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Abstract
Finding a tree with the minimum total distance to a given set of trees (the median tree) is increasingly
needed in phylogenetics. Defining tree distance as the number of induced four-taxon unrooted (i.e.,
quartet) trees with different topologies, the median of a set of gene trees is a statistically consistent
estimator of the species tree under several models of gene tree species tree discordance. Because of
this, median trees defined with quartet distance are widely used in practice for species tree inference.
Nevertheless, the problem is NP-Hard and the widely-used solutions are heuristics. In this paper, we
pave the way for a new type of heuristic solution to this problem. We show that the optimal place to
add a subtree of size m onto a tree with n leaves can be found in time that grows quasi-linearly with
n and is nearly independent of m. This algorithm can be used to perform subtree prune and regraft
(SPR) moves efficiently, which in turn enables the hill-climbing heuristic search for the optimal tree.
In exploratory experiments, we show that our algorithm can improve the quartet score of trees
obtained using the existing widely-used methods.
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1 Introduction

Phylogenetic reconstruction literature has now fully embraced Maddison’s insight that gene
trees and species trees differ [16], and a plethora of methods exist for accounting for such
discordance when inferring a species tree [3]. A prominent biological cause of discordance
is incomplete lineage sorting (ILS), a process that can never be fully discounted and is
studied using the multi-species coalescent model (MSC) [23, 26]. Under the MSC model,
the species tree is the parameter of a distribution that generates true gene trees disagreeing
with the species tree due to ILS [20]. In developing methods that account for ILS, an easily
obtained result [1] has proved invaluable: Under the MSC distribution parameterized by a
four-taxon (i.e., quartet) species tree, the unrooted gene tree topology matching the species
tree unrooted topology has a higher (marginal) probability than the two alternative topologies.
This observation is what underlines many of the existing methods, including the popular
methods ASTRAL [21], SVDQuartets [7], and others [14, 29]. As a result, the decades-old
idea of inferring phylogenetic trees by dividing the dataset into quartets [9, 32, 31] has gained
increased attention in recent years.
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4:2 Quartet SPR

A naive method dividing a set of n taxa into quartets will have one of two problems:
it either has to scale with Ω(n4), which is impractical for modern datasets, or it has to
subsample quartets to an asymptotically smaller size. Neither is ideal, but also, neither
is necessary. Take the simple question of computing the fraction of

(
n
4
)

quartet topologies
shared between two trees. Naively, we list all topologies and compare them, which requires
Ω(n4) time. However, a relatively straightforward algorithm [6] can compute the score using
a post-traversal of one tree versus each node of the other tree in time that grows with Θ(n2).
But, we can do even better. As Brodal et al. have shown [4], the quartet score can be
computed in O(n log2(n)) using a complex algorithm that uses a sophisticated data structure
called Hierarchical Decomposition Tree (HDT) to represent trees. Thus, sub-quadratic (and
hence, scalable) analysis using quartets is doable.

Beyond computing quartet distance, we can seek to minimize it. For an input set of
k unrooted (gene) trees, the median quartet tree is the (species) tree that maximizes the
number of input tree quartets shared with the output tree. Several theoretical and empirical
results have shown that the median quartet tree is robust to not just ILS but also HGT [8]
or duplication and loss [19, 15, 11], making the search for this tree a fruitful optimization
objective. One of the most widely used solutions to this problem is ASTRAL [21], which
approaches this NP-Hard [13] problem using a dynamic programming algorithm capable of
precisely solving the problem; nevertheless, to achieve scalability, it restricts the search space
to the trees that can be built from a predefined set X of clusters. With this construction,
the running time of the latest version, ASTRAL-III [35], becomes O(|X |3/log3(27/4)nk), which
is O((nk)2.726) because ASTRAL-III restricts |X | = O(nk); on typical datasets, the scaling
seems to be close to n2k2 empirically. While ASTRAL is reasonably scalable, it does not
take advantage of the HDT data structure proposed by Brodal et al. [4] (referred to as B13
henceforth). Moreover, unlike most methods used in practice, ASTRAL does not use a
hill-climbing search algorithm and instead uses a dynamic programming approach pioneered
by earlier work [10, 5, 33]. This leads to a question: Is the dynamic programming algorithm
used in ASTRAL the most efficient and effective way to find the quartet distance median
tree or would hill-climbing be more efficient?

Building a hill-climbing heuristic requires the ability to make tree rearrangements. Having
computed the score of the current tree, T , computing the quartet score of Nearest Neighbour
Interchange (NNI) moves around T is relatively simple and can be done efficiently given some
pre-computations. However, NNIs are generally thought to be not enough for efficient search.
All leading phylogenetic search tools use Subtree Prune and Regraft (SPR) rearrangements
in addition. An SPR move on an unrooted query tree is defined on a node u and one of
its three neighbors u′; it prunes the subtree pending from the u ↔ u′ edge (including that
edge) and grafts back this subtree on another edge v ↔ w, creating two new edges v ↔ u

and w ↔ u. Knowing the quartet score of T , it is far from clear how to compute the score
of the tree after the SPR move. Naively, the B13 algorithm can recompute the score in
O(n log2(n)k) after each move, leading to O(n2 log2(n)k) to find the optimal SPR move for
each pruned edge u ↔ u′ and O(n3 log2(n)k) to test all possible SPR moves over a tree. This
process of finding optimal SPR moves has to happen numerous times, rendering such an
algorithm impractical. Recognizing this difficulty, all existing median quartet tree heuristics
use alternatives such as ASTRAL’s dynamic programming [21] or graph-based techniques
used in weighted quartet max-cut [2].

Recent advances have opened up the way for a hill-climbing quartet optimization approach.
Mai and Mirarab [17] showed how to prune and regraft single-taxon subtrees to their optimal
place in O(n log2(n)k) time. As we see, it is trivial to use that algorithm to prune and regraft
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a subtree of size m in O((n − m)m log(n − m) log(n)k) = O(n2 log2(n)k) time. In this paper,
we show a key result: a subtree of size m can be pruned and regrafted onto the query tree
with O((n − m) log(n − m) log(n)k) time complexity, which is nearly independent of the size
of the clade m (and is O(n log2(n)k) in the worst case). This result allows us to complete
a full round of optimal moves (i.e., testing all subtrees to find their optimal placement) in
O(n2 log2(n)k) time. This improved running time starts to make a hill-climbing strategy
viable. After describing the algorithm, which we have implemented and made available
(github.com/shayesteh99/Quartet_SPR), we present exploratory experiments showing that
using SPR moves, the quartet score obtained by existing tools (ASTER and ASTRAL-III) can
be further improved. These results provide us with all the necessary elements for developing
a full-fledged hill-climbing quartet score optimizer, a task that future work can easily tackle.

2 Materials and Methods

2.1 Problem Definition and Notations
Let T = (E, V ) be a tree rooted at rT . All leaves of T are labeled and denoted by L(T ). We
use v = p(u) to denote the parent of u and use C(u) to refer to the subtree that includes
vertex u after removing the edge (v, u) from the tree T . The placement of a subtree C(w)
on the edge e = (v, u) of T is denoted by PT (C(w), u) and is obtained by adding a degree-2
node pu to e = (v, u) to obtain (v, pu) and (pu, u), and connecting the subtree C(w) to pu

by adding the edge (pu, w). A rooting of T on e = (v, u) is denoted by Tu and is obtained by
dividing the edge e = (v, u) into two edges (r, v) and (r, u) and reversing the direction of all
edges in the path from v to rT . Note T can be multifurcating and let d be the maximum
degree among all nodes of T .

A triplet is a tree induced from any arbitrary set of three leaves in L(T ), and the least
common ancestor of these three leaves is called its anchor. Similarly, a rooted quartet is
a tree induced from any arbitrary set of four leaves in L(T ), and the anchor is the least
common ancestor (LCA) of the four leaves. An unrooted quartet is the unrooted tree induced
by the four leaves (unless otherwise specified, we use “quartet” to refer to an unrooted tree).
A triplet on the set of leaves x, y, z is called a matching or shared triplet in trees T1 and T2,
if x, y, z ∈ L(T1) ∩ L(T2) and it has the same topology in both trees. The triplet score of the
trees T1 and T2 is defined as the number of matching triplets of T1 and T2 and is denoted by
ST (T1, T2). Similarly, a quartet on the set of leaves w, x, y, z is called a matching or shared
quartet in T1 and T2, if w, x, y, z ∈ L(T1) ∩ L(T2) and it has the same unrooted topology in
both trees. The quartet score of the trees T1 and T2 is defined as the number of matching
quartets between T1 and T2 and is denoted by SQ(T1, T2).

We define the Quartet Subtree Pruning and Regrafting (Q-SPR) problem as follows:

▶ Definition 1 (Q-SPR Problem). Given a rooted query tree T ′ = (E, V ), a set of arbitrarily
rooted reference trees R = {R1, R2, ..., Rk}, and u ∈ V , find

arg max
w

k∑
i=1

SQ(PT (C(u), w), Ri)

where T is the tree induced on L(T ′) \ L(C(u)).

We let n = |T ′| and m = |C(u)|, and hence |T | = n − m. We shorten the query subtree C(u)
to C when clear by context. Note that the solution to Q-SPR is the optimal position for
regrafting subtree C after pruning it from the tree T ′, hence the name (see Figure 1 for a
demonstration of the Q-SPR problem).
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Figure 1 An overview of the Q-SPR problem. Given the query tree T ′, a set of reference
trees R, and a node u, the Q-SPR problem aims to find the optimal placement of C(u) on T by
maximizing the number of shared unrooted quartets between PT (C(u), w) and the reference trees.
An example of such quartets is highlighted in both the reference trees and the final placement.

The Q-SPR problem is an extension of the Maximum-matching Quartet Placement (MQP)
problem, which is the special case of m = 1 and is defined as follows: Given an unrooted
tree T , a single taxon q, and a set of unrooted reference trees R, find the placement of taxon
q on the tree T , denoted by Tq that maximizes

∑k
i=1 SQ(Tq, Ri). MQP is equivalent to the

Maximum Triplet Rooting (MTR) problem, defined as follows: Given an unrooted tree T

and a set of rooted reference trees R, find a rooting of T on u ∈ V (T ) denoted by Tu that
maximizes

∑k
i=1 ST (Tu, Ri). To see the equivalence of MQP and MTP [17], consider rooting

the reference tree(s) on the query taxon q and then solving the MTR problem. The best
placement of q would be at the root of the optimal rooting of the query tree T with respect
to the reference tree(s).

2.2 Related work
While the Q-SPR problem is not studied in the past to our knowledge, MQP and MTR have
been studied [25]. Most recently, tripVote [17] solved MTR and MQP by extending the B13
method for computing triplet scores. For a single reference tree R, tripVote computes the
triplet score between the alternative rooting Tu of T and the rooted reference tree R using:

ST (Tu, R) = ST (Tp(u), R) − τ i
p(u) − τ r

p(u) + τo
u + τ r

u (1)

where τ i
p(u) is the number of shared triplets between T and R that are anchored at p(u) in T ,

τ r
p(u) is the number of shared triplets between Tp(u) and R that are anchored at the root of

Tp(u), τo
u is the number of shared triplets between Tu and R that are anchored at p(u) in Tu,

and τ r
u is the number of shared triplets between Tu and R that are anchored at the root of

Tu. Clearly, given the three values τ i
u, τo

u , and τ r
u for every node u ∈ V (T ), the triplet score

of rooting at every node can be computed in O(1) using a pre-order traversal of T .
To compute these values efficiently, tripVote uses the coloring scheme of B13 for the leaf

set in T and R. Tree T is traversed in a preorder manner and at each node, we recolor the
leaves. Each degree d node u of T with children c(u) = v1, . . . , vd−1 and parent v0 = p(u)
creates d subtrees: C(v1), . . . , C(vd−1), and T − C(u). After recoloring based on u, each
leaf in the C(vi) subtree would be assigned the color i ∈ [1, d − 1], and all the leaves in the
T \ C(u) subtree would have the color 0. The leaves of R are also assigned the same colors
as T .
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This coloring method enables tripVote to compute τ i
u, τo

u , and τ r
u in a top-down traversal

of the nodes in T , where for each node the colors of the leaves in both trees are updated
accordingly. After recoloring τ i

u, τo
u , τ r

u values can then be computed using predefined
counters in the reference tree R in constant time. Colors are updated one leaf at a time by
traversing R from that leaf to the root. Thus, each leaf recoloring and updating counters,
if done naively, would require O(H(R)) operations, where H(R) is the height of R. To
prevent a quasi-quadratic total complexity, tripVote represents the reference trees using the
HDT data structure used by B13. An HDT (Hierarchical Decomposition Tree) is a balanced
binary tree data structure constructed from the nodes in the reference tree R within a time
complexity of O(n), where n represents the size of the reference tree. Each node in the HDT,
also referred to as a component, consists of several nodes in the reference tree in a way that
ensures local balance in the HDT, meaning that each component X in the HDT with m

leaves has O(log(m)) height. Thus, updating the HDT counters for each leaf recoloring will
have O(log(n)) complexity (see Table S1 for a comprehensive list of the components of the
HDT).

tripVote uses two main counters in the HDT that are defined as follows (ρX was similar
to B13 counters while πX

j was new):
ρX : The number of triplets that belong to the component X of the HDT and match the
triplets anchored at the root of the alternative rooting of the query tree Tu.
πX

j : The number of triplets that belong to the component X of the HDT and match the
triplets anchored at u in the alternative rooting of the query tree Tvj

where vj corresponds
to one of the child nodes of u (j ∈ [1, d]) or the parent node p(u) (j = 0) in the query
tree.

It immediately follows that HDT counters ρX and πX
j are equivalent to the query tree

parameters τ i
u, τo

u , and τ r
u at the root (R) of the HDT:

τ i
u = πR

0 τ r
u = ρR τo

vj
= πR

j .

tripVote, similar to B13, keeps O(d2) auxiliary counters for each HDT component to compute
ρX and πX

j efficiently using recursive functions of the colors of the leaves j ∈ [0, d]. Thus, for
updating the color of each leaf, only the counters of its ancestors need to get updated, which
can be done in O(d2 log(n)) using a bottom-up traversal of the HDT. Using a smaller-half
trick, similar to B13, tripVote ensures O(n log(n)) leaf recoloring in total. As a result, the
total complexity of the algorithm is O(d2n log2(n)) for one reference tree and O(kd2n log2(n))
for k reference trees.

The tripVote algorithm can be used to solve the Q-SPR problem. It is easy to see that
the optimal solution to Q-SPR can be obtained by placing each of the query taxa on the
tree independently, noting the change in quartet score for each query for each branch, and
choosing the branch that optimizes the total change at the end. This algorithm requires
O(kd2(n−m) log(n−m) log(n)m) time, which is O(kd2n2 log2(n)) for m = Θ(n) and becomes
impractical for large trees.

2.3 Quartet SPR Placement Algorithm
We now propose an algorithm based on tripVote to solve the Q-SPR problem in a quasi-linear
time. TripVote differentiates between the query taxon and the other taxa in the reference
tree(s) by rooting the reference tree on the query taxon. However, since the Q-SPR problem
has multiple query taxa that can be scattered in the reference tree(s), this approach is not
viable. Therefore, we devise a quartet counting method that does not rely on a specific
rooting of the reference tree(s). Instead of counting shared triplets among the query tree
and the rooted version of the reference tree, we directly count the number of shared quartets

WABI 2023
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between the query tree and an arbitrary rooting of the reference tree. This method of
counting presents new challenges as we have to keep track of the positions of the query
taxa in the reference tree(s), and also introduce new counters for counting quartets. Below,
we describe solving Q-SPR for one reference tree R; extending the approach to multiple
reference trees follows trivially.

2.3.1 Counting Rooted Quartets
We select a new color, −1, for coloring the leaves of the query subtree C to be able to store
their information in the counters. These leaves colored −1 are going to be present only in
the reference tree, and unlike other leaves, their color is fixed throughout the algorithm.

To find the number of shared quartets between any potential placement of the subtree C

on the query tree T and the reference tree R, we only need to consider the quartets that
have a single taxon from L(C) and three taxa from L(T ). This is true because the topology
for quartets with zero or more than one taxon from L(C) does not depend on the placement
of C. We refer to the relevant quartets with one taxon from L(C) as solo quartets. For each
solo quartet, removing the sole taxon from C creates a triplet, which we will refer to as its
associated triplet.

Since the reference tree is traversed as a rooted tree, to count the number of shared solo
quartets between the query tree and the reference tree, we need to consider the rooted version
of the quartets. We define the anchor of a rooted quartet as the least common ancestor of all
the four taxa in the quartet; we count each quartet when we arrive at its anchor. We adopt
the recursion (1) from tripVote to computing the quartet score of a node u ∈ V (T ) :

SQ(PT (C, u), R) = SQ(PT (C, p(u)), R) − φi
p(u) − φr

p(u) + φo
u + φr

u (2)

where φi
u, φr

u, and φo
u are defined as follows:

φi
u: The number of shared solo quartets between the placement PT (C, u) and R, where

the associated triplet is anchored at u in T .
φr

u: The number of shared solo quartets between the placement PT (C, u) and R, where
the associated triplet is anchored at the root rTu

in the alternative rooting Tu.
φo

u: The number of shared solo quartets between the placement PT (C, u) and R, where
the associated triplet is anchored at p(u) in the alternative rooting of Tu.

To compute these variables, we first need a definition:

▶ Definition 2. A quartet q is said to belong to a HDT component X, if and only if all four
leaves of q belong to X.

We now update the definitions of the main counters ρX and πX
j associated with the HDT:

ρX : The number of solo quartets that belong to the component X of the HDT and match
the solo quartets in the placement PT (C, u) where the associated triplet is anchored at
the root of the alternative rooting Tu.
πX

j : The number of solo quartets that belong to the component X of the HDT and match
the solo quartets in the placement PT (C, u) where the associated triplet is anchored at u

in the alternative rooting of the query tree Tvj
where vj corresponds to one of the child

nodes of u (j ∈ [1, d]) or the parent node p(u) (j = 0) in the query tree.

For a particular unrooted solo quartet q in the query tree T , we consider every possible
rooted topology of q in the reference tree R in order to compute ρX and πX

j for every
component X in the HDT. Each rooted quartet is counted exactly once at the anchor of the
quartet. Same as in tripVote, the counters ρX and πX

j are associated with the query tree
parameters φi

u, φr
u, and φo

u at the HDT root R:
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φi
u = πR

0 φr
u = ρR φo

vj
= πR

j .

The ρX and πX
j counters can be computed recursively in a postorder traversal on the

HDT components, in an efficient manner:

▶ Lemma 3. The ρX and πX
j counters of the HDT component X can be updated in O(d2)

time assuming the counters for children of X are already calculated.

Proof. The recursion equation for each component depends on the type of the component
(see Table S1). For the I and L types, ρX and πX

j are set to zero as they correspond to a
single node in the reference tree R and do not contain any quartets. For a component X with
two child components, a quartet belongs to X if it belongs to one of the child components of
X or it has at least one leaf from each child component of X. Thus, for any component X of
type IG → C, CC → C, or GG → G, with child components X1 and X2, we define ρX and
πX

j as follows:

ρX = ρX1 + ρX2 + ρX
comb

πX
j = πX1

j + πX2
j + πX

combj

where ρX
comb is the number of quartets that match the criteria for ρX and have at least one

leaf from each of the child components of X, and πX
combj

is the number of quartets that
match the criteria for πX

j and have at least one leaf from each of the child components of X.
Thus, ρX

comb and πX
combj

of a IG → C component is set to zero, as an I component in the
HDT corresponds to a single internal node in the reference tree and does not contain any
leaves. For any other HDT component X, ρX

comb and πX
combj

are computed with the help of a
set of auxiliary HDT counters defined by B13. The rooted quartets counted in ρX

comb must
have either ((i, j), (−1, 0)) or ((0, 0), (−1, i)) unrooted topologies, where i, j ∈ [1, d]. The
rooted quartets counted in πX

combj
must have the unrooted topology ((i, i), (−1, k)) where

i, k ∈ [0, d] and i, k ̸= j. We provide the full set of equations for the rooted quartets with
the topologies ((i, j), (−1, 0)) and ((0, 0), (−1, i)) for ρX

comb , and ((i, i), (−1, k)) for πX
combj

in Tables S2, S3, and S4, respectively, noting that iterating through all 62 cases would be
cumbersome. Figure 2A demonstrates an example for how ρX is computed using the HDT
counters and also how φr

u is computed using ρX .
Because we only count resolved quartets and all quartets counted by our algorithm have

exactly a single −1, we have O(d2) counters (i.e., of the form (0, −1, i, j) for i, j ∈ [1, d])
per HDT component. From Tables S2–S4, it can be easily checked that the amortized cost
of updating all the counters is constant per counter (most counters are constant while a
constant number of counters need O(d2) time). ◀

To state our final results, we need one more result:

▶ Lemma 4. In a top-down traversal of the query tree, a total of (n − m) log(n − m) leaf
coloring steps are needed.

Proof. The proof follows the B13 construction. There are O(n − m) nodes in the tree.
The smaller-half trick of B13 ensures that on each node, we avoid recoloring leaves in its
largest child. This is because when we arrive at a node, the larger child already has the
right color and does not need to be updated. Thus, over the entire tree, we need at most
O((n − m)

( 1
2 + 1

2 + . . .
)
) = O((n − m) log(n − m)) leaf recoloring steps. ◀
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function Q-SPR(T = (V, E), R)
R← build-HDT(R)
T ← heaviest-child-first(T )
color(root of T , 1)
for u ∈ pre-order (T ) do

if u is a leaf then
color(u,0) and continue

if u is the leftmost child then
color(u,1)

v1, v2, . . . , vdu−1 ← c(u)
∀2 ≤ i < du : color(vi, i)
update-counters (Tables S2–S4)
φi

u ← πR
0 and φr

u ← ρR

∀1 ≤ i < du : φo
vi
← πR

i

∀2 ≤ i < du : color(vi, 0)
for (v, u) in pre-order (T ) do

SQ(PT (C, u), R) =
SQ(PT (C, v), R)−φi

v−φr
v +φo

u +φr
u

u∗ = arg maxu SQ(PT (C, u), R)
return PT (C, u∗)

Figure 2 A) An example of how φr
u is computed for the node u in the query tree. φr

u

is obtained by counting the number of matching quartets resulting from taking a triplet anchored at
ru in Tu and placing one query taxon at the anchor of the triplet. To count the number of matching
unrooted quartets in the reference tree R, we consider every possible rooting of the quartet. By
definition, φr

u can be obtained by updating ρR, which is obtained from the demonstrated recursive
equation. ρX is computed for each HDT component X using the counters of its child components
as shown in the table. The computations of ρX

comb correspond to the first row of the Table S2. B)
Quasi-linear-time algorithm to solve the Q-SPR problem. color(u, i) colors all the leaves
below u with i. du is the of degree u.



S. Arasti and S. Mirarab 4:9

We now can state our main results.

▶ Theorem 5. The Q-SPR problem can be optimally solved using the algorithm shown in
Figure 2B in O(kd2(n − m) log(n − m) log(n)).

Proof. We perform top-down traversal of the query tree and at each node, we recolor some
leaves and update the HDT counters (see Figure 2B). Each recoloring of the HDT according
to a new node of the query tree requires recoloring the corresponding leaf components of the
HDT and updating counters of all the ancestors of those leaf components. By construction,
the HDT data structure of B13 has a height of O(log(n)). By Lemma 3, each such update
takes O(d2); thus, the total time for recoloring one leaf is O(d2 log(n)). We need a total of
O((n − m) log(n − m)) recoloring steps by Lemma 4. Thus, we need O(d2(n − m) log(n −
m) log(n)) operations in total for recoloring and updating counters. This produces variables
ρR and πR

j at the root of the HDT, which then give us φi
u, φr

u, and φo
u for each edge. We

need to repeat this for each reference tree, resulting in O(kd2(n − m) log(n − m) log(n)).
Then, the quartet score for each node u of the query tree can be trivially computed in a
second preorder traversal of the query tree using Equation (2), which takes only O((n − m)k)
time. Ultimately, the optimal placement of C can be obtained by finding the branch that
has the maximum quartet score. ◀

2.4 Tree search using quartet SPR moves

Using our method, we can perform heuristic tree searches to find the quartet median tree
with respect to the reference tree(s) R using SPR moves. At each round, we have a current
tree T ′ from the previous round. We draw (without replacement) a branch (v0, u) uniformly
at random from E(T ′), remove the subtree C(u) from the query tree, and obtain the pruned
tree T . The optimal placement of C(u) on T denoted as v∗ is obtained by solving the Q-SPR
problem. If v∗ ̸= u, we place C(u) on v∗ to obtain the improved tree T ∗ = PT (C(u), v∗). If
not, we repeat the process until edges of E(T ′) are exhausted. We then start over the process
(i.e., a new round), using T ∗ as the current tree. A tree is considered final if, in a round, the
algorithm performs SPR on every branch of the tree and cannot find an improvement in the
quartet score. Since the query tree T ′ has 2n − 1 branches, and we may have to find the
optimal placement for all subtrees, the total running time of performing one round of SPR
on every subtree of T ′ has O(kd2n2 log2(n)) complexity. For the starting tree, any tree is
valid. In particular, one can be made by inserting taxa into an empty tree with an arbitrary
order using the Q-SPR problem. This simple algorithm can be further optimized in several
ways, which we leave for discussions and future work.

2.5 Experimental setup

While we leave the development of a fully-featured software for quartet median tree search
to future work, here, we present experiments that E1) demonstrate the running time of
the tool and test its accurate implementation, and E2) show intriguing results in terms of
the effectiveness of SPR moves and the optimality of existing tools. These experiments
are based on an implementation of our method, called Q-SPR, publicly available at git-
hub.com/shayesteh99/Quartet_SPR. Our code builds on tripVote, which itself builds on the
tqDist code [28]. TqDist is a library that calculates the triplet and quartet scores between
two trees, utilizing the B13 algorithm.
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2.5.1 E1: Running time comparison
We modified tripVote to find the optimal placement of a clade C on a query tree T with respect
to the reference tree(s) R. To do so, we place each query taxon ti ∈ L(C) independently and
obtain the quartet score SQ(PT (ti, v), R) for every node v ∈ V (T ). To find the total quartet
score for the placement of C on v, we aggregate the quartet score obtained for each taxon ti

as follows:

SQ(PT (C, v), R) = C +
∑

ti∈L(C)

ST (Tv, Rti
)

where C is a constant (quartets with zero or more than one leaf from C), which we ignore. We
can then simply pick the query with optimal placement. The running time of this algorithm
is expected to grow linearly with m = |L(C)|.

For this experiment, we used an existing 10000-taxon simulated dataset [12] with 10
replicates with gene trees disagreeing with the species tree due to both ILS and Horizontal
Gene Transfer (HGT), as simulated by SimPhy [18]. We used the true species tree as the query
tree, and the estimated gene trees available from the original publication (estimated using
FastTree-II) [24] as the reference set. We randomly selected {50, 100, 200, 500, 1000, 10000}
taxa for each replicate and pruned the input trees (the query tree and the reference trees)
to only contain the selected taxa. We also subsampled the gene trees randomly to obtain
k = 100 trees per replicate. For each of the replicates, we performed one round of SPR on
every subtree of the query tree and measured the time each method took to find the optimal
placement for each subtree. However, for trees of size 1000 and 10000, we restricted these
analyses to subtrees of size at most 70 due to increased running time. In addition to the
running times, we computed the quartet score SQ(PT (C, v), R) for every node v ∈ V (T ) and
every subtree C, and compared the scores of Q-SPR to the scores of modified tripVote to
ensure the correct implementation of Q-SPR.

2.5.2 E2: Improving ASTER trees
In this experiment, we tested the optimality of two leading median tree search heuristics
currently in use. We tested ASTRAL-III and ASTER; the latter is a newer algorithm and
is shown to be better than ASTRAL-III in the face of the missing data [34]. We used the
species trees inferred from the gene trees using these methods as the starting tree to our
Q-SPR hill-climbing search. If the initial tree is an optimal tree (even a locally optimal tree),
then, no SPR move should improve the quartet score. We asked if this is true, and if not,
how much improvement in quartet score, species tree topology, species tree branch length,
and branch support can be obtained.

The experiment used an existing Simphy-simulated ILS-only 200-taxon dataset [22] that
was modified by Zhang et al. [34] to randomly remove ≈ 5% of taxa from each estimated
gene tree. For the purpose of this experiment, we focused on four different model conditions
in this dataset (tree height ∈ {5 × 105, 2 × 106} corresponding to high and medium ILS,
and k ∈ {50, 200}). Each model condition provides 50 replicates with a speciation rate
of 10−6 and 50 replicates with a speciation rate of 10−7, making a total of 100 replicates
per condition. The model condition with high ILS and k = 50 is regarded as the most
challenging model condition where Zhang et al. [34] observed the most pronounced differences
between optimization methods (ASTRAL-III vs. ASTER) [34]. For each model condition,
we ran Q-SPR on both the ASTRAL-III and the ASTER trees. To test the optimality of
the starting trees, we report the number of rounds of improvement and the quartet score
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Figure 3 Results of E1. The running time is shown versus the increasing size of (A) the query
subtree (m) or (B) the query tree (n). In (A), we fix n = 500 and in (B), we ensure 30 < m < 70.
Both axes are in log scale, making the line slope (annotated) an empirical estimate of the asymptotic
running time degree. We refer to our adoption of tripVote for Q-SPR as tripVote.

improvement at the end of all rounds. We also report the total running time of Q-SPR for
each experiment (not including starting tree inference). To measure accuracy, the Q-SPR
and the starting trees were both compared against the known true species tree based on
both normalized quartet distance and the normalized Robinson–Foulds (nRF) [27] metric.
In addition, the local posterior probability (PP) [30] and the coalescent unit length for each
internal branch was computed using ASTRAL-III. This method sets branch lengths to zero
when the frequency of the species tree quartet topology is less than 1/3 among gene tees
(unexpected under MSC); note that localPP is < 1/3 under those conditions as well. We
evaluated support and length for internal branches that matched or differed between the
starting and final Q-SPR trees, with a particular focus on the unexpected cases with zero
branch length or localPP < 1/3.

3 Results

3.1 Running time scaling

Comparing tripVote and Q-SPR, we ensured the two software produced identical results
(quartet support of the placement clade) in all cases. The gene trees here are estimated and
include polytomies. Our extensive empirical results provide validation that the complex set
of recursively defined counters used by Q-SPR (Tables S2–S4) are correct.

Testing the impact of n for subclades of limited range (30 < m < 70) on the running
time, we observe similar asymptotic behavior between tripVote and Q-SPR (Figure 3 B).
The theoretical running time of both methods increases quasi-linearly with respect to the
size of the query tree n, which matches our empirical estimate of the log-log slope to be only
slightly above 1.0. Regardless of n, for the selected range of m, Q-SPR is always faster than
tripVote by a factor of 10 to 31 (mean: 16), which is ≈ m/2.8; this empirical observation
matches the theory that Q-SPR is faster by a factor of Θ(m).
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When we fix n = 500 and vary m, we observe the asymptotic advantage of Q-SPR over
tripVote (Figure 3A). The running time of Q-SPR is nearly independent of the size of the
query subtree (m), as expected, whereas the running time of tripVote increases linearly
with m. Regardless of m, the running time of Q-SPR ranges between 9 and 16 seconds
(mean: 13.5). In these analyses, Q-SPR is faster than tripVote in most conditions. The main
exception is that tripVote is faster for subtrees of size one or two (m ≤ 2); the likely reason
is that tripVote has fewer counters to maintain than Q-SPR. At the other end, for m > 100
taxa, Q-SPR is on average 73 times faster than tripVote. The running time of Q-SPR has a
slight downward trend. The reason is that increasing m decreases the size of the tree induced
by removing the query subtree from the query tree n−m. In the SPR setting where n is fixed,
as the subtree size increases, the size of the backbone tree (n − m) decreases, which makes
Q-SPR faster. The total running time of Q-SPR in this case is O(k(n−m) log(n−m) log(n)),
while the overall running time for tripVote is O(km(n − m) log(n − m) log(n)).

3.2 Improving ASTER and ASTRAL trees
The quartet score of the starting tree with respect to the gene trees is guaranteed to remain
fixed or improve after Q-SPR moves. We saw improvements in 310 out of 800 cases we tested,
but there were wide differences depending on the model condition (Figure 4A). For example,
93% and 61% of runs starting from ASTRAL-III improved in quartet score after Q-SPR
moves for 50 and 200 genes, respectively. In the other extreme, only 5% of low ILS cases
starting from ASTER saw any improvements. The normalized quartet score improvements
were as large as 6% in extreme cases (Figure S2) but were below 0.5% in 99% of cases. The
mean improved score was 0.11% in the most difficult condition (50 genes, high ILS, starting
from ASTRAL-III) and only 0.0001% in the easiest condition (200 genes, low ILS, starting
from ASTER). Overall, 13.7% of branches across all trees changed.

The improvements in the optimization score tend to but do not always lead to improved
species trees (Figure 4B,C). Overall, only 107 or 157 out of the 310 cases with improved
quartet scores had improved accuracy compared to the true species trees in terms of nRF
or quartet distance, respectively; in contrast, 137 or 149 cases had lowered accuracy (the
rest had equal distance). However, while improving quartet score can reduce the accuracy, it
never reduces it dramatically (e.g., never more than 7.5% nRF). In contrast, in some cases,
accuracy improves dramatically after optimization (e.g., in seven cases delta nRF is 10% or
more). Reassuringly, there does seem to be a positive correlation between improved score
and improved accuracy and many cases with the largest quartet score improvement did have
high improvements in accuracy (Figs. 4B and S2). Overall, Q-SPR optimization only slightly
improved the nRF and the quartet distance between the estimated and true species trees
(e.g., nRF improved by 0.1%).

Examining individual rounds of Q-SPR showed interesting patterns (Figure 4E). First,
there is much variation from one replicate to another and from one condition to another,
with the number of rounds ranging from 1 to 242 (mean 4.8). The mean number of rounds
is as low as 1.5 for easy conditions and as high as 14 for difficult ones. Correspondingly,
there is a high level of variation in terms of running times, requiring between 11 and 208
minutes on this 200-taxon dataset (Figure S1). Interestingly, some of the runs with many
rounds of quartet score improvement had little or no impact on accuracy. Overall, it appears
that improving the quartet score when it is already high leads to very little improvement in
accuracy whereas improving the quartet score for challenging datasets with low accuracy can
dramatically improve accuracy (Figure 4E).
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Figure 4 Results for E2. A) Percentage of the replicates with improved quartet score, starting
from either ASTER or ASTRAL-III trees. B) Improvement in the quartet score of the Q-SPR
algorithm above the ASTER tree (under the High ILS model condition and k = 50) with respect to
the gene trees versus the improvement in the normalized RF or the quartet distance between the
ASTER tree and the true species tree. The number of SPR rounds performed for each replicate is
shown in colors. Restricted to high ILS, 50 genes, ASTER; see Figure S2 for all model conditions.
C) The difference between the normalized RF and the quartet distance of the Q-SPR tree and the
starting tree with respect to the true species tree for all tested conditions. Positive (negative) values
indicate an improvement (reduction) in the accuracy of the starting tree. E) The normalized quartet
score between the Q-SPR tree at the end of each SPR round and the gene trees under the High ILS
(ILS rate = 500k) model conditions. The final improvement of the Q-SPR tree with respect to the
true species tree is shown in colors.
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Figure 5 The results of the analysis on the branch lengths and branch supports of
the improved tree using Q-SPR and the starting ASTER tree. A) The branch supports for
the improved tree (ASTER + Q-SPR) and the starting tree (ASTER). The non-matching branches
refer to the branches that are either removed from the ASTER tree or added to the improved
tree. The branch support threshold 1/3 is shown by the dotted horizontal line. B) The empirical
cumulative density function (ECDF) of the branch lengths of the improved and the starting tree for
both the non-matching and matching branches. Shown is only ASTER starting tree with high ILS;
see Figure S3 for full results.

Comparing the branch supports of ASTER and Q-SPR trees shows that fewer branches
have unexpectedly low support (Figure 5A). Around 10% of branches before Q-SPR had
support below 1

3 and branch length 0. Species tree branches with these properties are
problematic as they would have to have less frequency than alternative topologies in the
gene trees (inconsistent with MSC). In contrast, only 0.2% of the branches after Q-SPR had
support below 1

3 or 0 branch length. While most of the branches changed by the Q-SPR
had low support, some had high support (e.g., 16% had localPP > 0.95). Interestingly, it
appears that compared to the starting trees, Q-SPR (indirectly) trades off some reduction in
the number of high support branches with having fewer very low support branches.

4 Discussion

We introduce a quasi-linear algorithm for placing a query subtree on a tree. Our algorithm
takes as input a set of reference trees that include all or some of the leaves in the query subtree
and maximizes the total quartet score between the output tree and the reference tree(s).
We demonstrated that the running time of this method improves on the state-of-the-art
(tripVote) and is indeed nearly independent of the size of the query subtree. Our algorithm,
called Q-SPR, can perform quartet-based subtree prune and regraft (SPR) on a given tree
with respect to the reference tree(s). This efficient algorithm for SPR moves provided us
with a way to enhance species tree inference starting from the output of methods such as
ASTER and ASTRAL, as we demonstrated in our experiments. We showed that for both
methods, the quartet score could be often improved. These improvements tended to eliminate
super low support branches with zero estimated length (i.e., those that do not match MSC
expectations). As such, they would make the resulting trees, and in particular support values
on those trees, more interpretable. However, the impact on the overall topological accuracy
was small to moderate, especially given enough genes. While improving the quartet score
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generally leads to a more precise median tree for an infinite number of gene trees, this is often
not the case when dealing with a finite set of gene trees. Thus, imperfect correlations between
the quartet score and accuracy mean that further improving the quartet score beyond what
heuristics such as ASTER and ASTRAL-III achieve has limited practical value. However,
our results indicate that perhaps a faster and better heuristic method can be designed relying
solely on hill-climbing using SPRs. This will be the subject of future work.

Our approach can be expanded in many ways. Having an efficient SPR move available,
we can now explore the best possible way to apply SPR moves on a starting tree to obtain
efficient hill climbing. Our current approach, testing all possible pruning locations at random
with no attempt at guessing the best move, can likely be improved. More ambitiously, our
theory can be extended to ask if some of the calculations performed for the optimal SPR move
of a clade can be reused for adjacent clades, hence reducing running time. Moreover, the much
faster NNI moves (which are a special case of SPR) should perhaps also be tried. The choice
of the starting tree will also need to be explored. We can, for example, use the widely-used
step-wise addition strategy, which incidentally, is also made possible by our algorithm (and
tripVote). These improvements need to all be combined with high-performance computing
features such as parallelism. Thus, while all the main algorithmic ingredients are ready, a
fully-featured heuristic hill-climbing implementation requires further engineering.
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S1 Supplementary Tables

Table S1 HDT components types. Each component in the HDT corresponds to a part of the
reference tree R, with C and G being the super-types in the HDT.

Type Subtype Description
I corresponds to an internal node in the reference tree R. Every I component is

a leaf in the HDT
G corresponds to a set of subtrees in the reference tree R where the roots of the

subtrees are siblings. A G component can be one of two types:
L corresponds to a leaf node in the reference tree R. Every L component is a leaf

in the HDT
GG→ G a component of the HDT that is the parent of two other G components

C corresponds to a connected subset of nodes in the reference tree R where
the root of one subset is a descendant of the root of the other subset. A C

component can be one of two types:
IG→ C a component of the HDT that is the parent of an I and a G component
CC → C a component of the HDT that is the parent of two C components
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Table S2 Equations for computing the HDT counter ρX
comb for component types CC →

C and GG → G. Each row shows one rooted topology of the unrooted quartet ((i, j), (−1, 0)).
ρX

comb for each component type is the sum over the equations of all the rooted topologies.

Rooted Quartet CC → C GG→ G

ji

5 6

-10
3 4

1 2

1 nC1
0 nC1

−1[nC2
(•□) + nC2

(••)]
2 +

(
n

C1
•
2

)
nC2

(0−1) 1 nG1
(0−1)[n

G2
(•□) + nG2

(••)]
3 +nC1

0 [nC2
−1↑(•□) + nC2

−1↑(••)] 2 +nG2
(0−1)[n

G1
(•□) + nG1

(••)]
4 +nC1

−1[nC2
0↑(•□) + nC2

0↑(••)]
5, 6 +nC1

• nC2
•↑(0−1)

ji

5 6
-1
3 4

0
1 2 1 +nC1

0 [nC2
(−1(•□)) + nC2

(−1(••))]
2 +[nC1

[−1(•□)] + nC1
[−1(••)]]n

C2
0 1 +nG1

0 [nG2
[−1(•□)] + nG2

[−1(••)]]
3 +nC1

−1[nC2
(•□)↑0 + nC2

(••)↑0] 2 +nG2
0 [nG1

[−1(•□)] + nG1
[−1(••)]]

4 +
(

n
C1
•
2

)
nC2

−1↑0
5, 6 +nC1

• nC2
•↑−1↑0

ji

5 6
0
3 4

-1
1 2 1 +nC1

−1[nC2
(0(•□)) + nC2

(0(••))]
2 +[nC1

[0(•□)] + nC1
[0(••)]]n

C2
−1 1 +nG1

−1[nG2
[0(•□)] + nG2

[0(••)]]
3 +nC1

0 [nC2
(•□)↑−1 + nC2

(••)↑−1] 2 +nG2
−1[nG1

[0(•□)] + nG1
[0(••)]]

4 +
(

n
C1
•
2

)
nC2

0↑−1
5, 6 +nC1

• nC2
•↑0↑−1

i-1
5 6

00
3 4

1 2

1 +nC1
• nC2

(•(0−1))

2 +nC1
[•(0−1)]n

C2
•

3 +nC1
• nC2

(0−1)↑• 1 +nG1
• nG2

[•(0−1)]

4 +nc1
0 nC1

−1[nC2
•↑□ + nC2

•↑•] 2 +nG2
• nG1

[•(0−1)]

5 +nC1
0 [nC2

−1↑•↑□ + nC2
−1↑•↑•]

6 +nC1
−1[nC2

0↑•↑□ + nC2
0↑•↑•]



S. Arasti and S. Mirarab 4:19

Table S3 Equations for computing the HDT counter ρX
comb for component types

CC → C and GG → G (Cont.) Each row shows one rooted topology of the unrooted quartet
((0, 0), (−1, i)). ρX

comb for each component type is the sum over the equations of all the rooted
topologies in Table S2 and S3.
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Table S4 Equations for computing the HDT counter πX
combj

for component types
CC → C and GG → G Each row shows one rooted topology of the unrooted quartet ((i, i), (−1, k)).
πX

combj
for each component type is the sum over the equations of all the rooted topologies.
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