA, and (c) the number of unique solutions by LinearDesign for the
dataset of 50 protein sequences.

Figure S3 DERNA identifies distinct mRNA sequences for SARS-CoV-2 S protein
for (a) λ = ϵ (b) λ = 1 − ϵ.
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Abstract
One of the most fundamental problems in genome rearrangement is the (genomic) distance problem.
It is typically formulated as finding the minimum number of rearrangements under a model that are
needed to transform one genome into the other. A powerful multi-chromosomal model is the Double
Cut and Join (DCJ) model.

While the DCJ model is not able to deal with some situations that occur in practice, like
duplicated or lost regions, it was extended over time to handle these cases. First, it was extended to
the DCJ-indel model, solving the issue of lost markers. Later ILP-solutions for so called natural
genomes, in which each genomic region may occur an arbitrary number of times, were developed,
enabling in theory to solve the distance problem for any pair of genomes. However, some theoretical
and practical issues remained unsolved.

On the theoretical side of things, there exist two disparate views of the DCJ-indel model,
motivated in the same way, but with different conceptualizations that could not be reconciled so far.

On the practical side, while the solutions for natural genomes typically perform well on telomere
to telomere resolved genomes, they have been shown in recent years to quickly loose performance on
genomes with a large number of contigs or linear chromosomes. This has been linked to a particular
technique increasing the solution space superexponentially named capping.

Recently, we introduced a new conceptualization of the DCJ-indel model within the context of
another rearrangement problem. In this manuscript, we will apply this new conceptualization to the
distance problem. In doing this, we uncover the relation between the disparate conceptualizations of
the DCJ-indel model. We are also able to derive an ILP solution to the distance problem that does
not rely on capping and therefore significantly improves upon the performance of previous solutions
for genomes with high numbers of contigs while still solving the problem exactly. To the best of our
knowledge, our approach is the first allowing for an exact computation of the DCJ-indel distance for
natural genomes with large numbers of linear chromosomes.

We demonstrate the performance advantage as well as limitations in comparison to an existing
solution on simulated genomes as well as showing its practical usefulness in an analysis of 11
Drosophila genomes.
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1 Introduction

In genome rearrangement studies, genomes are analyzed on a high level. Most often, the
basic unit used is therefore not nucleotides, but oriented genetic markers, such as genes. The
most fundamental problem in theoretical studies of genome rearrangements is the distance
problem, which asks to provide the minimum number of rearrangements needed to transform
one genome into the other under a restricted set of operations, also called a model.

In early approaches, such as the inversion model [12], solutions to the distance problem
focused primarily on unichromosomal data, in which each marker appeared exactly once in
each genome. These assumptions limited the applications of the models to real biological
data, which often contained multiple chromosomes and a wide variety of marker distributions.
Since then, researchers have sought to enable models to handle more realistic data. A major
breakthrough was the DCJ-model introduced by Yancopoulos et al. in 2005 [18], a simple
model that was nonetheless capable of handling multiple chromosomes. In 2010, Braga,
Willing and Stoye extended the DCJ-model to the DCJ-indel model, enabling it to handle
markers unique to one genome [5]. An independent, equivalent conceptualization of the
same DCJ and indel operations was developed by Compeau in 2012 [7], although the precise
relationship of the two conceptualizations remained unclear [8]. We refer to these views as
the BWS- and Compeau-conceptualization respectively.

In 2020, the BWS-conceptualization was combined with previous results by Shao et al. [17]
in [4] to yield the performant ILP solution ding for genome pairs with arbitrary distributions
of markers, the so called natural genomes. In theory, ding enables the computation of the
rearrangement distance between any pair of genomes available today.

However, ding uses a technique known as capping, which transforms linear chromosomes
into circular ones during solving time. As described in [15], capping increases the solution
space of ILPs like ding super-exponentially in the number of linear chromosomes. Since
many assemblies available today are not resolved on a chromosome level and instead fragment
into sometimes thousands of contigs, this renders distance computation infeasible yet again
for many available genomes today. In [15], Rubert and Braga develop a heuristic solution
to reduce the search space spanned by capping. Nonetheless, no exact solutions for the
DCJ-indel distance problem of natural genomes avoiding capping exist as of yet.

In this work, we apply a new view on the DCJ-indel model developed in [3] to the
distance problem. Using this, we are able to bridge the gap between the BWS- and Compeau
conceptualizations in Section 3.1. Furthermore, this new conceptualization lends itself to a
distance formula which is simple enough to be developed into a capping-free ILP (Section 4),
which we then evaluate in Section 5 to show its performance advantage over ding.

2 Problem Definition

For this work, we use the same notation as in our previous work. Therefore large parts of
this section are adapted from [3]. We conceptualize a genome G as a graph (XG, MG ∪ AG).
Its vertices XG are the beginnings mt and ends mh of markers m := {mt, mh} ∈ MG, which
we refer to as extremities. The genome’s adjacencies AG are undirected edges {mx, ny} ∈ AG,
which signify that the extremities mx and ny are neighboring on the same chromosome. As
a shorthand notation, we write ab for an adjacency {a, b}. Both AG and MG are required to
form a matching on XG.

Because of that requirement, each path in G is simple and alternates between markers
and adjacencies. A component of a genome is thus either a linear or circular simple path.
We refer to them as linear and circular chromosomes respectively. The extremities in which
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Figure 1 Genome of 7 markers with one linear and one circular chromosome. Markers drawn as
arrows, adjacencies drawn as double lines.
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Figure 2 MRD for two genomes on an unresolved homology (≡1) with families {11, 12},

{21, 22, 23}, {31, 32}, {41}, {51}.

a linear chromosome ends are called telomeres. Additionally, we refer to a subpath of a
chromosome of which the first and last edge are markers as a chromosome segment (called a
marker path in [3]). An example of a genome is given in Figure 1.

In our model, each marker is unique, thus there are no markers shared between genomes.
Therefore, in order to calculate a meaningful distance between genomes, we borrow a concept
from biology, namely homology. Homology can be modeled as an equivalence relation on
the markers, i.e. m ≡ n for some m, n ∈ MG. We call the equivalence class [m] of a marker
m its family. We also extend the equivalence relation to the extremities with mt ≡ nt

and mh ≡ nh if and only if m ≡ n, but require no head being equivalent to any tail, i.e.
mt ̸≡ nh∀m, n ∈ MG. We can then extend the equivalence relation to adjacencies as ab ≡ cd

if and only if both of the extremities are equivalent, i.e. a ≡ c ∧ b ≡ d or a ≡ d ∧ b ≡ c.
To illustrate our concept of homology, we introduce the Multi-Relational Diagram (MRD),

a graph data structure here that is also useful for the distance computation. We deviate
from the definition in [4] by omitting indel edges from our definition.

▶ Definition 1. The MRD of two genomes A,B and a homology relation (≡) is a graph
MRD(A,B, ≡) = (V, E) with V = XA ∪ XB and two types of edges E = Eγ ∪ Eξ, namely
adjacency edges Eγ = AA ∪ AB and extremity edges Eξ = {{x, y} ∈ XA × XB | x ≡ y}.

We give an example of a MRD in Figure 2. We see that in that example, 41 and 51
have no homologues in the other genome respectively. We refer to such markers as singular.
Additionally, We call a circular or linear chromosome consisting only of singular markers a
circular or linear singleton.

Note also that the family {21, 22, 23} in this example has more than just one marker
per genome. We call markers of such families ambiguous. We refer to a homology, in
which no markers are ambiguous as resolved. In order to determine the precise nature of
rearrangements occurring between two genomes, it is helpful to find a matching between the
markers of two genomes.

WABI 2023
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Figure 3 MRD for two genomes on a resolved homology (
⋆
≡1) with families {11, 12},

{21, 22}, {23}, {31, 32}, {41}, {51}. Extremities of singular markers (called lava vertices from Section 3
onward) are filled black. (

⋆
≡1) is a (maximal) matching on (≡1) of Figure 2.

▶ Definition 2. A matching ( ⋆≡) on a given homology (≡) is a resolved homology for which
holds m

⋆≡ n =⇒ m ≡ n for any pair of markers m, n.

We call two genomes A,B equal under a homology (≡), if there is a matching ( ⋆≡) on (≡),
such that each marker and adjacency of A has one equivalent in B under ⋆≡ and vice versa.

We note that when the homology is resolved, in the MRD at most one extremity edge
connects to each vertex. Because the adjacencies form a matching on the extremities, the
resulting MRD consists of only simple cycles and paths. We therefore call such MRDs simple.
We note that a simple MRD fits the definition of a simple rearrangement graph as studied in
Section 3 of [3]. An example of a simple MRD is given in Figure 3.

Rearrangements in our transformation distance are modeled by the Double-Cut-And-Join
(DCJ) operation. A DCJ operation applies up to two cuts in the genome and reconnects the
incident extremities or telomeres. More formally, we can write as in [2]:

▶ Definition 3. A DCJ operation transforms up to two the adjacencies ab, cd ∈ AA or
telomeres s, t of genome A in one of the following ways:

ab, cd → ac, bd or ab, cd → ad, bc

ab, s → as, b or ab, s → bs, a

ab → a, b

s, t → st

To model markers being gained or lost, we introduce segmental insertions and deletions.

▶ Definition 4. An insertion of length k transforms a genome A into A′ by adding a chro-
mosome segment p = p1, p2, ..., p2k−1p2k to the genome. Note that this adds the markers
(p1, p2), ..., (p2k−1, p2k) ∈ MA′ . An insertion may additionally either add the adjacency
p2kp1 ∈ AA′ , apply the transformation ab → ap1, p2kb for an adjacency ab or the transform-
ation s → p1s for a telomere s. A deletion of length k removes the chromosome segment
p = p1, ..., p2k and creates the adjacency ab if previously ap1, p2kb ∈ AA.

We are now in a position to formulate the distance problem as finding a shortest trans-
formation of DCJ and indel operations of one genome into the other.

▶ Problem 5. Given two genomes, A,B and a homology (≡), find a shortest sequence
s1, ..., sk of DCJ and indel-operations transforming A into a genome equal to B. We call the
length of k the DCJ-indel distance of A,B under (≡) and write did

DCJ(A,B, ≡) = k.

The original DCJ-indel model by Braga et al. [6] only allowed indels on chromosome seg-
ments of singular markers to avoid scenarios that deleted and reinserted whole chromosomes.
For a resolved homology ⋆≡, we call did

DCJ(A,B,
⋆≡) the restricted DCJ-indel distance if we

allow only indels of segments comprised solely of singular markers in scenarios in Problem 5.
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Figure 4 All different types of components in a simple MRD. Vertices of genome A are on the
top, vertices of genome B are on the bottom of each component. Lava vertices are filled black.

For unresolved homologies, we can apply the same model by just finding a matching
on the original homology. However, in order to not create a similar “free lunch” issue, we
restrict ourselves to an established model, the Maximum Matching model [11]. We call a
matching (+≡) on a homology (≡) maximal if it has at most one singular marker for every
family in (≡).

▶ Problem 6. Given two genomes, A,B and a homology (≡), find a maximal matching (+≡)
on (≡), such that did

DCJ(A,B,
+≡) is minimized.

3 A New DCJ-Indel Distance Formula

We note that the only maximal matching on a resolved homology ( ⋆≡) is ( ⋆≡) itself. Thus, for
resolved homologies, in any scenario for Problem 6, we know deletions can only affect singular
markers. Let us now regard the MRD of a pair of genomes A,B for a resolved homology
( ⋆≡). Since each marker has at most one homologue, each vertex is connected to at most one
extremity edge. Since adjacency edges form a matching on the vertices, again, the graph
consists only of simple cycles and paths. All cycles are even and we write the set of cycles as
C◦. Paths can end either in a vertex without an extremity edge or adjacency edge. We name
the vertices, in which a path ends in its endpoints. Vertices without extremity edges are
special, because, as we established earlier, they are the extremities of the markers that will
be part of indels during the sorting. We therefore name them lava vertices. The other type
of vertex is a vertex without an adjacent adjacency edge, i.e. a telomere. Note that there is a
special case wherein a lava vertex can also be a telomere. We can then identify different types
of paths by their endpoints. We write a or b for a lava vertex and A or B for a telomere,
depending on whether its part of genome A or B. We then obtain a partition of paths into 10
different subsets, namely PA◦A,PA|B ,PB◦B ,PA◦a,PA|b,PB|a,PB◦b,Pa◦a,Pa|b,Pb◦b. In order
to be consistent with [3], we use ◦ and | to distinguish even and odd paths respectively.
Furthermore, we write px(∗)y as a shorthand for the cardinality of Px(∗)y and Px(∗)y for a
generic example of an element of Px(∗)y.

Usually it is not necessary to think of all 10 different sets as separate entities, because
they behave very similarly with respect to applied DCJ or indel operations. In textual form
we therefore often use a coarser distinction, naming paths with two lava vertices as pontoons,
paths with a telomere and a lava vertex as piers as well as paths with two telomeres as
viaducts. An overview of this notation is given in Figure 4.

Another notation, we adopt from [3] is for a DCJ ab, cd → ac, bd affecting the adjacencies
ab and cd in components Kab, Kcd of the MRD respectively, we can instead view the DCJ as
Kab, Kcd → Kac, Kbd transforming the components Kab, Kcd into Kac, Kbd. In combination

WABI 2023
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Figure 5 An example of a DCJ operation that can be written as PA◦a, PB|a → PA|B , Pa◦a.

with the generic member notation from above, we can write operations abstractly like so:
PA◦a, PB|a → PA|B , Pa◦a. For reference, we have also shown this DCJ operation in Figure 5.
Based on this notation and with the help of observations from [3], it is possible to derive a
distance formula. We do so in detail in Supplement S.1. However, this formula is equivalent
to that of Compeau and BWS as we will see in the following subsection. We thus only state
it here.

▶ Theorem 7. For two genomes A,B and a resolved homology ( ⋆≡) for which both genomes
contain no circular singletons, we have the distance formula

did
DCJ(A,B,

⋆≡) = n − c◦ +
⌈

pa|b + max(pA◦a, pB|a) + max(pA|b, pB◦b) − pA|B

2

⌉
with n the number of matched markers, n = |{(m, n) ∈ MA × MB | m

⋆≡ n}|.

Note that the constraint to genomes without circular singletons constitutes no serious
restriction, as Compeau showed that circular singletons each require one indel operation and
can thus be dealt with in pre-processing [8].

To more easily address individual terms in the formula, we use the followig shorthands,

F := n − c◦ + P̃ := n − c◦ +
⌈

p̃

2

⌉
:= n − c◦ +

⌈
pa|b + max(pA◦a, pB|a) + max(pA|b, pB◦b) − pA|B

2

⌉
.

3.1 Relation of the BWS- and Compeau-Conceptualization
We now examine how the terms in our distance formula relate to both the Compeau- and
BWS-conceptualizations of the DCJ-indel model. In doing that, we uncover the nature of
the relation between these two views that have been perceived as entirely separate since their
conception [8].

Braga et al. [6] and Compeau [8] use the adjacency and breakpoint graphs respectively.
Both graphs are strongly related to the MRD. In fact, one obtains the adjacency graph by
collapsing all adjacency edges of a simple MRD and the breakpoint graph by collapsing all
its extremity edges. In order to avoid confusion, we will present their results here as if they
had been formulated on a simple MRD. When consulting the original works in [6, 8], the
reader should keep this in mind. Particularly in [8] the length of a path is determined by
its adjacency edges instead of by its extremity edges as defined here. Therefore, parities of
viaducts and pontoons are exactly opposite in [8] to the ones stated here.

We will compare the models by examining the chromosome segments that are deleted
or inserted (see Definition 4), which we refer to as indel groups. We say an adjacency ab

or its extremities a, b are part of an indel group p if there is a′b′ ≡ ab with a′b′ ∈ p or p

starts and ends in a′ and b′. In terms of indel groups, our view is closely related to the
BWS-conceptualization, because both create the indel groups implicitly during sorting (see
Supplement S.1). In terms of the graph, our conceptualization is more closely related to



L. Bohnenkämper 22:7

Bracelets Chains

Figure 6 Components resulting from a completion as in [8]. Vertices and Edges added during
completion are colored in grey.

Figure 7 Path as found in [4] as another way of writing the paths in [6] by adding indel edges
between lava vertices of the same gene. Indel edges here drawn in dashed. In this work, indel edges
are omitted and the collection of components arising is called a bridge.

Compeau’s because it essentially operates on the same type of components (lava vertices are
called open in [8], piers are π- and γ-paths and pontoons are {π, π}-, {π, γ}- and {γ, γ}-paths).
However, in [8], indels are not modeled as an explicit operation, but instead emulated by
integrating or excising artificial circular chromosomes during sorting. Adding the correct
chromosomes, the completion, is therefore the main problem solved in [8]. These additional
chromosomes are then the explicitly constructed indel groups in the sorting. Because the
homology of the markers needed for the completion is already known beforehand on a resolved
homology, the task is to find the correct new adjacencies to add to the graph. Then, if an
adjacency a′b′ is found in the completion, the extremities a ≡ a′, b ≡ b′ of the originally
singular markers will be part of the same indel group. Once the completion is constructed,
there are no more lava vertices in the graph. Instead, former piers and pontoons are joined
into new components, either bracelets, which are circular and consist of pontoons only, or
chains, which consist of two piers and possibly pontoons. An example of a completion can
be found in Figure 6.

In [6], lava vertices are avoided by viewing singular markers as part of adjacencies of
matched markers, called G-adjacencies. This is equivalent to connecting the head and tail
vertex of a singular marker with a special type of edge, called indel edge as is done in [4]. We
call a collection of components that can be traversed as one once indel edges are introduced a
crossing. We distinguish between circular crossings called ferries and linear crossings called
bridges.

▶ Definition 8. A pontoon bridge b1, .., bk for k ≥ 2 is a string of components bi, such that
b1, bk are piers, (bi)k−1

i=2 are pontoons and there are singular markers (mi)k−1
i=1 with mi ≠ mj

for i ̸= j whose extremities are contained as lava vertex in bi, bi+1 for all mi. A string of
components is called a bridge if it is a pontoon bridge or consists of a single viaduct.

▶ Definition 9. A pontoon ferry f1, ..., fl for l ≥ 1 is a string of pontoons fi, such that here
are singular markers (mi)l

i=1 with mi ̸= mj for i ≠ j whose extremities are contained as lava
vertices in fi, fi+1 for all mi for i < l and the extremities of ml are contained in f1 and fl.
A string of components is called a ferry if it is a pontoon ferry or consists of a single cycle.

Ferries and bridges are cycles and paths in [6] respectively. An example of a bridge can be
found in Figure 7. Crossings are first sorted separately in [6], so we start our comparison
by doing the same. We thus aim to find internal operations that only involve components
of the same crossing. During sorting, we want to make sure that the operations we apply
are not only optimal in the context of the crossing, but in the graph as a whole. There are

WABI 2023
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Figure 8 Safe DCJ operations accumulating markers separated by even pontoons (in [6] called a
run) remain optimal in the safe bracelet joining the extremities of these markers.

certain operations that are guaranteed to be optimal because they reduce F in any MRD
by 1, no matter which other components are found in the graph. We call such an operation
safe. For example, extracting a cycle from any component is safe (as ∆c◦ = 1), whereas
recombining two even piers, such as PA◦a, PA◦a → PA◦A, Pa◦a is not safe, because it is only
optimal under the premise that pA◦a > pB|a. There are only 7 distinct types of safe DCJ
operations. We list them in Table 1. We also note that as in [6], instead of sorting A to B,
we can sort both A and B to a common genome. By thinking this way, we can better exploit
the symmetry of the situation.

Table 1 All safe types of DCJ operations. Each reduces the F by 1, no matter the number
of other components in the graph. Above are all safe operations in a pure DCJ scenario. The
operations below can also function as safe deletions if one of the resultants in brackets is removed.
For reference: F = n − c◦ +

⌈
(pa|b + max(pA◦a, pB|a) + max(pA|b, pB◦b) − pA|B)/2

⌉
.

Safe operation −∆c◦ ∆pa|b ∆ max(pA◦a, pB|a) ∆ max(pA|b, pB◦b) −∆pA|B

K → K′ + C◦ -1 0 0 0 0
PA◦A → PA|B , PA|B 0 0 0 0 -2
PB◦B → PA|B , PA|B 0 0 0 0 -2

PA◦A, PB◦B → PA|B , PA|B 0 0 0 0 -2
Pa|b, Pa|b → (Pa◦a)∗, (Pb◦b)∗ 0 -2 0 0 0
PA◦a, PB|a → PA|B , (Pa◦a)∗ 0 0 -1 0 -1
PA|b, PB◦b → PA|B , (Pb◦b)∗ 0 0 0 -1 -1

The most obvious safe operation is the extraction of an even cycle from another component.
If one continues to extract even cycles from an even pontoon p = x1...xk, one arrives at the
pontoon p′ = x1xk, which consists of a single adjacency. The corresponding markers can
then be dealt with with the same indel operation, meaning x1, xk are part of the same indel
group. Braga et al. notice the same thing in [6]; they refer to markers that are only separated
by even pontoons as a run, which they notice can be “accumulated” in this fashion. For
an extensive example, see Figure S.2.1 in Supplement S.2, Steps (a), (b). In [8], genomes
are not explicitly sorted, so there is no true equivalent to safe operations, but Compeau
systematically finds chains and bracelets he can be sure are optimal in any breakpoint graph
(Algorithm 9, Steps 1 to 3). We therefore call these chains and bracelets safe, too. In fact,
the very first safe bracelet Compeau identifies, is a 1-bracelet consisting of a single even
pontoon (Lemma 5 in [8]). If one creates this bracelet from the even pontoon p = x1...xk

the adjacency added for the completion is x′
1x′

k with x1 ≡ x′
1 and xk ≡ x′

k. Thus, here
too, x1xk are part of the same indel group. This way of constructing the indel groups is
shown in Supplement S.2, Figure S.2.2 with Bracelets (a), (b). Notice also that the safe
operations sorting the two adjacent lava vertices of an even pontoon together remain optimal
in a bracelet like this (see Figure 8).

The next safe bracelet Compeau finds, is joining two odd pontoons together. He shows
that it is safe by ruling out all other uses of two pontoons as at best co-optimal (Lemma 6,
Proof of Thm 8 and Step 2 of Algorithm 9 in [8]). An example can be found as Bracelet (c) of
Figure S.2.2. This again, corresponds to a safe operation, namely Pa|b, Pa|b → Pa◦a, Pb◦b. In
fact, all safe chains and bracelets of two components correspond directly to safe operations. We
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Figure 9 For all safe DCJ operations with two piers or pontoons as sources, there is a safe
bracelet or chain in which the same operation is optimal and vice versa.

have visualized this fact in Figure 9. Note that the corresponding safe operation again remains
optimal in the safe chain or bracelet. Because of this more direct correspondence between the
Compeau-conceptualization and our formula, we focus more on the correspondence between
the BWS-conceptualization and our formula in the following. Braga et al. identify the same
operation by noticing that the number of runs can be reduced by 2 if one applies cuts in
between between runs of A and B (see Proposition 3 in [6]). This is of course precisely a DCJ
with two odd pontoons as sources in our model. Because the resultants of this operation
are the two even pontoons Pa◦a, Pb◦b, these can in turn be reduced to single adjacencies by
excising even cycles. Again, the implication for indel groups in all models is that for two odd
pontoons p1 = a1x1, ..., xkb1, p2 = a2xk+1, ..., xlb2, the adjacency a1a2 can be part of the
same indel group if b1b2 is part of the same indel group and vice versa. This equivalence is
further illustrated by comparing the effects of Steps (c) and (d) of Figure S.2.1 to Bracelet (c)
of Figure S.2.2 of Supplement S.2.

Dealing in this fashion with all pontoons of a crossing, we reduce all but possibly one odd
pontoon to single adjacency edges, which can then be dealt with in a single indel operation.
Because ferries must contain an even number of odd pontoons, they can be sorted entirely
by safe operations in this way. To quantify the number of operations needed, Braga et al.
define the indel potential λ(X) of a crossing X as the number of indel operations obtained
in a DCJ-optimal sorting [6]. Since it is possible to trade off indel and DCJ operations,
this definition is not easily reflected in the other conceptualizations. However, as they show
that sorting a crossing X separately needs did

DCJ (X) = dDCJ (X) + λ(X) steps, we can also
think of the indel potential as the overhead introduced by the singular markers if we sort the
crossing separately. In [6], it is shown that λ(X) =

⌈
Λ(X)+1

2

⌉
with Λ(X) the number of runs

for a crossing X. If a ferry contains at least two runs, we can find a bijection between runs
and odd pontoons. Denoting q(X) as the contribution to quantity q by crossing X. We can
thus write Λ(X) = pa|b(X) for a ferry with at least two runs. Therefore, we find for a ferry
X with at least two runs, their formula translates to ours,

n(X) − c(X) + λ(X) = n(X) − c(X) +
⌈

Λ(X) + 1
2

⌉
= n(X) − 1 + Λ(X) + 2

2 = n(X) + Λ(X)
2 = n(X) +

⌈
pa|b(X)

2

⌉
.

Similarly, this equivalence can be shown if there is only 1 run in X. By the Compeau method,
if there are d singular markers, d markers are added as part of completion chromosomes, so
the number of markers after completion is N = n + d. Meanwhile, each Pa◦a and Pb◦b creates
a bracelet. Each pair Pa|b, Pa|b also forms a bracelet. Since d = pa|b + pa◦a + pb◦b, we have
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n(X) +
⌈

pa|b(X)
2

⌉
= n(X) +

pa|b(X)
2 = n(X) −

pa|b(X)
2 + pa|b(X)

= n(X) + d(X) −
pa|b(X)

2 − pa◦a(X) − pb◦b(X)

= N(X) − (pπ,π(X) + pγ,γ(X) +
⌊

pπ,γ(X)
2

⌋
),

which is precisely the Compeau formula if no piers or viaducts are involved. We see that our
formula acts as a sort of missing link between the two other formulas here. Since ferries can
be dealt with entirely with internal safe operations, this formula can even be generalized to
the whole graph for circular genomes. In fact, this has been done in [4], yielding our formula
for this specific case.

Using this way of examining the contribution of individual crossings, we were also able
to re-calculate the indel potential with our formula for all 10 types of bridges in [6]. The
results can be found in Table S.2.1 of Supplement S.2. Notably, when sorting a bridge
independently, one can also first exhaust all safe operations. After this, only the piers and
possibly a single odd pontoon might be “left over” (see also Figure S.2.1 after Step (d)).
We call these components unsaturated. Since each safe operation also has a corresponding
safe chain or bracelet, these are also the only components, which end up in unsafe chains
if one restricts the completion to a single crossing (compare to Figure S.2.2). Since every
other component can be dealt with safe operations, unsaturated components are the only
ones that might have to be involved in what is called in [6] a (path) recombination, that is,
a DCJ operation going beyond a single crossing. When studying recombinations, we can
therefore abstract from any concrete bridge p = p1, ..., pk with piers p1, pk and only write it
as its unsaturated components, that is p1pk if p contains an even number of odd pontoons
or as p1Pa|bpk otherwise. We call this the reduced bridge. Interestingly, Braga et al. make
the same abstraction and identify the bridges by the genome of their telomeres and the
genome of the first and last run. This direct correspondence is illustrated by comparing
Columns 1 and 4 of Table S.2.1. In [6], another observation is that (reduced) bridges of
the type PA|b, PB◦b or PA◦a, PB|a never need to appear as sources for any recombination.
Using our conceptualization, we can confirm that because PA|b, PB◦b → PA|B , Pb◦b and
PA◦a, PB|a → PA|B , Pa◦a are safe operations, these types of bridges can be sorted entirely by
internal safe operations. It therefore makes sense to group them as in [6] with viaducts, the
other type of bridge that can be sorted in this way.

All other bridges might need recombinations to be sorted optimally. If there is a safe
operation between the components of two bridges, we know that this recombination must
be optimal. In fact, if we only regard unsaturated components, we see that the only
remaining safe operations are (i) PA◦a, PB|a → PA|B , Pa◦a, (ii) PA|b, PB◦b → PA|B , Pb◦b and
(iii) Pa|b, Pa|b → Pa◦a, Pb◦b. We know (either by combinatorics or Table S.2.1) that each
source of (i) and (ii) appears in 3 types of (reduced) bridges and thus there are 3 × 3 = 9
path recombinations facilitated by each of these two safe operations. For (iii), we have 4
types of (reduced) bridges containing Pa|b and thus

(4
1
)

+
(4

2
)

= 10 path recombinations using
this operation. Of course, these are not mutually exclusive, but since Operations (i) and (ii)
involve the end of a bridge and one of its resultants is a viaduct, we can always choose to
do one of these operations first, upon which all other possible safe operations on piers and
pontoons will be in the same component and will not require any further recombinations.
In [6] all of these recombinations are catalogued. We were able to confirm this by recreating
their tables of recombinations with ∆d ≤ 0 as Table S.2.2 of Supplement S.2. It is easily
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checked that (i) and (ii) each occur 9 and (iii) occurs 10 times. The unsaturated components
after the operation in these cases form precisely those bridges listed in [6] as the resultant(s).
The precise difference for the distance as opposed to sorting the crossing separately can then
be derived by comparing the term P̃ in our formula on the graphs containing each bridge
separately and on a graph containing the union of the two bridges (see Table S.2.2 Columns 3,
6, 9, 10). In summary, we can see that in all but two cases, the DCJ chosen to recombine the
bridges in [6] is safe and the resultants are exactly comprised of the unsaturated components
after the operation.

The two exceptions are the recombinations of PA◦a, PA◦a with PB◦b, PB◦b and PA|a, PA|b
with PB|a, PB|a (marked with ⋆ in the table). In these cases, there is no safe operation and
therefore all piers remain unsaturated. The reason this recombination can still be done in some
cases is that an unsafe operation like PA◦a, PB◦b → PA|B , Pa|b in this specific case reduces F

by one, but since there are equally optimal internal operations (i.e. PA◦a, PA◦a → PA◦A, Pa◦a)
in this case, this recombination actually never has to be used. The only task remaining is then
to find a sequence of recombinations that improve upon the distance. Braga et al. give this
as their recombination groups. We have listed these groups in Table S.2.3 of Supplement S.2.
The first observation is that by exhausting all safe DCJ operations in a recombination group,
we are able to create the unsaturated components of what are called in [6] reusable resultants.
In combination with our observations about pairwise recombinations, we thus know that
all recombinations in the groups can be facilitated purely by safe DCJs. We also see that
in many cases, after sorting a group, no further unsaturated components are present. In
the other cases, Braga et al. make sure that all partners of the unsaturated components
are “used up” in earlier recombinations of the table (see last column) such that the unsafe
operations sorting the unsaturated components are still optimal.

4 Capping-free Generalization to Natural Genomes

In this section, we describe briefly how to generalize the distance formula presented as
Theorem 7 into an ILP for which no capping of the MRD is required. For reference, the full
ILP is given in Appendix A as Algorithm 1. The ILP works by determining a matching on
the markers as described in Problem 6. The basic framework (Constraints C.01 to C.06)
is the same as for ding [4] and the ILP by Shao et al. [17]: Variable x is used to indicate
whether or not an edge is part of the matching and zv marks the vertex v with the lowest
index ix(v) in its component. We also adopt the way circular singletons are dealt with
in [4] as Constraint C.18. The only major change we make w.r.t. [4] in Constraints C.01
to C.06 is the addition of Constraint C.02, where we allow for different matching models
than the maximum matching model by specifying an upper (Uf ) and lower bound (Lf ) for
the number of markers to be matched per family f . Specifications for how to set these
bounds to achieve the maximum matching model and other popular models can be found in
Table 2 of Appendix A. Another minor change is that we have a variable dg(u) indicating
whether a gene g(u) of an extremity u is to be singular instead of indel edges as in [4].

To distinguish different types of paths, we use binary variables to track endpoints, namely
na

v , nb
v, nA

v , nB
v as well as ma

v , mb
v, mA

v , mB
v for each vertex v. A variable ni

v is used to represent
the sub-path starting with the adjacency edge at v ending in i ∈ {A, B, a, b} while the mi

v

does the same, just for the sub-path starting with the extremity edge at v. We set these
variables accordingly at the end of a path (see Constraints C.07, C.08). We also require
only one of the variables be set per vertex (C.09). The variables are then required to be the
same if their respective vertices are connected by the respective edge (see Constraint C.10),
“passing” the label through the edge. Lastly, we require the m and n variables of a vertex
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to be equal unless that vertex is labeled by zv, i.e. it has the smallest identifier in the
component (C.11). If zv is set, we then report the component type based on the adjacent
sub-paths in rij

v if the sub-paths have the correct labels mi
v and nj

v (or mj
v and ni

v) set
(Constraints C.13, C.14). We reserve the special case mi

v = 0∀i ∧ nj
v = 0∀j for cycles and

report cycles via rc
v in these constraints. The remaining constraints deal with applying the

maximization function (C.15, C.16) for p̃ and calculating P̃ as variable q (C.17).
As an additional optimization, we set m variables to 0 in those components of the MRD

that have either no telomere or indels of a given type in Constraint C.19.

5 Evaluation of the ILP

We implemented the ILP described in the previous section and made it publicly available here:
https://gitlab.ub.uni-bielefeld.de/gi/ding-cf. We refer to this implementation as
ding-cf for the rest of this work.

In this section, we show results of applying the ILP to both simulated and real data and
comparing its performance to the python3 version of ding [4], namely dingII, a similar ILP
solution to the DCJ-indel distance problem for natural genomes. In contrast to ding-cf,
dingII uses the capping technique.

We first test the ILPs on simulated data in Subsection 5.1 before demonstrating the
practical usefulness of rearrangement analyses even on contig level resolved genomes by
analysing 11 Drosophila genomes in Subsection 5.2.

5.1 Performance Evaluation on Simulated Data
We initially planned to use the simulation script that comes with dingII, but due to
the script regularly encountering stack overflows on large genomes owing to its reliance
on recursion, we instead re-implemented it in C++. This implementation is available at
https://gitlab.ub.uni-bielefeld.de/gi/ffs-dcj.

The re-implementation has the same features as the original script with only two minor
changes. Firstly, instead of the number of DCJ-operations to be performed being passed to
the script with additional numbers of other operations (insertions, deletions and duplications)
being randomly performed according to rate parameters, our simulation takes a fixed number
of total operations and distributes them according to rates relative to a rate of 1 for DCJ
operations. Secondly, our simulation is not yet able to simulate arbitrary trees, but instead
only simulates the topology (A,B);, which was used in [4]. For more detail on the simulation,
the interested reader is referred to the description of the original simulation script in [4].

In our experiments, we simulated two genomes from a common root for each sample. In
all experiments, we set the length of the root genomes to 20,000 markers and performed
10,000 operations in total, with an insertion rate of 0.1 and an deletion rate of 0.2 unless
specified otherwise. For reference, this amounts to 5882 DCJ operations in expectation for
a duplication rate of 0.4 to compare to experiments run with the python script of dingII.
The shape parameter for the Zipf distribution was set to 4 for indel lengths and to 6 for
duplication lengths. In all experiments, we used gurobi10.0 on a single thread on an AMD
EPYC 7452 Processor to solve the ILPs, limiting its runtime to 1h (3600s). Both experiments
were designed to test parameters to which ILPs like ding have been shown to be sensitive.

In our first experiment, we increased the duplication rate in steps of 0.1 from 0.1 to 1.1,
generating 10 genome pairs from a root genome with 1 linear chromosome per step. We then
created the ILPs for dingII and ding-cf. The number of ambiguous families ranged from
615 to 2760 (median 2708) in this experiment with the maximum family size per sample
reaching up to 7 markers.

https://gitlab.ub.uni-bielefeld.de/gi/ding-cf
https://gitlab.ub.uni-bielefeld.de/gi/ffs-dcj
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(a) (b)

Figure 10 Runtimes for dingII and ding-cf for genomes simulated in 10,000 steps from a
common root, in (a) increasing the duplication rate in steps of 0.1 from 0.1 to 1.1, in (b) increasing
the number of linear chromosomes in the root genome progressively from 10 to 50 to 100, 200 and
300.

(a) (b)

Figure 11 Runtimes for dingII and ding-cf for genomes simulated in 10,000 steps from a
common root increasing the duplication rate in steps of 0.1 from 0.1 to 1.1 with (a) 100 total linear
chromosomes and (b) 200 total linear chromosomes on average per sample pair.

We show the results in runtimes of gurobi10.0 in Figure 10 (a). We see clearly that
dingII has a performance advantage over ding-cf as long as the number of linear chromo-
somes is low. This is not surprising as dingII works in a very similar manner to ding-cf,
but with fewer variables because it only needs to identify odd pontoons due to capping trans-
forming other types of paths to pontoons and cycles. However, we see that the performance
loss is not dramatic, staying well within a few minutes of solving time for this experiment.
Nonetheless, the expected exponential increase in runtimes of ding-cf happens earlier than
the one demonstrated for ding in [4]. We were able to further verify that on genomes with
few linear chromosomes, ding-cf behaves similarly to ding for varying different parameters
but having worse performance overall in Supplement S.3.

To test the actual use case for ding-cf, that is, high numbers of linear chromosomes, we
increased the number of linear chromosomes in the root genome progressively from 10 to 50
to 100, 200 and 300 chromosomes with a fixed duplication rate of 0.4 and 10 samples per
step. The runtimes are shown in Figure 10. We see that up to 100 linear chromosomes in the
simulated pair of genomes, dingII on average outperforms ding-cf, but its runtime rises
exponentially until the majority of the dingII ILPs are not solved within an hour of solving
time. Meanwhile, the runtimes of ding-cf are stable throughout the experiments, staying
below 100 seconds in each case.
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Figure 12 Runtimes for ding-cf for genomes simulated from a root with 500 to 2000 chromosomes
in steps of 250.

In order to test the composite effect of the number of duplicates and the number of linear
chromosomes on solving times, we repeated the first experiment (Figure 10 (a)) with 50 and
100 linear chromosomes at the root genome, resulting in total numbers of about 100 and 200
linear chromosomes for each pair. The results (shown in Figure 11) indicate that both ILPs
react strongly to the combined effect for the first increase to 100 linear chromosomes with
dingII still outperforming ding-cf on these samples whereas the second increase to 200
only has a minor effect on ding-cf while for dingII many of the pairs with high duplicate
numbers become unsolvable within an hour.

To confirm that the number of linear chromosomes alone only plays a minor part in the
runtime of ding-cf, we ran another experiment, this time keeping the duplication rate fixed
at 0.4 and increasing the number of linear chromosomes in the root genome from 500 to
2000 in steps of 250 with 10 samples per step. The runtimes are given in Figure 12 and
exhibit only a minor, linear increase. In fact, the increase is so slow that even for 2000 linear
chromosomes at the root (c.a. 4000 linear chromosomes of the pair in total), the runtime is
still below 100 seconds for all 10 samples.

5.2 Analysis of Drosophila Genomes

We obtained 11 assemblies of species in the Drosophila genus previously analyzed by Rubert
and Braga [15]. We used FFGC to extract the longest transcript of each locus and ran
OrthoFinder version 2.3.7 [10] to obtain orthologous groups. We then translated the
genomes into unimog files using the orthogroups as families and translating linear contigs into
linear chromosomes. We then filtered out any empty chromosomes. The genomes obtained
in this fashion comprised 13,143 markers spread on 97 linear chromosomes on average. More
detailed statistics about the genomes after this preprocessing step are listed in Table S.4.1 of
Supplement S.4.

We then used ding-cf to calculate pairwise distances, running gurobi10.0 on a single
thread on an AMD EPYC 7452 Processor for 24 hours. Of the 55 resulting ILPs, we obtained
an exact result for 9 and approximate results for 45, all of which deviated at less than 2% from
the exact solution. Only one run, namely D. melanogaster vs D. willistoni did not yield any
result within 24 hours. We therefore re-ran the solver on this ILP, this time using 15 threads
and a time limit of 20 hours. In this run, an approximate solution with 0.48% gap was found.
We give the distance data obtained in this manner in Table S.4.3 and detailed performance
results in Table S.4.2 of Supplement S.4. Additionally we performed an experiment with the
same parameters with the dingII ILP. Table S.4.2 shows that even though this dataset is
not extremely fragmented, ding-cf outperforms dingII on the majority of samples.
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D. ananassae

D. grimshawi

D. mojavensis

D. virilis

D. willistoni

D. persimilis

D. erecta

D. melanogaster
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D. simulans

D. yakuba

1000.0

Figure 13 Neighbor joining tree inferred from the distances in Table S.4.3 using SplitsTree4.
Edge lengths are drawn proportional to their weight. The absolute edge lengths can be found in
Supplement S.4.

Phylogenetic Analysis. We proceeded to construct a phylogenetic tree via Neighbor Joining
using SplitsTree4 [13]. The tree, shown in Figure 13, is entirely consistent with the current
state of knowledge about the Drosophila phylogeny. Additionally, the phylogenetic signal
in the distance data is remarkably strong. To demonstrate this fact, we calculated the
distance matrix for the path metric of the tree and compared it to the distances calculated
by ding-cf. On average, the tree path metric deviates only by 0.53% per entry from
the distances calculated by ding-cf with the largest relative difference being 2.2% for the
distance of D. melanogaster and D. simulans. For reference, we give the full distance matrix
of the path metric in Table S.4.4 of Supplement S.4. We were able to further confirm this
strong correspondence between the tree and the distance data via a split decomposition with
SplitsTree4 in Supplement S.4.1 [1, 13]. Overall, judging from these experiments, ding-cf
looks promising as a distance measure for phylogenetic analyses.

However, we want to draw the reader’s attention to one possible pitfall of our method as
a phylogenetic tool, namely that the fragmentation of the genome itself appears as a signal in
the distance data. To emphasize this, let us pose a hypothetical extreme example: Consider
a comparison between two assemblies A,B with n markers each, with a matching between
all markers of A and B. Suppose A is fully assembled into one chromosome and B fragments
into n contigs of one marker. No matter the actual structure of the underlying (true) genome
of B, the DCJ distance between the assemblies A and B is always n − 1. The size of this
effect for practical levels of fragmentation needs to be investigated, particularly whether
these problems could be exacerbated by biases in the assembly method used to arrive at the
studied pair of genomes, such as might be the case for comparative assembly strategies.

Detecting Synteny. We extracted the matchings from the ILP solutions calculated by
gurobi and plotted them with Circos [14]. We show the matching between D. virilis and
D. mojavensis in Figure 14 as compared to just the marker matches identified by OrthoFinder.
The plots for all other pairs can be found in Supplement S.4.2. We see that even though
there are some big rearrangements, such as inversions and transpositions as indicated by the
arcs as well as an abundance of duplicates, the calculated matching identifies large syntenic
blocks, sometimes even matching the majority of markers of whole contigs to each other.

Moreover, for many of the smaller contigs all markers are matched to markers of exactly
one large contig of the other species. Matchings like this could therefore possibly be used to
aid in improving very fragmented assemblies, given a sufficiently closely related and resolved
reference genome.
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Figure 14 Circos plots for Contigs of D. virilis (red segments) and D. mojavensis (blue segments).
Blue arcs show common markers with the same direction, purple arcs show common markers with
different directions. On the left: before matching. On the right: after matching with ding-cf.

6 Conclusion

We presented a new, simpler distance formula for the DCJ-indel model. Using this distance
formula, we were able to explain the previously unclear relationship between the BWS- and
Compeau-conceptualizations of the DCJ-indel model. Furthermore, our formula is easily
generalizeable to a performant ILP solution that enables the distance computation even for
genomes fragmented into thousands of contigs. We have shown that a DCJ-indel analysis can
be meaningful even with relatively fragmented genomes by applying the ILP to 11 Drosophila
assemblies. From this we obtained a well resolved phylogeny with little noise in the distance
data, indicating that our method could be well suited for distance based phylogenetic analyses
provided the effect size of genome fragmentation in the particular use case can be bounded.
We also showed that the ILP can be used to disambiguate orthologous and paralogous regions,
which has potential use cases in orthology assignment and the finalization of fragmented
assemblies.

Furthermore, we are confident that using this new formula, capping-free versions of other
existing algorithms, such as for the family-free distance problem as in [16, 15] and parsimony
problems as in [9] can be devised.
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Abstract
Robotic liquid handlers play a crucial role in automating laboratory tasks such as sample preparation,
high-throughput screening, and assay development. Manually designing protocols takes significant
effort, and can result in inefficient protocols and involve human error. We investigates the application
of reinforcement learning to automate the protocol design process resulting in reduced human labor
and further automation in liquid handling. We develop a reinforcement learning agent that can
automatically output the step-by-step protocol based on the initial state of the deck, reagent types
and volumes, and the desired state of the reagents after the protocol is finished. We show that
finding the optimal protocol for solving a liquid handler instance is NP-complete, and we present
a reinforcement learning algorithm that can solve the planning problem practically for cases with
a deck of up to 20 × 20 wells and four different types of reagents. We design and implement an
actor-critic approach, and we train our agent using the Impala algorithm. Our findings demonstrate
that reinforcement learning can be used to automatically program liquid handler robotic arms,
enabling more precise and efficient planning for the liquid handler and laboratory automation.
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1 Introduction

A robotic liquid handler is a laboratory instrument that is used to dispense precise amounts
of liquids into a variety of containers, such as micro-plates, test tubes, and vials. It automates
liquid handling tasks, enabling scientists to process large numbers of samples quickly and
accurately. Robotic liquid handlers consist of several components, including a robotic arm
that moves the liquid handling tool (e.g. pipette) to the appropriate location, a liquid
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dispensing system (e.g. syringe or positive displacement pump) that accurately dispenses
the liquid, and software that controls the entire process. These instruments are commonly
used in a range of applications, including drug discovery, genomics, proteomics, and clinical
diagnostics, where accuracy, precision, and throughput are essential for obtaining reliable
and reproducible results [7]. Even though there is a wide range of laboratory equipment
and chemicals, diverse preferences in laboratory configurations, as well as variations in the
selection of target organisms and research inquiries, there is a fundamental problem common
to all protocols in a way that can be generalized to the planning task for liquid handling [2].

In laboratory practices that involve large-scale liquid handling, establishing reliable and
consistent protocols is crucial for generating credible data. Robotic liquid handling techniques
have played a significant role in accomplishing this objective in medical laboratories. The
success of high-throughput PCR screening for SARS-CoV-2, capable of processing millions
of samples weekly, is a testament to this [14]. Robotic liquid handling is used for many
applications such as protein folding analyses [1], high-throughput processing for selected
reaction monitoring assays [17], and in many clinical diagnostics [9], including microbiome
screening [10].

There has been to date no analysis of the computational complexity of the planning
problem for the liquid handlers. We therefore propose a formal view of the problem with
theoretical complexity analysis that shows the problem is NP-complete, as one would expect.
This motivates and justifies the development of heuristics for the problem. In order to obtain
reliable and reproducible results from experiments while minimizing the cost of human labor
in process, there is a clear need for a robust and scalable planning algorithm for liquid handling
robots. Roboliq [15] proposed a software pipeline to transform high-level protocols designed
by researchers to low-level robot instructions. SynBiopython [16] proposed an open-source
Python package aiming to standardize some of the tools used in automated laboratories.
ESCALATE [11] proposed a framework that enables writing machine-readable protocols
with hybrid human-robot operations that enable the recording of data and optimization of
experiments. Aquarium [13] offers visual programming in a way that protocols are represented
graphically as blocks that can be assembled to build executable protocols.

All these methods still rely on researchers to design and conduct protocols. Approaches
such as ESCALATE and Roboliq require human-intervention for protocol optimization.
Automatically designing and finding optimized protocols for liquid handlers will play a
significant role in lab automation. We provide the first practical way of automatically finding
low-cost liquid handler protocols, significantly reducing the need for human intervention.

Reinforcement learning is a machine learning paradigm that involves learning a policy
to make decisions through interaction with an environment. Reinforcement learning has
been used for solving combinatorial optimization problems in order to replace using hand-
crafted heuristics [8]. By integrating reinforcement learning algorithms into the planning
of liquid handler robots, we aim to automate the protocol design of the liquid handler to
address common challenges and limitations associated with traditional robotic systems in
liquid handling, such as inefficient protocols, human error in protocol design or the high
computational cost of planning of the robot. Our results show that it is possible to fully
automate the protocol design for the liquid handler in many practical cases. We train
reinforcement learning models based on the actor-critic paradigm and using the Impala
(Importance Weighted Actor-Learner Architecture) framework [4]. Our trained model solves
the vast majority of inputs for cases with a deck of up to 20 × 20 wells and four different
types of reagents. Traditional planning algorithms are computationally intractable for many
of these instances due to the super-exponential nature of the problem in terms of the number
of possible actions in each step. We also show that the trained model is robust to different
problem settings.
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2 Formal Problem Statement

A liquid handler consists of a set of small containers (wells) and a robotic arm, called the
head, that can transfer liquids between the wells using a set of specified actions. The liquid
handler starts with an initial state which gives the configuration of the containers at the
beginning of the experiment. The aim is to convert the initial state to the goal state using the
set of specified actions. Here, we add some idealizing assumptions to make the formulation
simpler without losing the generality of the problem:

The state is defined by a 2D field of wells containing mixtures of reagents. Our idealized
handler is designed with a single large “deck”, whereas actual handlers may have multiple
decks. Any complexities arising from multiple plates in real-world situations can be
incorporated into the customized cost function that calculates the protocol cost.
The head is a 2D array of tips. It can be positioned anywhere within the 2D well field,
and its location is represented as an ∆ offset from the top-left corner of the field. For the
most part of this paper, we assume we are working with head size of 1 × 1.

▶ Definition 1 (Reagents). There is a finite set of reagents that can be mixed in each well.
We denote them by R = {r1, r2, ..., rK}. The mixture in each well can be represented by a
1 × K vector that shows how much of each reagent is in that well.

▶ Definition 2 (Deck). The deck is 2D field of wells containing mixtures of reagents. The
current state of the reagents in each of the wells, along with the position and contents of the
head, gives the current state of the liquid handler.

▶ Definition 3 (Head). The head is a smaller 2D field of wells positioned anywhere in the
deck. The position of the head allows for the two actions of aspiration or dispensation on the
wells that are covered by the head. The head can change location within the deck and this
movement has a cost.

▶ Definition 4 (Aspiration). Aspiration is the act of transferring some amount of the mixture
from the wells covered by the the head to the tips on the head. This action comes with two
costs. The cost of aspiration is a constant ca plus a movement cost that is the cost to move
the head to the location for the aspiration from its previous location.

▶ Definition 5 (Dispensation). Dispensation is the act of transferring some amount of the
mixture from the tips in the head to the wells covered by the the head. This action comes
with two costs. The cost of dispensation is a constant cd plus a movement cost that is the
cost to move the head to the location for the dispensation from its previous location.

▶ Definition 6 (Protocol). A protocol is the sequence of actions of aspiration, dispensation,
and moving the head’s location in order to achieve a goal state starting from an initial state.
The cost of a protocol is the sum of the cost for each action in the protocol.

▶ Problem 7 (Optimal Liquid Handling). Given an initial state I of the deck (with an empty
head), and the goal state G and the set of parameters ca and cd that determines the cost
of each action as above, and a choice of polynomial-time computable distance metric that
determines the cost to move the head between locations, give a protocol with the minimum
cost that will convert I into the goal state G.

We show that this is an NP-complete problem even in the most restricted case of the
unit-sized head and only one type of reagent. We then develop a practical approach to find
low-cost protocols using reinforcement learning.

WABI 2023
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2.1 The Optimal Liquid Handling problem is NP-complete
We show that the Optimal Liquid Handling problem is NP-complete.

▶ Theorem 8. The Optimal Liquid Handling decision problem that asks whether there is a
protocol of cost less than or equal to C is NP-complete.

Proof. Verification of a protocol’s cost can be computed easily in polynomial time. We can
follow the sequence of actions and calculate the total cost to check if it is less than or equal
to C. Hence, the problem is in NP.

We reduce the Traveling Salesman Problem (TSP) to the special case of Optimal Liquid
Handling with the head size of 1 × 1. For this, we need to use the metric TSP where all the
cities are points in R2. The NP-completeness proof in [5] for the Euclidean TSP immediately
implies the NP-completeness of a TSP where all the cities are points in R2 and the distances
are defined in a way that the triangle inequality holds [3]. Figure 1 shows the sequence of
reductions to show that the Optimal Liquid Handling is NP-Complete.

Metric TSP Liquid Handler with  
1x1 head

Liquid Handler 

Figure 1 The order of the reductions from the Euclidean TSP to the Optimal Liquid Handling.

TSP takes a list of n cities C = {c1, c2, ..., cn} in R2 and a budget C as input, and asks
whether there is a tour denoted Gtsp that visits every city exactly once with total cost at
most C. The reduction from TSP to Optimal Liquid Handling is as follows:

Construct an Optimal Liquid Handling instance with a budget C, and the initial state of
n units of reagent on the location of c1 on the deck and the goal configuration of one unit of
reagent in each of the city locations on the deck. The cost of aspiration ca and dispensing cd

are defined to be zero, and the cost of the head movement between the two wells is defined
with the same metric as the distance in the TSP. This way the head needs to visit every
well that represents the city location on the deck at least once to have the reagent in that
location.

▶ Lemma 9. For any sequence of moves of the head of the robotic arm that results in the
tour G0 with cost at most C, there is a tour of Gtsp with cost C∗ ≤ C in TSP where it visits
the same cities in the same order.

Proof. Not every move in the robotic arm’s tour G0 must end up in the cities. The arm can
move freely in the grid before visiting the next city. Let’s say the moves are segmented by
the cities and C = {c1, c2, ..., cn} are the cities that have been visited in G0 in the order of
their visit. We can replace any sequence of moves that happened between cities ci and ci+1
with just a direct move from ci to ci+1 and the cost would not be increased due to triangle
inequality (which holds for any norm). Hence the new Gtsp would have a cost of C∗ ≤ C. ◀

Suppose there exists a protocol that visits the wells in an order that results in a tour G0
with cost at most C in Optimal Liquid Handling, then there exists a tour of Gtsp with a
cost of C or less in TSP using Lemma 9. If there is a tour of Gtsp with at most cost of C in
TSP the robotic arm can follow the same path therefore there is a tour of G0 with cost at
most C in the Optimal Liquid Handling problem. This means the Optimal Liquid Handling
can be used to solve the metric TSP problem which proves that Optimal Liquid Handling is
NP-complete. ◀
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The NP completeness of the Optimal Liquid Handling problem motivates us to use
machine learning for a practical solution instead of looking for a polynomial-time algorithm.

3 Methods

3.1 Using Reinforcement Learning to Solve Optimal Liquid Handling
Reinforcement learning (RL) has emerged as a powerful technique for solving complex tasks
in various domains. Actor-critic [6] is a type of reinforcement learning algorithm that uses
two estimators: an actor and a critic. The actor is responsible for learning a policy, which is
a function that maps states to actions. The critic is responsible for learning a value function,
which estimates the expected reward from a given state and action. The interaction between
the actor and the critic enables the agent to continually refine its policy based on the feedback
provided by the critic, leading to improved decision-making over time.

Impala is a distributed reinforcement learning framework that integrates the actor-critic
framework with a distributed architecture [4]. Impala is designed to improve the scalability
and efficiency of traditional actor-critic algorithms by training multiple agents. It separates
the learning process into multiple actors and a central learner [4]. Actors interact with their
own instances of the environment, collecting trajectories (sequences of state, action, and
reward). Multiple agents simultaneously interact with the environment and collect experience,
which is used to update a shared value function and policy. Actors asynchronously send
their collected trajectories to the central learner, which processes the data and updates the
policy and value function. The central learner periodically sends the updated policy and
value function back to the actors, ensuring that they stay relatively up-to-date with the
latest learning progress. This enables efficient use of computational resources and allows the
algorithm to scale to a large number of actors. This approach allows for faster and more
efficient learning compared to traditional reinforcement learning algorithms that rely on a
single agent [4].

We tackle the Optimal Liquid Handler problem with the head size of 1 × 1 using reinforce-
ment learning. We use Impala [4] for the training and CORA [12] for the benchmarking and
evaluation. CORA (short for Continual Reinforcement Learning Agents) is a package that
provides benchmarking, baselines, and metrics for continual reinforcement learning tasks.

Environment. The environment is the setting in which the RL agent operates. It can
be modeled as a state space, where each state corresponds to a particular configuration of
the environment, and the agent can take actions to transition from one state to another.
The deck, the head, and the configuration of reagents in the deck and the head form the
environment in the liquid handler application. Let N × M be the size of the deck, and K be
the number of different types of possible reagents.

Agent. The agent is the entity that interacts with the environment. It learns a policy which
maps states to actions. The agent receives information about the environment and takes
actions according to its policy and based on the input. Here, the agent outputs steps in a
protocol for the liquid handling problem.

State space. The set of all possible states of the environment is described by {D, G, H}. We
define the state space with a pair of N × M × K tensors D, G where both D, G ∈ NN×M×K

and vector H ∈ NK . D describes the current state of the deck where D[i][j] is a vector of
size K that specifies how many units of each reagent are currently present in the well located

WABI 2023
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at (i, j). Values in D are initialized by the initial state I (as the input to the agent) and
they can change according to each action defined below. Similarly, G describes the goal state
which shows how many units of each reagent is supposed to be in every well after the arm
performs all the actions in the protocol. Finally, H describes the amount of each reagents
currently in the head. The protocol is considered successfully completed if D = G at the end.
We define the state space by tensors with integer values. This choice limits us in terms of the
mixtures we can produce but it is necessary to keep the problem computationally tractable.

Action space. Actions that the agent can take in a given state. We design our agent with
an internal state machine that defines the possible actions. There are two states in our
setting. The agent is either in aspiration mode or dispensation mode depending on whether
the head is empty. These two states alternate as described in Figure 2. For simplicity, a
movement of the head is combined with the aspiration or dispensation actions as multiple
actions in the same location can be combined into one single action.

Aspiration 

Dispensation

Partial Dispensation
Dispensation Mode: 

Head Contains
Reagents  

Aspiration Mode: 
Empty Head

Figure 2 Two sets of actions and their corresponding internal states. Depending on whether the
agent’s head is empty or not, there are two sets of possible actions: aspiration and dispensation.
To avoid potential cross-contamination, aspiration is only allowed when the head is empty because
there might be residual liquid in the tip caused by previous aspiration that can mix with the reagent
in well.

There are two actions that the agent can take based on the internal states it is currently
in. When the agent is in aspiration mode, the head is empty and the agent can perform an
“aspiration” action.

Aspiration is defined with the tuple (i, j, P ) where P is a vector of size K, P ∈ NK , and

∃b 0 < b ≤ 1 where P [k]
D[i][j][k] = b for every k ∈ [1, K]. (1)

This action transfers the amount of reagents defined by P from D[i][j] to the head H. The
condition (1) guarantees that the ratios are kept the same for the amount that is being
aspirated and the mix in the well. Aspiration is formally defined as:

D[i][j] = D[i][j] − P

H = P. (2)

The cost of aspiration is ca. This cost is independent of P , the volume aspirated, and the
location. While this is not completely physically accurate, it is a reasonable model when we
want to minimize the number of actions. After each aspiration the internal state of the agent
changes to dispensation mode since the head is not empty anymore.

Similarly, when the agent is in dispensation mode, the agent can perform a “dispense”
action since there is some liquid in the head. Dispense is defined with the tuple (i, j, P )
where P is a vector, P ∈ NK , and

∃b 0 < b ≤ 1 where P [k]
H[k] = b for every k ∈ [1, K]. (3)
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This action transfers the amount of the reagents defined by P from the head H to D[i][j].
The condition (3) guarantees that the ratios are kept the same for the amount that is being
dispensed into the well and the mix in the head. Dispense is formally defined as:

D[i][j] = D[i][j] + P

H = H − P. (4)

We call this partial dispense in the case where D[i][j] ̸= P . Partial dispense causes the
internal state to stay on dispensation mode since the head is not empty yet. The cost of a
dispense is cd. This is again independent of the volume dispersed.

Each action also comes with a distance cost that models the movement of the head from
the well of the previous action to the well of the next action. The cost of the n-th action
(i, j, P )n depends on the previous (i, j, P )n−1 action and is defined as

cn = Manhattan Distance((i, j)n, (i, j)n−1)
= |in − in−1| + |jn − jn−1|, (5)

and cost of a protocol is defined as the sum of the cost for all actions and movements. We use
Manhattan distance here as our choice of distance, although other metrics are also reasonable.

Reward. The reward is a scalar feedback signal that the agent receives from the environment
after taking an action. The goal of the agent is to learn a policy that maximizes the cumulative
reward over time. The agent’s aim is to reach the goal state while minimizing the distance
cost of the protocol. In this task, the agent receives +1 reward for dispersing one unit of
reagent in a well that is missing at least one unit of that reagent to reach its goal defined by
the goal state G. In order to facilitate the exploration and motivate the agent to perform
moves, we also add +1 reward for aspirating one unit of a reagent that is currently in a well
that does not have that reagent in its goal (or the amount currently in the well exceeds the
amount described in the goal), meaning that this unit has to be moved in order to achieve
the goal state. This way moving one unit of reagent from a wrong well to a correct well
results in total of +2 reward. There is also −1 reward for aspirating one unit of reagent that
is currently in the correct well and another −1 reward for dispersing one unit of reagent
in the wrong well. This means moving one unit from a correct well to another correct well
or from a wrong well to another wrong well results in 0 reward, and moving a unit from a
correct well into a wrong well results in −2 reward. We also weight the distance cost by a
parameter α that is the relative weighting of the distance cost to the reward. More formally,
we calculate the reward for each action as described below.

In aspiration mode, the reward for the move (i, j, P ) is calculated by

C = min(G[i][j], D[i][j])
C ′ = min(G[i][j], D[i][j] − P )
W = C − C ′

R = P − W

r = |R| − |W | − αcn (6)

where the function “min” between two vectors is defined as a vector of the element-wise
minimum. C ∈ NK shows the amount of reagents that are currently in position (i, j) and are
part of the goal state (completed units) before the move, and C ′ ∈ NK shows the amount of
reagents that will be in position (i, j) and are part of the goal state after the move. W ∈ NK
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is the vector of reagents that are being aspirated from a goal well (wrong moves), and R ∈ NK

is the vector of reagents that are being aspirated from a well that does not need that type in
its goal (right moves). Hence, the reward r is calculated by +1×|R|−1×|W | and subtracted
by a factor of the distance cost of that move −αcn. We can always choose a small enough α

based on the size of the deck so that finding a protocol that completes the task by reaching
the goal state has a higher priority than optimizing the distance cost.

Similarly in the dispensation mode, the reward for the move (i, j, P ) is calculated by

L = max(G[i][j] − D[i][j], 0)
R = min(P, L)

W = P − R

r = |R| − |W | − αcn (7)

where the function “max” between a vector and a number is defined as the element-wise
maximum of the values in the vector and the number. L ∈ NK shows the amount of reagents
that are needed in position (i, j) to complete the goal for well in (i, j) (units left) before the
move. Similarly to the aspiration reward, R is the vector of reagents that are being dispersed
to a goal well (right moves), and W is the vector reagents that are being dispersed to a
non-goal well (wrong moves). The reward r is again calculated by +1 × |R| − 1 × |W | − αcn.

Policy. The policy is the mapping between states and actions that the agent uses to make
decisions. The goal of the agent is to learn an optimal policy that maximizes the cumulative
reward over time.

3.2 The Network Architecture
We use Impala for our training framework. Impala is a distributed reinforcement learning
algorithm designed to tackle large-scale RL problems efficiently. It achieves this by employing
a distributed architecture, which enables parallel data collection and learning. The actors
are responsible for exploring the environment and generating trajectories of state, action,
reward, and next-state tuples by following their respective behavior policies. The central
learner processes the collected data to update both the policy (actor) and the value function
(critic). Each actor in the Impala architecture has an actor network, which is responsible for
selecting actions based on the current state of the environment. We design the actor network
as a three-layered convolutional network described below.

The designed network needs to take an encoding of the current state {D, G, H} as the
input and must output a probability distribution over all the possible actions to take at
this step. We define observation O = {D, G, H∗} as the encoding, where D, G are previously
defined as the current state and the goal state. H∗ is a tiling of the vector H where H
is repeated N × M times (to count for each well). This way, all three of {D, G, H∗} are
N × M × K tensors. We do this tiling because we want the associations between the current
reagents in the head and the goal definition for each well to be highlighted in the convolutional
layer (e.g. if the amount in the head matches or mismatches with the goal for each well). We
use convolutional layers with kernel size of 1 × 1 to perform a channel-wise feature mixing.
The 1 × 1 convolution is used to combine features across channels with information on H∗

and the channels with information on G. This is aimed to help the network learn which wells
still need some reagents to reach the goal state.

The output of each state is the policy distribution for every possible action. We define
the capacity of the tip on the 1 × 1 head as D. A possible action a is defined as a = (x, y, p)
which states “p amount of the the mix and the position (x, y) on the grid”. The type of the
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action (i.e. aspiration or dispensation) is determined by the internal state machine. If the
head is not empty, the action a = (x, y, p) is a dispense, and if it is empty, the action is an
aspiration. Since we are using O = {D, G, H∗} as the encoding, we have 3 × K × N × M

input values, which is equivalent of (3 × K) channels for images of size N × M , where each
channel describes the amount of one reagent in either the current state, the goal state, or the
tiled head. Similarly, we have D × N × M output values that describe the policy distribution;
these are equivalent to D channels for images of size N × M . We use the three layered
convolutional network described in Figure 3 for the actor network, and we use a flattening
layer at the end to get a one-dimensional vector that describes the the policy distribution.

32 x N x M

(3 x K) x N x M

32 x N x M

D x N x M

1 x (D x N x M) 

Convolutional Convolutional Convolutional Flatten

Figure 3 The three-layered convolutional network used for the actor network. The actor learns
the policy, which is described by the probability distribution over the possible actions, based on the
current state {D, G, H} as its input.

The central learner in Impala also has a critic network that estimates the value function,
which represents the expected cumulative reward from a given state, following the current
policy. For our task, we design the critic network as a fully connected layer that gets the
observation {D, G, H} as the input and produces a number as its output that describes the
expected reward for the given state.

4 Results

We first show some examples to showcase some of the challenges that the agent needs to
overcome to find an optimal protocol. We then present experiments benchmarking the
proposed reinforcement learning approach compared with several baseline approaches.

4.1 Challenges
The first priority for the RL agent is to reach the goal state. The agent also needs to minimize
the distance cost of the protocol. Figure 4 shows two possible protocols for a given state.
The agent needs to choose the one with lower distance cost.

One thing that the agent needs to learn is the volume of each action. Always using the
whole volume available for aspiration and dispensation would not reach the goal in some
cases. Figure 5 shows why it is important for the agent learn to use moves with b < 1.

Another challenge for the agent is to learn to mix or not mix reagents when necessary.
This is a unique aspect of the planning for liquid handler robotic arm since putting liquid
on top of each other results in mixing them and producing a new reagent. This move is
irreversible by the liquid handler. Figure 6 shows how mixing when not necessary can result
in a state where reaching the goal is not accessible anymore. The agent needs to learn these
cases in order to be able to find the optimal protocol.
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Figure 4 Here we have 1 × 4 deck. The two side wells each have one unit of the blue reagent in
the initial state D as shown by the two cylinders. The two middle wells each have one unit of the
blue reagent in the goal state G as shown by the two drops on the bottom right of each well. If we
do the moves based on the red arrows on the top the distance cost will be equal to 4, but if we do
the moves based on the green arrows on the bottom, the distance cost will be equal to 2. We expect
the agent to choose the green arrows for the moves.

3
111

Figure 5 In this example the left wells has three units of the blue reagent in the current state D
and need to distribute it into three well with one unit in each. It would be impossible for the agent
to reach the goal state G without using moves with b < 1.

The agent cannot simply collect rewards greedily by moving each reagent to a goal well.
Figure 7 shows how a greedy algorithm would fail by falling into a state that makes the goal
unreachable because of the irreversibility of mixing.

4.2 Experiments
We show experimental results from the reinforcement learning agent to show the potential of
this approach on solving the automated protocol design for robotic liquid handlers. In the
first experiment, we show that by training on various settings we are able to receive almost
perfect results in terms of receiving the highest possible reward for each instance. In the
second experiment, we show that the trained agent is robust to other settings, and in the
third experiment we show the comparison of reinforcement learning method and traditional
planning and a greedy algorithm in terms of finding the optimal protocols. We used the
following hyperparameters for the reinforcement learning: number of actors = 16, batch
size = 16, discount factor = 0.9, and learning rate = 10−4. All the experiment are performed
on a machine with Apple M2 Pro chip with a 10-core CPU and a 16-core GPU and 32GB of
unified memory.

4.2.1 Model Performance in Terms of Completing the Task
In this experiment, we train the model on randomly generated initial and goal states. Every
unit of reagent is placed on the locations of the grid uniformly and independently. We
make sure that the input is synthesized in a way that the maximum possible reward is fully
reachable, meaning if there are S units of reagents in the goal, there is a protocol that reaches
2S reward. To create these instances, we separate the wells that initially have the reagents
from the wells that have the reagents in the goal state. This guarantees that no reagent is
already where it should be in the goal state making the reward for it unreachable. The other
condition is that the reagents are placed in a way that a series of aspiration and dispense
steps will reach the goal state from the initial state. To guarantee this, we start by creating
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Figure 6 In this example the left column shows the reagents in the initial state. We have one
unit of the blue reagent in the top, one unit of the red reagent in middle, and a mix of one unit of
blue and one unit of red reagents at the bottom (purple reagent). We have the same formation for
the goal state in the column at the right. The agent should never mix the blue reagent and the red
reagent to make the purple reagent for the bottom right well since that would make it impossible to
reach the goal state. Instead, the agent should move every reagent to its corresponding well on the
last column.

11

2 1

1

2

Figure 7 In this example, we have a similar initial state and the same exact goal state as the
example in Figure 6. The only difference is that the blue reagent has moved to the bottom right well.
A greedy agent could move the red reagent to mix with the blue reagent to receive +2 rewards but as
we have seen that would make the goal unreachable. Instead the agent should first aspirate the blue
reagent from the bottom right corner resulting in −1 reward since one unit of blue reagent is part of
the goal state in that well. Only then should it move all three reagents to their corresponding wells.

a random goal state and then randomly move portions of each mixture in the goal state to
new wells to create the initial state. This guarantees that there is at least one path to reach
the goal from the initial state by doing the reverse of each action that initially produced the
test case. We also choose α = 0 for this experiment so the distance cost does not affect the
rewards.

We train the model on seven different settings with various deck sizes and reagent numbers.
Table 1 shows the average performance of each setting for 1000 inputs confirming that the
trained model can complete the task for the vast majority of the inputs. For the first four
settings, the agent reaches the goal in every single instance and for the three larger settings
the model receives around 95% of the rewards on average. That means the model outputs a
protocol that gets very close to the goal state, but it is not able to reach the goal in some
cases. There is a trade-off between the deck size and the training time in a way that the
agent needs more training to work with bigger decks as the state space grows exponentially.
In addition, having more reagents increases the complexity of the task, and requires longer
protocols to reach the goal. That is the reason we see a drop on the average reward for
the bigger instances. Figure 8 shows the average cumulative reward of each run for all the
settings over the steps of the training.
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Table 1 This table shows the results of training the model on six different settings. The reward
is the average reward over 1000 sample and the training time is the amount of time before the model
converges. Steps shows the number of training iterations the model was trained on. The training
stops if the model converges. For a trained model, it takes less than a second to output the protocol
for every setting.

M × N K Reagents Units Max Reward Reward Steps Training time

2 × 2 2 1, 1 2 4 4 ± 0 1M 3m 59s
5 × 5 2 2, 2 4 8 8 ± 0 10M 21m 46s

10 × 10 2 3, 3 6 12 12 ± 0 16M 1h 31m
12 × 12 2 5, 5 10 20 20 ± 0 16M 1h 53m
15 × 15 2 10, 10 20 40 38.2 ± 0.45 18M 2h 37m
10 × 10 4 5, 5, 5, 5 20 40 39 ± 0.05 18M 1h 41m
20 × 20 3 15, 15, 15 45 90 83.16 ± 5.58 50M 15h

2x2 Deck and [1,1] reagents 
5x5 Deck and [2,2] reagents 
10x10 Deck and [3,3] reagents 
12x12 Deck and [5,5] reagents 
15x15 Deck and [10,10] reagents 
10x10 Deck and [5,5,5,5] reagents 
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Figure 8 This figure shows the reward over time during the training for different settings. For
smaller cases, the model converges to completing all the input tests and receiving full rewards. Every
point on the figure is the average of 10 instances and points are generated every 10,000 steps.

4.2.2 Robustness of the Model in Unseen Settings

We show that the trained model can solve settings that are different from what the model has
been trained on. To show this, we train a model on the deck size of 10 × 10, with two types
of reagents with total units of [4, 4] (meaning 4 units of reagent r1 and 4 units of reagent
r2). For evaluation, however, we test the model on the same deck size but with four different
settings with total units of {[5, 5], [3, 3], [3, 5], [2, 6]} with respective total available rewards of
20, 12, 16, and 16 (taking α = 0 to remove the distance costs). Since N , M (deck size) and
K (number of different reagents) are the same as the training, the state and action spaces
have the same dimensions as before and the network is able to adapt to these new instances.
We use the same approach as the previous section to create 1000 random instances. As we
can see in Figure 9, the model is able to fully generalize to all of these cases receiving the
average reward equal to the max reward possible. Our model is able to do this is because the
actor network is designed to be sensitive to every unit of reagent that is not placed correctly
and continue working on them until it reaches the goal state making the model generalizable
to unseen settings.
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Figure 9 The reward over time for unseen settings during the training. It shows that for all the
cases, the model trained on [4, 4] is able to complete all the input tests and receiving full rewards
after around 7 millions steps. After each step of the training on [4, 4], we evaluate the model on four
new settings that are [5, 5], [3, 3], [3, 5], and [2, 6] with respective total available rewards of 20, 12,
16, and 16 (taking α = 0) from left to right.

4.2.3 Optimality of the Protocol in Different Models
Due to the super-exponential nature of the problem, brute force and classic planning
algorithm are not tractable for solving this problem. In this section, we compare the
proposed reinforcement learning model with a greedy heuristic algorithm and a heuristic-
based beam search algorithm as baselines. We compare all the models in terms of success
rate which is defined as how often a model outputs a protocol that reaches the goal state,
the average distance cost, and the runtime. Table 2 shows the details of each setting.

Greedy Heuristic Algorithm. For this algorithm, we iteratively perform a greedy actions to
reach the goal state. We use the same state machine described in Figure 2 but instead of
letting the RL agent decide on the tuple a = (x, y, p), we choose them in a greedy fashion.
For aspiration, we limit our choices only to the wells that currently have extra reagents
compared to what they should have according to the goal state. Similarly, for dispense we
only consider the wells that need additional reagents to reach the goal state. We choose the
closest x and y to the current position of the head among those choices, and pick p randomly.
With this definition of greedy actions, we get closer to the goal state after every step. We
stop when we reach the goal state or when there is no more greedy action possible to take.

Heuristic-Based Beam Search. We also use the beam search algorithm, a heuristic search
method, as a baseline for this problem. The beam search algorithm uses a breadth-first
search (BFS) approach to explore the solution tree. In contrast to the standard BFS that
expands all nodes at every level, the beam search uses a heuristic to order the nodes and
only keeps a specific set of promising nodes at each stage. The size of this set is called the
beam width and is a parameter of the algorithm. At each step, beam search generates all
possible successors to the current state by applying all applicable actions. These successors
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are then evaluated based on a heuristic function that assigns a score to each state based
on its desirability. The states with the highest scores are selected to be the new set of
candidate states for the next iteration. This technique significantly cuts down the search
space, making it tractable. However, it can also prune the path to the optimal solution,
resulting in potentially sub-optimal protocols. We designed a heuristic functions tailored to
the optimal liquid handling problem for the beam search. The heuristic function for each
action is the sum of the cost and the absolute differences between the volumes of reagents in
each well at the current state and the corresponding target volume in the goal state.

As we can see from the Table 2, the proposed reinforcement learning approach outperforms
both baselines in terms of the success rate, resulting in a protocol that reaches the goal
state in the vast majority of cases. The average distance cost for the proposed reinforcement
learning method is also lower than the greedy heuristics method in all the cases. The greedy
heuristics method is able to find a valid protocol more often for the cases where the amount
of reagents is small compared to the grid size. For those cases, the random positioning of
reagents results in a sparse grid which is a simpler task and makes it easier for the greedy
heuristic to perform greedy actions one at a time. The beam search algorithm is able to find
protocols with smaller distance cost but it has a much smaller success rate. In addition, the
beam search has an exponential runtime which makes it not scalable for the larger instances.

Table 2 This table shows the results of comparison between the reinforcement learning (RL),
greedy heuristic (GH), and beam search (BS). Each experiment is repeated 1000 times for RL and
GH and 100 times for BS. Success rate is the the number each model reached the goal state divided
by the total number of experiments. Distance cost is the average of distance cost for those runs
that reached the goal. Training time is the amount of time it took for the RL model to train, and
query time is the average time it takes each model to output the protocol. We used α = 0.2 for the
reinforcement learning model and used the beam size of 25 for the beam search on the two larger
decks and beam size of 40 for the other instances.

M × N Reagents Model Success Rate(%) Distance Cost Training time Query(s)

RL 100 38.496 22m 0.484
4 × 4 4, 4 GH 78.7 39.40 – 0.004

BS 95.0 23.87 – 3.80

RL 100 44.471 50m 0.484
6 × 6 3, 3 GH 93.2 46.254 0.002

BS 92 30.74 – 5.37

RL 98.9 102.84 1h 21m 0.490
6 × 6 8, 8 GH 59.8 113.148 – 0.009

BS 72 68.44 – 30.10

RL 100 76.53 1h 51m 0.486
8 × 8 4, 4 GH 93.0 81.455 – 0.003

BS 91 59.59 – 24.67

RL 95.3 264.97 4h 31m 0.494
8 × 8 15, 15 GH 40.0 266.652 – 0.014

BS 43 190.08 – 143.47

RL 87.9 232.83 6h 36m 0.474
10 × 10 5, 5, 5, 5 GH 70.5 249.99 – 0.008

BS 34 150.41 – 306.45
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5 Conclusion

We demonstrated the potential of reinforcement learning for automating protocol design for
robotic liquid handlers. We developed a reinforcement learning agent that automatically
generates step-by-step protocols based on the initial state of the deck, reagent types, and
volumes. This will result in reduced human labor in the process and further improve the
automation of liquid handling tasks. Our proposed reinforcement learning algorithm can
effectively solve the planning problem for practical cases involving decks of up to 20 × 20
wells and four different types of reagents.

Future research could focus on expanding the capabilities of the agent to handle more
complex laboratory tasks, larger decks, other distance metrics, and a greater variety of reagent
types. Additionally, integrating our approach with existing liquid handling software could
streamline the protocol design process and further advance the adoption of this technology in
laboratories. Overall, this work represents a promising step towards harnessing the power of re-
inforcement learning to to further automate the liquid handling process. The implementation
of all the models is publicly released at https://github.com/Kingsford-Group/rlforlqh.
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